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Resumen 
El trabajo desarrollado para este proyecto consta de la elaboración de un modelo especialista en 

inversión financiera usando métodos de NLP y RAG. Se tienen como referencia 21 cartas redactadas 

por el TCI hacia las compañías de las cuales es inversor activo y el objetivo es que el modelo desarrollado 

sea capaz de responder consultas propuestas por el usuario a cerca de los temas recogidos en dichas 

cartas. Este modelo podría ser la base un proyecto mayor en el que el ámbito de estudio sea mucho más 

amplio. 

 

Abstract 
The work developed for this Project involves creating a specialized financial investment model using 

NLP and RAG methods. 21 letters written by TCI to companies in which is it an active investor are used 

as reference, and the goal is for the developed model to be able to respond to user queries regarding the 

topics covered in these letters. This model could be the basis for a larger Project with a much broader 

scope of study.
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Capítulo 1 – Introducción 

Dentro de este trabajo se explicará cómo crear un modelo especialista en inversión financiera usando 

técnicas de aprendizaje automático y de procesamiento de lenguaje natural (NLP). Para ello se explican 

conceptos clave como las redes neuronales, los modelos de lenguaje y el mecanismo de Rerieval-

Augmented Generation (RAG). 

 

Concretamente se estudiará un caso de uso relacionado con The Children’s Investment (TCI) Fund 

Management, una empresa gestora de fondos de cobertura hacia otras compañías fundada en 2003 por 

Chris Hohn. TCI exige a las compañías de las cuales son accionistas ciertos cambios relacionados con 

políticas medioambientales, como la reducción de emisiones de gases de efecto invernadero, la 

deforestación, etc. Estos cambios los solicita a través de cartas. 

 

El modelo desarrollado, por tanto, tiene como objetivo extraer información precisa de dichas cartas, 

teniendo que ser capaz de responder a las motivaciones y requerimientos concretos que precisa TCI 

sobre las compañías para ayudar a entender el fin del comportamiento de los fondos de inversión. 

 

1.1 Objetivos 

Aunque en el caso que se desarrolla en este documento solamente hay 21 cartas de ejemplo, que, a 

priori, se podrían estudiar manualmente sin necesidad de una herramienta, el propósito principal es poder 

llegar a desarrollar una fase beta de un modelo especialista en inversión financiera el cual tiene como 

objetivo poder resolver dudas sobre documentos técnicos pertenecientes a este campo. Para poder 

cumplir este objetivo se establecen una serie de pasos a seguir: 

 

1. Obtención del dataset de entrenamiento 

2. Aprender a manejar LLMs 

3. Fine-tuning 

4. Aplicación de RAG 

5. Evaluación del sistema RAG creado 
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Capítulo 2 – Contexto 

A lo largo de este capítulo se explican los conceptos básicos sobre los que se desarrolla el trabajo, 

tales como las redes neuronales, los modelos de lenguaje o el método RAG, entre otros. En cada 

apartado se explicarán los fundamentos en los que se basan, sus características, etc. 

 

2.1 Descripción del problema financiero 

En los últimos años ha aumentado la presencia de inversores institucionales (fondos de inversión, 

fondos de cobertura, fondos de pensiones, fondos soberanos, etc.) en el capital de las empresas. 

Alrededor del 70% de empresas cotizadas en USA tienen como accionistas a estos inversores, los tres 

gestores de fondos por excelencia (BlackRock, Vanguard y State Street) controlan más del 25% de las 

acciones del S&P 500 (Standard & Poor’s 500 Index), uno de los índices bursátiles principales presentes 

en la bolsa de Nueva York, y de las bolsas pertenecientes a la comunidad europea. En España, estos 

inversores tienen presencia en 77 empresas (dato extraído de 2023), y en 23 de ellas con más de un 5% 

[1]. 

 

Normalmente los inversores institucionales no son los principales accionistas de las empresas, pero 

no quiere decir que no sean relevantes, especialmente en los últimos años donde han adquirido un papel 

protagonista en la toma de decisiones y en las políticas que rigen a las empresas. En el caso que compete 

a este trabajo, TCI (fondo de cobertura), plantea cambios y propuestas a las empresas en las que invierte 

el capital, relacionados con las políticas medioambientales a través de cartas, instando a estas a aceptarlas 

ya que de lo contario amenazan con votar en contra y presentar resoluciones de desaprobación en las 

juntas de accionistas, llegando incluso a evaluar la posible desvinculación (y, por tanto, la retirada de 

capital) con la empresa. TCI sostiene que, sin dichos cambios, la rentabilidad y sostenibilidad de las 

empresas decaerán a largo plazo, lo que principalmente se traduce en pérdidas monetarias para ellos [2]. 

 

2.2 Introducción a las Redes neuronales 

Durante todo este apartado se usa en gran parte la referencia [3]. 

 

Las redes neuronales artificiales (RNA), son modelos de aprendizaje automático que simulan el 

comportamiento de un cerebro humano, inspirado en la estructura de este. Las RNA están compuestas 

por unidades llamadas neuronas artificiales, las cuales procesan información imitando el 

comportamiento de las neuronas biológicas. El objetivo principal de estas redes es reconocer patrones, 

tomar decisiones basadas en los datos de entrada y llegar a conclusiones [4]. 

 

Las redes neuronales han revolucionado el campo del aprendizaje automático gracias a la capacidad 

de modelar relaciones complejas, aprender grandes volúmenes de datos y generalizar a nuevos ejemplos. 

Se utilizan en una amplia variedad de aplicaciones como reconocimiento de imágenes, procesamiento 

de lenguaje natural, diagnósticos médicos, etc. 
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2.2.1 Concepto y evolución de las Redes Neuronales 

El desarrollo de las redes neuronales artificiales tiene sus raíces en torno a los años 50 y 60 cuando 

Frank Rosenblatt desarrolló el perceptrón, un modelo matemático inspirado en las neuronas biológicas. 

El modelo recibe unos datos de entrada, cada uno con su peso correspondiente, y al realizar la suma 

ponderada se obtiene una salida binaria (0 o 1): 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =

{
 
 

 
 0 𝑖𝑓 ∑𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

1 𝑖𝑓 ∑𝑤𝑗𝑥𝑗
𝑗

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

Figura 1: Modelo del perceptrón 

 
Figura 2: Comparación entre una neurona biológica y un perceptrón [5] 

 

Inicialmente, los perceptrones podían simular puertas lógicas como NAND u OR, lo que permitía 

realizar operaciones básicas de clasificación. Sin embargo, tenían una limitación importante, no eran 

capaces de resolver problemas no lineales (un ejemplo de ello sería la puerta XOR). Esto derivó al 

desarrollo de perceptrones multicapa (MLP) que introdujeron capas ocultas y permitieron que las redes 

neuronales aprendiesen relaciones más complejas entre los datos. 

 

Como podemos ver en la “Figura 1” se utiliza un umbral fijo lo cual puede llegar a ser poco productivo 

a la hora de crear algo más complejo. Por ello, esta función evolucionó y se introdujo el concepto de 

sesgo (bias), permitiendo una mayor flexibilidad y que se pueda ajustar la salida de la neurona sin 

depender exclusivamente de las entradas. Así queda la nueva ecuación: 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 1

 

Figura 3: Adición del sesgo al perceptrón 

 

Aun con esta modificación el perceptrón seguía siendo una capa muy básica, si se desean resolver 

problemas más complejos se han de utilizar algoritmos de aprendizaje automático lo cual permite que 

se resuelvan estos problemas sin intervención del programador. La idea es que nuestra red de 

perceptrones sea capaz de aprender los pesos y los sesgos, para ello se podrían introducir pequeños 

cambios para ajustar las salidas, dichos cambios harían posible el aprendizaje, pero cuando se ajusta una 

salida se producen cambios en otras salidas y es algo realmente difícil de controlar. 
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Todo este problema se puede resolver introduciendo lo que se llaman neuronas sigmoides (también 

llamadas logísticas), son similares a los perceptrones, pero un pequeño cambio en los pesos o sesgos de 

estas solamente causan un pequeño cambio en las salidas. Como diferencia con los perceptrones, las 

neuronas generan una salida continua entre [0,1] en lugar de los valores estrictamente binarios. La 

función de activación sigmoide se define como: 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

Figura 4: Ecuación de la sigmoide 

 

Donde z1 es la entrada ponderada de la neurona, calculada como: 

 

𝑧 ≡ 𝑤 ∙ 𝑥 + 𝑏 
Figura 5: Entrada ponderada de una neurona 

 
Donde: 

• w: son los pesos de la red. 

• x: es la entrada. 

• b: es el sesgo. 

 

2.2.2 Arquitectura de las Redes Neuronales 

Las MLP siguen la siguiente estructura: [6] 

 

1. Capa de entrada (Input layer): Esta capa se encarga de recibir los datos iniciales y se pasan a 

la siguiente capa sin aplicar ninguna transformación sobre ellos. 

2. Capas ocultas (Hidden layers): Pueden existir una o más capas ocultas. Procesan la información 

detectando patrones más complejos, cada neurona aplica una transformación a la información 

recibida de la capa anterior. 

3. Capa de salida (Output layer): Genera la predicción o el resultado final. El número de neuronas 

que hay en esta capa normalmente se elige según la tarea a realizar (Por ejemplo, si queremos 

hacer una clasificación binaria, solamente habrá 2 neuronas). 

4. Pesos (Weights): Una neurona puede estar conectada con una o más neuronas de las capas 

adyacentes, cada conexión tiene un peso asociado. 

5. Neuronas de sesgo (Bias Neurons): Son la implementación del término de sesgo ya definido 

previamente. Estas neuronas se pueden incluir en cualquier capa salvo en la de entrada. 

 

El diseño de las capas ocultas determina la capacidad de la red para representar patrones complejos. 

Sin embargo, si una red posee demasiadas capas o neuronas puede volverse ineficiente o producirse un 

 
1 Desde ahora en adelante, siempre que aparezca “z” en esta sección, se hace referencia a esta ecuación. 
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sobreajuste a los datos de entrenamiento. Existen diferentes heurísticas para optimizar su 

comportamiento. 

 

Funciones de activación 

Dentro de la arquitectura también podemos incluir como componente “especial” a las funciones de 

activación. Cada neurona de las capas ocultas y de la capa de salida aplican una función de activación 

a la suma ponderada de las entradas. Las funciones de activación introducen no linealidad en la red, 

permitiendo así que esta aprenda patrones complejos en los datos. Entre las más comunes podemos 

encontrar: [7] [8] 

 

- Función sigmoide (Ver apartado 2.2.1 Concepto y evolución de las Redes Neuronales): Si bien 

la función sigmoide fue una de las primeras en utilizarse, actualmente su uso es limitado debido a 

problemas como el desvanecimiento del gradiente en parte provocado por que su salida no es centrada 

en 0: 

 
Figura 6: Función sigmoide 

 

- Tanh (Hyperbolic tangent): Para resolver el problema de la función sigmoide se introdujo la 

función tanh la cual sí está centrada en 0. La salida de esta función toma valores entre [-1,1] y viene 

dada por: 

tanh (𝑧) ≡
𝑒𝑧−𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

Figura 7: Ecuación de la tangente hiperbólica 
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Figura 8: Función tangente hiperbólica 

 

Sin embargo, aunque sea capaz de mitigar el problema de la función sigmoide, sigue sin poder 

resolverlo del todo y por tanto ambas funciones siguen siendo susceptibles al problema del 

desvanecimiento del gradiente (Este concepto se desarrolla en el apartado 2.3.4.4). 

 

- ReLU (Rectified Linear Unit): Ayuda a evitar el desvanecimiento del gradiente al no comprimir 

tanto el rango de valores como lo hacen las funciones sigmoide o tanh y además requiere de menor coste 

computacional. Su ecuación es: 

𝑓(𝑧) = max(0, 𝑧) 
Figura 9: Ecuación de ReLU 

 

La función ReLU solo activa la neurona si la entrada es positiva, si es negativa, su salida es 0. Debido 

a ello algunos gradientes pueden morir durante el entrenamiento (en las regiones donde x<0). 

 

 
Figura 10: Función ReLU 
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- Leaky ReLU: Modifica la función ReLU original para permitir valores negativos (pequeños) en 

lugar de convertirlos directamente en 0. Se usa un hiperparámetro (con un valor normalmente entre el 

rango 0.01-0.3) para multiplicar los valores negativos, con esto se consigue reducir todavía más el 

problema de desvanecimiento del gradiente. Su función es: 

 

𝑓(𝑧) = {
𝑧  𝑖𝑓 𝑧 > 0
𝛼𝑧  𝑖𝑓 𝑧 ≤ 0

 

Figura 11: Ecuación de Leaky ReLU y Parametric ReLU 

 
Figura 12: Función Leaky ReLU 

 

Una variante de esta función es la Parametric ReLU (PReLU). En lugar de multiplicar los valores 

negativos por una hiperparámetro se utiliza un parámetro aprendible (como si de los pesos o los sesgos 

se tratase), mejora la precisión y la convergencia, pero es más costoso de llevar a cabo. Comparte la 

misma ecuación de la función Leaky ReLU. 

 

 
Figura 13: Función Parametric ReLU 

 
Otras variantes, las cuales se utiliza en los modelos seleccionados para el proyecto son:  
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- SiLU, en la cual se multiplica la entrada por la función sigmoide. En lugar de tener una curva tan 

pronunciada en cero, SiLU permite suavizar dicha curva lo que significa que al cambiar el valor de la 

entrada su salida no cambia tan bruscamente [9]. Su función se describe como: 

 

𝑓(𝑧) = 𝑧 ∗  𝜎(𝑧) 
Figura 14: Ecuación de SiLU 

 

 
Figura 15: Función SiLU 

 
- GeLU, en la cual se multiplica la entrada por la función de distribución acumulativa gaussiana 

estándar, tiene la misma motivación que SiLU, solo que en esta función suaviza menos la curva [10]. Su 

función viene dada por: 

 

𝑓(𝑧) = 𝑧 ∗ 𝜙(𝑧) 
 

Esta ecuación se puede aproximar a: 

 

𝑓(𝑧) = 𝑧 ∗ 𝜎(1.702𝑧) 
Figura 16: Ecuación aproximada de GeLU 
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Figura 17: Función GeLU 

 
Gracias a dichas funciones, las redes neuronales modernas se pueden entrenar de una manera más 

eficiente siempre y cuando se escoja adecuadamente la mejor función que se adapte a la naturaleza del 

problema o tarea a resolver. Cabe decir que existen más funciones de activación, pero son mucho más 

complejas de lo que se necesita explicar en este trabajo. 

 

2.2.3 Entrenamiento de Redes Neuronales 

Para que una red neuronal aprenda a realizar una tarea correctamente, es necesario un proceso de 

entrenamiento en el que se ajustan los pesos y sesgos de cada neurona con el objetivo de minimizar el 

error en las predicciones. De aquí en adelante se toma la función sigmoide como ejemplo para la función 

de activación. 

 

Función de pérdida 

El entrenamiento de una red neuronal se basa en la definición de una función de coste (también 

llamada función de pérdida o función objetivo), que mide la diferencia entre la salida deseada y la salida 

real de nuestro modelo. Podemos distinguir los siguientes tipos: 

 

- Función cuadrática de coste 

La fórmula de la función cuadrática de coste es: 

 

𝐶(𝑤, 𝑏) ≡
1

2𝑛
∑ ∥ 𝑦(𝑥) − 𝑎 ∥2

𝑥

 

Figura 18: Función cuadrática de coste 

 

Donde: 

• w: colección de todos los pesos en la red. 

• b: todos los sesgos. 

• n: número total de entradas. 
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• x: entrada de la red neuronal. 

• y(x): resultado deseado. 

• a: vector de salidas. 

• ||v||: notación que denota la longitud usual de un vector v. 

 

Por ejemplo, en el caso del reconocimiento de dígitos, si una imagen de entrenamiento representa un 6, 

el vector de salida deseado será:  

𝑦(𝑥) = (0,0,0,0,0,0,1,0,0,0)𝑇 

 

Esta función es siempre positiva, cuando se aproxima a 0 significa que y(x) es aproximadamente igual 

a la salida “a” para todas las entradas “x”. Nuestro algoritmo habrá hecho un buen trabajo si conseguimos 

que C(w,b) ≈ 0. 

 

- Entropía cruzada (Cross-Entropy) 

Cuando una red neuronal comete errores graves su aprendizaje se ralentiza, estos errores ocurren 

cuando las salidas de la función sigmoide son cercanas a 0 o 1. En estas regiones la curva de la función 

es plana, lo cual significa que sus derivadas son pequeñas y por ende producen gradientes pequeños. En 

el siguiente apartado se explica por qué tener gradientes pequeños produce esta ralentización de 

aprendizaje. 

 

Para solventar este problema de ralentización se reemplaza la función cuadrática de coste por una 

nueva función de coste conocida como entropía cruzada. La fórmula de la entropía cruzada es: 

 

𝐶 = −
1

𝑛
∑[𝑦 ⋅ log(𝑎) + (1 − 𝑦) ⋅ log(1 − 𝑎)]

 

 

 

Figura 19: Función de entropía cruzada 

 

Donde: 

• y: es la salida deseada de la muestra (suele ser 0 o 1). 

• a: es la salida real de la neurona. 

• n: es el número total de ejemplos. 

 

A simple vista no parece ser una función de coste, pero tiene 2 propiedades que hacen razonable 

interpretarla como tal: 

 

1. La función es positiva. Todos los términos en la suma son negativos y delante del sumatorio 

tenemos un signo negativo, por lo que la expresión es C > 0. 

2. Si la salida real de una neurona es similar a la deseada para todas las entradas, entonces esta 

función será cercana a 0. Esto se llega a conseguir a través del entrenamiento. 

 

(∀𝑥 ∈ 𝑋, 𝑎(𝑥) ≈ 𝑦(𝑥)) ⟹ 𝐶 → 0 
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Al realizar las derivadas parciales respecto a los pesos y los sesgos en ambas funciones, se puede 

apreciar que, en el caso de la entropía cruzada cuanto mayor sea el error en la salida de la neurona, más 

rápido será su aprendizaje. Lo más relevante es que desaparece el término σ′(z) presente en la función 

cuadrática, lo que evita la ralentización de aprendizaje provocada por los gradientes pequeños. 

 

Cuando las neuronas de salidas sean neuronas sigmoideas, usar la función de entropía cruzada es 

siempre mejor que usar la cuadrática. Al formar una red neuronal, normalmente se establecen los pesos 

y los sesgos de manera aleatoria y para evitar la ralentización de aprendizaje se ha de usar esta función. 

 

Algoritmo de retropropagación (Backpropagation) 

Siguiendo la explicación, tenemos claro que el objetivo principal es minimizar la función de coste. 

