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Resumen

En un contexto de creciente digitalización y sofisticación de los ciberataques, los sistemas tradicionales de
detección de intrusiones, basados en firmas estáticas, resultan insuficientes para hacer frente a amenazas nuevas
o desconocidas. Este trabajo surge con la motivación de explorar alternativas más adaptativas mediante el uso
de inteligencia artificial.

El objetivo principal ha sido evaluar comparativamente distintos algoritmos de aprendizaje automático apli-
cados a la detección de intrusiones en redes, con el fin de identificar cuál ofrece el mejor equilibrio entre pre-
cisión, eficiencia computacional y robustez frente a clases desbalanceadas. Para ello, se ha llevado a cabo un
estudio del estado del arte, la selección y preprocesamiento del dataset CIC-IDS2017, y la implementación de
un sistema modular que permite entrenar y evaluar modelos como Random Forest, XGBoost, SVM y MLP en
distintos escenarios de clasificación.

Los resultados obtenidos muestran que XGBoost destaca como el modelo más eficaz, manteniendo un alto
rendimiento incluso al reducir el número de características a las 30 más relevantes. En conclusión, este trabajo
demuestra la viabilidad del uso de técnicas de aprendizaje automático en sistemas de detección de intrusiones,
sentando una base sólida para el desarrollo de soluciones más inteligentes, escalables y adaptadas a entornos
reales.

Abstract

In a context of increasing digitalization and increasingly sophisticated cyberattacks, traditional intrusion
detection systems based on static signatures are no longer sufficient to address new or unknown threats. This
project aims to explore more adaptive alternatives through the use of artificial intelligence.

The main objective is to comparatively evaluate various machine learning algorithms applied to network
intrusion detection, identifying the one that offers the best balance between accuracy, computational efficiency,
and robustness against imbalanced classes. To achieve this, a comprehensive study was conducted, including a
review of the state of the art, preprocessing of the CIC-IDS2017 dataset, and the implementation of a modular
system to train and evaluate models such as Random Forest, XGBoost, SVM, and MLP under different classi-
fication scenarios.

The results show that XGBoost stands out as the most effective model, maintaining high performance even
when the number of features is reduced to the 30 most relevant ones. In conclusion, this work demonstrates the
feasibility of using machine learning techniques in intrusion detection systems and lays a solid foundation for
the development of smarter, more scalable, and real-world-ready solutions.
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Capítulo 1

Introducción

1.1 Introducción

La sociedad actual está inmersa en un proceso de digitalización sin precedentes. Vivimos rodeados de dis-
positivos conectados, servicios online y entornos tecnológicos que, cada día más, dependen de infraestructuras
digitales. Este fenómeno ha traído consigo mejoras notables en eficiencia, accesibilidad y automatización, tanto
en el ámbito personal como en el profesional. Sin embargo, esta hiperconectividad también conlleva nuevos
riesgos. Cuanto más dependemos de los sistemas conectados, más expuestos estamos a amenazas cibernéti-
cas cada vez más sofisticadas y persistentes. Según el informe más reciente de ENISA [12], el número y la
complejidad de los ciberataques continúa aumentando, afectando a sectores críticos como sanidad, transporte o
administración pública.

La ciberseguridad se ha convertido en una necesidad crítica. Ya no se trata solo de proteger datos, sino de
garantizar el correcto funcionamiento de servicios esenciales, preservar la privacidad y evitar daños económicos
y reputacionales. Entre los mecanismos más relevantes para lograrlo se encuentran los sistemas de detección de
intrusos (IDS, por sus siglas en inglés). Estos sistemas supervisan el tráfico de red en busca de comportamientos
anómalos que puedan indicar la presencia de un atacante o de una actividad maliciosa.

Sin embargo, muchos de los IDS actuales se basan en reglas o firmas previamente conocidas, lo que los
limita cuando se enfrentan a amenazas nuevas o desconocidas, como los ataques zero-day [1]. Esta rigidez pro-
voca falsos negativos y deja huecos críticos en la defensa de las redes. En este contexto, tecnologías como el
aprendizaje automático (machine learning) y la inteligencia artificial (IA) ofrecen un enfoque más flexible, ca-
paz de adaptarse a nuevas amenazas sin intervención humana constante.

El presente Trabajo de Fin de Grado nace con el propósito de explorar el uso de algoritmos de IA en la
detección de intrusiones en redes informáticas. El enfoque adoptado no busca desarrollar un único sistema, sino
comparar distintas técnicas de aprendizaje automático y evaluar su rendimiento ante diferentes tipos de tráfico
malicioso y legítimo. A través de este estudio, se pretende determinar qué algoritmo se comporta mejor en tér-
minos de precisión, recall, F1-score y otras métricas relevantes, proporcionando una base sólida sobre la que
construir futuras soluciones de seguridad más inteligentes, eficaces y proactivas.
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1.2. MOTIVACIÓN CAPÍTULO 1. INTRODUCCIÓN

1.2 Motivación

La motivación principal de este proyecto parte de una observación clara: los métodos tradicionales para
detectar intrusiones en redes ya no son suficientes. Los ciberataques modernos evolucionan de forma constante,
y cada vez es más común encontrar amenazas que no pueden ser identificadas mediante mecanismos estáticos
basados en firmas. Esto deja a muchas organizaciones vulnerables, especialmente frente a ataques desconocidos
o variantes de malware diseñadas para evadir las detecciones convencionales.

Además, el volumen de datos que circula por las redes hoy en día es inmenso. Con el auge del Internet de
las Cosas (IoT), el trabajo remoto y la digitalización de procesos empresariales, resulta inviable analizar todo
el tráfico manualmente o mediante reglas fijas. Esta necesidad de adaptarse a entornos complejos y altamente
heterogéneos, como ocurre en las redes IoT, refuerza el valor del aprendizaje automático como técnica de de-
tección flexible y escalable [29]. En este contexto, los sistemas basados en aprendizaje automático presentan
una ventaja competitiva clave: su capacidad de adaptarse, aprender de los datos y tomar decisiones basadas en
patrones dinámicos.

Este Trabajo de Fin de Grado responde a esa necesidad: evaluar distintas técnicas de IA y determinar cuál
resulta más eficaz en la detección de intrusiones. No se trata únicamente de demostrar que la inteligencia ar-
tificial puede aplicarse a este campo, sino de comparar de forma rigurosa sus diferentes enfoques y ofrecer
conclusiones basadas en resultados medibles.

En definitiva, este proyecto busca aportar valor tanto desde el punto de vista técnico como académico, sen-
tando las bases para un futuro en el que los sistemas de detección de intrusos no solo reaccionen, sino que
predigan, aprendan y evolucionen junto al panorama de amenazas.
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Capítulo 2

Objetivos y Alcance

2.1 Objetivos

Este Trabajo de Fin de Grado se enmarca en el contexto de la ciberseguridad, donde los sistemas de de-
tección de intrusiones (IDS) juegan un papel clave para proteger las redes frente a accesos no autorizados o
comportamientos maliciosos. En concreto, se aborda la aplicación de técnicas de aprendizaje automático (ma-
chine learning) como herramienta para detectar estos ataques a partir del análisis del tráfico de red.

El proyecto se ha desarrollado con un enfoque exploratorio y comparativo. No se persigue la construcción
de una solución lista para producción, sino un análisis riguroso de diferentes algoritmos de clasificación aplica-
dos a la detección de intrusiones, con el fin de evaluar su rendimiento en distintos escenarios y con diferentes
configuraciones de datos.

El objetivo principal de este trabajo es identificar, mediante una evaluación técnica y sistemática,
cuál de los algoritmos de aprendizaje automático estudiados ofrece el mejor comportamiento global en
tareas de detección de intrusiones, considerando no solo métricas de rendimiento , sino también su coste
computacional, robustez frente a clases desbalanceadas y escalabilidad.

Este análisis pretende servir de referencia para desarrolladores e investigadores que busquen aplicar técnicas
de inteligencia artificial en sistemas IDS, aportando datos empíricos sobre el comportamiento de los modelos
más comunes.

De manera más específica, los objetivos concretos del proyecto son:

Estudiar diferentes algoritmos de aprendizaje automático orientados a la detección de anomalías y ataques
en redes.

Comparar su rendimiento mediante métricas como precisión, recall, F1-score o la tasa de falsos positivos.

Analizar su aplicabilidad en contextos reales, valorando aspectos como el coste computacional, la com-
plejidad de entrenamiento o su escalabilidad.

Elaborar una documentación clara y técnica que recoja el análisis realizado, los resultados obtenidos y
las conclusiones derivadas de la comparativa.

Estos objetivos permiten sentar una base sólida sobre la que podrían construirse futuras soluciones más
avanzadas y adaptadas a entornos productivos.
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2.2. ALCANCE CAPÍTULO 2. OBJETIVOS Y ALCANCE

2.1.1 Tareas a realizar

Para alcanzar estos objetivos, el desarrollo del proyecto se divide en una serie de tareas estructuradas, que
marcan el ritmo y la dirección del trabajo:

Definición y planificación del proyecto: Establecer el alcance, las fases de desarrollo, los hitos y los
entregables clave.

Estudio del problema y análisis del contexto: Investigar las características de los ataques más comunes y
la naturaleza del tráfico de red, así como el papel de la IA en este tipo de detección.

Revisión del estado del arte: Analizar soluciones existentes y trabajos previos relacionados con el uso de
inteligencia artificial en sistemas IDS.

Selección de algoritmos a evaluar: Identificar un conjunto representativo de modelos de aprendizaje au-
tomático adecuados para el análisis (por ejemplo: árboles de decisión, redes neuronales, k-NN, etc.).

Preparación de los datos de entrada: Preprocesar el dataset para que sea adecuado para el entrenamiento
y la evaluación de los modelos.

Entrenamiento, validación y prueba de los modelos: Ejecutar cada modelo sobre los datos disponibles,
registrar su comportamiento y recoger las métricas correspondientes.

Análisis de resultados y elaboración de conclusiones: Interpretar los datos obtenidos y extraer conclusio-
nes fundamentadas sobre la idoneidad de cada algoritmo.

Redacción de la memoria y documentación técnica: Recoger todo el proceso en una memoria académica
clara, estructurada y coherente, incluyendo los fundamentos, el desarrollo y los resultados del proyecto.

2.2 Alcance

El presente Trabajo de Fin de Grado se limita a la evaluación comparativa de diferentes algoritmos de apren-
dizaje automático aplicados a la detección de intrusiones en redes. Se trabajará en un entorno controlado, con
datos representativos, y se asumirá una fase experimental cerrada, sin desplegar los modelos en entornos pro-
ductivos reales.

El proyecto comprende:

La selección de un conjunto limitado de algoritmos con enfoques diversos dentro del aprendizaje auto-
mático supervisado.

La preparación y preprocesamiento de datos de red, que contengan tanto tráfico legítimo como malicioso.

El entrenamiento, evaluación y comparación de los modelos, atendiendo a métricas cuentitativas para
medir su eficacia y eficiencia.

La documentación técnica y académica del proceso y de los resultados, orientada a facilitar su compren-
sión y futuras extensiones.

Dado que se trata de un trabajo académico con recursos y tiempo limitados, no se contempla:

El desarrollo de un sistema IDS completo que opere en tiempo real.

La integración con entornos empresariales o arquitecturas de producción.
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CAPÍTULO 2. OBJETIVOS Y ALCANCE 2.2. ALCANCE

La creación de interfaces gráficas o mecanismos automáticos de respuesta ante alertas.

La monitorización o reentrenamiento continuo del sistema en un entorno activo.

No obstante, todas estas limitaciones pueden considerarse líneas de mejora y ampliación en trabajos futuros,
donde se aborde la implementación de un sistema completamente funcional, capaz de integrarse en infraestruc-
turas reales, con capacidades de visualización, respuesta automática y adaptabilidad continua al entorno.

En resumen, este proyecto tiene como objetivo ofrecer una base sólida de conocimiento y evaluación técnica
sobre el uso de IA para la detección de intrusiones, proporcionando resultados comparativos que puedan guiar
decisiones futuras en el desarrollo de sistemas IDS inteligentes y eficaces.
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Capítulo 3

Planificación

Cualquier proyecto de investigación requiere una planificación estructurada que permita alcanzar los obje-
tivos propuestos de forma ordenada y eficaz. En el caso de este Trabajo de Fin de Grado, se ha optado por una
metodología en cascada, que divide el desarrollo en fases secuenciales, permitiendo avanzar paso a paso con
una clara delimitación de actividades y entregables.

Esta metodología resulta especialmente adecuada para trabajos académicos como el presente, donde el al-
cance está bien definido desde el inicio y no se prevén grandes cambios en los requisitos durante el desarrollo.
A continuación, se describen las fases establecidas para la realización del proyecto, así como su planificación
temporal.

3.1 Fases y costes

El proyecto se ha organizado en cinco fases principales, cada una con una duración estimada. Esta dis-
tribución permite estructurar el trabajo de forma coherente, facilitando la gestión del tiempo y asegurando la
cobertura de todas las tareas necesarias.

Nombre de actividad Semanas
Estudio preliminar y análisis del problema 1 - 2
Diseño experimental 3
Desarrollo del sistema de evaluación 4 - 8
Ejecución de pruebas y análisis de resultados 9 - 10
Documentación y redacción de la memoria del TFG 1 - 13

Tabla 3.1: Fases de desarrollo del proyecto previstas.

Para facilitar la comprensión de esta planificación, a continuación se incluye un diagrama de Gantt, don-
de se representan gráficamente las actividades del proyecto y su distribución temporal a lo largo de las semanas:

Este diagrama proporciona una visión global del calendario del proyecto y permite identificar solapamien-
tos, dependencias entre tareas y puntos clave de avance.
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3.1. FASES Y COSTES CAPÍTULO 3. PLANIFICACIÓN

Planificación inicial

S.1-2 S.3-4 S.5-6 S.7-8 S.9-10 S.11-12 S.13-14

Análisis del problema

Diseño experimental

Desarrollo del sistema

Pruebas y análisis

Redacción del TFG

Figura 3.1: Planificación inicial

3.1.1 Descripción de las fases

1. Estudio preliminar y análisis del problema (Semana 1 - 2): En esta fase se realiza una revisión biblio-
gráfica sobre los sistemas de detección de intrusos, las técnicas de aprendizaje automático aplicadas a la
ciberseguridad y los datasets de referencia en el área. También se analizan los principales retos técnicos
del problema.

