
Universidad de Valladolid

Escuela de Ingeniería Informática

TRABAJO FIN DE GRADO

Grado en Ingeniería Informática
Mención Computación

AppSpace: Publicación de un repositorio de
metadatos sobre aplicaciones móviles en

Espacios de Datos

Autor:
Alfonso Cabrero de Diego

Tutores:
Mercedes Martínez González

Alejandro Pérez de La Fuente

Resumen

Los espacios de datos son una tecnología en pleno auge, capaz de integrar fuentes de datos hete-
rogéneas e independientes. Los espacios de datos no almacenan la información, sino que abordan la
integración de los metadatos que permiten descubrir las fuentes y acceder a sus contenidos. Cada espa-
cio de datos establece su propio marco de gobernanza, orientado a crear un entorno seguro y promover
la confianza entre los participantes. Además, cada participante tiene la libertad de establecer las condi-
ciones que considere mas adecuadas para acceder a sus datos. En este contexto, los espacios de datos son
capaces de amplificar las ventajas de compartir información, y benefician no solo a sus usuarios, sino a
toda la sociedad.

En este Trabajo de Fin de Grado se utilizan espacios de datos para compartir un repositorio de me-
tadatos sobre aplicaciones móviles. Para ello, se han diseñado los metadatos que protegen, describen,
y permiten descubrir este repositorio. Como tecnología base, se han utilizado componentes de EDC e
INESData, dos proyectos pioneros en su desarrollo.

Palabras clave: Espacios de datos, integración, privacidad, ontología, EDC, INESData.

2

Abstract

Data spaces are a rapidly emerging technology capable of integrating heterogeneous and indepen-
dent data sources. Data spaces do not store information themselves, but rather focus on the integration
of metadata that enable the discovery of data sources and posterior access to their content. Each data
space defines its own governance framework, aimed at creating a secure environment and fostering trust
among participants. Moreover, each participant has the freedom to set the conditions they consider most
appropriate for accessing their data. In this context, data spaces amplify the advantages of information
sharing and benefit not only their users but society as a whole.

In this Bachelor’s Thesis, data spaces are used to share a metadata repository about mobile applica-
tions. To that end, metadata have been designed to protect, describe, and enable the discovery of this
repository. As foundational technology, components from EDC and INESData have been employed, two
pioneering projects in this field.

Keywords: Data spaces, integration, privacy, ontology, EDC, INESData.

3

Agradecimientos

En primer lugar, quiero agradecer profundamente a mi familia por su apoyo incondicional durante
todo este tiempo. Vuestros consejos, ánimo y confianza han sido esenciales en este camino.

También quiero expresar mi sincero agradecimiento a mis tutores, Alejandro y Mercedes, por su
dedicación, guía y valiosas aportaciones.

Y también quiero darles las gracias a mis amigos y compañeros, por su compañía, por su motivación,
y por ser una fuente inagotable de inspiración y aprendizaje.

4

Índice general

1. Introducción 10
1.1. Contexto . 10
1.2. Motivación . 11
1.3. Objetivos . 11
1.4. Estructura de la memoria . 12

2. Planificación 13
2.1. Metodología . 13
2.2. Gestión de los recursos . 14
2.3. Gestión del trabajo . 15
2.4. Gestión del tiempo . 17
2.5. Gestión de los riesgos . 20
2.6. Gestión de los costes . 23
2.7. Seguimiento del proyecto . 25

2.7.1. Riesgos . 25
2.7.2. Tiempo . 26

3. Espacios de Datos 30
3.1. ¿Qué son los espacios de datos? . 31

3.1.1. Soberanía y confianza . 32
3.1.2. Comparación con SGBD relacionales . 33

3.2. International Data Spaces Association (IDSA) . 33
3.2.1. IDS Reference Architecture Model . 34
3.2.2. Dataspace Protocol (DSP) . 38
3.2.3. IDSA Rulebook . 39

3.3. Gaia-X Association . 40
3.4. Implementaciones . 40

3.4.1. Eclipse Dataspace Components (EDC) . 41
3.4.2. INESData . 41

3.5. Apoyo institucional . 42
3.5.1. Unión Europea . 42
3.5.2. España . 43

3.6. Ejemplo: movilidad . 43

4. Requisitos y análisis 45
4.1. Descripción del sistema . 45
4.2. Roles de usuarios del sistema . 46
4.3. Requisitos . 46
4.4. Casos de uso . 48

4.4.1. Del consumidor . 48

5

Índice general

4.4.2. Del administrador . 50
4.5. Modelo del dominio . 52
4.6. Realización en análisis de los casos de uso . 53

5. Diseño 58
5.1. Credenciales . 58
5.2. Metadatos . 60

5.2.1. Políticas de acceso y uso . 61
5.2.2. Activos . 63
5.2.3. Ontología . 65

5.3. Contexto tecnológico . 68
5.3.1. Web semántica y representación de datos . 68
5.3.2. Identidad digital . 69
5.3.3. Protocolos . 69
5.3.4. Componentes . 70

5.4. Adaptación de los datos a los estándares de EDC e INESData 73
5.5. Arquitectura lógica . 74

5.5.1. Topología . 75
5.5.2. Proveedor con EDC . 76
5.5.3. Proveedor con INESData . 77

5.6. Arquitectura física . 77
5.6.1. Tecnologías . 78
5.6.2. Proveedor con EDC . 79
5.6.3. Proveedor con INESData . 80

5.7. Diseño detallado . 81
5.7.1. Arquitectura de EDC . 81
5.7.2. Extensiones . 82
5.7.3. Data Plane Framework . 83
5.7.4. Extensión para el warehouse . 83

6. Implementación, despliegue y pruebas 85
6.1. Entorno de desarrollo . 85
6.2. Proceso de implementación . 87

6.2.1. EDC Minimum Viable Dataspace . 87
6.2.2. INESData Dataspace Local Enviroment . 88

6.3. Implementación de los datos . 89
6.4. Organización del código . 93
6.5. Instrucciones de despliegue . 94
6.6. Pruebas . 96

6.6.1. Pruebas unitarias . 96
6.6.2. Pruebas de sistema . 96

7. Conclusiones y trabajo futuro 99
7.1. Conclusiones . 99
7.2. Trabajo futuro . 100

Bibliografía 102

A. Herramientas utilizadas 106

6

Índice de figuras

2.1. Diagrama del modelo incremental [5] . 14
2.2. Estructura de División del Trabajo (EDT) . 17
2.3. Cronograma del Proyecto . 19
2.4. PMBOK® Proceso de Gestión de Riesgos [8] . 20
2.5. Matriz de índices de prioridad de riesgos y tipo de impacto por área 20
2.6. Evolución del número de palabras por capítulo . 27

3.1. Utilidad vs coste: Comparación entre los espacios de datos y la integración tradicional [24] 31
3.2. Bloques básicos de un Espacio de Datos [31] . 32
3.3. IDSA Magic Triangle [36] . 34
3.4. Estructura general del IDS Reference Architecture Model [36] 34
3.5. Roles y sus interacciones en un IDS [36] . 35
3.6. Procesos del RAM como interacción entre componentes de los IDS [36] 37
3.7. Máquinas de estados del Dataspace Protocol (DSP) [37] 39
3.8. Información sobre algunos conectores basados en el IDS-RAM, extraida de [44] 41
3.9. Tabla resumen con las iniciativas incluidas en el Plan de Impulso de los Espacios de

Datos Sectoriales [54] . 43

4.1. Diagrama de casos de uso . 48
4.2. Modelo del dominio resumido . 52
4.3. Modelo del dominio detallado . 53
4.4. Diagrama de secuencia: Consultar catálogo . 54
4.5. Diagrama de secuencia: Negociar contrato . 55
4.5. Diagrama de secuencia: Negociar contrato (cont.) . 56
4.6. Diagrama de secuencia: Iniciar transferencia . 57

5.1. Modelo conceptual de las credenciales: diagrama de clases 59
5.2. ODRL Information Model [57] . 61
5.3. Modelo conceptual de las políticas: diagrama de clases 62
5.4. Modelo conceptual de los activos: diagrama de clases 63
5.5. Diagrama conceptual de los datos del warehouse [63] 65
5.6. Taxonomía de clases: grafo RDF . 66
5.7. Taxonomía de propiedades de objeto: grafo RDF . 66
5.8. Ontología completa: grafo RDF . 67
5.9. Restricción sobre Score: grafo RDF . 67
5.10. Roles y flujo de información en el VC Data Model [58] 69
5.11. EDC Connector: Plano de control y plano de datos, adaptado de [28] 71
5.12. Extensión a la ontología: grafo RDF . 74
5.13. Topologías de dominios de gestión [28] . 75
5.14. Diagrama de componentes: proveedor con EDC . 76
5.15. Diagrama de componentes: proveedor con INESData 77
5.16. Arquitectura de un clúster de Kubernetes [72] . 78

7

Índice de figuras

5.17. Diagrama de despliegue: proveedor con EDC . 79
5.18. Diagrama de despliegue: proveedor con INESData . 80
5.19. Arquitectura de EDC [73] . 81
5.20. Patrón SPI [28] . 82
5.21. Diseño de WarehouseExtension . 84
5.22. Diseño de las factorías . 84

6.1. Escenario del Minimum Viable Dataspace (MVD) . 88
6.2. Escenario del Dataspace Local Enviroment (DLE) . 88
6.3. Resultado de las pruebas unitarias . 96
6.4. Visualización con JSON-LD Playground del activo app.com.discord 97
6.5. Vista de las ofertas desde INESData Interface Connector 98

8

Índice de tablas

2.1. Recursos del proyecto . 15
2.2. Fechas de finalización estimada para cada incremento 17
2.3. Estimación de la duración de cada tarea . 18
2.4. Identificación de riesgos . 21
2.5. Clasificación de riesgos . 21
2.6. Plan de respuesta para cada riesgo . 22
2.7. Desglose del coste de la mano de obra . 23
2.8. Suma de todos los costes del proyecto . 25
2.9. Revisión general a las estimaciones de tiempo y fechas de finalización de cada incremento 26
2.10. Revisión de las estimaciones de tiempo del incremento inicial 27
2.11. Revisión de las estimaciones de tiempo del primer incremento 28
2.12. Revisión de las estimaciones de tiempo del segundo incremento 28
2.13. Revisión de las estimaciones de tiempo del tercer incremento 29

3.1. Comparación entre SGBD relacionales y espacios de datos [25]. 33

5.1. Modelo conceptual de las credenciales: descripción de los atributos 60
5.2. Modelo conceptual de las políticas: descripción de los atributos 62
5.3. Modelo conceptual de los activos: descripción de los atributos 64
5.4. Definición de las propiedades de datos de la ontología 68

9

Capítulo 1

Introducción

1.1. Contexto

Los datos se han convertido en el nuevo protagonista de la economía moderna. Cada vez son más
las empresas, instituciones y organismos públicos que reconocen el valor estratégico de los datos como
herramienta clave para mejorar la toma de decisiones, optimizar procesos y desarrollar servicios más
eficientes y personalizados.

Los sistemas de recomendación, el análisis predictivo, el Business Intelligence o la automatización de
procesos mediante inteligencia artificial dependen de la calidad y de la cantidad de los datos disponibles
para ofrecer resultados efectivos y precisos. Además, todos estos sistemas requieren de una infraestruc-
tura tecnológica sólida como centros de datos o redes de comunicaciones de alta capacidad. En este
contexto, la Comisión Europea estima que la contribución de la economía del dato aportará al PIB de la
Unión más de 630.000 millones de euros en 2025 [1].

Pero a pesar del gran tamaño del mercado, la industria se enfrenta todavía a importantes retos. Uno
de ellos es la integración de datos procedentes de múltiples fuentes, formatos y dominios, especialmente
en entornos donde participan diferentes organizaciones. Esto es relevante porque los intercambios de
datos promueven el descubrimiento de nuevo conocimiento, fomentan la innovación y facilitan la cola-
boración, amplificando así el impacto positivo que los datos pueden generar dentro y fuera de una única
organización [2].

Los espacios de datos surgen para hacer frente a este problema, creando un entorno que permite
compartir información de forma controlada, segura e interoperable. Se basan en principios como la
soberanía del dato, la descentralización y la trazabilidad de la información, alineados con la estrategia
de datos de la Unión Europea.

Como tecnología emergente, los espacios de datos aún se encuentran en proceso de maduración y
estandarización. Esto significa que queda mucho trabajo por delante antes de que puedan ser adoptados
de forma generalizada. Son una solución innovadora que seguirá evolucionando, pero que se espera
acabe convirtiéndose en la base de la nueva economía digital, donde la confianza, la colaboración y la
soberanía sean pilares fundamentales.

10

1.2. Motivación

1.2. Motivación

En este trabajo utilizamos espacios de datos para compartir un repositorio desarrollado y mantenido
por el Proyecto App Privacy Impact (App-PI) de la Universidad de Valladolid [3]. Estos datos evalúan
el impacto de las aplicaciones móviles sobre la privacidad de los usuarios, un derecho básico que resulta
vital proteger.

Este repositorio tiene el nombre de App-PIMD (App Privacy Impact MetaData). De momento se pue-
den consultar sus datos a través de su API1, o para usuarios menos técnicos, a través del servicio web
APK Falcon2. Este trabajo se suma a estas dos soluciones, contribuyendo a dar a conocer esta informa-
ción para que los usuarios de las aplicaciones puedan tomar decisiones informadas y los desarrolladores
adopten prácticas más respetuosas con la privacidad.

Las virtudes de los espacios de datos permiten compartirlos con mayor confianza y seguridad, ya que
es posible establecer políticas de acceso y uso que limiten ciertos usos o que permitan el acceso solo a
cierto tipo de usuarios. Además, establecen mecanismos para garantizar la aplicación y cumplimiento de
estas políticas. Esto permitiría por ejemplo ampliar la oferta de datos del repositorio bajo las condiciones
que se consideren más adecuadas, fomentando la colaboración y facilitando la creación de soluciones
basadas en datos compartidos.

1.3. Objetivos

El principal objetivo del trabajo es compartir el repositorio App-PIMD utilizando espacios de
datos. La forma de hacer esto es participando con un proveedor en algún espacio de datos con la temática
adecuada3. En nuestro caso esta temática podría ser la seguridad, o la privacidad. Por desgracia, no hemos
encontrado ningún espacio de datos compatible, por lo que trataremos de implementar un proveedor
aislado que pueda servir de referencia para trabajos posteriores. Para nuestro proveedor utilizaremos
componentes de INESData, una incubadora de espacios de datos pionera en España.

Además, gracias a los créditos para estudiantes de Google Cloud proporcionados por la tutora, un
objetivo secundario del trabajo será desplegar el espacio de datos en esta plataforma y aprovechar para
aprender sobre esta tecnología.

Resumiendo, nos planteamos los siguientes objetivos más concretos:

Investigar la tecnología de los espacios de datos.

Compartir el repositorio App-PIMD a través de un proveedor.

Crear un espacio de datos local (AppSpace) que permita probar el proveedor.

Desplegar el espacio de datos en la Nube de Google.

1Enlace a la documentación de la API de App-PIMD: https://app-pi.infor.uva.es/docs.
2Enlace a APK Falcon: https://apkfalcon.inf.uva.es/.
3Los espacios de datos se organizan en torno a sectores temáticos como la salud, la movilidad o la agricultura.

11

https://app-pi.infor.uva.es/docs
https://apkfalcon.inf.uva.es/

Capítulo 1. Introducción

1.4. Estructura de la memoria

Iniciamos todos los capítulos resumiendo su contenido, explicando cómo se relacionan con el resto
del documento y conectando cada una de sus secciones. Con esta estructura buscamos facilitar al lector
la búsqueda de información y la comprensión global del trabajo.

Esta memoria se divide en 7 capítulos con los siguientes contenidos:

Capítulo 1 - Introducción: Presentación del trabajo, contexto y relevancia.

Capítulo 2 - Planificación del trabajo, metodología, estimaciones de tiempo, riesgos y costes.

Capítulo 3 - Espacios de Datos: qué son y cómo funcionan. Contexto e iniciativas a nivel interna-
cional, estándares. Ejemplo de un proyecto exitoso.

Capítulo 4 - Requisitos y análisis de un proveedor de un espacio de datos siguiendo los estándares
de los espacios de datos internacionales (IDS, por sus siglas en inglés).

Capítulo 5 - Diseño del proveedor y de los metadatos necesarios, utilizando los componentes de
Eclipse Dataspace Components (EDC) e INESData.

Capítulo 6 - Implementación, despliegue y pruebas: Implementación de AppSpace, proceso, tec-
nologías utilizadas y pruebas realizadas.

Capítulo 7 - Conclusiones y trabajo futuro: Resumen de los resultados del trabajo, análisis de las
limitaciones, partes inacabadas y mejoras propuestas.

Bibliografía Referencias bibliográficas.

Apéndice A - Herramientas utilizadas: Listado de todas las herramientas de software utilizadas
para el trabajo.

12

Capítulo 2

Planificación

La planificación es una parte esencial de cualquier proyecto, y nos permite anticipar problemas, asig-
nar recursos de manera eficiente y cumplir con los plazos establecidos. En este capítulo describimos el
proceso que hemos seguido para planificar este trabajo.

Empezamos describiendo la metodología que hemos utilizado en la Sección 2.1, que se basa en un
modelo incremental, y que nos permitirá avanzar de forma estructurada y flexible. En la Sección 2.2,
enumeramos y describimos todos los recursos que necesitaremos para el proyecto, incluyendo un des-
glose de sus costes.

La Sección 2.3 aborda la gestión del trabajo. Aquí definimos los incrementos del proyecto, los cuales
dividimos en tareas específicas. Enumeramos estas tareas en una lista en la que damos más detalles sobre
cada una. También las representamos en la Figura 2.2: Estructura de División del Trabajo (EDT), donde
se pueden visualizar de forma clara y organizada. Después en la Sección 2.4, estimamos la duración de
cada una de ellas y elaboramos el calendario del proyecto. Lo representamos en forma de un Diagrama
de Gantt en la Figura 2.3: Cronograma del Proyecto.

La Sección 2.5 se centra en la gestión de los riesgos, donde analizamos los posibles problemas que
podrían afectar al proyecto. Aquí los identificamos, los clasificamos y establecemos estrategias para mi-
nimizar su impacto. En la Sección 2.6, calculamos una estimación el coste total del proyecto utilizando
valores representativos en un entorno profesional. El principal coste del proyecto es con diferencia el
tiempo de trabajo del autor y de los tutores.

Para terminar el capítulo, en la Sección 2.7, realizamos un seguimiento al proyecto y a la planifi-
cación. En esta sección describimos las problemáticas con las que nos hemos encontrado, y como las
hemos abordado. Hemos tenido que modificar levemente el calendario del proyecto, y ajustar también
el alcance. Por último, también mostramos la evolución del progreso del trabajo, y comparamos las
estimaciones de tiempo de cada tarea con su duración real.

2.1. Metodología

La metodología que hemos seguido en este trabajo es la de un modelo incremental. Este es un
tipo de proceso iterativo que permite adaptar el diseño del sistema a medida que se desarrolla. Esta
metodología se basa en fragmentar la funcionalidad del sistema, y de implementarla de manera gradual
en incrementos (o iteraciones). En cada incremento se desarrolla una funcionalidad nueva o se mejora
alguna ya existente [5]. De esta manera, se dispone de un sistema funcional, el cual es mejorado con
cada incremento.

13

Capítulo 2. Planificación

Hemos elegido esta metodología para este trabajo porque la tecnología que pretendemos usar está
actualmente en desarrollo1. Esto implica un riesgo mucho más elevado de encontrarnos con problemas
durante el proyecto, por ejemplo, partes incompletas, errores, o falta de documentación. Todo ello podría
provocar retrasos, o incluso la imposibilidad de implementar alguna funcionalidad. Es aquí cuando entran
en juego las ventajas del modelo incremental:

Permite modificar el diseño del proveedor a medida que se avanza con el proyecto.

Proporciona flexibilidad en caso de que algún incremento no se desarrolle con éxito. Simplemente
se puede pasar al siguiente.

Permite aprender cada tecnología con más en detalle, ya que se le dedica un incremento a cada
una2.

Permite tener un proveedor operativo desde el primer incremento, por tanto, aunque el resto de
los incrementos fracasen, el objetivo principal del trabajo, que es compartir el repositorio de datos,
se habrá cumplido.

Al final de cada incremento, hemos organizado una reunión para mostrar el sistema y la documenta-
ción a los tutores. En este punto también se pueden revaluar los requisitos y modificarse de ser necesario.

Figura 2.1: Diagrama del modelo incremental [5]

2.2. Gestión de los recursos

Para realizar este proyecto se necesitarán una amplia variedad de recursos, que se pueden clasificar
en diferentes categorías: mano de obra, materiales/herramientas, energía, dinero, espacio o tiempo.
Dentro de la categoría de herramientas cabe destacar los recursos de software. Estos se de detallan de
forma exhaustiva en el Apéndice A: Herramientas utilizadas. Como ninguno de estos recursos supone
un coste explícito y no tienen restricciones de disponibilidad, se han omitido de la tabla por simplicidad.

1La iniciativa de INESData pretende crear una incubadora de espacios de datos en España [4]. El proyecto se inicia en
2023 y su desarrollo todavía continúa. En la Subsección 3.4.2: INESData proporcionamos información adicional.

2Como se explica con más detalle en la Subsección 3.4.2: INESData (y en la Subsección 5.3.4: Componentes), el conector
de INESData se basa en el framework de Eclipse Dataspace Components (EDC). Por tanto al utilizar EDC en un primer
incremento, estaremos mucho mejor preparados para resolver errores cuando utilicemos el conector de INESData.

14

2.3. Gestión del trabajo

En cuanto al dinero, el presupuesto para este proyecto es de 50C. La mayoría de los costes que
se reflejan en la tabla son o bien ficticios (por depreciación, de oportunidad), o bien soportados por
terceros (créditos para estudiantes de Google Cloud). Los únicos costes reales son los de energía, que
son relativamente pequeños.

RECURSO DESCRIPCIÓN DISPONIBILIDAD COSTE3

Alumno Mano de obra del alumno 5h al día 18,23C/h
Tutores Mano de obra de los tutores 5h al mes 42,77C/h

Portátil 1 Para investigación, redacción
y uso del proveedor

Siempre 0,12C/h

Portátil 2 Infraestructura de despliegue
en local

Siempre 0,13C/h

Google Cloud Infraestructura de despliegue
en la nube

72,11C en total 0,23C/h

Lugar de trabajo Vivienda del alumno Siempre 1,20C/h
Lugar de reunión Sala de la Escuela Reservar antes -
Energía eléctrica Para los ordenadores portátiles Siempre 0,2015C/kWh
Calefacción Para el lugar de trabajo Siempre 0,2015C/h
Tiempo Límite orientativo 300h en total -
Dinero Presupuesto del proyecto 50C en total -

Tabla 2.1: Recursos del proyecto

2.3. Gestión del trabajo

Como se explica en la Sección 2.1: Metodología, se seguirá un plan de trabajo basado en incre-
mentos. De esta manera, dividiremos el trabajo cuatro incrementos, además de uno inicial y otro final.
El desglose de las tareas se puede observar en la lista a continuación y en la Figura 2.2: Estructura de
División del Trabajo (EDT), elaborada con la herramienta draw.io [6].

Incremento inicial Agrupa las tareas que se han realizado antes de planificar el proyecto. Las dos pri-
meras tareas se han realizado de forma paralela, seguidas por la planificación del trabajo. Las
tareas del incremento inicial son las siguientes:

Definición del proyecto: objetivos y alcance.
Investigación inicial: búsqueda de tecnologías disponibles, posibilidades que ofrecen, con-
texto internacional sobre Espacios de Datos.
Planificación.
Memoria: Capítulo 1: Introducción (Objetivos y Estructura de la memoria), Capítulo 2: Pla-
nificación (excepto Seguimiento del proyecto) y Capítulo 3: Espacios de Datos (¿Qué son los
espacios de datos?).

Primer incremento Se desarrolla un primer proveedor utilizando los componentes de Eclipse Dataspa-
ce Components (EDC). EDC tiene una documentación más extensa y completa por lo podremos
aprender la base de la próxima tecnología que utilizaremos: INESData. Además, se diseñará el
proveedor, junto con una ontología para compartir los datos.

3Para el detalle del cálculo de los costes ver Sección 2.6: Gestión de los costes.

15

Capítulo 2. Planificación

Investigación: Espacios de Datos, framework de EDC, componentes y funcionamiento.

Análisis de requisitos del proveedor y diseño del proveedor.

Diseño de la ontología para compartir los datos.

Creación y despliegue de un Espacio de Datos en local utilizando los componentes de EDC.
Warehouse en local.

Memoria: Capítulo 3: Espacios de Datos (resto del capítulo), Capítulo 4: Requisitos y aná-
lisis, Capítulo 5: Diseño (excepto INESData), y Capítulo 6: Implementación, despliegue y
pruebas (EDC).

Segundo incremento Se cambia la tecnología del proveedor para utilizar los componentes de INESDa-
ta. Se adapta el diseño del sistema y se reutiliza el resto de elementos del incremento anterior.

Investigación: INESData, componentes y extensiones.

Diseño del proveedor.

Creación y despliegue de un Espacio de Datos en local utilizando los componentes de INES-
Data. Warehouse en local.

Memoria: Capítulo 5: Diseño (INESData), y Capítulo 6: Implementación, despliegue y prue-
bas (segundo incremento).

Tercer incremento Se añade la interfaz gráfica al proveedor.

Investigación: Componente de interfaz gráfica de INESData.

Adaptación del diseño con interfaz gráfica.

Despliegue del Espacio de Datos donde el proveedor tiene interfaz gráfica.

Memoria: Capítulo 5: Diseño (tercer incremento), y Capítulo 6: Implementación, despliegue
y pruebas (tercer incremento).

Cuarto incremento Se despliega el sistema en la infraestructura de la Nube de Google.

Investigación: Computación en la Nube, Nube de Google en específico.

Adaptación del diseño a despliegue en la nube.

Despliegue en la nube tanto del proveedor como del Warehouse.

Memoria: Capítulo 5: Diseño (cuarto incremento), y Capítulo 6: Implementación, despliegue
y pruebas (cuarto incremento).

Incremento final Se redactan los capítulos que faltan, los apéndices y se revisa el resto. Revisión a la
planificación.

Resumen, Abstract.

Capítulo 1: Introducción (Motivación, Contexto).

Capítulo 2: Planificación (Seguimiento del proyecto).

Capítulo 7: Conclusiones y trabajo futuro.

Apéndice A: Herramientas utilizadas.

