Ingenieria
Informatica

Universidad deValladolid UVa

Escuela de Ingenieria Informatica
TRABAJO FIN DE GRADO

Grado en Ingenieria Informatica
Mencioén en Ingenieria de Software

Sistema de trazabilidad de versiones de
contenido en flotas embarcadas de transporte
inteligente

Autor: Diego Valladolid Clemente

Ingenieria
Informatica

Universidad deValladolid UVa

Escuela de Ingenieria Informatica
TRABAJO FIN DE GRADO

Grado en Ingenieria Informatica
Mencioén en Ingenieria de Software

Sistema de trazabilidad de versiones de
contenido en flotas embarcadas de transporte
inteligente

Autor: Diego Valladolid Clemente
Tutor: Valentin Cardefioso Payo

Tutor de Empresa: Alvaro Gamarra Martin

A mi madre, que me ha criado sola y me ha apoyado incondicionalmente.

Gracias por ser mi pilar y apoyarme en mi camino.

Agradecimientos

Quiero expresar mi mas profundo agradecimiento a todas las personas que han hecho posible la realizacion
de este proyecto.

En primer lugar, agradezco a mis tutores, tanto de la empresa en la que se ha realizado este proyecto como el
encargado por parte de la universidad, que han compartido conmigo su experiencia, conocimiento y paciencia.

También deseo reconocer el apoyo incondicional de mis compaieros de trabajo en GMV. Su profesiona-
lidad, colaboracion y entusiasmo han contribuido a crear un ambiente de trabajo estimulante y a impulsar el
desarrollo de este proyecto. La sinergia y el compromiso que demuestran dia a dia han sido una fuente constan-
te de inspiracion y ayuda.

Del mismo modo, quiero agradecer a mi grupo de amigos, quienes han estado a mi lado en los momentos
buenos y en los dificiles. Su cercania, alegria y apoyo constante me han dado fuerza para continuar, recordan-
dome siempre la importancia de compartir el camino con quienes te hacen sentir en casa. Gracias por las risas,
los consejos y por estar ahi siempre.

Finalmente, no podria dejar de agradecer a mi familia, especialmente a mi madre, cuyo amor, sacrificio y
apoyo inquebrantable me han impulsado a seguir adelante en cada etapa de mi formacion. Su ejemplo y fortaleza
han sido mi mayor motivacion.

A todos vosotros, muchas gracias por vuestra confianza y por acompafiarme en este recorrido.

Resumen

En los sistemas de transporte inteligente, el despliegue correcto de contenidos como audios, anuncios, pa-
radas, lineas, etc, a los equipos embarcados (OBU) de los buses, es esencial para garantizar el funcionamiento
coordinado y actualizado de toda la flota. Actualmente, las revisiones de versiones instaladas en los vehiculos
se realizan de forma manual, lo cual implica un alto consumo de tiempo, una fuerte dependencia de comproba-
ciones individuales y una elevada probabilidad de error humano.

Este Trabajo Fin de Grado surge con el objetivo de automatizar el proceso de verificacion de actualizaciones,
permitiendo identificar de manera precisa qué vehiculos han recibido correctamente los contenidos y cuéles no,
antes de autorizar un despliegue operativo. De esta forma, se mejora significativamente la trazabilidad y se
reduce el riesgo de que un vehiculo entre en servicio con versiones obsoletas o inconsistentes.

La solucion propuesta se desarrolla sobre una arquitectura distribuida ya existente, en la que participan
multiples componentes de un sistema ya establecido, siendo algunos ejemplo, un gestor de contenidos, cono-
cido como sistema de informacion al usuario (S/U), un generador de archivos (ArchivosOBU) y un sistema
de transferencia (Transfer Manager). El sistema implementado realiza una comparacion automatizada entre las
versiones esperadas (generadas tras un cambio de contenido) y las versiones reales detectadas en cada equipo,
a partir de unos archivos que se van generando a lo largo de todo el workflow de transferencia.

Adicionalmente, este TFG también aborda uno de los desafios comunes en Ingenieria del Software: la in-
tegracion de nuevas funcionalidades en sistemas complejos y maduros ya desplegados. En este contexto, se
estudian distintas alternativas de arquitectura, se analizan sus implicaciones técnicas y se justifica la eleccion
final de la solucion propuesta, considerando factores como la mantenibilidad, escalabilidad y la evolucion futura
del sistema.

El trabajo incluye el analisis del sistema actual, el disefio € implementacion de la 1dgica de verificacion, el
modelado de datos asociado, y el desarrollo de una interfaz de usuario orientada a operadores técnicos para la
consulta del estado de actualizacion por vehiculo.

El resultado final es una herramienta de trazabilidad que expone esta informacion a través de una interfaz
técnica, accesible por operadores, y que permite controlar de forma visual y automatizada el estado de sincroni-
zacion de cada vehiculo. Este trabajo abarca el analisis del problema actual, el disefio de la solucion software,
la implementacion de la logica de verificacion y la propuesta de una interfaz funcional de consulta orientada a
entornos reales de operacion.

Abstract

In intelligent transportation systems, the correct deployment of content to on-board units (OBUs) is essential
to ensure the coordinated and up-to-date operation of the entire fleet. Currently, the verification of content
versions installed on vehicles is performed manually, which implies a high operational cost, a strong dependency
on individual checks, and an increased risk of human error.

This Bachelor’s Thesis aims to automate the update verification process, enabling precise identification of
which vehicles have successfully received the updated content before authorizing them for operational deploy-
ment. This significantly improves system traceability and reduces the risk of vehicles entering service with
outdated or inconsistent versions.

The proposed solution is built upon an existing distributed architecture composed of several components,
such as the content management system (SIU), a file generator (ArchivosOBU), and the transfer system (Transfer
Manager). The implemented system performs an automated comparison between the expected versions (gene-
rated after a content change) and the actual versions detected on each OBU, based on a set of files produced
throughout the update workflow.

Additionally, this project addresses a common challenge in Software Engineering: integrating new fun-
ctionality into complex, mature, and already deployed systems. Various architectural alternatives are analyzed,
and the chosen solution is justified based on key factors such as maintainability, scalability, and future system
evolution.

The work includes the analysis of the current system, the design and implementation of the version verifi-
cation logic, data modeling, and the development of a technical interface for operators to monitor the update
status of each vehicle. The final result is a traceability tool that provides a clear and automated view of the
synchronization status of the fleet, adapted to the requirements of real operational environments.

Indice general

Indice de cuadros v
Indice de figurag VII
I Objeto, Concepto y Método 1
[1. Introduccién 3
[LI. Introduccidn e 3
[1.2. Motivacion o e e e, 4

2. Objetivos y Alcance 5
... 5
R.1.1. Objetivos generales oot 5

R.1.2. Objetivos eSpecificod o v v v o e e e 5

R.1.3. Objetivos personaleg 5

R.1.4. Tareasarealizall 5
.. 6

B. Metodologia 7
B.1. Enfoquededesarrolla 7
B.1.1. ;QuéesScrum?. e 7

B.1.2. Pilares fundamentales de Scruml 7

B.1.3. Componentes de Scruml 8

B.1.4. Aplicacion al Proyectd 10

B.2. Planificacion] 10
B.2.1. Sprint 0 - 12/03/2025 - 26/03/2025 10

B.2.2. Sprint 1 - 26/03/2025 - 08/04/2025 11

B.2.3. Sprint 2 - 9/04/2025 - 22/04/2023 11

B.2.4. Sprint 3 - 23/04/2025 - 06/05/2025 11

B.2.5. Sprint4 - 07/05/2025 - 20/05/2025 12

B.2.6. Sprint 5 -21/05/2025 - 03/06/2025 12

B.2.7. Sprint 6 - 04/06/2025 - 06/07/2025 13

B.2.8. Plandecontrol yRiesgod 13
... 16
B3.1. Costehumand. e 16

B.3.2. Costesde Hardward 16

B.3.3. Costesde Softward, 16

B.3.4. Presupuesto Total 16

IT Marco Conceptual y Contexto

#. Marco Contextual
#.1. Entorno Profesional
#.2. Contexto operativo del proyectd
#.3. Problematicadetectada,
#.4. Justificacion del proyectd

5. Marco Conceptual y Tecnologicg
5.1. Arquitecturas distribuidag
5.2. Control de versiones en sistemas software
5.3. Transferenciade datos
5.4. Sistemas de transporte inteligente
5.5. Tecnologias utilizadas
5.5.1. Backend ylogicadenegocic
5.5.2. Frontend
5.5.3. Modelado y disefio de sistema
5.5.4. Control de versiones y gestiondetareag
5.5.5. Pruebas, documentaciéon y validacion
5.5.6. Conclusion

6. Soluciones y Estado del Arte
6.1, IntroducCion
6.2. Soluciones en el ambito de desarrollo softward
6.3. Soluciones en el sector Transportd
b.4. Alternativas internas en GMV]
6.5. Justificacion de lasolucion

III Desarrollo del Sistema

[7.1. Flujoactualdelsistemd
[7.2. Identificacion de necesidades e
[7.3. Integracion en sistema complejo existentd
[7.3.1. Caracteristicas del sistema atenerencuentaj
[7.3.2. Equilibrio entre integraciéon y viabilidad]
...
[7.4.1. Requisitos funcionaleg
[7.4.2. Requisitos no funcionaled

O 0
B.1. Alternativas de arquitecturaevaluadag
B.1.1. Microservicio Independientd
B.1.2. Mbodulo integrado en backend existentd
B.1.3. Mbodulo reutilizable integrado con separacidn porcapas
B.1.4. Arquitecturaelegidd
...
B8.3. Patrones de Disefio aplicados e,
B3.1. Singletonl
..

ii

17

19
19
19
20
20

21
21
21
22
22
23
23
23
23
24
24
24

25
25
25
25
26
26

27

29
29
30
31
31
32
33
33
33

B.3.3. Inyeccionde dependencias

..
B.3.5. Scheduled Task
B3.6. Templatd
B.4. Modelado de datod,
B.5. Disefio de InfoVersionServicd v . oo e
B.5.1. Descripcion General,
B.5.2. Arquitectura del MicroServicio v v v v e e e e
B.5.3. Dependencias entre submddulos
B.5.4. Diagrama de clases entre capas. o v oo
B.5.5. Diagramas de SECUencia oi e e i e
B.5.6. Consideraciones de extensibilidad, mantenibilidad y escalabilidad
B.5.7. Resumen de la arquitectura de InfoVersionServicd
B.6. Interfazde Usuaridt v i e
B.6.1. EstructuradelainterfazZ

D. Implementacion

D.1. Pautasde Estild
D.2. InfoVersionServicd v it
D.3. Accesoafuentesdedatod
D.3.1. Modelode accesoadatod,
D.3.2. Integracion con ArchivosOBU,
D0.3.3. Integracion con Transfer Managetl o i
D.4. Exposicion de datos - SoaBasicContentManager v v v e e
..
D.5.1. Descripcionde lainterfaz
D.6. Gestion de errores y validacioned
D.7. Integracion continuay gestiondel codigd

[[0.1. Pautas de Estild
[[0.2. Pruebas Unitariag o ot vt e
[[0.2.1. Coberturade laaplicacion i
[10.3. Pruebas de Integracion
[10.4. Pruebas funcionales
[10.4.1. CU1 - Re@istrar VErsiones v v v v v vt e e e s,
[10.4.2. CU2 - Comparacion de versiones generales oo v v v v
[10.4.3. CU3 — Consulta especifica de Versiones v o v v v v i,
[10.4.4. CU4 —Consultade KPIsdelaflotd
[[0.4.5. Conclusion o
[10.5. Pruebas de rendimientd
[10.6. Validacién con usuarios finaleg

IV Conclusiones

[11. Conclusiones y trabajo futuro

[11.1. Introduccion
[11.2. Aportaciones realizadas o o e,
[[1.3. Valoracion del resultadd
[[1.4. Mejorasafuturd

iii

63
63
64
65
65
65
65
66
66
67
69
69

71
71
72
73
74
76
76
76
76
77
77
77
78

79

[11.5. Objetivos personaled o v v v e e e

[Apéndice A. Manual de Instalacion

A.1. RequiSitos Previod o v v o o e e e e e e

IA.2. Instalacion del servicio InfoVersionServicd v o e

A2.1. Compilacion

IA.2.2. Instalacion como servicio de Windows e

A3. Base de datos e

[Apéndice B. Manual de Usuario

B.1.

Accesoal moduld

B.2.

Vista general

B.3.

Filtros y busquedas o o o o

B.4.

Consulta detallada por vehiculd o o o

B.5.

Visualizacion de KPIS

B.6.

Usabilidad

85

87
87
87
87
88
88

91
91
91
92
92
92
93

95

Indice de cuadros

B.1. Resumendel Sprint Q| e, 10
B.2. Resumendel Sprint 1| 11
B.3. Resumendel Sprint2 e, 11
B.4. Resumendel Sprint3 12
B.5. Resumendel Sprintd e, 12
B.6. Resumendel Sprint 3 13
B.7. Resumen del Sprint € o o v o e e e 13
B.8. Resumende todos 10S Sprints 13
B.9. Exposicion al RIESEA o o v e 14
B.10. RO1 - Cambios en 1os Requisitos « o v v v v e e e 14
B.11. RO2 - Estudio de asignaturas pendientes 14
B.12. RO3 - Falta de experiencia con herramientas técnicas v v v v v v v e 14
B.13. R04 - Integracion técnica mas complejade loesperadd 15
B.14. ROS - Pérdida de datos o archivos del provectd v v i e 15
B.15.R06 - Problemas de salud 15
B.16. Resumen del presupuesto del proyectd o o e 16
6.1. Carencia identificada v Solucion propuesta o v v v v e e 26
[7.1. Identificacién de necesidades 31
[7.2. CUI - Registrar versiones generadag 35
[7.3. CU2 - Comparar Versioney v v v v v v e 36
[7.4. CU3 - Consulta especifica de Versiones o v v v v vt 37
[[.5. CU4-Consultade KPIsdelaflotd o o v i ittt 37
[L0.1. Coverage del servicio InfoVersionServicd o o v i i 73
[10.2. Trazabilidad entre requisitos funcionales y pruebas realizadad 77

vi

Indice de figuras

B.1. Pilares de Scruml, 8
B.2. Rolesde Scruml 8
B.3. Ciclo de eventos v artefactos Scrum[5] 9
[7.1. Flujo actual de la gestion de contenidod 30
[7.2. Diagramadecasosdeusd 33
... 42
.. 43
B.3. Inyeccion de Dependencias o oo it 43
.. 44
... 45
B.6. Modelado de Datosot i 47
B.7. Diagramade Paquetes o i e e, 48
B.8. SubPaquetes Architecturd 49
B8.9. SubPaquetes Application] e, 50
B.10. Dependencias entre Capas o oo e e e 52
B.11. Diagrama de Secuencia ProcessFolderl 58
B.12. Diagrama de Secuencia ProcessPackagd 59
B.13. Diagrama de Secuencia InsertFileDetaild 60
B.14. Diagrama de Secuencia CleanOldRecords 60
D.1. Frontend de lanueva funcionalidad 68
[L0.1. Paquetes resultado de las pruebas de integracion 75
[L0.2. Archivos resultado de las pruebas de integracion| 75

vii

viii

Parte 1

Objeto, Concepto y Método

Capitulo 1

Introduccion

1.1 Introduccion

Los sistemas de transporte inteligente han evolucionado significativamente en los tltimos afios, integrando
tecnologias de informacion, automatizacidon y comunicaciones para mejorar la eficiencia operativa, la seguridad
y la experiencia del usuario. Una parte esencial de estos sistemas es la correcta distribucion y sincronizacion de
contenidos, como configuraciones, archivos multimedia o datos operativos entre otros, en los equipos embar-
cados (OBU, On-Board Units) que tiene cada vehiculo.

En el contexto de estos sistemas, los procesos de actualizacion de contenidos a bordo representan un com-
ponente critico para asegurar que todos los vehiculos son desplegados bajo las mismas condiciones, con la
informacion mas reciente y coherente. Sin embargo, en muchas implementaciones reales, el seguimiento del
estado de estas actualizaciones aun se realiza de forma manual, lo que introduce riesgos operativos, posibles
errores humanos y una falta de visibilidad en tiempo real sobre el estado de la flota.

Este Trabajo Fin de Grado se enmarca en ese contexto, abordando el disefio e implementacion de una solu-
cion software que permita automatizar la verificacion del estado de actualizacion de contenidos en los vehiculos
de una red de transporte inteligente. El sistema desarrollado proporcionara trazabilidad completa de versiones,
permitiendo identificar con precision qué vehiculos han recibido correctamente las actualizaciones y cuales no,
facilitando asi una operacion mas segura y eficiente.

1.2. MOTIVACION CAPITULO 1. INTRODUCCION

1.2 Motivacion

Este Trabajo de Fin de Grado surge en el marco de las practicas profesionales realizadas en GMV]]1], una
empresa reconocida por sus soluciones tecnologicas en sectores como el transporte, el espacio, la defensa y la
ciberseguridad. En el caso de la sede de Valladolid, el enfoque principal es el Transporte Inteligente, ofreciendo
servicios a nivel tanto nacional como internacional. Durante el periodo de practicas, se identificod la necesidad
de optimizar el proceso de actualizacion de contenidos en las flotas de transporte, lo que motivo la elaboracion
de este proyecto.

Actualmente, en el sistema sobre el que se desarrolla este proyecto, las comprobaciones sobre si un vehiculo
ha recibido o no una actualizacion se realizan de forma manual. Esto implica inspeccionar directorios de archivos
generados por distintas herramientas (ArchivosOBU, Transfer Manager) y cruzar informacion de manera no
automatizada, lo que genera ineficiencias y un elevado margen de error.

Esta situacion es especialmente critica cuando se planifica un despliegue. Por ejemplo, si se lanza una nueva
campaifia con contenidos actualizados (como anuncios, informacion al pasajero o configuraciones de red), y un
subconjunto de vehiculos no ha recibido correctamente los archivos, esos autobuses pueden comportarse de
forma diferente al resto: mostrar informacion incorrecta en los monitores, emitir mensajes obsoletos o incluso
fallar en tareas automatizadas. Esto no solo compromete la calidad del servicio, sino que también dificulta la
deteccion y resolucion de errores, ya que actualmente no se dispone de una vision centralizada del estado real
de cada vehiculo.

La motivacion principal de este proyecto es, por tanto, automatizar este proceso de verificacion, incorporan-
do una solucién que lea, interprete y relacione los datos generados por los distintos componentes del sistema, y
exponga de forma clara y precisa el estado de actualizacion de cada vehiculo. De esta manera, se podra garantizar
que la flota se encuentra en condiciones homogéneas antes de entrar en servicio.

Desde el punto de vista académico y formativo, este proyecto permite aplicar de manera practica cono-
cimientos en arquitectura software, integracion de sistemas distribuidos, desarrollo backend y frontend, op-
timizacion de procesos por computacion paralela, asi como metodologias de andlisis y disefio en un entorno
real, complejo y en produccion. El resultado es una solucion software que proporciona trazabilidad completa
de versiones, permitiendo identificar con precisién qué vehiculos han recibido correctamente los contenidos y
facilitando asi una operacién mas segura, eficiente y controlada.

Capitulo 2

Objetivos y Alcance

En esta seccion estaran expuestos los objetivos, tareas y el alcance de este proyecto

2.1 Objetivos

2.1.1 Objetivos generales

El objetivo principal de este Trabajo Fin de Grado es disenar e implementar una solucion software que
permita automatizar el proceso de verificacion de actualizaciones de contenido en equipos embarcados (OBU)
dentro de una red de transporte inteligente. La solucion debe ofrecer trazabilidad de versiones, integrarse con
los sistemas existentes (4rchivosOBU, Transfer Manager, Gestor de Contenidos) y proporcionar una interfaz
clara para la consulta del estado de actualizacion por vehiculo.

2.1.2 Objetivos especificos

= Mejorar la eficiencia operativa en la gestion de actualizaciones dentro del Gestor de Contenidos de GMV.

= Reducir la necesidad de comprobaciones manuales, optimizando el proceso de despliegue de los equipos.

2.1.3 Objetivos personales

= Aplicar los conocimientos adquiridos a lo largo del grado en un entorno real de desarrollo

= Familiarizarme con las herramientas utilizadas en GMV para el control de versiones y la gestion de pro-
yectos

= Mejorar habilidades de documentacion, andlisis funcional y validacion.

= Adquirir experiencia en la resolucion de problemas e implementacion de nuevas funcionalidades en en-
tornos con sistemas complejos ya desplegados.

= Profundizar y aprender las tecnologias utilizadas en GMV (C#, React, Servicios de Windows, IIS, etc)

2.1.4 Tareas a realizar

= Definir el trabajo y elaborar una planificacion

* Establecer el alcance del proyecto, definiendo los objetivos generales y especificos.

5

2.2. ALCANCE CAPITULO 2. OBJETIVOS Y ALCANCE

* Asignar los recursos necesarios y definir las herramientas a utilizar durante el desarrollo.
= Estudiar el problema

* Analizar el sistema actual de actualizacion de contenidos en flotas de transporte y detectar sus prin-
cipales limitaciones.

* Definir los requisitos funcionales y no funcionales del sistema de trazabilidad
= Desarrollar nuestra solucion

* Evaluar alternativas arquitectonicas para la integracion de la solucion.
* Disefiar la arquitectura logica y técnica del sistema.

* Modelar los datos necesarios para realizar la comparacion entre las versiones esperadas y las que
realmente tiene cada equipo

* Desarrollar un backend capaz de gestionar dicha informacién de forma estructurada

+ Disefiar una interfaz de usuario que se integre con la del Gestor de Contenidos actual y sea sencilla
y accesible para los operadores técnicos.

= Probarla o realizar experimentos con ella

* Definir y ejecutar escenarios de prueba que simulen diversas condiciones operativas, incluyendo ac-
tualizaciones exitosas, incompletas o fallidas en dispositivos con diferentes versiones y topologias.

* Recoger y analizar feedback de usuarios finales (clientes y personal técnico) a través de pruebas
de usabilidad, para iterar mejoras en la funcionalidad y la interfaz grafica. Por motivos de tiempo
y alcance no se consigui6 iterar las mejoras de funcionalidad e interfaz aunque si se recogio el
feedback mediante pruebas de validacion.

2.2 Alcance

Este proyecto se centra en el desarrollo de una solucion especifica para el seguimiento y verificacion del
estado de versiones de contenido en equipos embarcados dentro de un entorno de transporte inteligente.
El alcance del TFG incluye:

= El andlisis y disefio de la arquitectura de trazabilidad.
= La implementacion de la logica de comparacion de versiones.
= [a creacion de una interfaz orientada a operadores técnicos.

= La integracion con las herramientas existentes (ArchivosOBU y Transfer Manager) mediante el analisis
de archivos generados por estos.

Queda fuera del alcance:
= [a modificacion directa del sistema de distribucion (Transfer Manager)

= La gestion de otros tipos de contenido que no se reflejen en los archivos generados automaticamente.

Capitulo 3

Metodologia

3.1 Enfoque de desarrollo

Para el desarrollo del presente Trabajo Fin de Grado se ha adoptado el marco de trabajo Scrum[2], una
metodologia agil[3]] ampliamente utilizada en la industria del software, especialmente en entornos donde se
requiere flexibilidad, colaboracién continua y entregas incrementales. Dado que este proyecto se ha desarrollado
en el contexto de unas practicas profesionales en una empresa tecnologica, y en coordinacion con un equipo real,
la aplicacion de Scrum ha permitido alinear el trabajo con las dindmicas y herramientas del entorno profesional.

3.1.1 ¢Qué es Scrum?

Scrum es un marco de trabajo agil orientado al desarrollo iterativo e incremental de productos complejos.
Fue inicialmente planteado para proyectos de software, pero hoy en dia se aplica en multiples disciplinas.

Su principal objetivo es entregar valor de forma continua, a través de ciclos cortos de desarrollo llamados
sprints, que en el caso de GMV tienen una duracion de una a tres semanas, que permiten inspeccionar y adaptar
el trabajo de manera constante.

Este enfoque es especialmente util en entornos donde los requisitos pueden evolucionar con el tiempo o no
estan completamente definidos desde el inicio, permitiendo que los equipos respondan a cambios de forma agil
y eficaz.

Scrum no impone una metodologia rigida, sino que proporciona roles, eventos y artefactos que ayudan a
estructurar el trabajo de forma colaborativa, transparente y adaptable.

Se basa en tres pilares fundamentales que garantizan la transparencia el control del progreso y la mejora
continua.

3.1.2 Pilares fundamentales de Scrum

Scrum se sustenta en tres pilares fundamentales[4] que permiten mantener el control, la transparencia y la
mejora continua del proceso

= Transparencia: Todos los aspectos significativos del proceso deben ser visibles para quienes gestionan
los resultados. Todos los artefactos generados deben estar accesibles y ser comprensibles para todo el
equipo. Esto garantiza una vision compartida del progreso y del producto.

= Inspeccion: El equipo debe inspeccionar regularmente el progreso hacia el objetivo final con el fin de
detectar desviaciones y corregirlas de forma temprana.

3.1. ENFOQUE DE DESARROLLO CAPITULO 3. METODOLOGIA

= Adaptacion: Cuando se detectan desviaciones relevantes, el equipo debe estar preparado para ajustar su
forma de trabajar, sus tareas o incluso el alcance. Esta capacidad de adaptacion constante es lo que permite
a Scrum responder a entornos cambiantes.

SCRUM

-
-

NOIVY1dvYay
NOIJJ3dSNI

VIONIYVdSNVYL

Figura 3.1: Pilares de Scrum

3.1.3 Componentes de Scrum

Scrum esta compuesto por roles, eventos y artefactos, que estructuran todo el trabajo del equipo y promueven
la entrega continua de valor.

Roles

Hay tres roles principales distinguibles:

= Product Owner: es el responsable de maximizar el valor del producto. Gestiona el Product Backlog y
prioriza las funcionalidades segun el valor para el cliente.

= Scrum Master: se encarga de asegurarse de la aplicacion de las practicas Scrum, eliminando impedi-
mentos y ayudando al equipo a mejorar sus procesos. También es el responsable de ser el comunicador
entre el equipo y el cliente.

= Equipo de desarrollo: es un grupo multidisciplinar el cual se encarga de convertir los elementos del

Sprint Backlog en incrementos funcionales.

Manages itself
Creates “Done” Increments

Product Owner

Manages the Product Backlog
Optimizes value of the Product

Manages the Scrum process
Removes Impediments

Scrum Master Development Teay

Figura 3.2: Roles de Scrum

CAPITULO 3. METODOLOGIA 3.1. ENFOQUE DE DESARROLLO

Eventos

Sprint: es un periodo de tiempo fijo (normalmente entre 1 y 3 semanas en GMV) en el que se desarrolla
un incremento del producto. Contiene a todos los deméas eventos y siempre comienza un nuevo sprint
inmediatamente después de finalizar el anterior. A lo largo del sprint los requisitos quedan congelados y
no se pueden cambiar.

