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Resumen

En la actualidad, la deteccion de amenazas informaéticas es un desafio creciente debido al constante aumento
en la cantidad y complejidad del malware. Este Trabajo de Fin de Grado se centra en el andlisis, disefio y eva-
luacion de diferentes modelos de deep learning aplicados a la deteccion y atribucién de muestras de malware.
Para ello, se ha llevado a cabo un proceso exhaustivo de conversién y preprocesamiento de las muestras, trans-
formandolas en representaciones visuales capaces de ser interpretadas por arquitecturas de redes neuronales.

A lo largo del proyecto se han entrenado y evaluado diversos modelos como CNN, Bi-LSTM, CNN-
BiLSTM y Bi-LSTM-GN, utilizando técnicas de validacién cruzada y métricas estdndar para comparar su ren-
dimiento en tareas de clasificacion binaria, multi-clase y de atribucién por familia. Los resultados obtenidos
demuestran una mejora significativa en precisién y rendimiento a medida que se incorporan técnicas como la
normalizacion de gradientes o el uso de arquitecturas hibridas.

Este trabajo no solo contribuye al &mbito académico y técnico con una propuesta efectiva para la deteccién
de malware, sino que también ha permitido al autor adquirir una vision mas profunda de los retos de la ciberse-
guridad y su impacto en la vida cotidiana, destacando la importancia de desarrollar soluciones automatizadas,
precisas y escalables ante una amenaza digital en constante evolucién.

Abstract

Currently, the detection of computer threats is a growing challenge due to the constant increase in the quantity
and complexity of malware. This thesis focuses on the analysis, design, and evaluation of different deep learning
models applied to the detection and attribution of malware samples. To this end, an exhaustive process of sample
conversion and preprocessing was carried out, transforming them into visual representations capable of being
interpreted by neural network architectures.

Throughout the project, various models such as CNN, Bi-LSTM, CNN-BiLSTM, and Bi-LSTM-GN were
trained and evaluated using cross-validation techniques and standard metrics to compare their performance in
binary, multi-class, and family attribution tasks. The results obtained demonstrate a significant improvement in
accuracy and performance as techniques such as gradient normalization or the use of hybrid architectures were
incorporated.

This work not only contributes to the academic and technical fields with an effective approach to malware
detection, but has also allowed the author to gain a deeper understanding of cybersecurity challenges and their
impact on everyday life, highlighting the importance of developing automated, accurate, and scalable solutions
in the face of a constantly evolving digital threat.






Indice general

Indice de cuadros v

Indice de figuras VIII

1. Introduccién 1
.............................................. 1
[.2. MOUVACION . . . . o v v e o o e e e e 1
[1.3. Revisiondel estadoactual . . . ... . ... .. . . ... .. 2

[1.3.1. Evaluaciondelestadd . . . . . . .. . . o i v i 2
[1.3.2. Causasraizdelosataqueg . . . . . . . . . . oo i i i 4
[1.4. Entorno de desarrollo y herramientas utilizadag . . . . . . .. ... ... ... ... ..... 5
[L.4.1. Google Colab . . . . . . . . . o e 5
[.42. Overleafl. . . . . . . . . . . e 5
[.4.3. Microsoft Teamyg . . . . . . o v v v o e e e 6
[1.4.4. Microsoft Word . . . . . . . . . . .. 6
.......................................... 6

2. Objetivos y Alcance 9

............................................. 9
R.1.1. Tareasarealizal] . . . . . .. . . .. . i 10

B. Metodologia 11
B.1. Fases yduraciOm . . . . . . . . . .t i i i e 12
............................................... 13

B.2.1. Gastosdepersonal . . . . .. . . .. ... 13
B.2.2. Gastos equipo informaticd . . . . . . . .. ... e 13

#. Marco Conceptual 15
.............................................. 16
.............................................. 17

B.2.1. Crypto ransOmwarel . . . . . . . . . o v v v v i e 17
B.2.2. LocKer ransomward . . . . . . . . . . i e 17
B.2.3. SCATOWATE . . . . v v o e e e e e e 17
#.3. Algoritmos de aprendizaje automatico (ML) . . . . . . . . . . . 17
B.3.1. Supervisadog . . . ... e e 18
B.3.2. NosupervisadoS . . . . . v v vt e e e e e 18
B.3.3. Semisupervisadog . . . . . ... i e e e e e e 18
#.3.4. Aprendizaje profundo (DL) . . . . . . . . . . . e 19




5. Soluciones Existentes

5.1. Machine Learning . . . . . . . . . . . o v ittt e e
5.2. Deep Learning . . . . . . . . . i i e e
5.3. CIC-MalMem-2022 Datasel . . . . . v v v v vttt e e e e e
B.3.1. Resultadodel andlisig. . . . . . . . . . . . . . .
b. Analisis del Dataset y preprocesamientg
6.1. Descripciondel datasel . . . . . . . . . . . i e
B.2. Preprocesamiento de datog . . . . . . .. ...
6.2.1. Importacion de bibliotecas . . . . . . . . . . ..
B.2.2. Cargadeldatasel . . . . . . . . . . . . i e
6.2.3. Eliminacion de identificadores y datos irrelevanted . . . . . .. ... ... ......
6.2.4. Eliminacion de atributos técnicos del ejecutabld . . . . . . . ... ... ... .. ...
£.2.5. Eliminacion de caracteristicas de bajo impacto o redundanteg . . . . . ... ... ...
£.2.6. Eliminacion de registros de direcciones y valores interno§ . . . . . ... ... ....
B.2.7. Transformaciondedatos . . . . . . . . . . oo
6.2.8. NormalizaciOn . . . . . . . . . . v i e e
B.2.9. Separacion de caracteristicas (features) y etiquetas (labels) . . . . . . ... ... ...
6.3. Preprocesamiento - Clasificacion demalward . . . . . . ... . ... .. ... ........
B.3.1. Cargadeldatasel . . . . . . . . . . . . i e
6.3.2. Eliminacion de identificadores y datos irrelevanteg . . . . . . ... ... .......
6.3.3. Transformaciondedatod . . . . . . . . . . i
6.4. Preprocesamiento - Atribucién por Familiad . . . . . .. . ... .. ... ... . ... ...
B.4.1. Cargadeldatasel . . . . . . . . . .o v v it e
6.4.2. Eliminacion de identificadores y datos irrelevanted . . . . . .. . ... ........
6.4.3. Transformaciondedatod . . . . . . . . . . . . ..
6.5. Estudiode ablacion . . . . . . . . . . . .. . .
..........................................
B.5.2. Resultadog . . . . . . . . . . . e
B.5.3. Conclusioneyg . . . . . . . . .. e
[7. Evaluacién de los modelos a estudiar
[.1. Evaluaciondelosmodelod . . . . . . . . . . e
...........................................
...........................................
...........................................
F.1.4. CNN-LSTM . . . . . ottt s s,
[.1.5. CNN-Bi-LSTM . . . . . . o oo e e e e e e s s,
F.1.6. Bi-LSTM-GN . . . . . . o
[7.2. Resultados obtenidog . . . . . . . . . . . . . ..
[7.2.1. Deteccion Malward . . . . . . . . . . . e
[7.2.2. Clasificacién por categoriade Malward . . . . . . . . ... ... ... ........
[7.2.3. Atribucion por familiad . . . . . . .. L
[7.3. Limitaciones identificadag . . . . . . . . . . . . . ...

8. Propuestas de mejora y optimizacion

B.1. Estrategias paramejorarel modeld . . . . . . . . . .. ...
B.1.1. Mejoradel modelo MLP . . . . . . . . . . i i
B.1.2. Mejoradel modelo CNN . . . . . . . . . . . i i
B.1.3. Mejoradel modelo Bi-LSTM-GN . . . . . . . . . . . ittt

21
21
22
23
24

27
27
30
31
32
32
32
33
33
33
36
36
37
37
37
38
38
38
38
38
39
39
43
45

47
47
52
52
53
54
55
57
57
57
69
75
82



B. Técnicas de Mitigacion 89

[10. Conclusiones 91
[0.1. Trabajo futurd . . . . . . o o o e e e 92
B g : 93

I11



v



Indice de cuadros

B.1. Fases y calendario del desarrollo del proyecto) . . . . . . . . . . ... ... .. 12
B.2. Presupuesto total estimado del proyectd . . . . . . . ...t e e 13
5.1. Parametros del conjunto de datos OMM-2022 . . . . . . . . v v it 25
5.2. Tiempo promedio de entrenamiento, pérdida v precision en el conjunto de datos OMM-2022] . 25
[7.1. Parameter detail of the implemented models). . . . . . . . . . ... ... ... ... ... 51
[/.2. Tiempo promedio de entrenamiento, pérdida y precision en el conjunto de datog . . . . . . . . 58
[7.3. Resultados MLP detection . . . . . v v v v v e e e e e e e e 58
[7.4. Resultados CNN detectionl . . . . . v v v v v e e e e e e 60
[7.5. Resultados de precision, pérdida de entrenamiento y pérdida de prueba para diferentes nimerog

de épocas LSTM . . . . . o o e e e e 61
[7.6. Precision y pérdida en entrenamiento y prueba parael CNN-LSTM . . . . . . . . .. ... .. 63
[7.7. Resumen de métricas y tiempos de entrenamiento/prueba segtin nimero de épocag . . . . . . . 64
[7.8. Precision y pérdida de entrenamiento segiin nimero de épocas . . . . . . . . o.oa oo ... 66
[7.9. Resumen del rendimiento del modelo segun el nimero de épocad . . . . . . . . ... ... .. 70
[7.10. Resumen del rendimiento del modelo CNN seguiin nimero de épocag . . . . . . . . . . .. .. 70
[7.11. Rendimiento del modelo con distintas cantidades de épocag . . . . . . . . . . . .. ... ... 71
[7.12. Resultados del modelo CNN-LSTM —Parte 1| . . . . . . . . . . . oo v v v i v . 72
[7.13. Resultados del modelo CNN-LSTM —Parte 2] . . . . . . . . o v v v v v v v it i 72
[7.14. Resultados de entrenamiento vy test por niimero de épocas . . . . . . . . .. 73
[7.15. Resultados del modelo: precisién, pérdida y tiempos porépoca . . . . . . . . ... ... 73
[7.16. Resultados del modelo MLP en la tarea de atribucién por familiag . . .. ... ... ... .. 76
[7.17. Resultados del modelo CNN por numero de épocas . . . . . . v v v v v v v v e 76
[7.18. Precision v pérdidas del modelo LSTM por nimero de épocad . . . . . . . . . . . ... ... 77
[7.19. Tiempos del modelo LSTM por nimero de épocas . . . . . « v v v v v v v v v e e e 77
[7.20. Resultados del modelo CNN-LSTM —Parte 1| . . . . . . . . . . o oo v v v i i 78
[7.21. Resultados del modelo CNN-LSTM —Parte 2 . . . . . . . . . v v v v v i et 78
[7.22. Resultados del modelo CNN-Bi-LSTM —Parte 1| . . . . . . . . . . . ... ... ... .... 79
[7.23. Resultados del modelo CNN-Bi-LSTM —Parte 2 . . . . . . . . . . o v v v v vt 79
[7.24. Resultados del modelo Bi-LSTM-GN . . . . . . o o vttt e e e 80
B.1. Comparacion de precision original y mejorada a diferentes épocas . . . . . . . . .. ... .. 83
B.2. Comparacion de precisién original v mejorada en distintas épocag . . . . . . . . . . ... .. 85
B.3. Comparacion de precision original v mejorada a diferentes épocas . . . . . . . . .. ... .. 87




VI



Indice de figuras

[L.1. Indice de organizaciones afectadag . . . . . . . . . . . . ... 3
[L.2. Porcentaje de organizaciones afectadas por el ransomware en2024 . . . . . .. ... ... .. 3
[1.3. Porcentaje deataques . . . . . . . ... e e 4
[.4. Logo Colab [24]. . . . . . . . e 5
[1.5. Logooverleaf [48] . . . . . . . . . . . e 6
[1.6. Logo Microsoft Teams [65] . . . . . . . . o o i i e e 6
[l.7. Logo Microsoft Word [45] . . . . . . . . . . e 6
[.8. LogoPython [52] . . . . . . . . e 7
B.1. Cross Industry Standard Process for Data Mining [16] . . . . . . . . . . ... . ... ..... 11
G.1. Categoriasdemalward . . . . . . . . . . . . . o e 28
6.2. Familiasdemalward . . . . . . . . . . . . . . e 28
6.3. Top 20 features with RandomForestClassifief . . . . .. ... .. ... ... .. ....... 40
6.4. Top 20 features with LGBM Classifierl . . . . . . . . . . . . ittt 41
6.5. Top 20 features with XGBoost Classifien . . . . . . . . . . .. . . ... ... ... ... 43
[7.1. Precision y pérdida del modelo MLP con206pocag . . . . . . . v v v v v v i 58
[7.2. Precision y pérdida del modelo CNN con 20 €pocag . . . . . v v v v v v v oo e e 60
[7.3. Matriz de confusion 20 epoch CNN . . . . . . . . . . o o it 61
[7.4. Precision y pérdida del modelo LSTM con 20 pocasg . . . . . v v v v v v v v v e e et 62
[7.5. Matriz de confusion LSTM 20 epoch . . . . . . . . . . . . . .. e 62
[7.6. Precision y pérdida del modelo CNN-LSTM con20épocad . . . . . . v v v v v v v oo v v .. 63
[.7. Matriz de confusion CNN-LSTM 20 epoch . . . . . . . . . . . . . . it i 63
[7.8. Precision y pérdida del modelo CNN-Bi-LSTM con 20 épocas . . . . . . « v v v v v v v v .. 65
[7.9. Matriz de confusion CNN-Bi-LSTM 20 epoch . . . . . . . . . . . . . . .. i .. 65
[7.10. Precision y pérdida del modelo Bi-LSTM-GN con 20 épocag . . . . . . . . . v v v v oo .. 66
[7.11. Matriz de confusion Bi-LSTM-GN 20 epoch . . . . . . . . . . . v i i i i 67
[7.12. Andlisis precision por 6poca . . . . . . .ot e e e e e 68
[7.13. Perdida en deteccion por €poCd . . . . . . .o i e e e e e e e 68
[7.14. Tiempo empleado por modelo y épocas . . . . . . . . . . . . 69
[7.15. Analisis precision por 6poca . . . . . . .o e e e e e e e 74
[7.16. Pérdida en deteccion por €poCd . . . . . . oo i e e e e e e e 75
[7.17. Tiempo empleado por modelo y épocas . . . . . . . . . . . . . . 75
[7.18. Analisis precision por 6poca . . . . . . .. i e e e e e e 81
[7.19. Pérdida en deteccion por €poCd . . . . . . oot e e e e e e e e 81
[7.20. Tiempo empleado por modelo y épocag . . . . . . . . o i i 82
B.1. Diferentes tiposde escaladog . . . . . . . . ... e 86
B.1. Importancia del dataset en la deteccion del ransomward . . . . . . ... .. ... ... ... 90

VII



VIII



Capitulo 1

Introduccion

1.1 Contexto

La era contemporanea de la tecnologia ha transformado la manera en que nos comunicamos y accedemos a la
informacién. Sin embargo, junto con estos avances han aparecido varios retos, especialmente en el &mbito de la
ciberseguridad. El auge de Internet y su difusién global han proporcionado a los cibercriminales una oportunidad
sin precedentes para explotar su accesibilidad y el anonimato que permite el mundo digital al realizar ataques
contra individuos y empresas [[11] .

La creacién de la World Wide Web (WWW) [67] facilit6 el acceso a nuevas estrategias para los atacantes,
dandoles mas maneras de introducirse en los sistemas informaticos. También, el crecimiento de los disposi-
tivos conectados multiplicé enormemente el riesgo de ataque y la capacidad de causar interrupciones a gran
escala [23]. A medida que el entorno digital ha madurado, las metodologias de los ciberdelincuentes han cam-
biado, incorporando tacticas mas avanzadas, entre las que se destaca el uso de , software malicioso disefiado
especificamente para infiltrarse, perjudicar o acceder sin autorizacion a sistemas y datos [112].

Sin embargo, el malware fue solo el inicio del aumento en la complejidad del cibercrimen, alcanzando un
punto critico con la llegada del ransomware , un software dafiino que se presenta como uno de los mayores retos
en ciberseguridad en la actualidad debido a su capacidad destructiva y su modus operandi de extorsién [57].

En este estudio, se busca desarrollar y evaluar estrategias efectivas para la deteccién y clasificacion de
ransomware , con el fin de superar las limitaciones de los métodos tradicionales de deteccién basados en fir-
mas. Para lograr esto, se propone un enfoque avanzado que aprovecha el potencial del aprendizaje profundo,
particularmente centrado en identificar amenazas nuevas y disfrazadas. Esta investigacion tiene como objetivo
contribuir a mejorar la precision y resistencia de los sistemas antivirus modernos, fortaleciendo la defensa ante
uno de los ataques mas perjudiciales en el ambito actual de la ciberseguridad [34].

1.2 Motivacion

El ransomware se ha convertido en una amenaza importante en materia de ciberseguridad, con ataques
dirigidos contra individuos, corporaciones y entidades gubernamentales por igual, a menudo con devastadores
impactos financieros y operativos. Los atacantes de ransomware utilizan diversas técnicas, desde el cifrado y
la ex-filtracion de datos hasta la ingenieria social, para comprometer y extorsionar a sus victimas.

Los mecanismos de defensa convencionales, si bien son eficaces contra amenazas conocidas, a menudo
resultan insuficientes para detectar nuevos ataques de ransomware , ya que muchos dependen en gran medida de
técnicas de deteccion estaticas que carecen de adaptabilidad. Las limitaciones de estos enfoques son evidentes en
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su lucha por manejar las tacticas de evasion dindmica del ransomware , como la manipulacién de algoritmos de
cifrado y los métodos antiforenses, que se emplean regularmente para eludir los sistemas de deteccion estandar.

Estos desafios demuestran la necesidad de estrategias de deteccion mas avanzadas que puedan adaptarse en
tiempo real, alinedndose continuamente con la naturaleza cambiante del ransomware .

1.3 Revision del estado actual

La deteccion y clasificacion de malware es un campo de investigacién ampliamente estudiado debido al
aumento constante de amenazas cibernéticas, entre las que destaca el ransomware por su impacto econémico y
social. Tradicionalmente, los mecanismos de deteccién se han basado en técnicas estaticas, como el analisis de
firmas, y dinamicas, como la ejecucién del software en entornos controlados (sandboxing). Sin embargo, estos
enfoques presentan importantes limitaciones frente a variantes nuevas o técnicas de ofuscacion.

Ante estos retos, el uso de métodos basados en aprendizaje automatico y, mas recientemente, en aprendizaje
profundo, han ganado protagonismo en los tltimos afios. Modelos como las redes neuronales multicapa (MLP),
redes convolucionales (CNN) y redes recurrentes (LSTM o Bi-LSTM) han demostrado ser capaces de aprender
patrones complejos a partir de grandes volimenes de datos y, por tanto, mejorar significativamente la deteccion
de malware.

Ademas de la deteccion binaria (es decir, determinar si un archivo es malicioso o no), se ha empezado
a trabajar también en la atribucién por familias, lo que permite no solo identificar el malware, sino también
clasificarlo segun su origen o comportamiento. Este tipo de clasificacion es especialmente 1til en el caso del
ransomware , ya que conocer a qué familia pertenece una amenaza puede facilitar la aplicacién de contramedidas
mas eficaces.

En la actualidad, algunos estudios han propuesto arquitecturas hibridas como CNN-LSTM o CNN-BiL.STM,
que combinan el procesamiento espacial y secuencial de datos para mejorar la precision. También se han comen-
zado a explorar modelos més avanzados, como los basados en redes de grafos (Graph Networks), que permiten
representar relaciones estructurales entre componentes del ejecutable y, al combinarlas con Bi-LSTM, capturar
la evolucion temporal del comportamiento del malware.

A pesar de estos avances, persisten ciertos retos: muchos modelos se entrenan con datasets poco actualizados
o con un numero reducido de muestras, lo que afecta a su capacidad de generalizacién. Por otro lado, pocos
trabajos analizan el impacto de cada caracteristica utilizada en la clasificacion, lo que limita la interpretabilidad
de los modelos y su aplicabilidad en entornos reales.

En este contexto, se hace necesario seguir investigando modelos que no solo logren una alta precision en
tareas de deteccion y atribucion, sino que también sean capaces de adaptarse a nuevas amenazas y de aprovechar
al maximo la informacion contenida en los archivos analizados.

1.3.1 Evaluacion del estado

Segun un informe publicado por sophos [62] en un estudio realizado sobre mas de 5000 encuestados acerca
del estado del ransomware en 2024, el 59 % de las organizaciones se vieron afectadas por el ransomware , un
ligero descenso respecto al 66 % de los dos afios anteriores. Esto no quiere decir que ya se haya solventado este
problema y lo dejemos de lado, al contrario, hay que seguir por esa linea de trabajo y seguir al tanto de los
nuevos ciberataques, para que poco a poco y afio tras afio siga bajando cada vez mas ese porcentaje.

A pesar de los avances en ciberseguridad, el ransomware contintia siendo una de las amenazas mas persis-
tentes y peligrosas para las organizaciones. Resulta alentador que, durante el tltimo afio, todas las franjas de
ingresos empresariales hayan experimentado una reduccion en la tasa de ataques de ransomware . No obstante,
esta mejora no ha sido uniforme; por ejemplo, en el caso de las empresas con ingresos entre 500 y 1000 millones
de ddlares, la disminucién fue inferior a un punto porcentual.



CAPITULO 1. INTRODUCCION 1.3. REVISION DEL ESTADO ACTUAL

51% 37 % 66 % 66 % 59 %

Figura 1.1: Indice de organizaciones afectadas

La probabilidad de sufrir un ataque de ransomware tiende a incrementarse con el nivel de ingresos de la
organizacion. Las empresas con una facturacién superior a los 5000 millones de délares presentan la tasa mds
elevada de ataques, alcanzando un 67 %. Sin embargo, las pequefias empresas tampoco estan exentas: cerca del
47 % de las que ingresan menos de 10 millones de délares también fueron victimas de este tipo de ataques en
el dltimo afio, como muestra la Figura [L.2.

Ademas, se ha detectado un cambio en el perfil de los atacantes. Aunque muchos incidentes contindan
siendo ejecutados por grupos altamente organizados y con recursos, se esta produciendo una democratizacién
del ransomware . Cada vez mas actores menos cualificados recurren a variantes simples y de bajo coste, lo que
amplia el espectro de amenazas y hace que cualquier empresa, independientemente de su tamafio o recursos,
pueda convertirse en un objetivo potencial.

72%
67 % B7% 67% 69% 67 %
63 %
58 % 56 % 56 % 58 % 57 %
I q?% I ISEHi I I I I
Menos de 10-50 MUSD 50-250 MUSD 250-500 MUSD 500-1000 MUSD 1000-5000 MUSD > 5000 MUSD
10 MUsSD (n=581) (n=988) (n=581) (n=860) [n=2186) (n=804)

[n=B3)

Figura 1.2: Porcentaje de organizaciones afectadas por el ransomware en 2024

Respecto a los ataques por industria, con algunas excepciones, las tasas de ataques de ransomware fueron
bastante similares entre los diferentes sectores, afectando entre el 60 % y el 68 % de las organizaciones en 11
de los 15 sectores evaluados. En la investigacion mas reciente, los sectores con menor frecuencia de incidentes
son el gobierno estatal/local (34 %) y el comercio al por menor (45 %), siendo los tnicos en los que menos de
la mitad de las entidades consultadas indicaron haber sido victimas en el tltimo afio.

Llama la atencidn el contraste entre los dos niveles de gobierno: mientras que el sector gubernamental
central o federal registré la mayor tasa de ataques (68 %), el gobierno estatal/local mostr6 la mas baja (34 %).
Esta diferencia es significativa, siendo el doble de ataques en el gobierno central respecto al local. Aun asi, se
observa una ligera mejora en el caso del gobierno central, ya que el afio anterior este sector registré un 70 % de
ataques.

Existen diversas hipotesis para explicar esta disparidad dentro del sector publico. Por un lado, el aumento de
los ataques al gobierno central podria tener motivaciones politicas, especialmente en un contexto de inestabilidad
global. Por otro, la reduccion en el sector estatal/local puede reflejar los esfuerzos realizados el afio anterior para
mejorar su resiliencia frente al ransomware . También es posible que los atacantes hayan optado por dirigir sus
esfuerzos hacia objetivos con mayor capacidad de pago, alejandose de las administraciones locales, que suelen
tener recursos mas limitados para pagar rescates.

Segtin el informe obtenido por sophos [62], en el tiltimo afio, se han producido otros cambios notables a
nivel de sector:
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= Se ha reducido el indice individual mas alto de ataques registrado, que ha pasado del 80 % (educacién
primaria y secundaria) al 69 % (gobierno central/federal).

= El sector de la educacién ya no presenta los dos indices de ataque més elevados: este afio se sittian en
el 66 % (educacién superior) y el 63 % (educacién primaria y secundaria), frente al 79 % y al 80 %,
respectivamente, del afio pasado.

» El sector sanitario es uno de los cinco sectores que registraron un aumento del indice de ataques en el
ultimo afio, pasando del 60 % al 67 %.

= El sector de TI, telecomunicaciones y tecnologia ya no ostenta el indice de ataques mas bajo: un 55 %
de las organizaciones fueron victimas en el tltimo afio, lo que supone un aumento con respecto al 50 %
registrado en 2023.

Estos ajustes evidencian que las entidades que han fortalecido sus protocolos de ciberseguridad a través de
actualizaciones, capacitacién y respaldo de datos han logrado disminuir de manera notable su vulnerabilidad al
ransomware ; al mismo tiempo, la expansion de los ataques a sectores que anteriormente estaban menos impac-
tados sefiala que el peligro ya no se centra en un solo ambito, lo que favorece una distribucién mas equilibrada
de los esfuerzos defensivos; ademas, el aumento de incidentes en sectores como la salud y la tecnologia de la
informacién subraya la necesidad de mantener continuamente las salvaguardias en todas las areas, resaltando la
relevancia de una mejora constante y adaptable en las tacticas de seguridad.

1.3.2 Causas raiz de los ataques

E199 % de las entidades que sufrieron ataques de ransomware pudieron determinar el origen del problema.
Por segundo afio seguido, la utilizacién de vulnerabilidades continué siendo la forma de acceso mas habitual,
siguiendo una tendencia parecida a la que se vio en la investigacién de 2023.

Un 34 % de las personas encuestadas sefialé que el ataque se origin6 a través de técnicas que utilizan el
correo electrénico. En esta categoria, la mayoria de los ataques se iniciaron con correos electrénicos dafiinos
(los cuales incluian enlaces o archivos adjuntos que descargaban software malicioso), en una proporcion casi
el doble en comparacion con los ataques que comenzaron mediante phishing. Aunque ambos enfoques estan
conectados, es fundamental sefialar que el phishing se emplea principalmente para robar credenciales de acceso
y, por lo general, representa una etapa inicial en ataques mas amplios que buscan violar identidades.

En la siguiente figura [1.3 podemos ver cémo se distribuyen esos porcentajes en los afios 2023 y 2024.
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Figura 1.3: Porcentaje de ataques
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Desde una perspectiva técnica, localizar el origen preciso del ataque facilita el cierre de vulnerabilidades,
fortalece los aspectos débiles y previene futuras incursiones semejantes. En este sentido, esta informacion es
importante porque alimenta de manera directa el desarrollo de modelos de deteccién mas efectivos: comprender
como y por dénde se produce la intrusion permite elegir las caracteristicas del conjunto de datos mas relevantes,
modificar el pretratamiento y capacitar modelos que identifiquen patrones verdaderos de conducta maliciosa.

Ademas, al identificar la causa principal, las empresas tienen la capacidad de implementar acciones correc-
tivas y preventivas mas efectivas, como segmentar redes, ajustar configuraciones de cortafuegos o capacitar al
personal para que reconozca campaiias de phishing. Esto estd vinculado a la etapa de mitigacién que discuti-
remos en la seccion final del documento, subrayando la idea de que los modelos de aprendizaje automatico no
solo son ttiles para identificar ataques, sino también para entender y evitar su inicio.