Al final de cada incremento Se hacen después de todos los incrementos, a medida que avanza el pro-
yecto.

Pruebas.

Reuniones de seguimiento.

16

2.4. Gestión del tiempo

Figura 2.2: Estructura de División del Trabajo (EDT)

2.4. Gestión del tiempo

En esta sección calculamos el calendario del proyecto. Para ello, en primer lugar necesitaremos una
estimación del tiempo que se tardará en realizar cada tarea, y en segundo lugar deberemos asignar
recursos a cada una. En nuestro trabajo el único recurso que tenemos que administrar es el tiempo de
trabajo del autor, ya que el resto están siempre disponibles. Las estimaciones para cada tarea se detallan
en la Tabla 2.3.

Teniendo además en cuenta que la fecha en la que se inicia el proyecto es el día 20 de enero de
2025, podemos elaborar la Figura 2.3: Cronograma del Proyecto, que se ha hecho utilizando la versión
gratuita de teamgantt.com [7]. En ella se incluyen las dependencias entre tareas, y se muestran cuáles se
pueden realizar en paralelo respecto a otras. Del cronograma podemos obtener las siguientes fechas de
finalización esperada de cada incremento:

Incremento inicial 3 de febrero
Primer incremento 4 de marzo
Segundo incremento 20 de marzo
Tercer incremento 1 de abril
Cuarto incremento 17 de abril
Incremento final 1 de mayo

Tabla 2.2: Fechas de finalización estimada para cada incremento

17

https://www.teamgantt.com/

Capítulo 2. Planificación

INCREMENTO TAREA ESTIMACIÓN (h) TOTAL (h)

Inicial

Definición del proyecto 2

52
Investigación inicial 15
Planificación inicial 15
Documentación 20

Primero

Investigación 20

104

Análisis y diseño 15
Diseño de la ontología 5
Creación y despliegue del E.D. 15
Pruebas 9
Documentación 40

Segundo

Investigación 15

36
Diseño 2
Creación y despliegue del E.D. 10
Pruebas 2
Documentación 7

Tercero

Investigación 8

22
Adaptación del diseño 1
Despliegue del E.D. 3
Pruebas 5
Documentación 5

Cuarto

Investigación 10

36
Adaptación del diseño 1
Despliegue en la nube 10
Pruebas 10
Documentación 5

Final y
otras tareas

Documentación 40
50

Reuniones de seguimiento 10

SUMA 300 300

Tabla 2.3: Estimación de la duración de cada tarea

18

2.4. Gestión del tiempo

Figura 2.3: Cronograma del Proyecto

19

Capítulo 2. Planificación

2.5. Gestión de los riesgos

Para hacer el plan de riesgos seguiremos la guía de Becker [8]. En la Figura 2.4 podemos observar
cada uno de los pasos de este proceso.

Figura 2.4: PMBOK® Proceso de Gestión de Riesgos [8]

En el primer paso identificamos dos áreas de posible impacto de los riesgos: calendario y pro-
ducto. Los posibles impactos en el calendario del proyecto serán retrasos/adelantos, mientras que en el
producto será la disminución de sus prestaciones. Clasificaremos el impacto en el calendario como bajo,
medio o alto si el retraso del proyecto es menor a un día, menor a una semana o superior a una semana,
respectivamente. La clasificación del impacto en el área de producto será siempre alta. Además, clasifi-
caremos la probabilidad de ocurrencia en 4 categorías: muy baja, baja, media y alta, si las probabilidades
son <0,01, <0,10, <0,50 y >0,50, respectivamente. En la Figura 2.5 representamos la relación entre el
impacto y la probabilidad de suceso de los riesgos.

Figura 2.5: Matriz de índices de prioridad de riesgos y tipo de impacto por área

En el segundo paso identificamos los riesgos del proyecto. En la Tabla 2.4 describimos brevemente
cada riesgo que hemos identificado. En el tercer paso clasificamos los riesgos, localizando su posición
en la matriz de índices de prioridad de riesgos. Esto lo hemos hecho en la Tabla 2.5, donde podemos
observar esta clasificación con los riesgos ordenados por prioridad. Por último, debemos elaborar un
plan de respuesta para cada riesgo, que estará basado en dos estrategias: mitigación y contingencia. Este
plan se puede ver en la Tabla 2.6.

20

2.5. Gestión de los riesgos

Riesgo Causas o descripción

Error en la planificación Estimación de horas incorrecta, objetivos
poco claros o riesgos imprevistos

Tecnología insuficientemente madura Falta de documentación, funcionalidades
no completas o presencia de errores

Disponibilidad inferior a la estimada Enfermedad, necesidades académicas

Desconocimiento de la tecnología
Aprender a usar de forma básica todas las
tecnologías necesarias lleva más tiempo
del esperado

Modificación del modelo de datos
del warehouse

El esquema de datos del warehouse cambia

Créditos de Google Cloud no disponibles Caducidad, cantidad insuficiente

Modificación de requisitos Los requisitos del proveedor cambian en
una fase tardía del desarrollo

Pérdida de información El alumno pierde los archivos donde
almacena el trabajo

Tabla 2.4: Identificación de riesgos

Riesgo Probabilidad
Impacto en Índice de

prioridadCalendario Producto
Error en la planificación Media Alto - II
Tecnología insuficientemente madura Media Alto Alto II
Disponibilidad inferior a la estimada Baja Alto - III
Desconocimiento de la tecnología Alta Medio - IV
Modificación del modelo de datos
del warehouse

Muy baja Alto - V

Créditos de Google Cloud no disponibles Muy baja Bajo Alto V
Modificación de requisitos Muy baja Alto - V
Pérdida de información Muy baja Alto - V

Tabla 2.5: Clasificación de riesgos

21

Capítulo 2. Planificación

Riesgo Plan de mitigación Plan de contingencia

Error en la planificación
Revisar la planificación con los
tutores, planificar un margen de
tiempo para imprevistos

Aumentar la carga de trabajo,
retrasar la entrega del proyecto

Tecnología insuficientemente
madura

La planificación en incrementos
ayuda a no depender en exceso
de una sola tecnología

Saltar un incremento,
comunicación con los autores
de la tecnología

Disponibilidad inferior a la
estimada

Llevar una vida saludable,
planificar un margen de tiempo
para imprevistos, priorizar el
trabajo

Aumentar la carga de trabajo
tras la recuperación, retrasar
la entrega del proyecto

Desconocimiento de la
tecnología

Planificar un margen de tiempo
para imprevistos

Buscar tecnologías alternativas
más simples

Modificación del modelo
de datos del warehouse

Comunicación con los tutores
para estar prevenido

Aumentar la carga de trabajo,
retrasar la entrega del proyecto

Créditos de Google Cloud
no disponibles

Consumir los mínimos recursos
necesarios, buena planificación

Solicitar unos nuevos créditos,
saltar el cuarto incremento

Modificación de requisitos Realizar un buen análisis Aumentar la carga de trabajo,
retrasar la entrega del proyecto

Pérdida de información

Utilizar un sistema de control de
versiones que almacene los datos
en la nube, tener copias de
seguridad

Aumentar la carga de trabajo,
retrasar la entrega del proyecto

Tabla 2.6: Plan de respuesta para cada riesgo

22

2.6. Gestión de los costes

2.6. Gestión de los costes

En esta sección nuestro objetivo será contabilizar y cuantificar todos los costes asociados al proyecto.
De esta manera, tendremos a nuestra disposición una estimación del coste agregado del proyecto. Este
cálculo se proporciona al final de la sección, en la Tabla 2.8.

Los principales costes que calcularemos no son reales, pero sí que tratan de representar el verdadero
coste del proyecto en un entorno profesional real. Siguiendo de esta idea, al trabajo del alumno y de los
tutores, se les asociará al coste de oportunidad de estar empleados por cuenta ajena, y al lugar de trabajo
del alumno, se le asociará un coste de sustitución de alquilar un espacio de coworking.

Mano de obra Para estimar el coste de la mano de obra utilizaremos esta lista de hipótesis. Hemos
obtenido los datos de salarios de la web glassdoor.es [9, 10].

Las horas de trabajo del alumno serán 300.

Las horas de trabajo de los tutores serán 30.

El empleo del alumno sería el de Ingeniero de Software Junior, que es remunerado de forma
promedio en España con 25.150C a jornada completa [9].

El empleo de los tutores sería el de Tech Lead, que es remunerado de forma promedio en
España con 59.000C a jornada completa [10].

El número de horas laborables al año a jornada completa en España cambia según el convenio
colectivo, pero es del entorno de 1.800 horas [11].

Por tanto, el salario bruto equivalente a las 300h de trabajo del alumno sería de 4.191,67C, a los
cuales habría que sumar un 30,48 % de cotizaciones a la Seguridad Social a cargo del empleador
[12]. Llegamos por tanto a un coste de oportunidad total de 5.469,29C. De igual manera para
los tutores: el salario bruto equivalente a 30h de trabajo sería de 983,33C, y el coste total de
1.283,05C.

CONCEPTO ALUMNO TUTORES SUMA

Coste total 5.469,29 C 1.283,05 C 6.752,34 C
- SS Empresa 1.277,62 C 299,72 C 1.577,34 C

Salario bruto 4.191,67 C 983,33 C 5.175,00 C
- SS Trabajador 271,20 C 63,62 C 334,82 C
- IRPF4 593,89 C 240,55 C 834,44 C

Salario neto 3.326,58 C 679,16 C 4.005,74 C

Tabla 2.7: Desglose del coste de la mano de obra

Lugar de trabajo Para estimar el coste de un espacio de trabajo utilizaremos como referencia el alquiler
de un espacio de coworking en Valladolid. El espacio Leburó ofrece una disponibilidad de 4 horas
al día por 90 C mensuales [13]. Suponiendo que el desarrollo del proyecto abarca cuatro meses
naturales, el coste final del lugar de trabajo sería de 360C.

Materiales El coste por materiales es el de los ordenadores portátiles que se utilizarán en el proyecto.
Su uso no supone ningún desembolso real pero sí que hará que su valor disminuya, por tanto el
coste que calcularemos es un coste por depreciación de valor. Los modelos de ordenador que se

4El cálculo del IRPF se hace prorrateando el impuesto que se pagaría cobrando ese sueldo durante todo el mismo año
fiscal, a las horas trabajadas.

23

https://www.glassdoor.es/index.htm

Capítulo 2. Planificación

utilizarán son: Acer Aspire 5 y Lenovo Ideapad 330, que tienen un coste de adquisición de 599C
[14] y 668,85C [15] en la web pccomponentes.com, respectivamente. Si estimamos unas 5.000
horas de uso útil para cada uno, y el uso es de 255 y 455 horas respectivamente, la depreciación de
los portátiles durante el proyecto será de 30,55C y 6,02C, respectivamente. En total: 36,57C.

Google Cloud Para estimar el coste de la infraestructura, debemos saber en primer lugar qué necesida-
des tendremos, algo que en este punto todavía desconocemos. Pero aunque la estimación no sea
muy precisa, podemos intentar acercarnos lo máximo posible. Como referencia, calcularemos el
coste de despliegue del espacio de datos mínimamente viable (MVD, por sus siglas en inglés) de
Eclipse Dataspace Components (EDC) [16].

El MVD se puede desplegar en un clúster de kubernetes. La edición estándar de Google Kuber-
netes Engine nos da un precio de $0,10 por hora [17]. Para desplegar el warehouse necesitaremos
también un instancia de mysql. La versión más básica que nos ofrece Google Cloud (Edición En-
terprise, Zona de pruebas6, región: europe-west1) tiene un precio de $0,14 por hora [18]. Si la
infraestructura se tiene que mantener activa durante 4 días7, el coste total sería de $23,04. Usando
un tipo de cambio aproximado de 1,04 dólares por euro8, el coste total sería de 22,15C.

Para hacer el proyecto disponemos de créditos para estudiantes por un valor de $75, con una fecha
de caducidad el 26 de septiembre de 2025. Esto significa que estaremos limitados a un uso máximo
de la infraestructura de Google Cloud por 13 días.

Energía Si suponemos que hemos alquilado un espacio de coworking, el coste de la energía es de
0C. Desde el lugar de trabajo tenemos acceso a electricidad sin coste adicional y además, está
convenientemente calefactado.

Por otra parte, sí que podemos tratar de estimar el coste real en energía del proyecto, ya que en la
realidad si que hemos tenido que enfrentar estos costes. Para ello supondremos que ambos portáti-
les tienen un consumo de 60W, y otros consumos como la iluminación serán de aproximadamente
10W. Como el precio futuro de la electricidad es desconocido, utilizaremos como referencia el pre-
cio promedio de la tarifa PVPC 2.0TD durante el mes de enero de 2025, que ha sido de 0,1584C
por kWh [20]. Este precio no incluye los impuestos [21], por lo que debemos sumarle un 5,113 %
en concepto de Impuesto Especial a la Electricidad (IEE) [22], y después añadirle un 21 % adi-
cional en concepto de Impuesto sobre el Valor Añadido (IVA) [23]. Esto nos deja con un precio
final efectivo por kWh de 0,2015C. Para estimar el consumo en calefacción, supondremos que
hemos utilizado un radiador eléctrico con una potencia de 1.000W durante 100 horas. Por tanto, el
consumo total de energía será 121 kWh, con un coste estimado de 24,38C.

Software Todas las herramientas que se utilizarán en este proyecto serán: (1) gratuitas, (2) tienen una
versión de prueba gratuita o, (3) tienen licencias para estudiantes. Por tanto el alumno no deberá
pagar por su uso.

Sin embargo, y siguiendo la misma idea que con los gastos de mano de obra y de lugar de trabajo,
calcularemos el coste que habría tenido el uso de estas herramientas en un entorno no académico.
Esto es, el coste de las licencias que hemos incluido en la categoría 3. El único programa dentro de
esta categoría es astah professional, utilizado para el modelado del sistema y diagramas de diseño.
Las licencias individuales tienen un precio de 8,99C al mes. El coste durante todo el proyecto
ascendería a 35,96C.

5El segundo portátil se utiliza para las tareas de creación, despliegue y pruebas de los espacios de datos en los incrementos
primero, segundo y tercero. El primero en todas las restantes.

62 CPUs virtuales, 8 GB de RAM y 10 GB de almacenamiento SSD.
7Hemos estimado la duración de las tareas de despliegue y pruebas en el cuarto incremento como 20 horas, que se tardarían

4 días en terminar con una dedicación de 5 horas al día.
8El tipo de cambio EUR/USD cerró el día 31 de enero a 1,0393 [19].

24

https://www.pccomponentes.com/

2.7. Seguimiento del proyecto

RECURSO COSTES

Alumno -
Tutores -
Lugar de trabajo -
Materiales 36,57 C
Google Cloud -
Energía 24,38 C
Software -

SUMA 60,95 C

(a) Costes para el alumno

RECURSO COSTES TIPO DE COSTE

Alumno 5.469,29 C De oportunidad
Tutores 1.283,05 C De oportunidad
Lugar de trabajo 360,00 C De sustitución
Materiales 36,57 C Por depreciación
Google Cloud 22,15 C -
Energía - -
Software 35,96 C -

SUMA 7.207,02 C -

(b) Costes en un escenario ficticio

Tabla 2.8: Suma de todos los costes del proyecto

2.7. Seguimiento del proyecto

En esta sección realizamos un seguimiento del proyecto, evaluando en qué medida hemos cumplido
con esta planificación y describiendo las desviaciones con respecto al alcance del proyecto, del crono-
grama o del trabajo que habíamos estimado.

Durante el primer incremento hemos realizado el único cambio técnico a la planificación, sin perjuicio
para el alcance del proyecto. No desplegaremos nuestro propio warehouse, sino que utilizaremos la
API de App-PIMD para acceder a los datos. Con este cambio simplificamos el trabajo a la vez que
conseguimos una mayor calidad de los datos, ya que estarán actualizados. Otra ventaja de este cambio es
que no estamos expuestos tan a modificaciones en el modelo de datos del warehouse, pasando a depender
de la API que debería ser más estable. Del modelo de datos solo dependería la ontología.

2.7.1. Riesgos

Durante el proyecto han sucedido los 4 riesgos más probables que habíamos previsto. A continuación
contamos los detalles y las consecuencias que han tenido en el proyecto.

Error en la planificación: Hemos tenido que realizar varias tareas que no habíamos previsto:

• Diseño de los datos (a parte del diseño del proveedor).

• Diseño e implementación de una extensión al Data Plane para permitir el acceso al warehou-
se, más la investigación previa necesaria.

• Investigar sobre ontologías (no se conocían lo suficiente).

Tecnología insuficientemente madura: No se dispone de un manual para la interfaz gráfica del
conector de INESData, por lo cual no se ha conseguido depurar los fallos que hemos tenido con
este componente. Por este motivo no hemos conseguido una funcionalidad completa de la interfaz
(más detalles en el Capítulo 6, en la Subsección 6.6.2: Pruebas de sistema).

25

Capítulo 2. Planificación

Disponibilidad inferior a la estimada: Durante el mes de marzo ha habido una menor intensidad
de trabajo, del cual una semana corresponde a indisposición médica.

Desconocimiento de la tecnología: Ha hecho falta más tiempo del que habíamos planificado para
investigar las tecnologías que necesarias para el trabajo. Además hemos tenido problemas con
terraform, ya que adaptar una configuración desde docker compose estaba llevando demasiado
tiempo. Para no provocar un retraso adicional del trabajo, hemos mantenido la configuración de
docker compose (más detalles en el Capítulo 6, en la Subsección 6.2.2: INESData Dataspace Local
Enviroment).

Las tres tareas imprevistas se han realizado durante el primer incremento, que sumadas a la menor
intensidad de trabajo durante el mes de marzo y al mayor tiempo necesario para investigar las tecnolo-
gías necesarias, han provocado su retraso por mes y medio. Esta gran desviación con respecto al plan
original ha motivado la decisión de eliminar el cuarto incremento.

El cuarto incremento tenía una duración estimada aproximada de dos semanas. Gracias a este ahorro
y a una mayor intensidad de trabajo posteriormente, hemos conseguido reducir el retraso total del trabajo
a dos semanas en total.

2.7.2. Tiempo

En esta subsección comparamos las estimaciones de la Sección 2.4 con la realidad del proyecto. La
Tabla 2.9 muestra estas comparaciones de forma resumida. En esta tabla se pueden ver estas compara-
ciones para cada incremento con respecto a su duración total y fechas de finalización.

En el resto de la sección, hacemos un seguimiento más detallado de cada incremento, revisando su-
cesos y tareas concretas. También incluimos la Figura 2.6, que muestra la evolución en el tiempo del
número de palabras escritas del trabajo para cada capítulo. Esta imagen visualiza muy claramente el
progreso del trabajo, aunque de forma parcial, ya que excluye el esfuerzo de investigación o de imple-
mentación. Aun así, ayuda a visualizar el tiempo invertido en cada capítulo, su extensión o el tamaño de
cada incremento en relación a los demás.

INCREMENTO ESTIMACIÓN (h) REAL (h) FIN ESTIMADO FIN REAL

Incremento inicial 52 62 3 de febrero 7 de febrero
Primer incremento 104 182 4 de marzo 20 de abril
Segundo incremento 36 49 20 de marzo 1 de mayo
Tercer incremento 22 23 1 de abril 5 de mayo
Cuarto incremento 36 - 17 de abril Suprmido
Incremento final 50 41 1 de mayo 15 de mayo
TOTAL 300 357 1 de mayo 15 de mayo

Tabla 2.9: Revisión general a las estimaciones de tiempo y fechas de finalización de cada incremento

26

2.7. Seguimiento del proyecto

Figura 2.6: Evolución del número de palabras por capítulo

Incremento inicial La investigación de los espacios de datos, de las tecnologías disponibles para el
proyecto, y de sus posibilidades han llevado algo más de tiempo de lo esperado. La Tabla 2.10
compara la duración estimada para cada tarea y su duración real.

TAREA ESTIMACIÓN (h) REAL (h)

Definición del proyecto 2 2
Investigación inicial 15 25
Planificación inicial 15 15
Documentación 20 20
TOTAL 52 62

Tabla 2.10: Revisión de las estimaciones de tiempo del incremento inicial

Primer incremento Casi todas las tareas de este incremento han llevado más tiempo del esperado ini-
cialmente, en especial la investigación y el diseño. En la planificación no se había tenido en cuenta
suficientemente el diseño de los datos (a parte del proveedor), o la gran cantidad de tecnologías
que han sido necesarias y con las cuales no se tenía ninguna experiencia previa.

Las tareas de documentación también han llevado más tiempo, ya que durante este incremento
se ha redactado la mayor parte de la memoria (esto se puede apreciar de forma muy visual en la
Figura 2.6).

Las diferencias entre el tiempo estimado para cada tarea y el tiempo real se pueden ver en la
Tabla 2.11. Desglosamos el tiempo que ha llevado cada capítulo, que se han ido haciendo de for-
ma aproximadamente secuencial. Además, desagregamos las tareas de investigación y redacción,
permitiendo así saber con más detalle el tiempo invertido en cada capítulo.

Otros motivos que han provocado el retraso de este incremento, a parte del mayor tiempo reque-
rido, han sido una menor intensidad de trabajo durante el mes de marzo, incluyendo una semana
por indisposición médica.

27

Capítulo 2. Planificación

TAREA ESTIMACIÓN (h) REAL (h)

Investigación 20 51
Análisis y diseño 15 29
Diseño de la ontología 5 8
Creación y despliegue del E.D. 15 15
Pruebas 9 15
Documentación 40 64
TOTAL 104 182

(a) Desglose por tarea

CAPÍTULO ESTIMACIÓN (h)
REAL (h)

Tarea Investigación Documentación
Espacios de Datos - - 22 20
Requisitos y análisis 10 14 3 6
Diseño 10 23 21 27
Implementación y pruebas 24 30 5 11
TOTAL 44 67 51 64

(b) Desglose por capítulo

Tabla 2.11: Revisión de las estimaciones de tiempo del primer incremento

Segundo incremento La exhaustiva preparación del incremento anterior y su gran parecido con este,
han hecho que la investigación haya llevado bastante menos tiempo de lo planificado. Sin embargo,
este parecido no se ha mantenido para la implementación.

Hemos tenido más dificultades de las esperadas para poder desplegar el espacio de datos con los
componentes de INESData e integrarlo en el resto del repositorio. Una de estas dificultades es la
ya mencionada con terraform en la revisión de los riesgos (Subsección 2.7.1).

El resto de tareas han ido en línea de lo planificado. La Tabla 2.12 cuantifica las diferencias de
duración para cada tarea.

TAREA ESTIMACIÓN (h) REAL (h)

Investigación 15 6
Diseño 2 1
Creación y despliegue del E.D. 10 30
Pruebas 2 1
Documentación 7 11
TOTAL 36 49

Tabla 2.12: Revisión de las estimaciones de tiempo del segundo incremento

Tercer incremento Debido a la falta de documentación para la interfaz del conector, la investigación
ha llevado menos tiempo y el despliegue más tiempo de lo planificado. Esta cuestión ya la hemos
mencionado en la revisión de los riesgos (Subsección 2.7.1), y sobre la que damos más información
en la Subsección 6.6.2: Pruebas de sistema.

28

2.7. Seguimiento del proyecto

TAREA ESTIMACIÓN (h) REAL (h)

Investigación 8 4
Diseño 1 0
Creación y despliegue del E.D. 3 13
Pruebas 5 3
Documentación 5 3
TOTAL 22 23

Tabla 2.13: Revisión de las estimaciones de tiempo del tercer incremento

Cuarto incremento Suprimido.

Incremento final Las horas dedicadas a la documentación (revisión general, introducción, conclusio-
nes, abstract, anexo) han sido 31, frente a las 40 planificadas. Las reuniones de seguimiento con
los tutores han tomado aproximadamente 10h, las planificadas inicialmente.

29

Capítulo 3

Espacios de Datos

Los espacios de datos son una idea que se empezó a desarrollar hace más de 20 años, pero no ha
sido hasta ahora que ha empezado a ganar protagonismo. Con el impulso que se le está dando desde las
instituciones europeas, se espera que en los próximos años sea una tecnología que gane mucha adopción
y se convierta en un estándar para el intercambio de datos a nivel internacional.

En este capítulo explicamos en qué consiste esta tecnología, cómo funciona, cuáles son sus ventajas
y principios fundamentales y hacemos una recopilación de algunas de las iniciativas más importantes a
nivel internacional y a nivel europeo en particular.

Las dos iniciativas de estandarización en las que nos centraremos son la International Data Spaces
Association (IDSA, Sección 3.2) y Gaia-X (Sección 3.3), que son reconocidas a nivel internacional como
las más relevantes. Además, entraremos en detalle en dos de los artefactos técnicos que elabora la IDSA
como son el IDS RAM (Subsección 3.2.1) y el Dataspace Protocol (Subsección 3.2.2). Utilizaremos
estos dos documentos en el Capítulo 4: Requisitos y análisis para elaborar las especificaciones técnicas
de nuestro proveedor.

Ninguna de estas dos organizaciones proporciona infraestructura o código directamente, sino que son
otras organizaciones las que implementan componentes a la medida de sus necesidades y casos de uso.
Estos proyectos se deben adherir a algún estándar como los de IDSA o Gaia-X para ganar la confianza
de la comunidad. Veremos también el contexto de las dos iniciativas de implementación (Sección 3.4)
que usaremos en este trabajo: Eclipse Dataspace Components (EDC, Subsección 3.4.1) e INESData
(Subsección 3.4.2).

Contaremos brevemente además, algunas iniciativas institucionales (Sección 3.5) de apoyo a esta
tecnología, en concreto las impulsadas por la Unión Europea (Subsección 3.5.1) y por España (Subsec-
ción 3.5.2).

Por último, veremos como la aplicación de esta tecnología en el sector de la movilidad (Sección 3.6:
Ejemplo: movilidad) puede traer beneficios tan evidentes como una mejora significativa en la seguridad
vial o una menor congestión del tráfico, aplicaciones que no serían posibles sin utilizar espacios de datos.

30

3.1. ¿Qué son los espacios de datos?

3.1. ¿Qué son los espacios de datos?

Los espacios de datos son el siguiente paso en la evolución de los sistemas de gestión de datos y
surgen para solucionar algunos de los problemas que tiene la integración de datos a gran escala. Los
espacios de datos no aspiran a obtener una integración total en esquemas, sino a ofrecer, en lo posible,
una integración semántica [24, 25, 26].

