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RESUMEN

Resumen

En los últimos años, los agentes conversacionales apoyados por inteligencia artificial (chat-
bots), como ChatGPT o Microsoft Copilot, han adquirido una gran relevancia, especialmente
en el ámbito educativo, por su capacidad para interactuar de manera natural, resolver dudas
de los alumnos y apoyar la generación de contenido por parte de los profesores. Este Trabajo
de Fin de Grado presenta una aplicación web que integra un chatbot dirigido a la asignatura
de Fundamentos de Programación, orientado tanto a estudiantes como a profesores.

Fundamentos de Programación es una asignatura del primer curso del Grado en Ingeniería
Informática de la Universidad de Valladolid. Debido a que para muchos alumnos es la primera
vez que se enfrentan a la programación, es una asignatura con un alto grado de fracaso
académico. Además, muchos alumnos confunden que el programa funcione, con que esté bien
estructurado desde el punto de vista de los requisitos que los profesores piden en la asignatura.

De esta manera, el sistema desarrollado permite plantear consultas, acceder a materiales,
gestionar archivos y valorar respuestas de forma autónoma. El chatbot utiliza un modelo
de lenguaje local combinado con un enfoque de Recuperación Aumentada por Generación
(RAG). Esta técnica permite la contextualización de las respuestas en base a documentación
proporcionada previamente por el profesor, pudiendo así mejorar las respuestas del chatbot
hacia los objetivos de la asignatura.

La aplicación está integrada con Moodle, que se encarga de la autenticación y adapta la
interfaz según el rol del usuario (estudiante o profesor), permitiendo así que el chatbot sea
ofrecido como un recurso más de la asignatura junto con el resto de contenidos. Además, el
sistema puede recopilar archivos directamente desde Moodle, enriqueciendo así el contexto
que utiliza el chatbot.

Para garantizar el correcto funcionamiento del sistema, se han realizado pruebas para
ajustar los parámetros que influyen en la recuperación de la información, identificando los
valores óptimos para la calidad de las respuestas. También se han llevado a cabo evaluaciones
con usuarios finales, tanto profesores como alumnos, a través de cuestionarios estandarizados
y preguntas abiertas. Los resultados muestran una valoración positiva tanto en la facilidad
de uso como en la utilidad de la herramienta para el aprendizaje y la enseñanza.

Este proyecto demuestra cómo la inteligencia artificial y las tecnologías de procesamiento
de lenguaje natural pueden aplicarse en entornos educativos, adaptándose a las necesidades
reales de profesores y estudiantes.

V



RESUMEN

VI



ABSTRACT

Abstract

In recent years, conversational agents powered by artificial intelligence (chatbots) such as
ChatGPT or Microsoft Copilot have gained significant importance, especially in the field of
education, due to their ability to interact naturally, answer students’ questions, and support
content creation for teachers. This Bachelor’s Thesis presents a web application that integra-
tes a chatbot specifically designed for the subject "Fundamentals of Programming", aimed
at both students and instructors.

Fundamentals of Programming is a first-year course in the Computer Engineering degree
of the University of Valladolid. For many students, it is their first contact with programming,
which results in a high failure rate. Moreover, students typically confuse having a program
that works with having one that is well structured according to the requirements set by the
instructors.

The developed system allows users to submit queries, access course materials, manage
files, and evaluate answers autonomously. The chatbot uses a local language model combined
with a Retrieval-Augmented Generation (RAG) approach, which enables responses to be
contextualized based on documentation previously provided by instructors, thus improving
alignment with the objectives of the course.

The application is integrated with Moodle, which handles user authentication and adapts
the interface depending on the user’s role (student or instructor), making the chatbot avai-
lable as an additional resource alongside the rest of the course content. Furthermore, the
system can automatically retrieve files from Moodle, enriching the context available to the
chatbot.

To ensure optimal system performance, tests were conducted to fine-tune the parameters
influencing information retrieval, identifying the most suitable values for answer quality. Ad-
ditionally, evaluations were carried out with end users—both instructors and students—using
standardized questionnaires and open-ended questions. The results show positive feedback
regarding both the usability and usefulness of the tool for teaching and learning.

This project demonstrates how artificial intelligence and natural language processing
technologies can be applied in educational environments, adapting to the real needs of both
instructors and students.
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CAPÍTULO 1. INTRODUCCIÓN

Capítulo 1

Introducción

1.1. Contexto

En la actualidad, la inteligencia artificial (IA) se ha convertido en una herramienta muy
presente en el día a día de muchas personas. En particular, los grandes modelos de lenguaje,
o Large Language Models (LLM), han liderado este enorme crecimiento de los últimos años.
En estos modelos se basan los agentes conversacionales o chatbots, herramientas diseñadas
para simular conversaciones con usuarios a través de texto o voz. Su objetivo principal es
responder preguntas, proporcionar asistencia y automatizar tareas, reduciendo la necesidad
de intervención humana en ciertos procesos.

Esta tecnología ha supuesto una revolución en todos los ámbitos, especialmente desde el
lanzamiento de uno de los chatbots de propósito general más populares: ChatGPT de OpenAI
[20]. En la misma línea, existen infinidad de herramientas basadas en LLM, como pueden ser
Copilot de Microsoft [17], Gemini de Google [9], DeepSeek-V3 de DeepSeek [6] o Llama de
Meta AI [16].

Uno de los campos más influenciados por estos avances es el de la educación, donde tanto
a alumnos como a profesores se les presenta un nuevo paradigma al que deben adaptarse. Los
LLMs han demostrado una gran capacidad para generar contenido relevante y de utilidad
en diversas disciplinas. Sin embargo, su uso en entornos educativos específicos requiere una
contextualización que tenga en cuenta el temario, los materiales y la metodología de cada
asignatura, para no perjudicar a los alumnos de cara a los objetivos de la misma.

Para abordar el problema de la contextualización de los chatbots en entornos educati-
vos, han surgido diversas soluciones, cada una con sus propias ventajas e inconvenientes. El
desempeño de cada una dependerá de la naturaleza del problema y de las necesidades del
entorno en el que se implemente. En este contexto, las técnicas más utilizadas son Retrieval-
Augmented Generation (RAG) y Fine-tuning. Mediante estas técnicas se proporciona
información adicional al modelo, de forma que las respuestas que recibe el usuario son más
específicas y contextualizadas en relación a la información dada.
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1.2. MOTIVACIÓN

Más adelante (Sección 2.3), veremos una comparativa de ambos métodos, su aplicación
en diferentes situaciones y se justificará la elección de uno de ellos para el desarrollo de este
proyecto.

1.2. Motivación

Este Trabajo de Fin de Grado se centra en el desarrollo y optimización de una IA basa-
da en un modelo LLM para la asignatura de Fundamentos de Programación del Grado en
Ingeniería Informática de la Universidad de Valladolid.

La asignatura hace especial hincapié en las buenas prácticas de programación utilizando
el lenguaje de programación Java y el paradigma de programación estructurada. Sin em-
bargo, cuando se pregunta a estas aplicaciones (ChatGPT, Copilot, DeepSeek, etc.) sobre
determinados ejercicios de programación, sus respuestas no siempre están contextualizadas
al paradigma utilizado o no aplican dichas prácticas de programación. Por esta razón, es
necesario dotar a estas aplicaciones de un contexto específico dependiente de los objetivos y
contenidos de la asignatura para la que van a ser utilizadas.

De esta forma, se busca realizar o adaptar un sistema de inteligencia artificial que sea
capaz de responder a las preguntas de los alumnos, indicarles los errores que tienen en sus
programas (si los tienen) y plantearles alternativas correctas. No se busca que el sistema dé
una solución a un problema (para esto, pueden seguir utilizando herramientas como ChatGPT
o Copilot), sino que la solución esté contextualizada.

La mayor motivación de este trabajo reside en lograr un producto que pueda ser emplea-
do en próximos años en esta asignatura, adaptándola a los nuevos avances y facilitando el
aprendizaje por parte del alumno, así como la docencia por parte del profesor.

1.3. Objetivos

Como se ha mencionado anteriormente, este trabajo tiene como objetivo general desarro-
llar un agente conversacional basado en LLM para asistir a los estudiantes en la programación
con Java estructurado, proporcionando respuestas contextualizadas y alineadas con los con-
tenidos de la asignatura.

Adicionalmente, el desarrollo del proyecto abarca objetivos más específicos que llevan al
objetivo principal:

Obtener y estructurar materiales de la asignatura de Fundamentos de Programación,
como apuntes o problemas resueltos, para utilizarlos como fuente de conocimiento.

Implementar una arquitectura RAG, que permita al modelo recuperar información
relevante antes de generar la respuesta.
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Estudiar los parámetros de configuración RAG y sus mejores valores para la obtención
de respuestas contextualizadas a la documentación de la asignatura.

Evaluar el rendimiento del modelo en términos de precisión, eficiencia y utilidad para
la asignatura.

Explorar futuras líneas de investigación y la viabilidad para implementarlo en otras
asignaturas del grado.

1.4. Estructura de la memoria

La memoria se organiza en los siguientes capítulos, cada uno dedicado a una fase funda-
mental del proyecto:

Capítulo 2. Estado del arte: Presenta un análisis del conocimiento existente sobre chat-
bots, inteligencia artificial generativa, grandes modelos de lenguaje (LLM) y técnicas
como RAG, además de un repaso de su uso en el ámbito educativo.

Capítulo 3. Planificación: Describe la metodología de trabajo utilizada, la gestión de ries-
gos, la planificación temporal y la estimación de recursos para el desarrollo del proyecto.

Capítulo 4. Análisis: Incluye el análisis de requisitos (funcionales, de información y no
funcionales), los actores del sistema, los casos de uso y el modelo de dominio. También
se incluye la realización en análisis de los casos de uso mediante diagramas de actividad.

Capítulo 5. Diseño: Aquí se presentan las decisiones de diseño y la arquitectura general del
sistema (cliente-servidor), la persistencia de datos mediante bases de datos vectoriales
y relacionales, y el diagrama de despliegue de la aplicación.

Capítulo 6. Implementación: Explica el proceso de desarrollo, detallando las fases y as-
pectos clave de la construcción de la aplicación, como las tecnologías más importantes
o decisiones de código que se han tomado.

Capítulo 7. Pruebas: Recoge las pruebas realizadas para evaluar el sistema, incluyendo
la evaluación de parámetros, la comparación entre el sistema con y sin RAG y las
pruebas con usuarios finales a través de cuestionarios de usabilidad, carga de trabajo
y experiencia de usuario.

Capítulo 8. Conclusiones: Resume los principales resultados obtenidos y plantea posibles
líneas de trabajo futuras.
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Capítulo 2

Estado del arte

La época actual se caracteriza por el gran crecimiento y adopción de la inteligencia ar-
tificial generativa y los grandes modelos de lenguaje (LLMs) en la sociedad actual. Estas
tecnologías han ganado popularidad entre todos los grupos de edades, que las utilizan con
frecuencia en su día a día, a menudo incluso de manera inconsciente. Por ejemplo, al hacer
una consulta en Google actualmente, el primer resultado que se muestra es una explicación
generada por IA sobre el tema consultado.

Debido a esto, los LLMs han acaparado gran parte de la atención en la literatura en los
últimos años, principalmente por la necesidad de conocer a fondo esta tecnología y seguir
avanzando para lograr productos y soluciones de mayor calidad. A continuación, se van a
profundizar en los fundamentos teóricos en los que se basa esta tecnología y a repasar los
últimos avances que se han propuesto en el ámbito de la IA generativa y los LLMs, así como
nuevas técnicas que se emplean en la mejora y personalización de los modelos, centrándonos
principalmente en el ámbito educativo.

2.1. IA generativa en la educación

La inteligencia artificial es una rama de la informática dedicada a desarrollar sistemas y
programas con habilidades propias de los seres humanos, como aprender o planificar acciones,
imitando sus capacidades [27]. Dentro de esta área, se encuentra la inteligencia artificial
generativa (GenAI), que se caracteriza por su capacidad para producir contenido original
como música, videos, texto, audio o imágenes. Este tipo de modelos aprende a partir de los
patrones y estructuras presentes en los datos con los que ha sido entrenado, y a partir de
ellos genera nueva información que tiene características similares.

Esta tecnología ha supuesto una enorme revolución en el campo de la educación, donde se
pretende enfocar el presente trabajo, lo que ha provocado la aparición de numerosos estudios
que profundizan en el impacto que ha tenido tanto en las aulas como en la investigación. En
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J. Á. Ariza et al. [15], los autores llevaron a cabo una revisión de 146 estudios sobre el uso
de GenAI en educación en ingeniería e informática. El estudio muestra que ChatGPT es la
herramienta más utilizada y que la mayoría de propuestas de uso se centran en el aprendizaje
y apoyo en la programación. Además, se observa diferencia entre el uso que dan los alumnos
y los profesores, donde se observa un mayor uso en los primeros que en los segundos. Este
estudio concluye que, si bien GenAI puede ser realmente útil en el proceso de enseñanza y
aprendizaje, su uso debe estar controlado, asegurando que tanto alumnos como profesores
tengan una buena formación para hacer un uso adecuado de estas herramientas.

Por otro lado, para llegar a una conclusión acerca de si el uso de GenAI es adecuado
en la educación, debemos basarnos en los fundamentos teóricos de la educación. Autores
como Yi Wu [29] mencionan el uso de esta tecnología dentro de algunas teorías educativas,
como el constructivismo, la teoría sociocultural, la teoría de la carga cognitiva o la teoría del
aprendizaje social, entre otras. A partir de esto, se afirma que herramientas como ChatGPT
tienen el potencial de mejorar la educación al ofrecer retroalimentación inmediata, persona-
lización del aprendizaje y apoyo continuo, haciendo que el estudiante sea más autónomo en
su aprendizaje.

A pesar de que los beneficios sean numerosos, también hay que señalar los desafíos que
estas herramientas implican. Entre ellos, se destaca la pérdida de habilidades como el pen-
samiento crítico, la reducción de la interacción social y la sobrecarga de información. Estos
aspectos podrían afectar al aprendizaje si no se manejan adecuadamente [29]. Por ello, en
lugar de prohibir el uso de estas herramientas, lo ideal sería integrarlas en la educación con
criterio, de forma que se pueda aprovechar su potencial sin sacrificar las bases de la educación.

Un estudio de Study.com [26] encuestó a más de 100 profesores y 1.000 estudiantes para
conocer el impacto de ChatGPT en la educación. El 82 % de los profesores universitarios
conocen ChatGPT, y el 72% está preocupado por su posible uso para hacer trampas, aunque
un 66% apoya que los alumnos tengan acceso a la herramienta. Entre los estudiantes, más
del 90 % han usado ChatGPT para hacer deberes, exámenes en casa o redactar trabajos, pero
el 72 % de los universitarios cree que debería prohibirse en su campus. El estudio muestra
que ChatGPT es muy popular y puede ser útil, pero profesores y estudiantes coinciden en
que hace falta controlar su uso para evitar problemas como el plagio.

