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RESUMEN

Resumen

Resumen

La aplicación de modelos de Aprendizaje Automático en el ámbito de la Medicina, ha
demostrado un gran potencial en tareas de diagnóstico y clasificación de imágenes. En este
Trabajo de Fin de Grado, se ha explorado el uso de arquitecturas Vision Transformer (ViT),
un enfoque relativamente reciente que ha mostrado resultados prometedores en Visión Arti-
ficial como alternativa a las tradicionales Redes Neuronales Convolucionales (CNN).

El objetivo principal ha sido desarrollar e implementar un sistema de clasificación de
imágenes médicas basado en ViT, evaluando su rendimiento sobre tres conjuntos de datos
distintos: radiografías de tórax, resonancias magnéticas cerebrales (MRI) y tomografías de
coherencia óptica (OCT). Para ello, se han desarrollado desde cero diversas variantes de
modelos ViT, incorporando diferentes técnicas. Cada uno de estos modelos cuenta con mapas
de explicabilidad a través de ViT-ReciproCAM.

En cuanto a los resultados, se ha observado una mejora notable respecto a modelos previos
en uno de los tres conjuntos de datos. Sin embargo, en los otros dos conjuntos, no se han
obtenido resultados superiores a los logrados con enfoques basados en CNN, principalmente
debido a las dificultades de generalización que presentan los ViT en situaciones de muestras
limitadas.

Palabras clave: Aprendizaje Profundo, Vision Transformer, Clasificación de imágenes
médicas (CXR, MRI, OCT), ViT-ReciproCAM.
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ABSTRACT

Abstract

Machine Learning applied to Medicine has shown great potential in diagnosis and image
classification tasks. In this Double Degree Thesis has been explored the use of Vision Trans-
former (ViT) architectures, a relatively recent approach that has demonstrated promising
results in Computer Vision as an alternative to traditional Convolutional Neural Networks
(CNNs).

The main goal of this work has been to develop and implement a medical image classi-
fication system based on ViT, evaluating its performance on three different datasets: chest
X-rays, brain magnetic resonance imaging (MRI) and optical coherence tomography scans
(OCT). To do that, several ViT model variants have been developed from scratch. Each of
these models includes explainability maps using ViT-ReciproCAM.

Regarding the results, a significant improvement was observed in just one of the related
datasets. However, for the other ones, the results are not bigger than those achieved with
CNN-based approaches. It is mainly because ViT models with an insufficient number of
samples present serious limitations due to a reduced power of generalization in practice.

Keywords: Deep Learning, Vision Transformer, Medical Image Classification (CXR,
MRI, OCT), ViT-ReciproCAM.

VII



ABSTRACT

VIII



ÍNDICE GENERAL

Índice general

Agradecimientos III

Resumen V

Abstract VII

Lista de figuras XIII

Lista de tablas XVII

1. Introducción 1

1.1. Contexto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Estructura de la memoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Gestión del Proyecto 5

2.1. Metodología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Entregables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Planificación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1. Estimación inicial del coste . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2. Variaciones en la planificación inicial . . . . . . . . . . . . . . . . . . . 11

IX



ÍNDICE GENERAL

3. Fundamento Teórico 13

3.1. Estructura principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1. Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2. Mecanismo de Atención . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3. Redes Postion-Wise Feed-Forward . . . . . . . . . . . . . . . . . . . . 22

3.1.4. Normalización y conexiones residuales . . . . . . . . . . . . . . . . . . 22

3.2. Estructura ViT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2. Token de Clasificación . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3. Mean Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3. Funciones de activación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1. ReLU (Rectified Linear Unit) . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2. GELU (Gaussian Error Linear Unit) . . . . . . . . . . . . . . . . . . . 29

3.3.3. Comparativa general . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4. Técnicas de Clasificación y Optimización . . . . . . . . . . . . . . . . . 30

3.4. Técnicas de explicabilidad visual . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1. Limitaciones del uso de gradientes en ViT . . . . . . . . . . . . . . . . 34

3.4.2. Limitaciones de métodos tradicionales en ViT . . . . . . . . . . . . . . 34

3.4.3. ViT-ReciproCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Marco de trabajo 39

4.1. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1. Sistema operativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2. Lenguajes y herramientas . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. Conjuntos de datos 43

5.1. Radiografías de tórax (CXR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

X



ÍNDICE GENERAL

5.1.1. Descripción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2. Transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3. Obtención y uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2. Resonancias magnéticas de cerebro (MRI) . . . . . . . . . . . . . . . . . . . . 46

5.2.1. Descripción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2. Transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3. Obtención y uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3. Secciones transversales de tomografías de coherencia óptica (OCT) . . . . . . 49

5.3.1. Descripción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2. Transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.3. Obtención y uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6. Construcción de los modelos 53

6.1. Planteamiento inicial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2. Estructuras desarrolladas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1. Patch Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.2. Transformer Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.3. Vit con CLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.4. Vit con Mean Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3. Entrenamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1. Dataset para HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.2. Bucle de entrenamiento . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4. Modelos implementados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5. Radiografías de tórax (CXR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6. Resonancias magnéticas de cerebro (MRI) . . . . . . . . . . . . . . . . . . . . 63

6.7. Secciones transversales de tomografías de coherencia óptica (OCT) . . . . . . 64

6.8. Explicabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

XI



ÍNDICE GENERAL

7. Resultados 69

7.1. Resonancias magnéticas de cerebro (MRI) . . . . . . . . . . . . . . . . . . . . 69

7.2. Radiografías de tórax (RXC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3. Secciones transversales de tomografías de coherencia óptica (OTC) . . . . . . 75

8. Aplicación 79

8.1. Tecnologías y herramientas utilizadas . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1. Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.2. Backend y modelado . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2. Análisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1. Requisitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.2. Casos de uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.3. Diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4. Patrones de Diseño Aplicados . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4.1. Singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4.2. Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.3. Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.4. MVC (Modelo-Vista-Controlador) . . . . . . . . . . . . . . . . . . . . 85

8.4.5. Diagramas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9. Conclusiones 91

9.1. Líneas de trabajo futuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliografía 98

A. Código 99

B. Manual de instalación 109

C. Manual de usuario 113

XII



LISTA DE FIGURAS

Lista de Figuras

1.1. Comparativa entre la arquitectura CNN y ViT de [1]. . . . . . . . . . . . . . 2

2.1. Ciclo de vida de CRISP-DM de [2]. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Primera parte del Diagrama de Gantt del proyecto. . . . . . . . . . . . . . . . 9

2.3. Segunda parte del Diagrama de Gantt del proyecto. . . . . . . . . . . . . . . 9

2.4. Diagrama de Gantt del proyecto al completo. . . . . . . . . . . . . . . . . . . 10

3.1. Estrucutra de un Transformer de [3]. . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Navegación por capas del codificador de [4]. . . . . . . . . . . . . . . . . . . . 16

3.3. Representación bidimensional de embeddings de palabras correspondientes a
dos grupos semánticos: animales y vehículos. . . . . . . . . . . . . . . . . . . 17

3.4. Codificación posicional sinusoidal: valores de sin y cos según la posición y
dimensión del embedding de [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5. Mecanismo de Atención de [3]. (izq) Scaled Dot-Product Attention. (der)
Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6. Estructura de un ViT de [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7. Patch embedding de [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8. Ejemplo visual de distintas resoluciones en codificación posicional: (arriba)
rejilla de baja densidad, (medio) desplazamiento fraccional, (abajo) rejilla de
alta densidad de [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9. Token [CLS] en BERT de [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10. Representación gráfica de la función ReLU de [10]. . . . . . . . . . . . . . . . 29

XIII



LISTA DE FIGURAS

3.11. Representación gráfica de la función GELU de [11]. . . . . . . . . . . . . . . . 30

3.12. Curvas de aprendizaje y generalización obtenidas con una ResNet-26 entrenada
en CIFAR-10 usando Adam y AdamW, comparando distintos valores de weight
decay y su efecto sobre la pérdida y el error de test de [12]. . . . . . . . . . . 31

3.13. Curvas de aprendizaje típicas: Cosine Scheduler y Cosine con Warmup de [13]. 33

3.14. Arquitectura del ViT-ReciproCAM de [14]. . . . . . . . . . . . . . . . . . . . 35

3.15. (a) Extracción de características desde la primera capa LayerNorm del último
bloque codificador, (b) extracción de características desde la salida completa
del bloque, (c) los tokens enmascarados cubren el área delimitada por la línea
azul discontinua en la imagen de entrada de [14]. . . . . . . . . . . . . . . . . 37

3.16. Resultados de objeto simple (Mantis), varios objetos iguales (Yachts) y múl-
tiples clases (Elephant y Zebra). Adaptación de varias figuras de [14]. . . . . . 38

5.1. Ejemplos de cada clase de [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2. Gráfica de la distribución de clases de radiografías de tórax. . . . . . . . . . . 45

5.3. Ejemplos de cada clase de [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4. Gráfica de la distribución de clases de resonancias magnéticas cerebrales. . . . 47

5.5. Ejemplos de cada clase de [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6. Gráfica de la distribución original de [17]. . . . . . . . . . . . . . . . . . . . . 50

5.7. Gráfica de la distribución de clases de tomografías de coherencia óptica. . . . 51

6.1. Funcionamiento de la función Rearrange de einops. . . . . . . . . . . . . . . . 55

6.2. Resumen del modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3. Resumen del modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4. Resumen del modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1. Resultados de distintas versiones CNN implementadas en el TFG anterior [15]. 70

7.2. Matriz de confusión sobre el conjunto de test del modelo seleccionado. . . . . 71

7.3. Matriz de confusión (frecuencias) sobre el conjunto de test del modelo selec-
cionado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4. Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

XIV



LISTA DE FIGURAS

7.5. Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6. Matriz de confusión sobre el conjunto de test del modelo seleccionado. . . . . 73

7.7. Matriz de confusión (frecuencias) sobre el conjunto de test del modelo selec-
cionado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.8. Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.9. Matriz de confusión sobre el conjunto de validación del modelo seleccionado. . 76

7.10. Matriz de confusión (frecuencias) sobre el conjunto de validación del modelo
seleccionado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1. Diagrama de casos de uso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2. Diagrama Uses Style general. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3. Diagrama de clases detallado de View. . . . . . . . . . . . . . . . . . . . . . . 87

8.4. Diagrama de clases detallado de Routes. . . . . . . . . . . . . . . . . . . . . . 88

8.5. Diagrama de clases detallado de Model. . . . . . . . . . . . . . . . . . . . . . 88

8.6. Diagrama Uses Style del CU-3 Realizar diagnóstico. . . . . . . . . . . . . . . 89

8.7. Diagrama de secuencia del CU-3 Realizar diagnóstico. . . . . . . . . . . . . . 89

8.8. Diagrama de secuencia del CU-1 Subir imagen. . . . . . . . . . . . . . . . . . 90

8.9. Diagrama de secuencia del CU-5 Obtener explicabilidad. . . . . . . . . . . . . 90

C.1. Pagina inicial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.2. Pagina con imagen cargada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.3. Pagina seleccionando modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.4. Pagina realizando la predicción. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.5. Pagina con todos los resultados. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

XV



LISTA DE FIGURAS

XVI



LISTA DE TABLAS

Lista de Tablas

2.1. Planificación temporal del proyecto según metodología CRISP-DM. . . . . . . 8

5.1. Distribución de clases de radiografías de tórax. . . . . . . . . . . . . . . . . . 45

5.2. Porcentaje de representación de clases de resonancias magnéticas cerebrales. . 47

5.3. Distribución de clases en el conjunto de resonancias magnéticas cerebrales. . . 48

5.4. Distribución de clases en el conjunto de tomografías de coherencia óptica. . . 50

7.1. Comparativa de precisión entre el trabajo anterior [15] y el modelo ViT actual. 77

8.1. Tabla de requisitos funcionales. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2. Tabla de requisitos no funcionales. . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3. Tabla de requisitos de información. . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4. Descripción del caso de uso 1: Subir imagen. . . . . . . . . . . . . . . . . . . . 82

8.5. Descripción del caso de uso 2: Seleccionar modelo. . . . . . . . . . . . . . . . 83

8.6. Descripción del caso de uso 3: Realizar diagnóstico. . . . . . . . . . . . . . . . 83

8.7. Descripción del caso de uso 4: Actualizar historial. . . . . . . . . . . . . . . . 84

8.8. Descripción del caso de uso 5: Obtener explicabilidad. . . . . . . . . . . . . . 84

XVII



LISTA DE TABLAS

XVIII



CAPÍTULO 1. INTRODUCCIÓN

Capítulo 1

Introducción

1.1. Contexto

Durante los últimos años, la Inteligencia Artificial (IA) se ha ido haciendo paso como
una de las tecnologías más innovadoras y revolucionarias de nuestra época. Su gran cantidad
de aplicaciones abarca desde tareas tan cotidianas como recomendaciones de recetas, hasta
la búsqueda de soluciones complejas en sectores como medicina, industria y logística. Esta
capacidad de adaptación ha hecho que se consolide como una parte ya casi fundamental del
mundo en el que vivimos.

Su integración en la sociedad ha transformado totalmente la forma en que trabajamos,
nos comunicamos e incluso tomamos decisiones. Su capacidad de aprendizaje y evolución
constante, combinada con la gran cantidad de datos que se generan actualmente, los cuales
son cada vez mayores [18], ha provocado un cambio radical en muchos ámbitos, donde la
precisión y eficiencia son esenciales.

Uno de estos sectores que se ha visto beneficiado, es la medicina. El uso e implementación
de algoritmos avanzados ha permitido mejorar de manera significativa la rapidez y precisión
de diagnósticos complejos. Aunque, evidentemente, no pueden llegar a sustituir a los pro-
fesionales de la salud, estas herramientas de apoyo cuentan con gran robustez y fiabilidad,
facilitando su labor diaria a la hora de tomar decisiones.

Uno de los elementos más utilizados en el ámbito clínico, es el análisis de imágenes médi-
cas. Estas, obtenidas mediante diversas técnicas como radiografías, resonancias magnéticas o
tomografías, representan una fuente de información esencial para el diagnóstico y seguimiento
de patologías. Por ello, técnicas de Visión Artificial cobran gran importancia.
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1.2. MOTIVACIÓN

1.2. Motivación

Dentro de los enfoques más efectivos y ampliamente utilizados en la actualidad se en-
cuentra el Aprendizaje Profundo (Deep Learning), una rama del Aprendizaje Automático
(Machine Learning), que usa un gran número de capas para intentar aprender diferentes
niveles de abstracción de los datos. A diferencia de los métodos tradicionales, que requerían
una extracción manual de características y un avanzado conocimiento del dominio, el Deep
Learning permite a las máquinas aprender representaciones directamente a partir de los datos
en bruto [19], como por ejemplo los píxeles en el caso de la clasificación de imágenes.

Una de las arquitecturas más utilizadas en el aprendizaje profundo de procesamiento de
imágenes son las Redes Neuronales Convolucionales (Convolutional Neural Networks, CNN ).
Están diseñadas para trabajar con datos en varias dimensiones, como las imágenes. Se ca-
racterizan por su capacidad de detectar patrones o relaciones locales mediante los núcleos o
kernels que se aplican a la imagen. Gracias a esto, las CNN han demostrado tener un gran
rendimiento en tareas de Computer Vision como clasificación de imágenes. Desde la aparición
de sus primeros modelos como el AlexNet, que ganó el desafío de ImagenNet en 2012 con
una amplia ventaja, han surgido una gran cantidad de variantes como VGGNet, ResNet o
DenseNet, que han ido mejorando la precisión y eficiencia de los modelos [20].

A pesar de los grandes resultados obtenidos por este tipo de redes, se han seguido bus-
cando nuevas alternativas que puedan superar algunas de sus limitaciones. Una de las más
destacadas y con gran protagonismo estos últimos años, son los Transformers. Desde su apa-
rición en 2017 con Attention is all you need [3], revolucionaron totalmente el campo del
Procesamiento del Lenguaje Natural, llegando a nuestros días modelos a gran escala y con
capacidades que se creían imposibles como ChatGPT, Copilot o DeepSeek entre otros.

Figura 1.1: Comparativa entre la arquitectura CNN y ViT de [1].
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Aunque estos modelos están inicialmente orientados al Procesamiento del Lenguaje Na-
tural, su arquitectura fue adaptada para el ámbito de la visión mediante los llamados Visual
Transformers (ViT). Estos han demostrado ser capaces de igualar, e incluso superar en ciertos
casos, el rendimiento de las CNN.

La principal ventaja de los ViT es su capacidad para ser altamente paralelizables, lo que
permite entrenarlos de forma mucho más eficiente. Tratan toda la imagen en paralelo desde
el inicio gracias al mecanismo de atención. Este mismo les otorga la capacidad de modelar
relaciones globales entre distintas regiones de la imagen desde las primeras capas [6]. Esto
contrasta con las CNN que, por su diseño, procesan la información de manera jerárquica y
secuencial, donde se centran en relaciones locales, como se puede ver en la figura1.1.

Teniendo en cuenta el potencial de los Vision Transformers para superar a las Redes
Convolucionales en tareas de clasificación de imágenes, este TFG se plantea como un estudio
comparativo entre ambas arquitecturas. Para ello, se utilizarán tres conjuntos de imágenes
médicas de TFGs anteriores [15, 16, 17], en los que se aplicaron Redes Convolucionales. Se
pretende evaluar el rendimiento de los modelos ViT sobre estos mismos datasets y analizar
si son capaces de igualar o mejorar los resultados obtenidos previamente y, si fuese posible,
identificar en qué casos presentan ventajas respecto a las CNN.

1.3. Objetivos

Dado que este Trabajo de Fin de Grado se centra en la investigación de la adaptación
de los Transformers a tareas de clasificación de imágenes (en este caso, médicas), así como
su comparación con arquitecturas de Aprendizaje Profundo más clásicas como las CNN, se
presentan los siguientes objetivos:

Obtener y preparar adecuadamente los conjuntos de datos, asegurando su correcto uso
tanto para realizar la clasificación, como para permitir la comparación objetiva entre
los modelos.

Construir prototipos basados en Transformers para cada conjunto de datos, con una
tasa de acierto aceptable, e intentando mejorar los resultados obtenidos previamente
con redes convolucionales.

Analizar y comparar de manera rigurosa los resultados obtenidos por los modelos Trans-
former frente a los de arquitecturas CNN, considerando diferentes métricas en la medida
de lo posible.

Implementar técnicas de explicabilidad visual, con el fin de interpretar las decisiones
del modelo y facilitar la comprensión de su funcionamiento interno.

Desarrollar una aplicación web que integre todos los modelos construidos y que facilite
la visualización de su rendimiento y resultados.
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1.4. Estructura de la memoria

Este documento se estructura de la siguiente forma:

Capítulo 1 Introducción. Se presentan el contexto general del proyecto, su motivación,
los objetivos principales y la estructura del documento.

Capítulo 2 Gestión del Proyecto. Se explica la metodología de trabajo utilizada, los en-
tregables y la organización temporal del proyecto.

Capítulo 3 Fundamento teórico. Se desarrollan en detalle las bases teóricas necesarias
para el proyecto, desde la estructura del Transformer original, hasta su adaptación a
la visión por computador con los ViT, incluyendo también técnicas de explicabilidad
visual aplicables a este tipo de modelos.

Capítulo 4 Marco de trabajo. Se detallan los recursos hardware y software utilizados a
lo largo del desarrollo, justificando su elección.

Capítulo 5 Conjuntos de datos. Se describen los conjuntos de imágenes médicas emplea-
dos, su origen, estructura, preprocesamiento y transformaciones aplicadas, obtención y
uso.

Capítulo 6 Construcción de los modelos. Se detalla el proceso de desarrollo, entrena-
miento y validación de los modelos basados en Transformers, además de los criterios
seguidos para su ajuste y evaluación.

Capítulo 7 Resultados. Se exponen los resultados obtenidos por los modelos en cada con-
junto de datos y se realiza una comparación con los algoritmos basados en CNN co-
rrespondientes, analizando su rendimiento.

Capítulo 8 Aplicación. Se describe el desarrollo de la aplicación web que permite probar
los modelos construidos de forma sencilla y sin conocimientos técnicos.

Capítulo 9 Conclusiones. Se resumen las aportaciones del trabajo, se reflexiona sobre los
resultados obtenidos y se proponen posibles líneas de mejora y desarrollo futuro.
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Capítulo 2

Gestión del Proyecto

Debido a su complejidad y extensión, este Trabajo de Fin de Grado se considera como un
proyecto, y, por tanto, resulta necesario llevar a cabo una adecuada planificación y gestión del
mismo que permita organizar las tareas, los recursos y, con mayor importancia, los tiempos
de ejecución de manera eficiente. Esta forma garantiza la correcta organización a lo largo de
las diferentes fases del proyecto.

2.1. Metodología

Para poder seleccionar aquella que se adecue a las necesidades de este trabajo, primero
es imprescindible comprender el carácter experimental del mismo.

Si bien existen una gran cantidad de metodologías tradicionales ampliamente utilizadas
para la gestión de proyectos, éstas están más orientadas al desarrollo del software. Sin em-
bargo, al tratarse de un proyecto de Ciencias de Datos, no es correcto seguir este tipo de
metodologías, pues sus ciclos de vida no se adecuan a las necesidades del trabajo.

Por tanto, se ha optado por utilizar la metodología CRISP-DM (Cross Industry Stan-
dard Process for Data Mining). Si bien existen otras como KDD (Knowledge Discovery in
Databases) o SEMMA (Sample, Explore, Modify, Model, Assess), CRISP-DM es una de las
más reconocidas en el ámbito de la Minería de Datos y el Aprendizaje Automático. Está
específicamente pensada para proyectos de Análisis de Datos como el presente.

CRISP-DM proporciona un marco de trabajo flexible y bien definido, que se adapta al
ciclo de vida de un proyecto de Ciencia de Datos, desde la comprensión del problema hasta
la evaluación de los resultados [21]. El hecho de que este proyecto no cuente con un equipo de
trabajo compuesto por varias personas, dificulta la aplicación de metodologías ágiles, dejando
como opción más adecuada el desarrollo incremental como flujo de trabajo.
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Figura 2.1: Ciclo de vida de CRISP-DM de [2].

