
Escuela de Ingeniería Informática
TRABAJO FIN DE GRADO

Grado en Ingeniería Informática
Mención en Ingeniería de Software

Sistema de trazabilidad de versiones de
contenido en flotas embarcadas de transporte

inteligente

Autor: Diego Valladolid Clemente

Escuela de Ingeniería Informática
TRABAJO FIN DE GRADO

Grado en Ingeniería Informática
Mención en Ingeniería de Software

Sistema de trazabilidad de versiones de
contenido en flotas embarcadas de transporte

inteligente

Autor: Diego Valladolid Clemente
Tutor: Valentín Cardeñoso Payo

Tutor de Empresa: Álvaro Gamarra Martín

A mi madre, que me ha criado sola y me ha apoyado incondicionalmente.

Gracias por ser mi pilar y apoyarme en mi camino.

Agradecimientos

Quiero expresar mi más profundo agradecimiento a todas las personas que han hecho posible la realización
de este proyecto.

En primer lugar, agradezco a mis tutores, tanto de la empresa en la que se ha realizado este proyecto como el
encargado por parte de la universidad, que han compartido conmigo su experiencia, conocimiento y paciencia.

También deseo reconocer el apoyo incondicional de mis compañeros de trabajo en GMV. Su profesiona-
lidad, colaboración y entusiasmo han contribuido a crear un ambiente de trabajo estimulante y a impulsar el
desarrollo de este proyecto. La sinergia y el compromiso que demuestran día a día han sido una fuente constan-
te de inspiración y ayuda.

Del mismo modo, quiero agradecer a mi grupo de amigos, quienes han estado a mi lado en los momentos
buenos y en los difíciles. Su cercanía, alegría y apoyo constante me han dado fuerza para continuar, recordán-
dome siempre la importancia de compartir el camino con quienes te hacen sentir en casa. Gracias por las risas,
los consejos y por estar ahí siempre.

Finalmente, no podría dejar de agradecer a mi familia, especialmente a mi madre, cuyo amor, sacrificio y
apoyo inquebrantable me han impulsado a seguir adelante en cada etapa de mi formación. Su ejemplo y fortaleza
han sido mi mayor motivación.

A todos vosotros, muchas gracias por vuestra confianza y por acompañarme en este recorrido.

Resumen

En los sistemas de transporte inteligente, el despliegue correcto de contenidos como audios, anuncios, pa-
radas, líneas, etc, a los equipos embarcados (OBU) de los buses, es esencial para garantizar el funcionamiento
coordinado y actualizado de toda la flota. Actualmente, las revisiones de versiones instaladas en los vehículos
se realizan de forma manual, lo cual implica un alto consumo de tiempo, una fuerte dependencia de comproba-
ciones individuales y una elevada probabilidad de error humano.

Este Trabajo Fin de Grado surge con el objetivo de automatizar el proceso de verificación de actualizaciones,
permitiendo identificar de manera precisa qué vehículos han recibido correctamente los contenidos y cuáles no,
antes de autorizar un despliegue operativo. De esta forma, se mejora significativamente la trazabilidad y se
reduce el riesgo de que un vehículo entre en servicio con versiones obsoletas o inconsistentes.

La solución propuesta se desarrolla sobre una arquitectura distribuida ya existente, en la que participan
múltiples componentes de un sistema ya establecido, siendo algunos ejemplo, un gestor de contenidos, cono-
cido como sistema de información al usuario (SIU), un generador de archivos (ArchivosOBU) y un sistema
de transferencia (Transfer Manager). El sistema implementado realiza una comparación automatizada entre las
versiones esperadas (generadas tras un cambio de contenido) y las versiones reales detectadas en cada equipo,
a partir de unos archivos que se van generando a lo largo de todo el workflow de transferencia.

Adicionalmente, este TFG también aborda uno de los desafíos comunes en Ingeniería del Software: la in-
tegración de nuevas funcionalidades en sistemas complejos y maduros ya desplegados. En este contexto, se
estudian distintas alternativas de arquitectura, se analizan sus implicaciones técnicas y se justifica la elección
final de la solución propuesta, considerando factores como la mantenibilidad, escalabilidad y la evolución futura
del sistema.

El trabajo incluye el análisis del sistema actual, el diseño e implementación de la lógica de verificación, el
modelado de datos asociado, y el desarrollo de una interfaz de usuario orientada a operadores técnicos para la
consulta del estado de actualización por vehículo.

El resultado final es una herramienta de trazabilidad que expone esta información a través de una interfaz
técnica, accesible por operadores, y que permite controlar de forma visual y automatizada el estado de sincroni-
zación de cada vehículo. Este trabajo abarca el análisis del problema actual, el diseño de la solución software,
la implementación de la lógica de verificación y la propuesta de una interfaz funcional de consulta orientada a
entornos reales de operación.

Abstract

In intelligent transportation systems, the correct deployment of content to on-board units (OBUs) is essential
to ensure the coordinated and up-to-date operation of the entire fleet. Currently, the verification of content
versions installed on vehicles is performedmanually, which implies a high operational cost, a strong dependency
on individual checks, and an increased risk of human error.

This Bachelor’s Thesis aims to automate the update verification process, enabling precise identification of
which vehicles have successfully received the updated content before authorizing them for operational deploy-
ment. This significantly improves system traceability and reduces the risk of vehicles entering service with
outdated or inconsistent versions.

The proposed solution is built upon an existing distributed architecture composed of several components,
such as the contentmanagement system (SIU), a file generator (ArchivosOBU), and the transfer system (Transfer
Manager). The implemented system performs an automated comparison between the expected versions (gene-
rated after a content change) and the actual versions detected on each OBU, based on a set of files produced
throughout the update workflow.

Additionally, this project addresses a common challenge in Software Engineering: integrating new fun-
ctionality into complex, mature, and already deployed systems. Various architectural alternatives are analyzed,
and the chosen solution is justified based on key factors such as maintainability, scalability, and future system
evolution.

The work includes the analysis of the current system, the design and implementation of the version verifi-
cation logic, data modeling, and the development of a technical interface for operators to monitor the update
status of each vehicle. The final result is a traceability tool that provides a clear and automated view of the
synchronization status of the fleet, adapted to the requirements of real operational environments.

Índice general

Índice de cuadros V

Índice de figuras VII

I Objeto, Concepto y Método 1

1. Introducción 3
1.1. Introducción . 3
1.2. Motivación . 4

2. Objetivos y Alcance 5
2.1. Objetivos . 5

2.1.1. Objetivos generales . 5
2.1.2. Objetivos específicos . 5
2.1.3. Objetivos personales . 5
2.1.4. Tareas a realizar . 5

2.2. Alcance . 6

3. Metodología 7
3.1. Enfoque de desarrollo . 7

3.1.1. ¿Qué es Scrum? . 7
3.1.2. Pilares fundamentales de Scrum . 7
3.1.3. Componentes de Scrum . 8
3.1.4. Aplicación al Proyecto . 10

3.2. Planificación . 10
3.2.1. Sprint 0 - 12/03/2025 - 26/03/2025 . 10
3.2.2. Sprint 1 - 26/03/2025 - 08/04/2025 . 11
3.2.3. Sprint 2 - 9/04/2025 - 22/04/2025 . 11
3.2.4. Sprint 3 - 23/04/2025 - 06/05/2025 . 11
3.2.5. Sprint 4 - 07/05/2025 - 20/05/2025 . 12
3.2.6. Sprint 5 - 21/05/2025 - 03/06/2025 . 12
3.2.7. Sprint 6 - 04/06/2025 - 06/07/2025 . 13
3.2.8. Plan de control y Riesgos . 13

3.3. Costes . 16
3.3.1. Coste humano . 16
3.3.2. Costes de Hardware . 16
3.3.3. Costes de Software . 16
3.3.4. Presupuesto Total . 16

i

II Marco Conceptual y Contexto 17

4. Marco Contextual 19
4.1. Entorno Profesional . 19
4.2. Contexto operativo del proyecto . 19
4.3. Problemática detectada . 20
4.4. Justificación del proyecto . 20

5. Marco Conceptual y Tecnológico 21
5.1. Arquitecturas distribuidas . 21
5.2. Control de versiones en sistemas software . 21
5.3. Transferencia de datos . 22
5.4. Sistemas de transporte inteligente . 22
5.5. Tecnologías utilizadas . 23

5.5.1. Backend y lógica de negocio . 23
5.5.2. Frontend . 23
5.5.3. Modelado y diseño de sistema . 23
5.5.4. Control de versiones y gestión de tareas . 24
5.5.5. Pruebas, documentación y validación . 24
5.5.6. Conclusión . 24

6. Soluciones y Estado del Arte 25
6.1. Introducción . 25
6.2. Soluciones en el ámbito de desarrollo software . 25
6.3. Soluciones en el sector Transporte . 25
6.4. Alternativas internas en GMV . 26
6.5. Justificación de la solución . 26

III Desarrollo del Sistema 27

7. Análisis 29
7.1. Flujo actual del sistema . 29
7.2. Identificación de necesidades . 30
7.3. Integración en sistema complejo existente . 31

7.3.1. Características del sistema a tener en cuenta: . 31
7.3.2. Equilibrio entre integración y viabilidad: . 32

7.4. Requisitos . 33
7.4.1. Requisitos funcionales . 33
7.4.2. Requisitos no funcionales . 33

8. Diseño 39
8.1. Alternativas de arquitectura evaluadas . 39

8.1.1. Microservicio Independiente . 39
8.1.2. Módulo integrado en backend existente . 40
8.1.3. Módulo reutilizable integrado con separación por capas 40
8.1.4. Arquitectura elegida . 40

8.2. Diseño . 41
8.3. Patrones de Diseño aplicados . 41

8.3.1. Singleton . 42
8.3.2. Fachada . 42

ii

8.3.3. Inyección de dependencias . 42
8.3.4. Strategy . 43
8.3.5. Scheduled Task . 44
8.3.6. Template . 44

8.4. Modelado de datos . 45
8.5. Diseño de InfoVersionService . 47

8.5.1. Descripción General . 47
8.5.2. Arquitectura del Microservicio . 48
8.5.3. Dependencias entre submódulos . 50
8.5.4. Diagrama de clases entre capas . 53
8.5.5. Diagramas de Secuencia . 56
8.5.6. Consideraciones de extensibilidad, mantenibilidad y escalabilidad 57
8.5.7. Resumen de la arquitectura de InfoVersionService 61

8.6. Interfaz de Usuario . 61
8.6.1. Estructura de la interfaz . 61

9. Implementación 63
9.1. Pautas de Estilo . 63
9.2. InfoVersionService . 64
9.3. Acceso a fuentes de datos . 65

9.3.1. Modelo de acceso a datos . 65
9.3.2. Integración con ArchivosOBU . 65
9.3.3. Integración con Transfer Manager . 65

9.4. Exposición de datos - SoaBasicContentManager . 66
9.5. Frontend . 66

9.5.1. Descripción de la interfaz . 67
9.6. Gestión de errores y validaciones . 69
9.7. Integración continua y gestión del código . 69

10. Pruebas 71
10.1. Pautas de Estilo . 71
10.2. Pruebas Unitarias . 72

10.2.1. Cobertura de la aplicación . 73
10.3. Pruebas de Integración . 74
10.4. Pruebas funcionales . 76

10.4.1. CU1 - Registrar versiones . 76
10.4.2. CU2 - Comparación de versiones generales . 76
10.4.3. CU3 – Consulta específica de versiones . 76
10.4.4. CU4 – Consulta de KPIs de la flota . 77
10.4.5. Conclusión . 77

10.5. Pruebas de rendimiento . 77
10.6. Validación con usuarios finales . 78

IV Conclusiones 79

11. Conclusiones y trabajo futuro 81
11.1. Introducción . 81
11.2. Aportaciones realizadas . 81
11.3. Valoración del resultado . 82
11.4. Mejoras a futuro . 82

iii

11.5. Objetivos personales . 83

Appendices 85

Apéndice A. Manual de Instalación 87
A.1. Requisitos previos . 87
A.2. Instalación del servicio InfoVersionService . 87

A.2.1. Compilación . 87
A.2.2. Instalación como servicio de Windows . 88

A.3. Base de datos . 88

Apéndice B. Manual de Usuario 91
B.1. Acceso al módulo . 91
B.2. Vista general . 91
B.3. Filtros y búsquedas . 92
B.4. Consulta detallada por vehículo . 92
B.5. Visualización de KPIs . 92
B.6. Usabilidad . 93

Bibliografía 95

iv

Índice de cuadros

3.1. Resumen del Sprint 0 . 10
3.2. Resumen del Sprint 1 . 11
3.3. Resumen del Sprint 2 . 11
3.4. Resumen del Sprint 3 . 12
3.5. Resumen del Sprint 4 . 12
3.6. Resumen del Sprint 5 . 13
3.7. Resumen del Sprint 6 . 13
3.8. Resumen de todos los sprints . 13
3.9. Exposición al Riesgo . 14
3.10. R01 - Cambios en los Requisitos . 14
3.11. R02 - Estudio de asignaturas pendientes . 14
3.12. R03 - Falta de experiencia con herramientas técnicas . 14
3.13. R04 - Integración técnica más compleja de lo esperado . 15
3.14. R05 - Pérdida de datos o archivos del proyecto . 15
3.15. R06 - Problemas de salud . 15
3.16. Resumen del presupuesto del proyecto . 16

6.1. Carencia identificada y Solución propuesta . 26

7.1. Identificación de necesidades . 31
7.2. CU1 - Registrar versiones generadas . 35
7.3. CU2 - Comparar Versiones . 36
7.4. CU3 - Consulta específica de versiones . 37
7.5. CU4 - Consulta de KPIs de la flota . 37

10.1. Coverage del servicio InfoVersionService . 73
10.2. Trazabilidad entre requisitos funcionales y pruebas realizadas 77

v

vi

Índice de figuras

3.1. Pilares de Scrum . 8
3.2. Roles de Scrum . 8
3.3. Ciclo de eventos y artefactos Scrum[5] . 9

7.1. Flujo actual de la gestion de contenidos . 30
7.2. Diagrama de casos de uso . 33

8.1. Singleton . 42
8.2. Fachada . 43
8.3. Inyección de Dependencias . 43
8.4. Strategy . 44
8.5. Template . 45
8.6. Modelado de Datos . 47
8.7. Diagrama de Paquetes . 48
8.8. SubPaquetes Architecture . 49
8.9. SubPaquetes Application . 50
8.10. Dependencias entre capas . 52
8.11. Diagrama de Secuencia ProcessFolder . 58
8.12. Diagrama de Secuencia ProcessPackage . 59
8.13. Diagrama de Secuencia InsertFileDetails . 60
8.14. Diagrama de Secuencia CleanOldRecords . 60

9.1. Frontend de la nueva funcionalidad . 68

10.1. Paquetes resultado de las pruebas de integracion . 75
10.2. Archivos resultado de las pruebas de integracion . 75

vii

viii

Parte I

Objeto, Concepto y Método

1

Capítulo 1

Introducción

1.1 Introducción
Los sistemas de transporte inteligente han evolucionado significativamente en los últimos años, integrando

tecnologías de información, automatización y comunicaciones para mejorar la eficiencia operativa, la seguridad
y la experiencia del usuario. Una parte esencial de estos sistemas es la correcta distribución y sincronización de
contenidos, como configuraciones, archivos multimedia o datos operativos entre otros, en los equipos embar-
cados (OBU, On-Board Units) que tiene cada vehículo.

En el contexto de estos sistemas, los procesos de actualización de contenidos a bordo representan un com-
ponente crítico para asegurar que todos los vehículos son desplegados bajo las mismas condiciones, con la
información más reciente y coherente. Sin embargo, en muchas implementaciones reales, el seguimiento del
estado de estas actualizaciones aún se realiza de forma manual, lo que introduce riesgos operativos, posibles
errores humanos y una falta de visibilidad en tiempo real sobre el estado de la flota.

Este Trabajo Fin de Grado se enmarca en ese contexto, abordando el diseño e implementación de una solu-
ción software que permita automatizar la verificación del estado de actualización de contenidos en los vehículos
de una red de transporte inteligente. El sistema desarrollado proporcionará trazabilidad completa de versiones,
permitiendo identificar con precisión qué vehículos han recibido correctamente las actualizaciones y cuáles no,
facilitando así una operación más segura y eficiente.

3

1.2. MOTIVACIÓN CAPÍTULO 1. INTRODUCCIÓN

1.2 Motivación
Este Trabajo de Fin de Grado surge en el marco de las prácticas profesionales realizadas en GMV[1], una

empresa reconocida por sus soluciones tecnológicas en sectores como el transporte, el espacio, la defensa y la
ciberseguridad. En el caso de la sede de Valladolid, el enfoque principal es el Transporte Inteligente, ofreciendo
servicios a nivel tanto nacional como internacional. Durante el periodo de prácticas, se identificó la necesidad
de optimizar el proceso de actualización de contenidos en las flotas de transporte, lo que motivó la elaboración
de este proyecto.

Actualmente, en el sistema sobre el que se desarrolla este proyecto, las comprobaciones sobre si un vehículo
ha recibido o no una actualización se realizan de formamanual. Esto implica inspeccionar directorios de archivos
generados por distintas herramientas (ArchivosOBU, Transfer Manager) y cruzar información de manera no
automatizada, lo que genera ineficiencias y un elevado margen de error.

Esta situación es especialmente crítica cuando se planifica un despliegue. Por ejemplo, si se lanza una nueva
campaña con contenidos actualizados (como anuncios, información al pasajero o configuraciones de red), y un
subconjunto de vehículos no ha recibido correctamente los archivos, esos autobuses pueden comportarse de
forma diferente al resto: mostrar información incorrecta en los monitores, emitir mensajes obsoletos o incluso
fallar en tareas automatizadas. Esto no solo compromete la calidad del servicio, sino que también dificulta la
detección y resolución de errores, ya que actualmente no se dispone de una visión centralizada del estado real
de cada vehículo.

La motivación principal de este proyecto es, por tanto, automatizar este proceso de verificación, incorporan-
do una solución que lea, interprete y relacione los datos generados por los distintos componentes del sistema, y
exponga de forma clara y precisa el estado de actualización de cada vehículo. De esta manera, se podrá garantizar
que la flota se encuentra en condiciones homogéneas antes de entrar en servicio.

Desde el punto de vista académico y formativo, este proyecto permite aplicar de manera práctica cono-
cimientos en arquitectura software, integración de sistemas distribuidos, desarrollo backend y frontend, op-
timización de procesos por computación paralela, así como metodologías de análisis y diseño en un entorno
real, complejo y en producción. El resultado es una solución software que proporciona trazabilidad completa
de versiones, permitiendo identificar con precisión qué vehículos han recibido correctamente los contenidos y
facilitando así una operación más segura, eficiente y controlada.

4

Capítulo 2

Objetivos y Alcance

En esta sección estarán expuestos los objetivos, tareas y el alcance de este proyecto

2.1 Objetivos

2.1.1 Objetivos generales

El objetivo principal de este Trabajo Fin de Grado es diseñar e implementar una solución software que
permita automatizar el proceso de verificación de actualizaciones de contenido en equipos embarcados (OBU)
dentro de una red de transporte inteligente. La solución debe ofrecer trazabilidad de versiones, integrarse con
los sistemas existentes (ArchivosOBU, Transfer Manager, Gestor de Contenidos) y proporcionar una interfaz
clara para la consulta del estado de actualización por vehículo.

2.1.2 Objetivos específicos

Mejorar la eficiencia operativa en la gestión de actualizaciones dentro del Gestor de Contenidos de GMV.

Reducir la necesidad de comprobaciones manuales, optimizando el proceso de despliegue de los equipos.

2.1.3 Objetivos personales

Aplicar los conocimientos adquiridos a lo largo del grado en un entorno real de desarrollo

Familiarizarme con las herramientas utilizadas en GMV para el control de versiones y la gestión de pro-
yectos

Mejorar habilidades de documentación, análisis funcional y validación.

Adquirir experiencia en la resolución de problemas e implementación de nuevas funcionalidades en en-
tornos con sistemas complejos ya desplegados.

Profundizar y aprender las tecnologías utilizadas en GMV (C#, React, Servicios de Windows, IIS, etc)

2.1.4 Tareas a realizar

Definir el trabajo y elaborar una planificación

• Establecer el alcance del proyecto, definiendo los objetivos generales y específicos.

5

2.2. ALCANCE CAPÍTULO 2. OBJETIVOS Y ALCANCE

• Asignar los recursos necesarios y definir las herramientas a utilizar durante el desarrollo.

Estudiar el problema

• Analizar el sistema actual de actualización de contenidos en flotas de transporte y detectar sus prin-
cipales limitaciones.

• Definir los requisitos funcionales y no funcionales del sistema de trazabilidad

Desarrollar nuestra solución

• Evaluar alternativas arquitectónicas para la integración de la solución.
• Diseñar la arquitectura lógica y técnica del sistema.
• Modelar los datos necesarios para realizar la comparación entre las versiones esperadas y las que
realmente tiene cada equipo

• Desarrollar un backend capaz de gestionar dicha información de forma estructurada
• Diseñar una interfaz de usuario que se integre con la del Gestor de Contenidos actual y sea sencilla
y accesible para los operadores técnicos.

Probarla o realizar experimentos con ella

• Definir y ejecutar escenarios de prueba que simulen diversas condiciones operativas, incluyendo ac-
tualizaciones exitosas, incompletas o fallidas en dispositivos con diferentes versiones y topologías.

• Recoger y analizar feedback de usuarios finales (clientes y personal técnico) a través de pruebas
de usabilidad, para iterar mejoras en la funcionalidad y la interfaz gráfica. Por motivos de tiempo
y alcance no se consiguió iterar las mejoras de funcionalidad e interfaz aunque sí se recogió el
feedback mediante pruebas de validación.

2.2 Alcance
Este proyecto se centra en el desarrollo de una solución específica para el seguimiento y verificación del

estado de versiones de contenido en equipos embarcados dentro de un entorno de transporte inteligente.
El alcance del TFG incluye:

El análisis y diseño de la arquitectura de trazabilidad.

La implementación de la lógica de comparación de versiones.

La creación de una interfaz orientada a operadores técnicos.

La integración con las herramientas existentes (ArchivosOBU y Transfer Manager) mediante el análisis
de archivos generados por estos.

Queda fuera del alcance:

La modificación directa del sistema de distribución (Transfer Manager)

La gestión de otros tipos de contenido que no se reflejen en los archivos generados automáticamente.

6

Capítulo 3

Metodología

3.1 Enfoque de desarrollo

Para el desarrollo del presente Trabajo Fin de Grado se ha adoptado el marco de trabajo Scrum[2], una
metodología ágil[3] ampliamente utilizada en la industria del software, especialmente en entornos donde se
requiere flexibilidad, colaboración continua y entregas incrementales. Dado que este proyecto se ha desarrollado
en el contexto de unas prácticas profesionales en una empresa tecnológica, y en coordinación con un equipo real,
la aplicación de Scrum ha permitido alinear el trabajo con las dinámicas y herramientas del entorno profesional.

3.1.1 ¿Qué es Scrum?

Scrum es un marco de trabajo ágil orientado al desarrollo iterativo e incremental de productos complejos.
Fue inicialmente planteado para proyectos de software, pero hoy en día se aplica en múltiples disciplinas.

Su principal objetivo es entregar valor de forma continua, a través de ciclos cortos de desarrollo llamados
sprints, que en el caso de GMV tienen una duración de una a tres semanas, que permiten inspeccionar y adaptar
el trabajo de manera constante.

Este enfoque es especialmente útil en entornos donde los requisitos pueden evolucionar con el tiempo o no
están completamente definidos desde el inicio, permitiendo que los equipos respondan a cambios de forma ágil
y eficaz.

Scrum no impone una metodología rígida, sino que proporciona roles, eventos y artefactos que ayudan a
estructurar el trabajo de forma colaborativa, transparente y adaptable.

Se basa en tres pilares fundamentales que garantizan la transparencia el control del progreso y la mejora
continua.

3.1.2 Pilares fundamentales de Scrum

Scrum se sustenta en tres pilares fundamentales[4] que permiten mantener el control, la transparencia y la
mejora continua del proceso

Transparencia: Todos los aspectos significativos del proceso deben ser visibles para quienes gestionan
los resultados. Todos los artefactos generados deben estar accesibles y ser comprensibles para todo el
equipo. Esto garantiza una visión compartida del progreso y del producto.

Inspección: El equipo debe inspeccionar regularmente el progreso hacia el objetivo final con el fin de
detectar desviaciones y corregirlas de forma temprana.

7

3.1. ENFOQUE DE DESARROLLO CAPÍTULO 3. METODOLOGÍA

Adaptación: Cuando se detectan desviaciones relevantes, el equipo debe estar preparado para ajustar su
forma de trabajar, sus tareas o incluso el alcance. Esta capacidad de adaptación constante es lo que permite
a Scrum responder a entornos cambiantes.

Figura 3.1: Pilares de Scrum

3.1.3 Componentes de Scrum

Scrum está compuesto por roles, eventos y artefactos, que estructuran todo el trabajo del equipo y promueven
la entrega continua de valor.