2.2. LLM

Los Large Language Models (LLM), o grandes modelos de lenguaje, son herramientas de
inteligencia artificial diseñadas para generar texto con apariencia humana. Están basados en
redes neuronales profundas, específicamente en arquitecturas tipo transformer, que permiten
procesar grandes volúmenes de datos en paralelo y de forma muy eficiente. A diferencia de
los modelos de lenguaje tradicionales que utilizan técnicas estadísticas simples para predecir
la siguiente palabra en una secuencia, los LLM utilizan capas de atención que capturan
relaciones complejas entre palabras y frases a lo largo de grandes contextos de texto [11].

Estos modelos suelen ser entrenados con enormes cantidades de texto provenientes de
internet, libros, artículos y otras fuentes, con el objetivo de aprender patrones de lenguaje,
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estructuras gramaticales y asociaciones semánticas. Gracias a este entrenamiento, son capaces
de realizar tareas como redactar textos, responder preguntas, traducir idiomas, generar código
o incluso resumir contenido técnico. La clave de su rendimiento está en su capacidad para
generalizar el conocimiento aprendido y generar respuestas relevantes a partir de una entrada
de texto, aunque también tienen limitaciones, como errores contextuales, sesgos debidos al
entrenamiento o información errónea por falta de conocimiento.

2.3. Generación Aumentada por Recuperación (RAG)

A pesar de los avances que han surgido en los últimos años, los LLM presentan todavía
algunas limitaciones, especialmente cuando se busca obtener información precisa, actualiza-
da y adaptada a contextos específicos. Entre estos retos destacan la aparición de respuestas
incorrectas o inventadas (alucinaciones), la generación de información genérica o desactua-
lizada y la dificultad para verificar la procedencia y la fiabilidad de las respuestas ofrecidas
por el modelo [3, 12, 2, 25].

Para solucionar esto, en los últimos años se ha popularizado la Generación Aumenta-
da por Recuperación (Retrieval-Augmented Generation, RAG), una técnica que mejora
las capacidades de los LLM al permitirles acceder a una base de conocimiento externa, nor-
malmente de un contexto determinado (por ejemplo, una asignatura). En lugar de confiar
únicamente en la información aprendida durante el entrenamiento del LLM, RAG añade una
fase previa de recuperación de información relevante, de modo que el modelo puede generar
respuestas que se apoyan en información relevante y ajustada al contexto de la consulta [3].

En la Figura 2.1 se puede observar el aumento de la popularidad del término ‘Retrieval-
Augmented Generation’ en los últimos años. Un valor de 100 indica la popularidad máxima
de un término, mientras que 50 y 0 indican que un término es la mitad de popular en relación
con el valor máximo o que no había suficientes datos del término, respectivamente.

Figura 2.1: Popularidad del término ‘Retrieval-Augmented Generation’ en el tiempo (Fuente:
Google Trends [28])
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Figura 2.2: Funcionamiento del flujo RAG (Fuente: AWS [3])

El proceso de RAG suele dividirse en dos etapas: la recuperación y la generación. En la
primera etapa, el sistema utiliza la pregunta del usuario para buscar y recuperar fragmentos
de información relevantes desde una base de datos vectorial (como ChromaDB, FAISS, etc.).
Esta recuperación utiliza la búsqueda semántica, usando modelos de embeddings (represen-
taciones numéricas de textos en un espacio vectorial, donde textos con significados similares
quedan cerca entre sí) para capturar el significado del texto de forma más precisa que con la
coincidencia de palabras clave. En la segunda etapa, los fragmentos recuperados se combinan
con la pregunta del usuario, creando lo que se conoce como prompt. Después, se introduce
en el LLM, que genera una respuesta contextualizada y basada en la información que ha
recuperado [2, 3]. En la Figura 2.2 se muestra el funcionamiento completo del flujo RAG,
desde la consulta del usuario hasta la respuesta generada.

Esta arquitectura aporta varios beneficios significativos:

Actualización dinámica del conocimiento: Permite utilizar información reciente,
ya que la base de datos puede actualizarse fácilmente, sin necesidad de reentrenar el
modelo.

Reducción de las alucinaciones: Al basar las respuestas en fragmentos de la base
de conocimiento, se minimiza la tendencia del modelo a generar información incorrecta,
inventada o engañosa.

Confianza: La posibilidad de citar fuentes o referencias en las respuestas generadas
aumenta la confianza del usuario en el sistema y le permite verificar la procedencia de
la información.
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Personalización: Los desarrolladores pueden definir qué fuentes se consultan, res-
tringir el acceso a ciertos documentos y adaptar el comportamiento del sistema a las
necesidades del cliente, dentro de ciertos límites.

Escalabilidad y eficiencia: RAG resulta mucho más eficiente y rentable que el fine-
tuning, ya que no requiere modificar los parámetros del modelo base (reentrenar el
modelo). Esto hace que pueda implementarse en situaciones de pocos recursos compu-
tacionales. [3, 12].

En la literatura se encuentran diversas investigaciones que comparan el enfoque RAG con
otros métodos de adaptación de los LLM, como el fine-tuning o la ingeniería avanzada de
prompts (prompt engineering). El fine-tuning implica reentrenar el modelo con datos adicio-
nales y etiquetados, lo cual es costoso y puede conllevar riesgos como la sobre-especialización,
mientras que RAG tiene mayor flexibilidad sin afectar a la generalización del modelo. Estu-
dios recientes indican que RAG es adecuado en contextos donde la información es específica
de un contexto o requiere una actualización frecuente, como ocurre en la educación [12, 25].

En el contexto educativo, los sistemas RAG se están utilizando cada vez más para per-
sonalizar el aprendizaje y facilitar el acceso a los recursos de las asignaturas. Por ejemplo,
Alario-Hoyos et al. [2] implementaron un chatbot académico basado en RAG para apoyar
a estudiantes de una asignatura de programación, utilizando como base de conocimiento
materiales seleccionados por el profesorado, ejercicios resueltos y preguntas frecuentes. Se
realizaron más de mil interacciones reales, demostrando que la mayoría de los estudiantes
valoraron positivamente la precisión, claridad y utilidad de las respuestas. También se des-
taca la importancia de poder actualizar fácilmente el corpus de documentos, de forma que el
chatbot evolucione a medida que se avanza en la asignatura.

Algunas de las grandes tecnológicas han apostado por el enfoque RAG en sus servicios. Por
ejemplo, Amazon Web Services destaca la eficiencia de RAG para crear chatbots empresariales
conectados a fuentes de información, como redes sociales, sitios de noticias o bases de datos
científicas, evitando los costes y riesgos del reentrenamiento [3].

Sin embargo, es importante señalar algunas limitaciones de RAG identificadas en la litera-
tura. Aunque mejora significativamente la precisión de las respuestas, su efectividad depende
en gran medida de la calidad de los documentos empleados, así como de la capacidad del
sistema para encontrar los fragmentos más relevantes para cada pregunta. [25]. Estas limi-
taciones hacen que su implementación no sea trivial y requiera de un estudio previo de la
documentación aportada para la contextualización, intentando ajustar de la mejor manera
posible tanto la selección como la estructura de los materiales.

Además, es fundamental ajustar correctamente los parámetros del sistema de recupera-
ción, como el tamaño de los fragmentos (chunks), el umbral de similitud o el número de
documentos recuperados en cada consulta. Este ajuste suele requerir la realización de nume-
rosas pruebas y evaluaciones con preguntas reales, analizando el impacto de cada parámetro
en la precisión y relevancia de las respuestas. Con estas pruebas y ajustes se puede contribuir
a que el sistema RAG ofrezca resultados adecuados para los objetivos de este trabajo.
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Capítulo 3

Planificación

3.1. Metodología de trabajo

Durante la planificación inicial del proyecto, se valoraron diversas metodologías de trabajo
que podrían emplearse. Algunas de las opciones fueron:

SCRUM, una metodología ágil que se basa en sprints, con entregas periódicas fun-
cionales y reuniones diarias [24]. Sin embargo, esta metodología suele componerse por
grupos multidisciplinares compuestos por 3+ personas, requiriendo reuniones periódi-
cas con el cliente.

SDRM (System Development Research Method), una metodología centrada en
proyectos de desarrollo de sistemas de información. Sin embargo, esta metodología está
orientada principalmente a la investigación [14].

ASAP (Agile Student Academic Projects) [18], una metodología desarrollada en
la UVa que adapta prácticas ágiles habituales en el sector profesional para alcanzar los
objetivos de aprendizaje propios del TFG. Sin embargo, el trabajo por sprints no encaja
con mi temporalidad y disponibilidad en este proyecto, debido a otros compromisos de
trabajo.

Tras debatirlo con el tutor, decidimos que ninguna de ellas se ajustaba a nuestro plan
de trabajo. El desarrollo del proyecto se ha planteado en base a reuniones periódicas entre
el estudiante y el tutor, en las cuales se va a evaluar el estado del trabajo, se resolverán
dudas y se darán indicaciones sobre cómo continuar. No se han planteado iteraciones, sino
que el trabajo será lineal, intentando completar cada fase antes de continuar a la siguiente.
Además, se mantendrán reuniones puntuales con los profesores de la asignatura para la
recolección de requisitos, como por ejemplo recopilar las preguntas que suelen hacer los
estudiantes a ChatGPT o reunir los documentos necesarios para contextualizar el chatbot.
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Figura 3.1: Diagrama metodología en cascada

La idea es mantenerse en contacto directo con el usuario final, aunque no de forma sistemática
o periódica.

Por esta razón, se optó por utilizar una metodología en cascada [23], que se caracteriza por
ser secuencial y estructurada. El proyecto se divide en etapas: documentación, planificación,
desarrollo, pruebas y redacción de la memoria, y cada etapa debe completarse antes de pasar
a la siguiente. En la Figura 3.1 se muestra el flujo de trabajo que sigue esta metodología.

En nuestro caso, se ha variado ligeramente este enfoque, ya que el proceso de redacción
de la memoria se realizará en paralelo al resto de procesos. A pesar de ello, esta metodología
se ajusta bastante bien a nuestra forma de trabajo.

En la siguiente sección, se detalla la duración y las tareas correspondientes a cada una de
estas fases de la metodología en cascada.

3.2. Plan de trabajo

El desarrollo del Trabajo de Fin de Grado se ha organizado para ajustarse a las 300
horas recomendadas por la universidad. El proyecto comenzó el 27 de febrero de 2025 y está
previsto que finalice el 9 de junio del mismo año.
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Figura 3.2: Diagrama de Gantt de las tareas del proyecto

Sin embargo, durante el desarrollo pueden aparecer nuevos requisitos o ideas para mejorar
la aplicación que, por cuestión de tiempo, no sea posible implementar dentro del plazo del
TFG. Todas esas mejoras o características adicionales que no lleguen a estar listas para la
entrega se propondrán como posibles líneas de trabajo futuro. Aún así, el cómputo total de
horas ha excedido las 300 planificadas inicialmente, ya que a medida que ha evolucionado el
trabajo, han ido surgiendo ideas que se han considerado interesantes para implementar.

La Figura 3.2 muestra el diagrama de Gantt que incluye las principales tareas que se
llevan a cabo en este proyecto, desglosando la fase de desarrollo en las distintas tareas que
la componen.

El desarrollo del proyecto se estructuró en las siguientes etapas:

1. Documentación (40h): Revisión bibliográfica y estudio de las tecnologías que se van
a utilizar, así como recopilación de materiales relevantes para la asignatura.

2. Planificación (20h): Organización de las tareas, identificación de riesgos y elaboración
del presupuesto y la hoja de ruta del proyecto.

3. Desarrollo (120h): En esta etapa se incluye el análisis, el diseño y la implementación
del sistema. Se definen los requisitos, se diseña la arquitectura y la base de datos, y se
desarrolla tanto el backend como la interfaz gráfica.

4. Pruebas y validación (40h): Realización de pruebas funcionales y de usabilidad,
corrección de errores y ajustes necesarios para garantizar el correcto funcionamiento de
la aplicación.

5. Redacción de la memoria (80h): Documentación técnica y elaboración de la me-
moria del TFG. Esta fase se ha realizado en paralelo al resto de etapas, reflejando los
avances y decisiones tomadas durante el desarrollo del proyecto.

3.3. Riesgos

La identificación de riesgos es esencial en la planificación de cualquier proyecto de desarro-
llo, especialmente cuando se trabaja con varias tecnologías distintas, como en este caso. Los
riesgos que pueden suceder son innumerables, por lo que anticiparse a ellos permite actuar
de forma más eficaz y reduce la probabilidad de sufrirlos.
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Además, analizar los riesgos facilita la toma de decisiones. Por ejemplo, si se detecta que
el rendimiento de un modelo no es bueno, se puede solucionar más rápidamente si ya hay
modelos alternativos propuestos. Esto hace que se aproveche el tiempo de forma más efectiva
ante posibles errores que puedan surgir.

Los riesgos identificados para este proyecto se muestran en las Tablas 3.1 a 3.8:

Riesgo 1
Riesgo Dificultades en la integración entre tecnologías
Descripción Posibles problemas con la integración entre las tecnologías

que se emplean en el desarrollo.
Probabilidad Baja
Impacto Alto
Plan de mitigación Realizar pruebas iniciales para comprobar que no hay pro-

blemas de integración.
Plan de contingencia Explorar soluciones alternativas para la interfaz si la inte-

gración presenta problemas, como Streamlit.

Tabla 3.1: Riesgo 1: Dificultades en la integración entre tecnologías

Riesgo 2
Riesgo Problemas con rendimiento del LLM utilizado
Descripción El modelo puede no responder adecuadamente en términos

de velocidad o precisión.
Probabilidad Media
Impacto Alto
Plan de mitigación Seguimiento del modelo durante el desarrollo y realización

de pruebas para observar posibles caídas de rendimiento.
Plan de contingencia Evaluar modelos alternativos que ofrezcan mejor rendi-

miento.

Tabla 3.2: Riesgo 2: Problemas con rendimiento del LLM utilizado

Riesgo 3
Riesgo Errores en la recuperación de contexto con RAG
Descripción La técnica de recuperación de contexto podría fallar en la

precisión o relevancia de la información recuperada.
Probabilidad Media
Impacto Alto
Plan de mitigación Realizar evaluaciones periódicas y ajustar umbral de recu-

peración.
Plan de contingencia Cambiar el modelo de embedding o la fuente de datos em-

pleada.

Tabla 3.3: Riesgo 3: Errores en la recuperación de contexto con RAG

14



CAPÍTULO 3. PLANIFICACIÓN

Riesgo 4
Riesgo Problemas de conexión o configuración con las bases de

datos
Descripción Posibles dificultades al conectar y configurar las bases de

datos correctamente.
Probabilidad Baja
Impacto Medio
Plan de mitigación Comprobar la conexión frecuentemente.
Plan de contingencia Considerar bases de datos alternativas o utilizar versiones

en la nube que simplifiquen el proceso.

Tabla 3.4: Riesgo 4: Problemas de conexión o configuración con las bases de datos

Riesgo 5
Riesgo Pérdida de datos del usuario o chats
Descripción Riesgo de pérdida accidental de información.
Probabilidad Baja
Impacto Medio. No se almacena información sensible sobre el usua-

rio.
Plan de mitigación Implementar backups periódicos.
Plan de contingencia Establecer un sistema de recuperación de datos de forma

inmediata a partir de copias de seguridad ya creadas.

