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RESUMEN

Resumen

Resumen

La aplicacién de modelos de Aprendizaje Automético en el d&mbito de la Medicina, ha
demostrado un gran potencial en tareas de diagnostico y clasificacion de imagenes. En este
Trabajo de Fin de Grado, se ha explorado el uso de arquitecturas Vision Transformer (ViT),
un enfoque relativamente reciente que ha mostrado resultados prometedores en Vision Arti-
ficial como alternativa a las tradicionales Redes Neuronales Convolucionales (CNN).

El objetivo principal ha sido desarrollar e implementar un sistema de clasificacién de
iméagenes médicas basado en ViT, evaluando su rendimiento sobre tres conjuntos de datos
distintos: radiograffas de térax, resonancias magnéticas cerebrales (MRI) y tomografias de
coherencia éptica (OCT). Para ello, se han desarrollado desde cero diversas variantes de
modelos ViT, incorporando diferentes técnicas. Cada uno de estos modelos cuenta con mapas
de explicabilidad a través de ViT-ReciproCAM.

En cuanto a los resultados, se ha observado una mejora notable respecto a modelos previos
en uno de los tres conjuntos de datos. Sin embargo, en los otros dos conjuntos, no se han
obtenido resultados superiores a los logrados con enfoques basados en CNN, principalmente
debido a las dificultades de generalizacion que presentan los ViT en situaciones de muestras
limitadas.

Palabras clave: Aprendizaje Profundo, Vision Transformer, Clasificacién de imégenes
médicas (CXR, MRI, OCT), ViT-ReciproCAM.
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ABSTRACT

Abstract

Machine Learning applied to Medicine has shown great potential in diagnosis and image
classification tasks. In this Double Degree Thesis has been explored the use of Vision Trans-
former (ViT) architectures, a relatively recent approach that has demonstrated promising
results in Computer Vision as an alternative to traditional Convolutional Neural Networks
(CNNs).

The main goal of this work has been to develop and implement a medical image classi-
fication system based on ViT, evaluating its performance on three different datasets: chest
X-rays, brain magnetic resonance imaging (MRI) and optical coherence tomography scans
(OCT). To do that, several ViT model variants have been developed from scratch. Each of
these models includes explainability maps using ViT-ReciproCAM.

Regarding the results, a significant improvement was observed in just one of the related
datasets. However, for the other ones, the results are not bigger than those achieved with
CNN-based approaches. It is mainly because ViT models with an insufficient number of
samples present serious limitations due to a reduced power of generalization in practice.

Keywords: Deep Learning, Vision Transformer, Medical Image Classification (CXR,
MRI, OCT), ViT-ReciproCAM.
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CAPITULO 1. INTRODUCCION

Capitulo 1

Introduccion

1.1. Contexto

Durante los tltimos afos, la Inteligencia Artificial (TA) se ha ido haciendo paso como
una de las tecnologias mas innovadoras y revolucionarias de nuestra época. Su gran cantidad
de aplicaciones abarca desde tareas tan cotidianas como recomendaciones de recetas, hasta
la btisqueda de soluciones complejas en sectores como medicina, industria y logistica. Esta
capacidad de adaptacién ha hecho que se consolide como una parte ya casi fundamental del
mundo en el que vivimos.

Su integracion en la sociedad ha transformado totalmente la forma en que trabajamos,
nos comunicamos e incluso tomamos decisiones. Su capacidad de aprendizaje y evolucién
constante, combinada con la gran cantidad de datos que se generan actualmente, los cuales
son cada vez mayores [18], ha provocado un cambio radical en muchos dmbitos, donde la
precision y eficiencia son esenciales.

Uno de estos sectores que se ha visto beneficiado, es la medicina. El uso e implementacién
de algoritmos avanzados ha permitido mejorar de manera significativa la rapidez y precisiéon
de diagnosticos complejos. Aunque, evidentemente, no pueden llegar a sustituir a los pro-
fesionales de la salud, estas herramientas de apoyo cuentan con gran robustez y fiabilidad,
facilitando su labor diaria a la hora de tomar decisiones.

Uno de los elementos mas utilizados en el ambito clinico, es el analisis de imagenes médi-
cas. Estas, obtenidas mediante diversas técnicas como radiografias, resonancias magnéticas o
tomografias, representan una fuente de informacién esencial para el diagnéstico y seguimiento
de patologias. Por ello, técnicas de Vision Artificial cobran gran importancia.



1.2. MOTIVACION

1.2. Motivacion

Dentro de los enfoques més efectivos y ampliamente utilizados en la actualidad se en-
cuentra el Aprendizaje Profundo (Deep Learning), una rama del Aprendizaje Automatico
(Machine Learning), que usa un gran ntumero de capas para intentar aprender diferentes
niveles de abstraccién de los datos. A diferencia de los métodos tradicionales, que requerian
una extraccién manual de caracteristicas y un avanzado conocimiento del dominio, el Deep
Learning permite a las maquinas aprender representaciones directamente a partir de los datos
en bruto [19], como por ejemplo los pixeles en el caso de la clasificacién de im4genes.

Una de las arquitecturas mas utilizadas en el aprendizaje profundo de procesamiento de
imagenes son las Redes Neuronales Convolucionales ( Convolutional Neural Networks, CNN).
Estan disenadas para trabajar con datos en varias dimensiones, como las imagenes. Se ca-
racterizan por su capacidad de detectar patrones o relaciones locales mediante los niicleos o
kernels que se aplican a la imagen. Gracias a esto, las CNN han demostrado tener un gran
rendimiento en tareas de Computer Vision como clasificacién de imagenes. Desde la aparicion
de sus primeros modelos como el AlexNet, que gané el desafio de ImagenNet en 2012 con
una amplia ventaja, han surgido una gran cantidad de variantes como VGGNet, ResNet o
DenseNet, que han ido mejorando la precisién y eficiencia de los modelos [20].

A pesar de los grandes resultados obtenidos por este tipo de redes, se han seguido bus-
cando nuevas alternativas que puedan superar algunas de sus limitaciones. Una de las mas
destacadas y con gran protagonismo estos tltimos anos, son los Transformers. Desde su apa-
ricién en 2017 con Attention is all you need [3], revolucionaron totalmente el campo del
Procesamiento del Lenguaje Natural, llegando a nuestros dias modelos a gran escala y con
capacidades que se crefan imposibles como ChatGPT, Copilot o DeepSeek entre otros.

Receptive Field

Convolution of CNN Attention of Vision Transformer

Figura 1.1: Comparativa entre la arquitectura CNN y ViT de [I].



CAPITULO 1. INTRODUCCION

Aunque estos modelos estan inicialmente orientados al Procesamiento del Lenguaje Na-
tural, su arquitectura fue adaptada para el &mbito de la visién mediante los llamados Visual
Transformers (ViT). Estos han demostrado ser capaces de igualar, e incluso superar en ciertos
casos, el rendimiento de las CNN.

La principal ventaja de los ViT es su capacidad para ser altamente paralelizables, lo que
permite entrenarlos de forma mucho mas eficiente. Tratan toda la imagen en paralelo desde
el inicio gracias al mecanismo de atencién. Este mismo les otorga la capacidad de modelar
relaciones globales entre distintas regiones de la imagen desde las primeras capas [6]. Esto
contrasta con las CNN que, por su disefio, procesan la informacién de manera jerarquica y
secuencial, donde se centran en relaciones locales, como se puede ver en la figurall.1]

Teniendo en cuenta el potencial de los Vision Transformers para superar a las Redes
Convolucionales en tareas de clasificacién de imagenes, este TFG se plantea como un estudio
comparativo entre ambas arquitecturas. Para ello, se utilizaran tres conjuntos de imagenes
médicas de TFGs anteriores [15, [16], [I7], en los que se aplicaron Redes Convolucionales. Se
pretende evaluar el rendimiento de los modelos ViT sobre estos mismos datasets y analizar
si son capaces de igualar o mejorar los resultados obtenidos previamente y, si fuese posible,
identificar en qué casos presentan ventajas respecto a las CNN.

1.3. Objetivos

Dado que este Trabajo de Fin de Grado se centra en la investigacién de la adaptacién
de los Transformers a tareas de clasificacién de imdgenes (en este caso, médicas), asi como
su comparacion con arquitecturas de Aprendizaje Profundo maés clasicas como las CNN, se
presentan los siguientes objetivos:

= Obtener y preparar adecuadamente los conjuntos de datos, asegurando su correcto uso
tanto para realizar la clasificacién, como para permitir la comparacién objetiva entre
los modelos.

= Construir prototipos basados en Transformers para cada conjunto de datos, con una
tasa de acierto aceptable, e intentando mejorar los resultados obtenidos previamente
con redes convolucionales.

= Analizar y comparar de manera rigurosa los resultados obtenidos por los modelos Trans-
former frente a los de arquitecturas CNN, considerando diferentes métricas en la medida
de lo posible.

= Implementar técnicas de explicabilidad visual, con el fin de interpretar las decisiones
del modelo y facilitar la comprension de su funcionamiento interno.

= Desarrollar una aplicacion web que integre todos los modelos construidos y que facilite
la visualizaciéon de su rendimiento y resultados.



1.4. ESTRUCTURA DE LA MEMORIA

1.4. Estructura de la memoria

Este documento se estructura de la siguiente forma:

Capitulo 1 Introduccién. Se presentan el contexto general del proyecto, su motivacién,
los objetivos principales y la estructura del documento.

Capitulo 2 Gestion del Proyecto. Se explica la metodologia de trabajo utilizada, los en-
tregables y la organizacién temporal del proyecto.

Capitulo 3 Fundamento tedrico. Se desarrollan en detalle las bases tedricas necesarias
para el proyecto, desde la estructura del Transformer original, hasta su adaptacién a
la visién por computador con los ViT, incluyendo también técnicas de explicabilidad
visual aplicables a este tipo de modelos.

Capitulo 4 Marco de trabajo. Se detallan los recursos hardware y software utilizados a
lo largo del desarrollo, justificando su eleccién.

Capitulo 5 Conjuntos de datos. Se describen los conjuntos de imagenes médicas emplea-
dos, su origen, estructura, preprocesamiento y transformaciones aplicadas, obtencién y
uso.

Capitulo 6 Construccion de los modelos. Se detalla el proceso de desarrollo, entrena-
miento y validacion de los modelos basados en Transformers, ademas de los criterios
seguidos para su ajuste y evaluacion.

Capitulo 7 Resultados. Se exponen los resultados obtenidos por los modelos en cada con-
junto de datos y se realiza una comparacién con los algoritmos basados en CNN co-
rrespondientes, analizando su rendimiento.

Capitulo 8 Aplicacion. Se describe el desarrollo de la aplicacién web que permite probar
los modelos construidos de forma sencilla y sin conocimientos técnicos.

Capitulo 9 Conclusiones. Se resumen las aportaciones del trabajo, se reflexiona sobre los
resultados obtenidos y se proponen posibles lineas de mejora y desarrollo futuro.



CAPITULO 2. GESTION DEL PROYECTO

Capitulo 2

Gestion del Proyecto

Debido a su complejidad y extension, este Trabajo de Fin de Grado se considera como un
proyecto, y, por tanto, resulta necesario llevar a cabo una adecuada planificacion y gestién del
mismo que permita organizar las tareas, los recursos y, con mayor importancia, los tiempos
de ejecucién de manera eficiente. Esta forma garantiza la correcta organizacion a lo largo de
las diferentes fases del proyecto.

2.1. Metodologia

Para poder seleccionar aquella que se adecue a las necesidades de este trabajo, primero
es imprescindible comprender el caracter experimental del mismo.

Si bien existen una gran cantidad de metodologias tradicionales ampliamente utilizadas
para la gestion de proyectos, éstas estdn mads orientadas al desarrollo del software. Sin em-
bargo, al tratarse de un proyecto de Ciencias de Datos, no es correcto seguir este tipo de
metodologias, pues sus ciclos de vida no se adecuan a las necesidades del trabajo.

Por tanto, se ha optado por utilizar la metodologia CRISP-DM (Cross Industry Stan-
dard Process for Data Mining). Si bien existen otras como KDD (Knowledge Discovery in
Databases) o SEMMA (Sample, Explore, Modify, Model, Assess), CRISP-DM es una de las
més reconocidas en el ambito de la Mineria de Datos y el Aprendizaje Automatico. Estd
especificamente pensada para proyectos de Analisis de Datos como el presente.

CRISP-DM proporciona un marco de trabajo flexible y bien definido, que se adapta al
ciclo de vida de un proyecto de Ciencia de Datos, desde la comprensién del problema hasta
la evaluacién de los resultados [21]. El hecho de que este proyecto no cuente con un equipo de
trabajo compuesto por varias personas, dificulta la aplicacién de metodologias agiles, dejando
como opcién méas adecuada el desarrollo incremental como flujo de trabajo.
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Business Data
Understanding Understanding

Data
Preparation
Deployment

Figura 2.1: Ciclo de vida de CRISP-DM de [2)].

Como se puede notar en la figura consta de 6 etapas [22]:

1. Comprensién del negocio (Business Understanding) La fase inicial se centra en
entender los objetivos y requisitos del proyecto desde una perspectiva empresarial, con
el fin de traducirlos a un problema de Mineria de Datos y, con ello, disefiar un proyecto
preliminar capaz de alcanzar dichos objetivos.

2. Comprensién de los datos (Data Understanding) Comienza con la recoleccién
de los datos. Prosigue con una serie de actividades para familiarizarse con los datos,
evaluar su calidad y formular ciertas hipétesis ttiles sobre la informacién que contienen.
Esta fase estd estrechamente relacionada con la anterior, ya que sin una comprension
adecuada de los datos, es practicamente imposible formular un buen problema de Mi-
neria de Datos.

3. Preparacion de los datos (Data Preparation) En esta fase se realizan todas las
actividades para construir el conjunto de datos final a partir del original. Este tipo de
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2.2.

actividades como transformaciones, creacién de nuevos atributos, limpieza o seleccién
de atributos se suelen realizar en multiples ocasiones y sin un orden estricto.

Modelado (Modeling) Se seleccionan y aplican técnicas de modelado adecuadas,
optimizando los valores de sus parametros. Dado que ciertas técnicas requieren formatos
de datos especificos, y que durante esta fase pueden detectarse errores en los datos u
obtener ideas para la creacion de nuevos, esta muy ligada con la anterior.

Evaluaciéon (Evaluation) En este punto, se ha conseguido obtener uno o més modelos
considerados de alta calidad. Antes de proceder a su despliegue, es de vital importancia
evaluarlos y comprobar si se han cumplido todos los objetivos definidos. Al final de esta
fase, se tiene que llegar a una decision del uso de los resultados obtenidos.

Despliegue (Deployment) La creacién del modelo generalmente no se considera el
final del proyecto. La informacién obtenida debe organizarse y presentarse de forma que
sea accesible y 1til para el usuario final. Dependiendo de los requisitos, esta fase puede
ser muy sencilla o verdaderamente compleja. En cualquier caso, es crucial comprender
qué acciones debe realizarse para poder hacer un buen uso de los modelos creados.

Entregables

Con el desarrollo incremental como flujo de trabajo seleccionado, cada entregable debera
ser completamente funcional y dependera de la finalizacion del anterior. De este modo, se

garan

tiza un avance gradual y estructurado del proyecto, permitiendo revisar, evaluar, y

mejorar cada fase antes de continuar con la siguiente.

2.3.

Entregable 1: obtencién conjuntos de datos y su adecuada transformacién.

Entregable 2: desarrollo de un clasificador bésico basado en Transformers, adaptable
a cada conjunto de datos.

Entregable 3: optimizacion especifica de cada modelo para su correspondiente con-
junto de datos.

Entregable 4: generacién de mapas de saliencia para interpretar las decisiones del
modelo.

Entregable 5: despliegue de aplicacion web funcional que integre todos los modelos
desarrollados.

Entregable 6: redaccién de la memoria del proyecto.

Planificacion

Dado que este Trabajo de Fin de Grado cuenta con una carga de 12 créditos ECTS dentro
del Grado en Ingenieria Informética de la Universidad de Valladolid, se estima una duracién
de 300 horas, considerando que un Furopean Credit Transfer System equivale a 25 horas.
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El desarrollo del proyecto comenzé el 17 de marzo de 2025, con una duracién prevista de

aproximadamente tres meses, finalizando a mediados de junio del mismo afio.

2.3.1.

Estimacion inicial del coste

En la siguiente tabla se presenta una estimacion del coste en horas para cada una de las
fases de la metodologia utilizada. Asimismo, a cada una de ellas se le ha asignado tareas
concretas, recursos y tiempos estimados, con el objetivo de facilitar el desarrollo del trabajo

y garantizar el cumplimiento de los objetivos planteados.

Fase CRISP-DM

Tareas principales

Duracién tarea (h)

Total fase (h)

Contextualizacién  con  los 10
1. Comprensién del negocio TFGs anteriores 35
Revisién del estado del arte 20
Definicién de los objetivos 5
2. Comprensién de los datos | Analisis de los datasets usados 5
en los TFGs anteriores
Descarga y estructuracién 5
3. Preparacién de los datos Transformaciones adecuadas 10 30
Organizacién y almacenamien- 15
to para su uso en modelos
Implementacién de ViT bésico 20
Noado | B e o e |0 .
Entrenamiento y optimizacién 30
Regularizacién y optimizacién 15
del entrenamiento
Creacion de mapas para expli- 5
cabilidad
5. Evaluacion Comparacién métrica CNN vs 5 15
ViT
Comparacién de explicabilidad 2
Interpretacién de resultados 3
6. Despliegue Desarrollo de laf a;jlicacién web 30 40
Esquemas de disefio 10
Redaccion de memoria 75
7. Documentacién Creacién de gréficas, tablas y 5 90
resultados
Revisién completa 10
Total 300

Tabla 2.1: Planificacién temporal del proyecto segin metodologia CRISP-DM.

Aparte de la estimacién de costes recogida en la tabla anterior, en la Figura y la
Figura [2.3] se representa visualmente el flujo temporal del proyecto a lo largo de sus tres
meses de duracién. Este diagrama tiene un caracter orientativo y no debe interpretarse como
una secuencia estricta de ejecucion.
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En lugar de un desarrollo secuencial y rigido, el proyecto se ha estructurado siguiendo
un enfoque mds flexible. Algunas tareas, como la implementacién de modelos o el ajuste
de parametros, se han solapado con otras fases, como el desarrollo de la aplicacién web
o la redacciéon del documento, tal y como se muestra en la Figura donde se ve el flujo
completo. Este solapamiento ha permitido aprovechar al méximo el tiempo disponible durante
fases computacionalmente costosas, como el entrenamiento de modelos, lo que ha facilitado

avanzar en paralelo con otras tareas.

Aunque la planificacién establecida sirve como referencia para la organizacién del trabajo,
en la practica se ha adaptado constantemente en funcién del progreso real, de la aparicién de
nuevas ideas y del tiempo efectivo disponible semana a semana. Este enfoque ha permitido

mantener un ritmo de trabajo constante, sin dejar de lado los objetivos marcados.

> 5 marzo 2025 abrl 2025
et
1. Compresién del negocio 1713025 213025 I —————
Comestuatzacin conlos TFGs . 17325 18325 =
Revision el estado del arte 10025 261325 :E.
Definicion de los objetivos 2713125 2713125 [ 1 [ [ [
2 Comprensién d o catos was  3wes p—
A dolos datasets usados . 28325 3125 p—
3. Preparacion de los datos 14125 814125 I '—
Descargay esrctracion a5 azs
Organzacin y simacenamento.. 4425 wazs j——
4 Movetaco auns wons
Impementacin de VT basco 9425 125 =
Estudio de mejoras y variantes 151425 2025 :'1
Entrenamiento y optinizacion 2425 5625 =

Figura 2.2: Primera parte del Diagrama de Gantt del proyecto.
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2.3: Segunda parte del Diagrama de Gantt del proyecto.
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2.3.2. Variaciones en la planificacién inicial

En la préctica, se han producido ciertas complicaciones respecto a los tiempos estimados.
Estas variaciones se deben a tres principales razones:

En primer lugar, el desarrollo de este Trabajo de Fin de Grado ha implicado el entrena-
miento de tres modelos independientes, cada uno adaptado a un conjunto de datos distinto.
Esto ha supuesto un incremento considerable en los tiempos de ejecucion, ya que cada modelo
requiere multiples iteraciones para alcanzar un rendimiento 6ptimo. Aunque se ha contado
con dos méaquinas para estas tareas, las limitaciones computacionales han seguido represen-
tando un cuello de botella significativo.

En segundo lugar, uno de los mayores retos encontrados ha sido el problema de generali-
zacion. A lo largo del proceso de entrenamiento, se ha observado un fuerte sobreaprendizaje,
lo que ha exigido un gran trabajo de regularizacion, ajuste de hiperparametros y pruebas
experimentales. Aunque estas tareas estaban contempladas dentro del flujo de trabajo, su
complejidad ha superado lo esperado, extendiendo la duracién de esta fase.

Por otro lado, durante los dos primeros meses de desarrollo del proyecto, la carga de
practicas externas en empresa redujo la disponibilidad horaria. Esta situaciéon redujo la de-
dicacién semanal al proyecto, especialmente en fases iniciales clave como la preparacion de
datos y la primera implementaciéon de los modelos base.

En conjunto, todos estos factores han llevado a una adaptacién de la planificacién, pos-
poniendo ciertas tareas y alargando otras. El enfoque incremental seguido, junto con la fle-
xibilidad de la metodologia empleada, ha permitido reajustar la carga de trabajo en funcién
del avance real, garantizando la finalizacién del proyecto.
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Capitulo 3

Fundamento Teodrico

Un Transformer es una arquitectura de Aprendizaje Profundo que, transforma una se-
cuencia de entrada en una salida, optimizando la probabilidad de que esta sea coherente
con los patrones aprendidos durante el entrenamiento. A diferencia de modelos anteriores,
el Transformer permite procesar todos los elementos de la secuencia en paralelo, sin necesi-
dad de mantener un orden explicito. Esta capacidad proviene de su componente principal: el
mecanismo de atencién, que hace posible que cada elemento de la entrada decida qué otros
elementos son mas relevantes para generar su salida.

Como ya se ha mencionado en la Introduccién |1} los Transformers fueron presentados por
primera vez en el articulo Attention is All You Need [3], desarrollado por investigadores de
Google en 2017. La estructura original propuesta se enmarca como una instancia especifica
de los modelos encoder-decoder, en la que un codificador procesa la entrada y un decodifica-
dor genera la salida correspondiente. Desde entonces, han surgido numerosas variantes que
permiten adaptar esta arquitectura a tareas muy diversas.

A continuacién, se explicard de forma general la estructura base de los Transformers, con
el objetivo de comprender sus fundamentos. Posteriormente, se profundizara en su adaptacién
al caso de los Vision Transformers (ViT), disenados especificamente para el procesamiento
de imagenes.