Como se puede notar en la figura 2.1, consta de 6 etapas [22]:

1. Comprensión del negocio (Business Understanding) La fase inicial se centra en
entender los objetivos y requisitos del proyecto desde una perspectiva empresarial, con
el fin de traducirlos a un problema de Minería de Datos y, con ello, diseñar un proyecto
preliminar capaz de alcanzar dichos objetivos.

2. Comprensión de los datos (Data Understanding) Comienza con la recolección
de los datos. Prosigue con una serie de actividades para familiarizarse con los datos,
evaluar su calidad y formular ciertas hipótesis útiles sobre la información que contienen.
Esta fase está estrechamente relacionada con la anterior, ya que sin una comprensión
adecuada de los datos, es prácticamente imposible formular un buen problema de Mi-
nería de Datos.

3. Preparación de los datos (Data Preparation) En esta fase se realizan todas las
actividades para construir el conjunto de datos final a partir del original. Este tipo de
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actividades como transformaciones, creación de nuevos atributos, limpieza o selección
de atributos se suelen realizar en múltiples ocasiones y sin un orden estricto.

4. Modelado (Modeling) Se seleccionan y aplican técnicas de modelado adecuadas,
optimizando los valores de sus parámetros. Dado que ciertas técnicas requieren formatos
de datos específicos, y que durante esta fase pueden detectarse errores en los datos u
obtener ideas para la creación de nuevos, está muy ligada con la anterior.

5. Evaluación (Evaluation) En este punto, se ha conseguido obtener uno o más modelos
considerados de alta calidad. Antes de proceder a su despliegue, es de vital importancia
evaluarlos y comprobar si se han cumplido todos los objetivos definidos. Al final de esta
fase, se tiene que llegar a una decisión del uso de los resultados obtenidos.

6. Despliegue (Deployment) La creación del modelo generalmente no se considera el
final del proyecto. La información obtenida debe organizarse y presentarse de forma que
sea accesible y útil para el usuario final. Dependiendo de los requisitos, esta fase puede
ser muy sencilla o verdaderamente compleja. En cualquier caso, es crucial comprender
qué acciones debe realizarse para poder hacer un buen uso de los modelos creados.

2.2. Entregables

Con el desarrollo incremental como flujo de trabajo seleccionado, cada entregable deberá
ser completamente funcional y dependerá de la finalización del anterior. De este modo, se
garantiza un avance gradual y estructurado del proyecto, permitiendo revisar, evaluar, y
mejorar cada fase antes de continuar con la siguiente.

Entregable 1: obtención conjuntos de datos y su adecuada transformación.

Entregable 2: desarrollo de un clasificador básico basado en Transformers, adaptable
a cada conjunto de datos.

Entregable 3: optimización específica de cada modelo para su correspondiente con-
junto de datos.

Entregable 4: generación de mapas de saliencia para interpretar las decisiones del
modelo.

Entregable 5: despliegue de aplicación web funcional que integre todos los modelos
desarrollados.

Entregable 6: redacción de la memoria del proyecto.

2.3. Planificación

Dado que este Trabajo de Fin de Grado cuenta con una carga de 12 créditos ECTS dentro
del Grado en Ingeniería Informática de la Universidad de Valladolid, se estima una duración
de 300 horas, considerando que un European Credit Transfer System equivale a 25 horas.
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El desarrollo del proyecto comenzó el 17 de marzo de 2025, con una duración prevista de
aproximadamente tres meses, finalizando a mediados de junio del mismo año.

2.3.1. Estimación inicial del coste

En la siguiente tabla se presenta una estimación del coste en horas para cada una de las
fases de la metodología utilizada. Asimismo, a cada una de ellas se le ha asignado tareas
concretas, recursos y tiempos estimados, con el objetivo de facilitar el desarrollo del trabajo
y garantizar el cumplimiento de los objetivos planteados.

Fase CRISP-DM Tareas principales Duración tarea (h) Total fase (h)

1. Comprensión del negocio
Contextualización con los
TFGs anteriores

10
35

Revisión del estado del arte 20
Definición de los objetivos 5

2. Comprensión de los datos Análisis de los datasets usados
en los TFGs anteriores

5 5

3. Preparación de los datos
Descarga y estructuración 5

30Transformaciones adecuadas 10
Organización y almacenamien-
to para su uso en modelos

15

4. Modelado

Implementación de ViT básico 20

85Estudio de mejoras y variantes
para cada conjunto de datos

20

Entrenamiento y optimización 30
Regularización y optimización
del entrenamiento

15

5. Evaluación

Creación de mapas para expli-
cabilidad

5

15Comparación métrica CNN vs
ViT

5

Comparación de explicabilidad 2
Interpretación de resultados 3

6. Despliegue Desarrollo de la aplicación web 30 40
Esquemas de diseño 10

7. Documentación
Redacción de memoria 75

90Creación de gráficas, tablas y
resultados

5

Revisión completa 10
Total 300

Tabla 2.1: Planificación temporal del proyecto según metodología CRISP-DM.

Aparte de la estimación de costes recogida en la tabla anterior, en la Figura 2.2 y la
Figura 2.3 se representa visualmente el flujo temporal del proyecto a lo largo de sus tres
meses de duración. Este diagrama tiene un carácter orientativo y no debe interpretarse como
una secuencia estricta de ejecución.
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En lugar de un desarrollo secuencial y rígido, el proyecto se ha estructurado siguiendo
un enfoque más flexible. Algunas tareas, como la implementación de modelos o el ajuste
de parámetros, se han solapado con otras fases, como el desarrollo de la aplicación web
o la redacción del documento, tal y como se muestra en la Figura 2.4, donde se ve el flujo
completo. Este solapamiento ha permitido aprovechar al máximo el tiempo disponible durante
fases computacionalmente costosas, como el entrenamiento de modelos, lo que ha facilitado
avanzar en paralelo con otras tareas.

Aunque la planificación establecida sirve como referencia para la organización del trabajo,
en la práctica se ha adaptado constantemente en función del progreso real, de la aparición de
nuevas ideas y del tiempo efectivo disponible semana a semana. Este enfoque ha permitido
mantener un ritmo de trabajo constante, sin dejar de lado los objetivos marcados.

Figura 2.2: Primera parte del Diagrama de Gantt del proyecto.

Figura 2.3: Segunda parte del Diagrama de Gantt del proyecto.
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Figura 2.4: Diagrama de Gantt del proyecto al completo.
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2.3.2. Variaciones en la planificación inicial

En la práctica, se han producido ciertas complicaciones respecto a los tiempos estimados.
Estas variaciones se deben a tres principales razones:

En primer lugar, el desarrollo de este Trabajo de Fin de Grado ha implicado el entrena-
miento de tres modelos independientes, cada uno adaptado a un conjunto de datos distinto.
Esto ha supuesto un incremento considerable en los tiempos de ejecución, ya que cada modelo
requiere múltiples iteraciones para alcanzar un rendimiento óptimo. Aunque se ha contado
con dos máquinas para estas tareas, las limitaciones computacionales han seguido represen-
tando un cuello de botella significativo.

En segundo lugar, uno de los mayores retos encontrados ha sido el problema de generali-
zación. A lo largo del proceso de entrenamiento, se ha observado un fuerte sobreaprendizaje,
lo que ha exigido un gran trabajo de regularización, ajuste de hiperparámetros y pruebas
experimentales. Aunque estas tareas estaban contempladas dentro del flujo de trabajo, su
complejidad ha superado lo esperado, extendiendo la duración de esta fase.

Por otro lado, durante los dos primeros meses de desarrollo del proyecto, la carga de
prácticas externas en empresa redujo la disponibilidad horaria. Esta situación redujo la de-
dicación semanal al proyecto, especialmente en fases iniciales clave como la preparación de
datos y la primera implementación de los modelos base.

En conjunto, todos estos factores han llevado a una adaptación de la planificación, pos-
poniendo ciertas tareas y alargando otras. El enfoque incremental seguido, junto con la fle-
xibilidad de la metodología empleada, ha permitido reajustar la carga de trabajo en función
del avance real, garantizando la finalización del proyecto.
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Capítulo 3

Fundamento Teórico

Un Transformer es una arquitectura de Aprendizaje Profundo que, transforma una se-
cuencia de entrada en una salida, optimizando la probabilidad de que esta sea coherente
con los patrones aprendidos durante el entrenamiento. A diferencia de modelos anteriores,
el Transformer permite procesar todos los elementos de la secuencia en paralelo, sin necesi-
dad de mantener un orden explícito. Esta capacidad proviene de su componente principal: el
mecanismo de atención, que hace posible que cada elemento de la entrada decida qué otros
elementos son más relevantes para generar su salida.

Como ya se ha mencionado en la Introducción 1, los Transformers fueron presentados por
primera vez en el artículo Attention is All You Need [3], desarrollado por investigadores de
Google en 2017. La estructura original propuesta se enmarca como una instancia específica
de los modelos encoder-decoder, en la que un codificador procesa la entrada y un decodifica-
dor genera la salida correspondiente. Desde entonces, han surgido numerosas variantes que
permiten adaptar esta arquitectura a tareas muy diversas.

A continuación, se explicará de forma general la estructura base de los Transformers, con
el objetivo de comprender sus fundamentos. Posteriormente, se profundizará en su adaptación
al caso de los Vision Transformers (ViT), diseñados específicamente para el procesamiento
de imágenes.

3.1. Estructura principal

La estructura del Transformer se divide en dos grandes componentes: el codificador (en-
coder) y el decodificador (decoder), representados en las mitades izquierda y derecha de la
Figura 3.1.

Antes de ser procesada por el codificador, la secuencia de símbolos de entrada se convierte
en una secuencia de vectores densos mediante una capa de embedding, a los que se suma una
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codificación posicional, pues el Transformer no tiene acceso explícito al orden de los elementos
de la entrada al procesar los símbolos en paralelo.

Figura 3.1: Estrucutra de un Transformer de [3].

Esta representación combinada (x1, ..., xn) es la que recibe el codificador, el cual trans-
forma en una nueva secuencia de representaciones numéricas continuas z = (z1, ..., zn). Esto
almacena información contextual y semántica de toda la secuencia, permitiendo que cada zi
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incorpore no sólo el significado del símbolo correspondiente, sino también cómo se relaciona
con el resto de elementos de la secuencia.

A partir de z, el decodificador genera la secuencia de salida (y1, ..., yn) de forma autorre-
gresiva, produciendo un elemento en cada paso.

Un modelo autorregresivo genera cada elemento de la secuencia de salida condicionado a
los elementos generados previamente. Es decir, en el paso t, el modelo produce yt utilizan-
do como entrada tanto la representación codificada de la entrada como la secuencia parcial
(y1, ..., yt−1) generada hasta ese momento. De esta forma, se entrena al modelo para maximi-
zar la probabilidad conjunta de la secuencia como producto de probabilidades condicionales:

P (y1, y2, ..., yn | z) =
n∏

t=1
P (yt | y1, ..., yt−1, z)

Este enfoque permite al modelo construir salidas de manera coherente, ya que cada nuevo
símbolo tiene en cuenta tanto el contexto global (extraído del codificador) como el contexto
local (la salida generada hasta el momento). Durante el entrenamiento, el modelo recibe
como entrada la secuencia real completa (técnica conocida como teacher forcing), mientras
que en inferencia utiliza sus propias predicciones anteriores, lo que puede introducir errores
acumulativos [23].

Este principio autorregresivo es de gran importancia y constituye una de las bases con-
ceptuales del modelo original Transformer [3].

Estos símbolos (de aquí en adelante se denominarán tokens) corresponden a sub-palabras
en la arquitectura original, ya que en un principio los Transformers estaban pensados para el
Procesamiento de Lenguaje Natural. En el caso de los ViT, como se analizará más adelante,
los tokens representan fragmentos o regiones de una imagen.

El Transformer sigue una arquitectura general basada en múltiples capas apiladas, donde
cada capa consta de un mecanismo de atención (attention) y una capa de red neuronal
completamente conectada (feed-forward). Cada uno de estos bloques se encuentra rodeado
por una conexión residual seguida de una operación de normalización (Add & Norm). La
característica fundamental es que cada token navega de manera paralela a través de las
diferentes capas, siguiendo su propio camino, aunque cada uno depende directamente de
todos los demás elementos de la secuencia.

Estas capas están conectadas punto a punto, tanto en el codificador como en el decodi-
ficador, como se muestra en la Figura 3.2, que representa la arquitectura original con seis
capas de codificación.
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Figura 3.2: Navegación por capas del codificador de [4].

Finalmente, la representación generada en cada paso del decodificador se proyecta me-
diante una capa lineal sobre el espacio del vocabulario y pasa por una función softmax, que
convierte ese vector en una distribución de probabilidad. Este proceso puede observarse en la
parte derecha de la Figura 3.1, donde se muestra la conexión entre la salida del decodificador
y la capa de predicción final.

Como se detallará más adelante, durante el entrenamiento, se suele emplear la pérdida
de entropía cruzada para comparar esta distribución con el símbolo real esperado en cada
paso de la secuencia.

3.1.1. Embedding

Antes de que un Transformer pueda procesar datos de entrada, estos deben transformarse
en una representación numérica densa que el modelo sea capaz de manejar. Esta transfor-
mación se realiza mediante una capa de embedding, que convierte elementos discretos, como
palabras o subpalabras, en vectores de dimensión fija dentro de un espacio continuo.

Un embedding es, por tanto, una técnica para representar tokens de forma densa y signi-
ficativa. En lugar de trabajar con índices enteros que no contienen información semántica, se
asigna a cada token un vector que captura relaciones de similitud y contexto. Por ejemplo,
supongamos que queremos representar las palabras “perro”, “gato” y “coche” en un espacio
de cuatro dimensiones. Un embedding podría asignarles los siguientes vectores:

perro → [0,35, 0,10, −0,22, 0,58]
gato → [0,33, 0,12, −0,20, 0,60]

coche → [−0,75, 0,90, 0,10, −0,30]

En este espacio vectorial, la cercanía entre los vectores de “perro” y “gato” refleja su
relación semántica, mientras que “coche” se encuentra más alejado, indicando una menor si-
militud con los anteriores. Aunque los valores de los vectores pueden parecer arbitrarios, estos
son vectores entrenables que se ajustan durante el entrenamiento del modelo, permitiendo
capturar relaciones complejas entre palabras o sub-palabras.
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Otro ejemplo visual puede verse en la Figura 3.3, donde se representan distintos tokens
correspondientes a animales y vehículos en un espacio bidimensional. La posición de los
puntos refleja cómo los embeddings capturan las relaciones semánticas: los elementos del
mismo grupo tienden a agruparse, lo que indica que el modelo ha aprendido a asociarlos por
su significado (NO ME ACABA DE CONVENCER LA IMAGEN).

Figura 3.3: Representación bidimensional de embeddings de palabras correspondientes a dos
grupos semánticos: animales y vehículos.

Codificación posicional

Una de las características del Transformer es que, al no tratase de una arquitectura se-
cuencial como las CNN, no tiene conocimiento del orden en que aparecen los tokens. Para
proporcionar esta información estructural, se añade a cada embedding de palabra un posi-
tional encoding, que codifica la posición del token en la secuencia.

En el trabajo original de Vaswani et al. [3], se propuso un esquema de codificación posicio-
nal fija, basado en funciones sinusoidales de diferentes frecuencias. Las fórmulas empleadas
son las siguientes:

PE(pos,2i) = sin
(

pos

10000
2i

dmodel

)
, PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
donde pos es la posición del token y i es la dimensión dentro del vector de embedding.

Estas funciones están diseñadas de tal forma, que el modelo pueda aprender fácilmente las
posiciones relativas entre tokens. En concreto, permiten que un desplazamiento fijo k en la
secuencia se represente mediante una combinación lineal de las codificaciones anteriores, lo
que facilita el modelado de relaciones como la dependencia gramatical o sintáctica.

Estas codificaciones se visualizan claramente en la Figura 3.4, donde cada fila corresponde
a una posición en la secuencia y cada columna representa una dimensión del embedding.
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3.1. ESTRUCTURA PRINCIPAL

Las variaciones periódicas muestran cómo las funciones sinusoidales, al contar con múltiples
frecuencias, marcan patrones posicionales desde el nivel local (ondulación rápida) hasta el
global (ondulación suave)[5].

Figura 3.4: Codificación posicional sinusoidal: valores de sin y cos según la posición y dimen-
sión del embedding de [5].

3.1.2. Mecanismo de Atención

Es el componente central de la arquitectura Transformer. Su objetivo es que el modelo, a la
hora de generar las representaciones internas, pueda asignar diferentes niveles de importancia
a cada elemento de la secuencia de entrada en función del contexto. Permite considerar
simultáneamente todas las posiciones de la secuencia, lo que facilita la paralelización y una
mejor captura de las dependencias más generales.

Una función de atención puede describirse como el mapeo entre una consulta (query) y
un conjunto de pares clave-valor (key-value) a una salida, donde consultas, claves, valores
y salida son todos vectores. Esta salida se obtiene como una combinación ponderada de los
valores, en la que los pesos se calculan a partir de una función de compatibilidad entre la
consulta y las claves.

En este contexto, los vectores utilizados se representan comúnmente de la siguiente forma:

q (query): representa la consulta que compara contra otros elementos.

k (key): representa las claves con las que se evalúa la similitud de cada consulta.

v (value): contiene la información asociada a cada clave y es lo que se combina (pon-
deradamente) para generar la salida.
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CAPÍTULO 3. FUNDAMENTO TEÓRICO

La atención calcula una puntuación de similitud entre cada par consulta-clave, que lue-
go se utiliza para obtener una combinación ponderada de los valores, dando lugar a una
representación contextualizada para cada token de entrada.

Figura 3.5: Mecanismo de Atención de [3]. (izq) Scaled Dot-Product Attention. (der) Multi-
Head Attention .

Scaled Dot-Product Attention

Vaswani et al. [3] introdujeron un mecanismo de atención particular denominado Scaled
Dot-Product Attention (Figura 3.5), que lleva al modelo a evaluar y a asignar diferentes
niveles de importancia a cada elemento de la secuencia de entrada.

La entrada a este mecanismo consiste en vectores de consulta y clave de dimensión dk,
y vectores de valor de dimensión dv. Para cada consulta, se calcula su producto escalar con
todas las claves, se divide por

√
dk, a lo que se aplica la función softmax para obtener los

pesos con los que se combinarán los valores correspondientes.

Dado que en la práctica se requiere calcular la atención sobre múltiples consultas de
forma simultánea, es más eficiente llevar a cabo los cálculos de manera matricial en lugar de
vectorial. Para ello, se utilizan las matrices Q, K, V , que agrupan respectivamente todos los
vectores de consulta, clave y valor. La fórmula completa del mecanismo es:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

Aunque actualmente, esta función es la más reconocida y empleada dentro de este ámbito,
anteriormente las dos más usadas eran la atención aditiva y la multiplicativa sin escalado.
Esta última es idéntica a la atención escalada, salvo por la ausencia del factor 1√

dk
. Si

bien ambas son equivalentes en complejidad computacional teórica, la multiplicativa es más
eficiente en la práctica debido a su implementación mediante operaciones de multiplicación
de matrices altamente optimizadas.
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3.1. ESTRUCTURA PRINCIPAL

Para valores pequeños de dk, ambas versiones se comportan de forma similar y se pueden
usar indistintamente. Sin embargo, cuando dk es grande, la atención aditiva supera a la
multiplicativa sin escalado [24]. Esto se debe a que al realizar cálculos con dimensión de
claves muy grande (dk), el producto entre Q y K puede dar valores muy altos, lo que implica
que la función softmax produzca gradientes extremadamente pequeños, es decir, devuelva
casi ceros y unos. Por ello, para contrarrestar este efecto, se escalan los productos escalares
dividiéndolos por

√
dk.

Una manera de ver por qué se pueden llegar a dar valores altos al realizar los productos
escalares es desde una perspectiva estadística: si se asume que los componentes q y k son
variables independientes con media 0 y varianza 1, entonces su producto escalar q · k =∑dk

i=1 qik, tendrá media 0 y varianza dk. Por tanto, al dividir dicho producto por
√

dk, la
varianza pasa a ser 1, estabilizando los valores.

En trabajos recientes se han explorado otras variantes de atención con propiedades com-
plementarias. Por ejemplo, las denominadas symmetric attention y pairwise attention propo-
nen enfoques alternativos para el cálculo de similitudes entre tokens, a menudo con propie-
dades teóricas deseables como simetría, interpretabilidad o eficiencia computacional. Estas
alternativas han sido estudiadas, entre otros, por Courtois et al. [25].

Multi-Head Attention

Como ya se ha visto, el mecanismo de atención permite establecer relaciones directas
entre distintos tokens de una secuencia de entrada, modelando la importancia que tienen
entre ellos [26]. Pero, Vaswani et al. [3] demostraron que es beneficioso emplear múltiples
funciones de atención en paralelo, lo que da lugar al mecanismo conocido como Multi-Head
Attention.

Este diseño permite que el modelo atienda a diferentes representaciones subespaciales de
la información en paralelo, capturando así múltiples contextos o relaciones semánticas. En
contraste, el uso de una única cabeza limitaría la capacidad del modelo para representar
patrones diversos, al forzar una media aritmética sobre todas las interacciones.

Formalmente, se realizan proyecciones lineales sobre las matrices de consultas, claves y
valores utilizando distintos pesos entrenables para cada cabeza de atención. En particular,
para la i-ésima (i ∈ {1, ..., h}), se realizan las siguientes proyecciones:

Qi = QW Q
i , Ki = KW K

i , Vi = V W V
i

La salida de cada cabeza se calcula como:

headi = Attention(Qi, Ki, Vi)

Las salidas de todas ellas se concatenan y se proyectan con una matriz final:
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CAPÍTULO 3. FUNDAMENTO TEÓRICO

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

donde W Q
i , W K

i , W V
i ∈ Rdmodel×dk y W O ∈ Rhdv×dmodel son parámetros entrenables.