Los espacios de datos no almacenan los datos, y se limitan a ofrecer una infraestructura que permi-
te la interacción eficiente y segura entre diversas fuentes. Esta conexión facilita la interoperabilidad,
permitiendo el intercambio de datos sin necesidad de centralizarlos en un único repositorio [2]. De esta
forma, cada fuente de datos conserva su autonomía, mientras que los participantes pueden acceder y
utilizar la información según las políticas de acceso y uso establecidas, siempre dentro de un marco que
garantiza la privacidad, seguridad y soberanía de los datos.

Para lograr una mayor interoperabilidad entre las fuentes de datos, es imprescindible el uso de
herramientas como vocabularios1. No obstante, los espacios de datos permiten la coexistencia entre
las fuentes, sin importar cómo de integradas estén, y proporcionan funcionalidades básicas para todas
ellas [25, 26]. Una virtud muy importante de los espacios de datos es que reducen de manera muy
significativa los costes iniciales de integración entre una gran cantidad de fuentes, esta relación se
puede observar en la Figura 3.1. Los espacios de datos pueden utilizar técnicas ya conocidas como el
emparejamiento automático de esquemas para realizar consultas. De esta manera, se puede posponer o
incluso prescindir de la integración total de esquemas, salvo que sea estrictamente necesaria [25].

Figura 3.1: Utilidad vs coste: Comparación entre los espacios de datos y la integración tradicional [24]

Es importante entender que un espacios de datos no existe como una entidad propia. Un espacio de
datos es el conjunto de participantes que lo componen y, en su nivel más básico, es simplemente el
contexto entre dos participantes [28]. Es decir, los espacios de datos tienen un diseño descentralizado.

Los espacios de datos se tienden a organizar en torno a un sector temático. Algunos de los sectores de
las iniciativas mas importantes a nivel internacional son: agricultura, energía, industria, salud o movilidad
[29, 30]. Pero esta división se da solo en el plano de las políticas y normas de gobernanza de cada
espacio de datos, ya que una organización puede utilizar una misma infraestructura para colaborar en
varios espacios de datos.

1En integración de datos, un vocabulario es un conjunto de términos estandarizados que define y unifica el significado de
los datos entre diferentes fuentes, facilitando su interoperabilidad y el intercambio de información [27].

31

Capítulo 3. Espacios de Datos

3.1.1. Soberanía y confianza

La soberanía y confianza son considerados dos valores imprescindibles en un espacio de datos, de
hecho, el Data Spaces Support Centre (DSSC), en la versión 1.5 de su documento Plano para Espacios
de Datos [31], identifica 17 bloques básicos en el diseño de un espacio de datos. Estos bloques se pueden
dividir en 6 pilares, y se pueden observar en la Figura 3.2. Uno de ellos es precisamente la soberanía y
confianza. También son identificados como valores clave en [26, 32]. En esta subsección desarrollaremos
estos dos conceptos.

Figura 3.2: Bloques básicos de un Espacio de Datos [31]

La soberanía sobre los datos se refiere a la capacidad de los proveedores de datos a decidir
sobre el cómo y cuándo se pueden utilizar sus datos a lo largo de la cadena de valor [33]. El
diseño descentralizado permite que los datos puedan permanecer en las organizaciones donde se
producen. De esta manera, los proveedores pueden establecer las normas de uso y acceso que más
convengan a su organización.

La confianza en el espacio de datos se refiere a crear un entorno seguro donde los participan-
tes puedan verificar sus identidades, y tengan la certeza de que las normas de uso y acceso que
establecen para sus datos serán cumplidas.

Para proteger estos dos valores, el DSSC identifica tres bloques básicos de actuación, sus responsabi-
lidades son las siguientes:

Certificación y Gestión de Identidad: Abarca la necesidad de identificar a los participantes del
espacio de datos. Para recibir un certificado de pertenencia, se seguirá un proceso de verificación
en el que se comprobarán tanto la identidad del participante como el cumplimiento de los requisitos
específicos que tenga cada espacio de datos.

32

3.2. International Data Spaces Association (IDSA)

Marco de Confianza: Define los medios técnicos necesarios para verificar que los participantes
cumplen con las reglas del espacio de datos. Es clave para proteger la soberanía de los datos, y
para promover medidas de seguridad robustas.

Imposición de las Políticas de Uso y Acceso: En este bloque se gestiona el control de acceso
y uso de los datos, garantizando que el propietario mantenga el control sobre los mismos y que
solo se utilicen para las acciones permitidas. Para ello, se establecen dos fases previas al acceso:
la negociación y la aplicación. Los participantes deben firmar un contrato donde se acepten las
condiciones, y posteriormente se comprueba si el contrato es válido.

3.1.2. Comparación con SGBD relacionales

Curry ofrece una comparación entre el paradigma del espacio de datos y los sistemas de gestión de
bases de datos relacionales [25]. En un espacio de datos, las fuentes coexisten y evolucionan juntas a lo
largo del tiempo, sin depender de un sistema rígido de gestión de datos, lo que las diferencia notable-
mente del enfoque tradicional basado en bases de datos relacionales. Esta comparación se muestra en la
Tabla 3.1.

SGBD Espacio de Datos

Modelo Relacional Todos
Formatos Homogéneo Heterogéneo

Esquema Esquema primero,
datos después

Datos primero, esquema
después o nunca

Control Completo Parcial

Liderazgo De arriba a abajo De arriba a abajo o
de abajo a arriba

Consultas Exactas Aproximadas
Integración Por adelantado Incremental
Arquitectura Centralizada Descentralizada
Procesamiento en tiempo real No Aplicable

Tabla 3.1: Comparación entre SGBD relacionales y espacios de datos [25].

3.2. International Data Spaces Association (IDSA)

La asociación internacional de espacios de datos, es una asociación sin ánimo de lucro creada en
2017. Su objetivo es crear un estándar global para los espacios de datos, con un interés especial en
garantizar la interoperabilidad entre diferentes plataformas y regiones, fomentar la colaboración entre
sectores públicos y privados, y promover la confianza y la transparencia en el uso de los datos, todo
mientras se asegura la soberanía y el control de los mismos por parte de los usuarios y las organizaciones
participantes [34, 35].

Como parte de su misión, la IDSA desarrolla y mantiene: un modelo arquitectónico de referencia
para espacios de datos, un libro de normas, y el protocolo de comunicación más extendido para espa-
cios de datos. Además, la IDSA tiene un programa de certificación para garantizar que el software que
consiga estos certificados cumple con ciertos estándares de seguridad, interoperabilidad y privacidad.
Estas iniciativas se representan en la Figura 3.3.

33

Capítulo 3. Espacios de Datos

Figura 3.3: IDSA Magic Triangle [36]

3.2.1. IDS Reference Architecture Model

El Modelo Arquitectónico de Referencia para los Espacios de Datos Internacionales (RAM), es un
documento de especificaciones arquitectónicas que ofrece una visión general de los procesos, funciona-
lidades y componentes necesarios para crear un espacio de datos funcional. En esta subsección, haremos
una breve descripción de este documento, basándonos en su cuarta versión, la cual fue publicada en 2023
y es la versión más reciente disponible [36].

Comprender este modelo, aunque sea de forma superficial, nos servirá para entender el diseño de
cualquier espacio de datos, incluso aunque no siga estas especificaciones. Muchos de los conceptos
definidos en este documento son estándares que también se utilizan en otras implementaciones.

El RAM sigue los estándares comunes de arquitectura de sistemas, como ISO 42010, y utiliza una
estructura de cinco capas, junto con tres perspectivas transversales, para abordar las preocupaciones
de los diferentes interesados a diversos niveles de detalle, como se muestra en la Figura 3.4. A continua-
ción, se detalla cada una de las capas que conforman este modelo, destacando cómo cada una contribuye
a la estructura general del RAM.

Figura 3.4: Estructura general del IDS Reference Architecture Model [36]

34

3.2. International Data Spaces Association (IDSA)

Capas

1. Capa de negocio: Define los roles de los participantes y sus actividades e interacciones, que se
muestran en la Figura 3.5. Se distinguen cuatro categorías de roles de negocio, que asumirán uno
o más roles básicos dependiendo de los requisitos del negocio. Estos roles básicos son: Conec-
tor, Datos, Vocabulario, Identidad, Aplicación, Transacción y Servicio. Las categorías de roles de
negocio son las siguientes:

Participante principal: proveedor de datos, consumidor de datos

Intermediario: intermediario de datos, intermediario de servicios, tienda de aplicaciones,
intermediario de vocabularios, cámara de compensación, autoridad de identidad

Desarrollador de software: desarrollador de aplicaciones, desarrollador de conectores

Cuerpo de gobernanza: cuerpo de certificación, instalaciones de evaluación, organizaciones
de estandarización, asociación internacional de espacios de datos

Figura 3.5: Roles y sus interacciones en un IDS [36]

2. Capa funcional: Establece los requisitos funcionales y las características derivadas que se de-
ben implementar. Estos requisitos se agrupan en 6 categorías. Las áreas que cubre cada una se
describen a continuación:

Confianza: roles, gestión de identidad, certificación de usuarios.

Seguridad y soberanía: autentificación y autorización, políticas de uso e imposición de uso,
comunicación confiable y seguridad desde el diseño, certificación técnica.

Ecosistema de datos: descripción de las fuentes de datos, intermediación de metadatos y
vocabularios.

Interoperabilidad estandarizada: operación, intercambio de datos.

Aplicaciones que añaden valor: procesamiento y transformación de datos, implementación
de aplicaciones de datos, provisión de aplicaciones de datos, instalación y soporte de aplica-
ciones de datos.

Mercados de datos: liquidación y facturación, restricciones de uso y gobernanza, aspectos
legales.

3. Capa de información: Define un modelo de información que describe a los recursos digitales en
un espacio de datos, así como a sus elementos esenciales: participantes, componentes de infraes-
tructura y procesos. El modelo se especifica en tres representaciones:

35

Capítulo 3. Espacios de Datos

Conceptual: Visión de alto nivel de los conceptos clave, sin estar vinculada a una tecnología
o dominio específico. Está diseñada para una audiencia general, promoviendo un entendi-
miento compartido de los conceptos fundamentales.

Declarativa (Vocabulario IDS): Especificación formal del modelo, basada en estándares
de la Web Semántica de W3C y vocabularios de modelado como DCAT, ODRL y SKOS.
Ofrece una especificación a los conceptos de la representación conceptual, y define entidades
del espacio de datos para facilitar el intercambio y búsqueda de metadatos estructurados.

Programática: Dirigida a desarrolladores de software, esta representación adapta el Vocabu-
lario IDS a las estructuras nativas de lenguajes de programación como Java, Python o C++.
Permite por tanto a los desarrolladores el crear instancias del modelo de forma eficiente sin
preocuparse por los detalles del procesamiento de ontologías.

4. Capa de procesos: Describe las interacciones entre los componentes de un espacio de datos, pro-
porcionando una vista dinámica del RAM. Se definen los siguientes procesos:

La incorporación es el paso previo para acceder a los Espacios de Datos Internacionales, y
requiere de dos pasos iniciales: el registro y la certificación de la organización, y la obtención
de un conector IDS certificado.

El proceso de ofrecimiento de datos en los IDS consiste en poner a disposición de los con-
sumidores los activos de datos a través de una auto-descripción que detalla la información
relevante sobre los datos, como su acceso y políticas de uso. Esta descripción puede ser pu-
blicada en un intermediario de metadatos, lo que facilita la búsqueda y el acceso a los datos.

El proceso de negociación de contratos en los IDS comienza cuando el proveedor presenta
una oferta de contrato, que el consumidor puede aceptar o modificar. Si ambas partes están
de acuerdo, firman el contrato, que se almacena en sus conectores para su aplicación. En
algunos casos, una cámara de compensación valida el contrato. Las negociaciones también
pueden incluir contraofertas para ajustar las condiciones.

El intercambio de datos se divide en dos fases: la fase de control, donde se acuerdan las
condiciones y se preparan los procesos necesarios, y la fase de transferencia, en la que se
realiza el intercambio real de datos entre el proveedor y el consumidor.

El proceso de publicación y uso de aplicaciones de datos implica que el proveedor suba la
app a una tienda IDS, a menudo con certificación. Los participantes pueden buscar y adquirir
la aplicación mediante el conector IDS, para luego instalarla y usarla en tareas de procesa-
miento de datos. Todo esto se gestiona a través de la tienda IDS y sus interfaces.

El proceso de aplicación de políticas asegura que los datos se usen de acuerdo con las
políticas acordadas, aplicando controles en tiempo real a través de una serie de pasos auto-
matizados.

5. Capa de sistema: Describe una serie de componentes lógicos que se pueden considerar el núcleo
técnico de los IDS. Utiliza los roles de la capa de negocios y los procesos de la capa de procesos,
creando una arquitectura concreta de datos y servicios. En la Figura 3.6 se muestran los com-
ponentes de esta capa (a excepción del proveedor de identidad) y los procesos del RAM, como
interacciones entre ellos. Los IDS tienen los siguientes componentes fundamentales:

Proveedor de Identidad: Gestiona la identificación, autentificación y autorización de los
participantes para tomar decisiones de control de acceso confiables.

Conector IDS: Es un componente esencial en la red de IDS, facilitando el intercambio de
datos mediante los puntos de acceso que expone. Debe ser accesible por conectores de otras
organizaciones, lo que puede implicar la modificación de políticas de firewall o la creación de

36

3.2. International Data Spaces Association (IDSA)

zonas desmilitarizadas (DMZ). Un participante puede operar varios conectores para cumplir
con requisitos de balanceo de carga, partición de datos, o criterios organizativos.

Tienda de Aplicaciones: Es una plataforma segura para distribuir aplicaciones IDS (IDS
Apps), que son activos de software independientes, funcionales, reutilizables y gestionables
en un conector IDS.

Broker de Metadatos: Es un conector IDS que gestiona la inscripción, publicación, mante-
nimiento y consulta de auto-descripciones de los conectores. Estas auto-descripciones con-
tienen información sobre el conector, sus interfaces, capacidades y los metadatos de los datos
ofrecidos.

Cámara de Compensación: Es un conector IDS que se basa en un servicio de registro (log-
ging service) para recopilar información relevante para la liquidación y facturación, así como
para el control de uso.

Repositorio de Vocabularios: Es una plataforma que gestiona y proporciona vocabularios
estandarizados utilizados para describir datos, servicios, contratos y otros elementos dentro
del espacio de datos. Su función principal es almacenar, mantener, publicar y documentar
vocabularios que se usan en los casos de uso del IDS.

Figura 3.6: Procesos del RAM como interacción entre componentes de los IDS [36]

Perspectivas

1. Perspectiva de seguridad: Es imprescindible para asegurar la confianza en los espacios de datos y
que la tecnología prospere. Provee los medios para identificar dispositivos en los IDS, proteger
la comunicación y las transacciones de datos, y controlar su uso después de que hayan sido
intercambiados. También define requisitos de seguridad para que el software pueda obtener un
certificado para diferentes niveles de confianza. Estos son:

37

Capítulo 3. Espacios de Datos

a) Integridad y autenticidad del software stack.
b) Verificación de integridad remota / certificación remota.
c) Protección de la integridad y confidencialidad de los datos en persistencia.
d) Aislamiento de procesos.
e) Registro de eventos.
f) Protección de claves utilizadas.
g) Protección contra administradores maliciosos.

2. Perspectiva de certificación: Deberán pasar por un proceso de certificación tanto las organi-
zaciones e individuos que quieran participar en un IDS, como los componentes que se vayan a
utilizar. La certificación de organizaciones e individuos se enfoca en la seguridad y la confianza,
mientras que la certificación de componentes se enfoca además de a eso, al cumplimiento de los
requisitos técnicos que aseguran la interoperabilidad. Esta perspectiva describe los procesos de
certificación, enumerando los pasos necesarios, las partes implicadas y los diferentes niveles de
certificados que se pueden obtener.

3. Perspectiva de gobernanza de los datos: Establece roles, funciones y procesos desde la perspec-
tiva de gobernanza y compliance en los IDS. Si bien en los IDS se permite actuar conforme a reglas
negociadas, no se imponen regulaciones fijas, ofreciendo un marco personalizable. La gobernanza
es imprescindible para facilitar el intercambio seguro de datos, fomentar relaciones de confianza y
la negociación de acuerdos y promover la transparencia.

Frente a la creciente necesidad de gestionar datos que trascienden las fronteras de una sola orga-
nización, el IDS-RAM distribuye de manera federada los derechos de decisión, impulsando una
gobernanza colaborativa esencial para el éxito en entornos digitales y de negocio innovadores.

3.2.2. Dataspace Protocol (DSP)

El protocolo de espacio de datos es un conjunto de especificaciones que regula la transferencia de
conjuntos de datos entre entidades independientes. Estas especificaciones definen los esquemas y pro-
tocolos necesarios para que las entidades publiquen datos, negocien acuerdos y accedan a datos como
parte de una federación de sistemas técnicos denominada espacio de datos. Utilizaremos como referen-
cia la versión 2024-1, que es calificada como estable [37].

Este protocolo se puede dividir en tres más específicos: protocolo de catálogos, protocolo de nego-
ciación de contratos y protocolo de proceso de transferencia. Además, también incluye un glosario de
términos donde se definen los conceptos clave de este protocolo y de los espacios de datos en general.

Para compartir conjuntos de datos es necesario administrar sus metadatos y sus políticas de acceso
asociadas, los catálogos son la forma que utilizan los espacios de datos para permitir a los participantes
encontrar los datos que necesitan. Un catálogo contiene metadatos sobre los conjuntos de datos, que
proporcionan información imprescindible como su descripción, origen, formato, estructura, propiedades
o políticas de acceso y uso. El protocolo de catálogos describe como se publica y accede a estos catálo-
gos usando puntos de acceso HTTPS. Los catálogos se representan usando el Data Catalog Vocabulary
(DCAT), y las políticas de acceso mediante el Open Digital Rights Language (ODLR).

El protocolo de negociación de contratos se describe como una máquina de estados (ver Figu-
ra 3.7a), donde el proceso de negociación va transicionando de un estado a otro, provocado por los
mensajes que se mandan el proveedor y el consumidor (marcados con P y C en la figura). Cada proceso
de negociación es identificado por un IRI. Los tipos de mensajes que se pueden enviar son: solicitud,
oferta, acuerdo, verificación, evento de negociación y terminación.

38

3.2. International Data Spaces Association (IDSA)

El protocolo de proceso de transferencia controla el proceso de transferencia, ya que la transferencia
de datos en sí es responsabilidad del protocolo de transporte. La transferencia de datos puede ser de
dos tipos: push o pull, en la primera es el proveedor el que envía los datos a un punto de acceso del
consumidor y en la segunda el consumidor solicita los datos a un punto de acceso del proveedor. Los
estados que puede atravesar el proceso de transferencia se muestran en la Figura 3.7b.

(a) Proceso de negociación de un contrato (b) Proceso de transferencia de datos

Figura 3.7: Máquinas de estados del Dataspace Protocol (DSP) [37]

3.2.3. IDSA Rulebook

El libro de reglas de IDSA está dirigido a los participantes de los espacios de datos, iniciativas de
intercambio de datos, personas y empresas interesadas en los estándares de intercambio de datos y aque-
llos que quieren saber cómo configurar espacios de datos. En este documento se recogen todas las pautas
necesarias para que cualquier organización pueda empezar a utilizar espacios de datos basados en IDS
[38]. No todas estas pautas son obligatorias y abarcan los siguientes objetivos:

Funcionalidad de los servicios comunes, así como su definición, procesos y servicios de roles
específicos.

Cómo implementar o usar un artefacto técnico de IDSA.

Trabajo y la colaboración dentro de los servicios de datos.

Base legal en cumplimiento con el entorno regulatorio para garantizar la confianza y la seguridad.

Es decir, el libro de reglas de IDSA es un marco de gobernanza que contiene todos los requisitos
funcionales, técnicos, operacionales y legales para construir y operar espacios de datos basados en IDS.

39

Capítulo 3. Espacios de Datos

3.3. Gaia-X Association

La asociación Gaia-X tiene sus orígenes en 2019, y entre sus miembros fundadores encontramos
importantes empresas alemanas y francesas, centros de investigación, la IDSA o a los gobiernos de
Alemania y Francia [39, 40]. Actualmente se organiza como una organización sin ánimo de lucro y tiene
sede en Bélgica.

Gaia-X es otra de las más influyentes iniciativas en el ámbito de la estandarización de los espacios de
datos [41], pero su objetivo va más allá que el de la IDSA. No se centra en los espacios de datos sino en
otro concepto similar: ecosistemas federados de datos. En estos ecosistemas federados los participantes
pueden ofrecen y consumir servicios y datos en competencia. Este concepto engloba a los espacios de
datos, pero moviendo el foco de solo los datos para incluir también a los servicios, creando así una suerte
de cloud descentralizada [41, 42].

Entre los proyectos que desarrolla Gaia-X para cumplir con su misión, destacan los siguientes [43]:

Estándares y directrices técnicas: Documento de arquitectura, documento de cumplimiento, do-
cumento de gestión de identidad, credenciales y acceso y documento de intercambio de datos.

Implementación: La comunidad de Gaia-X proporciona los componentes software que imple-
mentan sus especificaciones técnicas.

Cámara de compensación digital: Gaia-X se encarga de supervisar y certificar organizaciones
para que provean servicios de cámaras de compensación en el ecosistema de Gaia-X. Las cámaras
de compensación forman el corazón del ecosistema, y se encargan de certificar que todos los
participantes y servicios cumplen las reglas y principios de Gaia-X.

Academia: Actúa como el centro de formación y difusión de conocimientos de la iniciativa. Se
centra en capacitar a profesionales y actores del ecosistema digital en los principios, estándares y
herramientas de Gaia-X, mediante cursos, talleres, seminarios y materiales educativos.

Proyectos avalados: Iniciativas que han sido evaluadas y aprobadas por la asociación Gaia-X por
cumplir con sus altos estándares de interoperabilidad, seguridad y gobernanza. Estos proyectos ac-
túan como referentes y modelos de buenas prácticas dentro del ecosistema, demostrando solucio-
nes efectivas y seguras que contribuyen a la soberanía digital europea y fomentan la colaboración
entre diversos actores.

3.4. Implementaciones

En este trabajo vamos a utilizar componentes de Eclipse Dataspace Components (EDC) y de INES-
Data para implementar nuestro proveedor. En esta sección describimos brevemente el contexto de estas
iniciativas. Los detalles técnicos relevantes se detallan más adelante, en el Capítulo 5 (Sección 5.3: Con-
texto tecnológico).

Si estuviéramos interesados en encontrar implementaciones alternativas que sigan los estándares de
los IDS, podríamos buscarlas por ejemplo en el informe de conectores de datos de IDSA (data connector
report) [44], en la lista de conectores certificados por IDSA [45], o también en el folleto de casos de uso
de IDSA [30]. Algunos de estos conectores se muestran en la Figura 3.8.

40

3.4. Implementaciones

Figura 3.8: Información sobre algunos conectores basados en el IDS-RAM, extraida de [44]

3.4.1. Eclipse Dataspace Components (EDC)

Eclipse Dataspace Components es un framework integral (concepto, arquitectura, código, ejemplos)
que permite construir espacios de datos. El framework proporciona un conjunto básico de características,
que los usuarios pueden reutilizar, ampliar y personalizar de acuerdo con sus necesidades. Se basa en las
especificaciones del marco de gobernanza de Gaia-X y el protocolo de espacios de datos de IDSA [46].

El proyecto EDC comienza en junio de 2021, es administrado por la Eclipse Foundation y es por
tanto de de código abierto. También es apoyado por algunas empresas y organizaciones de investigación:
Amadeus, BMW Group, Fraunhofer, Huawei, Microsoft y TNO: Innovation for life.

EDC desarrolla los siguientes componentes: Conector, Catálogo federado, Centro de identidades,
Servicio de registro y Panel de datos (GUI de administración). También provee muestras y un repositorio
con un espacio de datos mínimo viable para apoyar la adopción por desarrolladores.

Dos ejemplos de espacios de datos que utilizan EDC son EONA-X (sector turismo, movilidad y
logística) y Catena-X (sector industria automotriz). Ambos forman parte de los proyectos avalados por
Gaia-X.

3.4.2. INESData

INESData (Infraestructura para la INvestigación de ESpacios de DAtos distribuidos) es una incuba-
dora de espacios de datos en España liderada desde la Universidad Politécnica de Madrid (UPM). El
proyecto tiene como objetivos fomentar la adopción de los espacios de datos, acelerar la creación de
espacios de datos en España y contribuir al ecosistema global con cuatro espacios de datos naciona-
les: idioma, movilidad, medios y legal. El proyecto está financiado por el Ministerio de Transformación
Digital de España y NextGenerationEU, en el marco del Programa UNICO I+D Cloud [47].

Los objetivos técnicos del proyecto son (transcrito de [4]):

Proporcionar una arquitectura lista para usar para la creación de espacios de datos alineados con
arquitecturas a nivel europeo (IDSA, Gaia-X), así como modelos de gobernanza para espacios de
datos. Incluirá componentes horizontales que respalden estas arquitecturas y faciliten el despliegue
de espacios de datos en contextos nacionales, regionales o locales, incluidos entornos de nube.

Implementar servicios de valor agregado basados en Inteligencia Artificial para proporcionar
una capa de conocimiento sobre el Espacio de Datos. Con especial atención en:

41

Capítulo 3. Espacios de Datos

• Servicios para el procesamiento del lenguaje natural que se pueden integrar en espacios de
datos que dependen en gran medida de datos textuales.

• Servicios de análisis de datos multimedia y multimodales a gran escala basados en procesa-
miento de señales y algoritmos de aprendizaje automático.

• Servicios para generar y aprovechar gráficos de conocimiento a partir de fuentes estructura-
das y semiestructuradas, incluida la explicabilidad de los algoritmos de aprendizaje automá-
tico.

Implementar múltiples espacios de datos para demostrar los beneficios de los espacios de da-
tos y la aplicabilidad de la tecnología relacionada. Algunas de ellas serán versiones nacionales,
regionales o locales de espacios de datos comunes europeos actualmente en desarrollo.

El conector que desarrolla INESData para sus espacios de datos se basa en el framework de EDC.
A fecha de 22 de febrero de 2025, los repositorios públicos asociados al proyecto de INESData son los
siguientes [48]:

inesdata-map
• getstarted
• gen-ai
• graph-engine
• editor-frontend
• editor-backend

inesdata-espacio-linguistico
• elg-connector
• elg-web-service
• interface
• demostradores

inesdata-connector
inesdata-connector-interface
inesdata-registration-service
inesdata-public-portal-frontend
inesdata-public-portal-backend
inesdata-local-env
inesdata-ml-schema
inesdata-mov-data-generation

3.5. Apoyo institucional

3.5.1. Unión Europea

Los espacios de datos son una propuesta clave en la estrategia de digitalización de la Unión Euro-
pea [49]. Los datos son considerados esenciales para el crecimiento económico, la competitividad, la
innovación y la creación de empleo. Por eso, el objetivo de la UE es crear un mercado único de datos
que fortalezca la competitividad europea a nivel global [50].

