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Resumen

El trabajo desarrollado para este proyecto consta de la elaboraciéon de un modelo especialista en
inversion financiera usando métodos de NLP y RAG. Se tienen como referencia 21 cartas redactadas
por el TCI hacia las compafiias de las cuales es inversor activo y el objetivo es que el modelo desarrollado
sea capaz de responder consultas propuestas por el usuario a cerca de los temas recogidos en dichas
cartas. Este modelo podria ser la base un proyecto mayor en el que el ambito de estudio sea mucho mas
amplio.

Abstract

The work developed for this Project involves creating a specialized financial investment model using
NLP and RAG methods. 21 letters written by TCI to companies in which is it an active investor are used
as reference, and the goal is for the developed model to be able to respond to user queries regarding the
topics covered in these letters. This model could be the basis for a larger Project with a much broader
scope of study.






Indice

Capitulo 1 — INtroducCion ............cooouiiiiiiiiiiiiiiiiiii e e e 12
L1 ODJELIVOS .uniinniiniiiiiiii ittt ettt a et e e e aaa e 12
(OF:) 01211 [P 01) 111 ¢ | J O PP PPPPPRPIP 13
2.1 Descripcion del problema financiero ...............ooooviiiiiiiiiiiiiiiiii e 13
2.2 Introduccion a las Redes neuronales ................c.coooiiiiiiiiiiiiiiiiiiiiii e 13
2.2.1 Concepto y evolucion de las Redes Neuronales .................cccoiiiiiiiiiiiiiiiiiininiann.e. 14
2.2.2 Arquitectura de las Redes Neuronales ...............coooiiiiiiiiiiiiiiiiiiiiiiiiee e 15
2.2.3 Entrenamiento de Redes Neuronales ..............c..coooiiiiiiiiiiiiiiiiiiiiiiiic e 20
2.2.4 Tipos principales de redes neuronales................ccoooiiiiiiiiiiiiiiiiiiiiie e 30

2.3 Modelos de Lenguaje ...........coooviiniiiiiiiiiiiiiiiiiiii it 34
2.3.1 Tipos de modelos de lenguaje ..............cooeiiiiiiiiiiiiiiiiiiiii e 34
2.3.2 Entrenamiento de modelos de lenguaje ..............c.ccooiiiiiiiiiiiiiiiiiiiiiii e 35

2.4 RAG (Retrieval-Augmented Generation)....................c.coeeeuuviiniiiniiiniiiiiiinniiineinnnennnnn 41
2.4.1 Componentes PrinCipales...........ccocooiiiiiiiiiiiiiiiiiiiii e 41
2,42 Modelos de RAG ..ottt 42

2.5 Tecnologia UtIliZAdA ...........c.oiiniiiiii it ea e eaes 43
250 ANACONMAA ...oviiniiiiiiiii ettt ettt e e a et e e e e ees 43
252 PYthom. ..o 43
2.5.3 CUDA (Compute Unified Device Architecture) ..........c...ccoeuiiiiiiiiiiiiiiiiiniiiiieneennes 43
254 PYTONCH ..ot ettt ettt et et et e e e e eaeenaas 44
255 JupyterIab ..o 44
2.5.0 NOtEDOOK ....conniniiiniiii et ea e 44
2.5.7 TensorbOard .........cooeiiiiiiiiii et e e e e 44
Capitulo 3 — MetodoloZia ........c.ouniiniiiiiiiiiii ettt et et e et e e eaes 45
B LLM UHHZAOS ..c.ooevnniiniiiiiiiii ettt e e e e e e eanes 46
3.2 Preparacion de los datos para el entrenamiento ..................ccooeeviiiiiiiiiiiiniininnnn, 49
3.3 Aplicacion de RAG ..........ooiiiiiiiiiiiiiiiiii e 50
Capitulo 4 — Experimentacion y resultados.............c.ccocovviiiiiiiiiiiiininn e 52
4.1 Implementacion de redes neuronales y modelo base ..............c..ccoooiiiiiiiiiiiiiniinnnn. 52



4.1.2 Clasificacion de imagenes con una red CNN...........ooiiiiiiiiiiiiiiiiiiiini e 56
4.1.3 Fine-tuning de un LLM basado en Transformers .................cccoooiiiiiiiiiinninn. 58

B2 RAG ...ttt et et et et et et et ea et eaneanns 62
4.2.1 Modelo previo de RAG Sin fine-tURING .............cccoveniiniiiiiiiiiiiiiieiiiieeeeie e eeeeneennens 62
4.2.2 Modelo completo (RAG + Fine-tURING) ...........ccceeuveniiiiniiiiieiieeeiieeieeeeieeeeeeeeneennens 65

4.3 EXPEIIIMENTOS ..coueniniinieniieiii ettt ettt ettt et et et et eaeeaeeneeneeneansenetasenseasnsnneneennn 71
4.4 ReSUIEAAOS. ...c..oeniniiii ittt et e et et e e a e eaaae 78
Capitulo 5 — Conclusiones ..............oooiiiiiiiiiiiiiiii e 81
Bibliografia y Webgrafia ......... ..o e 83
PN 1 T3, €1 PP PP PPN 89
Anexo A — Manual de instalacion del entorno de estudio ................c..coeeiiiiiiiiiiiiinnn . 91
Anexo B — Archivos adjuntos ..............cooooiiiiiiiiiiii 95
Anexo C — Preguntas recogidas en las diferentes pruebas..............c..ccooiiiiiiiiiiiiiiiiiiinnenn... 98






Lista de figuras

Figura 1: Modelo del Perceptron ............ccouiiniiiiiiiiiiiiiii et et et e e e e e e eeneenaes 14
Figura 2: Comparacion entre una neurona biolégica y un perceptron [5].........ccccoveenvinniinnnnnne. 14
Figura 3: Adicion del sesgo al Perceptron............c.ooouiiniiiiiiiiiiiiiiirii et eee e 14
Figura 4: Ecuacion de 1a sigmoide ...............c.oooiiiiiiiiiiii e 15
Figura 5: Entrada ponderada de una NEUTOMA............c.uiuiiiiiniiiiiiiiiiiieiieeeetreeeeeeeeenenenns 15
Figura 6: Funcion sigmoide...............ooiiiiiiiiiiiiii ettt et e e e eae e 16
Figura 7: Ecuacion de la tangente hiperbolica ......................cooocoiiiii e, 16
Figura 8: Funcion tangente hiperbolica..................c..ooooiiiiiiiiiii e, 17
Figura 9: Ecuacion de ReLLU ...........c..ooiiiiiiiiiiiiiii e 17
Figura 10: Funcion ReLU ..........c..ccooiiiiiiiiiiiii e 17
Figura 11: Ecuacion de Leaky ReLU y Parametric ReLU...............c...c..oooiiiiii . 18
Figura 12: Funcion Leaky ReLU .........cccocooiiiiiiiiiiiii e, 18
Figura 13: Funcion Parametric ReLU...............ccoooiiiiiiiiii e, 18
Figura 14: Ecuacion de SILU..........c.coooiiiiiiiiiiii et 19
Figura 15: Funcion SiLU ...t 19
Figura 16: Ecuacion aproximada de GeLU..................ccooiiiiiiiiiiiiiiiii e, 19
Figura 17: Funcion GeLU .............ccoiiiiiiiiiiiiiiiii ettt 20
Figura 18: Funcion cuadratica de COSte .............cooiiiiiiiiiiiiiiiii e 20
Figura 19: Funcion de entropia cruzada.................coooiiiiiiiiiiiiiiii e 21
Figura 20: Calculo de la entrada ponderada..................ooiiiiiiiiiiiiiiiii e, 23
Figura 21: Ecuacion de error en la capadesalida....................ooooiiiiiii . 23
Figura 22: Ecuacion de retropropagacion del error ..................ccoeviiviiiiiiiiiiiiinnnne . 23
Figura 23: Ecuacion de la derivada del coste respecto a 10s sesgos................ccoeevviiiiiiinniinnn. 23
Figura 24: Ecuacion de la derivada del coste respecto a 10s pesos.............cccoooevviviiiiiiiniinn. 23
Figura 25: Regla de actualizacion en DG....................cooiiiiiiiiii e, 24
Figura 26: Regla de actualizacion en SGD..................cooiiiiiiiiiii e, 25
Figura 27: Calculo del mOmento...............ccoooiiiiiiiiiiiiiiiiiii 25
Figura 28: Calculo del RMSProp........cccooiiiiiiiiiiiiiiii e, 25
Figura 29: Inicializacion del momento ................c.oooiiiiiiiiiiiiiiiiii e 26
Figura 30: Inicializacion de RIMSPIoP .....ccoiuniiiiiiiiiii ettt e e e 26
Figura 31: FOrmula de Adam...........co.oiiiiiiiiiiiiiii et e e e e e eneees 26
Figura 32: Formula de AdamW... ..ot ettt et e e e eae e 26
Figura 33: Formula de 1a convolucCion ..............cooouiiiiiiiiiiiii e 30
Figura 34: Arquitectura de los Transformers [19] ........ccoiiiiiiiiiiiiiiie e 33
Figura 35: Prompt zero-shot 1earning .............coooiiiiiiiiiiiiiiiiiiiii e e e eaee 39
Figura 36: Prompt one-shot 1earning ..............coooiiiiiiiiiiiiiiiiii e e 39
Figura 37: Prompt few-shot 1earning ..............oooiiiiiiiiiiiiiiiiii e 40
Figura 38: Sistema RAG en el que se usa DPR Y BART [30]...c.cevuiiiiiiiiiiiiiiiiiiieieeieeeeeeaeees 41
Figura 39: Probabilidad calculada por el retriever en RAG...........c..ccooiiiiiiiiiiiiiiiiiiiiieieeanee, 42
Figura 40: Probabilidad calculada por el generador en RAG..............c...ooiiiiiiiiiiiiinin, 42



Figura 41:
Figura 42:
Figura 43:
Figura 44:
Figura 45:
Figura 46:
Figura 47:
Figura 48:
Figura 49:
Figura 50:
Figura 51:
Figura 52:
Figura 53:
Figura 54:

RAG-S@QUEINICE ...ttt ettt ee et s e et et eaeaeneeneeneansanns 43
RAG-TOKEN......cooviiiiiiiiiiii e 43
Ranking Embedding Leaderboard ..............ccoooiiiiiiiiiiiiiiiie e 46
config.json de multilingual-eS-large-instruct ..............c.ccoiiiiiiiiiiiiiiiiiiiiiieeenes 47
config.json de TinyLlama-1.1B-Chat-v1.0.............c.oiiiiiiiiiiiiiirr s 48
Calculo de 10s top-K dOCUMENtOs .........ccouviuiiniiniiiiiiiiiieeieee et ei et eneeneens 51
Eval 1088 3 taSAS ..coniniiiiiiii ittt et e e e e e enee 73
Train_loss 3 tasas........ccooiiiiiiiiiiiiiiiii e 73
Eval_loss para las 3 pruebas con Optuna .............c.o.oooiiiiiiiiiiiiiiinnn, 77
Train_loss para las 3 pruebas con Optuna ............c...ccooiiiiiiiiiiiiiiniinn 77
Tasa de aprendizaje para las 3 pruebas con Optuna ................coooeiiiiiiiiiiniinnin. 77
Eval _loss del modelo final.................c...ooiiiii 78
Train_loss del modelo final ...................oooiiiiii 78
Tasa de aprendizaje del modelo final....................c...oo 79

10



11



Capitulo 1 — Introduccion

Dentro de este trabajo se explicara como crear un modelo especialista en inversion financiera usando
técnicas de aprendizaje automatico y de procesamiento de lenguaje natural (NLP). Para ello se explican
conceptos clave como las redes neuronales, los modelos de lenguaje y el mecanismo de Rerieval-
Augmented Generation (RAG).

Concretamente se estudiara un caso de uso relacionado con The Children’s Investment (TCI) Fund
Management, una empresa gestora de fondos de cobertura hacia otras compaifiias fundada en 2003 por
Chris Hohn. TCI exige a las compaiiias de las cuales son accionistas ciertos cambios relacionados con
politicas medioambientales, como la reduccion de emisiones de gases de efecto invernadero, la
deforestacion, etc. Estos cambios los solicita a través de cartas.

El modelo desarrollado, por tanto, tiene como objetivo extraer informacion precisa de dichas cartas,
teniendo que ser capaz de responder a las motivaciones y requerimientos concretos que precisa TCI
sobre las compaiiias para ayudar a entender el fin del comportamiento de los fondos de inversion.

1.1 Objetivos

Aunque en el caso que se desarrolla en este documento solamente hay 21 cartas de ejemplo, que, a
priori, se podrian estudiar manualmente sin necesidad de una herramienta, el proposito principal es poder
llegar a desarrollar una fase beta de un modelo especialista en inversion financiera el cual tiene como
objetivo poder resolver dudas sobre documentos técnicos pertenecientes a este campo. Para poder
cumplir este objetivo se establecen una serie de pasos a seguir:

Obtencion del dataset de entrenamiento
Aprender a manejar LLMs

Fine-tuning

Aplicacion de RAG

Evaluacion del sistema RAG creado

AN
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Capitulo 2 — Contexto

A lo largo de este capitulo se explican los conceptos basicos sobre los que se desarrolla el trabajo,
tales como las redes neuronales, los modelos de lenguaje o el método RAG, entre otros. En cada
apartado se explicaran los fundamentos en los que se basan, sus caracteristicas, etc.

2.1 Descripcion del problema financiero

En los ultimos afnos ha aumentado la presencia de inversores institucionales (fondos de inversion,
fondos de cobertura, fondos de pensiones, fondos soberanos, etc.) en el capital de las empresas.
Alrededor del 70% de empresas cotizadas en USA tienen como accionistas a estos inversores, los tres
gestores de fondos por excelencia (BlackRock, Vanguard y State Street) controlan mas del 25% de las
acciones del S&P 500 (Standard & Poor’s 500 Index), uno de los indices bursatiles principales presentes
en la bolsa de Nueva York, y de las bolsas pertenecientes a la comunidad europea. En Espafia, estos
inversores tienen presencia en 77 empresas (dato extraido de 2023), y en 23 de ellas con mas de un 5%

[1].

Normalmente los inversores institucionales no son los principales accionistas de las empresas, pero
no quiere decir que no sean relevantes, especialmente en los tltimos anos donde han adquirido un papel
protagonista en la toma de decisiones y en las politicas que rigen a las empresas. En el caso que compete
a este trabajo, TCI (fondo de cobertura), plantea cambios y propuestas a las empresas en las que invierte
el capital, relacionados con las politicas medioambientales a través de cartas, instando a estas a aceptarlas
ya que de lo contario amenazan con votar en contra y presentar resoluciones de desaprobacion en las
juntas de accionistas, llegando incluso a evaluar la posible desvinculacion (y, por tanto, la retirada de
capital) con la empresa. TCI sostiene que, sin dichos cambios, la rentabilidad y sostenibilidad de las
empresas decaerdn a largo plazo, lo que principalmente se traduce en pérdidas monetarias para ellos [2].

2.2 Introduccion a las Redes neuronales

Durante todo este apartado se usa en gran parte la referencia [3].

Las redes neuronales artificiales (RNA), son modelos de aprendizaje automéatico que simulan el
comportamiento de un cerebro humano, inspirado en la estructura de este. Las RNA estdn compuestas
por unidades llamadas neuronas artificiales, las cuales procesan informacion imitando el
comportamiento de las neuronas bioldgicas. El objetivo principal de estas redes es reconocer patrones,
tomar decisiones basadas en los datos de entrada y llegar a conclusiones [4].

Las redes neuronales han revolucionado el campo del aprendizaje automatico gracias a la capacidad
de modelar relaciones complejas, aprender grandes volumenes de datos y generalizar a nuevos ejemplos.
Se utilizan en una amplia variedad de aplicaciones como reconocimiento de imagenes, procesamiento
de lenguaje natural, diagndsticos médicos, etc.
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2.2.1 Concepto y evolucion de las Redes Neuronales

El desarrollo de las redes neuronales artificiales tiene sus raices en torno a los afios 50 y 60 cuando
Frank Rosenblatt desarroll6 el perceptron, un modelo matematico inspirado en las neuronas biologicas.
El modelo recibe unos datos de entrada, cada uno con su peso correspondiente, y al realizar la suma
ponderada se obtiene una salida binaria (0 o 1):

(0 if Z w;x; < threshold
J

output =

1if Z w;x; > threshold
J

Figura 1: Modelo del perceptron

Inputs

Dendrites

w
Linear Activation
function function

Nucleus @

Figura 2: Comparacion entre una neurona biolégica y un perceptron [5]

Inicialmente, los perceptrones podian simular puertas l6gicas como NAND u OR, lo que permitia
realizar operaciones basicas de clasificacion. Sin embargo, tenian una limitacion importante, no eran
capaces de resolver problemas no lineales (un ejemplo de ello seria la puerta XOR). Esto derivé al
desarrollo de perceptrones multicapa (MLP) que introdujeron capas ocultas y permitieron que las redes
neuronales aprendiesen relaciones mas complejas entre los datos.

Como podemos ver en la “Figura 17 se utiliza un umbral fijo lo cual puede llegar a ser poco productivo
a la hora de crear algo més complejo. Por ello, esta funcion evoluciond y se introdujo el concepto de
sesgo (bias), permitiendo una mayor flexibilidad y que se pueda ajustar la salida de la neurona sin
depender exclusivamente de las entradas. Asi queda la nueva ecuacion:

. t_{Oifw-x+bSO
output = lifw-x+b>1

Figura 3: Adicion del sesgo al perceptron

Aun con esta modificacion el perceptron seguia siendo una capa muy baésica, si se desean resolver
problemas mas complejos se han de utilizar algoritmos de aprendizaje automatico lo cual permite que
se resuelvan estos problemas sin intervencion del programador. La idea es que nuestra red de
perceptrones sea capaz de aprender los pesos y los sesgos, para ello se podrian introducir pequefos
cambios para ajustar las salidas, dichos cambios harian posible el aprendizaje, pero cuando se ajusta una
salida se producen cambios en otras salidas y es algo realmente dificil de controlar.
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Todo este problema se puede resolver introduciendo lo que se llaman neuronas sigmoides (también
llamadas logisticas), son similares a los perceptrones, pero un pequefio cambio en los pesos o sesgos de
estas solamente causan un pequefio cambio en las salidas. Como diferencia con los perceptrones, las
neuronas generan una salida continua entre [0,1] en lugar de los valores estrictamente binarios. La
funcién de activacion sigmoide se define como:

1

e

Figura 4: Ecuacion de la sigmoide

Donde z1 es la entrada ponderada de la neurona, calculada como:

Z=w-'x+b

Figura 5: Entrada ponderada de una neurona

Donde:
e w: son los pesos de la red.
e Xx:es la entrada.

e b:esel sesgo.

2.2.2 Arquitectura de las Redes Neuronales

Las MLP siguen la siguiente estructura: [6]

1. Capa de entrada (Input layer): Esta capa se encarga de recibir los datos iniciales y se pasan a
la siguiente capa sin aplicar ninguna transformacion sobre ellos.

2. Capas ocultas (Hidden layers): Pueden existir una o mas capas ocultas. Procesan la informacion
detectando patrones mas complejos, cada neurona aplica una transformacion a la informacion
recibida de la capa anterior.

3. Capa de salida (Output layer): Genera la prediccion o el resultado final. El nimero de neuronas
que hay en esta capa normalmente se elige segtn la tarea a realizar (Por ejemplo, si queremos
hacer una clasificacion binaria, solamente habra 2 neuronas).

4. Pesos (Weights): Una neurona puede estar conectada con una o mas neuronas de las capas
adyacentes, cada conexion tiene un peso asociado.

5. Neuronas de sesgo (Bias Neurons): Son la implementacion del término de sesgo ya definido
previamente. Estas neuronas se pueden incluir en cualquier capa salvo en la de entrada.

El disefio de las capas ocultas determina la capacidad de la red para representar patrones complejos.
Sin embargo, si una red posee demasiadas capas o neuronas puede volverse ineficiente o producirse un

[T L)

! Desde ahora en adelante, siempre que aparezca “z” en esta seccion, se hace referencia a esta ecuacion.
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sobreajuste a los datos de entrenamiento. Existen diferentes heuristicas para optimizar su

comportamiento.

Funciones de activacion

Dentro de la arquitectura también podemos incluir como componente “especial” a las funciones de
activacion. Cada neurona de las capas ocultas y de la capa de salida aplican una funcion de activacion
a la suma ponderada de las entradas. Las funciones de activacion introducen no linealidad en la red,
permitiendo asi que esta aprenda patrones complejos en los datos. Entre las mas comunes podemos
encontrar: [7] [8]

- Funcion sigmoide (Ver apartado 2.2.1 Concepto y evolucion de las Redes Neuronales): Si bien
la funcion sigmoide fue una de las primeras en utilizarse, actualmente su uso es limitado debido a
problemas como el desvanecimiento del gradiente en parte provocado por que su salida no es centrada

en 0:

1.0 A

0.8

0.6 1

0.4 4

0.2 1

0.0

T T T T T
-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figura 6: Funcion sigmoide

- Tanh (Hyperbolic tangent): Para resolver el problema de la funcion sigmoide se introdujo la
funcién tanh la cual si estd centrada en 0. La salida de esta funcion toma valores entre [-1,1] y viene
dada por:

ef—e™?

tanh (Z) = m

Figura 7: Ecuacion de la tangente hiperbdlica
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1.00 4

0.75 4

0.50 1

0.25 1

0.00 4

—0.25 1

—0.50 1

—0.751

—1.00 +

T T T T T
-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figura 8: Funcion tangente hiperbdlica

Sin embargo, aunque sea capaz de mitigar el problema de la funcidon sigmoide, sigue sin poder
resolverlo del todo y por tanto ambas funciones siguen siendo susceptibles al problema del
desvanecimiento del gradiente (Este concepto se desarrolla en el apartado 2.3.4.4).

- ReLU (Rectified Linear Unit): Ayuda a evitar el desvanecimiento del gradiente al no comprimir
tanto el rango de valores como lo hacen las funciones sigmoide o tanh y ademés requiere de menor coste
computacional. Su ecuacion es:

f(z) = max(0,z)

Figura 9: Ecuacion de ReLU

La funcion ReLU solo activa la neurona si la entrada es positiva, si es negativa, su salida es 0. Debido
a ello algunos gradientes pueden morir durante el entrenamiento (en las regiones donde x<0).

