
Universidad de Valladolid

ESCUELA DE INGENIERÍA INFORMÁTICA

GRADO EN INGENIERÍA INFORMÁTICA
Mención en Ingeniería del Software

DDVault: Aplicación web como soporte a la
definición y gestión de diccionarios de datos

Alumno: Johana Andrea Ramírez Figueroa

Tutor: Yania Crespo González-Carvajal

A quienes me inspiraron a seguir adelante

I

II

AGRADECIMIENTOS

Agradecimientos

Me gustaría expresar mi agradecimiento a Yania, por haberme guiado durante todo este
proceso. Cada vez que me he sentido perdida, ha sabido encaminarme. También agradezco
infinitamente su paciencia y su actitud positiva.

III

AGRADECIMIENTOS

IV

RESUMEN

Resumen

Un diccionario de datos documenta los metadatos más ligados a su almacenamiento en
bases de datos. Incluye aspectos como la definición de cada campo, su tipo de dato, formato,
longitud, posibles valores que puede tomar, reglas que debe cumplir en relación con otros
campos e, incluso, transformaciones sufridas. Estos metadatos ayudan a los usuarios a en-
tender los datos desde el punto de vista técnico para poder explotarlos adecuadamente. Por
este motivo, cada base de datos debería contar con su diccionario de datos asociado.

En este trabajo se ha desarrollado una aplicación web que ayuda a organizaciones a
gestionar la documentación de sus bases de datos mediante la creación de diccionarios de
datos y la asignación de usuarios a roles específicos. Para su desarrollo, se han utilizado los
frameworks Angular para el cliente y Spring Boot para el servidor. Además, se ha utilizado
Scrum para la organización y el seguimiento del trabajo.

V

RESUMEN

VI

ABSTRACT

Abstract

A data dictionary stores metadata related to the structure and constraints of data in
a database. It includes information such as field definitions, data types, formats, lengths,
valid values, relational rules, and any transformations applied to the data. This metadata
is essential for understanding the data from a technical perspective and ensuring its correct
usage. Therefore, every database should be accompanied by a data dictionary.

This Final Degree Project presents a web application designed to support organizations in
documenting their databases by facilitating the creation of data dictionaries and the assign-
ment of users to specific roles. The application was developed using the Angular framework
for the client side and Spring Boot for the server side. The Scrum framework was adapted
and applied for project organization and task management.

VII

ABSTRACT

VIII

ÍNDICE GENERAL

Índice general

Agradecimientos III

Resumen V

Abstract VII

Lista de figuras XV

Lista de tablas XIX

1. Introducción 1

1.1. Contexto . 1

1.2. Motivación . 2

1.3. Alternativas . 2

1.3.1. Dataedo . 2

1.3.2. Database Note Taker . 3

1.3.3. Redgate SQL Doc . 3

1.4. Objetivos . 4

1.5. Estructura de la memoria . 4

2. Requisitos y Planificación 7

2.1. Scrum . 7

IX

ÍNDICE GENERAL

2.1.1. Adaptación del marco de trabajo . 8

2.2. Stakeholders, roles y épicas . 9

2.2.1. Épicas . 10

2.3. División de épicas en historias de usuario . 11

2.4. Reglas de negocio . 16

2.5. Plan de riesgos . 17

2.6. Planificación . 23

2.7. Presupuesto . 23

2.7.1. Presupuesto simulado . 23

2.7.2. Presupuesto real . 25

2.8. Replanificación del proyecto . 26

2.9. Product backlog final . 28

3. Análisis 31

3.1. Modelado del dominio . 31

3.2. Modelado dinámico . 32

3.2.1. Modelo de proceso de negocio . 32

3.2.2. Modelado de objetos como máquinas de estados 32

4. Tecnologías utilizadas 39

4.1. Herramientas de comunicación . 39

4.1.1. Telegram . 39

4.2. Herramientas de prototipado, análisis y diseño 39

4.2.1. Figma . 39

4.2.2. Astah Professional . 40

4.3. Herramientas de desarrollo y pruebas . 40

4.3.1. Intellij IDEA . 40

X

ÍNDICE GENERAL

4.3.2. GitHub Copilot . 40

4.3.3. Spring Boot . 41

4.3.4. Angular . 41

4.3.5. MySQL . 41

4.3.6. Jasmine . 42

4.4. Herramientas de gestión y documentación . 42

4.4.1. Overleaf . 42

4.4.2. ChatGPT . 43

4.4.3. Git . 43

4.4.4. Gitlab . 45

5. Diseño 49

5.1. Arquitectura . 49

5.1.1. Arquitectura cliente-servidor . 49

5.1.2. Arquitectura del servidor: Patrón capas 51

5.1.3. Arquitectura del cliente: Patrón MVVM 54

5.2. Diseño de la interfaz de usuario . 58

5.3. Diseño de datos . 67

5.4. Diseño de la comunicación . 68

5.5. Despliegue de la aplicación . 70

6. Implementación y pruebas 73

6.1. Licencia . 73

6.2. Implementación . 73

6.2.1. Organización del proyecto . 73

6.2.2. Dificultades encontradas . 79

6.3. Pruebas . 80

XI

ÍNDICE GENERAL

6.3.1. Sintaxis de Jasmine . 81

6.3.2. Cobertura de las pruebas . 82

7. Seguimiento del proyecto 85

7.1. Introducción . 85

7.2. Seguimiento por sprints . 86

7.2.1. Sprint 0 (15/02/2024 - 14/03/2024) 86

7.2.2. Sprint 1 (14/03/2024 - 04/04/2024) 86

7.2.3. Sprint 2 (04/04/2024 - 18/04/2024) 88

7.2.4. Sprint 3 (18/04/2024 - 02/05/2024) 90

7.2.5. Sprint 4 (02/05/2024 - 17/05/2024) 92

7.2.6. Sprint 5 (14/06/2024 - 28/06/2024) 94

7.2.7. Sprint 6 (28/06/2024 - 11/07/2024) 96

7.2.8. Sprint 7 (11/07/2024 - 25/07/2024) 97

7.2.9. Sprint 8 (29/08/2024 - 12/09/2024) 98

7.2.10. Sprint 9 (12/09/2024 - 26/09/2024) 99

7.2.11. Sprint 10 (26/09/2024 - 10/10/2024) 101

7.2.12. Sprint 11 (10/10/2024 - 24/10/2024) 103

7.2.13. Sprint 12 (14/11/2024 - 28/11/2024) 106

7.2.14. Sprint 13 (28/11/2024 - 12/12/2024) 108

7.2.15. Sprint 14 (03/02/2025 - 17/02/2025) 110

7.3. Resumen de la ejecución del proyecto . 111

7.3.1. Funcionalidad implementada . 111

7.3.2. Dedicación . 113

8. Conclusiones 117

8.1. Líneas de trabajo futuras . 117

XII

ÍNDICE GENERAL

Bibliografía 122

A. Manuales 123

A.1. Manual de despliegue e instalación . 123

A.1.1. Prerrequisitos . 123

A.1.2. Instrucciones . 124

A.2. Manual de mantenimiento . 125

A.3. Manual de usuario . 127

B. Resumen de enlaces adicionales 143

XIII

ÍNDICE GENERAL

XIV

LISTA DE FIGURAS

Lista de Figuras

3.1. Modelo de dominio . 34

3.2. Proceso de negocio - Creación y activación de una cuenta de usuario 35

3.3. Proceso de negocio - Modificación de un elemento de diccionario 36

3.4. Máquina de estados - Cuenta de usuario . 37

3.5. Máquina de estados - Elemento del diccionario 37

4.1. Jasmine + Karma. Imagen tomada de [45] . 42

4.2. Interfaz de Overleaf . 43

4.3. Ejemplo de uso de ChatGPT . 44

4.4. Issue correspondiente a la épica EP02 . 46

4.5. Issue correspondiente a la historia de usuario HU30 47

4.6. Issue board del proyecto . 48

5.1. Esquema cliente-servidor. Imagen tomada de [11] 50

5.2. Sistema relajado de capas. Imagen tomada de [8] 52

5.3. Arquitectura general del servidor . 53

5.4. Relación entre los componentes del patrón MVVM [5] 54

5.5. Arquitectura general del cliente . 55

5.6. Diagrama de componentes . 57

5.7. Pantalla inicio de sesión . 59

XV

LISTA DE FIGURAS

5.8. Pantalla inicio del administrador . 59

5.9. Pantalla inicio del gestor de metadatos . 60

5.10. Pantalla para la creación de usuarios . 60

5.11. Pantalla para la gestión de usuarios . 61

5.12. Ventana de diálogo para la edición de información del usuario 61

5.13. Ventana de diálogo para la generación de contraseñas 62

5.14. Ventana de diálogo para conceder acceso a diccionarios 62

5.15. Pantalla para la visualización de un diccionario 63

5.16. Pantalla para la visualización de una base de datos 63

5.17. Pantalla para la visualización de una entidad 64

5.18. Pantalla para la visualización de un atributo 64

5.19. Pantalla para la creación de un diccionario . 65

5.20. Pantalla para la creación de una base de datos 65

5.21. Pantalla con la lista de propuestas . 66

5.22. Pantalla con la revisión de una propuesta . 66

5.23. Diagrama entidad-relación . 67

5.24. Diagrama de secuencia de “HU10 - Crear diccionario de datos” en el front-end 68

5.25. Diagrama de secuencia de “HU10 - Crear diccionario de datos” en el back-end 69

5.26. Diagrama de despliegue en el entorno local de desarrollo y pruebas 70

5.27. Diagrama de despliegue en el entorno de producción 71

6.1. CC BY 4.0 . 73

6.2. Resumen de la licencia CC BY 4.0. Captura tomada de [10] 74

6.3. Estructura del repositorio . 75

6.4. Estructura del código en Spring Boot . 77

6.5. Estructura del código en Angular . 78

6.6. Ejemplo de una test suite en Jasmine . 81

XVI

LISTA DE FIGURAS

6.7. Prueba perteneciente a la suite del componente LoginComponent 82

6.8. Karma mostrando los resultados de las pruebas ejecutadas 83

6.9. Cobertura del código . 84

A.1. Localización del botón Fork . 126

A.2. Configuración del nuevo repositorio . 126

A.3. Página de inicio de sesión . 128

A.4. Desplegable con los idiomas disponibles . 128

A.5. Página de inicio del administrador . 129

A.6. Página para la gestión de usuarios del sistema 130

A.7. Ventana de diálogo para modificar la información de un usuario 130

A.8. Ventana de diálogo para restablecer la contraseña 130

A.9. Ventana de diálogo para otorgar acceso a los diccionarios 131

A.10.Página para la creación de usuarios . 131

A.11.Página con los diccionarios del gestor de metadatos 132

A.12.Ventana de diálogo para confirmar la eliminación de un elemento 132

A.13.Página para la creación de un diccionario . 133

A.14.Página de un diccionario de datos . 133

A.15.Edición del nombre y la descripción de un diccionario 134

A.16.Página para la creación de una base de datos 134

A.17.Página de una base de datos . 135

A.18.Página para la creación de una entidad . 135

A.19.Página de una entidad . 136

A.20.Página para la creación de un atributo . 137

A.21.Página de un atributo . 137

A.22.Edición de las metapropiedades de un atributo 138

A.23.Ventana de diálogo para confirmar el borrado de una metapropiedad 138

XVII

LISTA DE FIGURAS

A.24.Página de revisiones en la pestaña de “Revisiones pendientes” 139

A.25.Página de revisiones en la pestaña de “Histórico de revisiones” 140

A.26.Página de revisiones en la pestaña de “Mis cambios propuestos” 140

A.27.Página de una revisión pendiente . 141

A.28.Página de una revisión aceptada . 141

A.29.Página de una revisión rechazada . 142

XVIII

LISTA DE TABLAS

Lista de Tablas

2.1. Historias de usuario EP01 - Gestión de usuarios 12

2.2. Historias de usuario EP02 - Inicio de sesión 13

2.3. Historias de usuario EP03 - Creación de diccionario 13

2.4. Historias de usuario EP04 - Modificación del diccionario 14

2.5. Historias de usuario EP05 - Exploración del diccionario de datos 14

2.6. Historias de usuario EP06 - Búsqueda de diccionario 14

2.7. Historias de usuario EP07 - Registro de operaciones 15

2.8. Historias de usuario EP08 - Historial de modificaciones 15

2.9. Historias de usuario EP09 - Exportación de diccionario 15

2.10. Matriz de probabilidad-impacto. Tomada de [22] 18

2.11. Riesgo R01 - Enfermedad de la estudiante . 18

2.12. Riesgo R02 - Avería del equipo informático 19

2.13. Riesgo R03 - Mala planificación de las historias de usuario 20

2.14. Riesgo R04 - Gold Plating . 21

2.15. Riesgo R05 - Otras asignaturas . 22

2.16. Riesgo R06 - Desconocimiento de las tecnologías 22

2.17. Planificación inicial . 24

2.18. Presupuesto simulado . 26

2.19. Replanificación . 27

XIX

LISTA DE TABLAS

2.20. Product backlog final [Parte 1] . 28

2.21. Product backlog final [Parte 2] . 29

7.1. Ejemplo de Sprint backlog . 85

7.2. Sprint 0 . 86

7.3. Sprint backlog - Sprint 1 . 87

7.4. Sprint backlog - Sprint 2 . 89

7.5. Sprint backlog - Sprint 3 . 91

7.6. Sprint backlog - Sprint 4 . 93

7.7. Sprint backlog - Sprint 5 . 95

7.8. Sprint backlog - Sprint 6 . 97

7.9. Sprint backlog - Sprint 7 . 98

7.10. Sprint backlog - Sprint 8 . 99

7.11. Sprint backlog - Sprint 9 . 101

7.12. Sprint backlog - Sprint 10 . 102

7.13. Sprint backlog - Sprint 11 . 105

7.14. Sprint backlog - Sprint 12 . 107

7.15. Sprint backlog - Sprint 13 . 109

7.16. Sprint backlog - Sprint 14 . 111

7.17. Dedicación por historia de usuario . 114

7.18. Coste simulado . 115

XX

CAPÍTULO 1. INTRODUCCIÓN

Capítulo 1

Introducción

1.1. Contexto

Vivimos en la era de la información, su inicio está asociado a la revolución digital, la cual
comenzó a mediados del siglo XX y continua a día de hoy. Esta revolución ha supuesto un
cambio en el funcionamiento de la sociedad y de su economía [31].

La información es obtenida mediante la recolección de datos y su posterior procesamien-
to. Asimismo, esta información es transformada en conocimiento, generando un valor. Este
proceso es la base de la economía del conocimiento [44].

La cantidad de datos disponibles es cada vez mayor y su procesamiento se va complicando.
La productividad de una empresa está fuertemente ligada a su capacidad de gestionar los
datos que posee. Es por esto que, actualmente, las empresas dependen del uso de programas
informáticos que optimicen la gestión de los datos. Un diccionario de datos es un ejemplo de
este tipo de programas.

Un diccionario de datos [4] funciona como una guía de referencia donde se puede
consultar el significado de los datos que forman una base de datos, Dicho de otra manera,
un diccionario de datos consiste en un conjunto de metadatos que describe la estructura de
una base de datos, el significado de sus campos y las relaciones que existen entre los datos
que la forman. Los diccionarios ayudan a que los datos sean fiables, consistentes y más fáciles
de entender.

Algunos de los componentes que debe incluir un diccionario de datos son:

Una lista de elementos con sus nombres y definiciones.

Propiedades detalladas de los elementos, como el tipo de dato, el tamaño, la opciona-
lidad, etc.

1

1.2. MOTIVACIÓN

Relaciones entre los elementos.

Reglas de negocio.

Fecha y hora de creación y de modificación.

1.2. Motivación

Dentro de una organización puede haber diferentes equipos de trabajo o departamentos,
cada uno con sus propias tareas. Sin embargo, aún tratándose de tareas distintas entre sí,
probablemente compartan un contexto y es necesario una puesta en común de los términos
a utilizar.

En el ámbito de desarrollo software, es importante que los desarrolladores compartan una
nomenclatura común para evitar errores o posibles perdidas de información. Los dicciona-
rios de datos son utilizados como repositorios centrales donde consultar la definición y las
restricciones de los términos.

Es importante aclarar que no es lo mismo un catálogo de datos que un diccionario de
datos. Un catálogo de datos [3] es un inventario que facilita la búsqueda de datos desde
distintas fuentes y da información sobre ellos. A diferencia del catálogo, un diccionario de
datos está pensado para almacenar metadatos técnicos en el contexto de una base de datos
como, por ejemplo, el valor máximo que puede alcanzar un campo de tipo entero. Se podría
decir que un diccionario de datos es una parte de un catálogo de datos.

1.3. Alternativas

Existen multitud de herramientas que posibilitan la documentación de bases de datos,
algunas son complejas y se tratan más bien de catálogos de datos que de diccionarios. La
elección de una herramienta u otra dependerá de sus características. Una empresa pequeña
no necesitará una herramienta demasiado compleja ni tendrá un presupuesto muy elevado,
mientras que una empresa grande preferirá tener varias herramientas unificadas, como un
catálogo de datos.

A continuación, se enumerarán algunas de las alternativas más populares para la creación
de diccionarios de datos, así como los pros y los contras de cada una de ellas.

1.3.1. Dataedo

Catálogo de datos que permite, entre otras cosas, la creación y gestión de diccionarios de
datos y del glosario empresarial [12].

Ventajas:

2

CAPÍTULO 1. INTRODUCCIÓN

Engloba varias herramientas para la gestión de datos.

Creación automática de un diccionario de datos a partir de una base de datos.

Compatibilidad con un gran número diferente de bases de datos.

Visualización de diagramas entidad-relación.

Variedad de formatos para exportar los datos (pdf, html, excel).

Inconvenientes:

Precio muy elevado.

1.3.2. Database Note Taker

Herramienta para la creación de diccionarios de datos muy simple. Su objetivo principal
es la documentación [40].

Ventajas:

Totalmente gratuita.

Creación automática de un diccionario de datos a partir de una base de datos.

Inconvenientes:

Simplicidad, la funcionalidad es limitada.

Los cambios son locales y no se comparten entre usuarios.

1.3.3. Redgate SQL Doc

Redgate ofrece una gran variedad de productos relacionados con el manejo de bases de
datos, entre ellos se encuentra SQL Doc, una herramienta que facilita la documentación de
bases de datos SQL [36].

Ventajas:

Creación automática de un diccionario de datos a partir de una base de datos.

Variedad de formatos para exportar los datos (pdf, html, Markdown).

Precio asequible para pequeñas empresas.

3

1.4. OBJETIVOS

Interfaz sencilla y fácil de usar.

Inconvenientes:

No tiene representación visual de las relaciones.

1.4. Objetivos

Dentro del contexto en el que se realiza este trabajo, se pueden diferenciar dos grupos
de objetivos. El primero está relacionado con el aprendizaje y las competencias a adquirir
durante la realización del proyecto, denominados objetivos personales. El segundo grupo
corresponde a los objetivos propios del proyecto, que establecen los requisitos que la
aplicación web debe cumplir una vez finalizada su implementación

Objetivos personales:

Reforzar los conocimientos sobre desarrollo web con Spring y Angular.

Aprender a gestionar un proyecto por completo.

Ampliar el conocimiento en tecnologías utilizadas en el mundo laboral.

Aplicar el marco de trabajo ágil SCRUM y respetar la calendarización de los sprints.

Objetivos del proyecto:

Gestionar los usuarios del sistema.

Crear el diccionario de datos de una base de datos.

Modificar un diccionario y registrar los cambios en un historial.

Asegurar la fiabilidad y consistencia de los datos entre todos los usuarios, incluso cuando
se hayan modificado.

Exportar los metadatos a un fichero.

Ilustrar las relaciones de los datos mediante diagramas.

1.5. Estructura de la memoria

Este documento se estructura de la siguiente forma:

4

CAPÍTULO 1. INTRODUCCIÓN

Capítulo 1 Introducción: Presenta el contexto y la motivación detrás del desarrollo de la
aplicación, comparando alternativas existentes y sus ventajas e inconvenientes. También
se definen los objetivos personales y del proyecto.

Capítulo 2 Requisitos y planificación: Detalla el marco de trabajo utilizado, los sta-
keholders, los roles de los usuarios en la aplicación y las épicas divididas en historias de
usuario. También se recogen las reglas de negocio, así como la planificación del proyecto
y el plan de riesgos.

Capítulo 3 Análisis: Aborda el modelado del dominio, incluyendo las clases y entidades
principales del sistema. También se analiza el comportamiento e interacción de estas
entidades, utilizando diagramas de actividades y máquinas de estados para representar
los procesos y las interacciones clave.

Capítulo 4 Tecnologías utilizadas: Presenta las principales tecnologías empleadas en el
proyecto y su utilización en cada área.

Capítulo 5 Diseño: Detalla las decisiones de diseño del proyecto, incluyendo la interfaz
de usuario, la arquitectura general del sistema y las arquitecturas específicas para el
cliente y el servidor. También se aborda el diseño de la base de datos, la comunicación
entre los objetos del sistema y el despliegue del proyecto.

Capítulo 6 Implementación y pruebas: Recoge la licencia y organización del proyecto,
las dificultades encontradas durante la implementación y el uso de Jasmine para las
pruebas automatizadas.

Capítulo 7 Seguimiento del proyecto: Aborda la planificación de los sprints, su revisión
y las propuestas de mejora para los siguientes. También se registra el tiempo dedicado
a cada tarea y se señala si han surgido problemas durante la ejecución del sprint.

Capítulo 8 Conclusiones: Expone las conclusiones sacadas tras la finalización del proyec-
to, también se mencionan posibles líneas de trabajo futuras.

Anexo A Manuales: Incluye manuales de mantenimiento, de instalación/despliegue, y de
uso.

Anexo B Resumen de enlaces adicionales: Incluye enlaces de interés sobre el proyecto,
como el repositorio de código.

5

1.5. ESTRUCTURA DE LA MEMORIA

6

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Capítulo 2

Requisitos y Planificación

2.1. Scrum

Scrum es un marco de trabajo ágil, se puede definir como un proceso empírico, donde la
experiencia es la base del conocimiento y las decisiones se toman en base a lo observado [16]
[38].

El trabajo se divide en pequeñas partes y cada equipo debe trabajar en ellas durante un
corto periodo de tiempo. A cada periodo se le denomina sprint y su duración se fija al inicio
del proyecto, siendo lo más común una duración de 2 semanas. Al final del sprint, todos los
equipos deben entregar el resultado de su trabajo, el incremento de valor.

Los equipos suelen ser de tamaño reducido, aproximadamente de 10 personas. Un equipo
Scrum consiste en un Scrum Master, un Product Owner y los desarrolladores, todos
ellos tienen un objetivo común, crear un incremento valioso y útil para cada sprint.

Scrum Master: Su tarea es garantizar que el equipo aplique los principios Scrum de
manera correcta. Gestiona el product backlog (ver definición más adelante) y promueve
la colaboración entre los miembros del equipo.

Product Owner: Representa las necesidades de los stakeholders. Define las tareas
del product backlog y proporciona claridad al equipo sobre la visión y el objetivo del
producto.

Desarrollador: Son los miembros que trabajan en el desarrollo del producto. Está
formado por personas con diferentes habilidades, dependiendo del tipo de trabajo que
realicen.

Los stakeholders son todas aquellas partes interesadas en el desarrollo exitoso del pro-
ducto. Entre los stakeholders se pueden encontrar el equipo Scrum, los clientes y los usuarios

7

2.1. SCRUM

finales. La colaboración de todas las partes es fundamental para garantizar que el producto
final cumpla con las expectativas.

Scrum establece tres artefactos que ayudan a gestionar el trabajo del equipo. Los ar-
tefactos ofrecen información importante que el equipo utiliza para definir el producto y el
esfuerzo que hay que dedicar para crearlo. Los principales artefactos son:

Product Backlog: Lista de tareas necesarias para crear el producto. Se puede ir
refinando y dividiendo en tareas más pequeñas.

Sprint Backlog: Conjunto de tareas seleccionadas del Product Backlog para realizar
en un sprint específico.

Incremento: Resultado de un sprint que contribuye de manera tangible al objetivo
del producto. Cada incremento se añade a los anteriores y debe ser completamente
funcional.

Los artefactos se ajustan a través de una serie de eventos diseñados para promover la
transparencia del trabajo. A continuación, se definirán brevemente los eventos en los que
participan los miembros de un equipo Scrum:

Sprint: Como ya se dijo, es el periodo de tiempo durante el cual el equipo trabaja para
realizar el incremento. Todos los demás eventos ocurren durante el sprint.

Sprint Planning: Reunión que se realiza al principio del sprint para establecer las
tareas del Sprint Backlog.

Daily Scrum: Reunión diaria muy breve entre los desarrolladores en la que se comenta
el trabajo realizado y las dificultades que se hayan detectado.

Sprint Review: Reunión del equipo con los stakeholders para valorar el incremento.

Sprint Retrospective: Reunión en la que los miembros del equipo reflexionan sobre
cómo ha ido el sprint y lo que se debe cambiar para mejorar la efectividad.

2.1.1. Adaptación del marco de trabajo

Es necesario adaptar el marco de trabajo a la asignatura, Trabajo de Fin de Grado, para
que se ajuste al tiempo que se le debe dedicar, que será de aproximadamente 300 horas
equivalentes a 12 ECTS. También deben ajustarse los roles del equipo Scrum, ya que el
trabajo será realizado por una estudiante con el apoyo de su tutora. La estudiante asumirá
tanto el rol de Product Owner como el de desarrollador, mientras que la tutora actuará como
Scrum Master, asegurándose de que la estudiante cumpla con los principios Scrum.

Por lo general, la finalización de un sprint coincidirá con el inicio del siguiente. Esto quiere
decir que los eventos Sprint Review, Sprint Retrospective y Sprint Planning se unificarán en
una sola reunión. No se celebrarán la reuniones diarias que promueve Scrum ya que resulta

8

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

inviable, sin embargo, se fijará una reunión intermedia en cada sprint para monitorizar el
progreso de la estudiante.