2. Diseño experimental (Semana 3): Se definen los algoritmos de aprendizaje automático que serán evalua-
dos, las métricas que se utilizarán para compararlos, los criterios de validación del experimento y el flujo
general de trabajo: desde la carga del dataset hasta la obtención de los resultados.

3. Desarrollo del sistema de evaluación (Semana 4 - 8): En esta etapa se implementa el sistema encargado
de entrenar, validar y comparar los modelos. Incluye tareas de preprocesamiento del dataset, extracción
de características relevantes, entrenamiento de los modelos, y visualización de resultados.

4. Ejecución de pruebas y análisis de resultados (Semana 9 - 10): Se llevan a cabo las pruebas experimentales,
evaluando cada algoritmo con los mismos criterios para garantizar una comparación justa. Posteriormente
se analizan los resultados, se extraen conclusiones y se identifican patrones relevantes.

5. Documentación y redacción de la memoria del TFG (Semana 1 - 13): La memoria se redacta de forma
progresiva a lo largo de todo el proyecto, lo que permite documentar cada fase conforme se desarrolla. Esto
garantiza una mayor precisión y coherencia en la elaboración del documento final, facilitando además la
incorporación de mejoras conforme avanza el trabajo.

Esta planificación permite distribuir de manera eficiente el tiempo y los recursos del proyecto, asegurando
la consecución de todos los objetivos marcados dentro del marco temporal previsto.

3.1.2 Costes

Aunque este Trabajo de Fin de Grado no implica un desembolso económico directo por parte del estudiante
o la institución, es posible estimar el coste real del proyecto considerando los recursos humanos y materiales
utilizados durante su desarrollo.

Coste del desarrollador

El tiempo estimado dedicado al desarrollo completo del proyecto ha sido de aproximadamente 300 horas.
Si se considera un coste medio de 15 €/hora como referencia para un perfil junior o de prácticas en el ámbito
tecnológico, se obtiene un coste estimado de:

300 horas× 15 €/hora = 4,500 €
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CAPÍTULO 3. PLANIFICACIÓN 3.2. GESTIÓN DE RIESGOS Y DIFICULTADES

Coste del equipo utilizado

El proyecto se ha desarrollado íntegramente en un equipo personal. Las características del ordenador utili-
zado se detallarán más adelante en el Capitulo 8.

El coste estimado del equipo completo al momento de su adquisición fue de aproximadamente 1.200 €. Si
se asume una vida útil de 4 años, se puede estimar un coste anual de:

1,200 €
4 años

= 300 € por año

Dado que el proyecto ha requerido 300 horas, y considerando un usomedio de 1500 horas anuales del equipo
para actividades similares, el coste proporcional del equipo sería:(

300

1500

)
× 300 € ≈ 60 €

Coste total estimado del proyecto

Sumando los dos componentes anteriores:

Coste del desarrollador: 4.500 €

Coste del equipo (proporcional): 60 €

Total estimado: 4,560 €

Este cálculo proporciona una visión más realista del coste asociado al desarrollo de un proyecto de inves-
tigación aplicado como este, lo cual puede resultar útil a la hora de valorar esfuerzos similares en entornos
profesionales o académicos.

3.2 Gestión de riesgos y dificultades

En cualquier proyecto de investigación, especialmente aquellos relacionados con la implementación de mo-
delos de aprendizaje automático, surge la posibilidad de enfrentarse a diversos riesgos e imprevistos que pueden
influir en el éxito del proyecto, así como en su planificación temporal y presupuestaria. Por ello, se realiza en
este apartado un análisis de los riesgos previstos, junto con el impacto que podrían ocasionar y las estrategias
de mitigación planteadas. Además, se detallan las dificultades enfrentadas durante el desarrollo y las acciones
que se implementaron para resolverlas.

3.2.1 Principales riesgos previstos

Antes de iniciar el desarrollo, se identificaron diversos riesgos relacionados con la planificación del proyecto
y el manejo de las herramientas necesarias. Estos riesgos, junto con su impacto potencial y las estrategias para
mitigarlos, se presentan en la tabla 3.2.

El análisis de riesgos fue un paso clave para anticipar posibles problemas en el desarrollo del trabajo y
establecer medidas que pudieran minimizar sus impactos.

3.2.2 Dificultades enfrentadas y resolución

A lo largo del desarrollo del proyecto surgieron ciertos problemas que, aunque no habían sido contemplados
en la planificación inicial, influyeron en el cronograma y obligaron a replantear tareas. La tabla 3.3 detalla estas
dificultades junto con las soluciones aplicadas para garantizar el cumplimiento de los objetivos.

Estas dificultades fueron superadas gracias a la aplicación de estrategias flexibles y la capacidad de realizar
ajustes a lo largo del proceso.
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3.2. GESTIÓN DE RIESGOS Y DIFICULTADES CAPÍTULO 3. PLANIFICACIÓN

Riesgo identificado Impacto potencial Estrategia de mitigación
Falta de experiencia en la tecno-
logía o herramientas requeridas
para el proyecto.

Retrasos en la implementación debido a
una curva de aprendizaje pronunciada.

Dedicación de tiempo inicial
al aprendizaje autodidacta con
recursos en línea y tutoriales,
priorizando soluciones de menor
complejidad.

Recursos técnicos insuficientes,
como capacidad de hardware li-
mitada para entrenar modelos.

Imposibilidad de completar experimen-
tos de manera eficiente o resultados de
baja calidad.

Utilizar servicios de cómputo en
la nube o realizar pruebas con
versiones reducidas de los da-
tasets para disminuir la carga
computacional.

Mal cálculo del tiempo necesario
en tareas específicas.

Retrasos acumulados hacia las fases fi-
nales del proyecto.

Mantener un cronograma flexi-
ble, con márgenes específicos
para las fases críticas.

Falta de claridad respecto a los
objetivos del proyecto en etapas
iniciales.

Cambios en la dirección del trabajo,
con necesidad de rehacer tareas previas.

Coordinación regular con el tu-
tor para revisar los avances y
asegurar que las tareas cumplen
con los objetivos fundacionales.

Problemas de organización per-
sonal y conciliación con otras
obligaciones académicas.

Falta de dedicación suficiente al pro-
yecto, comprometiendo la calidad o
avances.

Establecimiento de horarios es-
trictos de trabajo dedicado al
TFG, priorizando el avance pro-
gresivo frente a acumulaciones.

Tabla 3.2: Riesgos previstos en el proyecto, su impacto y estrategias de mitigación.

Dificultad Impacto generado Solución implementada
Dificultades técnicas en la inte-
gración de herramientas (e.g., li-
brerías no compatibles).

Retrasos en la implementación inicial
del sistema de evaluación.

Cambiar a herramientas con ma-
yor soporte técnico y comprobar
compatibilidad antes de su adop-
ción.

Volumen elevado del dataset,
causando problemas de rendi-
miento en el equipo.

Imposibilidad de entrenar modelos más
complejos debido a limitaciones del
hardware.

Utilizar muestras reducidas del
dataset.

Resultados iniciales inconsisten-
tes o de baja calidad en la evalua-
ción de los modelos.

Necesidad de realizar ajustes repetiti-
vos en la parametrización de los algo-
ritmos, incrementando la carga de tra-
bajo.

Ajustar los criterios de valida-
ción y refinar las métricas, prio-
rizando una interpretación más
clara de los resultados.

Organización del tiempo com-
prometida por otras asignaturas.

Retraso en ciertas entregas intermedias
respecto al cronograma original.

Reajustar la planificación para
dedicar sesiones semanales es-
pecíficas al TFG, con objetivos
parciales definidos.

Tabla 3.3: Dificultades enfrentadas durante el desarrollo y acciones de resolución.

3.2.3 Lecciones aprendidas

El desarrollo del proyecto permitió identificar una serie de lecciones clave derivadas tanto de los riesgos
previstos como de las dificultades reales enfrentadas:

La planificación debe ser flexible, con márgenes suficiente para tareas críticas, entendiendo que los tiem-
pos iniciales suelen subestimarse.
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CAPÍTULO 3. PLANIFICACIÓN 3.2. GESTIÓN DE RIESGOS Y DIFICULTADES

Dedicar tiempo al entendimiento temprano de las herramientas y procesos técnicos seleccionados puede
evitar problemas en fases posteriores.

La coordinación regular con el tutor o supervisor del TFG es esencial para alinear la dirección del proyecto
y obtener un feedback constante.

Dividir el trabajo en objetivos parciales semanales o mensuales ayuda a mantener el ritmo y reduce la
acumulación de tareas hacia el final del proyecto.

En conclusión, el análisis y gestión de riesgos, junto con las estrategias implementadas para resolver dificultades,
resultaron factores esenciales para llevar a buen término el proyecto dentro del marco temporal establecido y
garantizando la calidad de los resultados obtenidos.
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Capítulo 4

Marco Conceptual

Todo sistema, por innovador que sea, se construye sobre conceptos y tecnologías previas que lo hacen
posible. Este capítulo presenta los fundamentos teóricos y técnicos que sustentan el desarrollo de WatchdogAI,
ofreciendo un marco de referencia esencial para comprender su diseño y funcionamiento. En particular, se
abordan los principios de la detección de intrusos, el uso del aprendizaje automático en ciberseguridad y otros
elementos técnicos clave.

4.1 Sistemas de Detección de Intrusos (IDS)

Un sistema de detección de intrusos (IDS, por sus siglas en inglés) tiene como finalidadmonitorizar el tráfico
de red o las actividades de un sistema, con el objetivo de identificar comportamientos anómalos o potencial-
mente maliciosos. Este tipo de sistemas han sido ampliamente estudiados en la literatura sobre seguridad de red
[30], destacando por su capacidad para identificar comportamientos maliciosos mediante diferentes enfoques
de análisis. Existen dos enfoques principales:

Basados en firmas: Detectan amenazas comparando el tráfico con patrones previamente identificados.
Son eficaces frente a ataques conocidos, pero ineficaces ante amenazas nuevas.

Basados en anomalías: Establecen un perfil de comportamiento habitual y alertan cuando se detectan
desviaciones significativas. Este enfoque permite descubrir ataques novedosos, aunque puede generar una
mayor tasa de falsos positivos.

WatchdogAI se enmarca dentro del enfoque basado en anomalías, incorporando técnicas de aprendizaje
automático para definir y ajustar dinámicamente ese concepto de ”normalidad”, en función del entorno y de los
datos observados.

4.2 Aprendizaje automático y su apliacación en cibersegu-
ridad

El aprendizaje automático es una rama de la inteligencia artificial que se ocupa del desarrollo de algoritmos
capaces de aprender a partir de datos, identificar patrones y tomar decisiones sin necesidad de instrucciones
explícitas para cada caso. Su aplicación en ciberseguridad ha demostrado ser especialmente útil en contextos
dinámicos, donde las amenazas son variadas y difíciles de predefinir mediante reglas estáticas.
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Uno de los principales beneficios del aprendizaje automático en ciberseguridad es su capacidad de detectar
amenazas desconocidas o zero-day, que no pueden ser interceptadas mediante reglas estáticas [1].

En este ámbito, permite analizar grandes volúmenes de tráfico de red para identificar comportamientos
anómalos que podrían pasar inadvertidos con enfoques tradicionales. Entre sus principales ventajas destacan:

Capacidad para detectar amenazas desconocidas (zero-day).

Menor dependencia de reglas definidas manualmente.

Adaptación continua a cambios en el entorno.

Mayor rapidez y escalabilidad en la detección.

El modelo de detección desarrollado para WatchdogAI utiliza técnicas de aprendizaje supervisado, entrena-
das a partir de datos etiquetados, para distinguir entre tráfico legítimo y malicioso.

4.3 Limitaciones de los sistemas convencionales

Los sistemas tradicionales de detección, basados principalmente en reglas o firmas, siguen siendo útiles
en ciertos contextos, pero presentan limitaciones importantes, en particular, la inspección basada en carga útil
(Deep Packet Inspection, DPI) también presenta retos de rendimiento y privacidad en entornos de alta carga,
como se analiza en [13]. Su dependencia del conocimiento previo impide detectar nuevas amenazas y su efec-
tividad en entornos complejos o cambiantes.

Además, requieren una supervisión y configuración constantes, lo que resulta difícil de sostener en redes con
alto volumen de tráfico o eventos. Frente a esas limitaciones, se hace necesaria una alternativa más autónoma
y flexible, como la que propone WatchdogAI, que combina técnicas modernas de análisis con capacidades de
adaptación continua.

4.4 Aprendizaje supervisado

Existen distintas estrategias de entrenamiento en aprendizaje automático. En este proyecto se ha optado por
el enfoque supervisado, en el que el sistema aprende a partir de un conjunto de datos etiquetado que indica si
una conexión es légitima o maliciosa [2].

Este método permite obtener modelos precisos siempre que se disponga de datos representativos y equi-
librados. Una vez entrenado, el modelo puede generalizar su conocimiento y clasificar nuevas conexiones en
tiempo real, facilitando así una detección eficaz de amenazas.

4.5 Tipos de aprendizaje en detección de intrusos

Aunque el modelo desarrollado en WatchdogAI se basa en aprendizaje supervisado, existen otras técnicas
utilizadas en este campo. El aprendizaje no supervisado permite detectar comportamientos anómalos sin nece-
sidad de datos etiquetados, lo que resulta útil cuando no se dispone de información clasificada.

Por otro lado, al aprendizaje semi-supervisado combina una pequeña cantidad de datos etiquetados con una
gran proporción de datos no etiquetados, lo que convierte en una opción atractiva en contextos donde el etique-
tado manual es costoso o poco viable.
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Cada enfoque presenta ventajas e inconvenientes. En este caso, se ha elegido aprendizaje supervisado por
su fiablidad, capacidad de evaluación objetiva y buenos resultados en contextos controlados, lo que se ajusta a
los objetivos y limitaciones del proyecto.
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Capítulo 5

Soluciones Existentes

Antes de abordar el diseño y desarrollo de una investigación como WatchdogAI, resulta fundamental cono-
cer las tecnologías y enfoques ya existentes en el ámbito de la detección de intrusos. Este capítulo presenta una
revisión general de herramientas y sistemas representativos, tanto tradicionales como basados en inteligencia
artificial, con el fin de contextualizar el proyecto dentro del panorama actual.

El objetivo no es ofrecer un análisis exhaustivo, sino aportar una visión comparativa que permita identificar
las principales fortalezas y limitaciones de las soluciones más relevantes. De este modo, se podrá justificar con
mayor claridad el enfoque adoptado en el desarrollo del sistema propuesto.