3.1. Estructura principal

La estructura del Transformer se divide en dos grandes componentes: el codificador (en-
coder) y el decodificador (decoder), representados en las mitades izquierda y derecha de la

Figura [3.1]

Antes de ser procesada por el codificador, la secuencia de simbolos de entrada se convierte
en una secuencia de vectores densos mediante una capa de embedding, a los que se suma una

13
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codificacién posicional, pues el Transformer no tiene acceso explicito al orden de los elementos
de la entrada al procesar los simbolos en paralelo.

Output
Probabilities

Linear

4 N\
| Add & Norm |<\

Feed
Forward

7 ™\ Add & Norm
_ :
el ol Multi-Head
Feed Attention
Forward J) 7 ) N x

-
| Add & Norm :
Nx I

(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L 1
o J O\ —,
Positional @_@ ¢ Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figura 3.1: Estrucutra de un Transformer de [3].

Esta representacién combinada (z1,...,x,) es la que recibe el codificador, el cual trans-
forma en una nueva secuencia de representaciones numéricas continuas z = (21, ..., 2, ). Esto
almacena informacién contextual y seméantica de toda la secuencia, permitiendo que cada z;

14
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incorpore no solo el significado del simbolo correspondiente, sino también como se relaciona
con el resto de elementos de la secuencia.

A partir de z, el decodificador genera la secuencia de salida (y1, ...,y ) de forma autorre-
gresiva, produciendo un elemento en cada paso.

Un modelo autorregresivo genera cada elemento de la secuencia de salida condicionado a
los elementos generados previamente. Es decir, en el paso ¢, el modelo produce y; utilizan-
do como entrada tanto la representacién codificada de la entrada como la secuencia parcial
(y1, .-, yr—1) generada hasta ese momento. De esta forma, se entrena al modelo para maximi-
zar la probabilidad conjunta de la secuencia como producto de probabilidades condicionales:

n

P(y1,y2, st | 2) = [ [ PWe | y1, s ye-1,2)

t=1

Este enfoque permite al modelo construir salidas de manera coherente, ya que cada nuevo
sfmbolo tiene en cuenta tanto el contexto global (extraido del codificador) como el contexto
local (la salida generada hasta el momento). Durante el entrenamiento, el modelo recibe
como entrada la secuencia real completa (técnica conocida como teacher forcing), mientras
que en inferencia utiliza sus propias predicciones anteriores, lo que puede introducir errores
acumulativos [23].

Este principio autorregresivo es de gran importancia y constituye una de las bases con-
ceptuales del modelo original Transformer [3].

Estos simbolos (de aqui en adelante se denominardn tokens) corresponden a sub-palabras
en la arquitectura original, ya que en un principio los Transformers estaban pensados para el
Procesamiento de Lenguaje Natural. En el caso de los ViT, como se analizard mas adelante,
los tokens representan fragmentos o regiones de una imagen.

El Transformer sigue una arquitectura general basada en multiples capas apiladas, donde
cada capa consta de un mecanismo de atencién (attention) y una capa de red neuronal
completamente conectada (feed-forward). Cada uno de estos bloques se encuentra rodeado
por una conexién residual seguida de una operacién de normalizacién (Add & Norm). La
caracteristica fundamental es que cada token navega de manera paralela a través de las
diferentes capas, siguiendo su propio camino, aunque cada uno depende directamente de
todos los demads elementos de la secuencia.

Estas capas estan conectadas punto a punto, tanto en el codificador como en el decodi-
ficador, como se muestra en la Figura que representa la arquitectura original con seis
capas de codificacién.

15
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—_— s N
Output
Add & Norm L
== 'AGd & Norm 'Add & Norm
eeX Feed Feed Feed =
] Feed
Forward Forward Forward Forward Famis] Bere)
1 1
"Add & Norm 1 1
Add & Norm Add & Norm
“’lu""n‘,ead Mult-Head Multi-Head Mult-Head Mult-Head Mult-Hoad
ttention Attention Attention Attention Attention Attention
L’_) R
Input T f

Figura 3.2: Navegacién por capas del codificador de [4].

Finalmente, la representacién generada en cada paso del decodificador se proyecta me-
diante una capa lineal sobre el espacio del vocabulario y pasa por una funcién softmaz, que
convierte ese vector en una distribucién de probabilidad. Este proceso puede observarse en la
parte derecha de la Figura donde se muestra la conexién entre la salida del decodificador
y la capa de prediccion final.

Como se detallard mas adelante, durante el entrenamiento, se suele emplear la pérdida
de entropia cruzada para comparar esta distribucion con el simbolo real esperado en cada
paso de la secuencia.

3.1.1. Embedding

Antes de que un Transformer pueda procesar datos de entrada, estos deben transformarse
en una representacion numérica densa que el modelo sea capaz de manejar. Esta transfor-
macién se realiza mediante una capa de embedding, que convierte elementos discretos, como
palabras o subpalabras, en vectores de dimensién fija dentro de un espacio continuo.

Un embedding es, por tanto, una técnica para representar tokens de forma densa y signi-
ficativa. En lugar de trabajar con indices enteros que no contienen informacion semantica, se
asigna a cada token un vector que captura relaciones de similitud y contexto. Por ejemplo,
supongamos que queremos representar las palabras “perro”, “gato” y “coche” en un espacio
de cuatro dimensiones. Un embedding podria asignarles los siguientes vectores:

perro — [0,35, 0,10, —0,22, 0,58]
gato — [0,33, 0,12, —0,20, 0,60]
coche — [~0,75, 0,90, 0,10, —0,30]

En este espacio vectorial, la cercania entre los vectores de “perro” y “gato” refleja su
relacién semantica, mientras que “coche” se encuentra mas alejado, indicando una menor si-
militud con los anteriores. Aunque los valores de los vectores pueden parecer arbitrarios, estos
son vectores entrenables que se ajustan durante el entrenamiento del modelo, permitiendo
capturar relaciones complejas entre palabras o sub-palabras.
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Otro ejemplo visual puede verse en la Figura [3.3] donde se representan distintos tokens
correspondientes a animales y vehiculos en un espacio bidimensional. La posicién de los
puntos refleja como los embeddings capturan las relaciones semanticas: los elementos del
mismo grupo tienden a agruparse, lo que indica que el modelo ha aprendido a asociarlos por
su significado (NO ME ACABA DE CONVENCER LA IMAGEN).

Repr ion 2D de i de palabras

Categoria
animales

Dimensién 2

0
Dimension 1

Figura 3.3: Representacién bidimensional de embeddings de palabras correspondientes a dos
grupos semanticos: animales y vehiculos.

Codificaciéon posicional

Una de las caracteristicas del Transformer es que, al no tratase de una arquitectura se-
cuencial como las CNN, no tiene conocimiento del orden en que aparecen los tokens. Para
proporcionar esta informacién estructural, se anade a cada embedding de palabra un posi-
tional encoding, que codifica la posicién del token en la secuencia.

En el trabajo original de Vaswani et al. [3], se propuso un esquema de codificacién posicio-
nal fija, basado en funciones sinusoidales de diferentes frecuencias. Las formulas empleadas
son las siguientes:

. 05 05
PE(,0s,2i) = sin <p2> v PE(pos,2i+1) = €OS (]?2>
10000 dmoder 10000 9modet

donde pos es la posicién del token y i es la dimensién dentro del vector de embedding.
Estas funciones estan disenadas de tal forma, que el modelo pueda aprender facilmente las
posiciones relativas entre tokens. En concreto, permiten que un desplazamiento fijo k en la
secuencia se represente mediante una combinacién lineal de las codificaciones anteriores, lo
que facilita el modelado de relaciones como la dependencia gramatical o sintactica.

Estas codificaciones se visualizan claramente en la Figura[3.4] donde cada fila corresponde
a una posicién en la secuencia y cada columna representa una dimensiéon del embedding.
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Las variaciones periddicas muestran como las funciones sinusoidales, al contar con miltiples
frecuencias, marcan patrones posicionales desde el nivel local (ondulacién rdpida) hasta el
global (ondulacién suave)[5].
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Figura 3.4: Codificacion posicional sinusoidal: valores de sin y cos segin la posicién y dimen-
sién del embedding de [5].

3.1.2. Mecanismo de Atencién

Es el componente central de la arquitectura Transformer. Su objetivo es que el modelo, a la
hora de generar las representaciones internas, pueda asignar diferentes niveles de importancia
a cada elemento de la secuencia de entrada en funcién del contexto. Permite considerar
simultaneamente todas las posiciones de la secuencia, lo que facilita la paralelizacién y una
mejor captura de las dependencias méas generales.

Una funcién de atencién puede describirse como el mapeo entre una consulta (query) y
un conjunto de pares clave-valor (key-value) a una salida, donde consultas, claves, valores
y salida son todos vectores. Esta salida se obtiene como una combinacién ponderada de los
valores, en la que los pesos se calculan a partir de una funcién de compatibilidad entre la
consulta y las claves.

En este contexto, los vectores utilizados se representan cominmente de la siguiente formas:

s q (query): representa la consulta que compara contra otros elementos.
» k (key): representa las claves con las que se evalta la similitud de cada consulta.

= v (value): contiene la informacién asociada a cada clave y es lo que se combina (pon-
deradamente) para generar la salida.
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La atencién calcula una puntuacién de similitud entre cada par consulta-clave, que lue-
go se utiliza para obtener una combinacién ponderada de los valores, dando lugar a una
representacion contextualizada para cada token de entrada.

Scaled Dot-Product Attention Multi-Head Attention

MatMul

{1
’ Scaled D;t-Product h
Attention
AN | AN |

1 F-= o1
[ Linear].][ Linear],][ Limear].]

vV K Q

Figura 3.5: Mecanismo de Atencién de [3]. (izq) Scaled Dot-Product Attention. (der) Multi-
Head Attention .

Scaled Dot-Product Attention

Vaswani et al. [3] introdujeron un mecanismo de atencién particular denominado Scaled
Dot-Product Attention (Figura , que lleva al modelo a evaluar y a asignar diferentes
niveles de importancia a cada elemento de la secuencia de entrada.

La entrada a este mecanismo consiste en vectores de consulta y clave de dimensién d,
y vectores de valor de dimensién d,. Para cada consulta, se calcula su producto escalar con
todas las claves, se divide por v/dj, a lo que se aplica la funcién softmaz para obtener los
pesos con los que se combinaran los valores correspondientes.

Dado que en la préactica se requiere calcular la atencién sobre multiples consultas de
forma simultanea, es méas eficiente llevar a cabo los cdlculos de manera matricial en lugar de
vectorial. Para ello, se utilizan las matrices @, K, V', que agrupan respectivamente todos los
vectores de consulta, clave y valor. La féormula completa del mecanismo es:

QKT
Vi,

Attention(Q, K, V) = softmax( %4

Aunque actualmente, esta funcion es la mas reconocida y empleada dentro de este ambito,
anteriormente las dos més usadas eran la atencién aditiva y la multiplicativa sin escalado.
Esta ultima es idéntica a la atencién escalada, salvo por la ausencia del factor ﬁ. Si
bien ambas son equivalentes en complejidad computacional teérica, la multiplicativa es mas
eficiente en la practica debido a su implementacién mediante operaciones de multiplicacién

de matrices altamente optimizadas.
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3.1. ESTRUCTURA PRINCIPAL

Para valores pequenos de dji, ambas versiones se comportan de forma similar y se pueden
usar indistintamente. Sin embargo, cuando dy es grande, la atencién aditiva supera a la
multiplicativa sin escalado [24]. Esto se debe a que al realizar célculos con dimensién de
claves muy grande (dg), el producto entre @ y K puede dar valores muy altos, lo que implica
que la funcion softmax produzca gradientes extremadamente pequenos, es decir, devuelva
casi ceros y unos. Por ello, para contrarrestar este efecto, se escalan los productos escalares
dividiéndolos por v/dj.

Una manera de ver por qué se pueden llegar a dar valores altos al realizar los productos
escalares es desde una perspectiva estadistica: si se asume que los componentes g y k son
variables independientes con media 0 y varianza 1, entonces su producto escalar q - k =
Zfil gik, tendrd media 0 y varianza dj. Por tanto, al dividir dicho producto por /dj, la
varianza pasa a ser 1, estabilizando los valores.

En trabajos recientes se han explorado otras variantes de atencién con propiedades com-
plementarias. Por ejemplo, las denominadas symmetric attention y pairwise attention propo-
nen enfoques alternativos para el cdlculo de similitudes entre tokens, a menudo con propie-
dades tedricas deseables como simetria, interpretabilidad o eficiencia computacional. Estas
alternativas han sido estudiadas, entre otros, por Courtois et al. [25].

Multi-Head Attention

Como ya se ha visto, el mecanismo de atencién permite establecer relaciones directas
entre distintos tokens de una secuencia de entrada, modelando la importancia que tienen
entre ellos [26]. Pero, Vaswani et al. [3] demostraron que es beneficioso emplear multiples
funciones de atencién en paralelo, lo que da lugar al mecanismo conocido como Multi-Head
Attention.

Este disefio permite que el modelo atienda a diferentes representaciones subespaciales de
la informacién en paralelo, capturando asi multiples contextos o relaciones seméanticas. En
contraste, el uso de una tUnica cabeza limitaria la capacidad del modelo para representar
patrones diversos, al forzar una media aritmética sobre todas las interacciones.

Formalmente, se realizan proyecciones lineales sobre las matrices de consultas, claves y

valores utilizando distintos pesos entrenables para cada cabeza de atencién. En particular,
para la i-ésima (i € {1,..., h}), se realizan las siguientes proyecciones:

La salida de cada cabeza se calcula como:

head; = Attention(Q;, K;, V;)

Las salidas de todas ellas se concatenan y se proyectan con una matriz final:
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CAPITULO 3. FUNDAMENTO TEORICO

MultiHead(Q, K, V) = Concat(heady, ..., head;, )W

donde WiQ, WE WY € Rimoderxdi v 7O ¢ RhdvXdmodet son pardmetros entrenables.
Este proceso se representa en la figura [3.5] en la parte derecha del diagrama.

Es gracias a este disenio que los Transformers sean capaces de modelar muchas relaciones
complejas entre tokens, tanto a corto como a largo alcance, e incluso centradas en distintos
aspectos seménticos o espaciales (como serfa el caso de este trabajo).

Self-Attention

El mecanismo de auto-atencién (self-attention) es una forma particular de atencién en la
que las consultas (@), las claves (K) y los valores (V) provienen de la misma secuencia de
entrada. Es decir, cada token de la secuencia puede “atender” a todos los demas (incluyéndose
a si mismo), permitiendo calcular una representacién contextualizada basada en toda la
secuencia.

Esta capacidad resulta fundamental en los Transformers ya que, con ello, el modelo puede
aprender relaciones entre cualquier par de elementos sin tener en cuenta su distancia rela-
tiva. Al ponderar la importancia de cada token en relacién con los demds, se construyen
representaciones capaces de integrar la comprensién global de la secuencia.

En una subcapa de auto-atencion, la secuencia de entrada de donde provienen todas las
claves, consultas y valores, es la salida de la capa anterior.

= En el Codificador: cada posicién en la secuencia de entrada puede atender a todas las
posiciones anteriores y posteriores, permitiendo una representacién rica del contexto.

= En el Decodificador: similar al codificador, pero se aplica una mascara para evitar
que la posiciéon actual atienda a posiciones futuras, conservando la propiedad auto-
regresiva. Esta méscara se aplica en el Scaled Dot-Product Attention asignando —oo a
aquellas conexiones consideradas ilegales.

= Entre Codificador y Decodificador: el decodificador puede atender a todas las
posiciones de la secuencia de entrada (provenientes del codificador), permitiendo que
cada paso de generacion se base en toda la informacién.

Ciertas ventajas relevantes de usar self-attention nombradas en [3] son:

= Paralelizacién: A diferencia de las RNN, que procesan secuencias de manera secuen-
cial, el self-attention puede procesar todos los elementos simultdneamente, aprovechan-
do mejor el computo.
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3.1. ESTRUCTURA PRINCIPAL

= Captura de Dependencias a Larga Distancia: Como ya se ha comentado en la
introduccién, mientras que las RNN tienen dificultades para modelar relaciones entre
elementos distantes en una secuencia, el self-attention puede capturar estas dependen-
cias sin importar la distancia entre tokens.

s Eficiencia Computacional: Comparado con las CNN, el self-attention requiere me-
nos operaciones para modelar relaciones entre todos los pares de elementos en una
secuencia, especialmente en secuencias largas.

3.1.3. Redes Postion-Wise Feed-Forward

Adicionalmente, cada capa del codificador y del decodificador incorpora una subcapa de
red neuronal feed-forward completamente conectada, que se aplica de manera independiente
a cada token de la secuencia. Esta subcapa consta de dos transformaciones lineales separadas
por una funcién de activacién no lineal que, en la arquitectura original, es una ReLU [3]. La
operacion que se realiza puede expresarse como:

FFN(l‘) = méX(O, $W1 + bl)WQ + bg

donde x es el vector de entrada, Wy y Ws son matrices de pesos, y b1 vy by son vectores
de sesgo.

Aunque esta operacion se aplica de forma idéntica a cada token, los parametros Wy, Ws,
b1 y ba son compartidos a lo largo de todos ellos dentro de una misma capa, pero varian de
una a otra. Este diseno facilita la paralelizacion y la eficiencia computacional del modelo.

Investigaciones algo mas recientes han mostrado, que estas subcapas feed-forward actiian
como memorias de tipo clave-valor, en las que cada clave se asocia con patrones especificos y
cada valor contribuye a la generacién de la salida. Esto implica que las subcapas no sélo trans-
forman las representaciones, sino que también son capaces de almacenar cierta informacién
aprendida durante el entrenamiento [27].

3.1.4. Normalizacién y conexiones residuales

Cada subcapa del Transformer, tanto la de atencién, como la de proyeccion feed-forward,
va acompailada de una conexién residual seguida de una normalizacién por capas (Layer
Normalization). Esta combinacién se implementa de la siguiente manera:

Output = LayerNorm(x 4 Sublayer(z))

Este disefnio tiene como objetivo mejorar la estabilidad del entrenamiento. Las conexiones
residuales permiten que los gradientes se propaguen mas facilmente hacia capas anteriores,
lo que ayuda a mitigar el problema del desvanecimiento del gradiente [28]. Este fenémeno,
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CAPITULO 3. FUNDAMENTO TEORICO

conocido como gradient vanishing, ocurre cuando los gradientes se vuelven progresivamente
més pequenios al retropropagarse, dificultando el aprendizaje en capas lejanas a la salida.

Por su parte, la normalizacién por capas estabiliza la activacion de cada token norma-
lizando sus dimensiones internas. A diferencia de la Batch Normalization, que se basa en
estadisticas globales del lote (batch) y se aplica solo en entrenamiento, la Layer Normali-
zation opera sobre cada instancia individual y esta presente tanto en entrenamiento, como
en la fase de test. Esta propiedad la hace especialmente adecuada para tareas como las que
aborda el Transformer [29].

Es importante destacar que existen alternativas principales respecto al punto en el que
se aplica la normalizaciéon dentro del bloque Transformer:

= Post-Normalizacién (Post-LN): La normalizacién se realiza después de la suma
residual, como en la arquitectura original de Vaswani [3].

= Pre-Normalizacién (Pre-LIN): La normalizacién se aplica antes de la subcapa, lo que
ha demostrado mejorar la estabilidad del entrenamiento para ciertos casos especificos.

3.2. Estructura ViT

Aunque los Transformers fueron creados en un primer momento con el objetivo de poder
procesar el lenguaje natural, su éxito ha motivado su adaptacién a otros dominios.

Los Vision Transformer (ViT) representan una adaptacién de la arquitectura original al
dominio de la Visién Por Computador. En Dosovitskiy et al. [6], se origina la idea de crear
un Transformer que se pueda aplicar directamente a las imagenes, sin cambiar en exceso la
estructura original.

Transformer Encoder
2 ®

Norm

Vision Transformer (ViT)

MLP
Head

‘ Transformer Encoder

:
P Bt [Efg @5 @[5 E

Multi-Head
Attention

* Extra learnable B Gy
[class] embedding Linear Projection of Flattened Patches ]

[T T 1]
—»Hl%ﬁ}mﬁﬂﬂ

Patches
Figura 3.6: Estructura de un ViT de [6].
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En ViT, se reemplaza las convoluciones tradicionales de las CNNs por los mecanismos de
autoatencion. Como se puede ver en la figura[3.6] en lugar de procesar la imagen de entrada
como una cuadricula de pixeles, se divide en una secuencia de patches de tamano fijo (por
ejemplo, 16 x 16 pixeles). Cada parte (patch) se aplana y se proyecta linealmente a un espacio
de caracteristicas, similar al proceso de tokenizacién en Procesamiento de Lenguaje Natural.
A estos vectores se les anaden embeddings posicionales para conservar la informacién espa-
cial. La secuencia resultante se introduce en las multiples capas de codificador Transformer
estandar.

Otra caracteristica distintiva de los ViT, es la inclusién de un token de clasificacién
([CLS]) al inicio de la secuencia. Este token es el encargado de recoger la informacién general
de la imagen la cual, una vez se ha finalizado, se utiliza para realizar la prediccién de clase.

Por tanto, de toda la estructura convencional del Transformer, tinicamente se conserva
la parte correspondiente al codificador, pero afiadiendo a su salida la capa lineal para poder
realizar la clasificacién de las imédgenes. Si se quisiese obtener las probabilidades de cada
clase, también se puede anadir una funcién softmax tras esta capa lineal.

Las ecuaciones 7 resumen el flujo completo del Vision Transformer. En primer lugar,
la imagen se convierte en una secuencia de tokens mediante proyeccién lineal de patches y
adiciéon de un token [CLS] junto con sus codificaciones posicionales (EC) Esta secuencia
atraviesa una pila de bloques Transformer compuestos por autoatencion y capas MLP, ambas
con normalizacién y conexiones residuales (Ec.f). Finalmente, se extrae y normaliza el
token [CLS] para producir la prediccién de salida (Ec.(4))[6].

20 = [Tctass; T0E; .. ;2N E] 4+ Epoy, E € RPTOXP B e RIVHDXD (1)
zy = MSA(LN(2¢—1)) + 2¢—1, ¢=1...L (2)
2 =MLP(LN(z))) + 2f, £=1...L (3)
y = LN(z}) (4)

3.2.1. Embedding

Como ya se ha descrito antes, el proceso de embedding es esencial. En este caso, permite
adaptar las imdgenes a un formato en el que los ViT puedan aprovechar sus cualidades de
paralelizacién. Este proceso consta de dos componentes principales: el patch embedding y el
positional encoding.

Patch Embedding

El patch embedding consiste en dividir la imagen de entrada x € RTXWx¢ (

ra y canales) en una cuadricula de patches 2D no solapados z, € RV* (¥ Q‘C), donde (H,W)

altura, anchu-
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CAPITULO 3. FUNDAMENTO TEORICO

corresponde con la resolucién de la imagen, C' es el niimero de canales y (P, P) es la resolu-
ciéon de cada uno de los patches. Esto da lugar a N = If)—‘;V patches, valor que corresponde

con la longitud de secuencia de entrada del Transformer.