10 A

T T T T T
-10.0 -7.5 -50 =25 0.0 2.5 5.0 7.5 10.0

Figura 10: Funcion ReLU
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- Leaky ReLLU: Modifica la funcion ReLU original para permitir valores negativos (pequefios) en
lugar de convertirlos directamente en 0. Se usa un hiperparametro (con un valor normalmente entre el
rango 0.01-0.3) para multiplicar los valores negativos, con esto se consigue reducir todavia mas el
problema de desvanecimiento del gradiente. Su funcion es:

zifz>0
f(Z):{az ifz<0

Figura 11: Ecuacion de Leaky ReLU y Parametric ReLU

10 A

T T T T T
-10.0 -7.5 =50 -25 0.0 2.5 5.0 7.5 10.0

Figura 12: Funcién Leaky ReLU

Una variante de esta funcion es la Parametric ReLU (PReLU). En lugar de multiplicar los valores
negativos por una hiperpardmetro se utiliza un parametro aprendible (como si de los pesos o los sesgos
se tratase), mejora la precision y la convergencia, pero es mas costoso de llevar a cabo. Comparte la
misma ecuacion de la funcion Leaky ReLU.

10 4

T T T T T
-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figura 13: Funcién Parametric ReLU

Otras variantes, las cuales se utiliza en los modelos seleccionados para el proyecto son:
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- SiLU, en la cual se multiplica la entrada por la funcién sigmoide. En lugar de tener una curva tan
pronunciada en cero, SiLU permite suavizar dicha curva lo que significa que al cambiar el valor de la
entrada su salida no cambia tan bruscamente [9]. Su funcion se describe como:

f2)=z% 0(2)

Figura 14: Ecuacion de SiLU

10

Figura 15: Funcién SiLU
- GeLU, en la cual se multiplica la entrada por la funcién de distribucion acumulativa gaussiana

estandar, tiene la misma motivacion que SiLU, solo que en esta funcidon suaviza menos la curva [10]. Su
funcion viene dada por:

f(2) =z ¢(2)
Esta ecuacion se puede aproximar a:

f(z) =zx0(1.7022)

Figura 16: Ecuacion aproximada de GeLU
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10 A

T T T T T
-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figura 17: Funcion GeLU

Gracias a dichas funciones, las redes neuronales modernas se pueden entrenar de una manera mas
eficiente siempre y cuando se escoja adecuadamente la mejor funcion que se adapte a la naturaleza del
problema o tarea a resolver. Cabe decir que existen mas funciones de activacion, pero son mucho mas
complejas de lo que se necesita explicar en este trabajo.

2.2.3 Entrenamiento de Redes Neuronales

Para que una red neuronal aprenda a realizar una tarea correctamente, es necesario un proceso de
entrenamiento en el que se ajustan los pesos y sesgos de cada neurona con el objetivo de minimizar el
error en las predicciones. De aqui en adelante se toma la funcion sigmoide como ejemplo para la funcion
de activacion.

Funcion de pérdida

El entrenamiento de una red neuronal se basa en la definicion de una funcién de coste (también
llamada funcion de pérdida o funcion objetivo), que mide la diferencia entre la salida deseada y la salida
real de nuestro modelo. Podemos distinguir los siguientes tipos:

- Funcion cuadratica de coste
La formula de la funcidn cuadratica de coste es:

C(w, b) = %Z 1 y(x) —a I?

Figura 18: Funcion cuadratica de coste

Donde:
e w: coleccion de todos los pesos en la red.
e b: todos los sesgos.

e n: numero total de entradas.
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e x: entrada de la red neuronal.
¢ y(x): resultado deseado.
e a: vector de salidas.

° |

: notacion que denota la longitud usual de un vector v.

Por ejemplo, en el caso del reconocimiento de digitos, si una imagen de entrenamiento representa un 6,
el vector de salida deseado sera:
y(x) = (0,0,0,0,0,0,1,0,0,0)T

Esta funcion es siempre positiva, cuando se aproxima a 0 significa que y(x) es aproximadamente igual
a la salida “a” para todas las entradas “x”. Nuestro algoritmo habra hecho un buen trabajo si conseguimos
que C(w,b) = 0.

- Entropia cruzada (Cross-Entropy)

Cuando una red neuronal comete errores graves su aprendizaje se ralentiza, estos errores ocurren
cuando las salidas de la funcion sigmoide son cercanas a 0 o 1. En estas regiones la curva de la funcién
es plana, lo cual significa que sus derivadas son pequenas y por ende producen gradientes pequenios. En
el siguiente apartado se explica por qué tener gradientes pequefios produce esta ralentizacion de
aprendizaje.

Para solventar este problema de ralentizacion se reemplaza la funcidon cuadratica de coste por una
nueva funcion de coste conocida como entropia cruzada. La férmula de la entropia cruzada es:

1
C= —EZ[y -log(a) + (1 —y) -log(1 — a)]

Figura 19: Funcion de entropia cruzada

Donde:
e y:es lasalida deseada de la muestra (suele ser 0 o 1).
e a:es la salida real de la neurona.

¢ n: es el numero total de ejemplos.

A simple vista no parece ser una funcion de coste, pero tiene 2 propiedades que hacen razonable
interpretarla como tal:

1. La funcion es positiva. Todos los términos en la suma son negativos y delante del sumatorio
tenemos un signo negativo, por lo que la expresion es C > 0.

2. Si la salida real de una neurona es similar a la deseada para todas las entradas, entonces esta
funcion sera cercana a 0. Esto se llega a conseguir a través del entrenamiento.

(vx € X,a(x)  y(x)) = C -0
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Al realizar las derivadas parciales respecto a los pesos y los sesgos en ambas funciones, se puede
apreciar que, en el caso de la entropia cruzada cuanto mayor sea el error en la salida de la neurona, mas
rapido sera su aprendizaje. Lo mas relevante es que desaparece el término 6'(z) presente en la funcion
cuadratica, lo que evita la ralentizacioén de aprendizaje provocada por los gradientes pequenos.

Cuando las neuronas de salidas sean neuronas sigmoideas, usar la funcion de entropia cruzada es
siempre mejor que usar la cuadratica. Al formar una red neuronal, normalmente se establecen los pesos
y los sesgos de manera aleatoria y para evitar la ralentizacion de aprendizaje se ha de usar esta funcion.

Algoritmo de retropropagacion (Backpropagation)

Siguiendo la explicacion, tenemos claro que el objetivo principal es minimizar la funcidon de coste.
Para ello usamos este algoritmo cuyo objetivo principal es calcular las derivadas parciales de la funcion
de coste con respecto a cualquier peso y sesgo de la red neuronal. Para calcular las derivadas parciales
con este algoritmo se introduce un término intermedio di, es el vector de errores asociados en la capa i.
La retropropagacion siempre nos da el procedimiento para calcular dichos errores para cada capa y luego
poder relacionarlos con las derivadas parciales.

Antes de comenzar a explicar la retropropagacion se han de hacer 2 suposiciones para que el algoritmo
funcione:

1. La funcién de coste se puede escribir como un promedio:

1
C:EZC,C
X

La razon de hacer esta suposicion es que el algoritmo nos permite calcular las derivadas
ey,

parciales para un solo ejemplo de entrenamiento “x” y, por tanto, para obtener las derivadas de
la funcion de coste C, basta con promediar las derivadas obtenidas para cada ejemplo individual.

2. La funcion de coste también se puede escribir como una funcion de las salidas de la red neuronal:
C=C(a)
El valor real de la salida, es decir, “y” es fijo y durante el entrenamiento no cambia, lo Gnico
que se puede modificar en el entrenamiento para minimizar el error es la salida y por tanto se
considera que C solo depende de las salidas.

El algoritmo consta de 4 pasos principales (se incluyen las 4 ecuaciones fundamentales del
backpropagation):
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1. Propagacion hacia adelante (Forward pass)

Para un dato de entrada (x), se calculan las activaciones a' en cada capa de la red. Para ello se

calcula la entrada ponderada y después se aplica la funcion de activacion:

Figura 20: Calculo de la entrada ponderada

Cilculo del error en la capa de salida (8%)

Se calcula el error en la capa de salida utilizando la 1* ecuacién fundamental:

Retropropagacion del error (8"

st=v,C © d'(zH

Figura 21: Ecuacion de error en la capa de salida

Se calculan los errores &' para cada capa oculta usando la 2 ecuacién fundamental:

St = ((Wl+1)Té~l+1) ©) o"(Zl)

Figura 22: Ecuacion de retropropagacion del error

Calculo de gradientes de los pesos y los sesgos

Una vez calculados los errores se calculan los gradientes correspondientes a los pesos y los

sesgos utilizando para ello las dos ultimas ecuaciones fundamentales:

I
Owjp,

oC 5
obt

Figura 23: Ecuacion de la derivada del coste respecto a los sesgos

ac
= aj~'6},

Figura 24: Ecuacion de la derivada del coste respecto a los pesos

Sin retro propagacion el calculo de los gradientes seria largo e ineficiente ya que se tendrian que

repetir los calculos para cada parametro de forma independiente. Usar este algoritmo tiene una serie de

ventajas, alguna puede ser:

Reutilizacion de calculos comunes

Eficiencia: usarlo implica acelerar el aprendizaje mayormente provocado por la actualizacion de

pesos en funcion del error.
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e Escalabilidad y generalizacion: el algoritmo escala eficientemente con conjuntos de datos
mayores y redes mas complejas, también se ayuda a que los modelos generalicen mejor frente a
nuevos datos.

Algoritmos de optimizacion

Como hemos explicado, el objetivo es siempre minimizar al méximo la funcidon de coste, para ello,
después de obtener los gradientes hay que actualizar los pardmetros de la red neuronal, lo cual se
consigue gracias a los algoritmos de optimizacion.

- Descenso del gradiente (Gradient Descent)
Uno de los mas utilizados es el descenso del gradiente, el cual ajusta los pesos y los sesgos de la red
neuronal para reducir el error en cada iteracion realizada. El descenso del gradiente sigue estos pasos:

1. Calcula el gradiente (la direccion de mayor descenso) de la funcidn de coste respecto a los pesos
y los sesgos.

2. Actualiza los pesos en pequeias proporciones controladas por la tasa de aprendizaje (1), un valor
pequefio y positivo. Se necesita que este valor sea lo suficientemente pequeiio como para que la
aproximacion sea correcta, pero no demasiado porque si no los cambios también seran pequefios
y el algoritmo se desarrollaria demasiado lento.

3. Se repite el proceso iterativamente hasta reducir lo maximo posible la funcidn de coste.

Regla de actualizacion:

v « v—nVC

Figura 25: Regla de actualizacion en DG

Donde:
e v:son los pesos y sesgos
e VC: es el gradiente de la funcion de coste.
e 1): es la tasa de aprendizaje.

Al hacer esto una y otra vez seguiremos disminuyendo C hasta conseguir el minimo. Hay una pequefia
restriccion, ||[v|| = € donde € > 0 y es un valor fijo, para garantizar que los pasos de cada iteracién son
pequeios y controlados. Si el nimero de entradas es muy alto puede tomar mucho tiempo y el
aprendizaje es muy lento. Para ello se introduce el término llamado descenso de gradiente estocastico.

- Descenso de Gradiente Estocastico (SGD - Stochastic Gradient Descent)

En lugar de actualizar los pesos usando el conjunto entero de entrenamiento, se actualizan mediante
pequeftios subconjuntos denominados mini-lote (mini-batches). El proceso de entrenamiento con SGD
se repite en ciclos denominados épocas. En cada época:

1. Se “barajan” los datos aleatoriamente (para evitar la repeticion de patrones).
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2. Se divide el conjunto de entrenamiento en mini-lotes.
3. Se actualizan los pesos y los sesgos para cada mini-lote, las cuales vienen dadas por la siguiente
regla:
Viy1 = vy —NVC(vy)
Figura 26: Regla de actualizacion en SGD

Es la misma idea que en el descenso del gradiente solo que por épocas.

El quid de la cuestion es repetir el SGD con diferentes mini-lotes hasta agotar todas las entradas
posibles, una vez se llega a este punto se dice que se ha completado una época de entrenamiento. En este
punto se han de reorganizar las entradas y crear mini-lotes distintos, es decir, empezar otra época. El
SGD permite que nuestra red neuronal tenga un aprendizaje mas rapido y una mejor generalizacion
frente a nuevos datos.

- Adam y AdamW
Son variantes de SGD pues siguen con la idea de ajustar los parametros en cada paso que da el
algoritmo. Adam regula la tasa de aprendizaje para cada pardmetro mediante dos célculos principales

[11]:

1. Momentum (momento): es un promedio moévil exponencial de los anteriores gradientes
calculados. Se calcula mediante:

me =By *me_q + (1= P1) * VG,

Figura 27: Calculo del momento

Donde:
e me es el momento en el intervalo de tiempo t.
e P1: es un hiperparametro para controlar la ponderacion que recibe el gradiente anterior.
e VC,;: es el gradiente actual.

2. RMSprop (Root Mean Square Propagation): es un promedio movil exponencial de los
gradientes al cuadrado. Se calcula mediante:

Ve = By * Ve_g + (1= B2) * (VC,)?
Figura 28: Calculo del RMSprop
Donde:

e vi: es el RMSpropr en el intervalo de tiempo t.

e P2: esun hiperparametro para controlar la ponderacion que recibe el gradiente al cuadrado
anterior.

Tanto el momento como RMSprop comienzan con valor igual a 0 (cuando t=0), para ello hay que
realizar una correccion en los sesgos mediante las siguiente formula de actualizacion:
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T A —pH

Figura 29: Inicializacion del momento

Ut
(1-52)

v =

Figura 30: Inicializacion de RMSprop

Una vez hechas las correcciones se puede escribir en su totalidad la formula de Adam:

4

_Me
N

Orr1 =06, —

Figura 31: Formula de Adam

Donde:
e 0 es un parametro (peso o sesgo) en el intervalo de tiempo t.
e 1 es la tasa de aprendizaje

e &:es un numero con valor muy reducido, se usa para evitar la division por cero en la formula.

Adam es un buen algoritmo de optimizacion, no obstante, si se le quiere aplicar la regularizacion L2
(Término que se explica mas adelante en este apartado), se mezcla con las tasas de aprendizaje y puede
provocar errores, para paliar dicho fallo se introduce su variante AdamW, el cual separa el término de
regularizacion y en vez de aplicarlo directamente en la funcion de pérdida, lo aplica en las
actualizaciones de los parametros:

9t+1=9t_ +A+9t>

my
n
VUit &
Figura 32: Formula de AdamW

Donde:

e ) es el término de regularizacion.

Seleccion de hiperparametros

El rendimiento de nuestra red neuronal depende de varios factores, su arquitectura y los datos e
hiperparametros utilizados para el entrenamiento. No hay que confundirlos con los pardmetros internos
(pesos y sesgos), los hiperparametros no se aprenden a medida que se entrena, se han de ajustar antes.
Este ajuste puede ser manual o usando estrategias de optimizacion. Los hiperparametros principales son:

e Tasa de aprendizaje (learning rate): Determina con qué rapidez ajusta nuestra red los
parametros internos (pesos y sesgos). Si la tasa es baja, esta actualizacion es lenta y puede tardar

26



mucho en alcanzar la convergencia. Por el contrario, si es demasiado alta, el modelo puede hacer
una correccion excesiva de errores y provocar que diverja.’

Tamafio del mini-lote: Determina cuantos ejemplos de entrenamiento se utilizan en cada
iteracion del entrenamiento. Un tamafio de mini-lote pequeno actualiza el modelo con mayor
frecuencia lo que genera actualizaciones “ruidosas. Si el tamafio del mini-lote es grande el
modelo se actualiza mas lento, pero esto ofrece actualizaciones mas estables (también es mas
facil que se produzca un sobreajuste).

Numero de épocas: Determina cuantas veces se recorre el conjunto de entrenamiento durante
este. Si hay pocas épocas el modelo puede que no aprenda los suficiente (lo que se conoce como
underfitting). Por el contrario, si hay muchas épocas, la red puede llegar al sobreajuste

(overfitting).

Numero de capas y neuronas: Definen la arquitectura de la red neuronal. Las redes poco
profundas pueden sufrir underfitting al no saber captar relaciones complejas. Las redes muy
profundas se pueden ver afectadas por el desvanecimiento del gradiente.

Funciones de activacion: Ya han sido explicadas anteriormente.

Técnicas de regularizacion (Se explican en el siguiente apartado).

La eleccion de los hiperparametros es de eleccion personal, no hay ninguna regla establecida que

defina que valores son los Optimos, normalmente su eleccion se lleva a cabo mediante un proceso de

experimentacion. Las estrategias mas comunes son:

Experimentacion manual: Consiste en probar distintas combinaciones de valores y evaluar su
impacto en el rendimiento de la red neuronal. Es una buena forma de conocer el comportamiento
de las redes neuronales, pero puede llegar a ser muy lento.

Bisqueda en cuadricula (grid search): Se prueban todas las combinaciones posibles de los
conjuntos de valores para cada hiperparametro, estas combinaciones forman cuadriculas, de ahi
el nombre de este método. Se automatiza el proceso de eleccion por lo que es mas eficaz que la
experimentacion manual, pero conlleva aumentar la complejidad computacional.

Problemas que surgen en el entrenamiento

Durante el proceso de entrenamiento pueden aparecer varios problemas debido a la forma en la que

se realiza este. Los problemas méas comunes son:

2 Puede incluso provocar la explosion del gradiente, término que se explica en el siguiente apartado.
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- Problema del sobreajuste (overfitting)

El sobreajuste se produce cuando una red neuronal aprende tan bien los detalles del conjunto de

entrenamiento que tiene un mal desempeio para datos nuevos. La red memoriza todo el conjunto

incluyendo las partes irrelevantes en lugar de aprender patrones generales que es lo que realmente

importa.3 Las principales causas de que se produzca el sobreajuste son:

Red neuronal compleja: Hay demasiadas capas, neuronas y parametros, la red tiene una gran
capacidad de aprendizaje, pero puede ocasionar que se memoricen patrones innecesarios y
provoque sobreajuste.

Conjunto de datos de entrenamiento pequeiio: Por el contrario, si se tienen pocos ejemplos
de entrenamiento, puede ser que la red se centre en patrones innecesarios que no le permitan
después generalizar.

Proceso de entrenamiento prologando: Si entrenamos durante mucho tiempo a una red existe
un mayor riesgo de que aprenda detalles o patrones especificos del conjunto de entrenamiento y
que después no sepa generalizar.

Para detectar si nuestra red tiene problemas de sobreajuste nos hemos de fijar en los conjuntos de

entrenamiento y validacion. Si la precision del conjunto de entrenamiento mejora y la precision del

conjunto de validacion se estanca o empeora entonces nuestra red se esta sobreajustando. Existen

varias técnicas para evitar el sobreajuste:

Aumento de datos (Data augmentation): Se crean nuevas variaciones de los datos de
entrenamiento. Esto aumenta el tamafio del conjunto de entrenamiento y ayuda a la red a poder
generalizar mejor. Ya que manualmente el obtener nuevos datos puede ser un proceso costoso,
normalmente se realiza de manera artificial, por ejemplo, si estamos trabajando en clasificacion
de imagenes, con rotar o cambiar algunos tonos de la imagen ya estamos creando una nueva
variacion de esta.

Regularizacion: Se afiade un término a la funcion de coste que penaliza a los pesos grandes.
Este método reduce la complejidad del modelo y asi evita que se ajuste a detalles especificos. La
mas usada es la regularizacion L2 (también conocida como weight decay), la cual penaliza a los
pesos mas grandes mediante un término conocido como término de regularizacion afiadido a la
funcioén de coste.

Abandono (Dropout): En lugar de modificar la funcion de coste, se modifica directamente la
red. Consiste en “apagar” aleatoriamente neuronas de las capas ocultas en cada iteracion del
entrenamiento, lo cual provoca que cada vez se entrene con una red distinta. Aunque cada version

8 Por el contrario, el underfitting ocurre cuando la red no consigue aprender los suficientes patrones del conjunto de datos,
generalmente por ser demasiado simple. Aunque es menos comun que el sobreajuste es importante nombrar el concepto
para entender los problemas que pueden surgir.
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de la red puede sobreajustarse a una parte del conjunto de datos, al terminar el entrenamiento y
usar la red completa (sin aplicar dropout), se obtiene una especie de promedio de los efectos
aprendidos por las diferentes versiones. Esto ayuda a reducir el sobreajuste global de la red y
mejorar la capacidad de generalizacion.

Detencion temprana (Early stopping): Se detiene el entrenamiento antes de que la red tenga la
posibilidad de sobreajustarse, se lleva a cabo mediante la monitorizacion del conjunto de
validacion, deteniendo el entrenamiento cuando este deje de mejorar.

- Desvanecimiento y explosion del gradiente

Este problema ocurre al usar la retropropagacion, los gradientes se calculan mediante las derivadas

parciales en las cuales aparecen multiplicaciones, debido al término introducido por la funcion sigmoide

y la inicializacion escogida de los pardmetros, este producto puede disminuir (desvanecimiento) o crecer

(explosion) a medida que se retrocede en las capas ocultas. En redes neuronales profundas formadas por

muchas capas este problema crece debido a que el nimero de operaciones a realizar aumenta.

Desvanecimiento del gradiente (Vanishing gradient): Los gradientes se vuelven
extremadamente pequefios en las capas cercanas a la entrada lo que provoca que el aprendizaje
sea muy lento o incluso nulo. Esto ocurre con mayor frecuencia al usar funciones de activacion
como la sigmoide o la tangente hiperbdlica.

Como consecuencia de esta explicacion, las capas cercanas a la entrada aprenden a menor
velocidad que las capas cercanas a la salida, debido a que reciben gradientes mas pequefios. Todo
esto puede provocar que las capas cercanas a la salida sufran de sobreajuste.

Explosion del gradiente (Exploding gradient): Los gradientes pueden crecer exponencialmente
a medida que ocurre la retropropagacion, lo cual provoca actualizaciones inestables de los pesos
y sesgos, haciendo que el modelo diverja. Normalmente es menos comun que el
desvanecimiento.

