
Escuela de Ingenieŕıa Informática

de Valladolid

TRABAJO DE FIN DE GRADO

Grado en Ingenierı́a Informática

Mención De Ingenierı́a Software

MatroskaLearn: Aplicación de edición y
visualización de contenido audiovisual

con fines educativos

Autor:
Laura Caminero Garcı́a

Tutor:
Dr. César Llamas Bello

II

Agradecimientos

En primer lugar, me gustarı́a dar las gracias a mi familia, por apoyarme desde que inicié la carrera y
por confiar en que en algún momento la acabarı́a, acompañándome tanto en los buenos como en los malos
momentos.

Agradezco también a mis amigos por apoyarme y ayudarme en todo lo que pudieron, por preocuparse
por mı́ y por recordarme siempre que soy capaz de hacer lo que me proponga.

Por último, agradezco a mis profesores de la facultad de Ingenierı́a Informática por todo lo que me
enseñaron, en concreto, a mi tutor en este trabajo, Cesar Llamas Bello, por su paciencia, su amabilidad,
su disponibilidad y sus comentarios, correcciones y orientaciones, que me ayudaron a mejorar el trabajo
según avanzaba etapa por etapa.

III

IV

Resumen

Esta memoria refleja el desarrollo de una aplicación web diseñada como herramienta de apoyo al
estudio musical, pensada para adaptarse a distintas formas de aprendizaje y servir como recurso didáctico
tanto para músicos como para estudiantes. Se trata de una herramienta que permite estructurar un archivo
de audio (por ejemplo, una pieza musical) dividiéndolo en partes significativas, a las que se puede asociar
contenido visual y textual, favoreciendo ası́ la comprensión, el análisis y la memorización de obras.
Ofrece dos modos de uso: uno para crear y organizar el contenido, y otro orientado a la reproducción y
visualización. La aplicación, creada exclusivamente con Angular, se ejecuta ı́ntegramente en el navegador
y realiza todo el procesamiento en el lado del cliente, sin depender de servidores o bases de datos.

A lo largo del presente documento, se detallan todas las fases seguidas en el proceso de creación de
la aplicación, desde la captura de requisitos hasta su implementación y pruebas. También se incluye un
manual de usuario y un repositorio Git, desde el cual la aplicación está disponible a través de GitHub
Pages.

Palabras clave: Aplicación Web Progresiva, Herramienta para apoyo didáctico, Matroska, Aplicación
musical, Aprendizaje de partituras.

V

VI

Abstract

This report reflects the development of a web application designed as a support tool for musical study,
designed to adapt to different forms of learning and serve as a didactic resource for both musicians and
students. It is a tool that makes it possible to structure an audio file (for example, a piece of music) by
dividing it into meaningful parts, to which visual and textual content can be associated, thus favouring the
comprehension, analysis and memorisation of works. It offers two modes of use: one for creating and
organising content, and the other for playback and visualisation. The application, created exclusively with
Angular, runs entirely in the browser and performs all processing on the client side, without relying on
servers or databases.

Throughout this document, all the phases followed in the process of creating the application are
detailed, from requirements capture to implementation and testing. It also includes a user manual and a
git repository from where the application is available on GitHub Pages.

Keywords: Progressive Web Application, Didactic support tool, Matroska, Music application, Score
learning.

VII

VIII

Índice general

Agradecimientos III

Resumen V

Abstract VII

1. Introducción 1

1.1. Motivación . 1

1.2. Objetivos de este Trabajo de Fin de Grado . 2

1.3. Estructura de la memoria . 2

2. Planificación del proyecto 5

2.1. Metodologı́a . 5

2.2. Plan inicial . 6

2.3. Análisis de riesgos . 9

2.4. Presupuesto estimado . 13

2.4.1. Coste de materiales (hardware y alquileres) . 13

2.4.2. Coste de software . 14

2.4.3. Coste de recursos humanos . 15

2.4.4. Coste total estimado del proyecto . 15

IX

X ÍNDICE GENERAL

3. Estado del arte del proyecto 17

3.1. Herramientas de apoyo en el aprendizaje musical . 17

3.1.1. Editores y reproductores de partituras . 18

3.1.2. Aplicaciones móviles para el aprendizaje musical 18

3.1.3. Sistemas de edición y reproducción de contenido multimedia 19

3.2. Tecnologı́as de soporte del proyecto . 20

3.2.1. PWA . 20

3.2.2. Angular . 21

3.2.3. Matroska (MKV) . 22

3.2.4. Web Assembly . 22

3.2.5. Ffmpeg.wasm . 23

3.2.6. Wavesurfer.js . 24

3.2.7. Indexed DB . 25

3.2.8. GitLab Pages . 25

3.2.9. GitHub Pages . 26

3.3. Lenguajes y herramientas del proyecto . 26

4. Análisis 29

4.1. Requisitos . 29

4.1.1. Requisitos funcionales . 29

4.1.2. Requisitos no funcionales . 32

4.2. Casos de uso . 33

4.3. Modelo de dominio . 51

5. Diseño 53

ÍNDICE GENERAL XI

5.1. Arquitectura Lógica . 53

5.2. Organización del proyecto . 55

5.2.1. Diagrama de paquetes general de la aplicación 56

5.2.2. Diagrama de paquetes de app . 58

5.3. Interfaz de usuario . 63

6. Implementación y Despliegue 71

6.1. Bibliotecas principales . 71

6.1.1. Ffmpeg.wasm . 71

6.1.2. Wavesurfer . 74

6.2. Funcionalidad PWA . 76

6.3. Uso de Indexed DB para la persistencia de imágenes 77

6.4. Despliegue en GitLab Pages . 78

6.5. Despliegue en GitHub Pages . 81

7. Pruebas 83

8. Conclusiones y lı́neas futuras 85

8.1. Conclusiones . 85

8.2. Lı́neas futuras . 86

Bibliografı́a 89

A. Repositorio del código 93

A.1. Enlace del repositorio en GitHub . 93

A.2. Enlace de la página web . 93

A.3. Organización del repositorio . 93

XII ÍNDICE GENERAL

B. Manual de usuario 95

B.1. Crear un nuevo proyecto o cargar uno existente . 95

B.2. Modo escritura . 96

B.3. Modo lectura . 99

Índice de figuras

2.1. Diagrama de Gantt de la planificación del proyecto . 6

4.1. Diagrama de casos de uso simplificado de la aplicación 34

4.2. Diagrama de modelo de dominio de análisis de la aplicación 51

5.1. Diagrama de paquetes del proyecto Angular . 56

5.2. Diagrama de paquetes de app en la aplicación . 58

5.3. Diagrama de clases del paquete interfaces de la aplicación 62

5.4. Boceto de la interfaz (horizontal) de la aplicación separada por componentes 64

5.5. Boceto de la interfaz (vertical) de la aplicación separada por componentes 65

5.6. Interfaz de escritura de la aplicación (horizontal) . 67

5.7. Interfaz de lectura de la aplicación (horizontal) . 67

5.8. Interfaz de escritura de la aplicación (vertical) . 68

5.9. Interfaz de lectura de la aplicación (vertical) . 69

6.1. Sección Build > Jobs dentro del proyecto de GitLab 80

6.2. Sección Deploy > Pages dentro del proyecto GitLab 80

6.3. Sección Settings > Pages dentro del repositorio GitHub 82

B.1. Crear o cargar nuevo proyecto en la aplicación . 95

B.2. Interfaz en modo escritura, dividida en partes principales 96

XIII

XIV ÍNDICE DE FIGURAS

B.3. Crear una sección o marca dentro de la onda en la aplicación 97

B.4. Editar texto de una sección en la aplicación . 98

B.5. Controles de edición y borrado de la imagen de una sección en la aplicación 98

B.6. Interfaz en modo lectura, dividida en partes principales 99

B.7. Crear una marca de lectura en la aplicación . 100

B.8. Visualizar el reproductor en modo pantalla completa en la aplicación 101

Índice de tablas

2.1. Riesgos de un proyecto de software, adaptación de la tabla de riesgos de Boehm 9

2.2. Análisis de riesgo: Problemas de compatibilidad entre tecnologı́as. 10

2.3. Análisis de riesgo: Falta de experiencia con algunas librerı́as. 10

2.4. Análisis de riesgo: Fallos en la planificación temporal. 11

2.5. Análisis de riesgo: Cambios en los requisitos durante el desarrollo. 11

2.6. Análisis de riesgo: Enfermedad o indisposición (propia o del tutor). 12

2.7. Análisis de riesgo: Falta de experiencia con framework de desarrollo. 12

2.8. Matriz de exposición de los riesgos en función de su probabilidad e impacto 13

2.9. Resumen del coste de materiales del proyecto . 14

2.10. Resumen del coste del software del proyecto . 14

2.11. Resumen del coste de recursos humanos del proyecto 15

2.12. Resumen final del presupuesto estimado . 15

3.1. Compatibilidad de WebAssembly en navegadores según el dispositivo 23

4.1. CU1: Crear nuevo audio editable . 35

4.2. CU2: Cargar archivo creado con la aplicación . 36

4.3. CU3: Reproducir Audio . 37

4.4. CU4: Saltar reproducción a siguiente o anterior sección 38

XV

XVI ÍNDICE DE TABLAS

4.5. CU5: Poner sección o marca en bucle . 39

4.6. CU6: Seleccionar sección o marca para visualizar su información 40

4.7. CU7: Crear Sección . 41

4.8. CU8: Editar Campos Sección . 42

4.9. CU9: Borrar Sección . 43

4.10. CU10: Crear Marca . 44

4.11. CU11: Editar Campos Marca . 45

4.12. CU12: Borrar Marca . 46

4.13. CU13: Mover separación entre secciones . 47

4.14. CU14: Mover marca . 48

4.15. CU15: Cambiar formato de presentación del contenido en el reproductor 49

4.16. CU16: Exportar edición del audio . 50

Capı́tulo 1

Introducción

En este primer capı́tulo se describe el origen de la idea del proyecto, ası́ como el contexto en el que
surge su desarrollo. Se expone la utilidad de la aplicación propuesta como herramienta de apoyo en el
aprendizaje musical, enmarcándola dentro de las necesidades existentes en este ámbito.

A continuación, se presentan los objetivos fundamentales que se pretenden alcanzar, tanto desde
el punto de vista funcional como técnico, estableciendo el propósito general del proyecto y sus metas
principales.

Finalmente, se ofrece una visión general de la estructura del documento, describiendo brevemente los
capı́tulos en los que se divide la memoria y el contenido que se aborda en cada uno de ellos.

1.1. Motivación

En los últimos años, el uso de tecnologı́as digitales en el ámbito musical ha experimentado un notable
crecimiento. Herramientas digitales y aplicaciones interactivas han transformado la forma en la que
estudiantes y profesionales se enfrentan al aprendizaje y análisis musical, facilitando el estudio de
partituras, la práctica instrumental y la edición de audio.

Actualmente, existen diversas herramientas digitales orientadas a tareas especı́ficas del tratamiento de
audio. Algunas permiten marcar regiones o fragmentos dentro de una pista sonora, otras ofrecen opciones
de anotación o transcripción, y también existen aplicaciones de edición de vı́deo que permiten asociar
imágenes a ciertos momentos del audio. Por otro lado, muchos reproductores de audio permiten reproducir
fragmentos de forma individual o en bucle. Sin embargo, pocas soluciones permiten realizar todas estas
acciones de forma integrada y accesible.

Dentro de los programas más populares en el trabajo con partituras, cabe destacar la aplicación de

1

2 CAPÍTULO 1. INTRODUCCIÓN

MuseScore, una herramienta (parcialmente gratuita, ya que incluye contenido de pago) muy utilizada en
el aprendizaje musical que permite vincular partituras con audio, ofreciendo una sincronización entre
ambos [1]. Sin embargo, su uso se limita a partituras musicales y resulta muy complejo asociar imágenes
o textos explicativos a los segmentos de audio.

La aplicación desarrollada en este trabajo pretende combinar todas las funcionalidades mencionadas en
una sola herramienta: ofrecerá una interfaz fácil e interactiva que permitirá etiquetar mediante segmentos
un audio, ası́ como crear marcas sobre él. A estas secciones y marcas se les podrá añadir texto e imágenes,
y se incluirán controles de reproducción útiles para interaccionar con ellas. Además, la aplicación permitirá
exportar esta edición, pudiendo ser visualizada posteriormente por otros usuarios dentro de la misma
aplicación.

Además de agrupar diversas funcionalidades útiles para la creación y visualización de contenido
didáctico, esta aplicación es altamente versátil. No se limita únicamente al aprendizaje musical, sino que
puede aplicarse a una variedad de campos educativos que integren la escucha de fragmentos de audio y la
visualización de texto, como el aprendizaje de idiomas, entre otros.

1.2. Objetivos de este Trabajo de Fin de Grado

El principal objetivo de este trabajo es desarrollar una aplicación web de tipo frontend utilizando el
framework Angular, sin depender de un servidor backend para su funcionamiento. La aplicación ofrecerá
las funcionalidades descritas en la introducción, orientadas a la segmentación y enriquecimiento de
archivos de audio con información visual y textual.

Se busca que esta aplicación sea una PWA (Progressive Web App) [2], de modo que pueda instalarse
en dispositivos y funcionar en modo sin conexión tras su primera descarga, facilitando su uso en contextos
educativos con acceso limitado a internet.

Durante el desarrollo del proyecto se seguirán las fases clásicas del ciclo de vida del software: captura
de requisitos, análisis, diseño, implementación y pruebas, asegurando una metodologı́a estructurada y
coherente.

1.3. Estructura de la memoria

Esta memoria se estructura en ocho capı́tulos, acompañados de dos anexos y una bibliografı́a. A
continuación, se ofrece una breve descripción del contenido de cada uno de ellos:

Introducción: expone el origen y la motivación del proyecto, ası́ como la necesidad que busca

1.3. ESTRUCTURA DE LA MEMORIA 3

cubrir. Además, se presentan los objetivos planteados para su desarrollo.

Planificación del proyecto: describe la metodologı́a de trabajo adoptada, el cronograma seguido y
un análisis de riesgos con sus respectivos planes de mitigación o contingencia. También se incluye
una estimación del presupuesto asociado al proyecto.

Estado del arte del proyecto: ofrece un repaso de las tecnologı́as y herramientas más relevantes
seleccionadas a lo largo del desarrollo del trabajo, ası́ como un análisis de aplicaciones similares
disponibles en el mercado, destacando sus funcionalidades y limitaciones.

Análisis: detalla las fases del análisis de la aplicación, incluyendo la recopilación de requisitos
funcionales y no funcionales, la definición de casos de uso iniciales y el modelo de dominio
resultante.

Diseño: presenta la arquitectura lógica de la aplicación y su organización interna mediante diagramas
de paquetes, describiendo las clases principales y su funcionalidad. Asimismo, se detalla el proceso
de diseño de la interfaz de usuario.

Implementación y Despliegue: explica el uso de las principales bibliotecas, la integración de
tecnologı́as clave como PWA e IndexedDB, y el proceso de despliegue de la aplicación.

Pruebas: resume la metodologı́a de pruebas adoptada y los tipos de pruebas realizados para validar
el correcto funcionamiento de la aplicación.

Conclusiones y lı́neas futuras: reflexiona sobre el desarrollo del proyecto desde una perspectiva
personal y de aprendizaje. Además, se proponen posibles mejoras y ampliaciones para futuras
versiones de la aplicación.

Anexo A. Repositorio del código: proporciona el enlace al repositorio Git en el que se encuentra el
código fuente de la aplicación, acompañado de un resumen de su estructura de carpetas. Asimismo,
se incluye un enlace a la página web desde la que puede utilizarse la aplicación.

Anexo B. Manual de usuario: incluye una guı́a breve y accesible que explica las funcionalidades
principales de la aplicación y cómo utilizarla.

4 CAPÍTULO 1. INTRODUCCIÓN

Capı́tulo 2

Planificación del proyecto

En este capı́tulo se presentan los elementos fundamentales sobre los que se ha basado la planificación
del proyecto. En primer lugar, se describe la metodologı́a empleada para organizar y gestionar el trabajo
durante el desarrollo. A continuación, se expone el plan inicial propuesto, estructurado en fases y tareas
que permiten una ejecución ordenada y progresiva del proyecto. Cada fase se detalla con el objetivo de
reflejar cómo se ha distribuido el trabajo a lo largo del tiempo. Por último, se identifican y analizan los
principales riesgos que podrı́an surgir durante el desarrollo del proyecto, evaluando cada uno de ellos con
detalle.

2.1. Metodologı́a

El desarrollo de la aplicación se ha llevado a cabo siguiendo un enfoque iterativo e incremental,
inspirado en los principios de las metodologı́as ágiles [3]. A partir de una idea inicial general, se realizaron
pruebas exploratorias con diferentes tecnologı́as y bibliotecas para determinar la viabilidad del proyecto y
delimitar su alcance.

El trabajo se estructuró en ciclos cortos (generalmente de 2 semanas de duración) centrados en el
desarrollo de objetivos concretos, en los cuales se combinaban tareas de análisis, diseño e implementación
según las necesidades de cada caso. Cuando se introducı́an elementos complejos o nuevas interacciones
en la interfaz, se prestaba especial atención a las fases de análisis y diseño, aunque el eje principal de cada
iteración seguı́a siendo la implementación y la validación práctica de los avances realizados.

Al finalizar cada ciclo, se revisaban los resultados junto al tutor del proyecto, lo que permitı́a ajustar la
aplicación, corregir errores o añadir nuevas funcionalidades según el feedback recibido. Este enfoque fle-
xible facilitó una evolución continua del proyecto, adaptándose a las necesidades emergentes y mejorando
progresivamente la usabilidad y la funcionalidad de la aplicación.

5

6 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

2.2. Plan inicial

Para llevar a cabo la planificación del proyecto, se identificaron las principales fases o etapas que lo
componen, algunas de las cuales se subdividieron en tareas más especı́ficas. La Figura 2.1 presenta un
esquema visual que recoge estas fases, las tareas asociadas, sus respectivas duraciones (finales) y las
relaciones de dependencia entre ellas. Este tipo de representación, conocido como diagrama de Gantt [4],
resulta especialmente útil para obtener una visión global del desarrollo temporal del proyecto, facilitando
la organización, el seguimiento del progreso y la gestión eficiente del tiempo. A continuación, se describe
en detalle cada una de estas fases.

Id Nombre de tarea DuraciónComienzo Fin Predecesoras

1 Def. inicial problema 7 días mié 11/09/24jue 19/09/24

2 Discusión de las ideas del cliente 7 días mié 11/09/24jue 19/09/24

3 Recolección de requisitos
iniciales de la aplicación

7 días mié
11/09/24

jue 19/09/24

4 Planificación 7 días vie 20/09/24 lun 30/09/24 1

5 Investigación Tecnologías 10 días mar 01/10/24lun 14/10/244

6 Investigar frameworks de
desarrollo front-end

4 días mar
01/10/24

vie 04/10/24

7 Investigar sobre distintos
contenedores de vídeo

3 días lun 07/10/24 mié
09/10/24

6

8 Investigar librerías de
manipulación de archivos de
vídeo

3 días jue 10/10/24 lun 14/10/24 7

9 Elaboración prototipos 14 días mar 15/10/24vie 01/11/24 5

10 Elaboración en Angular de
prototipo de lectura de datos de
archivo MKV

14 días mar
15/10/24

vie 01/11/24

11 Elaboración en Angular de
prototipo de escritura de datos
en archivo MKV

14 días mar
15/10/24

vie 01/11/24

12 Bocetaje de la interfaz 7 días lun 04/11/24mar 12/11/249

13 Creación de bocetos de la
interfaz de lectura en escritorio,
móviles y tablets

7 días lun 04/11/24 mar
12/11/24

14 Creación de bocetos de la
interfaz de escritura en
escritorio, móviles y tablets

7 días lun 04/11/24 mar
12/11/24

15 Desarrollo iterativo e incremental 92 días mié 13/11/24jue 20/03/25 12

16 Pruebas 19 días vie 21/03/25 mié 16/04/2515

17 Periodo de prueba por parte de
los usuarios

5 días vie 21/03/25 jue 27/03/25

18 Implementación de sugerencias
y ajustes

14 días vie 28/03/25 mié
16/04/25

17

19 Elaboración memoria 32 días jue 17/04/25 vie 30/05/25 16

03 08 13 18 23 28 03 08 13 18 23 28 02 07 12 17 22 27 02 07 12 17 22 27 01 06 11 16 21 26 31 05 10 15 20 25 02 07 12 17 22 27 01 06 11 16 21 26 01 06 11 16 21 26 31 05
septiembre 2024 octubre 2024 noviembre 2024 diciembre 2024 enero 2025 febrero 2025 marzo 2025 abril 2025 mayo 2025 junio 2025

Tarea

División

Hito

Resumen

Resumen del proyecto

Tarea inactiva

Hito inactivo

Resumen inactivo

Tarea manual

solo duración

Informe de resumen manual

Resumen manual

solo el comienzo

solo fin

Tareas externas

Hito externo

Fecha límite

Progreso

Progreso manual

Página 1

Proyecto: Proyecto1
Fecha: mar 13/05/25 Figura 2.1: Diagrama de Gantt de la planificación del proyecto

Fase 1: Definición inicial del problema

En esta fase inicial, se discutieron las primeras ideas del proyecto junto con el profesor. Aunque no
se definieron todos los detalles, se estableció el propósito de la aplicación y los objetivos generales, y a
partir de ellos, se desarrolló una primera lista de requisitos.