Roles

Hay tres roles principales distinguibles:

Product Owner: es el responsable de maximizar el valor del producto. Gestiona el Product Backlog y
prioriza las funcionalidades según el valor para el cliente.

Scrum Master: se encarga de asegurarse de la aplicación de las prácticas Scrum, eliminando impedi-
mentos y ayudando al equipo a mejorar sus procesos. También es el responsable de ser el comunicador
entre el equipo y el cliente.

Equipo de desarrollo: es un grupo multidisciplinar el cual se encarga de convertir los elementos del
Sprint Backlog en incrementos funcionales.

Figura 3.2: Roles de Scrum

8

CAPÍTULO 3. METODOLOGÍA 3.1. ENFOQUE DE DESARROLLO

Eventos

Sprint: es un periodo de tiempo fijo (normalmente entre 1 y 3 semanas en GMV) en el que se desarrolla
un incremento del producto. Contiene a todos los demás eventos y siempre comienza un nuevo sprint
inmediatamente después de finalizar el anterior. A lo largo del sprint los requisitos quedan congelados y
no se pueden cambiar.

Sprint Planning: se definen los objetivos del sprint y qué tareas del Product Backlog se abordarán.

Daily Scrum: reunión diaria para inspeccionar el progreso, detectar bloqueos y coordinarse con el resto
del equipo. Suele durar un máximo de 15 minutos y siempre se realiza a la misma hora y en el mismo
lugar. Su principal objetivo es mejorar la comunicación y promover la toma de decisiones eliminando por
ende la necesidad de otras reuniones

Sprint Review: al final del Sprint, el equipo presenta todo lo que se ha realizado y recibe feedback al
respecto.

Sprint Retrospective: es una sesión interna para reflexionar y proponer mejoras en el proceso. Este
evento concluye el sprint actual.

Artefactos

Product Backlog: es una lista priorizada de todo lo que se desea incluir en el producto final. Es dinámica
y está en continua evolución. El responsable de este artefacto es el Product Owner. El objetivo que se
persigue es llamado el Product Goal, que hace referencia al estado final o futuro del producto al que se
quiere llegar.

Sprint Backlog: es el subconjunto del Product Backlog seleccionado para el sprint actual, junto con el
plan desarrollado para entregar el incremento. Los principales responsables de realizar este trabajo son
los desarrolladores. Es una representación del Sprint Goal, que es el objetivo que se ha establecido para
el sprint actual.

Incremento: Es el resultado del trabajo realizado a lo largo de un sprint. Cada incremento es aditivo a
todos los anteriores, fusionandose para acercarse al Product Goal. También existe la posibilidad de que
se generen múltiples incrementos en un único sprint.

Figura 3.3: Ciclo de eventos y artefactos Scrum[5]

9

3.2. PLANIFICACIÓN CAPÍTULO 3. METODOLOGÍA

3.1.4 Aplicación al Proyecto

En este TFG, Scrum se ha aplicado de forma adaptada al contexto real de prácticas en empresa, trabajando
con un equipo profesional que ya sigue esta metodología.

El tutor de la empresa tomará tanto el papel de Scrum Master como el de Product Owner. Por otro lado,
el estudiante tendrá el papel del equipo de desarrollo, pues será el encargado de hacer todo el desarrollo
e implementación propuesto.

Los Sprints se han definido con un máximo de duración de dos semanas, cada uno de ellos con objetivos
claros definidos. Por ejemplo, análisis de requisitos, diseño, desarrollo del backend, etc.

Se ha participado en reuniones diarias (Daily Scrums) para compartir los avances y resolver bloqueos.

Se usaron herramientas reales del entorno profesional para la planificación, seguimiento y documentación,
como Git (BitBucket), Jira y Confluence. El Product Backlog y el Sprint Backlog han sido gestionados
por el tutor de la empresa mediante la herramienta anteriormente nombrada (Jira).

Al finalizar cada sprint, se realizaron revisiones de entregables con el equipo técnico y se ajustaron los
próximos pasos en función del feedback recibido.

Esta aplicación práctica de Scrum ha permitido que el desarrollo del sistema se adapte a las necesidades reales
del entorno, facilitando la integración progresiva con componentes existentes y favoreciendo un desarrollo ágil,
trazable y flexible.

3.2 Planificación

En esta sección se mostrará las diferentes planificaciones que se han tomado en cada uno de los sprints
realizados. Se han realizado un total de 6 sprints, cada uno de ellos con una duración de 2 semanas aproxima-
damente. Como aclaración, en la parte de documentación de la memoria se incluyen todas aquellas reuniones
que se hayan tenido con el tutor para verificarla.

3.2.1 Sprint 0 - 12/03/2025 - 26/03/2025

Las fases y duración prevista del sprint 0 están representadas en el cuadro 3.1. Este sprint se ha dedicado
principalmente a toda la preparación y configuración de aquellas herramientas y utensilios que van a ser nece-
sarios para la realización del proyecto como por ejemplo Visual Studio, Visual Studio Code, SQL Server y las
aplicaciones internas de GMV como ArchivosObu o el Content Manager.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Configuración de entorno de trabajo 15 h 16 h Completado
Lectura de la documentación inicial
proporcionada por la empresa

4 h 4 h Completado

Adaptación de plantilla del TFG 1 h 1 h Completado
Documentación de la memoria 10 h 9 h 30 min Completado
TOTAL 30 h 30 h 30 min Completado

Cuadro 3.1: Resumen del Sprint 0

10

CAPÍTULO 3. METODOLOGÍA 3.2. PLANIFICACIÓN

3.2.2 Sprint 1 - 26/03/2025 - 08/04/2025

Las fases y duración prevista del sprint 1 están representadas en el cuadro 3.2. Este sprint se centró en
conocer en profundidad el sistema actual de actualizaciones de contenidos en los equipos embarcados. Se revisó
documentación, se identificaron los actores clave (ArchivosOBU, Transfer Manager, SIU) y en base a todo
esto se desarrolló un documento con varias soluciones propuestas para elegir aquella que más beneficiase al
desarrollo.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Revisión de documentación y flujos ac-
tuales

8 h 10 h Completado

Toma de requisitos iniciales 2 h 2 h Completado
Análisis del flujo de actualización 8 h 6h 30 min Completado
Estudio de soluciones posibles 5 h 5h Completado
Primeros diagramas preliminares para
cada solución

5 h 5h Completado

Redacción de documento con solucio-
nes propuestas

5 h 5h Completado

Documentación de la memoria 8 h 9 h Completado
TOTAL 41 h 42 h 30 min Completado

Cuadro 3.2: Resumen del Sprint 1

3.2.3 Sprint 2 - 9/04/2025 - 22/04/2025

Las fases y duración prevista del sprint 2 están representadas en el cuadro 3.3. Durante este sprint se definie-
ron los requisitos funcionales y no funcionales, se evaluaron posibles arquitecturas (microservicio independiente
vs integración). Se definieron los modelos de datos preliminares, los flujos principales de operación y se co-
menzaron los primeros bocetos de interfaz de usuario. El diseño se validó con el equipo de trabajo para asegurar
la viabilidad técnica y su encaje en la arquitectura real del sistema.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Redacción de requisitos funcionales y
no funcionales

4 h 4 h Completado

Evaluación de arquitectura y selección 8 h 8 h Completado
Diseño de arquitectura y flujos 10 h 10 h Completado
Modelado inicial de datos 6 h 5 h Completado
Elaboración de alternativas para la in-
terfaz

6 h 4 h Completado

Documentación de la memoria 10 h 10 h Completado
TOTAL 44 h 41 h Completado

Cuadro 3.3: Resumen del Sprint 2

3.2.4 Sprint 3 - 23/04/2025 - 06/05/2025

Las fases y duración prevista del sprint 3 están representadas en el cuadro 3.4. En este sprint se iniciaron
las tareas de desarrollo del backend, centrándose en la definición del modelo de datos en base de datos y la
creación de las primeras estructuras de código. Se implementó la lógica inicial de comparación de versiones

11

3.2. PLANIFICACIÓN CAPÍTULO 3. METODOLOGÍA

entre contenidos esperados y contenidos actuales. También se comenzó la documentación técnica de las APIs
para su futura integración con el frontend.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Implementación del modelo de datos 4 h 4 h Completado
Estructura inicial del backend 15 h 15 h Completado
Lógica de comparación de versiones 15 h 13 h Completado
Documentación técnica del backend en
Swagger y Confluence

4 h 4 h Completado

Documentación de la memoria 10 h 12 h Completado
TOTAL 48 h 48 h Completado

Cuadro 3.4: Resumen del Sprint 3

3.2.5 Sprint 4 - 07/05/2025 - 20/05/2025

Las fases y duración prevista del sprint 4 están representadas en el cuadro 3.5. Este sprint se dedicó a conectar
el sistema con las fuentes reales de información: los archivos generados por ArchivosOBU (conteniendo las
versiones esperadas por equipo) y los archivos devueltos por los equipos tras la actualización, gestionados
por Transfer Manager (que contienen las versiones actuales instaladas). Se desarrollaron módulos de lectura y
parsing de estos archivos, y se almacenaron los datos extraídos en la base de datos de manera que se pudiese
acceder rápidamente a los datos necesarios para las comprobaciones de versión.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Lectura de archivos generados por Ar-
chivosOBU

5 h 5 h Completado

Lectura de archivos generados por
TransferManager

5 h 5 h Completado

Desarrollo de parsers y almacenamien-
to en la base de datos

10 h 10 h Completado

Integración con el backend Inicial 7 h 4 h Completado
Documentación de la memoria 10 h 17 h Completado
TOTAL 41 h 41 h Completado

Cuadro 3.5: Resumen del Sprint 4

3.2.6 Sprint 5 - 21/05/2025 - 03/06/2025

Las fases y duración prevista del sprint 5 están representadas en el cuadro 3.6. Con la base funcional ya
operativa, este sprint se enfocó en la mejora y optimización del backend. Se refactorizó el código para mejorar
mantenibilidad, se implementaron filtros y se realizaron pruebas funcionales completas. Además, se preparó el
backend para su conexión con la interfaz de usuario, asegurando la disponibilidad de los datos mediante end-
points. Esta fase también incluyó una revisión técnica del sistema en su conjunto y lamejora de la documentación
técnica para facilitar la integración con otros módulos.

12

CAPÍTULO 3. METODOLOGÍA 3.2. PLANIFICACIÓN

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Refactorización del código 6 h 12 h Completado
Implementación de filtros 8 h 4 h Completado
Pruebas funcionales 10 h 13 h Completado
Revisión y mejora de la documentación
técnica

4 h 4 h Completado

Documentación de la memoria 10 h 10 h Completado
TOTAL 38 h 43 h Completado

Cuadro 3.6: Resumen del Sprint 5

3.2.7 Sprint 6 - 04/06/2025 - 06/07/2025

Las fases y duración prevista del sprint 6 están representadas en el cuadro 3.7. Este sprint se centró princi-
palmente en el desarrollo del frontend y en su integración con el backend previamente optimizado. Las tareas
incluyeron el diseño de mockups para la interfaz de usuario, el desarrollo e implementación del frontend, y la
conexión funcional entre la interfaz y el backend mediante endpoints ya disponibles. Además, se planificaron
pruebas funcionales para garantizar una experiencia de usuario fluida y la correcta comunicación entre compo-
nentes. Finalmente, se contempló la elaboración de la documentación final del proyecto y su revisión, con el
objetivo de dejar el sistema listo para su presentación o entrega. Este sprint se alargó más de lo esperado debido
a la convocatoria extraordinaria de la asignatura de Física, teniendo su fecha final prevista para el 17/06/2025.

Nombre de actividad Tiempo Estimado Tiempo Invertido Estado
Diseño de mockups 3 h 3 h Completado
Implementación del frontend 20 h 17 h Completado
Conexión con el back 6 h 7 h Completado
Pruebas funcionales y ajustes 6 h 6 h Completado
Documentación final de la memoria y
revisión

25 h 35 h Completado

TOTAL 60 h 68 h Completado

Cuadro 3.7: Resumen del Sprint 6

3.2.8 Plan de control y Riesgos

Esta sección tiene como objetivo analizar los posibles riesgos para este proyecto. Además en el cuadro 3.8
se puede ver un resumen general del tiempo estimado y el invertido en cada sprint.

Sprint Tiempo Estimado Tiempo Invertido
Sprint 0 30 h 30 h 30 mins
Sprint 1 41 h 42 h 30 mins
Sprint 2 44 h 41 h
Sprint 3 48 h 48 h
Sprint 4 41 h 41 h
Sprint 5 38 h 43 h
Sprint 6 60 h 68 h
Total 302 h 314 h

Cuadro 3.8: Resumen de todos los sprints

En el cuadro 3.9 se puede ver la tabla que se ha usado para calcular la exposición al riesgo correspondiente

13

3.2. PLANIFICACIÓN CAPÍTULO 3. METODOLOGÍA

con la probabilidad e impacto del mismo. En este proyecto se han identificado 6 riesgos que pueden analizarse
en los cuadros 3.10, 3.11, 3.12, 3.13, 3.14 y 3.15.

Impacto/Prob Baja Media Alta
Bajo Bajo Bajo Medio
Medio Bajo Medio Alto
Alto Medio Alto Alto

Cuadro 3.9: Exposición al Riesgo

ID R01
Nombre Cambios en los requisitos
Descripción Los requisitos pueden cambiar debido a nuevas ne-

cesidades detectadas.
Probabilidad Media
Impacto Alto
Exposición Alta
Plan de mitigación Validar los requisitos con el equipo antes de iniciar

cada sprint
Plan de contingencia Replanificar los sprints y revisar el alcance

Cuadro 3.10: R01 - Cambios en los Requisitos

ID R02
Nombre Estudio de asignaturas pendientes
Descripción La planificación y fechas del proyecto se pueden ver

afectadas porque las asignaturas pendientes toman
más tiempo del esperado.

Probabilidad Alta
Impacto Alto
Exposición Alta
Plan de mitigación Planificar y coordinar los estudios de las asignaturas

pendientes con la planificación del proyecto
Plan de contingencia Establecer prioridades y horarios estrictos.

Cuadro 3.11: R02 - Estudio de asignaturas pendientes

ID R03
Nombre Falta de experiencia con herramientas técnicas
Descripción Uso de tecnologías nuevas.
Probabilidad Media
Impacto Medio
Exposición Media
Plan de mitigación Utilizar los cursos proporcionados por la empresa

para aprender dichas tecnologías
Plan de contingencia Pedir ayuda puntual o buscar soluciones alternativas.

Cuadro 3.12: R03 - Falta de experiencia con herramientas técnicas

14

CAPÍTULO 3. METODOLOGÍA 3.2. PLANIFICACIÓN

ID R04
Nombre Integración técnica más compleja de los esperado
Descripción Puede que la integración con archivosOBU y el

Transfer Manager sea más compleja de lo esperado
o la estructura de los archivos generados sea costosa
de procesar

Probabilidad Alta
Impacto Medio
Exposición Alta
Plan de mitigación Reestructurar la planificación teniendo en cuenta la

complejidad real.
Plan de contingencia Validar el acceso con el equipo técnico en las etapas

tempranas del proyecto.

Cuadro 3.13: R04 - Integración técnica más compleja de lo esperado

ID R05
Nombre Pérdida de datos o archivos del proyecto
Descripción Fallo en el ordenador, disco duro o pérdida de ver-

siones.
Probabilidad Baja
Impacto Alto
Exposición Media
Plan de mitigación Hacer backups regulares o utilizar sistemas en la nu-

be.
Plan de contingencia Recuperar todo desde repositorios remotos.

Cuadro 3.14: R05 - Pérdida de datos o archivos del proyecto

ID R06
Nombre Problemas de salud
Descripción Si el desarrollador contrae alguna enfermedad puede

afectar a los plazos y estimación del tiempo del pro-
yecto

Probabilidad Media
Impacto Medio
Exposición Media
Plan de mitigación Añadir algo de holgura en los sprints en caso de que

el desarrollador contraiga alguna enfermedad.
Plan de contingencia Replanificar el proyecto y sus fechas en caso de ser

necesario.

Cuadro 3.15: R06 - Problemas de salud

De todos estos riesgos han ocurrido el estudio de asignaturas pendientes debido a la recuperación de Am-
pliación de Matemáticas y Física y problemas de salud debidos a una conjuntivitis grave que impidió el correcto
avance durante un par de semanas. Todo esto llevó a la replanificación del proyecto para su entrega en convo-
catoria extraordinaria, motivos por los que el Sprint 63.7 tiene una duración mayor.

15

3.3. COSTES CAPÍTULO 3. METODOLOGÍA

3.3 Costes
Esta sección cubrirá todo lo relacionado con los costes del proyecto. Estarán calculados tanto los costes

humanos como los técnicos y aquellos asociados a la documentación y la defensa.

3.3.1 Coste humano

El puesto que ocupa el estudiante en este proyecto es el de un desarrollador fullstack junior. Este puesto en
españa cobra de media un total de 10,77€/h [6], habiendo deducido ya los impuestos. El proyecto ha durado un
total de 289 h, por lo que el coste humano del proyecto será de 314hx10,77€/h = 3381,78 €.

3.3.2 Costes de Hardware

Durante el desarrollo del proyecto se han utilizado un ordenador portátil. El coste asociado a este dispositivo
se ha calculado mediante amortización mensual, considerando como vida útil estimada 48 meses o 4 años, que
corresponde a una media estándar en entornos profesionales[7]. El portatil utilizado es un Lenovo ThinkPad
P14S Gen 4 con un precio de 1793,31€[8] a día 09/04/2025. Esto hace que el precio amortizado aproximado
sea de 37,36€/mes. Por lo tanto, al durar el proyecto un aproximado de 3 meses, el coste del portátil ha sido de
112,08€.

3.3.3 Costes de Software

Respecto al software usado, se ha necesitado la licencia deMicrosoft 365 Enterprise para el uso deMicrosoft
Teams con un costo de 11,70€/mes [9] lo que hace un coste total de 35,1€. Además, también se ha utilizado la
licencia de Visual Studio 2022 Professional con un coste de 45€/mes [10] lo que hace un coste final de 135€.
La última licencia utilizada es la de Astah Professional la cual tiene un coste de 11,99€/mes [11] lo que hace un
total de 35,97€.

3.3.4 Presupuesto Total

En el cuadro 3.16 se puede observar un resumen del presupuesto con el coste final del proyecto.

Nombre Precio Parcial Horas | Mes Precio Total
Trabajo del desarrollador 10.77€/h 314 h 3381,78€
Portátil utilizado 37,36€/mes 3 meses 112,08€
Licencia Microsoft 365 Enterprise 11,70€/mes 3 meses 35,1€
Licencia Visual Studio 2022 Professional 45€/mes 3 meses 135€
Licencia Astah Professional 11,99€/mes 3 meses 35,97€

Total 3699,93€

Cuadro 3.16: Resumen del presupuesto del proyecto

16

Parte II

Marco Conceptual y Contexto

17

Capítulo 4

Marco Contextual

4.1 Entorno Profesional

El presente Trabajo Fin de Grado se desarrolla en el marco de las prácticas externas realizadas en la empre-
sa GMV, una multinacional tecnológica con actividad en diversos sectores estratégicos como el transporte, el
espacio, la defensa, la ciberseguridad y los sistemas inteligentes.

En concreto, el proyecto se ha llevado a cabo en la sede de GMV Valladolid, especializada en soluciones
de Transporte Inteligente. Esta línea de negocio ofrece productos y servicios a operadores de transporte público
tanto a nivel nacional como internacional, abarcando desde sistemas embarcados y centros de control, hasta
plataformas de información al pasajero y herramientas de análisis y gestión.

El entorno de trabajo en GMV es altamente técnico, multidisciplinar y orientado a la integración de tec-
nologías avanzadas en sistemas reales, lo que proporciona un marco ideal para el desarrollo de proyectos con
aplicaciones prácticas directas, como el que aquí se presenta.

4.2 Contexto operativo del proyecto

En los sistemas de transporte inteligente que gestiona GMV, cada vehículo de la flota cuenta con un equipo
embarcado (OBU), encargado de recibir, procesar y mostrar contenidos tales como información al pasajero,
contenido multimedia y campañas de comunicación o servicio.

Estos contenidos deben ser actualizados de forma periódica, coherente y controlada en toda la flota. El
proceso de actualización implica distintos componentes del sistema, como:

SIU (Gestor de Contenidos o Sistema de información al usuario): sistema donde se configuran y
gestionan los contenidos de cada bus o flota. Contenidos hacen referencia a todo artefacto que pueda
contener el bus, desde audios, imágenes, hasta configuraciones sobre rutas, líneas, etc.

ArchivosOBU: servicio de windows que genera los ficheros necesarios para actualizar cada vehículo con
los datos actualizados por medio del SIU.

Transfer Manager: sistema encargado de programar y ejecutar la transferencia de ficheros a los vehícu-
los. A su vez, cuando un vehículo es actualizado, genera unos archivos con los contenidos que tiene el
vehículo.

19

4.3. PROBLEMÁTICA DETECTADA CAPÍTULO 4. MARCO CONTEXTUAL

4.3 Problemática detectada
Durante el periodo de prácticas, se detectó que, aunque el proceso de generación y envío de contenidos a los

equipos está bien definido y automatizado, no existe una solución integrada que permita comprobar de forma
centralizada y automática si los contenidos han sido efectivamente recibidos e instalados por cada vehículo, por
ejemplo, puede ocurrir que en el momento de la transferencia el sistema estuviese apagado.

Actualmente, estas comprobaciones se realizan de forma manual, revisando directorios, archivos y registros
técnicos. Este procedimiento es costoso en tiempo y recursos, tiene alto riesgo de error humano, y dificulta la
planificación y verificación de campañas de actualización en tiempo real.

Esto se vuelve especialmente crítico en contextos donde la homogeneidad del contenido es esencial, como
en los lanzamientos de nuevas campañas de comunicación, cambios de tarifas o rutas, o con la coordinación
con sistemas de información al usuario.

4.4 Justificación del proyecto
La necesidad de contar con una herramienta que permita verificar automáticamente el estado de actualiza-

ción de cada vehículo es evidente desde el punto de vista operativo, técnico y de calidad del servicio.
Este proyecto surge precisamente como una propuesta de solución a esa necesidad, con el objetivo de au-

tomatizar la verificación del estado de actualización por vehículo, reducir la carga operativa asociada a com-
probaciones manuales, aumentar la trazabilidad del proceso de distribución de contenidos y facilitar la toma de
decisiones antes de sacar a circulación un vehículo.

Al integrarse en el entorno real deGMV, el sistema desarrollado no solo tiene aplicación práctica directa, sino
que también puede convertirse en la base de una solución más general orientada a la trazabilidad de versiones,
que podría evolucionar hacia un nuevo módulo funcional del ecosistema de productos de la empresa.

20

Capítulo 5

Marco Conceptual y Tecnológico

5.1 Arquitecturas distribuidas
Una arquitectura distribuida[12] es aquella en la que los componentes del sistema se encuentran físicamente

separados, normalmente ejecutándose en diferentes máquinas o nodos, pero cooperan entre sí mediante una red
para alcanzar un objetivo común. Este tipo de arquitectura es ampliamente utilizado en sistemas modernos
debido a sus ventajas en términos de escalabilidad, disponibilidad, modularidad y resiliencia.

En el contexto de este proyecto, la arquitectura existente dentro de GMV se basa en un modelo distribuido
compuesto por múltiples servicios, cada uno con una responsabilidad bien definida. Componentes como el SIU,
el servicio ArchivosOBU, el TransferManager y los equipos embarcados (OBU) están distribuidos y conectados
mediante una infraestructura de red corporativa.

La solución desarrollada en este TFG se incorpora como un nuevomódulo dentro de un servicio ya existente,
respetando sus convenciones arquitectónicas y de despliegue. A mayores de este nuevo módulo, también se
desarrollará un nuevo servicio de windows que gestione el tratamiento de los archivos de versiones utilizados
por GMV.Aunque forman parte de un servicio actual, mantienen un alto grado demodularidad y responsabilidad
única: cada función queda claramente delimitada y puede evolucionar de forma independiente sin impactar al
resto de componentes. La comunicación con el núcleo del servicio se realiza a través de las mismas interfaces
definidas (API REST o intercambio de archivos estructurados), garantizando compatibilidad y cohesión con el
ecosistema ya desplegado.

5.2 Control de versiones en sistemas software
El control de versiones tradicionalmente se asocia con el desarrollo de software (por ejemplo, Git para

código fuente). Sin embargo, el mismo concepto puede extenderse a contenidos operativos y configuraciones
que deben ser gestionadas en múltiples dispositivos distribuidos.

En este proyecto, el control de versiones se aplica a los contenidos que deben ser desplegados y sincronizados
entre los distintos vehículos de la flota. Existen dos elementos clave:

La versión esperada, que es la que se genera como resultado de un cambio de contenido en el sistema
central.

La versión real, que corresponde a la información devuelta por los dispositivos embarcados una vez
aplicadas las actualizaciones.