Tabla 3.5: Riesgo 5: Pérdida de datos del usuario o chats

Riesgo 6
Nombre del riesgo Problemas en la integración del chatbot en Moodle
Descripción Posibles incompatibilidades o problemas de configuración

al integrar el chatbot en Moodle.
Probabilidad Baja
Impacto Alto
Plan de mitigación Realizar pruebas durante todo el desarrollo y el despliegue

para comprobar su correcto funcionamiento.
Plan de contingencia Utilizar métodos alternativos de acceso al chatbot sin hacer

uso de Moodle.

Tabla 3.6: Riesgo 6: Problemas en la integración del chatbot en Moodle

Riesgo 7
Nombre del riesgo Problemas de autenticación o permisos al usar la API de

Moodle
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Descripción Posibles dificultades para gestionar los permisos de acce-
so mediante la API de Moodle debido a actualizaciones o
cambios en su funcionamiento.

Probabilidad Media
Impacto Bajo
Plan de mitigación Hacer comprobaciones periódicas del acceso a los documen-

tos mediante la API.
Plan de contingencia Implementar formas alternativas para acceder a los docu-

mentos, como cargas manuales desde la interfaz del profe-
sor.

Tabla 3.7: Riesgo 7: Problemas de autenticación o permisos al usar la API de Moodle

Riesgo 8
Nombre del riesgo Conocimientos insuficientes sobre las tecnologías utilizadas
Descripción Falta de formación que puede provocar retrasos y fallos en

el funcionamiento del sistema.
Probabilidad Media
Impacto Medio
Plan de mitigación Realizar una buena investigación y preparación inicial sobre

las herramientas y tecnologías necesarias.
Plan de contingencia Ante posibles dudas o bloqueos, buscar información o cursos

sobre la herramienta o acudir al tutor.

Tabla 3.8: Riesgo 8: Conocimientos insuficientes sobre las tecnologías utilizadas

Riesgo 9
Nombre del riesgo Identificación de gran número de requisitos funcionales de

la aplicación
Descripción Durante la fase de análisis pueden surgir numerosos requi-

sitos funcionales, lo que podría dificultar el desarrollo com-
pleto de la aplicación en el tiempo disponible.

Probabilidad Alta
Impacto Medio
Plan de mitigación Realizar una evaluación de los requisitos funcionales desde

el inicio, junto con el tutor, identificando aquellos que sean
imprescindibles para el funcionamiento básico.

Plan de contingencia Si no es posible implementar todos los requisitos, centrarse
únicamente en los prioritarios y dejar el resto como posibles
mejoras futuras.

Tabla 3.9: Riesgo 9: Identificación de gran número de requisitos funcionales de la aplicación
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Riesgo 10
Nombre del riesgo Fallo de los equipos
Descripción El fallo o pérdida de acceso a los equipos de desarrollo po-

dría provocar la pérdida de avances importantes en el pro-
yecto.

Probabilidad Baja
Impacto Alto
Plan de mitigación Realizar copias de seguridad periódicas del proyecto, utili-

zando herramientas de control de versiones como Git.
Plan de contingencia En caso de fallo de los equipos o pérdida de datos, restaurar

el proyecto desde las copias de seguridad o el repositorio
remoto.

Tabla 3.10: Riesgo 10: Fallo de los equipos

Riesgo 11
Nombre del riesgo Falta de documentación de las tecnologías utilizadas o pro-

blemas en su desarrollo
Descripción Puede darse el caso de que alguna de las tecnologías emplea-

das (librerías, frameworks, etc.) no disponga de suficiente
documentación o genere problemas inesperados durante el
desarrollo, lo que puede dificultar la integración o la reso-
lución de problemas.

Probabilidad Media
Impacto Medio
Plan de mitigación Analizar y elegir tecnologías bien documentadas, si es po-

sible. Consultar foros, documentación oficial y ejemplos de
código antes de decidir su uso.

Plan de contingencia Si la falta de documentación o los problemas técnicos im-
piden avanzar, valorar el cambio a otras tecnologías mejor
documentadas.

Tabla 3.11: Riesgo 11: Falta de documentación de las tecnologías utilizadas o problemas en
su desarrollo

3.4. Presupuesto

Material

Los materiales empleados en este proyecto no han sido adquiridos específicamente para
el mismo. Por ello, para calcular el coste estimado del material utilizado, es necesario tener
en cuenta la amortización del mismo.
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El equipo utilizado es un ordenador portátil HP Pavilion con procesador Ryzen 7, 8GB
de RAM y tarjeta gráfica GTX 1650Ti. Su precio original es de 999AC y ha sido utilizado
durante 5 años de carrera. La vida útil de un portátil es de unos 5 años y la duración de este
proyecto es de en torno a 4 meses, por lo tanto, el gasto de amortización incurrido a lo largo
del desarrollo del proyecto es de 66.67€.

Coste equipo =
999

5
× 4

12
= 66,67AC

Producto Observaciones Coste
(EUR)

Ordenador portátil
Ryzen 7 8GB RAM

Uso principal para desarrollo y pruebas.
Amortización por uso.

66,67AC

Ollama Framework para ejecutar modelos LLM de for-
ma local, sin coste

0,00

Gradio Librería para crear interfaces web rápidas, de
código abierto

0,00

Flask Framework para gestión de la API, gratuito 0,00
LangChain Utilizado para facilitar la integración con

LLMs y RAG
0,00

PostgreSQL Sistema gestor de base de datos utilizado para
almacenar mensajes, chats y documentos

0,00

Moodle Plataforma educativa donde se integrará el
chatbot mediante LTI. Proporcionado por el
grupo de investigación GSIC-EMIC.

0,00

Microsoft Project Herramienta utilizada para la planificación
temporal del proyecto, licencia gratuita

0,00

Visual Studio Code Editor de código principal utilizado para el de-
sarrollo

0,00

Astah Professional Software para la realización del análisis y di-
seño, licencia proporcionada por la UVa

0,00

TOTAL 66,67AC

Tabla 3.12: Estimación de material necesario y coste asociado

De cara a un futuro despliegue real de la aplicación, será necesario tener en cuenta otros
costes, como el alojamiento en un servidor y la adquisición de hardware específico, por ejem-
plo, una tarjeta gráfica como la NVIDIA T10001. La elección del servidor y del hardware
dependerá del número de usuarios previstos y de los requisitos de rendimiento, por lo que
estos aspectos deberán evaluarse más adelante, dependiendo de la demanda.

1https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-
desktop/proviz-print-nvidia-T1000-datasheet-us-nvidia-1670054-r4-web.pdf
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Personal

En cuanto al personal, únicamente será necesario un desarrollador fullstack junior (como
es mi caso) para la realización del proyecto. El total de horas de trabajo será 300, lo corres-
pondiente a un proyecto de 12 ECTS. El sueldo medio de un desarrollador fullstack junior
en España es de 12,98AC/hora brutos [8], lo que hace un coste total de 3.894AC.

Rol Observaciones Coste
(EUR)

Desarrollador
Fullstack Junior

Encargado de todo el desarrollo backend
(Python) y frontend (Gradio). Integración de
LLM y RAG. Gestión del proyecto.

3.894,00AC

TOTAL 3.894,00AC

Tabla 3.13: Estimación de personal necesario y coste asociado

3.4.1. Espacio de trabajo

El proyecto se desarrollará principalmente en dos lugares: desde casa y desde la biblioteca.
El coste estimado de luz y conexión a internet en casa se estima en unos 30AC mensuales,
considerando únicamente los costes asociados al proyecto. Por tanto, como el proyecto tiene
una duración de unos 3 meses y medio, el coste total estimado del espacio de trabajo asciende
a 105AC.

3.4.2. Presupuesto final

El presupuesto final, incluyendo materiales, personal y espacio de trabajo, asciende a
4.065,67AC (Tabla 3.14).

Concepto Observaciones Coste
(EUR)

Material Ordenador portátil y herramientas utilizadas
para el desarrollo y pruebas.

66,67AC

Personal Trabajo de desarrollo, análisis, diseño, imple-
mentación y pruebas del sistema.

3.894,00AC

Espacio de trabajo Acceso a instalaciones, electricidad y recursos
físicos necesarios durante el desarrollo.

105,00AC

TOTAL 4.065,67AC

Tabla 3.14: Resumen de costes del proyecto
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3.5. Tecnologías y software utilizado

Para la gestión y desarrollo de este proyecto se ha hecho uso de diversas tecnologías y
herramientas de software, cada una con un propósito concreto. A continuación, se resumen
las principales herramientas y su función dentro del proyecto:

Python: Lenguaje principal para implementar toda la lógica del chatbot y del servi-
dor LTI, por su versatilidad, sencillez y amplia comunidad. Permite integrar múltiples
librerías de forma sencilla.

Ollama: Gestor local de modelos de lenguaje (LLM). Permite la descarga y despliegue
local de modelos como Llama y muestra respuestas en streaming, manteniendo los datos
en local y sin depender de la nube [30].

LangChain: Framework de código abierto para crear aplicaciones basadas en LLMs,
facilitando la personalización de prompts, el flujo RAG y la integración con bases vec-
toriales y módulos de embeddings [4].

HuggingFace: Plataforma y ecosistema de librerías especializadas en procesamiento de
lenguaje natural. En este proyecto se utiliza el modelo de embeddings all-MiniLM-L6-v2,
proporcionado por HuggingFace, para convertir textos en vectores semánticos que luego
se almacenan y consultan en ChromaDB.

LTI (Learning Tools Interoperability): Estándar que permite la integración del
chatbot en plataformas educativas como Moodle, gestionando la autenticación de usua-
rios y la incrustación de la interfaz mediante iframe [19].

PostgreSQL: Sistema de gestión de base de datos relacional empleado para almacenar
documentos, mensajes, usuarios, metadatos y, mediante extensiones como pgvector,
almacenar embeddings.

Flask: Framework web de Python utilizado para implementar la API LTI que conecta
el sistema con Moodle y redirige a la interfaz según el rol del usuario.

Gradio: Framework que facilita la creación de interfaces de chatbot y paneles de gestión
de documentos, con componentes interactivos y subida de archivos.

Astah Professional: Herramienta de modelado UML empleada para el diseño de
diagramas de casos de uso, de actividades, de despliegue y de dominio que documentan
la arquitectura y el comportamiento del sistema.

Visual Studio Code: Editor de código fuente utilizado para el desarrollo y la organi-
zación del proyecto, por su compatibilidad con Python y su integración con múltiples
herramientas.

LaTeX: Herramienta empleada para la redacción de la memoria, por su potencia en
la gestión de referencias, bibliografía y organización de secciones y elementos gráficos.

Microsoft Project: Herramienta utilizada para la planificación temporal del proyecto
y la elaboración del diagrama de Gantt con las principales tareas a realizar.
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Capítulo 4

Análisis

Este capítulo se centra en la fase de análisis correspondiente a cualquier proyecto de desa-
rrollo. En él se hará un análisis del funcionamiento deseado de nuestra aplicación, incluyendo
historias de usuario que justifican su utilidad, requisitos del cliente, casos de uso, modelo de
dominio y diagramas de secuencia.

4.1. Análisis de requisitos

En este apartado se definen los requisitos que debe cumplir nuestro sistema, los cuales se
determinan a partir de las necesidades del cliente y el criterio del desarrollador. Como clientes
actuarán los profesores de la asignatura de Fundamentos de Programación, que definirán los
requisitos necesarios, así como los alumnos de dicha asignatura, de los cuales se ha recogido
información sobre el uso habitual que hacen de herramientas similares a este chatbot en el
curso 2024/2025 (ChatGPT, Copilot, etc.).

A continuación, se proporciona una descripción detallada de las funcionalidades, restric-
ciones, datos y normas que debe cumplir la aplicación para satisfacer las necesidades de los
usuarios y alcanzar los objetivos del proyecto.

4.1.1. Requisitos funcionales

Los requisitos funcionales definen lo que el sistema debe hacer en cuanto a comporta-
miento. Especifican las funciones, acciones o servicios que el sistema ofrece a sus usuarios y
cómo debe responder ante interacciones.

En este caso, los requisitos funcionales se han derivado de una primera interacción con los
profesores de la asignatura, de reuniones con el tutor y de decisiones propias del estudiante,
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con el objetivo de que la aplicación sea lo más efectiva posible y favorezca su adopción tanto
por parte de profesores como de alumnos.

Código Requisito Funcional
RF01 El sistema debe permitir a los usuarios enviar preguntas al chatbot.
RF02 El sistema debe recuperar información relevante de los documen-

tos y generar respuestas usando RAG.
RF03 El sistema debe permitir valorar las respuestas como útiles o no

útiles.
RF04 El sistema debe permitir al profesor subir archivos PDF manual-

mente.
RF05 El sistema debe dividir automáticamente los documentos en frag-

mentos (chunks) y almacenarlos como embeddings.
RF06 El sistema debe permitir al profesor actualizar los documentos

desde Moodle.
RF07 El sistema debe permitir al profesor eliminar archivos del sistema.
RF08 El sistema debe permitir modificar el umbral de recuperación se-

mántica.
RF09 El sistema debe permitir iniciar nuevos chats.
RF10 El sistema debe almacenar todas las preguntas y respuestas en

una base de datos relacional.
RF11 El sistema debe seleccionar la interfaz según el rol del usuario

recibido desde Moodle (profesor o estudiante).

Tabla 4.1: Requisitos funcionales del sistema

4.1.2. Requisitos de información

Los requisitos de información describen los datos que el sistema debe gestionar, almacenar
o procesar. Incluyen tanto datos persistentes (como documentos, mensajes o valoraciones)
como configuraciones del sistema (umbral de recuperación).

Código Requisito de Información
RI01 El sistema debe almacenar cada documento con nombre y fecha

de subida.
RI02 El sistema debe registrar los chats iniciados y su fecha de creación.
RI03 El sistema debe registrar todos los mensajes enviados por el usua-

rio y las respuestas generadas por el chatbot.
RI04 El sistema debe almacenar la valoración de las respuestas (li-

ke/dislike).
RI05 El sistema debe guardar la configuración actual del umbral de

recuperación.

Tabla 4.2: Requisitos de información del sistema
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4.1.3. Requisitos no funcionales

Los requisitos no funcionales son restricciones técnicas que debe cumplir el sistema, in-
cluyendo aspectos como el rendimiento, la usabilidad, la seguridad o las tecnologías usadas.

Código Requisito No Funcional
RNF01 El sistema debe integrarse con Moodle mediante LTI.
RNF02 El tiempo de respuesta del chatbot no debe superar los 10 segundos

en promedio.
RNF03 El sistema debe permitir subir documentos en formato PDF.
RNF04 El sistema debe estar desarrollado en Python y usar Gradio como

interfaz.
RNF05 Los embeddings deben almacenarse en una base vectorial local

(ChromaDB).
RNF06 El sistema debe ser usable desde navegadores web modernos

(Chrome, Firefox...).
RNF07 El sistema debe soportar a todos los usuarios matriculados en la

asignatura sin perder rendimiento.
RNF08 Solo se deben indexar documentos nuevos (sin nombre duplicado).