Se dedicarán unas 40 horas de trabajo por sprint. Se han establecido un total de 8 sprints,
aunque se planificarán 2 sprints adicionales en caso de que el trabajo se vea retrasado o tome
más tiempo de lo esperado.

Para organizar el trabajo, se definirán unas épicas que se dividirán en historias de usuario.
La estimación del esfuerzo se realizará mediante puntos de historia, estos se utilizan para
calcular el esfuerzo necesario para completar una historia de usuario. A cada historia se le
asignará un número de puntos, siguiendo una serie numérica lineal a partir del 1, donde cada
unidad equivaldrá a 5 horas de trabajo. La cantidad de puntos asignados dependerá de la
percepción sobre la complejidad de la tarea. Cada sprint incluirá las historias de usuario o
tareas necesarias para alcanzar un total de 8 puntos de historia.

2.2. Stakeholders, roles y épicas

Los stakeholders de este proyecto son: la estudiante, como principal interesado del co-
rrecto desarrollo del proyecto; la tutora, quien forma parte del equipo Scrum; y las posibles
organizaciones o usuarios finales que podrían beneficiarse con la utilización de la aplicación.
La tutora actuará simulando el papel como stakeholder de una organización o usuario final.

Los usuarios desempeñarán un rol diferente en cada diccionario de datos. Cada rol otorga
un conjunto específico de permisos. Estos roles serán:

Administrador: Se encarga de gestionar los usuarios del sistema y sus permisos.
Aunque no tiene acceso a los diccionarios, puede gestionar los permisos de los usuarios
en ellos. Puede crear nuevos usuarios.

Arquitecto: Puede modificar la estructura de los elementos existentes y editar el
contenido de cualquier campo. Además, es responsable de revisar las modificaciones
realizadas por los editores.

Editor: puede modificar el contenido de ciertos campos, pero no puede cambiar la
estructura ni el nombre de los elementos.

Lector: Solo puede consultar la información del diccionario.

Durante la definición de las épicas, se utilizaron los términos “usuario” y “usuario normal”
para referirse a diferentes tipos de usuarios. “Usuario” hacía referencia a cualquier usuario del
sistema, mientras que “usuario normal” agrupaba a aquellos que podían desempeñar los roles
de arquitecto, editor o lector en los diccionarios de datos. Más adelante, durante el sprint 11,
se decidió reemplazar el término “usuario normal” por “gestor de metadatos”.

9

2.2. STAKEHOLDERS, ROLES Y ÉPICAS

2.2.1. Épicas

Una épica [9] describe un gran conjunto de trabajo relacionado. Generalmente representa
una característica o funcionalidad amplia que necesita ser desarrollada. Dado que las épicas
suelen ser demasiado grandes o complejas para abordarse directamente, se dividen en varias
historias de usuario, que son unidades más pequeñas y manejables de trabajo, que pueden
desarrollarse de forma independiente dentro de un solo sprint. Cada historia de usuario
describe una funcionalidad específica desde la perspectiva del usuario final.

Tanto las épicas como sus historias asociadas no son elementos estáticos y se pueden
refinar y reorganizar a medida que el proyecto progresa, adaptándose a los cambios en las
prioridades o en las necesidades del negocio.

Las épicas y las historias de usuario se definirán siguiendo el formato: Como <stakeholder>,
quiero <funcionalidad> para <beneficio>.

El Product Backlog inicial está formado por las siguientes épicas:

EP01 - Gestión de usuarios

Como administrador, quiero gestionar los usuarios del sistema para asignarles diferentes
roles en diferentes diccionarios de datos.

EP02 - Inicio de sesión

Como usuario, quiero iniciar sesión en la aplicación para poder realizar diferentes tareas
dependiendo de mi rol.

EP03 - Creación de diccionario

Como usuario normal, quiero crear un diccionario de datos para documentar una o varias
bases de datos relacionadas y brindar información sobre su contenido. Como consecuencia,
el usuario que lo cree pasará a tener el rol de arquitecto en ese diccionario de datos.

EP04 - Modificación del diccionario

Como arquitecto o editor, quiero modificar un diccionario de datos para añadir, eliminar
o cambiar su contenido.

EP05 - Exploración del diccionario de datos

Como usuario normal, quiero ver todos los diccionarios de datos en los que tengo permisos
para consultarlos.

EP06 - Búsqueda de diccionario

Como usuario normal, quiero filtrar los diccionarios a partir de su nombre u otro campo
para facilitar su búsqueda.

EP07 - Registro de operaciones

10

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Como administrador, quiero tener acceso a un registro de operaciones por cada diccionario
para saber las modificaciones y consultas realizadas por los usuarios.

EP08 - Historial de modificaciones

Como usuario normal, quiero ver el historial de modificaciones de un diccionario para
saber cómo ha cambiado.

EP09 - Exportación de diccionario

Como usuario normal, quiero exportar un diccionario de datos a distintos formatos para
facilitar su distribución.

EP10 - Selección de idioma

Como usuario, quiero cambiar el idioma de la web para entender lo que estoy leyendo.

EP11 - Representación visual

Como usuario normal, quiero ver una representación visual de las relaciones entre los
elementos de un diccionario de datos para hacerme una idea de cómo están relacionadas.

2.3. División de épicas en historias de usuario

Las épicas se descomponen en historias de usuario para facilitar la planificación y ejecución
del trabajo dentro de cada sprint. Esta división permite fragmentar el trabajo en tareas más
pequeñas y manejables.

Cada historia de usuario estará representada por una referencia única con el formato
HUX, donde X es un número. Para la descripción, se empleará el mismo esquema utilizado
en la definición de las épicas, manteniendo así la coherencia. También se indicará el esfuerzo
estimado en puntos de historia para distribuir el trabajo de manera uniforme a lo largo de
los sprints.

De la Tabla 2.1 a la Tabla 2.9 se encuentran las historias de usuario correspondientes a
las épicas de la EP01 a la EP09. En concreto, la épica EP10 no se ha dividido en historias de
usuario ya que se prevé que la tarea de traducción se realice de manera continua, cada historia
de usuario incluirá la implementación de la aplicación tanto en inglés como en español. En
cuanto a la épica EP11, se ha decidido que no será implementada en el desarrollo actual,
quedando como una posible ampliación futura.

En la historia HU23, el “registro de operaciones” se refiere a un conjunto de operaciones
realizadas sobre un diccionario, que incluyen lecturas, modificaciones, creación o eliminación
de elementos. En la historia HU24, el término “lista de operaciones” se utiliza como sinónimo
de registro de operaciones. Por su parte, en la historia HU25, la “lista de modificaciones”
hace referencia al historial de cambios realizados en un diccionario de datos, que puede
incluir cambios en el contenido de elementos existentes, así como la creación y eliminación

11

2.3. DIVISIÓN DE ÉPICAS EN HISTORIAS DE USUARIO

Referencia Historia de usuario Puntos

HU01 Como administrador, quiero crear nuevos usuarios para po-
blar el sistema. 3

HU02 Como administrador, quiero ver una lista con todos los
usuarios del sistema para gestionarlos eficientemente. 2

HU03
Como administrador, quiero modificar los roles de los usua-
rios para denegar/facilitar el acceso a un determinado dic-
cionario de datos.

1

HU04 Como administrador, quiero habilitar/deshabilitar cuentas
para controlar el inicio de sesión de los usuarios. 1

HU05 Como administrador, quiero modificar la información de un
usuario para mantenerla actualizada. 1

HU06
Como administrador, quiero restablecer la contraseña de un
usuario para facilitarle una nueva contraseña en caso de que
se le haya olvidado.

1

HU30 Como administrador, quiero ver los diccionarios a los que
tiene acceso un usuario normal para ver su rol. 1

HU31
Como administrador, quiero modificar el rol de un usuario
normal en un determinado diccionario para otorgar o revo-
carle sus privilegios.

1

HU32
Como administrador, quiero facilitar el acceso de un usua-
rio normal a un diccionario, para que pueda visualizar su
contenido.

1

HU33
Como administrador, quiero denegar el acceso de un usua-
rio normal a uno de sus diccionarios, para que no pueda
visualizar su contenido.

1

Tabla 2.1: Historias de usuario EP01 - Gestión de usuarios

de elementos. El registro de operaciones será visible únicamente para los administradores,
mientras que el historial de modificaciones será visible por cualquier gestor de metadatos que
tenga acceso al diccionario. En resumen, la principal diferencia entre el registro de operaciones
y el historial de modificaciones radica en si se incluyen o no las operaciones de lectura y en
quién tiene acceso a cada uno de ellos.

12

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Referencia Historia de usuario Puntos

HU07
Como usuario, quiero ingresar mi nombre de usuario y con-
traseña para iniciar sesión y acceder a una pantalla distinta
dependiendo mi tipo de usuario.

3

HU08
Como usuario, quiero solicitar que mi contraseña se resta-
blezca en caso de que se me olvide, para volver acceder a
mi cuenta.

2

HU09 Como usuario, quiero cerrar sesión para que mi cuenta no
quede accesible a usuarios externos a la aplicación. 1

Tabla 2.2: Historias de usuario EP02 - Inicio de sesión

Referencia Historia de usuario Puntos

HU10
Como usuario normal, quiero crear un nuevo diccionario de
datos indicando un nombre y una descripción para docu-
mentar todas las bases de datos relacionadas a un proyecto.

2

HU11

Como arquitecto, quiero crear una base de datos dentro de
un diccionario de datos indicando un nombre, una descrip-
ción y el SGBD para dar información sobre esa base de
datos.

2

HU12
Como arquitecto, quiero crear tantas tablas/colecciones co-
mo necesite para documentar una base de datos indicando,
como mínimo, un nombre y una descripción.

2

Tabla 2.3: Historias de usuario EP03 - Creación de diccionario

13

2.3. DIVISIÓN DE ÉPICAS EN HISTORIAS DE USUARIO

Referencia Historia de usuario Puntos

HU13
Como arquitecto, quiero añadir tantas columnas/campos
como necesite a una tabla/colección para dar información
más precisa.

2

HU14

Como arquitecto o editor, quiero modificar el nombre y la
descripción de los elementos del diccionario para corregir
errores o reflejar cambios realizados en las bases de datos
reales.

1

HU15
Como arquitecto o editor, quiero modificar el contenido de
las columnas/campos de una tabla/colección para dar in-
formación más precisa.

3

HU16
Como arquitecto, quiero eliminar elementos de un diccio-
nario o el propio diccionario para borrar información inne-
cesaria o que ya no exista.

1

HU28

Como arquitecto, quiero ver los cambios realizados por un
editor antes de aplicarlos a los elementos para aceptarlos
o rechazarlos. Si los rechazo, quiero indicar el motivo para
informar al editor.

2

HU29

Como arquitecto, quiero establecer un número de arquitec-
tos revisores que deben aprobar los cambios realizados por
editores para garantizar la fiabilidad de la información mo-
dificada.

1

Tabla 2.4: Historias de usuario EP04 - Modificación del diccionario

Referencia Historia de usuario Puntos

HU17 Como usuario normal, quiero ver todos los diccionarios a
los que tengo acceso para seleccionar uno. 1

HU18
Como usuario con rol, quiero ver todas las bases de datos
de los diccionarios a los que tengo acceso para seleccionar
una.

1

HU19
Como usuario normal, quiero visualizar todas las tablas/-
colecciones de las bases de datos a las que tengo acceso para
seleccionar una y explorar su contenido.

1

HU20
Como usuario normal, quiero visualizar todas las columna-
s/campos de las tablas/colecciones a las que tengo acceso
para seleccionar una y explorar su contenido.

1

Tabla 2.5: Historias de usuario EP05 - Exploración del diccionario de datos

Referencia Historia de usuario Puntos

HU21 Como usuario normal, quiero buscar un diccionario a partir
de su nombre para facilitar su selección. 1

HU22 Como usuario normal, quiero ordenar los diccionarios por
un campo específico para organizar mejor la información. 1

Tabla 2.6: Historias de usuario EP06 - Búsqueda de diccionario

14

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Referencia Historia de usuario Puntos

HU23 Como administrador, quiero ver todos los diccionarios del
sistema para acceder a su registro de operaciones. 1

HU24
Como administrador, quiero ver la lista de operaciones rea-
lizadas sobre un diccionario, ordenada cronológicamente,
para llevar un control sobre él.

2

Tabla 2.7: Historias de usuario EP07 - Registro de operaciones

Referencia Historia de usuario Puntos

HU25
Como usuario normal, quiero ver la lista de modificaciones
realizadas sobre un diccionario, ordenada cronológicamente,
para ver cómo ha evolucionado.

1

Tabla 2.8: Historias de usuario EP08 - Historial de modificaciones

Referencia Historia de usuario Puntos

HU26
Como usuario normal, quiero descargar la información de
un diccionario en un documento PDF para acceder a la
información de forma offline.

2

HU27
Como usuario normal, quiero descargar la información de
un diccionario en un fichero JSON para facilitar su utiliza-
ción en otras aplicaciones.

1

Tabla 2.9: Historias de usuario EP09 - Exportación de diccionario

15

2.4. REGLAS DE NEGOCIO

2.4. Reglas de negocio

Las reglas de negocio [28] son principios fundamentales que definen cómo debe com-
portarse un sistema en función de las necesidades del negocio. Estas reglas determinan cómo
se manipulan los datos, qué acciones están permitidas y en qué condiciones.

En el desarrollo de software, estas reglas actúan como una guía durante el diseño y
la implementación del sistema, asegurando que las funcionalidades estén alineadas con las
necesidades del negocio.

A continuación, se presentan las reglas de negocio obtenidas a partir de un análisis inicial
de los requisitos.

RN01 - Existen dos tipos de usuarios en el sistema, los administradores y los gestores de
metadatos. El tipo de usuario se asigna al momento de la creación y no puede ser modificado.

RN02 - Las tareas de los administradores son crear y gestionar usuarios, así como con-
trolar el acceso a los diccionarios de datos asignando roles a los usuarios. También pueden
acceder al historial de operaciones realizadas sobre un diccionario de datos.

RN03 - Los gestores de metadatos realizan operaciones sobre los diccionarios, deben
tener un rol asignado a un diccionario de datos para poder acceder a él, este rol sólo puede
ser uno pero puede cambiar. Las operaciones que un usuario puede realizar en un diccionario
de datos varían según el rol asignado.

RN04 - Los roles que se le pueden asignar a un gestor de metadatos en un diccionario
de datos son arquitecto, editor y lector.

RN05 - Los gestores de metadatos con rol de arquitecto pueden crear, modificar y eli-
minar cualquier elemento de un diccionario de datos.

RN06 - Los gestores de metadatos con rol de editor pueden modificar únicamente las
metapropiedades que aporten documentación relevante al diccionario de datos, sin afectar su
estructura.

RN07 - Los gestores de metadatos con rol de lector pueden consultar el contenido del
diccionario de datos, pero no pueden realizar ninguna modificación.

RN08 - Cada cuenta tiene asociado un correo electrónico, este es único y sirve como
nombre de usuario.

RN09 - Cuando una cuenta es creada, se le asigna una contraseña aleatoria.

RN10 - Las cuentas de usuarios recién creadas estarán inactivas hasta que se cambie la
contraseña por primera vez.

RN11 - Las contraseñas deben cambiarse cada 90 días, los usuarios reciben una notifica-
ción para que cambien de contraseña. Si a los 2 días de haberse cumplido el plazo, el usuario
no ha cambiado la contraseña la cuenta pasará a estar inactiva.

16

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

RN12 - Un usuario inactivo solo puede configurar su cuenta, el resto de la funcionalidad
está deshabilitada hasta que se vuelva a activar.

RN13 - Las cuentas inactivas se pueden activar cambiando la contraseña.

RN14 - Las contraseñas deben tener un mínimo de 8 caracteres, entre los cuales debe
haber, al menos, un carácter mayúscula, uno minúscula y un número.

RN15 - Los administradores pueden habilitar o deshabilitar cuentas de otros usuarios.

RN16 - Los usuarios con cuentas deshabilitadas no pueden iniciar sesión.

RN17 - Cuando un gestor de metadatos crea un diccionario se le asigna el rol de arqui-
tecto en ese diccionario.

RN18 - Un arquitecto o editor solo puede editar elementos que no tengan cambios pen-
dientes de aprobación.

RN19 - Los arquitectos pueden revisar los cambios propuestos por editores. Si se aceptan,
los cambios se aplican a los elementos correspondientes del diccionario, y si se rechazan, se
debe indicar el motivo. Una vez terminada la revisión, el elemento volverá a estar disponible
para su edición.

RN20 - Las propuestas rechazadas pueden ser consultadas por sus autores, quienes po-
drán ver la información original y la propuesta realizada, así como el motivo del rechazo.

RN22 - En un diccionario de datos, se puede configurar el número de arquitectos nece-
sarios para aprobar una propuesta y hacerla definitiva. Se puede configurar el diccionario de
tal forma que no haga falta la validación de los arquitectos y el cambio sea inmediato.

RN23 - Basta que un arquitecto rechace la propuesta para que esta se considere recha-
zada.

2.5. Plan de riesgos

El riesgo de un proyecto es un evento incierto que, en caso de producirse, puede influir de
manera positiva o negativa en la consecución de los objetivos del proyecto [24]. Se considera
oportunidad a un riesgo con resultados positivos, mientras que una amenaza es un riesgo
con efectos negativos.

Todo proyecto está sujeto a riesgos. Si no se gestionan adecuadamente, los riesgos pue-
den multiplicar los problemas, ya que la falta de control sobre las amenazas aumenta la
probabilidad de que se materialicen.

Para determinar el nivel de riesgo se empleará la matriz mostrada en la Tabla 2.10, que
evalúa la probabilidad de ocurrencia y el impacto que supondría. El diseño de esta matriz se
ha tomado de los apuntes de la asignatura Planificación y Gestión de Proyectos [22].

17

2.5. PLAN DE RIESGOS

Prob

Imp
Bajo Medio Alto

Baja Bajo Bajo Medio

Media Bajo Medio Alto

Alta Medio Alto Alto

Tabla 2.10: Matriz de probabilidad-impacto. Tomada de [22]

Riesgo R01

Título Enfermedad de la estudiante

Descripción
La estudiante no podrá dedicar tiempo a trabajar si está
enfermo. Como el equipo de desarrollo solo está formado
por la estudiante esto retrasaría el proyecto.

Probabilidad Baja

Impacto Alto

Nivel de riesgo Medio

Plan de mitigación
Establecer un margen extra de tiempo para realizar
las tareas retrasadas.

Plan de contingencia Mover las tareas no finalizadas al siguiente sprint.

Tabla 2.11: Riesgo R01 - Enfermedad de la estudiante

En las Tablas 2.11, 2.12, 2.13, 2.14, 2.15, 2.16 se presenta una descripción detallada de
cada riesgo identificado. Para cada riesgo se aporta una descripción, el valor de probabilidad,
impacto y nivel de riesgo en una escala ordinal dada por los valores Bajo, Medio y Alto.
Se presenta también el plan de mitigación, que incluye las medidas a tomar para reducir la
probabilidad de ocurrencia del riesgo o el impacto que pueda causar, y el plan de contingencia,
que establece las acciones a tomar si el riesgo se materializa [19].

18

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Riesgo R02

Título Avería del equipo informático

Descripción
El ordenador con el que trabaja la estudiante podría sufrir
algún tipo de avería, la cual impediría trabajar en el pro-
yecto causando un retraso.

Probabilidad Baja

Impacto Alto

Nivel de riesgo Medio

Plan de mitigación

Establecer un margen extra de tiempo para realizar
las tareas retrasadas.

Realizar un mantenimiento al equipo periodicamente,

Mantener el trabajo actualizado en un repositorio re-
moto de tal forma que facilite el trabajo entre dife-
rentes dispositivos.

Plan de contingencia Comprar un ordenador nuevo.

Tabla 2.12: Riesgo R02 - Avería del equipo informático

19

2.5. PLAN DE RIESGOS

Riesgo R03

Título Mala planificación de las historias de usuario

Descripción La estimación de las historias de usuario podría no ser la
adecuada, tomando más tiempo del inicialmente estimado.

Probabilidad Media

Impacto Medio

Nivel de riesgo Medio

Plan de mitigación

Utilizar el marco de trabajo Scrum el cual permite
ajustar el backlog de cada sprint según sea necesario.

Evitar poner tiempos muy ajustados

Buscar referencias en otros TFGs para saber cuanto
tiempo le ha llevado a otras personas realizar un tra-
bajo parecido.

Plan de contingencia
Ajustar el product backlog teniendo en cuenta las nue-
vas estimaciones.

Tabla 2.13: Riesgo R03 - Mala planificación de las historias de usuario

20

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Riesgo R04

Título Gold Plating

Descripción

Desarrollar más funcionalidad de la especificada inicialmen-
te en el product backlog podría provocar retrasos en los
sprints correspondientes y reducir la calidad de los entrega-
bles.

Probabilidad Baja

Impacto Medio

Nivel de riesgo Bajo

Plan de mitigación

No realizar más funcionalidad que la establecida para
el sprint.

Terminar primero todas las tareas del sprint y, si so-
bra tiempo, realizar un análisis de las nuevas funcio-
nalidades que se desean añadir para comprobar que
aporten algún valor.

Plan de contingencia

Descartar las modificaciones si están llevando dema-
siado tiempo.

Ajustar el product backlog con las nuevas tareas.

Tabla 2.14: Riesgo R04 - Gold Plating

21

2.5. PLAN DE RIESGOS

Riesgo R05

Título Otras asignaturas

Descripción

La estudiante está cursando más asignaturas aparte del
TFG. El tiempo que puede dedicar a la realización del tra-
bajo dependerá de los exámenes y entregas que deba reali-
zar en las otras asignaturas, provocando retrasos puntuales.

Probabilidad Media

Impacto Alto

Nivel de riesgo Alto

Plan de mitigación
Tener en consideración las fechas en las que se realicen
exámenes y ajustar la planificación a estos.

Plan de contingencia Mover las tareas no finalizadas al siguiente sprint.

Tabla 2.15: Riesgo R05 - Otras asignaturas

Riesgo R06

Título Desconocimiento de las tecnologías

Descripción

Se realizará un proyecto software al completo por lo que se
deberán utilizar muchas tecnologías y muy diferentes entre
sí, posiblemente haya alguna que no sepa utilizar, requirien-
do un tiempo de aprendizaje.

Probabilidad Alta

Impacto Alto

Nivel de riesgo Alto

Plan de mitigación
Investigar el uso de las tecnologías elegidas para el
desarrollo.

Plan de contingencia Cambiar la tecnología escogida por otra conocida.

Tabla 2.16: Riesgo R06 - Desconocimiento de las tecnologías

22

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

2.6. Planificación

El proyecto se inició en febrero de 2024 y, en un escenario optimista, se estima que podría
finalizar a finales de julio. Sin embargo, se ha establecido un periodo extra en septiembre,
en caso de que no se complete a tiempo. Dado que la defensa del TFG no tendrá lugar en
el curso académico 2023-2024, se ha podido extender la planificación de los sprints hasta
septiembre.

Al comienzo del proyecto, se estableció un sprint 0 dedicado principalmente a tareas de
investigación, como el estudio de los diccionarios de datos, la selección de las tecnologías a
utilizar y la lectura de otros TFGs para familiarizarse con el formato de este tipo de trabajos.
Además, se llevaron a cabo otras actividades, como iniciar la redacción de los primeros
capítulos de introducción y planificación, así como la elaboración de la calendarización para
los sprints posteriores.

La planificación inicial de los sprints, del uno en adelante, puede verse en la Tabla 2.17.
Por lo general, cada sprint tiene una duración de dos semanas y comienza inmediatamente
después de la finalización del anterior. Sin embargo, algunos de ellos han tenido que ajustarse
para tener en cuenta períodos vacacionales y de exámenes. Específicamente, los sprints que
presentan ajustes son los siguientes:

Sprint 1: se extiende la duración a tres semanas debido a las vacaciones de Semana
Santa.

Sprints 4 y 5: se deja un espacio de tiempo entre ambos para la preparación de los
exámenes de la convocatoria ordinaria.

Sprints 7 y 8: hay un mes de diferencia entre la finalización de uno y el inicio del
siguiente, debido a las vacaciones de verano.

2.7. Presupuesto

El desarrollo de un proyecto software conlleva una serie de costes que varían en función de
los recursos necesarios. Dada la situación en la que se desarrollará el proyecto, se presentarán
dos presupuestos distintos. Primero, se mostrará un presupuesto simulado, suponiendo que
el proyecto se realizara en un entorno empresarial. Después, se detallará el presupuesto real
ajustado al contexto académico.

2.7.1. Presupuesto simulado

Según el portal de empleos Jobted [26], el salario medio de un desarrollador web en
España es de 31.600 e brutos anuales. En este caso, se supondrá que el desarrollador es
junior y no tiene experiencia laboral, por lo que se le asignará un salario de 20.200 e. Para

23

2.7. PRESUPUESTO

Sprint Fecha de inicio Fecha de finalización Observaciones

Sprint 1 14/03/2024 04/04/2024
Duración 2 semanas. Calen-
darización expandida por va-
caciones de Semana Santa

Sprint 2 04/04/2024 18/04/2024

Sprint 3 18/04/2024 02/05/2024

Sprint 4 02/05/2024 16/05/2024

Sprint 5 12/06/2024 27/06/2024 Comienza después de la con-
vocatoria ordinaria

Sprint 6 27/06/2024 11/07/2024

Sprint 7 11/07/2024 25/07/2024

Sprint 8 29/08/2024 12/09/2024 Comienza después de las va-
caciones de verano

Sprint 9 12/09/2024 26/09/2024 Extra

Sprint 10 26/09/2024 10/10/2024 Extra

Tabla 2.17: Planificación inicial

24

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

una empresa, el coste total es mayor, aproximadamente, un 32% más debido a la seguridad
social. Por lo tanto, se pagaría un total de 26.664 e anuales por dicho empleado. Suponiendo
que el empleado trabajase a tiempo completo, unas 160 horas mensuales, el coste por hora
sería de 13,89 e. Teniendo en cuenta que, idealmente, el proyecto se desarrollará durante 8
sprints de 40 horas cada uno, se estima que el empleado trabajará en este proyecto durante
320 horas. Es decir, tener a un desarrollador trabajando en este proyecto costaría a una
empresa 4.444,8 e.