Existen varias técnicas para evitar estos dos problemas:

Inicializacion adecuada de los pesos: Una inicializacion inapropiada de los pesos puede
producir tanto el desvanecimiento como la explosion del gradiente, dificultando asi el
entrenamiento de la red. Para solventar dichos problemas se pueden usar diferentes métodos de
inicializacién como LeCun, Xavier o He.

Funciones de activacion alternativas: Funciones como ReLU o cualquiera de sus variantes
ayudan a evitar el desvanecimiento del gradiente (Ver el apartado Dentro de la arquitectura
también podemos incluir como componente “especial” a las funciones de activacion).

Regularizacion y dropout: Ambas técnicas evitan indirectamente ambos problemas al mejorar
el aprendizaje de la red neuronal.
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Existen mas técnicas que ayudan a reducir ambos problemas, pero estas son las principales.

Para acabar esta seccion vamos a desglosar el ciclo completo de entrenamiento de una red neuronal:

1. Inicializacién de pesos y sesgos, generalmente de forma aleatoria.

2. Aplicacion del algoritmo de retropropagacion para calcular el gradiente del error respecto a los
parametros de la red.

3. Uso de algoritmos de optimizacion para actualizar los pesos y sesgos de la red basdndose en los
gradientes calculados.

4. Repeticion del proceso durante varias épocas hasta minimizar lo maximo posible la funcion de
coste o alcanzar el valor predefinido.

2.2.4 Tipos principales de redes neuronales

A continuacidn, se describen los tipos de redes neuronales mas comunes hoy en dia. En la mayoria de
este subapartado se ha utilizado de referencia [12].

Redes neuronales prealimentadas (Feedforward Neural Network - FNN)

Las FNN también denominadas como MLP* tienen como objetivo aproximar una funcién, de modo
que la informacién fluya solo hacia adelante (de ahi su nombre). No existe ningin tipo de
retroalimentacion en la red, es decir, las neuronas no forman ciclos entre las capas o entre ellas mismas.

En una FNN, cada neurona normalmente’ est4 conectada a todas las neuronas de la capa adyacente,
permitiendo asi que la red posea toda la informacion posible. Estas redes estan formadas por una capa
de entrada, una o mas capas ocultas y finalmente, una capa de salida.

Estas redes sirven como base para el desarrollo de muchas otras. Alguna de las aplicaciones de este
tipo de redes son las tareas de reconocimiento visual y de voz o el procesamiento de lenguaje natural,
entre otras muchas.

Redes neuronales convolucionales (Convolutional Neural Network - CNN)

Las CNN solucionan el problema de estructura espacial que tienen las FNN, al utilizarse filtros estas
redes son capaces de detectar las relaciones espaciales. Estos filtros se basan en la operacion denominada
convolucién y se denominan filtros convolucionales [13]:

s() = (x*w)(t) = [x(@)w(t —a)da

Figura 33: Formula de la convolucion

Donde:

e X es la entrada.

* Bl perceptron simple a veces es considerado una FNN, aunque esté formado solamente por una capa.
5 Cuando esto ocurre se trata especificamente de una red FCN (Fully connected network), una variante de las FNN.
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e wes el filtro convolucional (también denominado kernel).
e tes ladistancia que se desplaza.

e s(t) es la salida de la funcion y se denomina mapa de caracteristicas.
Las redes CNN estan formadas por:

e Capas convolucionales: Se encargan de extraer las caracteristicas locales de la entrada,
comunmente imagenes, como los bordes, colores, etc. Se realiza a través de los kernels y esto
genera el mapa de caracteristicas.

e Capas de agrupacion (pooling layers): Simplifican la salida de las capas convolucionales, es
decir, reducen la dimensionalidad del mapa de caracteristicas. Dicha agrupacion permite que la
representacion obtenida no varie frente a pequefios cambios o traslaciones de la entrada (por
ejemplo, rotar la imagen). Existen dos tipos principales de agrupacion:

o Max pooling: Selecciona el maximo valor dentro de una region especifica del mapa de
caracteristicas. Asi, se recuperan las caracteristicas mas importantes.

o Average pooling: Calcula el valor promedio de una region especifica del mapa de
caracteristicas. Puede ser util para reducir el ruido, pero se pueden perder caracteristicas
importantes.

e Capas totalmente conectadas (fully connected layers): En las CNN se suelen incluir una o mas
de estas capas, las cuales conectan cada neurona de las pooling layers con la capa de salida
permitiendo realizar una clasificacion.

Las propiedades clave de este tipo de redes son:

e Conectividad dispersa (sparse connectivity): Esta idea consiste en hacer los kernels mas
pequefios que la propia entrada. Basicamente si tenemos una imagen la cual tiene, por ejemplo,
un millon de pixeles, podemos seguir detectando las caracteristicas locales con un kernel que
ocupe cientos de pixeles. De esta manera la red tiene que usar menos parametros y por tanto se
reduce la memoria usada.

e Comparticion de parametros: En las CNN, cuando se aplica la operacién de convolucion se
comparten los parametros para cada kernel, lo cual, junto a la propiedad anterior, hace que se
reduzca incluso mas el numero de parametros a utilizar.

No obstante, estas redes no son perfectas y presentan algunas limitaciones, como:

o Dificultad de disefio: Este tipo de redes estan formadas por muchos hiperpardmetros y encontrar
la combinacion correcta puede ser dificil, para ello se usan las técnicas ya vistas anteriormente.
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e Eficiencia computacional y consumo de memoria: Las CNN pueden ser muy costosas en
términos de tiempo de entrenamiento y de utilizacion de memoria. El uso de GPUs es esencial
para acelerar el proceso de entrenamiento. Ademads, para optimizar el uso de memoria se
recomienda maximizar el trabajo de las pooling layers y/o usar arquitecturas mas eficientes de
las CNN como pueden ser LeNet-5, AlexNet, VGG o ResNet. [14]

Redes neuronales recurrentes (Recurrent Neural Network - RNN)

Las RNN a diferencia de las redes tradicionales, tienen conexiones recurrentes que permiten mantener
la informacion de estados previos. El comportamiento de las neuronas no solo se debe a las activaciones
de las capas previas, puede estar determinada por su propia activaciéon en un momento anterior.

Estas redes sufren del desvanecimiento del gradiente, el problema incluso empeora en este tipo de
redes porque los gradientes no solamente se propagan hacia atréas de las capas, sino que también lo hacen
a través del tiempo. Para mitigar este problema surge la variante denominada LSTM (Long Short-Term
Memory) la cual es capaz de aprender dependencias a largo plazo.

Las RNN se usan principalmente para procesar datos secuenciales, como texto, audio o series
temporales.

Arquitecturas encoder-decoder

Estan formadas por dos modulos [15]:

- Codificador (encoder): se encarga de procesar la entrada y de generar una representacion del
espacio latente, es decir transforma los datos de entrada en uno o varios vectores numéricos, lo
que se conoce como embeddings. Estan formados por una capa de self-attention’, 1a cual permite
que el codificador se centre en las partes importantes que producen el contexto, y por una red
FNN que permite procesar la informacion y capturar relaciones y patrones entre los datos.

- Decodificador (decoder): utiliza la representacion generada por el codificador para generar una
salida, esta salida puede ser una reconstruccion de la entrada o una secuencia distinta
(generalmente esta ultima). Comparten las dos capas que forman a los codificadores con la
salvedad, que entre estas dos hay una capa de atencion encoder-decoder, la cual permite que el
decodificador se centre en las partes mas relevantes de la entrada.

Dentro de esta arquitectura podemos distinguir dos tipos fundamentales de redes neuronales:

& Self-attention es un mecanismo de atencion mediante el cual cada elemento (foken) de una secuencia se pondera segln la
importancia de cada uno en relaciéon con los demas.
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1. Transformers

El mecanismo de self-attention puede limitar la capacidad del modelo de aprender relaciones, pues
podria prestar excesiva atencion al token a estudiar (se pondera mucho que al resto de la secuencia). [16]
[17] [18]

Para evitar esta limitacion, los Transformers utilizan el mecanismo multi-head attention, el cual aplica
multiples mecanismos self-attention procesando la sentencia simultdneamente y obteniendo asi mejores
representaciones de las relaciones de cada token. Cada bloque del Transformer también contiene una red
FNN para procesar los datos.

Los Transformers estan disefiados originalmente como un modelo encoder-decoder, aunque en la
actualidad hay modelos que solamente utilizan una parte, es decir, el codificador o el decodificador,
denominandose encoder-only y decoder-only, respectivamente.

Encoder-only

Al solo tener la parte del encoder el modelo no se centra en generar texto, su tarea es entender los
datos de entrada. Por ello las tareas principales que desempefia son clasificacion de texto y extraccion
de informacion relevante.

Decoder-only

En el ejemplo de decoder-only al no tener la parte del encoder, directamente se intenta generar texto
mediante la prediccion del siguiente token. Para ello se usa una variante de self-attention conocida como
masked self-attention, aqui no se tienen en cuenta todos los tokens de la secuencia, solo se miran los que
vienen por detras del token principal enmascarando los demads. Por ejemplo, en la secuencia:

“La casa de Pedro es muy grande”

Si el token principal es “Pedro” solamente se ponderan los tokens “La”, “casa” y “de”; cuando
usabamos self-attention los que venian detrds de “Pedro” también se tenian en cuenta, pero aqui se
ocultan mediante una méscara.
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2. Autoencoders

Estas redes son el ejemplo de que la salida es una reconstruccion de la entrada, es decir, la entrada y
la salida son las mismas, solo que se realizan algunas transformaciones en el proceso. Alguno de los
usos principales de estas redes es [20]:

e Compresion de informacion (imagen y audio)
¢ Eliminacién de ruido en datos (denoising)

e Reduccion de la dimensionalidad

entre otros muchos. Se entrenan mediante aprendizaje no supervisado (Este concepto se explicara mas
adelante en este documento). Existen muchos mas tipos de redes, pero considero que los explicados son
los mas relevantes para este proyecto.

2.3 Modelos de Lenguaje

Un modelo de lenguaje es un tipo de modelo estadistico o de aprendizaje automéatico para procesar
lenguaje natural (PLN). Su objetivo principal es comprender, generar o clasificar texto y se usan para
diversas tareas como la traduccion, la clasificacion o la generacion de texto entre muchas otras. Los
modelos se entrenan con grandes cantidades de datos para poder aprender patrones lingiiisticos y
relaciones semanticas [21] [22].

2.3.1 Tipos de modelos de lenguaje

Dentro de los modelos de lenguaje se pueden distinguir dos tipos principales, el modelado
estadistico y el modelado neuronal.

Modelos estadisticos

El proposito de estos modelos es predecir la probabilidad que tiene una palabra de aparecer después
de una secuencia, es decir, qué probabilidad tiene una palabra de ser la siguiente en generarse dado un
contexto. Existen los siguientes tipos:

- N-gramas: Son secuencias de n elementos de una muestra de texto, este modelo analiza la
probabilidad de la siguiente palabra basandose en las (n-1) palabras anteriores. Por ejemplo, un
modelo con n = 5 predeciré la siguiente palabra en base a las 4 anteriores. Puede tener cierta
limitacion ya que, si aumentamos el valor de n, el modelo puede que no cubra todas las
secuencias posibles y dificulte el proceso de entrenamiento.

- Modelos exponenciales: En estos modelos se mezcla la prediccion basdndose en palabras
anteriores (al igual que los n-gramas) junto a otras caracteristicas del texto, como puede ser la
aparicion de ciertas palabras o patrones. Cada una de las caracteristicas tiene un peso asignado y
se combinan mediante una funcion exponencial para calcular la probabilidad. Son més flexibles
que los n-gramas, pero son mas costos computacionalmente hablando
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- Modelos skip-gram: Se utilizan principalmente en el caso de generacion de word embeddings.
Dada una palabra objetivo predicen las palabras contexto (palabras cercanas a esta) dentro de
una ventana con un tamafio previamente definido, por ejemplo:

“La casa de Pedro es muy grande”

Si nuestra palabra objetivo es “Pedro” y el tamafio de ventana es de 2, el modelo predice que
las palabras: “casa”, “de”, “es”, “muy” suelen aparecer junto a la palabra objetivo y esto
permite generar embeddings que representan estas relaciones. Puede recordar al mecanismo de
self-attention definido anteriormente, pero con la salvedad de que aqui se utiliza una ventana

para fijar el nimero de tokens a observar.

Modelos neuronales

Estos modelos son més avanzados ya que utilizan redes neuronales como base, lo cual permite un
modelado més preciso al tener la capacidad de capturar patrones més complejos y una mejor
generacion de embeddings. Se dividen en:

- Redes neuronales recurrentes (RNN): La explicaciéon mas detallada de estas redes se ha
desarrollado previamente, pero recordando la explicacion, estas redes estan disefiadas para datos
secuenciales, lo que las hace idoneas para el modelado de lenguaje.

- Modelos basados en Transformers: También se han explicado previamente. La idea del
mecanismo de atencion es clave para la modelacion de lenguaje, pues captura las relaciones
semanticas de cada palabra de la secuencia paralelamente. Dentro de estos se encuentran los
famosos Large Language Model (LLM), estos modelos se caracterizan por su gran nimero de
parametros (normalmente estan formados por miles de millones) y su desempeifio en una gran
variacion de tareas. El entrenamiento de estos modelos puede llegar a ser muy costoso
computacionalmente (se suelen utilizar varias GPUs) ya que normalmente suele estar formado
por varias etapas: un preentrenamiento no supervisado con una gran cantidad de datos y un
posterior fine-tuning dedicado a especializar al modelo en tareas especificas.

2.3.2 Entrenamiento de modelos de lenguaje

Antes de explicar el proceso de entrenamiento de un modelo de lenguaje, hay que diferenciar las
principales técnicas de aprendizaje [23] [24] [25]:

1. Aprendizaje no supervisado

El aprendizaje no supervisado emplea algoritmos capaces de analizar conjuntos de datos no
etiquetados, es decir, sin informacién que facilite su contexto. Los algoritmos identifican patrones,
relaciones o agrupaciones (clusteres) dentro de los datos, sin intervencion humana. Se utilizan para dos
tareas:
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- Agrupacion en clusteres: Se utilizan para procesar conjuntos de datos no etiquetados basandose
en sus similitudes o diferencias. Se pueden clasificar en varios tipos:

1. Agrupacion excluyente: un punto de datos solamente puede existir en un cluster.

2. Agrupacion superpuesta: permite que los puntos de datos pertenezcan a varios clusteres
teniendo diferentes grados de pertenencia en cada uno.

3. Agrupacioén jerarquica: se crean grupos de forma que los datos similares estan dentro del
mismo y los diferentes estan en otros grupos. Los clisteres mas pequefios se fusionan en cada
iteracion hasta obtener una sola raiz.

Hay dos subtipos: agrupaciones aglomerativas, donde los elementos se unen de abajo hacia
arriba y, las agrupaciones divisivas, que toman un enfoque contrario, de arriba hacia abajo
(en este caso se comienza con un solo cluster y se va dividiendo en conjuntos mas pequefios).

4. Agrupacion probabilistica: las agrupaciones se crean en funcion de la probabilidad de
pertenecer a una distribucioén determinada. Uno de los modelos mas utilizados es el modelo
de mezcla Gaussiana (GMM).

- Regla de asociacion: Es un mecanismo basado en reglas que permite descubrir relaciones entre
las caracteristicas de un conjunto de datos. Un ejemplo de su uso son las cestas de la compra en
los comercios online, permite a las empresas conocer qué relacion existen entre unos productos
y otros, estableciendo patrones. Un algoritmo muy conocido que usa las reglas de asociacion es
el algoritmo Apriori.

2. Aprendizaje supervisado

Como contraparte al aprendizaje no supervisado, aqui el modelo aprende mediante conjuntos de datos
etiquetados. Estos datos estan formados por las entradas y salidas deseadas, de forma que el algoritmo
de aprendizaje tiene que ser capaz de encontrar los patrones y las relaciones para comprender como
llegar a esas salidas. En entrenamientos a gran escala puede llegar a ser dificil mantener el uso de este
algoritmo por falta de datos etiquetados (es muy dificil que ocurra, pero llegados a cierto punto puede
ocurrir). Principalmente se usan en dos tareas:

- Clasificacion: A través de los datos que se tiene, el algoritmo debe de ser capaz de deducir a qué
categoria pertenece una nueva entrada. Un clasificador conocido es Naive Bayes el cual mide la
probabilidad de pertenencia a una categoria para cada entrada del conjunto existente y al recibir
un dato nuevo utiliza estos conocimientos para clasificarlo.

- Regresion: El algoritmo predice la variable dependiente (la nueva entrada de datos) a partir de

una o mas variables independientes (los datos existentes). Existen dos tipos, lineal (sencilla o
multiple, depende del numero de variables independientes) y logistica.
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3. Técnicas mixtas
Definimos como técnica mixta a cualquier aprendizaje que mezcla conceptos de los aprendizajes
supervisado y no supervisado.

- Aprendizaje semi supervisado

El aprendizaje semi supervisado se caracteriza por fusionar los conceptos del aprendizaje supervisado
y no supervisado. Para el entrenamiento se utilizan tanto pares de datos etiquetados como no etiquetados,
mediante esta fusion los algoritmos son capaces de aprender a etiquetar datos [26].

- Aprendizaje auto supervisado

Nace del concepto de auto entrenamiento donde primero se entrena un modelo con datos etiquetados,
después se le pasan datos no etiquetados y el modelo genera una especie de pseudoetiquetas mediante
las cuales refina el modelo a través de un proceso de iteracion [27].

De esta idea surge el aprendizaje auto supervisado, donde no existe interaccion humana, es decir, los
datos no son etiquetados. Aqui, el modelo entrena gracias a las sefiales de supervision que €l mismo
genera, lo cual se consigue mediante la creacion de tareas de entrenamiento a partir de los datos no
etiquetados (este proceso es similar a las pseudoetiquetas).

Una vez explicados los tipos de aprendizaje existentes, veamos como es el proceso de entrenamiento
de un modelo de lenguaje. Surgen dos principales ideas:

Preentrenamiento

Como primera tarea, se han de optimizar los parametros en un proceso denominado preentrenamiento,
no se presupone qué tareas especificas va a realizar el modelo, simplemente se entrena en un ambito
general.

En el preentrenamiento se utiliza cualquiera de los aprendizajes que acabamos de definir, aunque,
hoy dia, la mayoria de los modelos de lenguaje dedicados a NLP se basan en el aprendizaje auto
supervisado. En muchas ocasiones el entrenamiento de un modelo de lenguaje simplemente se basa en
esta fase, obteniendo asi un modelo de lenguaje “base” con un gran rango de tareas.

No obstante, existe un problema al entrenar los modelos de lenguaje, puede ser que una vez finalizada
la etapa de preentrenamiento no se comporten siguiendo el raciocinio humano, es decir, pueden llegar a
ser partidarios de ciertas posturas frente a otras (lo cual no es una buena practica porque siempre se busca
que el modelo sea imparcial) e incluso llegar a ser peligrosos o dafiinos, si se le hacen cuestiones sobre
temas delicados, el modelo puede llegar a dar una respuesta inadecuada y atentar contra la ética humana.
En estos casos la siguiente fase del entrenamiento es totalmente necesaria.

Post entrenamiento
Una vez tenemos nuestro modelo preentrenado hay que transformarlo para que se focalice en ciertas

tareas, en este proceso se han de reajustar los parametros mediante un proceso conocido como fine-
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tuning (ajuste fino), ya sea utilizando datos etiquetados (supervised fine-tuning) o facilitando al modelo
descripciones de las tareas a realizar (prompt engineering). En el caso que hemos comentado donde el
preentrenamiento puede derivar en un mal comportamiento del modelo, se introduce el concepto
definido como RLHF (Reinforcement Learning from Human Feedback). A continuacion, se explican los
tres métodos [27]:

1. Supervised Fine-tuning (Ajuste fino supervisado)

En este método se utilizan datos etiquetados de forma que el modelo es capaz de aprender a justar los
parametros de la red para predecir tokens lo mas parecidos posibles a los datos de entrada. Las técnicas
mas comunes son [28]:

Fine-tuning para una tarea especifica: Es el caso mas comun, el modelo se entrena solamente

para desempenar una tarea especifica.

- Aprendizaje multi-tarea: En este caso se busca que el modelo a entrenar sea capaz de realizar
varias tareas especificas, se consigue aprovechando las caracteristicas compartidas y las
diferencias entre las tareas.

- Transferencia de aprendizaje (Transfer learning): Cuando se trabaja con un conjunto de datos
limitado esta técnica resulta muy util porque se parte de la idea del modelo base (modelo ya
preentrenado) en la que ya se tienen unos conocimientos previos y con el conjunto de datos que
se tiene se realiza la tarea de fine-tuning. Debido a esto, el proceso de post entrenamiento se
reduce.

- Fine-tuning mediante instrucciones: Este enfoque utiliza instrucciones como entrada, al
modelo se le proporcionan pares o tuplas de entrada-salida deseada. Por ejemplo:

“Tengo 5 euros en la cartera, pero me he comprado una piruleta que me ha costado 20
céntimos. /cudnto me queda?” — Entrada
“Te quedan 4 euros y 80 céntimos” — Salida deseada

De esta forma, al usar muchas tuplas el modelo aprendera a captar el seguimiento de
instrucciones y llegara un punto en el que serd capaz de responder a una pregunta que no haya
visto antes. Esta idea entra en el campo del prompt engineering.

2. Prompt engineering (Ingenieria de instrucciones)

Se define por prompt a una instruccion que se facilita al modelo para que este ejecute una tarea
especifica, por tanto, la ingenieria de instrucciones tiene como objetivo el disefio y el uso efectivo de
estos prompts.

Esta idea se puede aplicar directamente sobre un modelo preentrenado sin aplicar fine-tuning de por
medio, no obstante, los modelos base son capaces de completar textos con una indicacion inicial, pero

no ideales para seguir instrucciones. Los modelos optimizados para instrucciones son versiones de estos
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a los cuales se les aplica la técnica de fine-tuning por instrucciones, los cuales son mas adecuados para
el prompting.