5.1 Sistemas tradicionales de detección

5.1.1 Snort

Snort [8] es uno de los sistemas de detección de intrusos (IDS) más consolidados y ampliamente utilizados.
Desarrollado inicialmente por Sourcefire y actualmente mantenido por Cisco, funciona principalmente median-
te detección basada en firmas. Su mecanismo consiste en comparar patrones del tráfico de red con una base de
reglas predefinidas, la cual puede actualizarse para incorporar nuevas amenazas.

Una de sus principales ventajas es la posibilidad de definir reglas altamente personalizadas, lo que lo convier-
te en una herramienta flexible. Sin embargo, esta flexibilidad implica una fuerte dependencia del mantenimiento
continuo por parte de los administradores. Aunque puede configurarse en modo inline para prevenir intrusiones
(IPS), su uso más habitual es en modo pasivo, generando alertas ante posibles incidentes. Su principal limita-
ción es la incapacidad para detectar ataques desconocidos o variantes que no coincidan con las firmas existentes.

5.1.2 Suricata

Suricata [26], desarrollado por la Open Information Security Foundation (OISF), representa una evolución
moderna del enfoque de Snort. También se basa en reglas, pero incorpora mejoras técnicas importantes: per-
mite el análisis concurrente de múltiples hilos de tráfico, es compatible con protocolos avanzados como TLS y
HTTP/2, y ofrece capacidades de inspección profunda de paquetes (Deep Packet Inspection).
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Además, facilita la exportación de datos en formatos estructurados como JSON, lo que mejora su integra-
ción con plataformas externas de análisis y monitoreo. Aunque no incluye capacidades de machine learning
por defecto, puede conectarse con motores externos para este fin. En términos generales, proporciona mayor
rendimiento y escalabilidad que Snort, pero mantiene la limitación inherente de depender de firmas estáticas.

5.2 Herramientas con enfoque de Machine Learning

5.2.1 Zeek

Zeek [33] es una plataforma de análisis de tráfico de red con amplia presencia en entornos de investigación
y uso corporativo. A diferencia de Snort o Suricata, no se basa en reglas fijas, sino en políticas de análisis de
eventos que permiten observar el tráfico de forma más contextual.

Esto permite generar registros detallados sobre el comportamiento de la red, los cuales pueden analizarse
posteriormente mediante herramientas externas, incluyendo modelos de machine learning. Aunque no actúa
como un IDS tradicional en términos de respuesta inmediata, su arquitectura modular lo convierte en una base
idónea para desarrollar soluciones más avanzadas y adaptativas.

5.2.2 Herramientas académicas y experimentales

En el ámbito académico y experimental han surgido diversas herramientas, como PyIDS, centradas en apli-
car técnicas de machine learning a la detección de intrusos. Estas soluciones suelen operar sobre conjuntos de
datos etiquetados y emplear algoritmos como Random Forest, máquinas de soporte vectorial (SVM) o redes
neuronales, entre otros.

Aunque están orientadas principalmente a entornos de prueba o simulaciones controladas, resultan esen-
ciales para explorar nuevas metodologías y validar su eficacia. No obstante, su aplicación práctica en entornos
reales suele estar limitada por restricciones en rendimiento, escalabilidad y capacidad de análisis en tiempo real.

5.3 Limitaciones comunes

A pesar de los avances tecnológicos, muchas de las soluciones actuales presentan limitaciones que afectan
directamente a su efectividad en entornos operativos:

Dependencia de conocimiento previo: Tanto en sistemas basados en firmas como en modelos supervisa-
dos, la necesidad de contar con datos previamente etiquetados limita su capacidad para detectar amenazas
desconocidas.

Problemas de escalabilidad: El creciente volumen de tráfico de red puede saturar fácilmente sistemas
que no han sido diseñados para operar en tiempo real o que carecen de mecanismos de procesamiento
eficiente.

Complejidad técnica: Muchas herramientas requieren conocimientos especializados para su correcta
instalación, configuración y mantenimiento, lo que dificulta su adopción en algunos entornos.

Falta de adaptabilidad: La mayoría de los sistemas carece de mecanismos para ajustarse de forma au-
tomática a nuevas condiciones de red o a la evolución de amenazas.
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En este contexto, WatchdogAI surge con el propósito de cubrir algunas de estas carencias. Sin pretender
reemplazar a las herramientas existentes, propone un enfoque ligero, modular y automatizado, centrado en la
detección en tiempo real mediante el aprendizaje automático, llegando a servir como base experimental para el
desarrollo de de soluciones más ágiles e inteligentes, capaces de complementar los sistemas tradicionales en un
entorno cada vez más complejo y dinámico.
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Capítulo 6

Estudio de los datos

Antes de diseñar e implementar cualquier solución basada en inteligencia artificial, es fundamental realizar
un análisis previo riguroso tanto del problema como de los datos con los que se va a trabajar. En el caso de
un sistema de detección de intrusos, la calidad, variedad y estructura del conjunto de datos influyen de manera
decisiva en la efectividad de los modelos empleados. Por ello, este capítulo recoge el estudio preliminar de los
datasets considerados, el análisis del dataset finalmente seleccionado y la justificación de los modelos de ma-
chine learning evaluados.

Este análisis permite no solo entender mejor el contexto del problema, sino también anticipar posibles limi-
taciones, necesidades de preprocesamiento y decisiones clave de diseño que marcarán el desarrollo del sistema.

6.1 Descripción y comparación de los datasets

Uno de los pasos más importantes al abordar un problema de detección de intrusos mediante aprendizaje au-
tomático es la selección de un conjunto de datos adecuado. La calidad, variedad y representatividad del dataset
influyen directamente en la capacidad del modelo para generalizar y detectar amenazas reales. En este proyecto
se analizaron tres datasets diferentes, cada uno con características distintas, con el objetivo de elegir aquel que
ofreciera el equilibrio óptimo entre realismo, complejidad y viabilidad de uso.

A continuación, se describen brevemente los tres datasets considerados:

6.1.1 CIC-IDS2017 [5]

Este conjunto de datos ha sido desarrollado por el Canadian Institute for Cybersecurity. Se trata de uno de
los datasets más completos y utilizados en la literatura académica para entrenar y evaluar sistemas de detección
de intrusos. Su principal fortaleza reside en que el tráfico fue generado en un entorno de red realista, con usua-
rios simulando actividades cotidianas (navegación web, correo electrónico, FTP, videollamadas, etc.) mientras
se ejecutaban distintos tipos de ataques planificados. El tráfico está bien etiquetado, diferenciando el tráfico
benigno del malicioso e identificando el tipo concreto de ataque en cada caso.

6.1.2 IDS Packet Dataset (IEEE DataPort) [19]

Este dataset, publicado en la plataforma IEEE DataPort, ofrece capturas de tráfico de red a nivel de paquetes
(PCAP). Está orientado a un análisis más granular, permitiendo acceder a detalles bajos del protocolo. Si bien su
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nivel de precisión puede resultar útil para sistemas que trabajan con detección muy específica, presenta algunas
limitaciones: su documentación es escasa, requiere un preprocesamiento complejo para extraer características
útiles, y su estructura no está tan preparada para su uso inmediato con modelos supervisados.

6.1.3 Dataset de Red Militar [21]

Este dataset simula el tráfico de red de un entorno militar, incluyendo ataques específicos y patrones de com-
portamiento propios de este tipo de infraestructura. Aunque resulta interesante por ofrecer un enfoque alternativo
al entorno civil habitual, presenta ciertas desventajas: al ser completamente simulado, puede no generalizar bien
a otros contextos reales, su variedad de ataques es limitada y no es un dataset ampliamente validado por la co-
munidad investigadora.

6.1.4 Justificación de la elección

A continuación, se incluye una tabla comparativa que resume las principales características de los datasets
analizados:

características CIC-IDS2017 IDS Packet Dataset Red Militar (Kaggle)

Origen / Tipo de datos Tráfico realista simulado Capturas PCAP a bajo nivel Simulación militar

Tamaño aprox. ~80 GB Variable Medio

Variedad de ataques Alta Media Baja / Media

Realismo del tráfico Alto Medio Bajo

Formato / Dificultad de preprocesamiento CSVs separados por ataque PCAP, extracción manual compleja CSV o formato mixto

Ventajas principales Muy completo, bien etiquetado Análisis a nivel de paquete Enfoque alternativo, entorno simulado

Inconvenientes principales Tamaño elevado, requiere limpieza y balanceo Poca documentación, extracción costosa Poca generalización, limitado en ataques y tráfico

Tabla 6.1: Comparativa de datasets.

Tras analizar los tres conjuntos de datos, se optó por utilizar CIC-IDS2017 como base para el desarrollo del
proyecto. Esta decisión se fundamenta en los siguientes motivos:

Es uno de los datasets más utilizados y validados en investigaciones relacionadas con sistemas IDS, lo
que facilita la comparación con estudios previos.

Presenta una gran variedad de ataques y un etiquetado claro, lo que permite trabajar tanto con problemas
de clasificación binaria como multiclase.

El tráfico fue generado en condiciones realistas, simulando usuarios y comportamientos cotidianos, lo
que mejora la aplicabilidad del modelo a escenarios reales.

Aunque su tamaño y desbalanceo presentan ciertos retos técnicos, estos pueden abordarse mediante téc-
nicas de preprocesamiento y selección de características.

Gracias a estas cualidades, el CIC-IDS2017 proporciona una base sólida para evaluar el rendimiento de
distintos algoritmos de detección y comparar sus resultados de forma fiable.

6.2 Formato y estructura del dataset elegido

Una vez seleccionado el corpus de datos CIC-IDS2017 como núcleo del estudio, es fundamental compren-
der su estructura y formato antes de aplicar cualquier técnica de análisis o modelado. Este conocimiento previo
facilita el diseño del sistema de preprocesamiento, así como la adecuación de los modelos de aprendizaje auto-
mático a los datos disponibles.
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6.2.1 Estructura general

El dataset CIC-IDS2017 se distribuye originalmente en múltiples archivos CSV, donde cada archivo repre-
senta el tráfico capturado en un día concreto, asociado a un conjunto específico de ataques. Por ejemplo, uno de
los ficheros puede contener ataques DDoS, otro ataques web, otro tráfico benigno, etc. Cada archivo contiene
miles de muestras, siendo cada una de ellas una conexión de red representada por una serie de características
estadísticas y de comportamiento.

Para facilitar su tratamiento y análisis, se puede realizar un proceso de unificación de todos los archivos CSV
en un único DataFrame usando la librería Pandas de Python. Este DataFrame permite trabajar con el dataset
completo de manera más eficiente y uniforme, facilitando las tareas de limpieza, transformación y modelado.

6.2.2 Volumen de datos

El dataset unificado contiene millones de registros y aproximadamente 80 características por muestra. Sin
embargo, este número puede variar tras la limpieza y selección de características, como se detallarámás adelante.
En su estado inicial, el tamaño total del conjunto ronda los 80 GB, lo que obliga a utilizar herramientas y técnicas
optimizadas para su procesamiento.

6.2.3 Tipos de datos

Las características del dataset son en su mayoría variables numéricas que describen propiedades estadísticas
de las conexiones de red. Estas incluyen, entre otras:

Duración de la conexión.

Tamaño total de los paquetes enviados o recibidos.

Velocidad media de transmisión.

Conteo de paquetes o bytes hacia uno u otro sentido.

Indicadores booleanos como flags TCP (PSH, URG, FIN...).

Tiempos de espera o delays entre paquetes.

También hay algunas columnas con valores categóricos, como la etiqueta de clase (por ejemplo: BENIGN,
Bot, DDoS, etc.), que identifica el tipo de tráfico asociado a cada muestra. Esta etiqueta es la que se utilizará
como variable objetivo (y) durante el entrenamiento y evaluación de los modelos.

6.2.4 Características destacadas

Algunas de las características más relevantes y frecuentemente utilizadas en modelos de detección de intru-
sos incluyen:

Flow Duration: tiempo total de duración de la conexión.

Total Fwd Packets / Total Backward Packets: número de paquetes enviados en cada dirección.

Bwd Packet Length Min / Max / Mean: estadísticas sobre el tamaño de los paquetes recibidos.

PSH Flag Count, URG Flag Count: recuento de flags específicos del protocolo TCP.

Flow IAT (Inter Arrival Time): tiempos entre paquetes dentro de un mismo flujo.

Estas variables permiten capturar tanto la estructura técnica del tráfico como patrones de comportamiento
que pueden diferenciar el tráfico benigno del malicioso.
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6.2.5 Etiquetas de clasificación

En su forma original, el dataset permite trabajar con un enfoque multiclase, ya que contiene más de una
docena de tipos de ataques distintos. Sin embargo, para facilitar ciertas pruebas y análisis, también se puede
llegar a considerar un enfoque binario, agrupando todas las clases maliciosas bajo una única etiqueta MALIGN,
frente a la clase BENIGN. Esta transformación permite comparar los resultados entre ambas configuraciones y
explorar diferentes estrategias de detección.

6.3 Problemas detectados en los datos

Trabajar con un dataset real y de gran tamaño comoCIC-IDS2017 implica enfrentarse a una serie de desafíos
relacionados con la calidad, consistencia y distribución de los datos. Antes de poder entrenar modelos fiables,
es necesario realizar una exploración inicial que identifique estos problemas y aplicar un proceso de limpieza
riguroso que garantice la validez de los resultados.

6.3.1 Valores nulos y columnas irrelevantes

Una revisión inicial de los archivos CSV ha puesto demanifiesto la presencia de columnas con valores nulos,
algunas de ellas completamente vacías o con un único valor constante. Estas variables, al no aportar información
relevante ni variabilidad, podrían introducir ruido en el entrenamiento de los modelos. La existencia de valores
ausentes también plantea la necesidad de decidir si se imputarán, eliminarán o trataránmediante otromecanismo,
decisión que se tomará más adelante en función de la proporción y la importancia de cada atributo.

6.3.2 Posibles registros duplicados o inconsistentes

Dado que el dataset se compone de múltiples archivos generados en distintos días y bajo diferentes simula-
ciones de ataque, se sospecha que puede haber registros duplicados o inconsistentes. Aunque no se ha realizado
aún una validación exhaustiva, este riesgo existe y será evaluado más adelante. Además, se han detectado va-
lores extremos (outliers) en ciertas características como duración de conexiones o tamaños de paquetes, cuya
interpretación no es trivial: podrían ser tanto errores de captura como muestras anómalas válidas, por lo que su
tratamiento requerirá un análisis más detallado.

