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Resumen

En este Trabajo de Fin de Grado se aborda el reconocimiento de la actividad humana (HAR) a partir
de datos de acelerómetro y giroscopio procedentes del dataset WISDM. Tras una amplia fase de pre-
procesado y limpieza de señales, se extraen características en el dominio del tiempo (media, percentiles,
curtosis, autocorrelación, etc.) y en el dominio de la frecuencia (frecuencias dominantes, área bajo la
curva espectral, estadísticas de amplitud). Se comparan tres familias de modelos: Random Forest, SVM
con kernel RBF y una arquitectura LSTM de dos capas, tanto en tareas multiclasificación de 13 activi-
dades como en un escenario binario (“caminar” vs. “no caminar”). Para los enfoques clásicos se evalúan
estrategias “multiclass” y “ensemble” One-vs-Rest; para la LSTM se diseñan dos versiones (multiclase
con softmax y binaria con sigmoide). La evaluación, basada en accuracy, precision, recall y F1-score en
validación cruzada por usuario, muestra que en multiclasificación Random Forest estandarizado lidera el
rendimiento (aproximadamente 84 % de accuracy), mientras que en la tarea binaria la SVM-RBF alcanza
el mejor desempeño (92 % de aciertos). Finalmente, se discuten posibles extensiones: explorar CNN/Trans-
former, ajustar arquitecturas recurrentes (GRU, atención), combinar HAR con identificación de usuario
por marcha y desplegar la solución en aplicaciones móviles, tanto en tiempo real como en informes diarios.



Abstract

Human Activity Recognition (HAR) based on mobile sensors has become a critical component in
health monitoring, sports analytics, and context-aware services. In this project, we use the WISDM acce-
lerometer and gyroscope dataset to design a complete HAR pipeline. After signal cleaning and temporal
segmentation into overlapping windows, we compute statistical features in the time domain (e.g., mean,
percentiles, kurtosis, autocorrelation peaks) and in the frequency domain (e.g., dominant frequencies,
spectral area, amplitude statistics). We evaluate three model families—Random Forest, Radial Basis Fun-
ction SVM, and a two-layer LSTM—on both a 13-class multiclass problem and a binary “walking vs.
non-walking” task. Classical classifiers are tested under multiclass and One-vs-Rest ensemble schemes,
while the LSTM is implemented with softmax and sigmoid output layers. Using user-wise cross-validation
and metrics including accuracy, precision, recall, and F1-score, we find that Random Forest achieves the
highest multiclass accuracy (approximately 84 %), whereas the standardized RBF SVM leads in the bi-
nary task with approximately 92 % accuracy. We conclude with future directions: incorporating CNNs or
Transformer-based encoders, experimenting with GRU and attention mechanisms, combining HAR with
gait-based user identification, and deploying real-time and daily-summary applications on mobile devices.
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CAPÍTULO 1. INTRODUCCIÓN

Capítulo 1

Introducción

1.1. Contexto

A lo largo de las últimas décadas, gracias al rápido avance que ha habido en la tecnología, se ha dado
lugar a la aparición de una gran variedad de dispositivos electrónicos, que cuentan, entre otras carac-
terísticas, con la capacidad de monitorizar de manera continua múltiples aspectos del comportamiento
humano. Este fenómeno ha dado lugar a un campo de investigación en auge: el Reconocimiento de
la Actividad Humana (HAR, Human Activity Recognition), el cual tiene como objetivo desarrollar
sistemas computacionales inteligentes capaces de identificar y clasificar las actividades físicas realizadas
por una persona, a partir de los datos recogidos por sensores como el acelerómetro o el giroscopio.

En este contexto, los denominados dispositivos ponibles o wearables (tales como relojes inteligentes,
pulseras de actividad, teléfonos móviles o incluso ropa con sensores integrados) han adquirido un papel
fundamental. Estos dispositivos, que ya forman parte del día a día de millones de personas, no solo
permiten monitorizar parámetros fisiológicos o contextuales del portador, sino que, además, son capaces
de generar grandes volúmenes de datos que, si se procesan y se analizan de forma correcta, pueden ser
empleados en tareas de clasificación automática de actividades, monitorización de salud, asistencia médica
remota o mejora del rendimiento físico y deportivo, entre otras muchas aplicaciones.

Esta investigación se sitúa en esta línea de trabajo, tomando como punto de partida el uso de sensores
embedidos en smartwatches para la recogida de datos de movimiento de personas durante la realización de
ciertas actividades. Concretamente, se utilizan las medidas en los tres ejes (X, Y, Z) del acelerómetro y del
giroscopio, así como el módulo de las tres mediciones, con el objetivo de analizar patrones de movimiento
que permitan inferir, mediante técnicas de inteligencia artificial, qué actividad está realizando un individuo
en cada instante de tiempo.

1.2. Motivación

La motivación principal que impulsa este trabajo es el interés por aplicar técnicas de aprendizaje
automático al análisis de datos recogidos por sensores, con el fin de desarrollar modelos predictivos que
permitan automatizar tares de reconocimiento de actividad en entornos reales. Esta línea de investigación
no solo resulta estimulante desde el punto de vista académico y tecnológico, sino que también ofrece un
amplio abanico de aplicaciones prácticas con un impacto potencial considerable en al calidad de vida de
las personas.
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1.3. OBJETIVOS

El reconocimiento de la actividad humana encuentra especial relevancia en disciplinas como la me-
dicina personalizada, la rehabilitación física, el envejecimiento activo, la monitorización de personas con
enfermedades neurodegenerativas, la interacción natural con dispositivos, la seguridad laboral, e incluso
la industria del entretenimiento y el bienestar. En todos estos ámbitos, la capacidad de identificar auto-
máticamente patrones de comportamiento puede suponer una mejora significativa en la eficiencia de los
sistemas, la autonomía de los usuarios y la calidad de los servicios prestados.

Además, el estudios del HAR resulta especialmente atractivo por la interdisciplinariedad que implica,
combinando conocimientos de ciencias de la computación, ingeniería biomédica, estadística, tratamiento
de señales y diseño de interfaces. A ello se suma la existencia de bases de datos públicas, como WISDM [1],
que permiten reproducir y comparar resultados en condiciones controladas, fomentando así la investigación
abierta y replicable.

1.3. Objetivos

El objetivo general de este Trabajo de Fin de Grado consiste en desarrollar una solución basada en
inteligencia artificial que permita reconocer distintas actividades humanas a partir de datos recogidos
por sensores instalados en dispositivos ponibles. Para ello, se utilizará la base de datos WISDM y se
implementarán diferentes técnicas de clasificación, evaluando su rendimiento y su robustez.

A partir de este planteamiento general, se han definido los siguientes objetivos específicos:

Analizar en profundidad el problema del reconocimiento de la actividad humana, sus implicaciones
y sus desafíos actuales.

Seleccionar y explorar una base de datos pública y estandarizada que contenga datos representativos
y correctamente etiquetados de distintas actividades humanas

Aplicar y comparar distintos modelos de clasificación, desde modelos tradicionales como Random
Forest y SVM hasta redes neuronales recurrentes como LSTM.

Diseñar y ejecutar una estrategia experimental adecuada, que incluya el preprocesamiento de los
datos, la validación cruzada de los modelos y la evaluación mediante métricas estándar.

Analizar los resultados obtenidos y discutir posibles mejores y líneas de trabajo futuras.

A lo largo del desarrollo de esta investigación, todos los objetivos han sido abordados de manera
rigurosa. Se han llevado a cabo numerosos experimentos que han permitido comparar modelos, evaluar
su capacidad de generalización y obtener conclusiones fundamentales sobre su aplicabilidad.

1.4. Estructura de la memoria

La memoria se organiza en seis capítulos que recogen de manera sistemática las distintas fases del
trabajo realizado:

El Capítulo 1 introduce el contexto, la motivación, los objetivos y la estructura general del trabajo.

En el Capítulo 2 se presenta el estado del arte sobre el reconocimiento de la actividad huma-
na, incluyendo una revisión de las principales técnicas, modelos y bases de datos utilizados en la
literatura.

8



CAPÍTULO 1. INTRODUCCIÓN

El Capítulo 3 describe la metodología empleada, tanto la metodología de investigación por la que se
optó como la metodología de trabajo empleada. En este capítulo también se incluirá la planificación
del trabajo, la cual va acorde a la metodología de trabajo que se siguió.

El Capítulo 4 recoge la experimentación principal sobre el reconocimiento multicategoría de activi-
dades, con tres experimentos progresivos: el primero utilizando todas las clases que se encuentran en
la base de datos, el segundo eliminando clases problemáticas, y el tercero empleando redes LSTM.

El Capítulo 5 aborda la experimentación específica sobre la detección binaria de la actividad
“andar”, motivada por su relevancia en las líneas de investigación asociadas al grupo de trabajo.

Finalmente, el Capítulo 6 expone las conclusiones del estudio y propone diversas líneas futuras de
trabajo que podrían ampliar y enriquecer los resultados obtenidos.
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Capítulo 2

Conceptos teóricos

2.1. Reconocimiento de la Actividad Humana y Biometría

El Reconocimiento de la Actividad Humana (HAR, Human Activity Recognition) es una dis-
ciplina que tiene como objetivo desarrollar sistemas capaces de identificar, clasificar y predecir acciones
humanas a partir de datos recogidos por sensores [2]. En concreto, los sensores de inercia, como aceleró-
metros y giroscopios, habitualmente integrados en dispositivos ponibles (wearables), han sido objeto de
múltiples estudios a lo largo de las últimas décadas, principalmente debido a su bajo coste, su portabilidad
y su precisión para registrar el movimiento corporal.

La biometría, por otro lado, tiene como objetivo identificar automáticamente a las personas utili-
zando como referencia sus rasgos tanto físicos como conductuales. En el ámbito del Reconocimiento de
la Actividad Humana, estas dos áreas se unen, ya que a la hora de reconocer patrones de movimiento
se pueden sacar conclusiones tanto sobre la actividad que se está realizando, como sobre la información
biométrica del usuario, tales como su identidad, su estilo de vida o incluso señales sobre su salud.

2.1.1. Introducción al Reconocimiento de la Actividad Human (HAR)

Con el objetivo de comprender adecuadamente en que consiste el HAR, es importante saber distinguir
los conceptos de acción y actividad [3]:

Acción: movimiento breve y elemental del cuerpo, como puede ser mover un brazo, girar la cabeza
o pulsar un botón.

Actividad: secuencia de acciones organizadas que conforman una tarea funcional, como caminar o
saltar.

Dentro del concepto de actividad, en la literatura especializada se realiza habitualmente una clasifica-
ción en función del nivel de complejidad [4]:

Gestos o transiciones: son movimientos breves que indican un cambio de actividad o postura.

Actividades básicas: comportamientos simples y repetitivos, como estar de pie, correr o escribir.

Actividades complejas: combinaciones de varias acciones o actividades, que pueden incluir varias
actividades o contextos, como pueden ser cocinar o trabajar en equipo para completar una tarea.
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CAPÍTULO 2. CONCEPTOS TEÓRICOS

Desde el punto de vista formal, el HAR se puedo considerar como una tarea de segmentación y
clasificación de datos. El objetivo es extraer datos de movimiento mediante sensores a lo largo de un
período de tiempo, etiquetarlos con la actividad correspondiente y ser capaz de analizar las distintas
características que se puedan apreciar en los datos. En gran parte de los estudios realizados, el enfoque
que se ha utilizado para analizar estos datos es dividirlos en ventanas temporales de tamaño fijo,
etiquetándolos con la actividad predominante en ese intervalo [5]. De esta manera, el problema pasa a
convertirse en una tarea de clasificación supervisada, donde cada muestra se compone por una ventana y
la salida es una clase de actividad.

2.1.2. Tipos de sistemas HAR según el origen de los datos

La arquitectura de un sistema HAR depende en gran mediada del tipo de sensores que se hayan
utilizado para registrar las señales. En función de si los sensores están integrados en dispositivos ubicados
en el entorno o llevados por el propio usuario, se reconocen dos enfoques principales: HAR mediante
sensores externos y HAR mediante dispositivos ponibles (wearables) [6].

HAR mediante sensores externos

Los sistemas HAR que emplean el uso de sensores ubicados en el entorno se suelen basar en el recono-
cimiento basado en la visión, utilizando cámaras con el objetivo de capturar y analizar los movimientos
corporales de los usuarios [7]. Este tipo de aproximación es común en campos como la videovigilancia o
monitorización clínica.

Otra alternativa relacionada es el reconocimiento basado en objetos. En este enfoque se trata de
analizar las interacciones que tienen los usuarios con los distintos elementos del entorno, como cubiertos,
herramientas o muebles.

Sin embargo, el uso de estos sensores puede conllevar limitaciones importantes, ya que requiero de una
infraestructura costosa, además de que pueden generar problemas de privacidad. Además, se ha compro-
bado en diferentes estudios que su capacidad para generalizar en situaciones reales y no supervisadas es
reducida.

HAR mediante dispositivos ponibles (wearables)

Los dispositivos ponibles ofrecen una alternativa más flexible y económica frente a los sensores externos.
Esto se debe a que estos dispositivos (relojes inteligentes o sensores corporales entre otros) son capaces
de registrar los movimientos y señales fisiológicas del usuario sin necesidad de infraestructura adicional.

La mayoría de los sistemas HAR se apoyan en sensores como:

Acelerómetros o giroscopios [5]: capturan aceleraciones lineales y angulares, fundamentales para
distinguir actividades basadas en movimiento.

Sensores ambientales [8]: recogen información contextual como la luz, la temperatura o la ubica-
ción.

Sensores fisiológicos [8]: monitorizan variables fisiológicas del usuarios, como el ritmo cardíaco,
que pueden llegar a aportar datos adicionales útiles para determinadas aplicaciones.
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El principal beneficio de los dispositivos ponibles es que posibilitan la recogida de datos en entornos
naturales no supervisados, facilitando una monitorización continua y realista del comportamiento humano,
contribuyendo de esta manera a la expansión del HAR a escenarios cotidianos.

2.1.3. Estrategias de diseño para un sistema HAR

Una vez han quedado definidos los sensores y los entornos de recogida de datos, es necesario diseñar la
arquitectura del sistema HAR. Para ello, existen principalmente dos enfoques: modelado dirigido por
conocimiento y modelado dirigido por datos [3].