Tabla 4.3: Requisitos no funcionales del sistema

4.1.4. Reglas de negocio

Las reglas de negocio son restricciones respecto al comportamiento del sistema, excluyendo
aspectos técnicos. Son normas que deben cumplirse para que el sistema sea coherente con
sus objetivos de funcionamiento.

Código Regla de Negocio
RB01 Solo los usuarios con rol de profesor pueden subir, eliminar o ac-

tualizar archivos.
RB02 Si no se recupera contexto relevante, se debe generar una respuesta

genérica.
RB03 Cada nuevo chat debe iniciar con un historial vacío.
RB04 La valoración de una respuesta se debe realizar una única vez por

respuesta.

Tabla 4.4: Reglas de negocio del sistema

4.2. Casos de Uso

4.2.1. Actores principales

Los actores principales que interactúan con el sistema son tres:
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Alumno. Puede utilizar las funciones del chatbot, pero tiene acceso restringido al panel
de configuración, en el que se encuentra la documentación RAG y otras opciones de
configuración.

Profesor. Tiene acceso a todas las funcionalidades del sistema. Puede interactuar con el
chatbot, gestionar los documentos del flujo RAG y modificar los parámetros necesarios.

Moodle. Sistema externo en el que se integrará la aplicación y del que se extraerá la
documentación para la contextualización del modelo del chatbot.

Para los casos de uso realizables tanto por alumnos como por profesores, el actor se
denominará “Usuario”, haciendo referencia a cualquier usuario que utilice el sistema. En
ningún caso un alumno tendrá acceso a funcionalidades que no sean accesibles por el profesor.

4.2.2. Descripción de los casos de uso

A continuación, se describen de forma detallada los casos de uso identificados para el
sistema. En cada caso de uso se muestra la secuencia principal de interacción entre los actores
y el sistema, así como las posibles secuencias alternativas, precondiciones y postcondiciones.
Las Tablas 4.5 hasta 4.11 contienen esta información para cada uno de los casos de uso.

Nombre CU01 - Preguntar al chatbot
Actores Profesor, Alumno
Descripción El usuario introduce una pregunta y el sistema de-

vuelve una respuesta generada con RAG.
Precondición Usuario autenticado en Moodle
Secuencia principal 1. El usuario accede a la interfaz de chat.

2. El sistema muestra la interfaz de chat.
3. El usuario escribe una pregunta.
4. El sistema recupera documentos relevantes y ge-
nera la respuesta.
5. El sistema muestra la respuesta al usuario.

Secuencias alternativas 4a. Si no se encuentran documentos, se genera una
respuesta genérica y finaliza el caso de uso.

Postcondición Respuesta mostrada en la interfaz.

Tabla 4.5: Descripción CU01 - Preguntar al chatbot

Nombre CU02 - Valorar respuesta
Actores Profesor, Alumno
Descripción El estudiante puede valorar la respuesta del chatbot

como útil o no útil.
Precondición Haber recibido una respuesta válida
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Secuencia principal 1. El sistema muestra la respuesta al usuario.
2. El usuario pulsa "like" o "dislike".
3. El sistema registra la valoración.

Secuencias alternativas 2a. Si no se valora, no se registra interacción y finaliza
el caso de uso.

Postcondición Valoración guardada.

Tabla 4.6: Descripción CU02 - Valorar respuesta

Nombre CU03 - Subir archivo manualmente
Actores Profesor
Descripción El profesor puede subir documentos desde su equipo

para incluirlos en el corpus del sistema RAG.
Precondición Usuario autenticado como profesor
Secuencia principal 1. El profesor accede a la pestaña de gestión de ar-

chivos.
2. El sistema muestra la interfaz de subida de archi-
vos.
3. El profesor selecciona uno o más archivos locales.
4. El sistema procesa e indexa los archivos.

Secuencias alternativas 3a. Tipo de archivo no soportado, se muestra el error
y se omite ese archivo.

Postcondición Archivos disponibles para recuperación.

Tabla 4.7: Descripción CU03 - Subir archivo manualmente

Nombre CU04 - Actualizar archivos de Moodle
Actores Moodle
Descripción Permite actualizar los archivos importados automá-

ticamente desde Moodle.
Precondición Integración con Moodle configurada
Secuencia principal 1. El profesor accede a la pestaña de gestión de ar-

chivos.
2. El sistema muestra el botón de actualizar archivos
de Moodle.
3. El profesor pulsa el botón de actualizar archivos.
4. El sistema conecta con Moodle y descarga los do-
cumentos del curso.
5. El sistema procesa e indexa los documentos auto-
máticamente.
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Secuencias alternativas 4a. Error al conectar con Moodle, se vuelve al paso
2.
5a. Si hay documentos no admitidos, se omiten y
finaliza el caso de uso.

Postcondición Documentos incorporados correctamente.

Tabla 4.8: Descripción CU04 - Actualizar archivos de Moodle

Nombre CU05 - Modificar umbral de recuperación
Actores Profesor
Descripción El profesor puede ajustar el valor que determina la

similitud mínima requerida para recuperar un chunk
de información.

Precondición Usuario autenticado como profesor
Secuencia principal 1. El profesor accede a la pestaña de gestión de ar-

chivos.
2. El sistema muestra el slider que permite modificar
el parámetro.
3. El profesor ingresa un nuevo valor de umbral.
4. El sistema guarda el nuevo valor y lo aplica.

Secuencias alternativas No hay
Postcondición Nuevo umbral configurado.

Tabla 4.9: Descripción CU05 - Modificar umbral de recuperación

Nombre CU06 - Eliminar archivo
Actores Profesor
Descripción Permite eliminar documentos del sistema RAG.
Precondición Archivos subidos previamente
Secuencia principal 1. El profesor accede a la pestaña de gestión de ar-

chivos.
2. El sistema muestra la lista de archivos subidos.
3. El profesor selecciona un archivo para eliminar.
4. El sistema borra el archivo de la base de datos.

Secuencias alternativas No hay
Postcondición Archivo eliminado del sistema.

Tabla 4.10: Descripción CU06 - Eliminar archivos del corpus

Nombre CU07 - Crear nuevo chat
Actores Profesor, Alumno
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Descripción Permite iniciar una nueva conversación desde cero,
creando un nuevo chat en la base de datos.

Precondición Usuario autenticado y en la interfaz del chatbot
Secuencia principal 1. El usuario pulsa el botón "Nuevo Chat".

2. El sistema resetea el historial de mensajes mostra-
do en la interfaz.
3. El sistema crea un nuevo chat en la base de datos
y muestra el nuevo chat vacío.

Secuencias alternativas No hay.
Postcondición Nuevo chat iniciado y preparado para nuevas inter-

acciones.

Tabla 4.11: Descripción CU07 - Crear nuevo chat

4.2.3. Diagrama de casos de uso

La Figura 4.1 muestra el diagrama de casos de uso del sistema, en el que se representan los
actores principales y su interacción con las distintas funcionalidades. Este diagrama muestra
de forma clara qué acciones puede realizar cada tipo de usuario dentro de la aplicación.

El caso de uso ‘Valorar respuesta’ solo es accesible tras haber realizado ‘Preguntar al
chatbot ’. Sin embargo, este caso de uso no se realiza automáticamente tras hacer una pregunta
al chatbot, sino que el actor debe realizarlo.

Por otro lado, se identifica a ‘Moodle’ como un actor externo, cuya única función es llevar
a cabo la actualización de los archivos existentes en la plataforma. Aunque es el profesor
quien inicia la acción mediante la pulsación del botón correspondiente, la ejecución principal
de la tarea recae en Moodle. Por este motivo, y tras consultar con profesores, se ha decidido
que el actor responsable del caso de uso ‘Actualizar archivos Moodle’ sea Moodle.

En el diagrama se han duplicado los casos de uso Crear nuevo chat y Preguntar al
chatbot para mostrar que pueden ser realizados tanto por el Profesor como por el Alumno.
En UML, el hecho de que varios actores estén conectados a un mismo caso de uso puede
interpretarse de forma ambigua, ya que en algunos contextos esto puede implicar que ambos
actores deben intervenir simultáneamente. Por este motivo, se ha decidido duplicar estos
casos de uso, dejando clara su disponibilidad para ambos roles de forma independiente.

4.3. Modelo de dominio

El modelo de dominio describe las entidades principales que forman el sistema y las
relaciones entre ellas. Mediante clases conceptuales, se estructura el flujo y gestión de los
datos que se emplean en nuestro sistema. La Figura 4.2 muestra el diagrama del modelo de
dominio.
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Figura 4.1: Diagrama de casos de uso

A continuación, se detallan las entidades que lo conforman:

Clase Chat. Representa los chats creados por los usuarios. Cada uno tendrá un iden-
tificador y la fecha de creación. Un chat puede contener varios mensajes.

Clase Mensaje. Se almacenan todos los mensajes de cada chat, incluyendo preguntas
del usuario y respuestas del bot. Cada mensaje pertenece a un solo chat.

Clase Documento. Los documentos se identifican con el nombre y el momento de
subida. Se almacenan en el sistema para recuperar contexto con RAG, pero no están
asociados a un chat específico ni a quién los subió. Un mensaje “puede utilizar“ un
documento para mostrar la información correspondiente.

Para recopilar datos sobre el uso y funcionamiento del sistema, únicamente nos interesan
los chats y sus mensajes. Es por eso que los chats no van asociados al usuario que los creó,
de forma que se mantiene la privacidad de las conversaciones de los usuarios.

Por otro lado, la autenticación de los usuarios se realiza a través de Moodle, y es quien
identifica el rol de cada usuario para mostrar la interfaz correspondiente. Por esta razón, la
información de autenticación de los usuarios no se almacena. Únicamente se utiliza el rol de
cada usuario en la clase Chat para conocer el tipo de usuario que crea cada chat.
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Figura 4.2: Modelo de dominio

En posteriores versiones del chatbot se prevé incluir una entidad Curso, de forma que
se pueda implementar esta herramienta en varios cursos diferentes y distinguirlos entre sí,
donde cada uno tendrá sus documentos correspondientes.

4.4. Realización en análisis de los casos de uso

En este apartado, dado que el sistema no está estructurado en clases ni define objetos,
no consideramos apropiado el uso de diagramas de secuencia. En su lugar, se emplearán
diagramas de actividades, ya que permiten representar de forma más adecuada los flujos de
ejecución y de datos que tienen lugar en el sistema.

Los diagramas de actividades son una herramienta del lenguaje UML que permite repre-
sentar cómo se coordinan distintas actividades para proporcionar un servicio. Su principal
utilidad es la de describir el flujo de acciones necesarias para alcanzar un objetivo [21]. En
las Figuras 4.3 a 4.9 se muestran dichos diagramas de actividades.
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Figura 4.3: Diagrama de actividad CU01 - Preguntar al chatbot

Figura 4.4: Diagrama de actividad CU02 - Valorar respuesta
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Figura 4.5: Diagrama de actividad CU03 - Subir archivo manualmente

Figura 4.6: Diagrama de actividad CU04 - Actualizar archivos Moodle
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Figura 4.7: Diagrama de actividad CU05 - Modificar umbral de recuperación

Figura 4.8: Diagrama de actividad CU06 - Eliminar archivo
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Figura 4.9: Diagrama de actividad CU07 - Crear nuevo chat
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Capítulo 5

Diseño

En este capítulo se detalla el proceso de diseño del sistema desarrollado, abordando tanto
la arquitectura general como los componentes que lo forman. Se describen las decisiones
tomadas en cuanto a diseño, la interacción entre componentes y la organización de los mismos
dentro del sistema. Además, se justificará el uso de algunas de las tecnologías que se emplean
en el desarrollo.

5.1. Decisiones de diseño

A lo largo del desarrollo del sistema se han tomado una serie de decisiones técnicas y de
diseño con el fin de satisfacer los requisitos planteados.

Lenguaje de programación backend: Python. Se ha utilizado Python como len-
guaje principal por su versatilidad, su ecosistema de librerías especializadas en inteli-
gencia artificial y procesamiento de lenguaje natural, y su integración sencilla con bases
de datos y frameworks de interfaz.

Interfaz gráfica con Gradio. Para construir la interfaz web se ha optado por el
framework Gradio, que permite generar interfaces de chatbot funcionales de forma
rápida y conectarlas directamente con funciones de Python.

Modelo de lenguaje llama3.2 con Ollama. Se ha elegido ejecutar localmente el
modelo llama3.2 mediante el gestor Ollama por ser un modelo muy ligero y, a su vez,
ofrecer buenos resultados para preguntas relacionadas con programación. Esto permite
mantener el sistema completamente funcional en local para el desarrollo de este TFG.

Arquitectura RAG (Retrieval-Augmented Generation). La recuperación de in-
formación se realiza mediante un sistema RAG, que permite combinar la generación de
respuestas con la recuperación semántica de documentos, lo que especializa al chatbot
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en la asignatura que se desee. Esto supone una decisión de diseño ya que, en compara-
ción con la técnica de fine-tuning, proporciona mejores resultados para nuestro contexto
específico y hay mayor interés de las empresas, como se ha explicado anteriormente en
el capítulo 2.

Modelo de embeddings all-MiniLM-L6-v2. Para el almacenamiento vectorial de
los textos se ha utilizado el modelo all-MiniLM-L6-v2, que ofrece un buen equilibrio
entre precisión y rendimiento.

Almacenamiento vectorial en ChromaDB. Los documentos procesados se alma-
cenan en una base de datos vectorial ChromaDB, que permite realizar búsquedas por
similitud utilizando los embeddings generados.

Base de datos relacional PostgreSQL. Toda la información estructurada del sis-
tema (mensajes, chats, documentos, etc.) se guarda en una base de datos PostgreSQL,
por su popularidad y el conocimiento previo sobre ella.

Conexión a Moodle mediante API Flask Para integrar el sistema con Moodle se
ha desarrollado una API ligera utilizando Flask, compatible con el estándar LTI. Esta
API permite recibir peticiones directamente desde Moodle, incluyendo la identificación
del usuario y su rol, y redirigir al usuario a la interfaz correspondiente del chatbot
(estudiante o profesor).

Persistencia de sesiones de chat. Cada conversación del usuario se asocia a una nue-
va entrada en la tabla de chats, lo que permite identificar los mensajes que pertenecen
a cada chat.

Separación de roles: profesor y estudiante. El sistema implementa dos perfiles de
usuario distintos. Los profesores disponen de funcionalidades avanzadas como la gestión
de documentos y configuración del sistema, mientras que los estudiantes solo pueden
interactuar con el chatbot y valorar las respuestas.

Gestión de documentos desde Moodle. Se permite importar automáticamente
los archivos del curso desde Moodle a través de su API, facilitando la actualización
periódica de la base de conocimiento por parte del profesor.

5.2. Arquitectura cliente-servidor de la aplicación

El sistema desarrollado en este trabajo sigue el modelo clásico de arquitectura cliente-
servidor, una arquitectura muy utilizada en aplicaciones web. En este modelo, las respon-
sabilidades se dividen entre dos componentes principales: el cliente (ligero), que interactúa
directamente con el usuario, y el servidor, que se encarga del procesamiento, la gestión de
datos y las operaciones internas del sistema.
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Cliente

En el contexto de esta aplicación, el cliente corresponde al navegador web, desde el cual
el usuario accede a la interfaz gráfica. A través de esta interfaz, puede formular preguntas al
chatbot, subir archivos, valorar respuestas o configurar parámetros, dependiendo del rol del
usuario. Esta capa se encarga únicamente de la presentación de la información y de capturar
las acciones del usuario para enviarlas al servidor.

