
Escuela de Ingeniería Informática
TRABAJO FIN DE GRADO

Grado en Ingeniería Informática
Mención en Ingeniería de Software

Desarrollo e integración de un
sistema basado en IA, para la

consulta de información en el sector
asegurador

Autor: Hugo Cubino Cubino





Escuela de Ingeniería Informática
TRABAJO FIN DE GRADO

Grado en Ingeniería Informática
Mención en Ingeniería de Software

Desarrollo e integración de un
sistema basado en IA, para la

consulta de información en el sector
asegurador

Autor: Hugo Cubino Cubino

Tutor: Valentín Cardeñoso Payo





A Isabel, por su confianza infinita y su apoyo incondicional, que han sido mi mayor impulso en
cada paso del camino.

A mi familia, por estar siempre, por apoyar cada elección y caminar conmigo en cada etapa de
este recorrido.





Agradecimientos

Han sido muchas las personas que han contribuido a que este proyecto saliera adelante. En
primer lugar, quiero expresar mi más sincero agradecimiento a mi tutor, Valentín, por su dedi-
cación, paciencia y orientación constante. Sus revisiones y correcciones han sido fundamentales
para que tanto la aplicación como la memoria avanzaran en la dirección adecuada.

Agradezco también a todos los compañeros y compañeras que han formado parte de este
proceso, compartiendo ideas y apoyos en los momentos de mayor exigencia. De manera especial,
quiero mencionar a Julia, Fran y Diego, con quienes he compartido no solo horas de estudio,
sino también momentos de compañía y confianza que han hecho más fácil y agradable el camino
hasta aquí. Pero, sobre todo, quiero destacar a Miguel, mi compañero de trabajos durante toda
la carrera, quien ha sido mucho más que un colega: ha sido un amigo, un apoyo constante y una
fuente de aprendizaje y motivación. Su colaboración, compromiso y amistad han sido esenciales
para mí, tanto en este proyecto como en todo mi recorrido universitario. Sin él, esta etapa no
habría sido la misma.

A Isabel, mi pareja, le dedico el reconocimiento más profundo y sincero. Su apoyo ha sido
una parte esencial de este trabajo, no solo por estar presente, sino por cómo lo ha estado: con
cariño, con paciencia y con una confianza inquebrantable en mí. Ha sabido acompañarme incluso
en los días más difíciles, animándome cuando flaqueaban las fuerzas y celebrando cada pequeño
avance como si fuera suyo. Gracias a su forma de estar, he podido avanzar con tranquilidad y
seguridad, sabiendo que siempre tenía a alguien creyendo en mí de forma genuina. Este logro
también le pertenece, porque su manera de cuidar y motivar ha estado detrás de cada paso que
he dado.

A mis padres y a mi hermana, les agradezco su apoyo incondicional y su presencia continua
a lo largo de todos estos años. Han sido mi refugio y mi sustento, estando siempre ahí para
animarme, escucharme y acompañarme en cada momento, tanto en los buenos como en los
difíciles. Su confianza y su amor han sido el pilar sobre el que he construido este recorrido, y sin
duda, todo lo que he logrado hasta ahora lleva también su nombre.

Por último, quiero reconocer el compromiso y la lealtad de mis amigos Pedro, Alex y Hugo.
Su apoyo, aunque a menudo a distancia, ha sido inquebrantable. Han estado presentes en cada
etapa, brindándome palabras de aliento y demostrando una amistad que trasciende el tiempo
y las circunstancias. Su firmeza y cercanía han sido un sostén fundamental para mantener la



motivación y la confianza en mí mismo durante todo este proceso.
Gracias a todos por acompañarme en este viaje. Este proyecto también os pertenece, porque

cada paso lo he dado sabiendo que contaba con vosotros.



Resumen

Motivación: Durante unas prácticas en una entidad tecnológica del sector asegurador, se
evidenció el retraso digital en la gestión documental, caracterizada por procesos manuales, lentos
y propensos a errores, lo que motivó la búsqueda de soluciones inteligentes que mejoren la
eficiencia y precisión en la consulta de información.

Objetivo: Diseñar, desarrollar e integrar un sistema basado en inteligencia artificial, uti-
lizando la técnica de Generación Aumentada por Recuperación (RAG), que permita realizar
consultas precisas y en lenguaje natural sobre documentación técnica aseguradora.

Tareas: El proyecto ha implicado la planificación y análisis del problema, la investigación
de tecnologías RAG, el diseño arquitectónico del sistema en microservicios, el desarrollo de una
API REST con backend FastAPI y frontend React, la integración de modelos de lenguaje y bases
vectoriales (FAISS), y la implementación de funcionalidades de consulta y gestión documental
con pruebas comparativas.

Resultados: El sistema desarrollado permite realizar consultas semánticas rápidas y fiables,
demostrando un rendimiento superior en precisión, trazabilidad y tiempo de respuesta frente a
métodos tradicionales de búsqueda.

Conclusión: La solución propuesta representa un avance significativo en la digitalización del
sector asegurador, aportando una herramienta escalable, modular y tecnológicamente actual que
mejora el acceso a la información y sienta las bases para futuras mejoras basadas en inteligencia
artificial.

Palabras clave: embeddings, inteligencia artificial, RAG, recuperación semántica, sector
asegurador, sistemas conversacionales

Abstract

Motivation: During an internship at a technology provider for insurance companies, a sig-
nificant digital gap in document management was observed, marked by slow, manual processes
prone to human error. This motivated the development of intelligent solutions to improve the
efficiency and accuracy of information retrieval.

Objective: To design, develop, and integrate an artificial intelligence-based system using
Retrieval-Augmented Generation (RAG) techniques to enable precise, natural language queries
on insurance-related technical documentation.

Tasks: The project involved problem analysis, research on RAG-related technologies, ar-
chitectural design using microservices, backend development with FastAPI and a React-based



frontend, integration of language models and vector databases (FAISS), and the implementation
of document management and query features supported by rigorous performance testing.

Results: The developed system enables fast, semantically accurate information retrieval and
shows clear improvements in accuracy, traceability, and response time compared to traditional
search methods.

Conclusion: The proposed solution contributes to the digital transformation of the insurance
sector by providing a scalable, modular, and state-of-the-art tool that enhances information
access and sets a solid foundation for future AI-driven improvements.

Keywords:
artificial intelligence, conversational systems, embeddings, insurance sector, RAG, semantic re-
trieval



Índice general

Índice de cuadros VII

Índice de figuras IX

1. Introducción 1
1.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Objetivos y Alcance 3
2.1. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Objetivo principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Objetivos secundarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Tareas a realizar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Metodología 5
3.1. Estrategia metodológica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Fases y planificación temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3. Reflexión sobre la metodología aplicada . . . . . . . . . . . . . . . . . . . . . . . 6

4. Marco Conceptual 7
4.1. Introducción al paradigma RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Origen de RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3. Evolución histórica de las arquitecturas de recuperación y generación . . . . . . . 8

4.3.1. De la recuperación clásica a la búsqueda semántica . . . . . . . . . . . . . 9
4.3.2. La evolución de los modelos generativos . . . . . . . . . . . . . . . . . . . 9
4.3.3. Convergencia: hacia una generación informada por recuperación . . . . . 9

4.4. Comparativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.1. Modelos generativos puros . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.2. Finetuning sobre modelos base . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.3. Recuperación de información clásica (IR) . . . . . . . . . . . . . . . . . . 11
4.4.4. Síntesis comparativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5. Variantes técnicas del enfoque RAG . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5.1. Nivel de agregación: RAG-end-to-end vs. RAG-token . . . . . . . . . . . . 11

i



4.5.2. Arquitectura generativa: encoder-decoder vs. autoregresivo . . . . . . . . 12
4.5.3. Criterios de selección conceptual . . . . . . . . . . . . . . . . . . . . . . . 12

4.6. Arquitectura y componentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6.1. Base de datos vectorial o motor de búsqueda semántica . . . . . . . . . . 13
4.6.2. Representaciones numéricas (Embeddings) . . . . . . . . . . . . . . . . . . 13
4.6.3. Modelo de lenguaje generativo (LLM) . . . . . . . . . . . . . . . . . . . . 14
4.6.4. Controlador del flujo de datos . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6.5. Flujo general de operación . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7. Justificación del enfoque RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7.1. Recuperación de información clásica (IR) . . . . . . . . . . . . . . . . . . 16
4.7.2. Modelos generativos sin recuperación externa . . . . . . . . . . . . . . . . 16
4.7.3. Finetuning de modelos preentrenados . . . . . . . . . . . . . . . . . . . . 16
4.7.4. Comparativa conceptual de enfoques . . . . . . . . . . . . . . . . . . . . . 16
4.7.5. Adecuación al contexto del proyecto . . . . . . . . . . . . . . . . . . . . . 17

4.8. Conclusiones tecnológicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9. Estado actual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.9.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9.2. Grado de adopción de la IA en el sector asegurador . . . . . . . . . . . . 18
4.9.3. Aplicaciones actuales de la IA en el sector asegurador . . . . . . . . . . . 18
4.9.4. Retos y consideraciones éticas . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9.5. Conclusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.10. Legal y Ética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Soluciones Existentes 23
5.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2. Frameworks de integración RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1. LangChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2. Haystack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.3. LlamaIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3. Bases de datos vectoriales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.1. FAISS (Facebook AI Similarity Search) . . . . . . . . . . . . . . . . . . . 26
5.3.2. Milvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3. Weaviate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4. Lenguaje generativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1. GPT (Generative Pre-trained Transformer) . . . . . . . . . . . . . . . . . 30
5.4.2. LLaMA (Large Language Model Meta AI) . . . . . . . . . . . . . . . . . . 30
5.4.3. Flan-T5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.4. Modelos ajustados específicamente para RAG . . . . . . . . . . . . . . . . 32

5.5. Modelos de embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6. Conclusiones sobre soluciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



6. Análisis 35
6.1. Requisitos técnicos y funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. Motivación del diseño arquitectónico . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3. Análisis del flujo de consulta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4. Estructura documental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5. Criterios de elección tecnológica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7. Diseño de la Solución 45
7.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2. Principios de diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3. Arquitectura general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4. Diseño funcional del backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4.1. Modelo de datos relacional . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.5. Diseño funcional del frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6. Sistema conversacional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7. Decisiones técnicas clave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.8. Resumen del diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8. Implementación 61
8.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2. Entorno de desarrollo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.3. Backend-tecnologias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4. Backend-microservicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.4.1. Servicio de Ingestión de Documentos . . . . . . . . . . . . . . . . . . . . . 63
8.4.2. Servicio de Gestión de Índices FAISS . . . . . . . . . . . . . . . . . . . . . 65
8.4.3. Servicio de Generación de Embeddings . . . . . . . . . . . . . . . . . . . . 67
8.4.4. Servicio de Búsqueda y Reranking . . . . . . . . . . . . . . . . . . . . . . 68

8.5. Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.6. Contenerización y orquestación . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.7. Modelos de lenguaje utilizados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.8. Infraestructura y recursos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.9. Mecanismos de seguridad implementados . . . . . . . . . . . . . . . . . . . . . . . 78
8.10. Resumen del entorno de trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9. Pruebas 81
9.1. Cobertura de pruebas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2. Pruebas funcionales sobre el sistema completo . . . . . . . . . . . . . . . . . . . . 82
9.3. Diseño de las pruebas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.4. Preguntas seleccionadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.5. Análisis detallado de P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.6. Análisis detallado de la consulta P2 . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.7. Análisis detallado de la consulta P3 . . . . . . . . . . . . . . . . . . . . . . . . . 87

iii



9.8. Cambio de prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.8.1. Pregunta sobre dato concreto . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.8.2. Pregunta sobre precio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.8.3. Pregunta sobre campo descripción . . . . . . . . . . . . . . . . . . . . . . 92

9.9. Pruebas de usabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.9.1. Diseño experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.9.2. Resultados por participante . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.Conclusiones 101
10.1. Aportaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1.1. Contribuciones técnicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.1.2. Contribuciones metodológicas . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.2. Impacto socio-económico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3. Reflexión personal y académica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.4. Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.4.1. Fortalecimiento de la ciberseguridad . . . . . . . . . . . . . . . . . . . . . 103
10.5. Visión a largo plazo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendices 105

Apéndice A. Manual de Instalación 107
A.1. Requisitos del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.1.1. Hardware mínimo recomendado . . . . . . . . . . . . . . . . . . . . . . . . 107
A.1.2. Software necesario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2. Clonación del repositorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3. Estructura del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.4. Variables de entorno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.5. Configuración del puerto y OAuth . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.6. Obtención de claves OAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.7. Ejecución del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.8. Uso del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.9. Regeneración de índices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.10.Desinstalación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.11.Consideraciones finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Apéndice B. Manual de Usuario 113
B.1. Acceso a la aplicación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2. Estructura de la interfaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.3. Gestión de expedientes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.3.1. Crear un nuevo expediente . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.3.2. Renombrar o eliminar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.4. Carga de documentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

iv



B.5. Uso del chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.5.1. Iniciar una conversación . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.5.2. Interpretación de la respuesta . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.5.3. Atajos y sugerencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.6. Gestión de conversaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.7. Cierre de sesión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Apéndice C. Manual del Desarrollador 117
C.1. Visión general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.2. Estructura del repositorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.3. Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.3.1. Capa core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3.2. Capa middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3.3. Servicios RAG (app/services) . . . . . . . . . . . . . . . . . . . . . . . . 119
C.3.4. Routers FastAPI (app/api) . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.4. Frontend (React 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.4.1. Utilidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.5. Configuración y variables de entorno . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.6. Contenerización y despliegue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.7. Flujo completo RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.8. Buenas prácticas y extensiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.Anexos 125
11.1. Glosario y lista de siglas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.1.1. Siglas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Términos técnicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliografía 129

v



vi



Índice de cuadros

3.1. Fases de desarrollo del proyecto previstas y ajustadas según evolución real . . . . 6

4.1. Comparativa técnica entre IR, LLM, Fine-Tuning (FT) y RAG . . . . . . . . . . 17
4.2. Correspondencia AI Act / ISO 42001 y su implementación en el sistema . . . . . 20

8.1. Contramedidas de seguridad actualmente activas . . . . . . . . . . . . . . . . . . 79

9.1. Cobertura por fichero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2. Documentos incluidos en el expediente de pruebas . . . . . . . . . . . . . . . . . 83
9.3. Preguntas seleccionadas para el análisis de flujo . . . . . . . . . . . . . . . . . . . 83
9.4. Resumen de la sesión de Isabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.5. Resumen de la sesión de Noa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.6. Resumen de la sesión de Miguel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



viii



Índice de figuras

6.1. Diagrama de casos de uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2. Diagrama de secuencia(Subida de documento) . . . . . . . . . . . . . . . . . . . . 39
6.3. Diagrama de secuencia de consulta . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1. Diagrama de secuencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2. Diagrama de flujo de ingesta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3. Diagrama de clases UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1. Diagrama de despliegue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



x



Capítulo 1

Introducción

1.1 Introducción

En la actualidad, el sector asegurador maneja una creciente cantidad de datos e informa-
ción, en muchos casos contenida en una gran cantidad de documentos extensos y complejos.
La búsqueda, recuperación y consulta eficiente de esta información supone un desafío, ya que
afecta directamente a la productividad, calidad del servicio y capacidad de respuesta frente a
las demandas de los clientes.

Este trabajo surge de la necesidad de proporcionar una solución efectiva y moderna a este
problema recurrente mediante la aplicación de tecnologías avanzadas de inteligencia artificial. En
concreto, se propone el desarrollo de un sistema basado en técnicas de Generación Aumentada
por Recuperación (RAG, por sus siglas en inglés, Retrieval-Augmented Generation), combinando
las fortalezas del procesamiento del lenguaje natural con motores de búsqueda semánticos, para
permitir una consulta rápida y precisa dentro del entorno asegurador.

La elección de este enfoque no es casual: los modelos RAG han mostrado resultados prome-
tedores en diversos contextos profesionales, destacando por su capacidad para manejar grandes
cantidades de información y proporcionar respuestas contextualizadas y precisas. Además, la
implementación de una arquitectura basada en módulos y contenedores asegura que la solución
sea no solo robusta y escalable, sino también adaptable a futuras necesidades o cambios en las
condiciones del mercado.

Este proyecto pretende ir más allá de las soluciones tradicionales, ofreciendo una alternativa
inteligente que reduzca tiempos de consulta, minimice errores humanos y, en última instancia,
mejore sustancialmente la experiencia tanto del personal encargado de gestionar dicha informa-
ción como de los clientes finales.

A lo largo de esta memoria se detalla el proceso seguido para abordar este desafío, desde la

1



fase inicial de investigación y análisis, pasando por el diseño y desarrollo del sistema, hasta llegar
finalmente a la evaluación y comparativa de resultados frente a metodologías más convencionales.
Todo ello con el objetivo último de validar la eficacia y beneficios que aportan las soluciones que
integran este tipo de sistemas en el sector asegurador.

1.2 Motivación

Durante el periodo de prácticas de empresa realizado en una entidad que presta servicios
tecnológicos a diversas aseguradoras, he podido observar de primera mano el considerable retraso
tecnológico presente en este sector. Esta experiencia directa me permitió identificar claramente
las dificultades y limitaciones que surgen al gestionar grandes volúmenes de información mediante
métodos tradicionales, generalmente lentos y propensos a errores humanos. Al mismo tiempo, soy
plenamente consciente del impacto transformador que están teniendo y tendrán las tecnologías
basadas en inteligencia artificial en prácticamente todos los ámbitos profesionales y sociales.
Específicamente, considero que el sector asegurador, dada su magnitud y la repercusión directa
e indirecta que tiene sobre prácticamente toda la población, necesita abordar con urgencia una
transformación digital profunda. Este convencimiento personal ha sido un motor fundamental
para llevar a cabo este proyecto, buscando aportar una solución tecnológica innovadora que
permita optimizar significativamente procesos críticos y mejorar la calidad del servicio que estas
entidades proporcionan a sus clientes.

2



Capítulo 2

Objetivos y Alcance

2.1 Objetivos

2.1.1 Objetivo principal

El objetivo principal de este proyecto es desarrollar e integrar un sistema basado en inteligen-
cia artificial, fundamentado en técnicas de Generación Aumentada por Recuperación (RAG, por
sus siglas en inglés, Retrieval-Augmented Generation), que permita realizar consultas inteligen-
tes, precisas y eficientes sobre documentación especializada en el ámbito del sector asegurador.

2.1.2 Objetivos secundarios

A fin de alcanzar el objetivo principal, se establecen los siguientes objetivos secundarios:

Diseñar una arquitectura de software modular y escalable, que facilite el mantenimiento,
evolución y despliegue del sistema.

Incorporar mecanismos de búsqueda semántica y recuperación de información que mejoren
la calidad y relevancia de los resultados obtenidos.

Implementar una interfaz de programación de aplicaciones (API) clara y extensible, que
posibilite la integración con otros sistemas corporativos.

Establecer procedimientos de validación que permitan evaluar el rendimiento y la eficacia
del sistema desarrollado en escenarios reales o simulados.

2.2 Tareas a realizar

Las tareas planteadas para alcanzar los objetivos propuestos se agrupan en las siguientes
fases:

3



1. Planificación inicial: definir el alcance del proyecto, los objetivos específicos y el crono-
grama estimado de desarrollo. Las actividades clave incluyen:

Establecer criterios de evaluación y métodos de control de riesgos.

2. Análisis del contexto y los requisitos: estudiar el problema actual relacionado con
la recuperación de información en el sector asegurador, e identificar las necesidades del
sistema. Se desarrollarán las siguientes tareas:

Identificar los requisitos funcionales y no funcionales del sistema propuesto.

Investigar soluciones existentes y tecnologías afines que puedan servir como base o
referencia.

3. Diseño e implementación del sistema: definir la arquitectura general y los módulos
funcionales. Las actividades contempladas son:

Desarrollar los módulos funcionales necesarios: consulta semántica, gestión documen-
tal, interacción con el usuario, etc.

Integrar modelos de PLN y mecanismos de recuperación contextualizada de informa-
ción.

4. Validación y evaluación: realizar pruebas de funcionamiento y precisión, así como com-
paración con métodos actuales. Se llevarán a cabo:

Comparar su rendimiento con métodos tradicionales empleados en el ámbito asegu-
rador.

Documentar los resultados obtenidos y proponer líneas de mejora o evolución futura.

4



Capítulo 3

Metodología

Todo trabajo de desarrollo tecnológico requiere una planificación estructurada que oriente los
esfuerzos hacia el cumplimiento de los objetivos definidos. En este proyecto se ha optado por una
metodología iterativa e incremental, adecuada para entornos con alto componente exploratorio
y tecnológico, como es el caso de los sistemas basados en inteligencia artificial. Esta elección
permite ajustar la planificación y el desarrollo conforme se obtienen resultados parciales o surgen
nuevas necesidades técnicas.

3.1 Estrategia metodológica

La estrategia general se ha basado en el enfoque de desarrollo por prototipos, combinado
con principios de gestión ágil. Esto ha permitido construir versiones intermedias funcionales del
sistema, evaluar su comportamiento en cada iteración y aplicar mejoras continuas. Este enfoque
facilita también la integración progresiva de tecnologías específicas y la validación temprana de
decisiones arquitectónicas clave.

A lo largo del desarrollo se han seguido ciclos de trabajo estructurados en fases, con re-
visiones frecuentes y ajustes planificados. Se ha utilizado una hoja de ruta flexible, revisada
periódicamente, como herramienta de seguimiento del avance y de reasignación de tareas.

3.2 Fases y planificación temporal

Las fases de trabajo definidas inicialmente, así como los ajustes realizados durante el proceso,
se detallan en la tabla 3.1. Esta planificación recoge el desarrollo progresivo desde el análisis
inicial hasta la redacción final de la memoria.

5



Nombre de actividad Semanas
Análisis inicial del problema y requisitos técnicos 1 – 2
Investigación y aprendizaje de herramientas tecnológicas 2 – 3
Diseño preliminar de arquitectura 3 – 4
Configuración de entorno de desarrollo y bases de datos 4 – 5
Desarrollo del primer prototipo funcional 5 – 6
Integración de modelo RAG y búsqueda semántica 6 – 8
Optimización del sistema de embeddings (uso GPU) 7 – 8
Implementación de autenticación y gestión de usuarios 8 – 9
Desarrollo del segundo prototipo con interfaz de usuario 9 – 11
Optimización visual y funcional del frontend 10 – 11
Pruebas técnicas y evaluación del sistema 11 – 13
Comparativa con métodos tradicionales 12 – 13
Redacción de documentación técnica y manuales 13 – 14
Elaboración de la memoria del TFG 14 – 15

Cuadro 3.1: Fases de desarrollo del proyecto previstas y ajustadas según evolución real

3.3 Reflexión sobre la metodología aplicada

Cada una de las fases descritas ha requerido un esfuerzo específico y ha estado sujeta a
revisiones en función de los resultados obtenidos. En particular, la integración tecnológica y
el ajuste de los modelos de recuperación aumentada han supuesto un reto relevante, dada su
complejidad y el carácter innovador del enfoque.

El enfoque iterativo ha permitido corregir desviaciones a tiempo, adaptar el alcance funcional
a los recursos disponibles y priorizar las funcionalidades más críticas. Esta estrategia ha sido
clave para garantizar la viabilidad técnica del proyecto en un entorno controlado y con recursos
limitados, como es habitual en el contexto de un Trabajo Fin de Grado.

6



Capítulo 4

Marco Conceptual

4.1 Introducción al paradigma RAG

En el contexto actual de avance acelerado de la inteligencia artificial, los modelos de lenguaje
de gran tamaño (LLMs, por sus siglas en inglés) como GPT, LLaMA o Claude han alcanzado un
nivel de sofisticación notable, siendo capaces de comprender, resumir y generar texto en lenguaje
natural con alta fluidez y coherencia. Estos modelos se entrenan sobre grandes volúmenes de
datos textuales y aprenden representaciones profundas del lenguaje, lo que los hace especialmente
eficaces en tareas generales de procesamiento del lenguaje natural.

Sin embargo, una de sus limitaciones más críticas es la naturaleza estática del conocimiento
que contienen: una vez entrenados, no pueden incorporar información nueva sin reentrenamiento,
un proceso costoso y técnicamente complejo. Como consecuencia, los LLMs tienden a generar
respuestas basadas únicamente en lo que han “aprendido” de sus datos de entrenamiento, lo
cual puede derivar en respuestas imprecisas, desactualizadas o incluso incorrectas en dominios
especializados o contextos que requieren trazabilidad.

Para resolver esta limitación, surge el enfoque conocido como Retrieval-Augmented Gene-
ration (RAG), o generación aumentada mediante recuperación. Este paradigma arquitectónico
combina dos enfoques clásicos: la recuperación de información (IR) y la generación de lenguaje
natural. En términos simples, RAG dota al modelo generativo de acceso a una memoria externa
dinámica, una base documental, que puede ser consultada en tiempo real durante la inferencia.
De este modo, el modelo no depende exclusivamente de su entrenamiento previo, sino que puede
incorporar conocimiento adicional, específico y actual, al generar sus respuestas.

Más allá de su funcionalidad inmediata, RAG representa un cambio profundo en el diseño de
sistemas de IA: separa el almacenamiento del conocimiento (corpus vectorizado e indexado) del
componente de razonamiento lingüístico (modelo generativo), lo que permite construir sistemas
más auditables, escalables y fácilmente actualizables. Esta separación modular tiene importantes
implicaciones tanto desde la perspectiva técnica como desde la de la ingeniería del software, es-
pecialmente en sectores regulados como el asegurador, donde la trazabilidad, la precisión factual

7



y la adaptación a cambios normativos son requisitos esenciales.
En las siguientes secciones se abordará el origen y evolución del paradigma RAG, sus funda-

mentos técnicos, las ventajas estratégicas que ofrece en entornos empresariales, y las limitaciones
técnicas que debe afrontar su implementación práctica.

4.2 Origen y evolución del paradigma RAG

El término Retrieval-Augmented Generation (RAG) fue acuñado por primera vez en el artícu-
lo de Lewis et al. [16], publicado por Facebook AI Research en 2020. En este trabajo, los autores
propusieron una arquitectura híbrida diseñada para mejorar el rendimiento de los modelos de
lenguaje en tareas intensivas en conocimiento, como el open-domain question answering, combi-
nando un recuperador de documentos basado en búsqueda semántica con un modelo generativo
del tipo seq2seq.

La propuesta de Lewis et al. marcó un punto de inflexión en la evolución de los sistemas de
PLN. Hasta entonces, los enfoques predominantes se dividían entre:

Modelos extractivos, como BERT aplicado a QA, que seleccionan fragmentos existentes
como respuesta, sin generar texto nuevo [4].

Modelos generativos puros, como GPT o T5, que generan respuestas desde cero pero sin
acceso explícito a una base documental externa [24].

RAG se posiciona como una solución intermedia: permite generar respuestas sintéticas, pero
basadas en evidencia textual concreta, proveniente de un corpus documental externo. Este enfo-
que es especialmente valioso en dominios donde el conocimiento cambia con frecuencia, y donde
se requiere trazabilidad y control sobre las fuentes empleadas en la generación.

Desde su introducción, la arquitectura RAG ha inspirado numerosos desarrollos y adapta-
ciones. Se ha convertido en la base conceptual de frameworks como Haystack, LlamaIndex y
LangChain, que implementan variantes de pipelines RAG para tareas específicas como asisten-
cia conversacional, búsqueda semántica empresarial y generación automática de documentación
técnica. También ha sido objeto de múltiples estudios comparativos frente a otras estrategias
como el fine-tuning o la recuperación sin generación, demostrando ventajas significativas en
precisión, adaptabilidad y coste computacional [14].

4.3 Evolución histórica de las arquitecturas de recuperación y gene-
ración

La arquitectura RAG no surge en un vacío técnico, sino como la confluencia lógica de dos
líneas de desarrollo en el campo del procesamiento del lenguaje natural (PLN): por un lado, los
sistemas de recuperación de información (IR), y por otro, los modelos de lenguaje generativo.
Ambos enfoques han evolucionado durante décadas y han alcanzado puntos de madurez que han
permitido su integración en soluciones híbridas como RAG.

8



4.3.1 De la recuperación clásica a la búsqueda semántica

Los primeros sistemas IR se basaban en el modelo de espacio vectorial y utilizaban métricas
como TF-IDF y BM25 para calcular la relevancia de los documentos frente a una consulta. Estos
métodos eran eficientes y comprensibles, pero sufrían limitaciones notables en la comprensión
semántica: trabajaban a nivel de coincidencia de términos y no captaban relaciones conceptuales
entre palabras ni el contexto más amplio del discurso.

Con la irrupción del aprendizaje profundo en PLN, especialmente a partir de 2013 con la
introducción de word embeddings como Word2Vec [19], se hizo posible representar palabras en
espacios semánticos continuos. Más tarde, modelos como BERT [4], RoBERTa y DistilBERT
permitieron calcular representaciones contextuales de frases y documentos enteros, habilitando
lo que hoy se conoce como búsqueda semántica.

Estos avances permitieron que los sistemas de IR pasaran de ser simplemente extractivos a
capaces de realizar una recuperación con mayor profundidad conceptual, abriendo la puerta a
su integración con modelos generativos.

4.3.2 La evolución de los modelos generativos

En paralelo, los modelos de lenguaje también experimentaron una evolución significativa. Los
modelos n-gram, los Hidden Markov Models (HMM) y las primeras redes neuronales recurrentes
(RNNs) ofrecían una generación limitada y rígida. El salto cualitativo se dio con la introducción
de arquitecturas Transformer [28], que permitieron construir modelos como GPT, BERT, T5
y BART.