Modelado dirigido por conocimiento

En este enfoque, se parte de una representación de las actividades basada en reglas, ontologías o
descripciones semánticas. Por ello, es necesaria la participación de expertos que definan manualmente
cual es el comportamiento esperado en cada actividad. Debido a esto, su capacidad para adaptarse a
nuevos escenarios puede verse limitada.

Modelado dirigido por datos

Este es el enfoque mas extendido actualmente. En este enfoque, el sistema aprende a reconocer patrones
directamente a partir de conjuntos de datos etiquetados. Esta aproximación ofrece una gran flexibilidad,
aunque exige una cantidad significativa de datos bien etiquetados.

2.2. Modelos de clasificación y técnicas utilizadas

Tras el procesamiento de los señales temporales en ventanas (Apartado 6.2.1) el HAR pasa a conver-
tirse en un problema de clasificación supervisada. A lo largo de este trabajo se han utilizado diferentes
algoritmos de aprendizaje automático que permiten asignar etiquetas de actividad a las ventanas de entra-
da. Estos algoritmos son: Random Forest, Support Vector Machine (SVM) y Long Short-Term
Memory (LSTM). Se pasa a realizar una breve descripción de cada uno.

2.2.1. Random Forest

El modelo Random Forest [9] pertenece a la familia de los métodos de ensamblado (ensemble), los
cuales se caracterizan por combinar múltiples clasificadores individuales con el objetivo de mejorar la
generalización del sistema. En concreto, consiste en la construcción de un conjunto de árboles de decisión,
cada uno entrenado con una muestra aleatoria del conjunto de datos. Cada uno de ellos realiza una
predicción individual dados los datos de entrada y la predicción final del modelo se decide mediante
votación mayoritaria entre todos los árboles.

En la Figura 2.1 se puede ver un esquema del funcionamiento interno de un modelo Random Forest.
Cada árbol de decisión funciona como un clasificador jerárquico que evalúa secuencialmente condiciones
sobre las variables de entrada. De esta manera, se va navegando a través de las ramas del árbol hasta
finalizar el camino en una hoja, la cual está etiquetada con una clase (actividad), que será la predicción
de ese árbol individual para los datos de entrada. Una vez todos los árboles hayan realizado este proceso,
se elegirá la clase más votada como predicción final del modelo. Gracias al uso de múltiples árboles, con
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distintos subconjuntos de características, este modelo reduce la varianza y evita el sobreajuste que podría
producirse con un único árbol.

Figura 2.1: Funcionamiento interno Random Forest

2.2.2. Support Vector Machine (SVM)

Este modelo se basa en la identificación de un hiperplano óptimo que separe los datos de distintas
clases, con el objetivo de maximizar el margen entre los ejemplo más cercanos de cada clase, denominados
vectores de soporte. En la Figura 2.2 se puede ver un ejemplo de división de datos mediante un
hiperplano generado por un modelo SVM.

Figura 2.2: Separación de clases mediante SVM

En caso de que los datos no sean linealmente separables, SVM permite aplicar funciones de transfor-
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mación conocidas como kernels, que proyectan los datos originales en espacios de mayor dimensión donde
sí que exista la posibilidad de separarlos mediante un hiperplano. Esta capacidad de manejar relaciones
no lineales entre características convierte a SVM en un modelo particularmente adecuado para problemas
complejos como el HAR, donde las actividades no siempre si distinguen por patrones lineales evidentes.

Uno de los kernels más empleados en la práctica, y el que se ha utilizado en este trabajo, es el kernel
de base radial (RBF) (Ecuación 2.1), también conocido como kernel gaussiano. Este kernel mide la
similitud entre dos muestras según su distancia euclídea. Por tanto, dos puntos cercanos en el espacio
original tendrán una similitud cercana a 1, mientras que puntos distantes tendrán un valor cercano a 0,
haciendo que el modelo sea capaz de aprender fronteras de decisión altamente no lineales.

K(x, x′) = exp
(
−γ∥x− x′∥2

)
(2.1)

2.2.3. Redes Neuronales Recurrentes LSTM

Estas redes están diseñadas especialmente para procesar secuencias de datos, lo que las hace muy
útiles cuando la información temporal y la dependencia entre elementos consecutivos es crítica.

Con la intención de superar el problema que presentaban las RNN (Recurrent Neural Networks)
tradicionales con el desvanecimiento o explosión del gradiente durante el entrenamiento surgieron las redes
Long Short-Term Memory (LSTM), las cuales incorporan mecanismos de control internos denominados
puertas. Hay tres: de entrada, de olvido y de salida (Figura 2.3) Estas puertas permiten a la red
mantener, actualizar o descartar información de la memoria a lo largo de la secuencia, lo que permite
detectar patrones temporales complejos como los que se pueden encontrar en las actividades humanas.

Figura 2.3: Separación de clases mediante SVM

Internamente cada unidad LSTM recibe una entrada en cada instante de tiempo, la combina con el
estado interno anterior y decide que parte de la información es necesario conservar y que parte olvidar.
Gracias a esto, las LSTM son capaces de aprender estructuras dinámicas en las señales sensoriales, como
la repetición rítmica al caminar o realizar una actividad.

En las arquitecturas se suelen combinar varios módulos LSTM en serie para mejorar la eficiencia del
modelo. Esto, sin embargo, puede causar un sobreajuste, lo cual compromete la capacidad del modelo para
generalizar a datos no vistos. Con el objetivo de mitigar este problema se emplea la técnica de dropout
[10], la cual consiste en desactivar aleatoriamente un porcentaje de neuronas durante el entrenamiento,
forzando al modelo a no depender excesivamente de rutas específicas en la red.

Una vez la secuencia ha sido procesada por todos los módulos LSTM, es necesario transformar la
salida en una predicción sobre las clases disponibles. Para ello, se emplean una o varias capas densas
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que actúan como clasificador final. Estas capas tienen como función transformar el vector de activaciones
que tiene como salida el módulo LSTM en una distribución de probabilidad sobre las clases posibles. La
clase predicha es aquella con la mayor probabilidad asociada. En la Figura 6.7 se puede ver la arquitectura
empleada en este trabajo, la cual combina múltiples módulos LSTM con dropout y capas densas.
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Capítulo 3

Estado del arte

3.1. Enfoques Investigativos y Técnicas Empleadas

La investigación de modelos aplicados al HAR ha pasado por el uso de algoritmos clásicos de apren-
dizaje automático, como Random Forest, Support Vector Machines (SVM) o k-Nearest Neighbors, hasta
soluciones más avanzadas fundamentadas en aprendizaje profundo, destacando el uso de redes neurona-
les recurrentes (RNN) y arquitecturas convolucionales (CNN) [11]. Estos últimos son capaces de extraer
características temporales y espaciales directamente de los datos crudos, eliminando en muchas casos la
necesidad de aplicar métodos matemáticos y estadísticos para realizar esta extracción.

En los estudios realizados por Kwapisz et al. (2010) [5] se utilizaron por primera vez los acelerómetros
integrados en teléfonos móviles con el objetivo de reconocer actividades cotidianas, obteniendo tasas de
precisión superiores al 90 %. Posteriormente, Teng et al. (2020) [12] demostraron como redes convolucio-
nales optimizadas mediante técnicas de pérdida local pueden mejorar significativamente la clasificación
de actividades en comparación con métodos tradicionales.

En una revisión reciente, Zhang et al. (2021) [13] analizaron los principales avances en el campo
del HAR con sensores ponibles, destacando el papel de las arquitecturas híbridas que combinan capas
convolucionales con mecanismos de atención, así como el uso de datos multicanal y multimodales.

3.2. Campos de Aplicación

El reconocimiento automático de la actividad humana presenta un amplio abanico de aplicaciones
potenciales, entre las que destacan:

Medicina y Salud Pública [14]: Detección de caídas, seguimiento de rutinas de ejercicio, moni-
torización remota de pacientes con enfermedades crónicas o neurodegenerativas.

Asistencia a personas mayores [15]: Monitorización no invasiva de hábitos de vida para facilitar
la autonomía en el hogar.

Seguridad y Prevención [16]: Identificación de comportamientos anómalos en entornos laborales
o industriales.

Interacción Hombre-Máquina [17]: Interfaces inteligentes capaces de adaptarse a la actividad o
intención del usuario.
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Deporte y Fitness [18]: Mejora del rendimiento físico y detección de patrones de entrenamiento
a través del análisis del movimiento.

3.3. Resultados Precedentes

A lo largo de los últimos años, diferentes estudios han mostrado resultados prometedores al aplicar
técnicas de clasificación sobre datos de sensores inerciales (Tabla 3.1):

Kwapisz et al. [5]: utilizando la base WISDM y modelos como perceptrón multicapa, lograron una
precisión del 91.7 % en la clasificación de actividades como caminar, estar de pie o sentarse.

Teng et al. [12]: emplearon CNNs con pérdida local y alcanzaron mejoras sustanciales respecto a
modelos tradicionales en bases como UCI HAR y WISDM, llegando a alcanzar una tasa de acierto
del 98.82 %.

Zhang et al. [13]: su revisión sistemática de múltiples modelos de redes neuronales recurrentes
identificó que las mejores precisiones en entornos controlados superan el 95 %, aunque se enfatiza la
necesidad de validar en contextos reales y heterogéneos.

Zhou et al. [19]: abordaron la implementación de modelos de reconocimiento de actividad humana
en dispositivos de recursos limitados mediante técnicas de TinyML, obteniendo una precisión del
98.24 % utilizando el modelo DeepConv LSTM.

Sharen et al. [20]: diseñaron el modelo de aprendizaje profundo WISNet, basado en una red
convolucional 1D-CNN especializada en clasificar actividades humanas complejas, alcanzando una
tasa de acierto del 96.41 %.

Jameer y Syed [21]: desarrollaron un modelo híbrido que combina DCNN (Deep Convolutional
Neural Network) con LSTM (Long Short-Term Memory), alcanzando tasas de acierto del 99.94 %.

Akter et al. [22]: propusieron un modelo basado en redes convolucionales profundas CNN con
módulos de atención CBAM, orientado al reconocimiento de actividades humanas a partir de es-
pectrogramas generados a partir de señales crudas, consiguiente una precisión del 93.89 %.

Tabla 3.1: Resultados de distintos modelos de HAR sobre la base de datos WISDM

Artículo Modelo utilizado Base de da-
tos

Resultado
obtenido

Kwapisz et al. [5] Perceptrón multicapa (MLP) WISDM 91.7 %
Teng et al. [12] CNN con pérdida local WISDM, UCI

HAR
98.82 %

Zhang et al. [13] Revisión de modelos RNN
(LSTM, GRU, etc.)

WISDM (entre
otros)

>95 % en en-
tornos contro-
lados

Zhou et al. [19] DeepConv LSTM (TinyML) WISDM 98.24 %
Sharen et al. [20] WISNet (1D-CNN) WISDM 96.41 %
Jameer y Syed [21] DCNN + LSTM WISDM 99.94 %
Akter et al. [22] CNN con CBAM y espectro-

gramas
WISDM 93.89 %
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3.4. Síntesis del estado del arte

La literatura actual demuestra que el reconocimiento de la actividad humana mediante dispositivos
ponibles es una línea de investigación consolidada en expansión, sustentada en avances tanto en sensores
como en algoritmos de clasificación. La tendencia apunta hacia la adopción de modelos complejos, capaces
de manejar condiciones reales de uso, pero aún persisten desafíos relacionados con la generalización, la
eficiencia computacional y la interpretación de los modelos. Este trabajo se posiciona dentro de la corriente
investigativa, proponiendo un enfoque experimental que combina métodos tradicionales y redes neuronales
avanzadas para abordar el HAR con datos reales.
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Capítulo 4

Metodologías y planificación

Para garantizar el correcto desarrollo de un proyecto, es necesario definir desde el inicio cual es el
enfoque que se quiere seguir a lo largo del mismo. En esta sección se explicarán cuales han sido las
metodologías utilizadas, tanto en la investigación como en el seguimiento del trabajo, y se expondrá un
análisis de los posibles riesgos, partes interesadas y costos del proyecto

4.1. Metodología de Investigación

4.1.1. Introducción a la Metodología CRISP-DM

En esta investigación se ha adoptado la metodología CRISP-DM [23] (Cross-Industry Standard Pro-
cess for Data Mining) como marco estructural para el desarrollo del proyecto. CRISP-DM es una meto-
dología ampliamente reconocida en el ámbito de la minería de datos y la ciencia de datos, proporcionando
un enfoque sistemático y estructurado para la realización de proyectos de análisis de datos.

4.1.2. Fases de la metodología CRISP-DM

La metodología CRISP-DM se estructura en seis fases principales (Figura 4.1), las cuales están inter-
relacionadas de manera iterativa de la siguiente manera:

Figura 4.1: Esquema general del proceso CRISP-DM.
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1. Comprensión del negocio: En esta fase inicial, se define el objetivo principal del proyecto desde
una perspectiva de negocio, determinando los requerimientos, criterios de éxito y posibles restric-
ciones. El conocimiento profundo del problema permite orientar adecuadamente todas las etapas
posteriores.

2. Comprensión de los Datos: Consiste en recopilar, describir y explorar los datos disponibles,
evaluando su calidad y comprendiendo las relaciones subyacentes entre variables. Esta fase es esen-
cial para detectar inconsistencias, valores atípicos y estructuras relevantes que puedan influir en el
modelado.

3. Preparación de los datos: En esta fase se realiza la transformación de los datos en un formato
adecuado para el modelo. Incluye la limpieza, selección de atributos relevantes, generación de nuevas
variables y, en su caso, el tratamiento de valores ausentes o inconsistentes.

4. Modelado: Se aplican algoritmos de minería de datos o aprendizaje automático sobre los datos
preparados. La selección del modelo adecuado, así como el ajuste de sus parámetros, es un proceso
iterativo que requiere conocimientos técnicos y comprensión del comportamiento de los datos.

5. Evaluación: Los modelos desarrollados se evalúan no solo en función de métricas cuantitativas
como la precisión o la F1-score, sino que también se tiene en consideración su utilidad práctica y
alineación con los objetivos de negocio definidos inicialmente.

6. Despliegue Finalmente, el modelo validado se implementa en un entorno operativo. Esta fase puede
abarcar desde un informe técnico hasta la integración de un sistema automatizado que permita el
uso efectivo de los resultados obtenidos.

