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Resumen

Motivaciéon: Durante unas practicas en una entidad tecnolégica del sector asegurador, se
evidencio el retraso digital en la gestién documental, caracterizada por procesos manuales, lentos
y propensos a errores, lo que motivé la bisqueda de soluciones inteligentes que mejoren la
eficiencia y precision en la consulta de informacién.

Objetivo: Disenar, desarrollar e integrar un sistema basado en inteligencia artificial, uti-
lizando la técnica de Generacion Aumentada por Recuperacion (RAG), que permita realizar
consultas precisas y en lenguaje natural sobre documentacién técnica aseguradora.

Tareas: El proyecto ha implicado la planificaciéon y anélisis del problema, la investigacién
de tecnologias RAG, el diseno arquitecténico del sistema en microservicios, el desarrollo de una
API REST con backend FastAPI y frontend React, la integracién de modelos de lenguaje y bases
vectoriales (FAISS), y la implementacién de funcionalidades de consulta y gestion documental
con pruebas comparativas.

Resultados: El sistema desarrollado permite realizar consultas seménticas rapidas y fiables,
demostrando un rendimiento superior en precision, trazabilidad y tiempo de respuesta frente a
métodos tradicionales de busqueda.

Conclusién: La solucion propuesta representa un avance significativo en la digitalizacién del
sector asegurador, aportando una herramienta escalable, modular y tecnolégicamente actual que
mejora el acceso a la informacién y sienta las bases para futuras mejoras basadas en inteligencia
artificial.

Palabras clave: embeddings, inteligencia artificial, RAG, recuperacién semantica, sector

asegurador, sistemas conversacionales

Abstract

Motivation: During an internship at a technology provider for insurance companies, a sig-
nificant digital gap in document management was observed, marked by slow, manual processes
prone to human error. This motivated the development of intelligent solutions to improve the
efficiency and accuracy of information retrieval.

Objective: To design, develop, and integrate an artificial intelligence-based system using
Retrieval-Augmented Generation (RAG) techniques to enable precise, natural language queries
on insurance-related technical documentation.

Tasks: The project involved problem analysis, research on RAG-related technologies, ar-

chitectural design using microservices, backend development with FastAPI and a React-based



frontend, integration of language models and vector databases (FAISS), and the implementation
of document management and query features supported by rigorous performance testing.

Results: The developed system enables fast, semantically accurate information retrieval and
shows clear improvements in accuracy, traceability, and response time compared to traditional
search methods.

Conclusion: The proposed solution contributes to the digital transformation of the insurance
sector by providing a scalable, modular, and state-of-the-art tool that enhances information
access and sets a solid foundation for future Al-driven improvements.

Keywords:
artificial intelligence, conversational systems, embeddings, insurance sector, RAG, semantic re-

trieval
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Capitulo 1

Introduccion

1.1 Introducciéon

En la actualidad, el sector asegurador maneja una creciente cantidad de datos e informa-
cién, en muchos casos contenida en una gran cantidad de documentos extensos y complejos.
La busqueda, recuperacién y consulta eficiente de esta informacién supone un desafio, ya que
afecta directamente a la productividad, calidad del servicio y capacidad de respuesta frente a

las demandas de los clientes.

Este trabajo surge de la necesidad de proporcionar una solucién efectiva y moderna a este
problema recurrente mediante la aplicacion de tecnologias avanzadas de inteligencia artificial. En
concreto, se propone el desarrollo de un sistema basado en técnicas de Generacion Aumentada
por Recuperacion (RAG, por sus siglas en inglés, Retrieval-Augmented Generation), combinando
las fortalezas del procesamiento del lenguaje natural con motores de blisqueda seméanticos, para

permitir una consulta rapida y precisa dentro del entorno asegurador.

La eleccién de este enfoque no es casual: los modelos RAG han mostrado resultados prome-
tedores en diversos contextos profesionales, destacando por su capacidad para manejar grandes
cantidades de informacién y proporcionar respuestas contextualizadas y precisas. Ademads, la
implementacién de una arquitectura basada en médulos y contenedores asegura que la solucién
sea no solo robusta y escalable, sino también adaptable a futuras necesidades o cambios en las

condiciones del mercado.

Este proyecto pretende ir mas alld de las soluciones tradicionales, ofreciendo una alternativa
inteligente que reduzca tiempos de consulta, minimice errores humanos y, en ultima instancia,
mejore sustancialmente la experiencia tanto del personal encargado de gestionar dicha informa-

cién como de los clientes finales.

A lo largo de esta memoria se detalla el proceso seguido para abordar este desafio, desde la



fase inicial de investigacién y analisis, pasando por el disefio y desarrollo del sistema, hasta llegar
finalmente a la evaluacién y comparativa de resultados frente a metodologias mas convencionales.
Todo ello con el objetivo ultimo de validar la eficacia y beneficios que aportan las soluciones que

integran este tipo de sistemas en el sector asegurador.

1.2 Motivacion

Durante el periodo de practicas de empresa realizado en una entidad que presta servicios
tecnoldgicos a diversas aseguradoras, he podido observar de primera mano el considerable retraso
tecnoldgico presente en este sector. Esta experiencia directa me permitié identificar claramente
las dificultades y limitaciones que surgen al gestionar grandes volimenes de informaciéon mediante
métodos tradicionales, generalmente lentos y propensos a errores humanos. Al mismo tiempo, soy
plenamente consciente del impacto transformador que estan teniendo y tendran las tecnologias
basadas en inteligencia artificial en practicamente todos los dmbitos profesionales y sociales.
Especificamente, considero que el sector asegurador, dada su magnitud y la repercusién directa
e indirecta que tiene sobre practicamente toda la poblacién, necesita abordar con urgencia una
transformacion digital profunda. Este convencimiento personal ha sido un motor fundamental
para llevar a cabo este proyecto, buscando aportar una solucién tecnoldgica innovadora que
permita optimizar significativamente procesos criticos y mejorar la calidad del servicio que estas

entidades proporcionan a sus clientes.



Capitulo 2

Objetivos y Alcance

2.1 Objetivos

2.1.1 Objetivo principal

El objetivo principal de este proyecto es desarrollar e integrar un sistema basado en inteligen-
cia artificial, fundamentado en técnicas de Generacion Aumentada por Recuperacion (RAG, por
sus siglas en inglés, Retrieval-Augmented Generation), que permita realizar consultas inteligen-

tes, precisas y eficientes sobre documentacién especializada en el &mbito del sector asegurador.

2.1.2 Objetivos secundarios

A fin de alcanzar el objetivo principal, se establecen los siguientes objetivos secundarios:

= Disenar una arquitectura de software modular y escalable, que facilite el mantenimiento,

evolucién y despliegue del sistema.

= Incorporar mecanismos de busqueda semantica y recuperacién de informacién que mejoren

la calidad y relevancia de los resultados obtenidos.

» Implementar una interfaz de programacién de aplicaciones (API) clara y extensible, que

posibilite la integraciéon con otros sistemas corporativos.

= Establecer procedimientos de validacién que permitan evaluar el rendimiento y la eficacia
del sistema desarrollado en escenarios reales o simulados.
2.2 Tareas a realizar

Las tareas planteadas para alcanzar los objetivos propuestos se agrupan en las siguientes

fases:



1. Planificacién inicial: definir el alcance del proyecto, los objetivos especificos y el crono-

grama estimado de desarrollo. Las actividades clave incluyen:
» Establecer criterios de evaluacién y métodos de control de riesgos.

2. Analisis del contexto y los requisitos: estudiar el problema actual relacionado con
la recuperacion de informacién en el sector asegurador, e identificar las necesidades del

sistema. Se desarrollaran las siguientes tareas:

» Identificar los requisitos funcionales y no funcionales del sistema propuesto.

= Investigar soluciones existentes y tecnologias afines que puedan servir como base o

referencia.

3. Disefio e implementacién del sistema: definir la arquitectura general y los médulos

funcionales. Las actividades contempladas son:

= Desarrollar los médulos funcionales necesarios: consulta seméantica, gestiéon documen-

tal, interaccién con el usuario, etc.
= Integrar modelos de PLN y mecanismos de recuperacién contextualizada de informa-

cion.

4. Validacién y evaluacion: realizar pruebas de funcionamiento y precisién, asi como com-

paracion con métodos actuales. Se llevaran a cabo:

= Comparar su rendimiento con métodos tradicionales empleados en el ambito asegu-

rador.

= Documentar los resultados obtenidos y proponer lineas de mejora o evolucién futura.



Capitulo 3

Metodologia

Todo trabajo de desarrollo tecnoldgico requiere una planificacién estructurada que oriente los
esfuerzos hacia el cumplimiento de los objetivos definidos. En este proyecto se ha optado por una
metodologia iterativa e incremental, adecuada para entornos con alto componente exploratorio
y tecnoldgico, como es el caso de los sistemas basados en inteligencia artificial. Esta eleccion
permite ajustar la planificacién y el desarrollo conforme se obtienen resultados parciales o surgen

nuevas necesidades técnicas.

3.1 Estrategia metodolégica

La estrategia general se ha basado en el enfoque de desarrollo por prototipos, combinado
con principios de gestion agil. Esto ha permitido construir versiones intermedias funcionales del
sistema, evaluar su comportamiento en cada iteracion y aplicar mejoras continuas. Este enfoque
facilita también la integracién progresiva de tecnologias especificas y la validaciéon temprana de

decisiones arquitectonicas clave.

A lo largo del desarrollo se han seguido ciclos de trabajo estructurados en fases, con re-
visiones frecuentes y ajustes planificados. Se ha utilizado una hoja de ruta flexible, revisada

periédicamente, como herramienta de seguimiento del avance y de reasignacién de tareas.

3.2 Fases y planificacion temporal

Las fases de trabajo definidas inicialmente, asi como los ajustes realizados durante el proceso,
se detallan en la tabla [3.I] Esta planificacién recoge el desarrollo progresivo desde el andlisis

inicial hasta la redaccién final de la memoria.



Nombre de actividad Semanas

Anélisis inicial del problema y requisitos técnicos 1-2
Investigacion y aprendizaje de herramientas tecnolégicas 2-3
Disefio preliminar de arquitectura 3-4
Configuracién de entorno de desarrollo y bases de datos 4-5
Desarrollo del primer prototipo funcional 5-6
Integracién de modelo RAG y busqueda seméantica 638
Optimizacion del sistema de embeddings (uso GPU) 7-8
Implementacién de autenticacién y gestién de usuarios 8-9
Desarrollo del segundo prototipo con interfaz de usuario 9-11
Optimizacién visual y funcional del frontend 10 - 11
Pruebas técnicas y evaluacién del sistema 11 -13
Comparativa con métodos tradicionales 12 - 13
Redaccién de documentaciéon técnica y manuales 13-14
Elaboracién de la memoria del TFG 14 - 15

Cuadro 3.1: Fases de desarrollo del proyecto previstas y ajustadas segiin evolucién real

3.3 Reflexién sobre la metodologia aplicada

Cada una de las fases descritas ha requerido un esfuerzo especifico y ha estado sujeta a
revisiones en funciéon de los resultados obtenidos. En particular, la integracién tecnolégica y
el ajuste de los modelos de recuperacion aumentada han supuesto un reto relevante, dada su
complejidad y el caracter innovador del enfoque.

El enfoque iterativo ha permitido corregir desviaciones a tiempo, adaptar el alcance funcional
a los recursos disponibles y priorizar las funcionalidades més criticas. Esta estrategia ha sido
clave para garantizar la viabilidad técnica del proyecto en un entorno controlado y con recursos

limitados, como es habitual en el contexto de un Trabajo Fin de Grado.



Capitulo 4

Marco Conceptual

4.1 Introduccién al paradigma RAG

En el contexto actual de avance acelerado de la inteligencia artificial, los modelos de lenguaje
de gran tamano (LLMs, por sus siglas en inglés) como GPT, LLaMA o Claude han alcanzado un
nivel de sofisticacién notable, siendo capaces de comprender, resumir y generar texto en lenguaje
natural con alta fluidez y coherencia. Estos modelos se entrenan sobre grandes volimenes de
datos textuales y aprenden representaciones profundas del lenguaje, lo que los hace especialmente
eficaces en tareas generales de procesamiento del lenguaje natural.

Sin embargo, una de sus limitaciones mas criticas es la naturaleza estatica del conocimiento
que contienen: una vez entrenados, no pueden incorporar informacién nueva sin reentrenamiento,
un proceso costoso y técnicamente complejo. Como consecuencia, los LLMs tienden a generar
respuestas basadas unicamente en lo que han “aprendido” de sus datos de entrenamiento, lo
cual puede derivar en respuestas imprecisas, desactualizadas o incluso incorrectas en dominios
especializados o contextos que requieren trazabilidad.

Para resolver esta limitacion, surge el enfoque conocido como Retrieval-Augmented Gene-
ration (RAG), o generacién aumentada mediante recuperaciéon. Este paradigma arquitecténico
combina dos enfoques clasicos: la recuperaciéon de informacién (IR) y la generacién de lenguaje
natural. En términos simples, RAG dota al modelo generativo de acceso a una memoria externa
dindmica, una base documental, que puede ser consultada en tiempo real durante la inferencia.
De este modo, el modelo no depende exclusivamente de su entrenamiento previo, sino que puede
incorporar conocimiento adicional, especifico y actual, al generar sus respuestas.

Mas alla de su funcionalidad inmediata, RAG representa un cambio profundo en el disefio de
sistemas de IA: separa el almacenamiento del conocimiento (corpus vectorizado e indexado) del
componente de razonamiento lingiiistico (modelo generativo), lo que permite construir sistemas
mas auditables, escalables y facilmente actualizables. Esta separacion modular tiene importantes
implicaciones tanto desde la perspectiva técnica como desde la de la ingenieria del software, es-

pecialmente en sectores regulados como el asegurador, donde la trazabilidad, la precisiéon factual
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v la adaptacién a cambios normativos son requisitos esenciales.
En las siguientes secciones se abordara el origen y evolucién del paradigma RAG, sus funda-
mentos técnicos, las ventajas estratégicas que ofrece en entornos empresariales, y las limitaciones

técnicas que debe afrontar su implementacién practica.

4.2 Origen y evoluciéon del paradigma RAG

El término Retrieval-Augmented Generation (RAG) fue acuniado por primera vez en el articu-
lo de Lewis et al. [16], publicado por Facebook AI Research en 2020. En este trabajo, los autores
propusieron una arquitectura hibrida disefiada para mejorar el rendimiento de los modelos de
lenguaje en tareas intensivas en conocimiento, como el open-domain question answering, combi-
nando un recuperador de documentos basado en biisqueda seméntica con un modelo generativo
del tipo seq2seq.

La propuesta de Lewis et al. marc6é un punto de inflexiéon en la evolucién de los sistemas de

PLN. Hasta entonces, los enfoques predominantes se dividian entre:

= Modelos extractivos, como BERT aplicado a QA, que seleccionan fragmentos existentes

como respuesta, sin generar texto nuevo [4].

= Modelos generativos puros, como GPT o T5, que generan respuestas desde cero pero sin

acceso explicito a una base documental externa [24].

RAG se posiciona como una solucién intermedia: permite generar respuestas sintéticas, pero
basadas en evidencia textual concreta, proveniente de un corpus documental externo. Este enfo-
que es especialmente valioso en dominios donde el conocimiento cambia con frecuencia, y donde
se requiere trazabilidad y control sobre las fuentes empleadas en la generacién.

Desde su introduccién, la arquitectura RAG ha inspirado numerosos desarrollos y adapta-
ciones. Se ha convertido en la base conceptual de frameworks como Haystack, Llamalndex y
LangChain, que implementan variantes de pipelines RAG para tareas especificas como asisten-
cia conversacional, bisqueda semantica empresarial y generacién automatica de documentacioén
técnica. También ha sido objeto de muiltiples estudios comparativos frente a otras estrategias
como el fine-tuning o la recuperacion sin generacién, demostrando ventajas significativas en

precision, adaptabilidad y coste computacional [14].

4.3 Evolucion histérica de las arquitecturas de recuperaciéon y gene-
racion

La arquitectura RAG no surge en un vacio técnico, sino como la confluencia logica de dos
lineas de desarrollo en el campo del procesamiento del lenguaje natural (PLN): por un lado, los
sistemas de recuperacién de informacion (IR), y por otro, los modelos de lenguaje generativo.
Ambos enfoques han evolucionado durante décadas y han alcanzado puntos de madurez que han

permitido su integracion en soluciones hibridas como RAG.
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4.3.1 De la recuperacion clasica a la bisqueda semantica

Los primeros sistemas IR se basaban en el modelo de espacio vectorial y utilizaban métricas
como TF-IDF y BM25 para calcular la relevancia de los documentos frente a una consulta. Estos
métodos eran eficientes y comprensibles, pero sufrian limitaciones notables en la comprensién
semantica: trabajaban a nivel de coincidencia de términos y no captaban relaciones conceptuales
entre palabras ni el contexto més amplio del discurso.

Con la irrupcién del aprendizaje profundo en PLN, especialmente a partir de 2013 con la
introduccién de word embeddings como Word2Vec [19], se hizo posible representar palabras en
espacios semdnticos continuos. Més tarde, modelos como BERT [4], RoBERTa y DistilBERT
permitieron calcular representaciones contextuales de frases y documentos enteros, habilitando
lo que hoy se conoce como biisqueda semantica.

Estos avances permitieron que los sistemas de IR pasaran de ser simplemente extractivos a
capaces de realizar una recuperacion con mayor profundidad conceptual, abriendo la puerta a

su integraciéon con modelos generativos.

4.3.2 La evolucion de los modelos generativos

En paralelo, los modelos de lenguaje también experimentaron una evolucion significativa. Los
modelos n-gram, los Hidden Markov Models (HMM) y las primeras redes neuronales recurrentes
(RNNs) ofrecfan una generacién limitada y rigida. El salto cualitativo se dio con la introduccién
de arquitecturas Transformer [28], que permitieron construir modelos como GPT, BERT, T5
y BART.

Los modelos autoregresivos (ej. GPT) demostraron capacidades sorprendentes para la ge-
neracién libre de texto, mientras que los modelos encoder-decoder (ej. T5, BART) ofrecian
ventajas en tareas estructuradas y de traduccién automatica. Sin embargo, estos modelos se-
guian dependiendo exclusivamente de la informacién contenida en sus parametros entrenados,
lo cual limitaba su aplicabilidad en entornos que requieren acceso a datos actualizados, precisos

y trazables.

4.3.3 Convergencia: hacia una generacion informada por recuperacién

La necesidad de unir lo mejor de ambos mundos —la precision factual y actualizable de
la recuperacién con la fluidez lingiiistica de la generacién— llevo al disefio de arquitecturas
hibridas. Entre los primeros intentos destacan los sistemas QA con recuperacién + reranking,
que empleaban BERT para reordenar documentos recuperados, pero sin generacion real.

El trabajo de Lewis et al. |16] formaliz este concepto con RAG, donde por primera vez
se integré de forma efectiva un médulo de recuperacién semdantica y un generador neuronal
dentro de un mismo flujo de inferencia. Esta integracion permitié construir respuestas mas
utiles, basadas en evidencia, y adaptadas dindmicamente al corpus documental disponible.

Desde entonces, RAG ha sido reconocido como un paradigma arquitecténico clave en el de-

sarrollo de sistemas de PLN con propdsito practico, especialmente en sectores como salud, legal,
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investigacion cientifica y finanzas, donde la precisién factual y la auditabilidad son fundamen-

tales.

4.4 Comparativa conceptual con otros enfoques

El enfoque RAG no es la tnica estrategia para abordar tareas de acceso a informacién median-
te lenguaje natural. En la literatura y en la practica, existen al menos tres grandes alternativas
con las que se puede establecer una comparacién conceptual: los modelos generativos puros, los
modelos ajustados mediante fine-tuning, y los sistemas tradicionales de recuperacién de infor-
macién. Esta seccion analiza las caracteristicas distintivas de cada uno en relacién con RAG,

subrayando sus ventajas y limitaciones desde una perspectiva tedrica.

4.4.1 Modelos generativos puros

Los modelos generativos autoregresivos de gran escala (LLMs), como GPT-3 o GPT-4, son
capaces de generar texto altamente coherente sin acceso externo a fuentes de informacién. Operan
unicamente en base a los parametros adquiridos durante el entrenamiento, lo que les otorga una
alta fluidez lingiiistica y una flexibilidad notable en tareas abiertas o creativas.

No obstante, esta aproximacién presenta importantes limitaciones cuando se requiere exacti-
tud factual, trazabilidad de la informacién o actualizacién continua del conocimiento. Al carecer
de un mecanismo explicito de recuperacion, estos modelos pueden generar contenido incorrecto
o inventado (hallucinations) [29], y no pueden justificar sus respuestas mas alld de su entre-
namiento previo. En contextos profesionales o regulados, estas deficiencias suponen un riesgo

critico.

4.4.2 Finetuning sobre modelos base

Otra estrategia comun es el fine-tuning, que consiste en ajustar los pesos de un modelo pre-
viamente entrenado utilizando un corpus especifico del dominio objetivo. Esta técnica permite
especializar el modelo en tareas concretas o en terminologia sectorial, y puede mejorar su ren-
dimiento en tareas controladas.

Sin embargo, el fine-tuning requiere:

= Un conjunto de datos de alta calidad, curado y representativo del dominio.
= Capacidad computacional elevada para realizar el entrenamiento adicional.

= Repeticién del proceso ante cambios relevantes en la informacién base, lo que limita la

adaptabilidad y la actualizacién dindmica del sistema.

Ademaés, no resuelve el problema de la opacidad: aunque el modelo haya aprendido del corpus,

no puede citar ni explicar la fuente de su conocimiento durante la inferencia [17].
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4.4.3 Recuperacion de informacién clasica (IR)

Los sistemas IR tradicionales, como los basados en BM25 o ElasticSearch, ofrecen respuestas
extractivas, rapidas y trazables. Son especialmente ttiles en sistemas de busqueda documental
o cuando se requiere mostrar evidencia textual directa al usuario.

Sin embargo, su principal debilidad reside en la falta de capacidad generativa. La carga
interpretativa recae sobre el usuario, quien debe extraer el significado relevante de los fragmentos
recuperados. Ademaés, su rendimiento se ve limitado por la calidad del indice y por la literalidad
de las coincidencias, lo que reduce su eficacia en consultas expresadas en lenguaje natural libre
[27].

4.4.4 Sintesis comparativa

La arquitectura RAG se sitiia como una solucién intermedia que combina:

= La adaptabilidad y fluidez de los modelos generativos.
= La trazabilidad y precisién de los sistemas IR.

= La posibilidad de actualizacién dinamica del corpus sin reentrenamiento.

Esto la convierte en una arquitectura especialmente valiosa en contextos donde es necesa-
rio producir lenguaje natural preciso, pero fundamentado en evidencia externa, actualizable y
auditable.

4.5 Variantes técnicas del enfoque RAG

Desde su formulacién original, el paradigma RAG ha dado lugar a distintas variantes arqui-
tecténicas, cuya existencia responde a las multiples necesidades de equilibrio entre eficiencia,
trazabilidad, interpretabilidad y coste computacional. Estas variantes no implican una ruptura
con el disefio bésico, sino una extension de su légica modular, orientada a adaptar el esquema

general de RAG a requisitos especificos de aplicacion o a restricciones tecnoldgicas.

4.5.1 Nivel de agregacion: RAG-end-to-end vs. RAG-token

Uno de los criterios de clasificacién mas frecuentes entre las variantes de RAG se basa en el
nivel de granularidad con que se procesan los documentos recuperados. En la configuracién cono-
cida como RAG-end-to-end, todos los fragmentos documentales recuperados se concatenan en
un unico bloque que se proporciona como entrada al modelo generativo. Esta estrategia, la mas
utilizada en entornos generales, ofrece una implementacion sencilla y una velocidad razonable
de inferencia, aunque puede limitar la interpretabilidad y la atribucién precisa de la respuesta
a fuentes concretas.

Por otro lado, la variante RAG-token procesa cada fragmento por separado y genera pre-
dicciones condicionadas por cada uno de ellos, permitiendo una mayor trazabilidad en el proceso

de generacion. Esta estrategia fue explorada por Izacard y Grave [12], quienes propusieron una
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distilacién del conocimiento desde el generador hacia el recuperador para mejorar la precisién y
la relevancia contextual. RAG-token se aplica especialmente en tareas donde es necesario justi-
ficar cada elemento de la respuesta con su fuente correspondiente, o donde se desea calcular la
relevancia de cada documento de forma explicita. No obstante, su complejidad computacional y
la necesidad de una arquitectura maés sofisticada la hacen menos comun en aplicaciones practicas

de escala reducida.

4.5.2 Arquitectura generativa: encoder-decoder vs. autoregresivo

Otra dimension fundamental en la caracterizacion de variantes RAG es el tipo de modelo

generativo que se utiliza. Existen dos familias principales:

= Modelos encoder-decoder, como los basados en arquitecturas sequence-to-sequence,
en los que un codificador procesa la entrada completa (consulta + documentos) y un
decodificador genera la respuesta. Estos modelos permiten un mayor control sobre la forma
y contenido de la salida y son especialmente eficaces en tareas supervisadas o con formatos
estructurados. El modelo T5 [24] es un referente dentro de esta familia por su capacidad

de unificar maltiples tareas de PLN bajo un mismo marco de entrenamiento.

= Modelos autoregresivos, como los basados en arquitecturas decoder-only, en los que
la generacién de texto se realiza token a token a partir de un contexto acumulado. Este
enfoque ha demostrado ser més flexible y robusto en tareas de generacién libre, aunque
ofrece menos control estructural y puede ser mas propenso a errores de factualidad si no

se combina adecuadamente con mecanismos de recuperacion.

Ambas aproximaciones pueden integrarse en un sistema RAG, dependiendo del disefio general
del sistema, de los requisitos de la tarea y de las capacidades del entorno de despliegue.
4.5.3 Criterios de seleccion conceptual

La eleccién de una variante de RAG no debe entenderse como una preferencia arbitraria, sino
como el resultado de una evaluacién cuidadosa de los objetivos del sistema. Entre los factores

que condicionan la decision se incluyen:

» La necesidad de justificar documentalmente las respuestas (trazabilidad).

El equilibrio deseado entre velocidad de inferencia y precisién contextual.

La capacidad del sistema para manejar consultas ambiguas o abiertas.

Las restricciones del dominio de aplicacién (e.g., juridico, médico, financiero).

El tipo de interaccién esperado con el usuario (conversacional, documental, generativa).

La existencia de estas variantes demuestra que RAG no es un enfoque cerrado, sino un
paradigma flexible que admite multiples configuraciones internas para adaptarse a contextos de

uso muy diversos.
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4.6 Arquitectura y componentes principales

La implementacion de un sistema basado en RAG requiere una arquitectura modular bien
definida, capaz de gestionar eficientemente tanto la recuperacién semantica de informacién como
la generacién de respuestas por parte de un modelo de lenguaje. A diferencia de otros sistemas
monoliticos, donde todo el procesamiento se concentra en un tinico modelo entrenado de forma
estatica, RAG se apoya en una estructura de componentes desacoplados que trabajan de forma
coordinada para generar las respuestas con informacién actual, precisa y contextual.