Sprint Planning: se definen los objetivos del sprint y qué tareas del Product Backlog se abordaran.

Daily Scrum: reunion diaria para inspeccionar el progreso, detectar bloqueos y coordinarse con el resto
del equipo. Suele durar un maximo de 15 minutos y siempre se realiza a la misma hora y en el mismo
lugar. Su principal objetivo es mejorar la comunicacion y promover la toma de decisiones eliminando por
ende la necesidad de otras reuniones

Sprint Review: al final del Sprint, el equipo presenta todo lo que se ha realizado y recibe feedback al
respecto.

Sprint Retrospective: es una sesion interna para reflexionar y proponer mejoras en el proceso. Este
evento concluye el sprint actual.

Artefactos

Product Backlog: es una lista priorizada de todo lo que se desea incluir en el producto final. Es dinamica
y esta en continua evolucion. El responsable de este artefacto es el Product Owner. El objetivo que se
persigue es llamado el Product Goal, que hace referencia al estado final o futuro del producto al que se
quiere llegar.

Sprint Backlog: es el subconjunto del Product Backlog seleccionado para el sprint actual, junto con el
plan desarrollado para entregar el incremento. Los principales responsables de realizar este trabajo son
los desarrolladores. Es una representacion del Sprint Goal, que es el objetivo que se ha establecido para
el sprint actual.

Incremento: Es el resultado del trabajo realizado a lo largo de un sprint. Cada incremento es aditivo a
todos los anteriores, fusionandose para acercarse al Product Goal. También existe la posibilidad de que
se generen multiples incrementos en un Unico sprint.

Scrum process

Sprint

Retrospective
T
(——— i

Figura 3.3: Ciclo de eventos y artefactos Scrum[5]

Sprint ‘)
Review ‘

Increment

Product Sprint
Backlog Backlog

3.2. PLANIFICACION CAPITULO 3. METODOLOGIA

3.1.4 Aplicacion al Proyecto

En este TFG, Scrum se ha aplicado de forma adaptada al contexto real de practicas en empresa, trabajando
con un equipo profesional que ya sigue esta metodologia.

= El tutor de la empresa tomara tanto el papel de Scrum Master como el de Product Owner. Por otro lado,
el estudiante tendra el papel del equipo de desarrollo, pues sera el encargado de hacer todo el desarrollo
¢ implementacion propuesto.

= Los Sprints se han definido con un maximo de duracioén de dos semanas, cada uno de ellos con objetivos
claros definidos. Por ejemplo, analisis de requisitos, disefio, desarrollo del backend, etc.

= Se ha participado en reuniones diarias (Daily Scrums) para compartir los avances y resolver bloqueos.

= Seusaron herramientas reales del entorno profesional para la planificacion, seguimiento y documentacion,
como Git (BitBucket), Jira y Confluence. El Product Backlog y el Sprint Backlog han sido gestionados
por el tutor de la empresa mediante la herramienta anteriormente nombrada (Jira).

= Al finalizar cada sprint, se realizaron revisiones de entregables con el equipo técnico y se ajustaron los
préximos pasos en funcion del feedback recibido.

Esta aplicacion practica de Scrum ha permitido que el desarrollo del sistema se adapte a las necesidades reales
del entorno, facilitando la integracion progresiva con componentes existentes y favoreciendo un desarrollo agil,
trazable y flexible.

3.2 Planificacion

En esta seccion se mostrara las diferentes planificaciones que se han tomado en cada uno de los sprints
realizados. Se han realizado un total de 6 sprints, cada uno de ellos con una duracién de 2 semanas aproxima-
damente. Como aclaracion, en la parte de documentacion de la memoria se incluyen todas aquellas reuniones
que se hayan tenido con el tutor para verificarla.

3.2.1 Sprint 0 - 12/03/2025 - 26/03/2025

Las fases y duracion prevista del sprint 0 estan representadas en el cuadro B.1. Este sprint se ha dedicado
principalmente a toda la preparacion y configuracion de aquellas herramientas y utensilios que van a ser nece-
sarios para la realizacion del proyecto como por ejemplo Visual Studio, Visual Studio Code, SQL Server y las
aplicaciones internas de GMV como ArchivosObu o el Content Manager.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Configuracion de entorno de trabajo 15h 16 h Completado
Lectura de la documentaciéon inicial 4h 4h Completado
proporcionada por la empresa

Adaptacion de plantilla del TFG 1h l1h Completado
Documentacion de la memoria 10h 9 h 30 min Completado
TOTAL 30h 30 h 30 min Completado

Cuadro 3.1: Resumen del Sprint 0

10

CAPITULO 3. METODOLOGIA 3.2. PLANIFICACION

3.2.2 Sprint 1 -26/03/2025 - 08/04/2025

Las fases y duracion prevista del sprint 1 estan representadas en el cuadro B.2. Este sprint se centrd en
conocer en profundidad el sistema actual de actualizaciones de contenidos en los equipos embarcados. Se reviso
documentacion, se identificaron los actores clave (ArchivosOBU, Transfer Manager, SIU) y en base a todo
esto se desarrolldo un documento con varias soluciones propuestas para elegir aquella que mas beneficiase al
desarrollo.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Revision de documentacion y flujos ac- 8h 10 h Completado
tuales

Toma de requisitos iniciales 2h 2h Completado
Analisis del flujo de actualizacion 8h 6h 30 min Completado
Estudio de soluciones posibles 5h Sh Completado
Primeros diagramas preliminares para 5h Sh Completado
cada solucion

Redaccion de documento con solucio- 5h Sh Completado
nes propuestas

Documentacion de la memoria 8h 9h Completado
TOTAL 41 h 42 h 30 min Completado

Cuadro 3.2: Resumen del Sprint 1

3.2.3 Sprint 2 - 9/04/2025 - 22/04/2025

Las fases y duracion prevista del sprint 2 estan representadas en el cuadro B.3. Durante este sprint se definie-
ron los requisitos funcionales y no funcionales, se evaluaron posibles arquitecturas (microservicio independiente
vs integracion). Se definieron los modelos de datos preliminares, los flujos principales de operacién y se co-
menzaron los primeros bocetos de interfaz de usuario. El disefio se valido con el equipo de trabajo para asegurar
la viabilidad técnica y su encaje en la arquitectura real del sistema.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Redaccion de requisitos funcionales y 4h 4h Completado
no funcionales

Evaluacion de arquitectura y seleccion 8h 8h Completado
Disefo de arquitectura y flujos 10 h 10h Completado
Modelado inicial de datos 6h 5h Completado
Elaboracion de alternativas para la in- 6h 4h Completado
terfaz

Documentacién de la memoria 10 h 10 h Completado
TOTAL 44 h 41 h Completado

Cuadro 3.3: Resumen del Sprint 2

3.2.4 Sprint 3 - 23/04/2025 - 06/05/2025

Las fases y duracién prevista del sprint 3 estdn representadas en el cuadro B.4. En este sprint se iniciaron
las tareas de desarrollo del backend, centrandose en la definicion del modelo de datos en base de datos y la
creacion de las primeras estructuras de codigo. Se implemento la logica inicial de comparacion de versiones

11

3.2. PLANIFICACION CAPITULO 3. METODOLOGIA

entre contenidos esperados y contenidos actuales. También se comenzo la documentacion técnica de las APIs
para su futura integracion con el frontend.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Implementacion del modelo de datos 4h 4h Completado
Estructura inicial del backend 15h 15h Completado
Loégica de comparacion de versiones 15h 13h Completado
Documentacion técnica del backend en 4h 4h Completado
Swagger y Confluence

Documentacién de la memoria 10 h 12h Completado
TOTAL 48 h 48 h Completado

Cuadro 3.4: Resumen del Sprint 3

3.2.5 Sprint 4 -07/05/2025 - 20/05/2025

Las fases y duracion prevista del sprint 4 estan representadas en el cuadro3.3. Este sprint se dedicé a conectar
el sistema con las fuentes reales de informacion: los archivos generados por ArchivosOBU (conteniendo las
versiones esperadas por equipo) y los archivos devueltos por los equipos tras la actualizacion, gestionados
por Transfer Manager (que contienen las versiones actuales instaladas). Se desarrollaron mddulos de lectura y
parsing de estos archivos, y se almacenaron los datos extraidos en la base de datos de manera que se pudiese
acceder rapidamente a los datos necesarios para las comprobaciones de version.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Lectura de archivos generados por Ar- 5h 5h Completado
chivosOBU

Lectura de archivos generados por 5h 5h Completado
TransferManager

Desarrollo de parsers y almacenamien- 10h 10h Completado
to en la base de datos

Integracion con el backend Inicial 7h 4h Completado
Documentacion de la memoria 10 h 17h Completado
TOTAL 41 h 41 h Completado

Cuadro 3.5: Resumen del Sprint 4

3.2.6 Sprint 5 -21/05/2025 - 03/06/2025

Las fases y duracion prevista del sprint 5 estan representadas en el cuadro B.6. Con la base funcional ya
operativa, este sprint se enfoco en la mejora y optimizacion del backend. Se refactorizo el codigo para mejorar
mantenibilidad, se implementaron filtros y se realizaron pruebas funcionales completas. Ademas, se prepar6 el
backend para su conexion con la interfaz de usuario, asegurando la disponibilidad de los datos mediante end-
points. Esta fase también incluyo6 una revision técnica del sistema en su conjunto y la mejora de la documentacion
técnica para facilitar la integracion con otros modulos.

12

CAPITULO 3. METODOLOGIA 3.2. PLANIFICACION
Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Refactorizacion del codigo 6h 12h Completado
Implementacion de filtros 8h 4h Completado
Pruebas funcionales 10 h 13h Completado
Revision y mejora de la documentacion 4h 4h Completado
técnica
Documentacion de la memoria 10 h 10h Completado
TOTAL 38h 43 h Completado

Cuadro 3.6: Resumen del Sprint 5

3.2.7 Sprint 6 - 04/06/2025 - 06/07/2025

Las fases y duracion prevista del sprint 6 estan representadas en el cuadro B.7. Este sprint se centr princi-
palmente en el desarrollo del frontend y en su integracion con el backend previamente optimizado. Las tareas
incluyeron el disefio de mockups para la interfaz de usuario, el desarrollo e implementacion del frontend, y la
conexion funcional entre la interfaz y el backend mediante endpoints ya disponibles. Ademas, se planificaron
pruebas funcionales para garantizar una experiencia de usuario fluida y la correcta comunicacion entre compo-
nentes. Finalmente, se contemplo la elaboracion de la documentacion final del proyecto y su revision, con el
objetivo de dejar el sistema listo para su presentacion o entrega. Este sprint se alargd mas de lo esperado debido
a la convocatoria extraordinaria de la asignatura de Fisica, teniendo su fecha final prevista para el 17/06/2025.

Nombre de actividad Tiempo Estimado | Tiempo Invertido Estado
Disefio de mockups 3h 3h Completado
Implementacion del frontend 20 h 17h Completado
Conexion con el back 6h 7h Completado
Pruebas funcionales y ajustes 6h 6h Completado
Documentacion final de la memoria y 25h 35h Completado
revision

TOTAL 60 h 68 h Completado

Cuadro 3.7: Resumen del Sprint 6

3.2.8 Plan de control y Riesgos

Esta seccion tiene como objetivo analizar los posibles riesgos para este proyecto. Ademas en el cuadro 3.§
se puede ver un resumen general del tiempo estimado y el invertido en cada sprint.

Sprint Tiempo Estimado | Tiempo Invertido
Sprint 0 30h 30 h 30 mins
Sprint 1 41 h 42 h 30 mins
Sprint 2 44 h 41 h

Sprint 3 48 h 48 h

Sprint 4 41 h 41 h

Sprint 5 38 h 43 h

Sprint 6 60 h 68 h

Total 302 h 314 h

Cuadro 3.8: Resumen de todos los sprints

En el cuadro B.9 se puede ver la tabla que se ha usado para calcular la exposicion al riesgo correspondiente

13

3.2. PLANIFICACION CAPITULO 3. METODOLOGIA

con la probabilidad e impacto del mismo. En este proyecto se han identificado 6 riesgos que pueden analizarse

en los cuadros 3.10, B.11], B.12, B.13, B.14 y B.13.

Impacto/Prob | Baja | Media | Alta

Bajo Bajo Bajo | Medio
Medio Bajo | Medio | Alto
Alto Medio | Alto Alto

Cuadro 3.9: Exposicion al Riesgo

ID RO1

Nombre Cambios en los requisitos

Descripcion Los requisitos pueden cambiar debido a nuevas ne-
cesidades detectadas.

Probabilidad Media

Impacto Alto

Exposicion Alta

Plan de mitigacion Validar los requisitos con el equipo antes de iniciar
cada sprint

Plan de contingencia | Replanificar los sprints y revisar el alcance

Cuadro 3

.10: RO1 - Cambios en los Requisitos

ID RO2

Nombre Estudio de asignaturas pendientes

Descripcion La planificacion y fechas del proyecto se pueden ver
afectadas porque las asignaturas pendientes toman
mas tiempo del esperado.

Probabilidad Alta

Impacto Alto

Exposicion Alta

Plan de mitigacion Planificar y coordinar los estudios de las asignaturas
pendientes con la planificacion del proyecto

Plan de contingencia | Establecer prioridades y horarios estrictos.

Cuadro 3.11: RO2 - Estudio de asignaturas pendientes
ID RO3
Nombre Falta de experiencia con herramientas técnicas
Descripcion Uso de tecnologias nuevas.
Probabilidad Media
Impacto Medio
Exposicion Media
Plan de mitigacion Utilizar los cursos proporcionados por la empresa
para aprender dichas tecnologias
Plan de contingencia | Pedir ayuda puntual o buscar soluciones alternativas.

Cuadro 3.12: R03 -

Falta de experiencia con herramientas técnicas

14

CAPITULO 3. METODOLOGIA 3.2. PLANIFICACION

ID RO4
Nombre Integracion técnica mas compleja de los esperado
Descripcion Puede que la integracion con archivosOBU vy el

Transfer Manager sea mas compleja de lo esperado
o la estructura de los archivos generados sea costosa
de procesar

Probabilidad Alta

Impacto Medio

Exposicion Alta

Plan de mitigacion Reestructurar la planificacion teniendo en cuenta la

complejidad real.
Plan de contingencia | Validar el acceso con el equipo técnico en las etapas
tempranas del proyecto.

Cuadro 3.13: R04 - Integracion técnica mas compleja de lo esperado

ID ROS5

Nombre Pérdida de datos o archivos del proyecto

Descripcion Fallo en el ordenador, disco duro o pérdida de ver-
siones.

Probabilidad Baja

Impacto Alto

Exposicion Media

Plan de mitigacion Hacer backups regulares o utilizar sistemas en la nu-
be.

Plan de contingencia | Recuperar todo desde repositorios remotos.

Cuadro 3.14: R0O5 - Pérdida de datos o archivos del proyecto

ID RO6

Nombre Problemas de salud

Descripcion Si el desarrollador contrae alguna enfermedad puede
afectar a los plazos y estimacion del tiempo del pro-
yecto

Probabilidad Media

Impacto Medio

Exposicion Media

Plan de mitigacion Afadir algo de holgura en los sprints en caso de que
el desarrollador contraiga alguna enfermedad.

Plan de contingencia | Replanificar el proyecto y sus fechas en caso de ser
necesario.

Cuadro 3.15: R06 - Problemas de salud

De todos estos riesgos han ocurrido el estudio de asignaturas pendientes debido a la recuperacion de Am-
pliacion de Matematicas y Fisica y problemas de salud debidos a una conjuntivitis grave que impidio el correcto
avance durante un par de semanas. Todo esto llevo a la replanificacion del proyecto para su entrega en convo-
catoria extraordinaria, motivos por los que el Sprint 6B.7 tiene una duracién mayor.

15

3.3. COSTES CAPITULO 3. METODOLOGIA

3.3 Costes

Esta seccion cubrira todo lo relacionado con los costes del proyecto. Estaran calculados tanto los costes
humanos como los técnicos y aquellos asociados a la documentacion y la defensa.

3.3.1 Coste humano

El puesto que ocupa el estudiante en este proyecto es el de un desarrollador fullstack junior. Este puesto en
espafia cobra de media un total de 10,77€/h [6], habiendo deducido ya los impuestos. El proyecto ha durado un
total de 289 h, por lo que el coste humano del proyecto sera de 314hx10,77€/h = 3381,78 €.

3.3.2 Costes de Hardware

Durante el desarrollo del proyecto se han utilizado un ordenador portatil. El coste asociado a este dispositivo
se ha calculado mediante amortizacion mensual, considerando como vida util estimada 48 meses o 4 afios, que
corresponde a una media estandar en entornos profesionales[[7]. El portatil utilizado es un Lenovo ThinkPad
P14S Gen 4 con un precio de 1793,31€[8] a dia 09/04/2025. Esto hace que el precio amortizado aproximado
sea de 37,36€/mes. Por lo tanto, al durar el proyecto un aproximado de 3 meses, el coste del portatil ha sido de
112,08€.

3.3.3 Costes de Software

Respecto al software usado, se ha necesitado la licencia de Microsoft 365 Enterprise para el uso de Microsoft
Teams con un costo de 11,70€/mes [9] lo que hace un coste total de 35,1€. Ademas, también se ha utilizado la
licencia de Visual Studio 2022 Professional con un coste de 45€/mes [[L0] lo que hace un coste final de 135€.
La ultima licencia utilizada es la de Astah Professional la cual tiene un coste de 11,99€/mes [[L1] lo que hace un
total de 35,97€.

3.3.4 Presupuesto Total

En el cuadro se puede observar un resumen del presupuesto con el coste final del proyecto.

Nombre Precio Parcial | Horas | Mes | Precio Total
Trabajo del desarrollador 10.77€/h 314 h 3381,78€
Portatil utilizado 37,36€/mes 3 meses 112,08€
Licencia Microsoft 365 Enterprise 11,70€/mes 3 meses 35,1€
Licencia Visual Studio 2022 Professional 45€/mes 3 meses 135€
Licencia Astah Professional 11,99€/mes 3 meses 35,97¢€
Total 3699,93€

Cuadro 3.16: Resumen del presupuesto del proyecto

16

Parte 11

Marco Conceptual y Contexto

17

Capitulo 4

Marco Contextual

4.1 Entorno Profesional

El presente Trabajo Fin de Grado se desarrolla en el marco de las practicas externas realizadas en la empre-
sa GMYV, una multinacional tecnoldgica con actividad en diversos sectores estratégicos como el transporte, el
espacio, la defensa, la ciberseguridad y los sistemas inteligentes.

En concreto, el proyecto se ha llevado a cabo en la sede de GMV Valladolid, especializada en soluciones
de Transporte Inteligente. Esta linea de negocio ofrece productos y servicios a operadores de transporte publico
tanto a nivel nacional como internacional, abarcando desde sistemas embarcados y centros de control, hasta
plataformas de informacidn al pasajero y herramientas de analisis y gestion.

El entorno de trabajo en GMV es altamente técnico, multidisciplinar y orientado a la integracion de tec-
nologias avanzadas en sistemas reales, lo que proporciona un marco ideal para el desarrollo de proyectos con
aplicaciones practicas directas, como el que aqui se presenta.

4.2 Contexto operativo del proyecto

En los sistemas de transporte inteligente que gestiona GMV, cada vehiculo de la flota cuenta con un equipo
embarcado (OBU), encargado de recibir, procesar y mostrar contenidos tales como informacion al pasajero,
contenido multimedia y campafias de comunicacion o servicio.

Estos contenidos deben ser actualizados de forma periddica, coherente y controlada en toda la flota. El
proceso de actualizacion implica distintos componentes del sistema, como:

= SIU (Gestor de Contenidos o Sistema de informacion al usuario): sistema donde se configuran y
gestionan los contenidos de cada bus o flota. Contenidos hacen referencia a todo artefacto que pueda
contener el bus, desde audios, imagenes, hasta configuraciones sobre rutas, lineas, etc.

= ArchivosOBU: servicio de windows que genera los ficheros necesarios para actualizar cada vehiculo con
los datos actualizados por medio del SIU.

= Transfer Manager: sistema encargado de programar y ejecutar la transferencia de ficheros a los vehicu-
los. A su vez, cuando un vehiculo es actualizado, genera unos archivos con los contenidos que tiene el
vehiculo.

19

4.3. PROBLEMATICA DETECTADA CAPITULO 4. MARCO CONTEXTUAL

4.3 Problematica detectada

Durante el periodo de practicas, se detectd que, aunque el proceso de generacion y envio de contenidos a los
equipos estd bien definido y automatizado, no existe una solucion integrada que permita comprobar de forma
centralizada y automatica si los contenidos han sido efectivamente recibidos e instalados por cada vehiculo, por
ejemplo, puede ocurrir que en el momento de la transferencia el sistema estuviese apagado.

Actualmente, estas comprobaciones se realizan de forma manual, revisando directorios, archivos y registros
técnicos. Este procedimiento es costoso en tiempo y recursos, tiene alto riesgo de error humano, y dificulta la
planificacion y verificacion de campanas de actualizacion en tiempo real.

Esto se vuelve especialmente critico en contextos donde la homogeneidad del contenido es esencial, como
en los lanzamientos de nuevas campafas de comunicacion, cambios de tarifas o rutas, o con la coordinacion
con sistemas de informacion al usuario.

4.4 Justificacion del proyecto

La necesidad de contar con una herramienta que permita verificar automaticamente el estado de actualiza-
cion de cada vehiculo es evidente desde el punto de vista operativo, técnico y de calidad del servicio.

Este proyecto surge precisamente como una propuesta de solucion a esa necesidad, con el objetivo de au-
tomatizar la verificacion del estado de actualizacion por vehiculo, reducir la carga operativa asociada a com-
probaciones manuales, aumentar la trazabilidad del proceso de distribucion de contenidos y facilitar la toma de
decisiones antes de sacar a circulacion un vehiculo.

Al integrarse en el entorno real de GMV, el sistema desarrollado no solo tiene aplicacion practica directa, sino
que también puede convertirse en la base de una soluciéon mas general orientada a la trazabilidad de versiones,
que podria evolucionar hacia un nuevo modulo funcional del ecosistema de productos de la empresa.

20

Capitulo 5

Marco Conceptual y Tecnolégico

5.1 Arquitecturas distribuidas

Una arquitectura distribuida[]12] es aquella en la que los componentes del sistema se encuentran fisicamente
separados, normalmente ejecutdndose en diferentes maquinas o nodos, pero cooperan entre si mediante una red
para alcanzar un objetivo comun. Este tipo de arquitectura es ampliamente utilizado en sistemas modernos
debido a sus ventajas en términos de escalabilidad, disponibilidad, modularidad y resiliencia.

En el contexto de este proyecto, la arquitectura existente dentro de GMV se basa en un modelo distribuido
compuesto por multiples servicios, cada uno con una responsabilidad bien definida. Componentes como el SIU,
el servicio ArchivosOBU, el Transfer Manager y los equipos embarcados (OBU) estan distribuidos y conectados
mediante una infraestructura de red corporativa.

La solucion desarrollada en este TFG se incorpora como un nuevo modulo dentro de un servicio ya existente,
respetando sus convenciones arquitectonicas y de despliegue. A mayores de este nuevo modulo, también se
desarrollara un nuevo servicio de windows que gestione el tratamiento de los archivos de versiones utilizados
por GMV. Aunque forman parte de un servicio actual, mantienen un alto grado de modularidad y responsabilidad
unica: cada funcion queda claramente delimitada y puede evolucionar de forma independiente sin impactar al
resto de componentes. La comunicacion con el nicleo del servicio se realiza a través de las mismas interfaces
definidas (API REST o intercambio de archivos estructurados), garantizando compatibilidad y cohesion con el
ecosistema ya desplegado.

5.2 Control de versiones en sistemas software

El control de versiones tradicionalmente se asocia con el desarrollo de software (por ejemplo, Git para
codigo fuente). Sin embargo, el mismo concepto puede extenderse a contenidos operativos y configuraciones
que deben ser gestionadas en multiples dispositivos distribuidos.

En este proyecto, el control de versiones se aplica a los contenidos que deben ser desplegados y sincronizados
entre los distintos vehiculos de la flota. Existen dos elementos clave:

= La version esperada, que es la que se genera como resultado de un cambio de contenido en el sistema
central.

= La version real, que corresponde a la informacion devuelta por los dispositivos embarcados una vez
aplicadas las actualizaciones.

Comparar ambos tipos de version permite verificar que los dispositivos estan sincronizados, detectar errores
0 equipos no actualizados y obtener una trazabilidad de qué falta por actualizar.

21

5.3. TRANSFERENCIA DE DATOS CAPITULO 5. MARCO CONCEPTUAL Y TECNOLOGICO

Esta trazabilidad no solo es ttil para garantizar la calidad operativa, sino que también permite disponer de un
historial verificable de los cambios aplicados, util en auditorias, control de versiones de contenido multimedia,
o revisiones de configuracion en caso de incidentes.

5.3 Transferencia de datos

En los sistemas distribuidos, la transferencia de datos y la sincronizacion de informacion entre componentes
dispersos geograficamente son aspectos fundamentales para garantizar la coherencia operativa. Estos procesos
permiten que distintos nodos del sistema compartan el mismo estado o contenido, y reaccionen adecuadamente
ante cambios, manteniendo la fiabilidad y estabilidad del sistema global.

En el contexto de los sistemas de transporte inteligente, donde cada vehiculo cuenta con una unidad em-
barcada (OBU) que opera de forma relativamente autonoma, la necesidad de mantener contenidos actualizados
y sincronizados con el sistema central cobra especial relevancia. Dichos contenidos pueden incluir archivos de
configuracion, campafias de informacion, datos multimedia o cualquier otro recurso necesario para el funcio-
namiento diario del servicio.

Uno de los desafios técnicos principales en este tipo de entornos es que los canales de comunicacion pue-
den ser intermitentes, la disponibilidad de los dispositivos no siempre es constante, y no todos los equipos se
encuentran online al mismo tiempo. Por ello, la transferencia de datos debe ser robusta y tolerante a fallos, y
el sistema debe disponer de mecanismos que permitan verificar si los datos fueron correctamente entregados y
procesados por cada uno de los nodos.

La sincronizacidn, en este contexto, implica confirmar que la informacion presente en los OBU es idéntica
o equivalente funcionalmente a la que se generd en el sistema central. El objetivo del sistema propuesto es
precisamente actuar como un mecanismo de verificacion automatizado.

