
Escuela de Ingenieŕıa Informática

de Valladolid

TRABAJO DE FIN DE GRADO

Grado en Ingenierı́a Informática

Mención De Tenconolgı́as de la Información

Sistema de Threat Intelligence para la
evaluación de Indicadores de Compromiso

(IoCs)

Autor:
Vı́ctor Martı́n Miguel

Tutores:
Dr. César Llamas Bello
D. Manuel López Pérez



II



Agradecimientos

Quiero expresar mi más sincero agradecimiento a todas las personas que me han acompañado a lo
largo de este camino académico. En primer lugar, a mi familia, por su apoyo incondicional, su paciencia y
por estar siempre presente en los momentos clave de este proceso.

A mis amigos y compañeros de carrera, con quienes he compartido no solo clases y trabajos, sino
también experiencias, desafı́os y muchas risas que han hecho más llevadero este recorrido.

Y, por supuesto, a todo el profesorado que me ha acompañado durante estos años, en especial a
quienes han sabido transmitir su pasión por la informática y han contribuido, directa o indirectamente, a
la realización de este trabajo. Gracias por su dedicación, exigencia y compromiso con nuestra formación.

A todos, gracias.

III



IV



Resumen

El crecimiento constante de las amenazas cibernéticas ha impulsado la necesidad de desarrollar
sistemas automatizados capaces de detectar y analizar Indicadores de Compromiso (IoCs) en tiempo real.
Entre los principales retos de este campo se encuentra la integración eficaz de fuentes de inteligencia,
la normalización de datos heterogéneos y la priorización de amenazas según su relevancia. En este
trabajo, se aborda el diseño e implementación de un sistema de Threat Intelligence que permite la
recolección, enriquecimiento y análisis de IoCs, con el fin de facilitar la toma de decisiones en entornos
de ciberseguridad.

En concreto, se ha construido una solución funcional que descarga IoCs desde fuentes públicas como
OTX, ThreatFox,MalwareBazaar, ThreatView y URLhaus los enriquece con información contextual (paı́s,
tipo, palabras clave, repeticiones) y calcula un ı́ndice de riesgo que actua como puntuación mediante
un sistema de scoring. Los datos se almacenan y visualizan mediante una pila ELK personalizada y
dashboards desarrollados con Flask. Se ha comprobado la utilidad del sistema para detectar amenazas
relevantes y facilitar su análisis mediante filtros, gráficos y criterios dinámicos de priorización.

Palabras clave: Threat Intelligence, Indicadores de Compromiso, IoCs, ciberseguridad, Elasticsearch,
scoring de amenazas.

V



VI

Abstract

The continuous growth of cyber threats has driven the need to develop automated systems capable
of detecting and analyzing Indicators of Compromise (IoCs) in real time. One of the main challenges
in this domain is the effective integration of intelligence sources, normalization of heterogeneous data,
and prioritization of threats based on contextual relevance. This work presents the analysis, design,
and implementation of a Threat Intelligence system that collects, enriches, and scores IoCs to support
cybersecurity decision-making processes.

Specifically, a functional solution has been developed to retrieve IoCs from public sources such as
OTX, ThreatFox,MalwareBazaar, ThreatView and URLhaus enrich them with contextual information
(e.g., country, type, tags, frequency), and compute a threat score based on semantic criteria. The data is
stored and visualized using a custom ELK stack and Flask-based dashboards. The system has been tested
to validate its ability to detect relevant threats and provide useful visual and analytical tools for threat
prioritization and exploration.

Key words: Threat Intelligence, Indicators of Compromise, IoCs, cybersecurity, Elasticsearch, threat
scoring.



Índice general

1. Introducción 1

1.1. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Metodologı́a para un Sistema de Threat Intelligence . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2. Etapas metodológicas del sistema . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Recursos utilizados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Caso de Negocio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1. Agentes implicados en el proyecto . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2. Presupuesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3. Impacto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. Organización del documento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Planificación del Proyecto 11

2.1. Planificación del Proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. Planificación inicial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2. Seguimiento del proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Gestión de Riesgos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Presupuesto del Proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VII



VIII ÍNDICE GENERAL

3. Tecnologı́as utilizadas 19

3.1. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Flask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Elasticsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4. GeoLite2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5. Plotly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6. APIs REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7. Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8. Ubuntu/Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9. Valoración global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Análisis 39

4.1. Análisis del sistema desarrollado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1. Análisis funcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2. Análisis técnico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3. Análisis de los datos recolectados . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.4. Evaluación del algoritmo de scoring . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.5. Rendimiento del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.6. Limitaciones y mejoras potenciales . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Conclusiones del análisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. Diseño del sistema 47

5.1. Arquitectura general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2. Diseño de los módulos funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1. Módulo de recolección de IoCs . . . . . . . . . . . . . . . . . . . . . . . . . . 47



ÍNDICE GENERAL IX

5.2.2. Módulo de enriquecimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3. Módulo de deduplicación e inserción . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.4. Módulo de scoring contextual . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3. Diseño del almacenamiento en Elasticsearch . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4. Diseño de la interfaz web (HTML + Flask) . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5. Diseño orientado a escalabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6. Resumen del diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Implementación 57

6.1. Entorno de desarrollo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2. Automatización del flujo de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3. Recolección de datos desde OTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4. Recolección de datos desde ThreatFox . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5. Recolección de datos desde URLhaus . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6. Recolección de datos desde MalwareBazaar . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7. Recolección de datos desde ThreatView . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.8. Procesamiento y enriquecimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.9. Sistema de deduplicación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.10. Algoritmo de threat score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.11. Carga de datos en Elasticsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.12. Interfaz web con Flask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.13. Documentación y validación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.14. Resumen de la implementación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7. Pruebas 65



X ÍNDICE GENERAL

7.1. Objetivo de las pruebas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2. Pruebas funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3. Pruebas de rendimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4. Pruebas de calidad de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5. Pruebas de visualización . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.6. Gestión de errores y pruebas negativas . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.7. Validación global del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.8. Resumen de pruebas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8. Conclusiones y lı́neas futuras 71

8.1. Conclusiones generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2. Valoración del proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3. Lı́neas de trabajo futuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4. Reflexión final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A. Repositorio de código 75

A.1. Ubicación del repositorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2. Organización del repositorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3. Readme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliografı́a 79



Índice de figuras

1.1. Flujo de trabajo del sistema de Threat Intelligence. . . . . . . . . . . . . . . . . . . . . 4

1.2. Diagrama de actividades del flujo de gestión de IoCs. . . . . . . . . . . . . . . . . . . . 5

2.1. Planificación inicial del proyecto por fases . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Matriz de impacto y probabilidad de los riesgos del proyecto . . . . . . . . . . . . . . . 15

4.1. Arquitectura general del sistema de Threat Intelligence . . . . . . . . . . . . . . . . . . 41

4.2. Diagrama del algoritmo de cálculo del threat score basado en múltiples factores . . . . . 43

5.1. Vista del dashboard principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2. Vista del dashboard principal con tabla de IoCs . . . . . . . . . . . . . . . . . . . . . . 50

5.3. Vista de la gráfica de la distribución por tipo . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. Vista de la gráfica de la distribución por paı́s . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5. Vista de la gráfica en zoom de un paı́s . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6. Vista de la gráfica de la distribución por threar score . . . . . . . . . . . . . . . . . . . . 53

5.7. Vista de la gráfica de tags mas frecuentes . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8. Vista de la gráfica de la distribución media del threat score . . . . . . . . . . . . . . . . 54

5.9. Vista de la gráfica de los IoCs mas repetidos . . . . . . . . . . . . . . . . . . . . . . . . 54

5.10. Vista del filtro de IoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1. Ejemplo de descarga del total de IoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

XI



XII ÍNDICE DE FIGURAS

7.2. Ejemplo de IoC almacenado en Elasticsearch ya enriquecido . . . . . . . . . . . . . . . 66

7.3. Ejemplo de IoC ya almacenado y que se incrementa su contador . . . . . . . . . . . . . 67

7.4. Ejemplo de IoC visualizado en el dashboard principal . . . . . . . . . . . . . . . . . . . 67



Índice de tablas

2.1. Comparativa entre planificación estimada y desarrollo real del proyecto . . . . . . . . . 13

2.2. Principales riesgos identificados y estrategias de mitigación . . . . . . . . . . . . . . . . 14

2.3. Presupuesto preliminar del proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1. Resumen de métricas cuantitativas tras una tiempo de funcionamiento del sistema. . . . . 42

7.1. Tiempos promedio de operaciones del sistema . . . . . . . . . . . . . . . . . . . . . . . 67

XIII



XIV ÍNDICE DE TABLAS



Capı́tulo 1

Introducción

En los últimos años, el crecimiento de las amenazas cibernéticas ha adquirido una dimensión sin
precedentes. Cada dı́a se registran miles de incidentes relacionados con el robo de información, fraudes
digitales, ataques de denegación de servicio (DDoS), y una gran variedad de técnicas ofensivas que
afectan tanto a particulares como a organizaciones públicas y privadas. Frente a este contexto, surge una
necesidad urgente de desarrollar tecnologı́as que permitan detectar, analizar y mitigar amenazas de forma
eficiente y, sobre todo, proactiva. En este marco, la inteligencia de amenazas (Threat Intelligence) se
posiciona como una disciplina fundamental.