6.3.3 Desbalanceo en la distribución de clases

Uno de los aspectos más críticos identificados es el fuerte desbalanceo en la distribución de clases. El tráfico
etiquetado como BENIGN constituye la mayoría abrumadora del conjunto de datos, mientras que muchas clases
de ataque apenas representan una fracción mínima. Este fenómeno es habitual en datasets de ciberseguridad y
puede dificultar seriamente el entrenamiento de modelos efectivos, al provocar un sesgo hacia la clase mayori-
taria.

Este desbalance será uno de los principales retos a abordar en fases posteriores, tanto por su impacto en las
métricas como por la necesidad de mantener una representación lo más realista posible del tráfico de red. Se
prevé explorar diferentes estrategias para mitigar este problema, como la reducción de la clase mayoritaria o el
reagrupamiento de clases minoritarias. [17]

6.3.4 Complejidad y heterogeneidad de los datos

El conjunto presenta una elevada dimensionalidad, con decenas de características de naturaleza diversa: al-
gunas numéricas, otras categóricas, e incluso combinaciones que reflejan propiedades a nivel de protocolo. Esta
heterogeneidad obliga a un estudio cuidadoso sobre qué variables son relevantes para el aprendizaje automático,
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y cuáles podrían descartarse por redundancia o irrelevancia.

Además, muchas de las características están altamente correlacionadas entre sí, o podrían estar influenciadas
por el contexto específico de la simulación que generó el tráfico. Este tipo de dependencias podría afectar
negativamente a la generalización de los modelos si no se controla adecuadamente.

6.4 Modelos de Machine Learning considerados

Uno de los principales objetivos del proyecto es evaluar el rendimiento de diferentes algoritmos de apren-
dizaje automático aplicados a la detección de intrusos en tráfico de red. Para ello, se han seleccionado cuatro
modelos representativos de distintas aproximaciones, considerando tanto su rendimiento en estudios previos
como su adecuación al tipo de datos analizados.

A continuación, se describe brevemente cada uno de los algoritmos, sus características más relevantes y las
razones por las que han sido considerados para su evaluación en este trabajo.

6.4.1 Bosques Aleatorios (Random Forest)

Random Forest [3] es un algoritmo de tipo ensemble que combina múltiples árboles de decisión entrenados
sobre subconjuntos aleatorios del dataset y de las características. Su fortaleza reside en su robustez frente al
overfitting y en su capacidad para manejar datos con muchas dimensiones sin necesidad de un preprocesamien-
to exhaustivo.

Además, permite extraer la importancia relativa de cada característica, lo cual es especialmente útil en
contextos como el presente, donde se dispone de decenas de variables y se desea optimizar el rendimiento
del modelo reduciendo la dimensionalidad.

6.4.2 Máquina de Vectores de Soporte (SVM)

Las Support Vector Machines [9] son modelos supervisados que intentan encontrar el hiperplano que mejor
separa las clases en el espacio de características. Aunque pueden ofrecer muy buen rendimiento en datasets con
pocas muestras o en problemas linealmente separables, su uso presenta algunas limitaciones en este contexto:

Requieren escalado de los datos.

No están pensadas para manejar grandes volúmenes de datos.

El tiempo de entrenamiento puede ser muy elevado en conjuntos amplios como CIC-IDS2017.

Por ello, su uso se ha reservado a versiones más reducidas y balanceadas del dataset, con el objetivo de
comparar su rendimiento en escenarios controlados.

6.4.3 XGBoost

XGBoost (Extreme Gradient Boosting) [7] es un algoritmo basado en boosting de árboles de decisión que
ha demostrado ser altamente eficaz en una amplia variedad de competiciones y estudios de machine learning.
Ofrece numerosas ventajas:

Entrenamiento eficiente y rápido.

Regularización integrada para evitar overfitting.

Tolerancia a valores nulos.
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Posibilidad de ajustar múltiples hiperparámetros.

Gracias a su capacidad para trabajar con datos tabulares complejos y su buen rendimiento incluso en con-
textos con desbalanceo, XGBoost se ha convertido en uno de los candidatos principales en este proyecto. Tal
como se detallará en capítulos posteriores, ha sido uno de los modelos que mejores resultados ha obtenido.

6.4.4 Multilayer Perceptron (MLP)

El MLP [16] es una red neuronal de tipo feedforward compuesta por varias capas de neuronas. Aunque no
tan sofisticado como otras arquitecturas de deep learning, permite modelar relaciones no lineales complejas y
generalizar bien si se entrena adecuadamente.

En este caso, se ha explorado su uso sobre versiones más pequeñas y balanceadas del dataset, dado que
su entrenamiento puede resultar costoso en términos de tiempo y recursos computacionales. Además, requiere
normalización de los datos y un cuidado especial para evitar problemas de sobreajuste.

En resumen, la selección de modelos busca cubrir diferentes enfoques y niveles de complejidad, desde
algoritmos clásicos como Random Forest hasta técnicas más avanzadas como XGBoost y redes neuronales. Esta
variedad permitirá realizar una comparativa objetiva entre sus rendimientos, analizando no solo la precisión,
sino también su capacidad de generalización, su tiempo de entrenamiento y su comportamiento frente a clases
desbalanceadas.
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Capítulo 7

Diseño

El diseño del sistema constituye una de las fases más relevantes de este proyecto, ya que marca la hoja de
ruta técnica que guiará todo el proceso de desarrollo y evaluación. A partir del análisis previo, se definen los
módulos funcionales y el flujo de trabajo necesarios para construir un sistema que permita comparar distintos
algoritmos de aprendizaje automático en la tarea de detección de intrusiones.

Este capítulo presenta la arquitectura general del sistema, el diseño del pipeline de datos, las decisiones
adoptadas sobre los modelos de machine learning y los criterios definidos para su evaluación. Todo ello con
el objetivo de garantizar un diseño reproducible, flexible y orientado a obtener resultados fiables que permitan
identificar el mejor enfoque para este tipo de problemas.

7.1 Arquitectura general del sistema

La arquitectura del sistema se ha planteado con una estructura modular y flexible, que facilita tanto el desa-
rrollo progresivo como la evaluación independiente de cada componente. Cada fase del proceso ha sido diseñada
para ser lo más desacoplada posible del resto, permitiendo modificar o sustituir partes concretas sin afectar al
conjunto.

A grandes rasgos, el sistema se compone de los siguientes bloques funcionales:

Preprocesamiento de datos: Incluye la carga del dataset, limpieza de columnas innecesarias o vacías,
tratamiento de valores nulos, eliminación de duplicados y normalización si es necesaria. También se aplica
el balanceo de clases en esta etapa.

Entrenamiento de modelos: Se encargan de aplicar los algoritmos seleccionados (Random Forest, SVM,
XGBoost y MLP) sobre distintas versiones del dataset: completo, balanceado, reducido, binario y multi-
clase.

Evaluación demodelos: Tras el entrenamiento, se analizan las métricas obtenidas para cada modelo (pre-
cisión, recall, F1-score, matriz de confusión), tanto en escenarios algo más balanceados como reducidos.

Selección de características [4]: Una vez entrenados los primeros modelos, se analiza la importancia
relativa de cada característica y se repite el entrenamiento con las más relevantes, con el objetivo de
mejorar el rendimiento y reducir la complejidad.
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7.2. DISEÑO DEL PIPELINE DE DATOS CAPÍTULO 7. DISEÑO

El proceso de diseño ha sido iterativo: algunas fases, como la selección de características, se retroalimentan
de los resultados de la evaluación para afinar modelos posteriores. Esta arquitectura favorece la experimentación
controlada y la trazabilidad de los cambios.

Preprocesamiento Entrenamiento

EvaluaciónAjuste de Features

Figura 7.1: Diagrama de bloques para el flujo de trabajo.

7.2 Diseño del pipeline de datos

El pipeline [11] de datos constituye la columna vertebral del sistema, ya que define cómo se procesan y
transforman los datos desde su estado original hasta su uso final en el entrenamiento de los modelos. Su diseño
ha seguido un enfoque estructurado y progresivo, permitiendo adaptarse a diferentes enfoques experimentales
sin comprometer la coherencia del análisis.

El flujo de trabajo del pipeline se compone de las siguientes etapas:

Carga y unificación del dataset: El dataset CIC-IDS2017 se proporciona en múltiples archivos CSV,
cada uno correspondiente a un tipo de ataque o tráfico. La primera fase del pipeline consiste en leer todos
estos archivos y combinarlos en un únicoDataFrame unificado. Esta operación permite tratar el conjunto
de datos como una sola entidad homogénea, simplificando las fases posteriores.

Limpieza de datos: Una vez unificado, se realiza una limpieza profunda del conjunto de datos. Se eli-
minan columnas completamente vacías, con valores constantes, o que no aportan valor informativo (por
ejemplo, timestamps redundantes o identificadores irrelevantes). También se eliminan duplicados y se
gestionan los valores nulos para evitar errores durante el entrenamiento.

Análisis y transformación de etiquetas: El dataset original incluye múltiples clases que representan
tipos concretos de ataques. Se definieron varias estrategias de agrupación de etiquetas para realizar análisis
comparativos:

• Clasificación binaria: Se agrupan todas las clases no benignas bajo una etiqueta común MALIGN.
• Clasificación multiclase original: Se mantienen todas las clases de ataque por separado.
• Multiclase con agrupación de ataques web: Se agrupan ataques como Brute Force, SQL Injec-
tion y XSS en una clase común Web Attack, para mejorar la estabilidad del modelo y reducir la
confusión entre clases similares.

Balanceo del dataset:Dado el fuerte desbalanceo presente en el conjunto de datos—con la claseBENIGN
representando la mayoría de las muestras—, se aplica un undersampling de esta clase para obtener un
conjunto de datos más equilibrado. También se construyen versiones reducidas del dataset, limitando el
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número de muestras por clase, para permitir el entrenamiento de modelos más exigentes computacional-
mente (como SVM o MLP) sin necesidad de grandes recursos.

Gestión de versiones del dataset: Todas las variantes generadas (original, balanceada, reducida, binaria,
multiclase, con agrupaciones) se gestionan de forma controlada, permitiendo reutilizarlas según las nece-
sidades de cada experimento. Esto facilita la comparación directa entre modelos entrenados en distintas
condiciones.

Este diseño modular del pipeline de datos permite realizar modificaciones sobre una etapa concreta (por
ejemplo, probar otra técnica de balanceo) sin tener que rehacer todo el proceso. Además, contribuye a asegurar
la trazabilidad y reproducibilidad del sistema en su conjunto.

En la Figura 7.2 se representa el flujo general de procesamiento de datos definido para el sistema. Este pipe-
line abarca desde la fase inicial de carga y unificación de los archivos CSV originales del dataset, pasando por
la limpieza de columnas irrelevantes o vacías, hasta la transformación de etiquetas y la aplicación de técnicas
de balanceo.

A partir de este flujo base, se han generado distintas versiones del conjunto de datos —adaptadas para dis-
tintos modelos o enfoques de clasificación—, manteniendo una estructura modular que permite reproducir y
escalar fácilmente el proceso. Esta organización ha sido clave para evaluar el impacto de cada etapa en el ren-
dimiento final de los modelos.

La Tabla 7.1 muestra un resumen de las distintas versiones del dataset generadas durante el desarrollo del
proyecto. Cada una ha sido creada con un propósito específico, ya sea mejorar la distribución de clases, reducir
el tamaño del dataset para facilitar la experimentación con modelos más costosos computacionalmente o evaluar
distintos esquemas de clasificación (binaria, multiclase o agrupada).

Esta estrategia ha permitido comparar modelos de forma más justa y estudiar cómo varía su rendimiento en
función del volumen de datos y del tipo de etiquetado utilizado.

Versión del dataset Nº muestras totales Nº clases Tipo de clasificación Balanceado Usado con modelos
Original completo ~2M+ 15 Multiclase No RF, XGB
Balanceado (undersample) ~830k 2/15 Binaria/Multiclase Sí RF, XGB
Agrupado (Web Attacks) ~830k 13 Multiclase agrupada Sí RF, XGB
Dataset reducido ~60k 13 Multiclase agrupada Sí SVM, MLP
Dataset reducido 2 ~78k 13 Multiclase agrupada Sí SVM, MLP, XGB
Dataset reducido 3 ~100k 13 Multiclase agrupada Sí SVM, MLP

Tabla 7.1: Descripción de las versiones del dataset

7.3 Diseño de los modelos de Machine Learning

La selección y configuración de los algoritmos de machine learning es un elemento central en el diseño del
estudio. A partir del análisis previo realizado en el capítulo anterior, se han identificado cuatro modelos que,
por sus características, se consideran adecuados para abordar tanto la clasificación binaria (tráfico benigno vs
malicioso) como la multiclase (diferentes tipos de ataques).

Más allá de su elección conceptual, esta sección plantea las decisiones iniciales en cuanto a su configuración
y uso previsto dentro del pipeline de detección, dejando para el capítulo de implementación los ajustes finales
y la evaluación de su rendimiento.
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7.3.1 Modelos seleccionados y configuración inicial

Los modelos seleccionados y su configuración inicial prevista son los siguientes:

Random Forest (RF): Se configura con el parámetro class_weight='balanced' para abordar el
desbalanceo de clases, aprovechando su capacidad para trabajar directamente con datos sin necesidad de
normalización. Se planea ajustar posteriormente parámetros como el número de árboles (n_estimators)
y la profundidad máxima (max_depth), en función de los resultados obtenidos en las primeras pruebas.

XGBoost: Se configura con su esquema por defecto, incluyendo parámetros de regularización y manejo
de valores nulos. Posteriormente se evaluará la conveniencia de ajustar hiperparámetros como el learning
rate, la profundidad de los árboles o el número de boosting rounds. Este modelo es especialmente pro-
metedor por su rendimiento en problemas con clases desbalanceadas y por su capacidad de análisis de
importancia de características.

Multilayer Perceptron (MLP): Para este modelo, se considera una arquitectura simple con una o dos
capas ocultas, activación ReLU y salida softmax para la clasificación multiclase. Se utilizará early stop-
ping y técnicas de regularización para evitar el sobreajuste. Dada su sensibilidad a la escala de los datos,
se normalizarán las características de entrada.