Una vez se tiene la imagen dividida, cada patch se aplana en un vector de dimensién
P?.C. A continuacién, se utiliza una capa lineal para realizar una proyeccién a un espacio
de dimensién D (Ec. ) Este proceso transforma la imagen en una secuencia de vectores
de caracteristicas, similar a una secuencia de tokens en procesamiento de lenguaje natural.
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Figura 3.7: Patch embedding de [7].

Positional Encoding

Si bien, en la arquitectura original de los Transformer,s se emplea una codificacién po-
sicional determinista basada en funciones sinusoidales, en los Vision Transformers (ViT) se
opta habitualmente por una estrategia diferente.

Se afiade un positional embedding a cada vector de patch. En ViT, estos embeddings
posicionales son vectores aprendibles de dimensién D, que se suman a los embeddings de
los patches (parte de la derecha de figura . Esta suma permite al modelo distinguir la
posicion relativa de cada patch en la imagen, preservando la informacion espacial critica.

Estos embeddings aprendibles, son vectores que se optimizan junto con los parametros del
modelo durante el entrenamiento. Esto ha demostrado ser efectivo en tareas de clasificacion
de imégenes, ya que permite al modelo aprender representaciones espaciales adaptadas a los
datos concretos gracias a conocer las posiciones de cada uno de los patches. Sin embargo,
a diferencia de las convoluciones, estos embeddings no son invariantes a transformaciones
espaciales como la traslacion, lo que puede limitar su generalizacién si no se dispone de una
gran cantidad de datos.

Si bien los embeddings posicionales aprendibles suelen inicializarse con valores aleatorios,
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3.2. ESTRUCTURA VIT

existen enfoques alternativos que pueden mejorar la incorporacién de la informacién espa-
cial. Entre ellos se encuentran las codificaciones sinusoidales, los embeddings bidimensionales
disefiados para preservar mejor la estructura de la imagen, o técnicas mas avanzadas basa-
das en convoluciones o mecanismos de autoatencién local [30]. Aunque cabe destacar que la
inicializacién especifica en la préactica no es habitual, pues generalmente no conlleva mejoras
significativas en el rendimiento.

A
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Image 3 High resolution with 12
pixels of half pixel size

Figura 3.8: Ejemplo visual de distintas resoluciones en codificacién posicional: (arriba) rejilla
de baja densidad, (medio) desplazamiento fraccional, (abajo) rejilla de alta densidad de [§].

r

Embedding value

1 row with 6 pixels

Una cuestién relevante en la codificacién posicional es la resolucién espacial con la que se
representan las posiciones. La Figura [3.§|ilustra como distintas configuraciones pueden variar
la densidad de puntos que codifican la posicién en la imagen. Una mayor resoluciéon permite
capturar relaciones locales més precisas entre regiones cercanas, pero también implica un
mayor coste computacional. Esta decisién de diseno puede afectar al tipo de informacion
espacial que el modelo puede aprender y generalizar.

3.2.2. Token de Clasificacion

El token de clasificacién, denotado como [CLS], es una parte esencial que permite al mo-
delo generar una representacion global de la imagen para tareas de clasificacion. Este token,
introducido inicialmente en modelos de procesamiento de lenguaje natural como BERT [31],
se adapta en los ViT para resumir la informacién de todos los patches de la imagen. Se define
un vector entrenable de dimension D que se inserta al inicio de la secuencia de embeddings

26



CAPITULO 3. FUNDAMENTO TEORICO

de patches. A medida que la secuencia pasa por las capas del codificador Transformer, el
token [CLS] interacttia con los demas gracias a los mecanismos de autoatencién, guardando
informacion del contexto de toda la imagen. Al final del proceso, la representacién del token
[CLS] contiene las caracteristicas globales de la imagen para poder realizar su clasificacién.

Con este planteamiento, el ViT puede realizar predicciones precisas sin necesidad de
estructuras adicionales como capas de agrupamiento global, comunes en las redes neuronales
convolucionales (CNNs). Estudios recientes han explorado variantes del token [CLS], como el
uso de multiples tokens de clasificacién o la modificacion de su dimensionalidad para mejorar

el rendimiento en tareas especificas [32].
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Figura 3.9: Token [CLS] en BERT de [9].

Como se puede ver en la figura [3.9] para el caso de BERT, el token se afiade al inicio de
la secuencia. Se trata como todos los demdas durante el entrenamiento, y, tras finalizar, se

utiliza para poder realizar la clasificacién.

3.2.3. Mean Pooling

Otra estrategia comin para obtener una representacién global de la imagen es el deno-
minado mean pooling. Esta técnica consiste en calcular la media de las salidas de todos los
tokens del patch generados por el codificador. Formalmente, si Z = [z1, 29, ..., 25| representa
las salidas de los N tokens o patches, la representacién global z,eqn se obtiene como:

1 N
Zmean = N E Zi
=1

Esta representacion z,cqn se utiliza posteriormente para la clasificacién mediante una
capa lineal seguida, opcionalmente, de una funcién softmax para obtener las probabilidades

de cada clase, al igual que ocurria con el [CLS].
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El mean pooling presenta varias ventajas en ciertos contextos. En primer lugar, al prome-
diar las representaciones de todos los patches, se obtiene una visién méas global de la imagen,
lo que puede mejorar la generalizacién en tareas donde la informacién relevante esta repar-
tida en diferentes regiones. Esta técnica es invariante a la traslacién, ya que no depende de
la posicién especifica de los patches, lo que la hace robusta frente a desplazamientos en la
imagen [33].

Sin embargo, también existen desventajas. Al tratar todos los patches con igual impor-
tancia, el mean pooling puede tener problemas con caracteristicas importantes que sélo estén
presentes en regiones muy especificas de la imagen. Esto es muy importante en casos donde
ciertos detalles locales son cruciales para la clasificacién. En cambio, el token [CLS] puede
aprender a enfocarse en estas regiones discriminantes durante el entrenamiento [34].

Debido a estas desventajas, se han explorado variantes del mean pooling. Por ejemplo, el
Group Generalized Mean Pooling (GGeM) divide los canales en grupos y aplica una media ge-
neralizada dentro de cada grupo, permitiendo més flexibilidad y adaptacion a la informacién
[33].

3.3. Funciones de activacion

En los modelos basados en Transformers, las funciones de activacién juegan un papel
crucial en las redes neuronales feed-forward, tanto en la arquitectura original como en sus
variantes. Estas funciones introducen no linealidad al modelo, lo que posibilita representar
relaciones complejas entre los datos.

Aunque existen numerosas funciones de activacién, en el contexto de este trabajo se abor-
daran las dos mas utilizadas: ReL U, empleada en la arquitectura original de Vaswani et. al, y
GELU, adoptada posteriormente en variantes como BERT o los Vision Transformers (ViT).
A continuacion se describen sus caracteristicas, comportamiento y diferencias principales.

3.3.1. ReLU (Rectified Linear Unit)

La funcién ReLU es una de las més extendidas en redes neuronales profundas por su
simplicidad y eficiencia computacional. Fue introducida por Nair y Hinton en 2010 [35]. Se
define como:

ReLU(z) = méx(0, x)

Como puede verse, anula todos los valores negativos y deja pasar los positivos, lo que
conlleva una activaciéon dispersa. Su bajo coste computacional y facilidad para mitigar el
problema del desvanecimiento del gradiente, han contribuido a su éxito.
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En el Transformer original, la funcién ReLU es utilizada en las subcapas feed-forward
tras la primera proyeccién lineal. En la Figura [3.10] se puede ver su comportamiento gréfico,
donde se observa la activacion nula para entradas negativas y lineal para las positivas.
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Figura 3.10: Representacion grafica de la funcién ReLU de [I0].

3.3.2. GELU (Gaussian Error Linear Unit)

La funcién GELU ha sido propuesta como alternativa a ReL U, especialmente en modelos
modernos como BERT y ViT, debido a su suavidad y mejor comportamiento empirico en
tareas complejas. Fue introducida por Hendrycks y Gimpel en 2016 [36]. Se define como:

\/Z(x + 0,044715:[;3)])

donde ®(z) representa la funcién de distribucién acumulada de una normal estdndar.

GELU(z) = z - ®(z) = 0,5z (1 + tanh

A diferencia de ReLU, la activacion GELU atenia gradualmente los valores negativos en
lugar de anularlos por completo, lo que permite una mayor sensibilidad en la propagacién
del gradiente. Esto puede traducirse en una mejor capacidad de aprendizaje, especialmente
en tareas con relaciones no lineales mas sutiles.

En ViT, GELU se emplea en las subcapas feed-forward por su capacidad para ofrecer un
mejor ajuste al aprendizaje durante el entrenamiento.
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Figura 3.11: Representacion grafica de la funcién GELU de [I1].

3.3.3. Comparativa general

Ambas funciones introducen no linealidad, pero lo hacen de forma distinta. Mientras que
ReL U es abrupta, propensa a anular ciertos gradientes y no diferenciable, GELU proporciona
una transicién mas suave, lo que puede traducirse en mejores resultados en ciertas tareas.

= ReLU: simple, rapida y eficaz, ideal para arquitecturas profundas tradicionales.

= GELU: suave, probabilistica y mds precisa en entornos con relaciones complejas.

El uso de una u otra depende en gran medida del tipo de tarea y del modelo. ViT, como
arquitectura moderna basada en Transformers, se beneficia de las propiedades de GELU para
mejorar la capacidad de aprendizaje y la estabilidad del entrenamiento, aunque como se vera
mas adelante, dependera del caso especifico.

3.3.4. Técnicas de Clasificaciéon y Optimizacion

El entrenamiento de modelos de clasificacion basados en Transformers requiere seleccio-
nar adecuadamente tanto los algoritmos de optimizacién, como la funcién de pérdida y los
esquemas de ajuste del learning rate. Esta seccién describe los elementos utilizados en este
proyecto.
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Optimizadores: Adam y AdamW

Para la actualizacién de pesos durante el entrenamiento se han empleado dos variantes
del optimizador basado en gradiente estocastico: Adam y AdamW.

El optimizador Adam (Adaptive Moment Estimation) combina los beneficios de Momen-
tum y RMSProp, adaptando el learning rate de cada pardmetro individualmente a partir de
los primeros y segundos momentos del gradiente [37].

Por otro lado, AdamW es una modificacién propuesta especificamente para mejorar el
rendimiento en modelos de Transformers, introduciendo una descomposicién explicita de
la regularizacién L2, lo que lleva a un mejor control del peso del decaimiento [12]. Este
optimizador es el utilizado por defecto en muchas implementaciones modernas como Hugging
Face.
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Figura 3.12: Curvas de aprendizaje y generalizacion obtenidas con una ResNet-26 entrenada
en CIFAR-10 usando Adam y AdamW, comparando distintos valores de weight decay y su
efecto sobre la pérdida y el error de test de [12].

Como se observa en la Figura [3.12] AdamW consigue una menor pérdida y error en test
en comparacion con Adam cuando se utiliza un weight decay adecuado. Esto demuestra cémo
la regularizacion desacoplada mejora la capacidad de generalizacion del modelo.
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Funcién de pérdida: Entropia cruzada con pesos

En tareas de clasificacién multiclase, la funcién de pérdida utilizada habitualmente es
la entropia cruzada (Cross Entropy Loss), debido a su capacidad para medir la diferencia
entre dos distribuciones de probabilidad: la predicha por el modelo y la verdadera. En redes
neuronales, la salida del modelo se interpreta como una distribucién de probabilidad mediante
la funcién softmazx, y la entropia cruzada penaliza aquellas predicciones que asignan baja
probabilidad a la clase correcta.

Dado un vector de probabilidades predicho § = (91,92, ..., Jc) v una etiqueta verdadera
codificada como one-hot y = (0, ..., 1,...,0), la entropfa cruzada se define como:

C
Lop=—Y_ yilog(@)

i=1

donde C' es el niimero de clases. Esta férmula se reduce a —log(g) si la clase correcta es
la k-ésima.

En contextos con clases desbalanceadas, la entropia cruzada tiende a favorecer las clases
mayoritarias. Para contrarrestar este efecto, se usan pesos de clase que aumentan el impacto
de los errores cometidos sobre clases minoritarias. Asi, la pérdida ponderada se define como:

c
Lop = — Y wiyilog(f:)

i=1

donde w; es el peso asociado a la clase i. Esta estrategia mejora la sensibilidad del modelo
frente a clases con poca representacién, contribuyendo a un entrenamiento més equilibrado.

Otra técnica es el label smoothing, que acttia como regularizador. En lugar de utilizar una
codificacién one-hot estricta (donde la clase correcta tiene probabilidad 1 y el resto 0), se
asigna una pequena parte de probabilidad a las clases incorrectas. Esto evita que el modelo
se vuelva confiado de manera excesiva y favorece una mayor generalizacion.

Formalmente, la etiqueta suavizada para la clase correcta k se expresa como:

fmmh:{l—e sii=k

! 75 sii#k

donde € € [0, 1] es el pardmetro de suavizado y C es el nimero total de clases. Al repartir
parte de la probabilidad objetivo entre las demés clases, se reduce el sobreajuste y se mejora
la robustez del modelo ante ruido o ambigiiedad en los datos.
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Ajuste del Learning Rate: Cosine Scheduling

Otro aspecto fundamental para lograr una convergencia estable es la gestion dinamica
del learning rate. En este trabajo, se han utilizado dos esquemas principales:

= CosineAnnealingLR: reduce el learning rate siguiendo una curva coseno decreciente,
hasta llegar a un valor minimo al final del entrenamiento. Mejora la estabilidad y evita
oscilaciones tardias.

= get_ cosine__schedule_ with__ warmup: scheduler de la libreria transformers de
Hugging Face. Anade una fase inicial de warm-up (crecimiento progresivo del learning
rate) antes de aplicar la curva coseno, lo que facilita una adaptacién suave en los
primeros pasos del entrenamiento.
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Figura 3.13: Curvas de aprendizaje tipicas: Cosine Scheduler y Cosine con Warmup de [13].

3.4. Técnicas de explicabilidad visual

Si bien es fundamental comprender la arquitectura y funcionamiento interno de los Vision
Transformers, hoy en dia va desarrollandose la explicabilidad de la decision del modelo. Esto
adquiere su importancia en contextos criticos como el diagnéstico médico. En este tipo de
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ambitos, la mera precisién del modelo basta, pero seria deseable conocer por qué se ha tomado
una decisiéon. Esto ayuda en mayor medida al experto, detectar errores y a validar que el
modelo no esté aprendiendo patrones irrelevantes.

A lo largo de los anos, se han desarrollado una gran cantidad de técnicas de explicabili-
dad visual para Redes Convolucionales, como Class Activation Mapping (CAM)[38], Grad-
CAM[39], Score-CAM[40], o Recipro-CAM[4I]. Todas ellas han demostrado su eficacia para
localizar visualmente las regiones que més contribuyen a una predicciéon. Sin embargo, cuan-
do se intenta aplicar estos enfoques sobre arquitecturas ViT, esta eficacia se ve empeorada
seriamente, pues su naturaleza paralelizable complica la interpretaciéon directa de sus gra-
dientes.

3.4.1. Limitaciones del uso de gradientes en ViT

Las técnicas de explicabilidad basadas en gradientes, como Grad-CAMI[39], calculan de-
rivadas del score de la clase respecto a las activaciones internas del modelo. Aunque han de-
mostrado buenos resultados en redes convolucionales, su aplicabilidad a arquitecturas Trans-
former es limitada por multiples motivos estructurales:

= Relaciones complejas entre tokens: a diferencia de las CNN, donde la activacion
estéd directamente relacionada con una posicién espacial local, en los ViT cada token
puede atender a cualquier otro. Estas relaciones se propagan a lo largo de muchas
capas de atencién, lo que dificulta que una activacién temprana o su gradiente refleje
una contribucién clara a la prediccién final.

s Acumulacién de capas y proyecciones: cada capa del Transformer aplica una com-
binacién de atencién multi-head y bloques feed-forward. Esta acumulacién de transfor-
maciones lineales y no lineales provoca que los gradientes de tokens especificos puedan
degradarse o ser dificiles de interpretar (problema relacionado con gradient saturation
o vanishing gradients).

» Los gradientes no garantizan causalidad: los gradientes muestran sensibilidad,
no causalidad. Un gradiente alto no implica que esa regiéon haya sido decisiva en la
prediccién, sino que una pequena perturbacién podria haber afectado el resultado.
Esto puede crear correlaciones espuriasd2], es decir, que se genere una relacién entre
cierta regiéon de la imagen con una clase la cual no es real o causal, generando mapas
enganosos.

Estas limitaciones reducen la efectividad de los gradientes como herramienta de interpre-
tacién, especialmente cuando se requieren explicaciones robustas y especificas de clase.

3.4.2. Limitaciones de métodos tradicionales en ViT

Debido a los problemas que presenta la arquitectura particular de los ViT, se han pro-
puesto técnicas como Attention Rollout[43] o Relevanceldd] para generar mapas de saliencia.
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Aunque logran resultados visuales aceptables, presentan serias limitaciones:

= No son especificas de clase: los métodos basados en atencién no estan disenados
para reflejar la importancia de una clase concreta, lo que reduce su utilidad en tareas
multiclase, como es el caso de los datasets de este trabajo.

= Requieren acceso interno al modelo: necesitan extraer y procesar todas las matri-
ces de atencién internas, lo que implica una alta dependencia de la arquitectura.

= No se pueden aplicar en entornos sin acceso a gradientes: gran cantidad de
modelos no permiten calcular retropropagacion.

Por todo lo anterior, el uso de gradientes y los métodos tradicionales presentan problemas
tanto practicos como teodricos. Estas limitaciones han motivado el desarrollo de enfoques
alternativos que no requieran ni gradientes ni acceso a matrices de atencion.

3.4.3. ViT-ReciproCAM

En 2023, Byun y Lee[I4] propusieron una técnica de explicabilidad visual especificamente
disenada para ViT, denominada ViT-ReciproCAM. Se centra en determinar qué regiones de
la imagen son realmente determinantes en la prediccion del modelo. Para ello, se generan
versiones modificadas de la entrada original mediante el enmascaramiento selectivo de pat-
ches, observando cémo cambia la confianza del modelo en la clase predicha, como se ve en la
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Figura 3.14: Arquitectura del ViT-ReciproCAM de [I4].

El método construye un mapa de saliencia midiendo, para cada patch de la imagen, cuan-
to disminuye la probabilidad de la clase objetivo al eliminarlo. De este modo, se obtiene una

35



3.4. TECNICAS DE EXPLICABILIDAD VISUAL

representaciéon interpretable, que indica la contribuciéon relativa de cada region sin necesidad
de inspeccionar la arquitectura interna del modelo. ViT-ReciproCAM destaca por su sim-
plicidad conceptual, su aplicabilidad en escenarios reales de inferencia y su capacidad para
generar mapas de saliencia mas localizados que otras técnicas comparables.

Se extrae un mapa de caracteristicas con dimensiones (H x T x D) a partir de la primera
capa LayerNorm del ultimo bloque del codificador del Transformer, donde H representa el
nimero de cabezas (en la primera capa, H = 1 ya que todas estdn concatenadas), T es el
numero de tokens, y, D, la dimensién del codificador.

A partir de este mapa, se genera (1" — 1) mdscaras espaciales, cada una de las cuales
corresponde a un nuevo mapa de entrada, que se usard en las capas posteriores. Para ca-
da posicién espacial (z,y), definida como el centro de una méscara espacial Gaussiana, el
método mide el score de predicciéon de una clase especifica usando tinicamente el token de
caracteristica correspondiente.

Cabe destacar que el método ignora la dimensién de batch para simplificar. La eficacia
de ViT-ReciproCAM ha sido evaluada por Byun et. al.[I4] sobre el conjunto de validacién
de ImageNet, mostrando un rendimiento superior frente a otros métodos de referencia del
estado del arte.

Generacion de mascaras espaciales y caracteristicas

La méscara espacial de tokens M tiene dimensiones (N x T'), donde N = (T'— 1) y T
representa el token [CLS] més el niimero de patches, es decir, T = P?+1, pues la imagen est4
dividida en P x P patches. Para cada n € [0,..., N — 1], se genera una méscara que activa
tnicamente una regiéon 3x3 de tokens espaciales, centrada en la posiciéon correspondiente
del token enmascarado. Los deméas tokens se fijan a cero, excepto el token de clase que se
mantiene constante.

A partir del mapa de caracteristicas original F}, de la primera capa LayerNorm del tltimo
bloque codificador del Transformer, se pueden generar nuevos mapas de entrada F}' mediante

multiplicacién elemento a elemento (producto de Hadamard @) con las méscaras espaciales
M™:

Fl'=F,0oM"

Cada nuevo mapa de entrada contiene las caracteristicas originales de una regién de la
imagen, reescaladas por un kernel Gaussiano 3x3. Estas versiones modificadas son utilizadas
para estimar la importancia del token central observando cémo varia la confianza de la red
en la clase objetivo.

Si bien el uso del kernel Gaussiano es el enfoque por defecto, denominado ViT-ReciproCAM[3x

3/, cabe sefialar que también es posible aplicar una méscara basada en el enmascaramiento
de un unico token, lo que ofrece una alternativa mas sencilla, el ViT-ReciproCAM.
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Para generar el mapa de saliencia, se divide el modelo en dos partes: la primera parte
(G) corresponde a las capas hasta la extraccién de caracteristicas (LayerNorm) y la segunda
parte (M) representa el resto del modelo. Al alimentar un lote de N mapas modificados a las
capas H, se obtienen puntuaciones de prediccién ¥ para una clase c.
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Figura 3.15: (a) Extraccién de caracteristicas desde la primera capa LayerNorm del ltimo
bloque codificador, (b) extraccién de caracteristicas desde la salida completa del bloque, (c)
los tokens enmascarados cubren el drea delimitada por la linea azul discontinua en la imagen
de entrada de [14].

Estas puntuaciones permiten calcular la importancia relativa de cada token enmascarado.
El mapa de saliencia final para la clase se obtiene normalizando y reestructurando los scores:

Y. — min(Y,)
méx(Y.) — min(Y;)

S¢ = reshape , (P, P)

donde Y, = [yl,...,yN]T es el vector de scores para la clase ¢, y cada y? es calculado
como:

yo = softmax (H (G(I) © M™)),

La operacién reshape[P, P] reorganiza los valores escalares unidimensionales obtenidos
para cada patch en una matriz bidimensional del mismo tamano que el grid de patches de
entrada [14].

Comparacién de métodos

Varios ejemplos de la eficacia de esta técnica son representados en la figura [3.16] Muestra
una comparacion visual entre distintos métodos de explicabilidad aplicados a ViTs: Attention
Rollout, Relevance, ViT-ReciproCAM y su variante ViT-ReciproCAM [3x3]. Se presentan
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tres escenarios representativos: (i) un objeto simple (Mantis), (ii) multiples objetos idénticos
(Yachts) y (iii) im&genes con multiples clases (Zebra y Elephant).