La inteligencia de amenazas es el conjunto de procesos, tecnologı́as y herramientas orientadas a la
recopilación y análisis de datos sobre amenazas potenciales o reales. Su objetivo es proporcionar a los
responsables de seguridad la información necesaria para prevenir ataques o reducir su impacto. Uno de los
principales pilares sobre los que se construye esta inteligencia es la gestión de Indicadores de Compromiso
(IoCs, por sus siglas en inglés), que son rastros técnicos generados por una actividad maliciosa, como una
dirección IP asociada a un atacante, un hash de un archivo malicioso, un dominio sospechoso o una URL
que aloja malware.

Tradicionalmente, la gestión de estos indicadores se ha realizado manualmente o mediante herramientas
propietarias que dificultan su estudio o integración con otros sistemas. Además, muchos entornos de
seguridad carecen de mecanismos adecuados para enriquecer estos IoCs con información contextual,
como su procedencia geográfica, la fecha de su detección, su relación con campañas especı́ficas o grupos
de amenazas persistentes avanzadas (APT). Esta falta de contexto limita la utilidad práctica del indicador,
ya que no permite establecer una valoración precisa de su peligrosidad ni facilita la toma de decisiones
informadas.

Este proyecto aborda precisamente este desafı́o, proponiendo una solución completa y modular para
la gestión de IoCs, basada en tecnologı́as abiertas y fácilmente replicables. El objetivo es permitir la
descarga automatizada de indicadores desde fuentes públicas, su enriquecimiento mediante metadatos
relevantes, su almacenamiento en una base de datos escalable (Elasticsearch), y su análisis y visualización

1



2 CAPÍTULO 1. INTRODUCCIÓN

a través de dashboards personalizables. Todo esto se realiza con un enfoque académico y práctico, que
permita tanto el aprendizaje profundo del ciclo de vida de un IoC como su implementación en entornos
reales.

La arquitectura sobre la que se construye este sistema se fundamenta en la pila ELK: Elasticsearch,
Logstash y Kibana. Estas herramientas permiten indexar, transformar y visualizar grandes volúmenes
de datos en tiempo real. Sin embargo, se ha optado también por construir un dashboard alternativo en
HTML5 y Flask, con el fin de ofrecer una capa adicional de control, personalización y acceso directo a
los datos para usuarios sin conocimientos especı́ficos de Kibana.

El proyecto se centra en la integración con Open Threat Exchange (OTX) principalmete, una plataforma
colaborativa mantenida por AlienVault (ahora parte de ATT) que permite compartir información de
amenazas entre profesionales de la ciberseguridad. OTX ofrece un API REST que permite acceder a
millones de indicadores reportados por la comunidad de diferentes tipos y categorı́as. Gracias a esta fuente
de datos, el sistema puede obtener en tiempo real información sobre nuevas amenazas, incluyendo hashes
de malware, dominios, direcciones IP y URLs asociadas a campañas maliciosas.

La importancia de este trabajo no solo radica en su valor técnico, sino en su aplicabilidad práctica. Un
sistema bien diseñado de inteligencia de amenazas permite detectar con anticipación, comportamientos
anómalos en una red, asociar eventos aparentemente inconexos, y establecer mecanismos de respuesta más
efectivos. Además, permite ahorrar recursos, evitar pérdidas económicas a las empresas y particulares y
proteger cualquier tipo de infraestructura crı́tica. En entornos donde no se dispone de grandes presupuestos,
este tipo de soluciones basadas en software libre son especialmente valiosas.

1.1. Motivación

El presente proyecto tiene múltiples motivaciones que abarcan tanto aspectos técnicos como académicos
y profesionales. En primer lugar, surge del interés personal por la ciberseguridad, una disciplina en
constante evolución que requiere actualización y formación continua. La gestión de IoCs representa uno
de los pilares fundamentales en cualquier estrategia de defensa, y comprender su ciclo de vida es clave
para proteger sistemas informáticos de forma proactiva.

Durante la formación universitaria, muchas veces se tratan temas de seguridad desde un enfoque
teórico/práctico limitado a llevado a cabo con herramientas concretas, sin llegar a abordar la integración
completa de un sistema real de análisis de amenazas. Este proyecto busca llenar ese vacı́o mediante
la construcción desde cero de una arquitectura funcional, desde la obtención de datos hasta su análisis
visual final, pasando por el enriquecimiento y el almacenamiento eficiente. Este enfoque integral permite
consolidar múltiples competencias adquiridas durante el grado universitario, como la programación en
Python, la administración y tecnologı́as de bases de datos, el diseño de interfaces gráficas, el análisis y
tratamiento de datos y la documentación técnica de todos estos elementos.



1.2. METODOLOGÍA PARA UN SISTEMA DE THREAT INTELLIGENCE 3

A nivel técnico, uno de los grandes desafı́os era conseguir que el sistema fuera escalable, modular
y resistente a IoCs duplicados, es decir, que no se generaran inconsistencias ni entradas repetidas en
la base de datos. Esto exigió el diseño de una lógica de control que validara los indicadores antes de
su inserción, usando el campo ı̈ndicatorçomo identificador único. Además, se propuso un sistema de
scoring o puntuación que, a partir de criterios como la antigüedad del IoC, su procedencia geográfica, su
asociación a actores APT o sus técnicas de ataque (TTPs), pudiera calcular una valoración cuantitativa del
riesgo que representa.

Desde el punto de vista profesional, este proyecto representa una experiencia valiosa de cara a futuros
entornos laborales en cualquier tipo de empresa. Las herramientas utilizadas (Elasticsearch, APIs REST,
visualización web, scoring, etc.) son ampliamente demandadas en el mercado de la ciberseguridad y el
análisis de datos. Tener experiencia demostrable en la integración de estas tecnologı́as, en un contexto
realista y documentado, permite al desarrollador destacar en procesos de selección o entrevistas técnicas.

Por último, existe una motivación altruista y académica. Este proyecto puede ser compartido y
reutilizado por otros estudiantes, investigadores o entusiastas de la ciberseguridad que deseen aprender o
construir sobre esta base. Al usar tecnologı́as abiertas y documentar cada paso del proceso, se favorece la
colaboración, la reproducibilidad y la mejora continua. Se pretende, en definitiva, crear una herramienta
útil, educativa y adaptable a distintos escenarios.

1.2. Metodologı́a para un Sistema de Threat Intelligence

1.2.1. Objetivos

El objetivo general del proyecto es diseñar e implementar un sistema completo de Threat Intelligence
que permita gestionar IoCs de forma automatizada, eficiente y visual. Este sistema debe incluir las
siguientes capacidades:

Obtener indicadores de compromiso desde la API de OTX principalmente, pero también del resto
de fuentes.

Enriquecer los IoCs con información contextual relevante: fechas de aparición, fuente, actor
relacionado, TTP, paı́s de origen, tags, etc.

Incorporar datos de geolocalización de IPs a través de la base de datos GeoLite2.

Validar que los indicadores no estén duplicados antes de su inserción, empleando mecanismos
previas mediante un ID único como es el campo indicator.

Almacenar los datos en un ı́ndice de Elasticsearch optimizado para búsquedas rápidas y filtrados
múltiples.



4 CAPÍTULO 1. INTRODUCCIÓN

Calcular un threat score para cada indicador según un algoritmo de puntuación basado en criterios
objetivos.

Visualizar los indicadores en entornos gráficos: Una web en HTML con filtros interactivos y Kibana
(gracias a su fácil integración con Elasticsearch)

Facilitar la integración del sistema con nuevas fuentes de datos en el futuro.

Documentar todos los componentes del sistema para su reutilización.

A continuación, se presenta la arquitectura general del sistema y el flujo de actividades asociado al
proceso de gestión de indicadores de compromiso:

Figura 1.1: Flujo de trabajo del sistema de Threat Intelligence.

La Figura 1.1 muestra los principales módulos del sistema: desde la obtención de datos desde OTX, su
enriquecimiento con metadatos y geolocalización, control de duplicados y almacenamiento en Elastic-
search, hasta su visualización mediante Kibana o un dashboard HTML personalizado.



1.2. METODOLOGÍA PARA UN SISTEMA DE THREAT INTELLIGENCE 5

Figura 1.2: Diagrama de actividades del flujo de gestión de IoCs.

La Figura 1.2 representa el flujo lógico de las actividades del sistema, desde la recolección de IoCs
hasta su análisis visual, facilitando la comprensión del ciclo de vida completo del dato dentro del sistema
propuesto.

1.2.2. Etapas metodológicas del sistema

El sistema se estructura en una serie de etapas que definen el mecanismo de resolución empleado. Esta
metodologı́a está basada en buenas prácticas extraı́das de la literatura especializada [1–3] y se alinea con
los principios de ciberinteligencia proactiva. A continuación, se describen las fases principales:

1. Recolección de datos desde OTX y demás fuentes:

Estudio de la documentación de la API.

Desarrollo del script de descarga automática.



6 CAPÍTULO 1. INTRODUCCIÓN

Almacenamiento inicial en CSV.

2. Normalización y enriquecimiento:

Estandarización de campos (type, indicator, description, ...).

Enriquecimiento con metadatos extraı́dos de los pulses.

Incorporación de campos como uuid, category, tags, first seen, last seen.

3. Geolocalización de IPs:

Implementación de búsqueda por IP usando la base GeoLite2.

Asociación automática de paı́s, ciudad y continente.

4. Almacenamiento en Elasticsearch:

Instalación y configuración del clúster local.

Definición del esquema de los documentos.

Indexación de los IoCs desde Python.

5. Detección de duplicados:

Consulta previa por campo indicator.

Lógica de inserción condicional y campo seen count.

6. Scoring contextual:

Diseño del algoritmo de puntuación.

Pruebas de calibración con valores reales.