Support Vector Machine (SVM): Se prevé el uso de un kernel lineal, por su menor coste computacional
y buen comportamiento en datasets preprocesados. El entrenamiento se limitará inicialmente a conjuntos
de datos reducidos y balanceados, dado que SVM no escala bien con grandes volúmenes de muestras.
Será necesaria una normalización previa de los datos.

7.3.2 Estrategia de entrenamiento y validación prevista

En la fase de diseño se plantea adoptar una división clásica del conjunto de datos en entrenamiento y prueba,
utilizando un train-test split del 80 %-20 %. Esta aproximación permitirá evaluar inicialmente la capacidad de
generalización de los modelos con bajo coste computacional. Además, se considera la posibilidad de aplicar
validación cruzada (k-fold cross-validation) [22] en los modelos que muestren mejores resultados preliminares,
para garantizar una mayor estabilidad en la evaluación.

Asimismo, se mantendrá un enfoque coherente en todas las pruebas para asegurar que los modelos compa-
rados trabajen sobre los mismos datos de entrada y bajo métricas homogéneas, evitando cualquier tipo de fuga
de datos del conjunto de prueba hacia el entrenamiento.

La búsqueda de hiperparámetros óptimos se realizará de formamanual y acotada, ya que el objetivo principal
del proyecto no es alcanzar el mejor rendimiento absoluto de cada modelo, sino identificar cuál de ellos resulta
ser el más adecuado dentro de un entorno realista de detección de intrusiones.

7.4 Diseño de la evaluación

La evaluación de los modelos es una parte crítica del sistema, ya que no solo permite medir el rendimiento
de las distintas técnicas de detección, sino que también proporciona una base objetiva para comparar enfo-
ques y seleccionar la solución más adecuada al problema planteado. Esta sección establece las métricas que se
emplearán, los criterios de comparación entre modelos y la estrategia general de evaluación.

7.4.1 Métricas seleccionadas

Dado que el problema de detección de intrusiones suele implicar clases desbalanceadas y la existencia de
errores con costes diferentes (por ejemplo, pasar por alto un ataque puede ser más grave que clasificar errónea-
mente un tráfico benigno), se han seleccionado las siguientes métricas [10]:
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Precisión (Precision): Proporción de predicciones positivas correctas. Es útil para evaluar cuántos de los
eventos clasificados como ataques lo eran realmente.

Exhaustividad o Recall: Mide cuántos de los eventos realmente maliciosos fueron detectados. Es espe-
cialmente relevante en sistemas IDS, donde no detectar un ataque puede tener consecuencias críticas.

F1-score: Media armónica entre precisión y recall, utilizada como métrica principal en este proyecto, ya
que ofrece un balance entre ambas y penaliza los extremos.

Matriz de confusión: Herramienta visual que permite analizar los aciertos y errores por clase. Resulta
clave para entender cómo se comporta el modelo ante clases minoritarias o similares entre sí.

Estas métricas se calcularán tanto para los modelos entrenados sobre el conjunto binario (BENIGN vs
MALIGN) como para los modelos multiclase (diferentes tipos de ataque), permitiendo observar cómo se de-
gradan o mejoran los resultados según la granularidad del problema.

7.4.2 Criterios para la comparación entre modelos

Para asegurar una comparación justa, todos los modelos serán entrenados y evaluados bajo las mismas
condiciones: mismo conjunto de entrenamiento y prueba, mismos datos preprocesados y mismas métricas de
evaluación. Las pruebas se realizarán con varios enfoques:

Dataset completo con clase BENIGN predominante (enfoque realista).

Dataset balanceado mediante undersampling (enfoque experimental).

Dataset reducido para modelos más sensibles a la escala comoMLP o SVM.

La decisión final sobre el mejor modelo se basará en un equilibrio entre rendimiento (especialmente F1-
score en clases minoritarias), tiempo de entrenamiento, simplicidad del modelo y capacidad de explicación. No
se priorizará únicamente la métrica global, sino también la robustez del modelo ante cambios en la distribución
del tráfico.

En este sentido, se consideran especialmente valiosas las métricas por clase en escenarios multiclase, ya que
permiten valorar si el modelo falla sistemáticamente en detectar ciertos tipos de ataques, como los de tipoWeb
o Botnet, que tienden a presentar patrones menos diferenciados.
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Carga de CSVs

Unificación
en DataFrame

Limpieza de datos

Transformación
de etiquetas

Balanceo o reduc-
cion del dataset

Dataset final listo
para modelado

Eliminar nulos,
columnas vacías, etc.

Binaria / multiclase /
web attacks agrupados

Undersampling de BE-
NIGN / reducción total

Figura 7.2: Diagrama de flujo del procesamiento del dataset
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Capítulo 8

Implementación

Este capítulo describe en detalle el proceso de implementación técnica del sistema propuesto, abarcando des-
de la configuración del entorno de desarrollo hasta la construcción y evaluación de los modelos de aprendizaje
automático. Se ha adoptado un enfoque modular y reproducible, con el objetivo de facilitar tanto la experimen-
tación como la futura ampliación del proyecto.

A lo largo del capítulo se detallan las decisiones técnicas adoptadas, las funciones desarrolladas para auto-
matizar tareas recurrentes, y las estrategias empleadas para abordar desafíos como el desbalanceo de clases o
la alta dimensionalidad del dataset. Asimismo, se presentan las principales librerías utilizadas, justificando su
elección en función de su robustez, versatilidad y adecuación al problema de detección de intrusiones mediante
inteligencia artificial.

8.1 Entorno y herramientas

Para la implementación de este proyecto se ha utilizado Python 3.11.9 [28] como lenguaje principal, debido
a su popularidad en el campo de la ciencia de datos, su extensa comunidad y la gran disponibilidad de librerías
especializadas en procesamiento de datos, machine learning y visualización.

Todo el desarrollo se ha realizado mediante Jupyter Notebook [20] ejecutado en local a través de Visual
Studio Code [25], lo que ha permitido una exploración interactiva de los datos y una documentación en línea
del flujo de trabajo.

El entrenamiento de los modelos se ha realizado exclusivamente enCPU, sin necesidad de utilizar entornos
con aceleración por GPU, gracias a la reducción progresiva del volumen de datos y a una gestión eficiente de
los recursos disponibles.

Además, para la elaboración de la memoria del proyecto se ha empleado LATEX[23], un sistema de composi-
ción tipográfica ampliamente utilizado en entornos académicos y científicos, que permite generar documentos
técnicos con gran calidad de presentación y control sobre el formato.

8.1.1 Equipo utilizado

Las pruebas y entrenamientos se han realizado en un equipo con las siguientes especificaciones:

Sistema operativo:Windows 11 (64 bits)
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Procesador: Intel Core Ultra 5 135U @ 4.40GHz

Memoria RAM: 16 GB DDR5 @ 5600Mt/s

Almacenamiento: KIOXIA NVMe SSD 239 GB @ PCIe

GPU: Intel Integrated Graphics (no utilizada en este proyecto)

Este entorno ha sido suficiente para ejecutar todos los experimentos de entrenamiento y evaluación sin
requerir recursos de computación en la nube ni hardware especializado.

8.1.2 Principales librerías utilizadas

Entre las principales librerías utilizadas en el proyecto destacan:

Pandas [31]: Para la carga, manipulación y análisis de estructuras de datos en formato tabular (DataFra-
mes), así como para la unificación y limpieza del dataset.

NumPy [15]: Para operaciones numéricas de bajo nivel y soporte a estructuras como arrays y matrices.

Matplotlib [18] y Seaborn [32]: Utilizadas para la generación de gráficos y visualizaciones que faciliten
la comprensión de los datos y los resultados obtenidos.

Scikit-learn [27]: Librería central para el desarrollo de modelos de machine learning, incluyendo algo-
ritmos de clasificación, herramientas de preprocesamiento, partición de datos y métricas de evaluación.

XGBoost: Framework especializado en técnicas de boosting, conocido por su alto rendimiento en tareas
de clasificación estructurada.

Imbalanced-learn [24]: Librería utilizada para explorar técnicas de balanceo de clases, incluyendo algo-
ritmos como SMOTE [6].

Estas herramientas han permitido construir un flujo de trabajo robusto, reproducible y alineado con las
mejores prácticas en el campo de la detección de intrusiones basada en inteligencia artificial.

8.2 Preprocesamiento

Para facilitar la tarea del preprocesamiento y estructurar el flujo de los datos, se ha implementado un con-
junto de funciones reutilizables que permiten llevar a cabo las distintas operaciones de limpieza, transformación
y reducción necesarias antes del entrenamiento de los modelos.

A continuación, se detallan las principales funciones de preprocesamiento desarrolladas:

cargar_csvs(ruta_csvs): Esta función se encarga de recorrer de forma automática todos los archivos
.csv presentes en la ruta especificada y leerlos utilizando la librería pandas. Cada archivo se carga en
un DataFrame independiente, y finalmente todos se concatenan en un único DataFrame principal que
aglutina todo el contenido del dataset. Durante la carga, se imprime por pantalla información útil como el
nombre del archivo procesado y el número de filas que contiene. Esta función permite escalar fácilmente
la carga de datos sin tener que especificar manualmente cada archivo.

limpiar_dataset(df): Una vez cargado el dataset, esta función limpia los datos eliminando columnas com-
pletamente vacías o constantes (es decir, sin variabilidad), así como cualquier fila que contenga valores
nulos o duplicados. También se sustituyen los valores infinitos por nulos para garantizar la estabilidad de
los modelos. Con esta limpieza, se mejora tanto la calidad de los datos como la eficiencia del entrena-
miento posterior.
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balancear_dataset(df): El conjunto de datos original está fuertemente desbalanceado, con una gran can-
tidad de tráfico benigno frente a un número significativamente menor de muestras maliciosas. Para con-
trarrestar este efecto, se implementa esta función, que realiza un undersampling de la clase BENIGN. En
concreto, se iguala el número de muestras benignas al de las muestras maliciosas, y posteriormente se
barajan todas las filas para evitar cualquier sesgo por orden.

convertir_binario(df): Esta función permite transformar el dataset en un problema de clasificación bi-
naria. Para ello, todas las etiquetas distintas de BENIGN se convierten en la etiqueta común MALIGN,
lo que resulta útil para enfoques iniciales donde se busca simplemente diferenciar entre tráfico normal y
ataque.

agrupar_web_attacks(df): Dada la escasa representación de algunos tipos de ataques web (como XSS
o SQL Injection), se opta por agruparlos en una única clase común denominada Web Attack. Esta
función realiza dicha agrupación reemplazando las etiquetas originales por una nueva etiqueta genérica.
Esta transformación mejora significativamente el rendimiento de los modelos frente a esta familia de
ataques.

reducir_dataset(df, etiqueta_col=’ Label’, limites={}): En ciertos experimentos se trabaja con versio-
nes reducidas del dataset para facilitar las pruebas o mitigar el coste computacional. Esta función permite
limitar el número de muestras por clase de forma flexible, según un diccionario de límites proporciona-
do como argumento. Así, se puede generar un subconjunto representativo y más equilibrado del dataset,
manteniendo control sobre cada clase.

Todas estas funciones se encuentran en la Sección A.1 del anexo.

8.2.1 Funciones auxiliares para validación

Para verificar que cada uno de los datasets generados tras aplicar estas funciones es correcto y equilibrado,
se han implementado dos funciones auxiliares que permiten analizar la distribución de clases de forma visual y
tabular:

mostrar_grafica_distribucion(df, titulo_grafica): Genera un gráfico de barras con la cantidad de mues-
tras por clase en el DataFrame proporcionado. Es útil para evaluar visualmente el grado de desbalanceo
o comprobar si una transformación como el agrupamiento o la reducción ha surtido efecto.

mostrar_tabla_distribucion(df): Muestra en pantalla una tabla con la frecuencia exacta de cada clase.
Esto permite complementar la gráfica anterior con datos cuantitativos precisos.

Ambas funciones también se encuentran disponibles en la Sección A.5 del anexo y han sido utilizadas
repetidamente a lo largo del desarrollo para validar el resultado de cada transformación intermedia.

8.3 Entrenamiento y selección de características

Una vez preprocesados los datos, el siguiente paso consiste en preparar los conjuntos de entrenamiento y
prueba, así como entrenar los distintos modelos de aprendizaje automático que se evaluarán posteriormente.
Además, se ha implementado un proceso de extracción de características relevantes con el objetivo de reducir
la dimensionalidad del conjunto de datos sin perder rendimiento predictivo, aunque no se usará hasta después
de evaluar los modelos. Para automatizar estas tareas y permitir una comparación más justa entre modelos, se
han desarrollado funciones específicas para cada modelo y etapa del flujo.
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8.3.1 Entrenamiento

Con el fin de estructurar correctamente el entrenamiento de los modelos, se ha creado una serie de funciones
que encapsulan tanto la preparación de los datos como el proceso de ajuste del modelo:

preparar_datos(df) Esta función divide el DataFrame original en dos subconjuntos:

• X: que contiene todas las características (todas las columnas excepto la de la etiqueta).
• y: que contiene únicamente la columna de etiquetas, la cual debe ser transformada a formato numé-
rico utilizando un LabelEncoder.

Posteriormente, ambos conjuntos se dividen en entrenamiento y pruebamediantetrain_test_split,
utilizando un 80 % de los datos para entrenamiento y el 20 % restante para prueba, como se especificó
en la planificación de pruebas del capítulo 9.

entrenar_random_forest(X_train, y_train) Esta función entrena un modelo Random Forest con los
parámetros estándar:

• 100 árboles (n_estimators=100).
• Equilibrio automático de clases mediante class_weight='balanced'.
• Reproducibilidad asegurada con random_state=42.
• Ejecución en paralelo en todos los núcleos con n_jobs=-1.

Esta versión se utiliza principalmente para combatir el desbalanceo entre clases.

entrenar_random_forest_sin_balancear(X_train, y_train) Variante de la anterior en la que se omite
el parámetro class_weight, permitiendo evaluar el impacto que tiene este ajuste en la clasificación
de clases minoritarias.

entrenar_xgboost(X_train, y_train) Entrena un modelo XGBoost adaptado automáticamente al tipo de
clasificación:

• Para clasificación binaria, usaobjective='binary:logistic' yeval_metric='logloss'.
• Para multiclase, usa objective='multi:softmax' y eval_metric='mlogloss'.