Uno de los aspectos más distintivos y valiosos de la metodología CRISP-DM es su naturaleza iterativa,
que la diferencia de otros enfoques más lineales o secuenciales. Este carácter iterativo implica que el
proceso no transcurre de manera estrictamente unidireccional desde la comprensión del negocio hasta
el despliegue final, sino que las fases pueden ser revisitadas tantas veces como sea necesario, en función
de los descubrimientos, dificultades o necesidades emergentes que se presenten durante el desarrollo del
proyecto.

Como puede apreciarse en la Figura 4.1, las fases del modelo no están aisladas entre sí, sino que
mantienen conexiones bidireccionales que permiten retroalimentar continuamente el proceso. Este enfoque
flexible y cíclico proporciona una gran capacidad de adaptación a contextos reales, donde las condiciones
de trabajo, los datos disponibles y los objetivos pueden evolucionar a lo largo del tiempo. Además, fomenta
una mejora continua en la calidad de los resultados, al permitir ajustar y optimizar el análisis conforme
se avanza en el conocimiento del problema y de los datos.

4.1.3. Aplicación de CRISP-DM en el proyecto

La estructura de este Trabajo de Fin de Grado refleja una aplicación de la metodología CRISP-DM:

En los capítulos iniciales se realiza la comprensión del problema y se plantean los objetivos de
la investigación

Durante la experimentación, se realiza una exploración y preparación de los datos, incluyendo
segmentación temporal y extracción de características (Sección 6.2.1).

Se implementan y comparan varios modelos de clasificación, adaptados a las características del
problema y de los datos.
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Se lleva a cabo una evaluación de los resultados de cada modelo en cada experimento mediante
métricas apropiadas.

Finalmente, se discuten las posibilidades de integración de los modelos en aplicaciones prácticas,
orientado hacia futuras líneas de despliegue, como integración de los modelos en aplicaciones móviles
o elaboración de memorias de investigación.

4.2. Metodología de Trabajo

El desarrollo de este Trabajo de Fin de Grado se ha realizado siguiendo un enfoque basado en meto-
dologías ágiles, enfoque que ha sido ampliamente adoptado en entornos de trabajo colaborativos y en
proyectos de innovación tecnológica. A diferencia de los modelos tradicionales de gestión de proyectos, las
metodologías ágiles se caracterizan principalmente por la gran flexibilidad que aportan al flujo de trabajo
del equipo, así como por su orientación a resultados iterativos y su capacidad de adaptación continua en
función de cuáles son los avances que se van obteniendo y los obstáculos que se pueden encontrar a lo
largo del proceso de desarrollo.

4.2.1. Metodología Scrum

Una de las metodología ágiles mas representativas y extendidas es la metodología Scrum [24], un
marco de trabajo especialmente diseñado para optimizar la entrega de valor en equipos que desarrollan
productos complejos. La metodología Scrum propone dividir el trabajo en ciclos temporales cortos y
definidos denominados sprints, en los que se planifica, ejecuta y revisa el progreso de forma sistemática.
Durante cada sprint, el equipo se reúne de forma regular para evaluar lo realizado, reajustar prioridades y
planificar los pasos a seguir en los siguientes sprints, favoreciendo de esta manera un desarrollo adaptativo e
iterativo, además de una mejora continua con respecto a los resultados obtenidos [25]. Este modelo resulta
especialmente adecuado para proyectos donde no es posible definir desde el inicio todas las tareas, como
sucede de forma habitual en trabajos de investigación o desarrollo experimental.

Existen numerosas metodologías ágiles, pero la metodología SCRUM destaca sobre las demás debido
a las siguientes características:

Inclusión del cliente en el flujo del trabajo: el propio cliente forma parte del equipo, por lo
que permite mantener una comunicación constante, haciendo que los malentendidos con respecto a
detalles del proyecto ocurren con menos frecuencia, y por consiguiente aumentando la satisfacción
del cliente.

Claridad en la planificación: Los sprints están definidos de manera precisa, con objetivos con-
cretos y plazos establecidos, lo que contribuye a una gestión más eficiente del tiempo y los recursos.

Flexibilidad controlada: La capacidad de adaptación ante posibles cambios en los requisitos es
uno de los mayores atractivos de esta metodología. Sin embargo, una vez iniciado un sprint, los
requerimientos se consolidan y no se modifican hasta su finalización.

Sinergia del equipo: Cada integrante del proyecto desempeña un rol fundamental, promoviendo un
flujo constante de información y fomentando la cooperación entre todos los participantes implicados.
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4.2.2. Artefactos SCRUM

Con el objetivo de alinear el conocimiento de todos los integrantes del equipo SCRUM, es necesario
definir una serie de artefactos que engloben la información clave del proyecto [26]:

Product Backlog : Es una lista ordenada que contiene todo lo que se conoce que es necesario incluir
en el producto, en función del objetivo del mismo. Esta lista está en constante evolución y nunca
se considera finalizada, ya que se adapta de forma continua a los cambios en las necesidades y
prioridades.

Sprint Backlog : Es el conjunto de elementos seleccionados del Product Backlog que el equipo se
compromete a completar durante un sprint específico. Una vez que se ha creado, ningún miembro
externo al equipo de desarrollo puede modificarla; únicamente los desarrolladores pueden añadir,
modificar o eliminar tareas según sea necesario.

Potentially Releasable Product Increment : Al finalizar cada sprint, el equipo genera un incre-
mento del producto que es potencialmente entregable. Esto implica que cumple con la Definition of
Done (definición de terminado) previamente acordada. Por ejemplo, un incremento puede conside-
rarse entregable si ha sido completamente probado y aprobado para su liberación.

Product Goal : El Product Goal es una declaración escrita que define un objetivo intermedio claro
y compartido hacia el que se orienta el desarrollo del producto. Este objetivo guía la priorización
del Product Backlog y proporciona un marco de referencia para la toma de decisiones. A diferencia
de la visión del producto, que representa un estado deseado a largo plazo y de carácter evolutivo,
el Product Goal es más concreto, medible y enfocado en resultados alcanzables en un horizonte
temporal más cercano. [27]

4.2.3. Equipo SCRUM

La metodología Scrum se basa en la colaboración de diferentes roles bien definidos, cada uno con res-
ponsabilidades específicas que contribuyen al éxito del equipo y del producto. A continuación, se describen
los tres roles principales: Product Owner, Scrum Master y Developers. [28]

Product Owner

El Product Owner (Propietario del producto) es el responsable de maximizar el valor del producto
generado por el equipo Scrum [29]. Este rol representa la voz del cliente y actúa como enlace entre los
stakeholders y el equipo de desarrollo.

Tareas principales:

• Establecer objetivos del producto.
• Mantener el Product Backlog actualizado y ordenado.
• Alinear los objetivos de los sprints con los desarrolladores.
• Participar activamente en el descubrimiento de producto y en la elaboración de estrategias y

hojas de ruta.
• Medir el valor entregado mediante indicadores clave de rendimiento (KPIs).

El Product Owner siempre tiene la última palabra en cuanto a decisiones estratégicas y tácticas
sobre el producto se refiere. Es la persona que decide que características son necesarias desarrollar,
en que orden se debe seguir y para quien van a estar desarrolladas.
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Developers

Los Developers (Desarrolladores) son los encargados de construir los incrementos funcionales del
producto [30]. Este grupo es autoorganizado y multidisciplinar, con todas las habilidades necesarias para
entregar valor en cada iteración.

Tareas principales:

• Transformar los elementos priorizados del Product Backlog en incrementos de producto funcio-
nales y entregables.

• Gestionar el Sprint Backlog.
• Participar en las reuniones diarias (Daily Scrum).
• Colaborar en la consecución de los objetivos del sprint.

Este rol cuenta con la capacidad de decidir de forma autónoma cómo se va a abordar el trabajo
técnico y organizativo necesario para alcanzar los objetivos del sprint.

Scrum Master

El Scrum Master es el facilitador del equipo Scrum. Su rol principal es asegurarse de que el equipo
entienda y aplique correctamente el marco de trabajo Scrum, eliminando impedimentos y promoviendo
la mejora continua [31].

Tareas principales:

• Facilitar reuniones, conversaciones y dinámicas de mejora.
• Asegurar que el equipo y el Product Owner comprenden correctamente el Product Backlog.
• Eliminar obstáculos que impidan el avance del equipo.
• Impulsar la autoorganización y multifuncionalidad del equipo.
• Promover la adopción de Scrum en toda la organización.
• Actuar como mentor y agente de cambio organizacional.

Este rol no toma decisiones dentro del marco del producto ni del marco técnico, pero también tiene
una gran relevancia ya que es el que se encarga de garantizar el cumplimiento del marco Scrum,
impulsando el correcto desarrollo del proyecto.

4.2.4. Partes interesadas

Las partes interesadas del proyecto, también denominados Stakeholders, son toda aquella persona que
haya tenido un rol fundamental a lo largo del desarrollo del proyecto:

Tutores académicos: actúan como supervisores del proyecto, verificando los progresos obtenidos en
cada sprint y valorando el resultado final del trabajo. Además, ofrecen retroalimentación constructiva
orientada a la resolución de los diversos problemas que puedan surgir durante el desarrollo del
proyecto.

Usuarios finales: personas o instituciones que utilizarán el producto desarrollado a lo largo del
proyecto. Algunos de los roles que entran dentro de este tipo de usuarios son los siguientes:
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Figura 4.2: Diagrama de Gantt con la planificación final del proyecto

• Profesionales sanitarios: Médicos, fisioterapeutas y terapeutas ocupacionales que utilizan
los datos de actividad para evaluar el progreso de tratamientos, detectar comportamientos
anómalos o prevenir caídas.

• Entrenadores y preparadores físicos: Interesados en analizar patrones de movimiento para
optimizar el rendimiento deportivo o prevenir lesiones mediante el seguimiento detallado de
rutinas de entrenamiento.

• Instituciones públicas y organismos de salud: Interesados en usar estos sistemas para
el seguimiento poblacional, promoción de hábitos saludables o prevención de enfermedades
crónicas a través del análisis de actividad física.

4.2.5. Adaptación de la metodología

En el marco de este proyecto, el rol de Developer ha sido tomado por el alumno, ya que es la persona
encargada de realizar los incrementos alineados con los objetivos propuestos. Por otro lado, los tutores del
proyecto tomaron los roles de Product Owner y Scrum Master. Esto es debido a que ellos son las personas
que establecían los incrementos a realizar, que condiciones había que cumplir y en que orden tenían que
realizarse.

La planificación de las tareas concretas a realizar no se definió de forma cerrada desde el inicio, sino que
se fue definiendo progresivamente a lo largo del tiempo en función de lo objetivos que se iban alcanzando
y los hallazgos obtenidos a lo largo de cada fase del proceso.

El proyecto se dividió en sprints de una semana de duración. Al inicio de cada sprint se realizaba una
reunión con los tutores del proyecto, en las que se revisaban los avances conseguidos, se discutían cuales
habían sido los obstáculos encontrados y se establecían las metas para la siguiente semana. Este enfoque
ha permitido mantener una comunicación fluida, ha asegurado un seguimiento constante y ha facilitado
la toma de decisiones de manera fundamentada y colaborativa. Gracias a esta estructura, ha sido posible
priorizar tareas, redistribuir esfuerzos y mejorar la calidad de las entregas de forma iterativa, manteniendo
en todo momento la alineación con los objetivos del trabajo.

4.2.6. Planificación y seguimiento del proyecto

En la Tabla 4.1 se observa la distribución inicial de los sprints a lo largo del proyecto, así como sus
fechas de inicio y de fin. Se muestra la planificación de los sprints relacionados con el desarrollo del proyecto
(Del Sprint Inicial al Sprint 9) y la del sprint de redacción de la memoria (Sprint Final). Se planificó que
cada sprint supusiese una carga lectiva de entre 25 y 30 horas, por lo que se estiman 27.5 horas de trabajo
por cada sprint. Para el Sprint Inicial, al ser el primero y tratarse de labores de investigación, se estima
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una duración de 25 horas. Por tanto, la estimación de la duración del proyecto dada la planificación inicial
es de 300 horas.

En la Figura 4.2 se puede observar el diagrama de Gantt que muestra la distribución final del trabajo
y de la realización de tareas de desarrollo a lo largo de los primeros diez sprints, separada en experimentos
que se explicarán con detalle en el Apartado 6.6. Sin embargo, en la planificación inicial se infraestimó la
duración que iba a tener la redacción de la memoria. Debido a esto y a factores laborales que impidieron
que el alumno pudiese continuar con la carga lectiva semanal que estaba planificada, está última tarea se
prolongó hasta el 15/06/2025.

Observando el diagrama se puede ver claramente la aplicación de la metodología CRISP-DM, donde
tras realizar una iteración completa de la experimentación (preparación de datos, creación de modelos y
análisis de resultados), se volvía al primer paso en una nueva iteración con el objetivo de explorar nuevas
soluciones, así como la aplicación de la metodología Scrum, donde cada semana se realizaba una reunión
con los tutores del proyecto, se observaba cuáles habían sido los avances realizados a lo largo de la semana
y se definían los objetivos a cumplir para la siguiente.

Tabla 4.1: Planificación inicial del calendario

Sprint Fecha de inicio Fecha de finalización Carga lectiva planificada (h)

Sprint Inicial 21/02/2025 28/02/2025 25.0
Sprint 1 28/02/2025 07/03/2025 27.5
Sprint 2 07/03/2025 14/03/2025 27.5
Sprint 3 14/03/2025 21/03/2025 27.5
Sprint 4 21/03/2025 28/03/2025 27.5
Sprint 5 28/03/2025 04/04/2025 27.5
Sprint 6 04/04/2025 11/04/2025 27.5
Sprint 7 11/04/2025 18/04/2025 27.5
Sprint 8 18/04/2025 25/04/2025 27.5
Sprint 9 25/04/2025 02/05/2025 27.5

Sprint Final 02/05/2025 09/05/2025 27.5

300.0

Alineado con la planificación inicial, se cumplieron las estimaciones de carga lectiva para los primeros
diez sprints (25 horas para el Sprint inicial, 27.5 horas para los sprints del Sprint 1 al Sprint 9). De esta
manera se puede determinar que cada fase de la experimentación (Apartado 6.6) tuvo una carga lectiva de
entre 27.5 y 82.5 horas, en función de la complejidad del mismo. Sin embargo, la duración de la redacción
de la memoria del proyecto (Sprint Final) se amplió hasta un total de 40 horas de trabajo superando
la cantidad de tiempo planificada. Por tanto se estima que se emplearon un total de 312.5 horas en la
realización de este Trabajo de Fin de Grado.