1.4 Entorno de desarrollo y herramientas utilizadas

En este apartado se describen las principales plataformas y herramientas de software empleadas a lo largo
de este proyecto, tanto para el desarrollo y ejecucion de los modelos de deteccién de ransomware como para la
redaccién, planificacion y coordinacién de las tareas del TFG.

1.4.1 Google Colab

Google Colab [24] ha sido la plataforma principal que se ha utilizado para la ejecucién y entrenamiento de
los modelos de aprendizaje profundo y aprendizaje automatico. Gracias a su infraestructura basada en la nube,
permite el acceso a recursos de cémputo avanzados, como GPU y TPU, sin necesidad de disponer de hardware
local. Esto facilita la realizacién de experimentos con distintos tamafios de lotes, arquitecturas y parametros, asi
como la comparticion y reproducibilidad del codigo.

Google

Figura 1.4: Logo Colab [24]

Dado que los modelos no han requerido muchos recursos de cémputo salvo un par de excepciones, esta
herramienta me ha permitido ejecutar cada uno de ellos en un tiempo razonable, sin la necesidad de disponer
de material computacional externo.

1.4.2 Overleaf

Overleaf [48] se ha utilizado para la redaccion colaborativa de la memoria del TFG. Este editor en linea
colaborativo basado en la nube que se utiliza para escribir, editar y publicar documentos, basado en LaTeX [36]
ofrece un entorno integrado de compilacion y control de versiones, lo que ha permitido trabajar simultaneamente
en el documento, gestionar referencias bibliograficas con BibTeX y mantener un formato uniforme y profesional
a lo largo de todo el trabajo.
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Bverleaf

Figura 1.5: Logo overleaf [48]

1.4.3 Microsoft Teams

Microsoft Teams [65] es la aplicaciéon mas sofisticada de mensajeria para su organizacién. Se trata de un
espacio de trabajo pensado para la colaboracion en tiempo real y la comunicacioén, las reuniones, el uso compar-
tido de archivos y aplicaciones, e incluso para los ocasionales emoji. Todo en un tnico lugar, en equipo, y con
todo a disposicion de todos. Ha servido como la herramienta principal para la comunicacién y coordinacion
con el tutor del TFG.

Figura 1.6: Logo Microsoft Teams [@]

A través de sus canales y reuniones virtuales, se ha planificado el trabajo realizado, se han discutido avances,
y se han registrado actas de seguimiento. Asimismo, Teams [65] facilit6 el intercambio y visionado de archivos.

1.4.4 Microsoft Word

Microsoft Word [45] es un software para procesamiento de textos desarrollado por Microsoft [44] desde
1983 hasta la actualidad. Esté incluido en el paquete de aplicaciones Microsoft Office, como parte del software
de suscripcion en linea Microsoft 365 y Works hasta su descontinuacion. Se ha empleado para la elaboracion
de la planificacién del proyecto y la documentacion de reuniones. Se ha organizado el calendario de trabajo, asi
como los avances que se realizaban en el TFG. Ha servido también como hoja a sucio donde se iban realizando
todas las explicaciones y andlisis llevados a cabo a més adelante, antes de incluirlos en la memoria.

Figura 1.7: Logo Microsoft Word [45]

1.4.5 Python

Python [52] es un lenguaje de alto nivel de programacién interpretado cuya filosofia hace hincapié en la
legibilidad de su c6digo. Se trata de un lenguaje de programacién multiparadigma, ya que soporta parcialmente
la orientacion a objetos, programacion imperativa y, en menor medida, programacién funcional. Es un lenguaje
interpretado, dindmico y multiplataforma.

Administrado por Python Software Foundation [53], posee una licencia de cédigo abierto, denominada
Python Software Foundation License. [54] Python [52] se clasifica constantemente como uno de los lenguajes
de programacion mas populares.
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A

Figura 1.8: Logo Python [52]

La decisién de utilizar Python en el desarrollo de este Trabajo de Fin de Grado es debido a las numero-
sas ventajas que ofrece como lenguaje de programacion, especialmente en el contexto del andlisis de datos,
la inteligencia artificial y la ciberseguridad. Python al ser un lenguaje de alto nivel, interpretado y dindmico,
permite escribir cdigo de manera mas rapida y clara, facilitando la implementacién de soluciones complejas
sin necesidad de preocuparse por detalles de bajo nivel como la gestiéon de memoria.

En este trabajo, esto ha sido particularmente beneficioso, ya que me ha dado la oportunidad de emplear una
mezcla de programacion imperativa y orientada a objetos para estructurar de forma efectiva el cédigo relacio-
nado con el preprocesamiento de datos, la creacién de modelos y la visualizacion de resultados. La capacidad
de implementar también algunos principios de programacion funcional, como el uso de funciones lambda o
expresiones de mapeo, ha facilitado tareas que se repiten y ha aumentado la claridad del cédigo.
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Capitulo 2

Objetivos y Alcance

2.1 Objetivos

El objetivo principal de este estudio es analizar el impacto del ransomware en sistemas informaticos y
redes, evaluando sus resultados sobre un dataset con mas de 20.000 muestras y proponiendo optimizaciones
que incrementen su precision en la deteccion, clasificacion por categorias y atribucion por familias de malware.

Ademaés, se plantean los siguientes objetivos especificos:

= Investigar y clasificar las principales técnicas de deteccién de ransomware , incluyendo métodos basados
en firmas, andlisis de comportamiento y modelos de aprendizaje automatico.

» Reproducir los modelos del dataset de 2024 [8] y la evaluacion de los modelos MLP, CNN, LSTM, CNN-
LSTM, CNN-Bi-LSTM y Bi-LSTM-GN tal como aparecen en el paper de referencia.

= Examinar estrategias de mitigacion y respuesta, identificando las mejores practicas para contener y recu-
perar sistemas afectados.

= Comparar los resultados originales con los modelos optimizados obtenidos.

= Analizar la importancia de las caracteristicas mediante un modelo Random Forest y un estudio de abla-
cion, para identificar qué atributos del dataset aportan mas valor a cada modelo.

= Elaborar una guia de buenas practicas orientada a la prevencion del ransomware en entornos corporativos
y personales.

= Realizar una revision bibliografica y estado del arte, recopilando informacién sobre ransomware , técnicas
de deteccion y estrategias de mitigacién.

» Analizar ataques reales y su impacto, estudiando casos relevantes para identificar patrones y metodologias
de ataque.

= Optimizar los modelos MLP y CNN, ajustando hiperparametros y arquitecturas para mejorar minima-
mente su rendimiento.

» Comparar y validar técnicas de deteccidn, contrastando su efectividad en términos de precision y rendi-
miento.
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2.1.1 Tareas a realizar

Para alcanzar los objetivos establecidos en este estudio, llevaré a cabo una serie de tareas organizadas en
seis fases principales: Carga y preprocesamiento de datos, Reproduccion de los modelos, Optimizacion de
modelos, Analisis de importancia de caracteristicas y Documentacion y comparacién. A continuacién, se
describen en detalle cada una de estas tareas:

= Carga y preprocesamiento de datos
* Se parte del dataset 2024 [8] y se cargan los datos en la plataforma de Google Colab por medio de
Google Drive.

* Se describen los campos, se realiza limpieza y normalizacion sobre los datos.
= Reproduccion de los modelos del paper [26]

 Implementar los modelos de machine learning segtn la especificacién original.

* Ejecutar esos modelos en la deteccidn, clasificacién y atribucién por familias en Google Colab [24].
= Optimizacion de modelos
* Ajustar hiperpardmetros del MLP (ntimero de neuronas, tasa de aprendizaje, épocas) para mejorar
la precisién.

* Modificar la arquitectura CNN (capas, filtros, tamafios de kernel) y reentrenar para obtener ganan-
cias de rendimiento.

* Aplicar técnicas similares al modelo Bi-LSTM-GN, refinando su configuracion.
= Anadlisis de importancia de caracteristicas y ablacion

 Entrenar un Random Forest y extraer la caracteristica del dataset [8] que determinase las features.

* Realizar pruebas de ablacion: eliminar selectivamente columnas clave y medir el impacto en cada
uno de los tres modelos.

= Documentacion y comparacién

+ Redactar en el Capitulof los detalles de las modificaciones de cada modelo: qué se cambié y por
qué.

« En el Capitulo [, presentar tablas y graficas que comparen los resultados originales vs. los optimi-
zados, resaltando mejoras en precision, pérdida y eficiencia.
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Capitulo 3

Metodologia

En este capitulo se describe la metodologia utilizada para alcanzar los objetivos planteados en el estudio.
La estrategia empleada en este estudio va a ser la de Cross Industry Standard Process for Data Mining [16]. Se
trata de un modelo estandar abierto del proceso que describe los enfoques comunes que utilizan los expertos en
mineria de datos. Se fundamenta en un enfoque practico, enfocado en la replicacién de hallazgos, la alteracién
y optimizacién de modelos previos, asi como en su analisis metédico en diferentes grupos de datos.

Business Data
Understanding Understanding
Data
Preparation
Modeling

Deployment

m

Figura 3.1: Cross Industry Standard Process for Data Mining [[16]

La metodologia CRISP-DM [[16] es comtinmente empleada en iniciativas de analisis de datos y extraccién
de informacion. Este enfoque ofrece un marco ciclico y versatil que consta de seis etapas clave, las cuales se
han ajustado al &mbito de evaluacién y optimizacién de modelos para identificar y clasificar ransomware .

A continuacién, se describe la aplicacién de cada etapa:

= Comprension del negocio: Se reconocié como el problema mas importante la creciente peligrosidad del
ransomware , asi como la urgencia de implementar sistemas automaticos para la deteccion y clasificacion,

11
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utilizando métodos de aprendizaje automatico y profundo. El propoésito del proyecto se enfocé en estudiar
los modelos actuales, perfeccionarlos y medir su eficacia en diversas situaciones y conjuntos de datos.

= Comprension de los datos: Se examinaron detenidamente dos colecciones de informacién: la primera,
originada del documento fundamental (OMM-2022)[[17], y la segunda, una recopilacién de muestras del
propio paper. Se investigd su organizacién, clases de variables, calidad de la informacién y distribucion
de categorias. Esto facilit6 la identificacién de posibles inconvenientes de desbalance y ruido, asi como
la definicion de criterios para la seleccién de caracteristicas.

= Preparacion de los datos: Se llevo a cabo un proceso de preparacion que se ajusto a las exigencias de cada
actividad (deteccidn, clasificacién y asignacién de familia), aunque manteniendo una estructura similar.
Este proceso abarco la depuracion, conversion, normalizacién y codificacion de las caracteristicas. Con el
fin de evitar repeticiones, en el texto inicamente se describen las variaciones entre los preprocesamientos
efectuados para cada método.

= Modelado:Se llevaron a cabo seis tipos de modelos (MLP, CNN, LSTM, CNN-LSTM, CNN-Bi-LSTM y
Bi-LSTM-GN), comenzando con la reproduccion de la estructura inicial del articulo de referencia y luego
realizando modificaciones para mejorar su rendimiento. Se emplearon métodos como la optimizacién de
hiperparametros, la regularizacion y cambios en la disposicion de las capas. Todos los modelos se crearon
en Python, debido a su efectividad en el andlisis de datos, su claridad en la sintaxis, y su compatibilidad
con diversas plataformas.

» Evaluacion: Todos los modelos fueron analizados utilizando métricas estandar (exactitud, recuperacion,
puntuacién F1, tablas de confusién), tanto en la tarea de deteccion binaria como en la de clasificacion
multiple. Se implementé el mismo proceso de evaluacién para asegurar consistencia en la comparacion.
Ademaés, se examinaron los resultados a través de graficos que muestran la tendencia de la pérdida y la
precision a lo largo del entrenamiento.

= Despliegue y conclusiones: Aunque no se llevé a cabo una implementacién en el entorno productivo,
se registraron y examinaron los resultados obtenidos para sacar conclusiones sobre la eficacia de cada
modelo, las repercusiones de los ajustes efectuados y las caracteristicas mas significativas. Estos des-
cubrimientos podrian ser fundamentales para investigaciones futuras o para su aplicacién en escenarios
reales.

3.1 Fases y duracion

Las fases y duracién prevista de cada una (Semana inicial y final) son las que se detallan en el cuadro B.1.

SIni | SFin FIni FFin Tarea
1 2 27 de enero | 9 de febrero | Busqueda y seleccion de bibliografia y datasets
3 5 10 de febrero | 1 de marzo | Revision y analisis de estudios previos sobre malware
6 8 2 de marzo | 22 de marzo | Preprocesamiento de datos para los seis enfoques
9 11 23 de marzo | 12 de abril | Implementacién de modelos de deteccién y clasificacion
12 14 13 de abril 3 de mayo | Implementacion de modelo de atribucién
15 17 4 de mayo 22 de mayo | Evaluacién de los modelos y andlisis comparativo
18 20 23 de mayo | 10 de junio | Redaccién del TFG y elaboracién de graficas/tablas
21 21 10 de junio 19 de junio | Revisién, correccion y preparacién de la defensa

Cuadro 3.1: Fases y calendario del desarrollo del proyecto.

De acuerdo con lo establecido en la guia del Trabajo Fin de Grado, se exige que el estudiante invierta
unas 300 horas aproximadamente. Para satisfacer esta necesidad, se ha creado un plan detallado que abarca
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desde finales de enero hasta principios de junio, dividido en diferentes etapas con objetivos especificos. Esta
planificacién se presenta en la Tabla B.1], donde se muestran las semanas asignadas a cada tarea, ademés de sus
fechas de inicio y finalizacién.

Durante este lapso, la dedicacion ha sido continua y se ha repartido a lo largo de un periodo de alrededor
de cuatro meses de trabajo efectivo. Con una estimacion de entre 15 y 18 horas por semana, dependiendo de
la carga de trabajo de cada etapa, se logra cumplir con las horas requeridas segtn el plan académico. En las
etapas iniciales, como la recopilacion de bibliografia o el analisis de antecedentes, la dedicacién fue mas ligera
(aproximadamente entre 10 y 12 horas semanales), mientras que en momentos criticos como el desarrollo de
modelos, el preprocesamiento y la redaccion final, la intensidad se incrementé notablemente, con semanas que
alcanzaron hasta 20 horas de trabajo.

Ademas, esta planificacion ha permitido subdividir el proyecto en bloques tematicos claramente definidos:
investigacién del estado del arte, analisis de datos, implementacién de modelos de aprendizaje automatico y
redaccion final del informe. Esta organizacién no solo ha facilitado una gestion mas eficaz del tiempo, sino
también una mejor disposicién de los contenidos y los resultados obtenidos.

3.2 Costes

Aunque se trata de un proyecto académico, es importante realizar una estimacién aproximada de los recursos
que se habrian necesitado si este Trabajo de Fin de Grado se hubiera desarrollado en un entorno profesional.
Para ello, se han considerado los costes mas relevantes, como el tiempo dedicado (gasto de personal) y el uso
de equipos informaticos, aplicando un prorrateo estimado.

3.2.1 Gastos de personal

Se estima que el desarrollo del proyecto ha requerido aproximadamente 300 horas de trabajo, incluyendo
fases de documentacion, investigacion, desarrollo, pruebas, redaccion de la memoria y preparacion de la defensa.
Suponiendo una tarifa de 15 €/hora (equivalente a una beca técnica o practica académica), el coste de personal
seria:

300horasx15€/hora = 4,500€ (3.1)

3.2.2 Gastos equipo informatico

El proyecto se ha desarrollado utilizando un ordenador personal con una configuraciéon media (CPU multi-
ntcleo, 8 GB de RAM, GPU dedicada) cuyo coste de adquisicion se estima en 1.200 €. Considerando un uso
prorrateado durante la duracién del proyecto (6 meses), el coste imputado seria:

(1,200€/36meses)x6mesesx200€ (3.2)

En este caso, no se han requerido licencias de software de pago ni servidores externos, ya que se han utilizado
herramientas gratuitas y de cédigo abierto como Python, Jupyter Notebook, TensorFlow/Keras y Google Colab.

Concepto Coste estimado
Gastos de personal 4.500 €
Prorrateo equipo 200 €
Licencias / software 0€
Total 4.700 €

Cuadro 3.2: Presupuesto total estimado del proyecto
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Capitulo 4

Marco Conceptual

En este apartado se exponen y explican las ideas principales que son esenciales para entender el trabajo
realizado durante este proyecto. Comprender adecuadamente estos términos es crucial, ya que forman la base
teodrica que sustenta el andlisis, la valoracion y las sugerencias de mejora que se presentan.

A lo largo del capitulo se abordaran temas relacionados con el funcionamiento de los modelos de apren-
dizaje automatico, las técnicas mas comunes de preprocesamiento de datos, asi como conceptos especificos
relacionados con la deteccién y mitigacién de ransomware . Ademas, se explicaran las métricas utilizadas para
evaluar los modelos y otros elementos necesarios para entender el desarrollo y los resultados obtenidos.

Antes de seguir hablando sobre el ransomware voy a empezar definiéndolo: es un tipo de malware que
bloquea el acceso a los archivos de sus victimas o los cifra a cambio de un rescate para recuperar los datos
bloqueados o cifrados [68]. Con la invencién de las técnicas de ofuscacién, se ha vuelto cada vez mas dificil
detectar sus nuevas variantes, complicando ain mas los procesos de defensa. Identificar la categoria y la familia
exactas de un malware es fundamental para preparar respuestas efectivas ante posibles ataques y para poder
minimizar el impacto.

Es por ello que se ha convertido en una de las amenazas mas relevantes en el ambito de la ciberseguridad
debido a su capacidad para cifrar archivos y exigir un rescate a cambio de su recuperacién. A lo largo de los
afios, la aparicién de nuevas variantes de ransomware , muchas de ellas altamente ofuscadas, ha dificultado su
deteccion mediante técnicas tradicionales basadas en firmas o coincidencia de patrones.

Ante este escenario, el uso de técnicas de aprendizaje automatico y, especialmente, de aprendizaje profundo,
ha cobrado gran relevancia en la deteccién y clasificacion de este tipo de malware. Estos enfoques permiten
analizar grandes volimenes de datos y detectar patrones complejos que pasan desapercibidos para los métodos
convencionales.

Los enfoques tradicionales basados en aprendizaje automatico no han logrado detectar ni clasificar con
precision las variantes avanzadas de ransomware ofuscado, debido a las limitaciones de las técnicas de deteccion
basadas en firmas y coincidencia de patrones existentes. Sin embargo, los modelos basados en aprendizaje
profundo han demostrado ser ttiles tanto en la deteccién como en la clasificacién de este tipo de amenazas, al
permitir un analisis mdas exhaustivo y detallado del ransomware ofuscado.

A pesar de los avances en este campo, la mayoria de las investigaciones se han centrado en la deteccién
y no tanto en la atribucion a familias especificas de ransomware , lo que deja un area de mejora importante.
Este proyecto tiene como objetivo abordar precisamente este desafio, proponiendo un enfoque de clasificacion
de multiples clases que aprovecha el potencial del aprendizaje profundo. En concreto, se plantea el uso de una
arquitectura basada en redes de memoria a corto y largo plazo bidireccionales, combinadas con la técnica de
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normalizacién de grupos (Bi-LSTM-GN), con el fin de detectar y clasificar variantes de ransomware con alta
precision.

4.1 Contexto

El ransomware tiene una historia que se remonta a finales de la década de 1980, cuando los cibercriminales
comenzaron a utilizar técnicas de cifrado para exigir pagos en efectivo a través de servicios postales. Uno de los
primeros ejemplos documentados fue el ransomware AIDS, creado en 1989, donde las victimas debian enviar
180 ddlares a un apartado postal en Panama para recuperar el acceso a sus sistemas. [26]

Sin embargo, este tipo de ataque no tuvo una gran notoriedad hasta 2009. La situacién cambi6 con la in-
troduccién de Bitcoin en 2010, lo que impuls6 significativamente los delitos en internet. Las criptomonedas
brindaban a los delincuentes una forma segura y andnima de recibir pagos, evitando el rastreo de transacciones
y dificultando la persecucién legal, ya que podian realizar pagos sin que nadie supiese quiénes eran. [[7]

El ransomware mas conocido de la década de 2010 fue CryptoLocker, que aparecié en 2013 y atacaba
sistemas operativos Windows. Este ransomware utilizaba claves criptograficas avanzadas, empleando un par
de claves publica y privada para cifrar y descifrar los archivos de la victima [47]. Su impacto fue masivo,
afectando a una gran cantidad de usuarios y estableciendo un precedente para futuros ataques de ransomware .

En 2017, surgi6 WannaCry, una de las versiones mas devastadoras del ransomware . Este ataque afect6 a
mas de 300.000 sistemas en multiples paises, causando interrupciones en infraestructuras criticas y empresas
de todo el mundo [64].

El aumento del ransomware persistio, y durante la primera parte de 2022 se registraron 10.666 nuevas
variantes, de acuerdo con un estudio de FortiGuard en 2023 [21]. Este crecimiento se atribuye, en gran medida,
a la expansion del modelo ransomware -as-a-Service (RaaS), que proporciona a los ciberdelincuentes un facil
acceso a variaciones alteradas y camufladas de ransomware , 1o que hace mas sencillo su manejo y propagacion
sin requerir habilidades avanzadas de programacion.

A través del tiempo, los cientificos han creado diversas metodologias para identificar y categorizar el malwa-
re, mientras que las compafiias de antivirus comerciales han confiado sobre todo en la deteccién que se basa en
las firmas. Este enfoque implica extraer las firmas de los archivos ejecutables a través de un andlisis estatico y
conservarlas en una base de datos. Cuando se revisa un archivo que se considera sospechoso, se comparan sus
firmas con las que ya estan guardadas para verificar si es dafiino o inofensivo. Aunque este procedimiento es
veloz y efectivo para reconocer malware ya conocido, tiene limitaciones notables en la identificacién de nuevas
variantes, ya que los delincuentes digitales pueden evitarlo usando métodos de ofuscacién. [5].

Para sortear estas restricciones, se ha creado un método de detecciéon de malware que se centra en el com-
portamiento, donde un software se categoriza como seguro o perjudicial segtin sus actos dentro del sistema. Este
método examina las llamadas al sistema, las invocaciones de API, los cambios en archivos, los registros y la
actividad de red, lo que facilita la clasificacion de un programa en funcién de su comportamiento. Su operativa
se sustenta en tres etapas clave:

= Extraccion del comportamiento: Se identifican y registran las acciones del programa en el sistema,
como llamadas al sistema, invocaciones de API, modificaciones de archivos, registros y actividad en la
red.

= Generacion de propiedades: A partir de los datos extraidos, se generan caracteristicas que describen el
comportamiento del software, permitiendo su analisis y clasificacion.

= Implementacién de modelos de aprendizaje automatico: Se aplican modelos de machine learning para
analizar las propiedades generadas y determinar si una aplicacién es segura o maliciosa.

Este método es mas efectivo contra malware recién descubierto, ya que detecta patrones de comportamiento
en lugar de depender unicamente de su cédigo fuente. Incluso si el malware es modificado, su funcionalidad

16



CAPITULO 4. MARCO CONCEPTUAL 4.2. TIPOS DE

maliciosa sigue siendo detectable. Por ello, la mayoria de las variantes recientes de software malicioso son
identificadas mediante este enfoque.

Sin embargo, la deteccion basada en el comportamiento también presenta desafios. Algunos tipos de malwa-
re estan disefiados para detectar entornos protegidos (como maquinas virtuales o entornos de prueba) y modificar
su ejecucién para evitar ser clasificados como maliciosos [33]. Ademas, aunque se ha avanzado considerable-
mente en la deteccidn, la clasificacién de ransomware ha recibido menos atencién, lo que representa una barrera
para una mitigacion y prevencién mas efectiva. Una clasificacion precisa de las familias de ransomware permi-
tiria desarrollar estrategias mas especificas para combatir cada tipo de amenaza.

4.2 Tipos de

Dentro del ecosistema del ransomware , se pueden identificar dos tipos principales: crypto ransomwa-
re y locker ransomware , cada uno con caracteristicas y niveles de peligrosidad distintos. Y de manera mas
secundaria el Scareware [26].

4.2.1 Crypto ransomware

El crypto ransomware opera cifrando los archivos y datos de la victima, impidiendo su acceso a menos que se
pague un rescate a los atacantes para obtener la clave de descifrado. Este tipo de ransomware es especialmente
dafiino, ya que la recuperacion de los archivos es practicamente imposible sin la clave, lo que obliga a las
victimas a recurrir a copias de seguridad (si las tienen) o, en el peor de los casos, a aceptar la pérdida de su
informacion.

4.2.2 Locker ransomware

Por otro lado, el locker ransomware bloquea o deshabilita el acceso a la computadora de la victima sin
cifrar los archivos almacenados en ella. En comparacién con el crypto ransomware , este tipo de ataque es
menos peligroso, ya que no compromete directamente los datos del usuario. La eliminacién de la infeccién
permite restaurar el acceso al dispositivo sin alterar la informacién almacenada. Ademas, si el dispositivo de
almacenamiento (generalmente un disco duro) se traslada a otro equipo en funcionamiento, los datos pueden
recuperarse incluso si el virus persiste en el sistema original. Debido a esta vulnerabilidad, el locker ransomware
tiene menos éxito al exigir el pago de un rescate, ya que las victimas pueden restaurar el acceso a sus archivos
sin necesidad de cumplir con las demandas de los atacantes.

4.2.3 Scareware

Otro tipo de ransomware es el scareware, disefiado para intimidar a las victimas y obligarlas a pagar un
rescate. Este tipo de malware se presenta cominmente como mensajes falsos que pretenden provenir de auto-
ridades gubernamentales, alegando que el usuario ha cometido algtin delito y debe pagar una multa para evitar
consecuencias legales. Algunas variantes, como el leakware, aumentan la presion psicolégica al amenazar con
exponer informacién privada o sensible de la victima, utilizando la intimidacién y la vergiienza como herra-
mientas de coaccién.

4.3 Algoritmos de aprendizaje automatico (ML)

Con el progreso en las estrategias de aprendizaje automatico, numerosos investigadores han comenzado a
emplearlas para reconocer ransomware . Los algoritmos de identificacién de ransomware que utilizan apren-
dizaje automatico son capaces de modelar patrones de datos mas sofisticados en comparacién con los métodos
tradicionales basados en firmas [56]. Esto les da la capacidad de identificar exitosamente nuevas variaciones de
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malware antiguo, incluso aquel que no se habia descubierto previamente [22]. En lineas generales, existen tres
categorias de algoritmos de aprendizaje automatico: Supervisados, No supervisados y los Semisupervisados.

4.3.1 Supervisados

En los modelos de aprendizaje supervisado, se desarrolla un modelo predictivo utilizando datos ya clasifi-
cados con el fin de estimar correctamente las etiquetas de la informacién nueva que ingresa [71].

Este conjunto de datos de entrenamiento incluye entradas y salidas correctas, que permiten al modelo apren-
der con el tiempo. El algoritmo mide su precision a través de la funcién de pérdida, ajustando hasta que el error
se haya minimizado lo suficiente. El Random Forest es un modelo de este tipo que veremos mas adelante y
se emplea para tareas de clasificacion y prediccion. El término ” Forest” se refiere a un grupo de arboles de
decision independientes, que posteriormente se combinan para minimizar la variabilidad y generar estimaciones
de datos mas precisas [30].

Es un desafio para los modelos detectar ransomware que nunca se ha identificado o que no pertenece a
familias conocidas con las que se los ha entrenado. Sin embargo, este tipo de modelos en general tienen menos
desafios y pueden detectarlo con mayor facilidad.

4.3.2 No supervisados

Por el contrario, el aprendizaje no supervisado utiliza datos no etiquetados. Esto quiere decir que descubren
agrupaciones de datos sin necesidad de la intervencion humana [27].

Algunos de los enfoques de este tipo de aprendizaje serian el agrupamiento, la asociacién y la reduccién de
dimensionalidad. En cuanto a las agrupaciones, destacan las siguientes [27]:

= Agrupacion exclusiva y superpuesta: La clasificacién en clisteres exclusivos es un método de agru-
pacion que establece que un dato solamente puede pertenecer a un cldster. A esto también se le conoce
como agrupamiento ”rigido”. Un ejemplo de este tipo de agrupacion es el algoritmo K-means. La técnica
de agrupamiento K-means es un ejemplo tipico de un método de clasificaciéon que separa los datos en K
grupos, donde K indica cuantas agrupaciones hay, basandose en la proximidad a los centroides de cada
grupo. Los datos que se encuentran mas cerca de un centroide particular se colocan en la misma categoria.
Un ntiimero mayor de K sugiere agrupaciones mas reducidas y detalladas, en tanto que un niimero menor
de K resultara en agrupaciones mas amplias y menos detalladas.