7. Visualización con Kibana:

Dashboards por tipo, paı́s, puntuación.

Mapas de calor y tablas dinámicas.

8. Visualización en HTML:

Desarrollo con Flask y plantillas HTML.

Filtros interactivos por tipo, paı́s y score.

9. Validación y documentación:

Pruebas funcionales y rendimiento.

Redacción de manuales técnicos.



1.3. RECURSOS UTILIZADOS 7

Justificación metodológica

Este enfoque metodológico refleja una arquitectura modular y escalable, orientada al tratamiento
completo de los IoCs. Cada etapa se implementa de forma desacoplada, lo que permite actualizar
componentes sin afectar al sistema global. Este modelo es especialmente útil en entornos donde los datos
cambian continuamente y la adaptabilidad es crı́tica.

La planificación concreta de cada tarea, con fechas y entregables, se aborda detalladamente en el
Capı́tulo 2.

1.3. Recursos utilizados

Para el desarrollo de este proyecto, se han empleado recursos tanto fı́sicos como lógicos, todos
seleccionados con el objetivo de crear un entorno controlado, reproducible y económico. A continuación
se detallan los principales componentes empleados:

Recursos fı́sicos

Ordenador personal con sistema operativo Ubuntu 22.04 LTS, procesador Intel i7, 16 GB de RAM
y 1 TB de almacenamiento SSD. Este equipo ha servido como entorno de desarrollo principal y
nodo de pruebas para el sistema Elasticsearch.

Conexión a internet de fibra óptica para realizar pruebas de conexión con APIs externas y actualizar
los paquetes necesarios durante el desarrollo.

Memoria USB para copias de seguridad y transporte de ficheros entre dispositivos.

Recursos de software

Python 3.10: lenguaje de programación principal para el desarrollo de scripts de recolección de
IoCs, enriquecimiento y conexión con Elasticsearch.

Librerı́as Python utilizadas:

• requests: para la conexión con la API REST de OTX.

• pandas: para el tratamiento y transformación de datos tabulares.

• elasticsearch: cliente oficial para la conexión a Elasticsearch desde Python.

• flask: para el desarrollo de la aplicación web personalizada.



8 CAPÍTULO 1. INTRODUCCIÓN

• plotly: para la generación de gráficos interactivos.

• geoip2: para realizar consultas de geolocalización mediante MaxMind GeoLite2.

Elasticsearch 8.x: motor de búsqueda y base de datos documental para almacenar y consultar IoCs
de forma rápida.

Kibana: plataforma de visualización acoplada a Elasticsearch para la creación de dashboards de
análisis visual.

GeoLite2: base de datos gratuita de MaxMind utilizada para geolocalizar direcciones IP extraı́das
de los IoCs.

Git: sistema de control de versiones utilizado para gestionar el desarrollo del proyecto.

Este conjunto de herramientas ha permitido construir un sistema completamente funcional sin necesidad
de licencias comerciales, promoviendo ası́ el uso de software libre y fomentando la posibilidad de
reproducir este entorno en laboratorios académicos u organizaciones con recursos limitados.

1.4. Caso de Negocio

1.4.1. Agentes implicados en el proyecto

El desarrollo de este sistema, aunque ejecutado de forma individual como parte de un trabajo de
fin de grado, contempla varios agentes y perfiles que se benefician directa o indirectamente de sus
funcionalidades:

Desarrollador: autor del proyecto, encargado del diseño, implementación, pruebas y documentación
del sistema.

Usuario final: profesional de ciberseguridad o analista de amenazas que consulta los IoCs a través
de los dashboards implementados.

Administrador del sistema: responsable de desplegar, mantener y actualizar los componentes del
sistema.

Supervisor académico: docente que valida la calidad técnica, metodológica y documental del
trabajo realizado.

Supervisor de empresa: Tutor empresarial que propone, evalúa y gestiona el proyecto desde el
punto de vista de su organización.



1.4. CASO DE NEGOCIO 9

1.4.2. Presupuesto

En una primera aproximación al coste estimado de este proyecto, se han tenido en cuenta tanto factores
materiales como el tiempo de desarrollo invertido. Aunque el proyecto se ha realizado en un entorno no
comercial, se estima un presupuesto teórico basado en los siguientes conceptos:

Coste de hardware y software:

Ordenador personal (amortización estimada por 4 años): 1000 C / 4 = 250 C

Conectividad, electricidad y almacenamiento adicional: 50 C

Total estimado en recursos materiales: 300 C

Coste de trabajo:

Estimación de 4 horas diarias desde febrero hasta junio (aproximadamente 120 dı́as): 4 × 120 =
480 horas

Según datos recogidos en Glassdoor [4], el salario promedio de un ingeniero informático junior en
España ronda los 10C/hora. Esta cifra se ha tomado como referencia para estimar el coste laboral
teórico del proyecto.

Total estimado en trabajo: 4800 C

Presupuesto total estimado: 5100 C

1.4.3. Impacto

La creación de este sistema aporta múltiples beneficios desde el punto de vista técnico, académico y
profesional:

Impacto técnico: permite automatizar la recolección, enriquecimiento y visualización de IoCs,
integrando distintas tecnologı́as como APIs REST, bases de datos documentales y herramientas de
visualización.

Impacto académico: sirve como modelo de implementación de un sistema de inteligencia de
amenazas en contextos educativos, siendo replicable por estudiantes o investigadores.

Impacto profesional: capacita al desarrollador con competencias aplicables en el sector de la
ciberseguridad, especialmente en áreas de Threat Intelligence, análisis de datos y desarrollo backend.



10 CAPÍTULO 1. INTRODUCCIÓN

Impacto social: promueve el uso de herramientas abiertas y el intercambio de conocimiento,
favoreciendo una cultura de colaboración y defensa común frente a amenazas digitales.

Este proyecto puede escalarse fácilmente para integrar múltiples fuentes de datos, incluir nuevas capas
de análisis o desplegarse en entornos corporativos de mayor envergadura.

1.5. Organización del documento

Este Trabajo de Fin de Grado se organiza en los siguientes capı́tulos:

Capı́tulo 1: Introducción. Se presenta el contexto del proyecto, su motivación, objetivos generales
y especı́ficos, ası́ como el alcance del sistema desarrollado.

Capı́tulo 2: Planificación. Describe la metodologı́a de trabajo, el cronograma seguido y las
herramientas utilizadas para la gestión del proyecto.

Capı́tulo 3: Tecnologı́as utilizadas. Se explican en detalle las tecnologı́as, lenguajes, frameworks
y herramientas empleadas para desarrollar el sistema de Threat Intelligence.

Capı́tulo 4: Análisis. Se identifican los requisitos del sistema y se realiza un estudio de las fuentes
de IoCs y criterios para su selección y tratamiento.

Capı́tulo 5: Diseño. Presenta la arquitectura del sistema, la estructura de datos empleada y el diseño
de la puntuación de amenazas.

Capı́tulo 6: Implementación. Se detalla cómo se ha llevado a cabo la implementación técnica del
sistema, incluyendo el backend en Flask, la integración con Elasticsearch y la interfaz web.

Capı́tulo 7: Pruebas. Se documentan las pruebas realizadas para verificar la correcta funcionalidad
del sistema, ası́ como algunos ejemplos de casos reales procesados.

Capı́tulo 8: Conclusiones. Recoge los resultados obtenidos, las principales conclusiones y posibles
lı́neas de mejora o evolución futura del sistema.



Capı́tulo 2

Planificación del Proyecto

En este capı́tulo se lleva a cabo la planificación del proyecto siguiendo la guı́a de PMBOK [?]. La
elaboración del sistema definido en los objetivos se realiza mediante un proceso iterativo, ya que se puede
dividir fácilmente en etapas bien definidas.

En primer lugar, se realiza una planificación inicial con el diseño de las tareas a partir de las etapas del
proyecto definidas en la sección Etapas, en la que además se definen los hitos y por tanto los entregables.
Posteriormente, mediante un cronograma se muestra la gestión del tiempo. También se realiza la gestión
de los riesgos que pueden aparecer a lo largo del proyecto y por último se realiza una estimación de los
costes materiales y laborales.

2.1. Planificación del Proyecto

2.1.1. Planificación inicial

La planificación inicial del proyecto se construyó siguiendo una guı́a de alto nivel orientada a proyectos
de inteligencia de amenazas, tal como fue recomendada por el tutor académico. Esta guı́a deriva de buenas
prácticas descritas en marcos como los de ENISA [3] y NIST [5], donde se promueve una aproximación
iterativa, basada en tareas funcionales con entregables parciales.

Dado que este proyecto no se basa en una arquitectura puramente software tradicional, no se estructuró
en fases como “análisis”, “diseño” o “implementación”, sino que se organizó por bloques de funcionalidad
operativa. Cada fase se abordó con un enfoque de desarrollo incremental, mediante la creación de
prototipos funcionales que permitieron validar los avances y detectar ajustes necesarios antes de continuar
con la siguiente etapa.

11



12 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

La dedicación estimada fue de 15–20 horas semanales, distribuidas en sesiones de 3 a 4 horas diarias.
El proyecto se dividió en seis grandes bloques funcionales:

Fase 1 – Preparación del entorno (Semanas 1–2): instalación de tecnologı́as base (Python,
Elasticsearch, Kibana, Flask), exploración de la API de OTX y verificación del flujo de conexión
inicial.

Fase 2 – Recolección de datos (Semanas 3–4): desarrollo de un script robusto en Python para la
obtención automatizada de IoCs desde OTX, guardado en CSV y validación de estructura de datos.