Los espacios de datos se alinean y son promovidos por dos de las regulaciones más recientes sobre
los datos a nivel europeo como son la ley de gobernanza de datos (2022, Data Governance Act) [51] y la
ley de datos (2024, Data Act) [52].

La UE promueve la creación de espacios de datos en 14 sectores estratégicos (p.e.: agricultura, sa-
lud, energía, movilidad o cultura) y financia iniciativas como el centro de apoyo para espacios de datos
(DSSC, Data Spaces Support Centre) [29]. Otras iniciativas como GAIA-X, han contado desde sus ini-
cios con el apoyo de los gobiernos de Alemania y Francia [40].

42

3.6. Ejemplo: movilidad

3.5.2. España

El Ministerio para la Transformación Digital presentó en noviembre de 2024 un ambicioso Plan de
Impulso de los Espacios de Datos Sectoriales, apoyando así la agenda estratégica España Digital 2026
[53, 54]. Este plan tiene como objetivo fomentar la innovación y mejorar la competitividad en todos los
sectores productivos de España. Cuenta con un presupuesto total de 500 millones de euros y durará hasta
el año 2026. En la Figura 3.9 se pueden ver las iniciativas del proyecto y sus presupuestos asignados.

Figura 3.9: Tabla resumen con las iniciativas incluidas en el Plan de Impulso de los Espacios de Datos
Sectoriales [54]

3.6. Ejemplo: movilidad

Los espacios de datos hacen factibles proyectos que no serían posibles sin ellos. Muy evidentemente,
en aquellos casos donde ninguna entidad tenga por sí sola todos los datos necesarios. El beneficio de los
espacios de datos es por tanto que permiten el desarrollo de nuevos servicios innovadores. Proporcionan
el ecosistema necesario para acceder a los datos, y además permitiendo que los participantes mantengan
su soberanía [26].

Los espacios de datos tienen aplicaciones en la inmensa mayoría de sectores económicos, pero esto es
quizás mas evidente para el sector de la movilidad. El proyecto espacio de datos de movilidad (Mobility
Data Space, MDS) es una iniciativa del gobierno federal alemán, y remonta sus orígenes a 2019. Está
operativo desde 2022 y cuenta con más de 100 miembros interesados en el sector de la movilidad:
empresas de transporte públicas y privadas, universidades e instituciones académicas y empresas de
automoción [55].

El MDS es un proyecto avalado por Gaia-X y funciona como un mercado de datos de movilidad y
logística. Algunos de los casos de uso que tiene el MDS son los cuatro que contiene el folleto de casos
de uso de IDSA para el MDS [30], o los otros diez que podemos encontrar en su página web [56].

1. Mejores pronósticos de tráfico mediante aprendizaje automático (PTV Group)

2. Medición y pronóstico de la calidad del aire (ZF Group)

43

Capítulo 3. Espacios de Datos

3. Uso sostenible de los motores eléctricos para vehículos eléctricos híbridos enchufables (CARUSO
Dataplace)

4. Decisiones basadas en información de riesgos (Volkswagen Group)

5. Soluciones Avanzadas de Datos: Datos de vehículos y condiciones de las carreteras (Bridgestone
Mobility Solutions)

6. Conexión de datos para una mayor seguridad vial (Esri)

7. Puntos peligrosos en el tráfico (Mobias)

8. Información local sobre riesgos (BMW)

9. ’Monitoreo de Estacionamiento’ y ’Carretera Resbaladiza’ (Mercedes-Benz)

10. Ecosistema urbano inteligente para una vida urbana centrada en el ser humano (Solita)

11. Asistente inteligente de ubicación DeepVolt (DeepVolt)

12. Paga según cómo conduces (Empresas aseguradoras)

13. Optimización basada en IA de las ofertas de movilidad actuales (highQ)

14. Información sobre la ocupación de plazas de estacionamiento, OptiPark ([ui!] Urban Mobility
Innovations)

Los casos de uso del 4 al 9 están muy relacionados entre sí, siendo el tema común entre ellos la segu-
ridad vial. Si estas empresas recogen datos mediante sensores instalados en sus vehículos – siempre con
el consentimiento de los clientes – para, por ejemplo, detectar el mal estado en las carreteras, detectar
condiciones climáticas adversas o detectar accidentes que ya hayan sucedido, podrían alertar en tiempo
real a otros vehículos, incluso de diferentes compañías. Esto permitiría a los conductores tomar precau-
ciones, recalcular rutas o adoptar las medidas necesarias. Además, la información podría compartirse
con las autoridades, centros de control de tráfico y servicios de mantenimiento de carreteras para que
actúen con la mayor celeridad posible.

Los casos de uso 9 y 14 hacen énfasis en el estacionamiento. Disponer de un mapa en tiempo real
de plazas de aparcamiento libres, y de una estimación futura de su ocupación, serviría por ejemplo para
reducir la congestión de tráfico reduciendo el tiempo necesario para encontrar una plaza de aparca-
miento. Esta información también sería muy útil por ejemplo, para que las autoridades puedan mejorar
la gestión de los aparcamientos.

Nótese que ambas aplicaciones se benefician de cuantos más participantes haya en el espacio de datos,
mejorando el servicio por igual para todos. Los oferentes de datos se benefician por el precio que cobran
a sus datos, y los consumidores de datos por el mejor servicio que ofrecen a sus clientes, pudiendo las
empresas adoptar ambos roles. Con una mayor disponibilidad de datos aumenta su valor, se fomenta la
innovación, la competencia y la creación de nuevos servicios y productos que redundan en un mayor
beneficio para la sociedad en su conjunto.

44

Capítulo 4

Requisitos y análisis

En este capítulo describimos las fases iniciales de elicitación de requisitos y análisis del proveedor
que desarrollaremos en este trabajo. Para ello, nos basaremos en las especificaciones de los espacios de
datos internacionales (IDS), en concreto en el IDS RAM [36] y en el Dataspace Protocol (DSP) [37].

La fase de elicitación de requisitos tiene como objetivo identificar y formalizar las necesidades,
expectativas y restricciones de los usuarios y demás partes interesadas para el desarrollo del sistema. De
manera informal, describimos la funcionalidad del proveedor en la Sección 4.1: Descripción del sistema,
en donde podemos identificar los actores principales, los casos de uso, algunas clases y algunos de los
requisitos del sistema. Y de manera formal, detallamos los requisitos en la Sección 4.3: Requisitos.
Además, también describimos los casos de uso en la Sección 4.4 y especificamos algunos de ellos.

La fase de análisis utiliza los requisitos y las descripciones abstractas de la fase anterior y las trans-
forma en descripciones concretas que muestran de forma más evidente el comportamiento del sistema.
Corresponden a esta fase la identificación de clases, la elaboración del Modelo del dominio (Sección 4.5)
y la Realización en análisis de los casos de uso (Sección 4.6).

4.1. Descripción del sistema

El proveedor debe integrarse en un espacio de datos, el cual estará formado por otros participantes
debidamente identificados. El proveedor tiene como propósito compartir con el resto de participantes
unos datos que se almacenan en un warehouse. Pero como paso previo para dar acceso a ellos, deberá
proporcionar unos metadatos (catálogo) que contienen un vocabulario y las políticas de acceso para
cada uno de los activos que ofrece. El proveedor no almacena los datos, a los cuales tiene acceso de
forma externa. Si que almacena sin embargo los metadatos ya mencionados.

El catálogo es una lista que contiene todas las ofertas del proveedor. Cada oferta fija las condicio-
nes (política de acceso) para acceder a uno o más activos. Los activos son metadatos que identifican,
describen y representan a un determinado recurso (principalmente, datos). El administrador del pro-
veedor es el encargado de gestionar el catálogo, creando o modificando políticas de acceso, creando
o modificando activos y creando o modificando ofertas, es decir, asociando las políticas a los activos.

Los participantes que quieran acceder a los datos del proveedor deberán previamente firmar un con-
trato tras un proceso de negociación, aceptando una oferta. Después podrán solicitar la transferencia
de los datos, indicando el activo al que quieren acceder y el contrato firmado.

La identidad de cada participante consiste en la serie de certificados que posee. Los tipos de cer-
tificados que existen son definidos y emitidos por la autoridad de gobernanza del espacio de datos y
pueden ser requeridos como parte de una política de acceso. En última instancia es el administrador el
encargado de crear y modificar la identidad del proveedor.

45

Capítulo 4. Requisitos y análisis

4.2. Roles de usuarios del sistema

Con nuestro proveedor interactuarán cinco tipos de usuarios, cada uno con diferentes intenciones,
permisos y capacidades. Estas descripciones están basadas en el IDS RAM [36]. Son los siguientes:

Consumidor: Participante del espacio de datos que quiere acceder a los datos.

Administrador: Encargado de gestionar el proveedor. Administra la identidad, el catálogo, las
políticas de acceso y los activos.

Repositorio de vocabularios: Participante del espacio de datos que almacena vocabularios de
todos los participantes, creando así un vocabulario armonizado para el espacio de datos.

Intermediario de metadatos: Participante del espacio de datos que almacena ofertas de todos los
participantes, con el objetivo de aumentar su disponibilidad.

Warehouse: Base de datos que almacena los datos que comparte el proveedor.

Omitimos al proveedor de identidad, a saber, participante del espacio de datos que proporciona
servicios de autoridad de certificación (emisión de certificados) y un servicio de aprovisionamiento de
atributos dinámicos (emisión de tokens), porque suponemos que el administrador adquiere los certifi-
cados necesarios directamente.

4.3. Requisitos

Los requisitos definen lo que un sistema informático debe hacer o cómo debe comportarse. Describen
por tanto las funcionalidades, características y limitaciones que debe tener para cumplir con el objetivo
del proyecto.

Queremos que el proveedor cumpla con los estándares de los espacios de datos internacionales y, por
tanto, estos requisitos están orientados a implementar el Dataspace Protocol [37], y basados también en
el resto de requisitos de seguridad, soberanía y confianza del IDS Reference Architecture Model [36].

Requisitos de información

RI-0 La identidad del sistema está formada por un identificador único, un certificado X.509 y
los certificados específicos del espacio de datos (por ejemplo, de pertenencia o de entorno
operacional1).

RI-1 Las políticas de acceso contendrán restricciones como, por ejemplo, prohibir el almacena-
miento de los datos, o su transferencia a terceras partes. También pueden requerir al consu-
midor tener un certificado específico.

RI-2 Un activo puede describir cualquier tipo de recurso identificable como, por ejemplo, dato-
s/información, aplicaciones o servicios. Los activos deben describir el tipo de contenido y su
forma de acceso. Para ello tendrá atributos de identificador, nombre, descripción, versión y
tipo de contenido. En caso de describir datos, se podrá detallar su semántica con un vocabu-
lario. También se podrá establecer su precio, forma de cobro y métodos de pago aceptados.

1Un certificado de entorno operacional es emitido por el cuerpo de gobernanza del espacio de datos para garantizar que un
participante cumple con ciertos requisitos de confianza y seguridad en relación con sus procesos organizativos y su entorno
operativo [36].

46

4.3. Requisitos

Requisitos funcionales

RF-0 El sistema debe permitir al administrador definir su identidad (del sistema).

RF-1 El sistema debe permitir al administrador definir activos.

RF-2 El sistema debe permitir al administrador definir políticas de acceso.

RF-3 El sistema debe permitir al administrador definir ofertas, relacionando a una política de ac-
ceso con al menos un activo.

RF-4 El sistema debe permitir a los consumidores con identidad válida, consultar su identidad.

RF-5 El sistema debe permitir a los consumidores con identidad válida, acceder a su catálogo.

RF-6 El sistema debe permitir a los consumidores con identidad válida, negociar un contrato sobre
una oferta concreta.

RF-7 El sistema debe permitir a los consumidores con identidad válida, iniciar un proceso de
transferencia para un activo, si existe un contrato válido acordado por ambas partes.

RF-8 El sistema debe permitir a los consumidores con identidad válida, acceder a los datos, si
existe un proceso de transferencia validado y activo.

Restricciones

RE-0 El sistema (el software) debe estar certificado por la IDSA. La certificación demuestra que
el sistema provee la funcionalidad, interoperabilidad y nivel de seguridad requeridos.

RE-1 El sistema (la instancia) debe adquirir un certificado X.509 de un autoridad de certificación
y un token de atributo dinámico de un servicio de aprovisionamiento de atributos dinámicos
para identificarse2.

RE-2 El sistema debe implementar el Dataspace Protocol de IDSA.

RE-3 El sistema debe tener acceso al warehouse.

Requisitos no funcionales

RNF-0 El sistema debe poder verificar la identidad de los consumidores, además de sus capacidades
y características de seguridad.

RNF-1 El sistema debe permitir adaptar el catálogo para cada consumidor, ocultando o filtrando
ofertas según criterios personalizados.

RNF-2 El sistema debe asegurar que las comunicaciones con el exterior estén encriptadas y su inte-
gridad protegida.

RNF-3 El sistema debe almacenar en un registro cada acción efectuada, accesos o transmisiones de
datos e incidentes.

RNF-4 El sistema debe poder asegurarse de que las política de acceso que establece serán cumplidas
por los consumidores.

RNF-5 El sistema debe permitir el acceso a los datos de dos maneras: enviándolos directamente al
consumidor o mediante un punto de acceso (push/pull).

2Un servicio de aprovisionamiento de atributos dinámicos (Dynamic Attribute Provisioning Service, DAPS) verifica la
validez del software y la certificación del participante para emitir los token de atributo dinámico (Dynamic Attibute Token,
DAT), que además de identificar al portador, contienen información dinámica como la ubicación del dispositivo, que podrían
cambiar con el tiempo [36].

47

Capítulo 4. Requisitos y análisis

4.4. Casos de uso

Los casos de uso son una descripción detallada de cómo los usuarios interactúan con el sistema
para alcanzar un objetivo. En esta sección hemos identificado todos los casos de uso del sistema y los
describimos en la Figura 4.1: Diagrama de casos de uso. Además, especificaremos algunos de los casos
de uso más relevantes: cuatro casos de uso del consumidor en la Subsección 4.4.1 y cuatro casos de uso
del administrador en la Subsección 4.4.2 .

No es nuestro objetivo hacer una especificación exhaustiva de todos los casos de uso y por eso solo
nos hemos centrado en ocho de ellos. Teniendo como referencia al resto, especificar los seis restantes no
debería ser un ejercicio complicado.

(a) Casos de uso del consumidor (b) Casos de uso del administrador

Figura 4.1: Diagrama de casos de uso

4.4.1. Del consumidor

Verificar identidad

Actores: Consumidor.

Precondiciones: Se ha producido un TLS handshake y se ha establecido un canal seguro.

Secuencia normal:

1. El Consumidor envía un nonce.
2. El sistema envíaa otro nonce y solicita la identidad del Consumidor.
3. El Consumidor envía su certificado de identidad y solicita la identidad del sistema.
4. El sistema verifica el certificado del Consumidor y envía su certificado de identidad.
5. El Consumidor verifica el certificado del sistema.
6. El sistema solicita el token de atributo dinámico (DAT) del Consumidor.
7. El Consumidor envía su DAT y solicita el del sistema.
8. El sistema verifica el DAT del Consumidor y envía el suyo.
9. El Consumidor verifica el DAT del sistema.

Alternativas y excepciones:

48

4.4. Casos de uso

(4a, 8a) Si la verificación falla, el caso de uso queda sin efecto.
(5a, 9a) Si la verificación del consumidor falla, el caso de uso queda sin efecto.

Postcondiciones: El consumidor y el sistema han verificado sus identidades.

Consultar catálogo

Actores: Consumidor.

Precondiciones: El consumidor y el sistema han verificado sus identidades.

Secuencia normal:

1. El Consumidor solicita consultar el catálogo mandando una petición firmada.
2. El sistema comprueba que la firma de la petición es correcta.
3. El sistema filtra las ofertas del catálogo para devolver solo las que puede negociar el Con-

sumidor.
4. El sistema devuelve el catálogo filtrado.

Alternativas y excepciones:

(2a) Si la firma no es correcta el sistema devuelve un error y el caso de uso queda sin efecto.

Postcondiciones: El Consumidor tiene acceso a todas las ofertas que puede negociar.

Negociar contrato

Actores: Consumidor.

Precondiciones: El consumidor y el sistema han verificado sus identidades.

Secuencia normal:

1. El Consumidor solicita negociar un contrato mandando una petición firmada con el id de
una oferta.

2. El sistema comprueba que la sintaxis, el contenido y la firma de la petición son correctas.
3. El sistema crea una negociación con estado solicitada.
4. El sistema decide mandar una contraoferta.
5. El sistema manda la oferta al Consumidor y cambia el estado de la negociación a ofertada.
6. El Consumidor verifica que la sintaxis, el contenido y la firma de la oferta son correctas.
7. El Consumidor acepta la oferta y manda un acuerdo al sistema.
8. El sistema comprueba que la sintaxis, el contenido y la firma del acuerdo son correctas.
9. El sistema cambia el estado de la negociación a aceptada.

10. El sistema registra el acuerdo, se lo manda al Consumidor y cambia el estado de la nego-
ciación a acordada.

11. El Consumidor verifica que la sintaxis, el contenido y la firma del acuerdo son correctas.
12. El Consumidor registra el acuerdo e informa al sistema de su verificación.
13. El sistema cambia el estado de la negociación a verificada.
14. El sistema cambia el estado de la negociación a finalizada, crea un contrato, se lo manda

al Consumidor y le informa de que la negociación ha terminado.

Alternativas y excepciones:

(2a, 6a, 8a) Si algo no es correcto el sistema devuelve un error y el caso de uso queda sin efecto.

49

Capítulo 4. Requisitos y análisis

(4a) Si el sistema acepta la petición el caso de uso continúa en el paso 10.
(4b) Si el sistema rechaza la petición el caso de uso queda sin efecto.

(4c, 10a, 14a) Si el sistema decide terminar la negociación el caso de uso queda sin efecto.
(7a) Si el Consumidor rechaza la oferta el caso de uso queda sin efecto.
(7b) Si el Consumidor decide mandar una contraoferta, el caso de uso continúa en el paso 1.

(7c, 12a) Si el Consumidor solicita terminar la negociación el caso de uso queda sin efecto.

Postcondiciones: El Consumidor y el sistema almacenan un contrato acordado por ambas partes.

Iniciar transferencia

Actores: Consumidor.

Precondiciones: El consumidor y el sistema han verificado sus identidades.

Secuencia normal:

1. El Consumidor solicita iniciar una transferencia mandando una petición firmada indicando
el id del activo al que quiere acceder, el id de un contrato y la forma de acceso a los datos
(push/pull).

2. El sistema comprueba que la sintaxis, el contenido y la firma de la petición son correctas.
3. El sistema comprueba que el activo existe.
4. El sistema comprueba que el contrato existe y que la oferta que se negocia en él contiene

al activo al que se quiere acceder.
5. El sistema crea una transferencia con estado solicitada.
6. El sistema cambia el estado de la transferencia a empezada e informa al Consumidor.

Alternativas y excepciones:

(2a, 3a, 4a) Si no se verifica, el sistema devuelve un error y el caso de uso queda sin efecto.

Postcondiciones: El sistema tiene un proceso de transferencia empezado.

4.4.2. Del administrador

Modificar identidad

Actores: Administrador.

Precondiciones: Ninguna.

Secuencia normal:

1. El Administrador introduce la identidad y su código de autorización.
2. El sistema comprueba que el Administrador está autorizado.
3. El sistema comprueba que la sintaxis y el contenido de la identidad son correctos.
4. El sistema crea y se asigna la nueva identidad.

Alternativas y excepciones:

(2a) Si el código de autorización no es válido, el sistema devuelve un error y el caso de uso
queda sin efecto.

(3a) Si la identidad no es correcta, el sistema devuelve un error y el caso de uso queda sin efecto.

Postcondiciones: El sistema tiene una nueva identidad actualizada.

50

4.4. Casos de uso

Crear activo

Actores: Administrador, Repositorio de vocabularios.

Precondiciones: Ninguna.

Secuencia normal:

1. El Administrador introduce su código de autorización y todos los datos de un nuevo activo:
identificador, nombre, descripción, versión, tipo de contenido y forma de acceso al recurso
que representa. Opcionalmente podrá introducir un vocabulario (y si se quiere publicar en
un repositorio de vocabularios), precio, forma de cobro y métodos de pago.

2. El sistema comprueba que el Administrador está autorizado.
3. El sistema comprueba que la sintaxis y el contenido del activo son correctos.
4. El sistema crea el activo.
5. El sistema crea el vocabulario.
6. El sistema publica el vocabulario en un repositorio de vocabularios.
7. El Repositorio de vocabularios valida y almacena el vocabulario.

Alternativas y excepciones:

(2a) Si el código de autorización no es válido, el sistema devuelve un error y el caso de uso
queda sin efecto.

(3a) Si el activo no es correcto, el sistema devuelve un error y el caso de uso queda sin efecto.
(5a) Si el Administrador no ha indicado vocabulario, el caso de uso termina con éxito.
(6a) Si el Administrador ha indicado que no quiere que se publique el vocabulario, el caso de

uso termina con éxito.

Postcondiciones: El sistema tiene un nuevo activo.

Crear política de acceso

Actores: Administrador.

Precondiciones: Ninguna.

Secuencia normal:

1. El Administrador introduce su código de autorización y los datos de una nueva política de
acceso: identificador, descripción y restricciones.

2. El sistema comprueba que el Administrador está autorizado.
3. El sistema comprueba que la sintaxis y el contenido de la política de acceso son correctos.
4. El sistema crea la política de acceso.

Alternativas y excepciones:

(2a) Si el código de autorización no es válido, el sistema devuelve un error y el caso de uso
queda sin efecto.

(3a) Si la política de acceso no es correcta, el sistema devuelve un error y el caso de uso queda
sin efecto.

Postcondiciones: El sistema tiene una nueva política de acceso.

51

Capítulo 4. Requisitos y análisis

Crear oferta

Actores: Administrador, Intermediario de metadatos.

Precondiciones: Ninguna.

Secuencia normal:

1. El Administrador introduce su código de autorización y los datos de una nueva oferta:
nombre, activos a los que da acceso y la política de acceso asociada.

2. El sistema comprueba que el Administrador está autorizado.
3. El sistema comprueba que la sintaxis y el contenido de la oferta son correctos.
4. El sistema crea la oferta.
5. El sistema publica la oferta en un intermediario de metadatos.
6. El Intermediario de metadatos valida y almacena la oferta.

Alternativas y excepciones:

(2a) Si el código de autorización no es válido, el sistema devuelve un error y el caso de uso
queda sin efecto.

(3a) Si la oferta no es correcta, el sistema devuelve un error y el caso de uso queda sin efecto.

Postcondiciones: El sistema tiene una nueva oferta, que pasará a formar parte del catálogo.

4.5. Modelo del dominio

Mostramos el modelo del dominio resumido en la Figura 4.2 y el modelo detallado en la Figura 4.3.
Para representar las clases Política de acceso y Oferta hemos utilizado como referencia el modelo Open
Digital Rights Language (ODRL) [57], que es usado por el Dataspace Protocol [37].

Figura 4.2: Modelo del dominio resumido

52

4.6. Realización en análisis de los casos de uso

El proveedor tiene una identidad, un registro (logger), tiene activos que son opcionalmente descritos
por una ontología y su coste fijado por precio, tiene políticas de acceso y tiene un catálogo. El catálogo
se compone de ofertas, donde cada una ofrece al menos un activo y está limitada por una política de
acceso. El consumidor empieza una negociación donde se negocian ofertas (y contraofertas) y si se llega
a un acuerdo se produce un contrato, y solicita transferencias de un activo invocando un contrato.

Figura 4.3: Modelo del dominio detallado

4.6. Realización en análisis de los casos de uso

En esta sección realizamos un diagrama de secuencia para las secuencias principales de tres de los ca-
sos de uso del consumidor que hemos especificado anteriormente. En la Figura 4.4 mostramos consultar
catálogo, en la Figura 4.5 negociar contrato y en la Figura 4.6 iniciar transferencia. Hemos dividido el
diagrama de secuencia de negociar contrato en 3 subfiguras para mejorar la legibilidad, correspondiendo
a los pasos 1 al 5, 6 al 10 y 11 al 14 de la especificación del caso de uso.

Tampoco es nuestro objetivo que la realización en análisis de los casos de uso sea completa, pero sí
pretendemos mostrar la interacción entre las clases del sistema. Por ejemplo, la clase proveedor sería la
encargada de interactuar con los actores y crearía en su caso los activos y las políticas de acceso. La clase

53

Capítulo 4. Requisitos y análisis

catálogo sería la encargada de gestionar las ofertas del proveedor. Y por otra parte, la clase consumidor
sería la encargada de crear las negociaciones y transferencias.

Figura 4.4: Diagrama de secuencia: Consultar catálogo

54

4.6. Realización en análisis de los casos de uso

(a) Negociar contrato (pasos del 1 al 5)

(b) Negociar contrato (pasos del 6 al 10)

Figura 4.5: Diagrama de secuencia: Negociar contrato

55

Capítulo 4. Requisitos y análisis

(c) Negociar contrato (pasos del 11 al 14)

Figura 4.5: Diagrama de secuencia: Negociar contrato (cont.)

56

4.6. Realización en análisis de los casos de uso

Figura 4.6: Diagrama de secuencia: Iniciar transferencia

57

Capítulo 5

Diseño

El diseño es el proceso donde se especifica la estructura, componentes, interfaces y comportamiento
de un sistema antes de implementarlo. El diseño es por tanto el proceso intermedio entre el análisis de
requisitos y la implementación. En este capítulo describimos el diseño, que hemos separado en el diseño
de los datos, y el diseño del proveedor.

El diseño de los datos se refiere al diseño conceptual de las principales estructuras de datos del
proveedor, en las que distinguimos dos áreas de ámbito. Por un lado tenemos que diseñar datos que
incumben a todo un espacio de datos, estas serán las credenciales (Sección 5.1). Esto es necesario
porque el proveedor no será diseñado para integrarse en ningún espacio de datos específico. Y por otro
lado diseñaremos los datos que necesita el proveedor por sí mismo, estos serán las políticas de acceso,
los activos, y la ontología. Todos estos se diseñan en la Sección 5.2: Metadatos.