Los modelos autoregresivos (ej. GPT) demostraron capacidades sorprendentes para la ge-
neración libre de texto, mientras que los modelos encoder-decoder (ej. T5, BART) ofrecían
ventajas en tareas estructuradas y de traducción automática. Sin embargo, estos modelos se-
guían dependiendo exclusivamente de la información contenida en sus parámetros entrenados,
lo cual limitaba su aplicabilidad en entornos que requieren acceso a datos actualizados, precisos
y trazables.

4.3.3 Convergencia: hacia una generación informada por recuperación

La necesidad de unir lo mejor de ambos mundos —la precisión factual y actualizable de
la recuperación con la fluidez lingüística de la generación— llevó al diseño de arquitecturas
híbridas. Entre los primeros intentos destacan los sistemas QA con recuperación + reranking,
que empleaban BERT para reordenar documentos recuperados, pero sin generación real.

El trabajo de Lewis et al. [16] formalizó este concepto con RAG, donde por primera vez
se integró de forma efectiva un módulo de recuperación semántica y un generador neuronal
dentro de un mismo flujo de inferencia. Esta integración permitió construir respuestas más
útiles, basadas en evidencia, y adaptadas dinámicamente al corpus documental disponible.

Desde entonces, RAG ha sido reconocido como un paradigma arquitectónico clave en el de-
sarrollo de sistemas de PLN con propósito práctico, especialmente en sectores como salud, legal,

9



investigación científica y finanzas, donde la precisión factual y la auditabilidad son fundamen-
tales.

4.4 Comparativa conceptual con otros enfoques

El enfoque RAG no es la única estrategia para abordar tareas de acceso a información median-
te lenguaje natural. En la literatura y en la práctica, existen al menos tres grandes alternativas
con las que se puede establecer una comparación conceptual: los modelos generativos puros, los
modelos ajustados mediante fine-tuning, y los sistemas tradicionales de recuperación de infor-
mación. Esta sección analiza las características distintivas de cada uno en relación con RAG,
subrayando sus ventajas y limitaciones desde una perspectiva teórica.

4.4.1 Modelos generativos puros

Los modelos generativos autoregresivos de gran escala (LLMs), como GPT-3 o GPT-4, son
capaces de generar texto altamente coherente sin acceso externo a fuentes de información. Operan
únicamente en base a los parámetros adquiridos durante el entrenamiento, lo que les otorga una
alta fluidez lingüística y una flexibilidad notable en tareas abiertas o creativas.

No obstante, esta aproximación presenta importantes limitaciones cuando se requiere exacti-
tud factual, trazabilidad de la información o actualización continua del conocimiento. Al carecer
de un mecanismo explícito de recuperación, estos modelos pueden generar contenido incorrecto
o inventado (hallucinations) [29], y no pueden justificar sus respuestas más allá de su entre-
namiento previo. En contextos profesionales o regulados, estas deficiencias suponen un riesgo
crítico.

4.4.2 Finetuning sobre modelos base

Otra estrategia común es el fine-tuning, que consiste en ajustar los pesos de un modelo pre-
viamente entrenado utilizando un corpus específico del dominio objetivo. Esta técnica permite
especializar el modelo en tareas concretas o en terminología sectorial, y puede mejorar su ren-
dimiento en tareas controladas.

Sin embargo, el fine-tuning requiere:

Un conjunto de datos de alta calidad, curado y representativo del dominio.

Capacidad computacional elevada para realizar el entrenamiento adicional.

Repetición del proceso ante cambios relevantes en la información base, lo que limita la
adaptabilidad y la actualización dinámica del sistema.

Además, no resuelve el problema de la opacidad: aunque el modelo haya aprendido del corpus,
no puede citar ni explicar la fuente de su conocimiento durante la inferencia [17].

10



4.4.3 Recuperación de información clásica (IR)

Los sistemas IR tradicionales, como los basados en BM25 o ElasticSearch, ofrecen respuestas
extractivas, rápidas y trazables. Son especialmente útiles en sistemas de búsqueda documental
o cuando se requiere mostrar evidencia textual directa al usuario.

Sin embargo, su principal debilidad reside en la falta de capacidad generativa. La carga
interpretativa recae sobre el usuario, quien debe extraer el significado relevante de los fragmentos
recuperados. Además, su rendimiento se ve limitado por la calidad del índice y por la literalidad
de las coincidencias, lo que reduce su eficacia en consultas expresadas en lenguaje natural libre
[27].

4.4.4 Síntesis comparativa

La arquitectura RAG se sitúa como una solución intermedia que combina:

La adaptabilidad y fluidez de los modelos generativos.

La trazabilidad y precisión de los sistemas IR.

La posibilidad de actualización dinámica del corpus sin reentrenamiento.

Esto la convierte en una arquitectura especialmente valiosa en contextos donde es necesa-
rio producir lenguaje natural preciso, pero fundamentado en evidencia externa, actualizable y
auditable.

4.5 Variantes técnicas del enfoque RAG

Desde su formulación original, el paradigma RAG ha dado lugar a distintas variantes arqui-
tectónicas, cuya existencia responde a las múltiples necesidades de equilibrio entre eficiencia,
trazabilidad, interpretabilidad y coste computacional. Estas variantes no implican una ruptura
con el diseño básico, sino una extensión de su lógica modular, orientada a adaptar el esquema
general de RAG a requisitos específicos de aplicación o a restricciones tecnológicas.

4.5.1 Nivel de agregación: RAG-end-to-end vs. RAG-token

Uno de los criterios de clasificación más frecuentes entre las variantes de RAG se basa en el
nivel de granularidad con que se procesan los documentos recuperados. En la configuración cono-
cida como RAG-end-to-end, todos los fragmentos documentales recuperados se concatenan en
un único bloque que se proporciona como entrada al modelo generativo. Esta estrategia, la más
utilizada en entornos generales, ofrece una implementación sencilla y una velocidad razonable
de inferencia, aunque puede limitar la interpretabilidad y la atribución precisa de la respuesta
a fuentes concretas.

Por otro lado, la variante RAG-token procesa cada fragmento por separado y genera pre-
dicciones condicionadas por cada uno de ellos, permitiendo una mayor trazabilidad en el proceso
de generación. Esta estrategia fue explorada por Izacard y Grave [12], quienes propusieron una

11



distilación del conocimiento desde el generador hacia el recuperador para mejorar la precisión y
la relevancia contextual. RAG-token se aplica especialmente en tareas donde es necesario justi-
ficar cada elemento de la respuesta con su fuente correspondiente, o donde se desea calcular la
relevancia de cada documento de forma explícita. No obstante, su complejidad computacional y
la necesidad de una arquitectura más sofisticada la hacen menos común en aplicaciones prácticas
de escala reducida.

4.5.2 Arquitectura generativa: encoder-decoder vs. autoregresivo

Otra dimensión fundamental en la caracterización de variantes RAG es el tipo de modelo
generativo que se utiliza. Existen dos familias principales:

Modelos encoder-decoder, como los basados en arquitecturas sequence-to-sequence,
en los que un codificador procesa la entrada completa (consulta + documentos) y un
decodificador genera la respuesta. Estos modelos permiten un mayor control sobre la forma
y contenido de la salida y son especialmente eficaces en tareas supervisadas o con formatos
estructurados. El modelo T5 [24] es un referente dentro de esta familia por su capacidad
de unificar múltiples tareas de PLN bajo un mismo marco de entrenamiento.

Modelos autoregresivos, como los basados en arquitecturas decoder-only, en los que
la generación de texto se realiza token a token a partir de un contexto acumulado. Este
enfoque ha demostrado ser más flexible y robusto en tareas de generación libre, aunque
ofrece menos control estructural y puede ser más propenso a errores de factualidad si no
se combina adecuadamente con mecanismos de recuperación.

Ambas aproximaciones pueden integrarse en un sistema RAG, dependiendo del diseño general
del sistema, de los requisitos de la tarea y de las capacidades del entorno de despliegue.

4.5.3 Criterios de selección conceptual

La elección de una variante de RAG no debe entenderse como una preferencia arbitraria, sino
como el resultado de una evaluación cuidadosa de los objetivos del sistema. Entre los factores
que condicionan la decisión se incluyen:

La necesidad de justificar documentalmente las respuestas (trazabilidad).

El equilibrio deseado entre velocidad de inferencia y precisión contextual.

La capacidad del sistema para manejar consultas ambiguas o abiertas.

Las restricciones del dominio de aplicación (e.g., jurídico, médico, financiero).

El tipo de interacción esperado con el usuario (conversacional, documental, generativa).

La existencia de estas variantes demuestra que RAG no es un enfoque cerrado, sino un
paradigma flexible que admite múltiples configuraciones internas para adaptarse a contextos de
uso muy diversos.

12



4.6 Arquitectura y componentes principales

La implementación de un sistema basado en RAG requiere una arquitectura modular bien
definida, capaz de gestionar eficientemente tanto la recuperación semántica de información como
la generación de respuestas por parte de un modelo de lenguaje. A diferencia de otros sistemas
monolíticos, donde todo el procesamiento se concentra en un único modelo entrenado de forma
estática, RAG se apoya en una estructura de componentes desacoplados que trabajan de forma
coordinada para generar las respuestas con información actual, precisa y contextual.

Esta modularidad permite escalar el sistema por partes, facilitar el mantenimiento, personali-
zar los componentes en función del dominio y, lo más importante, dotar al sistema de una fuente
de conocimiento actualizable sin necesidad de modificar el modelo de lenguaje subyacente.

A continuación, se describen los componentes esenciales que conforman una arquitectura
RAG típica, así como su función dentro del flujo general del sistema.

4.6.1 Base de datos vectorial o motor de búsqueda semántica

Uno de los pilares del sistema es la base de datos vectorial, encargada de almacenar las repre-
sentaciones numéricas (embeddings) de todos los fragmentos documentales que se desean poner
a disposición del sistema. Esta base actúa como el motor de búsqueda semántica, permitiendo
recuperar aquellos fragmentos que tienen mayor similitud conceptual con la consulta planteada
por el usuario.

A diferencia de las bases de datos relacionales o documentales, una base vectorial organiza los
datos en un espacio n-dimensional donde los documentos son vectores y la búsqueda se realiza en
función de la proximidad matemática (por ejemplo, distancia coseno o L2). Esta representación
permite encontrar fragmentos que, aunque no compartan palabras exactas, están relacionados
semánticamente.

Entre las soluciones más utilizadas en este ámbito destacan:

FAISS: biblioteca desarrollada por Facebook AI para búsquedas de similitud altamente
eficientes, especialmente útil en entornos donde se requiere rendimiento en GPU [13].

Milvus: base de datos orientada a grandes volúmenes de datos, con soporte nativo para
operaciones distribuidas.

Weaviate: plataforma completa que combina almacenamiento vectorial con funcionalida-
des adicionales como GraphQL, esquemas enriquecidos y vectorización automática.

Estas bases no solo permiten búsquedas por similitud, sino que también pueden almacenar
metadatos (como el origen, fecha o categoría del fragmento), lo que habilita filtros más precisos
durante la recuperación.

4.6.2 Representaciones numéricas (Embeddings)

Los embeddings son el puente entre el lenguaje natural y el espacio vectorial. Se trata de
vectores de dimensión fija que codifican el contenido semántico de un texto. Dos fragmentos de

13



texto con significados similares deberían dar lugar a vectores próximos en dicho espacio.
Para generar estos vectores se utilizan modelos entrenados específicamente en tareas de sen-

tence encoding o text embedding. Algunos de los más conocidos y eficaces son:

Sentence-BERT: una variante de BERT diseñada para generar embeddings útiles en
tareas de similitud semántica [26].

Universal Sentence Encoder (USE): desarrollado por Google, optimizado para tareas
como clasificación o recuperación [2].

Instructor: un modelo moderno que permite condicionar los embeddings según instruc-
ciones específicas, lo que mejora la recuperación en dominios concretos.

La elección del modelo de embeddings es crucial: debe equilibrar precisión semántica, rendi-
miento computacional y compatibilidad con el dominio de aplicación (en este caso, el asegura-
dor).

4.6.3 Modelo de lenguaje generativo (LLM)

El modelo de lenguaje es el encargado de generar la respuesta final que recibe el usuario. Su
trabajo consiste en leer los fragmentos recuperados y generar un texto coherente, contextualizado
y relevante, que responda a la pregunta original.

Algunos modelos utilizados habitualmente en sistemas RAG incluyen:

GPT (OpenAI): gran capacidad generativa, pero requiere acceso vía API y tiene costes
asociados.

LLaMA: opción de código abierto desarrollada por Meta, más flexible para despliegues
locales.

T5 / Flan-T5: modelos encoder-decoder que permiten tareas de generación condiciona-
das, con muy buenos resultados en entornos supervisados [24].

El modelo no necesita conocer previamente el contenido de los documentos; su papel es
procesar la información suministrada en el contexto (prompt) y generar una respuesta ajustada.
Esta separación permite reutilizar el mismo LLM en distintos dominios, cambiando únicamente
la base documental.

4.6.4 Controlador del flujo de datos

El controlador es el componente orquestador. Su función es coordinar las distintas fases del
sistema, garantizando que la información fluye correctamente desde la entrada hasta la salida.
Entre sus responsabilidades destacan:

Convertir la consulta del usuario en un embedding y consultar la base vectorial.

14



Recoger los k fragmentos más relevantes y construir el prompt final para el modelo.

Gestionar los formatos de entrada y salida (por ejemplo, para ofrecer respuestas estructu-
radas o justificar la fuente documental).

Encapsular la lógica de negocio del sistema (por ejemplo, aplicar filtros de seguridad,
controlar tiempos de respuesta, etc.).

Este componente se implementa habitualmente como parte del backend del sistema, y se co-
necta a través de una API REST o gRPC con los distintos servicios (vectorización, recuperación,
generación, etc.).

4.6.5 Flujo general de operación

El flujo completo de un sistema RAG puede resumirse en los siguientes pasos:

1. Entrada del usuario: se formula una pregunta o instrucción en lenguaje natural.

2. Vectorización de la consulta: el texto se transforma en un vector utilizando un modelo
de embeddings.

3. Consulta a la base vectorial: se recuperan los fragmentos más similares semánticamente
a la consulta.

4. Construcción del prompt: se combinan los fragmentos con la pregunta del usuario para
formar la entrada al LLM.

5. Generación de la respuesta: el modelo produce una respuesta final utilizando el con-
texto documental.

6. Entrega y visualización: la respuesta se devuelve al usuario, junto con posibles referen-
cias a los documentos utilizados.

Este flujo es altamente adaptable y permite implementar optimizaciones en cada etapa, como
caché de respuestas, preprocesamiento de consultas, o resúmenes automáticos de los fragmentos
recuperados.

4.7 Justificación del enfoque RAG

La elección del paradigma RAG en el diseño del sistema propuesto no es una decisión ar-
bitraria, sino el resultado de una evaluación comparativa entre distintas estrategias utilizadas
habitualmente en tareas de procesamiento de lenguaje natural con acceso a información docu-
mental. Cada una de estas alternativas presenta ventajas y limitaciones que deben ser ponderadas
en función del dominio de aplicación, los requisitos funcionales y las restricciones operativas del
sistema.

15



4.7.1 Recuperación de información clásica (IR)

Los enfoques basados exclusivamente en recuperación de información (IR), como los imple-
mentados mediante motores BM25 o ElasticSearch, se apoyan en técnicas de coincidencia léxica
para localizar documentos relevantes. Aunque estos sistemas pueden incorporar mecanismos de
búsqueda semántica mediante embeddings, su salida sigue siendo extractiva: devuelven fragmen-
tos que el usuario debe interpretar o filtrar manualmente.

Este enfoque resulta útil en contextos donde la carga interpretativa recae en expertos huma-
nos, o cuando el volumen de información es limitado. Sin embargo, se muestra insuficiente en
tareas que requieren generación automática de respuestas completas, coherentes y comprensibles
para usuarios no especializados [27].

4.7.2 Modelos generativos sin recuperación externa

Los modelos generativos autoregresivos, como los grandes modelos de lenguaje (LLMs), son
capaces de producir texto fluido a partir de una entrada en lenguaje natural. No obstante, su
capacidad para proporcionar respuestas precisas y verificables está limitada por el hecho de que
el conocimiento sobre el que operan está encapsulado en los pesos del modelo, congelado en el
momento de su entrenamiento.

La ausencia de un mecanismo de acceso a bases documentales externas restringe su aplica-
bilidad en dominios donde la información cambia con frecuencia o donde se exige trazabilidad.
Además, estos modelos pueden generar respuestas incorrectas con elevada confianza, fenómeno
conocido como alucinaciones, lo cual compromete su fiabilidad en entornos críticos [29].

4.7.3 Finetuning de modelos preentrenados

Otra opción es el fine-tuning de modelos generales sobre un corpus específico del dominio.
Este procedimiento permite adaptar el modelo a un vocabulario técnico concreto o a estilos
discursivos propios del sector. Sin embargo, presenta múltiples inconvenientes:

Requiere conjuntos de datos representativos, curados y etiquetados, lo cual implica un alto
coste en tiempo y recursos.

Introduce una dependencia operativa del proceso de reentrenamiento cada vez que se
actualiza el conocimiento del dominio.

No resuelve el problema de la falta de trazabilidad, ya que el modelo sigue sin ofrecer
evidencias directas del origen de sus respuestas.

4.7.4 Comparativa conceptual de enfoques

A modo de síntesis, la tabla 4.1 resume las principales diferencias entre las alternativas descri-
tas y el enfoque RAG, en función de criterios clave como generación, actualización, trazabilidad
y coste computacional.

16



Criterio IR LLM FT RAG

Generación de lenguaje ✗ ✓ ✓ ✓

Info. actualizada ✓* ✗ ✗ ✓*

Trazabilidad ✓ ✗ ✗ ✓

Coste computacional Bajo Alto Muy alto† Moderado

¿Reentrenamiento? ✗ ✗ ✓ ✗

Adaptación documental ✓ ✗ ✗ ✓

Cuadro 4.1: Comparativa técnica entre IR, LLM, Fine-Tuning (FT) y RAG
* Mediante corpus externo o actualización manual.

† Requiere entrenamiento con grandes volúmenes de datos.

4.7.5 Adecuación al contexto del proyecto

En el contexto del presente trabajo, centrado en la consulta inteligente de documentación nor-
mativa, contractual y técnica del sector asegurador, el paradigma RAG se revela como la opción
más adecuada. Su capacidad para integrar recuperación semántica y generación de respuestas,
con apoyo documental explícito, permite satisfacer requisitos críticos como:

Actualización continua del conocimiento sin necesidad de reentrenamiento.

Fundamentación explícita de las respuestas, favoreciendo su auditabilidad.

Modularidad y escalabilidad técnica en entornos basados en microservicios.

En suma, RAG ofrece un equilibrio óptimo entre flexibilidad, precisión, trazabilidad y mante-
nibilidad, lo que lo convierte en el núcleo arquitectónico más adecuado para la solución propuesta
en este Trabajo de Fin de Grado.

4.8 Conclusiones tecnológicas

La revisión realizada en los apartados anteriores ha permitido construir una base conceptual
y técnica sólida en torno a la arquitectura RAG. A través del análisis de sus principios, compo-
nentes clave, ventajas frente a otras alternativas y adecuación al contexto del proyecto, se han
delimitado los motivos por los cuales este enfoque resulta especialmente indicado para sistemas
de consulta basados en documentación interna y conocimiento de forma dinámica.

Desde el punto de vista de ingeniería, RAG destaca por su modularidad, escalabilidad y
capacidad de actualización sin necesidad de reentrenamiento, cualidades esenciales en sectores
donde la información está sujeta a cambios normativos, contractuales o técnicos, como es el caso
del ámbito asegurador. Al desacoplar la lógica de generación de lenguaje del almacenamiento
del conocimiento, se facilita tanto el mantenimiento como la evolución incremental del sistema,
sin comprometer la trazabilidad ni la coherencia de las respuestas generadas.

17



La comparación con enfoques clásicos de recuperación de información, modelos generativos
puros y estrategias de finetuning ha puesto de manifiesto que RAG representa un equilibrio
óptimo entre precisión, eficiencia y control del conocimiento. Esta arquitectura no solo permite
ofrecer respuestas más fiables y justificadas, sino que también habilita mecanismos de auditoría
documental y control de versiones que resultan críticos en entornos regulados o sensibles.

Sobre esta base conceptual, el siguiente paso consistirá en examinar y comparar soluciones
tecnológicas existentes que implementan el enfoque RAG —como LangChain, Haystack o Lla-
maIndex—, con el objetivo de seleccionar las herramientas más adecuadas para el desarrollo del
sistema propuesto.

4.9 Estado actual del sector asegurador y adopción de la inteligencia
artificial

4.9.1 Introducción

El sector asegurador se encuentra inmerso en un proceso de transformación digital impul-
sado por la adopción de tecnologías emergentes, entre las cuales la inteligencia artificial (IA)
destaca por su potencial para optimizar procesos, mejorar la experiencia del cliente y desarrollar
nuevos modelos de negocio. Esta evolución responde a la necesidad de adaptarse a un entorno
cada vez más competitivo y a las crecientes expectativas de los consumidores en términos de
personalización y eficiencia.

4.9.2 Grado de adopción de la IA en el sector asegurador

Según el IX Termómetro de Inteligencia Artificial y Data en el sector asegurador español,
elaborado por Minsait e ICEA, el 80 % de las aseguradoras en España están trabajando en
proyectos relacionados con IA, y dos tercios de ellas ya han implementado soluciones en su
operativa diaria [20]. Estas iniciativas se centran principalmente en áreas como la mejora de la
experiencia del cliente, la detección de fraudes y la optimización de procesos internos.

A nivel europeo, el informe de la Autoridad Europea de Seguros y Pensiones de Jubilación
(EIOPA) publicado en 2024 indica que el 50 % de las entidades ya aplican IA en seguros de no
vida, y el 24 % en el ramo de vida. Además, un 30 % y un 39 % de las aseguradoras esperan
aplicar estas tecnologías próximamente en esos respectivos ramos [5].

4.9.3 Aplicaciones actuales de la IA en el sector asegurador

La inteligencia artificial se está aplicando en diversas áreas estratégicas del sector asegurador
[3, 15, 10], entre las que destacan:

Automatización de procesos: la IA permite automatizar tareas repetitivas como la
tramitación de siniestros o la gestión documental, mejorando la eficiencia y reduciendo
errores humanos.

18



Análisis predictivo y personalización: gracias a técnicas de aprendizaje automático
y minería de datos, es posible predecir necesidades futuras de los clientes y adaptar los
productos a perfiles individuales.

Detección de fraudes: mediante la identificación de patrones atípicos o inconsistencias
en los datos, la IA contribuye a detectar intentos de fraude con mayor rapidez y precisión
[6].

Atención al cliente: los asistentes virtuales y chatbots permiten ofrecer soporte 24/7,
mejorando los tiempos de respuesta y la calidad del servicio.

4.9.4 Retos y consideraciones éticas

La integración de IA en el sector asegurador plantea importantes retos, especialmente en
materia de transparencia, equidad y cumplimiento normativo. La Ley de Inteligencia Artificial
de la Unión Europea (AI Act), aprobada en 2024, clasifica como de alto riesgo los sistemas que
afectan a la tarificación o evaluación de riesgos en seguros de salud o vida, imponiendo estrictos
requisitos de supervisión y explicabilidad [21].

Asimismo, existe una creciente preocupación por el posible sesgo algorítmico en los modelos
de IA, que podría derivar en prácticas discriminatorias. Para mitigar estos riesgos, las entidades
deben implementar políticas de gobernanza de datos y validación de modelos, que garanticen la
equidad, la auditabilidad y el respeto de los derechos del consumidor [1].

4.9.5 Conclusión

La inteligencia artificial está redefiniendo la forma en que las aseguradoras operan y se re-
lacionan con sus clientes. Si bien ya se ha avanzado significativamente en la automatización y
personalización de servicios, siguen existiendo desafíos técnicos, regulatorios y éticos que condi-
cionan su adopción. En este contexto, el enfoque RAG se perfila como una arquitectura idónea
para abordar los retos específicos asociados a la consulta documental, gracias a su capacidad
para ofrecer respuestas precisas, trazables y fundamentadas en evidencia actualizable.

4.10 Consideraciones éticas y reglamentarias de la IA

La aplicación de IA en la gestión de pólizas y siniestros queda enmarcada en el Artificial
Intelligence Act (AI Act) [7]. El artículo 6.2 clasifica como sistema de alto riesgo todo sistema
que pueda influir en decisiones con efectos legales o significativos sobre clientes de seguros. Por
ello, la solución descrita en este TFG debe cumplir:

Gestión de riesgos y pruebas previas (arts. 9–10): análisis de sesgos y trazabilidad
de datos de entrenamiento.

Registro de eventos (arts. 12–14): bitácoras completas de consultas y fragmentos recu-
perados, conservadas durante seis años.

19



Transparencia (art. 13): aviso visible «respuesta generada por IA» y referencia directa
a la fuente documental mostrada al usuario.

Marcos y principios internacionales

ISO/IEC 42001 Primer estándar de AI Management System; establece controles de explica-
bilidad y ciclo PDCA [11].

UNESCO Recomendación mundial sobre la ética de la IA [25], que introduce la Evaluación de
Impacto Ético.

OCDE Principios de IA centrados en robustez y rendición de cuentas [22].

Marco español de protección de datos

La AEPD exige comprobar sesgos y re-identificabilidad antes de liberar datos para entrena-
miento. Su guía de datos sintéticos (abril 2025) [8] recomienda:

1. Seudonimización SHA-256 de NIF y matrículas.

2. Difuminado de firmas en PDF mediante OpenCV.

3. Garantizar K-anonymity ≥ 5 en los conjuntos publicados

Mapeo de requisitos y contramedidas

Cuadro 4.2: Correspondencia AI Act / ISO 42001 y su implementación en el sistema

Requisito Norma / Artículo Implementación en
este TFG

Registro de
eventos

AI Act 12 Servicio APIRest
logger

Transparencia AI Act 13 Lista de fragmentos
mostrados

Supervisión
humana

AI Act 14.d Este sistema está
pensado para ser usado
por un trabajador,
antes de ser
transmitida la
información al cliente

Síntesis y riesgos residuales

20



El sistema desarrollado cumple con los objetivos funcionales definidos y se ajusta a los princi-
pios de modularidad, escalabilidad y precisión esperados en entornos aseguradores. No obstante,
persisten algunos riesgos técnicos residuales que deberán abordarse en futuras fases de desarrollo:

1. Sesgo en los datos de entrenamiento: los documentos utilizados para pruebas pue-
den reflejar patrones históricos no generalizables. Se propone incorporar un muestreo más
diverso y representativo en futuras evaluaciones.

2. Vulnerabilidad a prompt injection: aunque se han implementado filtros mediante
expresiones regulares y técnicas básicas de control de entrada, se reconoce la necesidad
de aplicar estrategias más robustas como validación semántica o ejecución en entornos
restringidos.

3. Impacto de cambios regulatorios: el uso de modelos de lenguaje en el sector asegu-
rador puede verse afectado por futuras regulaciones sobre IA. Esto requerirá una revisión
periódica del sistema para garantizar su cumplimiento normativo.

En conclusión, la arquitectura actual prioriza un diseño seguro y transparente, permitiendo
su adaptación a marcos regulatorios en evolución y dejando abierta la posibilidad de una futura
certificación conforme a normativas aplicables en el ámbito de sistemas basados en IA.

21



22



Capítulo 5

Soluciones Existentes

5.1 Introducción

A partir del marco teórico desarrollado en capítulos anteriores, donde se han analizado los
fundamentos del enfoque RAG y su idoneidad frente a otras alternativas, este capítulo tiene
como objetivo identificar, describir y comparar soluciones tecnológicas existentes que permiten
implementar dicha arquitectura de forma práctica.

La implementación de un sistema RAG funcional y eficiente requiere la combinación de varias
herramientas que cubren distintas fases del flujo: desde la indexación semántica de documentos
hasta la generación de respuestas por parte del modelo de lenguaje. En particular, se abordarán
tres categorías principales de soluciones:

Frameworks de integración RAG: plataformas que proporcionan herramientas de al-
to nivel para construir pipelines de recuperación y generación de forma modular, como
LangChain, Haystack y LlamaIndex.

Bases de datos vectoriales: tecnologías encargadas de almacenar y recuperar eficien-
temente representaciones vectoriales de fragmentos de texto, tales como FAISS, Milvus y
Weaviate.

Modelos de lenguaje generativo: arquitecturas preentrenadas utilizadas para inter-
pretar el contexto recuperado y generar respuestas en lenguaje natural, entre los que se
encuentran GPT, LLaMA, T5, entre otros.

El análisis de estas herramientas se realizará considerando criterios como escalabilidad, com-
patibilidad, facilidad de integración, rendimiento, flexibilidad y soporte a largo plazo. Al finalizar
esta sección, se establecerán las bases para la selección concreta de las tecnologías utilizadas en
el desarrollo del sistema propuesto.

23



5.2 Frameworks de integración RAG

5.2.1 LangChain

LangChain es un framework de desarrollo modular diseñado para facilitar la construcción de
aplicaciones basadas en modelos de lenguaje de gran tamaño (LLMs), especialmente aquellas que
requieren integración con fuentes de información externas. Desde su aparición, se ha consolidado
como una de las herramientas de referencia en el ecosistema RAG debido a su flexibilidad,
extensibilidad y capacidad para componer flujos de trabajo complejos mediante componentes
reutilizables.