5.4 Sistemas de transporte inteligente

Los Sistemas de Transporte Inteligente (ITS, Intelligent Transport Systems)[|]13] son el conjunto de tecno-
logias que se aplican al transporte con el objetivo de mejorar la eficiencia, la seguridad, la sostenibilidad y la
experiencia del usuario. Estos sistemas combinan tecnologias de la informacion, telecomunicaciones, automa-
tizacion y electronica para optimizar la operacion tanto del transporte publico como privado.

El concepto de ITS ha sido promovido a nivel global por organismos como la Comision Europea y la ITS
World Congress, dado su papel fundamental en la transformacion del transporte hacia un modelo mas digital,
conectado y centrado en el usuario.

Un sistema ITS completo esta formado por diversos elementos interconectados. Entre los mas comunes se
encuentran:

= Centro de control (backoffice): Es el cerebro del sistema. Desde aqui es desde donde se gestiona la
planificacion de las rutas, la supervision de la flota, el estado del trafico, la configuracion de los vehiculos,
el contenido mostrado al pasajero, etc.

= Sistemas embarcados (OBU): Son los dispositivos instalados a bordo de los vehiculos. Reciben ins-
trucciones desde el centro de control y ejecutan funcionalidades como mostrar informacion al pasajero
en las pantallas, emitir mensajes por megafonia, registrar y reportar eventos de operacion o gestionar
validadores, camaras, sensores, etc.

= Infraestructura de comunicaciones: Es el canal que permite el intercambio de datos entre el centro de
control y los vehiculos. Puede incluir 4G/5G, Wi-Fi, VPN, redes satelitales u otras tecnologias segun el
entorno.

= Interfaces de usuario y herramientas operativas: Se refiere a las diferentes herramientas disefiadas
para que el usuario interaccione con ellas con la posibilidad de cambiar cualquier tipo de informacion de

22

CAPITULO 5. MARCO CONCEPTUAL Y TECNOLOGICO 5.5. TECNOLOGIAS UTILIZADAS

manera sencilla y transparente. Por ejemplo, a través de sistemas como el SIU (Sistema de Informacion
al Usuario), los operadores pueden configurar campaiias, cargar nuevos contenidos, programar actualiza-
ciones o analizar el comportamiento de la red de transporte.

5.5 Tecnologias utilizadas

Durante el desarrollo del sistema de trazabilidad de versiones de contenidos se han utilizado multiples tec-
nologias, herramientas y plataformas. La eleccion de cada una se ha basado en criterios de compatibilidad con el
entorno de GMV, madurez tecnologica, documentacion disponible y adecuacion al flujo de trabajo agil adoptado
durante el proyecto.

Estas herramientas se agrupan segun su area funcional y se describen a continuacion, con el enfoque puesto
en su aplicacion concreta dentro del desarrollo del proyecto.

Cabe destacar ademaés el uso de ChatGPT como herramienta de apoyo puntual durante el desarrollo. Se
ha utilizado principalmente para resolver dudas sintacticas o estructurales en C#, obtener ejemplos de pruebas
unitarias, mejorar la redaccion técnica de algunos apartados del documento y validar estructuras conceptuales.
Su uso ha estado siempre supervisado, contrastando los resultados obtenidos con documentacidn oficial o el
comportamiento real del sistema, actuando como un asistente complementario dentro del flujo de trabajo.

5.5.1 Backend y ldgica de negocio

El backend es el nicleo funcional del sistema, encargado de gestionar los datos, comparar versiones, alma-
cenar resultados y exponer servicios REST para su consulta desde la interfaz. El lenguaje principal del backend
ha sido C# (.NET), utilizado para desarrollar la 16gica de comparacion, carga de archivos, y operaciones sobre
los datos. Esta eleccion se alinea con el stack tecnologico ya existente en GMV para otras herramientas.

Respecto a la base de datos, se ha utilizado MySQL, un sistema de gestion de bases de datos relacional
utilizado para almacenar las versiones esperadas y las reales por cada componente. Se ha elegido por su fiabi-
lidad, rendimiento y compatibilidad con entornos productivos asi como para mantener coherencia con el resto
de bases de datos dentro de GMV.

5.5.2 Frontend

El frontend permite la visualizacion del estado de actualizacion de los vehiculos, de forma sencilla y acce-
sible para técnicos u operadores. Se ha optado por una SPA (Single Page Application) moderna.

Una SPA[14] es un tipo de aplicacion web que se carga una sola vez en el navegador y actualiza dinamica-
mente el contenido sin recargar la pagina completa. En el contexto de este proyecto se ha logrado mediante el
uso de React pues permite construir componentes reutilizables y reactivos para mostrar informacion en tiempo
real sobre los vehiculos, sus versiones, y su estado de sincronizacion.

Como gestor de paquetes para el frontend se ha utilizado NPM, gestionando dependencias, librerias y auto-
matizando scripts de desarrollo y build.

También se ha utilizado ciertas librerias de estilos comunes desarrolladas por y para GMV.

5.5.3 Modelado y disefo de sistema

Durante las fases de analisis y disefio se utilizaron diversas herramientas para crear los diagramas concep-
tuales, de arquitectura y de base de datos.

Se ha utilizado Draw.io como herramienta para la creaciéon de bocetos y brainstorming iniciales de cada
diagrama. Por otro lado, para la creacion de los diagramas UML.: clases, componentes y secuencia, se ha utilizado
Astah Professional permitiendo la documentacion interna del backend, con las entidades y el ciclo de vida de
los datos. Para finalizar esta seccion, la generacion y validacion del esquema de base de datos se ha realizado
mediante DBDiagram.io disefiando graficamente tanto las tablas como las relaciones y campos de la base de
datos de forma clara y exportable.

23

5.5. TECNOLOGIAS UTILIZADAS CAPITULO 5. MARCO CONCEPTUAL Y TECNOLOGICO

5.5.4 Control de versiones y gestion de tareas

El desarrollo se ha realizado de forma iterativa siguiendo la metodologia Scrum. Para ello se utilizaron
herramientas profesionales tanto para el seguimiento de tareas como para la gestion del codigo y la integracion
continua.

Todo el codigo realizado esta en repositorios privados de GIT en concreto con el uso de Bitbucket para
versionar todo el codigo del backend y frontend, incluyendo la documentacion.

Para la gestion de tareas se utilizd Jira con boards de Kanban para organizar los sprints, priorizar tareas y
registrar registrar el estado de cada funcionalidad. Ademas, como medio de comunicacioén con el equipo y la
realizacion de las reuniones y resolucion de dudas se utiliz6 Microsoft Teams, tanto dentro de la empresa como
con el tutor de la Universidad.

El uso de estas herramientas ha garantizado un desarrollo ordenado, profesional y alineado con el trabajo
real en empresa.

5.5.5 Pruebas, documentacién y validacién

Durante el desarrollo y validacion del sistema se utilizaron varias herramientas para probar, documentar y
verificar el funcionamiento del endpoint REST desarrollado.

Para la generacion automatica de documentacion de la API se us6 Swagger que permite probar los endpoints
desde el navegador, ver esquemas de respuesta y explorar la API de forma interactiva.

Como herramienta de testing de las APIs se utiliz6 Postman para ejecutar pruebas funcionales, validar casos
de error y simular flujos completos.

5.5.6 Conclusion

El conjunto de herramientas y tecnologias utilizadas ha permitido desarrollar un sistema perfectamente ali-
neado con las practicas profesionales actuales en el ambito del desarrollo de software para sistemas distribuidos.

Cada decision tecnologica ha sido tomada en base a criterios de compatibilidad con el entorno de GMV,
escalabilidad futura del sistema y facilidad de mantenimiento. Asimismo, el uso de herramientas profesionales
para modelado, pruebas y documentacion ha permitido mantener la calidad técnica del proyecto desde la fase
de analisis hasta la entrega final.

24

Capitulo 6

Soluciones y Estado del Arte

6.1 Introduccioén

En este capitulo se analizan las soluciones existentes y las aproximaciones previas al problema abordado en
este Trabajo Fin de Grado: la trazabilidad de versiones de contenido en entornos distribuidos, concretamente en
flotas de transporte inteligente.

El objetivo es contextualizar la propuesta dentro del panorama actual, identificar posibles referentes o apro-
ximaciones similares y justificar la necesidad de una solucion adaptada al entorno real de GMV. Para ello, se
han revisado herramientas utilizadas en otros sectores, soluciones genéricas y métodos aplicados en sistemas
similares, tanto desde el punto de vista técnico como funcional.

6.2 Soluciones en el ambito de desarrollo software

En el ambito del desarrollo de software, existen numerosas herramientas de control de versiones como Git,
SVN o Mercurial, utilizadas para gestionar cambios en el cédigo fuente. Estas soluciones permiten mantener un
historial de versiones, comparar estados y recuperar versiones anteriores, pero estan orientadas exclusivamente
al control de archivos de texto o binarios, no al control operativo de contenido desplegado en equipos fisicos
distribuidos.

Algunas herramientas de CI/CD (Integracion y entrega continua), como Jenkins, GitHub Actions, GitLab
CI/CD, incluyen mecanismos para verificar despliegues, pero se centran en entornos controlados de servidores,
no en entornos con dispositivos como los OBU, donde la conexion puede ser intermitente y los dispositivos
tienen comportamiento autébnomo.

Por tanto, aunque estos sistemas comparten conceptos clave (comparacion de versiones, sincronizacion,
despliegue), no resultan aplicables directamente al problema operativo de una flota de transporte que gestiona
contenido no de codigo, sino operacional y dependiente del estado real del equipo fisico.

6.3 Soluciones en el sector Transporte

En el sector del transporte, algunas plataformas ITS comerciales como INIT[15], Trapeze[l6] o Trans-
Track[[17] ofrecen soluciones avanzadas para gestioén de flota, configuracion de equipos embarcados y planifi-
cacion de servicio. Sin embargo, la mayoria de estas plataformas estan centradas en la planificacion de rutas,
la gestion operativa o la monitorizacion en tiempo real, y no ofrecen trazabilidad detallada sobre el estado del
contenido en cada vehiculo, especialmente a nivel de comparacion entre version esperada y real.

25

6.4. ALTERNATIVAS INTERNAS EN GMV CAPITULO 6. SOLUCIONES Y ESTADO DEL ARTE

Ademas, muchas de estas plataformas se comportan como sistemas cerrados, con capacidades limitadas de
personalizacion o integracion con flujos internos como los que utiliza GMV, lo que refuerza la necesidad de una
solucion a medida.

En entornos similares (como gestion de contenidos multimedia distribuidos), algunas plataformas permiten
ver si un dispositivo ha recibido contenido, pero en la mayoria de los casos:

= No hay validacion de que el contenido se haya aplicado correctamente.
= No hay comparacidon con una version central o esperada.

» La trazabilidad es parcial o no automatizada (Caso inical de GMV).

6.4 Alternativas internas en GMV

Dentro del ecosistema de GMV existen componentes que forman parte del proceso de actualizaciéon, como
ArchivosOBU o el TransferManager.

Sin embargo, estos componentes no incluyen una funcionalidad de trazabilidad completa. Si bien el Transfer
Manager puede registrar el estado de las transferencias, no compara la version instalada con la que se esperaba
ni expone esta informacion en una interfaz operativa de consulta por vehiculo.

Por tanto, actualmente no se cuenta con una solucion a este problema y este TFG surge como una nueva
solucion.

6.5 Justificacion de la solucion

El andlisis del estado del arte demuestra que no existe actualmente una solucién especifica que cubra de
forma directa el problema abordado en este proyecto dentro del contexto de transporte inteligente embarcado.
Por tanto, el sistema desarrollado representa una aportacion original, necesaria y util, tanto a nivel técnico como
operativo.

A partir del andlisis anterior, se justifica la necesidad de una herramienta especifica que cubra las carencias
detectadas como se indica en el cuadro .1].

Carencia Solucion propuesta

No existe trazabilidad centralizada El sistema registra y presenta el estado
de cada OBU respecto a cada campaiia.
No se automatiza la comparacion de | El backend compara versiones espera-
versiones das y reales, e informa de diferencias.
No hay interfaz de consulta operativa | Se desarrolla un frontend claro para vi-
sualizar el estado de la flota.

Cuadro 6.1: Carencia identificada y Solucién propuesta

La solucion propuesta no pretende reemplazar sistemas existentes, sino complementarlos con una capa de
trazabilidad, alineada con las necesidades reales detectadas durante las practicas en GMYV, y disefiada con vision
de escalabilidad y futura integracion completa.

26

Parte I11

Desarrollo del Sistema

27

Capitulo 7

Analisis

7.1 Flujo actual del sistema

En el sistema actual gestionado por GMYV, el proceso de actualizacion de contenidos para los OBU sigue
varias etapas clave:

= Generacion de contenido: Tras una modificacion de los contenidos realizada por el usuario en el SIU, un
servicio llamado SoaBasicContentManager, conocido como el backend del SIU, se encarga de registrar
este cambio en la base de datos utilizada.

= Creacion de los ficheros a distribuir: Cada cierto tiempo configurado, una hebra temporizadora del
servicio ArchivosOBU consulta la base de datos para generar los archivos necesarios a transferir al OBU,
organizandolos en un arbol de directorios 16gico predefinido. que sigue la siguiente estructura:

* Fleet
o Package Type

e SubFleet

o Fleetld
o Package Type

 Particular

o Bus Tdma
o Package Type

Esta estructura jerarquica permite distribuir los archivos de forma eficiente y personalizada. Si existen
configuraciones especificas para determinados vehiculos, ya sea a nivel de flota, subflota o unidad indivi-
dual, estos recibiran inicamente los archivos correspondientes a su nivel. En ausencia de personalizacion,
se utilizaran los archivos definidos en el nivel general (Fleet). El nodo Package Type representa el tipo de
contenido a distribuir, como configuraciones de lineas, rutas, archivos de audio, video, entre otros. Por
otro lado, bus tdma se refiere a un identificador utilizado para los buses.

29

7.2. IDENTIFICACION DE NECESIDADES CAPITULO 7. ANALISIS

Cada carpeta de tipo Package Type contendra los archivos comprimidos que deben enviarse al bus, junto
con un fichero de control en formato texto que sigue la siguiente estructura:

Version=NUMEROVERSION
ArchivoComprimidoAEnviarl1=NUMEROVERSION
ArchivoComprimidoAEnviar2=NUMEROVERSION

La linea Version indica la version general del paquete, mientras que cada entrada ArchivoComprimido-
AEnviarX especifica el nombre del archivo comprimido junto con su version individual. Este fichero
facilita la trazabilidad y sincronizacion de los contenidos distribuidos a cada unidad.

= Distribucion mediante Transfer Manager: El componente Transfer Manager se encarga de programar
y ejecutar la transferencia de estos ficheros a los equipos embarcados.

= Confirmacién post-actualizacion: Una vez finalizada la instalacion de los archivos en el OBU, el propio
equipo embarcado genera un archivo de retorno que contiene informacion sobre la version instalada. Estos
archivos son recogidos y almacenados en un directorio central por el Transfer Manager en el que se crean
nuevos archivos de texto temporales con nombre:

packageType#busTdma fleetId randomId

Estos archivos de texto contendran el mismo contenido que el mostrado al inicio de esta pagina pero
referidos al contenido real que tiene el bus.

En la figura [7.1] se puede ver el flujo actual de la gestion.

-I
Siu SoaBasicContentManager “ ArchivosObu Transfer Manager Equipos

Actor

Figura 7.1: Flujo actual de la gestion de contenidos

Actualmente estos archivos generados han de ser consultados manualmente y el sistema propuesto actia co-
mo un verificador automatico, conectandose a las rutas donde ArchivosOBU y Transfer Manager almacenan los
archivos generados y devueltos respectivamente. Compara ambas versiones (planificada y actual), y almacena
los resultados por vehiculo. Esto permite tener una vista global del estado de actualizacion de la flota, generar
alertas e incluso llegar a facilitar reenvios en caso de errores.

7.2 Identificacion de necesidades
Durante el analisis funcional, se identificaron las siguientes necesidades no cubiertas por el sistema actual:
Estas necesidades surgen de un analsis del flujo actual, de entrevistas con el equipo de GMV y de la obser-

vacion de problemas reales durante el uso del sistema.

30

CAPITULO 7. ANALISIS 7.3. INTEGRACION EN SISTEMA COMPLEJO EXISTENTE

Necesidad Detectada Implicacion Operativa

Verificar automaticamente si un OBU | Reduce errores manuales y aumenta la fiabilidad
ha recibido contenido
Comparar versiones esperadas vs insta- | Detecta inconsistencias y evita errores en servicio o

ladas a la hora de desplegar buses.

Centralizar la informacion de actualiza- | Facilita la supervision de los estados de actualizacion
cion de las flotas.

Visualizar el estado por vehiculo enuna | Aumenta la eficiencia de los técnicos y evita la ins-
Ul peccion manual.

Tener a disposicion distintos filtros por | Mejora la toma de decisiones operativas.
fecha, estado...

Cuadro 7.1: Identificacion de necesidades

7.3 Integracidn en sistema complejo existente

Uno de los retos mas relevantes de este proyecto ha sido disefiar una solucion que pueda integrarse de forma
segura, coherente y realista en un sistema complejo y maduro ya existente, como es el ecosistema de transporte
inteligente de GMV.

No se trata simplemente de desarrollar una nueva funcionalidad, sino de incorporarla en un entorno que
ya funciona en produccion, con multiples sistemas interconectados, procesos establecidos, responsabilidades
distribuidas entre equipos y requisitos técnicos bien definidos.

Integrar une nueva funcionalidad en un sistema de este tipo implica afrontar desafios como:

= Evitar romper el funcionamiento de los componentes existentes.

= Respetar contratos funcionales y estructuras ya desplegadas.

= Adaptarse a tecnologias, convenciones y estandares internos.

= Minimizar los puntos de acoplamiento para facilitar mantenibilidad.

= Garantizar que lo integrado sea entendible, util y sostenible a largo plazo.

En este proyecto, se ha adoptado un enfoque especifico que aborda estos retos de forma profesional. Pa-
ra ello, lo primero es analizar las caracteristicas con las que cuenta el sistema, posteriormente y teniendo en
cuenta lo analizado, hay que crear una estrategia de integracion que pueda aplicarse manteniendo los puntos
anteriormente nombrados en este mismo apartado.

7.3.1 Caracteristicas del sistema a tener en cuenta:

Actualmente, el ecosistema de GMV estd compuesto por multiples microservicios, servicios y componentes,
asi como sistemas de monitorizacion, gestion de flota, trazabilidad, y comunicacion de hardware embarcado. A
esto hay que anadirle los propios equipos embarcados y distintos procesos de seguridad y privacidad asociados.

Uno de los principios fundamentales que ha guiado el desarrollo de este proyecto ha sido la necesidad de
disefar una solucién que pueda integrarse de forma no intrusiva en un sistema complejo y consolidado, sin alterar
su funcionamiento ni comprometer su estabilidad. En el contexto de GMV, donde gran parte de los servicios
estan en operacion continua y en entornos productivos sensibles, cualquier nueva funcionalidad debe respetar
la arquitectura existente, sin introducir riesgos ni modificar componentes criticos.

En primer lugar, se ha asegurado que la herramienta desarrollada no interfiera en el flujo operativo actual
de actualizacion de contenidos, que contintia siendo gestionado exclusivamente por ArchivosOBU y Transfer
Manager. Estos componentes mantienen sus responsabilidades intactas: ArchivosOBU genera los ficheros de

31

7.3. INTEGRACION EN SISTEMA COMPLEJO EXISTENTE CAPITULO 7. ANALISIS

contenido a partir de cambios realizados en el SIU, y Transfer Manager los distribuye a los OBU seglin una
logica ya probada y estable.

Ademas, la solucion propuesta no requiere modificaciones en los dispositivos embarcados (OBU), ni cam-
bios en la forma en la que estos equipos generan los archivos de confirmacion tras una actualizacion. Esto
elimina la necesidad de actualizaciones en software embarcado, despliegues masivos o validaciones en campo,
que implicarian un coste operativo y un riesgo elevado para los operadores.

Otro aspecto esencial es que el sistema de trazabilidad se alimenta exclusivamente de los archivos ya ge-
nerados por los sistemas actuales. Estos archivos, tanto los ZIP generados por ArchivosOBU como los logs
devueltos por los OBU y almacenados por Transfer Manager, se ubican en estructuras de carpetas y rutas de red
bien definidas. El sistema propuesto accede de forma pasiva a estas ubicaciones, sin necesidad de modificar los
procesos que las generan, ni de establecer canales nuevos de comunicacion o integracion directa.

Por ultimo, toda la solucién ha sido disefiada para alinearse completamente con los patrones de desarrollo,
despliegue y operacion ya adoptados por el equipo técnico de GMV. Esto incluye el uso de tecnologias estandar
como .NET, MySQL, React, Swagger, Bitbucket y Jira, asi como la adopcion de buenas practicas de desarrollo
como separacion de responsabilidades, desacoplamiento de componentes, y uso de herramientas comunes para
testing y documentacion.

En conjunto, la solucion se comporta como una capa adicional de verificacion, completamente autonoma,
que funciona en paralelo al sistema productivo. No interfiere en su ejecucion, no modifica sus resultados, y no
introduce nuevas dependencias en el flujo principal. Este enfoque garantiza una integracion respetuosa, segura y
coherente, compatible con un entorno empresarial real y adecuada a los requisitos de un sistema en produccion.

7.3.2 Equilibrio entre integracion y viabilidad:

Uno de los principales retos de este proyecto ha sido alcanzar un equilibrio entre el contexto profesional de
integracion en un sistema complejo y las limitaciones naturales de un Trabajo Fin de Grado, tanto en tiempo
COMO en recursos.

Este equilibrio ha sido considerado en todas las fases del desarrollo: desde el analisis inicial y la eleccion de
tecnologias, hasta las decisiones de arquitectura y priorizacion funcional. El objetivo ha sido ofrecer una solucion
técnicamente util y realista, que pueda desplegarse en un entorno profesional, pero que al mismo tiempo sea
abordable por un estudiante en un periodo de tiempo limitado.

Las decisiones que se han tomado para asegurar la viabilidad han sido:

= Contar con un tiempo de desarrollo limitado a 3 meses para generar un MVP funcional con validacion
parcial

= La creacion de un modulo acoplable o desplegable de manera independiente.

= Evitar la modificacion de dependencias criticas como ArchivosOBU o el TransferManager creando asi
un acceso pasivo a archivos generados por los sistemas ya existentes

= Uso del stack corporativo (.NET, MySQL, React,etc.)

= Creacion del proyecto con la escalabilidad futura en mente, teniendo un cdédigo modular y bien documen-
tado para una facil migracion o crecimiento posterior.

Este subproyecto demuestra una de las habilidades mas valoradas en entornos reales: la capacidad de introducir
mejoras en sistemas maduros sin romper su equilibrio. En un entorno empresarial real no basta con que una
solucion “funcione”; debe encajar, ser comprensible para otros desarrolladores, y coexistir con las herramientas,
equipos y flujos existentes.

Desde el punto de vista académico, esto también refleja una madurez en el enfoque: no se trata solo de aplicar
conocimientos técnicos, sino de pensar como ingeniero/a de software profesional, priorizando la viabilidad, el
impacto real y la mantenibilidad de lo que se construye.

32

CAPITULO 7. ANALISIS 7.4. REQUISITOS

7.4 Requisitos

Este apartado recoge todo lo que el sistema debe hacer (funcional) y cdémo debe comportarse o estar cons-
truido (no funcional), resultado del analisis previo, entrevistas con el equipo técnico, observacion del sistema
real, y objetivos marcados.

Aunque el desarrollo del proyecto se ha gestionado mediante el marco de trabajo Scrum, utilizando historias
de usuario y tareas técnicas para la planificacion de sprints y la gestion del backlog, en esta memoria se han
estructurado los requisitos segun el enfoque clasico: requisitos funcionales y no funcionales. Esta organizacion
permite una mejor trazabilidad documental y facilita la conexion entre los objetivos del sistema, su disefio y las
pruebas realizadas.

7.41 Requisitos funcionales

Los requisitos funcionales definen el comportamiento observable del sistema. Son las capacidades y servi-
cios que debe proporcionar al usuario o a otros componentes del entorno. Se han encontrado cuatro casos de
usos principales que se pueden ver en los cuadros 7.2, 7.3, 7.4 y 7.5. Ademas en la figura se puede ver el
diagrama de casos de uso correspondiente al proyecto.

Sistema

@a especifica de ve@

<<inclpde>:-

Ver estado de la flota

Operador \ <<inclide>>
|
|
Consulta de KPIs de la flota

Figura 7.2: Diagrama de casos de uso

7.4.2 Requisitos no funcionales

Los requisitos no funcionales definen restricciones, cualidades y caracteristicas técnicas que debe cumplir
el sistema para ser viable en produccion y mantenible en el tiempo. Los requisitos no funcionales identificados
son los siguientes:

= RNFO01: El sistema debe estar desarrollado en el stack tecnologico compatible con GMV: .NET, MySQL,
React, etc.

= RNFO02: El sistema debe integrarse sin alterar los componentes actuales (ArchivosOBU, Transfer Mana-
ger, OBU).

= RNFO03: El backend debe exponer una API REST documentada, integrada en el actual SIU.

33

7.4. REQUISITOS CAPITULO 7. ANALISIS

= RNF04: La logica debe estar desacoplada del backend principal para facilitar su mantenimiento o extrac-
cion futura.

= RNF05: El tiempo de lectura de los archivos no debe superar los 120 s en condiciones normales (escala-
ble).

= RNF06: El tiempo de comprobacion por vehiculo no debe superar el segundo en condiciones normales
(escalable).

= RNF07: El sistema debe poder analizar flotas de mas de 1000 vehiculos sin degradacion significativa.
= RNF09: El sistema debe mantener un log de errores accesible para diagndsticos posteriores.

= RNF10: La implementacion debera ser dividida en 3 partes, un lector de los archivos generados que
inserte a BD las versiones, un comprobador automatico de versiones esperadas y reales y un frontend
integrado con el actual Gestor de Contenidos.

34

CAPITULO 7. ANALISIS 7.4. REQUISITOS

Titulo Resgistrar versiones generadas
Actor Sistema interno
Descripcion Tras un tiempo asignado en configuracion, el siste-

ma detecta que se ha generado un nuevo conjunto de
archivos de contenido y registra la version esperada
y real de cada contenido para cada vehiculo.
Precondiciones PRE-1. Debe existir una nueva campaia o contenido
pendiente de distribucion.

PRE-2. ArchivosOBU ha generado correctamente
los ficheros.

Postcondiciones POST-1. Se almacena en la base de datos las versio-
nes asociadas a cada vehiculo.

Flujo Normal

1. Tras un tiempo designado en la configuracion,
el sistema detecta si hay un nuevo conjunto de
archivos o se han actualizado.