Fase 3 – Enriquecimiento y geolocalización (Semanas 5–6): integración de metadatos (tags,
actores, TTPs, fechas), y aplicación de geolocalización mediante GeoLite2 para direcciones IP.

Fase 4 – Scoring y deduplicación (Semanas 7–8): implementación de un sistema de puntuación
contextual configurable y detección de duplicados mediante consulta previa en Elasticsearch.

Fase 5 – Visualización (Semanas 9–10): diseño de dashboards en Kibana y creación de un
dashboard HTML en Flask, incluyendo gráficos interactivos y filtros personalizados.

Fase 6 – Validación y documentación (Semanas 11–12): integración final, pruebas de rendimiento,
documentación técnica y preparación de entregables.

En cada fase se construyó un prototipo parcial o funcional (por ejemplo, script de descarga, ı́ndice
en Elasticsearch, interfaz HTML), que sirvió para evaluar el resultado antes de continuar. Este enfoque
ayudó a identificar posibles mejoras sin comprometer el avance general.

Figura 2.1: Planificación inicial del proyecto por fases

2.1.2. Seguimiento del proyecto

Durante el desarrollo del proyecto se adoptó un enfoque de seguimiento iterativo, apoyado en la
construcción de prototipos funcionales en cada fase. Este enfoque permitió verificar el cumplimiento de
los objetivos parciales y ajustar las tareas y tiempos en función de la experiencia real acumulada.

En lugar de seguir un cronograma cerrado, se evaluaba periódicamente el progreso, lo que permitió
aplicar correcciones tempranas. Por ejemplo, el diseño del dashboard HTML resultó más complejo de lo
esperado, lo que requirió redistribuir tiempo desde otras fases. Por el contrario, la automatización de la
descarga desde OTX se implementó de forma más rápida de lo previsto.



2.2. GESTIÓN DE RIESGOS 13

El tutor académico fue informado semanalmente del avance, y los hitos se validaron mediante entregas
funcionales de scripts, configuraciones de Elasticsearch, y prototipos visuales. Esta dinámica proporcionó
un marco ágil, pero suficientemente estructurado, para garantizar la calidad del sistema final.

La siguiente tabla recoge las tareas principales, comparando la duración estimada en la planificación
inicial con la duración real obtenida tras finalizar el proyecto:

Tarea principal Duración estimada Duración real

Preparación del entorno y
pruebas iniciales

2 semanas 2 semanas

Recolección de IoCs desde
OTX

2 semanas 1.5 semanas

Enriquecimiento, normaliza-
ción y geolocalización

2 semanas 2 semanas

Scoring y detección de dupli-
cados

2 semanas 2.5 semanas

Visualización: Kibana +
HTML Flask

2 semanas 3 semanas

Validación final y documenta-
ción técnica

2 semanas 2 semanas

Tabla 2.1: Comparativa entre planificación estimada y desarrollo real del proyecto

El prototipado continuo permitió detectar problemas tempranos (como la configuración de filtros
dinámicos o los ı́ndices geográficos), lo que favoreció una mejor asignación de tiempos. Esta flexibilidad
fue clave para mantener el proyecto alineado con sus objetivos funcionales, garantizando la entrega de un
sistema completo, funcional y reutilizable.

2.2. Gestión de Riesgos

La gestión de riesgos del proyecto se ha basado en la clasificación de Barry Boehm, que distingue varios
tipos de riesgos asociados al desarrollo de sistemas técnicos: tecnológicos, de personal, de planificación,
organizativos y externos. Cada riesgo identificado ha sido evaluado en términos de su probabilidad de
ocurrencia y el impacto potencial en los objetivos del proyecto.



14 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

A continuación se muestra una tabla simplificada que recoge los principales riesgos detectados, su
categorı́a, valoración y estrategia de respuesta:

Riesgo Categorı́a Prob. Impacto Mitigación Contingencia

Fallos en la conexión
con la API de OTX

Técnico Alta Media Uso de logs y control
de errores. Tests pre-
vios con curl.

Reintento automático
o cambio temporal a
carga local desde CSV.

Complejidad inespe-
rada en visualización
HTML

Técnico Media Alta Prototipado incremen-
tal. Uso de librerı́as co-
nocidas (Plotly, Flask).

Sustitución por dash-
board básico en Kiba-
na si hay bloqueo.

Falta de tiempo por
carga académica si-
multánea

Personal Alta Alta Planificación conserva-
dora. Reservas de tiem-
po de ajuste.

Reorganización de ta-
reas para centrar en lo
esencial.

Cambios en los re-
quisitos o recomen-
daciones del tutor

Organizativo Media Media Contacto frecuente con
el tutor, entregas par-
ciales.

Adaptación del calen-
dario a tareas crı́ticas.

Pérdida de datos o
daño del entorno de
trabajo

Externo Baja Alta Backups regulares del
repositorio y entorno
virtual.

Restauración desde co-
pia en nube (GitHub,
GDrive).

Tabla 2.2: Principales riesgos identificados y estrategias de mitigación

Con el fin de visualizar de forma más clara la distribución de riesgos, se ha construido una matriz
personalizada que representa la probabilidad frente al impacto para cada caso identificado. Esta matriz
permite priorizar acciones y establecer el umbral de tolerancia según la naturaleza especı́fica del proyecto.



2.3. PRESUPUESTO DEL PROYECTO 15

Figura 2.2: Matriz de impacto y probabilidad de los riesgos del proyecto

2.3. Presupuesto del Proyecto

Aunque el presente trabajo no ha supuesto un coste económico real, es posible estimar su valor en un
contexto profesional, considerando tanto la dedicación invertida como los recursos necesarios para su
desarrollo y eventual despliegue en producción.

Criterios de estimación

La estimación del coste del proyecto se ha realizado según dos bloques principales:

Coste de desarrollo: cálculo del valor económico del trabajo técnico en base a un perfil junior
multitarea, que ha ejercido funciones de desarrollo backend, análisis, visualización de datos y
documentación técnica.

Coste de infraestructura: simulación del coste de ejecución en un entorno de nube pública
(Amazon Web Services) utilizando instancias estándar EC2.



16 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Coste estimado de desarrollo

El desarrollo se ha realizado en 12 semanas, con una media de 20 horas semanales, lo que equivale a
un total de 240 horas. Como referencia salarial, se ha tomado un perfil técnico junior en España, con un
coste de 10C/hora según datos de Glassdoor [4].

No obstante, en un escenario real de contratación, el coste para el empresario incluirı́a cotizaciones
sociales, seguros, licencias, etc. Por ello, se estima un factor de coste empresarial del 1,5 sobre el coste
base, resultando en un coste real de 15C/hora.

240 horas × 15/hora = 3.600C

Coste estimado de infraestructura en la nube

En caso de querer desplegar el sistema en producción, se ha simulado su ejecución en Amazon
Web Services (AWS), utilizando una instancia t3.medium (2 vCPU, 4 GB RAM), suficiente para alojar
Elasticsearch, Flask y servicios auxiliares en entorno de pruebas. El coste aproximado serı́a:

Instancia EC2 t3.medium (on-demand): 0,0416C/h × 24h × 30 dı́as 30C/mes

Almacenamiento EBS 50 GB SSD: 0,10C/GB/mes × 50 5C/mes

Transferencia de datos estimada (5 GB/mes): incluido en capa gratuita

Total mensual estimado de infraestructura: 35C/mes

Resumen del presupuesto estimado

Concepto Coste (C)

Desarrollo técnico (240h × 15C/h) 3.600C

Infraestructura en AWS (1 mes) 35C

Licencias y herramientas (software libre) 0C

Coste total estimado 3.635C

Tabla 2.3: Presupuesto preliminar del proyecto



2.3. PRESUPUESTO DEL PROYECTO 17

Este presupuesto representa una aproximación realista del valor económico del proyecto, útil para
evaluar su viabilidad futura en un entorno profesional. La utilización de software libre y el bajo consumo
de infraestructura hacen que el sistema sea fácilmente escalable y sostenible en costes.



18 CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO



Capı́tulo 3

Tecnologı́as utilizadas

El desarrollo del presente sistema de Threat Intelligence ha requerido la integración y uso de múltiples
tecnologı́as, tanto a nivel de backend como de visualización y gestión de datos. Dado que uno de los
objetivos clave del proyecto es la posibilidad de ser replicado por otros usuarios sin coste, se ha priorizado
el uso de herramientas de código abierto, ampliamente documentadas y con una comunidad activa. Este
capı́tulo expone las tecnologı́as seleccionadas, su papel dentro del sistema, y una evaluación crı́tica basada
en la experiencia adquirida durante el desarrollo.

Cada tecnologı́a será presentada desde tres enfoques: su propósito dentro del sistema, sus caracterı́sticas
principales y una evaluación propia de ventajas, limitaciones y posibles alternativas.

3.1. Python

Descripción general

Python es un lenguaje de programación de alto nivel, interpretado y multiparadigma, que soporta
programación imperativa, orientada a objetos y funcional. Fue creado por Guido van Rossum y publicado
por primera vez en 1991. Su diseño enfatiza la legibilidad del código y la productividad del desarrollador
gracias a una sintaxis clara y concisa. Hoy en dı́a, Python es uno de los lenguajes más utilizados
en el ámbito académico y profesional, siendo especialmente popular en áreas como ciencia de datos,
automatización de tareas, desarrollo web y ciberseguridad [6]. En este proyecto se ha utilizado Python
en su versión 3.11.8.