Para ello usamos este algoritmo cuyo objetivo principal es calcular las derivadas parciales de la función 

de coste con respecto a cualquier peso y sesgo de la red neuronal. Para calcular las derivadas parciales 

con este algoritmo se introduce un término intermedio δi, es el vector de errores asociados en la capa i. 

La retropropagación siempre nos da el procedimiento para calcular dichos errores para cada capa y luego 

poder relacionarlos con las derivadas parciales. 

 

Antes de comenzar a explicar la retropropagación se han de hacer 2 suposiciones para que el algoritmo 

funcione: 

 

1. La función de coste se puede escribir como un promedio: 

 

𝐶 =
1

𝑛
∑𝐶𝑥
𝑥

 

 

La razón de hacer esta suposición es que el algoritmo nos permite calcular las derivadas 

parciales para un solo ejemplo de entrenamiento “x” y, por tanto, para obtener las derivadas de 

la función de coste C, basta con promediar las derivadas obtenidas para cada ejemplo individual. 

 

2. La función de coste también se puede escribir como una función de las salidas de la red neuronal: 

𝐶 = 𝐶(𝑎) 

 

El valor real de la salida, es decir, “y” es fijo y durante el entrenamiento no cambia, lo único 

que se puede modificar en el entrenamiento para minimizar el error es la salida y por tanto se 

considera que C solo depende de las salidas. 

 

El algoritmo consta de 4 pasos principales (se incluyen las 4 ecuaciones fundamentales del 

backpropagation): 
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1. Propagación hacia adelante (Forward pass) 

Para un dato de entrada (x), se calculan las activaciones ai en cada capa de la red. Para ello se 

calcula la entrada ponderada y después se aplica la función de activación: 

 

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙  
Figura 20: Cálculo de la entrada ponderada 

𝑎𝑙 = 𝜎(𝑧𝑙) 

 

2. Cálculo del error en la capa de salida (δL) 

Se calcula el error en la capa de salida utilizando la 1ª ecuación fundamental: 

 

𝛿𝐿 = ∇𝑎𝐶  ⊙  𝜎′(𝑧𝑙) 
Figura 21: Ecuación de error en la capa de salida 

 

3. Retropropagación del error (δl) 

Se calculan los errores δl para cada capa oculta usando la 2ª ecuación fundamental: 

 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1)  ⊙  𝜎′(𝑧𝑙) 
Figura 22: Ecuación de retropropagación del error 

 

4. Cálculo de gradientes de los pesos y los sesgos 

Una vez calculados los errores se calculan los gradientes correspondientes a los pesos y los 

sesgos utilizando para ello las dos últimas ecuaciones fundamentales: 

 

𝜕𝐶

𝜕𝑏𝑙
= 𝛿𝑙 

Figura 23: Ecuación de la derivada del coste respecto a los sesgos 

 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑗

𝑙−1𝛿𝑘
𝑙  

Figura 24: Ecuación de la derivada del coste respecto a los pesos 

 

Sin retro propagación el cálculo de los gradientes sería largo e ineficiente ya que se tendrían que 

repetir los cálculos para cada parámetro de forma independiente. Usar este algoritmo tiene una serie de 

ventajas, alguna puede ser: 

 

• Reutilización de cálculos comunes 

 

• Eficiencia: usarlo implica acelerar el aprendizaje mayormente provocado por la actualización de 

pesos en función del error. 
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• Escalabilidad y generalización: el algoritmo escala eficientemente con conjuntos de datos 

mayores y redes más complejas, también se ayuda a que los modelos generalicen mejor frente a 

nuevos datos. 

 

Algoritmos de optimización 

Como hemos explicado, el objetivo es siempre minimizar al máximo la función de coste, para ello, 

después de obtener los gradientes hay que actualizar los parámetros de la red neuronal, lo cual se 

consigue gracias a los algoritmos de optimización. 

 

- Descenso del gradiente (Gradient Descent) 

Uno de los más utilizados es el descenso del gradiente, el cual ajusta los pesos y los sesgos de la red 

neuronal para reducir el error en cada iteración realizada. El descenso del gradiente sigue estos pasos: 

 

1. Calcula el gradiente (la dirección de mayor descenso) de la función de coste respecto a los pesos 

y los sesgos. 

2. Actualiza los pesos en pequeñas proporciones controladas por la tasa de aprendizaje (𝜂), un valor 

pequeño y positivo. Se necesita que este valor sea lo suficientemente pequeño como para que la 

aproximación sea correcta, pero no demasiado porque si no los cambios también serán pequeños 

y el algoritmo se desarrollaría demasiado lento. 

3. Se repite el proceso iterativamente hasta reducir lo máximo posible la función de coste. 

 

Regla de actualización: 

 

𝑣  ←  𝑣 − 𝜂∇𝐶  
Figura 25: Regla de actualización en DG 

 

Donde: 

• v: son los pesos y sesgos 

• 𝛁𝑪:  es el gradiente de la función de coste. 

• η: es la tasa de aprendizaje. 

 

Al hacer esto una y otra vez seguiremos disminuyendo C hasta conseguir el mínimo. Hay una pequeña 

restricción, ||v|| = ϵ donde ϵ > 0 y es un valor fijo, para garantizar que los pasos de cada iteración son 

pequeños y controlados. Si el número de entradas es muy alto puede tomar mucho tiempo y el 

aprendizaje es muy lento. Para ello se introduce el término llamado descenso de gradiente estocástico. 

 

- Descenso de Gradiente Estocástico (SGD - Stochastic Gradient Descent) 

En lugar de actualizar los pesos usando el conjunto entero de entrenamiento, se actualizan mediante 

pequeños subconjuntos denominados mini-lote (mini-batches). El proceso de entrenamiento con SGD 

se repite en ciclos denominados épocas. En cada época: 

 

1. Se “barajan” los datos aleatoriamente (para evitar la repetición de patrones). 
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2. Se divide el conjunto de entrenamiento en mini-lotes. 

3. Se actualizan los pesos y los sesgos para cada mini-lote, las cuales vienen dadas por la siguiente 

regla: 

𝑣𝑖+1 = 𝑣𝑖 − 𝜂∇𝐶(𝑣𝑖) 
Figura 26: Regla de actualización en SGD 

 

Es la misma idea que en el descenso del gradiente solo que por épocas. 

 

El quid de la cuestión es repetir el SGD con diferentes mini-lotes hasta agotar todas las entradas 

posibles, una vez se llega a este punto se dice que se ha completado una época de entrenamiento. En este 

punto se han de reorganizar las entradas y crear mini-lotes distintos, es decir, empezar otra época. El 

SGD permite que nuestra red neuronal tenga un aprendizaje más rápido y una mejor generalización 

frente a nuevos datos. 

 

- Adam y AdamW 

Son variantes de SGD pues siguen con la idea de ajustar los parámetros en cada paso que da el 

algoritmo. Adam regula la tasa de aprendizaje para cada parámetro mediante dos cálculos principales 

[11]: 

 

1. Momentum (momento): es un promedio móvil exponencial de los anteriores gradientes 

calculados. Se calcula mediante: 

 

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ ∇𝐶𝑡 
Figura 27: Cálculo del momento 

 

Donde: 

• mt: es el momento en el intervalo de tiempo t. 

• β1: es un hiperparámetro para controlar la ponderación que recibe el gradiente anterior. 

• 𝛁𝑪𝒕: es el gradiente actual. 

 

2. RMSprop (Root Mean Square Propagation): es un promedio móvil exponencial de los 

gradientes al cuadrado. Se calcula mediante: 

 

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ (∇𝐶𝑡)
2 

Figura 28: Cálculo del RMSprop 

Donde: 

• vt: es el RMSpropr en el intervalo de tiempo t. 

• β2: es un hiperparámetro para controlar la ponderación que recibe el gradiente al cuadrado 

anterior. 

 

Tanto el momento como RMSprop comienzan con valor igual a 0 (cuando t=0), para ello hay que 

realizar una corrección en los sesgos mediante las siguiente formula de actualización: 
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𝑚𝑡
′ =

𝑚𝑡

(1 − 𝛽1
𝑡)

 

Figura 29: Inicialización del momento 

 

𝑣𝑡
′ =

𝑣𝑡
(1 − 𝛽2

𝑡)
 

Figura 30: Inicialización de RMSprop 

 

Una vez hechas las correcciones se puede escribir en su totalidad la fórmula de Adam: 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚𝑡
′

√𝑣𝑡
′ + 𝜀

 

Figura 31: Fórmula de Adam 

 

Donde: 

• θt: es un parámetro (peso o sesgo) en el intervalo de tiempo t. 

• η: es la tasa de aprendizaje 

• ε: es un número con valor muy reducido, se usa para evitar la división por cero en la fórmula. 

 

Adam es un buen algoritmo de optimización, no obstante, si se le quiere aplicar la regularización L2 

(Término que se explica más adelante en este apartado), se mezcla con las tasas de aprendizaje y puede 

provocar errores, para paliar dicho fallo se introduce su variante AdamW, el cual separa el término de 

regularización y en vez de aplicarlo directamente en la función de pérdida, lo aplica en las 

actualizaciones de los parámetros: 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 (
𝑚𝑡
′

√𝑣𝑡
′ + 𝜀

+ 𝜆 + 𝜃𝑡) 

Figura 32: Fórmula de AdamW 

 

Donde: 

• λ: es el término de regularización. 

 

Selección de hiperparámetros 

El rendimiento de nuestra red neuronal depende de varios factores, su arquitectura y los datos e 

hiperparámetros utilizados para el entrenamiento. No hay que confundirlos con los parámetros internos 

(pesos y sesgos), los hiperparámetros no se aprenden a medida que se entrena, se han de ajustar antes. 

Este ajuste puede ser manual o usando estrategias de optimización. Los hiperparámetros principales son: 

 

• Tasa de aprendizaje (learning rate): Determina con qué rapidez ajusta nuestra red los 

parámetros internos (pesos y sesgos). Si la tasa es baja, esta actualización es lenta y puede tardar 
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mucho en alcanzar la convergencia. Por el contrario, si es demasiado alta, el modelo puede hacer 

una corrección excesiva de errores y provocar que diverja.2 

 

• Tamaño del mini-lote: Determina cuántos ejemplos de entrenamiento se utilizan en cada 

iteración del entrenamiento. Un tamaño de mini-lote pequeño actualiza el modelo con mayor 

frecuencia lo que genera actualizaciones “ruidosas. Si el tamaño del mini-lote es grande el 

modelo se actualiza más lento, pero esto ofrece actualizaciones más estables (también es más 

fácil que se produzca un sobreajuste). 

 

• Número de épocas: Determina cuántas veces se recorre el conjunto de entrenamiento durante 

este. Si hay pocas épocas el modelo puede que no aprenda los suficiente (lo que se conoce como 

underfitting). Por el contrario, si hay muchas épocas, la red puede llegar al sobreajuste 

(overfitting). 

 

• Número de capas y neuronas: Definen la arquitectura de la red neuronal. Las redes poco 

profundas pueden sufrir underfitting al no saber captar relaciones complejas. Las redes muy 

profundas se pueden ver afectadas por el desvanecimiento del gradiente. 

 

• Funciones de activación: Ya han sido explicadas anteriormente. 

 

• Técnicas de regularización (Se explican en el siguiente apartado). 

 

La elección de los hiperparámetros es de elección personal, no hay ninguna regla establecida que 

defina que valores son los óptimos, normalmente su elección se lleva a cabo mediante un proceso de 

experimentación. Las estrategias más comunes son: 

 

• Experimentación manual: Consiste en probar distintas combinaciones de valores y evaluar su 

impacto en el rendimiento de la red neuronal. Es una buena forma de conocer el comportamiento 

de las redes neuronales, pero puede llegar a ser muy lento. 

 

• Búsqueda en cuadrícula (grid search): Se prueban todas las combinaciones posibles de los 

conjuntos de valores para cada hiperparámetro, estas combinaciones forman cuadrículas, de ahí 

el nombre de este método. Se automatiza el proceso de elección por lo que es más eficaz que la 

experimentación manual, pero conlleva aumentar la complejidad computacional. 

 

Problemas que surgen en el entrenamiento 

Durante el proceso de entrenamiento pueden aparecer varios problemas debido a la forma en la que 

se realiza este. Los problemas más comunes son: 

 

 
2 Puede incluso provocar la explosión del gradiente, término que se explica en el siguiente apartado. 
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- Problema del sobreajuste (overfitting) 

El sobreajuste se produce cuando una red neuronal aprende tan bien los detalles del conjunto de 

entrenamiento que tiene un mal desempeño para datos nuevos. La red memoriza todo el conjunto 

incluyendo las partes irrelevantes en lugar de aprender patrones generales que es lo que realmente 

importa.3 Las principales causas de que se produzca el sobreajuste son: 

 

• Red neuronal compleja: Hay demasiadas capas, neuronas y parámetros, la red tiene una gran 

capacidad de aprendizaje, pero puede ocasionar que se memoricen patrones innecesarios y 

provoque sobreajuste. 

 

• Conjunto de datos de entrenamiento pequeño: Por el contrario, si se tienen pocos ejemplos 

de entrenamiento, puede ser que la red se centre en patrones innecesarios que no le permitan 

después generalizar. 

 

• Proceso de entrenamiento prologando: Si entrenamos durante mucho tiempo a una red existe 

un mayor riesgo de que aprenda detalles o patrones específicos del conjunto de entrenamiento y 

que después no sepa generalizar. 

 

Para detectar si nuestra red tiene problemas de sobreajuste nos hemos de fijar en los conjuntos de 

entrenamiento y validación. Si la precisión del conjunto de entrenamiento mejora y la precisión del 

conjunto de validación se estanca o empeora entonces nuestra red se está sobreajustando. Existen 

varias técnicas para evitar el sobreajuste: 

 

• Aumento de datos (Data augmentation): Se crean nuevas variaciones de los datos de 

entrenamiento. Esto aumenta el tamaño del conjunto de entrenamiento y ayuda a la red a poder 

generalizar mejor. Ya que manualmente el obtener nuevos datos puede ser un proceso costoso, 

normalmente se realiza de manera artificial, por ejemplo, si estamos trabajando en clasificación 

de imágenes, con rotar o cambiar algunos tonos de la imagen ya estamos creando una nueva 

variación de esta. 

 

• Regularización: Se añade un término a la función de coste que penaliza a los pesos grandes. 

Este método reduce la complejidad del modelo y así evita que se ajuste a detalles específicos. La 

más usada es la regularización L2 (también conocida como weight decay), la cual penaliza a los 

pesos más grandes mediante un término conocido como término de regularización añadido a la 

función de coste. 

 

• Abandono (Dropout): En lugar de modificar la función de coste, se modifica directamente la 

red. Consiste en “apagar” aleatoriamente neuronas de las capas ocultas en cada iteración del 

entrenamiento, lo cual provoca que cada vez se entrene con una red distinta. Aunque cada versión 

 
3 Por el contrario, el underfitting ocurre cuando la red no consigue aprender los suficientes patrones del conjunto de datos, 

generalmente por ser demasiado simple. Aunque es menos común que el sobreajuste es importante nombrar el concepto 

para entender los problemas que pueden surgir.  
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de la red puede sobreajustarse a una parte del conjunto de datos, al terminar el entrenamiento y 

usar la red completa (sin aplicar dropout), se obtiene una especie de promedio de los efectos 

aprendidos por las diferentes versiones. Esto ayuda a reducir el sobreajuste global de la red y 

mejorar la capacidad de generalización. 

 

• Detención temprana (Early stopping): Se detiene el entrenamiento antes de que la red tenga la 

posibilidad de sobreajustarse, se lleva a cabo mediante la monitorización del conjunto de 

validación, deteniendo el entrenamiento cuando este deje de mejorar. 

 

- Desvanecimiento y explosión del gradiente 

Este problema ocurre al usar la retropropagación, los gradientes se calculan mediante las derivadas 

parciales en las cuales aparecen multiplicaciones, debido al término introducido por la función sigmoide 

y la inicialización escogida de los parámetros, este producto puede disminuir (desvanecimiento) o crecer 

(explosión) a medida que se retrocede en las capas ocultas. En redes neuronales profundas formadas por 

muchas capas este problema crece debido a que el número de operaciones a realizar aumenta. 

 

• Desvanecimiento del gradiente (Vanishing gradient): Los gradientes se vuelven 

extremadamente pequeños en las capas cercanas a la entrada lo que provoca que el aprendizaje 

sea muy lento o incluso nulo. Esto ocurre con mayor frecuencia al usar funciones de activación 

como la sigmoide o la tangente hiperbólica. 

Como consecuencia de esta explicación, las capas cercanas a la entrada aprenden a menor 

velocidad que las capas cercanas a la salida, debido a que reciben gradientes más pequeños. Todo 

esto puede provocar que las capas cercanas a la salida sufran de sobreajuste. 

 

• Explosión del gradiente (Exploding gradient): Los gradientes pueden crecer exponencialmente 

a medida que ocurre la retropropagación, lo cual provoca actualizaciones inestables de los pesos 

y sesgos, haciendo que el modelo diverja. Normalmente es menos común que el 

desvanecimiento. 

 

Existen varias técnicas para evitar estos dos problemas: 

 

• Inicialización adecuada de los pesos: Una inicialización inapropiada de los pesos puede 

producir tanto el desvanecimiento como la explosión del gradiente, dificultando así el 

entrenamiento de la red. Para solventar dichos problemas se pueden usar diferentes métodos de 

inicialización como LeCun, Xavier o He. 

 

• Funciones de activación alternativas: Funciones como ReLU o cualquiera de sus variantes 

ayudan a evitar el desvanecimiento del gradiente (Ver el apartado Dentro de la arquitectura 

también podemos incluir como componente “especial” a las funciones de activación). 

 

• Regularización y dropout: Ambas técnicas evitan indirectamente ambos problemas al mejorar 

el aprendizaje de la red neuronal. 
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Existen más técnicas que ayudan a reducir ambos problemas, pero estas son las principales. 

 

Para acabar esta sección vamos a desglosar el ciclo completo de entrenamiento de una red neuronal: 

1. Inicialización de pesos y sesgos, generalmente de forma aleatoria. 

2. Aplicación del algoritmo de retropropagación para calcular el gradiente del error respecto a los 

parámetros de la red. 

3. Uso de algoritmos de optimización para actualizar los pesos y sesgos de la red basándose en los 

gradientes calculados. 

4. Repetición del proceso durante varias épocas hasta minimizar lo máximo posible la función de 

coste o alcanzar el valor predefinido. 

 

2.2.4 Tipos principales de redes neuronales 

A continuación, se describen los tipos de redes neuronales más comunes hoy en día. En la mayoría de 

este subapartado se ha utilizado de referencia [12]. 