Input Attention-Rollout Relevance ViT-ReciproCAM ViT-ReciproCAM[3x3]

e

‘(M@} ~

Elephant

Figura 3.16: Resultados de objeto simple (Mantis), varios objetos iguales (Yachts) y multiples
clases (Elephant y Zebra). Adaptacién de varias figuras de [14].

Puede observarse que los métodos basados en atencién como Attention Rollout generan
mapas més difusos y poco especificos. El método Relevance mejora la focalizaciéon en re-
giones relevantes, pero ain presenta activaciones espurias. En contraste, ViT-ReciproCAM
y especialmente su versién [3 x 3] producen mapas més localizados, que capturan con ma-
yor precision las regiones responsables de la prediccién del modelo, incluso en presencia de
multiples objetos o clases.

Estos resultados demuestran el potencial de ViT-ReciproCAM como herramienta eficaz
de explicabilidad visual, especialmente en entornos donde se requiere interpretar la decisién
del modelo de forma localizada y centrada en una clase especifica. No obstante, como se
aprecia en los ejemplos, su variante [3 x 3] ofrece ciertas ventajas adicionales en términos
de continuidad y precisiéon visual, generando mapas de saliencia mas suaves, coherentes y
centrados en las regiones relevantes. Esto se debe a que el enmascaramiento realizado en
bloques proporciona un mayor contexto espacial, lo cual reduce la fragmentacién del mapa
y mejora en gran medida la interpretabilidad visual. Por esta razén, dicha variante ha sido
la seleccionada para aplicarse en este trabajo.
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Capitulo 4

Marco de trabajo

En este capitulo, se detallaran las diferentes recursos fisicos y tecnoldgicos empleados
durante el desarrollo del proyecto. Se describen tanto los aspectos relacionados con el entorno
software, como el hardware sobre el que se ha trabajado y ejecutado el entrenamiento de los
modelos. Se justifican sus decisiones exponiendo sus ventajas y limitaciones. De esta manera,
se da a entender las condiciones bajos las cuales se han obtenido los resultados experimentales.

4.1. Hardware

Se han empleado dos dispositivos para llevar a cabo el desarrollo del proyecto:

= Maquina virtual: prestada por el departamento de Informética de la Universidad
de Valladolid. Esta maquina dispone de un procesador Intel® Xeon® Gold 6326 a 2.90
GHz con 32 nicleos, 64 GB de memoria RAM y 50 GB de espacio en disco.

» Ordenador personal: cuenta con un procesador Intel® Core™ i5-8600K a 3.60 GHz
(hasta 4.30 GHz) con 6 nicleos, 16 GB de memoria RAM y méas de 3TB de espacio en
disco. Cuenta con una tarjeta grafica NVIDIA GeForce GTX 1060 con 6GB DDR5 de
VRAM, 1506MHz (hasta 1708 MHz) y 1280 CUDA cores.

El uso combinado de ambos dispositivos ha resultado especialmente ttil para el desarrollo
del proyecto. La maquina virtual, gracias a su gran capacidad de procesamiento y sus 64GB
de memoria RAM, ha sido la encargada de entrenar modelos con conjuntos de datos de gran
tamano, donde el consumo de recursos es considerable. La que se puede considerar su mejor
ventaja es su disponibilidad constante, pues permite dejar modelos en entrenamiento durante
largos periodos de tiempo sin preocupacién.
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Por otro lado, el ordenador personal también ha resultado imprescindible, especialmente
para conjuntos de menor tamafio, ya que su tarjeta grafica dedicada de 6GB de VRAM
permite acelerar el entrenamiento en gran medida.

Esta combinacién ha hecho posible ejecutar de forma paralela varios entrenamientos,
optimizando los tiempos y aprovechando al maximo los recursos disponibles, cosa de especial
importancia en un proyecto como este, donde el objetivo no es obtener un modelo sino varios.

4.2. Software

4.2.1. Sistema operativo

La maquina virtual cuenta con un sistema operativo Debian GNU/Linuzx 12 (Bookworm,),
mientras que el ordenador personal cuenta con un Windows 10 Pro.

4.2.2. Lenguajes y herramientas

Python

Esta eleccion no se ha basado tinicamente en sus propias ventajas, sino también en su com-
paracion con otras alternativas comunes en el &mbito del Anélisis de Datos y el Aprendizaje
Automatico, como Ry Julia, las cuales no encajan con el presente proyecto.

R es una herramienta muy potente para andlisis estadistico y visualizacién de datos. Sin
embargo, su ecosistema orientado principalmente al analisis exploratorio y no tanto al desa-
rrollo de sistemas complejos de aprendizaje profundo. Esto, junto con las limitadas librerias
que ofrece para este tipo de proyectos, lo hace menos adecuado.

Julia, por otro lado, presenta ventajas en cuanto a rendimiento computacional, ya que
ha sido disenado especificamente para ello. No obstante, su comunidad y ecosistema son
reducidos en comparacién con Python, lo cual supone una limitacién significativa a la hora
de encontrar bibliotecas potentes y ejemplos practicos.

Por tanto, Python es el lenguaje restante para realizar el proyecto. Este se ha consolidado
como el de referencia en Aprendizaje Automédtico y Ciencia de Datos, debido a su gran
comunidad, abundancia de bibliotecas especializadas (como NumPy, Pandas, scikit-learn,
PyTorch, entre muchas otras) y su compatibilidad con entornos de trabajo como Jupyter
Notebooks. Su sintaxis sencilla y legibilidad han favorecido un desarrollo agil durante todas
las fases del proyecto, desde el preprocesamiento de datos hasta el despliegue de los modelos.
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Pytorch

Dado que se utiliza Python como lenguaje de desarrollo, para la implementacion de los
modelos de aprendizaje profundo, se ha optado por el framework PyTorch. Aunque existen
otras alternativas como Keras (frecuentemente utilizado a través de TensorFlow), la eleccién
de PyTorch se debe a varios factores.

En primer lugar, PyTorch ofrece mayor flexibilidad y control en la creacién de modelos
y bucles de entrenamiento. Su enfoque basado en gréficos dindmicos (define-by-run) permite
una depuracién més sencilla, lo cual ha resultado ttil para la implementaciéon de arquitecturas
complejas como los Vision Transformers (ViT).

Aunque Keras destaca por su simplicidad y curva de aprendizaje mas suave, esta abs-
traccion puede ser una limitacién, cuando se desea personalizar el comportamiento interno
de los modelos.

PyTorch también cuenta con una comunidad muy activa, siendo el framework preferido
en la mayoria de publicaciones recientes sobre aprendizaje profundo. Esto facilita el acceso
a una gran cantidad de ejemplos reales, facilitando el aprendizaje.

En definitiva, PyTorch ha sido elegido por su equilibrio entre potencia, flexibilidad y
soporte comunitario, lo que lo convierte en una herramienta especialmente adecuada para
proyectos de investigacién como este Trabajo de Fin de Grado.

Jupyter y Anaconda

El entorno de desarrollo utilizado ha sido JupyterLab, gestionado a través de la distribu-
cién Anaconda. Estas elecciones permiten trabajar de forma modular, visualizando resultados
paso a paso y permitiendo una gestion maés sencilla de los distintos cédigos. Cuenta con una
gran cantidad de bibliotecas para el desarrollo de proyectos de Ciencias de Datos, entre las
que se encuentra PyTorch.

HTML, CSS y JavaScript

Para la parte de despliegue web se han utilizado tecnologias estandar del desarrollo front-
end como HTML, CSS y JavaScript, que permiten estructurar la interfaz, aplicar estilos
visuales y proporcionar interaccién.

Flask

La biblioteca Flask ha sido utilizada como microframework para el backend de la aplica-
cién web. Su simplicidad y compatibilidad con Python y Pytorch lo convierten en la mejor
opcion para desplegar los modelos entrenados en una pagina web sencilla.
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Astah

Para la elaboracion de diagramas UML (como casos de uso, clases o actividades), se
ha utilizado la herramienta Astah. Esta aplicacién facilita la representacion estructurada de
los componentes del sistema, ayudando a comunicar de forma visual la arquitectura de la
aplicacién. Cuenta con una version de pago, Astah Profesional, la cual ha estado disponible
gracias a la licencia que proporciona por la Universidad de Valladolid, lo que ha favorecido
su eleccion.

TexStudio

La memoria del proyecto ha sido redactada integramente en ETEX, empleando el editor
TeXstudio. Este entorno permite gestionar documentos de forma profesional, garantizando
un formato uniforme y la correcta insercién de férmulas, figuras, tablas y referencias bi-
bliogréaficas. Se ha proporcionado una plantilla base por parte de la Escuela, que incluye la
estructura general del documento, asi como los paquetes y configuraciones necesarios.

Si bien es cierto que otras opciones como OverLeaf cuentan con funcionalidades en la nube
para asegurar el control de versiones, el dominio previo de esta herramienta y su versatilidad
en entornos locales, se han considerado como factores de mayor peso a la hora de realizar la
eleccién.

GanttProject

Para la planificacién temporal del proyecto se ha utilizado la herramienta GanttProject.
Esta aplicacion de codigo abierto permite gestionar tareas, asignar recursos, definir depen-
dencias entre actividades y visualizar el progreso mediante un diagrama de Gantt. Gracias
a su interfaz intuitiva, ha sido posible estructurar las distintas fases del proyecto, desde la
investigacion inicial hasta el despliegue final, de forma clara y eficiente.

GanttProject facilita la exportacién de los diagramas a distintos formatos como PDF o
PNG, lo cual ha resultado ttil para la inclusién de la planificacién dentro de la documentacién
del proyecto.
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Capitulo 5

Conjuntos de datos

Aunque este trabajo se enfoque en la comparacién objetiva entre las arquitecturas ViT
y CNN en el ambito de la salud, el centro de atencién se basa en la adaptacion de los
Transformers para el caso de la clasificacién de imagenes. Por ello, no sélo es necesario tener
unos datasets adecuados y representativos para la comparacién en este ambito, sino que
también tengan estudios de calidad relacionados con su clasificacién a partir de CNNs.

Para que se pueda cumplir con las condiciones, se han seleccionado tres conjuntos de datos
utilizados en Trabajos de Fin de Grado anteriores. En cada uno de ellos, se han mantenido las
mismas transformaciones y preprocesamientos aplicados originalmente, permitiendo asi una
comparacion directa entre ambas arquitecturas. A continuacion, se describen estos datasets.

5.1. Radiografias de térax (CXR)

5.1.1. Descripciéon

El conjunto de imégenes corresponde con radiografias de térax y proviene de una compe-
ticién de Kaggle [45]. Cuenta con un total de 2905 imagenes con una resolucién de 1024 x 1024
pixeles y repartidas en tres categorias diferentes como se puede ver en la figura [5.1

= Normal: pacientes sanos que no presentan enfermedad.
= Neumonia virica: pacientes que presentan neumonia pero no COVID-19.

= COVID-19: pacientes con COVID-19.

Segtin comenta Toquero [I5], las im&genes correspondientes a las dos primeras clases
provienen de la base de datos de Kaggle de Paul Moore, Chest X-Ray Images (Pneumonia)
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[46]. Por otro lado, las imdgenes de COVID-19 provienen de diferentes fuentes abiertas: la
base de datos COVID-19 de la Sociedad Italiana de Radiologia Médica e Intervencionista,
Societd Ttaliana di Radiologia Medica e Interventistica (SIRM), del conjunto de datos Nowvel
Corona Virus 2019 (nCOVID-19) de Joseph Paul Cohen, Paul Morrison y Lan Dao, y de
otras 43 publicaciones diferentes [47].

(a) Normal (b) Pneumonia virica (c) Covid-19

Figura 5.1: Ejemplos de cada clase de [I5].

5.1.2. Transformaciones

Como se puede apreciar en la ﬁgura las tres clases son imdgenes en escala de grises (y
por tanto de un solo canal). Sin embargo, Toquero [15] detalla que s6lo Normal y Neumonia
virica se encuentran de manera natural asi, mientras que las imagenes con los positivos en
COVID-19 tienen formato RGB, es decir, tres canales. Por tanto, transforma las imagenes
de color a escala de grises para poder tratarlas de manera uniforme al realizar el modelo.

Dado que los valores de los pixeles se encuentran en el rango [0,255], las imdgenes se
someten a un proceso de normalizacién con el fin de escalar dichos valores a [0,1]:

Xi - Xmin
X; = -t “min 5.1
Xmax - Xmin ( )

siendo X; valor del pixel i, Xpax ¥ Xmin corresponden a los valores maximo y minimo
posibles respectivamente. Para este caso particular, el calculo es equivalente a dividir todos
los valores de los pixeles por 255.

El conjunto de datos se encuentra distribuido en dos carpetas: entrenamiento y test. La
division estd hecha de manera estratificada, es decir, se mantiene la proporcién de nimero
de muestras de cada clase. Esto es de gran importancia, cuando el nimero de observaciones
por clase estd desequilibrado. Siendo éste el caso, pues el nimero de muestras de la clase
COVID-19 es bastante inferior al de las otras dos (figura[5.2)).
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Distribucion total de imagenes por clase
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Figura 5.2: Grafica de la distribucién de clases de radiografias de térax.

Clases Conjunto de entrenamiento | Conjunto de test | Total
Covid-19 146 73 219
Neumonia 896 449 1345

Normal 894 447 1341

Total 1936 969 2905

Tabla 5.1: Distribucién de clases de radiografias de térax.

Esto tipo de particién denominada Hold Out, evita realizar una estimacién del error
optimista, que ocurre cuando se utilizan los mismos datos con los que ha sido entrenado,
haciendo que se sobreestime la verdadera capacidad de generalizacién del modelo. En cambio,
utilizando otros datos diferentes, se consigue una estimacién justa y se puede comprobar si
el modelo es capaz de generalizar correctamente.

5.1.3. Obtencién y uso

Los datos provienen de un Trabajo de Fin de Grado [I5] dirigido por el mismo tutor
que el presente trabajo. Gracias a ello, se ha podido contar desde un principio con los datos
ya recopilados, organizados y preprocesados, exceptuando la normalizacién. No obstante,
esto no supone un problema, pues dicha normalizacién se realiza de forma automatica al
transformar las imagenes a tensores [48].

Como se detallard mas adelante, el elevado tamafio original de las imégenes implica
ciertos problemas computacionales, por lo que se ha decidido redimensionarlas a un tamano
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més manejable de 256 x 256 pixeles.

5.2. Resonancias magnéticas de cerebro (MRI)

5.2.1. Descripcién

El conjunto de imégenes utilizado por Arranz [I6] corresponde con resonancias magné-
ticas de cerebro y proviene directamente de la base de datos de Kaggle [49]. Aunque seria
recomendable utilizar otras versiones mas recientes y con un mayor nimero de muestras, se
utiliza el original para realizar la comparacién de la manera méas objetiva y directa posible.

Cuenta con un total de 3264 imégenes de diferente resolucién, aunque la mayoria de ellas
tienen un tamano de 512 x 512 pixeles. Estan repartidas en cuatro categorias diferentes como
se puede ver en la figura

= No tumor: cerebros sanos sin presencia de tumores.
» Glioma: tumores cerebrales del tipo glioma, que se originan en las células gliales [50].

= Meningioma: tumores que se desarrollan en las meninges, las membranas que rodean
el cerebro y la médula espinal [50].

» Pituitaria: tumores en la gldndula pituitaria, también conocida como hipdfisis [50].

No Tumor
Glioma Meningioma

Pituitary

Figura 5.3: Ejemplos de cada clase de [16].

Si bien es cierto que seria posible ampliar el conjunto con imagenes de otras fuentes,
Arranz senala en [16] que el desconocimiento sobre la procedencia de las imédgenes dificulta
esta tarea, ya que existe el riesgo de incluir imdgenes duplicadas, empeorando asi el apren-
dizaje.
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5.2.2. Transformaciones

El conjunto de datos se encuentra originalmente divido en dos carpetas: entrenamiento
y test. Sin embargo, esta particién presenta un problema importante: no ha sido realizada
de forma estratificada, como se puede observar en la Tabla Por este motivo, Arranz [16]
considera combinar ambas carpetas y realizar la divisién de manera dindmica en el propio
c6digo, aunque esto solo lo realiza durante la adaptacion del modelo definitivo, pues durante
los modelos iniciales opta por utilizar la divisién original.

En cuanto a la distribucién de clases, el conjunto no presenta un desbalance excesivo, con
la excepcién de la clase correspondiente a pacientes sin tumores, que contiene aproximada-
mente la mitad de muestras en comparacion con las clases con tumores, como se muestra en
la Figura [5.4] Aunque la diferencia no es tan pronunciada como en los otros conjuntos de
imégenes, puede ser un factor a tener en cuenta durante el entrenamiento.

Clases Entrenamiento (%) | Test (%) | Total (%)
Glioma 28.78 % 25.38% 28.37%
Meningioma 28.64 % 29.19% 28.70 %
Pituitaria 28.82 % 18.78 % 27.60 %
No-tumor 13.76 % 26.65 % 15.31%
Total 100 % 100 % 100 %

Tabla 5.2: Porcentaje de representacién de clases de resonancias magnéticas cerebrales.

Distribucion total de imagenes por clase

800

=]

=]

[=]
I

Numero de imagenes
[=]
1

)

[=]

[=]
1

No tumor

Pituitary

Glioma Meningioma

Figura 5.4: Grafica de la distribucién de clases de resonancias magnéticas cerebrales.
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Clases Conjunto de entrenamiento | Conjunto de test | Total
Glioma 826 100 926
Meningioma 822 115 937
Pituitaria 827 74 901
No-tumor 395 105 500
Total 2870 394 3264

Tabla 5.3: Distribucién de clases en el conjunto de resonancias magnéticas cerebrales.

Dejando de un lado la distribucion de las muestras, hay que tener en cuenta la heteroge-
neidad de las imédgenes. En primer lugar, no todas las tomografias se han tomado desde el
mismo angulo, como se ve en la figura Como ya se ha comentado, las imdgenes presentan
diferentes resoluciones, introduciendo variabilidad adicional.

En relacién con estos aspectos, Arranz [16] argumenta que la variacién en el dngulo
de captura no supone un inconveniente significativo, ya que el modelo debe ser capaz de
generalizar independientemente de la orientacién de las imagenes, pues no siempre se necesita
el mismo dngulo. No obstante, si resulta necesario homogeneizar su tamano. Para ello, aplica
transformaciones de resize sobre las imagenes, probando dos diferentes dimensiones: 128 x 128
y 256 x 256, con el objetivo de facilitar la computaciéon con un tamaio no excesivamente
grande.

Con el fin de evitar el sobreajuste del modelo, también se realizan transformaciones alea-
torias tanto de manera horizontal como vertical.

Por tltimo, al igual que el anterior conjunto, se necesita realizar un proceso de norma-
lizacién de los valores de los pixeles del rango original [0,255] al intervalo [0,1], lo cual se
puede llevar a cabo con la ecuacién [5.1

5.2.3. Obtencién y uso

Al igual que el anterior conjunto, éste proviene de un Trabajo de Fin de Grado [16]
dirigido por el mismo tutor que el presente trabajo. Gracias a ello, se tiene una situacién
semejante, con solo la particién dindmica.

En cuanto a las transformaciones requeridas, se utilizan ambas dimensiones comentadas
para las pruebas. La normalizaciéon vuelve a realizarse de forma automatica al transformar
las imdgenes a tensores [48].
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5.3. Secciones transversales de tomografias de coheren-
cia optica (OCT)

5.3.1. Descripcién

El conjunto de imagenes estudiado por Izquierdo [17] corresponde con secciones transver-
sales de Tomograffas de Coherencia Optica, que proviene de una competicién de Kaggle [51].
Cuenta con un total de 84484 imagenes con diferentes resoluciones como 512 x 512, 512 x 496
0 768 x 496 entre las mas concurrentes. Se reparten en cuatro categorias diferentes como se
puede ver en la figura [5.9

= Normal: retina sin patologias.

= CNV: neovascularizacién coroidea (Choroidal Neovascularization), se desarrollan va-
sos sanguineos anémalos debajo de la retina, comtn en enfermedades como la degene-
racién macular asociada a la edad [52].

= DME: enfermos con edema macular diabético (Diabetic Macular Edema), una com-
plicacién de la retinopatia diabética que provoca acumulaciéon de liquido en la mécula
52).

= Drusen: imdagenes que muestran depoésitos amarillentos (drusas) bajo la retina, tipicos
en fases tempranas de la degeneracién macular asociada a la edad [52].

CNV DRUSEN NORMAL

— —

. v )Q’:’q_'f‘_ﬁa-_ e ““*" -‘;L "L -"Mm*";",__

Figura 5.5: Ejemplos de cada clase de [17].

Izquierdo [I7] también sefiala que las imdgenes fueron seleccionadas de cohortes retros-
pectivas de pacientes adultos de diversas instituciones. La clasificacién de las mismas se llevd
a cabo por diferentes niveles de experiencia: en primer lugar, estudiantes; posteriormente,
oftalmédlogos; y finalmente, dos especialistas en retina con més de 20 anos de experiencia
clinica [51].

5.3.2. Transformaciones

Dado que este conjunto cuenta con una gran cantidad de muestras, este se encuentra divi-
dido en las carpetas de entrenamiento, test y validaciéon. Sin embargo, como indica Izquierdo
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[I7] y se puede ver en la figura hay demasiada diferencia en la proporcién entre dichas
particiones. La division original realizada no se hizo de forma estratificada: mientras que la
distribucién original de las clases es la que se muestra en el grafico el conjunto de test
contenia el mismo niimero de muestras para cada clase.

T Distribucion de las imagenes original

Porcentaje de imagenes (%)

20

968 32

T v T
Entrenamiento Prueba Validacion

Figura 5.6: Gréfica de la distribucién original de [17].

Debido a los problemas derivados de la distribucién original, Izquierdo combina todas
las muestras y realiza la divisién de manera dindmica en el codigo. Esta misma trata de un
70 % para el conjunto de entrenamiento, 20 % para el de test y el 10 % restante para el de
validacién, aunque ahora con la consecuente estratificacion de las clases.

Aunque los otros conjuntos detallados anteriormente cuentan con un volumen apto para
su uso, no es suficiente para realizar una tercera particién para validacién. En cambio, este
conjunto si permite este tipo de distribucién. Esta resulta especialmente 1til cuando se tra-
baja con metadatos adicionales o se requiere un ajuste muy fino del modelo, pues se dispone
de un conjunto que no ha sido utilizado para calibrar los diferentes valores de los metadatos,
dando una mejor estimaciéon aun que el error estimado por test.

Clases Total
CNV 37444
DME 11598

Drunsen 8866

Normal | 26565

Total 84473

Tabla 5.4: Distribucién de clases en el conjunto de tomografias de coherencia éptica.
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Distribucién total de imagenes por clase

Namero de imagenes

CNV DME Drunsen Mormal

Figura 5.7: Grafica de la distribucién de clases de tomografias de coherencia éptica.