Su popularidad ha crecido de forma exponencial en los últimos años. Según el ı́ndice TIOBE de junio
de 2025, Python es el lenguaje más popular del mundo por cuarto año consecutivo [7]. También es el
lenguaje más enseñado en universidades, tanto para iniciación a la programación como para asignaturas

19



20 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

de análisis de datos o inteligencia artificial [8].

Rol dentro del proyecto

Python ha constituido la columna vertebral del sistema de Threat Intelligence desarrollado. Se ha
utilizado en todos los niveles de la arquitectura software, desde la automatización de descargas de IoCs
(Indicadores de Compromiso) hasta el procesamiento, enriquecimiento, inserción en la base de datos y
visualización web mediante un backend personalizado. Las principales funciones desarrolladas en Python
han sido:

Descarga automatizada de IoCs desde la API REST de Open Threat Exchange (OTX), utilizando la
librerı́a requests.

Transformación y enriquecimiento de datos mediante pandas, para aplicar limpieza, normalización
y estructuración de campos como type, indicator, tags, first seen, related actors,
etc.

Implementación del algoritmo de scoring que evalúa el riesgo de un IoC en función de criterios
como antigüedad, origen geográfico, TTPs asociadas y presencia en múltiples fuentes.

Indexación en Elasticsearch, utilizando la librerı́a oficial elasticsearch-py, que permite la
inserción y consulta eficiente de documentos JSON.

Geolocalización de direcciones IP mediante la librerı́a geoip2, accediendo a la base de datos
GeoLite2 de MaxMind.

Desarrollo del backend web del dashboard HTML, implementado con el microframework Flask.

Esta versatilidad permite a Python asumir tanto tareas de scripting como de backend web, lo cual
reduce la complejidad del proyecto y evita dependencias con múltiples lenguajes.

Ventajas y puntos fuertes

El uso de Python ha ofrecido numerosas ventajas en el desarrollo del sistema:

Productividad y rapidez de desarrollo: gracias a su sintaxis clara, se ha podido desarrollar y
depurar código rápidamente, reduciendo el tiempo de implementación y facilitando la integración
entre componentes [9].



3.1. PYTHON 21

Amplio ecosistema de librerı́as: se dispone de bibliotecas maduras y bien documentadas para
prácticamente cualquier tarea, desde acceso a APIs (requests) hasta visualización (plotly) o
bases de datos (elasticsearch, sqlite3, sqlalchemy).

Comunidad activa y soporte técnico: Python cuenta con una de las comunidades más activas
del mundo del software libre, lo cual se traduce en abundante documentación, foros de soporte y
ejemplos de código.

Facilidad de aprendizaje: la curva de aprendizaje de Python es baja, lo cual ha permitido centrar
los esfuerzos en el diseño del sistema y el análisis de amenazas, en lugar de en la sintaxis o
depuración compleja.

Limitaciones observadas

A pesar de sus muchas ventajas, también se han identificado algunas limitaciones durante el desarrollo:

Rendimiento: al ser un lenguaje interpretado y de tipado dinámico, Python no está optimizado para
tareas de computación intensiva o concurrencia de bajo nivel. Sin embargo, esto no ha supuesto un
cuello de botella en este proyecto, dado que las operaciones son mayoritariamente I/O-bound y no
CPU-bound.

Gestión de entornos: en proyectos con múltiples dependencias, es imprescindible usar entornos
virtuales (venv, poetry, conda) para evitar conflictos entre versiones de librerı́as. Esto añade
una complejidad inicial en la configuración del entorno de trabajo.

Despliegue en producción: aunque es ideal para prototipado y desarrollo, desplegar aplicacio-
nes Python a producción (por ejemplo, usando gunicorn y nginx) requiere conocimientos
adicionales, especialmente en comparación con lenguajes más orientados a sistemas como Go o
Java.

Alternativas consideradas

Durante la fase de diseño, se valoraron otras opciones tecnológicas para el núcleo del sistema:

Go (Golang): ofrece mejor rendimiento y compilación a binario estático, ideal para microservi-
cios. Sin embargo, su ecosistema es menos completo en librerı́as especı́ficas de ciberseguridad o
visualización.

Java: ofrece robustez y madurez para sistemas empresariales, pero introduce una gran sobrecarga
sintáctica, poco adecuada para un desarrollo ágil en el contexto de un TFG.



22 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

Node.js (JavaScript): muy popular para desarrollo web, pero menos orientado a tareas de análisis
de datos y manipulación de ficheros estructurados.

Finalmente, Python fue elegido por su equilibrio entre facilidad de uso, madurez de bibliotecas,
integración con Elasticsearch y capacidades de scripting.

Valoración final

Python ha resultado ser una elección adecuada, alineada tanto con los objetivos técnicos como
académicos del proyecto. Su uso ha facilitado la implementación de un sistema completo y funcional,
promoviendo además buenas prácticas de ingenierı́a software: modularidad, reutilización de código,
claridad en la documentación y portabilidad. Su popularidad en el sector de la ciberseguridad y análisis
de amenazas refuerza su idoneidad para este tipo de sistemas [10, 11].

3.2. Flask

Descripción general. Flask es un microframework de desarrollo web escrito en Python, diseñado
para ser ligero, flexible y fácil de extender. Fue creado por Armin Ronacher en 2010 como parte de la
iniciativa Pocoo. A diferencia de frameworks más complejos como Django, Flask sigue una filosofı́a
minimalista: proporciona lo esencial para crear una aplicación web (enrutamiento, servidor, plantillas),
dejando al desarrollador la libertad de decidir cómo organizar el resto del sistema [12]. En este proyecto
se ha utilizado Flask en su versión 2.3.3.

Está basado en el estándar WSGI (Web Server Gateway Interface) y utiliza Jinja2 como motor de
plantillas. Esta simplicidad lo convierte en una opción ideal para proyectos académicos, APIs REST o
sistemas con lógica de backend personalizada, como el caso de este sistema de Threat Intelligence.

Uso en el proyecto. Flask ha sido utilizado para implementar el dashboard web personalizado, una
interfaz alternativa a Kibana que permite visualizar los IoCs procesados y almacenados en Elasticsearch.
Su objetivo principal es ofrecer una visualización accesible a usuarios sin conocimientos técnicos, con
filtros interactivos y gráficos generados dinámicamente mediante JavaScript y Plotly.

Las funcionalidades implementadas con Flask han sido:

Desarrollo del backend web para servir páginas HTML con los datos actualizados.

Comunicación con Elasticsearch a través de consultas HTTP y parsing de resultados.



3.2. FLASK 23

Enrutamiento dinámico para acceder a las vistas de tabla principal, visualización gráfica (/charts)
y refresco de IoCs (/refresh).

Integración con templates Jinja2 para mostrar datos filtrables y ordenables desde el navegador.

Esta solución permite separar el componente de visualización del motor de análisis y almacenamiento,
siguiendo una arquitectura modular y escalable.

Ventajas observadas. Durante el desarrollo del sistema, Flask ha ofrecido múltiples ventajas:

Facilidad de aprendizaje: su estructura simple y la claridad de su documentación han permitido una
implementación rápida sin curva de aprendizaje pronunciada.

Flexibilidad total: no impone estructura de carpetas, ORM ni componentes forzados, lo que lo hace
ideal para proyectos personalizados.

Compatibilidad con librerı́as externas: se ha integrado sin problemas con bibliotecas como
elasticsearch, plotly o geoip2.

Despliegue sencillo en local o producción: mediante servidores ligeros como gunicorn, Flask
puede escalar de pruebas locales a entornos productivos reales.

Limitaciones encontradas. A pesar de sus fortalezas, se identificaron algunas limitaciones:

Ausencia de funcionalidades por defecto: funcionalidades como autenticación, sesiones o validación
de formularios deben implementarse manualmente o mediante extensiones, lo que puede aumentar
la complejidad en sistemas más grandes.

Estructura no opinada: si bien esto permite flexibilidad, también puede provocar desorganización
en equipos grandes o en proyectos de larga duración sin un diseño inicial sólido.

Menor rendimiento que frameworks asincrónicos: al ser sincrónico por defecto, Flask no es ideal
para aplicaciones que requieran manejo intensivo de conexiones concurrentes, como WebSockets.

Alternativas consideradas. Se valoraron las siguientes alternativas a Flask:

Django: framework completo con ORM, autenticación y panel de administración incluidos. Fue
descartado por su complejidad innecesaria para un sistema de visualización liviano.



24 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

FastAPI: más moderno y eficiente, basado en Python ası́ncrono y con validación automática de
datos usando pydantic. Aunque prometedor, su sintaxis y despliegue requerı́an una curva de
aprendizaje adicional.

Dash: framework especı́fico para dashboards interactivos en Python. Se descartó por sus limitaciones
de personalización del frontend y falta de control del backend.

Valoración final. Flask ha resultado una elección adecuada para implementar un sistema web ligero,
rápido de desarrollar y fácilmente integrable con el resto de componentes Python del sistema. Su estructura
ha permitido implementar una interfaz accesible y funcional sin necesidad de tecnologı́as adicionales ni
frameworks pesados.

3.3. Elasticsearch

Descripción general. Elasticsearch es un motor de búsqueda y análisis de texto en tiempo real,
distribuido y de código abierto, basado en Apache Lucene. Fue desarrollado originalmente por Shay
Banon en 2010 y es mantenido por Elastic NV. Elasticsearch permite almacenar, indexar y consultar
grandes volúmenes de datos semiestructurados, utilizando un modelo documental (JSON) y una potente
sintaxis de consulta declarativa llamada Query DSL [13]. En este proyecto se ha utilizado Elasticsearch
en su versión 8.13.0.