El diseño del proveedor está condicionado por la elección de las dos tecnologías que hemos decidido
utilizar en el proyecto, y de las que ya hemos hablado en el capítulo de espacios de datos (Sección 3.4).
En la Sección 5.3: Contexto tecnológico volveremos a hablar sobre ellas, explicando las tecnologías
y estándares que usaremos y todos los detalles técnicos relevantes para diseñar el proveedor. En este
punto comentaremos también la adaptación necesaria de los datos para hacerlos compatibles con la
elección de estas tecnologías, siguiendo los estándares correspondientes. Esta adaptación se comenta en
la Sección 5.4: Adaptación de los datos a los estándares de EDC e INESData.

Elaboraremos el diseño del proveedor utilizando como piezas clave a los componentes de EDC e
INESData. Nuestro diseño elegirá los componentes adecuados y describirá el uso de sus interfaces y co-
mo se conectan entre ellas. Este diseño se detalla en la Sección 5.5: Arquitectura lógica. La segunda parte
del diseño se centra en la infraestructura de despliegue, que detallamos en la Sección 5.6: Arquitectura
física. Para elaborar este diseño nos hemos basado en recomendaciones de EDC. Por último, describi-
remos en detalle el diseño de EDC. Esto es relevante para poder diseñar extensiones y personalizar los
componentes, cosa que nosotros necesitamos hacer. Este se puede ver en la Sección 5.7.

5.1. Credenciales

El primer paso en el diseño de los datos está relacionado con el diseño de un espacio de datos en
sí mismo. Debería ser la labor de la organización que promueva el espacio de datos la de definir las
credenciales que hay en el espacio de datos y las condiciones para adquirirlas. Nuestro proveedor
no será diseñado para integrarse en ningún espacio de datos específico y por tanto será nuestra labor
diseñarlas. Es decir, que este diseño depende de un diseño previo (el del espacio de datos) que está
ausente.

58

5.1. Credenciales

Las credenciales forman la identidad de un participante en un espacio de datos y son necesarias
entre otras cosas para poder diseñar las políticas de control de acceso. Hemos decidido diseñar tres
credenciales aunque solo utilizaremos la primera para las políticas de acceso. El motivo es para no
perjudicar la interoperabilidad con otros espacios de datos que usen credenciales distintas, que al ser la
más básica no será problemático adaptarla. Las otras dos se pueden tomar como ejemplos de credenciales
que se podrían llegar a utilizar.

Para representar el diseño conceptual de las credenciales hemos decidido utilizar un diagrama de
clases, en el que destacamos las entidades, sus atributos y las relaciones entre ellas. Este diagrama se
muestra en la Figura 5.1, y la descripción detallada del significado de cada atributo en la Tabla 5.1.
Además, damos también una breve descripción informal a continuación:

1. Credencial de Miembro: Contiene información del participante y de su membresía en el espacio
de datos.

2. Credencial de Tipo de Uso: Define el uso que el participante tendrá con los datos. Puede tomar
los siguientes valores: personal, comercial y académico.

3. Credencial de Participante Confiable: Certifica que el participante ha pasado por una auditoría
por el cuerpo de gobernanza del espacio de datos (emisor de las credenciales). Supone haber
validado la información legal y oficial sobre la organización o individuo.

Figura 5.1: Modelo conceptual de las credenciales: diagrama de clases

Para modelar la Prueba de las credenciales nos hemos inspirado en las VCs (ver Subsección 5.3.2:
Identidad digital) [58].

La utilidad adicional de las credenciales es aportar seguridad y confianza a los participantes del es-
pacio de datos. Por ejemplo, una política de uso podría prohibir el uso comercial de unos datos, pero
requiriendo la credencial de TipoDeUso se gana seguridad, evitando depender solo de la buena fe de los
participantes.

59

Capítulo 5. Diseño

ENTIDAD ATRIBUTO DESCRIPCIÓN

Credencial

identificador Identificador de la credencial

tenedor Tenedor o portador de la credencial

emisor Emisor de la credencial

prueba Emitida por el emisor para demostrar la
validez de la información de la credencial

fechaEmision Fecha en el que se ha emitido la credencial

validoHasta Fecha hasta la que es válida la credencial

Miembro
miembroDesde Fecha desde la que es miembro el tenedor

miembroHasta Fecha hasta la que es miembro el tenedor

TipoDeUso tipo Identifica el uso que tenedor dará a los datos

ParticipanteConfiable
nombre Nombre legal completo del tenedor

direccion Dirección completa del tenedor

nif Número de identificación fiscal del tenedor

Prueba

suiteCriptografica Conjunto de algoritmos de cifrado utilizados
para poder verificar la credencial

metodoVerificacion Método que se debe utilizar para verificar
la prueba

fechaCreacion Fecha en la que se ha emitido la prueba

valor Firma del emisor, un binario codificado en
hexadecimal como cadena de caracteres

Participante
id Identificador del participante

nombre Nombre, o alias del participante

Usos
PERSONAL Fines personales e individuales

COMERCIAL Fines comerciales

ACADEMICO Fines académicos y de investigación

Tabla 5.1: Modelo conceptual de las credenciales: descripción de los atributos

5.2. Metadatos

La segunda tarea del diseño de los datos involucra ahora sí a nuestro proveedor en particular. Los
metadatos son lo que nos permite compartir nuestro repositorio, y son la parte fundamental de cualquier
proveedor de un espacio de datos. Los metadatos deben describir con claridad qué datos se comparten,
y con qué condiciones. Serán accesibles para cualquier miembro del espacio de datos, para que pueda
decidir la utilidad que le aportan. En esta sección describimos el diseño de las políticas de acceso, los
activos, y la ontología.

Para diseñar la ontología hemos utilizado como referencia los libros A Semantic Web Primer de An-
toniou y Van Harmelen (2004) [59] y Semantic Web for the Working Ontologist de Allemang y Hendler
(2011) [60].

60

5.2. Metadatos

5.2.1. Políticas de acceso y uso

Las políticas de acceso y uso establecen las condiciones que un consumidor debe cumplir para acceder
o utilizar los datos. Algunas posibilidades podrían ser la ya mencionada de prohibir el uso comercial,
o también: prohibir almacenar los datos, prohibir sacar los datos de la Unión Europea, requerir citar al
proyecto App-PI, acceso especial para investigadores, etc.

Para este trabajo no establecemos ninguna restricción adicional al acceso de los datos1, y establece-
remos una única política que solicite ser miembro del espacio de datos. Definir políticas adicionales
es una cuestión relevante, pero que dejaremos como trabajo futuro. Esto es algo que depende en gran
medida de un trabajo posterior, como de los datos que se quieran compartir y de su sensibilidad, o de las
necesidades que se tengan en cada momento. Lo volveremos a mencionar en el Capítulo 7.

Representaremos las políticas usando una simplificación de ODRL, como ya se hizo en el análisis, ya
que este es el modelo que utiliza el Dataspace Protocol para expresarlas. El modelo ODRL completo se
muestra en la Figura 5.2, y nuestra simplificación en la Figura 5.3.

Para representar nuestro modelo conceptual hemos vuelto a utilizar un diagrama de clases. Del modelo
ODRL hemos eliminado Asset y Party (y sus colecciones) porque no son necesarias. Recordamos que
las políticas se elaboran como algo general, y que son las ofertas las que especifican después las políticas
que se aplican para cada activo. El significado de cada atributo y relación se describe en más detalle en
la Tabla 5.2.

Figura 5.2: ODRL Information Model [57]

De acuerdo con el modelo de la Figura 5.3, nuestra única política de acceso podría expresarse como:
una instancia de política que otorgue el permiso de usar (un activo determinado), con la restricción de
Credencial de Miembro == válida.

1Con restricción adicional hacemos referencia a la API del repositorio App-PIMD. Para este trabajo solo utilizaremos
métodos de acceso público de esta API, por lo que los datos que ofrezca el proveedor también serán públicos.

61

Capítulo 5. Diseño

Figura 5.3: Modelo conceptual de las políticas: diagrama de clases

ENTIDAD ATRIBUTO O
RELACIÓN

DESCRIPCIÓN

Política

uid Identifica de forma única a la política

permisos Conjunto de acciones que permite hacer la política

obligaciones Conjunto de acciones de obliga a hacer la política

prohibiciones Conjunto de acciones que prohíbe hacer la política

Regla
accion Tipo de acción permitida / obligada / prohibida

evaluacion Expresión lógica que evalúa si se cumple la regla

Permiso deberes Conjunto de acciones de obliga a hacer para
otorgar el permiso

Obligación consecuencias Conjunto de acciones de obliga a hacer en caso
de incumplir la obligación

Prohibición remedios Conjunto de acciones de obliga a hacer en caso
de incumplir la prohibición

Acción
USAR Se refiere a un uso genérico

TRANSFERIR Se refiere a la transferencia a un tercero

Restricción

ladoIzquierdo Lado izquierdo de la expresión lógica

operador Operador de la expresión lógica

ladoDerecho Lado derecho de la expresión lógica

Tabla 5.2: Modelo conceptual de las políticas: descripción de los atributos

62

5.2. Metadatos

5.2.2. Activos

Los activos son una parte imprescindible del proveedor, ya que son los encargados de describir cual-
quier tipo de dato que se puede compartir. La naturaleza de estos datos no está limitada a únicamente
datos estáticos, pudiendo representar también flujos de datos (data streams, eventos), o incluso una serie
de cálculos computacionales costosos.

Sin embargo nosotros solo compartiremos datos estáticos, que se alojan en última instancia en el
warehouse. Para diseñar los activos, podemos pensar entonces en todos los tipos de consultas que nos
gustaría ejecutar para compartir sus resultados. El warehouse aloja datos de aplicaciones, indicando
los permisos que utiliza, y valorando el riesgo que supone cada uno para la privacidad con diferentes
metodologías. Es decir, que la respuesta a nuestra pregunta son las aplicaciones, que son el objeto de
interés central. También hay otras consultas que podrían aportar valor, pero las hemos decidido dejar
como trabajo futuro. Un ejemplo sería las valoraciones de los riesgos para la privacidad de cada permiso,
que se calculan con diferentes metodologías, y algunas son aportación propia desde la UVa.

Una vez decidido que vamos a compartir aplicaciones, también podemos decidir si compartirlas por
separado, o agrupadas. Pero como no es excluyente hemos preferido hacerlo de ambas maneras. Es decir,
definiremos dos categorías de activos. Por un lado los activos que representan grupos de aplicaciones
que comparten temática (por ejemplo: activo de aplicaciones de comunicación, de banca, de educación,
etc). Y por otro lado los activos que representan a una aplicación individual (por ejemplo: whatsapp,
discord, duolingo, etc).

En cuanto al modelo conceptual de los activos, nos hemos inspirado en el Data Catalog Vocabulary
(DCAT), de nuevo siguiendo el modelo que utiliza el Dataspace Protocol. Para representarlo hemos
utilizado un diagrama de clases, que se muestra en la Figura 5.4, y también detallamos el significado de
los atributos no triviales en la Tabla 5.3.

Figura 5.4: Modelo conceptual de los activos: diagrama de clases

63

Capítulo 5. Diseño

La clase Activo se inspira en la clase dcat:Dataset, que representa a un conjunto de datos que se pu-
blica y hace disponible en una o varias distribuciones (dcat:Distribution). Las distribuciones en principio
no contienen la información de acceso a los datos físicos, ya que esto se omite del catálogo. En su lugar,
se ofrecerían las formas que soporta el proveedor para acceder a los datos (las mencionadas en análisis
push/pull sobre HTTP, por ejemplo). El propósito de la clase Acceso es por tanto de uso exclusivo interno
del proveedor, para localizar la ubicación física de los datos.

El consumidor tendrá acceso a estos activos a través del catálogo, donde estarán asociados a una
política. Y como ya hemos mencionado, en ningún caso se le mostrará la ubicación real de los datos.
También tenemos la opción de definir propiedades privadas para añadir información a los activos que
tampoco se mostrará al consumidor.

ENTIDAD ATRIBUTO O
RELACIÓN DESCRIPCIÓN

Activo

id Identificador del activo

proppub Propiedades que se publicarán en el catálogo

propriv Propiedades internas para etiquetar los activos

acceso Detalla la ubicación física de los datos y su forma
de acceso

precio Detalle el coste de acceder a los datos

AppIndividual
hash Identifica de forma única la aplicación

(hash SHA256 del apk)

paquete Nombre del paquete de la aplicación

GrupoTemático
nombre Nombre de la categoría que agrupa a las aplicaciones

apps Aplicaciones que pertenecen al grupo

Acceso

tipo Indica el tipo de acceso

direccion Ubicación física de los datos o de la máquina que
los contiene

tamañoBytes Cantidad de bytes que ocupan los datos

consulta Recupera los datos, si se ubican en un SGBD

Precio

cantidad Valor monetario

divisa Divisa en la que se expresa el precio

formaCobro Indica la forma en la que se cobra por el activo, ya
sea por tiempo, o por cada acceso, u otro método

pagosAceptados Medios de pago aceptados para el cobro

Propiedades
Públicas

nombre Nombre de los datos

descripcion Descripción de los datos

version Versión actual de los datos

contentType Formatos en los que se puede entregar los datos

licencia Licencia con la que se ofrece a los datos

classIRI IRI de la clase RDF que describe a los datos

Tabla 5.3: Modelo conceptual de los activos: descripción de los atributos

64

5.2. Metadatos

5.2.3. Ontología

De acuerdo con Gruber [61, 62], una ontología es una especificación explícita de una conceptua-
lización. Es decir, que una ontología define (especifica) los conceptos, relaciones y otras distinciones
relevantes para modelar un dominio.

Las ontologías son uno de los estándares de la Web Semántica, donde tienen muchas aplicaciones.
Algunas de ellas son compartir el conocimiento de una comunidad, permitir la interoperabilidad entre
bases de datos, la búsqueda cruzada en múltiples bases de datos y la integración de servicios web [62].
En nuestro caso la ontología servirá para compartir metadatos de aplicaciones. Esto es un factor clave
para el diseño, ya que podremos eliminar las entidades y relaciones que no sirvan a este propósito.

La ontología se basa en el modelo conceptual del warehouse (Figura 5.5), elaborado por Alejandro
Pérez de la Fuente [63]. En su diagrama podemos observar 9 entidades, 3 de las cuales son débiles, y 2
especializaciones. También hay 10 relaciones, 5 de las cuales son identificativas, y una ternaria.

Figura 5.5: Diagrama conceptual de los datos del warehouse [63]

Hemos decidido usar OWL para la ontología, porque necesitaremos expresar restricciones de cardina-
lidad. Esta es la única característica de OWL que utilizaremos que está ausente en RDFS. Empezaremos
describiendo las clases, con una taxonomía que mostramos en la Figura 5.6. Hemos omitido algunas fle-
chas de rdf:type por que se pueden inferir indirectamente. Haremos lo mismo en el resto de diagramas,
aunque usando el color para diferenciar los tipos. Todos los hemos elaborado con draw.io [6].

Las 4 entidades principales de nuestra ontología se corresponden con las 4 entidades fuertes y genéri-
cas del modelo conceptual del warehouse, a saber, app, permission, permission_group, y privacy_rank2,
que renombraremos respectivamente como App, Permission, PermissionGroup y ScoringSystem.

2privacy_rank es una métrica que mide el nivel de intrusión de cada permiso [63]. Esta entidad es por tanto usada de
referencia para puntuar tanto permisos como aplicaciones.

65

Capítulo 5. Diseño

Figura 5.6: Taxonomía de clases: grafo RDF

Incluiremos también dos clases adicionales: Score, que reúne el significado semántico de las enti-
dades débiles score y rank. Esta clase representa la puntuación de aplicaciones y permisos, usando un
sistema de puntuación particular. Y la clase ExtractionMetadata, que se corresponde con la entidad débil
extraction_metadata.

Las dos superclases que incluimos en nuestra ontología son Scorable y Declarable, que representan
cosas puntuables, y cosas declarables en el Android mainifest. Las dos clases puntuables son App y
Permission, cuya puntuación sería una instancia de Score. Y las dos clases declarables son Permission y
PermissionGroup, que son declarados por una App.

Y en cuanto a las relaciones, nos interesarán solo las que sean relevantes desde la perspectiva de
una App, por lo que excluiremos las dos relaciones entre permisos y grupos de permisos. Como hemos
decidido utilizar OWL, podemos usar owl:ObjectProperty para describir las propiedades que relacionan
objetos en vez de estar limitados a rdfs:Property. En la Figura 5.7 mostramos también con una taxonomía
todas las propiedades (de objeto) de la ontología.

Figura 5.7: Taxonomía de propiedades de objeto: grafo RDF

uses es la propiedad general que representa uso, que se especializa en usesScoringSystem y uses-
Permission. Estas propiedades representan las relaciones app_uses_permission, source_of_rank y sour-
ce_of_score.

has es la propiedad general que representa tenencia, que se especializa en hasScore y hasExtraction-
Metadata. La primera representa a las relaciones has_rank y has_score, mientras que la segunda a la
relación has_extraction_metadata.

66

5.2. Metadatos

declares es la propiedad que representa definición, que solo tiene una especialización: appDeclares.
Esta propiedad representa a las relaciones app_defines_permission y app_defines_group.

Habiendo ya descrito todas las clases, propiedades de objetos, y sus significados, podemos elabo-
rar entonces un grafo RDF completo de la ontología. De este diagrama solo se excluyen los atributos
(owl:DatatypeProperty), y la restricción, que detallaremos a continuación. Hemos utilizado el color azul
para las clases y el color naranja para las propiedades. El modelo se muestra en la Figura 5.8.

Figura 5.8: Ontología completa: grafo RDF

La única restricción que hay en la ontología es sobre Score, porque cada instancia de esta clase debe
estar siempre relacionada con exactamente un sistema de puntuación. El diseño de esta restricción se
muestra en la Figura 5.9.

Figura 5.9: Restricción sobre Score: grafo RDF

Sobre los atributos, mostramos sus definiciones en la Tabla 5.4. La tabla representa tripletas RDF,
donde cada fila representa a una misma owl:DatatypeProperty (sujeto), el nombre de la columna indica
el predicado, y el contenido de cada celda el objeto.

67

Capítulo 5. Diseño

rdfs:label rdfs:domain rdfs:range

hash

App

xsd:string
package xsd:string
category xsd:string

versionCode xsd:integer
versionName xsd:string

minSDKVersion xsd:integer
targetSDKVersion xsd:integer
maxSDKVersion xsd:integer
extractionSource xsd:string
extractionMethod xsd:string

extractionTimestamp xsd:dateTime

(a) Propiedades cuyo dominio es App

rdfs:label rdfs:domain rdfs:range

name
Scoring
System

xsd:string

source xsd:string

timestamp xsd:dateTime

value Score xsd:float

name Permission
Group

xsd:string

addedAPILevel xsd:string

name
Permission

xsd:string

protectionLevel xsd:string

addedAPILevel xsd:string

(b) Resto de dominios

Tabla 5.4: Definición de las propiedades de datos de la ontología

5.3. Contexto tecnológico

Para elaborar el diseño del proveedor hemos elegido utilizar los componentes de EDC e INESData.
Esta decisión nos condiciona a usar otras tecnologías y estándares que describiremos brevemente en
esta sección. Para ver más en detalle el contexto de EDC e INESData, nos referimos a la Sección 3.4:
Implementaciones donde contamos más información sobre ellas.

Hemos organizado estas tecnologías por categorías para facilitar su compresión. Empezaremos des-
cribiendo los estándares, para después ubicarlos en el contexto en el que se utilizan (protocolos y com-
ponentes). Como resumen, las tecnologías que se usarán se describen a continuación:

Web Semántica y Representación de Datos: JSON-LD.

Identidad Digital: Verifiable Credentials (VCs), Decentralized Identifiers (DIDs), JSON Web To-
ken (JWT).

Protocolos: Dataspace Protocol (DSP), Decentralized Claims Protocol (DCP), Open Authoriza-
tion 2.0 (OAuth2).

Componentes:

• EDC: Control Plane, Data Plane, Identity Hub.

• INESData: Connector, Connector Interface.

• Otros: Warehouse, PostgreSQL Database, Hashicorp Vault, Servidor de autorización OAuth2.

5.3.1. Web semántica y representación de datos

La web semántica es una extensión de la web tradicional donde los datos tienen un modelado semán-
tico. De esta manera que las máquinas puede entender, compartir e interpretar la información de forma
más inteligente. Estos modelos semánticos se basan en estándares como RDF, RDFS y OWL para definir
significados y relaciones entre los datos, permitiendo una mejor interoperabilidad y automatización [60].

68

5.3. Contexto tecnológico

JSON-LD Estándar del W3C basado en JSON para la serialización de modelos semánticos [64]. El
Dataspace Protocol (DSP), y los componentes de EDC utilizan JSON-LD como estándar de seria-
lización.

5.3.2. Identidad digital

Verifiable Credentials (VCs) Las Verifiable Credentials (VCs) son un estándar desarrollado por el
W3C para la emisión, presentación y verificación de credenciales digitales de manera segura, ve-
rificable y descentralizada. Estas credenciales permiten representar información verificable sobre
una entidad en un formato interoperable, sin depender de una autoridad centralizada para su vali-
dación [58].

Figura 5.10: Roles y flujo de información en el VC Data Model [58]

Una VC es un conjunto de declaraciones (claims) y otros metadatos que criptográficamente pueden
demostrar quién es el emisor, y que están libres de manipulaciones. Un tenedor de VCs puede
crear Verifiable Presentations (VPs) reuniendo declaraciones para presentarlas ante un verificador.
Normalmente las VPs tendrán un periodo de vida corto.

La forma preferida de representación para las VCs y VPs es JSON-LD.

Decentralized Identifiers (DIDs) Los DIDs son un nuevo tipo de identificador que posibilita una iden-
tidad digital verificable y descentralizada. Los DIDs están asociados a una entidad (por ejemplo:
organizaciones, personas o documentos) y la identifican. A diferencia de los identificadores típicos
federados, los DIDs han sido diseñados para poder estar desacoplados de registros centralizados,
proveedores de identidad y autoridades de certificación [65].

Los DIDs son URIs que asocian a un sujeto de un DID con un documento DID, permitiendo
interacciones confiables relacionadas con dicho sujeto. En el contexto de las VCs, se utilizan para
identificar a los sujetos de las declaraciones en las credenciales [58, 65].

El Identity Hub de EDC utiliza específicamente did:web, que es un método que se basa en servi-
dores web y DNS existentes para la resolución de los documentos DID [66].

JSON Web Token (JWT) JSON Web Token (JWT) es un formato compacto de representación de de-
claraciones (claims) que se transmiten entre dos partes. Permite ser firmado o encriptado para
garantizar su integridad [67]. Se pueden utilizar para transmitir las credenciales de un usuario,
junto con sus permisos/rol y autorizar el uso o acceso a un recurso.

5.3.3. Protocolos

Dataspace Protocol (DSP) El protocolo de espacios de datos es un estándar desarrollado por la IDSA,
del cual ya se ha hablado en profundidad en la Subsección 3.2.2: Dataspace Protocol (DSP).

La interacción entre los participantes en un espacio de datos se lleva a cabo a través de agentes par-
ticipantes (conectores). Aunque la mayoría de las interacciones ocurren entre conectores, también
se requieren interacciones con otros sistemas como un proveedor de identidad [68].

69

Capítulo 5. Diseño

El proveedor de identidad es el encargado de proporcionar la información requerida para garantizar
la confianza en el espacio de datos. La validación de la identidad de un agente participante y la
verificación de declaraciones (claims) adicionales son mecanismos fundamentales. Este protocolo
no establece ni la estructura ni el contenido de las identidades y declaraciones, que pueden ser
distintas en cada espacio de datos [68].

Decentralised Claims Protocol (DCP) El DCP es un protocolo desarrollado por eclipse y supone una
extensión del DSP. El DCP admite el uso múltiples anclas de confianza (trust anchors) y permite
a cada participante gestionar y verificar las presentaciones sin necesidad de recurrir a sistemas
externos fuera de su control [69]. Su alcance es el siguiente:

Especificar un formato para tokens de identidad autoemitidos.

Definir un protocolo para almacenar y presentar VCs y otros recursos de identidad.

Definir un protocolo para que las partes soliciten credenciales a un emisor de credenciales.

Open Authorization 2.0 (OAuth2) OAuth2 es un protocolo de autorización diseñado para permitir a
aplicaciones de terceros acceder a recursos de un usuario en otra aplicación. Es un estandar pro-
puesto por el IETF en el RFC 6749 [70].

Los componentes de EDC permiten usar OAuth2 para acceder a sus APIs, característica que utiliza
el conector de INESData [71]. En concreto se utilizan tokens de acceso en el formato JWT para
autorizar a los administradores o a otros participantes del espacio de datos.

5.3.4. Componentes

Los componentes de EDC (y el conector de INESData) están implementados en Java, en concreto
con el JDK 17. En esta sección damos una explicación genérica de los componentes que utilizaremos,
explicando las tareas que realizan, y las interfaces que debemos utilizar. Separaremos estos componentes
en tres categorías: EDC, INESData y Otros. En la Sección 5.7: Diseño detallado entramos en detalles
más técnicos sobre EDC.

EDC

EDC es un framework que proporciona implementaciones de componentes con una serie de funciona-
lidades básicas. Es decir, que no se adaptan a ningún caso de uso particular. Por tanto es responsabilidad
de las organizaciones que utilizan sus componentes, la de adaptarlos a sus necesidades, programando en
su caso extensiones utilizando su modelo de extensión3 [28].

EDC recomienda que el conector se separe en dos (plano de control y plano de datos) para que
puedan ser gestionados y escalados por separado. En la Figura 5.11 se muestra esta división junto con la
comunicación entre los planos del proveedor y consumidor.

Cada componente de EDC tiene una identidad, siendo posible desplegarlos en múltiples entornos de
ejecución según las necesidades de escalabilidad requeridas. Los componentes que utilizaremos son:

Control Plane: División del conector que se encarga de: recopilar catálogos, crear contratos, admi-
nistrar transferencias de datos y monitorizar el cumplimiento de las políticas de uso. Para adminis-
trar el plano de control se debe utilizar la Management API4. Los planos de control del consumidor
y proveedor se comunicarán usando el Dataspace Protocol (DSP).

3En la Sección 5.7: Diseño detallado se entra en más detalle sobre como se crean extensiones en EDC.
4La Management API es una interfaz RESTful que permite gestionar el plano de control. A través de esta API se crean

los activos y las políticas, o se administran los contratos y procesos de transferencia activos. La documentación completa de
esta API se puede encontrar en este enlace.