Servidor

Por otro lado, el servidor gestiona toda la lógica del sistema. Está desarrollado en Python
y se encarga de:

Procesar las preguntas del usuario.

Crear y almacenar embeddings en ChromaDB a partir de los archivos proporcionados.

Recuperar archivos de la base de datos de vectores ChromaDB.

Generar respuestas mediante el modelo de lenguaje local (Ollama).

Almacenar información del sistema en la base de datos (PostgreSQL).

Gestionar funcionalidades como la valoración de respuestas, la creación de nuevos chats
o la actualización de los documentos.

La comunicación entre el cliente y el servidor se realiza mediante peticiones HTTP. El
cliente envía datos como preguntas o valoraciones a través del navegador, y el servidor res-
ponde procesando la solicitud y devolviendo una respuesta adecuada, como la respuesta del
chatbot o una confirmación de la acción realizada.

5.3. Persistencia de los datos

El sistema aplicación almacena información persistente de dos formas distintas: Chro-
maDB y PostgreSQL. Esto permite cubrir tanto la recuperación semántica de documentos
como la gestión de datos estructurados del sistema.

5.3.1. ChromaDB: base de datos de vectores

ChromaDB se utiliza para almacenar embeddings vectoriales generados a partir del conte-
nido de los documentos cargados tanto por el usuario como desde Moodle. Estos vectores son
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generados mediante el modelo de embeddings all-MiniLM-L6-v2, y sirven para representar
el significado semántico del texto de forma numérica.

Una vez cargados los documentos, su contenido se divide en fragmentos (chunks), lo que
se conoce como tokenización. Cada fragmento se transforma en un vector que se almacena en
ChromaDB y, cuando el usuario realiza una pregunta, se realiza una búsqueda por similitud
en ChromaDB para recuperar los fragmentos más relevantes, lo que permite mejorar las
respuestas generadas por el LLM en cuanto a precisión y contextualización.

5.3.2. PostgreSQL: almacenamiento estructurado

PostgreSQL se emplea como sistema gestor de bases de datos para almacenar información
estructurada. En este sistema se almacenan:

Los mensajes intercambiados entre el usuario y el chatbot, incluyendo el contenido, el
rol (usuario o asistente) y la valoración.

Los chats creados por el usuario, que agrupan los mensajes relacionados.

Los metadatos de documentos, como el nombre de archivo y la fecha de subida.

5.4. Diagrama de despliegue

Como se ha mencionado anteriormente, el sistema sigue una arquitectura de tipo cliente-
servidor, donde la lógica principal del sistema reside en el backend, desarrollado en Python,
y la interfaz de usuario se muestra a través del navegador web. En el diagrama de despliegue
(Figura 5.1) se han representado los distintos elementos que conforman el sistema, así como
sus relaciones.

Por un lado, se ha modelado el nodo Cliente Web, dentro del cual se encuentra el
dispositivo Navegador. En su interior se ha incluido el artefacto Interfaz Gradio, que
representa la interfaz HTML/JS que el usuario ve y utiliza para comunicarse con el chatbot.
Esta interfaz se renderiza en el navegador del usuario, pero no es un frontend tradicional
como los desarrollados con React o Angular, sino que se ejecuta desde el backend en Python,
generando dinámicamente el contenido de la interfaz. Por tanto, el navegador solo actúa como
punto de entrada, pero la interfaz está completamente controlada desde el servidor.

En el nodo Servidor Backend se representan cuatro entornos de ejecución distintos:

Python Runtime, donde se despliegan tres componentes:

• API Flask, responsable de recibir las peticiones LTI desde Moodle.

• Gradio, que genera y sirve la interfaz al usuario.
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Figura 5.1: Diagrama de despliegue del sistema
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• Lógica del chatbot , que procesa preguntas, documentos, valoraciones y gestiona
todos los procesos.

Ollama, encargado de ejecutar el modelo de lenguaje LLaMA 3.2, representado como
un artefacto. Ollama recibe prompts desde la lógica del chatbot y devuelve las respuestas
generadas.

ChromaDB, donde se almacenan los embeddings generados a partir del contenido
de los documentos. Esta base de datos se utiliza para recuperar contexto relevante.

PostgreSQL, que contiene los datos estructurados del sistema, como los mensajes
intercambiados en el chat, los metadatos de los documentos, el feedback del usuario o
información sobre los chats.

También se ha incluido el nodo Moodle, que tiene dos funciones:

Autenticación mediante el protocolo LTI

Acceso a los documentos del curso a través de su API REST

La interacción con Moodle se representa con una única línea de comunicación entre los
entornos de ejecución Python Runtime y Entorno Web Moodle, aunque en realidad son
dos flujos distintos. El primero es una petición HTTP POST enviada por Moodle a la API
Flask para autenticar al usuario e identificar su rol (estudiante o profesor). El segundo es
una petición HTTPS GET realizada por el backend para descargar los archivos del curso y
añadirlos al sistema. En el diagrama se muestra una única comunicación para simplificar el
diagrama y evitar confusión con demasiadas líneas.

En cuanto a la posible relación entre Flask y Gradio, estos se ejecutan de forma in-
dependiente. Flask actúa como intermediario, recibiendo la autenticación desde Moodle y
redirigiendo al usuario a la interfaz adecuada mediante un iframe, mientras que Gradio sir-
ve directamente la interfaz de usuario. Por ello, en el diagrama no se ha representado una
dependencia directa entre ambos.

En el Servidor Backend, los diferentes entornos de ejecución se comunican entre sí. El
componente Lógica Chatbot utiliza Ollama para generar las respuestas del modelo, consulta
ChromaDB para recuperar información relevante y emplea PostgreSQL para guardar los
mensajes, valoraciones, chats y otros datos importantes. Estas conexiones se reflejan en el
diagrama de despliegue como líneas de comunicación entre los entornos de ejecución que
forman parte del backend.
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Capítulo 6

Implementación

En este capítulo se detalla el proceso de construcción de la aplicación, que se ha basado
en las especificaciones definidas en el análisis y el diseño. Se explican todas las fases que ha
habido en la implementación, las decisiones tomadas a nivel de código y arquitectura, y los
problemas que han ido surgiendo. La idea es mostrar cómo se ha llegado hasta el sistema
final y qué herramientas se han utilizado para ello.

6.1. Implementación de las tecnologías

El sistema utiliza diferentes tecnologías de código abierto para implementar el chatbot con
RAG. Aunque en apartados anteriores ya se ha explicado la selección de estas herramientas,
en esta sección se describe de manera más práctica cómo se realiza el lanzamiento de cada
componente, qué significa cada parte del código y algunas dificultades encontradas durante
la integración.

Gradio: Se utiliza para crear la interfaz web del chatbot. El lanzamiento de la interfaz
se realiza en Python agrupando los distintos bloques (chat y gestor de archivos) en una
única interfaz con pestañas. Por ejemplo:

1 with gr.Blocks () as chatbot_interface:
2 gr.Markdown("...")
3 chatbot = gr.Chatbot (...)
4 ...
5 interface_profesor = gr.TabbedInterface ([ chatbot_interface , file_manager

], ["Chatbot", "Gestor de Archivos"])
6 interface_profesor.launch (...)

Código 6.1: Inicialización de la interfaz con Gradio
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En este fragmento, chatbot_interface corresponde a la pestaña del chat, mientras que
file_manager contiene la interfaz de gestión de RAG. El método .launch() despliega
toda la interfaz en el navegador para el usuario.

Flask (API): Esta API gestiona la autenticación de usuarios desde Moodle mediante
LTI. La integración LTI consiste en una llamada POST enviada por Moodle al servidor,
incluyendo varios parámetros entre los que nos interesa el rol del usuario (por ejemplo,
“Instructor ” o “Student”). En el código, el sistema simplemente distingue el rol recibido
y muestra la interfaz correspondiente:

1 @app.route("/", methods =["GET", "POST"])
2 def launch_lti ():
3 user_role = request.form.get("roles", "")
4 if ’Instructor ’ in user_role:
5 return render_template_string (... iframe profesor ...)
6 else:
7 return render_template_string (... iframe alumno ...)

Código 6.2: Redirección según rol en Flask

Esto permite adaptar las funcionalidades mostradas en función del tipo de usuario
autenticado desde Moodle.

moodle_api: Es un módulo de un repositorio público (https://github.com/mrcin
v/moodle_api.py) que permite realizar llamadas a la API REST de Moodle de forma
sencilla. Se utiliza para obtener automáticamente los documentos del curso de Moodle
y procesarlos desde el backend :

1 course_content = moodle_api.call(’core_course_get_contents ’, courseid=
MOODLE_COURSE_ID)

Código 6.3: Llamada a la API de Moodle

La integración fue sencilla, aunque hubo que adaptar los parámetros de autenticación
(como el id del curso o la API key) para evitar errores al acceder a los contenidos del
curso.

LangChain: Esta librería se utiliza para enlazar el modelo de embeddings con la base
vectorial ChromaDB.

1 embedding_model = HuggingFaceEmbeddings(model_name="all -MiniLM -L6-v2")
2 vectorstore = Chroma(persist_directory=CHROMA_PATH , embedding_function=

embedding_model)

Código 6.4: Inicialización de embeddings y vectorstore

Aquí la principal dificultad fue ajustar correctamente el tamaño de los fragmentos
y el umbral de similitud para que las respuestas fueran lo más relevantes posible.
En el capítulo 7 se mostrarán las pruebas realizadas para la configuración de dichos
parámetros.
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Ollama: Permite ejecutar el modelo LLaMA 3.2 localmente para generar respuestas.
El parámetro stream=True sirve para que los tokens se devuelvan a medida que se
generan, sin esperar a que se generen todos, acelerando la respuesta en la interfaz web:

1 stream = ollama.chat(model="llama3 .2", messages=messages , stream=True)

Código 6.5: Llamada al modelo LLaMA 3.2 con Ollama

PostgreSQL: La base de datos almacena de forma persistente los datos estructurados
del sistema: chats, mensajes y documentos. Estos datos y sus relaciones están definidos
según el modelo de dominio presentado en el capítulo de análisis 4.2.

NLTK: Es una librería de Python orientada al procesamiento de lenguaje natural.
Aquí se emplea principalmente para procesar y limpiar las consultas de los usuarios,
facilitando así la recuperación semántica más relevante desde la base de conocimiento:

1 def extraer_palabras_clave_nltk(texto):
2 texto = texto.lower().translate(str.maketrans(’’, ’’, string.punctuation)

)
3 tokens = word_tokenize(texto , language=’spanish ’)
4 stop_words = set(stopwords.words(’spanish ’))
5 return " ".join([ palabra for palabra in tokens if palabra not in

stop_words and palabra.isalpha ()])

Código 6.6: Preprocesamiento de la consulta

El mayor reto aquí fue ajustar el preprocesamiento para evitar que se perdiera infor-
mación importante de la consulta, manteniendo el equilibrio entre limpieza y contexto.

6.2. Estructura de archivos del proyecto

El sistema está estructurado de forma modular para facilitar su organización y enten-
dimiento. A continuación, se describen los archivos y carpetas principales que componen el
proyecto:

server.py: Aplicación desarrollada con Flask que actúa como punto de entrada. Recibe
las peticiones LTI desde Moodle, identifica el rol del usuario y redirige mediante iframe
a la interfaz correspondiente.

interfaz_profesor.py: Contiene la lógica de la interfaz gráfica para el rol de profesor.
Dependiendo del rol del usuario, se mostrará la interfaz correspondiente a este archivo
(profesor) o la del archivo interfaz_alumno.py.

interfaz_alumno.py: Implementa la interfaz de usuario para alumnos. Esta versión
presenta únicamente el chatbot, sin acceso a herramientas de gestión del RAG.

moodle_api.py: Módulo obtenido desde el repositorio mencionado anteriormente,
que facilita el acceso a la API REST de Moodle, permitiendo obtener los documentos
del curso.
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Figura 6.1: Diagrama de paquetes del proyecto.

chroma_db/: Carpeta donde se almacena la base de datos vectorial generada con
ChromaDB. Contiene los embeddings de los fragmentos de texto extraídos de los docu-
mentos PDF.

La Figura 6.1 muestra la organización de los distintos archivos y paquetes dentro del
proyecto.

6.3. Flujo de funcionamiento (RAG)

El proceso RAG implementado consta de las siguientes fases:

1. Recepción de la consulta desde la interfaz Gradio.

2. Preprocesamiento y generación del embedding de la consulta.

3. Búsqueda semántica de fragmentos relevantes en ChromaDB.

4. Construcción del prompt para el modelo LLM.

5. Generación de la respuesta usando Ollama.
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6. Almacenamiento de la interacción.

En el fragmento de código 6.7 se muestra el código utilizado para recuperar los k chunks
más relevantes.

1 def retrieve_context(query , threshold):
2 vectorstore = Chroma (...)
3 docs_with_scores = vectorstore.similarity_search_with_relevance_scores(

query_procesada , k=1)
4 relevant_docs = [doc for doc , score in docs_with_scores if score >=

threshold]
5 ...

Código 6.7: Recuperación de contexto con embeddings

6.4. Integración con Moodle

Para sincronizar los documentos del RAG con los del curso de Moodle, se utiliza la función
actualizar_moodle, que se encarga de conectarse con Moodle, obtener los contenidos del
curso, descargar los archivos PDF, procesarlos y añadirlos a las bases de datos. De esta
forma, se pueden mantener actualizados los documentos que se emplean en el flujo RAG, sin
necesidad de que el profesor los suba manualmente.

Moodle tiene su propia API REST, que permite acceder a diferentes funciones. En este
caso, se utiliza la función core_course_get_contents, que permite recuperar los contenidos
de un curso a partir de su courseid. Este proceso se ejecuta automáticamente cuando el
profesor pulsa el botón “Actualizar documentos desde Moodle” en la interfaz. Antes de añadir
los nuevos archivos, se eliminan los antiguos para que solo se mantengan los documentos más
recientes del curso.

La documentación oficial de la API se puede consultar en: https://docs.moodle.org/
dev/Web_service_API_functions#Web_service_functions

1 def actualizar_moodle ():
2 ...
3 course_content = moodle_api.call(’core_course_get_contents ’, courseid=

MOODLE_COURSE_ID)
4 ...
5 for section in course_content:
6 for module in section.get(’modules ’, []):
7 if module[’modname ’] == ’folder ’:
8 ...

Código 6.8: Actualización de archivos desde Moodle
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6.5. Persistencia y gestión de datos

Los datos estructurados se almacenan en PostgreSQL, mientras que los datos vectoriales
se guardan en ChromaDB. Cada documento PDF se divide en fragmentos, se vectoriza y se
indexa:

1 chunks = text_splitter.split_text(text)
2 documents = [Document(page_content=chunk , metadata ={"documento": filename })

for chunk in chunks]
3 vectorstore.add_documents(documents)
4 vectorstore.persist ()

Código 6.9: División y vectorización de documentos

6.5.1. Interfaz gráfica

La interfaz gráfica del sistema se ha desarrollado utilizando el framework Gradio, una
herramienta de alto nivel utilizada para construir interfaces de usuario en aplicaciones de
inteligencia artificial.