2. Se analiza la estructura de las carpetas y se ob-
tienen los nuevos contenidos o versiones ac-
tualizadas.

3. Se registran estas versiones en la base de da-
tos.

Excepciones

2.1 Sino se detectan archivos o hay carpetas va-
cias, el sistema no realiza ninguna accién.
Tampoco realiza acciones si todos los archivos
siguen igual, es decir, no ha habido actualiza-
ciones de contenido.

2.2 Si los archivos estan corruptos o no siguen la
estructura esperada, se registra un error y se
descarta el procesamiento.

Cuadro 7.2: CU1 - Registrar versiones generadas

35

7.4. REQUISITOS CAPITULO 7. ANALISIS

Titulo Comparacion de versiones

Actor Operador

Descripcion El actor solicita ver el estado de sincrionizacion de
los vehiculos

Precondiciones PRE-1. Deben existir registros de versiones espera-

das y reales en base de datos

PRE-2. El actor debera estar autenticado en el siste-
may tener los permisos correspondientes a este mo-
dulo.

Postcondiciones POST-1. El actor puede ver el estado de sincroniza-
cion de los vehiculos

Flujo Normal

1. Elactor solicita ver el estado de sincronizacion
de los vehiculos, pudiendo elegir entre varios
filtros

2. El sistema compara las versiones esperadas
con las reales y detecta inconsistencias.

3. El sistema muestra los datos al actor siguien-
do los filtros seleccionados e informa de las
inconsistencias detectadas.

Excepciones

3.1 Elsistema no encuentra resultados para los fil-
tros — se muestra una tabla vacia con mensaje
informativo.

Cuadro 7.3: CU2 - Comparar Versiones

36

CAPITULO 7. ANALISIS

7.4. REQUISITOS

Titulo Consulta especifica de versiones

Actor Operador

Descripcion El actor solicita ver las versiones especificas de los
vehiculos

Precondiciones PRE-1. Deben existir registros de versiones espera-
das y reales en base de datos
PRE-2. El actor debera estar autenticado en el siste-
ma y tener los permisos correspondientes a este mo-
dulo.

Postcondiciones POST-1. El actor puede ver las versiones especificas

de los vehiculos

Flujo Normal

1. El actor solicita ver las versiones especificas
de los vehiculos

2. Elsistema muestra el numero de version y tipo
de paquete esperado y el contenido en el bus
por cada tipo de paquete necesario.

Excepciones
3.1 Elsistemano encuentra resultados — se mues-
tra una tabla vacia con mensaje informativo.
Cuadro 7.4: CU3 - Consulta especifica de versiones

Titulo Consulta de KPIs de la flota

Actor Operador

Descripcion El actor solicita consultar los KPIs de la flota

Precondiciones PRE-1. Deben existir registros de versiones espera-
das y reales en base de datos
PRE-2. El actor debera estar autenticado en el siste-
ma y tener los permisos correspondientes a este mo-
dulo.

Postcondiciones POST-1. El actor puede ver informacién estadistica

sobre la flota

Flujo Normal

1. El actor solicita consultar los KPIs de la flota

2. El sistema muestra la informacion estadistica
correspondiente

Excepciones

3.1 Elsistemano encuentra resultados — se mues-
tra una tabla vacia con mensaje informativo.

Cuadro 7.5: CU4 - Consulta de KPlIs de la flota

37

7.4. REQUISITOS CAPITULO 7. ANALISIS

38

Capitulo 8

Diseno

El presente capitulo describe en detalle el disefio técnico del sistema de trazabilidad de versiones de conte-
nido desarrollado durante este Trabajo Fin de Grado. A partir de los requisitos definidos en el andlisis previo, se
ha disefiado una arquitectura modular, flexible y alineada con los estandares tecnologicos actuales del entorno
de GMV.

El disefio del sistema se ha estructurado teniendo en cuenta los siguientes principios:

= Modularidad: cada componente tiene una responsabilidad clara y puede evolucionar de forma indepen-
diente.

= Escalabilidad: el sistema puede crecer en nimero de vehiculos, campaiias o funcionalidades sin pérdida
de rendimiento.

= Integrabilidad: la solucion puede desplegarse como microservicio o integrarse en un backend existente
sin romper la arquitectura actual.

= Mantenibilidad: el codigo y los componentes estan documentados y organizados para facilitar su evo-
lucién y soporte por parte de otros equipos técnicos.

A lo largo del capitulo se describen los aspectos clave del disefio, incluyendo la arquitectura general, el
modelo de datos, la logica de negocio, la interfaz de usuario, y los servicios REST que permiten la interaccion
con el sistema.

8.1 Alternativas de arquitectura evaluadas

Antes de definir la arquitectura final del sistema, se analizaron diversas alternativas con el objetivo de encon-
trar la solucion que ofreciera el mejor equilibrio entre integrabilidad, viabilidad técnica, esfuerzo de desarrollo
y alineacion con el sistema actual.

A continuacion se detallan las tres alternativas principales que se evaluaron:

8.1.1 Microservicio Independiente

La primera opcion evaluada fue desarrollar la solucién como un microservicio independiente. Esta alter-
nativa implicaba disefiar un servicio completamente desacoplado del resto de la infraestructura, con su propio
backend, base de datos, endpoints REST documentados, sistema de control de versiones y, opcionalmente, su
propia interfaz grafica. Desde el punto de vista arquitectonico, esta opcion representaba una solucion moderna
y alineada con las tendencias actuales en desarrollo distribuido, y ademas se ajustaba bien al enfoque basado

39

8.1. ALTERNATIVAS DE ARQUITECTURA EVALUADAS CAPITULO 8. DISENO

en microservicios que ya existe en el entorno técnico de GMV. Al tratarse de un componente autdbnomo, esta
solucidn ofrecia ventajas significativas en términos de escalabilidad, posibilidad de reutilizaciéon en otros con-
textos, independencia de despliegue y menor impacto sobre el resto del sistema. Sin embargo, el coste asociado
al disefio, implementacion y despliegue de un microservicio completo resultaba elevado dentro del contexto
temporal y técnico de un TFG. Desarrollar un microservicio desde cero implica definir y configurar toda la
infraestructura asociada (entorno de ejecucion, autenticacion, integracion en CI/CD, monitorizacién, logging,
etc.), lo que suponia una carga adicional dificilmente asumible sin desviar el foco del proyecto hacia aspectos
de infraestructura mas que funcionales. Ademas, este enfoque complicaba la validacion final con datos reales,
al requerir una integracion mas extensa con el ecosistema en produccion.

8.1.2 Modulo integrado en backend existente

La segunda opcidn considerada consistia en integrar la funcionalidad directamente dentro del backend de
un sistema ya existente, concretamente en el SIU (Sistema de Informacion al Usuario), que es uno de los com-
ponentes clave del ecosistema GMYV para la gestion de campaiias y contenidos. Esta alternativa resultaba espe-
cialmente atractiva desde el punto de vista de la eficiencia: permitia reutilizar la infraestructura ya desplegada,
aprovechar los mecanismos existentes de autenticacion, permisos, gestion de sesiones, configuracion de entor-
nos y acceso a bases de datos, y reducir el esfuerzo requerido en la fase de despliegue. Asimismo, facilitaba
una validacion rapida de la funcionalidad desarrollada y la incorporacion inmediata en el flujo de trabajo del
usuario final. No obstante, este enfoque tenia también sus limitaciones. La mas relevante era el alto grado de
acoplamiento que generaba con el backend principal, lo cual comprometeria la mantenibilidad futura del sis-
tema y dificultaria su evolucion como moédulo independiente. Ademas, existia el riesgo de alterar la logica
del SIU en produccion, introducir dependencias técnicas dificiles de aislar, o generar un solapamiento entre
responsabilidades funcionales que no estaba alineado con los principios de responsabilidad tnica.

8.1.3 Moddulo reutilizable integrado con separacion por capas

Como tercera opcion se plante6 un enfoque intermedio, basado en el desarrollo de una légica completamen-
te modular, disefiada desde el inicio para ser desacoplada, pero que pudiera integrarse temporalmente dentro de
un backend existente para facilitar su despliegue y validacion. Esta alternativa permitia trabajar con una arqui-
tectura clara, basada en capas (acceso a datos, logica de comparacion, servicios REST), utilizando tecnologias
compatibles con el ecosistema de GMV (C#, .NET, PostgreSQL, React) y respetando las convenciones internas
de desarrollo y estilo. La solucion se disefié de forma que pudiera empaquetarse e integrarse en el backend del
SIU como un modulo mas, pero manteniendo sus dependencias y servicios bien delimitados, con el objetivo de
que, en el futuro, pudiera ser extraida y desplegada como microservicio con un esfuerzo reducido. Este enfoque
ofrecia el mejor equilibrio entre los factores evaluados: reducia el esfuerzo inicial de despliegue, permitia va-
lidar funcionalmente el sistema dentro del entorno de practicas, y a su vez garantizaba una base técnica solida
para su futura evolucion como componente independiente. Ademads, encajaba de forma natural en los tiempos
y recursos disponibles en el desarrollo de un TFG, al evitar complicaciones logisticas y técnicas asociadas a un
microservicio completo, sin renunciar a los principios de disefio modular y mantenible.

8.1.4 Arquitectura elegida

Tras evaluar estas tres alternativas, se optd por implementar la solucion siguiendo el enfoque modular de
integracion controlada, priorizando la coherencia con el sistema actual, la viabilidad académica y el potencial de
escalabilidad futura. Esta decision ha permitido centrar el desarrollo en la funcionalidad principal, la trazabilidad
de versiones, sin desatender los aspectos clave de integrabilidad, sostenibilidad y alineacion con el entorno
profesional en el que se enmarca este proyecto.

40

CAPITULO 8. DISENO 8.2. DISENO

8.2 Diseno

La arquitectura del sistema disefiado en este Trabajo Fin de Grado se ha definido siguiendo un enfoque
modular y desacoplado, con el objetivo de facilitar su integracion en un entorno complejo y en produccion
como el de GMV. A diferencia de una arquitectura de microservicios clasica, se ha optado por un enfoque mas
pragmatico y alineado con los estandares internos de la empresa, basado en la separacion funcional entre el
procesamiento de datos y su exposicion a través de servicios ya existentes.

La solucioén se articula en torno a cuatro grandes componentes:

= InfoVersionService: Un servicio de Windows independiente, responsable de realizar el procesamiento
de los datos (lectura de archivos, tratado de los datos y generacion de resultados).

= SoaBasicContentManager: backend del SIU ya existente que expone endpoints para ser consumidos
por el SiuFront. En este caso contara con un nuevo endpoint que permitira consultar resultados generados
gracias al servicio de trazabilidad de InfoVersionService, tratarlos y exponer su informacion al front.

= Base de datos: compartida entre InfoVersionService y el SoaBasicContentManager.

= SiuFront: Frontend encargado del sistema de informacion al usuario que se encarga de todo lo relacionado
con los contenidos en las flotas. En este caso, se ha afiadido un nuevo componente llamado “’Fleet Status”,
en el que se podra consultar el estado de actualizacion de toda la flota.

Esta arquitectura garantiza una integracion controlada y no invasiva en el sistema actual. El nuevo servicio
opera de forma auténoma, ejecutandose en segundo plano como una tarea de sistema que puede programarse
periddicamente y configurarse para tener mas funcionalidades, como por ejemplo, el borrado de histdricos con
cierta antigiiedad. A su vez, los datos generados (versiones esperadas, versiones reales y comparaciones) se
almacenan en una base de datos que sigue el modelo de datos definido para este proyecto, véase la seccion 8.4,
El backend del SIU ha sido extendido con un nuevo endpoint REST, que se encarga de consultar esa base de
datos, tratar los datos y exponer los resultados al frontend, sin que el SIU tenga que hacerse responsable de la
logica de comparacion o de la gestion de archivos.

Este disefio ofrece multiples ventajas desde el punto de vista técnico y organizativo. Por un lado, permite
desacoplar la l6gica pesada de procesamiento, que podria evolucionar en volumen y complejidad, de los servi-
cios interactivos que deben mantener tiempos de respuesta cortos. Por otro, garantiza una integracion segura y
progresiva en el ecosistema de GMV: el SIU accede tinicamente a datos procesados en un nuevo componente
desacopable, mientras que el nuevo servicio puede desplegarse, actualizarse o incluso detenerse sin afectar a la
operativa central.

La interfaz de usuario, desarrollada en React, no accede directamente al servicio de Windows, sino que
consume el nuevo endpoint del SIU, manteniendo la experiencia de usuario unificada y coherente con el resto
de la aplicacion. Esto permite aprovechar el sistema de autenticacion, permisos y diseflo grafico ya existente,
sin duplicar funcionalidades ni introducir nuevas dependencias en el cliente.

Desde el punto de vista del ciclo de vida del software, esta arquitectura también favorece el mantenimiento:
las actualizaciones del servicio de procesamiento pueden desplegarse de forma independiente, y el almace-
namiento de los resultados en una base de datos relacional permite auditoria, reuso, y analisis posterior sin
necesidad de reprocesar archivos.

En resumen, se trata de una arquitectura hibrida y realista, que separa claramente responsabilidades en-
tre procesamiento y presentacion, respeta el funcionamiento del sistema actual, y se adapta a las limitaciones
temporales y técnicas de un Trabajo Fin de Grado, sin renunciar a la calidad y la profesionalidad en el disefio.

8.3 Patrones de Diseno aplicados

Durante el disefio e implementacion del sistema se han aplicado varios patrones de disefio clasicos, am-
pliamente utilizados en el desarrollo de software moderno. Estos patrones han permitido estructurar el cédigo

41

8.3. PATRONES DE DISENO APLICADOS CAPITULO 8. DISENO

de forma mas modular, mantenible y extensible, ademas de facilitar su integracion en el ecosistema técnico
existente.
A continuacion se describen los principales patrones utilizados:

8.3.1 Singleton

El patron Singleton garantiza que una clase tenga una Unica instancia accesible globalmente y proporciona
un punto centralizado de acceso a ella. Este patron es 1til para clases que representan configuraciones o recursos
compartidos[[18]. Su estructura se puede ver en la figura B.1].

Singleton P

- instance: Singleton

- Singleton()
Client =| + getInstance(): Singleton

if (instance == null) {
// Nota: si estas creando una aplicacion
orte el multihilo, debes
/f colocar un blogueo de hilo agui.
instance = new Singleton()

}

return instance

Figura 8.1: Singleton

En cuanto a la aplicacion en el proyecto, todas las configuraciones internas del nuevo servicio (InfoVer-
sionService), son almacenadas por medio de la implementacion de un singleton clasico con propiedad estatica
Instance. Almacena parametros de configuracion como rutas de las carpetas utilizadas por el Transfer Manager
y ArchivosOBU en la generacion de archivos, intervalos de ejecucion de la lectura de archivos y opciones de
limpieza. Esta instancia se accede desde distintas partes del codigo sin necesidad de pasarla como dependencia
explicita.

8.3.2 Fachada

El patron Fachada proporciona una interfaz de alto nivel que oculta la complejidad de multiples subsistemas.
Permite al cliente interactuar con una sola entrada simplificada, sin conocer la estructura interna. Reduce el
acoplamiento entre cliente y subsistemas, facilita el uso del sistema por parte de otros médulos y mejora la
legibilidad del flujo general[[19]. Se puede ver su estructura en la figura B.2.

A nivel de aplicacion, se proporciona la fachada VersionProcessingService para agrupar multiples respon-
sabilidades internas como la gestion de carpetas, ejecucion de estrategias de lectura de archivos, escritura en
base de datos, etc, y exponerlas a través de métodos tan simples como Start() o Stop().

8.3.3 Inyeccién de dependencias

La Inyeccion de Dependencias es un patron de arquitectura que permite suministrar las dependencias de una
clase desde el exterior, en lugar de crearlas internamente. Se implementa habitualmente mediante contenedores
de inversion de control (IoC), mejorando asi el desacoplamiento entre componentes, facilitando el uso de mocks
en tests y promoviendo el principio de inversion de dependencias[20]. Su estructura se puede ver en la figura

42

CAPITULO 8. DISENO 8.3. PATRONES DE DISENO APLICADOS

Packagel
- Class1.class
“‘“*sfincludes» o5 hing0 Client2
—l “\-‘ ooome In?_;_,_
Package2 csincludasss Fagade bt "
""""""" ‘:ﬂ_:',_________\ 7
- Class2.class ‘dnSDmethingO doSometh;n_g_dh" Client1
f,-’é::includes”
Package3 doSomething() {
Class1 ©1 = new Class1();
I Class2 £2 = new Class2();
Class3 ©3 = new Class3();
¢l doStuffic?);
o3 seticl. gets();
return c3.get¥();
Figura 8.2: Fachada
InstanceConfigurationReader Dependencyinjector InstanceCreator
1 1
ejecuta gjecuta
n LIER ejecuta = crea
InstanceConfiguration 1 o
InstanceConfigurator
n usa configura n N

Figura 8.3: Inyeccion de Dependencias

En el contexto de la aplicacion, se ha creado un contenedor de servicios denominado ServiceCollectionEx-
tension en el que se registran todas las interfaces e implementaciones. Luego, son inyectadas automaticamente
en el resto de clases consumidoras evitando asi la necesidad de uns instanciacion directa.

8.3.4 Strategy

El patrén Strategy permite definir una familia de algoritmos o comportamientos intercambiables y encap-
sularlos en clases separadas que comparten una misma interfaz. El cliente delega el comportamiento concreto a
una estrategia en tiempo de ejecucion, lo que permite modificar dinamicamente la 16gica sin cambiar el cliente.
Esto elimina bloques de codigo condicionales extensos, favorece el principio abierto/cerrado permitiendo agre-
gar nuevas estrategias sin modificar las existentes y facilita el testing unitario de cada estrategia individual[21].
Su estructura se puede ver en la figura B.4.

En el contexto del proyecto, en el servicio InfoVersionService, se manifiesta por medio de una interfaz
llamada /FolderProcessor que define el contrato para los distintos procesadores de carpetas, siendo estas sus
implementaciones. Estas implementaciones encapsulan ldgicas distintas de navegacion de carpetas segun el
tipo de agrupacion (Flota, SubFlota, Particular). El servicio selecciona e invoca estas estrategias en tiempo de
ejecucion sin tener que conocer sus diferencias internas.

43

8.3. PATRONES DE DISENO APLICADOS CAPITULO 8. DISENO

¥ S—E

Context .
«interface»
- strateqy A Strategy
+ setStrateqy(strategy) + execute(data)
+ doSomething() AN
A ;
strategy.execute() H &
4 ConcreteStrategies 3‘
Client [----- =

+ execute(data)
str = new SomeStrategy() I

context.setStrategy(str)
context.daSomethingl()

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

Figura 8.4: Strategy

8.3.5 Scheduled Task

Este patron se utiliza cuando se necesita ejecutar tareas a intervalos fijos o programados, como limpiezas,
verificaciones o sincronizaciones automaticas. Permite la ejecucion periddica sin intervencion del usuario, en-
capsula l6gica recurrente en modulos reutilizables y mejora la automatizacién y monitorizacion del sistema[22].

La aplicacion al proyecto se realiza mediante una clase llamada ScheduledTask que encapsula toda la l16gica
de temporizacion. Esta clase permite crear tareas que se ejecutan cada ciertos intervalos de tiempo. En este caso
lalectura de los archivos de versiones generados y el borrado de registros con antigliedad mayor a la configurada.
Ambas tareas definidas como callbacks configurables separadas del codigo principal.

8.3.6 Template

Este patron define el esqueleto de un algoritmo en una clase base, dejando la implementacién de pasos
concretos a subclases. La clase abstracta contiene la légica comun, pero permite que ciertos pasos sean perso-
nalizados [23].

La estructura general de este patron puede verse en la figura B.3.

La clase abstracta FolderProcessorBase implementa el método Process(), que define el flujo general del
procesamiento (recorrido de carpetas, identificacion de OBUs, procesado de paquetes, registro de resultados).
Las subclases (FleetProcessor, etc.) redefinen métodos como GetFoldersToProcess() y GetBuslds() segin el
contexto, permitiendo adaptar el flujo a distintos tipos de entrada sin alterar la 16gica general.

44

CAPITULO 8. DISENO

8.4. MODELADO DE DATOS

class TemplateMethodDesignPattern /

ConcreteClass1

step TMethod
step2Method
step3Method
step4dMethod

«interfaces

AbstractTemplateClas

step TMethod
step2Method
step3Method
stepdMethod
templateMethod

ConcreteClass2 l
step TMethod
step2Method

step3Method
stepdMethod J

ConcreteClass3 l

step TMethod
step2Method
step3IMethod
stepdMethod

8.4 Modelado de datos

Figura 8.5: Template

El sistema disefiado para la trazabilidad de versiones de contenidos requiere almacenar de forma persistente
la informacion que fluye durante todo el proceso: versiones generadas por los sistemas emisores (ArchivosOBU)
y las versiones detectadas por los equipos embarcados (a través de Transfer Manager)

Para ello, se ha definido un modelo de datos relacional centrado en tres entidades principales: Bus, Package-
Version y File. Estas entidades se relacionan entre si mediante identificadores de vehiculo, y paquete, permitien-
do consultar el estado historico y actual de cada unidad embarcada respecto a una determinada actualizacion.
Se puede consultar el modelo de datos en la figura .4

Antes de analizar cada clase con sus atributos cabe destacar que todos ellos empiezan por una letra que
indica su tipo primitivo. Esto se hace asi por convenio en GMV.

Las clases con las descripciones de sus atributos son las siguientes:

45

8.4. MODELADO DE DATOS CAPITULO 8. DISENO

Bus: Clase que representa los datos de los buses.

ildAutobus: Se refiere al identificador interno de GMV respecto al bus.
sSideCode: Equivale a un identificador del bus conocido por el cliente.

sMatricula: Matricula del vehiculo.

BusPackage: Clase que representa los datos relacionados con los paquetes generales de versiones.

ildPackage: Identificador del paquete.
ildAutobus: Identificador del bus que al que pertenece este paquete.

packageType: Se refiere al tipo de paquete de contenidos, es decir el tipo de ficheros y contenidos que
almacena dicho paquete. A dia de hoy, GMV consta con Topologia para todo lo relacionado a rutas, lineas,
paradas, trayectos, etc. Ecodriving para todo lo relacionado a la conduccion eco, Pis_configuration para las
configuraciones internas del bus y Pis_data para distintos contenidos como mensajes, audios, imagenes,
etc.

bInBus: indica si el paquete se refiere a una version esperada (False) o Actual (True).
iPackageVersion: Version del paquete

dtFechaRegistro: Fecha en la que InfoVersionService procesoé el paquete a base de datos.

File: Hace referencia a los ficheros, es decir contenidos, internos de cada paquete. Por ejemplo, una linea
en concreto o una de las muchas imagenes que se pueden mostrar.

sName: Nombre del fichero/contenido.
ildPackage: Paquete al que pertenece dicho contenido.

1Version: Version del fichero/contenido.

Este modelo de datos permite almacenar de forma estructurada el historico de versiones por vehiculo, hacer
trazabilidad por campafia, comparar datos desde distintas fuentes, y ofrecer informacion confiable al operador
sobre el estado de la flota. Su disefio relacional permite consultas eficientes, control de integridad referencial
y posibilidad de extension futura. Por otro lado, este modelo de dominio es un equivalente al utilizado para la
base de datos pues los datos se tratan de igual manera.

46

CAPITULO 8. DISENO 8.5. DISENO DE INFOVERSIONSERVICE

BusPackage
Bus - ildPackage : int <<Enumeration>>
- ildAutobus : int PackageType

- ildAutobus : int
- sSideCode : string
- sMatricula : string 1

- packageType : PackageType
0.+ | - bIinBus : boolean

- iPackageVersion : int

- dtFechaRegistro : Date

- Topology : int

- Ecodriving : int

- Pis_Configuration : int
- Pid_Data : int

File

- sName : string
- ildPackage : int
- iVersion : int

Figura 8.6: Modelado de Datos

8.5 Diseno de InfoVersionService

Elinico componente del sistema cuyo disefio se analiza en profundidad es InfoVersionService, ya que cons-
tituye el nicleo funcional (core) de la solucion propuesta. Este servicio es responsable de procesar los datos bru-
tos, aplicar la logica de negocio y generar los resultados que permitiran determinar el estado de sincronizacion
de los vehiculos. En contraste, las extensiones realizadas tanto en el SIU Frontend como en el SoaBasicCon-
tentManager son modificaciones minimas, limitadas a la incorporaciéon de nuevos componentes de interfaz o
métodos auxiliares que se encargan exclusivamente de consultar y visualizar la informacion generada por In-
foVersionService. Estas piezas actian como consumidores de datos, sin aportar complejidad adicional desde el
punto de vista arquitectdnico o algoritmico.

8.5.1 Descripcion General

InfoVersionService es un servicio de backend desarrollado como una aplicacion de tipo Windows Service,
disefiado para ejecutarse de forma autonoma y periddica en segundo plano. Su proposito principal es analizar las
versiones de contenido destinadas a los vehiculos, comparar dichas versiones con las efectivamente instaladas, y
generar registros estructurados que posteriormente seran consultados por el SIU para su visualizacion y control.

Este servicio constituye el nticleo funcional (core) de la solucion propuesta. A diferencia de otros componen-
tes del sistema que se limitan a consumir y mostrar los datos, InfoVersionService es responsable de implementar
lalogica de negocio central: lectura de archivos, interpretacion de estructuras, aplicacion de estrategias de proce-
samiento, persistencia de datos y evaluacion de sincronizacion. Por ello, su disefio se ha abordado con especial
atencion a la separacion de responsabilidades, el uso de patrones de disefio reutilizables y la extensibilidad
futura.

El servicio se estructura siguiendo una arquitectura multicapa, que divide claramente las responsabilidades
entre los distintos modulos del sistema. La logica se organiza en paquetes que responden a distintas capas
funcionales: Application, Domain, Infrastructure, Configuration, y ServiceHost. Esta organizacion favorece el

47

8.5. DISENO DE INFOVERSIONSERVICE CAPITULO 8. DISENO

mantenimiento del sistema, permite testear cada capa de forma aislada y facilita una futura migracion hacia
arquitecturas mas distribuidas si el sistema crece.

La ejecucion del servicio se basa en un mecanismo de tareas programadas (ScheduledTask B.3.3), que lanza
automaticamente dos procesos fundamentales:

= El procesamiento de carpetas, donde se recorren las estructuras generadas por ArchivosOBU y Transfer
Manager.

= Lalimpieza de datos antiguos, que garantiza la sostenibilidad del sistema en el tiempo y la gestion eficiente
del almacenamiento.

Durante el procesamiento, se aplican diferentes estrategias de interpretacion de carpetas (por flota, subflota,
individual, del TransferManager), seleccionadas dinamicamente mediante inyeccion de dependencias, y basadas
en una jerarquia comun de clases. Esta estructura modular facilita afiadir nuevas formas de organizacion de
archivos sin necesidad de modificar la logica central.