70

https://eclipse-edc.github.io/Connector/openapi/management-api/

5.3. Contexto tecnológico

Data Plane: División del conector que se encarga de las transferencias de datos. Es administrado
por el plano de control, usando la Data Plane Signaling API (DPS)5. También expone una API
pública que permite el acceso a datos del formato HttpData-PULL, para lo cual emite tokens de
acceso no renovables.

Identity Hub: Almacena y administra de forma segura VCs, incluida su presentación y su proce-
so de emisión y reemisión. Además administra las llaves públicas y privadas, y los documentos
DIDs. Se basa en el DCP, permitiendo el uso de un modelo de identidad descentralizado. Un único
Identity Hub puede almacenar las VCs para diferentes espacios de datos y diferentes conectores
dentro de una misma organización. Para gestionar el componente se debe usar la Identity API, que
permite crear y modificar las identidades (contextos), y crear y modificar pares de claves.

Para autorizar el acceso a la Management API y a la Identity API EDC actualmente permite utilizar
una clave de acceso o un proveedor externo de OAuth2. Es muy importante que niguna de estas APIs se
exponga a al red pública.

Figura 5.11: EDC Connector: Plano de control y plano de datos, adaptado de [28]

Algunos de los principios arquitectónicos fundamentales de los componentes de EDC son los siguien-
tes [28]:

Asincronía: Todas las modificaciones externas a las estructuras de datos internas son asíncronas.

Procesamiento en un solo hilo: El plano de control está diseñado en torno a un conjunto de
máquinas de estado secuenciales que emplean bloqueo pesimista para evitar condiciones de carrera
y otros problemas.

Idempotencia: Las solicitudes que no provocan una modificación son idempotentes. Lo mismo
aplica cuando se aprovisionan recursos externos.

Tolerancia a errores: El diseño del plano de control prioriza la corrección y la fiabilidad sobre la
baja latencia. Esto significa que, incluso si un socio de comunicación no está disponible debido a
un error transitorio, el sistema está diseñado para manejar ese error e intentar superarlo.

5Se puede consultar mas información sobre la DPS API en el siguiente enlace.

71

https://eclipse-edc.github.io/documentation/for-contributors/data-plane/data-plane-signaling/

Capítulo 5. Diseño

INESData

En su misión de promover e implementar espacios de datos propios, INESData desarrolla una gran
variedad de componentes. Sus funciones y diseño se detallan en su entregable: E5. Componentes hori-
zontales para espacios de datos [71].

Para diseñar nuestro proveedor utilizaremos su conector y su interfaz gráfica. Un cambio importante
del conector de INESData con respecto al de EDC es que no utiliza el Identity Hub para verificar la
identidad de otros participantes, sino el protocolo OAuth2. Para autorizar el acceso a la Management
API también utiliza OAuth2.

Connector: Se basa en el conector de EDC y agrupa en un único componente el plano de control
y el plano de datos. Implementa funcionalidades adicionales como el almacenamiento de activos
en los servidores de INESData, un nuevo servicio de registro (logs), la gestión de vocabularios o
la búsqueda por texto entre las propiedades de los activos.

Connector Interface: Según [71]:

Es la interfaz gráfica de usuario (GUI) desarrollada en Angular para la gestión del
conector INESData. Utiliza las API del EDC para mostrar las funcionalidades del co-
nector, como la creación y gestión de assets, catálogo y políticas de acceso a los datos.
Facilita una experiencia de usuario integrada que permite interactuar con el conector de
manera visual e intuitiva.

Otros

Utilizamos tecnologías específicas en vez de un SGBD relacional genérico o un gestor de secretos ge-
nérico porque EDC proporciona ls módulos necesarios para utilizar estas en particular. Sería posible usar
otros proveedores de estas tecnologías, pero el diseño debería ampliarse para incluir nuevas extensiones
que admitan su uso. En el caso del servidor de autorización, no es importante la aplicación específica,
sino el estándar JWT y el protocolo OAuth2.

Warehouse: Elaborado por Alejandro Pérez de la Fuente en su TFG [63]. Para poder realizar
consultas tenemos disponible la API de App-PIMD, por ejemplo consultando las aplicaciones
individualmente por su hash, o nombre de paquete. Una versión actualizada de la documentación
de la API se puede consultar en este enlace.

PostgreSQL Database: SGBD relacional de código abierto. Utilizado por el EDC Control Plane
y por el conector de INESData para la persistencia de activos, políticas, ofertas, contratos, etc.

Hashicorp Vault: Herramienta de gestión de secretos y protección de datos diseñada para almace-
nar, controlar y acceder de manera segura a credenciales, pares de claves, claves API, certificados
y otros secretos en entornos distribuidos. Usado por el EDC Identity Hub y por el conector de EDC
e INESData.

Servidor de Autorización OAuth2: Componente que forma parte del framework de autorización
OAuth2. Emite los tokens de acceso para una aplicación tras verificar la identidad del usuario.

72

https://apkfalcon.infor.uva.es:8080/docs

5.4. Adaptación de los datos a los estándares de EDC e INESData

5.4. Adaptación de los datos a los estándares de EDC e INESData

Credenciales en EDC

El componente de EDC responsable de gestionar los recursos de identidad es el Identity Hub, que en el
caso de las credenciales utiliza el estándar W3C Verifiable Credentials (VCs), y para los identificadores
W3C Decentralized Identifiers (DIDs), en particular did:web.

Nuestro modelo para las credenciales incluye toda la información mínima que requieren las VCs, y
por tanto solo necesitaremos cambiar el nombre de las propiedades, y reorganizarlas de forma apropiada.
Nuestro modelo de credenciales solo admite hacer una declaración sobre un solo sujeto, que además
coincide con el tenedor. Las VCs en cambio no tienen esta restricción, ya que cada declaración (claims,
contenidas en la propiedad credentialSubject) debe indicar al sujeto al que hace referencia. Es decir, que
los modelos son compatibles, al ser las VCs un modelo más general. Las credenciales se deben serializar
usando JSON-LD.

Otro estándar que es relevante para las credenciales es el did:web. Esto quiere decir que deberemos
crear un identificador para nuestro proveedor, que al resolverse como si fuera una URL de la web, nos
proporcione un documento DID. Estos documentos se alojan en el Identity Hub y deben contener los
puntos de acceso para el conector, el servicio de credenciales y las llaves públicas. El Identity Hub
se encarga de crear estos documentos, por lo que nosotros solo debemos crear los contextos de los
participantes con la Identity API.

Credenciales en INESData

Las credenciales utilizando los componentes de INESData requieren una aclaración adicional, ya
que no se utiliza directamente el concepto de credencial. En su lugar se utilizan tokens de acceso JWT
siguiendo el protocolo OAuth2. Los JWT alojan declaraciones (claims) por lo que también nos sirve
nuestro modelo de credenciales.

Políticas de acceso y uso

Nuestro modelo es compatible con el de EDC e INESData porque también utilizan ODRL (al imple-
mentar el DSP). Se deben serializar usando JSON-LD.

Activos

EDC implementa los activos con una única clase, y por tanto no permite utilizar especializaciones
como las que tenemos nosotros. Si podemos en cambio definir todas las propiedades adicionales que
queramos, mientras estén bien documentadas. Para esto usaremos una extensión a nuestra ontología
que comentaremos en la siguiente subsección.

Estas nuevas propiedades se deben incluir en la propiedad edc:properties6. La clase Acceso se co-
rresponde a la propiedad edc:dataAddress, que ya define las propiedades necesarias para que podamos
utilizarla sin problema. Los activos también se serializan con JSON-LD.

6El prefijo edc hace referencia al espacio de nombres con la IRI: https://w3id.org/edc/v0.0.1/ns/.

73

Capítulo 5. Diseño

Ontología

La ontología no necesita ser adaptada, ya que no depende de ninguna tecnología. Sin embargo si
que necesitamos ampliarla para poder documentar los activos adecuadamente.

Definiremos dos nuevas propiedades de objeto, cuyo rango son dos clases enumeradas. La propiedad
assetCategory indica la categoría de un activo, y la propiedad thematicGroupName indica el grupo temá-
tico de un activo cuya categoría es THEMATIC_GROUP, aunque esta última restricción no está incluida
en el modelo. La definición de estas dos propiedades se muestra en la Figura 5.12.

Figura 5.12: Extensión a la ontología: grafo RDF

No es necesario definir propiedades para el id, nombre, descripción, tipo de contenido o versión, por-
que podemos utilizar las propiedades de EDC, definidas en su espacio de nombres. Tampoco crearemos
nuevas propiedades para expresar el precio porque en la práctica no lo podremos utilizar.

5.5. Arquitectura lógica

En esta sección elaboramos el diseño de la arquitectura lógica de dos proveedores, uno para cada
tecnología. Aunque la arquitectura de ambos proveedores es muy parecida, no son exactamente compa-
tibles y por este motivo creemos que es preferible exponer los dos.

La arquitectura de los proveedores sigue el patrón de microservicios. Cada servicio se correspon-
de a uno de los componentes que hemos descrito en la Subsección 5.3.4: Componentes, donde serán
independientes unos de otros.

Una consideración previa antes de diseñar los proveedores, es la de tener en cuenta a la organización
donde se integrarán. Hay que recordar que una misma infraestructura permite colaborar en varios espa-
cios de datos, o que podría haber varios departamentos interesados en colaborar en espacios de datos. Las
posibles soluciones a esta cuestión, y la que hemos elegido, se detallan en la Subsección 5.5.1. Después,
en la Subsección 5.5.2 y en la Subsección 5.5.3 describimos el diseño de cada proveedor y elaboramos
para cada uno un diagrama de componentes.

74

5.5. Arquitectura lógica

5.5.1. Topología

El diseño del proveedor está condicionado por las necesidades de la organización que lo opera. En
este caso podríamos pensar en la Universidad de Valladolid, en su Escuela de Ingeniería Informática, o
en su Departamento de Informática. EDC por ejemplo, sugiere varias opciones sobre las topologías de
diseño posibles, que llama dominios de gestión (management domains) [28]. Tres de estas opciones se
muestran en la Figura 5.13, donde cada recuadro muestra un dominio de gestión independiente.

(a) Dominio distribuido
(b) Dominio distribuido con catálogo y Control
Plane centralizado

(c) Dominio único

Figura 5.13: Topologías de dominios de gestión [28]

El diseño del proveedor podría contemplar por ejemplo un servidor de catálogo raíz y un proveedor
de identidad para toda la organización, permitiendo así que cada facultad o departamento operen sus
propios servidores de catálogo y conectores independientes (Figura 5.13a). Usando otra topología, la or-
ganización podría tener un único servidor de catálogo y Control Plane, permitiendo a cada departamento
tener solo su propio Data Plane (Figura 5.13b). De esta forma la negociación de contratos estaría centra-
lizada dentro de la organización, mientras que de la primera forma cada departamento podría definir sus
propias políticas, y negociar sus propios contratos.

En nuestro caso diseñaremos un proveedor con solo un conector, usando un dominio de gestión único,
sin tener en cuenta otros departamentos (Figura 5.13c).

75

Capítulo 5. Diseño

5.5.2. Proveedor con EDC

El diseño con EDC se corresponde al primer incremento de la planificación, donde todavía no inclui-
mos una interfaz gráfica. El administrador interactuará con el proveedor mandado peticiones HTTP a sus
dos APIs asignadas7. Es importante notar que los componentes de EDC no soportan HTTPS, y por el
riesgo a la seguridad que supone recomiendan no exponer estas APIs a redes no seguras. Para simplificar
el diseño de este proveedor para autorizarnos utilizaremos una API key, en vez de un proveedor externo
de OAuth2.

En la Subsección 5.3.4: Componentes ya hemos mencionado las APIs que expone cada componente
y el papel que desempeñan en el sistema. En la Figura 5.14 detallamos a mayores las relaciones entre los
componentes y las comunicaciones con elementos externos. Hemos usado el color azul para mostrar las
interfaces a las que accede el administrador del proveedor, y el morado para mostrar las interfaces a las
que accederían los consumidores.

Figura 5.14: Diagrama de componentes: proveedor con EDC

Nuestro proveedor estará formado por los siguientes cinco componentes: EDC Identity Hub, EDC
Control Plane, EDC Data Plane, PostgreSQL Database y Hashicorp Vault. Mientras que los componentes
externos serán: Administrador, Consumidor y Warehouse.

Hay varias implementaciones posibles para el EDC Control Plane, en concreto para personalizar la
persistencia de los activos, políticas y ofertas (llamados contratos en el lenguaje de EDC). La imple-
mentación por defecto persiste a estas entidades en memoria, pero es posible utilizar una base de datos
PostgreSQL incluyendo las extensiones apropiadas. Nuestro diseño usa la segunda opción.

De la misma manera, el EDC Identity Hub también está preparado para utilizar una Hashicorp Vault
para almacenar todos los secretos, aunque es necesario incluir extensiones adicionales.

También tenemos que tener en cuenta que para poder usar la API de App-PIMD con el EDC Data Pla-
ne necesitamos programar una extensión, como ya nos advierte EDC de esta posibilidad. Los detalles
sobre la extensión se describen con más detalle en la Subsección 5.7.4. También tenemos la posibilidad
de añadir soporte a más protocolos de transferencia de datos a los consumidores. EDC implementa por
defecto HTTP, transferencias basadas en S3, y Kafka. Nosotros solo utilizaremos HTTP y por tanto no
nos hará falta programar más extensiones.

7Para mandar peticiones HTTP se podrían usar por ejemplo la línea de comandos (curl), postman o un programa de python
(módulo requests).

76

5.6. Arquitectura física

5.5.3. Proveedor con INESData

El proveedor con INESData incluye una interfaz gráfica para que el administrador pueda gestionar el
conector, pero a parte tiene las siguientes diferencias con respecto al diseño con EDC:

1. El conector no se separa en plano de control y plano de datos.

2. El servidor de autorización adopta el rol de ancla de confianza en el espacio de datos.

3. Uso de OAuth2 para autorizar el acceso a la Management API.

4. Desaparece el Identity Hub y en su lugar se usarán JWT en cada petición del DSP.

La Figura 5.15 muestra estos cambios en forma de un diagrama de componentes. Las interfaces del
conector (Management, DSP y API pública) son las mismas, cambiando solo su método de autorización,
que requerirán un token emitido por el servidor de autorización. Para verificar que los tokens son válidos,
el conector y su interfaz podrán validarlos mediante una petición al servidor de autorización, o de forma
local si ya conocen su llave pública.

Figura 5.15: Diagrama de componentes: proveedor con INESData

5.6. Arquitectura física

La arquitectura física describe la organización de los componentes de hardware y de software sobre
una infraestructura específica. Es decir, representa la estructura real sobre la que se ejecuta el software.
Para ello elaboraremos un diagramas de despliegue de UML para cada diseño lógico.

Para elaborar este diseño y favorecer su interoperabilidad, escalabilidad y gestión, utilizaremos Doc-
ker y Kubernetes. En la Subsección 5.6.1 comentaremos las particularidades de estas dos tecnologías y
cómo las utilizaremos. Los diseños físicos los detallamos en la Subsección 5.6.2 para el de EDC y en la
Subsección 5.6.3 para el de INESData.

77

Capítulo 5. Diseño

5.6.1. Tecnologías

Utilizar los componentes de EDC o de INESData no nos obliga a utilizar ninguna arquitectura de
despliegue en específico. La decisión de emplear Docker y Kubernetes se motiva por las muchas ventajas
que nos proporcionan a la hora de gestionar la infraestructura, siendo mucho más sencillo adaptarla a
cambios de disponibilidad o uso. Por ejemplo, Kubernetes nos permite también utilizar el mismo diseño
físico tanto en local como en cloud.

Nos hemos inspirado a usar estas tecnologías por el Minimum Viable Dataspace (MVD) de EDC [16],
y por el diseño de los espacios de datos de INESData [71]. Una breve definición de estas tecnologías es
la siguiente:

Docker Tecnología de contenedores que permite empaquetar aplicaciones junto con sus dependencias
creando así entornos aislados.

Kubernetes Plataforma de orquestación de contenedores que permite gestionar el despliegue, la esca-
labilidad y la disponibilidad de aplicaciones en contenedores.

Antes de elaborar el diseño físico es necesario familiarizarse con la arquitectura de un clúster de
kubernetes, la cual mostramos en la Figura 5.16. Como se puede ver, un clúster se compone de un plano
de control (o potencialmente varios), también llamados master nodes, y una serie de worker nodes.
Un nodo es una máquina física o virtual. Dentro de cada nodo hay una serie de procesos ajenos a la
aplicación que se aseguran del buen funcionamiento del clúster.

Figura 5.16: Arquitectura de un clúster de Kubernetes [72]

Adaptando esta arquitectura a nuestro caso, los nodos serán máquinas virtuales, y tendremos solo
un worker node, en el cual habrá una pod por cada componente lógico. Dentro de cada pod habrá un
contenedor, que ejecutará la imagen de docker del componente correspondiente. Para ambos diseños
físicos, cada componente lógico se corresponderá con un contenedor de Docker.

78

5.6. Arquitectura física

5.6.2. Proveedor con EDC

El diseño del proveedor de EDC es on premise. En concreto sobre el Portatil 2 (ver Sección 2.2:
Gestión de los recursos). Este proveedor está formado por 5 componentes, por lo que tenemos 5 pods,
cada una con un contenedor.

Mostramos en la Figura 5.17 el diagrama de despliegue del proveedor. Para intentar facilitar su lectura
hemos utilizado colores para agrupar a los nodos que tienen las mismas características. De morado están
las pods, de naranja los contenedores de Docker, de azul los procesos de Kubernetes, y de verde pardoso
los artefactos.

Figura 5.17: Diagrama de despliegue: proveedor con EDC

79

Capítulo 5. Diseño

5.6.3. Proveedor con INESData

El diseño del proveedor con INESData es en entorno cloud, en concreto sobre Google Cloud. Al estar
basado en Kubernetes, no hay grandes diferencias con respecto al diseño anterior. Solo cabe destacar que
para acceder al proveedor, el administrador deberá comunicarse desde otro dispositivo, en nuestro caso
desde el Portatil 1.

El diagrama de despliegue de la Figura 5.18 muestra este diseño físico, en el que tenemos una pod
menos y un componente externo adicional (Auth Server).

Figura 5.18: Diagrama de despliegue: proveedor con INESData

80

5.7. Diseño detallado

5.7. Diseño detallado

En esta sección vemos partes más específicas del diseño del proveedor. Nuestro objetivo es dise-
ñar una extensión para permitir al proveedor acceder al warehouse usando la API de App-PIMD. La
implementación del cliente HTTP de EDC soporta el acceso a fuentes de datos con HTTPS, pero no
admite certificados autofirmados, que es el que usa la API de App-PIMD. Además también tendremos
que transformar los datos de JSON a JSON-LD, y proporcionar grupos temáticos de aplicaciones.

Aunque antes de diseñar esta extensión explicaremos brevemente el contexto necesario: la arquitectu-
ra de EDC (Subsección 5.7.1), cómo crear extensiones (Subsección 5.7.2), y específicamente extensiones
para el Data Plane (Subsección 5.7.3). Finalmente daremos todos los detalles del diseño de la extensión
en la Subsección 5.7.4.

5.7.1. Arquitectura de EDC

La arquitectura del framework de EDC se puede resumir en la Figura 5.19. EDC se basa en un sis-
tema de módulos, donde cada componente tiene unos módulos centrales básicos, a los que se puede
añadir funcionalidades adicionales eligiendo una serie de extensiones. Las extensiones se pueden crear
implementando las interfaces en los módulos SPI (Service Provider Interface) [73].

Figura 5.19: Arquitectura de EDC [73]

Según Jim Marino (EDC Lead Architect) [73], los principios arquitectónicos de EDC son:

Modularidad: Toda la funcionalidad se contribuye como módulos, lo cual permite construir com-
ponentes ligeros usando las mínimas dependencias posibles.

Extensibilidad: Todas las características tienen un punto de extensión, por lo que se pueden inter-
cambiar la implementación de cualquier módulo, o crear nuevas capacidades y características.

Adaptabilidad: Permite adaptar los componentes para desplegarlos en cualquier entorno: cloud,
on-premise o edge. Los componentes no tienen por que tener siempre las mismas capacidades, que
se pueden aumentar o disminuir dependiendo del caso de uso.

Resiliencia: EDC es capaz de aprovechar infraestructura de alta disponiblidad ya existente. Por
ejemplo: servicios cloud, gestión con clústeres, o infraestructuras de transferencia de datos.

81

Capítulo 5. Diseño

5.7.2. Extensiones

Como ya hemos mencionado, las extensiones son la unidad básica para personalizar los componentes
de EDC. Para crear una extensión básica necesitamos al menos dos cosas: una clase que implemente la
interfaz ServiceExtension y un fichero plugin en el directorio src/main/resources/META-INF/services/
con el nombre org.eclipse.edc.spi.system.ServiceExtension en el que introduciremos el nombre comple-
tamente cualificado de la clase implementadora [28].

A continuación mostramos un ejemplo de una extensión vacía SampleExtension, basado en la docu-
mentación de EDC [28].

1 // fichero
2 // src/main/java/com/example/extensions/SampleExtension.java
3 public class SampleExtension implements ServiceExtension {
4
5 @Override
6 public void initialize(ServiceExtensionContext context) {
7 // do something
8 }
9 }

Listing 5.1: Ejemplo de extension [28]

1 // fichero
2 // src/main/resources/META-INF/services/org.eclipse.edc.spi.system.ServiceExtension
3 ...
4 com.example.extensions.SampleExtension
5 ...

Listing 5.2: Ejemplo de fichero plugin

Normalmente las extensiones proporcionan un servicio al componente, pudiendo requerir también
utilizar los servicios de otras extensiones. Para manejar estas dependencias, EDC utiliza el patrón SPI.
Cada extensión debe indicar los servicios de los que depende y que proporciona. Si una extensión pro-
porciona un servicio, esta debe incluir su interfaz en el módulo SPI. De esta manera las extensiones
nunca dependen de otras extensiones, sino exclusivamente del módulo SPI [28]. Una representación de
este patrón se puede ver en la Figura 5.20.

Figura 5.20: Patrón SPI [28]

82

5.7. Diseño detallado

5.7.3. Data Plane Framework

Para poder diseñar nuestra extensión, debemos utilizar el Data Plane Framework, que consiste en una
serie de SPIs y de implementaciones por defecto. Nosotros solo necesitaremos utilizar las interfaces que
tratan el origen de los datos, porque para enviar los datos al consumidor utilizaremos HTTP, como ya
hemos indicado en la Subsección 5.5.2: Proveedor con EDC.

Las tres interfaces del Data Plane SPI que vamos a necesitar son: PipelineService, DataSourceFactory
y DataSource. El servicio PipelineService nos permite registrar DataSourceFactory, que al recibir una
petición de transferencia de datos, identificará cual de las factorías que tiene registradas pueden satisfacer
la petición y se la enviará. La DataSourceFactory creará entonces el DataSource correspondiente, que
se encargará de recuperar los datos.

5.7.4. Extensión para el warehouse

La extensión para habilitar al proveedor a acceder al warehouse se llamará WarehouseExtension y
tiene la siguiente funcionalidad:

1. Acceso a la API de App-PIMD con HTTPS.

2. Transformación de Apps de JSON a JSON-LD.

3. Acceso a grupos temáticos de aplicaciones.

Dividiremos las responsabilidades creando tres nuevas fuentes de datos que implementan la interfaz
DataSource. HttpsDataSource se encargará de acceder a un punto de acceso HTTPS, sin hacer ninguna
transformación a la información recibida. AppDataSource transformará además los datos (de aplicacio-
nes) de JSON a JSON-LD. Y AppGroupDataSource se encargará de solicitar todas las aplicaciones del
mismo grupo temático, para lo cual habrá que enviar más de una petición.

Cada factoría crea su DataSource correspondiente y depende de la factoría anterior para reutilizar
sus servicios. Además, incluimos en un módulo SPI propio, el esquema de las DataAddress para cada
factoría. Este esquema se utiliza para validar la sintaxis de las direcciones.

La clase WarehouseExtension creará una instancia de cada factoría y las registrará en el PipelineSer-
vice.

Hemos hecho dos diagramas para representar el diseño de la extensión. En la Figura 5.21 mostra-
mos las dependencias de la clase WarehouseExtension, y en la Figura 5.22 mostramos el diseño de las
factorías y del resto de la extensión.

83

Capítulo 5. Diseño

Figura 5.21: Diseño de WarehouseExtension

Figura 5.22: Diseño de las factorías

84

Capítulo 6

Implementación, despliegue y pruebas

La implementación es el proceso en el que se lleva a la práctica el sistema siguiendo la documen-
tación de diseño. En esta fase es imprescindible también comprobar que el sistema funciona adecuada-
mente y conforme a lo esperado, para lo cual diseñaremos un conjunto de pruebas. En este capítulo
proporcionamos toda la información, decisiones y fragmentos de código necesarios para entender y re-
plicar este proceso.

Para poder probar adecuadamente el sistema no solo será necesario implementar un proveedor, sino
que necesitaremos al menos dos participantes. Implementaremos así un espacio de datos en miniatura
al cual llamaremos AppSpace. Ambos participantes tendrán las mismas especificaciones, pero uno de
ellos adoptará el rol de proveedor y el otro de consumidor.

Empezamos el capítulo con la Sección 6.1, donde hacemos un listado exhaustivo de las tecnolo-
gías que hemos utilizado. A continuación, en la Sección 6.2, describimos los pasos para implementar
AppSpace que hemos seguido, entrando en detalle sobre los dos repositorios que hemos utilizado como
referencia y aprovechado para acelerar el proceso de implementación.

El último paso de la implementación consiste en poblar al proveedor de metadatos, los cuales tienen
una especial relevancia al estar trabajando con espacios de datos. Por eso dedicamos la Sección 6.3
a detallar la implementación de los metadatos, dando ejemplos representativos de las credenciales,
políticas, activos y ofertas. También proporcionamos la definición de la ontología.

Para terminar la implementación, en la Sección 6.4 explicamos la organización del código y el con-
tenido de los directorios y archivos importantes. El código está disponible en el repositorio público de
GitLab: codigo-tfg-alfonso-cabrero.

Sobre el despliegue, en la Sección 6.5 describimos las instrucciones para desplegar AppSpace, que
podemos entender como la traducción a comandos de los pasos de la Sección 6.2, una vez ya desarrollado
todo el código.

Por último, en la Sección 6.6 describimos las pruebas que hemos realizado para validar el correcto
funcionamiento del sistema, que consistirán en pruebas unitarias y pruebas de sistema.