 

Redes neuronales prealimentadas (Feedforward Neural Network - FNN) 

Las FNN también denominadas como MLP4 tienen como objetivo aproximar una función, de modo 

que la información fluya solo hacia adelante (de ahí su nombre). No existe ningún tipo de 

retroalimentación en la red, es decir, las neuronas no forman ciclos entre las capas o entre ellas mismas.  

 

En una FNN, cada neurona normalmente5 está conectada a todas las neuronas de la capa adyacente, 

permitiendo así que la red posea toda la información posible. Estas redes están formadas por una capa 

de entrada, una o más capas ocultas y finalmente, una capa de salida. 

 

Estas redes sirven como base para el desarrollo de muchas otras. Alguna de las aplicaciones de este 

tipo de redes son las tareas de reconocimiento visual y de voz o el procesamiento de lenguaje natural, 

entre otras muchas. 

 

Redes neuronales convolucionales (Convolutional Neural Network - CNN) 

Las CNN solucionan el problema de estructura espacial que tienen las FNN, al utilizarse filtros estas 

redes son capaces de detectar las relaciones espaciales. Estos filtros se basan en la operación denominada 

convolución y se denominan filtros convolucionales [13]: 

 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =  ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 
Figura 33: Fórmula de la convolución 

 

Donde: 

• x es la entrada. 

 
4 El perceptrón simple a veces es considerado una FNN, aunque esté formado solamente por una capa. 
5 Cuando esto ocurre se trata específicamente de una red FCN (Fully connected network), una variante de las FNN. 
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• w es el filtro convolucional (también denominado kernel). 

• t es la distancia que se desplaza. 

• s(t) es la salida de la función y se denomina mapa de características. 

 

Las redes CNN están formadas por: 

 

• Capas convolucionales: Se encargan de extraer las características locales de la entrada, 

comúnmente imágenes, como los bordes, colores, etc. Se realiza a través de los kernels y esto 

genera el mapa de características. 

 

• Capas de agrupación (pooling layers): Simplifican la salida de las capas convolucionales, es 

decir, reducen la dimensionalidad del mapa de características. Dicha agrupación permite que la 

representación obtenida no varie frente a pequeños cambios o traslaciones de la entrada (por 

ejemplo, rotar la imagen). Existen dos tipos principales de agrupación: 

 

o Max pooling: Selecciona el máximo valor dentro de una región específica del mapa de 

características. Así, se recuperan las características más importantes. 

o Average pooling: Calcula el valor promedio de una región específica del mapa de 

características. Puede ser útil para reducir el ruido, pero se pueden perder características 

importantes. 

 

• Capas totalmente conectadas (fully connected layers): En las CNN se suelen incluir una o más 

de estas capas, las cuales conectan cada neurona de las pooling layers con la capa de salida 

permitiendo realizar una clasificación. 

 

Las propiedades clave de este tipo de redes son: 

 

• Conectividad dispersa (sparse connectivity): Esta idea consiste en hacer los kernels más 

pequeños que la propia entrada. Básicamente si tenemos una imagen la cual tiene, por ejemplo, 

un millón de píxeles, podemos seguir detectando las características locales con un kernel que 

ocupe cientos de píxeles. De esta manera la red tiene que usar menos parámetros y por tanto se 

reduce la memoria usada. 

 

• Compartición de parámetros: En las CNN, cuando se aplica la operación de convolución se 

comparten los parámetros para cada kernel, lo cual, junto a la propiedad anterior, hace que se 

reduzca incluso más el número de parámetros a utilizar. 

 

No obstante, estas redes no son perfectas y presentan algunas limitaciones, como: 

 

• Dificultad de diseño: Este tipo de redes están formadas por muchos hiperparámetros y encontrar 

la combinación correcta puede ser difícil, para ello se usan las técnicas ya vistas anteriormente. 
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• Eficiencia computacional y consumo de memoria: Las CNN pueden ser muy costosas en 

términos de tiempo de entrenamiento y de utilización de memoria. El uso de GPUs es esencial 

para acelerar el proceso de entrenamiento. Además, para optimizar el uso de memoria se 

recomienda maximizar el trabajo de las pooling layers y/o usar arquitecturas más eficientes de 

las CNN como pueden ser LeNet-5, AlexNet, VGG o ResNet. [14] 

 

Redes neuronales recurrentes (Recurrent Neural Network - RNN) 

Las RNN a diferencia de las redes tradicionales, tienen conexiones recurrentes que permiten mantener 

la información de estados previos. El comportamiento de las neuronas no solo se debe a las activaciones 

de las capas previas, puede estar determinada por su propia activación en un momento anterior. 

 

Estas redes sufren del desvanecimiento del gradiente, el problema incluso empeora en este tipo de 

redes porque los gradientes no solamente se propagan hacia atrás de las capas, sino que también lo hacen 

a través del tiempo. Para mitigar este problema surge la variante denominada LSTM (Long Short-Term 

Memory) la cual es capaz de aprender dependencias a largo plazo. 

 

Las RNN se usan principalmente para procesar datos secuenciales, como texto, audio o series 

temporales. 

 

Arquitecturas encoder-decoder 

Están formadas por dos módulos [15]: 

 

- Codificador (encoder): se encarga de procesar la entrada y de generar una representación del 

espacio latente, es decir transforma los datos de entrada en uno o varios vectores numéricos, lo 

que se conoce como embeddings. Están formados por una capa de self-attention6, la cual permite 

que el codificador se centre en las partes importantes que producen el contexto, y por una red 

FNN que permite procesar la información y capturar relaciones y patrones entre los datos.  

 

- Decodificador (decoder): utiliza la representación generada por el codificador para generar una 

salida, esta salida puede ser una reconstrucción de la entrada o una secuencia distinta 

(generalmente esta última). Comparten las dos capas que forman a los codificadores con la 

salvedad, que entre estas dos hay una capa de atención encoder-decoder, la cual permite que el 

decodificador se centre en las partes más relevantes de la entrada. 

 

Dentro de esta arquitectura podemos distinguir dos tipos fundamentales de redes neuronales: 

  

 
6 Self-attention es un mecanismo de atención mediante el cual cada elemento (token) de una secuencia se pondera según la 

importancia de cada uno en relación con los demás. 
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1. Transformers 

El mecanismo de self-attention puede limitar la capacidad del modelo de aprender relaciones, pues 

podría prestar excesiva atención al token a estudiar (se pondera mucho que al resto de la secuencia). [16] 

[17] [18] 

 

Para evitar esta limitación, los Transformers utilizan el mecanismo multi-head attention, el cual aplica 

múltiples mecanismos self-attention procesando la sentencia simultáneamente y obteniendo así mejores 

representaciones de las relaciones de cada token. Cada bloque del Transformer también contiene una red 

FNN para procesar los datos. 

 

Los Transformers están diseñados originalmente como un modelo encoder-decoder, aunque en la 

actualidad hay modelos que solamente utilizan una parte, es decir, el codificador o el decodificador, 

denominándose encoder-only y decoder-only, respectivamente.  

 

Encoder-only 

Al solo tener la parte del encoder el modelo no se centra en generar texto, su tarea es entender los 

datos de entrada. Por ello las tareas principales que desempeña son clasificación de texto y extracción 

de información relevante. 

 

Decoder-only 

En el ejemplo de decoder-only al no tener la parte del encoder, directamente se intenta generar texto 

mediante la predicción del siguiente token. Para ello se usa una variante de self-attention conocida como 

masked self-attention, aquí no se tienen en cuenta todos los tokens de la secuencia, solo se miran los que 

vienen por detrás del token principal enmascarando los demás. Por ejemplo, en la secuencia: 

 

“La casa de Pedro es muy grande” 

 

Si el token principal es “Pedro” solamente se ponderan los tokens “La”, “casa” y “de”; cuando 

usábamos self-attention los que venían detrás de “Pedro” también se tenían en cuenta, pero aquí se 

ocultan mediante una máscara. 

 
Figura 34: Arquitectura de los Transformers [19] 
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2. Autoencoders 

Estas redes son el ejemplo de que la salida es una reconstrucción de la entrada, es decir, la entrada y 

la salida son las mismas, solo que se realizan algunas transformaciones en el proceso. Alguno de los 

usos principales de estas redes es [20]: 

 

• Compresión de información (imagen y audio) 

• Eliminación de ruido en datos (denoising) 

• Reducción de la dimensionalidad 

 

entre otros muchos. Se entrenan mediante aprendizaje no supervisado (Este concepto se explicará más 

adelante en este documento). Existen muchos más tipos de redes, pero considero que los explicados son 

los más relevantes para este proyecto.  

 

2.3 Modelos de Lenguaje 

Un modelo de lenguaje es un tipo de modelo estadístico o de aprendizaje automático para procesar 

lenguaje natural (PLN). Su objetivo principal es comprender, generar o clasificar texto y se usan para 

diversas tareas como la traducción, la clasificación o la generación de texto entre muchas otras. Los 

modelos se entrenan con grandes cantidades de datos para poder aprender patrones lingüísticos y 

relaciones semánticas [21] [22]. 

 

2.3.1 Tipos de modelos de lenguaje 

Dentro de los modelos de lenguaje se pueden distinguir dos tipos principales, el modelado 

estadístico y el modelado neuronal. 

 

Modelos estadísticos 
El propósito de estos modelos es predecir la probabilidad que tiene una palabra de aparecer después 

de una secuencia, es decir, qué probabilidad tiene una palabra de ser la siguiente en generarse dado un 

contexto. Existen los siguientes tipos: 

 

- N-gramas: Son secuencias de n elementos de una muestra de texto, este modelo analiza la 

probabilidad de la siguiente palabra basándose en las (n-1) palabras anteriores. Por ejemplo, un 

modelo con n = 5 predecirá la siguiente palabra en base a las 4 anteriores. Puede tener cierta 

limitación ya que, si aumentamos el valor de n, el modelo puede que no cubra todas las 

secuencias posibles y dificulte el proceso de entrenamiento. 

 

- Modelos exponenciales: En estos modelos se mezcla la predicción basándose en palabras 

anteriores (al igual que los n-gramas) junto a otras características del texto, como puede ser la 

aparición de ciertas palabras o patrones. Cada una de las características tiene un peso asignado y 

se combinan mediante una función exponencial para calcular la probabilidad. Son más flexibles 

que los n-gramas, pero son más costos computacionalmente hablando 
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- Modelos skip-gram: Se utilizan principalmente en el caso de generación de word embeddings. 

Dada una palabra objetivo predicen las palabras contexto (palabras cercanas a esta) dentro de 

una ventana con un tamaño previamente definido, por ejemplo: 

 

“La casa de Pedro es muy grande” 

 

Si nuestra palabra objetivo es “Pedro” y el tamaño de ventana es de 2, el modelo predice que 

las palabras: “casa”, “de”, “es”, “muy” suelen aparecer junto a la palabra objetivo y esto 

permite generar embeddings que representan estas relaciones. Puede recordar al mecanismo de 

self-attention definido anteriormente, pero con la salvedad de que aquí se utiliza una ventana 

para fijar el número de tokens a observar. 

 

Modelos neuronales 
Estos modelos son más avanzados ya que utilizan redes neuronales como base, lo cual permite un 

modelado más preciso al tener la capacidad de capturar patrones más complejos y una mejor 

generación de embeddings. Se dividen en: 

 

- Redes neuronales recurrentes (RNN): La explicación más detallada de estas redes se ha 

desarrollado previamente, pero recordando la explicación, estas redes están diseñadas para datos 

secuenciales, lo que las hace idóneas para el modelado de lenguaje. 

 

- Modelos basados en Transformers: También se han explicado previamente. La idea del 

mecanismo de atención es clave para la modelación de lenguaje, pues captura las relaciones 

semánticas de cada palabra de la secuencia paralelamente. Dentro de estos se encuentran los 

famosos Large Language Model (LLM), estos modelos se caracterizan por su gran número de 

parámetros (normalmente están formados por miles de millones) y su desempeño en una gran 

variación de tareas. El entrenamiento de estos modelos puede llegar a ser muy costoso 

computacionalmente (se suelen utilizar varias GPUs) ya que normalmente suele estar formado 

por varias etapas: un preentrenamiento no supervisado con una gran cantidad de datos y un 

posterior fine-tuning dedicado a especializar al modelo en tareas específicas. 

 

2.3.2 Entrenamiento de modelos de lenguaje 

Antes de explicar el proceso de entrenamiento de un modelo de lenguaje, hay que diferenciar las 

principales técnicas de aprendizaje [23] [24] [25]: 

 

1. Aprendizaje no supervisado 

El aprendizaje no supervisado emplea algoritmos capaces de analizar conjuntos de datos no 

etiquetados, es decir, sin información que facilite su contexto. Los algoritmos identifican patrones, 

relaciones o agrupaciones (clústeres) dentro de los datos, sin intervención humana. Se utilizan para dos 

tareas: 

 



   
 

36 
 

- Agrupación en clústeres: Se utilizan para procesar conjuntos de datos no etiquetados basándose 

en sus similitudes o diferencias. Se pueden clasificar en varios tipos: 

 

1. Agrupación excluyente: un punto de datos solamente puede existir en un clúster. 

 

2. Agrupación superpuesta: permite que los puntos de datos pertenezcan a varios clústeres 

teniendo diferentes grados de pertenencia en cada uno. 

 

3. Agrupación jerárquica: se crean grupos de forma que los datos similares están dentro del 

mismo y los diferentes están en otros grupos. Los clústeres más pequeños se fusionan en cada 

iteración hasta obtener una sola raíz. 

Hay dos subtipos: agrupaciones aglomerativas, donde los elementos se unen de abajo hacia 

arriba y, las agrupaciones divisivas, que toman un enfoque contrario, de arriba hacia abajo 

(en este caso se comienza con un solo clúster y se va dividiendo en conjuntos más pequeños). 

 

4. Agrupación probabilística: las agrupaciones se crean en función de la probabilidad de 

pertenecer a una distribución determinada. Uno de los modelos más utilizados es el modelo 

de mezcla Gaussiana (GMM). 

 

- Regla de asociación: Es un mecanismo basado en reglas que permite descubrir relaciones entre 

las características de un conjunto de datos. Un ejemplo de su uso son las cestas de la compra en 

los comercios online, permite a las empresas conocer qué relación existen entre unos productos 

y otros, estableciendo patrones. Un algoritmo muy conocido que usa las reglas de asociación es 

el algoritmo Apriori. 

 

2. Aprendizaje supervisado 

Como contraparte al aprendizaje no supervisado, aquí el modelo aprende mediante conjuntos de datos 

etiquetados. Estos datos están formados por las entradas y salidas deseadas, de forma que el algoritmo 

de aprendizaje tiene que ser capaz de encontrar los patrones y las relaciones para comprender como 

llegar a esas salidas. En entrenamientos a gran escala puede llegar a ser difícil mantener el uso de este 

algoritmo por falta de datos etiquetados (es muy difícil que ocurra, pero llegados a cierto punto puede 

ocurrir). Principalmente se usan en dos tareas: 

 

- Clasificación: A través de los datos que se tiene, el algoritmo debe de ser capaz de deducir a qué 

categoría pertenece una nueva entrada. Un clasificador conocido es Naive Bayes el cual mide la 

probabilidad de pertenencia a una categoría para cada entrada del conjunto existente y al recibir 

un dato nuevo utiliza estos conocimientos para clasificarlo. 

 

- Regresión: El algoritmo predice la variable dependiente (la nueva entrada de datos) a partir de 

una o más variables independientes (los datos existentes). Existen dos tipos, lineal (sencilla o 

múltiple, depende del número de variables independientes) y logística. 
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3. Técnicas mixtas 

Definimos como técnica mixta a cualquier aprendizaje que mezcla conceptos de los aprendizajes 

supervisado y no supervisado. 

 

- Aprendizaje semi supervisado 

El aprendizaje semi supervisado se caracteriza por fusionar los conceptos del aprendizaje supervisado 

y no supervisado. Para el entrenamiento se utilizan tanto pares de datos etiquetados como no etiquetados, 

mediante esta fusión los algoritmos son capaces de aprender a etiquetar datos [26]. 

 

- Aprendizaje auto supervisado  

Nace del concepto de auto entrenamiento donde primero se entrena un modelo con datos etiquetados, 

después se le pasan datos no etiquetados y el modelo genera una especie de pseudoetiquetas mediante 

las cuales refina el modelo a través de un proceso de iteración [27]. 

 

De esta idea surge el aprendizaje auto supervisado, donde no existe interacción humana, es decir, los 

datos no son etiquetados. Aquí, el modelo entrena gracias a las señales de supervisión que él mismo 

genera, lo cual se consigue mediante la creación de tareas de entrenamiento a partir de los datos no 

etiquetados (este proceso es similar a las pseudoetiquetas).  

 

 

Una vez explicados los tipos de aprendizaje existentes, veamos como es el proceso de entrenamiento 

de un modelo de lenguaje. Surgen dos principales ideas: 

 

Preentrenamiento 

Como primera tarea, se han de optimizar los parámetros en un proceso denominado preentrenamiento, 

no se presupone qué tareas específicas va a realizar el modelo, simplemente se entrena en un ámbito 

general. 

 

En el preentrenamiento se utiliza cualquiera de los aprendizajes que acabamos de definir, aunque, 

hoy día, la mayoría de los modelos de lenguaje dedicados a NLP se basan en el aprendizaje auto 

supervisado. En muchas ocasiones el entrenamiento de un modelo de lenguaje simplemente se basa en 

esta fase, obteniendo así un modelo de lenguaje “base” con un gran rango de tareas. 

 

No obstante, existe un problema al entrenar los modelos de lenguaje, puede ser que una vez finalizada 

la etapa de preentrenamiento no se comporten siguiendo el raciocinio humano, es decir, pueden llegar a 

ser partidarios de ciertas posturas frente a otras (lo cual no es una buena práctica porque siempre se busca 

que el modelo sea imparcial) e incluso llegar a ser peligrosos o dañinos, si se le hacen cuestiones sobre 

temas delicados, el modelo puede llegar a dar una respuesta inadecuada y atentar contra la ética humana. 

En estos casos la siguiente fase del entrenamiento es totalmente necesaria. 

 

Post entrenamiento 

Una vez tenemos nuestro modelo preentrenado hay que transformarlo para que se focalice en ciertas 

tareas, en este proceso se han de reajustar los parámetros mediante un proceso conocido como fine-
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tuning (ajuste fino), ya sea utilizando datos etiquetados (supervised fine-tuning) o facilitando al modelo 

descripciones de las tareas a realizar (prompt engineering). En el caso que hemos comentado donde el 

preentrenamiento puede derivar en un mal comportamiento del modelo, se introduce el concepto 

definido como RLHF (Reinforcement Learning from Human Feedback). A continuación, se explican los 

tres métodos [27]: 

 

1. Supervised Fine-tuning (Ajuste fino supervisado) 

En este método se utilizan datos etiquetados de forma que el modelo es capaz de aprender a justar los 

parámetros de la red para predecir tokens lo más parecidos posibles a los datos de entrada. Las técnicas 

más comunes son [28]: 

 

- Fine-tuning para una tarea específica: Es el caso más común, el modelo se entrena solamente 

para desempeñar una tarea específica. 