Las tareas en las que se descompone esta fase son:

Discusión de las ideas del cliente

2.2. PLAN INICIAL 7

Recolección de requisitos iniciales de la aplicación

Fase 2: Planificación

Se estableció la planificación inicial del proyecto, donde se identificaron las principales fases que
lo compondrı́an, que fueron desglosadas en tareas. Esta planificación sirvió como guı́a durante todo el
proceso, permitiendo mantener una visión global del proyecto y ajustarse a los plazos establecidos.

Fase 3: Investigación de Tecnologı́as

En esta fase, se seleccionan las tecnologı́as más adecuadas para el desarrollo de la aplicación. Esto
incluyó la elección del framework de desarrollo de front-end adecuado (Angular), la evaluación del
alcance de bibliotecas para la manipulación de archivos de video, ası́ como la investigación sobre qué
tipo de archivo de video serı́a el más adecuado para almacenar los contenidos generados por la aplicación
(MKV, MP4, AVI, etc.).

Las tareas en las que se descompone esta fase son:

Investigar frameworks de desarrollo front-end

Investigar librerı́as de manipulación de archivos de vı́deo

Investigar sobre distintos contenedores de vı́deo

Fase 4: Elaboración de prototipos

En esta fase, se construyeron pequeños prototipos ejecutables utilizando distintas tecnologı́as y
herramientas con el objetivo de evaluar su viabilidad y determinar cuáles eran las más adecuadas para el
desarrollo de la aplicación. Estos prototipos permitieron identificar qué funcionalidades eran técnicamente
factibles de implementar y cuáles requerirı́an ajustes o replanteamientos.

Las tareas en las que se descompone esta fase son:

Elaboración en Angular de prototipo de lectura de datos de archivo MKV

Elaboración en Angular de prototipo de escritura de datos en archivo MKV

Fase 5: Bocetaje de la interfaz

8 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Durante esta fase, se elaboraron los primeros bocetos de la interfaz de usuario de forma informal,
dibujados a mano en papel. Estos esquemas iniciales sirvieron como guı́a para definir la estructura básica
de la aplicación, priorizando la accesibilidad y la facilidad de uso.

Las tareas en las que se descompone esta fase son:

Creación de bocetos de la interfaz de lectura en escritorio, móviles y tablets

Creación de bocetos de la interfaz de escritura en escritorio, móviles y tablets

Fase 6: Desarrollo iterativo e incremental

Durante esta fase, el desarrollo de la aplicación se llevó a cabo en ciclos breves, cada uno centrado
en un pequeño conjunto de requisitos funcionales. Al final de cada iteración, se generaba un prototipo
ejecutable que integraba las funcionalidades desarrolladas hasta ese momento. Si era necesario, también se
actualizaban o creaban nuevos elementos en los diagramas correspondientes a las fases de análisis y diseño.
Estos avances se presentaban al tutor del proyecto, cuya retroalimentación permitı́a detectar posibles
mejoras, introducir ajustes en el comportamiento del sistema o definir nuevos requisitos funcionales para
futuras iteraciones.

Fase 7: Pruebas

En esta fase, la aplicación fue evaluada por varios grupos de personas con el objetivo de comprobar su
correcto funcionamiento. A través del uso real del programa, se verificaron sus funcionalidades principales
y se detectaron errores o comportamientos inesperados, los cuales fueron corregidos. Además, los usuarios
realizaron sugerencias de mejora relacionadas con la usabilidad y el diseño de la interfaz, algunas de las
cuales fueron implementadas.

Las tareas en las que se descompone esta fase son:

Periodo de prueba por parte de los usuarios

Implementación de sugerencias y ajustes

Fase 8: Elaboración de la memoria

Una vez finalizado el desarrollo de la aplicación, se procedió a la redacción de la memoria del trabajo.
Esta fase incluyó la recopilación y organización de la información técnica y metodológica del proyecto,
ası́ como la documentación de las distintas fases del proceso.

2.3. ANÁLISIS DE RIESGOS 9

2.3. Análisis de riesgos

La identificación y el análisis de los riesgos que pueden surgir durante la realización del proyecto
es fundamental en la fase de planificación. Como punto de partida para la identificación de los riesgos
asociados a este proyecto, se ha tomado como referencia una adaptación de la tabla de riesgos propuesta
por Boehm, extraı́da del libro Software Project Management [5]. En la Tabla 2.1, se señalan aquellos
riesgos que podrı́an tener un impacto en el desarrollo del proyecto.

Riesgo ¿Riesgo en este proyecto?

Falta de personal Sı́

Estimaciones de tiempo y coste poco realistas Sı́

Desarrollo de funciones de software incorrectas Sı́

Desarrollo de una interfaz de usuario incorrecta Sı́

Sobrecarga de funciones innecesarias No

Cambios tardı́os en los requisitos Sı́

Falta de componentes externos suministrados No

Falta de tareas realizadas externamente No

Falta de rendimiento en tiempo real No

El desarrollo es técnicamente demasiado difı́cil Sı́

Tabla 2.1: Riesgos de un proyecto de software, adaptación de la tabla de riesgos de Boehm

A partir de las ideas extraı́das de la tabla de riesgos de Boehm, adaptadas a las caracterı́sticas especı́ficas
de este proyecto, se han identificado una serie de riesgos más concretos y contextualizados. A continuación,
se presentan estos riesgos junto con su probabilidad de ocurrencia, su impacto y el plan de acción propuesto
para gestionarlos en caso de que se materialicen. Para la mayorı́a de ellos, se ha definido un plan de
mitigación con el objetivo de reducir, en la medida de lo posible, la probabilidad de que lleguen a ocurrir.

10 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Riesgo 1 Problemas de compatibilidad entre tecnologı́as

Descripción Dificultades al integrar librerı́as y tecnologı́as distintas o problemas de compatibilidad
con distintos navegadores.

Probabilidad Media Impacto Alto Exposición Alta

Consecuencias Imposibilidad de utilizar ciertas funcionalidades clave o necesidad de rees-
cribir partes del proyecto.

Plan de mitigación Implementación de pequeños prototipos previos al comienzo del desarrollo
de la aplicación, con el objetivo de comprobar la compatibilidad entre las
tecnologı́as que se desean utilizar juntas.

Plan de contingencia Buscar alternativas compatibles y consultar foros o documentación.

Tabla 2.2: Análisis de riesgo: Problemas de compatibilidad entre tecnologı́as.

Riesgo 2 Falta de experiencia con algunas librerı́as

Descripción Dificultades derivadas del uso de librerı́as nuevas o complejas, como Wavesurfer o
FFmpeg.

Probabilidad Alta Impacto Medio Exposición Alta

Consecuencias Aumento del tiempo de desarrollo por necesidad de investigación y pruebas,
errores o uso ineficiente de las librerı́as.

Plan de mitigación Dedicar tiempo al aprendizaje práctico con pequeños ejemplos antes de
implementarlas en el proyecto final, consultando la documentación oficial y
apoyándose en comunidades de desarrollo.

Plan de contingencia Ampliar el plazo de finalización del proyecto y/o priorizar funcionalidades
esenciales.

Tabla 2.3: Análisis de riesgo: Falta de experiencia con algunas librerı́as.

2.3. ANÁLISIS DE RIESGOS 11

Riesgo 3 Fallos en la planificación temporal

Descripción Subestimar el tiempo necesario para la realización de ciertas tareas.

Probabilidad Media Impacto Alto Exposición Alta

Consecuencias Menor calidad en el resultado final por falta de revisión, documentación o
pruebas.

Plan de mitigación Incluir tiempos de margen generosos para la finalización de las tareas
durante la planificación del proyecto.

Plan de contingencia Ampliar el plazo de finalización del proyecto y/o priorizar funcionalidades
esenciales.

Tabla 2.4: Análisis de riesgo: Fallos en la planificación temporal.

Riesgo 4 Cambios en los requisitos durante el desarrollo

Descripción Aparición de nuevas necesidades por parte del cliente o por descubrimientos durante
el desarrollo.

Probabilidad Media Impacto Alto Exposición Alta

Consecuencias Tener que rehacer o construir nuevas partes en el proyecto, resultando en
una pérdida de tiempo.

Plan de mitigación Mantener comunicación constante con el tutor y trabajar con una arquitectura
modular que facilite los cambios.

Plan de contingencia Implementación de los cambios fundamentales y/o reducción de los requisi-
tos, implementando los más básicos.

Tabla 2.5: Análisis de riesgo: Cambios en los requisitos durante el desarrollo.

12 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Riesgo 5 Enfermedad o indisposición (propia o del tutor)

Descripción Problemas de salud que impidan trabajar con normalidad o retrasen la corrección y
supervisión del trabajo.

Probabilidad Baja Impacto Medio Exposición Media

Consecuencias Retrasos en la entrega o en la validación de ciertas partes del TFG.

Plan de mitigación Realizar reuniones frecuentes para la revisión del proyecto y la modificación
de sus requerimientos.

Plan de contingencia Priorizar funcionalidades básicas, claras y con menor probabilidad de modifi-
cación.

Tabla 2.6: Análisis de riesgo: Enfermedad o indisposición (propia o del tutor).

Riesgo 6 Falta de experiencia con framework de desarrollo

Descripción Dificultad a la hora de manejar problemas comunes que pueden surgir durante el
desarrollo, o a la hora de entender conceptos sobre el funcionamiento del framework.

Probabilidad Baja Impacto Medio Exposición Media

Consecuencias Aumento significativo del tiempo en el que se implementan las funcionalida-
des de la aplicación.

Plan de mitigación Elección de un framework de desarrollo con el que se tenga experiencia
previa.

Plan de contingencia Búsqueda de soluciones en la documentación oficial o en foros, y, si fuese
necesario, adaptación del diseño para evitar funcionalidades demasiado
complejas.

Tabla 2.7: Análisis de riesgo: Falta de experiencia con framework de desarrollo.

Como se ha mostrado en las tablas anteriores, se han identificado un total de seis riesgos relevantes
para este proyecto, cada uno de ellos evaluado en función de su probabilidad de ocurrencia y su impacto
potencial. A partir de estas dos variables se calcula la exposición al riesgo, entendida como el nivel de
amenaza que representa un riesgo concreto en función de su posibilidad de ocurrencia y las consecuencias
asociadas.

En la Tabla 2.8 se presenta una matriz de probabilidad-impacto, en la que la probabilidad se dispone
en las filas y el impacto en las columnas. Esta representación permite situar cada uno de los seis riesgos
identificados en su correspondiente celda, en función de sus valores individuales.

2.4. PRESUPUESTO ESTIMADO 13

Probabilidad \
Impacto Bajo Medio Alto

Alta R2

Media R1, R3, R4

Baja R5, R6

Tabla 2.8: Matriz de exposición de los riesgos en función de su probabilidad e impacto

El color de cada celda indica el grado de exposición al riesgo: el verde representa una exposición baja,
el amarillo una exposición media y el rojo una exposición alta. De acuerdo con esta clasificación, los
riesgos R1, R2, R3 y R4 presentan una exposición alta, por lo que se deberá prestar especial atención a su
gestión y adoptar medidas preventivas prioritarias para reducir su probabilidad o impacto.

2.4. Presupuesto estimado

El presente apartado recoge una estimación económica del desarrollo del proyecto, abordando los
principales costes relacionados con los materiales, el software y los recursos humanos. Aunque el proyecto
ha sido realizado por una única persona en el contexto académico, se ha simulado una situación profesional
realista con valores aproximados del mercado actual.

2.4.1. Coste de materiales (hardware y alquileres)

Ordenador El proyecto se ha desarrollado en un portátil ASUS ROG Strix G15 (G513IH-HN008T),
cuyo precio aproximado en 2021 fue de 1.200 C. Para calcular su coste se ha utilizado una amortización
lineal a 4 años (48 meses).

Precio del equipo: 1.200 C

Amortización mensual: 1.200 / 48 = 25 C/mes

Duración del proyecto: 9 meses

Coste amortizado: 25 C × 9 = 225 C

14 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Alojamiento web Se ha empleado GitHub Pages como sistema de alojamiento. Si bien cuenta con un
plan gratuito, en un contexto profesional con múltiples sitios web activos, se requerirı́a GitHub Pro.

Coste de GitHub Pro: 4 C/mes × 9 meses = 36 C

En la Tabla 2.9 se presenta un resumen del coste de los materiales, donde se detalla el precio total
correspondiente.

Concepto Coste

Ordenador (amortización 9 meses) 225 C

Alojamiento web (GitHub Pro) 36 C

Total materiales 261 C

Tabla 2.9: Resumen del coste de materiales del proyecto

2.4.2. Coste de software

A continuación, se enumeran las herramientas utilizadas, indicando si se ha empleado una versión
gratuita o una licencia de pago, ası́ como su coste en este último caso. La Tabla 2.10 recoge toda esta
información junto con el coste total del software empleado.

Herramienta Licencia Coste

Astah Professional Pago (9 C/mes × 3 meses) 27 C

Microsoft Project Pago (10,50 C/mes × 3 meses) 31,50 C

Angular Libre 0 C

Draw.io Gratuito 0 C

Paint 3D Incluido en Windows 0 C

Overleaf Gratuito 0 C

GitHub Incluido en materiales –

Visual Studio Code Gratuito 0 C

Total software 58,50 C

Tabla 2.10: Resumen del coste del software del proyecto

2.4. PRESUPUESTO ESTIMADO 15

2.4.3. Coste de recursos humanos

Aunque el proyecto ha sido desarrollado de forma individual, se ha simulado la participación de tres
roles profesionales: analista junior, diseñadora junior y programadora junior. Para ello, se ha estimado
un salario bruto promedio en España para cada perfil profesional, a partir de consultas en los portales
InfoJobs [6], Glassdoor [7] y Talent [8]. A estos importes se les ha añadido un 30 % adicional en concepto
de costes indirectos (cotizaciones sociales, seguros, etc.). Toda esta información, junto con el coste total
estimado, se recoge en la Tabla 2.11.

Rol Salario bruto anual Coste mensual (con 30 %) Meses Total

Analista junior 24.000 C 2.400 C 3 7.200 C

Diseñadora junior 20.000 C 2.167 C 3 6.500 C

Programadora junior 22.000 C 2.383 C 3 7.150 C

Total recursos huma-
nos

20.850 C

Tabla 2.11: Resumen del coste de recursos humanos del proyecto

2.4.4. Coste total estimado del proyecto

A continuación se presenta en la Tabla 2.12 el coste total estimado, sumando todos los apartados
anteriores:

Categorı́a Importe

Coste de materiales 261 C

Coste de software 58,50 C

Coste de recursos humanos 20.850 C

Total estimado del proyecto 21.169,50 C

Tabla 2.12: Resumen final del presupuesto estimado

Este presupuesto representa una estimación económica orientativa basada en precios de mercado y valores
medios en España. Se ha planteado con criterios realistas, como si el desarrollo se hubiera realizado en un
entorno profesional.

16 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Capı́tulo 3

Estado del arte del proyecto

En este capı́tulo se recogen los conceptos y referencias necesarias para comprender el contexto en
el que se enmarca el presente trabajo. En primer lugar, se presenta una recopilación de herramientas
existentes en el mercado orientadas al apoyo en el aprendizaje musical, describiendo sus principales
funcionalidades y ámbitos de aplicación. El objetivo de este apartado es ofrecer una visión general del
tipo de soluciones tecnológicas que ya se utilizan en el ámbito educativo musical.

A continuación, se describen las tecnologı́as empleadas en el desarrollo del proyecto, exponiendo
brevemente en qué consisten y cuál ha sido el motivo de su elección.

Por último, se detallan los lenguajes de programación y otras herramientas utilizadas durante el
desarrollo, ası́ como su papel dentro del proyecto.

3.1. Herramientas de apoyo en el aprendizaje musical

El desarrollo tecnológico ha impulsado la aparición de múltiples herramientas digitales destinadas a
facilitar el proceso de aprendizaje musical. Estas herramientas permiten desde la visualización y edición
de partituras hasta el entrenamiento auditivo, pasando por la integración de contenidos multimedia. En
este contexto, existen diversos formatos de archivo que se han consolidado como estándar [9], entre ellos:

PDF: es un formato de documento de tipo imagen estática que se usa para distribuir partituras en
una forma visual fija, tal como se verı́an impresas en papel. No es editable musicalmente: es como
una “foto” de la partitura. Se usa mucho porque es universal y se puede abrir en casi cualquier
dispositivo.

MusicXML (MXML): es un formato abierto diseñado para compartir partituras musicales entre
distintos programas de edición musical (como MuseScore, Finale o Sibelius). A diferencia del

17

18 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

PDF, permite editar la música (cambiar notas, compases, instrumentos, etc.) porque guarda toda la
información musical estructurada, no solo la imagen [10].

MIDI: no guarda la partitura visual, sino los eventos musicales (qué nota suena, cuánto dura, qué
instrumento la toca...). Es ideal para reproducir música electrónicamente, analizarla o generar
partituras a partir de ella. No contiene información visual exacta como una partitura, pero sı́ cómo
suena [11].

MP3, WAV, OGG: son formatos de audio que almacenan grabaciones musicales. Se usan para
reproducir ejemplos sonoros, como interpretaciones de una obra o explicaciones grabadas.

SRT, VTT: son formatos de subtı́tulos que permiten mostrar texto sincronizado con un audio o
video. Se usan para poner anotaciones como explicaciones, letra de canciones o traducciones en el
momento exacto en que se deben mostrar.

A continuación, se presenta una clasificación de las principales herramientas según su finalidad.

3.1.1. Editores y reproductores de partituras

Estos programas permiten escribir, editar y reproducir partituras musicales, ası́ como exportarlas en
formatos como PDF o MusicXML. Son fundamentales para estudiantes, compositores y profesores.

MuseScore: software gratuito y de código abierto para la edición de partituras. Permite crear
partituras desde cero, importar/exportar en MusicXML y reproducirlas con instrumentos virtuales.
Es una de las opciones más accesibles y populares en el ámbito educativo [1].

Sibelius: editor profesional desarrollado por Avid, muy utilizado en entornos académicos y edito-
riales. Ofrece herramientas avanzadas de notación, edición detallada, y reproducción realista. Tiene
versiones gratuitas y de pago [12].

Finale: otro editor profesional con gran trayectoria. Destaca por su flexibilidad y por ofrecer un
control total sobre la notación. Es común en editoriales musicales y en conservatorios [13].

3.1.2. Aplicaciones móviles para el aprendizaje musical

Estas apps ofrecen funciones especı́ficas orientadas al aprendizaje práctico, ya sea en la lectura de
partituras o en el desarrollo de habilidades auditivas y rı́tmicas.

3.1. HERRAMIENTAS DE APOYO EN EL APRENDIZAJE MUSICAL 19

Apps centradas en partituras

MuseScore App: permite visualizar y reproducir partituras desde el móvil, sincronizadas con la
nube de MuseScore. Compatible con formatos MXML [14].

Capella Score Reader: herramienta de notación musical compatible con MusicXML, con app
móvil para consultar partituras [15].

Sibelius App: versión ligera de Sibelius para dispositivos móviles, orientada a la revisión de
partituras más que a la edición completa [16].

Apps para entrenamiento auditivo y rı́tmico

MobileSheets: visor de partituras digitales en PDF, orientado a músicos en directo. Permite
anotaciones, sincronización con audio, y control por pedal [17].

ScorePDF: app sencilla para ver partituras en PDF, pensada para la práctica instrumental [18].

Complete Ear Trainer: app didáctica centrada en entrenar el oı́do musical, con ejercicios de
intervalos, acordes, escalas y dictados [19].

Chord AI: analiza canciones en tiempo real y muestra los acordes que se están tocando, útil para
estudiantes que aprenden de oı́do [20].

3.1.3. Sistemas de edición y reproducción de contenido multimedia

Estas herramientas permiten combinar y manipular diferentes tipos de medios como audio, video,
texto, subtı́tulos o imágenes. Resultan útiles cuando el aprendizaje musical se apoya en grabaciones,
anotaciones sincronizadas o contenidos audiovisuales más complejos.

Audacity: editor de audio gratuito y multiplataforma. Permite grabar, cortar, mezclar y aplicar
efectos al sonido. Es ampliamente utilizado en contextos educativos para analizar fragmentos
musicales o grabar ejercicios [21].

DaVinci Resolve: editor de video profesional que permite sincronizar pistas de audio con subtı́tulos,
imágenes y textos. Aunque está orientado al cine, es útil en la creación de materiales educativos
musicales que combinan imágenes, partituras y explicaciones [22].

Estas herramientas permiten realizar tareas como:

Transcripción y análisis de grabaciones.

20 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

Sincronización de audio con subtı́tulos (por ejemplo, para seguir una explicación teórica junto con
el sonido).

Integración de imágenes (como fragmentos de partituras o diagramas armónicos) con la lı́nea
temporal del video o audio.