Esta modularidad permite escalar el sistema por partes, facilitar el mantenimiento, personali-
zar los componentes en funcién del dominio y, lo mas importante, dotar al sistema de una fuente
de conocimiento actualizable sin necesidad de modificar el modelo de lenguaje subyacente.

A continuacion, se describen los componentes esenciales que conforman una arquitectura

RAG tipica, asi como su funcién dentro del flujo general del sistema.

4.6.1 Base de datos vectorial o motor de bisqueda semantica

Uno de los pilares del sistema es la base de datos vectorial, encargada de almacenar las repre-
sentaciones numéricas (embeddings) de todos los fragmentos documentales que se desean poner
a disposicion del sistema. Esta base actiia como el motor de bisqueda semaéntica, permitiendo
recuperar aquellos fragmentos que tienen mayor similitud conceptual con la consulta planteada
por el usuario.

A diferencia de las bases de datos relacionales o documentales, una base vectorial organiza los
datos en un espacio n-dimensional donde los documentos son vectores y la buisqueda se realiza en
funcién de la proximidad matemadtica (por ejemplo, distancia coseno o L2). Esta representacién
permite encontrar fragmentos que, aunque no compartan palabras exactas, estdn relacionados
semanticamente.

Entre las soluciones mas utilizadas en este ambito destacan:

= FAISS: biblioteca desarrollada por Facebook Al para busquedas de similitud altamente

eficientes, especialmente 1til en entornos donde se requiere rendimiento en GPU [13].

= Milvus: base de datos orientada a grandes volimenes de datos, con soporte nativo para

operaciones distribuidas.

= Weaviate: plataforma completa que combina almacenamiento vectorial con funcionalida-

des adicionales como GraphQL, esquemas enriquecidos y vectorizaciéon automatica.

Estas bases no solo permiten busquedas por similitud, sino que también pueden almacenar
metadatos (como el origen, fecha o categoria del fragmento), lo que habilita filtros més precisos
durante la recuperacion.

4.6.2 Representaciones numéricas (Embeddings)

Los embeddings son el puente entre el lenguaje natural y el espacio vectorial. Se trata de

vectores de dimensién fija que codifican el contenido semantico de un texto. Dos fragmentos de
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texto con significados similares deberian dar lugar a vectores préximos en dicho espacio.
Para generar estos vectores se utilizan modelos entrenados especificamente en tareas de sen-

tence encoding o text embedding. Algunos de los més conocidos y eficaces son:

= Sentence-BERT: una variante de BERT disenada para generar embeddings ttiles en

tareas de similitud seméntica |26].

» Universal Sentence Encoder (USE): desarrollado por Google, optimizado para tareas

como clasificacién o recuperacion [2].

s Instructor: un modelo moderno que permite condicionar los embeddings segiin instruc-

ciones especificas, lo que mejora la recuperacién en dominios concretos.

La elecciéon del modelo de embeddings es crucial: debe equilibrar precisién semantica, rendi-
miento computacional y compatibilidad con el dominio de aplicacién (en este caso, el asegura-
dor).

4.6.3 Modelo de lenguaje generativo (LLM)

El modelo de lenguaje es el encargado de generar la respuesta final que recibe el usuario. Su
trabajo consiste en leer los fragmentos recuperados y generar un texto coherente, contextualizado
y relevante, que responda a la pregunta original.

Algunos modelos utilizados habitualmente en sistemas RAG incluyen:

» GPT (OpenAl): gran capacidad generativa, pero requiere acceso via API y tiene costes

asociados.

s LLaMA: opcién de cédigo abierto desarrollada por Meta, méas flexible para despliegues

locales.

» T5 / Flan-T5: modelos encoder-decoder que permiten tareas de generacién condiciona~

das, con muy buenos resultados en entornos supervisados [24].

El modelo no necesita conocer previamente el contenido de los documentos; su papel es
procesar la informacién suministrada en el contexto (prompt) y generar una respuesta ajustada.
Esta separacién permite reutilizar el mismo LLM en distintos dominios, cambiando tinicamente

la base documental.

4.6.4 Controlador del flujo de datos

El controlador es el componente orquestador. Su funcién es coordinar las distintas fases del
sistema, garantizando que la informaciéon fluye correctamente desde la entrada hasta la salida.

Entre sus responsabilidades destacan:

= Convertir la consulta del usuario en un embedding y consultar la base vectorial.
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= Recoger los k fragmentos més relevantes y construir el prompt final para el modelo.

» Gestionar los formatos de entrada y salida (por ejemplo, para ofrecer respuestas estructu-

radas o justificar la fuente documental).

» Encapsular la 16gica de negocio del sistema (por ejemplo, aplicar filtros de seguridad,

controlar tiempos de respuesta, etc.).

Este componente se implementa habitualmente como parte del backend del sistema, y se co-
necta a través de una API REST o gRPC con los distintos servicios (vectorizacién, recuperacion,

generacion, etc.).

4.6.5 Flujo general de operacion

El flujo completo de un sistema RAG puede resumirse en los siguientes pasos:

1. Entrada del usuario: se formula una pregunta o instruccién en lenguaje natural.

2. Vectorizacion de la consulta: el texto se transforma en un vector utilizando un modelo

de embeddings.

3. Consulta a la base vectorial: se recuperan los fragmentos mas similares semanticamente

a la consulta.

4. Construccién del prompt: se combinan los fragmentos con la pregunta del usuario para

formar la entrada al LLM.

5. Generacién de la respuesta: el modelo produce una respuesta final utilizando el con-

texto documental.

6. Entrega y visualizacidn: la respuesta se devuelve al usuario, junto con posibles referen-

cias a los documentos utilizados.

Este flujo es altamente adaptable y permite implementar optimizaciones en cada etapa, como
caché de respuestas, preprocesamiento de consultas, o resimenes automéaticos de los fragmentos

recuperados.

4.7 Justificacion del enfoque RAG

La eleccion del paradigma RAG en el disefio del sistema propuesto no es una decisién ar-
bitraria, sino el resultado de una evaluacién comparativa entre distintas estrategias utilizadas
habitualmente en tareas de procesamiento de lenguaje natural con acceso a informacién docu-
mental. Cada una de estas alternativas presenta ventajas y limitaciones que deben ser ponderadas
en funcién del dominio de aplicacién, los requisitos funcionales y las restricciones operativas del

sistema.
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4.7.1 Recuperacion de informacién clasica (IR)

Los enfoques basados exclusivamente en recuperacién de informacion (IR), como los imple-
mentados mediante motores BM25 o ElasticSearch, se apoyan en técnicas de coincidencia léxica
para localizar documentos relevantes. Aunque estos sistemas pueden incorporar mecanismos de
btsqueda semantica mediante embeddings, su salida sigue siendo extractiva: devuelven fragmen-
tos que el usuario debe interpretar o filtrar manualmente.

Este enfoque resulta 1til en contextos donde la carga interpretativa recae en expertos huma-
nos, o cuando el volumen de informacién es limitado. Sin embargo, se muestra insuficiente en
tareas que requieren generacién automatica de respuestas completas, coherentes y comprensibles

para usuarios no especializados [27].

4.7.2 Modelos generativos sin recuperacion externa

Los modelos generativos autoregresivos, como los grandes modelos de lenguaje (LLMs), son
capaces de producir texto fluido a partir de una entrada en lenguaje natural. No obstante, su
capacidad para proporcionar respuestas precisas y verificables esta limitada por el hecho de que
el conocimiento sobre el que operan esta encapsulado en los pesos del modelo, congelado en el
momento de su entrenamiento.

La ausencia de un mecanismo de acceso a bases documentales externas restringe su aplica-
bilidad en dominios donde la informacién cambia con frecuencia o donde se exige trazabilidad.
Ademas, estos modelos pueden generar respuestas incorrectas con elevada confianza, fenémeno

conocido como alucinaciones, lo cual compromete su fiabilidad en entornos criticos [29).

4.7.3 Finetuning de modelos preentrenados

Otra opcion es el fine-tuning de modelos generales sobre un corpus especifico del dominio.
Este procedimiento permite adaptar el modelo a un vocabulario técnico concreto o a estilos

discursivos propios del sector. Sin embargo, presenta multiples inconvenientes:

= Requiere conjuntos de datos representativos, curados y etiquetados, lo cual implica un alto

coste en tiempo y recursos.

= Introduce una dependencia operativa del proceso de reentrenamiento cada vez que se

actualiza el conocimiento del dominio.

= No resuelve el problema de la falta de trazabilidad, ya que el modelo sigue sin ofrecer
evidencias directas del origen de sus respuestas.
4.7.4 Comparativa conceptual de enfoques

A modo de sintesis, la tabla[4.1]resume las principales diferencias entre las alternativas descri-
tas y el enfoque RAG, en funcién de criterios clave como generacion, actualizacion, trazabilidad

y coste computacional.
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Criterio IR LLM FT RAG

Generacion de lenguaje X v v v
Info. actualizada vx X X /*
Trazabilidad v X X v
Coste computacional Bajo Alto Muy altof Moderado
JReentrenamiento? X X v X
Adaptacién documental v X X v

Cuadro 4.1: Comparativa técnica entre IR, LLM, Fine-Tuning (FT) y RAG
* Mediante corpus externo o actualizacién manual.

1 Requiere entrenamiento con grandes volimenes de datos.

4.7.5 Adecuacion al contexto del proyecto

En el contexto del presente trabajo, centrado en la consulta inteligente de documentacién nor-
mativa, contractual y técnica del sector asegurador, el paradigma RAG se revela como la opcién
mas adecuada. Su capacidad para integrar recuperacién seméntica y generacion de respuestas,

con apoyo documental explicito, permite satisfacer requisitos criticos como:

» Actualizacién continua del conocimiento sin necesidad de reentrenamiento.
= Fundamentacién explicita de las respuestas, favoreciendo su auditabilidad.

= Modularidad y escalabilidad técnica en entornos basados en microservicios.

En suma, RAG ofrece un equilibrio 6ptimo entre flexibilidad, precisién, trazabilidad y mante-
nibilidad, lo que lo convierte en el nticleo arquitectonico méas adecuado para la solucién propuesta

en este Trabajo de Fin de Grado.

4.8 Conclusiones tecnolégicas

La revisién realizada en los apartados anteriores ha permitido construir una base conceptual
y técnica sélida en torno a la arquitectura RAG. A través del analisis de sus principios, compo-
nentes clave, ventajas frente a otras alternativas y adecuacion al contexto del proyecto, se han
delimitado los motivos por los cuales este enfoque resulta especialmente indicado para sistemas
de consulta basados en documentacion interna y conocimiento de forma dindmica.

Desde el punto de vista de ingenieria, RAG destaca por su modularidad, escalabilidad y
capacidad de actualizacién sin necesidad de reentrenamiento, cualidades esenciales en sectores
donde la informacién esta sujeta a cambios normativos, contractuales o técnicos, como es el caso
del ambito asegurador. Al desacoplar la légica de generacion de lenguaje del almacenamiento
del conocimiento, se facilita tanto el mantenimiento como la evolucién incremental del sistema,

sin comprometer la trazabilidad ni la coherencia de las respuestas generadas.
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La comparacién con enfoques clasicos de recuperacion de informaciéon, modelos generativos
puros y estrategias de finetuning ha puesto de manifiesto que RAG representa un equilibrio
Optimo entre precision, eficiencia y control del conocimiento. Esta arquitectura no solo permite
ofrecer respuestas mas fiables y justificadas, sino que también habilita mecanismos de auditoria
documental y control de versiones que resultan criticos en entornos regulados o sensibles.

Sobre esta base conceptual, el siguiente paso consistird en examinar y comparar soluciones
tecnolbgicas existentes que implementan el enfoque RAG —como LangChain, Haystack o Lla-
malndex—, con el objetivo de seleccionar las herramientas més adecuadas para el desarrollo del

sistema propuesto.

4.9 Estado actual del sector asegurador y adopcion de la inteligencia
artificial

4.9.1 Introduccion

El sector asegurador se encuentra inmerso en un proceso de transformacion digital impul-
sado por la adopcién de tecnologias emergentes, entre las cuales la inteligencia artificial (IA)
destaca por su potencial para optimizar procesos, mejorar la experiencia del cliente y desarrollar
nuevos modelos de negocio. Esta evolucién responde a la necesidad de adaptarse a un entorno
cada vez mas competitivo y a las crecientes expectativas de los consumidores en términos de

personalizacion y eficiencia.

4.9.2 Grado de adopcidn de la IA en el sector asegurador

Segun el IX Termometro de Inteligencia Artificial y Data en el sector asequrador espanol,
elaborado por Minsait e ICEA, el 80% de las aseguradoras en Espana estdan trabajando en
proyectos relacionados con IA, y dos tercios de ellas ya han implementado soluciones en su
operativa diaria [20]. Estas iniciativas se centran principalmente en dreas como la mejora de la
experiencia del cliente, la deteccién de fraudes y la optimizacion de procesos internos.

A nivel europeo, el informe de la Autoridad Europea de Seguros y Pensiones de Jubilacién
(EIOPA) publicado en 2024 indica que el 50 % de las entidades ya aplican TA en seguros de no
vida, y el 24% en el ramo de vida. Ademés, un 30% y un 39 % de las aseguradoras esperan

aplicar estas tecnologias préximamente en esos respectivos ramos [5].

4.9.3 Aplicaciones actuales de la IA en el sector asegurador

La inteligencia artificial se esta aplicando en diversas dreas estratégicas del sector asegurador

[3, (15}, 110], entre las que destacan:

= Automatizacién de procesos: la [A permite automatizar tareas repetitivas como la
tramitacién de siniestros o la gestiéon documental, mejorando la eficiencia y reduciendo

errores humanos.
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= Analisis predictivo y personalizacion: gracias a técnicas de aprendizaje automatico
y mineria de datos, es posible predecir necesidades futuras de los clientes y adaptar los

productos a perfiles individuales.

= Detecciéon de fraudes: mediante la identificaciéon de patrones atipicos o inconsistencias
en los datos, la IA contribuye a detectar intentos de fraude con mayor rapidez y precisién
[6].

» Atencién al cliente: los asistentes virtuales y chatbots permiten ofrecer soporte 24/7,

mejorando los tiempos de respuesta y la calidad del servicio.

4.9.4 Retos y consideraciones éticas

La integracion de IA en el sector asegurador plantea importantes retos, especialmente en
materia de transparencia, equidad y cumplimiento normativo. La Ley de Inteligencia Artificial
de la Unién Europea (AI Act), aprobada en 2024, clasifica como de alto riesgo los sistemas que
afectan a la tarificacion o evaluacion de riesgos en seguros de salud o vida, imponiendo estrictos
requisitos de supervision y explicabilidad [21].

Asimismo, existe una creciente preocupacién por el posible sesgo algoritmico en los modelos
de TA, que podria derivar en practicas discriminatorias. Para mitigar estos riesgos, las entidades
deben implementar politicas de gobernanza de datos y validaciéon de modelos, que garanticen la

equidad, la auditabilidad y el respeto de los derechos del consumidor [1].

4.9.5 Conclusion

La inteligencia artificial estd redefiniendo la forma en que las aseguradoras operan y se re-
lacionan con sus clientes. Si bien ya se ha avanzado significativamente en la automatizacién y
personalizacion de servicios, siguen existiendo desafios técnicos, regulatorios y éticos que condi-
cionan su adopcién. En este contexto, el enfoque RAG se perfila como una arquitectura idénea
para abordar los retos especificos asociados a la consulta documental, gracias a su capacidad

para ofrecer respuestas precisas, trazables y fundamentadas en evidencia actualizable.

4.10 Consideraciones éticas y reglamentarias de la 1A

La aplicacion de TA en la gestion de pélizas y siniestros queda enmarcada en el Artificial
Intelligence Act (Al Act) [7]. El articulo 6.2 clasifica como sistema de alto riesgo todo sistema
que pueda influir en decisiones con efectos legales o significativos sobre clientes de seguros. Por

ello, la solucién descrita en este TFG debe cumplir:

» Gestién de riesgos y pruebas previas (arts. 9-10): anélisis de sesgos y trazabilidad

de datos de entrenamiento.

» Registro de eventos (arts. 12-14): bitdcoras completas de consultas y fragmentos recu-

perados, conservadas durante seis anos.
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» Transparencia (art. 13): aviso visible «respuesta generada por IA» y referencia directa

a la fuente documental mostrada al usuario.

Marcos y principios internacionales

ISO/IEC 42001 Primer estandar de AI Management System; establece controles de explica-
bilidad y ciclo PDCA [11].

UNESCO Recomendacién mundial sobre la ética de la TA [25], que introduce la Evaluacion de

Impacto Etico.
OCDE Principios de IA centrados en robustez y rendicién de cuentas [22].

Marco espanol de proteccién de datos

La AEPD exige comprobar sesgos y re-identificabilidad antes de liberar datos para entrena-

miento. Su guia de datos sintéticos (abril 2025) [8] recomienda:

1. Seudonimizacion SHA-256 de NIF y matriculas.
2. Difuminado de firmas en PDF mediante OpenCV.

3. Garantizar K-anonymity > 5 en los conjuntos publicados

Mapeo de requisitos y contramedidas

Cuadro 4.2: Correspondencia AI Act / ISO 42001 y su implementacién en el sistema

Requisito Norma / Articulo Implementacién en
este TFG

Registro de AT Act 12 Servicio APIRest

eventos logger

Transparencia AT Act 13 Lista de fragmentos
mostrados

Supervision AT Act 14.d Este sistema esta

humana pensado para ser usado

por un trabajador,
antes de ser
transmitida la

informacién al cliente

Sintesis y riesgos residuales
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El sistema desarrollado cumple con los objetivos funcionales definidos y se ajusta a los princi-
pios de modularidad, escalabilidad y precisién esperados en entornos aseguradores. No obstante,

persisten algunos riesgos técnicos residuales que deberan abordarse en futuras fases de desarrollo:

1. Sesgo en los datos de entrenamiento: los documentos utilizados para pruebas pue-
den reflejar patrones histéricos no generalizables. Se propone incorporar un muestreo mas

diverso y representativo en futuras evaluaciones.

2. Vulnerabilidad a prompt injection: aunque se han implementado filtros mediante
expresiones regulares y técnicas basicas de control de entrada, se reconoce la necesidad
de aplicar estrategias mas robustas como validaciéon semdantica o ejecucién en entornos

restringidos.

3. Impacto de cambios regulatorios: el uso de modelos de lenguaje en el sector asegu-
rador puede verse afectado por futuras regulaciones sobre IA. Esto requerird una revisién

periddica del sistema para garantizar su cumplimiento normativo.

En conclusion, la arquitectura actual prioriza un disefio seguro y transparente, permitiendo
su adaptacion a marcos regulatorios en evolucion y dejando abierta la posibilidad de una futura

certificacién conforme a normativas aplicables en el &mbito de sistemas basados en TA.
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Capitulo 5

Soluciones Existentes

5.1 Introduccidn

A partir del marco teérico desarrollado en capitulos anteriores, donde se han analizado los
fundamentos del enfoque RAG y su idoneidad frente a otras alternativas, este capitulo tiene
como objetivo identificar, describir y comparar soluciones tecnolégicas existentes que permiten
implementar dicha arquitectura de forma practica.

La implementacién de un sistema RAG funcional y eficiente requiere la combinacién de varias
herramientas que cubren distintas fases del flujo: desde la indexacién semantica de documentos
hasta la generacién de respuestas por parte del modelo de lenguaje. En particular, se abordaran

tres categorias principales de soluciones:

» Frameworks de integracion RAG: plataformas que proporcionan herramientas de al-
to nivel para construir pipelines de recuperacién y generaciéon de forma modular, como

LangChain, Haystack y Llamalndex.

= Bases de datos vectoriales: tecnologias encargadas de almacenar y recuperar eficien-
temente representaciones vectoriales de fragmentos de texto, tales como FAISS, Milvus y

Weaviate.

= Modelos de lenguaje generativo: arquitecturas preentrenadas utilizadas para inter-
pretar el contexto recuperado y generar respuestas en lenguaje natural, entre los que se
encuentran GPT, LLaMA, T5, entre otros.

El andlisis de estas herramientas se realizara considerando criterios como escalabilidad, com-
patibilidad, facilidad de integracién, rendimiento, flexibilidad y soporte a largo plazo. Al finalizar
esta seccion, se estableceran las bases para la seleccion concreta de las tecnologias utilizadas en

el desarrollo del sistema propuesto.
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5.2 Frameworks de integracion RAG

5.2.1 LangChain

LangChain es un framework de desarrollo modular disefiado para facilitar la construccion de
aplicaciones basadas en modelos de lenguaje de gran tamano (LLMs), especialmente aquellas que
requieren integracién con fuentes de informacién externas. Desde su aparicién, se ha consolidado
como una de las herramientas de referencia en el ecosistema RAG debido a su flexibilidad,
extensibilidad y capacidad para componer flujos de trabajo complejos mediante componentes
reutilizables.

A diferencia de enfoques monoliticos, LangChain permite estructurar aplicaciones de A en
forma de cadenas (chains) o agentes que combinan multiples pasos de procesamiento, incluyendo
recuperacion semantica, generacion de prompts, ejecucién de acciones condicionales o llamadas a
herramientas externas. Esta arquitectura facilita la creacién de sistemas escalables y mantenibles,
particularmente tiles cuando se trabaja con documentos extensos, dominios especializados o
interacciones de varias modalidades.

Entre sus funcionalidades més relevantes destacan:

= Integracion nativa con bases de datos vectoriales: LangChain soporta miiltiples
motores como FAISS, Pinecone, Weaviate, Qdrant o Milvus, permitiendo seleccionar la

base que mejor se adapte a los requisitos de cada proyecto.

= Soporte para multiples LLMs: incluye conectores listos para usar con modelos propie-
tarios (OpenAl, Cohere, Anthropic) y de cédigo abierto (LLaMA, HuggingFace Transfor-
mers, GPT4All), facilitando pruebas y despliegues en entornos hibridos.

» Pipeline de recuperacién y generaciéon (RAG): ofrece componentes especializados
para construir flujos RAG, como RetrievalQA y ConversationalRetrievalChain, donde
se puede conectar directamente una base vectorial con un modelo generativo para realizar

preguntas sobre documentos.

= Herramientas de ingenieria de prompts: permite definir plantillas dindmicas, inyectar
contexto y controlar la estructura de entrada al LLM, lo cual es esencial para mejorar la

precision de las respuestas.

= Manejo del estado conversacional: incorpora estructuras como Memory para mantener

el historial de conversaciéon, crucial en sistemas conversacionales basados en documentos.

LangChain también destaca por su activa comunidad de desarrollo, documentacion extensa
y actualizaciones frecuentes. Su disefio orientado a componentes permite sustituir facilmente
cualquier parte del flujo sin afectar al resto del sistema, lo que resulta especialmente ttil en
entornos iterativos o de experimentacion constante.

En el contexto de este proyecto, LangChain se ha utilizado de manera especifica para cons-

truir dindmicamente los prompts y mantener el estado conversacional, permitiendo integrar la
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memoria contextual en las respuestas del modelo. No se ha empleado para la recuperacion se-
mantica ni la generacion directamente, sino como herramienta de orquestacién ligera enfocada
en enriquecer el contexto entregado al LLM. Su integraciéon con Python y su orientacién modular

han permitido incorporarlo de forma sencilla en el sistema existente.

5.2.2 Haystack

Haystack es un framework de cédigo abierto desarrollado por la empresa alemana Deepset,
disenado para construir sistemas de pregunta-respuesta, recuperacién de informacién y asistentes
conversacionales basados en documentos. Su arquitectura esta orientada a pipelines modulares,
lo que permite definir con claridad el flujo de entrada, recuperacién, procesamiento y generacién
de respuestas.

Una de las principales virtudes de Haystack es su enfoque préctico y su rapida adopcién en
entornos industriales. Su diseno flexible facilita la combinacién de distintos componentes como
indexadores, modelos de embeddings, motores de bisqueda seméntica, preprocesadores de texto
y modelos generativos.

Entre sus caracteristicas més relevantes destacan:

= Soporte para miultiples bases vectoriales y motores de biisqueda: permite inte-
grar tecnologias como Elasticsearch, FAISS, Weaviate, Milvus y Qdrant, lo que lo hace

adaptable a distintos requisitos de rendimiento y escalabilidad.

= Compatibilidad con modelos de lenguaje modernos: soporta tanto modelos alojados
localmente (como Transformers desde Hugging Face) como servicios remotos (OpenAl,
Cohere, etc.).

= Pipelines definibles por YAML o mediante c6digo Python: lo que permite cons-
truir, visualizar y modificar con claridad flujos de procesamiento en cada paso de la recu-

peracién y generacion.

= Herramientas para preprocesamiento y segmentacién de documentos: permite
aplicar técnicas de chunking, limpieza de texto, y normalizaciéon, fundamentales para un

rendimiento adecuado de los sistemas RAG.

= Interfaz RESTful y componentes para produccién: incluye un servidor de infe-
rencia, monitorizacion con Prometheus y un cliente web basico, lo que permite desplegar

prototipos y productos funcionales de manera eficiente.

Aunque Haystack también soporta arquitecturas RAG completas, en el contexto de este
proyecto no se ha utilizado directamente. No obstante, su andlisis resulta util por su enfoque
industrial y su madurez como framework. En comparacion con LangChain, Haystack ofrece una
aproximacion mas centrada en el despliegue final y en la integracién con bases de datos docu-
mentales completas, mientras que LangChain estd mas orientado a la manipulacién dindmica de

prompts y contextos.
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5.2.3 Llamalndex

Llamalndex (anteriormente conocido como GPT Index) es una herramienta especializada en
la indexacién, estructuraciéon y consulta de grandes volimenes de informacién textual para su
integracién con modelos de lenguaje. A diferencia de otros frameworks que se centran en la
orquestacion general de sistemas RAG, Llamalndex esta disefiado especificamente para facili-
tar la interaccién eficiente entre documentos complejos y LLMs, priorizando la calidad de la
recuperacion y la flexibilidad en la representacion de la informacién.

Una de sus principales fortalezas es su capacidad para construir indices personalizados a
partir de diversas fuentes de datos (archivos, bases de datos, APIs, etc.) y aplicar distintas
estrategias de segmentacién, resumen y agrupamiento. Ademaés, permite optimizar el proceso
de recuperacién mediante estructuras como arboles de decisién, indices jerarquicos o esquemas
vectoriales hibridos.

Entre sus caracteristicas més destacadas se encuentran:

» Indexacion estructurada avanzada: permite construir indices tipo lista, arbol, resu-

men, grafo o combinaciones de estos, adaptandose a distintos tipos de corpus y consultas.

= Soporte nativo para miultiples fuentes de datos: incluye conectores para documentos

locales, bases SQL, NoSQL, APIs externas, herramientas de scraping, etc.

= Moédulos de preprocesamiento e integracion semantica: permite aplicar restiimenes

parciales, anotaciones o generaciéon de nodos intermedios antes de la indexacién.

= Compatibilidad con miltiples bases vectoriales: soporta integracion con FAISS,

Milvus, Weaviate, entre otras.