= Agrupacion jerarquica: La organizacion en jerarquias, que también recibe el nombre de andlisis de
agrupamiento jerarquico (HCA), es un método de agrupamiento sin supervision que puede clasificarse de
dos maneras: aglomerativo o divisivo.

El método aglomerativo es visto como un enfoque de abajo hacia arriba. En este proceso, los puntos
de datos se consideran inicialmente como grupos individuales y luego se combinan de manera sucesiva
basandose en su similitud hasta formar un solo grupo.

= Agrupacion probabilistica: Un modelo probabilistico es un enfoque no supervisado que contribuye a
abordar desafios relacionados con la estimacién de densidad o el agrupamiento ”suave”. En la agrupacion
basada en probabilidades, los datos se agrupan segtin la probabilidad de su pertenencia a una distribucién
especifica. El modelo de mezcla gaussiana (GMM) se encuentra entre los métodos mas comunes de agru-
pamiento probabilistico.

4.3.3 Semisupervisados

En este algoritmo, los datos etiquetados y no etiquetados se combinan con el aprendizaje semisupervisado
durante la fase de entrenamiento[35].
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Los enfoques de aprendizaje semisupervisado son de gran importancia en contextos donde conseguir una
cantidad adecuada de datos etiquetados resulta extremadamente complicado o caro, mientras que es mas sencillo
obtener grandes voltimenes de datos sin etiquetar. En estos casos, ni las técnicas de aprendizaje completamente
supervisadas ni las no supervisadas ofreceran respuestas satisfactorias [29].

El aprendizaje semisupervisado se fundamenta en ciertas premisas respecto a los datos no etiquetados que
se utilizan para formar el modelo y la manera en que los datos de distintas categorias se conectan entre si. Una
condicion esencial del aprendizaje semisupervisado (SSL) es que los ejemplos no etiquetados que se emplean
en el entrenamiento del modelo deben tener relacién con la tarea para la que se esta desarrollando dicho modelo.

En términos mas especificos, el SSL exige que la distribucién p(x) de los datos de entrada incluya infor-
macién sobre la distribucién posterior p(y|x), es decir, la probabilidad condicionada de que un punto de datos
particular (x) pertenezca a una clase especifica (y). Por ejemplo, si se utilizan datos no etiquetados para for-
mar un clasificador de imagenes que distinga entre fotos de gatos y perros, el conjunto de datos utilizado para
entrenar debe incluir imagenes de ambos, pero las imagenes de caballos o motocicletas no aportaran nada util.
[29].

4.3.4 Aprendizaje profundo (DL)

El aprendizaje profundo, una nueva drea dentro de la inteligencia artificial y un tipo de aprendizaje automa-
tico, ha incrementado su popularidad y se ha convertido en una técnica fundamental de aprendizaje automatico
en diversos sectores. Estos modelos hacen uso de redes neuronales artificiales y aprenden a partir de multiples
capas ocultas y ejemplos previos. Cuentan con varias capas de neuronas artificiales cuyos pesos se modifican de
manera constante para alcanzar los resultados deseados. Este proceso de ajuste se lleva a cabo para garantizar
que el optimizador pueda reducir al minimo la pérdida. La pérdida se refiere al error en las predicciones de la
red neuronal y se puede determinar mediante una funcién de pérdida.

Las redes neuronales recurrentes, las percepciones multicapa y las redes neuronales convolucionales son los
modelos de aprendizaje automatico mas reconocidos. Las arquitecturas de los modelos de aprendizaje profundo
son complejas y cuentan con numerosas capas de procesamiento, lo que les permite aprender caracteristicas
mas complejas de forma automatica y con diferentes niveles de abstraccién, ademas de gestionar datos de alta
dimensidon. Se requiere mas investigacion para evaluar de manera adecuada el aprendizaje profundo, el cual ha
mostrado resultados muy precisos en varios &mbitos, pero su implementacién en la deteccion de ransomware ,
la clasificacion por categorias y la asignacién de familias atin es limitada [20].

La diferencia clave entre el aprendizaje automatico y el aprendizaje profundo radica en la configuracién de
la red neuronal que utilizan. Los enfoques tradicionales de aprendizaje automatico, que son menos complejos,
utilizan redes neuronales basicas que tienen una o dos capas de procesamiento. En contraste, los modelos de
aprendizaje profundo utilizan tres o mds capas, frecuentemente llegando a tener cientos o miles de capas para
su entrenamiento.

Los modelos de aprendizaje supervisado necesitan datos de entrada organizados y etiquetados para produ-
cir resultados confiables, mientras que los métodos de aprendizaje profundo pueden funcionar con aprendizaje
no supervisado. Gracias al aprendizaje no supervisado, estos modelos son capaces de identificar caracteristi-
cas, funciones y relaciones que requieren para generar resultados precisos a partir de datos sin procesar y no
estructurados. Ademas, tienen la capacidad de analizar y mejorar sus resultados para optimizar la precision [28].
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Capitulo 5

Soluciones Existentes

En este capitulo se va a abordar el estudio de las soluciones que han llevado a cabo otros investigadores acer-
ca de las técnicas y los enfoques en la deteccion del ransomware , con el objetivo de comprender la problematica
actual y las maneras de llevarlo a cabo.

Varios estudios han analizado diferentes métodos y estrategias en la investigacién para identificar ransom-
ware . Con el fin de entender el estado actual de las soluciones presentadas, llevamos a cabo un examen detallado
de la literatura, reconociendo las motivaciones clave y las cuestiones tratadas en cada investigacién [26].

En nuestro andlisis, examinamos las estrategias utilizadas para la deteccion de ransomware , evaluando el
conjunto de datos empleado, las caracteristicas extraidas o seleccionadas, y los modelos de aprendizaje automa-
tico entrenados. Ademads, recopilamos informacion sobre la precision reportada en cada estudio, las limitaciones
identificadas y la efectividad de las soluciones propuestas.

Un aspecto clave en nuestra revision es la clasificacion multiclase, determinando si cada investigacion ha
considerado la diferenciacién entre multiples tipos de ransomware o si se ha limitado a una clasificacién bina-
ria (malicioso/benigno). Este analisis nos permite identificar vacios en la literatura y proponer mejoras en los
métodos de deteccion y clasificacion de ransomware .

5.1 Machine Learning

El aprendizaje automatico ha sido ampliamente utilizado en la deteccién de ransomware , con diversos
enfoques propuestos en la literatura. Segun las investigaciones que se citan en el paper [26]: Zhang, Liu y Jiang
[70Q] introdujeron un método basado en la evaluacion de relevancia blanda para analizar la relacién entre las
caracteristicas y las etiquetas de malware. Utilizando el conjunto de datos Microsoft Malware Classification
Challenge (BIG 2015) y modelos como Naive Bayes (NB), Arbol de Decisién (DT), Random Forest (RF) y
Support Vector Machine (SVM), lograron una precision del 98,8 %.

Por otro lado, Khan y otros [20] aplicaron un enfoque innovador basado en la secuenciacién de ADN di-
gital, utilizando algoritmos como Regresién Lineal (LR), RF, NB y Optimizacién Minima Secuencial (SMO),
alcanzando una precisién del 87,9 % en un conjunto de datos compuesto por 582 muestras de ransomware y
942 muestras benignas.

En otro estudio relevante, Ficco [40] propuso la técnica Alpha-Count, un método de promedio ponderado
que integra sistemas de deteccién de intrusiones, antivirus, entropia de archivos y analisis de trafico de red.
Su modelo basado en redes neuronales profundas (DNN), entrenado con 10.634 muestras maliciosas y 2.000
benignas, obtuvo una precision del 93,28 %.

Asimismo, Poudyal y Dasgupta [50] investigaron la actividad del ransomware mediante el andlisis de lla-
madas del sistema, trafico de red y modificaciones en archivos. Entrenaron modelos de aprendizaje automatico
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como SVM, LR y RF, con SVM logrando una precision del 99,72 %.

Mail, Ab Razak y Ab Rahman [42] presentaron un sistema de sandbox en la nube que emplea algoritmos de
ML (RF, J-48 y NB), obteniendo una precision del 99,8 % en un conjunto de datos de 9.600 muestras de malware.
De manera similar, Ganfure y otros (2023) desarrollaron RTrap, una herramienta dindmica de deteccién de
ransomware en entornos controlados, que alcanz6 una precision del 99,8 % con modelos DT, RF y SVM.

Finalmente, Molina y colaboradores [58] propusieron una técnica para la atribucion de familias de ransom-
ware basada en el andlisis del comportamiento previo al ataque. Recolectaron 129.500 muestras de malware de
VirusTotal y VirusShare entre 2010 y 2019, de las cuales 19.499 pertenecian a 21 familias de ransomware . Se
implementaron modelos como Bernoulli BN, K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN),
Long Short-Term Memory (LSTM) y RF, con este tltimo alcanzando una precisién del 94,92 %.

Estos estudios reflejan la efectividad de las técnicas de aprendizaje automatico en la deteccion y clasificacion
de ransomware , con enfoques que abarcan desde modelos tradicionales hasta redes neuronales avanzadas.

5.2 Deep Learning

Por otro lado, los algoritmos de aprendizaje profundo han demostrado una efectividad considerable en la
deteccién de malware. Zhang, Wang y Zhu [[70] propusieron una técnica dual basada en Redes Generativas
Antagonicas (GAN) para distinguir entre archivos cifrados y no cifrados, obteniendo una precisién del 98,1 %
en los conjuntos de datos KDD99, SWaT y WADIL.

Aslan y Yilmaz [[12] utilizaron modelos de redes neuronales profundas como AlexNet y ResNet152 en los
conjuntos de datos Microsoft BIG 2015, Malimg y Malevis, alcanzando precisiones del 97,78 %, 94,88 % y
96,5 %, respectivamente.

Li, Rios y Trajkovi¢ [B7] adoptaron una estrategia diferente, evaluando los datos de enrutamiento del pro-
tocolo de puerta de enlace fronteriza (BGP) utilizando modelos como LightGBM, CNN y RNN, logrando una
precision del 64,74 %.

Darem y otros [B] introdujeron un algoritmo de deteccion de malware adaptativo basado en el conjunto de
datos Drebin para Android, alcanzando una precision del 99,41 %.

Yazdinejad y colaboradores [2] utilizaron un enfoque basado en redes neuronales LSTM para la deteccion
de malware, con una validacién cruzada de 10 veces, obteniendo una precisién del 98 % al distinguir muestras
maliciosas de benignas.

Hwang y otros [[L3] propusieron una técnica de deteccién de malware basada en redes neuronales profundas
(DNN) y entrenaron su modelo con un conjunto de datos de 10.000 muestras maliciosas y 10.000 benignas. Su
enfoque logré una precisién del 94 %.

Recientemente, los investigadores también han abordado la clasificacién multiclase en la deteccion de fami-
lias de malware. Roy y Chen (2021) utilizaron un enfoque basado en BiLSTM-CRF para identificar ransomware
y categorizar eventos anémalos, logrando una precision del 99,87 % en la identificacion de ransomware y del
96,5 % en la categorizacién de eventos anémalos.

Keyes y otros [[19] presentaron EntropyLyzer, una herramienta de analisis de comportamiento basada en
entropia, que clasific6 147 familias y 12 categorias de malware para Android con una precisién del 98,4

Lashkari y otros [§] crearon el conjunto de datos CIC-AndMal2017 para malware en Android y utiliza-
ron el algoritmo KNN para identificar malware, alcanzando una precision del 85,4 %, aunque el modelo tuvo
dificultades con la atribucién de familias, con una precisién del 27,24 %.

Por dltimo, Rahali y otros [l] emplearon aprendizaje profundo para clasificar malware en 12 categorias y
191 familias, obteniendo una precision del 93,36 %.

Estos estudios evidencian el creciente éxito de las técnicas de aprendizaje profundo en la deteccién y clasi-
ficacion de malware, especialmente en el andlisis de familias y categorias diversas.
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5.3 CIC-MalMem-2022 Dataset

El CIC-MalMem-2022 dataset [[17] es una coleccién de informacion desarrollada por el Instituto canadiense
de Ciberseguridad para simular una situacion tan auténtica como sea posible con software malicioso que es
comun en el entorno real. Estd formado por spyware, ransomware y troyanos, y ofrece un conjunto de datos
equilibrado que puede ser utilizado para evaluar sistemas de detecciéon de malware oculto. Este conjunto de
informacién emplea el modo de depuracién durante el procedimiento de volcado de memoria, lo que impide
que este se refleje en los volcados de memoria. Esto proporciona un ejemplo mas fiel de lo que un usuario tipico
tendria en funcionamiento durante un ataque de malware.

Como se expone en diversos estudios recientes [26], la deteccion de malware ofuscado, especialmente en
forma de ransomware polimorfico, sigue siendo un reto, debido a la naturaleza dindmica y cambiante de estas
amenazas. Frente a esta problematica, el conjunto de datos CIC-MalMem-2022 [17] ofrece una base realista
y actualizada para abordar estas limitaciones, ya que recopila muestras de malware en memoria en diferentes
escenarios, permitiendo evaluar modelos capaces de generalizar mas alla de firmas estaticas o caracteristicas
manuales.

La detecciéon de malware ofuscado ha sido un desafio critico que ha sido abordado por varios investigadores
en los ultimos afios. Carrier [63] utilizé el marco VolMemLyzer con 26 funciones de memoria, logrando una
precision del 99 % en diversos clasificadores, como SVM, DT, RF y KNN.

Smith, Khorsandroo y Roy [61]] emplearon siete algoritmos de clasificaciéon y consiguieron una precisién
del 99 % utilizando la correlacién de Pearson.

Naeem y otros [25] aplicaron métodos de agrupamiento como K-Means, DBSCAN y GMM en el conjunto
de datos malware-Exploratory y usaron siete clasificadores adicionales, alcanzando un promedio de precision
del 99 %.

Mezina y Burget [43] utilizaron Redes Neuronales Convolucionales Dilatadas (CNN dilatadas) para la cla-
sificacion de mudltiples clases, logrando una precision del 99 %.

Roy y otros [59] propusieron MalHyStack, un modelo de clasificaciéon multiclase basado en el aprendizaje
de conjuntos apilados, que alcanz6 una precisién del 99,98 %, 85,04 % y 70,20 % en la deteccion, clasificacién
y atribucién familiar, respectivamente.

Dang [55] utilizé el algoritmo CatBoost para clasificar malware ofuscado, realizando tanto clasificacién
binaria como multiclase. El modelo alcanzd una precision del 99,9 % en la deteccién.

Dener, Oklahoma y Orman [[18] llevaron a cabo una clasificacién binaria utilizando diversos algoritmos
como RF, DT, GBT, LR, NB, SVM lineales, MLP, redes neuronales de avance profundo y LSTM. El algoritmo
LR logro6 la precision mas alta, alcanzando un 99,97

Al-Qudah y otros [41] propusieron un clasificador de clases basado en SVM (OCSVM) con andlisis de
componentes principales (PCA), alcanzando una precisién del 99,4 % en la clasificacion de una clase utilizando
el modelo PCA (OCC-PCA).

Abualhaj y otros [39] propusieron un parametro métrico de distancia mejorado de la KNN con validacién
cruzada de K-fold para la deteccién de malware. Lograron una precision del 99,97 % en la deteccién, del 82,21 %
en la clasificacion y del 66,93 % en la atribucién de familias.

Shafin, Karmakar y Mareels [60] propusieron un enfoque basado en CNN-BiLSTM, concretamente Com-
pactCBL (Compact CNN-BIiLSTM) y RobustCBL (Robust CNN-BiLSTM) para detectar el ataque binario, su
tipo y familia. Los métodos lograron una precisién del 99,96 % y el 99,92 % en la deteccién de ataques binarios,
del 84,56 % y el 84,22 % en ataques por familia, y del 72,60 % y el 71,41 % en tipos de ataques, respectivamente.

Smith, Khorsandroo y Roy [61] utilizaron un método de conjunto apilado basado en CNN como un aprendiz
base y MLP para el metaaprendizaje. Se identificé y categorizé6 malware basado en IoT mediante la identifica-
cién de caracteristicas de imagenes y la deteccién de actividades sospechosas. Esto ayud6 a clasificar familias
de malware, y los modelos lograron una precision del 99,01 % en la deteccion de malware.

Muchos de los métodos de deteccién de ransomware existentes se basan principalmente en caracteristi-
cas creadas a mano o firmas estaticas, lo que los hace menos adaptables a las familias de malware nuevas y
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emergentes. Las cepas de ransomware polimoérficas y metamorficas son particularmente dificiles de identificar
utilizando métodos basados en firmas. Una gran mayoria de las investigaciones se concentran en caracteris-
ticas de comportamiento estaticas o de corto plazo, acciones de archivos o trafico de red durante un periodo
determinado. Sin embargo, el ransomware con frecuencia demuestra tendencias dinamicas que evolucionan.
Los métodos que ignoran estos patrones temporales no logran capturar toda la gama de operaciones de ransom-
ware , lo que quizas genere mas falsos negativos. Muchos algoritmos de aprendizaje automatico empleados en
estudios anteriores funcionan bien en conjuntos de datos conocidos, pero sufren cuando se exponen a malware
nuevo. Este problema es resultado del sobreajuste a patrones especificos en los datos de entrenamiento, lo que
reduce la capacidad del modelo para generalizarse en diferentes familias de ransomware y ataques innovadores.

Nuestro proceso de analisis de la literatura nos lleva a la conclusién de que es fundamental identificar el
ransomware ofuscado analizandolo en profundidad y clasificandolo en su categoria correcta (ransomware ,
troyano, spyware, etc.), y atribuir sus familias mediante técnicas avanzadas basadas en Deep Learning (DL)
para preparar la defensa proporcionando la solucién y la ruta correctas.

5.3.1 Resultado del analisis

Para entender un poco lo que se ha expuesto con anterioridad, se ofrece un analisis detallado del rendimiento
de los modelos de aprendizaje automatico implementados. Para evaluar sus capacidades, se llevan a cabo tres
tareas de deteccién diferentes: la primera es la deteccién de malware, la segunda es la clasificacién por categorias
y la tercera es la atribucién de familias. Ademas, se realiza un andlisis comparativo con la literatura existente
sobre el mismo conjunto de datos para validar el rendimiento del enfoque propuesto.

Los ensayos se llevaron a cabo en una workstation HP Z230 que cuenta con un procesador Core(TM) i7-
4790 de 3,60 GHz (8 nticleos), con el sistema operativo Windows 10 Professional de 64 bits y 16 GB de memoria
RAM. También se uso6 la plataforma Google Colab, donde se configuraron unidades de procesamiento tensor
de nube (TPU) y unidades de procesamiento grafico (GPU) para evaluar el rendimiento computacional. Para la
ejecucion del proyecto practico, se optd por el conocido software Anaconda 2. 4. 2 junto con Jupyter Notebook
6. 4. 12 y bibliotecas esenciales como Sklearn, TensorFlow, Numpy y Pandas, que se utilizan para tareas de
aprendizaje automdtico (ML) y aprendizaje profundo (DL). El conjunto de datos se segmenta en un 80 % para
el entrenamiento y un 20 % para las pruebas, utilizando validacién cruzada K-Fold para asegurarse de que el
entrenamiento y las pruebas se efectten en todas las clases.

El cuadro B.1| detalla los elementos fundamentales fijados para cada uno de los modelos de aprendizaje
profundo durante sus fases de entrenamiento y evaluacién. Con el fin de minimizar los sesgos, los modelos de
aprendizaje profundo se configuran con un tamafio de lote de 32, una tasa de aprendizaje de 0,001, empleando
el optimizador Adam para la mejora del modelo y una funcién de entropia cruzada categérica para monitorear
la pérdida y abordar problemas de clasificacion de mdltiples categorias.

Primero, experimentaron con la deteccién de malware entrenando modelos DL en el conjunto de datos
utilizando 20, 30, 50, 100 y 150 épocas. Todos los modelos se evalian en funcién del promedio.

A continuacién se muestran en los cuadros 5.1y 5. 1os parémetros que tuvieron en cuenta en el experimento
sobre el conjunto de datos de CIC-MALMEN 2022, y los tiempos de entrenamiento, pérdida y precision sobre
cada uno de los modelos.
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Parameters OMM-2022 dataset
Batch size 32

Epochs 20,30,50,100,150
Learning rate 0.001

Loss function Categorical cross entropy
Optimization algorithm Adam
Normalization Standard
Randomization 42

Number of classes 50,51,52
Cross-validation K-Fold
Number of splits 5

Cuadro 5.1: Parametros del conjunto de datos OMM-2022

Model Average time (Minutes) | Average loss | Average accuracy
CNN 41 0.0011 99.99 %
MLP 18 0.0007 99.99 %
LSTM 74 0.0010 99.99 %
CNN-LSTM 61 0.0011 99.97 %
CNN-BiLSTM 95 0.0012 99.97 %
GN-BIiLSTM 131 0.0002 99.99 %

Cuadro 5.2: Tiempo promedio de entrenamiento, pérdida y precisién en el conjunto de datos OMM-2022.

En cuanto a la precision, el tiempo de entrenamiento y la pérdida, se observo que los modelos de aprendi-
zaje profundo implementados presentaron un rendimiento sobresaliente en ambas fases de entrenamiento, en el
conjunto de datos OMM-2022.

El CNN logré una precision del 99,99 % con una pérdida de 0,0011, completando el entrenamiento en 41
minutos.

El MLP obtuvo una precision del 99,99 % con una pérdida de 0,0007, con un tiempo de entrenamiento de
18 minutos.

El LSTM alcanzé una precisién del 99,99 % con una pérdida de 0,0010 en 74 minutos de entrenamiento.

El modelo CNN-LSTM logro6 una precisién del 99,97 % con una pérdida de 0,0011, completando el entre-
namiento en 61 minutos.

El modelo CNN-BiL.STM alcanzé una precisién del 99,97 % con una pérdida de 0,0012 en 95 minutos de
entrenamiento para el conjunto de datos OMM-2022. Finalmente, el modelo propuesto, el GN-BiLSTM, alcanz6
una precision del 99,99 %.

El rendimiento de los modelos en el conjunto de datos OMM-2022,fue excelente, con todos los modelos
alcanzando precisiones cercanas al 99,99 %. Los modelos GN-BiLSTM, CNN y MLP lograron una precision
sobresaliente del 99,99 %, mientras que los modelos CNN-LSTM y CNN-BiL.STM tuvieron una precision lige-
ramente inferior del 99,97 %. Aunque la diferencia en precisién es minima, esta variacion destaca la robustez
del modelo GN-BiLSTM, que mantiene una mayor precision a pesar de su disefio mas complejo.

En los siguientes capitulos analizaremos como afectan esos modelos al conjunto de datos de 2024 [8].
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Capitulo 6

Analisis del Dataset y preprocesa-
miento

En este capitulo se abordaré el anélisis del dataset que se ha escogido para el andlisis, asi como las técnicas
de preprocesamiento de datos, normalizacién y categorizacién que se han llevado a cabo sobre este, antes de
realizar la deteccion, clasificacién y atribucion por categoria de malware.

Para comprobar la eficacia del modelo propuesto en un entorno realista, se han empleado datos obtenidos
de ejecuciones controladas en memoria, que incluyen tanto muestras benignas como maliciosas de diversas
familias. Las caracteristicas empleadas provienen del andlisis dindmico del comportamiento, abarcando aspectos
como llamadas a la API, accesos a archivos y registros del sistema.

Los resultados obtenidos demuestran que el modelo es efectivo en la deteccién de ransomware y en la
realizacion de la clasificacién categorica y facilita la atribucion a familias, incluso en situaciones donde se
presentan muestras no vistas anteriormente.

Este andlisis abarca lo siguiente:

= Método basado en Deep Learning: Se propone un enfoque basado en aprendizaje profundo (DL) capaz
de detectar las tltimas variantes de ransomware ofuscado con alta precision.

= Clasificacién multiclase: Se desarrolla un modelo que permite detectar y clasificar el malware segin su
categoria o familia.

= Creacion de un conjunto de datos actualizado: Se recopilan las muestras mas recientes de ransomware
para construir un conjunto de datos, entrenar modelos en él y validar su rendimiento.

6.1 Descripcion del dataset

El presente dataset ha sido disefiado para el anélisis de malware, con un enfoque especial en el ransomware
. Como se ha detallado anteriormente, contiene un total de 21,752 muestras, distribuidas equitativamente en-
tre archivos maliciosos (10,876) y benignos (10,876), lo que garantiza un equilibrio adecuado para su uso en
modelos de aprendizaje automatico y analisis estadisticos.

Al mismo dataset se le ha hecho un balanceo de los datos para poder determinar de manera mas precisa las
categorias de malware, que serian las siguientes:
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Figura 6.1: Categorias de malware

Asimismo, se ha balanceado también el dataset para mostrar las muestras de malware que estan organizadas
en 26 familias distintas, incluyendo algunas de las variantes mas relevantes en ataques recientes, como Cerber,
DarkSide, Dharma, GandCrab, LockBit, Maze, Phobos, REvil, Ragnar Locker, Ryuk, Shade y WannaCry como
se muestran a continuacion:
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Family

Figura 6.2: Familias de malware

El dataset consta de 77 caracteristicas (features), que abarcan una amplia variedad de atributos técnicos,
tales como:

= Identificadores y metadatos del archivo

» md5, shal: Hashes del archivo que permiten su identificacién tinica.

+ file extension: Extension del archivo, ttil para determinar su formato.
= Estructura del ejecutable (PE Header)

* EntryPoint: Direccién de entrada del ejecutable.

* PEType: Tipo de Portable Executable (PE).

* MachineType: Tipo de arquitectura de la maquina para la que fue compilado el archivo.
* magic_number: Identificador del formato del archivo.

* bytes_on_last page, pages_in_ file: Numero de bytes en la ultima pagina y cantidad
de paginas en el archivo.

* relocations: Cantidad de registros de reubicacion.

* size of header: Tamafio del encabezado del ejecutable.
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min_extra paragraphs, max extra paragraphs: Parrafos extra minimos y maximos
requeridos por el ejecutable.

init_ss_value, init_sp value: Valores iniciales del segmento de pila (SS) y del puntero
de pila (SP).

init ip value,init cs_value: Valores iniciales del puntero de instruccion (IP) y del seg-
mento de codigo (CS).

over_ lay number: Numero de overlay en el archivo.
oem_identifier: Identificador del fabricante OEM.

address_of ne header: Direccion del encabezado New Executable (NE).

» Estructura interna del PE

Magic: Numero magico del ejecutable.
SizeOfCode: Tamaifio de la seccién de codigo.

SizeOfInitializedData, SizeOfUninitializedData: Tamafios de datos inicializa-
dos y no inicializados.

AddressOfEntryPoint: Direccion de entrada del cddigo ejecutable.

BaseOfCode, BaseOfData: Direccion base de las secciones de codigo y datos.
ImageBase: Direccién base de la imagen cargada en memoria.

SectionAlignment, FileAlignment: Alineacién de secciones y archivos en memoria.

OperatingSystemVersion, ImageVersion: Version del sistema operativo y del archivo
ejecutable.

SizeOfImage: Tamafio total del ejecutable en memoria.

SizeOfHeaders: Tamafio de los encabezados del ejecutable.

Checksum: Suma de verificacién del ejecutable.

Subsystem: Tipo de subsistema donde se ejecutara el programa.
DllCharacteristics: Caracteristicas de seguridad y configuracion de la DLL.

SizeofStackReserve, SizeofStackCommit: Tamafio reservado y comprometido para la
pila.
SizeofHeapCommit, SizeofHeapReserve: Tamafio reservado y comprometido para el heap.

LoaderFlags: Indicadores de carga del ejecutable.

= Caracteristicas de las secciones del ejecutable

text VirtualSize, text VirtualAddress: Tamaiio y direccion virtual de la seccion de
codigo (. text).

text SizeOfRawData, text PointerToRawData: Tamaifio en disco y puntero alos datos
en crudo de . text.

text PointerToRelocations, text PointerToLineNumbers: Punteros a reubica-
ciones y numeros de linea en . text.

text Characteristics: Caracteristicas de la seccion . text.

rdata VirtualSize, rdata VirtualAddress: Tamafo y direccion virtual de la seccion
de datos (. rdata).

rdata_ SizeOfRawData, rdata PointerToRawData: Tamafio en disco y puntero a los
datos en crudo de . rdata.
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* rdata_PointerToRelocations, rdata PointerToLineNumbers: Punteros a reubi-
caciones y numeros de linea en . rdata.