Aparte del problema de la distribucién, también hay que lidiar con el diferente tamano
de las imégenes. Para poder paliar el problema, Izquierdo opta por realizar un resize a todas
las imégenes a un tamafio de 256 x 256. También comenta la opcién de 512 x 512 pero lo
considera de demasiado coste computacional.

Por ultimo, al igual que los anteriores, se necesita realizar un proceso de normalizacién
de los valores de los pixeles del rango original [0,255] al intervalo [0,1], lo cual se puede llevar
a cabo con la ecuacién [B.11

5.3.3. Obtencion y uso

Aligual que los otros conjuntos, este proviene de un Trabajo de Fin de Grado [17] dirigido
por el mismo tutor que el presente trabajo, por tanto los datos vuelven a ser proporcionados
de manera directa.

En cuanto a las transformaciones requeridas, se utiliza la misma dimensién, y la nor-
malizacién vuelve a realizarse de forma automaética al transformar las iméagenes a tensores

[48].
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Capitulo 6

Construccion de los modelos

Tras contextualizar el problema, el siguiente paso ha sido la construccién y entrenamiento
de los modelos especificos utilizados en este trabajo.

Dado que no todos los conjuntos de datos presentan las mismas caracteristicas ni plantean
los mismos retos, se ha optado por emplear distintos tipos de Vision Transformers (ViT),
adaptando su configuracion en funcion de las particularidades de cada caso. Esto ha requerido
ajustar tanto los pardmetros del modelo como las estrategias de entrenamiento, incluyendo
el preprocesamiento de imagenes, la seleccién de funciones de pérdida y los esquemas de
optimizaciéon mas adecuados.

Se han aplicado diversas técnicas para mejorar el rendimiento y la generalizacion de
los modelos, evaluando de forma sistemética su comportamiento a lo largo del proceso de
entrenamiento.

En este capitulo se describen en detalle las decisiones tomadas durante esta fase, asi como
la metodologia seguida para construir, entrenar y validar los distintos modelos utilizados a
lo largo del proyecto.

6.1. Planteamiento inicial

A pesar de que cada uno de los modelos implementados presenta variaciones en su funcio-
namiento, todos comparten una arquitectura base comtn que sigue el esquema fundamental
de un Vision Transformer (ViT). Por tanto, se plantea una estructura modular compuesta
por tres componentes principales, definidos como clases independientes con el objetivo de
facilitar su reutilizacion y la experimentacion:

= PatchEmbedding: se encarga de dividir la imagen en patches no solapados, aplanarlos
y organizarlos como una secuencia de tokens.
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= TransformerBlock: corresponde al bloque principal del codificador Transformer.

s Modelo ViT: representa la arquitectura global, integrando las modulos anteriores y
generando la salida final.

De esta manera, se intenta comparar diferentes estrategias sin modificar la légica inter-
na del modelo base, manteniendo asi la coherencia estructural entre las distintas variantes
desarrolladas.

6.2. Estructuras desarrolladas

Con el objetivo de evitar repeticiones innecesarias y mejorar la claridad de la documen-
tacion, en esta seccidon se describen en detalle las principales estructuras y componentes
desarrollados para la implementacion de los modelos. Cada fragmento de cédigo referenciado
corresponde a partes relevantes del proyecto, acompanado de una explicacién detallada sobre
su proposito, funcionamiento y relacién con la arquitectura global.

6.2.1. Patch Embedding

Para implementar la etapa de divisién de la imagen en patches, se han considerado varias
alternativas disponibles en PyTorch. Aunque existen funciones directas como nn. Unfold para
extraer regiones de una imagen de manera vectorizada, o realizar convoluciones a través de
nn.Conv2d, se ha optado finalmente por una implementacion basada en la biblioteca einops,
concretamente mediante el uso de la funcién Rearrange[53]. Esta opcién es de gran utilidad
en la creacién de modelos tipo ViT, como se observa en muchas implementaciones en la
comunidad [54] [55], ya que proporciona una sintaxis muy legible y expresiva para definir las
transformaciones de tensores de manera intuitiva.

Permite especificar transformaciones mediante una notacién basada en patrones de ejes.
Su funcionamiento se basa en definir explicitamente cémo se reorganizan las dimensiones
de un tensor de entrada para obtener una nueva disposicién, utilizando una sintaxis tipo
<entrada> -> <salida>. Esta forma de expresién es especialmente 1til para operaciones que
implican reestructurar datos sin necesidad de manipular manualmente indices o tamanos.

Por ejemplo, la expresién utilizada en la clase PatchEmbedding:

Rearrange(’b ¢ (h pl) (w p2) -> b (h w) (pl p2 c)’)

Listing 6.1: Ejemplo de uso de einops.Rearrange

indica que partimos de un tensor de entrada con forma (batch, channels, height,
width), donde la altura y la anchura pueden dividirse en bloques de tamafo pl y p2, respec-
tivamente. La transformacion reordena el tensor dividiendo la imagen en bloques no solapados
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de tamano (pl, p2) (cuyos valores se definen explicitamente) y reorganiza el resultado pa-
ra que cada patch aplanado ocupe una posicién en una nueva secuencia de forma (batch,
n_patches, patch_dim).

En esta notacion:

b representa el tamano del batch;
= c el numero de canales;

h y w son los factores que resultan de dividir la altura y la anchura entre el tamano de
patch;

pl v p2 son las dimensiones del patch;

la flecha -> define la forma deseada tras la transformacién.

Un ejemplo de su funcionamiento es el representado en la figura donde se utiliza una
bandeja de una sola imagen con 3 canales (RGB).

- EEEE

b=1

w
pl*p2*c
H=h*pl

W = w¥p2

Figura 6.1: Funcionamiento de la funcién Rearrange de einops.

Durante el desarrollo, se han planteado dos opciones principales. La primera consiste en
dividir la imagen en patches segin se ha explicado. A continuacién, aplica una proyeccién
lineal a una dimensién fija, seguida de una normalizacion. Esta opcion transforma los patches
al espacio dimensional requerido por el modelo y anade cierta capacidad de aprendizaje desde
el principio del flujo de datos.

La segunda opcién, mas simple, realiza inicamente la divisién en patches sin aplicar nin-
guna proyeccién adicional. Esta variante es 1itil cuando se desea mantener la dimensionalidad
original del patch y utilizar los valores del tensor directamente.

Ambas alternativas se han implementado dentro de una misma clase lo que permite
alternar entre ellas facilmente durante las pruebas y comparativas.

La decision entre utilizar, o no, la proyeccién depende del disefio general del modelo y del
tamano de entrada esperado por las capas posteriores, ademas de la naturaleza propia de las
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imégenes. Por ejemplo, si se desea mantener una mayor cantidad de informacién en la etapa
inicial o realizar la proyeccién més adelante en la arquitectura, puede ser preferible omitir la
proyeccién inicial.

En resumen, esta etapa transforma una imagen de tamaio (C, H, W) en una secuencia
de vectores de tamano fijo (N, D), donde N es el nimero de patches y D es la dimensién del
embedding.

6.2.2. Transformer Block

Dado que en los modelos ViT se utilizan multiples capas de codificador con una estruc-
tura idéntica, se ha disenado una clase modular que representa un bloque Transformer, la
cual puede integrarse facilmente mediante el uso de la funciéon nn.Sequential para construir
modelos tan profundos como se quiera.

Como ya se comentd anteriormente, cada bloque estd compuesto por dos componentes
principales: una capa de self-attention multi-cabeza y una red feed-forward, ambas acom-
panadas por normalizacién por capas (Layer Normalization) y conexiones residuales. Esta
estructura es directamente la presentada en el disefio original de Vaswani et al. [3].

En este proyecto se han implementado dos variantes de la clase TransformerBlock. La
primera versién sigue fielmente la arquitectura Transformer estdndar, aplicando conexiones
residuales tanto en la atencién como en el bloque feed-forward [A22]

El primer componente del bloque es la capa de atencién multi-cabeza (MultiheadAtten-
tion), que se encarga de aplicar el mecanismo de atencién sobre los embeddings de entrada.
Esta operacion lleva al modelo a enfocar distintas posiciones de la secuencia simultdneamen-
te, identificando relaciones entre diferentes tokens o patches, como se detalla en la Seccion
0. 1.2

Internamente, esta capa se trata de la clase nn. MultiheadAttention de PyTorch [56]. Crea
internamente los vectores query, key y value a partir de la entrada mediante parametros
entrenables (nn.Parameter), realiza la divisién en multiples cabezas de atencién, aplica la
atencién por cabeza de forma paralela y, finalmente, concatena y proyecta el resultado de
vuelta al espacio original. Por ello, no es necesario realizar ninguna proyeccién manual previa;
basta con pasar el tensor de entrada como argumento en las tres posiciones (query, key,
value).

Dado que, en este caso, se trata de una operacién de self-attention, los tres tensores son
idénticos: corresponden directamente a la salida del bloque anterior. Esto es lo que permite
que cada elemento de la secuencia, es decir, que cada patch tenga acceso a todos los demas,
aprendiendo qué partes de la imagen debe prestar atencién.

La clase también permite aplicar dropout de forma integrada sobre los pesos de atencion,
lo cual contribuye a una mejor regularizacién durante el entrenamiento.

La salida de esta atencién se suma al tensor original mediante una conexién residual,
que facilita el flujo de gradientes durante el entrenamiento y previene la desaparicién de la

56



CAPITULO 6. CONSTRUCCION DE LOS MODELOS

informacion relevante. Esta suma se normaliza inmediatamente con una capa de Layer Nor-
malization, teniendo entonces la variante post-norm, es decir, normalizar después de aplicar
la atencion.

La capa LayerNorm, a diferencia de la normalizacién por lotes (BatchNorm), que de-
pende del tamano del batch y de la estadistica global, normaliza cada muestra de forma
independiente, utilizando la media y varianza de cada vector de embedding. Esto conduce a
un comportamiento mas consistente, especialmente titil en tareas como esta donde el tamano
de batch es reducido.

Tras la atencion, se aplica un bloque feed-forward compuesto por dos capas lineales se-
paradas por una funcién de activacién ReLU. La primera capa aumenta la dimensionalidad
hasta mip__dim, permitiendo al modelo capturar representaciones mas abstractas, mientras
que la segunda proyecta de nuevo al espacio de dimension de embedding original. Se incluye
una capa de Dropout como técnica de regularizacion para reducir el sobreajuste. El alcance
del dropout utilizado en este bloque es el mismo que el empleado en la capa de atencion.

Finalmente, se afiade una segunda conexion residual seguida de una nueva normalizacién
por capas, completando asi la estructura del bloque.

No obstante, en escenarios con conjuntos de datos reducidos, como es este trabajo, se
ha observado que mantener conexiones residuales en bloques con baja complejidad (como un
MLP de solo dos capas) puede inducir cierto sobreajuste o a veces no afectar verdaderamente
al entrenamiento. Por ello, se ha explorado una segunda variante mas simplificada, en la que
se elimina la conexion residual en el bloque feed-forward. De esta manera, el método forward
queda definido como se muestra en [A73]

Este enfoque busca reducir la capacidad de la red en etapas tempranas del entrenamiento,
mejorando la regularizaciéon cuando se dispone de un volumen de datos limitado. Ambas
variantes se han integrado en el flujo de pruebas del proyecto, permitiendo seleccionar de
manera simple la version méas adecuada en funcién de la tarea y del conjunto de datos
utilizado.

En resumen, el TransformerBlock implementa la unidad funcional principal de la arqui-
tectura ViT, capaz de replicarse las veces que sean necesarias.

6.2.3. Vit con CLS

En esta seccion se presenta la clase principal del modelo Vision Transformer, basada en
la arquitectura ViT original [6]. Esta variante, ademds de implementar los dos médulos ya
explicados, utiliza un token especial denominado [CLS] como representacion global de la
imagen, que serad utilizado para realizar la clasificacion final. El desarrollo de esta clase se

puede ver en [A4]

El modelo comienza aplicando la etapa de patch embedding a la imagen de entrada, trans-
forméandola en una secuencia de vectores de las dimensiones requeridas. A esta secuencia se le
anade un token especial, denominado [CLS], que se inicializa como un parametro entrenable
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con valores iniciales aleatorios, gracias a nn.Parameter. Este token se encargard de obtener
la informacion global de la imagen contenida en los demads tokens, es decir, en los patches.

El token [CLS] se concatena a la secuencia antes de introducir la codificacién posicional, la
cual también se define como un parametro entrenable y valores iniciales aleatorios. Este vector
es el encargado de conservar informacién sobre el orden espacial de los patches, compensando
el hecho de que el Transformer no posee estructura espacial implicita.

A continuacién, la secuencia completa (incluyendo el token [CLS]) se procesa a través
de un conjunto de bloques Transformer idénticos gracias a nn.Sequential, definidos anterior-
mente mediante la clase TransformerBlock. El niimero de bloques se especifica mediante el
pardmetro num_layers, permitiendo ajustar la profundidad del modelo.

Una vez pasada la secuencia por la pila de bloques, se extrae inicamente el token [CLS],
que se supone contiene la representacion global de la imagen. Este vector se normaliza me-
diante una capa de LayerNorm y finalmente se proyecta a las clases posibles mediante una
capa lineal, dando lugar a la prediccién final del modelo.

6.2.4. Vit con Mean Pooling

A parte de desarrollar la arquitectura original basada en el uso de un token [CLS], se
ha implementado una variante del modelo ViT que utiliza una estrategia alternativa: el
mean pooling. La implementacion de esta estrategia tiene como objetivo mitigar posibles
problemas de generalizacién asociados al uso del token [CLS], especialmente en contextos
con pocos datos o alta variabilidad en las imdgenes, donde dicho token puede no capturar de
manera correcta la representaciéon global de la imagen.

La estructura general de esta clase es similar a la anterior, con la diferencia principal de
que no se utiliza el token [CLS]. En su lugar, tras aplicar la codificacién posicional sobre los
embeddings de los patches, se pasa directamente al conjunto de bloques codificador. Una vez
procesados, se aplica una operacion de mean pooling sobre la secuencia de salida para obtener
una unica representaciéon global, sobre la que se realizan la normalizacién y la clasificaciéon
final.

De esta manera, se utiliza toda la secuencia de tokens para generar la representacion glo-
bal, en lugar de confiar en un tnico vector aprendido, ayudando en casos donde la informacién
puede estar mas dispersa.

El resto de componentes del modelo se mantienen sin cambios: se utilizan los mismos
bloques Transformer, la misma codificacién posicional aprendida y una capa de LayerNorm
previa a la proyeccién final por la capa lineal de clasificacién. Esta consistencia facilita la
comparacion entre ambas variantes y permite analizar el impacto que tiene esta alternativa.
La implementacién completa puede consultarse en
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6.3. Entrenamiento

6.3.1. Dataset para HDF5
Dataset

Inicialmente, los datos se cargan utilizando la funcién torchvision.datasets. ImageFolder,
que permite leer directamente imagenes almacenadas en una estructura de carpetas organi-
zada por clases. Esta funcién asume que cada subcarpeta representa una clase distinta, y
asigna como etiqueta de clase el nombre de dicha subcarpeta a todas las imégenes conteni-
das en ella. El resultado es un conjunto de datos en formato tensorial ya preparado para ser
utilizado en PyTorch, lo que facilita enormemente la carga inicial de los datos. Se pueden
utilizar las transformaciones que se deseen, desde transforms.to Tensor() para convertir a ten-
sores hasta transformaciones utilizadas para realizar Data Augmentation, como por ejemplo
transforms. ColorJitter().

No obstante, el uso directo de ImageFolder en los bucles de entrenamiento puede resultar
poco 6ptimo en términos de rendimiento. Para mejorar la eficiencia en la carga de datos,
especialmente en configuraciones donde el cuello de botella se encuentra en la lectura desde
disco, se ha optado por transformar los conjuntos de datos a formato HDF5 (Hierarchical
Data Format version 5).

El formato HDF5 permite almacenar grandes volimenes de datos estructurados de forma
jerarquica, lo que no sélo reduce el niimero de accesos a disco, sino que también permite
organizar imagenes y etiquetas con las transformaciones aplicadas y descomprimidas. Aunque
los archivos HDF5 suelen ocupar mas espacio en disco que otros formatos como JPEG o PNG,
presentan una clara ventaja en términos de velocidad de lectura y acceso secuencial a los
datos, lo cual es fundamental durante el entrenamiento de modelos de aprendizaje profundo
[57].

Como se puede ver en la clase HDF5Dataset esta desarrollada directamente desde
PyTorch, integrandose con facilidad en los DataLoader para entrenamiento y validacion.

Cada muestra es devuelta como un par de tensores (image, label) listos para ser usados
en el modelo. La conversién explicita a tensores se realiza en cada llamada a getitem___.
Se incluye un método auxiliar close() para cerrar el archivo HDF5 de forma segura al finalizar
Su uso.

Dataset v2

Con el objetivo de aplicar técnicas de Data Augmentation dindmicas en vez de estaticas
durante el entrenamiento, se ha desarrollado una versiéon extendida de la clase, denominada
HDF5Datasetv2. Esta nueva variante también incluye soporte para las tres divisiones distintas
(entrenamiento, validacién y prueba), asi como transformaciones que se aplican en tiempo

real (véase [A.T7).
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Esta implementacién resulta especialmente 1itil para aumentar la variabilidad del conjunto
de entrenamiento sin necesidad de almacenar multiples versiones de las mismas imagenes.
Asi, se mejora la generalizacién del modelo, mientras se mantiene una estructura de datos
eficiente.

Generacién del archivo hdf5

Para poder utilizar esta clase, es necesario generar previamente un archivo en formato
HDF5 que contenga las imégenes y sus correspondientes etiquetas. Para ello, se parte de los
datos organizados en carpetas por clase y se utiliza la funciéon torchvision.datasets.ImageFolder,
aplicando las transformaciones deseadas sobre cada imagen.

Una vez cargados, los datos se recorren secuencialmente y se almacenan los vectores en
formato numpy en un archivo tipo .hdf a través de la libreria hdpy, como se puede ver en

A3

6.3.2. Bucle de entrenamiento

El fragmento [A-9 muestra la rutina de entrenamiento y evaluacién utilizada en todos los
experimentos realizados. El entrenamiento se desarrolla durante un ntimero definido de épocas
(num_epochs). En cada una de ellas, se alterna una fase de entrenamiento (model.train())
con una de evaluacién (model.eval()).

Durante el aprendizaje, se mide la funcién de pérdida y el porcentaje de aciertos sobre
el conjunto de entrenamiento. Posteriormente, en modo evaluacion, sin calcular gradientes
(mediante torch.no__grad()), se evalia el rendimiento del modelo sobre los datos de prueba.

Se almacenan las métricas (loss, accuracy, learning rate) en listas para su posterior
andlisis y representacion grafica. El planificador de tasa de aprendizaje (scheduler) se puede
actualizar en diferentes puntos estratégicos segtin su tipo, en este caso, para cada lote hay
una actualizacién.

Una vez se han obtenido las configuraciones éptimas para los modelos, se ejecuta de nuevo
el bucle con nuevo cédigo. Al final de cada época se anade el fragmento [A.10]

Este codigo es el encargado de guardar el estado del mejor modelo en términos de precisién
sobre el conjunto de test. Para evitar almacenamientos prematuros, la evaluaciéon comienza
a partir de la época 70 (modificable segtin el modelo). Si la precisién del modelo en la época
actual supera respecto al mejor valor anterior, se actualiza el estado del modelo y se guarda
mediante torch.save, indicando en pantalla la informacién relevante sobre dicha mejora.

Asimismo, se implementa un mecanismo de early stopping que interrumpe automaética-
mente el entrenamiento, si no se observa ninguna mejora en un ntimero determinado de
épocas consecutivas, definido por la variable early_stop_patience.

60



CAPITULO 6. CONSTRUCCION DE LOS MODELOS

6.4. Modelos implementados

Una vez explicadas en detalle las distintas estructuras desarrolladas y céomo se realiza
el entrenamiento, en esta seccién se comenta cudles han sido las configuraciones utilizadas
para cada uno de los conjuntos de datos. Cada eleccion se ha realizado considerando las
caracteristicas propias de cada experimento, informacién adicional que se proporciona en
los Trabajos de Fin de Grado utilizados como referencia, asi como el rendimiento observado
durante la fase de entrenamiento y validacién.

6.5. Radiografias de térax (CXR)

Este conjunto de datos presenta ciertas particularidades que, si bien no dificultan tanto
el entrenamiento como otros, si requieren aplicar medidas especificas de preprocesamiento
y regularizacion. Las imédgenes son mas homogéneas que las resonancias, aunque presentan
diferencias en contraste y nitidez entre clases, lo que puede inducir sesgos en el modelo, si
no se abordan adecuadamente.

Para mejorar la robustez y aumentar la diversidad del conjunto de entrenamiento, se ha
optado por utilizar transformaciones de Data Augmentation dindmicas. Estas transformacio-
nes se aplican en tiempo real, esto es, durante el entrenamiento mediante la versién extendida
del dataset HDF5 descrita previamente. Las operaciones empleadas han sido:

= RandomHorizontalFlip()

RandomAdjustSharpness(sharpness_factor=1.5, p=0.3)
= RandomAutocontrast (p=0.2)
= RandomRotation(degrees=5)

= RandomPerspective(distortion_scale=0.1, p=0.3)

En cuanto a la funcién de pérdida, se ha mantenido la entropia cruzada ponderada por
clases y se ha aplicado label smoothing al 5%. Esta configuracién contribuye a paliar los
efectos del desbalanceo entre clases y a mejorar la calibracion de las predicciones, evitando
la sobreconfianza.

El optimizador seleccionado ha sido AdamW, con un learning rate inicial de 5-107* y un
weight decay de 5-1073. Como politica de ajuste del ritmo de aprendizaje, se ha empleado una
planificacién cosenoidal con warm-up y con un 5% de los pasos de entrenamiento dedicados
al calentamiento.

Respecto a la arquitectura del modelo, se ha optado por una variante del ViT con mean
pooling, en este caso con una estructura més profunda (4 bloques Transformer). La entrada
consiste en imagenes RGB de 256 x 256 pixeles, que se dividen en patches de 8 x 8, generando
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1024 tokens por imagen. A diferencia del caso anterior, aqui si se ha utilizado una proyecciéon
lineal para transformar cada patch en un vector de dimensién 192.

El modelo incluye 8 cabezas de atencién por bloque, una red feed-forward de dimensién
576 y una tasa de dropout de 0.1. Asimismo, se ha mantenido la conexién residual dentro
de los bloques feed-forward dado que, gracias a la gran cantidad de data augmentation, un
valor mayor empeoraba los resultados.

model = ViTWithMeanPooling(img_size=256, patch_size=8, in_channels
=3, emb_dim=8%8*3, num_heads=8, mlp_dim=8*8*3*3, num_layers=4,
num_classes=3, dropout=0.1)

Listing 6.2: Modelo.