Para trabajar, el desarrollador necesitaría, al menos, un portátil. Como requisitos míni-
mos, se han contemplado estos componentes: 16 GB de RAM, 500 GB de SSD y un procesador
Intel Core i5 de 13ª generación o equivalente. Tras revisar varias opciones, se seleccionó un
portátil Lenovo [34] con un precio de 649 e, cuyas especificaciones se consideran adecuadas
para soportar el desarrollo de manera holgada. Este coste se prorrateará considerando un
periodo de amortización de 4 años, por lo que el coste proporcional al tiempo dedicado al
proyecto será de 67,6 e.

El proyecto se desarrollará en 5 meses, algunos de los programas que se utilizarán en el
proyecto son de pago y, por lo tanto, se deberá pagar una mensualidad para poder utilizarlos,
estos programas son:

GitLab Premium - 26,72 e por usuario y mes

IntelliJ Idea Ultimate para organizaciones - 72,48 e por usuario y mes

GitHub Copilot Business - 17,51 e por usuario y mes

Astah professional individual - 8,99 e por mes

También se tendrá en cuenta el consumo eléctrico del ordenador. Suponiendo que el
portátil consume 0,2 kWh y se utilizará durante 320 horas, el consumo total quedaría en 64
kW. Siendo el precio medio del kW 0,12 e, la electricidad supondría un gasto de 7,68 e.

Es posible que durante el desarrollo del proyecto se materialice algún riesgo que suponga
un atraso o un aumento en el presupuesto, o que algunos gastos no estuvieran previstos, es
por esto que se establece un fondo de contingencia del 20% del presupuesto inicial.

En la Tabla 2.18 se puede ver el resumen del presupuesto simulado.

2.7.2. Presupuesto real

El proyecto se realizará en un ordenador personal con más de 5 años de antigüedad, por
lo que se considera que ya está totalmente amortizado.

Al tratarse de un proyecto desarrollado en un entorno académico, no se cobrará nada
por el trabajo realizado. No será necesario pagar por las licencias de uso de los programas,
ya que la Universidad posee licencias académicas que permiten su uso gratuito. El consumo
eléctrico del ordenador tampoco se asumirá de manera directa.

En conclusión, el desarrollo del proyecto no supondrá coste alguno.

25

2.8. REPLANIFICACIÓN DEL PROYECTO

Recurso Precio

Empleado 4.444,8 e

Ordenador 67,6 e

Licencias de programas 628,5 e

Electricidad 7,68 e

Total 5.148,58 e

Fondo de contingencia (20%) 1.029,72 e

Total con fondo 6.178,3 e

Tabla 2.18: Presupuesto simulado

2.8. Replanificación del proyecto

El objetivo de este apartado es justificar la necesidad de replanificar el proyecto debido a
una desviación significativa en las horas de trabajo dedicadas. Tras la realización del sprint
7, se habían estimado 280 horas de trabajo, sin embargo, solo se han dedicado 180 horas.
Debido a esta diferencia de 100 horas se requiere una reorganización de las actividades para
asegurar que el proyecto se desarrolle correctamente.

La desviación en el tiempo de trabajo se ha producido debido a varios factores, como te-
ner que dedicar tiempo a otras asignaturas y sus exámenes, el inicio de prácticas en empresa.
Estas han supuesto un impacto considerable, aunque también hay que mencionar la incorpo-
ración de funcionalidades que en un principio no se tuvieron en cuenta pero que aumentó la
complejidad del proyecto, como es la validación de los arquitectos en los cambios realizados
en una base de datos.

Se estima que actualmente, tras haber finalizado el Sprint 7, se ha completado aproxima-
damente el 30% de las historias de usuario del proyecto. La funcionalidad fundamental, que
requiere más tiempo y esfuerzo, ya ha sido desarrollada. El restante 70 % se espera completar
en un plazo menor.

Para corregir la desviación producida, se ha decidido añadir dos sprints regulares al
cronograma del proyecto. En la Tabla 2.19 se presenta el nuevo cronograma, este incluye
los 2 sprints añadidos, con los cuales se pretende alcanzar las 300 horas de trabajo cuando
hayan finalizado los sprints regulares. También se han atrasado los sprints extras que se
utilizarán en caso de ser necesario y que se realizarían una vez se hayan terminado los sprints
regulares.

26

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Sprint Fecha de inicio Fecha de finalización Observaciones

Sprint 1 14/03/2024 04/04/2024
Duración 2 semanas. Calen-
darización expandida por va-
caciones de Semana Santa

Sprint 2 04/04/2024 18/04/2024

Sprint 3 18/04/2024 02/05/2024

Sprint 4 02/05/2024 16/05/2024

Sprint 5 12/06/2024 27/06/2024 Comienza después de la con-
vocatoria ordinaria

Sprint 6 27/06/2024 11/07/2024

Sprint 7 11/07/2024 25/07/2024

Sprint 8 29/08/2024 12/09/2024 Comienza después de las va-
caciones de verano

Sprint 9 12/09/2024 26/09/2024 Añadido tras la replanifica-
ción

Sprint 10 26/09/2024 10/10/2024 Añadido tras la replanifica-
ción

Sprint 11 (Extra) 10/10/2024 24/10/2024 Aplazado por la replanifica-
ción

Sprint 12 (Extra) 14/11/2024 28/11/2024 Aplazado por la replanifica-
ción

Tabla 2.19: Replanificación

27

2.9. PRODUCT BACKLOG FINAL

2.9. Product backlog final

El product backlog final está formado por las historias de usuario que se muestran en las
tablas 2.20 y 2.21. Este product backlog incluye únicamente aquellas historias de usuario que
han sido desarrolladas y que, por lo tanto, forman el producto mínimo viable (MVP).
Las historias están organizadas por orden de prioridad, de mayor a menor, y siguen el mismo
orden en que fueron desarrolladas.

El resto de las historias de usuario han sido colocadas en el icebox, una zona para aquellas
funcionalidades que se han pausado, pero que podrían considerarse en un futuro desarrollo.

Referencia Historia de usuario

HU01 Como administrador, quiero crear nuevos usuarios para poblar el sistema.

HU07
Como usuario, quiero ingresar mi nombre de usuario y contraseña para
iniciar sesión y acceder a una pantalla distinta dependiendo mi tipo de
usuario.

HU10
Como usuario normal, quiero crear un nuevo diccionario de datos indi-
cando un nombre y una descripción para documentar todas las bases de
datos relacionadas a un proyecto.

HU09 Como usuario, quiero cerrar sesión para que mi cuenta no quede accesible
a usuarios externos a la aplicación.

HU17 Como usuario normal, quiero ver todos los diccionarios a los que tengo
acceso para seleccionar uno.

HU18 Como usuario con rol, quiero ver todas las bases de datos de los diccio-
narios a los que tengo acceso para seleccionar una.

HU11
Como arquitecto, quiero crear una base de datos dentro de un diccionario
de datos indicando un nombre, una descripción y el SGBD para dar
información sobre esa base de datos.

HU02 Como administrador, quiero ver una lista con todos los usuarios del
sistema para gestionarlos eficientemente.

HU04 Como administrador, quiero habilitar/deshabilitar cuentas para contro-
lar el inicio de sesión de los usuarios.

HU05 Como administrador, quiero modificar la información de un usuario para
mantenerla actualizada.

HU06 Como administrador, quiero restablecer la contraseña de un usuario para
facilitarle una nueva contraseña en caso de que se le haya olvidado.

HU30 Como administrador, quiero ver los diccionarios a los que tiene acceso
un usuario normal para ver su rol.

Tabla 2.20: Product backlog final [Parte 1]

28

CAPÍTULO 2. REQUISITOS Y PLANIFICACIÓN

Referencia Historia de usuario

HU31 Como administrador, quiero modificar el rol de un usuario normal en un
determinado diccionario para otorgar o revocarle sus privilegios.

HU33 Como administrador, quiero denegar el acceso de un usuario normal a
uno de sus diccionarios, para que no pueda visualizar su contenido.

HU32 Como administrador, quiero facilitar el acceso de un usuario normal a
un diccionario, para que pueda visualizar su contenido.

HU19
Como usuario normal, quiero visualizar todas las tablas/colecciones de
las bases de datos a las que tengo acceso para seleccionar una y explorar
su contenido.

HU12
Como arquitecto, quiero crear tantas tablas/colecciones como necesite
para documentar una base de datos indicando, como mínimo, un nombre
y una descripción.

HU20
Como usuario normal, quiero visualizar todas las columnas/campos de
las tablas/colecciones a las que tengo acceso para seleccionar una y ex-
plorar su contenido.

HU13 Como arquitecto, quiero añadir tantas columnas/campos como necesite
a una tabla/colección para dar información más precisa.

HU15 Como arquitecto o editor, quiero modificar el contenido de las columna-
s/campos de una tabla/colección para dar información más precisa.

HU14
Como arquitecto o editor, quiero modificar el nombre y la descripción
de los elementos del diccionario para corregir errores o reflejar cambios
realizados en las bases de datos reales.

HU16 Como arquitecto, quiero eliminar elementos de un diccionario o el propio
diccionario para borrar información innecesaria o que ya no exista.

HU28
Como arquitecto, quiero ver los cambios realizados por un editor antes
de aplicarlos a los elementos para aceptarlos o rechazarlos. Si los rechazo,
quiero indicar el motivo para informar al editor.

Tabla 2.21: Product backlog final [Parte 2]

29

2.9. PRODUCT BACKLOG FINAL

30

CAPÍTULO 3. ANÁLISIS

Capítulo 3

Análisis

En este capítulo se detalla el proceso de análisis llevado a cabo a lo largo de los diferentes
sprints. Los modelos se han ido desarrollando y refinando progresivamente a medida que se
adquiría un mayor conocimiento sobre el tema. Para modelar el dominio se ha utilizado un
diagrama de clases y para desarrollar el modelo dinámico se han utilizado tanto diagramas
de estados como diagramas de actividades.

3.1. Modelado del dominio

En la Figura 3.1 se presenta un diagrama de clases que ilustra todas las entidades del
dominio identificadas. Al tratarse de un modelo conceptual no se incluyen operaciones. En
este diagrama se pueden apreciar tres grupos de entidades: las que modelan los diccionarios
de datos, como bases de datos, tablas, columnas y atributos, las que modelan a los usuarios
y las que modelan acciones sobre el diccionario.

La entidad Dictionary tiene una estructura similar a los elementos que la forman, es de-
cir, a las bases de datos. Database, a su vez, está compuesta por otros elementos a los cuales
se les ha denominado MainElement, que representan tablas o colecciones. Esta abstracción
responde a la necesidad de modelar tanto bases de datos relacionales, en las que la informa-
ción se organiza en tablas, como bases de datos NoSQL basadas en documentos, en las que
se utilizan colecciones. Cada uno de estos MainElement está formado por otros elementos
denominados InternalElement, que podrían ser columnas o campos, dependiendo del tipo de
base de datos. Dado que todas estas entidades tienen atributos comunes, se extrajeron en
una superclase de la que heredan todas, llamada Element.

La utilización de la superclase Element facilita el modelado de las acciones. De esta forma
se puede identificar fácilmente el elemento sobre el cual se realiza la acción.

Existen dos tipos de usuarios en el sistema, administradores y usuarios normales, de-
pendiendo de su rol tendrán funcionalidades totalmente diferentes. Aunque lo realmente

31

3.2. MODELADO DINÁMICO

importante en el dominio son las relaciones que tiene un usuario normal con los diccionarios,
ya que son fundamentales para definir cómo pueden interactuar y acceder a los diferentes
diccionarios.

3.2. Modelado dinámico

El modelado dinámico se ha utilizado para representar el comportamiento y las interac-
ciones de las principales entidades del sistema. Las entidades que cambian su estado son las
cuentas de los usuarios y los elementos que conforman los diccionarios de datos.

3.2.1. Modelo de proceso de negocio

El diagrama de actividades de la Figura 3.2 muestra el proceso de creación y activación de
una cuenta de usuario. Cuando un administrador crea una cuenta, esta comienza en estado
inactivo. Hasta que el administrador no comunica la contraseña al usuario y este ingresa para
cambiarla, la cuenta se encuentra en estado inactivo.

El diagrama de la Figura 3.3 describe la modificación de un elemento del diccionario. Si
el usuario con rol de editor desea modificar un elemento, primero se verifica si está disponible
o bloqueado. Si está bloqueado, no puede editarse. Si está disponible, el editor puede realizar
las modificaciones y enviar una propuesta de cambio. La propuesta será revisada por varios
revisores, usuarios con rol de arquitecto que deben dar el visto bueno a las propuestas de
cambio. Una vez aceptada por todos los revisores, los cambios se consolidarán y el elemento
volverá a ser editable. Si algún revisor rechaza la propuesta, deberá justificar el motivo, per-
mitiendo al editor conocer la razón. Tras el rechazo, el elemento quedará de nuevo disponible
para su edición.

3.2.2. Modelado de objetos como máquinas de estados

Se han desarrollado dos diagramas que complementan a los diagramas de actividades
anteriores.

El diagrama de la Figura 3.4 muestra los diferentes estados en los que se puede encon-
trar una cuenta de usuario. Una cuenta tiene dos estados simultáneos, es decir, puede estar
habilitada o deshabilitada, y a su vez, activa o inactiva. El estado “Enabled” determina si el
usuario puede iniciar sesión, mientras que el estado “Active” define si el usuario puede usar la
funcionalidad del sistema. Cuando una cuenta es creada, se encuentra habilitada e inactiva.
El usuario debe iniciar sesión y cambiar la contraseña para activarla. Si el usuario no cambia
su contraseña en 90 días, la cuenta volverá al estado inactivo. Por otra parte, la habilitación
o deshabilitación de una cuenta dependerá de que un administrador decida cambiarla de
estado.

32

CAPÍTULO 3. ANÁLISIS

En la Figura 3.5 se puede apreciar los posibles estados de un elemento dentro del diccio-
nario de datos. Inicialmente, todos los elementos son editables, pero cuando un editor envía
una propuesta de cambio, el estado del elemento cambia a bloqueado. La propuesta debe ser
aprobada por el número de revisores establecido en el diccionario para volver al estado edi-
table o rechazada por uno de ellos. En este diagrama no se representa, pero si un arquitecto
realiza una modificación, esta se consolida de forma inmediata, sin necesidad de revisión.

33

3.2. MODELADO DINÁMICO

Figura 3.1: Modelo de dominio 34

CAPÍTULO 3. ANÁLISIS

Figura 3.2: Proceso de negocio - Creación y activación de una cuenta de usuario

35

3.2. MODELADO DINÁMICO

Figura 3.3: Proceso de negocio - Modificación de un elemento de diccionario

36

CAPÍTULO 3. ANÁLISIS

Figura 3.4: Máquina de estados - Cuenta de usuario

Figura 3.5: Máquina de estados - Elemento del diccionario

37

3.2. MODELADO DINÁMICO

38

CAPÍTULO 4. TECNOLOGÍAS UTILIZADAS

Capítulo 4

Tecnologías utilizadas

En este capítulo se presenta un resumen de las tecnologías utilizadas en el proyecto y
cómo se han aplicado algunas de ellas en las tareas de gestión, desarrollo y documentación.

4.1. Herramientas de comunicación

4.1.1. Telegram

Telegram es una aplicación de mensajería instantánea gratuita que permite la sincroni-
zación en la nube, lo que facilita su uso en varios dispositivos, como teléfonos, tabletas y
ordenadores. Esta funcionalidad favorece el intercambio rápido de información a través de
mensajes, archivos y enlaces, convirtiéndola en una herramienta eficaz para la comunicación
habitual.

4.2. Herramientas de prototipado, análisis y diseño

4.2.1. Figma

Figma es una herramienta de prototipado que sirve para diseñar interfaces web o de
aplicaciones. Es una herramienta muy útil en el entorno educativo, ya que permite la cola-
boración entre los miembros de un equipo haciendo que los cambios sean visibles en tiempo
real para todos. Posee un plan gratuito bastante completo, aunque también es posible am-
pliar la funcionalidad usando una cuenta educativa. Con Figma se pueden realizar prototipos
interactivos y de esta forma probar la navegación entre pantallas.

39

https://telegram.org/
https://www.figma.com/

4.3. HERRAMIENTAS DE DESARROLLO Y PRUEBAS

Este programa se ha utilizado para realizar el prototipo de las páginas web desarrolla-
das, y por tanto, los elementos o colores mostrados en los prototipos pueden no coincidir
exactamente con los del diseño final.

4.2.2. Astah Professional

Astah es una herramienta de modelado UML, al igual que Visual Paradigm. Sin embargo,
se ha optado por utilizar Astah ya que tiene una interfaz mucho más amigable y por su senci-
llez. En Astah un proyecto se puede estructurar en varios modelos, como el modelo de análisis
y el modelo de diseño, y cada uno se puede se puede dividir a su vez en tantos submodelos o
subsistemas como sea necesario. Astah Professional es de pago pero los estudiantes pueden
obtener una licencia gratuita para utilizarlo.

Los diagramas que se han utilizado para este proyecto han sido diagramas de clases, de
secuencia, de componentes y de despliegue.

4.3. Herramientas de desarrollo y pruebas

4.3.1. Intellij IDEA

IntelliJ IDEA [13] es un IDE creado por JetBrains, diseñado principalmente para el
desarrollo en Java y Kotlin. Destaca por su enfoque en la productividad del desarrollador,
ofreciendo herramientas avanzadas que facilitan la escritura, depuración y mantenimiento del
código.

Entre sus características más útiles se encuentra el autocompletado. También cuenta con
potentes herramientas de refactorización que permiten modificar y mejorar el código. Su
integración con herramientas como Maven y Gradle facilita la gestión de dependencias y
la automatización del proceso de construcción del software. Su sistema de plugins también
permite personalizar y extender sus funcionalidades, adaptándose a diferentes necesidades de
desarrollo.

4.3.2. GitHub Copilot

GitHub Copilot es un asistente de programación con IA que ayuda a los desarrolladores a
escribir código de manera más eficiente. Se integra con editores como IntelliJ IDEA o Visual
Studio Code, proporcionando sugerencias contextuales basadas en el código existente. Su
objetivo es reducir el tiempo dedicado a tareas repetitivas y permitir que los programadores
se enfoquen en la resolución de problemas y la colaboración.

Para integrar GitHub Copilot a IntelliJ IDEA solo es necesario instalar su plugin oficial.
Ha resultado especialmente útil para escribir código repetitivo, como constructores, getters

40

https://astah.net/products/astah-professional/
https://www.jetbrains.com/es-es/idea/
https://github.com/features/copilot

CAPÍTULO 4. TECNOLOGÍAS UTILIZADAS

y setters, además de ayudar en la documentación de métodos al describir con precisión su
funcionalidad.

4.3.3. Spring Boot

Spring Boot [18] es un framework de código abierto diseñado para simplificar el desarrollo
de aplicaciones basadas en el ecosistema Spring. Su objetivo principal es reducir la configu-
ración manual, permitiendo a los desarrolladores centrarse en la lógica de negocio en lugar
de en tareas repetitivas de configuración y despliegue.

Spring Boot emplea un sistema interno de servidores de aplicaciones. Para ello, suele usar
Tomcat. Con todo esto, sumado a su gestor de dependencias interno, este framework permite
compilar las aplicaciones web desarrolladas en un único archivo con formato jar. Esto facilita
su distribución y ejecución como cualquier otra aplicación Java.

Se ha utilizado para el desarrollo del back-end.

4.3.4. Angular

Angular [7] es un framework de desarrollo de aplicaciones web desarrollado por Google.
Utiliza TypeScript, una versión mejorada de JavaScript.

Se basa en módulos, componentes y servicios. Los módulos agrupan componentes y re-
cursos relacionados, mientras que los componentes son las unidades básicas de la interfaz
de usuario. Los servicios, por su parte, proporcionan funcionalidades compartidas, como la
gestión de datos y la comunicación con servidores. También cuenta con un sistema de enlace
de datos bidireccional, lo que permite que cualquier cambio en los datos se refleje automáti-
camente en la interfaz de usuario y viceversa.

Se ha utilizado para el desarrollo del front-end.

4.3.5. MySQL

MySQL [17] es un sistema gestor de bases de datos desarrollado por Oracle, basado en
el modelo relacional y en el lenguaje de consulta SQL. Es un software de código abierto
ampliamente utilizado para almacenar y gestionar datos en aplicaciones web y servicios.

En MySQL, los datos se organizan en tablas y el sistema opera bajo una arquitectura
cliente-servidor. La base de datos actúa como un servidor, donde se almacena toda la infor-
mación, mientras que el software funciona como un cliente que permite a los usuarios realizar
consultas, conocidas como “queries”, en SQL. Estas consultas son procesadas por el sistema
de base de datos, facilitando el acceso y manejo de los datos.

41

https://spring.io/projects/spring-boot#overview
https://angular.dev/
https://www.mysql.com/

4.4. HERRAMIENTAS DE GESTIÓN Y DOCUMENTACIÓN

En este proyecto, MySQL se utiliza como base de datos y Spring Boot interactúa con ella
a través de Java Persistence API (JPA).

JPA es un estándar que permite trabajar con bases de datos relacionales de forma abs-
tracta, definiendo clases especiales denominadas entidades que representan los registros de las
tablas. Además, en Spring se añade otra capa de abstracción llamada Spring Data JPA,
una extensión que simplifica aún más el acceso a los datos mediante interfaces llamadas
repositorios, donde se pueden declarar métodos como búsquedas o actualizaciones [30].

4.3.6. Jasmine

Jasmine es un framework de testing para JavaScript que se usa en Angular. Da soporte a
la metodología Behavior Driven Development (BDD), lo que significa que se centra en
describir el comportamiento esperado del código. Jasmine puede ejecutarse tanto en nave-
gadores como en Node.js, pero en el entorno de Angular, suele utilizarse junto con Karma,
que es el test-runner encargado de ejecutar las pruebas de manera automatizada [15].

En el capítulo 6 se explica con detalle la sintaxis de los tests, con ejemplos concretos de
tests realizados para probar el funcionamiento de la aplicación.

Figura 4.1: Jasmine + Karma. Imagen tomada de [45]

4.4. Herramientas de gestión y documentación

4.4.1. Overleaf

Overleaf es un editor de LATEX online que se puede usar directamente desde el navegador,
sin necesidad de instalar nada. Ofrece dos formas de edición, mediante código o a través de
un editor visual, lo que permite trabajar sin tener un conocimiento profundo de LaTeX.

Es una herramienta gratuita, aunque requiere tener una cuenta para poder utilizarla. En
su versión gratuita permite compartir los proyectos con una persona y la edición se realiza
de forma colaborativa en tiempo real. Sin embargo, para este proyecto se ha utilizado una
licencia educativa compartida por la tutora.

Además, Overleaf permite compilar el documento para generar el PDF y visualizarlo. En

42

https://jasmine.github.io/
https://www.overleaf.com/

CAPÍTULO 4. TECNOLOGÍAS UTILIZADAS

la Figura 4.2 se muestra la interfaz de Overleaf, que incluye tanto el editor como el visor del
documento.

Todo esto convierte a Overleaf en una opción ideal para redactar la memoria del proyecto,
ya que facilita la revisión conjunta y permite ver los cambios al instante.

Figura 4.2: Interfaz de Overleaf

4.4.2. ChatGPT

ChatGPT es un modelo de lenguaje desarrollado por OpenAI. Se trata de un sistema
basado en aprendizaje automático, entrenado con grandes cantidades de información, capaz
de procesar y generar texto en lenguaje natural. Puede responder preguntas, explicar con-
ceptos, traducir, resolver dudas de programación, entre otras tareas, todo ello manteniendo
una conversación fluida con el usuario.

En este proyecto, ChatGPT se ha utilizado como herramienta de apoyo en la redacción de
la memoria, ayudando a reformular párrafos y a mejorar la fluidez y coherencia del texto. En
la Figura 4.3 se muestra cómo se ha utilizado ChatGPT para la redacción de este apartado.
El tipo de prompt utilizado es “. . . mejorar el texto para que suene más fluido”.

4.4.3. Git

Un sistema de control de versiones (VCS) es un tipo de software que permite ha-
cer un seguimiento de los cambios realizados en los archivos de un proyecto a lo largo del
tiempo. Cuando se realizan cambios en los archivos, el sistema guarda una instantánea de
esos archivos. Estas instantáneas se almacenan de forma permanente y pueden recuperarse
en cualquier momento.

43

https://chatgpt.com/

4.4. HERRAMIENTAS DE GESTIÓN Y DOCUMENTACIÓN

Figura 4.3: Ejemplo de uso de ChatGPT

Git, en particular, es un sistema de control de versiones distribuido. A diferencia de
otros sistemas donde existe un repositorio centralizado, en Git cada desarrollador tiene una
copia completa del proyecto en su máquina local. Esto permite trabajar sin necesidad de
conexión constante con un servidor, ya que las modificaciones se pueden hacer localmente y
luego sincronizar con el repositorio central.

Aspectos básicos de Git [6]:

Confirmaciones (Commits): Son las instantáneas y se crean con el comando ‘git
commit’. Si un archivo no ha cambiado de una confirmación a la siguiente, Git usa el
archivo almacenado anteriormente. Este enfoque difiere de otros sistemas, que guardan
solo las diferencias entre versiones. Es posible revertir el código a una confirmación
anterior, inspeccionar cómo cambian los archivos de una confirmación a la siguiente y
revisar información como dónde y cuándo se realizaron los cambios. Las confirmaciones
se identifican en Git mediante un hash criptográfico único. Dado que todo tiene hash,
es imposible realizar cambios y perder o dañar la información sin que Git lo detecte.