= Control detallado sobre la generacion de prompts: ofrece herramientas para crear
plantillas condicionales y ajustar dindmicamente los fragmentos documentales que se pre-

sentan al modelo.

Llamalndex es especialmente 1til en proyectos donde los documentos no se limitan a ser
fragmentos planos, sino que presentan una estructura seméntica o jerarquica compleja. En ese
contexto, su aproximacion basada en indices enriquecidos permite mejorar la relevancia de la
recuperacion y la coherencia de las respuestas generadas por el LLM.

Aunque en este proyecto no se ha empleado directamente, Llamalndex representa una alter-
nativa muy sélida cuando se requiere alta calidad en la recuperacion, especialmente en dominios
donde los documentos presentan formatos diversos, niveles de profundidad o conexiones seman-

ticas entre secciones.

5.3 Bases de datos vectoriales

5.3.1 FAISS (Facebook Al Similarity Search)

FAISS es una biblioteca desarrollada por Facebook AI Research (FAIR), disenada especi-

ficamente para realizar busquedas de similitud en grandes volimenes de datos vectoriales de
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manera rapida y eficiente. Se ha consolidado como una de las soluciones mas utilizadas en tareas
de recuperacién seméantica, especialmente en arquitecturas basadas en RAG, gracias a su alto
rendimiento, flexibilidad y amplia adopcién en entornos de produccién.

El principal objetivo de FAISS es resolver el problema conocido como Approzimate Nearest
Neighbor Search (ANN), es decir, la biisqueda eficiente de los vectores més cercanos a uno dado
dentro de un espacio de alta dimensién. Para ello, ofrece multiples algoritmos e indices que
permiten ajustar el equilibrio entre precision, velocidad y consumo de recursos, tanto en CPU

como en GPU.

Caracteristicas principales

= Alto rendimiento en biisquedas densas: optimizado para entornos de alto volumen,
con soporte completo tanto para CPU como para GPU, lo que permite escalar a millones

de vectores con baja latencia.

» Indices configurables: ofrece diversos tipos de indices (Flat, IVF, HNSW, PQ, entre
otros) que pueden combinarse entre si para adaptar el comportamiento del sistema a las

necesidades del caso de uso.

= Madurez y fiabilidad: es un proyecto de c6digo abierto con soporte activo, documenta-

cién extensa y probado en aplicaciones industriales de gran escala.

= Compatibilidad con frameworks RAG: se integra ficilmente con herramientas como
LangChain, Llamalndex y Haystack, lo que facilita su integracion dentro de arquitecturas

modernas de IA generativa.

= Persistencia de indices: permite almacenar los indices en disco y recargarlos en tiempo

de ejecucion, reduciendo los tiempos de arranque y simplificando la gestion del sistema.

Ventajas en contextos RAG FAISS resulta especialmente adecuado en escenarios donde se
requiere una recuperacién de fragmentos precisa y de bajo coste computacional. Su rendimiento
optimizado y la capacidad de ajuste fino de los indices lo convierten en una solucién ideal
cuando se necesita control sobre el comportamiento interno del motor de buisqueda. Ademas,
su integracién con frameworks populares y su naturaleza open source lo hacen atractivo para
proyectos que operan sobre infraestructura propia o en entornos locales con recursos dedicados

(como servidores con GPU).

Limitaciones A pesar de sus ventajas, FAISS presenta algunas limitaciones relevantes:

= Gestiéon manual: requiere configuracién explicita para tareas como la persistencia, la

incorporacién o eliminacion de nuevos vectores, y el tratamiento de metadatos.

= Ausencia de capa de abstraccién avanzada: a diferencia de soluciones como Weaviate,
FAISS no incorpora por defecto funcionalidades para estructuracién seméntica, esquemas
enriquecidos o consultas mediante lenguaje declarativo, lo que puede requerir componentes

adicionales en la arquitectura para cubrir estas funciones.
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5.3.2 Milvus

Milvus es una base de datos vectorial de codigo abierto disenada especificamente para ges-
tionar de forma eficiente grandes volimenes de vectores en entornos distribuidos. A diferencia
de soluciones mas ligeras como FAISS, Milvus proporciona una infraestructura completa que
incluye almacenamiento persistente, gestién de metadatos, servicios de indexacién paralela y
ejecucién escalable en clusteres.

Su arquitectura estd pensada para soportar operaciones intensivas de busqueda semantica
en tiempo real, incluso cuando el nimero de vectores se encuentra en el rango de millones o
miles de millones. Este diseno hace de Milvus una opcién especialmente adecuada para entornos

empresariales con altos requisitos de rendimiento y fiabilidad.

Caracteristicas principales

= Alta escalabilidad horizontal: permite distribuir el almacenamiento y las consultas a
lo largo de miultiples nodos, garantizando rendimiento constante con grandes voliimenes
de datos.

= Gestién nativa de metadatos: cada vector puede asociarse a informacion estructurada,

permitiendo realizar consultas filtradas y segmentadas mas alla de la similitud semantica.

= Soporte para multiples indices: entre ellos IVF, HNSW, ANNOY y Flat, que pueden

configurarse segtin las necesidades de precisién y latencia.

= Integracion con frameworks RAG: soporta conexién directa con LangChain, Haystack

y Llamalndex mediante adaptadores nativos.

= API REST y SDKs multiplataforma: disponible para lenguajes como Python, Java

o Go, lo que facilita su uso en sistemas basados en microservicios.

Ventajas en contextos RAG Milvus destaca por su capacidad de mantener el rendimiento
incluso bajo cargas de trabajo intensas y persistentes. Su infraestructura orientada a produc-
cién permite mantener bases documentales vivas, actualizables y facilmente consultables. Esta
combinacién lo convierte en una solucién robusta y adecuada para sectores como el asegurador,

donde se requiere eficiencia, trazabilidad y control sobre grandes volimenes de documentos.

Limitaciones

= Complejidad en la infraestructura: su despliegue inicial puede requerir una mayor

planificacién técnica, especialmente en entornos locales.

= Mantenimiento mas exigente: requiere supervision continua, especialmente cuando se

opera en clisteres distribuidos o con alta disponibilidad.
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5.3.3 Weaviate

Weaviate es una base de datos vectorial de cddigo abierto que combina un motor de bisqueda
seméntica con una capa de gestién de datos estructurados. A diferencia de otras soluciones mas
centradas en el rendimiento puro (como FAISS), Weaviate adopta un enfoque de plataforma
completa, orientado a ofrecer funcionalidades semanticas avanzadas y flexibilidad en el modelado
de datos.

Su modelo de datos se basa en esquemas definidos por clases y propiedades, lo que permite
representar relaciones complejas entre documentos y realizar biisquedas que combinan semantica
y logica estructurada. Ademaés, cuenta con capacidades de vectorizacion automatica e integracion

directa con modelos preentrenados, lo que reduce la complejidad del proceso de carga de datos.

Caracteristicas principales

= Modelo de datos estructurado: permite definir esquemas semanticos mediante clases,

relaciones y metadatos, habilitando consultas mas expresivas.

= Vectorizacion automatica: incorpora moédulos de conexiéon con modelos como OpenAl,

Cohere o Hugging Face para vectorizar texto automaticamente al insertarlo.

= API basada en GraphQL: facilita biisquedas que combinan contenido seméntico con

logica declarativa estructurada.

» Arquitectura modular extensible: incluye médulos opcionales para autenticacion, cla-

sificacion, filtros espaciales, control de acceso, etc.

= Interfaz grafica de administracion: incluye una Ul que permite gestionar esquemas,

visualizar vectores y probar consultas desde el navegador.

Ventajas en contextos RAG Weaviate es especialmente 1til en sistemas donde se requiere
una integracién estrecha entre informacién seméntica y estructura de datos. Su orientacion
declarativa, su API intuitiva y su capacidad para reducir la friccién en el proceso de ingestién
y consulta hacen que sea una opcién adecuada para entornos con necesidades complejas de
recuperacién y representacion.

Ademas, su escalabilidad horizontal y soporte para entornos distribuidos permiten su uso

tanto en prototipos como en despliegues empresariales.

Limitaciones

= Mayor consumo de recursos: su arquitectura completa lo hace més exigente en com-

paracién con soluciones mas ligeras.

= Curva de aprendizaje mas pronunciada: requiere modelado correcto del esquema

para aprovechar su potencia.

= Rendimiento sensible a la configuracién: activar muchos moédulos sin planificacién

puede degradar el rendimiento si no se optimiza el despliegue.
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5.4 Modelos de lenguaje generativo (LLMs)

Los modelos de lenguaje generativo constituyen el componente encargado de producir la
respuesta final en una arquitectura RAG, a partir del contexto recuperado por el sistema. Aunque
ya se ha analizado su papel en el flujo general del sistema, en esta seccién se revisan algunas de las
principales opciones disponibles actualmente, comparando sus capacidades, licencias, eficiencia
y facilidad de integracion.

Se incluyen tanto modelos propietarios como opciones de cédigo abierto, valorando aspectos
como la calidad de generacién, la sensibilidad al contexto, el soporte multilingiie o su adecuacién
a entornos locales. También se considera el modelo empleado en este proyecto, Nous-Hermes-
2, que ha demostrado un buen equilibrio entre rendimiento, precisién y coste computacional en

tareas generativas condicionadas por contexto documental.

5.4.1 GPT (Generative Pre-trained Transformer)

GPT es una familia de modelos desarrollada por OpenAl, ampliamente utilizada como es-
tandar en tareas de lenguaje natural gracias a su elevada capacidad de generacién, comprension
contextual y razonamiento. Actualmente, la version méas avanzada es GPT-4, disponible a través
de servicios en la nube como OpenAl o Azure.

En arquitecturas RAG, GPT se utiliza habitualmente como modelo generador, siendo capaz
de procesar prompts enriquecidos con contexto documental y producir respuestas detalladas y
coherentes. Su rendimiento mejora significativamente cuando se combina con técnicas de prompt
engineering, inyeccién dindmica de contexto y gestién del historial conversacional.

Ventajas
= Alta calidad en la generacién de texto en multiples idiomas.

= Muy buen rendimiento en tareas de QA, resumen y didlogo.

» Acceso sencillo mediante API bien documentada.

Limitaciones
= Modelo propietario con costes asociados por token.
= Requiere conexién a servicios externos y gestion de claves.

= Dependencia de terceros, con implicaciones en privacidad y latencia.

5.4.2 LLaMA (Large Language Model Meta Al)

LLaMA es una familia de modelos desarrollada por Meta como alternativa de cédigo abierto
a los modelos propietarios existentes. Su disefio se orienta a la eficiencia y a la posibilidad de
ejecucién local, lo que permite desplegar sistemas generativos sin depender de servicios externos

ni comprometer la privacidad de los datos.
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La version més reciente, LLaMA 2, incluye modelos de 7, 13 y 70 mil millones de pardmetros.
Su popularidad ha crecido rapidamente gracias a la facilidad de integracion en entornos como
Hugging Face, llama.cpp o LangChain, asi como a la existencia de numerosas variantes adaptadas

a distintos dominios.

Ventajas
= Codigo abierto, ejecutable en entornos locales sin conexién externa.
= Buena calidad generativa, especialmente en versiones ajustadas por comunidad.

» Permite mayor control y personalizacién del sistema.

Limitaciones
= Requiere GPU potente para ejecutar modelos de gran tamaifio.
= Su rendimiento base puede estar por debajo de GPT-4 en tareas complejas.

= Ajustar el modelo al dominio requiere conocimientos técnicos adicionales.

5.4.3 Flan-T5

Flan-T5 es una variante del modelo T5 desarrollada por Google, optimizada mediante entre-
namiento multitarea con instrucciones. Su arquitectura encoder-decoder lo hace especialmente
adecuado para tareas supervisadas como resumen, clasificacién o traduccién, aunque también
puede emplearse en generacion libre con prompts bien estructurados.

Esta disponible en distintos tamafios, lo que permite su uso tanto en entornos ligeros como
en infraestructuras de mayor capacidad. Gracias a su licencia abierta y a su soporte en Hugging
Face, Flan-T5 se ha consolidado como una alternativa eficiente y accesible para integrar en
sistemas RAG.

Ventajas
= Modelo de cédigo abierto, disponible en multiples tamanos.
= Arquitectura eficiente y adaptada a tareas supervisadas.

= Buen rendimiento en generacién a partir de contexto bien definido.

Limitaciones
» Capacidad limitada en tareas de razonamiento complejo o conversacional.
= Requiere disenio de prompts cuidados para alcanzar precisiéon aceptable.

= No mantiene memoria de contexto entre mensajes sucesivos.
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5.4.4 Modelos ajustados especificamente para RAG

Ademés de los modelos generales, existen variantes afinadas especificamente para tareas de
recuperacion y generacion combinadas. Estos modelos, entrenados con técnicas de instruction
tuning y corpus especificos, estan optimizados para generar respuestas coherentes y fieles al
contexto proporcionado por el sistema RAG.

Su disenio permite aprovechar mejor los fragmentos recuperados desde la base vectorial, mini-
mizando desviaciones teméaticas y alucinaciones. Algunos ejemplos destacables incluyen modelos
como Nous-Hermes-2, Mistral-Instruct, Cohere Command R+ o Vicuna-Instruct, to-
dos ellos disenados para ofrecer una mayor fidelidad factual y capacidad de razonamiento sobre

documentos aportados en el prompt.

Ventajas
= Mayor adherencia al contexto proporcionado.
= Mejores resultados en tareas especificas de recuperaciéon + generacion.

= Reduccién de alucinaciones y respuestas irrelevantes.

Limitaciones
= Algunos modelos atin carecen de validacién extensiva en produccion.
= Pueden requerir ajuste si el dominio es muy especifico.

= Su rendimiento depende en gran medida de la calidad del contexto recuperado.

5.5 Modelos de embeddings

Los modelos de embeddings utilizados en sistemas RAG pueden agruparse en diferentes fami-
lias, en funcién de su arquitectura y del enfoque de entrenamiento. A continuacion se comparan
dos de las mas relevantes: los modelos tipo Sentence-BERT y los modelos INSTRUCTOR, des-

tacando sus principales caracteristicas, ventajas y limitaciones desde un punto de vista practico.

Sentence-BERT (SBERT) Esta familia adapta modelos BERT para generar representacio-
nes vectoriales a nivel de frase o parrafo, utilizando redes siamesas o tripletas y entrenamiento
contrastivo. Se han convertido en el estindar de facto en tareas de recuperacién semantica

simétrica.
= Ventajas

o Alta eficiencia en inferencia, especialmente en modelos compactos.
o Facilidad de integracion en librerias como sentence-transformers.

e Amplia disponibilidad de variantes preentrenadas y ajustadas a distintos dominios.
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= Limitaciones

o Menor rendimiento en tareas de recuperacién asimétrica (consulta breve vs documen-

to largo).

e Sensibilidad al cambio de dominio si no se ha ajustado previamente.

INSTRUCTOR Los modelos INSTRUCTOR amplian el enfoque tradicional incluyendo una
instruccién textual explicita que describe la tarea. Esto les permite abordar multiples tareas con

un solo modelo, mejorando la generalizacién y el rendimiento en contextos diversos.

= Ventajas

e Mejor rendimiento en recuperacion asimétrica y tareas heterogéneas.

e Capacidad de especializacién sin necesidad de reentrenar el modelo, simplemente

cambiando la instruccién.
» Limitaciones

e Mayor consumo de recursos debido al uso de instrucciones largas.
e Menor numero de versiones ligeras y cuantizadas disponibles.

e Dependencia del idioma inglés en las instrucciones para lograr el rendimiento 6éptimo.

Resumen y eleccién en este proyecto El modelo seleccionado, intfloat/e5-large-v2,
se basa en la arquitectura Sentence-BERT y ofrece un buen equilibrio entre precision, eficiencia
y facilidad de despliegue local. Aunque los modelos INSTRUCTOR. ofrecen un rendimiento
superior en algunos benchmarks, su mayor complejidad operativa y dependencia del idioma
inglés han llevado a priorizar una solucién mas simple y robusta para esta primera fase del
sistema. En futuras versiones, se podré considerar su incorporacién si se requieren tareas mas

variadas o mayor adaptabilidad seméantica.

5.6 Conclusiones sobre soluciones

A lo largo de este capitulo se han analizado las principales tecnologias implicadas en la
implementaciéon de arquitecturas RAG: frameworks de integracién, bases de datos vectoriales,
modelos generativos, y modelos de embeddings. Esta revision ha permitido identificar el conjunto
de herramientas mas relevantes del ecosistema actual, evaluando sus ventajas, limitaciones y
niveles de madurez.

Una de las principales conclusiones es que no existe una tnica soluciéon éptima, sino que la
elecciéon de cada componente debe realizarse en funcion de las caracteristicas del caso de uso, los
requisitos técnicos, el dominio de aplicacion y la infraestructura disponible. Modelos de lenguaje
como GPT ofrecen un alto rendimiento con bajo esfuerzo de integracién, mientras que soluciones

open source como LLaMA o Flan-T5 permiten mayor control y adaptabilidad. Lo mismo ocurre
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con las bases vectoriales y modelos de embeddings, donde opciones como FAISS o Sentence-
BERT son eficaces en entornos locales, mientras que herramientas como Weaviate o Instructor
ofrecen mayores capacidades semanticas y estructurales.

Este analisis comparativo sienta las bases para justificar las decisiones tecnoldgicas adoptadas
en el desarrollo del sistema propuesto, que se detallaran en el préximo capitulo. La eleccion
final de herramientas se ha realizado atendiendo al equilibrio entre rendimiento, escalabilidad,

privacidad, flexibilidad y facilidad de integraciéon en un entorno real.
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Capitulo 6

Analisis

El presente capitulo expone el analisis detallado de la solucién propuesta para implementar
un sistema de recuperacién aumentada con generacién (RAG) aplicado al sector asegurador.
Tras la revisién exhaustiva de las tecnologias disponibles presentada en el capitulo anterior, se
ha disefiado una arquitectura modular orientada a maximizar la precision, la trazabilidad y la
escalabilidad del sistema, al mismo tiempo que se garantiza su viabilidad técnica en un entorno
real.

La solucién se estructura en torno a cuatro componentes principales: un motor de recupe-
raciéon seméantica basado en embeddings, una base vectorial persistente, un modelo de lenguaje
generativo adaptado al dominio, y un backend orquestador responsable de coordinar las operacio-
nes entre los distintos médulos. A lo largo de este capitulo se justifican las elecciones tecnolédgicas
realizadas en cada uno de estos elementos, atendiendo a criterios de rendimiento, compatibilidad,
flexibilidad y adecuacion a los requisitos del dominio.

También se analizan aspectos como la estructura y formato de los documentos aseguradores,
las caracteristicas semanticas del corpus, y las necesidades especificas del usuario final. Estos
elementos condicionan tanto la estrategia de preprocesamiento como el disefio de los flujos de

recuperacién y generacion que conforman el nicleo del sistema.

6.1 Requisitos técnicos y funcionales

El sistema propuesto tiene como objetivo principal facilitar el acceso eficiente, preciso y
contextualizado a la informacién contenida en documentos aseguradores. Para ello, se ha definido
un conjunto de requisitos funcionales y técnicos que guian tanto el diseno arquitecténico como

la elecciéon de tecnologias.

Requisitos funcionales

Desde el punto de vista funcional, el sistema debe:
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Permitir al usuario final realizar consultas basadas en documentos mediante preguntas

formuladas en lenguaje natural.

Proporcionar respuestas generadas a partir de fragmentos documentales reales, relevantes

y verificables.

Ofrecer trazabilidad de cada respuesta, indicando su procedencia dentro del corpus docu-

mental.

Soportar la carga de nuevos documentos, organizados por expedientes, sin necesidad de

reiniciar el sistema.
Mantener un historial conversacional coherente entre las interacciones de un mismo chat.

Proporcionar una interfaz usable, clara y accesible, tanto para personal técnico como no

técnico.

Requisitos técnicos y no funcionales

nales:

Desde un enfoque de ingenieria del software, se establecen los siguientes requisitos no funcio-

Escalabilidad: capacidad de crecimiento en volumen de datos y niimero de usuarios sin

degradacién significativa del rendimiento.

Latencia aceptable: tiempo de respuesta inferior a 3 segundos incluso en escenarios con

elevada carga documental.

Modularidad: los componentes deben estar desacoplados y ser sustituibles sin afectar al

sistema completo.

Mantenibilidad: facilidad para incorporar nuevas tecnologias, actualizar modelos o rea-

lizar ajustes parciales.

Privacidad y control de datos: posibilidad de operar sin depender de servicios externos,

garantizando el tratamiento local de la informacion.

Compatibilidad con GPU: aprovechamiento de aceleraciéon hardware

para tareas computacionalmente intensivas.

Estos requisitos derivan tanto de necesidades técnicas como del dominio asegurador, que

impone restricciones especificas en cuanto a trazabilidad, privacidad y control del conocimiento.

Son también la base sobre la que se ha construido la arquitectura final del sistema, tal como se

detallard en las siguientes secciones.
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Casos de uso del sistema

Para complementar la definiciéon de requisitos funcionales, se ha elaborado un diagrama de
casos de uso que resume de forma gréafica las principales interacciones que puede realizar un
usuario con el sistema. Estas operaciones cubren todo el ciclo funcional, desde la autenticacién y
gestion de expedientes, hasta la carga de documentos y realizacién de consultas contextualizadas
sobre el corpus asegurador. También se contempla un actor secundario —el administrador— con

capacidades de auditoria y andlisis en entornos de desarrollo.

Sistema

Login con Goodg le
> (OAuth 2.0)

-
-~

.

S Historlal conversaclonal

Consulta de Infor macion

Eal documental [RAG)
Usuario final )
-, ----""--.__
“ '
™, Carga de documentos
\\‘H
e
~—
T
Gestién de expedientes
3 Auditoria y depuracidn

[logs, analisis)

Adrministrador
isolo en desarrolla)

Figura 6.1: Diagrama de casos de uso del sistema. El actor principal —el usuario final— puede
iniciar sesién mediante OAuth, gestionar sus expedientes, subir documentos y realizar consultas
en lenguaje natural sobre el corpus documental. Se incluye también un actor administrador con
capacidades de depuracién y andlisis para entornos de desarrollo.
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6.2 Motivacion del diseno arquitectonico

La arquitectura propuesta para este proyecto parte de la necesidad de ofrecer una solucién
flexible, escalable y ficilmente mantenible, capaz de adaptarse a las particularidades del sector

asegurador y a la evolucién constante del ecosistema tecnolégico.

Frente a enfoques monoliticos o basados en modelos preentrenados estaticos, se opta por una
arquitectura modular y desacoplada que permita aislar responsabilidades, optimizar cada
componente de forma independiente y facilitar la evolucién del sistema con el minimo impacto

global.

Este tipo de arquitectura encaja de forma natural con los principios de diseno de los sistemas
RAG, donde las fases de recuperacién, generacion, almacenamiento y control estan separadas y
pueden mejorarse por separado. Ademads, se alinea con buenas practicas de ingenieria de software
como separacién de responsabilidades, control de versiones, pruebas modulares y despliegue
flexible.

En contextos donde se maneja informacién critica o sensible —como el dominio asegurador—,

esta separacion permite:

= Reemplazar el modelo generativo sin reindexar el corpus.

= Cambiar el motor vectorial sin alterar el comportamiento conversacional.

= Actualizar los embeddings con un nuevo modelo sin comprometer el resto del sistema.

Asimismo, el disefio modular permite incorporar componentes adicionales como sistemas de
auditoria, control de acceso, trazabilidad de contexto, y mecanismos de feedback, que son clave

en entornos profesionales regulados.

Por todo ello, la arquitectura basada en recuperacion aumentada con generacién se considera
la aproximacién mas adecuada para cumplir los requisitos definidos previamente, manteniendo

un alto grado de control, escalabilidad y adaptabilidad.
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6.3 Analisis del flujo de consulta

Subida de Documentos
—~ 4 A 4
Empleado antgﬁd APl EEST Médulo Preil-:rocesado Embeaﬂings BD Vectorial DB / Filesystem
Sube PDF / DOCX i
————

POST /documents/upload

>

| Extraer texto y segmentar
Generar embeddings
¢ Devuelve embeddings |
Insertar [embeddings + metadatos]

| Guardar fichero (doc_id=XYZ)

{"status”: "ok", "doc_id": "XYZ"} |

A — ) )

Empleado Frontend API F}EST Médulo Prefrocesado Embegdings BD Vectorial DB/ F|Ie5§stem

|

Figura 6.2: Diagrama de secuencia del flujo de ingestion: subida, preprocesado y persistencia de
documentos.

Descripcion de la Figura [6.2, El diagrama detalla el pipeline de ingestion. El proceso
se inicia cuando el empleado sube un PDF o DOCX desde la interfaz web. La peticién POST /
documents/upload llega a la API REST, que delega en el médulo de preprocesado la extraccion
del texto y su segmentacion en chunks. Cada fragmento se envia al microservicio de embeddings,
que devuelve sus representaciones vectoriales. Finalmente, los pares [embedding + metadatos]
se insertan en la base de datos vectorial, mientras que el fichero original se almacena en un
repositorio persistente (base SQL o sistema de archivos). De esta forma, la arquitectura desacopla

claramente la capa de almacenamiento seméantico de la capa documental.

Consulta de Documentos (RAG)
— < < <.
Empleado Frontend API REST Médulo Embeddings BD Vectorial Modelo LLM

“iCoberturas de la péliza de Juan Pérez?"
>

POST /documents/query

Genera embedding de la pregunta

Devuelve vector

Buscar k chunks mas similares

Retorna chunks relevantes

Prompt con [pregunta + chunks]

R t ner
wRespuestagenerada

Muestra respuesta a Emp

Empleado Frontend API F(tEST Médulo Enzbeddings BD Vectorial Mode!? um

Figura 6.3: Diagrama de secuencia del flujo de consulta: recuperacién aumentada de informaciéon

(RAG).
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Descripcion de la Figura El diagrama ilustra el circuito completo de una consulta
RAG. Cuando el usuario envia una pregunta, la API genera su embedding y lo compara con
los vectores almacenados, recuperando los k fragmentos méas relevantes. Estos fragmentos se
concatenan con la consulta para construir el prompt que consume el modelo LLM. La respuesta
generada se devuelve al frontend, garantizando que el modelo dispone de un contexto documental
preciso, fresco y justificable. La separacion entre las fases de recuperacion y generacién reduce
la alucinacién y mejora la trazabilidad de las respuestas.

El flujo de consulta en una arquitectura RAG recoge, por tanto, el recorrido completo que
sigue una peticion del usuario —desde su entrada en el sistema hasta la entrega de la respuesta—
asegurando la coherencia entre las fases de recuperacion y generacién. Aunque la implementacién
concreta puede variar, la mayoria de sistemas RAG comparten la secuencia de pasos resumida

a continuacion:

1. Recepcién de la consulta: el usuario introduce una pregunta en lenguaje natural, sin

necesidad de conocer la estructura documental ni utilizar filtros avanzados.

2. Vectorizacion de la pregunta: la consulta se transforma en una representacién numérica
(embedding) mediante un modelo seméntico previamente entrenado. Este vector captura
el significado de la pregunta y serd utilizado para recuperar fragmentos conceptualmente

similares.

