Ingenieria
Informatica

Universidad deValladolid UVa

Escuela de Ingenieria Informatica
TRABAJO FIN DE GRADO

Grado en Ingenieria Informatica
Mencion en Tecnologias de la Informacion

WatchdogAlI: Deteccion de Ataques de
Intrusion mediante Inteligencia Artificial

Autor: D. Adrian Vara Lamua

Ingenieria
Informatica

Universidad deValladolid UVa

Escuela de Ingenieria Informatica
TRABAJO FIN DE GRADO

Grado en Ingenieria Informatica
Mencion en Tecnologias de la Informacion

WatchdogAlI: Deteccion de Ataques de
Intrusion mediante Inteligencia Artificial

Autor: D. Adrian Vara Lamua

Tutor: Dr. D. Jesus Maria Vegas Hernandez

A mi familia, por estar siempre ahi, en cada paso, en cada caida, y en cada logro.

Agradecimientos

Han sido muchas las personas que han contribuido directa o indirectamente a que este proyecto viera la luz.

En primer lugar, quiero agradecer a mi tutor, Dr. D. Jesus Maria Vegas Hernandez, por su orientacioén, pa-
ciencia y constante implicacion en el desarrollo de este Trabajo de Fin de Grado. Sus revisiones y comentarios
han sido clave para encaminar tanto la aplicacién como la memoria por el camino adecuado.

También agradezco a mis compaiieros de grado, por las conversaciones técnicas, los retos compartidos y el
entorno inspirador que me han ofrecido durante este tiempo.

Y, por supuesto, gracias a mis amigos y familia por su apoyo incondicional, por animarme en los dias dificiles
y por acompafiarme a lo largo de todo este viaje.

Resumen

En un contexto de creciente digitalizacion y sofisticacion de los ciberataques, los sistemas tradicionales de
deteccién de intrusiones, basados en firmas estaticas, resultan insuficientes para hacer frente a amenazas nuevas
o desconocidas. Este trabajo surge con la motivacién de explorar alternativas mas adaptativas mediante el uso
de inteligencia artificial.

El objetivo principal ha sido evaluar comparativamente distintos algoritmos de aprendizaje automatico apli-
cados a la deteccién de intrusiones en redes, con el fin de identificar cudl ofrece el mejor equilibrio entre pre-
cision, eficiencia computacional y robustez frente a clases desbalanceadas. Para ello, se ha llevado a cabo un
estudio del estado del arte, la seleccién y preprocesamiento del dataset CIC-IDS2017, y la implementacién de
un sistema modular que permite entrenar y evaluar modelos como Random Forest, XGBoost, SVM y MLP en
distintos escenarios de clasificacion.

Los resultados obtenidos muestran que XGBoost destaca como el modelo mas eficaz, manteniendo un alto
rendimiento incluso al reducir el nimero de caracteristicas a las 30 mas relevantes. En conclusion, este trabajo
demuestra la viabilidad del uso de técnicas de aprendizaje automatico en sistemas de detecciéon de intrusiones,
sentando una base solida para el desarrollo de soluciones mas inteligentes, escalables y adaptadas a entornos
reales.

Abstract

In a context of increasing digitalization and increasingly sophisticated cyberattacks, traditional intrusion
detection systems based on static signatures are no longer sufficient to address new or unknown threats. This
project aims to explore more adaptive alternatives through the use of artificial intelligence.

The main objective is to comparatively evaluate various machine learning algorithms applied to network
intrusion detection, identifying the one that offers the best balance between accuracy, computational efficiency,
and robustness against imbalanced classes. To achieve this, a comprehensive study was conducted, including a
review of the state of the art, preprocessing of the CIC-IDS2017 dataset, and the implementation of a modular
system to train and evaluate models such as Random Forest, XGBoost, SVM, and MLP under different classi-
fication scenarios.

The results show that XGBoost stands out as the most effective model, maintaining high performance even
when the number of features is reduced to the 30 most relevant ones. In conclusion, this work demonstrates the
feasibility of using machine learning techniques in intrusion detection systems and lays a solid foundation for
the development of smarter, more scalable, and real-world-ready solutions.

Indice general

Indice de cuadrog

Indice de figuras
ODO List

fl.

Introduccién

(1. IntroduCCion v v o o e e e e e e e e e e
[[.2. MoOtivacidml o o o e e e e

Objetivos y Alcance

...

D.1.1. Tareas arealizall o v v vt e,

..

Planificacion

B.l. FaseS y COSIEY v v v v i e e e e e
B.1.1. Descripciondelasfased
...

B.2. Gestion de riesgos y dificultaded
B.2.1. Principales riesgos previstogt e e e e e e
B.2.2. Dificultades enfrentadas y resolucion|
B.2.3. Leccionesaprendidag

Marco Conceptual

#.1. Sistemas de Deteccion de Intrusos (IDS) o i
#.2. Aprendizaje automatico y su apliacacion en ciberseguridad
#.3. Limitaciones de los sistemas convencionaleg
W.4. Aprendizaje supervisadd
#.5. Tipos de aprendizaje en deteccion de infrusogo e e e

Soluciones Existentes

B.1. Sistemas tradicionales de deteccCi®mo
...
..

5.2. Herramientas con enfoque de Machine Learning o v v v v v v ...

VII

IX

N =

A b W W

© © © 0 0 N4

10

13
13
13
14
14
14

6. Estudio de los datos
B.1. Descripcion v comparacion de los datasets oo ouuau e
B.1.1. CIC-IDS2017 [5] . . . -« o o o e e e e e,
B.1.2. IDS Packet Dataset (IEEE DataPort) [19]
b.1.3. Dataset de Red Militar [21]. i i e e e
b.1.4. Justificaciondelaeleccién
6.2. Formato vy estructura del dataset elegidd
B.2.1. Estructura general
B6.2.2. Volumendedatod
B.2.3. Tiposdedatos v vttt
B.2.4. Caracteristicas destacadas i oo e e
b.2.5. Etiquetas de clasificacion. e e
6.3. Problemas detectados en los datod e e e
B.3.1. Valores nulos y columnas irrelevanteso v i i e
B.3.2. Posibles registros duplicados o inconsistentes
b.3.3. Desbalanceo en la distribuciéndeclased
b.3.4. Complejidad v heterogeneidad delosdatod
6.4. Modelos de Machine Learning considerados vt oot
b.4.1. Bosques Aleatorios (Random Forest) i
b.4.2. Maquina de Vectores de Soporte (SVM)
B.4.3. XGBOOSU . . v v o o
B.4.4. Multilayer Perceptron (MLP) o o i i i
7. Diseiig
[/.1. Arquitectura general del sistemad e e
[7.2. Disefio del pipeline de datodo e
[7.3. Disefio de los modelos de Machine Learning v v v v it
[7.3.1. Modelos seleccionados y configuracién inicial
[7.3.2. Estrategia de entrenamiento y validacién previstd
[7.4. Disefiodela evaluacion« v v v v e e e e e e
[.4.1. Meétricas seleccionadast u e
[7.4.2. Criterios para la comparacién entre modelog
8. Implementacion
B.1. Entorno y herramientas v oo v e e e e e
B.1.1. Equipoutilizadd e
B.1.2. Principales librerias utilizadag
B.2. Preprocesamientdottt e e e e
B.2.1. Funciones auxiliares para validacion|
B.3. Entrenamiento v seleccion de caracteristicag . . . - = v v v v v v e e
B.3.1. Entrenamientd« v v ottt e e
B.3.2. Extraccion de caraCteriStiCas v v v v v o e e e e e
B.4. EvaluacCion v v v i e e
B.5. Organizacion y gestion del cOdigd o o v vt
D.1. Planificaciéndelas pruebas o o o e e e e
D.2. Resultados obtenidos vt e e e
D.2.1. Dataset binarid v v oo e e e
B.2.2. Dataset multiclasd
B.2.3. Dataset con ataques web agrupados e e e e e e

21
21
21
21
22
22
22
23
23
23
23
24
24
24
24
24
24
25
25
25
25
26

27
27
28
29
30
30
30
30
31

33
33
33
34
34
35
35
36
37
37
37

D.2.4. Datasetreducidd e e
B.2.5. Datasetreducido 2
D.2.6. Datasetreducido 3 e e
D.2.7. Dataset reducido 2 - XGBOOSH v vt i
D.2.8. Dataset con caracteristicas reducidas i e e
B.3. Analisis y discusion
B.3.1. Comparativa entre enfoqued e
D.3.2. Comparativaentremodelog
B.3.3. Coste computacional
D.3.4. Seleccion de caracteristicag ou oo e e e e
B.3.5. Eleccion finaldel modeld
[10. Conclusiones
[10.1. Modelo final seleccionadd
[10.2. Trabajoafuturd
ADP

|Apéndice A. Cédigo desarrollada

[A.1. Preprocesamienta v v v v v v e e e e e

[A.2. Entrenamiento de modelos oot e e e

[A.3. Evaluacién de modelod

[A.4. Extraccién de caracteristicad oo o e

[A.5. Mostar distribuciOn e,

|Apéndice B. Distribuciones de los diferentes datasets

B.1. Distribucidn inicial e e

B.2. Distribucién balanceadao

B.3. Distribucion binarid e e e e e e e e e,

B.4. Distribucion agrupadd o e e e e e e e

B.5. Distribucionreducidd

B.6. Distribucion reducida 2 oo e e e e e e e

B.7. Distribucionreducida 3 o e e e e e,

|Apéndice C. Matrices de Confusién

C.1. Matrices Binarias o v v v o e e e e e e e e

C.2. Matrices Multiclase o o o o e e e

IC.3. Matrices con ataques web agrupadod e e et e e e e e e e

C.4. Matrices con dataset reducidod o v v v i e

IC.5. Matrices con caracteristicas reducidag v . oo e e e e

I11

53
53
53

55

57
57
58
59
60
60

61
61
61
62
62
62
63
63

65
65
67
69
71
78

81

v

Indice de tablas

B.1. Fases de desarrollo del proyecto previstas] 7
B.2. Riesgos previstos en el proyecto, su impacto y estrategias de mitigacién) 10
B.3. Dificultades enfrentadas durante el desarrollo y acciones de resolucién) 10
b.1. Comparativa de datasets] 22
[7.1. Descripcion de las versiones del datasef 29
B.1. Aciertos/fallos Random Forest Binario] 40
B.2. Aciertos/fallos XGBoost Binario]. e 40
D.3. Aciertos/fallos Random Forest Multiclase) 41
B.4. Aciertos/fallos XGBoost Multiclase] 41
D.5. Aciertos/fallos Random Forest Agrupado) 42
B.6. Aciertos/fallos XGBoost Agrupado) 42
D.7. Aciertos/fallos MLP Reducido) 43
B.8. Aciertos/fallos SVM Reducido) 43
D.9. Aciertos/fallos MLP Reducido 2) 44
B.10. Aciertos/fallos SVM Reducido 2) 44
D.11. Aciertos/fallos MLP Reducido 3) 45
B.12. Aciertos/fallos SVM Reducido 3) 45
B.13. Aciertos/fallos XGBoost Reducido) 46
B.14. Aciertos/fallos XGBoost Top 20 Caracteristicas) 48
B.15. Aciertos/fallos XGBoost Top 30 Caracteristicas) v o v v v v v v 48

VI

Indice de figuras

B.1. Planificaciéninicial 8
[7.1. Diagrama de bloques para el flujo de trabajo) 28
[7.2. Diagrama de flujo del procesamiento del datasef| 32
B.1. Informe Random Forest Binario] o o o o 40
B.2. Informe XGBoost Binario] o v v it e 40
B.3. Informe Random Forest Multiclase] 41
B.4. Informe XGBoost Multiclase] 41
B.5. Informe Random Forest Agrupadol 42
D.6. Informe XGBoost Agrupadolo 42
B.7. Informe MLP reducido] e 43
B.8. Informe SVM Reducido) o o o 43
B.9. Informe MLPreducido 2] e 44
B.10. Informe SVM Reducido 2] 44
B.11. Informe MLP reducido 3] e 45
B.12. Informe SVM Reducido 3] 45
B.13. Informe XGBoost Reducidd 46
D.14. Top 30 caracteristicas MAs iMPOrtantey v v v v v e e e e e 47
B.15. Informe XGBoost Top 20 Caracteristicas] o o o v v v v v i i 48
D.16. Informe XGBoost Top 30 Caracteristicas] v i i i 48
C.1. Matriz de confusion Random Forest Binarid v o v v v v i i 65
C.2. Matriz de confusion XGB00st Binarid = v v v v v v e 66
C.3. Matriz de confusion Random Forest Multiclased 67
C.4. Matriz de confusion XGBoost Multiclasd o o o 68
C.5. Matriz de confusion Random Forest Ataques Web Agrupadod 69
C.6. Matriz de confusion XGBoost Ataques Web Agrupadog 70
C.7. Matriz de confusion MLP Reducidd 71
C.8. Matriz de confusion MLP Reducida 2 o o v v v v it 72
C.9. Matriz de confusion MLP Reducida 3 v v v v v e e e e e e e e e 73
C.10. Matriz de confusion SVM Reducida o v v v v 74
C.11. Matriz de confusion SVM Reducida 2 o v v v v e 75
C.12.Matriz de confusion SVM Reducida 3 76
C.13.Matriz de confusion XGBoost Reducidd o v v v v i 77
(C.14. Matriz de confusion XGBoost Top 20 Caracteristicag « v v v v v v v v v v et . 78
(C.15. Matriz de confusion XGBoost Top 30 Caracteristicag . . . « « « v v v v v v v v v v v v o . 79

VII

VIII

Capitulo 1

Introduccion

1.1 Introduccion

La sociedad actual esta inmersa en un proceso de digitalizacién sin precedentes. Vivimos rodeados de dis-
positivos conectados, servicios online y entornos tecnolégicos que, cada dia méas, dependen de infraestructuras
digitales. Este fenomeno ha traido consigo mejoras notables en eficiencia, accesibilidad y automatizacion, tanto
en el &mbito personal como en el profesional. Sin embargo, esta hiperconectividad también conlleva nuevos
riesgos. Cuanto mas dependemos de los sistemas conectados, mas expuestos estamos a amenazas cibernéti-
cas cada vez mas sofisticadas y persistentes. Segun el informe mas reciente de ENISA [[12], el nimero y la
complejidad de los ciberataques continda aumentando, afectando a sectores criticos como sanidad, transporte o
administracion publica.

La ciberseguridad se ha convertido en una necesidad critica. Ya no se trata solo de proteger datos, sino de
garantizar el correcto funcionamiento de servicios esenciales, preservar la privacidad y evitar dafios econémicos
y reputacionales. Entre los mecanismos mas relevantes para lograrlo se encuentran los sistemas de deteccién de
intrusos (IDS, por sus siglas en inglés). Estos sistemas supervisan el trafico de red en busca de comportamientos
anémalos que puedan indicar la presencia de un atacante o de una actividad maliciosa.

Sin embargo, muchos de los IDS actuales se basan en reglas o firmas previamente conocidas, lo que los
limita cuando se enfrentan a amenazas nuevas o desconocidas, como los ataques zero-day [[l|]. Esta rigidez pro-
voca falsos negativos y deja huecos criticos en la defensa de las redes. En este contexto, tecnologias como el
aprendizaje automatico (machine learning) y la inteligencia artificial (IA) ofrecen un enfoque mas flexible, ca-
paz de adaptarse a nuevas amenazas sin intervencién humana constante.

El presente Trabajo de Fin de Grado nace con el propésito de explorar el uso de algoritmos de IA en la
deteccion de intrusiones en redes informaticas. El enfoque adoptado no busca desarrollar un tnico sistema, sino
comparar distintas técnicas de aprendizaje automatico y evaluar su rendimiento ante diferentes tipos de trafico
malicioso y legitimo. A través de este estudio, se pretende determinar qué algoritmo se comporta mejor en tér-
minos de precision, recall, F1-score y otras métricas relevantes, proporcionando una base sélida sobre la que
construir futuras soluciones de seguridad mas inteligentes, eficaces y proactivas.

1.2. MOTIVACION CAPITULO 1. INTRODUCCION

1.2 Motivacion

La motivacién principal de este proyecto parte de una observacién clara: los métodos tradicionales para
detectar intrusiones en redes ya no son suficientes. Los ciberataques modernos evolucionan de forma constante,
y cada vez es mas comun encontrar amenazas que no pueden ser identificadas mediante mecanismos estaticos
basados en firmas. Esto deja a muchas organizaciones vulnerables, especialmente frente a ataques desconocidos
o variantes de malware disefiadas para evadir las detecciones convencionales.

Ademas, el volumen de datos que circula por las redes hoy en dia es inmenso. Con el auge del Internet de
las Cosas (IoT), el trabajo remoto y la digitalizacién de procesos empresariales, resulta inviable analizar todo
el trafico manualmente o mediante reglas fijas. Esta necesidad de adaptarse a entornos complejos y altamente
heterogéneos, como ocurre en las redes 10T, refuerza el valor del aprendizaje automatico como técnica de de-
teccion flexible y escalable [29]. En este contexto, los sistemas basados en aprendizaje automatico presentan
una ventaja competitiva clave: su capacidad de adaptarse, aprender de los datos y tomar decisiones basadas en
patrones dindmicos.

Este Trabajo de Fin de Grado responde a esa necesidad: evaluar distintas técnicas de IA y determinar cudl
resulta mas eficaz en la deteccién de intrusiones. No se trata inicamente de demostrar que la inteligencia ar-
tificial puede aplicarse a este campo, sino de comparar de forma rigurosa sus diferentes enfoques y ofrecer
conclusiones basadas en resultados medibles.

En definitiva, este proyecto busca aportar valor tanto desde el punto de vista técnico como académico, sen-
tando las bases para un futuro en el que los sistemas de deteccién de intrusos no solo reaccionen, sino que
predigan, aprendan y evolucionen junto al panorama de amenazas.

Capitulo 2

Objetivos y Alcance

2.1 Objetivos

Este Trabajo de Fin de Grado se enmarca en el contexto de la ciberseguridad, donde los sistemas de de-
teccion de intrusiones (IDS) juegan un papel clave para proteger las redes frente a accesos no autorizados o
comportamientos maliciosos. En concreto, se aborda la aplicacion de técnicas de aprendizaje automatico (ma-
chine learning) como herramienta para detectar estos ataques a partir del analisis del trafico de red.

El proyecto se ha desarrollado con un enfoque exploratorio y comparativo. No se persigue la construccién
de una solucion lista para produccién, sino un andlisis riguroso de diferentes algoritmos de clasificacién aplica-
dos a la deteccién de intrusiones, con el fin de evaluar su rendimiento en distintos escenarios y con diferentes
configuraciones de datos.

El objetivo principal de este trabajo es identificar, mediante una evaluacién técnica y sistematica,
cual de los algoritmos de aprendizaje automatico estudiados ofrece el mejor comportamiento global en
tareas de deteccion de intrusiones, considerando no solo métricas de rendimiento , sino también su coste
computacional, robustez frente a clases desbalanceadas y escalabilidad.

Este analisis pretende servir de referencia para desarrolladores e investigadores que busquen aplicar técnicas
de inteligencia artificial en sistemas IDS, aportando datos empiricos sobre el comportamiento de los modelos
mas comunes.

De manera mas especifica, los objetivos concretos del proyecto son:

» Estudiar diferentes algoritmos de aprendizaje automatico orientados a la deteccién de anomalias y ataques
en redes.

= Comparar su rendimiento mediante métricas como precision, recall, F1-score o la tasa de falsos positivos.

» Analizar su aplicabilidad en contextos reales, valorando aspectos como el coste computacional, la com-
plejidad de entrenamiento o su escalabilidad.

» Elaborar una documentacion clara y técnica que recoja el andlisis realizado, los resultados obtenidos y
las conclusiones derivadas de la comparativa.

Estos objetivos permiten sentar una base solida sobre la que podrian construirse futuras soluciones mas
avanzadas y adaptadas a entornos productivos.

2.2. ALCANCE CAPITULO 2. OBJETIVOS Y ALCANCE

2.1.1 Tareas a realizar

Para alcanzar estos objetivos, el desarrollo del proyecto se divide en una serie de tareas estructuradas, que
marcan el ritmo y la direccion del trabajo:

= Definicién y planificacion del proyecto: Establecer el alcance, las fases de desarrollo, los hitos y los
entregables clave.

» Estudio del problema y andlisis del contexto: Investigar las caracteristicas de los ataques mas comunes y
la naturaleza del tréafico de red, asi como el papel de la IA en este tipo de deteccion.

= Revision del estado del arte: Analizar soluciones existentes y trabajos previos relacionados con el uso de
inteligencia artificial en sistemas IDS.

= Seleccién de algoritmos a evaluar: Identificar un conjunto representativo de modelos de aprendizaje au-
tomatico adecuados para el andlisis (por ejemplo: arboles de decisién, redes neuronales, k-NN, etc.).

= Preparacion de los datos de entrada: Preprocesar el dataset para que sea adecuado para el entrenamiento
y la evaluacion de los modelos.

» Entrenamiento, validacion y prueba de los modelos: Ejecutar cada modelo sobre los datos disponibles,
registrar su comportamiento y recoger las métricas correspondientes.

= Anadlisis de resultados y elaboracién de conclusiones: Interpretar los datos obtenidos y extraer conclusio-
nes fundamentadas sobre la idoneidad de cada algoritmo.

= Redaccion de la memoria y documentacion técnica: Recoger todo el proceso en una memoria académica
clara, estructurada y coherente, incluyendo los fundamentos, el desarrollo y los resultados del proyecto.

2.2 Alcance

El presente Trabajo de Fin de Grado se limita a la evaluaciéon comparativa de diferentes algoritmos de apren-
dizaje automatico aplicados a la deteccién de intrusiones en redes. Se trabajara en un entorno controlado, con
datos representativos, y se asumira una fase experimental cerrada, sin desplegar los modelos en entornos pro-
ductivos reales.

El proyecto comprende:

= La seleccion de un conjunto limitado de algoritmos con enfoques diversos dentro del aprendizaje auto-
matico supervisado.

= La preparacion y preprocesamiento de datos de red, que contengan tanto trafico legitimo como malicioso.

» El entrenamiento, evaluacion y comparacién de los modelos, atendiendo a métricas cuentitativas para
medir su eficacia y eficiencia.

= La documentacién técnica y académica del proceso y de los resultados, orientada a facilitar su compren-
sién y futuras extensiones.

Dado que se trata de un trabajo académico con recursos y tiempo limitados, no se contempla:

» El desarrollo de un sistema IDS completo que opere en tiempo real.