Comparar ambos tipos de versión permite verificar que los dispositivos están sincronizados, detectar errores
o equipos no actualizados y obtener una trazabilidad de qué falta por actualizar.

21

5.3. TRANSFERENCIA DE DATOS CAPÍTULO 5. MARCO CONCEPTUAL Y TECNOLÓGICO

Esta trazabilidad no solo es útil para garantizar la calidad operativa, sino que también permite disponer de un
historial verificable de los cambios aplicados, útil en auditorías, control de versiones de contenido multimedia,
o revisiones de configuración en caso de incidentes.

5.3 Transferencia de datos
En los sistemas distribuidos, la transferencia de datos y la sincronización de información entre componentes

dispersos geográficamente son aspectos fundamentales para garantizar la coherencia operativa. Estos procesos
permiten que distintos nodos del sistema compartan el mismo estado o contenido, y reaccionen adecuadamente
ante cambios, manteniendo la fiabilidad y estabilidad del sistema global.

En el contexto de los sistemas de transporte inteligente, donde cada vehículo cuenta con una unidad em-
barcada (OBU) que opera de forma relativamente autónoma, la necesidad de mantener contenidos actualizados
y sincronizados con el sistema central cobra especial relevancia. Dichos contenidos pueden incluir archivos de
configuración, campañas de información, datos multimedia o cualquier otro recurso necesario para el funcio-
namiento diario del servicio.

Uno de los desafíos técnicos principales en este tipo de entornos es que los canales de comunicación pue-
den ser intermitentes, la disponibilidad de los dispositivos no siempre es constante, y no todos los equipos se
encuentran online al mismo tiempo. Por ello, la transferencia de datos debe ser robusta y tolerante a fallos, y
el sistema debe disponer de mecanismos que permitan verificar si los datos fueron correctamente entregados y
procesados por cada uno de los nodos.

La sincronización, en este contexto, implica confirmar que la información presente en los OBU es idéntica
o equivalente funcionalmente a la que se generó en el sistema central. El objetivo del sistema propuesto es
precisamente actuar como un mecanismo de verificación automatizado.

5.4 Sistemas de transporte inteligente
Los Sistemas de Transporte Inteligente (ITS, Intelligent Transport Systems)[13] son el conjunto de tecno-

logías que se aplican al transporte con el objetivo de mejorar la eficiencia, la seguridad, la sostenibilidad y la
experiencia del usuario. Estos sistemas combinan tecnologías de la información, telecomunicaciones, automa-
tización y electrónica para optimizar la operación tanto del transporte público como privado.

El concepto de ITS ha sido promovido a nivel global por organismos como la Comisión Europea y la ITS
World Congress, dado su papel fundamental en la transformación del transporte hacia un modelo más digital,
conectado y centrado en el usuario.

Un sistema ITS completo está formado por diversos elementos interconectados. Entre los más comunes se
encuentran:

Centro de control (backoffice): Es el cerebro del sistema. Desde aquí es desde donde se gestiona la
planificación de las rutas, la supervisión de la flota, el estado del tráfico, la configuración de los vehículos,
el contenido mostrado al pasajero, etc.

Sistemas embarcados (OBU): Son los dispositivos instalados a bordo de los vehículos. Reciben ins-
trucciones desde el centro de control y ejecutan funcionalidades como mostrar información al pasajero
en las pantallas, emitir mensajes por megafonía, registrar y reportar eventos de operación o gestionar
validadores, cámaras, sensores, etc.

Infraestructura de comunicaciones: Es el canal que permite el intercambio de datos entre el centro de
control y los vehículos. Puede incluir 4G/5G, Wi-Fi, VPN, redes satelitales u otras tecnologías según el
entorno.

Interfaces de usuario y herramientas operativas: Se refiere a las diferentes herramientas diseñadas
para que el usuario interaccione con ellas con la posibilidad de cambiar cualquier tipo de información de

22

CAPÍTULO 5. MARCO CONCEPTUAL Y TECNOLÓGICO 5.5. TECNOLOGÍAS UTILIZADAS

manera sencilla y transparente. Por ejemplo, a través de sistemas como el SIU (Sistema de Información
al Usuario), los operadores pueden configurar campañas, cargar nuevos contenidos, programar actualiza-
ciones o analizar el comportamiento de la red de transporte.

5.5 Tecnologías utilizadas
Durante el desarrollo del sistema de trazabilidad de versiones de contenidos se han utilizado múltiples tec-

nologías, herramientas y plataformas. La elección de cada una se ha basado en criterios de compatibilidad con el
entorno de GMV,madurez tecnológica, documentación disponible y adecuación al flujo de trabajo ágil adoptado
durante el proyecto.

Estas herramientas se agrupan según su área funcional y se describen a continuación, con el enfoque puesto
en su aplicación concreta dentro del desarrollo del proyecto.

Cabe destacar además el uso de ChatGPT como herramienta de apoyo puntual durante el desarrollo. Se
ha utilizado principalmente para resolver dudas sintácticas o estructurales en C#, obtener ejemplos de pruebas
unitarias, mejorar la redacción técnica de algunos apartados del documento y validar estructuras conceptuales.
Su uso ha estado siempre supervisado, contrastando los resultados obtenidos con documentación oficial o el
comportamiento real del sistema, actuando como un asistente complementario dentro del flujo de trabajo.

5.5.1 Backend y lógica de negocio

El backend es el núcleo funcional del sistema, encargado de gestionar los datos, comparar versiones, alma-
cenar resultados y exponer servicios REST para su consulta desde la interfaz. El lenguaje principal del backend
ha sido C# (.NET), utilizado para desarrollar la lógica de comparación, carga de archivos, y operaciones sobre
los datos. Esta elección se alinea con el stack tecnológico ya existente en GMV para otras herramientas.

Respecto a la base de datos, se ha utilizado MySQL, un sistema de gestión de bases de datos relacional
utilizado para almacenar las versiones esperadas y las reales por cada componente. Se ha elegido por su fiabi-
lidad, rendimiento y compatibilidad con entornos productivos así como para mantener coherencia con el resto
de bases de datos dentro de GMV.

5.5.2 Frontend

El frontend permite la visualización del estado de actualización de los vehículos, de forma sencilla y acce-
sible para técnicos u operadores. Se ha optado por una SPA (Single Page Application) moderna.

Una SPA[14] es un tipo de aplicación web que se carga una sola vez en el navegador y actualiza dinámica-
mente el contenido sin recargar la página completa. En el contexto de este proyecto se ha logrado mediante el
uso de React pues permite construir componentes reutilizables y reactivos para mostrar información en tiempo
real sobre los vehículos, sus versiones, y su estado de sincronización.

Como gestor de paquetes para el frontend se ha utilizado NPM, gestionando dependencias, librerías y auto-
matizando scripts de desarrollo y build.

También se ha utilizado ciertas librerías de estilos comunes desarrolladas por y para GMV.

5.5.3 Modelado y diseño de sistema

Durante las fases de análisis y diseño se utilizaron diversas herramientas para crear los diagramas concep-
tuales, de arquitectura y de base de datos.

Se ha utilizado Draw.io como herramienta para la creación de bocetos y brainstorming iniciales de cada
diagrama. Por otro lado, para la creación de los diagramasUML: clases, componentes y secuencia, se ha utilizado
Astah Professional permitiendo la documentación interna del backend, con las entidades y el ciclo de vida de
los datos. Para finalizar esta sección, la generación y validación del esquema de base de datos se ha realizado
mediante DBDiagram.io diseñando gráficamente tanto las tablas como las relaciones y campos de la base de
datos de forma clara y exportable.

23

5.5. TECNOLOGÍAS UTILIZADAS CAPÍTULO 5. MARCO CONCEPTUAL Y TECNOLÓGICO

5.5.4 Control de versiones y gestión de tareas

El desarrollo se ha realizado de forma iterativa siguiendo la metodología Scrum. Para ello se utilizaron
herramientas profesionales tanto para el seguimiento de tareas como para la gestión del código y la integración
continua.

Todo el código realizado está en repositorios privados de GIT en concreto con el uso de Bitbucket para
versionar todo el código del backend y frontend, incluyendo la documentación.

Para la gestión de tareas se utilizó Jira con boards de Kanban para organizar los sprints, priorizar tareas y
registrar registrar el estado de cada funcionalidad. Además, como medio de comunicación con el equipo y la
realización de las reuniones y resolución de dudas se utilizó Microsoft Teams, tanto dentro de la empresa como
con el tutor de la Universidad.

El uso de estas herramientas ha garantizado un desarrollo ordenado, profesional y alineado con el trabajo
real en empresa.

5.5.5 Pruebas, documentación y validación

Durante el desarrollo y validación del sistema se utilizaron varias herramientas para probar, documentar y
verificar el funcionamiento del endpoint REST desarrollado.

Para la generación automática de documentación de la API se usó Swagger que permite probar los endpoints
desde el navegador, ver esquemas de respuesta y explorar la API de forma interactiva.

Como herramienta de testing de las APIs se utilizó Postman para ejecutar pruebas funcionales, validar casos
de error y simular flujos completos.

5.5.6 Conclusión

El conjunto de herramientas y tecnologías utilizadas ha permitido desarrollar un sistema perfectamente ali-
neado con las prácticas profesionales actuales en el ámbito del desarrollo de software para sistemas distribuidos.

Cada decisión tecnológica ha sido tomada en base a criterios de compatibilidad con el entorno de GMV,
escalabilidad futura del sistema y facilidad de mantenimiento. Asimismo, el uso de herramientas profesionales
para modelado, pruebas y documentación ha permitido mantener la calidad técnica del proyecto desde la fase
de análisis hasta la entrega final.

24

Capítulo 6

Soluciones y Estado del Arte

6.1 Introducción

En este capítulo se analizan las soluciones existentes y las aproximaciones previas al problema abordado en
este Trabajo Fin de Grado: la trazabilidad de versiones de contenido en entornos distribuidos, concretamente en
flotas de transporte inteligente.

El objetivo es contextualizar la propuesta dentro del panorama actual, identificar posibles referentes o apro-
ximaciones similares y justificar la necesidad de una solución adaptada al entorno real de GMV. Para ello, se
han revisado herramientas utilizadas en otros sectores, soluciones genéricas y métodos aplicados en sistemas
similares, tanto desde el punto de vista técnico como funcional.

6.2 Soluciones en el ámbito de desarrollo software

En el ámbito del desarrollo de software, existen numerosas herramientas de control de versiones como Git,
SVN oMercurial, utilizadas para gestionar cambios en el código fuente. Estas soluciones permiten mantener un
historial de versiones, comparar estados y recuperar versiones anteriores, pero están orientadas exclusivamente
al control de archivos de texto o binarios, no al control operativo de contenido desplegado en equipos físicos
distribuidos.

Algunas herramientas de CI/CD (Integración y entrega continua), como Jenkins, GitHub Actions, GitLab
CI/CD, incluyen mecanismos para verificar despliegues, pero se centran en entornos controlados de servidores,
no en entornos con dispositivos como los OBU, donde la conexión puede ser intermitente y los dispositivos
tienen comportamiento autónomo.

Por tanto, aunque estos sistemas comparten conceptos clave (comparación de versiones, sincronización,
despliegue), no resultan aplicables directamente al problema operativo de una flota de transporte que gestiona
contenido no de código, sino operacional y dependiente del estado real del equipo físico.

6.3 Soluciones en el sector Transporte

En el sector del transporte, algunas plataformas ITS comerciales como INIT[15], Trapeze[16] o Trans-
Track[17] ofrecen soluciones avanzadas para gestión de flota, configuración de equipos embarcados y planifi-
cación de servicio. Sin embargo, la mayoría de estas plataformas están centradas en la planificación de rutas,
la gestión operativa o la monitorización en tiempo real, y no ofrecen trazabilidad detallada sobre el estado del
contenido en cada vehículo, especialmente a nivel de comparación entre versión esperada y real.

25

6.4. ALTERNATIVAS INTERNAS EN GMV CAPÍTULO 6. SOLUCIONES Y ESTADO DEL ARTE

Además, muchas de estas plataformas se comportan como sistemas cerrados, con capacidades limitadas de
personalización o integración con flujos internos como los que utiliza GMV, lo que refuerza la necesidad de una
solución a medida.

En entornos similares (como gestión de contenidos multimedia distribuidos), algunas plataformas permiten
ver si un dispositivo ha recibido contenido, pero en la mayoría de los casos:

No hay validación de que el contenido se haya aplicado correctamente.

No hay comparación con una versión central o esperada.

La trazabilidad es parcial o no automatizada (Caso inical de GMV).

6.4 Alternativas internas en GMV
Dentro del ecosistema de GMV existen componentes que forman parte del proceso de actualización, como

ArchivosOBU o el TransferManager.
Sin embargo, estos componentes no incluyen una funcionalidad de trazabilidad completa. Si bien el Transfer

Manager puede registrar el estado de las transferencias, no compara la versión instalada con la que se esperaba
ni expone esta información en una interfaz operativa de consulta por vehículo.

Por tanto, actualmente no se cuenta con una solución a este problema y este TFG surge como una nueva
solución.

6.5 Justificación de la solución
El análisis del estado del arte demuestra que no existe actualmente una solución específica que cubra de

forma directa el problema abordado en este proyecto dentro del contexto de transporte inteligente embarcado.
Por tanto, el sistema desarrollado representa una aportación original, necesaria y útil, tanto a nivel técnico como
operativo.

A partir del análisis anterior, se justifica la necesidad de una herramienta específica que cubra las carencias
detectadas como se indica en el cuadro 6.1.

Carencia Solución propuesta
No existe trazabilidad centralizada El sistema registra y presenta el estado

de cada OBU respecto a cada campaña.
No se automatiza la comparación de
versiones

El backend compara versiones espera-
das y reales, e informa de diferencias.

No hay interfaz de consulta operativa Se desarrolla un frontend claro para vi-
sualizar el estado de la flota.

Cuadro 6.1: Carencia identificada y Solución propuesta

La solución propuesta no pretende reemplazar sistemas existentes, sino complementarlos con una capa de
trazabilidad, alineada con las necesidades reales detectadas durante las prácticas en GMV, y diseñada con visión
de escalabilidad y futura integración completa.

26

Parte III

Desarrollo del Sistema

27

Capítulo 7

Análisis

7.1 Flujo actual del sistema
En el sistema actual gestionado por GMV, el proceso de actualización de contenidos para los OBU sigue

varias etapas clave:

Generación de contenido: Tras una modificación de los contenidos realizada por el usuario en el SIU, un
servicio llamado SoaBasicContentManager, conocido como el backend del SIU, se encarga de registrar
este cambio en la base de datos utilizada.

Creación de los ficheros a distribuir: Cada cierto tiempo configurado, una hebra temporizadora del
servicio ArchivosOBU consulta la base de datos para generar los archivos necesarios a transferir al OBU,
organizándolos en un árbol de directorios lógico predefinido. que sigue la siguiente estructura:

• Fleet
◦ Package Type

• SubFleet
◦ FleetId

⋄ Package Type
• Particular

◦ Bus Tdma
⋄ Package Type

Esta estructura jerárquica permite distribuir los archivos de forma eficiente y personalizada. Si existen
configuraciones específicas para determinados vehículos, ya sea a nivel de flota, subflota o unidad indivi-
dual, estos recibirán únicamente los archivos correspondientes a su nivel. En ausencia de personalización,
se utilizarán los archivos definidos en el nivel general (Fleet). El nodo Package Type representa el tipo de
contenido a distribuir, como configuraciones de líneas, rutas, archivos de audio, video, entre otros. Por
otro lado, bus tdma se refiere a un identificador utilizado para los buses.

29

7.2. IDENTIFICACIÓN DE NECESIDADES CAPÍTULO 7. ANÁLISIS

Cada carpeta de tipo Package Type contendrá los archivos comprimidos que deben enviarse al bus, junto
con un fichero de control en formato texto que sigue la siguiente estructura:

Version=NUMEROVERSION
ArchivoComprimidoAEnviar1=NUMEROVERSION
ArchivoComprimidoAEnviar2=NUMEROVERSION

La línea Version indica la versión general del paquete, mientras que cada entrada ArchivoComprimido-
AEnviarX especifica el nombre del archivo comprimido junto con su versión individual. Este fichero
facilita la trazabilidad y sincronización de los contenidos distribuidos a cada unidad.

Distribución mediante Transfer Manager: El componente Transfer Manager se encarga de programar
y ejecutar la transferencia de estos ficheros a los equipos embarcados.

Confirmación post-actualización:Una vez finalizada la instalación de los archivos en elOBU, el propio
equipo embarcado genera un archivo de retorno que contiene información sobre la versión instalada. Estos
archivos son recogidos y almacenados en un directorio central por el Transfer Manager en el que se crean
nuevos archivos de texto temporales con nombre:

packageType#busTdma_fleetId_randomId

Estos archivos de texto contendrán el mismo contenido que el mostrado al inicio de esta página pero
referidos al contenido real que tiene el bus.

En la figura 7.1 se puede ver el flujo actual de la gestión.

Figura 7.1: Flujo actual de la gestion de contenidos

Actualmente estos archivos generados han de ser consultados manualmente y el sistema propuesto actúa co-
mo un verificador automático, conectándose a las rutas donde ArchivosOBU y Transfer Manager almacenan los
archivos generados y devueltos respectivamente. Compara ambas versiones (planificada y actual), y almacena
los resultados por vehículo. Esto permite tener una vista global del estado de actualización de la flota, generar
alertas e incluso llegar a facilitar reenvíos en caso de errores.

7.2 Identificación de necesidades

Durante el análisis funcional, se identificaron las siguientes necesidades no cubiertas por el sistema actual:
Estas necesidades surgen de un análsis del flujo actual, de entrevistas con el equipo de GMV y de la obser-

vación de problemas reales durante el uso del sistema.

30

CAPÍTULO 7. ANÁLISIS 7.3. INTEGRACIÓN EN SISTEMA COMPLEJO EXISTENTE

Necesidad Detectada Implicación Operativa
Verificar automáticamente si un OBU
ha recibido contenido

Reduce errores manuales y aumenta la fiabilidad

Comparar versiones esperadas vs insta-
ladas

Detecta inconsistencias y evita errores en servicio o
a la hora de desplegar buses.

Centralizar la información de actualiza-
ción

Facilita la supervisión de los estados de actualización
de las flotas.

Visualizar el estado por vehículo en una
UI

Aumenta la eficiencia de los técnicos y evita la ins-
pección manual.

Tener a disposición distintos filtros por
fecha, estado...

Mejora la toma de decisiones operativas.

Cuadro 7.1: Identificación de necesidades

7.3 Integración en sistema complejo existente
Uno de los retos más relevantes de este proyecto ha sido diseñar una solución que pueda integrarse de forma

segura, coherente y realista en un sistema complejo y maduro ya existente, como es el ecosistema de transporte
inteligente de GMV.

No se trata simplemente de desarrollar una nueva funcionalidad, sino de incorporarla en un entorno que
ya funciona en producción, con múltiples sistemas interconectados, procesos establecidos, responsabilidades
distribuidas entre equipos y requisitos técnicos bien definidos.

Integrar une nueva funcionalidad en un sistema de este tipo implica afrontar desafíos como:

Evitar romper el funcionamiento de los componentes existentes.

Respetar contratos funcionales y estructuras ya desplegadas.

Adaptarse a tecnologías, convenciones y estándares internos.

Minimizar los puntos de acoplamiento para facilitar mantenibilidad.

Garantizar que lo integrado sea entendible, útil y sostenible a largo plazo.

En este proyecto, se ha adoptado un enfoque específico que aborda estos retos de forma profesional. Pa-
ra ello, lo primero es analizar las características con las que cuenta el sistema, posteriormente y teniendo en
cuenta lo analizado, hay que crear una estrategia de integración que pueda aplicarse manteniendo los puntos
anteriormente nombrados en este mismo apartado.

7.3.1 Características del sistema a tener en cuenta:

Actualmente, el ecosistema de GMV está compuesto por múltiples microservicios, servicios y componentes,
así como sistemas de monitorización, gestión de flota, trazabilidad, y comunicación de hardware embarcado. A
esto hay que añadirle los propios equipos embarcados y distintos procesos de seguridad y privacidad asociados.

Uno de los principios fundamentales que ha guiado el desarrollo de este proyecto ha sido la necesidad de
diseñar una solución que pueda integrarse de forma no intrusiva en un sistema complejo y consolidado, sin alterar
su funcionamiento ni comprometer su estabilidad. En el contexto de GMV, donde gran parte de los servicios
están en operación continua y en entornos productivos sensibles, cualquier nueva funcionalidad debe respetar
la arquitectura existente, sin introducir riesgos ni modificar componentes críticos.

En primer lugar, se ha asegurado que la herramienta desarrollada no interfiera en el flujo operativo actual
de actualización de contenidos, que continúa siendo gestionado exclusivamente por ArchivosOBU y Transfer
Manager. Estos componentes mantienen sus responsabilidades intactas: ArchivosOBU genera los ficheros de

31

7.3. INTEGRACIÓN EN SISTEMA COMPLEJO EXISTENTE CAPÍTULO 7. ANÁLISIS

contenido a partir de cambios realizados en el SIU, y Transfer Manager los distribuye a los OBU según una
lógica ya probada y estable.

Además, la solución propuesta no requiere modificaciones en los dispositivos embarcados (OBU), ni cam-
bios en la forma en la que estos equipos generan los archivos de confirmación tras una actualización. Esto
elimina la necesidad de actualizaciones en software embarcado, despliegues masivos o validaciones en campo,
que implicarían un coste operativo y un riesgo elevado para los operadores.

Otro aspecto esencial es que el sistema de trazabilidad se alimenta exclusivamente de los archivos ya ge-
nerados por los sistemas actuales. Estos archivos, tanto los ZIP generados por ArchivosOBU como los logs
devueltos por los OBU y almacenados por Transfer Manager, se ubican en estructuras de carpetas y rutas de red
bien definidas. El sistema propuesto accede de forma pasiva a estas ubicaciones, sin necesidad de modificar los
procesos que las generan, ni de establecer canales nuevos de comunicación o integración directa.

Por último, toda la solución ha sido diseñada para alinearse completamente con los patrones de desarrollo,
despliegue y operación ya adoptados por el equipo técnico de GMV. Esto incluye el uso de tecnologías estándar
como .NET, MySQL, React, Swagger, Bitbucket y Jira, así como la adopción de buenas prácticas de desarrollo
como separación de responsabilidades, desacoplamiento de componentes, y uso de herramientas comunes para
testing y documentación.

En conjunto, la solución se comporta como una capa adicional de verificación, completamente autónoma,
que funciona en paralelo al sistema productivo. No interfiere en su ejecución, no modifica sus resultados, y no
introduce nuevas dependencias en el flujo principal. Este enfoque garantiza una integración respetuosa, segura y
coherente, compatible con un entorno empresarial real y adecuada a los requisitos de un sistema en producción.

7.3.2 Equilibrio entre integración y viabilidad:

Uno de los principales retos de este proyecto ha sido alcanzar un equilibrio entre el contexto profesional de
integración en un sistema complejo y las limitaciones naturales de un Trabajo Fin de Grado, tanto en tiempo
como en recursos.

Este equilibrio ha sido considerado en todas las fases del desarrollo: desde el análisis inicial y la elección de
tecnologías, hasta las decisiones de arquitectura y priorización funcional. El objetivo ha sido ofrecer una solución
técnicamente útil y realista, que pueda desplegarse en un entorno profesional, pero que al mismo tiempo sea
abordable por un estudiante en un periodo de tiempo limitado.

Las decisiones que se han tomado para asegurar la viabilidad han sido:

Contar con un tiempo de desarrollo limitado a 3 meses para generar un MVP funcional con validación
parcial

La creación de un módulo acoplable o desplegable de manera independiente.

Evitar la modificación de dependencias críticas como ArchivosOBU o el TransferManager creando así
un acceso pasivo a archivos generados por los sistemas ya existentes

Uso del stack corporativo (.NET, MySQL, React,etc.)

Creación del proyecto con la escalabilidad futura en mente, teniendo un código modular y bien documen-
tado para una fácil migración o crecimiento posterior.

Este subproyecto demuestra una de las habilidades más valoradas en entornos reales: la capacidad de introducir
mejoras en sistemas maduros sin romper su equilibrio. En un entorno empresarial real no basta con que una
solución ”funcione”; debe encajar, ser comprensible para otros desarrolladores, y coexistir con las herramientas,
equipos y flujos existentes.

Desde el punto de vista académico, esto también refleja unamadurez en el enfoque: no se trata solo de aplicar
conocimientos técnicos, sino de pensar como ingeniero/a de software profesional, priorizando la viabilidad, el
impacto real y la mantenibilidad de lo que se construye.

32

CAPÍTULO 7. ANÁLISIS 7.4. REQUISITOS

7.4 Requisitos

Este apartado recoge todo lo que el sistema debe hacer (funcional) y cómo debe comportarse o estar cons-
truido (no funcional), resultado del análisis previo, entrevistas con el equipo técnico, observación del sistema
real, y objetivos marcados.