Para explicar la ingenieria de instrucciones existe un método relacionado, el in-context learning,
consiste en afiadir un contexto mientras se realiza el prompting, generalmente este contexto son
demostraciones de como se tiene que resolver la tarea que nosotros le pedimos al modelo. Dentro de este
método tenemos tres aplicaciones:

- Zero-shot learning: Como su propio nombre indica, no hay un proceso explicito de aprendizaje,
simplemente se proporciona al modelo un prompt sin la salida deseada para que ver qué responde.
Esta explicacion da sentido al apartado de fine-tuning mediante instrucciones pues su objetivo
final es llegar a este punto, poder resolver nuevos problemas no vistos durante la fase de
entrenamiento. Un ejemplo seria:

Eres un asistente especializado en gramatica y traduccidn. Se te
va a dar una oracién y la tienes que traducir al inglés.

Entrada: Juan ha tenido un examen muy dificil de matematicas y
estd un poco triste.

Salida: ____

Figura 35: Prompt zero-shot learning

- One-shot learning: A diferencia del anterior, en este caso solamente se introduce un ejemplo
correcto de entrada y salida deseada:

Eres un asistente especializado en gramatica y traduccién. Se te va a dar una
oracion y la tienes que traducir al inglés.

Entrada: Juan ha tenido un examen muy dificil de matematicas y estd un poco
triste.

Salida: Juan had a very difficult math examen and is a little bit sad.

Figura 36: Prompt one-shot learning

- Few-shot learning: En este método se utilizan varios ejemplos de entrada y salida deseada
haciendo que el modelo de lenguaje aprenda los patrones y sea capaz de elaborar una respuesta
mejor que con el caso de one-shot. Esté claro que cuantos mas ejemplos se introduzcan mejor
generalizard el modelo, pero todo depende de la potencia de este, en ocasiones con introducir un
grupo pequefio de ejemplos es suficiente para que el modelo aprenda correctamente. Un ejemplo:
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12 Prueba

Eres un asistente especializado en gramdtica y traduccidn. Se te va a dar una
oracion y la tienes que traducir al inglés.

Entrada: Juan ha tenido un examen muy dificil de matematicas y esta un poco
triste.

Salida: Juan had a very difficult math examen and is a little bit sad.

22 Prueba

Eres un asistente especializado en gramatica y traduccion. Se te va a dar una
oracién y la tienes que traducir al inglés.

Entrada: Leo Messi es el mejor jugador de futbol de la historia.

Salida: Leo Messi is the best football player in history.

Figura 37: Prompt few-shot learning

3. RLHF

Este proceso a menudo se describe como aprendizaje por refuerzo, en el cual existe una interaccion
con feedback humano, consiguiendo que el modelo ajuste sus respuestas mediante un sistema de
recompensas. Las técnicas mas comunes de este método son:

- Reward modeling (Modelado de recompensas): Se define como el proceso de entrenar un
modelo conocido como reward model para que este sea capaz de aprender a predecir las
recompensas establecidas por evaluadores humanos y luego maximizarlas.

Para entrenar esta técnica se utiliza la clasificacion comparativa, el modelo genera varias
respuestas y los evaluadores las califican segtn su criterio, una vez obtenidas las respuestas con
su recompensa asociada el modelo comienza el proceso de entrenamiento. La retroalimentacion
se puede obtener de varias formas:

o Pairwise ranking: Se proporciona dos salidas y los evaluadores eligen cual es la 6ptima.

o Rating: Los evaluadores establecen una puntuacién a cada salida, normalmente la
puntuacion es un valor dentro de un rango numérico, pero también puede ser una
puntuacion binaria, por ejemplo, “si-no”.

o Listwise ranking: Se les muestra a los evaluadores una lista de posibles salidas ante una
entrada y estos han de establecer un orden de puntuacion.

- Proximal policy optimization — PPO: Es un algoritmo iterativo que actualiza el criterio o politica
del modelo sobre cémo maximiza las recompensas.

Se introduce un término de penalizacion para que la politica actual (la nueva) no diste mucho

de la politica de referencia. Con esto conseguimos que el algoritmo no se aleje de la region de
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confianza en la que se encontraba, en la cual se sabia que el modelo tenia un correcto
comportamiento.

2.4 RAG (Retrieval-Augmented Generation)

RAG es una técnica dentro del campo de la inteligencia artificial que mezcla el uso de memoria
paramétrica y no paramétrica. Antes de profundizar en RAG debemos diferenciar muy bien los dos tipos
de memoria [29]:

e Memoria paramétrica: Se define como el conocimiento que reside en el propio modelo.
Durante la época de entrenamiento se guarda dicho conocimiento en los pesos y no se precisa de
ninguna fuente externa para la obtencion de informacion, no obstante, tiene una serie de
problemas como el aumento o modificacion de su propia memoria que puede derivar en una
pérdida de antigua informacion frente a nuevas entradas. También hay que tener en cuenta que
cada vez que se quiera ampliar conocimiento el modelo ha de ser reentrenado lo que implica
costes computacionales elevados.

e Memoria no paramétrica: Se usa principalmente en sistemas de recuperacion, al tener la
informacion guardada en fuentes externas, tipicamente en bases de datos, permite que el sistema
recupere la informacion deseada cuando se realiza una consulta.

Podriamos decir, por tanto, que RAG tiene como objetivo recuperar informaciéon mediante el uso de
un recuperador (retriever), el cual accede a fuentes de datos externas (memoria no paramétrica) y generar
respuestas a través de un modelo generador (generator) usando memoria paramétrica. Aqui un ejemplo
de un sistema que usa RAG [30]:
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Figura 38: Sistema RAG en el que se usa DPRy BART [30]
2.4.1 Componentes principales

Como se puede ver en la “Figura 38” un sistema RAG estd formado por dos componentes: el retriever
y el generator. A continuacion, se explican en profundidad.
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Retriever (Recuperador)

La idea principal de un retriever es calcular los top-k documentos mas relevantes para una consulta,
para ello, el retriever se encarga de generar una representacion de dicha consulta, asi como
representaciones para cada uno de los documentos (z) de los que obtiene informacion. Estas
representaciones se obtienen a partir de encoders, recordemos que el papel de estos es transformar una
entrada en embeddings pero ;por qué recordar este concepto ahora? Muy sencillo, los retrievers calculan
la probabilidad de que un documento z; sea relevante para la consulta realizada mediante el producto
escalar de las representaciones, lo que se consigue con este producto es mirar si los embeddings apuntan
a la misma direccidn, o, en otras palabras, que sean cercanos en el espacio vectorial. Dicha probabilidad
viene dada por:

Py (z]x) « exp(d(2)Tq(x))
Figura 39: Probabilidad calculada por el retriever en RAG

Donde:
e u son los parametros del retriever.
e X es la entrada.
e zes un documento.
o d(z) es el embedding del documento.

e q(x) es el embedding de la consulta.

Generator (Generador)

La tarea del generador, basicamente, es generar, valga la redundancia, una respuesta dada una
consulta x y los z documentos recuperados, los cuales se afladen como contexto adicional a la consulta.
Se puede explicar como la probabilidad de qué se genere una secuencia de salida dada la entrada
(consulta) y un documento relacionado, su ecuacion viene dada por:

Pe (Vilx, 2, y1.i-1)
Figura 40: Probabilidad calculada por el generador en RAG

Donde:
e O son los parametros del generador.
e yjeltokenide la salida.
* yi.i1 son los tokens de la salida ya generados previamente.

2.4.2 Modelos de RAG

Existen dos formas de marginalizar los documentos recuperados, por marginalizar se entiende aplicar
una distribucion marginal sobre las probabilidades asociadas a dichos documentos. De esta idea nacen
los dos modelos de RAG:

1. RAG-Sequence
En RAG-Sequence cada documento se utiliza para generar una secuencia. Se buscan los documentos
mas relevantes para la entrada (1* probabilidad) y una vez recogidos se mira como influye cada uno junto
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con la propia entrada para poder generar la secuencia de salida (2* probabilidad). Ambas probabilidades
se marginalizan quedando:

N
pRAG—Sequence(le) ~ Z Py z|x) pe(ylx,z) = Z Py (zlx) HP@ ilx, 2z, y1:i-1)
i

Figura 41: RAG-Sequence
En los sumatorios se estudian solamente los top-k documentos mas relevantes para la entrada x, lo

que se define como:
z € topk(p(- |x))

2. RAG-Token
Al contrario que en RAG-Sequence, para generar la secuencia se va mirando cada uno de los tokens,
es decir por cada uno se puede usar un documento distinto. Aqui el generador antes de marginalizar

produce una distribucion para el siguiente token para cada uno de los documentos recuperados:
N

PrAG-Sequence (ylx) ~ 1_[ Z pn (le) Po (yile Z, yl:i—l)
I z€top—k(p(|x))
Figura 42: RAG-Token

2.5 Tecnologia utilizada

Durante el desarrollo de este proyecto se han usado diferentes herramientas para construir el
entorno de trabajo, se enumeran y explican a continuacion.

2.5.1 Anaconda

Es una plataforma de codigo abierto para crear modelos de ciencia de datos o aprendizaje automatico
en Python o R. Tiene varios paquetes y herramientas preinstaladas y facilita la gestion de entornos
virtuales y dependencias de paquetes a través de conda, mediante el uso de esta herramienta de linea de
comandos se ha podido instalar un entorno para la ejecucion del proyecto. [31] [32]

2.5.2 Python

Python es un lenguaje de programacién interpretado de tipado dindmico, es multiparadigma ya que
admite varias tareas como la orientacion a objetos, la programacion funcional o la programacion
procedimental. Python se caracteriza por tener una sintaxis sencilla, pero a su vez tiene una gran
potencia. Este lenguaje también es portable, es decir, funciona en distintos sistemas operativos [33]. En
este proyecto se utiliza la version de Python 3.13.3.

2.5.3 CUDA (Compute Unified Device Architecture)

Es una plataforma de computacion paralela desarrollada por NVIDIA que permite usar la GPU para
acelerar tareas computacionales de alto rendimiento, como puede ser el entrenamiento de modelos de
deep learning [34]. La versiéon de CUDA instalada en el entorno de trabajo es 12.8.
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2.5.4 PyTorch

Es una libreria dedicada a la creacion de modelos de deep learning, una rama del aprendizaje
automatico. Estd escrito principalmente en Python y por lo tanto se caracteriza por su enfoque de
programacion dindmica [35] [36].

Al usar algoritmos de aprendizaje automatico se necesita que los datos estén representados de manera
numérica, en PyTorch se consigue a través de los llamados tensores. Un tensor es similar a un array
multidimensional y se utilizan para codificar las entradas, salidas y parametros de un modelo, son
similares a los ndarrays de NumPy con la salvedad de que los tensores se pueden ejecutar en GPU [37].

2.5.5 Jupyterlab
Es una aplicacion de creacion y edicidon de notebooks extensible y con muchas funciones, es parte del
proyecto Jupyter. Es un entorno de desarrollo interactivo basado en web que permite trabajar con

notebooks, codigo en vivo, visualizacion de datos, etc. Es una version mejorada de Jupyter Notebook
[38].

2.5.6 Notebook

Es un documento que combina codigo ejecutable, comentarios explicativos, visualizacién y otros
elementos multimedia en una misma interfaz. Proporciona un entorno flexible e interactivo para el
analisis de datos, la visualizacion y el desarrollo de prototipos de codigo [39].

2.5.7 Tensorboard

Tensorboard es un kit de herramientas que permite la visualizacion de pruebas para nuestro trabajo,
se permite visualizar métricas como la pérdida en el entrenamiento y en la validacidn, visualizar la
evolucion de hiperparametros como la tasa de aprendizaje, etc. [40]
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Capitulo 3 — Metodologia

Antes de explicar la metodologia del proyecto, se desarrollan las principales caracteristicas del

entorno. El desarrollo de este trabajo se ha llevado en un entorno de desarrollo local con las siguientes

especificaciones:

Sistema operativo: Microsoft Windows 11 Home
Procesador: Intel Core 17-12700K (20 CPUs), 3.6 GHz
Memoria RAM: 32 GB RAM

Almacenamiento: Disco HDD 1TB

GPU: Nvidia GeForce RTX 4070, 12 GB VRAM

Como se comenta en el apartado anterior, el proyecto se ejecuta en un entorno de conda con Python

3.13.3. Algunas de las librerias mas importantes para el desarrollo del trabajo son:

datasets v-3.5.1 para la creacion de Datasets.
faiss-cpu v-1.11.0 para el uso de FAISS de langchain.

langchain v-0.3.25 para tareas como la creacion del indice FAISS para la recuperacion y
almacenamiento de embeddings y el uso del divisor (splitter) de texto.

langchain-huggingface v-0.1.2 para el uso del modelo de embeddings.

ocrmypdf v-16.10.17 para aplicar OCR sobre los PDFs.

optuna v-4.3.0 para la prueba de ajuste de los hiperparametros del modelo.

PyMuPDF v-1.25.5 para extraer el texto de los PDFs con OCR ya aplicado.

PyTorch para el uso de tensores, se divide en tres (PytTorch se compila con CUDA 12.8):
o torch, v-2.7.0+cul28
o torchaudio v-2.7.0+cul28
o torchvision, v-0.22.0+cul28

sentence-transformers v-4.1.0 para medir la similitud de los embeddings.

tqdm v-4.67.1 para visualizar barras de progreso en el proceso de OCR.

7 Para usar ocrmypdf hay que instalar en el entorno Tesseract y Ghostscript, se explica en

L]
Anexo A — Manual de instalacion del entorno de eStllle

45



e transformers v-4.51.3 para crear pipelines, el uso del Tokenizer, el uso de la clase Trainer para
el fine-tuning del modelo y el propio uso del LLM principal.

Para el visionado de resultados se utilizan las siguientes librerias:
e matplotlib v-3.10.3 para generar graficos.
e numpy v-2.2.5 para la utilizacion de operaciones matematicas.

e tensorboard v-2.19.0% para el visionado de resultados de distintas pruebas.

3.1 LLM Utilizados

Para la seleccion de los modelos en el sistema RAG disefiado se han utilizado dos benchmarks
reconocidos y publicos, ambos de Hugging Face:

e El Open LLM Leaderboard, que se encarga de evaluar modelos de lenguaje abiertos en tareas
como la comprension, la generacion de texto, razonamiento de un contexto largo, etc. [41]

e ElI MTEB Leaderboard (Massive Text Embedding Benchmark), que compara modelos de
lenguaje para generacion de embeddings midiendo tareas como clasificacion (incluyendo por
pares y multi-etiqueta), reordenamiento, semejanza semantica textual (STS), etc. [42]

Debido a las limitaciones de hardware del entorno donde se ha realizado el proyecto, en particular a
la cantidad de VRAM disponible en la GPU, no ha sido posible ejecutar modelos de gran tamafio (a
partir de 2-3B de parametros), ya que, en conjunto con el resto de la aplicacion se sobrepasa la cantidad
de memoria disponible. Por este motivo, el estudio de los modelos se ha reducido a modelos mas ligeros,
en torno a 1B de parametros. Utilizando los benchmarks, se han seleccionado:

e Un modelo de lenguaje para generacion de embeddings, “multilingual-e5-large-instruct”, se
corresponde con el cuarto lugar de la siguiente tabla:

Rank (BorModel  Zero-shot Memory L Number o Embeddir Max Tokel Mean (Tas Mean (Tas Bitext Mir Classificat Clustering Instructiol Multilabe Pair Classi Reranking Retrieval STS

1 [gemini-e39% Unknown Unknown 3072 2048 68,37 5959 79,28 71,82 54,59 518 29,16 83,63 6558 67,71 79,4
2 [Ling-Emt'39% 13563 78 4096 32768 6147 5414 7034 62,24 50,6 094 2477 8043 6437 5869 7486
3 [gte-Qwer A\ NA 29040 78 3584 32768 62,51 5593 73,92 6155 52,77 494 2548 8513 6555 60,08 73,98
4 [multiling'39% 1068 560M 1024 514 63,22 5508 80,13 6494 50,75 04 2291 803 6261 57,12 7681
5 [SFR-Embi36% 13563 78 4096 32768 609 53,92 70 60,02 51,34 016 2455 8029 6419 5944 7479
6 [GritLM-7(39% 13813 78 4096 409 60,92 5374 7053 6183 49,75 345 22,77 7994 63,78 5831 7333
7 [text-mul{39% unknown Unknown 768 248 6216 5425 70,73 64,64 47,84 4,08 28 81,14 6,22 5968 76,11
8 [GritLM-5/39% 89079 578 4096 409 6049 5331 6817 6155 50,16 244 2443 7973 6261 5754 73,16
9 [e5-mistri39% 13563 78 4096 32768 60,25 53,08 7058 6031 5057  -0,62 22 8,12 638 5575 7402
10 [Cohere-g /iy NA  Unknown Unknown 1024 Unknown 61,12 53,23 705 6295 468  -1,89 2,74 7988 6407 59,16 74,8
11 [gte-Qwel /iy NA 6776 18 8960 32768 59,45 52,69 6251 5832 52,05 074 2402 81,58 6258 60,78 71,61
12 Tbilineual 38% 2136 559M 1024 514 6095 5292 7355 677 4649  -3.04 2236  79.83 6142 551 7781

Figura 43: Ranking Embedding Leaderboard

8 Para la utilizacion de esta libreria se ha creado un segundo entorno, se explica en el “Anexo A”.
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Este modelo se utiliza para generar los embeddings de los textos a analizar, construir un indice
FAISS (Facebook Al Similarity Search) el cual permite realizar busquedas eficientes, y crear un
retriever que sirve para recuperar los fragmentos de texto mas importantes ante una consultada
dada. Debido a estas caracteristicas nuestro modelo estd optimizado para tareas de recuperacion
y STS.

¢ Un modelo de lenguaje, que utilizamos tanto para generar pares pregunta-respuesta (QA) como
para su posterior fine-tuning mediante dichos pares, “TinyLlama-1.1B-Chat-v1.0”. A pesar de
su tamafio reducido (1.1B de parametros), es adecuado para tareas de generacion de texto y muy
util para ejecutarse en entornos con restricciones de hardware [43].

La eleccion de este modelo se basa en el equilibrio entre rendimiento y eficiencia, asi como
su gran popularidad dentro de la comunidad. Aunque en el leaderboard hay otros modelos con
puntuaciones superiores, estas caracteristicas han sido determinantes en la eleccion del modelo.

Para averiguar qué tipo de arquitecturas siguen estos modelos podemos ver su archivo config.json [44]
[45] [46]:

1. Embedding model
El archivo json contiene la siguiente informacion:

{

"_name_or_path™: "tmp/",

"architectures™: [

"XLMRobertaModel™

1.

"attention_probs_dropout_prob”: 8.1,
"bos_token_id": @,
“classifier_dropout™: null,
“eos_token_id": 2,
"hidden_act™: "gelu”,
“hidden_dropout_prob™: 8.1,
"hidden_size": 1824,
"initializer_range": 8.2,
"intermediate size™: 4896,
"layer_norm_eps”: le-@85,
"max_position_embeddings": 514,
"model type™: "xlm-roberta”,
"num_attention_heads": 16,
"num_hidden_layers™: 24,
“output_past": true,
“pad_token_id": 1,
"position_embedding type": "absolute”,
“torch_dtype”: "floatls™,
"transforme

Figura 44: config.json de multilingual-e5-large-instruct

Como se puede observar nuestro modelo de embeddings sigue la arquitectura de “xIm-Roberta”, para
especificar la arquitectura exacta deberemos mirar el config.json de este modelo.

"architectures™: [

"XLMRobertaForMaskedLM"

],
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Con ver este trozo ya sabemos que se rige por Masked Language Modeling (Modelado de lenguaje
enmascarado), el cual se centra en la idea de enmascarar tokens de la secuencia de entrada para que asi
el modelo pueda aprender a predecirlos, para esta prediccion el modelo sigue un contexto bidireccional,
en la que la prediccion del foken se basa tanto en los tokens anteriores como en los siguientes [47]. Estos
modelos estdn pensados para seguir la arquitectura encoder-only (explicada anteriormente en el
documento). Por tanto, “multilingual-e5-large-instruct” es un modelo basado en Transformers que
sigue la arquitectura encoder-only.

2. Generator model
El archivo json en este caso contiene la siguiente informacion:

"architectures™: [
"LlamaForCausallM”

"attention_bias": false,
"bos_token_id": 1,
"eos_token_id": :
"hidden_act™

"hidden_size™: 2048,
"initializer_range™: .02,
"intermediate size™: 5632,
"max_position_embeddings™: 2848,
"model_type”: "llama”,
"num_attention heads™: 32,
"num_hi s": 22,
"num_key value heads™: 4,
"pretraining_tp”: 1,
"rms_norm_eps”: 1le-@5,
"rope_scaling™: null,
"rope_theta™: 10680.8,
"tie_word_embeddings": false,
"torch_dtype”: "bfloatla”,
"transformers_version™: "4.35.8",
"use_cache”: true,
"wvocab_size™: 32000

¥

Figura 45: config.json de TinyLlama-1.1B-Chat-v1.0

Este LLM en contraparte, usa Causal Language Modeling (Modelado de lenguaje causal), el cual
sigue un contexto unidireccional, de izquierda a derecha concretamente, es decir, lo que hace es predecir
el siguiente token teniendo en cuenta los que vengas por detras, sin ver los siguientes [47]. (A qué
recuerda esta idea? Efectivamente, a la arquitectura decoder-only (también explicada). “TinyLlama-
1.1B-Chat-v1.0” (que se basa en modelos Llama, concretamente en Llama2) es, por tanto, un modelo
basado en Transformers con una arquitectura decoder-only.

Algunos aspectos importantes que se pueden destacar de ambos archivos:
e "hidden_act": especifica cual es la funcion de activacion que se usa.
e '"intermediate_size": es el tamafio de la red FNN de cada bloque Transformer.
e "max_position_embeddings'": es la longitud maxima de fokens que el modelo puede

manejar.
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e '"num_attention_heads'": es el numero de “cabezas” del mecanismo multi-head
attention.

e '"num_hidden layers'": es el nimero de capas formadas por bloques Transformer
completos por las que atraviesa cada token.

3.2 Preparacion de los datos para el entrenamiento

La preparacion del dataset de entrenamiento comienza con la recuperacion de los PDFs de estudio, a
estos se les aplica una técnica conocida como OCR (Optical Character Recognition) Reconocimiento
optico de caracteres, se usa para procesar imagenes a texto interpretable por maquinas, las imagenes
generalmente son documentos escaneados [48]. En el caso de este proyecto la mayoria de las cartas son
escaneadas (algunas no y no necesitan de OCR, pero se controla mediante una opciodn para evitar trabajo
innecesario) y por ende necesitan la aplicacion de este proceso.