» La integracién con entornos empresariales o arquitecturas de produccion.

4

CAPITULO 2. OBJETIVOS Y ALCANCE 2.2. ALCANCE

= La creacion de interfaces graficas o mecanismos automaticos de respuesta ante alertas.

= La monitorizacion o reentrenamiento continuo del sistema en un entorno activo.

No obstante, todas estas limitaciones pueden considerarse lineas de mejora y ampliacién en trabajos futuros,
donde se aborde la implementacién de un sistema completamente funcional, capaz de integrarse en infraestruc-
turas reales, con capacidades de visualizacion, respuesta automatica y adaptabilidad continua al entorno.

En resumen, este proyecto tiene como objetivo ofrecer una base sélida de conocimiento y evaluacién técnica
sobre el uso de IA para la deteccion de intrusiones, proporcionando resultados comparativos que puedan guiar
decisiones futuras en el desarrollo de sistemas IDS inteligentes y eficaces.

2.2. ALCANCE CAPITULO 2. OBJETIVOS Y ALCANCE

Capitulo 3

Planificacion

Cualquier proyecto de investigacion requiere una planificacién estructurada que permita alcanzar los obje-
tivos propuestos de forma ordenada y eficaz. En el caso de este Trabajo de Fin de Grado, se ha optado por una
metodologia en cascada, que divide el desarrollo en fases secuenciales, permitiendo avanzar paso a paso con
una clara delimitacion de actividades y entregables.

Esta metodologia resulta especialmente adecuada para trabajos académicos como el presente, donde el al-
cance esta bien definido desde el inicio y no se prevén grandes cambios en los requisitos durante el desarrollo.
A continuacién, se describen las fases establecidas para la realizacion del proyecto, asi como su planificacién
temporal.

3.1 Fases y costes

El proyecto se ha organizado en cinco fases principales, cada una con una duracion estimada. Esta dis-
tribucién permite estructurar el trabajo de forma coherente, facilitando la gestion del tiempo y asegurando la
cobertura de todas las tareas necesarias.

Nombre de actividad Semanas
Estudio preliminar y andlisis del problema 1-2
Disefio experimental 3
Desarrollo del sistema de evaluacién 4-8
Ejecucion de pruebas y andlisis de resultados 9-10
Documentacién y redaccién de la memoria del TFG 1-13

Tabla 3.1: Fases de desarrollo del proyecto previstas.

Para facilitar la comprensién de esta planificacién, a continuacién se incluye un diagrama de Gantt, don-
de se representan graficamente las actividades del proyecto y su distribucion temporal a lo largo de las semanas:

Este diagrama proporciona una vision global del calendario del proyecto y permite identificar solapamien-
tos, dependencias entre tareas y puntos clave de avance.

3.1.

FASES Y COSTES CAPITULO 3. PLANIFICACION

3.1

1.

Planificacion inicial

S.1-2 S.3-4 S.5-6 S.7-8 | S.9-10 | S.11-12 | S.13-14

Anélisis del problema

Disefio experimental]

Desarrollo del sistema [|

Pruebas y anélisis]

Redaccion del TFG

Figura 3.1: Planificacién inicial

.1 Descripcion de las fases

Estudio preliminar y analisis del problema (Semana 1 - 2): En esta fase se realiza una revision biblio-
grafica sobre los sistemas de deteccién de intrusos, las técnicas de aprendizaje automatico aplicadas a la
ciberseguridad y los datasets de referencia en el area. También se analizan los principales retos técnicos
del problema.

. Disefio experimental (Semana 3): Se definen los algoritmos de aprendizaje automatico que seran evalua-

dos, las métricas que se utilizaran para compararlos, los criterios de validacién del experimento y el flujo
general de trabajo: desde la carga del dataset hasta la obtencion de los resultados.

. Desarrollo del sistema de evaluacion (Semana 4 - 8): En esta etapa se implementa el sistema encargado

de entrenar, validar y comparar los modelos. Incluye tareas de preprocesamiento del dataset, extraccion
de caracteristicas relevantes, entrenamiento de los modelos, y visualizacién de resultados.

Ejecucién de pruebas y analisis de resultados (Semana 9 - 10): Se llevan a cabo las pruebas experimentales,
evaluando cada algoritmo con los mismos criterios para garantizar una comparacion justa. Posteriormente
se analizan los resultados, se extraen conclusiones y se identifican patrones relevantes.

Documentacién y redaccién de la memoria del TFG (Semana 1 - 13): La memoria se redacta de forma
progresiva a lo largo de todo el proyecto, lo que permite documentar cada fase conforme se desarrolla. Esto
garantiza una mayor precision y coherencia en la elaboracién del documento final, facilitando ademas la
incorporacion de mejoras conforme avanza el trabajo.

Esta planificacion permite distribuir de manera eficiente el tiempo y los recursos del proyecto, asegurando
la consecucion de todos los objetivos marcados dentro del marco temporal previsto.

3.1

.2 Costes

Aunque este Trabajo de Fin de Grado no implica un desembolso econdémico directo por parte del estudiante
o la institucion, es posible estimar el coste real del proyecto considerando los recursos humanos y materiales
utilizados durante su desarrollo.

Coste del desarrollador

El tiempo estimado dedicado al desarrollo completo del proyecto ha sido de aproximadamente 300 horas.
Si se considera un coste medio de 15€/hora como referencia para un perfil junior o de practicas en el &mbito
tecnoldgico, se obtiene un coste estimado de:

300 horas x 15€/hora = 4,500 €

8

CAPITULO 3. PLANIFICACION 3.2. GESTION DE RIESGOS Y DIFICULTADES

Coste del equipo utilizado

El proyecto se ha desarrollado integramente en un equipo personal. Las caracteristicas del ordenador utili-
zado se detallaran mas adelante en el Capitulo [§.

El coste estimado del equipo completo al momento de su adquisicion fue de aproximadamente 1.200€. Si
se asume una vida til de 4 afios, se puede estimar un coste anual de:

1,200€

4 afios

Dado que el proyecto ha requerido 300 horas, y considerando un uso medio de 1500 horas anuales del equipo
para actividades similares, el coste proporcional del equipo seria:

300
<1500) x 300€ ~ 60€

= 300 € por afio

Coste total estimado del proyecto
Sumando los dos componentes anteriores:

= Coste del desarrollador: 4.500€

= Coste del equipo (proporcional): 60€

Total estimado: 4,560 €

Este calculo proporciona una visién mas realista del coste asociado al desarrollo de un proyecto de inves-
tigacion aplicado como este, lo cual puede resultar ttil a la hora de valorar esfuerzos similares en entornos
profesionales o académicos.

3.2 Gestion de riesgos y dificultades

En cualquier proyecto de investigacion, especialmente aquellos relacionados con la implementacién de mo-
delos de aprendizaje automatico, surge la posibilidad de enfrentarse a diversos riesgos e imprevistos que pueden
influir en el éxito del proyecto, asi como en su planificacién temporal y presupuestaria. Por ello, se realiza en
este apartado un andlisis de los riesgos previstos, junto con el impacto que podrian ocasionar y las estrategias
de mitigacion planteadas. Ademads, se detallan las dificultades enfrentadas durante el desarrollo y las acciones
que se implementaron para resolverlas.

3.2.1 Principales riesgos previstos

Antes de iniciar el desarrollo, se identificaron diversos riesgos relacionados con la planificacion del proyecto
y el manejo de las herramientas necesarias. Estos riesgos, junto con su impacto potencial y las estrategias para
mitigarlos, se presentan en la tabla B.2.

El andlisis de riesgos fue un paso clave para anticipar posibles problemas en el desarrollo del trabajo y
establecer medidas que pudieran minimizar sus impactos.

3.2.2 Dificultades enfrentadas y resolucion

A lo largo del desarrollo del proyecto surgieron ciertos problemas que, aunque no habian sido contemplados
en la planificacién inicial, influyeron en el cronograma y obligaron a replantear tareas. La tabla 3.3 detalla estas
dificultades junto con las soluciones aplicadas para garantizar el cumplimiento de los objetivos.

Estas dificultades fueron superadas gracias a la aplicacién de estrategias flexibles y la capacidad de realizar
ajustes a lo largo del proceso.

3.2. GESTION DE RIESGOS Y DIFICULTADES

CAPITULO 3. PLANIFICACION

Riesgo identificado

Impacto potencial

Estrategia de mitigacion

Falta de experiencia en la tecno-
logia o herramientas requeridas
para el proyecto.

Retrasos en la implementacién debido a
una curva de aprendizaje pronunciada.

Dedicacion de tiempo inicial
al aprendizaje autodidacta con
recursos en linea y tutoriales,
priorizando soluciones de menor
complejidad.

Recursos técnicos insuficientes,
como capacidad de hardware li-
mitada para entrenar modelos.

Imposibilidad de completar experimen-
tos de manera eficiente o resultados de
baja calidad.

Utilizar servicios de cémputo en
la nube o realizar pruebas con
versiones reducidas de los da-
tasets para disminuir la carga
computacional.

Mal célculo del tiempo necesario
en tareas especificas.

Retrasos acumulados hacia las fases fi-
nales del proyecto.

Mantener un cronograma flexi-
ble, con margenes especificos
para las fases criticas.

Falta de claridad respecto a los
objetivos del proyecto en etapas
iniciales.

Cambios en la direccién del trabajo,
con necesidad de rehacer tareas previas.

Coordinacién regular con el tu-
tor para revisar los avances y
asegurar que las tareas cumplen
con los objetivos fundacionales.

Problemas de organizacién per-
sonal y conciliaciéon con otras
obligaciones académicas.

Falta de dedicacién suficiente al pro-
yecto, comprometiendo la calidad o
avances.

Establecimiento de horarios es-
trictos de trabajo dedicado al
TFG, priorizando el avance pro-
gresivo frente a acumulaciones.

Tabla 3.2: Riesgos previstos en el proyecto, su impacto y estrategias de mitigacion.

Dificultad

Impacto generado

Solucién implementada

Dificultades técnicas en la inte-
gracion de herramientas (e.g., li-
brerias no compatibles).

Retrasos en la implementacién inicial
del sistema de evaluacion.

Cambiar a herramientas con ma-
yor soporte técnico y comprobar
compatibilidad antes de su adop-
cion.

Volumen elevado del dataset,
causando problemas de rendi-
miento en el equipo.

Imposibilidad de entrenar modelos mas
complejos debido a limitaciones del
hardware.

Utilizar muestras reducidas del
dataset.

Resultados iniciales inconsisten-
tes o de baja calidad en la evalua-
cién de los modelos.

Necesidad de realizar ajustes repetiti-
vos en la parametrizacién de los algo-
ritmos, incrementando la carga de tra-
bajo.

Ajustar los criterios de valida-
cion y refinar las métricas, prio-
rizando una interpretacién mas
clara de los resultados.

Organizacién del tiempo com-
prometida por otras asignaturas.

Retraso en ciertas entregas intermedias
respecto al cronograma original.

Reajustar la planificacién para
dedicar sesiones semanales es-
pecificas al TFG, con objetivos
parciales definidos.

Tabla 3.3: Dificultades enfrentadas durante el desarrollo y acciones de resolucion.

3.2.3 Lecciones aprendidas

El desarrollo del proyecto permiti6 identificar una serie de lecciones clave derivadas tanto de los riesgos
previstos como de las dificultades reales enfrentadas:

= La planificacién debe ser flexible, con margenes suficiente para tareas criticas, entendiendo que los tiem-
pos iniciales suelen subestimarse.

10

CAPITULO 3. PLANIFICACION 3.2. GESTION DE RIESGOS Y DIFICULTADES

= Dedicar tiempo al entendimiento temprano de las herramientas y procesos técnicos seleccionados puede
evitar problemas en fases posteriores.

» Lacoordinacién regular con el tutor o supervisor del TFG es esencial para alinear la direccion del proyecto
y obtener un feedback constante.

» Dividir el trabajo en objetivos parciales semanales o mensuales ayuda a mantener el ritmo y reduce la
acumulacion de tareas hacia el final del proyecto.

En conclusién, el analisis y gestién de riesgos, junto con las estrategias implementadas para resolver dificultades,
resultaron factores esenciales para llevar a buen término el proyecto dentro del marco temporal establecido y
garantizando la calidad de los resultados obtenidos.

11

3.2. GESTION DE RIESGOS Y DIFICULTADES CAPITULO 3. PLANIFICACION

12

Capitulo 4

Marco Conceptual

Todo sistema, por innovador que sea, se construye sobre conceptos y tecnologias previas que lo hacen
posible. Este capitulo presenta los fundamentos teéricos y técnicos que sustentan el desarrollo de WatchdogAl,
ofreciendo un marco de referencia esencial para comprender su disefio y funcionamiento. En particular, se
abordan los principios de la deteccion de intrusos, el uso del aprendizaje automatico en ciberseguridad y otros
elementos técnicos clave.

4.1 Sistemas de Deteccion de Intrusos (IDS)

Un sistema de deteccién de intrusos (IDS, por sus siglas en inglés) tiene como finalidad monitorizar el trafico
de red o las actividades de un sistema, con el objetivo de identificar comportamientos anémalos o potencial-
mente maliciosos. Este tipo de sistemas han sido ampliamente estudiados en la literatura sobre seguridad de red
[BO], destacando por su capacidad para identificar comportamientos maliciosos mediante diferentes enfoques
de andlisis. Existen dos enfoques principales:

= Basados en firmas: Detectan amenazas comparando el trafico con patrones previamente identificados.
Son eficaces frente a ataques conocidos, pero ineficaces ante amenazas nuevas.

= Basados en anomalias: Establecen un perfil de comportamiento habitual y alertan cuando se detectan
desviaciones significativas. Este enfoque permite descubrir ataques novedosos, aunque puede generar una
mayor tasa de falsos positivos.

WatchdogAlI se enmarca dentro del enfoque basado en anomalias, incorporando técnicas de aprendizaje
automatico para definir y ajustar dindmicamente ese concepto de “normalidad”, en funcién del entorno y de los
datos observados.

4.2 Aprendizaje automatico y su apliacaciéon en cibersegu-
ridad

El aprendizaje automatico es una rama de la inteligencia artificial que se ocupa del desarrollo de algoritmos
capaces de aprender a partir de datos, identificar patrones y tomar decisiones sin necesidad de instrucciones
explicitas para cada caso. Su aplicacion en ciberseguridad ha demostrado ser especialmente 1til en contextos
dinamicos, donde las amenazas son variadas y dificiles de predefinir mediante reglas estaticas.

13

4.3. LIMITACIONES DE LOS SISTEMAS CONVENCIONALES CAPITULO 4. MARCO CONCEPTUAL

Uno de los principales beneficios del aprendizaje automatico en ciberseguridad es su capacidad de detectar
amenazas desconocidas o zero-day, que no pueden ser interceptadas mediante reglas estaticas [[1].

En este ambito, permite analizar grandes voltimenes de trafico de red para identificar comportamientos
anomalos que podrian pasar inadvertidos con enfoques tradicionales. Entre sus principales ventajas destacan:

Capacidad para detectar amenazas desconocidas (zero-day).

Menor dependencia de reglas definidas manualmente.

Adaptacién continua a cambios en el entorno.

Mayor rapidez y escalabilidad en la deteccion.

El modelo de deteccion desarrollado para WatchdogAl utiliza técnicas de aprendizaje supervisado, entrena-
das a partir de datos etiquetados, para distinguir entre trafico legitimo y malicioso.

4.3 Limitaciones de los sistemas convencionales

Los sistemas tradicionales de deteccién, basados principalmente en reglas o firmas, siguen siendo ttiles
en ciertos contextos, pero presentan limitaciones importantes, en particular, la inspeccién basada en carga util
(Deep Packet Inspection, DPI) también presenta retos de rendimiento y privacidad en entornos de alta carga,
como se analiza en [[13]. Su dependencia del conocimiento previo impide detectar nuevas amenazas y su efec-
tividad en entornos complejos o cambiantes.

Ademas, requieren una supervisién y configuracién constantes, lo que resulta dificil de sostener en redes con
alto volumen de trafico o eventos. Frente a esas limitaciones, se hace necesaria una alternativa mas auténoma
y flexible, como la que propone WatchdogAl, que combina técnicas modernas de andlisis con capacidades de
adaptacion continua.

4.4 Aprendizaje supervisado

Existen distintas estrategias de entrenamiento en aprendizaje automatico. En este proyecto se ha optado por
el enfoque supervisado, en el que el sistema aprende a partir de un conjunto de datos etiquetado que indica si
una conexion es légitima o maliciosa [2].

Este método permite obtener modelos precisos siempre que se disponga de datos representativos y equi-
librados. Una vez entrenado, el modelo puede generalizar su conocimiento y clasificar nuevas conexiones en
tiempo real, facilitando asi una deteccién eficaz de amenazas.

4.5 Tipos de aprendizaje en deteccidn de intrusos

Aunque el modelo desarrollado en WatchdogAl se basa en aprendizaje supervisado, existen otras técnicas
utilizadas en este campo. El aprendizaje no supervisado permite detectar comportamientos anémalos sin nece-
sidad de datos etiquetados, lo que resulta ttil cuando no se dispone de informacién clasificada.

Por otro lado, al aprendizaje semi-supervisado combina una pequefia cantidad de datos etiquetados con una

gran proporcion de datos no etiquetados, lo que convierte en una opcién atractiva en contextos donde el etique-
tado manual es costoso o poco viable.

14

CAPITULO 4. MARCO CONCEPTUAL 4.5. TIPOS DE APRENDIZAJE EN DETECCION DE INTRUSOS

Cada enfoque presenta ventajas e inconvenientes. En este caso, se ha elegido aprendizaje supervisado por
su fiablidad, capacidad de evaluacién objetiva y buenos resultados en contextos controlados, lo que se ajusta a
los objetivos y limitaciones del proyecto.

15

4.5. TIPOS DE APRENDIZAJE EN DETECCION DE INTRUSOS CAPITULO 4. MARCO CONCEPTUAL

16

Capitulo 5

Soluciones Existentes

Antes de abordar el disefio y desarrollo de una investigacion como WatchdogAl, resulta fundamental cono-
cer las tecnologias y enfoques ya existentes en el &mbito de la deteccion de intrusos. Este capitulo presenta una
revision general de herramientas y sistemas representativos, tanto tradicionales como basados en inteligencia
artificial, con el fin de contextualizar el proyecto dentro del panorama actual.

El objetivo no es ofrecer un analisis exhaustivo, sino aportar una vision comparativa que permita identificar
las principales fortalezas y limitaciones de las soluciones mas relevantes. De este modo, se podra justificar con
mayor claridad el enfoque adoptado en el desarrollo del sistema propuesto.

5.1 Sistemas tradicionales de deteccidon

5.1.1 Snort

Snort [8] es uno de los sistemas de deteccién de intrusos (IDS) més consolidados y ampliamente utilizados.
Desarrollado inicialmente por Sourcefire y actualmente mantenido por Cisco, funciona principalmente median-
te deteccién basada en firmas. Su mecanismo consiste en comparar patrones del trafico de red con una base de
reglas predefinidas, la cual puede actualizarse para incorporar nuevas amenazas.

Una de sus principales ventajas es la posibilidad de definir reglas altamente personalizadas, lo que lo convier-
te en una herramienta flexible. Sin embargo, esta flexibilidad implica una fuerte dependencia del mantenimiento
continuo por parte de los administradores. Aunque puede configurarse en modo inline para prevenir intrusiones
(IPS), su uso mas habitual es en modo pasivo, generando alertas ante posibles incidentes. Su principal limita-
cion es la incapacidad para detectar ataques desconocidos o variantes que no coincidan con las firmas existentes.

5.1.2 Suricata

Suricata [26], desarrollado por la Open Information Security Foundation (OISF), representa una evolucién
moderna del enfoque de Snort. También se basa en reglas, pero incorpora mejoras técnicas importantes: per-
mite el andlisis concurrente de multiples hilos de trafico, es compatible con protocolos avanzados como TLS y
HTTP/2, y ofrece capacidades de inspeccion profunda de paquetes (Deep Packet Inspection).

17

5.2. HERRAMIENTAS CON ENFOQUE DE MACHINE LEARNIMAPITULO 5. SOLUCIONES EXISTENTES

Ademas, facilita la exportacion de datos en formatos estructurados como JSON, lo que mejora su integra-
cion con plataformas externas de andlisis y monitoreo. Aunque no incluye capacidades de machine learning
por defecto, puede conectarse con motores externos para este fin. En términos generales, proporciona mayor
rendimiento y escalabilidad que Snort, pero mantiene la limitacién inherente de depender de firmas estéticas.

5.2 Herramientas con enfoque de Machine Learning

5.2.1 Zeek

Zeek [33] es una plataforma de andlisis de trafico de red con amplia presencia en entornos de investigacion
y uso corporativo. A diferencia de Snort o Suricata, no se basa en reglas fijas, sino en politicas de analisis de
eventos que permiten observar el trafico de forma mas contextual.

Esto permite generar registros detallados sobre el comportamiento de la red, los cuales pueden analizarse
posteriormente mediante herramientas externas, incluyendo modelos de machine learning. Aunque no actia
como un IDS tradicional en términos de respuesta inmediata, su arquitectura modular lo convierte en una base
idénea para desarrollar soluciones mas avanzadas y adaptativas.

5.2.2 Herramientas académicas y experimentales

En el &mbito académico y experimental han surgido diversas herramientas, como PyIDS, centradas en apli-
car técnicas de machine learning a la deteccién de intrusos. Estas soluciones suelen operar sobre conjuntos de
datos etiquetados y emplear algoritmos como Random Forest, maquinas de soporte vectorial (SVM) o redes
neuronales, entre otros.

Aunque estan orientadas principalmente a entornos de prueba o simulaciones controladas, resultan esen-
ciales para explorar nuevas metodologias y validar su eficacia. No obstante, su aplicacién practica en entornos
reales suele estar limitada por restricciones en rendimiento, escalabilidad y capacidad de anélisis en tiempo real.

5.3 Limitaciones comunes

A pesar de los avances tecnolégicos, muchas de las soluciones actuales presentan limitaciones que afectan
directamente a su efectividad en entornos operativos:

= Dependencia de conocimiento previo: Tanto en sistemas basados en firmas como en modelos supervisa-
dos, la necesidad de contar con datos previamente etiquetados limita su capacidad para detectar amenazas
desconocidas.

= Problemas de escalabilidad: El creciente volumen de trafico de red puede saturar facilmente sistemas
que no han sido disefiados para operar en tiempo real o que carecen de mecanismos de procesamiento
eficiente.