Finalmente, los resultados obtenidos se persisten en una base de datos SQL, utilizando una capa de acceso a
datos intermedia (Dbm/DAO) que encapsula los detalles técnicos de la persistencia y facilita el uso de pruebas
o simulaciones. Estos resultados son posteriormente accesibles desde el SIU a través de un nuevo endpoint
expuesto en su backend.

8.5.2 Arquitectura del Microservicio

En GMYV se sigue un estandar a la hora de crear e implementar tanto servicios como nuevos microservicios.
Esta plantilla es la que se ha seguido para el desarrollo de InfoVersionService. En la figura B.7 se puede ver el
diagrama de paquetes de InfoVersionService.

Dentro del paquete general InfoVersionService, se encuentran 5 paquetes que corresponden a proyectos
NET. Por simplicidad no se han incluido los paquetes relacionados con los Test pero cada uno de estos paquetes
lleva a su vez asociado un paquete Test encargado de los test unitarios correspondientes.

]
InfoVersionService

iiiii Application 777777777777777777> Domain
l
I
! ~
! 7o) h /N
| I S~ \
1 ! S [
[! RN [
1 | ~_ I
| | . 1
I | ~ o !
| 1 ‘A—l
I
: ServiceHost Architecture
|
I
|
[I I
I I I
I I I
I | e e e e e e e I
I

1
: I

l
I
'L —— Configuration

Figura 8.7: Diagrama de Paquetes

48

CAPITULO 8. DISENO 8.5. DISENO DE INFOVERSIONSERVICE

Se centrard la atencion en los paquetes mostrados en el diagrama de paquetes:

= El paquete Configuration es el que contiene toda la informacion relacionada con la configuracion de la
aplicacion, desde la cantidad de tiempo que ha de pasar entre cada tipo de tarea ejecutada por el servicio,
hasta la base de datos a la que se accede y las rutas en las que ArchivosOBU o el TransferManager
generan sus archivos. Este paquete internamente por el momento no consta con mas subpaquetes, pero es
algo que a futuro podria ocurrir en caso de que el servicio escalase y se quisiesen extraer dependencias
de configuracion.

= El paquete Domain contiene las clases que representan las estructuras de datos utilizadas por el servicio
para encapsular informacién como se puede ver en la figura B.6. Este paquete esta disefiado para ser inde-
pendiente de la l6gica de negocio y de la persistencia, y sirve como puente de comunicacion entre capas.
Todas las clases de este paquete son esencialmente objetos de transferencia de datos (DTOs) o entidades
inmutables que encapsulan informacion del dominio. Este paquete tampoco consta con subpaquetes pues
no tiene una alta complejidad. En caso de que la complejidad aumentase se podrian crear nuevos paquetes
para evitar alto acoplamiento.

= Elpaquete ServiceHost contiene la clase principal InfoVersionService, que representa el punto de entrada
del servicio Windows. Este paquete se encarga de inicializar la aplicacion, resolver las dependencias
mediante inyeccion, arrancar el procesamiento y gestionar el ciclo de vida del servicio (inicio/parada).
No contiene lo6gica funcional del sistema, ya que su responsabilidad es inicamente servir como contenedor
de ejecucion.

= El paquete Architecture encapsula la l6gica de acceso a datos. Cada clase en este paquete representa una
entidad persistida y contiene métodos de acceso, actualizacion y consulta a través de DAOs internos. Este
paquete se comunica directamente con la base de datos SQL utilizada por el sistema, y constituye la capa
de infraestructura de acceso a persistencia.

En la figura B.§ se puede ver la estructura interna.

Este paquete esta organizado internamente en subpaquetes por dominio funcional, tales como Bus, File,
PackageType y BusPackage, cada uno con sus propias entidades persistentes (DbmXxx) y mecanismos
de acceso (DaoXxx). Esta organizacion favorece la escalabilidad del sistema, ya que permite extender
nuevas areas de persistencia sin interferir con otras.

Architecture

1 [1 1 (/1

BusPackage Bus File PackageType

Figura 8.8: SubPaquetes Architecture

= El paquete Application constituye el nicleo funcional de la logica de alto nivel del sistema. En €l se
centraliza la coordinacion de las tareas principales que ejecuta el servicio, estructuradas a su vez en tres

49

8.5. DISENO DE INFOVERSIONSERVICE CAPITULO 8. DISENO

subpaquetes: Processors, Services y Utilities. Esta division permite separar claramente la orquestacion
de flujos, la ejecucion de algoritmos especificos y las operaciones auxiliares de apoyo. En la figura B.9
se puede ver la estructura interna.

El anélisis en profundidad de los paquetes es el siguiente:

* El subpaquete Processors contiene la 16gica especifica para la lectura y procesado de las carpetas
generadas por sistemas como ArchivosOBU 'y TransferManager. Aqui se definen los distintos pro-
cesadores concretos (FleetProcessor, SubFleetProcessor, ParticularProcessor, TMProcessor) que
heredan de una clase base comin y comparten una misma interfaz, /FolderProcessor. Este subpa-
quete implementa el patron Strategy B.3.4, permitiendo que el servicio seleccione dinamicamente
la estrategia adecuada para procesar cada carpeta segun su estructura logica. Asimismo, se aplica el
patron Template Method mediante la clase FolderProcessorBase, que define un flujo estandar
para el recorrido de carpetas y delega los detalles especificos en las subclases.

+ El subpaquete Services agrupa los servicios encargados de aplicar la l6gica de negocio de mas alto
nivel. Aqui se encuentran clases como VersionProcessingService, que coordina toda la ejecucion
periddica del sistema (programaciéon de tareas, ejecucion, supervision), o BusProcessingTracker,
que gestiona el estado de los vehiculos procesados para evitar repeticiones innecesarias. También
se incluye el uso del patron Facade B.3.2, ya que estos servicios encapsulan las interacciones entre
los distintos componentes internos, ofreciendo un punto de entrada unico para el procesamiento
principal.

+ El subpaquete Utilities contiene funciones auxiliares especificas del modulo de aplicacion que no
pertenecen a logica de dominio puro, pero tampoco son genéricas del sistema completo (como las
que irian en un Ui/ general). Se incluyen aqui operaciones de soporte como validaciones especiali-
zadas, logica de temporizacion avanzada para tareas programadas (ScheduledTask B.3.5), y ayudas
reutilizables propias del servicio, pero separadas de la infraestructura técnica o la logica de negocio
central.

Esta estructura modular del paquete Application favorece el mantenimiento, mejora la organizacion de
responsabilidades y permite extender facilmente la funcionalidad del sistema sin comprometer la estabi-
lidad del nucleo existente.

]
Application
Processors < ____________________ Services
S L
Utilities

Figura 8.9: SubPaquetes Application

8.5.3 Dependencias entre submédulos

En el disefio interno de InfoVersionService, los submoédulos se estructuran de forma que respetan una direc-
cion de dependencia descendente: los mddulos de alto nivel (como ServiceHost y Application) consumen los

50

CAPITULO 8. DISENO 8.5. DISENO DE INFOVERSIONSERVICE

de nivel inferior (Model, Configuration, Dbm, Util), pero nunca al revés. Esta orientacion permite mantener un
disefio modular, desacoplado y facilmente testeable.

En la figura se puede ver un diagrama con las dependencias entre las distintas capas.

A continuacidn se describen las principales dependencias entre submddulos, agrupadas por nivel:

= Nivel Superior ServiceHost: Este modulo es el punto de entrada de la aplicacion (clase InfoVersionSer-
vice) y depende directamente de:
» Application.Services: para iniciar/parar el procesamiento (VersionProcessingService).

» Configuration: para leer los parametros necesarios de arranque.
No contiene légica propia ni es dependido por otros médulos.

= Nivel Intermedio Application: El mddulo de aplicacion se divide en tres submodulos funcionales con
relaciones claras.

» Application.Services: el cual depende tanto de Application.Processors para invocar los distintos
procesadores de carpetas y archivos, como todos los Dbm para leer/escribir resultados y Domain
como estructura intermedia de datos.

» Application.Processors: el cual tinicamente depende de Domain para la creacién de los datos
intermedios.

» Application.Utilities: No se muestra en el diagrama pues no tiene dependencias externas pero es
utilizado por el resto de submoddulos de Application para tareas comunes como temporizacion entre
otras.

= Nivel de infraestructura Architecture: Esta capa depende solamente de Domain para transformar DTOS
en entidades persistentes y viceversa, y de Configuration para todas las configuraciones de BD necesarias.

= Moddulos Transversales (Domain y Configuration): Estos modulos se utilizan en los demas, pero no
dependen de ninguno, respetando su caracter transversal.

* Model define estructuras puras de datos

» Configuration contiene las clases relacionadas con la configuracion del servicio como por ejemplo
un singleton con variables como las rutas de los archivos, tiempos de procesado, etc.

51

PackageType

L] 1
1 1
' N WV N
: 1 1 1
o _______. N Bus BusPackage File
1 o
L]
} Voo
‘ 1 1
: Processors (K- -~ Services
I
I
I
I
! 1
! [4) @ e il a
: —l : & g |
I L 1
l L | R N Architecture
ServiceHost Domain
- >]
1] [/:\ i
| ! I e o e e e e e o m e m o m e |
1 | !
I
1 | |
I o e e e e e m e — e ———— -
I I I
1 I 1
1 1 1
:))
I I I
! AY4 A
. |
1
e e L RN, > Configuration

Figura 8.10: Dependencias entre capas

CAPITULO 8. DISENO 8.5. DISENO DE INFOVERSIONSERVICE

8.5.4 Diagrama de clases entre capas

La comprension estructural de un sistema software no se limita unicamente al analisis de sus paquetes o
capas funcionales, sino que requiere también un entendimiento claro de como se relacionan e interactian las
clases que lo componen. En este apartado se presenta un diagrama de clases intermodular, cuyo objetivo es
representar las principales entidades del sistema InfoVersionService, su distribucion en las diferentes capas
arquitectonicas, y las relaciones que se establecen entre ellas.

El enfoque adoptado para este disefio responde a los principios de la arquitectura en capas, donde cada nivel
funcional (orquestacion, procesamiento, negocio, persistencia) tiene responsabilidades claramente delimitadas.
A su vez, se han aplicado principios de disefio orientado a objetos como la inversion de dependencias, la se-
paracion de responsabilidades (SRP), y el uso de interfaces para garantizar un bajo acoplamiento y una alta
cohesion.

Este diagrama es especialmente 1til para ilustrar como fluye la informacion en el sistema desde la activa-
cion del servicio hasta la escritura en la base de datos. También permite visualizar como se integran distintos
patrones de disefio identificados previamente, como Strategy, Template Method y Facade y como contribuyen
a estructurar un sistema escalable y mantenible.

A lo largo de este apartado se explicara el rol de cada clase clave, agrupadas por capa funcional, asi como las
asociaciones y dependencias que existen entre ellas. Esta representacion refuerza el disefio modular del sistema
y pone en evidencia las buenas practicas aplicadas durante su desarrollo.

En la figura se puede ver el diagrama de conexion de capas por medio de las clases principales.

A continuacidn, se explicara el rol de las clases clave:

= ServiceHost

+ InfoVersionService: Es la clase principal del servicio de Windows. Se encarga de gestionar el ciclo
de vida en el sistema (OnStart, OnStop), resolver dependencias iniciales y delegar la ejecucion al
componente VersionProcessingService. No contiene logica de negocio.

= Application.Services

* VersionProcessingService: Es el componente central de orquestacion. Programa y lanza las tareas
periddicas de procesado y limpieza, inicializa las estrategias de procesamiento (IFolderProcessor)
y mantiene el control de ejecucion global. Aplica el patron Fagade B.3.2.

» PackageService: Se encarga de la logica de anélisis de archivos y generacion de datos estructurados.
Es invocado por los procesadores para interpretar los archivos encontrados en disco y construir
objetos Package y File. Valida formatos, extrae metadatos relevantes, determina tipos de paquete y
gestiona las operaciones necesarias para registrar la informacion de versiones en el sistema.

Es un punto clave de conexion entre el recorrido fisico del sistema de ficheros y el modelo de datos
interno. Aplica validaciones especificas, delega la persistencia en la capa de Architecture y colabora
estrechamente con BusProcessingTracker.

= Application.Processors
» IProcessor: Interfaz que define el contrato comun para todos los procesadores de carpetas. Permite

aplicar el patron Strategy y sustituir dinamicamente la 16gica segun el tipo de carpeta.

« FolderProcessorBase: Clase abstracta que implementa el patron Template B.3.6. Define el flujo
general de procesamiento (recorrido de carpetas, obtencion de vehiculos, evaluacion de versiones)
y deja los detalles a implementar por las subclases concretas.

* FleetProcesssor, SubFleetProcessory ParticularProcessor: Implementaciones especificas del pro-
cesador que manejan estructuras diferentes de carpetas o fuentes (ArchivosOBU). Cada clase im-
plementa su propia logica para interpretar rutas y extraer identificadores de OBU.

53

8.5. DISENO DE INFOVERSIONSERVICE CAPITULO 8. DISENO

» TMProcessor: Es una implementacion especifica del /Processor relacionada unicamente con los
archivos generados por el TransferManager. Esto se debe a que los archivos generados no siguen
la misma estructura que ArchivosOBU, en este caso se encuentran todos en la misma carpeta y
se identifican por el nombre del archivo mientras que ArchivosOBU los distribuye en diferentes
carpetas ya sea por flota, bus, etc.

= Application.Utilities

* BusProcessingTracker: Clase que actia como mecanismo de control en memoria, evitando que un
mismo vehiculo se procese multiples veces dentro de una misma ejecucion. Esencial para mantener
eficiencia y evitar duplicidad de resultados. Esto se hace principalmente para que si ArchivosOBU
genera versiones para toda la flota pero dentro de esa misma flota hay ciertos buses particulares
con versiones distintas, no tengan tanto la version de la flota como la particular, si no la que le
corresponda en cada caso.

= Domain: Este apartado se puede consultar en profundidad en el capitulo 8.4.

= Architecture: Esta capa es la encargada de mapear y acceder a las distintas tablas relacionadas con cada
modelo definido en el capitulo B.4. Consta de una interfaz general llamada IDbm que tiene los métodos
generales de todos los data managers de la que heredan las interfaces e implementaciones concretas para
cada tipo de dato..

La correcta separacion de responsabilidades entre estas clases, junto con el uso sistematico de interfaces,
clases abstractas y servicios, garantiza que el sistema sea facilmente extensible, testeable y mantenible. Este
disefio modular permite afiadir nuevos tipos de procesamiento, ajustar los criterios de comparacion o cambiar
la fuente de datos sin alterar la arquitectura general del sistema.

54

—1

ServiceHost

Processors

TMProcessor

<<Interface>>

<<Interface>>
1BusProcessingTracker

4
£
g
g
g
i

Services

’fdmﬁ'

VersionProcessingService
|
1

— 1
[

<<Interface>>

| IDbmFile IDbmPackageType
e ————
IDbmBus Package T I
—1 —1 —1
File
Bus BusPackage PackageType
D
1
Domain Architecture

8.5. DISENO DE INFOVERSIONSERVICE CAPITULO 8. DISENO

8.5.5 Diagramas de Secuencia

En este apartado se describen los flujos dinamicos de ejecucion que se producen durante el funcionamiento
normal del sistema. A diferencia de los diagramas de clases (que representan la estructura estatica), los diagramas
de secuencia muestran la interaccion temporal entre objetos o componentes, permitiendo visualizar como fluye
la informacion y qué clases participan activamente en cada etapa del proceso. Dado que InfoVersionService se
compone de tareas ciclicas y procesos automatizados, se han identificado dos flujos representativos:

= Proceso de comparacion de versiones (Tarea principal): Este diagrama representa lo que ocurre cuando
el servicio lanza una tarea periddica para analizar las carpetas generadas por ArchivosOBU o Transfer
Manager, extraer las versiones, compararlas, y registrar tanto el resultado como los paquetes con sus
archivos y versiones. Los diagramas de secuencia se pueden ver en las figuras 8.11,, 8.12 y 8.13.

En estos diagramas de secuencia se representa el flujo de ejecucion correspondiente al método Process-
Folders() de la clase VersionProcessingService, que constituye el nicleo de procesamiento ciclico de
versiones en el sistema.

El sistema dispone de una coleccion de estrategias de procesado que implementan la interfaz /Processor,
las cuales son inyectadas dindmicamente mediante el mecanismo de inyeccion de dependencias (véase la
seccion B.3.3). Cada una de estas estrategias se encarga de recorrer una estructura de carpetas especifica,
generada previamente por los servicios ArchivosObu o TransferManager (Véase el capitulo [7).

Las carpetas a procesar son determinadas a través del método GetFoldersToProcess(). Durante este reco-
rrido, cada procesador identifica y almacena referencias a los directorios asociados a paquetes concretos
(PackageType seglin el analisis realizado), en este caso, correspondientes a los paquetes generales de
contenidos.

Posteriormente, cada estrategia invoca el método GetBuslds(), cuya implementacion varia en funcion
del tipo de procesador (por ejemplo, FleetProcessor, SubFleetProcessor, entre otros), con el objetivo de
determinar los identificadores de los vehiculos implicados.

Una vez se ha procesado la carpeta principal del procesador actual, se realiza una llamada al método
ProcessPackage() de la clase PackageService, el cual se encarga de procesar los distintos directorios,
es decir, tipos de paquete, encontrados en los pasos anteriores. Estos directorios constan con un archivo
de texto de control(Véase el capitulo [7). Este método se encarga de encontrar estos archivos de texto
dentro de cada paquete para asi procesar su contenido, crear los correspondientes BusPackages y Files e
insertarlos en los buses conseguidos por medio de GetBuslds()

Con el fin de simplificar el diagrama de secuencia y mejorar su legibilidad, se ha optado por representar
unicamente una de las implementaciones de /Processor, concretamente FleetProcessor. Esta representa-
cion se encuentra encapsulada dentro de un bloque loop, que indica que dicha l6gica se ejecuta de forma
iterativa para cada uno de los procesadores registrados en el sistema.

Este enfoque representa de forma precisa el uso del patron Strategy B.3.4, dejando implicito que el com-
portamiento seria equivalente para otras implementaciones como SubFleetProcessor,ParticularProcessor
o TMProcessor. Ademas, se han simplificado los diagramas para evitar algunas implementaciones que
no tienen gran relevancia.

= Proceso de limpieza de registros antiguos (Mantenimiento periodico): Este diagrama de secuencia
representa el flujo correspondiente al proceso de limpieza periddica de registros antiguos, llevado a cabo
por el método CleanOldRecords() de la clase VersionProcessingService. Esta funcionalidad forma parte
de las tareas programadas que ejecuta el servicio de manera autdbnoma, y su objetivo es eliminar de la
base de datos aquellos paquetes de version cuya antigiiedad supere al umbral designado en el paquete de
configuracion.

El proceso se ejecuta en segundo plano mediante una instancia de ScheduledTask que, tras el inter-
valo de tiempo invoca al método CleanOldRecords().

56

CAPITULO 8. DISENO 8.5. DISENO DE INFOVERSIONSERVICE

El diagrama de secuencia se puede ver en la figura

Cabe sefialar que, con el fin de mejorar la legibilidad de los diagramas de secuencia presentados, se ha optado
por omitir explicitamente el tratamiento de posibles excepciones o errores. No obstante, en la implementacion
real, dichos mecanismos de control estan debidamente contemplados para garantizar la robustez del sistema.

8.5.6 Consideraciones de extensibilidad, mantenibilidad y escalabilidad

Uno de los objetivos fundamentales en el disefio de InfoVersionService ha sido garantizar que el sistema
sea facilmente extensible, mantenible y escalable a medio y largo plazo. La implementacion se ha construido
desde el inicio siguiendo principios de disefio s6lido y arquitectura limpia, con el fin de facilitar la evolucion
del sistema sin introducir efectos colaterales ni comprometer su estabilidad.

= Extensibilidad: El sistema ha sido disefiado para que nuevos comportamientos o funcionalidades pue-
dan incorporarse sin modificar el codigo existente, sino afiadiendo nuevos médulos de forma controlada.
Destacan las siguientes decisiones que favorecen la extensibilidad:

* El uso del patrén Strategy permite incorporar nuevos procesadores (/Processor) para tratar
estructuras de carpetas distintas (por ejemplo, nuevos formatos generados por otros sistemas), sin
necesidad de modificar los procesadores actuales ni la l6gica central del servicio.

» La separacion entre logica de recorrido de carpetas y logica de interpretacion de archivos permite
que los cambios en la estructura de carpetas o en los tipos de contenido se puedan abordar de forma
independiente.

» Lainyeccion de dependencias hace que sea posible sustituir servicios concretos por otros (por ejem-
plo, una nueva implementacion de almacenamiento) sin modificar la ldgica de negocio.

* El uso de ScheduledTask permite la creacion de nuevas tareas en segundo plano que se coor-
dinen automaticamente con el resto de tareas ya creadas, sin modificar la 16gica actual del sistema.

Estas decisiones permiten incorporar nuevos procesadores dedicados al versionado de cualquier tipo de
contenido e, incluso, extender su ambito mas alla de lo puramente documental.

= Mantenibilidad: El sistema cumple principios clave de disefio orientado a objetos como:

* Responsabilidad tinica (SRP): cada clase tiene una responsabilidad claramente definida (por ejem-
plo, los procesadores se encargan solo del procesado de carpetas, mientras que PackageService crea
los paquetes de versiones y los inserta en base de datos).

* Bajo acoplamiento y alta cohesién: las clases estan organizadas en capas y paquetes funcionales,
con dependencias claras y bien aisladas. Ninguna clase accede directamente a capas externas (por
ejemplo, 16gica de negocio a base de datos), sino que lo hace a través de interfaces.

= Escalabilidad: Aunque actualmente el servicio se ejecuta como una Unica instancia Windows, su arqui-
tectura esta preparada para escenarios futuros que puedan requerir mas carga o mayor paralelismo:

+ El disefio por tareas permite separar los distintos procesos (procesamiento vs limpieza) y ejecutarlos
de forma independiente.

* El modelo de datos puede escalar horizontalmente con soporte de indices, particiones por campaiia
o flota, y almacenamiento distribuido si fuera necesario.

Finalmente, el desacoplamiento total entre InfoVersionService y los sistemas que consumen sus resultados
(como el SoaBasicContentManager o el SiuFront) permite que cada uno de estos componentes pueda evolucio-
nar de forma independiente, sin generar bloqueos funcionales ni dependencias rigidas.

Este disefio modular no solo facilita la integracion inicial con el gestor de contenidos, sino que convierte
a InfoVersionService en una solucion genérica y reutilizable para cualquier funcionalidad relacionada con el
control de versiones de contenido en GMV, mas alla del ambito especifico del SIU.

57

enla configuracion para la lectura de versiones

Cuando pasa el tiempo asignado j | . VersionProcessingService | | BusProcessingTracker | | FleetProcessor | | : AdTraza | | Directory | |PackageSerwce

N |

I

\

K ‘I processFolders | [

P p] ‘
I

1.1: Reset() : void n

PR gl

loop [foreach procggsor in Processors])

\

I

\

\

\

1.2: Process() : Vl‘pld
T
\
\
\
\
I
\
\
\
\
I
\
\
\

I
\
\
\
\
\
\
I
\
\
\
\
I
1.2.1: exist= Estts(rﬁamPath): bool [

\
|
brealt Y exist] |
\

ref

LogError and throw exception

Estos métodos cambian respecto a cada tipo _
de Processor pues cada uno tiene su estructura 2.2 folders = Get’ I'dersToProcess() IEnumer%b\e<5trlng>
de carpetas y su forma de conseguir los ids de los -7 |

buses necesarios

123 buslc?s‘: [tBysl\dS() \Emumerableﬂntf

\
\
\
e ———— _ _ _ _(foiders busids) _ _ _ _ _ _ _ _ _ _| | | I
\ | \
\ | \
| 1.3 ProcessPackage(folders, buslds) | »
t 1 t
11
\ | \
| | | ref
I | I Process Package
\ | \
R e e T 4-———mm - S H——— - e Al

Figura 8.11: Diagrama de Secuencia ProcessFolder

(Topology, Ecodriving...)

Cada folder aqui referido es un paquete distinto 'T

PackageService AqgTraza | | File | | BusProcessingTracker | | DbmBusPackage
ProcessPackage(folders, buslds
[

loop [foreach folder in folders])

valid = IsDirectoryValid() - bool

break / [valid)

ref

Log error and throw exception

[

\

[

- I

loop [foreach busld in buslds]) |

isTracked = |sBusTracked(busld) : bog| g

.

alt

\
\
\
I
lisTracked)] Track({busld) : void
\

lines = ReadLines(folder) : [Enurperable<string> ~
T

:I |

Parsea la linea interna del archivo de texto de control de versiones |

ref

<<create=>

|
,,,,, CreateMessage() | _ [package - BusPackage |

IngentMasterPackage(package) : void u

] o

InsertBusFJ‘ackad;e(Package)
T

[

I

A 4

InsertFiIeDet_is(\ines, mainPackageld) : void

ref

Insert File Details

|

|

|

|

|

|

i

|

4

|

|

|

|

i

|
.

Figura 8.12: Diagrama de Secuencia ProcessPackage

- PackageService

DbmFile

I
InsertFileDetails(lines, mainPackageld) |

® -l :

Fd

‘fileName = Version lﬁ

#

r
Fd

loop [foreachling inlines que no sean la primeral) ’

(fileMame, version) 5 Farse\z‘ersi@ﬁLineForFile(linej ~(string, int)

ref

Farsea la linea interna del archivo de texto de control de versiones para cada archive de contenidos

<<create==
CreateMessage()
______ >| file - File
InsertFile(fiI,E) - void
|
———— === A

Figura 8.13: Diagrama de Secuencia InsertFileDetails

Se ejecuta cuando pasa el

[PEEED e t|empo |nd|c'ado Enel - VersionProcessingService . AppConfig
paquete de configuracién

T
A
v

‘' CleanOldRecords()

h 4
[____

DbmBusPackage

Figura 8.14: Diagrama de Secuencia CleanOldRecords

CAPITULO 8. DISENO 8.6. INTERFAZ DE USUARIO

8.5.7 Resumen de la arquitectura de InfoVersionService

En resumen, el modulo InfoVersionService se estructura en torno a un servicio Windows encargado de
ejecutar periodicamente tareas programadas de analisis y limpieza. Este servicio se apoya en una arquitectura
basada en inyeccion de dependencias, separacion en capas y procesadores para interpretar archivos, registrar
versiones y mantener la trazabilidad de forma desacoplada. Su disefio modular permite tanto la escalabilidad a
otros tipos de paquetes como su integracion con nuevos sistemas sin alterar el nucleo del servicio.