Edición de pistas de audio y voz, útil para crear ejemplos interactivos o evaluaciones musicales.

3.2. Tecnologı́as de soporte del proyecto

3.2.1. PWA

Una Aplicación Web Progresiva (PWA, por sus siglas en inglés) es un tipo de aplicación de software
que se entrega a través de la web, desarrollada utilizando tecnologı́as web comunes como HTML, CSS y
JavaScript. Está diseñada para funcionar en cualquier plataforma que utilice un navegador compatible
con los estándares web. Las PWAs combinan lo mejor de las aplicaciones web y las aplicaciones nativas,
ofreciendo funcionalidades como el trabajo sin conexión, notificaciones push y acceso al hardware del
dispositivo, lo que permite crear experiencias de usuario similares a las aplicaciones nativas en dispositivos
móviles y de escritorio [2].

Las PWAs se distinguen por una serie de caracterı́sticas que las hacen únicas:

Progresivas: Funcionan para cualquier usuario, independientemente del navegador que utilice,
gracias a su enfoque de mejora progresiva.

Responsivas: Se adaptan a diferentes tamaños de pantalla y dispositivos, ofreciendo una experiencia
de usuario óptima en móviles, tabletas y ordenadores.

Independientes de la conectividad: Pueden funcionar sin conexión a internet o en redes de baja
calidad, utilizando tecnologı́as como los Service Workers para almacenar en caché los recursos
necesarios.

Similares a aplicaciones nativas: Ofrecen una experiencia de usuario comparable a las aplicaciones
nativas, incluyendo navegación fluida y posibilidad de instalación en la pantalla de inicio del
dispositivo.

Actualizables automáticamente: Se actualizan de forma automática, asegurando que los usuarios
siempre tengan acceso a la última versión sin necesidad de descargas manuales.

Seguras: Se sirven a través de HTTPS, garantizando la seguridad de los datos y protegiendo contra
ataques de intermediarios.

3.2. TECNOLOGÍAS DE SOPORTE DEL PROYECTO 21

Descubribles: Son indexables por los motores de búsqueda, lo que mejora su visibilidad en los
resultados de búsqueda.

Instalables: Permiten a los usuarios agregar un acceso directo a la aplicación en la pantalla de
inicio de su dispositivo, sin necesidad de pasar por tiendas de aplicaciones.

Enlazables: Pueden ser compartidas fácilmente mediante una URL, facilitando su distribución y
acceso.

En este proyecto se ha optado por desarrollar una aplicación web progresiva (PWA) por diversas
razones. En primer lugar, se busca que la aplicación sea accesible desde distintos tipos de dispositivos,
independientemente del sistema operativo que utilicen. Esto responde al hecho de que los usuarios que
crean y editan proyectos de audio probablemente lo hagan desde ordenadores de sobremesa, mientras
que aquellos que simplemente desean visualizar un proyecto ya creado, por comodidad, tienden a utilizar
dispositivos móviles o tabletas.

Una de las principales ventajas de las PWA es que permiten desarrollar una única aplicación que
funciona en múltiples plataformas, ya que basta con disponer de un navegador web. Además, se conside-
raba importante que la aplicación pudiera instalarse fácilmente en el dispositivo y que fuese utilizable
incluso en condiciones de conectividad limitada, siempre que ya haya sido cargada previamente, lo cual
se asemeja al comportamiento de una aplicación nativa.

3.2.2. Angular

Angular es un framework para el desarrollo de aplicaciones web modernas, creado y mantenido por
Google. Está escrito en TypeScript y permite construir interfaces dinámicas, modulares y escalables
mediante una arquitectura basada en componentes. Su enfoque declarativo y su potente sistema de
herramientas lo convierten en una opción robusta para el desarrollo frontend, especialmente en aplicaciones
de una sola página (SPA, Single Page Applications) [23].

En este proyecto se ha optado por el uso de Angular en su versión 18. La elección de Angular como
framework de desarrollo se debe, en primer lugar, a la experiencia previa con esta tecnologı́a, lo cual
ha facilitado una curva de desarrollo más ágil y eficiente. Además, Angular cuenta con una extensa
comunidad de desarrolladores, una documentación oficial muy completa y un ecosistema maduro de
herramientas, lo que lo convierte en una opción robusta y fiable para el desarrollo de aplicaciones
web complejas y estructuradas. Otra de sus ventajas es la facilidad de desarrollo y depuración, ya que
herramientas como ng serve permiten visualizar los cambios de forma inmediata y simplifican el proceso
de prueba y corrección de errores durante el desarrollo.

22 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

3.2.3. Matroska (MKV)

Al diseñar la aplicación, surgió la necesidad de contar con un contenedor capaz de almacenar todos
los datos generados en un proyecto de audio, de manera que pudieran ser fácilmente recuperados
posteriormente. Dada la naturaleza de los elementos que debı́an incluirse (imágenes, audio y texto), se
concluyó que la opción más adecuada era utilizar un contenedor de vı́deo. Esta elección no solo permitı́a
agrupar diferentes tipos de datos en un único archivo, sino que también facilitaba su manipulación gracias
a la existencia de múltiples bibliotecas y herramientas que permiten extraer o insertar información en este
tipo de contenedores.

Además, al tratarse de un contenedor de vı́deo, se abre la posibilidad de que, en futuras versiones de
la aplicación, los archivos generados puedan ser reproducibles como contenido audiovisual, y no solo
utilizados como contenedores estructurados de datos, como ocurre en la versión actual, en la que solo
pueden ser interpretados por la propia aplicación.

Tras analizar las distintas alternativas disponibles, se optó por el formato MKV (Matroska). Según
la definición oficial del proyecto Matroska (MKV), este es un formato contenedor capaz de albergar un
número ilimitado de pistas de vı́deo, audio, imagen o subtı́tulos en un único archivo, siendo similar a
otros contenedores como AVI, MP4 o ASF, pero de estándar abierto [24].

La elección de MKV por encima de otros formatos de contenedor de vı́deo se debe a su gran flexibilidad,
ya que permite almacenar una amplia variedad de tipos de pistas y metadatos, y a su naturaleza de código
abierto, lo que facilita su integración, personalización y uso en aplicaciones a medida.

3.2.4. Web Assembly

WebAssembly (abreviado como Wasm) es un formato de código binario diseñado para ejecutarse en
navegadores web modernos con un rendimiento cercano al nativo. Se trata de una tecnologı́a que permite
ejecutar código compilado desde lenguajes como C, C++ o Rust directamente en el navegador, lo que
resulta especialmente útil para aplicaciones que requieren un procesamiento intensivo o acceso a funcio-
nalidades de bajo nivel. Fue desarrollado con el objetivo de complementar JavaScript, no reemplazarlo, y
está pensado para ser seguro, eficiente y portable entre diferentes plataformas [25].

En este proyecto, se recurrió al uso de una biblioteca basada en WebAssembly: ffmpeg.wasm [26], una
adaptación del popular framework FFmpeg que permite procesar archivos multimedia directamente en el
navegador. Para garantizar que esta tecnologı́a pudiera utilizarse sin problemas, se realizó previamente
una comprobación de compatibilidad de WebAssembly en los principales navegadores utilizados en
ordenadores de sobremesa, dispositivos móviles y tabletas.

Según LambdaTest, una plataforma dedicada a la prueba y validación cruzada de aplicaciones web en
diferentes navegadores y dispositivos, la puntuación de compatibilidad de WebAssembly en navegadores

3.2. TECNOLOGÍAS DE SOPORTE DEL PROYECTO 23

alcanza los 92 puntos sobre 100 [27]. Esta puntuación indica un alto grado de soporte entre navegadores
modernos, lo cual garantiza que las funcionalidades basadas en Wasm pueden ejecutarse correctamente
en la gran mayorı́a de los entornos actuales.

A continuación, se presenta la Tabla 3.1 [27] [28] [29], que refleja la compatibilidad de WebAssembly
según la versión del navegador y el tipo de dispositivo:

Navegador Escritorio Android iOS

Google Chrome Desde la versión 57 Desde la versión 57 Desde la versión 61

Mozilla Firefox Desde la versión 52 Desde la versión 52 Desde la versión 68

Microsoft Edge Desde la versión 16 Desde la versión 79 Desde la versión 79

Safari Desde la versión 11 No disponible Desde la versión 11.3

Opera Desde la versión 44 Desde la versión 44 Desde la versión 45

Samsung Internet No disponible Desde la versión 6.2 No disponible

Brave Desde la versión 57 Desde la versión 57 Desde la versión 61

Tabla 3.1: Compatibilidad de WebAssembly en navegadores según el dispositivo

3.2.5. Ffmpeg.wasm

FFmpeg es una biblioteca de código abierto ampliamente utilizada para procesar archivos de audio y
vı́deo. Permite convertir, grabar, transmitir y manipular contenido multimedia en una gran variedad de
formatos. Su motor central proporciona una potente colección de herramientas de lı́nea de comandos y
bibliotecas que permiten realizar operaciones como transcodificación, muxing/demuxing, codificación/-
decodificación y filtrado multimedia, entre otras funciones esenciales en la edición y reproducción de
contenidos audiovisuales [30].

Tradicionalmente, FFmpeg ha estado disponible como una herramienta de lı́nea de comandos para
sistemas operativos como Linux, Windows y macOS, lo que permite a los usuarios invocar su funcionalidad
directamente mediante terminal. Además, se han desarrollado bindings y wrappers que permiten su uso
desde lenguajes de programación como Python, Java, C++, Rust, entre otros, facilitando su integración en
aplicaciones de escritorio o backend. En estos entornos, FFmpeg se ejecuta sin restricciones de seguridad
ni acceso, lo que permite manipular archivos del sistema directamente y aprovechar al máximo sus
prestaciones.

Durante el desarrollo de esta aplicación, se hizo necesario contar con una herramienta capaz de leer y
escribir en archivos MKV que contuvieran el audio, imágenes y texto de un proyecto multimedia generado

24 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

en la aplicación.Tras analizar varias opciones, FFmpeg destacó como la opción más robusta y versátil,
gracias a su popularidad de uso, la abundante documentación disponible, su interfaz de lı́nea de comandos
sencilla y su extenso soporte para formatos multimedia, entre los cuales se incluye MKV. Aunque sus
funcionalidades pueden considerarse generales y algo limitadas en cuanto al manejo de particularidades
especı́ficas de ciertos contenedores, resulta plenamente adecuada para los requisitos de este proyecto.

Sin embargo, FFmpeg no está disponible de forma nativa para JavaScript, lo que impide su uso directo
en entornos web tradicionales. Esto se debe a que FFmpeg está escrito en lenguajes de bajo nivel, y está
diseñado para ejecutarse principalmente en sistemas de escritorio o servidores. Para poder integrarlo en
esta aplicación web, fue necesario recurrir a una versión de FFmpeg compilada a WebAssembly (WASM).

La opción seleccionada fue ffmpeg.wasm, una implementación que proporciona una interfaz de FFmpeg
accesible desde JavaScript, basada en WebAssembly. Según su descripción oficial en npm, ffmpeg.wasm
es una versión reducida de FFmpeg compilada para ejecutarse en el navegador, ofreciendo una API
JavaScript sencilla para invocar comandos similares a los que se usarı́an en una terminal tradicional de
FFmpeg [26]. Dado que esta versión está optimizada para funcionar en contextos con recursos limitados y
dentro de las restricciones del navegador, algunas funcionalidades avanzadas no están disponibles. Aun
ası́, su rendimiento y flexibilidad resultan adecuados para este proyecto, permitiendo realizar todas las
operaciones necesarias sobre archivos MKV directamente desde la aplicación web.

3.2.6. Wavesurfer.js

Wavesurfer.js [31] es una biblioteca JavaScript que permite visualizar y controlar archivos de audio
directamente desde el navegador, mediante una representación gráfica de su forma de onda. Su objetivo
principal es facilitar la creación de interfaces interactivas para la reproducción y edición de audio, con un
alto grado de personalización y control.

Esta biblioteca constituye el eje central de la interfaz de la aplicación desarrollada. Su elección se
debe a que cumplı́a con todos los requisitos definidos por la aplicación en cuanto a la visualización,
manipulación y reproducción del audio. Entre sus caracterı́sticas más destacadas se encuentran:

La posibilidad de representar visualmente el audio en forma de onda de manera clara e intuitiva.

La posibilidad de definir y manipular regiones temporales y marcas sobre la onda (mediante el
uso de su plugin Regions), brindando ası́ una manera de representar y manipular gráficamente las
secciones y marcas en las que se divide un proyecto de audio en la aplicación.

Controles de reproducción integrados y personalizables, como reproducir, pausar, adelantar, retro-
ceder y visualizar el tiempo actual.

Una API completa que ofrece métodos para consultar y modificar parámetros de la onda, ası́ como
sincronizar eventos o interactuar dinámicamente con el audio.

3.2. TECNOLOGÍAS DE SOPORTE DEL PROYECTO 25

Amplias opciones de personalización visual de la onda.

Estas funcionalidades son esenciales para la experiencia del usuario y para la precisión en la edición y
navegación del contenido sonoro. Además, Wavesurfer.js cuenta con una documentación extensa y clara,
y una comunidad activa que facilita la resolución de problemas comunes mediante foros, repositorios y
ejemplos disponibles en lı́nea.

3.2.7. Indexed DB

IndexedDB es una API de JavaScript disponible de forma nativa en prácticamente todos los navegadores
web modernos, tanto en sus versiones de escritorio como móviles. Permite almacenar datos estructurados
de forma persistente en el dispositivo del usuario, incluso sin conexión a internet. A diferencia de otras
opciones de almacenamiento web como localStorage o sessionStorage (limitadas en cuanto a tamaño
y eficiencia), está diseñada para gestionar grandes volúmenes de datos y realizar consultas complejas,
utilizando una base de datos orientada a objetos basada en pares clave-valor. Esta versatilidad permite
trabajar con distintos tipos de datos, incluidos objetos binarios como archivos, lo que la convierte en
una solución robusta para aplicaciones web que requieren almacenar información de manera eficiente y
organizada [32].

En este proyecto, se utiliza una versión simplificada de la API mediante la librerı́a idb [33], que facilita
su uso al proporcionar una interfaz más accesible y moderna. Esta decisión se tomó para reducir la
complejidad del código y agilizar el desarrollo.

3.2.8. GitLab Pages

GitLab Pages es un servicio gratuito que permite publicar sitios web estáticos directamente desde los
repositorios alojados en GitLab. De forma sencilla y automática, despliega los proyectos web contenidos
en estos repositorios siguiendo las instrucciones definidas en un archivo de configuración llamado gitlab-
ci.yml, que especifica los pasos necesarios para construir y publicar la página. GitLab Pages se presenta
como una alternativa al alojamiento en servidores de pago, ya que permite hospedar una aplicación web
de forma gratuita, ideal para proyectos en desarrollo o con recursos limitados [34].

Para este proyecto, durante la fase de desarrollo se utilizó el GitLab Pages del GitLab de la Escuela de
Ingenierı́a Informática de la Universidad de Valladolid [35] para publicar la aplicación en internet. La
elección de esta plataforma se debió a que ya existı́a una cuenta creada en ese entorno, lo que facilitaba
el trabajo colaborativo y permitı́a añadir al profesor para revisar los avances. Además, esta opción
proporcionaba un mayor nivel de privacidad al proyecto, ya que se preferı́a mantenerlo restringido hasta
contar con una versión estable y completa para su publicación en GitHub Pages.

26 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

3.2.9. GitHub Pages

GitHub Pages es un servicio gratuito proporcionado por GitHub que permite alojar sitios web estáticos
directamente desde los repositorios del usuario [36], la funcionalidad equivalente que ofrece GitLab para
la publicación de páginas web desde repositorios.

A diferencia de GitLab Pages, que utiliza un archivo de configuración para definir el proceso de desplie-
gue, GitHub Pages permite publicar contenidos directamente desde una rama concreta del repositorio o
desde una carpeta especı́fica. Esta simplicidad en la configuración inicial facilita el proceso de publicación
para sitios estáticos.

En este proyecto se utilizó GitHub Pages para publicar la versión final de la aplicación. Esta plataforma
ofrecı́a una forma rápida y accesible de mostrar el resultado en lı́nea, facilitando ası́ su revisión y difusión.
Además, se optó por esta solución para garantizar la disponibilidad del proyecto a largo plazo, ya que la
cuenta de GitLab utilizada durante el desarrollo, perteneciente a la Escuela de Ingenierı́a Informática de
Valladolid, será eliminada al finalizar los estudios.

3.3. Lenguajes y herramientas del proyecto

Typescript es un lenguaje de programación desarrollado por Microsoft que extiende a JavaScript
añadiendo tipado estático. Esto significa que permite definir el tipo de datos (como número, texto, etc.)
que una variable o función debe tener, ayudando a detectar errores antes de ejecutar el código. Aunque
se escribe en TypeScript, el código se transpila a JavaScript, por lo que puede ejecutarse en cualquier
navegador o entorno compatible con este lenguaje.

Una caracterı́stica destacada de TypeScript es su soporte para ficheros de definición de tipos (.d.ts),
que permiten describir la estructura de bibliotecas escritas en JavaScript como si fueran entidades de
TypeScript con tipado estático. Esto facilita el uso de librerı́as existentes sin perder las ventajas del sistema
de tipos, de forma similar a como funcionan los archivos de cabecera en C/C++ [37].

Se utilizó este lenguaje porque es el que emplea Angular de forma predeterminada.

UML es un lenguaje gráfico utilizado para visualizar, especificar, construir y documentar distintos
aspectos de un sistema de software. Se compone de una serie de diagramas estandarizados que permiten
representar su estructura, comportamiento e interacciones [38].

Astah Professional es una herramienta de modelado visual desarrollada por Change Vision que permite
crear diagramas UML [39]. Fué el programa utilizado para crear los diagramas de paquetes, clases y casos
de uso de la aplicación desarrollada.

3.3. LENGUAJES Y HERRAMIENTAS DEL PROYECTO 27

Bootstrap es un framework de código abierto para el desarrollo de interfaces web modernas y adaptables.
Proporciona una colección de herramientas basadas en HTML, CSS y JavaScript que facilitan la creación
de diseños visualmente atractivos y funcionales sin necesidad de partir desde cero. Uno de sus elementos
más destacados es el sistema de rejilla (grid system), que permite organizar los elementos de la página en
filas y columnas, facilitando la alineación y distribución del contenido [40].

Además, Bootstrap ofrece un conjunto de clases responsivas que permiten adaptar fácilmente la
presentación de la interfaz a distintos tamaños de pantalla (móviles, tabletas, escritorios...), aspecto que
resultó bastante útil en el desarrollo de la aplicación.

28 CAPÍTULO 3. ESTADO DEL ARTE DEL PROYECTO

Capı́tulo 4

Análisis

En este capı́tulo se aborda la fase de análisis del proyecto, la cual se divide en varias etapas. En primer
lugar, se recogen los requisitos de la aplicación, clasificados en funcionales y no funcionales. A partir de
estos requisitos, se derivan los casos de uso y se elabora el modelo de dominio conceptual.

4.1. Requisitos

A continuación, se detalla la lista final de requisitos (funcionales, de información y no funcionales)
recogidos desde el inicio y durante el transcurso del desarrollo de la aplicación. Como ya se mencionó
anteriormente, la aplicación cuenta con dos modos principales, lectura y escritura, que cuentan con
requisitos propios y exclusivos.

4.1.1. Requisitos funcionales

Los requisitos funcionales de un proyecto software describen las funciones, comportamientos y
operaciones que el sistema debe implementar para satisfacer las necesidades del usuario y los objetivos
del negocio. En otras palabras, determinan qué debe hacer el sistema, especificando sus capacidades desde
la perspectiva de la interacción con el usuario y el procesamiento de datos [41].

Estos requisitos pueden clasificarse a su vez en dos grandes categorı́as:

Requisitos funcionales básicos: se centran en las funciones principales.

Requisitos funcionales de información: definen qué datos debe manejar el sistema y cómo debe
procesarlos, almacenarlos o presentarlos. Este tipo de requisitos detalla las estructuras de entrada y
salida de la información y las relaciones entre ellas.

29

30 CAPÍTULO 4. ANÁLISIS

A continuación, se detallan los requisitos funcionales básicos de la aplicación, organizados en tres
grupos: requisitos generales, que deben cumplirse tanto en el modo de lectura como en el de escritura;
requisitos especı́ficos del modo lectura; y requisitos especı́ficos del modo escritura. Finalmente, se
describen también los requisitos funcionales de información.

Requisitos funcionales generales

El sistema tendrá dos modos de visualización de archivo: lectura y escritura

El sistema permitirá al usuario la creación de secciones y marcas, asociadas a fragmentos de tiempo
dentro del audio con el que se está trabajando

En el sistema se podrá visualizar de forma gráfica el audio con el que se está trabajando, ası́ como
las secciones y marcas que se crearon sobre él y los minutos de reproducción y duración total del
audio.