= Complejidad técnica: Muchas herramientas requieren conocimientos especializados para su correcta
instalacién, configuracién y mantenimiento, lo que dificulta su adopcién en algunos entornos.

= Falta de adaptabilidad: La mayoria de los sistemas carece de mecanismos para ajustarse de forma au-
tomatica a nuevas condiciones de red o a la evolucién de amenazas.

18

CAPITULO 5. SOLUCIONES EXISTENTES 5.3. LIMITACIONES COMUNES

En este contexto, WatchdogAl surge con el propdsito de cubrir algunas de estas carencias. Sin pretender
reemplazar a las herramientas existentes, propone un enfoque ligero, modular y automatizado, centrado en la
deteccion en tiempo real mediante el aprendizaje automatico, llegando a servir como base experimental para el
desarrollo de de soluciones mas agiles e inteligentes, capaces de complementar los sistemas tradicionales en un
entorno cada vez mas complejo y dindmico.

19

5.3. LIMITACIONES COMUNES CAPITULO 5. SOLUCIONES EXISTENTES

20

Capitulo 6

Estudio de los datos

Antes de disefiar e implementar cualquier solucion basada en inteligencia artificial, es fundamental realizar
un andlisis previo riguroso tanto del problema como de los datos con los que se va a trabajar. En el caso de
un sistema de deteccion de intrusos, la calidad, variedad y estructura del conjunto de datos influyen de manera
decisiva en la efectividad de los modelos empleados. Por ello, este capitulo recoge el estudio preliminar de los
datasets considerados, el andlisis del dataset finalmente seleccionado y la justificaciéon de los modelos de ma-
chine learning evaluados.

Este analisis permite no solo entender mejor el contexto del problema, sino también anticipar posibles limi-
taciones, necesidades de preprocesamiento y decisiones clave de disefio que marcaran el desarrollo del sistema.

6.1 Descripcion y comparacion de los datasets

Uno de los pasos mas importantes al abordar un problema de deteccién de intrusos mediante aprendizaje au-
tomatico es la seleccion de un conjunto de datos adecuado. La calidad, variedad y representatividad del dataset
influyen directamente en la capacidad del modelo para generalizar y detectar amenazas reales. En este proyecto
se analizaron tres datasets diferentes, cada uno con caracteristicas distintas, con el objetivo de elegir aquel que
ofreciera el equilibrio 6ptimo entre realismo, complejidad y viabilidad de uso.

A continuacién, se describen brevemente los tres datasets considerados:

6.1.1 CIC-IDS2017 [5]

Este conjunto de datos ha sido desarrollado por el Canadian Institute for Cybersecurity. Se trata de uno de
los datasets mas completos y utilizados en la literatura académica para entrenar y evaluar sistemas de deteccion
de intrusos. Su principal fortaleza reside en que el trafico fue generado en un entorno de red realista, con usua-
rios simulando actividades cotidianas (navegaciéon web, correo electrénico, FTP, videollamadas, etc.) mientras
se ejecutaban distintos tipos de ataques planificados. El trafico estd bien etiquetado, diferenciando el trafico
benigno del malicioso e identificando el tipo concreto de ataque en cada caso.

6.1.2 IDS Packet Dataset (IEEE DataPort) [19]

Este dataset, publicado en la plataforma IEEE DataPort, ofrece capturas de trafico de red a nivel de paquetes
(PCAP). Esté orientado a un andlisis mds granular, permitiendo acceder a detalles bajos del protocolo. Si bien su

21

6.2. FORMATO Y ESTRUCTURA DEL DATASET ELEGIDO CAPITULO 6. ESTUDIO DE LOS DATOS

nivel de precision puede resultar til para sistemas que trabajan con deteccién muy especifica, presenta algunas
limitaciones: su documentacion es escasa, requiere un preprocesamiento complejo para extraer caracteristicas
utiles, y su estructura no esta tan preparada para su uso inmediato con modelos supervisados.

6.1.3 Dataset de Red Militar [21]

Este dataset simula el trafico de red de un entorno militar, incluyendo ataques especificos y patrones de com-
portamiento propios de este tipo de infraestructura. Aunque resulta interesante por ofrecer un enfoque alternativo
al entorno civil habitual, presenta ciertas desventajas: al ser completamente simulado, puede no generalizar bien
a otros contextos reales, su variedad de ataques es limitada y no es un dataset ampliamente validado por la co-
munidad investigadora.

6.1.4 Justificacion de la elecciéon

A continuacién, se incluye una tabla comparativa que resume las principales caracteristicas de los datasets
analizados:

caracteristicas CIC-IDS2017 IDS Packet Dataset Red Militar (Kaggle)

Origen / Tipo de datos Trafico realista simulado Capturas PCAP a bajo nivel Simulacién militar

Tamaiio aprox. ~80 GB Variable Medio

Variedad de ataques Alta Media Baja / Media

Realismo del trafico Alto Medio Bajo

Formato / Dificultad de preprocesamiento | CSVs separados por ataque PCAP, extraccion manual compleja CSV o formato mixto

Ventajas principales Muy completo, bien etiquetado Analisis a nivel de paquete Enfoque alternativo, entorno simulado
Inconvenientes principales Tamafio elevado, requiere limpieza y balanceo | Poca documentacion, extraccion costosa | Poca generalizacion, limitado en ataques y trafico

Tabla 6.1: Comparativa de datasets.
Tras analizar los tres conjuntos de datos, se opté por utilizar CIC-IDS2017 como base para el desarrollo del
proyecto. Esta decision se fundamenta en los siguientes motivos:

= Es uno de los datasets mas utilizados y validados en investigaciones relacionadas con sistemas IDS, lo
que facilita la comparacién con estudios previos.

= Presenta una gran variedad de ataques y un etiquetado claro, lo que permite trabajar tanto con problemas
de clasificacién binaria como multiclase.

» El tréfico fue generado en condiciones realistas, simulando usuarios y comportamientos cotidianos, lo
que mejora la aplicabilidad del modelo a escenarios reales.

= Aunque su tamafio y desbalanceo presentan ciertos retos técnicos, estos pueden abordarse mediante téc-
nicas de preprocesamiento y seleccién de caracteristicas.

Gracias a estas cualidades, el CIC-IDS2017 proporciona una base so6lida para evaluar el rendimiento de
distintos algoritmos de deteccion y comparar sus resultados de forma fiable.

6.2 Formato y estructura del dataset elegido

Una vez seleccionado el corpus de datos CIC-IDS2017 como nticleo del estudio, es fundamental compren-
der su estructura y formato antes de aplicar cualquier técnica de anélisis o modelado. Este conocimiento previo
facilita el disefio del sistema de preprocesamiento, asi como la adecuacion de los modelos de aprendizaje auto-
matico a los datos disponibles.

22

CAPITULO 6. ESTUDIO DE LOS DATOS 6.2. FORMATO Y ESTRUCTURA DEL DATASET ELEGIDO

6.2.1 Estructura general

El dataset CIC-IDS2017 se distribuye originalmente en multiples archivos CSV, donde cada archivo repre-
senta el trafico capturado en un dia concreto, asociado a un conjunto especifico de ataques. Por ejemplo, uno de
los ficheros puede contener ataques DDoS, otro ataques web, otro trafico benigno, etc. Cada archivo contiene
miles de muestras, siendo cada una de ellas una conexién de red representada por una serie de caracteristicas
estadisticas y de comportamiento.

Para facilitar su tratamiento y andlisis, se puede realizar un proceso de unificacién de todos los archivos CSV
en un dUnico DataFrame usando la libreria Pandas de Python. Este DataFrame permite trabajar con el dataset
completo de manera mas eficiente y uniforme, facilitando las tareas de limpieza, transformacién y modelado.

6.2.2 Volumen de datos

El dataset unificado contiene millones de registros y aproximadamente 80 caracteristicas por muestra. Sin
embargo, este nimero puede variar tras la limpieza y seleccién de caracteristicas, como se detallard mas adelante.
En su estado inicial, el tamafio total del conjunto ronda los 80 GB, lo que obliga a utilizar herramientas y técnicas
optimizadas para su procesamiento.

6.2.3 Tipos de datos

Las caracteristicas del dataset son en su mayoria variables numéricas que describen propiedades estadisticas
de las conexiones de red. Estas incluyen, entre otras:

= Duracion de la conexion.

Tamafio total de los paquetes enviados o recibidos.

Velocidad media de transmision.

Conteo de paquetes o bytes hacia uno u otro sentido.

= Indicadores booleanos como flags TCP (PSH, URG, FIN...).

Tiempos de espera o delays entre paquetes.

También hay algunas columnas con valores categéricos, como la etiqueta de clase (por ejemplo: BENIGN,
Bot, DDoS, etc.), que identifica el tipo de trafico asociado a cada muestra. Esta etiqueta es la que se utilizara
como variable objetivo (y) durante el entrenamiento y evaluacién de los modelos.

6.2.4 Caracteristicas destacadas

Algunas de las caracteristicas mas relevantes y frecuentemente utilizadas en modelos de deteccién de intru-
sos incluyen:

» Flow Duration: tiempo total de duracion de la conexién.

= Total Fwd Packets / Total Backward Packets: nimero de paquetes enviados en cada direccion.

Bwd Packet Length Min / Max / Mean: estadisticas sobre el tamafio de los paquetes recibidos.

PSH Flag Count, URG Flag Count: recuento de flags especificos del protocolo TCP.

Flow IAT (Inter Arrival Time): tiempos entre paquetes dentro de un mismo flujo.

Estas variables permiten capturar tanto la estructura técnica del trafico como patrones de comportamiento
que pueden diferenciar el trafico benigno del malicioso.

23

6.3. PROBLEMAS DETECTADOS EN LOS DATOS CAPITULO 6. ESTUDIO DE LOS DATOS

6.2.5 Etiquetas de clasificacion

En su forma original, el dataset permite trabajar con un enfoque multiclase, ya que contiene mas de una
docena de tipos de ataques distintos. Sin embargo, para facilitar ciertas pruebas y andlisis, también se puede
llegar a considerar un enfoque binario, agrupando todas las clases maliciosas bajo una tinica etiqueta MALIGN,
frente a la clase BENIGN. Esta transformacién permite comparar los resultados entre ambas configuraciones y
explorar diferentes estrategias de deteccién.

6.3 Problemas detectados en los datos

Trabajar con un dataset real y de gran tamafio como CIC-IDS2017 implica enfrentarse a una serie de desafios
relacionados con la calidad, consistencia y distribucion de los datos. Antes de poder entrenar modelos fiables,
es necesario realizar una exploracién inicial que identifique estos problemas y aplicar un proceso de limpieza
riguroso que garantice la validez de los resultados.

6.3.1 Valores nulos y columnas irrelevantes

Unarevisién inicial de los archivos CSV ha puesto de manifiesto la presencia de columnas con valores nulos,
algunas de ellas completamente vacias o con un unico valor constante. Estas variables, al no aportar informacion
relevante ni variabilidad, podrian introducir ruido en el entrenamiento de los modelos. La existencia de valores
ausentes también plantea la necesidad de decidir si se imputaran, eliminaran o trataran mediante otro mecanismo,
decisién que se tomard mas adelante en funcién de la proporcién y la importancia de cada atributo.

6.3.2 Posibles registros duplicados o inconsistentes

Dado que el dataset se compone de muiltiples archivos generados en distintos dias y bajo diferentes simula-
ciones de ataque, se sospecha que puede haber registros duplicados o inconsistentes. Aunque no se ha realizado
aun una validacién exhaustiva, este riesgo existe y serd evaluado mds adelante. Ademas, se han detectado va-
lores extremos (outliers) en ciertas caracteristicas como duracién de conexiones o tamafios de paquetes, cuya
interpretacion no es trivial: podrian ser tanto errores de captura como muestras anoémalas validas, por 1o que su
tratamiento requerira un andlisis mas detallado.

6.3.3 Desbalanceo en la distribucion de clases

Uno de los aspectos mas criticos identificados es el fuerte desbalanceo en la distribucion de clases. El trafico
etiquetado como BENIGN constituye la mayoria abrumadora del conjunto de datos, mientras que muchas clases
de ataque apenas representan una fracciéon minima. Este fendmeno es habitual en datasets de ciberseguridad y
puede dificultar seriamente el entrenamiento de modelos efectivos, al provocar un sesgo hacia la clase mayori-
taria.

Este desbalance sera uno de los principales retos a abordar en fases posteriores, tanto por su impacto en las
métricas como por la necesidad de mantener una representacién lo mas realista posible del tréfico de red. Se
prevé explorar diferentes estrategias para mitigar este problema, como la reduccién de la clase mayoritaria o el
reagrupamiento de clases minoritarias. [[17]

6.3.4 Complejidad y heterogeneidad de los datos

El conjunto presenta una elevada dimensionalidad, con decenas de caracteristicas de naturaleza diversa: al-
gunas numéricas, otras categoricas, e incluso combinaciones que reflejan propiedades a nivel de protocolo. Esta
heterogeneidad obliga a un estudio cuidadoso sobre qué variables son relevantes para el aprendizaje automatico,

24

CAPITULO 6. ESTUDIO DE LOS DATOS 6.4. MODELOS DE MACHINE LEARNING CONSIDERADOS

y cuales podrian descartarse por redundancia o irrelevancia.

Ademas, muchas de las caracteristicas estan altamente correlacionadas entre si, o podrian estar influenciadas
por el contexto especifico de la simulacién que gener6 el trafico. Este tipo de dependencias podria afectar
negativamente a la generalizacién de los modelos si no se controla adecuadamente.

6.4 Modelos de Machine Learning considerados

Uno de los principales objetivos del proyecto es evaluar el rendimiento de diferentes algoritmos de apren-
dizaje automatico aplicados a la deteccion de intrusos en trafico de red. Para ello, se han seleccionado cuatro
modelos representativos de distintas aproximaciones, considerando tanto su rendimiento en estudios previos
como su adecuacion al tipo de datos analizados.

A continuacion, se describe brevemente cada uno de los algoritmos, sus caracteristicas mas relevantes y las
razones por las que han sido considerados para su evaluacion en este trabajo.

6.4.1 Bosques Aleatorios (Random Forest)

Random Forest [3] es un algoritmo de tipo ensemble que combina muiltiples arboles de decision entrenados
sobre subconjuntos aleatorios del dataset y de las caracteristicas. Su fortaleza reside en su robustez frente al
overfitting y en su capacidad para manejar datos con muchas dimensiones sin necesidad de un preprocesamien-
to exhaustivo.

Ademas, permite extraer la importancia relativa de cada caracteristica, lo cual es especialmente util en
contextos como el presente, donde se dispone de decenas de variables y se desea optimizar el rendimiento
del modelo reduciendo la dimensionalidad.

6.4.2 Maquina de Vectores de Soporte (SVM)

Las Support Vector Machines [9] son modelos supervisados que intentan encontrar el hiperplano que mejor
separa las clases en el espacio de caracteristicas. Aunque pueden ofrecer muy buen rendimiento en datasets con
pocas muestras o en problemas linealmente separables, su uso presenta algunas limitaciones en este contexto:

= Requieren escalado de los datos.
= No estan pensadas para manejar grandes voliimenes de datos.
= El tiempo de entrenamiento puede ser muy elevado en conjuntos amplios como CIC-IDS2017.

Por ello, su uso se ha reservado a versiones mas reducidas y balanceadas del dataset, con el objetivo de
comparar su rendimiento en escenarios controlados.

6.4.3 XGBoost

XGBoost (Extreme Gradient Boosting) [[7] es un algoritmo basado en boosting de arboles de decision que
ha demostrado ser altamente eficaz en una amplia variedad de competiciones y estudios de machine learning.
Ofrece numerosas ventajas:

= Entrenamiento eficiente y rapido.
= Regularizacion integrada para evitar overfitting.

= Tolerancia a valores nulos.

25

6.4. MODELOS DE MACHINE LEARNING CONSIDERADOS CAPITULO 6. ESTUDIO DE LOS DATOS

= Posibilidad de ajustar mdltiples hiperparametros.

Gracias a su capacidad para trabajar con datos tabulares complejos y su buen rendimiento incluso en con-
textos con desbalanceo, XGBoost se ha convertido en uno de los candidatos principales en este proyecto. Tal
como se detallara en capitulos posteriores, ha sido uno de los modelos que mejores resultados ha obtenido.

6.4.4 Multilayer Perceptron (MLP)

El MLP [116] es una red neuronal de tipo feedforward compuesta por varias capas de neuronas. Aunque no
tan sofisticado como otras arquitecturas de deep learning, permite modelar relaciones no lineales complejas y
generalizar bien si se entrena adecuadamente.

En este caso, se ha explorado su uso sobre versiones mdas pequefias y balanceadas del dataset, dado que
su entrenamiento puede resultar costoso en términos de tiempo y recursos computacionales. Ademas, requiere
normalizacion de los datos y un cuidado especial para evitar problemas de sobreajuste.

En resumen, la seleccién de modelos busca cubrir diferentes enfoques y niveles de complejidad, desde
algoritmos clasicos como Random Forest hasta técnicas mas avanzadas como XGBoost y redes neuronales. Esta
variedad permitira realizar una comparativa objetiva entre sus rendimientos, analizando no solo la precisién,
sino también su capacidad de generalizacion, su tiempo de entrenamiento y su comportamiento frente a clases
desbalanceadas.

26

Capitulo 7

Diseno

El disefio del sistema constituye una de las fases mas relevantes de este proyecto, ya que marca la hoja de
ruta técnica que guiara todo el proceso de desarrollo y evaluacion. A partir del andlisis previo, se definen los
modulos funcionales y el flujo de trabajo necesarios para construir un sistema que permita comparar distintos
algoritmos de aprendizaje automatico en la tarea de deteccion de intrusiones.

Este capitulo presenta la arquitectura general del sistema, el disefio del pipeline de datos, las decisiones
adoptadas sobre los modelos de machine learning y los criterios definidos para su evaluacién. Todo ello con
el objetivo de garantizar un disefio reproducible, flexible y orientado a obtener resultados fiables que permitan
identificar el mejor enfoque para este tipo de problemas.

7.1 Arquitectura general del sistema

La arquitectura del sistema se ha planteado con una estructura modular y flexible, que facilita tanto el desa-
rrollo progresivo como la evaluacién independiente de cada componente. Cada fase del proceso ha sido disefiada
para ser lo mas desacoplada posible del resto, permitiendo modificar o sustituir partes concretas sin afectar al
conjunto.

A grandes rasgos, el sistema se compone de los siguientes bloques funcionales:

= Preprocesamiento de datos: Incluye la carga del dataset, limpieza de columnas innecesarias o vacias,
tratamiento de valores nulos, eliminacion de duplicados y normalizacién si es necesaria. También se aplica
el balanceo de clases en esta etapa.

= Entrenamiento de modelos: Se encargan de aplicar los algoritmos seleccionados (Random Forest, SVM,
XGBoost y MLP) sobre distintas versiones del dataset: completo, balanceado, reducido, binario y multi-
clase.

= Evaluacion de modelos: Tras el entrenamiento, se analizan las métricas obtenidas para cada modelo (pre-
cision, recall, F1-score, matriz de confusion), tanto en escenarios algo mas balanceados como reducidos.

= Seleccion de caracteristicas [4]: Una vez entrenados los primeros modelos, se analiza la importancia
relativa de cada caracteristica y se repite el entrenamiento con las mas relevantes, con el objetivo de

mejorar el rendimiento y reducir la complejidad.

27

7.2. DISENO DEL PIPELINE DE DATOS CAPITULO 7. DISENO

El proceso de disefio ha sido iterativo: algunas fases, como la seleccion de caracteristicas, se retroalimentan
de los resultados de la evaluacién para afinar modelos posteriores. Esta arquitectura favorece la experimentacion
controlada y la trazabilidad de los cambios.

Preprocesamiento J { Entrenamiento

Ajuste de Features} { Evaluacién

Figura 7.1: Diagrama de bloques para el flujo de trabajo.

7.2 Diseno del pipeline de datos

El pipeline [[11] de datos constituye la columna vertebral del sistema, ya que define como se procesan y
transforman los datos desde su estado original hasta su uso final en el entrenamiento de los modelos. Su disefio
ha seguido un enfoque estructurado y progresivo, permitiendo adaptarse a diferentes enfoques experimentales
sin comprometer la coherencia del analisis.

El flujo de trabajo del pipeline se compone de las siguientes etapas:

= Carga y unificacién del dataset: El dataset CIC-IDS2017 se proporciona en multiples archivos CSV,
cada uno correspondiente a un tipo de ataque o trafico. La primera fase del pipeline consiste en leer todos
estos archivos y combinarlos en un tinico DataFrame unificado. Esta operacion permite tratar el conjunto
de datos como una sola entidad homogénea, simplificando las fases posteriores.

= Limpieza de datos: Una vez unificado, se realiza una limpieza profunda del conjunto de datos. Se eli-
minan columnas completamente vacias, con valores constantes, o que no aportan valor informativo (por
ejemplo, timestamps redundantes o identificadores irrelevantes). También se eliminan duplicados y se
gestionan los valores nulos para evitar errores durante el entrenamiento.

= Analisis y transformacién de etiquetas: El dataset original incluye multiples clases que representan
tipos concretos de ataques. Se definieron varias estrategias de agrupacion de etiquetas para realizar andlisis
comparativos:

* Clasificacion binaria: Se agrupan todas las clases no benignas bajo una etiqueta comin MALIGN.

+ Clasificacion multiclase original: Se mantienen todas las clases de ataque por separado.

» Multiclase con agrupacion de ataques web: Se agrupan ataques como Brute Force, SQL Injec-
tion y XSS en una clase comiin Web Attack, para mejorar la estabilidad del modelo y reducir la
confusion entre clases similares.

= Balanceo del dataset: Dado el fuerte desbalanceo presente en el conjunto de datos —con la clase BENIGN
representando la mayoria de las muestras—, se aplica un undersampling de esta clase para obtener un
conjunto de datos mds equilibrado. También se construyen versiones reducidas del dataset, limitando el

28

CAPITULO 7. DISENO 7.3. DISENO DE LOS MODELOS DE MACHINE LEARNING

nimero de muestras por clase, para permitir el entrenamiento de modelos mas exigentes computacional-
mente (como SVM o MLP) sin necesidad de grandes recursos.