4.3. Análisis de riesgos del proyecto

En la Tabla 4.2 se detallan los principales riesgos identificados durante el desarrollo del proyecto,
siguiendo la metodología de evaluación de riesgos recomendada por INCIBE [32]. Para cada riesgo se
define:

Probabilidad (P): probabilidad de que el riesgo se materialice. Baja (1), Media (2) o Alta (3).
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Impacto (I): gravedad del impacto que supondría si sucediese. Baja (1), Media (2) o Alta (3).

Nivel de Riesgo (NR): cálculo final de la gravedad del riesgo. Se calcula multiplicando la pro-
babilidad por el impacto del riesgo. Muy bajo (1), Bajo (2), Medio (3–4), Alto (6) o Muy alto
(9).

Tabla 4.2: Análisis de riesgos asociados al desarrollo del proyecto

Riesgo P I NR Salvaguardas
Imposibilidad del alumno de
continuar con la planificación
del trabajo por enfermedad o
razones externas

2 3 6 (Alto) Planificar con un margen de tiempo
adecuado.

Retrasos en la planificación 3 2 6 (Alto) Empleo de metodologías ágiles para di-
vidir el proyecto en entregas parciales
para llevar una monitorización de los
avances

Pérdida o corrupción de datos
durante el preprocesado

1 3 3 (Medio) Uso de control de versiones (Git), co-
pias de seguridad periódicas, separa-
ción de datos originales y transforma-
dos.

Subestimación del tiempo ne-
cesario para entrenar y eva-
luar modelos

3 2 6 (Alto) Planificación por sprints, estimaciones
realistas con margen, entrenamiento
parcial para pruebas previas. Conside-
rar la opción de pedir máquinas vir-
tuales con acceso a entornos de compu-
tación más potentes.

Incompatibilidades técnicas
con librerías o entornos

2 2 4 (Medio) Uso de entornos virtuales (conda/-
venv), documentación de dependencias
y pruebas de compatibilidad tempra-
nas.

Dificultad en la interpretación
de resultados por métricas mal
elegidas

1 2 2 (Bajo) Uso de métricas adecuadas (precisión,
recall, F1), y análisis por clase, con vi-
sualizaciones como matrices de confu-
sión.

Retrasos por dificultad de
comprensión del dataset
WISDM

1 3 3 (Medio) Revisión previa de documentación,
análisis exploratorio al inicio del pro-
yecto, y segmentación iterativa.

4.4. Estimación de costes

Como parte final de la planificación, es necesario hacer una estimación del presupuesto que es necesario
para desarrollar el proyecto. Este presupuesto iría destinado a suplir los costes materiales y de personal.

Costes materiales

Ordenador para realizar el desarrollo: 38.71e

Conexión a internet y suministro eléctrico: 20e/mes (50e total)
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Coste material estimado: 88.71e

El ordenador utilizado para realizar el proyecto está valorado en aproximadamente 549e. Estimando
una vida útil de 3 años, la amortización semanal sería de 3.52e. Teniendo en cuenta que la planificación
inicial estima 11 semanas de desarrollo, la amortización corresponde a 38.71e.

Costes de personal

Para desarrollar el proyecto, se requeriría de la contratación de los profesionales definidos en la Ta-
bla 4.3. Para determinar los sueldos que percibirían estos trabajadores se utilizó la página [33] para buscar
los sueldos por hora en las provincias de Valladolid y Madrid.

En este caso, el alumno desarrollará el proyecto, por lo que no será necesario suplir el coste de personal.
Por tanto, todo el coste del proyecto recae en el coste del material, estableciéndose en un total aproximado
de 88.71e

Rol Horas estimadas Tarifa/hora (e) Subtotal (e)
Data Scientist 180 18 3240
Ingeniero de Software 60 14 840
Project Manager 70 19 1330
Técnico de QA / validación 15 26 390
Total estimado 300 5800

Tabla 4.3: Estimación de costes de personal
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Capítulo 5

Desarrollo software

En este capítulo se detallarán las distintas etapas del desarrollo del software del proyecto, desde el
análisis de requisitos y el diseño del sistema hasta las pruebas realizadas.

5.1. Análisis de requisitos

En esta fase se definen los requisitos funcionales y no funcionales del sistema. Los principales requisitos
funcionales son:

RF01. Base de datos: El sistema usará la base de datos WISDM para realizar los experimentos
de HAR.

RF02. Preprocesado: El sistema leerá los datos, realizando procesos de limpieza y transformación
necesarios.

RF03. Modelos: El sistema aplicará y probará distintos tipos de clasificadores.

RF04. Clasificación: El sistema será capaz de reconocer actividades humanas a partir de señales
obtenidas por sensores inerciales integrados en dispositivos ponibles.

Por otro lado, entre los requisitos no funcionales se encuentran los siguientes:

RNF01. Rendimiento: el sistema debe ser capaz de realizar predicciones con una latencia acep-
table para su posible integración futura en dispositivos móviles.

RNF02. Escalabilidad: el sistema debe estar preparado para adaptarse a diferentes volúmenes de
datos y actividades.

RNF03. Reproducibilidad: el proceso debe ser totalmente replicable para garantizar la validez
de los resultados obtenidos.

También se definieron una serie de requisitos técnicos en cuanto a las herramientas que se iban a
utilizar, como el uso de Python como lenguaje de programación o el empleo de Jupyter Notebooks
como entorno interactivo para el desarrollo y ejecución del código.
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Figura 5.1: Diseño y flujo del sistema

5.2. Diseño del sistema

El diseño del sistema se estructuró en módulos funcionales claramente diferenciados, siguiendo un
enfoque modular y reutilizable (Figura 5.1). El diseño se compone de los siguientes partes:

Módulo de preprocesamiento: se encarga de la carga, limpieza, segmentación y normalización
de los datos sensoriales crudos.

Módulo de extracción de características: se encarga de extraer las características en el dominio
del tiempo y de la frecuencia de las ventanas (Apartado 6.2.1).

Módulo de entrenamiento de modelos: incluye la selección de modelo, su configuración, entre-
namiento, validación cruzada y generación de resultados.

Módulo de visualización: permite representar gráficamente los resultados y el comportamiento
del modelo.

5.3. Tecnologías utilizadas

Durante el desarrollo del proyecto se han empleado diversas tecnologías que han facilitado tanto la
programación como la ejecución, organización y documentación del trabajo. A lo largo de esta sección se
detallan las herramientas y entornos más relevantes, así como las razones de su elección y sus funciones
específicas dentro del proyecto.
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Python

Python ha sido el lenguaje de programación principal utilizado a lo largo del proyecto. Su elección
se debe a múltiples factores: es un lenguaje de alto nivel, interpretado, con una sintaxis clara y legible,
y una comunidad de desarrollo muy activa, especialmente en el ámbito de la inteligencia artificial y
el aprendizaje automático. Python proporciona una gran cantidad de bibliotecas especializadas, lo que
permite desarrollar soluciones complejas de manera eficiente y modular.

Entre las principales bibliotecas utilizadas se encuentran:

Scikit-learn (sklearn): Biblioteca fundamental para tareas de aprendizaje automático tradicional,
como clasificación, regresión y reducción de dimensionalidad. En este proyecto se ha utilizado para
la implementación de modelos clásicos como SVM y Random Forest, así como para la evaluación
mediante métricas como la tasa de aciertos o la precisión.

Keras y TensorFlow: Frameworks orientados al desarrollo de redes neuronales profundas. Keras
proporciona una interfaz de alto nivel para construir modelos de forma sencilla y legible, mientras
que TensorFlow actúa como backend para realizar operaciones matemáticas y de entrenamiento de
forma eficiente, incluso en GPU. Han sido utilizadas especialmente para definir y entrenar redes
LSTM.

NumPy y Pandas: Herramientas esenciales para la manipulación y análisis de datos. NumPy
permite trabajar con arreglos multidimensionales y realizar operaciones vectorizadas, mientras que
Pandas facilita el tratamiento de estructuras tabulares mediante dataframes, lo que resulta útil para
la organización de ventanas de datos y etiquetas.

Matplotlib y Seaborn: Bibliotecas empleadas para la generación de gráficos y visualización de
resultados. Se han utilizado principalmente para representar la evolución del rendimiento del modelo

Visual Studio Code (VSCode)

Visual Studio Code ha sido el entorno de desarrollo integrado (IDE) elegido para la escritura del
código fuente. VSCode es un editor ligero pero muy potente, con soporte para múltiples lenguajes de
programación y una amplia gama de extensiones. Su integración con entornos virtuales de Python, su
sistema de autocompletado inteligente (IntelliSense), y la facilidad para depurar scripts han hecho de él
una herramienta eficaz para la edición modular del código del proyecto.

Jupyter Notebook

Jupyter Notebook ha sido el entorno principal para la ejecución y experimentación interactiva del
código. Su estructura basada en celdas permite ejecutar fragmentos de código de forma independiente,
visualizar resultados de inmediato y combinar código, texto, ecuaciones y gráficos en un mismo documento.
Esto ha facilitado la documentación del proceso experimental, la visualización de resultados intermedios,
y la realización de pruebas rápidas sin necesidad de ejecutar scripts completos.

GitHub

GitHub ha sido la plataforma empleada para el control de versiones y el almacenamiento remoto del
código. A través del sistema de control de versiones Git, se ha llevado a cabo un seguimiento detallado de
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los cambios realizados en el proyecto, lo que ha permitido mantener una estructura organizada del código,
revertir cambios en caso de errores, y garantizar la trazabilidad del trabajo.

5.4. Pruebas

A lo largo de las distintas fases presentes en el desarrollo del proyecto ha sido necesario realizar
diferentes pruebas para garantizar que la salida de cada uno de los módulos se correspondía con la salida
esperada, con el objetivo de garantizar la consistencia de los resultados finales del modelo.

Preprocesamiento de los datos

Durante la etapa de preprocesamiento de los datos se hicieron una serie de comprobaciones para
garantizar que los datos estaban limpios tras la ejecución del proceso:

Comprobación de valores de tiempo negativos: en los datos crudos existían casos en los
que el timestamp calculado para una medición era negativo, por lo que era necesario eliminar estas
mediciones. Tras hacerlo, se comprobó que la columna timestamp en los datos de salida no contenían
valores negativos.

Normalización: los datos originales fueron transformados mediante un proceso de normalización,
por lo que posteriormente se comprobó que la distribución de los nuevos datos se adecuaba a la
esperada mediante la visualización de métricas estadísticas.

Balance del conjunto de datos: al haber eliminado ciertas mediciones con timestamp negativo,
fue necesario comprobar que la distribución de mediciones por persona y por clase seguían siendo
las mismas que en el conjunto original, con el objetivo de garantizar que el conjunto de datos seguía
balanceado.

Extracción de características

Tras haber preprocesado los datos, se segmentaron en ventanas de tiempo (Apartado 6.2.1) y se
extrajeron una serie de características en en el dominio del tiempo y de la frecuencia. En esta fase fue
necesario hacer una serie de comprobaciones para garantizar su correcto funcionamiento:

Segmentación de datos: como los valores de tamaño de ventana y porcentaje de solapamiento se
establecieron de antemano, fue posible calcular cual era el número de ventanas que se esperaba tener
tras la segmentación de los datos. Por tanto, se segmentaron los datos en ventanas y se comprobó
que el número de ventanas coincidía con el esperado.

Extracción de características: también fue necesario comprobar que las características de cada
ventana se estaban extrayendo de forma correcta, por lo que se escogieron ventanas de ejemplo al
azar y se comprobó que los valores coincidían con los cálculos de las características en los datos sin
segmentar.

Entrenamiento del modelo

En esta fase fue necesario realizar comprobaciones con respecto a los datos de entrada de los modelos
y los resultados de los mismos.
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Validación cruzada: para separar los datos en entrenamiento y prueba en cada iteración de la
validación cruzada fue necesario crear una función que escogiese a un subconjunto de usuarios como
subconjunto de prueba. Por tanto, se validó mediante impresiones por pantalla que los usuarios que
se estaban escogiendo en cada iteración eran los esperados.

Comprobación de resultados por subconjunto: para comprobar que la validación cruzada
funcionaba correctamente, se fue imprimiendo por pantalla los resultados del modelo para cada
iteración.

Visualización de los resultados

Tras tener los resultados de los modelos, el último paso es visualizarlos para poder compararlos. Con
el objetivo de asegurar que las gráficas eran correctas, se comprobó de forma visual que los valores de las
barras del gráfico de cada actividad coincidían con el valor de la métrica para dicha actividad.
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Capítulo 6

Experimentación

En está sección se explicará con detalle cuáles han sido las principales líneas de trabajo que se han ido
siguiendo a lo largo de la etapa de desarrollo, las cuales han estado alineadas con las metodologías que se
explicaron en la sección correspondiente. Las partes en la que se dividió la experimentación y que serán
explicadas con detalle a lo largo de la sección son las siguientes:

1. Sprint inicial (Apartado 6.1): en esta primera fase se definió el objetivo del proyecto, se estudiaron
trabajos pasados en el mismo campo de investigación y se concretaron aspectos relevantes en cuanto
al desarrollo del proyecto, como son la base de datos a utilizar, modelos, estrategias de clasificación,
técnicas de evaluación y técnicas de separación de datos.

2. Experimento 1: Random Forest y SVM Radial (Apartado 6.2): con los fundamentos del
campo asentados, se comenzó el primer experimento. En este se transformaron del datos crudos
en ventanas de características (Apartado 6.2.1), se entrenaron modelos de Random Forest y SVM
Radial con dichas ventanas y se analizaron los resultados.

3. Experimento 2: Ajuste de datos (Apartado 6.3): en vista de los resultados del Experimento 1,
se vio que había actividades que estaban perjudicando gravemente el rendimiento del modelo para
el resto de actividades, por lo que se estudió que se podía hacer para solucionar esto, decidiéndose
finalmente la eliminación de estas actividades del conjunto de datos.

4. Experimento 3: Long Short-Term Memory (LSTM) (Apartado 6.4): tras la implementación
de los modelos previamente mencionados, se optó por desarrollar un modelo neuronal recurrente,
en concreto el LSTM. Para ello, era necesario hacer nuevamente un tratamiento de datos, juntando
ventanas contiguas temporalmente para hallar dependencias temporales entre ventanas.