* rdata_Characteristics: Caracteristicas de la seccion . rdata.

Registros de actividad del sistema

* registry read,registry write, registry delete: Numero de operaciones sobre el
registro de Windows.

* registry total: Total de accesos al registro.

Comportamiento en red

* network threats: Indicadores de actividad sospechosa en la red.
* network dns: Numero de consultas DNS realizadas.
* network http: Cantidad de peticiones HTTP detectadas.

* network connections: Numero total de conexiones establecidas.

Actividad de procesos

* processes_malicious: Cantidad de procesos clasificados como maliciosos.
* processes_suspicious: Cantidad de procesos con actividad sospechosa.

* processes_monitored: Numero total de procesos observados.

* total processes: Cantidad total de procesos en ejecucion.

Interacciones con archivos

+ files _malicious: Numero de archivos creados/modificados con comportamiento malicioso.
+ files suspicious: Numero de archivos considerados sospechosos.
« files text: Numero de archivos de texto manipulados.

+ files unknown: Numero de archivos sin clasificar.

Llamadas a funciones y API

* dlls_calls: Numero de llamadas a librerias dinamicas (DLLs).
* apis: Cantidad de funciones de la API del sistema invocadas.

Etiquetas de clasificacion

* Class: Categoria del archivo (benign o malware).
* Category: Tipo de malware (Ejemplo: ransomware , Trojan).
» Family: Familia especifica del malware (Ejemplo: WannaCry, REvil).

6.2 Preprocesamiento de datos

El preprocesamiento de datos es una etapa fundamental en cualquier tarea de aprendizaje profundo, ya que
garantiza que los datos de entrada sean de alta calidad y estén en un formato adecuado para los modelos. En
este proceso, se aplican diversas técnicas como la limpieza de datos, normalizacién, eliminacién de valores
atipicos y conversion de caracteristicas, con el objetivo de reducir el ruido y mejorar la capacidad del modelo
para identificar patrones relevantes. En el caso de la deteccion de malware, el preprocesamiento es crucial para
transformar los datos en representaciones que faciliten la clasificacion y deteccién de amenazas, asegurando asi
un entrenamiento mads eficiente y preciso de los modelos implementados [51].

Antes de empezar el preprocesamiento, se va a explicar las librerias de python que se han tenido en cuenta
para poder ejecutar los modelos:
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6.2.1 Importacion de bibliotecas

import pandas as pd

import torch

import torch.nn as nn

import torch.optim as optim

import numpy as np

import pandas as pd

from sklearn.model selection import train test_split
from sklearn.model selection import StratifiedKFold
from sklearn.metrics import accuracy_score, confusion matrix, ConfusionMatrixDisplay
from torch.utils.data import Dataloader, TensorDataset
from tgdm import tgdm

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
import time

import seaborn as sns

import plotly.express as px

pandas: Utilizada para la carga, manipulacion y analisis de estructuras de datos en forma de tablas (Da-
taFrames). Ha sido esencial para trabajar con los archivos CSV del conjunto de datos, permitiendo tareas
como limpieza, filtrado y transformacién de datos.

numpy: Permite trabajar de forma eficiente con arrays y realizar operaciones matematicas sobre matrices.
Se ha usado para transformar datos y realizar cdlculos numéricos previos al entrenamiento.

torch y torch.nn: Librerias del framework PyTorch utilizadas para construir y entrenar el modelo de red
neuronal (MLP). torch.nn proporciona las capas, funciones de activacion y herramientas necesarias
para definir arquitecturas neuronales.

torch.optim: Se ha utilizado para definir el algoritmo de optimizacién (Adam) encargado de minimizar
la funcién de pérdida durante el entrenamiento del modelo.

torch.utils.data: Ofrece estructuras como TensorDataset y DataLoader, fundamentales para di-
vidir los datos en lotes (batching) y aplicarles aleatorizacién (shuffling) de forma eficiente.

sklearn.model_selection.train_test_split: Utilizada para dividir el conjunto de datos en conjuntos de
entrenamiento y prueba, garantizando una evaluacién justa del modelo.

sklearn.model_selection.StratifiedKFold: Aplicada para implementar validacion cruzada estratificada,
asegurando que la proporcion de clases se mantenga en cada particién.

sklearn.metrics: Se han usado funciones como accuracy scoreyconfusion matrix paraeva-
luar el rendimiento del modelo. También se ha empleado ConfusionMatrixDisplay para visualizar
la matriz de confusion.

tqdm: Libreria empleada para mostrar barras de progreso en tiempo real durante el entrenamiento, lo que
facilita el seguimiento de las ejecuciones largas.

matplotlib.pyplot y seaborn: Utilizadas para la generacién de graficos y visualizaciones. Matplotlib
ofrece graficos basicos, mientras que Seaborn mejora la estética y proporciona herramientas estadisticas
para la representacion visual.

plotly.express: Permite generar graficos interactivos en 2D y 3D. Ha sido ttil para representar visual-
mente la distribucién de familias de malware o resultados de anélisis exploratorios.

sklearn.preprocessing.StandardScaler: Se ha utilizado para estandarizar las variables numéricas, lo
cual mejora el rendimiento del modelo al normalizar los datos con media cero y desviacién estandar uno.
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= time: Libreria estdndar de Python usada para medir el tiempo de ejecucién de fragmentos del cédigo,
especialmente durante el entrenamiento del modelo.

Posteriormente, para todos los modelos se ha realizado el siguiente tratamiento de datos:

6.2.2 Carga del dataset

Carga los datos desde un archivo CSV:

data = pd.read csv(BDIR)

= BDIR: Variable que contiene la ruta del archivo CSV que se encuentra en la carpeta especificada en
Google Drive.

» pd.read_csv: Funcion de pandas que lee el archivo CSV desde la ruta proporcionada en el BDIR.

» data: El archivo CSV se almacena en la variable data como un DataFrame de pandas, lo que permite
manipular y analizar los datos facilmente.

El siguiente paso es eliminar los identificadores y datos irrelevantes para el estudio.

6.2.3 Eliminacion de identificadores y datos irrelevantes

data
data
data
data
data
data

data.

data
data

drop(['md5'], axis=1)

.drop(['shal'], axis=1)

.drop(['Category'], axis=1)
data.
data.
data.

drop(['Family'], axis=1)
drop(['PEType'], axis=1)
drop(['file extension'], axis=1)

= Elimina multiples columnas innecesarias con data.drop(). Cada llamada a drop() elimina una columna
especifica basada en su nombre, con el parametro axis=1 indicando que se estan eliminando columnas
(no filas).

= md>5, shal: Son hashes criptograficos para identificar archivos, pero no aportan informacion ttil para
deteccion de malware.

= Category, Family: Para este caso no las necesitaremos, ya que queremos analizar la deteccion.

= PEType, fileExtension: La extension de archivo y el tipo de Portable Executable tampoco aportan infor-
macion util.

6.2.4 Eliminacion de atributos técnicos del ejecutable

data
data
data
data
data
data
data
data

data.

data
data

data

drop([ 'MachineType'], axis=1)

.drop([ 'magic_number'], axis=1)
.drop([ 'Magic'], axis=1)

data.
data.
data.

drop([ 'OperatingSystemVersion'], axis=1)
drop ([ 'ImageVersion'], axis=1)
drop([ 'Subsystem'], axis=1)

.drop(['DllCharacteristics'], axis=1)
data.

drop( [ 'AddressOfEntryPoint'], axis=1)

= Estas caracteristicas, al igual que las anteriores, no aportan mucho valor al analisis de malware.

= Por ejemplo, MachineType, OperatingSystemVersion, Subsystem y ImageVersion son muy variadas
y no diferencian bien entre archivos benignos y malware.
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6.2.5 Eliminacion de caracteristicas de bajo impacto o redundantes

data = data.drop(['network threats'], axis=1)

data = data.drop(['text Characteristics'], axis=1)
data = data.drop(['rdata Characteristics'], axis=1)
data = data.drop(['oem identifier'], axis=1)

data = data.drop(['LoaderFlags'], axis=1)

network_threats podria ser una métrica derivada de otros datos de red y, por lo tanto, redundante.

text_Characteristics y rdata_Characteristics pueden ser poco ttiles o contener informacién que ya esta
representada en otras columnas.

oem_identifier: C6digo del fabricante, probablemente irrelevante.

LoaderFlags: No suele usarse en anélisis de malware.

6.2.6 Eliminacion de registros de direcciones y valores internos

data = data.drop(['rdata PointerToRelocations'], axis=1l)
data = data.drop(['init_ss_value'], axis=1)

data = data.drop(['init_ip value'], axis=1)

data = data.drop(['init_cs_value'], axis=1)

data = data.drop(['text_ PointerToLineNumbers'], axis=1l)

data = data.drop(['rdata_PointerToLineNumbers'], axis=1)
data = data.drop(['text PointerToRelocations'], axis=1)

= Son valores internos de cdmo estd estructurado el ejecutable en memoria.

= No aportan informacién clave para determinar si un archivo es malware o no.

6.2.7 Transformacion de datos

Tras haber eliminado una serie de caracteristicas que realmente van a aportar algo mas negativo que positivo
al andlisis, el siguiente paso es transformar los datos:

# Load the dataset

df = data
# Convert hexadecimal values to numeric
df[ 'EntryPoint'] = df['EntryPoint'].apply(lambda x: int(x, 16))

df[ 'bytes_on last page'] = df['bytes_on last page'].apply(lambda x: int(x, 16))

df[ 'pages_in file'] = df['pages_in file'].apply(lambda x: int(x, 16))
df['relocations'] = df['relocations'].apply(lambda x: int(x, 16))
df['size of header'] = df['size of header'].apply(lambda x: int(x, 16))

df[ 'min_extra paragraphs'] = df['min_extra paragraphs'].apply(lambda x: int(x, 16))
df[ 'max_extra paragraphs'] = df['max extra paragraphs'].apply(lambda x: int(x, 16))
#df['init _ss value'] = df['init_ss value'].apply(lambda x: int(x, 16))

df['init_sp value'] = df['init_sp value'].apply(lambda x: int(x, 16))

3 #df['init_ip value'] = df['init ip value'].apply(lambda x: int(x, 16))
#df['init cs_value'] = df['init cs_value'].apply(lambda x: int(x, 16))
df[ 'over_ lay number'] = df['over_lay number'].apply(lambda x: int(x, 16))
#df[ 'oem identifier'] = df['oem identifier'].apply(lambda x: int(x, 16))
df[ 'address_of ne header'] = df['address of ne header'].apply(lambda x: int(x, 16))
df['SizeOfCode'] = df['SizeOfCode'].apply(lambda x: int(x, 16))
df['SizeOfInitializedData'] = df['SizeOfInitializedData’'].apply(lambda x: int(x, 16))

df['SizeOfUninitializedData'] = df['SizeOfUninitializedData'].apply(lambda x: int(x, 16))
#df[ 'AddressOfEntryPoint'] = df[ 'AddressOfEntryPoint'].apply(lambda x: int(x, 16))
df[ 'BaseOfCode'] = df['BaseOfCode'].apply(lambda x: int(x, 16))

33



40

42
43
44

46

6.2. PREPROCESAMIENTO DE DATOSAPITULO 6. ANALISIS DEL DATASET Y PREPROCESAMIENTO

df[ 'BaseOfData'] = df['BaseOfData’'].apply(lambda x: int(x, 16))
df[ 'ImageBase'] = df['ImageBase'].apply(lambda x: int(x, 16))
df[ 'SectionAlignment'] = df['SectionAlignment'].apply(lambda x: int(x, 16))

df['FileAlignment'] = df['FileAlignment'].apply(lambda x: int(x, 16))
df['SizeOfImage'] = df['SizeOfImage'].apply(lambda x: int(x, 16))
df[ 'SizeOfHeaders'] = df['SizeOfHeaders'].apply(lambda x: int(x, 16))

9 df[ 'Checksum'] = df['Checksum'].apply(lambda x: int(x, 16))

df['SizeofStackReserve'] = df['SizeofStackReserve'].apply(lambda x: int(x, 16))

df['SizeofStackCommit'] = df['SizeofStackCommit'].apply(lambda x: int(x, 16))

df['SizeofHeapCommit'] = df['SizeofHeapCommit'].apply(lambda x: int(x, 16))

df[ 'SizeofHeapReserve'] = df['SizeofHeapReserve'].apply(lambda x: int(x, 16))

#df[ 'LoaderFlags'] = df['LoaderFlags'].apply(lambda x: int(x, 16))

df[ 'text Virtualsize'] = df['text VirtualSize'].apply(lambda x: int(x, 16))

df[ 'text VirtualAddress'] = df['text VirtualAddress'].apply(lambda x: int(x, 16))

df[ 'text_SizeOfRawData'] = df['text SizeOfRawData'].apply(lambda x: int(x, 16))

df[ 'text PointerToRawData'] = df['text PointerToRawData'].apply(lambda x: int(x, 16))

#df[ 'text PointerToRelocations'] = df['text PointerToRelocations'].apply(lambda x: int(x,

16))
#df[ 'text PointerToLineNumbers'] = df['text PointerToLineNumbers'].apply(lambda x: int(x,
16))

df['rdata Virtualsize'] = df['rdata VirtualSize'].apply(lambda x: int(x, 16))

df[ 'rdata VirtualAddress'] = df['rdata VirtualAddress'].apply(lambda x: int(x, 16))

df[ 'rdata_SizeOfRawData'] = df['rdata_ SizeOfRawData'].apply(lambda x: int(x, 16))

df[ 'rdata PointerToRawData'] = df['rdata PointerToRawData'].apply(lambda x: int(x, 16))

#df[ 'rdata_PointerToRelocations'] = df['rdata_PointerToRelocations'].apply(lambda x: int(
x, 16))

#df[ 'rdata_PointerToLineNumbers'] = df['rdata PointerToLineNumbers'].apply(lambda x: int(
x, 16))

= Para cada columna, estan utilizando una funcién lambda que convierte los valores hexadecimales a deci-
males.

= La funcién lambda que se usa es:

lambda x : int(x, 16) (6.1)

» int(x, 16): Convierte el valor x de hexadecimal (base 16) a decimal (base 10).

= Esto es importante porque los valores en algunas columnas estan representados en formato hexadecimal
(por ejemplo, direcciones de memoria o tamafios de memoria en los archivos ejecutables), y para su
andlisis y uso posterior, es necesario convertirlos a formato numérico.

= Aplicacién de la conversién en varias columnas:

* EntryPoint: El punto de entrada de un ejecutable (direccién en memoria).

* bytes on last page: Numero de bytes en la tltima pagina de un archivo.
* pages_in file: Numero de paginas en un archivo ejecutable.

» relocations: Numero de reubicaciones (relocations) en el archivo.

* size of header: Tamafo del encabezado.

* min _extra paragraphsymax extra paragraphs:Pueden ser parametros relacionados
con la estructura interna del archivo ejecutable.

* Y muchas otras, como BaseOfCode, BaseOfData, SizeOfCode, SizeOfInitializedData,

SizeOfUninitializedData, Checksum, etc.
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categorical columns = df.select_dtypes(include=['object', 'category']).columns
categorical columns = [ 'Class']
df = pd.DataFrame(df)

La codificacién categorica es el proceso de convertir valores categdricos en valores numéricos y debe con-
vertirse antes de que se alimenten a los modelos ML o DL. Por lo general, se utilizan dos enfoques: codificacién
one-hot y simplemente sustituir los datos de categoria con valores numeéricos. La codificaciéon one-hot es util
cuando los valores son minimos y no es adecuada para tareas de clasificacion y atribucion de familias.

El dataset incluye tres columnas idénticas que deben transformarse en datos numéricos. La primera columna
es Clase, que tiene 2 valores tinicos (Malicioso y Benigno) y se convierte en 0 y 1.

La segunda columna, Categoria, contiene cinco valores tnicos (Benigno, Troyano, ransomware , Stealer y
RAT).

La tercera columna, Familia, contiene 27 entradas unicas.
Todos los valores categdricos en ambas columnas (Categoria y Familia) se convierten en codificacién me-
canizable.

= Selecciona las columnas del DataFrame df que tienen un tipo de datos categorico, es decir, aquellas que
son de tipo object o category.

» Las columnas de tipo object son generalmente las que contienen texto o cadenas de caracteres.

» Las columnas de tipo category son aquellas que contienen variables que toman un niimero limitado
de valores distintos, generalmente usadas para datos cualitativos.

s columns: Extrae los nombres de las columnas que cumplen con el criterio anterior (columnas de tipo
object o category).

= Después de ejecutar esta linea, categorical columns contendrd una lista con los nombres de las
columnas categdricas.

from sklearn.preprocessing import LabelEncoder
# Initialize the label encoder

3 label encoder = LabelEncoder()

# Apply label encoding to each categorical column
for col in categorical columns:
df[col] = label encoder.fit transform(df[col])

= LabelEncoder: Es una clase de la biblioteca scikit-learn que se utiliza para convertir variables cate-
géricas en valores numéricos. Es particularmente 1til cuando las categorias son etiquetas que no tienen
un orden intrinseco.

s categorical columns: Esta lista contiene las columnas que se definieron previamente como cate-
goricas. En este caso, solo contiene la columna 'Class".

s fit transform(df[col]): Este método de LabelEncoder realiza dos pasos:

» f£it(): Encuentra las categorias unicas en la columna especificada.

* transform( ): Convierte cada categoria en un nimero unico, asignando a cada categoria un na-
mero entero. Por ejemplo, si las categorias son ”A”, ” B” y ”C”, podrian ser codificadas como 0, 1,
y 2, respectivamente.

= Elresultadode fit transform() se asigna nuevamente a la columna df [ col ], reemplazando los
valores originales categéricos con los nuevos valores numéricos.
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Esto es sumamente importante, ya que los modelos de aprendizaje automético (como arboles de decisién,
redes neuronales, etc.) no pueden trabajar con datos categéricos directamente; necesitan datos numéricos. El
Label Encoding convierte las categorias en niimeros para que los algoritmos puedan procesarlas.

6.2.8 Normalizacion

La normalizacién, también conocida como escalado de caracteristicas, es un proceso que ajusta los valores
de las variables dentro de un rango determinado. En los conjuntos de datos utilizados en esta investigacion, las
caracteristicas presentan diferentes escalas numéricas, con algunas variables que tienen rangos altos y otras mas
reducidos.

Para mejorar la eficiencia y estabilidad de los modelos de aprendizaje automatico y aprendizaje profundo,
se aplica una transformacién que ajusta los valores a un rango estandar de 0 a 1. En este caso, se utiliza la
técnica StandardScaler, la cual reescala los datos de manera que cada caracteristica tenga una media de 0 y una
desviacién estandar de 1, asegurando asi una distribucién uniforme y optimizada para el entrenamiento de los
modelos.

En este paso los datos seran normalizados de la siguiente manera:

from sklearn.preprocessing import MinMaxScaler, StandardScaler

# Create a Min-Max scaler instance

scaler = StandardScaler()

# Select the columns you want to scale (exclude the target variable if needed)
columns_to_scale = df.columns[:-1] # You can select specific columns here

# Fit the scaler on the selected columns and transform the data
df [columns_to_scale] = scaler.fit transform(df[columns_to scale])

El codigo aplica una técnica de normalizacién utilizando StandardScaler de la biblioteca sklearn.preprocessing.
Este método ajusta los valores de las caracteristicas seleccionadas para que tengan una media de 0 y una desvia-
cion estandar de 1, lo que mejora el rendimiento de los modelos de aprendizaje automatico al evitar que ciertas
caracteristicas dominen sobre otras debido a diferencias en la escala de los valores.

Para ello, primero se crea una instancia de StandardScaler, luego se seleccionan las columnas a normalizar
(excluyendo la variable objetivo) y, finalmente, se ajustan y transforman los datos con fitTransform(). Como
resultado, todas las caracteristicas seleccionadas quedan escaladas de manera uniforme, facilitando el entrena-
miento de los modelos y asegurando que los algoritmos que dependen de la magnitud de las variables, como
redes neuronales o modelos basados en distancia, funcionen de manera éptima.

6.2.9 Separacion de caracteristicas (features) y etiquetas (labels)
La separacion de caracteristicas y etiquetas es un paso fundamental en el preprocesamiento de datos para el

entrenamiento de modelos de aprendizaje automatico.

En este proceso, el conjunto de datos (df) se divide en dos partes:

# Separate features and labels
X df.iloc[:, :-1].values # Features
y = df.iloc[:, -1].values # Class labels

Caracteristicas (X): Son las variables de entrada que el modelo utilizara para hacer predicciones. En el
codigo, se seleccionan todas las columnas excepto la ultima (df.iloc[:, :-1].values), ya que se asume que la tltima
columna contiene la etiqueta o la variable objetivo.

Etiquetas (y): Representan la salida esperada o la clase objetivo que el modelo debe predecir. En este caso,
se extrae la tltima columna del conjunto de datos (df.iloc[:, -1].values).

Esta separacion es esencial porque los modelos de aprendizaje automatico aprenden patrones a partir de las
caracteristicas (X) y se entrenan para predecir las etiquetas (y).
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Para el caso de los modelos Bi-LSTM y Bi-LSTM-GN se aplic6 como parte de una estrategia de mejora del
rendimiento lo siguiente:

from sklearn.preprocessing import LabelEncoder
from imblearn.over sampling import SMOTE

le = LabelEncoder()

y_encoded = le.fit transform(y)

smote = SMOTE(random state=42)

X smote, y smote = smote.fit resample(X, y_encoded)
X smote.shape

Exclusivamente en esos modelos se aplican LabelEncoder y SMOTE para mejorar el rendimiento al tratar
con clases desbalanceadas. El LabelEncoder transforma las etiquetas categéricas en valores numéricos, necesa-
rios para que el modelo pueda procesarlas correctamente. Por otro lado, SMOTE genera ejemplos sintéticos de
la clase minoritaria, equilibrando el conjunto de datos y evitando que el modelo se sesgue hacia la clase mayo-
ritaria, lo cual es especialmente importante en arquitecturas mas complejas y sensibles como las Bi-LSTM.

Aqui terminaria la fase de preprocesamiento de los datos para la detecciéon de malware, a continuacién se
explicara el preprocesamiento llevado a cabo tanto para la clasificacién de malware como para la atribucién por
familias de malware.

6.3 Preprocesamiento - Clasificacion de malware

Con el fin de evitar redundancias en la explicaciéon del preprocesamiento, en esta seccion se detallaran
unicamente las diferencias especificas entre el preprocesamiento realizado para la clasificacién de malware y el
utilizado en la seccién anterior (detecciéon de malware). Dado que ambos procesos comparten una base comun
en la limpieza y transformacion de los datos, se omite la repeticién de pasos idénticos y se destacan tinicamente
las variaciones relevantes entre ambos enfoques.

6.3.1 Carga del dataset

data = pd.read _csv('balanceado.csv')

Esta vez la carga de datos va a ser a través de un fichero diferente, en este caso un dataset balanceado [9].
Esto es porque el dataset original [8] muestra un significativo desbalance en la distribucién de las clases, lo que
puede influir negativamente en la efectividad del modelo de clasificacién. De esta manera, la clase Benign que
contaba con un total de 10876 muestras, tras balancearlo cuenta con un total de 4.762 muestras , mientras que
las clases asociadas a comportamientos maliciosos estan repartidas de manera igualada y en menor cantidad:
ransomware tiene 4.762 muestras, RAT cuenta con 2. 647, Stealer con 2.018 y Trojan con 1.449.

Este desequilibrio que habia anteriormente entre las clases puede generar sesgos en el proceso de entrena-
miento, haciendo que el modelo favorezca la clase mas abundante y dificultando la identificacién precisa de las
clases menos representadas. Para mitigar este inconveniente y fomentar una distribucién mas equilibrada, se ha
decidido llevar a cabo un muestreo aleatorio sobre la clase Benign, reduciendo su cantidad hasta que sea igual
a la de la clase maliciosa que tiene mas representacion.

6.3.2 Eliminacion de identificadores y datos irrelevantes

#data = data.drop(['Category'], axis=1)

En este caso se van a eliminar los identificadores mencionados en la anterior seccion, excepto la feature de
Category, por eso se muestra comentada en la linea de c6digo, ya que es la que vamos a tener en cuenta en el
analisis de clasificacién de malware.
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6.3.3 Transformacion de datos

categorical columns = df.select_dtypes(include=['object', 'category']).columns
categorical columns =[ 'Class', 'Category']
df = pd.DataFrame(df)

» categorical columns = df.select dtypes(include=['object', 'category'])
busca dentro del DataFrame df todas las columnas que contienen datos categoéricos o de tipo texto (tipo
object o category). Ya que los modelos como redes neuronales o modelos basados en arboles no pueden
trabajar directamente con texto o categorias. Estas columnas necesitan ser codificadas (por ejemplo, con
one-hot encoding o label encoding).

= categorical columns =[ 'Class', 'Category'] sobrescribe la variable anteriory espe-
cifica manualmente que las columnas categdricas a trabajar son ’Class’ y ’Category’.Puede que el se-
lect_dtypes anterior no haya detectado correctamente las columnas porque tal vez estdn como int pero en
realidad representan clases (por ejemplo, 0 = benigno, 1 = malware).

s df = pd.DataFrame (df) haceuna copia superficial del dataframe por si se ha modificado en algtin
paso anterior.

6.4 Preprocesamiento - Atribucion por Familias

6.4.1 Carga del dataset

Para este caso en el que se va a clasificar por atribucion de familias de malware, el dataset del que se va a
partir es el de familias.csv[[10].

data = pd.read csv('familias.csv')

La razoén de utilizar este dataset es porque también estan desbalanceadas las familias de malware en el
dataset original. Es por ello que como de benigno habia 10876 familias y en comparacién con el resto que se
sitdan en torno a 500, este desequilibrio puede causar problemas al entrenar modelos de machine learning o
deep learning, ya que el modelo aprende a priorizar la clase mayoritaria (Benign) y no aprender correctamente
a identificar las familias con pocas muestras, como se ha explicado anteriormente.

6.4.2 Eliminacion de identificadores y datos irrelevantes

Al igual que se ha explicado antes, en este caso, como queremos atribuir por familias de malware, tan solo
eliminaremos las caracteristicas eliminadas antes exceptuando la Category y la Famliy que son las que van a
interesar en esta clasificacién.

#data = data.drop(['Category'], axis=1)
#data data.drop([ 'Family'], axis=1)

6.4.3 Transformacion de datos

# Assuming you have a DataFrame named 'df’

categorical columns = df.select_dtypes(include=['object', 'category']).columns
categorical columns =[ 'Class', 'Category', 'Family']

df = pd.DataFrame(df)

Misma transformacion de datos que la utilizada en la clasificacion de malware, pero en este caso en atribu-
cion por familias.
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CAPITULO 6. ANALISIS DEL DATASET Y PREPROCESAMIENTO 6.5. ESTUDIO DE ABLACION

6.5 Estudio de ablacion

Como se ha comprobado en secciones anteriores, el uso de las features determina en gran medida cémo se
van a comportar unos modelos frente a otros.

Con el objetivo de identificar la relevancia de ciertas caracteristicas en el rendimiento del modelo, se ha
realizado un analisis de ablacion eliminando distintas combinaciones de variables clave del conjunto de datos
y observando la variacion en la precisién del modelo CNN tras 20, 30 y 50 épocas de entrenamiento.

6.5.1 Analisis

Para llevarlo a cabo se ha probado con 3 algoritmos diferentes para ver qué relevancia tienen en el entrena-
miento de los modelos.

El primer algoritmo utilizado es el RandomForestClassifier:

from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
import seaborn as sns

# Entrenamos con todas las columnas
X full = data.drop('Class', axis=1)
y_full = data['Class"']

model = RandomForestClassifier(random state=42)
model.fit (X full, y full)

# Obtenemos importancias
importances = model.feature_ importances_
feature names = X full.columns # Aqui esta el cambio

# Crear DataFrame

feature importance df = pd.DataFrame({
'Feature': feature_ names,

'Importance': importances
}).sort_values(by='Importance', ascending=False)

# Visualizacidn

plt.figure(figsize=(10, 6))

sns.barplot(data=feature_importance_ df.head(20), x='Importance',6 y='Feature')
plt.title('Top 20 Features mas importantes')

plt.tight layout()

plt.show()

RandomForest genera multiples arboles de decisién auténomos, cada uno basado en un grupo aleatorio de
variables y datos (bagging). Después, combina los resultados de todos los arboles en un promedio.[[14].