Ramas (Branches): Como cada desarrollador trabaja en su propio repositorio local,
puede haber muchos cambios diferentes basados en la misma confirmación. Las ramas
son punteros ligeros para el trabajo en curso. Una vez finalizado el trabajo creado en
una rama, se puede combinar de nuevo en la rama principal.

44

https://git-scm.com/

CAPÍTULO 4. TECNOLOGÍAS UTILIZADAS

Estados: Los archivos en Git pueden estar en tres estados:

• Modificados: El archivo ha sido cambiado, pero los cambios aún no forman parte
de una confirmación.

• Almacenados provisionalmente: Los cambios están preparados para ser con-
firmados.

• Confirmados: Los cambios pasan a ser definitivos y a formar parte del historial
de desarrollo.

4.4.4. Gitlab

Gitlab es una plataforma web de código abierto que permite gestionar proyectos de de-
sarrollo de software utilizando Git como sistema de control de versiones y que sirve también
como repositorio online para almacenar proyectos. Ofrece un conjunto de herramientas inte-
gradas que cubren todo el ciclo de vida del desarrollo, desde la planificación y la colaboración
entre desarrolladores, hasta la integración y el despliegue continuo (CI/CD).

En este proyecto, se ha utilizado GitLab como repositorio remoto, lo que ha permitido
clonar el proyecto en diferentes dispositivos, como el ordenador utilizado para el desarrollo
y la máquina virtual donde se ha realizado el despliegue. Además, se han aprovechado las
herramientas de planificación propias de GitLab, como los issues e issue boards, para
organizar los sprints.

Issues

Los issues [21] ayudan a la planificación, seguimiento y entrega del trabajo dentro de un
proyecto en GitLab. Permiten gestionar propuestas de funcionalidades, tareas, solicitudes de
soporte y reportes de errores.

En este proyecto, los issues se han utilizado para representar épicas, historias de usuario
y otro tipo de tareas denominadas hotfix. Se ha creado un issue por cada épica e historia de
usuario definida en el Capítulo 2, mientras que los hotfix se han ido generando durante el
desarrollo y hacen referencia a tareas necesarias para corregir o completar funcionalidades
existentes.

Las épicas se identifican con títulos en el formato “EPXX – <Nombre>” y llevan la
etiqueta “Epic”. Están bloqueadas por los issues de sus historias de usuario asociadas y no
deben cerrarse hasta que todas estas hayan sido completadas. En la Figura 4.4 puede verse
el issue correspondiente a la épica EP02.

Las historias de usuario siguen el formato “HUXX – <Nombre>” y están relacionadas
con el issue de su correspondiente épica. En cada issue se indica una estimación del tiempo
de desarrollo y, una vez finalizada, se registra el tiempo real empleado. En la Figura 4.5 se
muestra el issue de la historia de usuario HU30.

45

https://about.gitlab.com/

4.4. HERRAMIENTAS DE GESTIÓN Y DOCUMENTACIÓN

Figura 4.4: Issue correspondiente a la épica EP02

Por último, las tareas hotfix se identifican mediante el formato “HFXX – <Nombre>” y
llevan la etiqueta “Hotfix”. También incluyen una estimación y un tiempo real de desarrollo,
aunque no están relacionados con ningún otro issue.

Issue boards

Los issue boards [20] son tableros que ofrecen una forma visual de gestionar y supervisar
las tareas en un proyecto. Los issues se presentan como tarjetas organizadas en columnas.
Cada columna contiene aquellos issues que cumplan con la condición seleccionada, como una
etiqueta, un hito o una persona asignada. Este sistema permite visualizar el avance a lo largo
de las distintas etapas del flujo de trabajo y es compatible con Scrum o Kanban.

Para ajustar el tablero al marco de trabajo Scrum, se ha organizado en cinco columnas:

Open: Contiene todas las tareas al inicio del proyecto. Funciona como el product
backlog de Scrum.

Sprint Backlog: Agrupa las tareas seleccionadas para ser completadas en el sprint
actual.

In Progress: Representa las tareas en desarrollo. En general, solo habrá una tarea en
esta columna a la vez.

46

CAPÍTULO 4. TECNOLOGÍAS UTILIZADAS

Figura 4.5: Issue correspondiente a la historia de usuario HU30

Pending Review: Aquí se encuentran las tareas completadas, pero pendientes de
revisión. La revisión se realiza al final del sprint durante el sprint review. Si es necesario
hacer ajustes, las tareas pueden volver al sprint backlog.

Closed: Contiene las tareas que se consideran finalizadas.

La Figura 4.6 muestra una captura del tablero durante el desarrollo de uno de los sprints,
con las columnas organizadas según lo descrito previamente.

47

4.4. HERRAMIENTAS DE GESTIÓN Y DOCUMENTACIÓN

Figura 4.6: Issue board del proyecto

48

CAPÍTULO 5. DISEÑO

Capítulo 5

Diseño

En este capítulo se describe el diseño de la aplicación, incluyendo el diseño de la interfaz
de usuario, la arquitectura utilizada, el diseño de datos y el despliegue de la aplicación.

5.1. Arquitectura

El diseño de la aplicación sigue una arquitectura cliente-servidor, con un back-end
monolítico que centraliza la lógica de negocio, el acceso a datos y la seguridad, y un front-
end basado en componentes y servicios

5.1.1. Arquitectura cliente-servidor

La arquitectura cliente-servidor [42] permite el procesamiento cooperativo de la infor-
mación mediante la interacción entre clientes y servidores. En esta estructura, uno o varios
clientes solicitan servicios a uno o más servidores. El acceso a los servicios se realiza de ma-
nera transparente, es decir, los usuarios no perciben la cantidad de servidores involucrados
en el proceso. Es una de las arquitecturas más utilizadas en el desarrollo de aplicaciones.

Cliente (Front-end): Es todo proceso que solicita servicios de otro proceso, en este
caso, un servidor. Maneja la interfaz de usuario, gestionando tanto la presentación como
la interacción con los datos. Las funciones principales del proceso cliente son:

• Administrar la interfaz de usuario.

• Interactuar con el usuario.

• Hacer validaciones locales.

• Generar peticiones.

49

5.1. ARQUITECTURA

Figura 5.1: Esquema cliente-servidor. Imagen tomada de [11]

• Recibir y formatear resultados.

Servidor (Back-end): Es cualquier proceso que proporciona servicios a otros. Su tarea
es atender a múltiples clientes que solicitan los recursos que proporciona. El servidor
gestiona la lógica de negocio y el acceso a los datos. Dependiendo del tipo de servidor,
puede ofrecer una API para facilitar la comunicación con los clientes o interactuar
directamente con bases de datos u otros sistemas. Sus funciones principales son:

• Aceptar o rechazar solicitudes de los clientes.

• Procesar peticiones aplicando la lógica de la aplicación.

• Formatear datos para trasmitirlos a los clientes.

• Realizar validaciones a nivel de bases de datos.

El esquema de funcionamiento de un sistema cliente-servidor se resume en los siguientes
pasos y se esquematiza en la Figura 5.1:

1. El cliente envía una solicitud al servidor.

2. El servidor recibe la solicitud del cliente.

3. El servidor procesa la solicitud.

4. El servidor genera una respuesta y se la envía al cliente.

5. El cliente recibe la respuesta y la procesa.

Aplicación en el Proyecto

El sistema sigue una arquitectura cliente-servidor, con el front-end desarrollado en
Angular y el back-end utilizando Spring Boot. Para la comunicación entre ambos, el back-
end expone una API RESTful que el front-end consume mediante peticiones HTTP.

El back-end se ha diseñado siguiendo un enfoque por capas. El servidor también ejecuta
la base de datos MySQL. Para garantizar la seguridad de los recursos, la autenticación se
gestiona mediante JWT (JSON Web Token), el cual debe incluirse en todas las peticiones

50

CAPÍTULO 5. DISEÑO

HTTP realizadas por el cliente. Esto asegura la protección de los endpoints del servidor
mediante los filtros de Spring Security, garantizando que solo los usuarios autenticados
puedan acceder a los servicios.

En el front-end, se ha utilizado Angular Material para la construcción de las interfaces
de usuario. Para asegurar que todas las peticiones al servidor incluyan el token de auten-
ticación, se emplea un interceptor que lo añade automáticamente a las cabeceras de las
solicitudes HTTP. Además, también se utilizan guards para proteger las rutas y controlar
la interacción del usuario con determinadas páginas, permitiendo el acceso únicamente a
usuarios autenticados y con roles específicos.

5.1.2. Arquitectura del servidor: Patrón capas

La arquitectura en capas [2], también conocida como arquitectura de múltiples capas
(multilayer), es un patrón arquitectónico ampliamente utilizado. Consta de varias capas,
cada una con un conjunto específico de responsabilidades en el contexto de la aplicación.
Esto se muestra esquemáticamente en la Figura 5.2.

Las capas están organizadas de forma jerárquica unas encima de otras y las dependencias
siempre van hacia abajo. Es decir, que una capa concreta dependerá solamente de las capas
inferiores, pero nunca de las superiores. Podemos diferenciar además entre sistemas estrictos y
relajados [8] en función de las relaciones de dependencia con las capas inferiores. Un sistema
estricto es aquel en el que una capa solo depende directamente de la capa inmediatamente
inferior, mientras que en un sistema relajado puede hacerlo de todas las que hay por
debajo, aunque no sean contiguas.

Ventajas de la arquitectura en capas:

Modularidad: La separación de preocupaciones hace que el código sea más compren-
sible, organizado y manejable. Fomenta la reutilización de componentes en diferentes
aplicaciones.

Escalabilidad: Cada capa se puede escalar y optimizar de forma independiente de
acuerdo con los requisitos.

Mantenibilidad: Las modificaciones pueden realizarse en componentes específicos sin
afectar a todo el sistema.

Capacidad de prueba: Se puede probar cada capa de forma individual.

Interoperabilidad: Facilita la integración y comunicación entre diferentes sistemas y
servicios.

Aplicación en el Proyecto

El servidor sigue una arquitectura por capas, organizada en tres capas estrictas y una
relajada. Esto permite una separación clara de las responsabilidades y un diseño mantenible.

51

5.1. ARQUITECTURA

Figura 5.2: Sistema relajado de capas. Imagen tomada de [8]

La arquitectura del servidor se puede apreciar en la Figura 5.3

Capas estrictas:

controllers (Capa superior): Esta capa se encarga de gestionar las solicitudes entrantes
del cliente. Su función principal es recibir las peticiones, determinar qué servicio debe
procesarlas y, finalmente, construir una respuesta para el cliente.

business (Capa intermedia): Agrupa los servicios que contienen la lógica de negocio
del sistema. Se encarga de orquestar las acciones necesarias para procesar correctamen-
te la solicitud del cliente. Además, maneja los errores que puedan surgir durante el
procesamiento.

persistence (Capa inferior): Es la capa encargada de gestionar los datos persistentes,
definiendo la estructura de las entidades y facilitando su almacenamiento y recuperación
desde la base de datos.

Capa relajada:

common services: Esta capa contiene funcionalidades comunes que pueden ser re-
utilizadas por las demás capas del sistema, así como configuraciones generales de la
aplicación.

52

CAPÍTULO 5. DISEÑO

Figura 5.3: Arquitectura general del servidor

53

5.1. ARQUITECTURA

5.1.3. Arquitectura del cliente: Patrón MVVM

El patrón Modelo-Vista-Modelo de Vista (MVVM) es una arquitectura que busca
separar la lógica de la aplicación de su interfaz de usuario , facilitando el mantenimiento, las
pruebas y la evolución de la aplicación [5].

MVVM consta de tres componentes principales [14]:

Modelo: Representa la lógica de negocio y los datos de la aplicación. Se encarga de
gestionar y recuperar la información.

Vista: Se encarga de la presentación visual. Muestra los datos procesados por el modelo
de vista y capta las acciones del usuario para transmitirlas al modelo de vista.

Modelo de Vista: Actúa como intermediario entre el modelo y la vista. Prepara los
datos del modelo para ser presentados en la vista y maneja las interacciones del usuario.
Mantiene la vista sincronizada con los datos.

La interacción entre estos componentes es la siguiente: la vista depende del modelo de
vista y el modelo de vista depende del modelo, pero ni la vista conoce al modelo, ni el modelo
conoce al modelo de vista. Esto se muestra esquemáticamente en la Figura 5.4.

Figura 5.4: Relación entre los componentes del patrón MVVM [5]

Aplicación en el Proyecto

Aunque Angular no sigue estrictamente el patrón MVVM, se puede adaptar a él mediante
su estructura basada en componentes y servicios:

Modelo: Servicios o clases responsables de gestionar los datos, realizar operaciones y
comunicarse con las APIs.

Vista: Plantillas HTML dentro de los componentes, que definen cómo se presentan
los datos del modelo al usuario.

Modelo de Vista: Clases TypeScript asociadas a los componentes. El enlace entre la
vista y el modelo de vista se logra mediante el data binding.

54

CAPÍTULO 5. DISEÑO

Figura 5.5: Arquitectura general del cliente

En la Figura 5.5 se presenta el diagrama con la arquitectura del cliente, en el que se puede
observar la siguiente organización:

interceptors: Son clases que interceptan las solicitudes HTTP antes de que sean en-
viadas al servidor. En este caso, se utilizan para añadir el token de autenticación en las
cabeceras de cada petición, asegurando que el usuario esté correctamente autenticado.

guards: Se encargan de proteger las rutas, evitando que usuarios sin el rol adecuado
accedan a ciertas páginas.

services: Son clases que contienen los métodos necesarios para interactuar con el back-
end o para otras funciones como la configuración de idioma.

components: Los componentes se agrupan en tres grupos según su uso:

• header: Componentes que forman la cabecera de la aplicación, visible en todas
las páginas.

• pages: Cada página tiene su propio componente, que puede estar compuesto por
varios subcomponentes, organizados jerárquicamente.

55

5.1. ARQUITECTURA

• utils: Componentes que pueden reutilizarse en diferentes páginas.

models: Contienen las interfaces y los enumerados que definen la estructura de los
datos utilizados en la aplicación.

Diseño basado en componentes

Los componentes son la unidad fundamental de construcción de una aplicación Angu-
lar [1]. No deben confundirse con los componentes del patrón MVVM. Cada componente
representa una parte concreta de la interfaz y encapsula tanto su lógica como su apariencia.

Todo componente está compuesto por:

Una clase TypeScript con su comportamiento.

Una plantilla HTML que controla lo que se renderiza en el DOM.

Un selector CSS que define cómo se usa el componente en otras plantillas HTML.

Una aplicación Angular se construye mediante la composición de componentes, lo cuales
pueden anidarse entre sí para formar vistas más complejas. Esta estructura facilita el aisla-
miento de funcionalidades, lo que contribuye a que el código sea más mantenible y escalable.

En la Figura 5.6 se muestran todos los componentes utilizados para construir la interfaz
de la aplicación. Las líneas de dependencia representan la jerarquía entre componentes. El
componente “app” es el componte raíz y “header” es un componente que está siempre visi-
ble en la parte superior de la interfaz. Los componentes en color azul representan páginas
completas, mientras que los de color rosa corresponden a subcomponentes de dichas páginas.
Los componentes reutilizables, representados en color verde, son aquellos que pueden ser
utilizados por cualquier otro componente.

56

CAPÍTULO 5. DISEÑO

Figura 5.6: Diagrama de componentes

57

5.2. DISEÑO DE LA INTERFAZ DE USUARIO

5.2. Diseño de la interfaz de usuario

A continuación, se muestran los prototipos creados para las diferentes páginas de la
aplicación. Estos prototipos se han ido creando y completando durante las tareas de diseño
de cada historia de usuario. Una sola página puede ser producto de una o varias historias de
usuario o las historias de usuario más complejas han necesitado la creación de más de una
página.

El inicio de sesión, Figura 5.7, es la primera página con la que interactúa el usuario. Es la
única página accesible para todos. Una vez iniciada la sesión, el usuario será redirigido a una
de las dos páginas de inicio, la página de inicio del administrador, Figura 5.8, o la página de
inicio del gestor de metadatos, Figura 5.9.

En la pantalla de inicio, los administradores pueden elegir entre dos opciones que mo-
difican parcialmente el contenido mostrado. Seleccionando “Crear usuario”, se mostrará el
formulario de la Figura 5.10, que permite registrar nuevos administradores o gestores de
metadatos. Por otro lado, al seleccionar “Gestionar usuarios” (Figura 5.11), se mostrará una
lista con todos los usuarios del sistema. Al hacer clic en un usuario, su fila se expandirá para
revelar opciones adicionales.

Para las funcionalidades “Editar información”, “Restablecer contraseña” y “Añadir dic-
cionario” se ha optado por el uso de ventanas de diálogo, ya que son tareas simples que no
justifican la creación de páginas individuales, evitando así una complejidad innecesaria. Las
figuras 5.12, 5.13 y 5.14 muestran las interfaces diseñadas para cada una de estas funciones,
respectivamente.

El gestor de metadatos puede acceder a tres grupos de ventanas en el sistema.

El primer grupo corresponde a las ventanas que muestran el contenido de los distintos
elementos del diccionario de datos: diccionario (Figura 5.15), base de datos (Figura 5.16),
entidad (Figura 5.17) y atributo (Figura 5.18). En estas ventanas, el nombre y la descripción
de cada elemento pueden editarse directamente. Al activar el modo edición mediante un
botón, los campos se vuelven editables.

El segundo grupo lo conforman las páginas de creación de elementos. Estas presentan
formularios similares, pero adaptados a los distintos tipos de elementos, ya que cada uno
requiere información específica. La Figura 5.19 muestra la interfaz para crear un diccionario
y la Figura 5.20 muestra la de una base de datos.

Por último, están las páginas destinadas a la revisión de propuestas. Primero se encuentra
una lista con las revisiones pendientes, aceptadas o rechazadas (historial de revisiones), así
como a las propuestas realizadas por el propio usuario (Figura 5.21). Al seleccionar una
propuesta, se abre una ventana con información detallada sobre los cambios propuestos y
otros datos relevantes. Aunque la ventana de la propuesta es la misma, su contenido varía
según su estado y el rol del usuario que la visualiza. En la Figura 5.22 se muestra un ejemplo
de una propuesta pendiente desde la perspectiva de un revisor.

58

CAPÍTULO 5. DISEÑO

Figura 5.7: Pantalla inicio de sesión

Figura 5.8: Pantalla inicio del administrador

59

5.2. DISEÑO DE LA INTERFAZ DE USUARIO

Figura 5.9: Pantalla inicio del gestor de metadatos

Figura 5.10: Pantalla para la creación de usuarios

60

CAPÍTULO 5. DISEÑO

Figura 5.11: Pantalla para la gestión de usuarios

Figura 5.12: Ventana de diálogo para la edición de información del usuario

61

5.2. DISEÑO DE LA INTERFAZ DE USUARIO

Figura 5.13: Ventana de diálogo para la generación de contraseñas

Figura 5.14: Ventana de diálogo para conceder acceso a diccionarios

62

CAPÍTULO 5. DISEÑO

Figura 5.15: Pantalla para la visualización de un diccionario

Figura 5.16: Pantalla para la visualización de una base de datos

63

5.2. DISEÑO DE LA INTERFAZ DE USUARIO

Figura 5.17: Pantalla para la visualización de una entidad

Figura 5.18: Pantalla para la visualización de un atributo

64

CAPÍTULO 5. DISEÑO

Figura 5.19: Pantalla para la creación de un diccionario

Figura 5.20: Pantalla para la creación de una base de datos

65

5.2. DISEÑO DE LA INTERFAZ DE USUARIO

Figura 5.21: Pantalla con la lista de propuestas

Figura 5.22: Pantalla con la revisión de una propuesta

66

CAPÍTULO 5. DISEÑO

5.3. Diseño de datos

En esta sección se presenta el diseño lógico de los datos a través de un diagrama UML
adaptado con estereotipos que representa el diseño relacional de la base de datos del sistema,
sus tablas, con sus campos, y las relaciones entre ellas. En la Figura 5.23 se muestra dicho
diagrama, el cual se ha ido refinando a medida que avanzaba el desarrollo de las historias de
usuario, adaptándose así a los requisitos y cambios del sistema.

Figura 5.23: Diagrama entidad-relación

67

5.4. DISEÑO DE LA COMUNICACIÓN

5.4. Diseño de la comunicación

Con el objetivo de mostrar un ejemplo de la comunicación entre objetos en el sistema,
se ha escogido la historia de usuario “HU10 - Crear diccionario de datos”. Esta se ha
dividido en dos diagramas de secuencia que representan las interacciones de los objetos en el
cliente (Figura 5.24) y en el servidor (Figura 5.25).

La comunicación se inicia cuando el usuario completa el formulario y solicita la creación
de un nuevo diccionario. El componente de Angular capta el evento “onSubmit” y delega la
acción en el servicio correspondiente. En el servicio se forma la solicitud HTTP a la API
REST del servidor, la cual se realiza de forma asíncrona.

Figura 5.24: Diagrama de secuencia de “HU10 - Crear diccionario de datos” en el front-end

En el servidor, la petición es recibida por el controlador de diccionarios, que se encarga de
redirigirla al servicio correspondiente. El servicio extrae la información necesaria de la solici-
tud y se encarga de la creación de las entidades. Dado que un usuario puede estar asociado
a múltiples diccionarios y cada diccionario puede tener varios usuarios, además de crear una
entidad “Dictionary”, también se crea una entidad denominada “DictionaryRoleEntity”. Esta
entidad representa la asociación entre un usuario y un diccionario, y almacena el rol que
desempeña dicho usuario en el mismo.

Si el proceso se completa correctamente, y no se han producido errores de comunicación,
el servidor genera una respuesta HTTP con el estado CREATED que se envía de vuelta al
cliente, confirmando la creación del nuevo diccionario.

68

CAPÍTULO 5. DISEÑO

Figura 5.25: Diagrama de secuencia de “HU10 - Crear diccionario de datos” en el back-end

69

5.5. DESPLIEGUE DE LA APLICACIÓN

5.5. Despliegue de la aplicación

A continuación, se describe el despliegue de la aplicación tanto en el entorno de pruebas
como en el entorno de producción.

En ambos entornos, la comunicación entre el navegador, el front-end y el back-end se
realiza mediante peticiones HTTP. El front-end interactúa con el back-end a través de una
API REST, mientras que el back-end gestiona el acceso a la base de datos mediante JPA.

En el entorno de desarrollo y pruebas, todo el sistema se ejecuta en un dispositivo con
sistema operativo Windows. Este entorno es ideal para la fase de desarrollo, permitiendo
realizar pruebas rápidas y ajustes en la aplicación. En este caso, el front-end se ejecuta en un
servidor Node.js. La Figura 5.26 presenta el diagrama de despliegue en el entorno de pruebas
local utilizado durante el desarrollo de la aplicación.

Figura 5.26: Diagrama de despliegue en el entorno local de desarrollo y pruebas

En el entorno de producción, uno o varios usuarios acceden a la aplicación desde dispo-
sitivos conectados a la red, utilizando un navegador. Para el despliegue de los servicios, se
emplea una máquina virtual proporcionada por la universidad, que utiliza Linux. En este
entorno, el front-end se ejecuta en un servidor Nginx. El diagrama de la Figura 5.27 muestra
el despliegue realizado en el entorno de producción.

70

CAPÍTULO 5. DISEÑO

Figura 5.27: Diagrama de despliegue en el entorno de producción

71

5.5. DESPLIEGUE DE LA APLICACIÓN

72

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

Capítulo 6

Implementación y pruebas

6.1. Licencia

Este proyecto se declara bajo una licencia CC BY 4.0. La Figura 6.2 muestra algunas
de las características y términos clave de la licencia. Para más información se debe consultar
https://creativecommons.org/licenses/by/4.0/

Figura 6.1: CC BY 4.0

6.2. Implementación

6.2.1. Organización del proyecto

A continuación, se describe la organización del proyecto por directorios, detallando el tipo
de contenido de las carpetas y el papel que desempeñan algunos ficheros. Se han omitido
principalmente ficheros específicos del framework o del editor de código.

Estructura del repositorio

El proyecto se encuentra en un único repositorio, que alberga tanto el front-end como
el back-end. La estructura del repositorio se puede apreciar en la Figura 6.3. Dentro de la
carpeta app se encuentran las aplicaciones desarrolladas, organizadas en subcarpetas según
el framework utilizado, Angular y Spring.

73

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

6.2. IMPLEMENTACIÓN

Figura 6.2: Resumen de la licencia CC BY 4.0. Captura tomada de [10]

74

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

tfg-johana-ramirez/

.git/

app/

Angular/

Spring/

models/

DDVault.asta

Figura 6.3: Estructura del repositorio

Por otra parte, la carpeta models contiene los ficheros relacionados con la documentación.
En este caso, el fichero astah donde se encuentran todos los diagramas realizados durante las
fases de análisis y diseño.

Estructura del código en Spring Boot

La estructura inicial del proyecto realizado con Spring Boot se genera al crear la apli-
cación. El código fuente se encuentra en la carpeta src. Dentro de src/main/resources se
encuentra el fichero application.properties, que se utiliza para configurar aspectos como la
conexión a la base de datos y otros parámetros.