A diferencia de enfoques monolíticos, LangChain permite estructurar aplicaciones de IA en
forma de cadenas (chains) o agentes que combinan múltiples pasos de procesamiento, incluyendo
recuperación semántica, generación de prompts, ejecución de acciones condicionales o llamadas a
herramientas externas. Esta arquitectura facilita la creación de sistemas escalables y mantenibles,
particularmente útiles cuando se trabaja con documentos extensos, dominios especializados o
interacciones de varias modalidades.

Entre sus funcionalidades más relevantes destacan:

Integración nativa con bases de datos vectoriales: LangChain soporta múltiples
motores como FAISS, Pinecone, Weaviate, Qdrant o Milvus, permitiendo seleccionar la
base que mejor se adapte a los requisitos de cada proyecto.

Soporte para múltiples LLMs: incluye conectores listos para usar con modelos propie-
tarios (OpenAI, Cohere, Anthropic) y de código abierto (LLaMA, HuggingFace Transfor-
mers, GPT4All), facilitando pruebas y despliegues en entornos híbridos.

Pipeline de recuperación y generación (RAG): ofrece componentes especializados
para construir flujos RAG, como RetrievalQA y ConversationalRetrievalChain, donde
se puede conectar directamente una base vectorial con un modelo generativo para realizar
preguntas sobre documentos.

Herramientas de ingeniería de prompts: permite definir plantillas dinámicas, inyectar
contexto y controlar la estructura de entrada al LLM, lo cual es esencial para mejorar la
precisión de las respuestas.

Manejo del estado conversacional: incorpora estructuras como Memory para mantener
el historial de conversación, crucial en sistemas conversacionales basados en documentos.

LangChain también destaca por su activa comunidad de desarrollo, documentación extensa
y actualizaciones frecuentes. Su diseño orientado a componentes permite sustituir fácilmente
cualquier parte del flujo sin afectar al resto del sistema, lo que resulta especialmente útil en
entornos iterativos o de experimentación constante.

En el contexto de este proyecto, LangChain se ha utilizado de manera específica para cons-
truir dinámicamente los prompts y mantener el estado conversacional, permitiendo integrar la

24



memoria contextual en las respuestas del modelo. No se ha empleado para la recuperación se-
mántica ni la generación directamente, sino como herramienta de orquestación ligera enfocada
en enriquecer el contexto entregado al LLM. Su integración con Python y su orientación modular
han permitido incorporarlo de forma sencilla en el sistema existente.

5.2.2 Haystack

Haystack es un framework de código abierto desarrollado por la empresa alemana Deepset,
diseñado para construir sistemas de pregunta-respuesta, recuperación de información y asistentes
conversacionales basados en documentos. Su arquitectura está orientada a pipelines modulares,
lo que permite definir con claridad el flujo de entrada, recuperación, procesamiento y generación
de respuestas.

Una de las principales virtudes de Haystack es su enfoque práctico y su rápida adopción en
entornos industriales. Su diseño flexible facilita la combinación de distintos componentes como
indexadores, modelos de embeddings, motores de búsqueda semántica, preprocesadores de texto
y modelos generativos.

Entre sus características más relevantes destacan:

Soporte para múltiples bases vectoriales y motores de búsqueda: permite inte-
grar tecnologías como Elasticsearch, FAISS, Weaviate, Milvus y Qdrant, lo que lo hace
adaptable a distintos requisitos de rendimiento y escalabilidad.

Compatibilidad con modelos de lenguaje modernos: soporta tanto modelos alojados
localmente (como Transformers desde Hugging Face) como servicios remotos (OpenAI,
Cohere, etc.).

Pipelines definibles por YAML o mediante código Python: lo que permite cons-
truir, visualizar y modificar con claridad flujos de procesamiento en cada paso de la recu-
peración y generación.

Herramientas para preprocesamiento y segmentación de documentos: permite
aplicar técnicas de chunking, limpieza de texto, y normalización, fundamentales para un
rendimiento adecuado de los sistemas RAG.

Interfaz RESTful y componentes para producción: incluye un servidor de infe-
rencia, monitorización con Prometheus y un cliente web básico, lo que permite desplegar
prototipos y productos funcionales de manera eficiente.

Aunque Haystack también soporta arquitecturas RAG completas, en el contexto de este
proyecto no se ha utilizado directamente. No obstante, su análisis resulta útil por su enfoque
industrial y su madurez como framework. En comparación con LangChain, Haystack ofrece una
aproximación más centrada en el despliegue final y en la integración con bases de datos docu-
mentales completas, mientras que LangChain está más orientado a la manipulación dinámica de
prompts y contextos.

25



5.2.3 LlamaIndex

LlamaIndex (anteriormente conocido como GPT Index) es una herramienta especializada en
la indexación, estructuración y consulta de grandes volúmenes de información textual para su
integración con modelos de lenguaje. A diferencia de otros frameworks que se centran en la
orquestación general de sistemas RAG, LlamaIndex está diseñado específicamente para facili-
tar la interacción eficiente entre documentos complejos y LLMs, priorizando la calidad de la
recuperación y la flexibilidad en la representación de la información.

Una de sus principales fortalezas es su capacidad para construir índices personalizados a
partir de diversas fuentes de datos (archivos, bases de datos, APIs, etc.) y aplicar distintas
estrategias de segmentación, resumen y agrupamiento. Además, permite optimizar el proceso
de recuperación mediante estructuras como árboles de decisión, índices jerárquicos o esquemas
vectoriales híbridos.

Entre sus características más destacadas se encuentran:

Indexación estructurada avanzada: permite construir índices tipo lista, árbol, resu-
men, grafo o combinaciones de estos, adaptándose a distintos tipos de corpus y consultas.

Soporte nativo para múltiples fuentes de datos: incluye conectores para documentos
locales, bases SQL, NoSQL, APIs externas, herramientas de scraping, etc.

Módulos de preprocesamiento e integración semántica: permite aplicar resúmenes
parciales, anotaciones o generación de nodos intermedios antes de la indexación.

Compatibilidad con múltiples bases vectoriales: soporta integración con FAISS,
Milvus, Weaviate, entre otras.

Control detallado sobre la generación de prompts: ofrece herramientas para crear
plantillas condicionales y ajustar dinámicamente los fragmentos documentales que se pre-
sentan al modelo.

LlamaIndex es especialmente útil en proyectos donde los documentos no se limitan a ser
fragmentos planos, sino que presentan una estructura semántica o jerárquica compleja. En ese
contexto, su aproximación basada en índices enriquecidos permite mejorar la relevancia de la
recuperación y la coherencia de las respuestas generadas por el LLM.

Aunque en este proyecto no se ha empleado directamente, LlamaIndex representa una alter-
nativa muy sólida cuando se requiere alta calidad en la recuperación, especialmente en dominios
donde los documentos presentan formatos diversos, niveles de profundidad o conexiones semán-
ticas entre secciones.

5.3 Bases de datos vectoriales

5.3.1 FAISS (Facebook AI Similarity Search)

FAISS es una biblioteca desarrollada por Facebook AI Research (FAIR), diseñada especí-
ficamente para realizar búsquedas de similitud en grandes volúmenes de datos vectoriales de

26



manera rápida y eficiente. Se ha consolidado como una de las soluciones más utilizadas en tareas
de recuperación semántica, especialmente en arquitecturas basadas en RAG, gracias a su alto
rendimiento, flexibilidad y amplia adopción en entornos de producción.

El principal objetivo de FAISS es resolver el problema conocido como Approximate Nearest
Neighbor Search (ANN), es decir, la búsqueda eficiente de los vectores más cercanos a uno dado
dentro de un espacio de alta dimensión. Para ello, ofrece múltiples algoritmos e índices que
permiten ajustar el equilibrio entre precisión, velocidad y consumo de recursos, tanto en CPU
como en GPU.

Características principales

Alto rendimiento en búsquedas densas: optimizado para entornos de alto volumen,
con soporte completo tanto para CPU como para GPU, lo que permite escalar a millones
de vectores con baja latencia.

Índices configurables: ofrece diversos tipos de índices (Flat, IVF, HNSW, PQ, entre
otros) que pueden combinarse entre sí para adaptar el comportamiento del sistema a las
necesidades del caso de uso.

Madurez y fiabilidad: es un proyecto de código abierto con soporte activo, documenta-
ción extensa y probado en aplicaciones industriales de gran escala.

Compatibilidad con frameworks RAG: se integra fácilmente con herramientas como
LangChain, LlamaIndex y Haystack, lo que facilita su integración dentro de arquitecturas
modernas de IA generativa.

Persistencia de índices: permite almacenar los índices en disco y recargarlos en tiempo
de ejecución, reduciendo los tiempos de arranque y simplificando la gestión del sistema.

Ventajas en contextos RAG FAISS resulta especialmente adecuado en escenarios donde se
requiere una recuperación de fragmentos precisa y de bajo coste computacional. Su rendimiento
optimizado y la capacidad de ajuste fino de los índices lo convierten en una solución ideal
cuando se necesita control sobre el comportamiento interno del motor de búsqueda. Además,
su integración con frameworks populares y su naturaleza open source lo hacen atractivo para
proyectos que operan sobre infraestructura propia o en entornos locales con recursos dedicados
(como servidores con GPU).

Limitaciones A pesar de sus ventajas, FAISS presenta algunas limitaciones relevantes:

Gestión manual: requiere configuración explícita para tareas como la persistencia, la
incorporación o eliminación de nuevos vectores, y el tratamiento de metadatos.

Ausencia de capa de abstracción avanzada: a diferencia de soluciones como Weaviate,
FAISS no incorpora por defecto funcionalidades para estructuración semántica, esquemas
enriquecidos o consultas mediante lenguaje declarativo, lo que puede requerir componentes
adicionales en la arquitectura para cubrir estas funciones.

27



5.3.2 Milvus

Milvus es una base de datos vectorial de código abierto diseñada específicamente para ges-
tionar de forma eficiente grandes volúmenes de vectores en entornos distribuidos. A diferencia
de soluciones más ligeras como FAISS, Milvus proporciona una infraestructura completa que
incluye almacenamiento persistente, gestión de metadatos, servicios de indexación paralela y
ejecución escalable en clústeres.

Su arquitectura está pensada para soportar operaciones intensivas de búsqueda semántica
en tiempo real, incluso cuando el número de vectores se encuentra en el rango de millones o
miles de millones. Este diseño hace de Milvus una opción especialmente adecuada para entornos
empresariales con altos requisitos de rendimiento y fiabilidad.

Características principales

Alta escalabilidad horizontal: permite distribuir el almacenamiento y las consultas a
lo largo de múltiples nodos, garantizando rendimiento constante con grandes volúmenes
de datos.

Gestión nativa de metadatos: cada vector puede asociarse a información estructurada,
permitiendo realizar consultas filtradas y segmentadas más allá de la similitud semántica.

Soporte para múltiples índices: entre ellos IVF, HNSW, ANNOY y Flat, que pueden
configurarse según las necesidades de precisión y latencia.

Integración con frameworks RAG: soporta conexión directa con LangChain, Haystack
y LlamaIndex mediante adaptadores nativos.

API REST y SDKs multiplataforma: disponible para lenguajes como Python, Java
o Go, lo que facilita su uso en sistemas basados en microservicios.

Ventajas en contextos RAG Milvus destaca por su capacidad de mantener el rendimiento
incluso bajo cargas de trabajo intensas y persistentes. Su infraestructura orientada a produc-
ción permite mantener bases documentales vivas, actualizables y fácilmente consultables. Esta
combinación lo convierte en una solución robusta y adecuada para sectores como el asegurador,
donde se requiere eficiencia, trazabilidad y control sobre grandes volúmenes de documentos.

Limitaciones

Complejidad en la infraestructura: su despliegue inicial puede requerir una mayor
planificación técnica, especialmente en entornos locales.

Mantenimiento más exigente: requiere supervisión continua, especialmente cuando se
opera en clústeres distribuidos o con alta disponibilidad.

28



5.3.3 Weaviate

Weaviate es una base de datos vectorial de código abierto que combina un motor de búsqueda
semántica con una capa de gestión de datos estructurados. A diferencia de otras soluciones más
centradas en el rendimiento puro (como FAISS), Weaviate adopta un enfoque de plataforma
completa, orientado a ofrecer funcionalidades semánticas avanzadas y flexibilidad en el modelado
de datos.

Su modelo de datos se basa en esquemas definidos por clases y propiedades, lo que permite
representar relaciones complejas entre documentos y realizar búsquedas que combinan semántica
y lógica estructurada. Además, cuenta con capacidades de vectorización automática e integración
directa con modelos preentrenados, lo que reduce la complejidad del proceso de carga de datos.

Características principales

Modelo de datos estructurado: permite definir esquemas semánticos mediante clases,
relaciones y metadatos, habilitando consultas más expresivas.

Vectorización automática: incorpora módulos de conexión con modelos como OpenAI,
Cohere o Hugging Face para vectorizar texto automáticamente al insertarlo.

API basada en GraphQL: facilita búsquedas que combinan contenido semántico con
lógica declarativa estructurada.

Arquitectura modular extensible: incluye módulos opcionales para autenticación, cla-
sificación, filtros espaciales, control de acceso, etc.

Interfaz gráfica de administración: incluye una UI que permite gestionar esquemas,
visualizar vectores y probar consultas desde el navegador.

Ventajas en contextos RAG Weaviate es especialmente útil en sistemas donde se requiere
una integración estrecha entre información semántica y estructura de datos. Su orientación
declarativa, su API intuitiva y su capacidad para reducir la fricción en el proceso de ingestión
y consulta hacen que sea una opción adecuada para entornos con necesidades complejas de
recuperación y representación.

Además, su escalabilidad horizontal y soporte para entornos distribuidos permiten su uso
tanto en prototipos como en despliegues empresariales.

Limitaciones

Mayor consumo de recursos: su arquitectura completa lo hace más exigente en com-
paración con soluciones más ligeras.

Curva de aprendizaje más pronunciada: requiere modelado correcto del esquema
para aprovechar su potencia.

Rendimiento sensible a la configuración: activar muchos módulos sin planificación
puede degradar el rendimiento si no se optimiza el despliegue.

29



5.4 Modelos de lenguaje generativo (LLMs)

Los modelos de lenguaje generativo constituyen el componente encargado de producir la
respuesta final en una arquitectura RAG, a partir del contexto recuperado por el sistema. Aunque
ya se ha analizado su papel en el flujo general del sistema, en esta sección se revisan algunas de las
principales opciones disponibles actualmente, comparando sus capacidades, licencias, eficiencia
y facilidad de integración.

Se incluyen tanto modelos propietarios como opciones de código abierto, valorando aspectos
como la calidad de generación, la sensibilidad al contexto, el soporte multilingüe o su adecuación
a entornos locales. También se considera el modelo empleado en este proyecto, Nous-Hermes-
2, que ha demostrado un buen equilibrio entre rendimiento, precisión y coste computacional en
tareas generativas condicionadas por contexto documental.

5.4.1 GPT (Generative Pre-trained Transformer)

GPT es una familia de modelos desarrollada por OpenAI, ampliamente utilizada como es-
tándar en tareas de lenguaje natural gracias a su elevada capacidad de generación, comprensión
contextual y razonamiento. Actualmente, la versión más avanzada es GPT-4, disponible a través
de servicios en la nube como OpenAI o Azure.

En arquitecturas RAG, GPT se utiliza habitualmente como modelo generador, siendo capaz
de procesar prompts enriquecidos con contexto documental y producir respuestas detalladas y
coherentes. Su rendimiento mejora significativamente cuando se combina con técnicas de prompt
engineering, inyección dinámica de contexto y gestión del historial conversacional.

Ventajas

Alta calidad en la generación de texto en múltiples idiomas.

Muy buen rendimiento en tareas de QA, resumen y diálogo.

Acceso sencillo mediante API bien documentada.

Limitaciones

Modelo propietario con costes asociados por token.

Requiere conexión a servicios externos y gestión de claves.

Dependencia de terceros, con implicaciones en privacidad y latencia.

5.4.2 LLaMA (Large Language Model Meta AI)

LLaMA es una familia de modelos desarrollada por Meta como alternativa de código abierto
a los modelos propietarios existentes. Su diseño se orienta a la eficiencia y a la posibilidad de
ejecución local, lo que permite desplegar sistemas generativos sin depender de servicios externos
ni comprometer la privacidad de los datos.

30



La versión más reciente, LLaMA 2, incluye modelos de 7, 13 y 70 mil millones de parámetros.
Su popularidad ha crecido rápidamente gracias a la facilidad de integración en entornos como
Hugging Face, llama.cpp o LangChain, así como a la existencia de numerosas variantes adaptadas
a distintos dominios.

Ventajas

Código abierto, ejecutable en entornos locales sin conexión externa.

Buena calidad generativa, especialmente en versiones ajustadas por comunidad.

Permite mayor control y personalización del sistema.

Limitaciones

Requiere GPU potente para ejecutar modelos de gran tamaño.

Su rendimiento base puede estar por debajo de GPT-4 en tareas complejas.

Ajustar el modelo al dominio requiere conocimientos técnicos adicionales.

5.4.3 Flan-T5

Flan-T5 es una variante del modelo T5 desarrollada por Google, optimizada mediante entre-
namiento multitarea con instrucciones. Su arquitectura encoder-decoder lo hace especialmente
adecuado para tareas supervisadas como resumen, clasificación o traducción, aunque también
puede emplearse en generación libre con prompts bien estructurados.

Está disponible en distintos tamaños, lo que permite su uso tanto en entornos ligeros como
en infraestructuras de mayor capacidad. Gracias a su licencia abierta y a su soporte en Hugging
Face, Flan-T5 se ha consolidado como una alternativa eficiente y accesible para integrar en
sistemas RAG.

Ventajas

Modelo de código abierto, disponible en múltiples tamaños.

Arquitectura eficiente y adaptada a tareas supervisadas.

Buen rendimiento en generación a partir de contexto bien definido.

Limitaciones

Capacidad limitada en tareas de razonamiento complejo o conversacional.

Requiere diseño de prompts cuidados para alcanzar precisión aceptable.

No mantiene memoria de contexto entre mensajes sucesivos.

31



5.4.4 Modelos ajustados específicamente para RAG

Además de los modelos generales, existen variantes afinadas específicamente para tareas de
recuperación y generación combinadas. Estos modelos, entrenados con técnicas de instruction
tuning y corpus específicos, están optimizados para generar respuestas coherentes y fieles al
contexto proporcionado por el sistema RAG.

Su diseño permite aprovechar mejor los fragmentos recuperados desde la base vectorial, mini-
mizando desviaciones temáticas y alucinaciones. Algunos ejemplos destacables incluyen modelos
como Nous-Hermes-2, Mistral-Instruct, Cohere Command R+ o Vicuna-Instruct, to-
dos ellos diseñados para ofrecer una mayor fidelidad factual y capacidad de razonamiento sobre
documentos aportados en el prompt.

Ventajas

Mayor adherencia al contexto proporcionado.

Mejores resultados en tareas específicas de recuperación + generación.

Reducción de alucinaciones y respuestas irrelevantes.

Limitaciones

Algunos modelos aún carecen de validación extensiva en producción.

Pueden requerir ajuste si el dominio es muy específico.

Su rendimiento depende en gran medida de la calidad del contexto recuperado.

5.5 Modelos de embeddings

Los modelos de embeddings utilizados en sistemas RAG pueden agruparse en diferentes fami-
lias, en función de su arquitectura y del enfoque de entrenamiento. A continuación se comparan
dos de las más relevantes: los modelos tipo Sentence-BERT y los modelos INSTRUCTOR, des-
tacando sus principales características, ventajas y limitaciones desde un punto de vista práctico.

Sentence-BERT (SBERT) Esta familia adapta modelos BERT para generar representacio-
nes vectoriales a nivel de frase o párrafo, utilizando redes siamesas o tripletas y entrenamiento
contrastivo. Se han convertido en el estándar de facto en tareas de recuperación semántica
simétrica.

Ventajas

• Alta eficiencia en inferencia, especialmente en modelos compactos.

• Facilidad de integración en librerías como sentence-transformers.

• Amplia disponibilidad de variantes preentrenadas y ajustadas a distintos dominios.

32



Limitaciones

• Menor rendimiento en tareas de recuperación asimétrica (consulta breve vs documen-
to largo).

• Sensibilidad al cambio de dominio si no se ha ajustado previamente.

INSTRUCTOR Los modelos INSTRUCTOR amplían el enfoque tradicional incluyendo una
instrucción textual explícita que describe la tarea. Esto les permite abordar múltiples tareas con
un solo modelo, mejorando la generalización y el rendimiento en contextos diversos.

Ventajas

• Mejor rendimiento en recuperación asimétrica y tareas heterogéneas.

• Capacidad de especialización sin necesidad de reentrenar el modelo, simplemente
cambiando la instrucción.

Limitaciones

• Mayor consumo de recursos debido al uso de instrucciones largas.

• Menor número de versiones ligeras y cuantizadas disponibles.

• Dependencia del idioma inglés en las instrucciones para lograr el rendimiento óptimo.

Resumen y elección en este proyecto El modelo seleccionado, intfloat/e5-large-v2,
se basa en la arquitectura Sentence-BERT y ofrece un buen equilibrio entre precisión, eficiencia
y facilidad de despliegue local. Aunque los modelos INSTRUCTOR ofrecen un rendimiento
superior en algunos benchmarks, su mayor complejidad operativa y dependencia del idioma
inglés han llevado a priorizar una solución más simple y robusta para esta primera fase del
sistema. En futuras versiones, se podrá considerar su incorporación si se requieren tareas más
variadas o mayor adaptabilidad semántica.

5.6 Conclusiones sobre soluciones

A lo largo de este capítulo se han analizado las principales tecnologías implicadas en la
implementación de arquitecturas RAG: frameworks de integración, bases de datos vectoriales,
modelos generativos, y modelos de embeddings. Esta revisión ha permitido identificar el conjunto
de herramientas más relevantes del ecosistema actual, evaluando sus ventajas, limitaciones y
niveles de madurez.

Una de las principales conclusiones es que no existe una única solución óptima, sino que la
elección de cada componente debe realizarse en función de las características del caso de uso, los
requisitos técnicos, el dominio de aplicación y la infraestructura disponible. Modelos de lenguaje
como GPT ofrecen un alto rendimiento con bajo esfuerzo de integración, mientras que soluciones
open source como LLaMA o Flan-T5 permiten mayor control y adaptabilidad. Lo mismo ocurre

33



con las bases vectoriales y modelos de embeddings, donde opciones como FAISS o Sentence-
BERT son eficaces en entornos locales, mientras que herramientas como Weaviate o Instructor
ofrecen mayores capacidades semánticas y estructurales.

Este análisis comparativo sienta las bases para justificar las decisiones tecnológicas adoptadas
en el desarrollo del sistema propuesto, que se detallarán en el próximo capítulo. La elección
final de herramientas se ha realizado atendiendo al equilibrio entre rendimiento, escalabilidad,
privacidad, flexibilidad y facilidad de integración en un entorno real.

34



Capítulo 6

Análisis

El presente capítulo expone el análisis detallado de la solución propuesta para implementar
un sistema de recuperación aumentada con generación (RAG) aplicado al sector asegurador.
Tras la revisión exhaustiva de las tecnologías disponibles presentada en el capítulo anterior, se
ha diseñado una arquitectura modular orientada a maximizar la precisión, la trazabilidad y la
escalabilidad del sistema, al mismo tiempo que se garantiza su viabilidad técnica en un entorno
real.

La solución se estructura en torno a cuatro componentes principales: un motor de recupe-
ración semántica basado en embeddings, una base vectorial persistente, un modelo de lenguaje
generativo adaptado al dominio, y un backend orquestador responsable de coordinar las operacio-
nes entre los distintos módulos. A lo largo de este capítulo se justifican las elecciones tecnológicas
realizadas en cada uno de estos elementos, atendiendo a criterios de rendimiento, compatibilidad,
flexibilidad y adecuación a los requisitos del dominio.

También se analizan aspectos como la estructura y formato de los documentos aseguradores,
las características semánticas del corpus, y las necesidades específicas del usuario final. Estos
elementos condicionan tanto la estrategia de preprocesamiento como el diseño de los flujos de
recuperación y generación que conforman el núcleo del sistema.

6.1 Requisitos técnicos y funcionales

El sistema propuesto tiene como objetivo principal facilitar el acceso eficiente, preciso y
contextualizado a la información contenida en documentos aseguradores. Para ello, se ha definido
un conjunto de requisitos funcionales y técnicos que guían tanto el diseño arquitectónico como
la elección de tecnologías.

Requisitos funcionales

Desde el punto de vista funcional, el sistema debe:

35



Permitir al usuario final realizar consultas basadas en documentos mediante preguntas
formuladas en lenguaje natural.

Proporcionar respuestas generadas a partir de fragmentos documentales reales, relevantes
y verificables.

Ofrecer trazabilidad de cada respuesta, indicando su procedencia dentro del corpus docu-
mental.

Soportar la carga de nuevos documentos, organizados por expedientes, sin necesidad de
reiniciar el sistema.

Mantener un historial conversacional coherente entre las interacciones de un mismo chat.

Proporcionar una interfaz usable, clara y accesible, tanto para personal técnico como no
técnico.

Requisitos técnicos y no funcionales

Desde un enfoque de ingeniería del software, se establecen los siguientes requisitos no funcio-
nales:

Escalabilidad: capacidad de crecimiento en volumen de datos y número de usuarios sin
degradación significativa del rendimiento.

Latencia aceptable: tiempo de respuesta inferior a 3 segundos incluso en escenarios con
elevada carga documental.

Modularidad: los componentes deben estar desacoplados y ser sustituibles sin afectar al
sistema completo.

Mantenibilidad: facilidad para incorporar nuevas tecnologías, actualizar modelos o rea-
lizar ajustes parciales.

Privacidad y control de datos: posibilidad de operar sin depender de servicios externos,
garantizando el tratamiento local de la información.

Compatibilidad con GPU: aprovechamiento de aceleración hardware
para tareas computacionalmente intensivas.

Estos requisitos derivan tanto de necesidades técnicas como del dominio asegurador, que
impone restricciones específicas en cuanto a trazabilidad, privacidad y control del conocimiento.
Son también la base sobre la que se ha construido la arquitectura final del sistema, tal como se
detallará en las siguientes secciones.

36



Casos de uso del sistema

Para complementar la definición de requisitos funcionales, se ha elaborado un diagrama de
casos de uso que resume de forma gráfica las principales interacciones que puede realizar un
usuario con el sistema. Estas operaciones cubren todo el ciclo funcional, desde la autenticación y
gestión de expedientes, hasta la carga de documentos y realización de consultas contextualizadas
sobre el corpus asegurador. También se contempla un actor secundario —el administrador— con
capacidades de auditoría y análisis en entornos de desarrollo.

Figura 6.1: Diagrama de casos de uso del sistema. El actor principal —el usuario final— puede
iniciar sesión mediante OAuth, gestionar sus expedientes, subir documentos y realizar consultas
en lenguaje natural sobre el corpus documental. Se incluye también un actor administrador con
capacidades de depuración y análisis para entornos de desarrollo.

37



6.2 Motivación del diseño arquitectónico

La arquitectura propuesta para este proyecto parte de la necesidad de ofrecer una solución
flexible, escalable y fácilmente mantenible, capaz de adaptarse a las particularidades del sector
asegurador y a la evolución constante del ecosistema tecnológico.

Frente a enfoques monolíticos o basados en modelos preentrenados estáticos, se opta por una
arquitectura modular y desacoplada que permita aislar responsabilidades, optimizar cada
componente de forma independiente y facilitar la evolución del sistema con el mínimo impacto
global.

Este tipo de arquitectura encaja de forma natural con los principios de diseño de los sistemas
RAG, donde las fases de recuperación, generación, almacenamiento y control están separadas y
pueden mejorarse por separado. Además, se alinea con buenas prácticas de ingeniería de software
como separación de responsabilidades, control de versiones, pruebas modulares y despliegue
flexible.

En contextos donde se maneja información crítica o sensible —como el dominio asegurador—,
esta separación permite:

Reemplazar el modelo generativo sin reindexar el corpus.

Cambiar el motor vectorial sin alterar el comportamiento conversacional.

Actualizar los embeddings con un nuevo modelo sin comprometer el resto del sistema.

Asimismo, el diseño modular permite incorporar componentes adicionales como sistemas de
auditoría, control de acceso, trazabilidad de contexto, y mecanismos de feedback, que son clave
en entornos profesionales regulados.

Por todo ello, la arquitectura basada en recuperación aumentada con generación se considera
la aproximación más adecuada para cumplir los requisitos definidos previamente, manteniendo
un alto grado de control, escalabilidad y adaptabilidad.

38



6.3 Análisis del flujo de consulta

Figura 6.2: Diagrama de secuencia del flujo de ingestión: subida, preprocesado y persistencia de
documentos.

Descripción de la Figura 6.2. El diagrama detalla el pipeline de ingestión. El proceso
se inicia cuando el empleado sube un PDF o DOCX desde la interfaz web. La petición POST /
documents/upload llega a la API REST, que delega en el módulo de preprocesado la extracción
del texto y su segmentación en chunks. Cada fragmento se envía al microservicio de embeddings,
que devuelve sus representaciones vectoriales. Finalmente, los pares [embedding + metadatos]
se insertan en la base de datos vectorial, mientras que el fichero original se almacena en un
repositorio persistente (base SQL o sistema de archivos). De esta forma, la arquitectura desacopla
claramente la capa de almacenamiento semántico de la capa documental.

Figura 6.3: Diagrama de secuencia del flujo de consulta: recuperación aumentada de información
(RAG).