6.1. Entorno de desarrollo

Nuestro entorno tecnológico de desarrollo está formado por tres grupos de herramientas, según el
motivo que hemos tenido para elegirlas. El primer grupo son las que hemos decidido utilizar en la fase
de diseño, el segundo grupo es el que necesitamos para aprovechar el repositorio de EDC Minimum
Viable Dataspace (MVD) , y el tercer grupo son las que hemos elegido por comodidad y familiaridad en
su uso.

85

https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero

Capítulo 6. Implementación, despliegue y pruebas

Herramientas elegidas en diseño.

• JDK 17 Kit de desarrollo de Java que incluye todo lo necesario para ejecutar aplicaciones
Java: los componentes de EDC e INESData.

• Docker Tecnología de contenedores que permite empaquetar aplicaciones junto con sus de-
pendencias creando así entornos aislados.

• Kubernetes Plataforma de orquestación de contenedores que permite gestionar el despliegue,
la escalabilidad y la disponibilidad de aplicaciones en contenedores.

• JSON-LD Estándar del W3C basado en JSON para la serialización de modelos semánticos.

Herramientas que utiliza el EDC Minimum Viable Dataspace (MVD).

• Gradle Herramienta de automatización de compilación que se utiliza para gestionar depen-
dencias, compilar código y empaquetar aplicaciones.

• Terraform Herramienta de infraestructura como código (IaC) que permite definir, provisio-
nar y administrar recursos de manera declarativa. Se utiliza para automatizar la creación y
configuración de infraestructura.

• Kind Herramienta para ejecutar clústeres locales de Kubernetes utilizando contenedores
Docker como nodos.

• Postman Herramienta para probar y desarrollar APIs mediante peticiones HTTP. Usaremos
colecciones de postman para probar la Management API.

• Openssl Usaremos la herramienta CLI para la generación y gestión de claves criptográficas
y certificados.

Herramientas elegidas por comodidad o familiaridad en su uso.

• Python 3.13 Lenguaje de programación interpretado de alto nivel. Lo utilizaremos para po-
blar el proveedor creando las políticas, activos y ofertas.

• JUnit 5 Framework de pruebas unitarias para aplicaciones Java, diseñado para facilitar la
escritura y ejecución de tests de forma estructurada y eficiente.

• Turtle Formato de serialización para expresar datos en RDF de manera compacta y legible.
Permite definir prefijos para simplificar las referencias a URIs. Lo usaremos para crear la
ontología.

• VS Code Editor de código ligero y extensible. Ofrece múltiples herramientas avanzadas co-
mo para depuración de código o integración con Git.

• Git Sistema de control de versiones que facilita la colaboración y la gestión de cambios en el
código.

• GitLab Plataforma de desarrollo colaborativo basada en Git que usaremos para alojar el
repositorio de desarrollo del trabajo y para compartir el código.

Enlace al código: https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero.

86

https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero

6.2. Proceso de implementación

6.2. Proceso de implementación

El proceso de implementación del proveedor, con nuestra elección de tecnologías, consiste en los
siguientes pasos:

1. Descargar e instalar las tecnologías necesarias (detalladas en Sección 6.1: Entorno de desarrollo).

2. Implementar la extensión para el EDC Data Plane.

3. Crear las imágenes para cada componente (de docker) implementando y ejecutando los scripts
de gradle1.

4. Crear el clúster de kubernetes ya sea con kind o con Google Kubernetes Engine (GKE).

5. Definir la infraestructura necesaria implementando y ejecutando los scripts de terraform.

6. Poblar el proveedor con identidad, políticas, activos y ofertas desde un script de python.

Aunque como ya hemos mencionado en la introducción del capítulo, no implementaremos solo un
proveedor, sino un espacio de datos en miniatura (AppSpace). Esto en la práctica solo supone definir
infraestructura adicional usando las mismas imágenes pero con diferente configuración.

Para acelerar el esfuerzo de implementación aprovecharemos el trabajo de dos repositorios: EDC
Minimum Viable Dataspace [16] e INESData Dataspace Local Enviroment [74], de los que hablamos
más en detalle en la Subsección 6.2.1 y en la Subsección 6.2.2 respectivamente. También hemos utilizado
el repositorio del conector de INESData [75] porque para añadirle nuestra extensión necesitamos el
código fuente.

6.2.1. EDC Minimum Viable Dataspace

El EDC MVD es un repositorio de demostración en el que se muestra el funcionamiento de los
componentes de EDC y que pretende facilitar la adopción de su tecnología por los desarrolladores [46].
El enlace a este repositorio es: github.com/eclipse-edc/MinimumViableDataspace. Aunque el MVD no
está diseñado para entornos de producción [16], sí que se adapta a nuestros objetivos al permitirnos
probar su funcionamiento. No obstante, si se quisiera utilizar en un entorno real, en un trabajo posterior
se deberían abordar los atajos que se han tomado, para desarrollar así un proveedor seguro.

El espacio de datos MVD lo forman dos participantes: un proveedor y un consumidor. Pero el pro-
veedor tiene además dos departamentos: Q&A, y Manufacturing, cada uno con su dominio de gestión
independiente. En la Figura 6.1 mostramos todos los componentes que forman el MVD, que hemos
elaborado con draw.io [6], basándonos en las descripciones de [16].

El servidor de catálogo es un componente simple que solo atiende peticiones de solicitud de catálogo,
y en este caso unifica los catálogos de los dos departamentos del proveedor. El consumidor por ejemplo
sigue el mismo diseño que el proveedor de la Subsección 5.5.2.

El participante emisor del espacio de datos no existe como tal. El MVD ha optado por simular a este
participante mediante un servidor web (nginx) que aloja un documento DID que los participantes pueden
consultar para verificar la autenticidad de las credenciales.

Modificaremos el MVD eliminando el conector del departamento de Manufacturing y el servidor de
catálogo, pudiendo aprovechar así gran parte del código ya desarrollado. De esta manera tendremos un
espacio de datos simétrico con dos participantes.

1Los componentes para la base de datos (postgres), el gestor de secretos (vault), el servidor de autorización (keycloak) y
la interfaz del conector (inesdata) se descargan de un repositorio de imágenes.

87

https://github.com/eclipse-edc/MinimumViableDataspace

Capítulo 6. Implementación, despliegue y pruebas

Figura 6.1: Escenario del Minimum Viable Dataspace (MVD)

6.2.2. INESData Dataspace Local Enviroment

El Dataspace Local Enviroment (DLE) de INESData tiene el mismo objetivo que el EDC MVD.
Facilita el uso de sus componentes por otros desarrolladores y les permite probarlos en un espacio de
datos real. Se puede acceder al repositorio a través del siguiente enlace: inesdata-local-env [74].

A diferencia con el MVD, en el DLE hay un emisor y por tanto tenemos 3 participantes. El emisor es
la entidad que gobierna el espacio de datos y emite los tokens que permiten operar los conectores y la
comunicación segura entre los participantes. A parte del servidor de autorización (keycloak), el emisor
cuenta con otros componentes de INESData que enriquecen el espacio de datos, aunque nosotros no
los utilizaremos. El Registration Service ayuda a federar el catálogo del espacio de datos manteniendo
una lista de los participantes registrados. Y el portal público ofrece información del espacio de datos
de manera abierta, para que los interesados ajenos al espacio de datos puedan consultar la estructura de
gobernanza o algunos de los datos disponibles [71].

En la Figura 6.2 mostramos el escenario del DLE, con todos los componentes que lo forman. La
hemos elaborado con la herramienta draw.io [6] basándonos en un diagrama del repositorio DLE [74].

Figura 6.2: Escenario del Dataspace Local Enviroment (DLE)

88

https://github.com/INESData/inesdata-local-env

6.3. Implementación de los datos

Los participantes principales (proveedor y consumidor) comparten entre ellos la base de datos y el
gestor de secretos (la base de datos también con el emisor) para evitar tener réplicas de estos com-
ponentes. También tienen su propio servidor de almacenamiento de objetos (MinIO), aunque nosotros
prescindiremos también de este último porque usamos App-PIMD.

Para desplegar el entorno, el DLE utiliza docker compose en lugar de un clúster de kubernetes. Para
respetar el diseño original hemos intentado adaptar la configuración del repositorio para usar terraform
y kind. Aunque tras comprobar que no era una tarea sencilla e intentarlo durante más de una semana con
solo éxito parcial hemos optado por mantener la implementación con docker compose.

6.3. Implementación de los datos

La implementación de los datos se basa en los modelos de diseño de las secciones 5.1, 5.2 y 5.4. En el
caso de las políticas, activos y ofertas utilizaremos el modelo de EDC, como ya mencionamos en diseño
y cuya documentación podemos encontrar en [28].

Credenciales

Como ya mencionamos en el diseño de las credenciales (Sección 5.1), solo utilizaremos la credencial
de miembro, y que es obligatoria para cualquier comunicación con cualquier participante de AppSpace.
A continuación mostramos la credencial en el formato VC, que usará el proveedor en la implementación
de EDC:

1 {
2 "@context": ["https://www.w3.org/ns/credentials/v2"],
3 "@type": ["VerifiableCredential", "MembershipCredential"],
4 "issuer": {
5 "@id": "did:web:appspace-issuer",
6 "name": "AppSpace Issuer Entity"
7 },
8 "name": "Membership Credential",
9 "description": "Membership Credential in the AppSpace Data Space",

10 "validFrom": "2025-03-01T00:00:00Z",
11 "validUntil": "2025-04-01T00:00:00Z",
12 "credentialSubject": {
13 "@id": "did:web:appspace-provider",
14 "claims": {
15 "memberSince": "2025-03-01T00:00:00Z",
16 "memberUntil": "2025-12-31T23:59:59Z"
17 }
18 }
19 }

Listing 6.1: Credencial de miembro del proveedor

En la implementación con EDC de AppSpace no existe como tal un participante emisor de las cre-
denciales. Por eso crearemos las credenciales manualmente y las firmaremos usando unas llaves autoge-
neradas con openssl. Después serán almacenadas en la Vault correspondiente donde se utilizarán por el
Identity Hub para crear Verifiable Presentations (VPs).

En la implementación con INESData no usamos VCs, pero hacemos algo que en la práctica resulta
equivalente: crearemos un rol en Keycloak de miembro del espacio de datos. Por tanto los participantes
que consigan este rol podrán solicitar un token de acceso y con él demostrar que son miembros de
AppSpace, lo mismo que harían con una VC o una VP.

89

Capítulo 6. Implementación, despliegue y pruebas

Políticas

En la Subsección 5.2.1 definimos una única política para nuestro proveedor que solo solicite ser
miembro del espacio de datos. Hemos tomado la implementación de esta política directamente del EDC
MVD porque se adapta perfectamente a nuestras necesidades, y la mostramos a continuación:

1 {
2 "@context": ["https://w3id.org/edc/connector/management/v0.0.1"],
3 "@type": "PolicyDefinition",
4 "@id": "require-membership",
5 "policy": {
6 "@type": "Set",
7 "permission": [
8 {
9 "action": "use",

10 "constraint": {
11 "leftOperand": "MembershipCredential",
12 "operator": "eq",
13 "rightOperand": "active"
14 }
15 }
16]
17 }
18 }

Listing 6.2: Política única del proveedor [16]

El servicio encargado de evaluar las políticas y sus expresiones es el Policy Engine, el cual tiene un
modelo de extensión que nos permite añadir policy functions para poder evaluar políticas propias. En
nuestro caso, al utilizar una política de EDC no serán necesarias modificaciones. Para más información
del Policy Engine y cómo funciona se puede consultar la documentación de EDC [28].

Activos

Como ya detallamos en el diseño de los activos (Subsección 5.2.2), tenemos dos categorías: aplicacio-
nes individuales y grupos. Los activos son una instancia de la clase edc:Asset, que tienen dos propieda-
des: edc:properties, en la que describiremos con precisión el activo del que se trata, y edc:dataAddress,
en la que describimos cómo se accede al activo en cuestión. A continuación mostramos un activo repre-
sentativo para cada categoría:

1 {
2 "@context": {
3 "@vocab": "https://w3id.org/edc/v0.0.1/ns/",
4 "edc": "https://w3id.org/edc/v0.0.1/ns/",
5 "dct": "https://purl.org/dc/terms/",
6 "apps": "https://w3id.org/apppi/v0.3/"
7 },
8 "@id": "app.com.discord",
9 "@type": "edc:Asset",

10 "properties": {
11 "dct:type": { "@id": "https://w3id.org/apppi/v0.3/App" },
12 "name": "Discord Privacy Metadata",
13 "description": "Privacy metadata about the discord android app",
14 "description@es": "Metadatos de privacidad de la app de android discord",
15 "apps:assetCategory": "INDIVIDUAL_APP",
16 "apps:hash": "00006852e35635388...265f923e2477e2907fd",

90

6.3. Implementación de los datos

17 "apps:package": "com.discord",
18 "dct:format": "application/ld+json"
19 },
20 "dataAddress": {
21 "@type": "edc:DataAddress",
22 "type": "Warehouse-App",
23 "apps:hash": "00006852e35635388...265f923e2477e2907fd"
24 }
25 }

Listing 6.3: Activo de una aplicación individual: Discord

1 {
2 "@context": {
3 "@vocab": "https://w3id.org/edc/v0.0.1/ns/",
4 "edc": "https://w3id.org/edc/v0.0.1/ns/",
5 "dct": "https://purl.org/dc/terms/",
6 "apps": "https://w3id.org/apppi/v0.3/"
7 },
8 "@id": "app.group.communication",
9 "@type": "edc:Asset",

10 "properties": {
11 "dct:type": {
12 "@id": "https://w3id.org/apppi/v0.3/App", "@container": "@list"
13 },
14 "name": "Communication Apps Privacy Metadata",
15 "description": "Privacy metadata about communication android apps",
16 "description@es": "Metadatos de privacidad de aplicaciones de comunicacion",
17 "apps:assetCategory": "THEMATIC_GROUP",
18 "apps:thematicGroupName": "COMMUNICATION",
19 "dct:format": "application/ld+json"
20 },
21 "dataAddress": {
22 "@type": "edc:DataAddress",
23 "type": "Warehouse-AppGroup",
24 "apps:thematicGroupName": "COMMUNICATION"
25 }
26 }

Listing 6.4: Activo de un grupo temático de aplicaciones: Comunicación

Ofertas

Las ofertas relacionan los activos con las políticas, y que EDC llama contratos. En un contrato de EDC
podemos relacionar a dos políticas distintas: accessPolicy y contractPolicy, e indicar los activos a los
que se aplica con assetsSelector, de una forma parecida a las restricciones en las políticas. accessPolicy
determina la visibilidad de la oferta, es decir, si un consumidor concreto puede acceder a la oferta y
solicitar negociarla a través del catálogo. contractPolicy en cambio, determina las condiciones que debe
cumplir el consumidor para acceder a cualquiera de los activos.

Para nuestro proveedor, tendremos una única oferta. De esta manera, cualquier miembro de AppS-
pace solo necesitará negociar un contrato una vez para acceder a cualquier activo. Ambas políticas que
hemos mencionado serán require-membership (nuestra única política). A continuación mostramos la
implementación de esta oferta:

91

Capítulo 6. Implementación, despliegue y pruebas

1 {
2 "@context": ["https://w3id.org/edc/connector/management/v0.0.1"],
3 "@id": "general-offer",
4 "@type": "ContractDefinition",
5 "accessPolicyId": "require-membership",
6 "contractPolicyId": "require-membership",
7 "assetsSelector": {
8 "@type": "Criterion",
9 "operandLeft": "https://w3id.org/edc/v0.0.1/ns/id",

10 "operator": "in",
11 "operandRight": [
12 "app.group.communication",
13 "app.group.banking",
14 "app.group.education",
15 "...",
16 "app.com.whatsapp",
17 "app.com.discord",
18 "app.com.duolingo",
19 "..."
20]
21 }
22 }

Listing 6.5: Oferta única del proveedor

Ontología

Para implementar la ontología hemos decidido usar Turtle, que es mucho más compacto y legible que
JSON-LD para grandes documentos. Hemos seguido al detalle el diseño de la Subsección 5.2.3, y el
diseño de la extensión de la Sección 5.4. A continuación mostramos la definición de la ontología:

1 @prefix apps: <https://w3id.org/apppi/v0.3/> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix dct: <http://purl.org/dc/terms/> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix vann: <http://purl.org/vocab/vann/> .
6 @prefix voaf: <http://purl.org/vocommons/voaf#> .
7 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
8 @prefix cc: <http://creativecommons.org/ns#> .
9 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

10
11 apps:
12 a voaf:Vocabulary, owl:Ontology ;
13 rdfs:label "App-PI Ontology"@en ;
14 dct:title "The App Privacy Impact Ontology"@en ;
15 rdfs:comment """
16 This ontology defines classes and properties to
17 describe metadata about the privacy of mobile apps.
18 """@en ;
19 cc:license <http://www.apache.org/licenses/LICENSE-2.0> ;
20 dct:creator _:AlfonsoCabrero ;
21 dct:created "2025-02-27"^^xsd:date ;
22 dct:modified "2025-04-14"^^xsd:date ;
23 owl:versionInfo "0.3.0" ;
24 owl:versionIRI <https://w3id.org/apppi/v0.3/> ;
25 vann:preferredNamespaceUri "https://w3id.org/apppi/v0.3" ;
26 vann:preferredNamespacePrefix "apps" ;
27 .

92

6.4. Organización del código

Listing 6.6: Definición de la ontología

El resto de la implementación de la ontología está disponible en el repositorio de GitLab, en el di-
rectorio ontology. La definición se encuentra en el archivo principal Ontology.ttl, que hace referencia al
resto de archivos usando owl:imports. Las definiciones de las clases se encuentran en las carpetas classes
y superclasses, además de las propiedades de datos y restricciones correspondientes. Las propiedades de
objeto se definen en el archivo ObjectProperties.ttl, y la extensión en Extension.ttl.

6.4. Organización del código

Todo el código desarrollado y utilizado en este trabajo está disponible en el repositorio público de
GitLab accesible desde este enlace: https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero. En esta
sección describimos el contenido de este repositorio: sus directorios y sus ficheros más importantes.

components-edc: Contiene un proyecto de gradle que permite compilar los tres componentes de
EDC que usamos en el trabajo: Control Plane, Data Plane y Identity Hub. Usa la versión 0.12.0 de
los módulos de EDC (marzo 2025).

• extensions: Contiene módulos independientes que se pueden añadir a los componentes. Entre
ellas está la extensión app-pi-warehouse, que sigue el diseño de la Subsección 5.7.4. El resto
de extensiones son necesarias para el funcionamiento del MVD.

• launchers: Contiene los módulos de gradle que crean las imágenes de cada componente.
Cada subdirectorio compila un componente diferente: controlplane, dataplane y identity-
hub.

• spi: Contiene los módulos SPI. Solo tiene app-pi-data-plane, donde se definen el esquema
de las DataAddress que define la extensión app-pi-warehouse, tal y como se indica en la
Subsección 5.7.4.

• build.gradle.kts: Fichero principal de configuración de gradle en el que se establecen las
tareas, dependencias y plugins.

• settings.gradle.kts: Fichero de configuración adicional de gradle en el que se definen los
módulos y submódulos del proyecto (componentes y extensiones).

components-inesdata: Contiene un proyecto de gradle que permite compilar el conector de INES-
Data, y su estructura es la misma que la del directorio components-edc. Usa la versión 0.10.0 de
los módulos de EDC (octubre 2024). Es un proyecto de gradle a parte por que la versión de EDC
es incompatible con la que utilizan los otros componentes.

deployment: Contiene un proyecto de terraform y otros ficheros de configuración para la fase de
despliegue.

• assets: Contiene credenciales, secretos y archivos de configuración.

• edc: Contiene los archivos del entorno principal para desplegar AppSpace con EDC.

• inesdata: Contiene los (insuficientes) archivos del entorno principal para desplegar AppS-
pace con INESData. Contiene también el archivo docker-compose.yml que reemplaza esta
funcionalidad.

93

https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero
https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero

Capítulo 6. Implementación, despliegue y pruebas

• modules: Módulos de terraform con la configuración de cada componente: connector, inesdata-
connector, identity-hub, vault, etc. Se reutilizan para el consumidor y proveedor.

• seed: Contiene los scripts de python que pueblan al espacio de datos con identidad, activos,
políticas y ofertas.

ontology: Implementación de la ontología en Turtle.

test: Contiene cuadernos de Jupyter en Python para realizar pruebas a los espacios de datos.

6.5. Instrucciones de despliegue

Continuando con la Sección 6.2, en esta sección especificamos en detalle como podemos desplegar
AppSpace usando el repositorio de código del trabajo. Tenemos la opción de desplegar el espacio de
datos usando tanto EDC como INESData, para lo cual deberemos seguir estas instrucciones con algunos
cambios. Se dividen en los siguientes tres pasos:

Paso 1: Compilar el código y construir las imágenes.

Paso 2: Configurar y ejecutar las imágenes (en un clúster / con docker compose).

Paso 3: Poblar el espacio de datos.

Para las instrucciones de los pasos 1 y 2 hemos utilizado ficheros e instrucciones del repositorio EDC
MVD en su versión 0.12.0 (enlace) [16], y del repositorio INESData DLE en su versión 0.9.0 [74].
Para ejecutar estas instrucciones se necesitará una consola compatible con POSIX, y tener disponible el
siguiente software:

JDK 17+

Python 3

Docker

KinD (solo EDC)

Kubernetes (solo EDC)

Terraform (solo EDC)

Los comandos se deben ejecutar en el directorio que se indica con el comando cd, y en caso de que
no se indique niguno, desde el directorio raíz del repositorio de código.

Paso 1: Compilar el código y construir las imágenes

Usando EDC

cd components-edc
./gradlew build -x checkstyleMain -x checkstyleTest -x test -x javadoc
./gradlew dockerize -Ppersistence=true

Usando INESData

cd components-inesdata
./gradlew build
./gradlew dockerize

94

https://github.com/eclipse-edc/MinimumViableDataspace/tree/main?tab=readme-ov-file#5-running-the-demo-kubernetes

6.5. Instrucciones de despliegue

Paso 2: Configurar y ejecutar las imágenes

Usando EDC

1. Crear el clúster.

kind create cluster -n mvd --config deployment/kind.config.yaml

2. Cargar las imágenes en KinD.

kind load docker-image -n mvd controlplane:latest dataplane:latest \
identity-hub:latest

3. Desplegar un Ingress con Nginx. Actúa como proxy y permite acceder desde la máquina local al
clúster.

kubectl apply -f \
https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/kind/deploy.yaml

4. Esperar a que el controlador Ingress esté disponible.

kubectl wait --namespace ingress-nginx \
--for=condition=ready pod \
--selector=app.kubernetes.io/component=controller \
--timeout=90s

5. Desplegar el espacio de datos, escribe ’yes’ después de terraform apply.

cd deployment/edc
terraform init
terraform apply

Usando INESData

cd deployment/inesdata
docker compose up

Paso 3: Poblar el espacio de datos

Usando EDC

cd deployment/seed
python3 ./identity.py
python3 ./policies_assets_contracts.py

Usando INESData

cd deployment/seed
python3 ./inesdata_policies_assets_contracts.py

95

Capítulo 6. Implementación, despliegue y pruebas

6.6. Pruebas

Las pruebas son una parte indispensable en el ciclo de vida del desarrollo de software, siendo una
etapa crítica para garantizar la calidad del producto final. A través de ellas, es posible identificar defectos,
validar las funcionalidades y asegurar que el sistema se comporta conforme a lo esperado.

En este trabajo hemos realizado dos tipos de pruebas a nuestro sistema, unitarias para la extensión
del Data Plane, y de sistema para AppSpace en su conjunto. Las pruebas unitarias tienen el objetivo
de validar el único código que modifica el funcionamiento del proveedor. En cambio, para probar el
resto del código utilizaremos pruebas de sistema. Así podremos comprobar que todos los componentes
interactúan adecuadamente, y el funcionamiento global del sistema.

6.6.1. Pruebas unitarias

Hemos realizado las pruebas a la extensión del Data Plane utilizando el framework de pruebas JUnit
en su versión 5. Hemos realizado un total de 19 pruebas, que suponen una cobertura de 196 de las 210
líneas de código de la extensión, un 93,33 %.

Estas pruebas simulan peticiones para iniciar la transferencia de datos provenientes del Control Plane,
pero sin enviar los datos a su destinatario. De esta forma, creamos mensajes tanto válidos como inválidos
que prueban el comportamiento de la extensión en escenarios normales y de error. Estos escenarios de
error incluyen atributos faltantes (al definir la forma de acceso en un activo no se define la categoría, o el
hash de la aplicación), o errores en ellos (categoría que no existe, hash que no existe). Dos escenarios que
no hemos podido simular son la falta de conexión con la API (que no responda) o recibir una respuesta
de una aplicación mal formada (que el JSON no válido, falten atributos o algún nombre esté mal escrito).

Estas pruebas certifican que el conector tiene acceso al repositorio App-PIMD, y que la transforma-
ción a JSON-LD de las aplicaciones se hace adecuadamente.

(a) Vista de la cobertura con VSCode (b) Resultado de las pruebas con Gradle

Figura 6.3: Resultado de las pruebas unitarias

6.6.2. Pruebas de sistema

Las pruebas de sistema se realizan con AppSpace completamente operativo, y consisten en probar
el acceso a los datos. Es condición necesaria para acceder a los datos, que todo el espacio de datos
funcione adecuadamente, incluyendo a todos los componentes, su interacción y sus metadatos. De esta
manera podremos probar el resto del sistema, verificando así la validez de los scripts de terraform, de
python, de las credenciales y del resto de metadatos, etc.

96

6.6. Pruebas

Hemos hecho estas pruebas al final de cada incremento, en las que el consumidor solicita el acceso a
los siguientes datos:

Petición de 6 activos de aplicaciones individuales.

Petición de 2 activos de grupos temáticos de aplicaciones.

Hemos elegido las aplicaciones para que fueran lo más heterogéneas posibles entre sí, es decir, de
distintas categorías, que al menos una defina un grupo de permisos, que al menos una no tenga utilice ni
declare permisos, etc. Las respuestas a cada petición se han procesado también por JSON-LD Playground
[76] para verificar que los modelos semánticos generados son correctos. Cada petición de datos tiene los
siguientes pasos:

1. Consulta de catálogo.

2. Negociación de contrato.

3. Inicio de proceso de transferencia.

4. Acceso a datos.

Pruebas primer incremento

Las pruebas se realizan desde un cuaderno de Jupyter en Python, que se puede encontrar en el di-
rectorio test del repositorio de código con el nombre edc_request_asset.ipynb. Todas las peticiones se
realizan sin incidencias y con éxito.