En src/main/java, dentro del paquete uva.inf.tfg.ddvault, se encuentra el fichero DD-
VaultApplication.java, el cual se encarga de iniciar el contexto de la aplicación. El fichero
ApplicationConfig.java establece los componentes para la autenticación de usuarios median-
te Spring Security, como el repositorio de usuario y el cifrado de contraseñas. El resto de
carpetas son las creadas de acuerdo con la arquitectura definida en la Sección 5.1.2. Estas
carpetas son:

business: En esta carpeta se encuentran los boundaries, estos ayudan a formatear
los datos que se envían y reciben, por eso se distinguen dos tipos, los de entrada
y los de salida. No se consideran DTOs ya que pueden estar formados por campos
de varias entidades o contener solo información parcial de la entidad. Los mappers
ayudan a formar boundaries de salida, tomando los datos necesarios de entidades u otros
objetos. En exceptions se encuentran las excepciones personalizadas, que proporcionan
mensajes descriptivos para identificar errores durante la ejecución. Se lanzan en los
servicios, pero se capturan en los controladores, lo que permite generar respuestas
HTTP detalladas en caso de error. En services están los servicios donde se procesan
las peticiones. Normalmente cada servicio creado se corresponde con una historia de
usuario, sin embargo, en ocasiones es necesario crear más de uno. En la carpeta core
se encuentran los servicios más importantes, lo cuales son utilizados repetidamente por
otros servicios.

commonservices: En esta carpeta se incluyen configuraciones de seguridad, enume-
rados que se utilizan en varios puntos de la aplicación y otros clases que no encajan en

75

6.2. IMPLEMENTACIÓN

ninguna de las otras capas pero son utilizadas por estas.

controllers: En los controladores se definen los endpoints de la aplicación. Se han
ordenado, principalmente, por el nombre de la entidad a la que afecta la operación

persistence : agrupa los ficheros relacionados con la gestión de los datos persistentes,
aquí se encuentran repositorios y entidades.

El proyecto utiliza Maven, lo cual se refleja en la existencia del archivo pom.xml. Este
archivo se usa para gestionar las dependencias y configurar el proceso de compilación y
ejecución de la aplicación.

En la Figura 6.4 puede verse la estructura de la aplicación desarrollada para el back-end.

Estructura del código en Angular

Al igual que Spring Boot, Angular define una estructura inicial al crear el proyecto, la
cual se ha respetado y se le han añadido otras carpetas para organizar mejor el proyecto. En
la Figura 6.5 se muestra la estructura final del proyecto.

Los ficheros angular.json y package.json se utilizan en la configuración de la aplicación.
El primero gestiona la configuración global del proyecto, mientras que el segundo se encarga
de gestionar las dependencias mediante npm.

Dentro de src se encuentran los siguientes directorios:

app: contiene el código principal de la aplicación, la estructura de este directorio coin-
cide con la arquitectura del cliente descrita en la Sección 5.1.3. Aquí se encuentra el
componente raíz, formado por los tres ficheros característicos de un componente An-
gular (ts, html y css), además de su fichero de pruebas. En app-routing.module.ts se
asocian URLs con componentes y guardas. En el fichero app.module.ts se declaran los
componentes creados y se importan los módulos necesarios.

• components: Contiene el resto de componentes de la aplicación, cada uno orga-
nizado en su propia carpeta.

• services: Agrupa todos los servicios. Cada servicio dispone de su propia carpeta,
que incluye también su fichero de pruebas.

• models: En esta carpeta se encuentran los ficheros que definen la estructura de los
datos. Al no tener funcionalidad, se utilizan interfaces en lugar de clases. También
se incluyen aquí los enums.

• guards: Las guardas creadas se utilizan para comprobar que el usuario haya
iniciado sesión y que tenga el rol adecuado al intentar acceder a determinadas
páginas.

• interceptors: Contiene un único interceptor que se encarga de insertar en la
cabecera de las peticiones HTTP el token de autenticación generado al iniciar
sesión.

76

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

assets: En la carpeta i18n se encuentran los ficheros de internacionalización, cada
idioma debe tener un fichero JSON (en.json para inglés y es.json para español). En
images están los logotipos diseñados para la aplicación.

environments: Aquí se encuentran los ficheros que configuran el cambio automático
de la URL de la API según si el entorno es de desarrollo o de producción.

Spring/

src/

main/

java/

uva/

inf/

tfg/

ddvault/

business/

boundaries/

in/

out/

exceptions/

mappers/

services/

core/

commonservices/

enums/

security/

utils/

controllers/

persistence/

entities/

repositories/

ApplicationConfig.java

DDVaultApplication.java

resources/

application.properties

pom.xml

Figura 6.4: Estructura del código en Spring Boot

77

6.2. IMPLEMENTACIÓN

Angular/

src/

app/

components/

header/

pages/

utils/

guards/

interceptors/

models/

services/

app-routing.module.ts

app.component.css

app.component.html

app.component.ts

app.module.ts

assets/

i18n/

en.json

es.json

images/

environments/

environments.development.ts

environments.ts

custom-theme.scss

favicon.ico

index.html

main.ts

styles.css

angular.json

package.json

Figura 6.5: Estructura del código en Angular

78

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

6.2.2. Dificultades encontradas

Durante el desarrollo de la aplicación surgieron algunas dificultades al implementar deter-
minadas funcionalidades. Algunas de ellas tuvieron que ser replanteadas para simplificarlas y
adaptarlas a las limitaciones de tiempo. A continuación, se describen algunos de estos retos
y las soluciones adoptadas:

Bloqueo de atributos durante su edición: En un principio, se planeó impedir que
varios usuarios editaran simultáneamente un mismo atributo. La idea era mantener un
estado en el servidor que indicara si un atributo estaba siendo editado y bloquear su
edición. Sin embargo, no es posible detectar de manera sencilla si un usuario ha aban-
donado la página, por ejemplo, porque ha cerrado el navegador. Una posible solución
consistía en introducir temporizadores que desbloquearan el atributo automáticamente
pasado un cierto tiempo. Sin embargo, esta alternativa también requería contemplar
varios casos adicionales. Por ejemplo, si el editor pasa demasiado tiempo editando y el
tiempo está a punto de acabarse, habría que ampliar el temporizador. O si el editor
sale por accidente de la página debería ser capaz de volver y retomar su trabajo desde
donde lo dejó. Debido a la introducción del sistema de revisiones, se decidió optar por
la solución más básica, que es: los atributos solo se bloquean en el momento en que un
editor envía una propuesta de cambio. Esto también tiene inconvenientes, como que
dos editores pueden trabajar simultáneamente sobre el mismo atributo, pero solo los
cambios del primero que finalice serán los que se guarden.

Sistema de mensajería: Para la gestión de contraseñas lo ideal habría sido tener
un sistema de mensajería automático que enviase al correo electrónico del usuario la
contraseña generada al crear la cuenta. Esto le permitiría acceder al sistema y cambiarla
por una más segura. También sería muy útil para el restablecimiento de contraseñas.
Esto tampoco se ha implementado debido a la limitación del tiempo y a que no se
consideraba algo primordial. En su lugar, es un administrador del sistema quien se
encarga de restablecer las contraseñas y comunicarlas manualmente al usuario.

Pruebas con Jasmine: Dado que era la primera vez que se trabajaba con Jasmine,
surgieron diversos problemas causados por la falta de conocimiento. Durante las prime-
ras etapas del desarrollo, las pruebas se ejecutaban correctamente, lo que llevó a pensar
que estaban bien definidas. Sin embargo, a medida que aumentaba la complejidad de
los elementos a probar, comenzaron a surgir errores. Estos errores no eran consistentes,
no siempre fallaban las mismas pruebas y para solucionarlos se aplicaban “parches” que
ocultaban el problema real en lugar de resolverlo. La situación empeoró hasta el punto
de que no era posible conseguir que todas las pruebas se ejecutaran correctamente.
La aleatoriedad en los fallos sugería una configuración incorrecta, especialmente en lo
relativo a la inicialización del entorno y la configuración de los mocks. Finalmente, fue
necesario rehacer por completo todas las pruebas existentes, prestando especial aten-
ción a la correcta preparación del entorno antes de cada prueba. Además de esto, los
mensajes de error proporcionados por la consola en caso de fallo no siempre resultan
claros o informativos, lo que ha dificultado en gran medida la identificación y resolución
de los problemas.

79

6.3. PRUEBAS

6.3. Pruebas

Para garantizar que una aplicación funcione correctamente y cumpla con los requisitos de-
finidos es necesario realizar pruebas. Estas pueden ser manuales o automatizadas, en función
del enfoque que se desee adoptar [35].

En las pruebas manuales, una persona introduce datos en el sistema y analiza la res-
puesta obtenida para comprobar que el comportamiento es el correcto. Estas pruebas se
basan en casos de prueba, los cuales contemplan distintos escenarios, como situaciones de
uso comunes, casos límite o condiciones de error. Cada caso de prueba especifica qué se debe
probar, los datos de entrada y el resultado esperado. Las pruebas manuales requieren tiempo
y esfuerzo en cada ejecución y están sujetas a errores humanos.

Por otro lado, las pruebas automatizadas se basan en scripts que simulan de forma
automática las acciones que realizaría un usuario. Una vez definidos, estos scripts pueden
ejecutarse repetidamente sin intervención manual, comparando los resultados obtenidos con
los esperados y notificando cualquier discrepancia. Aunque su creación puede ser costosa,
resultan mucho más eficientes a largo plazo. Además, se pueden integrar fácilmente con
herramientas de CI/CD, lo que permite una validación constante del sistema conforme se
introducen cambios.

En este proyecto se han implementado pruebas automatizadas utilizando el framework
Jasmine, que viene integrado por defecto en los proyectos de Angular.

Como ya se mencionó en el capítulo dedicado a las tecnologías, Jasmine es un framework
diseñado para realizar pruebas basadas en Behavior-Driven Development (BDD). Este
enfoque busca describir el comportamiento esperado del sistema desde la perspectiva del
usuario. Una práctica habitual en BDD es escribir las pruebas antes de implementar la
funcionalidad, lo que permite comprobar desde el inicio que el desarrollo se alinea con lo que
el usuario quiere.

No obstante, Jasmine también es perfectamente válido para realizar pruebas unitarias o
aplicar enfoques como el Test-Driven Development [41]. Las pruebas unitarias se centran
en verificar pequeñas unidades del código, como funciones, asegurando que funcionen de
manera correcta y aislada. Este tipo de pruebas es especialmente útil para garantizar la
mantenibilidad del sistema, ya que permiten detectar rápidamente si una modificación rompe
alguna funcionalidad existente.

Las pruebas realizadas para este proyecto combinan ambos enfoques. Por un lado, se
han definido tests que validan el comportamiento esperado desde la perspectiva del usuario.
Por otro, se han implementado pruebas centradas en comprobar que métodos o servicios
individuales funcionan correctamente de forma aislada. La aplicación de ambos tipos de
pruebas ha permitido alcanzar una buena cobertura de código. También hay que señalar que
las pruebas se escribieron una vez se había implementado la funcionalidad, ya que aún no se
contaba con la experiencia suficiente de la tecnología utilizada.

Las pruebas se definen en los ficheros .spec.ts. Estos ficheros suelen generarse automá-
ticamente junto al elemento correspondiente cuando se utiliza el comando ng generate. Por

80

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

lo tanto, cada componente, servicio, guarda e interceptor cuenta con su propio fichero de
pruebas. De esta forma, los tests de un elemento son fácilmente localizables y se mantienen
organizados junto al código que validan.

6.3.1. Sintaxis de Jasmine

A continuación, se va a describir la sintaxis de Jasmine con la ayuda del ejemplo de la
Figura 6.6. Este ejemplo no forma parte de las pruebas realizadas para validar el proyecto
pero permitirá identificar los principales elementos utilizados en la escritura de este tipo de
pruebas [25].

1 describe('SaludoComponent', () => {
2 let saludoComponent: SaludoComponent;
3

4 beforeEach(() => {
5 const mockUsuarioService = jasmine.createSpyObj('UsuarioService', ['getNombre']);
6

7 mockUsuarioService.getNombre.and.returnValue('Johana');
8

9 // Otros ajustes relacionados con la inicialización del componente
10 });
11

12 it('debería saludar al usuario que ha iniciado sesión', () => {
13 saludoComponent.saludar();
14

15 expect(saludoComponent.mensaje).toBe('Hola, Johana');
16 });
17

18 });

Figura 6.6: Ejemplo de una test suite en Jasmine

Suites (describe): La función describe se utiliza para agrupar un conjunto de pruebas
relacionadas. Cada fichero de pruebas comienza con una suite. El primer argumento
sirve para describir el grupo de pruebas. En el ejemplo, la suite agrupa el conjunto de
pruebas del componente SaludoComponent.

Specs (it): Las pruebas se definen con la función it. Habrá tantas como casos de prueba
se deseen cubrir y dentro de cada una se definen las expectativas. También recibe
una cadena descriptiva como argumento. En el ejemplo, el caso de prueba consiste en
comprobar que el componente construya correctamente un saludo personalizado con la
ayuda del servicio de usuarios, al cual se le solicita el nombre del usuario registrado.

Expectations (expect): Las expectativas son las condiciones que se deben cumplir
para que una prueba pase. Se construyen con la función expect, que recibe el valor real
como argumento y se utiliza junto con un matcher que define la condición esperada.

Matchers: Son métodos encadenados a expect que comparan el valor recibido con el
valor esperado. Realizan comparaciones booleanas, como por ejemplo, toBe, toContain,

81

6.3. PRUEBAS

toBeLessThan, entre otros. En el ejemplo, se espera que el saludo generado, almacenado
en la variable mensaje del componente, sea igual al valor esperado “Hola, Johana”.

También existen otras funciones que permiten configurar las pruebas antes y después de
las pruebas. Estas son las funciones: beforeEach , afterEach , beforeAll , afterAll . De esta
forma se evita repetir código al preparar o limpiar el entorno de pruebas. En el ejemplo, se ha
utilizado la función beforeEach para configurar el mock del servicio que utiliza el componente
y simular una respuesta.

En la Figura 6.7, se muestra una prueba real del proyecto. En este caso, se trata de un
test unitario del componente LoginComponent, donde se verifica que, al enviar el formulario
mediante el método onSubmit, el sistema realiza correctamente las operaciones necesarias
si el usuario es un administrador. Entre estas operaciones se comprueba que se almacenen
el token y la sesión recibidos, que se redirija al usuario a la ruta correspondiente y que se
muestre un mensaje de éxito.

1 it('should navigate to admin route when user is admin', () => {
2 mockLoginService.login.and.returnValue(of({status: 200, body: token}));
3 mockLoginService.getUserSession.and.returnValue(of({status: 200, body: adminSession}));
4 mockLoginService.isAdmin.and.returnValue(true);
5

6 loginComponent.onSubmit()
7

8 expect(mockLoginService.login).toHaveBeenCalledTimes(1)
9 expect(mockLoginService.setToken).toHaveBeenCalledWith(token.token)

10 expect(mockLoginService.getUserSession).toHaveBeenCalledTimes(1)
11 expect(mockLoginService.setSession).toHaveBeenCalledWith(adminSession)
12 expect(mockRouter.navigate).toHaveBeenCalledWith(['admin'])
13 expect(mockToastService.success).toHaveBeenCalledTimes(1)
14 expect(mockToastService.success).toHaveBeenCalledWith('loginSuccess')
15 });

Figura 6.7: Prueba perteneciente a la suite del componente LoginComponent

6.3.2. Cobertura de las pruebas

Angular permite medir la cobertura de las pruebas automatizadas, es decir, qué porcentaje
del código ha sido ejecutado al realizar los tests.

Para ejecutar las pruebas se utiliza Karma, que ejecuta las pruebas en un navegador y
proporciona un resumen de los resultados, incluyendo el número total de pruebas superadas
y fallidas. En la Figura 6.8, se muestra el resumen generado para este proyecto, donde se
indica que se han ejecutado correctamente 212 pruebas y no ha habido ningún fallo.

La cobertura se obtiene ejecutando el comando ng test --code-coverage. Tras la eje-
cución, se genera la carpeta coverage en la raíz del proyecto, donde se encuentra el informe
generado. En la Figura 6.9, se puede observar que la cobertura es prácticamente del 100%.
El único componente con una línea sin cubrir es ElementCardComponent, debido al uso de

82

CAPÍTULO 6. IMPLEMENTACIÓN Y PRUEBAS

Figura 6.8: Karma mostrando los resultados de las pruebas ejecutadas

window.location.reload(), que provoca una recarga completa del componente y rompe el flujo
de ejecución de la prueba.

83

6.3. PRUEBAS

Figura 6.9: Cobertura del código

84

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

Capítulo 7

Seguimiento del proyecto

7.1. Introducción

En esta sección se detalla el seguimiento del proyecto, debido a que se ha adoptado el
marco de trabajo ágil Scrum, la unidad básica de seguimiento son los sprints. Cada sprint
está dividido en tres apartados, en el sprint planning se describen las tareas planificadas
para ese sprint y su tiempo estimado, en el sprint review se señalan las valoraciones y
correcciones a realizar respecto al trabajo realizado, y en el sprint retrospective se indi-
can los riesgos materializados durante el desarrollo del sprint y las acciones tomadas para
corregirlos, también se indican las posibles mejoras a realizar en el próximo sprint.

Todos los sprints están acompañados de una tabla en que se detallan las tareas realizadas
en el sprint. En cada tarea se especifica la épica e historia de usuario a la que está asociada, si
es que lo está, el tiempo estimado y el tiempo real empleado, una descripción de la tarea y, por
último, el estado en el que se encuentra, el cual puede variar entre “No iniciada”, “Iniciada”,
“Incompleta”, “Completada”. La diferencia entre los estados “Iniciada” e “Incompleta” será
la cantidad de trabajo restante para terminar la tarea, significando “Incompleta” que queda
poco para completarla. La última fila de la tabla indica el tiempo trabajado en ese sprint.
En la Tabla 7.1 se puede ver un ejemplo de sprint backlog con dos tareas ficticias.

EP HU T. estimado T. empleado Tareas Estado
- - 1 hora 2 h 3 min Descripción de la tarea 1 Completada

EP00 HU00 5 horas 3 h 50 min Descripción de la tarea 2 Iniciada
Trabajo total 5 h 53 min

Tabla 7.1: Ejemplo de Sprint backlog

85

7.2. SEGUIMIENTO POR SPRINTS

EP HU T. estimado T. empleado Tareas Estado

- - 1 hora 2h 30 min Qué es un diccionario de
datos y ejemplos Completada

- - 30 min 15 min Angular vs React Completada

- - 1 hora 2 h 13 min Bases de datos no relacio-
nales Completada

- - 30 min 18 min Gherkin Completada
- - 4 horas 2 h Latex Completada

- - 2 horas 4 h 27 min Lectura de otros TFGs pa-
ra ver su estructura Completada

- - 5 horas 6 h 41 min Redactar capítulos 1 y 2
del informe Iniciada

Trabajo total 18 h 24 min

Tabla 7.2: Sprint 0

7.2. Seguimiento por sprints

7.2.1. Sprint 0 (15/02/2024 - 14/03/2024)

Durante este periodo se llevarán a cabo las tareas de investigación necesarias para realizar
el proyecto y se elegirán las tecnologías a utilizar. Una vez realizada la investigación se
empezará a redactar los capítulos 1 y 2 correspondientes a la introducción y planificación,
en este último se establecerán unas fechas orientativas para los próximos sprints.

Las tareas a realizar en el sprint 0 se encuentran en la Tabla 7.2.

7.2.2. Sprint 1 (14/03/2024 - 04/04/2024)

Sprint planning

En este primer sprint, se trabajarán las historias de usuario HU01 y HU07. Además, se
deberá dedicar un tiempo a trabajar las secciones del informe que quedaron pendientes del
sprint 0.

Al ser las primeras historias de usuario en las que se trabaja, se estima que tomarán más
tiempo de lo normal. A ambas historias se les ha asignado 3 puntos de usuario, mientras que
a la tarea de completar el informe se le ha asignado 2 puntos.

En la Tabla 7.3 se puede observar el Sprint backlog de este periodo.

86

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 10 horas 25 h 21 min

Completar secciones de in-
troducción, requisitos y
planificación de la memo-
ria del TFG

Incompleta

EP01 HU01 15 horas 30 min

Prototipado Completada
Análisis Iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP02 HU07 15 horas 1 h 23 min

Prototipado Completada
Análisis Iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

Trabajo total 27 h 14 min

Tabla 7.3: Sprint backlog - Sprint 1

Sprint review

No se han realizado la mayoría de las tareas planificadas para este sprint. Aún así, se
deberán realizar algunos cambios en las realizadas.

En cuanto al prototipo, se debería elegir un nombre para la aplicación y realizar un
logotipo.

Será necesario realizar un par de cambios en el modelo del dominio. El datatype nombrado
Fecha se cambiará por Momento para reflejar que se quiere recoger tanto de la fecha como
de la hora. La clase Rol se sustituirá por una clase asociación, para representar la relación
entre un Usuario y un Diccionario.

Sprint retrospective

La tarea de completar la introducción y planificación de la memoria ha llevado mucho más
tiempo del estimado, sumado a eso la parte de planificación sigue incompleta. Será necesario
trabajar la soltura a la hora de redactar el informe para poder dedicarle más tiempo a otras
tareas.

Se mantendrán las historias de usuario para el próximo sprint, además se deberá con-
cluir la sección de planificación. También se empezará a redactar la sección de tecnologías
utilizadas.

87

7.2. SEGUIMIENTO POR SPRINTS

7.2.3. Sprint 2 (04/04/2024 - 18/04/2024)

Sprint planning

Se continuará con las historias de usuario iniciadas en el sprint 1. Se deberá completar el
apartado de presupuesto de la sección de planificación y comenzar a redactar las tecnologías
utilizadas para el desarrollo del proyecto.

En la Tabla 7.4 se puede observar el Sprint backlog de este periodo.

Sprint review

La historia de usuario HU01 se encuentra casi completada, solo falta la realización de
los test. Se debe decidir si se realizarán los test solo de la parte del frontend o también los
correspondientes al servidor, además de las tecnologías a utilizar para ello, se ha propuesto
utilizar Jasmine. Se ha ajustado la tarea relacionada con la redacción de la sección tecnologías
ya que se había puesto que se completaría, pero al tratarse de una tarea que se irá ajustando
a lo largo del tiempo solo se iba a iniciar. Se han añadido algunas tareas que en un principio
no estaban contempladas, investigación del funcionamiento de Angular, Spring y Angular
Material.

Sprint retrospective

Será necesario investigar acerca del framework de pruebas Jasmine. También se investigará
acerca del framework Spring Security para controlar el acceso de los usuarios. Para realizar
la EP10 será necesario ir investigando cómo implementar el cambio de idioma, ya que si se
deja para más adelante es posible que la tarea de traducción se haga más pesada.

88

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 5 horas 3 h 13 min

Completar secciones de in-
troducción, requisitos y
planificación de la memo-
ria del TFG

Completada

- - 5 horas 8 min

Comenzar a redactar la
sección de tecnologías uti-
lizadas de la memoria del
TFG

Iniciada

EP01 HU01 15 horas 18 min

Análisis Completada
Diseño Completada
Desarrollo No iniciada
Pruebas No iniciada

EP02 HU07 15 horas 22 h 13 min

Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas No iniciada

- - - 5 h 27 min
Investigación sobre funcio-
namiento y arquitectura
de Spring y Angular

Completada

- - - 2 h 43 min

Investigación sobre funcio-
namiento de la biblioteca
Angular Material y aplica-
ción práctica

Completada

- - - 2 h

Configuración del tema
predeterminado de la apli-
cación con Angular Mate-
rial

Completada

Trabajo total 36 h 2 min

Tabla 7.4: Sprint backlog - Sprint 2

89

7.2. SEGUIMIENTO POR SPRINTS

7.2.4. Sprint 3 (18/04/2024 - 02/05/2024)

Sprint planning

Para el sprint 3 se continuará rellenando la sección de tecnologías utilizadas, se realizará el
desarrollo de HU01 y se investigará sobre el framework Jasmine para realizar las pruebas de
las historias HU01 y HU07. También se investigará sobre cómo utilizar el framework Spring
Security para controlar el acceso a ciertos recursos. Por último, también se invesitagará cómo
implementar el cambio de idioma en un aplicación angular para poder realizar la EP10. En
la Tabla 7.5 se puede observar el Sprint backlog de este periodo.

Sprint review

En cuanto al modelo conceptual se habían añadido algunas clases relacionadas con la
parte del modelado de diccionarios, en un principio se había planteado que solo habría una
base de datos por diccionario. Sin embargo, se ha propuesta la opción de que cada diccionario
pueda pertenecer a un proyecto con varias bases de datos, las cuales pueden ser de diferentes
tipos. Por lo tanto, será necesario adaptar el modelo conceptual a estas nuevas condiciones.
También se ha planteado el modelado de las operaciones.

Sprint retrospective

Durante la segunda semana del sprint se materializó el riesgo R05 recogido en la Ta-
bla 2.15. Esto provocó que no se pudiera trabajar en el proyecto tanto como se esperaba y
muchas tareas ni siquiera se iniciaron. Como acción correctiva, se pasarán todas las tareas
sin finalizar al siguiente sprint.

90

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 5 horas -
Continuar con la sección
de tecnologías utilizadas
de la memoria del TFG

Iniciada

- - 3 horas 2 h 9 min Investigar sobre cambio de
idiomas en Angular Completada

- - 3 horas 4h 8 min
Investigación sobre funcio-
namiento del framework
Spring Security

Iniciada

- - 3 horas -
Investigación sobre funcio-
namiento del framework
Jasmine

No iniciada

EP01 HU01 10 horas 22 h 28 min Desarrollo Completada
Pruebas No iniciada

EP02 HU07 1 hora - Pruebas No iniciada

EP03 HU10 15 horas 3 h 14 min

Prototipado Iniciada
Análisis Iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP10 - - 40 min Traducción de la página
de creación de usuarios Completada

Trabajo total 32 h 39 min

Tabla 7.5: Sprint backlog - Sprint 3

91

7.2. SEGUIMIENTO POR SPRINTS

7.2.5. Sprint 4 (02/05/2024 - 17/05/2024)

Sprint planning

En este sprint se continuará con las tareas que no se pudieron finalizar en el sprint anterior
debido al riesgo manifestado. Si diera tiempo se añadirán algunas tareas más. En la Tabla 7.6
se recogen las tareas realizadas durante el sprint 4.