El sistema permitirá hacer zoom sobre la representación gráfica del audio

El sistema permitirá al usuario pausar el audio

El sistema permitirá al usuario reproducir el audio

El sistema permitirá al usuario reproducir el audio desde un punto en concreto

El sistema permitirá al usuario reproducir una sección desde el inicio

El sistema permitirá al usuario reproducir una marca desde el inicio

El sistema permitirá al usuario reproducir en bucle una sección

El sistema permitirá al usuario reproducir en bucle una marca

El sistema permitirá al usuario saltar de la sección reproduciéndose actualmente a la siguiente
sección

El sistema permitirá al usuario saltar de la sección reproduciéndose actualmente a la anterior sección

El sistema permitirá al usuario acceder a una lista de las secciones y marcas presentes actualmente
en el audio

El sistema permitirá al usuario seleccionar una sección o marca de la lista, para visualizar su
información asociada

El sistema permitirá visualizar la información de una sección

El sistema permitirá visualizar la información de una marca

4.1. REQUISITOS 31

El sistema permitirá la descarga de un archivo en formato MKV que contenga la información actual
del audio (secciones y marcas)

El sistema permitirá al usuario la creación de marcas en un puntos elegidos del audio (tanto en
modo lectura como en modo escritura)

Requisitos funcionales especı́ficos del modo escritura

El sistema permitirá al usuario editar el nombre del archivo MKV que se generará a partir de la
información del audio

El sistema permitirá al usuario la creación de secciones dentro del audio. La forma de crearlas será
dividiendo secciones ya existentes por un punto (tiempo) especı́fico

El sistema permitirá al usuario editar el color de una sección

El sistema permitirá al usuario editar el tı́tulo de una sección

El sistema permitirá al usuario editar el texto de una sección

El sistema permitirá al usuario asignar una imagen a una sección

El sistema permitirá al usuario borrar una sección

El sistema permitirá al usuario cambiar el tiempo de separación entre dos secciones

El sistema permitirá al usuario editar el tı́tulo de una marca

El sistema permitirá al usuario editar el texto de una marca

El sistema permitirá al usuario borrar una marca

El sistema permitirá al usuario cambiar el tiempo de una marca (pudiendo trasladarse al tiempo que
quiera en el audio, incluso si implica cambiar de sección)

Requisitos funcionales especı́ficos del modo lectura

El sistema seleccionará automáticamente la sección y la marca cuyos tiempos coincidan con el
tiempo de reproducción actual

El sistema permitirá al usuario ver la información de las secciones y marcas en modo pantalla
completa

32 CAPÍTULO 4. ANÁLISIS

El sistema permitirá al usuario cambiar el modo de visualización de la información de secciones y
marcas

El sistema permitirá al usuario cambiar la orientación de la información de secciones y marcas

El sistema permitirá al usuario cambiar el tiempo de una marca creada en modo lectura

Requisitos funcionales de información

El archivo MKV generado deberá contener: audio MP3 y datos sobre todas las secciones y marcas
creadas

Una sección es una región (su tiempo de inicio no coincide con el de fin) del audio, y de ella se
recogen los siguientes datos: tiempo de inicio, tiempo de fin, tı́tulo, texto, color (en el que se verá
dentro de la representación gráfica del audio) e imagen

Una marca forma parte de una sección. Referencia a un tiempo especı́fico del audio, y de ella se
recogen los siguientes datos: tiempo de inicio, tı́tulo y texto

Al tener una marca solo tiempo de inicio, la duración y por tanto, el tiempo de fin de esta marca,
están determinados por el inicio de la siguiente marca a ella. Si no existe una marca después de ella,
entonces su tiempo de fin será el de la sección a la que está asociada

El modo de visualización de la información de secciones y marcas (en modo lectura) podrá ser
“dividido” (se muestra el texto y la imagen de la sección y marca), “solo texto” (se muestra solo el
texto de la sección y marca) y “solo imagen” (se muestra solo la imagen de la sección)

La orientación de la información de secciones y marcas podrá ser “vertical” (texto a la izquierda e
imagen a la derecha) y “horizontal” (imagen arriba y texto abajo)

Existirá la opción de escribir y visualizar el texto de una sección en formato Markdown [42].

4.1.2. Requisitos no funcionales

En un proyecto de software, los requisitos no funcionales definen cómo debe comportarse el sistema,
en lugar de las funcionalidades concretas que debe realizar. También se conocen como atributos de
calidad, ya que establecen estándares sobre aspectos como el rendimiento, la seguridad, la usabilidad, la
escalabilidad o la confiabilidad del sistema [43].

Estos requisitos son esenciales para garantizar que la solución no solo funcione correctamente, sino que
también lo haga de manera eficiente, segura y satisfactoria para los usuarios, incluso en condiciones reales

4.2. CASOS DE USO 33

de uso. Además, estos requisitos recogen las restricciones asociadas a la aproximación arquitectónica
inicial del proyecto. En este caso, están centrados en la necesidad de que la solución adoptada sea una
aplicación web progresiva (PWA).

A continuación, se presenta la lista de requisitos no funcionales identificados para esta aplicación,
los cuales han sido definidos en función de las necesidades del sistema y las expectativas de calidad del
usuario.

La aplicación debe ser compatible con los navegadores más utilizados, garantizando su funciona-
miento en, al menos, Firefox, Google Chrome y Microsoft Edge

La aplicación debe funcionar una vez cargada incluso sin conexión a internet, y todo su procesa-
miento se realizará en el lado del cliente

La aplicación será desarrollada usando un framework front-end que sea ampliamente utilizado,blabla
utilizando los lenguajes Typescript, HTML y CSS

La aplicación debe poder accederse y funcionar en su totalidad desde ordenadores de sobremesa,
teléfonos móviles y tabletas

La interfaz debe adaptarse de forma automática al tamaño de pantalla del dispositivo (interfaz
responsive), manteniendo la usabilidad y legibilidad

Las imágenes asociadas a secciones dentro de la aplicación se guardarán de forma persistente en el
navegador

4.2. Casos de uso

Los casos de uso son una herramienta utilizada en el análisis de sistemas para describir las interac-
ciones entre los usuarios y la aplicación. Su objetivo es representar, de forma clara y estructurada, las
funcionalidades que debe ofrecer el sistema desde el punto de vista del usuario [44].

Mediante los casos de uso se identifican los diferentes escenarios en los que un usuario puede realizar
acciones dentro de la aplicación, lo que permite definir sus requisitos funcionales de forma precisa y
facilitar el diseño posterior.

En la Figura 4.1 se muestra el diagrama de casos de uso de la aplicación. Se trata de una versión
simplificada, centrada únicamente en reflejar la distribución de los casos de uso entre los distintos
actores del sistema, sin representar explı́citamente las relaciones de dependencia entre ellos (las cuales se
describen más adelante en las tablas correspondientes).

34 CAPÍTULO 4. ANÁLISIS

La aplicación contempla tres tipos de usuario: el Usuario Lector, que representa las acciones disponibles
en el modo lectura; el Usuario Creador, asociado al modo escritura; y el Usuario General, del que heredan
los dos anteriores y que agrupa las funcionalidades comunes a ambos modos de uso.

UseCase Diagram0 2025/06/14 astah* Evaluation

1 / 1

 uc

Usuario Lector

Usuario Creador

Crear nuevo audio
editable

Cargar archivo
creado con la
aplicación

Reproducir
audio

Saltar
reproducción a
siguiente o
anterior sección

Poner sección o
marca en bucle

Seleccionar
sección o marca
para visualizar
su información

Crear sección

Editar campos
sección

Borrar sección

Crear marca

Editar campos
marca

Borrar marca

Mover
separación entre
secciones

Mover marca

Cambiar formato
de presentación
del contenido en el
reproductor

Exportar edición
del audio

Usuario General

Sistema

Figura 4.1: Diagrama de casos de uso simplificado de la aplicación

4.2. CASOS DE USO 35

CU1 Crear nuevo audio editable

Descripción Permite al usuario comenzar la edición de un nuevo archivo de audio.

Actor Usuario Creador

Precondiciones

Postcondiciones Se muestra la representación gráfica del audio con su información asociada,
disponible para editar. La información inicial del audio se reduce a una sección
vacı́a que ocupa toda su duración.

Flujo Normal

1. El usuario solicita crear un nuevo audio editable.

2. El sistema pide al usuario que introduzca un archivo de audio en formato
MP3.

3. El usuario introduce un archivo de audio MP3.

4. El sistema comprueba que el contenido proporcionado por el usuario
sea válido.

5. El sistema muestra la representación gráfica del audio y su información
asociada, incluyendo controles para su edición y manipulación. Se ini-
cializa con una sección que abarca toda la duración del audio.

Excepciones

4.1 El fichero introducido por el usuario no es válido y el sistema notifica al
usuario.

Tabla 4.1: CU1: Crear nuevo audio editable

36 CAPÍTULO 4. ANÁLISIS

CU2 Cargar archivo creado con la aplicación

Descripción Permite al usuario cargar un archivo MKV que haya sido generado por la
aplicación, para seguir editándolo o para visualizarlo en modo lectura.

Actor Usuario Lector y Usuario Creador

Precondiciones

Postcondiciones Se muestra la representación del audio con su información asociada, disponible
para editar en el caso de que el usuario sea Usuario Creador, y para visualizar
en caso de que sea Usuario Lector.

Flujo Normal

1. El usuario solicita cargar un archivo.

2. El sistema pide al usuario que introduzca un archivo generado por la
aplicación, en formato MKV.

3. El usuario introduce un archivo en formato MKV.

4. El sistema comprueba que el contenido proporcionado por el usuario
sea válido.

5. El sistema muestra la representación del audio con su información
asociada.

Flujos Alternativos

5.A Si el usuario es Usuario Creador, la información está disponible para su
edición.

5.B Si el usuario es Usuario Lector, la información disponible para su visuali-
zación.

Excepciones

4.1 El fichero introducido por el usuario no es válido y el sistema notifica al
usuario.

Tabla 4.2: CU2: Cargar archivo creado con la aplicación

4.2. CASOS DE USO 37

CU3 Reproducir Audio

Descripción Permite al usuario reproducir el audio desde el punto elegido

Actor Usuario Creador y Usuario Lector

Precondiciones Existe un audio cargado.

Postcondiciones El audio se reproduce desde el punto indicado por el usuario.

Flujo Normal

1. El usuario solicita reproducir el audio.

2. El sistema reproduce el audio desde el punto indicado por el usuario.

3. El sistema comprueba el tipo de usuario, y si se trata de Usuario Creador,
termina el caso de uso.

Flujos Alternativos

1.A El usuario solicita reproducir el audio desde un punto especı́fico del
mismo.

1.B El usuario solicita reproducir el audio desde el inicio de una de las
secciones.

1.C El usuario solicita reproducir el audio desde el inicio de una de las
marcas.

1.D El usuario solicita reproducir el audio desde el punto por el que se
llegaba.

3.A.1 El sistema verifica que el usuario es Usuario Lector.

3.A.2 El sistema busca la sección y marca que se corresponden con el instante
de tiempo actual y muestra sus datos en la interfaz.

Tabla 4.3: CU3: Reproducir Audio

38 CAPÍTULO 4. ANÁLISIS

CU4 Saltar reproducción a siguiente o anterior sección

Descripción Permite al usuario saltar a la siguiente o anterior sección a la que se está
reproduciendo actualmente.

Actor Usuario General

Precondiciones Existe un audio cargado y existe una sección anterior o posterior a la que se
está reproduciendo actualmente.

Postcondiciones El audio se reproduce desde la siguiente o anterior sección a la actual, según
la decisión del usuario.

Flujo Normal

1. El usuario solicita saltar la reproducción de sección.

2. El sistema reproduce el audio desde el inicio de la anterior o siguiente
sección a la actual, según la elección del usuario.

Flujos Alternativos

1.A El usuario solicita reproducir la siguiente sección a la que se está repro-
duciendo actualmente.

1.B El usuario solicita reproducir la anterior sección a la que se está repro-
duciendo actualmente.

Excepciones

2.A.1 No existe una sección posterior a la que se está reproduciendo actual-
mente, por lo que no se produce ninguna acción.

2.B.1 No existe una sección anterior a la que se está reproduciendo actual-
mente, por lo que no se produce ninguna acción.

Tabla 4.4: CU4: Saltar reproducción a siguiente o anterior sección

4.2. CASOS DE USO 39

CU5 Poner sección o marca en bucle

Descripción Permite al usuario reproducir una sección o marca en bucle

Actor Usuario General

Precondiciones Existe un audio cargado.

Postcondiciones La sección o marca seleccionada se reproduce en bucle y se quita la repro-
ducción en bucle que hubiera antes de ella.

Flujo Normal

1. El usuario solicita reproducir en bucle.

2. El sistema quita la reproducción en bucle anterior que hubiera anterior-
mente.

3. El sistema reproduce en bucle la marca o sección deseada, empezando
desde el inicio de esta.

Flujos Alternativos

1.A El usuario solicita reproducir una sección en bucle.

1.B El usuario solicita reproducir una marca en bucle.

Tabla 4.5: CU5: Poner sección o marca en bucle

40 CAPÍTULO 4. ANÁLISIS

CU6 Seleccionar sección o marca para visualizar su información

Descripción Permite al usuario seleccionar una sección o una marca para ver sus datos
asociados.

Actor Usuario General

Precondiciones Existe un audio cargado

Postcondiciones Se muestran los datos de la sección o marca seleccionada.

Flujo Normal

1. El usuario solicita ver las secciones y marcas que existen actualmente.

2. El sistema muestra al usuario una lista de todas las secciones y marcas
que existen en el audio.

3. El usuario selecciona un ı́tem de la lista.

4. El sistema muestra los datos del ı́tem seleccionado.

Flujos Alternativos

3.A El usuario selecciona una sección de la lista.

3.B El usuario selecciona una marca de la lista.

Tabla 4.6: CU6: Seleccionar sección o marca para visualizar su información

4.2. CASOS DE USO 41

CU7 Crear Sección

Descripción Permite al usuario dividir una sección existente para crear una nueva.

Actor Usuario Creador

Precondiciones Existe un audio cargado.

Postcondiciones La sección elegida queda dividida en dos secciones, y la de la izquierda
conserva los datos de la original. Los cambios quedan reflejados en la interfaz
y la nueva sección es seleccionada.

Flujo Normal

1. El usuario selecciona un punto dentro de una sección, en la representa-
ción gráfica del audio, y solicita crear algo en este punto.

2. El sistema pregunta al usuario si quiere crear una sección o una marca
en este punto.

3. El usuario indica que quiere crear una nueva sección.

4. El sistema elimina la sección original y crea dos nuevas secciones, con
separación en el punto designado por el usuario.

5. El sistema selecciona la nueva sección (derecha).

6. El sistema actualiza la interfaz para reflejar los cambios.

Tabla 4.7: CU7: Crear Sección

42 CAPÍTULO 4. ANÁLISIS

CU8 Editar Campos Sección

Descripción Permite al usuario modificar los datos de una sección existente.

Actor Usuario Creador

Precondiciones Existe un audio cargado y una sección seleccionada.

Postcondiciones Los cambios en la sección se guardan y reflejan en la interfaz.

Flujo Normal

1. El usuario solicita la edición de un campo de la sección seleccionada
actualmente.

2. El sistema habilita la edición del campo solicitado por el usuario.

3. El usuario edita el campo solicitado y confirma al terminar.

4. El sistema muestra los cambios del campo modificado en la interfaz.

Flujos Alternativos

1.A El usuario solicita editar el tı́tulo de la sección.

1.B El usuario solicita editar el texto de la sección.

1.C El usuario solicita editar la imagen de la sección.

1.D El usuario solicita editar el color de la sección.

Tabla 4.8: CU8: Editar Campos Sección

4.2. CASOS DE USO 43

CU9 Borrar Sección

Descripción Permite al usuario eliminar una sección del audio

Actor Usuario Creador

Precondiciones Existe un audio cargado y una sección seleccionada.

Postcondiciones La sección seleccionada desaparece, y el espacio que ocupaba pasa a formar
parte de la sección de su izquierda.

Flujo Normal

1. El usuario solicita la eliminación de la sección seleccionada actualmente.

2. El sistema comprueba si se puede eliminar la sección, y en caso afirma-
tivo, solicita confirmación al usuario.

3. El usuario confirma la eliminación.

4. El sistema elimina la sección y amplia el espacio de la sección de su
izquierda para ocupar su hueco.

5. El sistema actualiza la interfaz para reflejar los cambios.

Excepciones

1.1 El sistema comprueba que la sección seleccionada es la primera, y
notifica al usuario de que no se puede eliminar, finalizando el caso de
uso.

Tabla 4.9: CU9: Borrar Sección

44 CAPÍTULO 4. ANÁLISIS

CU10 Crear Marca

Descripción Permite al usuario crear una nueva marca en el audio.

Actor Usuario Creador y Usuario Lector

Precondiciones Existe un audio cargado.

Postcondiciones Se crea una marca con los datos introducidos, la marca queda seleccionada, y
los cambios se reflejan en la interfaz.

Flujo Normal

1. El usuario selecciona un punto dentro de una sección, en la representa-
ción gráfica del audio, y solicita crear algo en este punto.

2. El sistema pregunta al usuario si quiere crear una sección o una marca
en este punto.

3. El usuario indica que quiere crear una nueva marca.

4. El sistema comprueba el tipo de usuario.

5. El sistema crea una marca en el punto elegido por el usuario

6. El sistema comprueba si existen más marcas dentro de la sección a la
que pertenece la marca creada, y en caso contrario, se procede.

7. El sistema selecciona la nueva marca.

8. El sistema refleja los cambios en la interfaz.

Flujos Alternativos

4.A.1 El sistema verifica que el usuario es Usuario Lector.

4.A.2 El sistema solicita al usuario que rellene los campos de la marca (tı́tulo
y texto).

4.A.3 El usuario rellena los campos de la marca y confirma.

4.B El sistema verifica que el usuario es Usuario Creador, por lo que la
marca tendrá un tı́tulo por defecto y un texto vacı́o.

6.A.1 El sistema verifica que existı́an más marcas dentro de la sección a la
que pertenece la marca creada.

6.A.2 El sistema ajusta los tiempos de fin de las marcas según la nueva
disposición.

Tabla 4.10: CU10: Crear Marca

4.2. CASOS DE USO 45

CU11 Editar Campos Marca

Descripción Permite al usuario modificar los datos de una marca existente.

Actor Usuario Creador

Precondiciones Existe un audio cargado y una marca seleccionada.

Postcondiciones Los cambios en la marca se guardan y reflejan en la interfaz.

Flujo Normal

1. El usuario solicita la edición de un campo de la marca seleccionada
actualmente.

2. El sistema habilita la edición del campo solicitado por el usuario.

3. El usuario edita el campo solicitado y confirma al terminar.

4. El sistema muestra los cambios del campo modificado en la interfaz.

Flujos Alternativos

1.A El usuario solicita editar el tı́tulo de la marca.

1.B El usuario solicita editar el texto de la marca.

Tabla 4.11: CU11: Editar Campos Marca

46 CAPÍTULO 4. ANÁLISIS

CU12 Borrar Marca

Descripción Permite al usuario eliminar una marca del audio.

Actor Usuario Creador

Precondiciones Existe un audio cargado y una marca seleccionada.

Postcondiciones La marca seleccionada desaparece, los tiempos de fin de las marcas de la
misma sección quedan ajustados y los cambios se reflejan en la interfaz.

Flujo Normal

1. El usuario solicita la eliminación de la marca seleccionada actualmente.

2. El sistema solicita confirmación al usuario.

3. El usuario confirma la eliminación.

4. El sistema elimina la marca.

5. El sistema comprueba si existı́an más marcas dentro de la sección a la
que pertenece la marca eliminada, y en caso contrario, se procede.

6. El sistema actualiza la interfaz para reflejar los cambios.

Flujos alternativos

5.A.1 El sistema verifica que existı́an más marcas dentro de la sección a la
que pertenece la marca eliminada.

5.A.2 El sistema ajusta los tiempos de fin de las marcas según la nueva
disposición.

Tabla 4.12: CU12: Borrar Marca

4.2. CASOS DE USO 47

CU13 Mover separación entre secciones

Descripción Permite mover el punto temporal de separación entre dos secciones, cambian-
do el longitud de ambas.

Actor Usuario Creador

Precondiciones Existe un audio cargado y al menos dos secciones creadas.

Postcondiciones El tiempo de separación entre las dos secciones cambia, reflejándose en la
longitud de ambas, y los cambios se reflejan en la interfaz.

Flujo Normal

1. El usuario mueve la separación entre dos secciones en la representación
gráfica del audio.

2. El sistema comprueba si el nuevo punto de separación se encuentra
dentro de los lı́mites válidos (no invade otra sección ajena a las dos), y
en caso afirmativo, se procede.

3. El sistema modifica la longitud de las secciones y refleja los cambios en
la interfaz.

Excepciones

2.1 El sistema verifica que el nuevo punto de separación seleccionado por
el usuario no se encuentra dentro de los lı́mites válidos.

2.2 El sistema coloca el punto de separación entre secciones en su posición
inicial y el caso de uso finaliza.

Tabla 4.13: CU13: Mover separación entre secciones

48 CAPÍTULO 4. ANÁLISIS

CU14 Mover Marca

Descripción Permite mover una marca a otro punto temporal del audio.

Actor Usuario Creador y Usuario Lector

Precondiciones Existe un audio cargado y al menos una marca dentro de él.