Layer (type:depth-idx) Qutput Shape Param #

ViTWithMeanPooling [1, 31 196,608
—PatchEmbeddingv3: 1-1 [1, 1824, 192] --
L Sequential: 2-1 [1, 1824, 192] --
L Rearrange: 3-1 [1, 1824, 192] --
LLayertlorm: 3-2 [1, 1824, 192] 384

Llinear: 3-3 [1, 1024, 192] 37,056
LLayertlorm: 3-4 [1, 1824, 192] 384
—Sequential: 1-2 [1, 1824, 192] --
L TransformerBlock: 2-2 [1, 1824, 192] --

L MultiheadAttention: 3-5 [1, 1024, 192] 148,224
LLayertlorm: 3-6 [1, 1824, 192] 384

LSequential: 3-7 [1, 1024, 192] 221,952
LLayertlorm: 3-8 [1, 1824, 192] 384
"TransformerBlock: 2-3 [1, 1824, 192] --

L MultiheadAttention: 3-9 [1, 1024, 192] 148,224
LLayertiorm: 3-18 [1, 1824, 192] 384

LSequential: 3-11 [1, 1024, 192] 221,952
LLayertiorm: 3-12 [1, 1824, 192] 384
"TransformerBlock: 2-4 [1, 1824, 192] --

L MultiheadAttention: 3-13 [1, 1024, 192] 148,224
LLayertiorm: 3-14 [1, 1824, 192] 384

L Sequential: 3-15 [1, 1024, 192] 221,952
LLayertiorm: 3-16 [1, 1824, 192] 384
"TransformerBlock: 2-5 [1, 1824, 192] --

L MultiheadAttention: 3-17 [1, 1024, 192] 148,224
LLayertiorm: 3-18 [1, 1824, 192] 384

L Sequential: 3-19 [1, 1024, 192] 221,952
L-Layertiorm: 3-20 [1, 1824, 192] 384
—LayerNorm: 1-3 [1, 192] 384
—Linear: 1-4 [1, 31 579

Total params: 1,719,171

Trainable params: 1,719,171
Non-trainable params: @

Total mult-adds (Units.MEGABYTES): ©.93

Input size (MB): 8.79

Forward/backward pass size (MB): 42.47
Params size (MB): 3.72

Estimated Total Size (MB): 46.97

Figura 6.2: Resumen del modelo.
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6.6. Resonancias magnéticas de cerebro (MRI)

Este conjunto de datos presenta varios retos que dificultan el entrenamiento. En primer
lugar, se tratan de imagenes con un alto nivel de ruido, lo cual complica la extraccién de
caracteristicas relevantes. Existe una gran variabilidad en cuanto al angulo de toma de las
imagenes, encontrandose cortes axiales, sagitales y coronales. Esta diversidad anade un com-
ponente de complejidad que solo podria abordarse de forma efectiva con una gran cantidad
de datos, algo que no se cumple en este caso, ya que el conjunto disponible apenas supera
las 2000 muestras.

Para intentar solucionar los problemas mencionados, se han incorporado diversas estrate-
gias. En primer lugar, se ha utilizado tinicamente la transformacién transforms.RandomRotation(5)
de manera estética como técnica de Data Augmentation, pues los datos cuentan con gran va-
riabilidad. Aunque se han probado multiples combinaciones, que incluian volteos horizontales
y verticales, jitter de color y otras transformaciones geométricas, no han llegado a mejorar
los resultados.

Luego, se ha utilizado la funcién de pérdida CrossEntropyLoss, incluyendo tanto una
ponderacién por clase como un suavizado de etiquetas (label smoothing) del 10 %. Esta confi-
guracion permite reducir el impacto del desbalanceo entre clases y disminuir la sobreconfianza
del modelo en sus predicciones.

Como optimizador se ha empleado Adam con una tasa de aprendizaje inicial de 0.001.
Para regular el ritmo de aprendizaje a lo largo del entrenamiento, se ha utilizado una politica
basada en planificacién cosenoidal con fase de warm-up. Se ha definido un 5% del total de
pasos de entrenamiento como periodo de warm-up, lo que posibilita iniciar el entrenamiento
de manera mas estable antes de iniciar el decaimiento progresivo del learning rate.

En cuanto a la arquitectura del modelo, se ha optado por la variante del Vision Trans-
former con mean pooling. El modelo recibe iméagenes de entrada de 128 x 128 pixeles con
tres canales que divide en patches de 8 x 8, generando un total de 256 tokens por imagen.
Cada patch se apland y se usé directamente como vector de entrada, sin aplicar ninguna
proyeccion lineal adicional, por tanto, la dimensién del embedding ha sido de 192. El nimero
de cabezas de atencion se fij6 en 8, y la red feed-forward interna de cada bloque Transformer
fue de tamafio 384. En total, se apilaron 3 bloques Transformer y se fij6 una tasa de dropout
de 0.1. La salida final del modelo se proyecta a 4 clases correspondientes a las categorias del
conjunto de datos.

model = ViTWithMeanPooling(img_size=128, patch_size=8, in_channels
=3, emb_dim=3*8*8, num_heads=8, mlp_dim=3*8*8*2, num_layers=3,
num_classes=4, dropout=0.1)

Listing 6.3: Modelo.
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Layer (type:depth-idx) Output Shape Param #
ViTWithMeanPooling [1, 4] 49,152
| PatchEmbedding: 1-1 [1, 256, 192] 37,440
L Rearrange: 2-1 [1, 256, 192] -
—Sequential: 1-2 [1, 256, 192] --
L TransformerBlock: 2-2 [1, 256, 192] --
L MultiheadAttention: 3-1 [1, 256, 192] 148,224
LLayerlorm: 3-2 [1, 256, 192] 384
L Sequential: 3-3 [1, 256, 192] 148,032
L LayerNorm: 3-4 [1, 256, 192] 384
TransformerBlock: 2-3 [1, 256, 192] --
L MultiheadAttention: 3-5 [1, 256, 192] 148,224
L Layerlorm: 3-6 [1, 256, 192] 384
L Sequential: 3-7 [1, 256, 192] 148,032
LLayerNorm: 3-8 [1, 256, 192] 384
TransformerBlock: 2-4 [1, 256, 192] --
L MultiheadAttention: 3-9 [1, 256, 192] 148,224
LLayerlorm: 3-18 [1, 256, 192] 384
L Sequential: 3-11 [1, 256, 192] 148,032
L LayerNorm: 3-12 [1, 256, 192] 384
—LayerNorm: 1-3 [1, 192] 384
—Linear: 1-4 [1, 4] 772

Total params: 978,828

Trainable params: 978,820

Non-trainable params: 8

Total mult-adds (Units.MEGABYTES): @.45

Input size (MB): ©.28
Forward/backward pass size (MB): 5.98
Params size (MB): 1.79

Estimated Total Size (MB): 7.89

Figura 6.3: Resumen del modelo.

6.7. Secciones transversales de tomografias de coheren-
cia optica (OCT)

Este conjunto se caracteriza por contener imagenes en escala de grises. Presentan una
gran nitidez estructural, pero también una elevada similitud entre clases, lo que complica la
separacion entre categorias.

A diferencia de los conjuntos anteriores, estas imagenes tienen un solo canal de entrada,
cosa que se ha tenido en cuenta en la arquitectura. Igualmente, se ha utilizado el mismo Data
Augmentation dindmico comentado para el primer conjunto (CXR), pues esta configuracién
también ha presentado grandes mejoras de regularizaciéon para este caso.

Para mitigar el sobreajuste y mejorar la generalizacién del modelo, se ha empleado label
smoothing con un valor del 5%, asi como una ponderacién por clases en la funcién de
pérdida CrossEntropyLoss. En cuanto al optimizador, se ha utilizado Adam con una tasa
de aprendizaje inicial de 0.001 y un weight decay de 1075.

Como politica de ajuste dindmico del ritmo de aprendizaje, se ha utilizado una plani-
ficacién cosenoidal con warm-up del 5% de los pasos totales. Esta estrategia permite un
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inicio suave en el entrenamiento y un descenso progresivo del learning rate, estabilizando la
convergencia.

Respecto al modelo, se ha utilizado una arquitectura basada en Vision Transformer es-
tandar, con token [CLS] en vez de mean pooling. La entrada se divide en patches de 8 x 8,
lo que genera 1024 tokens por imagen. A pesar de tratarse de imagenes en escala de gri-
ses, se ha proyectado cada patch a un vector de dimensién 192 (como si tuviera 3 canales)
para mantener la coherencia con las arquitecturas previas y aprovechar configuraciones ya
probadas.

El modelo estd compuesto por 3 bloques Transformer con 8 cabezas de atencién, una
red feed-forward de dimensién 384 y una tasa de dropout de 0.2, ligeramente superior a los
anteriores para contrarrestar la menor variabilidad del dataset.

model = ViT(img_size=256, patch_size=8, in_channels=1, emb_dim
=8%8*3, num_heads = 8, mlp_dim=8%8*2*2, num_layers=3,
num_classes=4, dropout=0.2).to(device)

Listing 6.4: Modelo.

Layer (type:depth-idx) Qutput Shape Param #
ViT [1, 4] 196,992
—PatchEmbeddingv3: 1-1 [1, 1824, 192] --
L Sequential: 2-1 [1, 1824, 192] --
Rearrange: 3-1 [1, 1824, 64] --
L Linear: 3-2 [1, 1824, 192] 12,480
L LayerNorm: 3-3 [1, 1824, 192] 384
—Sequential: 1-2 [1, 1825, 192] --
LTransformer8lock: 2-2 [1, 1825, 192] --
L MultiheadAttention: 3-4 [1, 1825, 192] 148,224
L LayerNorm: 3-5 [1, 1825, 192] 384
L Sequential: 3-6 [1, 1825, 192] 98,752
LLayerNorm: 3-7 [1, 1825, 192] 384
TransformerBlock: 2-3 [1, 1825, 192] --
L MultiheadAttention: 3-8 [1, 1825, 192] 148,224
L LayerNorm: 3-9 [1, 1825, 192] 384
L Sequential: 3-18 [1, 1825, 192] 98,752
LLayerNorm: 3-11 [1, 1825, 192] 384
TransformerBlock: 2-4 [1, 1825, 192] --
L MultiheadAttention: 3-12 [1, 1825, 192] 148,224
L LayerNorm: 3-13 [1, 1825, 192] 384
L Sequential: 3-14 [1, 1825, 192] 98,752
LLayerNorm: 3-15 [1, 1825, 192] 384
—LayerNorm: 1-3 [1, 192] 384
—Linear: 1-4 [1, 4] 772

Total params: 954,244

Trainable params: 954,244
Non-trainable params: @

Total mult-adds (Units.MEGABYTES): ©.31

Input size (MB): B.26

Forward/backward pass size (MB): 23.61
Params size (MB): 1.25

Estimated Total Size (MB): 25.13

Figura 6.4: Resumen del modelo.
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6.8. Explicabilidad

Como ya se ha comentado, ademds de realizar el disefio y entrenamiento de los modelos, se
ha incorporado una técnica de explicabilidad, el ViT-ReciproCAM, con el objetivo de generar
mapas de saliencia que ayuden en la interpretacion.

Para implementar este enfoque, es necesario dividir el modelo ViT en dos bloques funcio-
nales diferenciados: G y H. Segiin se ha explicado en la Seccién [3.4.3] la parte G corresponde a
las capas del modelo que generan los tokens de representacion a partir de la imagen, incluyen-
do el patch embedding, la codificacién posicional y los bloques Transformer. La normalizacién
final y la cabeza de clasificacién forman parte de H, ya que se aplican tinicamente tras la
agregaciéon de los tokens mediante mean pooling o el uso del token [CLS].

Esta separacién se implementa anadiendo dos métodos adicionales en las dos clases que
definen las dos versiones del modelo ViT implementadas Uno de ellos se encarga
de obtener los tokens intermedios justo al final de G, y el otro toma dichos tokens como
entrada para procesarlos a través de H. Esta divisién no interfiere con el entrenamiento, ni
con la carga de pesos desde archivos .pth, por lo que puede anadirse tras el entrenamiento
sin afectar al comportamiento del modelo.

Aunque para ambas versiones, las funciones realizan la misma divisén teérica, hay dife-
rencia en la dimension de la salida del método forward_features. En el caso de utilizar
mean pooling, la salida es un tensor de dimensiones [B, T, D], correspondiente a los T to-
kens generados a partir de los patches de la imagen. En cambio, en la version original del
ViT que utiliza el token [CLS], la salida es de dimensiones [B, T+1, D], ya que se incluye
un token adicional al principio de la secuencia. Esto se tiene que tener en cuenta a la hora
de realizar el enmascaramiento.

Una vez extraidos los tokens, se realiza un enmascaramiento local sobre ellos con el
objetivo de observar cémo varia la puntuacion del modelo al eliminar informacién de zonas
especificas. Para ello se utiliza una funcién que enmascara un bloque de 3 x 3 tokens centrado
en una posicién determinada [AT3]

La funcién toma como entrada los tokens generados por la funcién forward_features
correspondiente. Para cada celda central especificada por fila y columna, se enmascara sus
vecinos inmediatos (formando un bloque 3 x 3), estableciendo su valor a cero (o cualquier
otro valor definido por el pardmetro £i11_value). Existe también una variante que salta el
primer token, en caso de que el modelo utilice un token [CLS], la cual se basa en sumar 1
para pasar por alto el token sin modificare:

idx = 1 + r * num_patches + ¢ # +1 para saltar el [CLS]

Listing 6.5: Linea diferente para versiéon CLS.

A partir de estas modificaciones, se procede a generar el mapa de saliencia. Para cada
posicién del grid, se calcula la diferencia entre la puntuacion original del modelo y la obtenida
tras enmascarar dicha region. Este proceso se repite para todos los patches de la imagen. Un
ejemplo de cémo se aplica esta técnica tras obtener la prediccién del modelo esta en
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Este procedimiento permite obtener un mapa que indica, de forma visual, qué zonas
afectan més a la prediccién del modelo. La transparencia del mapa (alpha) se puede ajustar
para facilitar la interpretacién. Para ello, se utiliza una interpolacién bilineal para adaptar
la resoluciéon del mapa al tamano original de la imagen. El resultado es un mapa de saliencia
que resalta las regiones clave utilizadas por el modelo para tomar su decisién.
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Capitulo 7

Resultados

En este capitulo, se resumen los datos numéricos finales, como los resultados obtenidos
durante el proceso de evaluacion. El andlisis se centra en el rendimiento alcanzado por cada
modelo sobre su correspondiente conjunto de datos, acompanando la comparacion con las
redes convolucionales desarrolladas en los trabajos previos.

Para ello, se presentan diversas métricas de rendimiento para evaluar y comparar los
modelos, teniendo en cuenta los resultados explicados por los antiguos compaifieros.

Asimismo, se incluyen visualizaciones de mapas de saliencia generados con el enfoque
desarrollado en este proyecto, los cuales se contrastan con los mapas basados en gradientes
utilizados en los trabajos anteriores.

7.1. Resonancias magnéticas de cerebro (MRI)

En la Tabla se muestran los resultados obtenidos por Arranz en el TFG anterior [15]
para distintos modelos basados en arquitecturas CNN. Se observan cinco versiones distintas
que emplean combinaciones de tamafio de imagen, transformaciones, nimero de filtros, tasa
de dropout y numero de capas. Aunque algunas versiones alcanzan altas precisiones en el
conjunto de entrenamiento (v2 y v3 superan el 90 %), aunque la precisién en el conjunto de
test no supera el 60 %, lo que indica un gran problema de sobreajuste.

Para este conjunto se ha empleado una arquitectura ViT con mean pooling y estrategias
de regularizaciéon como data augmentation, ponderaciéon de clases y label smoothing, lo que
ha permitido mejorar sustancialmente la capacidad de generalizacion.

La Figura [7.2] muestra la matriz de confusiéon absoluta en el conjunto de test, mientras
que la Figura [7:3] muestra la versién normalizada por filas. Se observa que el modelo consigue
una clasificacion precisa en todas las clases, con un rendimiento especialmente alto en la clase
3, siendo mas difusos los resultados en las demas clases.
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Version

Parametros

Capas

AccTrain

AccTest

vl

img_size : 56,

transform: NO

channels_ini : 3,

Initial filters : 32,

batch_size : (4,

{_perdidas : nn.CrossEntropyLoss(]),
Learning_rate: 0.005

(3, 32)
32, 64]

0.8087

0.4036

v2

img_size : 128,

trasform: RandomVertical + RandomHorizontal
Channels_ini : 3,

initial filters : 8,

batch_size : G4,

dropout_rate : (1.5,

{ perdidas : nn.CrossEntropy Loss( ).
Learning_rate: 0.005

[3, 8]
[, 16)
[16, 32|
[32, 64]

0.8902

0.5964

v3

img size : 250,

transform: N(»

channels_ini : 3,

initial filters : 8,

batch_size”: G4,

dropout_rate : (.25,

{_perdidas: nn.CrossEntropyLoss(),
learning_rate: 0.005

[3, 16)
[16, 32|
[32, 64]

0.9129

0.5812

vid

img_size: 128,

transform: RandomVertial + AdjustSharpness + RandomHorizontal

channels_ini : 3,

initial_filters : 32,

batch_size : G4,

dropout_rate : (.25,

[_perdidas : nn. CrossEntropyLoss( ).
learning rate: (.005

img_size : G4,

transform: NO

channels_ini : 3,

initial filters : 16,

batch_size : (4,

dropout_rat : (.25,

{_perdidas: nn.CrossEntropyLoss( ),
learning_rate: 0.0001

3. 32]
32, 64]

(3, 16)
[16, 32|

0.7063

0.4648

0.4289

0.3173

Figura 7.1: Resultados de distintas versiones CNN implementadas en el TFG anterior [I5].
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250
8 10
200
12 13
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2 10 15 118 7 - 100
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0 1 2 3
Predicted label

Figura 7.2: Matriz de confusion sobre el conjunto de test del modelo seleccionado.

0.8

0.6

True label

0.4

0.2

T T — 0.0
0 1 2 3

Predicted label

Figura 7.3: Matriz de confusién (frecuencias) sobre el conjunto de test del modelo seleccio-
nado.

La evolucién del entrenamiento se resume en la Figura [7.4] El modelo alcanza un valor
minimo de pérdida de test cercano a 0.72 y una precisién del 84.9% en el conjunto de test
durante la época 84, momento en que se guardé el modelo final. La pérdida de entrenamiento
contintia disminuyendo mientras que la de test se estabiliza, lo que indica un entrenamiento
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con cierto sobreajuste una vez pasadas las 40 épocas.

Loss

—— Train Loss.

14 =
Test Loss

0 20 40 60 80 100

Accuracy

—— Train Accuracy
Test Accuracy
08

0 20 40 60 80 100

Figura 7.4: Evolucién de la funcién de pérdida (arriba) y la precisién (abajo) durante el
entrenamiento.

De esta manera, si bien todavia se mantiene dicho sobreajuste, se ha logrado una gran
mejora respecto a las arquitecturas CNN del trabajo previo, incrementando en casi un 30 %
la precisiéon sobre el conjunto de test.

Datos completos de la mejor época:
= Epoch: 84/150
s Train Loss: 0.42777 Train Accuracy: 0.96848

» Test Loss: 0.72113 Test Accuracy: 0.84898

7.2. Radiografias de térax (RXC)

A pesar de no alcanzar las tasas de clasificacién mencionadas en el trabajo anterior (con
una precisién en test del 96.18 %), el modelo Vision Transformer ha mostrado un rendimiento
notable, especialmente teniendo en cuenta las diferencias arquitecténicas y de enfoque.

Como se observa en la Figura [7.5 la evolucién de las métricas durante el entrenamiento
muestra un comportamiento estable, con un test loss que se mantiene en niveles relativamente
bajos y sin indicios claros de sobreajuste severo, a pesar de la complejidad del conjunto de
datos.
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—— Train Loss.
Test Loss

Accuracy

—— Train Accuracy

Tost Accuracy HWM«M\WW

,\/\/"\"\"\"’/\r

08 //mJ

Figura 7.5: Evolucién de la funcién de pérdida (arriba) y la precisién (abajo) durante el
entrenamiento.

400

350

300

250

- 200

True label
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T —-0
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Figura 7.6: Matriz de confusién sobre el conjunto de test del modelo seleccionado.
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True label

0 1 2
Predicted label

Figura 7.7: Matriz de confusién (frecuencias) sobre el conjunto de test del modelo seleccio-
nado.

En cuanto a la distribucién de errores, las matrices de confusién [7.6] y [7.7] revelan una
precision elevada en todas las clases, lo que indica un buen rendimiento general del modelo.
No obstante, se observa cierta confusion entre las clases 'Normal’ (1) y 'Neumonia virica’ (2),
fendmeno que también ocurre en el trabajo anterior. Por otro lado, la clase "COVID-19’ (0),
si bien presenta un rendimiento algo inferior al de las otras dos clases, mejora los resultados
obtenidos del trabajo anterior, a pesar de mostrar cierta confusién con la clase 2.

Si bien el modelo anterior presentaba métricas globales superiores, estaba mas centrado en
optimizar la prediccién de las clases 1 y 2. En cambio, el modelo actual busca un rendimiento
equilibrado entre todas las clases, incluyendo la clase 0, que parece ser mas dificil de clasificar.

En conjunto, aunque los resultados obtenidos no superan a los del trabajo anterior, se
sitian en un rango competitivo, demostrando la viabilidad del uso de modelos basados en
atencion en tareas de clasificacion médica incluso con un ntimero limitado de ejemplos.

Datos completos de la mejor época:

= Epoch: 83/150

s Train Loss: 0.38122 Train Accuracy: 0.96126

s Test Loss: 0.52052 Test Accuracy: 0.94427
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7.3. Secciones transversales de tomografias de coheren-
cia optica (OTC)

En este caso, el conjunto de datos presenta un reto particular debido a su gran tamano,
implicando un coste computacional elevado. El entrenamiento con un ntimero elevado de
imagenes alarga significativamente las épocas, dificultando la exploracién con arquitecturas
mas complejas y agrandando el problema de disponibilidad de recursos.

En la Figura se presenta la evolucién de la funcion de pérdida y precisién a lo largo
del entrenamiento. El modelo alcanzé una precisién del 90.1 % en el conjunto de test en la
época 72, con una pérdida de validacion estabilizada y sin signos evidentes de sobreajuste.

Loss

—— Train Loss
Test Loss

[ 10 20 30 40 50 60 70

Accuracy

0.9 { — Train Accuracy — —
Test Accuracy T N,

0 10 20 30 40 50 60 70

Figura 7.8: Evolucién de la funcién de pérdida (arriba) y la precisién (abajo) durante el
entrenamiento.

La evaluacion del modelo se presenta en las Figuras y donde se muestran las
matrices de confusion absoluta y normalizada, respectivamente. Se observa un comporta-
miento muy consistente en todas las clases, con una diagonal claramente destacada, lo que
indica una excelente capacidad de generalizacion. No obstante, se aprecia cierta confusién
entre la clase 0 y la clase 2, con un ntimero significativo de muestras de la clase 0 clasificadas
errébneamente como clase 2, lo cual podria deberse a similitudes visuales entre ambas clases.
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94 326 15 3000
2500
143 1070 13 46 2000
4]
=
=
S - 1500
}_
241 29 7 806 44
- 1000
3 5 62 9% [ 500
T T T —

0 1 2 3
Predicted label

Figura 7.9: Matriz de confusién sobre el conjunto de validaciéon del modelo seleccionado.