5. Experimento Final: Clasificador Binario de “Andar” (Apartado 6.5): los trabajos del grupo
de investigación en el que se realizó este Trabajo de Fin de Grado están enfocados, fundamental-
mente, al reconocimiento biométrico de personas. En concreto, una de las vías es usar la forma de
andar, capturada mediante ponibles o wearables. Alineado con esos trabajos, se realizó un último
experimento donde el objetivo era distinguir si la actividad que realizaba el usuario era andar o no,
es decir, realizar una clasificación binaria entra la actividad “Andar” y el resto.
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6.1. Sprint inicial

Al comienzo del proyecto, los tutores del trabajo presentaron la idea principal:

“Reconocimiento de la actividad humana mediante el uso de sensores integrados en dispositivos
ponibles.”

Con la idea ya presentada, el primer sprint consistió en un período de investigación sobre el campo
a trabajar, donde, tras observar los diferentes trabajos y artículos que se habían realizado en el área, se
concretaron los siguientes factores relevantes:

Qué base de datos se iba a utilizar para entrenar a los modelos.

Qué modelos se iban a usar para predecir las actividades, así como las estrategias que se iban a
emplear para aplicar estos modelos.

Qué métricas de evaluación se iban a utilizar para medir la eficiencia de los modelos.

Qué técnicas de separación de datos se iba a utilizar para decidir que datos se usan para
entrenamiento y cuales para prueba.

6.1.1. Base de datos: WISDM

Los trabajos del grupo de investigación en el que se desarrolló este proyecto se centran en el estudio
de datos tomados desde ponibles y relojes inteligentes (wearables), por lo que era necesario seleccionar
una base de datos que contase con mediciones tomadas desde estos dispositivos. Tras un proceso de in-
vestigación, se determinó que la base de datos que más encajaba en el proyecto que queríamos realizar
era WISDM [5] [34]. Esta base de datos cuenta con las mediciones inerciales de 51 personas diferen-
tes, realizando un total de 18 actividades distintas en periodos de aproximadamente 3 minutos seguidos
(Tabla 6.1).

En la base de datos se pueden encontrar datos tomados por los sensores acelerómetro y giroscopio,
tanto de un teléfono como de un smartwatch. Cada medición cuenta con un identificador de usuario, un
identificador de actividad, un timestamp, y las mediciones de los ejes X, Y y Z de cada sensor (Tabla 6.2).

Tabla 6.1: Resumen de la información del dataset

Ítem Valor

Número de sujetos 51
Número de actividades 18
Minutos recolectados por actividad 3
Frecuencia del sensor 20 Hz
Teléfono móvil utilizado Google Nexus 5/5x o Samsung Galaxy S5
Smartwatch utilizado LG G Watch
Número total de mediciones 15 630 426
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Tabla 6.2: Definición de los campos del dataset

Campo Descripción

Subject-id Tipo: Identificador numérico simbólico.
Identifica de forma única al sujeto.
Rango: 1600–1650.

Código de actividad Tipo: Letra simbólica.
Identifica a una actividad específica como una de las listadas en la
tabla 6.3.
Rango: A–S (no hay “N”).

Timestamp Tipo: Integer.
Time stamp de Linux.

x Tipo: Numérico: real.
Valor del sensor para el eje X. Puede ser positivo o negativo.

y Igual que “x” pero para el eje Y.

z Igual que “x” pero para el eje Z.

Las 18 actividades que se encuentran representadas en esta base de datos se pueden ver en la Tabla
6.3. Cada actividad tiene asociada una letra de la A a la S (no hay N). Estas actividades se pueden
clasificar en:

Actividades no orientadas a las manos: andar, correr, subir escaleras, estar de pie, estar sentado,
patear una pelota.

Actividades orientadas a las manos (general): botar un balón, jugar al pilla-pilla, escribir con teclado,
escribir a mano, aplaudir, cepillarse los dientes, doblar la ropa

Actividades orientadas a las manos (comer): comer pasta, comer sopa, comer un sándwich, comer
patatas fritas, beber.

Como se puede observar en la Tabla 6.4, el conjunto de datos está balanceado, ya que todas las clases
tiene en torno a un 5.5 % de aparición, lo cual favorecerá al tratamiento de los datos y al entrenamiento
de los modelos.

Para el desarrollo de este proyecto, nos centraremos en el uso de los datos recogidos por el acelerómetro
del smartwatch.
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Tabla 6.3: Las 18 actividades representadas en el dataset

Actividad Código

Walking A
Jogging B
Stairs C
Sitting D
Standing E
Typing F
Brushing Teeth G
Eating Soup H
Eating Chips I
Eating Pasta J
Drinking from Cup K
Eating Sandwich L
Kicking (Soccer Ball) M
Playing Catch w/Tennis Ball O
Dribbling (Basketball) P
Writing Q
Clapping R
Folding Clothes S

Tabla 6.4: Distribución por clase de las mediciones del dataset

Actividad Teléfono Smartwatch Total Clase%
Acelerómetro Giroscopio Acelerómetro Giroscopio

Walking 279,817 203,919 210,495 192,531 886,762 5.7 %
Jogging 268,409 200,252 205,787 187,833 862,281 5.5 %
Stairs 255,645 197,857 207,312 180,416 841,230 5.4 %
Sitting 264,592 202,370 213,018 195,050 875,030 5.6 %
Standing 269,604 202,351 216,529 194,103 882,587 5.6 %
Typing 246,356 194,540 205,137 187,175 833,208 5.3 %
Brush Teeth 269,609 202,622 208,720 190,759 871,710 5.6 %
Eat Soup 270,756 202,408 209,483 187,057 869,704 5.6 %
Eat Chips 261,360 197,905 210,048 192,085 861,398 5.5 %
Eat Pasta 249,793 197,844 203,112 189,609 840,358 5.4 %
Drinking 285,190 202,395 215,879 197,917 901,381 5.8 %
Eat Sandwich 265,781 197,915 203,684 190,191 857,571 5.5 %
Kicking 278,766 202,625 209,491 191,535 882,417 5.6 %
Catch 272,219 198,756 210,107 187,684 868,766 5.6 %
Dribbling 272,730 202,331 212,810 194,845 882,716 5.6 %
Writing 260,497 197,894 215,365 197,403 871,159 5.6 %
Clapping 268,065 202,330 208,734 190,776 869,905 5.6 %
Fold Clothes 265,214 202,321 211,335 193,373 872,243 5.6 %

Total 4,804,403 3,608,635 3,777,046 3,440,342 15,630,426 100 %
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6.1.2. Selección de modelos

Debido a la naturaleza iterativa del proyecto, era necesario seleccionar unos modelo iniciales con los
que empezar a trabajar, a los cuales se les fueron añadiendo más a lo largo del desarrollo del mismo.

Tras revisar la literatura relacionada y observar que tipos de modelos se habían utilizado previamente
para esta base de datos, se decidió que los modelos iniciales serían Random Forest y SVM (Support
Vector Machine) con kernel radial [5] [35] [36]. Las razones por las que se escogieron estos modelos frente
a otros que también se encontraban presentes es una gran cantidad de artículos, como Regresión Logística
o Perceptrón Multicapa, fueron las siguientes:

1. Buenos resultados: estos dos modelos presentaban unos resultados significativamente mejores al
resto de los modelos en una amplia variedad de artículos.

2. Funcionamiento interno: al ser los modelos en los que se basaría inicialmente el proyecto, se
buscaron modelos con diferentes lógicas de entrenamiento y clasificación:

Random Forest es un método de ensemble basado en la construcción de múltiples árboles de
confusión, donde las predicciones se hacen evaluando un subconjunto de variables aleatorias en
cada árbol y por votación mayoritaria.

Support Vector Machine con kernel Radial, por otro lado, es un módelo basado en
distancias, donde se busca un hiperplano que maximice el margen de separación entre clases en
el espacio de características. Se seleccionó el kernel radial ya que este tiene una gran capacidad
para capturar relaciones no lineales, lo cual favorece enormemente a la clasificación de datos
de movimiento humano, ya que estos suelen presentar fronteras de decisión muy complejas en
el espacio original de características.

Posteriormente se añadiría a estos el modelo LSTM (Long Short-Term Memory) el cual utiliza la
dependencia temporal entre muestras para hacer las clasificaciones.

6.1.3. Estrategia de entrenamiento y clasificación

Como se ha podido observar en la descripción de la base de datos WISDM, hay un total de 18
actividades, por tanto la clase puede tomar 18 valores distintos. Debido a esto, se planteó inicialmente
utilizar dos estrategias diferentes para la clasificación de los datos:

Método Multiclase: este consistiría en pasar los datos al modelo sin hacer ninguna modificación
previa sobre la clase. En este caso habría un único modelo el cual clasificaría cada instancia en una
clase concreta, contando con tantas salidos como clases existan.

Método Ensemble : en este caso, para cada tipo de modelo, se entrenarían un total de 18 ins-
tancias distintas, uno para cada actividad del conjunto de datos; cada instancia se entrana para
distinguir entra una actividad y el resto. Cada modelo se encargaría de predecir, para cada entrada,
la probabilidad de pertenecer a la actividad asociada. Tras esta predicción, se escogería la clase con
mayor probabilidad y se le asignaría como predicción a la entrada correspondiente.
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6.1.4. Métodología de evaluación

Para poder evaluar el rendimiento de los clasificadores, se emplearán las siguientes métricas adaptadas
a la clasificación multinomial [37]:

Tasa de acierto: mide la proporción de instancias correctamente predichas sobre el total de las
predicciones.

Tasa de acierto =
TP + TN

TP + TN + FP + FN
(6.1)

Precisión: mide el número de instancias correctamente predichas de cada clase con respecto a todas
las instancias predichas como de esa clase.

Precisiónc =
tpc

tpc + fpc
, (6.2)

Precisióntotal =
1

C

(
C∑
c=1

tpc
tpc + fpc

)
. (6.3)

Recall (sensibilidad): mide el número de instancias correctamente clasificadas de cada clase sobre
el total de instancias reales de dicha clase.

Recallc =
tpc

tpc + fnc
, (6.4)

Recalltotal =
1

C

(
C∑
c=1

tpc
tpc + fnc

)
. (6.5)

F1-score: media armónica entre precisión y recall, ponderada por la frecuencia de cada clase:

F1 =

C∑
c=1

2
(nc

N

) Precisiónc × Recallc
Precisiónc + Recallc

. (6.6)

Donde:

C es el número de clases del dataset.

tpc es la tasa de verdaderos positivos de la clase c y TP =
∑C

c=1 tpc es la tasa de verdaderos positivos
total.

fpc es la tasa de falsos positivos de la clase c y FP =
∑C

c=1 fpc es la tasa de falsos positivos total.

tnc es la tasa de verdaderos negativos de la clase c y TN =
∑C

c=1 tnc es la tasa de verdaderos
negativos total.

fnc es la tasa de falsos negativos de la clase c y FN =
∑C

c=1 fnc es la tasa de falsos negativos total.

6.1.5. Estrategia de particionado de datos

Dada la naturaleza de los datos, se utilizará una estrategia de validación cruzada de 10 subconjuntos
(folds), donde para cada iteración, se seleccionaran los datos de 5 usuarios (empezando desde el primero y
en orden) como conjunto de prueba, y los otros 46 restantes como conjunto de entrenamiento. La medida
final de error será la media de la obtenida en cada fold o subconjunto.

38



CAPÍTULO 6. EXPERIMENTACIÓN

6.2. Experimento 1: Random Forest y SVM Radial

Con todos los requisitos previos cumplidos, en este primer experimento se definirá la forma en la que se
tratarán los datos (separación por ventanas) se crearán los modelos inicialmente seleccionados (Random
Forest y SVM Radial) y se analizarán los resultados de cara a los experimentos posteriores.

6.2.1. Preparación de los datos

Los datos crudos del conjunto de datos WISDM representan las mediciones de los sensores de movi-
miento de un smartwatch para los ejes X, Y y Z, de una persona en un instante de tiempo realizando una
actividad concreta. Con estos datos es especialmente complicado determinar que actividad esta realizando
una persona, ya que solo cuenta con la información de un instante de tiempo. Por tanto, nuestro objetivo
es transformar los datos de manera que representen la información de un periodo más amplio de tiempo,
lo cual habilita a la detección de una activad concreto.

Una técnica ampliamente utilizada en el ámbito del Reconocimiento de la Actividad Humana, y que
es el que se va a utilizar en el desarrollo de este proyecto, es la división de datos en ventanas temporales
(Figura 6.1) [38].

Figura 6.1: Concepto de división por ventanas

Una ventana es una agrupación de N muestras consecutivas, donde N vendrá definido por el tamaño
de ventana. En este caso, no se define directamente el número de muestras, sino el intervalo temporal de
la ventana. Estas ventanas se irán deslizando desde el comienzo de la muestra hasta el final, separando de
esta manera todos los datos en ventanas. A su vez, las ventanas adyacentes se solaparan en un porcentaje
de solapamiento, el cual es también un parámetro del preprocesamiento. De esta forma, dos ventanas
contiguas compartirán una fracción de las mediciones contenidas. Por ejemplo, si se selecciona un tamaño
de ventana de diez segundos, la primera ventana estará compuesta por las mediciones con timestamp del
segundo cero al diez. Si el porcentaje de solapamiento es de cinco, entonces la segunda ventana serán las
instancias del segundo cinco al quince, y así sucesivamente. De esta manera se tiene, por un lado, una
evolución más suavizada de la señal entre ventanas, y por otro, se logra tener un número más alto de ellas
para entrenar y probar el sistema. Estás ventanas serán los datos que sirvan como entrada a los modelos.

Para este primer experimento definiremos estos parámetros de la siguiente manera:

Tamaño de ventana: 10 segundos. Basándonos en la experiencia del grupo y en otros estudios
[39], este tamaño de ventana es el que mejores resultados da.

Porcentaje de solapamiento: 50 % (5 segundos). Este es el solapamiento habitual en este tipo
de sistemas [40].
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Tras la división de los datos en ventanas, es necesario adecuarlos como entrada a los modelos de
aprendizaje automático. Para ello, será necesario extraer una serie de características de cada uno de los
ejes. En este caso, se extraerán características asociadas al dominio del tiempo y al dominio de la
frecuencia.