 

- Aprendizaje multi-tarea: En este caso se busca que el modelo a entrenar sea capaz de realizar 

varias tareas específicas, se consigue aprovechando las características compartidas y las 

diferencias entre las tareas. 

 

- Transferencia de aprendizaje (Transfer learning): Cuando se trabaja con un conjunto de datos 

limitado esta técnica resulta muy útil porque se parte de la idea del modelo base (modelo ya 

preentrenado) en la que ya se tienen unos conocimientos previos y con el conjunto de datos que 

se tiene se realiza la tarea de fine-tuning. Debido a esto, el proceso de post entrenamiento se 

reduce. 

 

- Fine-tuning mediante instrucciones: Este enfoque utiliza instrucciones como entrada, al 

modelo se le proporcionan pares o tuplas de entrada-salida deseada. Por ejemplo: 

 

“Tengo 5 euros en la cartera, pero me he comprado una piruleta que me ha costado 20 

céntimos. ¿cuánto me queda?” – Entrada 

“Te quedan 4 euros y 80 céntimos” – Salida deseada 

 

De esta forma, al usar muchas tuplas el modelo aprenderá a captar el seguimiento de 

instrucciones y llegará un punto en el que será capaz de responder a una pregunta que no haya 

visto antes. Esta idea entra en el campo del prompt engineering. 

 

2. Prompt engineering (Ingeniería de instrucciones) 

Se define por prompt a una instrucción que se facilita al modelo para que este ejecute una tarea 

específica, por tanto, la ingeniería de instrucciones tiene como objetivo el diseño y el uso efectivo de 

estos prompts. 

 

Esta idea se puede aplicar directamente sobre un modelo preentrenado sin aplicar fine-tuning de por 

medio, no obstante, los modelos base son capaces de completar textos con una indicación inicial, pero 

no ideales para seguir instrucciones. Los modelos optimizados para instrucciones son versiones de estos 
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a los cuales se les aplica la técnica de fine-tuning por instrucciones, los cuales son más adecuados para 

el prompting. 

 

Para explicar la ingeniería de instrucciones existe un método relacionado, el in-context learning, 

consiste en añadir un contexto mientras se realiza el prompting, generalmente este contexto son 

demostraciones de cómo se tiene que resolver la tarea que nosotros le pedimos al modelo. Dentro de este 

método tenemos tres aplicaciones: 

 

- Zero-shot learning: Como su propio nombre indica, no hay un proceso explícito de aprendizaje, 

simplemente se proporciona al modelo un prompt sin la salida deseada para que ver qué responde. 

Esta explicación da sentido al apartado de fine-tuning mediante instrucciones pues su objetivo 

final es llegar a este punto, poder resolver nuevos problemas no vistos durante la fase de 

entrenamiento. Un ejemplo sería: 

 

 
Figura 35: Prompt zero-shot learning 

 
- One-shot learning: A diferencia del anterior, en este caso solamente se introduce un ejemplo 

correcto de entrada y salida deseada: 

 

 
Figura 36: Prompt one-shot learning 

 
- Few-shot learning: En este método se utilizan varios ejemplos de entrada y salida deseada 

haciendo que el modelo de lenguaje aprenda los patrones y sea capaz de elaborar una respuesta 

mejor que con el caso de one-shot. Está claro que cuantos más ejemplos se introduzcan mejor 

generalizará el modelo, pero todo depende de la potencia de este, en ocasiones con introducir un 

grupo pequeño de ejemplos es suficiente para que el modelo aprenda correctamente. Un ejemplo: 

Eres un asistente especializado en gramática y traducción. Se te 

va a dar una oración y la tienes que traducir al inglés. 

Entrada: Juan ha tenido un examen muy difícil de matemáticas y 

está un poco triste. 

Salida: ___ 

 

Eres un asistente especializado en gramática y traducción. Se te va a dar una 

oración y la tienes que traducir al inglés. 

Entrada: Juan ha tenido un examen muy difícil de matemáticas y está un poco 

triste. 

Salida: Juan had a very difficult math examen and is a little bit sad. 
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Figura 37: Prompt few-shot learning 

 

3. RLHF 

Este proceso a menudo se describe como aprendizaje por refuerzo, en el cual existe una interacción 

con feedback humano, consiguiendo que el modelo ajuste sus respuestas mediante un sistema de 

recompensas. Las técnicas más comunes de este método son: 

 

- Reward modeling (Modelado de recompensas): Se define como el proceso de entrenar un 

modelo conocido como reward model para que este sea capaz de aprender a predecir las 

recompensas establecidas por evaluadores humanos y luego maximizarlas. 

Para entrenar esta técnica se utiliza la clasificación comparativa, el modelo genera varias 

respuestas y los evaluadores las califican según su criterio, una vez obtenidas las respuestas con 

su recompensa asociada el modelo comienza el proceso de entrenamiento. La retroalimentación 

se puede obtener de varias formas: 

 

o Pairwise ranking: Se proporciona dos salidas y los evaluadores eligen cuál es la óptima. 

 

o Rating: Los evaluadores establecen una puntuación a cada salida, normalmente la 

puntuación es un valor dentro de un rango numérico, pero también puede ser una 

puntuación binaria, por ejemplo, “sí-no”. 

 

o Listwise ranking: Se les muestra a los evaluadores una lista de posibles salidas ante una 

entrada y estos han de establecer un orden de puntuación. 

 

- Proximal policy optimization – PPO: Es un algoritmo iterativo que actualiza el criterio o política 

del modelo sobre cómo maximiza las recompensas. 

Se introduce un término de penalización para que la política actual (la nueva) no diste mucho 

de la política de referencia. Con esto conseguimos que el algoritmo no se aleje de la región de 

1ª Prueba 

Eres un asistente especializado en gramática y traducción. Se te va a dar una 

oración y la tienes que traducir al inglés. 

Entrada: Juan ha tenido un examen muy difícil de matemáticas y está un poco 

triste. 

Salida: Juan had a very difficult math examen and is a little bit sad. 

2ª Prueba 

Eres un asistente especializado en gramática y traducción. Se te va a dar una 

oración y la tienes que traducir al inglés. 

Entrada: Leo Messi es el mejor jugador de fútbol de la historia. 

Salida: Leo Messi is the best football player in history. 
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confianza en la que se encontraba, en la cual se sabía que el modelo tenía un correcto 

comportamiento. 

 

2.4 RAG (Retrieval-Augmented Generation) 

RAG es una técnica dentro del campo de la inteligencia artificial que mezcla el uso de memoria 

paramétrica y no paramétrica. Antes de profundizar en RAG debemos diferenciar muy bien los dos tipos 

de memoria [29]: 

 

• Memoria paramétrica: Se define como el conocimiento que reside en el propio modelo. 

Durante la época de entrenamiento se guarda dicho conocimiento en los pesos y no se precisa de 

ninguna fuente externa para la obtención de información, no obstante, tiene una serie de 

problemas como el aumento o modificación de su propia memoria que puede derivar en una 

pérdida de antigua información frente a nuevas entradas. También hay que tener en cuenta que 

cada vez que se quiera ampliar conocimiento el modelo ha de ser reentrenado lo que implica 

costes computacionales elevados. 

 

• Memoria no paramétrica: Se usa principalmente en sistemas de recuperación, al tener la 

información guardada en fuentes externas, típicamente en bases de datos, permite que el sistema 

recupere la información deseada cuando se realiza una consulta. 

 

Podríamos decir, por tanto, que RAG tiene como objetivo recuperar información mediante el uso de 

un recuperador (retriever), el cual accede a fuentes de datos externas (memoria no paramétrica) y generar 

respuestas a través de un modelo generador (generator) usando memoria paramétrica. Aquí un ejemplo 

de un sistema que usa RAG [30]: 

 

 
Figura 38: Sistema RAG en el que se usa DPR y BART [30] 

 

2.4.1 Componentes principales 

Como se puede ver en la “Figura 38” un sistema RAG está formado por dos componentes: el retriever 

y el generator. A continuación, se explican en profundidad. 
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Retriever (Recuperador) 

La idea principal de un retriever es calcular los top-k documentos más relevantes para una consulta, 

para ello, el retriever se encarga de generar una representación de dicha consulta, así como 

representaciones para cada uno de los documentos (zi) de los que obtiene información. Estas 

representaciones se obtienen a partir de encoders, recordemos que el papel de estos es transformar una 

entrada en embeddings pero ¿por qué recordar este concepto ahora? Muy sencillo, los retrievers calculan 

la probabilidad de que un documento zi sea relevante para la consulta realizada mediante el producto 

escalar de las representaciones, lo que se consigue con este producto es mirar si los embeddings apuntan 

a la misma dirección, o, en otras palabras, que sean cercanos en el espacio vectorial. Dicha probabilidad 

viene dada por: 

𝑝𝜂(𝑧|𝑥) ∝ exp(𝑑(𝑧)
𝑇𝑞(𝑥)) 

Figura 39: Probabilidad calculada por el retriever en RAG 

 

Donde: 

• µ son los parámetros del retriever. 

• x es la entrada. 

• z es un documento. 

• d(z) es el embedding del documento. 

• q(x) es el embedding de la consulta. 

 

Generator (Generador) 

La tarea del generador, básicamente, es generar, valga la redundancia, una respuesta dada una 

consulta x y los z documentos recuperados, los cuales se añaden como contexto adicional a la consulta. 

Se puede explicar como la probabilidad de qué se genere una secuencia de salida dada la entrada 

(consulta) y un documento relacionado, su ecuación viene dada por: 

 

𝑝𝜃(𝑦𝑖|𝑥, 𝑧, 𝑦1:𝑖−1) 
Figura 40: Probabilidad calculada por el generador en RAG 

 

Donde: 

• ϴ son los parámetros del generador. 

• yi el token i de la salida. 

• y1: i-1 son los tokens de la salida ya generados previamente. 

 

2.4.2 Modelos de RAG 

Existen dos formas de marginalizar los documentos recuperados, por marginalizar se entiende aplicar 

una distribución marginal sobre las probabilidades asociadas a dichos documentos. De esta idea nacen 

los dos modelos de RAG: 

 

1. RAG-Sequence 

En RAG-Sequence cada documento se utiliza para generar una secuencia. Se buscan los documentos 

más relevantes para la entrada (1ª probabilidad) y una vez recogidos se mira cómo influye cada uno junto 
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con la propia entrada para poder generar la secuencia de salida (2ª probabilidad). Ambas probabilidades 

se marginalizan quedando: 

𝑝𝑅𝐴𝐺−𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑦|𝑥) ≈∑𝑝𝜂(𝑧|𝑥) 𝑝𝜃(𝑦|𝑥, 𝑧) =∑𝑝𝜂(𝑧|𝑥)∏𝑝𝜃(𝑦𝑖|𝑥, 𝑧, 𝑦1:𝑖−1)

𝑁

𝑖

 

Figura 41: RAG-Sequence 

En los sumatorios se estudian solamente los top-k documentos más relevantes para la entrada x, lo 

que se define como: 

𝑧 ∈ 𝑡𝑜𝑝𝑘(𝑝(∙ |𝑥)) 

 

2. RAG-Token 

Al contrario que en RAG-Sequence, para generar la secuencia se va mirando cada uno de los tokens, 

es decir por cada uno se puede usar un documento distinto. Aquí el generador antes de marginalizar 

produce una distribución para el siguiente token para cada uno de los documentos recuperados: 

𝑝𝑅𝐴𝐺−𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑦|𝑥) ≈∏ ∑ 𝑝𝜂(𝑧|𝑥)

𝑧∈𝑡𝑜𝑝−𝑘(𝑝(∙|𝑥))

𝑝𝜃(𝑦𝑖|𝑥, 𝑧, 𝑦1:𝑖−1)

𝑁

𝑖

 

Figura 42: RAG-Token 

 

2.5 Tecnología utilizada 

Durante el desarrollo de este proyecto se han usado diferentes herramientas para construir el 

entorno de trabajo, se enumeran y explican a continuación. 

2.5.1 Anaconda 

Es una plataforma de código abierto para crear modelos de ciencia de datos o aprendizaje automático 

en Python o R. Tiene varios paquetes y herramientas preinstaladas y facilita la gestión de entornos 

virtuales y dependencias de paquetes a través de conda, mediante el uso de esta herramienta de línea de 

comandos se ha podido instalar un entorno para la ejecución del proyecto. [31] [32] 

 

2.5.2 Python 

Python es un lenguaje de programación interpretado de tipado dinámico, es multiparadigma ya que 

admite varias tareas como la orientación a objetos, la programación funcional o la programación 

procedimental. Python se caracteriza por tener una sintaxis sencilla, pero a su vez tiene una gran 

potencia. Este lenguaje también es portable, es decir, funciona en distintos sistemas operativos [33]. En 

este proyecto se utiliza la versión de Python 3.13.3.  

 

2.5.3 CUDA (Compute Unified Device Architecture) 

Es una plataforma de computación paralela desarrollada por NVIDIA que permite usar la GPU para 

acelerar tareas computacionales de alto rendimiento, como puede ser el entrenamiento de modelos de 

deep learning [34]. La versión de CUDA instalada en el entorno de trabajo es 12.8. 
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2.5.4 PyTorch 

Es una librería dedicada a la creación de modelos de deep learning, una rama del aprendizaje 

automático. Está escrito principalmente en Python y por lo tanto se caracteriza por su enfoque de 

programación dinámica [35] [36].  

Al usar algoritmos de aprendizaje automático se necesita que los datos estén representados de manera 

numérica, en PyTorch se consigue a través de los llamados tensores. Un tensor es similar a un array 

multidimensional y se utilizan para codificar las entradas, salidas y parámetros de un modelo, son 

similares a los ndarrays de NumPy con la salvedad de que los tensores se pueden ejecutar en GPU [37]. 

 

2.5.5 Jupyterlab 

Es una aplicación de creación y edición de notebooks extensible y con muchas funciones, es parte del 

proyecto Jupyter. Es un entorno de desarrollo interactivo basado en web que permite trabajar con 

notebooks, código en vivo, visualización de datos, etc. Es una versión mejorada de Jupyter Notebook 

[38]. 

 

2.5.6 Notebook 

Es un documento que combina código ejecutable, comentarios explicativos, visualización y otros 

elementos multimedia en una misma interfaz. Proporciona un entorno flexible e interactivo para el 

análisis de datos, la visualización y el desarrollo de prototipos de código [39]. 

 

2.5.7 Tensorboard 

Tensorboard es un kit de herramientas que permite la visualización de pruebas para nuestro trabajo, 

se permite visualizar métricas como la pérdida en el entrenamiento y en la validación, visualizar la 

evolución de hiperparámetros como la tasa de aprendizaje, etc. [40]  
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Capítulo 3 – Metodología 
Antes de explicar la metodología del proyecto, se desarrollan las principales características del 

entorno. El desarrollo de este trabajo se ha llevado en un entorno de desarrollo local con las siguientes 

especificaciones: 

 

• Sistema operativo: Microsoft Windows 11 Home 

• Procesador: Intel Core i7-12700K (20 CPUs), 3.6 GHz 

• Memoria RAM: 32 GB RAM 

• Almacenamiento: Disco HDD 1TB 

• GPU: Nvidia GeForce RTX 4070, 12 GB VRAM 

 

Como se comenta en el apartado anterior, el proyecto se ejecuta en un entorno de conda con Python 

3.13.3. Algunas de las librerías más importantes para el desarrollo del trabajo son: 

 

• datasets v-3.5.1 para la creación de Datasets. 

 

• faiss-cpu v-1.11.0 para el uso de FAISS de langchain. 

 

• langchain v-0.3.25 para tareas como la creación del índice FAISS para la recuperación y 

almacenamiento de embeddings y el uso del divisor (splitter) de texto. 

 

• langchain-huggingface v-0.1.2 para el uso del modelo de embeddings. 

 

• ocrmypdf v-16.10.17 para aplicar OCR sobre los PDFs. 

 

• optuna v-4.3.0 para la prueba de ajuste de los hiperparámetros del modelo. 

 

• PyMuPDF v-1.25.5 para extraer el texto de los PDFs con OCR ya aplicado. 

 

• PyTorch para el uso de tensores, se divide en tres (PytTorch se compila con CUDA 12.8):  

o torch, v-2.7.0+cu128 

o torchaudio v-2.7.0+cu128 

o torchvision, v-0.22.0+cu128 

 

• sentence-transformers v-4.1.0 para medir la similitud de los embeddings. 

 

• tqdm v-4.67.1 para visualizar barras de progreso en el proceso de OCR. 

 

 
7 Para usar ocrmypdf hay que instalar en el entorno Tesseract y Ghostscript, se explica en 

Anexo A – Manual de instalación del entorno de estudio. 
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• transformers v-4.51.3 para crear pipelines, el uso del Tokenizer, el uso de la clase Trainer para 

el fine-tuning del modelo y el propio uso del LLM principal. 

 

Para el visionado de resultados se utilizan las siguientes librerías: 

 

• matplotlib v-3.10.3 para generar gráficos. 

 

• numpy v-2.2.5 para la utilización de operaciones matemáticas. 

 

• tensorboard v-2.19.08 para el visionado de resultados de distintas pruebas. 

 

3.1 LLM Utilizados 

Para la selección de los modelos en el sistema RAG diseñado se han utilizado dos benchmarks 

reconocidos y públicos, ambos de Hugging Face: 

 

• El Open LLM Leaderboard, que se encarga de evaluar modelos de lenguaje abiertos en tareas 

como la comprensión, la generación de texto, razonamiento de un contexto largo, etc. [41]  

 

• El MTEB Leaderboard (Massive Text Embedding Benchmark), que compara modelos de 

lenguaje para generación de embeddings midiendo tareas como clasificación (incluyendo por 

pares y multi-etiqueta), reordenamiento, semejanza semántica textual (STS), etc. [42] 

 

Debido a las limitaciones de hardware del entorno donde se ha realizado el proyecto, en particular a 

la cantidad de VRAM disponible en la GPU, no ha sido posible ejecutar modelos de gran tamaño (a 

partir de 2-3B de parámetros), ya que, en conjunto con el resto de la aplicación se sobrepasa la cantidad 

de memoria disponible. Por este motivo, el estudio de los modelos se ha reducido a modelos más ligeros, 

en torno a 1B de parámetros. Utilizando los benchmarks, se han seleccionado: 

 

• Un modelo de lenguaje para generación de embeddings, “multilingual-e5-large-instruct”, se 

corresponde con el cuarto lugar de la siguiente tabla:  

 

 
Figura 43: Ranking Embedding Leaderboard 

 

 
8 Para la utilización de esta librería se ha creado un segundo entorno, se explica en el “Anexo A”. 
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Este modelo se utiliza para generar los embeddings de los textos a analizar, construir un índice 

FAISS (Facebook AI Similarity Search) el cual permite realizar búsquedas eficientes, y crear un 

retriever que sirve para recuperar los fragmentos de texto más importantes ante una consultada 

dada. Debido a estas características nuestro modelo está optimizado para tareas de recuperación 

y STS. 