0.8

0.6

True label

0.2

0 1 2 3
Predicted label

Figura 7.10: Matriz de confusién (frecuencias) sobre el conjunto de validacion del modelo
seleccionado.
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Particién Trabajo anterior (CNN) | Trabajo actual (ViT)
Entrenamiento 98,841 % 90,042 %
Test 96,531 % 90,116 %
Validacién 96,366 % 90,110 %

Tabla 7.1: Comparativa de precision entre el trabajo anterior [I5] y el modelo ViT actual.

Tal como se recoge en la Tabla [7.1] los modelos CNN implementados en el trabajo an-
terior obtuvieron mejores resultados en todas las particiones. No obstante, los resultados
alcanzados por el modelo ViT siguen siendo muy competitivos. Dado que se observé una
buena estabilidad del modelo y una tasa de acierto elevada incluso con arquitecturas ligeras,
es razonable pensar que la diferencia en rendimiento se debe mas a las limitaciones compu-
tacionales (que han impedido usar arquitecturas ViT mds profundas o entrenar durante mas
épocas) que a una incapacidad del modelo como tal. En este sentido, es probable que el uso
de mayor capacidad computacional o modelos més grandes permita disminuir esta diferencia,
sino incluso ponerla a su favor.

Datos completos de la mejor época:
= Epoch: 72

= Train Loss: 0.49257 Train Accuracy: 0.90042
= Test Loss: 0.49790 Test Accuracy: 0.90116
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Capitulo 8
Aplicaciéon

Tras haber obtenido y evaluado los modelos necesarios, se ha desarrollado una aplicacién
web con el objetivo de facilitar su uso y demostrar de forma interactiva su funcionamiento.

Esta herramienta permite al usuario cargar imagenes y obtener predicciones para cada uno
de los conjuntos sin necesidad de conocimientos técnicos, ni experiencia previa con entornos
de desarrollo Python, notebooks o bibliotecas especificas como Pytorch o Pandas.

Si bien el desarrollo de esta aplicacion no es el objetivo principal de este Trabajo de Fin de
Grado, su implementacion aporta el valor de la construcciéon de un programa en produccién.
Sirve como una forma accesible y practica de mostrar el rendimiento real de los modelos
entrenados, sobre todo en contextos como este, donde la facilidad de uso y la interpretacién
de los resultados son de gran importancia para el diagnéstico médico final.

Por tanto, durante este capitulo se detallard el proceso de anélisis, diseno e implementa-
cién de dicha aplicacion.

8.1. Tecnologias y herramientas utilizadas

Aunque se ha detallado en el capitulo [4] las diferentes tecnologias para todo el proyecto,
especificamente para el desarrollo de la aplicacion se han empleado las siguientes:

8.1.1. Frontend

El lado cliente de la aplicaciéon se ha construido utilizando tecnologias web estandar:

= HTML5: lenguaje de marcado utilizado para estructurar el contenido de las paginas
web.
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= JavaScript: lenguaje de programacién que permite implementar funcionalidades di-
namicas e interactivas en el navegador.

s Tailwind CSS: framework de utilidades CSS que permite construir interfaces moder-
nas y responsivas de forma réapida y eficiente en el propio archivo HTML.

8.1.2. Backend y modelado
En el lado servidor, se han utilizado tecnologias basadas en Python:
= Python: lenguaje principal empleado tanto para el backend como para el desarrollo y

entrenamiento de los modelos.

= PyTorch: biblioteca utilizada para cargar los pesos en los modelos.

8.2. Andlisis

8.2.1. Requisitos

Requisitos funcionales

ID | Nombre Descripcion

RF-1 | Seleccionar modelo El sistema debe permitir al usuario seleccionar el mo-
delo a utilizar entre los 3 disponibles.

RF-2 | Subir imagen El sistema debe permitir al usuario subir una imagen.

RF-3 | Mostrar imagen El sistema debe ser capaz de mostrar la imagen car-
gada por el usuario.

RF-4 | Procesar imagen El sistema debe ser capaz de procesar la imagen car-
gada por el usuario.

RF-5 | Realizar diagnodstico El sistema debe ser capaz de realizar el diagnéstico
(clasificacién) de la imagen cargada por el usuario.

RF-6 | Mostrar resultado El sistema debe ser capaz de mostrar el resultado del
diagnoéstico.

RF-7 | Actualizar historial imagen | El sistema debe ser capaz de actualizar el historial
cada vez que se realiza un diagnostico.

RF-8 | Usos consecutivos El sistema debe permitir realizar multiples diagnods-
ticos consecutivos, cada uno con su propia imagen y
modelo seleccionado.

Tabla 8.1: Tabla de requisitos funcionales.
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Requisitos no funcionales

ID Nombre Descripcion

RNF-1 | Tiempo de procesamiento | El sistema debe tarmer menos de 10 segundos en
mostrar un diagndstico tras su peticién.

RNF-2 | Formato de imagen El sistema debe permitir diferentes formatos de ima-
gen: .jpg, .png y .jpeg.

RNF-3 | Usabilidad Un usuario con conocimientos basicos sobre navega-
cién por la red, debe ser capaz de realizar su primer
diagnéstico en menos de un minuto.

RNF-4 | Lenguaje de programacién | El sistema debe ser programado en Python para fa-
cilitar el uso de los modelo creados con Pytorch.

Tabla 8.2: Tabla de requisitos no funcionales.

Requisitos de informacién

ID

Nombre

Descripcion

RI-1

Modelos disponibles

El sistema debe permitir el acceso a los modelos de
diagnostico previamente definidos y almacenados en
archivos locales (.pth).

RI-2

Imagen cargada

El sistema debe almacenar temporalmente la imagen
subida por el usuario durante el proceso de diagnds-
tico.

RI-3

Resultados de diagndstico

El sistema debe mantener los resultados (prediccién,
confianza y modelo usado) tras cada ejecucién, dis-
ponibles para su visualizacién inmediata.

RI-4

Historial en sesién

El sistema debe conservar en memoria el historial de
diagnésticos realizados durante la sesiéon activa del
usuario, incluyendo fecha, imagen y prediccion.

Tabla 8.3: Tabla de requisitos de informacién.
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8.2.2. Casos de

uso

Diagrama
[ R—
—_
Usuario \\-
Actualizar historial
7
<<include>> _ .-~
g <<include>>. Obtener prediccion
Realizar diagnéstico
) S
<<include>>
Figura 8.1: Diagrama de casos de uso.
Tablas
CU-1 Subir imagen
Actor Usuario
Descripcion El usuario selecciona y sube una imagen para su posterior procesado.
Precondiciones —
Postcondiciones El sistema ha almacenado la imagen subida por el usuario

Flujo normal

1. El usuario sube una imagen al sistema.

2. El sistema verifica el formato de la imagen.
3. El sistema almacena la imagen.

4. El sistema muestra la imagen cargada.

Flujo alternativo

2a. El formato no es adecuado, vuelve a 1.
4a. El usuario decide subir otra imagen, vuelve a 1.

Tabla 8.4: Descripcion del caso de uso 1: Subir imagen.
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CU-2 Seleccionar modelo

Actor Usuario

Descripcion El usuario selecciona uno de los modelos disponibles.
Precondiciones —

Postcondiciones El sistema ha almacenado el modelo si no lo estaba ya.

Flujo normal

1. El usuario selecciona uno de los modelos disponibles.
2. El sistema almacena el nombre del modelo para su posterior uso.

Flujo alternativo

2a. El nombre seleccionado no es vilido, vuelve a 1.

Tabla 8.5: Descripcién del caso de uso 2: Seleccionar modelo.

CU-3 Realizar diagnéstico
Actor Usuario
Descripcion El sistema presenta procesa la imagen y presenta un diagnéstico.
Precondiciones . La imagen ha sido cargada en el sistema.
. El usuario ha seleccionado un modelo.
Postcondiciones . El sistema presenta los resultados del diagndstico.

. El historial se actualiza con el nuevo diagnéstico realizado.

Flujo normal

. El usuario solicita el diagnéstico de la imagen.

. El sistema procesa la imagen para el modelo seleccionado.
. El sistema carga el modelo seleccionado.

. El sistema obtiene la prediccién del modelo.

. El sistema realiza el CU-6 - Obtener explicabilidad.

. El sistema realiza el CU-4 - Actualizar historial.

. El sistema prepara los resultados para su presentacién.

. El sistema presenta los resultados.

CO 1 O UL W N NN -

Flujo alternativo

4a. Se produce un error, se vuelve a 1.

5a. Se produce un error, el sistema muestra un mensaje, se vuelve a
1.

6a. Se produce un error, el sistema muestra un mensaje, se vuelve a
1.

8a. El usuario decide realizar otro diagnéstico, se vuelve a 1.

Tabla 8.6: Descripcién del caso de uso 3: Realizar diagndstico.
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CU-4 Actualizar historial
Actor Usuario
Descripcion El sistema actualiza el historial afiadiendo una nueva entrada con la
prediccién realizada.
Precondiciones 1. El modelo seleccionado esta cargado en el sistema.
2. La imagen ha sido cargada en el sistema.
3. El sistema ha realizado la prediccién de la imagen cargada.
Postcondiciones El historial contiene una nueva entrada.

Flujo normal

1. El sistema prepara los resultados para la nueva entrada.
2. El sistema crea una nueva entrada con los nuevos resultados.

Flujo alternativo

Tabla 8.7: Descripcién del caso de uso 4: Actualizar historial.

CU-5 Obtener explicabilidad
Actor Usuario
Descripcion El sistema crea un mapa de saliencia para la imagen cargada.
Precondiciones 1. El modelo seleccionado esta cargado en el sistema.

2. La imagen ha sido cargada en el sistema.
Postcondiciones 1. El mapa de saliencia queda cargado en el sistema.

Flujo normal

1. El sistema calcula el mapa de saliencia para la imagen cargada.
2. El sistema almacena el mapa de saliencia.

Flujo alternativo

la. Se produce un error, el sistema muestra un mensaje.

Tabla 8.8: Descripcion del caso de uso 5: Obtener explicabilidad.

8.3. Diseno

8.4. Patrones de Diseno Aplicados

En el desarrollo de la aplicacion se han utilizado varios patrones de disefio que facilitan
la organizacién modular, la escalabilidad y la reutilizacién del cédigo. A continuacion, se
explican con mayor detalle los patrones implementados.

8.4.1. Singleton

El patrén Singleton restringe la creacién de objetos pertenecientes a una clase a una sola
instancia. Se accede a dicha instancia mediante un punto de acceso global. Esto permite el
control centralizado de ciertos recursos evitando duplicar objetos innecesariamente.
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Justificacién en la aplicacion: Los modelos pueden ocupar una gran cantidad de
memoria debido a la gran cantidad de pesos que se necesitan almacenar, y tardan cierto
tiempo en inicializarse. Para evitar que se cargue multiples veces innecesariamente cada
modelos, se usa el patrén Singleton. De esta manera, al cargar una vez un modelo, todas las
peticiones futuras referentes al mismo reutilizan la misma instancia ya cargada en memoria
(RAM), optimizando el rendimiento y reduciendo la latencia de respuesta.

8.4.2. Factory

El patrén Factory centraliza y abstrae la légica de creacién de objetos, permitiendo que
el cédigo cliente no conozca detalles concretos de implementacién. Se basa en delegar la
responsabilidad de instanciacién a una clase dedicada (fabrica).

Justificacién en la aplicacion: Se utiliza una fibrica de modelos para construir dina-
micamente los distintos modelos de cada conjunto de datos. El usuario selecciona un modelo
mediante la interfaz, y la Factory se encarga de devolver la instancia correspondiente. Esto
permite una alta extensibilidad del sistema: agregar un nuevo modelo no requiere cambios
en el controlador, solo registrar un nuevo constructor en la fabrica.

8.4.3. Adapter

El patrén Adapter convierte la interfaz de una clase en otra que el sistema espera. Se
utiliza cominmente para integrar componentes que no fueron disenados para trabajar juntos.

Justificacién en la aplicacién: El objeto que representa la imagen subida por el usua-
rio a través del navegador no es directamente compatible con el modelo de PyTorch. Se
implementa un adaptador que convierte el archivo recibido en una imagen transformada y
normalizada, lista para ser procesada por el modelo correspondiente. Esto desacopla la 1égica
del servidor HTTP de los detalles internos de procesamiento de datos.

8.4.4. MVC (Modelo-Vista-Controlador)

El patréon Modelo- Vista-Controlador divide la aplicacion en tres componentes interconec-
tados que separan las responsabilidades:

= Modelo: Contiene la légica del negocio, en este caso, los diferentes ViT, su iniciali-
zacién y ejecucién. También abarca la légica de interpretabilidad (saliency maps) y el
procesamiento de imagenes.

= Vista: Es la parte de la aplicacion que interactiia con el usuario. En esta aplicacién
corresponde al conjunto de archivos HTML, CSS (Tailwind) y JavaScript (incluyendo
Chart.js), que forman la interfaz gréfica y recogen las acciones del usuario.
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» Controlador: Gestiona las peticiones del cliente (usuario) y coordina las acciones
del modelo y la vista. Las rutas de Flask actian como controladores, recibiendo las
imégenes, seleccionando el modelo adecuado, generando predicciones, y devolviendo
los resultados al cliente.

Justificacién en la aplicacién: Gracias al patrén MVC, la l6gica de negocio (modelo) y
la presentacion (vista) estdn claramente separadas, lo que facilita la mantenibilidad, pruebas
unitarias y escalabilidad. Ademds, permite que distintas vistas se conecten a los mismos
modelos, reutilizando cédigo de forma eficiente.

8.4.5. Diagramas

En esta seccion se detalla la arquitectura de la aplicacién a través de los diferentes dia-
gramas.

Esquema general

En este primer diagrama, presentado en la Figura [8:2] se muestra el diagrama general
de tipo Uses Style de la aplicacion. Como puede observarse, la arquitectura esta dividida en
tres componentes principales, correspondientes a las capas del patrén MVC: Model, View
y Controller.

Dentro de la capa View, se realiza una subdivision adicional en las carpetas Static y
Templates, para tener mejor division entre el HTML y la parte de JavaScript.

Puede apreciarse que la arquitectura sigue un enfoque de capas estrictas, en el que cada
capa Unicamente tiene conocimiento de la capa inmediatamente inferior. Esta restricciéon
contribuye a mejorar la mantenibilidad, escalabilidad y claridad del sistema. Cabe decir que
esta relacién no se encuentra en los estereotipos del diagrama con el fin de no sobrecargarlo.

Clases detalladas

A continuacion, se presentan los diagramas de clases detallados correspondientes a cada
una de las capas del patrén MVC. Cada diagrama muestra las clases principales, sus métodos
y relaciones.
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pkg Diserio l

i

<<MVC.Controller>>
Routes

"""“““I“‘llllllllllllll

Figura 8.2: Diagrama Uses Style general.

pkg View J

<<yses>>

Figura 8.3: Diagrama de clases detallado de View.
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pkg Routes l

index.py predict.py

+ <<GET>> index() : void + <<POST>> predict() : void

Figura 8.4: Diagrama de clases detallado de Routes.

pkgModel )

<<Singleton>> <<Registry>>
<<Factory>> ModelBuilderRegistry
ModelFactory

+ register(name : String, fn : Function) : void

+ get(model_key : String) : void + build(name : int) : void
ViTWithMeanPooling ViT <<Adapter>> Explainability
+ forward() : void + forward() : void GtaskRequsStAlapter + mask_tokens_block3x3() : void
+ forward_features() : void + forward_features() : void + get_image_tensor() : void + generate_saliency_map() : void
+ forward_head() : void + forward_head() : void + saliency_map_to_base64() : void

Figura 8.5: Diagrama de clases detallado de Model.

Caso de uso principal

Dado que el caso de uso CU-3 Realizar diagndstico, no solo es el principal sino también
el mas complejo, se detallan tanto el diagrama Uses Style como el de secuencia. La primera
Figura corresponde al diagrama Uses Style, el que se observa todas las relaciones entre
las capas. Por otro lado, en la Figura se representa el diagrama de secuencia asociado,
en el que se describe la interaccién entre los distintos componentes del sistema durante la
ejecucién de este caso de uso clave, a parte de referenciar a otros casos de uso contenidos.
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pkg CU-3 Realizar diagnostico

—
<<IVC.Views>
View
,,,,,,,, <<mve.Controller>> | ____________________________| <<MvCmogeis>>
Templates | ________| Static Routes. Model
T T 5
5
Explainability

+ mask_tokens_blockaxa() : void
+ generate_saliency_map() - void
+ saliency_map_to_base64() : void

script.js g
<<Adapter>>
e DO e R T [ |
k * nareFie() - void A+ <<Fost>> predet) - voia
oy preel) e + get_image_tersor() - void

<<Singleton>> <<Registry>>
<<Factory>> ModelBullderRegistry
ModelFactory.

+ register(name : String, fn - Function) : void
+ get{modsl_key : String) : void + build(name : String) : void

ViTWithMeanPooling

+ forward() : void H
+ forward_features() : void
+ forward_head() : void

Vit

+ forward() : void
+ forward_features() : void
+ forward_head() : void

Figura 8.6: Diagrama Uses Style del CU-3 Realizar diagnéstico.

5d CU-3 Realizar diagnostico

% | scriptjs | | predictpy <<Adapter>> <<Registry>> <<Singleton>> | op - BElErEy
Usuario T T FlaskRequestAdapter Factor
‘ i | T T
| | |
|
|

pr )ivoid o | | |
predict]) : void L} tensor = get_image_tensor() : void

build(name:String) : void

u:dateH\slory() void

Figura 8.7: Diagrama de secuencia del CU-3 Realizar diagndstico.

Otros casos de uso

A continuacién, se presentan los diagramas de secuencia de otros casos de uso relevantes
para la funcionalidad general de la aplicacion.

Se han incluido tnicamente los diagramas correspondientes a los casos de uso CU-1 y
CU-5, ya que los casos CU-2 y CU-4 no tienen la complejidad suficiente como para elaborar
un diagrama especifico.
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B3

El CU-2 consiste en una operacién simple de almacenamiento de una clave a partir de
un elemento HTML, mientras que el CU-4 se reduce a una unica llamada a una funcién
JavaScript, la cual ya se encuentra representada en el paso final del diagrama de la Figura

sd CU-1 Subir imagen J
% . scripts

Usluano T
| 1- handleFile() - void | 1.1 URL.createObjectURL()

Figura 8.8: Diagrama de secuencia del CU-1 Subir imagen.

sd CU-5 Obtener explicabilidad )

Explainability

generate_saliency map() : void »

Usuario

maslk_tokens_block3x3() : void

saliency _map_to_base64() : void

T

H

Figura 8.9: Diagrama de secuencia del CU-5 Obtener explicabilidad.
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Capitulo 9

Conclusiones

A lo largo de este Trabajo de Fin de Grado se han aprendido y aplicado diversas herra-
mientas, técnicas y metodologias de la Ingenieria Informéatica. Desde la planificacion y disefio
de un proyecto desde cero, hasta el desarrollo del sistema, el uso de librerias especializadas
para Aprendizaje Automatico y el uso de entornos de experimentacion.

En particular, se han utilizado aspectos avanzados del campo del Aprendizaje Profundo,
centrados en los modelos basados en Transformers. Esto ha permitido ahondar en meca-
nismos como la atenciéon multiple, la codificaciéon posicional y las técnicas de agregacién de
informacion, adaptando dichas ideas al dominio de la Visién por Computador mediante el
uso de la arquitectura Vision Transformer.

Este proyecto ha permitido explorar las posibilidades de este tipo de arquitecturas en un
entorno médico real, en comparacion con enfoques tradicionales basados en Redes Neuronales
Convolucionales, ampliamente utilizadas en este tipo de tareas.

Los resultados obtenidos han sido heterogéneos. En el conjunto de datos de radiografias
cerebrales, se ha conseguido mejorar de forma notable la precisién sobre el conjunto de test,
aumentando en casi un 30 % respecto a los modelos CNN empleados en el trabajo original.
Este resultado pone de manifiesto el potencial de los ViT en entornos, donde las relaciones
espaciales globales sean especialmente relevantes o donde las CNN puedan tener dificultades
para generalizar.

Sin embargo, en los conjuntos de ojos y torax, los modelos ViT no han logrado superar los
resultados obtenidos previamente con arquitecturas convolucionales. Aunque en ambos casos
se alcanzaron valores de precisién considerablemente altos, los modelos CNN se mantuvieron
por encima. Esto podria explicarse por varios factores, como la dificultad en el ajuste de
hiperparametros especificos para ViT en situaciones de baja cantidad de datos, o el hecho
de que en ciertos contextos locales (donde patrones espaciales especificos son determinantes)
las CNN siguen siendo mas eficientes.

Esta comparaciéon de resultados es de gran importancia, ya que complementa una de las
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principales conclusiones del trabajo: los ViT no deben considerarse un reemplazo directo de
las CNN, sino una alternativa con fortalezas y debilidades propias, que deben valorarse en
funcion del contexto. En conjuntos donde la cantidad de datos es limitada o donde el detalle
local predomina sobre la estructura global, los ViT pueden no resultar tan efectivos como se
esperaba. Por tanto, una evaluacién caso a caso sigue siendo necesaria.

Se ha implementado y analizado una técnica complementaria basada en ViT-ReciproCAM,
con el fin de poder dar explicaciones visuales sobre el funcionamiento interno de los modelos.
Esta herramienta, adaptada especificamente para modelos basados en atencién, ha permitido
generar mapas de saliencia interpretables, que ayudan a identificar las regiones de la imagen
mas relevantes para la decision del modelo. Si bien su aplicacién ha sido exploratoria, ha
servido para reforzar la comprensién del comportamiento del sistema.

Se han abordado diversas dificultades relacionadas con el ajuste de los modelos, desta-
cando especialmente los fenémenos de overfitting e underfitting. Para hacerles frente, se han
implementado multiples estrategias de regularizacién y ajuste estructural, incluyendo varia-
ciones en la profundidad de la arquitectura, modificaciones en las tasas de dropout o ajustes
en la funcién de pérdida. Estos cambios han requerido un proceso iterativo de experimenta-
cién de larga duracién.

A pesar de estas limitaciones, el trabajo ha permitido explorar en profundidad el fun-
cionamiento de los Vision Transformers de manera especifica, abordando aspectos como la
divisién en patches, el uso de posiciones embebidas y su estructura basada en el Transformer
original. Igualmente, se ha llevado a cabo un analisis detallado sobre configuraciones estruc-
turales, como el uso de bloques residuales o la seleccion del vector de salida ([CLS] vs. mean
pooling), de gran utilidad a la hora de refinar cada modelo.