39



Descripción de la Figura 6.3. El diagrama ilustra el circuito completo de una consulta
RAG. Cuando el usuario envía una pregunta, la API genera su embedding y lo compara con
los vectores almacenados, recuperando los k fragmentos más relevantes. Estos fragmentos se
concatenan con la consulta para construir el prompt que consume el modelo LLM. La respuesta
generada se devuelve al frontend, garantizando que el modelo dispone de un contexto documental
preciso, fresco y justificable. La separación entre las fases de recuperación y generación reduce
la alucinación y mejora la trazabilidad de las respuestas.

El flujo de consulta en una arquitectura RAG recoge, por tanto, el recorrido completo que
sigue una petición del usuario —desde su entrada en el sistema hasta la entrega de la respuesta—
asegurando la coherencia entre las fases de recuperación y generación. Aunque la implementación
concreta puede variar, la mayoría de sistemas RAG comparten la secuencia de pasos resumida
a continuación:

1. Recepción de la consulta: el usuario introduce una pregunta en lenguaje natural, sin
necesidad de conocer la estructura documental ni utilizar filtros avanzados.

2. Vectorización de la pregunta: la consulta se transforma en una representación numérica
(embedding) mediante un modelo semántico previamente entrenado. Este vector captura
el significado de la pregunta y será utilizado para recuperar fragmentos conceptualmente
similares.

3. Búsqueda en la base vectorial: el sistema consulta la base de datos vectorial para
recuperar los k fragmentos más cercanos al vector de la pregunta, utilizando medidas de
similitud como la distancia coseno o L2.

4. Construcción del prompt: los fragmentos recuperados se concatenan con la consulta
original siguiendo una plantilla definida. El objetivo es proporcionar al modelo de lenguaje
un contexto lo suficientemente rico como para generar una respuesta precisa.

5. Generación de la respuesta: el modelo LLM procesa el prompt completo y devuelve una
respuesta en lenguaje natural. Esta respuesta puede incluir explicaciones, justificaciones o
referencias al contenido documental.

6. Entrega al usuario: la respuesta generada se presenta al usuario a través de una interfaz
que puede incluir referencias al fragmento utilizado, su ubicación en el corpus o enlaces a
los documentos originales.

Este flujo puede ampliarse con mecanismos adicionales —cachés de embeddings, ranking
postrecuperación, anotaciones semánticas o validaciones de consistencia—, pero su núcleo per-
manece anclado a la secuencia recuperación-generación sobre la que se sustentan las decisiones
arquitectónicas y tecnológicas del sistema.

40



6.4 Estructura documental del dominio asegurador

Uno de los factores clave en el diseño de un sistema RAG aplicado al sector asegurador
es la naturaleza de los documentos con los que debe trabajar. Estos documentos condicionan
el preprocesamiento, la segmentación, la recuperación semántica y la generación de respuestas
precisas.

En este proyecto, el sistema está diseñado para gestionar expedientes aseguradores, que
agrupan diferentes tipos de documentos relevantes para un caso o cliente específico. Si bien
pueden estar vinculados a usuarios concretos, el sistema no impone ninguna restricción en ese
sentido, permitiendo incluir documentación de carácter general o transversal.

Los expedientes pueden contener, entre otros:

Pólizas de seguro (generales y particulares).

Reclamaciones y formularios de siniestros.

Contratos firmados y condiciones contractuales.

Comunicaciones entre aseguradora y cliente.

Informes periciales, resoluciones o dictámenes.

Notificaciones internas o circulares técnicas.

Estos documentos presentan características particulares desde el punto de vista del análisis
de software:

Estructura jerárquica y densa: organizados en secciones, artículos o cláusulas que
dificultan una segmentación lineal.

Lenguaje técnico-legal: requiere modelos semánticos capaces de interpretar términos
específicos del sector.

Contexto disperso: la información relevante para una consulta puede estar fragmentada
en diferentes documentos o apartados.

Formato no estructurado: suelen encontrarse en PDF, Word u otros formatos sin mar-
cadores semánticos claros.

Desde un enfoque técnico, esto implica que:

El sistema debe aplicar una segmentación que respete los límites semánticos y mantenga
trazabilidad documental.

La granularidad de los fragmentos debe equilibrar precisión y contexto, sin superar el límite
de tokens del modelo.

41



Cada fragmento debe estar asociado a metadatos que identifiquen su expediente, origen,
tipo de documento y ubicación exacta.

Estas consideraciones influyen de forma directa en la arquitectura del sistema, en el diseño del
pipeline de ingestión documental, y en la lógica de recuperación. El sistema debe adaptarse a esta
realidad para garantizar tanto la precisión de las respuestas como la fiabilidad y auditabilidad
de las fuentes.

6.5 Criterios de elección tecnológica

Una vez definidos los requisitos funcionales y técnicos del sistema, y teniendo en cuenta la
naturaleza del dominio asegurador, se han establecido una serie de criterios que guían la selección
de tecnologías para cada uno de los componentes de la arquitectura RAG.

Los criterios principales aplicados han sido los siguientes:

Compatibilidad con arquitecturas modulares: los componentes deben poder inte-
grarse de forma desacoplada, permitiendo su sustitución sin afectar al sistema completo.

Capacidad de ejecución local: por motivos de privacidad y control, se priorizan tecno-
logías que permitan un despliegue completo sin depender de servicios externos.

Buen soporte para el español: dado que los documentos y consultas están en castellano,
se descartan modelos o herramientas optimizadas exclusivamente para inglés.

Flexibilidad en el preprocesamiento e integración de datos: se requiere manejar
documentos en múltiples formatos (PDF, Word, texto plano, html, eml), con posibilidad
de organización por expedientes.

Calidad en la recuperación semántica y generación: se priorizan modelos y mo-
tores que presenten buen rendimiento en tareas de recuperación y contextualización bajo
arquitecturas RAG.

A partir de estos criterios, se han seleccionado las siguientes tecnologías base:

FAISS como motor de base vectorial, por su alta eficiencia, posibilidad de ejecución en
GPU y buena integración con frameworks modernos.

LangChain como framework de orquestación de contexto, por su modularidad, comunidad
activa y soporte avanzado para ingeniería de prompts.

Nous-Hermes-2 como modelo de lenguaje generativo, por su equilibrio entre precisión,
fluidez en español y capacidad de ejecución local (basado en LLaMA 2).

Sentence-BERT e Instructor como opciones de modelos de embeddings, con capacidad
de representar adecuadamente lenguaje técnico y legal.

42



Backend en FastAPI(Python) y almacenamiento documental en PostgreSQL, por su
robustez, extensibilidad y compatibilidad con sistemas empresariales.

La combinación de estas tecnologías responde tanto a los objetivos técnicos definidos como
a las restricciones operativas del entorno asegurador, ofreciendo un equilibrio entre precisión,
control, trazabilidad y rendimiento.

Conclusión del análisis

El análisis realizado en este capítulo ha permitido establecer las bases conceptuales y técnicas
sobre las que se apoya la solución propuesta. A partir de los requisitos identificados, tanto fun-
cionales como no funcionales, se ha justificado el enfoque arquitectónico basado en recuperación
aumentada con generación (RAG), evidenciando su adecuación al dominio documental del sector
asegurador.

Se ha analizado en detalle el flujo de consulta, identificando los componentes clave del sistema
y su interacción, y se han estudiado las particularidades del corpus documental que condicionan
aspectos como la segmentación, la vectorización y la trazabilidad de la información. Todo ello
ha conducido a la identificación de un conjunto de tecnologías que, de forma conjunta, permiten
construir un sistema escalable, modular, preciso y auditable.

Este razonamiento técnico da paso al capítulo siguiente, en el que se describe con mayor nivel
de detalle la arquitectura concreta implementada, así como la estructura interna del sistema, su
modelo de datos, los componentes funcionales y las decisiones específicas adoptadas durante el
desarrollo.

43



44



Capítulo 7

Diseño de la Solución

7.1 Introducción

El presente capítulo detalla el diseño lógico y funcional del sistema propuesto, el cual consti-
tuye el núcleo de este proyecto. La solución planteada tiene como objetivo integrar un sistema
inteligente de recuperación aumentada de información (RAG, por sus siglas en inglés) dentro de
un entorno asegurador, proporcionando consultas automatizadas, precisas y contextualizadas a
partir de documentos previamente indexados.

Este diseño ha sido concebido siguiendo principios de modularidad, escalabilidad y separación
de responsabilidades, lo cual permite tanto una evolución progresiva del sistema como su adap-
tación a diferentes contextos de uso. Para ello, se ha optado por una arquitectura distribuida
basada en microservicios, desplegada en contenedores y organizada en torno a varios compo-
nentes que colaboran entre sí: un backend que gestiona las operaciones principales, un frontend
que actúa como interfaz de usuario, un modelo de lenguaje generativo para la generación de res-
puestas, y un sistema de almacenamiento estructurado que facilita la indexación y recuperación
eficiente de la información.

El diseño aquí descrito no entra en detalles específicos sobre las herramientas empleadas o
los entornos de ejecución, aspectos que se desarrollan con mayor profundidad en el Capítulo 8.
En cambio, este capítulo se centra en explicar las decisiones de diseño que sustentan la solución,
describiendo el comportamiento general del sistema, la interacción entre sus componentes, y el
flujo de información que se produce desde que un usuario realiza una consulta hasta que recibe
una respuesta generada.

Este enfoque permite no solo justificar la coherencia técnica del sistema, sino también esta-
blecer una base sólida sobre la cual se apoya su posterior implementación.

45



7.2 Principios de diseño

El diseño del sistema no surge de forma arbitraria, sino que está guiado por una serie de
principios fundamentales que han permitido construir una solución sólida, coherente y alineada
con los objetivos del proyecto. En esta sección se detallan los pilares sobre los que se ha apoyado
la toma de decisiones durante todo el proceso de diseño.

Modularidad y separación de responsabilidades

Uno de los principales objetivos desde el inicio fue lograr una estructura modular, en la
que cada componente del sistema tuviera una función clara y bien definida. Esta separación de
responsabilidades permite que el desarrollo, las pruebas y el mantenimiento puedan abordarse
de forma más eficiente, ya que los distintos módulos pueden evolucionar de forma independiente.
Por ejemplo, el backend se encarga de orquestar el procesamiento de las consultas, mientras que
el frontend se centra en la experiencia de usuario, y el modelo de lenguaje opera como un servicio
autónomo especializado en la generación de respuestas. Por otro lado, dentro del propio backend,
la funcionalidad está separada en servicios independientes, que trabajan de forma conjunta, pero
que son módulos que podrían desacoplarse y funcionar de forma separada en otro contexto o
aplicación.

Escalabilidad y mantenibilidad

Desde un enfoque práctico, también se ha priorizado la escalabilidad. La idea era construir una
solución que no solo funcionara en entornos controlados o con pocos usuarios, sino que pudiera
crecer y adaptarse fácilmente si las necesidades lo requieren. Esto se ha tenido en cuenta tanto
en el diseño lógico como en la arquitectura de despliegue, permitiendo, por ejemplo, escalar de
forma independiente el motor de generación o la base de datos en función de la carga. A su vez,
esta misma modularidad contribuye a una mayor mantenibilidad del sistema.

Interoperabilidad y desacoplamiento

Otro principio clave ha sido la interoperabilidad entre componentes. Cada módulo ha sido
diseñado para comunicarse con los demás mediante interfaces bien definidas, principalmente a
través de una API REST. Esto no solo permite una mejor organización interna, sino que también
facilita futuras integraciones con otros sistemas externos del sector asegurador. Además, se ha
buscado un desacoplamiento claro entre los servicios, lo que permite, por ejemplo, cambiar el
modelo de lenguaje o el motor vectorial sin necesidad de reescribir el resto del sistema.

Claridad y trazabilidad en los flujos

Por último, se ha dado especial importancia a que el flujo de datos dentro del sistema sea
claro y trazable. Desde que un usuario lanza una consulta hasta que recibe una respuesta, todos
los pasos intermedios están definidos de forma explícita. Esto no solo mejora la comprensión del

46



sistema y su depuración, sino que resulta clave para garantizar la fiabilidad del sistema en un
contexto tan sensible como el del sector asegurador.

En conjunto, estos principios han guiado todas las decisiones técnicas del diseño, permitiendo
construir una solución robusta, flexible y alineada con el propósito principal del proyecto: facilitar
una consulta inteligente y precisa de la información contenida en documentos aseguradores.

7.3 Arquitectura general del sistema

La solución propuesta se ha diseñado como un sistema distribuido, compuesto por múltiples
servicios desplegados en contenedores que colaboran entre sí para ofrecer una experiencia de
consulta automatizada y contextualizada. Esta arquitectura responde a los requisitos de modu-
laridad, escalabilidad y claridad funcional definidos en las fases de análisis.

Componentes principales

El sistema se estructura en torno a los siguientes contenedores, cada uno con una responsa-
bilidad clara:

Base de datos (PostgreSQL): almacena expedientes, documentos, historiales conver-
sacionales y metadatos de usuario.

Modelo de lenguaje (Ollama + Nous-Hermes-2): ejecuta el LLM en modo servicio,
expuesto en el host por el puerto 11434. Utiliza runtime: nvidia para acceder a la GPU
NVIDIA A40.

Backend (FastAPI): constituye el núcleo funcional del sistema. Se encarga de la auten-
ticación de usuarios, la indexación y búsqueda semántica mediante FAISS, la generación
de embeddings y la orquestación del prompt para la interacción con el modelo. El servicio
se despliega en el puerto 5000 y está optimizado para aprovechar la GPU cuando está
disponible.

Frontend (React): interfaz de usuario que permite subir documentos, seleccionar expe-
dientes, lanzar consultas y recibir respuestas en tiempo real.

Interacción entre componentes

1. El usuario accede a la SPA React (3000) y selecciona o crea un expediente.

2. El frontend envía la consulta al backend (5000) mediante petición REST autenticada con
JWT.

3. El backend recupera los fragmentos relevantes desde FAISS, construye el prompt y lo envía
al LLM (11434).

4. El modelo genera la respuesta; el backend la persiste y la reenvía al frontend.

5. El usuario visualiza la respuesta en la interfaz.

47



Despliegue contenerizado

Cada servicio se ejecuta en un contenedor independiente, encapsulando sus bibliotecas y
versiones de forma reproducible. El docker-compose garantiza el orden de arranque (primero la
base de datos, luego el backend, etc.), reserva la GPU para backend y LLM e integra volúmenes
duraderos (postgres_data, ollama) que preservan los datos entre reinicios.

Autenticación OAuth 2.0 y gestión de expedientes

El sistema emplea el servicio Google Identity para la autenticación de usuarios, mediante el
uso de ID tokens firmados (formato JWT). Este enfoque evita el intercambio de credenciales
sensibles y simplifica la integración, ya que el frontend obtiene el ID token directamente desde
Google y lo transmite al backend para su validación. Aunque no se implementa explícitamente el
flujo Authorization Code con PKCE, el modelo utilizado proporciona garantías equivalentes de
seguridad y protección frente a ataques de interceptación, sin necesidad de almacenar secretos
de cliente.

1. El usuario pulsa «Iniciar sesión con Google» en el frontend.

2. Google devuelve un id_token firmado que el frontend remite al backend mediante POST/
auth/google.

3. El backend verifica la firma del id-token utilizando las claves públicas de google, si es
válido, inserta o actualiza al usuario en PostgreSQL (clave única: email).

4. El backend responde con los datos del usuario y el frontend lo almacena en localStorage,
con el fin de mantener el estado de la sesión.

Al seleccionar un expediente, el frontend solicita GET /expedientes/{id}; el backend valida el
token, comprueba la pertenencia del expediente al usuario y devuelve sus documentos y chats.
Cuando el usuario crea un chat, realiza POST /chats indicando el expediente_id; el backend
persiste el chat y devuelve su chat_id. Este mecanismo mantiene el contexto conversacional
aislado por expediente, logrando trazabilidad y privacidad.

La combinación de contenerización, GPU sharing y autenticación robusta proporciona una
base sólida y fácilmente escalable —preparada para migrar a orquestadores como Kubernetes o
para añadir nodos en alta disponibilidad— sin alterar la lógica de negocio ni el modelo de datos.

48



Figura 7.1: Diagrama de secuencia que representa el flujo completo de autenticación con Google
OAuth, validación del id_token, selección de expediente y creación de un nuevo chat asociado.
La interacción entre frontend, backend y base de datos permite garantizar seguridad, trazabilidad
y aislamiento contextual en cada conversación.

7.4 Diseño funcional del backend

El backend constituye el núcleo lógico del sistema, siendo responsable de orquestar todo el
proceso de consulta, desde la recepción de la pregunta del usuario hasta la generación final de

49



la respuesta. Para garantizar claridad, mantenibilidad y separación de responsabilidades, se ha
dividido en cinco servicios principales, cada uno encapsulado en un módulo independiente. A
continuación se describen sus funciones y relaciones.

Servicio de ingesta

Este módulo se encarga del procesamiento inicial de los documentos subidos por los usuarios.
Su función principal es dividir los documentos en fragmentos adecuados para la posterior vec-
torización y recuperación. Además, asocia metadatos relevantes como el nombre del archivo, el
expediente al que pertenece y marcas de tiempo.

También se realiza una limpieza básica del texto y una segmentación inteligente que optimiza
la coherencia semántica de los fragmentos, lo cual es crucial para mejorar la calidad del proceso
RAG posterior.

El siguiente diagrama ilustra el flujo completo de ingestión documental que sigue el siste-
ma desde el momento en que el usuario sube un archivo hasta que sus contenidos han sido
preprocesados, vectorizados e indexados:

50



Figura 7.2: Diagrama de flujo del pipeline de ingestión documental. El backend recibe un archivo
subido por el usuario, extrae su contenido textual (según el formato), lo segmenta en fragmentos
de tamaño semántico manejable, genera sus embeddings con un modelo tipo Sentence-BERT,
asocia los metadatos correspondientes, y distribuye el resultado en dos ramas: por un lado,
indexa los vectores en FAISS para recuperación rápida, y por otro, almacena el binario original
en PostgreSQL mediante un campo LargeBinary.

51



Servicio de vectorización

Una vez procesados los documentos, este servicio transforma los fragmentos en vectores nu-
méricos utilizando un modelo de embeddings. Estos vectores se almacenan en una base de datos
vectorial que permite realizar búsquedas por similitud semántica.

El servicio está diseñado para operar sobre GPU cuando se requiere alto rendimiento, y
soporta modelos de distintas familias según necesidades futuras.

Servicio de indexación

Este componente gestiona la persistencia de los vectores generados y su correcta asociación
con los documentos de origen. Se encarga de almacenar los vectores en la base vectorial (actual-
mente FAISS) y de mantener una estructura de metadatos paralela que facilita la recuperación
eficiente y contextualizada de la información.

Su diseño permite realizar reindexaciones completas o incrementales, y está preparado para
eliminar los datos asociados a un documento cuando este se borra.

Servicio de recuperación

Cuando el usuario realiza una consulta, este módulo se encarga de buscar los fragmentos más
relevantes dentro del espacio vectorial. Utiliza búsquedas basadas en similitud de coseno entre
el vector de la pregunta y los vectores de los fragmentos almacenados.

El resultado es un conjunto de fragmentos con puntuaciones de relevancia, que se utilizan
para construir el prompt que se enviará al modelo generativo. Este servicio es esencial para
garantizar que la respuesta final esté basada en evidencia documentada.

Servicio de generación

El último paso del proceso es la generación de la respuesta. Este módulo recibe el prompt
construido a partir de los fragmentos recuperados y lo envía al modelo de lenguaje (ejecutado a
través del contenedor ollama).

El servicio gestiona tanto la comunicación con el modelo como la interpretación de su salida,
almacenando la interacción completa (entrada, contexto, salida) en la base de datos para futuras
auditorías o consultas.

7.4.1 Modelo de datos relacional

El sistema persiste la información mediante un esquema relacional normalizado implementado
con SQLAlchemy. El modelo se articula en torno a cinco entidades principales: User, Expediente,
Document, Chat y Message. La Figura 7.3 muestra el diagrama de clases UML que resume sus
atributos, claves primarias, foráneas y las cardinalidades establecidas entre ellas.

52



Figura 7.3: Diagrama de clases UML del modelo de datos: usuarios, expedientes, documentos,
chats y mensajes.

Análisis de la estructura.

User 1–* Expediente y Chat. Cada usuario puede crear varios expedientes y mantener
múltiples conversaciones. La eliminación en cascada (delete-orphan) preserva la coherencia
y simplifica el cumplimiento del RGPD (derecho al olvido).

Expediente 1–* Document y Chat. Un expediente actúa como compartimento se-

53



mántico: agrupa documentos y chats bajo un mismo contexto documental, garantizando
respuestas coherentes y auditables.

Chat 1–* Message. Modelo clásico de mensajería que permite paginación eficiente, mé-
tricas de uso y borrado lógico de mensajes.

Atributos clave.

• LargeBinary en file_data facilita PoC auto-contenidas; en producción puede ex-
ternalizarse a S3 o MinIO, manteniendo metadatos en PostgreSQL.

• Timestamps (uploaded_at, created_at, timestamp) habilitan auditoría temporal y
análisis de uso.

Integridad y rendimiento. Los índices declarados en claves primarias y foráneas per-
miten consultas O(log n) sobre grandes volúmenes; la cascada de borrado automatiza la
limpieza sin operaciones manuales costosas.

Este diseño soporta los requisitos de multitenencia, trazabilidad y borrado en cascada exi-
gidos en el dominio asegurador, al tiempo que mantiene baja complejidad ciclomática y alta
extensibilidad (p. ej., añadir versiones de documento o adjuntos multimedia sólo requiere nuevas
tablas y relaciones opcionalmente ON DELETE SET NULL).

Flujo completo de consulta

Cuando un usuario realiza una pregunta, el backend activa de forma secuencial los servicios
anteriores: recuperación de fragmentos relevantes, generación de prompt, consulta al modelo y
entrega de respuesta. Todo el proceso está instrumentado con logs y pruebas unitarias, y permite
trazabilidad completa de cada consulta, lo cual es especialmente importante en contextos donde
se requiere transparencia y fiabilidad en los resultados.

7.5 Diseño funcional del frontend

El frontend del sistema ha sido diseñado con el objetivo de ofrecer una experiencia de usuario
sencilla, intuitiva y eficiente, sin renunciar a una arquitectura modular que facilite el manteni-
miento y la evolución del sistema. La interfaz actúa como puente entre el usuario y los servicios
del backend, permitiendo cargar documentos, realizar consultas, visualizar respuestas y gestionar
los expedientes de forma estructurada.

Estructura general

El frontend está desarrollado en React, utilizando componentes funcionales organizados por
responsabilidades. La interfaz se divide en cuatro secciones principales:

Panel de expedientes y documentos: situado a la izquierda, permite crear nuevos ex-
pedientes, seleccionar uno activo y gestionar los documentos asociados a cada uno (subida,
eliminación y listado).

54



Historial de chats: muestra las conversaciones anteriores asociadas al expediente selec-
cionado. Esto permite retomar consultas previas y mantener continuidad en el uso del
sistema.

Área principal de chat: ubicada en el centro de la interfaz, permite introducir preguntas
de forma natural y recibir respuestas generadas por el modelo. Incluye el historial de la
conversación.

Sugerencias de preguntas: en una columna a la derecha, se muestran preguntas fre-
cuentes o relevantes que el usuario puede lanzar con un solo clic.

Comunicación con el backend

El frontend se comunica con el backend a través de una API REST, utilizando peticiones
HTTP asíncronas mediante axios. Cada acción del usuario (subir documento, lanzar consulta,
crear expediente) genera una petición que es gestionada por los endpoints correspondientes del
backend.

Además, se ha implementado una gestión eficiente del estado global, permitiendo que los cam-
bios en expedientes, documentos o chats se reflejen inmediatamente en la interfaz, manteniendo
la coherencia entre la vista y el estado del sistema.

Criterios de diseño

En el diseño del frontend se han seguido varios principios fundamentales:

Modularidad: cada funcionalidad está encapsulada en un componente React indepen-
diente, facilitando su reutilización y prueba.

Claridad visual: se ha optado por un diseño oscuro y profesional, con tipografías legibles
y elementos bien diferenciados.

Usabilidad: las acciones frecuentes (como subir documentos o hacer consultas) se encuen-
tran fácilmente accesibles, y la navegación es fluida.

Escalabilidad visual y funcional: la estructura de la interfaz permite incorporar nuevas
funcionalidades (como selección de modelos o resumen de documentos) sin necesidad de
rediseñar el sistema completo.

Adaptación al flujo conversacional

Una característica diferenciadora del sistema es su enfoque conversacional. El frontend está
adaptado para representar visualmente una conversación contextualizada, donde cada pregunta
y respuesta se presenta como una burbuja en el historial, y el usuario puede continuar el diálogo
en el contexto de un expediente específico.

Este diseño orientado al diálogo mejora la naturalidad de la interacción y permite mantener
un hilo de conversación coherente entre el usuario y el sistema inteligente.

55



7.6 Diseño del sistema conversacional RAG

El sistema implementa un enfoque basado en Retrieval-Augmented Generation (RAG), en
el que la generación de respuestas se fundamenta en fragmentos previamente extraídos de los
documentos del expediente. Aunque el flujo técnico completo ya ha sido descrito en aparta-
dos anteriores, en esta sección se destacan los elementos clave que definen el comportamiento
conversacional del sistema y su capacidad para integrar recuperación y generación de forma
contextualizada.

Recuperación basada en contexto documental

Cada consulta realizada por el usuario se transforma internamente en un vector semántico que
se compara contra los vectores indexados del expediente seleccionado. Esta búsqueda devuelve los
fragmentos más relevantes, garantizando que la respuesta esté basada únicamente en información
contenida en los documentos.

Generación con control de fuentes

El sistema construye automáticamente un prompt que incluye tanto los fragmentos recupe-
rados como el historial reciente del chat. Esta combinación permite generar respuestas precisas
y con trazabilidad, manteniendo un control estricto sobre las fuentes utilizadas.

Manejo del historial de conversación

Para enriquecer el contexto, el sistema conserva el historial de cada conversación utilizando
memorias conversacionales. Esto permite mantener el hilo entre preguntas sucesivas del mismo
chat y mejorar la coherencia en sesiones de consulta prolongadas.

Reordenamiento opcional con CrossEncoder

Cuando se habilita, un modelo de reranking evalúa la relevancia de cada fragmento con
respecto a la pregunta, reordenando los resultados antes de generar la respuesta. Este mecanismo
refuerza la precisión, especialmente en preguntas complejas o ambiguas.

Limitaciones y decisiones de diseño

El número de fragmentos utilizados, el formato del prompt y la activación del reranker han
sido definidos de forma configurable para permitir ajustes según el comportamiento observado
en pruebas reales. El diseño ha priorizado la claridad, la transparencia y la adaptabilidad en
entornos donde la trazabilidad es fundamental.

7.7 Decisiones técnicas clave

El diseño e implementación del sistema no se ha basado únicamente en una selección fun-
cional de herramientas, sino que ha estado guiado por criterios técnicos, de escalabilidad y de

56



adecuación al dominio asegurador. Esta sección resume y justifica las decisiones más relevantes
adoptadas durante el desarrollo.

Modelo de lenguaje: Nous-Hermes-2

Se ha optado por el modelo Nous-Hermes-2, ejecutado localmente mediante Ollama, por
su equilibrio entre calidad de generación, requisitos computacionales y control total sobre los
datos. La posibilidad de ejecutar el modelo sobre GPU permite mantener tiempos de respuesta
aceptables sin depender de servicios externos, lo que mejora la privacidad y la escalabilidad del
sistema.

Vectorización e indexado: SentenceTransformers + FAISS

Para representar los fragmentos documentales, se ha empleado el modelo de embeddings
intfloat/e5-large-v2, integrado con SentenceTransformers, por su capacidad para capturar
relaciones semánticas profundas en contextos de lenguaje natural. La indexación y recuperación
se realiza mediante FAISS, una solución consolidada para búsquedas vectoriales, que permite
consultas eficientes incluso sobre grandes volúmenes de texto.

Reordenamiento contextual: CrossEncoder

Se ha incorporado un modelo CrossEncoder (ms-marco-MiniLM-L12-v2) como etapa opcional
de reranking. Este modelo compara directamente cada par (pregunta, fragmento) y genera
puntuaciones más precisas que una búsqueda vectorial simple. Aunque su ejecución es más
costosa, mejora notablemente la precisión en preguntas complejas o ambiguas.

Backend modular con FastAPI

El backend ha sido desarrollado en Python utilizando FastAPI, un framework ligero, rápido y
bien adaptado a la construcción de APIs modernas. Su integración con tipado estático, validación
automática de datos y documentación autogenerada ha facilitado tanto el desarrollo como las
pruebas.

La lógica se ha dividido en servicios independientes: ingesta, embeddings, indexado, recu-
peración y generación, siguiendo una arquitectura orientada a microservicios. Esto favorece la
escalabilidad y la posibilidad de desacoplar componentes en despliegues futuros.

Frontend en React y diseño centrado en el flujo conversacional

La interfaz ha sido desarrollada en React, aprovechando su enfoque basado en componentes
reutilizables y su ecosistema maduro. La estructura visual se ha diseñado en torno al flujo
conversacional, facilitando una experiencia de usuario intuitiva, centrada en la interacción con
el expediente y no solo en la carga de documentos o envío de formularios.

57



Contenerización y despliegue con Docker

Todo el sistema se ejecuta de forma contenerizada mediante Docker, permitiendo aislar cada
servicio, controlar sus dependencias y simplificar el despliegue en entornos locales o en servidores
dedicados. La definición del entorno mediante docker-compose garantiza la reproducibilidad y
facilita las pruebas, el mantenimiento y la escalabilidad horizontal.