También se configura use_label_encoder=False para evitar advertencias innecesarias, se esta-
blece la semilla con random_state=42, y se optimiza el rendimiento con n_jobs=-1.

entrenar_svm(X_train, y_train, C=1.0, gamma=’scale’, kernel=’linear’) Entrena un modelo de Sup-
port Vector Machine, previamente escalando los datos con StandardScaler. Por defecto, se utiliza
un kernel lineal, con C=1.0 y gamma='scale'. Es posible ajustar estos parámetros para evaluar di-
ferentes configuraciones. La aleatoriedad se controla con random_state=42.

entrenar_mlp(X_train, y_train, hidden_layer_sizes=(100,), max_iter=300, alpha=0.0001) Entrena
una red neuronal de tipo Multilayer Perceptron (MLP) con una única capa oculta de 100 neuronas como
valor por defecto.

• Se escalan previamente los datos.
• Se emplea función de activación ReLU y optimizador Adam.
• Se habilita la parada temprana (early_stopping=True) para evitar sobreajuste.
• Se limita el entrenamiento a 300 iteraciones y se fija la semilla para reproducibilidad.

Estas funciones han sido utilizadas de manera sistemática a lo largo del proceso experimental, asegurando
consistencia entre los diferentes entrenamientos y permitiendo centrarse en la comparación de resultados. Se
encuentran en la Sección A.2 del Anexo.
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8.3.2 Extracción de características

Para reducir el número de características del conjunto de datos sin comprometer el rendimiento del mode-
lo, se ha realizado una fase de extracción de características basada en la importancia asignada por XGBoost.
Este modelo permite obtener métricas internas que indican qué atributos contribuyen más a las decisiones del
algoritmo.

obtener_importancias(modelo, tipo=”gain”) Esta función accede directamente al booster del modelo
XGBoost para obtener la importancia de cada característica según el criterio especificado (gain por
defecto, aunque también permite weight, cover, etc.). A continuación, convierte la información en
un DataFrame ordenado de mayor a menor importancia, permitiendo seleccionar las características más
relevantes.

grafica_importancia_caracteristicas(modelo, max_features=20) Genera una visualización de las ca-
racterísticas más importantes del modelo entrenado utilizando xgb.plot_importance, centrada en
las max_features más relevantes. Esta gráfica facilita la interpretación visual de los atributos que
tienen mayor peso en el rendimiento del modelo, lo cual ha sido de gran utilidad en la sección 9.2, donde
se han realizado pruebas específicas con las 20 y 30 características más significativas.

El código de estas dos funciones se encuentran en la Sección A.4 del anexo

8.4 Evaluación

Para evaluar el rendimiento de los modelos entrenados se ha desarrollado un único método que automatiza
tanto el cálculo de métricas como la visualización de resultados. Esta evaluación se realiza utilizando el conjunto
de prueba (20 % del total de muestras), previamente separado en la fase de entrenamiento de modelos. Siendo
este el siguiente:

evaluar_modelo(modelo, X_test, y_test, label_encoder, titulo=“Evaluación”, tamaño=(18, 12), cmap=’Purples’)

Estemétodo realiza la evaluación completa del modelo entrenado a partir del conjunto de datos de prueba. En
primer lugar, predice las etiquetas correspondientes a las muestras de x_test y compara estas predicciones con
las etiquetas reales,y_test para generar un informe detallado utilizando la funciónclassification_report()
de scikit-learn. Este informe incluye métricas como precision, recall, f1-score y soporte por clase.

Además, se genera la matriz de confusión con la función confusion_matrix() y se representa visual-
mente mediante matplotlib con un mapa de calor (heatmap), lo cual permite identificar de forma rápida los
errores de clasificaciónmás frecuentes. La visualización puede personalizarsemediante los parámetrostamaño
(para ajustar el tamaño de la figura) y cmap (para modificar la paleta de colores del gráfico). La decodificación
de etiquetas se realiza mediante label_encoder.classes_ para mostrar los nombres reales de las clases
en lugar de índices numéricos.

Esta función ha sido utilizada de manera uniforme en todos los experimentos y pruebas presentadas en el
siguiente capitulo, lo que garantiza la coherencia y comparabilidad entre modelos y configuraciones de dataset.

El código fuente de esta función puede encontrarse en el anexo, Sección A.3

8.5 Organización y gestión del código

Durante el desarrollo del sistema se ha prestado especial atención a la organización y reutilización del có-
digo, con el objetivo de facilitar tanto la implementación como las posteriores pruebas y análisis. Como se ha
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mencionado antes, todo el desarrollo se ha realizado en Jupyter Notebooks, estructurando el flujo de trabajo en
bloques diferenciados para cada etapa: carga y limpieza de datos, preprocesamiento, entrenamiento de modelos,
evaluación y análisis de resultados.

Para mejorar la legibilidad y modularidad, todas las funciones desarrolladas se agrupan al inicio de los no-
tebooks en secciones claramente delimitadas. Estas funciones encapsulan la lógica de tareas recurrentes como
cargar datos, limpiar el dataset, entrenar modelos o evaluar métricas, lo que ha permitido reutilizarlas de forma
eficiente a lo largo del proyecto.

Además, se ha hecho uso de variables de configuración para poder cambiar fácilmente parámetros como
los límites de reducción, el tipo de modelo a entrenar o la ruta a los CSV originales, sin necesidad de modificar
múltiples líneas de código.

Aunque no se ha dividido el código en archivos .py por la naturaleza exploratoria del entorno Jupyter, se
ha seguido una lógica similar a la modularización clásica, lo que ha contribuido a mantener un flujo de trabajo
ordenado y controlado.

Por último, se ha utilizadoGit [14] como sistema de control de versiones, permitiendo registrar los avances
del proyecto, recuperar versiones anteriores del código en caso necesario y gestionar distintas ramas para pruebas
específicas.
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Capítulo 9

Resultados

A lo largo de este capítulo se presentan los resultados obtenidos tras entrenar y evaluar los distintos modelos
de aprendizaje automático seleccionados. El objetivo principal de esta fase es comprobar la eficacia del sistema
propuesto a la hora de detectar intrusiones, así como analizar cómo influyen diferentes configuraciones del
dataset y técnicas de preprocesamiento en el rendimiento de los clasificadores.

9.1 Planificación de las pruebas

Una vez finalizado el diseño y la implementación de los distintos modelos, se llevó a cabo una batería de
pruebas con el objetivo de evaluar su rendimiento en diferentes escenarios de clasificación. Estas pruebas sirven
como cierre al ciclo de desarrollo, permitiendo validar las decisiones tomadas durante el preprocesamiento, la
selección de modelos y la estrategia de entrenamiento.

El conjunto de pruebas se ha construido en base al diseño previamente descrito en capitulos anteriores,
utilizando distintas versiones del dataset previamente generadas:

Dataset balanceado mediante undersampling de la clase BENIGN con distintos enfoques:

• Binario únicamente dos clases BENIGN y MALIGN para tener un balanceo mucho mayor.

• Multiclase todas las clases del dataset original para ver como se comportaba en las menos signifi-
cativas.

• Agrupado agrupando las clases de web attack en una sola para ver si mejora el funcionamiento.

Dataset reducido, con un número limitado de muestras por clase para facilitar el entrenamiento con
modelos más exigentes.

Características reducidas, para buscar un equilibrio entre el número de características y el rendimiento
del modelo.

9.2 Resultados obtenidos

En esta sección se recogen los resultados obtenidos tras la evaluación de los distintos modelos entrenados
en cada uno de los enfoques considerados. Las métricas utilizadas han sido precisión (precision), exhaustividad
(recall), puntuación F1 (f1-score) y número de muestras por clase (support), calculadas mediante la función
classification_report() de scikit-learn. Asimismo, se ha generado una tabla con los aciertos
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y fallos por clase a partir de la matriz de confusión correspondiente a cada modelo.

Estas matrices de confusión se encuentran en el Capitulo C del anexo, junto al resto de gráficas y visualiza-
ciones complementarias.

Aunque el enfoque principal de esta sección es la presentación de los resultados, también se ha considerado
el coste computacional de los modelos, entendido como el tiempo de entrenamiento. Este parámetro resulta
especialmente relevante en los modelos más complejos como SVM oMLP, y se comentará de forma general en
esta sección y en mayor profundidad en el apartado de análisis posterior.

9.2.1 Dataset binario

Para este primer enfoque se ha convertido el problema en una clasificación binaria, agrupando todas las
clases de ataque en una sola clase MALIGN. Los modelos evaluados han sido Random Forest y XGBoost sobre
el dataset balanceado.

Random Forest Binario

Figura 9.1: Informe Random Forest Binario.

Clase Aciertos Fallos
BENIGN 85024 125
MALIGN 85037 111

Tabla 9.1: Aciertos/fallos Random Forest Binario.

XGBoost Binario

Figura 9.2: Informe XGBoost Binario.

Clase Aciertos Fallos
BENIGN 85028 121
MALIGN 85130 18

Tabla 9.2: Aciertos/fallos XGBoost Binario.

Ambos modelos se entrenaron rápidamente siendo este tiempo de entrenamiento de aproximadamente 40
segundos random forest y con una gran diferencia, XGboost con 6 segundos, ofreciendo también resultados
prácticamente perfectos en este escenario simplificado.

9.2.2 Dataset multiclase

En este segundo enfoque se conserva la estructura multiclase del dataset balanceado, permitiendo evaluar
la capacidad de los modelos para distinguir entre diferentes tipos de ataque. Se han vuelto a emplear Random
Forest y XGBoost.
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Random Forest Multiclase

Figura 9.3: Informe Random Forest Multiclase.

Clase Aciertos Fallos
BENIGN 85026 121
Bot 373 19
DDoS 25599 4
DoS GoldenEye 2047 10
DoS Hulk 34528 41
DoS Slowhttptest 1040 6
DoS slowloris 1073 4
FTP-Patator 1186 0
Heartbleed 1 1
Infiltration 5 2
PortScan 18102 37
SSH-Patator 642 2
Web Attack – Brute Force 227 67
Web Attack – Sql Injection 1 3
Web Attack – XSS 38 92

Tabla 9.3: Aciertos/fallos Random Forest Multiclase.

XGBoost Multiclase

Figura 9.4: Informe XGBoost Multiclase.

Clase Aciertos Fallos
BENIGN 85043 106
Bot 381 9
DDoS 25602 1
DoS GoldenEye 2051 6
DoS Hulk 34559 4
DoS Slowhttptest 1040 6
DoS slowloris 1075 2
FTP-Patator 1186 0
Heartbleed 1 1
Infiltration 4 3
PortScan 18133 6
SSH-Patator 644 0
Web Attack � Brute Force 245 49
Web Attack � Sql Injection 2 2
Web Attack � XSS 45 85

Tabla 9.4: Aciertos/fallos XGBoost Multiclase.

El tiempo de entrenamiento sigue siendo bajo para ambos modelos, aproximadamente 46 segundos para
Random Forest y un notorio aumento a 53 segundos XGBoost, incluso con la mayor cantidad de clases.

9.2.3 Dataset con ataques web agrupados

Dado que las clases de ataques web presentan pocos ejemplos individuales, se ha optado por agruparlas en
una sola clase denominada Web Attack. Esta agrupación permite mejorar la estabilidad del modelo en dichas
clases. Los modelos evaluados son nuevamente Random Forest y XGBoost.

41



9.2. RESULTADOS OBTENIDOS CAPÍTULO 9. RESULTADOS

Random Forest Agrupado

Figura 9.5: Informe Random Forest Agrupado.

Clase Aciertos Fallos
BENIGN 85031 121
Bot 373 17
DDoS 25598 5
DoS GoldenEye 2046 10
DoS Hulk 34530 11
DoS Slowhttptest 1040 6
DoS slowloris 1074 3
FTP-Patator 1186 0
Heartbleed 1 1
Infiltration 5 2
PortScan 18100 39
SSH-Patator 643 1
Web Attack 419 10

Tabla 9.5: Aciertos/fallos Random Forest Agrupado.

XGBoost Agrupado

Figura 9.6: Informe XGBoost Agrupado.

Clase Aciertos Fallos
BENIGN 85041 107
Bot 380 10
DDoS 25602 1
DoS GoldenEye 2050 7
DoS Hulk 34562 7
DoS Slowhttptest 1040 6
DoS slowloris 1075 2
FTP-Patator 1186 0
Heartbleed 1 1
Infiltration 4 3
PortScan 18133 6
SSH-Patator 644 0
Web Attack 428 1

Tabla 9.6: Aciertos/fallos XGBoost Agrupado.

Ambos modelos presentan entrenamientos rápidos y estables en esta configuración. El tiempo de entra-
miento para Random Forest es el mismo, aproximadamente 46 segundos, pero se consigue reducir el tiempo de
XGBoost llegando a unos 48 segundos.

9.2.4 Dataset reducido

En este punto se introducen modelos con mayor complejidad computacional comoMLP y SVM, por lo que
se ha reducido el número de muestras por clase para facilitar su entrenamiento. Se utiliza una primera versión
del dataset reducido.
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MLP Reducido

Figura 9.7: Informe MLP reducido.

Clase Aciertos Fallos
BENIGN 1915 85
Bot 388 2
DDoS 998 2
DoS GoldenEye 2054 3
DoS Hulk 988 2
DoS Slowhttptest 1032 14
DoS slowloris 1059 19
FTP-Patator 1179 7
Heartbleed 2 0
Infiltration 5 2
PortScan 999 1
SSH-Patator 640 4
Web Attack 410 19

Tabla 9.7: Aciertos/fallos MLP Reducido.

SVM Reducido

Figura 9.8: Informe SVM Reducido.

Clase Aciertos Fallos
BENIGN 1738 262
Bot 385 5
DDoS 997 3
DoS GoldenEye 2035 22
DoS Hulk 984 16
DoS Slowhttptest 1023 23
DoS slowloris 1052 25
FTP-Patator 1170 16
Heartbleed 1 1
Infiltration 0 7
PortScan 983 17
SSH-Patator 634 10
Web Attack 391 38

Tabla 9.8: Aciertos/fallos SVM Reducido.

Ambos modelos presentan tiempos de entrenamiento relativamente altos para la cantidad de muestras que
se manejan, aproximadamente 25 segundos MLP y 15 segundos SVM, que además requieren de un escalado
previo de los datos.

9.2.5 Dataset reducido 2

Se realiza una segunda versión del dataset reducido, aumentando el número de muestras por clase para
observar cómo escalan los modelosMLP y SVM ante más datos.
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MLP Reducido 2

Figura 9.9: Informe MLP reducido 2.