3. Bisqueda en la base vectorial: el sistema consulta la base de datos vectorial para
recuperar los k fragmentos més cercanos al vector de la pregunta, utilizando medidas de

similitud como la distancia coseno o L2.

4. Construccion del prompt: los fragmentos recuperados se concatenan con la consulta
original siguiendo una plantilla definida. El objetivo es proporcionar al modelo de lenguaje

un contexto lo suficientemente rico como para generar una respuesta precisa.

5. Generacién de la respuesta: el modelo LLM procesa el prompt completo y devuelve una
respuesta en lenguaje natural. Esta respuesta puede incluir explicaciones, justificaciones o

referencias al contenido documental.

6. Entrega al usuario: la respuesta generada se presenta al usuario a través de una interfaz
que puede incluir referencias al fragmento utilizado, su ubicacién en el corpus o enlaces a

los documentos originales.

Este flujo puede ampliarse con mecanismos adicionales —cachés de embeddings, ranking
postrecuperacién, anotaciones semanticas o validaciones de consistencia—, pero su nucleo per-
manece anclado a la secuencia recuperacién-generacién sobre la que se sustentan las decisiones

arquitecténicas y tecnolégicas del sistema.
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6.4 Estructura documental del dominio asegurador

Uno de los factores clave en el diseno de un sistema RAG aplicado al sector asegurador
es la naturaleza de los documentos con los que debe trabajar. Estos documentos condicionan
el preprocesamiento, la segmentacion, la recuperacién seméntica y la generacién de respuestas
precisas.

En este proyecto, el sistema estd disefiado para gestionar expedientes aseguradores, que
agrupan diferentes tipos de documentos relevantes para un caso o cliente especifico. Si bien
pueden estar vinculados a usuarios concretos, el sistema no impone ninguna restricciéon en ese
sentido, permitiendo incluir documentacion de caracter general o transversal.

Los expedientes pueden contener, entre otros:

» Pélizas de seguro (generales y particulares).

» Reclamaciones y formularios de siniestros.

= Contratos firmados y condiciones contractuales.
= Comunicaciones entre aseguradora y cliente.

= Informes periciales, resoluciones o dictdmenes.

» Notificaciones internas o circulares técnicas.

Estos documentos presentan caracteristicas particulares desde el punto de vista del andlisis

de software:

= Estructura jerarquica y densa: organizados en secciones, articulos o cldusulas que

dificultan una segmentacion lineal.

» Lenguaje técnico-legal: requiere modelos semanticos capaces de interpretar términos

especificos del sector.

= Contexto disperso: la informacién relevante para una consulta puede estar fragmentada

en diferentes documentos o apartados.

» Formato no estructurado: suelen encontrarse en PDF, Word u otros formatos sin mar-

cadores semanticos claros.
Desde un enfoque técnico, esto implica que:

= El sistema debe aplicar una segmentacién que respete los limites semanticos y mantenga

trazabilidad documental.

» La granularidad de los fragmentos debe equilibrar precisién y contexto, sin superar el limite

de tokens del modelo.
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= Cada fragmento debe estar asociado a metadatos que identifiquen su expediente, origen,

tipo de documento y ubicacién exacta.

Estas consideraciones influyen de forma directa en la arquitectura del sistema, en el disenio del
pipeline de ingestion documental, y en la l6gica de recuperacién. El sistema debe adaptarse a esta
realidad para garantizar tanto la precisién de las respuestas como la fiabilidad y auditabilidad

de las fuentes.

6.5 Criterios de eleccién tecnolégica

Una vez definidos los requisitos funcionales y técnicos del sistema, y teniendo en cuenta la
naturaleza del dominio asegurador, se han establecido una serie de criterios que guian la seleccién
de tecnologias para cada uno de los componentes de la arquitectura RAG.

Los criterios principales aplicados han sido los siguientes:

= Compatibilidad con arquitecturas modulares: los componentes deben poder inte-

grarse de forma desacoplada, permitiendo su sustitucién sin afectar al sistema completo.

s Capacidad de ejecucion local: por motivos de privacidad y control, se priorizan tecno-

logias que permitan un despliegue completo sin depender de servicios externos.

= Buen soporte para el espanol: dado que los documentos y consultas estan en castellano,

se descartan modelos o herramientas optimizadas exclusivamente para inglés.

= Flexibilidad en el preprocesamiento e integracién de datos: se requiere manejar
documentos en multiples formatos (PDF, Word, texto plano, html, eml), con posibilidad

de organizacién por expedientes.

= Calidad en la recuperacion semantica y generacidon: se priorizan modelos y mo-
tores que presenten buen rendimiento en tareas de recuperacién y contextualizacion bajo

arquitecturas RAG.
A partir de estos criterios, se han seleccionado las siguientes tecnologias base:

= FAISS como motor de base vectorial, por su alta eficiencia, posibilidad de ejecucién en

GPU y buena integraciéon con frameworks modernos.

= LangChain como framework de orquestacién de contexto, por su modularidad, comunidad

activa y soporte avanzado para ingenieria de prompts.

= Nous-Hermes-2 como modelo de lenguaje generativo, por su equilibrio entre precisién,

fluidez en espafiol y capacidad de ejecucién local (basado en LLaMA 2).

= Sentence-BERT e Instructor como opciones de modelos de embeddings, con capacidad

de representar adecuadamente lenguaje técnico y legal.
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» Backend en FastAPI(Python) y almacenamiento documental en PostgreSQL, por su

robustez, extensibilidad y compatibilidad con sistemas empresariales.

La combinacién de estas tecnologias responde tanto a los objetivos técnicos definidos como
a las restricciones operativas del entorno asegurador, ofreciendo un equilibrio entre precision,

control, trazabilidad y rendimiento.

Conclusion del analisis

El andlisis realizado en este capitulo ha permitido establecer las bases conceptuales y técnicas
sobre las que se apoya la solucién propuesta. A partir de los requisitos identificados, tanto fun-
cionales como no funcionales, se ha justificado el enfoque arquitecténico basado en recuperacién
aumentada con generaciéon (RAG), evidenciando su adecuacién al dominio documental del sector
asegurador.

Se ha analizado en detalle el flujo de consulta, identificando los componentes clave del sistema
y su interaccién, y se han estudiado las particularidades del corpus documental que condicionan
aspectos como la segmentacion, la vectorizacion y la trazabilidad de la informacion. Todo ello
ha conducido a la identificaciéon de un conjunto de tecnologias que, de forma conjunta, permiten
construir un sistema escalable, modular, preciso y auditable.

Este razonamiento técnico da paso al capitulo siguiente, en el que se describe con mayor nivel
de detalle la arquitectura concreta implementada, asi como la estructura interna del sistema, su
modelo de datos, los componentes funcionales y las decisiones especificas adoptadas durante el

desarrollo.
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Capitulo 7

Diseno de la Solucion

7.1 Introduccidn

El presente capitulo detalla el diseno légico y funcional del sistema propuesto, el cual consti-
tuye el nicleo de este proyecto. La solucién planteada tiene como objetivo integrar un sistema
inteligente de recuperacién aumentada de informaciéon (RAG, por sus siglas en inglés) dentro de
un entorno asegurador, proporcionando consultas automatizadas, precisas y contextualizadas a

partir de documentos previamente indexados.

Este diseno ha sido concebido siguiendo principios de modularidad, escalabilidad y separacién
de responsabilidades, lo cual permite tanto una evolucién progresiva del sistema como su adap-
tacion a diferentes contextos de uso. Para ello, se ha optado por una arquitectura distribuida
basada en microservicios, desplegada en contenedores y organizada en torno a varios compo-
nentes que colaboran entre si: un backend que gestiona las operaciones principales, un frontend
que acttia como interfaz de usuario, un modelo de lenguaje generativo para la generacién de res-
puestas, y un sistema de almacenamiento estructurado que facilita la indexacién y recuperaciéon

eficiente de la informacién.

El diseno aqui descrito no entra en detalles especificos sobre las herramientas empleadas o
los entornos de ejecucion, aspectos que se desarrollan con mayor profundidad en el Capitulo
En cambio, este capitulo se centra en explicar las decisiones de disefio que sustentan la solucién,
describiendo el comportamiento general del sistema, la interaccién entre sus componentes, y el
flujo de informacién que se produce desde que un usuario realiza una consulta hasta que recibe

una respuesta generada.

Este enfoque permite no solo justificar la coherencia técnica del sistema, sino también esta-

blecer una base sélida sobre la cual se apoya su posterior implementacion.
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7.2 Principios de diseiio

El diseno del sistema no surge de forma arbitraria, sino que estd guiado por una serie de
principios fundamentales que han permitido construir una solucién sélida, coherente y alineada
con los objetivos del proyecto. En esta seccion se detallan los pilares sobre los que se ha apoyado

la toma de decisiones durante todo el proceso de diseno.

Modularidad y separacion de responsabilidades

Uno de los principales objetivos desde el inicio fue lograr una estructura modular, en la
que cada componente del sistema tuviera una funcién clara y bien definida. Esta separacion de
responsabilidades permite que el desarrollo, las pruebas y el mantenimiento puedan abordarse
de forma mas eficiente, ya que los distintos médulos pueden evolucionar de forma independiente.
Por ejemplo, el backend se encarga de orquestar el procesamiento de las consultas, mientras que
el frontend se centra en la experiencia de usuario, y el modelo de lenguaje opera como un servicio
autéonomo especializado en la generacién de respuestas. Por otro lado, dentro del propio backend,
la funcionalidad esté separada en servicios independientes, que trabajan de forma conjunta, pero
que son modulos que podrian desacoplarse y funcionar de forma separada en otro contexto o

aplicacién.

Escalabilidad y mantenibilidad

Desde un enfoque practico, también se ha priorizado la escalabilidad. La idea era construir una
solucién que no solo funcionara en entornos controlados o con pocos usuarios, sino que pudiera
crecer y adaptarse facilmente si las necesidades lo requieren. Esto se ha tenido en cuenta tanto
en el diseno logico como en la arquitectura de despliegue, permitiendo, por ejemplo, escalar de
forma independiente el motor de generacién o la base de datos en funcién de la carga. A su vez,

esta misma modularidad contribuye a una mayor mantenibilidad del sistema.

Interoperabilidad y desacoplamiento

Otro principio clave ha sido la interoperabilidad entre componentes. Cada mddulo ha sido
disenado para comunicarse con los demés mediante interfaces bien definidas, principalmente a
través de una API REST. Esto no solo permite una mejor organizacién interna, sino que también
facilita futuras integraciones con otros sistemas externos del sector asegurador. Ademaés, se ha
buscado un desacoplamiento claro entre los servicios, lo que permite, por ejemplo, cambiar el

modelo de lenguaje o el motor vectorial sin necesidad de reescribir el resto del sistema.

Claridad y trazabilidad en los flujos

Por dltimo, se ha dado especial importancia a que el flujo de datos dentro del sistema sea
claro y trazable. Desde que un usuario lanza una consulta hasta que recibe una respuesta, todos

los pasos intermedios estan definidos de forma explicita. Esto no solo mejora la comprensién del
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sistema y su depuracion, sino que resulta clave para garantizar la fiabilidad del sistema en un
contexto tan sensible como el del sector asegurador.

En conjunto, estos principios han guiado todas las decisiones técnicas del disefio, permitiendo
construir una solucién robusta, flexible y alineada con el propésito principal del proyecto: facilitar

una consulta inteligente y precisa de la informacién contenida en documentos aseguradores.

7.3 Arquitectura general del sistema

La solucién propuesta se ha disenado como un sistema distribuido, compuesto por multiples
servicios desplegados en contenedores que colaboran entre si para ofrecer una experiencia de
consulta automatizada y contextualizada. Esta arquitectura responde a los requisitos de modu-

laridad, escalabilidad y claridad funcional definidos en las fases de analisis.

Componentes principales

El sistema se estructura en torno a los siguientes contenedores, cada uno con una responsa-

bilidad clara:

» Base de datos (PostgreSQL): almacena expedientes, documentos, historiales conver-

sacionales y metadatos de usuario.

» Modelo de lenguaje (Ollama + Nous-Hermes-2): ejecuta el LLM en modo servicio,
expuesto en el host por el puerto 11434. Utiliza runtime: nvidia para acceder a la GPU
NVIDIA A40.

» Backend (FastAPI): constituye el nicleo funcional del sistema. Se encarga de la auten-
ticacién de usuarios, la indexacién y bisqueda semantica mediante FAISS, la generacién
de embeddings y la orquestacién del prompt para la interaccion con el modelo. El servicio
se despliega en el puerto 5000 y esta optimizado para aprovechar la GPU cuando esta

disponible.
» Frontend (React): interfaz de usuario que permite subir documentos, seleccionar expe-
dientes, lanzar consultas y recibir respuestas en tiempo real.
Interaccion entre componentes
1. El usuario accede a la SPA React (3000) y selecciona o crea un expediente.

2. El frontend envia la consulta al backend (5000) mediante peticion REST autenticada con
JWT.

3. El backend recupera los fragmentos relevantes desde FAISS, construye el prompt y lo envia
al LLM (11434).

4. El modelo genera la respuesta; el backend la persiste y la reenvia al frontend.

5. El usuario visualiza la respuesta en la interfaz.
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Despliegue contenerizado

Cada servicio se ejecuta en un contenedor independiente, encapsulando sus bibliotecas y
versiones de forma reproducible. El docker-compose garantiza el orden de arranque (primero la
base de datos, luego el backend, etc.), reserva la GPU para backend y LLM e integra voltimenes

duraderos (postgres_data, ollama) que preservan los datos entre reinicios.

Autenticacion OAuth 2.0 y gestion de expedientes

El sistema emplea el servicio Google Identity para la autenticacién de usuarios, mediante el
uso de ID tokens firmados (formato JWT). Este enfoque evita el intercambio de credenciales
sensibles y simplifica la integracion, ya que el frontend obtiene el ID token directamente desde
Google y lo transmite al backend para su validaciéon. Aunque no se implementa explicitamente el
flujo Authorization Code con PKCE, el modelo utilizado proporciona garantias equivalentes de
seguridad y proteccién frente a ataques de interceptacion, sin necesidad de almacenar secretos

de cliente.

1. El usuario pulsa «Iniciar sesiéon con Google» en el frontend.

2. Google devuelve un id_token firmado que el frontend remite al backend mediante POST/

auth/google.

3. El backend verifica la firma del id-token utilizando las claves publicas de google, si es

valido, inserta o actualiza al usuario en PostgreSQL (clave tinica: email).

4. El backend responde con los datos del usuario y el frontend lo almacena en localStorage,

con el fin de mantener el estado de la sesién.

Al seleccionar un expediente, el frontend solicita GET /expedientes/{id}; el backend valida el
token, comprueba la pertenencia del expediente al usuario y devuelve sus documentos y chats.
Cuando el usuario crea un chat, realiza POST /chats indicando el expediente_id; el backend
persiste el chat y devuelve su chat_id. Este mecanismo mantiene el contexto conversacional

aislado por expediente, logrando trazabilidad y privacidad.

La combinaciéon de contenerizacién, GPU sharing y autenticacién robusta proporciona una
base solida y facilmente escalable —preparada para migrar a orquestadores como Kubernetes o

para anadir nodos en alta disponibilidad— sin alterar la l6gica de negocio ni el modelo de datos.
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Figura 7.1: Diagrama de secuencia que representa el flujo completo de autenticacién con Google
OAuth, validacién del id_token, seleccién de expediente y creacién de un nuevo chat asociado.
La interaccion entre frontend, backend y base de datos permite garantizar seguridad, trazabilidad
y aislamiento contextual en cada conversacion.

7.4 Diseno funcional del backend

El backend constituye el nicleo légico del sistema, siendo responsable de orquestar todo el

proceso de consulta, desde la recepcién de la pregunta del usuario hasta la generacién final de
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la respuesta. Para garantizar claridad, mantenibilidad y separacién de responsabilidades, se ha
dividido en cinco servicios principales, cada uno encapsulado en un médulo independiente. A

continuacién se describen sus funciones y relaciones.

Servicio de ingesta

Este médulo se encarga del procesamiento inicial de los documentos subidos por los usuarios.
Su funcién principal es dividir los documentos en fragmentos adecuados para la posterior vec-
torizacién y recuperacién. Ademds, asocia metadatos relevantes como el nombre del archivo, el

expediente al que pertenece y marcas de tiempo.

También se realiza una limpieza béasica del texto y una segmentacion inteligente que optimiza
la coherencia semantica de los fragmentos, lo cual es crucial para mejorar la calidad del proceso
RAG posterior.

El siguiente diagrama ilustra el flujo completo de ingestién documental que sigue el siste-
ma desde el momento en que el usuario sube un archivo hasta que sus contenidos han sido

preprocesados, vectorizados e indexados:
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Figura 7.2: Diagrama de flujo del pipeline de ingestién documental. El backend recibe un archivo
subido por el usuario, extrae su contenido textual (segun el formato), lo segmenta en fragmentos
de tamano seméantico manejable, genera sus embeddings con un modelo tipo Sentence-BERT,
asocia los metadatos correspondientes, y distribuye el resultado en dos ramas: por un lado,
indexa los vectores en FAISS para recuperacion rapida, y por otro, almacena el binario original
en PostgreSQL mediante un campo LargeBinary.
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Servicio de vectorizacion

Una vez procesados los documentos, este servicio transforma los fragmentos en vectores nu-
méricos utilizando un modelo de embeddings. Estos vectores se almacenan en una base de datos
vectorial que permite realizar bisquedas por similitud seméantica.

El servicio estd disenado para operar sobre GPU cuando se requiere alto rendimiento, y

soporta modelos de distintas familias segiin necesidades futuras.

Servicio de indexacion

Este componente gestiona la persistencia de los vectores generados y su correcta asociacién
con los documentos de origen. Se encarga de almacenar los vectores en la base vectorial (actual-
mente FAISS) y de mantener una estructura de metadatos paralela que facilita la recuperacién
eficiente y contextualizada de la informacion.

Su diseno permite realizar reindexaciones completas o incrementales, y estd preparado para

eliminar los datos asociados a un documento cuando este se borra.

Servicio de recuperacion

Cuando el usuario realiza una consulta, este médulo se encarga de buscar los fragmentos més
relevantes dentro del espacio vectorial. Utiliza biisquedas basadas en similitud de coseno entre
el vector de la pregunta y los vectores de los fragmentos almacenados.

El resultado es un conjunto de fragmentos con puntuaciones de relevancia, que se utilizan
para construir el prompt que se enviard al modelo generativo. Este servicio es esencial para

garantizar que la respuesta final esté basada en evidencia documentada.

Servicio de generacion

El dltimo paso del proceso es la generacién de la respuesta. Este mdédulo recibe el prompt
construido a partir de los fragmentos recuperados y lo envia al modelo de lenguaje (ejecutado a
través del contenedor ollama).

El servicio gestiona tanto la comunicacién con el modelo como la interpretacién de su salida,
almacenando la interaccién completa (entrada, contexto, salida) en la base de datos para futuras

auditorias o consultas.

7.4.1 Modelo de datos relacional

El sistema persiste la informacién mediante un esquema, relacional normalizado implementado
con SQLAlchemy. Kl modelo se articula en torno a cinco entidades principales: User, Expediente,
Document, Chat y Message. La Figura [7.3| muestra el diagrama de clases UML que resume sus

atributos, claves primarias, foraneas y las cardinalidades establecidas entre ellas.
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Figura 7.3: Diagrama de clases UML del modelo de datos: usuarios, expedientes, documentos,

chats y mensajes.

Analisis de la estructura.

= User 1-* Expediente y Chat. Cada usuario puede crear varios expedientes y mantener
miultiples conversaciones. La eliminacién en cascada (delete-orphan) preserva la coherencia

y simplifica el cumplimiento del RGPD (derecho al olvido).

» Expediente 1-* Document y Chat. Un expediente actiia como compartimento se-
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mantico: agrupa documentos y chats bajo un mismo contexto documental, garantizando

respuestas coherentes y auditables.

= Chat 1-* Message. Modelo clésico de mensajeria que permite paginacion eficiente, mé-

tricas de uso y borrado légico de mensajes.
= Atributos clave.

e LargeBinary en file_data facilita PoC auto-contenidas; en producciéon puede ex-

ternalizarse a S3 o MinlO, manteniendo metadatos en PostgreSQL.

o Timestamps (uploaded_at, created_at, timestamp) habilitan auditoria temporal y

andlisis de uso.

s Integridad y rendimiento. Los indices declarados en claves primarias y foraneas per-
miten consultas O(logn) sobre grandes volimenes; la cascada de borrado automatiza la

limpieza sin operaciones manuales costosas.

Este disefio soporta los requisitos de multitenencia, trazabilidad y borrado en cascada exi-
gidos en el dominio asegurador, al tiempo que mantiene baja complejidad ciclomatica y alta
extensibilidad (p. ej., anadir versiones de documento o adjuntos multimedia s6lo requiere nuevas
tablas y relaciones opcionalmente ON DELETE SET NULL).

Flujo completo de consulta

Cuando un usuario realiza una pregunta, el backend activa de forma secuencial los servicios
anteriores: recuperacion de fragmentos relevantes, generacion de prompt, consulta al modelo y
entrega de respuesta. Todo el proceso esta instrumentado con logs y pruebas unitarias, y permite
trazabilidad completa de cada consulta, lo cual es especialmente importante en contextos donde

se requiere transparencia y fiabilidad en los resultados.

7.5 Diseno funcional del frontend

El frontend del sistema ha sido disefiado con el objetivo de ofrecer una experiencia de usuario
sencilla, intuitiva y eficiente, sin renunciar a una arquitectura modular que facilite el manteni-
miento y la evolucién del sistema. La interfaz acttia como puente entre el usuario y los servicios
del backend, permitiendo cargar documentos, realizar consultas, visualizar respuestas y gestionar

los expedientes de forma estructurada.

Estructura general

El frontend estd desarrollado en React, utilizando componentes funcionales organizados por

responsabilidades. La interfaz se divide en cuatro secciones principales:

= Panel de expedientes y documentos: situado a la izquierda, permite crear nuevos ex-
pedientes, seleccionar uno activo y gestionar los documentos asociados a cada uno (subida,

eliminacion y listado).
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» Historial de chats: muestra las conversaciones anteriores asociadas al expediente selec-
cionado. Esto permite retomar consultas previas y mantener continuidad en el uso del

sistema.

» Area principal de chat: ubicada en el centro de la interfaz, permite introducir preguntas
de forma natural y recibir respuestas generadas por el modelo. Incluye el historial de la

conversacion.

= Sugerencias de preguntas: en una columna a la derecha, se muestran preguntas fre-

cuentes o relevantes que el usuario puede lanzar con un solo clic.

Comunicacién con el backend

El frontend se comunica con el backend a través de una API REST, utilizando peticiones
HTTP asincronas mediante axios. Cada accién del usuario (subir documento, lanzar consulta,
crear expediente) genera una peticién que es gestionada por los endpoints correspondientes del
backend.

Ademas, se ha implementado una gestién eficiente del estado global, permitiendo que los cam-
bios en expedientes, documentos o chats se reflejen inmediatamente en la interfaz, manteniendo

la coherencia entre la vista y el estado del sistema.

Criterios de diserno

En el diseno del frontend se han seguido varios principios fundamentales:

» Modularidad: cada funcionalidad estd encapsulada en un componente React indepen-

diente, facilitando su reutilizaciéon y prueba.

= Claridad visual: se ha optado por un diseno oscuro y profesional, con tipografias legibles

y elementos bien diferenciados.

» Usabilidad: las acciones frecuentes (como subir documentos o hacer consultas) se encuen-

tran facilmente accesibles, y la navegacién es fluida.

= Escalabilidad visual y funcional: la estructura de la interfaz permite incorporar nuevas
funcionalidades (como seleccién de modelos o resumen de documentos) sin necesidad de

redisefiar el sistema completo.

Adaptacion al flujo conversacional

Una caracteristica diferenciadora del sistema es su enfoque conversacional. El frontend esta
adaptado para representar visualmente una conversacién contextualizada, donde cada pregunta
y respuesta se presenta como una burbuja en el historial, y el usuario puede continuar el dialogo
en el contexto de un expediente especifico.

Este diseno orientado al didlogo mejora la naturalidad de la interaccién y permite mantener

un hilo de conversacién coherente entre el usuario y el sistema inteligente.
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7.6 Diseno del sistema conversacional RAG

El sistema implementa un enfoque basado en Retrieval-Augmented Generation (RAG), en
el que la generacién de respuestas se fundamenta en fragmentos previamente extraidos de los
documentos del expediente. Aunque el flujo técnico completo ya ha sido descrito en aparta-
dos anteriores, en esta secciéon se destacan los elementos clave que definen el comportamiento
conversacional del sistema y su capacidad para integrar recuperacion y generacién de forma

contextualizada.

Recuperacion basada en contexto documental

Cada consulta realizada por el usuario se transforma internamente en un vector seméantico que
se compara contra los vectores indexados del expediente seleccionado. Esta buisqueda devuelve los
fragmentos mas relevantes, garantizando que la respuesta esté basada inicamente en informacién

contenida en los documentos.

Generacion con control de fuentes

El sistema construye automaticamente un prompt que incluye tanto los fragmentos recupe-
rados como el historial reciente del chat. Esta combinacién permite generar respuestas precisas

y con trazabilidad, manteniendo un control estricto sobre las fuentes utilizadas.

Manejo del historial de conversacion

Para enriquecer el contexto, el sistema conserva el historial de cada conversacién utilizando
memorias conversacionales. Esto permite mantener el hilo entre preguntas sucesivas del mismo

chat y mejorar la coherencia en sesiones de consulta prolongadas.

Reordenamiento opcional con CrossEncoder

Cuando se habilita, un modelo de reranking evalta la relevancia de cada fragmento con
respecto a la pregunta, reordenando los resultados antes de generar la respuesta. Este mecanismo

refuerza la precision, especialmente en preguntas complejas o ambiguas.

Limitaciones y decisiones de diseno

El ntimero de fragmentos utilizados, el formato del prompt y la activacion del reranker han
sido definidos de forma configurable para permitir ajustes segin el comportamiento observado
en pruebas reales. El disefio ha priorizado la claridad, la transparencia y la adaptabilidad en

entornos donde la trazabilidad es fundamental.

7.7 Decisiones técnicas clave

El diseno e implementacion del sistema no se ha basado tinicamente en una seleccién fun-

cional de herramientas, sino que ha estado guiado por criterios técnicos, de escalabilidad y de
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adecuacion al dominio asegurador. Esta seccion resume y justifica las decisiones mas relevantes

adoptadas durante el desarrollo.

Modelo de lenguaje: Nous-Hermes-2

Se ha optado por el modelo Nous-Hermes-2, ejecutado localmente mediante Ollama, por
su equilibrio entre calidad de generacién, requisitos computacionales y control total sobre los
datos. La posibilidad de ejecutar el modelo sobre GPU permite mantener tiempos de respuesta
aceptables sin depender de servicios externos, lo que mejora la privacidad y la escalabilidad del

sistema.