Postcondiciones La ubicación de la marca cambia, los tiempos de fin de las marcas de la anterior
y actual sección en la que se encuentra quedan ajustados y los cambios se
reflejan en la interfaz.

Flujo Normal

1. El usuario mueve de lugar la marca deseada en la representación gráfica
del audio.

2. El sistema comprueba si la marca cambió de sección, y en caso contrario,
se procede.

3. El sistema comprueba si dentro de la sección en la que se encuentra
la marca, existen más marcas aparte de ella. En caso contrario, se
procede.

4. El sistema modifica la posición y el tiempo e finalización de la marca que
movió el usuario.

5. El sistema actualiza la interfaz para reflejar los cambios.

Flujos alternativos

2.A.1 El sistema verifica que la marca cambió de sección.

2.A.2 El sistema ajusta los tiempos de finalización de las marcas de la anterior
en la que se encontraba antiguamente la marca.

3.A.1 El sistema verifica que dentro de la sección en la que se encuentra la
marca, existen más marcas aparte de ella.

3.A.2 El sistema ajusta los tiempos de finalización de las marcas de la sección
en la que se encuentra actualmente la marca que se movió.

Tabla 4.14: CU14: Mover marca

4.2. CASOS DE USO 49

CU15 Cambiar formato de presentación del contenido en el reproductor

Descripción Permite modificar la forma de mostrar el contenido y su orientación dentro del
reproductor.

Actor Usuario Lector

Precondiciones Existe un audio cargado.

Postcondiciones La forma en la que se presenta el contenido mostrado en el reproductor cambia
según las preferencias establecidas.

Flujo Normal

1. El usuario solicita cambiar el formato de presentación del contenido
dentro del reproductor.

2. El sistema actualiza la interfaz del reproductor para reflejar los cambios
en la presentación del contenido.

Flujos alternativos

1.A El usuario solicita cambiar la presentación del contenido a modo vertical.

1.B El usuario solicita cambiar la presentación del contenido a modo hori-
zontal.

1.C El usuario solicita cambiar la presentación del contenido a modo sólo
imagen.

1.D El usuario solicita cambiar la presentación del contenido a modo sólo
texto.

1.E El usuario solicita cambiar la presentación del contenido a modo pantalla
completa.

Tabla 4.15: CU15: Cambiar formato de presentación del contenido en el reproductor

50 CAPÍTULO 4. ANÁLISIS

CU16 Exportar edición del audio

Descripción Permite al usuario guardar toda la información editada del audio en un archivo
con formato MKV que pueda ser exportado.

Actor Usuario General

Precondiciones Existe un audio cargado.

Postcondiciones El archivo MKV se genera y queda disponible para descarga o almacenamiento.

Flujo Normal

1. El usuario selecciona la opción de exportar los datos de edición a archivo
MKV.

2. El sistema genera un archivo en formato MKV que contiene la informa-
ción editada del audio (secciones y marcas).

3. El sistema inicia la descarga del archivo.

Excepciones

2.1 Ocurre un error en la generación del archivo MKV y el sistema notifica al
usuario, concluyendo el caso de uso.

Tabla 4.16: CU16: Exportar edición del audio

4.3. MODELO DE DOMINIO 51

4.3. Modelo de dominio

El modelo de dominio es una representación conceptual del sistema, que define los elementos clave
del problema como entidades, sus atributos, relaciones y restricciones. Sirve para entender el vocabulario
del dominio y la estructura estática del sistema, sin entrar en detalles de diseño o implementación [45].

En la Figura 4.2, se presenta el modelo de dominio de esta aplicación, elaborado a partir de los
requisitos recolectados y los casos de uso definidos previamente.

Figura 4.2: Diagrama de modelo de dominio de análisis de la aplicación

A continuación, se describen en detalle las clases que aparecen en el diagrama, ası́ como las relaciones
que existen entre ellas:

ContenidoAudiovisual Es la clase central del modelo y representa una agrupación de información
asociada a un audio, que además posee las herramientas necesarias para gestionar estos datos. Este
contenido puede ser generado a partir de un archivo .mp3 o cargado desde un archivo .mkv. Desde esta
clase se tiene acceso a todos los elementos clave que conforman la experiencia de uso.

Audio Encapsula los controles básicos de reproducción del archivo de audio: reproducir, pausar, activar
o desactivar el modo bucle, o saltar entre secciones.

Reproductor Disponible únicamente en el modo lectura, permite la visualización del contenido audio-
visual de manera interactiva. Incluye herramientas para modificar el estilo de la visualización (pantalla

52 CAPÍTULO 4. ANÁLISIS

dividida, sólo mostrar la imagen de la sección, sólo mostrar el texto de la sección), ası́ como la orientación,
cuando la pantalla del reproductor se encuentra dividida (división vertical u horizontal). Su objetivo es
adaptar la presentación del contenido a las preferencias o necesidades del usuario.

GestorSecciones Administra el espacio de secciones y marcas dentro del audio. Ofrece operaciones
que permiten crear, borrar y buscar secciones y marcas dentro de este espacio, ası́ como mover el punto
de separación entre dos secciones, fusionar dos secciones, o dividir una sección en dos. Algunas de estas
operaciones están disponibles solo en el modo escritura, restringiéndose en el modo lectura para proteger
el contenido.

Seccion Representa un segmento del audio definido por un tiempo de inicio y un tiempo de fin. La
información que se recopila de él es un tı́tulo, un texto, una imagen, y un color que lo diferencie del resto
de secciones. Sus operaciones permiten modificar estos datos mencionados.

Marca Representa un punto concreto del audio, ubicado en un instante especı́fico. De ella se recoge
información como un tı́tulo y un texto, y presenta operaciones que permiten su modificación . Las marcas
ayudan a destacar momentos relevantes dentro de una sección.

Tiempo Clase que encapsula un valor numérico junto con su unidad temporal (como segundos o
milisegundos).

Como se puede observar, la clase ContenidoAudiovisual constituye el núcleo del modelo,
estableciendo relaciones directas con el resto de las clases. Está asociada a un Audio, que proporciona
los controles de reproducción; a uno o ningún Reproductor, presente únicamente en el modo lectura;
y a un GestorSecciones, responsable de gestionar las secciones y marcas del espacio del audio.

Asimismo, puede contener una o varias Seccion, cada una con sus propias marcas, ası́ como
referencias a una Sección seleccionada y una Marca seleccionada, que indican los elementos actualmente
activos. También puede haber una Sección en bucle y una Marca en bucle, utilizadas cuando se reproduce
un fragmento o instante de audio de forma repetida.

Capı́tulo 5

Diseño

En este capı́tulo se describe el diseño de la aplicación desarrollada, abordando tanto su estructura
interna como su aspecto visual. El objetivo de esta etapa es definir, organizar y representar de forma clara
cómo se construye el sistema antes de su implementación completa.

Para ello, se presenta en primer lugar la arquitectura general de la aplicación, basada en componentes
reutilizables y servicios, siguiendo el enfoque modular propuesto por el framework Angular. A continua-
ción, se detalla la estructura del proyecto, mostrando los paquetes principales, las clases contenidas en
cada uno y las relaciones existentes entre ellos.

Finalmente, se presenta el diseño de la interfaz de usuario, detallando su estructura dividida en
secciones funcionales y su relación directa con los distintos componentes de la aplicación.

5.1. Arquitectura Lógica

Tal como se expuso en capı́tulos anteriores, el desarrollo de la aplicación se llevó a cabo utilizando
Angular como framework para el frontend. Esta elección determina en gran medida la arquitectura del
proyecto, ya que Angular proporciona una estructura bien definida basada en componentes, servicios,
módulos y enrutamiento. Gracias a este enfoque, es posible desarrollar aplicaciones complejas de forma
organizada, escalable y mantenible. A continuación, se describen los elementos clave que definen la
arquitectura de Angular [46], fundamentales para comprender el diseño y desarrollo de la aplicación
presentada en este trabajo.

Componentes

Los componentes son la piedra angular de cualquier aplicación Angular. Representan unidades inde-

53

54 CAPÍTULO 5. DISEÑO

pendientes de la interfaz de usuario que encapsulan tanto la lógica como la presentación visual. Cada
componente está formado por:

Una clase TypeScript, donde se define el comportamiento y el estado del componente.

Una plantilla HTML, que describe la estructura visual del componente.

Un archivo de estilos CSS o SCSS, que define su apariencia.

Angular gestiona automáticamente el ciclo de vida de los componentes, permitiendo ejecutar lógica
en momentos concretos mediante métodos como ngOnInit() (cuando se inicializa el componente) o
ngOnDestroy() (cuando se elimina). Esta separación clara entre la lógica, la vista y el estilo permite una
mayor modularidad y facilita el mantenimiento del código.

Los componentes pueden anidarse unos dentro de otros y comunicarse mediante inputs y outputs, lo
cual facilita la creación de interfaces complejas a partir de unidades pequeñas y reutilizables.

Servicios e Inyección de Dependencias

Los servicios son clases dedicadas a manejar lógica de negocio, tareas reutilizables o datos compartidos
entre múltiples componentes.

Angular ofrece un sistema incorporado de inyección de dependencias (DI), que permite a los compo-
nentes o a otros servicios solicitar instancias de estos servicios sin necesidad de crearlos manualmente.
Esto se consigue utilizando el decorador @Injectable().

La inyección de dependencias favorece:

La reutilización del código (un mismo servicio puede ser usado por múltiples componentes).

La modularidad y la independencia entre capas.

La facilidad de pruebas, al poder inyectar versiones falsas de los servicios (mocks) en los tests.

Módulos

Los módulos (NgModules) son estructuras que permiten agrupar componentes, servicios, directivas y
otros recursos relacionados bajo una misma unidad lógica. Cada aplicación Angular tiene al menos un
módulo raı́z, normalmente llamado AppModule, que define los elementos principales de la aplicación y
sirve como punto de entrada.

5.2. ORGANIZACIÓN DEL PROYECTO 55

Además del módulo principal, Angular permite dividir la aplicación en módulos funcionales o de
caracterı́sticas, lo que facilita el mantenimiento, la carga perezosa de funcionalidades (lazy loading) y el
escalado de la aplicación.

Con la llegada de Angular 14, se introdujo el concepto de componentes independientes (standalone
components), que permite prescindir de los módulos al definir componentes de forma autónoma. Esta
caracterı́stica reduce la complejidad inicial y mejora la portabilidad de componentes entre proyectos.

Enrutamiento

Angular proporciona un sistema de enrutamiento que permite gestionar la navegación entre diferentes
vistas o páginas dentro de una misma aplicación. Gracias a este mecanismo, es posible construir aplica-
ciones de una sola página (SPA), donde el contenido se actualiza dinámicamente sin recargar la página
completa. El enrutamiento se define mediante una configuración de rutas, que asocia cada URL con un
componente especı́fico.

5.2. Organización del proyecto

En este apartado ahondaremos en cómo se estructura la aplicación desarrollada desde un punto de vista
de diseño. Para representar esta estructura jerárquica de carpetas, las relaciones que existen entre ellas y
las clases más importantes en cada una, se emplean diagramas de paquetes.

En el Lenguaje de Modelado Unificado (UML), un diagrama de paquetes es un tipo de diagrama
estructural que agrupa elementos relacionados (como clases, interfaces o subpaquetes) en contenedores
visuales denominados paquetes, representados como carpetas. Su propósito es ofrecer una visión de
alto nivel de la organización del sistema, mostrando la jerarquı́a de módulos y las dependencias entre
ellos [47].

56 CAPÍTULO 5. DISEÑO

5.2.1. Diagrama de paquetes general de la aplicación

Figura 5.1: Diagrama de paquetes del proyecto Angular

En la Figura 5.1, se muestra el diagrama de paquetes que representa la organización en carpetas
del proyecto. Esta estructura sigue el modelo estándar de las aplicaciones desarrolladas con Angular,
aunque ha sido adaptada en ciertos aspectos para ajustarse a las necesidades concretas de la aplicación. A
continuación, se describe el propósito de las carpetas y archivos principales:

/src/ Contiene el código fuente de la aplicación. Es la carpeta principal desde la cual se organiza
todo el desarrollo de la aplicación Angular.

/src/app Contiene los componentes, servicios, modelos y demás elementos que forman la lógica y
estructura funcional de la aplicación. Debido a su relevancia, se describe con mayor detalle en el siguiente
apartado.

/assets/ Directorio destinado a almacenar recursos estáticos que serán utilizados por la aplicación,
como imágenes, archivos de configuración, librerı́as externas o fuentes.

/assets/ffmpeg-core Contiene los archivos necesarios para ejecutar FFmpeg en el navegador,
incluyendo los WASM y los workers. Esto permite acceder a sus funcionalidades sin conexión, ya que no
deben ser descargados externamente.

5.2. ORGANIZACIÓN DEL PROYECTO 57

/assets/icons Contiene los iconos utilizados en la interfaz de usuario, incluyendo los que se
emplean en la configuración del manifiesto de la PWA y otros elementos gráficos.

/assets/manifest Incluye archivos relacionados con la configuración de la aplicación como
PWA (Progressive Web App), como el manifest.webmanifest, que define propiedades como el nombre,
icono y comportamiento en dispositivos móviles.

/angular/ Directorio generado por Angular que puede contener archivos auxiliares relacionados
con la compilación o configuración del entorno de trabajo. No suele modificarse directamente por el
desarrollador.

/dist/ Carpeta de salida que contiene la versión final compilada y optimizada de la aplicación lista
para su despliegue. Es generada automáticamente tras ejecutar el comando de construcción (ng build).

/node modules/ Almacena todas las dependencias instaladas mediante NPM (Node Package Ma-
nager). Incluye tanto bibliotecas propias de Angular instaladas de forma automática, como bibliotecas
especı́ficas instaladas manualmente.

/public/ Esta carpeta se utiliza para el despliegue de la aplicación en GitLab Pages. El contenido
generado al ejecutar ng build deberá copiarse aquı́ para que pueda ser servido correctamente. En el
siguiente capı́tulo se detallará con mayor precisión su uso dentro del proceso de publicación.

/gitlab-ci Contiene los archivos de configuración para la integración continua con GitLab CI/CD.
Aquı́ se definen los pasos que debe seguir el pipeline de GitLab para construir, testear o desplegar la
aplicación de forma automatizada.

/ngsw-config Archivo de configuración del service worker utilizado por Angular para habilitar
funcionalidades propias de una PWA, como el almacenamiento en caché de recursos, la disponibilidad
offline y la mejora del rendimiento en cargas posteriores.

58 CAPÍTULO 5. DISEÑO

5.2.2. Diagrama de paquetes de app

Figura 5.2: Diagrama de paquetes de app en la aplicación

Ahora, pasaremos a describir en especı́fico la estructura del paquete app, que, como se mencionó
anteriormente, contiene la lógica principal de la aplicación. A continuación, se detalla para qué sirve cada
uno de los paquetes representados en el diagrama de la Figura 5.2, ası́ como las clases más relevantes
que se encuentran dentro de ellos. Esta organización refleja una separación clara de responsabilidades y
contribuye a mantener un código modular, escalable y fácil de mantener.

Componentes Este paquete contiene los componentes principales en los que se divide la interfaz gráfica
de la aplicación.

ContenedorLecturaEscrituraComponent: componente principal que coordina y agrupa al resto
de componentes de la interfaz. Sus responsabilidades incluyen:

• Detectar el modo actual de la aplicación (lectura o escritura) e inicializar los componentes de
acuerdo a este.

• Inicializar los servicios responsables de la compartición de datos entre componentes.

5.2. ORGANIZACIÓN DEL PROYECTO 59

• Gestionar la introducción de archivos: un archivo MP3 para la creación de un nuevo proyecto
o un archivo MKV para cargar un proyecto existente. Esto implica inicializar un objeto
Wavesurfer con la información del audio y un objeto ColeccionSecciones con la
información estructurada de secciones y marcas, ambos compartidos mediante los servicios.

• Permitir la descarga del archivo actualmente en edición, ası́ como establecer su nombre.

ReproductorWsComponent: componente encargado de representar gráficamente el audio, junto
con sus secciones y marcas, y proporcionar controles de reproducción. Permite:

• Visualizar gráficamente el audio mediante Wavesurfer, incluyendo interacción con las
secciones y marcas (mover intersecciones, añadir o mover marcas, etc.).

• Controlar el volumen del audio.

• Saltar a la siguiente o anterior sección.

• Reproducir o pausar el audio.

• Modificar el nivel de zoom de la visualización de la onda.

ListaSeccionesMarcasComponent: muestra una lista de secciones y marcas, junto con un resumen
de sus datos (tı́tulo, color y duración), y ofrece controles de reproducción asociados. Permite:

• Seleccionar una sección o marca.

• Reproducir una sección o marca en bucle.

• Reproducir desde el inicio una sección o marca.

• Ocultar o mostrar la lista de marcas asociadas a una sección.

ListaSeccionesMarcasAbreviadaComponent: utilizado en pantallas con orientación vertical.
Muestra los datos de la sección actualmente seleccionada y permite desplegar la lista completa de
secciones y marcas para seleccionar otra.

PanelEdicionVisionSeccMarcaComponent: muestra la información completa de la sección o
marca seleccionada y ofrece controles para su reproducción (en ambos modos) y edición (en modo
escritura). Permite:

• Reproducir desde el inicio o en bucle la sección o marca seleccionada.

• Editar los campos de tı́tulo, texto e imagen (modo escritura).

• Cambiar el color de la sección (modo escritura).

• Eliminar la sección o marca (modo escritura).

• Cambiar el modo de visualización (solo imagen, solo texto o dividido) y su orientación
(vertical u horizontal) en modo lectura.

• Activar el modo de reproducción a pantalla completa, con controles de reproducción de audio
simplificados (modo lectura).

60 CAPÍTULO 5. DISEÑO

Pop-ups Este paquete contiene todos los componentes que actúan como ventanas emergentes y son
utilizados por los componentes principales:

PopUpAgregarMarcaComponent: permite añadir una nueva marca en modo lectura, introduciendo
su tı́tulo y texto.

PopUpAgregarSeccMarcComponent: permite elegir entre agregar una nueva sección o una nueva
marca.

PopUpCargaComponent: informa al usuario de que la aplicación se encuentra en estado de carga.

PopUpErrorComponent: muestra mensajes de error personalizados.

PopUpIntroducirMkvComponent: permite seleccionar un archivo MKV para cargar su contenido
en la aplicación.

PopUpIntroducirMp3Component: permite introducir un archivo MP3 como base para crear un
nuevo proyecto.

PopUpEditarTextoSeccMarcComponent: permite editar el texto de una sección o marca.

Shared Este paquete agrupa las estructuras de datos y clases que implementan la lógica de negocio,
utilizadas por los componentes. Se divide en tres subpaquetes:

Servicios Contienen la lógica principal de negocio y la gestión de datos compartidos entre compo-
nentes.

ControlesWsService: proporciona una interfaz común para interactuar con el objeto Wavesurfer,
incluyendo:

• Métodos para reproducir, reproducir en bucle, saltar entre secciones, hacer zoom, cambiar
volumen, y consultar información como el tiempo actual de reproducción.

• Inicialización y configuración del objeto Wavesurfer, adaptándolo para permitir la creación
y edición de secciones y marcas, ası́ como la configuración del zoom, scroll y comportamiento
de reproducción.

GestionSeccionesMarcasService: ofrece métodos para crear, eliminar y modificar secciones y
marcas del objeto ColeccionSecciones.

SeleccionSeccionMarcaService: gestiona la selección activa de una sección o marca, permitiendo:

• Seleccionar o deseleccionar elementos del objeto ColeccionSecciones.

5.2. ORGANIZACIÓN DEL PROYECTO 61

• Consultar el valor de la seccion o marca seleccionada actualmente.

• Detectar automáticamente la sección o marca en la que se encuentra el audio actualmente y
actualizar la selección (utilizado en modo lectura).

IdentificarDispositivoService: permite detectar el tipo de dispositivo (móvil, tablet o sobremesa) y
su orientación de pantalla (vertical u horizontal).

IndexedDbService: encapsula el acceso a la base de datos IndexedDB, permitiendo almacenar,
recuperar y eliminar archivos.

LectorEscritorMkvService: permite:

• Leer los datos almacenados en un archivo MKV previamente generado por la aplicación.

• Generar un nuevo archivo MKV que contenga el audio y la colección de secciones y marcas,
incluyendo sus tı́tulos, textos e imágenes.

Clases

ColeccionSecciones: encapsula la lógica de gestión de un conjunto de secciones y marcas a lo largo
del eje temporal del audio, incluyendo creación, edición, eliminación y búsqueda de elementos.

Color: clase estática con utilidades para generar colores aleatorios y convertir entre formatos de
color.

ConversorTiempo: clase estática que proporciona métodos para convertir tiempos entre diferentes
formatos.

UtilidadesHtml: clase estática con funciones para modificar dinámicamente elementos HTML
desde el código.

UtilidadesWs: clase estática con funciones relacionadas con el objeto Wavesurfer.

ValidadorFicheros: clase estática que permite verificar la validez de un objeto File, útil para
detectar si su contenido ha sido eliminado por el navegador (por ejemplo, en dispositivos móviles
con poco espacio).