 

• Un modelo de lenguaje, que utilizamos tanto para generar pares pregunta-respuesta (QA) como 

para su posterior fine-tuning mediante dichos pares, “TinyLlama-1.1B-Chat-v1.0”. A pesar de 

su tamaño reducido (1.1B de parámetros), es adecuado para tareas de generación de texto y muy 

útil para ejecutarse en entornos con restricciones de hardware [43]. 

 

La elección de este modelo se basa en el equilibrio entre rendimiento y eficiencia, así como 

su gran popularidad dentro de la comunidad. Aunque en el leaderboard hay otros modelos con 

puntuaciones superiores, estas características han sido determinantes en la elección del modelo. 

 

Para averiguar qué tipo de arquitecturas siguen estos modelos podemos ver su archivo config.json [44] 

[45] [46]: 

 

1. Embedding model 

El archivo json contiene la siguiente información: 

 

 
Figura 44: config.json de multilingual-e5-large-instruct 

 

Como se puede observar nuestro modelo de embeddings sigue la arquitectura de “xlm-Roberta”, para 

especificar la arquitectura exacta deberemos mirar el config.json de este modelo. 
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Con ver este trozo ya sabemos que se rige por Masked Language Modeling (Modelado de lenguaje 

enmascarado), el cual se centra en la idea de enmascarar tokens de la secuencia de entrada para que así 

el modelo pueda aprender a predecirlos, para esta predicción el modelo sigue un contexto bidireccional, 

en la que la predicción del token se basa tanto en los tokens anteriores como en los siguientes [47]. Estos 

modelos están pensados para seguir la arquitectura encoder-only (explicada anteriormente en el 

documento). Por tanto, “multilingual-e5-large-instruct” es un modelo basado en Transformers que 

sigue la arquitectura encoder-only.  

 

2. Generator model 

El archivo json en este caso contiene la siguiente información: 

 

 
Figura 45: config.json de TinyLlama-1.1B-Chat-v1.0 

 

Este LLM en contraparte, usa Causal Language Modeling (Modelado de lenguaje causal), el cual 

sigue un contexto unidireccional, de izquierda a derecha concretamente, es decir, lo que hace es predecir 

el siguiente token teniendo en cuenta los que vengas por detrás, sin ver los siguientes [47]. ¿A qué 

recuerda esta idea? Efectivamente, a la arquitectura decoder-only (también explicada). “TinyLlama-

1.1B-Chat-v1.0” (que se basa en modelos Llama, concretamente en Llama2) es, por tanto, un modelo 

basado en Transformers con una arquitectura decoder-only. 

  

Algunos aspectos importantes que se pueden destacar de ambos archivos: 

 

• "hidden_act": especifica cual es la función de activación que se usa. 

 

• "intermediate_size": es el tamaño de la red FNN de cada bloque Transformer. 

 

• "max_position_embeddings": es la longitud máxima de tokens que el modelo puede 

manejar. 



   
 

49 
 

 

• "num_attention_heads": es el número de “cabezas” del mecanismo multi-head 

attention. 

 

• "num_hidden_layers": es el número de capas formadas por bloques Transformer 

completos por las que atraviesa cada token.  

 

3.2 Preparación de los datos para el entrenamiento 

La preparación del dataset de entrenamiento comienza con la recuperación de los PDFs de estudio, a 

estos se les aplica una técnica conocida como OCR (Optical Character Recognition) Reconocimiento 

óptico de caracteres, se usa para procesar imágenes a texto interpretable por máquinas, las imágenes 

generalmente son documentos escaneados [48]. En el caso de este proyecto la mayoría de las cartas son 

escaneadas (algunas no y no necesitan de OCR, pero se controla mediante una opción para evitar trabajo 

innecesario) y por ende necesitan la aplicación de este proceso. 

 

Una vez tenemos los PDFs con texto manejable, lo siguiente es dividir el texto de estos en fragmentos 

manejables (chunks) para su procesamiento, concretamente para embeddings y para la generación de 

pares de pregunta-respuesta. Se realiza mediante el uso de un divisor (splitter) de texto. Por último, para 

la creación del dataset de entrenamiento se siguen unos pasos: 

 

1. Se crea la plantilla del dataset con un campo “context”, el cual contiene cada uno de los chunks 

divididos anteriormente. Es decir, por cada chunk distinto hay una fila distinta en el dataset. Da como 

resultado: 

 

 

 

2. Se utiliza el modelo que actúa como generator para que, dado el contexto, genere un par 

pregunta-respuesta para ese contexto, en caso de que el modelo no sea capaz de generar ningún par, 

se queda como una entrada vacía (Puede parecer una práctica inútil el incluir un campo vacío, pero 

a la hora de mirar resultados ayuda a distinguir que pruebas son mejores o peores). Al final el dataset 

tiene el siguiente formato: 

 

 

“context”: chunk1 

“context”: chunk2 

… 

 

“context”: chunk1, “question”: consulta1, “answer”: respuesta1 

“context”: chunk2, “question”: consulta2, “answer”: respuesta2 

… 
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3. Ahora solamente queda filtrar las respuestas vacías o incorrectas y eliminar el contexto para que 

el modelo solamente vea pares pregunta-respuesta y aprenda relaciones y patrones sobre ellos. Para 

eliminar el contexto simplemente se usa un prompt para que el dataset final quede así: 

 

 

 

3.3 Aplicación de RAG 

Una vez se generan los pares qa y se aplica fine-tuning al modelo, es hora de realizar consultas al 

modelo y aplicar la técnica de RAG. Recordando su nombre completo dividimos en dos pasos esta 

técnica: 

 

1. Retrieval (Recuperación) 

Para la parte de recuperación se usa el modelo de embedding. Primero se convierten los chunks que 

habíamos obtenido del splitter a embeddings, se crea el índice FAISS y se asocian esos embeddings a 

los chunks originales, para saber cuál corresponde a cada uno. 

 

Una vez se realizan dichas operaciones se crea el retriever, el encargado de convertir nuestra consulta 

a un embedding y comparar la posición en el espacio vectorial con los embeddings almacenados en 

FAISS, para así obtener los documentos más relevantes asociados a la consulta. 

 

2. Augmented Generation (Generación aumentada) 

El siguiente paso es cargar nuestro LLM y el tokenizador, los cuales nos permiten crear un pipeline 

para inferencia. Se crea un prompt que contiene unas leves instrucciones del comportamiento deseado 

que debe tener nuestro modelo y, además, se le pasa el contexto, el cual es un chunk recuperado usando 

el retriever, y la consulta en sí. Gracias al pipeline que se ha creado con el modelo y el tokenizador 

podemos generar la respuesta a través del prompt: 

 

• Se tokeniza el prompt para que el LLM sea capaz de entender la entrada. 

• El LLM genera la respuesta 

• Se procesan los tokens a lenguaje natural, NLP 

 

El retriever tiene establecido un límite de recuperación de 15 documentos, si ponemos más se exceden 

los tokens máximos que puede manejar el LLM, al menos con las pruebas que se han realizado para este 

trabajo. Para establecer el número de documentos, un token equivale a 4 caracteres en lengua inglesa 

[49]. Si tenemos en cuenta que los fragmentos tienen como máximo 512 caracteres que son unos 128 

Question: consulta1 

Answer: respuesta1 

 

Question: consulta2 

Answer: respuesta2 
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tokens, el prompt tiene unos 500 caracteres lo cual son 125 tokens, la pregunta más larga que se ha 

probado es de 107 caracteres que son 27 tokens y que el LLM tiene la capacidad de generar como 

máximo 500 nuevos tokens, para el cálculo de cuantos top-k documentos máximos se pueden recuperar, 

se puede utilizar esta fórmula: 

 

𝑚𝑎𝑥𝑇𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑠𝑆𝑎𝑙𝑖𝑑𝑎 + 𝑝𝑟𝑜𝑚𝑝𝑡 + 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎 + 𝑘 ∗ 𝑡𝑜𝑘𝑒𝑛𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑜 

 

𝑘 =
maxTokens − (tokensSalida + prompt + consulta)

𝑡𝑜𝑘𝑒𝑛𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑜
 

Figura 46: Cálculo de los top-k documentos 

 

En el peor caso donde cada una de las variables tenga el valor máximo, k es k ≈ 11, no obstante, como 

se ha explicado, tras realizar pruebas el máximo permitido es de k = 15. 

 

Una vez generadas las respuestas, se aplica una función que convierte en tensores tanto a la consulta 

como a cada una de las respuestas, que compara la similitud en el espacio vectorial entre estas. También 

se le añade una pequeña puntuación a la longitud de la respuesta, para que no tenga en cuenta a preguntas 

muy similares, pero quizá demasiado cortas. 

 

El modelo de RAG que se usa en este proyecto, como se puede observar, es una aproximación de 

RAG-Sequence, en nuestro modelo no se sigue la distribución marginal propia de RAG ni se fusionan 

las respuestas en una sola, pero la base es la misma. En el apartado ¡Error! No se encuentra el origen d

e la referencia. se explica en profundidad este concepto. 
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Capítulo 4 – Experimentación y resultados 
A lo largo de este capítulo se muestran todas las pruebas y resultados que se han ido elaborando 

hasta llegar al punto final donde se ha obtenido el modelo deseado. Se explica parte del código de cada 

prueba y también los pasos que se han tomado hasta llegar a la versión final. 

 

4.1 Implementación de redes neuronales y modelo base 

Este apartado está dedicado a la experimentación previa al uso del método RAG. En un primer 

instante se realizaron pruebas de creación de redes neuronales para tareas de clasificación y para 

acabar se obtiene un modelo base al que se le ha aplicado fine-tuning del que partimos para la 

aplicación posterior de RAG. 

 

4.1.1 Clasificación de imágenes con una red FNN 

Como primer ejemplo para familiarizarse con las redes neuronales se construye una red FNN con 

capas fully connected para clasificar imágenes del dataset MNIST. Dentro del código las secciones más 

importantes son: 

 

1. Preprocesamiento 

Se define una transformación para convertir las imágenes a tensores y normalizarlas en un rango de 

valores entre -1 y 1. Luego se descargan los conjuntos de datos MNIST de entrenamiento y validación, 

aplicando la transformación previa. Finalmente se crean los DataLoaders que cargan los datos en lotes 

de 64 imágenes para entrenamiento y validación. 
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2. Arquitectura de la red neuronal 

Se define una red neuronal fully connected con la siguiente arquitectura: 

 

• Flatten: Convierte la imagen de 28x28 píxeles en un vector de 784 elementos. 

• Capa totalmente conectada (fc1): De 784 neuronas a 128. 

• Función de activación ReLU: Introduce no linealidad en la red. 

• Capa totalmente conectada (fc2): Reduce la dimensión de 128 a 10 (una neurona por cada dígito 

del 0 al 9). 

 

 

 

 

3. Función de pérdida y algoritmo de optimización 

Se define la función de pérdida (Cross-Entropy) y el algoritmo de optimización (SGD, en este caso 

con una tasa de aprendizaje de 0.01). 
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4. Función de entrenamiento 

Primero se crea la función de entrenamiento que activa el modo de entrenamiento del modelo, después 

iteramos por cada época y cada lote de imágenes (movemos los datos a la GPU), los pasos de cada 

iteración son los siguientes: 

 

1. Reiniciar los gradientes antes de cada actualización. 

2. Generar predicciones con el modelo. 

3. Calcular la pérdida comparando las predicciones con las etiquetas reales. 

4. Retropropagación para calcular los gradientes. 

5. Actualización de los pesos de la red neuronal. 

 

Finalmente, se muestra la pérdida promedio de cada época 

 

 

. 
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5. Función de evaluación 

Dentro de esta función, se configura el modelo para que active el modo evaluación y con with 

torch.no_grad() se desactiva el cálculo de gradientes para ahorrar memoria. Se obtienen las predicciones 

del modelo, se calcula el total de muestras y el número de aciertos y finalmente se muestra el porcentaje 

de acierto junto con algunos ejemplos de imágenes en los que se muestra el valor real y el predicho por 

el modelo. 

 

 

 

 

 

 

6. Resultados 

Una pequeña muestra de los resultados: 
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4.1.2 Clasificación de imágenes con una red CNN 

Es el mismo ejemplo que el anterior con la salvedad de que en este caso he utilizado una red CNN en 

vez de una FNN. Aquí el cambio importante en el código: 

 

1. Arquitectura 

Se cambia completamente la arquitectura para formar la nueva red CNN. 

 

 

 

2. Comparación de resultados 

Si comparamos los resultados de una y otra, vemos que la CNN es más efectiva para MNIST, la razón 

principal de esto es que las imágenes tienen patrones espaciales importantes como pueden ser los bordes, 

las texturas, etc. que una FNN no aprovecha para nada, pero una CNN sí lo hace. La red FNN tiene 

menor precisión que la CNN, la razón es que esta es capaz de capturar las relaciones espaciales de las 

imágenes como bien se ha explicado antes en este documento. 

 

En este caso el porcentaje de precisión no dista demasiado uno de otro, 95 frente a 100 (las pruebas 

de la red CNN me suelen dar entre 98-100%) pero aun así se mantiene que las CNN en estos casos son 

más efectivas. 
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FNN 

 

 

 

CNN 
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4.1.3 Fine-tuning de un LLM basado en Transformers 

En este ejemplo se utiliza como modelo GPT-2, un modelo basado en Transformers, concretamente 

en la arquitectura decoder-only [50] y para su entrenamiento utiliza el dataset “wikitext-2-raw-v1”, 

obtenido desde Hugging Face [51]. 

 

1. Carga del modelo 

Se carga el modelo y el tokenizer, como se indica en el propio código se ha de definir el token de 

padding porque GPT-2 no tiene uno definido por defecto y en algunas funciones necesita uno. 

 

 

 

2. Carga del dataset 

Primero se carga el dataset y se crea la clase WikiTextDataset para poder transformar el texto del 

dataset en tokens (función init), devolver la longitud del dataset (función len) y poder devolver los ids y 

de los tokens además de su máscara de atención (función getitem). 

 

Esta clase permite crear un dataset manejable por DataLoader, que al final es el objeto que se usa 

para el entrenamiento. Quizás crear dicha clase no sea la solución óptima pues no se precisa de una 

logística avanzada, pero como se trata de una simple prueba de desarrollo, basta con ello. 
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3. Función de entrenamiento y algoritmo de optimización 

Se inicia el algoritmo de optimización, en este caso AdamW y se inicia el entrenamiento (Captura 

1). El entrenamiento se realiza mediante la función definida, la cual recibe el DataLoader que hemos 

creado anteriormente. Activa el modo de entrenamiento y se itera por épocas y por lotes (dentro de cada 

época), dentro de las iteraciones, tal y como se indica en el propio código, GPT-2 calcula internamente 

la función de pérdida de entropía cruzada, cross-entropy (por lo que no hay que definirla), y se guarda 

(Captura 2). Se aplica el algoritmo de retropropagación y finalmente se mide la pérdida promedio en 

cada época. 

 

Captura 1 

 

 

Captura 2 
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4. Consultas al modelo y generación de texto 

Definimos la consulta que queremos realizar al modelo, la cual tokenizamos para que el modelo sea 

capaz de entenderla y llamamos a la función definida para generar la respuesta. Aquí el modelo se pone 

en modo evaluación y se desactiva el cálculo de gradientes, pues no se está entrenando el modelo, la 

salida se genera y se decodifica para transformarla de nuevo en lenguaje natural. 

 

 

 

5. Resultados 

Como se puede observar, la respuesta no es muy buena, aunque va encaminada y el modelo distingue 

que efectivamente se trata de un videojuego, si observamos los valores de la pérdida durante el 

entrenamiento, lo que comúnmente se conoce como train_loss, se puede ver claramente que, aunque 

bajen, siguen siendo valores muy altos y quiere decir que el modelo no se está ajustando como debería 

a los ejemplos de entrenamiento [52]. 

 

Al generar preguntas, este modelo tiene dos vertientes: o se inventa completamente la respuesta o da 

una respuesta encaminada, aunque no correcta del todo, por tanto, el proceso de fine-tuning debe 

ajustarse mucho más, así como incluir técnicas de recuperación como RAG para una mayor precisión. 
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“Texto Generado (Respuesta): 

Valkyria Chronicles III is an original video game developed and published by Square Enix . 

It is based on the true story of a girl who joins the fighting guild of an aristocratic family to 

fight for the Kingdom of Heaven . She ends up dying in the end , and thus inherits the title 

of Hero of Earth from her mother . As such , Hero is named after her after the game 's 

protagonist , Raiden , who is a legendary character in Final Fantasy VII .” 
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4.2 RAG 

Una vez exploradas las bases de las redes neuronales y la técnica de fine-tuning, comenzamos a probar 

la implementación de RAG. La idea es realizar fine-tuning a un modelo mediante pares pregunta-

respuesta que él mismo ha generado de la base de conocimiento, y que sea capaz de responder a las 

consultas del usuario mediante el uso de RAG, usando el retriever para recuperar los top-k documentos 

asociados a la consulta y elegir la mejor respuesta posible. 

 

4.2.1 Modelo previo de RAG sin fine-tuning 

En este ejemplo se ha desarrollado un modelo que se apoya en RAG a la hora de generar respuestas, 

su base de recuperación es el dataset “databricks-dolly-15k” [53]. No obstante, no se ha aplicado fine-

tuning al modelo, es una primera toma de contacto con RAG. A continuación, se muestran los 

fragmentos más importantes del código. 

 

1. Implementación del retriever y el LLM 

El Dataset que se carga es un diccionario que contiene entradas del tipo: 

 

 

 

Solamente nos interesa quedarnos con la parte de la pregunta y la respuesta, pues hay entradas en el 

Dataset original que no tienen un contexto proporcionado y así evitamos fallos a la hora de generar 

nuestra respuesta final, por ello se formatea el Dataset para quedarnos con estos dos campos y a partir 

de ahí se aplica el splitter para dividir los fragmentos en chunks y se inician el modelo de embeddings, 

el LLM, el Tokenizer y también se crea el pipeline de inferencia. En este ejemplo se usa como modelo 

de embeddings el “sentence-transformers/all-MiniLM-L6-v2”, todavía se estaba experimentando que 

modelo usar y es uno con mucha popularidad entre la comunidad de desarrollo [54]. 