Vectorizacion e indexado: SentenceTransformers + FAISS

Para representar los fragmentos documentales, se ha empleado el modelo de embeddings
intfloat/eb-large-v2, integrado con SentenceTransformers, por su capacidad para capturar
relaciones semanticas profundas en contextos de lenguaje natural. La indexacién y recuperaciéon
se realiza mediante FAISS, una soluciéon consolidada para busquedas vectoriales, que permite

consultas eficientes incluso sobre grandes volimenes de texto.

Reordenamiento contextual: CrossEncoder

Se ha incorporado un modelo CrossEncoder (ms-marco-MiniLM-L12-v2) como etapa opcional
de reranking. Este modelo compara directamente cada par (pregunta, fragmento) y genera
puntuaciones mas precisas que una busqueda vectorial simple. Aunque su ejecucién es méas

costosa, mejora notablemente la precisién en preguntas complejas o ambiguas.

Backend modular con FastAPI

El backend ha sido desarrollado en Python utilizando FastAPI, un framework ligero, rapido y
bien adaptado a la construccién de APIs modernas. Su integracién con tipado estatico, validacién
automdtica de datos y documentacion autogenerada ha facilitado tanto el desarrollo como las
pruebas.

La légica se ha dividido en servicios independientes: ingesta, embeddings, indexado, recu-
peracién y generacion, siguiendo una arquitectura orientada a microservicios. Esto favorece la

escalabilidad y la posibilidad de desacoplar componentes en despliegues futuros.

Frontend en React y diseiio centrado en el flujo conversacional

La interfaz ha sido desarrollada en React, aprovechando su enfoque basado en componentes
reutilizables y su ecosistema maduro. La estructura visual se ha disefiado en torno al flujo
conversacional, facilitando una experiencia de usuario intuitiva, centrada en la interacciéon con

el expediente y no solo en la carga de documentos o envio de formularios.

o7



Contenerizacion y despliegue con Docker

Todo el sistema se ejecuta de forma contenerizada mediante Docker, permitiendo aislar cada
servicio, controlar sus dependencias y simplificar el despliegue en entornos locales o en servidores
dedicados. La definicién del entorno mediante docker-compose garantiza la reproducibilidad y

facilita las pruebas, el mantenimiento y la escalabilidad horizontal.

Diseno de ingesta y fragmentaciéon adaptativa

El procesamiento de documentos se ha disefiado para soportar multiples formatos (.pdf,
.docx, .html, .eml) mediante una arquitectura orientada a objetos con extractores especializa-
dos. La fragmentacién de texto se adapta dinamicamente a la longitud y estructura del contenido,
lo que permite obtener fragmentos coherentes y aprovechables para el modelo, reduciendo ruido

semantico y mejorando la calidad de recuperacién.

Gestion del contexto con LangChain

La libreria LangChain se ha empleado para gestionar la memoria conversacional, simplificar
la construccién de prompts complejos y orquestar el fluyjo RAG. Esta eleccién ha permitido
mantener un historial contextual por expediente, proporcionando continuidad a las consultas y

enriqueciendo la experiencia conversacional del sistema.

7.8 Resumen del diseno

El disefio de la solucién ha sido concebido con una visién integral, abordando no solo los
aspectos técnicos necesarios para construir un sistema funcional, sino también los criterios de
escalabilidad, mantenibilidad y aplicabilidad en entornos reales del sector asegurador.

A lo largo de este capitulo se ha descrito una arquitectura distribuida, modular y contene-
rizada, basada en microservicios especializados que colaboran para implementar un sistema de
recuperaciéon aumentada de informacién (Retrieval-Augmented Generation). Este diseno permite
transformar documentos aseguradores en fragmentos semanticamente indexables y, a partir de
ellos, generar respuestas precisas y trazables ante preguntas formuladas en lenguaje natural.

En el backend, cada componente cumple una responsabilidad bien definida: desde la ingesta
y procesamiento de documentos, pasando por la generaciéon de embeddings y su indexacion,
hasta la recuperacién contextual y la interaccién con el modelo generativo. Esta separacion de
servicios facilita la depuracién, las pruebas unitarias y el escalado individualizado de cada parte
del sistema.

El frontend, por su parte, ha sido estructurado para facilitar la navegacién por expedientes
y documentos, y para ofrecer una experiencia conversacional fluida y contextual. La eleccién de
React ha permitido crear una interfaz dindmica y adaptativa, alineada con las necesidades de
un flujo de consulta interactivo.

La integracion del modelo generativo (Nous-Hermes-2), junto con la recuperacién seméntica

basada en FAISS y el reranking opcional mediante CrossEncoder, proporciona una arquitectura
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robusta y adaptable que maximiza la relevancia de las respuestas generadas, sin sacrificar la
transparencia ni la trazabilidad.

En conjunto, el sistema disenado cumple con los requisitos técnicos y funcionales definidos
al inicio del proyecto. Estd preparado para ser desplegado en un entorno real, servir como
herramienta de asistencia en consultas aseguradoras y sentar las bases para futuras ampliaciones

tanto a nivel funcional como arquitecténico.
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Capitulo 8

Implementacion

8.1 Introduccidén

En este capitulo se describen las herramientas de software, librerias, frameworks y recur-
sos de infraestructura empleados para el desarrollo, implementacion y prueba del sistema de
recuperaciéon aumentada de informacién (RAG) descrito en capitulos anteriores.

La eleccion de cada tecnologia ha estado guiada tanto por criterios de adecuacién técnica al
problema planteado como por la disponibilidad de recursos y entornos de ejecuciéon accesibles
durante el desarrollo del proyecto.

El sistema ha sido disefiado y probado en dos entornos de trabajo principales: una estacién
de desarrollo local basada en Ubuntu, y una maquina virtual proporcionada por la escuela con
sistema operativo Linux y recursos avanzados de GPU. El entorno de programacién ha sido
Visual Studio Code, utilizado tanto para el desarrollo del backend como del frontend.

En las siguientes secciones se detallan los componentes principales del entorno de trabajo, las
tecnologias utilizadas en cada subsistema, los modelos de lenguaje empleados y la infraestructura

de hardware sobre la que se ha desplegado la solucion.

8.2 Entorno de desarrollo

El desarrollo del sistema se ha llevado a cabo utilizando dos entornos diferenciados:

» Entorno local: equipo personal basado en Ubuntu 24.04.1 LTS (noble), con 8 GiB de
memoria RAM, de los cuales aproximadamente 4 GiB estaban disponibles para tareas de
desarrollo. Este entorno ha sido empleado principalmente para el desarrollo inicial, las
pruebas unitarias de backend y frontend, y la construcciéon de los primeros prototipos de

los servicios.

» Entorno de ejecucién en servidor: maquina virtual (VM) proporcionada por la insti-
tucién educativa, basada en Ubuntu 22.04.5 LTS (jammy). Esta VM dispone de 62 GiB de
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memoria RAM, de los cuales mas de 50 GiB permanecen disponibles durante la ejecucion
de la aplicacién, permitiendo un tratamiento eficiente de cargas de trabajo intensivas. La
VM estd equipada con una GPU NVIDIA A40 con 48 GiB de memoria de video, habi-
litada para computacion general (Compute Mode Default), lo que resulta esencial para el
procesamiento de embeddings y la generacién de respuestas mediante modelos de lenguaje

de gran tamafo.

El entorno de desarrollo ha estado basado en Visual Studio Code, tanto para el backend

(Python) como para el frontend (React). Se ha utilizado Docker y docker-compose para conte-

nerizar todos los servicios y garantizar la replicabilidad de los entornos, tanto en local como en

el servidor remoto.

Durante el desarrollo, se han mantenido dos entornos paralelos:
= Un entorno de desarrollo local para la implementacién incremental y depuracién.

= Un entorno de despliegue en la VM para pruebas integradas de rendimiento, carga de

modelos y ejecucién sobre GPU.

Este enfoque ha permitido realizar pruebas iterativas rapidas en local, y validar el funciona-

miento realista del sistema en condiciones de producciéon en la VM, incluyendo el uso intensivo

de la GPU para la inferencia de modelos de lenguaje y la generacion de embeddings vectoriales.

8.3 Backend: tecnologias y librerias principales

El backend del sistema ha sido desarrollado en Python 3.10.12, utilizando un entorno virtual

gestionado mediante virtualenv. El ntcleo de la arquitectura se apoya en el framework Fast A-

PI, elegido por su rendimiento, su integracién nativa con tipado estético (basado en pydantic)

y su soporte para construcciéon de APIs modernas y asincronas.

A continuacion se resumen las herramientas y librerias principales utilizadas:

Frameworks y herramientas principales
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Fast API: framework principal para la construccion del backend REST, que proporciona
validaciéon automética de entradas, documentacién OpenAPI integrada y un alto rendi-

miento en tiempo de ejecucién.
Uvicorn: servidor ASGI ligero empleado para ejecutar la API en entorno de desarrollo.

SQLAIlIchemy: ORM utilizado para definir los modelos relacionales y gestionar las ope-

raciones sobre la base de datos PostgreSQL.

Pydantic: base de la validacién de datos y serializacién de esquemas dentro de FastAPI.



Procesamiento del lenguaje y embeddings

= SentenceTransformers: libreria utilizada para convertir fragmentos textuales en vecto-

res semanticos de alta dimensién, usando el modelo intfloat/e5-large-v2.

= FAISS: motor de indexacién y busqueda vectorial desarrollado por Facebook, utilizado

para almacenar y consultar los vectores generados de forma eficiente.

= LangChain: herramienta empleada para estructurar el flujo conversacional RAG, gestio-

nar memorias de chat, y facilitar la integracién entre recuperacién y generacion.

» CrossEncoder (transformers): modelo de reranking basado en
ms-marco-MinilM-L12-v2, utilizado opcionalmente para reordenar los fragmentos recu-

perados en funcién de su relevancia contextual respecto a la pregunta.

Utilidades y soporte

= Requests: utilizada para realizar peticiones HTTP al servidor Ollama, encargado de

ejecutar el modelo de lenguaje.

= Logging: sistema de trazabilidad distribuido por todo el backend, con distintos niveles de

log (info, debug, error) para monitorizar el funcionamiento del sistema.
= nltk: utilizada para la segmentacién del texto en oraciones durante el preprocesamiento.

= pdfplumber, python-docx, html2text, email: librerias especificas utilizadas para la
extraccion de texto desde documentos PDF, Word, HTML y correos electréonicos EML

respectivamente.

Toda esta infraestructura software ha sido organizada en médulos independientes (servicios)
seglin su funcién, garantizando un disefio limpio y mantenible. El c6digo se ha estructurado de
manera que facilita la extensién y sustitucion de componentes, por ejemplo, para cambiar de

modelo de embeddings, backend de vectorizacién o motor de generacién.

8.4 Backend: estructura y detalles de los microservicios

A continuacién se describen con mayor precisién los cinco servicios que componen el backend.

8.4.1 Servicio de Ingestion de Documentos

Descripcion general El servicio de ingestién implementa un pipeline secuencial que convierte
ficheros en bruto (PDF, DOCX, HTML, EML) en fragmentos de texto limpios, normalizados
y segmentados, listos para ser indexados y consultados a través del sistema de recuperaciéon

semantica.
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Constantes y configuracion Se definen constantes como MIN_CHARS = 10 y MAX_CHARS =

1100, que controlan los limites de tamano minimo y maximo de cada fragmento. También

se

rio

inicializan listas vacias de patrones para eliminar ruido, texto irrelevante o texto aleato-
(NOISE_PATTERNS, EXCLUDE_PATTERNS, R.ANDOM_TEXT_PATTERNS), asi como un diccionario de

patrones de segmentacion especificos por tipo de documento (SEGMENT_PATTERNS).

Flujo detallado del procesamiento
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1. Seleccidon del extractor:

= Se obtiene la extensién del fichero y se selecciona un extractor adecuado mediante

una factoria.

= Si no se encuentra un extractor valido, se emite una advertencia y se interrumpe el

proceso.
2. Extraccién del texto:
= Cada extractor implementa una interfaz comiin y se encarga de obtener el texto de

su tipo de fichero.

= Por ejemplo, PDFExtractor recorre las paginas con pdfplumber, DocxExtractor re-
corre los parrafos del documento, HTMLExtractor convierte el HTML a texto plano,

y EMLExtractor recupera cabeceras y cuerpo de mensajes de correo electrénico.

= Cualquier error durante este proceso se captura con logs de error.
3. Limpieza y normalizacidn:

= Se aplican funciones que normalizan el texto a Unicode, eliminan espacios y saltos
innecesarios, sustituyen comillas y simbolos, y estandarizan fechas y valores moneta-

rios.
4. Identificacion del tipo de documento:

= A partir del nombre del fichero se intenta deducir el tipo de documento para aplicar

segmentaciones especificas, si estdn definidas.
5. Segmentacién del contenido:
= Se intenta dividir el texto en secciones mediante expresiones regulares definidas por

tipo de documento.

= Si no hay patrén aplicable, se segmenta por longitud, acumulando oraciones hasta

alcanzar el tamano maximo definido.

= Posteriormente, se fusionan fragmentos demasiado cortos para asegurar coherencia

semantica.

6. Filtrado de fragmentos:



= Se eliminan fragmentos que contengan patrones de exclusién o ruido, y se descartan

los que tengan una longitud inferior al minimo permitido.

= Fl texto final de cada fragmento se transforma a mintisculas y se eliminan los acentos.
7. Construccion de la salida:

= Cada fragmento vélido se encapsula en un diccionario con un identificador tnico, el
nombre del fichero, el tipo de documento, la fecha detectada (si existe), el indice del

fragmento y su contenido textual final.

= Todos los fragmentos generados se devuelven como una lista de resultados.

Registro de eventos (logging) Durante todo el proceso se registran eventos a diferentes

niveles:
s INFO: inicio de la ingestion, nimero de fragmentos generados.
= WARNING: errores de extraccion, fechas no vélidas, extensiones no soportadas.
= ERROR: fallos criticos durante la lectura del archivo.

= DEBUG: contenido de fragmentos descartados y trazas de los primeros fragmentos pro-

cesados.

Referencia al cédigo fuente La implementacién completa de este servicio puede consultarse
en el siguiente repositorio:

ingestion_ service.py

8.4.2 Servicio de Gestién de indices FAISS

Descripcion general Este servicio centraliza todas las operaciones sobre indices FAISS y sus
metadatos asociados: guardado, carga, regeneracion completa y eliminacion, por cada expediente

de usuario.

Constantes y configuracién Se define la ruta raiz donde se almacenan los indices y meta-

datos:

= VECTOR_ROOT: carpeta vector_indices/expediente_<id> dentro del repositorio.

Flujo detallado del servicio
1. Determinacién de rutas

» Funcién _paths(expediente_id) crea (si no existe) la carpeta del expediente y de-

vuelve dos rutas:

e Ruta al fichero FAISS: faiss.index
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e Ruta al fichero de metadatos JSON: metadata.json

2. Guardado de indice y metadatos

= guardar_index_en_db(index, metadata, expediente_id):

Serializa el indice FAISS a disco con faiss.write_index.
Escribe los metadatos en formato JSON con json.dump.

Registra un INFO indicando la ruta y el expediente.

3. Carga de indice y metadatos

= cargar_index_desde_db(expediente_id):

Verifica existencia del fichero de indice; si no existe lanza FileNotFoundError.
Lee el indice con faiss.read_index y los metadatos con json.load, si estan
presentes.

Registra un INFO confirmando la carga.

Devuelve la tupla (index, metadata).

4. Regeneracion completa del indice

= regenerate_index_for_expediente(expediente_id, documents, db):

a)
b)

Registra inicio con INFO.
Para cada documento:
e Crea un fichero temporal y escribe doc.file_data.
e Llama a DocumentIngestor().ingest(temp_path) para obtener fragmen-
tos.
o Anade metadatos de expediente y nombre de fichero a cada fragmento.
e Registra con INFO el nimero de fragmentos generados.
e Captura y registra errores en ERROR.
Si no hay fragmentos validos, registra WARNING y aborta.
Genera embeddings llamando a generate_embeddings (texts):
e Usa la clase Embedder y el modelo definido en MODEL_NAME.
Normaliza vectores con faiss.normalize_L2, crea IndexFlatIP y anade los
embeddings.
Construye lista de metadatos reducidos (text, file_name).
Llama a guardar_index_en_db para persistir los cambios.

Registra fin de regeneracién con INFO.

5. Eliminacién del indice

= delete_index_for_expediente(expediente_id, db):

Elimina ficheros de indice y metadatos si existen.
Si la carpeta queda vacia, la borra.

Registra INFO indicando si se eliminé o si no existia.



Registro de eventos (logging) Se emplea el logger tfg_rag con niveles:
s INFO: creacién, carga, regeneracién y eliminacion de indices.
= WARNING: intentos de regeneracién sin fragmentos.
= ERROR: fallos al procesar documentos o archivos no encontrados.

Referencia al cédigo fuente

La implementacién completa esta disponible en: index__service.py

8.4.3 Servicio de Generacion de Embeddings

Descripcion general El servicio de generacién de embeddings encapsula la carga y uso de
un modelo de SentenceTransformer para convertir textos en vectores de alta dimensién, nor-

malizados y listos para indexar o comparar.

Configuracion
= MODEL_NAME = "intfloat/eb-large-v2": nombre del modelo de embeddings utilizado.
= EMBEDDING_DIM = 1024: dimensién esperada de los vectores de salida.

» El modelo se carga en GPU si estd disponible (torch.cuda.is_available()); en caso

contrario, en CPU.

Flujo de trabajo

1. Inicializacion

Al instanciar Embedder (), se registra un mensaje INFO indicando la carga del modelo.

Se crea la instancia de SentenceTransformer (model_name, device=device).

Se almacena la dimensién del embedding en self.dim.

Se registra un segundo mensaje INFO con el dispositivo usado.
2. Generacion de embeddings
= El método embed(textos) recibe una lista de cadenas y registra un mensaje INFO

con el nimero de textos.

= Llama al método self.model.encode(...) con los pardmetros
convert_to_numpy=True y normalize_embeddings=True, y devuelve un

arreglo de tipo numpy con forma (n_textos, EMBEDDING_DIM).
= Devuelve el arreglo resultante.

= Si ocurre un error, captura la excepcién, registra un mensaje ERROR con la traza y

relanza la excepcién.
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Registro de eventos (logging) Se utiliza el logger tfg_rag con niveles:
s INFO: al cargar el modelo y al iniciar la generacién de embeddings para un lote de textos.

= ERROR: si la generacién de embeddings falla por cualquier razén, incluyendo problemas

de memoria o modelo corrupto.

Referencia al cédigo fuente: La implementaciéon completa estd disponible en embed-

ding_service.py

8.4.4 Servicio de Bisqueda y Reranking

Descripcion general Este servicio atiende peticiones de bisqueda semantica sobre el indice
FAISS de un expediente, generando primero un embedding de la consulta, recuperando los frag-

mentos mas relevantes y aplicando opcionalmente un reranking con un modelo CrossEncoder.

Configuracion
= USE_RERANKING = True: activa o desactiva el reranking.
= RERANKER_MODEL = "cross-encoder/ms-marco-MinilM-L12-v2": modelo de reranking.
= TOP_K = 5: numero de vecinos a recuperar inicialmente de FAISS.
= MAX_RETURNED = 10: nimero méaximo de resultados devueltos tras reranking u ordenacién.

= Al importar, se carga el reranker en CPU o GPU segin disponibilidad
(torch.cuda.is_available()), capturando errores de carga en

el logger tfg_rag.

Flujo detallado
1. Preprocesamiento de la consulta:

= Se normaliza la consulta con normalize_query(query):

e Normalizacion Unicode NFKD y eliminacion de acentos.
e Conversién a mintsculas y eliminacién de caracteres no ASCII.
o Expansién de términos mediante un diccionario de sinénimos.

e Se antepone el prefijo "query: " al texto resultante.

= Se registran en el logger los textos original y normalizado.
2. Carga del indice FAISS:

= Se invoca cargar_index_desde_db(expediente_id).

= Si falla o el indice no existe, se registra el error y se devuelve lista vacia.

3. Generacién de embedding de consulta:
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= Se instancia Embedder y se llama a embed([query_norm]).
= Se normaliza el vector resultante con faiss.normalize_L2.

= Se registra la operacién en el logger.
4. Busqueda en FAISS:

= Se llama a index.search(query_vec, TOP_K), obteniendo distancias e indices.
= Para cada indice:

e Se comprueba que no exceda la longitud de los metadatos; si es asi, se emite una

advertencia.
e Se extrae el texto y el nombre de fichero de metadata[idx].

e Se construye el campo "texto" con un bloque que incluye DOCUMENTO_ORIGEN y
TEXTO.

e Se aniade "score_faiss" con el valor de la distancia.

e Se registran en el logger los scores y fragmentos con puntuaciones bajas o altas.
5. Reranking (opcional):
= Si USE_RERANKING y el modelo se cargd correctamente, se invoca
rerank_results(query, resultados, top_n=MAX_RETURNED).
» El reranking:

o Conforma pares [query, candidato["texto"]] y llama a reranker.predict.
e Captura errores y, en caso de fallo, retorna los primeros top_n sin reordenar.
e Asigna a cada candidato un "score_rerank" y ordena la lista.

o Registra en el logger cada puntuacién y el resultado final.

= Si no se usa reranking, se ordenan los candidatos por score_faiss y se limitan a
MAX_RETURNED.

6. Log final y retorno:

» Se registra un bloque [PROMPT] con los fragmentos seleccionados y sus scores (rerank
o FAISS).

= Se devuelve la lista final de resultados al controlador o generador de prompts.

Registro de eventos (logging)

= INFO: consulta original y normalizada, carga de indice, generaciéon de embeddings, inicio

y fin de reranking, ntimero de resultados.
= WARNING: indices fuera de rango, puntuaciones bajas, sin fragmentos para reranking.

= ERROR: fallos al cargar el reranker, al generar embeddings, al cargar el indice o durante

la predicciéon del reranker.
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Referencia al cédigo fuente La implementacion completa puede consultarse en: [retrie-

val__service.py

Servicio de Generacion de Respuestas RAG

Descripcion general Este servicio orquesta el flujo completo de generacion de respuestas
basadas en RAG: mantiene la memoria de la conversacion, recupera fragmentos relevantes,
construye el prompt con LangChain, llama al modelo Ollama y actualiza la memoria en base de

datos.

Configuracién Se definen parametros globales:
= DEFAULT_MODEL = "nous-hermes2": modelo por defecto para Ollama.
= MAX_CONTEXT_CHUNKS = 3: numero méaximo de fragmentos usados en el prompt.

= RERANK_ENABLED = True: activa el reranking en la fase de recuperacion.

Flujo detallado
1. Gestion de memoria por chat

= La funcién get_memory(chat_id) crea o recupera un objeto

ConversationBufferMemory asociado al identificador de chat.

» Esta memoria almacena preguntas y respuestas previas para incluirlas en el prompt.
2. Recuperacion de fragmentos

= generate_answer(...) invoca
search_index(query, expediente_id, db, k, rerank) para obtener los fragmen-

tos mas relevantes.

= Registra en el logger el nimero de fragmentos recuperados y sus puntuaciones.
3. Generacién del prompt

= Se define un PromptTemplate de LangChain que incluye instrucciones precisas para

el asistente y placeholders para contexto, historial y pregunta.

= generate_prompt(chat_id, context, question) une el contexto recuperado, el

historial de memoria y la pregunta en un tnico string.

= Si falla, devuelve un mensaje de error.
4. Llamada al modelo Ollama

» call_ollama(prompt, model) envia el prompt a la API de Ollama (OLLAMA_API)
mediante una peticién HTTP POST.
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= Comprueba el codigo de respuesta y devuelve el texto o un mensaje de error en caso
de fallo.

5. Actualizacién de memoria y respuesta final

= Tras recibir la respuesta, update_memory(chat_id, question, answer) almacena

la interaccién en la memoria activa.

= generate_answer retorna la respuesta al controlador.
6. Restauracién de historial (opcional)

= restore_memory_from_db(chat_id) carga mensajes historicos desde la base de datos

y los convierte en objetos HumanMessage o AIMessage de LangChain.

Registro de eventos (logging) Se emplea el logger tfg_rag con niveles:
= INFO: inicio de generacién, recuperaciones, envio y recepcién de prompts.
= DEBUG: contenido de prompts generados y fragmentos completos.
= WARNING: ausencia de fragmentos relevantes.
= ERROR: fallos en la llamada a Ollama o en la construccién del prompt.

Referencia al cédigo fuente

La implementacién completa esta disponible en: generation_ service.py

8.5 Frontend: tecnologias y herramientas

La interfaz de usuario del sistema ha sido desarrollada utilizando el framework React, si-
guiendo una arquitectura basada en componentes funcionales reutilizables. La prioridad en el
disefio ha sido ofrecer una experiencia de usuario intuitiva, modular y perfectamente integrada
con el backend RAG.

Framework principal

= React: biblioteca principal para el desarrollo de interfaces de usuario, seleccionada por
su rendimiento, su enfoque declarativo y su ecosistema maduro de herramientas para el
desarrollo moderno de aplicaciones web.
Organizacion de la aplicacion

La aplicacién se ha estructurado en multiples componentes funcionales independientes, cada

uno encargado de gestionar una parte especifica del flujo de trabajo:

= Gestién de expedientes: el componente ExpedientelList permite crear nuevos expe-

dientes, visualizar la lista existente y seleccionar uno activo.
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= Gestiéon de documentos: los componentes FileUpload y FileList permiten subir do-
cumentos a un expediente seleccionado y visualizar o eliminar documentos previamente

subidos.

= Gestién de conversaciones: el componente ChatList muestra el historial de chats aso-
ciados a cada expediente. ChatHeader muestra la informacién contextual de la conversacion

activa.

= Interaccién con el modelo: el componente QueryLLM permite al usuario enviar preguntas
al sistema y recibir respuestas generadas. Es el niicleo de la interaccién conversacional

basada en recuperacién y generacion.

= Preguntas sugeridas: el componente SuggestedQuestions ofrece una lista de preguntas

frecuentes o relevantes que el usuario puede lanzar directamente con un clic.

= Gestién de usuario: el componente UserProfileButton muestra el perfil del usuario

autenticado mediante OAuth de Google, y permite cerrar sesién de forma segura.

= Autenticacion: el componente Login gestiona el proceso de autenticacién de usuarios me-
diante OAuth, integrandose con el sistema de carpetas, documentos y chats personalizados

por usuario.

Comunicaciéon con el backend

La comunicacién entre el frontend y el backend desarrollado en FastAPI se realiza mediante
peticiones HTTP asincronas. Se utiliza la libreria axios para simplificar la gestién de solicitudes
y respuestas, manejando de forma comoda los errores y la configuracion de cabeceras cuando es

necesario.

Gestion del estado

El estado de la aplicacién se gestiona principalmente mediante los mecanismos nativos de
React (useState, useEffect, useContext). No se ha incorporado un sistema de gestién de
estado global adicional como Redux o Zustand, dado que la organizacién en componentes y el

tamano del estado manejado lo han hecho innecesario en esta fase.