Gradio ofrece una interfaz sencilla para chatbots y para adaptarla a los requerimien-
tos del proyecto, se ha personalizado incorporando dos pestañas mediante el componente
gr.TabbedInterface. La primera pestaña está dedicada al chatbot y la segunda al gestor
de archivos, accesible exclusivamente para usuarios con rol de profesor.

En la pestaña del chatbot , se incluye un componente (gr.MultimodalTextbox) que per-
mite al usuario escribir preguntas. Además, las respuestas generadas pueden ser valoradas
por el usuario con un sistema de “ like/dislike” para su posterior análisis.

En la pestaña del gestor de archivos, los profesores pueden:

Subir archivos de forma manual.

Consultar la lista de documentos cargados.

Eliminar archivos.

Actualizar el repositorio de documentos sincronizándolo con los materiales disponibles
en Moodle.

Ajustar el umbral de similitud usado para la recuperación semántica mediante un slider.

Toda la interfaz está contenida en una única aplicación lanzada con Gradio, y se visualiza
directamente desde Moodle mediante una integración por iframe, que se adapta dinámica-
mente según el rol detectado por la API Flask.
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1 interface_profesor = gr.TabbedInterface(
2 [chatbot_interface , file_manager],
3 ["Chatbot", "Gestor de Archivos"]
4 )
5 interface_profesor.launch(server_name="0.0.0.0", server_port =7860)

Código 6.10: Creación de la interfaz con pestañas usando Gradio

Esta distribución permite separar las funcionalidades para estudiantes y profesores.

6.6. Dificultades y soluciones aplicadas

Selección del modelo de embeddings: Se probaron varios modelos como all-mpnet-base-v2
o BAAI/bge-small-en-v1.5. Tras numerosas consultas realizadas al chatbot con cada
modelo, el que mejor recuperaba la información relevante fue all-MiniLM-L6-v2, que
es el de propósito más general.

Selección del LLM: Se valoraron varias opciones disponibles, tanto modelos cerrados
como GPT de OpenAI como modelos de código abierto. Como buscábamos ejecutar
la aplicación localmente, de decidió emplear un modelo de código abierto y ligero, de
forma que pueda correr sin fallos de rendimiento. Finalmente, se optó por el modelo
llama3.2, que ofrece un buen equilibrio entre rendimiento, uso de memoria y calidad
de las respuestas, con buenos resultados en programación.

Preprocesamiento de consultas: Se observó que las consultas demasiado largas o
con frases genéricas generaban fallos en la recuperación de documentos. Para mejorar
esto, se implementó un sistema de simplificación que elimina palabras comunes. Este
proceso tiene dos partes: primero se utiliza NLTK para convertir el texto a minúsculas,
eliminar signos de puntuación y filtrar las stopwords en español. Luego, se aplica un
filtro adicional con una lista de palabras típicas de enunciados, como “haz”, “escribe” o
“función”, que no aportan valor semántico a la búsqueda. El siguiente código muestra
la función utilizada:

1 def extraer_palabras_clave(texto):
2 # Convertir a m i n s c u l a s y eliminar puntuacion
3 texto = texto.lower().translate(str.maketrans(’’, ’’, string.

punctuation))
4 # Tokenizar
5 tokens = word_tokenize(texto , language=’spanish ’)
6 # Cargar stopwords en e s p a o l
7 stop_words = set(stopwords.words(’spanish ’))
8 # Filtrar tokens
9 palabras_clave = [palabra for palabra in tokens if palabra not in

stop_words and palabra.isalpha ()]
10 return " ".join(palabras_clave)
11

12 PALABRAS_OMITIR = {
13 "escribe", "haz", "metodo", "programa"...
14 }
15

16 def extraer_palabras_clave_personalizado(texto):
17 tokens = texto.lower().split()
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18 tokens_limpios = [t.strip(". ,;:()\"’") for t in tokens if t not in
PALABRAS_OMITIR]

19 return " ".join(tokens_limpios)

Código 6.11: Simplificación de consultas

Este preprocesado permitió mejorar la precisión en la recuperación de fragmentos rele-
vantes, evitando coincidencias con textos que contenían palabras demasiado generales.

Sincronización Moodle: En esta fase se dudó entre almacenar los documentos en
disco o en memoria. Finalmente se decidió almacenarlos únicamente en memoria para
hacer el proceso más ligero y no ocupar espacio en disco.

Gestión de archivos: Al subir documentos, se comprueba si ya existen en la base de
datos para no almacenar duplicados. Cuando se eliminan, deber ser eliminados tanto
en PostgreSQL como en ChromaDB, ya que una inconsistencia entre las dos bases de
datos provocaría duplicación o falta de documentos.
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Capítulo 7

Pruebas

Este capítulo recoge el conjunto de pruebas realizadas para evaluar la calidad y el com-
portamiento del sistema desarrollado. Se han llevado a cabo tres tipos de pruebas: pruebas
de ajuste de parámetros, pruebas comparativas entre respuestas generadas con y sin RAG,
y pruebas de usabilidad, carga de trabajo y experiencia con usuarios reales mediante cues-
tionarios validados.

7.1. Pruebas de evaluación de parámetros

En esta sección se evalúa el impacto de distintos parámetros clave en la calidad y precisión
de las respuestas generadas por el chatbot :

Umbral de recuperación semántica.

Tamaño de los fragmentos en los que se divide el texto (chunks).

Número de documentos recuperados por consulta (top-k).

Para ello, se ha creado un conjunto de preguntas de prueba y se han analizado las respues-
tas generadas por el sistema al variar cada uno de estos parámetros. Las preguntas se han
seleccionado de las preguntas que hicieron los alumnos de Fundamentos de Programación del
curso 24-25, y que se recogieron a través de una iteración con ellos al inicio del trabajo. Gran
parte de las preguntas proporcionadas van en la dirección de resolver ejercicios u obtener
pistas sobre cómo empezar a resolver un problema. Otros alumnos indican que hacen uso de
estas herramientas para verificar si el código creado por ellos mismos es correcto.

Por otro lado, los archivos con los que se hace RAG contienen ejercicios resueltos con
su enunciado, por lo que algunas de las preguntas que se harán son enunciados de dichos
ejercicios. De esta forma se podrá comprobar si la recuperación de los documentos funciona
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correctamente. Con esta información, se han definido las siguientes consultas para realizar
las evaluaciones:

1. ¿Cómo recorro un array?

2. Escribe un método que devuelva el valor medio de todos los elementos contenidos en
una matriz.

3. Crea funciones para imprimir líneas en blanco.

4. Haz un programa que devuelva la secuencia de Fibonacci de un número dado usando
recursividad.

La calidad de las respuestas ha sido evaluada a criterio del desarrollador (exalumno de
dicha asignatura), en función de su adaptación al contexto, su claridad y su precisión. Debido
a la falta de tiempo, no ha sido posible realizar una evaluación en profundidad de la calidad
de las respuestas por parte de los profesores, pero antes de la integración de la herramienta
en la asignatura, los profesores deberán realizar pruebas para determinar, bajo su criterio,
qué parámetros son adecuados.

Para la elección de parámetros, hay que tener en cuenta la estructura de los documentos
que actúan como contexto en RAG. En nuestro caso, cada documento contiene 1 único
ejercicio que consta de su enunciado y su solución. Debido a esto, la idea es generar un chunk
por documento, de forma que se recuperen ejercicios enteros y no queden incompletos.

Teniendo en cuenta lo anterior, será necesario que el tamaño de los chunks sea suficiente
para abarcar los documentos completos. Como el modelo llama3.2 tiene una ventana de
contexto grande (128k tokens) [1], se ha decidido fijar un tamaño de chunk de 8000
caracteres (≈ 2k tokens). Así, cada chunk contendrá un documento completo y habrá
espacio suficiente en la ventana de contexto para incluir el prompt y la respuesta.

Durante la realización de las pruebas, observé que una consulta más simple mejoraba la
precisión de la recuperación de archivos. Por ello, se ha implementado un preprocesado de
consultas, de forma que se extraen las palabras más relevantes, evitando frases como “escribe
una función“ o “crea un programa“, que podían ocasionar falsas similitudes, y eliminando
palabras sin significado semántico como artículos o preposiciones (Ver sección 6.6).

Como ejemplo del preprocesamiento realizado, si un usuario introduce la consulta “Haz
un programa que calcule la media de los valores de una matriz” , el sistema aplicará
una serie de transformaciones para eliminar palabras genéricas. Tras el procesamiento con
NLTK y el filtro personalizado, la frase queda reducida a “media valores matriz” , mante-
niendo su valor semántico y mejorando la recuperación.

7.1.1. Variación del umbral de recuperación

En la Tabla 7.1 se muestran los resultados de esta evaluación. La calidad de la respuesta
se mide en una escala de Baja, Media o Alta.
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Umbral Consulta Documentos
recuperados

Calidad de
respuesta

Observaciones

0.1

1 Sí (irrelevantes) Baja Recupera aunque no haya
ejercicios adecuados

2 Sí (irrelevantes) Baja Recupera contexto inco-
rrecto que empeora la res-
puesta

3
Sí (correcto)

Alta Recupera el archivo co-
rrecto

4
Sí (varios)

Alta Recupera más contexto de
lo necesario, pero incluye
el archivo correcto

0.25

1 No Alta Mejora respuesta al no
usar contexto erróneo

2 No Alta Mejora respuesta al no
usar contexto erróneo

3
Sí (correcto)

Alta Igual que con 0.1

4
Sí (varios)

Alta Igual que con 0.1

0.4

1 No Alta Igual que 0.25
2 No Alta Igual que 0.25
3 No Baja No recupera archivo, res-

puesta más débil
4

Sí (varios)
Alta Igual que 0.1 y 0.25

Tabla 7.1: Resumen de resultados por umbral y consulta en el chatbot

La Tabla 7.1 muestra los resultados obtenidos al variar el valor del umbral de recuperación,
utilizando las cuatro consultas ya mencionadas. Se observa que un umbral demasiado bajo
(por ejemplo, 0.1) tiende a recuperar archivos irrelevantes, lo que perjudica la calidad de
las respuestas. En cambio, con un umbral intermedio (0.25), el sistema evita ese problema
y mantiene una alta calidad, incluso cuando no se recupera ningún archivo. Esto demuestra
que, en muchos casos, es preferible no recuperar contexto a recuperar documentos que no
están relacionados con la consulta.

Por otro lado, cuando en la columna de Documentos recuperados aparece Sí (correcto),
significa que se ha recuperado exactamente el documento que contiene la solución adecuada
al ejercicio planteado. En los casos marcados como Sí (varios), se han recuperado varios
documentos, pero entre ellos se encuentra el archivo correcto. Esta situación, aunque no es
tan precisa como recuperar un único documento, sigue ofreciendo resultados muy buenos y es
preferible a no recuperar nada o a obtener documentos erróneos. En dicha tabla, se destacan
en verde los casos en los que la información recuperada ayuda a la mejora de la respuesta.

Con estos resultados, se puede concluir que un umbral de 0.25 parece ofrecer el mejor
equilibrio entre recuperar información útil y evitar errores con documentos no relevantes.
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7.1.2. Variación del número de archivos recuperados

Para esta prueba se va a emplear el umbral óptimo obtenido en el apartado anterior (0.25),
y se va a variar el número de archivos recuperados (k) en cada consulta para determinar si
la calidad de las respuestas puede variar con este parámetro.

Como se ha visto en la prueba anterior, con un umbral de 0.25 solo se recuperaba infor-
mación con las consultas 3 y 4, por lo que serán las que se empleen para esta prueba. Las
consultas 1 y 2 arrojan exactamente los mismos resultados.

Se han utilizado valores de 1, 2 y 3 archivos recuperados, y las respuestas han sido muy
similares para todos los valores. Por lo general, cuando se recuperan varios archivos entre los
cuales se encuentra el archivo correcto, la respuesta suele ir bastante enfocada hacia dicho
documento, por lo que no parece un problema el recuperar más archivos de los necesarios.

Top-k Consulta Documentos re-
cuperados

Calidad de
respuesta

Observaciones

1 3 Sí (correcto) Alta Se recupera únicamente el
ejercicio esperado, la res-
puesta es precisa

4 Sí (correcto) Alta Se recupera solo el ejer-
cicio sobre Fibonacci, res-
puesta directa y adecuada

2 3 Sí (varios) Alta Aunque se recuperan más
archivos, la respuesta si-
gue centrada en el correcto

4 Sí (varios) Alta Recupera varios ejercicios,
pero el chatbot selecciona
correctamente el relevante

3 3 Sí (varios) Alta Contexto adicional no in-
terfiere, la respuesta se
mantiene centrada en el
ejercicio clave

4 Sí (varios) Alta A pesar del mayor núme-
ro de documentos, la res-
puesta es coherente y ade-
cuada

Tabla 7.2: Resultados al variar el número de documentos recuperados (k) con umbral fijo en
0.25

Los resultados muestran que el valor de k no influye de forma notable en la calidad de las
respuestas, al menos en las consultas utilizadas en estas pruebas. Para sacar conclusiones más
firmes, sería necesario probar con más consultas y diferentes combinaciones de parámetros.
Sin embargo, por limitaciones de tiempo, esto no se ha podido llevar a cabo en este trabajo,
por lo que esta evaluación más exhaustiva se plantea como una posible línea de trabajo
futuro.
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A partir de los resultados obtenidos en las pruebas anteriores, se concluye que la mejor
combinación de parámetros para este sistema es utilizar un umbral de recuperación de
0.25 y permitir recuperar hasta 3 documentos por consulta (top-k = 3 ). Esta configura-
ción permite obtener respuestas precisas y coherentes, evitando el uso de contexto irrelevante.
Además, se ha fijado un tamaño de chunk de 8000 caracteres. De esta forma, cada frag-
mento almacenado en la base de datos vectorial contiene un documento completo, lo cual
mejora la recuperación semántica y facilita que el modelo genere respuestas más contextua-
lizadas a partir de un solo fragmento.

7.2. Comparación RAG vs no RAG

Para analizar el valor que aporta el sistema RAG, se han utilizado las cuatro preguntas
formuladas anteriormente. Cada pregunta se envió al chatbot tanto con RAG desactivado
como activado, utilizando los parámetros obtenidos en la evaluación anterior, y se compararon
las respuestas obtenidas.

En este apartado se van a evaluar dos aspectos:

Calidad, precisión y contextualización de las respuestas en el marco de la asignatura.

Eficiencia del modelo con RAG respecto al modelo sin RAG introduciendo un contexto
largo manualmente.

7.2.1. Calidad, precisión y contextualización

En esta sección se comparan las respuestas obtenidas para las consultas definidas an-
teriormente, evaluando tres aspectos clave: la calidad general de la respuesta, su precisión
técnica y su nivel de contextualización respecto a la asignatura.