Para calcular la importancia de una variable, se calcula observando cuanto mejora la impureza (por ejemplo,
el Gini impurity) cada vez que se usa esa variable en un nodo de un arbol. Si una variable aparece muchas veces
y produce divisiones efectivas, se considera importante.

Los resultados obtenidos son los siguientes:
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Top 20 Features mas importantes
processes_malicious
files_malicious
registry_total
processes_monitored
registry_read
files_unknown
files_suspicious
network_dns
files_text

registry_write

Feature

total_procsses
network_http
network_connections
rdata_VirtualAddress
address_of_ne_header
EntryPoint
rdata_Virtualsize
rdata_PointerToRawData
apis
rdata_SizeOfRawData
I T T T

T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance

Figura 6.3: Top 20 features with RandomForestClassifier

Como se aprecia en la figura b.3 proces ses_malicious domina con un 40 % de importancia, lo que
indica que los arboles la utilizan mucho y muy temprano para dividir los datos.

Ademads, hay un bloque de variables con importancias entre 3 % y 8 %,que muestra que hay varias variables
que ayudan al modelo, pero ninguna tanto como la principal.

Es por eso qué segtin este algoritmo, la variable processes malicious es la mas importante y mas
adelante se comprobara cémo afecta al modelo.

El siguiente algoritmo que se ha tenido en cuenta es el de LGBMClassifier:

i from lightgbm import LGBMClassifier
> import matplotlib.pyplot as plt

3 import seaborn as sns
4
5

6 X_full = data.drop('Class’', axis=1)
7 y_full = data['Class"']

9 model = LGBMClassifier(random state=42)

10 model.fit(X full, y full)

11

12 importances = model.feature importances_

13 feature names = X full.columns

14

15 feature_ importance df = pd.DataFrame({

16 'Feature': feature names,

17 'Importance': importances

18 }).sort_values(by='Importance', ascending=False)

19

20

21 plt.figure(figsize=(10, 6))

2 sns.barplot(data=feature_importance_df.head(20), x='Importance', y='Feature')
23 plt.title('Top 20 Features mas importantes (LightGBM)')
24 plt.tight layout()

25 plt.show()
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LightGBM es un método que se fundamenta en el aumento de gradientes, pero esta creado para ser veloz
y eficaz. Forma arboles de decisién de manera consecutiva, donde cada arbol nuevo busca rectificar los fallos
del que lo precede. Emplea un enfoque denominado crecimiento hoja por hoja, lo que frecuentemente lleva a la
creacion de modelos muy efectivos [].

Para calcular la importancia puede emplear dos formas:

= Frecuencia de uso de la feature (cuantas veces aparece en los arboles).

= Ganancia de informacion (cuanto mejora el modelo al usarla, acumulado).

Para este caso en concreto se estd utilizando la frecuencia de uso de la feature.

Los resultados obtenidos son los siguientes:

Top 20 Features mas importantes (LightGBM)
EntryPoint
processes_malicious
SizeOfinitializedData
registry_read
network_connections
SizeOflmage
address_of _ne_header
files_malicious
rdata_VirtualSize
processes_monitored
total_procsses

Feature

apis

registry_total
files_suspicious
network_dns
rdata_SizeOfRawData
BaseOfData
text_SizeOfRawData
rdata_PointerToRawData
rdata_VirtualAddress

T T T T T
0 25 50 75 100 125 150 175 200
Importance

Figura 6.4: Top 20 features with LGBM Classifier

En LightGBM, cuando se mira la importancia por niimero de veces que se usa una feature: No mide direc-
tamente lo importante que es para mejorar la prediccién. Mide cuantas veces esa feature fue utilizada en algtin
”split”de los arboles.

El problema de esto es que una feature puede aparecer muchisimas veces en splits poco relevantes (que
casi no ayudan a separar clases). Mientras que otra feature puede aparecer muy pocas veces, pero en splits
criticos que deciden cosas muy importantes. Es por eso que hay que tener en cuenta que la Cantidad de veces
# Importancia real en el modelo.

En este caso EntryPoint, processes malicious, SizeOfInitializedData, entre otros,
muestran cifras significativamente altas. Esto indica que estas variables son elegidas a menudo en varios arboles
y poseen un notable poder de prediccion desde el punto de vista del algoritmo.

También se observan variables estructurales del ejecutable (por ejemplo, SizeOfImage o BaseOfData), lo
que indica que LightGBM identifica correctamente los patrones técnicos del archivo.

Como se puede observar, la variable processes malicious se vuelve a repetir como una de las mas
importantes.

Por tltimo, se va a utilizar el algoritmo de XGBoostClassifier:
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from xgboost import XGBClassifier
import matplotlib.pyplot as plt
import seaborn as sns

# Codificar las etiquetas
y_encoded = y full.map({'Benign': 0, 'Malware': 1})

# Ahora entrenar
model = XGBClassifier(random state=42, use_label encoder=False, eval metric='logloss')
model.fit (X _full, y encoded)

importances = model.feature importances_
feature names = X full.columns

feature importance_df = pd.DataFrame({
'Feature': feature names,

'Importance': importances

7 }).sort_values(by='Importance', ascending=False)

plt.figure(figsize=(10, 6))

sns.barplot(data=feature_importance_df.head(20), x='Importance',6 y='Feature')
plt.title('Top 20 Features mas importantes (XGBoost)')

plt.tight layout()

plt.show()

Este algoritmo también usa gradient boosting, como LightGBM, pero su estrategia de crecimiento de arboles
y su sistema de regularizacion son mas conservadores. Tiende a penalizar la complejidad del modelo para evitar
sobreajuste [@].

Para calcular la importancia lo hace de la siguiente manera:

= Gain (cuanto reduce el error la variable).
= Weight (cuantas veces se ha usado).

= Cover (cantidad de datos cubiertos cuando se usa la variable).

Por defecto usa gain, los resultados son los siguientes:
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Top 20 Features mas importantes (XGBoost)
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Figura 6.5: Top 20 features with XGBoost Classifier

Como se ve en la figura .§ proces ses_malicious tiene una importancia exagerada (0.8). Muchas
variables tienen importancia 0, lo que indica que el modelo:

= Encontr6é que una sola variable le bastaba para clasificar la mayoria de los datos.

= O bien no entren6 bien debido a alguna limitacién: clases muy desbalanceadas, correlaciones, pocos
arboles o profundidad baja.

Lo que le caracteriza a este modelo también es que es muy sensible a clases no binarias (como Malware o
Benign):

En cualquier caso, process _malicious sigue siendo la feature elegida por todos ellos.

6.5.2 Resultados
Para comprobar la veracidad de los algoritmos en cuanto a su seleccién de las features, se va a comprobar
como afectan en cada uno de ellos el tenerlas o no en cuenta.

1 important_ features = [
2 'processes_malicious'

3]
4 # Creamos una copia sin esas columnas
5 df = data.drop(columns=important_ features)

7 X
8y

df.drop('Class', axis=1)
df['Class"']

10 input_size = X.shape[l]

El codigo anterior se encarga de eliminar la feature processes _malicious y los resultados son los
siguientes:

= Precision del modelo CNN con 20 épocas: 91,59 % frente al 98,88 % que se obtuvo sin eliminar esa
feature.
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= Precision del modelo CNN con 30 épocas: 92,09 % frente al 98,92 % original.

= Precisién del modelo CNN con 50 épocas: 93,07 % frente al 98,98 % original.

Si eliminamos solamente files malicious que es lo que hace el siguiente codigo:

1 important_ features = [
> 'files malicious’

]
# Creamos una copia sin esas columnas

df = data.drop(columns=important_ features)
X = df.drop('Class', axis=1)

uos W

6
7
g8y = df['Class"']

10 input_size = X.shape[l]

Lo que se obtiene es:
= Precision del modelo CNN con 20 épocas: 98,88 % frente al 98,88 % original.
= Precision del modelo CNN con 30 épocas: 98,90 % frente al 98,92 % original.

= Precisién del modelo CNN con 50 épocas: 98,95 % frente al 98,98 % del original.

Si eliminamos ambas features:

1 important features = [

2 'processes _malicious', 'files malicious'
3]

4

5 # Creamos una copia sin esas columnas

6 df = data.drop(columns=important_ features)

g X df.drop('Class', axis=1)
9y = df['Class"']

10

11 input_size = X.shape[1l]

El resultado es:

= Precision del modelo CNN con 20 épocas: 91,06 % frente al 98,88 % original.
= Precisién del modelo CNN con 30 épocas: 98,99 % frente al 98,92 % original.
= Precision del modelo CNN con 50 épocas: 99,04 % frente al 98,98 % original.

Por ultimo, eliminando el top 20 de features mas importantes:
1 important features = [
2 'processes_malicious', 'files malicious', 'registry total', 'registry read',
; 'processes_monitored', 'files_unknown', 'files_suspicious', 'network dns',

4 'files_text', 'network http', 'registry write', 'total procsses',
5 'network connections', 'rdata VirtualAddress', 'address_of ne header',
6 'EntryPoint', 'rdata VirtualSize',6 ‘'rdata PointerToRawData', 'rdata_ SizeOfRawData'

8 ]
9 # Creamos una copia sin esas columnas
10 df = data.drop(columns=important features)

2 X = df.drop('Class', axis=1)
13y df['Class']

15 input_size = X.shape[l]
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Los resultados son:

= Precision del modelo CNN con 20 épocas: 72,61 % frente al 98,88 %.
= Precision del modelo CNN con 30 épocas: 72,09 % frente al 98,92 %.
= Precision del modelo CNN con 50 épocas: 74,08 % frente al 98,98 %.

6.5.3 Conclusiones
Los resultados obtenidos permiten extraer las siguientes conclusiones:
= Importancia critica de la caracteristica processes _malicious:

* La eliminacién de esta variable provocé una caida significativa en la precision del modelo, espe-
cialmente con 20 épocas (de 98,88 % a 91,59 %).

* Incluso tras 50 épocas, el modelo no logra recuperar su rendimiento original (93,07 % vs. 98,98 %).

processes malicious es una caracteristica altamente informativa y fundamental para el modelo.
Su presencia ayuda a distinguir eficazmente entre muestras benignas y maliciosas.

= Impacto moderado de la caracteristica files malicious:

 Laeliminacién de esta variable produce un impacto leve o casi nulo. La precision del modelo apenas
varia (menos de 0,1 % en la mayoria de los casos).

Aunque files malicious puede aportar informacion ttil, su impacto es secundario. El modelo pue-
de compensar su ausencia utilizando otras variables relacionadas.

= Efecto combinado de eliminar ambas (processes malicious + files malicious):

* Al eliminar ambas caracteristicas, el modelo muestra una caida inicial en la precision (91,06 %
con 20 épocas), pero tras mas entrenamiento (30 y 50 épocas), supera ligeramente el rendimiento
original, llegando a un 99,04 %.

El modelo puede reestructurar el aprendizaje utilizando otras caracteristicas complementarias. Sin em-
bargo, el tiempo de entrenamiento requerido aumenta. Este fendmeno puede estar relacionado con una
mayor generalizacién o menor sobreajuste al eliminar dos variables dominantes.

= Eliminacion del Top 20 de caracteristicas mas relevantes:

* El rendimiento del modelo cae drasticamente a un 72,61 % con 20 épocas, y apenas alcanza el
74,08 % tras 50 épocas.

Las 20 variables eliminadas constituyen el niicleo informativo del modelo. Su exclusién provoca una
degradacién severa del rendimiento, lo que evidencia su altisimo valor predictivo. La red neuronal no
logra recuperar su capacidad discriminativa con las caracteristicas restantes.

El estudio revela que ciertas variables son fundamentales para la efectividad del modelo CNN, que es el que
hemos evaluado en este caso y el de cualquier otro modelo al clasificar malware, en particular aquellas vincula-
das a la actividad de procesos y registros. Aunque algunas de estas variables podrian considerarse innecesarias o
sustituidas por otras, la inclusién de todas las caracteristicas principales asegura una representacién mas sélida
del comportamiento del malware.

Asimismo, se nota que una eliminacion cuidadosa de las caracteristicas mas influyentes puede mejorar
la capacidad de generalizacién del modelo, aunque esto implique un mayor costo computacional (més ciclos
de entrenamiento). Por el contrario, suprimir de manera indiscriminada las variables méas significativas afecta
gravemente el desempefio del sistema.
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Capitulo 7

Evaluacion de los modelos a estu-
diar

En esta seccion se presenta un analisis detallado del rendimiento de los modelos de aprendizaje automatico
implementados. Para evaluar su efectividad, se llevan a cabo tres tareas de deteccion distintas: deteccién de
malware, clasificacién por categorias de malware y atribucién de familias de malware. Ademas, se realiza un
analisis comparativo con estudios previos utilizando el mismo conjunto de datos, con el objetivo de validar el
enfoque propuesto.

Los experimentos se ejecutan sobre la plataforma Google Colab, aprovechando tanto unidades de procesa-
miento tensorial (TPU) como unidades de procesamiento grafico (GPU) para evaluar el rendimiento compu-
tacional. Se habl¢ la posibilidad de ejecutarlas en una maquina proporcionada por el tutor en local, pero debido
a que los modelos tampoco requerian muchos recursos de computo, con esta plataforma se podia realizar perfec-
tamente. La implementacion se realiza en Anaconda 2.4.2 con Jupyter Notebook 6.4.12, utilizando bibliotecas
clave como Scikit-learn, TensorFlow, NumPy y Pandas para las tareas de aprendizaje automatico y profundo.

7.1 Evaluacion de los modelos

Para el desarrollo y evaluacién del modelo, el conjunto de datos se ha dividido en un 80 % para entrenamiento
y un 20 % para prueba, garantizando asi una separacion adecuada entre los datos utilizados para ajustar los
pesos del modelo y aquellos empleados para validar su capacidad de generalizacion. Ademas, se ha aplicado
una validacién cruzada estratificada mediante K-Fold, lo cual permite evaluar el rendimiento del modelo de
forma mas robusta y equitativa entre las distintas clases, especialmente en contextos con clases desbalanceadas.

Durante el entrenamiento, se han utilizado los siguientes pardmetros clave: un tamaiio de lote (batch size)
de 32, una tasa de aprendizaje de 0.001, y el optimizador Adam, ampliamente utilizado por su eficiencia en la
actualizacién de pesos en redes neuronales profundas. Para la funcién de pérdida, se ha empleado la entropia
cruzada categorica, adecuada para problemas de clasificacion multiclase como el presente caso [26].

El primer factor que se utiliza para medir el rendimiento de un modelo es comprobar su exactitud. Se revisa y
verifica observando la exactitud y la pérdida de un modelo DL en cada época y calculando la precisién promedio
o media al final para predecir la precision del modelo:

TP +TN
TP+ FP+TN+FN

El segundo factor utilizado para medir el rendimiento es la precision. La precision se evalia midiendo la

Accuracy = (7.1)
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proporcién de positivos identificados correctamente por modelo y el ntimero total de positivos identificados. La
precision se presenta:

TP
Precision = ——— 7.2
recision TP+ FP (7.2)

El tercer factor importante es la recuperacién. También se denomina sensibilidad y representa la relacion
entre las instancias vinculadas recuperadas y el niimero total de instancias recuperadas. Se representa:

TP
Recall = ——— 7.
T TPYFN (7:3)

El cuarto factor importante es el F1-Score, que se mide considerando tanto la precisién como la recuperacion.
Se supone que es el peso promedio de todos los valores y se presenta:

2 x Precision x Recall
F1-Score = — (7.4)
Precision + Recall

Dado que la evaluacion de los modelos sigue la misma l6gica y utiliza las mismas métricas en los tres casos
de estudio: deteccion de malware, clasificacion por tipo de malware y atribucion por familia, tanto el codigo
utilizado como la explicacién de las métricas empleadas seran exactamente iguales para cada uno de ellos. Por
este motivo, se presentara una tnica seccion de evaluacion, valida para todos los modelos desarrollados, evitando
asi repeticiones innecesarias y facilitando una vision unificada del rendimiento de los modelos aplicados en las
diferentes tareas.

El cdédigo que van a implementar todos los modelos es el que se presenta a continuacion:

# Convert data to PyTorch tensors
X = torch.tensor (X, dtype=torch.float32)
y torch.tensor(y, dtype=torch.long)

# Define the number of folds for cross-validation
num splits = 5 # You can adjust the number of folds as needed

# Initialize lists to store accuracy scores, training and testing loss, and times

fold accuracies = []
train losses = []

test losses = []
train_times = []
test_times = []

all train_accuracies = []
all test_accuracies = []
all train losses = []

all test losses = []

all true labels = []

all predicted labels = []

# Initialize the cross-validator
kf = StratifiedKFold(n_splits=num splits, shuffle=True, random state=42)

# Specify the model hyperparameters

input_size = X.shape[l] # Number of input features
hidden size = 128 # Number of hidden units

num classes = len(np.unique(y)) # Number of classes

# Loop over the folds
for fold, (train_index, test_index) in enumerate(kf.split(X, y)):
X train, X test = X[train_index], X[test_index]

48



CAPITULO 7. EVALUACION DE LOS MODELOS A ESTUDIAR 7.1. EVALUACION DE LOS MODELOS

35 y_train, y test = y[train_index], y[test_index]
36

37 # Create Dataloader for training and testing

38 train_dataset = TensorDataset(X_train, y train)

39 test dataset = TensorDataset(X_test, y test)

4 batch_size = 32

42 train_loader = DataLoader(train_dataset, batch size=batch_size, shuffle=True)
43 test_loader = DataLoader(test_dataset, batch size=batch_size, shuffle=False)
44

45 # Create an instance of the XX model

46 model = XXModel(input_size, hidden_size, num classes)

47

48 # Define loss function and optimizer

49 criterion = nn.CrossEntropyLoss()

50 optimizer = optim.Adam(model.parameters(), 1lr=0.001)

51

52 # Training loop

53 num_epochs = 20

54 train losses_fold = []

55 test losses_fold = []

56 train_accuracies = []

57 test_accuracies = []

58

59 start_time = time.time()

60

61 for epoch in tgdm(range(num epochs), desc=f'Fold {fold + 1}/{num splits}'):
62 model.train()

63 correct_train = 0

64 total train = 0

65 running train_loss = 0.0

66

67 for inputs, labels in train_loader:

68 optimizer.zero_grad()

69 outputs = model (inputs)

70 loss = criterion(outputs, labels)

71 loss.backward()

72 optimizer.step()

73 running train_loss += loss.item()

74 _, predicted = torch.max(outputs.data, 1)

75 total train += labels.size(0)

76 correct_train += (predicted == labels).sum().item()
77

78 # Append true labels and predicted labels for this batch
79 all true labels.extend(labels.tolist())

80 all predicted_labels.extend(predicted.tolist())

81

82 train_accuracy = correct train / total train

83 train_losses fold.append(running train loss / len(train_loader))
84 train_accuracies.append(train_accuracy)

85

86 # Evaluation on the test set

87 model.eval()

88 correct_test = 0

89 total test = 0

90 running test_loss = 0.0

91

92 for inputs, labels in test loader:

93 outputs = model (inputs)

94 loss = criterion(outputs, labels)

95 running_ test loss += loss.item()

96 _+ predicted = torch.max(outputs.data, 1)
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97 total test += labels.size(0)

98 correct_test += (predicted == labels).sum().item()
99

100 test _accuracy = correct test / total test

101 test_losses fold.append(running test loss / len(test_ loader))
102 test_accuracies.append(test_accuracy)

103

104 # Store the accuracy of this fold

105 fold accuracies.append(test_accuracies[-1])

106 train_losses.append(train_losses_fold)

107 test losses.append(test_losses fold)

108

109 end_time = time.time()

110 train time = end time - start_time
111 train_times.append(train_time)

113 # Calculate the testing time for the fold

114 start_time = time.time()

115 for _ in range(len(test_ loader)):
116 pass

117 end time = time.time()

118 test_time = end time - start_time

119 test times.append(test_time)
120

121 # Append accuracy and loss for this fold

122 all train_accuracies.append(train_accuracies)

123 all test accuracies.append(test accuracies)

124 all train losses.append(train_ losses_fold)

125 all test losses.append(test_losses_ fold)

126

127 # Calculate and print the mean accuracy across all folds

128 mean_accuracy = np.mean(fold accuracies)

129 print(f'Mean Accuracy: {mean_accuracy * 100:.2f}%')

130

131 # Calculate and print the total test loss across all folds

132 total test loss = sum([sum(loss) for loss in all test losses])

133

134 # Calculate and print the total average test loss (across all epochs and folds)
135 total average test loss = total test loss / (num splits * num epochs)

136

137 # Calculate and print the mean training and testing times across all folds
138 mean_train_time = np.sum(train_times)

139 mean_test _time = np.sum(test_times)

140 print(f'Mean Training Time (seconds): {mean_ train time:.2f}')

141 print(f'Mean Testing Time (seconds): {mean test time:.2f}'")

142

143 # Calculate and print the mean training loss across all epochs and folds
144 mean_training loss = np.mean([np.mean(loss) for loss in all train losses])
145 print(f'Mean Training Loss: {mean_ training loss:.4f}')

146

147 # Calculate and print the mean test loss across all epochs and folds

148 mean_test loss = np.mean([np.mean(loss) for loss in all test losses])

149 print(f'Mean Test Loss: {mean_test loss:.4f}')

150
151 # Plot training and test accuracy and loss

152 plt.figure(figsize=(12, 5))

153 plt.subplot(1l, 2, 1)

154 mean_train_accuracies = np.mean(all_train accuracies, axis=0)

155 mean_test accuracies = np.mean(all_test accuracies, axis=0)

156 plt.plot(range(num epochs), mean_ train_accuracies, label="Train")
157 plt.plot(range(num _epochs), mean_test accuracies, label="Test")
158 plt.title("Accuracy vs. Epoch")
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plt.xlabel ("Epoch")

plt.ylabel("Accuracy")

plt.legend()
plt.savefig('/content/drive/MyDrive/10-Docencia/TFG/2024-2025/TFG-AdrianSanzMartin/
datasets/Final Dataset without duplicate.csvresults/XX/XX/XX epochs_accuracy.pdf',
format="'pdf')

plt.show()

plt.close()

plt.figure(figsize=(12, 5))

plt.subplot(l, 2, 2)

mean_train_losses = np.mean(all train losses, axis=0)

mean test losses = np.mean(all test losses, axis=0)

plt.plot(range(num epochs), mean_ train losses, label="Train")
plt.plot(range(num_epochs), mean test_ losses, label="Test")

plt.title("Loss vs. Epoch")

plt.xlabel ("Epoch")

plt.ylabel("Loss")

plt.legend()
plt.savefig('/content/drive/MyDrive/10-Docencia/TFG/2024-2025/TFG-AdrianSanzMartin/
datasets/Final Dataset without duplicate.csvresults/XX/XX/XX_epochs loss.pdf', format
='pdf")

plt.show()

plt.close()

Como se muestra en la Tabla [7.1], los pardmetros utilizados en el modelo son los siguientes:

Parameters Self-created dataset
Batch size 32
Epochs 20, 30, 50, 100, 150
Learning rate 0.001
Loss function Categorical cross entropy
Optimization algorithm Adam
Normalization Standard
Randomization 42
Number of classes 46, 47, 48
Cross-validation K-Fold
Number of splits 5

Cuadro 7.1: Parameter detail of the implemented models.

Este cédigo implementa un modelo genérico que serd utilizado por todos los modelos utilizando PyTorch
para tareas de clasificacién, con la aplicacién de validacién cruzada estratificada (StratifiedKFold). Primero, los
datos se convierten en tensores, y se define una arquitectura de red segtin el modelo con una capa oculta y una
capa de salida. A continuacién, se realiza una validacion cruzada utilizando 5 particiones. Para cada particion,
los datos se dividen en conjuntos de entrenamiento y prueba, y el modelo se entrena usando el optimizador
Adam y la funcién de pérdida CrossEntropyLoss.

Durante el proceso de entrenamiento, se evalda el rendimiento del modelo en cada época, registrando mé-
tricas como la precisién, las pérdidas tanto de entrenamiento como de prueba, asi como los tiempos de entre-
namiento y prueba. Al finalizar la validacion cruzada, se calcula y presenta la precisién media, la pérdida total
de prueba y las medias de los tiempos de entrenamiento y prueba. Ademas, se generan graficos que muestran
la evolucion de la precision y la pérdida a lo largo de las épocas, permitiendo una visualizacién clara del rendi-
miento del modelo durante el proceso de entrenamiento. Se aplica la funcién de activacién ReLU (self.relu
= nn.ReLU()) entre ambas capas para introducir no linealidad y permitir al modelo aprender patrones mas
complejos.
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El codigo descrito con anterioridad lo van a utilizar cada uno de los siguientes modelos:

7.1.1 MLP

A continuacién se muestra el modelo utilizando MLP:

class MLPModel (nn.Module):
def _ init_ (self, input_size, hidden size, num classes):
super (MLPModel, self). init ()
self.fcl = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num classes)

def forward(self, x):
X self.fcl(x)
x = self.relu(x)
x = self.fc2(x)
return x

Este fragmento de c6digo implementa un modelo de red neuronal multicapa (MLP, por sus siglas en in-
glés) utilizando la biblioteca PyTorch. La clase MLPModel hereda de nn.Module, lo que permite definir una
arquitectura personalizada compuesta por capas totalmente conectadas y funciones de activacion.

El constructor __init  recibe como parametros:

= input size:numero de caracteristicas de entrada.
= hidden size:nimero de neuronas en la capa oculta.

= num classes: nimero de clases a predecir.

Dentro del constructor, se inicializan dos capas lineales:

= self.fcl = nn.Linear(input_size, hidden_ size): conecta la entrada con la capa ocul-
ta.

= self.fc2 = nn.Linear(hidden size, num classes): conecta la capa oculta con la de
salida.

Ademas, este modelo constituye un clasificador basico basado en perceptrén multicapa, adecuado para tareas
de clasificacién donde se requiera una arquitectura sencilla pero funcional.

El método forward define el flujo de datos a través de la red:

= Se aplica la capa fc1.
= Luego, la activacién ReLU.

= Finalmente, la capa £c2, que genera la salida final.

7.1.2 CNN

A continuacién se presenta el modelo CNN:
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# Define a CNN model
class CNNModel (nn.Module):
def init (self, input_size, num classes):
super (CNNModel, self). init_ ()
self.convl = nn.Convld(in_channels=1, out_channels=32, kernel size=3, padding

self.relu = nn.ReLU()
self.maxpool = nn.MaxPoolld(kernel size=2)
self.fc = nn.Linear(32 * (input size // 2), num classes)

def forward(self, x):

= x.unsqueeze(l) # Add a channel dimension (batch size, 1, input size)
= self.convl(x)

= self.relu(x)

self.maxpool (x)

= x.view(x.size(0), -1) # Flatten

= self.fc(x)

return x

MM X X X X
I

Este codigo lleva a cabo un proceso integral para el entrenamiento y la evaluacién de un modelo de red
neuronal convolucional (CNN) utilizando validacién cruzada estratificada en PyTorch.

Primero, transforma los datos (X_smote y y_smote) en tensores de PyTorch y establece 5 divisiones para la
validacién cruzada. Luego, en cada una de estas divisiones, separa los datos en conjuntos de entrenamiento y
prueba, crea un Datal.oader para gestionar los lotes y define un modelo CNN que incluye una capa convolucional
1D, ReL.U, MaxPooling y una capa completamente conectada. Durante el proceso de entrenamiento, se emplea
CrossEntropyLoss como la funcién de pérdida y se utiliza el optimizador Adam. Se registran métricas como
la precision, la pérdida, y los tiempos de entrenamiento y prueba. Al final, se calcula la precisiéon promedio,
las pérdidas promedios y los tiempos de ejecucion, y se crean graficos de precisién, pérdida y una matriz de
confusion para valorar el desempefio del modelo. Los resultados y graficos se almacenan en archivos PDF para
un analisis posterior. Este método garantiza una evaluacion sélida del modelo CNN en la identificacion de
ransomware .