Gracias a su escalabilidad horizontal, tolerancia a fallos y capacidades analı́ticas, Elasticsearch se ha
convertido en una herramienta de referencia en proyectos de análisis de datos, observabilidad (logging,
métricas), ciberseguridad y motores de recomendación.

Uso en el proyecto. En el sistema de Threat Intelligence desarrollado, Elasticsearch ha sido utilizado
como base de datos documental principal para almacenar y consultar los Indicadores de Compromiso
(IoCs). Su elección se ha basado en las siguientes necesidades:

Indexación flexible: cada IoC se almacena como un documento JSON, lo que permite añadir
campos enriquecidos como geolocalización, score, TTPs o actores asociados sin necesidad de
esquema rı́gido.

Búsqueda eficiente: permite consultas rápidas por cualquier campo (tipo, paı́s, fecha, etc.), incluso
sobre conjuntos de datos con decenas de miles de elementos.

Integración con visualización: se puede conecta de forma nativa con Kibana para la creación de
dashboards interactivos.



3.3. ELASTICSEARCH 25

Compatibilidad con Python: se ha utilizado el cliente oficial elasticsearch-py para insertar,
consultar y actualizar documentos directamente desde los scripts del sistema.

El ı́ndice creado contiene campos normalizados como indicator, type, description, country,
threat score, first seen, tags y otros metadatos. Además, se ha habilitado un pipeline de in-
gestión para controlar la estructura y evitar duplicados.

Ventajas observadas. Elasticsearch ha demostrado ser una herramienta eficaz y adecuada para el tipo
de datos tratados:

Rendimiento y escalabilidad: permite manejar decenas de miles de documentos con baja latencia,
tanto en inserción como en búsqueda.

Modelo flexible: el uso de JSON como estructura de almacenamiento facilita el enriquecimiento
progresivo de datos sin redefinir el esquema.

Consultas complejas: gracias a Query DSL se pueden aplicar filtros compuestos, agregaciones
estadı́sticas y búsquedas por coincidencia parcial.

Visualización integrada: su integración con Kibana permite construir dashboards de forma rápida
sin necesidad de programar visualizaciones desde cero.

Limitaciones encontradas. Pese a sus múltiples ventajas, también se detectaron algunas dificultades:

Curva de aprendizaje inicial: la sintaxis de las consultas y el diseño de ı́ndices requiere cierta
experiencia previa.

Uso intensivo de memoria: especialmente en entornos locales o con poca RAM, Elasticsearch puede
consumir recursos considerables.

Gestión de duplicados: aunque se puede controlar con lógica externa (usando el campo indicator
como ID), no existe una deduplicación automática nativa.

Persistencia no relacional: su modelo documental, si bien flexible, puede ser problemático si se
requieren relaciones entre entidades complejas.

Alternativas consideradas. Durante la fase de diseño, se estudiaron otras posibles tecnologı́as de
almacenamiento:



26 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

MongoDB: también basado en documentos JSON, pero con menor potencia en búsquedas complejas.
Más orientado a almacenamiento general que a análisis.

PostgreSQL: sistema relacional robusto con soporte para JSON y extensiones geográficas, pero
menos eficiente en búsquedas de texto libre o agregaciones rápidas.

Apache Solr: basado en Lucene, como Elasticsearch, pero con menor integración visual y más
orientado a entornos empresariales.

Se optó por Elasticsearch por su excelente equilibrio entre rendimiento, flexibilidad y visualización
integrada.

Valoración final. La adopción de Elasticsearch ha permitido construir un sistema ágil, escalable y
centrado en el análisis de amenazas, con consultas ricas y visualización inmediata. Su combinación con
Kibana y el ecosistema Elastic lo convierte en una solución ideal para proyectos de ciberseguridad y
monitorización de eventos.

3.4. GeoLite2

Descripción general. GeoLite2 es una base de datos de geolocalización IP gratuita, mantenida por
la empresa MaxMind. Permite asociar direcciones IPv4 o IPv6 con información geográfica como paı́s,
ciudad, continente, ASN (Autonomous System Number) y organización. La base de datos se distribuye en
formato binario MMDB (MaxMind DB) y puede ser consultada mediante la librerı́a oficial geoip2 en
múltiples lenguajes de programación, incluido Python [14]. En este proyecto se ha utilizado la librerı́a
geoip2 en su versión 4.7.0.

GeoLite2 se ofrece bajo la licencia Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) [15],
lo que la convierte en una opción popular para proyectos académicos, de investigación o de seguridad
informática. También existe una versión comercial de mayor precisión: GeoIP2.

Uso en el proyecto. GeoLite2 ha sido empleada en este sistema como herramienta para enriquecer
los IoCs que contienen direcciones IP. Su finalidad es añadir contexto geográfico que permita mejorar la
valoración de riesgo (threat score) y facilitar el análisis visual posterior.

En concreto, se utilizó la base de datos GeoLite2-Country.mmdb, que permite mapear cada IP a
un paı́s y continente. Esta información se añade como nuevos campos al documento antes de ser indexado
en Elasticsearch.



3.4. GEOLITE2 27

Se empleó la librerı́a oficial geoip2 en Python para realizar consultas rápidas desde archivo
local [16].

La búsqueda por IP se realiza en tiempo de ejecución, justo antes del almacenamiento en Elastic-
search.

Se extraen los códigos ISO del paı́s y continente, además del nombre legible.

Este proceso de enriquecimiento ha permitido añadir valor contextual sin necesidad de conexiones
externas ni APIs de pago, cumpliendo ası́ con el requisito de reproducibilidad del entorno.

Ventajas observadas. La integración de GeoLite2 ha aportado múltiples beneficios al sistema:

Consulta local y rápida: al residir en disco, no depende de conectividad externa ni genera latencia
de red.

Datos estructurados y precisos a nivel de paı́s: permite visualizaciones geográficas precisas en
mapas o dashboards.

Licencia libre para uso académico: cumple con los requisitos éticos y legales del proyecto [15].

Fácil integración con Python: el cliente geoip2 tiene una interfaz clara y bien documentada [16].

Limitaciones encontradas. Durante su uso se han detectado ciertas limitaciones inherentes al producto:

Nivel de precisión limitado: la versión gratuita sólo incluye datos a nivel de paı́s. Para ciudad o
ASN es necesario GeoIP2 (comercial).

Datos estáticos: la base debe actualizarse manualmente, ya que las asignaciones IP cambian con el
tiempo.

Cobertura parcial en direcciones privadas o reservadas: las IPs internas (como 192.168.x.x) o de
pruebas no tienen mapeo geográfico válido.

Alternativas consideradas. Se analizaron otras opciones de geolocalización IP:

IPinfo.io: servicio web con API REST y versión gratuita limitada. Requiere conexión a internet y
gestión de claves API.

DB-IP Free Edition: similar a GeoLite2, pero con menor documentación y comunidad.



28 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

Whois + ASN parsing: solución manual basada en registros públicos, menos robusta y más
compleja de automatizar.

Se optó por GeoLite2 por su equilibrio entre calidad, licencia, facilidad de uso y soporte para integración
local.

Valoración final. GeoLite2 ha sido una pieza clave en la fase de enriquecimiento del sistema, pro-
porcionando metadatos geográficos esenciales para el análisis contextual de amenazas. Su integración
sencilla, su fiabilidad y su bajo coste la convierten en una tecnologı́a muy recomendable para sistemas de
Threat Intelligence o análisis de seguridad a nivel global.

3.5. Plotly

Descripción general. Plotly es una biblioteca de visualización interactiva para lenguajes como Python,
JavaScript, R y Julia. En su versión para Python (plotly.py), permite generar gráficos dinámicos
basados en D3.js, WebGL y SVG, que pueden ser renderizados en navegadores web o embebidos en
aplicaciones web usando frameworks como Flask o Dash [17]. En este proyecto se ha utilizado la
biblioteca plotly en su versión 5.22.0.

La principal ventaja de Plotly frente a bibliotecas como Matplotlib o Seaborn es su interactividad: el
usuario puede acercar, filtrar, seleccionar, exportar y explorar datos directamente sobre el gráfico generado.
Esto lo convierte en una herramienta especialmente útil en proyectos de analı́tica exploratoria, reporting
dinámico y dashboards de ciberseguridad.

Uso en el proyecto. Plotly se ha utilizado en el sistema como componente de visualización dentro del
dashboard HTML personalizado (desarrollado con Flask). Se ha empleado principalmente para representar
los datos procesados desde Elasticsearch en forma de gráficos interactivos accesibles desde el navegador.

Entre las visualizaciones implementadas con Plotly destacan:

Gráfico de barras del número de IoCs por tipo (IP, URL, hash, etc.).

Gráfico de barras de media de threat score por tipo de indicador.

Gráfico de barras horizontales con el top 10 de tags por puntuación promedio.

Nube de palabras dinámica (integrada mediante HTML/CSS complementario).



3.5. PLOTLY 29

Los datos necesarios para estos gráficos son obtenidos mediante consultas al ı́ndice de Elasticsearch,
parseados en Python y transformados en objetos plotly.graph objects antes de ser enviados al
navegador como HTML embebido.

Ventajas observadas. Plotly ha ofrecido múltiples ventajas frente a otras alternativas:

Gráficos interactivos sin necesidad de JavaScript: permite construir visualizaciones complejas
directamente desde Python, con interactividad incorporada.

Integración con Flask: los gráficos pueden exportarse a HTML y embeberse fácilmente en las
plantillas del dashboard.

Amplio repertorio de gráficos: incluye soporte para histogramas, series temporales, diagramas de
dispersión, mapas geográficos, cajas de bigotes, entre otros.