Diseño de ingesta y fragmentación adaptativa

El procesamiento de documentos se ha diseñado para soportar múltiples formatos (.pdf,
.docx, .html, .eml) mediante una arquitectura orientada a objetos con extractores especializa-
dos. La fragmentación de texto se adapta dinámicamente a la longitud y estructura del contenido,
lo que permite obtener fragmentos coherentes y aprovechables para el modelo, reduciendo ruido
semántico y mejorando la calidad de recuperación.

Gestión del contexto con LangChain

La librería LangChain se ha empleado para gestionar la memoria conversacional, simplificar
la construcción de prompts complejos y orquestar el flujo RAG. Esta elección ha permitido
mantener un historial contextual por expediente, proporcionando continuidad a las consultas y
enriqueciendo la experiencia conversacional del sistema.

7.8 Resumen del diseño

El diseño de la solución ha sido concebido con una visión integral, abordando no solo los
aspectos técnicos necesarios para construir un sistema funcional, sino también los criterios de
escalabilidad, mantenibilidad y aplicabilidad en entornos reales del sector asegurador.

A lo largo de este capítulo se ha descrito una arquitectura distribuida, modular y contene-
rizada, basada en microservicios especializados que colaboran para implementar un sistema de
recuperación aumentada de información (Retrieval-Augmented Generation). Este diseño permite
transformar documentos aseguradores en fragmentos semánticamente indexables y, a partir de
ellos, generar respuestas precisas y trazables ante preguntas formuladas en lenguaje natural.

En el backend, cada componente cumple una responsabilidad bien definida: desde la ingesta
y procesamiento de documentos, pasando por la generación de embeddings y su indexación,
hasta la recuperación contextual y la interacción con el modelo generativo. Esta separación de
servicios facilita la depuración, las pruebas unitarias y el escalado individualizado de cada parte
del sistema.

El frontend, por su parte, ha sido estructurado para facilitar la navegación por expedientes
y documentos, y para ofrecer una experiencia conversacional fluida y contextual. La elección de
React ha permitido crear una interfaz dinámica y adaptativa, alineada con las necesidades de
un flujo de consulta interactivo.

La integración del modelo generativo (Nous-Hermes-2), junto con la recuperación semántica
basada en FAISS y el reranking opcional mediante CrossEncoder, proporciona una arquitectura

58



robusta y adaptable que maximiza la relevancia de las respuestas generadas, sin sacrificar la
transparencia ni la trazabilidad.

En conjunto, el sistema diseñado cumple con los requisitos técnicos y funcionales definidos
al inicio del proyecto. Está preparado para ser desplegado en un entorno real, servir como
herramienta de asistencia en consultas aseguradoras y sentar las bases para futuras ampliaciones
tanto a nivel funcional como arquitectónico.

59



60



Capítulo 8

Implementación

8.1 Introducción

En este capítulo se describen las herramientas de software, librerías, frameworks y recur-
sos de infraestructura empleados para el desarrollo, implementación y prueba del sistema de
recuperación aumentada de información (RAG) descrito en capítulos anteriores.

La elección de cada tecnología ha estado guiada tanto por criterios de adecuación técnica al
problema planteado como por la disponibilidad de recursos y entornos de ejecución accesibles
durante el desarrollo del proyecto.

El sistema ha sido diseñado y probado en dos entornos de trabajo principales: una estación
de desarrollo local basada en Ubuntu, y una máquina virtual proporcionada por la escuela con
sistema operativo Linux y recursos avanzados de GPU. El entorno de programación ha sido
Visual Studio Code, utilizado tanto para el desarrollo del backend como del frontend.

En las siguientes secciones se detallan los componentes principales del entorno de trabajo, las
tecnologías utilizadas en cada subsistema, los modelos de lenguaje empleados y la infraestructura
de hardware sobre la que se ha desplegado la solución.

8.2 Entorno de desarrollo

El desarrollo del sistema se ha llevado a cabo utilizando dos entornos diferenciados:

Entorno local: equipo personal basado en Ubuntu 24.04.1 LTS (noble), con 8 GiB de
memoria RAM, de los cuales aproximadamente 4 GiB estaban disponibles para tareas de
desarrollo. Este entorno ha sido empleado principalmente para el desarrollo inicial, las
pruebas unitarias de backend y frontend, y la construcción de los primeros prototipos de
los servicios.

Entorno de ejecución en servidor: máquina virtual (VM) proporcionada por la insti-
tución educativa, basada en Ubuntu 22.04.5 LTS (jammy). Esta VM dispone de 62 GiB de

61



memoria RAM, de los cuales más de 50 GiB permanecen disponibles durante la ejecución
de la aplicación, permitiendo un tratamiento eficiente de cargas de trabajo intensivas. La
VM está equipada con una GPU NVIDIA A40 con 48 GiB de memoria de vídeo, habi-
litada para computación general (Compute Mode Default), lo que resulta esencial para el
procesamiento de embeddings y la generación de respuestas mediante modelos de lenguaje
de gran tamaño.

El entorno de desarrollo ha estado basado en Visual Studio Code, tanto para el backend
(Python) como para el frontend (React). Se ha utilizado Docker y docker-compose para conte-
nerizar todos los servicios y garantizar la replicabilidad de los entornos, tanto en local como en
el servidor remoto.

Durante el desarrollo, se han mantenido dos entornos paralelos:

Un entorno de desarrollo local para la implementación incremental y depuración.

Un entorno de despliegue en la VM para pruebas integradas de rendimiento, carga de
modelos y ejecución sobre GPU.

Este enfoque ha permitido realizar pruebas iterativas rápidas en local, y validar el funciona-
miento realista del sistema en condiciones de producción en la VM, incluyendo el uso intensivo
de la GPU para la inferencia de modelos de lenguaje y la generación de embeddings vectoriales.

8.3 Backend: tecnologías y librerías principales

El backend del sistema ha sido desarrollado en Python 3.10.12, utilizando un entorno virtual
gestionado mediante virtualenv. El núcleo de la arquitectura se apoya en el framework FastA-
PI, elegido por su rendimiento, su integración nativa con tipado estático (basado en pydantic)
y su soporte para construcción de APIs modernas y asíncronas.

A continuación se resumen las herramientas y librerías principales utilizadas:

Frameworks y herramientas principales

FastAPI: framework principal para la construcción del backend REST, que proporciona
validación automática de entradas, documentación OpenAPI integrada y un alto rendi-
miento en tiempo de ejecución.

Uvicorn: servidor ASGI ligero empleado para ejecutar la API en entorno de desarrollo.

SQLAlchemy: ORM utilizado para definir los modelos relacionales y gestionar las ope-
raciones sobre la base de datos PostgreSQL.

Pydantic: base de la validación de datos y serialización de esquemas dentro de FastAPI.

62



Procesamiento del lenguaje y embeddings

SentenceTransformers: librería utilizada para convertir fragmentos textuales en vecto-
res semánticos de alta dimensión, usando el modelo intfloat/e5-large-v2.

FAISS: motor de indexación y búsqueda vectorial desarrollado por Facebook, utilizado
para almacenar y consultar los vectores generados de forma eficiente.

LangChain: herramienta empleada para estructurar el flujo conversacional RAG, gestio-
nar memorias de chat, y facilitar la integración entre recuperación y generación.

CrossEncoder (transformers): modelo de reranking basado en
ms-marco-MiniLM-L12-v2, utilizado opcionalmente para reordenar los fragmentos recu-
perados en función de su relevancia contextual respecto a la pregunta.

Utilidades y soporte

Requests: utilizada para realizar peticiones HTTP al servidor Ollama, encargado de
ejecutar el modelo de lenguaje.

Logging: sistema de trazabilidad distribuido por todo el backend, con distintos niveles de
log (info, debug, error) para monitorizar el funcionamiento del sistema.

nltk: utilizada para la segmentación del texto en oraciones durante el preprocesamiento.

pdfplumber, python-docx, html2text, email: librerías específicas utilizadas para la
extracción de texto desde documentos PDF, Word, HTML y correos electrónicos EML
respectivamente.

Toda esta infraestructura software ha sido organizada en módulos independientes (servicios)
según su función, garantizando un diseño limpio y mantenible. El código se ha estructurado de
manera que facilita la extensión y sustitución de componentes, por ejemplo, para cambiar de
modelo de embeddings, backend de vectorización o motor de generación.

8.4 Backend: estructura y detalles de los microservicios

A continuación se describen con mayor precisión los cinco servicios que componen el backend.

8.4.1 Servicio de Ingestión de Documentos

Descripción general El servicio de ingestión implementa un pipeline secuencial que convierte
ficheros en bruto (PDF, DOCX, HTML, EML) en fragmentos de texto limpios, normalizados
y segmentados, listos para ser indexados y consultados a través del sistema de recuperación
semántica.

63



Constantes y configuración Se definen constantes como MIN_CHARS = 10 y MAX_CHARS =
1100, que controlan los límites de tamaño mínimo y máximo de cada fragmento. También
se inicializan listas vacías de patrones para eliminar ruido, texto irrelevante o texto aleato-
rio (NOISE_PATTERNS, EXCLUDE_PATTERNS, RANDOM_TEXT_PATTERNS), así como un diccionario de
patrones de segmentación específicos por tipo de documento (SEGMENT_PATTERNS).

Flujo detallado del procesamiento

1. Selección del extractor:

Se obtiene la extensión del fichero y se selecciona un extractor adecuado mediante
una factoría.

Si no se encuentra un extractor válido, se emite una advertencia y se interrumpe el
proceso.

2. Extracción del texto:

Cada extractor implementa una interfaz común y se encarga de obtener el texto de
su tipo de fichero.

Por ejemplo, PDFExtractor recorre las páginas con pdfplumber, DocxExtractor re-
corre los párrafos del documento, HTMLExtractor convierte el HTML a texto plano,
y EMLExtractor recupera cabeceras y cuerpo de mensajes de correo electrónico.

Cualquier error durante este proceso se captura con logs de error.

3. Limpieza y normalización:

Se aplican funciones que normalizan el texto a Unicode, eliminan espacios y saltos
innecesarios, sustituyen comillas y símbolos, y estandarizan fechas y valores moneta-
rios.

4. Identificación del tipo de documento:

A partir del nombre del fichero se intenta deducir el tipo de documento para aplicar
segmentaciones específicas, si están definidas.

5. Segmentación del contenido:

Se intenta dividir el texto en secciones mediante expresiones regulares definidas por
tipo de documento.

Si no hay patrón aplicable, se segmenta por longitud, acumulando oraciones hasta
alcanzar el tamaño máximo definido.

Posteriormente, se fusionan fragmentos demasiado cortos para asegurar coherencia
semántica.

6. Filtrado de fragmentos:

64



Se eliminan fragmentos que contengan patrones de exclusión o ruido, y se descartan
los que tengan una longitud inferior al mínimo permitido.

El texto final de cada fragmento se transforma a minúsculas y se eliminan los acentos.

7. Construcción de la salida:

Cada fragmento válido se encapsula en un diccionario con un identificador único, el
nombre del fichero, el tipo de documento, la fecha detectada (si existe), el índice del
fragmento y su contenido textual final.

Todos los fragmentos generados se devuelven como una lista de resultados.

Registro de eventos (logging) Durante todo el proceso se registran eventos a diferentes
niveles:

INFO: inicio de la ingestión, número de fragmentos generados.

WARNING: errores de extracción, fechas no válidas, extensiones no soportadas.

ERROR: fallos críticos durante la lectura del archivo.

DEBUG: contenido de fragmentos descartados y trazas de los primeros fragmentos pro-
cesados.

Referencia al código fuente La implementación completa de este servicio puede consultarse
en el siguiente repositorio:

ingestion_service.py

8.4.2 Servicio de Gestión de Índices FAISS

Descripción general Este servicio centraliza todas las operaciones sobre índices FAISS y sus
metadatos asociados: guardado, carga, regeneración completa y eliminación, por cada expediente
de usuario.

Constantes y configuración Se define la ruta raíz donde se almacenan los índices y meta-
datos:

VECTOR_ROOT: carpeta vector_indices/expediente_<id> dentro del repositorio.

Flujo detallado del servicio

1. Determinación de rutas

Función _paths(expediente_id) crea (si no existe) la carpeta del expediente y de-
vuelve dos rutas:

• Ruta al fichero FAISS: faiss.index

65

https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/ingestion_service.py


• Ruta al fichero de metadatos JSON: metadata.json

2. Guardado de índice y metadatos

guardar_index_en_db(index, metadata, expediente_id):
• Serializa el índice FAISS a disco con faiss.write_index.
• Escribe los metadatos en formato JSON con json.dump.
• Registra un INFO indicando la ruta y el expediente.

3. Carga de índice y metadatos

cargar_index_desde_db(expediente_id):
• Verifica existencia del fichero de índice; si no existe lanza FileNotFoundError.
• Lee el índice con faiss.read_index y los metadatos con json.load, si están

presentes.
• Registra un INFO confirmando la carga.
• Devuelve la tupla (index, metadata).

4. Regeneración completa del índice

regenerate_index_for_expediente(expediente_id, documents, db):
a) Registra inicio con INFO.
b) Para cada documento:

• Crea un fichero temporal y escribe doc.file_data.
• Llama a DocumentIngestor().ingest(temp_path) para obtener fragmen-

tos.
• Añade metadatos de expediente y nombre de fichero a cada fragmento.
• Registra con INFO el número de fragmentos generados.
• Captura y registra errores en ERROR.

c) Si no hay fragmentos válidos, registra WARNING y aborta.
d) Genera embeddings llamando a generate_embeddings(texts):

• Usa la clase Embedder y el modelo definido en MODEL_NAME.
e) Normaliza vectores con faiss.normalize_L2, crea IndexFlatIP y añade los

embeddings.
f ) Construye lista de metadatos reducidos (text, file_name).
g) Llama a guardar_index_en_db para persistir los cambios.
h) Registra fin de regeneración con INFO.

5. Eliminación del índice

delete_index_for_expediente(expediente_id, db):
• Elimina ficheros de índice y metadatos si existen.
• Si la carpeta queda vacía, la borra.
• Registra INFO indicando si se eliminó o si no existía.

66



Registro de eventos (logging) Se emplea el logger tfg_rag con niveles:

INFO: creación, carga, regeneración y eliminación de índices.

WARNING: intentos de regeneración sin fragmentos.

ERROR: fallos al procesar documentos o archivos no encontrados.

Referencia al código fuente
La implementación completa está disponible en: index_service.py

8.4.3 Servicio de Generación de Embeddings

Descripción general El servicio de generación de embeddings encapsula la carga y uso de
un modelo de SentenceTransformer para convertir textos en vectores de alta dimensión, nor-
malizados y listos para indexar o comparar.

Configuración

MODEL_NAME = ”intfloat/e5-large-v2”: nombre del modelo de embeddings utilizado.

EMBEDDING_DIM = 1024: dimensión esperada de los vectores de salida.

El modelo se carga en GPU si está disponible (torch.cuda.is_available()); en caso
contrario, en CPU.

Flujo de trabajo

1. Inicialización

Al instanciar Embedder(), se registra un mensaje INFO indicando la carga del modelo.

Se crea la instancia de SentenceTransformer(model_name, device=device).

Se almacena la dimensión del embedding en self.dim.

Se registra un segundo mensaje INFO con el dispositivo usado.

2. Generación de embeddings

El método embed(textos) recibe una lista de cadenas y registra un mensaje INFO
con el número de textos.

Llama al método self.model.encode(...) con los parámetros
convert_to_numpy=True y normalize_embeddings=True, y devuelve un
arreglo de tipo numpy con forma (n_textos, EMBEDDING_DIM).

Devuelve el arreglo resultante.

Si ocurre un error, captura la excepción, registra un mensaje ERROR con la traza y
relanza la excepción.

67

https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/index_service.py


Registro de eventos (logging) Se utiliza el logger tfg_rag con niveles:

INFO: al cargar el modelo y al iniciar la generación de embeddings para un lote de textos.

ERROR: si la generación de embeddings falla por cualquier razón, incluyendo problemas
de memoria o modelo corrupto.

Referencia al código fuente: La implementación completa está disponible en embed-
ding_service.py

8.4.4 Servicio de Búsqueda y Reranking

Descripción general Este servicio atiende peticiones de búsqueda semántica sobre el índice
FAISS de un expediente, generando primero un embedding de la consulta, recuperando los frag-
mentos más relevantes y aplicando opcionalmente un reranking con un modelo CrossEncoder.

Configuración

USE_RERANKING = True: activa o desactiva el reranking.

RERANKER_MODEL = ”cross-encoder/ms-marco-MiniLM-L12-v2”: modelo de reranking.

TOP_K = 5: número de vecinos a recuperar inicialmente de FAISS.

MAX_RETURNED = 10: número máximo de resultados devueltos tras reranking u ordenación.

Al importar, se carga el reranker en CPU o GPU según disponibilidad
(torch.cuda.is_available()), capturando errores de carga en
el logger tfg_rag.

Flujo detallado

1. Preprocesamiento de la consulta:

Se normaliza la consulta con normalize_query(query):

• Normalización Unicode NFKD y eliminación de acentos.
• Conversión a minúsculas y eliminación de caracteres no ASCII.
• Expansión de términos mediante un diccionario de sinónimos.
• Se antepone el prefijo ”query: ” al texto resultante.

Se registran en el logger los textos original y normalizado.

2. Carga del índice FAISS:

Se invoca cargar_index_desde_db(expediente_id).

Si falla o el índice no existe, se registra el error y se devuelve lista vacía.

3. Generación de embedding de consulta:

68

https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/embedding_service.py
https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/embedding_service.py


Se instancia Embedder y se llama a embed([query_norm]).

Se normaliza el vector resultante con faiss.normalize_L2.

Se registra la operación en el logger.

4. Búsqueda en FAISS:

Se llama a index.search(query_vec, TOP_K), obteniendo distancias e índices.

Para cada índice:

• Se comprueba que no exceda la longitud de los metadatos; si es así, se emite una
advertencia.

• Se extrae el texto y el nombre de fichero de metadata[idx].
• Se construye el campo ”texto” con un bloque que incluye DOCUMENTO_ORIGEN y

TEXTO.
• Se añade ”score_faiss” con el valor de la distancia.
• Se registran en el logger los scores y fragmentos con puntuaciones bajas o altas.

5. Reranking (opcional):

Si USE_RERANKING y el modelo se cargó correctamente, se invoca
rerank_results(query, resultados, top_n=MAX_RETURNED).

El reranking:

• Conforma pares [query, candidato[”texto”]] y llama a reranker.predict.
• Captura errores y, en caso de fallo, retorna los primeros top_n sin reordenar.
• Asigna a cada candidato un ”score_rerank” y ordena la lista.
• Registra en el logger cada puntuación y el resultado final.

Si no se usa reranking, se ordenan los candidatos por score_faiss y se limitan a
MAX_RETURNED.

6. Log final y retorno:

Se registra un bloque [PROMPT] con los fragmentos seleccionados y sus scores (rerank
o FAISS).

Se devuelve la lista final de resultados al controlador o generador de prompts.

Registro de eventos (logging)

INFO: consulta original y normalizada, carga de índice, generación de embeddings, inicio
y fin de reranking, número de resultados.

WARNING: índices fuera de rango, puntuaciones bajas, sin fragmentos para reranking.

ERROR: fallos al cargar el reranker, al generar embeddings, al cargar el índice o durante
la predicción del reranker.

69



Referencia al código fuente La implementación completa puede consultarse en: retrie-
val_service.py

Servicio de Generación de Respuestas RAG

Descripción general Este servicio orquesta el flujo completo de generación de respuestas
basadas en RAG: mantiene la memoria de la conversación, recupera fragmentos relevantes,
construye el prompt con LangChain, llama al modelo Ollama y actualiza la memoria en base de
datos.

Configuración Se definen parámetros globales:

DEFAULT_MODEL = ”nous-hermes2”: modelo por defecto para Ollama.

MAX_CONTEXT_CHUNKS = 3: número máximo de fragmentos usados en el prompt.

RERANK_ENABLED = True: activa el reranking en la fase de recuperación.

Flujo detallado

1. Gestión de memoria por chat

La función get_memory(chat_id) crea o recupera un objeto
ConversationBufferMemory asociado al identificador de chat.

Esta memoria almacena preguntas y respuestas previas para incluirlas en el prompt.

2. Recuperación de fragmentos

generate_answer(...) invoca
search_index(query, expediente_id, db, k, rerank) para obtener los fragmen-
tos más relevantes.

Registra en el logger el número de fragmentos recuperados y sus puntuaciones.

3. Generación del prompt

Se define un PromptTemplate de LangChain que incluye instrucciones precisas para
el asistente y placeholders para contexto, historial y pregunta.

generate_prompt(chat_id, context, question) une el contexto recuperado, el
historial de memoria y la pregunta en un único string.

Si falla, devuelve un mensaje de error.

4. Llamada al modelo Ollama

call_ollama(prompt, model) envía el prompt a la API de Ollama (OLLAMA_API)
mediante una petición HTTP POST.

70

https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/retrieval_service.py
https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/retrieval_service.py


Comprueba el código de respuesta y devuelve el texto o un mensaje de error en caso
de fallo.

5. Actualización de memoria y respuesta final

Tras recibir la respuesta, update_memory(chat_id, question, answer) almacena
la interacción en la memoria activa.

generate_answer retorna la respuesta al controlador.

6. Restauración de historial (opcional)

restore_memory_from_db(chat_id) carga mensajes históricos desde la base de datos
y los convierte en objetos HumanMessage o AIMessage de LangChain.

Registro de eventos (logging) Se emplea el logger tfg_rag con niveles:

INFO: inicio de generación, recuperaciones, envío y recepción de prompts.

DEBUG: contenido de prompts generados y fragmentos completos.

WARNING: ausencia de fragmentos relevantes.

ERROR: fallos en la llamada a Ollama o en la construcción del prompt.

Referencia al código fuente
La implementación completa está disponible en: generation_service.py

8.5 Frontend: tecnologías y herramientas

La interfaz de usuario del sistema ha sido desarrollada utilizando el framework React, si-
guiendo una arquitectura basada en componentes funcionales reutilizables. La prioridad en el
diseño ha sido ofrecer una experiencia de usuario intuitiva, modular y perfectamente integrada
con el backend RAG.

Framework principal

React: biblioteca principal para el desarrollo de interfaces de usuario, seleccionada por
su rendimiento, su enfoque declarativo y su ecosistema maduro de herramientas para el
desarrollo moderno de aplicaciones web.

Organización de la aplicación

La aplicación se ha estructurado en múltiples componentes funcionales independientes, cada
uno encargado de gestionar una parte específica del flujo de trabajo:

Gestión de expedientes: el componente ExpedienteList permite crear nuevos expe-
dientes, visualizar la lista existente y seleccionar uno activo.

71

https://github.com/kuvx/entrega_tfg/blob/v3/backend/app/services/generation_service.py


Gestión de documentos: los componentes FileUpload y FileList permiten subir do-
cumentos a un expediente seleccionado y visualizar o eliminar documentos previamente
subidos.

Gestión de conversaciones: el componente ChatList muestra el historial de chats aso-
ciados a cada expediente. ChatHeader muestra la información contextual de la conversación
activa.

Interacción con el modelo: el componente QueryLLM permite al usuario enviar preguntas
al sistema y recibir respuestas generadas. Es el núcleo de la interacción conversacional
basada en recuperación y generación.

Preguntas sugeridas: el componente SuggestedQuestions ofrece una lista de preguntas
frecuentes o relevantes que el usuario puede lanzar directamente con un clic.

Gestión de usuario: el componente UserProfileButton muestra el perfil del usuario
autenticado mediante OAuth de Google, y permite cerrar sesión de forma segura.

Autenticación: el componente Login gestiona el proceso de autenticación de usuarios me-
diante OAuth, integrándose con el sistema de carpetas, documentos y chats personalizados
por usuario.

Comunicación con el backend

La comunicación entre el frontend y el backend desarrollado en FastAPI se realiza mediante
peticiones HTTP asíncronas. Se utiliza la librería axios para simplificar la gestión de solicitudes
y respuestas, manejando de forma cómoda los errores y la configuración de cabeceras cuando es
necesario.

Gestión del estado

El estado de la aplicación se gestiona principalmente mediante los mecanismos nativos de
React (useState, useEffect, useContext). No se ha incorporado un sistema de gestión de
estado global adicional como Redux o Zustand, dado que la organización en componentes y el
tamaño del estado manejado lo han hecho innecesario en esta fase.

Estilización y diseño visual

La apariencia visual de la interfaz ha sido desarrollada mediante CSS personalizado, sin
utilizar frameworks de diseño prediseñados como Material UI o Bootstrap. Se ha optado por un
diseño oscuro, moderno y minimalista, centrado en maximizar la legibilidad del contenido y en
ofrecer una experiencia de usuario profesional.

72



Herramientas auxiliares

Durante el desarrollo del frontend se han utilizado herramientas estándar del ecosistema
React:

Node.js y npm para la gestión de dependencias y la ejecución de scripts de desarrollo.

axios para la gestión de peticiones HTTP al backend.

React Developer Tools en navegador para la depuración de componentes y estados.

Esta estructura modularizada y bien definida ha permitido un ciclo de desarrollo ágil y una
integración fluida con el backend y los servicios de recuperación aumentada de información.

8.6 Contenerización y orquestación

Para garantizar un despliegue coherente, reproducible y fácilmente escalable, el sistema com-
pleto ha sido contenerizado mediante Docker. Todos los componentes —base de datos, backend,
frontend y modelo de lenguaje— se ejecutan en contenedores independientes que se comunican
a través de una red interna definida en el archivo docker-compose.yml.

Orquestación con docker-compose

La orquestación de los servicios se realiza mediante docker-compose, lo que permite levantar,
detener y gestionar todos los contenedores con una única instrucción. A continuación se describen
los servicios principales definidos:

db (PostgreSQL): contenedor basado en la imagen oficial postgres:15, utilizado como
base de datos relacional del sistema. Los datos se persisten mediante un volumen externo
para garantizar su conservación entre reinicios.

ollama: contenedor que ejecuta el servidor Ollama, encargado de alojar localmente el
modelo de lenguaje Nous-Hermes-2. El contenedor está configurado para utilizar la GPU
mediante el runtime nvidia, lo que permite aprovechar los 48 GiB de memoria de la GPU
A40 disponibles en la máquina virtual.

backend: contenedor que construye e inicia el servidor FastAPI, encargado de gestionar los
servicios de ingesta de documentos, embeddings, recuperación, generación de respuestas,
sesiones de usuario y autenticación. El contenedor también está habilitado para ejecutar
procesos sobre GPU, especialmente en los servicios de embeddings y reranking.

frontend: contenedor que compila y sirve la aplicación React, encargada de la interfaz de
usuario. Está expuesto en el puerto 3000 y depende del backend para interactuar con los
expedientes, documentos y consultas del sistema.

(ngrok): se ha utilizado de forma opcional durante el desarrollo para exponer el frontend
públicamente, pero no forma parte del entorno de producción.

73



Gestión de dependencias y ejecución

Cada contenedor se configura con sus propios archivos Dockerfile, definidos para instalar
únicamente las dependencias necesarias, minimizando el tamaño de las imágenes y acelerando
el arranque de los servicios.

Los entornos están definidos mediante variables de entorno almacenadas en ficheros .env,
separados para backend y frontend, que permiten parametrizar las rutas, credenciales y confi-
guraciones sin modificar el código fuente.

Ventajas del enfoque contenerizado

El uso de contenedores ha permitido:

Asegurar la coherencia del entorno entre desarrollo local y despliegue en servidor.

Facilitar el escalado horizontal o la sustitución independiente de servicios.

Automatizar el arranque y la dependencia entre servicios mediante el sistema depends_on
de docker-compose.

Garantizar la portabilidad del sistema completo, simplificando su distribución y despliegue
en nuevas infraestructuras.

8.7 Modelos de lenguaje utilizados

El sistema implementa un enfoque basado en Retrieval-Augmented Generation (RAG), com-
binando distintos modelos de lenguaje en función de las necesidades de cada etapa: generación
de embeddings, recuperación de fragmentos relevantes y generación de respuestas.

A continuación se describen los modelos seleccionados, junto con su finalidad y las razones
de su elección.

Modelo de generación de embeddings: intfloat/e5-large-v2

Para representar los documentos y las consultas en el espacio semántico, se ha utilizado el
modelo
e5-large-v2 de la familia intfloat, integrado a través de la librería SentenceTransformers.

Este modelo ha sido elegido por su excelente rendimiento en tareas de búsqueda semántica
y su capacidad para generalizar sobre dominios técnicos y aseguradores. Genera vectores de
dimensión 1024, optimizados para comparación mediante similitud de coseno.

Su ejecución se realiza sobre GPU, acelerando significativamente el proceso de generación de
embeddings tanto para los documentos durante la ingesta como para las consultas del usuario
en tiempo real.

74



Modelo de reranking: cross-encoder/ms-marco-MiniLM-L12-v2

Para mejorar la precisión en la selección de fragmentos relevantes, el sistema incorpora un
modelo CrossEncoder basado en MiniLM-L12-v2, entrenado sobre el benchmark MS MARCO.

Este modelo recibe como entrada pares de (pregunta, fragmento) y predice directamente
una puntuación de relevancia. A diferencia de los métodos basados únicamente en embeddings,
el CrossEncoder analiza ambos textos conjuntamente, permitiendo evaluar la correspondencia
semántica de manera mucho más precisa.

Aunque su ejecución es más costosa computacionalmente, su uso como etapa opcional de
reranking ha demostrado ser especialmente útil en consultas ambiguas o complejas, donde la
recuperación puramente vectorial podría no ser suficiente.

Modelo de generación de respuestas: Nous-Hermes-2

El modelo generativo principal utilizado para construir las respuestas es Nous-Hermes-2,
alojado localmente mediante Ollama. Este modelo de lenguaje ha sido seleccionado por ofrecer
un equilibrio óptimo entre:

Calidad de generación: respuestas coherentes, bien formadas y adecuadas al estilo pro-
fesional requerido en el ámbito asegurador.