7.1.3 LSTM

El siguiente modelo estudiado es el LSTM:

# Define an LSTM model
class LSTMModel (nn.Module):
def init_ (self, input_size, lstm hidden size, num lstm layers, num classes):
super (LSTMModel, self). init ()
self.lstm = nn.LSTM(input_size, lstm hidden_size, num lstm layers,
batch_first=True)
self.fc = nn.Linear(lstm hidden size, num classes)

def forward(self, x):
lstm out, _ = self.lstm(x)
output = self.fc(lstm out)
return output

Este modelo es una red neuronal basada en una arquitectura LSTM (Long Short-Term Memory), disefiada
para trabajar con secuencias de datos. Las LSTM son una variante de las redes neuronales recurrentes (RNN)
que mejoran su capacidad para aprender relaciones a largo plazo en series temporales, texto, y otras secuencias.
Esto lo logran gracias a una estructura interna que permite “recordar” o “olvidar” informacién a lo largo de
una secuencia, superando asi los problemas comunes de las RNN tradicionales como el desvanecimiento del
gradiente [32].

En la inicializacién del modelo, la clase LSTMModel hereda de nn.Module, lo que permite definir una red
neuronal personalizada en PyTorch. En el método __init_ , se declaran dos componentes fundamentales del
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modelo: una capa LSTM y una capa lineal (fully connected). La capa LSTM se inicializa con parametros como
el tamafio de la entrada (input_size), el nimero de neuronas ocultas (Istm_hidden_size) y el niimero de capas
LSTM apiladas (num_lstm_layers). El parametro batch_first=True asegura que las secuencias tengan la forma
(batch_size, sequence_length, features), lo cual es habitual y més intuitivo en el tratamiento de datos.

En el método forward, que define como fluyen los datos a través del modelo, la entrada x representa un lote
de secuencias. Primero, esta entrada pasa por la capa LSTM. Esta capa procesa la secuencia paso a paso y genera
una salida para cada elemento de la secuencia, lo que se conoce como Istm_out. Este tensor tiene dimensiones
(batch_size, seq_len, Istm_hidden_size) y contiene la representacién de cada paso de la secuencia tras haber
sido procesado por la LSTM. Junto con esta salida también se produce un segundo valor, que incluye el estado
oculto final y el estado de celda, pero en este modelo no se utilizan directamente.

Después de obtener Istm_out, se aplica la capa lineal (fc) a cada paso de la secuencia. Esto significa que el
modelo transformara cada vector oculto (de dimensién Istm_hidden_size) en un vector de dimensién num_classes,
adaptado a la tarea de salida, como clasificacién. El resultado es una salida con forma (batch_size, seq_len,
num_classes), lo que significa que el modelo est4 produciendo una prediccién por cada paso de la secuencia,
no solo una por secuencia completa.

Este disefio es apropiado cuando el objetivo es obtener una prediccion para cada paso de una secuencia.
Por ejemplo, si se esta procesando texto y se desea clasificar cada palabra (como en etiquetado de secuencias o
andlisis gramatical), esta arquitectura se adapta bien. Sin embargo, si el objetivo es una prediccion global para
toda la secuencia (como clasificar si una frase entera es positiva o negativa), entonces seria mejor modificar el
modelo para usar solo la salida del tiltimo paso de la LSTM, y aplicar la capa fc a esa tnica representacion final.

7.1.4 CNN-LSTM

El modelo siguiente CNN-LSTM consta del siguiente codigo:

# Define a CNN-LSTM model
class CNNLSTM(nn.Module):
def _ init (self, input_size, lstm hidden_size, num lstm layers, num classes):
super (CNNLSTM, self). init ()
self.cnn = nn.Sequential(
nn.Convld(in_channels=1, out_channels=64, kernel size=3, padding=1l),
nn.ReLU(),
nn.MaxPoolld(kernel size=2),
)
self.lstm = nn.LSTM(64, lstm hidden_size, num lstm layers, batch first=True)
self.fc = nn.Linear(lstm hidden size, num classes)

def forward(self, x):

X = X.unsqueeze(l) # Add a channel dimension (batch size, 1, input_size)

cnn_out = self.cnn(x)

cnn_out = cnn_out.permute(0, 2, 1) # Reshape for LSTM (batch_size,
sequence_length, channels)

lstm out, _ = self.lstm(cnn_out)

lstm out = lstm out[:, -1, :] # Get the last time step output

output = self.fc(lstm out)

return output

Este modelo CNN-LSTM es una arquitectura hibrida que combina una red neuronal convolucional (CNN)
con una red LSTM. Esté especialmente disefiada para tareas que combinan extraccién de caracteristicas locales
(como patrones en el tiempo o en texto) con dependencias a largo plazo en secuencias.[[15]

Arquitectura general del modelo:
= Una CNN 1D que actiia como extractor de caracteristicas locales.

= Una LSTM, que aprende relaciones temporales a partir de las caracteristicas extraidas.
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= Una capa densa (fully connected) que produce la prediccion final.

La capa Conv1d aplica 64 filtros convolucionales de tamafio 3 a lo largo de la secuencia. El padding de 1
hace que la salida conserve la longitud de entrada. Luego se aplica la funcién de activacién ReL U para intro-
ducir no linealidad. Finalmente, MaxPool1d reduce la longitud de la secuencia a la mitad, conservando solo las
caracteristicas mds representativas por region.

Antes de aplicarla CNN, se usa x.unsqueeze(1) para afiadir una dimensién de canal, convirtiendo x de forma
(batch_size, input_size) a (batch_size, 1, input_size) como se requiere en Convld. Después de aplicar la CNN,
la salida (cnn_out) tendra forma (batch_size, channels=64,reduced_seq_len). Pero la LSTM espera la secuencia
en la forma (batch_size, seq_len, features), asi que se aplica un permute(0, 2, 1) para intercambiar los ejes.

Esto transforma cnn_out a (batch_size, reduced_seq_len, 64), de modo que cada paso de la secuencia ahora
contiene un vector de 64 caracteristicas extraidas por la CNN.

self.lstm = nn.LSTM(64, lstm hidden_size, num lstm layers, batch first=True)

Esta LSTM toma la secuencia de caracteristicas generada por la CNN y la procesa para aprender relaciones
temporales. Se pueden apilar multiples capas LSTM, y el estado oculto en cada paso va capturando contexto de
la secuencia procesada.

En la salida de la LSTM (Istm_out), cada paso tiene un vector de tamafio Istm_hidden_size, pero el modelo
extrae solo el tltimo paso temporal (Istm_out[:, -1, :]) como resumen de toda la secuencia.

self.fc = nn.Linear(lstm\_hidden\ size, num\ _classes)

La ultima capa es lineal (fully connected) y toma el vector oculto final de la LSTM para convertirlo en una
prediccion con tantas clases como se especifique en num_classes.

Esto hace que el modelo produzca una tinica prediccién por secuencia, lo que es adecuado para tareas como
clasificacion de una sefial entera o un fragmento de texto.

7.1.5 CNN-Bi-LSTM

Una implementacion bidireccional afiadida al modelo anterior:

# Define a CNN-BLSTM model
class CNNBLSTM(nn.Module):
def  init (self, input_size, lstm hidden_size, num lstm layers, num classes):
super (CNNBLSTM, self). init ()
self.cnn = nn.Sequential(
nn.Convld(in_channels=1, out_channels=64, kernel size=3, padding=1l),
nn.ReLU(),
nn.MaxPoolld(kernel size=2),
)
self.lstm = nn.LSTM(64, lstm hidden_size, num lstm layers, batch first=True,
bidirectional=True)
self.fc = nn.Linear(2 * lstm hidden_size, num classes)

def forward(self, x):

x = X.unsqueeze(l) # Add a channel dimension (batch size, 1, input_size)

cnn_out = self.cnn(x)

cnn_out = cnn_out.permute(0, 2, 1) # Reshape for LSTM (batch size,
sequence_length, channels)

lstm out, _ = self.lstm(cnn_out)

lstm out = lstm out[:, -1, :] # Get the last time step output

output = self.fc(lstm out)

return output

Este modelo CNN-Bi-LSTM es una extensién del modelo CNN-LSTM que ya se analizé antes. La diferencia
clave esta en el uso de una LSTM bidireccional (Bi-LSTM), lo que permite que la red aprenda no solo del pasado
de la secuencia, sino también del futuro. Es decir, captura contexto en ambas direcciones temporales, lo cual es
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muy util en tareas donde el significado de una parte de la secuencia puede depender de lo que viene después
(como en andlisis de texto, sonidos, o ciertos eventos en series temporales) [[15].

Arquitectura general:
= CNN 1D: extrae caracteristicas locales de la secuencia.
» L.STM bidireccional: modela relaciones temporales tanto hacia adelante como hacia atras.

= Capa fully-connected: genera la prediccion final.
Bloque convolucional (self.cnn)

self.cnn = nn.Sequential(

nn.Convld(in_channels=1, out_channels=64, kernel size=3, padding=1l),
nn.ReLU(),

nn.MaxPoolld(kernel size=2),

= Convld: actia sobre la secuencia como un extractor de patrones locales. Usa 64 filtros para generar una
representacion mas rica.

= ReLU: introduce no linealidad.
= MaxPoolld: reduce la longitud de la secuencia a la mitad, manteniendo los patrones mas relevantes.

= Antes de aplicar la CNN, se afiade una dimensioén de canal con x.unsqueeze (1), dejando la entrada
como (batch size, 1, input size).

Reordenamiento para LSTM:

Después de pasar por la CNN, la salida tiene la forma (batch_size, channels=64, reduced_seq_len). Como
las LSTM esperan secuencias en el formato (batch_size, seq_len, features), se hace un permute(0, 2, 1) para
intercambiar los ejes.

self.lstm = nn.LSTM(64, lstm\_hidden\_size, num\_lstm\_ layers, batch\ first=True,
bidirectional=True)

= Esta LSTM es bidireccional, lo que significa que internamente hay dos LSTM por capa:

» Una que procesa la secuencia de izquierda a derecha.

 Otra que la procesa de derecha a izquierda.

= El resultado es que cada paso de la secuencia tiene dos vectores ocultos, uno por cada direccion, que se
concatenan. Por tanto, la salida final tiene el doble de tamafio en la dimension de caracteristicas: 2 x
Istm_hidden_size.

= Luego, se extrae el ultimo paso temporal con 1stm out[:, -1, :].ComolaLSTM esbidireccional,
este paso final ya contiene informacion agregada de toda la secuencia en ambas direcciones.

self.fc = nn.Linear(2 * lstm hidden size, num classes)

Esta capa toma el vector oculto final bidireccional y lo transforma en una prediccién con num_classes salidas
(para tareas de clasificacién, por ejemplo).
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7.1.6 Bi-LSTM-GN
Por ultimo el modelo Bi-LSTM-GN:

# Define a Bi-LSTM model
class BiLSTM(nn.Module):
def _ init (self, input_size, hidden_size, num layers, num classes):
super (BiLSTM, self). init ()
self.lstm = nn.LSTM(input_size, hidden size, num layers, batch_ first=True,
bidirectional=True)
self.group norm = nn.GroupNorm(num groups=4, num channels=2 * hidden size) #
Adjust num groups as needed
self.fc = nn.Linear(2 * hidden size, num classes)

def forward(self, x):

lstm out, _ = self.lstm(x)
lstm out = self.group norm(lstm out) # Apply group normalization
# lstm out = lstm out[:, -1, :] # Get the last time step output

output = self.fc(Istm_out)
return output

Este codigo implementa un modelo Bi-LSTM con Group Normalization (Bi-LSTM-GN) para clasificacién
de ransomware , utilizando validacion cruzada de 5 folds y 20 épocas de entrenamiento. Aqui se detallan los
componentes clave:

= Laarquitectura del modelo se compone de una capa LSTM bidireccional que procesa secuencias en ambos
sentidos, capturando dependencias temporales.

= Group Normalization: Normaliza los activaciones de la LSTM en grupos (mejor que BatchNorm para
batches pequefios).

= Capa Fully Connected: Clasifica las caracteristicas extraidas por la LSTM en 2 clases (num_classes=2).

= Pérdida y Optimizador: Usa CrossEntropylL.oss y el optimizador Adam con tasa de aprendizaje 0.001.

Las diferencias clave entre los modelos anteriores:

MLP (Multilayer Perceptron) es un modelo estatico que trata los datos como vectores independientes, sin
capturar relaciones temporales o espaciales. Es rapido pero limitado para datos secuenciales [49].

Bi-LSTM-GN procesa secuencias bidireccionalmente, ideal para patrones temporales (como comportamien-
tos de ransomware en series de tiempo). La Group Normalization mejora la estabilidad frente a BatchNorm en
batches pequefios.[66]

CNN usa convoluciones para extraer caracteristicas locales en datos estructurados (ej: imagenes o caracte-
risticas de archivos). Es eficiente, pero menos capaz que LSTM para dependencias de largo plazo [31].

7.2 Resultados obtenidos

A continuacion se presentan los resultados que han sido obtenidos tanto en la deteccién de malware, en la
clasificacion y en la atribucién por familias.

7.2.1 Deteccion Malware

Como se muestra en el cuadro [7.2, los resultados del tiempo promedio de entrenamiento, pérdida y precision
varian segtin el modelo utilizado.
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Modelo Tiempo promedio (minutos) | Pérdida media | Precision media
MLP 55 0.04944 98.898 %
CNN 10 0.06902 98.996 %
LSTM 23,4 0.4929 73.876 %
CNN-LSTM 39 0.0265 99.19%
CNN-Bi-LSTM 88 0.0275 99.17 %
Bi-LSTM-GN 32 0.0183 99.17 %

Cuadro 7.2: Tiempo promedio de entrenamiento, pérdida y precision en el conjunto de datos

A continuacién se van a evaluar los resultados de cada modelo con 20, 30, 50, 150 épocas aunque para
simplificar la explicacion, se expondran las graficas de pérdida vs época y de precisién vs época de solamente
20 épocas, ya que para el resto de épocas son similares.

Se empezara con el modelo MLP para seguir con el orden establecido en apartados anteriores:

Epocas | Precision Media (%) | Pérdida de Entrenamiento | Pérdida de Validacion | Tiempo Entrenamiento
20 98.87 0.0730 0.0882 91.66
30 98.85 0.0595 0.0876 143.69
50 98.91 0.0478 0.0826 238.90
100 98.94 0.0363 0.0987 470.01
150 98.92 0.0306 0.1100 723.23

Cuadro 7.3: Resultados MLP detection
Loss vs. Epoch
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Figura 7.1: Precision y pérdida del modelo MLP con 20 épocas

= Precision Media:

* La precisién media es muy alta en todos los casos (alrededor del 98.85 %—98.94 %), lo que indica
que el modelo esta aprendiendo bien y generalizando adecuadamente.

* No hay una mejora significativa en la precisién al aumentar el nimero de épocas. De hecho, la
precision se mantiene casi constante, lo que sugiere que el modelo alcanza un rendimiento 6ptimo
con solo 20 épocas.
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Pérdida de Entrenamiento:

* La pérdida de entrenamiento disminuye a medida que aumentan las épocas (de 0.0730 a 0.0306),
como es esperado, ya que el modelo sigue ajustandose a los datos de entrenamiento.

+ Sin embargo, esta disminucion no se traduce en una mejora proporcional en la precisién, lo que
indica que el modelo ya esta bien ajustado incluso con pocas épocas.

Pérdida de Validacion:

* La pérdida de validacién disminuye ligeramente entre las 20 y 50 épocas (de 0.0882 a 0.0826), pero
luego comienza a aumentar (0.0987 con 100 épocas y 0.1100 con 150 épocas).

+ Este aumento sugiere que el modelo estd empezando a sobreajustarse (overfitting) a partir de las 50
épocas, aprendiendo patrones especificos del conjunto de entrenamiento que no generalizan bien al
conjunto de validacién.

Tiempo de Entrenamiento:
« El tiempo de entrenamiento aumenta de forma casi lineal con el nimero de épocas: con 150 épocas,
el tiempo es casi 8 veces mayor que con 20.

* Dado que no hay mejoras significativas en precision o pérdida de validacion, este aumento en tiempo
no esta justificado.

Conclusiones y Recomendaciones:

+ Rendimiento Optimo:
o El modelo alcanza su mejor rendimiento con 50 épocas: precision maxima (98.91 %) y pérdida
de validacién minima (0.0826).
o Aumentar el nimero de épocas mas alla de 50 no aporta beneficios y contribuye al sobreajuste.
* Sobreajuste (Overfitting):
o A partir de las 50 épocas, el aumento en la pérdida de validacion (0.0987 con 100 épocas, 0.1100
con 150 épocas) indica sobreajuste.
o Posibles estrategias para mitigar este problema:
< Regularizacién: Afiadir L2 (weight decay) o Dropouit.
¢ Early Stopping: Detener el entrenamiento cuando la pérdida de validacion deje de mejorar.
< Aumentacién de Datos: Incrementar el tamafio del dataset o aplicar técnicas de aumenta-
cion.
+ Eficiencia:
o Entrenar el modelo con 50 épocas es mas eficiente en tiempo y recursos, sin pérdida significa-
tiva de rendimiento.

o Si el tiempo de entrenamiento es critico, podria reducirse a 30 épocas, con resultados muy
similares.

Con el modelo CNN se obtuvo lo siguiente:
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Epocas | Tiempo promedio (s) | Pérdida media (entreno) | Precision media
20 2.37 0.1201 98.88 %
30 1.87 0.0852 98.92 %
50 1.93 0.0700 98.98 %
100 1.94 0.0508 99.09 %
150 1.93 0.0391 99.11%

Cuadro 7.4: Resultados CNN detection

Accuracy vs. Epoch Loss vs. Epoch
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Figura 7.2: Precision y pérdida del modelo CNN con 20 épocas

Precision Media (Mean Accuracy):
* 99.11 %: La precision media es ligeramente mayor que con 20 épocas (98.88 %), 30 épocas (98.92 %),
50 épocas (98.98 %) y 100 épocas (99.09 %).

+ Esto sugiere que el modelo ha mejorado marginalmente su capacidad de generalizacién con mas
épocas.

Tiempo de Entrenamiento (Mean Training Time):

* 1.93 segundos por fold: El tiempo de entrenamiento por fold es ligeramente menor que con 100
épocas (1.94 segundos), pero sigue siendo eficiente.

Tiempo de Prueba (Mean Testing Time):

* 0.22 segundos por fold: Similar al tiempo de prueba con 20, 30, 50 y 100 épocas (0.28, 0.21, 0.22 y
0.22 segundos, respectivamente).

* Esto confirma que el modelo es eficiente en la fase de inferencia.

Pérdida de Entrenamiento (Mean Training Loss):

* 0.0391: La pérdida de entrenamiento es menor que con 20 épocas (0.1201), 30 épocas (0.0852), 50
épocas (0.0700) y 100 épocas (0.0508).

+ Esto indica que el modelo se ajusta mejor a los datos de entrenamiento con mas iteraciones.
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= Pérdida de Prueba (Mean Test Loss):

* 0.0448: La pérdida de prueba también es menor que con 20 épocas (0.1140), 30 épocas (0.0804), 50

épocas (0.0713) y 100 épocas (0.0541).

+ Esto sugiere que el modelo generaliza mejor a datos no vistos.
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Figura 7.3: Matriz de confusién 20 epoch CNN

Los resultados que ofrece la matriz de confusién de la figura 7.3 indican que:

= Verdaderos Negativos (TN) = 843.951: muestras realmente de clase 0 (benignas) que el modelo clasificé

correctamente como clase 0.

= Falsos Positivos (FP) = 26.129: muestras benignas que el modelo clasificé erréneamente como malicio-

Sdas.

= Falsos Negativos (FN) = 37.631: muestras maliciosas que el modelo clasificé erroneamente como be-

nignas.

= Verdaderos Positivos (TP) = 832.449: muestras maliciosas que el modelo clasificé correctamente.

A partir de esos valores se obtienen la precision y el F1-Score que se mencion6 en otra seccion.

Para el modelo LSTM los resultados son los siguientes:

Epochs | Accuracy t | Training Loss | | Test Loss |
20 72.78% 0.5329 0.5400
30 72.83 % 0.5204 0.5356
50 73.70% 0.5050 0.5205
100 75.04 % 0.4568 0.5058
150 75.03 % 0.4495 0.5239

Cuadro 7.5: Resultados de precisién, pérdida de entrenamiento y pérdida de prueba para diferentes niimeros de

épocas LSTM
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Loss vs. Epoch

Accuracy vs. Epoch
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Figura 7.4: Precisién y pérdida del modelo LSTM con 20 épocas
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Figura 7.5: Matriz de confusiéon LSTM 20 epoch

A lo largo del entrenamiento con distintas cantidades de épocas (20, 30, 50, 100 y 150), se ha observado
una evolucion progresiva del rendimiento del modelo LSTM. Inicialmente, con 20 y 30 épocas, el modelo
presenta una precision en torno al 72.8 %, con pérdidas de entrenamiento y prueba muy similares, lo que indica
un aprendizaje equilibrado sin signos de sobreajuste. Al aumentar a 50 épocas, la precisién mejora visiblemente
(73.7%) y la pérdida de prueba sigue disminuyendo, lo que sugiere una mejor generalizacion.

El punto 6ptimo se alcanza a las 100 épocas, con una precision del 75.04 % y la menor pérdida de test
(0.5058), lo que refleja el mejor equilibrio entre aprendizaje y generalizacion. Sin embargo, al incrementar a
150 épocas, aunque la precisién se mantiene practicamente igual, la pérdida de test aumenta (0.5239), mientras
que la pérdida de entrenamiento sigue descendiendo. Este comportamiento es indicativo de sobreajuste, donde
el modelo empieza a memorizar los datos de entrenamiento en lugar de aprender patrones ttiles para datos
nuevos.

En resumen, el andlisis demuestra que el modelo mejora progresivamente hasta las 100 épocas, a partir de
las cuales no se obtiene ganancia significativa en precisiéon y se pierde capacidad de generalizacion.

Para el modelo CNN-LSTM:
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Epocas | Train Acc | Test Acc | Train Loss | Test Loss
20 98.74% | 98.78% 0.0423 0.0436
30 98.98% | 98.97% 0.0343 0.0382
50 99.18% | 99.06% 0.0264 0.0375
100 99.45% | 99.07% 0.0177 0.0398
150 99.62% | 99.16% 0.0119 0.0411

Cuadro 7.6: Precision y pérdida en entrenamiento y prueba para el CNN-LSTM
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Figura 7.6: Precision y pérdida del modelo CNN-LSTM con 20 épocas
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Figura 7.7: Matriz de confusién CNN-LSTM 20 epoch

= Precision

* Entrenamiento: Mejora constantemente, alcanzando un 99.62 % en 150 épocas, lo que muestra que
el modelo sigue aprendiendo.

* Prueba: Sube ligeramente hasta las 50 épocas (99.06 %), pero a partir de ahi se estanca o incluso
sube marginalmente (99.07 % — 99.16 %), sugiriendo que el modelo deja de generalizar mejor a
partir de cierto punto.
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= Pérdida

* Entrenamiento: Disminuye consistentemente, lo cual es bueno.

* Prueba: Baja hasta la época 50, pero vuelve a subir en 100 y 150, sefial de overfitting. A partir de
la época 50, el modelo empieza a memorizar mas que a generalizar.

= Tiempos

+ El tiempo de entrenamiento por época sube ligeramente con las épocas (como es esperable).

* Los tiempos de prueba son estables, lo cual es positivo para el rendimiento en produccién.
= Conclusiones

* A partir de 50 épocas, el rendimiento en prueba ya es casi maximo.

* Mas alla de las 100 épocas, el modelo sobreentrena, aumentando la diferencia entre pérdida de
entrenamiento y prueba.

* Recomendaria usar entre 30 y 50 épocas para un balance ideal entre precisién, generalizacién y
tiempo de entrenamiento.

El modelo CNN-LSTM muestra un rendimiento excelente desde las primeras épocas, con una precision de
prueba del 98.78 % en solo 20 épocas. La precision de entrenamiento mejora de forma constante, alcanzando
un 99.62 % en 150 épocas. Sin embargo, la precision de prueba se estabiliza alrededor del 99.06-99.16 % a
partir de las 50 épocas, indicando que el modelo deja de generalizar mejor y comienza a sobreajustarse. Esto
se confirma con las pérdidas: mientras la pérdida de entrenamiento desciende progresivamente, la pérdida de
prueba empeora ligeramente en las épocas 100 y 150, evidenciando overfitting. Por tanto, el mejor equilibrio
entre rendimiento y generalizacion esta entre 30 y 50 épocas.

Los resultados del pentiltimo modelo son los que se corresponden con el CNN-Bi-LSTM y son los siguien-
tes:

Epochs | Train Accuracy | Test Accuracy | Train Loss | Test Loss | Train Time (s) | Test Time (s)
20 98.76 % 98.68 % 0.0415 0.0458 61.48 5.51
30 98.97 % 98.88 % 0.0345 0.0404 61.94 5.16
50 99.11% 99.00 % 0.0298 0.0371 67.70 5.42
100 99.45 % 99.10 % 0.0176 0.0384 68.30 5.30
150 99.55 % 99.15 % 0.0144 0.0385 77.97 5.89

Cuadro 7.7: Resumen de métricas y tiempos de entrenamiento/prueba segtin niimero de épocas

= Precision:
» El modelo alcanza un altisimo rendimiento en precisién, llegando al 99.15 % en test con 150 épocas,
con una mejora constante desde el 98.68 % inicial.

+ La diferencia entre precisién de entrenamiento y test es muy baja, lo que indica buena capacidad de
generalizacion y bajo overfitting.

= Pérdida:

* Latrain loss se reduce significativamente, pasando de 0.0415 a 0.0144, lo cual refleja un aprendizaje
eficaz del modelo.

* La test loss, aunque mejora inicialmente, se estabiliza a partir de 50 épocas alrededor de 0.038—
0.039, lo que podria indicar que el modelo esta llegando a su limite de mejora en validacién sin
ganancias significativas adicionales.
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Figura 7.8: Precisién y pérdida del modelo CNN-Bi-LSTM con 20 épocas
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Figura 7.9: Matriz de confusién CNN-Bi-LSTM 20 epoch

= Tiempos:
+ El tiempo de entrenamiento medio es relativamente alto desde el principio ( 61 segundos) y va en
aumento hasta cerca de 78 segundos por época a las 150.

+ El tiempo de test también es el mas elevado de los modelos vistos, manteniéndose en torno a 5.3—
5.9 segundos, lo que puede suponer un inconveniente en entornos donde la latencia o eficiencia
computacional sean criticas.

= Conclusiones generales:

* A partir de los resultados del modelo CNN-BiLSTM, se observa un comportamiento bastante con-
sistente y solido en cuanto a rendimiento.

* Desde las 20 hasta las 150 épocas, tanto la precisién como la pérdida evolucionan de forma favora-
ble.
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Accuracy

La precisioén en entrenamiento mejora progresivamente del 98.76 % al 99.55 %, mientras que la
precision en test aumenta de 98.68 % a 99.15 %, con solo pequeifias fluctuaciones.

En cuanto a la pérdida, esta disminuye claramente en entrenamiento (de 0.0415 a 0.0144), pero en
test la reduccién es mas limitada, llegando a un minimo de 0.0371 en 50 épocas, y luego estabili-
zandose en torno a 0.0384-0.0385, lo que sugiere una ligera saturacion del modelo o comienzo de
overfitting leve.

A nivel temporal, este modelo es notablemente mas costoso computacionalmente que el CNN-
LSTM, con tiempos medios de entrenamiento que aumentan de 61 a 78 segundos por época y
un tiempo de test constante alrededor de 5.5 segundos, el doble que el CNN-LSTM.

En resumen, el modelo CNN-BiLSTM ofrece un rendimiento ligeramente superior en precision,
pero con un coste computacional claramente mas alto, lo que podria influir en su viabilidad segiin
los recursos disponibles y las necesidades del proyecto.