Personalización avanzada: permite modificar estilos, colores, anotaciones y animaciones mediante
atributos JSON.

Limitaciones encontradas. A pesar de su potencia visual, también se observaron ciertas limitaciones:

Tamaño de carga en el navegador: al incrustar múltiples gráficos, los tiempos de renderizado en el
cliente pueden incrementarse, especialmente con muchos puntos de datos.

Mayor consumo de memoria: tanto en el servidor como en el navegador, debido a la generación
previa del HTML completo de cada gráfico.

Dependencia de JavaScript y D3.js: aunque no se escribe directamente, la librerı́a genera código
que requiere renderizado por el navegador.

Alternativas consideradas. Se analizaron varias bibliotecas y herramientas antes de elegir Plotly:

Matplotlib: más clásico, robusto y adecuado para gráficos estáticos. Se descartó por su falta de
interactividad.

Dash: framework de dashboards de Plotly, muy potente pero requiere una arquitectura dedicada
tipo SPA (Single Page Application).

Chart.js o D3.js: potentes en JavaScript puro, pero menos integrables directamente desde Python.



30 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

Se eligió Plotly por su equilibrio entre facilidad de uso desde Python, calidad visual y grado de
interactividad.

Valoración final. Plotly ha sido una tecnologı́a clave para dotar al sistema de una visualización
avanzada y atractiva, sin requerir conocimientos de frontend ni JavaScript. Su integración con Flask ha
permitido mantener una arquitectura simple pero potente, facilitando el análisis visual y la comprensión
de patrones en los datos IoC por parte del usuario final.

3.6. APIs REST

Descripción general. Una API REST (Representational State Transfer) es una interfaz que permite
la comunicación entre sistemas mediante operaciones estándar del protocolo HTTP (GET, POST, PUT,
DELETE). Fue propuesta por Roy Fielding en su tesis doctoral en el año 2000 [18] y se ha consolidado
como uno de los paradigmas más utilizados para el diseño de servicios web debido a su simplicidad,
escalabilidad y compatibilidad con múltiples plataformas. En este proyecto, el acceso a APIs REST se
ha realizado mediante la biblioteca requests (v2.31.0) y el backend web desarrollado con Flask
(v2.3.3).

Las APIs REST se basan en recursos identificables mediante URLs, intercambian información en
formatos estándar como JSON o XML, y utilizan métodos HTTP para definir acciones. Son especialmente
adecuadas para aplicaciones distribuidas, integraciones entre servicios y consumo de datos abiertos (Open
Data) [19].

Uso en el proyecto. El sistema desarrollado consume datos desde una API REST externa: Open Threat
Exchange (OTX), una plataforma de threat intelligence gestionada por AT&T Cybersecurity. Esta API
permite acceder a pulsos (pulses) que contienen múltiples IoCs generados por usuarios, organizaciones o
comunidades de ciberseguridad [20].

El uso de APIs REST ha sido esencial en varias fases del sistema:

Autenticación por API Key: el acceso a OTX requiere enviar una clave privada como cabecera en
cada solicitud.

Descarga paginada de pulsos: se ha desarrollado una lógica de iteración para recorrer páginas de
resultados hasta completar la recolección de IoCs.

Parámetros de filtrado temporal: el sistema consulta únicamente los pulsos creados o actualizados
en los últimos dı́as, optimizando el volumen de datos.



3.6. APIS REST 31

Procesamiento del formato JSON: se ha utilizado la librerı́a requests para realizar peticiones
HTTP y json para deserializar la respuesta en objetos Python.

El endpoint utilizado ha sido https://otx.alienvault.com/api/v1/pulses/subscribed,
con parámetros de fecha y lı́mite de resultados.

Ventajas observadas. El uso de APIs REST en este sistema ha proporcionado múltiples ventajas:

Acceso automatizado y actualizado a fuentes de amenazas: permite descargar IoCs de forma
periódica sin intervención humana.

Formato JSON estructurado: facilita el parseo y tratamiento de datos en Python sin necesidad de
transformaciones intermedias.

Interoperabilidad: el protocolo HTTP es universal y compatible con firewalls, proxies y sistemas
heterogéneos.

Facilidad de integración en scripts: con pocas lı́neas de código se puede establecer comunicación
con servicios externos.

Limitaciones encontradas. A pesar de su robustez, se observaron algunos desafı́os durante su integra-
ción:

Tasa de peticiones limitada (rate limit): OTX impone un lı́mite de peticiones por minuto, lo que
obliga a incluir mecanismos de espera o reintentos.

Falta de documentación detallada para ciertos campos: algunos atributos devueltos por la API no
están explicados en la documentación oficial [20].

Dependencia de servicio externo: si el servicio de OTX no está disponible, la recolección de
indicadores se interrumpe.

Alternativas consideradas. Se evaluaron otras APIs públicas de threat intelligence, como:

AbuseIPDB: centrada en IPs maliciosas, pero requiere suscripción para acceso avanzado.

VirusTotal Public API: muy completa, pero limitada a 500 peticiones diarias y no centrada en
pulsos colaborativos.



32 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

La elección de OTX como principal se basó en su cobertura amplia, su modelo colaborativo, su
integración JSON y la experiencia comunitaria que lo respalda [20].

Valoración final. Las APIs REST han sido un componente fundamental del sistema, permitiendo
automatizar la recolección y actualización de IoCs en tiempo real. Su integración con Python y su bajo
coste de desarrollo las convierte en una herramienta indispensable para cualquier plataforma moderna de
threat intelligence.

3.7. Git

Descripción general. Git es un sistema de control de versiones distribuido, desarrollado por Linus
Torvalds en 2005. Está diseñado para gestionar proyectos de desarrollo software con eficiencia, seguridad
y flexibilidad. A diferencia de los sistemas de control de versiones centralizados, Git permite que cada
desarrollador tenga una copia completa del repositorio, lo que facilita el trabajo offline, la ramificación
(branching) y la fusión (merging) de cambios de forma eficiente [21]. En este proyecto se ha utilizado
Git en su versión 2.43.0.

Su adopción se ha extendido ampliamente en entornos profesionales, académicos y de software libre,
siendo utilizado tanto de forma local como en plataformas de colaboración remota como GitHub, GitLab
o Bitbucket.

Uso en el proyecto. Git ha sido utilizado en este proyecto como sistema de control de versiones y
plataforma de seguimiento del desarrollo. En concreto:

Se ha creado un repositorio Git privado alojado en GitLab, accesible a través de la cuenta institucio-
nal de la Universidad de Valladolid.

El repositorio contiene todo el código fuente: scripts de descarga y enriquecimiento de IoCs, configu-
ración de Elasticsearch, plantillas HTML, lógica Flask, archivos de configuración y documentación.

Se han utilizado ramas para separar etapas clave del proyecto (recolección, enriquecimiento,
visualización), facilitando el desarrollo modular.

Se ha empleado Git para documentar el histórico de cambios y justificar la evolución del proyecto.

Ventajas observadas. Git ha sido una herramienta fundamental para garantizar la organización y
trazabilidad del desarrollo:



3.7. GIT 33

Control completo del historial de cambios: permite comparar versiones, revertir errores y documen-
tar cada paso del proyecto.

Trabajo por ramas: facilita la experimentación y el desarrollo de funcionalidades independientes
sin afectar al código estable.

Integración con plataformas como GitLab: permite disponer de control de acceso, visibilidad
remota y sistema de issues y documentación integrada.

Uso habitual en la industria: utilizar Git refuerza la adecuación del proyecto a prácticas profesiona-
les modernas [21].

Limitaciones encontradas. El uso de Git, aunque ampliamente beneficioso, presenta algunos retos:

Curva de aprendizaje inicial: comandos como rebase, stash o la resolución de conflictos
pueden resultar complejos para usuarios sin experiencia previa.

Posibilidad de errores en la sincronización remota: especialmente en sistemas distribuidos donde
pueden surgir divergencias entre ramas locales y remotas.

Gestión de archivos grandes: Git no está optimizado para versiones de archivos binarios pesados o
bases de datos, lo que requiere usar herramientas adicionales como Git LFS.

Alternativas consideradas. Aunque Git es hoy en dı́a el estándar de facto, se consideraron otras
soluciones en fases tempranas del proyecto:

Subversion (SVN): sistema centralizado con mayor simplicidad, pero menos adecuado para flujos
de trabajo distribuidos.

Mercurial: similar a Git en enfoque distribuido, pero con menor adopción y ecosistema.

Backups manuales: descartados por su falta de trazabilidad y elevado riesgo de pérdida de
información.

Valoración final. El uso de Git ha sido decisivo para mantener una gestión ordenada del código y la
documentación del proyecto. Su integración con GitLab ha permitido asegurar la trazabilidad, facilitar
revisiones, y garantizar la reproducibilidad del sistema por otros usuarios o tutores.



34 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

3.8. Ubuntu/Linux

Descripción general. Ubuntu es una distribución del sistema operativo GNU/Linux basada en Debian,
mantenida por Canonical Ltd. Se caracteriza por su enfoque en la facilidad de uso, estabilidad, seguridad y
soporte comunitario. En su versión de servidor, Ubuntu Server ofrece un entorno sólido para aplicaciones
de red, contenedores, virtualización, bases de datos y servicios web [22]. En este proyecto se ha utilizado
Ubuntu Server en su versión 22.04 LTS.

El ecosistema Linux proporciona herramientas nativas de administración, scripting, monitorización,
automatización y redes, lo que lo convierte en una opción habitual para proyectos académicos, servidores
cloud y sistemas de ciberseguridad [23].