Este proceso se representa en la figura 3.5, en la parte derecha del diagrama.

Es gracias a este diseño que los Transformers sean capaces de modelar muchas relaciones
complejas entre tokens, tanto a corto como a largo alcance, e incluso centradas en distintos
aspectos semánticos o espaciales (como sería el caso de este trabajo).

Self-Attention

El mecanismo de auto-atención (self-attention) es una forma particular de atención en la
que las consultas (Q), las claves (K) y los valores (V ) provienen de la misma secuencia de
entrada. Es decir, cada token de la secuencia puede “atender” a todos los demás (incluyéndose
a sí mismo), permitiendo calcular una representación contextualizada basada en toda la
secuencia.

Esta capacidad resulta fundamental en los Transformers ya que, con ello, el modelo puede
aprender relaciones entre cualquier par de elementos sin tener en cuenta su distancia rela-
tiva. Al ponderar la importancia de cada token en relación con los demás, se construyen
representaciones capaces de integrar la comprensión global de la secuencia.

En una subcapa de auto-atención, la secuencia de entrada de donde provienen todas las
claves, consultas y valores, es la salida de la capa anterior.

En el Codificador: cada posición en la secuencia de entrada puede atender a todas las
posiciones anteriores y posteriores, permitiendo una representación rica del contexto.

En el Decodificador: similar al codificador, pero se aplica una máscara para evitar
que la posición actual atienda a posiciones futuras, conservando la propiedad auto-
regresiva. Esta máscara se aplica en el Scaled Dot-Product Attention asignando −∞ a
aquellas conexiones consideradas ilegales.

Entre Codificador y Decodificador: el decodificador puede atender a todas las
posiciones de la secuencia de entrada (provenientes del codificador), permitiendo que
cada paso de generación se base en toda la información.

Ciertas ventajas relevantes de usar self-attention nombradas en [3] son:

Paralelización: A diferencia de las RNN, que procesan secuencias de manera secuen-
cial, el self-attention puede procesar todos los elementos simultáneamente, aprovechan-
do mejor el cómputo.
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Captura de Dependencias a Larga Distancia: Como ya se ha comentado en la
introducción, mientras que las RNN tienen dificultades para modelar relaciones entre
elementos distantes en una secuencia, el self-attention puede capturar estas dependen-
cias sin importar la distancia entre tokens.

Eficiencia Computacional: Comparado con las CNN, el self-attention requiere me-
nos operaciones para modelar relaciones entre todos los pares de elementos en una
secuencia, especialmente en secuencias largas.

3.1.3. Redes Postion-Wise Feed-Forward

Adicionalmente, cada capa del codificador y del decodificador incorpora una subcapa de
red neuronal feed-forward completamente conectada, que se aplica de manera independiente
a cada token de la secuencia. Esta subcapa consta de dos transformaciones lineales separadas
por una función de activación no lineal que, en la arquitectura original, es una ReLU [3]. La
operación que se realiza puede expresarse como:

FFN(x) = máx(0, xW1 + b1)W2 + b2

donde x es el vector de entrada, W1 y W2 son matrices de pesos, y b1 y b2 son vectores
de sesgo.

Aunque esta operación se aplica de forma idéntica a cada token, los parámetros W1, W2,
b1 y b2 son compartidos a lo largo de todos ellos dentro de una misma capa, pero varían de
una a otra. Este diseño facilita la paralelización y la eficiencia computacional del modelo.

Investigaciones algo más recientes han mostrado, que estas subcapas feed-forward actúan
como memorias de tipo clave-valor, en las que cada clave se asocia con patrones específicos y
cada valor contribuye a la generación de la salida. Esto implica que las subcapas no sólo trans-
forman las representaciones, sino que también son capaces de almacenar cierta información
aprendida durante el entrenamiento [27].

3.1.4. Normalización y conexiones residuales

Cada subcapa del Transformer, tanto la de atención, como la de proyección feed-forward,
va acompañada de una conexión residual seguida de una normalización por capas (Layer
Normalization). Esta combinación se implementa de la siguiente manera:

Output = LayerNorm(x + Sublayer(x))

Este diseño tiene como objetivo mejorar la estabilidad del entrenamiento. Las conexiones
residuales permiten que los gradientes se propaguen más fácilmente hacia capas anteriores,
lo que ayuda a mitigar el problema del desvanecimiento del gradiente [28]. Este fenómeno,
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conocido como gradient vanishing, ocurre cuando los gradientes se vuelven progresivamente
más pequeños al retropropagarse, dificultando el aprendizaje en capas lejanas a la salida.

Por su parte, la normalización por capas estabiliza la activación de cada token norma-
lizando sus dimensiones internas. A diferencia de la Batch Normalization, que se basa en
estadísticas globales del lote (batch) y se aplica solo en entrenamiento, la Layer Normali-
zation opera sobre cada instancia individual y esta presente tanto en entrenamiento, como
en la fase de test. Esta propiedad la hace especialmente adecuada para tareas como las que
aborda el Transformer [29].

Es importante destacar que existen alternativas principales respecto al punto en el que
se aplica la normalización dentro del bloque Transformer:

Post-Normalización (Post-LN): La normalización se realiza después de la suma
residual, como en la arquitectura original de Vaswani [3].

Pre-Normalización (Pre-LN): La normalización se aplica antes de la subcapa, lo que
ha demostrado mejorar la estabilidad del entrenamiento para ciertos casos específicos.

3.2. Estructura ViT

Aunque los Transformers fueron creados en un primer momento con el objetivo de poder
procesar el lenguaje natural, su éxito ha motivado su adaptación a otros dominios.

Los Vision Transformer (ViT) representan una adaptación de la arquitectura original al
dominio de la Visión Por Computador. En Dosovitskiy et al. [6], se origina la idea de crear
un Transformer que se pueda aplicar directamente a las imágenes, sin cambiar en exceso la
estructura original.

Figura 3.6: Estructura de un ViT de [6].
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En ViT, se reemplaza las convoluciones tradicionales de las CNNs por los mecanismos de
autoatención. Como se puede ver en la figura 3.6, en lugar de procesar la imagen de entrada
como una cuadrícula de píxeles, se divide en una secuencia de patches de tamaño fijo (por
ejemplo, 16×16 píxeles). Cada parte (patch) se aplana y se proyecta linealmente a un espacio
de características, similar al proceso de tokenización en Procesamiento de Lenguaje Natural.
A estos vectores se les añaden embeddings posicionales para conservar la información espa-
cial. La secuencia resultante se introduce en las múltiples capas de codificador Transformer
estándar.

Otra característica distintiva de los ViT, es la inclusión de un token de clasificación
([CLS]) al inicio de la secuencia. Este token es el encargado de recoger la información general
de la imagen la cual, una vez se ha finalizado, se utiliza para realizar la predicción de clase.

Por tanto, de toda la estructura convencional del Transformer, únicamente se conserva
la parte correspondiente al codificador, pero añadiendo a su salida la capa lineal para poder
realizar la clasificación de las imágenes. Si se quisiese obtener las probabilidades de cada
clase, también se puede añadir una función softmax tras esta capa lineal.

Las ecuaciones (1)–(4) resumen el flujo completo del Vision Transformer. En primer lugar,
la imagen se convierte en una secuencia de tokens mediante proyección lineal de patches y
adición de un token [CLS] junto con sus codificaciones posicionales (Ec.(1)). Esta secuencia
atraviesa una pila de bloques Transformer compuestos por autoatención y capas MLP, ambas
con normalización y conexiones residuales (Ec.(2)–(3)). Finalmente, se extrae y normaliza el
token [CLS] para producir la predicción de salida (Ec.(4))[6].

z0 = [xclass; x1
pE; . . . ; xN

p E] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D (1)
z′

ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L (2)
zℓ = MLP(LN(z′

ℓ)) + z′
ℓ, ℓ = 1 . . . L (3)

y = LN(z0
L) (4)

3.2.1. Embedding

Como ya se ha descrito antes, el proceso de embedding es esencial. En este caso, permite
adaptar las imágenes a un formato en el que los ViT puedan aprovechar sus cualidades de
paralelización. Este proceso consta de dos componentes principales: el patch embedding y el
positional encoding.

Patch Embedding

El patch embedding consiste en dividir la imagen de entrada x ∈ RH×W ×C (altura, anchu-
ra y canales) en una cuadrícula de patches 2D no solapados xp ∈ RN×(P 2·C), donde (H, W )
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corresponde con la resolución de la imagen, C es el número de canales y (P, P ) es la resolu-
ción de cada uno de los patches. Esto da lugar a N = HW

P 2 patches, valor que corresponde
con la longitud de secuencia de entrada del Transformer.

Una vez se tiene la imagen dividida, cada patch se aplana en un vector de dimensión
P 2 · C. A continuación, se utiliza una capa lineal para realizar una proyección a un espacio
de dimensión D (Ec. (1)). Este proceso transforma la imagen en una secuencia de vectores
de características, similar a una secuencia de tokens en procesamiento de lenguaje natural.

Figura 3.7: Patch embedding de [7].

Positional Encoding

Si bien, en la arquitectura original de los Transformer,s se emplea una codificación po-
sicional determinista basada en funciones sinusoidales, en los Vision Transformers (ViT) se
opta habitualmente por una estrategia diferente.

Se añade un positional embedding a cada vector de patch. En ViT, estos embeddings
posicionales son vectores aprendibles de dimensión D, que se suman a los embeddings de
los patches (parte de la derecha de figura 3.7). Esta suma permite al modelo distinguir la
posición relativa de cada patch en la imagen, preservando la información espacial crítica.

Estos embeddings aprendibles, son vectores que se optimizan junto con los parámetros del
modelo durante el entrenamiento. Esto ha demostrado ser efectivo en tareas de clasificación
de imágenes, ya que permite al modelo aprender representaciones espaciales adaptadas a los
datos concretos gracias a conocer las posiciones de cada uno de los patches. Sin embargo,
a diferencia de las convoluciones, estos embeddings no son invariantes a transformaciones
espaciales como la traslación, lo que puede limitar su generalización si no se dispone de una
gran cantidad de datos.

Si bien los embeddings posicionales aprendibles suelen inicializarse con valores aleatorios,
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existen enfoques alternativos que pueden mejorar la incorporación de la información espa-
cial. Entre ellos se encuentran las codificaciones sinusoidales, los embeddings bidimensionales
diseñados para preservar mejor la estructura de la imagen, o técnicas más avanzadas basa-
das en convoluciones o mecanismos de autoatención local [30]. Aunque cabe destacar que la
inicialización específica en la práctica no es habitual, pues generalmente no conlleva mejoras
significativas en el rendimiento.

Figura 3.8: Ejemplo visual de distintas resoluciones en codificación posicional: (arriba) rejilla
de baja densidad, (medio) desplazamiento fraccional, (abajo) rejilla de alta densidad de [8].

Una cuestión relevante en la codificación posicional es la resolución espacial con la que se
representan las posiciones. La Figura 3.8 ilustra cómo distintas configuraciones pueden variar
la densidad de puntos que codifican la posición en la imagen. Una mayor resolución permite
capturar relaciones locales más precisas entre regiones cercanas, pero también implica un
mayor coste computacional. Esta decisión de diseño puede afectar al tipo de información
espacial que el modelo puede aprender y generalizar.

3.2.2. Token de Clasificación

El token de clasificación, denotado como [CLS], es una parte esencial que permite al mo-
delo generar una representación global de la imagen para tareas de clasificación. Este token,
introducido inicialmente en modelos de procesamiento de lenguaje natural como BERT [31],
se adapta en los ViT para resumir la información de todos los patches de la imagen. Se define
un vector entrenable de dimensión D que se inserta al inicio de la secuencia de embeddings
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de patches. A medida que la secuencia pasa por las capas del codificador Transformer, el
token [CLS] interactúa con los demás gracias a los mecanismos de autoatención, guardando
información del contexto de toda la imagen. Al final del proceso, la representación del token
[CLS] contiene las características globales de la imagen para poder realizar su clasificación.

Con este planteamiento, el ViT puede realizar predicciones precisas sin necesidad de
estructuras adicionales como capas de agrupamiento global, comunes en las redes neuronales
convolucionales (CNNs). Estudios recientes han explorado variantes del token [CLS], como el
uso de múltiples tokens de clasificación o la modificación de su dimensionalidad para mejorar
el rendimiento en tareas específicas [32].

Figura 3.9: Token [CLS] en BERT de [9].

Como se puede ver en la figura 3.9 para el caso de BERT, el token se añade al inicio de
la secuencia. Se trata como todos los demás durante el entrenamiento, y, tras finalizar, se
utiliza para poder realizar la clasificación.

3.2.3. Mean Pooling

Otra estrategia común para obtener una representación global de la imagen es el deno-
minado mean pooling. Esta técnica consiste en calcular la media de las salidas de todos los
tokens del patch generados por el codificador. Formalmente, si Z = [z1, z2, ..., zN ] representa
las salidas de los N tokens o patches, la representación global zmean se obtiene como:

zmean = 1
N

N∑
i=1

zi

Esta representación zmean se utiliza posteriormente para la clasificación mediante una
capa lineal seguida, opcionalmente, de una función softmax para obtener las probabilidades
de cada clase, al igual que ocurría con el [CLS].
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El mean pooling presenta varias ventajas en ciertos contextos. En primer lugar, al prome-
diar las representaciones de todos los patches, se obtiene una visión más global de la imagen,
lo que puede mejorar la generalización en tareas donde la información relevante está repar-
tida en diferentes regiones. Esta técnica es invariante a la traslación, ya que no depende de
la posición específica de los patches, lo que la hace robusta frente a desplazamientos en la
imagen [33].

Sin embargo, también existen desventajas. Al tratar todos los patches con igual impor-
tancia, el mean pooling puede tener problemas con características importantes que sólo estén
presentes en regiones muy específicas de la imagen. Esto es muy importante en casos donde
ciertos detalles locales son cruciales para la clasificación. En cambio, el token [CLS] puede
aprender a enfocarse en estas regiones discriminantes durante el entrenamiento [34].

Debido a estas desventajas, se han explorado variantes del mean pooling. Por ejemplo, el
Group Generalized Mean Pooling (GGeM) divide los canales en grupos y aplica una media ge-
neralizada dentro de cada grupo, permitiendo más flexibilidad y adaptación a la información
[33].

3.3. Funciones de activación

En los modelos basados en Transformers, las funciones de activación juegan un papel
crucial en las redes neuronales feed-forward, tanto en la arquitectura original como en sus
variantes. Estas funciones introducen no linealidad al modelo, lo que posibilita representar
relaciones complejas entre los datos.

Aunque existen numerosas funciones de activación, en el contexto de este trabajo se abor-
darán las dos más utilizadas: ReLU, empleada en la arquitectura original de Vaswani et. al, y
GELU, adoptada posteriormente en variantes como BERT o los Vision Transformers (ViT).
A continuación se describen sus características, comportamiento y diferencias principales.

3.3.1. ReLU (Rectified Linear Unit)

La función ReLU es una de las más extendidas en redes neuronales profundas por su
simplicidad y eficiencia computacional. Fue introducida por Nair y Hinton en 2010 [35]. Se
define como:

ReLU(x) = máx(0, x)

Como puede verse, anula todos los valores negativos y deja pasar los positivos, lo que
conlleva una activación dispersa. Su bajo coste computacional y facilidad para mitigar el
problema del desvanecimiento del gradiente, han contribuido a su éxito.
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En el Transformer original, la función ReLU es utilizada en las subcapas feed-forward
tras la primera proyección lineal. En la Figura 3.10 se puede ver su comportamiento gráfico,
donde se observa la activación nula para entradas negativas y lineal para las positivas.

Figura 3.10: Representación gráfica de la función ReLU de [10].

3.3.2. GELU (Gaussian Error Linear Unit)

La función GELU ha sido propuesta como alternativa a ReLU, especialmente en modelos
modernos como BERT y ViT, debido a su suavidad y mejor comportamiento empírico en
tareas complejas. Fue introducida por Hendrycks y Gimpel en 2016 [36]. Se define como:

GELU(x) = x · Φ(x) ≈ 0,5x

(
1 + tanh

[√
2
π

(x + 0,044715x3)
])

donde Φ(x) representa la función de distribución acumulada de una normal estándar.

A diferencia de ReLU, la activación GELU atenúa gradualmente los valores negativos en
lugar de anularlos por completo, lo que permite una mayor sensibilidad en la propagación
del gradiente. Esto puede traducirse en una mejor capacidad de aprendizaje, especialmente
en tareas con relaciones no lineales más sutiles.

En ViT, GELU se emplea en las subcapas feed-forward por su capacidad para ofrecer un
mejor ajuste al aprendizaje durante el entrenamiento.
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Figura 3.11: Representación gráfica de la función GELU de [11].

3.3.3. Comparativa general

Ambas funciones introducen no linealidad, pero lo hacen de forma distinta. Mientras que
ReLU es abrupta, propensa a anular ciertos gradientes y no diferenciable, GELU proporciona
una transición más suave, lo que puede traducirse en mejores resultados en ciertas tareas.

ReLU: simple, rápida y eficaz, ideal para arquitecturas profundas tradicionales.

GELU: suave, probabilística y más precisa en entornos con relaciones complejas.

El uso de una u otra depende en gran medida del tipo de tarea y del modelo. ViT, como
arquitectura moderna basada en Transformers, se beneficia de las propiedades de GELU para
mejorar la capacidad de aprendizaje y la estabilidad del entrenamiento, aunque como se verá
más adelante, dependerá del caso específico.

3.3.4. Técnicas de Clasificación y Optimización

El entrenamiento de modelos de clasificación basados en Transformers requiere seleccio-
nar adecuadamente tanto los algoritmos de optimización, como la función de pérdida y los
esquemas de ajuste del learning rate. Esta sección describe los elementos utilizados en este
proyecto.
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Optimizadores: Adam y AdamW

Para la actualización de pesos durante el entrenamiento se han empleado dos variantes
del optimizador basado en gradiente estocástico: Adam y AdamW.

El optimizador Adam (Adaptive Moment Estimation) combina los beneficios de Momen-
tum y RMSProp, adaptando el learning rate de cada parámetro individualmente a partir de
los primeros y segundos momentos del gradiente [37].

Por otro lado, AdamW es una modificación propuesta específicamente para mejorar el
rendimiento en modelos de Transformers, introduciendo una descomposición explícita de
la regularización L2, lo que lleva a un mejor control del peso del decaimiento [12]. Este
optimizador es el utilizado por defecto en muchas implementaciones modernas como Hugging
Face.

Figura 3.12: Curvas de aprendizaje y generalización obtenidas con una ResNet-26 entrenada
en CIFAR-10 usando Adam y AdamW, comparando distintos valores de weight decay y su
efecto sobre la pérdida y el error de test de [12].

Como se observa en la Figura 3.12, AdamW consigue una menor pérdida y error en test
en comparación con Adam cuando se utiliza un weight decay adecuado. Esto demuestra cómo
la regularización desacoplada mejora la capacidad de generalización del modelo.
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Función de pérdida: Entropía cruzada con pesos

En tareas de clasificación multiclase, la función de pérdida utilizada habitualmente es
la entropía cruzada (Cross Entropy Loss), debido a su capacidad para medir la diferencia
entre dos distribuciones de probabilidad: la predicha por el modelo y la verdadera. En redes
neuronales, la salida del modelo se interpreta como una distribución de probabilidad mediante
la función softmax, y la entropía cruzada penaliza aquellas predicciones que asignan baja
probabilidad a la clase correcta.

Dado un vector de probabilidades predicho ŷ = (ŷ1, ŷ2, ..., ŷC) y una etiqueta verdadera
codificada como one-hot y = (0, ..., 1, ..., 0), la entropía cruzada se define como:

LCE = −
C∑

i=1
yi log(ŷi)

donde C es el número de clases. Esta fórmula se reduce a − log(ŷk) si la clase correcta es
la k-ésima.

En contextos con clases desbalanceadas, la entropía cruzada tiende a favorecer las clases
mayoritarias. Para contrarrestar este efecto, se usan pesos de clase que aumentan el impacto
de los errores cometidos sobre clases minoritarias. Así, la pérdida ponderada se define como:

LCE = −
C∑

i=1
wiyi log(ŷi)

donde wi es el peso asociado a la clase i. Esta estrategia mejora la sensibilidad del modelo
frente a clases con poca representación, contribuyendo a un entrenamiento más equilibrado.

Otra técnica es el label smoothing, que actúa como regularizador. En lugar de utilizar una
codificación one-hot estricta (donde la clase correcta tiene probabilidad 1 y el resto 0), se
asigna una pequeña parte de probabilidad a las clases incorrectas. Esto evita que el modelo
se vuelva confiado de manera excesiva y favorece una mayor generalización.

Formalmente, la etiqueta suavizada para la clase correcta k se expresa como:

ysmooth
i =

{
1 − ε si i = k

ε
C−1 si i ̸= k

donde ε ∈ [0, 1] es el parámetro de suavizado y C es el número total de clases. Al repartir
parte de la probabilidad objetivo entre las demás clases, se reduce el sobreajuste y se mejora
la robustez del modelo ante ruido o ambigüedad en los datos.
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Ajuste del Learning Rate: Cosine Scheduling

Otro aspecto fundamental para lograr una convergencia estable es la gestión dinámica
del learning rate. En este trabajo, se han utilizado dos esquemas principales:

CosineAnnealingLR: reduce el learning rate siguiendo una curva coseno decreciente,
hasta llegar a un valor mínimo al final del entrenamiento. Mejora la estabilidad y evita
oscilaciones tardías.

get_cosine_schedule_with_warmup: scheduler de la librería transformers de
Hugging Face. Añade una fase inicial de warm-up (crecimiento progresivo del learning
rate) antes de aplicar la curva coseno, lo que facilita una adaptación suave en los
primeros pasos del entrenamiento.

Figura 3.13: Curvas de aprendizaje típicas: Cosine Scheduler y Cosine con Warmup de [13].