Por udltimo, los resultados del modelo Bi-LSTM-GN:

0.98 4
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N
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Epocas | Precisién | Pérdida (Train)
20 99.04 % 0.0311
30 99.04 % 0.0254
50 99.27 % 0.0193
100 99.32 % 0.0128
150 99.21% 0.0103

Cuadro 7.8: Precisién y pérdida de entrenamiento segtin nimero de épocas

Accuracy vs. Epoch Loss vs. Epoch
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Figura 7.10: Precision y pérdida del modelo Bi-LSTM-GN con 20 épocas
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Figura 7.11: Matriz de confusién Bi-LSTM-GN 20 epoch

= Analisis del Rendimiento: Comparando estos resultados con los obtenidos para 20 épocas (precision:
99.04 %, pérdida: 0.0311), se observa que el incremento de 10 épocas no mejoré6 la precision, lo cual
sugiere que el modelo ya habia convergido en la configuracién mas reducida. No obstante, si se evidencio
una reduccién del 18.3% en la pérdida de entrenamiento, lo que indica un mejor ajuste de los pesos
internos del modelo, aunque sin impacto en la métrica principal de precision.

= Interpretacion: Esto podria atribuirse al hecho de que el modelo se encuentra cerca de su limite tedrico de
rendimiento en esta tarea especifica, lo que reduce la eficacia de continuar el entrenamiento sin introducir
otras estrategias como regularizacion adicional o mejoras arquitecténicas.

» Tiempos de Ejecucién: Los tiempos por época se mantuvieron practicamente constantes en compara-
cién con las ejecuciones anteriores (20 épocas), con ligeras diferencias (<3 %) atribuibles a variaciones
normales en el entorno de ejecucién. Esto confirma la estabilidad del rendimiento computacional del
modelo.

= Consideraciones de Aprendizaje: A partir del anlisis de las curvas de pérdida (loss), aunque no mos-
tradas explicitamente, se puede inferir que a 20 épocas la funcién de pérdida ya habia comenzado a
estabilizarse. Con 30 épocas, esta pérdida continué su descenso sin que ello afectara a la precision, lo
cual puede ser una sefial de inicio de sobreajuste, aunque leve.

A continuacién se presentan unas graficas a modo de resumen sobre los resultados obtenidos por cada
modelo, en funcién de la precisién y de la pérdida por cada época.
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Figura 7.13: Perdida en deteccion por época

También se presenta a continuacién, una grafica con el tiempo total, en minutos, que ha tardado cada modelo
en cada época en ejecutarse:
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Figura 7.14: Tiempo empleado por modelo y épocas

Como se puede comprobar de manera rapida, el mas lento ha sido el modelo CNN-LSTM alcanzando las
3h de ejecucion en sus 150 épocas. Por el contrario, el modelo més rapido ha sido el MLP, que en apenas menos
de 1 minuto ha logrado ejecutar todas sus épocas.

7.2.2 Clasificacion por categoria de Malware

Los resultados obtenidos en la etapa de deteccién son bastante buenos, dado que el modelo consigue reco-
nocer de manera exacta las muestras de malware. No obstante, esta identificacion solo se restringe a validar la
existencia de malware, sin ofrecer detalles sobre su clasificacion particular. Reconocer apropiadamente la cate-
goria de malware es fundamental para poder elaborar y establecer estrategias de defensa adecuadas y efectivas
contra cada tipo de riesgo.

Dado que en la seccion anterior se explicaban con detalle los motivos de la mejora de cada modelo, en esta
tan sélo se comentaran por encima los resultados por categoria de malware.

El dataset utilizado en este trabajo incluye cinco categorias distintas de malware, las cuales son fundamen-
tales para comprender el comportamiento, el objetivo y la forma de propagacion de cada muestra maliciosa. Por
tanto, clasificar correctamente estas categorias no solo mejora la capacidad de respuesta ante un ataque, sino
que también permite anticipar y prevenir futuras infecciones mediante estrategias de defensa personalizadas.

En la fase de clasificacion de malware por categoria, se emplean los mismos valores de épocas (20, 30, 50,
100 y 150) para entrenar y evaluar los modelos de aprendizaje profundo (DL) en ambos conjuntos de datos.
Esta consistencia en la configuracion permite realizar una comparacion justa del rendimiento entre los distintos
modelos. La evaluacion se realiza considerando métricas clave como la precisiéon promedio, la pérdida y el
tiempo de entrenamiento por cada configuracion de época.

Empezando por el modelo MLP, los resultados obtenidos son los siguientes:
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Epocas | Precisién media | Tiempo entrenamiento (s) | Pérdida entrenamiento | Pérdida test
20 89.04 % 119.82 0.3741 0.3931
30 90.29 % 198.73 0.3342 0.3737
50 91.63% 295.90 0.2869 0.3700
100 93.33% 590.96 0.2258 0.3375
150 94.15% 866.97 0.1947 0.3400

Cuadro 7.9: Resumen del rendimiento del modelo segtn el niimero de épocas

La tabla 7.9 muestra el rendimiento de un modelo MLP para la clasificacién de distintas categorias de
malware, evaluado en funcién del nimero de épocas de entrenamiento. Se reportan métricas clave como la
precision media, la pérdida (loss) en entrenamiento y test, asi como los tiempos de ejecucién.

A lo largo del entrenamiento, se observa una mejora constante en la precision media conforme se incrementa
el nimero de épocas, pasando de un 89,04 % con 20 épocas a un 94,15 % con 150 épocas. Este comportamiento
indica que el modelo MLP (Perceptrén Multicapa) estd aprendiendo de manera efectiva las representaciones
necesarias para distinguir entre las diferentes categorias de malware.

A pesar de tratarse de una arquitectura relativamente sencilla en comparacion con modelos mas complejos
como LSTM o CNN, la mejora sostenida en la precisién indica que los pesos del MLP estan capturando patrones
discriminativos relevantes en los datos.

Respecto a la evolucion de la funcién de pérdida, se puede destacar que tanto la pérdida de entrenamiento
como la de test disminuyen progresivamente con el aumento de épocas, lo que refuerza la idea de una conver-
gencia estable del modelo:

= Pérdida de entrenamiento: desciende de 0,3741 a 0,1947.

» Pérdida de test: disminuye de 0,3931 a 0,3400.

Aunque se aprecia una ligera subida en la pérdida de test entre las épocas 100 y 150, esta variacion no es
significativa, por lo que se puede concluir que el modelo mantiene una buena capacidad de generalizacién y no
presenta indicios claros de sobreajuste.

Por tultimo, como es esperable, el tiempo de entrenamiento aumenta proporcionalmente con el niimero de
épocas. Sin embargo, el tiempo de prueba (inferencia) es practicamente nulo. Esta caracteristica convierte al
MLP en una solucién especialmente adecuada para aplicaciones en tiempo real o en entornos con recursos
computacionales limitados.

El siguiente modelo del que se van a obtener resultados es el CNN:

Epocas | Precisién media | Tiempo entrenamiento (s) | Tiempo test (s) | Pérdida entrenamiento | Pérdida test
20 87.45% 2.16 0.24 0.4146 0.4107
30 88.47 % 2.24 0.25 0.3827 0.3883
50 89.40 % 2.18 0.25 0.3500 0.3728
100 91.17% 2.21 0.24 0.2997 0.3431
150 92.30 % 2.14 0.24 0.2661 0.3154

Cuadro 7.10: Resumen del rendimiento del modelo CNN segtin nimero de épocas

La tabla presenta el desempefio de una red neuronal convolucional (CNN) para la clasificacién de
malware. Se reportan la precision media, la pérdida en entrenamiento y test, y los tiempos de entrenamiento y
prueba a lo largo de distintos valores de épocas.

Se observa una mejora progresiva en la precision media a medida que se incrementa el nimero de épocas,
alcanzando valores del 87,45 % con 20 épocas y hasta el 92,30 % con 150 épocas. Esta evolucién sugiere una
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curva de aprendizaje estable, lo que indica que el modelo mejora su capacidad de clasificacién conforme avanza
el entrenamiento.

Las redes convolucionales (CNN) son especialmente eficaces extrayendo patrones locales o espaciales.
Por ello, esta mejora refleja que el modelo esta capturando caracteristicas discriminativas utiles para distinguir
entre distintas categorias de malware, incluso si los datos no presentan una estructura visual tradicional como
en imagenes.

La funcién de pérdida, tanto en entrenamiento como en test muestra una disminucién sostenida con el nad-
mero de épocas:

m Pérdida de entrenamiento: desciende de 0,4146 a 0,2661.

= Pérdida de test: baja de 0,4107 a 0,3154.

Estos resultados indican que el modelo esta aprendiendo de manera efectiva y generalizando bien a datos
no vistos. Ademas, no se detectan aumentos significativos en la pérdida de test, lo que sugiere ausencia de
sobreajuste.

Uno de los puntos fuertes del modelo es su alta eficiencia computacional. El tiempo de entrenamiento es
muy bajo, incluso con 150 épocas (en torno a 2 segundos). Del mismo modo, el tiempo de inferencia es minimo,
manteniéndose entre 0,24 y 0,25 segundos.

Este comportamiento es caracteristico de CNNs bien optimizadas, especialmente cuando se utilizan arqui-
tecturas compactas o técnicas como convoluciones unidimensionales, que reducen significativamente el nimero
de parametros y el coste computacional.

Resultados LSTM:

Epocas | Precision media | Pérdida entrenamiento | Pérdida test | Tiempo entrenamiento (s) | Tiempo test (s)
20 89.87 % 0.3467 0.3561 5343.27 5343.27
30 91.42% 0.2979 0.3247 11392.59 11392.58
50 94.09 % 0.2350 0.2749 30194.15 30194.14
100 96.09 % 0.1472 0.2210 116948.92 116948.91
150 96.85 % 0.1112 0.1979 263455.11 263455.09

Cuadro 7.11: Rendimiento del modelo con distintas cantidades de épocas

La tabla muestra el rendimiento de una red neuronal tipo LSTM (Long Short-Term Memory) en la
clasificacion de malware, con métricas como la precision, la pérdida en entrenamiento y test, asi como los
tiempos de entrenamiento y prueba.

La precision media del modelo LSTM mejora de forma consistente con el incremento del nimero de épocas,
pasando del 89,87 % con 20 épocas al 96,85 % con 150 épocas. Estos resultados reflejan la capacidad del modelo
para capturar patrones secuenciales o dependencias temporales en los datos, lo cual es especialmente valioso si
el comportamiento del malware sigue una estructura l6gica o eventos encadenados.

Cabe destacar que el LSTM alcanza la mayor precision entre los modelos evaluados (MLP, CNN y LSTM),
especialmente a partir de las 100 épocas, lo que lo posiciona como el modelo més efectivo en términos de
rendimiento clasificatorio.

La pérdida también experimenta una mejora notable a lo largo del entrenamiento:

= Pérdida de entrenamiento: desciende de 0,3467 a 0,1112.

= Pérdida de test: se reduce de 0,3561 a 0,1979.

Esta evolucion indica una clara convergencia del modelo y una buena capacidad de generalizacion, sin
evidencia significativa de sobreajuste, incluso al alcanzar un alto niimero de épocas.
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El principal inconveniente del modelo LSTM radica en su elevado coste computacional. El tiempo de en-
trenamiento y prueba aumenta drasticamente con el nimero de épocas, oscilando desde 5,343 segundos (20
épocas) hasta 263,455 segundos (150 épocas).

Sin embargo, es probable que los tiempos de test estén registrados de forma conjunta con los de entrena-
miento, lo que podria haber duplicado estas cifras de manera incorrecta. Aun asi, el uso de LSTM implica una
carga computacional considerable, lo que podria limitar su viabilidad en entornos de tiempo real o con recursos
limitados.

Para el modelo CNN-LSTM los resultados obtenidos han sido los siguientes:

Epocas | Precision Entrenamiento | Precisién Test | Pérdida Entrenamiento | Pérdida Test
20 93.26 % 92.73% 0.1739 0.2081
30 95.01 % 93.74 % 0.1337 0.1821
50 96.63 % 94.83 % 0.0888 0.1672
100 98.17 % 95.83 % 0.0502 0.1607
150 98.73 % 96.19 % 0.0354 0.1549

Cuadro 7.12: Resultados del modelo CNN-LSTM — Parte 1

Epocas | Tiempo Entrenamiento (s) | Tiempo Test (s)
20 26.94 291
30 27.18 2.94
50 26.76 2,94
100 27.06 2.94
150 27.14 2,94

Cuadro 7.13: Resultados del modelo CNN-LSTM — Parte 2

Este modelo hibrido combina convoluciones (CNN) para extraer caracteristicas locales y LSTM para cap-
turar relaciones secuenciales o temporales. Es una arquitectura poderosa para datos complejos, como podria ser
el caso del andlisis de malware.

= Precision (entrenamiento y test)
La precision de entrenamiento crece progresivamente desde 93.26 % (20 épocas) hasta 98.73 % (150
épocas).
La precisién en test sigue un patréon similar, alcanzando 96.19 % con 150 épocas, lo que la convierte en
una de las mas altas entre todos los modelos probados.
El gap entre precision de entrenamiento y test se mantiene relativamente pequefio, lo que indica buena
capacidad de generalizacién y un sobreajuste controlado.
El modelo CNN-LSTM aprende eficientemente y generaliza bien sin caer en sobreajuste excesivo.

= Pérdida (entrenamiento y test)
La pérdida en entrenamiento disminuye de manera consistente de 0.1739 a 0.0354, y la pérdida de test de
0.2081 a 0.1549.
Esto indica que el modelo se ajusta progresivamente mejor a los datos con mas épocas, y que la mejora
en test es constante.

= Tiempos de entrenamiento y test
El tiempo de entrenamiento y test se mantiene muy estable y bajo (alrededor de 27 segundos para entre-
namiento y 2.94 segundos para test, incluso con 150 épocas).
Esto implica que el modelo CNN-LSTM es muy eficiente computacionalmente en comparaciéon con
LSTM puro, especialmente considerando que ofrece una precisién incluso mayor en menos tiempo.
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Resultados del CNN-Bi-LSTM:

Epocas | Training Accuracy | Test Accuracy | Training Loss | Test Loss | Training Time (s) | Testing Time (s)
20 92.40 % 91.32% 0.1957 0.2383 67.16 5.98
30 94.32 % 93.21% 0.1475 0.1973 64.91 5.93
50 96.16 % 94.22 % 0.1001 0.1845 61.20 6.03
100 97.91% 95.65 % 0.0555 0.1613 66.99 5.94
150 98.57 % 96.12% 0.0383 0.1592 61.35 5.92

Cuadro 7.14: Resultados de entrenamiento y test por nimero de épocas

Los resultados presentados en la tabla muestran una mejora progresiva y consistente en la precision tanto
en entrenamiento como en test a medida que aumenta el nimero de épocas:

» Laprecisién de entrenamiento incrementa desde un 92,40 % en 20 épocas hasta un 98,57 % en 150 épocas.

= La precision de test también mejora, pasando del 91,32 % al 96,12 % en el mismo rango de épocas.

Esto evidencia que el modelo CNN-BiLSTM aprende de manera efectiva las caracteristicas discriminativas
de las distintas categorias, logrando un buen balance entre ajuste al conjunto de entrenamiento y generalizacion
a datos no vistos.

La pérdida de entrenamiento disminuye de forma significativa desde 0,1957 hasta 0,0383, mostrando una
convergencia clara y una mejora en el ajuste del modelo.

La pérdida de test también desciende, aunque de manera mas moderada, de 0,2383 a 0,1592, confirmando
que el modelo generaliza correctamente y no presenta signos evidentes de sobreajuste.

Respecto a los tiempos computacionales:

El tiempo de entrenamiento se mantiene relativamente estable alrededor de los 60-67 segundos, sin una
subida pronunciada al aumentar las épocas, lo que indica un buen rendimiento en la optimizacion y la gestion
de recursos.

El tiempo de test se mantiene constante alrededor de 6 segundos, lo que es aceptable dado que el modelo

combina CNN con BiLSTM, arquitecturas que requieren mas procesamiento que un MLP simple.

Por dltimo, los resultados del modelo Bi-LSTM-GN son los siguientes:

Epocas | Precisién Media (%) | Pérdida de Entrenamiento | Tiempo Entrenamiento (s/época) | Tiempo Test
20 95.88 0.1176 10.16 0.70
30 96.86 0.0879 12.51 0.86
50 97.80 0.0599 12.93 0.90
100 98.22 0.0347 12.71 0.88
150 98.48 0.0258 9.49 0.66

Cuadro 7.15: Resultados del modelo: precision, pérdida y tiempos por época

El modelo Bi-LSTM-GN muestra un rendimiento excepcional, alcanzando una precisiéon media de hasta
98,48 % tras 150 épocas, siendo uno de los modelos mas precisos evaluados en el estudio. La mejora es progre-
siva y consistente desde las primeras épocas:

= Desde un 95,88 % con 20 épocas hasta 98,48 % con 150 épocas.

= Esto refleja una curva de aprendizaje muy eficiente, donde el modelo mejora de forma constante sin
sefiales de estancamiento o sobreajuste.

En cuanto a la pérdida de entrenamiento, se observa una disminucion clara:
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= De 0,1176 en 20 épocas hasta 0,0258 en 150 épocas.

= Estareduccién sostenida confirma que el modelo esta convergiendo adecuadamente, minimizando el error
de forma efectiva a lo largo del entrenamiento.

Respecto a los tiempos de entrenamiento y test por época, los valores se mantienen en rangos razonables:

= El tiempo de entrenamiento por época oscila entre 9,5 y 13 segundos, lo cual es eficiente considerando
que el modelo incorpora una arquitectura bidireccional con normalizacién por grupos.

= El tiempo de test es muy bajo en todas las épocas, entre 0,66 y 0,90 segundos, lo que hace al modelo
viable para aplicaciones donde se requiera rapidez en la inferencia.

La incorporacién de Group Normalization puede haber contribuido a la estabilidad del entrenamiento, fa-
cilitando una mejor propagacion del gradiente, especialmente util en secuencias largas o con lotes pequefios
donde técnicas como Batch Normalization no son tan efectivas.

Al igual que en el andlisis por deteccién de malware, también se van a presentar en unas graficas resumen,
los resultados obtenidos en esta seccidn:
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Figura 7.15: Anaélisis precisiéon por época

74



CAPITULO 7. EVALUACION DE LOS MODELOS A ESTUDIAR 7.2. RESULTADOS OBTENIDOS

W -0 Epochs
0.4 mmm 30 Epochs
[ 50 Epochs -
B 100 Epochs
0.3 mmm 150 Epochs
i
b -
3 0.2
0.1 A
0.0 -

MLP CNN LSTM CNN-LSTM CNN-Bi-LSTM Bi-LSTM-GN
Deep Learning Models

Figura 7.16: Pérdida en deteccién por época

También se presenta a continuacién, una grafica con el tiempo total, en minutos, que ha tardado cada modelo
en cada época en ejecutarse:
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Figura 7.17: Tiempo empleado por modelo y épocas

7.2.3 Atribucidon por familias

Es importante tener en cuenta que cada familia de malware puede presentar patrones, caracteristicas y técni-
cas de ofuscacién tnicas disefiadas para evadir los mecanismos de deteccién tradicionales. Por ello, el objetivo
principal de esta investigacion es clasificar correctamente las familias de ransomware con alta precision, lo que
representa un desafio clave en ciberseguridad.

El conjunto de datos utilizado contiene un total de 27 clases, por lo que evaluar el rendimiento del modelo
propuesto en la clasificacion de todas las clases individuales permite comprobar su capacidad para identificar y
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atribuir correctamente distintas familias de malware.

Siguiendo los mismos pardmetros por época empleados previamente en las fases de deteccién y clasifica-
cién, se obtuvieron los siguientes resultados en la clasificacién por familia de ransomware :

Empezando por el modelo MLP se obtuvo lo siguiente:

Epocas | Precision Media (%) | Pérdida Entrenamiento | Pérdida Test | Tiempo Entrenamiento (s)
20 89.53 0.5157 0.5456 70.67
30 90.99 0.4182 0.4912 104.80
50 92.74 0.3170 0.4483 180.19
100 93.49 0.2144 0.4502 355.93
150 93.83 0.1681 0.5294 531.13

Cuadro 7.16: Resultados del modelo MLP en la tarea de atribucién por familias

= El modelo MLP muestra una mejora progresiva en la precisién media a medida que aumenta el niimero
de épocas, aunque con una tendencia de mejora mas moderada en las dltimas etapas:
+ La precisién avanza desde un 89,53 % con 20 épocas hasta un 93,83 % con 150 épocas.
* Esto indica que el modelo esta aprendiendo las caracteristicas distintivas de las diferentes familias
de malware, aunque la ganancia en precision se reduce tras superar las 100 épocas.
= En relacion con la pérdida, la disminucién en el entrenamiento es clara y significativa:
* De 0,5157 a 0,1681, lo que indica una mejora consistente en el ajuste del modelo a los datos de
entrenamiento.

+ Sin embargo, la pérdida en test, después de una mejora inicial (bajando hasta 0,4483 en 50 épocas),
muestra una ligera subida en las tltimas épocas, alcanzando 0,5294 en 150 épocas.

+ Este comportamiento podria indicar una leve tendencia al sobreajuste o fluctuacién en la capacidad
del modelo para generalizar a datos nuevos tras mucho entrenamiento.

= Los tiempos de entrenamiento aumentan notablemente conforme se incrementan las épocas:

* Desde aproximadamente 70 segundos con 20 épocas hasta mas de 530 segundos con 150 épocas.

+ El tiempo de test es practicamente nulo, lo que destaca la rapidez del modelo MLP para inferir una
vez entrenado, facilitando su uso en aplicaciones que requieran respuestas rapidas.

Resultados modelo CNN:

Cuadro 7.17: Resultados del modelo CNN por nimero de épocas

Epocas | Mean Accuracy (%) | Training Time (s) | Testing Time (s) | Training Loss | Test Loss
20 90.78 1.56 0.18 0.4554 0.4685
30 91.68 1.55 0.16 0.3941 0.4302
50 92.71 1.62 0.18 0.2960 0.3583
100 93.81 1.60 0.16 0.2192 0.3625
150 93.92 1.55 0.16 0.1794 0.3269

= El modelo CNN muestra una mejora constante y gradual en la precision media conforme aumenta el
ntimero de épocas:

* La precisién crece desde un 90,78 % con 20 épocas hasta un 93,92 % con 150 épocas.
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* Esta mejora refleja que la CNN es capaz de extraer caracteristicas relevantes y patrones espaciales
o locales que contribuyen a distinguir las familias de malware de forma progresiva y estable.

= Pérdida durante entrenamiento y test:
+ La pérdida de entrenamiento desciende notablemente, desde 0,4554 en 20 épocas hasta 0,1794 en

150 épocas, mostrando una buena convergencia del modelo.

* La pérdida en test también disminuye de forma estable, pasando de 0,4685 a 0,3269, lo que indica
que el modelo generaliza bien y no hay signos evidentes de sobreajuste, incluso con un niimero
elevado de épocas.

= Tiempos de entrenamiento y prueba:

» Los tiempos de entrenamiento se mantienen muy bajos y casi constantes, alrededor de 1.55 segundos
por época, lo cual es muy eficiente comparado con modelos mas complejos.

+ El tiempo de prueba es igualmente bajo, en torno a 0.16-0.18 segundos, lo que favorece su imple-
mentacion en entornos con limitaciones computacionales o que requieren respuestas rapidas.

Resultados modelo LSTM:
Epochs | Mean Accuracy | Training Loss | Test Loss
20 89.11% 0.4997 0.5104
30 91.29% 0.3879 0.4326
50 92.65 % 0.2877 0.3749
100 93.99 % 0.1804 0.3134
150 93.86 % 0.1311 0.2903

Cuadro 7.18: Precisién y pérdidas del modelo LSTM por ntimero de épocas

Epochs | Training Time (s/epoch) | Testing Time (s/epoch)
20 3311.13 3311.12
30 7052.27 7052.27
50 21267.36 21267.35
100 79760.96 79760.95
150 182203.09 182203.08

Cuadro 7.19: Tiempos del modelo LSTM por nimero de épocas

» El modelo LSTM muestra una mejora sostenida en la precisién media conforme aumenta el niimero de
épocas:

* La precision crece desde un 89.11 % con 20 épocas hasta un maximo de 93.99 % en 100 épocas,
manteniéndose estable en 93.86 % a las 150 épocas.

* Esto indica que el LSTM es efectivo capturando dependencias temporales o secuenciales relevantes
para distinguir familias de malware, aunque parece estabilizarse después de 100 épocas.

Sobre la pérdida:

» La pérdida de entrenamiento se reduce significativamente, pasando de 0.4997 a 0.1311, mostrando
una convergencia clara del modelo.

* La pérdida en test también disminuye de manera consistente, de 0.5104 a 0.2903, lo que sugiere una
buena capacidad de generalizacion sin indicios claros de sobreajuste.
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= Sin embargo, un punto critico del modelo LSTM es su tiempo de entrenamiento y test, que es
extremadamente alto:

+ El tiempo por época crece desde aproximadamente 3,311 segundos en 20 épocas, hasta mas de
182,000 segundos (alrededor de 50 horas) en 150 épocas.

* Los tiempos de entrenamiento y prueba son practicamente idénticos, lo que indica que la evaluacién
se realiza con un proceso computacional similar al del entrenamiento, incrementando la carga total.

En cuanto a los resultados del modelo CNN-LSTM se obtuvo:

Epochs | Training Accuracy ( %) | Test Accuracy ( %) | Training Loss | Test Loss
20 89.93 89.36 0.3129 0.3252
30 92.30 90.33 0.2388 0.3003
50 95.00 91.99 0.1559 0.2706
100 97.33 93.33 0.0829 0.2500
150 98.01 93.69 0.0618 0.2616

Cuadro 7.20: Resultados del modelo CNN-LSTM — Parte 1

Epochs | Training Time (s) | Testing Time (s)
20 15.37 1.66
30 15.40 1.70
50 16.15 1.77
100 15.44 1.72
150 15.33 1.69

Cuadro 7.21: Resultados del modelo CNN-LSTM — Parte 2

= Precision
 La precisién de entrenamiento aumenta consistentemente, desde un 89.93 % en 20 épocas hasta un
98.01 % en 150 épocas.

* La precisién en test también mejora, pasando de 89.36 % a 93.69 %, mostrando buena capacidad
de generalizacion.

* La ganancia de precision es especialmente notable hasta las 100 épocas, donde alcanza un 93.33 %,
estabilizandose luego.
= Pérdida
* La pérdida de entrenamiento disminuye de forma clara y constante, de 0.3129 a 0.0618, indicando
que el modelo esta aprendiendo eficazmente.

* Lapérdida en test baja de 0.3252 a 0.2500 en 100 épocas, aunque presenta un ligero repunte a 0.2616
en 150 épocas, lo que podria sugerir un inicio muy leve de sobreajuste o simplemente fluctuaciones
normales.

= Tiempos de entrenamiento y test

* Los tiempos de entrenamiento por época son bastante estables y razonables, oscilando alrededor de
15 segundos por época.

* Los tiempos de test son muy bajos (entre 1.66 y 1.77 segundos), lo que indica que el modelo es
eficiente en evaluacion y podria ser viable para entornos con limitaciones computacionales o apli-
caciones en tiempo real.
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Para el modelo CNN-Bi-LLSTM se obtuvo:

Epocas | Precisién Entrenamiento ( %) | Precisién Test (%) | Pérdida Entrenamiento
20 88.80 87.97 0.3270
30 90.96 89.40 0.2588
50 94.39 91.47 0.1635
100 96.32 92.16 0.1064
150 97.74 93.71 0.0663

Cuadro 7.22: Resultados del modelo CNN-Bi-LSTM — Parte 1

Epocas | Pérdida Test | Tiempo Entrenamiento (s) | Tiempo Test (s)
20 0.3602 42.68 4.24
30 0.3309 38.07 3.77
50 0.2933 38.88 4.01
100 0.3193 40.53 4.04
150 0.2717 40.53 4.04

Cuadro 7.23: Resultados del modelo CNN-Bi-LSTM — Parte 2

El modelo CNN-Bi-LSTM muestra un comportamiento solido en términos de precision, pérdida y tiempos
de computo a lo largo de diferentes niimeros de épocas:

= Precision

* La precision de entrenamiento incrementa de forma constante, comenzando en un 88.80 % a las 20
épocas y alcanzando un 97.74 % a las 150 épocas, lo que indica que el modelo aprende progresiva-
mente y se ajusta bien a los datos de entrenamiento.