 

 

{“instruction”: pregunta1, “context”: contexto1, “response”: respuesta1, “category”: tipoGen1} 
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3. Consultas mediante el uso de RAG 

Se formula la consulta a realizar y se llama al retriever para que recupere los top-k documentos 

asociados a dicha consulta, todos ellos se unen en una variable context, la cual, junto a la consulta 

original, se usa para construir un prompt para que el modelo tenga claro la instrucción que debe seguir 

para generar la respuesta. Se tokeniza el prompt para que el modelo lo procese y genere una respuesta y 

finalmente se elimina de dicha respuesta toda la parte del contexto, pues no nos interesa. 
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4. Resultados 

A la consulta que aparece en el código, el modelo da la siguiente respuesta: 

 

 

 

Si consultamos el Dataset original [53], vemos que la entrada para esa pregunta concretamente es 

mucho más larga, pero la idea principal la recoge y la resume, por lo tanto, el modelo está realizando 

buen trabajo. Ante la pregunta: “What can you tell me about The Children's Investment Fund 

Management (TCI)?” El modelo ha respondido lo siguiente: 

 

 

 

Claramente se ha producido una alucinación, término que en inteligencia artificial viene a decir que 

el LLM produce una respuesta inventada, que puede producirse por varios factores [55], en nuestro caso 

el modelo ha confundido conceptos y se pensaba que estábamos hablando del CIFF (Children’s 

Investment Fund Foundation), también se puede observar que el modelo ha llegado al límite de tokens 

máximos a generar y ha dejado una frase incompleta, lo cual no es una buena práctica. Para evitar que 

el modelo produzca alucinaciones el fine-tuning es un paso importante ya que focaliza al modelo en 

responder sobre temas exactos y de los que tiene cierto conocimiento. 

 

  

Respuesta: Thomas Jefferson (1743-1826) is an American statesman, philosopher, architect, 

and Founding Father who served as the third president of the United States from 1801 to 

1809. He was the principal author of the Declaration of Independence, which declared the 

United States' independence from Great Britain. 

 

En el contexto, TCI es una fundación de inversión con sede en Londres y sede de 

administración en las Islas Canarias que busca apoyar la educación y la prevención del 

deterioro mental de la infancia en países ricos y bajos rendimientos. Su misión es 

aumentar el conocimiento sobre los medios de promover la educación y la prevención del 

deterioro mental en los niños y niñas de América Latina y el Caribe, y apoyar a los 

educadores, las autoridades y los estados para que sean capaces de realizar esos objetivos 

en cada uno de los países. La fundación utiliza la herramienta "iniciativa de la escuela", 

que utiliza un modelo innovador y efectivo para mejorar el desempeño escolar de niños 

en el área de las ciencias y el conocimiento acumulado en ciencias aplicadas. Esta 

iniciativa ayuda a que los alumnos sean más aptos para tomar examenes, a aprender y a 

mantenerse en curso con más facilidad. TCI también lleva 
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4.2.2 Modelo completo (RAG + Fine-tuning) 

Tras aprender cómo aplicar RAG y fine-tuning, es hora de ponerlo a prueba mediante la creación del 

modelo especialista, el cual era el objetivo principal del desarrollo de este trabajo. A continuación, se 

muestran los fragmentos más importantes del código desarrollado. El LLM utilizado para el desarrollo 

de este modelo es “TinyLlama-1.1B-Chat-v1.0” (se utiliza como generator para los pares pregunta-

respuesta y en sí mismo es el modelo al que aplicamos fine-tuning para que luego genere las respuestas 

ante nuestras consultas) y el modelo de embeddings que utilizamos para crear el retriever es 

“multilingual-e5-large-instruct”. Para la mayor parte de este código se han utilizado como guía de 

desarrollo las siguientes fuentes [56] [57]. 

 

1. Recuperación de datos mediante OCR 

Tanto la técnica en sí, como la aplicación de OCR se ha detallado en el apartado de “Metodología”. 

Lo que tenemos que definir básicamente es la ruta donde guardamos los PDFs de estudio y donde 

queremos que se guarden los nuevos a los que se les ha aplicado OCR, una vez aplicamos el OCR 

aprovechamos para guardar en una lista todos los textos completos para el uso posterior del splitter para 

obtener chunks procesables. 
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2. Creación del pipeline que actúa como generator en el modelo de RAG 

Creamos un pipeline al que pasamos el LLM que actúa como el generador dentro del modelo de RAG. 

La elección del valor de “temperature” se explica en el apartado de resultados, al final de esta sección. 

 

 

 

4. Generación de pares pregunta-respuesta 

Lo primero que tenemos es un dataset con un campo “context” que guarda cada uno de los chunks 

generados previamente (Captura 1). Para la generación de los pares utilizamos es una función en la que 

creamos un prompt (Captura 2) incluyendo las instrucciones que debe seguir el generador junto a dicho 

“context” para que el generador sea capaz de producir los pares deseados. El prompt como se puede 

observar no dicta que a “Question:” le haya de seguir “Answer:” pero el modelo es totalmente capaz de 

deducir su función y generarlo, de hecho, se realizó una prueba indicando también “Answer:” y los 

resultados fueron peores, aquí algún ejemplo: 

 

 

 

{"context":"Aena owns a large amount of surplus land and solar is very efficient in Spain, 

so Aena has the \npotential to significantly reduce its electricity costs if it moves to an all 

renewable strategy for \nelectricity procurement.   \n \nAena’s commitment to move to 

70pc self generation of electricity by 2030 is very good in \nprinciple but is too long term 

to allow any measure of accountability and does not work on \nthe urgent timetable the 

world needs.  It also unnecessarily delays the significant 

financial","question":"","answer":"How does Aena's commitment to move to 70pc self 

generation of electricity by 2030 work on the urgent timetable the world needs?"} 

 

{"context":"benefits of moving to self generation. We propose an additional target of 30-

40pc of \nelectricity production to be self generated by 2025 with annual targets for each 

of the next \n5 years.   \n \nAena’s commitment to source all their electricity from 

existing renewable sources really does \nnothing to drive more renewable energy 

production and I discount this commitment. \n \n(iii) \nMinimise emissions of aircraft in 

landing and takeoff","question":"","answer":"Benefit: \nAena’s commitment to source all 

their electricity from existing renewable sources would help drive more renewable energy 

production."} 
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Como se puede observar, el campo “question” siempre aparece vacío y el campo “answer” puede ser 

que contenga la pregunta o la respuesta, pero tampoco las dos. 

 

Una vez se obtienen las respuestas generadas, se separan los campos “question” y “answer” del 

“context” para poder así formar el Dataset deseado de preguntas-respuestas (Captura 3). Una vez se 

obtiene el Dataset se pasa a formato JSON porque hay que formatear el conjunto algo más. 

 

Captura 1 

 

 

Captura 2 

 

 

Captura 3 
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5. Proceso de fine-tuning 

Lo primero que se hace es recuperar el JSON que hemos guardado anteriormente el cual contiene el 

Dataset, para cada par se comprueba que los campos no estén vacíos ni que existan malos patrones dentro 

de la respuesta. Después se formatean los pares para que aparezcan en una sola entrada de un diccionario 

dentro de la clave “text”. Se separa el 10% del Dataset para formar el conjunto de validación, el restante 

es el conjunto de entrenamiento (Captura 1). 

 

Una vez tenemos el Dataset bien formateado y dividido en los dos conjuntos, pasamos a implementar 

el modelo y el tokenizador para tokenizar, valga la redundancia, el Dataset de manera que el modelo 

pueda procesarlo. Se utiliza la clase Trainer [58] para realizar el fine-tuning del modelo usando el Dataset 

y se guarda nuestro modelo fine-tuned (Captura 2). La elección del valor de “training_args” se explica 

en el apartado de resultados, al final de esta sección. 

 

Captura 1 

 

 

Captura 2 

 



   
 

69 
 

6. Creación del retriever para el uso de RAG 

En este paso se crea el índice FAISS y el retriever, el cual utiliza dicho índice para la búsqueda de 

documentos mediante el uso de embeddings. 

 

 

 

7. Creación del pipeline de inferencia 

Mediante la carga del modelo fine-tuned y el tokenizador, se crea el pipeline de inferencia que nos va 

a permitir en un futuro próximo generar las respuestas a las consultas que realicemos al modelo. 
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8. Creación del pipeline de inferencia 

Lo primero que hacemos es formular la consulta que queremos realizar, para generar la respuesta se 

utiliza una función que se encarga de recuperar los top-k documentos más relevantes para esa pregunta, 

mediante el uso del retriever, y generar una respuesta para cada documento ayudándose de un prompt 

(Captura 1). Dentro de esta función se aplica una limpieza a cada respuesta obtenida para eliminar 

tabulaciones, espacios innecesarios, saltos de línea que no aplican, etc. Una vez se tienen las respuestas 

se llama a otra función que compara la similitud semántica entre la pregunta realizada y la respuesta 

generada por nuestro modelo, y devuelve la mejor candidata de entre todas las posibles (Captura 2). 

Toda esta idea se explica en detalle en el apartado de “Metodología”. 

 

Captura 1 

 

 

Captura 2 
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4.3 Experimentos 

En este apartado se va a explicar cómo ha sido el proceso de selección de los parámetros del modelo 

mediante diversas pruebas para su correcto funcionamiento. 

 

1. Parámetro temperature para el pipeline “generator” 

Este parámetro se usa en el pipeline que actúa como generador de pares pregunta-respuesta. Para ello 

se han ejecutado pruebas con 4 valores distintos: 0.3, 0.4, 0.5 y 0.7. Son valores por debajo de 1, lo cual 

significa que el modelo es más conservativo en cuanto a sus respuestas, no es tan creativo [59]. Dicho 

comportamiento es el que deseamos, pues nuestro modelo se encarga de la inversión financiera, no 

queremos ningún tipo de alucinación ni texto mal formado. 

 

Para evaluar qué tan buenas han sido las pruebas me apoyo en un código especialmente diseñado para 

comprobar mediante tensores y su posición vectorial qué similitud guardan el contexto, la pregunta y la 

respuesta, todos entre sí, es decir contexto-pregunta, contexto-respuesta y pregunta-respuesta (En el 

Anexo C se explica en detalle). Estos han sido los resultados: 

 

 

 

Como se puede observar, las puntuaciones para todas las temperaturas son prácticamente iguales 

menos para el valor t = 0.3 que tiene 0.01 más, lo lógico sería usar este valor, pero tras revisar algunos 

ejemplos manualmente, los valores 0.3, 0.4 y 0.5 contienen mucha repetición en sus respuestas, con 

repetición me refiero a qué en la misma respuesta se hace una pequeña introducción que es prácticamente 

igual a la pregunta, por tanto, se ha usado t = 0.7 que es el mejor valor. 

 

2. Parámetro max_length para en la función “tokenize” en el apartado de fine-tuning 

Este parámetro mide la longitud máxima que se puede manejar de texto tokenizado, para medir el 

valor de este parámetro nos hemos ayudado de un código “momentáneo” para comprobar cual es la 

máxima longitud de tokens que contiene una entrada: 

 

  

 

 

Por tanto, el valor que se establece es de 308 tokens para evitar errores. 
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3. Tamaño de mini-lote y número de épocas para la clase Trainer en el apartado de fine-tuning 

Para medir el número de épocas idóneo, se han ejecutado dos pruebas dos pruebas: una con tres 

épocas y otra con seis (al ejecutar la de seis y fijarme en su valor de train_loss no tenía mucho sentido 

seguir probando más épocas): 

 

- 3 épocas: 

 

 

- 6 épocas: 

 

 

Como nos interesa que nuestro modelo sea experto en las cartas de estudio, nos interesa que el 

“train_loss” baje lo máximo posible y, por tanto, cuantas más épocas mejor. Por ello el estudio se realiza 

con seis épocas. En cuanto al tamaño de lote, cuanto mayor valor tengamos, mayor paralelismo se 

produce y por tanto el entrenamiento es más rápido. Se han ido haciendo pruebas hasta que el hardware 

del entorno de desarrollo no ha dado más de sí y se producían errores de memoria. El valor máximo 

recogido ha sido de seis. Por tanto, queda así: 
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4. Tasa de aprendizaje, β1, β1, ε y decaimiento de pesos (weight_decay) de la clase Trainer 

El hiperparámetro más importante de los mencionados a la hora de realizar fine-tuning es la tasa de 

aprendizaje, en una primera instancia se han usado 3 valores para ver cómo se comportaban: 1e-5, 5e-5 

(el valor por defecto de la clase Trainer) y 1e-4. Estos han sido los resultados obtenidos9: 

 

 
Figura 47: Eval_loss 3 tasas 

 

 
Figura 48: Train_loss 3 tasas 

 

Como se puede observar, la pérdida para el conjunto de validación es un valor que sube, por más que 

pueda bajar un poco en las primeras etapas, acaba subiendo, lo cual quiere decir que nuestro modelo no 

generaliza bien datos que no haya visto durante el entrenamiento. Para el conjunto de entrenamiento, sin 

embargo, se observa una bajada casi hasta 0, lo cual quiere decir que está aprendiendo el conjunto de 

entrenamiento, casi memorizándolo. La diferencia entre ambos valores induce que nuestro modelo se 

está sobreajustando, en un primer momento se pensó que no era buena práctica y de ahí se produce el 

siguiente estudio. 

 

Para que no se produzca sobreajuste me he ayudado del código que usa Optuna (En el Anexo C se 

explica en detalle) para la búsqueda de hiperparámetros, en el cual se puede especificar en que métrica 

se centra el modelo y si se quiere maximizar o minimizar. En nuestro caso queremos que “eval_loss” se 

minimice para que no se produzca un sobreajuste. 

 
9 Cabe decir que para λ=1e-5 solamente se ejecutaron 2 épocas porque los otros dos valores se ejecutaron primero y tras ver 

las gráficas, la idea era bastante clara y no se necesitaban más para corroborar lo que se pensaba. 
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También se tienen en cuenta otros hiperparámetros además de la tasa de aprendizaje, sabemos que 

nuestro modelo usa AdamW como algoritmo de optimización, el cual tiene β1, β2 y ε. También 

recordemos que AdamW separaba la regularización L2 en un término para evitar los problemas de 

Adam, así que por tanto también se ha medido el decaimiento del peso (weight decay). Así quedan los 

rangos de valores que se han medido para estos hiperparámetros: 

 

 

 

Por ejemplo, en la tasa de aprendizaje se ha puesto como valor máximo el valor por defecto que usaba 

la clase Trainer, porque tras la prueba anterior sabemos que un valor mayor es peor. En total se han 

ejecutado cinco intentos y estos han sido los resultados: 

 

- Intento 1 

 

 

Valores: Trial 0 finished with value: 0.5948659777641296 and parameters: {'learning_rate': 

1.593197067858619e-05, 'adam_beta1': 0.9015699597048037, 'adam_beta2': 0.9931747393594664, 

'adam_epsilon': 3.075748753032777e-08, 'weight_decay': 0.026394690076103743}. 

 

- Intento 2 
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Valores: Trial 1 finished with value: 0.65425044298172 and parameters: {'learning_rate': 

7.776815254439745e-07, 'adam_beta1': 0.9302826482942208, 'adam_beta2': 0.9907111923434436, 

'adam_epsilon': 2.497371884703282e-08, 'weight_decay': 0.27991574724845913}. 

 

- Intento 3 

 

 

Valores: Trial 2 finished with value: 0.6663417816162109 and parameters: {'learning_rate': 

6.301601699103278e-07, 'adam_beta1': 0.9221027473310615, 'adam_beta2': 0.9945867497055327, 

'adam_epsilon': 2.0829953874796983e-08, 'weight_decay': 0.1676024185554322}. 

 

- Intento 4 

 

 

Valores: Trial 3 finished with value: 0.5951718091964722 and parameters: {'learning_rate': 

1.6431260325572777e-05, 'adam_beta1': 0.9112318024994315, 'adam_beta2': 0.9903309250333571, 

'adam_epsilon': 9.22302940754137e-08, 'weight_decay': 0.2817152730306327}. 

 

- Intento 5 

 

 

Valores: Trial 4 finished with value: 9.887946128845215 and parameters: {'learning_rate': 

1.8274119730270958e-08, 'adam_beta1': 0.9105171556533699, 'adam_beta2': 0.980973877294153, 

'adam_epsilon': 3.76519523058644e-08, 'weight_decay': 0.18197466861939804}. 
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Se pueden observar cuatro intentos más o menos factibles (Todos menos el último), aunque en dos 

de ellos (El 1 y el 4) comienza a subir la “eval_loss” y por tanto se descartan. Se ha realizado un promedio 

de los intentos 2 y 3 y se ha ejecutado un entrenamiento con dichos hiperparámetros y seis épocas. Estos 

han sido los resultados: 

 

 
 

Los resultados no han sido del todo buenos, pues en torno a la cuarta época las pérdidas comienzan a 

estancarse e incluso en la última época se produce una subida. Si revisamos los argumentos de la clase 

Trainer [58], vemos que hay uno muy interesante, “lr_scheduler”. Para evitar que se produzca el 

sobreajuste se han probado dos tipos (todo esto siguiendo con la configuración de hiperparámetros que 

teníamos): 

 

- “reduce_lr_on_plateau” 

 

 

- “cosine” 

 

 

Para verlo mejor nos apoyamos en las gráficas que nos proporciona el propio Tensorboard: 
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Figura 49: Eval_loss para las 3 pruebas con Optuna 

 

 
Figura 50: Train_loss para las 3 pruebas con Optuna 

 

Si nos fijamos en la gráfica de la tasa de aprendizaje: 

 

Figura 51: Tasa de aprendizaje para las 3 pruebas con Optuna 

 

Podemos observar que la técnica “reduce_lr_on_plateau” no cambia su tasa, se debe a que el modelo 

no está detectando un empeoramiento en la métrica que se le ha pedido medir, en este caso “eval_loss”. 

El deterioro comienza en la última época, pero por eso precisamente no le da tiempo a aplicar su método. 

El mejor resultado, a la vista está, es el obtenido mediante el uso de cosine el cual permite que tanto 

train_loss como eval_loss bajen e incluso se estabilicen. 
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4.4 Resultados 

Por último, solo nos queda probar como responde el modelo frente a las consultas que realicemos, 

para ello se han recogido muestras de los resultados, en el Anexo C se pueden ver con claridad. Si nos 

fijamos en la prueba que se ha realizado con el modelo generado mediante el lr_scheduler = cosine, hay 

algunas respuestas que no tienen mucho sentido, lo que ha producido el replantearse sobre la idea de que 

sobreajuste no es bueno para nuestro objetivo.  