Clase Aciertos Fallos
BENIGN 3906 94
Bot 385 5
DDoS 1594 6
DoS GoldenEye 2056 1
DoS Hulk 1581 19
DoS Slowhttptest 1033 13
DoS slowloris 1063 14
FTP-Patator 1179 7
Heartbleed 2 0
Infiltration 4 3
PortScan 1598 2
SSH-Patator 638 6
Web Attack 400 29

Tabla 9.9: Aciertos/fallos MLP Reducido 2.

SVM Reducido 2

Figura 9.10: Informe SVM Reducido 2.

Clase Aciertos Fallos
BENIGN 3727 273
Bot 260 130
DDoS 1598 2
DoS GoldenEye 2022 35
DoS Hulk 1501 99
DoS Slowhttptest 1023 23
DoS slowloris 1046 31
FTP-Patator 1171 15
Heartbleed 2 0
Infiltration 0 7
PortScan 1578 22
SSH-Patator 595 49
Web Attack 385 44

Tabla 9.10: Aciertos/fallos SVM Reducido 2.

El tiempo de entrenamiento se incrementa notablemente, especialmente para SVM, que presenta mayor coste
computacional que el resto de modelos probados. Siendo los tiempos de 31 segundosMLP y casi 1 minuto SVM

9.2.6 Dataset reducido 3

En esta tercera versión del dataset reducido se aumenta aún más el número de muestras. Se vuelven a evaluar
MLP y SVM para observar su rendimiento y escalabilidad.
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MLP Reducido 3

Figura 9.11: Informe MLP reducido 3.

Clase Aciertos Fallos
BENIGN 5785 215
Bot 371 19
DDoS 2400 0
DoS GoldenEye 2050 7
DoS Hulk 2388 12
DoS Slowhttptest 1034 12
DoS slowloris 1068 9
FTP-Patator 1181 5
Heartbleed 1 1
Infiltration 5 2
PortScan 2394 6
SSH-Patator 637 7
Web Attack 406 23

Tabla 9.11: Aciertos/fallos MLP Reducido 3.

SVM Reducido 3

Figura 9.12: Informe SVM Reducido 3.

Clase Aciertos Fallos
BENIGN 5682 318
Bot 151 239
DDoS 2399 1
DoS GoldenEye 2006 51
DoS Hulk 2278 122
DoS Slowhttptest 1029 17
DoS slowloris 1048 29
FTP-Patator 1174 12
Heartbleed 1 1
Infiltration 0 7
PortScan 2367 33
SSH-Patator 596 48
Web Attack 384 45

Tabla 9.12: Aciertos/fallos SVM Reducido 3.

Los tiempos de entrenamiento vuelven a aumentar. SVM especialmente comienza a ser inviable para volú-
menes mayores sin optimizaciones adicionales. Los tiempos son de 34 segundos para MLP y más de 2 minutos
para SVM

9.2.7 Dataset reducido 2 - XGBoost

Dado que XGBoost ha mostrado un rendimiento notable en configuraciones anteriores, se entrena este mo-
delo sobre la segunda versión del dataset reducido, utilizada anteriormente conMLP y SVM.
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XGBoost Reducido

Figura 9.13: Informe XGBoost Reducido

Clase Aciertos Fallos
BENIGN 3991 9
Bot 387 3
DDoS 1599 1
DoS GoldenEye 2057 0
DoS Hulk 1599 1
DoS Slowhttptest 1038 8
DoS slowloris 1071 6
FTP-Patator 1186 0
Heartbleed 2 0
Infiltration 6 1
PortScan 1599 1
SSH-Patator 644 0
Web Attack 427 2

Tabla 9.13: Aciertos/fallos XGBoost Reducido.

XGBoost mantiene tiempos de entrenamiento muy bajos incluso con un mayor número de muestras, y su
rendimiento sigue siendo excelente. Aproximadamente 5 segundos.

9.2.8 Dataset con características reducidas

Para evaluar el impacto de la selección de características, se han generado dos datasets derivados de la ver-
sión reducida 2, manteniendo únicamente las 20 y 30 características más relevantes según el modelo XGBoost.
Ambos experimentos se han realizado únicamente con XGBoost, al ser el modelo con mejor comportamiento
global. También se detalla en la Figura 9.14 las características 30 características más importantes seleccionadas
junto a su importancia en el modelo.
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Figura 9.14: Top 30 características más importantes
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XGBoost Top 20 Características

Figura 9.15: Informe XGBoost Top 20 Característi-
cas.

Clase Aciertos Fallos
BENIGN 3952 58
Bot 381 9
DDoS 1594 6
DoS GoldenEye 2053 4
DoS Hulk 1596 4
DoS Slowhttptest 1036 10
DoS slowloris 1066 11
FTP-Patator 1186 0
Heartbleed 2 0
Infiltration 6 1
PortScan 1599 1
SSH-Patator 643 1
Web Attack 423 6

Tabla 9.14: Aciertos/fallos XGBoost Top 20 Caracte-
rísticas.

XGBoost Top 30 Características

Figura 9.16: Informe XGBoost Top 30 Característi-
cas.

Clase Aciertos Fallos
BENIGN 3971 29
Bot 389 1
DDoS 1595 5
DoS GoldenEye 2053 4
DoS Hulk 1597 3
DoS Slowhttptest 1038 8
DoS slowloris 1071 6
FTP-Patator 1186 0
Heartbleed 2 0
Infiltration 6 1
PortScan 1599 1
SSH-Patator 644 0
Web Attack 425 4

Tabla 9.15: Aciertos/fallos XGBoost Top 30 Caracte-
rísticas.

El tiempo de entrenamiento se ve ligeramente reducido respecto al anterior, y las métricas se mantienen
prácticamente inalteradas, lo que indica que es posible reducir el número de características sin sacrificar el
rendimiento del modelo. Tanto para 20 como para 30 características el tiempo de entramiento es de aproxima-
damente 3 segundos.
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9.3 Análisis y discusión

Una vez obtenidos los resultados experimentales de los distintos modelos de clasificación entrenados con
múltiples configuraciones de dataset, es fundamental realizar un análisis más profundo para interpretar su com-
portamiento y compararlos entre sí. Este apartado tiene como objetivo evaluar qué técnicas ofrecen un mejor
rendimiento, cómo influye la estructura del dataset en los resultados y qué conclusiones se pueden extraer res-
pecto al coste computacional, la escalabilidad y la capacidad de detección de los modelos.

A continuación, se presentan los aspectos más relevantes observados durante las pruebas y sus implicaciones
prácticas.

9.3.1 Comparativa entre enfoques

Durante el proceso experimental se han utilizado diferentes configuraciones del dataset original con el fin
de evaluar el comportamiento de los modelos en contextos variados: un enfoque binario, uno multiclase, un
agrupamiento de los ataques web, y finalmente, varias versiones reducidas del dataset para permitir la evaluación
de modelos más costosos computacionalmente.

El enfoque binario, que diferencia únicamente entre tráfico BENIGN y MALIGN, ha demostrado ser el más
sencillo de abordar. Tanto Random Forest como XGBoost han alcanzado métricas perfectas o casi perfectas en
este escenario, mostrando que el problema se vuelve trivial cuando se reduce a una clasificación binaria. Este
resultado, si bien útil para validar el correcto funcionamiento general del sistema, no resulta representativo de
un entorno realista donde es importante distinguir entre diferentes tipos de amenazas.

En cambio, el enfoquemulticlase ha supuesto un reto significativamentemayor, sobre todo en lo que respec-
ta a la detección de clases con un número muy reducido de muestras, como Heartbleed o Infiltration.
Estas clases presentan una alta dificultad para los modelos, que en muchos casos no logran identificarlas correc-
tamente, incluso cuando las métricas globales se mantienen elevadas. Esto evidencia la importancia de analizar
los resultados por clase individualmente y no solo en función de los promedios.

Para mitigar en parte este problema, se propuso una estrategia intermedia que agrupa todas las variantes
de ataques web (Brute Force, XSS, SQL Injection) bajo una única clase Web Attack. Esta decisión se tomó
tras observar un rendimiento muy bajo en estas clases cuando se trataban de forma independiente. Al agrupar-
las, el modelo mejora notablemente su rendimiento en esta categoría, aumentando su capacidad de detección y
simplificando el problema sin perder la capacidad de reconocer ataques relevantes.

Finalmente, se han creado tres versiones reducidas del dataset, que permiten evaluarmodelosmás costosos
comoMLP o SVM sin que el tiempo de entrenamiento resulte prohibitivo. Estas versiones también resultan útiles
para valorar el impacto del tamaño del dataset en lasmétricas y el comportamiento general de losmodelos. Como
se verá más adelante, esta reducción ha permitido obtener resultados comparables a los del dataset completo en
algunos casos, lo que plantea alternativas más ligeras y eficientes para ciertos contextos.

9.3.2 Comparativa entre modelos

A lo largo de los diferentes enfoques evaluados, se han probado hasta cuatro algoritmos de clasificación:
Random Forest, XGBoost, SVM y MLP. Cada uno presenta ventajas y limitaciones que han sido evidentes en
las distintas pruebas.

Los modelos basados en árboles, como Random Forest y especialmente XGBoost, han sido los que han
mostrado mejores resultados globales en términos de precisión, recall y f1-score, tanto en el enfoque binario
como en el multiclase y agrupado. Además, se caracterizan por una gran robustez ante datos desbalanceados,
algo especialmente relevante en este trabajo. XGBoost ha demostrado ser el modelo más consistente incluso
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en configuraciones más exigentes, manteniendo métricas elevadas en casi todas las clases, incluidas algunas
minoritarias.

Por su parte, Random Forest también ofrece buenos resultados, aunque en general ligeramente inferiores a
los de XGBoost. Sin embargo, destaca por su rapidez de entrenamiento y su menor complejidad computacional,
lo que lo convierte en una alternativa válida en entornos donde se prioriza la eficiencia por encima del rendi-
miento máximo.

Los modelos de mayor coste computacional, comoMLP y SVM, han requerido reducir el tamaño del dataset
para ser evaluados de forma viable. A pesar de ello, MLP ha mostrado un rendimiento muy competitivo, con
resultados cercanos a los de los modelos de árboles, especialmente en la versión reducida 2 del dataset. Sin
embargo, su entrenamiento es notablemente más lento, y la elección de sus hiperparámetros influye considera-
blemente en los resultados.

Por otro lado, SVM ha sido el modelo con mayores limitaciones en cuanto a escalabilidad y rendimiento,
especialmente cuando se incrementa el tamaño del conjunto de datos. Aunque ha conseguido buenos resultados
en algunas clases, su comportamiento ha sido irregular, especialmente en aquellas con pocas muestras, como
Infiltration o Bot, donde ha presentado valores de recall muy bajos o incluso nulos. Además, ha sido
el modelo con tiempos de entrenamiento más elevados, lo que limita su viabilidad en escenarios prácticos con
grandes volúmenes de datos.

En resumen, XGBoost ha sido el modelo más equilibrado entre rendimiento, capacidad de generalización
y eficiencia, seguido de cerca por Random Forest. MLP ha demostrado ser una opción válida en contextos
controlados con datasets reducidos, mientras que SVM ha resultado poco escalable para este tipo de problema.

9.3.3 Coste computacional

El coste computacional ha sido un factor clave a la hora de comparar y seleccionar los modelos, especial-
mente teniendo en cuenta la cantidad de datos y características del dataset original. Para estimar este coste se
ha medido el tiempo de entrenamiento de cada modelo en sus distintas configuraciones.

Los modelos basados en árboles han demostrado una gran eficiencia en este aspecto. Random Forest ha sido
rápido de entrenar en la mayoría de los escenarios, especialmente con datasets reducidos, aunque en el enfoque
binario ha sido superado por XGBoost, que consiguió tiempos de entrenamiento aún menores pese a su mayor
complejidad interna. Sin embargo, en el enfoque multiclase, XGBoost ha requerido algo más de tiempo debido
al mayor número de clases y a la gestión interna del boosting.

Aun así, ambos modelos han mantenido tiempos de entrenamiento razonables y perfectamente asumibles,
incluso con el dataset completo, lo que los hace adecuados para entornos con recursos limitados o para iteracio-
nes frecuentes durante el desarrollo.

Por el contrario, MLP y SVM han mostrado limitaciones importantes en cuanto a coste computacional.
Ambos modelos requieren escalar los datos antes del entrenamiento, lo cual añade un paso adicional al pipeline.
Además, sus tiempos de entrenamiento aumentan considerablemente con el tamaño del dataset, siendo necesario
reducir la cantidad de muestras para poder ejecutarlos en un entorno local sin agotar recursos.

En el caso de MLP, aunque el entrenamiento puede llevar más tiempo que los modelos de árboles, ha si-
do manejable en datasets de tamaño medio, y sus resultados han sido consistentes. En cambio, SVM ha sido
el modelo más costoso computacionalmente, especialmente en los datasets más grandes, donde el tiempo de
entrenamiento ha llegado a ser excesivo. En algunos casos, ha sido necesario limitar fuertemente el número de
muestras para evitar tiempos de espera de más de 10-15 minutos.

Este análisis pone de manifiesto que, más allá del rendimiento en las métricas, el coste computacional es un
factor decisivo. XGBoost destaca no solo por su precisión, sino también por su equilibrio entre rendimiento y
eficiencia computacional.
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9.3.4 Selección de características

Uno de los últimos experimentos realizados consistió en reducir el número de características del dataset para
comprobar cómo afectaba al rendimiento del modelo. Para ello se utilizó el algoritmo XGBoost, aprovechando
que ofrece mecanismos internos para evaluar la importancia relativa de cada feature según distintos criterios
(en este caso, el criterio de ganancia).

Se generaron dos versiones del dataset con únicamente las 20 y 30 características más importantes, y se en-
trenó de nuevo el modeloXGBoost sobre cada una de ellas. Los resultados muestran que, si bien ambas versiones
mantienen un rendimiento muy similar al obtenido con el dataset completo, existe una diferencia apreciable en-
tre ellas: el modelo entrenado con las 30 características alcanza mejores métricas que el de 20, especialmente
en clases minoritarias, donde el recall y el F1-score se ven más penalizados cuando se usa un conjunto más
reducido de atributos.

Además, al comparar el coste computacional de ambos entrenamientos, se observó que los tiempos fueron
prácticamente idénticos, por lo que no existe una ganancia relevante al reducir de 30 a 20 características en
términos de eficiencia. Dado que la versión de 30 características conserva mayor precisión y cobertura sin per-
judicar al rendimiento, se considera más adecuada y equilibrada para este problema.