3.4. Técnicas de explicabilidad visual

Si bien es fundamental comprender la arquitectura y funcionamiento interno de los Vision
Transformers, hoy en día va desarrollándose la explicabilidad de la decisión del modelo. Esto
adquiere su importancia en contextos críticos como el diagnóstico médico. En este tipo de
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ámbitos, la mera precisión del modelo basta, pero sería deseable conocer por qué se ha tomado
una decisión. Esto ayuda en mayor medida al experto, detectar errores y a validar que el
modelo no esté aprendiendo patrones irrelevantes.

A lo largo de los años, se han desarrollado una gran cantidad de técnicas de explicabili-
dad visual para Redes Convolucionales, como Class Activation Mapping (CAM)[38], Grad-
CAM [39], Score-CAM [40], o Recipro-CAM [41]. Todas ellas han demostrado su eficacia para
localizar visualmente las regiones que más contribuyen a una predicción. Sin embargo, cuan-
do se intenta aplicar estos enfoques sobre arquitecturas ViT, esta eficacia se ve empeorada
seriamente, pues su naturaleza paralelizable complica la interpretación directa de sus gra-
dientes.

3.4.1. Limitaciones del uso de gradientes en ViT

Las técnicas de explicabilidad basadas en gradientes, como Grad-CAM [39], calculan de-
rivadas del score de la clase respecto a las activaciones internas del modelo. Aunque han de-
mostrado buenos resultados en redes convolucionales, su aplicabilidad a arquitecturas Trans-
former es limitada por múltiples motivos estructurales:

Relaciones complejas entre tokens: a diferencia de las CNN, donde la activación
está directamente relacionada con una posición espacial local, en los ViT cada token
puede atender a cualquier otro. Estas relaciones se propagan a lo largo de muchas
capas de atención, lo que dificulta que una activación temprana o su gradiente refleje
una contribución clara a la predicción final.

Acumulación de capas y proyecciones: cada capa del Transformer aplica una com-
binación de atención multi-head y bloques feed-forward. Esta acumulación de transfor-
maciones lineales y no lineales provoca que los gradientes de tokens específicos puedan
degradarse o ser difíciles de interpretar (problema relacionado con gradient saturation
o vanishing gradients).

Los gradientes no garantizan causalidad: los gradientes muestran sensibilidad,
no causalidad. Un gradiente alto no implica que esa región haya sido decisiva en la
predicción, sino que una pequeña perturbación podría haber afectado el resultado.
Esto puede crear correlaciones espurias[42], es decir, que se genere una relación entre
cierta región de la imagen con una clase la cual no es real o causal, generando mapas
engañosos.

Estas limitaciones reducen la efectividad de los gradientes como herramienta de interpre-
tación, especialmente cuando se requieren explicaciones robustas y específicas de clase.

3.4.2. Limitaciones de métodos tradicionales en ViT

Debido a los problemas que presenta la arquitectura particular de los ViT, se han pro-
puesto técnicas como Attention Rollout[43] o Relevance[44] para generar mapas de saliencia.
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Aunque logran resultados visuales aceptables, presentan serias limitaciones:

No son específicas de clase: los métodos basados en atención no están diseñados
para reflejar la importancia de una clase concreta, lo que reduce su utilidad en tareas
multiclase, como es el caso de los datasets de este trabajo.

Requieren acceso interno al modelo: necesitan extraer y procesar todas las matri-
ces de atención internas, lo que implica una alta dependencia de la arquitectura.

No se pueden aplicar en entornos sin acceso a gradientes: gran cantidad de
modelos no permiten calcular retropropagación.

Por todo lo anterior, el uso de gradientes y los métodos tradicionales presentan problemas
tanto prácticos como teóricos. Estas limitaciones han motivado el desarrollo de enfoques
alternativos que no requieran ni gradientes ni acceso a matrices de atención.

3.4.3. ViT-ReciproCAM

En 2023, Byun y Lee[14] propusieron una técnica de explicabilidad visual específicamente
diseñada para ViT, denominada ViT-ReciproCAM. Se centra en determinar qué regiones de
la imagen son realmente determinantes en la predicción del modelo. Para ello, se generan
versiones modificadas de la entrada original mediante el enmascaramiento selectivo de pat-
ches, observando cómo cambia la confianza del modelo en la clase predicha, como se ve en la
Figura 3.14.

Figura 3.14: Arquitectura del ViT-ReciproCAM de [14].

El método construye un mapa de saliencia midiendo, para cada patch de la imagen, cuán-
to disminuye la probabilidad de la clase objetivo al eliminarlo. De este modo, se obtiene una

35



3.4. TÉCNICAS DE EXPLICABILIDAD VISUAL

representación interpretable, que indica la contribución relativa de cada región sin necesidad
de inspeccionar la arquitectura interna del modelo. ViT-ReciproCAM destaca por su sim-
plicidad conceptual, su aplicabilidad en escenarios reales de inferencia y su capacidad para
generar mapas de saliencia más localizados que otras técnicas comparables.

Se extrae un mapa de características con dimensiones (H × T × D) a partir de la primera
capa LayerNorm del último bloque del codificador del Transformer, donde H representa el
número de cabezas (en la primera capa, H = 1 ya que todas están concatenadas), T es el
número de tokens, y, D, la dimensión del codificador.

A partir de este mapa, se genera (T − 1) máscaras espaciales, cada una de las cuales
corresponde a un nuevo mapa de entrada, que se usará en las capas posteriores. Para ca-
da posición espacial (x, y), definida como el centro de una máscara espacial Gaussiana, el
método mide el score de predicción de una clase específica usando únicamente el token de
característica correspondiente.

Cabe destacar que el método ignora la dimensión de batch para simplificar. La eficacia
de ViT-ReciproCAM ha sido evaluada por Byun et. al.[14] sobre el conjunto de validación
de ImageNet, mostrando un rendimiento superior frente a otros métodos de referencia del
estado del arte.

Generación de máscaras espaciales y características

La máscara espacial de tokens M tiene dimensiones (N × T ), donde N = (T − 1) y T
representa el token [CLS] más el número de patches, es decir, T = P 2 +1, pues la imagen está
dividida en P × P patches. Para cada n ∈ [0, . . . , N − 1], se genera una máscara que activa
únicamente una región 3×3 de tokens espaciales, centrada en la posición correspondiente
del token enmascarado. Los demás tokens se fijan a cero, excepto el token de clase que se
mantiene constante.

A partir del mapa de características original Fk de la primera capa LayerNorm del último
bloque codificador del Transformer, se pueden generar nuevos mapas de entrada F n

k mediante
multiplicación elemento a elemento (producto de Hadamard ⊙) con las máscaras espaciales
Mn:

F̃ n
k = Fk ⊙ Mn

Cada nuevo mapa de entrada contiene las características originales de una región de la
imagen, reescaladas por un kernel Gaussiano 3×3. Estas versiones modificadas son utilizadas
para estimar la importancia del token central observando cómo varía la confianza de la red
en la clase objetivo.

Si bien el uso del kernel Gaussiano es el enfoque por defecto, denominado ViT-ReciproCAM[3×
3], cabe señalar que también es posible aplicar una máscara basada en el enmascaramiento
de un único token, lo que ofrece una alternativa más sencilla, el ViT-ReciproCAM.

36



CAPÍTULO 3. FUNDAMENTO TEÓRICO

Para generar el mapa de saliencia, se divide el modelo en dos partes: la primera parte
(G) corresponde a las capas hasta la extracción de características (LayerNorm) y la segunda
parte (H) representa el resto del modelo. Al alimentar un lote de N mapas modificados a las
capas H, se obtienen puntuaciones de predicción yn

c para una clase c.

Figura 3.15: (a) Extracción de características desde la primera capa LayerNorm del último
bloque codificador, (b) extracción de características desde la salida completa del bloque, (c)
los tokens enmascarados cubren el área delimitada por la línea azul discontinua en la imagen
de entrada de [14].

Estas puntuaciones permiten calcular la importancia relativa de cada token enmascarado.
El mapa de saliencia final para la clase se obtiene normalizando y reestructurando los scores:

Sc = reshape
[

Yc − mı́n(Yc)
máx(Yc) − mı́n(Yc) , (P, P )

]

donde Yc = [y1
c , . . . , yN

c ]T es el vector de scores para la clase c, y cada yn
c es calculado

como:

yn
c = softmax (H (G(I) ⊙ Mn))c

La operación reshape[P, P ] reorganiza los valores escalares unidimensionales obtenidos
para cada patch en una matriz bidimensional del mismo tamaño que el grid de patches de
entrada [14].

Comparación de métodos

Varios ejemplos de la eficacia de esta técnica son representados en la figura 3.16. Muestra
una comparación visual entre distintos métodos de explicabilidad aplicados a ViTs: Attention
Rollout, Relevance, ViT-ReciproCAM y su variante ViT-ReciproCAM [3×3]. Se presentan
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tres escenarios representativos: (i) un objeto simple (Mantis), (ii) múltiples objetos idénticos
(Yachts) y (iii) imágenes con múltiples clases (Zebra y Elephant).

Figura 3.16: Resultados de objeto simple (Mantis), varios objetos iguales (Yachts) y múltiples
clases (Elephant y Zebra). Adaptación de varias figuras de [14].

Puede observarse que los métodos basados en atención como Attention Rollout generan
mapas más difusos y poco específicos. El método Relevance mejora la focalización en re-
giones relevantes, pero aún presenta activaciones espurias. En contraste, ViT-ReciproCAM
y especialmente su versión [3 × 3] producen mapas más localizados, que capturan con ma-
yor precisión las regiones responsables de la predicción del modelo, incluso en presencia de
múltiples objetos o clases.

Estos resultados demuestran el potencial de ViT-ReciproCAM como herramienta eficaz
de explicabilidad visual, especialmente en entornos donde se requiere interpretar la decisión
del modelo de forma localizada y centrada en una clase específica. No obstante, como se
aprecia en los ejemplos, su variante [3 × 3] ofrece ciertas ventajas adicionales en términos
de continuidad y precisión visual, generando mapas de saliencia más suaves, coherentes y
centrados en las regiones relevantes. Esto se debe a que el enmascaramiento realizado en
bloques proporciona un mayor contexto espacial, lo cual reduce la fragmentación del mapa
y mejora en gran medida la interpretabilidad visual. Por esta razón, dicha variante ha sido
la seleccionada para aplicarse en este trabajo.
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Capítulo 4

Marco de trabajo

En este capítulo, se detallarán las diferentes recursos físicos y tecnológicos empleados
durante el desarrollo del proyecto. Se describen tanto los aspectos relacionados con el entorno
software, como el hardware sobre el que se ha trabajado y ejecutado el entrenamiento de los
modelos. Se justifican sus decisiones exponiendo sus ventajas y limitaciones. De esta manera,
se da a entender las condiciones bajos las cuales se han obtenido los resultados experimentales.

4.1. Hardware

Se han empleado dos dispositivos para llevar a cabo el desarrollo del proyecto:

Maquina virtual: prestada por el departamento de Informática de la Universidad
de Valladolid. Esta máquina dispone de un procesador Intel® Xeon® Gold 6326 a 2.90
GHz con 32 núcleos, 64 GB de memoria RAM y 50 GB de espacio en disco.

Ordenador personal: cuenta con un procesador Intel® Core™ i5-8600K a 3.60 GHz
(hasta 4.30 GHz) con 6 núcleos, 16 GB de memoria RAM y más de 3TB de espacio en
disco. Cuenta con una tarjeta gráfica NVIDIA GeForce GTX 1060 con 6GB DDR5 de
VRAM, 1506MHz (hasta 1708 MHz) y 1280 CUDA cores.

El uso combinado de ambos dispositivos ha resultado especialmente útil para el desarrollo
del proyecto. La máquina virtual, gracias a su gran capacidad de procesamiento y sus 64GB
de memoria RAM, ha sido la encargada de entrenar modelos con conjuntos de datos de gran
tamaño, donde el consumo de recursos es considerable. La que se puede considerar su mejor
ventaja es su disponibilidad constante, pues permite dejar modelos en entrenamiento durante
largos periodos de tiempo sin preocupación.
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Por otro lado, el ordenador personal también ha resultado imprescindible, especialmente
para conjuntos de menor tamaño, ya que su tarjeta gráfica dedicada de 6GB de VRAM
permite acelerar el entrenamiento en gran medida.

Esta combinación ha hecho posible ejecutar de forma paralela varios entrenamientos,
optimizando los tiempos y aprovechando al máximo los recursos disponibles, cosa de especial
importancia en un proyecto como este, donde el objetivo no es obtener un modelo sino varios.

4.2. Software

4.2.1. Sistema operativo

La maquina virtual cuenta con un sistema operativo Debian GNU/Linux 12 (Bookworm),
mientras que el ordenador personal cuenta con un Windows 10 Pro.

4.2.2. Lenguajes y herramientas

Python

Esta elección no se ha basado únicamente en sus propias ventajas, sino también en su com-
paración con otras alternativas comunes en el ámbito del Análisis de Datos y el Aprendizaje
Automático, como R y Julia, las cuales no encajan con el presente proyecto.

R es una herramienta muy potente para análisis estadístico y visualización de datos. Sin
embargo, su ecosistema orientado principalmente al análisis exploratorio y no tanto al desa-
rrollo de sistemas complejos de aprendizaje profundo. Esto, junto con las limitadas librerías
que ofrece para este tipo de proyectos, lo hace menos adecuado.

Julia, por otro lado, presenta ventajas en cuanto a rendimiento computacional, ya que
ha sido diseñado específicamente para ello. No obstante, su comunidad y ecosistema son
reducidos en comparación con Python, lo cual supone una limitación significativa a la hora
de encontrar bibliotecas potentes y ejemplos prácticos.

Por tanto, Python es el lenguaje restante para realizar el proyecto. Este se ha consolidado
como el de referencia en Aprendizaje Automático y Ciencia de Datos, debido a su gran
comunidad, abundancia de bibliotecas especializadas (como NumPy, Pandas, scikit-learn,
PyTorch, entre muchas otras) y su compatibilidad con entornos de trabajo como Jupyter
Notebooks. Su sintaxis sencilla y legibilidad han favorecido un desarrollo ágil durante todas
las fases del proyecto, desde el preprocesamiento de datos hasta el despliegue de los modelos.
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Pytorch

Dado que se utiliza Python como lenguaje de desarrollo, para la implementación de los
modelos de aprendizaje profundo, se ha optado por el framework PyTorch. Aunque existen
otras alternativas como Keras (frecuentemente utilizado a través de TensorFlow), la elección
de PyTorch se debe a varios factores.

En primer lugar, PyTorch ofrece mayor flexibilidad y control en la creación de modelos
y bucles de entrenamiento. Su enfoque basado en gráficos dinámicos (define-by-run) permite
una depuración más sencilla, lo cual ha resultado útil para la implementación de arquitecturas
complejas como los Vision Transformers (ViT).

Aunque Keras destaca por su simplicidad y curva de aprendizaje más suave, esta abs-
tracción puede ser una limitación, cuando se desea personalizar el comportamiento interno
de los modelos.

PyTorch también cuenta con una comunidad muy activa, siendo el framework preferido
en la mayoría de publicaciones recientes sobre aprendizaje profundo. Esto facilita el acceso
a una gran cantidad de ejemplos reales, facilitando el aprendizaje.

En definitiva, PyTorch ha sido elegido por su equilibrio entre potencia, flexibilidad y
soporte comunitario, lo que lo convierte en una herramienta especialmente adecuada para
proyectos de investigación como este Trabajo de Fin de Grado.

Jupyter y Anaconda

El entorno de desarrollo utilizado ha sido JupyterLab, gestionado a través de la distribu-
ción Anaconda. Estas elecciones permiten trabajar de forma modular, visualizando resultados
paso a paso y permitiendo una gestión más sencilla de los distintos códigos. Cuenta con una
gran cantidad de bibliotecas para el desarrollo de proyectos de Ciencias de Datos, entre las
que se encuentra PyTorch.

HTML, CSS y JavaScript

Para la parte de despliegue web se han utilizado tecnologías estándar del desarrollo front-
end como HTML, CSS y JavaScript, que permiten estructurar la interfaz, aplicar estilos
visuales y proporcionar interacción.

Flask

La biblioteca Flask ha sido utilizada como microframework para el backend de la aplica-
ción web. Su simplicidad y compatibilidad con Python y Pytorch lo convierten en la mejor
opción para desplegar los modelos entrenados en una página web sencilla.

41



4.2. SOFTWARE

Astah

Para la elaboración de diagramas UML (como casos de uso, clases o actividades), se
ha utilizado la herramienta Astah. Esta aplicación facilita la representación estructurada de
los componentes del sistema, ayudando a comunicar de forma visual la arquitectura de la
aplicación. Cuenta con una versión de pago, Astah Profesional, la cual ha estado disponible
gracias a la licencia que proporciona por la Universidad de Valladolid, lo que ha favorecido
su elección.

TexStudio

La memoria del proyecto ha sido redactada íntegramente en LATEX, empleando el editor
TeXstudio. Este entorno permite gestionar documentos de forma profesional, garantizando
un formato uniforme y la correcta inserción de fórmulas, figuras, tablas y referencias bi-
bliográficas. Se ha proporcionado una plantilla base por parte de la Escuela, que incluye la
estructura general del documento, así como los paquetes y configuraciones necesarios.

Si bien es cierto que otras opciones como OverLeaf cuentan con funcionalidades en la nube
para asegurar el control de versiones, el dominio previo de esta herramienta y su versatilidad
en entornos locales, se han considerado como factores de mayor peso a la hora de realizar la
elección.

GanttProject

Para la planificación temporal del proyecto se ha utilizado la herramienta GanttProject.
Esta aplicación de código abierto permite gestionar tareas, asignar recursos, definir depen-
dencias entre actividades y visualizar el progreso mediante un diagrama de Gantt. Gracias
a su interfaz intuitiva, ha sido posible estructurar las distintas fases del proyecto, desde la
investigación inicial hasta el despliegue final, de forma clara y eficiente.

GanttProject facilita la exportación de los diagramas a distintos formatos como PDF o
PNG, lo cual ha resultado útil para la inclusión de la planificación dentro de la documentación
del proyecto.
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Capítulo 5

Conjuntos de datos

Aunque este trabajo se enfoque en la comparación objetiva entre las arquitecturas ViT
y CNN en el ámbito de la salud, el centro de atención se basa en la adaptación de los
Transformers para el caso de la clasificación de imágenes. Por ello, no sólo es necesario tener
unos datasets adecuados y representativos para la comparación en este ámbito, sino que
también tengan estudios de calidad relacionados con su clasificación a partir de CNNs.

Para que se pueda cumplir con las condiciones, se han seleccionado tres conjuntos de datos
utilizados en Trabajos de Fin de Grado anteriores. En cada uno de ellos, se han mantenido las
mismas transformaciones y preprocesamientos aplicados originalmente, permitiendo así una
comparación directa entre ambas arquitecturas. A continuación, se describen estos datasets.

5.1. Radiografías de tórax (CXR)

5.1.1. Descripción

El conjunto de imágenes corresponde con radiografías de tórax y proviene de una compe-
tición de Kaggle [45]. Cuenta con un total de 2905 imágenes con una resolución de 1024×1024
píxeles y repartidas en tres categorías diferentes como se puede ver en la figura 5.1:

Normal: pacientes sanos que no presentan enfermedad.

Neumonía vírica: pacientes que presentan neumonía pero no COVID-19.

COVID-19: pacientes con COVID-19.

Según comenta Toquero [15], las imágenes correspondientes a las dos primeras clases
provienen de la base de datos de Kaggle de Paul Moore, Chest X-Ray Images (Pneumonia)
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[46]. Por otro lado, las imágenes de COVID-19 provienen de diferentes fuentes abiertas: la
base de datos COVID-19 de la Sociedad Italiana de Radiología Médica e Intervencionista,
Società Italiana di Radiologia Medica e Interventistica (SIRM), del conjunto de datos Novel
Corona Virus 2019 (nCOVID-19) de Joseph Paul Cohen, Paul Morrison y Lan Dao, y de
otras 43 publicaciones diferentes [47].

Figura 5.1: Ejemplos de cada clase de [15].

5.1.2. Transformaciones

Como se puede apreciar en la figura 5.1, las tres clases son imágenes en escala de grises (y
por tanto de un solo canal). Sin embargo, Toquero [15] detalla que sólo Normal y Neumonía
vírica se encuentran de manera natural así, mientras que las imágenes con los positivos en
COVID-19 tienen formato RGB, es decir, tres canales. Por tanto, transforma las imágenes
de color a escala de grises para poder tratarlas de manera uniforme al realizar el modelo.

Dado que los valores de los píxeles se encuentran en el rango [0,255], las imágenes se
someten a un proceso de normalización con el fin de escalar dichos valores a [0,1]:

Xi = Xi − Xmin

Xmax − Xmin
(5.1)

siendo Xi valor del píxel i, Xmax y Xmin corresponden a los valores máximo y mínimo
posibles respectivamente. Para este caso particular, el cálculo es equivalente a dividir todos
los valores de los píxeles por 255.

El conjunto de datos se encuentra distribuido en dos carpetas: entrenamiento y test. La
división está hecha de manera estratificada, es decir, se mantiene la proporción de número
de muestras de cada clase. Esto es de gran importancia, cuando el número de observaciones
por clase está desequilibrado. Siendo éste el caso, pues el número de muestras de la clase
COVID-19 es bastante inferior al de las otras dos (figura 5.2).
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Figura 5.2: Gráfica de la distribución de clases de radiografías de tórax.

Clases Conjunto de entrenamiento Conjunto de test Total
Covid-19 146 73 219
Neumonía 896 449 1345

Normal 894 447 1341
Total 1936 969 2905

Tabla 5.1: Distribución de clases de radiografías de tórax.

Esto tipo de partición denominada Hold Out, evita realizar una estimación del error
optimista, que ocurre cuando se utilizan los mismos datos con los que ha sido entrenado,
haciendo que se sobreestime la verdadera capacidad de generalización del modelo. En cambio,
utilizando otros datos diferentes, se consigue una estimación justa y se puede comprobar si
el modelo es capaz de generalizar correctamente.