Además de las medidas correspondientes a los ejes X, Y y Z, se incorporará una variable adicional: la
magnitud o modulo del vector tridimensional (Ecuación 6.7). De esta manera, en cada ventana contaremos
tanto con información individual de cada eje como con información integrada de los tres.

M =
√
x2 + y2 + z2 . (6.7)

Para caracterizar la señal en el dominio de frecuencia, aplicamos la Transformada Rápida de Fourier
(FFT) a cada ventana de datos:

X[k] =
N−1∑
n=0

x[n] e−j 2πk n
N (6.8)

Las características extraídas en cada ventana para los ejex X, Y, Z y M son las siguientes:

Dominio del tiempo

• Media: valor medio de la señal en la ventana.
• Mediana: valor central ordenado de la señal.
• Máximo: valor máximo observado.
• Mínimo: valor mínimo observado.
• Desviación estándar: dispersión de la señal alrededor de la media.
• Rango: diferencia entre el máximo y el mínimo.
• Curtosis: momento de orden 4 que indica la presencia de picos o colas pesadas.
• Percentil 25 / 75: valores bajo los cuales se sitúan el 25 % / 75 % de los datos.
• Asimetría (skewness): grado de sesgo de la distribución de la señal.
• Período (autocorrelación): desfase donde la autocorrelación es máxima.
• Valor de autocorrelación: magnitud de la autocorrelación en dicho desfase.

Dominio de la frecuencia

• Frecuencia dominante 1: frecuencia con mayor energía espectral.
• Amplitud dominante 1: amplitud en la frecuencia dominante 1.
• Frecuencia dominante 2: segunda frecuencia más energética.
• Amplitud dominante 2: amplitud en la frecuencia dominante 2.
• AUC: área bajo la curva espectral.
• Media de amplitudes: valor medio de las amplitudes del espectro.
• Mediana de amplitudes: valor central de las amplitudes.
• Desviación estándar de amplitudes: dispersión de las amplitudes.
• Rango de amplitudes: diferencia entre amplitud máxima y mínima.
• Curtosis de amplitudes: momento 4 de la distribución de amplitudes.
• Percentil 25 / 75 de amplitudes: cuartiles de la distribución de amplitudes.
• Asimetría de amplitudes: sesgo de la distribución de amplitudes.
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6.2.2. Creación y optimización de modelos

En el Experimento 1 se implementaron y ajustaron dos clasificadores de referencia:

Random Forest

Random Forest es un ensamble de N árboles de decisión entrenados mediante muestreo bootstrap
y selección aleatoria de subconjuntos de características en cada partición. Para el clasificador Random
Forest se emplearon los siguientes hiperparámetros:

n_estimators = 200: número de árboles en el ensamble.

max_depth = None: profundidad máxima ilimitada para cada árbol.

max_features = log2: número de características considerado en cada división = log2(p), donde p
es el total de variables.

min_samples_split = 2: número mínimo de muestras necesarias para dividir un nodo.

min_samples_leaf = 2: número mínimo de muestras que debe tener cada hoja.

Dado que los modelos basados en árboles de decisión son invariantes a la escala de las características ya
que internamente solo comparan órdenes de magnitud para decidir umbrales, no se aplicó normalización
ni estandarización a los datos [41].

Support Vector Machine con kernel RBF

La SVM con función de base radial emplea el kernel para proyectar los datos en un espacio de alta
dimensión donde se maximiza el margen de separación entre clases, pudiendo de esta manera aproximarse
más a las fronteras no lineales que existen en el espacio de características.

Para el clasificador SVM-RBF se emplearon los siguientes hiperparámetros:

C = 1.0: coeficiente de regularización, controla el equilibrio entre margen amplio y errores de clasi-
ficación.

kernel = ’rbf’: función de base radial para manejar separaciones no lineales.

gamma = ’scale’: coeficiente del kernel RBF, igual a 1
n_features×Var(X) por defecto.

Para garantizar que todas las características contribuyan de forma equilibrada al cálculo de distancias,
se empleó estandarización (z-score) de cada variable antes del entrenamiento [42].

Clasificación Multiclase vs Ensemble

Como se estableció en el sprint inicial, se utilizarán dos estrategias distintas para el entrenamiento y
la clasificación de cada modelo:
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Multiclase: el modelo tomará como clase las 18 actividades del conjunto de datos, y dará como
salida la actividad predicha.

Ensemble : en este caso, la clasificación se hara mediante un conjunto de clasificadores binarios aso-
ciados a cada actividad del conjunto de datos. Para realizar esto se utilizó la estrategia OneVsRest,
que consiste en lo siguiente:

1. Para cada clase c ∈ {1, . . . , C} se entrena un clasificador binario Mc que distingue “clase c”
frente a “no-clase c”.

2. En la fase de inferencia, cada Mc devuelve una puntuación o probabilidad sc(x) de que la
muestra x pertenezca a la clase c.

3. La etiqueta final se asigna como:

ŷ = arg máx
c∈{1,...,C}

sc(x).

6.2.3. Resultados y Análisis

En la Tabla 6.5 se muestran los resultados obtenidos. De lo mostrado en la tabla se puede concluir:

La diferencia entre utilizar la clasificación Multiclase y la clasificación por Ensemble es muy pequeña,
aunque en todos los casos la clasificación por Ensemble da resultados ligeramente mejores.

SVM-RBF funciona mucho mejor con datos estandarizados, llegando a aumentar en un 10 % todas
las métricas frente a su versión con los datos sin estandarizar.

Ambos modelos obtienen resultados similares bajo las condiciones de este experimento.

El modelo que ha obtenido mejores puntuaciones en todas las métricas es el Random Forest con
clasificación por Ensemble, llegando a obtener un 73.9 % de tasa de aciertos.

Tabla 6.5: Resultados obtenidos en el experimento 1

Modelo Tasa Aciertos Recall Precisión F1-Score

RandomForest_Multiclase 0.7352 0.7352 0.7526 0.7340
RandomForest_Ensemble 0.7390 0.7391 0.7550 0.7362
SVMRadial_Multiclase 0.5806 0.5807 0.6016 0.5762
SVMRadial_Ensemble 0.6270 0.6266 0.6290 0.6117
SVMRadial_Multiclase_Standard 0.7276 0.7273 0.7440 0.7260
SVMRadial_Ensemble_Standard 0.7289 0.7288 0.7430 0.7263

Al hacer el desglose de tasa de aciertos por cada actividad, representado en la Figura 6.2, podemos
observar que las actividades en las que los modelos se han confundido más veces son tanto estar sentado
como las orientadas a las manos, en concreto a las relacionadas con comer. Esto se debe principalmente
a la naturaleza caótica que tienen estas actividades. Cuando se está realizando una actividad que no
está orientada a las manos como puede ser andar o correr, las manos se mueven de forma automática,
llegando a trazar un patrón que puede ser detectable por el modelo. Sin embargo, cuando la actividad
esta relacionada con el movimiento de las manos, esta suele presentar movimientos bruscos, sin un patrón
definido, ya que al no estar moviendo el resto del cuerpo las manos se convierten en nuestra forma de
expresión y se tienden a hacer muchos movimientos irregulares con ellas.
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Esta teoría se refuerza cuando observamos la matriz de confusión del modelo RandomForest_Multiclase,
representada en la Figura 6.3. Las filas indican la actividad real, mientras que las columnas indican la
actividad predicha. Cada valor indica el número de veces que la actividad de la fila ha sido predicha como
la actividad de la columna.

En este caso, los rectángulos azules están remarcando las actividades orientadas a las manos, las cuales
habían obtenido un rendimiento muy bajo en todos los modelos. Si se observa la intersección entre ambos
rectángulos, se puede observar que la principal razón del bajo rendimiento de los modelos para estas
actividades es que, en muchas ocasiones, son incapaces de distinguir entre las distintas actividades de
comer, acumulándose casi el 18 % de los errores totales del modelo en esa intersección.

El caso en el que más se puede ver es en la actividad de comer un sandwich, donde tan solo un 24.2 %
de las veces se predijo correctamente la actividad, mientras que en un 55.93 % de las veces se le asigno
erróneamente otra actividad de comer distinta.

Tras la extracción de estas conclusiones, el objetivo del siguiente experimento será investigar como
solucionar este problema con las actividades de comer para mejorar el rendimiento de los modelos.

Figura 6.2: Tasa de aciertos por actividad en el experimento 1

6.3. Experimento 2: Ajuste de datos

Los resultados del Experimento 1 permitieron extraer la conclusión de que existía un problema entorno
a la clasificación de las actividades orientadas a las manos relacionadas con comer, ya que, debido a la
naturaleza caótica del movimiento de las manos durante estas actividades, los modelos tenían muchas
dificultados a la hora de predecir que tipo de actividad relacionada con comer se estaba realizando.

Por consiguiente, este segundo experimento tratará de buscar una manera de solventar este problema,
experimentando con distintas transformaciones de datos y analizando los resultados de los modelos.
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Figura 6.3: Matriz de confusión RandomForest_Multiclase en el experimento 1

6.3.1. Preparación de los datos

Con el objetivo de mejorar la eficiencia de los modelos, en este experimento se explorarán múltiples
estrategias de tratamiento de datos.

Analizando el objetivo de este proyecto con los tutores, se llegó a la conclusión de que no era de alta
importancia el poder predecir las distintas actividades de comer por separado. Por tanto, se optó por
investigar las siguientes alternativas:

Eliminar los datos de las actividades de comer: al no ser de alta relevancia para el proyecto,
eliminarlas podría ayudar a mejorar la capacidad de predicción de los modelos en actividades que si
consideran importantes. Este cambio, al reducir el número de ventanas, ayudaría a reducir el coste
computacional de los modelos, el cual estaba siendo bastante elevado.

Agrupar las actividades en una sola actividad “Comer” : esta solución permitiría seguir
teniendo en cuenta todo el conjunto de datos, reduciendo los errores que se podían generar entre las
diversas actividades de comer.

Eliminación de las actividades de comer

En este caso, la transformación de datos consistiría en descartar las ventanas las cuales tuviesen
como código de actividad un código asociado a las actividades de comer. Como el conjunto de datos ya
estaba balanceado desde un inicio, al eliminar estas actividades continuará estándolo, y por tanto no será
necesario hacer ningún ajuste extra.

Agrupación de las actividades en una única actividad “Comer”

Esta alternativa consistiría en modificar el código de actividad de las ventanas con actividades de
comer por uno nuevo el cual se asociaría con una nueva actividad “Comer”. Al hacerlo, se generaría un
nuevo problema resolver: el conjunto de datos ya no está balanceado.

44



CAPÍTULO 6. EXPERIMENTACIÓN

Debido a esta agrupación de ventanas, aproximadamente un 25 % de las ventanas tienen la nueva
actividad, haciendo que el conjunto de datos esté altamente desbalanceado, ya que el resto de actividades
cuentan únicamente con aproximadamente un 5 % de las ventanas.

Para solucionar esto y volver a balancear los datos, se utilizó la técnica del upsampling, la cual
duplicaría las instancias de de las clases minoritarias tantas veces como fuese necesarias hasta alcanzar el
mismo número de instancias que el de la clase mayoritaria. Con este técnica el conjunto de datos volvió
a estar balanceado, pero se aumentó considerablemente el número de ventanas del conjunto de datos
(6.6), haciendo que, por consiguiente, también aumente el coste computacional del entrenamiento de los
modelos.

Tabla 6.6: Comparativa del número de ventanas por transformación

Transformación Número de ventanas

Conjunto de datos inicial 31781
Eliminar actividades comer 22972
Agrupar actividades comer 123326

6.3.2. Creación y optimización de modelos

Para este segundo experimento se utilizarán los modelos previamente diseñados en el Experimento 1,
únicamente modificando la forma en la que se transformaron los datos.

6.3.3. Resultados y Análisis

En la Figura 6.4 se muestran los resultados con la opción de agrupar las actividades de comer en una
única clase. Como se puede ver, con esta opción los modelos son capaces de reconocer dicha actividad
sin ningún problema, llegando a ser la segunda actividad con mayor tasa de acierto. Sin embargo, vemos
como hay otras actividades que continúan teniendo un rendimiento bajo, como pueden ser estar sentado
o estar de pie.

Los resultados con la opción de eliminar las actividades de comer se pueden ver en la Figura 6.5.
Estos resultados muestran como se ha aumentado la tasa de acierto en actividades que antes tenían malos
resultados, como las mencionadas en el párrafo anterior. Esto hace que el modelo sea capaz de predecir
todas las actividades de manera consistente, llegando casi al 80 % de tasa de aciertos en todas.
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Figura 6.4: Tasa de acierto por actividad: Comer agrupado

Figura 6.5: Tasa de acierto por actividad: Comer eliminado
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Pros y contras de ambas transformaciones

Agrupar actividades comer

• Pros:

◦ Permite mantener los mismos datos del conjunto de datos original.
◦ Obtiene buenos resultados en la nueva actividad “Comer”, mejorando considerablemente

las métricas del modelo.

• Contras:

◦ Hay actividades que continúan teniendo una tasa de aciertos baja.
◦ Al aumentar tanto el número de ventanas, se aumenta considerablemente el coste compu-

tacional de los modelos, haciendo que el entrenamiento de los mismos tarde más.

Eliminar actividades comer

• Pros:

◦ Obtiene buenos resultados para todas las actividades del conjunto de datos.
◦ Reduce el coste computacional de los modelos.

• Contras:

◦ Reduce el número de actividades que es capaz de reconocer el modelo.

Conociendo estos pros y contras, y teniendo en cuenta que el modelo que se va a desarrollar en el
Experimento 3 tiene un coste computacional muy alto, se ha tomado la decisión de que, de ahora en
adelante, se eliminarán las actividades de comer.

Figura 6.6: Tasa de acierto por actividad en el experimento 2

Como se puede ver en la Figura 6.6 y en la Tabla 6.7, los resultados han mejorado considerablemente
con respecto al Experimento 1, llegando a mejorar en un 10% en valor absoluto todas las métricas.

Por otro lado, se pueden sacar las mismas conclusiones que en el Experimento 1:
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Las estrategias MultiClase y Ensemb obtiene resultados similares, pero Ensemb obtiene resultados
ligeramente superiores en todos los casos.