Costo computacional: posibilidad de ejecutarse eficientemente en una GPU NVIDIA
A40 con 48 GiB de memoria.

Control de privacidad: al ejecutarse en infraestructura propia, se garantiza que los datos
sensibles no se transmiten a servicios externos.

El modelo se configura para generar respuestas estrictamente basadas en los fragmentos
proporcionados, minimizando la probabilidad de alucinaciones y garantizando la trazabilidad de
las fuentes utilizadas.

Sinergia entre modelos

El uso combinado de estos tres tipos de modelos permite maximizar la precisión, relevancia
y fiabilidad de las respuestas generadas:

Embeddings para representar documentos y consultas en un espacio semántico compartido.

Reranking para afinar la selección de los fragmentos más relevantes.

Generación para construir respuestas naturales, contextualizadas y verificables.

8.8 Infraestructura y recursos de hardware

Durante el desarrollo y ejecución del sistema se han utilizado dos entornos principales: un
equipo de desarrollo local para tareas de implementación y pruebas preliminares, y una máquina

75



virtual con recursos avanzados de computación para el despliegue y ejecución de los modelos de
lenguaje.

Equipo local de desarrollo

El desarrollo inicial del sistema se ha realizado en un entorno local con las siguientes carac-
terísticas:

Sistema operativo: Ubuntu 24.04.1 LTS (noble).

Memoria RAM: 7.6 GiB (disponibilidad efectiva aproximada: 4 GiB).

CPU: arquitectura x86_64.

Editor de código: Visual Studio Code.

Entorno de ejecución: entornos virtuales gestionados con virtualenv.

Este entorno ha sido empleado para la implementación de funcionalidades, el desarrollo in-
cremental de los servicios, las pruebas unitarias y la construcción de los contenedores Docker.

Máquina virtual para ejecución intensiva

Para ejecutar tareas computacionalmente costosas como la generación de embeddings, el
reranking y la inferencia del modelo de lenguaje, se ha utilizado una máquina virtual de alto
rendimiento proporcionada por la institución. Las características técnicas de esta VM son:

Sistema operativo: Ubuntu 22.04.5 LTS (jammy).

Memoria RAM: 62 GiB, de los cuales más de 50 GiB permanecen libres en ejecución
normal.

GPU: NVIDIA A40 con 48 GiB de memoria dedicada.

CUDA: versión 12.2, compatible con los modelos utilizados.

Driver: NVIDIA 535.247.01.

La presencia de la GPU A40 ha permitido ejecutar eficientemente tanto el modelo de embed-
dings como el modelo generativo local
(Nous-Hermes-2) y el modelo de reranking (CrossEncoder), lo que resulta esencial para man-
tener tiempos de respuesta adecuados en el sistema final.

76



Contenerización y despliegue con Docker

Todo el sistema se ejecuta de forma contenerizada mediante Docker, lo que permite aislar
cada servicio, controlar sus dependencias y simplificar el despliegue tanto en entornos locales
como en servidores dedicados. La definición del entorno mediante docker-compose garantiza la
reproducibilidad y facilita las pruebas, el mantenimiento y la escalabilidad horizontal.

Figura 8.1: Despliegue físico del sistema: la VM con GPU NVIDIA A40 aloja un motor Docker
que ejecuta cuatro contenedores persistentes. El backend encapsula la API FastAPI, la gene-
ración de embeddings (SBERT) y la base vectorial FAISS; expone el puerto 5000 y consume
la GPU para acelerar tanto la inferencia de embeddings como la comunicación con el LLM.
El modelo generativo ollama-llm publica 11434 y también hace uso directo de la GPU. El
frontend se sirve como nginx en el puerto 80 del contenedor y se mapea al 3000 del host,
mientras que la instancia postgresql:15 opera únicamente en la red interna (5432) sobre el
volumen postgres_data.

Detalles clave del docker-compose.

Backend monolítico con GPU. Al integrar el microservicio de embeddings y el índice
FAISS dentro del contenedor backend, se evitan llamadas de red internas y se simplifica
la gestión de dependencias Python (SentenceTransformers, faiss-cpu / faiss-gpu).
El parámetro runtime:nvidia y la reserva de recursos en deploy.resources exponen la

77



GPU al contenedor.

LLM desacoplado. El contenedor ollama-llm ejecuta Nous-Hermes-2 mediante Ollama
y publica el puerto 11434, lo que permite reemplazar el modelo sin reconstruir el backend
y balancear carga si se añaden réplicas.

Persistencia duradera. Dos volúmenes gestionan el estado: postgres_data (metadatos,
binarios de documentos) y ollama (modelos y cachés del LLM). Así pueden actualizarse
los contenedores sin pérdida de datos, facilitando además la copia de seguridad.

Red interna rag_net. Todos los servicios se conectan en la misma red bridge por defecto;
solo el puerto 3000 (frontend) se publica al host, lo que reduce la superficie de exposición,
y a los endpoints del backend se accede siempre desde llamadas que se redirigen desde el
frontend.

Inicio idempotente. El backend ejecuta init_db.py antes de lanzar Uvicorn, de modo
que las migraciones de esquema se aplican automáticamente al arrancar el stack.

Escalabilidad horizontal. El frontend es sin estado y puede escalarse con réplicas; el
backend también, gracias a la conexión a PostgreSQL (bloqueo de escritura gestionado)
y al uso de FAISS en modo lectura concurrente. El LLM puede escalarse mediante un
balanceador TCP si se dispone de varias GPU.

Este enfoque proporciona aislamiento, reproducibilidad y un camino claro para la futura
orquestación en Kubernetes o Swarm, a la vez que mantiene la simplicidad necesaria para pruebas
locales y despliegues en una única VM.

Aprovechamiento de recursos

Gracias a esta infraestructura dual se ha podido llevar a cabo:

Un ciclo de desarrollo rápido en local, con pruebas aisladas por componente.

Una validación realista del sistema completo sobre GPU en la VM, evaluando tiempos de
respuesta, carga de modelos y estabilidad del sistema bajo uso prolongado.

8.9 Mecanismos de seguridad implementados

La solución incorpora un conjunto de medidas defensivas alineadas con los principios de
mínima exposición y defensa en profundidad. El Tabla 8.1 resume cada mecanismo y su objetivo.

78



Cuadro 8.1: Contramedidas de seguridad actualmente activas

Mecanismo Objetivo / amenaza mitigada

Autenticación OAuth2 Verificar identidad y limitar uso de tokens robados (spoo-
fing)

Expiración y renovación de tokens Restringir ventana de ataque por compromiso de sesión
Validación de entrada (Pydantic) Prevenir inyecciones y payloads malformados (tampering)
CORS restringido Bloquear peticiones CSRF/x-site; limitar orígenes
Sanitizado de ficheros Evitar carga de contenido ejecutable / no permitido
Registro estructurado (logging) Auditoría, trazabilidad y detección de patrones anómalos
Contenedorización Docker Aislar dependencias y reducir superficie de ataque
Reglas nginx + HTTPS Cifrado en tránsito y redirección segura
Gestión granular de permisos Acceso por expediente y usuario autenticado (principio de

menor privilegio)

Las contramedidas se complementan con pruebas unitarias y de integración que verifican
rutas de autenticación, validación de carga de documentos y política CORS.

Limitaciones actuales No se incluye aún cifrado en reposo de índices FAISS ni de blobs
de la base de datos. Tampoco se han realizado pruebas de penetration testing completas; estas
acciones se planifican en la Subsección 10.4.1.

8.10 Resumen del entorno de trabajo

El desarrollo e implementación del sistema se ha sustentado en un conjunto de herramientas,
librerías y entornos cuidadosamente seleccionados para maximizar la eficiencia, la coherencia y
la trazabilidad del flujo conversacional basado en recuperación aumentada de información.

En el backend, se ha optado por una arquitectura modular construida sobre FastAPI, con una
integración directa de modelos de embeddings y reranking, y una indexación eficiente mediante
FAISS. La lógica se ha estructurado en servicios independientes, cada uno con responsabilidad
clara y bien delimitada.

En el frontend, la elección de React ha permitido construir una interfaz clara, intuitiva y
alineada con el enfoque conversacional del sistema. La organización basada en componentes, la
comunicación asincrónica con el backend y la estética oscura personalizada han contribuido a
una experiencia de usuario profesional y consistente.

La contenerización de todos los servicios mediante Docker ha permitido mantener la cohe-
rencia entre entornos locales y de servidor, facilitando el despliegue y la prueba del sistema en
condiciones realistas.

Por último, la disponibilidad de una máquina virtual con GPU NVIDIA A40 y recursos
de alto rendimiento ha sido un factor clave para ejecutar modelos de lenguaje avanzados como

79



Nous-Hermes-2, permitiendo validar la solución propuesta no solo a nivel funcional, sino también
en términos de rendimiento y escalabilidad.

Este conjunto de herramientas y entornos ha permitido desarrollar un sistema robusto, flexible
y listo para su evaluación en escenarios reales del ámbito asegurador.

80



Capítulo 9

Pruebas

9.1 Cobertura de pruebas

Este apartado muestra los resultados obtenidos al ejecutar la batería completa de tests con
pytest y pytest-cov. El comando empleado fue:

PYTHONPATH=backend/ pytest tests --cov=app --cov-report=term-missing

La Tabla 9.1 resume el número de líneas instrumentadas, las que no se ejecutaron, el porcen-
taje de cobertura y las líneas exactas sin cubrir para cada módulo.

Cuadro 9.1: Cobertura por fichero.

Archivo Total Faltan % Líneas sin cubrir
app/api/auth_google.py 43 5 88 17–21, 56
app/api/chat.py 88 12 86 14–18, 34–35, 60–61, 80–81, 109–110
app/api/documents.py 83 4 95 20–24
app/api/expedientes.py 91 9 90 19–23, 135–137, 142, 150
app/api/logs.py 35 4 89 24, 47–49
app/api/query.py 50 0 100 –
app/core/config.py 11 1 91 16
app/core/database.py 12 4 67 20–24
app/core/models.py 46 0 100 –
app/main.py 35 0 100 –
app/middleware/load_user_middleware.py 18 13 28 9–24
app/middleware/logging_middleware.py 26 18 31 13–43
app/services/embedding_service.py 22 3 86 32–34
app/services/generation_service.py 90 15 83 98–100, 108–121, 195–196
app/services/index_service.py 79 8 90 42, 74–75, 78–79, 85–86, 118
app/services/ingestion_service.py 177 52 71 36, 40–46, 50–56, 60–66, 70–83, 95, 110,

121–123, 136, 151–152, 161–166, 208,
210–211

app/services/retrieval_service.py 85 15 82 32–34, 66–68, 81–82, 88, 105, 120–121,
127–129

TOTAL 991 163 84

Análisis

La cobertura global alcanza el 84 %, por encima del umbral mínimo del 80 %.

81



Los módulos clave (embedding, ingestion, indexing, retrieval y generation) superan el 80 %.

El incremento se consiguió mediante fixtures, stubs y monkeypatching para aislar
dependencias externas, manteniendo las pruebas rápidas y reproducibles.

Las líneas sin cubrir se concentran en middlewares y ramas de error poco probables, sin
impacto directo en la lógica de dominio.

Con estos resultados se confirma que los componentes críticos del sistema están adecuada-
mente validados y se dispone de una base fiable para futuras evoluciones.

9.2 Pruebas funcionales sobre el sistema completo

Una vez garantizada la estabilidad del sistema a través de pruebas unitarias y de integración,
se procede a validar su comportamiento funcional mediante un conjunto de pruebas específicas
diseñadas sobre un expediente simulado.

A diferencia de las pruebas anteriores, estas no se centran en unidades aisladas del código,
sino en evaluar el sistema completo desde el punto de vista del usuario final. Para ello, se ejecutan
consultas reales sobre documentos reales previamente cargados, y se analiza tanto la precisión
de las respuestas generadas como la trazabilidad del contenido utilizado.

Estas pruebas funcionales permiten validar aspectos críticos como:

La correcta ingesta y chunking de documentos en el índice vectorial.

La fidelidad del sistema RAG al responder exclusivamente con base en el contexto dispo-
nible.

El comportamiento del modelo generativo frente a consultas tanto narrativas como fac-
tuales.

La integración de los distintos componentes (embedding, retrieval, prompt generation,
LLM).

A continuación, se detalla el expediente de pruebas empleado para la validación del sistema,
así como los resultados obtenidos tras diversas consultas representativas.

Estos cuatro ficheros se agrupan en un “expediente de pruebas” que simula un caso híbrido
hogar–auto. Al cargarlos en el índice vectorial, se garantiza que las consultas posteriores se
resuelvan exclusivamente sobre este corpus, lo que facilita la trazabilidad.

82



Nº Documento Propósito
1 Póliza de seguro de hogar (HO-2025-

00012345)
Coberturas, vigencia y franquicias.

2 Recibo de prima del seguro de hogar Estado de pago e importes abona-
dos.

3 Formulario de reclamación de sinies-
tro de hogar (CLM-2405-001)

Datos de siniestro real para causas
y cuantías.

4 Parte de declaración de siniestro –
automóvil (SIN-2505-004)

Contrastar respuesta en ramo autos.

Cuadro 9.2: Documentos incluidos en el expediente de pruebas

9.3 Diseño de las pruebas

1. Análisis de flujo. Tres consultas representativas analizadas con logs de cada etapa: to-
kenización, recuperación, reranking, generación y postprocesado.

2. Test de usabilidad. Cuatro usuarios reales ejecutan tareas guiadas. Se registran métricas
como el cuestionario SUS, tiempos, repreguntas y feedback cualitativo.

9.4 Preguntas seleccionadas

Pregunta Documento(s) obje-
tivo

Motivo

P1. ¿Cuál es la suma asegurada para
daños por agua en la póliza HO-2025-
00012345?

Póliza de hogar Extraer un valor técnico
en tabla.

P2. Enumera los daños apreciados y la
estimación de reparación en el parte
auto SIN-2505-004.

Parte de siniestro auto Leer lista semiestructura-
da.

P3. Demuestra si la póliza HO-2025-
00012345 está al corriente de pago
(importe abonado y fecha de emisión).

Póliza + Recibo Razonar con datos multi-
fuente.

Cuadro 9.3: Preguntas seleccionadas para el análisis de flujo

9.5 Análisis detallado de P1

Pregunta lanzada

Texto: ¿Cuál es la suma asegurada para daños por agua en la póliza HO-2025-00012345?

Timestamp: 17:06:57,700

83



1. Normalización y carga de índice

Query normalizada:
query: cual es la suma asegurada para danos por agua en la poliza
HO-2025-00012345?

Índice con expediente_id = 3 abierto.

2. Generación de embeddings

Modelo: intfloat/e5-large-v2 en GPU.

Latencia: 2,18 s (de 17:06:57 a 17:06:59).

3. Búsqueda k-NN en FAISS

Top-5 recuperado. Uno de los fragmentos contiene: “daños por agua – 25.000 €”.

4. Reranking cruzado

Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

Resultados finales:

Pos. Fragmento (abreviado) score_rerank
1 “objeto del seguro. . . daños materiales. . . ” 3,0059
2 “póliza. . . combinado. . . ” 2,8608
3 “Recibo de prima. . . ” 1,4269

5. Construcción del prompt Se insertan los 5 fragmentos, separados por delimitadores –-
y con directriz de “modo factual”.

6. Generación de la respuesta

LLM: Nous-Hermes-2, inferencia en 4,47 s.

Salida: “La suma asegurada para daños por agua es de 320,00 €.”

7. Validación y diagnóstico

Valor correcto: 25.000 €. El modelo eligió la prima neta (320,00 €) por ambigüedad en
la etiqueta.

Causas probables:

• La etiqueta “suma asegurada” no aparece de forma explícita en el fragmento relevante.

• El LLM seleccionó el número más cercano en el texto.

Impacto: precision@1 = 0.

84



8. Recomendaciones

Mapear “daños por agua” a un campo estructurado: suma_asegurada_agua.

Parsear tablas durante la fase de ingestión.

Penalizar en el reranking los fragmentos que no contienen palabras clave.

9.6 Análisis detallado de la consulta P2

Pregunta lanzada

Texto: Enumera los daños apreciados y la estimación de reparación que figuran en el parte
de siniestro de automóvil SIN-2505-004.

Timestamp inicial: 17:11:38,042

1. Normalización y carga de índice

Normalización de consulta:
query: enumera los danos apreciados y la estimacion de reparacion... (supre-
sión de tildes, conversión a lowercase).

Índice con expediente_id = 3 abierto sin latencia perceptible.

2. Generación de embeddings

Modelo: intfloat/e5-large-v2 sobre GPU.

Duración: 1,94 s (de 17:11:38,043 a 17:11:39,979).

3. Búsqueda k-NN en FAISS

Se recupera el top-5. El candidato #0 contiene la sección: “––- danos apreciados ––-
... estimacion de reparacion: 1.150 €”.

Scores preliminares: entre 0,7821 y 0,8271.

4. Reranking cruzado

Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

Reordenación resultante:

Pos. Fragmento (abreviado) score_rerank
1 “. . . daños apreciados – paragolpes trasero. . . ” 2,2252
2 Póliza de hogar (irrelevante) −1, 0111
3 Resto de fragmentos (ruido) ≤ −7, 49

85



5. Construcción del prompt RAG

Se incluyen cinco fragmentos. Se destaca el tramo con la tabla de daños y se añaden
instrucciones de “modo narrativo” (2–3 frases).

6. Generación de la respuesta

LLM: Nous-Hermes-2; inferencia en 3,03 s.

Salida devuelta:

Los daños apreciados y la estimación de reparación en el parte de
siniestro de automóvil SIN-2505-004 son los siguientes:

Danos:
1. Daño en la parte trasera del vehículo (Peugeot 308 1.5 BlueHDi).
2. Daño en el parabrisas del vehículo (Citroen C4).

Estimación de reparación:
Para ambos vehículos, se estima una inversión total de aproximadamente
2.000 € en reparaciones.

7. Validación y diagnóstico

Contenido correcto en el documento:

• Paragolpes trasero: abollado y rayado.

• Portón maletero: deformación leve.

• Sensor de aparcamiento trasero: averiado.

• Estimación de reparación: 1.150 € (Taller Ramón Auto Service).

Errores detectados:

• El modelo omite dos de los tres daños y añade uno inexistente (parabrisas).

• Duplica el vehículo y redondea la cuantía real (1.150 €) a aproximadamente 2.000 €.

Causa raíz probable:

• El documento original usa viñetas ASCII ((cid:127)), que el parser conserva sin
reconocerlas como lista.

• Falta una etiqueta clara como “estimación de reparación:” en la misma línea que las
viñetas, lo que reduce la confianza del modelo y provoca errores.

Impacto: respuesta incorrecta; precision@1 = 0.

86



8. Recomendaciones de mejora

Normalizar caracteres de viñeta ((cid:127) → •) e insertar saltos de línea consistentes
durante la ingesta.

Detectar patrones como estimacion de reparacion: <importe> mediante regex y ex-
traerlos a campos estructurados.

Penalizar en el reranking los fragmentos que contengan “estimación” sin importe explícito
con símbolo de euro.

Añadir una post-regla que exija al modelo devolver el mismo número de ítems que viñetas
bajo la cabecera “daños apreciados”.

9.7 Análisis detallado de la consulta P3

Pregunta lanzada

Texto: Demuestra si la póliza HO-2025-00012345 está al corriente de pago, indicando el
importe abonado y la fecha de emisión del recibo.

Timestamp inicial: 17:14:38,151

1. Normalización y carga de índice

Consulta normalizada:
query: demuestra si la poliza ho-2025-00012345
esta al corriente de pago... (tildes y mayúsculas suprimidas).

Índice con expediente_id = 3 abierto instantáneamente.

2. Generación de embeddings

Modelo: intfloat/e5-large-v2 sobre GPU.

Latencia: 1,77 s (de 17:14:38,151 a 17:14:39,922).

3. Búsqueda k-NN en FAISS

Top-5 recuperado. El candidato #0 ya contiene: “fecha de emisión: 17/05/2025 ... importe
total a pagar 344,48 €”.

87



4. Reranking cruzado

Modelo: cross-encoder/ms-marco-MiniLM-L12-v2.

Los dos primeros puestos fueron:

Pos. Fragmento score_rerank
1 Póliza (HO-2025-00012345, datos generales) 3,7907
2 Recibo de prima (fecha de emisión 17/05/2025) 3,4772

5. Construcción del prompt

Se añaden los fragmentos del recibo y de la póliza, junto con la directriz de ”modo narra-
tivo”.

6. Generación de la respuesta

LLM: Nous-Hermes-2; inferencia en 4,82 s.

Salida obtenida (extracto):

“El sistema no tiene acceso a los documentos ... no hay información sobre si la póliza
está al corriente de pago...”

7. Validación y diagnóstico

Información correcta en los documentos:

• Fecha de emisión: 17/05/2025

• Importe abonado: 344,48 €

• Estado de pago: el recibo incluye la frase ”el pago de este recibo acredita la vigencia
de la póliza”, lo que indica que está al corriente.

Errores detectados:

• El modelo ignora el fragmento del recibo, a pesar de tener un score de 3,47, y devuelve
una respuesta negativa genérica.

• Confunde la directriz de ”modo narrativo” con una falta de información y activa una
respuesta por defecto.

Causa probable:

• El prompt pide demostrar si está al corriente, pero el recibo no contiene esa frase
exacta, lo que hace que falle la heurística de coincidencia.

• La política interna del sistema activa una respuesta negativa al no encontrar coinci-
dencia literal, incluso aunque haya evidencia suficiente.

Impacto: respuesta incorrecta; precision@1 = 0.

88



8. Recomendaciones de mejora

Mapear frases comunes como ”el pago de este recibo acredita...” a un campo booleano
corriente_de_pago.

Añadir un post-procesador que combine fecha_emision + importe_total_pagar si am-
bos aparecen en la consulta.

Incluir reglas de scoring que premien la co-ocurrencia de ”fecha de emisión” y una cantidad
en € en el mismo fragmento.

Tras detectar inconsistencias en la interpretación de ciertas consultas por parte del modelo
generativo, se ha modificado el prompt con el objetivo de comprobar si el problema reside en la
forma en que el modelo interpreta las instrucciones actuales.

9.8 Pruebas con cambio de prompt y parámetros

9.8.1 Pregunta sobre dato concreto

Pregunta lanzada

¿Cuál es la fecha de emisión del recibo de prima del seguro de hogar HO-2025-
00012345?

1. Normalización y carga de índice

La query original se normaliza a: cual es la fecha de emision del recibo de prima
del seguro de hogar ho-2025-00012345? emision vencimiento caducidad.

Se localiza y carga el FAISS index correspondiente al expediente 3. (INDEX OK, 1 ms).

2. Generación de embeddings

Modelo ST usado: intfloat/e5-large-v2 (1024 dims).

El modelo se despliega en GPU (cuda); generación de un único embedding para la consulta
(2 s aprox.).

3. Búsqueda vectorial (FAISS)

Se recuperan los 5 chunks más similares (TOP_K=5).

Resultado 0 (score 0,8712) ya contiene el recibo deseado. Otros candidatos provienen de
la reclamación de siniestro, la póliza y metadatos del recibo.

89



4. Re-ranking (Cross-Encoder)

Modelo: ms-marco-MiniLM-L12-v2.

Re-evalúa los 5 pasajes anteriores: el recibo obtiene el máximo score re-rank (6,0273).

Se elabora la lista final de MAX_RETURNED=5 fragmentos.

5. Generación del prompt RAG

Se inserta el nuevo prompt factual/narrativo con las instrucciones revisadas.

Se añaden los 5 pasajes al bloque {context}.

Historial de conversación vacío ({chat_history}).

6. LLM (Nous-Hermes-2)

Tiempo total de llamada: 7,2 s.

Respuesta devuelta:

17/05/2025 [recibo_prima_hogar.pdf]

El modelo cumple las reglas ”factual”: valor único + archivo.

7. Persistencia y logging

Respuesta almacenada en la colección de chats (chat_id=13).

Traza frontal generada para auditoría (/api/logs).

Duración total del flujo: 10,06 s.

Conclusión
El pipeline RAG identifica sin ambigüedad la etiqueta literal fecha de emision: 17/05/2025
en recibo_prima_hogar.pdf, la posiciona como pasaje principal tras el re-ranking y el LLM
la devuelve exactamente en modo factual, demostrando que el nuevo prompt funciona correcta-
mente para consultas basadas en campos explícitos.

9.8.2 Pregunta sobre precio

Pregunta lanzada

¿Cuál es el importe total a pagar que figura en ese mismo recibo?

90



1. Restauración de contexto conversacional

Antes de la búsqueda, el módulo MEMORY recupera los dos mensajes previos del chat 14
(pregunta + respuesta sobre la fecha de emisión).

El pronombre “ese mismo recibo” queda correctamente resuelto sin necesidad de repetir
la póliza ni el nombre del archivo. El historial se inserta en {chat_history}.

2. Normalización y carga de índice

Consulta normalizada:
cual es el importe total a pagar que figura en ese mismo recibo?

Se abre el índice FAISS del expediente 3 (INDEX OK).

3. Embeddings y búsqueda vectorial

Modelo: intfloat/e5-large-v2 sobre GPU (2 s).

El top-5 incluye nuevamente el archivo recibo_prima_hogar.pdf como el fragmento más
similar (score 0,8323).

4. Reranking cruzado

Modelo: ms-marco-MiniLM-L12-v2.

El recibo mantiene la posición 1 tras el reranking (score 0,2189). Los demás fragmentos
descienden por no contener la etiqueta clave.

5. Construcción del prompt

Se aplica el nuevo prompt factual/narrativo validado previamente.

Los cinco fragmentos se insertan en
{context}, y el historial conversacional en {chat_history}.

6. Llamada al LLM

Modelo: Nous-Hermes-2; inferencia en 4,2 s.

Respuesta generada:

344,48 € [recibo_prima_hogar.pdf]

El modelo sigue correctamente el modo factual: valor literal + fuente.

91



7. Persistencia y logging

La respuesta se guarda en la colección de chats (chat_id = 14).

Registro frontend enviado vía /api/logs.

Duración total del flujo: 6,39 s.

8. Conclusión

La memoria conversacional recupera correctamente el turno anterior, permitiendo inter-
pretar el pronombre ”ese mismo recibo” sin ambigüedades.

El motor RAG identifica la etiqueta importe total a pagar: 344,48 € en el documento
recibo_prima_hogar.pdf, y el LLM la reproduce de forma literal.

9.8.3 Pregunta sobre campo descripción

Pregunta lanzada

¿Qué se indica en el campo ”descripción de los hechos” en el formulario de reclama-
ción del seguro de hogar?

1. Normalización y búsqueda

Consulta original: ¿Qué se indica en el campo ”descripción de los hechos” ...?

Consulta normalizada:
que se indica en el campo ”descripcion de los hechos”...

Se carga el índice FAISS del expediente 3. Los embeddings se generan con el modelo
intfloat/e5-large-v2 sobre GPU.

2. Recuperación de fragmentos

Se devuelven los tres fragmentos más similares:

• reclamacion_seguro_hogar.docx — contiene literalmente el campo solicitado
(score 0.8391).

• objeto del seguro (poliza_hogar_realista.pdf) — score 0.8422.

• recibo de prima (recibo_prima_hogar.pdf) — score 0.8369.

92



3. Reranking cruzado

Modelo: ms-marco-MiniLM-L12-v2.

Sólo el fragmento (a) se conserva como contexto principal tras el reranking:

Candidato score_faiss score_rerank
reclamación (a) 0.8391 3.6648
objeto seguro (b) 0.8422 0.8062
recibo prima (c) 0.8369 −6,9301

4. Construcción del prompt

Se usa la nueva plantilla “respuesta clara, precisa y profesional” (sin los dos modos ante-
riores).

Contexto final: aproximadamente 3,3 kB (fragmento único + metadatos).

5. Generación de la respuesta

Modelo: Nous-Hermes-2; tiempo de inferencia: 6,0 s.

Respuesta generada:

«En el campo ”descripción de los hechos” [...] se indica que ocurrió un siniestro el
15/05/2025 a las 18:30 h en el baño principal. La causa probable fue la rotura accidental
por desgaste de la llave de paso del lavabo, provocando una fuga de agua que inundó el
baño y filtró al techo del vecino inferior. El agua se cortó inmediatamente y se contactó
con un fontanero de urgencia.» (reclamacion_seguro_hogar.docx)

6. Conclusión

El nuevo prompt, unido a la reducción de TOP_K a 3, elimina fragmentos irrelevantes.

El reranking posiciona correctamente el texto con la etiqueta “descripción de los hechos”,
lo que permite una respuesta directa, precisa y con fuente citada.

Conclusión general de las pruebas

Las pruebas realizadas confirman que la arquitectura RAG logra:

Recuperar con precisión los fragmentos más relevantes gracias a la combinación de FAISS
(TOP_K) y reranking con Cross-Encoder.

Reducir el ruido limitando el número de pasajes inyectados, lo que disminuye el tamaño
del prompt final.

Citar la fuente adecuada cuando el texto contiene la etiqueta literal solicitada (por
ejemplo, descripción de los hechos:).

93



Factores críticos en el último tramo (LLM) Los experimentos demuestran que el rendi-
miento final del modelo generativo depende especialmente de dos aspectos clave:

La plantilla de prompt:

• Debe especificar claramente qué debe extraerse y cómo debe presentarse, evitando
ambigüedades.

• Es recomendable reforzar las restricciones (no inventar, no parafrasear) para reducir
errores de alucinación.