Aunque el desarrollo del proyecto se ha gestionado mediante el marco de trabajo Scrum, utilizando historias
de usuario y tareas técnicas para la planificación de sprints y la gestión del backlog, en esta memoria se han
estructurado los requisitos según el enfoque clásico: requisitos funcionales y no funcionales. Esta organización
permite una mejor trazabilidad documental y facilita la conexión entre los objetivos del sistema, su diseño y las
pruebas realizadas.

7.4.1 Requisitos funcionales

Los requisitos funcionales definen el comportamiento observable del sistema. Son las capacidades y servi-
cios que debe proporcionar al usuario o a otros componentes del entorno. Se han encontrado cuatro casos de
usos principales que se pueden ver en los cuadros 7.2, 7.3, 7.4 y 7.5. Además en la figura 7.2 se puede ver el
diagrama de casos de uso correspondiente al proyecto.

Figura 7.2: Diagrama de casos de uso

7.4.2 Requisitos no funcionales

Los requisitos no funcionales definen restricciones, cualidades y características técnicas que debe cumplir
el sistema para ser viable en producción y mantenible en el tiempo. Los requisitos no funcionales identificados
son los siguientes:

RNF01: El sistema debe estar desarrollado en el stack tecnológico compatible con GMV: .NET, MySQL,
React, etc.

RNF02: El sistema debe integrarse sin alterar los componentes actuales (ArchivosOBU, Transfer Mana-
ger, OBU).

RNF03: El backend debe exponer una API REST documentada, integrada en el actual SIU.

33

7.4. REQUISITOS CAPÍTULO 7. ANÁLISIS

RNF04: La lógica debe estar desacoplada del backend principal para facilitar su mantenimiento o extrac-
ción futura.

RNF05: El tiempo de lectura de los archivos no debe superar los 120 s en condiciones normales (escala-
ble).

RNF06: El tiempo de comprobación por vehículo no debe superar el segundo en condiciones normales
(escalable).

RNF07: El sistema debe poder analizar flotas de más de 1000 vehículos sin degradación significativa.

RNF09: El sistema debe mantener un log de errores accesible para diagnósticos posteriores.

RNF10: La implementación deberá ser dividida en 3 partes, un lector de los archivos generados que
inserte a BD las versiones, un comprobador automático de versiones esperadas y reales y un frontend
integrado con el actual Gestor de Contenidos.

34

CAPÍTULO 7. ANÁLISIS 7.4. REQUISITOS

Título Resgistrar versiones generadas
Actor Sistema interno
Descripción Tras un tiempo asignado en configuración, el siste-

ma detecta que se ha generado un nuevo conjunto de
archivos de contenido y registra la versión esperada
y real de cada contenido para cada vehículo.

Precondiciones PRE-1. Debe existir una nueva campaña o contenido
pendiente de distribución.
PRE-2. ArchivosOBU ha generado correctamente
los ficheros.

Postcondiciones POST-1. Se almacena en la base de datos las versio-
nes asociadas a cada vehículo.

Flujo Normal

1. Tras un tiempo designado en la configuración,
el sistema detecta si hay un nuevo conjunto de
archivos o se han actualizado.

2. Se analiza la estructura de las carpetas y se ob-
tienen los nuevos contenidos o versiones ac-
tualizadas.

3. Se registran estas versiones en la base de da-
tos.

Excepciones

2.1 Si no se detectan archivos o hay carpetas va-
cías, el sistema no realiza ninguna acción.
Tampoco realiza acciones si todos los archivos
siguen igual, es decir, no ha habido actualiza-
ciones de contenido.

2.2 Si los archivos están corruptos o no siguen la
estructura esperada, se registra un error y se
descarta el procesamiento.

Cuadro 7.2: CU1 - Registrar versiones generadas

35

7.4. REQUISITOS CAPÍTULO 7. ANÁLISIS

Título Comparación de versiones
Actor Operador
Descripción El actor solicita ver el estado de sincrionización de

los vehículos
Precondiciones PRE-1. Deben existir registros de versiones espera-

das y reales en base de datos
PRE-2. El actor deberá estar autenticado en el siste-
ma y tener los permisos correspondientes a este mó-
dulo.

Postcondiciones POST-1. El actor puede ver el estado de sincroniza-
ción de los vehículos

Flujo Normal

1. El actor solicita ver el estado de sincronización
de los vehículos, pudiendo elegir entre varios
filtros

2. El sistema compara las versiones esperadas
con las reales y detecta inconsistencias.

3. El sistema muestra los datos al actor siguien-
do los filtros seleccionados e informa de las
inconsistencias detectadas.

Excepciones

3.1 El sistema no encuentra resultados para los fil-
tros→ se muestra una tabla vacía con mensaje
informativo.

Cuadro 7.3: CU2 - Comparar Versiones

36

CAPÍTULO 7. ANÁLISIS 7.4. REQUISITOS

Título Consulta específica de versiones
Actor Operador
Descripción El actor solicita ver las versiones específicas de los

vehículos
Precondiciones PRE-1. Deben existir registros de versiones espera-

das y reales en base de datos
PRE-2. El actor deberá estar autenticado en el siste-
ma y tener los permisos correspondientes a este mó-
dulo.

Postcondiciones POST-1. El actor puede ver las versiones específicas
de los vehículos

Flujo Normal

1. El actor solicita ver las versiones específicas
de los vehículos

2. El sistemamuestra el numero de versión y tipo
de paquete esperado y el contenido en el bus
por cada tipo de paquete necesario.

Excepciones

3.1 El sistema no encuentra resultados→ semues-
tra una tabla vacía con mensaje informativo.

Cuadro 7.4: CU3 - Consulta específica de versiones

Título Consulta de KPIs de la flota
Actor Operador
Descripción El actor solicita consultar los KPIs de la flota
Precondiciones PRE-1. Deben existir registros de versiones espera-

das y reales en base de datos
PRE-2. El actor deberá estar autenticado en el siste-
ma y tener los permisos correspondientes a este mó-
dulo.

Postcondiciones POST-1. El actor puede ver información estadística
sobre la flota

Flujo Normal

1. El actor solicita consultar los KPIs de la flota

2. El sistema muestra la información estadística
correspondiente

Excepciones

3.1 El sistema no encuentra resultados→ semues-
tra una tabla vacía con mensaje informativo.

Cuadro 7.5: CU4 - Consulta de KPIs de la flota

37

7.4. REQUISITOS CAPÍTULO 7. ANÁLISIS

38

Capítulo 8

Diseño

El presente capítulo describe en detalle el diseño técnico del sistema de trazabilidad de versiones de conte-
nido desarrollado durante este Trabajo Fin de Grado. A partir de los requisitos definidos en el análisis previo, se
ha diseñado una arquitectura modular, flexible y alineada con los estándares tecnológicos actuales del entorno
de GMV.

El diseño del sistema se ha estructurado teniendo en cuenta los siguientes principios:

Modularidad: cada componente tiene una responsabilidad clara y puede evolucionar de forma indepen-
diente.

Escalabilidad: el sistema puede crecer en número de vehículos, campañas o funcionalidades sin pérdida
de rendimiento.

Integrabilidad: la solución puede desplegarse como microservicio o integrarse en un backend existente
sin romper la arquitectura actual.

Mantenibilidad: el código y los componentes están documentados y organizados para facilitar su evo-
lución y soporte por parte de otros equipos técnicos.

A lo largo del capítulo se describen los aspectos clave del diseño, incluyendo la arquitectura general, el
modelo de datos, la lógica de negocio, la interfaz de usuario, y los servicios REST que permiten la interacción
con el sistema.

8.1 Alternativas de arquitectura evaluadas
Antes de definir la arquitectura final del sistema, se analizaron diversas alternativas con el objetivo de encon-

trar la solución que ofreciera el mejor equilibrio entre integrabilidad, viabilidad técnica, esfuerzo de desarrollo
y alineación con el sistema actual.

A continuación se detallan las tres alternativas principales que se evaluaron:

8.1.1 Microservicio Independiente

La primera opción evaluada fue desarrollar la solución como un microservicio independiente. Esta alter-
nativa implicaba diseñar un servicio completamente desacoplado del resto de la infraestructura, con su propio
backend, base de datos, endpoints REST documentados, sistema de control de versiones y, opcionalmente, su
propia interfaz gráfica. Desde el punto de vista arquitectónico, esta opción representaba una solución moderna
y alineada con las tendencias actuales en desarrollo distribuido, y además se ajustaba bien al enfoque basado

39

8.1. ALTERNATIVAS DE ARQUITECTURA EVALUADAS CAPÍTULO 8. DISEÑO

en microservicios que ya existe en el entorno técnico de GMV. Al tratarse de un componente autónomo, esta
solución ofrecía ventajas significativas en términos de escalabilidad, posibilidad de reutilización en otros con-
textos, independencia de despliegue y menor impacto sobre el resto del sistema. Sin embargo, el coste asociado
al diseño, implementación y despliegue de un microservicio completo resultaba elevado dentro del contexto
temporal y técnico de un TFG. Desarrollar un microservicio desde cero implica definir y configurar toda la
infraestructura asociada (entorno de ejecución, autenticación, integración en CI/CD, monitorización, logging,
etc.), lo que suponía una carga adicional difícilmente asumible sin desviar el foco del proyecto hacia aspectos
de infraestructura más que funcionales. Además, este enfoque complicaba la validación final con datos reales,
al requerir una integración más extensa con el ecosistema en producción.

8.1.2 Módulo integrado en backend existente

La segunda opción considerada consistía en integrar la funcionalidad directamente dentro del backend de
un sistema ya existente, concretamente en el SIU (Sistema de Información al Usuario), que es uno de los com-
ponentes clave del ecosistema GMV para la gestión de campañas y contenidos. Esta alternativa resultaba espe-
cialmente atractiva desde el punto de vista de la eficiencia: permitía reutilizar la infraestructura ya desplegada,
aprovechar los mecanismos existentes de autenticación, permisos, gestión de sesiones, configuración de entor-
nos y acceso a bases de datos, y reducir el esfuerzo requerido en la fase de despliegue. Asimismo, facilitaba
una validación rápida de la funcionalidad desarrollada y la incorporación inmediata en el flujo de trabajo del
usuario final. No obstante, este enfoque tenía también sus limitaciones. La más relevante era el alto grado de
acoplamiento que generaba con el backend principal, lo cual comprometería la mantenibilidad futura del sis-
tema y dificultaría su evolución como módulo independiente. Además, existía el riesgo de alterar la lógica
del SIU en producción, introducir dependencias técnicas difíciles de aislar, o generar un solapamiento entre
responsabilidades funcionales que no estaba alineado con los principios de responsabilidad única.

8.1.3 Módulo reutilizable integrado con separación por capas

Como tercera opción se planteó un enfoque intermedio, basado en el desarrollo de una lógica completamen-
te modular, diseñada desde el inicio para ser desacoplada, pero que pudiera integrarse temporalmente dentro de
un backend existente para facilitar su despliegue y validación. Esta alternativa permitía trabajar con una arqui-
tectura clara, basada en capas (acceso a datos, lógica de comparación, servicios REST), utilizando tecnologías
compatibles con el ecosistema de GMV (C#, .NET, PostgreSQL, React) y respetando las convenciones internas
de desarrollo y estilo. La solución se diseñó de forma que pudiera empaquetarse e integrarse en el backend del
SIU como un módulo más, pero manteniendo sus dependencias y servicios bien delimitados, con el objetivo de
que, en el futuro, pudiera ser extraída y desplegada como microservicio con un esfuerzo reducido. Este enfoque
ofrecía el mejor equilibrio entre los factores evaluados: reducía el esfuerzo inicial de despliegue, permitía va-
lidar funcionalmente el sistema dentro del entorno de prácticas, y a su vez garantizaba una base técnica sólida
para su futura evolución como componente independiente. Además, encajaba de forma natural en los tiempos
y recursos disponibles en el desarrollo de un TFG, al evitar complicaciones logísticas y técnicas asociadas a un
microservicio completo, sin renunciar a los principios de diseño modular y mantenible.

8.1.4 Arquitectura elegida

Tras evaluar estas tres alternativas, se optó por implementar la solución siguiendo el enfoque modular de
integración controlada, priorizando la coherencia con el sistema actual, la viabilidad académica y el potencial de
escalabilidad futura. Esta decisión ha permitido centrar el desarrollo en la funcionalidad principal, la trazabilidad
de versiones, sin desatender los aspectos clave de integrabilidad, sostenibilidad y alineación con el entorno
profesional en el que se enmarca este proyecto.

40

CAPÍTULO 8. DISEÑO 8.2. DISEÑO

8.2 Diseño
La arquitectura del sistema diseñado en este Trabajo Fin de Grado se ha definido siguiendo un enfoque

modular y desacoplado, con el objetivo de facilitar su integración en un entorno complejo y en producción
como el de GMV. A diferencia de una arquitectura de microservicios clásica, se ha optado por un enfoque más
pragmático y alineado con los estándares internos de la empresa, basado en la separación funcional entre el
procesamiento de datos y su exposición a través de servicios ya existentes.

La solución se articula en torno a cuatro grandes componentes:

InfoVersionService: Un servicio de Windows independiente, responsable de realizar el procesamiento
de los datos (lectura de archivos, tratado de los datos y generación de resultados).

SoaBasicContentManager: backend del SIU ya existente que expone endpoints para ser consumidos
por el SiuFront. En este caso contará con un nuevo endpoint que permitirá consultar resultados generados
gracias al servicio de trazabilidad de InfoVersionService, tratarlos y exponer su información al front.

Base de datos: compartida entre InfoVersionService y el SoaBasicContentManager.

SiuFront: Frontend encargado del sistema de información al usuario que se encarga de todo lo relacionado
con los contenidos en las flotas. En este caso, se ha añadido un nuevo componente llamado ”Fleet Status”,
en el que se podrá consultar el estado de actualización de toda la flota.

Esta arquitectura garantiza una integración controlada y no invasiva en el sistema actual. El nuevo servicio
opera de forma autónoma, ejecutándose en segundo plano como una tarea de sistema que puede programarse
periódicamente y configurarse para tener más funcionalidades, como por ejemplo, el borrado de históricos con
cierta antigüedad. A su vez, los datos generados (versiones esperadas, versiones reales y comparaciones) se
almacenan en una base de datos que sigue el modelo de datos definido para este proyecto, véase la sección 8.4.
El backend del SIU ha sido extendido con un nuevo endpoint REST, que se encarga de consultar esa base de
datos, tratar los datos y exponer los resultados al frontend, sin que el SIU tenga que hacerse responsable de la
lógica de comparación o de la gestión de archivos.

Este diseño ofrece múltiples ventajas desde el punto de vista técnico y organizativo. Por un lado, permite
desacoplar la lógica pesada de procesamiento, que podría evolucionar en volumen y complejidad, de los servi-
cios interactivos que deben mantener tiempos de respuesta cortos. Por otro, garantiza una integración segura y
progresiva en el ecosistema de GMV: el SIU accede únicamente a datos procesados en un nuevo componente
desacopable, mientras que el nuevo servicio puede desplegarse, actualizarse o incluso detenerse sin afectar a la
operativa central.

La interfaz de usuario, desarrollada en React, no accede directamente al servicio de Windows, sino que
consume el nuevo endpoint del SIU, manteniendo la experiencia de usuario unificada y coherente con el resto
de la aplicación. Esto permite aprovechar el sistema de autenticación, permisos y diseño gráfico ya existente,
sin duplicar funcionalidades ni introducir nuevas dependencias en el cliente.

Desde el punto de vista del ciclo de vida del software, esta arquitectura también favorece el mantenimiento:
las actualizaciones del servicio de procesamiento pueden desplegarse de forma independiente, y el almace-
namiento de los resultados en una base de datos relacional permite auditoría, reuso, y análisis posterior sin
necesidad de reprocesar archivos.

En resumen, se trata de una arquitectura híbrida y realista, que separa claramente responsabilidades en-
tre procesamiento y presentación, respeta el funcionamiento del sistema actual, y se adapta a las limitaciones
temporales y técnicas de un Trabajo Fin de Grado, sin renunciar a la calidad y la profesionalidad en el diseño.

8.3 Patrones de Diseño aplicados
Durante el diseño e implementación del sistema se han aplicado varios patrones de diseño clásicos, am-

pliamente utilizados en el desarrollo de software moderno. Estos patrones han permitido estructurar el código

41

8.3. PATRONES DE DISEÑO APLICADOS CAPÍTULO 8. DISEÑO

de forma más modular, mantenible y extensible, además de facilitar su integración en el ecosistema técnico
existente.

A continuación se describen los principales patrones utilizados:

8.3.1 Singleton

El patrón Singleton garantiza que una clase tenga una única instancia accesible globalmente y proporciona
un punto centralizado de acceso a ella. Este patrón es útil para clases que representan configuraciones o recursos
compartidos[18]. Su estructura se puede ver en la figura 8.1.

Figura 8.1: Singleton

En cuanto a la aplicación en el proyecto, todas las configuraciones internas del nuevo servicio (InfoVer-
sionService), son almacenadas por medio de la implementación de un singleton clásico con propiedad estática
Instance. Almacena parámetros de configuración como rutas de las carpetas utilizadas por el Transfer Manager
y ArchivosOBU en la generación de archivos, intervalos de ejecución de la lectura de archivos y opciones de
limpieza. Esta instancia se accede desde distintas partes del código sin necesidad de pasarla como dependencia
explícita.

8.3.2 Fachada

El patrón Fachada proporciona una interfaz de alto nivel que oculta la complejidad de múltiples subsistemas.
Permite al cliente interactuar con una sola entrada simplificada, sin conocer la estructura interna. Reduce el
acoplamiento entre cliente y subsistemas, facilita el uso del sistema por parte de otros módulos y mejora la
legibilidad del flujo general[19]. Se puede ver su estructura en la figura 8.2.

A nivel de aplicación, se proporciona la fachada VersionProcessingService para agrupar múltiples respon-
sabilidades internas como la gestión de carpetas, ejecución de estrategias de lectura de archivos, escritura en
base de datos, etc, y exponerlas a través de métodos tan simples como Start() o Stop().

8.3.3 Inyección de dependencias

La Inyección de Dependencias es un patrón de arquitectura que permite suministrar las dependencias de una
clase desde el exterior, en lugar de crearlas internamente. Se implementa habitualmente mediante contenedores
de inversión de control (IoC), mejorando así el desacoplamiento entre componentes, facilitando el uso de mocks
en tests y promoviendo el principio de inversión de dependencias[20]. Su estructura se puede ver en la figura
8.3.

42

CAPÍTULO 8. DISEÑO 8.3. PATRONES DE DISEÑO APLICADOS

Figura 8.2: Fachada

Figura 8.3: Inyección de Dependencias

En el contexto de la aplicación, se ha creado un contenedor de servicios denominado ServiceCollectionEx-
tension en el que se registran todas las interfaces e implementaciones. Luego, son inyectadas automáticamente
en el resto de clases consumidoras evitando así la necesidad de uns instanciación directa.

8.3.4 Strategy

El patrón Strategy permite definir una familia de algoritmos o comportamientos intercambiables y encap-
sularlos en clases separadas que comparten una misma interfaz. El cliente delega el comportamiento concreto a
una estrategia en tiempo de ejecución, lo que permite modificar dinámicamente la lógica sin cambiar el cliente.
Esto elimina bloques de código condicionales extensos, favorece el principio abierto/cerrado permitiendo agre-
gar nuevas estrategias sin modificar las existentes y facilita el testing unitario de cada estrategia individual[21].
Su estructura se puede ver en la figura 8.4.

En el contexto del proyecto, en el servicio InfoVersionService, se manifiesta por medio de una interfaz
llamada IFolderProcessor que define el contrato para los distintos procesadores de carpetas, siendo estas sus
implementaciones. Estas implementaciones encapsulan lógicas distintas de navegación de carpetas según el
tipo de agrupación (Flota, SubFlota, Particular). El servicio selecciona e invoca estas estrategias en tiempo de
ejecución sin tener que conocer sus diferencias internas.

43

8.3. PATRONES DE DISEÑO APLICADOS CAPÍTULO 8. DISEÑO

Figura 8.4: Strategy

8.3.5 Scheduled Task

Este patrón se utiliza cuando se necesita ejecutar tareas a intervalos fijos o programados, como limpiezas,
verificaciones o sincronizaciones automáticas. Permite la ejecución periódica sin intervención del usuario, en-
capsula lógica recurrente en módulos reutilizables y mejora la automatización y monitorización del sistema[22].

La aplicación al proyecto se realiza mediante una clase llamada ScheduledTask que encapsula toda la lógica
de temporización. Esta clase permite crear tareas que se ejecutan cada ciertos intervalos de tiempo. En este caso
la lectura de los archivos de versiones generados y el borrado de registros con antigüedadmayor a la configurada.
Ambas tareas definidas como callbacks configurables separadas del código principal.

8.3.6 Template

Este patrón define el esqueleto de un algoritmo en una clase base, dejando la implementación de pasos
concretos a subclases. La clase abstracta contiene la lógica común, pero permite que ciertos pasos sean perso-
nalizados [23].

La estructura general de este patrón puede verse en la figura 8.5.
La clase abstracta FolderProcessorBase implementa el método Process(), que define el flujo general del

procesamiento (recorrido de carpetas, identificación de OBUs, procesado de paquetes, registro de resultados).
Las subclases (FleetProcessor, etc.) redefinen métodos como GetFoldersToProcess() y GetBusIds() según el
contexto, permitiendo adaptar el flujo a distintos tipos de entrada sin alterar la lógica general.

44

CAPÍTULO 8. DISEÑO 8.4. MODELADO DE DATOS

Figura 8.5: Template

8.4 Modelado de datos

El sistema diseñado para la trazabilidad de versiones de contenidos requiere almacenar de forma persistente
la información que fluye durante todo el proceso: versiones generadas por los sistemas emisores (ArchivosOBU)
y las versiones detectadas por los equipos embarcados (a través de Transfer Manager)

Para ello, se ha definido un modelo de datos relacional centrado en tres entidades principales: Bus, Package-
Version y File. Estas entidades se relacionan entre sí mediante identificadores de vehículo, y paquete, permitien-
do consultar el estado histórico y actual de cada unidad embarcada respecto a una determinada actualización.
Se puede consultar el modelo de datos en la figura 8.6

Antes de analizar cada clase con sus atributos cabe destacar que todos ellos empiezan por una letra que
indica su tipo primitivo. Esto se hace así por convenio en GMV.

Las clases con las descripciones de sus atributos son las siguientes:

45

8.4. MODELADO DE DATOS CAPÍTULO 8. DISEÑO

Bus: Clase que representa los datos de los buses.

iIdAutobus: Se refiere al identificador interno de GMV respecto al bus.

sSideCode: Equivale a un identificador del bus conocido por el cliente.

sMatricula: Matrícula del vehículo.

BusPackage: Clase que representa los datos relacionados con los paquetes generales de versiones.

iIdPackage: Identificador del paquete.

iIdAutobus: Identificador del bus que al que pertenece este paquete.

packageType: Se refiere al tipo de paquete de contenidos, es decir el tipo de ficheros y contenidos que
almacena dicho paquete. A día de hoy, GMV consta con Topología para todo lo relacionado a rutas, líneas,
paradas, trayectos, etc. Ecodriving para todo lo relacionado a la conducción eco, Pis_configuration para las
configuraciones internas del bus y Pis_data para distintos contenidos como mensajes, audios, imágenes,
etc.

bInBus: indica si el paquete se refiere a una version esperada (False) o Actual (True).

iPackageVersion: Versión del paquete

dtFechaRegistro: Fecha en la que InfoVersionService procesó el paquete a base de datos.

File: Hace referencia a los ficheros, es decir contenidos, internos de cada paquete. Por ejemplo, una línea
en concreto o una de las muchas imágenes que se pueden mostrar.

sName: Nombre del fichero/contenido.

iIdPackage: Paquete al que pertenece dicho contenido.

iVersion: Versión del fichero/contenido.

Este modelo de datos permite almacenar de forma estructurada el histórico de versiones por vehículo, hacer
trazabilidad por campaña, comparar datos desde distintas fuentes, y ofrecer información confiable al operador
sobre el estado de la flota. Su diseño relacional permite consultas eficientes, control de integridad referencial
y posibilidad de extensión futura. Por otro lado, este modelo de dominio es un equivalente al utilizado para la
base de datos pues los datos se tratan de igual manera.

46

CAPÍTULO 8. DISEÑO 8.5. DISEÑO DE INFOVERSIONSERVICE

Figura 8.6: Modelado de Datos

8.5 Diseño de InfoVersionService

El único componente del sistema cuyo diseño se analiza en profundidad es InfoVersionService, ya que cons-
tituye el núcleo funcional (core) de la solución propuesta. Este servicio es responsable de procesar los datos bru-
tos, aplicar la lógica de negocio y generar los resultados que permitirán determinar el estado de sincronización
de los vehículos. En contraste, las extensiones realizadas tanto en el SIU Frontend como en el SoaBasicCon-
tentManager son modificaciones mínimas, limitadas a la incorporación de nuevos componentes de interfaz o
métodos auxiliares que se encargan exclusivamente de consultar y visualizar la información generada por In-
foVersionService. Estas piezas actúan como consumidores de datos, sin aportar complejidad adicional desde el
punto de vista arquitectónico o algorítmico.