En las cuatro consultas analizadas, se observa que el uso del sistema con RAG aporta
una mejora significativa. En primer lugar, permite generar las respuestas en el lenguaje Java,
evitando la aparición de otros lenguajes como JavaScript, que son frecuentes en modelos
genéricos. Además, las respuestas generadas con RAG tienden a ser más simples y adecuadas
al nivel de los estudiantes que están empezando a programar. Por el contrario, el sistema sin
RAG genera con frecuencia código avanzado que incluye librerías o estructuras no abordadas
en la asignatura, lo que puede dificultar su comprensión.

El valor del sistema con RAG va más allá de seleccionar el lenguaje adecuado o simplificar
el código. Para ilustrarlo, se ha escogido una consulta concreta que pone de manifiesto una
de las principales ventajas de contextualizar las respuestas:

Consulta: Haz un programa que define una clase Tiempo y permite sumar dos
tiempos introducidos por el usuario.
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Ante esta consulta, el sistema sin RAG proporciona una solución válida desde el punto
de vista técnico, pero basada en programación orientada a objetos. Esta aproximación no
es adecuada, ya que la asignatura no incluye ese paradigma. La respuesta incluye conceptos
como clases, métodos personalizados y decoradores como @Override, todos ellos fuera del
alcance del temario.

Este ejemplo muestra cómo el uso de RAG permite generar respuestas adaptadas al
contenido real de la asignatura. Al recuperar un ejercicio resuelto que aborda la misma
problemática desde un enfoque estructurado, el sistema es capaz de producir una solución
que encaja mejor con lo que se espera de los alumnos. En cambio, un chatbot sin recuperación
de contexto puede ofrecer resultados correctos en lo técnico pero desalineados con el enfoque
docente, lo que puede generar confusión, dificultar el aprendizaje y afectar negativamente al
rendimiento académico del estudiante.

7.2.2. Eficiencia del sistema

Con el objetivo de evaluar la influencia de la arquitectura RAG sobre la eficiencia del
sistema, se ha realizado una comparativa entre el funcionamiento del chatbot utilizando
RAG y sin RAG. Estas pruebas permiten ver las diferencias en tiempos de respuesta para el
usuario final.

Para el experimento, se han utilizado las consultas mencionadas anteriormente. Las prue-
bas se han llevado a cabo de la siguiente manera:

Sistema con RAG: El usuario introduce una pregunta corta o poco detallada. El
sistema, de forma automática, recupera los fragmentos de contexto más relevantes y
construye el prompt para el modelo de lenguaje, que genera la respuesta final.

Sistema sin RAG: El usuario debe escribir un contexto extenso junto con su consulta,
para que el modelo disponga de la información necesaria para generar una respuesta
adecuada.

Los resultados de las pruebas muestran que, si se mide únicamente el tiempo de proce-
samiento del sistema, el sistema sin RAG es ligeramente superior en cuanto a velocidad de
generación de la respuesta. Esto se debe a que, al no realizarse búsquedas en la base de datos
de vectores, el flujo se simplifica y se elimina el paso de recuperación de contexto.

Sin embargo, esta mejora de tiempo se contrarresta con el tiempo adicional que el usuario
debe invertir en redactar manualmente el contexto necesario en cada consulta. En la prác-
tica, el sistema con RAG resulta más eficiente desde el punto de vista del usuario, ya que
automatiza la recuperación de la información relevante.

Estos resultados muestran que la integración de RAG no solo mejora la precisión y con-
textualización de las respuestas, sino que también optimiza el proceso, reduciendo la carga
de trabajo para el usuario y el tiempo para obtener una solución adecuada.
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7.3. Pruebas con usuarios finales

Finalmente, se realizaron pruebas con usuarios finales (estudiantes y profesores), que
incluyeron:

Cuestionario de usabilidad System Usability Scale (SUS).

Cuestionario de lealtad Net Promoter Score (NPS).

Cuestionario de carga de trabajo NASA-RTLX.

Cuestionario sobre la utilidad percibida.

Preguntas abiertas.

En estas pruebas han participado un total de 6 participantes, 3 de ellos profesores re-
lacionados con la asignatura y con la programación Java, y 3 alumnos que han cursado la
asignatura de Fundamentos de Programación. Cada uno completó una serie de tareas depen-
diendo de su rol y, posteriormente, respondió a los cuestionarios.

Tareas

Las tareas a realizar por cada uno de los usuarios corresponden a los casos de uso definidos
en la fase de análisis:

Alumno

1. Preguntar al chatbot

2. Valorar respuesta

3. Crear nuevo chat

Profesor

1. Preguntar al chatbot

2. Valorar respuesta

3. Crear nuevo chat

4. Modificar umbral de recuperación

5. Subir archivo manualmente

6. Eliminar archivo

7. Actualizar archivos desde Moodle

55



7.3. PRUEBAS CON USUARIOS FINALES

7.3.1. System Usability Scale (SUS)

El System Usability Scale (SUS) es un cuestionario validado que permite medir la usabi-
lidad de un sistema de forma rápida. Fue desarrollado por John Brooke en 1986 [5] y consta
de 10 enunciados que el usuario debe valorar en una escala de Likert [7] de 1 (totalmente en
desacuerdo) a 5 (totalmente de acuerdo). A partir de las respuestas se obtiene una puntuación
entre 0 y 100, donde valores superiores a 68 suelen considerarse satisfactorios.

A continuación, se presenta el cuestionario SUS con los 10 enunciados que los participantes
deben valorar:

1. Creo que me gustaría usar este sistema con frecuencia.

2. Encontré el sistema innecesariamente complejo.

3. Pensé que el sistema era fácil de usar.

4. Creo que necesitaría la ayuda de una persona con conocimientos técnicos para poder
utilizar este sistema.

5. Las diversas funciones del sistema están bien integradas.

6. Encontré mucha inconsistencia en el sistema.

7. Creo que la mayoría de las personas aprenderían a usar este sistema muy rápidamente.

8. Encontré el sistema muy complicado de usar.

9. Me sentí muy seguro usando este sistema.

10. Necesité aprender muchas cosas antes de poder comenzar a utilizar el sistema.

En la Tabla 7.3 se muestra la puntuación SUS obtenida por cada uno de los participantes,
junto a su rol, y en la Tabla 7.4 la media obtenida en función del rol y la media global.

Usuario Rol Puntuación SUS
Usuario 1 Profesor 90.0
Usuario 2 Profesor 70.0
Usuario 3 Profesor 82.5
Usuario 4 Alumno 92.5
Usuario 5 Alumno 92.5
Usuario 6 Alumno 92.5

Tabla 7.3: Puntuación SUS de cada usuario

Grupo Media SUS
Profesores 80.83
Alumnos 92.5
Global 86.67

Tabla 7.4: Media de puntuaciones SUS por rol y global
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Las puntuaciones medias obtenidas en el cuestionario SUS son bastante elevadas: 80.83
para los profesores, 92.5 para los alumnos y 86.67 como media global. Una puntuación su-
perior a 68 se considera una usabilidad adecuada en el cuestionario SUS, por lo que estos
resultados indican que tanto profesores como alumnos han encontrado el sistema cómodo y
fácil de usar. Concretamente, la puntuación obtenida corresponde al nivel A+, el nivel más
alto de satisfacción [13]. La puntuación de los profesores es inferior al tener que realizar más
tareas y más complejas que los alumnos. Aun así, se alcanza el nivel más alto en cuanto a
usabilidad en el sistema.

7.3.2. Net Promoter Score (NPS)

El Net Promoter Score (NPS) es una métrica ampliamente utilizada para evaluar la
lealtad de los usuarios hacia un sistema y el potencial de adopción de una nueva herramienta
[10]. Se basa en una única pregunta directa:

“¿Qué probabilidad hay de que recomiendes este sistema a un compañero?”

Los participantes deben responder utilizando una escala de 0 a 10, donde:

0–6: Detractores (usuarios insatisfechos o críticos).

7–8: Pasivos (usuarios satisfechos pero no entusiastas).

9–10: Promotores (usuarios entusiastas que recomendarían activamente el sistema).

La puntuación final del NPS se calcula como:

NPS = %Promotores− %Detractores

El resultado puede oscilar entre –100 y +100, donde un valor positivo indica una percep-
ción favorable del sistema. Un NPS superior a 0 se considera aceptable, superior a 30 es bueno
y superior a 50 es excelente. Esta métrica permite estimar de forma sencilla el potencial de
adopción del sistema evaluado.

Usuario Respuesta NPS
Usuario 1 10
Usuario 2 9
Usuario 3 10
Usuario 4 9
Usuario 5 10
Usuario 6 9

Tabla 7.5: Respuestas individuales del cuestionario NPS

57



7.3. PRUEBAS CON USUARIOS FINALES

En este caso, todas las respuestas recogidas fueron 9 o 10, lo que significa que todos los
usuarios se consideran promotores según la metodología estándar del NPS. Por tanto, el valor
NPS final obtenido es de 100, el máximo posible en la escala. Este resultado indica un nivel
de satisfacción y recomendación inmejorable, ya que todos los participantes, tanto alumnos
como profesores, recomendarían el sistema a otros compañeros.

7.3.3. NASA-RTLX

Para evaluar la carga de trabajo percibida durante el uso del sistema, se ha utilizado
el cuestionario NASA-RTLX (Raw Task Load Index), que es una versión simplificada
del método NASA-TLX empleado para medir el esfuerzo que requieren ciertas tareas. Los
resultados del RTLX no parecen verse afectados a pesar de su simplificación [22]. En este
caso, el cuestionario solo se ha hecho al grupo de profesores, ya que nos interesa conocer la
carga de trabajo que supone la configuración del chatbot, al ser un factor importante para la
adopción de la herramienta.

En este cuestionario se miden 6 factores, cada uno puntuado en una escala de 0 a 100,
donde valores más altos indican mayor carga de trabajo, excepto en el caso del rendimiento,
que suele interpretarse de manera inversa.

Los seis factores evaluados son:

Carga mental: esfuerzo mental requerido.

Carga física: esfuerzo físico requerido.

Carga temporal: presión de tiempo.

Rendimiento percibido: percepción del grado de éxito en la tarea.

Esfuerzo general: nivel total de esfuerzo necesario.

Frustración: nivel de estrés, irritación o incomodidad durante las tareas.

En este trabajo se ha utilizado la versión simplificada del cuestionario porque es más
rápido y fácil de responder, ya que no es necesario ponderar los factores como en el método
original. En este proyecto, al tratarse de tareas muy simples, es suficiente para obtener una
valoración útil por parte de los usuarios.

Cada factor se ha valorado en una escala de 0 a 20 y, para unificar las puntuaciones con
la escala estándar (0 a 100), cada respuesta se ha multiplicado por 5. Para el cálculo final,
se ha invertido la puntuación del factor rendimiento (restando su valor a 100), ya que en
este caso una mayor puntuación indica menor carga. La media de los seis valores resultantes
corresponde al índice NASA-RTLX global para cada usuario. Los resultados obtenidos se
muestran en la Tabla 7.6.
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Profesor Índice NASA-RTLX
Profesor 1 15.83
Profesor 2 24.17
Profesor 3 27.50

Tabla 7.6: Índice NASA-RTLX obtenido por los profesores

Las puntuaciones obtenidas en el índice NASA-RTLX para los tres profesores son bastante
bajas, todas por debajo de 30 sobre 100. Esto indica que, en general, los profesores han
percibido una carga de trabajo baja al utilizar el sistema, lo que indica que la aplicación
resulta cómoda y no supone un esfuerzo excesivo para los profesores en las tareas evaluadas,
aunque hay posibilidad de mejora, pues la puntuación se sitúa en el segundo cuartil.

7.3.4. Cuestionario de utilidad percibida

Además de los cuestionarios estandarizados, se diseñó un cuestionario propio para medir
la utilidad percibida del sistema por parte de los usuarios. Este cuestionario utiliza una escala
de 1 a 5, donde 1 indica que no estás de acuerdo con el enunciado y 5 que estás totalmente
de acuerdo.

Los enunciados que conforman este cuestionario son:

1. Las respuestas dadas por la aplicación me parecen adecuadas a mis preguntas.

2. Las respuestas dadas por la aplicación me parecen lo suficientemente rápidas.

3. Las explicaciones ofrecidas por la aplicación son comprensibles.

4. Creo que la información proporcionada por el chatbot puede ser de utilidad para estu-
diantes de programación.

5. Me ha parecido más eficaz que buscar en Internet.

Para analizar los resultados, se calcula la media de las puntuaciones obtenidas. Este valor
da una visión general sobre cómo ha sido valorada la utilidad del sistema y puede servir para
comparar con futuras pruebas que se hagan en versiones posteriores del sistema.

Las puntuaciones individuales recogidas en el cuestionario se muestran en la Tabla 7.7.
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Tabla 7.7: Resultados del cuestionario de utilidad percibida

Usuario Puntuación de utilidad
Usuario 1 4.8
Usuario 2 4.0
Usuario 3 3.6
Usuario 4 4.2
Usuario 5 3.4
Usuario 6 3.8

La media de las puntuaciones es 3.97 sobre 5 y la desviación típica es aproximadamente
0.45, lo que refleja una percepción positiva respecto a la utilidad del sistema. Estos resultados
muestran que la mayoría de los usuarios han encontrado la herramienta útil para el contexto
en el que va a ser utilizada.

7.3.5. Valoraciones y comentarios de los usuarios

Para completar la evaluación, se realizaron preguntas abiertas en las que los usuarios pue-
den mostrar sus opiniones y sugerencias sobre el sistema, lo que ayuda a identificar posibles
mejoras no encontradas en los cuestionarios y en las pruebas realizadas por el desarrollador.

Las principales aportaciones de los usuarios son:

Incorporar tooltips o mensajes de ayuda para explicar el funcionamiento de los dife-
rentes elementos de configuración, entre los cuáles está el umbral de recuperación de
documentos, con el cual varios profesores indicaron que no entendían bien su significado.

Mejorar la visibilidad y el diseño del botón de like/dislike de las respuestas del modelo,
ya que algunos usuarios, al realizar la tarea de valorar una respuesta, no fueron capaces
de encontrarlo rápidamente.

Indicar más claramente que es necesario pulsar el botón de guardar tras la subida de
un archivo para almacenarlo. Algunos profesores pensaron que simplemente subiendo
el archivo ya estaba almacenado, pero para eso es necesario pulsar el botón.

Hacer el menú desplegable más visible para seleccionar los archivos a eliminar, pues
uno de los profesores sugirió esta mejora.

Permitir la creación de carpetas para clasificar y organizar los documentos, como reco-
mendación de otro de los profesores.

Ofrecer la funcionalidad de subir archivos a los alumnos para hacer consultas (no para
incluirlos en el flujo RAG).

Es preferible que el chatbot diga que no sabe responder antes que responder de forma
incorrecta. Varios profesores indicaron esta preferencia.
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Las sugerencias destacan algunos aspectos mejorables, centrados principalmente en la in-
terfaz. También hay que destacar comentarios sobre las respuestas del chatbot, donde algunos
profesores prefieren que no se obtenga una respuesta antes que recibir una respuesta errónea
para la asignatura.