RandomForest obtiene resultados ligeramente superiores a SVM-RBF

Tabla 6.7: Resultados obtenidos en los experimentos 1 y 2

Experimento Modelo Tasa Aciertos Recall Precisión F1-Score

1

RandomForest_Multiclase 0.7352 0.7352 0.7526 0.7340
RandomForest_Ensemble 0.7390 0.7391 0.7550 0.7362
SVMRadial_Multiclase 0.5806 0.5807 0.6016 0.5762
SVMRadial_Ensemble 0.6270 0.6266 0.6290 0.6117
SVMRadial_Multiclase_Standard 0.7276 0.7273 0.7440 0.7260
SVMRadial_Ensemble_Standard 0.7289 0.7288 0.7430 0.7263

2

RandomForest_Multiclase 0.8352 0.8355 0.8523 0.8364
RandomForest_Ensemble 0.8398 0.8400 0.8562 0.8405
SVMRadial_Multiclase_Standard 0.8300 0.8296 0.8509 0.8322
SVMRadial_Ensemble_Standard 0.8298 0.8299 0.8476 0.8315

6.4. Experimento 3: Long Short-Term Memory

En los experimentos anteriores se han estado desarrollando modelos de Machine Learning clásicos,
basados en árboles de decisión y en separación de instancias mediante margenes. Para este tercer experi-
mento se va a utilizar un modelo de Deep Learning, en concreto, basado redes neuronales recurrentes, con
el objetivo de estudiar que influencia tienen las dependencias temporales entre ventanas en los resultados
del reconocimiento de actividad.

El modelo desarrollado será el conocido como Long Short-Term Memory (LSTM). Este modelo
permite introducir una secuencia de ventanas contiguas en el tiempo y es capaz de mantener una memoria
sobre los datos de las ventanas pasadas que influirá en el procesamiento de las ventanas futuras, siendo
así capaz de hallar dependencias temporales que los modelos previamente desarrollados eran incapaces de
encontrar.

6.4.1. Preparación de los datos

Hasta ahora los datos que se habían utilizado para entrenar los modelos estaban compuesto por arrays
de las características correspondientes a una ventana de tiempo, haciendo que el modelo solo tuviese
conocimiento de lo que ocurría en ese espacio temporal, completamente ajeno a las características de las
ventanas contiguas.

Sin embargo, para poder introducir los datos dentro de un modelo LSTM es necesario añadir una
dimensión extra: el tiempo. Por tanto, los datos de entrada ya no solo estarán constituidos por una
ventana de características, sino que serán conformados por una matriz de ventanas contiguas, pudiendo
de esta manera analizar como varían las características a lo largo del tiempo.

Para ello los parámetros para la extracción de características son los siguientes:

Tamaño de ventana: 1 segundo
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Porcentaje de solapamiento: 0 %

Número de ventanas en cada matriz de entrada: 10 ventanas.

De está manera, el modelo tendrá como entrada 10 segundos de actividad al igual que en los pasados
experimentos, solo que esta vez las características estarán calculadas cada segundo y se tendrá en cuenta
el instante temporal de la ventana.

6.4.2. Creación y optimización de modelos

La arquitectura del modelo utilizado en este experimento es la siguiente:

Tabla 6.8: Resumen de capas de la red LSTM

Nombre de capa Tipo Salida Parámetros

input_layer_1 InputLayer (None, 10, 100) 0
lstm_2 LSTM (None, 10, 128) 117248
dropout_2 Dropout(0.5) (None, 10, 128) 0
lstm_3 LSTM (None, 64) 49408
dropout_3 Dropout(0.5) (None, 64) 0
dense_2 Dense(32) (None, 32) 2080
dense_3 Dense(13) (None, 13) 429

Figura 6.7: Arquitectura del modelo LSTM del experimento 3

Descripción detallada de cada bloque

En la Tabla 6.8 y la Figura 6.7 se puede observar los diferentes bloques de la arquitectura utilizada
para el modelo LSTM. Las funciones y especificaciones de cada bloque son las siguientes:

InputLayer Define la forma de entrada (batch, 10, 100). No tiene parámetros entrenables.

LSTM(128, return_sequences=True) Procesa la secuencia de 10 vectores de 100 característi-
cas, manteniendo la dimensión temporal en la salida (10, 128). Gracias a sus 128 unidades de memoria
y puertas internas, captura dinámicas cortas y medias en la ventana. — Parámetros: 117 248.
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Dropout(0.5) Durante el entrenamiento, desactiva aleatoriamente un 50 % de las 128 salidas de
cada paso temporal para evitar sobreajuste.

LSTM(64, return_sequences=False) Recibe la secuencia anterior y devuelve solo el último
estado oculto de 64 dimensiones. Así se condensa la información temporal relevante en un vector
fijo. — Parámetros: 49 408.

Dropout(0.5) Aplica de nuevo un 50 % de dropout al vector de 64 elementos para robustecer la
capa siguiente.

Dense(32, activation=ReLU) Capa totalmente conectada que reduce la dimensionalidad de 64
a 32, aplicando la función de activación ReLU para añadir no linealidad. — Parámetros: 2 080.

Dense(13, activation=softmax) Capa de salida con 13 neuronas (una por cada actividad). La
función softmax convierte los 32 valores previos en un vector de probabilidades p ∈ [0, 1]13 que
suman 1. — Parámetros: 429.

Extracción de la predicción

Para una muestra de prueba, el modelo devuelve el vector de probabilidades

p =
[
p1, p2, . . . , p13

]
,

13∑
i=1

pi = 1.

La etiqueta predicha ŷ se obtiene como

ŷ = arg máx
i=1,...,13

pi. (6.9)

Parámetros de entrenamiento

Algunos de los parámetros que se han definido para el entrenamiento del modelo son los siguientes:

Optimizador: Adam (learning_rate = 10−4) Adam es un optimizador estocástico que ajusta
automáticamente la tasa de aprendizaje de cada parámetro mediante estimaciones de primer y se-
gundo momento del gradiente, lo que favorece una convergencia rápida y estable en redes profundas.

Función de pérdida: sparse_categorical_crossentropy Esta versión de entropía cruzada está
diseñada para clasificación multiclase con etiquetas enteras y penaliza la discrepancia entre la dis-
tribución de probabilidades predicha y la clase real, maximizando así la probabilidad de la etiqueta
correcta.

Batch size: 64 Define el número de muestras procesadas antes de cada actualización de pesos.
Un tamaño de 64 equilibra la estabilidad de la estimación del gradiente y el aprovechamiento del
paralelismo en GPU, reduciendo el ruido sin sacrificar velocidad de entrenamiento.

Número de epochs: 50 Es la cantidad de veces que el modelo recorre todo el conjunto de entre-
namiento. 50 epochs permiten al modelo aprender patrones complejos sin caer en un sobreajuste
excesivo, especialmente en combinación con las capas de Dropout y el optimizador Adam.

En este experimento, debido al alto coste computacional del modelo LSTM, tan solo se utilizará la
estrategia Multiclase, descartando la estrategia de Ensemble.
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6.4.3. Resultados y Análisis

Tabla 6.9: Resultados obtenidos en los experimentos 1, 2 y 3

Experimento Modelo Tasa Aciertos Recall Precisión F1-Score

1

RandomForest_Multiclase 0.7352 0.7352 0.7526 0.7340
RandomForest_Ensemble 0.7390 0.7391 0.7550 0.7362
SVMRadial_Multiclase 0.5806 0.5807 0.6016 0.5762
SVMRadial_Ensemble 0.6270 0.6266 0.6290 0.6117
SVMRadial_Multiclase_Standard 0.7276 0.7273 0.7440 0.7260
SVMRadial_Ensemble_Standard 0.7289 0.7288 0.7430 0.7263

2

RandomForest_Multiclase 0.8352 0.8355 0.8523 0.8364
RandomForest_Ensemble 0.8398 0.8400 0.8562 0.8405
SVMRadial_Multiclase_Standard 0.8300 0.8296 0.8509 0.8322
SVMRadial_Ensemble_Standard 0.8298 0.8299 0.8476 0.8315

3 LSTM 0.8166 0.8245 0.8169 0.8182

En la Tabla 6.9 se pueden ver los resultados obtenidos por el LSTM comparado con los modelos
de experimentos anteriores. El modelo LSTM ha logrado unos resultados muy buenos, en torno al 82 %
en todas las métricas, pero aún así no ha logrado superar la eficiencia de los modelos empleados en los
experimentos anteriores.

Figura 6.8: Tasa de acierto por actividad en el experimento 3

Por otro lado, analizando la Figura 6.8 se puede ver como los tres modelos obtienen muy buena tasa
de aciertos para todas las actividades. Sin embargo, la diferencia en la tasa de acierto del modelo LSTM
frente a los demás en actividades como por ejemplo “Andar” hace que las métricas de este modelo sean
ligeramente inferiores.

Estas conclusiones no permiten afirmar que el modelo LSTM sea menos efectivo que el resto de modelos
estudiados, sino que los resultados obtenidos por la arquitectura probada son inferiores. LSTM, al ser un
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modelo basado en redes neuronales, tiene una alta capacidad de parametrización, pudiendo cambiar una
gran cantidad de cosas para mejorar los resultados, desde cambios en los parámetros seleccionados hasta
modificaciones en las diferentes capas de la arquitectura, pudiendo quitar, añadir o modificar tantas como
sea necesario.

Gracias a la buena adaptación de este modelo se puede considerar que tiene potencial para seguir
mejorando los resultados. Sin embargo, un inconveniente de este modelo es su alto coste computacional
comparado con los otros modelos probados. Esto, junto con la limitación temporal de la carga de trabajo
del Trabajo de Fin de Grado, hizo que se tuviera que descargar la opción de probar diferentes alternativas
con LSTM. Se deja para trabajos futuros.

6.5. Experimento Final: Clasificador Binario de la actividad “Andar”

Este último experimento esta alineado con el interés particular del grupo de investigación de ser
capaces de predecir cuando una persona está caminando. Previamente, otro miembro del grupo desarrolló
un modelo, utilizando WISDM, para identificar a una persona en función de su forma de andar. Este
desarrollo final serviría como intermediario entre los datos crudos y dicho modelo, ya que se utilizaría
para detectar cuando los datos indican que la persona está caminando, y después se redirigirían al modelo
de identificación biométrica de la persona.

6.5.1. Preparación de los datos

Hasta ahora, la clase se había dividido en las 13 actividades del conjunto de datos, sin embargo ahora
lo único que nos interesa es predecir si una persona está caminando o no lo está haciendo. Por tanto la
clase ahora tomará los siguientes valores:

1 si la actividad es andar

0 si la actividad no es andar

De esta manera, el modelo se centrará exclusivamente en predecir la actividad de caminar.

Sin embargo, como ya ocurrió cuando se estudió si se podían agrupar las actividades de comer, al juntar
las clases de muchas actividades en una sola el conjunto de datos queda altamente desbalanceado,
habiendo un 5.7 % de instancias de la clase positiva frente a un 94.3 % de la clase negativa.

Para solucionar esto, se empleará el método de upsampling, el cual duplicará las instancias de la clase
minoritaria tantas veces como sea necesarias hasta igualar el número de instancias de la clase mayoritaria.
De esta manera, el conjunto vuelve a estar balanceado.

6.5.2. Creación y optimización de modelos

Para este último experimento se mantuvieron idénticos los modelos de Random Forest y SVM (sim-
plemente reetiquetando “caminar” como positivo y el resto como negativo). En el caso de la LSTM, sin
embargo, se realizaron los siguientes cambios:

La capa de salida pasó de

Dense(13, activation = ’softmax’) −→ Dense(1, activation = ’sigmoid’)
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de modo que el modelo emite una única probabilidad p ∈ [0, 1] de que la actividad sea “caminar”
(Figura 6.9).

La función de pérdida se cambió de sparse_categorical_crossentropy a binary_crossentropy,
adecuada para optimizar problemas de clasificación con dos clases y salida binaria.

Figura 6.9: Arquitectura del modelo LSTM del Experimento Final

Como la clase es binaria, ya no será de utilidad utilizar la estrategia de Ensemble, así que solo se ejecu-
tará la estrategia que denominamos Multiclase, aunque en este apartado ya no sería correcto denominarla
así ya que unicamente hay dos clases, por lo que pasaría a denominarse clasificación binaria.

6.5.3. Resultados y Análisis

Tabla 6.10: Resultados obtenidos en el experimento final (“caminar” vs “no caminar”)

Modelo Tasa Acierto Recall Precisión F1-Score

RandomForest_Binario 0.8498 0.8498 0.8904 0.8392
SVMRadial_Binario 0.9196 0.9196 0.9346 0.9162
LSTM_Binario 0.8047 0.8280 0.6090 0.7018

En la Tabla 6.10 se muestran los resultados obtenidos. Como se puede ver, el modelo SVM con kernel
radial obtiene unos resultados muy buenos, llegando a tener aproximadamente un 92 % de tasa de acierto,
recall y f1-score y más de un 93 % de precisión. Los de RandomForest, a pesar de ser inferiores, son también
buenos. Sin embargo, el modelo LSTM obtiene unos resultados inferiores a los esperados, especialmente
en la métrica de precisión, llegando apenas al 61 %.

En la Figura 6.10, se muestran los resultados por actividad. Como se puede observar, los tres modelos
obtienen una alta tasa de acierto al predecir la clase positiva. Por otro lado, también se puede ver que la
tasa de acierto de la clase negativa es considerablemente inferior a la de la clase positiva, siendo el modelo
SVM con kernel radial el que mejores resultados obtiene, pudiendo así lograr unas muy buenas métricas
finales.
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Figura 6.10: Tasa de acierto por actividad en el experimento final

6.6. Discusión Final

Las Tablas 6.9 y 6.10 muestran los resultados de los diferentes modelos desarrollados a lo largo del
proyecto. Tras haber realizado todos los experimentos, se puede comentar lo siguiente:

La estrategia Ensemble obtiene resultados ligeramente superiores a la estrategia Multiclase. Sin
embargo, también tiene un coste computacional muchísimo más alto, por lo que sería necesario
hacer un estudio de las limitaciones del equipo que se va a utilizar para decidir que estrategia es
más adecuada.

La estandarización de los datos aumenta de forma significativa la eficiencia del modelo SVM con
kernel radial, mientras que para el modelo Random Forest, al estar basado en árboles de decisión,
no se ve prácticamente afectado por la normalización.

Para la clasificación de todas las actividades, Random Forest es el modelo que mejores resultados
obtiene, además de tener un coste computacional considerablemente inferior al resto, por lo que se
consolida como la mejor opción.