En el cuaderno también se puede ver el resultado de la última prueba que se ha realizado, en la que se
solicitó el activo app.com.discord (enlace). También mostramos la visualización del modelo semántico
de este activo en la Figura 6.4, obtenido con una captura de pantalla de JSON-LD Playground [76].

Figura 6.4: Visualización con JSON-LD Playground del activo app.com.discord

97

https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero/-/blob/main/test/edc_request_asset.ipynb?ref_type=heads

Capítulo 6. Implementación, despliegue y pruebas

Pruebas segundo incremento

En el segundo incremento tampoco se incluye la interfaz gráfica, a si que las pruebas también se
realizan desde un cuaderno de Jupyter. Se puede encontrar junto al otro cuaderno con el nombre inesda-
ta_request_asset.ipynb. Todas las peticiones se realizan sin incidencias y con éxito.

En el cuaderno se puede ver el resultado de solicitar el activo app.group.finance (enlace).

Pruebas tercer incremento

En el tercer incremento utilizamos la interfaz gráfica del conector de INESData. Hemos podido utili-
zarlo para consultar todos los datos del conector (activos, ofertas, contratos, historial de transferencias,
etc), y también para crearlos aunque no para modificarlos.

Lo que no hemos conseguido es visualizar el catálogo para poder iniciar el proceso de petición de
un activo. En ausencia de un manual del componente es difícil saber si esto se debe a algún error en
la configuración, a un error en el código, o si esta funcionalidad no está implementada todavía. Para
asegurarnos de que el componente accedía correctamente al catálogo hemos revisando su código fuente.
Hemos podido modificar los ficheros de configuración para cambiar la ruta de la API de catálogo, aunque
así tampoco hemos conseguido que se visualizara correctamente.

En conclusión, calificamos estas pruebas como fallidas. Deberemos esperar a la publicación de un
manual que nos permita diagnosticar y arreglar el fallo de la interfaz.

Figura 6.5: Vista de las ofertas desde INESData Interface Connector

98

https://gitlab.inf.uva.es/alfcabr/codigo-tfg-alfonso-cabrero/-/blob/main/test/inesdata_request_asset.ipynb?ref_type=heads

Capítulo 7

Conclusiones y trabajo futuro

Este capítulo final está dedicado a reflexionar sobre los resultados del trabajo, haciendo un resumen
de los aprendizajes y logros conseguidos. Además, y con especial importancia en el contexto de este
trabajo, propondremos líneas de mejora y trabajo futuro, fundamentales para garantizar su continuidad
y resolver las limitaciones pendientes.

7.1. Conclusiones

A lo largo de este trabajo hemos analizado el estado actual de los espacios de datos, y hemos iden-
tificado sus principales ventajas y fortalezas. Hemos analizado en profundidad los estándares más reco-
nocidos en la actualidad, y los hemos aplicado diseñando un proveedor. Pese a ser aún una tecnología
emergente, prometen crear un entorno seguro de intercambio de datos centrado en la confianza, la sobe-
ranía y la interoperabilidad, favoreciendo así la innovación, la colaboración y la prosperidad.

También hemos estudiado la importancia que tienen las políticas de acceso y uso y normas de gober-
nanza para proteger la soberanía de los datos y promover la confianza, y visto el estado del arte actual con
el modelo ODRL, los modelos de identidad descentralizados como las credenciales verificables (VCs) y
los identificadores descentralizados (DIDs), o los basados en OAuth2.

También hemos aprendido la relevancia de las ontologías y los modelos semánticos, especialmen-
te para la integración de información, la web semántica y los servicios basados en datos distribuidos.
Además, nos hemos iniciado en el diseño de ontologías creando una propia modelando metadatos sobre
aplicaciones móviles.

Y utilizando todos estos aprendizajes, los hemos conseguido aplicar con éxito desarrollando un pro-
veedor capaz de compartir el repositorio de App-PIMD, así como creando un pequeño espacio de datos
(AppSpace) en el que hemos podido comprobar algunas capacidades de esta tecnología.

Compartir, pero con garantías

En este trabajo nos hemos centrado en compartir datos que ya son accesibles de manera pública,
pero el potencial de los espacios de datos hace que también sea posible compartir datos que a priori
no dejaríamos libremente al público. A través de las políticas de acceso y uso, el proveedor que he-
mos desarrollado habilita a compartir una mayor variedad de datos, incluso aunque sean especialmente
sensibles.

99

Capítulo 7. Conclusiones y trabajo futuro

Ya hemos mencionado un ejemplo de nuevos datos que desde el proyecto App-PI podrían decidir
compartir, y esas son las valoraciones del riesgo para la privacidad de cada permiso de Android, usando
metodologías diferentes.

Para ofrecer y proteger estos activos, el proveedor permite definir nuevas políticas con un formato
muy flexible, capaz de adaptarse a las condiciones de cada proyecto. Algunos ejemplos de estas políticas
son los siguientes: uso no comercial, uso para investigación, uso permitido solo en Europa (o cualquier
otra geografía), prohibición de almacenar los datos, prohibición de transferir a terceros u obligación de
citar la fuente de los datos.

Objetivos del trabajo y limitaciones del proveedor

Hemos cumplido con el principal objetivo del trabajo, que era compartir el repositorio App-PIMD a
través de un proveedor. Lo hemos implementado con dos tecnologías, EDC e INESData, que soportan
además dos modelos de identidad diferentes. Aunque actualmente se trata de una solución aislada, la he-
mos diseñado pensando en facilitar su integración futura a un espacio de datos adecuado. Esto permitirá
que el repositorio sea accesible para un público mucho más amplio cuando surja un proyecto apropiado.

Por otra parte, al haber estado trabajado con un framework tan reciente, nos hemos encontrado con
una limitación. Las APIs de EDC para la gestión del conector, o para enviar mensajes entre participantes
solo permiten usar HTTP, lo cual supone un grave riesgo de seguridad y no permite exponer al proveedor
a una red pública o a una red no segura. Sin duda, la tecnología seguirá madurando y este problema será
resuelto en versiones posteriores.

Por último, si bien al principio del trabajo nos planteamos desplegar AppSpace en Google Cloud
como objetivo complementario, finalmente no lo hemos hecho. En su lugar, hemos concentrado nuestros
esfuerzos en el proveedor, que era lo más importante. Con el tiempo adicional, hemos podido mejorar
su diseño y estudiar más detenidamente algunos conceptos de los espacios de datos y de las tecnologías
que hemos utilizado.

7.2. Trabajo futuro

Relativo al proveedor

Las líneas de trabajo futuro más claras son las orientadas a superar los retos tecnológicos actuales,
como los que hemos comentado. Sin duda, estos se solucionarán en un futuro cercano, a medida que la
tecnología siga avanzando.

La continuidad de este proveedor pasará por adaptarlo e integrarlo en el espacio de datos de seguridad
que surja en el futuro (o en varios). Esto implicará posiblemente el tener que revisar su arquitectura para
asegurar la compatibilidad con los estándares que adopte este espacio de datos, además de incorporar las
innovaciones tecnológicas que se vayan desarrollando.

Relativo al proyecto App-PI

Una línea de mejora que permitirá simplificar el proveedor, pero que requiere modificar la API de
App-PIMD, será la de integrarlo con la ontología. Este cambio la acercaría en mayor medida a donde se
producen los datos, y donde es más probable que sea modificada.

100

7.2. Trabajo futuro

Con este cambio, además, la API podrá transformar sus respuestas a JSON-LD, que junto con utilizar
un certificado emitido por una autoridad de certificación reconocida, eliminaría la necesidad de incluir
la extensión al Data Plane en el conector.

Además, para que el proveedor pueda acceder a estos nuevos métodos, sería recomendable convertirlo
en un usuario autorizado con mayores permisos en la API.

101

Bibliografía

[1] European Commission. The European Data Market study 2024-2026. Enlace, 2024.

[2] Data Spaces Support Centre (DSSC). Why data spaces? A business and user’s perspective. Enlace,
2023.

[3] Universidad de Valladolid Grupo de Investigación en Ingeniería de la Privacidad. Proyecto App-PI
(App Privacy Impact). Enlace. Visitado el 9 de mayo de 2025.

[4] INESData. Sobre el proyecto. Enlace. Visitado el 22 de febrero de 2025.

[5] tryQA.com. What is Incremental model- advantages, disadvantages and when to use it? Enlace.
Visitado el 1 de febrero de 2025.

[6] JGraph Ltd. draw.io. Enlace. Visitado el 9 de mayo de 2025.

[7] TeamGantt. Project Management Software Tool. Enlace.

[8] Gregory M. Becker. A practical risk management approach. Paper presented at PMI® Global Con-
gress 2004—North America, Anaheim, CA. Newtown Square, PA: Project Management Institute.,
2004. Enlace.

[9] GLASSDOOR. Sueldos de Junior Software Engineer. Enlace. Visitado el 9 de mayo de 2025.

[10] GLASSDOOR. Sueldos de Tech Lead. Enlace. Visitado el 9 de mayo de 2025.

[11] asesorias.com. Horas de trabajo anuales. ¿Cómo calcularlas? Enlace. Visitado el 9 de mayo de
2025.

[12] Seguridad Social. Bases y tipos de cotización 2024. Régimen general de la Seguridad Social.
Enlace. Visitado el 9 de mayo de 2025.

[13] Leburó. Precio de Coworking en Valladolid. Enlace. Visitado el 9 de mayo de 2025.

[14] PcComponentes.com. Portátil Acer Gaming Aspire 5 A515-58GM Intel Core i5-
1335U/16GB/512GB SSD/RTX 2050. Enlace. Visitado el 9 de mayo de 2025.

[15] PcComponentes.com. Lenovo Ideapad 330 Intel Core i7-8550U/8GB/256GB SSD. Enlace. Visi-
tado el 9 de mayo de 2025.

[16] Eclipse Dataspace Components. Minimum Viable Dataspace v0.12.0. Enlace, 2025.

[17] Google Cloud. Precios de Google Kubernetes Engine. Enlace. Visitado el 9 de mayo de 2025.

[18] Google Cloud. Precios de Cloud SQL. Enlace. Visitado el 9 de mayo de 2025.

[19] European Central Bank. Euro foreign exchange reference rates: US dollar (USD). Enlace.

102

https://digital-strategy.ec.europa.eu/en/library/european-data-market-study-2024-2026
https://dssc.eu/space/DC/28049509/Strategic+Stakeholder+Forum?attachment=/download/attachments/28049509/1st%20collaborative%20discussion%20paper%20Why%20data%20spaces%20A%20business%20and%20user%27s%20perspective.pdf&type=application/pdf&filename=1st%20collaborative%20discussion%20paper%20Why%20data%20spaces%20A%20business%20and%20user%27s%20perspective.pdf
https://ingpriv.uva.es/proyectos/proyecto-app-pi-app-privacy-impact/
https://inesdata-project.eu/content/es/proyecto.html
https://tryqa.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
https://app.diagrams.net
https://www.teamgantt.com/
https://www.pmi.org/learning/library/practical-risk-management-approach-8248
https://www.glassdoor.es/Sueldos/junior-software-engineer-sueldo-SRCH_KO0,24.htm
https://www.glassdoor.es/Sueldos/tech-lead-sueldo-SRCH_KO0,9.htm
https://asesorias.com/empresas/normativas/laboral/jornada/horas-trabajo-anuales/
https://www.seg-social.es/wps/portal/wss/internet/Trabajadores/CotizacionRecaudacionTrabajadores/36537#36538
https://leburocowork.es/precio-coworking-valladolid
https://www.pccomponentes.com/portatil-acer-gaming-aspire-5-a515-58gm-intel-core-i5-1335u-16gb-512gb-ssd-rtx-2050-156?s_kwcid=AL!14405!3!!!!x!!&gad_source=1
https://www.pccomponentes.com/lenovo-ideapad-330-intel-core-i7-8550u-8gb-256gb-ssd-156
https://github.com/eclipse-edc/MinimumViableDataspace
https://cloud.google.com/kubernetes-engine/pricing?hl=es
https://cloud.google.com/sql/docs/mysql/pricing?hl=es
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/eurofxref-graph-usd.en.html

Bibliografía

[20] Red Eléctrica de España ESIOS (Sistema de Información del Operador del Sistema). Término de
facturación de energía activa del PVPC 2.0TD. Enlace con vista previa. Descarga de datos.

[21] Selectra. Factura de la luz: desglose y explicación de conceptos. Enlace. Visitado el 9 de mayo de
2025.

[22] Dirección General de Gobernanza Pública administracion.gob.es. Impuesto especial sobre la elec-
tricidad. Enlace. Visitado el 9 de mayo de 2025.

[23] Selectra. Impuestos e IVA de la luz en 2025: cambios y evolución. Enlace. Visitado el 9 de mayo
de 2025.

[24] Michael Franklin, Alon Halevy, and J Widom. Data-spaces: a new abstraction for data management.
SIGMOD Record, December, 2005. Enlace.

[25] Edward Curry. Dataspaces: Fundamentals, Principles, and Techniques, pages 45–62. Springer
International Publishing, Cham, 2020. Enlace.

[26] Fraunhofer ISST. Wie baut man Data Spaces? | Data Researchers #8. Enlace, 2020.

[27] World Wide Web Consortium. Linked Data Glossary. Enlace, 2013.

[28] Eclipse Dataspace Components. Documentation. Enlace. Visitado el 9 de mayo de 2025.

[29] European Commission. Common European Data Spaces. Enlace, 2024.

[30] International Data Spaces Association (IDSA). Use case brochure. Enlace, 2022.

[31] Data Spaces Support Centre (DSSC). Data Spaces Blueprint v1.5: Building Block Overview. En-
lace, 2024.

[32] datos.gob.es. ¿Por qué espacios de datos? Enlace, 2024.

[33] International Data Spaces Association (IDSA). Data sovereignty. Enlace. Visitado el 9 de mayo
de 2025.

[34] International Data Spaces Association (IDSA). Our mission and vision. Enlace. Visitado el 9 de
mayo de 2025.

[35] Internationa Data Spaces Association (IDSA). GitHub. Enlace. Visitado el 9 de mayo de 2025.

[36] International Data Spaces Association (IDSA). Reference Architecture Model (RAM) version 4.
Enlace, 2023.

[37] International Data Spaces Association (IDSA). Dataspace Protocol version 2024-1. Enlace, 2024.

[38] International Data Spaces Association (IDSA). Rulebook. Enlace. Visitado el 9 de mayo de 2025.

[39] GAIA-X. Members Directory. Enlace. Visitado el 9 de mayo de 2025.

[40] Ministerio Federal de Economía y Protección del Clima (BMWK; Bundesministerium für Wirts-
chaft und Klimaschutz). Franco-German Position on GAIA-X. Enlace, 2020.

[41] Hendrik Meyer zum Felde, Maarten Kollenstart, Thomas Bellebaum, Simon Dalmolen, and
Gerd Stefan Brost. Extending actor models in data spaces. Companion Proceedings of the ACM
Web Conference 2023, 2023.

[42] GAIA-X. About Gaia-X. Enlace. Visitado el 9 de mayo de 2025.

103

https://www.esios.ree.es/es/analisis/1001?vis=1&start_date=31-12-2024T23%3A00&end_date=31-01-2025T23%3A55&compare_start_date=30-12-2024T23%3A00&groupby=hour
https://api.esios.ree.es/archives/71/download?date_type=publicacion&end_date=2025-01-31T23%3A59%3A59%2B00%3A00&locale=es&start_date=2025-01-01T00%3A00%3A00%2B00%3A00
https://selectra.es/energia/info/que-es/factura-luz
https://administracion.gob.es/pag_Home/Tu-espacio-europeo/derechos-obligaciones/empresas/impuestos/especiales/electricidad.html
https://selectra.es/energia/info/que-es/factura-luz/iva-luz-impuestos
https://dsf.berkeley.edu/dblunch-fa2005/alon.pdf
https://doi.org/10.1007/978-3-030-29665-0_3
https://www.youtube.com/watch?v=cG520gPBjaY
https://www.w3.org/TR/ld-glossary/#vocabulary
https://eclipse-edc.github.io/documentation/
https://digital-strategy.ec.europa.eu/en/policies/data-spaces
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/220812_Use-Case-Bro_2022_35-MB.pdf
https://dssc.eu/space/bv15e/766064046/Building+Block+Overview
https://dssc.eu/space/bv15e/766064046/Building+Block+Overview
https://datos.gob.es/es/blog/por-que-espacios-de-datos
https://internationaldataspaces.org/why/data-sovereignty/
https://internationaldataspaces.org/why/#:~:text=Our%20mission%20is%20to%20advance,your%20data%2C%20for%20all%20participants.
https://github.com/International-Data-Spaces-Association
https://docs.internationaldataspaces.org/ids-knowledgebase/ids-ram-4
https://docs.internationaldataspaces.org/ids-knowledgebase/dataspace-protocol
https://docs.internationaldataspaces.org/ids-knowledgebase/idsa-rulebook
https://gaia-x.eu/community/members-directory/
https://www.bmwk.de/Redaktion/DE/Downloads/F/franco-german-position-on-gaia-x.pdf?__blob=publicationFile&v=10
https://gaia-x.eu/about/

Bibliografía

[43] GAIA-X. Services & Deliverables. Enlace. Visitado el 9 de mayo de 2025.

[44] International Data Spaces Association (IDSA). Data Connector Report | No. 16 - September 2024.
Enlace, 2024.

[45] International Data Spaces Association (IDSA). Certified data connectors. Enlace. Visitado el 9 de
mayo de 2025.

[46] Eclipse Foundation. Eclipse Dataspace Components. Enlace. Visitado el 9 de mayo de 2025.

[47] Elena Montiel and Víctor Rodríguez. Primera aproximación al proyecto INESData. Enlace, 2023.

[48] INESData. GitHub. Enlace (etiqueta inesdata-project) Enlace (usuario INESData). Visitado el 22
de febrero de 2025.

[49] datos.gob.es. El kit de iniciación a los espacios de datos. Enlace, 2023.

[50] European Commission. European data strategy. Enlace, 2020.

[51] European Commission. European Data Governance Act. Enlace, 2022.

[52] European Commission. Data Act. Enlace, 2024.

[53] Ministerio para la Transformación Digital y de la Función Pública. Plan de Impulso de los Espacios
de Datos. Enlace, 2024.

[54] datos.gob.es. Plan de Impulso de los Espacios de Datos Sectoriales. Enlace, 2024.

[55] Mobility Data Space. Página web. Enlace. Visitado el 12 de febrero de 2025.

[56] Mobility Data Space. MDS Use Cases of our members. Enlace. Visitado el 12 de febrero de 2025.

[57] World Wide Web Consortium. ODRL Information Model 2.2. Enlace, 2018.

[58] World Wide Web Consortium. Verifiable Credentials Data Model v2.0. Enlace, 2025.

[59] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press, 2004.

[60] Dean Allemang and James Hendler. Semantic web for the working ontologist: effective modeling
in RDFS and OWL. Elsevier, 2011.

[61] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199–220, 1993. Enlace.

[62] Thomas R. Gruber. Encyclopedia of Database Systems | Ontology, pages 1–3. Springer New York,
2016. Enlace.

[63] Alejandro Pérez de La Fuente. Data Warehouse para el estudio de la privacidad de aplicaciones
móviles. Enlace, 2023.

[64] World Wide Web Consortium. JSON-LD 1.1 A JSON-based Serialization for Linked Data. Enlace,
2020.

[65] World Wide Web Consortium. Decentralized Identifiers (DIDs) v1.0. Enlace, 2022.

[66] World Wide Web Consortium Credentials Community Group. did:web Method Specification. En-
lace, 2024.

[67] Internet Engineering Task Force (IETF). JSON Web Token (JWT). Enlace, 2015.

104

https://gaia-x.eu/services-deliverables/
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Data-Connector-Report-84-No-16-September-2024-1.pdf
https://internationaldataspaces.org/offers/certification/
https://projects.eclipse.org/projects/technology.edc
https://doi.org/10.5281/zenodo.7845805
https://github.com/topics/inesdata-project
https://github.com/INESData
https://datos.gob.es/es/blog/el-kit-de-iniciacion-los-espacios-de-datos
https://digital-strategy.ec.europa.eu/en/policies/strategy-data
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-act
https://datos.gob.es/sites/default/files/blog/file/plan_de_impulso_de_los_espacios_de_datos_sectoriales.pdf
https://datos.gob.es/es/noticia/plan-de-impulso-de-los-espacios-de-datos-sectoriales
https://mobility-dataspace.eu/
https://mobility-dataspace.eu/use-cases
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/vc-data-model-2.0/
https://tomgruber.org/writing/ontolingua-kaj-1993.pdf
https://tomgruber.org/writing/definition-of-ontology/
https://uvadoc.uva.es/bitstream/handle/10324/63024/TFG-G6507.pdf?sequence=1&isAllowed=y
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/did-1.0/
https://w3c-ccg.github.io/did-method-web/
https://w3c-ccg.github.io/did-method-web/
https://datatracker.ietf.org/doc/html/rfc7519

Bibliografía

[68] Eclipse Foundation. Eclipse Dataspace Protocol. Enlace. Visitado el 9 de mayo de 2025.

[69] Eclipse Foundation. Eclipse Dataspace Decentralized Claims Protocol. Enlace. Visitado el 9 de
mayo de 2025.

[70] Internet Engineering Task Force (IETF). The OAuth 2.0 Authorization Framework. Enlace, 2012.

[71] INESData. E5. Componentes horizontales para espacios de datos. Enlace, 2025. Visitado el 9 de
mayo de 2025.

[72] Kong Learning Center. Understanding the Basics of Kubernetes Architecture. Enlace. Visitado el
9 de mayo de 2025.

[73] Eclipse Dataspace Components. EDC Conceptual Overview and Architecture. Enlace, 2022.

[74] INESData. Dataspace Local Enviroment v0.9.0. Enlace, 2025.

[75] INESData. INESData Connector v0.9.1. Enlace, 2025.

[76] Digital Bazaar Inc. JSON-LD Playground. Enlace. Visitado el 9 de mayo de 2025.

105

https://projects.eclipse.org/projects/technology.dataspace-protocol-base
https://projects.eclipse.org/projects/technology.dataspace-dcp
https://datatracker.ietf.org/doc/html/rfc6749
https://cloud.inesdata-project.eu/public.php/dav/files/3ktcj8GX98ibsBy/Deliverables/INESData%20-%20E5.Componentes%20horizontales%20para%20espacios%20de%20datos.pdf
https://konghq.com/blog/learning-center/kubernetes-architecture
https://www.youtube.com/watch?v=IGd4oafLyAg
https://github.com/INESData/inesdata-local-env
https://github.com/INESData/inesdata-connector
https://json-ld.org/playground/

Apéndice A

Herramientas utilizadas

Investigación y documentación

1. LaTeX: Lenguaje de marcado que facilita la preparación de documentos con estructura compleja.
Utilizado para escribir la presente memoria.

a) MiKTeX: Compilador de LaTeX de código abierto válido para Windows.

b) TeXstudio: Editor de código LaTeX de código abierto (IDE).

c) tablesgenerator.com: Herramienta online que facilita la creación de tablas con LaTeX (en-
lace).

2. Google Scholar: Motor de búsqueda que facilita buscar literatura académica.

3. ChatGPT: Chatbot de inteligencia artificial desarrollado por OpenAI. Usado para tareas de revi-
sión ortográfica, síntesis y traducción.

Planificación y diseño

1. TeamGantt: Herramienta online para gestionar proyectos mediante diagramas de Gantt. Utilizada
para elaborar el cronograma del proyecto (Figura 2.3).

2. draw.io: Herramienta online para crear diagramas y figuras de cualquier tipo. Utilizada para re-
presentar: la Estructura de División del Trabajo (Figura 2.2), el diseño de la ontología (figuras
5.6, 5.7, 5.8, 5.9 y 5.12) y los escenarios de los dos repositorios de código utilizados en el trabajo
(Figura 6.1 y Figura 6.2)

3. Canva: Plataforma online de diseño gráfico. Utilizada para la figura Figura 2.5, en la que se mues-
tra la matriz de índices de prioridad de riesgos.

4. Astah Professional: Herramienta de modelado UML. Utilizada para los diagramas de los capítulos
de análisis y diseño.

5. Python (matplotlib) y git: Lenguaje de programación (librería para elaborar gráficos) y sistema
de control de versiones. Utilizados en conjunto para elaborar la figura de evolución del número de
palabras por capítulo (Figura 2.6).

106

https://www.tablesgenerator.com/
https://www.tablesgenerator.com/

Desarrollo, gestión y pruebas del código

A parte de las ya mencionadas en la Sección 6.1: Entorno de desarrollo, hemos utilizado también
ChatGPT, como asistente de programación.

Otros

Para la comunicación con los tutores hemos utilizado la función de correo electrónico de Microsoft
Outlook.

107

	Introducción
	Contexto
	Motivación
	Objetivos
	Estructura de la memoria

	Planificación
	Metodología
	Gestión de los recursos
	Gestión del trabajo
	Gestión del tiempo
	Gestión de los riesgos
	Gestión de los costes
	Seguimiento del proyecto
	Riesgos
	Tiempo

	Espacios de Datos
	¿Qué son los espacios de datos?
	Soberanía y confianza
	Comparación con SGBD relacionales

	International Data Spaces Association (IDSA)
	IDS Reference Architecture Model
	Dataspace Protocol (DSP)
	IDSA Rulebook

	Gaia-X Association
	Implementaciones
	Eclipse Dataspace Components (EDC)
	INESData

	Apoyo institucional
	Unión Europea
	España

	Ejemplo: movilidad

	Requisitos y análisis
	Descripción del sistema
	Roles de usuarios del sistema
	Requisitos
	Casos de uso
	Del consumidor
	Del administrador

	Modelo del dominio
	Realización en análisis de los casos de uso

	Diseño
	Credenciales
	Metadatos
	Políticas de acceso y uso
	Activos
	Ontología

	Contexto tecnológico
	Web semántica y representación de datos
	Identidad digital
	Protocolos
	Componentes

	Adaptación de los datos a los estándares de EDC e INESData
	Arquitectura lógica
	Topología
	Proveedor con EDC
	Proveedor con INESData

	Arquitectura física
	Tecnologías
	Proveedor con EDC
	Proveedor con INESData

	Diseño detallado
	Arquitectura de EDC
	Extensiones
	Data Plane Framework
	Extensión para el warehouse

	Implementación, despliegue y pruebas
	Entorno de desarrollo
	Proceso de implementación
	EDC Minimum Viable Dataspace
	INESData Dataspace Local Enviroment

	Implementación de los datos
	Organización del código
	Instrucciones de despliegue
	Pruebas
	Pruebas unitarias
	Pruebas de sistema

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Bibliografía
	Herramientas utilizadas