Debido a restricciones de tiempo en el desarrollo del proyecto, algunas de estas sugerencias
no han podido implementarse en la versión actual, pero han sido propuestas para ser incluidas
en futuras actualizaciones del sistema.
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Capítulo 8

Conclusiones

En este capítulo se resumen las principales conclusiones alcanzadas tras el desarrollo del
sistema, así como las limitaciones encontradas durante su implementación y las posibles líneas
de trabajo que podrían abordarse en el futuro para ampliar y perfeccionar el chatbot.

8.1. Resumen de conclusiones

Tras la realización de este Trabajo de Fin de Grado se han obtenido los siguientes resul-
tados y conclusiones:

I. La combinación de un modelo LLM local con un sistema de Recuperación Aumenta-
da por Generación (RAG) permite generar respuestas más contextualizadas, fiables y
ajustadas a los contenidos de una asignatura específica.

II. La aplicación cumple con los requisitos definidos en la fase de análisis y ha sido valida-
da mediante pruebas con usuarios reales, obteniendo una buena puntuación tanto en
usabilidad como en utilidad y potencial de adopción.

III. La integración con Moodle mediante LTI supone una solución muy interesante para
la autenticación de los usuarios, evitando tener que manejar datos de inicio de sesión
y haciendo la herramienta fácilmente accesible a través del curso de Moodle de la
asignatura.

IV. Se ha logrado recopilar, estructurar e indexar material relevante de la asignatura (apun-
tes, ejercicios resueltos, etc.), que sirve como base de conocimiento para el sistema RAG
y permite personalizar las respuestas del modelo.

V. Se ha llevado a cabo un estudio de los principales parámetros que influyen en el funcio-
namiento del sistema RAG, como el umbral de similitud y el número de documentos
recuperados, identificando las combinaciones que ofrecen mejores resultados para esta
aplicación.
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VI. Este trabajo es una base sólida para su posible extensión a otras asignaturas del grado,
abriendo así una línea de trabajo futura para adaptarlo a diferentes contextos educati-
vos.

8.2. Limitaciones del estudio

A pesar de los buenos resultados obtenidos, el sistema presenta una serie de limitaciones
por el entorno, el alcance del proyecto y los recursos disponibles.

Una de las principales limitaciones ha sido el hardware disponible. Al ejecutarse el
sistema en local, con recursos muy limitados, no ha sido posible utilizar modelos de lenguaje
más potentes que podrían haber ofrecido respuestas más completas o precisas. Esto también
limita el uso simultáneo por múltiples usuarios, ya que el procesamiento se realiza todo en
la misma máquina.

Otro aspecto relevante ha sido la limitación del corpus de documentos. Se ha traba-
jado con materiales reales de la asignatura de Fundamentos de Programación, pero el número
de archivos era reducido y algunos no tenían la estructura adecuada, teniendo poco texto,
lo que dificulta su recuperación por parte del sistema RAG. Una base de documentos más
grande y mejor organizada permitiría una recuperación de contexto más precisa.

También hay que destacar las restricciones de tiempo del proyecto. Como en todos
los proyectos, el tiempo es limitado y muchas de las ideas que había pensadas, como hacer
una interfaz más personalizable o realizar más pruebas con usuarios, no se han podido llevar
a cabo por cuestiones de tiempo propias del desarrollo de un TFG.

Además, el sistema actual no tiene una gestión de sesiones ni de usuarios. Aunque los chats
se almacenan en la base de datos, no se asocian de forma explícita a un usuario concreto, lo
que limita funcionalidades como el historial personalizado o el seguimiento de uso. Este punto
habría que adaptarlo, como trabajo futuro, para que la aplicación cumpla con la GDPR.

Por último, aunque el sistema ha sido probado en condiciones reales, las pruebas se han
realizado con un número reducido de participantes. Lo ideal habría sido hacer pruebas con
alumnos de la asignatura de Fundamentos de Programación, pero al ser una asignatura del
primer cuatrimestre, esto ha resultado imposible.

8.3. Líneas de trabajo futuras

A partir de los comentarios recogidos durante las pruebas y de las ideas surgidas durante
el desarrollo, se han ideado varias posibles líneas de trabajo que permitirían seguir mejorando
el sistema y ampliarlo a otros contextos.

Una de las mejoras más demandadas por los usuarios ha sido en temas de usabilidad de
la interfaz. La idea sería prescindir del framework Gradio, que supone una solución útil y
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rápida, y crear una interfaz personalizada (por ejemplo, con React) que permita incluir más
funcionalidades y adaptarla más a las necesidades y sugerencias de los usuarios.

Otra línea clara de mejora es la ampliación del corpus de documentos. Cuantos más
materiales de calidad haya (apuntes, ejercicios resueltos, enunciados, etc.), mejor funcionará
el sistema RAG. Además, habría que establecer una estructura uniforme para todos los
tipos de documentos, por ejemplo, que todos los ejercicios tengan la misma estructura de
enunciado-solución, que los apuntes estén organizados en secciones, etc.

A nivel más técnico, sería interesante experimentar con otros modelos de embeddings
más específicos para programación o aplicar re-ranking para mejorar la recuperación de
documentos. El re-ranking consiste en hacer una lista de los documentos más relevantes y
pasársela al LLM para que decida cuál de esos documentos es el más importante.

Finalmente, la idea sería adaptar el sistema para funcionar como herramienta general para
otras asignaturas. En cada asignatura se incluirían los documentos existentes en el curso de
Moodle de dicha asignatura, para lo cual habría que incluir una entidad ‘Curso’ en la base
de datos que permita distinguir entre distintos cursos.

Todas estas mejoras harían que el sistema fuera mucho más completo y útil tanto para
profesores como para alumnos, haciendo que la experiencia sea más satisfactoria y facilite
tanto el aprendizaje como la docencia.
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Apéndice A

Manual de despliegue

Este apartado describe cómo desplegar el sistema en un entorno local, incluyendo la
ejecución de los componentes, la integración con Moodle y las restricciones de acceso al
código.

A.1. Dependencias necesarias

Antes de ejecutar la aplicación, es necesario instalar las siguientes bibliotecas de Python.
Se recomienda hacerlo en un entorno virtual.

pip install gradio flask PyPDF2 psycopg2 requests
pip install nltk chromadb langchain

Adicionalmente, para la funcionalidad de procesamiento de texto, es necesario descargar
los recursos de nltk en la primera ejecución del sistema. Esto se hace automáticamente
mediante el siguiente bloque presente en el código:

import nltk
nltk.download(’punkt’)
nltk.download(’stopwords’)

A.2. Ejecución de los componentes

El sistema está dividido en tres módulos independientes que deben ejecutarse en paralelo.
Cada uno corresponde a una parte funcional del sistema:
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Interfaz del profesor:

Comando:

python interfaz_profesor.py

Ofrece acceso completo al chatbot y al gestor de archivos. Disponible en el puerto 7860.

Interfaz del alumno:

Comando:

python interfaz_alumno.py

Proporciona acceso exclusivo al chatbot. Disponible en el puerto 7861.

Servidor LTI (Flask):

Comando:

python server.py

Encargado de recibir la autenticación desde Moodle y redirigir al usuario a su interfaz
correspondiente. Disponible en el puerto 5000.

A.3. Integración con Moodle

Para permitir el acceso desde Moodle, se debe añadir la herramienta como un recurso
externo dentro del curso:

1. Acceder al curso Moodle correspondiente.

2. Activar el modo de edición.

3. Pulsar en Añadir una actividad o un recurso.

4. Seleccionar la opción Herramienta externa.

5. Rellenar los campos obligatorios:

Nombre: por ejemplo, “Chatbot Fundamentos de Programación”.
Pulsar en Mostrar más....
En el campo Tool URL, introducir:
http://127.0.0.1:5000/
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Figura A.1: Configuración de parámetros en Moodle

6. En Launch container, seleccionar la opción deseada. Se recomienda embebido o en
una pestaña nueva.

7. Guardar los cambios.

En la Figura A.1 se muestra la configuración de parámetros que debe introducirse.

Una vez completado este proceso, los estudiantes y profesores podrán acceder a la herra-
mienta desde Moodle. El sistema detectará su rol automáticamente y redirigirá a la interfaz
correspondiente.

A.4. Accesos

Por motivos de seguridad, el gestor de archivos está restringido únicamente al perfil
de profesor. Los alumnos pueden interactuar con el chatbot y valorar respuestas, pero
no pueden hacer gestiones con documentos, ni para acceder a las rutas del backend. Esta
distinción de roles está gestionada desde el servidor mediante la información proporcionada
por Moodle en cada inicio de sesión.

Por otro lado, el acceso al código fuente no es público, solo será accesible para los usuarios
que se encarguen de desplegar la aplicación en un futuro.
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Apéndice B

Manual de uso

Este apartado explica el funcionamiento de la aplicación desde la perspectiva de los dos
tipos de usuario: alumno y profesor. Se detalla cómo acceder al sistema, qué funcionalidades
ofrece cada perfil y cómo utilizarlas correctamente.

B.1. Acceso al sistema

Para acceder a la aplicación, el usuario debe hacerlo desde el curso correspondiente en
Moodle. Al hacer clic en el enlace habilitado, se abrirá la interfaz de la herramienta adaptada
a su perfil (estudiante o profesor).

Dependiendo de cómo se haya configurado la herramienta en Moodle, esta aparecerá
embebida en el propio Moodle o se abrirá una nueva pestaña. En las Figuras B.1 y B.2 se
muestra cómo se ve de forma embebida y en una pestaña nueva, respectivamente.

B.2. Interfaz para estudiantes

Una vez dentro de la aplicación, los estudiantes acceden directamente a la pestaña Chat-
bot, donde pueden interactuar con el modelo contextualizado con RAG.

Chatbot

El usuario debe escribir su pregunta en el cuadro de texto.

El chatbot responderá con una explicación o un ejemplo de código adaptado al contexto
de la asignatura.
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B.2. INTERFAZ PARA ESTUDIANTES

Figura B.1: Vista embebida del chatbot en Moodle

Figura B.2: Vista del chatbot en una nueva ventana en Moodle
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APÉNDICE B. MANUAL DE USO

Figura B.3: Interfaz del alumno

Las respuestas pueden valorarse como útiles o no útiles mediante los botones situados
en la parte inferior del mensaje de respuesta.

Se puede comenzar una conversación nueva en cualquier momento pulsando el botón
Nuevo Chat.

La Figura B.3 corresponde a la interfaz que verá el alumno, desde la cual solo se tiene
acceso al chatbot y nunca al gestor de archivos.

B.3. Interfaz para profesores

Los profesores acceden a una versión ampliada de la aplicación, con dos pestañas princi-
pales: Chatbot y Gestor de Archivos (Figura B.4).

Chatbot

El funcionamiento es idéntico al del alumno. Se recomienda utilizarlo para comprobar
que las respuestas generadas se ajustan al nivel de la asignatura.

Gestor de Archivos

Esta pestaña permite al profesor gestionar todo lo relacionado con el flujo RAG. Ofrece
las siguientes funcionalidades:
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B.3. INTERFAZ PARA PROFESORES

Figura B.4: Pestañas en la interfaz de profesor

Figura B.5: Componente de la interfaz para subir archivos

Subir archivos: selecciona uno o más documentos PDF y pulsa el botón Guardar
archivos en la base de datos. El sistema mostrará un listado actualizado.

Eliminar archivos: selecciona un documento del desplegable y pulsa Eliminar docu-
mento para retirarlo del sistema. Los archivos contenidos en el sistema se muestran en
la lista que se ve en la Figura B.6. Es posible buscar documentos en el menú desplegable
escribiendo su nombre (Figura B.7).

Actualizar desde Moodle: al pulsar Actualizar documentos desde Moodle, se
descargan los materiales del curso y se actualiza el corpus automáticamente. Una vez
actualizado, se muestra un mensaje informativo. Tanto el botón como el mensaje de
informativo se observan en la Figura B.8.

Umbral de similitud: ajusta el control deslizante para modificar el nivel de exigencia
en la recuperación de contexto. Este valor corresponde a la similitud requerida entre
la consulta del usuario y el documento recuperado. Si el umbral es alto, será necesaria
una mayor similitud entre consulta y documento, por lo que es menos probable que se
recupere algún archivo relevante (Figura B.9).
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Figura B.6: Lista de archivos contenidos en el sistema

Figura B.7: Menú desplegable para seleccionar archivo a eliminar

Figura B.8: Botón para actualizar el corpus de archivos con Moodle

79



B.4. PREGUNTAS FRECUENTES

Figura B.9: Slider para modificar umbral de recuperación

B.4. Preguntas frecuentes

¿Qué ocurre si no hay información suficiente para una respuesta?
El chatbot intentará ofrecer una respuesta general, pero puede indicar que no dispone de
contexto suficiente.

¿Qué tipo de archivos se pueden subir?
Solo se admiten documentos en formato PDF.

¿Quién puede subir o eliminar archivos?
Solo los profesores tienen acceso a la pestaña de gestión de archivos.
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Apéndice C

Consentimiento informado

Consentimiento informado para participantes en los tests de usabilidad del Tra-
bajo de Fin de Grado:

“Creación de una IA optimizada para la asignatura de Fundamentos de Programación” (Pablo
de Arriba Mendizábal, Universidad de Valladolid)

Estimado/a participante:

En primer lugar, queremos agradecerle su participación en esta evaluación. Antes de
comenzar, queremos informarle sobre algunos aspectos importantes relacionados con este
trabajo y las tareas que debe realizar.

Esta evaluación forma parte del Trabajo de Fin de Grado de Pablo de Arriba Mendizábal,
cuyo objetivo es desarrollar una herramienta basada en inteligencia artificial que sirva como
asistente conversacional (chatbot) para apoyar el aprendizaje en la asignatura de Fundamen-
tos de Programación del Grado en Ingeniería Informática de la Universidad de Valladolid.
La finalidad de esta evaluación es recoger datos, opiniones y experiencias de los usuarios en
relación al uso de la herramienta, con el objetivo de mejorar el diseño y la funcionalidad de
la misma.

Los datos recopilados durante esta evaluación se utilizarán exclusivamente con fines de
investigación académica para el presente proyecto. Todos los datos serán tratados de forma
confidencial en dispositivos del autor del trabajo y, posteriormente, publicados de forma
anonimizada en repositorios de la Universidad de Valladolid.

Usted tiene derecho a corregir o eliminar cualquier dato personal recopilado, contactando
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con el investigador principal. Su participación en esta evaluación es completamente voluntaria
y puede abandonarla en cualquier momento sin necesidad de justificar su decisión.

La duración estimada de la evaluación es de aproximadamente 15 minutos. Durante este
tiempo, se le pedirá lo siguiente:

Rellenar un cuestionario inicial para conocer su perfil.

Leer las explicaciones sobre el sistema evaluado.

Realizar una serie de tareas prácticas utilizando el chatbot desarrollado.

Completar varios cuestionarios para recoger su opinión y experiencia con la herramien-
ta.

Este formulario incluye todos los cuestionarios mencionados anteriormente. Solo debe
seguir las indicaciones y responder a las cuestiones que se requieran.

Gracias por su colaboración.

Procedimiento de consentimiento:
El consentimiento informado para la participación en este estudio se otorga marcando la
casilla correspondiente (checkbox ) incluida en el propio cuestionario de Google Forms. De
este modo, se declara haber sido informado/a y aceptar voluntariamente participar en la
evaluación descrita.
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