5.1.3. Obtención y uso

Los datos provienen de un Trabajo de Fin de Grado [15] dirigido por el mismo tutor
que el presente trabajo. Gracias a ello, se ha podido contar desde un principio con los datos
ya recopilados, organizados y preprocesados, exceptuando la normalización. No obstante,
esto no supone un problema, pues dicha normalización se realiza de forma automática al
transformar las imágenes a tensores [48].

Como se detallará más adelante, el elevado tamaño original de las imágenes implica
ciertos problemas computacionales, por lo que se ha decidido redimensionarlas a un tamaño
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más manejable de 256 × 256 píxeles.

5.2. Resonancias magnéticas de cerebro (MRI)

5.2.1. Descripción

El conjunto de imágenes utilizado por Arranz [16] corresponde con resonancias magné-
ticas de cerebro y proviene directamente de la base de datos de Kaggle [49]. Aunque sería
recomendable utilizar otras versiones más recientes y con un mayor número de muestras, se
utiliza el original para realizar la comparación de la manera más objetiva y directa posible.

Cuenta con un total de 3264 imágenes de diferente resolución, aunque la mayoría de ellas
tienen un tamaño de 512×512 píxeles. Están repartidas en cuatro categorías diferentes como
se puede ver en la figura 5.3:

No tumor: cerebros sanos sin presencia de tumores.

Glioma: tumores cerebrales del tipo glioma, que se originan en las células gliales [50].

Meningioma: tumores que se desarrollan en las meninges, las membranas que rodean
el cerebro y la médula espinal [50].

Pituitaria: tumores en la glándula pituitaria, también conocida como hipófisis [50].

Figura 5.3: Ejemplos de cada clase de [16].

Si bien es cierto que sería posible ampliar el conjunto con imágenes de otras fuentes,
Arranz señala en [16] que el desconocimiento sobre la procedencia de las imágenes dificulta
esta tarea, ya que existe el riesgo de incluir imágenes duplicadas, empeorando así el apren-
dizaje.
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5.2.2. Transformaciones

El conjunto de datos se encuentra originalmente divido en dos carpetas: entrenamiento
y test. Sin embargo, esta partición presenta un problema importante: no ha sido realizada
de forma estratificada, como se puede observar en la Tabla 5.2. Por este motivo, Arranz [16]
considera combinar ambas carpetas y realizar la división de manera dinámica en el propio
código, aunque esto solo lo realiza durante la adaptación del modelo definitivo, pues durante
los modelos iniciales opta por utilizar la división original.

En cuanto a la distribución de clases, el conjunto no presenta un desbalance excesivo, con
la excepción de la clase correspondiente a pacientes sin tumores, que contiene aproximada-
mente la mitad de muestras en comparación con las clases con tumores, como se muestra en
la Figura 5.4. Aunque la diferencia no es tan pronunciada como en los otros conjuntos de
imágenes, puede ser un factor a tener en cuenta durante el entrenamiento.

Clases Entrenamiento ( %) Test ( %) Total ( %)
Glioma 28.78 % 25.38 % 28.37 %

Meningioma 28.64 % 29.19 % 28.70 %
Pituitaria 28.82 % 18.78 % 27.60 %
No-tumor 13.76 % 26.65 % 15.31 %

Total 100 % 100 % 100 %

Tabla 5.2: Porcentaje de representación de clases de resonancias magnéticas cerebrales.

Figura 5.4: Gráfica de la distribución de clases de resonancias magnéticas cerebrales.
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Clases Conjunto de entrenamiento Conjunto de test Total
Glioma 826 100 926

Meningioma 822 115 937
Pituitaria 827 74 901
No-tumor 395 105 500

Total 2870 394 3264

Tabla 5.3: Distribución de clases en el conjunto de resonancias magnéticas cerebrales.

Dejando de un lado la distribución de las muestras, hay que tener en cuenta la heteroge-
neidad de las imágenes. En primer lugar, no todas las tomografías se han tomado desde el
mismo ángulo, como se ve en la figura 5.3. Como ya se ha comentado, las imágenes presentan
diferentes resoluciones, introduciendo variabilidad adicional.

En relación con estos aspectos, Arranz [16] argumenta que la variación en el ángulo
de captura no supone un inconveniente significativo, ya que el modelo debe ser capaz de
generalizar independientemente de la orientación de las imágenes, pues no siempre se necesita
el mismo ángulo. No obstante, sí resulta necesario homogeneizar su tamaño. Para ello, aplica
transformaciones de resize sobre las imágenes, probando dos diferentes dimensiones: 128×128
y 256 × 256, con el objetivo de facilitar la computación con un tamaño no excesivamente
grande.

Con el fin de evitar el sobreajuste del modelo, también se realizan transformaciones alea-
torias tanto de manera horizontal como vertical.

Por último, al igual que el anterior conjunto, se necesita realizar un proceso de norma-
lización de los valores de los píxeles del rango original [0,255] al intervalo [0,1], lo cual se
puede llevar a cabo con la ecuación 5.1.

5.2.3. Obtención y uso

Al igual que el anterior conjunto, éste proviene de un Trabajo de Fin de Grado [16]
dirigido por el mismo tutor que el presente trabajo. Gracias a ello, se tiene una situación
semejante, con solo la partición dinámica.

En cuanto a las transformaciones requeridas, se utilizan ambas dimensiones comentadas
para las pruebas. La normalización vuelve a realizarse de forma automática al transformar
las imágenes a tensores [48].
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5.3. Secciones transversales de tomografías de coheren-
cia óptica (OCT)

5.3.1. Descripción

El conjunto de imágenes estudiado por Izquierdo [17] corresponde con secciones transver-
sales de Tomografías de Coherencia Óptica, que proviene de una competición de Kaggle [51].
Cuenta con un total de 84484 imágenes con diferentes resoluciones como 512×512, 512×496
o 768 × 496 entre las más concurrentes. Se reparten en cuatro categorías diferentes como se
puede ver en la figura 5.5:

Normal: retina sin patologías.

CNV: neovascularización coroidea (Choroidal Neovascularization), se desarrollan va-
sos sanguíneos anómalos debajo de la retina, común en enfermedades como la degene-
ración macular asociada a la edad [52].

DME: enfermos con edema macular diabético (Diabetic Macular Edema), una com-
plicación de la retinopatía diabética que provoca acumulación de líquido en la mácula
[52].

Drusen: imágenes que muestran depósitos amarillentos (drusas) bajo la retina, típicos
en fases tempranas de la degeneración macular asociada a la edad [52].

Figura 5.5: Ejemplos de cada clase de [17].

Izquierdo [17] también señala que las imágenes fueron seleccionadas de cohortes retros-
pectivas de pacientes adultos de diversas instituciones. La clasificación de las mismas se llevó
a cabo por diferentes niveles de experiencia: en primer lugar, estudiantes; posteriormente,
oftalmólogos; y finalmente, dos especialistas en retina con más de 20 años de experiencia
clínica [51].

5.3.2. Transformaciones

Dado que este conjunto cuenta con una gran cantidad de muestras, este se encuentra divi-
dido en las carpetas de entrenamiento, test y validación. Sin embargo, como indica Izquierdo
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[17] y se puede ver en la figura 5.6, hay demasiada diferencia en la proporción entre dichas
particiones. La división original realizada no se hizo de forma estratificada: mientras que la
distribución original de las clases es la que se muestra en el gráfico 5.7, el conjunto de test
contenía el mismo número de muestras para cada clase.

Figura 5.6: Gráfica de la distribución original de [17].

Debido a los problemas derivados de la distribución original, Izquierdo combina todas
las muestras y realiza la división de manera dinámica en el código. Esta misma trata de un
70 % para el conjunto de entrenamiento, 20 % para el de test y el 10 % restante para el de
validación, aunque ahora con la consecuente estratificación de las clases.

Aunque los otros conjuntos detallados anteriormente cuentan con un volumen apto para
su uso, no es suficiente para realizar una tercera partición para validación. En cambio, este
conjunto sí permite este tipo de distribución. Ésta resulta especialmente útil cuando se tra-
baja con metadatos adicionales o se requiere un ajuste muy fino del modelo, pues se dispone
de un conjunto que no ha sido utilizado para calibrar los diferentes valores de los metadatos,
dando una mejor estimación aún que el error estimado por test.

Clases Total
CNV 37444
DME 11598

Drunsen 8866
Normal 26565
Total 84473

Tabla 5.4: Distribución de clases en el conjunto de tomografías de coherencia óptica.
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Figura 5.7: Gráfica de la distribución de clases de tomografías de coherencia óptica.

Aparte del problema de la distribución, también hay que lidiar con el diferente tamaño
de las imágenes. Para poder paliar el problema, Izquierdo opta por realizar un resize a todas
las imágenes a un tamaño de 256 × 256. También comenta la opción de 512 × 512 pero lo
considera de demasiado coste computacional.

Por último, al igual que los anteriores, se necesita realizar un proceso de normalización
de los valores de los píxeles del rango original [0,255] al intervalo [0,1], lo cual se puede llevar
a cabo con la ecuación 5.1.

5.3.3. Obtención y uso

Al igual que los otros conjuntos, este proviene de un Trabajo de Fin de Grado [17] dirigido
por el mismo tutor que el presente trabajo, por tanto los datos vuelven a ser proporcionados
de manera directa.

En cuanto a las transformaciones requeridas, se utiliza la misma dimensión, y la nor-
malización vuelve a realizarse de forma automática al transformar las imágenes a tensores
[48].
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Capítulo 6

Construcción de los modelos

Tras contextualizar el problema, el siguiente paso ha sido la construcción y entrenamiento
de los modelos específicos utilizados en este trabajo.

Dado que no todos los conjuntos de datos presentan las mismas características ni plantean
los mismos retos, se ha optado por emplear distintos tipos de Vision Transformers (ViT),
adaptando su configuración en función de las particularidades de cada caso. Esto ha requerido
ajustar tanto los parámetros del modelo como las estrategias de entrenamiento, incluyendo
el preprocesamiento de imágenes, la selección de funciones de pérdida y los esquemas de
optimización más adecuados.

Se han aplicado diversas técnicas para mejorar el rendimiento y la generalización de
los modelos, evaluando de forma sistemática su comportamiento a lo largo del proceso de
entrenamiento.

En este capítulo se describen en detalle las decisiones tomadas durante esta fase, así como
la metodología seguida para construir, entrenar y validar los distintos modelos utilizados a
lo largo del proyecto.

6.1. Planteamiento inicial

A pesar de que cada uno de los modelos implementados presenta variaciones en su funcio-
namiento, todos comparten una arquitectura base común que sigue el esquema fundamental
de un Vision Transformer (ViT). Por tanto, se plantea una estructura modular compuesta
por tres componentes principales, definidos como clases independientes con el objetivo de
facilitar su reutilización y la experimentación:

PatchEmbedding: se encarga de dividir la imagen en patches no solapados, aplanarlos
y organizarlos como una secuencia de tokens.

53



6.2. ESTRUCTURAS DESARROLLADAS

TransformerBlock: corresponde al bloque principal del codificador Transformer.

Modelo ViT: representa la arquitectura global, integrando las módulos anteriores y
generando la salida final.

De esta manera, se intenta comparar diferentes estrategias sin modificar la lógica inter-
na del modelo base, manteniendo así la coherencia estructural entre las distintas variantes
desarrolladas.

6.2. Estructuras desarrolladas

Con el objetivo de evitar repeticiones innecesarias y mejorar la claridad de la documen-
tación, en esta sección se describen en detalle las principales estructuras y componentes
desarrollados para la implementación de los modelos. Cada fragmento de código referenciado
corresponde a partes relevantes del proyecto, acompañado de una explicación detallada sobre
su propósito, funcionamiento y relación con la arquitectura global.

6.2.1. Patch Embedding

Para implementar la etapa de división de la imagen en patches, se han considerado varias
alternativas disponibles en PyTorch. Aunque existen funciones directas como nn.Unfold para
extraer regiones de una imagen de manera vectorizada, o realizar convoluciones a través de
nn.Conv2d, se ha optado finalmente por una implementación basada en la biblioteca einops,
concretamente mediante el uso de la función Rearrange[53]. Esta opción es de gran utilidad
en la creación de modelos tipo ViT, como se observa en muchas implementaciones en la
comunidad [54] [55], ya que proporciona una sintaxis muy legible y expresiva para definir las
transformaciones de tensores de manera intuitiva.

Permite especificar transformaciones mediante una notación basada en patrones de ejes.
Su funcionamiento se basa en definir explícitamente cómo se reorganizan las dimensiones
de un tensor de entrada para obtener una nueva disposición, utilizando una sintaxis tipo
<entrada> -> <salida>. Esta forma de expresión es especialmente útil para operaciones que
implican reestructurar datos sin necesidad de manipular manualmente índices o tamaños.

Por ejemplo, la expresión utilizada en la clase PatchEmbedding:

1 Rearrange (’b c (h p1) (w p2) -> b (h w) (p1 p2 c)’)

Listing 6.1: Ejemplo de uso de einops.Rearrange

indica que partimos de un tensor de entrada con forma (batch, channels, height,
width), donde la altura y la anchura pueden dividirse en bloques de tamaño p1 y p2, respec-
tivamente. La transformación reordena el tensor dividiendo la imagen en bloques no solapados
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de tamaño (p1, p2) (cuyos valores se definen explícitamente) y reorganiza el resultado pa-
ra que cada patch aplanado ocupe una posición en una nueva secuencia de forma (batch,
n_patches, patch_dim).

En esta notación:

b representa el tamaño del batch;

c el número de canales;

h y w son los factores que resultan de dividir la altura y la anchura entre el tamaño de
patch;

p1 y p2 son las dimensiones del patch;

la flecha -> define la forma deseada tras la transformación.

Un ejemplo de su funcionamiento es el representado en la figura 6.1, donde se utiliza una
bandeja de una sola imagen con 3 canales (RGB).

Figura 6.1: Funcionamiento de la función Rearrange de einops.

Durante el desarrollo, se han planteado dos opciones principales. La primera consiste en
dividir la imagen en patches según se ha explicado. A continuación, aplica una proyección
lineal a una dimensión fija, seguida de una normalización. Esta opción transforma los patches
al espacio dimensional requerido por el modelo y añade cierta capacidad de aprendizaje desde
el principio del flujo de datos.

La segunda opción, más simple, realiza únicamente la división en patches sin aplicar nin-
guna proyección adicional. Esta variante es útil cuando se desea mantener la dimensionalidad
original del patch y utilizar los valores del tensor directamente.

Ambas alternativas se han implementado dentro de una misma clase A.1, lo que permite
alternar entre ellas fácilmente durante las pruebas y comparativas.

La decisión entre utilizar, o no, la proyección depende del diseño general del modelo y del
tamaño de entrada esperado por las capas posteriores, además de la naturaleza propia de las
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imágenes. Por ejemplo, si se desea mantener una mayor cantidad de información en la etapa
inicial o realizar la proyección más adelante en la arquitectura, puede ser preferible omitir la
proyección inicial.

En resumen, esta etapa transforma una imagen de tamaño (C, H, W) en una secuencia
de vectores de tamaño fijo (N, D), donde N es el número de patches y D es la dimensión del
embedding.

6.2.2. Transformer Block

Dado que en los modelos ViT se utilizan múltiples capas de codificador con una estruc-
tura idéntica, se ha diseñado una clase modular que representa un bloque Transformer, la
cual puede integrarse fácilmente mediante el uso de la función nn.Sequential para construir
modelos tan profundos como se quiera.

Como ya se comentó anteriormente, cada bloque está compuesto por dos componentes
principales: una capa de self-attention multi-cabeza y una red feed-forward, ambas acom-
pañadas por normalización por capas (Layer Normalization) y conexiones residuales. Esta
estructura es directamente la presentada en el diseño original de Vaswani et al. [3].

En este proyecto se han implementado dos variantes de la clase TransformerBlock. La
primera versión sigue fielmente la arquitectura Transformer estándar, aplicando conexiones
residuales tanto en la atención como en el bloque feed-forward A.2.

El primer componente del bloque es la capa de atención multi-cabeza (MultiheadAtten-
tion), que se encarga de aplicar el mecanismo de atención sobre los embeddings de entrada.
Esta operación lleva al modelo a enfocar distintas posiciones de la secuencia simultáneamen-
te, identificando relaciones entre diferentes tokens o patches, como se detalla en la Sección
3.1.2.

Internamente, esta capa se trata de la clase nn.MultiheadAttention de PyTorch [56]. Crea
internamente los vectores query, key y value a partir de la entrada mediante parámetros
entrenables (nn.Parameter), realiza la división en múltiples cabezas de atención, aplica la
atención por cabeza de forma paralela y, finalmente, concatena y proyecta el resultado de
vuelta al espacio original. Por ello, no es necesario realizar ninguna proyección manual previa;
basta con pasar el tensor de entrada como argumento en las tres posiciones (query, key,
value).

Dado que, en este caso, se trata de una operación de self-attention, los tres tensores son
idénticos: corresponden directamente a la salida del bloque anterior. Esto es lo que permite
que cada elemento de la secuencia, es decir, que cada patch tenga acceso a todos los demás,
aprendiendo qué partes de la imagen debe prestar atención.

La clase también permite aplicar dropout de forma integrada sobre los pesos de atención,
lo cual contribuye a una mejor regularización durante el entrenamiento.

La salida de esta atención se suma al tensor original mediante una conexión residual,
que facilita el flujo de gradientes durante el entrenamiento y previene la desaparición de la
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información relevante. Esta suma se normaliza inmediatamente con una capa de Layer Nor-
malization, teniendo entonces la variante post-norm, es decir, normalizar después de aplicar
la atención.

La capa LayerNorm, a diferencia de la normalización por lotes (BatchNorm), que de-
pende del tamaño del batch y de la estadística global, normaliza cada muestra de forma
independiente, utilizando la media y varianza de cada vector de embedding. Esto conduce a
un comportamiento más consistente, especialmente útil en tareas como esta donde el tamaño
de batch es reducido.

Tras la atención, se aplica un bloque feed-forward compuesto por dos capas lineales se-
paradas por una función de activación ReLU. La primera capa aumenta la dimensionalidad
hasta mlp_dim, permitiendo al modelo capturar representaciones más abstractas, mientras
que la segunda proyecta de nuevo al espacio de dimensión de embedding original. Se incluye
una capa de Dropout como técnica de regularización para reducir el sobreajuste. El alcance
del dropout utilizado en este bloque es el mismo que el empleado en la capa de atención.

Finalmente, se añade una segunda conexión residual seguida de una nueva normalización
por capas, completando así la estructura del bloque.

No obstante, en escenarios con conjuntos de datos reducidos, como es este trabajo, se
ha observado que mantener conexiones residuales en bloques con baja complejidad (como un
MLP de solo dos capas) puede inducir cierto sobreajuste o a veces no afectar verdaderamente
al entrenamiento. Por ello, se ha explorado una segunda variante más simplificada, en la que
se elimina la conexión residual en el bloque feed-forward. De esta manera, el método forward
queda definido como se muestra en A.3.

Este enfoque busca reducir la capacidad de la red en etapas tempranas del entrenamiento,
mejorando la regularización cuando se dispone de un volumen de datos limitado. Ambas
variantes se han integrado en el flujo de pruebas del proyecto, permitiendo seleccionar de
manera simple la versión más adecuada en función de la tarea y del conjunto de datos
utilizado.

En resumen, el TransformerBlock implementa la unidad funcional principal de la arqui-
tectura ViT, capaz de replicarse las veces que sean necesarias.

6.2.3. Vit con CLS

En esta sección se presenta la clase principal del modelo Vision Transformer, basada en
la arquitectura ViT original [6]. Esta variante, además de implementar los dos módulos ya
explicados, utiliza un token especial denominado [CLS] como representación global de la
imagen, que será utilizado para realizar la clasificación final. El desarrollo de esta clase se
puede ver en A.4.

El modelo comienza aplicando la etapa de patch embedding a la imagen de entrada, trans-
formándola en una secuencia de vectores de las dimensiones requeridas. A esta secuencia se le
añade un token especial, denominado [CLS], que se inicializa como un parámetro entrenable
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con valores iniciales aleatorios, gracias a nn.Parameter. Este token se encargará de obtener
la información global de la imagen contenida en los demás tokens, es decir, en los patches.

El token [CLS] se concatena a la secuencia antes de introducir la codificación posicional, la
cual también se define como un parámetro entrenable y valores iniciales aleatorios. Este vector
es el encargado de conservar información sobre el orden espacial de los patches, compensando
el hecho de que el Transformer no posee estructura espacial implícita.

A continuación, la secuencia completa (incluyendo el token [CLS]) se procesa a través
de un conjunto de bloques Transformer idénticos gracias a nn.Sequential, definidos anterior-
mente mediante la clase TransformerBlock. El número de bloques se especifica mediante el
parámetro num_layers, permitiendo ajustar la profundidad del modelo.

Una vez pasada la secuencia por la pila de bloques, se extrae únicamente el token [CLS],
que se supone contiene la representación global de la imagen. Este vector se normaliza me-
diante una capa de LayerNorm y finalmente se proyecta a las clases posibles mediante una
capa lineal, dando lugar a la predicción final del modelo.

6.2.4. Vit con Mean Pooling

A parte de desarrollar la arquitectura original basada en el uso de un token [CLS], se
ha implementado una variante del modelo ViT que utiliza una estrategia alternativa: el
mean pooling. La implementación de esta estrategia tiene como objetivo mitigar posibles
problemas de generalización asociados al uso del token [CLS], especialmente en contextos
con pocos datos o alta variabilidad en las imágenes, donde dicho token puede no capturar de
manera correcta la representación global de la imagen.

La estructura general de esta clase es similar a la anterior, con la diferencia principal de
que no se utiliza el token [CLS]. En su lugar, tras aplicar la codificación posicional sobre los
embeddings de los patches, se pasa directamente al conjunto de bloques codificador. Una vez
procesados, se aplica una operación de mean pooling sobre la secuencia de salida para obtener
una única representación global, sobre la que se realizan la normalización y la clasificación
final.