Estilizacion y diseno visual

La apariencia visual de la interfaz ha sido desarrollada mediante CSS personalizado, sin
utilizar frameworks de disefio predisefiados como Material Ul o Bootstrap. Se ha optado por un
diseno oscuro, moderno y minimalista, centrado en maximizar la legibilidad del contenido y en

ofrecer una experiencia de usuario profesional.
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Herramientas auxiliares

Durante el desarrollo del frontend se han utilizado herramientas estandar del ecosistema
React:

= Node.js y npm para la gestiéon de dependencias y la ejecucién de scripts de desarrollo.
= axios para la gestién de peticiones HT'TP al backend.
= React Developer Tools en navegador para la depuracién de componentes y estados.

Esta estructura modularizada y bien definida ha permitido un ciclo de desarrollo agil y una

integracién fluida con el backend y los servicios de recuperacién aumentada de informacién.

8.6 Contenerizacion y orquestacion

Para garantizar un despliegue coherente, reproducible y facilmente escalable, el sistema com-
pleto ha sido contenerizado mediante Docker. Todos los componentes —base de datos, backend,
frontend y modelo de lenguaje— se ejecutan en contenedores independientes que se comunican

a través de una red interna definida en el archivo docker-compose.yml.

Orquestacién con docker-compose

La orquestacion de los servicios se realiza mediante docker-compose, lo que permite levantar,
detener y gestionar todos los contenedores con una unica instruccién. A continuacién se describen

los servicios principales definidos:

» db (PostgreSQL): contenedor basado en la imagen oficial postgres: 15, utilizado como
base de datos relacional del sistema. Los datos se persisten mediante un volumen externo

para garantizar su conservacién entre reinicios.

= ollama: contenedor que ejecuta el servidor Ollama, encargado de alojar localmente el
modelo de lenguaje Nous-Hermes-2. El contenedor esta configurado para utilizar la GPU
mediante el runtime nvidia, lo que permite aprovechar los 48 GiB de memoria de la GPU

A40 disponibles en la maquina virtual.

= backend: contenedor que construye e inicia el servidor FastAPI, encargado de gestionar los
servicios de ingesta de documentos, embeddings, recuperacién, generacion de respuestas,
sesiones de usuario y autenticaciéon. El contenedor también estd habilitado para ejecutar

procesos sobre GPU, especialmente en los servicios de embeddings y reranking.

= frontend: contenedor que compila y sirve la aplicaciéon React, encargada de la interfaz de
usuario. Estd expuesto en el puerto 3000 y depende del backend para interactuar con los

expedientes, documentos y consultas del sistema.

» (ngrok): se ha utilizado de forma opcional durante el desarrollo para exponer el frontend

publicamente, pero no forma parte del entorno de produccion.
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Gestion de dependencias y ejecucion

Cada contenedor se configura con sus propios archivos Dockerfile, definidos para instalar
unicamente las dependencias necesarias, minimizando el tamafnio de las imagenes y acelerando
el arranque de los servicios.

Los entornos estan definidos mediante variables de entorno almacenadas en ficheros .env,
separados para backend y frontend, que permiten parametrizar las rutas, credenciales y confi-

guraciones sin modificar el codigo fuente.

Ventajas del enfoque contenerizado

El uso de contenedores ha permitido:

Asegurar la coherencia del entorno entre desarrollo local y despliegue en servidor.

Facilitar el escalado horizontal o la sustitucién independiente de servicios.

Automatizar el arranque y la dependencia entre servicios mediante el sistema depends_on

de docker-compose.

Garantizar la portabilidad del sistema completo, simplificando su distribucién y despliegue

en nuevas infraestructuras.

8.7 Modelos de lenguaje utilizados

El sistema implementa un enfoque basado en Retrieval-Augmented Generation (RAG), com-
binando distintos modelos de lenguaje en funcién de las necesidades de cada etapa: generacion
de embeddings, recuperacion de fragmentos relevantes y generacion de respuestas.

A continuacién se describen los modelos seleccionados, junto con su finalidad y las razones

de su eleccién.

Modelo de generaciéon de embeddings: intfloat/e5-large-v2

Para representar los documentos y las consultas en el espacio seméantico, se ha utilizado el
modelo
e5-large-v2 de la familia intfloat, integrado a través de la libreria SentenceTransformers.

Este modelo ha sido elegido por su excelente rendimiento en tareas de biisqueda seméantica
y su capacidad para generalizar sobre dominios técnicos y aseguradores. Genera vectores de
dimension 1024, optimizados para comparaciéon mediante similitud de coseno.

Su ejecucion se realiza sobre GPU, acelerando significativamente el proceso de generacion de
embeddings tanto para los documentos durante la ingesta como para las consultas del usuario

en tiempo real.
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Modelo de reranking: cross-encoder/ms-marco-MiniLM-L12-v2

Para mejorar la precision en la seleccion de fragmentos relevantes, el sistema incorpora un
modelo CrossEncoder basado en MiniLM-L12-v2, entrenado sobre el benchmark MS MARCO.

Este modelo recibe como entrada pares de (pregunta, fragmento) y predice directamente
una puntuacién de relevancia. A diferencia de los métodos basados tnicamente en embeddings,
el CrossEncoder analiza ambos textos conjuntamente, permitiendo evaluar la correspondencia
semantica de manera mucho mas precisa.

Aunque su ejecucién es mas costosa computacionalmente, su uso como etapa opcional de
reranking ha demostrado ser especialmente ttil en consultas ambiguas o complejas, donde la

recuperacién puramente vectorial podria no ser suficiente.

Modelo de generacion de respuestas: Nous-Hermes-2

El modelo generativo principal utilizado para construir las respuestas es Nous-Hermes-2,
alojado localmente mediante 01llama. Este modelo de lenguaje ha sido seleccionado por ofrecer

un equilibrio éptimo entre:

= Calidad de generacion: respuestas coherentes, bien formadas y adecuadas al estilo pro-

fesional requerido en el &mbito asegurador.

= Costo computacional: posibilidad de ejecutarse eficientemente en una GPU NVIDIA
A40 con 48 GiB de memoria.

= Control de privacidad: al ejecutarse en infraestructura propia, se garantiza que los datos

sensibles no se transmiten a servicios externos.

El modelo se configura para generar respuestas estrictamente basadas en los fragmentos
proporcionados, minimizando la probabilidad de alucinaciones y garantizando la trazabilidad de

las fuentes utilizadas.

Sinergia entre modelos

El uso combinado de estos tres tipos de modelos permite maximizar la precisién, relevancia

y fiabilidad de las respuestas generadas:

= Embeddings para representar documentos y consultas en un espacio semantico compartido.
= Reranking para afinar la seleccién de los fragmentos mas relevantes.

= (Generacion para construir respuestas naturales, contextualizadas y verificables.

8.8 Infraestructura y recursos de hardware

Durante el desarrollo y ejecuciéon del sistema se han utilizado dos entornos principales: un

equipo de desarrollo local para tareas de implementacién y pruebas preliminares, y una méaquina
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virtual con recursos avanzados de computacion para el despliegue y ejecucién de los modelos de
lenguaje.
Equipo local de desarrollo

El desarrollo inicial del sistema se ha realizado en un entorno local con las siguientes carac-

teristicas:

Sistema operativo: Ubuntu 24.04.1 LTS (noble).

» Memoria RAM: 7.6 GiB (disponibilidad efectiva aproximada: 4 GiB).

CPU: arquitectura x86_ 64.

Editor de cédigo: Visual Studio Code.

Entorno de ejecucién: entornos virtuales gestionados con virtualenv.

Este entorno ha sido empleado para la implementacién de funcionalidades, el desarrollo in-
cremental de los servicios, las pruebas unitarias y la construccién de los contenedores Docker.

Maquina virtual para ejecucidén intensiva

Para ejecutar tareas computacionalmente costosas como la generacion de embeddings, el
reranking y la inferencia del modelo de lenguaje, se ha utilizado una maquina virtual de alto

rendimiento proporcionada por la instituciéon. Las caracteristicas técnicas de esta VM son:

» Sistema operativo: Ubuntu 22.04.5 LTS (jammy).

= Memoria RAM: 62 GiB, de los cuales méas de 50 GiB permanecen libres en ejecucion

normal.
= GPU: NVIDIA A40 con 48 GiB de memoria dedicada.
= CUDA: versién 12.2, compatible con los modelos utilizados.

= Driver: NVIDIA 535.247.01.

La presencia de la GPU A40 ha permitido ejecutar eficientemente tanto el modelo de embed-
dings como el modelo generativo local
(Nous-Hermes-2) y el modelo de reranking (CrossEncoder), lo que resulta esencial para man-

tener tiempos de respuesta adecuados en el sistema, final.
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Contenerizacion y despliegue con Docker

Todo el sistema se ejecuta de forma contenerizada mediante Docker, lo que permite aislar
cada servicio, controlar sus dependencias y simplificar el despliegue tanto en entornos locales
como en servidores dedicados. La definicién del entorno mediante docker-compose garantiza la

reproducibilidad y facilita las pruebas, el mantenimiento y la escalabilidad horizontal.

VM GPU
Ubuntu 22.04 - NVIDIA A40

Docker Engine
(red: rag_net)

react-frontend
nginx :B0 -+ host 3000

B0 -+ 5000 (REST)

fastapl-backe nd
uwlcorn ;5000 - host 5000
— - Embeddings (SBERT)
T — + FAISS (HNSW)

/ | .
..ffEDDD =+ 11434 [HTTP promptiresponse) I'.ISDDD =+ 5432 (0L localy |

3

|
| \
¥ 4
ollama-Iim 1 usaGPUA40
X postgresqgl 15 [lembeddings + FAISS)
Nous-Hermes-2 :114 34 -+ host 11500 5432 (vol postgres_data) .
-
= !
£

=~ usa GPU A0

Figura 8.1: Despliegue fisico del sistema: la VM con GPU NVIDIA A40 aloja un motor Docker
que ejecuta cuatro contenedores persistentes. El backend encapsula la API FastAPI, la gene-
racién de embeddings (SBERT) y la base vectorial FAISS; expone el puerto 5000 y consume
la GPU para acelerar tanto la inferencia de embeddings como la comunicacién con el LLM.
El modelo generativo ollama-11m publica 11434 y también hace uso directo de la GPU. El
frontend se sirve como nginx en el puerto 80 del contenedor y se mapea al 3000 del host,
mientras que la instancia postgresql:15 opera unicamente en la red interna (5432) sobre el
volumen postgres_data.

Detalles clave del docker-compose.

= Backend monolitico con GPU. Al integrar el microservicio de embeddings y el indice
FAISS dentro del contenedor backend, se evitan llamadas de red internas y se simplifica
la gestién de dependencias Python (SentenceTransformers, faiss-cpu / faiss-gpu).

El pardmetro runtime:nvidia y la reserva de recursos en deploy.resources exponen la
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GPU al contenedor.

= LLM desacoplado. El contenedor ollama-11m ejecuta Nous-Hermes-2 mediante Ollama
y publica el puerto 11434, lo que permite reemplazar el modelo sin reconstruir el backend

y balancear carga si se anaden réplicas.

» Persistencia duradera. Dos volimenes gestionan el estado: postgres_data (metadatos,
binarios de documentos) y ollama (modelos y cachés del LLM). Asi pueden actualizarse

los contenedores sin pérdida de datos, facilitando ademas la copia de seguridad.

= Red interna rag_net. Todos los servicios se conectan en la misma red bridge por defecto;
solo el puerto 3000 (frontend) se publica al host, lo que reduce la superficie de exposicion,
y a los endpoints del backend se accede siempre desde llamadas que se redirigen desde el

frontend.

» Inicio idempotente. El backend ejecuta init_db.py antes de lanzar Uvicorn, de modo

que las migraciones de esquema se aplican automaticamente al arrancar el stack.

= Escalabilidad horizontal. El frontend es sin estado y puede escalarse con réplicas; el
backend también, gracias a la conexién a PostgreSQL (bloqueo de escritura gestionado)
y al uso de FAISS en modo lectura concurrente. E1 LLM puede escalarse mediante un

balanceador TCP si se dispone de varias GPU.

Este enfoque proporciona aislamiento, reproducibilidad y un camino claro para la futura
orquestaciéon en Kubernetes o Swarm, a la vez que mantiene la simplicidad necesaria para pruebas

locales y despliegues en una tnica VM.

Aprovechamiento de recursos
Gracias a esta infraestructura dual se ha podido llevar a cabo:
= Un ciclo de desarrollo rapido en local, con pruebas aisladas por componente.

= Una validacién realista del sistema completo sobre GPU en la VM, evaluando tiempos de

respuesta, carga de modelos y estabilidad del sistema bajo uso prolongado.

8.9 Mecanismos de seguridad implementados

La solucién incorpora un conjunto de medidas defensivas alineadas con los principios de

minima exposicion y defensa en profundidad. El[Tabla 8.1 resume cada mecanismo y su objetivo.
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Cuadro 8.1: Contramedidas de seguridad actualmente activas

Mecanismo Objetivo / amenaza mitigada
Autenticacién OAuth2 Verificar identidad y limitar uso de tokens robados (spoo-
fing)

Expiracién y renovacion de tokens Restringir ventana de ataque por compromiso de sesién

Validacién de entrada (Pydantic)  Prevenir inyecciones y payloads malformados (tampering)

CORS restringido Bloquear peticiones CSRF /x-site; limitar origenes
Sanitizado de ficheros Evitar carga de contenido ejecutable / no permitido
Registro estructurado (logging) Auditoria, trazabilidad y deteccién de patrones andémalos
Contenedorizaciéon Docker Aislar dependencias y reducir superficie de ataque
Reglas nginz + HTTPS Cifrado en transito y redireccién segura

Gestién granular de permisos Acceso por expediente y usuario autenticado (principio de

menor privilegio)

Las contramedidas se complementan con pruebas unitarias y de integraciéon que verifican

rutas de autenticacion, validacién de carga de documentos y politica CORS.

Limitaciones actuales No se incluye atun cifrado en reposo de indices FAISS ni de blobs

de la base de datos. Tampoco se han realizado pruebas de penetration testing completas; estas

acciones se planifican en la [Subseccion 10.4.1]

8.10 Resumen del entorno de trabajo

El desarrollo e implementacion del sistema se ha sustentado en un conjunto de herramientas,
librerias y entornos cuidadosamente seleccionados para maximizar la eficiencia, la coherencia y
la trazabilidad del flujo conversacional basado en recuperacién aumentada de informacién.

En el backend, se ha optado por una arquitectura modular construida sobre FastAPI, con una
integracién directa de modelos de embeddings y reranking, y una indexacién eficiente mediante
FAISS. La logica se ha estructurado en servicios independientes, cada uno con responsabilidad
clara y bien delimitada.

En el frontend, la eleccion de React ha permitido construir una interfaz clara, intuitiva y
alineada con el enfoque conversacional del sistema. La organizacién basada en componentes, la
comunicacién asincrénica con el backend y la estética oscura personalizada han contribuido a
una experiencia de usuario profesional y consistente.

La contenerizacién de todos los servicios mediante Docker ha permitido mantener la cohe-
rencia entre entornos locales y de servidor, facilitando el despliegue y la prueba del sistema en
condiciones realistas.

Por dltimo, la disponibilidad de una maquina virtual con GPU NVIDIA A40 y recursos

de alto rendimiento ha sido un factor clave para ejecutar modelos de lenguaje avanzados como
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Nous-Hermes-2, permitiendo validar la solucién propuesta no solo a nivel funcional, sino también
en términos de rendimiento y escalabilidad.
Este conjunto de herramientas y entornos ha permitido desarrollar un sistema robusto, flexible

y listo para su evaluacién en escenarios reales del ambito asegurador.
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Pruebas

9.1 Cobertura de pruebas

Capitulo 9

Este apartado muestra los resultados obtenidos al ejecutar la bateria completa de tests con

pytest y pytest-cov. El comando empleado fue:

PYTHONPATH=backend/ pytest tests --cov=app --cov-report=term-missing

La Tabla resume el nimero de lineas instrumentadas, las que no se ejecutaron, el porcen-

taje de cobertura y las lineas exactas sin cubrir para cada médulo.

Cuadro 9.1: Cobertura por fichero.

Archivo Total | Faltan % | Lineas sin cubrir

app/api/auth_google.py 43 5 88 | 17-21, 56

app,/api/chat.py 88 12 | 86 | 14-18, 34-35, 60-61, 80-81, 109-110

app/api/documents.py 83 4 95 | 20-24

app/api/expedientes.py 91 9 90 | 19-23, 135-137, 142, 150

app/api/logs.py 35 4 89 | 24, 47-49

app/api/query.py 50 0 | 100 | -

app/core/config.py 11 1 91 | 16

app/core/database.py 12 4 67 | 20-24

app/core/models.py 46 0 | 100 | —

app/main.py 35 0 | 100 | —

app/middleware/load__user__middleware.py 18 13 28 | 9-24

app/middleware/logging middleware.py 26 18 31 | 13-43

app/services/embedding_ service.py 22 3 86 | 32-34

app/services/generation_ service.py 90 15 83 | 98-100, 108-121, 195-196

app/services/index_ service.py 79 8 90 | 42, 74-75, 78-T9, 85-86, 118

app/services/ingestion__service.py 177 52 71 | 36, 40-46, 50-56, 60-66, 70-83, 95, 110,
121-123, 136, 151-152, 161-166, 208,
210211

app/services/retrieval _service.py 85 15 82 | 32-34, 66-68, 81-82, 88, 105, 120-121,
127-129

TOTAL 991 163 84

Analisis

= La cobertura global alcanza el 84 %, por encima del umbral minimo del 80 %.
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» Los médulos clave (embedding, ingestion, indexing, retrieval y generation) superan el 80 %.

= El incremento se consiguié mediante fixtures, stubs y monkeypatching para aislar

dependencias externas, manteniendo las pruebas rapidas y reproducibles.

= Las lineas sin cubrir se concentran en middlewares y ramas de error poco probables, sin

impacto directo en la légica de dominio.

Con estos resultados se confirma que los componentes criticos del sistema estdn adecuada-

mente validados y se dispone de una base fiable para futuras evoluciones.

9.2 Pruebas funcionales sobre el sistema completo

Una vez garantizada la estabilidad del sistema a través de pruebas unitarias y de integracion,
se procede a validar su comportamiento funcional mediante un conjunto de pruebas especificas

disenadas sobre un expediente simulado.

A diferencia de las pruebas anteriores, estas no se centran en unidades aisladas del codigo,
sino en evaluar el sistema completo desde el punto de vista del usuario final. Para ello, se ejecutan
consultas reales sobre documentos reales previamente cargados, y se analiza tanto la precisiéon

de las respuestas generadas como la trazabilidad del contenido utilizado.

Estas pruebas funcionales permiten validar aspectos criticos como:

= La correcta ingesta y chunking de documentos en el indice vectorial.

= La fidelidad del sistema RAG al responder exclusivamente con base en el contexto dispo-

nible.

= Kl comportamiento del modelo generativo frente a consultas tanto narrativas como fac-

tuales.

» La integracién de los distintos componentes (embedding, retrieval, prompt generation,
LLM).

A continuacion, se detalla el expediente de pruebas empleado para la validacién del sistema,
asi como los resultados obtenidos tras diversas consultas representativas.

Estos cuatro ficheros se agrupan en un “expediente de pruebas” que simula un caso hibrido
hogar—auto. Al cargarlos en el indice vectorial, se garantiza que las consultas posteriores se

resuelvan exclusivamente sobre este corpus, lo que facilita la trazabilidad.
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Documento Propésito
Péliza de seguro de hogar (HO-2025- | Coberturas, vigencia y franquicias.
00012345)

Recibo de prima del seguro de hogar

Estado de pago e importes abona-

dos.

Formulario de reclamacién de sinies-
tro de hogar (CLM-2405-001)

Datos de siniestro real para causas

y cuantias.

Parte de declaracion de siniestro —
automévil (SIN-2505-004)

Contrastar respuesta en ramo autos.

Cuadro 9.2: Documentos incluidos en el expediente de pruebas

9.3 Diseio de las pruebas

1. Analisis de flujo. Tres consultas representativas analizadas con logs de cada etapa: to-

kenizacién, recuperacion, reranking, generacién y postprocesado.

2. Test de usabilidad. Cuatro usuarios reales ejecutan tareas guiadas. Se registran métricas

como el cuestionario SUS, tiempos, repreguntas y feedback cualitativo.

9.4 Preguntas seleccionadas

Pregunta

Documento(s) obje-

tivo

Motivo

P1. ;Cual es la suma asegurada para
danos por agua en la pdliza HO-2025-
000123457

Poliza de hogar

Extraer un valor técnico

en tabla.

P2. Enumera los danos apreciados y la
estimacién de reparacion en el parte
auto SIN-2505-004.

Parte de siniestro auto

Leer lista semiestructura-

da.

P3. Demuestra si la péliza HO-2025-
00012345 estd al corriente de pago

(importe abonado y fecha de emisién).

Péliza + Recibo

Razonar con datos multi-

fuente.

Cuadro 9.3: Preguntas seleccionadas para el analisis de flujo

0.5 Analisis detallado de P1

Pregunta lanzada

= Texto: ;Cudl es la suma asegurada para dafios por agua en la péliza HO-2025-000123457

= Timestamp: 17:06:57,700
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1. Normalizacién y carga de indice

= Query normalizada:
query: cual es la suma asegurada para danos por agua en la poliza
HO0-2025-000123457

» Indice con expediente_id = 3 abierto.

2. Generacién de embeddings
= Modelo: intfloat/e5-large-v2 en GPU.

» Latencia: 2,18 s (de 17:06:57 a 17:06:59).

3. Bisqueda k-NN en FAISS

= Top-5 recuperado. Uno de los fragmentos contiene: “dafios por agua — 25.000 €”.

4. Reranking cruzado
= Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

» Resultados finales:

Pos. | Fragmento (abreviado) score__rerank
“objeto del seguro... dafios materiales...” 3,0059
“poliza. .. combinado...” 2,8608
“Recibo de prima...” 1,4269

5. Construccion del prompt Se insertan los 5 fragmentos, separados por delimitadores —-

y con directriz de “modo factual”.

6. Generacion de la respuesta
= LLM: Nous-Hermes-2, inferencia en 4,47 s.

= Salida: “La suma asegurada para dafnos por agua es de 320,00 €.”

7. Validacién y diagnéstico

» Valor correcto: 25.000 €. El modelo eligié la prima neta (320,00 €) por ambigiiedad en

la etiqueta.
= Causas probables:

o La etiqueta “suma asegurada” no aparece de forma explicita en el fragmento relevante.

e El LLM selecciond el ntimero mas cercano en el texto.

= Impacto: precision@l = 0.
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8. Recomendaciones
= Mapear “dafios por agua” a un campo estructurado: suma_asegurada_agua.
= Parsear tablas durante la fase de ingestion.

= Penalizar en el reranking los fragmentos que no contienen palabras clave.

0.6 Analisis detallado de la consulta P2

Pregunta lanzada

= Texto: Enumera los danos apreciados y la estimacion de reparacion que figuran en el parte
de siniestro de automovil SIN-2505-004.

= Timestamp inicial: 17:11:38,042

1. Normalizacién y carga de indice

= Normalizacién de consulta:
query: enumera los danos apreciados y la estimacion de reparacion... (Supre-

si6én de tildes, conversién a lowercase).

» Indice con expediente_id = 3 abierto sin latencia perceptible.

2. Generacién de embeddings
= Modelo: intfloat/e5-large-v2 sobre GPU.

» Duracién: 1,94 s (de 17:11:38,043 a 17:11:39,979).

3. Busqueda k-NN en FAISS

(14

= Se recupera el top-5. El candidato #0 contiene la seccién: “--- danos apreciados ---

. estimacion de reparacion: 1.150 €”.

» Scores preliminares: entre 0,7821 y 0,8271.

4. Reranking cruzado
= Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

s Reordenacion resultante:

Pos. | Fragmento (abreviado) score__rerank
“ .. danos apreciados — paragolpes trasero...” 2,2252
Péliza de hogar (irrelevante) —1,0111
Resto de fragmentos (ruido) < 7,49
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5. Construccién del prompt RAG

= Se incluyen cinco fragmentos. Se destaca el tramo con la tabla de dafios y se anaden

instrucciones de “modo narrativo” (2-3 frases).

6. Generacion de la respuesta
= LLM: Nous-Hermes-2; inferencia en 3,03 s.

= Salida devuelta:

Los dafios apreciados y la estimacidén de reparacidén en el parte de

siniestro de automévil SIN-2505-004 son los siguientes:

Danos:
1. Dafio en la parte trasera del vehiculo (Peugeot 308 1.5 BlueHDi).

2. Dafio en el parabrisas del vehiculo (Citroen C4).

Estimacidén de reparacidm:
Para ambos vehiculos, se estima una inversién total de aproximadamente

2.000 € en reparaciones.

7. Validacién y diagndstico

= Contenido correcto en el documento:

Paragolpes trasero: abollado y rayado.
e Portén maletero: deformacion leve.
e Sensor de aparcamiento trasero: averiado.

o FEstimacion de reparacion: 1.150 € (Taller Ramoén Auto Service).
» Errores detectados:

» El modelo omite dos de los tres dafios y afiade uno inexistente (parabrisas).

o Duplica el vehiculo y redondea la cuantia real (1.150 €) a aproximadamente 2.000 €.
= Causa raiz probable:

o El documento original usa vinetas ASCII ((cid:127)), que el parser conserva sin

reconocerlas como lista.

o Falta una etiqueta clara como “estimacién de reparacién:” en la misma linea que las

vinetas, lo que reduce la confianza del modelo y provoca errores.
= Impacto: respuesta incorrecta; precision@1 = 0.
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8. Recomendaciones de mejora

» Normalizar caracteres de vifieta ((cid:127) — o) e insertar saltos de linea consistentes

durante la ingesta.

» Detectar patrones como estimacion de reparacion: <importe> mediante regex y ex-

traerlos a campos estructurados.

= Penalizar en el reranking los fragmentos que contengan “estimaciéon” sin importe explicito

con simbolo de euro.
= Anadir una post-regla que exija al modelo devolver el mismo niimero de items que vinetas
bajo la cabecera “danos apreciados”.
9.7 Analisis detallado de la consulta P3
Pregunta lanzada

= Texto: Demuestra si la poliza HO-2025-000123/5 estd al corriente de pago, indicando el

tmporte abonado y la fecha de emision del recibo.

= Timestamp inicial: 17:14:38,151

1. Normalizacién y carga de indice

= Consulta normalizada:
query: demuestra si la poliza ho-2025-00012345

esta al corriente de pago... (tildes y maytusculas suprimidas).

» Indice con expediente_id = 3 abierto instantdneamente.

2. Generacién de embeddings
» Modelo: intfloat/e5-large-v2 sobre GPU.

» Latencia: 1,77 s (de 17:14:38,151 a 17:14:39,922).