Los parámetros de recuperación y generación:

• TOP_K: controla cuántos candidatos iniciales se consideran. Valores altos mejoran el
recall, pero aumentan el ruido.

• MAX_CONTEXT_CHUNKS: limita los fragmentos incluidos en el contexto. Reducirlo me-
jora la precisión en consultas densas.

• USE_RERANKING y RERANK_MODEL: permiten refinar la selección. En dominios muy
específicos puede ser útil entrenar un modelo propio.

• DEFAULT_MODEL: el modelo LLM influye directamente en la fidelidad a las instruccio-
nes y en la tendencia a parafrasear.

Recomendación final Para adaptar este sistema a otro dominio (documental, lingüístico o
funcional), es imprescindible iterar sobre:

el ajuste fino de los parámetros clave (TOP_K, MAX_CONTEXT_CHUNKS, etc.),

y la redacción del prompt, buscando el tono y nivel de detalle adecuado.

Sólo así se garantiza que la arquitectura mantenga el equilibrio necesario entre precisión,
concisión y robustez para cada caso de uso.

9.9 Pruebas de usabilidad

Las pruebas de usabilidad persiguen un doble objetivo: (i) comprobar que la interfaz y los
flujos de trabajo del sistema RAG de consulta de pólizas resultan comprensibles y eficientes
para usuarios con perfiles diversos y (ii) obtener evidencias cualitativas que orienten los ajustes
finales de la aplicación.

9.9.1 Diseño experimental

Sesiones. Se llevaron a cabo de forma presencial durante la última quincena de mayo de 2025,
empleando un ordenador portátil con pantalla de 15” Full-HD, ratón externo y conexión
estable a la red local.

94



Participantes. Tres usuarios ajenos al desarrollo.

Tareas. Cada participante siguió la secuencia de dieciocho tareas descritas en el documento
«Pautas y tareas para la prueba de usabilidad», proporcionado antes de la sesión y también
explicado verbalmente por el moderador.

Instrumentación. Observación directa y notas de campo tomadas por el evaluador.

Registro de logs de todo el flujo.

Formulario post-tarea implementado en Google Forms.

Métricas. No se midieron tiempos ni número de clics, dado que los usuarios consultaban el
listado de tareas sobre la marcha y el evaluador supervisaba in situ sus acciones. Se regis-
traron:

1. Éxito de la tarea (cumplida / no cumplida).

2. Incidencias (Si hay algún problema grave en el transcurso de las tareas)

9.9.2 Resultados por participante

Participante #1 — «Isabel»

Perfil demográfico

Edad: 20 años

Formación: Ciclo de grado superior (Dietética)

Experiencia previa en seguros y trámites legales: Sí

Experiencia previa con aplicaciones basadas en IA: Sí

Desarrollo de la sesión Sesión presencial en la penúltima semana de mayo; la participante
completó las dieciocho tareas previstas sin que se registrara el tiempo de cada una, puesto que
la lectura del documento de pautas formaba parte del flujo natural del ensayo.

95

https://github.com/kuvx/entrega_tfg/blob/v3/Pautas_prueba_usabilidad.pdf
https://forms.gle/MVcShzdBGUYmBsJz5


Cuadro 9.4: Resumen de la sesión de Isabel

Tarea clave Observaciones del evaluador Estado

Iniciar sesión Autenticación Google exitosa a la primera. Cumplida
Crear expediente Genera tres expedientes sin dificultad. Cumplida
Editar nombre del expediente Localiza el icono de edición sin ayuda. Cumplida
Borrar expediente Duda brevemente por la posición del icono

de papelera.
Cumplida

Subir / descargar ficheros Valora la rapidez de carga. Cumplida
Borrar fichero Ejecución correcta. Cumplida
Crear / editar / borrar chat Pequeño freeze al borrar; resuelto al recar-

gar.
Incidencia menor

Preguntas libres al modelo Obtiene respuestas coherentes. Cumplida
Preguntas frecuentes Navegación fluida. Cumplida
Exploración libre Comenta que la iconografía es clara. Cumplida

Resultados de las tareas

Incidencias observadas Bloqueo temporal de la interfaz al borrar un chat (menor); la usuaria
lo resolvió recargando la página.

Cuestionario posterior (Google Forms)

Facilidad de uso: 5/5

Velocidad percibida: 5/5

Utilidad profesional: 5/5 («Sí, totalmente»)

Comentario destacado: “En una consulta el bot no respondía a nada del expediente”.

Valoración de logs Se detectaron respuestas poco relevantes cuando el historial del chat era
extenso, probablemente por un prompt demasiado largo. Los fragmentos recuperados se alinean
correctamente con las preguntas, lo que confirma el correcto funcionamiento del retrieval y la
generación del prompt; la deficiencia se atribuye al procesado final del LLM.

Participante #2 — «Noa»

Perfil demográfico

Edad: 19 años

Formación: Ciclo de grado superior (Laboratorio clínico)

Experiencia previa en seguros y trámites legales: No

Experiencia previa con aplicaciones basadas en IA: Sí

96



Desarrollo de la sesión Sesión presencial en la penúltima semana de mayo; duración apro-
ximada de 10 min. La participante inició sesión, creó y borró accidentalmente un expediente, lo
recreó, subió dos documentos, generó el índice y exploró el chat con preguntas libres y sugeridas.

Cuadro 9.5: Resumen de la sesión de Noa

Tarea clave Observaciones del evaluador Estado

Iniciar sesión Autenticación Google exitosa. Cumplida
Crear expediente Crea uno, lo borra por error y lo re-

crea.
Cumplida (con incidencia)

Borrar expediente Pulsación accidental de la papelera. Incidencia menor
Subir documentos Carga dos PDF sin problemas; chun-

king correcto.
Cumplida

Generar índice Índice creado automáticamente. Cumplida
Crear chat Chat operativo y estable. Cumplida
Preguntas libres al modelo Cinco consultas respondidas correcta-

mente.
Cumplida

Preguntas sugeridas Navegación fluida. Cumplida
Exploración libre Varias recargas consecutivas sin im-

pacto funcional debido a traductor
activado.

Cumplida

Resultados de las tareas

Incidencias observadas

Pulsación accidental del icono de borrado del expediente (diseño visual). — menor

Seis recargas consecutivas que generaron múltiples peticiones de autenticación, debido a
un texto erróneo en un botón por efecto del traductor. — menor

Cuestionario posterior (Google Forms)

Facilidad de uso: 5/5

Velocidad percibida: 5/5

Utilidad profesional: 5/5

Aspecto más valorado: “Subir varios archivos a la vez y el buscador.”

Mejora sugerida: “Vista que se actualice sola tras subir archivos.”

Comentario final: “Gran trabajo.”

97



Valoración de logs Los registros muestran un flujo estable: ingesta, retrieval y generación se
completaron sin errores. Las múltiples autenticaciones consecutivas no afectaron al rendimiento.
Se confirma la robustez del núcleo funcional y se identifican mejoras de usabilidad en los controles
de borrado y la actualización automática de la vista.

Participante #3 — «Miguel»

Perfil demográfico

Edad: 22 años

Formación: Grado en Ingeniería Informática

Experiencia previa en seguros y trámites legales: No

Experiencia previa con aplicaciones basadas en IA: Sí

Cuadro 9.6: Resumen de la sesión de Miguel

Tarea clave Observaciones del evaluador Estado

Iniciar sesión Autenticación Google satisfactoria en el pri-
mer intento.

Cumplida

Crear expediente Genera tres expedientes consecutivos (IDs
9, 10, 11) sin ayuda.

Cumplida

Editar nombre del expediente Renombra «Prueba 1» a «Prueba 1 – edit»
sin asistencia.

Cumplida

Borrar expediente No se intentó durante la sesión. N/A
Subir / descargar ficheros Carga, descarga y pre-visualiza varios PD-

F/DOCX con buena latencia percibida.
Cumplida

Borrar fichero Elimina un documento; el índice se regenera
correctamente.

Cumplida

Crear / editar / borrar chat Renombra un chat y formula preguntas; flu-
jo sin contratiempos visibles.

Cumplida

Pregunta libre al modelo Obtiene respuestas coherentes hasta que se-
lecciona un expediente sin índice.

Incidencia menor

Preguntas frecuentes No utilizadas. N/A
Exploración libre Explora menús; destaca la sencillez general,

aunque comenta exceso de morado en títu-
los.

Cumplida

Incidencias. Se registraron dos incidencias menores:

1. Al intentar borrar un documento se mostró un mensaje “Error al eliminar documento”,
aunque la operación concluyó con éxito y el índice se regeneró automáticamente.

98



2. En un expediente recién creado (ID 11) el modelo devolvió “No se encontraron fragmen-
tos relevantes” porque aún no existía índice FAISS, provocando una respuesta vacía; la
situación se resolvió al volver al expediente indexado.

Valoración subjetiva. El participante calificó la interfaz como «Muy clara» e «intuitiva»;
la velocidad percibida fue «Muy rápida».Declaró que el sistema respondió «Siempre» de forma
correcta y no detectó alucinaciones. Recomendaría la herramienta a otros profesionales y consi-
deró que le resultaría «Sí, totalmente» útil en un entorno real.Única queja: el color morado de
algunos títulos le confundió puntualmente.

Valoración del comportamiento observado. Los registros muestran un flujo de trabajo
fluido en la mayor parte de las tareas. El único error funcional («Error al eliminar documento»)
parece derivar de un borrado duplicado del mismo archivo; el backend manejó la situación
y reconstruyó el índice sin intervención del usuario. El segundo contratiempo —consulta sin
índice— revela la necesidad de generar automáticamente el índice tras crear un expediente
vacío o de advertir al usuario antes de permitir preguntas en dicho contexto. Por lo demás,
los fragmentos recuperados fueron relevantes y el modelo mantuvo la coherencia incluso con
múltiples cargas y renombrados en la misma sesión, lo que corrobora la solidez de la tubería de
retrieval y del prompt generado.

99



100



Capítulo 10

Conclusiones

A lo largo de este Trabajo Fin de Grado se ha concebido, implementado y verificado un sistema
conversacional basado en Generación Aumentada por Recuperación (RAG) orientado
al ámbito asegurador. Partiendo de los objetivos establecidos en el Capítulo 1, el proyecto ha
materializado una arquitectura modular que combina búsqueda vectorial, reranking y generación
de lenguaje, todo ello bajo un marco de buenas prácticas software y cumplimiento normativo
(AI Act, ISO/IEC 42001).

Limitaciones principales. El corpus de pruebas abarca todas las ramas del sector asegura-
dor de forma amplia, pero la precisión y la pertinencia de las respuestas podrían incrementarse si
el sistema se entrenase con documentación específica de un ramo concreto. El modelo generativo,
aun estando contextualizado, puede producir alucinaciones cuando la información no aparece de
manera inequívoca en los fragmentos recuperados. Por último, la versión de despliegue óptima
requiere GPU, lo que dificulta su implantación en entornos con recursos limitados.

10.1 Aportaciones

10.1.1 Contribuciones técnicas

Arquitectura microservicios contenerizada. Se ha diseñado una pila backend–frontend
desacoplada (Docker Compose)
que separa ingesta, embeddings, recuperación, generación y persistencia, simplificando
el mantenimiento y habilitando el escalado horizontal.

Pipeline RAG completo y trazable. El sistema integra FAISS para la indexación
vectorial, un Cross-Encoder como reranker y un LLM alojado con Ollama, garantizando
control local de datos y auditabilidad acorde al AI Act.

Calidad y cobertura de código. La batería de pruebas unitarias cubre los servicios de
ingesta, embeddings, recuperación y generación, favoreciendo la estabilidad evolutiva del
producto.

101



10.1.2 Contribuciones metodológicas

Desarrollo iterativo-incremental. El prototipado rápido, acompañado de ciclos de
prueba y feedback, ha facilitado la validación temprana de requisitos y la detección de
defectos.

Enfoque ético y regulatorio desde el diseño. El proyecto integra principios de privacy-
by-design / audit-by-design, incorporando logging exhaustivo, segmentación de contexto
por usuario y criterios de sostenibilidad.

10.2 Impacto socio-económico

El prototipo evidencia que las consultas en lenguaje natural, respaldadas por evidencia do-
cumental, disminuyen el tiempo de búsqueda de información y reducen la fricción operativa en
la gestión de pólizas y reclamaciones. Esta mejora de eficiencia puede traducirse en:

Mayor calidad de servicio al cliente, al proporcionar respuestas rápidas y fundamentadas.

Disminución de errores humanos en tareas repetitivas y, por tanto, reducción de costes
asociados a rectificaciones.

Fomento de la transparencia frente a organismos reguladores, gracias a la trazabilidad
completa de las fuentes utilizadas.

10.3 Reflexión personal y académica

La realización del trabajo ha reforzado competencias clave del grado, como el diseño de arqui-
tecturas distribuidas (CG6), la evaluación de software fiable (IS1) y la integración de requisitos
éticos y legales (TFG1). Los mayores retos fueron la orquestación de microservicios y el desarro-
llo del backend; superarlos permitió consolidar conocimientos prácticos sobre ingeniería de IA
aplicada y desarrollo de software.

10.4 Trabajo futuro

1. Ampliación del corpus. Automatizar la ingesta de nueva normativa y modelos contrac-
tuales con control de versiones.

2. Reranking especializado. Entrenar un Cross-Encoder específico para seguros en espa-
ñol.

3. Fine-tuning instructivo del LLM. Reducir ambigüedad y sesgos residuales mediante
datos conversacionales de dominio.

4. Explicabilidad y métricas ESG. Añadir mapas de saliencia y exponer indicadores de
consumo energético por transacción.

102



5. Despliegue multi-tenant. Migrar a Kubernetes con Horizontal Pod Autoscaling y ais-
lamiento de datos.

10.4.1 Fortalecimiento de la ciberseguridad

Aunque el sistema incorpora medidas básicas (token de autenticación, validación de entradas,
control de permisos y registro de actividad), se proponen estas líneas para reforzar la protección:

Modelo de amenazas formal. Elaborar un análisis STRIDE [18] y alinear riesgos con
OWASP Top 10 for LLM Applications [23].

Cifrado en reposo. Aplicar cifrado a base de datos e índices vectoriales.

Gestión de secretos. Introducir HashiCorp Vault [9] para rotación y revocación de cre-
denciales.

RBAC granular. Definir privilegios más finos sobre documentos y expedientes.

Pruebas de robustez y monitorización. Desplegar baterías de prueba de inyección y
alertas en tiempo real.

10.5 Visión a largo plazo

A medio plazo (2025-2027) se prevé evolucionar la plataforma hacia un modelo Software-as-
a-Service multi-compañía e integrar módulos de detección de fraude en tiempo real. La consoli-
dación de normas como ISO/IEC 42001 y el Reglamento Europeo de IA impulsará la demanda
de soluciones RAG con gobernanza demostrable; el presente trabajo sienta las bases técnicas y
metodológicas para responder a ese escenario.

En síntesis, el proyecto alcanza los objetivos planteados y establece una base sólida para la
adopción de arquitecturas RAG en contextos regulados. Demuestra que la IA puede integrarse
de forma responsable, auditada y generadora de valor real en el sector asegurador, abriendo la
puerta a una nueva generación de servicios cognitivos orientados a la eficiencia, la transparencia
y la sostenibilidad.

103



104



Appendices

105





Apéndice A

Manual de Instalación

Este capítulo describe el procedimiento necesario para instalar, configurar y ejecutar el sis-
tema de consulta inteligente de documentos desarrollado como Trabajo de Fin de Grado. La
instalación se realiza mediante contenedores Docker y no requiere instalación manual de depen-
dencias adicionales en el sistema operativo anfitrión.

A.1 Requisitos del sistema

A.1.1 Hardware mínimo recomendado

CPU: 4 núcleos (8 recomendados)

RAM: 8 GB mínimo (16 GB recomendado)

Almacenamiento: al menos 10 GB libres

GPU NVIDIA (opcional, recomendable para acelerar inferencia del modelo LLM mediante
CUDA)

A.1.2 Software necesario

Docker Engine versión 24 o superior

Docker Compose v2

Git (para clonar el repositorio)

(Opcional) Cuenta en Google Cloud para generar credenciales OAuth

A.2 Clonación del repositorio

Desde la terminal, clonar el repositorio que contiene el sistema completo:

107



git clone https://github.com/kuvx/entrega_tfg/blob/v3
cd tfg_rag

A.3 Estructura del sistema

La raíz del proyecto contiene los siguientes componentes relevantes:

backend/: código fuente del servidor FastAPI, junto con los microservicios

backend/vector_store/: carpeta donde se almacenan los índices FAISS generados para
cada expediente.

frontend/: código fuente del frontend y de todos los componentes que lo conforman.

alembic/: migraciones de base de datos mediante Alembic.

init_db.py: script de inicialización automática de la base de datos PostgreSQL.

docker-compose.yml: orquestador de contenedores que define todos los servicios del
sistema.

Dockerfile.frontend / Dockerfile.backend: instrucciones para construir los contene-
dores personalizados.

A.4 Variables de entorno

Las credenciales y configuraciones sensibles se definen en el archivo backend/.env. Un ejem-
plo típico de configuración es:

GOOGLE_CLIENT_ID=<tu_id_oauth>
GOOGLE_CLIENT_SECRET=<tu_clave_oauth>
SESSION_SECRET_KEY=<clave_secreta_aleatoria>
DATABASE_URL=postgresql://tfg_user:tfg_pass@db:5432/tfg_rag
API_URL=http://localhost:5000
OLLAMA_API=http://ollama:11434/api/generate

A.5 Configuración del puerto y OAuth

Por defecto, el sistema expone:

El backend en el puerto 5000

El frontend en el puerto 3000 (redirigido al 80 interno)

Ollama en el puerto 11434

108



Estos puertos se pueden modificar fácilmente editando la sección correspondiente del archivo
docker-compose.yml, por ejemplo:

frontend:
ports:

- ’’3000:80’’
backend:

ports:
- ’’5000:5000’’

Si se cambia el puerto del frontend, se deberá también actualizar en Google Cloud Console
los URI de redirección permitidos para OAuth. Esto se realiza desde https://console.
cloud.google.com/apis/credentials, editando el ID de cliente:

URI de redirección: http://localhost:3000

Origenes de JavaScript autorizados: http://localhost:3000

A.6 Obtención de claves OAuth

Para poder autenticar usuarios mediante Google en local, cada desarrollador deberá:

1. Crear un nuevo proyecto en Google Cloud Console

2. Activar la API “OAuth 2.0 Client ID”

3. Registrar los URI mencionados (puerto del frontend)

4. Generar las credenciales y copiar el client_id y client_secret en el archivo .env

A.7 Ejecución del sistema

Desde la raíz del proyecto, ejecutar el siguiente comando:

docker compose up --build

Esto levantará automáticamente los siguientes servicios:

PostgreSQL (servicio db): almacén de documentos, expedientes y usuarios.

Ollama (servicio ollama): servidor del modelo LLM con soporte GPU.

Backend (servicio backend): servidor FastAPI y lógica de negocio.

Frontend (servicio frontend): interfaz de usuario basada en React.

El backend ejecuta automáticamente el script init_db.py al iniciar, aplicando migraciones
y asegurando que las tablas están inicializadas.

109

https://console.cloud.google.com/apis/credentials
https://console.cloud.google.com/apis/credentials


A.8 Uso del sistema

Una vez desplegado, se puede acceder a la interfaz desde http://localhost:3000. El flujo
de uso es el siguiente:

El usuario inicia sesión mediante su cuenta de Google.

Puede crear uno o varios expedientes.

Puede subir documentos en distintos formatos (PDF, docx, txt, eml, html) a cada expe-
diente. Estos se almacenan en la base de datos y se fragmentan para generar embeddings
semánticos.

El índice FAISS asociado se almacena automáticamente en backend/vector_store/.

Al iniciar un chat en un expediente, el sistema recupera fragmentos relevantes mediante
búsqueda semántica y los utiliza como contexto para la respuesta del modelo LLM.

A.9 Regeneración de índices

Siempre que se sube o elimina un documento, el sistema elimina y regenera los índices FAISS
correspondientes, garantizando la coherencia entre los datos de entrada y el contexto consultado.

Registro y visualización de logs

Los eventos del backend se registran en archivos planos dentro de la carpeta backend/logs/,
en concreto en:

logs/tfg_rag.log: fichero principal de registro.

logs/tfg_rag.log.1, .2, .3: copias de seguridad de los últimos 3 archivos rotados.

La rotación se produce automáticamente cuando el tamaño de tfg_rag.log supera 5 MB.
Se mantienen hasta 3 copias antiguas para evitar pérdida de información histórica.

Niveles de log

INFO: sucesos normales (inicio de procesos, recuento de fragmentos, carga de modelos,
etc.).

WARNING: situaciones inesperadas pero no críticas (formatos no soportados, resultados
de baja calidad, etc.).

ERROR: fallos críticos (excepciones en lectura de archivos, llamadas a servicios, genera-
ción de embeddings, etc.).

DEBUG: trazas detalladas de fragmentos descartados y contenido de prompts.

110



Comandos básicos para inspección Dentro de la carpeta backend/

tail -f logs/tfg_rag.log Visualiza en tiempo real las nuevas entradas de log.

less logs/tfg_rag.log.1 Navega por una copia rotada de log.

grep ERROR logs/*.log* Filtra sólo las entradas con nivel ERROR.

Registro de eventos del frontend La ruta HTTP POST /logs permite que el frontend envíe
eventos personalizados al mismo logger. El payload JSON debe incluir:

event: descripción del suceso.

level: nivel de log (info, warning, error).

metadata: datos adicionales (por ejemplo, usuario, identificadores).

Estos registros se intercalan en el mismo archivo tfg_rag.log, con prefijo [FRONT] y la etiqueta
de nivel correspondiente.

A.10 Desinstalación

Para eliminar todos los contenedores, volúmenes y datos locales:

docker compose down -v --remove-orphans

Esto detiene y elimina completamente el sistema, incluyendo la base de datos y los índices
semánticos almacenados localmente.

A.11 Consideraciones finales

El sistema ha sido diseñado para ser modular, portable y seguro. Todos los componentes están
encapsulados en contenedores y pueden adaptarse a distintos entornos de despliegue modifican-
do únicamente variables en .env o el archivo docker-compose.yml. La autenticación OAuth
requiere configurar correctamente los puertos y redirecciones en la consola de Google. No se
deben publicar claves ni archivos .env en repositorios públicos.

111



112



Apéndice B

Manual de Usuario

Este capítulo describe, paso a paso, cómo acceder y utilizar la aplicación web desarrollada
para la consulta inteligente de documentación aseguradora. Su finalidad es que cualquier usuario
—sin necesidad de conocimientos técnicos— pueda cargar expedientes, introducir documentos
y realizar preguntas en lenguaje natural obteniendo respuestas precisas y trazables.

B.1 Acceso a la aplicación

1. Abra un navegador web moderno (Chrome, Firefox, Edge o Safari).

2. Escriba la dirección http://localhost:3000 (o la URL indicada por el administrador si
se ha desplegado en un servidor distinto).

3. Pulse en “Iniciar sesión con Google”. Nota: la primera vez, Google le mostrará una
pantalla de consentimiento donde debe permitir a la aplicación conocer su correo electró-
nico básico.

B.2 Estructura de la interfaz

Barra lateral izquierda: lista de expedientes. Desde aquí se crean, renombran o elimi-
nan.

lista de documentos del expediente seleccionado. Aquí se pueden subir documentos,
eliminarlos, descargarlos y buscarlos por nombre

Zona central derecha: área de chat. Contiene:

Historial de mensajes de la conversación.

Lista de chats anteriores

Cuadro de texto para escribir preguntas.

113



Botón Enviar.

Columna derecha: Preguntas sugeridas

Icono superior derecho: nombre del usuario y opción Cerrar sesión.

B.3 Gestión de expedientes

B.3.1 Crear un nuevo expediente

1. Haga clic en el icono “+ Nuevo expediente”.

2. Asigne un nombre descriptivo (por ejemplo, “Siniestro_Póliza_1234”) y confirme.

3. El nuevo expediente aparecerá seleccionado; todas las operaciones posteriores se aplicarán
a él.

B.3.2 Renombrar o eliminar

1. Pase el cursor sobre el nombre del expediente y pulse el icono lápiz para editar.

2. Para eliminarlo, pulse el icono papelera. Precaución: se borrarán los documentos, los
índices y las conversaciones asociadas.

B.4 Carga de documentos

1. Con un expediente activo, arrastre archivos .pdf, .docx, .txt, .eml, .html (actual-
mente los formatos soportados) a la zona “Arrastrar archivos aquí” o pulse “Seleccionar
archivo”.

2. Espere a que la barra de progreso llegue al 100 %.

3. El sistema procesa el documento: extrae el texto, lo divide en fragmentos y lo indexa.
Mientras tanto, la barra de “progreso” aparecerá avanzando; al terminar, desaparecerá de
la zona de subida y aparecerá como uno de los documentos del expediente.

Buenas prácticas:

Evite subir documentos con datos personales sensibles sin consentimiento.

Use nombres de archivo descriptivos; ayudarán a identificar la fuente en las respuestas y
a filtrarlas por nombre si tiene muchos documentos en un expediente.

114



B.5 Uso del chat

B.5.1 Iniciar una conversación

1. Pulse “+ Nuevo chat”. El historial se vaciará y el sistema asociará la nueva conversación
al expediente actual.

2. Escriba la pregunta en lenguaje natural. Ejemplos:

“¿Qué periodo de carencia aplica a la cobertura de hospitalización?”

“¿Cuál es la suma asegurada para responsabilidad civil en este contrato?”

3. Pulse el icono de Enviar o presione la tecla Enter.

B.5.2 Interpretación de la respuesta

La respuesta aparecerá en segundos. Justo debajo, se listan los fragmentos documentales
utilizados (fuentes).

Si la respuesta parece incompleta, formule una repregunta aprovechando el contexto con-
versacional (p. ej., “¿Y qué exclusiones existen?”).

B.5.3 Atajos y sugerencias

En la columna derecha, la aplicación propone preguntas frecuentes; pulse sobre cualquiera
para lanzarla automáticamente.

B.6 Gestión de conversaciones

El historial de chats aparece en la lista de chats que hay a la izquierda del recuadro de
conversación del chat activo. Seleccione uno para repasar preguntas y respuestas de chats
anteriores.

Para eliminar un chat, pulse el icono papelera junto a su nombre.

B.7 Cierre de sesión

En cualquier momento, haga clic en su avatar (icono superior derecho con su foto de perfil)
y elija Cerrar sesión. Esto invalida la sesión y volverá a la página inicial.

La información quedará asociada a su cuenta, puede cerrar sesión y al volver a iniciar sesión
con la misma cuenta aparecerán de nuevo todos sus expedientes, documentos, chats y mensajes

115



116



Apéndice C

Manual del Desarrollador

Este capítulo describe la arquitectura interna, la organización del repositorio y las instruccio-
nes prácticas para extender, depurar y desplegar el sistema. Se asume familiaridad con Python
3.10, React 18, Docker & docker-compose, SQLAlchemy y los fundamentos de Retrieval-
Augmented Generation (RAG).

C.1 Visión general

Backend (contenedor tfg-backend)

• API REST sobre FastAPI.

• Servicios de ingesta, embeddings, indexado FAISS, recuperación y generación.

• Base de datos PostgreSQL (→ ORM SQLAlchemy).

• LLM local alojado en un segundo contenedor (ollama).

Frontend (contenedor tfg-frontend) SPA React que consume la API y ofrece la interfaz
de chat/documentos.

Persistencia BBDD: metadatos y binarios Vector store: ficheros .index/.json por ex-
pediente en backend/vector_store.

C.2 Estructura del repositorio

backend/
|-- alembic/ -- migraciones SQL
|-- app/
| |-- api/ -- routers FastAPI (endpoints)
| |-- core/ -- config, db, modelos ORM
| |-- middleware/ -- middlewares

117



| ‘-- services/ -- lógica RAG (ingesta, FAISS, LLM, etc.)
|-- vector_store/ -- índices FAISS *.index + metadatos *.json
|-- requirements.txt
‘-- init_db.py -- aplica Alembic al arranque

frontend/
|-- src/components -- GUI (ExpedienteList, ChatList, ...)
‘-- src/utils -- logger.js, helpers

docker-compose.yml

C.3 Backend

C.3.1 Capa core

config.py Carga variables de entorno con python-dotenv.
Si DATABASE_URL falta lanza ValueError.
Tip: defina SQL_ECHO=0/1 para activar el trace SQL.

database.py engine = create_engine(DATABASE_URL, echo=bool(SQL_ECHO))
El generador get_db() se inyecta en cada router.

models.py Tablas User, Expediente, Document,
Chat, Message.
Cascadas “all, delete-orphan” para cumplir RGPD.

C.3.2 Capa middleware

load_user_middleware.py Carga el objeto user en request.state a partir del correo alma-
cenado en la SessionMiddleware.

logging_middleware.py Registra cada petición/respuesta con latencia y usuario en
tfg_rag.log.

118



C.3.3 Servicios RAG (app/services)

Módulo Rol Detalles clave

embedding_service.py Embeddings Carga intfloat/e5-large-v2. GPU-first con
torch.cuda.is_available(). Devuelve vecto-
res L2 normalizados; loggeo exhaustivo de cargas
y errores.

ingestion_service.py Ingesta Extractores PDF/DOCX/HTML/EML, limpieza
Unicode, normalización (fechas, importes), seg-
mentación <1 100 caracteres, fusión de trozos cor-
tos. Parámetros globales MIN_CHARS, MAX_CHARS.

index_service.py FAISS Regenera índices por expediente
(IndexFlatIP). Persiste .index y .json en
backend/vector_store. Permite eliminar y
recargar índices on-the-fly.

retrieval_service.py Búsqueda Vectoriza la consulta, consulta FAISS (TOP_K=5),
re-ranking opcional con Cross-Encoder
(ms-marco-MiniLM-L12-v2). Expansión se-
mántica en normalize_query().

generation_service.py Pipeline Combina recuperación, generación de prompt
(LangChain), memoria por chat y llamada a Olla-
ma (DEFAULT_MODEL = nous-hermes2).