8.6 Interfaz de Usuario

La solucién desarrollada incluye una interfaz gréafica integrada en el sistema SIU, especificamente en su mo-
dulo de administracion técnica, con el objetivo de proporcionar a los operadores una vision clara y centralizada
del estado de actualizacion de contenidos por vehiculo.

Este componente frontend permite consultar, de manera visual y ordenada, la informacion generada por el
servicio InfoVersionService, proporcionando trazabilidad sobre las versiones esperadas y reales instaladas en
cada OBU, asi como posibles inconsistencias detectadas durante el proceso de sincronizacion.

Aunque la légica de control y generacion de datos reside completamente en el backend, la interfaz de usuario
representa una parte esencial del sistema desde el punto de vista de la operacion técnica y toma de decisiones.
La informacion expuesta permite validar si una flota esta en condiciones de ser desplegada, detectar errores en
la distribucion de archivos, o confirmar la correcta instalacion de contenidos criticos.

Dado que el SIU es un sistema complejo, con estilos y flujos propios ya consolidados, la interfaz desarrollada
respeta tanto la linea visual existente como los patrones de interaccion definidos previamente, de forma que se
integra de forma transparente en la experiencia del usuario técnico.

8.6.1 Estructura de la interfaz

La interfaz desarrollada se ha disefiado como un nuevo componente visual dentro del entorno ya existente
del SIU, siguiendo la arquitectura técnica y visual propia del sistema. Su objetivo es proporcionar a los usuarios
técnicos una vista detallada y centralizada del estado de actualizacion de versiones por vehiculo, de forma que
puedan verificar la sincronizacion de manera rapida y fiable antes de autorizar despliegues operativos.

La vista principal es la tabla de resultados, este es el componente principal de la interfaz, una tabla interactiva
que muestra una entrada por cada vehiculo y tipo de paquete configurado en el sistema. Esta tabla representa el
estado actual de sincronizacion para cada combinacion, mostrando los siguientes campos principales:

= Vehiculo: Mostrando tanto su sideCode como su matricula (Véase el capitulo §.4)

= Tipo de Paquete: corresponderan a distintas columnas, tantas como tipos de paquete haya introducidos en
el sistema, por ejemplo, contenido multimedia, configuracion, topologia, etc. Algunos de estos paquetes
pueden estar formados por subpaquetes, por ejemplo, topologia engloba a lineas, rutas, trayectos, corres-
pondencias, etc. Estas columnas mostraran una X o un V dependiendo del estado de actualizacion del
paquete en el bus.

= Version de configuracion del usuario: Esta version hace referencia al nimero de version que conoce el
usuario, no el interno generado por ArchivosObu 'y TransferManager.

= Version esperada e instalada: se mostraran como un tooltip en las columnas de paquetes correspondientes,
evitando asi la saturacion de la interfaz.

» Fecha de altima transmision.

Ademas de este listado, la interfaz incluye elementos de interaccion pensados para mejorar la usabilidad,
como filtros, ordenacion por columnas (alfabética, por fecha, por estado), e incluso exportacion a excel.

61

8.6. INTERFAZ DE USUARIO CAPITULO 8. DISENO

En la misma vista principal, ademas de la tabla de resultados, hay un pequefio panel con KPIs que da-
ran informacion acerca del % de buses sincronizados, la cantidad exacta que no lo estan y la cantidad exacta
disponibles para salir a despliegue.

En la figura P.1| puede verse un ejemplo de esta interfaz.

62

Capitulo 9

Implementacion

Este capitulo describe el proceso de implementacion de la solucion disefiada, detallando las herramientas
utilizadas, el entorno de desarrollo, asi como las decisiones técnicas adoptadas en los distintos componentes
del sistema: el servicio InfoVersionService, su integracion con las fuentes de datos externas, la interfaz grafica
implementada en el SIU y los mecanismos de control y validacion.

La implementacion se ha realizado siguiendo los principios definidos en los capitulos anteriores, aplicando
una arquitectura en capas, utilizando patrones de disefio reutilizables y asegurando la mantenibilidad del sistema
a medio y largo plazo.

Por temas de privacidad, en este capitulo no se expondré coédigo concreto del software desarrollado en este
proyecto.

9.1 Pautas de Estilo

Debido a que el nuevo servicio de windows es muy probable que se acabe utilizando por multiples proyectos
y escalando a futuro, se ha decidido seguir ciertas pautas de estilo para la mejor legibilidad y cohesion del codigo.

Las principales pautas a seguir son las siguientes:

= Los atributos privados deben estar precedidos por _.

= Las interfaces han de empezar siempre por I.

= No debe haber espacios colgantes en el codigo.

= A la hora de declarar las variables se ha de poner el tipo concreto y no utilizar la inferencia de tipos de
C# u React (var).

= El nombre de los atributos ptblicos ha de empezar por maytscula.
= Todos los nombres han de estar en inglés.
= El nombre de todos los métodos han de empezar por mayuscula.

= Se deberan crear regiones que permitan organizar el codigo.

63

9.2. INFOVERSIONSERVICE CAPITULO 9. IMPLEMENTACION

9.2 InfoVersionService

La implementacion de InfoVersionService comenzo6 tras definir la arquitectura l6gica del sistema y seleccio-
nar el patron de disefio por capas, que posteriormente se consolido en el modulo InfoVersionService. Esta parte
del sistema se desarrolld como un servicio Windows autéonomo utilizando C# sobre .NET 4.7.2, ya que esta
tecnologia permitia integrar facilmente tareas programadas, acceso a ficheros del sistema, gestion de procesos
en segundo plano y trazabilidad de eventos, todo ello dentro del entorno tecnolédgico utilizado en GMV.

El desarrollo se abordé de manera incremental, siguiendo las fases previamente establecidas durante el
disefio. En primer lugar, se construy6 la base del servicio, incluyendo la clase InfoVersionService, que define
los métodos de arranque y parada del sistema, asi como los puntos de entrada para la ejecucion de tareas. A
partir de ahi, se desarrollo el niicleo funcional del servicio en la clase VersionProcessingService, responsable
de orquestar el comportamiento global. Esta clase implementa el control del ciclo de vida, la inicializacion de
tareas programadas y la coordinacion de los distintos componentes del sistema, incluidos los procesadores de
carpetas, los servicios de analisis de versiones y el acceso a base de datos.

Una vez establecida la estructura basica, se diseid la logica de procesamiento de carpetas. Para ello se
defini6 la interfaz IProcessor y una clase abstracta comun, FolderProcessorBase, que establece el flujo genérico
de ejecucion para cualquier procesador. Esta estructura permitié aplicar el patron Template Method y
Strategy y garantizar que todos los procesadores compartieran la misma secuencia de pasos, al tiempo que
permitia a cada uno implementar unicamente la 16gica especifica de su contexto. Posteriormente se afiadieron
las implementaciones concretas, como FleetProcessor, SubFleetProcessor o TMProcessor, que se encargan de
interpretar distintas estructuras de carpetas generadas por herramientas externas como ArchivosOBU o Transfer
Manager.

A continuacioén, se abordo la implementacion del analisis de versiones, que se concentr6 en la clase Pac-
kageService. Este servicio fue disefiado para recibir los archivos encontrados por los procesadores, analizarlos
y generar estructuras de version esperada y detectada por cada vehiculo y tipo de contenido. Una vez obtenida
esta informacion, se construyen los resultados de comparacién, que posteriormente se persisten en base de da-
tos. Esta logica se desarrolld de forma desacoplada del recorrido fisico de carpetas, siguiendo los principios de
separacion de responsabilidades, con el objetivo de facilitar tanto su mantenimiento como su reutilizacion.

La persistencia de datos se implementd mediante clases especificas de acceso a base de datos agrupadas
en el paquete Architecture, como DbmBus, DbmPaqueteAutobus o DbmFile. Siendo éstas implementaciones
de sus respectivas interfaces que heredan de un Dbm general con distintos métodos comunes. Estas clases en-
capsulan las operaciones de insercion, actualizacion y consulta sobre las tablas necesarias, y su uso se limita
exclusivamente a la capa de servicios, siguiendo una logica de acceso indirecto a través de interfaces. Ademas,
se afiadid una tarea periddica de limpieza de registros antiguos, que elimina informacioén cuya antigiiedad supera
el umbral definido en configuracion, manteniendo asi la base de datos optimizada.

Tras el desarrollo inicial y las primeras pruebas con volimenes moderados, se detectd que, en escenarios
reales de despliegue, el sistema podria llegar a almacenar millones de registros de versiones de contenido en
base de datos, especialmente en flotas grandes o con multiples tipos de paquetes por vehiculo. Esta prevision
llevé a introducir optimizaciones significativas en la capa de persistencia y en la gestion del rendimiento general
del sistema. En particular, se incorpord el uso de operaciones de insercion masiva (bulk insert) para reducir la
latencia en el guardado de grandes volumenes de datos, y se implemento paralelismo controlado en el procesa-
miento de carpetas para mejorar el aprovechamiento de los recursos del sistema. Ademas, se afiadieron indices
especificos en base de datos sobre columnas clave para acelerar las consultas y operaciones de mantenimiento,
asegurando la escalabilidad y estabilidad del servicio ante cargas elevadas.

Durante toda la implementacidn se prestod especial atencidn a la robustez y tolerancia a fallos. Cada parte
del sistema incluye trazas generadas por AqTraza, una libreria capaz de generar logs de manera sencilla, lo
que permite registrar informaciéon de diagnostico, advertencias y errores. Asimismo, se envolvieron todos los
puntos criticos con bloques de control de excepciones, de modo que una carpeta malformada o un archivo
erroneo no pueda detener el funcionamiento global del servicio. Toda la configuracion, incluidos los intervalos
de ejecucion, rutas de carpetas, tipos de contenido y parametros de limpieza, se centralizé en la clase AppConfig,

64

CAPITULO 9. IMPLEMENTACION 9.3. ACCESO A FUENTES DE DATOS

lo que facilita la adaptacion del sistema a diferentes entornos sin necesidad de recompilar.

En definitiva, la implementacion del backend se ajust6 en todo momento a los principios de disefo definidos
durante la fase de anélisis y arquitectura, y permitié materializar la solucion planteada de forma modular, estable
y facilmente extensible. El resultado final fue un servicio autébnomo, ejecutable en segundo plano, que genera
de forma continua los datos necesarios para controlar la trazabilidad de contenidos en los vehiculos, sirviendo
como nucleo funcional del sistema.

9.3 Acceso a fuentes de datos

El nucleo funcional de InfoVersionService se basa en la capacidad de comparar la informacion que se espera
que esté instalada en los vehiculos (versiones esperadas) con la informacidn realmente instalada (versiones
detectadas o en bus). Para ello, el sistema debe integrarse con dos fuentes externas clave del ecosistema GMV:
ArchivosOBU y Transfer Manager. Ambas herramientas generan archivos estructurados en rutas compartidas,
y es precisamente sobre estas estructuras donde opera el servicio.

A diferencia de otros sistemas que se comunican mediante APIs o colas de mensajes, InfoVersionService
esta disefiado para trabajar mediante acceso directo al sistema de archivos, consumiendo de forma no intrusiva la
informacion generada por las herramientas existentes. Esta decision garantiza una integracion sencilla, robusta
y sin interferencias, respetando completamente el flujo actual de generacion y distribucion de contenidos en los
vehiculos.

En los siguientes subapartados se detalla como se ha modelado este acceso, y como se interpreta la infor-
macion procedente tanto de ArchivosOBU (como fuente de versiones esperadas), como de Transfer Manager
(como fuente de versiones realmente instaladas).

9.3.1 Modelo de acceso a datos

El servicio InfoVersionService no interactua con ArchivosOBU ni con Transfer Manager a través de APIs
o comunicacion directa, sino que accede a ellos mediante el sistema de archivos compartido, donde ambas
herramientas depositan sus resultados. Este enfoque simplifica la integracion y garantiza una minima intrusién
en los sistemas existentes. Las rutas de acceso se definen en la configuracion (AppConfig) y son utilizadas por
los procesadores para recorrer carpetas, identificar vehiculos y leer los archivos correspondientes.

Cada procesador conoce la estructura de las carpetas que le corresponde analizar, y aplica logica especifica
para interpretar los nombres de archivos, carpetas y rutas. El acceso a los datos se realiza de forma asincrona y
tolerante a errores: si una carpeta no esta disponible en el momento del escaneo, se registra una advertencia en
el sistema de trazas, pero el flujo de ejecucion continua.

9.3.2 Integracion con ArchivosOBU

ArchivosOBU genera periodicamente los archivos de configuracion y contenido que deben ser enviados a
los vehiculos. Estos archivos se organizan en una estructura de carpetas jerarquica (por ejemplo, por campaiia,
fecha o tipo de paquete), y contienen la version esperada de cada elemento por vehiculo o por grupo de vehiculos.

InfoVersionService recorre estas carpetas para determinar qué version se supone que debe tener cada OBU
en el momento actual. Para ello, los procesadores interpretan los nombres y contenidos de los archivos, extraen
metadatos relevantes y devuelven los directorios de los paquetes encontrados para que PackageService los
analicé y genere los objetos de tipo BusPackage y File, que luego se utilizan como base de comparacion frente
a la version detectada. Esta integracion no requiere ninguna modificacion en ArchivosOBU, ya que se limita a
consumir la salida que este genera de forma natural.

9.3.3 Integracion con Transfer Manager

El Transfer Manager, por su parte, genera carpetas distintas en las que deposita los archivos que han sido
realmente instalados en los vehiculos tras una operacion de sincronizacion. Estos archivos reflejan el estado

65

9.4. EXPOSICION DE DATOS - SOABASICCONTENTMANAGER CAPITULO 9. IMPLEMENTACION

actual del contenido en los OBU y son la fuente principal para determinar la version real detectada.

A diferencia de ArchivosOBU, que trabaja de forma programada, la informacion proveniente de Transfer
Manager puede llegar con cierto retardo, de forma desordenada o incompleta. Por tanto, el sistema debe estar
preparado para manejar situaciones en las que no se haya recibido atn confirmacion de todos los vehiculos o
en las que falten datos. Esta logica se encuentra centralizada en los procesadores y en PackageService, que crea
los objetos de tipo BusPackage y File asignando esta vez el bInBus a 1, indicando que el paquete se encuentra
en activo en el bus.

La integracion con Transfer Manager también se realiza de forma completamente pasiva, sin necesidad de
modificar su comportamiento ni interferir con su ciclo de vida. Esto permite que ambos sistemas evolucionen
de forma independiente, manteniendo una arquitectura desacoplada y robusta.

9.4 Exposicion de datos - SoaBasicContentManager

Este apartado describe como se integro la logica de consulta desde el sistema SIU, exponiendo los datos
generados por InfoVersionService mediante un nuevo endpoint RESTFUL implementado dentro del servicio
SoaBasicContentManager.

Con el objetivo de permitir que los datos generados por InfoVersionService puedan ser consultados por
la interfaz de usuario del SIU y por otros posibles sistemas de soporte, fue necesario implementar un nuevo
endpoint RESTFUL dentro del backend del SIU, concretamente en el componente SoaBasicContentManager.

Este endpoint actiia como capa de exposicion de datos, consultando directamente la base de datos relacional
donde InfoVersionService ha dejado registrados los resultados del procesamiento de versiones. De esta forma,
se evita cualquier dependencia directa entre el SIU y el servicio autdbnomo, manteniendo la arquitectura modular
y desacoplada.

La implementacion consistio en crear un nuevo método HTTP GET que responde a peticiones bajo la ruta
/api/LoadFleetStatusRF, el cual devuelve un listado estructurado de objetos DTO que representan el estado de
sincronizacion por vehiculo y tipo de paquete. Estos objetos incluyen campos como la matricula y el sideCode
del bus, el tipo de contenido, la version esperada, la version detectada, el estado de comparacion y la fecha de
ultima comprobacion. La estructura de respuesta se disefid para adaptarse directamente a los requisitos de la
tabla en el frontend, evitando necesidad de postprocesamiento.

Se afiadi6 la logica necesaria para poder mostrar los KPIs requeridos, % buses sincronizados y cantidad
exacta de buses sincronizados y no sincronizados.

Internamente, el endpoint utiliza una clase de servicio propia del backend del SIU que se conecta al modelo
de datos ya existente, accediendo a las tablas que InfoVersionService actualiza periddicamente. Esta integracion
se desarroll6 siguiendo las convenciones del backend del SIU, reutilizando los patrones existentes para control
de errores, validacion de permisos y serializacion de respuestas.

Gracias a este disefio, el SIU puede consumir los datos de forma transparente, actualizada y con el minimo
acoplamiento posible. Ademas, este endpoint podria ser reutilizado en el futuro por otras herramientas o paneles,
al estar basado en una interfaz REST abierta.

9.5 Frontend

La implementacion de la interfaz de usuario se llevd a cabo dentro del propio proyecto frontend del SIU,
desarrollado en React y mantenido mediante una arquitectura modular basada en componentes. Dado que el
SIU es una plataforma consolidada y en produccién, uno de los objetivos principales fue asegurar una inte-
gracion visual y funcional coherente, reutilizando los estilos, comportamientos y librerias ya disponibles en la
plataforma.

El nuevo componente se construyd como una tabla técnica de consulta para operadores, ubicada en el area
de administracion. Esta tabla muestra la trazabilidad de versiones por vehiculo, permitiendo a los usuarios
visualizar qué buses tienen instaladas las versiones correctas y cuales presentan inconsistencias. La estructura

66

CAPITULO 9. IMPLEMENTACION 9.5. FRONTEND

base se desarrolld reutilizando el componente genérico de tabla interactiva del SIU, al que se afiadieron las
columnas especificas (Véase la seccion B.6).

Para asegurar la flexibilidad de uso, la tabla se complemento con filtros por tipo de paquete, estado y vehicu-
lo, asi como con la posibilidad de exportar los resultados a Excel. La logica de interaccion y transformacion de
datos se encapsuld en un contenedor encargado de gestionar el estado, disparar las llamadas al backend y proce-
sar la respuesta para presentarla de forma amigable. Se aplicaron ademas buenas practicas como la paginacion
automatica y gestion de errores visibles para el usuario.

Desde el punto de vista técnico, la comunicacion entre la interfaz y el backend se implementé mediante
llamadas fetch asincronas al endpoint /api/LoadFleetStatusRF expuesto por SoaBasicContentManager. La res-
puesta, en formato JSON, se deserializa y transforma en un array de objetos intermedios que alimentan la tabla.
El frontend esta preparado para manejar errores de red, respuestas vacias o estados incompletos, garantizando
asi una experiencia de usuario robusta.

Adicionalmente, se implementaron mecanismos para interpretar y representar graficamente el estado de
sincronizacion mediante iconos e indicadores de color. Esto permite al operador detectar rapidamente problemas
sin necesidad de examinar todas las columnas. El disefo se valido internamente por el equipo técnico y se ajustd
para mantener la coherencia visual con otros modulos del SIU.

En conjunto, la interfaz desarrollada permite consultar de forma eficiente y visual el estado de sincroniza-
cion de contenidos, cumpliendo su propdsito funcional sin introducir complejidad adicional ni comprometer la
estructura ya existente del sistema.

9.5.1 Descripcion de la interfaz

La figura .1 muestra un ejemplo sobre la interfaz. Consta con un panel de consulta del estado de sincroni-
zacion de contenidos por vehiculo, integrado dentro de la interfaz principal del SIU. Esta vista técnica permite
al operador visualizar de forma consolidada el estado de cada vehiculo en relacion con los distintos tipos de
contenido que deben estar correctamente instalados: rutas, patrones, paradas, correspondencias, mensajes y
contenidos multimedia.

La tabla central se estructura por filas, cada una correspondiente a un vehiculo identificado por su ID interno
(sideCode) y su alias visible (matricula). Las columnas indican para cada tipo de contenido un tick verde en caso
de que esté sincronizado o una x roja en caso de que no lo esté. A la izquierda de esta indicacion, se muestra un
numero que indica la configuracion conocida por el usuario a la que hace referencia dicha version. Ademas de
esto, el indicador tiene una badge circular sin contenido que solo muestra un color. Este color indica lo siguiente:

= Gris: Es referido a que la version es una aplicada con configuracion ALL, o lo que es lo mismo, FLEET.
Es decir, una configuracion global para todas las flotas.

= Azul: Es referido a que la version es una aplicada con configuracion FLEET, que en este caso se refiere
a SUBFLEET internamente. Es decir, una configuracién para una flota en concreto.

= Morado: Se refiere a las configuraciones de version PARTICULAR.

En la parte superior se incluye un resumen visual con indicadores clave de flota, como el porcentaje de
vehiculos correctamente sincronizados, el nimero total de vehiculos OK y los elementos pendientes.

Ademas, la interfaz ofrece opciones avanzadas de interaccion: distintos tipos de filtrado, busqueda por texto,
exportacion de resultados y configuracion de columnas visibles

La integracion visual con el SIU es completa, reutilizando el estilo, colores y componentes ya existentes en
el resto de la plataforma. Esto garantiza una experiencia de usuario coherente y facilita la adopcion del nuevo
modulo por parte del personal técnico.

67

Routes

Patterns

o S

Stops

a

POIs

K

Messages

.,

Audios
Correspondences

Multimedia

rﬁ Configuration

Select configuration

Content Manager AVA

| Fleet Status

% Buses Ok

Il COLUMNS "= FILTERS = DENSITY

ID Vehicle

D oo

104 BH7089

123456ABCS8 4700198988
@

47003

EXPORT

Last Update

Never Updated

1 day ago

Never Updated

Never Updated

Never Updated

Never Updated

Never Updated

Never Updated

Never Updated

Never Updated

Routes ¥

2
4

Buses Ok

L

Vehicle Status List

® Al

Patterns
3L

23 9%

23 @

23

23

23

23

23

23

23

Fleet

Particular

Figura 9.1: Frontend de la nueva funcionalidad

Configuration

Not selected

D 3 B

Pending

721

Q

Corespondences Messages MultiMedia

1%

Rows per page: 10 ~ 1-10 of 722

CAPITULO 9. IMPLEMENTACION 9.6. GESTION DE ERRORES Y VALIDACIONES

9.6 Gestion de errores y validaciones

La robustez del sistema ha sido una prioridad durante todo el proceso de desarrollo, especialmente al tratar-
se de un servicio autonomo encargado de analizar informacion critica y no controlada directamente, como los
archivos generados por ArchivosOBU y Transfer Manager. Por este motivo, se implementaron multiples meca-
nismos de gestion de errores y validaciones, distribuidos tanto en el backend como en la interfaz de usuario, con
el objetivo de garantizar la estabilidad del sistema y proporcionar visibilidad ante fallos o datos incoherentes.

En el backend, todas las operaciones que pueden verse afectadas por errores externos (como accesos a rutas
de red, lectura de archivos o llamadas a base de datos) se encapsulan en bloques try/catch para evitar que un fallo
puntual detenga el procesamiento completo. En cada uno de estos casos, las excepciones son capturadas, y se
registra un mensaje detallado mediante el sistema de trazas AqTraza, especificando el tipo de error, su contexto
y su origen. Esto permite auditar con precision los fallos ocurridos, facilitando el diagndstico sin comprometer
la continuidad del servicio. Ademas, se diferencian explicitamente los mensajes de advertencia (por ejemplo,
carpetas vacias o rutas no encontradas) de los errores criticos, lo que permite priorizar su tratamiento.

En cuanto a la validacion, InfoVersionService incluye controles internos para comprobar que las rutas exis-
ten, que los archivos son accesibles, y que la estructura esperada de las carpetas y ficheros se mantiene. Por
ejemplo, si se encuentra una carpeta con nombre no valido, se descarta del procesamiento y se registra como in-
cidencia. Asimismo, antes de insertar versiones en base de datos, se valida que los campos minimos requeridos
estén presentes (identificador de vehiculo, tipo de paquete y version).

En el frontend también se aplican validaciones y gestion de errores a distintos niveles. En primer lugar, la
llamada al endpoint REST del backend se realiza de forma asincrona, y esta preparada para detectar errores de
red, respuestas mal formadas o estados no esperados. En caso de error, se muestra al usuario técnico un mensaje
informativo no intrusivo, que le permite reintentar o continuar con la navegacion.

En caso de producirse errores criticos, como la falta de acceso a rutas de red o problemas de escritura en
base de datos, el sistema est4 disefiado para no detener su ejecucion. Los errores se registran mediante trazas
detalladas en el sistema de logging, y el servicio contintia su ejecucion con el siguiente ciclo programado. Esto
garantiza una alta disponibilidad y evita la interrupcion completa del proceso ante fallos puntuales, favoreciendo
una operacion mas resiliente en entornos reales.

Por ultimo, se han implementado validaciones visuales en los datos mostrados, destacando de forma clara
las inconsistencias o desincronizaciones mediante colores e iconos. Esto permite al operador identificar posibles
problemas sin necesidad de analizar manualmente las versiones.

En conjunto, todos estos mecanismos aseguran que el sistema pueda funcionar de forma auténoma, fiable
y predecible, incluso ante escenarios incompletos, errores de entrada o fallos temporales en las herramientas
externas. Ademas, la visibilidad ofrecida por las trazas y los indicadores visuales facilita enormemente el man-
tenimiento y la supervision del sistema por parte de los operadores.

9.7 Integracidon continua y gestion del coédigo

El desarrollo del sistema se realizé siguiendo un modelo de integracion continua dentro del entorno de
trabajo de GMV, utilizando herramientas corporativas como Bitbucket para el control de versiones y Jenkins
como servidor de automatizacion para la ejecucion de tareas asociadas a los commits y despliegues.

Durante el ciclo de desarrollo, cada funcionalidad o correccion fue implementada en una rama independien-
te, siguiendo la convencion feature/, hotfix/ o release/, y posteriormente integrada en la rama principal (master)
mediante pull requests. Cada pull request requeria una revision por parte de otro miembro del equipo, lo que
garantizaba la calidad del c6digo, la conformidad con las convenciones del proyecto y la deteccion temprana de
posibles errores o duplicidades.

El repositorio estaba alojado en Bitbucket Server, lo que permitié una gestion estructurada del cdédigo fuente,
con control de permisos, historico de versiones y seguimiento de incidencias. Se utilizaron etiquetas y comen-
tarios en las revisiones para facilitar la trazabilidad de cada cambio, asi como para documentar las decisiones
tomadas durante el desarrollo.

69

9.7. INTEGRACION CONTINUA Y GESTION DEL CODIGO CAPITULO 9. IMPLEMENTACION

Por otro lado, el sistema estaba integrado con un servidor Jenkins, encargado de ejecutar pipelines auto-
maticos cada vez que se realizaban integraciones en la rama principal. Estos pipelines incluian tareas como la
compilacion del servicio (InfoVersionService), la ejecucion de pruebas automaticas, el analisis estatico de co-
digo y la generacion de artefactos preparados para despliegue. En caso de errores en la compilacién o fallos en
los tests, Jenkins notificaba automaticamente al responsable del commit para su revision.