8.5.1 Descripción General

InfoVersionService es un servicio de backend desarrollado como una aplicación de tipo Windows Service,
diseñado para ejecutarse de forma autónoma y periódica en segundo plano. Su propósito principal es analizar las
versiones de contenido destinadas a los vehículos, comparar dichas versiones con las efectivamente instaladas, y
generar registros estructurados que posteriormente serán consultados por el SIU para su visualización y control.

Este servicio constituye el núcleo funcional (core) de la solución propuesta. A diferencia de otros componen-
tes del sistema que se limitan a consumir y mostrar los datos, InfoVersionService es responsable de implementar
la lógica de negocio central: lectura de archivos, interpretación de estructuras, aplicación de estrategias de proce-
samiento, persistencia de datos y evaluación de sincronización. Por ello, su diseño se ha abordado con especial
atención a la separación de responsabilidades, el uso de patrones de diseño reutilizables y la extensibilidad
futura.

El servicio se estructura siguiendo una arquitectura multicapa, que divide claramente las responsabilidades
entre los distintos módulos del sistema. La lógica se organiza en paquetes que responden a distintas capas
funcionales: Application, Domain, Infrastructure, Configuration, y ServiceHost. Esta organización favorece el

47

8.5. DISEÑO DE INFOVERSIONSERVICE CAPÍTULO 8. DISEÑO

mantenimiento del sistema, permite testear cada capa de forma aislada y facilita una futura migración hacia
arquitecturas más distribuidas si el sistema crece.

La ejecución del servicio se basa en un mecanismo de tareas programadas (ScheduledTask 8.3.5), que lanza
automáticamente dos procesos fundamentales:

El procesamiento de carpetas, donde se recorren las estructuras generadas por ArchivosOBU y Transfer
Manager.

La limpieza de datos antiguos, que garantiza la sostenibilidad del sistema en el tiempo y la gestión eficiente
del almacenamiento.

Durante el procesamiento, se aplican diferentes estrategias de interpretación de carpetas (por flota, subflota,
individual, del TransferManager), seleccionadas dinámicamente mediante inyección de dependencias, y basadas
en una jerarquía común de clases. Esta estructura modular facilita añadir nuevas formas de organización de
archivos sin necesidad de modificar la lógica central.

Finalmente, los resultados obtenidos se persisten en una base de datos SQL, utilizando una capa de acceso a
datos intermedia (Dbm/DAO) que encapsula los detalles técnicos de la persistencia y facilita el uso de pruebas
o simulaciones. Estos resultados son posteriormente accesibles desde el SIU a través de un nuevo endpoint
expuesto en su backend.

8.5.2 Arquitectura del Microservicio

En GMV se sigue un estándar a la hora de crear e implementar tanto servicios como nuevos microservicios.
Esta plantilla es la que se ha seguido para el desarrollo de InfoVersionService. En la figura 8.7 se puede ver el
diagrama de paquetes de InfoVersionService.

Dentro del paquete general InfoVersionService, se encuentran 5 paquetes que corresponden a proyectos
.NET. Por simplicidad no se han incluido los paquetes relacionados con los Test pero cada uno de estos paquetes
lleva a su vez asociado un paquete Test encargado de los test unitarios correspondientes.

Figura 8.7: Diagrama de Paquetes

48

CAPÍTULO 8. DISEÑO 8.5. DISEÑO DE INFOVERSIONSERVICE

Se centrará la atención en los paquetes mostrados en el diagrama de paquetes:

El paquete Configuration es el que contiene toda la información relacionada con la configuración de la
aplicación, desde la cantidad de tiempo que ha de pasar entre cada tipo de tarea ejecutada por el servicio,
hasta la base de datos a la que se accede y las rutas en las que ArchivosOBU o el TransferManager
generan sus archivos. Este paquete internamente por el momento no consta con más subpaquetes, pero es
algo que a futuro podría ocurrir en caso de que el servicio escalase y se quisiesen extraer dependencias
de configuración.

El paquete Domain contiene las clases que representan las estructuras de datos utilizadas por el servicio
para encapsular información como se puede ver en la figura 8.6. Este paquete está diseñado para ser inde-
pendiente de la lógica de negocio y de la persistencia, y sirve como puente de comunicación entre capas.
Todas las clases de este paquete son esencialmente objetos de transferencia de datos (DTOs) o entidades
inmutables que encapsulan información del dominio. Este paquete tampoco consta con subpaquetes pues
no tiene una alta complejidad. En caso de que la complejidad aumentase se podrían crear nuevos paquetes
para evitar alto acoplamiento.

El paquete ServiceHost contiene la clase principal InfoVersionService, que representa el punto de entrada
del servicio Windows. Este paquete se encarga de inicializar la aplicación, resolver las dependencias
mediante inyección, arrancar el procesamiento y gestionar el ciclo de vida del servicio (inicio/parada).
No contiene lógica funcional del sistema, ya que su responsabilidad es únicamente servir como contenedor
de ejecución.

El paquete Architecture encapsula la lógica de acceso a datos. Cada clase en este paquete representa una
entidad persistida y contiene métodos de acceso, actualización y consulta a través de DAOs internos. Este
paquete se comunica directamente con la base de datos SQL utilizada por el sistema, y constituye la capa
de infraestructura de acceso a persistencia.
En la figura 8.8 se puede ver la estructura interna.
Este paquete está organizado internamente en subpaquetes por dominio funcional, tales como Bus, File,
PackageType y BusPackage, cada uno con sus propias entidades persistentes (DbmXxx) y mecanismos
de acceso (DaoXxx). Esta organización favorece la escalabilidad del sistema, ya que permite extender
nuevas áreas de persistencia sin interferir con otras.

Figura 8.8: SubPaquetes Architecture

El paquete Application constituye el núcleo funcional de la lógica de alto nivel del sistema. En él se
centraliza la coordinación de las tareas principales que ejecuta el servicio, estructuradas a su vez en tres

49

8.5. DISEÑO DE INFOVERSIONSERVICE CAPÍTULO 8. DISEÑO

subpaquetes: Processors, Services y Utilities. Esta división permite separar claramente la orquestación
de flujos, la ejecución de algoritmos específicos y las operaciones auxiliares de apoyo. En la figura 8.9
se puede ver la estructura interna.

El análisis en profundidad de los paquetes es el siguiente:

• El subpaquete Processors contiene la lógica específica para la lectura y procesado de las carpetas
generadas por sistemas como ArchivosOBU y TransferManager. Aquí se definen los distintos pro-
cesadores concretos (FleetProcessor, SubFleetProcessor, ParticularProcessor, TMProcessor) que
heredan de una clase base común y comparten una misma interfaz, IFolderProcessor. Este subpa-
quete implementa el patrón Strategy 8.3.4, permitiendo que el servicio seleccione dinámicamente
la estrategia adecuada para procesar cada carpeta según su estructura lógica. Asimismo, se aplica el
patrón Template Method 8.3.6 mediante la clase FolderProcessorBase, que define un flujo estándar
para el recorrido de carpetas y delega los detalles específicos en las subclases.

• El subpaquete Services agrupa los servicios encargados de aplicar la lógica de negocio de más alto
nivel. Aquí se encuentran clases como VersionProcessingService, que coordina toda la ejecución
periódica del sistema (programación de tareas, ejecución, supervisión), o BusProcessingTracker,
que gestiona el estado de los vehículos procesados para evitar repeticiones innecesarias. También
se incluye el uso del patrón Façade 8.3.2, ya que estos servicios encapsulan las interacciones entre
los distintos componentes internos, ofreciendo un punto de entrada único para el procesamiento
principal.

• El subpaquete Utilities contiene funciones auxiliares específicas del módulo de aplicación que no
pertenecen a lógica de dominio puro, pero tampoco son genéricas del sistema completo (como las
que irían en un Util general). Se incluyen aquí operaciones de soporte como validaciones especiali-
zadas, lógica de temporización avanzada para tareas programadas (ScheduledTask 8.3.5), y ayudas
reutilizables propias del servicio, pero separadas de la infraestructura técnica o la lógica de negocio
central.

Esta estructura modular del paquete Application favorece el mantenimiento, mejora la organización de
responsabilidades y permite extender fácilmente la funcionalidad del sistema sin comprometer la estabi-
lidad del núcleo existente.

Figura 8.9: SubPaquetes Application

8.5.3 Dependencias entre submódulos

En el diseño interno de InfoVersionService, los submódulos se estructuran de forma que respetan una direc-
ción de dependencia descendente: los módulos de alto nivel (como ServiceHost y Application) consumen los

50

CAPÍTULO 8. DISEÑO 8.5. DISEÑO DE INFOVERSIONSERVICE

de nivel inferior (Model, Configuration, Dbm, Util), pero nunca al revés. Esta orientación permite mantener un
diseño modular, desacoplado y fácilmente testeable.

En la figura 8.10 se puede ver un diagrama con las dependencias entre las distintas capas.
A continuación se describen las principales dependencias entre submódulos, agrupadas por nivel:

Nivel Superior ServiceHost: Este módulo es el punto de entrada de la aplicación (clase InfoVersionSer-
vice) y depende directamente de:

• Application.Services: para iniciar/parar el procesamiento (VersionProcessingService).
• Configuration: para leer los parámetros necesarios de arranque.

No contiene lógica propia ni es dependido por otros módulos.

Nivel Intermedio Application: El módulo de aplicación se divide en tres submódulos funcionales con
relaciones claras.

• Application.Services: el cual depende tanto de Application.Processors para invocar los distintos
procesadores de carpetas y archivos, como todos los Dbm para leer/escribir resultados y Domain
como estructura intermedia de datos.

• Application.Processors: el cual únicamente depende de Domain para la creación de los datos
intermedios.

• Application.Utilities: No se muestra en el diagrama pues no tiene dependencias externas pero es
utilizado por el resto de submódulos de Application para tareas comunes como temporización entre
otras.

Nivel de infraestructura Architecture: Esta capa depende solamente de Domain para transformar DTOS
en entidades persistentes y viceversa, y deConfiguration para todas las configuraciones de BD necesarias.

Módulos Transversales (Domain y Configuration): Estos módulos se utilizan en los demás, pero no
dependen de ninguno, respetando su carácter transversal.

• Model define estructuras puras de datos
• Configuration contiene las clases relacionadas con la configuración del servicio como por ejemplo
un singleton con variables como las rutas de los archivos, tiempos de procesado, etc.

51

Figura 8.10: Dependencias entre capas

CAPÍTULO 8. DISEÑO 8.5. DISEÑO DE INFOVERSIONSERVICE

8.5.4 Diagrama de clases entre capas

La comprensión estructural de un sistema software no se limita únicamente al análisis de sus paquetes o
capas funcionales, sino que requiere también un entendimiento claro de cómo se relacionan e interactúan las
clases que lo componen. En este apartado se presenta un diagrama de clases intermodular, cuyo objetivo es
representar las principales entidades del sistema InfoVersionService, su distribución en las diferentes capas
arquitectónicas, y las relaciones que se establecen entre ellas.

El enfoque adoptado para este diseño responde a los principios de la arquitectura en capas, donde cada nivel
funcional (orquestación, procesamiento, negocio, persistencia) tiene responsabilidades claramente delimitadas.
A su vez, se han aplicado principios de diseño orientado a objetos como la inversión de dependencias, la se-
paración de responsabilidades (SRP), y el uso de interfaces para garantizar un bajo acoplamiento y una alta
cohesión.

Este diagrama es especialmente útil para ilustrar cómo fluye la información en el sistema desde la activa-
ción del servicio hasta la escritura en la base de datos. También permite visualizar cómo se integran distintos
patrones de diseño identificados previamente, como Strategy, Template Method y Façade y cómo contribuyen
a estructurar un sistema escalable y mantenible.

A lo largo de este apartado se explicará el rol de cada clase clave, agrupadas por capa funcional, así como las
asociaciones y dependencias que existen entre ellas. Esta representación refuerza el diseño modular del sistema
y pone en evidencia las buenas prácticas aplicadas durante su desarrollo.

En la figura 8.5.4 se puede ver el diagrama de conexión de capas por medio de las clases principales.
A continuación, se explicará el rol de las clases clave:

ServiceHost

• InfoVersionService: Es la clase principal del servicio deWindows. Se encarga de gestionar el ciclo
de vida en el sistema (OnStart, OnStop), resolver dependencias iniciales y delegar la ejecución al
componente VersionProcessingService. No contiene lógica de negocio.

Application.Services

• VersionProcessingService: Es el componente central de orquestación. Programa y lanza las tareas
periódicas de procesado y limpieza, inicializa las estrategias de procesamiento (IFolderProcessor)
y mantiene el control de ejecución global. Aplica el patrón Façade 8.3.2.

• PackageService: Se encarga de la lógica de análisis de archivos y generación de datos estructurados.
Es invocado por los procesadores para interpretar los archivos encontrados en disco y construir
objetos Package y File. Valida formatos, extrae metadatos relevantes, determina tipos de paquete y
gestiona las operaciones necesarias para registrar la información de versiones en el sistema.
Es un punto clave de conexión entre el recorrido físico del sistema de ficheros y el modelo de datos
interno. Aplica validaciones específicas, delega la persistencia en la capa de Architecture y colabora
estrechamente con BusProcessingTracker.

Application.Processors

• IProcessor: Interfaz que define el contrato común para todos los procesadores de carpetas. Permite
aplicar el patrón Strategy 8.3.4 y sustituir dinámicamente la lógica según el tipo de carpeta.

• FolderProcessorBase: Clase abstracta que implementa el patrón Template 8.3.6. Define el flujo
general de procesamiento (recorrido de carpetas, obtención de vehículos, evaluación de versiones)
y deja los detalles a implementar por las subclases concretas.

• FleetProcesssor, SubFleetProcessory ParticularProcessor: Implementaciones específicas del pro-
cesador que manejan estructuras diferentes de carpetas o fuentes (ArchivosOBU). Cada clase im-
plementa su propia lógica para interpretar rutas y extraer identificadores de OBU.

53

8.5. DISEÑO DE INFOVERSIONSERVICE CAPÍTULO 8. DISEÑO

• TMProcessor: Es una implementación específica del IProcessor relacionada únicamente con los
archivos generados por el TransferManager. Esto se debe a que los archivos generados no siguen
la misma estructura que ArchivosOBU, en este caso se encuentran todos en la misma carpeta y
se identifican por el nombre del archivo mientras que ArchivosOBU los distribuye en diferentes
carpetas ya sea por flota, bus, etc.

Application.Utilities

• BusProcessingTracker: Clase que actúa como mecanismo de control en memoria, evitando que un
mismo vehículo se procese múltiples veces dentro de una misma ejecución. Esencial para mantener
eficiencia y evitar duplicidad de resultados. Esto se hace principalmente para que si ArchivosOBU
genera versiones para toda la flota pero dentro de esa misma flota hay ciertos buses particulares
con versiones distintas, no tengan tanto la versión de la flota como la particular, si no la que le
corresponda en cada caso.

Domain: Este apartado se puede consultar en profundidad en el capítulo 8.4.

Architecture: Esta capa es la encargada de mapear y acceder a las distintas tablas relacionadas con cada
modelo definido en el capítulo 8.4. Consta de una interfaz general llamada IDbm que tiene los métodos
generales de todos los data managers de la que heredan las interfaces e implementaciones concretas para
cada tipo de dato..

La correcta separación de responsabilidades entre estas clases, junto con el uso sistemático de interfaces,
clases abstractas y servicios, garantiza que el sistema sea fácilmente extensible, testeable y mantenible. Este
diseño modular permite añadir nuevos tipos de procesamiento, ajustar los criterios de comparación o cambiar
la fuente de datos sin alterar la arquitectura general del sistema.

54

8.5. DISEÑO DE INFOVERSIONSERVICE CAPÍTULO 8. DISEÑO

8.5.5 Diagramas de Secuencia

En este apartado se describen los flujos dinámicos de ejecución que se producen durante el funcionamiento
normal del sistema. A diferencia de los diagramas de clases (que representan la estructura estática), los diagramas
de secuencia muestran la interacción temporal entre objetos o componentes, permitiendo visualizar cómo fluye
la información y qué clases participan activamente en cada etapa del proceso. Dado que InfoVersionService se
compone de tareas cíclicas y procesos automatizados, se han identificado dos flujos representativos:

Proceso de comparación de versiones (Tarea principal):Este diagrama representa lo que ocurre cuando
el servicio lanza una tarea periódica para analizar las carpetas generadas por ArchivosOBU o Transfer
Manager, extraer las versiones, compararlas, y registrar tanto el resultado como los paquetes con sus
archivos y versiones. Los diagramas de secuencia se pueden ver en las figuras 8.11, 8.12 y 8.13.

En estos diagramas de secuencia se representa el flujo de ejecución correspondiente al método Process-
Folders() de la clase VersionProcessingService, que constituye el núcleo de procesamiento cíclico de
versiones en el sistema.

El sistema dispone de una colección de estrategias de procesado que implementan la interfaz IProcessor,
las cuales son inyectadas dinámicamente mediante el mecanismo de inyección de dependencias (véase la
sección 8.3.3). Cada una de estas estrategias se encarga de recorrer una estructura de carpetas específica,
generada previamente por los servicios ArchivosObu o TransferManager (Véase el capítulo 7).

Las carpetas a procesar son determinadas a través del método GetFoldersToProcess(). Durante este reco-
rrido, cada procesador identifica y almacena referencias a los directorios asociados a paquetes concretos
(PackageType según el análisis realizado), en este caso, correspondientes a los paquetes generales de
contenidos.

Posteriormente, cada estrategia invoca el método GetBusIds(), cuya implementación varía en función
del tipo de procesador (por ejemplo, FleetProcessor, SubFleetProcessor, entre otros), con el objetivo de
determinar los identificadores de los vehículos implicados.

Una vez se ha procesado la carpeta principal del procesador actual, se realiza una llamada al método
ProcessPackage() de la clase PackageService, el cual se encarga de procesar los distintos directorios,
es decir, tipos de paquete, encontrados en los pasos anteriores. Estos directorios constan con un archivo
de texto de control(Véase el capítulo 7). Este método se encarga de encontrar estos archivos de texto
dentro de cada paquete para así procesar su contenido, crear los correspondientes BusPackages y Files e
insertarlos en los buses conseguidos por medio de GetBusIds()

Con el fin de simplificar el diagrama de secuencia y mejorar su legibilidad, se ha optado por representar
únicamente una de las implementaciones de IProcessor, concretamente FleetProcessor. Esta representa-
ción se encuentra encapsulada dentro de un bloque loop, que indica que dicha lógica se ejecuta de forma
iterativa para cada uno de los procesadores registrados en el sistema.

Este enfoque representa de forma precisa el uso del patrón Strategy 8.3.4, dejando implícito que el com-
portamiento sería equivalente para otras implementaciones como SubFleetProcessor,ParticularProcessor
o TMProcessor. Además, se han simplificado los diagramas para evitar algunas implementaciones que
no tienen gran relevancia.

Proceso de limpieza de registros antiguos (Mantenimiento periódico): Este diagrama de secuencia
representa el flujo correspondiente al proceso de limpieza periódica de registros antiguos, llevado a cabo
por el método CleanOldRecords() de la clase VersionProcessingService. Esta funcionalidad forma parte
de las tareas programadas que ejecuta el servicio de manera autónoma, y su objetivo es eliminar de la
base de datos aquellos paquetes de versión cuya antigüedad supere al umbral designado en el paquete de
configuración.

El proceso se ejecuta en segundo plano mediante una instancia de ScheduledTask 8.3.5 que, tras el inter-
valo de tiempo invoca al método CleanOldRecords().

56

CAPÍTULO 8. DISEÑO 8.5. DISEÑO DE INFOVERSIONSERVICE

El diagrama de secuencia se puede ver en la figura 8.14

Cabe señalar que, con el fin demejorar la legibilidad de los diagramas de secuencia presentados, se ha optado
por omitir explícitamente el tratamiento de posibles excepciones o errores. No obstante, en la implementación
real, dichos mecanismos de control están debidamente contemplados para garantizar la robustez del sistema.

8.5.6 Consideraciones de extensibilidad, mantenibilidad y escalabilidad

Uno de los objetivos fundamentales en el diseño de InfoVersionService ha sido garantizar que el sistema
sea fácilmente extensible, mantenible y escalable a medio y largo plazo. La implementación se ha construido
desde el inicio siguiendo principios de diseño sólido y arquitectura limpia, con el fin de facilitar la evolución
del sistema sin introducir efectos colaterales ni comprometer su estabilidad.

Extensibilidad: El sistema ha sido diseñado para que nuevos comportamientos o funcionalidades pue-
dan incorporarse sin modificar el código existente, sino añadiendo nuevos módulos de forma controlada.
Destacan las siguientes decisiones que favorecen la extensibilidad:

• El uso del patrón Strategy 8.3.4 permite incorporar nuevos procesadores (IProcessor) para tratar
estructuras de carpetas distintas (por ejemplo, nuevos formatos generados por otros sistemas), sin
necesidad de modificar los procesadores actuales ni la lógica central del servicio.

• La separación entre lógica de recorrido de carpetas y lógica de interpretación de archivos permite
que los cambios en la estructura de carpetas o en los tipos de contenido se puedan abordar de forma
independiente.

• La inyección de dependencias hace que sea posible sustituir servicios concretos por otros (por ejem-
plo, una nueva implementación de almacenamiento) sin modificar la lógica de negocio.

• El uso de ScheduledTask 8.3.5 permite la creación de nuevas tareas en segundo plano que se coor-
dinen automáticamente con el resto de tareas ya creadas, sin modificar la lógica actual del sistema.

Estas decisiones permiten incorporar nuevos procesadores dedicados al versionado de cualquier tipo de
contenido e, incluso, extender su ámbito más allá de lo puramente documental.

Mantenibilidad: El sistema cumple principios clave de diseño orientado a objetos como:

• Responsabilidad única (SRP): cada clase tiene una responsabilidad claramente definida (por ejem-
plo, los procesadores se encargan solo del procesado de carpetas, mientras que PackageService crea
los paquetes de versiones y los inserta en base de datos).

• Bajo acoplamiento y alta cohesión: las clases están organizadas en capas y paquetes funcionales,
con dependencias claras y bien aisladas. Ninguna clase accede directamente a capas externas (por
ejemplo, lógica de negocio a base de datos), sino que lo hace a través de interfaces.

Escalabilidad: Aunque actualmente el servicio se ejecuta como una única instancia Windows, su arqui-
tectura está preparada para escenarios futuros que puedan requerir más carga o mayor paralelismo:

• El diseño por tareas permite separar los distintos procesos (procesamiento vs limpieza) y ejecutarlos
de forma independiente.

• El modelo de datos puede escalar horizontalmente con soporte de índices, particiones por campaña
o flota, y almacenamiento distribuido si fuera necesario.

Finalmente, el desacoplamiento total entre InfoVersionService y los sistemas que consumen sus resultados
(como el SoaBasicContentManager o el SiuFront) permite que cada uno de estos componentes pueda evolucio-
nar de forma independiente, sin generar bloqueos funcionales ni dependencias rígidas.

Este diseño modular no solo facilita la integración inicial con el gestor de contenidos, sino que convierte
a InfoVersionService en una solución genérica y reutilizable para cualquier funcionalidad relacionada con el
control de versiones de contenido en GMV, más allá del ámbito específico del SIU.

57

Figura 8.11: Diagrama de Secuencia ProcessFolder

Figura 8.12: Diagrama de Secuencia ProcessPackage

Figura 8.13: Diagrama de Secuencia InsertFileDetails

Figura 8.14: Diagrama de Secuencia CleanOldRecords

CAPÍTULO 8. DISEÑO 8.6. INTERFAZ DE USUARIO

8.5.7 Resumen de la arquitectura de InfoVersionService

En resumen, el módulo InfoVersionService se estructura en torno a un servicio Windows encargado de
ejecutar periódicamente tareas programadas de análisis y limpieza. Este servicio se apoya en una arquitectura
basada en inyección de dependencias, separación en capas y procesadores para interpretar archivos, registrar
versiones y mantener la trazabilidad de forma desacoplada. Su diseño modular permite tanto la escalabilidad a
otros tipos de paquetes como su integración con nuevos sistemas sin alterar el núcleo del servicio.

8.6 Interfaz de Usuario
La solución desarrollada incluye una interfaz gráfica integrada en el sistema SIU, específicamente en su mó-

dulo de administración técnica, con el objetivo de proporcionar a los operadores una visión clara y centralizada
del estado de actualización de contenidos por vehículo.

Este componente frontend permite consultar, de manera visual y ordenada, la información generada por el
servicio InfoVersionService, proporcionando trazabilidad sobre las versiones esperadas y reales instaladas en
cada OBU, así como posibles inconsistencias detectadas durante el proceso de sincronización.

Aunque la lógica de control y generación de datos reside completamente en el backend, la interfaz de usuario
representa una parte esencial del sistema desde el punto de vista de la operación técnica y toma de decisiones.
La información expuesta permite validar si una flota está en condiciones de ser desplegada, detectar errores en
la distribución de archivos, o confirmar la correcta instalación de contenidos críticos.