62 CAPÍTULO 5. DISEÑO

Figura 5.3: Diagrama de clases del paquete interfaces de la aplicación

Interfaces Este paquete agrupa las interfaces y enumeraciones utilizadas para estructurar los datos.
En la Figura 5.3 se puede observar qué atributos contiene cada una.

SeccionLectura: representa los datos principales de una sección tal como se almacenan en un
archivo MKV, incluyendo inicio, fin, tı́tulo, texto, imagen, color, si el texto está en Markdown, y la
lista de marcas asociadas.

SeccionAudio: amplı́a a SeccionLectura con propiedades adicionales necesarias durante
la edición y visualización, como la referencia a su Region en Wavesurfer y flags de estado
(seleccionada, en bucle, etc.).

MarcaLectura: representa los datos de una marca en un archivo MKV, incluyendo su tiempo, tı́tulo
y texto.

MarcaAudio: hereda de MarcaLectura y, al igual que SeccionAudio, añade propiedades
útiles para la edición y visualización.

ImagenSeccion: representa los datos asociados a una imagen, incluyendo el archivo original, el
enlace para su visualización en la página y su identificador en IndexedDB, que permite recuperarla
posteriormente desde la base de datos.

5.3. INTERFAZ DE USUARIO 63

Enums Este paquete incluye las enumeraciones utilizadas para definir opciones o estados dentro de la
aplicación.

ModoCargaWavesurfer: indica si el objeto Wavesurfer se debe crear desde cero (NUEVO) o
cargando información preexistente (CARGAR), incluyendo la información de secciones y marcas
extraı́da de un archivo cargado.

ModoVisionArchivo: define el modo actual de la aplicación: LECTURA o ESCRITURA, cada uno
con diferentes funcionalidades y restricciones.

TipoRegion: clasifica los distintos tipos de regiones gráficas en Wavesurfer, teniendo cada una de
ellas propiedades especiales en su configuración (si puede o no ser arrastrada, su aspecto visual, su
longitud, etc):

• SECCION y MARCA, asociadas a los contenidos.

• CURSOR: marca que se utiliza para navegar dentro de la onda de audio e indicar la zona donde
se desea agregar una nueva marca o sección.

• SEPARADOR: marca que simboliza la separación entre dos secciones, y que puede moverse
para ajustar la separación entre ellas.

ModoVisionReproductor: define cómo se presenta el contenido en la pantalla del reproductor en
modo lectura:

• DIVIDIDO: se muestra tanto la imagen como el texto de la sección en reproducción.

• IMAGEN: se muestra solo la imagen de la sección.

• TEXTO: se muestra solo texto de la sección.

OrientacionReproductor:define los estados en los que puede estar la orientación del reproductor
en modo lectura. Esta puede ser HORIZONTAL, mostrándose la imagen arriba y el texto abajo,
VERTICAL, mostrándose el texto a la izquierda y la imagen a la derecha, o NINGUNO, en caso de
que el modo de visión no sea DIVIDIDO.

5.3. Interfaz de usuario

El diseño de la interfaz de usuario fue un paso previo fundamental para la posterior división de
la aplicación en componentes, ya que permitió visualizar y delimitar las distintas áreas funcionales
que la componen. Esta interfaz es compartida por ambos modos de funcionamiento de la aplicación
(lectura y escritura), ya que presentan una estructura común y comparten la mayorı́a de funcionalidades,
diferenciándose únicamente en ciertos comportamientos y controles especı́ficos. En la Figuras 5.4

64 CAPÍTULO 5. DISEÑO

(interfaz en horizontal) y 5.5 (interfaz en vertical), se muestra el boceto general de esta interfaz, en el que
se han utilizado diferentes colores para representar cada uno de los componentes identificados.

Figura 5.4: Boceto de la interfaz (horizontal) de la aplicación separada por componentes

5.3. INTERFAZ DE USUARIO 65

Figura 5.5: Boceto de la interfaz (vertical) de la aplicación separada por componentes

AppComponent (color rojo) Corresponde a la barra de navegación superior, visible de forma perma-
nente en la aplicación. Incluye el logotipo y permite navegar entre sus dos modos, lectura y escritura.

ContenedorLecturaEscrituraComponent (color amarillo) Ocupa el área principal bajo la barra de
navegación, actuando como contenedor del resto de componentes de la interfaz. En su parte superior
se encuentra una barra que permite seleccionar un archivo (MP3 o MKV) para cargar un proyecto o
comenzar uno nuevo desde cero. También incluye un botón para exportar el proyecto actual en formato
MKV, con la posibilidad de darle nombre en modo escritura.

ReproductorWsComponent (color azul) Muestra la representación visual de la onda del audio, junto
con los controles de reproducción asociados.

66 CAPÍTULO 5. DISEÑO

PanelEdicionVisionSeccMarcaComponent (color verde) Su apariencia varı́a en función del modo
(lectura o escritura). La interfaz de este componente se divide en dos partes:

Una barra superior, que presenta la información de la sección o marca seleccionada actualmente y
una serie de controles que varı́an según el modo. En modo escritura, estos incluyen reproducción
desde el inicio, reproducción en bucle y eliminación de la sección o marca. En modo lectura, los
controles permiten cambiar el modo de visualización y orientación de los datos del panel, además
de ofrecer una opción para visualizarlo en pantalla completa.

Dos recuadros destinados a mostrar el texto y/o la imagen asociados a la sección o marca selec-
cionada. En el modo escritura, estos elementos son editables para permitir la modificación del
contenido.

ListaSeccionesMarcasComponent y ListaSeccionesMarcasAbreviadaComponent (color morado)
Se encargan de mostrar la lista de secciones y marcas. El componente ListaSeccionesMarcasComponent
presenta una estructura jerárquica donde cada sección puede contener varias marcas, todas con controles
para su reproducción desde el inicio o en bucle. Al pulsar en una sección o marca de la lista, esta es selec-
cionada. En la disposición vertical, se utiliza ListaSeccionesMarcasAbreviadaComponent,
que muestra únicamente la información de la sección seleccionada en un recuadro, junto con una opción
para desplegar la lista completa para que ocupe toda la pantalla.

A la hora de diseñar la interfaz, se buscaba que esta fuera compacta (es decir, que pudiera visualizarse
en pantalla sin necesidad de hacer scroll), intuitiva, fácil de usar y de aprender, y cómoda para el usuario.
Además, se prestó especial atención al uso del color, procurando evitar una apariencia recargada. Para
ello, resultó de gran utilidad la herramienta web Coolors [48], que permitió seleccionar una paleta de
colores armoniosa y adecuada para la aplicación.

En las Figuras 5.6 y 5.7 se muestran capturas de la interfaz final en sus modos de escritura y lectura,
respectivamente, en orientación horizontal. Por otro lado, en las Figuras 5.8 y 5.9 se presentan ambos
modos de la aplicación en su versión vertical, más orientada a tablets y dispositivos móviles.

5.3. INTERFAZ DE USUARIO 67

Figura 5.6: Interfaz de escritura de la aplicación (horizontal)

Figura 5.7: Interfaz de lectura de la aplicación (horizontal)

68 CAPÍTULO 5. DISEÑO

Figura 5.8: Interfaz de escritura de la aplicación (vertical)

5.3. INTERFAZ DE USUARIO 69

Figura 5.9: Interfaz de lectura de la aplicación (vertical)

70 CAPÍTULO 5. DISEÑO

Capı́tulo 6

Implementación y Despliegue

Este capı́tulo describe los aspectos más relevantes relacionados con la implementación de la aplicación.
En primer lugar, se detallan las principales bibliotecas empleadas para su desarrollo, que han permitido
integrar funcionalidades clave como la visualización y edición de audio, ası́ como la generación del archivo
final. A continuación, se explica cómo se ha incorporado la funcionalidad propia de una PWA (Progressive
Web App), lo que permite que la aplicación pueda instalarse y usarse sin conexión. Posteriormente, se
expone el uso de Indexed DB para la persistencia local de las imágenes introducidas por el usuario,
garantizando su disponibilidad entre sesiones. Finalmente, se describe el proceso de despliegue de la
aplicación, que durante la fase de desarrollo se realizó en GitLab Pages, y para su publicación final se
llevó a cabo en GitHub Pages, permitiendo acceder a ella de forma pública a través de un navegador web.

6.1. Bibliotecas principales

A continuación, se presentan las principales bibliotecas utilizadas en la implementación de la aplicación
desarrollada, detallando los aspectos más relevantes de su uso.

6.1.1. Ffmpeg.wasm

La biblioteca FFmpeg fue utilizada para la introducción y recuperación de datos en archivos en formato
.mkv. Este tipo de archivo permite almacenar múltiples tipos de datos de manera estructurada mediante el
uso de streams.

Un stream (o flujo de datos) representa una pista de contenido dentro del archivo. Cada stream puede
contener un tipo especı́fico de información (como audio, vı́deo o subtı́tulos), y los archivos MKV permiten
incluir varios streams del mismo o distinto tipo. A cada stream se le asigna un número, comenzando por

71

72 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

el 0, y se puede añadir tantos como se desee.

Los tipos de stream más comunes que se pueden almacenar en un archivo MKV son:

Stream de audio: contiene el contenido sonoro del archivo, como música, voz o efectos.

Stream de vı́deo: aunque su uso más común es para contenido visual en movimiento, también
puede utilizarse para almacenar imágenes estáticas, codificadas como fotogramas.

Stream de subtı́tulos: almacena texto sincronizado con el contenido audiovisual, como transcrip-
ciones o traducciones. Aunque no se usa en este proyecto, es otro tipo de stream compatible con
MKV.

Además de los streams, los archivos MKV permiten almacenar metadatos: información textual adicional
estructurada como pares clave = valor. Estos metadatos no forman parte de un stream concreto,
pero se guardan dentro del archivo y pueden ser leı́dos y escritos mediante FFmpeg.

Organización de los datos en el archivo MKV

En el caso de este proyecto, se quiere almacenar en un archivo .mkv tanto el audio del proyecto como
los datos asociados a un conjunto de secciones definidas sobre ese audio. Estos datos incluyen:

El archivo MP3 correspondiente al audio principal.

La información de cada sección (tiempos de inicio y fin, tı́tulo, texto, imagen asociada, etc.).

Las marcas contenidas dentro de cada sección (tiempos de inicio y fin, titulos, textos, etc.).

La forma de organizar esta información en el contenido del archivo MKV será la siguiente:

Audio del proyecto: se asigna al stream 0, utilizando un stream de tipo audio. Este stream contendrá
el archivo .mp3 correspondiente al audio principal.

Imágenes de las secciones: se utiliza un stream de tipo video por cada imagen. Cada imagen se
codifica como un pequeño vı́deo estático (normalmente un único fotograma), y se asigna un número
de stream progresivo a cada una: el stream 1 para la imagen de la primera sección, el stream 2 para
la segunda, y ası́ sucesivamente. Este orden permite recuperar las imágenes en el mismo orden en
que fueron añadidas, manteniendo la correspondencia con las secciones.

6.1. BIBLIOTECAS PRINCIPALES 73

Datos de las secciones y marcas (sin incluir imágenes): esta información se almacena en los
metadatos del archivo, utilizando la estructura clave = valor. Para cada sección, la clave sigue
el formato SECCION n, donde n es el número de sección, y el valor es una cadena en formato
JSON que contiene toda la información asociada a esa sección (incluyendo sus marcas). Este JSON
se genera utilizando la función JSON.stringify() de TypeScript, a partir de la interfaz de
datos de la sección, y puede volver a transformarse en un objeto utilizando JSON.parse().
Esta estrategia permite mantener la independencia entre los datos del archivo y la implementación
concreta del código, facilitando modificaciones posteriores en las interfaces sin necesidad de alterar
el formato del archivo.

También se añade un metadato adicional llamado NUM SECCIONES, que indica la cantidad total de
secciones almacenadas.

Comando FFmpeg utilizado para generar el archivo

El comando utilizado para generar un archivo MKV que contenga todos los datos del proyecto tiene la
siguiente forma:

ffmpeg \

-i audio.mp3 \

-i imagen(número imagen).(extensión Imagen) \

-map 0 \

-map (num_imagen) \

-metadata NUM_SECCIONES=(número de secciones) \

-metadata SECCION_(número seccion)='(JSON con datos de la sección)' \

-c copy \

archivo_salida.mkv

i: se utiliza para introducir un archivo de entrada. Puede repetirse varias veces para añadir múltiples
fuentes (audio, imágenes, etc.).

map: asigna cada archivo de entrada a un stream concreto en el archivo de salida. Por ejemplo,
-map 0 indica que el primer archivo de entrada se convertirá en el stream 0 del archivo resultante.

metadata: permite añadir información textual en forma de metadatos al archivo .mkv, siguiendo el
formato clave = valor.

c copy: indica que los datos de los streams deben copiarse directamente sin recodificarse. Esto
permite preservar la calidad original del contenido y agilizar el proceso de generación, ya que se
evita cualquier operación de compresión o conversión adicional.

74 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

Wasm

Como se ha mencionado en apartados anteriores, la biblioteca ffmpeg utilizada en esta aplicación se
basa en WebAssembly (WASM), lo que permite ejecutar procesamiento multimedia directamente en el
navegador sin necesidad de servidores externos. Para asegurar que la aplicación funcione también en
modo offline (sin depender de descargas desde servidores de terceros), es necesario incluir en el proyecto
los archivos esenciales que constituyen el núcleo de ffmpeg.wasm.

Estos archivos se almacenan en la carpeta assets/ffmpeg-core y cumplen funciones especı́ficas en el
proceso de carga y ejecución de la biblioteca:

ffmpeg-core.js: archivo principal que contiene la lógica necesaria para inicializar y gestionar la
instancia de ffmpeg en el navegador.

ffmpeg-core.wasm: archivo compilado en WebAssembly, que realiza el procesamiento intensivo
de datos de forma eficiente.

worker.js: script encargado de ejecutar ffmpeg en un hilo separado (Web Worker), mejorando el
rendimiento y evitando bloqueos en la interfaz principal.

const.js, errors.js: archivos auxiliares que definen constantes y manejan errores relacionados con
la ejecución de ffmpeg.

Estos recursos se cargan dinámicamente en tiempo de ejecución mediante rutas relativas, lo que permite
que el entorno WASM de ffmpeg se configure correctamente y funcione de forma integrada dentro de la
aplicación Angular, incluso sin conexión a internet.

6.1.2. Wavesurfer

Junto con la biblioteca FFmpeg, Wavesurfer.js ha sido una de las más empleadas en la implementación
de esta aplicación, proporcionando las herramientas necesarias para visualizar y manipular gráficamente
una onda de audio.

Esta biblioteca cuenta con diversos plugins que amplı́an su funcionalidad básica. En este proyecto se
han utilizado principalmente los siguientes:

TimeLine Plugin Este plugin permite mostrar una lı́nea de tiempo debajo de la onda de audio, divi-
diéndola en intervalos regulares configurables. Es una herramienta esencial para facilitar la localización
precisa de puntos dentro del audio, mejorando significativamente la navegación y la comprensión visual
del mismo.

6.1. BIBLIOTECAS PRINCIPALES 75

Regions Plugin Este plugin es el más relevante para la aplicación, ya que permite crear y manipular
regiones sobre la onda de audio. Dichas regiones representan gráficamente cada una de las secciones y
marcas definidas por el usuario, ası́ como el cursor selector que permite elegir puntos especı́ficos en la
pista de audio. Cada objeto Region posee una serie de atributos asociados, ası́ como métodos que permiten
modificarlos. A continuación, se describen los más relevantes dentro de la aplicación:

color: define el color de la región. En el caso de las marcas y los separadores entre secciones,
se utiliza un tono azul oscuro, diferenciados visualmente mediante estilos de lı́nea distintos. Las
secciones reciben por defecto un color aleatorio, que puede ser modificado por el usuario en el
modo de edición de la aplicación. La región correspondiente al cursor selector se muestra en color
rojo.

content: representa el contenido textual o HTML asociado a la región. Por defecto, se añade en la
parte izquierda de esta, y suele ser un texto descriptivo que permite identificarla del resto. En esta
aplicación, las regiones que representan a secciones, contienen un número identificativo situado en
su lado izquierdo, comenzando desde el 1. La región correspondiente al cursor selector tiene un
comportamiento especial y su contenido alterna entre dos variantes que dependen de su estado:

1. Cuando el cursor está siendo arrastrado sobre la onda de audio, muestra una etiqueta con el
instante de tiempo actual del cursor.

2. Cuando está quieto, muestra un botón que permite añadir una nueva sección o marca en esa
posición.

contentEditable: indica si el contenido textual de la región puede editarse directamente. En este
proyecto, el valor es siempre falso, ya que el contenido no se modifica desde la interfaz de usuario.

drag: determina si la región puede ser arrastrada a lo largo de la onda de audio. Las regiones
asociadas a secciones y marcas permanecen fijas, mientras que las regiones que actúan como
separadores entre secciones y el cursor selector, sı́ se pueden mover.

start: marca el instante de tiempo del audio en el que comienza la región. En el caso de las marcas,
este valor coincide con el de finalización, ya que representan un punto especı́fico en lugar de un
intervalo.

end: indica el instante en que finaliza la región dentro del audio.

id: es el identificador interno de la región. Además de permitir comparaciones entre regiones,
también puede usarse para aplicar estilos especı́ficos mediante reglas CSS, afectando a todas las
regiones que compartan dicho identificador.

76 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

6.2. Funcionalidad PWA

Para convertir la aplicación en una Progressive Web App (PWA), se utilizó el soporte oficial proporcio-
nado por Angular mediante el paquete @angular/pwa, instalado a través del comando:

ng add @angular/pwa

La ejecución de este comando genera automáticamente dos archivos clave en el proyecto Angular:

manifest.webmanifest: contiene metadatos sobre la aplicación, como su nombre, iconos de aplica-
ción, colores de tema, orientación, etc. Estos datos permiten que la aplicación pueda instalarse en el
dispositivo, lo que significa que puede añadirse a la pantalla de inicio (en dispositivos móviles o
escritorios compatibles) y ejecutarse como una ventana independiente, sin interfaz de navegador.

ngsw-config.json: define la configuración del Service Worker, un script que se ejecuta en segundo
plano en el navegador. Su función principal es gestionar la caché de los recursos de la aplicación,
actuando como intermediario entre esta y la red. Esto permite mejorar el rendimiento en sesiones
posteriores, ası́ como habilitar el funcionamiento sin conexión.

En este caso, no fue necesario modificar el contenido del manifest.webmanifest, ya que su configuración
por defecto resultó adecuada. Sin embargo, sı́ se adaptó el contenido de ngsw-config.json para
asegurar el correcto almacenamiento en caché de los recursos necesarios.

La configuración del Service Worker mendiante el fichero ngsw-config.json tiene un impacto
directo en cómo se descargan, almacenan y actualizan los recursos de la aplicación, y se organiza de la
siguiente manera:

En el grupo app se incluyen los archivos esenciales para el funcionamiento de la aplicación: el
archivo principal index.html, los scripts y hojas de estilo generados por Angular (.js y .css),
el manifiesto y, de forma destacada, los archivos necesarios para ejecutar FFmpeg de forma local
en el navegador (ffmpeg-core.js, ffmpeg-core.wasm y worker.js, ubicados en el
directorio /ffmpeg-core/). Al establecer el modo de instalación como “prefetch”, estos recursos
se descargan de forma anticipada durante la instalación inicial del Service Worker, asegurando su
disponibilidad incluso en ausencia de conexión.

En el grupo assets se incluyen imágenes, iconos y otros recursos multimedia utilizados en la
interfaz. Se configura con “installMode”: “lazy”, lo que significa que estos archivos se descargan
únicamente cuando son solicitados por la aplicación (por ejemplo, al ser mostrados en pantalla).
Además, “updateMode”: “prefetch” permite que nuevas versiones de estos recursos se descarguen
en segundo plano para ser utilizadas en la siguiente sesión.

6.3. USO DE INDEXED DB PARA LA PERSISTENCIA DE IMÁGENES 77

Aunque en este caso la aplicación es puramente frontend y no realiza peticiones a servidores externos,
la configuración del Service Worker sigue siendo fundamental. Gracias al almacenamiento en caché
gestionado a través del archivo ngsw-config.json, todos los recursos crı́ticos que requiere la
aplicación para ejecutarse (como el archivo principal index.html, los scripts y estilos generados por
Angular, los iconos y los archivos necesarios para FFmpeg) son descargados y almacenados localmente
en la primera carga de la aplicación con conexión a internet.

Esto permite que, una vez descargados por completo, dichos recursos permanezcan accesibles desde la
caché del navegador incluso si posteriormente no se dispone de conexión. De este modo, si el usuario
abre la aplicación en otro momento sin conexión a internet, esta podrá ejecutarse de forma normal: se
mostrará la interfaz, funcionarán las funcionalidades implementadas en el cliente, y se podrán utilizar los
módulos cargados previamente, como FFmpeg. El navegador entregará directamente desde la caché todos
los archivos necesarios, sin intentar acceder a la red.

En resumen, la aplicación puede abrirse y utilizarse sin conexión tras haber sido visitada al menos
una vez con conexión, proporcionando una experiencia consistente en cualquier circunstancia, incluso en
entornos con conectividad limitada o intermitente.