Sprint review

En el listado de bases de datos de un proyecto se añadirá un campo para indicar el tipo
de BD, relacional o no, y otro para el sistema gestor de base de datos específico. Se ha
establecido que el único usuario capaz de asignar roles a los usuarios en un proyecto será un
administrador. Por defecto, cuando un usuario crea un proyecto tendrá el rol de arquitecto,
sin embargo, esto podría ser cambiado por un administrador. Cuando se deshabilite la cuenta
de un usuario se eliminarán todas los roles de sus proyectos.

Sprint retrospective

Antes de implementar Spring Security, el usuario tenía un email y un username, generado
a partir del email, con el que iniciaba sesión, ya se había comentado que utilizar el email
para iniciar sesión podía ser una opción más amigable para el usuario, sin embargo, como
Sprint Security utiliza una configuración predeterminada en la que usa los atributos username
y password para autenticar al usuario, se decidió directamente que el atributo email se
convirtiese en el username.

En la Tabla 2.16 se puede ver el riesgo R06, el cual se ha materializado en este sprint,
ya que debido al desconocimiento de Spring Security y Jasmine ha sido necesario invertir
mucho tiempo en aprender estas tecnologías y no se pudieron completar todas las tareas
contempladas para este sprint a pesar de haber dedicado más tiempo de trabajo total. Se
continuará con el desarrollo de HU10 en el próximo sprint.

92

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 5 horas -
Continuar con la sección
de tecnologías utilizadas
de la memoria del TFG

Iniciada

- - 5 horas 19 h 6 min

Continuar con la investi-
gación sobre Spring Secu-
rity y realizar su imple-
mentación

Completada

- - 5 horas 11 h
Investigación sobre funcio-
namiento del framework
Jasmine

Completada

EP01 HU01 1 hora 5 h 6 min Pruebas Completada
EP02 HU07 1 hora 1 h 36 min Pruebas Completada

EP03 HU10 10 horas 6 h 38 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Iniciada
Pruebas No iniciada

- - 2 horas 2 h 18 min

Redactar en el informe el
seguimiento del sprint an-
terior y el actual, comple-
tar introducción del capí-
tulo Seguimiento del pro-
yecto

Completada

EP02 HU09 5 horas 1 h 38 min
Diseño Completada
Desarrollo Completada
Pruebas Completada

Trabajo total 47 h 22 min

Tabla 7.6: Sprint backlog - Sprint 4

93

7.2. SEGUIMIENTO POR SPRINTS

7.2.6. Sprint 5 (14/06/2024 - 28/06/2024)

Sprint planning

Para facilitar el seguimiento de historias de usuario y épicas y saber cuales están fina-
lizadas, se ha sugerido utilizar la herramienta de planificación de GitLab, la cual utiliza
issues y varios tableros en los que se repartirán dichos issues, de esta forma se identificará
rápidamente el estado actual de cada tarea. Cada issue representará una épica o historia de
usuario.

En este sprint se dará un poco más de importancia a la tarea de redacción del informe,
específicamente a los apartados de tecnologías utilizadas y diseño. Aunque también se con-
tinuará implementando la HU10 iniciada en el sprint anterior y se intentará desarrollar por
completo la HU11. En la Tabla 7.7 se resumen las tareas a realizar en este sprint.

Sprint review

En este sprint también se ha materializado el riesgo R05 detallado en la Tabla 2.15, debido
a que se han tenido que realizar exámenes en la convocatorio extraordinaria. Por lo tanto no
se ha podido realizar todo el trabajo planificado. Se pasarán todas las tareas sin finalizar al
siguiente sprint.

Sprint retrospective

Ha sido necesario añadir las historias de usuario HU17 y HU18, ya que son necesarias
para ver los diccionarios recién creados y para seleccionar un diccionario en específico.

Se ha visto necesario empezar a redactar algunas reglas de negocio necesarias para definir
el funcionamiento del sistema.

94

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 15 horas 3h 46 min
Continuar con la sección
de tecnologías utilizadas
de la memoria del TFG

Iniciada

- - 5 horas 2 h 40 min

Conocer la herramienta de
planificación de GitLab y
ordenar las historias de
usuario

Completada

- - 5 horas -

Comenzar a redactar en el
capítulo de diseño la sec-
ción sobre la arquitectura
del proyecto.

No iniciada

EP03 HU10 5 horas 3 h 39 min Desarrollo Completada
Pruebas Completada

EP03 HU11 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP05 HU17 5 horas 4 h 16 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP05 HU18 5 horas 2 h 29 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas No iniciada

Trabajo total 16 h 50 min

Tabla 7.7: Sprint backlog - Sprint 5

95

7.2. SEGUIMIENTO POR SPRINTS

7.2.7. Sprint 6 (28/06/2024 - 11/07/2024)

Sprint planning

Se continuará con las tareas del sprint anterior y además se definirán las reglas de negocio
coherentes con el funcionamiento de la aplicación. En la Tabla 7.8 se puede ver las tareas
planificadas para este sprint.

Sprint review

Durante el transcurso del sprint se materializó el riesgo R01 el cual se menciona en la
Tabla 2.11. Este sprint es el que ha tenido la menor dedicación de tiempo de trabajo hasta
ahora, lo cual afectará seguramente a los próximos sprints. Se ha planteado la posibilidad de
realizar una replanificación, la cual se haría en el próximo sprint.

Sprint retrospective

Para facilitar la definición de las reglas de negocio también se realizarán diagramas de
estados que ayuden a describir el funcionamiento de la aplicación.

96

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

- - 5 horas -
Continuar con la sección
de tecnologías utilizadas
de la memoria del TFG

Iniciada

- - 10 horas -

Comenzar a redactar en el
capítulo de diseño la sec-
ción sobre la arquitectura
del proyecto.

No iniciada

- - 4 horas 1 h 34 min Comenzar a realizar dia-
gramas de estados. Iniciada

- - 10 horas 5 h 12 min Comenzar a definir reglas
de negocio Iniciada

EP03 HU11 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP05 HU18 1 hora 46 min Pruebas Completada
Trabajo total 7 h 32 min

Tabla 7.8: Sprint backlog - Sprint 6

7.2.8. Sprint 7 (11/07/2024 - 25/07/2024)

Sprint planning

Se continuará dando importancia a las tareas relacionadas con la redacción del informe,
sobre todo a las relacionadas con la delimitación del funcionamiento, aunque también habrá
que continuar con el desarrollo de la funcionalidad realizando las historias de usuario HU11
y HU18. El sprint backlog con las tareas a realizar se encuentra en la Tabla 7.9.

Sprint review

De nuevo ha habido poca dedicación en este sprint, en parte debido al riesgo R05, desa-
rrollado en la Tabla 2.15. La estudiante está trabajando a jornada completa en sus prácticas
de empresa, lo que ha reducido el tiempo disponible para avanzar en el proyecto.

Sprint retrospective

Debido a la escasa dedicación en los últimos sprints, se ha acumulado una cantidad
significativa de tareas pendientes. Es probable que no sea posible realizar el proyecto en
el tiempo inicialmente planificado. Por ello, se realizará una replanificación, estimando el

97

7.2. SEGUIMIENTO POR SPRINTS

EP HU T. estimado T. empleado Tareas Estado

- - 5 horas -
Continuar con la sección
de tecnologías utilizadas
de la memoria del TFG

Iniciada

- - 10 horas 5 h 10 min
Continuar con los diagra-
mas de estados y empezar
con los de flujo

Incompleta

- - 5 horas -

Comenzar a redactar en el
capítulo de diseño la sec-
ción sobre la arquitectura
del proyecto.

No iniciada

EP01 HU02 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP03 HU11 10 horas 8 h 48 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Incompleta
Pruebas No iniciada

Trabajo total 14 h 58 min

Tabla 7.9: Sprint backlog - Sprint 7

porcentaje de trabajo completado hasta ahora y cuánto queda para finalizar. A partir de
esta estimación, se ajustará el número de sprints necesarios para concluir el proyecto.

7.2.9. Sprint 8 (29/08/2024 - 12/09/2024)

Sprint planning

Para retomar el ritmo de trabajo, se ha decidido que este sprint se enfoque únicamente
en el desarrollo de historias de usuario. Específicamente, se han seleccionado las historias
HU02, HU11 y HU12. En la Tabla 7.10 se encuentra el sprint backlog detallado.

Sprint review

Se ha invertido una gran parte del tiempo en refactorización del código y mejora de
algunos test, ya que se detectaron ciertas partes del código con mucho margen de mejora.
Abordar esto en este momento evita un aumento de la deuda técnica que podría haber
generado problemas en el futuro.

98

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

EP03 HU11 10 horas 6 h 14 min Desarrollo Completada
Pruebas Completada

EP03 HU12 15 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP01 HU02 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

- - 5 horas 23 h 8 min Refactoring del código es-
crito en sprints anteriores. Completada

- - 5 horas 16 h 40 min
Reescritura de test y au-
mento de la cobertura
añadiendo nuevos test.

Completada

Trabajo total 46 h 2 min

Tabla 7.10: Sprint backlog - Sprint 8

Sprint retrospective

Será necesario profundizar en el uso de Jasmine para realizar los test, ya que aún hay
comportamientos en el código que no termino de comprender. Con el ritmo de trabajo ya
restablecido, en el próximo sprint se retomará el desarrollo del informe, aunque no es seguro
que en el próximo sprint pueda tener la dedicación planificada debido a un viaje de trabajo
y a la memoria de prácticas externas que también debo completar.

7.2.10. Sprint 9 (12/09/2024 - 26/09/2024)

Sprint planning

Se continuará con las historias de usuario HU12 y HU02 que no se pudieron empezar en
el sprint anterior y también se ha añadido la historia HU04 que está relacionada con la HU02
y es más corta. En cuanto al informe se trabajará en el capítulo de análisis.

En la Tabla 7.11 se encuentra el sprint backlog detallado.

99

7.2. SEGUIMIENTO POR SPRINTS

Sprint review

Como se había anticipado, durante la primera semana de este sprint no pude avanzar en
ninguna de las tareas seleccionadas. Esto se debió a un viaje de trabajo y la necesidad de
finalizar, antes de la fecha límite, la memoria de la asignatura Prácticas externas, por lo que
tuve que dedicar todo el tiempo disponible en esto.

La HU02 ha llevado mucho más tiempo del esperado debido a complejidades durante
el desarrollo del front-end y al mapeo de objetos en el back-end. Haber enfrentado estas
dificultades en este momento servirá para agilizar el desarrollo de las tareas en los próximos
sprints.

Actualmente, las tareas de prototipado y desarrollo del front-end, especialmente la parte
estética, me llevan mucho más tiempo que el desarrollo del back-end, que suele ser un proceso
más automático.

Sprint retrospective

Sería recomendable continuar con el resto de tareas de la EP01 ya que están relacionadas
con las historias HU02 y HU04 y son tareas sencillas de realizar.

Una sugerencia para el próximo sprint sería empezar realizando las tareas de redacción
de la memoria del TFG, dado que suele dejarse para el final, provocando un retraso en su
realización que finalmente impida presentar el TFG cerca de la fecha prevista.

100

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU T. estimado T. empleado Tareas Estado

EP03 HU12 15 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP01 HU02 10 horas 19 h 56 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP01 HU04 5 horas 3 h 33 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

- - 10 horas - Redactar el capítulo de
análisis No iniciada

Trabajo total 23 h 29 min

Tabla 7.11: Sprint backlog - Sprint 9

7.2.11. Sprint 10 (26/09/2024 - 10/10/2024)

Sprint planning

Como se indicó en la retrospectiva del sprint anterior, en este sprint se desarrollarán las
historias de usuario de la épica EP01 para así dar por terminado el desarrollo de la gestión
de usuarios. Sin embargo, se ha detectado que una de las historias, HU03, se podía dividir
en varias ya que implicaba desarrollar 4 funcionalidades distintas. Por ello, han surgido 4
nuevas historias de usuario, específicamente HU30, HU31, HU32, HU33.

La primera tarea a realizar en este sprint será la redacción del capítulo de Análisis de la
memoria del TFG, de esta forma se asegurará haberla completado al final del sprint.

Por lo tanto el sprint backlog quedará como se indica en la Tabla 7.12.

Sprint review

Algunos botones no son lo suficientemente descriptivos con su función, por lo que se ha
recomendado añadir tooltips de tal forma que al pasar el ratón por encima se muestre una
pequeña pista de lo que hace.

101

7.2. SEGUIMIENTO POR SPRINTS

Sprint retrospective

Se deberá investigar acerca de las responsabilidades en el gobierno de datos para elegir un
nombre adecuado para el rol que desempeñan los usuarios que tienen acceso a los diccionarios
de datos, estos se llamaban usuarios normales o usuarios con rol, pero estos nombres pueden
llevar a malentendidos.

El correo electrónico se utiliza como clave primaria de los usuarios, ya que es un campo
único. Sin embargo, sería más conveniente usar un identificador que sea, por ejemplo, un
número autogenerado. Esto evitaría tener que actualizar el correo electrónico en otras tablas
cuando se modifica en la tabla de usuarios, ya que no se usaría como clave foránea.

Tabla 7.12: Sprint backlog - Sprint 10

EP HU T. estimado T. empleado Tareas Estado

- - 10 horas 6 h 40 min Redactar el capítulo de
análisis Completada

EP01 HU05 5 horas 6 h 47 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP01 HU06 5 horas 4 h 3 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP01 HU30 5 horas 4 h 19 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP01 HU31 5 horas 4 h 6 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP01 HU32 5 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP01 HU33 5 horas 38 min

Prototipado Completada
Análisis Completada
Diseño Completada

Continúa en la siguiente página

102

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

Tabla 7.12 – viene de la página anterior
EP HU T. estimado T. empleado Tareas Estado

Desarrollo Completada
Pruebas Completada

- - 1 horas 15 h 22 min

Reflexión general sobre el
proyecto como la imple-
mentación de las funcio-
nalidades pendientes, su
complejidad y alcance, re-
visión de entidades en el
modelado del dominio.

Completada

- - 1 horas 2 h 53 min

División de HU03 en his-
torias de usuario más
específicas. Actualización
del informe para reflejar
estos cambios e inclusión
de las tareas faltantes en
los issuess de GitLab.

Completada

Trabajo total 44 h 48 min

7.2.12. Sprint 11 (10/10/2024 - 24/10/2024)

Sprint planning

Se empezará por la historia HU32 que quedó pendiente en el sprint anterior y así finalizar
la épica EP01. A continuación se realizarán las historias HU19 y HU12 que están relacionadas
entre sí, ya que se trata de la visualización de las tablas/colecciones de una base de datos y
su creación. Una vez realizada la historia HU12 se dará por completada la épica EP03.

También se trabajará en la memoria del TFG redactando parte de los capítulos sobre
las tecnologías utlizadas y el diseño. Además, se añadirán algunas tareas para realizar las
mejoras contempladas en la revisión y la retrospectiva del sprint anterior. El sprint backlog
se encuentra en la Tabla 7.13.

Sprint review

Para referirse al tipo de usuario que no es administrador se ha elegido el nombre “Metadata
steward”, que se traducirá como “Gestor de metadatos”. Este nombre se ha elegido a partir
de los tipos de administradores en el gobierno de datos [37], siendo “Metadata steward” el
más adecuado debido a la temática de la aplicación.

103

7.2. SEGUIMIENTO POR SPRINTS

Se añadió el campo “id” como identificador para los usuarios, debido a este cambio, el
mapeo de las entidades a objetos de envío de información empezó a dar problemas. Para
este mapeo se utilizaba la biblioteca ModelMapper [32], la cual simplificaba en gran parte la
transformación de objetos de una clase a otra. ModelMapper utiliza los nombres y tipos de
los atributos para determinar automáticamente qué atributos de una clase se corresponden
con los atributos de la otra clase. Sin embargo, esta simplicidad desaparecía cuando había
más de un atributo que podía ser adecuado, por ejemplo, cuando necesitaba transformar dos
entidades en un solo objeto, como es el caso de DictionaryEntity y DictionaryRoleEntity
a DictionaryData. Por estas dificultades se ha decidido eliminar el uso de la biblioteca y
realizar el mapeo de forma manual.

La llamada al toast implicaba la duplicación de código en varias partes de cada compo-
nente. Para mejorar esta parte del código se ha creado un componente que simplifica este
proceso. Para utilizarlo solo es necesario llamar al método correspondiente al tipo de toast
que se necesita, “success”, “info”, “warning” o “error”, añadiendo como parámetro una palabra
clave que identifica el valor deseado de los ficheros de traducción.

Hasta ahora, las entidades de los elementos de un diccionario se habían mapeado de
manera independiente en JPA, pero esto implicaba duplicación de código por esto se ha
investigado la manera de mapear la herencia de los elementos. Se ha observado que existen tres
estrategias [29] dependiendo del número de tablas que se quiera generar, SINGLE_TABLE,
JOINED y TABLE_PER_CLASS. Se ha concluido que la estrategia más adecuada en este
caso es JOINED, lo que implica tener un tabla para la superclase y una por cada subclase,
en la tabla de la superclase se almacenan lo atributos comunes y en las de la subclase los
atributos específicos de cada uno. Las razones de esta elección son varias, es conveniente
distinguir los elementos según su tipo, cada elemento tiene un lista de subelementos. Tener
una sola tabla con todos los elementos facilitará la realización de acciones en elementos
específicos sin necesidad de diferenciar entre tipos.

En cuanto a los nombres de los elementos que se refieren a tablas o colecciones los cuales
se denominan “MainElement” y a sus subelementos columnas o campos, llamados “Interna-
lElement” se ha decidido asignarles nombres más acordes al contexto de las bases de datos,
que sean abstractos y que no se vinculen específicamente a bases de datos relacionales o no
relaciones. Por esto, se ha decidido utilizar los nombres “Entidad” y “Atributo”, estos son
conceptos ampliamente utilizados en el modelado de datos [39] y aunque se suele asociar con
bases de datos relacionales se puede usar de manera abstracta para representar y describir
conceptos. A su vez la clase llamada “Atributo” se pasará a llamar “Metapropiedad” para
evitar la duplicación de nombres, además resulta más descriptivo.

Para evitar una posible confusión del usuario en las páginas con desplazamiento vertical,
donde podría haber más contenido y no darse cuenta, se han añadido unos botones para
facilitar la navegación hacia arriba o hacia abajo [27]. Estos botones solo aparecen cuando
hay más contenido en las respectivas direcciones.

104

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU/HF T. estimado T. empleado Tareas Estado

- - 5 horas - Redactar parte del capítu-
lo de Tecnologías No iniciada

- - 5 horas - Redactar parte del capítu-
lo de Diseño No iniciada

EP01 HU32 5 horas 5 h 14 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP05 HU19 5 horas 12 h 2 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP03 HU12 10 horas 4 h 8 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

- HF01 5 horas 2 h 23 min
Cambiar los nombres de
los roles de los tipos de
usuarios

Completada

- HF02 5 horas 6 h 9 min
Cambiar el campo que ha-
ce de clave primaria para
los usuarios

Completada

- HF03 1 hora 45 min Añadir tooltips a los boto-
nes sin texto Completada

- HF04 2 horas 1 h Crear método para llamar
al toast Completada

- HF05 1 hora 39 min Dejar de usar ModelMap-
per Completada

- HF06 5 horas 4 h 22 min Modelar la herencia de los
elementos con JPA Completada

- HF08 2 horas 3h 23 min Despliegue de la aplica-
ción en la MV Completada

Trabajo total 40 h 5 min

Tabla 7.13: Sprint backlog - Sprint 11

105

7.2. SEGUIMIENTO POR SPRINTS

Sprint retrospective

El próximo sprint es el último planificado, en la próxima reunión será esencial identificar
y priorizar las historias de usuario que aporten al proyecto la funcionalidad esencial y que
sea coherente. Puede que sea necesario planificar un sprint extra.

7.2.13. Sprint 12 (14/11/2024 - 28/11/2024)

Sprint planning

En este sprint, se trabajará exclusivamente en el desarrollo de historias de usuario, prin-
cipalmente serán tareas relacionadas con la edición de los elementos del diccionario. La HU20
permitirá visualizar los atributos de las entidades y sus metapropiedades, mientras que con
la HU13 se podrán añadir nuevos atributos a una entidad. Una vez realizado esto, la HU15
permitirá editar o enviar propuestas de cambio de las metapropiedades de un atributo. Por
último, con el desarrollo de la HU28 los arquitectos podrán revisar cambios propuestos por
editores.

Se ha echado en falta que la sesión de un usuario permanezca activa en varias pestañas
del navegador, permitiendo la consulta de varias páginas de manera simultánea. Para ello, se
ha incluido la tarea HF07, que tratará el cambio en el alcance de la sesión.

Las tareas a desarrollar en este sprint se encuentran en la Tabla 7.14.

Sprint review

Debido al cambio en el alcance de la sesión, la cuenta del usuario permanece activa
incluso cuando el navegador se cierra. Sin embargo, el token JWT tiene un tiempo de validez
limitado, al caducar, las peticiones enviadas al servidor generaban errores, aunque en el lado
del cliente parecía que el usuario seguía autenticado. Para resolver este problema, se ha
añadido una comprobación adicional en el interceptor de autenticación [23]. Con esto, si el
servidor devuelve un error 401 (Unauthorized) debido a la invalidez o caducidad del token, el
sistema redirige automáticamente al usuario a la página de inicio de sesión. Se esperaba que
la realización de esta tarea fuera breve. Sin embargo, debido a este error, el tiempo requerido
fue bastante mayor al previsto.

La HU20 también ha llevado más tiempo del esperado debido a que aún no se había
establecido la manera de almacenar las metapropiedades de los atributos. Gran parte del
tiempo se ha dedicado a explorar las diferentes estructuras de datos y elegir la más adecuada.
Finalmente, se optó por utilizar el tipo Record [33] en el frontend y HashMap en el backend.

Por otra parte, la HU13 solo ha requerido una pequeña parte del tiempo estimado, ya
que se ha simplificado la creación de un atributo para que sea parecida al resto de elementos
del diccionario. En un principio, se había considerado permitir que las metapropiedades se

106

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU/HF T. estimado T. empleado Tareas Estado

EP05 HU20 5 horas 9 h 36 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP04 HU13 10 horas 1 h 23 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP04 HU15 15 horas 19 h

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Incompleta
Pruebas No iniciada

EP04 HU28 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

- HF07 1 hora 5 h 19 min Cambiar el alcance de la
sesión al navegador Completada

Trabajo total 35 h 18 min

Tabla 7.14: Sprint backlog - Sprint 12

añadieran durante la creación del atributo, pero finalmente solo será necesario especificar el
nombre, la descripción y el tipo de dato. Para añadir metapropiedades se deberá editar el
atributo después de su creación.

Durante el desarrollo de la HU15, el tipo de dato elegido para las metapropiedades co-
menzó a ser un problema. Aunque inicialmente se eligieron mapas, esta estructura no era
suficiente para determinar el orden en el que se almacenarían las metapropiedades. De esta
manera se decidió almacenar las metapropiedades en su propia clase, compuesta por tres
campos: posición, metaclave y metavalor. Solo se considera que se ha realizado un cambio
en un atributo cuando al menos uno de los tres campos de alguna de las metapropiedades
es diferente, si no hay ningún cambio, se detecta en el servidor. Por lo tanto, un atributo
puede tener las mismas metapropiedades pero en distinto orden y se consideraría un cambio.
También fue necesario verificar que las posiciones fueran números consecutivos, del 1 al nú-
mero total de metapropiedades, ya que de lo contrario no se mostraban correctamente en el
frontend.

107

7.2. SEGUIMIENTO POR SPRINTS

Sprint retrospective

Aún quedan aspectos relacionados con el tipo de dato utilizado para las metapropiedades
que deben ser considerados, por lo que no se ha podido finalizar la HU15 ni comenzar con la
HU28, revisión de los cambios propuestos, antes será necesario establecer una manera efectiva
de almacenar tanto los datos originales como los nuevos. Además, aún queda pendiente
determinar cómo se bloqueará la edición de un atributo cuando haya propuestas pendientes
de aprobación o rechazo.

Por ahora, se añadirá un sprint adicional para intentar finalizar las historias de usuario
relacionadas con la edición. Asimismo, se decidirá cuáles no se desarrollarán y se dejarán
como líneas de trabajo futuras. Más adelante, una vez finalizada la época de exámenes, se
evaluará cómo proceder.

7.2.14. Sprint 13 (28/11/2024 - 12/12/2024)

Sprint planning

En este sprint, se deberá completar la HU15, iniciada en el sprint anterior, la cual trata
la edición de los atributos. Una vez finalizada, se continuará con la HU28, correspondiente a
la aprobación de las propuestas de cambio, y la HU14, enfocada en la edición de nombres y
descripciones de los elementos.

También se deberá redactar parte del capítulo de Diseño, ya que la parte de redacción de
la memoria del TFG se está quedando atrasada respecto a la parte de desarrollo.

En la Tabla 7.15 se resumen las tareas planificadas para este sprint.

Sprint review

Han seguido surgiendo problemas con respecto al desarrollo de la HU15. Por una parte,
la forma de almacenar las propuestas no era del todo óptima. El tipo de dato de un atributo
estaba separado de las propuestas de cambio, cuando en realidad debería formar parte de
ellas. Por lo tanto, en la parte del servidor, ya no es la clase Atributo quien contiene el tipo
de dato y la metapropiedad. En su lugar, se ha creado una nueva clase llamada Contenido,
que agrupa ambos. Cada propuesta tiene un contenido con los datos originales y otro con los
datos modificados, además de otros campos como el estado de la propuesta. Se considera que
el contenido modificado de la última propuesta de un atributo, cuyo estado es “aceptado”, es
el contenido real del atributo.