Dado que el SIU es un sistema complejo, con estilos y flujos propios ya consolidados, la interfaz desarrollada
respeta tanto la línea visual existente como los patrones de interacción definidos previamente, de forma que se
integra de forma transparente en la experiencia del usuario técnico.

8.6.1 Estructura de la interfaz

La interfaz desarrollada se ha diseñado como un nuevo componente visual dentro del entorno ya existente
del SIU, siguiendo la arquitectura técnica y visual propia del sistema. Su objetivo es proporcionar a los usuarios
técnicos una vista detallada y centralizada del estado de actualización de versiones por vehículo, de forma que
puedan verificar la sincronización de manera rápida y fiable antes de autorizar despliegues operativos.

La vista principal es la tabla de resultados, este es el componente principal de la interfaz, una tabla interactiva
que muestra una entrada por cada vehículo y tipo de paquete configurado en el sistema. Esta tabla representa el
estado actual de sincronización para cada combinación, mostrando los siguientes campos principales:

Vehículo: Mostrando tanto su sideCode como su matrícula (Véase el capítulo 8.4)

Tipo de Paquete: corresponderán a distintas columnas, tantas como tipos de paquete haya introducidos en
el sistema, por ejemplo, contenido multimedia, configuración, topología, etc. Algunos de estos paquetes
pueden estar formados por subpaquetes, por ejemplo, topología engloba a líneas, rutas, trayectos, corres-
pondencias, etc. Estas columnas mostrarán una X o un V dependiendo del estado de actualización del
paquete en el bus.

Versión de configuración del usuario: Esta versión hace referencia al número de versión que conoce el
usuario, no el interno generado por ArchivosObu y TransferManager.

Versión esperada e instalada: se mostrarán como un tooltip en las columnas de paquetes correspondientes,
evitando así la saturación de la interfaz.

Fecha de última transmisión.

Además de este listado, la interfaz incluye elementos de interacción pensados para mejorar la usabilidad,
como filtros, ordenación por columnas (alfabética, por fecha, por estado), e incluso exportación a excel.

61

8.6. INTERFAZ DE USUARIO CAPÍTULO 8. DISEÑO

En la misma vista principal, además de la tabla de resultados, hay un pequeño panel con KPIs que da-
rán información acerca del% de buses sincronizados, la cantidad exacta que no lo están y la cantidad exacta
disponibles para salir a despliegue.

En la figura 9.1 puede verse un ejemplo de esta interfaz.

62

Capítulo 9

Implementación

Este capítulo describe el proceso de implementación de la solución diseñada, detallando las herramientas
utilizadas, el entorno de desarrollo, así como las decisiones técnicas adoptadas en los distintos componentes
del sistema: el servicio InfoVersionService, su integración con las fuentes de datos externas, la interfaz gráfica
implementada en el SIU y los mecanismos de control y validación.

La implementación se ha realizado siguiendo los principios definidos en los capítulos anteriores, aplicando
una arquitectura en capas, utilizando patrones de diseño reutilizables y asegurando la mantenibilidad del sistema
a medio y largo plazo.

Por temas de privacidad, en este capítulo no se expondrá código concreto del software desarrollado en este
proyecto.

9.1 Pautas de Estilo

Debido a que el nuevo servicio de windows es muy probable que se acabe utilizando por múltiples proyectos
y escalando a futuro, se ha decidido seguir ciertas pautas de estilo para la mejor legibilidad y cohesión del código.

Las principales pautas a seguir son las siguientes:

Los atributos privados deben estar precedidos por _.

Las interfaces han de empezar siempre por I.

No debe haber espacios colgantes en el código.

A la hora de declarar las variables se ha de poner el tipo concreto y no utilizar la inferencia de tipos de
C# u React (var).

El nombre de los atributos públicos ha de empezar por mayúscula.

Todos los nombres han de estar en inglés.

El nombre de todos los métodos han de empezar por mayúscula.

Se deberán crear regiones que permitan organizar el código.

63

9.2. INFOVERSIONSERVICE CAPÍTULO 9. IMPLEMENTACIÓN

9.2 InfoVersionService

La implementación de InfoVersionService comenzó tras definir la arquitectura lógica del sistema y seleccio-
nar el patrón de diseño por capas, que posteriormente se consolidó en el módulo InfoVersionService. Esta parte
del sistema se desarrolló como un servicio Windows autónomo utilizando C# sobre .NET 4.7.2, ya que esta
tecnología permitía integrar fácilmente tareas programadas, acceso a ficheros del sistema, gestión de procesos
en segundo plano y trazabilidad de eventos, todo ello dentro del entorno tecnológico utilizado en GMV.

El desarrollo se abordó de manera incremental, siguiendo las fases previamente establecidas durante el
diseño. En primer lugar, se construyó la base del servicio, incluyendo la clase InfoVersionService, que define
los métodos de arranque y parada del sistema, así como los puntos de entrada para la ejecución de tareas. A
partir de ahí, se desarrolló el núcleo funcional del servicio en la clase VersionProcessingService, responsable
de orquestar el comportamiento global. Esta clase implementa el control del ciclo de vida, la inicialización de
tareas programadas y la coordinación de los distintos componentes del sistema, incluidos los procesadores de
carpetas, los servicios de análisis de versiones y el acceso a base de datos.

Una vez establecida la estructura básica, se diseñó la lógica de procesamiento de carpetas. Para ello se
definió la interfaz IProcessor y una clase abstracta común, FolderProcessorBase, que establece el flujo genérico
de ejecución para cualquier procesador. Esta estructura permitió aplicar el patrón Template Method 8.3.6 y
Strategy 8.3.4 y garantizar que todos los procesadores compartieran la misma secuencia de pasos, al tiempo que
permitía a cada uno implementar únicamente la lógica específica de su contexto. Posteriormente se añadieron
las implementaciones concretas, como FleetProcessor, SubFleetProcessor o TMProcessor, que se encargan de
interpretar distintas estructuras de carpetas generadas por herramientas externas como ArchivosOBU o Transfer
Manager.

A continuación, se abordó la implementación del análisis de versiones, que se concentró en la clase Pac-
kageService. Este servicio fue diseñado para recibir los archivos encontrados por los procesadores, analizarlos
y generar estructuras de versión esperada y detectada por cada vehículo y tipo de contenido. Una vez obtenida
esta información, se construyen los resultados de comparación, que posteriormente se persisten en base de da-
tos. Esta lógica se desarrolló de forma desacoplada del recorrido físico de carpetas, siguiendo los principios de
separación de responsabilidades, con el objetivo de facilitar tanto su mantenimiento como su reutilización.

La persistencia de datos se implementó mediante clases específicas de acceso a base de datos agrupadas
en el paquete Architecture, como DbmBus, DbmPaqueteAutobus o DbmFile. Siendo éstas implementaciones
de sus respectivas interfaces que heredan de un Dbm general con distintos métodos comúnes. Estas clases en-
capsulan las operaciones de inserción, actualización y consulta sobre las tablas necesarias, y su uso se limita
exclusivamente a la capa de servicios, siguiendo una lógica de acceso indirecto a través de interfaces. Además,
se añadió una tarea periódica de limpieza de registros antiguos, que elimina información cuya antigüedad supera
el umbral definido en configuración, manteniendo así la base de datos optimizada.

Tras el desarrollo inicial y las primeras pruebas con volúmenes moderados, se detectó que, en escenarios
reales de despliegue, el sistema podría llegar a almacenar millones de registros de versiones de contenido en
base de datos, especialmente en flotas grandes o con múltiples tipos de paquetes por vehículo. Esta previsión
llevó a introducir optimizaciones significativas en la capa de persistencia y en la gestión del rendimiento general
del sistema. En particular, se incorporó el uso de operaciones de inserción masiva (bulk insert) para reducir la
latencia en el guardado de grandes volúmenes de datos, y se implementó paralelismo controlado en el procesa-
miento de carpetas para mejorar el aprovechamiento de los recursos del sistema. Además, se añadieron índices
específicos en base de datos sobre columnas clave para acelerar las consultas y operaciones de mantenimiento,
asegurando la escalabilidad y estabilidad del servicio ante cargas elevadas.

Durante toda la implementación se prestó especial atención a la robustez y tolerancia a fallos. Cada parte
del sistema incluye trazas generadas por AqTraza, una librería capaz de generar logs de manera sencilla, lo
que permite registrar información de diagnóstico, advertencias y errores. Asimismo, se envolvieron todos los
puntos críticos con bloques de control de excepciones, de modo que una carpeta malformada o un archivo
erróneo no pueda detener el funcionamiento global del servicio. Toda la configuración, incluidos los intervalos
de ejecución, rutas de carpetas, tipos de contenido y parámetros de limpieza, se centralizó en la clase AppConfig,

64

CAPÍTULO 9. IMPLEMENTACIÓN 9.3. ACCESO A FUENTES DE DATOS

lo que facilita la adaptación del sistema a diferentes entornos sin necesidad de recompilar.
En definitiva, la implementación del backend se ajustó en todo momento a los principios de diseño definidos

durante la fase de análisis y arquitectura, y permitió materializar la solución planteada de forma modular, estable
y fácilmente extensible. El resultado final fue un servicio autónomo, ejecutable en segundo plano, que genera
de forma continua los datos necesarios para controlar la trazabilidad de contenidos en los vehículos, sirviendo
como núcleo funcional del sistema.

9.3 Acceso a fuentes de datos
El núcleo funcional de InfoVersionService se basa en la capacidad de comparar la información que se espera

que esté instalada en los vehículos (versiones esperadas) con la información realmente instalada (versiones
detectadas o en bus). Para ello, el sistema debe integrarse con dos fuentes externas clave del ecosistema GMV:
ArchivosOBU y Transfer Manager. Ambas herramientas generan archivos estructurados en rutas compartidas,
y es precisamente sobre estas estructuras donde opera el servicio.

A diferencia de otros sistemas que se comunican mediante APIs o colas de mensajes, InfoVersionService
está diseñado para trabajar mediante acceso directo al sistema de archivos, consumiendo de forma no intrusiva la
información generada por las herramientas existentes. Esta decisión garantiza una integración sencilla, robusta
y sin interferencias, respetando completamente el flujo actual de generación y distribución de contenidos en los
vehículos.

En los siguientes subapartados se detalla cómo se ha modelado este acceso, y cómo se interpreta la infor-
mación procedente tanto de ArchivosOBU (como fuente de versiones esperadas), como de Transfer Manager
(como fuente de versiones realmente instaladas).

9.3.1 Modelo de acceso a datos

El servicio InfoVersionService no interactúa con ArchivosOBU ni con Transfer Manager a través de APIs
o comunicación directa, sino que accede a ellos mediante el sistema de archivos compartido, donde ambas
herramientas depositan sus resultados. Este enfoque simplifica la integración y garantiza una mínima intrusión
en los sistemas existentes. Las rutas de acceso se definen en la configuración (AppConfig) y son utilizadas por
los procesadores para recorrer carpetas, identificar vehículos y leer los archivos correspondientes.

Cada procesador conoce la estructura de las carpetas que le corresponde analizar, y aplica lógica específica
para interpretar los nombres de archivos, carpetas y rutas. El acceso a los datos se realiza de forma asíncrona y
tolerante a errores: si una carpeta no está disponible en el momento del escaneo, se registra una advertencia en
el sistema de trazas, pero el flujo de ejecución continúa.

9.3.2 Integración con ArchivosOBU

ArchivosOBU genera periódicamente los archivos de configuración y contenido que deben ser enviados a
los vehículos. Estos archivos se organizan en una estructura de carpetas jerárquica (por ejemplo, por campaña,
fecha o tipo de paquete), y contienen la versión esperada de cada elemento por vehículo o por grupo de vehículos.

InfoVersionService recorre estas carpetas para determinar qué versión se supone que debe tener cada OBU
en el momento actual. Para ello, los procesadores interpretan los nombres y contenidos de los archivos, extraen
metadatos relevantes y devuelven los directorios de los paquetes encontrados para que PackageService los
analicé y genere los objetos de tipo BusPackage y File, que luego se utilizan como base de comparación frente
a la versión detectada. Esta integración no requiere ninguna modificación en ArchivosOBU, ya que se limita a
consumir la salida que este genera de forma natural.

9.3.3 Integración con Transfer Manager

El Transfer Manager, por su parte, genera carpetas distintas en las que deposita los archivos que han sido
realmente instalados en los vehículos tras una operación de sincronización. Estos archivos reflejan el estado

65

9.4. EXPOSICIÓN DE DATOS - SOABASICCONTENTMANAGER CAPÍTULO 9. IMPLEMENTACIÓN

actual del contenido en los OBU y son la fuente principal para determinar la versión real detectada.
A diferencia de ArchivosOBU, que trabaja de forma programada, la información proveniente de Transfer

Manager puede llegar con cierto retardo, de forma desordenada o incompleta. Por tanto, el sistema debe estar
preparado para manejar situaciones en las que no se haya recibido aún confirmación de todos los vehículos o
en las que falten datos. Esta lógica se encuentra centralizada en los procesadores y en PackageService, que crea
los objetos de tipo BusPackage y File asignando esta vez el bInBus a 1, indicando que el paquete se encuentra
en activo en el bus.

La integración con Transfer Manager también se realiza de forma completamente pasiva, sin necesidad de
modificar su comportamiento ni interferir con su ciclo de vida. Esto permite que ambos sistemas evolucionen
de forma independiente, manteniendo una arquitectura desacoplada y robusta.

9.4 Exposición de datos - SoaBasicContentManager

Este apartado describe cómo se integró la lógica de consulta desde el sistema SIU, exponiendo los datos
generados por InfoVersionService mediante un nuevo endpoint RESTFUL implementado dentro del servicio
SoaBasicContentManager.

Con el objetivo de permitir que los datos generados por InfoVersionService puedan ser consultados por
la interfaz de usuario del SIU y por otros posibles sistemas de soporte, fue necesario implementar un nuevo
endpoint RESTFUL dentro del backend del SIU, concretamente en el componente SoaBasicContentManager.

Este endpoint actúa como capa de exposición de datos, consultando directamente la base de datos relacional
donde InfoVersionService ha dejado registrados los resultados del procesamiento de versiones. De esta forma,
se evita cualquier dependencia directa entre el SIU y el servicio autónomo, manteniendo la arquitectura modular
y desacoplada.

La implementación consistió en crear un nuevo método HTTP GET que responde a peticiones bajo la ruta
/api/LoadFleetStatusRF, el cual devuelve un listado estructurado de objetos DTO que representan el estado de
sincronización por vehículo y tipo de paquete. Estos objetos incluyen campos como la matrícula y el sideCode
del bus, el tipo de contenido, la versión esperada, la versión detectada, el estado de comparación y la fecha de
última comprobación. La estructura de respuesta se diseñó para adaptarse directamente a los requisitos de la
tabla en el frontend, evitando necesidad de postprocesamiento.

Se añadió la lógica necesaria para poder mostrar los KPIs requeridos,% buses sincronizados y cantidad
exacta de buses sincronizados y no sincronizados.

Internamente, el endpoint utiliza una clase de servicio propia del backend del SIU que se conecta al modelo
de datos ya existente, accediendo a las tablas que InfoVersionService actualiza periódicamente. Esta integración
se desarrolló siguiendo las convenciones del backend del SIU, reutilizando los patrones existentes para control
de errores, validación de permisos y serialización de respuestas.

Gracias a este diseño, el SIU puede consumir los datos de forma transparente, actualizada y con el mínimo
acoplamiento posible. Además, este endpoint podría ser reutilizado en el futuro por otras herramientas o paneles,
al estar basado en una interfaz REST abierta.

9.5 Frontend

La implementación de la interfaz de usuario se llevó a cabo dentro del propio proyecto frontend del SIU,
desarrollado en React y mantenido mediante una arquitectura modular basada en componentes. Dado que el
SIU es una plataforma consolidada y en producción, uno de los objetivos principales fue asegurar una inte-
gración visual y funcional coherente, reutilizando los estilos, comportamientos y librerías ya disponibles en la
plataforma.

El nuevo componente se construyó como una tabla técnica de consulta para operadores, ubicada en el área
de administración. Esta tabla muestra la trazabilidad de versiones por vehículo, permitiendo a los usuarios
visualizar qué buses tienen instaladas las versiones correctas y cuáles presentan inconsistencias. La estructura

66

CAPÍTULO 9. IMPLEMENTACIÓN 9.5. FRONTEND

base se desarrolló reutilizando el componente genérico de tabla interactiva del SIU, al que se añadieron las
columnas específicas (Véase la sección 8.6).

Para asegurar la flexibilidad de uso, la tabla se complementó con filtros por tipo de paquete, estado y vehícu-
lo, así como con la posibilidad de exportar los resultados a Excel. La lógica de interacción y transformación de
datos se encapsuló en un contenedor encargado de gestionar el estado, disparar las llamadas al backend y proce-
sar la respuesta para presentarla de forma amigable. Se aplicaron además buenas prácticas como la paginación
automática y gestión de errores visibles para el usuario.

Desde el punto de vista técnico, la comunicación entre la interfaz y el backend se implementó mediante
llamadas fetch asíncronas al endpoint /api/LoadFleetStatusRF expuesto por SoaBasicContentManager. La res-
puesta, en formato JSON, se deserializa y transforma en un array de objetos intermedios que alimentan la tabla.
El frontend está preparado para manejar errores de red, respuestas vacías o estados incompletos, garantizando
así una experiencia de usuario robusta.

Adicionalmente, se implementaron mecanismos para interpretar y representar gráficamente el estado de
sincronización mediante iconos e indicadores de color. Esto permite al operador detectar rápidamente problemas
sin necesidad de examinar todas las columnas. El diseño se validó internamente por el equipo técnico y se ajustó
para mantener la coherencia visual con otros módulos del SIU.

En conjunto, la interfaz desarrollada permite consultar de forma eficiente y visual el estado de sincroniza-
ción de contenidos, cumpliendo su propósito funcional sin introducir complejidad adicional ni comprometer la
estructura ya existente del sistema.

9.5.1 Descripción de la interfaz

La figura 9.1 muestra un ejemplo sobre la interfaz. Consta con un panel de consulta del estado de sincroni-
zación de contenidos por vehículo, integrado dentro de la interfaz principal del SIU. Esta vista técnica permite
al operador visualizar de forma consolidada el estado de cada vehículo en relación con los distintos tipos de
contenido que deben estar correctamente instalados: rutas, patrones, paradas, correspondencias, mensajes y
contenidos multimedia.

La tabla central se estructura por filas, cada una correspondiente a un vehículo identificado por su ID interno
(sideCode) y su alias visible (matrícula). Las columnas indican para cada tipo de contenido un tick verde en caso
de que esté sincronizado o una x roja en caso de que no lo esté. A la izquierda de esta indicación, se muestra un
número que indica la configuración conocida por el usuario a la que hace referencia dicha versión. Además de
esto, el indicador tiene una badge circular sin contenido que solo muestra un color. Este color indica lo siguiente:

Gris: Es referido a que la versión es una aplicada con configuración ALL, o lo que es lo mismo, FLEET.
Es decir, una configuración global para todas las flotas.

Azul: Es referido a que la versión es una aplicada con configuración FLEET, que en este caso se refiere
a SUBFLEET internamente. Es decir, una configuración para una flota en concreto.

Morado: Se refiere a las configuraciones de versión PARTICULAR.

En la parte superior se incluye un resumen visual con indicadores clave de flota, como el porcentaje de
vehículos correctamente sincronizados, el número total de vehículos OK y los elementos pendientes.

Además, la interfaz ofrece opciones avanzadas de interacción: distintos tipos de filtrado, búsqueda por texto,
exportación de resultados y configuración de columnas visibles

La integración visual con el SIU es completa, reutilizando el estilo, colores y componentes ya existentes en
el resto de la plataforma. Esto garantiza una experiencia de usuario coherente y facilita la adopción del nuevo
módulo por parte del personal técnico.

67

Figura 9.1: Frontend de la nueva funcionalidad

CAPÍTULO 9. IMPLEMENTACIÓN 9.6. GESTIÓN DE ERRORES Y VALIDACIONES

9.6 Gestión de errores y validaciones
La robustez del sistema ha sido una prioridad durante todo el proceso de desarrollo, especialmente al tratar-

se de un servicio autónomo encargado de analizar información crítica y no controlada directamente, como los
archivos generados por ArchivosOBU y Transfer Manager. Por este motivo, se implementaron múltiples meca-
nismos de gestión de errores y validaciones, distribuidos tanto en el backend como en la interfaz de usuario, con
el objetivo de garantizar la estabilidad del sistema y proporcionar visibilidad ante fallos o datos incoherentes.

En el backend, todas las operaciones que pueden verse afectadas por errores externos (como accesos a rutas
de red, lectura de archivos o llamadas a base de datos) se encapsulan en bloques try/catch para evitar que un fallo
puntual detenga el procesamiento completo. En cada uno de estos casos, las excepciones son capturadas, y se
registra un mensaje detallado mediante el sistema de trazas AqTraza, especificando el tipo de error, su contexto
y su origen. Esto permite auditar con precisión los fallos ocurridos, facilitando el diagnóstico sin comprometer
la continuidad del servicio. Además, se diferencian explícitamente los mensajes de advertencia (por ejemplo,
carpetas vacías o rutas no encontradas) de los errores críticos, lo que permite priorizar su tratamiento.

En cuanto a la validación, InfoVersionService incluye controles internos para comprobar que las rutas exis-
ten, que los archivos son accesibles, y que la estructura esperada de las carpetas y ficheros se mantiene. Por
ejemplo, si se encuentra una carpeta con nombre no válido, se descarta del procesamiento y se registra como in-
cidencia. Asimismo, antes de insertar versiones en base de datos, se valida que los campos mínimos requeridos
estén presentes (identificador de vehículo, tipo de paquete y versión).

En el frontend también se aplican validaciones y gestión de errores a distintos niveles. En primer lugar, la
llamada al endpoint REST del backend se realiza de forma asíncrona, y está preparada para detectar errores de
red, respuestas mal formadas o estados no esperados. En caso de error, se muestra al usuario técnico un mensaje
informativo no intrusivo, que le permite reintentar o continuar con la navegación.

En caso de producirse errores críticos, como la falta de acceso a rutas de red o problemas de escritura en
base de datos, el sistema está diseñado para no detener su ejecución. Los errores se registran mediante trazas
detalladas en el sistema de logging, y el servicio continúa su ejecución con el siguiente ciclo programado. Esto
garantiza una alta disponibilidad y evita la interrupción completa del proceso ante fallos puntuales, favoreciendo
una operación más resiliente en entornos reales.

Por último, se han implementado validaciones visuales en los datos mostrados, destacando de forma clara
las inconsistencias o desincronizaciones mediante colores e iconos. Esto permite al operador identificar posibles
problemas sin necesidad de analizar manualmente las versiones.

En conjunto, todos estos mecanismos aseguran que el sistema pueda funcionar de forma autónoma, fiable
y predecible, incluso ante escenarios incompletos, errores de entrada o fallos temporales en las herramientas
externas. Además, la visibilidad ofrecida por las trazas y los indicadores visuales facilita enormemente el man-
tenimiento y la supervisión del sistema por parte de los operadores.

9.7 Integración continua y gestión del código
El desarrollo del sistema se realizó siguiendo un modelo de integración continua dentro del entorno de

trabajo de GMV, utilizando herramientas corporativas como Bitbucket para el control de versiones y Jenkins
como servidor de automatización para la ejecución de tareas asociadas a los commits y despliegues.

Durante el ciclo de desarrollo, cada funcionalidad o corrección fue implementada en una rama independien-
te, siguiendo la convención feature/, hotfix/ o release/, y posteriormente integrada en la rama principal (master)
mediante pull requests. Cada pull request requería una revisión por parte de otro miembro del equipo, lo que
garantizaba la calidad del código, la conformidad con las convenciones del proyecto y la detección temprana de
posibles errores o duplicidades.

El repositorio estaba alojado en Bitbucket Server, lo que permitió una gestión estructurada del código fuente,
con control de permisos, histórico de versiones y seguimiento de incidencias. Se utilizaron etiquetas y comen-
tarios en las revisiones para facilitar la trazabilidad de cada cambio, así como para documentar las decisiones
tomadas durante el desarrollo.

69

9.7. INTEGRACIÓN CONTINUA Y GESTIÓN DEL CÓDIGO CAPÍTULO 9. IMPLEMENTACIÓN

Por otro lado, el sistema estaba integrado con un servidor Jenkins, encargado de ejecutar pipelines auto-
máticos cada vez que se realizaban integraciones en la rama principal. Estos pipelines incluían tareas como la
compilación del servicio (InfoVersionService), la ejecución de pruebas automáticas, el análisis estático de có-
digo y la generación de artefactos preparados para despliegue. En caso de errores en la compilación o fallos en
los tests, Jenkins notificaba automáticamente al responsable del commit para su revisión.