= Gestion de versiones del dataset: Todas las variantes generadas (original, balanceada, reducida, binaria,
multiclase, con agrupaciones) se gestionan de forma controlada, permitiendo reutilizarlas segtin las nece-
sidades de cada experimento. Esto facilita la comparacién directa entre modelos entrenados en distintas
condiciones.

Este disefio modular del pipeline de datos permite realizar modificaciones sobre una etapa concreta (por
ejemplo, probar otra técnica de balanceo) sin tener que rehacer todo el proceso. Ademas, contribuye a asegurar
la trazabilidad y reproducibilidad del sistema en su conjunto.

En la Figura [.2 se representa el flujo general de procesamiento de datos definido para el sistema. Este pipe-
line abarca desde la fase inicial de carga y unificacién de los archivos CSV originales del dataset, pasando por
la limpieza de columnas irrelevantes o vacias, hasta la transformacion de etiquetas y la aplicacién de técnicas
de balanceo.

A partir de este flujo base, se han generado distintas versiones del conjunto de datos —adaptadas para dis-
tintos modelos o enfoques de clasificacion—, manteniendo una estructura modular que permite reproducir y
escalar facilmente el proceso. Esta organizacion ha sido clave para evaluar el impacto de cada etapa en el ren-
dimiento final de los modelos.

La Tabla [7.1 muestra un resumen de las distintas versiones del dataset generadas durante el desarrollo del
proyecto. Cada una ha sido creada con un proposito especifico, ya sea mejorar la distribucién de clases, reducir
el tamafio del dataset para facilitar la experimentaciéon con modelos mas costosos computacionalmente o evaluar
distintos esquemas de clasificacion (binaria, multiclase o agrupada).

Esta estrategia ha permitido comparar modelos de forma més justa y estudiar cémo varia su rendimiento en
funcién del volumen de datos y del tipo de etiquetado utilizado.

Version del dataset N° muestras totales | N° clases | Tipo de clasificacion | Balanceado | Usado con modelos
Original completo ~2M+ 15 Multiclase No RF, XGB
Balanceado (undersample) | ~830k 2/15 Binaria/Multiclase Si RF, XGB

Agrupado (Web Attacks) | ~830k 13 Multiclase agrupada | Si RF, XGB

Dataset reducido ~60k 13 Multiclase agrupada | Si SVM, MLP

Dataset reducido 2 ~78k 13 Multiclase agrupada | Si SVM, MLP, XGB
Dataset reducido 3 ~100k 13 Multiclase agrupada | Si SVM, MLP

Tabla 7.1: Descripcién de las versiones del dataset

7.3 Diseno de los modelos de Machine Learning

La seleccion y configuracion de los algoritmos de machine learning es un elemento central en el disefio del
estudio. A partir del andlisis previo realizado en el capitulo anterior, se han identificado cuatro modelos que,
por sus caracteristicas, se consideran adecuados para abordar tanto la clasificacién binaria (trafico benigno vs
malicioso) como la multiclase (diferentes tipos de ataques).

Mas alla de su eleccién conceptual, esta seccion plantea las decisiones iniciales en cuanto a su configuracién
y uso previsto dentro del pipeline de deteccion, dejando para el capitulo de implementacion los ajustes finales

y la evaluacién de su rendimiento.

29

7.4. DISENO DE LA EVALUACION CAPITULO 7. DISENO

7.3.1 Modelos seleccionados y configuracion inicial
Los modelos seleccionados y su configuracién inicial prevista son los siguientes:

= Random Forest (RF): Se configura con el pardmetro class weight='balanced" para abordar el
desbalanceo de clases, aprovechando su capacidad para trabajar directamente con datos sin necesidad de
normalizacion. Se planea ajustar posteriormente parametros como el nimero de arboles (n_estimators)
y la profundidad maxima (max_depth), en funcién de los resultados obtenidos en las primeras pruebas.

= XGBoost: Se configura con su esquema por defecto, incluyendo pardmetros de regularizaciéon y manejo
de valores nulos. Posteriormente se evaluara la conveniencia de ajustar hiperpardmetros como el learning
rate, la profundidad de los arboles o el nimero de boosting rounds. Este modelo es especialmente pro-
metedor por su rendimiento en problemas con clases desbalanceadas y por su capacidad de andlisis de
importancia de caracteristicas.

= Multilayer Perceptron (MLP): Para este modelo, se considera una arquitectura simple con una o dos
capas ocultas, activacién ReLU vy salida softmax para la clasificacién multiclase. Se utilizara early stop-
ping y técnicas de regularizacion para evitar el sobreajuste. Dada su sensibilidad a la escala de los datos,
se normalizaran las caracteristicas de entrada.

= Support Vector Machine (SVM): Se prevé el uso de un kernel lineal, por su menor coste computacional
y buen comportamiento en datasets preprocesados. El entrenamiento se limitara inicialmente a conjuntos
de datos reducidos y balanceados, dado que SVM no escala bien con grandes volimenes de muestras.
Sera necesaria una normalizacion previa de los datos.

7.3.2 Estrategia de entrenamiento y validacidon prevista

En la fase de disefio se plantea adoptar una division clasica del conjunto de datos en entrenamiento y prueba,
utilizando un train-test split del 80 %-20 %. Esta aproximacion permitird evaluar inicialmente la capacidad de
generalizacion de los modelos con bajo coste computacional. Ademas, se considera la posibilidad de aplicar
validacion cruzada (k-fold cross-validation) [22] en los modelos que muestren mejores resultados preliminares,
para garantizar una mayor estabilidad en la evaluacion.

Asimismo, se mantendra un enfoque coherente en todas las pruebas para asegurar que los modelos compa-
rados trabajen sobre los mismos datos de entrada y bajo métricas homogéneas, evitando cualquier tipo de fuga
de datos del conjunto de prueba hacia el entrenamiento.

La buisqueda de hiperparametros 6ptimos se realizara de forma manual y acotada, ya que el objetivo principal
del proyecto no es alcanzar el mejor rendimiento absoluto de cada modelo, sino identificar cuél de ellos resulta
ser el mas adecuado dentro de un entorno realista de deteccién de intrusiones.

7.4 Diseno de la evaluacion

La evaluacién de los modelos es una parte critica del sistema, ya que no solo permite medir el rendimiento
de las distintas técnicas de deteccién, sino que también proporciona una base objetiva para comparar enfo-
ques y seleccionar la soluciéon mas adecuada al problema planteado. Esta seccién establece las métricas que se
emplearan, los criterios de comparacién entre modelos y la estrategia general de evaluacién.

7.4.1 Meétricas seleccionadas

Dado que el problema de deteccién de intrusiones suele implicar clases desbalanceadas y la existencia de
errores con costes diferentes (por ejemplo, pasar por alto un ataque puede ser mas grave que clasificar errénea-
mente un trafico benigno), se han seleccionado las siguientes métricas [[10]:

30

CAPITULO 7. DISENO 7.4. DISENO DE LA EVALUACION

= Precision (Precision): Proporcion de predicciones positivas correctas. Es titil para evaluar cuantos de los
eventos clasificados como ataques lo eran realmente.

= Exhaustividad o Recall: Mide cuantos de los eventos realmente maliciosos fueron detectados. Es espe-
cialmente relevante en sistemas IDS, donde no detectar un ataque puede tener consecuencias criticas.

s Fl-score: Media armodnica entre precision y recall, utilizada como métrica principal en este proyecto, ya
que ofrece un balance entre ambas y penaliza los extremos.

= Matriz de confusion: Herramienta visual que permite analizar los aciertos y errores por clase. Resulta
clave para entender como se comporta el modelo ante clases minoritarias o similares entre si.

Estas métricas se calcularan tanto para los modelos entrenados sobre el conjunto binario (BENIGN vs
MALIGN) como para los modelos multiclase (diferentes tipos de ataque), permitiendo observar cémo se de-
gradan o mejoran los resultados segtin la granularidad del problema.

7.4.2 Criterios para la comparacion entre modelos

Para asegurar una comparacion justa, todos los modelos serdn entrenados y evaluados bajo las mismas
condiciones: mismo conjunto de entrenamiento y prueba, mismos datos preprocesados y mismas métricas de
evaluacién. Las pruebas se realizaran con varios enfoques:

= Dataset completo con clase BENIGN predominante (enfoque realista).
= Dataset balanceado mediante undersampling (enfoque experimental).
= Dataset reducido para modelos mas sensibles a la escala como MLP o SVM.

La decision final sobre el mejor modelo se basara en un equilibrio entre rendimiento (especialmente F1-
score en clases minoritarias), tiempo de entrenamiento, simplicidad del modelo y capacidad de explicacién. No
se priorizara inicamente la métrica global, sino también la robustez del modelo ante cambios en la distribucién
del tréfico.

En este sentido, se consideran especialmente valiosas las métricas por clase en escenarios multiclase, ya que
permiten valorar si el modelo falla sistematicamente en detectar ciertos tipos de ataques, como los de tipo Web
o0 Botnet, que tienden a presentar patrones menos diferenciados.

31

7.4. DISENO DE LA EVALUACION CAPITULO 7. DISENO

{ Carga de CSVs }

Unificacién
en DataFrame

. W (Eliminar nulos,
Limpieza de datos .
J L columnas vacias, etc.
Transformacion W (Binaria / multiclase /
de etiquetas J L web attacks agrupados
Balanceo o reduc- W (Undersampling de BE-
cion del dataset J LNIGN / reduccién total

Dataset final listo
para modelado

Figura 7.2: Diagrama de flujo del procesamiento del dataset

32

Capitulo 8

Implementacion

Este capitulo describe en detalle el proceso de implementacion técnica del sistema propuesto, abarcando des-
de la configuracion del entorno de desarrollo hasta la construccién y evaluacion de los modelos de aprendizaje
automatico. Se ha adoptado un enfoque modular y reproducible, con el objetivo de facilitar tanto la experimen-
tacién como la futura ampliacion del proyecto.

A lo largo del capitulo se detallan las decisiones técnicas adoptadas, las funciones desarrolladas para auto-
matizar tareas recurrentes, y las estrategias empleadas para abordar desafios como el desbalanceo de clases o
la alta dimensionalidad del dataset. Asimismo, se presentan las principales librerias utilizadas, justificando su
eleccion en funcién de su robustez, versatilidad y adecuacién al problema de deteccion de intrusiones mediante
inteligencia artificial.

8.1 Entorno y herramientas

Para la implementacién de este proyecto se ha utilizado Pythen 3.11.9 [28] como lenguaje principal, debido
a su popularidad en el campo de la ciencia de datos, su extensa comunidad y la gran disponibilidad de librerias
especializadas en procesamiento de datos, machine learning y visualizacién.

Todo el desarrollo se ha realizado mediante Jupyter Notebook [20] ejecutado en local a través de Visual
Studio Code [25], lo que ha permitido una exploracién interactiva de los datos y una documentacién en linea
del flujo de trabajo.

El entrenamiento de los modelos se ha realizado exclusivamente en CPU, sin necesidad de utilizar entornos
con aceleracién por GPU, gracias a la reduccién progresiva del volumen de datos y a una gestion eficiente de
los recursos disponibles.

Ademas, para la elaboracién de 1a memoria del proyecto se ha empleado I&TEX[23], un sistema de composi-

cion tipografica ampliamente utilizado en entornos académicos y cientificos, que permite generar documentos
técnicos con gran calidad de presentacion y control sobre el formato.

8.1.1 Equipo utilizado
Las pruebas y entrenamientos se han realizado en un equipo con las siguientes especificaciones:

= Sistema operativo: Windows 11 (64 bits)

33

8.2. PREPROCESAMIENTO CAPITULO 8. IMPLEMENTACION

Procesador: Intel Core Ultra 5 135U @ 4.40GHz
Memoria RAM: 16 GB DDR5 @ 5600Mt/s
Almacenamiento: KIOXIA NVMe SSD 239 GB @ PCle

GPU: Intel Integrated Graphics (no utilizada en este proyecto)

Este entorno ha sido suficiente para ejecutar todos los experimentos de entrenamiento y evaluacién sin
requerir recursos de computacion en la nube ni hardware especializado.

8.1.2 Principales librerias utilizadas

Entre las principales librerias utilizadas en el proyecto destacan:

Pandas [B1]: Para la carga, manipulacion y analisis de estructuras de datos en formato tabular (DataFra-
mes), asi como para la unificacién y limpieza del dataset.

NumPy [[15]: Para operaciones numeéricas de bajo nivel y soporte a estructuras como arrays y matrices.

Matplotlib [18] y Seaborn [32]: Utilizadas para la generacion de graficos y visualizaciones que faciliten
la comprension de los datos y los resultados obtenidos.

Scikit-learn [27]: Libreria central para el desarrollo de modelos de machine learning, incluyendo algo-
ritmos de clasificacion, herramientas de preprocesamiento, particién de datos y métricas de evaluacion.

XGBoost: Framework especializado en técnicas de boosting, conocido por su alto rendimiento en tareas
de clasificacion estructurada.

Imbalanced-learn [24]: Libreria utilizada para explorar técnicas de balanceo de clases, incluyendo algo-
ritmos como SMOTE [§].

Estas herramientas han permitido construir un flujo de trabajo robusto, reproducible y alineado con las
mejores practicas en el campo de la deteccidn de intrusiones basada en inteligencia artificial.

8.2 Preprocesamiento

Para facilitar la tarea del preprocesamiento y estructurar el flujo de los datos, se ha implementado un con-
junto de funciones reutilizables que permiten llevar a cabo las distintas operaciones de limpieza, transformacién
y reduccién necesarias antes del entrenamiento de los modelos.

A continuacién, se detallan las principales funciones de preprocesamiento desarrolladas:

cargar_csvs(ruta_csvs): Esta funcion se encarga de recorrer de forma automatica todos los archivos
.csvV presentes en la ruta especificada y leerlos utilizando la libreria pandas. Cada archivo se carga en
un DataFrame independiente, y finalmente todos se concatenan en un tnico DataFrame principal que
aglutina todo el contenido del dataset. Durante la carga, se imprime por pantalla informacion til como el
nombre del archivo procesado y el nimero de filas que contiene. Esta funcion permite escalar facilmente
la carga de datos sin tener que especificar manualmente cada archivo.

limpiar_dataset(df): Una vez cargado el dataset, esta funcién limpia los datos eliminando columnas com-
pletamente vacias o constantes (es decir, sin variabilidad), asi como cualquier fila que contenga valores
nulos o duplicados. También se sustituyen los valores infinitos por nulos para garantizar la estabilidad de
los modelos. Con esta limpieza, se mejora tanto la calidad de los datos como la eficiencia del entrena-
miento posterior.

34

CAPITULO 8. IMPLEMENTACION 8.3. ENTRENAMIENTO Y SELECCION DE CARACTERISTICAS

= balancear_dataset(df): El conjunto de datos original est4 fuertemente desbalanceado, con una gran can-
tidad de trafico benigno frente a un nimero significativamente menor de muestras maliciosas. Para con-
trarrestar este efecto, se implementa esta funcion, que realiza un undersampling de la clase BENIGN. En
concreto, se iguala el nimero de muestras benignas al de las muestras maliciosas, y posteriormente se
barajan todas las filas para evitar cualquier sesgo por orden.

= convertir_binario(df): Esta funcion permite transformar el dataset en un problema de clasificacion bi-
naria. Para ello, todas las etiquetas distintas de BENIGN se convierten en la etiqueta comin MALIGN,
lo que resulta ttil para enfoques iniciales donde se busca simplemente diferenciar entre trafico normal y
ataque.

= agrupar_web_attacks(df): Dada la escasa representacién de algunos tipos de ataques web (como XSS
o SQL Injection), se opta por agruparlos en una unica clase comin denominada Web Attack. Esta
funcién realiza dicha agrupacién reemplazando las etiquetas originales por una nueva etiqueta genérica.
Esta transformacién mejora significativamente el rendimiento de los modelos frente a esta familia de
ataques.

= reducir_dataset(df, etiqueta_col=" Label’, limites={}): En ciertos experimentos se trabaja con versio-
nes reducidas del dataset para facilitar las pruebas o mitigar el coste computacional. Esta funcién permite
limitar el nimero de muestras por clase de forma flexible, segtin un diccionario de limites proporciona-
do como argumento. Asi, se puede generar un subconjunto representativo y mas equilibrado del dataset,
manteniendo control sobre cada clase.

Todas estas funciones se encuentran en la Seccién [A.1] del anexo.

8.2.1 Funciones auxiliares para validacion

Para verificar que cada uno de los datasets generados tras aplicar estas funciones es correcto y equilibrado,
se han implementado dos funciones auxiliares que permiten analizar la distribucién de clases de forma visual y
tabular:

= mostrar_grafica_distribucion(df, titulo_grafica): Genera un grafico de barras con la cantidad de mues-
tras por clase en el DataFrame proporcionado. Es 1til para evaluar visualmente el grado de desbalanceo
o comprobar si una transformacién como el agrupamiento o la reduccién ha surtido efecto.

= mostrar_tabla_distribucion(df): Muestra en pantalla una tabla con la frecuencia exacta de cada clase.
Esto permite complementar la grafica anterior con datos cuantitativos precisos.

Ambas funciones también se encuentran disponibles en la Seccién [A.5 del anexo y han sido utilizadas
repetidamente a lo largo del desarrollo para validar el resultado de cada transformacién intermedia.

8.3 Entrenamiento y seleccion de caracteristicas

Una vez preprocesados los datos, el siguiente paso consiste en preparar los conjuntos de entrenamiento y
prueba, asi como entrenar los distintos modelos de aprendizaje automatico que se evaluaran posteriormente.
Ademas, se ha implementado un proceso de extraccion de caracteristicas relevantes con el objetivo de reducir
la dimensionalidad del conjunto de datos sin perder rendimiento predictivo, aunque no se usara hasta después
de evaluar los modelos. Para automatizar estas tareas y permitir una comparacion mas justa entre modelos, se
han desarrollado funciones especificas para cada modelo y etapa del flujo.

35

8.3. ENTRENAMIENTO Y SELECCION DE CARACTERISTICAS CAPITULO 8. IMPLEMENTACION

8.3.1 Entrenamiento

Con el fin de estructurar correctamente el entrenamiento de los modelos, se ha creado una serie de funciones
que encapsulan tanto la preparacién de los datos como el proceso de ajuste del modelo:

= preparar_datos(df) Esta funcion divide el DataFrame original en dos subconjuntos:

» X: que contiene todas las caracteristicas (todas las columnas excepto la de la etiqueta).

* y: que contiene Unicamente la columna de etiquetas, la cual debe ser transformada a formato numé-
rico utilizando un LabelEncoder.

Posteriormente, ambos conjuntos se dividen en entrenamiento y prueba mediante train test split,
utilizando un 80 % de los datos para entrenamiento y el 20 % restante para prueba, como se especifico
en la planificacion de pruebas del capitulo 9.

= entrenar_random_forest(X_train, y_train) Esta funciéon entrena un modelo Random Forest con los
parametros estandar:

* 100 arboles (n_estimators=100).
* Equilibrio automatico de clases mediante class weight='balanced’.

* Reproducibilidad asegurada con random state=42.

* Ejecucion en paralelo en todos los niicleos con n_ jobs=-1.
Esta version se utiliza principalmente para combatir el desbalanceo entre clases.

= entrenar_random_forest_sin_balancear(X_train, y_train) Variante de la anterior en la que se omite
el parametro class weight, permitiendo evaluar el impacto que tiene este ajuste en la clasificacion
de clases minoritarias.

= entrenar_xgboost(X_train, y_train) Entrena un modelo XGBoost adaptado automaticamente al tipo de
clasificacion:
* Paraclasificacion binaria, usaobjective='binary:logistic'yeval metric='logloss’.

+ Para multiclase, usa objective='multi:softmax'yeval metric='mlogloss’.

También se configura use label encoder=False para evitar advertencias innecesarias, se esta-
blece la semilla con random state=42,y se optimiza el rendimiento conn_jobs=-1.

= entrenar_svm(X_train, y_train, C=1.0, gamma="scale’, kernel="linear’) Entrena un modelo de Sup-
port Vector Machine, previamente escalando los datos con StandardScaler. Por defecto, se utiliza
un kernel lineal, con C=1.0 y gamma="'scale". Es posible ajustar estos parametros para evaluar di-
ferentes configuraciones. La aleatoriedad se controla con random state=42.

= entrenar_mlp(X_train, y_train, hidden_layer_sizes=(100,), max_iter=300, alpha=0.0001) Entrena
una red neuronal de tipo Multilayer Perceptron (MLP) con una tnica capa oculta de 100 neuronas como
valor por defecto.

* Se escalan previamente los datos.
» Se emplea funcion de activacién ReLU y optimizador Adam.
* Se habilita la parada temprana (early stopping=True) para evitar sobreajuste.

* Se limita el entrenamiento a 300 iteraciones y se fija la semilla para reproducibilidad.

Estas funciones han sido utilizadas de manera sistematica a lo largo del proceso experimental, asegurando
consistencia entre los diferentes entrenamientos y permitiendo centrarse en la comparacién de resultados. Se
encuentran en la Seccién [A.2 del Anexo.

36

CAPITULO 8. IMPLEMENTACION 8.4. EVALUACION

8.3.2 Extraccion de caracteristicas

Para reducir el niimero de caracteristicas del conjunto de datos sin comprometer el rendimiento del mode-
lo, se ha realizado una fase de extraccién de caracteristicas basada en la importancia asignada por XGBoost.
Este modelo permite obtener métricas internas que indican qué atributos contribuyen mas a las decisiones del
algoritmo.

= obtener_importancias(modelo, tipo="gain”) Esta funcién accede directamente al booster del modelo
XGBoost para obtener la importancia de cada caracteristica segun el criterio especificado (gain por
defecto, aunque también permite weight, cover, etc.). A continuacién, convierte la informacién en
un DataFrame ordenado de mayor a menor importancia, permitiendo seleccionar las caracteristicas mas
relevantes.

» grafica_importancia_caracteristicas(modelo, max_features=20) Genera una visualizacién de las ca-
racteristicas mas importantes del modelo entrenado utilizando xgb.plot importance, centrada en
las max features mas relevantes. Esta grafica facilita la interpretacion visual de los atributos que
tienen mayor peso en el rendimiento del modelo, lo cual ha sido de gran utilidad en la seccién 9.2, donde
se han realizado pruebas especificas con las 20 y 30 caracteristicas mas significativas.