De esta manera, se utiliza toda la secuencia de tokens para generar la representación glo-
bal, en lugar de confiar en un único vector aprendido, ayudando en casos donde la información
puede estar más dispersa.

El resto de componentes del modelo se mantienen sin cambios: se utilizan los mismos
bloques Transformer, la misma codificación posicional aprendida y una capa de LayerNorm
previa a la proyección final por la capa lineal de clasificación. Esta consistencia facilita la
comparación entre ambas variantes y permite analizar el impacto que tiene esta alternativa.
La implementación completa puede consultarse en A.5.
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6.3. Entrenamiento

6.3.1. Dataset para HDF5

Dataset

Inicialmente, los datos se cargan utilizando la función torchvision.datasets.ImageFolder,
que permite leer directamente imágenes almacenadas en una estructura de carpetas organi-
zada por clases. Esta función asume que cada subcarpeta representa una clase distinta, y
asigna como etiqueta de clase el nombre de dicha subcarpeta a todas las imágenes conteni-
das en ella. El resultado es un conjunto de datos en formato tensorial ya preparado para ser
utilizado en PyTorch, lo que facilita enormemente la carga inicial de los datos. Se pueden
utilizar las transformaciones que se deseen, desde transforms.toTensor() para convertir a ten-
sores hasta transformaciones utilizadas para realizar Data Augmentation, como por ejemplo
transforms.ColorJitter().

No obstante, el uso directo de ImageFolder en los bucles de entrenamiento puede resultar
poco óptimo en términos de rendimiento. Para mejorar la eficiencia en la carga de datos,
especialmente en configuraciones donde el cuello de botella se encuentra en la lectura desde
disco, se ha optado por transformar los conjuntos de datos a formato HDF5 (Hierarchical
Data Format version 5).

El formato HDF5 permite almacenar grandes volúmenes de datos estructurados de forma
jerárquica, lo que no sólo reduce el número de accesos a disco, sino que también permite
organizar imágenes y etiquetas con las transformaciones aplicadas y descomprimidas. Aunque
los archivos HDF5 suelen ocupar más espacio en disco que otros formatos como JPEG o PNG,
presentan una clara ventaja en términos de velocidad de lectura y acceso secuencial a los
datos, lo cual es fundamental durante el entrenamiento de modelos de aprendizaje profundo
[57].

Como se puede ver en A.6, la clase HDF5Dataset esta desarrollada directamente desde
PyTorch, integrándose con facilidad en los DataLoader para entrenamiento y validación.

Cada muestra es devuelta como un par de tensores (image, label) listos para ser usados
en el modelo. La conversión explícita a tensores se realiza en cada llamada a __getitem__.
Se incluye un método auxiliar close() para cerrar el archivo HDF5 de forma segura al finalizar
su uso.

Dataset v2

Con el objetivo de aplicar técnicas de Data Augmentation dinámicas en vez de estáticas
durante el entrenamiento, se ha desarrollado una versión extendida de la clase, denominada
HDF5Datasetv2. Esta nueva variante también incluye soporte para las tres divisiones distintas
(entrenamiento, validación y prueba), así como transformaciones que se aplican en tiempo
real (véase A.7).
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Esta implementación resulta especialmente útil para aumentar la variabilidad del conjunto
de entrenamiento sin necesidad de almacenar múltiples versiones de las mismas imágenes.
Así, se mejora la generalización del modelo, mientras se mantiene una estructura de datos
eficiente.

Generación del archivo hdf5

Para poder utilizar esta clase, es necesario generar previamente un archivo en formato
HDF5 que contenga las imágenes y sus correspondientes etiquetas. Para ello, se parte de los
datos organizados en carpetas por clase y se utiliza la función torchvision.datasets.ImageFolder,
aplicando las transformaciones deseadas sobre cada imagen.

Una vez cargados, los datos se recorren secuencialmente y se almacenan los vectores en
formato numpy en un archivo tipo .hdf a través de la librería h5py, como se puede ver en
A.8.

6.3.2. Bucle de entrenamiento

El fragmento A.9 muestra la rutina de entrenamiento y evaluación utilizada en todos los
experimentos realizados. El entrenamiento se desarrolla durante un número definido de épocas
(num_epochs). En cada una de ellas, se alterna una fase de entrenamiento (model.train())
con una de evaluación (model.eval()).

Durante el aprendizaje, se mide la función de pérdida y el porcentaje de aciertos sobre
el conjunto de entrenamiento. Posteriormente, en modo evaluación, sin calcular gradientes
(mediante torch.no_grad()), se evalúa el rendimiento del modelo sobre los datos de prueba.

Se almacenan las métricas (loss, accuracy, learning rate) en listas para su posterior
análisis y representación gráfica. El planificador de tasa de aprendizaje (scheduler) se puede
actualizar en diferentes puntos estratégicos según su tipo, en este caso, para cada lote hay
una actualización.

Una vez se han obtenido las configuraciones óptimas para los modelos, se ejecuta de nuevo
el bucle con nuevo código. Al final de cada época se añade el fragmento A.10.

Este código es el encargado de guardar el estado del mejor modelo en términos de precisión
sobre el conjunto de test. Para evitar almacenamientos prematuros, la evaluación comienza
a partir de la época 70 (modificable según el modelo). Si la precisión del modelo en la época
actual supera respecto al mejor valor anterior, se actualiza el estado del modelo y se guarda
mediante torch.save, indicando en pantalla la información relevante sobre dicha mejora.

Asimismo, se implementa un mecanismo de early stopping que interrumpe automática-
mente el entrenamiento, si no se observa ninguna mejora en un número determinado de
épocas consecutivas, definido por la variable early_stop_patience.
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6.4. Modelos implementados

Una vez explicadas en detalle las distintas estructuras desarrolladas y cómo se realiza
el entrenamiento, en esta sección se comenta cuáles han sido las configuraciones utilizadas
para cada uno de los conjuntos de datos. Cada elección se ha realizado considerando las
características propias de cada experimento, información adicional que se proporciona en
los Trabajos de Fin de Grado utilizados como referencia, así como el rendimiento observado
durante la fase de entrenamiento y validación.

6.5. Radiografías de tórax (CXR)

Este conjunto de datos presenta ciertas particularidades que, si bien no dificultan tanto
el entrenamiento como otros, sí requieren aplicar medidas específicas de preprocesamiento
y regularización. Las imágenes son más homogéneas que las resonancias, aunque presentan
diferencias en contraste y nitidez entre clases, lo que puede inducir sesgos en el modelo, si
no se abordan adecuadamente.

Para mejorar la robustez y aumentar la diversidad del conjunto de entrenamiento, se ha
optado por utilizar transformaciones de Data Augmentation dinámicas. Estas transformacio-
nes se aplican en tiempo real, esto es, durante el entrenamiento mediante la versión extendida
del dataset HDF5 descrita previamente. Las operaciones empleadas han sido:

RandomHorizontalFlip()

RandomAdjustSharpness(sharpness_factor=1.5, p=0.3)

RandomAutocontrast(p=0.2)

RandomRotation(degrees=5)

RandomPerspective(distortion_scale=0.1, p=0.3)

En cuanto a la función de pérdida, se ha mantenido la entropía cruzada ponderada por
clases y se ha aplicado label smoothing al 5 %. Esta configuración contribuye a paliar los
efectos del desbalanceo entre clases y a mejorar la calibración de las predicciones, evitando
la sobreconfianza.

El optimizador seleccionado ha sido AdamW, con un learning rate inicial de 5 · 10−4 y un
weight decay de 5·10−3. Como política de ajuste del ritmo de aprendizaje, se ha empleado una
planificación cosenoidal con warm-up y con un 5 % de los pasos de entrenamiento dedicados
al calentamiento.

Respecto a la arquitectura del modelo, se ha optado por una variante del ViT con mean
pooling, en este caso con una estructura más profunda (4 bloques Transformer). La entrada
consiste en imágenes RGB de 256×256 píxeles, que se dividen en patches de 8×8, generando
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1024 tokens por imagen. A diferencia del caso anterior, aquí sí se ha utilizado una proyección
lineal para transformar cada patch en un vector de dimensión 192.

El modelo incluye 8 cabezas de atención por bloque, una red feed-forward de dimensión
576 y una tasa de dropout de 0.1. Asimismo, se ha mantenido la conexión residual dentro
de los bloques feed-forward dado que, gracias a la gran cantidad de data augmentation, un
valor mayor empeoraba los resultados.

1 model = ViTWithMeanPooling ( img_size =256 , patch_size =8, in_channels
=3, emb_dim =8*8*3 , num_heads =8, mlp_dim =8*8*3*3 , num_layers =4,
num_classes =3, dropout =0.1)

Listing 6.2: Modelo.

Figura 6.2: Resumen del modelo.
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6.6. Resonancias magnéticas de cerebro (MRI)

Este conjunto de datos presenta varios retos que dificultan el entrenamiento. En primer
lugar, se tratan de imágenes con un alto nivel de ruido, lo cual complica la extracción de
características relevantes. Existe una gran variabilidad en cuanto al ángulo de toma de las
imágenes, encontrándose cortes axiales, sagitales y coronales. Esta diversidad añade un com-
ponente de complejidad que solo podría abordarse de forma efectiva con una gran cantidad
de datos, algo que no se cumple en este caso, ya que el conjunto disponible apenas supera
las 2000 muestras.

Para intentar solucionar los problemas mencionados, se han incorporado diversas estrate-
gias. En primer lugar, se ha utilizado únicamente la transformación transforms.RandomRotation(5)
de manera estática como técnica de Data Augmentation, pues los datos cuentan con gran va-
riabilidad. Aunque se han probado múltiples combinaciones, que incluían volteos horizontales
y verticales, jitter de color y otras transformaciones geométricas, no han llegado a mejorar
los resultados.

Luego, se ha utilizado la función de pérdida CrossEntropyLoss, incluyendo tanto una
ponderación por clase como un suavizado de etiquetas (label smoothing) del 10 %. Esta confi-
guración permite reducir el impacto del desbalanceo entre clases y disminuir la sobreconfianza
del modelo en sus predicciones.

Como optimizador se ha empleado Adam con una tasa de aprendizaje inicial de 0.001.
Para regular el ritmo de aprendizaje a lo largo del entrenamiento, se ha utilizado una política
basada en planificación cosenoidal con fase de warm-up. Se ha definido un 5 % del total de
pasos de entrenamiento como periodo de warm-up, lo que posibilita iniciar el entrenamiento
de manera más estable antes de iniciar el decaimiento progresivo del learning rate.

En cuanto a la arquitectura del modelo, se ha optado por la variante del Vision Trans-
former con mean pooling. El modelo recibe imágenes de entrada de 128 × 128 píxeles con
tres canales que divide en patches de 8 × 8, generando un total de 256 tokens por imagen.
Cada patch se aplanó y se usó directamente como vector de entrada, sin aplicar ninguna
proyección lineal adicional, por tanto, la dimensión del embedding ha sido de 192. El número
de cabezas de atención se fijó en 8, y la red feed-forward interna de cada bloque Transformer
fue de tamaño 384. En total, se apilaron 3 bloques Transformer y se fijó una tasa de dropout
de 0.1. La salida final del modelo se proyecta a 4 clases correspondientes a las categorías del
conjunto de datos.

1 model = ViTWithMeanPooling ( img_size =128 , patch_size =8, in_channels
=3, emb_dim =3*8*8 , num_heads =8, mlp_dim =3*8*8*2 , num_layers =3,
num_classes =4, dropout =0.1)

Listing 6.3: Modelo.
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Figura 6.3: Resumen del modelo.

6.7. Secciones transversales de tomografías de coheren-
cia óptica (OCT)

Este conjunto se caracteriza por contener imágenes en escala de grises. Presentan una
gran nitidez estructural, pero también una elevada similitud entre clases, lo que complica la
separación entre categorías.

A diferencia de los conjuntos anteriores, estas imágenes tienen un solo canal de entrada,
cosa que se ha tenido en cuenta en la arquitectura. Igualmente, se ha utilizado el mismo Data
Augmentation dinámico comentado para el primer conjunto (CXR), pues esta configuración
también ha presentado grandes mejoras de regularización para este caso.

Para mitigar el sobreajuste y mejorar la generalización del modelo, se ha empleado label
smoothing con un valor del 5 %, así como una ponderación por clases en la función de
pérdida CrossEntropyLoss. En cuanto al optimizador, se ha utilizado Adam con una tasa
de aprendizaje inicial de 0.001 y un weight decay de 10−3.

Como política de ajuste dinámico del ritmo de aprendizaje, se ha utilizado una plani-
ficación cosenoidal con warm-up del 5 % de los pasos totales. Esta estrategia permite un
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inicio suave en el entrenamiento y un descenso progresivo del learning rate, estabilizando la
convergencia.

Respecto al modelo, se ha utilizado una arquitectura basada en Vision Transformer es-
tándar, con token [CLS] en vez de mean pooling. La entrada se divide en patches de 8 × 8,
lo que genera 1024 tokens por imagen. A pesar de tratarse de imágenes en escala de gri-
ses, se ha proyectado cada patch a un vector de dimensión 192 (como si tuviera 3 canales)
para mantener la coherencia con las arquitecturas previas y aprovechar configuraciones ya
probadas.

El modelo está compuesto por 3 bloques Transformer con 8 cabezas de atención, una
red feed-forward de dimensión 384 y una tasa de dropout de 0.2, ligeramente superior a los
anteriores para contrarrestar la menor variabilidad del dataset.

1 model = ViT( img_size =256 , patch_size =8, in_channels =1, emb_dim
=8*8*3 , num_heads = 8, mlp_dim =8*8*2*2 , num_layers =3,
num_classes =4, dropout =0.2).to( device )

Listing 6.4: Modelo.

Figura 6.4: Resumen del modelo.

65



6.8. EXPLICABILIDAD

6.8. Explicabilidad

Como ya se ha comentado, además de realizar el diseño y entrenamiento de los modelos, se
ha incorporado una técnica de explicabilidad, el ViT-ReciproCAM, con el objetivo de generar
mapas de saliencia que ayuden en la interpretación.

Para implementar este enfoque, es necesario dividir el modelo ViT en dos bloques funcio-
nales diferenciados: G y H. Según se ha explicado en la Sección 3.4.3, la parte G corresponde a
las capas del modelo que generan los tokens de representación a partir de la imagen, incluyen-
do el patch embedding, la codificación posicional y los bloques Transformer. La normalización
final y la cabeza de clasificación forman parte de H, ya que se aplican únicamente tras la
agregación de los tokens mediante mean pooling o el uso del token [CLS].

Esta separación se implementa añadiendo dos métodos adicionales en las dos clases que
definen las dos versiones del modelo ViT implementadas A.11 A.12. Uno de ellos se encarga
de obtener los tokens intermedios justo al final de G, y el otro toma dichos tokens como
entrada para procesarlos a través de H. Esta división no interfiere con el entrenamiento, ni
con la carga de pesos desde archivos .pth, por lo que puede añadirse tras el entrenamiento
sin afectar al comportamiento del modelo.

Aunque para ambas versiones, las funciones realizan la misma divisón teórica, hay dife-
rencia en la dimensión de la salida del método forward_features. En el caso de utilizar
mean pooling, la salida es un tensor de dimensiones [B, T, D], correspondiente a los T to-
kens generados a partir de los patches de la imagen. En cambio, en la versión original del
ViT que utiliza el token [CLS], la salida es de dimensiones [B, T+1, D], ya que se incluye
un token adicional al principio de la secuencia. Esto se tiene que tener en cuenta a la hora
de realizar el enmascaramiento.

Una vez extraídos los tokens, se realiza un enmascaramiento local sobre ellos con el
objetivo de observar cómo varía la puntuación del modelo al eliminar información de zonas
específicas. Para ello se utiliza una función que enmascara un bloque de 3×3 tokens centrado
en una posición determinada A.13.

La función toma como entrada los tokens generados por la función forward_features
correspondiente. Para cada celda central especificada por fila y columna, se enmascara sus
vecinos inmediatos (formando un bloque 3 × 3), estableciendo su valor a cero (o cualquier
otro valor definido por el parámetro fill_value). Existe también una variante que salta el
primer token, en caso de que el modelo utilice un token [CLS], la cual se basa en sumar 1
para pasar por alto el token sin modificare:

1 idx = 1 + r * num_patches + c # +1 para saltar el [CLS]

Listing 6.5: Linea diferente para versión CLS.

A partir de estas modificaciones, se procede a generar el mapa de saliencia. Para cada
posición del grid, se calcula la diferencia entre la puntuación original del modelo y la obtenida
tras enmascarar dicha región. Este proceso se repite para todos los patches de la imagen. Un
ejemplo de cómo se aplica esta técnica tras obtener la predicción del modelo esta en A.14.
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Este procedimiento permite obtener un mapa que indica, de forma visual, qué zonas
afectan más a la predicción del modelo. La transparencia del mapa (alpha) se puede ajustar
para facilitar la interpretación. Para ello, se utiliza una interpolación bilineal para adaptar
la resolución del mapa al tamaño original de la imagen. El resultado es un mapa de saliencia
que resalta las regiones clave utilizadas por el modelo para tomar su decisión.
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Capítulo 7

Resultados

En este capítulo, se resumen los datos numéricos finales, como los resultados obtenidos
durante el proceso de evaluación. El análisis se centra en el rendimiento alcanzado por cada
modelo sobre su correspondiente conjunto de datos, acompañando la comparación con las
redes convolucionales desarrolladas en los trabajos previos.

Para ello, se presentan diversas métricas de rendimiento para evaluar y comparar los
modelos, teniendo en cuenta los resultados explicados por los antiguos compañeros.

Asimismo, se incluyen visualizaciones de mapas de saliencia generados con el enfoque
desarrollado en este proyecto, los cuales se contrastan con los mapas basados en gradientes
utilizados en los trabajos anteriores.

7.1. Resonancias magnéticas de cerebro (MRI)

En la Tabla 7.1 se muestran los resultados obtenidos por Arranz en el TFG anterior [15]
para distintos modelos basados en arquitecturas CNN. Se observan cinco versiones distintas
que emplean combinaciones de tamaño de imagen, transformaciones, número de filtros, tasa
de dropout y número de capas. Aunque algunas versiones alcanzan altas precisiones en el
conjunto de entrenamiento (v2 y v3 superan el 90 %), aunque la precisión en el conjunto de
test no supera el 60 %, lo que indica un gran problema de sobreajuste.

Para este conjunto se ha empleado una arquitectura ViT con mean pooling y estrategias
de regularización como data augmentation, ponderación de clases y label smoothing, lo que
ha permitido mejorar sustancialmente la capacidad de generalización.

La Figura 7.2 muestra la matriz de confusión absoluta en el conjunto de test, mientras
que la Figura 7.3 muestra la versión normalizada por filas. Se observa que el modelo consigue
una clasificación precisa en todas las clases, con un rendimiento especialmente alto en la clase
3, siendo más difusos los resultados en las demás clases.
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Figura 7.1: Resultados de distintas versiones CNN implementadas en el TFG anterior [15].
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Figura 7.2: Matriz de confusión sobre el conjunto de test del modelo seleccionado.

Figura 7.3: Matriz de confusión (frecuencias) sobre el conjunto de test del modelo seleccio-
nado.

La evolución del entrenamiento se resume en la Figura 7.4. El modelo alcanza un valor
mínimo de pérdida de test cercano a 0.72 y una precisión del 84.9 % en el conjunto de test
durante la época 84, momento en que se guardó el modelo final. La pérdida de entrenamiento
continúa disminuyendo mientras que la de test se estabiliza, lo que indica un entrenamiento
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con cierto sobreajuste una vez pasadas las 40 épocas.

Figura 7.4: Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento.

De esta manera, si bien todavía se mantiene dicho sobreajuste, se ha logrado una gran
mejora respecto a las arquitecturas CNN del trabajo previo, incrementando en casi un 30 %
la precisión sobre el conjunto de test.

Datos completos de la mejor época:

Epoch: 84/150

Train Loss: 0.42777 Train Accuracy: 0.96848

Test Loss: 0.72113 Test Accuracy: 0.84898

7.2. Radiografías de tórax (RXC)

A pesar de no alcanzar las tasas de clasificación mencionadas en el trabajo anterior (con
una precisión en test del 96.18 %), el modelo Vision Transformer ha mostrado un rendimiento
notable, especialmente teniendo en cuenta las diferencias arquitectónicas y de enfoque.

Como se observa en la Figura 7.5, la evolución de las métricas durante el entrenamiento
muestra un comportamiento estable, con un test loss que se mantiene en niveles relativamente
bajos y sin indicios claros de sobreajuste severo, a pesar de la complejidad del conjunto de
datos.
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Figura 7.5: Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento.

Figura 7.6: Matriz de confusión sobre el conjunto de test del modelo seleccionado.
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Figura 7.7: Matriz de confusión (frecuencias) sobre el conjunto de test del modelo seleccio-
nado.

En cuanto a la distribución de errores, las matrices de confusión 7.6 y 7.7 revelan una
precisión elevada en todas las clases, lo que indica un buen rendimiento general del modelo.
No obstante, se observa cierta confusión entre las clases ’Normal’ (1) y ’Neumonía vírica’ (2),
fenómeno que también ocurre en el trabajo anterior. Por otro lado, la clase ’COVID-19’ (0),
si bien presenta un rendimiento algo inferior al de las otras dos clases, mejora los resultados
obtenidos del trabajo anterior, a pesar de mostrar cierta confusión con la clase 2.

Si bien el modelo anterior presentaba métricas globales superiores, estaba más centrado en
optimizar la predicción de las clases 1 y 2. En cambio, el modelo actual busca un rendimiento
equilibrado entre todas las clases, incluyendo la clase 0, que parece ser más difícil de clasificar.

En conjunto, aunque los resultados obtenidos no superan a los del trabajo anterior, se
sitúan en un rango competitivo, demostrando la viabilidad del uso de modelos basados en
atención en tareas de clasificación médica incluso con un número limitado de ejemplos.