Este enfoque de integración continua permitió mantener un flujo de trabajo estable, detectar errores de forma
temprana y reducir significativamente el tiempo entre el desarrollo y la validación. Además, la trazabilidad
completa de cada cambio facilita el mantenimiento a largo plazo y la colaboración entre distintos miembros del
equipo.

70

Capítulo 10

Pruebas

Una vez finalizada la implementación de los distintos componentes del sistema, se procedió a validar su co-
rrecto funcionamientomediante una serie de pruebas distribuidas en distintos niveles. El objetivo de este proceso
fue verificar que el sistema se comporta conforme a los requisitos funcionales y no funcionales establecidos, así
como garantizar su robustez ante situaciones inesperadas o datos erróneos.

Las pruebas realizadas incluyen desde validaciones unitarias de componentes clave hasta pruebas de in-
tegración completas entre los módulos del sistema, incluyendo la base de datos, el servicio de procesamiento
(InfoVersionService) y la interfaz gráfica integrada en el SIU. Adicionalmente, se llevaron a cabo pruebasmanua-
les y funcionales con escenarios simulados para asegurar que la información mostrada en el panel de versiones
refleja fielmente la situación real de cada vehículo.

En los apartados siguientes se detallan los distintos tipos de pruebas realizadas, su metodología, los resul-
tados obtenidos y los criterios aplicados para determinar la validez de cada uno de los bloques del sistema.

10.1 Pautas de Estilo
En la implementación de las pruebas, así como en el desarrollo general del sistema, se aplicaron diversas

pautas de estilo con el objetivo de mejorar la cohesión, la legibilidad, la consistencia estructural y la mantenibi-
lidad del código fuente. Estas buenas prácticas no solo facilitaron la escritura y depuración del código durante
el desarrollo, sino que también permiten a futuros desarrolladores comprender y ampliar la lógica con mayor
facilidad. Estas son algunas de las principales pautas seguidas:

Nombres descriptivos: Se utilizaron identificadores claros y significativos para clases, métodos, varia-
bles y archivos de test, facilitando su comprensión sin necesidad de revisar la implementación interna.

Separación de responsabilidades: Cada método de prueba se centró en validar un único comportamien-
to específico, siguiendo el principio Arrange-Act-Assert para mantener una estructura coherente. Este
principio hace que los métodos de prueba se dividan en tres partes:

• Arrange: es aquella parte en la que los datos son preparados para utilizarse en las pruebas
• Act: es aquella parte en la uqe se invoca el método o parte de código que se quiere probar.
• Assert: es aquella parte en al que se verifiacn los resultados de los métodos activados en la parte
Act.

Estas partes deberán estar indicadas en el código del método de prueba por medio de comentarios.

Uso de mocks y stubs: Se emplearon objetos simulados para aislar dependencias externas, evitando
efectos colaterales y garantizando que las pruebas unitarias fueran deterministas y reproducibles.

71

10.2. PRUEBAS UNITARIAS CAPÍTULO 10. PRUEBAS

Asserts claros y específicos: En lugar de realizar múltiples verificaciones en una única prueba, se frag-
mentaron en pruebas más pequeñas y precisas, facilitando la localización de errores en caso de fallo.

Reutilización de lógica auxiliar: Se agruparon funciones comunes de inicialización o creación de objetos
mock en clases base o métodos utilitarios compartidos, evitando duplicación innecesaria.

Formato y convenciones consistentes: Se respetaron las reglas de estilo del equipo (Véase la sección
9.1), aplicando herramientas de linting y formato automático en el IDE.

10.2 Pruebas Unitarias

Las pruebas unitarias se centraron en validar el comportamiento de los componentes críticos del sistema
de forma aislada, especialmente aquellos que contenían lógica de negocio independiente de la infraestructura.
El objetivo fue asegurar que cada clase, método o funcionalidad ejecutaba correctamente su responsabilidad, y
reaccionaba adecuadamente ante entradas válidas, valores extremos o condiciones inesperadas.

Las pruebas se realizaron principalmente sobre clases del servicio InfoVersionService, en particular sobre los
procesadores, el servicio de empaquetado (PackageService) de versiones, y las clases auxiliares de validación
de versiones o generación de rutas. Dado que muchas de estas clases fueron diseñadas para trabajar mediante
interfaces y con dependencia explícita de servicios externos (por ejemplo, acceso a disco o base de datos), fue
posible aplicar fácilmente técnicas de mocking para aislar las pruebas.

Las pruebas se desarrollaron utilizando el entorno de testeo integrado de Visual Studio y el framework de
pruebas por defecto de .NET, xUnit. Las aserciones comprobaban tanto los valores devueltos como los efectos
secundarios esperados (por ejemplo, la inserción de versiones o el rechazo de carpetas con nombres inválidos).

Un ejemplo concreto de prueba unitaria implementada fue la validación de métodos como GetFoldersTo-
Process en entornos simulados, comprobando que el sistema respondía correctamente ante rutas inexistentes,
carpetas vacías o nombres mal formateados.

Estas pruebas fueron fundamentales para poder refactorizar e introducir nuevas funcionalidades sin com-
prometer el comportamiento ya establecido, además de servir como documentación viva del comportamiento
esperado del sistema.

Además de la validación individual de comportamientos, se definió una estrategia general de cobertura,
basada en los principios de testeo en componentes desacoplados y priorización por criticidad. Se dio mayor én-
fasis a clases con lógica de decisión (procesadores y servicios), minimizando el número de tests sobre utilidades
triviales.

Para asegurar la calidad de los tests, se cumplió con los siguientes criterios:

Las pruebas deben ejecutarse de forma determinista, sin depender del estado del sistema.

El resultado de la prueba debe ser binario (éxito o fallo claro), sin necesidad de interpretación ambigua.

También se tuvo en cuenta la aplicabilidad del enfoque test-first en ciertos métodos clave, especialmente
durante el desarrollo de PackageService, asegurando que el comportamiento del método se ajustara desde el
principio a los requisitos funcionales.

Para mantener las pruebas automatizadas, se integraron en el entorno de desarrollo de Visual Studio, permi-
tiendo su ejecución continua en local, y se incluyeron en el pipeline de Jenkins dentro del sistema de integración
continua de GMV. Esto garantiza que ningún cambio en el código principal pueda incorporarse a ramas estables
sin pasar por las pruebas correspondientes.

Un ejemplo de una de estas pruebas se puede ver en el código 10.1. No interpretar este código como el real
de la aplicación, ya que esto es un mero ejemplo de uno de los tests.

72

CAPÍTULO 10. PRUEBAS 10.2. PRUEBAS UNITARIAS

1 [Fact]
2 public void GetFoldersToProcess_ShouldReturnOnlyValidDirectories()
3 {
4 // Arrange
5 var mockFileSystem = new Mock<IFileSystem>();
6 mockFileSystem.Setup(fs => fs.GetDirectories("/base"))
7 .Returns(new[] { "/base/valid1", "/base/empty", "/base/invalid" });
8

9 mockFileSystem.Setup(fs =>
fs.DirectoryExists("/base/valid1")).Returns(true);

10 mockFileSystem.Setup(fs =>
fs.DirectoryExists("/base/empty")).Returns(true);

11 mockFileSystem.Setup(fs =>
fs.DirectoryExists("/base/invalid")).Returns(false);

12

13 mockFileSystem.Setup(fs => fs.HasContent("/base/valid1")).Returns(true);
14 mockFileSystem.Setup(fs => fs.HasContent("/base/empty")).Returns(false);
15

16 var folderService = new FolderService(mockFileSystem.Object);
17

18 // Act
19 var result = folderService.GetFoldersToProcess("/base");
20

21 // Assert
22 Assert.Single(result);
23 Assert.Contains("/base/valid1", result);
24 }

Listing 10.1: Ejemplo de prueba unitaria

10.2.1 Cobertura de la aplicación

En esta sección se analiza el grado de cobertura alcanzado por las pruebas automáticas desarrolladas. Dado
que el nuevo endpoint REST y el componente de interfaz en el frontend presentan una cobertura completa del
nuevo código incorporado (100% de las líneas modificadas o añadidas han sido verificadas mediante pruebas),
el análisis se centrará principalmente en el núcleo funcional del sistema: el servicio InfoVersionService.

Este módulo concentra la mayor parte de la lógica de negocio y procesamiento de datos, y por tanto represen-
ta el componente más crítico en términos de fiabilidad y robustez. Se detallarán a continuación los porcentajes
de cobertura alcanzados en las clases principales (Véase el cuadro 10.1), así como los criterios utilizados para
seleccionar los bloques de código sujetos a validación mediante pruebas unitarias.

Paquete Líneas cubiertas Líneas a cubrir Lineas totales Porcentaje
Application 340 343 779 99.1%
Architecture 392 430 709 91.1%
Domain 38 38 50 100%

Configuration 51 51 95 100%
ServiceHost 20 20 32 100%
TOTAL 841 882 1665 95.35%

Cuadro 10.1: Coverage del servicio InfoVersionService

73

10.3. PRUEBAS DE INTEGRACIÓN CAPÍTULO 10. PRUEBAS

Criterios para la selección del código sujeto a pruebas unitarias

La selección de bloques de código para ser cubiertos mediante pruebas unitarias no se realizó de forma
arbitraria, sino siguiendo una serie de criterios técnicos y de valor añadido que aseguran que el esfuerzo de
testeo se focaliza sobre los puntos más relevantes del sistema:

Complejidad lógica: se priorizaron métodos que incluyeran condiciones, bifurcaciones (if, switch), es-
tructuras de iteración o lógica de validación. Cuanto mayor era la complejidad del fragmento, mayor fue
su prioridad para ser cubierto.

Impacto funcional: se dio prioridad a aquellos componentes cuyo fallo pudiera afectar de forma crítica
al funcionamiento global del sistema, como los encargados de filtrar los directorios, crear los paquetes,
generar datos para insertar en base de datos o preparar estructuras de respuesta.

Facilidad de desacoplamiento: en los casos en los que ciertas clases no estaban diseñadas inicialmente
para ser testeables (por ejemplo, acopladas directamente a estructuras estáticas), se propuso su refactori-
zación hacia una estructura más modular y testable.

Volatilidad esperada: se cubrieron también componentes que se espera que puedan cambiar o escalar en
el futuro, para facilitar su refactorización sin riesgo de regresión funcional.

Este enfoque permitió obtener una cobertura coherente, centrada en maximizar el valor de las pruebas,
en lugar de perseguir únicamente métricas cuantitativas. De esta forma, se garantiza que los elementos más
sensibles del sistema están protegidos ante errores y se refuerza la calidad del código base.

Por último, cabe destacar que el umbral de cobertura recomendado internamente por GMV para desarrollos
de este tipo se sitúa por encima al 75%. En este proyecto, se ha alcanzado un 95.35% de cobertura total sobre
el módulo InfoVersionService, lo que supone un valor significativamente superior al mínimo esperado. Este alto
porcentaje no solo se refleja en volumen, sino también en calidad, ya que—como se ha indicado anteriormente—
la cobertura se concentra en las clases con mayor complejidad lógica y relevancia funcional dentro del sistema.

10.3 Pruebas de Integración

Además de las pruebas unitarias, se realizaron pruebas de integración para validar el comportamiento con-
junto de los diferentes componentes del sistema. Estas pruebas fueron fundamentales para asegurar que la lógica
desarrollada en el servicio InfoVersionService interactúa correctamente con los recursos externos como la base
de datos, las carpetas generadas por ArchivosOBU y Transfer Manager, así como con el backend del SIU a
través del nuevo endpoint implementado.

El objetivo principal de estas pruebas fue comprobar la coherencia del flujo completo, desde la lectura de
carpetas reales hasta la persistencia de datos y su posterior consulta desde la interfaz web. Para ello, se simularon
escenarios realistas en un entorno de desarrollo controlado, utilizando estructuras de carpetas reales con archivos
representativos, así como un entorno de base de datos parcialmente poblado con datos de prueba.

Uno de los casos más representativos fue la integración entre los procesadores del sistema (FleetProcessor,
TMProcessor, etc.) y el servicio de creación de paquetes de versiones (PackageService). Se verificó que los pro-
cesadores detectaban correctamente los paquetes disponibles en las rutas compartidas, los analizaban conforme
al formato esperado y generaban entradas válidas para ser insertadas en base de datos. Véase la figura 10.1 y
10.2 para ver los resultados al consultar las tablas de la base de datos.

74

CAPÍTULO 10. PRUEBAS 10.3. PRUEBAS DE INTEGRACIÓN

Figura 10.1: Paquetes resultado de las pruebas de integracion

Figura 10.2: Archivos resultado de las pruebas de integracion

75

10.4. PRUEBAS FUNCIONALES CAPÍTULO 10. PRUEBAS

Posteriormente, se validó que la tabla de resultados reflejaba correctamente esta información al consultarse
desde el endpoint expuesto por SoaBasicContentManager.

También se realizaron pruebas sobre el ciclo completo de limpieza de registros antiguos, confirmando que
el sistema eliminaba correctamente los paquetes cuya antigüedad excedía el umbral configurado, sin afectar a
las entradas activas o recientes.

En lo relativo a la capa de presentación, se confirmó que los datos mostrados en la tabla de versiones del
SIU correspondían exactamente con los datos almacenados en base de datos. Se probaron filtros, ordenaciones
y combinaciones de datos, asegurando que no se produjeran inconsistencias entre lo visualizado y lo realmente
procesado.

Las pruebas de integración se realizaron de forma manual con validaciones cruzadas en base de datos y en
los archivos del sistema, pero también se prepararon scripts reutilizables que permitieron automatizar algunos
de los casos más críticos.

Estas pruebas confirmaron que la solución propuesta funciona como un conjunto cohesionado, y que todos
los módulos interactúan correctamente en condiciones reales de uso, sin dependencia directa entre ellos, lo que
facilita el mantenimiento y la escalabilidad futura del sistema.

10.4 Pruebas funcionales
Las pruebas funcionales se llevaron a cabo con el objetivo de verificar que el sistema desarrollado cumple

con los requisitos funcionales definidos previamente en el capítulo de análisis. Estas pruebas validan la lógica
completa de los flujos descritos en los casos de uso, desde la ejecución automática del procesamiento de archivos
hasta la consulta por parte del operador en la interfaz del SIU.

Dado que el sistema está dividido en tres bloques principales —servicio de procesamiento (InfoVersion-
Service), API de exposición (nuevo endpoint en SoaBasicContentManager) y frontend del SIU— las pruebas
funcionales cubrieron el comportamiento de extremo a extremo, asegurando que los datos generados por el
backend fueran consistentes con los resultados presentados al usuario.

Para cada caso de uso definido, se prepararon escenarios de prueba reales, utilizando archivos generados por
ArchivosOBU y Transfer Manager en una estructura simulada, y registros iniciales en base de datos controlados.
A continuación se detallan las validaciones realizadas por cada uno de los casos de uso:

10.4.1 CU1 - Registrar versiones

Se validó que, al introducir nuevos archivos de configuración en las rutas monitorizadas por InfoVersion-
Service, el sistema los detecta automáticamente tras el intervalo de espera configurado. Se comprobó que las
versiones extraídas se correspondían con los contenidos reales, que los registros eran correctamente insertados
en base de datos, y que el sistema omitía archivos mal formateados o carpetas sin cambios. Además, se pro-
baron situaciones de error controlado (archivos corruptos o nombres inválidos), verificando que el sistema las
registraba como trazas sin interrumpir la ejecución.

10.4.2 CU2 - Comparación de versiones generales

Desde la interfaz del SIU, se simuló el comportamiento de un operador solicitando la comparación de ver-
siones. Se probaron distintos filtros (por tipo de paquete, por estado de sincronización, por OBU) y se comprobó
que el sistema mostraba correctamente las inconsistencias entre versiones esperadas y detectadas, representa-
das con iconos visuales e indicadores de estado. Se incluyó también una validación de comportamiento ante
ausencia de datos (tabla vacía con mensaje informativo).

10.4.3 CU3 – Consulta específica de versiones

Esta prueba consistió en verificar que, al seleccionar un vehículo concreto, el sistema mostraba de forma
desglosada las versiones de cada tipo de contenido instalado, junto con su correspondiente versión esperada.

76

CAPÍTULO 10. PRUEBAS 10.5. PRUEBAS DE RENDIMIENTO

Se validó que la información aparecía de forma clara y precisa, y que los datos mostrados coincidían con los
registros existentes en base de datos. También se verificó la respuesta del sistema cuando no existían registros
para un vehículo determinado.

10.4.4 CU4 – Consulta de KPIs de la flota

Se probó la funcionalidad de resumen estadístico del estado de sincronización de la flota. En particular,
se verificó el cálculo correcto del porcentaje de vehículos sincronizados, el total de vehículos afectados, y la
correcta visualización de estos KPIs en la cabecera del módulo. También se realizaron pruebas sobre campañas
con datos incompletos o inconsistentes, confirmando que los cálculos se ajustaban a los datos disponibles sin
producir errores en la visualización.

10.4.5 Conclusión

En todas las pruebas funcionales se respetaron los permisos de acceso definidos para el operador, validando
que el acceso al módulo está restringido a usuarios autenticados y con los permisos habilitados. Todas las ac-
ciones fueron validadas manualmente y cruzadas con los datos reales insertados en base de datos, asegurando
la trazabilidad del comportamiento del sistema frente a los requisitos funcionales previamente definidos.

En el cuadro 10.2 se puede ver un pequeño resumen de los CU y las pruebas funcionales realizadas.

Código Nombre del caso de uso Pruebas funcionales realizadas
CU1 Registrar versiones Inserción automática de versiones desde carpetas.

Comprobación de inserción en base de datos, valida-
ción de detección de cambios, exclusión de carpetas
sin actualizaciones o con errores.

CU2 Comparación de versiones Verificación de las inconsistencias entre versiones
esperadas y detectadas, aplicación de filtros, visuali-
zación de estados con iconos, tabla vacía cuando no
hay coincidencias.

CU3 Consulta específica de versiones Visualización detallada por vehículo: tipo de conte-
nido, versión detectada y versión esperada. Verifica-
ción con registros reales. Gestión de casos sin datos.

CU4 Consulta de KPIs de la flota Validación de indicadores: porcentaje de sincroni-
zación, vehículos afectados, estadísticas por tipo de
contenido. Comprobación de resultados parciales o
faltantes.

Cuadro 10.2: Trazabilidad entre requisitos funcionales y pruebas realizadas

10.5 Pruebas de rendimiento
Dado el contexto real de uso del sistema en flotas de gran tamaño, uno de los objetivos clave ha sido asegurar

que el servicio mantiene un rendimiento aceptable, escalable y predecible incluso con volúmenes elevados de
datos. Esta necesidad queda reflejada directamente en varios de los requisitos no funcionales definidos, como
RNF05, RNF06 y RNF07, que establecen umbrales de rendimiento concretos: menos de 120 segundos para el
procesamiento global, menos de 1 segundo por vehículo y soporte para más de 1000 vehículos sin degradación
significativa.

Para validar estos objetivos, se diseñaron y ejecutaron pruebas de rendimiento simulando entornos con datos
reales generados por ArchivosOBU y Transfer Manager. Se crearon estructuras de carpetas que representaban
distintos tamaños de flota (100, 500, 1000 y 1500 vehículos), replicando versiones, archivos multimedia y
configuraciones diversas, a fin de obtener una visión representativa de la carga real esperada.

77

10.6. VALIDACIÓN CON USUARIOS FINALES CAPÍTULO 10. PRUEBAS

Inicialmente, durante el desarrollo del sistema, se detectó que al incrementar el volumen de paquetes ge-
nerados (por encima de los 200.000 contenidos), la inserción en base de datos se volvía significativamente
más lenta, y el proceso completo podía superar los límites establecidos. Como resultado de este análisis, se
introdujeron varias optimizaciones orientadas al rendimiento, entre ellas:

Paralelización del procesamientomediante múltiples IProcessor ejecutados en serie pero desacoplados,
evitando cuellos de botella al tratar carpetas independientes. Además, se paralelizaron los distintos bucles
que recorren las carpetas y las líneas del archivo de control de versiones.

Inserciones en lote (bulk insert) para reducir el número de transacciones individuales y minimizar la
latencia de comunicación con la base de datos.

Indexación en las tablas clave para acelerar las consultas posteriores realizadas por el frontend y el
servicio de comparación de versiones.

Tras aplicar estas mejoras, se repitieron las pruebas con el conjunto más exigente (más de 1500 vehículos
y 20000 contenidos, llegando en algunos casos a superar el millón de archivos de contenido procesables). Los
resultados obtenidos demostraron que en un 89 % de las ejecuciones, el tiempo medio de procesamiento por
vehículo se situó en torno a los 520 ms, mientras que el tiempo total de análisis completo de toda la flota no
llegó al umbral.

En el pequeño porcentaje restante de ejecuciones, los tiempos se vieron afectados ligeramente por picos de
uso del sistema, pero sin llegar a comprometer los umbrales definidos en los requisitos.

Estas pruebas permiten afirmar que el sistema no solo es funcionalmente correcto, sino también apto para ser
desplegado en producción con garantías de rendimiento, incluso en escenarios de alta demanda o condiciones
operativas exigentes.

10.6 Validación con usuarios finales
Además de las pruebas técnicas desarrolladas en entornos locales y controlados, el sistema ha sido validado

en un entorno de preproducción real dentro de GMV. Durante esta fase, se integró el servicio InfoVersionService
con instancias operativas de ArchivosOBU y Transfer Manager, así como con una base de datos representativa.

Operadores técnicos del equipo de validación accedieron al nuevo módulo de trazabilidad desde el SIU
y realizaron diversas comprobaciones funcionales y de usabilidad. Esta validación permitió confirmar que la
información mostrada en la interfaz coincidía con los registros reales de versiones detectadas en los vehículos,
y que el sistema respondía correctamente ante diferentes escenarios de consulta y sincronización.

Las pruebas en entorno preproductivo confirmaron también que la solución era compatible con los flujos
operativos existentes, sin afectar negativamente a otros módulos del sistema, y aportando una mejora tangible
en la visibilidad del estado de actualización de la flota.

78

Parte IV

Conclusiones

79

Capítulo 11

Conclusiones y trabajo futuro

11.1 Introducción

El desarrollo de este Trabajo Fin de Grado ha supuesto una experiencia completa y desafiante, tanto desde
el punto de vista técnico como desde el punto de vista profesional. El sistema diseñado y construido cumple con
el objetivo inicial de mejorar la trazabilidad de versiones de contenidos en sistemas de transporte inteligente,
solucionando una carencia identificada durante el periodo de prácticas en la empresa GMV.

A lo largo del proyecto se ha abordado la problemática desde un enfoque integral, analizando el flujo com-
pleto de generación, transferencia y validación de contenidos, y proponiendo una arquitectura escalable, desaco-
plada y compatible con los sistemas existentes. Se han desarrollado distintos componentes software: un servicio
independiente de análisis, un endpoint REST de consulta y un módulo visual de exploración de versiones inte-
grado en el Gestor de Contenidos (SIU), todo ello respetando las restricciones operativas y tecnológicas de la
empresa.

La solución ha sido validada tanto funcional como técnicamente, con un elevado grado de cobertura en prue-
bas y unos resultados de rendimiento que superan los requisitos establecidos. Además, se ha prestado especial
atención a la calidad del código, la estructura modular y la mantenibilidad a largo plazo.

11.2 Aportaciones realizadas

Las principales aportaciones de este proyecto se pueden dividir en dos dimensiones: técnicas y organizativas.
Desde el punto de vista técnico, se ha diseñado e implementado un nuevo servicio de análisis de versiones

(InfoVersionService) capaz de interpretar el estado real de cada vehículo a partir de los datos generados por Ar-
chivosOBU y Transfer Manager. Este componente trabaja de forma autónoma y expone resultados reutilizables
para otros sistemas, como el backend del SIU o futuras herramientas de análisis de versiones.

Asimismo, se ha implementado un nuevo endpoint REST en el backend corporativo (SoaBasicContentMa-
nager) y una interfaz visual para operadores que permite consultar el estado de sincronización de cada vehículo,
visualizar versiones esperadas y reales, y extraer conclusiones a partir de KPIs agregados.

A nivel organizativo, se ha documentado todo el flujo de integración con un sistema existente y complejo,
demostrando cómo se puede introducir nueva funcionalidad sin alterar el comportamiento de los sistemas pro-
ductivos actuales. También se ha seguido un enfoque de trabajo profesional, con control de versiones, revisiones
mediante pull requests, uso de integración continua con Jenkins, y pruebas automatizadas dentro del pipeline
de desarrollo.

81

11.3. VALORACIÓN DEL RESULTADO CAPÍTULO 11. CONCLUSIONES Y TRABAJO FUTURO

11.3 Valoración del resultado

El resultado final puede considerarse muy satisfactorio. El sistema propuesto resuelve de forma efectiva
el problema inicial identificado (ausencia de trazabilidad automatizada de versiones), y lo hace sin introducir
complejidad innecesaria ni dependencias críticas entre componentes.

Las pruebas funcionales, unitarias e integradas confirman que la solución cumple con todos los requisitos
definidos. Las pruebas de rendimiento, por su parte, evidencian que el sistema es capaz de escalar a volúmenes
reales de operación con tiempos de respuesta muy por debajo de los umbrales establecidos.