El c6digo de estas dos funciones se encuentran en la Seccién [A.4 del anexo

8.4 Evaluacion

Para evaluar el rendimiento de los modelos entrenados se ha desarrollado un tinico método que automatiza
tanto el calculo de métricas como la visualizacion de resultados. Esta evaluacion se realiza utilizando el conjunto
de prueba (20 % del total de muestras), previamente separado en la fase de entrenamiento de modelos. Siendo
este el siguiente:

evaluar_modelo(modelo, X_test, y_test, label_encoder, titulo=“Evaluacién”, tamaiio=(18, 12), cmap="Purples’)

Este método realiza la evaluacion completa del modelo entrenado a partir del conjunto de datos de prueba. En
primer lugar, predice las etiquetas correspondientes a las muestras de x_test y compara estas predicciones con
las etiquetas reales, y test para generar un informe detallado utilizando la funciénclassification report()
de scikit-learn. Este informe incluye métricas como precision, recall, f1-score y soporte por clase.

Ademas, se genera la matriz de confusion con la funciéon confusion matrix() y se representa visual-
mente mediante matplotlib con un mapa de calor (heatmap), lo cual permite identificar de forma rapida los
errores de clasificacién mas frecuentes. La visualizacion puede personalizarse mediante los pardametros tamafio
(para ajustar el tamafio de la figura) y cmap (para modificar la paleta de colores del grafico). La decodificacion
de etiquetas se realiza mediante 1abel encoder.classes_ para mostrar los nombres reales de las clases
en lugar de indices numéricos.

Esta funcién ha sido utilizada de manera uniforme en todos los experimentos y pruebas presentadas en el

siguiente capitulo, lo que garantiza la coherencia y comparabilidad entre modelos y configuraciones de dataset.
El cédigo fuente de esta funcién puede encontrarse en el anexo, Seccion [A.3

8.5 Organizacidon y gestion del cédigo

Durante el desarrollo del sistema se ha prestado especial atencion a la organizacion y reutilizacion del c6-
digo, con el objetivo de facilitar tanto la implementacién como las posteriores pruebas y analisis. Como se ha

37

8.5. ORGANIZACION Y GESTION DEL CODIGO CAPITULO 8. IMPLEMENTACION

mencionado antes, todo el desarrollo se ha realizado en Jupyter Notebooks, estructurando el flujo de trabajo en
bloques diferenciados para cada etapa: carga y limpieza de datos, preprocesamiento, entrenamiento de modelos,
evaluacién y andlisis de resultados.

Para mejorar la legibilidad y modularidad, todas las funciones desarrolladas se agrupan al inicio de los no-
tebooks en secciones claramente delimitadas. Estas funciones encapsulan la légica de tareas recurrentes como
cargar datos, limpiar el dataset, entrenar modelos o evaluar métricas, lo que ha permitido reutilizarlas de forma
eficiente a lo largo del proyecto.

Ademas, se ha hecho uso de variables de configuracién para poder cambiar facilmente parametros como
los limites de reduccién, el tipo de modelo a entrenar o la ruta a los CSV originales, sin necesidad de modificar
multiples lineas de cédigo.

Aunque no se ha dividido el codigo en archivos .py por la naturaleza exploratoria del entorno Jupyter, se
ha seguido una légica similar a la modularizacion clasica, lo que ha contribuido a mantener un flujo de trabajo
ordenado y controlado.

Por tltimo, se ha utilizado Git [[14] como sistema de control de versiones, permitiendo registrar los avances

del proyecto, recuperar versiones anteriores del codigo en caso necesario y gestionar distintas ramas para pruebas
especificas.

38

Capitulo 9

Resultados

A lo largo de este capitulo se presentan los resultados obtenidos tras entrenar y evaluar los distintos modelos
de aprendizaje automatico seleccionados. El objetivo principal de esta fase es comprobar la eficacia del sistema
propuesto a la hora de detectar intrusiones, asi como analizar como influyen diferentes configuraciones del
dataset y técnicas de preprocesamiento en el rendimiento de los clasificadores.

9.1 Planificacion de las pruebas

Una vez finalizado el disefio y la implementacion de los distintos modelos, se llevd a cabo una bateria de
pruebas con el objetivo de evaluar su rendimiento en diferentes escenarios de clasificacion. Estas pruebas sirven
como cierre al ciclo de desarrollo, permitiendo validar las decisiones tomadas durante el preprocesamiento, la
seleccién de modelos y la estrategia de entrenamiento.

El conjunto de pruebas se ha construido en base al disefio previamente descrito en capitulos anteriores,
utilizando distintas versiones del dataset previamente generadas:

= Dataset balanceado mediante undersampling de la clase BENIGN con distintos enfoques:

* Binario tinicamente dos clases BENIGN y MALIGN para tener un balanceo mucho mayor.

* Multiclase todas las clases del dataset original para ver como se comportaba en las menos signifi-
cativas.

» Agrupado agrupando las clases de web attack en una sola para ver si mejora el funcionamiento.

= Dataset reducido, con un nimero limitado de muestras por clase para facilitar el entrenamiento con
modelos mas exigentes.

= Caracteristicas reducidas, para buscar un equilibrio entre el niimero de caracteristicas y el rendimiento
del modelo.

9.2 Resultados obtenidos

En esta seccion se recogen los resultados obtenidos tras la evaluacion de los distintos modelos entrenados
en cada uno de los enfoques considerados. Las métricas utilizadas han sido precisién (precision), exhaustividad
(recall), puntuacion F1 (fI-score) y nimero de muestras por clase (support), calculadas mediante la funcion
classification report() de scikit-learn. Asimismo, se ha generado una tabla con los aciertos

39

9.2. RESULTADOS OBTENIDOS CAPITULO 9. RESULTADOS

y fallos por clase a partir de la matriz de confusién correspondiente a cada modelo.

Estas matrices de confusion se encuentran en el Capitulo [J del anexo, junto al resto de graficas y visualiza-
ciones complementarias.

Aunque el enfoque principal de esta seccién es la presentacion de los resultados, también se ha considerado
el coste computacional de los modelos, entendido como el tiempo de entrenamiento. Este parametro resulta
especialmente relevante en los modelos mas complejos como SVM o MLP, y se comentara de forma general en
esta seccion y en mayor profundidad en el apartado de analisis posterior.

9.2.1 Dataset binario

Para este primer enfoque se ha convertido el problema en una clasificacién binaria, agrupando todas las
clases de ataque en una sola clase MALIGN. Los modelos evaluados han sido Random Forest y XGBoost sobre
el dataset balanceado.

Random Forest Binario XGBoost Binario

Informe de clasificacion - Clasificacidon XGBoost Binaria
recall fl-score support

Informe de clasificacidén - Clasificacidn RF Binaria

recall fl-score support precision

precision

85149 BENIGN 1.00 1.80 1.00
MALIGN 1.00 1.80 1.00

BENIGN 1.6 1.88 i.88
MALIGN 1.08 1.88 i.88 85143

178297
178297
178297

1708297
178297
178297

accuracy i.88
macro avg 1.88
weighted avg 1.88

accuracy 1.08
macro avg 1.88
weighted avg 1.88

Figura 9.1: Informe Random Forest Binario. Figura 9.2: Informe XGBoost Binario.

Clase Aciertos | Fallos Clase Aciertos | Fallos
BENIGN 85024 125 BENIGN 85028 121
MALIGN 85037 111 MALIGN 85130 18

Tabla 9.1: Aciertos/fallos Random Forest Binario. Tabla 9.2: Aciertos/fallos XGBoost Binario.

Ambos modelos se entrenaron rapidamente siendo este tiempo de entrenamiento de aproximadamente 40
segundos random forest y con una gran diferencia, XGboost con 6 segundos, ofreciendo también resultados
practicamente perfectos en este escenario simplificado.

9.2.2 Dataset multiclase

En este segundo enfoque se conserva la estructura multiclase del dataset balanceado, permitiendo evaluar
la capacidad de los modelos para distinguir entre diferentes tipos de ataque. Se han vuelto a emplear Random
Forest y XGBoost.

40

CAPITULO 9. RESULTADOS 9.2. RESULTADOS OBTENIDOS

Random Forest Multiclase XGBoost Multiclase
Informe de clasificacién - Clasificacién RF Multiclase Informe de clasificacidn - Clasificacidén XGBoost Multiclase
precision recall fl-score support precision recall fl-score support
BENIGN 1.00 1.00 .08 851490 BENIGN 1.00 1.00 1.00 85149
Bot 8.91 8.95 .93 Bot 0.91 0.98 9.94
DDaS 1.00 1.00 .68 DDoS 1.00 1.00 1.00
DoS GoldenEye 1.60 1.60 .6e DoS GoldenEye 1.680 1.80 1.09
DoS Hulk 1.08 1.80 .80 DoS Hulk 1.80 1.80 1.00
DoS Slowhttptest 8.99 @.99 .00 DoS Slowhttptest @.99 0.99 8.99
Dos slowloris 1.00 1.80 .88 DoS slowloris 1.00 1.80 1.00
FTP-Patator 1.80 1.00 .68 FTP-Patator 1.00 1.00 1.00
Heartbleed 1.00 8.58 .67 2 Heartbleed 1.00 8.58 8.67
Infiltration 1.60 8.71 .83 Infiltration 1.688 8.57 8.73
PortScan 1.00 1.00 .60 18139 PortScan 1.00 1.00 1.00
S5H-Patator 1.08 1.80 .ee 644 S5H-Patator 1.00 1.08 1.00 544
Web Attack € Brute Force 8.73 8.77 8.75 204 ueb Attack € Brute Force 8.75 0.83 8.79 294
Web Attack € Sql Injection 1.00 8.25 8.40 4 Web Attack € Sgl Injection 1.00 0.5 8.67 4
web Attack € XSS .38 8.29 8.33 138 Web Attack € XS5 8.48 8.35 8.48 130
accuracy 1.08 176297 accuracy 1.ee 170297
macro avg .03 -23 a. 178297 macro avg .88 176297
weighted avg 1.00 178297 weighted avg 1.80 176297
Figura 9.3: Informe Random Forest Multiclase. Figura 9.4: Informe XGBoost Multiclase.
Clase Aciertos | Fallos Clase Aciertos | Fallos
BENIGN 85026 121 BENIGN 85043 106
Bot 373 19 Bot 381 9
DDoS 25599 4 DDoS 25602 1
DoS GoldenEye 2047 10 DoS GoldenEye 2051 6
DoS Hulk 34528 41 DoS Hulk 34559 4
DoS Slowhttptest 1040 6 DoS Slowhttptest 1040 6
DoS slowloris 1073 4 DoS slowloris 1075 2
FTP-Patator 1186 0 FTP-Patator 1186 0
Heartbleed 1 1 Heartbleed 1 1
Infiltration 5] Infiltration 4 3
PortScan 18102 | 37 PortScan 18133 6
SSH-Patator 642] SSH-Patator 644 0
Web Attack — Brute Force 227 67 Web Attack Brute Force 245 49
Web Attack — Sql Injection 1 3 Web Attack _ Sql Injection 2 2
Web Attack — XSS 38 92 Web Attack XSS 45 85

Tabla 9.3: Aciertos/fallos Random Forest Multiclase. Tabla 9.4: Aciertos/fallos XGBoost Multiclase.

El tiempo de entrenamiento sigue siendo bajo para ambos modelos, aproximadamente 46 segundos para
Random Forest y un notorio aumento a 53 segundos XGBoost, incluso con la mayor cantidad de clases.

9.2.3 Dataset con ataques web agrupados

Dado que las clases de ataques web presentan pocos ejemplos individuales, se ha optado por agruparlas en
una sola clase denominada Web Attack. Esta agrupacion permite mejorar la estabilidad del modelo en dichas
clases. Los modelos evaluados son nuevamente Random Forest y XGBoost.

41

9.2. RESULTADOS OBTENIDOS CAPITULO 9. RESULTADOS

Random Forest Agrupado XGBoost Agrupado

Informe de clasificacion - Clasificacién RF Web Agrupados Informe de clasificacidn - Clasificacidn XGBoost Web Agrupados
precision recall fl-score support precision recall fl-score support

.80
.01
.80
-a0
.80
99
.80
.80
.80
o]
.80

-89 1.00
-OF .94
-89 1.00
- 80 1.80
-89 1.00
- 0% 0.99
- 80 1.80
-89 1.00
58 0.67
.57 e.73
-89 1.00
-89 1.00
-80 1.80

BENIGN

Bot

DDoS

DoS GoldenEye
DoS Hulk

DoS Slowhttptest
DoS slowloris
FTP-Patator
Heartbleed
Infiltration
Portscan
S5H-Patator
Web Attack

.88
.01
-88
-88e
-8
.09
-88
-88
-88e
-8
.88
.88
-9

.88
-96
-8
-99
- 88
-99
.88
-8
-58
~7AL
.08
.88
.98

.88 5148 BENIGN
a3 39 Bot
2] 56683 DDo5
28 Do5S GoldenEye
.ee 34569 DoS Hulk
.99 1046 Do5 hlowhttpte?t
) 1677 DoS slowloris
.80 1186 FTP-Patator
- Heartbleed
.67 i i
23 Infiltration
- PortScan
00 SSH-Patator
. 80
Web Attack
.08

LI e e
O R REOORRODOR DR O
I I B R - Y
R R R R R R DR R R DR
R R DO R R OR R RS R

accuracy 1.00 178297

-89 170297 Macro avg 8.93 8.95 170297

macro avg .99 8.93 8.95 178297 weipghted avg 1.6 1.88 178297
weighted avg 1 .88 17e297

[y

accuracy

[y

Figura 9.6: Informe XGBoost Agrupado.
Figura 9.5: Informe Random Forest Agrupado.

i Clase Aciertos | Fallos

Clase Aciertos | Fallos BENIGN 85041 107
BENIGN 85031 121 Bot 380 10
Bot 373 17 DDoS 25602 1
DDoS 25598 > DoS GoldenEye | 2050 7
DoS GoldenEye 2046 10 DoS Hulk 34562 7
DoS Hulk 34530 11 DoS Slowhttptest | 1040 6
DoS Slowhttptest 1040 6 DoS slowloris 1075 2
DoS slowloris 1074 3 ETP-Patator 1186 0
FTP-Patator 1186 0 Heartbleed 1 1
He'e1rtb1.eed 1 1 Infiltration 4 3
Infiltration 5 2 PortScan 18133 6
PortScan 18100 39 SSH-Patator 644 0
SSH-Patator 643 1 Web Attack 428 1
Web Attack 419 10

Tabla 9.6: Aciertos/fallos XGBoost Agrupado.
Tabla 9.5: Aciertos/fallos Random Forest Agrupado.

Ambos modelos presentan entrenamientos rapidos y estables en esta configuracion. El tiempo de entra-
miento para Random Forest es el mismo, aproximadamente 46 segundos, pero se consigue reducir el tiempo de
XGBoost llegando a unos 48 segundos.

9.2.4 Dataset reducido

En este punto se introducen modelos con mayor complejidad computacional como MLP y SVM, por lo que
se ha reducido el nimero de muestras por clase para facilitar su entrenamiento. Se utiliza una primera version
del dataset reducido.

42

CAPITULO 9. RESULTADOS 9.2. RESULTADOS OBTENIDOS

MLP Reducido SVM Reducido

Informe de clasificacién - Clasificacidén MLP Reducido
precision recall f1l-score support

Informe de clasificacidn - Clasificacién SVM Reducido
precision recall fil-score support

BENIGN -96 -97 2000

8.9 8 G BENIGN @.97 0.87 @.92 2000
Bot 8.9 222 2L 22 Bot 8.82 .99 8.90 390
DDoS 1. 1.00 1.60 1000 DDoS 8.95 1.0 8.98 1060
135 GrLilEEe e Lozl LolEs e DoS GoldenEye 8.98 8.9 @.99 2057
DoS Hulk 8. 1.00 .99 1000 DoS Hulk 8.95 8.0 8.97 1000
Dos Slowhttptest 8. .99 .99 Ll DoS Slowhttptest @.98 8.9 @.08 1046
135 slalaris B a2 DeiZz Uz Dos slowloris 8.98 8.9 e.98 1677
FTP-Patator il .99 1.0 Ll FTP-Patator 1.00 0.9 @.99 1186
Heartbleed 1. 1.88 oEE L Heartbleed 1.00 e. 8.67
Infiltration 0. 9.71 8.71 Infiltration .00 0.0 .00
PortScan 8.9 1.0@ 8.99 Portscan 8. 8.6 0.97
SSH-Patator 8. @.99 0.98 S —— T3 T 8.05
lieb Attack 8.9 8.9 996 Web Attack 8.9 8.9 8.93
accuracy 8.99 accuracy 8.96
macro avg .96 -96 macro avg 0.
weighted avg 224 weighted avg 8.96
Figura 9.7: Informe MLP reducido. Figura 9.8: Informe SVM Reducido.
Clase Aciertos | Fallos Clase Aciertos | Fallos
BENIGN 1915 85 BENIGN 1738 262
Bot 388 2 Bot 385 5
DDoS 998 2 DDoS 997 3
DoS GoldenEye 2054 3 DoS GoldenEye 2035 22
DoS Hulk 988 2 DoS Hulk 984 16
DoS Slowhttptest | 1032 14 DoS Slowhttptest | 1023 23
DoS slowloris 1059 19 DoS slowloris 1052 25
FTP-Patator 1179 7 FTP-Patator 1170 16
Heartbleed 2 0 Heartbleed 1 1
Infiltration 5 2 Infiltration 0 7
PortScan 999 1 PortScan 983 17
SSH-Patator 640 4 SSH-Patator 634 10
Web Attack 410 19 Web Attack 391 38
Tabla 9.7: Aciertos/fallos MLP Reducido. Tabla 9.8: Aciertos/fallos SVM Reducido.

Ambos modelos presentan tiempos de entrenamiento relativamente altos para la cantidad de muestras que
se manejan, aproximadamente 25 segundos MLP y 15 segundos SVM, que ademas requieren de un escalado
previo de los datos.

9.2.5 Dataset reducido 2

Se realiza una segunda version del dataset reducido, aumentando el nimero de muestras por clase para
observar como escalan los modelos MLP y SVM ante mas datos.

43

9.2. RESULTADOS OBTENIDOS CAPITULO 9. RESULTADOS

MLP Reducido 2 SVM Reducido 2

Informe de clasificacidn - Clasificacidn MLP Reducido 2 Informe de clasificacion - Clasificacidén SVM Reducido 2

precision recall fl-score support precision recall f1-score support

BENIGN 9.99 .98 9.98 4000 BENIGN @.93 0. .93 4000

Bot 0. 9.99 9.94 390 Bot .91 0. 8.77 300

DDoS 1.00 1.00 1.00 1600 DDoS @.88 1. 8.94 1600

DoS GoldenEye 8.99 1.00 1.00 2857 DoS GoldenEye 8.99 8.9 8.99 2857

DoS Hulk 8.99 .99 .99 1600 DoS Hulk .98 8.9 .96 1600

DoS Slowhttptest 8.99 8.99 .99 1046 DoS Slowhttptest .98 0.9 .98 1046

DoS slowloris 8.99 8.99 8.99 1877 DoS slowloris 8.97 8.9 8.97 1877

FTP-Patator .99 8.99 8.99 1186 FTP-Patator .98 8.9 8.99 1186
Heartbleed 1.00 1.00 1.00 2 Heartbleed 1.00 1.0 1.60

Infiltration 1.80 8.57 8.73 Infiltration 8.00 8.8 e.e

PortScan 1.00 1.00 1.00 PortScan a.97 8.9 8.9

SSH-Patator .96 8.99 8.97 SSH-Patator .99 0.9 8.9
Web Attack 8.96 8.93 8.95 Web Attack 8.91 8.9 8.9
accuracy 8.99 accuracy 8.
macro avg .96 macro avg 0.
weighted avg 8.99 weighted avg 8.

Figura 9.9: Informe MLP reducido 2. Figura 9.10: Informe SVM Reducido 2.
Clase Aciertos | Fallos Clase Aciertos | Fallos
BENIGN 3906 94 BENIGN 3727 273
Bot 385 5 Bot 260 130
DDoS 1594 6 DDoS 1598 2
DoS GoldenEye 2056 1 DoS GoldenEye 2022 35
DoS Hulk 1581 19 DoS Hulk 1501 99
DoS Slowhttptest 1033 13 DoS Slowhttptest 1023 23
DoS slowloris 1063 14 DoS slowloris 1046 31
FTP-Patator 1179 7 FTP-Patator 1171 15
Heartbleed 2 0 Heartbleed 2 0
Infiltration 4 3 Infiltration 0 7
PortScan 1598 2 PortScan 1578 22
SSH-Patator 638 6 SSH-Patator 595 49
Web Attack 400 29 Web Attack 385 44
Tabla 9.9: Aciertos/fallos MLP Reducido 2. Tabla 9.10: Aciertos/fallos SVM Reducido 2.

El tiempo de entrenamiento se incrementa notablemente, especialmente para SVM, que presenta mayor coste
computacional que el resto de modelos probados. Siendo los tiempos de 31 segundos MLP y casi 1 minuto SVM

9.2.6 Dataset reducido 3

En esta tercera version del dataset reducido se aumenta aun mas el nimero de muestras. Se vuelven a evaluar
MLP y SVM para observar su rendimiento y escalabilidad.

44

CAPITULO 9. RESULTADOS 9.2. RESULTADOS OBTENIDOS

MLP Reducido 3 SVM Reducido 3

Informe de clasificacion - Clasificacién MLP Reducido 3 Informe de clasificacién - Clasificacién SVM Reducido 3

precision recall f1-score support precision recall f1-score support
BENIGN 8.99 8.96 8.98 6008 BENIGN 8.93 8.95 0.94 6088
Bot 8.88 8.95 8.91 398 Bot 8.93 8.39 8.55 390
DDoS 1.80 1.00 1.60 2400 DDoS 8.97 1.08 8.99 2400
DoS GoldenEye 1.00 1.00 1.00 2057 DoS GoldenEye 8.99 8.08 6.98 2057
DoS Hulk 0.99 8.99 8.99 2408 DoS Hulk 8.98 8.95 8.97 2480
DoS Slowhttptest 8.99 8.99 8.99 1646 DoS Slowhttptest .99 8.98 .99 1846
DoS slowloris B8.99 ©8.99 .99 1877 Dos slowloris .97 8.97 8.97 1877
FTP-Patator 1.80 1.08 1.00 1186 FTP-Patator 8.99 8.99 8.99 1186
Heartbleed 1.88 .58 .67 p Heartbleed 1.80 8.58 8.67 2
Infiltration 1.e8 8.71 8.83 Infiltration 8.e8 B.688 8.80
PortScan 0.96 1.00 8.98 PortScan 8.92 8.99 @.95
SSH-Patator 8.97 8.99 8.98 SSH-Patator 8.99 8.93 8.96
Web Attack 8.93 ©8.95 8.94 Web Attack 8.9 .98 .98
accuracy 8.98 accuracy - 05
macro avg .93 .94 macro avg .80 8.23
weighted avg 8.98 8.98 weighted avg .9 .05
Figura 9.11: Informe MLP reducido 3. Figura 9.12: Informe SVM Reducido 3.
Clase Aciertos | Fallos Clase Aciertos | Fallos
BENIGN 5785 215 BENIGN 5682 318
Bot 371 19 Bot 151 239
DDoS 2400 0 DDoS 2399 1
DoS GoldenEye 2050 7 DoS GoldenEye 2006 51
DoS Hulk 2388 12 DoS Hulk 2278 122
DoS Slowhttptest 1034 12 DoS Slowhttptest 1029 17
DoS slowloris 1068 9 DoS slowloris 1048 29
FTP-Patator 1181 5 FTP-Patator 1174 12
Heartbleed 1 1 Heartbleed 1 1
Infiltration 5 2 Infiltration 0 7
PortScan 2394 6 PortScan 2367 33
SSH-Patator 637 7 SSH-Patator 596 48
Web Attack 406 23 Web Attack 384 45
Tabla 9.11: Aciertos/fallos MLP Reducido 3. Tabla 9.12: Aciertos/fallos SVM Reducido 3.