6.3. Uso de Indexed DB para la persistencia de imágenes

El uso de IndexedDB surgió como una necesidad técnica para resolver un problema especı́fico que se
manifestaba únicamente en navegadores móviles. En la aplicación desarrollada, las imágenes asociadas
a las secciones de un proyecto creado o leı́do por el usuario se almacenan en variables de tipo File
durante la visualización o edición del mismo. A partir de estos objetos File se generan enlaces temporales
(ObjectURL) que permiten visualizar las imágenes directamente en la interfaz.

El problema aparecı́a cuando el usuario, tras haber cargado las imágenes y generado los enlaces
correspondientes, abrı́a otra aplicación en su dispositivo móvil que requerı́a un uso intensivo de memoria
(como, por ejemplo, un videojuego). Al regresar a la aplicación web, las variables File que contenı́an las
imágenes dejaban de ser válidas y su contenido ya no podı́a visualizarse. Esto ocurrı́a porque algunos
navegadores móviles, ante una presión de memoria, liberan automáticamente los recursos almacenados
en memoria temporal (como los objetos File creados en tiempo de ejecución), lo cual provoca que los
enlaces generados para su visualización dejen de funcionar.

Dado que este comportamiento dependı́a del sistema de gestión de memoria del navegador, y escapaba
del control directo de la aplicación, fue necesario adoptar una solución que permitiera un almacenamiento
más persistente y fiable. En este contexto, se optó por utilizar IndexedDB, una base de datos orientada a
objetos integrada en el navegador, diseñada para almacenar grandes cantidades de datos estructurados de
forma persistente.

78 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

IndexedDB permite guardar información en el lado del cliente de forma no volátil, lo que significa que
los datos permanecen accesibles incluso después de cerrar la pestaña o la aplicación. Esto lo convierte en
una herramienta ideal para almacenar imágenes y otros recursos multimedia que deben poder recuperarse
en cualquier momento, independientemente del estado de la memoria del dispositivo.

La implementación del uso de IndexedDB en la aplicación se llevó a cabo de la siguiente forma:

1. Almacenamiento inicial: En el momento en que una imagen es introducida en la aplicación (por
ejemplo, mediante una subida de archivo o captura), esta se guarda tanto en una variable File como
en la base de datos IndexedDB. Para ello, se genera una clave única asociada a esa imagen que
permite su posterior recuperación.

2. Verificación de validez: Cada vez que se intenta mostrar una imagen en la interfaz a partir de su
variable File, se realiza una comprobación para verificar si su contenido sigue siendo válido. Esto
se puede hacer, por ejemplo, intentando crear un ObjectURL y detectando si el recurso es accesible.

3. Recuperación desde IndexedDB: En caso de que el contenido del File haya sido eliminado por el
navegador y no pueda visualizarse, se accede a IndexedDB utilizando la clave correspondiente y se
recupera la imagen almacenada. Esta imagen es entonces transformada nuevamente en un objeto
File válido, permitiendo su correcta visualización en la interfaz sin pérdida de datos ni necesidad de
volver a cargar la imagen manualmente.

Gracias a esta estrategia, se garantiza una experiencia de usuario estable en dispositivos móviles,
incluso en condiciones en las que el sistema operativo libera memoria de forma agresiva. IndexedDB
actúa como una copia de seguridad local, asegurando la persistencia de recursos importantes sin depender
de la conectividad ni del estado de la memoria volátil del navegador.

6.4. Despliegue en GitLab Pages

Como ya se mencionó anteriormente, para el despliegue de la aplicación durante su fase de desarrollo,
se utilizó GitLab Pages, una funcionalidad integrada en GitLab que permite publicar sitios web estáticos
directamente desde un repositorio. En concreto, se utilizó la instancia privada de GitLab proporcionada
por la Escuela de Ingenierı́a Informática de Valladolid [35], lo que implica que tanto los repositorios
como las páginas desplegadas están alojados en la infraestructura de la universidad, con configuraciones
particulares, como el uso de dominios propios y certificados autofirmados.

Para lograr el despliegue de esta aplicación, fue necesario ajustar algunos aspectos especı́ficos del
proyecto Angular, debido a los requisitos particulares de GitLab Pages. Dado que la versión utilizada de
Angular era la 18, y GitLab Pages requiere que los archivos finales de la aplicación estén ubicados en una
carpeta llamada public, fue necesario reorganizar la estructura del proyecto. En versiones modernas de

6.4. DESPLIEGUE EN GITLAB PAGES 79

Angular (a partir de la 17), la carpeta public puede utilizarse como sustituto de la tradicional carpeta assets
para almacenar recursos estáticos, especialmente en proyectos generados con la configuración moderna.
En este caso, como public debı́a destinarse exclusivamente al resultado del comando ng build, se creó una
nueva carpeta llamada assets, en la que se reubicaron todos los iconos y recursos de la aplicación. Además,
se actualizaron las rutas correspondientes en el código para mantener su funcionamiento original.

A partir de ese momento, la carpeta public pasó a ser la carpeta de destino del comando ng build, que
genera los archivos estáticos de la aplicación listos para ser desplegados. Este paso es indispensable, ya
que GitLab Pages únicamente expone el contenido de dicha carpeta al desplegar la aplicación.

El despliegue se gestiona automáticamente a través del archivo de configuración .gitlab-ci.yml, que
define una pipeline de CI/CD (Integración y Entrega/Despliegue Continuas). Una pipeline de CI/CD es
una secuencia automatizada de tareas que permite compilar, testear y desplegar aplicaciones de forma
segura y repetible cada vez que se suben cambios al repositorio.

En este archivo:

Se especifica la imagen de Node.js que se utilizará en el entorno de CI.

Se instalan el CLI de Angular y las dependencias del proyecto antes de la compilación.

En la sección pages, se construye el proyecto Angular en modo producción, redirigiendo la salida a
la carpeta public. Como Angular 18 genera los archivos finales dentro de una subcarpeta llamada
browser, es necesario mover su contenido al nivel superior de public para que GitLab Pages pueda
servirlos correctamente.

Finalmente, se definen las reglas para que el despliegue se realice únicamente cuando se hace push
en la rama principal del repositorio.

80 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

Figura 6.1: Sección Build > Jobs dentro del proyecto de GitLab

Una vez añadido este archivo .gitlab-ci.yml en la raı́z del proyecto y realizado un push al repositorio,
GitLab ejecuta automáticamente la pipeline, la cual puede monitorizarse desde el apartado Build

>Pipelines del menú del proyecto, como se puede apreciar en la Figura 6.1. Desde allı́ es posible ver
el progreso de la ejecución, ası́ como consultar cualquier error que haya ocurrido durante la instalación de
dependencias o la compilación del proyecto.

Figura 6.2: Sección Deploy > Pages dentro del proyecto GitLab

Cuando la pipeline finaliza correctamente, el enlace público de la aplicación aparece en el apartado
Deploy >Pages (vease la Figura 6.2), accesible desde el menú lateral de GitLab. En este caso, se
desactivó la opción “Use unique domain”, por lo que la URL generada se mantiene bajo el dominio

6.5. DESPLIEGUE EN GITHUB PAGES 81

común de GitLab Pages correspondiente a la universidad.

Debido a que el GitLab de la Escuela de Ingenierı́a Informática utiliza certificados HTTPS autofir-
mados, que no cuentan con el respaldo de una autoridad certificadora reconocida y, por lo tanto, no son
considerados confiables por los navegadores, se observan dos consecuencias prácticas en la aplicación
desplegada:

Al acceder a la web desde cualquier navegador, se indica que la conexión no es segura y es necesario
aceptar manualmente el riesgo para continuar.

En algunos navegadores, la funcionalidad PWA no está disponible, ya que el uso del service worker
requiere una conexión segura mediante HTTPS.

6.5. Despliegue en GitHub Pages

Una vez se obtuvo la versión final y estable de la aplicación, y no se preveı́an más cambios importantes,
se procedió a subir el proyecto a GitHub con visibilidad pública, con el objetivo de publicarlo de forma
accesible en internet mediante GitHub Pages.

El primer paso consistió en crear un nuevo repositorio en GitHub con visibilidad pública y subir
manualmente el código fuente del proyecto. Una vez alojado el repositorio, se procedió a configurar su
despliegue mediante GitHub Pages.

Para facilitar este proceso de despliegue en aplicaciones desarrolladas con Angular, una herramienta
muy utilizada es angular-cli-ghpages. Esta utilidad permite desplegar de forma sencilla una aplicación
Angular en GitHub Pages directamente desde la lı́nea de comandos. Internamente, se encarga de compilar
el proyecto, generar los archivos estáticos correspondientes en la carpeta dist/, y publicar ese contenido
automáticamente en la rama gh-pages del repositorio, que es la que utiliza GitHub para servir las páginas
web.

Gracias a esta herramienta, se evita tener que realizar el proceso manual de compilar, cambiar de rama,
mover archivos, y hacer el commit correspondiente. En su lugar, con unos pocos comandos, el despliegue
completo queda automatizado y funcional en pocos segundos.

Para instalar y configurar la herramienta, se ejecutan los siguientes comandos:

npm i angular-cli-ghpages

ng add angular-cli-ghpages

82 CAPÍTULO 6. IMPLEMENTACIÓN Y DESPLIEGUE

El primer comando instala el paquete necesario en el proyecto, mientras que el segundo añade
automáticamente la configuración requerida al entorno Angular. Esto incluye agregar las dependencias
necesarias y preparar el proyecto para facilitar el despliegue en GitHub Pages.

Finalmente, se realiza el despliegue con el siguiente comando:

ng deploy --base-href=/MatroskaLearn/

Este último paso compila la aplicación y publica el contenido en la rama gh-pages del repositorio. El
parámetro –base-href indica la ruta base desde la que se cargará la aplicación en el navegador, en este
caso /MatroskaLearn/, que corresponde al nombre del repositorio.

Figura 6.3: Sección Settings > Pages dentro del repositorio GitHub

Una vez completado el proceso, se puede acceder a la web desde la URL generada automáticamente
por GitHub, disponible en el apartado Settings >Pages del repositorio, como se muestra en la
Figura 6.3.

Capı́tulo 7

Pruebas

Para explicar las pruebas realizadas para verificar el correcto funcionamiento de la aplicación desa-
rrollada en este proyecto, se tomará como referencia el libro Software Engineering de Ian Sommerville
(6ª edición). En esta obra, el autor señala que el propósito principal de una prueba de software no es
demostrar que el sistema funciona perfectamente, sino descubrir defectos que puedan corregirse antes
de la entrega final [49]. En otras palabras, las pruebas deben concebirse como un proceso orientado a la
detección de errores, no como una simple validación de éxito.

En este proyecto, se adoptó una estrategia de pruebas manuales, sin el uso de herramientas automati-
zadas. La validación se realizó principalmente a través de pruebas exploratorias por parte de la autora
y mediante pruebas de aceptación con usuarios reales. Se buscó evaluar si el comportamiento de la
aplicación coincidı́a con los requisitos establecidos, tanto funcionales como no funcionales, y detectar
errores que pudieran afectar a la experiencia de uso.

Según Sommerville, las pruebas pueden organizarse en distintos niveles, cada uno de los cuales se
enfoca en un aspecto especı́fico del sistema. A continuación, se describen estos niveles y cómo fueron
abordados en el desarrollo de esta aplicación:

Pruebas de unidad: Este nivel se centra en verificar el correcto funcionamiento de los componentes
individuales de software. En este caso, se validaron manualmente funciones clave de la lógica de la
aplicación, como la gestión de marcas temporales en el audio, la navegación entre secciones, o la
lectura y escritura de datos en archivos MKV.

Pruebas de integración: Se refieren a la comprobación del funcionamiento conjunto entre distintos
módulos. Para esta aplicación, se probaron manualmente las interacciones entre los componentes
que la conforman, ası́ como los servicios responsables del almacenamiento y la compartición de
datos entre estos componentes. Se prestó especial atención a la sincronización entre los diferentes
elementos y la correcta propagación de eventos.

83

84 CAPÍTULO 7. PRUEBAS

Pruebas de sistema: En este nivel se evalúa el sistema completo en condiciones similares a las
reales. La aplicación se probó en distintos dispositivos (ordenadores de escritorio y teléfonos
móviles) y navegadores (Google Chrome y Mozilla Firefox, principalmente) para asegurar su
comportamiento esperado, su diseño responsive y su estabilidad y rendimiento general.

Pruebas de aceptación: Estas pruebas se enfocan en verificar que el sistema cumple con las
expectativas del usuario final. La aplicación fue entregada tanto al tutor como a otros usuarios para
que la utilizaran de forma independiente durante un perı́odo aproximado de una semana. Durante
ese tiempo, realizaron distintas pruebas en condiciones reales de uso y proporcionaron comentarios
valiosos sobre errores detectados, funcionalidades útiles y aspectos susceptibles de mejora. Estas
observaciones se tuvieron en cuenta para realizar correcciones y mejoras antes de la versión final.

Aunque no se dispuso de un sistema automatizado de pruebas, se procuró realizar una revisión
exhaustiva de cada funcionalidad implementada, especialmente aquellas crı́ticas para el flujo principal de
uso. La combinación de pruebas exploratorias, pruebas con usuarios y validaciones en distintos entornos
permitió garantizar un nivel aceptable de fiabilidad y calidad para el alcance del proyecto.

Capı́tulo 8

Conclusiones y lı́neas futuras

8.1. Conclusiones

En este Trabajo de Fin de Grado, se ha logrado desarrollar una aplicación funcional orientada a facilitar
el aprendizaje a partir de audios de musicales. La herramienta cumple con los objetivos propuestos
en cuanto a facilidad de despliegue, sencillez de uso, flexibilidad y versatilidad. La aplicación ha sido
validada por el cliente principal, representado por una comunidad de intérpretes aficionados de música, de
la cual forma parte el tutor del trabajo.

La elaboración de este proyecto ha supuesto una experiencia de aprendizaje muy enriquecedora a nivel
técnico y personal. Aunque ya contaba con conocimientos previos de Angular gracias a la asignatura
“Diseño basado en Componentes y Servicios”, el desarrollo de esta aplicación me ha permitido profundizar
mucho más en este framework. He aprendido a estructurar la interfaz en componentes más definidos,
asignar a cada uno de ellos funcionalidades concretas y crear servicios capaces de gestionar la compartición
y sincronización de datos entre distintas partes de la aplicación.

Además, me he enfrentado por primera vez al uso de bibliotecas avanzadas y complejas que no
habı́a utilizado anteriormente, lo cual me ha obligado a investigar y adaptarme constantemente. También
he tenido la oportunidad de descubrir y trabajar con nuevas tecnologı́as como WebAssembly (wasm),
Progressive Web Apps (PWA) e IndexedDB, que han ampliado significativamente mis conocimientos
sobre el desarrollo web moderno.

Una de las áreas en las que más he evolucionado ha sido en el diseño de interfaces gráficas. El objetivo
de crear una aplicación clara, fácil de usar y visualmente compacta, me ha llevado a reflexionar sobre
usabilidad y organización del contenido. Posteriormente, la adaptación de esta interfaz a distintos tamaños
y orientaciones de pantalla me ha permitido adquirir una sólida base en diseño responsive, apoyándome
fundamentalmente en Bootstrap.

85

86 CAPÍTULO 8. CONCLUSIONES Y LÍNEAS FUTURAS

El proyecto también me ha brindado una valiosa experiencia en la planificación y gestión de un
desarrollo completo desde cero, mucho más extenso que los realizados previamente en prácticas de
la carrera. La adopción de una estrategia ágil de trabajo me ha ayudado a comprender mejor cómo
se organizan normalmente los procesos de desarrollo en entornos profesionales, permitiéndome iterar,
mejorar y corregir aspectos progresivamente.

Durante el proceso, también he aprendido sobre las particularidades del entorno web, incluyendo
diferencias importantes entre navegadores de escritorio y móviles, lo que me ha llevado a tomar decisiones
especı́ficas para asegurar la compatibilidad y el correcto funcionamiento de la aplicación en ambos
contextos.

Se espera que este proyecto actúe como punto de partida para futuras ampliaciones, tanto a través de
nuevos Trabajos de Fin de Grado como mediante las aportaciones de la comunidad de desarrolladores del
entorno.

8.2. Lı́neas futuras

En este apartado, se presentan algunas posibles mejoras y ampliaciones para la funcionalidad de la
aplicación en futuras versiones:

En el modo de lectura, la imagen asociada a una sección actualmente se muestra centrada dentro de
un recuadro sin posibilidad de ser ampliada o reducida. Serı́a deseable implementar funcionalidades
de zoom y desplazamiento (scroll) para facilitar una visualización más flexible y detallada de la
imagen, sobre todo en imágenes largas o con mucho detalle.

Los usuarios de dispositivos Apple suelen encontrar dificultades para manejar archivos en formatos
menos comunes, como MKV. Por ello, se podrı́a añadir la funcionalidad de importar y subir archivos
MKV directamente desde servicios en la nube, mejorando la compatibilidad y la experiencia de
usuario en estos dispositivos.

Se podrı́a desarrollar un sistema de guardado y carga local de proyectos que permita mostrar una
lista de los archivos recientemente abiertos o editados. Esto facilitarı́a la gestión de proyectos
activos sin necesidad de manejar directamente los archivos MKV para cargar la información.

Dado que el propósito principal de esta aplicación es didáctico, una posible mejora serı́a la in-
corporación de preguntas tipo test asociadas a cada sección de audio, con el fin de enriquecer la
experiencia de aprendizaje y evaluación.

Aprovechando que el contenedor principal para el almacenamiento de datos es el formato MKV, se
podrı́a explorar la posibilidad de que, además de almacenar información, estos archivos pudieran

8.2. LÍNEAS FUTURAS 87

reproducirse y visualizarse como videos convencionales. Actualmente, la información contenida
solo es accesible dentro de la propia aplicación.

Serı́a interesante permitir que un único proyecto contenga múltiples audios, cada uno con sus
respectivas secciones, marcas e información asociada, todo almacenado en un solo archivo MKV.
Esta funcionalidad podrı́a ser especialmente útil para organizar obras musicales divididas en varias
partes, facilitando su gestión en un solo proyecto.

Para mejorar la usabilidad, se podrı́a incorporar ayuda contextual en la interfaz, como descripciones
emergentes al situar el cursor sobre los botones, o un tutorial inicial que guı́e al usuario en el uso de
las funcionalidades básicas de la aplicación.

Finalmente, una idea de futuro podrı́a ser desarrollar una plataforma en lı́nea para la publica-
ción y comercialización de proyectos creados con esta aplicación, considerando aspectos legales
relacionados con los derechos de autor y la propiedad intelectual.

88 CAPÍTULO 8. CONCLUSIONES Y LÍNEAS FUTURAS

Bibliografı́a

[1] Musescore. Software gratuito de composición y notación musical | MuseScore. https://muse
score.org/es. Último acceso: 16 de junio de 2025.

[2] Wikipedia. Aplicación web progresiva. https://es.wikipedia.org/wiki/Aplicaci
%C3%B3n_web_progresiva, 2025. Último acceso: 16 de junio de 2025.

[3] Wikipedia. Desarrollo ágil de software. https://es.wikipedia.org/wiki/Desarrol
lo_gil_de_software, 2025. Último acceso: 16 de junio de 2025.

[4] Atlassian. Explicación de los diagramas de Gantt [y cómo crear uno] | Atlassian. https:

//www.atlassian.com/es/agile/project-management/gantt-chart. Último
acceso: 16 de junio de 2025.

[5] B. Hughes and M. Cotterell. Software Project Management. McGraw-Hill Higher Education, 2009.

[6] InfoJobs | Miles de oportunidades laborales cada dı́a. https://www.infojobs.net/. Último
acceso: 16 de junio de 2025.

[7] Búsqueda de empleo en Glassdoor. https://www.glassdoor.es/index.htm. Último
acceso: 16 de junio de 2025.

[8] Talent.com: Búsqueda de empleo | Encuentra ofertas cerca de ti. https://es.talent.com.
Último acceso: 16 de junio de 2025.

[9] Wikipedia contributors. Audio file format — Wikipedia, the free encyclopedia, 2025. Último acceso:
16 de junio de 2025.

[10] MakeMusic. MusicXML for Exchanging Digital Sheet Music. https://www.musicxml.com
/. Último acceso: 16 de junio de 2025.

[11] Andrew Swift. A brief introduction to MIDI. https://web.archive.org/web/20120830
211425/http://www.doc.ic.ac.uk/˜nd/surprise_97/journal/vol1/aps2/,
2012. Último acceso: 16 de junio de 2025.

[12] Avid. Sibelius - Notation Software. https://www.avid.com/sibelius. Último acceso: 16
de junio de 2025.