Este enfoque de integracion continua permitié mantener un flujo de trabajo estable, detectar errores de forma
temprana y reducir significativamente el tiempo entre el desarrollo y la validacion. Ademas, la trazabilidad
completa de cada cambio facilita el mantenimiento a largo plazo y la colaboracidn entre distintos miembros del
equipo.

70

Capitulo 10

Pruebas

Una vez finalizada la implementacion de los distintos componentes del sistema, se procedi6 a validar su co-
rrecto funcionamiento mediante una serie de pruebas distribuidas en distintos niveles. El objetivo de este proceso
fue verificar que el sistema se comporta conforme a los requisitos funcionales y no funcionales establecidos, asi
como garantizar su robustez ante situaciones inesperadas o datos erroneos.

Las pruebas realizadas incluyen desde validaciones unitarias de componentes clave hasta pruebas de in-
tegracion completas entre los modulos del sistema, incluyendo la base de datos, el servicio de procesamiento
(InfoVersionService) y la interfaz grafica integrada en el SIU. Adicionalmente, se llevaron a cabo pruebas manua-
les y funcionales con escenarios simulados para asegurar que la informacion mostrada en el panel de versiones
refleja fielmente la situacion real de cada vehiculo.

En los apartados siguientes se detallan los distintos tipos de pruebas realizadas, su metodologia, los resul-
tados obtenidos y los criterios aplicados para determinar la validez de cada uno de los bloques del sistema.

10.1 Pautas de Estilo

En la implementacion de las pruebas, asi como en el desarrollo general del sistema, se aplicaron diversas
pautas de estilo con el objetivo de mejorar la cohesidn, la legibilidad, la consistencia estructural y la mantenibi-
lidad del codigo fuente. Estas buenas practicas no solo facilitaron la escritura y depuracion del codigo durante
el desarrollo, sino que también permiten a futuros desarrolladores comprender y ampliar la logica con mayor
facilidad. Estas son algunas de las principales pautas seguidas:

= Nombres descriptivos: Se utilizaron identificadores claros y significativos para clases, métodos, varia-
bles y archivos de test, facilitando su comprension sin necesidad de revisar la implementacion interna.

= Separacion de responsabilidades: Cada método de prueba se centrd en validar un inico comportamien-
to especifico, siguiendo el principio Arrange-Act-Assert para mantener una estructura coherente. Este
principio hace que los métodos de prueba se dividan en tres partes:

* Arrange: es aquella parte en la que los datos son preparados para utilizarse en las pruebas
» Act: es aquella parte en la uge se invoca el método o parte de codigo que se quiere probar.

» Assert: es aquella parte en al que se verifiacn los resultados de los métodos activados en la parte
Act.

Estas partes deberan estar indicadas en el codigo del método de prueba por medio de comentarios.

= Uso de mocks y stubs: Se emplearon objetos simulados para aislar dependencias externas, evitando
efectos colaterales y garantizando que las pruebas unitarias fueran deterministas y reproducibles.

71

10.2. PRUEBAS UNITARIAS CAPITULO 10. PRUEBAS

= Asserts claros y especificos: En lugar de realizar multiples verificaciones en una Uinica prueba, se frag-
mentaron en pruebas mas pequefias y precisas, facilitando la localizacion de errores en caso de fallo.

= Reutilizacion de logica auxiliar: Se agruparon funciones comunes de inicializacion o creacion de objetos
mock en clases base o métodos utilitarios compartidos, evitando duplicacion innecesaria.

= Formato y convenciones consistentes: Se respetaron las reglas de estilo del equipo (Véase la seccion
O.1)), aplicando herramientas de linting y formato automatico en el IDE.

10.2 Pruebas Unitarias

Las pruebas unitarias se centraron en validar el comportamiento de los componentes criticos del sistema
de forma aislada, especialmente aquellos que contenian logica de negocio independiente de la infraestructura.
El objetivo fue asegurar que cada clase, método o funcionalidad ejecutaba correctamente su responsabilidad, y
reaccionaba adecuadamente ante entradas validas, valores extremos o condiciones inesperadas.

Las pruebas se realizaron principalmente sobre clases del servicio Info VersionService, en particular sobre los
procesadores, el servicio de empaquetado (PackageService) de versiones, y las clases auxiliares de validacion
de versiones o generacion de rutas. Dado que muchas de estas clases fueron disefiadas para trabajar mediante
interfaces y con dependencia explicita de servicios externos (por ejemplo, acceso a disco o base de datos), fue
posible aplicar facilmente técnicas de mocking para aislar las pruebas.

Las pruebas se desarrollaron utilizando el entorno de testeo integrado de Visual Studio y el framework de
pruebas por defecto de .NET, xUnit. Las aserciones comprobaban tanto los valores devueltos como los efectos
secundarios esperados (por ejemplo, la insercion de versiones o el rechazo de carpetas con nombres invalidos).

Un ejemplo concreto de prueba unitaria implementada fue la validacion de métodos como GetFoldersTo-
Process en entornos simulados, comprobando que el sistema respondia correctamente ante rutas inexistentes,
carpetas vacias o nombres mal formateados.

Estas pruebas fueron fundamentales para poder refactorizar e introducir nuevas funcionalidades sin com-
prometer el comportamiento ya establecido, ademas de servir como documentacion viva del comportamiento
esperado del sistema.

Ademas de la validacion individual de comportamientos, se definié una estrategia general de cobertura,
basada en los principios de testeo en componentes desacoplados y priorizacion por criticidad. Se dio mayor én-
fasis a clases con l6gica de decision (procesadores y servicios), minimizando el nimero de tests sobre utilidades
triviales.

Para asegurar la calidad de los tests, se cumplio con los siguientes criterios:

= Las pruebas deben ejecutarse de forma determinista, sin depender del estado del sistema.

= El resultado de la prueba debe ser binario (éxito o fallo claro), sin necesidad de interpretacion ambigua.

También se tuvo en cuenta la aplicabilidad del enfoque test-first en ciertos métodos clave, especialmente
durante el desarrollo de PackageService, asegurando que el comportamiento del método se ajustara desde el
principio a los requisitos funcionales.

Para mantener las pruebas automatizadas, se integraron en el entorno de desarrollo de Visual Studio, permi-
tiendo su ejecucion continua en local, y se incluyeron en el pipeline de Jenkins dentro del sistema de integracion
continua de GMV. Esto garantiza que ningun cambio en el codigo principal pueda incorporarse a ramas estables
sin pasar por las pruebas correspondientes.

Un ejemplo de una de estas pruebas se puede ver en el codigo [10.1]. No interpretar este codigo como el real
de la aplicacion, ya que esto es un mero ejemplo de uno de los tests.

72

CAPITULO 10. PRUEBAS 10.2. PRUEBAS UNITARIAS

fs.DirectoryExists ("/base/validl™)) .Returns (true) ;
10 mockFileSystem.Setup (fs =>
fs.DirectoryExists ("/base/empty")) .Returns (true) ;
1 mockFileSystem.Setup (fs =>
fs.DirectoryExists ("/base/invalid")) .Returns (false) ;
12
13 mockFileSystem.Setup (fs => fs.HasContent ("/base/validl™)) .Returns (true) ;
14 mockFileSystem.Setup (fs => fs.HasContent ("/base/empty")) .Returns (false) ;

18 // Act
19 var result = folderService.GetFoldersToProcess ("/base");

[Fact]
public void GetFoldersToProcess ShouldReturnOnlyValidDirectories ()
{
// Arrange
var mockFileSystem = new Mock<IFileSystem> () ;
mockFileSystem.Setup (fs => fs.GetDirectories ("/base"))
.Returns (new[] { "/base/validl", "/base/empty", "/base/invalid" });

mockFileSystem.Setup (fs =>

var folderService = new FolderService (mockFileSystem.Object) ;

// Assert
Assert.Single (result) ;
Assert.Contains ("/base/validl", result);

Listing 10.1: Ejemplo de prueba unitaria

10.2.1 Cobertura de la aplicacion

En esta seccion se analiza el grado de cobertura alcanzado por las pruebas automaticas desarrolladas. Dado
que el nuevo endpoint REST y el componente de interfaz en el frontend presentan una cobertura completa del
nuevo codigo incorporado (100 % de las lineas modificadas o afiadidas han sido verificadas mediante pruebas),
el analisis se centrara principalmente en el nucleo funcional del sistema: el servicio InfoVersionService.

Este modulo concentra la mayor parte de la 16gica de negocio y procesamiento de datos, y por tanto represen-
ta el componente mas critico en términos de fiabilidad y robustez. Se detallardn a continuacion los porcentajes
de cobertura alcanzados en las clases principales (Véase el cuadro [10.1]), asi como los criterios utilizados para
seleccionar los bloques de codigo sujetos a validacion mediante pruebas unitarias.

Paquete Lineas cubiertas | Lineas a cubrir | Lineas totales | Porcentaje
Application 340 343 779 99.1%
Architecture 392 430 709 91.1%

Domain 38 38 50 100 %

Configuration 51 51 95 100 %
ServiceHost 20 20 32 100 %
TOTAL 841 882 1665 95.35%

Cuadro 10.1: Coverage del servicio InfoVersionService

73

10.3. PRUEBAS DE INTEGRACION CAPITULO 10. PRUEBAS

Criterios para la seleccién del cédigo sujeto a pruebas unitarias

La seleccion de bloques de codigo para ser cubiertos mediante pruebas unitarias no se realiz6 de forma
arbitraria, sino siguiendo una serie de criterios técnicos y de valor anadido que aseguran que el esfuerzo de
testeo se focaliza sobre los puntos mas relevantes del sistema:

= Complejidad logica: se priorizaron métodos que incluyeran condiciones, bifurcaciones (if, switch), es-
tructuras de iteracion o logica de validacion. Cuanto mayor era la complejidad del fragmento, mayor fue
su prioridad para ser cubierto.

= Impacto funcional: se dio prioridad a aquellos componentes cuyo fallo pudiera afectar de forma critica
al funcionamiento global del sistema, como los encargados de filtrar los directorios, crear los paquetes,
generar datos para insertar en base de datos o preparar estructuras de respuesta.

= Facilidad de desacoplamiento: en los casos en los que ciertas clases no estaban disefiadas inicialmente
para ser testeables (por ejemplo, acopladas directamente a estructuras estaticas), se propuso su refactori-
zacion hacia una estructura mas modular y testable.

= Volatilidad esperada: se cubrieron también componentes que se espera que puedan cambiar o escalar en
el futuro, para facilitar su refactorizacion sin riesgo de regresion funcional.

Este enfoque permitid obtener una cobertura coherente, centrada en maximizar el valor de las pruebas,
en lugar de perseguir unicamente métricas cuantitativas. De esta forma, se garantiza que los elementos mas
sensibles del sistema estan protegidos ante errores y se refuerza la calidad del codigo base.

Por ultimo, cabe destacar que el umbral de cobertura recomendado internamente por GMV para desarrollos
de este tipo se sitlia por encima al 75 %. En este proyecto, se ha alcanzado un 95.35 % de cobertura total sobre
el modulo InfoVersionService, 1o que supone un valor significativamente superior al minimo esperado. Este alto
porcentaje no solo se refleja en volumen, sino también en calidad, ya que —como se ha indicado anteriormente—
la cobertura se concentra en las clases con mayor complejidad 16gica y relevancia funcional dentro del sistema.

10.3 Pruebas de Integracion

Ademas de las pruebas unitarias, se realizaron pruebas de integracion para validar el comportamiento con-
junto de los diferentes componentes del sistema. Estas pruebas fueron fundamentales para asegurar que la logica
desarrollada en el servicio InfoVersionService interactia correctamente con los recursos externos como la base
de datos, las carpetas generadas por ArchivosOBU y Transfer Manager, asi como con el backend del SIU a
través del nuevo endpoint implementado.

El objetivo principal de estas pruebas fue comprobar la coherencia del flujo completo, desde la lectura de
carpetas reales hasta la persistencia de datos y su posterior consulta desde la interfaz web. Para ello, se simularon
escenarios realistas en un entorno de desarrollo controlado, utilizando estructuras de carpetas reales con archivos
representativos, asi como un entorno de base de datos parcialmente poblado con datos de prueba.

Uno de los casos mas representativos fue la integracion entre los procesadores del sistema (FleetProcessor,
TMProcessor, etc.) y el servicio de creacion de paquetes de versiones (PackageService). Se verificod que los pro-
cesadores detectaban correctamente los paquetes disponibles en las rutas compartidas, los analizaban conforme
al formato esperado y generaban entradas validas para ser insertadas en base de datos. Véase la figura y
para ver los resultados al consultar las tablas de la base de datos.

74

CAPITULO 10. PRUEBAS 10.3. PRUEBAS DE INTEGRACION

BH Resuts R Messages
ildPaquete ildAutobus ildTipoPaquete bEnBus iVersionPaguete dtFechaRegistro

1 3 1 2 2025-06-27 09:54:24 713
2 3 1 0 2025-06-27 09:54:24 620
3 646 403 2 1 5 2025-06-27 09:54.24 603
4 645 402 2 1 2 2025-06-27 09:54.24 583
5 644 4Mn 2 1 2 2025-06-27 09:54.24 567
6 643 723 2 0 5 2025-06-27 09:54.24 523
7 642 722 2 0 5 2025-06-27 09:54:24.510
8 641 72 2 0 5 2025-06-27 09:54.24 453
9 640 720 2 0 5 2025-06-27 09:54.24 480
10 633 713 2 0 5 2025-06-27 09:54.24 467
11 638 718 2 0 5 2025-06-27 09:54.24 457
12 837 7 2 0 5 2025-06-27 09:54:24 443
13 636 716 2 0 5 2025-06-27 09:54.24 417
14 635 715 2 0 5 2025-06-27 09:54:24 357
15 634 714 2 0 5 202506-27 09:54.24 380
16 633 713 2 0 5 2025-06-27 09:54.24 367
17 632 712 2 0 5 2025-06-27 09:54.24 353
13 631 m 2 0 5 2025-06-27 09:54:24 340
19 630 710 2 0 5 2025-06-27 09:54:24 323
20 629 709 2 0 5 202506-27 09:54:24 310
21 628 708 2 0 5 2025-06-27 09:54.24 257
22 827 707 2 0 5 2025-06-27 09:54.24 280

Figura 10.1: Paquetes resultado de las pruebas de integracion

sMombre ildPaguete iVersion
1 line_user_amp.dat.zip 646 2
2 par_amp.dat.zip 646 1
3 par_user_amp.dat.zip 646 2
4 trav_amp .dat zip %1 1
L] trav_user_amp.datzip 646 3
& trav_user_amp.datzip 645 3
7 trav_amp.dat zip 645 1
a par_user_amp.dat.zip 645 2
) par_amp.dat.zip 645 1
10 line_user_amp.datzip 645 2
11 ine_user_amp.dat.zip 644 2
12 par_amp.dat.zip G644 1
13 par_user_ampdat.zip 644 2
14 trav_amp.dat.zip 644 1
15 trav_user_ ampdatzip 644 3
16 trav_amp.dat.zip e43 1
17 par_user_ampdat.zip 643 g
18 par_amp.dat.zip 643 1
19 par_amp.dat.zip 42 1
20 par_user_ampdatzip 642 g
21 trav_amp.dat.zip G642 1
22 trav_amp.dat.zip &4 1

Figura 10.2: Archivos resultado de las pruebas de integracion

75

10.4. PRUEBAS FUNCIONALES CAPITULO 10. PRUEBAS

Posteriormente, se valido que la tabla de resultados reflejaba correctamente esta informacion al consultarse
desde el endpoint expuesto por SoaBasicContentManager .

También se realizaron pruebas sobre el ciclo completo de limpieza de registros antiguos, confirmando que
el sistema eliminaba correctamente los paquetes cuya antigiiedad excedia el umbral configurado, sin afectar a
las entradas activas o recientes.

En lo relativo a la capa de presentacion, se confirmo que los datos mostrados en la tabla de versiones del
SIU correspondian exactamente con los datos almacenados en base de datos. Se probaron filtros, ordenaciones
y combinaciones de datos, asegurando que no se produjeran inconsistencias entre lo visualizado y lo realmente
procesado.

Las pruebas de integracion se realizaron de forma manual con validaciones cruzadas en base de datos y en
los archivos del sistema, pero también se prepararon scripts reutilizables que permitieron automatizar algunos
de los casos mas criticos.

Estas pruebas confirmaron que la solucion propuesta funciona como un conjunto cohesionado, y que todos
los modulos interactiian correctamente en condiciones reales de uso, sin dependencia directa entre ellos, lo que
facilita el mantenimiento y la escalabilidad futura del sistema.

10.4 Pruebas funcionales

Las pruebas funcionales se llevaron a cabo con el objetivo de verificar que el sistema desarrollado cumple
con los requisitos funcionales definidos previamente en el capitulo de analisis. Estas pruebas validan la logica
completa de los flujos descritos en los casos de uso, desde la ejecucion automatica del procesamiento de archivos
hasta la consulta por parte del operador en la interfaz del SIU.

Dado que el sistema esta dividido en tres bloques principales —servicio de procesamiento (/nfoVersion-
Service), API de exposicion (nuevo endpoint en SoaBasicContentManager) y frontend del SIU— las pruebas
funcionales cubrieron el comportamiento de extremo a extremo, asegurando que los datos generados por el
backend fueran consistentes con los resultados presentados al usuario.

Para cada caso de uso definido, se prepararon escenarios de prueba reales, utilizando archivos generados por
ArchivosOBU y Transfer Manager en una estructura simulada, y registros iniciales en base de datos controlados.
A continuacion se detallan las validaciones realizadas por cada uno de los casos de uso:

10.4.1 CU1 - Registrar versiones

Se validd que, al introducir nuevos archivos de configuracion en las rutas monitorizadas por InfoVersion-
Service, el sistema los detecta automaticamente tras el intervalo de espera configurado. Se comprobo que las
versiones extraidas se correspondian con los contenidos reales, que los registros eran correctamente insertados
en base de datos, y que el sistema omitia archivos mal formateados o carpetas sin cambios. Ademas, se pro-
baron situaciones de error controlado (archivos corruptos o nombres invalidos), verificando que el sistema las
registraba como trazas sin interrumpir la ejecucion.

10.4.2 CU2 - Comparacioén de versiones generales

Desde la interfaz del SIU, se simul6 el comportamiento de un operador solicitando la comparacion de ver-
siones. Se probaron distintos filtros (por tipo de paquete, por estado de sincronizacion, por OBU) y se comprobo
que el sistema mostraba correctamente las inconsistencias entre versiones esperadas y detectadas, representa-
das con iconos visuales e indicadores de estado. Se incluy6 también una validacion de comportamiento ante
ausencia de datos (tabla vacia con mensaje informativo).

10.4.3 CU3 - Consulta especifica de versiones

Esta prueba consistié en verificar que, al seleccionar un vehiculo concreto, el sistema mostraba de forma
desglosada las versiones de cada tipo de contenido instalado, junto con su correspondiente version esperada.

76

CAPITULO 10. PRUEBAS 10.5. PRUEBAS DE RENDIMIENTO

Se valid6 que la informacion aparecia de forma clara y precisa, y que los datos mostrados coincidian con los
registros existentes en base de datos. También se verifico la respuesta del sistema cuando no existian registros
para un vehiculo determinado.

10.4.4 CU4 - Consulta de KPIs de la flota

Se probo la funcionalidad de resumen estadistico del estado de sincronizacién de la flota. En particular,
se verifico el célculo correcto del porcentaje de vehiculos sincronizados, el total de vehiculos afectados, y la
correcta visualizacion de estos KPIs en la cabecera del modulo. También se realizaron pruebas sobre campanas
con datos incompletos o inconsistentes, confirmando que los célculos se ajustaban a los datos disponibles sin
producir errores en la visualizacion.

10.4.5 Conclusion

En todas las pruebas funcionales se respetaron los permisos de acceso definidos para el operador, validando
que el acceso al modulo esta restringido a usuarios autenticados y con los permisos habilitados. Todas las ac-
ciones fueron validadas manualmente y cruzadas con los datos reales insertados en base de datos, asegurando
la trazabilidad del comportamiento del sistema frente a los requisitos funcionales previamente definidos.

En el cuadro se puede ver un pequefio resumen de los CU y las pruebas funcionales realizadas.

Codigo Nombre del caso de uso Pruebas funcionales realizadas

CU1 Registrar versiones Insercion automatica de versiones desde carpetas.
Comprobacion de insercion en base de datos, valida-
cion de deteccion de cambios, exclusion de carpetas
sin actualizaciones o con errores.

cu2 Comparacion de versiones Verificacion de las inconsistencias entre versiones
esperadas y detectadas, aplicacion de filtros, visuali-
zacion de estados con iconos, tabla vacia cuando no
hay coincidencias.

Cu3 Consulta especifica de versiones | Visualizacion detallada por vehiculo: tipo de conte-
nido, version detectada y version esperada. Verifica-
cion con registros reales. Gestion de casos sin datos.
Cu4 Consulta de KPIs de la flota Validacion de indicadores: porcentaje de sincroni-
zacion, vehiculos afectados, estadisticas por tipo de
contenido. Comprobacion de resultados parciales o
faltantes.

Cuadro 10.2: Trazabilidad entre requisitos funcionales y pruebas realizadas

10.5 Pruebas de rendimiento

Dado el contexto real de uso del sistema en flotas de gran tamafio, uno de los objetivos clave ha sido asegurar
que el servicio mantiene un rendimiento aceptable, escalable y predecible incluso con voliimenes elevados de
datos. Esta necesidad queda reflejada directamente en varios de los requisitos no funcionales definidos, como
RNF05, RNF06 y RNFO07, que establecen umbrales de rendimiento concretos: menos de 120 segundos para el
procesamiento global, menos de 1 segundo por vehiculo y soporte para mas de 1000 vehiculos sin degradacion
significativa.

Para validar estos objetivos, se disefiaron y ejecutaron pruebas de rendimiento simulando entornos con datos
reales generados por ArchivosOBU y Transfer Manager. Se crearon estructuras de carpetas que representaban
distintos tamaiios de flota (100, 500, 1000 y 1500 vehiculos), replicando versiones, archivos multimedia y
configuraciones diversas, a fin de obtener una vision representativa de la carga real esperada.

77

10.6. VALIDACION CON USUARIOS FINALES CAPITULO 10. PRUEBAS

Inicialmente, durante el desarrollo del sistema, se detecté que al incrementar el volumen de paquetes ge-
nerados (por encima de los 200.000 contenidos), la insercién en base de datos se volvia significativamente
mas lenta, y el proceso completo podia superar los limites establecidos. Como resultado de este analisis, se
introdujeron varias optimizaciones orientadas al rendimiento, entre ellas:

= Paralelizacion del procesamiento mediante multiples /Processor ejecutados en serie pero desacoplados,
evitando cuellos de botella al tratar carpetas independientes. Ademas, se paralelizaron los distintos bucles
que recorren las carpetas y las lineas del archivo de control de versiones.

= Inserciones en lote (bulk insert) para reducir el nimero de transacciones individuales y minimizar la
latencia de comunicacion con la base de datos.

= Indexacion en las tablas clave para acelerar las consultas posteriores realizadas por el frontend y el
servicio de comparacion de versiones.

Tras aplicar estas mejoras, se repitieron las pruebas con el conjunto més exigente (mas de 1500 vehiculos
y 20000 contenidos, llegando en algunos casos a superar el millon de archivos de contenido procesables). Los
resultados obtenidos demostraron que en un 89 % de las ejecuciones, el tiempo medio de procesamiento por
vehiculo se situd en torno a los 520 ms, mientras que el tiempo total de analisis completo de toda la flota no
llegd al umbral.

En el pequefio porcentaje restante de ejecuciones, los tiempos se vieron afectados ligeramente por picos de
uso del sistema, pero sin llegar a comprometer los umbrales definidos en los requisitos.

Estas pruebas permiten afirmar que el sistema no solo es funcionalmente correcto, sino también apto para ser
desplegado en produccion con garantias de rendimiento, incluso en escenarios de alta demanda o condiciones
operativas exigentes.

10.6 Validacion con usuarios finales

Ademas de las pruebas técnicas desarrolladas en entornos locales y controlados, el sistema ha sido validado
en un entorno de preproduccion real dentro de GMV. Durante esta fase, se integro el servicio InfoVersionService
con instancias operativas de ArchivosOBU y Transfer Manager, asi como con una base de datos representativa.

Operadores técnicos del equipo de validacion accedieron al nuevo modulo de trazabilidad desde el SIU
y realizaron diversas comprobaciones funcionales y de usabilidad. Esta validacion permitié confirmar que la
informacion mostrada en la interfaz coincidia con los registros reales de versiones detectadas en los vehiculos,
y que el sistema respondia correctamente ante diferentes escenarios de consulta y sincronizacion.

Las pruebas en entorno preproductivo confirmaron también que la solucion era compatible con los flujos
operativos existentes, sin afectar negativamente a otros modulos del sistema, y aportando una mejora tangible
en la visibilidad del estado de actualizacion de la flota.

78

Parte IV

Conclusiones

79

Capitulo 11

Conclusiones y trabajo futuro

11.1 Introduccion

El desarrollo de este Trabajo Fin de Grado ha supuesto una experiencia completa y desafiante, tanto desde
el punto de vista técnico como desde el punto de vista profesional. El sistema disefiado y construido cumple con
el objetivo inicial de mejorar la trazabilidad de versiones de contenidos en sistemas de transporte inteligente,
solucionando una carencia identificada durante el periodo de practicas en la empresa GMV.

A lo largo del proyecto se ha abordado la problematica desde un enfoque integral, analizando el flujo com-
pleto de generacion, transferencia y validacion de contenidos, y proponiendo una arquitectura escalable, desaco-
plada y compatible con los sistemas existentes. Se han desarrollado distintos componentes software: un servicio
independiente de andlisis, un endpoint REST de consulta y un moédulo visual de exploracion de versiones inte-
grado en el Gestor de Contenidos (SIU), todo ello respetando las restricciones operativas y tecnoldgicas de la
empresa.

La solucion ha sido validada tanto funcional como técnicamente, con un elevado grado de cobertura en prue-
bas y unos resultados de rendimiento que superan los requisitos establecidos. Ademas, se ha prestado especial
atencion a la calidad del cédigo, la estructura modular y la mantenibilidad a largo plazo.

11.2 Aportaciones realizadas

Las principales aportaciones de este proyecto se pueden dividir en dos dimensiones: técnicas y organizativas.