Una vez tenemos los PDFs con texto manejable, lo siguiente es dividir el texto de estos en fragmentos
manejables (chunks) para su procesamiento, concretamente para embeddings y para la generacion de
pares de pregunta-respuesta. Se realiza mediante el uso de un divisor (splitter) de texto. Por ultimo, para
la creacion del dataset de entrenamiento se siguen unos pasos:

1. Se crea la plantilla del dataset con un campo “context”, el cual contiene cada uno de los chunks
divididos anteriormente. Es decir, por cada chunk distinto hay una fila distinta en el dataset. Da como
resultado:

“context”: chunkl

“context”: chunk2

2. Se utiliza el modelo que actia como generator para que, dado el contexto, genere un par
pregunta-respuesta para ese contexto, en caso de que el modelo no sea capaz de generar ningln par,
se queda como una entrada vacia (Puede parecer una practica inutil el incluir un campo vacio, pero
a la hora de mirar resultados ayuda a distinguir que pruebas son mejores o peores). Al final el dataset
tiene el siguiente formato:

“context”: chunkl, “question”: consultal, “answer”: respuestal

“context”: chunk2, “question”: consulta2, “answer”: respuesta2

49



3. Ahora solamente queda filtrar las respuestas vacias o incorrectas y eliminar el contexto para que
el modelo solamente vea pares pregunta-respuesta y aprenda relaciones y patrones sobre ellos. Para
eliminar el contexto simplemente se usa un prompt para que el dataset final quede asi:

Question: consultal

Answer: respuestal

Question: consulta2

Answer: respuesta2

3.3 Aplicacion de RAG

Una vez se generan los pares qa y se aplica fine-tuning al modelo, es hora de realizar consultas al
modelo y aplicar la técnica de RAG. Recordando su nombre completo dividimos en dos pasos esta
técnica:

1. Retrieval (Recuperacion)

Para la parte de recuperacion se usa el modelo de embedding. Primero se convierten los chunks que
habiamos obtenido del splitter a embeddings, se crea el indice FAISS y se asocian esos embeddings a
los chunks originales, para saber cudl corresponde a cada uno.

Una vez se realizan dichas operaciones se crea el retriever, el encargado de convertir nuestra consulta
a un embedding y comparar la posicion en el espacio vectorial con los embeddings almacenados en
FAISS, para asi obtener los documentos mas relevantes asociados a la consulta.

2. Augmented Generation (Generacion aumentada)

El siguiente paso es cargar nuestro LLM y el tokenizador, los cuales nos permiten crear un pipeline
para inferencia. Se crea un prompt que contiene unas leves instrucciones del comportamiento deseado
que debe tener nuestro modelo y, ademas, se le pasa el contexto, el cual es un chunk recuperado usando
el retriever, y la consulta en si. Gracias al pipeline que se ha creado con el modelo y el tokenizador
podemos generar la respuesta a través del prompt:

. Se tokeniza el prompt para que el LLM sea capaz de entender la entrada.
o El LLM genera la respuesta
. Se procesan los fokens a lenguaje natural, NLP

El retriever tiene establecido un limite de recuperacion de 15 documentos, si ponemos mas se exceden
los tokens maximos que puede manejar el LLM, al menos con las pruebas que se han realizado para este
trabajo. Para establecer el nimero de documentos, un token equivale a 4 caracteres en lengua inglesa
[49]. Si tenemos en cuenta que los fragmentos tienen como maximo 512 caracteres que son unos 128
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tokens, el prompt tiene unos 500 caracteres lo cual son 125 tokens, la pregunta mas larga que se ha
probado es de 107 caracteres que son 27 tokens y que el LLM tiene la capacidad de generar como
maximo 500 nuevos tokens, para el calculo de cuantos top-k documentos maximos se pueden recuperar,
se puede utilizar esta formula:

maxTokens = tokensSalida + prompt + consulta + k » tokensContexto

_ maxTokens — (tokensSalida + prompt + consulta)

tokensContexto
Figura 46: Calculo de los top-k documentos

En el peor caso donde cada una de las variables tenga el valor maximo, k es k= 11, no obstante, como
se ha explicado, tras realizar pruebas el maximo permitido es de k = 15.

Una vez generadas las respuestas, se aplica una funcidon que convierte en tensores tanto a la consulta
como a cada una de las respuestas, que compara la similitud en el espacio vectorial entre estas. También
se le afiade una pequefia puntuacion a la longitud de la respuesta, para que no tenga en cuenta a preguntas
muy similares, pero quiza demasiado cortas.

El modelo de RAG que se usa en este proyecto, como se puede observar, es una aproximacion de
RAG-Sequence, en nuestro modelo no se sigue la distribucion marginal propia de RAG ni se fusionan
las respuestas en una sola, pero la base es la misma. En el apartado ;Error! No se encuentra el origen d
e la referencia. se explica en profundidad este concepto.
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Capitulo 4 — Experimentacion y resultados

A lo largo de este capitulo se muestran todas las pruebas y resultados que se han ido elaborando
hasta llegar al punto final donde se ha obtenido el modelo deseado. Se explica parte del codigo de cada
prueba y también los pasos que se han tomado hasta llegar a la version final.

4.1 Implementacion de redes neuronales y modelo base

Este apartado estd dedicado a la experimentacion previa al uso del método RAG. En un primer
instante se realizaron pruebas de creacion de redes neuronales para tareas de clasificacion y para
acabar se obtiene un modelo base al que se le ha aplicado fine-tuning del que partimos para la
aplicacion posterior de RAG.

4.1.1 Clasificacion de imagenes con una red FNN

Como primer ejemplo para familiarizarse con las redes neuronales se construye una red FNN con
capas fully connected para clasificar imagenes del dataset MNIST. Dentro del codigo las secciones mas
importantes son:

1. Preprocesamiento

Se define una transformacion para convertir las imagenes a tensores y normalizarlas en un rango de
valores entre -1 y 1. Luego se descargan los conjuntos de datos MNIST de entrenamiento y validacion,
aplicando la transformacion previa. Finalmente se crean los Datal.oaders que cargan los datos en lotes
de 64 imagenes para entrenamiento y validacion.

transform = transforms.Compose(
transforms. ToTensor(),
# Se normaliza entre - 1

T w
&
transforms.Normalize((@.5,), (8.5,))

# Descargamos el dataset de MNIST
train_dataset = torchvision.datasets.MNIST{root="./data”, train=True, transform=transform, download=True})
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, transform=transform, download=True)

# Se crean Dataloaders para cargar nuestros datos en lotes

train_loader = terch.utils.data.Dataloader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.Dataleoader(test_dataset, batch_size=64, shuffle=True)
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2. Arquitectura de la red neuronal
Se define una red neuronal fully connected con la siguiente arquitectura:

e Flatten: Convierte la imagen de 28x28 pixeles en un vector de 784 elementos.
e (apa totalmente conectada (fcl): De 784 neuronas a 128.
e Funcidn de activacion ReLU: Introduce no linealidad en la red.

e (Capa totalmente conectada (fc2): Reduce la dimensiéon de 128 a 10 (una neurona por cada digito
del 0 al 9).

class NeuralMetwork({nn.Module):
def _ init__ (self):
super(MeuralNetwork, self). init_ ()
celf.flatten = nn.Flatten() # Convertir 28x28 en un vector de 784
self.fcl = nn.Linear(28*28, 12B) # Primera capa (5e pasa de 784 a 128)
self.relu = nn.RelU() # Funcidn de activacidn RellU
self.fc2 = nn.Linear{128, 18) # Segunda capa (Se pasa de 128 a 18, ndmeros del @ al 9)

# Funcidn parg gue se cumpla Lo propiedod de propagacidn hacia adelante
def forward(self, x):

®x = self.flatten(x)
®x = self.fcl(x)

x = self.relu(x)

x = self.fc2(x)
return x

3. Funcion de pérdida y algoritmo de optimizacion
Se define la funcion de pérdida (Cross-Entropy) y el algoritmo de optimizacion (SGD, en este caso
con una tasa de aprendizaje de 0.01).

lossfunc = nn.CrossEntropyloss()
optimizer = optim.5GD({model.parameters(), lr=8.81)
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4. Funcion de entrenamiento

Primero se crea la funcion de entrenamiento que activa el modo de entrenamiento del modelo, después

iteramos por cada época y cada lote de imagenes (movemos los datos a la GPU), los pasos de cada

iteracion son los siguientes:

Reiniciar los gradientes antes de cada actualizacion.

Generar predicciones con el modelo.

Calcular la pérdida comparando las predicciones con las etiquetas reales.
Retropropagacion para calcular los gradientes.

Nk

Actualizacién de los pesos de la red neuronal.
Finalmente, se muestra la pérdida promedio de cada época

def train(model, dataloader, optimizer, lossfunc, num_epochs=5):
# Modo de entrenamiento
model.train()

for epoch in range(num_epochs):
epoch_loss = @
for images, labels in tqdm{dataloader, desc=f"Epoch {epoch+1}/{num_epochs}"):
images, labels = images.to(device), labels.to(device)

optimizer.zero_grad() # Reiniciar gradientes
outputs = model(images) # Hacer predicciones de las imagenes
loss = lossfunc{outputs, labels) # Calcular La pérdida

loss.backward() # Retropropagaocidn
optimizer.step() # Se actualizan los pesos

epoc_loss += loss.item() # Acumulamos Lo pérdida
# Pérdida promedio de cada época

avg loss = epoch_loss f len{dataloader)
print(f"Epoch {epoch+l} | Loss: {avg loss:.4F}™)
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5. Funcion de evaluacion

Dentro de esta funcion, se configura el modelo para que active el modo evaluacion y con with
torch.no_grad() se desactiva el calculo de gradientes para ahorrar memoria. Se obtienen las predicciones
del modelo, se calcula el total de muestras y el numero de aciertos y finalmente se muestra el porcentaje

de acierto junto con algunos ejemplos de iméagenes en los que se muestra el valor real y el predicho por
el modelo.

def evaluate(model, dataloader, device, num_images_to show=18, images per_ row=18):
# Modo de evaluacicn

madel.eval()

with torch.no_grad():
for images, labels in datalocader:

images, labels = images.to(device), labels.to(device)

outputs = model(images)
# Se obtiene la clase mds probable para cada imagen
_» predicted = torch.max(outputs, 1)

total += labels.size(@)
correct += (predicted == labels).sum{).item()

6. Resultados
Una pequefia muestra de los resultados:

Real: 7 Real: 2 Real: 1 Real: 0 Real: 4 Real: 1 Real: 4 Real: 9 Real: 5 Real: 9
Pred: 7 Pred: 2 Pred: 1 Pred: 0 Pred: 4 Pred: 1 Pred: 4 Pred: 9 Pred: 6 Pred: 9
Real: 0 Real: 6 Real: 9 Real: 0 Real: 1 Real: 5 Real: 9 Real: 7 Real: 3 Real: 4
Pred: O Pred: 6 Pred: 9 Pred: 0 Pred: 1 Pred: 5 Pred: 9 Pred: 7 Pred: 3 Pred: 4

Ololgloli|5]g]21>] 4
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4.1.2 Clasificacion de imagenes con una red CNN
Es el mismo ejemplo que el anterior con la salvedad de que en este caso he utilizado una red CNN en
vez de una FNN. Aqui el cambio importante en el codigo:

1. Arquitectura
Se cambia completamente la arquitectura para formar la nueva red CNN.

class NeuralNetwork{nn.Module):
def _init (self):
super({NeuralNetwork, self). init ()
# Capas convolucionales
self.convl = nn.Conv2d(in_channels=1, out_channels=32, kernel size=3, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)

# Capa de pooling, concretamente max_pooling
self.poocl = nn.MaxPool2d(kernel size=2, stride=2)

# Capas fully connected
self.fcl = nn.Linear(&4 * 7 * 7, 128)
self.fc2 = nn.Linear({128, 18)

# Funcidn para que se cumpla la propiedad de propagacidn hacia adelante
def forward(self, x):
% = self.pool(func.relu(self.convl(x))) # 12 Conv + Rell + Pooling

®x = self.pool(func.relu(self.conv2(x))) # 22 Conv + Rell + Pooling

®x = torch.flatten(x, start_dim=1) # Operacidn para conectar Lo convolucional y la fc
® = func.relu(self.fcl(x))

®x = self.fc2(x)

return x

2. Comparacion de resultados

Si comparamos los resultados de una y otra, vemos que la CNN es mas efectiva para MNIST, la razon
principal de esto es que las imagenes tienen patrones espaciales importantes como pueden ser los bordes,
las texturas, etc. que una FNN no aprovecha para nada, pero una CNN si lo hace. La red FNN tiene
menor precision que la CNN, la razén es que esta es capaz de capturar las relaciones espaciales de las
imagenes como bien se ha explicado antes en este documento.

En este caso el porcentaje de precision no dista demasiado uno de otro, 95 frente a 100 (las pruebas

de la red CNN me suelen dar entre 98-100%) pero aun asi se mantiene que las CNN en estos casos son
mas efectivas.
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FNN

Epoch 1/5: 18k 938/938 [@@:15<e0:
P

Epoch 1 | Loss: ©.7487

Epoch 2/5: 1@0% 938/938 [@@:15<08:
P

Epoch 2 | Loss: 8.3782

Epoch 3/5: leak 938/938 [00:15<00:
P

Epoch 3 | Loss: @.3241

Epoch 4/5: 1@8% 938/938 [@0:15<00:
p

Epoch 4 | Loss: ©.2984

Epoch 5/5: 1@8% 938/938 [@0:15<00:
p

Epoch 5 Loss: 8.2777

Accuracy: 95.31%

95.3125

CNN
ezoch 15+ 12 || A M R N

Epoch 1 | Loss: ©.8259

ezoch 25+ 1 | A N RN

Epoch 2 | Loss: ©.1918

ezoch 55+ 1 | U A AN RN

Epoch 3 | Loss: ©.1238

€zoch <5+ 1 | A AN RN

Epoch 4 | Loss: 8.8945

€zoch 55+ e | O A AN RN

Epoch 5 | Loss: ©.8787

Accuracy: 109.20%

108.8

938/938 [00:17<00:00,

938/938 [0@:19<00:89,

938/938 [0@:19<00:89,

938/938 [0@:19<00:89,

938/938 [0@:19<00:89,

47.

47.

45.

47.

aa,

aa,

aa,

60.76it/s]

62.23it/s]

£2.85it/s]

£1.86it/s]

£1.64it/s]

.24it/s]

66it/s]

71it/s]

@8it/s]

56it/s]
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4.1.3 Fine-tuning de un LLM basado en Transformers

En este ejemplo se utiliza como modelo GPT-2, un modelo basado en Transformers, concretamente
en la arquitectura decoder-only [50] y para su entrenamiento utiliza el dataset “wikitext-2-raw-vi”,
obtenido desde Hugging Face [51].

1. Carga del modelo
Se carga el modelo y el tokenizer, como se indica en el propio cddigo se ha de definir el token de
padding porque GPT-2 no tiene uno definido por defecto y en algunas funciones necesita uno.

tokenizer = GPT2Tokenizer.from_pretrained("gpt2™)
# 5¢ ha de definir un token de padding para gue no de error

tokenizer.pad_token = tokenizer.eos_token

model = GPT2LMHeadModel.from _pretrained(“gpt2™)

model = model.to(device)

2. Carga del dataset

Primero se carga el dataset y se crea la clase WikiTextDataset para poder transformar el texto del
dataset en fokens (funcion init), devolver la longitud del dataset (funcién len) y poder devolver los ids y
de los tokens ademds de su mascara de atencion (funcidon getitem).

Esta clase permite crear un dataset manejable por Datal.oader, que al final es el objeto que se usa
para el entrenamiento. Quizas crear dicha clase no sea la solucién dptima pues no se precisa de una
logistica avanzada, pero como se trata de una simple prueba de desarrollo, basta con ello.

# Filtrar textos no vacios

train_texts = [item["text"] for item in dataset["train™] if item["text"].strip()

dataset = WikiTextDataset(train_texts, tokenizer)
dataloader = DatalLoader(dataset, batch_size=16, shuffle=True)
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3. Funcion de entrenamiento y algoritmo de optimizacion

Se inicia el algoritmo de optimizacion, en este caso AdamW y se inicia el entrenamiento (Captura
1). El entrenamiento se realiza mediante la funcion definida, la cual recibe el Datal.oader que hemos
creado anteriormente. Activa el modo de entrenamiento y se itera por épocas y por lotes (dentro de cada
época), dentro de las iteraciones, tal y como se indica en el propio cddigo, GPT-2 calcula internamente
la funcién de pérdida de entropia cruzada, cross-entropy (por lo que no hay que definirla), y se guarda
(Captura 2). Se aplica el algoritmo de retropropagacion y finalmente se mide la pérdida promedio en
cada época.

Captura 1

optimizer = Adambli{model.parameters(}), lr=5e-5)
train(model, dataloader, optimizer, num_epochs=3)

Captura 2

model.train()

for epoch in range(num_epochs):
epoch_loss = @
for batch in tgdm{dataloader, desc=f"Epoca {epoch+1}/{num_epochs}"):
input_ids, attention mask = [b.to(device) for b in batch]

labels = input_ids.clone() # Las etiquetas son iguoles a las entradas

# GPT-2 ya devuelve la perdida, cuando se hacen las 2 primeras llamadas

# se calcula el crossentropy internamente

outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss

#5e acumula la perdida del mini-batch o la total de La epoca

epoch_loss += loss.item()

optimizer.zero grad() # Reiniciar graodientes

loss.backward() # Backpropagation
optimizer.sten() # Actualizar pesos
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4. Consultas al modelo y generacion de texto

Definimos la consulta que queremos realizar al modelo, la cual tokenizamos para que el modelo sea
capaz de entenderla y llamamos a la funcion definida para generar la respuesta. Aqui el modelo se pone
en modo evaluacion y se desactiva el calculo de gradientes, pues no se estd entrenando el modelo, la
salida se genera y se decodifica para transformarla de nuevo en lenguaje natural.

model.eval()
inputs = tokenizer(question, return_tensors="pt").to(device)

with torch.no_grad(): #Durante la generacion de texto no se calculan gradientes

outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p.
do_sample=do_sample,
eos_token_id=tokenizer.eos_token_id,
pad token_ id=tokenizer.eos_token_id

)

generated_text = tokenizer.decode(outputs[@], skip special tokens=True)
return generated_text

# culta ~=al 1zar
# LonsulLtTa g reaLizar

question = "What can you tell me about Valkyria Chronicles III?"

. T (i e e
# Tokenizar la consulta

inputs = tokenizer{gquestion, return_tensors="pt").to(device)

generated text = generate_text(model, tokenizer, question, max_length=180)

5. Resultados

Como se puede observar, la respuesta no es muy buena, aunque va encaminada y el modelo distingue
que efectivamente se trata de un videojuego, si observamos los valores de la pérdida durante el
entrenamiento, lo que comiinmente se conoce como train_loss, se puede ver claramente que, aunque
bajen, siguen siendo valores muy altos y quiere decir que el modelo no se estd ajustando como deberia
a los ejemplos de entrenamiento [52].

Al generar preguntas, este modelo tiene dos vertientes: o se inventa completamente la respuesta o da
una respuesta encaminada, aunque no correcta del todo, por tanto, el proceso de fine-tuning debe
ajustarse mucho maés, asi como incluir técnicas de recuperacion como RAG para una mayor precision.

Epoca 1/3: 100%| EEEEEEEEEEEEEEEE N N AR AN | 14561456 [02:06<00:00, 11.74it/s]

Epoca 1 | Pérdida: 2.6046

Epoca 2/3: 1@0% 1486,/1486 [B2:04<00:08, 11.98it/s
p

Epoca 2 | Pérdida: 2.3187

Epoca 3/3: 100%| [EEEEEEE RN R A AR RN | 1456/1486 [02:05<00:00, 11.87it/s]

Epoca 3 | Pérdida: 2.1474
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“Texto Generado (Respuesta):

Valkyria Chronicles III is an original video game developed and published by Square Enix .

It is based on the true story of a girl who joins the fighting guild of an aristocratic family to
fight for the Kingdom of Heaven . She ends up dying in the end , and thus inherits the title
of Hero of Earth from her mother . As such , Hero is named after her after the game 's
protagonist , Raiden , who is a legendary character in Final Fantasy VII .”
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4.2 RAG

Una vez exploradas las bases de las redes neuronales y la técnica de fine-tuning, comenzamos a probar
la implementacion de RAG. La idea es realizar fine-tuning a un modelo mediante pares pregunta-
respuesta que ¢l mismo ha generado de la base de conocimiento, y que sea capaz de responder a las
consultas del usuario mediante el uso de RAG, usando el retriever para recuperar los top-k documentos
asociados a la consulta y elegir la mejor respuesta posible.

4.2.1 Modelo previo de RAG sin fine-tuning

En este ejemplo se ha desarrollado un modelo que se apoya en RAG a la hora de generar respuestas,
su base de recuperacion es el dataset “databricks-dolly-15k” [53]. No obstante, no se ha aplicado fine-
tuning al modelo, es una primera toma de contacto con RAG. A continuacién, se muestran los
fragmentos mas importantes del codigo.

1. Implementacion del retriever y el LLM
El Dataset que se carga es un diccionario que contiene entradas del tipo:

{“instruction”: preguntal, “context”: contextol, “response”: respuestal, “category”: tipoGenl }

Solamente nos interesa quedarnos con la parte de la pregunta y la respuesta, pues hay entradas en el
Dataset original que no tienen un contexto proporcionado y asi evitamos fallos a la hora de generar
nuestra respuesta final, por ello se formatea el Dataset para quedarnos con estos dos campos y a partir
de ahi se aplica el splitter para dividir los fragmentos en chunks y se inician el modelo de embeddings,
el LLM, el Tokenizer y también se crea el pipeline de inferencia. En este ejemplo se usa como modelo
de embeddings el “sentence-transformers/all-MiniLM-L6-v2”, todavia se estaba experimentando que
modelo usar y es uno con mucha popularidad entre la comunidad de desarrollo [54].