Los tiempos de entrenamiento vuelven a aumentar. SVM especialmente comienza a ser inviable para volu-
menes mayores sin optimizaciones adicionales. Los tiempos son de 34 segundos para MLP y mas de 2 minutos
para SVM

9.2.7 Dataset reducido 2 - XGBoost

Dado que XGBoost ha mostrado un rendimiento notable en configuraciones anteriores, se entrena este mo-
delo sobre la segunda versién del dataset reducido, utilizada anteriormente con MLP y SVM.

45

9.2. RESULTADOS OBTENIDOS CAPITULO 9. RESULTADOS

XGBoost Reducido
P » Clase Aciertos | Fallos
Informe de clasificacion - Clasificacién XGBoost Reducido
precision recall fl1-score support BENIGN 3991 9
BENIGN 1.88 1.68 1.686 4886 BOt 387 3
Bot .99 8.99 8.99 396
DDo5S 1.808 1.086 1.086 1666 DDOS 1599 1
DoS GoldenEye 1.60) 1.00 20857 DoS GoldenEye 2057 0
DoS Hulk 1.88 1.08 1.08 1666
DoS Slowhttptest 1.88 8.99 8.99 1846 DOS Hulk 1599 1
Dos slowloris 8.99 8.99 8.99 1877
FTP-Patator 1.88 1.88 1.86 1186 DOS SIOWhttpteSt]‘038 8
Heartbleed 1.80 1.80 1.80 2 DOS SlOWloriS 1071 6
Infiltration 1.80 8. 8.92
PortScan 1.00 1.00 1.00 FTP-Patator 1186 0
SSH-Patator 1.88 1.686 1.66 6
Web Attack 1.00 1.00 1.00 : Heartbleed 2 0
accuracy 100 15ea3 Infiltration 6 1
macro avg N 8.99 15638 PortScan 1599 1
weighted avg 1.0 1.00 15638
SSH-Patator 644 0
Figura 9.13: Informe XGBoost Reducido Web Attack 427 2

Tabla 9.13: Aciertos/fallos XGBoost Reducido.

XGBoost mantiene tiempos de entrenamiento muy bajos incluso con un mayor nimero de muestras, y su
rendimiento sigue siendo excelente. Aproximadamente 5 segundos.

9.2.8 Dataset con caracteristicas reducidas

Para evaluar el impacto de la seleccién de caracteristicas, se han generado dos datasets derivados de la ver-
sion reducida 2, manteniendo tinicamente las 20 y 30 caracteristicas mas relevantes segin el modelo XGBoost.
Ambos experimentos se han realizado uinicamente con XGBoost, al ser el modelo con mejor comportamiento
global. También se detalla en la Figura las caracteristicas 30 caracteristicas mas importantes seleccionadas
junto a su importancia en el modelo.

46

CAPITULO 9. RESULTADOS 9.2. RESULTADOS OBTENIDOS

importancia

Bwd Packet Length Min 1397.526245

Bwd Header Length 426.188477

PSH Flag Count 310.440155

Active Mean 240.727722
Total Length of Bwd Packets 216.219391

Average Packet Size 148.923996

Bwd TAT Min 125.157654

Fwd IAT Std 115.312141

Total Length of Fwd Packets 112.217041
min_seg size forward 111.639282

act data pkt fwd 97.365959

Packet Length Mean 82.641098

Fwd Packet Length Max 81.167145

Bwd Packet Length Std 74.872612

Bwd Packet Length Mean 74.643600

Destination Port 71.134972

Flow Duration 69.431984

Fwd Packet Length Min 67.536583

FIN Flag Count 60.595936
Total Backward Packets 54.585491

Bwd IAT Std 48.140659

Idle Mean 46.975903
Flow IAT std 32 .8060896

Init Win bytes backward 31.854746

Total Fwd Packets 30.767115

Flow IAT Mean 30.147799

Flow IAT Max 28.333296

Bwd TIAT Mean 28.141714

Figura 9.14: Top 30 caracteristicas mas importantes

47

9.2. RESULTADOS OBTENIDOS

CAPITULO 9. RESULTADOS

XGBoost Top 20 Caracteristicas

Informe de clasificacidn - XGBoost - Top 20 caracteristicas

precision recall fl-score support
BENIGN

Bot

DDoS

DoS GoldenEye
DoS Hulk

DoS Slowhttptest
DoS slowloris
FTP-Patator
Heartbleed
Infiltration
PortScan
SSH-Patator

Web Attack

-09
-94

- 0%
-98
-89
-89
-89
- 0%
- 0%
-89
-89

- 0% 4000
-96 396
- 60 1660
- 60 2857
- 60 1660
- 0% 1846
- 0% 1877
- 60 1186
- 60 2
-92
- 60
- 60
.97

-89
-89
- 0%

O R R R REREDOOR RO O
O R R ORREDOORR R OO
O R R ORREDORR R OO

o

- 0%
- 0%
- 0%

accuracy

o

macro avg
weighted avg

o

Figura 9.15: Informe XGBoost Top 20 Caracteristi-
cas.

Clase Aciertos | Fallos
BENIGN 3952 58
Bot 381 9
DDoS 1594 6
DoS GoldenEye 2053 4
DoS Hulk 1596 4
DoS Slowhttptest 1036 10
DoS slowloris 1066 11
FTP-Patator 1186 0
Heartbleed 2 0
Infiltration 6 1
PortScan 1599 1
SSH-Patator 643 1
Web Attack 423 6

Tabla 9.14: Aciertos/fallos XGBoost Top 20 Caracte-
risticas.

XGBoost Top 30 Caracteristicas

Informe de clasificacidén - XGBoost - Top 3@ caracteristicas
precision recall fl1-score support

BENIGN

Bot

DDo5

DoS GoldenEye
DoS Hulk

DoS Slowhttptest
DoS slowloris
FTP-Patator
Heartbleed
Infiltration
PortScan
S5H-Patator

Web Attack

-88
-97
-88
.80
-88
-88
-99
-88
-88
-88
-88
-88

-99
-8e
-8e
-8
-88
-99
-99
-8e
-88

-99 4008
-98 398
-88 1600
-88 2857
-88 1668
-99 1046
-99 1877
-88 1186
-88
-92
-88
-88

o8

-88
-68
99

1
e
1
1
1
1
e
1
1
1
1
1
8.9

@R R ER RO DR R R RO
@R R OR RO DR R RO

[y

.88
macro avg .99 .99 9.00
weighted avg -88

accuracy

[y

Figura 9.16: Informe XGBoost Top 30 Caracteristi-
cas.

Clase Aciertos | Fallos
BENIGN 3971 29
Bot 389 1
DDoS 1595 5
DoS GoldenEye 2053 4
DoS Hulk 1597 3
DoS Slowhttptest 1038 8
DoS slowloris 1071 6
FTP-Patator 1186 0
Heartbleed 2 0
Infiltration 6 1
PortScan 1599 1
SSH-Patator 644 0
Web Attack 425 4

Tabla 9.15: Aciertos/fallos XGBoost Top 30 Caracte-
risticas.

El tiempo de entrenamiento se ve ligeramente reducido respecto al anterior, y las métricas se mantienen
practicamente inalteradas, lo que indica que es posible reducir el nimero de caracteristicas sin sacrificar el
rendimiento del modelo. Tanto para 20 como para 30 caracteristicas el tiempo de entramiento es de aproxima-

damente 3 segundos.

CAPITULO 9. RESULTADOS 9.3. ANALISIS Y DISCUSION

9.3 Analisis y discusidn

Una vez obtenidos los resultados experimentales de los distintos modelos de clasificacion entrenados con
multiples configuraciones de dataset, es fundamental realizar un analisis més profundo para interpretar su com-
portamiento y compararlos entre si. Este apartado tiene como objetivo evaluar qué técnicas ofrecen un mejor
rendimiento, como influye la estructura del dataset en los resultados y qué conclusiones se pueden extraer res-
pecto al coste computacional, la escalabilidad y la capacidad de deteccién de los modelos.

A continuacién, se presentan los aspectos mas relevantes observados durante las pruebas y sus implicaciones
practicas.

9.3.1 Comparativa entre enfoques

Durante el proceso experimental se han utilizado diferentes configuraciones del dataset original con el fin
de evaluar el comportamiento de los modelos en contextos variados: un enfoque binario, uno multiclase, un
agrupamiento de los ataques web, y finalmente, varias versiones reducidas del dataset para permitir la evaluacion
de modelos més costosos computacionalmente.

El enfoque binario, que diferencia tinicamente entre trafico BENIGN y MALIGN, ha demostrado ser el méas
sencillo de abordar. Tanto Random Forest como XGBoost han alcanzado métricas perfectas o casi perfectas en
este escenario, mostrando que el problema se vuelve trivial cuando se reduce a una clasificacién binaria. Este
resultado, si bien titil para validar el correcto funcionamiento general del sistema, no resulta representativo de
un entorno realista donde es importante distinguir entre diferentes tipos de amenazas.

En cambio, el enfoque multiclase ha supuesto un reto significativamente mayor, sobre todo en lo que respec-
ta a la deteccion de clases con un nimero muy reducido de muestras, como Heartbleed o Infiltration.
Estas clases presentan una alta dificultad para los modelos, que en muchos casos no logran identificarlas correc-
tamente, incluso cuando las métricas globales se mantienen elevadas. Esto evidencia la importancia de analizar
los resultados por clase individualmente y no solo en funcién de los promedios.

Para mitigar en parte este problema, se propuso una estrategia intermedia que agrupa todas las variantes
de ataques web (Brute Force, XSS, SQL Injection) bajo una tnica clase Web Attack. Esta decision se tom6
tras observar un rendimiento muy bajo en estas clases cuando se trataban de forma independiente. Al agrupar-
las, el modelo mejora notablemente su rendimiento en esta categoria, aumentando su capacidad de deteccion y
simplificando el problema sin perder la capacidad de reconocer ataques relevantes.

Finalmente, se han creado tres versiones reducidas del dataset, que permiten evaluar modelos mas costosos
como MLP o SVM sin que el tiempo de entrenamiento resulte prohibitivo. Estas versiones también resultan titiles
para valorar el impacto del tamafio del dataset en las métricas y el comportamiento general de los modelos. Como
se vera mas adelante, esta reduccion ha permitido obtener resultados comparables a los del dataset completo en
algunos casos, lo que plantea alternativas mas ligeras y eficientes para ciertos contextos.

9.3.2 Comparativa entre modelos

A lo largo de los diferentes enfoques evaluados, se han probado hasta cuatro algoritmos de clasificacién:
Random Forest, XGBoost, SVM y MLP. Cada uno presenta ventajas y limitaciones que han sido evidentes en
las distintas pruebas.

Los modelos basados en arboles, como Random Forest y especialmente XGBoost, han sido los que han
mostrado mejores resultados globales en términos de precision, recall y fl1-score, tanto en el enfoque binario
como en el multiclase y agrupado. Ademas, se caracterizan por una gran robustez ante datos desbalanceados,
algo especialmente relevante en este trabajo. XGBoost ha demostrado ser el modelo mds consistente incluso

49

9.3. ANALISIS Y DISCUSION CAPITULO 9. RESULTADOS

en configuraciones mas exigentes, manteniendo métricas elevadas en casi todas las clases, incluidas algunas
minoritarias.

Por su parte, Random Forest también ofrece buenos resultados, aunque en general ligeramente inferiores a
los de XGBoost. Sin embargo, destaca por su rapidez de entrenamiento y su menor complejidad computacional,
lo que lo convierte en una alternativa valida en entornos donde se prioriza la eficiencia por encima del rendi-
miento maximo.

Los modelos de mayor coste computacional, como MLP y SVM, han requerido reducir el tamafio del dataset
para ser evaluados de forma viable. A pesar de ello, MLP ha mostrado un rendimiento muy competitivo, con
resultados cercanos a los de los modelos de arboles, especialmente en la versién reducida 2 del dataset. Sin
embargo, su entrenamiento es notablemente mas lento, y la eleccion de sus hiperpardametros influye considera-
blemente en los resultados.

Por otro lado, SVM ha sido el modelo con mayores limitaciones en cuanto a escalabilidad y rendimiento,
especialmente cuando se incrementa el tamafio del conjunto de datos. Aunque ha conseguido buenos resultados
en algunas clases, su comportamiento ha sido irregular, especialmente en aquellas con pocas muestras, como
Infiltration o Bot, donde ha presentado valores de recall muy bajos o incluso nulos. Ademas, ha sido
el modelo con tiempos de entrenamiento mas elevados, lo que limita su viabilidad en escenarios practicos con
grandes volumenes de datos.

En resumen, XGBoost ha sido el modelo mas equilibrado entre rendimiento, capacidad de generalizacién
y eficiencia, seguido de cerca por Random Forest. MLP ha demostrado ser una opcién valida en contextos
controlados con datasets reducidos, mientras que SVM ha resultado poco escalable para este tipo de problema.

9.3.3 Coste computacional

El coste computacional ha sido un factor clave a la hora de comparar y seleccionar los modelos, especial-
mente teniendo en cuenta la cantidad de datos y caracteristicas del dataset original. Para estimar este coste se
ha medido el tiempo de entrenamiento de cada modelo en sus distintas configuraciones.

Los modelos basados en arboles han demostrado una gran eficiencia en este aspecto. Random Forest ha sido
rapido de entrenar en la mayoria de los escenarios, especialmente con datasets reducidos, aunque en el enfoque
binario ha sido superado por XGBoost, que consiguié tiempos de entrenamiento atin menores pese a su mayor
complejidad interna. Sin embargo, en el enfoque multiclase, XGBoost ha requerido algo mas de tiempo debido
al mayor nimero de clases y a la gestién interna del boosting.

Aun asi, ambos modelos han mantenido tiempos de entrenamiento razonables y perfectamente asumibles,
incluso con el dataset completo, lo que los hace adecuados para entornos con recursos limitados o para iteracio-
nes frecuentes durante el desarrollo.

Por el contrario, MLP y SVM han mostrado limitaciones importantes en cuanto a coste computacional.
Ambos modelos requieren escalar los datos antes del entrenamiento, lo cual afiade un paso adicional al pipeline.
Ademads, sus tiempos de entrenamiento aumentan considerablemente con el tamafio del dataset, siendo necesario
reducir la cantidad de muestras para poder ejecutarlos en un entorno local sin agotar recursos.

En el caso de MLP, aunque el entrenamiento puede llevar mas tiempo que los modelos de arboles, ha si-
do manejable en datasets de tamafio medio, y sus resultados han sido consistentes. En cambio, SVM ha sido
el modelo mas costoso computacionalmente, especialmente en los datasets mas grandes, donde el tiempo de
entrenamiento ha llegado a ser excesivo. En algunos casos, ha sido necesario limitar fuertemente el ntimero de
muestras para evitar tiempos de espera de mas de 10-15 minutos.

Este analisis pone de manifiesto que, mas alla del rendimiento en las métricas, el coste computacional es un
factor decisivo. XGBoost destaca no solo por su precision, sino también por su equilibrio entre rendimiento y
eficiencia computacional.

50

CAPITULO 9. RESULTADOS 9.3. ANALISIS Y DISCUSION

9.3.4 Seleccidon de caracteristicas

Uno de los ultimos experimentos realizados consistié en reducir el nimero de caracteristicas del dataset para
comprobar como afectaba al rendimiento del modelo. Para ello se utiliz6 el algoritmo XGBoost, aprovechando
que ofrece mecanismos internos para evaluar la importancia relativa de cada feature segun distintos criterios
(en este caso, el criterio de ganancia).

Se generaron dos versiones del dataset con tinicamente las 20 y 30 caracteristicas mas importantes, y se en-
trend de nuevo el modelo XGBoost sobre cada una de ellas. Los resultados muestran que, si bien ambas versiones
mantienen un rendimiento muy similar al obtenido con el dataset completo, existe una diferencia apreciable en-
tre ellas: el modelo entrenado con las 30 caracteristicas alcanza mejores métricas que el de 20, especialmente
en clases minoritarias, donde el recall y el F1-score se ven mas penalizados cuando se usa un conjunto mas
reducido de atributos.

Ademas, al comparar el coste computacional de ambos entrenamientos, se observo que los tiempos fueron
practicamente idénticos, por lo que no existe una ganancia relevante al reducir de 30 a 20 caracteristicas en
términos de eficiencia. Dado que la version de 30 caracteristicas conserva mayor precisiéon y cobertura sin per-
judicar al rendimiento, se considera mas adecuada y equilibrada para este problema.

Este experimento confirma que gran parte de la informacion necesaria para la clasificacién se encuentra
concentrada en un subconjunto relativamente pequefio de caracteristicas, y que muchas de las variables origi-
nales no aportan valor afiadido al modelo o incluso pueden introducir ruido.

Ademas de mejorar la interpretabilidad, esta reduccién de dimensionalidad permite entrenamientos mas ra-
pidos y modelos mas ligeros, lo que puede ser especialmente 1til en entornos con recursos computacionales
limitados o donde se requiera realizar inferencias en tiempo real.

El uso de XGBoost como herramienta para la seleccion de caracteristicas se justifica por su fiabilidad y
la capacidad inherente del modelo para priorizar aquellas variables que contribuyen mas a la clasificacion. Al
tratarse de un algoritmo basado en arboles de decisién, es capaz de capturar interacciones no lineales entre
variables y medir su impacto directo en la ganancia de informacién durante el proceso de entrenamiento, lo que
lo convierte en una opcion robusta y eficaz para esta tarea.

9.3.5 Eleccion final del modelo

Tras realizar todas las pruebas y comparar el rendimiento de los distintos modelos, se ha determinado que
XGBoost es el algoritmo mas adecuado para este problema de deteccion de intrusos.

= Métricas de evaluacién: XGBoost ha conseguido, en practicamente todos los escenarios, las mejores
métricas globales (accuracy, precision, recall y F1-score), tanto en clasificacién binaria como multiclase.
Incluso en clases minoritarias, donde otros modelos como SVM o MLP presentan un rendimiento mas
irregular, XGBoost ha mostrado una mejor capacidad de deteccién y un menor ntimero de errores.

= Robustez ante clases desbalanceadas: Mientras que otros algoritmos han mostrado dificultades pa-
ra identificar correctamente clases con pocas muestras (como Infiltration, Heartbleed o Web
Attack), XGBoost ha mantenido un rendimiento mas consistente. Esto lo convierte en una opcién mas
fiable en entornos reales, donde el desbalanceo es habitual.

= Escalabilidad y coste computacional: Aunque XGBoost tiene un coste computacional mayor que Ran-
dom Forest en el caso multiclase, su rendimiento es superior y mas estable a medida que crece el tamafio

51

9.3. ANALISIS Y DISCUSION CAPITULO 9. RESULTADOS

del dataset. Ademas, en clasificacién binaria, el tiempo de entrenamiento ha sido considerablemente me-
nor que en Random Forest, 1o que demuestra una buena capacidad de escalado en conjuntos de datos con
estructuras mas simples.

= Versatilidad: A lo largo de los experimentos se ha podido observar que XGBoost se adapta bien a todas
las variantes de preprocesado utilizadas, manteniendo siempre un rendimiento elevado. Tanto en los da-
tasets completos como en los reducidos o con agrupacién de clases, el modelo ha sido capaz de ajustarse
eficazmente sin necesidad de reconfigurar el pipeline.

= Reduccion de dimensionalidad: Finalmente, se ha observado que XGBoost sigue manteniendo un ren-
dimiento excelente incluso cuando se limita el nimero de caracteristicas del dataset. En concreto, los
resultados con las 30 caracteristicas mas importantes han sido practicamente idénticos a los obtenidos
con el conjunto completo, lo que sugiere que esta configuracion es la mas eficiente en términos de coste-
beneficio.

Por todo lo anterior, el modelo final seleccionado es XGBoost entrenado con las 30 caracteristicas mas
importantes del dataset, ya que proporciona el mejor equilibrio entre rendimiento, eficiencia y escalabilidad.

52

Capitulo 10

Conclusiones

Este capitulo recoge las conclusiones principales derivadas del desarrollo de esta investigacion, que ha
tenido como objetivo principal evaluar diferentes modelos de inteligencia artificial aplicados a la deteccién
de ataques de intrusion en redes. A través de una serie de pruebas sistematicas, se ha podido comprobar el
rendimiento de varios algoritmos en distintos escenarios de clasificacién, permitiendo identificar el modelo
mas eficaz en este contexto. Asimismo, se exponen también, posibles lineas de trabajo a futuro.

10.1 Modelo final seleccionado

El objetivo principal de este trabajo era encontrar el modelo de machine learning mas adecuado para la
deteccién de intrusiones en entornos de red, cumpliendo asi con la hipoétesis inicial planteada. Esta hipétesis ha
quedado validada, ya que tras la evaluacion comparativa de varios modelos, se ha determinado que XGBoost
es el algoritmo que ofrece los mejores resultados en términos de precision, robustez ante clases minoritarias,
escalabilidad y tiempo de entrenamiento.

Ademas, se ha comprobado que el rendimiento éptimo se alcanza al utilizar las 30 caracteristicas mas im-
portantes del dataset, lo que permite una mayor eficiencia sin comprometer la calidad de las predicciones.