En el caso de la clasificación binaria de la actividad “Andar”, el modelo que mejores resultados
obtuvo es el SVM con kernel radial, superando ampliamente al resto de modelos.

El modelo LSTM tiene potencial para obtener buenos resultados, pero se necesita una gran capacidad
computacional para poder probar todas las combinaciones de parámetros y arquitecturas posibles.
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Capítulo 7

Conclusiones y líneas futuras de trabajo

En este Trabajo de Fin de Grado se han alcanzado los objetivos iniciales. Se ha desarrollado un flujo de
procesamiento de señales que extrae características en los dominios temporal y frecuencial. También se han
probado clasificadores clásicos (Random Forest y SVM-RBF) y un modelo neuronal LSTM. Por último,
se ha evaluado su rendimiento tanto en el escenario multiclase como en el escenario binario (“caminar” vs.
“no caminar”).

7.1. Trabajos Futuros

Uso de diferentes modelos

Aunque Random Forest, SVM-RBF y LSTM constituyen tres enfoques representativos, basándose cada
uno en una estrategia diferente para entrenar y predecir, existen muchos otros algoritmos por explorar.
Como líneas futuras se proponen:

Redes neuronales convolucionales (CNN) para extraer patrones locales en la serie temporal
antes de la LSTM.

Transformers o Temporal Convolutional Networks (TCN), los cuales han mostrado gran
eficacia en datos secuenciales en estudios anteriores [43].

Modelos híbridos (CNN+LSTM) que combinen extracción automática de características con me-
moria de largo plazo [44].

Estudio de otras arquitecturas LSTM

El modelo LSTM presenta un gran potencial para obtener buenos resultados en el Reconocimiento de
la Actividad Humana, por lo que se propone seguir estudiando este modelo o cualquier variación de redes
neuronales recurrentes. Algunas de las alternativas que se ofrecen son las siguientes:

Explorar variaciones de puertas: GRU (Gated Recurrent Unit) o LSTM bidireccional, que cap-
turan contexto futuro y pasado.

Ajustar profundidad y tamaño de las capas, así como técnicas de attention para enfocar la red en
secciones relevantes de la secuencia.
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Incorporar Batch Normalization o Layer Normalization entre capas recurrentes para estabilizar
el entrenamiento.

Aplicación a la identificación de usuarios

Un estudio en curso dentro del equipo de investigación en el cual se desarrolló este proyecto es el de la
identificación de personas en función de su forma de caminar. Este proyecto serviría como intermediario
entre los datos y el modelo de identificación, funcionando de la siguiente manera:

1. Se extraen las ventanas de datos con las características correspondientes.

2. Se utiliza el modelo de predicción de actividad para asignar una actividad a la ventana.

Si la predicción es “Andar”, la ventana pasa a ser analizada por el modelo de identificación.

Si la predicción no es “Andar”, se pasa a la siguiente ventana.

Integración en aplicaciones móviles

Para poder llevar está investigación al mundo real, una alternativa sería el de desarrollar una aplicación
móvil que, mediante el uso de estos modelos, sea capaz predecir que actividad se está realizando en el
momento y utilizar esta información con diferentes objetivos. Una de las posibles lineas de futuro es el
de implementar los modelos en un sistema de detección en tiempo real de actividades. Diseñar una
aplicación que sea capaz de detectar la actividad que se está realizando a tiempo real podría ser aplicada
al campo de la seguridad y sanidad, pudiendo detectar actividades anómalas y enviar avisos en caso de
inactividad o de caída. En este caso, se priorizaría la rapidez del modelo, así como el consumo energético,
ya que al estar activo constantemente podría vaciar la batería del dispositivo rápidamente.

En conjunto, estas líneas futuras consolidan la base sentada en este TFG y abren la puerta a siste-
mas de monitorización personales más avanzados, capaces de combinar reconocimiento de actividades,
identificación biométrica y generación de informes en entornos móviles.

56



BIBLIOGRAFÍA

Bibliografía

[1] Yuting Zhang, Gang Pan, Kui Jia, Minlong Lu, Yueming Wang, and Z. Wu. Accelerometer-based
gait recognition by sparse representation of signature points with clusters. IEEE transactions on
cybernetics, 45, 11 2014.

[2] Ananda Ravuri. A systematic literature review on human activity recognition. Journal of Electrical
Systems, 20:1175–1191, 04 2024.

[3] Liming Chen and Chris D. Nugent. Human Activity Recognition and Behaviour Analysis: For Cyber-
Physical Systems in Smart Environments. Springer International Publishing, 2019.

[4] J.L.R. Ortiz. Smartphone-Based Human Activity Recognition. Springer Theses. Springer International
Publishing, 2016.

[5] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone
accelerometers. In Proceedings of the Fourth International Workshop on Knowledge Discovery from
Sensor Data (at KDD-10), 2010.

[6] Miguel A. Labrador and Oscar D. Lara Yejas. Human Activity Recognition: Using Wearable Sensors
and Smartphones. Chapman and Hall/CRC, 1 edition, 2013.

[7] Sizhen Bian, Mengxi Liu, Bo Zhou, and Paul Lukowicz. The state-of-the-art sensing techniques in
human activity recognition: A survey. Sensors, 22(12), 2022.

[8] Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, and Parisa Rashidi. Human activity recogni-
tion using inertial, physiological and environmental sensors: A comprehensive survey. IEEE Access:
Practical Innovations, Open Solutions, 8:210816–210836, 2020.

[9] Gérard Biau and Erwan Scornet. A random forest guided tour. TEST, 25, 11 2015.

[10] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[11] Harmandeep Kaur, Veenu Rani, and Munish Kumar. Human activity recognition: A comprehensive
review. Expert Systems, 41(11):e13680, 2024.

[12] Qi Teng, Kun Wang, Lei Zhang, and Jun He. The layer-wise training convolutional neural networks
using local loss for sensor-based human activity recognition. IEEE Sensors Journal, 20(13):7265–
7274, 2020.

[13] Shibo Zhang, Yaxuan Li, Shen Zhang, Farzad Shahabi, Stephen Xia, Yu Deng, and Nabil Alshurafa.
Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors,
22(4), 2022.

57



BIBLIOGRAFÍA

[14] N.T. Newaz and E. Hanada. The methods of fall detection: A literature review. Sensors, 23(11):5212,
2023.

[15] José M. Alcalá, Jesús Ureña, Álvaro Hernández, and David Gualda. Assessing human activity in
elderly people using non-intrusive load monitoring. Sensors, 17(2), 2017.

[16] Chhavi Dhiman and Dinesh Kumar Vishwakarma. A review of state-of-the-art techniques for abnor-
mal human activity recognition. Engineering Applications of Artificial Intelligence, 77:21–45, 2019.

[17] Alberto Carrera-Rivera, Daniel Reguera-Bakhache, Felix Larrinaga, et al. Structured dataset of
human-machine interactions enabling adaptive user interfaces. Scientific Data, 10:831, 2023.

[18] Suphachai Mekruksavanich, Wasawat Phaphan, Nopparat Hnoohom, and Aksorn Jitpattanakul. Re-
cognition of sports and daily activities through deep learning and convolutional block attention.
PeerJ Computer Science, 10:e2100, 2024.

[19] Haotian Zhou, Xiujun Zhang, Yu Feng, Tongda Zhang, and Lijuan Xiong. Efficient human activity
recognition on edge devices using deepconv lstm architectures. Scientific Reports, 15:13830, 2025.

[20] H. Sharen, L. Jani Anbarasi, P. Rukmani, Amir H. Gandomi, R. Neeraja, and Modigari Narendra.
Wisnet: A deep neural network based human activity recognition system. Expert Systems with
Applications, 258:124999, 2024.

[21] Shaik Jameer and Hussain Syed. A dcnn-lstm based human activity recognition by mobile and
wearable sensor networks. Alexandria Engineering Journal, 80:542–552, 2023.

[22] Morsheda Akter, Shafew Ansary, Md. Al-Masrur Khan, and Dongwan Kim. Human activity recog-
nition using attention-mechanism-based deep learning feature combination. Sensors, 23(12), 2023.

[23] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model for data mining.
Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery
and Data Mining, 2000.

[24] Ken Schwaber and Jeff Sutherland. The Scrum Guide: The Definitive Guide to Scrum: The Rules of
the Game. Scrum.org, 2020.

[25] Mario Molina and Daniel Torres. Implementación de scrum como metodología ágil en proyectos de
desarrollo de software. Revista Científica y Tecnológica UPSE, 2014.

[26] Scrum Alliance. Scrum artifacts: How they help teams deliver value, 2024. Consultado el 12 de junio
de 2025.

[27] Scrum Alliance. Product goals in scrum: What they are and why they matter, 2024. Consultado el
12 de junio de 2025.

[28] Scrum Alliance. Scrum team roles and responsibilities, 2024. Consultado el 12 de junio de 2025.

[29] Scrum Alliance. 7 skills you need to be a great product owner, 2024. Consultado el 12 de junio de
2025.

[30] Scrum Alliance. High-performance teams: Why the ’who’ matters less, 2024. Consultado el 12 de
junio de 2025.

[31] Scrum Alliance. A day in the life of a scrum master, 2024. Consultado el 12 de junio de 2025.

[32] INCIBE. Análisis de riesgos en 5 pasos sencillos, 2023. Consultado el 12 de junio de 2025.

[33] Indeed. Salario medio de data scientist en valladolid, valladolid provincia, 2025. Consultado en junio
de 2025.

58



BIBLIOGRAFÍA

[34] Jeffrey W. Lockhart, Gary M. Weiss, Jack C. Xue, Shaun T. Gallagher, Andrew B. Grosner, and
Tony T. Pulickal. Design considerations for the wisdm smart phone-based sensor mining architecture.
In Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data (at
KDD-11), San Diego, CA, 2011.

[35] Kishor Walse, Rajiv Dharaskar, and V. M. Thakare. Performance evaluation of classifiers on wisdm
dataset for human activity recognition. 03 2016.

[36] D. Bhattacharya and et al. Optimizing machine learning models in human activity recognition. Tuijin
Jishu / Journal of Propulsion Technology, 44(5), 2023.

[37] Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural networks for human activity recog-
nition. Sensors, 17(11):10–11, 2017.

[38] Jiri Klema, Lenka Vyslouzilova, Filip Karel, Olga Štepánková, and Filip Zelezný. Sequential data
mining: A comparative case study in development of atherosclerosis risk factors. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 38:3 – 15, 02 2008.

[39] Anzah Niazi, Delaram Yazdansepas, Jennifer Gay, Frederick Maier, Lakshmish Ramaswamy, Khaled
Rasheed, and Matthew Buman. Statistical analysis of window sizes and sampling rates in human
activity recognition. pages 319–325, 01 2017.

[40] Akbar Dehghani, Omid Sarbishei, Tristan Glatard, and Emad Shihab. A quantitative comparison
of overlapping and non-overlapping sliding windows for human activity recognition using inertial
sensors. Sensors, 19(22), 2019.

[41] Forecastegy. Do Decision Trees Need Feature Scaling Or Normalization? https://forecastegy.co
m/posts/do-decision-trees-need-feature-scaling-or-normalization/, June 2025. [Online;
accessed 8-June-2025].

[42] Forecastegy. Does SVM Need Feature Scaling Or Normalization? https://forecastegy.com/
posts/does-svm-need-feature-scaling-or-normalization/, June 2025. [Online; accessed
8-June-2025].

[43] Ramiro Casal, Leandro E. Di Persia, and Gastón Schlotthauer. Temporal convolutional networks and
transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals. Journal
of Computational Science, 59:101544, 2022.

[44] Adarsh Muralidharan and Sazia Mahfuz. Human activity recognition using hybrid cnn-rnn architec-
ture. Procedia Computer Science, 257:336–343, 2025. The 16th International Conference on Ambient
Systems, Networks and Technologies Networks (ANT)/ the 8th International Conference on Emerging
Data and Industry 4.0 (EDI40).

59

https://forecastegy.com/posts/do-decision-trees-need-feature-scaling-or-normalization/
https://forecastegy.com/posts/do-decision-trees-need-feature-scaling-or-normalization/
https://forecastegy.com/posts/does-svm-need-feature-scaling-or-normalization/
https://forecastegy.com/posts/does-svm-need-feature-scaling-or-normalization/

	Introducción
	Contexto
	Motivación
	Objetivos
	Estructura de la memoria

	Conceptos teóricos
	Reconocimiento de la Actividad Humana y Biometría
	Introducción al Reconocimiento de la Actividad Human (HAR)
	Tipos de sistemas HAR según el origen de los datos
	Estrategias de diseño para un sistema HAR

	Modelos de clasificación y técnicas utilizadas
	Random Forest
	Support Vector Machine (SVM)
	Redes Neuronales Recurrentes LSTM


	Estado del arte
	Enfoques Investigativos y Técnicas Empleadas
	Campos de Aplicación
	Resultados Precedentes
	Síntesis del estado del arte

	Metodologías y planificación
	Metodología de Investigación
	Introducción a la Metodología CRISP-DM
	Fases de la metodología CRISP-DM
	Aplicación de CRISP-DM en el proyecto

	Metodología de Trabajo
	Metodología Scrum
	Artefactos SCRUM
	Equipo SCRUM
	Partes interesadas
	Adaptación de la metodología
	Planificación y seguimiento del proyecto

	Análisis de riesgos del proyecto
	Estimación de costes

	Desarrollo software
	Análisis de requisitos
	Diseño del sistema
	Tecnologías utilizadas
	Pruebas

	Experimentación
	Sprint inicial
	Base de datos: WISDM
	Selección de modelos
	Estrategia de entrenamiento y clasificación
	Métodología de evaluación
	Estrategia de particionado de datos

	Experimento 1: Random Forest y SVM Radial
	Preparación de los datos
	Creación y optimización de modelos
	Resultados y Análisis

	Experimento 2: Ajuste de datos
	Preparación de los datos
	Creación y optimización de modelos
	Resultados y Análisis

	Experimento 3: Long Short-Term Memory
	Preparación de los datos
	Creación y optimización de modelos
	Resultados y Análisis

	Experimento Final: Clasificador Binario de la actividad ``Andar''
	Preparación de los datos
	Creación y optimización de modelos
	Resultados y Análisis

	Discusión Final

	Conclusiones y líneas futuras de trabajo
	Trabajos Futuros

	Bibliografía