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1888, chunk_overlap=158)
formatted_data = text_splitter.split_documents(formatted data)

# Inicializamos el embedding model y creamos el indice FAISS y el retriever para la recuperacidn
e_model_name = "sentence-transformers/all-MinilM-16-v2"

embedding_model = HuggingFaceEmbeddings (model_name=e_model_name)

vectorstore = FAISS.from_documents(formatted_data, embedding_model)

retriever = vectorstore.as_retriever(search_kwargs={"k": 4})

# Inicializamos el LLM y el tokenizer

model _name = "TinyLlama/TinylLlama-1.1B-Chat-vl.a"

model = AutoModelForCausallM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Se crea el pipeline de inferencia
gen_pipeline = pipeline(
"text-generation”,
model=model,
tokenizer=tokenizer,
device_map="auto”
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3. Consultas mediante el uso de RAG

Se formula la consulta a realizar y se llama al retriever para que recupere los top-k documentos
asociados a dicha consulta, todos ellos se unen en una variable context, la cual, junto a la consulta
original, se usa para construir un prompt para que el modelo tenga claro la instruccién que debe seguir
para generar la respuesta. Se tokeniza el prompt para que el modelo lo procese y genere una respuesta y
finalmente se elimina de dicha respuesta toda la parte del contexto, pues no nos interesa.

# Consulta gue queremos realizar

question = "What can you tell me about The Children®s Investment Fund Management (TCI)?2?"

# Nos devuelve Los top-k fragmentos de texto asociados a La pregunta, en nuestro codigo k=4
docs_retrieved = retriever.invoke(question)

# Se crea el contexto para La creacidén del prompt

mow

context = .join([doc.page_content for doc in docs_retrieved])

# Se crea el prompt con un estile de ChatBot

prompt = [
"role": "system",
"content™: "Answer the following question using the information given to you in the context. You have to respend in English”
is
{"role": "user"”, "content": f"Contexto: {context}\nPregunta: {question}"}

# Se tokeniza el prompt para que Lo procese el modele

tokenized_prompt = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)

# Generamos La respuesta

outputs = gen_pipeline(tokenized_prompt, max_new_tokens=256, do_sample=True, top_p=08.%)

# Una vezr generada, se le elimina la parte del prompt del inicio para quedarnos solo con La respuesta
answer = outputs[@]["generated text"][len(tokenized prompt):].strip()
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4. Resultados
A la consulta que aparece en el codigo, el modelo da la siguiente respuesta:

Respuesta: Thomas Jefferson (1743-1826) is an American statesman, philosopher, architect,
and Founding Father who served as the third president of the United States from 1801 to
1809. He was the principal author of the Declaration of Independence, which declared the
United States' independence from Great Britain.

Si consultamos el Dataset original [53], vemos que la entrada para esa pregunta concretamente es
mucho mas larga, pero la idea principal la recoge y la resume, por lo tanto, el modelo esta realizando
buen trabajo. Ante la pregunta: “What can you tell me about The Children's Investment Fund
Management (TCI)?” El modelo ha respondido lo siguiente:

En el contexto, TCI es una fundacidn de inversion con sede en Londres y sede de
administracién en las Islas Canarias que busca apoyar la educacion y la prevencion del
deterioro mental de la infancia en paises ricos y bajos rendimientos. Su mision es
aumentar el conocimiento sobre los medios de promover la educacion y la prevencion del
deterioro mental en los nifios y nifias de América Latina y el Caribe, y apoyar a los
educadores, las autoridades y los estados para que sean capaces de realizar esos objetivos
en cada uno de los paises. La fundacion utiliza la herramienta "iniciativa de la escuela",
que utiliza un modelo innovador y efectivo para mejorar el desempefio escolar de nifios
en el area de las ciencias y el conocimiento acumulado en ciencias aplicadas. Esta
iniciativa ayuda a que los alumnos sean mas aptos para tomar examenes, a aprender y a
mantenerse en curso con mas facilidad. TCI también lleva

Claramente se ha producido una alucinacion, término que en inteligencia artificial viene a decir que
el LLM produce una respuesta inventada, que puede producirse por varios factores [55], en nuestro caso
el modelo ha confundido conceptos y se pensaba que estdbamos hablando del CIFF (Children’s
Investment Fund Foundation), también se puede observar que el modelo ha llegado al limite de fokens
maximos a generar y ha dejado una frase incompleta, lo cual no es una buena practica. Para evitar que
el modelo produzca alucinaciones el fine-tuning es un paso importante ya que focaliza al modelo en
responder sobre temas exactos y de los que tiene cierto conocimiento.
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4.2.2 Modelo completo (RAG + Fine-tuning)

Tras aprender como aplicar RAG vy fine-tuning, es hora de ponerlo a prueba mediante la creacion del
modelo especialista, el cual era el objetivo principal del desarrollo de este trabajo. A continuacion, se
muestran los fragmentos mas importantes del codigo desarrollado. El LLM utilizado para el desarrollo
de este modelo es “TinyLlama-1.1B-Chat-vl.0” (se utiliza como generator para los pares pregunta-
respuesta y en si mismo es el modelo al que aplicamos fine-tuning para que luego genere las respuestas
ante nuestras consultas) y el modelo de embeddings que utilizamos para crear el retriever es
“multilingual-e5-large-instruct”. Para la mayor parte de este codigo se han utilizado como guia de
desarrollo las siguientes fuentes [56] [57].

1. Recuperacion de datos mediante OCR

Tanto la técnica en si, como la aplicacion de OCR se ha detallado en el apartado de “Metodologia”.
Lo que tenemos que definir basicamente es la ruta donde guardamos los PDFs de estudio y donde
queremos que se guarden los nuevos a los que se les ha aplicado OCR, una vez aplicamos el OCR
aprovechamos para guardar en una lista todos los textos completos para el uso posterior del splitter para
obtener chunks procesables.

# Aplicacidn de OCR
for filename in tqdm(os.listdir(pdf folder)):
if filename.endswith(".pdf"):
input_path = os.path.join(pdf_ folder, filename)
output_path = os.path.join{ocr_folder, filename)
# skip text hace gue solo se aplique OCR si el pdf no contiene texto
ocrmypdf.occr(input_path, output_path, skip_ text=True)

# 5e extrae el texto de los PDFs
with fitz.open(output_path) as doc:
text = ""
for page in doc:
text += page.get text()
ocr_texts.append(text)

# Divisidn del texto en fragmentos (chunks) para embeddings y la generacion de qa
# Tiene como tamafic mdximo 512 caracteres y para ne perder contexte, un overlap de 64
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
# Lista que guarda Los chunks
all chunks =
for text in ocr_texts:
all chunks.extend({splitter.split text(text))
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2. Creacion del pipeline que actua como generator en el modelo de RAG

Creamos un pipeline al que pasamos el LLM que actiia como el generador dentro del modelo de RAG.

La eleccion del valor de “temperature” se explica en el apartado de resultados, al final de esta seccion.

model name = “"TinylLlama/TinylLlama-1.1B-Chat-v1.8"

generator = pipeline(
"text-generation™,
model=AutoModelForCausallM. from_pretrained(model name, device map="auto")},
tokenizer=AutoTokenizer.from_pretrained(model name),
max_new_tokens=388,
temperature=a.7,
do_sample=True

4. Generacion de pares pregunta-respuesta

Lo primero que tenemos es un dataset con un campo “context” que guarda cada uno de los chunks

generados previamente (Captura 1). Para la generacion de los pares utilizamos es una funcion en la que

creamos un prompt (Captura 2) incluyendo las instrucciones que debe seguir el generador junto a dicho

“context” para que el generador sea capaz de producir los pares deseados. El prompt como se puede

observar no dicta que a “Question:” le haya de seguir “Answer:” pero el modelo es totalmente capaz de

deducir su funcioén y generarlo, de hecho, se realizd una prueba indicando también “Answer:” y los

resultados fueron peores, aqui algin ejemplo:

{"context":"Aena owns a large amount of surplus land and solar is very efficient in Spain,
so Aena has the \npotential to significantly reduce its electricity costs if it moves to an all
renewable strategy for \nelectricity procurement. \n \nAena’s commitment to move to
70pc self generation of electricity by 2030 is very good in \nprinciple but is too long term
to allow any measure of accountability and does not work on \nthe urgent timetable the
world needs. It also unnecessarily delays the significant
financial","question":"","answer":"How does Aena's commitment to move to 70pc self
generation of electricity by 2030 work on the urgent timetable the world needs?"}

{"context":"benefits of moving to self generation. We propose an additional target of 30-
40pc of \nelectricity production to be self generated by 2025 with annual targets for each
of the next \n5 years. \n\nAena’s commitment to source all their electricity from
existing renewable sources really does \nnothing to drive more renewable energy
production and I discount this commitment. \n \n(iii) \nMinimise emissions of aircraft in
landing and takeoff","question":"","answer":"Benefit: \nAena’s commitment to source all
their electricity from existing renewable sources would help drive more renewable energy

production."}
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Como se puede observar, el campo “question” siempre aparece vacio y el campo “answer” puede ser
que contenga la pregunta o la respuesta, pero tampoco las dos.

Una vez se obtienen las respuestas generadas, se separan los campos “question” y “answer” del
“context” para poder asi formar el Dataset deseado de preguntas-respuestas (Captura 3). Una vez se
obtiene el Dataset se pasa a formato JSON porque hay que formatear el conjunto algo mas.

Captura 1

# 5e crea la primera versidn del dataset gque solo contiene Los chunks
ds = Dataset.from_dict({"context": all_chunks})

Captura 2
prompt =
(
"You are a helpful assistant. Given the following context, ™
"generate a gquestion and its corresponding answer.\n\n"
f"Context:\n{context}\nin"
"Question:”
)

for context in batch[“context"]

# Se generan Los pares a partir del prompt usando el generador
outputs = generator(prompt, return_full text=True)

Captura 3

for output in outputs:
text = output[@]["generated_text"]

# Esta condicion sirve para separar lo pregunta y La respuesta, para poder crear el diccionario correctamente
# En caso negativo, simplemente se dejan los campos vacios para evitar fallos
if "Question:™ in text and “"Answer:™ in text:

question = text.split("Question:")[1].split("Answer:"})[@].strip()

answer = text.split("Answer:")[1].strip()

else:
question=""
answer=""

results.append({"question™: question, "answer": answer})

return{
"question™: [r["guestion”] for r im results]
L L J i3
"answer™: [r["answer™] for r in results]
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5. Proceso de fine-tuning

Lo primero que se hace es recuperar el JSON que hemos guardado anteriormente el cual contiene el
Dataset, para cada par se comprueba que los campos no estén vacios ni que existan malos patrones dentro
de la respuesta. Después se formatean los pares para que aparezcan en una sola entrada de un diccionario
dentro de la clave “text”. Se separa el 10% del Dataset para formar el conjunto de validacion, el restante
es el conjunto de entrenamiento (Captura 1).

Una vez tenemos el Dataset bien formateado y dividido en los dos conjuntos, pasamos a implementar
el modelo y el tokenizador para tokenizar, valga la redundancia, el Dataset de manera que el modelo
pueda procesarlo. Se utiliza la clase Trainer [58] para realizar el fine-tfuning del modelo usando el Dataset
y se guarda nuestro modelo fine-tuned (Captura 2). La eleccion del valor de “training_args” se explica
en el apartado de resultados, al final de esta seccion.

Captura 1

data = [e for e in data if is wvalid(e)

# Se formatean Los datos para el fine-tuning
formatted data =

"text": Ui Question: {i[ "question']}\n\n#iH Answer: {i['answer’

for i in data

# Creamos el dotaset final que va a servir para fine-tuning
dataset = Dataset.from_list({formatted_data)

# Se separa el 18% del conjunto parg validacidn

dataset = dataset.train_test_split(test_size-8.1)

Captura 2

training_args = TrainingArguments(
output_dir="./tinyllama-finetuned"”,
per_device train_batch_size-6,
per_device eval batch_size=6,
num_train_epochs=6,
eval strategy="epoch",
save_strategy="epoch”,
logging dir="./logs/modeloFinal”,
report_to="tensorboard",
logging steps=18,
save_total limit=2,
fpl6=True,

# Trainer

trainer = Trainer(
made l=model,
args=training args,
train_dataset=tokenized["train"],
eval dataset=tokenized["test™],
tokenizer=tokenizer
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6. Creacion del retriever para el uso de RAG

En este paso se crea el indice FAISS y el retriever, el cual utiliza dicho indice para la busqueda de
documentos mediante el uso de embeddings.

e_model_name = "intfloat/multilingual-e5-large-instruct”

embedding model = HuggingFaceEmbeddings (model name=e_model name)

# 5e crea el indice FAISS y el retriever
vectorstore = FAISS.from_texts(all chunks, embedding model)
retriever = vectorstore.as_retriever()

7. Creacion del pipeline de inferencia

Mediante la carga del modelo fine-tuned 'y el tokenizador, se crea el pipeline de inferencia que nos va
a permitir en un futuro préoximo generar las respuestas a las consultas que realicemos al modelo.

model path = "./llama-finetuned2"
model = AutoModelForCausallM.from pretrained{model path)
tokenizer = AutoTokenizer.from_pretrained({model path)

# Creacidn de La pipeline de inferencia

ga_pipeline = pipeline{"text-generation"”, model=model, tokenizer=tokenizer)
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8. Creacion del pipeline de inferencia

Lo primero que hacemos es formular la consulta que queremos realizar, para generar la respuesta se
utiliza una funcién que se encarga de recuperar los top-k documentos mas relevantes para esa pregunta,
mediante el uso del retriever, y generar una respuesta para cada documento ayudandose de un prompt
(Captura 1). Dentro de esta funcion se aplica una limpieza a cada respuesta obtenida para eliminar
tabulaciones, espacios innecesarios, saltos de linea que no aplican, etc. Una vez se tienen las respuestas
se llama a otra funcidon que compara la similitud semantica entre la pregunta realizada y la respuesta
generada por nuestro modelo, y devuelve la mejor candidata de entre todas las posibles (Captura 2).
Toda esta idea se explica en detalle en el apartado de “Metodologia”.

Captura 1

docs = retriever.get_relevant_documents(question)

answers = []
# Para codo documento se genera un prompt que contiene las instrucciones especificas de comportamiento
# del modelo, el documento recuperado y la consulta

for i, doc in enumerate(docs[:k]):
context = doc.page_content.strip()

prompt = {
f"¥ou are an assistant specialized in analyzing letters written by the investment fund”
f"TCI (The Children's Investment Fund) to wvarious companies.\n™
f"The following are excerpts from those letters. Your task is to carefully analyze the content™
f"and answer the question based strictly on the information contained in them.\n%n"
f"Do not repeat the same entities or phrases. Provide a concise, non-redundant answer.\wn\n™
f"Context:\n{context\n\n"
fU### Question: {question}inin”
fU#ss Answer:”

)

# 5e genera lLa respuesta usando el pipeline de inferencia gque se ha creado antes, se le afiade La misma
#temperatura que tenia cuando generd los pares ga
output = qa_pipeline(prompt, max_new_tokens=50@, do_sample=True, top_p=0.7)[@]["gencrated_text"]

Captura 2

question_emb = embedding model.embed_guery(gquestion)
question_emb = torch.tensor{question_emb)

score = [

for r in results:
answer = r["answer"]
# AL igual que con la pregunta, se crean embeddings de las respuestas
answer_emb = embedding_model.embed_query(answer)
answer_emb = torch.tensor(answer_emb)

# Se calcula Lo similitud en el espacio vectorial entre pregunta y respuesta
sim_score = util.cos_sim(question_emb, answer_emb).item()

# Se normaliza La longitud de La respuesta, se elige 2808 porque tenemos establecido que el generador tenga max_new tokens=588
# y por La regla de que 1 token = 4 caracteres, es decir, como mdximo una respuesta tendrd 2008 caracteres
norm_length = min(len(answer)/2800, 1.8)

# Se calcula la puntuacién final teniendo en cuenta La ponderacidn de la longitud y se guarda junte con la respuesta
combined score = (1- length_weight) * sim_score + length_weight * norm_length
score.append((combined_score, r))

# Devuelve La mejor segun la puntuacidn mdxima

best = max(score, key=lambda x: x[8])[1]
return best
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4.3 Experimentos

En este apartado se va a explicar como ha sido el proceso de seleccion de los parametros del modelo
mediante diversas pruebas para su correcto funcionamiento.

1. Parametro temperature para el pipeline “generator”

Este parametro se usa en el pipeline que actiia como generador de pares pregunta-respuesta. Para ello
se han ejecutado pruebas con 4 valores distintos: 0.3, 0.4, 0.5 y 0.7. Son valores por debajo de 1, lo cual
significa que el modelo es més conservativo en cuanto a sus respuestas, no es tan creativo [59]. Dicho
comportamiento es el que deseamos, pues nuestro modelo se encarga de la inversion financiera, no
queremos ningun tipo de alucinacion ni texto mal formado.

Para evaluar qué tan buenas han sido las pruebas me apoyo en un codigo especialmente disenado para
comprobar mediante tensores y su posicion vectorial qué similitud guardan el contexto, la pregunta y la
respuesta, todos entre si, es decir contexto-pregunta, contexto-respuesta y pregunta-respuesta (En el
Anexo C se explica en detalle). Estos han sido los resultados:

ga_pairs-8.3.json: Puntuacidn total=8.98, Promedic C-Q:8.87, Promedic Q-A=8.91, Promedio C-A=8.91
ga_pairs-8.4.json: Puntuacidn total=8.8%, Promedic C-Q:8.87, Promedic Q-A=8.91, Promedioc C-A=8.91
ga_pairs-8.5.json: Puntuacidn total=8.89, Promedic C-Q:8.87, Promedic Q-A=8.91, Promedio C-A=8.91

ga_pairs-8.7.json: Puntuacidn total=8.83, Promedic C-Q:8.87, Promedic Q-A=8.98, Promedio C-A=8.90

Como se puede observar, las puntuaciones para todas las temperaturas son practicamente iguales
menos para el valor t = 0.3 que tiene 0.01 mas, lo 16gico seria usar este valor, pero tras revisar algunos
ejemplos manualmente, los valores 0.3, 0.4 y 0.5 contienen mucha repeticién en sus respuestas, con
repeticion me refiero a qué en la misma respuesta se hace una pequefia introduccion que es practicamente
igual a la pregunta, por tanto, se ha usado t = 0.7 que es el mejor valor.

2. Parametro max_length para en la funcion “tokenize” en el apartado de fine-funing

Este parametro mide la longitud méxima que se puede manejar de texto tokenizado, para medir el
valor de este parametro nos hemos ayudado de un codigo “momentaneo” para comprobar cual es la
maxima longitud de fokens que contiene una entrada:

lengths = [len(tokenizer(example["text™])["input_ids™]) for example in formatted_data

print(f"Méximo tokens en un ejemplo: {max(lengths)}™)
print(f"Promedic tokens en ejemplos: {sum(lengths) / len{lengths):.2f}")
print(f"Ndmero de ejemplos mayores que 256 tokens: {sum{l > 256 for 1 im lengths)} de {len{lengths)}™)

Méximo tokens en un ejemplo: 388
Promedic tokens en ejemplos: 138.15
Mimero de ejemplos mayores que 256 tokens: 25 de 3@8

Por tanto, el valor que se establece es de 308 tokens para evitar errores.
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3. Tamafio de mini-lote y nimero de épocas para la clase Trainer en el apartado de fine-tuning

Para medir el nimero de épocas idoneo, se han ejecutado dos pruebas dos pruebas: una con tres
épocas y otra con seis (al ejecutar la de seis y fijarme en su valor de frain_loss no tenia mucho sentido
seguir probando mas épocas):

- 3 épocas:

Epoch Training Loss Validation Loss

1 0.756400 0.735300
2 0.308900 0.765367
3 0114900 0.843322

- 6 épocas:

Epoch Training Loss Validation Loss

1 0.795600 0.711131
& 0.325200 0.740867
3 0145100 0.817520
4 0.082100 0.290066
5 0.054100 0.947150
6 0.033300 0.995089

Como nos interesa que nuestro modelo sea experto en las cartas de estudio, nos interesa que el
“train_loss” baje lo maximo posible y, por tanto, cuantas mas épocas mejor. Por ello el estudio se realiza
con seis épocas. En cuanto al tamafio de lote, cuanto mayor valor tengamos, mayor paralelismo se
produce y por tanto el entrenamiento es mas rapido. Se han ido haciendo pruebas hasta que el hardware
del entorno de desarrollo no ha dado mas de si y se producian errores de memoria. El valor maximo
recogido ha sido de seis. Por tanto, queda asi:

training args = TrainingArguments(
output_dir="./tinyllama-finetuned",
per_device train_batch_size=6,
per_device eval batch size=6,
num_train_epochs=6,
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4. Tasa de aprendizaje, 1, p1, ¢ y decaimiento de pesos (weight_decay) de la clase Trainer

El hiperpardmetro mas importante de los mencionados a la hora de realizar fine-tfuning es la tasa de
aprendizaje, en una primera instancia se han usado 3 valores para ver como se comportaban: 1e-5, Se-5
(el valor por defecto de la clase Trainer) y le-4. Estos han sido los resultados obtenidos’:

eval/loss | I

075

60 70 80 o0 100 110 120 130

Run * Value Step Relative

Irle-4 07377 135 38.76 min
[ ] Ir-1e-5 0,5552 90 19.5 min
® Ir-5e-5 0,7028 135 40.27 min

Figura 47: Eval_loss 3 tasas

train/loss |

20 30 40 50 60 70 80 90 100 110 120

Run Value Step Relative

Ir-1e-4 01177 130 50.69 min
[ ] Ir1e-5 03378 90 33.32 min
L Ir-5e-5 01134 130 52.47 min

Figura 48: Train_loss 3 tasas

Como se puede observar, la pérdida para el conjunto de validacion es un valor que sube, por mas que
pueda bajar un poco en las primeras etapas, acaba subiendo, lo cual quiere decir que nuestro modelo no
generaliza bien datos que no haya visto durante el entrenamiento. Para el conjunto de entrenamiento, sin
embargo, se observa una bajada casi hasta 0, lo cual quiere decir que esta aprendiendo el conjunto de
entrenamiento, casi memorizandolo. La diferencia entre ambos valores induce que nuestro modelo se
esta sobreajustando, en un primer momento se pensd que no era buena practica y de ahi se produce el
siguiente estudio.