Por otro lado, en cuanto al bloqueo de la edición del atributo cuando está siendo edi-
tado, inicialmente se planeaba usar un token que indicara si el atributo era editable o no.
Sin embargo, este enfoque podría generar problemas si, por ejemplo, el usuario cierra el
navegador sin cancelar la acción, ya que bloquearía el atributo indefinidamente. Aunque se

108

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU/HF T. estimado T. empleado Tareas Estado

- - 10 horas 8 h 33 min Redactar parte del capítu-
lo de Diseño Iniciada

EP04 HU15 15 horas 26 h 19 min Desarrollo Completada
Pruebas Completada

EP04 HU28 10 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

EP04 HU14 5 horas -

Prototipado No iniciada
Análisis No iniciada
Diseño No iniciada
Desarrollo No iniciada
Pruebas No iniciada

Trabajo total 34 h 52 min

Tabla 7.15: Sprint backlog - Sprint 13

podría haber implementado un temporizador, esto habría alargado el tiempo de desarrollo
de la HU15. Finalmente, se ha optado por bloquear la edición cuando exista una propuesta
pendiente. Sin embargo, este enfoque trae consigo unos casos especiales a tener en cuenta.
Por ejemplo, cuando dos usuarios acceden a la edición de un atributo, ambos realizarán sus
cambios, pero solo se guardará la propuesta del primero que la envíe, mientras que la del se-
gundo será descartada. Otro caso ocurre cuando un arquitecto y un editor editan el atributo
simultáneamente. Dado que los cambios del arquitecto no requieren aprobación, el atributo
no se bloqueará, y el editor podrá enviar su propuesta. Sin embargo, los datos originales de
la propuesta del editor corresponderán al atributo antes de que el arquitecto realizara sus
cambios.

Finalmente, se ha logrado completar la HU15. Esta ha sido, con diferencia, la historia de
usuario que más tiempo de desarrollo ha requerido. Esto podría deberse, en primer lugar, a
una división inadecuada de la historia de usuario, que abarcaba demasiadas funcionalidades y
presentaba una complejidad excesiva. Por otro lado, la selección de los tipos de datos resultó
problemática. Aunque se intentó seleccionar la opción más apropiada desde el principio, a
medida que se avanzaba en el desarrollo, surgieron ciertas limitaciones que han provocado
varias refactorizaciones del código.

Sprint retrospective

Será necesario al menos un sprint más para dar por cerrada la épica de edición de ele-
mentos de un diccionario, siendo esto la parte más importante de lo que queda de desarrollo
de la aplicación, pero esto se detallará mejor en el próximo sprint.

También se deberá dar un mayor peso a la redacción de la memoria, ya que a pesar de
haber dedicado algo de tiempo en este sprint aun queda mucho por redactar.

109

7.2. SEGUIMIENTO POR SPRINTS

7.2.15. Sprint 14 (03/02/2025 - 17/02/2025)

Sprint planning

En este sprint se dará prioridad a la finalización de las historias de usuario que abarcan la
funcionalidad básica del sistema. La HU14 contempla la edición de nombres y descripciones
de los elementos por parte de un arquitecto y la HU16 el borrado de estos elementos y
todos los subelementos que contiene. La HU28 por otra parte consiste en implementar las
revisiones de las propuestas de cambios realizadas por editores y que deben ser validadas
por los arquitectos del mismo diccionario. Una vez realizadas estas historias, se dará por
completada la tarea de desarrollo. Una vez finalizadas las historias de usuario se dedicará el
resto el tiempo a redactar la memoria, priorizando la finalización de los capítulos 2 y 5, sobre
requisitos y diseño, respectivamente.

En la Tabla 7.16 se resumen las tareas planificadas para este sprint.

Sprint review

Para asegurar que la edición de nombres y descripciones de los elementos de la HU14
solo fuera accesible para usuarios con rol de arquitecto, ha sido necesario implementar un
control de roles. Esta comprobación aún no estaba implementada en el frontend, por lo que
la edición era visible para cualquier usuario.

La HU16 era bastante sencilla en cuanto a implementación, ya que solo era necesario
habilitar el borrado en cascada en la base de datos para los subelementos del elemento a
borrar. Sin embargo, surgió un inconveniente debido a que cada elemento atributo guardaba
una referencia a la última propuesta de cambio, y a su vez, todas las propuestas de cambio
tenían una referencia al atributo al que pertenecen. Esto generaba una dependencia circular
de claves foráneas. La solución más viable consistió en eliminar la referencia a la última pro-
puesta. De esta manera, cada vez que se necesita recuperar la última propuesta, se consulta la
fecha de la propuesta más reciente, a pesar de que este campo se había creado explícitamente
para evitar consultas adicionales.

La HU28 resultó ser mucho más compleja de lo que se había estimado. Por una parte,
requería el diseño de dos páginas distintas, una para ver todas las propuestas y otra para
ver la propuesta seleccionada. Por otra parte, no todas las propuestas son iguales, dependen
tanto del rol del usuario como del estado en que se encuentran. Por lo tanto, ambas páginas
varían mostrando contenido y opciones diferentes.

Dentro de HU28, también ha sido necesario crear un nuevo servicio para traducir las
etiquetas de los paginadores [43], ya que hasta ese momento no se estaban traduciendo. Este
servicio ahora se aplica automáticamente a todos los paginadores utilizados en el proyecto.

No se ha podido dedicar tiempo a la redacción de la memoria del TFG debido a que
la implementación de las historias de usuario ha requerido más tiempo del previsto y era
prioridad terminarlas.

110

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

EP HU/HF T. estimado T. empleado Tareas Estado
- - 20 horas - Redactar informe No iniciada

EP04 HU14 5 horas 7 h 56 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP04 HU16 5 horas 8 h 14 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

EP04 HU28 10 horas 32 h 59 min

Prototipado Completada
Análisis Completada
Diseño Completada
Desarrollo Completada
Pruebas Completada

Trabajo total 49 h 9 min

Tabla 7.16: Sprint backlog - Sprint 14

Sprint retrospective

Este ha sido el último sprint, por lo que no se iniciarán nuevos sprints para finalizar la
redacción de la memoria. No obstante, se deberá dedicar un tiempo adicional para completar
y revisar la memoria del TFG.

7.3. Resumen de la ejecución del proyecto

7.3.1. Funcionalidad implementada

Se puede iniciar sesión en el sistema utilizando un correo electrónico y una contraseña.
Una vez iniciada la sesión, la página de inicio varía según el tipo de usuario autenticado.

Los administradores tienen la capacidad de crear nuevos usuarios, para lo cual deben
indicar el nombre, los apellidos y el correo electrónico, que debe ser único y no repetirse
para ningún otro usuario del sistema. Además, deben elegir uno de los dos tipos de usuario,
administrador o gestor de metadatos.

También pueden gestionar los usuarios del sistema a través de una lista que se puede
filtrar por el contenido de los campos como el nombre o la fecha del último acceso. Para
cada usuario, los administradores pueden editar la información asociada, generar una nueva
contraseña, la cual debe ser comunicada al usuario de manera externa al sistema en casos
como cuando un usuario accede por primera vez o ha olvidado su contraseña, y activar o

111

7.3. RESUMEN DE LA EJECUCIÓN DEL PROYECTO

desactivar cuentas. La desactivación de una cuenta no conlleva pérdida de datos, sino que
simplemente impide que el usuario inicie sesión.

Además, los administradores tienen la capacidad de gestionar el acceso de los gestores
de metadatos a diccionarios específicos. Pueden otorgar o revocar el acceso a un diccionario
de datos y modificar el rol del usuario dentro de ese diccionario. Para conceder acceso, el
administrador puede ver una lista de diccionarios a los que el usuario seleccionado no tiene
acceso y realizar búsquedas basadas en diferentes criterios.

En cuanto a la funcionalidad de los gestores de metadatos, estos pueden crear tantos dic-
cionarios de datos como deseen. Al crear un diccionario, automáticamente se les asigna el rol
de arquitecto en ese diccionario, aunque este rol puede ser modificado por un administrador.
Además, solo el administrador puede añadir nuevos usuarios al diccionario.

Para crear un diccionario de datos, el gestor solo necesita proporcionar un nombre y
una descripción. De manera similar, los demás elementos que conforman el diccionario, como
bases de datos, entidades y atributos, se crean especificando un nombre y una descripción. La
creación de estos elementos está restringida exclusivamente a los arquitectos del diccionario.
En el caso de las bases de datos, también es necesario seleccionar el sistema gestor de base
de datos. Para los atributos opcionalmente se indica el tipo de dato.

Por otro lado, cualquier usuario con acceso a un diccionario puede visualizar toda la
información contenida en él. La edición del nombre y la descripción de los elementos del
diccionario también es exclusiva para arquitectos y son cambios que se asientan siempre de
manera inmediata.

Tanto arquitectos como editores pueden modificar los atributos existentes, específicamente
el tipo de dato y las metapropiedades. Se pueden añadir tantas metapropiedades como se
desee y el orden de estas importa. Cuando un editor guarda los cambios estos no se ven
reflejados inmediatamente sino que se crea una propuesta cuyo estado es pendiente. Mientras
exista una propuesta con este estado la edición del atributo se bloquea. Por otro lado, cuando
los cambios son realizados por un arquitecto, estos se aplican de forma inmediata al atributo
y no se bloquea su edición.

Los gestores de metadatos pueden visualizar tres tipos de propuestas. Las propuestas
pendientes de revisión son aquellas realizadas por editores de un diccionario en el que el
usuario tiene el rol de arquitecto y cuyo estado es “pendiente”. El historial de propuestas
contiene aquellas en las que el usuario actúa como revisor, y las propuestas tienen los estados
“aprobado” o “rechazado”. Por último, las propuestas del usuario son aquellas en las que el
usuario es el autor, y estas pueden estar en cualquiera de los estados posibles.

Al acceder a una propuesta, siempre se podrá visualizar tanto el contenido original como
el modificado, junto con la información asociada, como la hora de creación, el autor y, en
caso de haber sido revisada, el revisor. Si el usuario es revisor, podrá aceptar o rechazar la
propuesta, y en caso de rechazo, deberá indicar el motivo. El autor de la propuesta podrá
consultar dicho motivo si su propuesta es rechazada.

Los usuarios pueden elegir entre dos idiomas disponibles, inglés o español. Además, esta
funcionalidad se ha diseñado de tal manera, que es posible añadir fácilmente más idiomas.

112

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

El cierre de sesión puede realizarse manualmente seleccionando la opción en el icono de
perfil, aunque también se cierra automáticamente después de un tiempo.

7.3.2. Dedicación

Se han completado un total de 23 historias de usuario de las 33 inicialmente planteadas.
En la Tabla 7.17 se muestran las historias desarrolladas, junto con su tiempo estimado y el
tiempo real dedicado a cada una. La suma de las horas estimadas para estas historias era de
175 horas. Sin embargo, el tiempo real invertido ha sido de 261 horas y 29 minutos, lo que
supone una desviación de 86 horas. Esta diferencia representa un incremento significativo
respecto a lo previsto.

Las historias de usuario que más tiempo de desarrollo requirieron fueron:

“HU01 – Como administrador, quiero crear nuevos usuarios para poblar el sistema.”
con 28 horas y 22 minutos.

“HU07 – Como usuario, quiero ingresar mi nombre de usuario y contraseña para iniciar
sesión y acceder a una pantalla distinta dependiendo mi tipo de usuario.” con 25 horas
y 12 minutos.

“HU15 – Como arquitecto o editor, quiero modificar el contenido de las columnas/-
campos de una tabla/colección para dar información más precisa.” con 45 horas y 19
minutos.

“HU28 – Como arquitecto, quiero ver los cambios realizados por un editor antes de
aplicarlos a los elementos para aceptarlos o rechazarlos. Si los rechazo, quiero indicar
el motivo para informar al editor.” con 32 horas y 59 minutos.

El alto tiempo de desarrollo de las historias HU01 y HU07 se debió a que fueron las
primeras en implementarse. En ese momento no se contaba con experiencia previa ni con
la configuración inicial del sistema. En el caso de las historias HU15 y HU28, el motivo fue
principalmente la complejidad de las funcionalidades.

El tiempo total de trabajo realizado a lo largo de los 14 sprints ha sido de 474 horas
y 44 minutos, superando ampliamente las 320 horas que se habían planteado inicialmente.

Este aumento de dedicación también implica un incremento en el coste simulado del
proyecto. Volviendo a realizar los cálculos con 475 horas de trabajo y 12 meses de desarrollo,
el coste estimado ascendería a 8.279,8 e , una cifra considerablemente superior a los 6.178,3
e del presupuesto simulado original. El desglose de este nuevo cálculo se muestra en la
Tabla 7.18. Por otra parte, el coste real es, tal y como se estimó, de 0 e.

113

7.3. RESUMEN DE LA EJECUCIÓN DEL PROYECTO

HU Tiempo estimado Tiempo empleado

HU01 15 horas 28 h 22 min

HU02 10 horas 19 h 56 min

HU04 5 horas 3 h 33 min

HU05 5 horas 6 h 47 min

HU06 5 horas 4 h 3 min

HU07 15 horas 25 h 12 min

HU09 5 horas 1 h 38 min

HU10 10 horas 13 h 31 min

HU11 10 horas 15 h 2 min

HU12 10 horas 4 h 8 min

HU13 10 horas 1 h 23 min

HU14 5 horas 7 h 56 min

HU15 15 horas 45 h 19 min

HU16 5 horas 8 h 14 min

HU17 5 horas 4 h 16 min

HU18 5 horas 3 h 15 min

HU19 5 horas 12 h 2 min

HU20 5 horas 9 h 36 min

HU28 10 horas 32 h 59 min

HU30 5 horas 4 h 19 min

HU31 5 horas 4 h 6 min

HU32 5 horas 5 h 14 min

HU33 5 horas 38 min

Total 175 horas 261 h 29 min

Tabla 7.17: Dedicación por historia de usuario

Los principales riesgos que se han materializado durante el desarrollo han sido los siguien-
tes:

R04 – Gold Plating. Esta práctica se ha dado de forma generalizada, aunque de
manera inconsciente, tendiendo a complicar las soluciones para obtener un resultado
más profesional en lugar de optar por enfoques más simples. No obstante, cuando
se proponían mejoras que implicaban un esfuerzo más grande, se mitigaba el riesgo

114

CAPÍTULO 7. SEGUIMIENTO DEL PROYECTO

Recurso Precio

Empleado 6.597,75 e

Ordenador 162,25 e

Licencias de programas 1.508,4 e

Electricidad 11,4 e

Total 8.279,8 e

Tabla 7.18: Coste simulado

posponiéndolas para el final del sprint y solo si quedaba tiempo suficiente.

R05 – Carga de otras asignaturas. Durante la mayor parte del desarrollo se han
cursado simultáneamente otras asignaturas, así como prácticas de empresa y exáme-
nes. Aunque se intentó mitigar este riesgo planificando en función de los períodos de
evaluación, esto no fue suficiente y derivó en numerosos retrasos.

R06 – Desconocimiento de las tecnologías. La necesidad de investigar y aprender
las tecnologías utilizadas supuso una carga de trabajo considerable. A pesar de que
se planificaron tareas específicas para esto, en general, requirieron más tiempo del
estimado.

La materialización de los riesgos descritos previamente provocó la necesidad de introducir
cambios en la planificación en distintos momentos del desarrollo. Inicialmente se habían
previsto 8 sprints y 2 adicionales, pero la dedicación real resultó muy inferior a la estimada.
Esto obligó a una primera replanificación, en la que se añadieron 2 sprints más. Sin embargo,
ni siquiera con esta ampliación fue posible alcanzar un producto mínimo viable. A partir de
ese momento, se optó por ir añadiendo sprints según las necesidades del proyecto, hasta que
se decidió finalizar con el sprint 14. Como resultado, un proyecto que en un principio se había
planificado para desarrollarse en 6 meses acabó extendiéndose a lo largo de casi un año.

115

7.3. RESUMEN DE LA EJECUCIÓN DEL PROYECTO

116

CAPÍTULO 8. CONCLUSIONES

Capítulo 8

Conclusiones

Al comienzo del proyecto, tras definir las historias de usuario, parecía que sería posible
implementar la mayoría sin demasiada dificultad. Sin embargo, con el paso de los sprints,
fue quedando claro que desarrollar un proyecto de software completo desde cero conlleva
más complejidad de la que se pensaba. A lo largo del proceso surgieron muchos retos, tanto
técnicos como de organización, e imprevistos.

El uso del marco de trabajo ágil Scrum ha permitido organizar el desarrollo por iteraciones
y una evolución progresiva del sistema, pero tal vez no ha sido la opción más adecuada
para este proyecto. En varios momentos ha sido necesario replantearse decisiones tomadas
en sprints anteriores, como la estructura de las entidades, ya que algunos requisitos no se
habían tenido en cuenta desde el principio. Esto llevó a reescrituras de código que podrían
haberse evitado con una fase inicial de análisis y diseño más profunda. Esto demuestra que
dedicar más tiempo al diseño antes de comenzar el desarrollo puede ahorrar mucho trabajo
a largo plazo.

En cuanto a los objetivos personales, se han cumplido los relacionados con el aprendi-
zaje y la profundización en las tecnologías utilizadas, especialmente Angular y Spring Boot.
Respecto a los objetivos del proyecto, se ha cumplido el objetivo principal, enfocado en la
creación y gestión de diccionarios de datos, así como en la administración de usuarios y sus
roles.

8.1. Líneas de trabajo futuras

Este proyecto es altamente ampliable y muchas de las funcionalidades implementadas
podrían mejorarse. Además, quedan pendientes algunas que ya estaban planteadas, pero que
no se desarrollaron por falta de tiempo. Las posibles ampliaciones futuras podrían centrarse
en los siguientes aspectos:

117

8.1. LÍNEAS DE TRABAJO FUTURAS

Sistema de mensajería. Al crear un nuevo usuario, se debería enviar un correo
informativo con las instrucciones para iniciar sesión. Este sistema también permitiría
gestionar el restablecimiento de contraseñas.

Mejoras en la visualización de modificaciones para revisiones. Implementar un
código de colores para facilitar la identificación de cambios: verde para metapropiedades
añadidas, rojo para eliminadas y amarillo para modificadas.

Configuración del número de revisores. Cada diccionario de datos debería permitir
establecer cuántos arquitectos deben aprobar una propuesta para que los cambios se
apliquen.

Sugerencias de tipos de datos. En función del SGBD seleccionado durante la crea-
ción de la base de datos, se podrían autocompletar los campos de tipo de datos o
permitir la creación de tipos personalizados reutilizables.

Plantillas de metadatos para los atributos. Por ejemplo, al seleccionar un tipo
de dato String, se podrían añadir por defecto metapropiedades como longitud mínima
y máxima.

Relaciones entre entidades. Ofrecer mecanismos que permitan referenciar otras
entidades del mismo diccionario de datos.

Perfil de usuario. Añadir opciones de personalización, como imágenes de perfil y
otras configuraciones.

118

BIBLIOGRAFÍA

Bibliografía

[1] angular.dev. Components. https://angular.dev/essentials/components. Última
consulta: 2025-04-07.

[2] AppMaster. Arquitectura en capas. https://appmaster.io/es/glossary/arquitect
ura-en-capas. Última consulta: 2025-03-31.

[3] Team Atlan. Data catalog vs. data dictionary: Key differences & benefits. https:
//atlan.com/data-catalog-vs-data-dictionary/. Última consulta: 2024-03-13.

[4] Team Atlan. Data dictionary: Examples, templates, best practices, and how to make
a data dictionary. https://atlan.com/what-is-a-data-dictionary/. Última
consulta: 2024-03-13.

[5] Varios autores. El patrón modelo-vista-modelo de vista. https://learn.microsoft.
com/es-es/previous-versions/xamarin/xamarin-forms/enterprise-application
-patterns/mvvm. Última consulta: 2025-03-31.

[6] Varios autores. ¿qué es git? https://learn.microsoft.com/es-es/devops/develop
/git/what-is-git. Última consulta: 2025-04-05.

[7] axarnet. Qué es angular, cómo funciona y para qué sirve. https://axarnet.es/blog/
angular. Última consulta: 2025-04-01.

[8] Alejandro Acebes Cabrera. Capas, cebollas y colmenas: arquitecturas en el backend.
https://adictosaltrabajo.com/2019/07/02/capas-cebollas-y-colmenas-arqui
tecturas-en-el-backend/. Última consulta: 2025-03-31.

[9] Dharma Consulting. Dominando las Épicas en la gestión de proyectos ágiles: Un enfoque
estructurado para entregar resultados de negocio. https://dharmacon.net/2023/0
7/14/dominando-las-epicas-en-la-gestion-de-proyectos-agiles-un-enfoq
ue-estructurado-para-entregar-resultados-de-negocio/. Última consulta:
2025-04-19.

[10] creative commons. Attribution 4.0 international deed. https://creativecommons.or
g/licenses/by/4.0/. Última consulta: 2025-04-07.

[11] Ali Darvish. Client-server architecture. https://darvishdarab.github.io/cs421_f
20/docs/readings/client_server/. Última consulta: 2025-03-31.

119

https://angular.dev/essentials/components
https://appmaster.io/es/glossary/arquitectura-en-capas
https://appmaster.io/es/glossary/arquitectura-en-capas
https://atlan.com/data-catalog-vs-data-dictionary/
https://atlan.com/data-catalog-vs-data-dictionary/
https://atlan.com/what-is-a-data-dictionary/
https://learn.microsoft.com/es-es/previous-versions/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://learn.microsoft.com/es-es/previous-versions/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://learn.microsoft.com/es-es/previous-versions/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://learn.microsoft.com/es-es/devops/develop/git/what-is-git
https://learn.microsoft.com/es-es/devops/develop/git/what-is-git
https://axarnet.es/blog/angular
https://axarnet.es/blog/angular
https://adictosaltrabajo.com/2019/07/02/capas-cebollas-y-colmenas-arquitecturas-en-el-backend/
https://adictosaltrabajo.com/2019/07/02/capas-cebollas-y-colmenas-arquitecturas-en-el-backend/
https://dharmacon.net/2023/07/14/dominando-las-epicas-en-la-gestion-de-proyectos-agiles-un-enfoque-estructurado-para-entregar-resultados-de-negocio/
https://dharmacon.net/2023/07/14/dominando-las-epicas-en-la-gestion-de-proyectos-agiles-un-enfoque-estructurado-para-entregar-resultados-de-negocio/
https://dharmacon.net/2023/07/14/dominando-las-epicas-en-la-gestion-de-proyectos-agiles-un-enfoque-estructurado-para-entregar-resultados-de-negocio/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://darvishdarab.github.io/cs421_f20/docs/readings/client_server/
https://darvishdarab.github.io/cs421_f20/docs/readings/client_server/

BIBLIOGRAFÍA

[12] Dataedo. Data catalog software. https://dataedo.com/product/data-catalog.
Última consulta: 2024-03-20.

[13] Equipo de Contenidos de GoDaddy. Intellij idea: Ventajas para el desarrollo. https:
//www.godaddy.com/resources/es/crearweb/intellij-idea-que-es. Última
consulta: 2025-04-01.

[14] Equipo de Imagina. ¿qué es el patrón de arquitectura (mvvm)? https://imaginaforma
cion.com/tutoriales/que-es-el-patron-de-arquitectura-mvvm. Última consulta:
2025-03-31.

[15] Digital55. Cómo usar testing en angular con jasmine y karma. https://digital55.co
m/blog/como-usar-testing-angular-jasmine-karma/. Última consulta: 2025-04-03.

[16] Claire Drumond. Qué es scrum y cómo empezar. https://www.atlassian.com/es/a
gile/scrum. Última consulta: 2024-02-26.

[17] Equipo editorial de IONOS. ¿qué es mysql? https://www.ionos.com/es-us/digita
lguide/servidores/know-how/que-es-mysql/. Última consulta: 2025-04-01.

[18] Esteban Canle Fernández. ¿qué es spring boot y para qué sirve? https://www.tokios
chool.com/noticias/spring-boot/. Última consulta: 2025-04-01.

[19] Claudia Benavides Gallegos. Como crear un plan de mitigación o un plan de contingencia
de riesgos. https://es.linkedin.com/pulse/como-crear-un-plan-de-mitigaci%
C3%B3n-o-contingencia-benavides-gallegos. Última consulta: 2025-04-20.

[20] GitLab. Issue boards. https://docs.gitlab.com/user/project/issue_board/.
Última consulta: 2025-04-06.

[21] GitLab. Issues. https://docs.gitlab.com/user/project/issues/. Última consulta:
2025-04-06.

[22] César Pablo Gutiérrez. Práctica 1.b Excel básico en gestión de proyectos. Apuntes de la
asignatura Planificación y Gestión de Proyectos, 2023.

[23] Liron Hazan. Angular — how to intercept 401 err response and redirect to login page.
https://lironhazan.medium.com/angular-6-401-authentication-error-handlin
g-888922def566. Última consulta: 2025-01-08.

[24] Project Management Institute. Guía de los fundamentos para la dirección de proyectos,
(Guía del PMBOK®). Project Management Institute, Inc., 2013. 5ª edición. Capítulo
11.

[25] Jasmine. Your first suite. https://jasmine.github.io/tutorials/your_first_sui
te. Última consulta: 2025-04-14.

[26] Jobted. Sueldo del desarrollador web en españa. https://www.jobted.es/salario/
desarrollador-web. Última consulta: 2024-04-08.

[27] Gaurav Kumar. Make scrolling easier with scroll-to-top and bottom buttons in angular.
https://medium.com/@gauravkrajput/make-scrolling-easier-with-scroll-t
o-top-and-bottom-buttons-in-angular-a8d0c54ccd43. Última consulta: 2024-10-
24.