Parámetros globales y flags modificables

Embeddings : MODEL_NAME y EMBEDDING_DIM controlan el modelo ST usado y la dimensión
(por defecto 1 024). Cambiar MODEL_NAME a otro modelo (e.g. sentence-transformers/all-mpnet-base-v2)
sólo requiere modificar la constante: la clase Embedder recompilará y almacenará la nueva
dimensión en self.dim.

Ingesta : MIN_CHARS/MAX_CHARS definen la longitud de cada chunk. Pueden tunearse para
adaptarse a la longitud máxima de entrada del LLM (context window). Los patrones
NOISE_PATTERNS, EXCLUDE_PATTERNS y SEGMENT_PATTERNS permiten descartar o partir
texto con expresiones regulares sin tocar la lógica de negocio.

Índices : VECTOR_DIR apunta al directorio donde FAISS serializa los índices; en producción
puede mapearse a un volumen persistente. El tipo de índice (IndexFlatIP) está centrali-
zado en index_service.py y puede sustituirse (ej. IndexIVFFlat) manteniendo la API.

Recuperación : TOP_K limita los candidatos iniciales; USE_RERANKING habilita/deshabilita
la fase Cross-Encoder; MAX_RETURNED recorta lo que se pasa al LLM. RERANKER_MODEL
acepta cualquier Cross-Encoder HF compatible.

119



Generación : DEFAULT_MODEL define el modelo alojado en Ollama; MAX_CONTEXT_CHUNKS
recorta el número de fragmentos que alimentan el prompt; RERANK_ENABLED permite activar
el re-ranking caso a caso vía parámetro de función.

Logging y depuración Todos los módulos comparten el logger declarado con nombre ”tfg_rag”,
por lo que basta con ajustar el handler principal (en app/main.py) para cambiar formato, ro-
tación o nivel global. Cada servicio anota:

eventos críticos (error/exception) con exc_info=True para volcado de tracebacks;
pasos intermedios (info) como conteos de fragmentos, tamaño de índices, tiempo de eje-
cución;
inspección de texto (debug) truncada a 100–200 caracteres para no inundar los logs.

Personalización de Ollama y puertos La URL del servicio generativo se inyecta desde
backend/.env mediante OLLAMA_API=http://ollama:11434/api/generate. Si se quiere expo-
ner Ollama en otro contenedor, bastará con cambiar la variable y—si procede—abrir un nuevo
puerto en docker-compose. De igual forma, el PORT del backend (5000) y del frontend (3000)
pueden modificarse sin tocar código:

services:
backend:

ports:
- ’’8080:5000’’ # HOST:CONTAINER

frontend:
ports:

- ’’4200:80’’

Tras cambiar el puerto del backend hay que actualizar API_URL en el .env del frontend; y, si se
usa autenticación Google OAuth, añadir las nuevas redirect URIs en la consola de Cloud IAM
para evitar el error “redirect_uri mismatch”.

Flujo interno de llamadas

1. ingestion_service fragmenta documentos y guarda en BBDD.

2. index_service lee los chunks, genera embeddings con embedding_service y crea el
índice FAISS.

3. retrieval_service normaliza la consulta, genera su embedding, consulta FAISS, (opcio-
nal) re-rankea.

4. generation_service construye el prompt con LangChain, llama a Ollama, actualiza la
memoria y persiste el mensaje.

120



Buenas prácticas de extensión

Nuevos formatos : heredar de BaseExtractor, registrar en ExtractorFactory.extractors.

Pre-procesado : añadir regex a NOISE_PATTERNS o lógica nueva antes de segment_by_length.

Indexación híbrida : sustituir IndexFlatIP por IndexIVFPQ si se requieren millones de
vectores; mantener la interfaz add/search.

LLM alternativo : sólo hay que instalar el modelo en Ollama y apuntar DEFAULT_MODEL.

A/B testing : el parámetro model de generate_answer permite pasar el ID del modelo
en caliente para comparar resultados sin reiniciar el backend.

C.3.4 Routers FastAPI (app/api)

Autenticación POST /auth/google – valida id-token, crea/actualiza usuario y devuelve
expedientes. Variables: GOOGLE_CLIENT_ID, GOOGLE_CLIENT_SECRET.

Documentos

• POST /documents/upload guarda file_data y reconstruye FAISS

• DELETE /documents/\{id\} regenera índice sin el documento

Expedientes CRUD completo; DELETE borra chats, documentos e índice en disco.

Chats y mensajes Rutas para crear, renombrar, listar y eliminar chats; añade mensajes
y mantiene coherencia con la memoria LangChain.

Query POST /query/search devuelve fragmentos + puntuaciones; POST /query/generate
ejecuta el ciclo RAG completo.

Logs POST /api/logs centraliza eventos del frontend.

C.4 Frontend (React 18)

Componente Función Notas de interés

ExpedienteList CRUD expedientes Actualiza hijos vía props; considera usar Context.
FileUpload Subida de PDFs Usa FormData; loader mientras espera.
FileList Listado/borra documentos Refetch cada cambio de expedienteId.
ChatList Historial de chats Maneja selectedChat.
QueryLLM Área de conversación Llama a /query/generate; streaming pendiente de mejora.
ChatHeader Título + crear chat Botón “+ Chat”.
SuggestedQuestions Preguntas rápidas Array local, fácil de parametrizar vía API.
UserProfileButton Avatar + logout Limpia localStorage.
Login Flujo OAuth Google Guarda token y redirige a dashboard.

121



C.4.1 Utilidades

utils/logger.js Pequeña envoltura sobre console.log; envía también eventos al backend vía
POST /api/logs. Útil para correlacionar fallos.

C.5 Configuración y variables de entorno

Clave Descripción

GOOGLE_CLIENT_ID OAuth web client ID. Se registra en Google Cloud Console.
GOOGLE_CLIENT_SECRET Secreta, no versionar.
DATABASE_URL Cadena SQLAlchemy.
SESSION_SECRET_KEY Clave 32 bytes hex para SessionMiddleware.
OLLAMA_API URL interna del LLM.

Cambio de puertos Si se expone la aplicación en un puerto distinto basta con:

1. Modificar el ports del servicio correspondiente en docker-compose.yml:

frontend:
ports:

- ’’8080:80’’ # host:container
backend:

ports:
- ’’6000:5000’’

2. Actualizar API_URL en frontend/.env.

3. Añadir la nueva URL (http://localhost:8080) en Authorized JavaScript origins y la
ruta (http://localhost:8080) en Authorized redirect URIs del cliente OAuth.

C.6 Contenerización y despliegue

Backend se construye con Dockerfile.backend. Copia requirements.txt, instala de-
pendencias GPU (pytorch-cuda), expone 5000.

Frontend usa Dockerfile.frontend. Construye vite y sirve artefactos vía nginx:alpine.

GPU sharing Tanto backend como ollama llevan runtime: nvidia. En entornos sin
GPU se elimina ese atributo y todo funciona (más lento) en CPU.

Persistencia Volume postgres_data (BBDD) y ollama (modelos LLM), + carpeta mon-
tada ./backend/vector_store para FAISS.

122

http://localhost:8080
http://localhost:8080


C.7 Flujo completo RAG

1. Ingesta: usuario sube PDF → ingestion_service trocea, genera embeddings y index_service
actualiza FAISS.

2. Consulta: pregunta → embeddings → FAISS → (opcional) Cross-Encoder.

3. Generación: LangChain concatena context + history, llama al LLM vía Ollama, escribe
respuesta y guarda en Message.

4. Frontend: muestra texto + fuentes; preguntas sugeridas re-utilizan el mismo endpoint.

C.8 Buenas prácticas y extensiones

Tests: use pytest + httpx.AsyncClient para routers.

Monitorización: Prometheus + Loki (log-scrape tfg_rag.log).

Embeddings personalizados: basta con cambiar MODEL_NAME en embedding_service.py
y regenerar índices.

Escalado LLM: montar varias réplicas de ollama detrás de un balanceador TCP; confi-
gurar OLLAMA_API con la IP del proxy.

Fin del Manual del Desarrollador

123



124



Capítulo 11

Anexos

11.1 Glosario y lista de siglas

11.1.1 Siglas

Sigla Expansión (ES / EN) Descripción breve

IA / AI Inteligencia Artificial / Ar-
tificial Intelligence

Disciplina que diseña sistemas capaces de
ejecutar tareas que requieren “inteligencia”
humana.

IR Information Retrieval Rama que localiza documentos o fragmentos
relevantes dentro de un corpus.

RAG Retrieval-Augmented
Generation

Paradigma que combina IR con generación
de lenguaje natural para producir respuestas
fundamentadas.

LLM Large Language Model Modelo de lenguaje de gran tamaño entrena-
do sobre enormes volúmenes de texto.

ANN Approximate Nearest
Neighbor

Técnica para hallar rápidamente los vectores
más cercanos en espacios de alta dimensión.

GPU Graphics Processing Unit Procesador de cómputo paralelo masivo; ace-
lera IA.

CUDA Compute Unified Device
Architecture

Plataforma/API de NVIDIA para ejecutar
código en GPU.

VM Virtual Machine Entorno que emula hardware para aislar sis-
temas.

API Application Programming
Interface

Conjunto de reglas que permite a dos siste-
mas comunicarse.

125



Sigla Expansión (ES / EN) Descripción breve

REST Representational State
Transfer

Estilo arquitectónico para diseñar APIs so-
bre HTTP.

Docker — Plataforma que empaqueta aplicaciones y
dependencias en contenedores.

FAISS Facebook AI Similarity
Search

Librería para búsqueda de similitud e índices
vectoriales.

SBERT Sentence-BERT Variante de BERT que genera embeddings se-
mánticos de frases.

FastAPI — Framework web asíncrono en Python, orien-
tado a APIs.

SQL Structured Query Langua-
ge

Lenguaje estándar en BBDD relacionales.

NoSQL “Not only SQL” Familia de BBDD no relacionales.
JSON JavaScript Object Notation Formato ligero de intercambio de datos.
JWT JSON Web Token Estándar para transmitir información firma-

da como JSON.
OAuth Open Authorization Protocolo para acceso delegado seguro sin

compartir credenciales.
RBAC Role-Based Access Control Modelo de control de acceso basado en roles.
AES Advanced Encryption Stan-

dard
Estándar de cifrado simétrico de clave secre-
ta.

TDE Transparent Data Encry-
ption

Cifrado en reposo integrado en motores de
bases de datos.

SAST Static Application Security
Testing

Análisis estático de código para detectar vul-
nerabilidades.

OWASP Open Web Application Se-
curity Project

Fundación que publica estándares y guías de
seguridad web.

GHA GitHub Actions Plataforma de integración continua y auto-
matización de flujos de trabajo.

Términos técnicos

Término Definición breve

RAG (Retrieval-
Augmented Genera-
tion)

Técnica que combina un LLM con un buscador externo para inyec-
tar documentos relevantes en la respuesta.

126



Término Definición breve

PLN / NLP Disciplina que estudia la interacción entre lenguaje humano y má-
quinas mediante técnicas lingüísticas y de aprendizaje automático.

LLM (Large Lan-
guage Model)

Red neuronal de lenguaje con miles de millones de parámetros en-
trenada en grandes corpus.

Embedding Representación vectorial densa que codifica el significado semántico
de un texto en un espacio numérico.

Vector Store Base especializada que indexa embeddings y permite búsquedas por
similitud.

BM25 Algoritmo estadístico de recuperación basado en frecuencia de tér-
mino e inversa de frecuencia de documento.

Context Window Máximo número de tokens que un LLM procesa simultáneamente.
Token Unidad mínima de texto tras la tokenización (palabra, sub-palabra

o símbolo).
Prompt Injection Ataque que introduce instrucciones maliciosas para alterar la salida

de un LLM.
Latency Tiempo desde la solicitud hasta la respuesta (ms).
Throughput Peticiones o tokens procesados por segundo, indicador de capacidad.
GPU Unidad de procesamiento gráfico que acelera inferencia de redes

neuronales.
CI/CD Prácticas DevOps de integración y entrega/despliegue continuos.
IaC (Infrastructure-
as-Code)

Gestión declarativa de infraestructura mediante código versionado
(p. ej. Terraform).

Observabilidad Conjunto de métricas, trazas y logs para entender el estado interno
de un sistema.

WCAG 2.1 Recomendación W3C con criterios de accesibilidad web.
ISO/IEC 42001 Norma de sistemas de gestión para aplicaciones de IA (gobernanza

y riesgo).
STRIDE Modelo de amenazas: Spoofing, Tampering, Repudiation, Informa-

tion disclosure, Denial of service, Elevation of privilege.
k-NN (k-Nearest
Neighbors)

Algoritmo que devuelve los k vectores más cercanos en un espacio
de embeddings.

MLOps Extensión de DevOps que gestiona modelos, datos y experimentos
a lo largo del ciclo de vida.

RBAC (Role-Based
Access Control)

Sistema que asigna permisos a objetos según los roles otorgados al
usuario.

AES-256 Cifrado simétrico con clave de 256 bits, adoptado como estándar
por la NIST.

Transparent Data
Encryption (TDE)

Cifrado automático de datos en reposo implementado por el motor
de la base de datos.

127



Término Definición breve

SAST (Static Appli-
cation Security Tes-
ting)

Análisis de código fuente sin ejecución para descubrir vulnerabili-
dades.

OWASP Top 10 for
LLM

Lista de riesgos de seguridad específicos de aplicaciones basadas en
LLM publicada por OWASP.

HashiCorp Vault Herramienta para almacenar, rotar y auditar secretos y claves de
forma centralizada.

Prometheus Sistema de monitorización y base de series temporales para métri-
cas.

Grafana Plataforma de visualización y alerta que consume datos de Pro-
metheus u otras fuentes.

Loki Agregador de logs diseñado para integrarse con Grafana y Pro-
metheus.

Falco Motor que detecta comportamientos anómalos en contenedores me-
diante reglas en tiempo real.

Sysdig Secure Suite para análisis forense y cumplimiento de seguridad en entornos
contenedorizados.

Penetration Testing Pruebas que simulan ataques reales con el fin de evaluar la robustez
del sistema.

128



Bibliografía

[1] M. van Bekkum, F. Zuiderveen Borgesius y T. Heskes. AI, insurance, discrimination and
unfair differentiation: An overview and research agenda. 2024. url: https://arxiv.org/
abs/2401.11892 (visitado 13-05-2025).

[2] Daniel Cer et al. «Universal Sentence Encoder». En: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 2018, págs. 169-174. doi: 10.18653/
v1/D18-2024. url: https://aclanthology.org/D18-2024 (visitado 20-05-2025).

[3] Data Center Market. Así está cambiando la IA al sector asegurador. 2025. url: https:
//www.datacentermarket.es/inteligencia-artificial/asi-esta-cambiando-la-
ia-al-sector-asegurador (visitado 12-05-2025).

[4] Jacob Devlin et al. «BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding». En: Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. 2019,
págs. 4171-4186. doi: 10.18653/v1/N19-1423. url: https://aclanthology.org/N19-
1423 (visitado 20-05-2025).

[5] EIOPA. Informe sobre la digitalización del sector asegurador europeo. 2024. url: https:
/ / www . consorsegurosdigital . com / almacen / pdf / numero - 20 - es . pdf (visitado
10-05-2025).

[6] El País. Fraude al seguro: o cómo usar un vídeo de Instagram para detectar un caso. 2025.
url: https://elpais.com/economia/2025-03-19/fraude-al-seguro-o-como-usar-
un- video- de- instagram- de- un- coche- tuneado- para- detectar- un- caso.html
(visitado 15-05-2025).

[7] European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Coun-
cil of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial In-
telligence Act). In force since 1 August 2024. 2024. url: https://eur-lex.europa.eu/
eli/reg/2024/1689/oj (visitado 16-05-2025).

[8] Guía sobre generación de datos sintéticos. Agencia Española de Protección de Datos. 2025.
url: https://www.aepd.es/prensa-y-comunicacion/notas-de-prensa/guia-sobre-
generacion-de-datos-sinteticos (visitado 18-05-2025).

[9] HashiCorp. Vault Documentation. 2025. url: https : / / developer . hashicorp . com /
vault/docs (visitado 25-05-2025).

129

https://arxiv.org/abs/2401.11892
https://arxiv.org/abs/2401.11892
https://doi.org/10.18653/v1/D18-2024
https://doi.org/10.18653/v1/D18-2024
https://aclanthology.org/D18-2024
https://www.datacentermarket.es/inteligencia-artificial/asi-esta-cambiando-la-ia-al-sector-asegurador
https://www.datacentermarket.es/inteligencia-artificial/asi-esta-cambiando-la-ia-al-sector-asegurador
https://www.datacentermarket.es/inteligencia-artificial/asi-esta-cambiando-la-ia-al-sector-asegurador
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.consorsegurosdigital.com/almacen/pdf/numero-20-es.pdf
https://www.consorsegurosdigital.com/almacen/pdf/numero-20-es.pdf
https://elpais.com/economia/2025-03-19/fraude-al-seguro-o-como-usar-un-video-de-instagram-de-un-coche-tuneado-para-detectar-un-caso.html
https://elpais.com/economia/2025-03-19/fraude-al-seguro-o-como-usar-un-video-de-instagram-de-un-coche-tuneado-para-detectar-un-caso.html
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://www.aepd.es/prensa-y-comunicacion/notas-de-prensa/guia-sobre-generacion-de-datos-sinteticos
https://www.aepd.es/prensa-y-comunicacion/notas-de-prensa/guia-sobre-generacion-de-datos-sinteticos
https://developer.hashicorp.com/vault/docs
https://developer.hashicorp.com/vault/docs


[10] IBM. Qué es la IA en los seguros. 2024. url: https://www.ibm.com/es-es/think/
topics/ai-in-insurance (visitado 12-05-2025).

[11] International Organization for Standardization. ISO/IEC 42001:2023 — Artificial Inte-
lligence Management System (AIMS). International standard. 2023. url: https://www.
iso.org/standard/81230.html (visitado 17-05-2025).

[12] Gautier Izacard y Edouard Grave. «Distilling Knowledge from Reader to Retriever for
Question Answering». En: arXiv (2021). arXiv: 2101.00294 [cs.CL]. url: https://
arxiv.org/abs/2101.00294 (visitado 20-05-2025).

[13] Jeff Johnson, Matthijs Douze y Hervé Jégou. «Billion-Scale Similarity Search with GPUs».
En: IEEE Transactions on Big Data 7.3 (2019), págs. 535-547. doi: 10.1109/TBDATA.
2019.2921575.

[14] Vladimir Karpukhin et al. «Dense Passage Retrieval for Open-Domain Question Answe-
ring». En: arXiv (2020). arXiv: 2004.04906 [cs.CL]. url: https://arxiv.org/abs/
2004.04906 (visitado 20-05-2025).

[15] KPMG. Avance de la IA en la industria de seguros. 2024. url: https://kpmg.com/mx/es/
home/tendencias/2024/12/avance-de-la-ia-en-la-industria-de-seguros.html
(visitado 14-05-2025).

[16] Patrick Lewis et al. «Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks».
En: Advances in Neural Information Processing Systems 33 (2020), págs. 9459-9474. arXiv:
2005.11401 [cs.CL]. url: https://arxiv.org/abs/2005.11401 (visitado 20-05-2025).

[17] Xiang Lin et al. «Few-Shot Learning with Retrieval Augmented Generation». En: Findings
of the Association for Computational Linguistics: EMNLP 2021. 2021, págs. 1951-1961.
arXiv: 2112 . 04426 [cs.CL]. url: https : / / arxiv . org / abs / 2112 . 04426 (visitado
20-05-2025).

[18] Microsoft Security Development Lifecycle. Threat Modeling. 2023. url: https://learn.
microsoft.com/security/devsecops/threat-modeling (visitado 25-05-2025).

[19] Tomas Mikolov et al. «Efficient Estimation of Word Representations in Vector Space».
En: arXiv (2013). arXiv: 1301.3781 [cs.CL]. url: https://arxiv.org/abs/1301.3781
(visitado 20-05-2025).

[20] Minsait e ICEA. IX Termómetro de Inteligencia Artificial y Data en el sector asegurador
español. 2024. url: https://www.minsait.com/es/actualidad/media-room/ocho-
de-cada-diez-entidades-aseguradoras-ya-trabajan-con-inteligencia (visitado
10-05-2025).

[21] msg life Iberia. Aprobada la AI Act: ¿Cómo afecta al sector de los seguros? 2024. url:
https://msg-insurance-suite.com/es/blog/rethinking-insurance/aprobada-la-
ai-act-como-afecta-la-ley-de-regulacion-de-la-ia-al-sector-de-los-seguros
(visitado 15-05-2025).

130

https://www.ibm.com/es-es/think/topics/ai-in-insurance
https://www.ibm.com/es-es/think/topics/ai-in-insurance
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
https://arxiv.org/abs/2101.00294
https://arxiv.org/abs/2101.00294
https://arxiv.org/abs/2101.00294
https://doi.org/10.1109/TBDATA.2019.2921575
https://doi.org/10.1109/TBDATA.2019.2921575
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://kpmg.com/mx/es/home/tendencias/2024/12/avance-de-la-ia-en-la-industria-de-seguros.html
https://kpmg.com/mx/es/home/tendencias/2024/12/avance-de-la-ia-en-la-industria-de-seguros.html
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://learn.microsoft.com/security/devsecops/threat-modeling
https://learn.microsoft.com/security/devsecops/threat-modeling
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://www.minsait.com/es/actualidad/media-room/ocho-de-cada-diez-entidades-aseguradoras-ya-trabajan-con-inteligencia
https://www.minsait.com/es/actualidad/media-room/ocho-de-cada-diez-entidades-aseguradoras-ya-trabajan-con-inteligencia
https://msg-insurance-suite.com/es/blog/rethinking-insurance/aprobada-la-ai-act-como-afecta-la-ley-de-regulacion-de-la-ia-al-sector-de-los-seguros
https://msg-insurance-suite.com/es/blog/rethinking-insurance/aprobada-la-ai-act-como-afecta-la-ley-de-regulacion-de-la-ia-al-sector-de-los-seguros


[22] OECD Recommendation of the Council on Artificial Intelligence. Organisation for Econo-
mic Co-operation y Development. 2019. url: https://legalinstruments.oecd.org/
en/instruments/oecd-legal-0449 (visitado 17-05-2025).

[23] OWASP Foundation. OWASP Top 10 for Large Language Model Applications. 2024. url:
https://owasp.org/www-project-top-10-for-large-language-model-applications/
(visitado 25-05-2025).

[24] Colin Raffel et al. «Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer». En: Journal of Machine Learning Research 21.140 (2020), págs. 1-67. url:
http://jmlr.org/papers/v21/20-074.html (visitado 20-05-2025).

[25] Recommendation on the Ethics of Artificial Intelligence. UNESCO. 2021. url: https:
//www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
(visitado 17-05-2025).

[26] Nils Reimers e Iryna Gurevych. «Sentence-BERT: Sentence Embeddings Using Siamese
BERT-Networks». En: Proceedings of the 2019 Conference on Empirical Methods in Na-
tural Language Processing. 2019, págs. 3982-3992. doi: 10.18653/v1/D19- 1410. url:
https://aclanthology.org/D19-1410 (visitado 20-05-2025).

[27] Nandan Thakur et al. «BEIR: A Heterogeneous Benchmark for Zero-Shot Evaluation
of Information Retrieval Models». En: arXiv (2021). arXiv: 2104.08663 [cs.IR]. url:
https://arxiv.org/abs/2104.08663 (visitado 20-05-2025).

[28] Ashish Vaswani et al. «Attention Is All You Need». En: Advances in Neural Information
Processing Systems 30 (2017), págs. 5998-6008. arXiv: 1706.03762 [cs.CL]. url: https:
//arxiv.org/abs/1706.03762 (visitado 20-05-2025).

[29] Wayne Xin Zhao et al. «A Survey of Hallucination in Natural Language Generation». En:
arXiv (2023). arXiv: 2302.03494 [cs.CL]. url: https://arxiv.org/abs/2302.03494
(visitado 20-05-2025).

131

https://legalinstruments.oecd.org/en/instruments/oecd-legal-0449
https://legalinstruments.oecd.org/en/instruments/oecd-legal-0449
https://owasp.org/www-project-top-10-for-large-language-model-applications/
http://jmlr.org/papers/v21/20-074.html
https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2302.03494


132


	Índice de cuadros
	Índice de figuras
	Introducción
	Introducción
	Motivación

	Objetivos y Alcance
	Objetivos
	Objetivo principal
	Objetivos secundarios

	Tareas a realizar

	Metodología
	Estrategia metodológica
	Fases y planificación temporal
	Reflexión sobre la metodología aplicada

	Marco Conceptual
	Introducción al paradigma RAG
	Origen de RAG
	Evolución histórica de las arquitecturas de recuperación y generación
	De la recuperación clásica a la búsqueda semántica
	La evolución de los modelos generativos
	Convergencia: hacia una generación informada por recuperación

	Comparativa
	Modelos generativos puros
	Finetuning sobre modelos base
	Recuperación de información clásica (IR)
	Síntesis comparativa

	Variantes técnicas del enfoque RAG
	Nivel de agregación: RAG-end-to-end vs. RAG-token
	Arquitectura generativa: encoder-decoder vs. autoregresivo
	Criterios de selección conceptual

	Arquitectura y componentes
	Base de datos vectorial o motor de búsqueda semántica
	Representaciones numéricas (Embeddings)
	Modelo de lenguaje generativo (LLM)
	Controlador del flujo de datos
	Flujo general de operación

	Justificación del enfoque RAG
	Recuperación de información clásica (IR)
	Modelos generativos sin recuperación externa
	Finetuning de modelos preentrenados
	Comparativa conceptual de enfoques
	Adecuación al contexto del proyecto

	Conclusiones tecnológicas
	Estado actual
	Introducción
	Grado de adopción de la IA en el sector asegurador
	Aplicaciones actuales de la IA en el sector asegurador
	Retos y consideraciones éticas
	Conclusión

	Legal y Ética

	Soluciones Existentes
	Introducción
	Frameworks de integración RAG
	LangChain
	Haystack
	LlamaIndex

	Bases de datos vectoriales
	FAISS (Facebook AI Similarity Search)
	Milvus
	Weaviate

	Lenguaje generativo
	GPT (Generative Pre-trained Transformer)
	LLaMA (Large Language Model Meta AI)
	Flan-T5
	Modelos ajustados específicamente para RAG

	Modelos de embeddings
	Conclusiones sobre soluciones

	Análisis
	Requisitos técnicos y funcionales
	Motivación del diseño arquitectónico
	Análisis del flujo de consulta
	Estructura documental
	Criterios de elección tecnológica

	Diseño de la Solución
	Introducción
	Principios de diseño
	Arquitectura general
	Diseño funcional del backend
	Modelo de datos relacional

	Diseño funcional del frontend
	Sistema conversacional
	Decisiones técnicas clave
	Resumen del diseño

	Implementación
	Introducción
	Entorno de desarrollo
	Backend-tecnologias
	Backend-microservicios
	Servicio de Ingestión de Documentos
	Servicio de Gestión de Índices FAISS
	Servicio de Generación de Embeddings
	Servicio de Búsqueda y Reranking

	Frontend
	Contenerización y orquestación
	Modelos de lenguaje utilizados
	Infraestructura y recursos
	Mecanismos de seguridad implementados
	Resumen del entorno de trabajo

	Pruebas
	Cobertura de pruebas
	Pruebas funcionales sobre el sistema completo
	Diseño de las pruebas
	Preguntas seleccionadas
	Análisis detallado de P1
	Análisis detallado de la consulta P2
	Análisis detallado de la consulta P3
	Cambio de prompt
	Pregunta sobre dato concreto
	Pregunta sobre precio
	Pregunta sobre campo descripción

	Pruebas de usabilidad
	Diseño experimental
	Resultados por participante


	Conclusiones
	Aportaciones
	Contribuciones técnicas
	Contribuciones metodológicas

	Impacto socio-económico
	Reflexión personal y académica
	Trabajo futuro
	Fortalecimiento de la ciberseguridad

	Visión a largo plazo

	Appendices
	Apéndice Manual de Instalación
	Requisitos del sistema
	Hardware mínimo recomendado
	Software necesario

	Clonación del repositorio
	Estructura del sistema
	Variables de entorno
	Configuración del puerto y OAuth
	Obtención de claves OAuth
	Ejecución del sistema
	Uso del sistema
	Regeneración de índices
	Desinstalación
	Consideraciones finales

	Apéndice Manual de Usuario
	Acceso a la aplicación
	Estructura de la interfaz
	Gestión de expedientes
	Crear un nuevo expediente
	Renombrar o eliminar

	Carga de documentos
	Uso del chat
	Iniciar una conversación
	Interpretación de la respuesta
	Atajos y sugerencias

	Gestión de conversaciones
	Cierre de sesión

	Apéndice Manual del Desarrollador
	Visión general
	Estructura del repositorio
	Backend
	Capa core
	Capa middleware
	Servicios RAG (app/services)
	Routers FastAPI (app/api)

	Frontend (React 18)
	Utilidades

	Configuración y variables de entorno
	Contenerización y despliegue
	Flujo completo RAG
	Buenas prácticas y extensiones

	Anexos
	Glosario y lista de siglas
	Siglas
	Términos técnicos


	Bibliografía