Para que no se produzca sobreajuste me he ayudado del codigo que usa Optuna (En el Anexo C se
explica en detalle) para la busqueda de hiperparametros, en el cual se puede especificar en que métrica
se centra el modelo y si se quiere maximizar o minimizar. En nuestro caso queremos que “eval loss” se
minimice para que no se produzca un sobreajuste.

9 Cabe decir que para A=1e-5 solamente se ejecutaron 2 épocas porque los otros dos valores se ejecutaron primero y tras ver
las graficas, la idea era bastante clara y no se necesitaban més para corroborar lo que se pensaba.
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También se tienen en cuenta otros hiperparametros ademads de la tasa de aprendizaje, sabemos que
nuestro modelo usa AdamW como algoritmo de optimizacion, el cual tiene Pi, P2 y €. También
recordemos que AdamW separaba la regularizacion L2 en un término para evitar los problemas de
Adam, asi que por tanto también se ha medido el decaimiento del peso (weight decay). Asi quedan los
rangos de valores que se han medido para estos hiperpardmetros:

def optuna_hp(trial):
Funcidn que establece un rango de valores para los hiperparametros
La “gracia" de Optuna es que permite probar cual es la mejor combinacidn de
varios hiperparametros y para elle se ha definir el rango de wvalores de estos

Devuelve:
La coleccidn del rango de valores

return{
"learning_rate": trial.suggest float("learning_rate™, 1e-8, 5e-5, log=True),
"num_train_epochs": 2, # Valor fijo para que todos los intentos sean igual
"adam_betal": trial.suggest float({"adam_betal"™, 8.9, 8.95),
"adam_beta2": trial.suggest float("adam_beta2", @.98, 8.993),
"adam_epsilon™: trial.suggest float("adam_epsilen”, 1le-8, 1le-7, log=True),

oo
oo
OF i

oo

"weight decay™: trial.suggest float("weight_decay", 9.8, 8.3)

Por ejemplo, en la tasa de aprendizaje se ha puesto como valor maximo el valor por defecto que usaba
la clase Trainer, porque tras la prueba anterior sabemos que un valor mayor es peor. En total se han
ejecutado cinco intentos y estos han sido los resultados:

- Intento 1

Epoch Training Loss Validation Loss
1 0.528500 0.593350
2 0.273100 0.594366

Valores: Trial 0 finished with value: 0.5948659777641296 and parameters: {'learning rate":
1.593197067858619¢-05, 'adam_betal": 0.9015699597048037, 'adam_beta2': 0.9931747393594664,
'adam_epsilon': 3.075748753032777e-08, 'weight_decay': 0.026394690076103743}.

- Intento 2
Epoch Training Loss Validation Loss

1 0.653500 0.602242

2 0.547200 0.654250
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Valores: Trial 1 finished with value: 0.65425044298172 and parameters: {'learning rate':
7.776815254439745e-07, 'adam_betal": 0.9302826482942208, 'adam_beta2': 0.9907111923434436,
'adam_epsilon': 2.497371884703282e-08, 'weight decay': 0.27991574724845913}.

- Intento 3
Epoch Training Loss Validation Loss

1 0.676200 0.710565

2 0.562800 0.666342

Valores: Trial 2 finished with value: 0.6663417816162109 and parameters: {'learning rate":
6.301601699103278e-07, 'adam_betal": 0.9221027473310615, 'adam_beta2": 0.9945867497055327,
'adam_epsilon'": 2.0829953874796983¢-08, 'weight decay': 0.1676024185554322}.

- Intento 4
Epoch Training Loss Validation Loss

1 0.532200 0.584812

2 0.272200 0.595172

Valores: Trial 3 finished with value: 0.5951718091964722 and parameters: {'learning rate":
1.6431260325572777¢-05, 'adam betal": 0.9112318024994315, 'adam_beta2': 0.9903309250333571,
'adam_epsilon": 9.22302940754137e-08, 'weight decay': 0.2817152730306327}.

- Intento S
Epoch Training Loss Validation Loss

1 11.702000 0.9448561

2 11.037000 0.887945

Valores: Trial 4 finished with value: 9.887946128845215 and parameters: {'learning rate':
1.8274119730270958e-08, 'adam_betal": 0.9105171556533699, 'adam_beta2'": 0.980973877294153,
'‘adam_epsilon': 3.76519523058644e-08, 'weight decay': 0.18197466861939804}.
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Se pueden observar cuatro intentos mas o menos factibles (Todos menos el tltimo), aunque en dos
de ellos (El 1 y el 4) comienza a subir la “eval loss” y por tanto se descartan. Se ha realizado un promedio
de los intentos 2 y 3 y se ha ejecutado un entrenamiento con dichos hiperparametros y seis épocas. Estos
han sido los resultados:

Epoch Training Loss Validation Loss

1 0.672600 0.649996
2 0.538300 0.592610
3 0.510300 0.5377208
4 0.503000 0.569812
5 0.429300 0.566391
6 0.442800 0.565616

Los resultados no han sido del todo buenos, pues en torno a la cuarta época las pérdidas comienzan a
estancarse e incluso en la ultima época se produce una subida. Si revisamos los argumentos de la clase
Trainer [58], vemos que hay uno muy interesante, “Ir scheduler”. Para evitar que se produzca el
sobreajuste se han probado dos tipos (todo esto siguiendo con la configuracion de hiperparametros que
teniamos):

- “reduce_Ir_on_plateau”
Epoch Training Loss Validation Loss

1 0.684400 0.617350

2 0.534400 0.560123

3 0.473300 0.537089

4 0.455600 0.527109

5 0.408400 0.522338

6 0.383600 0.526027
- “cosine”

Epoch Training Loss Validation Loss

1 0.665900 0.619240
2 0.542900 0.360485
3 0.526200 0.342012
4 0.464100 0.334744
5 0.475700 0.332094
G 0.436800 0.331652

Para verlo mejor nos apoyamos en las graficas que nos proporciona el propio Tensorboard:
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eval/loss [ 20 I

064
062
06
058
056
054
&0 B0 100 120 140 160 180 200 220 240

Run ™ Value Step Relative

® promedioCosine 05317 270 1.602 hr

® promedioOptuna 0,5656 270 1.557 hr

[ ] promedioPlateau 0,526 270 1.783hr

Figura 49: Eval _loss para las 3 pruebas con Optuna
train/loss [ "
10
]
3
a
2
40 60 80 100 120 140 160 180 200 220 240

Run 1 Value Step Relative

® promedioCosine 0,4369 270 1.826hr

® promedioOptuna 0,4428 270 1.775hr

® promedioPlateau 0,3836 270 2093 hr

Figura 50: Train_loss para las 3 pruebas con Optuna

Si nos fijamos en la grafica de la tasa de aprendizaje:

train/learning_rate [0
6e7
207
2e7
40 60 80 100 120 140 160 180 200 220 240 260
Run + Value Step Relative
® promedioCosine ] 270 1.826hr
® promedioOptuna 0 270 1.775hr
[ promedioPlateau 1] 270 2.093 hr

Figura 51: Tasa de aprendizaje para las 3 pruebas con Optuna

Podemos observar que la técnica “reduce Ir on_ plateau” no cambia su tasa, se debe a que el modelo
no esta detectando un empeoramiento en la métrica que se le ha pedido medir, en este caso “eval loss”.
El deterioro comienza en la ultima época, pero por eso precisamente no le da tiempo a aplicar su método.
El mejor resultado, a la vista esta, es el obtenido mediante el uso de cosine el cual permite que tanto
train_loss como eval loss bajen e incluso se estabilicen.
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4.4 Resultados

Por tultimo, solo nos queda probar como responde el modelo frente a las consultas que realicemos,
para ello se han recogido muestras de los resultados, en el Anexo C se pueden ver con claridad. Si nos
fijamos en la prueba que se ha realizado con el modelo generado mediante el /r_scheduler = cosine, hay
algunas respuestas que no tienen mucho sentido, lo que ha producido el replantearse sobre la idea de que
sobreajuste no es bueno para nuestro objetivo.

Para ello se han usado las pruebas donde no se ajustaban hiperparametros (se dejaban por defecto) y
se producia un ligero sobreajuste. Como se puede observar en el anexo, las preguntas son mucho mas
consistentes y guardan mayor relacion con la pregunta y el contexto. También se puede observar que el
modelo es capaz de responder mucho mejor si se entrena durante mas épocas. Por lo tanto, la eleccion
final de hiperparametros, es dejar los valores por defecto que ya usa la clase Trainer ya que han producido
un resultado 6ptimo. No interesa aumentar mas la tasa de aprendizaje porque se puede correr el riesgo
de que el modelo memorice tal cual los ejemplos de entrenamiento y sus respuestas sean iguales.

El modelo con seis épocas se volvid a construir para poder guardar los logs del entrenamiento y poder
obtener las graficas con Tensorboard:

eval/loss =1 JF-

80 100 120 140 160 180 200 220 240

Run Value Step Relative
modeloFinal 08099 270 2023 hr

Figura 52: Eval_loss del modelo final

train/loss EI ;L

40 60 80 100 120 140 160 180 200 220 240

Run + Value Step Relative
modeloFinal 0,027 270 2.337 hr

Figura 53: Train_loss del modelo final
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train/learning_rate

4e5

2e5

120 140

Run Value

modeloFinal 0

160 180 200 220 240

Step Relative
270 2.337hr

Figura 54: Tasa de aprendizaje del modelo final

La prueba final que aparece en el anexo se ha realizado con este modelo e incrementando el numero
de top-k documentos que recupera el retriever para ver si ayudaba al modelo a refinar su respuesta.
Viendo los resultados, claramente mejora el uso de un mayor valor para k, el modelo tiene una mayor

fuente de informacién y es capaz de generar respuestas mucho mas precisas.
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Capitulo 5 — Conclusiones

Tras las pruebas y estudios realizados para el desarrollo de dicho trabajo se ha conseguido obtener la
version beta deseada del modelo especialista en inversion financiera. El modelo es capaz de recuperar
informacion sobre las cartas enviadas por el TCI y responder ante las consultas del usuario.

En vistas al futuro, se puede pulir esta version llegando a obtener un asistente capaz de resolver dudas
en un ambito mas general del ambito financiero. Como mejoras se pueden utilizar modelos (tanto de
embeddings como el generador) mas potentes que tengan mayor capacidad de recuperacion y mayor
namero de tokens manejables. También se pueden aplicar filtros mas potentes a la hora de realizar el
fine-tuning que permitan un aprendizaje totalmente supervisado, asi como la introduccién de
retroalimentacion por parte de especialistas en el &mbito de estudio para que el modelo se ajuste a las
necesidades requeridas.

En la parte de RAG se pueden implementar ambas vertientes, RAG-Sequence o RAG-Token, de
manera que sigan el enfoque original y no sean una version adaptada, como es el caso de este trabajo.
Para ello se pueden implementar técnicas de RetrievalQA, para unir todas las preguntas generadas por
los top-k documentos en una sola mediante las tres técnicas diferentes (map_reduce, refine 'y stuff) [60].
También se puede introducir un reranker para ayudar a RAG a evaluar la respuesta en vez de utilizar los
tensores y su similitud en el espacio vectorial (esta técnica es una especie de reranker, pero cuando se
habla de estos normalmente nos referimos a la utilizacién de otro LLM externo). Estas técnicas se
probaron durante el desarrollo del estudio, pero debido al hardware del entorno de trabajo no se llegaron
a desarrollar en su totalidad.

Por tanto, en resumen, para el desarrollo de una futura mejora lo ideal es utiliza un entorno formado
por varias GPUs con una VRAM amplia que permitan el despliegue de modelos mas potentes y de
técnicas que requieren de estas caracteristicas.

En la experiencia personal, el desarrollo de este trabajo ha permitido la adquisicién de conocimientos
sobre inteligencia artificial, un campo que durante el transcurso del grado siempre me ha gustado pero
que no habia explorado en su totalidad. La realizacion de este estudio me ha permitido poner a prueba
las aptitudes adquiridas durante estos afos y puedo decir que estoy muy contento con el resultado final.
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Anexo A — Manual de instalacion del entorno de estudio

A continuacién, se explica en detalle los pasos seguidos para configurar el entorno de estudio y
permitir asi un adecuado desarrollo del trabajo.

1. Instalacion de Anaconda
En la pagina oficial de Anaconda [31], podemos encontrar un apartado de descargas:

J ANACONDA. Products Solutions Resources Company Signin -

Download Now

Download Anaconda Distribution or Miniconda by choosing the proper installer for your machine. Learn the difference
from our Documentation.

Distribution Miniconda
Installers Installers

Se selecciona “Distribution Installers”, 1o cual nos descarga un ejecutable que directamente instalada

Anaconda en nuestro equipo.

2. Creacion y activacion el entorno
Una vez tenemos instalado Anaconda, comprobamos que efectivamente nos ha instalado también
Conda y Python, para ello abrimos en nuestro equipo Anaconda Prompt y ejecutamos estos comandos:

(base) C:\Users\David>conda —version
conda 24.11.3

(base) C:\Users\David>python —-version
Python 3.12.7

Lo siguiente es crear nuestro entorno de trabajo (con una version mas reciente de Python) y una vez

creado, activarlo, para ello ejecutamos lo siguiente:

(base) C:\Users\David>conda create -n tfg python=3.13.3
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(base) C:\Users\David>conda activate tfg

(tfg) C:\Users\David>|

A partir de aqui ya podemos trabajar en el entorno, pero antes de ponernos a trabajar necesitamos la
interfaz sobre la que trabajar y el framework principal, PyTorch.

3. Instalacion de PyTorch
En la pagina de PyTorch [35], hay una seccion “Get Started” en la que podemos encontrar esto:

PyTorch Build Preview (Nightly)

Your OS Linux Mac m
Package LibTorch Source

Language Python C++/Java

Compute Platform CUDA11.8 CUDA 12.6 R CPU

ip3 install torch torchwvision torchaudio --index-url https://download.pytorch.or

Run this Command:

g/whl/cul28

Como se muestra en la imagen, he seleccionado las caracteristicas especificas para mi equipo, en mi
caso se soporta una version de CUDA mayor, para comprobarlo hay que ejecutar el comando “nvidia-
smi” en cmd:

| NVIDIA-SMI 576.28 Driver Version: 576.28 CUDA Version: 12.9

Mi equipo soporta la version 12.9, por tanto, para PyTorch escojo la mayor version posible hasta la
fecha de este estudio, la 12.8. Hay que ejecutar el comando que nos aparece en la pagina en nuestro
entorno:

(tfg) C:\Users\David=pip3 install torch torchvision torchaudio —index-url https://download.pytorch.org/whl/cul28

Para ver si se ha instalado simplemente podemos ejecutar “conda list torch”.
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4. Instalacion e inicio de JupyterLab
Para instalar JupyterLab hemos de ejecutar en nuestro entorno el siguiente comando:

(tfg) C:\Users\David>conda install -c conda—forge jupyterlab

Para comprobar si se ha instalado, podemos probar a iniciarlo directamente con el comando “jupyter
lab”.

5. Instalacion de librerias y desarrollo del trabajo

Para instalar librerias podemos hacerlo directamente desde JupyterLab, si en la celda de un Notebook
ejecutamos: “pip install x” donde x es el nombre de cualquier libreria, se instalard directamente para
nuestro entorno. Una vez tengamos todas las dependencias necesarias descargadas ya podremos
comenzar a trabajar.

6. Instalacion de Tensorboard

Como se ha comentado anteriormente en este documento, para el visionado de resultados en este
trabajo, se ha utilizado, entre otras herramientas, Tensorboard, el cual necesita una version de Python
anterior a la 3.13 porque no son compatibles, para ello se ha tenido que instalar otro entorno:

(cleantfg-tb) C:\Users\David>python ——version

Python 3.12.11

Una vez estemos en el entorno adecuado se ha de ejecutar el comando:
“conda install -c conda-forge tensorboard”

Y para comprobar que funciona, podemos ejecutar:

(cleantfg-tb) F:\Proyectos TFG>tensorboard —-logdir=logs
TensorFlow installation not found — running with reduced feature set.

Serving TensorBoard on localhost to expose to the network, use a proxy or pass ——bind_all

Para ello tenemos que especificar el directorio donde hayamos guardado nuestros logs de la clase
Trainer durante el fine-tuning. Una vez ejecutado el comando tendremos que ir a la direccién que se
especifica: “http://localhost:6006/” y ya podremos iniciar nuestro estudio.
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Anexo B — Archivos adjuntos

El codigo correspondiente a este proyecto se encuentra en mi OneDrive de la cuenta de la escuela:

TFG

Dentro de este repositorio hay una jerarquia con diferentes directorios, se desglosa en:

1.

2.

experimentacién-previa: durante la fase preliminar de pruebas, se realizaron diversas pruebas

para tratar de entender como funcionaban los modelos de lenguaje y las técnicas de RAG vy fin-

tuning. En este directorio podemos encontrar los archivos:

MNIST-FNN.ipynb: es el notebook inicial, en €l se construye una red FNN y se prueba
la clasificacion de imagenes sobre el dataset de MNIST.

MNIST-CNN.ipynb: es una variante del notebook inicial, se cambia el tipo de red por
una CNN, pero la tarea sigue siendo exactamente la misma, la clasificacion de imagenes
sobre MNIST.

LLM-Finetuning.ipynb: es un notebook nuevo, en €l se comienza la implementacion de
un LLM y ademas se prueba la técnica de fine-tuning. Para llevar a cabo el entrenamiento
se utiliza el dataset de “wikitext-2-raw-v1”. En este caso el objetivo era probar a realizar
consultas, tanto de datos contenidos en el dataset como datos nuevos, y ver como
respondia con el uso del fine-tuning.

RAG-SinFinetuning.ipynb: en este notebook lo que se pretendia era entender el método
RAG, para ello se usa un retriever y el modelo generador. El dataset que utilizamos como
referencia es “databricks/databricks-dolly-15k”. En este caso la idea es realizar consultas
sobre el dataset y que el retriever recupere la informacion relevante para la consulta, para
que luego el generador produzca la respuesta.

codigo-complementario: dentro de este directorio se encuentran archivos utilizados como

complementos al estudio realizado:

BusquedaHiperparametros.ipynb: en este archivo se utiliza Optuna para la busqueda
de hiperpardmetros mediante la ejecucion de varios intentos y un rango de valores.

ComparacionPares.ipynb: se utiliza para medir el valor de temperatura que se desea
para la generacion de pares pregunta-respuesta.

Funciones.ipynb: este notebook se ha utilizado para imprimir las graficas de las
funciones de activacion para el apartado de redes neuronales.
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3. pares-qa: se encuentran los pares pregunta-respuesta cada uno generado con una temperatura
diferente. Cada archivo tiene el nombre qa_pairs-0.x.json donde x son los diferentes valores para
la temperatura, en el caso de estudio de este trabajo son: 3,4,5y 7.

4. pdfs: este directorio simplemente contiene las cartas redactas por el TCI, de las cuales se desea
extraer informacion.

5. logs: aqui se encuentran los logs generados durante las pruebas de fine-tfuning con distintos
hiperparametros, podemos encontrar:

Ir_le-4: tasa de aprendizaje de le-4.

e Ir_le-5: tasa de aprendizaje de le-5.

e Ir S5e-5: tasa de aprendizaje de Se-5.

e optuna: prueba completa con Optuna, recoge cinco intentos.

e promedioOptuna: promedio de los hiperpardmetros de los dos mejores intentos.

e promedioPlateau: con el mismo promedio anterior se introduce el parametro
Ir_scheduler = “reduce Ir on plateau”.

e promedioCosine: exactamente lo mismo, pero con Ir_scheduler = “cosine”.

e modeloFinal: registro de version final del modelo desarrollado.

6. tinyllama-finetuned: es el modelo con fine-tuning aplicado.

7. RAG-Final.ipynb: es la ultima version de cddigo que se ha obtenido durante el proceso de
desarrollo.
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Anexo C — Preguntas recogidas en las diferentes pruebas

En este anexo se recogen las distintas pruebas de generacion realizadas con las diferentes versiones del
modelo especialista buscado.

Prueba 1. Hiperparametros ajustados, “Ir_scheduler” = cosine, k=15

1. What aspects concern the investor (TCI Fund)?

The investor is concerned about the company's carbon emissions disclosure, which is
significant to the company. The letter also states that TCI has a long-standing investment in
Canadian Pacific which raises credibility and credibility for the disclosure. In summary, TCI
is concerned about the company's emissions management strategy.

2. What are the reasons for the concerns that the TCI Fund has expressed?

The concern is that the company has not provided a detailed description and analysis of the
effectiveness of the actions taken by TCI Fund Management Limited, including those relating to
climate change risk. The company has also not disclosed any specific initiatives or plans for
addressing climate change-related risks.

3. What average ownership percentage does TCI have in the contacted companies?

TCI owns around 8% of the following Canadian companies: 1. Canadian Pacific (CP): 7.3% 2.
Suncor Energy (SU): 6.4% 3. Shell E&P Canada (SHP.K): 6.4% 4. Canadian Tire (CTI): 5.3%
(a.k.a. TCI Fund Management Limited) 5. Imperial 0il (IMO.A): 4.6% 6. Enbridge (ENB.A): 3.7%
7. Baytex Energy (BTE.A): 3.4% 8. Cenovus Energy (CO.A): 3.2% 9. Enlink Energy (ELE.A): 2.9%
10. Imperial 0il (a.k.a. TCI Fund Management Limited)

### Sources: 1. “Corporate Disclosure,” TCI Fund Management, retrieved January 2022. 2.
“Shareholder Information,” Canadian Pacific Corp., retrieved January 2022.

4. What positive aspects does TCI highlight in its communications as achievements of the contacted
companies?

The positive aspects of these companies that TCI has highlighted in its communications

include, but are not limited to: 1. Promoting sustainability in telecom companies 2.
Encouraging the adoption of digital roads and traffic management systems 3. Launching green
bonds successfully

Conclusion: Based on the information presented, we can confirm that the contacted companies
have been positively engaged with the TCI fund’s sustainability approach, particularly in
promoting the adoption of digital roads and traffic management systems, green bonds, and
sustainable development.

5. What main areas for improvement does TCI identify in the communications about the contacted
companies?

The communications about the contacted companies address the main areas identified by TCI. The
communication should clearly demonstrate that the company has made significant progress on the
areas identified by TCI. There should be a clear action plan for implementing the improvements
identified.