En términos generales, este proyecto ha contribuido a consolidar competencias adquiridas
a lo largo del grado, familiarizarse con arquitecturas ciertamente modernas en el campo del
Deep Learning.

9.1. Lineas de trabajo futuras

Existen diversos caminos para ampliar el alcance de este trabajo:

s Optimizacién de hiperparametros: aunque se han obtenido resultados satisfacto-
rios mediante ajustes manuales, la aplicacion de técnicas sistematicas podria permitir
identificar configuraciones mas eficientes, sobre todo en los casos donde el rendimiento
ha sido mas limitado o inestable.

= Extension del conjunto de datos: dado que los modelos ViT tienden a beneficiarse
de grandes cantidades de datos, la incorporaciéon de nuevas muestras mediante la reco-
leccion directa, o el uso de conjuntos piiblicos adicionales, podria mejorar la capacidad
de generalizacion de los modelos.

= Analisis en profundidad de un conjunto especifico: una de las rarezas del proyec-
to ha sido trabajar simultdneamente con tres conjuntos de datos distintos. Un enfoque
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alternativo seria centrarse en uno sélo de ellos y realizar un andlisis mas profundo y
especifico, explorando configuraciones mas avanzadas y ajustadas de manera particular.

= Mejora de la aplicacién: actualmente la aplicaciéon cumple su funcién, pero se po-
drian anadir aspectos para perfeccionar la interfaz de usuario, seguridad y en la simul-
taneidad. Esto se haria con un servidor, creando una buena configuracién a través de
la red y adaptando el sistema para permitir un uso mas eficiente y escalable.

= Escalabilidad mediante hardware avanzado: muchas de las limitaciones expe-
rimentadas durante el desarrollo han estado condicionadas por la capacidad compu-
tacional disponible. Contar con un hardware mas potente (como GPUs de gama alta)
permitiria entrenar modelos més profundos y complejos, asi como realizar experimen-
taciones en tiempos més razonables.
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APENDICE A. CODIGO

Apéndice A

Cdédigo

class PatchEmbedding (nn.Module) :

def __init__( , img_size, patch_size, in_channels, emb_dim):
super (). __init__(Q)
patch_dim = patch_size * patch_size * in_channels

.n_patches = (img_size // patch_size) ** 2

# First option: embedding with proyection
.to_patch_embedding = nn.Sequential(

Rearrange(’b ¢ (h pl) (w p2) -> b (h w) (pl p2 c)’, pl=patch_size,

p2=patch_size),
nn.Linear (patch_dim, emb_dim),
nn.LayerNorm(emb_dim)

)

# Second option: embedding without proyection
.to_patch_embedding_solo = Rearrange(’b c (h pl) (w p2)
h w) (pl p2 c)’, pl=patch_size, p2=patch_size)

def forward( , X):
return .to_patch_embedding_solo (x)

-> b (

Listing A.1: Clase del Patch Embedding (segunda opcién activada)

class TransformerBlock (nn.Module):
def __init__( , emb_dim, num_heads, mlp_dim, dropout):
super () . __init__Q

# Normalization layers
.norml = nn.LayerNorm(emb_dim)
.norm2 = nn.LayerNorm(emb_dim)
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# Multihead attention
.attn = nn.MultiheadAttention(embed_dim=emb_dim, num_heads=
num_heads, dropout=dropout, batch_first=True)

# Feed-forward

.mlp = nn.Sequential(
nn.Linear (emb_dim, mlp_dim),
nn.RelLU(),
nn.Linear (mlp_dim, emb_dim),
nn.Dropout (dropout)
)

def forward( , X):

# First block: multi-head self-attention with residual connection
and layer normalization

attn_output, _ = .attn(x, x, x, need_weights=False)

x = .norml (x + attn_output)

# Second block: feed-forward network with residual connection and
layer normalization

ff_output = .mlp(x)

x = .norm2(x + ff_output)

return x

Listing A.2: Clase del bloque del codificador Transformer

def forward( , X):

# First block: multi-head self-attention with residual connection
and layer normalization

attn_output, _ = .attn(x, x, x, need_weights=False)

x = .norml (x + attn_output)

# Second block: feed-forward network followed by layer
normalization (no residual connection here)

ff_output = .mlp (x)

x = .norm2 (ff_output)

return x

Listing A.3: Segunda versién parte feed-forward

class ViT(nn.Module):
def __init__( , img_size, patch_size, in_channels, emb_dim,

num_heads, mlp_dim, num_layers, num_classes, dropout):
super (). __init__()

# Converts the input image into a sequence of flattened patches (
tokens)
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.patch_embed = PatchEmbedding(img_size, patch_size,
in_channels, emb_dim)

# Learnable [CLS] token used as a global representation
.cls_token = nn.Parameter(torch.randn(1l, 1, emb_dim, device=
device))

# Learnable positional encoding added to patch embeddings and the
[CLS] token
.pos_embedding = nn.Parameter (torch.randn(1l, 1 +
patch_embed.n_patches, emb_dim, device=device))

# Stack of Transformer encoder blocks
.transformer_blocks = nn.Sequential(

*[TransformerBlock (emb_dim, num_heads, mlp_dim, dropout) for _ in
range (num_layers)]

# Layer normalization before classtification
.norm = nn.LayerNorm(emb_dim)

# Final linear classification head
.mlp_head = nn.Linear(emb_dim, num_classes)

def forward( , X):
# Batch size
B = x.shape[0]

# Patch embedding of the input image
x = .patch_embed (x)

# Exzpand and concatenate [CLS] token with patch tokens
cls_tokens = .cls_token.expand(B, -1, -1)
x = torch.cat([cls_tokens, x], dim=1)

# Add positiomal encoding
X = x + .pos_embedding[:, :x.size (1), :]

# Pass through Transformer encoder blocks
x = .transformer_blocks (x)

# Extract and normalize the [CLS] token and classification
x = .norm(x[:, 0])
return .mlp_head (x)

Listing A.4: Clase principial del ViT con CLS

class ViTWithMeanPooling (nn.Module) :

def __init__( , img_size, patch_size, in_channels, emb_dim,
num_heads, mlp_dim, num_layers, num_classes, dropout):
super (). __init__()
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# Converts the input image into a sequence of flattened patches (
tokens)
.patch_embed = PatchEmbedding(img_size, patch_size,
in_channels, emb_dim)

# Learnable positional encoding added to the patch embeddings
.pos_embedding = nn.Parameter (torch.randn (1, .patch_embed.
n_patches, emb_dim, device=device))

# Stack of Transformer encoder blocks
.transformer_blocks = nn.Sequential(

*[TransformerBlock (emb_dim, num_heads, mlp_dim, dropout) for _ in
range (num_layers)]

# Layer mormalization before classification
.norm = nn.LayerNorm(emb_dim)

# Final linear classification head

.mlp_head = nn.Linear (emb_dim, num_classes)
def forward( , X):
# Patch embedding with postitional encoding
x = .patch_embed (x)
x = x + .pos_embeddingl[:, :x.size (1), :]

# Pass through Transformer encoder blocks
x = .transformer_blocks (x)

# Global mean pooling over all token embeddings (instead of using
a [CLS] token)
x = x.mean(dim=1)

# Final mnormalization and classification
x = .norm (x)
return .mlp_head (x)

Listing A.5: Clase principial del ViT con Mean Pooling

class HDF5Datasetv2(Dataset):
def __init__( , h6_file_path, train=True, validate=False):
.h5_file = h5py.File(h5_file_path, "r"
if validate:

.images = .h5_file[’val_images’]
.labels = .h5_file[’val_labels’]
.split = "val"

else:
if train:

.images
.labels

.h5_file[’train_images’]
.h5 _file[’train_labels’]
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.split = "train"
else:
.images = .h5_file[’test_images’]
.labels = .h5_file[’test_labels’]
.split = "test"
def __len__( DE:
return len( .labels)
def __getitem__( , idx):
image = torch.tensor ( .images [idx], dtype=torch.float32
) # (1, 256, 256)
label = torch.tensor( .labels[idx], dtype=torch.long)

return image, label

def close( DE:
.h5_file.close ()

Listing A.6: Clase del dataset para archivos HDF5.

class HDF5Datasetv2(Dataset):
def __init__( , h6_file_path, train=True, validate=False):
.h5_file = hbpy.File(h5_file_path, "r")
if validate:

.images = .h5_file[’val_images’]
.labels = .h5_file[’val_labels’]
.split = "val"

else:
if train:

.images = .h5_file[’train_images’]
.labels = .h5_file[’train_labels’]
.split = "train"
GILEIE 8

.images = .h5_file[’test_images’]
.labels = .h5_file[’test_labels’]
.split = "test"

# Transforms

if .split == "train":

.transform = v2.Compose ([

v2.RandomHorizontalFlip (),

v2.RandomAdjustSharpness(sharpness_factor=1.5, P
=0.3),

v2.RandomAutocontrast (p=0.2),

v2.RandomRotation(degrees=5),

v2.RandomPerspective (distortion_scale=0.1, p=0.3)

ID)
def __len__( )
return len( .labels)
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def __getitem__( , idx):

image = torch.tensor ( .images [idx], dtype=torch.float32
) # (1, 256, 256)

if .split == "train":
image = .transform(image)

label = torch.tensor( .labels[idx], dtype=torch.long)

return image, label

def close( ):
.h5_file.close ()

Listing A.7: Clase del dataset para archivos HDF5 version 2.

import hbpy

import numpy as np

from torchvision import datasets, transforms
from tqdm import tqdm

train_dataset_path = "../data/torax/train"
test_dataset_path = "../data/torax/test"
output_file = "../data/torax_dataset_modif_rot_5.h5"

tam = 256

train_transform = transforms.Compose ([
transforms.Resize ((tam,tam)),
#transforms.RandomHorizontalFlip (),
transforms.RandomRotation (5),
#transforms.ColorJitter (0.4, 0.4, 0.4, 0.1),
transforms.ToTensor (),

#transforms.Normalize (mean=[0.5]*3, std=[0.5]*3)
D

test_transform = transforms.Compose ([
transforms.Resize ((tam,tam)),
transforms.ToTensor (),

#transforms.Normalize (mean=[0.5]*3, std=[0.5]*3)
D

train_dataset = datasets.ImageFolder (root=train_dataset_path,
transform=train_transform)

test_dataset = datasets.ImageFolder (root=test_dataset_path,
transform=test_transform)

with hbpy.File(output_file, "w") as hdf:

train_images = hdf.create_dataset("train_images", shape=(len(
train_dataset), 3, tam, tam), dtype=np.float32)
train_labels = hdf.create_dataset("train_labels", shape=(len(

train_dataset),), dtype=np.int64)
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test_images = hdf.create_dataset("test_images", shape=(len(
test_dataset), 3, tam, tam), dtype=np.float32)

test_labels = hdf.create_dataset("test_labels", shape=(len(
test_dataset),), dtype=np.int64)

class_names = train_dataset.classes # Asumimos que las clases son
las mismas en ambos
hdf .attrs["class_names"] = [name.encode("utf-8") for name in
class_names]

# Entrenamiento

for i, (img, label) in tqdm(enumerate (train_dataset), total=len(
train_dataset), desc="Procesando entrenamiento"):

train_images[i] = img.numpy().astype(np.float32)

train_labels[i] = label

# Test

for i, (img, label) in tqdm(enumerate(test_dataset), total=len(
test_dataset), desc="Procesando prueba"):

test_images[i] = img.numpy().astype(np.float32)

test_labels[i] = label

print (f"Archivo HDF5 creado!")

print (f"Imagenes train: {len(train_dataset)l}")
print (f"Imagenes test: {len(test_dataset)}")
print (f"Clases: {class_names}")

Listing A.8: Creacién de archivos HDF5, caso térax.

for epoch in range (num_epochs):
print (f"Epoch: {epoch + 1}/{num_epochs}")

# Training
model.train ()
running_loss, correct, total = 0.0, 0, O

for images, targets in tqdm(train_loader):

images, targets = images.to(device, non_blocking=True),
targets.to(device, non_blocking=True)

optimizer.zero_grad()

y_pred = model (images)

loss = criterion(y_pred, targets.long())

loss.backward ()

optimizer.step ()

scheduler.step ()
running_loss += loss.item()

correct += (y_pred.argmax(dim=1) == targets).sum().item()
total += targets.size (0)
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# scheduler.step ()

train_loss.append(running_loss / len(train_loader))

train_accuracy.append(correct / total)

print (£’Train Loss: {train_loss[-1]:.5f}\tTrain Accuracy: {
train_accuracy[-1]:.5f}’)

# Testing
model.eval ()
correct, total, running_loss = 0, 0, 0.0

with torch.no_grad():
for images, targets in test_loader:
images, targets = images.to(device, non_blocking=True)
, targets.to(device, non_blocking=True)
y_test_pred = model (images)
loss = criterion(y_test_pred, targets.long())

running_loss += loss.item()

correct += (y_test_pred.argmax(dim=1) == targets).sum
O .item ()

total += targets.size (0)

test_loss.append (running_loss / len(test_loader))

test_accuracy.append(correct / total)

learning_rate.append (optimizer.param_groups [0][’1r’])

print (f’Test Loss: {test_loss[-1]:.5f}\tTest Accuracy: {
test_accuracy[-1]:.5f}\tLearning Rate: {learning_rate[-1]}’
)

# scheduler.step ()

Listing A.9: Bucle de entrenamiento.

# Best model saving

if epoch > 70:

if test_accuracy[-1] < best_test_acc:

best_test_acc = test_accuracy[-1]

best_model_state = model.state_dict ()

torch.save(best_model_state, "modelo_brain.pth")

print (£f"Model saved (epoch {epoch+1}) with Test Loss: {test_loss
[-1]:.5f} and Accuracy: {test_accuracy[-1]:.5f}")

epochs_without_improvement = 0

else:

epochs_without_improvement += 1

# Early stopping condition

if epochs_without_improvement >= early_stop_patience:

print ("Early stopping triggered. No improvement in the last 10
epochs.")

break
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Listing A.10: Seleccién de mejor modelo.

1 def forward_features( , X):

2 x = .patch_embed (x)

3 x = x + .pos_embedding[:, :x.size (1), :]
) x = .transformer_blocks (x)

return x # [B, T, DJ

7 def forward_head( , tokens):
8 x = tokens.mean(dim=1)

9 X = .norm (x)

10 return .mlp_head (x)

Listing A.11: Métodos adicionales para ViT con Mean Pooling.

1 def forward_features( , X):

2 B = x.shape[0]

3 x = .patch_embed (x)

) cls_tokens = .cls_token.expand(B, -1, -1)
5 x = torch.cat([cls_tokens, x], dim=1)

6 x = x + .pos_embedding[:, :x.size(1), :]
7 x = .transformer_blocks (x)

8 return x # [B, T+1, DJ

10 def forward_head( , tokens):
11 cls_token = .norm(tokens[:, 0])
12 return .mlp_head (cls_token)

Listing A.12: Métodos adicionales para ViT original (CLS).

1 def mask_tokens_block_3x3(tokens, patch_size=8, center_row=0,
center_col=0, fill_value=0.0):

tokens = tokens.clone()
" num_patches = int ((tokens.shapel[1]) ** 0.5) # se asume cuadrIcula
Pz P

5 D = tokens.shape [2]

7 for dr in [-1, O, 1]:

8 for dc in [-1, O, 1]:

9 r = center_row + dr

10 c = center_col + dc

11 if 0 <= r < num_patches and 0 <= c¢ < num_patches:
12 idx = r * num_patches + ¢

13 tokens [0, idx, :] = fill_value

14 return tokens
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Listing A.13: Funcién de enmascaramiento 3x3.

model.eval ()

image = image.to(device).unsqueeze (0) # [1, 3, 128, 128]

with torch.no_grad():

tokens = model.forward_features (image)

logits = model.forward_head (tokens)
pred_class = logits.argmax(dim=1).item()
original_score = logits[0, pred_class].item()

import matplotlib.pyplot as plt
import torchvision.transforms as T
import torch.nn.functional as F

print (f"Clase verdadera: {labell}")
print (f"Clase predicha: {pred_classl}")

# Upsample the saliency map to match image size
upsampled_map = F.interpolate(
saliency_map.unsqueeze (0) .unsqueeze (0),
size=(128, 128),

mode=’bilinear’,

align_corners=False

) .squeeze () .cpu() .numpy ()

import numpy as np

low, high = np.percentile(upsampled_map, [5, 95]) # recorta los

extremos
norm_map = (upsampled_map - low) / (high - low + 1e-8)
norm_map = norm_map.clip(0, 1)

# Visualizacion

plt.imshow(T.ToPILImage () (image.squeeze () .cpu()))

plt.imshow(norm_map, cmap=’turbo’, alpha=0.4) # turbo,
, viridis

plt.colorbar(label="Importancia relativa")

plt.title("ReciproCAM-normalized saliency map")

plt.axis (’off’)

plt.show ()

jet,

plasma

Listing A.14: Ejemplo de creacién de mapa de saliencia.
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Apéndice B

Manual de instalacion

Este apéndice detalla el procedimiento necesario para clonar, construir y ejecutar la apli-
cacién desarrollada en este Trabajo de Fin de Grado. Se proporciona una guia paso a paso
para asegurar su correcta instalacién mediante Docker.

1. Clonacion del repositorio

Para obtener una copia local del proyecto, es necesario clonar el repositorio desde GitLab
(o GitHub) mediante el siguiente comando en la terminal:

git clone https://gitlab.inf.uva.es/usuario/repositorio.git

Reemplace la URL por la correspondiente al repositorio real.

2. Requisitos previos

Para ejecutar el proyecto mediante contenedores, es necesario tener instalado:

= Docker Desktop, disponible en: https://www.docker.com/products/docker-des
ktop

= Acceso a una terminal de comandos (CMD, PowerShell o WSL en Windows)
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3. Construccion de la imagen Docker

Desde la raiz del repositorio, acceda a la carpeta principal del proyecto (por ejemplo,
projecto-app):

cd repositorio/projecto-app

Ejecute el siguiente comando para construir la imagen Docker:

docker build -t mi-app-tfg .

Este proceso descargard la imagen base de Python, copiard el contenido del proyecto y
ejecutara la instalacién de las dependencias indicadas en el archivo requirements.txt.

4. Ejecucion de la aplicacion

Una vez construida la imagen, puede iniciarse el contenedor mediante:

docker run -p 5000:5000 mi-app-tfg

Este comando expone el puerto 5000 del contenedor al mismo puerto en el host, permi-
tiendo acceder a la aplicacion desde un navegador.

5. Acceso a la aplicacién

Con el contenedor en ejecucion, la aplicacién se encuentra disponible en el navegador en
la siguiente direccién:

http://localhost:5000

110


http://localhost:5000

APENDICE B. MANUAL DE INSTALACION

6. Notas adicionales
= La aplicacién estd desarrollada con Python 3.13 y el microframework Flask.
= El contenedor utiliza como base una imagen oficial de Python optimizada (slim).

= Este despliegue corresponde al entorno de desarrollo. Para produccién se recomienda
utilizar un servidor WSGI.
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Apéndice C

Manual de usuario

Este apéndice describe el funcionamiento de la aplicacién web desarrollada, desde la carga
de una imagen hasta la obtenciéon de resultados de prediccién utilizando distintos modelos
de clasificacién. Se incluye una guia visual que ilustra cada paso del proceso.

1. Pagina de inicio

Al acceder a la direccién http://localhost:5000, se carga la pagina principal de la
aplicacién, que permite al usuario subir la imagen que desee.

Estudio comparativo de clasificacién de imagenes médicas, usando técnicas de Inteligencia Artificial basadas en Transformers, frente a Redes Convolucionales.

Selecciona el modelo de prediccién Resultados de la Prediccién Historial de Predicciones

Modelo oct v

Sube tu imagen

Arrastra y suelta la imagen aquf o haz clic para seleccionar

© 2025 - TFG - Transformers - Ismael Carbajo

Figura C.1: Pagina inicial.
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2. Carga de imagen

El usuario debe seleccionar desde su sistema local una imagen compatible para el analisis
(formato . jpg, .png, etc.). Una vez cargada, la imagen se previsualiza en la misma pégina.

Estudio comparativo de clasifi n de imagenes médicas, usando técnicas de Inteligencia Artificial basadas en Transformers, frente a Redes Convolucionales.

Selecciona el modelo de prediccién Resultados de la Prediccién Historial de Predicciones

Modelo oct v

Sube tu imagen
{imagen cargada!

Archivo seleccionado: DRUSEN-1001666-1jpeg

Procesar Imagen

© 2025 - TFG - Transformers - Ismael Carbajo

Figura C.2: Pagina con imagen cargada.

3. Seleccién del modelo

La interfaz permite seleccionar uno de los modelos disponibles para realizar la prediccién.
Esta seleccién se hace a través de un menu desplegable.
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Estudio comparativo de clasificacién de imagenes médicas, usando técnicas de Inteligencia Artificial basadas en Transformers, frente a Redes Convolucionales.

Selecciona el modelo de prediccién Resultados de la Prediccién Historial de Predicciones

Modelo oct

Modelo brain

Modelo torax

{imagen cargadat

Archivo seleccionado: DRUSEN-1001666-1jpeg

Procesar Imagen

© 2025 - TFG - Transformers - Ismasl Carbajo

Figura C.3: Pagina seleccionando modelo.

4. Ejecucion de la prediccion

Al pulsar el botén correspondiente, la aplicacién ejecuta el modelo seleccionado sobre
la imagen cargada, procesdndola internamente. Durante este proceso, puede mostrarse un
indicador de carga.

Estudio comparativo de clasificacién de imagenes médicas, usando técnicas de Inteligencia Artificial basadas en Transformers, frente a Redes Convolucionales.

Selecciona el modelo de prediccién Historial de Predicciones

Modelo oct v

Sube tu imagen
ilmagen cargadat

Archivo seleccionado: DRUSEN-1001666-1jpeg

—

Procesando la imagen, por favor espera..

Procesar Imagen

© 2025 - TFG - Transformers - Ismael Carbajo

Figura C.4: Pagina realizando la prediccién.
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5. Visualizacién de resultados

Finalizada la prediccién, se muestran en pantalla los resultados obtenidos: la probabilidad
de cada clase, la clase predicha, el mapa de saliencia explicativo y la nueva entrada en el
historial de predicciones.

Estudio comparativo de clasificacion de imagenes médicas, usando técnicas de Inteligencia Ar! al basadas en Transformers, frente a Redes Convolucionales.

Selecciona el modelo de prediccién Resultados de la Prediccién Historial de Predicciones
Prediccién: Drunsen
Modelo oct v
Contlanza
10 Archivo: DRUSEN-1001666-1jpeg
i b Modelo: modelo_oct
Sube tu imagen 07 6/7/2025 - 2047:01
05
05
iimagen cargadat 04
03
02
01
Archivo seleccionado: DRUSEN-1001666-1peg 5
o oue Drunsen Normal

Importancia rlativa

Procesar Imagen

© 2025 - TFG - Transformers - Ismasl Carbajo

Figura C.5: Pagina con todos los resultados.
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