10.2 Trabajo a futuro

Este trabajo puede ampliarse en varias direcciones:

= Explorar técnicas de aprendizaje profundo (Deep Learning), que podrian ofrecer mejoras en la deteccién
de ataques mas sofisticados.

= Ampliar la variedad de datasets utilizados para evaluar la capacidad de generalizacion del modelo final.

» Incorporar técnicas de deteccién en tiempo real, integrando el modelo dentro de un sistema de monitori-
zacio6n de red con procesamiento de paquetes en vivo.

= Aplicar métodos de seleccion de caracteristicas mas avanzados

53

10.2. TRABAJO A FUTURO CAPITULO 10. CONCLUSIONES

54

Appendices

55

Apéndice A

Cddigo desarrollado

A.1 Preprocesamiento

def cargar_csvs(ruta_csvs):

archivos = glob.glob(os.path.join(ruta csvs, "*.csv"))
dataframes = []

for £ in archivos:
try:
df = pd.read csv(f, low_memory=False)
dataframes.append(df)
print(f" {os.path.basename(f)}: {len(df)} filas.")
except Exception as e:
print(f" Error en {f}: {e}")

df total = pd.concat(dataframes, ignore_index=True)
print(f"\nDataset combinado: {len(df total)} filas totales, {len(df total.columns)} columnas totales.")
return df_total

def limpiar dataset(df):

df.replace([np.inf, -np.inf], np.nan, inplace=True)

columnas_vacias = df.columns[df.isna().all()].tolist()
df .drop(columns=columnas_vacias, inplace=True)

columnas_constantes = [col for col in df.columns if df[col].nunique() <= 1]
df.drop(columns=columnas_constantes, inplace=True)

df .dropna(inplace=True)
df..drop_duplicates(inplace=True)

print(f" Dataset limpio: {len(df)} filas, {df.shape[l]} columnas.")
return df

def balancear dataset(df):

benignos = df[df[' Label'] == 'BENIGN']
ataques = df[df[' Label'] != 'BENIGN']

Realizar undersample de la clase "BENIGN" para balancear
benignos = benignos.sample(n=len(ataques), random state=42)

df balanceado = pd.concat([benignos, ataques])

Barajar los datos y resetear indices
df balanceado = df balanceado.sample(frac=1, random state=42).reset_index(drop=True)

57

A.2. ENTRENAMIENTO DE MODELOS APENDICE A. CODIGO DESARROLLADO

return df balanceado

def convertir binario(df):
df = df.copy()

df[' Label'] = df[' Label'].apply(lambda x: 'BENIGN' if x == 'BENIGN' else 'MALIGN')
return df
def agrupar_web_attacks(df):

df = df.copy()

df[' Label'] = df[' Label'].replace({

'Web Attack Brute Force': 'Web Attack',
'Web Attack XSS': 'Web Attack',

'Web Attack Sql Injection': 'Web Attack'
)

return df
def reducir dataset(df, etiqueta col=' Label', limites={}):

clases = df[etiqueta col].unique()
partes [1

for clase in clases:
datos_clase = df[df[etiqueta col] == clase]

if clase in limites:
n = limites[clase]
datos_clase = datos_clase.sample(n=min(len(datos_clase), n), random state=42)

partes.append(datos_clase)

df reducido = pd.concat(partes).sample(frac=1, random state=42).reset_ index(drop=True)
return df reducido

A.2 Entrenamiento de modelos

def preparar_ datos(df):
df = df.copy()

Eliminar la columna de etiquetas
X = df.drop(columns=[' Label'])

Convertir etiquetas
y = df[' Label']

Codificar etiquetas
le = LabelEncoder/()
y_encoded = le.fit transform(y)

Dividir en train/test
X train, X test, y train, y test = train_test_split(
X, y_encoded, test_size=0.2, random state=42, stratify=y encoded

)
return X train, X_test, y_train, y test, le

def entrenar random forest(X train, y train):
modelo = RandomForestClassifier(
n_estimators=100,
random_state=42,
class_weight='balanced',
n_jobs=-1
)

modelo.fit(X_train, y_train)

58

APENDICE A. CODIGO DESARROLLADO A.3. EVALUACION DE MODELOS

return modelo

def entrenar random forest sin balancear(X_train, y train):
modelo = RandomForestClassifier(
n_estimators=100,
random_state=42,
n_jobs=-1
)
modelo.fit(X_train, y train)
return modelo

def entrenar xgboost(X_train, y train):

modelo = XGBClassifier(
objective='multi:softmax' if len(set(y_train)) > 2 else 'binary:logistic’,
num _class=len(set(y_train)) if len(set(y_train)) > 2 else None,
eval metric='mlogloss' if len(set(y_train)) > 2 else 'logloss',
use_label encoder=False,
random_state=42,
n_jobs=-1

)

modelo.fit(X_train, y_train)

return modelo

def entrenar svm(X_train, y train, C=1.0, gamma='scale', kernel='linear'):
scaler = StandardScaler()
X train_scaled = scaler.fit_ transform(X_train)

modelo = SVC(kernel=kernel, C=C, gamma=gamma, random state=42, verbose=False)
modelo.fit(X_train_scaled, y_train)

return modelo, scaler

def entrenar mlp(X_ train, y train, hidden_ layer sizes=(100,), max_iter=300, alpha=0.0001):
scaler = StandardScaler()
X train_scaled = scaler.fit_ transform(X_train)

modelo = MLPClassifier(
hidden layer sizes=hidden layer sizes,
activation='relu',
solver='adam',
max_iter=max iter,
alpha=alpha,
random_state=42,
early stopping=True,
verbose=False

)

modelo.fit(X_train_scaled, y_train)

return modelo, scaler

A.3 Evaluacion de modelos

def evaluar modelo(modelo, X test, y test, label encoder,titulo="Evaluacién", tamafio=(18, 12),cmap='Purples'):
y_pred = modelo.predict(X_ test)
print(f"Informe de clasificacibén - {titulo}")
print(classification report(y_test, y pred, target names=label encoder.classes_))

Matriz de confusién con tamafio ajustado

cm = confusion matrix(y_ test, y pred)

fig, ax = plt.subplots(figsize=tamafio)

disp = ConfusionMatrixDisplay(confusion matrix=cm, display labels=label encoder.classes_)
disp.plot(ax=ax, cmap=cmap, xticks_rotation=45, colorbar=True)

plt.title(f"Matriz de Confusidén - {titulo}")

plt.grid(False)

plt.tight layout()

plt.show()

59

A.4. EXTRACCION DE CARACTERISTICAS APENDICE A. CODIGO DESARROLLADO

A.4 Extraccion de caracteristicas

def grafica importancia caracteristicas(modelo, max features=20):

xgb.plot_importance(
modelo,
max num_ features=max_features,
importance_ type='gain',
height=0.5
)
plt.title(f"Top {max features} caracteristicas mas importantes")
plt.show()

def obtener importancias(modelo, tipo="gain"):
importancia = modelo.get booster().get_ score(importance_type=tipo)
imp df = pd.DataFrame.from dict(importancia, orient='index', columns=['importancia'])
imp df = imp df.sort values(by='importancia', ascending=False)
return imp df

A.5 Mostar distribucidon

def mostrar grafica distribucion(df, titulo grafica):
conteo_etiquetas = df[' Label'].value counts().sort values(ascending=False)

plt.figure(figsize=(12, 6))
sns.barplot(x=conteo_etiquetas.index, y=conteo_etiquetas.values)
plt.title(titulo_grafica)

plt.xlabel("Label")

plt.ylabel("Nimero de muestras")

plt.xticks(rotation=90)

plt.tight layout()

plt.show()

def mostrar tabla distribucion(df):
conteo_etiquetas = df[' Label'].value counts().sort values(ascending=False)

fig tabla, ax_tabla = plt.subplots(figsize=(8, 6))
tabla = pd.DataFrame({

'Label': conteo_etiquetas.index,

'Namero de muestras': conteo_etiquetas.values

})

ax_tabla.axis('off')

tabla plot = ax_tabla.table(
cellText=tabla.values,
colLabels=tabla.columns,
loc='center',
cellLoc='center'

)

tabla plot.auto_set font size(False)
tabla plot.set_ fontsize(10)
tabla plot.scale(l.2, 1.5)

for key, cell in tabla plot.get celld().items():
if key[0] == 0: # primera fila (encabezados)
cell.set_text props(weight='bold'")

plt.title("Tabla de distribucidén de etiquetas", pad=20)

plt.tight layout()
plt.show()

60

Apéndice B

Distribuciones de los diferentes da-

tasets

B.1 Distri

pesjgueaH

uonaalu] |bg = YOBRY gap

uonenyu|

SSX T HIENV g8

20104 2INig T HOBRY g2

Jojeled-HSS

Distribucion inicial

suomols S0

loyeied-414

Label

jsapdpumols soq

Graéfica de distribucién inicial
61

afguep|on soq

_ ueoguod

soqa

HINH sea

o
2

o 1w o »w o v o v o
S =~ B N S ~ B o o
o - - - - o o (=] (=]

SseJjsenw ap olewnN

B.2. DISTRIBUCION BALANCEADAAPENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS

Tabla de distribucion de etiquetas

Label Numero de muestras
BENIGN 2095057
DoS Hulk 172846
DDoS 128014
PortScan 90694
DoS GoldenEye 10286
FTP-Patator 5931
DoS slowleris 5385
DoS Slowhttptest 5228
SSH-Patator 3219
Bot 1948
Web Attack O Brute Force 1470
Web Attack & XSS 652
Infiltration 36
Web Attack = Sgl Injection 21
Heartbleed il

Tabla de distribucién inicial

B.2 Distribucion balanceada

400000
350000
8
£ 300000
]
[
£ 250000
3
> 200000
E 150000
100000
0

Distribucién tras balanceo

Numere

x c o e @ - = - %] c 13 °
& E] 8 g o s 5 8 2 2 g 7] S g 3
Qe T a o o T 2 2 I 5 > B G °
=z 0 a L 5 © = £ © w o £ @ =
ul S 5 = [£ £ o)] =) E
@ a o 8 a o H T 5 3 E = 2
£ [# @ £

o [w

9 8 A @ o < o

a o = 2 x

a :(!3 g S

2 £

8 3

= =

Label

Graéfica de distribucién balanceada

62

APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS B.3. DISTRIBUCION BINARIA

Tabla de distribucion de etiquetas

Label Numero de muestras
BENIGN 425741
DoS Hulk 172846
DDoS 128014
PortScan 90694
DoS GoldenEye 10286
FTP-Patator 5931
DoS slowleris 5385
DoS Slowhttptest 5228
SSH-Patator 3219
Bot 1948
Web Attack O Brute Force 1470
Web Attack & XSS 652
Infiltration 36
Web Attack = Sgl Injection 21
Heartbleed 1"

Tabla de distribucién balanceada

B.3 Distribucion binaria

Distribucion binaria

400000
350000
300000
250000

200000

Niumero de muestras

150000

100000

50000

0

-4 P4
5])
pur} 4
E] g

Label

Grafica de distribucion binaria

63

B.4. DISTRIBUCION AGRUPADA APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS

Tabla de distribucion de etiquetas

Label Nimero de muestras
MALIGN 425741
BENIGN 425741

Tabla de distribucion binaria

B.4 Distribucion agrupada

400000

350000

150000

100000
50000 .

0

Distribucion web attack agrupados

Namero de muestras
BB 8
[=] [=] [=]
8 8 8
[=] (=] (=]
o o o

a2 © = w 3 e 4 =

g 3 2 § = g 2 4 8 E 3 5 B
o I 8 3 & k| S = g £ 5 ks
z @ o 2 T 5 H £ © z g =]
& S 5 b g ° £ & a 5 5
@ [=] [S o i H T © £ 3

o s 2 » 8 =

@ (=]

o W

o
= a
Label

Gréfica de distribucion agrupada

64

APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS B.5. DISTRIBUCION REDUCIDA

Tabla de distribucion de etiquetas

Label Numero de muestras
BENIGN 425741
DoS Hulk 172846

DDoS 128014
PortScan 90694

DoS GoldenEye 10286
FTP-Patator 5931
DoS slowleris 5385

DoS Slowhttptest 5228
SSH-Patator 3219
Web Attack 2143

Bot 1948
Infiltration 36
Heartbleed 1"

Tabla de distribucién agrupada

B.5 Distribucion reducida

Distribucién reducida

g

10000

8000

6000

40

Namero de muestras
o
a8

]
8

]

DoS GoldenEye
BENIGN
FTP-Patator
DoS slowloris
DoS Slowhttptest
DoS Hulk

DDoS

PortScan
SSH-Patator
Web Attack
Infiltration
Heartbleed

Label

Gréfica de distribucién reducida

65

B.6. DISTRIBUCION REDUCIDA 2 APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS

Tabla de distribucion de etiquetas

Label Numero de muestras
DoS GoldenEye 10286
BENIGN 10000
FTP-Patator 5931
DoS slowloris 5385
DoS Slowhttptest 5228
DoS Hulk 5000
DDoS 5000
PortScan 5000
SSH-Patator 3219
Web Attack 2143
Bot 1948
Infiltration 36
Heartbleed 1"

Tabla de distribucién reducida

B.6 Distribucion reducida 2

Distribucion reducida 2

20000
17500
15000
12500
10000

7500

Namero de muestras

50

S
S

3
8

]

o c = 5 o % = = =]
% a] S 2 2 s 3 =]] 2 5 °
[= 8 z a] S A s £ 2 s
z @ £ %) a @ H £] < g s
[<) <} o 5 £ o = 2 t
a I} £ [s] a B H T ® £

a I @ = w = 2

%] 2 a 7]

o a]

a 8

Label

Gréfica de distribucién reducida 2

66

APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS B.7. DISTRIBUCION REDUCIDA 3

Tabla de distribucion de etiquetas

Label Numero de muestras
BENIGN 20000
DoS GoldenEye 10286
PortScan 8000
DoS Hulk 8000
DDoS 8000
FTP-Patator 5931
DoS slowleris 5385
DoS Slowhttptest 5228
SSH-Patator 3219
Web Attack 2143
Bot 1948
Infiltration 36
Heartbleed 1"

Tabla de distribucién reducida 2

B.7 Distribucion reducida 3

Distribucion reducida 3

30000

25000

20000

15000

Namero de muestras

10000

50

=3
=3

]

% 5 @ e 2 5 g 5 3 3 5 3
o 3 =] I 4 k] g 2 k=S g = 2
z k2 a I 5 o B £ © < s 2
] 5 © 3 a ° £ < 2 g i
a [+ a S o n % T [} E 2

[} T @ 2 7] =

0 8 7]

g 2

= a

Label

Gréfica de distribucién reducida 3

67

B.7. DISTRIBUCION REDUCIDA 3 APENDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS

Tabla de distribucion de etiquetas

Label Numero de muestras
BENIGN 30000
PortScan 12000

DDoS 12000
DoS Hulk 12000

DoS GoldenEye 10286
FTP-Patator 5931
DoS slowleris 5385
DoS Slowhttptest 5228
SSH-Patator 3219
Web Attack 2143
Bot 1948
Infiltration 36
Heartbleed il

Tabla de distribucién reducida 3

68

Apéndice C

Matrices de Confusion

C.1 Matrices Binarias

- 80000
- 70000
BENIGN

- 60000

- 50000

True label

- 40000

- 30000

MALIGN

- 20000

- 10000

V\\oe %
& W
Predicted label

Figura C.1: Matriz de confusion Random Forest Binario

69

C.1. MATRICES BINARIAS APENDICE C. MATRICES DE CONFUSION

Matriz de Confusién - Clasificacion XGBoost Binaria

- 80000

- 70000
BENIGN 121

- 60000

— 50000

- 40000

- 30000
MALIGN 18

= 20000

- 10000

>

RS &
& W

True label

Predicted label

Figura C.2: Matriz de confusion XGBoost Binario

70

APENDICE C. MATRICES DE CONFUSION C.2. MATRICES MULTICLASE

C.2 Matrices multiclase

Matriz de Confusién - Clasificacion RF Multiclase

BENIGN 37 3 1 29 2 0 0 0 0 48 0 1] 0
- 80000
Bot = 19 3r 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 [25599 0O 1 0 0 0 0 0
DDos 0 C 0 ® v - 70000
DoS Goldengye 2 0 0 2047 5 3 0 0 0 0 0 0 0] 0
DoSHulk = 36 0 1 4 34528 0 0 0 0 0 0 0 0 0 0 - 60000
DoS Slowhttptest | 2 0 0 0 0 1040 4 0 0 0 0 0 0 0 0
= 50000
Dos slowloris 3 0 0 0 0 1 1073 0 0 0 0 0 0 0 0
T
2
B FTP-Patator = 0 0 0 0 0 0 0 1186 0 0 0 0 0] 0
£ - 40000
Heartbleed 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Infiltration 2 0 o 0 0 o 0 0 0 5 0 0 o 0 0
- 30000
Portscan | 33 0 0 0 4 0 0 0 0 0 18102 0 0 0 0
SSH-Patator 1 0 0 0 1 0 0 0 0 0 0 642 0 0 0 - 20000
Web Attack C Brute Foree | 3 0 0 0 1 0 0 0 0 0 1 0 227 0 62
- 10000
Web Attack = Sql Injection 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0
Web Attack = XSS 7 0 0 0 1 0 0 0 0 0 1 0 83 0 38
-0
& FF P & & F
& R4 & & & <% & & O
< & < o 5 & P> N 3 S
B N 2 & R of @
& & 2 7
< S & &
'0? \s
R

Predicted label

Figura C.3: Matriz de confusion Random Forest Multiclase

71

C.2. MATRICES MULTICLASE

APENDICE C. MATRICES DE CONFUSION

BENIGN . 38

Bot 9 381

DDoS 1 0

DoS GoldenEye 0 0

DoS Hulk 2 0

DoS Slownhttptest 2 0

DoS slowloris 1 0
]
8

° FTP-Patator 0 0
2
=

Heartbleed 1 0

Infiltration 3 0

PortScan 1 0

SSH-Patator 0 0

Web Attack © Brute Force 2 0

Web Attack = Sql Injection 0 0

Web Attack = XSS 1 0

‘\\cﬁ <

&

Matriz de Confusion - Clasificacion XGBoost Multiclase

1 0 13 4 0 0
o 0 0 0 0 0

25602 0 0 o 0 0
0 2051 3 3 0 0
0 6 34559 0O 0 0
0 0 0 1040 4 0
0 0 0 0 1075 0
0 0 0 0 o 186
o 0 0 0 0 0
o 0 0 o 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
o 1 0 o 0 0
0 0 0 1 0 0

QQD% 8;&\ e@& < \cai‘o& o

° 2 o o"cje il
S s

0

Predicted label

0 50 0 0 0 0

= 80000
0 0 0 0 0 0
0 0 0 0 0 0 70000
0 0 0 0 0 0
0 2 0 0 0 0 - 60000
0 0 0 0 0 0

- 50000
0 1 0 0 0 0
0 0 0 0 0 0

- 40000
0 0 0 0 0 0
4 0 0 0 0 0

- 30000
0 18133 0 0 0 1
0 0 644 0 0 0 - 20000
0 0 0 245 0 47

= 10000
0 0 0 1 2 0
0 2 0 81 0 45

Figura C.4: Matriz de confusion XGBoost Multiclase

72

APENDICE C. MATRICES DE CONFUSION

C.3. MATRICES CON ATAQUES WEB AGRUPADOS

C.3 Matrices con ataques web agrupados

Matriz de Confusion - Clasificacion RF Web Agrupados

BENIGN 3 1 2% 2 1 0 0 0 48 0 1
- 80000
Bot | 17 373 0 0 0 0 0 0 0 0 0 0 0
- 70000
DDoS 5 0 25598 0 0 0 0 0 0 0 0 0 0
DoS GoldenEye 3 0 0 2046 5 3 0 0 0 0 0 0 0
- 60000
DoS Hulk |~ 30 0 1 5 34533 0 0 0 0 0 0 0 0
DoS Slowhttptest 2 0 0 0 0 1040 P 0 0 0 0 0 0 - 50000
3
2
S Dos slowloris 2 0 0 0 0 1 1074 0 0 0 0 0 0
3
= - 40000
FTP-Patator 0 0 0 0 0 0 0 1186 0 0 0 0 0
Heartbleed 1 0 0 0 0 0 0 0 1 0 0 0 0 - 0000
Infiltration 2 0 0 0 0 0 0 0 0 5 0 0 0
- 20000
PortScan | 33 0 0 0 4 0 0 0 0 0 18100 0 2
SSH-Patator 1 0 0 0 0 0 0 0 0 0 0 643 0 - 10000
Web Attack 8 0 0 0 2 0 0 0 0 0 0 0 419
-0
> 3 ¢ N o > & S 5 &
O o & & & s RS & & & F #° }{@o
& & f & 5 <8 S & & & 5
o7 3° & & A ® 4 «
o (=) <
< &

Predicted label

Figura C.5: Matriz de confusion Random Forest Ataques Web Agrupados

73

C.3. MATRICES CON ATAQUES WEB AGRUPADOS

APENDICE C. MATRICES DE CONFUSION

BENIGN 85041 36

Matriz de Confusion - Clasificacién XGBoost Web Agrupados

4 0 13 4 0 0 0 0 50 0 0
- 80000
Bot 10 380] 0 0 0 0 0 0] 0 0 0
= 70000
DDoS 1 0 25602] 0 0]] 0 0] 0 0
Dos GoldenEye 0 0 0 2050 4 3 0 0 0 0 0 0 0
- 60000
DoS Hulk 1 0 0 4 34562 0] 0 0 0 2 0 0
DOS Slowhtptest 1 0 0 0 0 1040 5 0 0 0 0 0 0 - 50000
3
8
e Do slowloris 2 0 0 0 0 0 1075 0 0 0 0 0 0
3
[- 40000
FTP-Patator 0 0 0 0 0 0] 1186 0 0 0 0 0
Heartbleed 1 0 0 0 0 0 0 0 1 0 0 0 0 - 30000
Infltration 3 0 0 0 0 0 0 0 0 4 0 0 0
- 20000
Portscan 1 0 0 0 4 0 0 0 0 0 18133 0 1
SSH-Patator 0 0 0 0 0 0 0 0 0] 0 644 0 - 10000
Web Attack 1 0 0 0 0 0 0 0 0 0 0 0 428
-0
KN 3) @ & S & & > o S o &
ST & B & & @“"’@ S
A4 S < 3 2 &’ 2 & < & J
< N €
& &° * ¢ & N
< o