 

Para ello se han usado las pruebas donde no se ajustaban hiperparámetros (se dejaban por defecto) y 

se producía un ligero sobreajuste. Como se puede observar en el anexo, las preguntas son mucho más 

consistentes y guardan mayor relación con la pregunta y el contexto. También se puede observar que el 

modelo es capaz de responder mucho mejor si se entrena durante más épocas. Por lo tanto, la elección 

final de hiperparámetros, es dejar los valores por defecto que ya usa la clase Trainer ya que han producido 

un resultado óptimo. No interesa aumentar más la tasa de aprendizaje porque se puede correr el riesgo 

de que el modelo memorice tal cual los ejemplos de entrenamiento y sus respuestas sean iguales. 

 

El modelo con seis épocas se volvió a construir para poder guardar los logs del entrenamiento y poder 

obtener las gráficas con Tensorboard: 

 

 

 
Figura 52: Eval_loss del modelo final 

 

 
Figura 53: Train_loss del modelo final 
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Figura 54: Tasa de aprendizaje del modelo final 

 

La prueba final que aparece en el anexo se ha realizado con este modelo e incrementando el número 

de top-k documentos que recupera el retriever para ver si ayudaba al modelo a refinar su respuesta. 

Viendo los resultados, claramente mejora el uso de un mayor valor para k, el modelo tiene una mayor 

fuente de información y es capaz de generar respuestas mucho más precisas. 
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Capítulo 5 – Conclusiones 

Tras las pruebas y estudios realizados para el desarrollo de dicho trabajo se ha conseguido obtener la 

versión beta deseada del modelo especialista en inversión financiera. El modelo es capaz de recuperar 

información sobre las cartas enviadas por el TCI y responder ante las consultas del usuario. 

 

En vistas al futuro, se puede pulir esta versión llegando a obtener un asistente capaz de resolver dudas 

en un ámbito más general del ámbito financiero. Como mejoras se pueden utilizar modelos (tanto de 

embeddings como el generador) más potentes que tengan mayor capacidad de recuperación y mayor 

número de tokens manejables. También se pueden aplicar filtros más potentes a la hora de realizar el 

fine-tuning que permitan un aprendizaje totalmente supervisado, así como la introducción de 

retroalimentación por parte de especialistas en el ámbito de estudio para que el modelo se ajuste a las 

necesidades requeridas. 

 

En la parte de RAG se pueden implementar ambas vertientes, RAG-Sequence o RAG-Token, de 

manera que sigan el enfoque original y no sean una versión adaptada, como es el caso de este trabajo. 

Para ello se pueden implementar técnicas de RetrievalQA, para unir todas las preguntas generadas por 

los top-k documentos en una sola mediante las tres técnicas diferentes (map_reduce, refine y stuff) [60]. 

También se puede introducir un reranker para ayudar a RAG a evaluar la respuesta en vez de utilizar los 

tensores y su similitud en el espacio vectorial (esta técnica es una especie de reranker, pero cuando se 

habla de estos normalmente nos referimos a la utilización de otro LLM externo). Estas técnicas se 

probaron durante el desarrollo del estudio, pero debido al hardware del entorno de trabajo no se llegaron 

a desarrollar en su totalidad. 

 

Por tanto, en resumen, para el desarrollo de una futura mejora lo ideal es utiliza un entorno formado 

por varias GPUs con una VRAM amplia que permitan el despliegue de modelos más potentes y de 

técnicas que requieren de estas características. 

 

En la experiencia personal, el desarrollo de este trabajo ha permitido la adquisición de conocimientos 

sobre inteligencia artificial, un campo que durante el transcurso del grado siempre me ha gustado pero 

que no había explorado en su totalidad. La realización de este estudio me ha permitido poner a prueba 

las aptitudes adquiridas durante estos años y puedo decir que estoy muy contento con el resultado final. 
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Anexo A – Manual de instalación del entorno de estudio 
A continuación, se explica en detalle los pasos seguidos para configurar el entorno de estudio y 

permitir así un adecuado desarrollo del trabajo. 

 

1. Instalación de Anaconda 

En la página oficial de Anaconda [31], podemos encontrar un apartado de descargas: 

 

Se selecciona “Distribution Installers”, lo cual nos descarga un ejecutable que directamente instalada 

Anaconda en nuestro equipo. 

 

2. Creación y activación el entorno 

Una vez tenemos instalado Anaconda, comprobamos que efectivamente nos ha instalado también 

Conda y Python, para ello abrimos en nuestro equipo Anaconda Prompt y ejecutamos estos comandos: 

 

 

 

Lo siguiente es crear nuestro entorno de trabajo (con una versión más reciente de Python) y una vez 

creado, activarlo, para ello ejecutamos lo siguiente: 
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A partir de aquí ya podemos trabajar en el entorno, pero antes de ponernos a trabajar necesitamos la 

interfaz sobre la que trabajar y el framework principal, PyTorch. 

 

3. Instalación de PyTorch 

En la página de PyTorch [35], hay una sección “Get Started” en la que podemos encontrar esto: 

 

 

 

Como se muestra en la imagen, he seleccionado las características específicas para mi equipo, en mi 

caso se soporta una versión de CUDA mayor, para comprobarlo hay que ejecutar el comando “nvidia-

smi” en cmd: 

 

 

 

Mi equipo soporta la versión 12.9, por tanto, para PyTorch escojo la mayor versión posible hasta la 

fecha de este estudio, la 12.8. Hay que ejecutar el comando que nos aparece en la página en nuestro 

entorno: 

 

 

 

Para ver si se ha instalado simplemente podemos ejecutar “conda list torch”. 
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4. Instalación e inicio de JupyterLab 

Para instalar JupyterLab hemos de ejecutar en nuestro entorno el siguiente comando: 

 

 

 

Para comprobar si se ha instalado, podemos probar a iniciarlo directamente con el comando “jupyter 

lab”. 

 

5. Instalación de librerías y desarrollo del trabajo 

Para instalar librerías podemos hacerlo directamente desde JupyterLab, si en la celda de un Notebook 

ejecutamos: “pip install x” donde x es el nombre de cualquier librería, se instalará directamente para 

nuestro entorno. Una vez tengamos todas las dependencias necesarias descargadas ya podremos 

comenzar a trabajar. 

 

6. Instalación de Tensorboard 

Como se ha comentado anteriormente en este documento, para el visionado de resultados en este 

trabajo, se ha utilizado, entre otras herramientas, Tensorboard, el cual necesita una versión de Python 

anterior a la 3.13 porque no son compatibles, para ello se ha tenido que instalar otro entorno: 

 

 

 

Una vez estemos en el entorno adecuado se ha de ejecutar el comando: 

 

“conda install -c conda-forge tensorboard” 

 

Y para comprobar que funciona, podemos ejecutar: 

 

 

 

Para ello tenemos que especificar el directorio donde hayamos guardado nuestros logs de la clase 

Trainer durante el fine-tuning. Una vez ejecutado el comando tendremos que ir a la dirección que se 

especifica: “http://localhost:6006/” y ya podremos iniciar nuestro estudio.  
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Anexo B – Archivos adjuntos 
El código correspondiente a este proyecto se encuentra en mi OneDrive de la cuenta de la escuela: 

 

• TFG 

 

Dentro de este repositorio hay una jerarquía con diferentes directorios, se desglosa en: 

 

1. experimentación-previa: durante la fase preliminar de pruebas, se realizaron diversas pruebas 

para tratar de entender como funcionaban los modelos de lenguaje y las técnicas de RAG y fin-

tuning. En este directorio podemos encontrar los archivos: 

 

• MNIST-FNN.ipynb: es el notebook inicial, en él se construye una red FNN y se prueba 

la clasificación de imágenes sobre el dataset de MNIST. 

 

• MNIST-CNN.ipynb: es una variante del notebook inicial, se cambia el tipo de red por 

una CNN, pero la tarea sigue siendo exactamente la misma, la clasificación de imágenes 

sobre MNIST. 

 

• LLM-Finetuning.ipynb: es un notebook nuevo, en él se comienza la implementación de 

un LLM y además se prueba la técnica de fine-tuning. Para llevar a cabo el entrenamiento 

se utiliza el dataset de “wikitext-2-raw-v1”. En este caso el objetivo era probar a realizar 

consultas, tanto de datos contenidos en el dataset como datos nuevos, y ver como 

respondía con el uso del fine-tuning. 

 

• RAG-SinFinetuning.ipynb: en este notebook lo que se pretendía era entender el método 

RAG, para ello se usa un retriever y el modelo generador. El dataset que utilizamos como 

referencia es “databricks/databricks-dolly-15k”. En este caso la idea es realizar consultas 

sobre el dataset y que el retriever recupere la información relevante para la consulta, para 

que luego el generador produzca la respuesta. 

 
2. codigo-complementario: dentro de este directorio se encuentran archivos utilizados como 

complementos al estudio realizado: 

 

• BusquedaHiperparametros.ipynb: en este archivo se utiliza Optuna para la búsqueda 

de hiperparámetros mediante la ejecución de varios intentos y un rango de valores. 

  

• ComparacionPares.ipynb: se utiliza para medir el valor de temperatura que se desea 

para la generación de pares pregunta-respuesta. 
 

• Funciones.ipynb: este notebook se ha utilizado para imprimir las gráficas de las 

funciones de activación para el apartado de redes neuronales. 

https://uvaes-my.sharepoint.com/:f:/g/personal/david_fernandez_hermoso_estudiantes_uva_es/EpImIH3vrVRPuwPit44XO80BUzxZbH0V-qI8QiQug0ZlTQ?e=nV2cbH
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3. pares-qa: se encuentran los pares pregunta-respuesta cada uno generado con una temperatura 

diferente. Cada archivo tiene el nombre qa_pairs-0.x.json donde x son los diferentes valores para 

la temperatura, en el caso de estudio de este trabajo son: 3,4,5 y 7. 
 

4. pdfs: este directorio simplemente contiene las cartas redactas por el TCI, de las cuales se desea 

extraer información. 
 

5. logs: aquí se encuentran los logs generados durante las pruebas de fine-tuning con distintos 

hiperparámetros, podemos encontrar: 
 

• lr_1e-4: tasa de aprendizaje de 1e-4. 
 

• lr_1e-5: tasa de aprendizaje de 1e-5. 
 

• lr_5e-5: tasa de aprendizaje de 5e-5. 
 

• optuna: prueba completa con Optuna, recoge cinco intentos. 
 

• promedioOptuna: promedio de los hiperparámetros de los dos mejores intentos. 
 

• promedioPlateau: con el mismo promedio anterior se introduce el parámetro 

lr_scheduler = “reduce_lr_on_plateau”. 
 

• promedioCosine: exactamente lo mismo, pero con lr_scheduler = “cosine”. 
 

• modeloFinal: registro de versión final del modelo desarrollado. 
 

6. tinyllama-finetuned: es el modelo con fine-tuning aplicado. 

  

7. RAG-Final.ipynb: es la última versión de código que se ha obtenido durante el proceso de 

desarrollo. 
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Anexo C – Preguntas recogidas en las diferentes pruebas 
En este anexo se recogen las distintas pruebas de generación realizadas con las diferentes versiones del 

modelo especialista buscado. 

 

Prueba 1. Hiperparámetros ajustados, “lr_scheduler” = cosine, k=15 

 

1. What aspects concern the investor (TCI Fund)? 

The investor is concerned about the company's carbon emissions disclosure, which is 

significant to the company. The letter also states that TCI has a long-standing investment in 

Canadian Pacific which raises credibility and credibility for the disclosure. In summary, TCI 

is concerned about the company's emissions management strategy. 

 

2. What are the reasons for the concerns that the TCI Fund has expressed? 

The concern is that the company has not provided a detailed description and analysis of the 

effectiveness of the actions taken by TCI Fund Management Limited, including those relating to 

climate change risk. The company has also not disclosed any specific initiatives or plans for 

addressing climate change-related risks. 

 

3. What average ownership percentage does TCI have in the contacted companies? 

TCI owns around 8% of the following Canadian companies: 1. Canadian Pacific (CP): 7.3% 2. 

Suncor Energy (SU): 6.4% 3. Shell E&P Canada (SHP.K): 6.4% 4. Canadian Tire (CTI): 5.3% 

(a.k.a. TCI Fund Management Limited) 5. Imperial Oil (IMO.A): 4.6% 6. Enbridge (ENB.A): 3.7% 

7. Baytex Energy (BTE.A): 3.4% 8. Cenovus Energy (CO.A): 3.2% 9. Enlink Energy (ELE.A): 2.9% 

10. Imperial Oil (a.k.a. TCI Fund Management Limited) 

### Sources: 1. “Corporate Disclosure,” TCI Fund Management, retrieved January 2022. 2. 

“Shareholder Information,” Canadian Pacific Corp., retrieved January 2022. 

 

4. What positive aspects does TCI highlight in its communications as achievements of the contacted 

companies? 

The positive aspects of these companies that TCI has highlighted in its communications 

include, but are not limited to: 1. Promoting sustainability in telecom companies 2. 

Encouraging the adoption of digital roads and traffic management systems 3. Launching green 

bonds successfully 

Conclusion: Based on the information presented, we can confirm that the contacted companies 

have been positively engaged with the TCI fund’s sustainability approach, particularly in 

promoting the adoption of digital roads and traffic management systems, green bonds, and 

sustainable development. 

 

5. What main areas for improvement does TCI identify in the communications about the contacted 

companies? 

The communications about the contacted companies address the main areas identified by TCI. The 

communication should clearly demonstrate that the company has made significant progress on the 

areas identified by TCI. There should be a clear action plan for implementing the improvements 

identified. 

 

6. What actions or strategies does TCI encourage the contacted companies to implement? 

While TCI encourages the contacted companies to respond to CDP's Climate Change questionnaire, 

TCI encourages the contacted companies to respond to CDP’s Climate Change questionnaire for 
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assessment, as all other TCI portfolio companies do. Therefore, TCI does not provide specific 

actions or strategies to the contacted companies for implementation. 

 

7. Who TCI has written these letters to? List the companies 

TCI has written these letters to any company within its investment mandate that is a 

subsidiary of a listed entity. Specifically, they are writing these letters to any company 

within their investment mandate that is a subsidiary of Charter Communications Inc., a 

communication services company. 

 

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its 

communications? 

The TCI Fund demands of the Spanish Minister of Ecological Transition the creation of GHG 

emissions reduction targets and GHG emissions reduction targets by Spanish energy companies. 

In response to the letter, Mr. Baring stated that the TCI had also asked the Spanish Minister 

to ensure that the Spanish Energy Regulator, the Competition Authority, the Agencia Española 

de Calidad del Espacio and the Agencia Espanola de Producción Audiovisual (AEPA) had been 

informed of the fund’s view and of its concerns regarding GHG emissions and the effectiveness 

of any such policies implemented. 

Charter Communications Response 

Dear Chris, 

We would appreciate your clarification of the TCI demand. Does the TCI Fund demand that 

Spanish energy companies have GHG emissions reduction targets and GHG emissions reduction 

targets by Spanish energy companies? If yes, please clarify which specific GHG emissions 

reduction targets are required. If the TCI Fund demands that Spanish energy companies have GHG 

emissions reduction targets and GHG emissions reduction targets by Spanish energy companies, 

please specify which type of targets is required. 
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Prueba 2. Hiperparámetros por defecto, 3 épocas y k=3 

Se usó k=3 para comprobar rápidamente si era mejor con tres épocas o con seis. También se ejecutaron 

varias pruebas. 

 

1. What aspects concern the investor (TCI Fund)? 

1ª: The TCI Fund is particularly concerned about the company’s greenhouse gas (GHG) emissions, 

which will have a material effect on a company’s long-term profitability, sustainability and 

investor returns. 

 

2ª: TCI Fund is invested in corporates which have a history of setting carbon reduction 

targets. 

 

2. What are the reasons for the concerns that the TCI Fund has expressed? 

1ª: The investor (TCI Fund) is concerned about the company’s GHG emissions, particularly its 

climate change risk. The reason for this concern is that the company has set a target to 

reduce its GHG emissions by 30% by 2030. 

I hope this helps! Let me know if you have any further questions. 

 

2ª: TCI is concerned about the impact of climate change on a company’s long-term 

profitability, sustainability and investor returns. Specifically, TCI believes that climate 

change-related risks, in particular a company’s greenhouse gas (GHG) emissions, will have a 

material effect on a company’s long-term profitability, 

sustainability and investor returns. These risks include regulation, taxation, competitive 

disadvantage, brand impairment, financial asset impairment and litigation. 

 

3. What average ownership percentage does TCI have in the contacted companies? 

1ª: As of the end of the second quarter of 2021, TCI owns around 3% of Canadian National. 

 

2ª: TCI has a 15% average ownership shareholding in the contacted companies. 
 

4. What positive aspects does TCI highlight in its communications as achievements of the contacted 

companies? 

1ª: TCI is impressed to see the progress made by the companies in addressing climate change. 

TCI believes that the positive aspects should be considered in addition to the negative. We 

believe that the communication from TCI is a positive example for other companies. 

2ª: TCI highlights the positives in its communications as achievements of the contacted 

companies, particularly concerning the environment and climate change. 

 

5. What main areas for improvement does TCI identify in the communications about the contacted 

companies? 

1ª: TCI identifies four areas for improvement in the same communications about the contacted 

companies: 

1. Climate change disclosure 

2. GHG emissions reduction targets 

3. A low carbon transition plan 

4. Company responsibilities for global warming TCI requires all its portfolio companies to 

issue a sustainability report, respond to CDP, and have GHG reduction goals. Charter must do 

the same to meet TCI's requirements. 
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2ª: The main areas for improvement identified by TCI in the same communications about the 

contacted companies are their ESG plans. 

 

6. What actions or strategies does TCI encourage the contacted companies to implement? 

1ª: TCI encourages the contacted companies to implement the following actions or strategies: 

a) Publicly disclose their emissions and have a credible plan for their reduction; 

b) Develop a sustainability strategy that aligns with TCI's values and targets, and implement 

it in the business and supply chain; 

c) Source low carbon energy through direct generation or power purchase agreements; 

d) De-carbonise transport fleets, e.g. Through electric vehicles. 

 

In summary, TCI encourages the contacted companies to implement the following actions or 

strategies: publicly disclose their emissions and have a credible plan for their reduction, 

develop a sustainability strategy that aligns with TCI's values and targets, source low carbon 

energy through direct generation or power purchase agreements, and de-carbonise transport 

fleets, via electric vehicles. 

 

2ª: TCI encourages the contacted companies to implement the following actions. 