Además, la arquitectura propuesta sienta las bases para futuras ampliaciones, y el código desarrollado se ha
estructurado de forma clara, siguiendo buenas prácticas, con una cobertura de pruebas superior al 95 %.

11.4 Mejoras a futuro

A pesar de los buenos resultados obtenidos, se han identificado varias líneas de trabajo futuro que podrían
aportar valor añadido al sistema:

Sistema de alertas: incorporar notificaciones automáticas (por correo, dashboard o logs activos) en caso
de que se detecten inconsistencias críticas o múltiples vehículos desincronizados.

Histórico de versiones: permitir la consulta de versiones pasadas o la evolución histórica de un vehículo
a lo largo del tiempo, lo que podría resultar útil para diagnósticos o auditorías.

Exportación e integración externa: exponer un API externo para que otras herramientas puedan con-
sultar el estado de actualización de los vehículos desde otras plataformas o integraciones.

Paneles avanzados de visualización: extender la interfaz de usuario con gráficos ymétricas más visuales,
facilitando el análisis global de flota.

Desacoplamiento completo del SIU: evaluar, en una siguiente fase, la posibilidad de que el nuevomódulo
opere de forma completamente independiente del Gestor de Contenidos actual.

Además, cabe destacar que la arquitectura del sistema, basada en procesadores desacoplados y rutas para-
metrizadas, permite su aplicación más allá del Gestor de Contenidos (SIU). Dado que el servicio se alimenta
directamente de archivos generados por herramientas como ArchivosOBU o Transfer Manager, cualquier otro
sistema de transporte que utilice estos mismos mecanismos de distribución de contenido podría beneficiarse
directamente de la solución propuesta. Incluso sería posible extender el sistema mediante nuevos procesadores
específicos para entornos diferentes, como por ejemplo otros sistemas de configuración que generen versiones
en estructuras de carpetas propias, manteniendo la lógica común de validación, registro y consulta ya imple-
mentada.

Estas mejoras pueden abordarse de forma incremental y modular, aprovechando la arquitectura ya diseñada.
Su desarrollo supondría un paso adelante en la digitalización del control de versiones en sistemas embarcados
dentro del contexto de transporte inteligente.

A mayores de las mejoras mencionadas, también sería viable plantear líneas de evolución más ambiciosas.
Por ejemplo, se podría integrar el sistema con módulos de mantenimiento predictivo o análisis de estado del
vehículo, utilizando los datos de versiones como indicadores de consistencia técnica. Otra posible extensión
sería la incorporación de inteligencia artificial para detectar patrones de desincronización y anticiparse a fallos
recurrentes en determinados nodos de la flota. Estas ideas abren la puerta a una trazabilidad proactiva y a una
operación más robusta y autónoma.

82

CAPÍTULO 11. CONCLUSIONES Y TRABAJO FUTURO 11.5. OBJETIVOS PERSONALES

11.5 Objetivos personales
Además de los logros técnicos y funcionales alcanzados con el desarrollo de este proyecto, se han cumplido

satisfactoriamente los objetivos personales establecidos al inicio del Trabajo Fin de Grado. El trabajo realizado
ha supuesto una oportunidad para consolidar y aplicar de forma práctica los conocimientos adquiridos durante
la carrera en un entorno profesional real, enfrentando problemáticas reales y aportando soluciones en el marco
operativo de una empresa tecnológica.

Uno de los principales aprendizajes ha sido la profundización en conceptos de diseño de software modular,
arquitecturas distribuidas y estrategias de prueba automatizada. El hecho de trabajar sobre un sistema complejo
ya desplegado, con múltiples dependencias técnicas y restricciones organizativas, ha permitido comprender en
primera persona las implicaciones reales del mantenimiento evolutivo, así como la importancia de mantener la
cohesión y estabilidad de una solución en producción.

Asimismo, a lo largo del proyecto se han desarrollado competencias transversales esenciales en cualquier
entorno de desarrollo profesional: la planificación efectiva de tareas, la organización del tiempo, la adopción
de metodologías ágiles como Scrum y el uso riguroso de herramientas de control de versiones (Git, Bitbucket),
gestión de proyectos (Jira) e integración continua (Jenkins). La participación en procesos de revisión de código y
colaboración con otros equipos ha contribuido de forma notable a mejorar la capacidad de comunicación técnica
y el sentido de responsabilidad dentro de un flujo de trabajo profesional.

Además, el proyecto ha brindado la oportunidad de adquirir experiencia en la integración de nuevas funcio-
nalidades en un sistema grande y en producción, aprendiendo a diseñar soluciones no intrusivas, compatibles
y sostenibles. Esta experiencia ha sido especialmente valiosa para desarrollar habilidades de análisis funcional,
toma de decisiones técnicas y resolución de problemas en escenarios con restricciones reales.

Por último, el contacto diario con tecnologías utilizadas en GMV —como C#, servicios Windows, APIs
REST, React o el servidor IIS— ha permitido profundizar y afianzar el conocimiento en un stack tecnológico
moderno y demandado, cumpliendo así con uno de los objetivos formativos clave planteados al comienzo del
proyecto.

En conjunto, todas estas experiencias suponen una base sólida tanto a nivel técnico como profesional, y
permiten afrontar con mayor preparación los futuros retos en el ámbito académico, laboral o de especialización
tecnológica.

83

11.5. OBJETIVOS PERSONALES CAPÍTULO 11. CONCLUSIONES Y TRABAJO FUTURO

84

Appendices

85

Apéndice A

Manual de Instalación

En este capítulo se describe todo lo necesario para la instalación y despliegue del proyecto. Cabe destacar
que el presente manual únicamente será útil para el personal interno de GMV y los clientes que soliciten esta
funcionalidad, ya que para poder utilizarlo es necesario el acceso a otras aplicaciones exclusivas. Algunos de
los datos como rutas de los repositorios serán omitidos por cuestiones de privacidad.

A.1 Requisitos previos
Para la instalación y puesta en marcha del sistema desarrollado, se requiere el siguiente entorno y depen-

dencias:

Sistema operativo: Windows 10 o superior (compatible con servicios de Windows).

.NET SDK 6.0 o superior (para compilar).

.NET Runtime 6.0 (para ejecutar).

SQL Server

IIS (solo si se despliega el nuevo endpoint como aplicación web ya que SoaBasicContentManager es un
IIS).

Acceso a las rutas compartidas utilizadas por ArchivosOBU y Transfer Manager.

Permisos de escritura/lectura en las carpetas de contenido.

Git

A.2 Instalación del servicio InfoVersionService

A.2.1 Compilación

1. Clonar el repositorio desde Bitbucket.

2. Abrir la solución InfoVersionService.sln en Visual Studio 2022 o superior.

3. Seleccionar el proyecto InfoVersionService.Svc como proyecto de inicio.

4. Compilar en modo Release.

87

A.3. BASE DE DATOS APÉNDICE A. MANUAL DE INSTALACIÓN

A.2.2 Instalación como servicio de Windows

1. Abrir una consola PowerShell en modo administrador.

2. Ejecutar el siguiente comando:

1 sc create InfoVersionService binPath=
"C:\Ruta\al\ejecutable\InfoVersionService.exe"

3. Para iniciar el servicio:

1 net start InfoVersionService

4. Para detenerlo:

1 net stop InfoVersionService

5. El servicio quedará registrado y podrá ser gestionado desde el panel de Servicios de Windows.

A.3 Configuración del servicio
El fichero de configuración del servicio appsettings.json se encuentra junto al ejecutable y contiene los

siguientes parámetros:

ConnectionStrings: cadena de conexión a la base de datos SQL.

ScheduledPackagesPath: ruta principal donde ArchivosOBU genera los archivos por procesar.

InBusPackagesPath: ruta principal donde TransferManager genera los archivos por procesar.

MinutesForCheckingVersions: intervalo (en minutos) entre ejecuciones del análisis.

HoursForCleaningOldRecords: intervalo de limpieza de registros antiguos.

MaxOldRecordDays: número de días tras los cuales un paquete se considera eliminable.

Estos parámetros pueden modificarse sin necesidad de recompilar el servicio. Es necesario reiniciarlo para
que los cambios tengan efecto.

A.3 Base de datos
Se proporciona un script SQL de inicialización con las siguientes tablas, las cuales siguen el mismo modelo

descrito en la sección 8.4:

PackageVersion: contiene versiones esperadas y reales por vehículo y tipo de contenido.

File: contiene archivos concretos sobre cada paquete, aportando mayor granularidad.

PackageType: Un enum con los distintos tipos de tablas a analizar.

Índices recomendados sobre VehicleId, PackageType y VersionId.

El usuario configurado en la cadena de conexión debe tener permisos de lectura y escritura sobre estas tablas.

88

APÉNDICE A. MANUAL DE INSTALACIÓN A.3. BASE DE DATOS

A.5 Despliegue del nuevo endpoint REST
1. Compilar el proyecto SoaBasicContentManager.

2. Añadir el nuevo controlador de versiones implementado.

3. Asegurarse de que el servicio expone el nuevo endpoint.

4. Desplegar el backend en IIS.

El endpoint accede directamente a la base de datos generada por InfoVersionService, por lo que no requiere
lógica adicional para reconstruir el estado.

A.6 Activación del módulo visual en el SIU
El componente visual se integra como un panel adicional dentro del SIU.

Se añade al enrutado del frontend bajo la ruta /FleetStatus.

Para que aparezca en el menú, el operador debe tener asignado el permiso FleetStatusManager a nivel
central de aplicaciones de GMV.

Elmódulo realiza peticiones HTTP al endpoint REST y renderiza dinámicamente el estado de sincronización
por vehículo.

89

A.3. BASE DE DATOS APÉNDICE A. MANUAL DE INSTALACIÓN

90

Apéndice B

Manual de Usuario

B.1 Acceso al módulo
El panel de trazabilidad de versiones se encuentra integrado en la interfaz del SIU. Para acceder, el usua-

rio debe iniciar sesión con credenciales válidas y tener asignado el permiso específico FleetStatusManager.
Además, solo podrá ver aquella información relacionada con el resto de permisos que tenga, por ejemplo, Li-
neManager, RouteManager, etc. Es decir, no podrá ver información acerca de los paquetes de los que no tenga
permiso.

Una vez autenticado, podrá elegir la flota sobra la que realizar las acciones.
Con la flota seleccionada se accederá al módulo desde el menú principal, bajo el apartado “FleetStatus” o

similar, dependiendo del idioma de configuración del entorno.

B.2 Vista general
El panel principal muestra una tabla con todos los vehículos de la flota y su estado de sincronización de

versiones. Por cada fila (vehículo), se indica:

Código del vehículo.

Estado general de sincronización.

Indicadores por tipo de contenido (Multimedia, Configuración, Sistema, etc.).

Versión conocida por el usuario para cada contenido

Fecha de última actualización detectada.

Los estados de sincronización están representados mediante iconos de color:

Verde: completamente sincronizado.

Rojo: desincronizado o con errores.

Superpuestos a estos estados de sincronización se encuentran unas badges de distintos colores encargadas de
mostrar lo siguiente:

All: El paquete en cuestión forma parte de una configuración global para todas las flotas.

91

B.3. FILTROS Y BÚSQUEDAS APÉNDICE B. MANUAL DE USUARIO

Fleet: El paquete en cuestión forma parte de una configuración realizada para una la flota seleccionada
en concreto.

Particular: El paquete en cuestión forma parte de una configuración particular para una cantidad selec-
cionada de buses en concreto.

B.3 Filtros y búsquedas

El usuario puede refinar los resultados mediante los siguientes filtros:

Por tipo de contenido (Multimedia, Configuración...).

Por estado de sincronización.

Por fecha de última actualización.

Por identificador del vehículo.

Los filtros se pueden combinar y aplicar dinámicamente. Si no hay resultados para los filtros seleccionados,
se muestra un mensaje informativo y una tabla vacía.

B.4 Consulta detallada por vehículo

Pasando el ratón por cualquier estado de sincronización en cualquier fila de la tabla, se muestra un tooltip
del vehículo seleccionado. En ella se muestran:

El tipo de configuración del paquete (All, Fleet, Particular).

Las versiones esperadas de cada tipo de contenido.

Las versiones actualmente detectadas en el OBU.

Esta vista permite realizar diagnósticos más precisos en caso de desincronización.

B.5 Visualización de KPIs

En la parte superior del panel se muestran indicadores globales de la flota:

Porcentaje de vehículos totalmente sincronizados.

Número total de vehículos desincronizados.

Número total de vehículos sincronizados.

Estos KPIs se actualizan automáticamente cada vez que se aplican filtros o cambia la consulta.

92

APÉNDICE B. MANUAL DE USUARIO B.6. USABILIDAD

B.6 Usabilidad
Este módulo está pensado para facilitar al operador técnico la comprobación del estado de actualización de

los vehículos antes de su despliegue, especialmente tras una nueva campaña de contenidos. A continuación, se
describe un ejemplo práctico de uso:

1. El operador accede al SIU e ingresa al panel de versionado desde el menú.

2. En el panel principal, consulta la tabla con el listado de vehículos y su estado de sincronización.

3. Aplica los filtros que considere para centrarse en los casos a analizar, como por ejemplo los buses a
desplegar al día siguiente.

4. El operador analiza de forma centralizada el estado de los vehículos pendientes de despliegue, facilitando
una decisión rápida sobre su aptitud para salir a ruta. En caso de detectar vehículos desincronizados,
el operador puede consultar el tooltip con las versiones detalladas o examinar los paquetes concretos
que presentan inconsistencias. Esta información le permite valorar si las desincronizaciones afectan a
contenidos críticos o si, pese a ciertas discrepancias, el vehículo puede operar con normalidad.

Este flujo permite asegurar, de forma sencilla y visual, que todos los vehículos cumplen con las condiciones
necesarias antes de salir a operación, reduciendo riesgos y evitando errores humanos en las comprobaciones
manuales habituales.

93

B.6. USABILIDAD APÉNDICE B. MANUAL DE USUARIO

94

Bibliografía

[1] GMV, Innovating Solutions, mar. de 2025. dirección: https://www.gmv.com/es-es (visitado
26-03-2025).

[2] K. Schwaber y J. Sutherland, The Scrum Guide. dirección: https://scrumguides.org/scrum-
guide.html (visitado 31-03-2025).

[3] K. e. a. Beck, Manifesto for Agile Software Development. dirección: https://agilemanifesto.
org (visitado 31-03-2025).

[4] Atlassian, Los tres pilares del scrum: conoce los principios fundamentales del scrum. dirección: https:
//www.atlassian.com/es/agile/project-management/3-pillars-scrum (visita-
do 07-04-2025).

[5] jblanco, Scrum y Artefactos: Aumenta tu productividad y logra tus objetivos. dirección: https://
www.plainconcepts.com/es/scrum-que-es (visitado 08-04-2025).

[6] Talent.com, Salario medio para Programador Junior. dirección: https://es.talent.com/
salary?job=programador+junior (visitado 09-04-2025).

[7] TECFYS, Vida media de un ordenador. dirección: https://tecfys.com/blog/post/23-
conoces-la-vida-media-de-tu-ordenador (visitado 09-04-2025).

[8] Lenovo, ThinkPad P14s Gen 4 (14Ïntel). dirección: https://www.lenovo.com/es/es/
p/laptops/thinkpad/thinkpadp/thinkpad- p14s- gen- 4- 14- inch- intel/
len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=
AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2 (visitado 09-04-2025).

[9] Microsoft, Microsoft 365 para empresas | Pequeas empresas | Microsoft 365. dirección: https://
www.microsoft.com/es- es/microsoft- 365/business#layout- container-
uid4d2d (visitado 09-04-2025).

[10] Microsoft, Opciones de precios y compra | Visual Studio. dirección: https://visualstudio.
microsoft.com/es/vs/pricing/?tab=business (visitado 09-04-2025).

[11] Astah, Pricing for Individual Licenses of Astah Software - Astah. dirección: https://astah.net/
pricing/individual (visitado 09-04-2025).

[12] KevZettler, ¿Qu es un sistema distribuido? |Atlassian. dirección:https://www.atlassian.com/
es/microservices/microservices-architecture/distributed-architecture
(visitado 09-04-2025).

[13] José Manuel Ortega, La arquitectura de los Sistemas de Transporte Inteligente ITS. dirección: http:
//www.congresodevialidad.org.ar/congreso2014/conferencias/7- ITS-
Ortega-Arquitectura-ITS.pdf (visitado 21-04-2025).

[14] Sara López Mora, ¿Qu son las Single-Page Application (SPA)? El desarrollo elegido por Gmail y Linke-
dIn. dirección:https://digital55.com/blog/que-son-single-page-application-
spa-desarrollo-elegido-por-gmail-linkedin (visitado 24-04-2025).

[15] INIT. dirección: https://www.initse.com/ende/home (visitado 24-04-2025).

95

https://www.gmv.com/es-es
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://agilemanifesto.org
https://agilemanifesto.org
https://www.atlassian.com/es/agile/project-management/3-pillars-scrum
https://www.atlassian.com/es/agile/project-management/3-pillars-scrum
https://www.plainconcepts.com/es/scrum-que-es
https://www.plainconcepts.com/es/scrum-que-es
https://es.talent.com/salary?job=programador+junior
https://es.talent.com/salary?job=programador+junior
https://tecfys.com/blog/post/23-conoces-la-vida-media-de-tu-ordenador
https://tecfys.com/blog/post/23-conoces-la-vida-media-de-tu-ordenador
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.lenovo.com/es/es/p/laptops/thinkpad/thinkpadp/thinkpad-p14s-gen-4-14-inch-intel/len101t0063?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOoqNGEnfxbq2UocC4wDy4a3cCd1qDAlS9PTyUVZF_DdvMdx2iEp2
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://www.microsoft.com/es-es/microsoft-365/business#layout-container-uid4d2d
https://visualstudio.microsoft.com/es/vs/pricing/?tab=business
https://visualstudio.microsoft.com/es/vs/pricing/?tab=business
https://astah.net/pricing/individual
https://astah.net/pricing/individual
https://www.atlassian.com/es/microservices/microservices-architecture/distributed-architecture
https://www.atlassian.com/es/microservices/microservices-architecture/distributed-architecture
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
http://www.congresodevialidad.org.ar/congreso2014/conferencias/7-ITS-Ortega-Arquitectura-ITS.pdf
https://digital55.com/blog/que-son-single-page-application-spa-desarrollo-elegido-por-gmail-linkedin
https://digital55.com/blog/que-son-single-page-application-spa-desarrollo-elegido-por-gmail-linkedin
https://www.initse.com/ende/home

BIBLIOGRAFÍA BIBLIOGRAFÍA

[16] Intelligent Transport Solutions. dirección: https://www.trapezegroup.eu/intelligent-
transport-systems (visitado 24-04-2025).

[17] TransTrack SolutionsGroup | State of the Art Transit Software. dirección:https://www.transtracksystems.
net (visitado 24-04-2025).

[18] Singleton. dirección: https://refactoring.guru/es/design-patterns/singleton
(visitado 30-06-2025).

[19] Colaboradores de los proyectos Wikimedia, Facade. dirección: https://es.wikipedia.org/w/
index.php?title=Facade_(patr%C3%B3n_de_dise%C3%B1o)&oldid=160853394
(visitado 30-06-2025).

[20] C.G.Almirn, «Patrn de Inyeccin de dependencias - Adictos al trabajo,» dirección:https://adictosaltrabajo.
com/2008/01/03/dependency-injector (visitado 30-06-2025).

[21] Strategy. dirección: https://refactoring.guru/es/design- patterns/strategy
(visitado 30-06-2025).

[22] Contributors to Wikimedia projects, Scheduled-task pattern - Wikipedia. dirección: https://en.
wikipedia.org/w/index.php?title=Scheduled-task_pattern&oldid=1023133553
(visitado 30-06-2025).

[23] Template Method. dirección: https://reactiveprogramming.io/blog/en/design-
patterns/template-method (visitado 01-07-2025).

96

https://www.trapezegroup.eu/intelligent-transport-systems
https://www.trapezegroup.eu/intelligent-transport-systems
https://www.transtracksystems.net
https://www.transtracksystems.net
https://refactoring.guru/es/design-patterns/singleton
https://es.wikipedia.org/w/index.php?title=Facade_(patr%C3%B3n_de_dise%C3%B1o)&oldid=160853394
https://es.wikipedia.org/w/index.php?title=Facade_(patr%C3%B3n_de_dise%C3%B1o)&oldid=160853394
https://adictosaltrabajo.com/2008/01/03/dependency-injector
https://adictosaltrabajo.com/2008/01/03/dependency-injector
https://refactoring.guru/es/design-patterns/strategy
https://en.wikipedia.org/w/index.php?title=Scheduled-task_pattern&oldid=1023133553
https://en.wikipedia.org/w/index.php?title=Scheduled-task_pattern&oldid=1023133553
https://reactiveprogramming.io/blog/en/design-patterns/template-method
https://reactiveprogramming.io/blog/en/design-patterns/template-method

BIBLIOGRAFÍA BIBLIOGRAFÍA

97

	Índice de cuadros
	Índice de figuras
	I Objeto, Concepto y Método
	Introducción
	Introducción
	Motivación

	Objetivos y Alcance
	Objetivos
	Objetivos generales
	Objetivos específicos
	Objetivos personales
	Tareas a realizar

	Alcance

	Metodología
	Enfoque de desarrollo
	¿Qué es Scrum?
	Pilares fundamentales de Scrum
	Componentes de Scrum
	Aplicación al Proyecto

	Planificación
	Sprint 0 - 12/03/2025 - 26/03/2025
	Sprint 1 - 26/03/2025 - 08/04/2025
	Sprint 2 - 9/04/2025 - 22/04/2025
	Sprint 3 - 23/04/2025 - 06/05/2025
	Sprint 4 - 07/05/2025 - 20/05/2025
	Sprint 5 - 21/05/2025 - 03/06/2025
	Sprint 6 - 04/06/2025 - 06/07/2025
	Plan de control y Riesgos

	Costes
	Coste humano
	Costes de Hardware
	Costes de Software
	Presupuesto Total

	II Marco Conceptual y Contexto
	Marco Contextual
	Entorno Profesional
	Contexto operativo del proyecto
	Problemática detectada
	Justificación del proyecto

	Marco Conceptual y Tecnológico
	Arquitecturas distribuidas
	Control de versiones en sistemas software
	Transferencia de datos
	Sistemas de transporte inteligente
	Tecnologías utilizadas
	Backend y lógica de negocio
	Frontend
	Modelado y diseño de sistema
	Control de versiones y gestión de tareas
	Pruebas, documentación y validación
	Conclusión

	Soluciones y Estado del Arte
	Introducción
	Soluciones en el ámbito de desarrollo software
	Soluciones en el sector Transporte
	Alternativas internas en GMV
	Justificación de la solución

	III Desarrollo del Sistema
	Análisis
	Flujo actual del sistema
	Identificación de necesidades
	Integración en sistema complejo existente
	Características del sistema a tener en cuenta:
	Equilibrio entre integración y viabilidad:

	Requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Diseño
	Alternativas de arquitectura evaluadas
	Microservicio Independiente
	Módulo integrado en backend existente
	Módulo reutilizable integrado con separación por capas
	Arquitectura elegida

	Diseño
	Patrones de Diseño aplicados
	Singleton
	Fachada
	Inyección de dependencias
	Strategy
	Scheduled Task
	Template

	Modelado de datos
	Diseño de InfoVersionService
	Descripción General
	Arquitectura del Microservicio
	Dependencias entre submódulos
	Diagrama de clases entre capas
	Diagramas de Secuencia
	Consideraciones de extensibilidad, mantenibilidad y escalabilidad
	Resumen de la arquitectura de InfoVersionService

	Interfaz de Usuario
	Estructura de la interfaz

	Implementación
	Pautas de Estilo
	InfoVersionService
	Acceso a fuentes de datos
	Modelo de acceso a datos
	Integración con ArchivosOBU
	Integración con Transfer Manager

	Exposición de datos - SoaBasicContentManager
	Frontend
	Descripción de la interfaz

	Gestión de errores y validaciones
	Integración continua y gestión del código

	Pruebas
	Pautas de Estilo
	Pruebas Unitarias
	Cobertura de la aplicación

	Pruebas de Integración
	Pruebas funcionales
	CU1 - Registrar versiones
	CU2 - Comparación de versiones generales
	CU3 – Consulta específica de versiones
	CU4 – Consulta de KPIs de la flota
	Conclusión

	Pruebas de rendimiento
	Validación con usuarios finales

	IV Conclusiones
	Conclusiones y trabajo futuro
	Introducción
	Aportaciones realizadas
	Valoración del resultado
	Mejoras a futuro
	Objetivos personales

	Appendices
	Apéndice Manual de Instalación
	Requisitos previos
	Instalación del servicio InfoVersionService
	Compilación
	Instalación como servicio de Windows

	Base de datos

	Apéndice Manual de Usuario
	Acceso al módulo
	Vista general
	Filtros y búsquedas
	Consulta detallada por vehículo
	Visualización de KPIs
	Usabilidad

	Bibliografía