Este experimento confirma que gran parte de la información necesaria para la clasificación se encuentra
concentrada en un subconjunto relativamente pequeño de características, y que muchas de las variables origi-
nales no aportan valor añadido al modelo o incluso pueden introducir ruido.

Además de mejorar la interpretabilidad, esta reducción de dimensionalidad permite entrenamientos más rá-
pidos y modelos más ligeros, lo que puede ser especialmente útil en entornos con recursos computacionales
limitados o donde se requiera realizar inferencias en tiempo real.

El uso de XGBoost como herramienta para la selección de características se justifica por su fiabilidad y
la capacidad inherente del modelo para priorizar aquellas variables que contribuyen más a la clasificación. Al
tratarse de un algoritmo basado en árboles de decisión, es capaz de capturar interacciones no lineales entre
variables y medir su impacto directo en la ganancia de información durante el proceso de entrenamiento, lo que
lo convierte en una opción robusta y eficaz para esta tarea.

9.3.5 Elección final del modelo

Tras realizar todas las pruebas y comparar el rendimiento de los distintos modelos, se ha determinado que
XGBoost es el algoritmo más adecuado para este problema de detección de intrusos.

Métricas de evaluación: XGBoost ha conseguido, en prácticamente todos los escenarios, las mejores
métricas globales (accuracy, precision, recall y F1-score), tanto en clasificación binaria como multiclase.
Incluso en clases minoritarias, donde otros modelos como SVM o MLP presentan un rendimiento más
irregular, XGBoost ha mostrado una mejor capacidad de detección y un menor número de errores.

Robustez ante clases desbalanceadas: Mientras que otros algoritmos han mostrado dificultades pa-
ra identificar correctamente clases con pocas muestras (como Infiltration, Heartbleed o Web
Attack), XGBoost ha mantenido un rendimiento más consistente. Esto lo convierte en una opción más
fiable en entornos reales, donde el desbalanceo es habitual.

Escalabilidad y coste computacional: Aunque XGBoost tiene un coste computacional mayor que Ran-
dom Forest en el caso multiclase, su rendimiento es superior y más estable a medida que crece el tamaño
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del dataset. Además, en clasificación binaria, el tiempo de entrenamiento ha sido considerablemente me-
nor que en Random Forest, lo que demuestra una buena capacidad de escalado en conjuntos de datos con
estructuras más simples.

Versatilidad: A lo largo de los experimentos se ha podido observar que XGBoost se adapta bien a todas
las variantes de preprocesado utilizadas, manteniendo siempre un rendimiento elevado. Tanto en los da-
tasets completos como en los reducidos o con agrupación de clases, el modelo ha sido capaz de ajustarse
eficazmente sin necesidad de reconfigurar el pipeline.

Reducción de dimensionalidad: Finalmente, se ha observado que XGBoost sigue manteniendo un ren-
dimiento excelente incluso cuando se limita el número de características del dataset. En concreto, los
resultados con las 30 características más importantes han sido prácticamente idénticos a los obtenidos
con el conjunto completo, lo que sugiere que esta configuración es la más eficiente en términos de coste-
beneficio.

Por todo lo anterior, el modelo final seleccionado es XGBoost entrenado con las 30 características más
importantes del dataset, ya que proporciona el mejor equilibrio entre rendimiento, eficiencia y escalabilidad.
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Capítulo 10

Conclusiones

Este capítulo recoge las conclusiones principales derivadas del desarrollo de esta investigación, que ha
tenido como objetivo principal evaluar diferentes modelos de inteligencia artificial aplicados a la detección
de ataques de intrusión en redes. A través de una serie de pruebas sistemáticas, se ha podido comprobar el
rendimiento de varios algoritmos en distintos escenarios de clasificación, permitiendo identificar el modelo
más eficaz en este contexto. Asimismo, se exponen también, posibles líneas de trabajo a futuro.

10.1 Modelo final seleccionado

El objetivo principal de este trabajo era encontrar el modelo de machine learning más adecuado para la
detección de intrusiones en entornos de red, cumpliendo así con la hipótesis inicial planteada. Esta hipótesis ha
quedado validada, ya que tras la evaluación comparativa de varios modelos, se ha determinado que XGBoost
es el algoritmo que ofrece los mejores resultados en términos de precisión, robustez ante clases minoritarias,
escalabilidad y tiempo de entrenamiento.

Además, se ha comprobado que el rendimiento óptimo se alcanza al utilizar las 30 características más im-
portantes del dataset, lo que permite una mayor eficiencia sin comprometer la calidad de las predicciones.

10.2 Trabajo a futuro

Este trabajo puede ampliarse en varias direcciones:

Explorar técnicas de aprendizaje profundo (Deep Learning), que podrían ofrecer mejoras en la detección
de ataques más sofisticados.

Ampliar la variedad de datasets utilizados para evaluar la capacidad de generalización del modelo final.

Incorporar técnicas de detección en tiempo real, integrando el modelo dentro de un sistema de monitori-
zación de red con procesamiento de paquetes en vivo.

Aplicar métodos de selección de características más avanzados
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Apéndice A

Código desarrollado

A.1 Preprocesamiento

def cargar_csvs(ruta_csvs):

archivos = glob.glob(os.path.join(ruta_csvs, "*.csv"))
dataframes = []

for f in archivos:
try:

df = pd.read_csv(f, low_memory=False)
dataframes.append(df)
print(f"� {os.path.basename(f)}: {len(df)} filas.")

except Exception as e:
print(f"� Error en {f}: {e}")

df_total = pd.concat(dataframes, ignore_index=True)
print(f"\nDataset combinado: {len(df_total)} filas totales, {len(df_total.columns)} columnas totales.")
return df_total

def limpiar_dataset(df):

df.replace([np.inf, -np.inf], np.nan, inplace=True)

columnas_vacias = df.columns[df.isna().all()].tolist()
df.drop(columns=columnas_vacias, inplace=True)

columnas_constantes = [col for col in df.columns if df[col].nunique() <= 1]
df.drop(columns=columnas_constantes, inplace=True)

df.dropna(inplace=True)
df.drop_duplicates(inplace=True)

print(f"� Dataset limpio: {len(df)} filas, {df.shape[1]} columnas.")
return df

def balancear_dataset(df):

benignos = df[df[' Label'] == 'BENIGN']
ataques = df[df[' Label'] != 'BENIGN']

# Realizar undersample de la clase "BENIGN" para balancear
benignos = benignos.sample(n=len(ataques), random_state=42)
df_balanceado = pd.concat([benignos, ataques])

# Barajar los datos y resetear índices
df_balanceado = df_balanceado.sample(frac=1, random_state=42).reset_index(drop=True)
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return df_balanceado

def convertir_binario(df):
df = df.copy()

df[' Label'] = df[' Label'].apply(lambda x: 'BENIGN' if x == 'BENIGN' else 'MALIGN')

return df

def agrupar_web_attacks(df):

df = df.copy()

df[' Label'] = df[' Label'].replace({
'Web Attack � Brute Force': 'Web Attack',
'Web Attack � XSS': 'Web Attack',
'Web Attack � Sql Injection': 'Web Attack'
})

return df

def reducir_dataset(df, etiqueta_col=' Label', limites={}):

clases = df[etiqueta_col].unique()
partes = []

for clase in clases:
datos_clase = df[df[etiqueta_col] == clase]

if clase in limites:
n = limites[clase]
datos_clase = datos_clase.sample(n=min(len(datos_clase), n), random_state=42)

partes.append(datos_clase)

df_reducido = pd.concat(partes).sample(frac=1, random_state=42).reset_index(drop=True)
return df_reducido

A.2 Entrenamiento de modelos

def preparar_datos(df):
df = df.copy()

# Eliminar la columna de etiquetas
X = df.drop(columns=[' Label'])

# Convertir etiquetas
y = df[' Label']

# Codificar etiquetas
le = LabelEncoder()
y_encoded = le.fit_transform(y)

# Dividir en train/test
X_train, X_test, y_train, y_test = train_test_split(

X, y_encoded, test_size=0.2, random_state=42, stratify=y_encoded
)

return X_train, X_test, y_train, y_test, le

def entrenar_random_forest(X_train, y_train):
modelo = RandomForestClassifier(

n_estimators=100,
random_state=42,
class_weight='balanced',
n_jobs=-1

)
modelo.fit(X_train, y_train)
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return modelo

def entrenar_random_forest_sin_balancear(X_train, y_train):
modelo = RandomForestClassifier(

n_estimators=100,
random_state=42,
n_jobs=-1

)
modelo.fit(X_train, y_train)
return modelo

def entrenar_xgboost(X_train, y_train):
modelo = XGBClassifier(

objective='multi:softmax' if len(set(y_train)) > 2 else 'binary:logistic',
num_class=len(set(y_train)) if len(set(y_train)) > 2 else None,
eval_metric='mlogloss' if len(set(y_train)) > 2 else 'logloss',
use_label_encoder=False,
random_state=42,
n_jobs=-1

)
modelo.fit(X_train, y_train)
return modelo

def entrenar_svm(X_train, y_train, C=1.0, gamma='scale', kernel='linear'):
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

modelo = SVC(kernel=kernel, C=C, gamma=gamma, random_state=42, verbose=False)
modelo.fit(X_train_scaled, y_train)

return modelo, scaler

def entrenar_mlp(X_train, y_train, hidden_layer_sizes=(100,), max_iter=300, alpha=0.0001):
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

modelo = MLPClassifier(
hidden_layer_sizes=hidden_layer_sizes,
activation='relu',
solver='adam',
max_iter=max_iter,
alpha=alpha,
random_state=42,
early_stopping=True,
verbose=False

)
modelo.fit(X_train_scaled, y_train)

return modelo, scaler

A.3 Evaluación de modelos

def evaluar_modelo(modelo, X_test, y_test, label_encoder,titulo="Evaluación",tamaño=(18, 12),cmap='Purples'):
y_pred = modelo.predict(X_test)

print(f"Informe de clasificación - {titulo}")
print(classification_report(y_test, y_pred, target_names=label_encoder.classes_))

# Matriz de confusión con tamaño ajustado
cm = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots(figsize=tamaño)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=label_encoder.classes_)
disp.plot(ax=ax, cmap=cmap, xticks_rotation=45, colorbar=True)
plt.title(f"Matriz de Confusión - {titulo}")
plt.grid(False)
plt.tight_layout()
plt.show()
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A.4 Extracción de características

def grafica_importancia_caracteristicas(modelo, max_features=20):

xgb.plot_importance(
modelo,
max_num_features=max_features,
importance_type='gain',
height=0.5

)
plt.title(f"Top {max_features} características más importantes")
plt.show()

def obtener_importancias(modelo, tipo="gain"):
importancia = modelo.get_booster().get_score(importance_type=tipo)
imp_df = pd.DataFrame.from_dict(importancia, orient='index', columns=['importancia'])
imp_df = imp_df.sort_values(by='importancia', ascending=False)
return imp_df

A.5 Mostar distribución

def mostrar_grafica_distribucion(df, titulo_grafica):

conteo_etiquetas = df[' Label'].value_counts().sort_values(ascending=False)

plt.figure(figsize=(12, 6))
sns.barplot(x=conteo_etiquetas.index, y=conteo_etiquetas.values)
plt.title(titulo_grafica)
plt.xlabel("Label")
plt.ylabel("Número de muestras")
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()

def mostrar_tabla_distribucion(df):
conteo_etiquetas = df[' Label'].value_counts().sort_values(ascending=False)

fig_tabla, ax_tabla = plt.subplots(figsize=(8, 6))
tabla = pd.DataFrame({

'Label': conteo_etiquetas.index,
'Número de muestras': conteo_etiquetas.values

})

ax_tabla.axis('off')
tabla_plot = ax_tabla.table(

cellText=tabla.values,
colLabels=tabla.columns,
loc='center',
cellLoc='center'

)

tabla_plot.auto_set_font_size(False)
tabla_plot.set_fontsize(10)
tabla_plot.scale(1.2, 1.5)

for key, cell in tabla_plot.get_celld().items():
if key[0] == 0: # primera fila (encabezados)

cell.set_text_props(weight='bold')

plt.title("Tabla de distribución de etiquetas", pad=20)
plt.tight_layout()
plt.show()
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Distribuciones de los diferentes da-
tasets

B.1 Distribución inicial

Gráfica de distribución inicial
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Tabla de distribución inicial

B.2 Distribución balanceada

Gráfica de distribución balanceada
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Tabla de distribución balanceada

B.3 Distribución binaria

Gráfica de distribución binaria
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Tabla de distribución binaria

B.4 Distribución agrupada

Gráfica de distribución agrupada
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Tabla de distribución agrupada

B.5 Distribución reducida

Gráfica de distribución reducida
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Tabla de distribución reducida

B.6 Distribución reducida 2

Gráfica de distribución reducida 2
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APÉNDICE B. DISTRIBUCIONES DE LOS DIFERENTES DATASETS B.7. DISTRIBUCIÓN REDUCIDA 3

Tabla de distribución reducida 2

B.7 Distribución reducida 3

Gráfica de distribución reducida 3
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Tabla de distribución reducida 3
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Matrices de Confusión

C.1 Matrices Binarias

Figura C.1: Matriz de confusion Random Forest Binario
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Figura C.2: Matriz de confusion XGBoost Binario
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C.2 Matrices multiclase

Figura C.3: Matriz de confusion Random Forest Multiclase
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Figura C.4: Matriz de confusion XGBoost Multiclase

72



APÉNDICE C. MATRICES DE CONFUSIÓN C.3. MATRICES CON ATAQUES WEB AGRUPADOS

C.3 Matrices con ataques web agrupados

Figura C.5: Matriz de confusion Random Forest Ataques Web Agrupados
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Figura C.6: Matriz de confusion XGBoost Ataques Web Agrupados
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C.4 Matrices con dataset reducidos

Figura C.7: Matriz de confusion MLP Reducida
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Figura C.8: Matriz de confusion MLP Reducida 2
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Figura C.9: Matriz de confusion MLP Reducida 3
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Figura C.10: Matriz de confusion SVM Reducida
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Figura C.11: Matriz de confusion SVM Reducida 2
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Figura C.12: Matriz de confusion SVM Reducida 3
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Figura C.13: Matriz de confusion XGBoost Reducida
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C.5 Matrices con características reducidas

Figura C.14: Matriz de confusion XGBoost Top 20 Características
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Figura C.15: Matriz de confusion XGBoost Top 30 Características
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