» La precisién en test también mejora continuamente, desde 87.97 % hasta 93.71 %, mostrando una
buena capacidad de generalizacién y que el modelo no presenta un sobreajuste severo.
= Pérdida
» La pérdida de entrenamiento desciende notablemente, desde 0.3270 hasta 0.0663, lo que confirma
que el modelo mejora su ajuste a los datos con mas entrenamiento.
» La pérdida en test, aunque presenta un ligero aumento en la época 100 (0.3193), finalmente baja a
0.2717 en 150 épocas, reflejando una mejora global en la generalizacién.

= Tiempos de entrenamiento y test

* Los tiempos de entrenamiento por época se mantienen bastante estables alrededor de los 40 segun-
dos, un poco mas altos comparados con modelos mas simples, pero razonables para la complejidad
del modelo CNN-Bi-LSTM.

* Los tiempos de test se mantienen alrededor de 4 segundos, lo cual es adecuado para evaluaciones
frecuentes sin impactar demasiado en la eficiencia.

Por dltimo para el modelo Bi-LSTM-GN se obtuvo:
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Epochs | Accuracy Across Folds (%) | Training Loss | Training Time (s) | Testing Time (s)
20 95.07 0.1265 6.62 0.47
30 95.57 0.0944 6.55 0.45
50 95.57 0.0944 6.55 0.45
100 97.05 0.0365 6.54 0.44
150 97.08 0.0276 6.52 0.44

Cuadro 7.24: Resultados del modelo Bi-LSTM-GN

Este modelo presenta un desempefio muy sélido en cuanto a precision, pérdida y tiempos, reflejando una
buena eficiencia y capacidad de generalizacién a lo largo de diferentes niimeros de épocas:

En cuanto a la precision:

» La precision media aumenta gradualmente, comenzando en un 95.07 % a las 20 épocas y llegando a un
97.08 % a las 150 épocas.

= Se observa una mejora mas notable entre 50 y 100 épocas, donde la precisién salta de 95.57 % a 97.05 %,
mostrando que el modelo sigue aprendiendo y afinando su capacidad para clasificar correctamente.

La pérdida por entrenamiento:

» La pérdida de entrenamiento disminuye consistentemente, partiendo de 0.1265 a las 20 épocas hasta un
minimo de 0.0276 a las 150 épocas.

= Esto indica que el modelo esta ajustindose mejor a los datos con cada época sin sobreajustar, ya que la
precision en test también mejora.

Tiempos de entrenamiento y test:

= Los tiempos de entrenamiento por época se mantienen muy estables y bajos, alrededor de 6.5 segundos,
lo que indica una buena eficiencia computacional para un modelo bi-direccional con normalizacién de

grupo.

= Los tiempos de test también son muy reducidos, con valores constantes alrededor de 0.44 segundos, lo
que permite evaluaciones rapidas.

Para concluir la seccién de resultados de atribucién por familia, se puede destacar que todos los modelos
evaluados muestran una mejora progresiva en precision y reduccion de pérdida conforme aumenta el nimero
de épocas, evidenciando un aprendizaje efectivo y una buena capacidad de generalizacion.

Sin embargo, también se observa una variabilidad significativa en los tiempos de entrenamiento, siendo los
modelos méas complejos los que requieren mayor tiempo computacional. En conjunto, estos resultados confirman
que, si bien modelos como CNN y LSTM ofrecen un equilibrio adecuado entre precisién y eficiencia, combi-
naciones avanzadas como CNN-BiLSTM o BiLSTM-GN pueden aportar una mayor exactitud, especialmente
para tareas de clasificacion mas exigentes, siempre que se cuente con los recursos computacionales adecuados.
Esto establece una base sélida para seleccionar el modelo 6ptimo segun los requisitos especificos de precision
y coste temporal en aplicaciones practicas de deteccién y atribucién de malware.

Gréfico resumen de los resultados obtenidos por cada época en la atribucién por familias:
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Figura 7.18: Andlisis precision por época

mm 20 Epochs
0.5 mmmm 30 Epochs
[ 50 Epochs
0.4 | . 100 Epochs
B 150 Epochs
5.." 0.3 - -
S
0.2
0.1
0.0 -

MLP CNN LSTM CNN-LSTM  CNN-Bi-LSTM CNN-Bi-LSTM
Deep Learning Models

Figura 7.19: Pérdida en deteccion por época

También se presenta a continuacién, una gréafica con el tiempo total, en minutos, que ha tardado cada modelo
en cada época en ejecutarse:
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Figura 7.20: Tiempo empleado por modelo y épocas

7.3 Limitaciones identificadas

Alo largo del desarrollo experimental se han identificado varias limitaciones que deben ser tenidas en cuenta
a la hora de interpretar los resultados y considerar la aplicacion practica de los modelos propuestos. En primer
lugar, aunque modelos mas complejos como CNN-LSTM, CNN-Bi-LSTM o BiLSTM-GN han demostrado
alcanzar altos niveles de precision, esto conlleva un coste computacional considerable. Por ejemplo, el modelo
LSTM puro mostré tiempos de entrenamiento y prueba extremadamente elevados, lo que podria dificultar su
escalabilidad o implementacién en entornos en tiempo real o con recursos limitados. En este caso, al realizarse
las pruebas en un entorno estatico, los tiempos aunque eran largos, se podian respetar.

Asimismo, si bien las arquitecturas hibridas (como CNN-LSTM y CNN-BiL.STM) lograron un buen equili-
brio entre precision y eficiencia temporal, la mejora en los resultados no siempre fue proporcional al aumento de
la complejidad del modelo, lo que sugiere la existencia de un punto de retorno decreciente en términos de coste-
beneficio. Esto puede limitar su adopcién en escenarios donde se requiere un despliegue rapido o se dispone de
hardware menos potente.

Otra limitacion importante es que, en todas las tareas, el rendimiento del modelo esta estrechamente ligado a
la calidad y representatividad de los datos utilizados. Aunque se ha trabajado con datasets balanceados y con una
adecuada diversidad de muestras, cualquier sesgo en los datos podria afectar significativamente a la capacidad
de generalizacién de los modelos, especialmente en tareas como la atribucién por familia, donde algunas clases
pueden presentar menor nimero de ejemplos.

Por ultimo, se debe mencionar que, pese a los buenos resultados en entornos controlados, no se ha evaluado
el comportamiento de los modelos frente a malware polimérfico, ofuscado o completamente nuevo, lo cual
limita parcialmente la aplicabilidad de las soluciones en entornos reales donde estos casos son frecuentes.
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Capitulo 8

Propuestas de mejora y optimiza-
cion

En este capitulo se van a abordar una serie de estrategias que han servido para mejorar en la medida de lo
posible los modelos anteriormente descritos. Para ello se van a exponer una serie de mejoras que se han tenido
en cuenta para mejorar la precision de estos.

8.1 Estrategias para mejorar el modelo
8.1.1 Mejora del modelo MLP

class ImprovedMLP(nn.Module):
def _ init_(self, input size, hidden size, num classes):
super (ImprovedMLP, self). init ()
self.fcl = nn.Linear(input_size, hidden_size)
self.leaky relu = nn.LeakyReLU(0.01) # ReLU mejorado
self.fc2 = nn.Linear(hidden_size, num classes)

# Inicializacidén de pesos (Kaiming para LeakyReLU)
nn.init.kaiming uniform (self.fcl.weight, nonlinearity='leaky relu')
nn.init.kaiming uniform (self.fc2.weigt, nonlinearity='leaky relu')

def forward(self, x):
x = self.fcl(x)
x = self.leaky relu(x)
x = self.fc2(x)
return x

Comparativa de rendimiento:

Epocas | Accuracy Original (%) | Accuracy Mejorado ( %)
20 98.86 98.95
30 98.83 98.89
50 98.91 98.92
100 98.94 98.89
150 98.92 98.86

Cuadro 8.1: Comparacién de precision original y mejorada a diferentes épocas
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8.1. ESTRATEGIAS PARA MEJORAR EL M@RAPITULO 8. PROPUESTAS DE MEJORA Y OPTIMIZACION

Uso de Leaky ReL.U en lugar de ReLLU. ReL.U (Rectified Linear Unit) es una de las activaciones mas co-
munes, pero tiene un problema conocido como el ”muerte de neuronas”. Esto ocurre cuando, en la fase de
retropropagacion, las neuronas tienen valores negativos y no actualizan sus pesos correctamente. Esto puede
llevar a que algunas neuronas se queden “muertasz no aprendan [4].

Leaky ReLU es una versién de ReL.U que permite que los valores negativos pequefios fluyan (con un pe-
quefio valor negativo en lugar de ser simplemente 0). Esto evita que las neuronas se queden atrapadas en el
régimen de no-aprendizaje, 1o que puede mejorar la convergencia del modelo [4].

En el c6digo mejorado, se esta usando LeakyReL.U(0.01), lo que significa que la pendiente para valores ne-
gativos es de 0.01. Esto facilita que la red aprenda mas rapido y mantenga una mejor propagacién de gradientes.

Inicializacién de pesos con Kaiming (He) para Leaky ReL U. Inicializacién de Kaiming (He initialization) es
un tipo de inicializacién de pesos que fue especificamente disefiada para redes con ReLU y sus variantes como
Leaky ReLU. En esta inicializacién, los pesos se distribuyen de manera que el valor de varianza se mantiene
aproximadamente constante a través de las capas de la red.

Esto mejora la propagacién del gradiente, ya que evita que los valores de los gradientes se vuelvan demasiado
grandes o pequefios, lo que podria llevar a un entrenamiento ineficiente.

La inicializacion nn.init.kaiming uniform () se usa para distribuir los pesos de manera unifor-
me, y el parametro nonlinearity='1leaky relu' asegura que esta inicializacion se haga de manera
especifica para Leaky ReLU.

El impacto que tiene Leaky ReL.U en el rendimiento es que permite que las neuronas sigan aprendiendo
incluso cuando tienen valores negativos, lo que puede mejorar la capacidad de la red para aprender de los datos.

La inicializacién de Kaiming asegura que los pesos de las capas sean adecuados para evitar problemas de
gradientes explotados o desvanecidos, lo que permite un entrenamiento mas rapido y estable.

Ambos cambios hacen que el modelo mejor gestione las activaciones y los gradientes durante el entrena-
miento, lo que puede resultar en una mayor precision, como lo has visto con el aumento al 98.95

8.1.2 Mejora del modelo CNN

Para llevar a cabo la mejora en el modelo CNN, a diferencia de la optimizacion llevada a cabo en otros
modelos en la que optimizdbamos el modelo en si, en este caso se va a optar por una mejora en la normalizacién
de los datos. Lo que va a traer consigo una mejora en la precisiéon del modelo.

Para ello se ha normalizado de la siguiente manera:

#MEJORA

from sklearn.preprocessing import LabelEncoder
# Initialize the label encoder
label encoder = LabelEncoder ()

# Assuming you have a DataFrame named 'df'
categorical columns = df.select dtypes(include=['object', 'category']).columns
categorical columns =[ 'Class']
# Apply label encoding to each categorical column
for col in categorical columns:
df[col] = label encoder.fit transform(df[col])

#MEJORA

from sklearn.preprocessing import MinMaxScaler, StandardScaler

# Create a Min-Max scaler instance

scaler = StandardScaler()

# Select the columns you want to scale (exclude the target variable if needed)
columns_to_scale = df.select dtypes(include=[np.number]).columns

# Fit the scaler on the selected columns and transform the data
df[columns_to_scale] = scaler.fit transform(df[columns_to_scale])
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Comparativa del rendimiento:

Epocas | Accuracy Original (%) | Accuracy Mejorado ( %)
20 98,88 98,93
30 98,92 98,89
50 98,98 99,02
100 99,09 99,12
150 99,11 99,15

Cuadro 8.2: Comparacion de precision original y mejorada en distintas épocas

Esto mejora el rendimiento por diversas razones:

1. Seleccién mas robusta de columnas numéricas
s include=[np.number ] detecta cualquier tipo numérico (int, float, etc.), mientras que ' float64"
y 'int64 ' son mas restrictivos.

= Esto significa que puedes estar omitiendo columnas que son numéricas pero no estrictamente £ loat64
0 int64 en la versién anterior (por ejemplo, int32, £1oat32, etc.), y no se escalan, lo que des-
equilibra los rangos de entrada para la CNN.

2. Separacion clara del target (Class)

= Enla version mejorada, se hace explicitamente: categorical columns = ['Class']yse
aplica LabelEncoder solo al target.

= En la version antigua, se podria estar escalando accidentalmente la columna de la clase si no se ha
excluido, lo que confunde al modelo, ya que espera clases como enteros (0, 1, 2...) pero se le da algo
escalado como 0.5, -1.3, etc.

3. Uso correcto del escalado previo a la CNN

= Las CNN son muy sensibles a la escala de los datos de entrada, especialmente cuando se usan
activaciones como ReLU.

» Escalar adecuadamente todas las variables numéricas a una distribucién estandar (media 0, desvia-
cion 1) ayuda a que la red converja mejor.

4. Tratamiento especifico de variables categoricas

= Las CNN no pueden trabajar con strings. Si Class no es numérica o esta en formato texto (e.g.
'Normal', 'Ataque'), debe ser convertida a enteros primero.

= La version mejorada lo hace correctamente con LabelEncoder.
Es importante normalizar bien por lo siguiente:

» Datos mejor normalizados — pesos mas estables — menor pérdida.

= Etiquetas codificadas correctamente — calculo de pérdida correcto (CrossEntropyLoss requiere long la-
bels, no floats).

= Datos numéricos bien escalados — mejor entrenamiento y generalizacion.
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Figura 8.1: Diferentes tipos de escalados

En base al gréfico B.1] obtenido antes, se obtienen las siguientes conclusiones:

= Diferencias en las escalas originales:

* En el grafico de la izquierda (Original), la Feature 1 tiene valores alrededor de 1000, mientras
que Feature 2 esta alrededor de 5. Esto crea una gran disparidad en magnitudes.

* Lasredes neuronales (como las CNN) aprenden mediante multiplicaciones de pesos y sumas. Si una
caracteristica tiene un rango mucho mayor que otra, dominara el aprendizaje, haciendo que la red
ignore otras caracteristicas.

= StandardScaler (grafico de la derecha):

* Ajusta los datos para que cada caracteristica tenga media 0 y desviacion estandar 1.

* Esto ayuda a que todas las caracteristicas tengan un impacto similar en el entrenamiento, facilitando
una convergencia mas estable y rapida.

= MinMaxScaler (grafico del medio):

* Escala los datos al rango [0, 1].

» Aungque 1til en algunos casos (como en imagenes), puede ser menos robusto si hay outliers, y tam-
poco garantiza media 0 ni varianza 1, lo que puede ser menos 6ptimo para algoritmos sensibles a la
escala como una CNN.

8.1.3 Mejora del modelo Bi-LSTM-GN

Por dltimo, el modelo Bi-LSTM-GN se ha optimizado de la siguiente manera:

class BiLSTM(nn.Module):
def _ init (self, input_size, hidden size, num layers, num classes):
super (BiLSTM, self). init ()
self.lstm = nn.LSTM(input_size, hidden_size, num layers, batch_ first=True,
bidirectional=True)
self.group norm = nn.GroupNorm(num groups=8, num channels=2 * hidden size)
self.dropout = nn.Dropout(0.2)
self.fc = nn.Sequential(
nn.Linear(2 * hidden size, hidden_ size),
nn.ReLU(),
nn.Linear(hidden_size, num classes)

)

# Dentro del modelo (en el forward):
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def forward(self, x):
if x.dim() ==
X = x.unsqueeze(l) # [32, 50] -> [32, 1, 50]

lstm out, _ = self.lstm(x) # Ahora si es 3D
lstm out = 1lstm out[:, -1, :] # Selecciona el Gnico paso temporal
lstm out = self.group norm(lstm out)

output = self.fc(lstm out)
return output

Tabla comparativa:

Epocas | Accuracy Original (%) | Accuracy Mejorado ( %)
20 98,96 98,89
30 99,11 99,11
50 99,12 99,17
100 99,31 99,31
150 99,21 99,31

Cuadro 8.3: Comparacion de precision original y mejorada a diferentes épocas

si nos fijamos en la siguiente seccion del cédigo anterior:

lstm out = lstm out[:, -1, :] # Se queda con [batch size, 2*hidden_size]
lstm out = self.group norm(lstm out)

Aqui se toma solo el tltimo paso temporal, que es un tensor 2D [batch_size, 2*hidden_size], y luego se
aplica GroupNorm, a diferencia del codigo original que lo que hace es que GroupNorm se aplica directamente a
Istm_out, que es un tensor 3D con forma [batch_size, seq_len, features]. Pero GroupNorm espera como entrada
un tensor de forma 2D o 4D (batch_size, channels, ...).

También al afiadir dropout:
self.dropout = nn.Dropout(0.2)

Ayuda a prevenir el sobreajuste, especialmente en modelos pequefios entrenados con pocos datos.
También al afiadirle un clasificador secuencial, esto le permite al modelo aprender representaciones no

lineales mas complejas, algo util para clasificaciones donde las clases no estan separadas linealmente.
Ventaja: El clasificador puede aprender patrones mas sofisticados antes de la prediccién final.

Un aspecto que mejora tambien el rendimiento es el uso de entradas 2D:

if x.dim() ==
X = X.unsqueeze(l) # [batch size, input_size] -> [batch_size, 1, input size]

Este detalle hace que el modelo sea més tolerante con entradas que no vengan en el formato esperado, algo
util si el preprocesado cambia o si se reusa el modelo en otro entorno.

87



8.1. ESTRATEGIAS PARA MEJORAR EL M@RAPITULO 8. PROPUESTAS DE MEJORA Y OPTIMIZACION

88



Capitulo 9

Técnicas de Mitigacion

En el resto de secciones se ha estado hablando sobre todas las estrategias de deteccién de ransomware ,
junto con sus clasificaciones etc. Ahora el enfoque va a ser distinto, en esta seccidn, la idea es mitigar estos
ataques en caso de que las técnicas de deteccion hayan fallado.

En esta seccion se presentan las principales estrategias y buenas practicas disefiadas para mitigar los efectos
de un posible ataque de ransomware , abarcando desde medidas preventivas y de proteccion proactiva hasta
mecanismos de respuesta y recuperacion tras la intrusién. Se abordaran técnicas orientadas a reforzar la segu-
ridad perimetral, minimizar la superficie de ataque y asegurar la disponibilidad de la informacio6n, asi como
procedimientos para restaurar los sistemas y archivos comprometidos. El objetivo es proporcionar un conjunto
de directrices integrales que permitan a las organizaciones reducir el riesgo de infeccién, limitar el impacto de
un incidente y garantizar una recuperacién rapida y eficiente.

La prevencién de ransomware se centra en medidas proactivas dirigidas a reducir el riesgo de ataques al
subsanar vulnerabilidades antes de que puedan ser explotadas. Entre las estrategias mas comunes se incluyen
la actualizacion de sistemas operativos, el uso de software de seguridad especializado y el mantenimiento de
copias de seguridad regulares de los archivos. El objetivo principal en esta fase es identificar y corregir posibles
fallos de seguridad que puedan ser aprovechados por los atacantes de ransomware .

Uno de los retos clave en la prevencién de ransomware es rastrear el origen de los ataques, especialmente
aquellos que implican extorsion de datos o «secuestro» de informacién, ya que suelen dificultar la identificacion
de los perpetradores. Las medidas de prevencion eficaces permiten a los usuarios evitar infecciones o recuperar
sus archivos, interrumpiendo asi el circulo de ataques. A continuacién, se detallan las principales acciones
recomendadas para mitigar el riesgo de ataques de ransomware :

= Copias de seguridad regulares de datos: Realizar copias de seguridad periddicas y almacenarlas fuera
del sitio es esencial para restaurar rapidamente los archivos en caso de cifrado por ransomware . No
obstante, muchas organizaciones enfrentan desafios en cuanto al tiempo y coste de estos procesos, ya
que algunas copias requieren gran capacidad de almacenamiento y pueden ralentizar el rendimiento del
sistema. Mantener sistemas de respaldo fiables y eficientes es crucial, a pesar de los recursos y tiempos
invertidos .

= Precaucion con archivos adjuntos de correo electronico: Debe evitarse abrir archivos adjuntos no
solicitados, ya que este es uno de los vectores de entrega de ransomware mas frecuentes.

= Limitar el acceso con privilegios de administrador: Para minimizar el riesgo de infeccién, conviene
evitar sesiones prolongadas con permisos de administrador y restringir la navegacién por Internet o la
apertura de documentos mientras se utilizan dichos privilegios.
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= Concienciacion sobre ingenieria social: Mantenerse alerta ante enlaces maliciosos en redes sociales y
aplicaciones de mensajeria, incluso si aparentan proceder de contactos de confianza.

= Configuracion de cortafuegos y ajustes de seguridad: Es fundamental asegurar el correcto funcio-
namiento del cortafuegos (por ejemplo, Windows Firewall) y configurar medidas adicionales, como el
bloqueo de direcciones IP maliciosas, para reforzar la proteccion frente al ransomware .

= Uso de software antivirus y antimalware: Instalar soluciones de antivirus y antimalware de reconocido
prestigio y realizar analisis periodicos es un método eficaz para detectar y eliminar amenazas antes de
que causen dafios.

= Seguro contra ciberdelincuencia: Dado que los ataques de ransomware continian proliferando y gene-
rando pérdidas econdémicas significativas —incluso llevando a empresas a la bancarrota o a la retirada de
inversores—, el seguro contra ciberdelitos se ha convertido en un elemento clave para mitigar el riesgo
financiero asociado a estos incidentes.

En el panorama de amenazas actual, contar con software antiransomware especializado resulta vital para
una proteccion integral. Las herramientas mas avanzadas son capaces de detectar comportamientos sospechosos,
ofrecer defensa proactiva y proporcionar mecanismos de recuperacion de archivos. Muchos de estos productos
incluyen analisis forense y de comportamiento, lo que les permite bloquear e incluso descifrar archivos cifrados.

Aunque el ransomware suele emplear técnicas de cifrado robustas como AES256 y RSA-2048, en ocasiones
presenta vulnerabilidades de implementacién que permiten a los analistas extraer claves de cifrado o descifrar
directamente los archivos. Iniciativas como NoMoreRansom —una colaboracién entre Europol, Kaspersky Lab
y otras entidades,[46] ofrecen herramientas de descifrado gratuitas para las victimas, aprovechando estas debi-
lidades identificadas en variantes especificas de ransomware .

Classifier Ransomware Adaptive

training detection Detection

Figura 9.1: Importancia del dataset en la deteccion del ransomware

La figura .1 muestra cémo la calidad del conjunto de datos repercute directamente en el desarrollo de un
modelo de deteccion adaptable, subrayando la necesidad de contar con informacion fiable y veraz. L.os conjuntos
de datos de alta calidad permiten entrenar modelos robustos y precisos, lo que resulta fundamental para disponer
de soluciones eficaces en la lucha contra el ransomware .
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Capitulo 10

Conclusiones

En este capitulo se presentan las conclusiones extraidas tras la finalizacién del presente Trabajo de Fin de
Grado. El objetivo principal del proyecto ha sido realizar una investigacién sobre las técnicas que se pueden
utilizar para detectar ransomware basadas en el disefio, implementacion y evaluacion de diversos modelos de
aprendizaje profundo para la deteccién y clasificacion de muestras de malware, con un enfoque especial en la
deteccion, clasificacién y atribucion por familia de malware. Como objetivo secundario se ha propuesto una
serie de estrategias de mitigacién para abordar el problema anterior.

Desde el comienzo del trabajo, uno de los mayores retos ha sido como llevar a cabo el preprocesamiento y
conversion de las muestras de malware a un formato adecuado para ser tratado por modelos de deep learning.
Inicialmente no se tenia una idea clara de como abordar esta fase, lo que generd cierta incertidumbre. Sin embar-
go, tras una busqueda exhaustiva de trabajos previos y el andlisis de distintos articulos cientificos relacionados,
fue posible identificar enfoques ya utilizados que sirvieron como guia. Esto permitié enfocar correctamente el
preprocesamiento, analizar en profundidad los datos y seleccionar las herramientas mas adecuadas. Una vez su-
perada esta etapa, se entrenaron y compararon distintos modelos (MLP,CNN,LSTM, Bi-LSTM, CNN-BiLSTM
y Bi-LSTM-GN), evaluando su rendimiento mediante métricas estandar y pruebas cruzadas, con el fin de se-
leccionar el enfoque mas eficaz.

Los resultados obtenidos han demostrado que la arquitectura Bi-LSTM-GN ha ofrecido un rendimiento
especialmente alto en términos de precision y estabilidad entre épocas, destacando también por sus bajos tiempos
de entrenamiento y test. Sin embargo, el modelo CNN-BiLSTM mostré una mejor capacidad en la atribucién
por familia, especialmente con un nimero mayor de épocas, lo cual resulta especialmente relevante en entornos
donde es necesario no solo detectar malware, sino también entender su origen o caracteristicas comunes.

En general, se ha cumplido el objetivo de desarrollar una solucion capaz de detectar y clasificar malware con
altas tasas de precisién, superando el 97 % en algunos casos, asi como de analizar la atribucion por familia con
resultados consistentes. Ademas, se ha obtenido una experiencia practica muy valiosa en el uso de herramientas
de desarrollo en Python, bibliotecas de deep learning como TensorFlow y PyTorch, asi como en la gestion de
experimentacién computacional en entornos controlados.

Pese a los buenos resultados, también se han identificado limitaciones como la necesidad de un mayor vo-
lumen de datos etiquetados para mejorar la generalizacién, o el ajuste manual de hiperpardmetros que podria
automatizarse en futuros trabajos. Asimismo, seria interesante estudiar la implementacién de técnicas de apren-
dizaje federado o incremental, asi como probar el sistema en entornos reales o sobre muestras en tiempo real,
lo que daria una visién mas completa de su aplicabilidad practica.

También se han expuesto una serie de contramedidas para mitigar los efectos que los archivos maliciosos
detectados con los modelos puedan tener sobre los sistemas informaticos.
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10.1. TRABAJO FUTURO CAPITULO 10. CONCLUSIONES

Para finalizar, este trabajo ha permitido avanzar en el disefio de soluciones inteligentes para la cibersegu-
ridad, y abre la puerta a futuras lineas de investigacién centradas en la mejora de deteccién y clasificacion de
malware, para poder prevenir cualquier tipo de ataque que deje el sistema muy vulnerable.

10.1 Trabajo futuro

Aunque el desarrollo y evaluacion del presente sistema de deteccién y atribucién de malware ha resultado
satisfactorio, existen multiples lineas de trabajo que podrian ampliarse o mejorarse en investigaciones futuras.

En primer lugar, uno de los aspectos que podria potenciarse es la ampliacién y diversificacién del conjunto
de datos. A pesar de que el dataset utilizado ha permitido entrenar y validar los modelos con buenos resultados,
incorporar muestras mas recientes, asi como variantes mas sofisticadas de malware, podria ayudar a mejorar la
capacidad de generalizacién del sistema y adaptarse a amenazas mas actuales.

Asimismo, seria interesante explorar arquitecturas mas avanzadas, como Transformers o modelos hibridos
que combinen aprendizaje supervisado con técnicas de aprendizaje no supervisado o auto-supervisado. Estas
aproximaciones podrian ser especialmente ttiles para detectar malware polimorfico o variantes desconocidas,
donde las diferencias con el malware ya etiquetado son minimas o dificiles de detectar con modelos tradiciona-
les.

Otra linea de mejora seria optimizar el proceso de preprocesamiento y generacion de imagenes a partir
del c6digo binario. Aunque se ha logrado una representacién efectiva, atin se podrian explorar métodos que
conserven mayor cantidad de informacion contextual o estructural del malware sin incrementar en exceso el
coste computacional.

Ademas, se podria plantear la implementacion de un sistema de deteccion en tiempo real o semi-tiempo
real, integrando los modelos entrenados en un entorno practico, como un motor antivirus o un sistema de moni-
torizacion de red. Esto permitiria evaluar su rendimiento en escenarios del mundo real, donde las limitaciones
de tiempo y recursos cobran un papel importante.

Por dltimo, también seria valioso incluir mecanismos de interpretabilidad en los modelos utilizados. Com-
prender por qué un modelo toma ciertas decisiones ayudaria no solo a mejorar la confianza en los resultados,
sino también a identificar caracteristicas comunes en distintas familias de malware, contribuyendo asi a estudios
mas profundos sobre su comportamiento y evolucidn.
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