Datos completos de la mejor época:

Epoch: 83/150

Train Loss: 0.38122 Train Accuracy: 0.96126

Test Loss: 0.52052 Test Accuracy: 0.94427

74



CAPÍTULO 7. RESULTADOS

7.3. Secciones transversales de tomografías de coheren-
cia óptica (OTC)

En este caso, el conjunto de datos presenta un reto particular debido a su gran tamaño,
implicando un coste computacional elevado. El entrenamiento con un número elevado de
imágenes alarga significativamente las épocas, dificultando la exploración con arquitecturas
más complejas y agrandando el problema de disponibilidad de recursos.

En la Figura 7.8 se presenta la evolución de la función de pérdida y precisión a lo largo
del entrenamiento. El modelo alcanzó una precisión del 90.1 % en el conjunto de test en la
época 72, con una pérdida de validación estabilizada y sin signos evidentes de sobreajuste.

Figura 7.8: Evolución de la función de pérdida (arriba) y la precisión (abajo) durante el
entrenamiento.

La evaluación del modelo se presenta en las Figuras 7.9 y 7.10, donde se muestran las
matrices de confusión absoluta y normalizada, respectivamente. Se observa un comporta-
miento muy consistente en todas las clases, con una diagonal claramente destacada, lo que
indica una excelente capacidad de generalización. No obstante, se aprecia cierta confusión
entre la clase 0 y la clase 2, con un número significativo de muestras de la clase 0 clasificadas
erróneamente como clase 2, lo cual podría deberse a similitudes visuales entre ambas clases.
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Figura 7.9: Matriz de confusión sobre el conjunto de validación del modelo seleccionado.

Figura 7.10: Matriz de confusión (frecuencias) sobre el conjunto de validación del modelo
seleccionado.
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Partición Trabajo anterior (CNN) Trabajo actual (ViT)
Entrenamiento 98,841 % 90,042 %
Test 96,531 % 90,116 %
Validación 96,366 % 90,110 %

Tabla 7.1: Comparativa de precisión entre el trabajo anterior [15] y el modelo ViT actual.

Tal como se recoge en la Tabla 7.1, los modelos CNN implementados en el trabajo an-
terior obtuvieron mejores resultados en todas las particiones. No obstante, los resultados
alcanzados por el modelo ViT siguen siendo muy competitivos. Dado que se observó una
buena estabilidad del modelo y una tasa de acierto elevada incluso con arquitecturas ligeras,
es razonable pensar que la diferencia en rendimiento se debe más a las limitaciones compu-
tacionales (que han impedido usar arquitecturas ViT más profundas o entrenar durante más
épocas) que a una incapacidad del modelo como tal. En este sentido, es probable que el uso
de mayor capacidad computacional o modelos más grandes permita disminuir esta diferencia,
sino incluso ponerla a su favor.

Datos completos de la mejor época:
Epoch: 72

Train Loss: 0.49257 Train Accuracy: 0.90042

Test Loss: 0.49790 Test Accuracy: 0.90116
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Capítulo 8

Aplicación

Tras haber obtenido y evaluado los modelos necesarios, se ha desarrollado una aplicación
web con el objetivo de facilitar su uso y demostrar de forma interactiva su funcionamiento.

Esta herramienta permite al usuario cargar imágenes y obtener predicciones para cada uno
de los conjuntos sin necesidad de conocimientos técnicos, ni experiencia previa con entornos
de desarrollo Python, notebooks o bibliotecas específicas como Pytorch o Pandas.

Si bien el desarrollo de esta aplicación no es el objetivo principal de este Trabajo de Fin de
Grado, su implementación aporta el valor de la construcción de un programa en producción.
Sirve como una forma accesible y práctica de mostrar el rendimiento real de los modelos
entrenados, sobre todo en contextos como este, donde la facilidad de uso y la interpretación
de los resultados son de gran importancia para el diagnóstico médico final.

Por tanto, durante este capítulo se detallará el proceso de análisis, diseño e implementa-
ción de dicha aplicación.

8.1. Tecnologías y herramientas utilizadas

Aunque se ha detallado en el capítulo 4 las diferentes tecnologías para todo el proyecto,
específicamente para el desarrollo de la aplicación se han empleado las siguientes:

8.1.1. Frontend

El lado cliente de la aplicación se ha construido utilizando tecnologías web estándar:

HTML5: lenguaje de marcado utilizado para estructurar el contenido de las páginas
web.
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JavaScript: lenguaje de programación que permite implementar funcionalidades di-
námicas e interactivas en el navegador.

Tailwind CSS: framework de utilidades CSS que permite construir interfaces moder-
nas y responsivas de forma rápida y eficiente en el propio archivo HTML.

8.1.2. Backend y modelado

En el lado servidor, se han utilizado tecnologías basadas en Python:

Python: lenguaje principal empleado tanto para el backend como para el desarrollo y
entrenamiento de los modelos.

PyTorch: biblioteca utilizada para cargar los pesos en los modelos.

8.2. Análisis

8.2.1. Requisitos

Requisitos funcionales

ID Nombre Descripción
RF-1 Seleccionar modelo El sistema debe permitir al usuario seleccionar el mo-

delo a utilizar entre los 3 disponibles.
RF-2 Subir imagen El sistema debe permitir al usuario subir una imagen.
RF-3 Mostrar imagen El sistema debe ser capaz de mostrar la imagen car-

gada por el usuario.
RF-4 Procesar imagen El sistema debe ser capaz de procesar la imagen car-

gada por el usuario.
RF-5 Realizar diagnóstico El sistema debe ser capaz de realizar el diagnóstico

(clasificación) de la imagen cargada por el usuario.
RF-6 Mostrar resultado El sistema debe ser capaz de mostrar el resultado del

diagnóstico.
RF-7 Actualizar historial imagen El sistema debe ser capaz de actualizar el historial

cada vez que se realiza un diagnóstico.
RF-8 Usos consecutivos El sistema debe permitir realizar múltiples diagnós-

ticos consecutivos, cada uno con su propia imagen y
modelo seleccionado.

Tabla 8.1: Tabla de requisitos funcionales.
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Requisitos no funcionales

ID Nombre Descripción
RNF-1 Tiempo de procesamiento El sistema debe tarmer menos de 10 segundos en

mostrar un diagnóstico tras su petición.
RNF-2 Formato de imagen El sistema debe permitir diferentes formatos de ima-

gen: .jpg, .png y .jpeg.
RNF-3 Usabilidad Un usuario con conocimientos básicos sobre navega-

ción por la red, debe ser capaz de realizar su primer
diagnóstico en menos de un minuto.

RNF-4 Lenguaje de programación El sistema debe ser programado en Python para fa-
cilitar el uso de los modelo creados con Pytorch.

Tabla 8.2: Tabla de requisitos no funcionales.

Requisitos de información

ID Nombre Descripción
RI-1 Modelos disponibles El sistema debe permitir el acceso a los modelos de

diagnóstico previamente definidos y almacenados en
archivos locales (.pth).

RI-2 Imagen cargada El sistema debe almacenar temporalmente la imagen
subida por el usuario durante el proceso de diagnós-
tico.

RI-3 Resultados de diagnóstico El sistema debe mantener los resultados (predicción,
confianza y modelo usado) tras cada ejecución, dis-
ponibles para su visualización inmediata.

RI-4 Historial en sesión El sistema debe conservar en memoria el historial de
diagnósticos realizados durante la sesión activa del
usuario, incluyendo fecha, imagen y predicción.

Tabla 8.3: Tabla de requisitos de información.
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8.2.2. Casos de uso

Diagrama

Figura 8.1: Diagrama de casos de uso.

Tablas

CU-1 Subir imagen
Actor Usuario
Descripción El usuario selecciona y sube una imagen para su posterior procesado.
Precondiciones —
Postcondiciones El sistema ha almacenado la imagen subida por el usuario
Flujo normal 1. El usuario sube una imagen al sistema.

2. El sistema verifica el formato de la imagen.
3. El sistema almacena la imagen.
4. El sistema muestra la imagen cargada.

Flujo alternativo 2a. El formato no es adecuado, vuelve a 1.
4a. El usuario decide subir otra imagen, vuelve a 1.

Tabla 8.4: Descripción del caso de uso 1: Subir imagen.

82



CAPÍTULO 8. APLICACIÓN

CU-2 Seleccionar modelo
Actor Usuario
Descripción El usuario selecciona uno de los modelos disponibles.
Precondiciones —
Postcondiciones El sistema ha almacenado el modelo si no lo estaba ya.
Flujo normal 1. El usuario selecciona uno de los modelos disponibles.

2. El sistema almacena el nombre del modelo para su posterior uso.
Flujo alternativo 2a. El nombre seleccionado no es válido, vuelve a 1.

Tabla 8.5: Descripción del caso de uso 2: Seleccionar modelo.

CU-3 Realizar diagnóstico
Actor Usuario
Descripción El sistema presenta procesa la imagen y presenta un diagnóstico.
Precondiciones 1. La imagen ha sido cargada en el sistema.

2. El usuario ha seleccionado un modelo.
Postcondiciones 1. El sistema presenta los resultados del diagnóstico.

2. El historial se actualiza con el nuevo diagnóstico realizado.
Flujo normal 1. El usuario solicita el diagnóstico de la imagen.

2. El sistema procesa la imagen para el modelo seleccionado.
3. El sistema carga el modelo seleccionado.
4. El sistema obtiene la predicción del modelo.
5. El sistema realiza el CU-6 - Obtener explicabilidad.
6. El sistema realiza el CU-4 - Actualizar historial.
7. El sistema prepara los resultados para su presentación.
8. El sistema presenta los resultados.

Flujo alternativo 4a. Se produce un error, se vuelve a 1.
5a. Se produce un error, el sistema muestra un mensaje, se vuelve a
1.
6a. Se produce un error, el sistema muestra un mensaje, se vuelve a
1.
8a. El usuario decide realizar otro diagnóstico, se vuelve a 1.

Tabla 8.6: Descripción del caso de uso 3: Realizar diagnóstico.
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CU-4 Actualizar historial
Actor Usuario
Descripción El sistema actualiza el historial añadiendo una nueva entrada con la

predicción realizada.
Precondiciones 1. El modelo seleccionado esta cargado en el sistema.

2. La imagen ha sido cargada en el sistema.
3. El sistema ha realizado la predicción de la imagen cargada.

Postcondiciones El historial contiene una nueva entrada.
Flujo normal 1. El sistema prepara los resultados para la nueva entrada.

2. El sistema crea una nueva entrada con los nuevos resultados.
Flujo alternativo

Tabla 8.7: Descripción del caso de uso 4: Actualizar historial.

CU-5 Obtener explicabilidad
Actor Usuario
Descripción El sistema crea un mapa de saliencia para la imagen cargada.
Precondiciones 1. El modelo seleccionado esta cargado en el sistema.

2. La imagen ha sido cargada en el sistema.

Postcondiciones 1. El mapa de saliencia queda cargado en el sistema.
Flujo normal 1. El sistema calcula el mapa de saliencia para la imagen cargada.

2. El sistema almacena el mapa de saliencia.
Flujo alternativo 1a. Se produce un error, el sistema muestra un mensaje.

Tabla 8.8: Descripción del caso de uso 5: Obtener explicabilidad.

8.3. Diseño

8.4. Patrones de Diseño Aplicados

En el desarrollo de la aplicación se han utilizado varios patrones de diseño que facilitan
la organización modular, la escalabilidad y la reutilización del código. A continuación, se
explican con mayor detalle los patrones implementados.

8.4.1. Singleton

El patrón Singleton restringe la creación de objetos pertenecientes a una clase a una sola
instancia. Se accede a dicha instancia mediante un punto de acceso global. Esto permite el
control centralizado de ciertos recursos evitando duplicar objetos innecesariamente.
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Justificación en la aplicación: Los modelos pueden ocupar una gran cantidad de
memoria debido a la gran cantidad de pesos que se necesitan almacenar, y tardan cierto
tiempo en inicializarse. Para evitar que se cargue múltiples veces innecesariamente cada
modelos, se usa el patrón Singleton. De esta manera, al cargar una vez un modelo, todas las
peticiones futuras referentes al mismo reutilizan la misma instancia ya cargada en memoria
(RAM ), optimizando el rendimiento y reduciendo la latencia de respuesta.

8.4.2. Factory

El patrón Factory centraliza y abstrae la lógica de creación de objetos, permitiendo que
el código cliente no conozca detalles concretos de implementación. Se basa en delegar la
responsabilidad de instanciación a una clase dedicada (fábrica).

Justificación en la aplicación: Se utiliza una fábrica de modelos para construir diná-
micamente los distintos modelos de cada conjunto de datos. El usuario selecciona un modelo
mediante la interfaz, y la Factory se encarga de devolver la instancia correspondiente. Esto
permite una alta extensibilidad del sistema: agregar un nuevo modelo no requiere cambios
en el controlador, solo registrar un nuevo constructor en la fábrica.

8.4.3. Adapter

El patrón Adapter convierte la interfaz de una clase en otra que el sistema espera. Se
utiliza comúnmente para integrar componentes que no fueron diseñados para trabajar juntos.

Justificación en la aplicación: El objeto que representa la imagen subida por el usua-
rio a través del navegador no es directamente compatible con el modelo de PyTorch. Se
implementa un adaptador que convierte el archivo recibido en una imagen transformada y
normalizada, lista para ser procesada por el modelo correspondiente. Esto desacopla la lógica
del servidor HTTP de los detalles internos de procesamiento de datos.

8.4.4. MVC (Modelo-Vista-Controlador)

El patrón Modelo-Vista-Controlador divide la aplicación en tres componentes interconec-
tados que separan las responsabilidades:

Modelo: Contiene la lógica del negocio, en este caso, los diferentes ViT, su iniciali-
zación y ejecución. También abarca la lógica de interpretabilidad (saliency maps) y el
procesamiento de imágenes.

Vista: Es la parte de la aplicación que interactúa con el usuario. En esta aplicación
corresponde al conjunto de archivos HTML, CSS (Tailwind) y JavaScript (incluyendo
Chart.js), que forman la interfaz gráfica y recogen las acciones del usuario.
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Controlador: Gestiona las peticiones del cliente (usuario) y coordina las acciones
del modelo y la vista. Las rutas de Flask actúan como controladores, recibiendo las
imágenes, seleccionando el modelo adecuado, generando predicciones, y devolviendo
los resultados al cliente.

Justificación en la aplicación: Gracias al patrón MVC, la lógica de negocio (modelo) y
la presentación (vista) están claramente separadas, lo que facilita la mantenibilidad, pruebas
unitarias y escalabilidad. Además, permite que distintas vistas se conecten a los mismos
modelos, reutilizando código de forma eficiente.

8.4.5. Diagramas

En esta sección se detalla la arquitectura de la aplicación a través de los diferentes dia-
gramas.

Esquema general

En este primer diagrama, presentado en la Figura 8.2, se muestra el diagrama general
de tipo Uses Style de la aplicación. Como puede observarse, la arquitectura está dividida en
tres componentes principales, correspondientes a las capas del patrón MVC: Model, View
y Controller.

Dentro de la capa View, se realiza una subdivisión adicional en las carpetas Static y
Templates, para tener mejor división entre el HTML y la parte de JavaScript.

Puede apreciarse que la arquitectura sigue un enfoque de capas estrictas, en el que cada
capa únicamente tiene conocimiento de la capa inmediatamente inferior. Esta restricción
contribuye a mejorar la mantenibilidad, escalabilidad y claridad del sistema. Cabe decir que
esta relación no se encuentra en los estereotipos del diagrama con el fin de no sobrecargarlo.

Clases detalladas

A continuación, se presentan los diagramas de clases detallados correspondientes a cada
una de las capas del patrón MVC. Cada diagrama muestra las clases principales, sus métodos
y relaciones.

86



CAPÍTULO 8. APLICACIÓN

Figura 8.2: Diagrama Uses Style general.

Figura 8.3: Diagrama de clases detallado de View.
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Figura 8.4: Diagrama de clases detallado de Routes.

Figura 8.5: Diagrama de clases detallado de Model.

Caso de uso principal

Dado que el caso de uso CU-3 Realizar diagnóstico, no solo es el principal sino también
el más complejo, se detallan tanto el diagrama Uses Style como el de secuencia. La primera
Figura 8.6 corresponde al diagrama Uses Style, el que se observa todas las relaciones entre
las capas. Por otro lado, en la Figura 8.7 se representa el diagrama de secuencia asociado,
en el que se describe la interacción entre los distintos componentes del sistema durante la
ejecución de este caso de uso clave, a parte de referenciar a otros casos de uso contenidos.
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Figura 8.6: Diagrama Uses Style del CU-3 Realizar diagnóstico.

Figura 8.7: Diagrama de secuencia del CU-3 Realizar diagnóstico.

Otros casos de uso

A continuación, se presentan los diagramas de secuencia de otros casos de uso relevantes
para la funcionalidad general de la aplicación.

Se han incluido únicamente los diagramas correspondientes a los casos de uso CU-1 y
CU-5, ya que los casos CU-2 y CU-4 no tienen la complejidad suficiente como para elaborar
un diagrama específico.
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El CU-2 consiste en una operación simple de almacenamiento de una clave a partir de
un elemento HTML, mientras que el CU-4 se reduce a una única llamada a una función
JavaScript, la cual ya se encuentra representada en el paso final del diagrama de la Figura
8.8.

Figura 8.8: Diagrama de secuencia del CU-1 Subir imagen.

Figura 8.9: Diagrama de secuencia del CU-5 Obtener explicabilidad.
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Capítulo 9

Conclusiones

A lo largo de este Trabajo de Fin de Grado se han aprendido y aplicado diversas herra-
mientas, técnicas y metodologías de la Ingeniería Informática. Desde la planificación y diseño
de un proyecto desde cero, hasta el desarrollo del sistema, el uso de librerías especializadas
para Aprendizaje Automático y el uso de entornos de experimentación.

En particular, se han utilizado aspectos avanzados del campo del Aprendizaje Profundo,
centrados en los modelos basados en Transformers. Esto ha permitido ahondar en meca-
nismos como la atención múltiple, la codificación posicional y las técnicas de agregación de
información, adaptando dichas ideas al dominio de la Visión por Computador mediante el
uso de la arquitectura Vision Transformer.

Este proyecto ha permitido explorar las posibilidades de este tipo de arquitecturas en un
entorno médico real, en comparación con enfoques tradicionales basados en Redes Neuronales
Convolucionales, ampliamente utilizadas en este tipo de tareas.

Los resultados obtenidos han sido heterogéneos. En el conjunto de datos de radiografías
cerebrales, se ha conseguido mejorar de forma notable la precisión sobre el conjunto de test,
aumentando en casi un 30 % respecto a los modelos CNN empleados en el trabajo original.
Este resultado pone de manifiesto el potencial de los ViT en entornos, donde las relaciones
espaciales globales sean especialmente relevantes o donde las CNN puedan tener dificultades
para generalizar.

Sin embargo, en los conjuntos de ojos y tórax, los modelos ViT no han logrado superar los
resultados obtenidos previamente con arquitecturas convolucionales. Aunque en ambos casos
se alcanzaron valores de precisión considerablemente altos, los modelos CNN se mantuvieron
por encima. Esto podría explicarse por varios factores, como la dificultad en el ajuste de
hiperparámetros específicos para ViT en situaciones de baja cantidad de datos, o el hecho
de que en ciertos contextos locales (donde patrones espaciales específicos son determinantes)
las CNN siguen siendo más eficientes.

Esta comparación de resultados es de gran importancia, ya que complementa una de las
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principales conclusiones del trabajo: los ViT no deben considerarse un reemplazo directo de
las CNN, sino una alternativa con fortalezas y debilidades propias, que deben valorarse en
función del contexto. En conjuntos donde la cantidad de datos es limitada o donde el detalle
local predomina sobre la estructura global, los ViT pueden no resultar tan efectivos como se
esperaba. Por tanto, una evaluación caso a caso sigue siendo necesaria.

Se ha implementado y analizado una técnica complementaria basada en ViT-ReciproCAM,
con el fin de poder dar explicaciones visuales sobre el funcionamiento interno de los modelos.
Esta herramienta, adaptada específicamente para modelos basados en atención, ha permitido
generar mapas de saliencia interpretables, que ayudan a identificar las regiones de la imagen
más relevantes para la decisión del modelo. Si bien su aplicación ha sido exploratoria, ha
servido para reforzar la comprensión del comportamiento del sistema.

Se han abordado diversas dificultades relacionadas con el ajuste de los modelos, desta-
cando especialmente los fenómenos de overfitting e underfitting. Para hacerles frente, se han
implementado múltiples estrategias de regularización y ajuste estructural, incluyendo varia-
ciones en la profundidad de la arquitectura, modificaciones en las tasas de dropout o ajustes
en la función de pérdida. Estos cambios han requerido un proceso iterativo de experimenta-
ción de larga duración.

A pesar de estas limitaciones, el trabajo ha permitido explorar en profundidad el fun-
cionamiento de los Vision Transformers de manera específica, abordando aspectos como la
división en patches, el uso de posiciones embebidas y su estructura basada en el Transformer
original. Igualmente, se ha llevado a cabo un análisis detallado sobre configuraciones estruc-
turales, como el uso de bloques residuales o la selección del vector de salida ([CLS] vs. mean
pooling), de gran utilidad a la hora de refinar cada modelo.

En términos generales, este proyecto ha contribuido a consolidar competencias adquiridas
a lo largo del grado, familiarizarse con arquitecturas ciertamente modernas en el campo del
Deep Learning.

9.1. Líneas de trabajo futuras

Existen diversos caminos para ampliar el alcance de este trabajo:

Optimización de hiperparámetros: aunque se han obtenido resultados satisfacto-
rios mediante ajustes manuales, la aplicación de técnicas sistemáticas podría permitir
identificar configuraciones más eficientes, sobre todo en los casos donde el rendimiento
ha sido más limitado o inestable.

Extensión del conjunto de datos: dado que los modelos ViT tienden a beneficiarse
de grandes cantidades de datos, la incorporación de nuevas muestras mediante la reco-
lección directa, o el uso de conjuntos públicos adicionales, podría mejorar la capacidad
de generalización de los modelos.