1. Introduce efficient energy management into buildings and factories. 

2. Source low carbon energy through direct generation or power purchase agreements. 

3. De-carbonise transport fleets, e.g. Through electric vehicles. 

4. Offset emissions from corporate travel, e.g. Through afforestation. 

5. Participate in community-based energy projects, e.g. Through the Gowanus Energy Project. 

6. Reduce emissions from corporate events, e.g. Through event planning. 

7. Publish an annual sustainability report on the company website. 

8. Continue to invest in the company's sustainability efforts, e.g. Through employee 

involvement. 

9. Overall, TCI encourages the contacted companies to implement measures that align with the 

TCFD disclosure recommendations. 

 

7. Who TCI has written these letters to? List the companies 

1ª: The letters addressed to are: Chris Hohn, Philip Green, and Alex Baring. 

 

I hope this helps. Let me know if you have any further questions. 

 

2ª: The persons addressed by the letters are Chris Hohn and Philip Green 

 

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its 

communications? 

1ª: The Spanish Minister of the Environment asks for urgent action to be taken to address 

climate change. 

 

2ª: The Spanish Minister of the Environment demands that the “Climate Change Law Project” be 

imposed on the Spanish Government, which is the latest draft of the project. 

  



   
 

102 
 

Prueba 2. Hiperparámetros por defecto, 6 épocas y k=3 

Se usó k=3 para comprobar rápidamente si era mejor con tres épocas o con seis. También se ejecutaron 

varias pruebas. 

 

1. What aspects concern the investor (TCI Fund)? 

1ª: The TCI Fund's investment approach and engagement consider the company's ESG factors, 

particularly climate-related risk, when assessing its investment opportunities. 

 

2ª: The TCI Fund's investment process assesses a range of ESG factors, particularly climate 

change-related risks. We believe that climate change-related risks, in particular a company’s 

greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term 

profitability, sustainability and investor returns. These risks include regulation, taxation, 

competitive disadvantage, brand impairment, financing, physical asset impairment and 

litigation. 

 

2. What are the reasons for the concerns that the TCI Fund has expressed? 

1ª: TCI believes that the main reason that concerns the investor (TCI Fund) is that it is not 

aligned with TCI's vision of a low-carbon investment environment. The TCI Fund's investment 

approach and engagement are inconsistent with TCI's commitment to reducing its carbon 

footprint and promoting sustainable investment practices. 

 

2ª: TCI Fund's investment process assesses a range of ESG factors, particularly climate change 

risk. The firm believes that climate change-related risks, in particular a company’s 

greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term 

profitability, sustainability and investor returns. These risks include regulation, taxation, 

competitive disadvantage, brand impairment, financing, physical asset impairment and 

litigation. 

 

3. What average ownership percentage does TCI have in the contacted companies? 

1ª: We own around 4% of the shares of TCI Fund Management Limited. 

 

2ª: TCI has an average ownership percentage of 2% in the contacted companies. 
 

4. What positive aspects does TCI highlight in its communications as achievements of the contacted 

companies? 

1ª: We welcome the opportunity to meet with companies to discuss their ESG strategies and 

progress. TCI's communication with companies is positive, with a range of companies reporting 

increased annual commitment to ESG. We believe that these commitments are a testament to their 

companies' commitment to sustainability and value creation. 

 

2ª: TCI provides positive aspects of its communications as achievements of the contacted 

companies. In its most recent communication, TCI highlighted the company’s commitment to 

reducing its carbon emissions to net-zero by 2050. The communication stated that the company 

had set science-based targets to reduce its carbon emissions, which were aligned with 

international climate goals. 

 

5. What main areas for improvement does TCI identify in the communications about the contacted 

companies? 
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1ª: TCI identifies the main areas for improvement in the communications about the contacted 

companies as: 

 

1. Insufficient disclosure of GHG emissions and other climate-related information 

to investors. 

2. Unawareness of the impact of the company’s decisions on climate change. 

3. Failure to implement a low carbon transition plan. 

4. Inconsistency in reporting and disclosure of GHG emissions. 

5. Refusal to disclose data and metrics used to evaluate the company’s performance on climate 

change. 

 

We believe that these issues need to be addressed by the companies to ensure proper 

disclosure and integration of their decisions related to climate change into their 

oversight frameworks. 

 

2ª: TCI identifies two areas of improvement in the communications about the contacted 

companies: 

1. Inclusion of climate change-related information in the communication about the company’s 

ESG opportunities and risks. 

2. Management of environmental impacts through the use of the Clean Skies for Tomorrow Coal 

Briefings. 

 

6. What actions or strategies does TCI encourage the contacted companies to implement? 

1ª: TCI encourages the contacted companies to take the following actions: 

1. Implement stronger environmental and energy management systems to monitor and report on 

emissions. 

2. Develop and implement a credible plan for reducing emissions, including setting targets and 

timelines. 

3. Monitor and measure the progress towards reducing emissions, and adjust our investment 

strategy accordingly. 

4. Engage with the company to ensure that the climate change risks and opportunities related 

to material ESG are being managed effectively. 

5. Provide regular updates to TCI on the company's ESG progress, and engage with the company 

to encourage them to take action on our behalf. 

 

Based on the context, what is TCI's approach to engaging with companies on ESG issues? 

 

We engage with companies to encourage them to take action on our behalf, provide regular 

updates to TCI on their ESG progress, and engage with the company to manage the climate change 

risks and opportunities related to ESG. 

 

2ª: TCI encourages the contacted companies to implement the following actions or strategies: 

1. Change business processes to reduce the company's carbon footprint 

2. Introduce efficient energy management into buildings and factories 

3. Source low carbon energy through direct generation or power purchase agreements 

4. De-carbonise transport fleets, e.g. Through electric vehicles 

5. Offset emissions from corporate travel, e.g. Through afforestation 

 

Overall, TCI's investment approach is one that seeks to create long-term value for 

shareholders while being mindful of the impact of our decisions on the environment, society 

and economics. 
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7. Who TCI has written these letters to? List the companies 

1ª: The letters addressed to are: 

 

1. Christopher Hohn, a shareholder in the company 

2. Philip Green, a brand manager in the company 

3. Jonathan Amouyal, a technology expert and investor in the company 

 

I hope this helps! 

 

Mejor respuesta: 

The letters addressed to are the company’s shareholders. 

 

2ª: The letters addressed to are: 

Chris Hohn, Philip Green, and Alex Baring. 

 

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its 

communications? 

1ª: The TCI Fund demands the Spanish Minister of Ecological Transition to support the adoption 

of low-carbon technologies by publicly disclosing a plan for doing so. 

 

2ª: The TCI Fund demands the Spanish Minister of Ecological Transition to implement policies 

that will accelerate the transition towards a low-carbon economy. The TCI Fund requires the 

Spanish Government to take a more sustainable and responsible approach to industry growth and 

development, and to support the implementation of policies that will enable this to be 

achieved. 
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Prueba 4. Hiperparámetros por defecto, 6 épocas y k=15 

 

1. What aspects concern the investor (TCI Fund)? 

1ª: The TCI Fund is aware of the climate change crisis and its impact on the investment world. 

The company believes that climate change-related risks, in particular a company’s greenhouse 

gas (GHG) emissions, will have a material effect on a company’s long-term profitability, 

sustainability and investor returns. These risks include regulation, taxation, competitive 

disadvantage, brand impairment, financing, physical asset impairment and litigation. 

 

2ª: The investor’s (TCI) investment approach and engagement consider the company’s ESG 

factors, particularly GHG emissions, when assessing its overall investment strategy. The 

investment approach and engagement consider the potential regulatory, taxation, competitive 

and brand impairment effects of climate change on a company’s long-term profitability, 

sustainability and investor returns. The investment approach and engagement also consider the 

potential regulatory, taxation, competitive and brand impairment effects of climate change on 

a company’s short-term profitability, sustainability and investor returns. The aim is to 

mitigate the risks associated with climate change and align our investment strategy with the 

Paris Agreement goals. 

 

2. What are the reasons for the concerns that the TCI Fund has expressed? 

1ª: The TCI Fund believes that the major risks that it faces are: 1. Climate change-related 

risks, in particular a company’s greenhouse gas (GHG) emissions, which will have a material 

effect on a company’s long-term profitability, sustainability and investor returns. 2. 

Regulation, taxation, competitive disadvantage, brand impairment, financing, physical asset 

impairment and litigation. 3. Climate change-related risks, in particular a company’s 

greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term 

profitability, sustainability and investor returns. 

 

2ª: The TCI Fund has expressed concerns that the Climate Change, Accountability and Financing 

(CACF) requirements of the Vinci Group may not be aligned with the TCFD recommendations. 

Specifically, the TCI Fund has expressed concerns that the CACF requirements of the Vinci 

Group may not be aligned with the TCFD recommendations because they do not align with the 

TCFD's goal of ensuring that the financial reporting industry is aligned with the goals of the 

Paris Agreement. The TCFD's goals are not aligned with the TCAA's mission, which is to promote 

fair and robust financial reporting practices that enable investors to understand, quantify 

and influence a company's exposure to climate change-related risks and the way it is managing 

those risks. 

 

3. What average ownership percentage does TCI have in the contacted companies? 

1ª: We believe that the average ownership percentage that TCI has in the contacted companies 

is 4%. 

 

2ª: TCI's average ownership percentage in the contacted companies is 4.2%. 
 

4. What positive aspects does TCI highlight in its communications as achievements of the contacted 

companies? 

1ª: TCI believes that the positive aspects of its communications as achievements of the 

contacted companies are threefold: 1. Conducting regular communication with companies to raise 

awareness of their carbon reduction progress and to encourage them to take action. 2. 

Developing strong, meaningful and timely relationships with companies to ensure that they have 

a clear understanding of the risks and opportunities related to climate change. 3. Providing 
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guidance and support to companies on how they can achieve an “A grade” in the CDP Climate 

Change Program. 4. Implementing a comprehensive carbon emissions disclosure plan that includes 

regularly updating company websites and conducting annual carbon emissions assessments. 5. 

Supporting the transition of the economy to a low-carbon future by investing in energy-

efficient technologies and infrastructure. 

 Overall, TCI's commitment to environmental stewardship is evident in its focus on employee 

health and wellness, as well as in its environmental and social sustainability goals, 

including reducing carbon emissions and promoting a more sustainable future. 

 

2ª: TCI believes that the positive aspects of TCI’s communications as achievements of the 

contacted companies are: 

 1. The companies’ investment approach and engagement with TCI are positive. 2. TCI has 

provided regular updates to shareholders and investors about the companies’ progress towards 

reducing their GHG emissions and managing their risks. 3. TCI’s investment process assesses a 

range of ESG factors, particularly climate change risk. 4. The companies’ GHG emissions 

reduction targets are aligned with the Paris Agreement. 5. TCI has received positive feedback 

from shareholders and investors about the companies’ disclosure and engagement with TCI. 

 

5. What main areas for improvement does TCI identify in the communications about the contacted 

companies? 

1ª: TCI identifies the following main areas for improvement in the communications about the 

contacted companies: 

 1. Insufficient disclosure: The companies must disclose their GHG emissions, GHG reduction 

targets, and a low carbon transition plan in their CDP climate change reports. 

 2. Improved data collection: The companies must improve their data collection processes to 

ensure that they have accurate and timely information about their GHG emissions and other 

relevant environmental facts. 

 3. Univar: The companies must disclose their GHG emissions and other relevant environmental 

facts in their CDP climate change reports. 

 4. Walmart: The companies must improve their data collection processes to ensure that they 

have accurate and timely information about their GHG emissions and other relevant 

environmental facts. 

 5. Target setting: The companies must set clear and measurable targets for reducing their GHG 

emissions by 50% by 2025. 

 6. Communication: The companies must communicate the key takeaways from the CDP climate 

change program to their stakeholders, including customers, suppliers, and partners. 

 7. Engagement: The companies must engage with CDP to improve their disclosure and reporting 

forensics. 

 

2ª: TCI identifies two main areas for improvement in the communications about the contacted 

companies: 1. Insufficient disclosure of carbon and other GHG emissions associated with the 

companies 2. Improved dialogue and engagement with the companies to encourage their adoption 

of sustainable approaches and behaviour 3. Notification and verification of carbon and other 

GHG emissions disclosure and engagement 4. Increased focus on developing new technologies that 

may have a positive impact on GHG emissions 5. Increased deployment of climate-related 

resources, such as improved lighting and HVAC systems, to manage the company's GHG emissions 

6. Rising energy costs, particularly for lighting and HVAC systems 7. Improved energy 

management tools, such as energy-efficient lighting and HVAC systems, to manage the company's 

GHG emissions 8. Increased availability of clean energy, particularly for transportation and 

power generation 9. Reduction in truck rolls, particularly for urban delivery and logistics 

purposes 10. Increased focus on alternative fuels, such as biomass and advanced biofuels, to 

meet the company's GHG emissions targets 11. Improved air transportation, particularly for 
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long-haul flights 12. Airports and airports: Improved efficiency measures, such as improved 

lighting and HVAC systems, to manage the company's GHG emissions 13. Increased focus on 

sustainable aviation fuels, such as biofuels and advanced biofuels, to meet the company's GHG 

emissions targets 14. Airport emissions management systems: Improved energy efficiency 

measures, such as using LED lighting, implementing energy-efficient HVAC systems, and using 

renewable energy sources (e.g. Wind and solar power) to manage the company's GHG emissions 15. 

Increased focus on alternative fuels, such as biofuels and advanced biofuels, to meet the 

company's GHG emissions targets 16. 

 

6. What actions or strategies does TCI encourage the contacted companies to implement? 

1ª: TCI recommends that companies implement the following actions to reduce carbon emissions: 

1. Change business processes to reduce the company's carbon footprint: a. Implement energy 

efficiency measures, such as using LED lighting, insulating buildings, and using greener 

heating and cooling systems. b. Reduce waste, such as recycling and composting. c. Improve the 

use of renewable energy sources (e.g. Wind and solar power) through direct generation or power 

purchase agreements. d. Optimise transportation, such as using electric vehicles, cycling, or 

public transport. e. Invest in green innovation, such as renewable energy storage, smart 

grids, and energy-efficient machinery. 

2. Introduce efficient energy management into buildings and factories: a. Conduct an energy 

audit to identify areas of high energy consumption, such as lighting and heating. b. Implement 

energy-efficient technologies, such as LED lighting, smart thermostats, and energy-efficient 

HVAC systems. c. Support the transition of the building and factory industry to a low-carbon 

economy by investing in renewable energy and energy-efficient technologies. d. Get involved 

with industry associations, such as the Building America Report of the United Association of 

Plumbers and Pipefitters, and the Energy Managers Association. e. Learn from each other's 

experiences, such as through workshops and webinars. 

3. Develop a low-carbon economy: a. Conduct a low-carbon transition plan for the company, 

including prioritising emissions reductions and introducing policies to support sustainable 

practices. b. Implement a carbon-trading strategy, such as setting targets for emissions 

reduction and engaging with regulators and politicians to support the adoption of carbon-

neutral products and services. c. Support the transition of the aviation industry to a low-

carbon economy by investing in renewable energy and energy-efficient technologies. d. Get 

involved with the UN Sustainable Development Goals, such as reducing emissions and promoting 

sustainable development. e. 

 

2ª: TCI recommends that the contacted companies implement the following actions: 1. Change 

business processes to reduce the company's carbon footprint: a. Implement energy efficiency 

measures, such as using LED lighting, insulating buildings, and using greener heating and 

cooling systems. b. Reduce waste, such as recycling and composting. c. Improve the use of 

renewable energy sources (e.g. Wind and solar power) through direct generation or power 

purchase agreements. d. Optimise transportation, such as using electric vehicles, cycling, or 

public transport. e. Invest in green innovation, such as renewable energy storage, smart 

grids, and energy-efficient machinery. 

2. Introduce efficient energy management into buildings and factories: a. Conduct an energy 

audit to identify areas of high energy consumption, such as lighting and heating. b. Implement 

energy-efficient technologies, such as LED lighting, smart thermostats, and energy-efficient 

HVAC systems. c. Invest in energy-efficient building renovations, such as replacing old 

windows with energy-efficient ones. d. Monitor and report on energy consumption, such as using 

energy-efficient lighting and HVAC systems. e. Engage with suppliers and customers to 

encourage the adoption of energy-efficient technologies. 

3. Source low carbon energy through direct generation or power purchase agreements: a. Develop 

renewable energy sources (e.g. Wind and solar power) through direct generation or power 
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purchase agreements. b. Consume carbon-neutral energy (e.g. Through buying carbon credits) 

through direct generation or power purchase agreements. c. Source low carbon energy through 

direct generation or power purchase agreements with renewable energy sources (e.g. Wind and 

solar power) or carbon-neutral energy sources (e.g. Through buying carbon credits). d. Consume 

carbon-neutral energy through direct generation or power purchase agreements with renewable 

energy sources (e.g. Wind and solar power) or carbon-neutral energy sources (e.g. Through 

buying carbon credits). e. 

 

7. Who TCI has written these letters to? List the companies 

1ª: The following are some of the companies that TCI has written letters to regarding their 

carbon emissions disclosure: 

 

1. Aena SME S.A., Madrid, Spain 

2. Airbus, Lille, France 

3. Alphabet Inc., Mountain View, USA 

4. BAE Systems, London, UK 

5. Carbon Trust, London, UK 

6. CDP, California, USA 

7. Enaire SME S.A., Aeropuertos Españoles y Nacionales (Enaire), Madrid, Spain 

8. Ferrovial, Milan, Italy 

9. Hackett Group, Dublin, Ireland 

10. IHG, London, UK 

11. Philip Green, London, UK 

12. The Children’s Investment Fund, London, UK 

13. Vinci, Rome, Italy 

14. Xerox Corporation, Redwood City, USA 

15. Zurich Airport, Switzerland 

 

2ª: TCI has written these letters to various companies including but not limited to: 

1. Alphabet Inc. 2. The Carbon Trust 3. CIMF 4. CDP 5. Aena 6. Airbus 7. Enaire 8. TCI Fund 

Management Limited 9. The Children’s Investment Fund 10. Alphabet Classics 11. Safran 12. 

Vinci 13. Philip Green 14. Heathrow Airport 15. SBT! 16. London Stock Exchange 17. City Index 

18. Euronext 19. London Stock Exchange (LSEW) 20. 

 

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its 

communications? 

1ª: The TCI Fund demands that the Spanish Minister of Ecological Transition provide regular 

updates to the TCI Fund management team regarding the progress made towards implementing the 

European Commission's Requirements for the Sustainability of Transportation Services (CTS) and 

related Criteria. 

 

2ª: The TCI Fund demands the Spanish Minister of Ecological Transition to publish annual 

reports with regulation for the sourcing and management of energy across all buildings, 

processes, and transportation as part of the country’s transition towards a low-carbon 

economy. 