3. Busqueda k-NN en FAISS

» Top-5 recuperado. El candidato #0 ya contiene: “fecha de emisién: 17/05/2025 ... importe
total a pagar 344,48 €.
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4. Reranking cruzado
s Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

= Los dos primeros puestos fueron:

Pos. | Fragmento score__rerank
1 Péliza (HO-2025-00012345, datos generales) 3,7907
2 | Recibo de prima (fecha de emisién 17/05/2025) 3,4772

5. Construccion del prompt
= Se afiaden los fragmentos del recibo y de la pdliza, junto con la directriz de "modo narra-
tivo”.
6. Generacion de la respuesta
= LLM: Nous-Hermes-2; inferencia en 4,82 s.
» Salida obtenida (extracto):

“El sistema no tiene acceso a los documentos ... no hay informacién sobre si la poliza

esta al corriente de pago...”

7. Validacién y diagnéstico

Informacioén correcta en los documentos:

o Fecha de emisién: 17/05/2025
e Importe abonado: 344,48 €

« Estado de pago: el recibo incluye la frase ”el pago de este recibo acredita la vigencia

de la pdliza”, lo que indica que estd al corriente.

Errores detectados:
e El modelo ignora el fragmento del recibo, a pesar de tener un score de 3,47, y devuelve
una respuesta negativa genérica.

e Confunde la directriz de "modo narrativo” con una falta de informacién y activa una

respuesta por defecto.

Causa probable:
e El prompt pide demostrar si estd al corriente, pero el recibo no contiene esa frase
exacta, lo que hace que falle la heuristica de coincidencia.

e La politica interna del sistema activa una respuesta negativa al no encontrar coinci-

dencia literal, incluso aunque haya evidencia suficiente.

Impacto: respuesta incorrecta; precision@1 = 0.
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8. Recomendaciones de mejora

9

= Mapear frases comunes como ”el pago de este recibo acredita...” a un campo booleano

corriente_de_pago.

= Afiadir un post-procesador que combine fecha_emision + importe_total_pagar si am-

bos aparecen en la consulta.

= Incluir reglas de scoring que premien la co-ocurrencia de ”fecha de emision” y una cantidad

en € en el mismo fragmento.

Tras detectar inconsistencias en la interpretaciéon de ciertas consultas por parte del modelo
generativo, se ha modificado el prompt con el objetivo de comprobar si el problema reside en la

forma en que el modelo interpreta las instrucciones actuales.

9.8 Pruebas con cambio de prompt y parametros
9.8.1 Pregunta sobre dato concreto
Pregunta lanzada

¢ Cudl es la fecha de emision del recibo de prima del sequro de hogar HO-2025-
000123457

1. Normalizacion y carga de indice

= La query original se normaliza a: cual es la fecha de emision del recibo de prima

del seguro de hogar ho-2025-000123457 emision vencimiento caducidad.

» Se localiza y carga el FAISS index correspondiente al expediente 3. (INDEX OK, 1 ms).

2. Generacién de embeddings
» Modelo ST usado: intfloat/e5-large-v2 (1024 dims).

» El modelo se despliega en GPU (cuda); generacién de un inico embedding para la consulta

(2s aprox.).

3. Buisqueda vectorial (FAISS)
» Se recuperan los 5 chunks mds similares (TOP_K=5).

» Resultado 0 (score 0,8712) ya contiene el recibo deseado. Otros candidatos provienen de

la reclamacién de siniestro, la péliza y metadatos del recibo.
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4. Re-ranking (Cross-Encoder)
= Modelo: ms-marco-MiniLM-L12-v2.
» Re-evaliia los 5 pasajes anteriores: el recibo obtiene el maximo score re-rank (6,0273).

= Se elabora la lista final de MAX RETURNED=5 fragmentos.

5. Generacion del prompt RAG
= Se inserta el nuevo prompt factual/narrativo con las instrucciones revisadas.
= Se anaden los 5 pasajes al bloque {context}.

» Historial de conversacién vacio ({chat_history}).

6. LLM (Nous-Hermes-2)
= Tiempo total de llamada: 7,2s.
= Respuesta devuelta:
17/05/2025 [recibo_prima_hogar.pdf]

= El modelo cumple las reglas "factual”: valor tinico + archivo.

7. Persistencia y logging
» Respuesta almacenada en la coleccién de chats (chat_id=13).
» Traza frontal generada para auditoria (/api/logs).

= Duracién total del flujo: 10,06s.

Conclusién

El pipeline RAG identifica sin ambigiiedad la etiqueta literal fecha de emision: 17/05/2025
en recibo_prima_hogar.pdf, la posiciona como pasaje principal tras el re-ranking y el LLM
la devuelve exactamente en modo factual, demostrando que el nuevo prompt funciona correcta-

mente para consultas basadas en campos explicitos.

9.8.2 Pregunta sobre precio

Pregunta lanzada
¢ Cudl es el importe total a pagar que figura en ese mismo recibo?
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1. Restauracién de contexto conversacional

= Antes de la busqueda, el médulo MEMORY recupera los dos mensajes previos del chat 1/

(pregunta + respuesta sobre la fecha de emisién).

= El pronombre “ese mismo recibo” queda correctamente resuelto sin necesidad de repetir

la pdliza ni el nombre del archivo. El historial se inserta en {chat_historyl.

2. Normalizacion y carga de indice

s Consulta normalizada:

cual es el importe total a pagar que figura en ese mismo recibo?

= Se abre el indice FAISS del ezpediente 3 (INDEX OK).

3. Embeddings y btsqueda vectorial
» Modelo: intfloat/e5-large-v2 sobre GPU (2 s).

= Kl top-5 incluye nuevamente el archivo recibo_prima_hogar.pdf como el fragmento mas
similar (score 0,8323).

4. Reranking cruzado
s Modelo: ms-marco-MinilLM-L12-v2.

» El recibo mantiene la posicion 1 tras el reranking (score 0,2189). Los deméds fragmentos

descienden por no contener la etiqueta clave.

5. Construccién del prompt
» Se aplica el nuevo prompt factual/narrativo validado previamente.

= Los cinco fragmentos se insertan en

{context}, y el historial conversacional en {chat_history}.

6. Llamada al LLM
= Modelo: Nous-Hermes-2; inferencia en 4,2 s.
= Respuesta generada:
344,48 € [recibo_prima_hogar.pdf]
= Kl modelo sigue correctamente el modo factual: valor literal + fuente.
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7. Persistencia y logging
» La respuesta se guarda en la coleccién de chats (chat_id = 14).
» Registro frontend enviado via /api/logs.

= Duracién total del flujo: 6,39 s.

8. Conclusién

= La memoria conversacional recupera correctamente el turno anterior, permitiendo inter-

pretar el pronombre “ese mismo recibo” sin ambigiiedades.

= El motor RAG identifica la etiqueta importe total a pagar: 344,48 € en el documento

recibo_prima_hogar.pdf, y el LLM la reproduce de forma literal.

9.8.3 Pregunta sobre campo descripcion

Pregunta lanzada

¢ Qué se indica en el campo “descripcion de los hechos” en el formulario de reclama-

cion del sequro de hogar?

1. Normalizacién y bisqueda
= Consulta original: ;Qué se indica en el campo "descripcién de los hechos" ...7

= Consulta normalizada:

que se indica en el campo "descripcion de los hechos"...

= Se carga el indice FAISS del expediente 3. Los embeddings se generan con el modelo
intfloat/e5-large-v2 sobre GPU.

2. Recuperacién de fragmentos
= Se devuelven los tres fragmentos mas similares:

e reclamacion__seguro__hogar.docx — contiene literalmente el campo solicitado
(score 0.8391).

o objeto del sequro (poliza__hogar_realista.pdf) — score 0.8422.

o recibo de prima (recibo_prima_ hogar.pdf) — score 0.8369.

92



3. Reranking cruzado
s Modelo: ms-marco-MinilM-L12-v2.

= S6lo el fragmento (a) se conserva como contexto principal tras el reranking:

Candidato score_faiss | score_rerank
reclamacion (a) 0.8391 3.6648
objeto seguro (b) 0.8422 0.8062
recibo prima (c) 0.8369 —6,9301

4. Construccién del prompt

» Se usa la nueva plantilla “respuesta clara, precisa y profesional” (sin los dos modos ante-

riores).

» Contexto final: aproximadamente 3,3 kB (fragmento tinico + metadatos).

5. Generacion de la respuesta

= Modelo: Nous-Hermes-2; tiempo de inferencia: 6,0 s.
= Respuesta generada:

«En el campo "descripcion de los hechos” [...] se indica que ocurrié un siniestro el
15/05/2025 a las 18:30 h en el bario principal. La causa probable fue la rotura accidental
por desgaste de la llave de paso del lavabo, provocando una fuga de agua que inundo el
banio y filtré al techo del vecino inferior. El agua se corté inmediatamente y se contacto

con un fontanero de urgencia.» (reclamacion_seguro_hogar.docx)

6. Conclusién

= Kl nuevo prompt, unido a la reducciéon de TOP_K a 3, elimina fragmentos irrelevantes.

= El reranking posiciona correctamente el texto con la etiqueta “descripcién de los hechos”,

lo que permite una respuesta directa, precisa y con fuente citada.

Conclusién general de las pruebas

Las pruebas realizadas confirman que la arquitectura RAG logra:

= Recuperar con precision los fragmentos mas relevantes gracias a la combinacion de FAISS

(TOP_K) y reranking con Cross-Encoder.

= Reducir el ruido limitando el nimero de pasajes inyectados, lo que disminuye el tamafio

del prompt final.

» Citar la fuente adecuada cuando el texto contiene la etiqueta literal solicitada (por

ejemplo, descripcién de los hechos:).
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Factores criticos en el tltimo tramo (LLM) Los experimentos demuestran que el rendi-

miento final del modelo generativo depende especialmente de dos aspectos clave:

= La plantilla de prompt:
e Debe especificar claramente qué debe extraerse y como debe presentarse, evitando
ambigiliedades.
o Es recomendable reforzar las restricciones (no inventar, no parafrasear) para reducir
errores de alucinacion.
» Los parametros de recuperacion y generacion:
e TOP_K: controla cudntos candidatos iniciales se consideran. Valores altos mejoran el
recall, pero aumentan el ruido.

e MAX_CONTEXT_CHUNKS: limita los fragmentos incluidos en el contexto. Reducirlo me-

jora la precision en consultas densas.

o USE_RERANKING y RERANK_MODEL: permiten refinar la seleccion. En dominios muy

especificos puede ser 1til entrenar un modelo propio.

e DEFAULT_MODEL: el modelo LLM influye directamente en la fidelidad a las instruccio-

nes y en la tendencia a parafrasear.

Recomendacién final Para adaptar este sistema a otro dominio (documental, lingiiistico o

funcional), es imprescindible iterar sobre:

» el ajuste fino de los parametros clave (TOP_K, MAX_CONTEXT_CHUNKS, etc.),

= y la redaccién del prompt, buscando el tono y nivel de detalle adecuado.

Sélo asi se garantiza que la arquitectura mantenga el equilibrio necesario entre precision,

concision y robustez para cada caso de uso.

9.9 Pruebas de usabilidad

Las pruebas de usabilidad persiguen un doble objetivo: (i) comprobar que la interfaz y los
flujos de trabajo del sistema RAG de consulta de pdlizas resultan comprensibles y eficientes
para usuarios con perfiles diversos y (ii) obtener evidencias cualitativas que orienten los ajustes

finales de la aplicacién.

9.9.1 Diseno experimental

Sesiones. Se llevaron a cabo de forma presencial durante la ltima quincena de mayo de 2025,
empleando un ordenador portatil con pantalla de 15” Full-HD, ratén externo y conexién

estable a la red local.
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Participantes. Tres usuarios ajenos al desarrollo.

Tareas. Cada participante sigui6 la secuencia de dieciocho tareas descritas en el documento
«Pautas y tareas para la prueba de usabilidady, proporcionado antes de la sesion y también

explicado verbalmente por el moderador.

Instrumentacion. = Observacién directa y notas de campo tomadas por el evaluador.
= Registro de logs de todo el flujo.

= Formulario post-tarea implementado en |Google Forms.

Meétricas. No se midieron tiempos ni niimero de clics, dado que los usuarios consultaban el
listado de tareas sobre la marcha y el evaluador supervisaba in situ sus acciones. Se regis-

traron:
1. Exito de la tarea (cumplida / no cumplida).

2. Incidencias (Si hay algin problema grave en el transcurso de las tareas)

9.9.2 Resultados por participante
Participante #1 — «Isabel»

Perfil demografico

s Edad: 20 anos

» Formacién: Ciclo de grado superior (Dietética)

» Experiencia previa en seguros y tramites legales: Si

= Experiencia previa con aplicaciones basadas en TA: Si

Desarrollo de la sesién Sesion presencial en la pentltima semana de mayo; la participante
completé las dieciocho tareas previstas sin que se registrara el tiempo de cada una, puesto que

la lectura del documento de pautas formaba parte del flujo natural del ensayo.
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https://github.com/kuvx/entrega_tfg/blob/v3/Pautas_prueba_usabilidad.pdf
https://forms.gle/MVcShzdBGUYmBsJz5

Cuadro 9.4: Resumen de la sesién de Isabel

Tarea clave Observaciones del evaluador Estado

Iniciar sesién Autenticacion Google exitosa a la primera. Cumplida
Crear expediente Genera tres expedientes sin dificultad. Cumplida
Editar nombre del expediente Localiza el icono de edicién sin ayuda. Cumplida
Borrar expediente Duda brevemente por la posiciéon del icono Cumplida

de papelera.
Subir / descargar ficheros Valora la rapidez de carga. Cumplida
Borrar fichero Ejecucion correcta. Cumplida

Crear / editar / borrar chat ~ Pequeno freeze al borrar; resuelto al recar- Incidencia menor

gar.

Preguntas libres al modelo Obtiene respuestas coherentes. Cumplida
Preguntas frecuentes Navegacion fluida. Cumplida
Exploracion libre Comenta que la iconografia es clara. Cumplida

Resultados de las tareas

Incidencias observadas Bloqueo temporal de la interfaz al borrar un chat (menor); la usuaria

lo resolvié recargando la pagina.

Cuestionario posterior (Google Forms)

Facilidad de uso: 5/5

Velocidad percibida: 5/5

Utilidad profesional: 5/5 («S7, totalmentey)

Comentario destacado: “En una consulta el bot no respondia a nada del expediente”.

Valoracion de logs Se detectaron respuestas poco relevantes cuando el historial del chat era
extenso, probablemente por un prompt demasiado largo. Los fragmentos recuperados se alinean
correctamente con las preguntas, lo que confirma el correcto funcionamiento del retrieval y la
generacion del prompt; la deficiencia se atribuye al procesado final del LLM.

Participante #2 — «Noa»

Perfil demografico
= Edad: 19 anos

» Formacién: Ciclo de grado superior (Laboratorio clinico)
= Experiencia previa en seguros y tramites legales: No

= Experiencia previa con aplicaciones basadas en IA: Si
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Desarrollo de la sesién Sesion presencial en la pentltima semana de mayo; duracién apro-

ximada de 10 min. La participante inici6 sesién, cred y borrd accidentalmente un expediente, lo

recred, subié dos documentos, generé el indice y exploré el chat con preguntas libres y sugeridas.

Cuadro 9.5: Resumen de la sesién de Noa

Tarea clave

Observaciones del evaluador

Estado

Iniciar sesion

Crear expediente

Borrar expediente

Autenticaciéon Google exitosa.
Crea uno, lo borra por error y lo re-
crea.

Pulsacién accidental de la papelera.

Cumplida

Cumplida (con incidencia)

Incidencia menor

Subir documentos Carga dos PDF sin problemas; chun- Cumplida
king correcto.

Generar indice Indice creado autométicamente. Cumplida

Crear chat Chat operativo y estable. Cumplida

Preguntas libres al modelo Cinco consultas respondidas correcta- Cumplida
mente.

Preguntas sugeridas Navegacion fluida. Cumplida

Exploracion libre Varias recargas consecutivas sin im- Cumplida
pacto funcional debido a traductor
activado.

Resultados de las tareas

Incidencias observadas

» Pulsacién accidental del icono de borrado del expediente (disenio visual). — menor

= Seis recargas consecutivas que generaron multiples peticiones de autenticacién, debido a

un texto erréneo en un botén por efecto del traductor. — menor

Cuestionario posterior (Google Forms)

» Facilidad de uso: 5/5

Velocidad percibida: 5/5

» Utilidad profesional: 5/5

= Aspecto mas valorado: “Subir varios archivos a la vez y el buscador.”
= Mejora sugerida: “Vista que se actualice sola tras subir archivos.”

= Comentario final: “Gran trabajo.”
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Valoracion de logs Los registros muestran un flujo estable: ingesta, retrieval y generacién se
completaron sin errores. Las multiples autenticaciones consecutivas no afectaron al rendimiento.
Se confirma la robustez del nticleo funcional y se identifican mejoras de usabilidad en los controles

de borrado y la actualizaciéon automéatica de la vista.

Participante #3 — «Miguel»
Perfil demografico
= Edad: 22 anos
= Formacién: Grado en Ingenieria Informatica
= Experiencia previa en seguros y tramites legales: No

= Experiencia previa con aplicaciones basadas en TA: Si

Cuadro 9.6: Resumen de la sesiéon de Miguel

Tarea clave Observaciones del evaluador Estado

Iniciar sesién Autenticacion Google satisfactoria en el pri- Cumplida
mer intento.

Crear expediente Genera tres expedientes consecutivos (IDs Cumplida
9, 10, 11) sin ayuda.

Editar nombre del expediente Renombra «Prueba 1» a «Prueba 1 — edity Cumplida

sin asistencia.

Borrar expediente No se intenté durante la sesion. N/A

Subir / descargar ficheros Carga, descarga y pre-visualiza varios PD- Cumplida
F/DOCX con buena latencia percibida.

Borrar fichero Elimina un documento; el indice se regenera Cumplida
correctamente.

Crear / editar / borrar chat Renombra un chat y formula preguntas; lu- Cumplida
jo sin contratiempos visibles.

Pregunta libre al modelo Obtiene respuestas coherentes hasta que se- Incidencia menor
lecciona un expediente sin indice.

Preguntas frecuentes No utilizadas. N/A

Exploracion libre Explora ments; destaca la sencillez general, Cumplida
aunque comenta exceso de morado en titu-

los.

Incidencias. Se registraron dos incidencias menores:

1. Al intentar borrar un documento se mostré un mensaje “Error al eliminar documento”,

aunque la operaciéon concluyé con éxito y el indice se regener6é autométicamente.
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2. En un expediente recién creado (ID 11) el modelo devolvié “No se encontraron fragmen-
tos relevantes” porque atn no existia indice FAISS, provocando una respuesta vacia; la

situacién se resolvié al volver al expediente indexado.

Valoracion subjetiva. El participante calificé la interfaz como «Muy clara» e «intuitivay;
la velocidad percibida fue «Muy rdpidas.Declardé que el sistema respondié «Siempres de forma
correcta y no detecté alucinaciones. Recomendaria la herramienta a otros profesionales y consi-
deré que le resultaria «S7, totalmente» 1til en un entorno real.Unica queja: el color morado de

algunos titulos le confundié puntualmente.

Valoracion del comportamiento observado. Los registros muestran un flujo de trabajo
fluido en la mayor parte de las tareas. El tinico error funcional («Error al eliminar documento»)
parece derivar de un borrado duplicado del mismo archivo; el backend manejé la situacién
y reconstruyé el indice sin intervencién del usuario. El segundo contratiempo —consulta sin
indice— revela la necesidad de generar automéaticamente el indice tras crear un expediente
vacio o de advertir al usuario antes de permitir preguntas en dicho contexto. Por lo demds,
los fragmentos recuperados fueron relevantes y el modelo mantuvo la coherencia incluso con
multiples cargas y renombrados en la misma sesién, lo que corrobora la solidez de la tuberia de

retrieval y del prompt generado.
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Capitulo 10

Conclusiones

A lo largo de este Trabajo Fin de Grado se ha concebido, implementado y verificado un sistema
conversacional basado en Generacién Aumentada por Recuperacién (RAG) orientado
al 4mbito asegurador. Partiendo de los objetivos establecidos en el el proyecto ha
materializado una arquitectura modular que combina bisqueda vectorial, reranking y generacién
de lenguaje, todo ello bajo un marco de buenas practicas software y cumplimiento normativo
(AT Act, ISO/IEC 42001).

Limitaciones principales. El corpus de pruebas abarca todas las ramas del sector asegura-
dor de forma amplia, pero la precisién y la pertinencia de las respuestas podrian incrementarse si
el sistema se entrenase con documentacién especifica de un ramo concreto. El modelo generativo,
aun estando contextualizado, puede producir alucinaciones cuando la informacién no aparece de
manera inequivoca en los fragmentos recuperados. Por ultimo, la version de despliegue éptima

requiere GPU, lo que dificulta su implantaciéon en entornos con recursos limitados.

10.1 Aportaciones

10.1.1 Contribuciones técnicas

= Arquitectura microservicios contenerizada. Se ha diseniado una pila backend—frontend
desacoplada (Docker Compose)
que separa ingesta, embeddings, recuperacién, generacién y persistencia, simplificando

el mantenimiento y habilitando el escalado horizontal.

= Pipeline RAG completo y trazable. El sistema integra FAISS para la indexacion
vectorial, un Cross-FEncoder como reranker y un LLM alojado con Ollama, garantizando
control local de datos y auditabilidad acorde al Al Act.

= Calidad y cobertura de cédigo. La bateria de pruebas unitarias cubre los servicios de
ingesta, embeddings, recuperacion y generacion, favoreciendo la estabilidad evolutiva del

producto.
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10.1.2 Contribuciones metodoldgicas

= Desarrollo iterativo-incremental. El prototipado rapido, acompanado de ciclos de
prueba y feedback, ha facilitado la validacién temprana de requisitos y la detecciéon de

defectos.

= Enfoque ético y regulatorio desde el diseno. El proyecto integra principios de privacy-
by-design / audit-by-design, incorporando logging exhaustivo, segmentacién de contexto

por usuario y criterios de sostenibilidad.

10.2 Impacto socio-econémico

El prototipo evidencia que las consultas en lenguaje natural, respaldadas por evidencia do-
cumental, disminuyen el tiempo de busqueda de informacién y reducen la fricciéon operativa en

la gestién de poélizas y reclamaciones. Esta mejora de eficiencia puede traducirse en:

= Mayor calidad de servicio al cliente, al proporcionar respuestas rapidas y fundamentadas.

» Disminuciéon de errores humanos en tareas repetitivas y, por tanto, reduccién de costes

asociados a rectificaciones.

» Fomento de la transparencia frente a organismos reguladores, gracias a la trazabilidad

completa de las fuentes utilizadas.

10.3 Reflexién personal y académica

La realizacién del trabajo ha reforzado competencias clave del grado, como el diseno de arqui-
tecturas distribuidas (CG6), la evaluacion de software fiable (IS1) y la integracion de requisitos
éticos y legales (TFG1). Los mayores retos fueron la orquestacién de microservicios y el desarro-
llo del backend; superarlos permitié consolidar conocimientos préacticos sobre ingenieria de TA

aplicada y desarrollo de software.

10.4 Trabajo futuro

1. Ampliacién del corpus. Automatizar la ingesta de nueva normativa y modelos contrac-

tuales con control de versiones.

2. Reranking especializado. Entrenar un Cross-Encoder especifico para seguros en espa-

nol.

3. Fine-tuning instructivo del LLM. Reducir ambigiiedad y sesgos residuales mediante

datos conversacionales de dominio.

4. Explicabilidad y métricas ESG. Anadir mapas de saliencia y exponer indicadores de

consumo energético por transaccion.
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5. Despliegue multi-tenant. Migrar a Kubernetes con Horizontal Pod Autoscaling y ais-

lamiento de datos.

10.4.1 Fortalecimiento de la ciberseguridad

Aunque el sistema incorpora medidas bésicas (token de autenticacion, validacién de entradas,

control de permisos y registro de actividad), se proponen estas lineas para reforzar la proteccién:

» Modelo de amenazas formal. Elaborar un andlisis STRIDE [18] y alinear riesgos con
OWASP Top 10 for LLM Applications [23].

= Cifrado en reposo. Aplicar cifrado a base de datos e indices vectoriales.

» Gestién de secretos. Introducir HashiCorp Vault [9] para rotacién y revocacién de cre-

denciales.
= RBAC granular. Definir privilegios més finos sobre documentos y expedientes.

= Pruebas de robustez y monitorizacion. Desplegar baterias de prueba de inyeccién y

alertas en tiempo real.

10.5 Vision a largo plazo

A medio plazo (2025-2027) se prevé evolucionar la plataforma hacia un modelo Software-as-
a-Service multi-compania e integrar médulos de deteccion de fraude en tiempo real. La consoli-
dacién de normas como ISO/IEC 42001 y el Reglamento Europeo de TA impulsara la demanda
de soluciones RAG con gobernanza demostrable; el presente trabajo sienta las bases técnicas y

metodoldgicas para responder a ese escenario.

En sintesis, el proyecto alcanza los objetivos planteados y establece una base sélida para la
adopcion de arquitecturas RAG en contextos regulados. Demuestra que la TA puede integrarse
de forma responsable, auditada y generadora de valor real en el sector asegurador, abriendo la
puerta a una nueva generacién de servicios cognitivos orientados a la eficiencia, la transparencia

y la sostenibilidad.
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Apéndice A

Manual de Instalacion

Este capitulo describe el procedimiento necesario para instalar, configurar y ejecutar el sis-
tema de consulta inteligente de documentos desarrollado como Trabajo de Fin de Grado. La
instalacion se realiza mediante contenedores Docker y no requiere instalacién manual de depen-

dencias adicionales en el sistema operativo anfitrién.

A.1 Requisitos del sistema

A.1.1 Hardware minimo recomendado

= CPU: 4 nicleos (8 recomendados)
» RAM: 8 GB minimo (16 GB recomendado)
» Almacenamiento: al menos 10 GB libres

» GPU NVIDIA (opcional, recomendable para acelerar inferencia del modelo LLM mediante
CUDA)

A.1.2 Software necesario

= Docker Engine versién 24 o superior

= Docker Compose v2

Git (para clonar el repositorio)

» (Opcional) Cuenta en Google Cloud para generar credenciales OAuth

A.2 Clonacion del repositorio
Desde la terminal, clonar el repositorio que contiene el sistema completo:
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git clone https://github.com/kuvx/entrega_tfg/blob/v3
cd tfg_rag

A.3 Estructura del sistema

La raiz del proyecto contiene los siguientes componentes relevantes:

» backend/: codigo fuente del servidor FastAPI, junto con los microservicios

» backend/vector__store/: carpeta donde se almacenan los indices FAISS generados para

cada expediente.
» frontend/: c6digo fuente del frontend y de todos los componentes que lo conforman.
» alembic/: migraciones de base de datos mediante Alembic.
= init_ db.py: script de inicializacién automatica de la base de datos PostgreSQL.

= docker-compose.yml: orquestador de contenedores que define todos los servicios del

sistema.

» Dockerfile.frontend / Dockerfile.backend: instrucciones para construir los contene-

dores personalizados.