89

https://musescore.org/es
https://musescore.org/es
https://es.wikipedia.org/wiki/Aplicaci%C3%B3n_web_progresiva
https://es.wikipedia.org/wiki/Aplicaci%C3%B3n_web_progresiva
https://es.wikipedia.org/wiki/Desarrollo_ágil_de_software
https://es.wikipedia.org/wiki/Desarrollo_ágil_de_software
https://www.atlassian.com/es/agile/project-management/gantt-chart
https://www.atlassian.com/es/agile/project-management/gantt-chart
https://www.infojobs.net/
https://www.glassdoor.es/index.htm
https://es.talent.com
https://www.musicxml.com/
https://www.musicxml.com/
https://web.archive.org/web/20120830211425/http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
https://web.archive.org/web/20120830211425/http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
https://www.avid.com/sibelius

90 BIBLIOGRAFÍA

[13] Finale. programa de notación musical finale. https://www.finalemusic.com/es/.
Último acceso: 16 de junio de 2025.

[14] MuseScore: partitura - Aplicaciones en Google Play. https://play.google.com/store/
apps/details?id=com.musescore.playerlite&hl=es&pli=1. Último acceso: 16
de junio de 2025.

[15] capella score reader - Aplicaciones en Google Play. https://play.google.com/store/
apps/details?id=de.capella.capReader&hl=es_419. Último acceso: 16 de junio
de 2025.

[16] Sibelius - Apps en Google Play. https://play.google.com/store/apps/details?i
d=com.avid.sibelius.android&hl=es_419. Último acceso: 16 de junio de 2025.

[17] MobileSheets. https://www.zubersoft.com/mobilesheets/. Último acceso: 16 de
junio de 2025.

[18] ScorePDF: Partitura Visor - Aplicaciones en Google Play. https://play.google.com/st
ore/apps/details?id=com.enoiu.scorepdf&hl=es. Último acceso: 16 de junio de
2025.

[19] Complete Ear Trainer - Aplicaciones en Google Play. https://play.google.com/stor
e/apps/details?id=com.binaryguilt.completeeartrainer&hl=es. Último
acceso: 16 de junio de 2025.

[20] Chord ai – Chords and beats for any song! https://chordai.net/. Último acceso: 16 de
junio de 2025.

[21] Audacity ® | Free Audio editor, recorder, music making and more! https://www.audacity
team.org/. Último acceso: 16 de junio de 2025.

[22] Wikipedia. DaVinci Resolve. https://es.wikipedia.org/wiki/DaVinci_Resolve,
2025. Último acceso: 16 de junio de 2025.

[23] Angular. Angular - Introduction to the Angular docs. https://v17.angular.io/docs.
Último acceso: 16 de junio de 2025.

[24] Wikipedia. Matroska. https://en.wikipedia.org/wiki/Matroska, 2025. Último
acceso: 16 de junio de 2025.

[25] Wikipedia. Webassembly. https://en.wikipedia.org/wiki/WebAssembly, 2025.
Último acceso: 16 de junio de 2025.

[26] @ffmpeg/ffmpeg. https://www.npmjs.com/package/@ffmpeg/ffmpeg/v/0.10.0,
2021. Último acceso: 16 de junio de 2025.

https://www.finalemusic.com/es/
https://play.google.com/store/apps/details?id=com.musescore.playerlite&hl=es&pli=1
https://play.google.com/store/apps/details?id=com.musescore.playerlite&hl=es&pli=1
https://play.google.com/store/apps/details?id=de.capella.capReader&hl=es_419
https://play.google.com/store/apps/details?id=de.capella.capReader&hl=es_419
https://play.google.com/store/apps/details?id=com.avid.sibelius.android&hl=es_419
https://play.google.com/store/apps/details?id=com.avid.sibelius.android&hl=es_419
https://www.zubersoft.com/mobilesheets/
https://play.google.com/store/apps/details?id=com.enoiu.scorepdf&hl=es
https://play.google.com/store/apps/details?id=com.enoiu.scorepdf&hl=es
https://play.google.com/store/apps/details?id=com.binaryguilt.completeeartrainer&hl=es
https://play.google.com/store/apps/details?id=com.binaryguilt.completeeartrainer&hl=es
https://chordai.net/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://es.wikipedia.org/wiki/DaVinci_Resolve
https://v17.angular.io/docs
https://en.wikipedia.org/wiki/Matroska
https://en.wikipedia.org/wiki/WebAssembly
https://www.npmjs.com/package/@ffmpeg/ffmpeg/v/0.10.0

BIBLIOGRAFÍA 91

[27] Lambdatest. Cross Browser Compatibility Score of WebAssembly. https://www.lambdate
st.com/web-technologies/wasm. Último acceso: 16 de junio de 2025.

[28] Can i use... WebAssembly | Can I use... Support tables for HTML5, CSS3, etc. https://cani
use.com/wasm. Último acceso: 16 de junio de 2025.

[29] MDN. WebAssembly | MDN. https://developer.mozilla.org/en-US/docs/Web
Assembly#browser_compatibility, 2025. Último acceso: 16 de junio de 2025.

[30] Ffmpeg. FFmpeg. https://ffmpeg.org/. Último acceso: 16 de junio de 2025.

[31] wavesurfer.js. https://wavesurfer.xyz/docs/. Último acceso: 16 de junio de 2025.

[32] MDN. IndexedDB API - Web APIs | MDN. https://developer.mozilla.org/en-US/
docs/Web/API/IndexedDB_API, 2025. Último acceso: 16 de junio de 2025.

[33] idb. https://www.npmjs.com/package/idb, 2025. Último acceso: 16 de junio de 2025.

[34] GitLab Pages | GitLab Docs. https://docs.gitlab.com/user/project/pages/.
Último acceso: 16 de junio de 2025.

[35] Sign in · GitLab. https://gitlab.inf.uva.es/users/sign_in. Último acceso: 16 de
junio de 2025.

[36] GitHub Pages. https://pages.github.com/. Último acceso: 16 de junio de 2025.

[37] Wikipedia. TypeScript. https://es.wikipedia.org/wiki/TypeScript, 2025. Último
acceso: 16 de junio de 2025.

[38] Wikipedia. Lenguaje unificado de modelado. https://es.wikipedia.org/wiki/Leng
uaje_unificado_de_modelado, 2025. Último acceso: 16 de junio de 2025.

[39] Astah. Astah Professional: UML, ER, DFD & Flowchart Software. https://astah.net/pr
oducts/astah-professional/, 2025. Último acceso: 16 de junio de 2025.

[40] and Bootstrap Mark Otto contributors, Jacob Thornton. Get started with Bootstrap. https:

//getbootstrap.com/docs/5.3/getting-started/introduction/. Último
acceso: 16 de junio de 2025.

[41] Anushtha Jain and Visure Solutions. ¿Qué son los requisitos funcionales? Ejemplos y plantillas.
https://visuresolutions.com/es/alm-guide/functional-requirements,
2025. Último acceso: 16 de junio de 2025.

[42] Markdown - La guı́a definitiva en español. https://markdown.es/. Último acceso: 16 de
junio de 2025.

https://www.lambdatest.com/web-technologies/wasm
https://www.lambdatest.com/web-technologies/wasm
https://caniuse.com/wasm
https://caniuse.com/wasm
https://developer.mozilla.org/en-US/docs/WebAssembly#browser_compatibility
https://developer.mozilla.org/en-US/docs/WebAssembly#browser_compatibility
https://ffmpeg.org/
https://wavesurfer.xyz/docs/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://www.npmjs.com/package/idb
https://docs.gitlab.com/user/project/pages/
https://gitlab.inf.uva.es/users/sign_in
https://pages.github.com/
https://es.wikipedia.org/wiki/TypeScript
https://es.wikipedia.org/wiki/Lenguaje_unificado_de_modelado
https://es.wikipedia.org/wiki/Lenguaje_unificado_de_modelado
https://astah.net/products/astah-professional/
https://astah.net/products/astah-professional/
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://visuresolutions.com/es/alm-guide/functional-requirements
https://markdown.es/

92 BIBLIOGRAFÍA

[43] Anushtha Jain and Visure Solutions. ¿Qué son los requisitos no funcionales? Tipos, ejemplos y
enfoques. https://visuresolutions.com/es/alm-guide/non-functional-r
equirements, 2025. Último acceso: 16 de junio de 2025.

[44] Wikipedia. Caso de uso. https://es.wikipedia.org/wiki/Caso_de_uso, 2025.
Último acceso: 16 de junio de 2025.

[45] Wikipedia. Modelo de dominio. https://es.wikipedia.org/wiki/Modelo_de_domi
nio, 2024. Último acceso: 16 de junio de 2025.

[46] Angular. Angular - Introduction to Angular concepts. https://v17.angular.io/guide/a
rchitecture. Último acceso: 16 de junio de 2025.

[47] Diagrama de paquetes UML: Qué es y cómo hacerlo | Miro. https://miro.com/es/diag
rama/que-es-diagrama-paquetes-uml/. Último acceso: 16 de junio de 2025.

[48] Coolors. Coolors - The super fast color palettes generator! https://coolors.co/. Último
acceso: 16 de junio de 2025.

[49] Ian Sommerville. Software engineering (6th ed.). Addison-Wesley Longman Publishing Co., Inc.,
USA, 2001.

https://visuresolutions.com/es/alm-guide/non-functional-requirements
https://visuresolutions.com/es/alm-guide/non-functional-requirements
https://es.wikipedia.org/wiki/Caso_de_uso
https://es.wikipedia.org/wiki/Modelo_de_dominio
https://es.wikipedia.org/wiki/Modelo_de_dominio
https://v17.angular.io/guide/architecture
https://v17.angular.io/guide/architecture
https://miro.com/es/diagrama/que-es-diagrama-paquetes-uml/
https://miro.com/es/diagrama/que-es-diagrama-paquetes-uml/
https://coolors.co/

Apéndice A

Repositorio del código

A.1. Enlace del repositorio en GitHub

El código fuente de este proyecto está disponible en el siguiente repositorio de GitHub:
https://github.com/lalalariii/MatroskaLearn

A.2. Enlace de la página web

La página web desarrollada en este proyecto esta disponible en el siguiente enlace:
https://lalalariii.github.io/MatroskaLearn/

A.3. Organización del repositorio

Actualmente, el repositorio del proyecto contiene los archivos de configuración y dependencias propias
de una aplicación Angular. Las carpetas principales incluyen:

src/: contiene el código fuente de la aplicación.

assets/: almacena recursos estáticos como imágenes o archivos auxiliares.

.vscode/: configuración especı́fica del entorno de desarrollo en Visual Studio Code.

Además, se incluyen ficheros como angular.json, package.json o tsconfig.json, entre otros, que gestio-
nan la configuración del proyecto, sus dependencias y scripts de compilación.

93

https://github.com/lalalariii/MatroskaLearn
https://lalalariii.github.io/MatroskaLearn/

94 APÉNDICE A. REPOSITORIO DEL CÓDIGO

Apéndice B

Manual de usuario

Este manual tiene como objetivo servir de guı́a básica para los usuarios de la aplicación desarrollada.
En él se explican de manera sencilla y clara las funcionalidades disponibles, ası́ como los pasos necesarios
para utilizarlas correctamente. La aplicación cuenta con dos modos principales de uso, modo lectura y
modo escritura, por lo que se proporciona una explicación diferenciada para cada uno de ellos.

B.1. Crear un nuevo proyecto o cargar uno existente

Figura B.1: Crear o cargar nuevo proyecto en la aplicación

En la Figura B.1 se muestra la barra superior de la aplicación, que incluye el logotipo y permite
cambiar entre los dos modos disponibles: “Creación de archivo” y “Lectura de archivo”. Justo debajo se
encuentra una barra con la pestaña “Archivo”, la cual, al desplegarse, ofrece las siguientes opciones de
carga:

“Nuevo” (disponible únicamente en el modo de escritura): permite iniciar un nuevo proyecto de
audio a partir de un archivo en formato MP3 proporcionado por el usuario.

95

96 APÉNDICE B. MANUAL DE USUARIO

“Carga” (disponible en ambos modos): permite abrir un proyecto previamente creado con la
aplicación, mediante la carga de un archivo MKV que contiene todos los datos del proyecto.

B.2. Modo escritura

Figura B.2: Interfaz en modo escritura, dividida en partes principales

En la Figura B.2 se muestra una captura de la interfaz de la aplicación en modo escritura. Como puede
apreciarse, la interfaz se divide en tres zonas principales, numeradas en la imagen:

Zona de onda sonora (número 1): Este área se compone a su vez de tres partes diferenciadas:

Edición del tı́tulo: en la parte superior, el usuario puede introducir o modificar el tı́tulo del archivo
MKV que se generará al exportar el proyecto.

Controles de audio (barra negra situada encima de la onda):

• En el lado derecho se encuentra el indicador de tiempo, que muestra la posición actual de
la reproducción respecto a la duración total del audio, junto con cuatro botones de control:
retroceder a la sección anterior, avanzar a la siguiente, reproducir y pausar.

• En el lado izquierdo, se sitúan dos controles deslizantes: uno para modificar el volumen y otro
para ajustar el nivel de zoom sobre la onda sonora.

Representación de la onda: Esta zona visualiza el audio y los elementos interactivos añadidos
sobre él. Se distinguen tres tipos:

B.2. MODO ESCRITURA 97

• Secciones: regiones del audio marcadas por un color e identificadas con un número al inicio.
La primera sección tiene su tiempo de inicio fijo, pero el de las demás puede modificarse
arrastrando su etiqueta a lo largo de la lı́nea de tiempo.

• Marcas: puntos especı́ficos del audio, representados por una lı́nea discontinua con una letra
mayúscula como identificador. A diferencia de las secciones, ocupan un único instante de
tiempo y pueden moverse libremente arrastrándolas.

Figura B.3: Crear una sección o marca dentro de la onda en la aplicación

• Cursor: representado por una lı́nea roja vertical rematada por una flecha. A su izquierda
aparece un botón rojo con el sı́mbolo “+”. Al pulsarlo, se despliega el popup mostrado en la
Figura B.3, que permite añadir una nueva sección (dividiendo la sección actual en dos, de
modo que el nuevo tiempo marque el inicio de la nueva sección y el final de la anterior) o
insertar una nueva marca, en el instante de tiempo en el que se encuentra el cursor. Cuando el
cursor está en movimiento, muestra el minuto exacto por el que avanza; al detenerse, el audio
comienza a reproducirse desde ese punto.

Zona del panel de edición (número 2): En esta área se muestran los datos correspondientes a la sección
o marca actualmente seleccionada, e incluye distintos controles para modificar su información. Puede
dividirse en tres partes principales:

Zona de controles (parte superior): Desde esta sección se pueden realizar las siguientes acciones:

• Cambiar el color asignado a la sección.

• Visualizar y editar los tiempos de inicio y fin, ası́ como el tı́tulo de la sección o marca
seleccionada. En el caso de una marca, el tiempo de fin mostrado corresponderá al de la
siguiente marca dentro de la misma sección, o bien, si no existe otra marca, al fin de la sección
que la contiene.

• Reproducir la sección o marca desde el inicio, activarla en bucle, o eliminarla. Cabe destacar
que la sección número 1 no se puede eliminar, ya que debe existir al menos una sección en el
proyecto, y si es la única, abarcará todo el audio.

98 APÉNDICE B. MANUAL DE USUARIO

Figura B.4: Editar texto de una sección en la aplicación

Zona de texto (parte inferior izquierda): Aquı́ se puede editar el contenido textual asociado a la
sección o marca. La edición se realiza mediante un cuadro desplegable que ocupa la mayor parte de
la pantalla para facilitar la escritura, como se muestra en la Figura B.4. En el caso de las secciones,
este cuadro incluye una opción para activar modo Markdown, lo que divide el área en dos partes: a
la izquierda, un editor de texto, y a la derecha, una vista previa en tiempo real del formato final.

Figura B.5: Controles de edición y borrado de la imagen de una sección en la aplicación

Zona de imagen (parte inferior derecha): Disponible únicamente en las secciones, esta área
permite añadir una imagen asociada. Inicialmente se muestra un botón “+”, que abre el explorador
de archivos para seleccionar una imagen desde el dispositivo. Una vez añadida, la imagen se
visualiza dentro del recuadro, acompañada de dos botones que permiten reemplazarla o eliminarla,
como se muestra en la Figura B.5.

B.3. MODO LECTURA 99

Zona del panel de selección (número 3): Esta área muestra una lista con todas las secciones y marcas
que componen el audio del proyecto actual. Al hacer clic sobre un elemento de la lista, este se selecciona
y se resalta visualmente. A continuación, se detalla la información y funcionalidades asociadas a cada
tipo de elemento:

Sección: Cada sección de la lista incluye:

• Información resumida: tı́tulo, color, y tiempos de inicio y fin.

• Controles de reproducción: un botón para reproducir desde el inicio y otro para activar la
reproducción en bucle.

• Un botón con forma de pestaña que permite desplegar o replegar la lista de marcas contenidas
dentro de esa sección.

Marca: Las marcas aparecen como elementos secundarios dentro de las secciones. Para cada marca
se muestra:

• Información resumida: tı́tulo y tiempos de inicio y fin.

• Controles de reproducción: un botón para reproducir desde el inicio y otro para reproducir
en bucle la marca.

B.3. Modo lectura

Figura B.6: Interfaz en modo lectura, dividida en partes principales

100 APÉNDICE B. MANUAL DE USUARIO

En la Figura B.6 se muestra una captura de la aplicación en modo lectura. La interfaz mantiene la
misma división en tres zonas principales que el modo escritura, ya explicadas en el apartado anterior. En
este caso, nos centraremos únicamente en las diferencias especı́ficas de la interfaz de lectura con respecto
a la de escritura.

Zona de onda sonora (número 1): En cuanto a la funcionalidad y la interacción con los elementos de
la onda, esta zona presenta ciertas limitaciones en comparación con el modo escritura:

Las secciones y marcas no se pueden editar ni arrastrar, salvo las marcas creadas en el propio modo
lectura, que sı́ pueden ser modificadas.

Figura B.7: Crear una marca de lectura en la aplicación

No se pueden crear nuevas secciones. El botón “+” situado junto al cursor permite añadir marcas de
lectura. Al pulsarlo, se abre el cuadro emergente que se muestra en la Figura B.7, donde se puede
introducir el tı́tulo y el texto de la nueva marca.

Zona del panel de visualización (número 2): Esta zona presenta varias diferencias con respecto al
modo escritura:

En la parte inferior se encuentra el reproductor, donde se visualizan los datos de la sección que se
está reproduciendo en ese momento. Si hay una marca en reproducción, esta se muestra dentro de
un recuadro amarillo, justo debajo del texto de la sección.

B.3. MODO LECTURA 101

Figura B.8: Visualizar el reproductor en modo pantalla completa en la aplicación

Los botones disponibles en esta zona permiten ajustar la presentación del contenido en el reproduc-
tor:

• Cambiar el modo de visualización: solo imagen, solo texto o vista dividida (imagen y texto a
la vez).

• Cambiar la orientación del contenido en la vista dividida: vertical u horizontal.

• Activar el modo pantalla completa con el botón rojo situado a la derecha. Este modo, mostrado
en la Figura B.8, amplı́a el panel de visualización e incluye una barra de reproducción en la
parte inferior con:

◦ Tiempo actual de reproducción frente al total del audio.

◦ Controles de reproducción: saltar a la sección anterior o siguiente, reproducir y pausar.

◦ Una barra de progreso interactiva, sobre la que se puede hacer clic para saltar a un punto
concreto del audio.

Zona del panel de selección (número 3): La única diferencia respecto a este panel en el modo escritura
es que al hacer clic en un elemento de la lista (una sección o una marca), el audio comienza a reproducirse
desde su inicio de forma automática.

102 APÉNDICE B. MANUAL DE USUARIO

	Agradecimientos
	Resumen
	Abstract
	Introducción
	Motivación
	Objetivos de este Trabajo de Fin de Grado
	Estructura de la memoria

	Planificación del proyecto
	Metodología
	Plan inicial
	Análisis de riesgos
	Presupuesto estimado
	Coste de materiales (hardware y alquileres)
	Coste de software
	Coste de recursos humanos
	Coste total estimado del proyecto

	Estado del arte del proyecto
	Herramientas de apoyo en el aprendizaje musical
	Editores y reproductores de partituras
	Aplicaciones móviles para el aprendizaje musical
	Sistemas de edición y reproducción de contenido multimedia

	Tecnologías de soporte del proyecto
	PWA
	Angular
	Matroska (MKV)
	Web Assembly
	Ffmpeg.wasm
	Wavesurfer.js
	Indexed DB
	GitLab Pages
	GitHub Pages

	Lenguajes y herramientas del proyecto

	Análisis
	Requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Casos de uso
	Modelo de dominio

	Diseño
	Arquitectura Lógica
	Organización del proyecto
	Diagrama de paquetes general de la aplicación
	Diagrama de paquetes de app

	Interfaz de usuario

	Implementación y Despliegue
	Bibliotecas principales
	Ffmpeg.wasm
	Wavesurfer

	Funcionalidad PWA
	Uso de Indexed DB para la persistencia de imágenes
	Despliegue en GitLab Pages
	Despliegue en GitHub Pages

	Pruebas
	Conclusiones y líneas futuras
	Conclusiones
	Líneas futuras

	Bibliografía
	Repositorio del código
	Enlace del repositorio en GitHub
	Enlace de la página web
	Organización del repositorio

	Manual de usuario
	Crear un nuevo proyecto o cargar uno existente
	Modo escritura
	Modo lectura