Predicted label

Figura C.6: Matriz de confusion XGBoost Ataques Web Agrupados

74

APENDICE C. MATRICES DE CONFUSION C.4. MATRICES CON DATASET REDUCIDOS

C.4 Matrices con dataset reducidos

Matriz de Confusién - Clasificacién MLP Reducido

BENIGN 25 0 5 17 1 3 1 o 2 13 6 12 - 2000

Bot 2 388 0] 0 0 0] 0 0 0]]
- 1750
DDos 2 0 0 0 0 0 0
DoS GoldenEye [] o]] 0 0 0 - 1500
Do Hulk 0 0 0 0 0 0 0
- 1250
DoS Slowhttptest 3 0) 0 0 1 0
@
3
S DoSslowloris | 4 0 0 0 0 1 0
> - 1000
=
FTP-Patator [0 o] 0 0 3 1
=750
Heartblesd 0 0 0 0 0 0 0 0 2 0 0 0 0
Infiltration 2 0 0 0 0 0 0 0 0 5 0 0 0
= 500
PortScan 1 0 0 0 0 0 0 0 0 0 . 0 0
SSH-Patator 1 0 0 2 0 0 1 0 0 0 0 640 0 250
Web Attack 0 0 0 0 4 0 0 0 0 0 0 15 410
-0
R & ST A
& © & & & B & & & i s°
R < &8 & Q & § X o
& & ©

Predicted label

Figura C.7: Matriz de confusion MLP Reducida

75

C.4. MATRICES CON DATASET REDUCIDOS APENDICE C. MATRICES DE CONFUSION

Matriz de Confusion - Clasificacién MLP Reducido 2

BENIGN 48 4 1 8 2 0 6 o 0 2 8 15

Bt 5 385 0 0 0 0 0 0 0 0 0 0 0 - 3500
ooos | 6 0 1594 0) 0 0 0 0 0 0 0 0
- 3000
DoS GoldenEye | 1 0 0 H 0 0 0 0 0 0 0 0 0
DoSHuk = 18 0 0 1 1581 0 0 0 0 0 0 0 0
- 2500
DoS Slowhttptest | 2 0 0 3 0 1083 8 0 0 0 0 0 0
g
S Doscoworis 4 0 0 0) 9 1063 0 0 0 0 0 1 - 2000
E
=
FTP-Patator | 4 0 0 0 0 0 2 179 0 0 0 1 0
= 1500
Heartbleed | O 0 0 0 0 0 0 0 2 0 0 0 0
nfilvation | 3 0 0 0 0 0 0 0 0 4 0 0 0
= 1000
Potscan | O 0 0 0 1 0 1 0 0 0 1598 0 0
ssH-Patator | 1 0 0 3 0 0 0 1 0 0 0 638 1 [s00
WebAttack 5 0 0 3 0 0 0 0 0 0 0 21 400
-0
& & & & & Q"& o & & = 5 3
& < ROM & < & $ & S
S < @\s“ & & o < & &
&) <
o o

Predicted label

Figura C.8: Matriz de confusion MLP Reducida 2

76

APENDICE C. MATRICES DE CONFUSION C.4. MATRICES CON DATASET REDUCIDOS

Matriz de Confusion - Clasificacién MLP Reducido 3

BENIGN 52 8 1 20 1 4 3 o 0 95 4 27

Bot 19 371 0 0 0 0 0 0 0 0 0 0 0
- 5000
DDos 0 0 2400 0 0 0 0 0 0 0 0 0 0
Do GoldenEye 4 0 0 2050 0 3 0 0 0 0 0 0 0
- 4000
DoSHulk = 12 0 0 0 2388 0 0 0 0 0 0 0 0
DoS Slowhttptest 5 0 0 2 0 1034 4 0 0 0 0 0 1
% - 3000
< Dos slowioris 1 0 0 2 0 5 1068 0 0 0 0 1 0
3
g
FTP-Patator 1 0 0 0 0 0 4 181 0 0 0 0 0
Heartblesd 1 0 0 0 0 0 0 0 1 0 0 0 0 - 2000
Infiltration 0 0 0 0 0 0 0 1 0 5 0 0 1
Fortscan 0 1 0 0 5 0 0 0 0 0 2394 0 0
- 1000
SSH-Patator 7 0 0 0 0 0 0 0) 0 0 637 0
Web Attack 5 0 0 1 0 0 0 0 0 0 0 17 406
-0
w\‘@é i 0006 & @V?\ &S 0\005 & e *
& & & & P Q & & & & &
& 2° o R & ¥
&F &

Predicted label

Figura C.9: Matriz de confusion MLP Reducida 3

77

C.4. MATRICES CON DATASET REDUCIDOS APENDICE C. MATRICES DE CONFUSION

Matriz de Confusion - Clasificacion VM Reducido

- 2000
BENIGN 1738 84 34 21 27 0 5 3 o 1 40 31 16

Bot 4 385 0 0 o 0 0 0 o] [1 0 0
- 1750

DDos 1 0 0 0 0 0 0
DoS GoldenEye 0 0 0 0 0 0 0 - 1500
DoS Hulk 4 0 0 0 0 0 0
- 1250
DoS Slowhttptest 7 0) o 0 1 1
o
&
3 Dossiowons 3 0 0 0 0 1 0 1000
E
FTP-Patator 5 0 0 0 0 3 1
- 750
Heartbleed 1 0 0 0 0 0 0 0 1 0 0 0 0
Infiltration 6 0 1 0 0 0 0 0 0 0 0 0 0
- 500
PortScan 8 0 0 0 1 0 3 0 0 0 . 0 5
SSH-Patator 5 0 0 2 1 0 0 2 0 0 0 634 0 250
Web Attack 10 0 0 3 3 0 0 0 0 0 0 2 391
-0
S N\ >3
CE A N A A A A
& & & < & @ & & &
& 2° o ¥ & <
< &

Predicted label

Figura C.10: Matriz de confusion SVM Reducida

78

APENDICE C. MATRICES DE CONFUSION C.4. MATRICES CON DATASET REDUCIDOS

Matriz de Confusion - Clasificacion SVM Reducido 2

BENIGN 25 104 12 25 0 9 18 o] 0 52 6 22
- 3500

Bot 130 260 0 0] 0 0 0 0 0 0 0 0
DDos 1 1 1598] 0 0 0 0 0 0 0 0] _ 3000
DoS GoldenEye 23 0 12 H 0 0 0 0 0 0 0 0 0
- 2500
DoS Hulk 8 0 91 0 1501 0 0 0 0 0 0 0 0
DoS Slowhtiptest 7 0 0 4 0 1023 9] 0 0 0] 3
2 - 2000
= DoS slowloris 10 0 2 1 0 17 1046 0 0 0 0 0 1
3
=
FTP-Patator 2 0 4 0 0 0 9 171 o] 0 0 0 0
- 1500
Heartbleed 0 0 0 0 0 0 0 0 2 0 0 0 0
Infiltration 7 0 0 0 0] 0 0 o] 0 0 0 0 - 1000
PortScan 7 0 1 0 0 0 1 1 0 0 1578 0 12
- 500
SSH-Patator 44 0 2 0 0 0 0 1 0 0 2 595 0
Web Attack | 37 0 3 3 0 0 0 0 0 0 0 1 385
-0
S N >3
& & & S & Q"& o & & = 5 3
& < ROM & < & $ & S
3 < & @ & ® < & &
&) <
< &

Predicted label

Figura C.11: Matriz de confusion SVM Reducida 2

79

C.4. MATRICES CON DATASET REDUCIDOS APENDICE C. MATRICES DE CONFUSION

Matriz de Confusion - Clasificacion SVM Reducido 3

BENIGN [il 65 21 38 2 13 17 0 0 10 7 34
Bot | 144 151 0 0 0 0 0 0 0 0 ES 0 0 L 5000
DDos 1 0 2399 0 0 0 0 0 0 0 0 0]
DoS GoldenEye 47 0 1 2006 0 2 1 0 0 0 0 0 0
- 4000
DoSHulk 121 0 0 1 2278 0 0 0 0 0 0 0 0
DoS Slowhtiptest 8 0 0 1 0 1029 7 0 0 0 0] 1
2 - 3000
= DoS slowloris 16 0 0 3 0 10 1048 0 0 0 0 0]
E
=
FTP-Patator 3 0 0 0 0 0 9 174 0 0 0 0 0
Heartbleed 1 0 0 0 0 0 0 0 1 0 0 0 0 - 2000
Infiltration 7 0 0 0 0 0 0 0 0 0 0]]
PortScan 23 0 1 0 0 0 0 0 0 0 2367 0 9
- 1000
SSH-Patator |~ 44 0 0 0 0 0 0 0 0 0 4 596 0
Web Attack |~ 43 0 0 2 0 0 0 0 0 0 0 0 384
-0
\@é o oofb prd \b\)& & & <o‘°‘ \oob §§ o & @\é &
& s & o & o S &8
g g S X FS & 2 &
& 2° o R & ¥
& &

Predicted label

Figura C.12: Matriz de confusion SVM Reducida 3

80

APENDICE C. MATRICES DE CONFUSION

C.4. MATRICES CON DATASET REDUCIDOS

Matriz de Confusién - Clasificacion XGBoost Reducido

BENIGN 5 1 0 1 0 0 0 o]

2 0 0
Bot 3 387 0 0 0 0 0 0 0 0 0 0 4500
DDos 1 0 1599 0 0 0 0 0 0 0 0 0
- 3000
DoS GoldenEye 0 0 0 2057 0 0 0 0 0 0 0 0
Dos Hulk 0 0 0 1 1599 0 0 0 0 0 0 0
- 2500
DoS Slowhttptest 1 0 0 1 0 1038 6 0 0 0 0 0
3
2
® DoSsiowloris | 4 0 0 0 0 2 1071 0 0 0 0 0 - 2000
3
E
FTP-Patator 0 0 0 0 0 0 0 186 0 0 0 0
- 1500
Heartbleed 0 0 0 0 0 0 0 0 2 0 0 0
Infiltration 1 0 0 0 0 0 0 0 0 0 0 0
- 1000
PortScan 1 0 0 0 0 0 0 0 0 1599 0 0
- 500
SSH-Patator 0 0 0 0 0 0 0 0 o 0 644 0
Web Attack 0 0 0 1 0 1 0 0 0 0 0 427
-0
S N S $
T\\Oé < nga < 6\29\ §"’ ;@“ ’b\rp\° 0\006 @3&(\ 5:.7’0 @@‘° K &
& JE & P & & &
& 2° o R & ¥
& &

Figura C.13: Matriz de confusion XGBoost Reducida

Predicted label

81

C.5. MATRICES CON CARACTERISTICAS REDUCIDAS APENDICE C. MATRICES DE CONFUSION

C.5 Matrices con caracteristicas reducidas

Matriz de Confusién - XGBoost - Top 20 caracteristicas

BENIGN 24 0 1 3 0 ") 0 o 0 2 1 17

Bot 9 381 0 0 0 0 0 0 0 0 0 0 0 - 3500
DDos 5 0 1594 0 1 0 0 0 0 0 0 0 0
- 3000
DoS GoldenEye (]] 0 4] 0 0 o]] 0 0 0
Do Hulk 1 0 1 1 1596 0 1 0 0 0 0 0 0
- 2500
Dos Slowhttptest 1 0 0 4 0 1036 5 0 0 0 0 0 0
@
S
S Dos slowloris 4 0 0 1 0 6 1066 0 0 0 0 0 0 - 2000
E
=
FTP-Patator 0 0 0 0 0 0 0 1186 0 0 0 0 0
- 1500
Heartbleed 0 0 0 0 0 0 0 0 2 0 0 0 0
Infiltration 1 0 0 0 0 0 0 0 0 6 0 0 0
- 1000
PortScan 1 0 0 0 0 0 0 0 0 0 1599 0 0
- 500
SSH-Patator 1 0 0 0 0 0 0 0 0 0 0 643 0
Web Attack 3 0 0 1 1 0 1 0 0 0 0 0 423
-0
N S
T\@e & $ 006 gﬁw o *&\Vp S @\o\ \006 é@(\ g & & {@c‘f
& ¥ & 5 < & & & Q° \a
o &8 E Q & %c,x\ 5
&) N
< &

Predicted label

Figura C.14: Matriz de confusion XGBoost Top 20 Caracteristicas

82

APENDICE C. MATRICES DE CONFUSION

C.5. MATRICES CON CARACTERISTICAS REDUCIDAS

BENIGN 13

Matriz de Confusion - XGBoost - Top 30 caracteristicas

0 1 3 0 0 0 0 2 0 10
Bot 1 389 0 0 0 0 0 0 0 0 0 0 3500
DDos 4 0 1595 0 1 0 0 0) 0 0 0
= 3000
Do GoldenEye 0 0 0 4 0 0 0 0 0 0 0
Do Hulk 1 0 0 1 1597 0 0 0 0 0 0 1
- 2500
DoS Slowhttptest 1 0 0 1 0 1038 6 0 0 0 0 0
o
2
= DoS slowloris 4 0 0] 0 2 1071 0 0 0 0 0 - 2000
3
=
FTP-Patator 0 0 0 0 0 0 0 1186 0 0 0 0
= 1500
Heartblesd 0 0 0 0 0 0 0 0 2 0 0 0
Infiltration 1 0 0 0 0 0 0 0 0 0 0 0
- 1000
Fortscan 1 0 0 0 0 0 0 0 0 1599 0 0
- 500
SSH-Patator 0 0 0 0 0 0 0 0) 0 644 0
Web Attack 1 0 0 2 0 1 0 0 0 0 0 425
-0
& nga & & ‘&-@*\ Y R EI
& ¥ & & 5 & & & & 50 &
& &° & ¥ A & <
&) <
< &

Predicted label

Figura C.15: Matriz de confusion XGBoost Top 30 Caracteristicas

83

C.5. MATRICES CON CARACTERISTICAS REDUCIDAS APENDICE C. MATRICES DE CONFUSION

84

Bibliografia

(1]

(2]
(3]
(4]
[5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]
[18]
[19]

[20]

Leyla Bilge y Tudor Dumitras. «Before We Knew It: An Empirical Study of Zero-Day Attacks in the
Real World». En: Proceedings of the 2012 ACM Conference on Computer and Communications Security
(2012), pags. 833-844.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
Leo Breiman. «Random Forests». En: Machine Learning 45.1 (2001), pags. 5-32.
Leo Breiman. «Random Forests». En: Machine Learning 45.1 (2001), pags. 5-32.

Canadian Institute for Cybersecurity. CIC-IDS2017 Dataset. 2017. URL: https://www.unb.ca/
cic/datasets/ids-2017.html.

Nitesh V. Chawla et al. «<SSMOTE: Synthetic Minority Over-sampling Technique». En: Journal of Artifi-
cial Intelligence Research. Vol. 16. 2002, pags. 321-357.

Tiangi Chen y Carlos Guestrin. «XGBoost: A Scalable Tree Boosting System». En: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. 2016,
pags. 785-794. URL: https://dl.acm.org/doi/10.1145/2939672.2939785,.

Cisco Systems. Snort - Network Intrusion Detection System. 2023. URL: https : / /www . snort .
org/|.

Corinna Cortes y Vladimir Vapnik. «Support-vector networks». En: Machine Learning 20.3 (1995),
pags. 273-297.

Scikit-learn Developers. Classification Metrics. 2023. URL: https : / / scikit - learn . org/
stable/modules/model evaluation.html.

Scikit-learn Developers. Pipeline and Composite Estimators. 2023. URL: https://scikit-learn.
org/stable/modules/compose.html.

European Union Agency for Cybersecurity (ENISA). ENISA Threat Landscape 2023.2023. URL: https :
//www.enisa.europa.eu/publications/enisa-threat-landscape-2023.

Matthias Finsterbusch et al. «A Survey of Payload-Based Traffic Classification Approaches». En: IEEE
Communications Surveys & Tutorials 16.2 (2014), pags. 1135-1156.

Git Contributors. Git - Distributed Version Control System. 2023. URL: https://git-scm.com.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt et al. «Array programming with NumPy».
En: Nature 585 (2020), pags. 357-362. DOI1:[10.1038/s41586-020-2649-2,.

Simon Haykin. Neural Networks and Learning Machines. 3.2 ed. Pearson, 2008.
Haibo He y Edwardo A. Garcia. Learning from Imbalanced Data. 2009.
Hunter, John D. Matplotlib: Visualization with Python. 3. 2007, pags. 90-95.

IEEE DataPort Contributors. IDS Packet Dataset - IEEE DataPort. Dataset used for intrusion detection
research. 2023. URL: https://ieee-dataport.org/keywords/ids-packet-dataset.

Jupyter Team. Project Jupyter. 2023. URL: https://jupyter.orgd.

85

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://dl.acm.org/doi/10.1145/2939672.2939785
https://www.snort.org/
https://www.snort.org/
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/compose.html
https://scikit-learn.org/stable/modules/compose.html
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://git-scm.com
https://doi.org/10.1038/s41586-020-2649-2
https://ieee-dataport.org/keywords/ids-packet-dataset
https://jupyter.org

BIBLIOGRAFIA BIBLIOGRAFIA

[21]

[22]

[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

Kaggle Contributors. Simulated Military Network Traffic Dataset. Dataset simulating military network
traffic for IDS evaluation. 2023. URL: https://www.kaggle.com/datasets/sampadabl7/
network-intrusion-detection.

Ron Kohavi. «A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection».
En: (1995), pags. 1137-1143.

Lamport, Leslie. LaTeX: A Document Preparation System. Addison-Wesley, 1994.

Guillaume Lemaitre, Fernando Nogueira y Christos K. Aridas. Imbalanced-learn: A Python Toolbox to
Tackle the Curse of Imbalanced Datasets in Machine Learning. 2017.

Microsoft. Visual Studio Code. 2023. URL: https://code.visualstudio.com.

Open Information Security Foundation. Suricata - Open Source IDS/IPS/NSM engine. 2023. URL: https :
//suricata.io/|

F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». En: Journal of Machine Learning Re-
search 12 (2011), pags. 2825-2830. URL: https://scikit-learn.org/.

Python Software Foundation. Python 3.11 Documentation. 2023. URL: https: //docs . python.
org/3.11/.

Sabrina Sicari et al. «Security, Privacy and Trust in Internet of Things: The Road Ahead». En: Computer
Networks 76 (2015), pags. 146-164.

William Stallings. Network Security Essentials: Applications and Standards. 4.2 ed. Pearson, 2012.

The Pandas Development Team. Pandas Documentation. 2023. URL: https://pandas.pydata.
org/docs/.

Waskom, Michael L. Seaborn: Statistical Data Visualization. 2021. URL: https://seaborn.pydata.
org.

Zeek Project. Zeek - Network Security Monitoring. 2023. URL: https://zeek.org/.

86

https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection
https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection
https://code.visualstudio.com
https://suricata.io/
https://suricata.io/
https://scikit-learn.org/
https://docs.python.org/3.11/
https://docs.python.org/3.11/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://seaborn.pydata.org
https://seaborn.pydata.org
https://zeek.org/

BIBLIOGRAFIA BIBLIOGRAFIA

87

	Índice de cuadros
	Índice de figuras
	TODO List
	Introducción
	Introducción
	Motivación

	Objetivos y Alcance
	Objetivos
	Tareas a realizar

	Alcance

	Planificación
	Fases y costes
	Descripción de las fases
	Costes

	Gestión de riesgos y dificultades
	Principales riesgos previstos
	Dificultades enfrentadas y resolución
	Lecciones aprendidas

	Marco Conceptual
	Sistemas de Detección de Intrusos (IDS)
	Aprendizaje automático y su apliacación en ciberseguridad
	Limitaciones de los sistemas convencionales
	Aprendizaje supervisado
	Tipos de aprendizaje en detección de intrusos

	Soluciones Existentes
	Sistemas tradicionales de detección
	Snort
	Suricata

	Herramientas con enfoque de Machine Learning
	Zeek
	Herramientas académicas y experimentales

	Limitaciones comunes

	Estudio de los datos
	Descripción y comparación de los datasets
	CIC-IDS2017 cicids2017
	IDS Packet Dataset (IEEE DataPort) ieee-dataport
	Dataset de Red Militar red-militar
	Justificación de la elección

	Formato y estructura del dataset elegido
	Estructura general
	Volumen de datos
	Tipos de datos
	Características destacadas
	Etiquetas de clasificación

	Problemas detectados en los datos
	Valores nulos y columnas irrelevantes
	Posibles registros duplicados o inconsistentes
	Desbalanceo en la distribución de clases
	Complejidad y heterogeneidad de los datos

	Modelos de Machine Learning considerados
	Bosques Aleatorios (Random Forest)
	Máquina de Vectores de Soporte (SVM)
	XGBoost
	Multilayer Perceptron (MLP)

	Diseño
	Arquitectura general del sistema
	Diseño del pipeline de datos
	Diseño de los modelos de Machine Learning
	Modelos seleccionados y configuración inicial
	Estrategia de entrenamiento y validación prevista

	Diseño de la evaluación
	Métricas seleccionadas
	Criterios para la comparación entre modelos

	Implementación
	Entorno y herramientas
	Equipo utilizado
	Principales librerías utilizadas

	Preprocesamiento
	Funciones auxiliares para validación

	Entrenamiento y selección de características
	Entrenamiento
	Extracción de características

	Evaluación
	Organización y gestión del código

	Resultados
	Planificación de las pruebas
	Resultados obtenidos
	Dataset binario
	Dataset multiclase
	Dataset con ataques web agrupados
	Dataset reducido
	Dataset reducido 2
	Dataset reducido 3
	Dataset reducido 2 - XGBoost
	Dataset con características reducidas

	Análisis y discusión
	Comparativa entre enfoques
	Comparativa entre modelos
	Coste computacional
	Selección de características
	Elección final del modelo

	Conclusiones
	Modelo final seleccionado
	Trabajo a futuro

	Appendices
	Apéndice Código desarrollado
	Preprocesamiento
	Entrenamiento de modelos
	Evaluación de modelos
	Extracción de características
	Mostar distribución

	Apéndice Distribuciones de los diferentes datasets
	Distribución inicial
	Distribución balanceada
	Distribución binaria
	Distribución agrupada
	Distribución reducida
	Distribución reducida 2
	Distribución reducida 3

	Apéndice Matrices de Confusión
	Matrices Binarias
	Matrices multiclase
	Matrices con ataques web agrupados
	Matrices con dataset reducidos
	Matrices con características reducidas

	Bibliografía