Análisis en profundidad de un conjunto específico: una de las rarezas del proyec-
to ha sido trabajar simultáneamente con tres conjuntos de datos distintos. Un enfoque
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alternativo sería centrarse en uno sólo de ellos y realizar un análisis más profundo y
específico, explorando configuraciones más avanzadas y ajustadas de manera particular.

Mejora de la aplicación: actualmente la aplicación cumple su función, pero se po-
drían añadir aspectos para perfeccionar la interfaz de usuario, seguridad y en la simul-
taneidad. Esto se haría con un servidor, creando una buena configuración a través de
la red y adaptando el sistema para permitir un uso más eficiente y escalable.

Escalabilidad mediante hardware avanzado: muchas de las limitaciones expe-
rimentadas durante el desarrollo han estado condicionadas por la capacidad compu-
tacional disponible. Contar con un hardware más potente (como GPUs de gama alta)
permitiría entrenar modelos más profundos y complejos, así como realizar experimen-
taciones en tiempos más razonables.
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APÉNDICE A. CÓDIGO

Apéndice A

Código

1 class PatchEmbedding (nn. Module ):
2 def __init__ (self , img_size , patch_size , in_channels , emb_dim ):
3 super (). __init__ ()
4

5 patch_dim = patch_size * patch_size * in_channels
6 self. n_patches = ( img_size // patch_size ) ** 2
7

8 # First option : embedding with proyection
9 self. to_patch_embedding = nn. Sequential (

10 Rearrange (’b c (h p1) (w p2) -> b (h w) (p1 p2 c)’, p1=patch_size ,
p2= patch_size ),

11 nn. Linear (patch_dim , emb_dim ),
12 nn. LayerNorm ( emb_dim )
13 )
14

15 # Second option : embedding without proyection
16 self. to_patch_embedding_solo = Rearrange (’b c (h p1) (w p2) -> b (

h w) (p1 p2 c)’, p1=patch_size , p2= patch_size )
17

18 def forward (self , x):
19 return self. to_patch_embedding_solo (x)

Listing A.1: Clase del Patch Embedding (segunda opción activada)

1 class TransformerBlock (nn. Module ):
2 def __init__ (self , emb_dim , num_heads , mlp_dim , dropout ):
3 super (). __init__ ()
4

5 # Normalization layers
6 self.norm1 = nn. LayerNorm ( emb_dim )
7 self.norm2 = nn. LayerNorm ( emb_dim )
8
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9 # Multihead attention
10 self.attn = nn. MultiheadAttention ( embed_dim =emb_dim , num_heads =

num_heads , dropout =dropout , batch_first =True)
11

12 # Feed - forward
13 self.mlp = nn. Sequential (
14 nn. Linear (emb_dim , mlp_dim ),
15 nn.ReLU (),
16 nn. Linear (mlp_dim , emb_dim ),
17 nn. Dropout ( dropout )
18 )
19

20 def forward (self , x):
21 # First block: multi -head self - attention with residual connection

and layer normalization
22 attn_output , _ = self.attn(x, x, x, need_weights =False)
23 x = self.norm1(x + attn_output )
24

25 # Second block: feed - forward network with residual connection and
layer normalization

26 ff_output = self.mlp(x)
27 x = self.norm2(x + ff_output )
28

29 return x

Listing A.2: Clase del bloque del codificador Transformer

1 def forward (self , x):
2 # First block: multi -head self - attention with residual connection

and layer normalization
3 attn_output , _ = self.attn(x, x, x, need_weights =False)
4 x = self.norm1(x + attn_output )
5

6 # Second block: feed - forward network followed by layer
normalization (no residual connection here)

7 ff_output = self.mlp(x)
8 x = self.norm2( ff_output )
9

10 return x

Listing A.3: Segunda versión parte feed-forward

1 class ViT(nn. Module ):
2 def __init__ (self , img_size , patch_size , in_channels , emb_dim ,

num_heads , mlp_dim , num_layers , num_classes , dropout ):
3 super (). __init__ ()
4

5 # Converts the input image into a sequence of flattened patches (
tokens )
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6 self. patch_embed = PatchEmbedding (img_size , patch_size ,
in_channels , emb_dim )

7

8 # Learnable [CLS] token used as a global representation
9 self. cls_token = nn. Parameter (torch.randn (1, 1, emb_dim , device =

device ))
10

11 # Learnable positional encoding added to patch embeddings and the
[CLS] token

12 self. pos_embedding = nn. Parameter (torch.randn (1, 1 + self.
patch_embed .n_patches , emb_dim , device = device ))

13

14 # Stack of Transformer encoder blocks
15 self. transformer_blocks = nn. Sequential (
16 *[ TransformerBlock (emb_dim , num_heads , mlp_dim , dropout ) for _ in

range( num_layers )]
17 )
18

19 # Layer normalization before classification
20 self.norm = nn. LayerNorm ( emb_dim )
21

22 # Final linear classification head
23 self. mlp_head = nn. Linear (emb_dim , num_classes )
24

25 def forward (self , x):
26 # Batch size
27 B = x.shape [0]
28

29 # Patch embedding of the input image
30 x = self. patch_embed (x)
31

32 # Expand and concatenate [CLS] token with patch tokens
33 cls_tokens = self. cls_token . expand (B, -1, -1)
34 x = torch.cat ([ cls_tokens , x], dim =1)
35

36 # Add positional encoding
37 x = x + self. pos_embedding [:, :x.size (1) , :]
38

39 # Pass through Transformer encoder blocks
40 x = self. transformer_blocks (x)
41

42 # Extract and normalize the [CLS] token and classification
43 x = self.norm(x[:, 0])
44 return self. mlp_head (x)

Listing A.4: Clase principial del ViT con CLS

1 class ViTWithMeanPooling (nn. Module ):
2 def __init__ (self , img_size , patch_size , in_channels , emb_dim ,

num_heads , mlp_dim , num_layers , num_classes , dropout ):
3 super (). __init__ ()
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4

5 # Converts the input image into a sequence of flattened patches (
tokens )

6 self. patch_embed = PatchEmbedding (img_size , patch_size ,
in_channels , emb_dim )

7

8 # Learnable positional encoding added to the patch embeddings
9 self. pos_embedding = nn. Parameter (torch.randn (1, self. patch_embed .

n_patches , emb_dim , device = device ))
10

11 # Stack of Transformer encoder blocks
12 self. transformer_blocks = nn. Sequential (
13 *[ TransformerBlock (emb_dim , num_heads , mlp_dim , dropout ) for _ in

range( num_layers )]
14 )
15

16 # Layer normalization before classification
17 self.norm = nn. LayerNorm ( emb_dim )
18

19 # Final linear classification head
20 self. mlp_head = nn. Linear (emb_dim , num_classes )
21

22 def forward (self , x):
23 # Patch embedding with positional encoding
24 x = self. patch_embed (x)
25 x = x + self. pos_embedding [:, :x.size (1) , :]
26

27 # Pass through Transformer encoder blocks
28 x = self. transformer_blocks (x)
29

30 # Global mean pooling over all token embeddings ( instead of using
a [CLS] token)

31 x = x.mean(dim =1)
32

33 # Final normalization and classification
34 x = self.norm(x)
35 return self. mlp_head (x)

Listing A.5: Clase principial del ViT con Mean Pooling

1 class HDF5Datasetv2 ( Dataset ):
2 def __init__ (self , h5_file_path , train=True , validate =False):
3 self. h5_file = h5py.File( h5_file_path , "r")
4 if validate :
5 self. images = self. h5_file [’val_images ’]
6 self. labels = self. h5_file [’val_labels ’]
7 self.split = "val"
8 else:
9 if train:

10 self. images = self. h5_file [’train_images ’]
11 self. labels = self. h5_file [’train_labels ’]
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12 self.split = "train"
13 else:
14 self. images = self. h5_file [’test_images ’]
15 self. labels = self. h5_file [’test_labels ’]
16 self.split = "test"
17

18

19 def __len__ (self):
20 return len(self. labels )
21

22 def __getitem__ (self , idx):
23 image = torch. tensor (self. images [idx], dtype=torch. float32

) # (1, 256, 256)
24 label = torch. tensor (self. labels [idx], dtype=torch.long)
25 return image , label
26

27 def close(self):
28 self. h5_file .close ()

Listing A.6: Clase del dataset para archivos HDF5.

1 class HDF5Datasetv2 ( Dataset ):
2 def __init__ (self , h5_file_path , train=True , validate =False):
3 self. h5_file = h5py.File( h5_file_path , "r")
4 if validate :
5 self. images = self. h5_file [’val_images ’]
6 self. labels = self. h5_file [’val_labels ’]
7 self.split = "val"
8 else:
9 if train:

10 self. images = self. h5_file [’train_images ’]
11 self. labels = self. h5_file [’train_labels ’]
12 self.split = "train"
13 else:
14 self. images = self. h5_file [’test_images ’]
15 self. labels = self. h5_file [’test_labels ’]
16 self.split = "test"
17

18 # Transforms
19 if self.split == "train":
20 self. transform = v2. Compose ([
21 v2. RandomHorizontalFlip (),
22 v2. RandomAdjustSharpness ( sharpness_factor =1.5 , p

=0.3) ,
23 v2. RandomAutocontrast (p=0.2) ,
24 v2. RandomRotation ( degrees =5) ,
25 v2. RandomPerspective ( distortion_scale =0.1 , p=0.3)
26 ])
27

28 def __len__ (self):
29 return len(self. labels )
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30

31 def __getitem__ (self , idx):
32 image = torch. tensor (self. images [idx], dtype=torch. float32

) # (1, 256, 256)
33 if self.split == "train":
34 image = self. transform (image)
35 label = torch. tensor (self. labels [idx], dtype=torch.long)
36 return image , label
37

38 def close(self):
39 self. h5_file .close ()

Listing A.7: Clase del dataset para archivos HDF5 version 2.

1 import h5py
2 import numpy as np
3 from torchvision import datasets , transforms
4 from tqdm import tqdm
5

6 train_dataset_path = "../ data/torax/train"
7 test_dataset_path = "../ data/torax/test"
8 output_file = "../ data/ torax_dataset_modif_rot_5 .h5"
9

10 tam = 256
11 train_transform = transforms . Compose ([
12 transforms . Resize ((tam ,tam)),
13 # transforms . RandomHorizontalFlip (),
14 transforms . RandomRotation (5) ,
15 # transforms . ColorJitter (0.4 , 0.4, 0.4, 0.1) ,
16 transforms . ToTensor (),
17 # transforms . Normalize (mean =[0.5]*3 , std =[0.5]*3)
18 ])
19

20 test_transform = transforms . Compose ([
21 transforms . Resize ((tam ,tam)),
22 transforms . ToTensor (),
23 # transforms . Normalize (mean =[0.5]*3 , std =[0.5]*3)
24 ])
25

26

27 train_dataset = datasets . ImageFolder (root= train_dataset_path ,
transform = train_transform )

28 test_dataset = datasets . ImageFolder (root= test_dataset_path ,
transform = test_transform )

29

30 with h5py.File( output_file , "w") as hdf:
31 train_images = hdf. create_dataset (" train_images ", shape =( len(

train_dataset ), 3, tam , tam), dtype=np. float32 )
32 train_labels = hdf. create_dataset (" train_labels ", shape =( len(

train_dataset ) ,), dtype=np.int64)
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33 test_images = hdf. create_dataset (" test_images ", shape =( len(
test_dataset ), 3, tam , tam), dtype=np. float32 )

34 test_labels = hdf. create_dataset (" test_labels ", shape =( len(
test_dataset ) ,), dtype=np.int64)

35

36 class_names = train_dataset . classes # Asumimos que las clases son
las mismas en ambos

37 hdf.attrs[" class_names "] = [name. encode ("utf -8") for name in
class_names ]

38

39 # Entrenamiento
40 for i, (img , label) in tqdm( enumerate ( train_dataset ), total=len(

train_dataset ), desc=" Procesando entrenamiento "):
41 train_images [i] = img.numpy (). astype (np. float32 )
42 train_labels [i] = label
43

44 # Test
45 for i, (img , label) in tqdm( enumerate ( test_dataset ), total=len(

test_dataset ), desc=" Procesando prueba "):
46 test_images [i] = img.numpy (). astype (np. float32 )
47 test_labels [i] = label
48

49 print(f" Archivo HDF5 creado !")
50 print(f" Imagenes train: {len( train_dataset )}")
51 print(f" Imagenes test: {len( test_dataset )}")
52 print(f" Clases : { class_names }")

Listing A.8: Creación de archivos HDF5, caso tórax.

1 for epoch in range( num_epochs ):
2 print(f"Epoch: {epoch + 1}/{ num_epochs }")
3

4 # Training
5 model.train ()
6 running_loss , correct , total = 0.0, 0, 0
7

8 for images , targets in tqdm( train_loader ):
9 images , targets = images .to(device , non_blocking =True),

targets .to(device , non_blocking =True)
10 optimizer . zero_grad ()
11 y_pred = model( images )
12 loss = criterion (y_pred , targets .long ())
13 loss. backward ()
14 optimizer .step ()
15

16 scheduler .step ()
17

18 running_loss += loss.item ()
19 correct += ( y_pred . argmax (dim =1) == targets ).sum ().item ()
20 total += targets .size (0)
21
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22 # scheduler .step ()
23

24 train_loss . append ( running_loss / len( train_loader ))
25 train_accuracy . append ( correct / total)
26 print(f’Train Loss: { train_loss [ -1]:.5f}\ tTrain Accuracy : {

train_accuracy [ -1]:.5f}’)
27

28 # Testing
29 model.eval ()
30 correct , total , running_loss = 0, 0, 0.0
31

32 with torch. no_grad ():
33 for images , targets in test_loader :
34 images , targets = images .to(device , non_blocking =True)

, targets .to(device , non_blocking =True)
35 y_test_pred = model( images )
36 loss = criterion ( y_test_pred , targets .long ())
37

38 running_loss += loss.item ()
39 correct += ( y_test_pred . argmax (dim =1) == targets ).sum

().item ()
40 total += targets .size (0)
41

42 test_loss . append ( running_loss / len( test_loader ))
43 test_accuracy . append ( correct / total)
44 learning_rate . append ( optimizer . param_groups [0][ ’lr’])
45 print(f’Test Loss: { test_loss [ -1]:.5f}\ tTest Accuracy : {

test_accuracy [ -1]:.5f}\ tLearning Rate: { learning_rate [ -1]} ’
)

46

47 # scheduler .step ()

Listing A.9: Bucle de entrenamiento.

1 # Best model saving
2 if epoch > 70:
3 if test_accuracy [-1] < best_test_acc :
4 best_test_acc = test_accuracy [-1]
5 best_model_state = model. state_dict ()
6 torch.save( best_model_state , " modelo_brain .pth")
7 print(f"Model saved (epoch {epoch +1}) with Test Loss: { test_loss

[ -1]:.5f} and Accuracy : { test_accuracy [ -1]:.5f}")
8 epochs_without_improvement = 0
9 else:

10 epochs_without_improvement += 1
11

12 # Early stopping condition
13 if epochs_without_improvement >= early_stop_patience :
14 print("Early stopping triggered . No improvement in the last 10

epochs .")
15 break

106



APÉNDICE A. CÓDIGO

Listing A.10: Selección de mejor modelo.

1 def forward_features (self , x):
2 x = self. patch_embed (x)
3 x = x + self. pos_embedding [:, :x.size (1) , :]
4 x = self. transformer_blocks (x)
5 return x # [B, T, D]
6

7 def forward_head (self , tokens ):
8 x = tokens .mean(dim =1)
9 x = self.norm(x)

10 return self. mlp_head (x)

Listing A.11: Métodos adicionales para ViT con Mean Pooling.

1 def forward_features (self , x):
2 B = x.shape [0]
3 x = self. patch_embed (x)
4 cls_tokens = self. cls_token . expand (B, -1, -1)
5 x = torch.cat ([ cls_tokens , x], dim =1)
6 x = x + self. pos_embedding [:, :x.size (1) , :]
7 x = self. transformer_blocks (x)
8 return x # [B, T+1, D]
9

10 def forward_head (self , tokens ):
11 cls_token = self.norm( tokens [:, 0])
12 return self. mlp_head ( cls_token )

Listing A.12: Métodos adicionales para ViT original (CLS).

1 def mask_tokens_block_3x3 (tokens , patch_size =8, center_row =0,
center_col =0, fill_value =0.0):

2

3 tokens = tokens .clone ()
4 num_patches = int (( tokens .shape [1]) ** 0.5) # se asume cuadrIcula

P x P
5 D = tokens .shape [2]
6

7 for dr in [-1, 0, 1]:
8 for dc in [-1, 0, 1]:
9 r = center_row + dr

10 c = center_col + dc
11 if 0 <= r < num_patches and 0 <= c < num_patches :
12 idx = r * num_patches + c
13 tokens [0, idx , :] = fill_value
14 return tokens
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Listing A.13: Función de enmascaramiento 3x3.

1 model.eval ()
2 image = image.to( device ). unsqueeze (0) # [1, 3, 128, 128]
3

4 with torch. no_grad ():
5 tokens = model. forward_features (image)
6 logits = model. forward_head ( tokens )
7 pred_class = logits . argmax (dim =1).item ()
8 original_score = logits [0, pred_class ]. item ()
9

10 import matplotlib . pyplot as plt
11 import torchvision . transforms as T
12 import torch.nn. functional as F
13

14 print(f"Clase verdadera : {label}")
15 print(f"Clase predicha : { pred_class }")
16

17 # Upsample the saliency map to match image size
18 upsampled_map = F. interpolate (
19 saliency_map . unsqueeze (0). unsqueeze (0) ,
20 size =(128 , 128) ,
21 mode=’bilinear ’,
22 align_corners =False
23 ). squeeze ().cpu ().numpy ()
24

25 import numpy as np
26

27 low , high = np. percentile ( upsampled_map , [5, 95]) # recorta los
extremos

28 norm_map = ( upsampled_map - low) / (high - low + 1e -8)
29 norm_map = norm_map .clip (0, 1)
30

31

32 # Visualizacion
33 plt. imshow (T. ToPILImage ()(image. squeeze ().cpu ()))
34 plt. imshow (norm_map , cmap=’turbo ’, alpha =0.4) # turbo , jet , plasma

, viridis
35 plt. colorbar (label=" Importancia relativa ")
36 plt.title("ReciproCAM - normalized saliency map")
37 plt.axis(’off ’)
38 plt.show ()

Listing A.14: Ejemplo de creación de mapa de saliencia.
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Apéndice B

Manual de instalación

Este apéndice detalla el procedimiento necesario para clonar, construir y ejecutar la apli-
cación desarrollada en este Trabajo de Fin de Grado. Se proporciona una guía paso a paso
para asegurar su correcta instalación mediante Docker.

1. Clonación del repositorio

Para obtener una copia local del proyecto, es necesario clonar el repositorio desde GitLab
(o GitHub) mediante el siguiente comando en la terminal:

git clone https://gitlab.inf.uva.es/usuario/repositorio.git

Reemplace la URL por la correspondiente al repositorio real.

2. Requisitos previos

Para ejecutar el proyecto mediante contenedores, es necesario tener instalado:

Docker Desktop, disponible en: https://www.docker.com/products/docker-des
ktop

Acceso a una terminal de comandos (CMD, PowerShell o WSL en Windows)
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3. Construcción de la imagen Docker

Desde la raíz del repositorio, acceda a la carpeta principal del proyecto (por ejemplo,
projecto-app):

cd repositorio/projecto-app

Ejecute el siguiente comando para construir la imagen Docker:

docker build -t mi-app-tfg .

Este proceso descargará la imagen base de Python, copiará el contenido del proyecto y
ejecutará la instalación de las dependencias indicadas en el archivo requirements.txt.

4. Ejecución de la aplicación

Una vez construida la imagen, puede iniciarse el contenedor mediante:

docker run -p 5000:5000 mi-app-tfg

Este comando expone el puerto 5000 del contenedor al mismo puerto en el host, permi-
tiendo acceder a la aplicación desde un navegador.

5. Acceso a la aplicación

Con el contenedor en ejecución, la aplicación se encuentra disponible en el navegador en
la siguiente dirección:

http://localhost:5000
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6. Notas adicionales

La aplicación está desarrollada con Python 3.13 y el microframework Flask.

El contenedor utiliza como base una imagen oficial de Python optimizada (slim).

Este despliegue corresponde al entorno de desarrollo. Para producción se recomienda
utilizar un servidor WSGI.
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Apéndice C

Manual de usuario

Este apéndice describe el funcionamiento de la aplicación web desarrollada, desde la carga
de una imagen hasta la obtención de resultados de predicción utilizando distintos modelos
de clasificación. Se incluye una guía visual que ilustra cada paso del proceso.

1. Página de inicio

Al acceder a la dirección http://localhost:5000, se carga la página principal de la
aplicación, que permite al usuario subir la imagen que desee.

Figura C.1: Pagina inicial.
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2. Carga de imagen

El usuario debe seleccionar desde su sistema local una imagen compatible para el análisis
(formato .jpg, .png, etc.). Una vez cargada, la imagen se previsualiza en la misma página.

Figura C.2: Pagina con imagen cargada.

3. Selección del modelo

La interfaz permite seleccionar uno de los modelos disponibles para realizar la predicción.
Esta selección se hace a través de un menú desplegable.
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Figura C.3: Pagina seleccionando modelo.

4. Ejecución de la predicción

Al pulsar el botón correspondiente, la aplicación ejecuta el modelo seleccionado sobre
la imagen cargada, procesándola internamente. Durante este proceso, puede mostrarse un
indicador de carga.

Figura C.4: Pagina realizando la predicción.
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5. Visualización de resultados

Finalizada la predicción, se muestran en pantalla los resultados obtenidos: la probabilidad
de cada clase, la clase predicha, el mapa de saliencia explicativo y la nueva entrada en el
historial de predicciones.

Figura C.5: Pagina con todos los resultados.
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