Desde el punto de vista técnico, se ha disefiado e implementado un nuevo servicio de analisis de versiones
(InfoVersionService) capaz de interpretar el estado real de cada vehiculo a partir de los datos generados por Ar-
chivosOBU y Transfer Manager. Este componente trabaja de forma auténoma y expone resultados reutilizables
para otros sistemas, como el backend del SIU o futuras herramientas de analisis de versiones.

Asimismo, se ha implementado un nuevo endpoint REST en el backend corporativo (SoaBasicContentMa-
nager) y una interfaz visual para operadores que permite consultar el estado de sincronizacion de cada vehiculo,
visualizar versiones esperadas y reales, y extraer conclusiones a partir de KPIs agregados.

A nivel organizativo, se ha documentado todo el flujo de integracion con un sistema existente y complejo,
demostrando cémo se puede introducir nueva funcionalidad sin alterar el comportamiento de los sistemas pro-
ductivos actuales. También se ha seguido un enfoque de trabajo profesional, con control de versiones, revisiones
mediante pull requests, uso de integracion continua con Jenkins, y pruebas automatizadas dentro del pipeline
de desarrollo.

81

11.3. VALORACION DEL RESULTADO CAPITULO 11. CONCLUSIONES Y TRABAJO FUTURO

11.3 Valoracion del resultado

El resultado final puede considerarse muy satisfactorio. El sistema propuesto resuelve de forma efectiva
el problema inicial identificado (ausencia de trazabilidad automatizada de versiones), y lo hace sin introducir
complejidad innecesaria ni dependencias criticas entre componentes.

Las pruebas funcionales, unitarias e integradas confirman que la solucién cumple con todos los requisitos
definidos. Las pruebas de rendimiento, por su parte, evidencian que el sistema es capaz de escalar a volimenes
reales de operacion con tiempos de respuesta muy por debajo de los umbrales establecidos.

Ademas, la arquitectura propuesta sienta las bases para futuras ampliaciones, y el cédigo desarrollado se ha
estructurado de forma clara, siguiendo buenas practicas, con una cobertura de pruebas superior al 95 %.

11.4 Mejoras a futuro

A pesar de los buenos resultados obtenidos, se han identificado varias lineas de trabajo futuro que podrian
aportar valor afiadido al sistema:

= Sistema de alertas: incorporar notificaciones automaticas (por correo, dashboard o logs activos) en caso
de que se detecten inconsistencias criticas o multiples vehiculos desincronizados.

= Historico de versiones: permitir la consulta de versiones pasadas o la evolucion historica de un vehiculo
a lo largo del tiempo, lo que podria resultar util para diagndsticos o auditorias.

= Exportacion e integracién externa: exponer un API externo para que otras herramientas puedan con-
sultar el estado de actualizacion de los vehiculos desde otras plataformas o integraciones.

= Paneles avanzados de visualizacion: extender la interfaz de usuario con graficos y métricas mas visuales,
facilitando el analisis global de flota.

= Desacoplamiento completo del SIU: evaluar, en una siguiente fase, la posibilidad de que el nuevo médulo
opere de forma completamente independiente del Gestor de Contenidos actual.

Ademas, cabe destacar que la arquitectura del sistema, basada en procesadores desacoplados y rutas para-
metrizadas, permite su aplicacion mas alla del Gestor de Contenidos (SIU). Dado que el servicio se alimenta
directamente de archivos generados por herramientas como ArchivosOBU o Transfer Manager, cualquier otro
sistema de transporte que utilice estos mismos mecanismos de distribucion de contenido podria beneficiarse
directamente de la solucion propuesta. Incluso seria posible extender el sistema mediante nuevos procesadores
especificos para entornos diferentes, como por ejemplo otros sistemas de configuracion que generen versiones
en estructuras de carpetas propias, manteniendo la légica comun de validacion, registro y consulta ya imple-
mentada.

Estas mejoras pueden abordarse de forma incremental y modular, aprovechando la arquitectura ya disefiada.
Su desarrollo supondria un paso adelante en la digitalizacion del control de versiones en sistemas embarcados
dentro del contexto de transporte inteligente.

A mayores de las mejoras mencionadas, también seria viable plantear lineas de evolucion mas ambiciosas.
Por ejemplo, se podria integrar el sistema con modulos de mantenimiento predictivo o analisis de estado del
vehiculo, utilizando los datos de versiones como indicadores de consistencia técnica. Otra posible extension
seria la incorporacion de inteligencia artificial para detectar patrones de desincronizacion y anticiparse a fallos
recurrentes en determinados nodos de la flota. Estas ideas abren la puerta a una trazabilidad proactiva y a una
operacion mas robusta y autobnoma.

82

CAPITULO 11. CONCLUSIONES Y TRABAJO FUTURO 11.5. OBJETIVOS PERSONALES

11.5 Objetivos personales

Ademas de los logros técnicos y funcionales alcanzados con el desarrollo de este proyecto, se han cumplido
satisfactoriamente los objetivos personales establecidos al inicio del Trabajo Fin de Grado. El trabajo realizado
ha supuesto una oportunidad para consolidar y aplicar de forma practica los conocimientos adquiridos durante
la carrera en un entorno profesional real, enfrentando problemaéticas reales y aportando soluciones en el marco
operativo de una empresa tecnologica.

Uno de los principales aprendizajes ha sido la profundizacion en conceptos de disefio de software modular,
arquitecturas distribuidas y estrategias de prueba automatizada. El hecho de trabajar sobre un sistema complejo
ya desplegado, con multiples dependencias técnicas y restricciones organizativas, ha permitido comprender en
primera persona las implicaciones reales del mantenimiento evolutivo, asi como la importancia de mantener la
cohesion y estabilidad de una solucion en produccion.

Asimismo, a lo largo del proyecto se han desarrollado competencias transversales esenciales en cualquier
entorno de desarrollo profesional: la planificacion efectiva de tareas, la organizacion del tiempo, la adopcion
de metodologias agiles como Scrum y el uso riguroso de herramientas de control de versiones (Git, Bitbucket),
gestion de proyectos (Jira) e integracion continua (Jenkins). La participacion en procesos de revision de codigo y
colaboracion con otros equipos ha contribuido de forma notable a mejorar la capacidad de comunicacion técnica
y el sentido de responsabilidad dentro de un flujo de trabajo profesional.

Ademas, el proyecto ha brindado la oportunidad de adquirir experiencia en la integracion de nuevas funcio-
nalidades en un sistema grande y en produccion, aprendiendo a disefiar soluciones no intrusivas, compatibles
y sostenibles. Esta experiencia ha sido especialmente valiosa para desarrollar habilidades de anélisis funcional,
toma de decisiones técnicas y resolucion de problemas en escenarios con restricciones reales.

Por 1ltimo, el contacto diario con tecnologias utilizadas en GMV —como C#, servicios Windows, APIs
REST, React o el servidor IIS— ha permitido profundizar y afianzar el conocimiento en un stack tecnologico
moderno y demandado, cumpliendo asi con uno de los objetivos formativos clave planteados al comienzo del
proyecto.

En conjunto, todas estas experiencias suponen una base solida tanto a nivel técnico como profesional, y
permiten afrontar con mayor preparacion los futuros retos en el ambito académico, laboral o de especializacion
tecnologica.

83

11.5. OBJETIVOS PERSONALES CAPITULO 11. CONCLUSIONES Y TRABAJO FUTURO

84

Appendices

85

Apéndice A

Manual de Instalacion

En este capitulo se describe todo lo necesario para la instalacion y despliegue del proyecto. Cabe destacar
que el presente manual inicamente serd util para el personal interno de GMV vy los clientes que soliciten esta
funcionalidad, ya que para poder utilizarlo es necesario el acceso a otras aplicaciones exclusivas. Algunos de
los datos como rutas de los repositorios seran omitidos por cuestiones de privacidad.

A.1 Requisitos previos

Para la instalacion y puesta en marcha del sistema desarrollado, se requiere el siguiente entorno y depen-
dencias:

= Sistema operativo: Windows 10 o superior (compatible con servicios de Windows).
= NET SDK 6.0 o superior (para compilar).

= NET Runtime 6.0 (para ejecutar).

= SQL Server

= [IS (solo si se despliega el nuevo endpoint como aplicacion web ya que SoaBasicContentManager es un
1S).

= Acceso a las rutas compartidas utilizadas por ArchivosOBU y Transfer Manager.
= Permisos de escritura/lectura en las carpetas de contenido.

= Git

A.2 Instalacion del servicio InfoVersionService

A.2.1 Compilacion
1. Clonar el repositorio desde Bitbucket.
2. Abrir la solucion InfoVersionService.sln en Visual Studio 2022 o superior.
3. Seleccionar el proyecto InfoVersionService.Sve como proyecto de inicio.

4. Compilar en modo Release.

87

A.3. BASE DE DATOS APENDICE A. MANUAL DE INSTALACION

A.2.2 Instalacion como servicio de Windows

1. Abrir una consola PowerShell en modo administrador.

2. Ejecutar el siguiente comando:

1 sc create InfoVersionService binPath=
"C:\Rutalal\ejecutable\InfoVersionService.exe"

3. Para iniciar el servicio:

net start InfoVersionService

4. Para detenerlo:

1 net stop InfoVersionService

5. El servicio quedara registrado y podra ser gestionado desde el panel de Servicios de Windows.

A.3 Configuracion del servicio

El fichero de configuracion del servicio appsettings.json se encuentra junto al ejecutable y contiene los
siguientes parametros:

= ConnectionStrings: cadena de conexion a la base de datos SQL.

ScheduledPackagesPath: ruta principal donde ArchivosOBU genera los archivos por procesar.

InBusPackagesPath: ruta principal donde TransferManager genera los archivos por procesar.

MinutesForCheckingVersions: intervalo (en minutos) entre ejecuciones del analisis.

HoursForCleaningOldRecords: intervalo de limpieza de registros antiguos.

MaxOldRecordDays: nimero de dias tras los cuales un paquete se considera eliminable.

Estos parametros pueden modificarse sin necesidad de recompilar el servicio. Es necesario reiniciarlo para
que los cambios tengan efecto.

A.3 Base de datos

Se proporciona un script SQL de inicializacidn con las siguientes tablas, las cuales siguen el mismo modelo
descrito en la seccion B.4:

» PackageVersion: contiene versiones esperadas y reales por vehiculo y tipo de contenido.
= File: contiene archivos concretos sobre cada paquete, aportando mayor granularidad.
» PackageType: Un enum con los distintos tipos de tablas a analizar.

» Indices recomendados sobre Vehicleld, PackageType y Versionld.

Elusuario configurado en la cadena de conexion debe tener permisos de lectura y escritura sobre estas tablas.

88

APENDICE A. MANUAL DE INSTALACION A.3. BASE DE DATOS

A.5 Despliegue del nuevo endpoint REST

1. Compilar el proyecto SoaBasicContentManager.
2. Anadir el nuevo controlador de versiones implementado.
3. Asegurarse de que el servicio expone el nuevo endpoint.

4. Desplegar el backend en /IS.

El endpoint accede directamente a la base de datos generada por InfoVersionService, por lo que no requiere
l6gica adicional para reconstruir el estado.
A.6 Activacion del médulo visual en el SIU

= El componente visual se integra como un panel adicional dentro del SIU.

= Se afiade al enrutado del frontend bajo la ruta /FleetStatus.

= Para que aparezca en el menu, el operador debe tener asignado el permiso FleetStatusManager a nivel
central de aplicaciones de GMV.

El médulo realiza peticiones HTTP al endpoint REST y renderiza dinamicamente el estado de sincronizacion
por vehiculo.

89

A.3. BASE DE DATOS APENDICE A. MANUAL DE INSTALACION

90

Apéndice B

Manual de Usuario

B.1 Acceso al moédulo

El panel de trazabilidad de versiones se encuentra integrado en la interfaz del S/U. Para acceder, el usua-
rio debe iniciar sesion con credenciales validas y tener asignado el permiso especifico FleetStatusManager.
Ademas, solo podra ver aquella informacion relacionada con el resto de permisos que tenga, por ejemplo, Li-
neManager, RouteManager, etc. Es decir, no podra ver informacion acerca de los paquetes de los que no tenga
permiso.

Una vez autenticado, podra elegir la flota sobra la que realizar las acciones.

Con la flota seleccionada se accedera al modulo desde el menu principal, bajo el apartado “FleetStatus” o
similar, dependiendo del idioma de configuracién del entorno.

B.2 Vista general

El panel principal muestra una tabla con todos los vehiculos de la flota y su estado de sincronizacion de
versiones. Por cada fila (vehiculo), se indica:

= Codigo del vehiculo.

Estado general de sincronizacion.

Indicadores por tipo de contenido (Multimedia, Configuracion, Sistema, etc.).

= Version conocida por el usuario para cada contenido

Fecha de tltima actualizacion detectada.
Los estados de sincronizacion estan representados mediante iconos de color:

= : completamente sincronizado.

= Rojo: desincronizado o con errores.

Superpuestos a estos estados de sincronizacion se encuentran unas badges de distintos colores encargadas de
mostrar lo siguiente:

= All: El paquete en cuestion forma parte de una configuracion global para todas las flotas.

91

B.3. FILTROS Y BUSQUEDAS APENDICE B. MANUAL DE USUARIO

= Fleet: El paquete en cuestion forma parte de una configuracion realizada para una la flota seleccionada
en concreto.

= Particular: El paquete en cuestion forma parte de una configuracion particular para una cantidad selec-
cionada de buses en concreto.

B.3 Filtros y busquedas

El usuario puede refinar los resultados mediante los siguientes filtros:

Por tipo de contenido (Multimedia, Configuracion...).

Por estado de sincronizacion.

Por fecha de ultima actualizacion.

Por identificador del vehiculo.

Los filtros se pueden combinar y aplicar dindAmicamente. Si no hay resultados para los filtros seleccionados,
se muestra un mensaje informativo y una tabla vacia.

B.4 Consulta detallada por vehiculo

Pasando el raton por cualquier estado de sincronizacion en cualquier fila de la tabla, se muestra un tooltip
del vehiculo seleccionado. En ella se muestran:

= El tipo de configuracion del paquete (All, Fleet, Particular).
= Las versiones esperadas de cada tipo de contenido.

= Las versiones actualmente detectadas en el OBU.

Esta vista permite realizar diagnosticos mas precisos en caso de desincronizacion.

B.5 Visualizacion de KPIs

En la parte superior del panel se muestran indicadores globales de la flota:

= Porcentaje de vehiculos totalmente sincronizados.
= Numero total de vehiculos desincronizados.

= Numero total de vehiculos sincronizados.

Estos KPIs se actualizan automaticamente cada vez que se aplican filtros o cambia la consulta.

92

APENDICE B. MANUAL DE USUARIO B.6. USABILIDAD

B.6 Usabilidad

Este modulo esta pensado para facilitar al operador técnico la comprobacion del estado de actualizacion de
los vehiculos antes de su despliegue, especialmente tras una nueva campaina de contenidos. A continuacion, se
describe un ejemplo practico de uso:

1. El operador accede al SIU e ingresa al panel de versionado desde el ment.
2. En el panel principal, consulta la tabla con el listado de vehiculos y su estado de sincronizacion.

3. Aplica los filtros que considere para centrarse en los casos a analizar, como por ejemplo los buses a
desplegar al dia siguiente.

4. El operador analiza de forma centralizada el estado de los vehiculos pendientes de despliegue, facilitando
una decision rapida sobre su aptitud para salir a ruta. En caso de detectar vehiculos desincronizados,
el operador puede consultar el fooltip con las versiones detalladas o examinar los paquetes concretos
que presentan inconsistencias. Esta informacion le permite valorar si las desincronizaciones afectan a
contenidos criticos o si, pese a ciertas discrepancias, el vehiculo puede operar con normalidad.

Este flujo permite asegurar, de forma sencilla y visual, que todos los vehiculos cumplen con las condiciones

necesarias antes de salir a operacion, reduciendo riesgos y evitando errores humanos en las comprobaciones
manuales habituales.

93

B.6. USABILIDAD APENDICE B. MANUAL DE USUARIO

94

Bibliografia

[1] GMV, Innovating Solutions, mar. de 2025. direccion: https://www.gmv.com/es-eg (visitado
26-03-2025).

[2] K. Schwaber y J. Sutherland, The Scrum Guide. direccion: https://scrumguides.org/scrum-
guide.html (visitado 31-03-2025).

[3] K. e.a. Beck, Manifesto for Agile Software Development. direccion: https://agilemanifesto.
org (visitado 31-03-2025).

[4] Atlassian, Los tres pilares del scrum: conoce los principios fundamentales del scrum. direccion: https:
//www.atlassian.com/es/agile/project-management/3-pillars-scrum (visita-
do 07-04-2025).

[5] jblanco, Scrum y Artefactos: Aumenta tu productividad y logra tus objetivos. direccion: https: / /
www.plainconcepts.com/es/scrum—-que—es (visitado 08-04-2025).

[6] Talent.com, Salario medio para Programador Junior. direccién: https : / /es . talent . com/
salary?job=programador+junion (visitado 09-04-2025).

[7] TECFYS, Vida media de un ordenador. direccion: https://tecfys.com/blog/post/23-
conoces-la-vida-media-de-tu-ordenadon (visitado 09-04-2025).

[8] Lenovo, ThinkPad Pl4s Gen 4 (14intel). direccion: https : / / www . lenovo . com/ es /es /
p/ laptops / thinkpad/ thinkpadp / thinkpad-plds-gen-4-14-inch-intel/
1enl101t006320rgRef=https%$253A%252F%252Fwww.google.com%252F&srsltid=
AfmBOogNGEnfxbg2UocC4wDy4a3cCdlgDAISIPTyUVZE DdvMdx2iEp2 (visitado 09-04-2025).

[9] Microsoft, Microsoft 365 para empresas | Pequeas empresas | Microsoft 365. direccion: https: //
www . microsoft .com/es-es/microsoft-365/business# layout —container —
uid4d2d (visitado 09-04-2025).

[10] Microsoft, Opciones de precios y compra | Visual Studio. direccién: https : / /visualstudio .
microsoft.com/es/vs/pricing/?tab=businessg (visitado 09-04-2025).

[11] Astah, Pricing for Individual Licenses of Astah Software - Astah. direccion: https://astah.net/
pricing/individuall (visitado 09-04-2025).

[12] Kev Zettler, ;Qu es un sistema distribuido? | Atlassian. direccion: https://www.atlassian.com/
es/microservices/microservices—-architecture/distributed-architecture
(visitado 09-04-2025).

[13] José Manuel Ortega, La arquitectura de los Sistemas de Transporte Inteligente ITS. direccion: http :
/ / www . congresodevialidad . org . ar /congreso2014 /conferencias/7-1ITS -
Ortega-Arquitectura-ITS.pdf (visitado 21-04-2025).

[14] Sara Lopez Mora, ;Qu son las Single-Page Application (SPA)? El desarrollo elegido por Gmail y Linke-
dIn. direccion: https://digital55.com/blog/que-son-single-page—-application—
spa-desarrollo-elegido-por-gmail-linkedin (visitado 24-04-2025).

[15] INIT. direccion: https://www.initse.com/ende/home (visitado 24-04-2025).

95

https://www.gmv.com/es-es
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://agilemanifesto.org
https://agilemanifesto.org
https://www.atlassian.com/es/agile/project-management/3-pillars-scrum
https://www.atlassian.com/es/agile/project-management/3-pillars-scrum
https://www.plainconcepts.com/es/scrum-que-es
https://www.plainconcepts.com/es/scrum-que-es
https://es.talent.com/salary?job=programador+junior
https://es.talent.com/salary?job=programador+junior
https://tecfys.com/blog/post/23-conoces-la-vida-media-de-tu-ordenador
https://tecfys.com/blog/post/23-conoces-la-vida-media-de-tu-ordenador
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://visualstudio.microsoft.com/es/vs/pricing/?tab=business
https://visualstudio.microsoft.com/es/vs/pricing/?tab=business
https://astah.net/pricing/individual
https://astah.net/pricing/individual
https://www.atlassian.com/es/microservices/microservices-architecture/distributed-architecture
https://www.atlassian.com/es/microservices/microservices-architecture/distributed-architecture
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
https://digital55.com/blog/que-son-single-page-application-spa-desarrollo-elegido-por-gmail-linkedin
https://digital55.com/blog/que-son-single-page-application-spa-desarrollo-elegido-por-gmail-linkedin
https://www.initse.com/ende/home

BIBLIOGRAFIA BIBLIOGRAFIA

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Intelligent Transport Solutions. direccion: https://www. trapezegroup.eu/intelligent -
transport-systems (visitado 24-04-2025).

TransTrack Solutions Group | State of the Art Transit Sofiware. direccion: https: //www.transtracksystems.
net (visitado 24-04-2025).

Singleton. direccion: https://refactoring.guru/es/design-patterns/singleton
(visitado 30-06-2025).

Colaboradores de los proyectos Wikimedia, Facade. direccion: https://es.wikipedia.org/w/
index.php?title=Facade (patr%C3%B3n de dise%C3%Blo) &01did=160853394
(visitado 30-06-2025).

C. G. Almirn, «Patrn de Inyeccin de dependencias - Adictos al trabajo,» direccion: https://adictosaltrabajo
com/2008/01/03/dependency-injector (visitado 30-06-2025).

Strategy. direccion: https : / / refactoring.guru/es/design-patterns/strategy
(visitado 30-06-2025).

Contributors to Wikimedia projects, Scheduled-task pattern - Wikipedia. direccion: https: / /en.
wikipedia.org/w/index.php?title=Scheduled-task pattern&oldid=1023133553
(visitado 30-06-2025).

Template Method. direccion: https : / / reactiveprogramming . io/blog/en/design -
patterns/template-method (visitado 01-07-2025).

96

https://www.trapezegroup.eu/intelligent-transport-systems
https://www.trapezegroup.eu/intelligent-transport-systems
https://www.transtracksystems.net
https://www.transtracksystems.net
https://refactoring.guru/es/design-patterns/singleton
https://es.wikipedia.org/w/index.php?title=Facade_(patr%C3%B3n_de_dise%C3%B1o)&oldid=160853394
https://es.wikipedia.org/w/index.php?title=Facade_(patr%C3%B3n_de_dise%C3%B1o)&oldid=160853394
https://adictosaltrabajo.com/2008/01/03/dependency-injector
https://adictosaltrabajo.com/2008/01/03/dependency-injector
https://refactoring.guru/es/design-patterns/strategy
https://en.wikipedia.org/w/index.php?title=Scheduled-task_pattern&oldid=1023133553
https://en.wikipedia.org/w/index.php?title=Scheduled-task_pattern&oldid=1023133553
https://reactiveprogramming.io/blog/en/design-patterns/template-method
https://reactiveprogramming.io/blog/en/design-patterns/template-method

BIBLIOGRAFIA BIBLIOGRAFIA

97

	Índice de cuadros
	Índice de figuras
	I Objeto, Concepto y Método
	Introducción
	Introducción
	Motivación

	Objetivos y Alcance
	Objetivos
	Objetivos generales
	Objetivos específicos
	Objetivos personales
	Tareas a realizar

	Alcance

	Metodología
	Enfoque de desarrollo
	¿Qué es Scrum?
	Pilares fundamentales de Scrum
	Componentes de Scrum
	Aplicación al Proyecto

	Planificación
	Sprint 0 - 12/03/2025 - 26/03/2025
	Sprint 1 - 26/03/2025 - 08/04/2025
	Sprint 2 - 9/04/2025 - 22/04/2025
	Sprint 3 - 23/04/2025 - 06/05/2025
	Sprint 4 - 07/05/2025 - 20/05/2025
	Sprint 5 - 21/05/2025 - 03/06/2025
	Sprint 6 - 04/06/2025 - 06/07/2025
	Plan de control y Riesgos

	Costes
	Coste humano
	Costes de Hardware
	Costes de Software
	Presupuesto Total

	II Marco Conceptual y Contexto
	Marco Contextual
	Entorno Profesional
	Contexto operativo del proyecto
	Problemática detectada
	Justificación del proyecto

	Marco Conceptual y Tecnológico
	Arquitecturas distribuidas
	Control de versiones en sistemas software
	Transferencia de datos
	Sistemas de transporte inteligente
	Tecnologías utilizadas
	Backend y lógica de negocio
	Frontend
	Modelado y diseño de sistema
	Control de versiones y gestión de tareas
	Pruebas, documentación y validación
	Conclusión

	Soluciones y Estado del Arte
	Introducción
	Soluciones en el ámbito de desarrollo software
	Soluciones en el sector Transporte
	Alternativas internas en GMV
	Justificación de la solución

	III Desarrollo del Sistema
	Análisis
	Flujo actual del sistema
	Identificación de necesidades
	Integración en sistema complejo existente
	Características del sistema a tener en cuenta:
	Equilibrio entre integración y viabilidad:

	Requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Diseño
	Alternativas de arquitectura evaluadas
	Microservicio Independiente
	Módulo integrado en backend existente
	Módulo reutilizable integrado con separación por capas
	Arquitectura elegida

	Diseño
	Patrones de Diseño aplicados
	Singleton
	Fachada
	Inyección de dependencias
	Strategy
	Scheduled Task
	Template

	Modelado de datos
	Diseño de InfoVersionService
	Descripción General
	Arquitectura del Microservicio
	Dependencias entre submódulos
	Diagrama de clases entre capas
	Diagramas de Secuencia
	Consideraciones de extensibilidad, mantenibilidad y escalabilidad
	Resumen de la arquitectura de InfoVersionService

	Interfaz de Usuario
	Estructura de la interfaz

	Implementación
	Pautas de Estilo
	InfoVersionService
	Acceso a fuentes de datos
	Modelo de acceso a datos
	Integración con ArchivosOBU
	Integración con Transfer Manager

	Exposición de datos - SoaBasicContentManager
	Frontend
	Descripción de la interfaz

	Gestión de errores y validaciones
	Integración continua y gestión del código

	Pruebas
	Pautas de Estilo
	Pruebas Unitarias
	Cobertura de la aplicación

	Pruebas de Integración
	Pruebas funcionales
	CU1 - Registrar versiones
	CU2 - Comparación de versiones generales
	CU3 – Consulta específica de versiones
	CU4 – Consulta de KPIs de la flota
	Conclusión

	Pruebas de rendimiento
	Validación con usuarios finales

	IV Conclusiones
	Conclusiones y trabajo futuro
	Introducción
	Aportaciones realizadas
	Valoración del resultado
	Mejoras a futuro
	Objetivos personales

	Appendices
	Apéndice Manual de Instalación
	Requisitos previos
	Instalación del servicio InfoVersionService
	Compilación
	Instalación como servicio de Windows

	Base de datos

	Apéndice Manual de Usuario
	Acceso al módulo
	Vista general
	Filtros y búsquedas
	Consulta detallada por vehículo
	Visualización de KPIs
	Usabilidad

	Bibliografía