A.4 \Variables de entorno

Las credenciales y configuraciones sensibles se definen en el archivo backend/.env. Un ejem-

plo tipico de configuracién es:

GOOGLE_CLIENT ID=<tu_id_oauth>
GOOGLE_CLIENT_SECRET=<tu_clave_oauth>
SESSION_SECRET_KEY=<clave_secreta_aleatoria>
DATABASE_URL=postgresql://tfg_user:tfg_pass@db:5432/tfg_rag
API_URL=http://localhost:5000
OLLAMA_API=http://ollama:11434/api/generate

A.5 Configuracion del puerto y OAuth
Por defecto, el sistema expone:
= El backend en el puerto 5000
» El frontend en el puerto 3000 (redirigido al 80 interno)

= Ollama en el puerto 11434
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Estos puertos se pueden modificar facilmente editando la seccién correspondiente del archivo

docker-compose.yml, por ejemplo:

frontend:
ports:
- ?23000:80°°
backend:
ports:
- ?75000:5000""

Si se cambia el puerto del frontend, se debera también actualizar en Google Cloud Console
los URI de redireccién permitidos para OAuth. Esto se realiza desde https://console.

cloud.google.com/apis/credentials, editando el ID de cliente:

= URI de redireccién: http://localhost:3000

= Origenes de JavaScript autorizados: http://localhost:3000

A.6 Obtencion de claves OAuth

Para poder autenticar usuarios mediante Google en local, cada desarrollador debera:

1. Crear un nuevo proyecto en Google Cloud Console
2. Activar la API “OAuth 2.0 Client ID”
3. Registrar los URI mencionados (puerto del frontend)

4. Generar las credenciales y copiar el client_id y client_secret en el archivo .env

A.7 Ejecucion del sistema

Desde la raiz del proyecto, ejecutar el siguiente comando:
docker compose up --build

Esto levantara automaticamente los siguientes servicios:

» PostgreSQL (servicio db): almacén de documentos, expedientes y usuarios.
» Ollama (servicio ollama): servidor del modelo LLM con soporte GPU.
» Backend (servicio backend): servidor FastAPI y légica de negocio.

» Frontend (servicio frontend): interfaz de usuario basada en React.

El backend ejecuta automéaticamente el script init_db.py al iniciar, aplicando migraciones

y asegurando que las tablas estan inicializadas.
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A.8 Uso del sistema

Una vez desplegado, se puede acceder a la interfaz desde http://localhost:3000. El flujo

de uso es el siguiente:

= Kl usuario inicia sesion mediante su cuenta de Google.
= Puede crear uno o varios expedientes.

» Puede subir documentos en distintos formatos (PDF, docx, txt, eml, html) a cada expe-
diente. Estos se almacenan en la base de datos y se fragmentan para generar embeddings

semanticos.
= FEl indice FAISS asociado se almacena autométicamente en backend/vector_store/.

= Al iniciar un chat en un expediente, el sistema recupera fragmentos relevantes mediante

busqueda seméantica y los utiliza como contexto para la respuesta del modelo LLM.

A.9 Regeneracion de indices

Siempre que se sube o elimina un documento, el sistema elimina y regenera los indices FAISS

correspondientes, garantizando la coherencia entre los datos de entrada y el contexto consultado.

Registro y visualizacion de logs

Los eventos del backend se registran en archivos planos dentro de la carpeta backend/logs/,

en concreto en:
= logs/tfg_rag.log: fichero principal de registro.
» logs/tfg_rag.log.1, .2, .3: copias de seguridad de los ultimos 3 archivos rotados.

La rotacién se produce automaticamente cuando el tamano de tfg_rag.log supera 5 MB.

Se mantienen hasta 3 copias antiguas para evitar pérdida de informacién histérica.

Niveles de log

» INFO: sucesos normales (inicio de procesos, recuento de fragmentos, carga de modelos,
etc.).

» WARNING: situaciones inesperadas pero no criticas (formatos no soportados, resultados
de baja calidad, etc.).

» ERROR: fallos criticos (excepciones en lectura de archivos, llamadas a servicios, genera-

cién de embeddings, etc.).

= DEBUG: trazas detalladas de fragmentos descartados y contenido de prompts.
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Comandos basicos para inspeccién Dentro de la carpeta backend/
= tail -f logs/tfg_rag.log Visualiza en tiempo real las nuevas entradas de log.
» less logs/tfg_rag.log.1l Navega por una copia rotada de log.

= grep ERROR logs/*.log* Filtra sélo las entradas con nivel ERROR.

Registro de eventos del frontend La ruta HI'TP POST /logs permite que el frontend envie

eventos personalizados al mismo logger. El payload JSON debe incluir:
= event: descripcion del suceso.
» level: nivel de log (info, warning, error).
» metadata: datos adicionales (por ejemplo, usuario, identificadores).

Estos registros se intercalan en el mismo archivo tfg_rag.log, con prefijo [FRONT] y la etiqueta

de nivel correspondiente.

A.10 Desinstalacion
Para eliminar todos los contenedores, voliimenes y datos locales:
docker compose down -v —--remove-orphans

Esto detiene y elimina completamente el sistema, incluyendo la base de datos y los indices

semanticos almacenados localmente.

A.11 Consideraciones finales

El sistema ha sido disefiado para ser modular, portable y seguro. Todos los componentes estan
encapsulados en contenedores y pueden adaptarse a distintos entornos de despliegue modifican-
do tnicamente variables en .env o el archivo docker-compose.yml. La autenticacion OAuth
requiere configurar correctamente los puertos y redirecciones en la consola de Google. No se

deben publicar claves ni archivos .env en repositorios publicos.
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Apéndice B

Manual de Usuario

Este capitulo describe, paso a paso, como acceder y utilizar la aplicaciéon web desarrollada
para la consulta inteligente de documentacién aseguradora. Su finalidad es que cualquier usuario
—sin necesidad de conocimientos técnicos— pueda cargar expedientes, introducir documentos

y realizar preguntas en lenguaje natural obteniendo respuestas precisas y trazables.

B.1 Acceso a la aplicacion
1. Abra un navegador web moderno (Chrome, Firefox, Edge o Safari).

2. Escriba la direccién http://localhost:3000 (o la URL indicada por el administrador si

se ha desplegado en un servidor distinto).

3. Pulse en “Iniciar sesion con Google”. Nota: la primera vez, Google le mostrara una
pantalla de consentimiento donde debe permitir a la aplicacién conocer su correo electré-

nico basico.

B.2 Estructura de la interfaz

Barra lateral izquierda: = lista de expedientes. Desde aqui se crean, renombran o elimi-

narmn.

s lista de documentos del expediente seleccionado. Aqui se pueden subir documentos,

eliminarlos, descargarlos y buscarlos por nombre
Zona central derecha: area de chat. Contiene:

= Historial de mensajes de la conversacién.
= Lista de chats anteriores

= Cuadro de texto para escribir preguntas.
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= Botén Enviar.
Columna derecha: Preguntas sugeridas

Icono superior derecho: nombre del usuario y opcién Cerrar sesion.

B.3 Gestion de expedientes

B.3.1 Crear un nuevo expediente

1. Haga clic en el icono “+4 Nuevo expediente”.
2. Asigne un nombre descriptivo (por ejemplo, “Siniestro_ Pdliza__1234”) y confirme.

3. El nuevo expediente aparecera seleccionado; todas las operaciones posteriores se aplicaran

a él.

B.3.2 Renombrar o eliminar

1. Pase el cursor sobre el nombre del expediente y pulse el icono ldpiz para editar.

2. Para eliminarlo, pulse el icono papelera. Precaucién: se borraran los documentos, los

indices y las conversaciones asociadas.

B.4 Carga de documentos

1. Con un expediente activo, arrastre archivos .pdf, .docx, .txt, .eml, .html (actual-
mente los formatos soportados) a la zona “Arrastrar archivos aqui” o pulse “Seleccionar

archivo”.
2. Espere a que la barra de progreso llegue al 100 %.

3. El sistema procesa el documento: extrae el texto, lo divide en fragmentos y lo indexa.
Mientras tanto, la barra de “progreso” aparecera avanzando; al terminar, desaparecera de

la zona de subida y aparecerd como uno de los documentos del expediente.
Buenas practicas:

= Evite subir documentos con datos personales sensibles sin consentimiento.

= Use nombres de archivo descriptivos; ayudaran a identificar la fuente en las respuestas y

a filtrarlas por nombre si tiene muchos documentos en un expediente.
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B.5 Uso del chat

B.5.1 Iniciar una conversacion

1. Pulse “4 Nuevo chat”. El historial se vaciara y el sistema asociara la nueva conversacién

al expediente actual.
2. Escriba la pregunta en lenguaje natural. Ejemplos:

= “;Qué periodo de carencia aplica a la cobertura de hospitalizacion?”

. “;Cudl es la suma asequrada para responsabilidad civil en este contrato?”

3. Pulse el icono de Enviar o presione la tecla Enter.

B.5.2 Interpretacion de la respuesta

= La respuesta aparecera en segundos. Justo debajo, se listan los fragmentos documentales

utilizados (fuentes).
= Si la respuesta parece incompleta, formule una repregunta aprovechando el contexto con-
versacional (p.ej., “3Y qué exclusiones existen?”).
B.5.3 Atajos y sugerencias

= En la columna derecha, la aplicacion propone preguntas frecuentes; pulse sobre cualquiera

para lanzarla automaticamente.

B.6 Gestion de conversaciones

= El historial de chats aparece en la lista de chats que hay a la izquierda del recuadro de
conversacion del chat activo. Seleccione uno para repasar preguntas y respuestas de chats

anteriores.

» Para eliminar un chat, pulse el icono papelera junto a su nombre.

B.7 Cierre de sesion

En cualquier momento, haga clic en su avatar (icono superior derecho con su foto de perfil)
y elija Cerrar sesion. Esto invalida la sesién y volvera a la pagina inicial.
La informacion quedara asociada a su cuenta, puede cerrar sesién y al volver a iniciar sesién

con la misma cuenta apareceran de nuevo todos sus expedientes, documentos, chats y mensajes
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Apéndice C

Manual del Desarrollador

Este capitulo describe la arquitectura interna, la organizacién del repositorio y las instruccio-
nes practicas para extender, depurar y desplegar el sistema. Se asume familiaridad con Python

3.10, React 18, Docker & docker-compose, SQLAlchemy y los fundamentos de RETRIEVAL-
AUGMENTED GENERATION (RAG).

C.1 Visién general

» Backend (contenedor tfg-backend)

e API REST sobre FastAPI.

e Servicios de ingesta, embeddings, indexado FAISS, recuperacién y generacion.
» Base de datos PostgreSQL (— ORM SQLAIlchemy).

o LLM local alojado en un segundo contenedor (ollama).

» Frontend (contenedor tfg-frontend) SPA React que consume la API y ofrece la interfaz
de chat/documentos.

= Persistencia BBDD: metadatos y binarios Vector store: ficheros .index/.json por ex-
pediente en backend/vector_store.

C.2 Estructura del repositorio

backend/

|-- alembic/ -- migraciones SQL

| -— app/

| |-- api/ -- routers FastAPI (endpoints)
| |-- core/ -- config, db, modelos ORM

| |-- middleware/ -- middlewares
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| ‘—— services/ -- légica RAG (ingesta, FAISS, LLM, etc.)
| -- vector_store/ -- indices FAISS #*.index + metadatos *.json

|-- requirements.txt

‘-- init_db.py —-- aplica Alembic al arranque
frontend/

|-- src/components  -- GUI (ExpedienteList, ChatList, ...)
‘-- src/utils -- logger.js, helpers

docker-compose.yml

C.3 Backend

C.3.1 Capa core

config.py Carga variables de entorno con python-dotenv.
Si DATABASE_URL falta lanza ValueError.
Tip: defina SQL_ECH0=0/1 para activar el trace SQL.

database.py engine = create_engine (DATABASE_URL, echo=bool(SQL_ECH0))

El generador get_db() se inyecta en cada router.

models.py Tablas User, Expediente, Document,
Chat, Message.
Cascadas “all, delete-orphan” para cumplir RGPD.

C.3.2 Capa middleware

load_user_middleware.py Carga el objeto user en request.state a partir del correo alma-

cenado en la SessionMiddleware.

logging_middleware.py Registra cada peticién/respuesta con latencia y usuario en

tfg_rag.log.
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C.3.3 Servicios RAG (app/services)

Mobdulo Rol Detalles clave

embedding_service.py Embeddings Carga intfloat/eb-large-v2. GPU-first con
torch.cuda.is_available(). Devuelve vecto-
res L2 normalizados; loggeo exhaustivo de cargas
y errores.

ingestion_service.py  Ingesta Extractores PDF/DOCX/HTML/EML, limpieza
Unicode, normalizacién (fechas, importes), seg-
mentacion <1 100 caracteres, fusiéon de trozos cor-
tos. Pardmetros globales MIN_CHARS, MAX_CHARS.

index_service.py FAISS Regenera indices por expediente
(IndexFlatIP). Persiste .index y .json en
backend/vector_store. Permite eliminar y
recargar indices on-the-fly.

retrieval_service.py  Bisqueda Vectoriza la consulta, consulta FAISS (TOP_K=5),
re-ranking opcional con Cross-Encoder
(ms-marco-MiniLM-L12-v2).  Expansién  se-
mantica en normalize_query().

generation_service.py Pipeline Combina recuperaciéon, generacion de prompt
(LangChain), memoria por chat y llamada a Olla-
ma (DEFAULT_MODEL = nous-hermes2).

Parametros globales y flags modificables

= Embeddings: MODEL_NAME y EMBEDDING_DIM controlan el modelo ST usado y la dimension
(por defecto 1024). Cambiar MODEL_NAME a otro modelo (e.g. sentence-transformers/all-mpnet-bas
sélo requiere modificar la constante: la clase Embedder recompilard y almacenard la nueva

dimensién en self.dim.

» Ingesta: MIN_CHARS/MAX_CHARS definen la longitud de cada chunk. Pueden tunearse para
adaptarse a la longitud méxima de entrada del LLM (context window). Los patrones
NOISE_PATTERNS, EXCLUDE_PATTERNS y SEGMENT_PATTERNS permiten descartar o partir

texto con expresiones regulares sin tocar la légica de negocio.

» Indices: VECTOR_DIR apunta al directorio donde FAISS serializa los indices; en produccién
puede mapearse a un volumen persistente. El tipo de indice (IndexFlatIP) esta centrali-

zado en index_service.py y puede sustituirse (ej. IndexIVFFlat) manteniendo la API.

» Recuperacién : TOP_K limita los candidatos iniciales; USE_RERANKING habilita/deshabilita
la fase Cross-Encoder; MAX_RETURNED recorta lo que se pasa al LLM. RERANKER_MODEL

acepta cualquier Cross-Encoder HF compatible.
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» Generacién : DEFAULT_MODEL define el modelo alojado en Ollama; MAX_CONTEXT_CHUNKS
recorta el nimero de fragmentos que alimentan el prompt; RERANK_ENABLED permite activar

el re-ranking caso a caso via pardmetro de funcion.

Logging y depuracién Todos los médulos comparten el logger declarado con nombre "tfg_rag",
por lo que basta con ajustar el handler principal (en app/main.py) para cambiar formato, ro-
tacién o nivel global. Cada servicio anota:
» eventos criticos (error/exception) con exc_info=True para volcado de tracebacks;
» pasos intermedios (info) como conteos de fragmentos, tamano de indices, tiempo de eje-
cucioén;

» inspeccién de texto (debug) truncada a 100-200 caracteres para no inundar los logs.

Personalizacién de 0llama y puertos La URL del servicio generativo se inyecta desde
backend/ .env mediante OLLAMA_API=http://ollama:11434/api/generate. Si se quiere expo-
ner Ollama en otro contenedor, bastara con cambiar la variable y—si procede—abrir un nuevo
puerto en docker-compose. De igual forma, el PORT del backend (5000) y del frontend (3000)

pueden modificarse sin tocar codigo:

services:
backend:
ports:
- ?2’8080:50007" # HOST:CONTAINER
frontend:
ports:
- 774200:80°°

Tras cambiar el puerto del backend hay que actualizar API_URL en el .env del frontend; y, si se
usa autenticacién Google OAuth, anadir las nuevas redirect URIs en la consola de Cloud TAM

para evitar el error “redirect__uri mismatch”.

Flujo interno de llamadas
1. ingestion__service fragmenta documentos y guarda en BBDD.

2. index__service lee los chunks, genera embeddings con embedding_ service y crea el
indice FAISS.

3. retrieval__service normaliza la consulta, genera su embedding, consulta FAISS, (opcio-

nal) re-rankea.

4. generation__service construye el prompt con LangChain, llama a Ollama, actualiza la

memoria y persiste el mensaje.
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Buenas practicas de extensién

= Nuevos formatos: heredar de BaseExtractor, registrar en ExtractorFactory.extractors.
= Pre-procesado: aniadir regex a NOISE_PATTERNS o légica nueva antes de segment_by_length.

= Indexacién hibrida: sustituir IndexFlatIP por IndexIVFPQ si se requieren millones de

vectores; mantener la interfaz add/search.
= LLM alternativo: sélo hay que instalar el modelo en Ollama y apuntar DEFAULT_MODEL.

» A/B testing: el pardmetro model de generate_answer permite pasar el ID del modelo

en caliente para comparar resultados sin reiniciar el backend.

C.3.4 Routers FastAPI (app/api)

» Autenticacién POST /auth/google — valida id-token, crea/actualiza usuario y devuelve
expedientes. Variables: GOOGLE_CLIENT_ID, GOOGLE_CLIENT_ SECRET.

= Documentos

e POST /documents/upload guarda file_data y reconstruye FAISS

e DELETE /documents/\{id\} regenera indice sin el documento
= Expedientes CRUD completo; DELETE borra chats, documentos e indice en disco.

= Chats y mensajes Rutas para crear, renombrar, listar y eliminar chats; afiade mensajes

y mantiene coherencia con la memoria LangChain.

= Query POST /query/search devuelve fragmentos + puntuaciones; POST /query/generate

ejecuta el ciclo RAG completo.

» Logs POST /api/logs centraliza eventos del frontend.

C.4 Frontend (React 18)

Componente Funcién Notas de interés

Expedientelist CRUD expedientes Actualiza hijos via props; considera usar Context.
FileUpload Subida de PDFs Usa FormData; loader mientras espera.

Filelist Listado/borra documentos Refetch cada cambio de expedienteId.

ChatlList Historial de chats Maneja selectedChat.

QueryLLM Area de conversacién Llama a /query/generate; streaming pendiente de nu
ChatHeader Titulo + crear chat Botén “4 Chat”.

SuggestedQuestions Preguntas rapidas Array local, facil de parametrizar via API.
UserProfileButton Avatar + logout Limpia localStorage.

Login Flujo OAuth Google Guarda token y redirige a dashboard.
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C.4.1 Utilidades

utils/logger. js Pequena envoltura sobre console.log; envia también eventos al backend via

POST /api/logs. Util para correlacionar fallos.

C.5 Configuracion y variables de entorno

Clave Descripciéon

GOOGLE_CLIENT_ID OAuth web client ID. Se registra en Google Cloud Console.
GOOGLE_CLIENT_SECRET Secreta, no versionar.

DATABASE_URL Cadena SQLAIchemy.

SESSION_SECRET_KEY Clave 32 bytes hex para SessionMiddleware.

OLLAMA_API URL interna del LLM.

Cambio de puertos Si se expone la aplicacién en un puerto distinto basta con:
1. Modificar el ports del servicio correspondiente en docker-compose.yml:

frontend:
ports:
- ’’8080:80"° # host:container
backend:
ports:
- ?76000:5000°°

2. Actualizar API_URL en frontend/.env.

3. Anadir la nueva URL (http://localhost:8080) en Authorized JavaScript origins y la
ruta (http://localhost:8080) en Authorized redirect URIs del cliente OAuth.

C.6 Contenerizacion y despliegue

= Backend se construye con Dockerfile.backend. Copia requirements.txt, instala de-

pendencias GPU (pytorch-cuda), expone 5000.
= Frontend usa Dockerfile.frontend. Construye vite y sirve artefactos vianginx:alpine.

s GPU sharing Tanto backend como ollama llevan runtime: nvidia. En entornos sin

GPU se elimina ese atributo y todo funciona (més lento) en CPU.

» Persistencia Volume postgres_data (BBDD) y ollama (modelos LLM), + carpeta mon-
tada ./backend/vector_store para FAISS.
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C.7 Flujo completo RAG

1. Ingesta: usuario sube PDF — ingestion_service trocea, genera embeddings y index_service
actualiza FAISS.

2. Consulta: pregunta — embeddings — FAISS — (opcional) Cross-Encoder.

3. Generacién: LangChain concatena context + history, llama al LLM via Ollama, escribe

respuesta y guarda en Message.

4. Frontend: muestra texto 4+ fuentes; preguntas sugeridas re-utilizan el mismo endpoint.

C.8 Buenas practicas y extensiones

Tests: use pytest + httpx.AsyncClient para routers.

Monitorizacién: Prometheus + Loki (log-scrape tfg_rag.log).

Embeddings personalizados: basta con cambiar MODEL_NAME en embedding_service.py

y regenerar indices.

Escalado LLM: montar varias réplicas de ollama detras de un balanceador TCP; confi-
gurar OLLAMA_APT con la IP del proxy.

Fin del Manual del Desarrollador
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Anexos

11.1 Glosario y lista de siglas

Capitulo 11

11.1.1 Siglas
Sigla Expansién (ES / EN) Descripcién breve
TIA / AT Inteligencia Artificial / Ar- Disciplina que disena sistemas capaces de
tificial Intelligence ejecutar tareas que requieren “inteligencia”
humana.
IR Information Retrieval Rama que localiza documentos o fragmentos
relevantes dentro de un corpus.
RAG Retrieval-Augmented Paradigma que combina IR con generacion
Generation de lenguaje natural para producir respuestas
fundamentadas.
LLM Large Language Model Modelo de lenguaje de gran tamaifio entrena-
do sobre enormes volimenes de texto.
ANN Approximate Nearest Técnica para hallar rapidamente los vectores
Neighbor més cercanos en espacios de alta dimension.
GPU Graphics Processing Unit Procesador de computo paralelo masivo; ace-
lera TA.
CUDA Compute Unified Device Plataforma/API de NVIDIA para ejecutar
Architecture cbédigo en GPU.
VM Virtual Machine Entorno que emula hardware para aislar sis-
temas.
API Application Programming Conjunto de reglas que permite a dos siste-

Interface
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Sigla Expansién (ES / EN) Descripcién breve
REST Representational State Estilo arquitectonico para disenar APIs so-
Transfer bre HTTP.
Docker — Plataforma que empaqueta aplicaciones y
dependencias en contenedores.
FAISS Facebook Al  Similarity Libreria para bisqueda de similitud e indices
Search vectoriales.
SBERT Sentence-BERT Variante de BERT que genera embeddings se-
manticos de frases.
FastAPI — Framework web asincrono en Python, orien-
tado a APIs.
SQL Structured Query Langua- Lenguaje estandar en BBDD relacionales.
ge
NoSQL “Not only SQL” Familia de BBDD no relacionales.
JSON JavaScript Object Notation Formato ligero de intercambio de datos.
JWT JSON Web Token Estandar para transmitir informacién firma-
da como JSON.
OAuth Open Authorization Protocolo para acceso delegado seguro sin
compartir credenciales.
RBAC Role-Based Access Control  Modelo de control de acceso basado en roles.
AES Advanced Encryption Stan- Estédndar de cifrado simétrico de clave secre-
dard ta.
TDE Transparent Data Encry- Cifrado en reposo integrado en motores de
ption bases de datos.
SAST Static Application Security Anélisis estatico de c6digo para detectar vul-
Testing nerabilidades.
OWASP Open Web Application Se- Fundacién que publica estandares y guias de
curity Project seguridad web.
GHA GitHub Actions Plataforma de integracién continua y auto-

matizacién de flujos de trabajo.

Términos técnicos

Término Definicion breve

RAG (Retrieval-
Augmented Genera-

tion)
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Término

Definicion breve

PLN / NLP

LLM
guage Model)
Embedding

(Large Lan-

Vector Store

BM25

Context Window
Token

Prompt Injection

Latency
Throughput
GPU

CI/CD

[aC (Infrastructure-
as-Code)
Observabilidad

WCAG 2.1
ISO/IEC 42001

STRIDE

k-NN (k-Nearest
Neighbors)
MLOps

RBAC (Role-Based
Access Control)
AES-256

Transparent  Data
Encryption (TDE)

Disciplina que estudia la interaccion entre lenguaje humano y ma-
quinas mediante técnicas lingiiisticas y de aprendizaje automaético.
Red neuronal de lenguaje con miles de millones de parametros en-
trenada en grandes corpus.

Representaciéon vectorial densa que codifica el significado seméantico
de un texto en un espacio numérico.

Base especializada que indexa embeddings y permite buisquedas por
similitud.

Algoritmo estadistico de recuperacién basado en frecuencia de tér-
mino e inversa de frecuencia de documento.

Méximo nimero de tokens que un LLM procesa simultaneamente.
Unidad minima de texto tras la tokenizacién (palabra, sub-palabra
o simbolo).

Ataque que introduce instrucciones maliciosas para alterar la salida
de un LLM.

Tiempo desde la solicitud hasta la respuesta (ms).

Peticiones o tokens procesados por segundo, indicador de capacidad.
Unidad de procesamiento grafico que acelera inferencia de redes
neuronales.

Practicas DevOps de integracién y entrega/despliegue continuos.
Gestion declarativa de infraestructura mediante cddigo versionado
(p. €j. Terraform).

Conjunto de métricas, trazas y logs para entender el estado interno
de un sistema.

Recomendacion W3C con criterios de accesibilidad web.

Norma de sistemas de gestién para aplicaciones de TA (gobernanza
y riesgo).

Modelo de amenazas: Spoofing, Tampering, Repudiation, Informa-
tion disclosure, Denial of service, Elevation of privilege.

Algoritmo que devuelve los k vectores mas cercanos en un espacio
de embeddings.

Extensién de DevOps que gestiona modelos, datos y experimentos
a lo largo del ciclo de vida.

Sistema que asigna permisos a objetos segin los roles otorgados al
usuario.

Cifrado simétrico con clave de 256 bits, adoptado como estandar
por la NIST.

Cifrado automatico de datos en reposo implementado por el motor
de la base de datos.

127



Término

Definicion breve

SAST (Static Appli-
cation Security Tes-
ting)

OWASP Top 10 for
LLM

HashiCorp Vault
Prometheus
Grafana

Loki

Falco

Sysdig Secure

Penetration Testing

Anélisis de cédigo fuente sin ejecucién para descubrir vulnerabili-
dades.

Lista de riesgos de seguridad especificos de aplicaciones basadas en
LLM publicada por OWASP.

Herramienta para almacenar, rotar y auditar secretos y claves de
forma centralizada.

Sistema de monitorizaciéon y base de series temporales para métri-
cas.

Plataforma de visualizacién y alerta que consume datos de Pro-
metheus u otras fuentes.

Agregador de logs disenado para integrarse con Grafana y Pro-
metheus.

Motor que detecta comportamientos anémalos en contenedores me-
diante reglas en tiempo real.

Suite para analisis forense y cumplimiento de seguridad en entornos
contenedorizados.

Pruebas que simulan ataques reales con el fin de evaluar la robustez

del sistema.
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