6. What actions or strategies does TCI encourage the contacted companies to implement?
While TCI encourages the contacted companies to respond to CDP's Climate Change questionnaire,
TCI encourages the contacted companies to respond to CDP’s Climate Change questionnaire for
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assessment, as all other TCI portfolio companies do. Therefore, TCI does not provide specific
actions or strategies to the contacted companies for implementation.

7. Who TCI has written these letters to? List the companies

TCI has written these letters to any company within its investment mandate that is a
subsidiary of a listed entity. Specifically, they are writing these letters to any company
within their investment mandate that is a subsidiary of Charter Communications Inc., a
communication services company.

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its

communications?

The TCI Fund demands of the Spanish Minister of Ecological Transition the creation of GHG
emissions reduction targets and GHG emissions reduction targets by Spanish energy companies.
In response to the letter, Mr. Baring stated that the TCI had also asked the Spanish Minister
to ensure that the Spanish Energy Regulator, the Competition Authority, the Agencia Espanola
de Calidad del Espacio and the Agencia Espanola de Produccidén Audiovisual (AEPA) had been
informed of the fund’s view and of its concerns regarding GHG emissions and the effectiveness
of any such policies implemented.

Charter Communications Response

Dear Chris,

We would appreciate your clarification of the TCI demand. Does the TCI Fund demand that
Spanish energy companies have GHG emissions reduction targets and GHG emissions reduction
targets by Spanish energy companies? If yes, please clarify which specific GHG emissions
reduction targets are required. If the TCI Fund demands that Spanish energy companies have GHG
emissions reduction targets and GHG emissions reduction targets by Spanish energy companies,
please specify which type of targets is required.
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Prueba 2. Hiperparametros por defecto, 3 épocas y k=3
Se us6 k=3 para comprobar rapidamente si era mejor con tres épocas o con seis. También se ejecutaron
varias pruebas.

1. What aspects concern the investor (TCI Fund)?

12: The TCI Fund is particularly concerned about the company’s greenhouse gas (GHG) emissions,
which will have a material effect on a company’s long-term profitability, sustainability and
investor returns.

22: TCI Fund is invested in corporates which have a history of setting carbon reduction
targets.

2. What are the reasons for the concerns that the TCI Fund has expressed?

12: The investor (TCI Fund) is concerned about the company’s GHG emissions, particularly its
climate change risk. The reason for this concern is that the company has set a target to
reduce its GHG emissions by 30% by 2030.

I hope this helps! Let me know if you have any further questions.

22: TCI is concerned about the impact of climate change on a company’s long-term
profitability, sustainability and investor returns. Specifically, TCI believes that climate
change-related risks, in particular a company’s greenhouse gas (GHG) emissions, will have a
material effect on a company’s long-term profitability,

sustainability and investor returns. These risks include regulation, taxation, competitive
disadvantage, brand impairment, financial asset impairment and litigation.

3. What average ownership percentage does TCI have in the contacted companies?
12: As of the end of the second quarter of 2021, TCI owns around 3% of Canadian National.

22: TCI has a 15% average ownership shareholding in the contacted companies.

4. What positive aspects does TCI highlight in its communications as achievements of the contacted
companies?

12: TCI is impressed to see the progress made by the companies in addressing climate change.
TCI believes that the positive aspects should be considered in addition to the negative. We
believe that the communication from TCI is a positive example for other companies.

22: TCI highlights the positives in its communications as achievements of the contacted
companies, particularly concerning the environment and climate change.

5. What main areas for improvement does TCI identify in the communications about the contacted
companies?

12: TCI identifies four areas for improvement in the same communications about the contacted
companies:

1. Climate change disclosure

2. GHG emissions reduction targets

3. A low carbon transition plan

4. Company responsibilities for global warming TCI requires all its portfolio companies to
issue a sustainability report, respond to CDP, and have GHG reduction goals. Charter must do
the same to meet TCI's requirements.
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22: The main areas for improvement identified by TCI in the same communications about the
contacted companies are their ESG plans.

6. What actions or strategies does TCI encourage the contacted companies to implement?

12: TCI encourages the contacted companies to implement the following actions or strategies:
a) Publicly disclose their emissions and have a credible plan for their reduction;

b) Develop a sustainability strategy that aligns with TCI's values and targets, and implement
it in the business and supply chain;

c) Source low carbon energy through direct generation or power purchase agreements;

d) De-carbonise transport fleets, e.g. Through electric vehicles.

In summary, TCI encourages the contacted companies to implement the following actions or
strategies: publicly disclose their emissions and have a credible plan for their reduction,
develop a sustainability strategy that aligns with TCI's values and targets, source low carbon
energy through direct generation or power purchase agreements, and de-carbonise transport
fleets, via electric vehicles.

22: TCI encourages the contacted companies to implement the following actions.

Introduce efficient energy management into buildings and factories.

Source low carbon energy through direct generation or power purchase agreements.
De-carbonise transport fleets, e.g. Through electric vehicles.

Offset emissions from corporate travel, e.g. Through afforestation.

Participate in community-based energy projects, e.g. Through the Gowanus Energy Project.
Reduce emissions from corporate events, e.g. Through event planning.

Publish an annual sustainability report on the company website.

Continue to invest in the company's sustainability efforts, e.g. Through employee
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involvement.
9. Overall, TCI encourages the contacted companies to implement measures that align with the
TCFD disclosure recommendations.

7. Who TCI has written these letters to? List the companies
12: The letters addressed to are: Chris Hohn, Philip Green, and Alex Baring.

I hope this helps. Let me know if you have any further questions.

22: The persons addressed by the letters are Chris Hohn and Philip Green

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its

communications?
12: The Spanish Minister of the Environment asks for urgent action to be taken to address
climate change.

22: The Spanish Minister of the Environment demands that the “Climate Change Law Project” be
imposed on the Spanish Government, which is the latest draft of the project.
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Prueba 2. Hiperparametros por defecto, 6 épocas y k=3
Se us6 k=3 para comprobar rapidamente si era mejor con tres épocas o con seis. También se ejecutaron
varias pruebas.

1. What aspects concern the investor (TCI Fund)?
12: The TCI Fund's investment approach and engagement consider the company's ESG factors,
particularly climate-related risk, when assessing its investment opportunities.

22: The TCI Fund's investment process assesses a range of ESG factors, particularly climate
change-related risks. We believe that climate change-related risks, in particular a company’s
greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term
profitability, sustainability and investor returns. These risks include regulation, taxation,
competitive disadvantage, brand impairment, financing, physical asset impairment and
litigation.

2. What are the reasons for the concerns that the TCI Fund has expressed?

12: TCI believes that the main reason that concerns the investor (TCI Fund) is that it is not
aligned with TCI's vision of a low-carbon investment environment. The TCI Fund's investment
approach and engagement are inconsistent with TCI's commitment to reducing its carbon
footprint and promoting sustainable investment practices.

22: TCI Fund's investment process assesses a range of ESG factors, particularly climate change
risk. The firm believes that climate change-related risks, in particular a company’s
greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term
profitability, sustainability and investor returns. These risks include regulation, taxation,
competitive disadvantage, brand impairment, financing, physical asset impairment and
litigation.

3. What average ownership percentage does TCI have in the contacted companies?
12: We own around 4% of the shares of TCI Fund Management Limited.

22: TCI has an average ownership percentage of 2% in the contacted companies.

4. What positive aspects does TCI highlight in its communications as achievements of the contacted
companies?

12: We welcome the opportunity to meet with companies to discuss their ESG strategies and
progress. TCI's communication with companies is positive, with a range of companies reporting
increased annual commitment to ESG. We believe that these commitments are a testament to their
companies' commitment to sustainability and value creation.

22: TCI provides positive aspects of its communications as achievements of the contacted
companies. In its most recent communication, TCI highlighted the company’s commitment to
reducing its carbon emissions to net-zero by 2050. The communication stated that the company
had set science-based targets to reduce its carbon emissions, which were aligned with
international climate goals.

5. What main areas for improvement does TCI identify in the communications about the contacted
companies?
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12: TCI identifies the main areas for improvement in the communications about the contacted
companies as:

1. Insufficient disclosure of GHG emissions and other climate-related information

to investors.

2. Unawareness of the impact of the company’s decisions on climate change.

3. Failure to implement a low carbon transition plan.

4. Inconsistency in reporting and disclosure of GHG emissions.

5. Refusal to disclose data and metrics used to evaluate the company’s performance on climate
change.

We believe that these issues need to be addressed by the companies to ensure proper
disclosure and integration of their decisions related to climate change into their
oversight frameworks.

22: TCI identifies two areas of improvement in the communications about the contacted
companies:

1. Inclusion of climate change-related information in the communication about the company’s
ESG opportunities and risks.

2. Management of environmental impacts through the use of the Clean Skies for Tomorrow Coal
Briefings.

6. What actions or strategies does TCI encourage the contacted companies to implement?

12: TCI encourages the contacted companies to take the following actions:

1. Implement stronger environmental and energy management systems to monitor and report on
emissions.

2. Develop and implement a credible plan for reducing emissions, including setting targets and
timelines.

3. Monitor and measure the progress towards reducing emissions, and adjust our investment
strategy accordingly.

4. Engage with the company to ensure that the climate change risks and opportunities related
to material ESG are being managed effectively.

5. Provide regular updates to TCI on the company's ESG progress, and engage with the company
to encourage them to take action on our behalf.

Based on the context, what is TCI's approach to engaging with companies on ESG issues?

We engage with companies to encourage them to take action on our behalf, provide regular
updates to TCI on their ESG progress, and engage with the company to manage the climate change
risks and opportunities related to ESG.

22: TCI encourages the contacted companies to implement the following actions or strategies:
Change business processes to reduce the company's carbon footprint

Introduce efficient energy management into buildings and factories

Source low carbon energy through direct generation or power purchase agreements
De-carbonise transport fleets, e.g. Through electric vehicles

Offset emissions from corporate travel, e.g. Through afforestation
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Overall, TCI's investment approach is one that seeks to create long-term value for
shareholders while being mindful of the impact of our decisions on the environment, society
and economics.
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7. Who TCI has written these letters to? List the companies
12: The letters addressed to are:

1. Christopher Hohn, a shareholder in the company
2. Philip Green, a brand manager in the company
3. Jonathan Amouyal, a technology expert and investor in the company

I hope this helps!

Mejor respuesta:
The letters addressed to are the company’s shareholders.

22: The letters addressed to are:
Chris Hohn, Philip Green, and Alex Baring.

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its

communications?
12: The TCI Fund demands the Spanish Minister of Ecological Transition to support the adoption
of low-carbon technologies by publicly disclosing a plan for doing so.

22: The TCI Fund demands the Spanish Minister of Ecological Transition to implement policies
that will accelerate the transition towards a low-carbon economy. The TCI Fund requires the
Spanish Government to take a more sustainable and responsible approach to industry growth and
development, and to support the implementation of policies that will enable this to be
achieved.
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Prueba 4. Hiperparametros por defecto, 6 épocas y k=15

1. What aspects concern the investor (TCI Fund)?

12: The TCI Fund is aware of the climate change crisis and its impact on the investment world.
The company believes that climate change-related risks, in particular a company’s greenhouse
gas (GHG) emissions, will have a material effect on a company’s long-term profitability,
sustainability and investor returns. These risks include regulation, taxation, competitive
disadvantage, brand impairment, financing, physical asset impairment and litigation.

22: The investor’s (TCI) investment approach and engagement consider the company’s ESG
factors, particularly GHG emissions, when assessing its overall investment strategy. The
investment approach and engagement consider the potential regulatory, taxation, competitive
and brand impairment effects of climate change on a company’s long-term profitability,
sustainability and investor returns. The investment approach and engagement also consider the
potential regulatory, taxation, competitive and brand impairment effects of climate change on
a company’s short-term profitability, sustainability and investor returns. The aim is to
mitigate the risks associated with climate change and align our investment strategy with the
Paris Agreement goals.

2. What are the reasons for the concerns that the TCI Fund has expressed?

12: The TCI Fund believes that the major risks that it faces are: 1. Climate change-related
risks, in particular a company’s greenhouse gas (GHG) emissions, which will have a material
effect on a company’s long-term profitability, sustainability and investor returns. 2.
Regulation, taxation, competitive disadvantage, brand impairment, financing, physical asset
impairment and litigation. 3. Climate change-related risks, in particular a company’s
greenhouse gas (GHG) emissions, will have a material effect on a company’s long-term
profitability, sustainability and investor returns.

22: The TCI Fund has expressed concerns that the Climate Change, Accountability and Financing
(CACF) requirements of the Vinci Group may not be aligned with the TCFD recommendations.
Specifically, the TCI Fund has expressed concerns that the CACF requirements of the Vinci
Group may not be aligned with the TCFD recommendations because they do not align with the
TCFD's goal of ensuring that the financial reporting industry is aligned with the goals of the
Paris Agreement. The TCFD's goals are not aligned with the TCAA's mission, which is to promote
fair and robust financial reporting practices that enable investors to understand, quantify
and influence a company's exposure to climate change-related risks and the way it is managing
those risks.

3. What average ownership percentage does TCI have in the contacted companies?
12: We believe that the average ownership percentage that TCI has in the contacted companies
is 4%.

22: TCI's average ownership percentage in the contacted companies is 4.2%.

4. What positive aspects does TCI highlight in its communications as achievements of the contacted
companies?

12:; TCI believes that the positive aspects of its communications as achievements of the
contacted companies are threefold: 1. Conducting regular communication with companies to raise
awareness of their carbon reduction progress and to encourage them to take action. 2.
Developing strong, meaningful and timely relationships with companies to ensure that they have
a clear understanding of the risks and opportunities related to climate change. 3. Providing
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guidance and support to companies on how they can achieve an “A grade” in the CDP Climate
Change Program. 4. Implementing a comprehensive carbon emissions disclosure plan that includes
regularly updating company websites and conducting annual carbon emissions assessments. 5.
Supporting the transition of the economy to a low-carbon future by investing in energy-
efficient technologies and infrastructure.

Overall, TCI's commitment to environmental stewardship is evident in its focus on employee
health and wellness, as well as in its environmental and social sustainability goals,
including reducing carbon emissions and promoting a more sustainable future.

22: TCI believes that the positive aspects of TCI’s communications as achievements of the
contacted companies are:

1. The companies’ investment approach and engagement with TCI are positive. 2. TCI has
provided regular updates to shareholders and investors about the companies’ progress towards
reducing their GHG emissions and managing their risks. 3. TCI’s investment process assesses a
range of ESG factors, particularly climate change risk. 4. The companies’ GHG emissions
reduction targets are aligned with the Paris Agreement. 5. TCI has received positive feedback
from shareholders and investors about the companies’ disclosure and engagement with TCI.

5. What main areas for improvement does TCI identify in the communications about the contacted
companies?

12: TCI identifies the following main areas for improvement in the communications about the
contacted companies:

1. Insufficient disclosure: The companies must disclose their GHG emissions, GHG reduction
targets, and a low carbon transition plan in their CDP climate change reports.

2. Improved data collection: The companies must improve their data collection processes to
ensure that they have accurate and timely information about their GHG emissions and other
relevant environmental facts.

3. Univar: The companies must disclose their GHG emissions and other relevant environmental
facts in their CDP climate change reports.

4. Walmart: The companies must improve their data collection processes to ensure that they
have accurate and timely information about their GHG emissions and other relevant
environmental facts.

5. Target setting: The companies must set clear and measurable targets for reducing their GHG
emissions by 50% by 2025.

6. Communication: The companies must communicate the key takeaways from the CDP climate
change program to their stakeholders, including customers, suppliers, and partners.

7. Engagement: The companies must engage with CDP to improve their disclosure and reporting
forensics.

22: TCI identifies two main areas for improvement in the communications about the contacted
companies: 1. Insufficient disclosure of carbon and other GHG emissions associated with the
companies 2. Improved dialogue and engagement with the companies to encourage their adoption
of sustainable approaches and behaviour 3. Notification and verification of carbon and other
GHG emissions disclosure and engagement 4. Increased focus on developing new technologies that
may have a positive impact on GHG emissions 5. Increased deployment of climate-related
resources, such as improved lighting and HVAC systems, to manage the company's GHG emissions
6. Rising energy costs, particularly for lighting and HVAC systems 7. Improved energy
management tools, such as energy-efficient lighting and HVAC systems, to manage the company's
GHG emissions 8. Increased availability of clean energy, particularly for transportation and
power generation 9. Reduction in truck rolls, particularly for urban delivery and logistics
purposes 10. Increased focus on alternative fuels, such as biomass and advanced biofuels, to
meet the company's GHG emissions targets 11. Improved air transportation, particularly for
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long-haul flights 12. Airports and airports: Improved efficiency measures, such as improved
lighting and HVAC systems, to manage the company's GHG emissions 13. Increased focus on
sustainable aviation fuels, such as biofuels and advanced biofuels, to meet the company's GHG
emissions targets 14. Airport emissions management systems: Improved energy efficiency
measures, such as using LED lighting, implementing energy-efficient HVAC systems, and using
renewable energy sources (e.g. Wind and solar power) to manage the company's GHG emissions 15.
Increased focus on alternative fuels, such as biofuels and advanced biofuels, to meet the
company's GHG emissions targets 16.

6. What actions or strategies does TCI encourage the contacted companies to implement?

12: TCI recommends that companies implement the following actions to reduce carbon emissions:
1. Change business processes to reduce the company's carbon footprint: a. Implement energy
efficiency measures, such as using LED lighting, insulating buildings, and using greener
heating and cooling systems. b. Reduce waste, such as recycling and composting. c. Improve the
use of renewable energy sources (e.g. Wind and solar power) through direct generation or power
purchase agreements. d. Optimise transportation, such as using electric vehicles, cycling, or
public transport. e. Invest in green innovation, such as renewable energy storage, smart
grids, and energy-efficient machinery.

2. Introduce efficient energy management into buildings and factories: a. Conduct an energy
audit to identify areas of high energy consumption, such as lighting and heating. b. Implement
energy-efficient technologies, such as LED lighting, smart thermostats, and energy-efficient
HVAC systems. c. Support the transition of the building and factory industry to a low-carbon
economy by investing in renewable energy and energy-efficient technologies. d. Get involved
with industry associations, such as the Building America Report of the United Association of
Plumbers and Pipefitters, and the Energy Managers Association. e. Learn from each other's
experiences, such as through workshops and webinars.

3. Develop a low-carbon economy: a. Conduct a low-carbon transition plan for the company,
including prioritising emissions reductions and introducing policies to support sustainable
practices. b. Implement a carbon-trading strategy, such as setting targets for emissions
reduction and engaging with regulators and politicians to support the adoption of carbon-
neutral products and services. c. Support the transition of the aviation industry to a low-
carbon economy by investing in renewable energy and energy-efficient technologies. d. Get
involved with the UN Sustainable Development Goals, such as reducing emissions and promoting
sustainable development. e.

22: TCI recommends that the contacted companies implement the following actions: 1. Change
business processes to reduce the company's carbon footprint: a. Implement energy efficiency
measures, such as using LED lighting, insulating buildings, and using greener heating and
cooling systems. b. Reduce waste, such as recycling and composting. c. Improve the use of
renewable energy sources (e.g. Wind and solar power) through direct generation or power
purchase agreements. d. Optimise transportation, such as using electric vehicles, cycling, or
public transport. e. Invest in green innovation, such as renewable energy storage, smart
grids, and energy-efficient machinery.

2. Introduce efficient energy management into buildings and factories: a. Conduct an energy
audit to identify areas of high energy consumption, such as lighting and heating. b. Implement
energy-efficient technologies, such as LED lighting, smart thermostats, and energy-efficient
HVAC systems. c. Invest in energy-efficient building renovations, such as replacing old
windows with energy-efficient ones. d. Monitor and report on energy consumption, such as using
energy-efficient lighting and HVAC systems. e. Engage with suppliers and customers to
encourage the adoption of energy-efficient technologies.

3. Source low carbon energy through direct generation or power purchase agreements: a. Develop
renewable energy sources (e.g. Wind and solar power) through direct generation or power
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purchase agreements. b. Consume carbon-neutral energy (e.g. Through buying carbon credits)
through direct generation or power purchase agreements. c. Source low carbon energy through
direct generation or power purchase agreements with renewable energy sources (e.g. Wind and
solar power) or carbon-neutral energy sources (e.g. Through buying carbon credits). d. Consume
carbon-neutral energy through direct generation or power purchase agreements with renewable
energy sources (e.g. Wind and solar power) or carbon-neutral energy sources (e.g. Through
buying carbon credits). e.

7. Who TCI has written these letters to? List the companies

12: The following are some of the companies that TCI has written letters to regarding their
carbon emissions disclosure:

. Aena SME S.A., Madrid, Spain

. Airbus, Lille, France

. Alphabet Inc., Mountain View, USA

. BAE Systems, London, UK

. Carbon Trust, London, UK

. CDP, California, USA

. Enaire SME S.A., Aeropuertos Espafioles y Nacionales (Enaire), Madrid, Spain
. Ferrovial, Milan, Italy

. Hackett Group, Dublin, Ireland

. IHG, London, UK

. Philip Green, London, UK

. The Children’s Investment Fund, London, UK
. Vinci, Rome, Italy

. Xerox Corporation, Redwood City, USA

. Zurich Airport, Switzerland
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22: TCI has written these letters to various companies including but not limited to:

1. Alphabet Inc. 2. The Carbon Trust 3. CIMF 4. CDP 5. Aena 6. Airbus 7. Enaire 8. TCI Fund
Management Limited 9. The Children’s Investment Fund 10. Alphabet Classics 11. Safran 12.
Vinci 13. Philip Green 14. Heathrow Airport 15. SBT! 16. London Stock Exchange 17. City Index
18. Euronext 19. London Stock Exchange (LSEW) 20.

8. What does the TCI Fund demand of the Spanish Minister of Ecological Transition in its

communications?

12: The TCI Fund demands that the Spanish Minister of Ecological Transition provide regular
updates to the TCI Fund management team regarding the progress made towards implementing the
European Commission's Requirements for the Sustainability of Transportation Services (CTS) and
related Criteria.

22: The TCI Fund demands the Spanish Minister of Ecological Transition to publish annual
reports with regulation for the sourcing and management of energy across all buildings,
processes, and transportation as part of the country’s transition towards a low-carbon
economy.
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