120

https://dataedo.com/product/data-catalog
https://www.godaddy.com/resources/es/crearweb/intellij-idea-que-es
https://www.godaddy.com/resources/es/crearweb/intellij-idea-que-es
https://imaginaformacion.com/tutoriales/que-es-el-patron-de-arquitectura-mvvm
https://imaginaformacion.com/tutoriales/que-es-el-patron-de-arquitectura-mvvm
https://digital55.com/blog/como-usar-testing-angular-jasmine-karma/
https://digital55.com/blog/como-usar-testing-angular-jasmine-karma/
https://www.atlassian.com/es/agile/scrum
https://www.atlassian.com/es/agile/scrum
https://www.ionos.com/es-us/digitalguide/servidores/know-how/que-es-mysql/
https://www.ionos.com/es-us/digitalguide/servidores/know-how/que-es-mysql/
https://www.tokioschool.com/noticias/spring-boot/
https://www.tokioschool.com/noticias/spring-boot/
https://es.linkedin.com/pulse/como-crear-un-plan-de-mitigaci%C3%B3n-o-contingencia-benavides-gallegos
https://es.linkedin.com/pulse/como-crear-un-plan-de-mitigaci%C3%B3n-o-contingencia-benavides-gallegos
https://docs.gitlab.com/user/project/issue_board/
https://docs.gitlab.com/user/project/issues/
https://lironhazan.medium.com/angular-6-401-authentication-error-handling-888922def566
https://lironhazan.medium.com/angular-6-401-authentication-error-handling-888922def566
https://jasmine.github.io/tutorials/your_first_suite
https://jasmine.github.io/tutorials/your_first_suite
https://www.jobted.es/salario/desarrollador-web
https://www.jobted.es/salario/desarrollador-web
https://medium.com/@gauravkrajput/make-scrolling-easier-with-scroll-to-top-and-bottom-buttons-in-angular-a8d0c54ccd43
https://medium.com/@gauravkrajput/make-scrolling-easier-with-scroll-to-top-and-bottom-buttons-in-angular-a8d0c54ccd43

BIBLIOGRAFÍA

[28] Nicolas Lapointe. Clean architecture: Business rules first! https://dev.to/nlapointe
/clean-architecture-business-rules-first-4dlo. Última consulta: 2025-03-19.

[29] Federico Lloves. Mapeo de herencia con jpa. https://somospnt.com/blog/250-mapeo
-de-herencia-con-jpa. Última consulta: 2024-10-24.

[30] Daniel Medina. Introducción a spring boot: Api rest y spring data jpa. https://dani
elme.com/2018/02/21/tutorial-spring-boot-web-spring-data-jpa/#jpa. Última
consulta: 2025-04-20.

[31] MinnaLearn. ¿qué es la revolución digital? https://courses.minnalearn.com/es/co
urses/digital-revolution/the-digital-revolution/what-is-the-digital-rev
olution/. Última consulta: 2025-04-19.

[32] ModelMapper. Getting started. https://modelmapper.org/getting-started/.
Última consulta: 2024-10-24.

[33] Dany Paredes. How to use record type in typescript. https://danywalls.com/how-t
o-use-record-type-in-typescript. Última consulta: 2025-01-08.

[34] PcComponentes. Portátil lenovo ideapad slim 3 15irh8. https://www.pccomponentes.
com/portatil-lenovo-ideapad-slim-3-15irh8-intel-core-i5-13420h-16gb-1tb
-ssd-156. Última consulta: 2025-03-20.

[35] QAlified. Aprende las diferencias entre pruebas manuales y pruebas automatizadas.
https://qalified.com/es/blog/manual-vs-automatizadas-software-pruebas/.
Última consulta: 2025-04-14.

[36] Redgate. Sql doc. https://www.red-gate.com/products/sql-doc/. Última consulta:
2024-04-01.

[37] Reltio. What is data stewardship? https://www.reltio.com/glossary/data-gover
nance/what-is-data-stewardship/. Última consulta: 2024-10-24.

[38] Scrum.org. What is scrum? https://www.scrum.org/learning-series/what-is-s
crum/. Última consulta: 2024-02-26.

[39] Sigma. What is data modeling? https://www.sigmacomputing.com/resources/lea
rn/what-is-data-modeling. Última consulta: 2024-10-24.

[40] Database Note Taker. Database note taker. https://databasenotetaker.com/.
Última consulta: 2024-03-20.

[41] Testim. Is jasmine bdd or tdd? here’s what you need to know. https://www.testim.i
o/blog/is-jasmine-bdd-or-tdd/. Última consulta: 2025-04-14.

[42] Oposiciones TIC. Arquitectura cliente servidor. https://oposicionestic.blogspot.
com/2011/06/arquitectura-cliente-servidor.html. Última consulta: 2025-03-31.

[43] Varios. How to use matpaginatorintl? https://stackoverflow.com/questions/4686
9616/how-to-use-matpaginatorintl. Última consulta: 2025-03-18.

121

https://dev.to/nlapointe/clean-architecture-business-rules-first-4dlo
https://dev.to/nlapointe/clean-architecture-business-rules-first-4dlo
https://somospnt.com/blog/250-mapeo-de-herencia-con-jpa
https://somospnt.com/blog/250-mapeo-de-herencia-con-jpa
https://danielme.com/2018/02/21/tutorial-spring-boot-web-spring-data-jpa/#jpa
https://danielme.com/2018/02/21/tutorial-spring-boot-web-spring-data-jpa/#jpa
https://courses.minnalearn.com/es/courses/digital-revolution/the-digital-revolution/what-is-the-digital-revolution/
https://courses.minnalearn.com/es/courses/digital-revolution/the-digital-revolution/what-is-the-digital-revolution/
https://courses.minnalearn.com/es/courses/digital-revolution/the-digital-revolution/what-is-the-digital-revolution/
https://modelmapper.org/getting-started/
https://danywalls.com/how-to-use-record-type-in-typescript
https://danywalls.com/how-to-use-record-type-in-typescript
https://www.pccomponentes.com/portatil-lenovo-ideapad-slim-3-15irh8-intel-core-i5-13420h-16gb-1tb-ssd-156
https://www.pccomponentes.com/portatil-lenovo-ideapad-slim-3-15irh8-intel-core-i5-13420h-16gb-1tb-ssd-156
https://www.pccomponentes.com/portatil-lenovo-ideapad-slim-3-15irh8-intel-core-i5-13420h-16gb-1tb-ssd-156
https://qalified.com/es/blog/manual-vs-automatizadas-software-pruebas/
https://www.red-gate.com/products/sql-doc/
https://www.reltio.com/glossary/data-governance/what-is-data-stewardship/
https://www.reltio.com/glossary/data-governance/what-is-data-stewardship/
https://www.scrum.org/learning-series/what-is-scrum/
https://www.scrum.org/learning-series/what-is-scrum/
https://www.sigmacomputing.com/resources/learn/what-is-data-modeling
https://www.sigmacomputing.com/resources/learn/what-is-data-modeling
https://databasenotetaker.com/
https://www.testim.io/blog/is-jasmine-bdd-or-tdd/
https://www.testim.io/blog/is-jasmine-bdd-or-tdd/
https://oposicionestic.blogspot.com/2011/06/arquitectura-cliente-servidor.html
https://oposicionestic.blogspot.com/2011/06/arquitectura-cliente-servidor.html
https://stackoverflow.com/questions/46869616/how-to-use-matpaginatorintl
https://stackoverflow.com/questions/46869616/how-to-use-matpaginatorintl

BIBLIOGRAFÍA

[44] Wikipedia. Economía del conocimiento. https://es.wikipedia.org/wiki/Econom%C
3%ADa_del_conocimiento. Última consulta: 2025-04-19.

[45] Hayk Yaghubyan. How to test the angular project with jasmine and karma. https:
//medium.com/@haykoyaghubyan/how-to-test-the-angular-project-with-jasmi
ne-and-karma-a4241fc8be20. Última consulta: 2025-04-03.

122

https://es.wikipedia.org/wiki/Econom%C3%ADa_del_conocimiento
https://es.wikipedia.org/wiki/Econom%C3%ADa_del_conocimiento
https://medium.com/@haykoyaghubyan/how-to-test-the-angular-project-with-jasmine-and-karma-a4241fc8be20
https://medium.com/@haykoyaghubyan/how-to-test-the-angular-project-with-jasmine-and-karma-a4241fc8be20
https://medium.com/@haykoyaghubyan/how-to-test-the-angular-project-with-jasmine-and-karma-a4241fc8be20

APÉNDICE A. MANUALES

Apéndice A

Manuales

A.1. Manual de despliegue e instalación

El despliegue aquí descrito está pensado para un dispositivo que funcione con Linux.

A.1.1. Prerrequisitos

Se deben tener instalados los siguientes programas:

Git

Java 21

MySQL 8.0.41

Maven 3.6.3

Angular CLI 17.3.5

Node 20.18.2

npm 10.8.2

Nginx 1.18.0

No es obligatorio que se utilicen las mismas versiones, pero sí es recomendable.

123

A.1. MANUAL DE DESPLIEGUE E INSTALACIÓN

A.1.2. Instrucciones

Estos son los pasos a seguir para el despliegue de la aplicación:

1. En MySQL, crear el usuario con los siguientes comandos:

CREATE USER 'ddvault'@'localhost' IDENTIFIED BY 'ddvaultserv';

GRANT ALL PRIVILEGES ON ddvaultdb.* TO 'ddvault'@'localhost';

2. Clonar el repositorio

git clone https://gitlab.inf.uva.es/johrami/tfg-johana-ramirez.git

3. Situarse en el directorio app/Spring

4. Compilar la aplicación (back-end)

mvn clean package

5. Ejecutar el fichero .jar

java -jar /home/usuario/tfg-johana-ramirez/app/Spring/target/DDVault-0.0.1-SNAPSHOT.jar

6. Abrir otra consola o crear un servicio que ejecute la aplicación de fondo.

7. Situarse en el directorio app/Angular

8. Instalar los paquetes necesarios

npm install

9. Compilar la aplicación (front-end)

ng build --configuration production

10. Crear un directorio dentro de /var/www cuyo nombre coincida con el nombre del do-
minio. En este caso será virtual.lab.inf.uva.es.

11. Copiar el contenido de la carpeta dist/ddvault dentro de /var/www/virtual.lab.inf.uva.es.

sudo cp -r /home/usuario/tfg-johana-ramirez/app/Angular/dist/ddvault/*
/var/www/virtual.lab.inf.uva.es/

12. Configurar Nginx creando el fichero /etc/nginx/sites-available/ddvault con el siguiente
contenido:

124

APÉNDICE A. MANUALES

server {
listen 80;
listen [::]:80;

server_name virtual.lab.inf.uva.es;

root /var/www/virtual.lab.inf.uva.es/browser;
index index.html;

location / {
try_files $uri $uri/ /index.html;

}

location /api/ {
proxy_pass http://localhost:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

13. Crear un enlace del fichero recién creado en /etc/nginx/sites-enabled

sudo ln -s /etc/nginx/sites-available/ddvault /etc/nginx/sites-enabled/

14. Reiniciar Nginx

sudo systemctl restart nginx

A.2. Manual de mantenimiento

La aplicación fue desarrollada en un entorno local con sistema operativo Windows, uti-
lizando el entorno de desarrollo IntelliJ IDEA. Para poder ejecutar y mantener el proyecto,
es necesario tener instalados los siguientes programas:

Git

Java 21

Node.js 20.18.2

MySQL 8.0.41

Angular CLI 17.3.5

125

A.2. MANUAL DE MANTENIMIENTO

Una vez instaladas estas herramientas, el resto de dependencias necesarias serán gestio-
nadas automáticamente por el IDE.

Para realizar una copia personal del proyecto en GitLab se utiliza el botón Fork que se
encuentra en la página principal del repositorio, tal y como se muestra en la Figura A.1.

Figura A.1: Localización del botón Fork

Pulsando este botón se abre la página mostrada en la Figura A.2. Aquí se configura el
nombre y otras opciones del repositorio que se va a crear.

Figura A.2: Configuración del nuevo repositorio

Para clonar el repositorio remoto en uno local se utiliza el comando:

126

APÉNDICE A. MANUALES

git clone https://gitlab.inf.uva.es/usuario/tfg-nombre-apellido.git

El proyecto se debe abrir en dos ventanas separadas, una por cada aplicación. Una vez
abierto IntelliJ solo es necesario pulsar en “File > Open...” y buscar las carpetas Angular y
Spring.

Para lanzar las pruebas y a la vez generar el reporte de cobertura, se debe ejecutar, en
la consola de la aplicación Angular, el comando:

ng test --code-coverage

A.3. Manual de usuario

Este manual ofrece una guía de uso de la aplicación, describiendo la funcionalidad de
cada página y la navegación entre ellas. El objetivo es ayudar a un usuario no familiarizado
con la aplicación a entender su funcionamiento.

Inicio de sesión - Figura A.3

Es la primera página a la que se accede, solo pueden estar en ella usuarios sin identifi-
cación. A la derecha de la cabecera se encuentra el botón para cambiar de idioma, si se
pulsa se abre el desplegable de la Figura A.4 y se deberá seleccionar el idioma deseado.
La selección del idioma es accesible desde cualquier página. Para iniciar sesión se debe
proporcionar un correo y una contraseña, si el usuario que inicia sesión es administrador
se le redirige a la página de inicio del administrador, pero si es un gestor de metadatos
se le redirige a la página de diccionarios.

Inicio del administrador - Figura A.5

En esta página, el administrador dispone de un menú con dos opciones. Al seleccionar
una de ellas, cambia el contenido mostrado en pantalla. Si se elige “Gestión de usuarios”
se muestra la subpágina de gestión de usuarios, mientras que, si se selecciona “Generar
usuario” se muestra la subpágina para la creación de usuarios.

Gestión de usuarios - Figura A.6

Aquí se listan todos los usuarios del sistema. Además de mostrar su información, tam-
bién se pueden realizar acciones sobre cada uno de ellos. Se debe seleccionar un usuario
para que se expanda su fila y se muestren los diccionarios a los que tiene acceso el
usuario. El botón “Editar información” abre la ventana de diálogo de la Figura A.7 y
permite cambiar el nombre y el apellido del usuario. El botón “Restablecer contraseña”
abre la ventana de diálogo de la Figura A.8 utilizada para restablecer la contraseña
del usuario de manera aleatoria, cuenta con un botón que facilita el copiado de la con-
traseña en el portapapeles. El botón “Deshabilitar/Habilitar cuenta” cambia el estado

127

A.3. MANUAL DE USUARIO

Figura A.3: Página de inicio de sesión

Figura A.4: Desplegable con los idiomas disponibles

de un usuario, si el estado es Deshabilitado, el usuario no puede iniciar sesión. Si el
usuario tenía acceso a algún diccionario, lo volverá a tener cuando se habilite la cuenta
de nuevo. La tabla de diccionarios también cuenta con varias opciones para la confi-
guración de relaciones de los usuarios con los diccionarios. El botón que se encuentra
a la derecha del rol, permite cambiar el rol del usuario en el diccionario de esa fila.
Más a la derecha está el botón para eliminar cualquier tipo de relación del usuario con
el diccionario. Pulsando en “Añadir diccionario”, se abre la ventana de diálogo de la
Figura A.9. En esta ventana se muestra una tabla con los diccionarios a los cuales el
usuario no tiene acceso. Si se pulsa el botón “Añadir” se le otorga al usuario el rol de
editor en ese diccionario.

Creación de usuarios - Figura A.10

Los usuarios se crean proporcionando un nombre, un apellido, correo electrónico y
seleccionando el tipo de usuario que se desea generar. Pueden ser de dos tipos, admi-
nistradores y gestores de metadatos.

128

APÉNDICE A. MANUALES

Figura A.5: Página de inicio del administrador

Diccionarios - Figura A.11

Esta es la página de inicio de un gestor de metadatos, en ella se muestran los diccionarios
a los que tiene acceso el usuario. Cuando se pulsa en el botón “Nuevo” se redirige a
la página de creación de un diccionario. Si se pulsa el botón “Revisión” se redirige a
la página de revisiones. Cada tarjeta es un diccionario, pulsando sobre el nombre de
una se redirige a la página del diccionario en cuestión. Si se pulsa en el botón con el
icono de los tres puntos, se abre un desplegable en el que se puede seleccionar la opción
“Eliminar”. En el caso en el que se decida borrar un elemento, se abrirá la ventana de
diálogo de la Figura A.12, en la que se debe confirmar si realmente se quiere borrar.

Creación de diccionario - Figura A.13

Para crear un diccionario se debe proporcionar un nombre y una descripción del diccio-
nario. Pulsando el botón de “Crear diccionario” se redirige a la página de diccionarios
donde se encontrará el diccionario creado.

Diccionario - Figura A.14

En esta página se muestra el nombre del diccionario, su descripción y una lista de
bases de datos. El nombre y la descripción son editables, para que aparezca el botón
de edición (el botón con el icono de un lápiz) se debe pasar el ratón por encima de la
descripción. Aunque este solo aparecerá cuando el usuario tenga el rol de arquitecto en
ese diccionario. Cuando se pulse el botón de edición la página cambiará y se mostrará
como la página de la Figura A.15. Los cambios se podrán guardar o cancelar. Pulsar
el botón “Nuevo” hará que se abra la página de creación de una base de datos. Cada
tarjeta representa una base datos, pulsando en su nombre, se abrirá la página de base
de datos correspondiente.

Creación de una base de datos - Figura A.16

129

A.3. MANUAL DE USUARIO

Figura A.6: Página para la gestión de usuarios del sistema

Figura A.7: Ventana de diálogo para modificar la información de un usuario

Figura A.8: Ventana de diálogo para restablecer la contraseña

130

APÉNDICE A. MANUALES

Figura A.9: Ventana de diálogo para otorgar acceso a los diccionarios

Figura A.10: Página para la creación de usuarios

131

A.3. MANUAL DE USUARIO

Figura A.11: Página con los diccionarios del gestor de metadatos

Figura A.12: Ventana de diálogo para confirmar la eliminación de un elemento

Para crear una base de datos, se debe especificar un nombre, una descripción y selec-
cionar un SGBD. Cuando se pulse el botón “Crear base de datos” se redirigirá a la
página del diccionario que la contiene.

Base de datos - Figura A.17

En la página de una base de datos, se muestra su información, nombre y una lista de
las entidades que forman la base de datos. Se puede acceder a la página de una entidad
pulsando en su nombre. También es posible crear una entidad pulsando en el botón
“Nueva”, esto redirige a la página de creación de una entidad.

Creación de una entidad - Figura A.18

Una entidad se crea estableciendo solo un nombre y una descripción, cuando se pulse
el botón “Crear entidad” se volverá a la página de la base de datos a la que pertenece
la entidad creada.

132

APÉNDICE A. MANUALES

Figura A.13: Página para la creación de un diccionario

Figura A.14: Página de un diccionario de datos

133

A.3. MANUAL DE USUARIO

Figura A.15: Edición del nombre y la descripción de un diccionario

Figura A.16: Página para la creación de una base de datos

134

APÉNDICE A. MANUALES

Figura A.17: Página de una base de datos

Figura A.18: Página para la creación de una entidad

135

A.3. MANUAL DE USUARIO

Figura A.19: Página de una entidad

Entidad - Figura A.19

Cada entidad está formada por un nombre, una descripción y un conjunto de atributos.
Pulsando en cualquiera de las filas de la tabla se redirigirá a la página del correspon-
diente atributo. En caso de pulsar la papelera, se abrirá la ventana de diálogo de la
Figura A.12. También se puede acceder a la página de creación de un atributo pulsando
el botón “Nuevo”.

Creación de un atributo - Figura A.3

Para crear un atributo se debe proporcionar un nombre, una descripción y un tipo
de dato. Pulsando en el botón “Crear atributo” se generará el nuevo atributo con la
información suministrada y se redirigirá a la página de entidad, donde se encuentra la
lista de atributos, incluyendo el nuevo.

Atributo - Figura A.21

En la página de un atributo se muestra su nombre, descripción, un tipo de dato y un
conjunto de metapropiedades. Pulsando el botón “Editar” se activa la edición de el tipo
de dato y las metapropiedades, dejando la vista como se muestra en la Figura A.22.
En este modo se pueden modificar las metapropiesdades, añadir nuevas o eliminar las
existentes. Pulsar el botón de borrado de una metapropiedad hará que se abra la venta-
na de diálogo de la Figura A.23. Para añadir metapropiedades se debe pulsar el botón
“Añadir metapropiedad”. Las metapropiedades se pueden arrastrar para cambiarlas de
posición, esto se consigue manteniendo pulsado los botones de la izquierda y arrastran-
do el atributo a la posición deseada. Si el botón de editar, se encuentra deshabilitado,
significa que no es posible editar el atributo porque está a la espera de una revisión.

Revisiones - Figura A.24

136

APÉNDICE A. MANUALES

Figura A.20: Página para la creación de un atributo

Figura A.21: Página de un atributo

137

A.3. MANUAL DE USUARIO

Figura A.22: Edición de las metapropiedades de un atributo

Figura A.23: Ventana de diálogo para confirmar el borrado de una metapropiedad

138

APÉNDICE A. MANUALES

Figura A.24: Página de revisiones en la pestaña de “Revisiones pendientes”

En esta página las revisiones se dividen en tres pestañas. En la pestaña “Revisiones
pendientes” (Figura A.24) se encuentran las propuestas realizadas por editores de un
diccionario en el que el usuario es un arquitecto. En la pestaña “Histórico de revisiones”,
(Figura A.25) están todas las propuestas que el usuario ha aceptado o rechazado. En
la pestaña “Mis cambios propuestos” (Figura A.26) se encuentran todas las propuestas
hechas por el usuario, en cualquiera de los estados. La primera fila de cada revisión es la
ubicación del atributo que se ha modificado. La ubicación no es más que el nombre de los
elementos de la jerarquía en la que se encuentra el atributo, pulsando sobre el nombre
de cualquiera de los elementos, se abrirá en otra pestaña, la información específica del
elemento. Cuando se pulsa sobre una revisión, se abre en una nueva pestaña la página
con la información detallada de la revisión.

Revisión - Figura A.27

La interfaz de la página de la revisión varía según el estado de la propuesta. En específi-
co, cuando la propuesta está pendiente (Figura A.27), en la parte inferior de la página,
aparecerán los botones para aceptar o rechazar los cambios propuestos. Cuando está
aceptada (Figura A.28) o rechazada (Figura A.29), se mostrará el revisor. Adicional-
mente, en las revisiones rechazadas se mostrará también el comentario del revisor, con
los motivos del rechazo. Con los botones que se encuentran justo encima del estado, se
puede consultar la información de los elementos del atributo.

139

A.3. MANUAL DE USUARIO

Figura A.25: Página de revisiones en la pestaña de “Histórico de revisiones”

Figura A.26: Página de revisiones en la pestaña de “Mis cambios propuestos”

140

APÉNDICE A. MANUALES

Figura A.27: Página de una revisión pendiente

Figura A.28: Página de una revisión aceptada

141

A.3. MANUAL DE USUARIO

Figura A.29: Página de una revisión rechazada

142

APÉNDICE B. RESUMEN DE ENLACES ADICIONALES

Apéndice B

Resumen de enlaces adicionales

Los enlaces útiles de interés en este Trabajo Fin de Grado son:

Repositorio del código:

https://gitlab.inf.uva.es/johrami/tfg-johana-ramirez.

Aplicación desplegada en una máquina virtual proporcionada por la Escuela:

http://www.virtual.lab.inf.uva.es:20312/login.

Este despliegue dejará de estar disponible una vez finalizado el presente curso académico
cuando se liberen los recursos.

143

https://gitlab.inf.uva.es/johrami/tfg-johana-ramirez
http://www.virtual.lab.inf.uva.es:20312/login

	Agradecimientos
	Resumen
	Abstract
	Lista de figuras
	Lista de tablas
	Introducción
	Contexto
	Motivación
	Alternativas
	Dataedo
	Database Note Taker
	Redgate SQL Doc

	Objetivos
	Estructura de la memoria

	Requisitos y Planificación
	Scrum
	Adaptación del marco de trabajo

	Stakeholders, roles y épicas
	Épicas

	División de épicas en historias de usuario
	Reglas de negocio
	Plan de riesgos
	Planificación
	Presupuesto
	Presupuesto simulado
	Presupuesto real

	Replanificación del proyecto
	Product backlog final

	Análisis
	Modelado del dominio
	Modelado dinámico
	Modelo de proceso de negocio
	Modelado de objetos como máquinas de estados

	Tecnologías utilizadas
	Herramientas de comunicación
	Telegram

	Herramientas de prototipado, análisis y diseño
	Figma
	Astah Professional

	Herramientas de desarrollo y pruebas
	Intellij IDEA
	GitHub Copilot
	Spring Boot
	Angular
	MySQL
	Jasmine

	Herramientas de gestión y documentación
	Overleaf
	ChatGPT
	Git
	Gitlab

	Diseño
	Arquitectura
	Arquitectura cliente-servidor
	Arquitectura del servidor: Patrón capas
	Arquitectura del cliente: Patrón MVVM

	Diseño de la interfaz de usuario
	Diseño de datos
	Diseño de la comunicación
	Despliegue de la aplicación

	Implementación y pruebas
	Licencia
	Implementación
	Organización del proyecto
	Dificultades encontradas

	Pruebas
	Sintaxis de Jasmine
	Cobertura de las pruebas

	Seguimiento del proyecto
	Introducción
	Seguimiento por sprints
	Sprint 0 (15/02/2024 - 14/03/2024)
	Sprint 1 (14/03/2024 - 04/04/2024)
	Sprint 2 (04/04/2024 - 18/04/2024)
	Sprint 3 (18/04/2024 - 02/05/2024)
	Sprint 4 (02/05/2024 - 17/05/2024)
	Sprint 5 (14/06/2024 - 28/06/2024)
	Sprint 6 (28/06/2024 - 11/07/2024)
	Sprint 7 (11/07/2024 - 25/07/2024)
	Sprint 8 (29/08/2024 - 12/09/2024)
	Sprint 9 (12/09/2024 - 26/09/2024)
	Sprint 10 (26/09/2024 - 10/10/2024)
	Sprint 11 (10/10/2024 - 24/10/2024)
	Sprint 12 (14/11/2024 - 28/11/2024)
	Sprint 13 (28/11/2024 - 12/12/2024)
	Sprint 14 (03/02/2025 - 17/02/2025)

	Resumen de la ejecución del proyecto
	Funcionalidad implementada
	Dedicación

	Conclusiones
	Líneas de trabajo futuras

	Bibliografía
	Manuales
	Manual de despliegue e instalación
	Prerrequisitos
	Instrucciones

	Manual de mantenimiento
	Manual de usuario

	Resumen de enlaces adicionales