Uso en el proyecto. Todo el entorno de desarrollo, pruebas e integración del sistema ha sido implemen-
tado sobre una máquina virtual Ubuntu 22.04 LTS. La elección de esta plataforma se debe a su estabilidad,
compatibilidad con herramientas open source y adecuación a prácticas profesionales en el ámbito de la
seguridad informática.

Las tecnologı́as utilizadas (Python, Flask, Elasticsearch, GeoLite2, etc.) han sido instaladas y gestiona-
das desde el terminal de Ubuntu. Algunas tareas destacadas:

Instalación de paquetes mediante apt, pip y wget.

Gestión de servicios con systemctl para controlar Elasticsearch.

Automatización de scripts mediante cron.

Supervisión del uso de recursos mediante htop, netstat, y journalctl.

Ventajas observadas. Ubuntu/Linux ha ofrecido una base sólida y flexible para el desarrollo del
sistema:

Entorno ligero y configurable: ideal para máquinas virtuales o equipos con recursos limitados.

Compatibilidad con herramientas de código abierto: permite instalar y ejecutar sin conflictos todas
las dependencias necesarias.

Scripting y automatización: Bash y crontab permiten orquestar tareas como recolección o indexado
de IoCs.

Entorno alineado con la industria: la mayorı́a de plataformas cloud, entornos DevOps y herramien-
tas de seguridad están optimizadas para Linux [23].



3.9. VALORACIÓN GLOBAL 35

Limitaciones encontradas. Aunque ventajoso, el uso de Ubuntu también implica ciertos retos:

Mayor complejidad para usuarios no familiarizados: la administración por lı́nea de comandos
requiere curva de aprendizaje.

Gestión de dependencias: algunas librerı́as pueden tener conflictos o requerir compilación manual.

Compatibilidad con software privativo: ciertas herramientas comerciales de análisis o visualización
pueden no estar disponibles nativamente.

Alternativas consideradas. Se analizaron otras opciones para el entorno base del sistema:

Windows 11/WSL: más accesible para usuarios no técnicos, pero con menor estabilidad en servicios
como Elasticsearch.

Debian: más minimalista, pero requiere mayor configuración inicial.

Contenedores Docker: gran portabilidad, pero mayor complejidad para entornos académicos sin
experiencia previa.

Se optó por Ubuntu 22.04 por su equilibrio entre facilidad, documentación, soporte de comunidad y
estabilidad.

Valoración final. Ubuntu ha demostrado ser una plataforma robusta, segura y adecuada para el des-
pliegue y pruebas del sistema. Su uso ha contribuido a reproducibilidad, automatización y compatibilidad
con herramientas clave del ecosistema open source, aspectos fundamentales en proyectos de inteligencia
de amenazas.

3.9. Valoración global

El desarrollo del sistema de Threat Intelligence ha requerido la integración de múltiples tecnologı́as que
operan en distintas capas: adquisición de datos, almacenamiento, enriquecimiento, análisis y visualización.
Esta sección ofrece una valoración comparativa de las herramientas empleadas, atendiendo a criterios
como facilidad de uso, rendimiento, compatibilidad, curva de aprendizaje y escalabilidad.

Facilidad de integración. Tecnologı́as como Python, Flask y Elasticsearch se han integrado de forma
natural entre sı́, gracias a su diseño modular y la existencia de clientes oficiales bien documentados.
Destacan:



36 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS

Python: motor principal de lógica, extracción y visualización. Su comunidad, librerı́as y expresivi-
dad lo convierten en un pilar ideal para prototipos rápidos y sistemas de análisis.

Flask: ha facilitado la creación de una API REST personalizada y dashboards sin requerir un
framework complejo como Django.

GeoLite2 + Elasticsearch: la combinación de base de datos local y motor de búsqueda ha permitido
enriquecer y consultar IoCs con eficiencia.

Rendimiento y escalabilidad. A nivel de rendimiento, se ha observado:

Elasticsearch: ofrece búsquedas y agregaciones rápidas incluso con volúmenes medios de datos
(más de 40.000 IoCs), con escalabilidad horizontal si fuera necesario.

Kibana: permite explorar grandes volúmenes con filtros y visualizaciones en tiempo real, aunque
su rendimiento local depende de la memoria disponible [24].

Plotly: genera gráficos interactivos muy eficaces para conjuntos de datos medianos, con tiempos de
carga razonables en navegador.

Curva de aprendizaje. Las herramientas elegidas tienen distintas barreras de entrada:

Git y Linux: esenciales pero con cierta complejidad inicial; requieren tiempo hasta dominar sus
comandos y flujos.

Flask y APIs REST: accesibles para usuarios con experiencia básica en desarrollo web o Python.

Elasticsearch: más demandantes al inicio, especialmente por el uso de su lenguaje de consultas y
gestión de ı́ndices.

A pesar de ello, todas han demostrado ser tecnologı́as sostenibles para un entorno académico y
profesional.

Licencias y comunidad. Se ha priorizado el uso de herramientas de código abierto y con licencias
libres:

GeoLite2: licencia CC BY-SA 4.0 [15].

Flask, Plotly, Elasticsearch OSS, Python: licencias MIT, BSD o Apache 2.0.



3.9. VALORACIÓN GLOBAL 37

Git: software libre con licencia GPL.

Estas licencias han facilitado la replicación del proyecto sin restricciones comerciales y fomentan su
evolución futura.

Reflexión final. La combinación de tecnologı́as seleccionadas ha demostrado ser efectiva, robusta
y flexible para construir un sistema de Threat Intelligence funcional, extensible y visualmente útil. Su
diseño modular permite su despliegue tanto en entornos locales como remotos, y su arquitectura permite
futuras integraciones con nuevas fuentes, modelos de machine learning o sistemas de alerta en tiempo
real.

En resumen, el equilibrio alcanzado entre sencillez de desarrollo, potencia analı́tica y adaptabilidad a
escenarios reales respalda las elecciones tecnológicas realizadas a lo largo del proyecto.



38 CAPÍTULO 3. TECNOLOGÍAS UTILIZADAS



Capı́tulo 4

Análisis

4.1. Análisis del sistema desarrollado

El sistema de Threat Intelligence implementado se basa en una arquitectura modular orientada a la
automatización, enriquecimiento y visualización de Indicadores de Compromiso (IoCs). En esta sección
se realiza un análisis exhaustivo del comportamiento del sistema, evaluando aspectos funcionales, técnicos
y cualitativos, con el objetivo de validar su eficacia y justificar las decisiones de diseño adoptadas.

4.1.1. Análisis funcional

Desde una perspectiva funcional, el sistema ha sido diseñado para cumplir con los siguientes requisitos:

Recolección automatizada de IoCs desde la API de OTX,MalwareBazaar, ThreatFox y URLhaus.

Enriquecimiento de los IoCs con metadatos relevantes (tags, actores, TTPs, geolocalización, fechas,
etc.).

Almacenamiento en Elasticsearch con control de duplicados.

Cálculo automático de un threat score basado en criterios contextuales.

Visualización mediante dashboards en una interfaz HTML personalizada.

Capacidad de actualización y escalabilidad para añadir nuevas fuentes.

Se ha verificado que todas estas funcionalidades operan de forma coherente y sincronizada. La
modularidad del sistema ha facilitado la depuración de errores y la incorporación de nuevas mejoras sin
comprometer la estabilidad global.

39



40 CAPÍTULO 4. ANÁLISIS

4.1.2. Análisis técnico

A nivel técnico, se evaluaron los principales componentes en función de su rendimiento, escalabilidad
y facilidad de mantenimiento:

Backend y recolección

La descarga de IoCs desde OTX se implementa mediante peticiones paginadas y autenticación por API
key. El sistema es capaz de recolectar más de 26.000 IoCs en menos de 10 minutos en pruebas locales, sin
incidencias de latencia o bloqueo.

Normalización y enriquecimiento

Gracias al uso de pandas, se logra transformar los datos de entrada a una estructura estandarizada
que incluye campos como uuid, type, indicator, first seen, tags o related actors.
Además, se enriquecen con datos de geolocalización extraı́dos desde la base de datos GeoLite2.

Control de duplicados

La lógica de deduplicación implementa una búsqueda previa por campo indicator. Si el documento
ya existe, se evita su reinserción y se actualiza el campo seen count. Esta funcionalidad ha permitido
evitar la proliferación de registros redundantes en Elasticsearch.

Visualización y análisis

La visualización en el dashboard incluye mapas geográficos, histogramas, nubes de palabras y tablas
interactivas. Además, en esta interfaz web en Flask también se puede visualizar los datos mediante filtros
por paı́s, tipo y threat score, ası́ como gráficos interactivos creados con Plotly.



4.1. ANÁLISIS DEL SISTEMA DESARROLLADO 41

Figura 4.1: Arquitectura general del sistema de Threat Intelligence

4.1.3. Análisis de los datos recolectados

Para realizar una evaluación cuantitativa del sistema, se ha ejecutado el proceso completo de recolección
y enriquecimiento durante un periodo de varias semanas. Los resultados son los siguientes:

Número total de IoCs recolectados: 26219

Tipos más comunes: IPv4, domain, url, filehash sha256

Paı́ses más frecuentes: República Popular Democrática de Corea, China, Rusia, Japón, Irán.

Etiquetas (tags) más frecuentes: malware, APT, phishing, ransomware

Promedio de threat score: 6.2 en una escala de 0 a 10

Se han generado múltiples visualizaciones para representar estas métricas, incluyendo un gráfico de
barras con el promedio de puntuación por tipo de IoC y una nube de palabras con los tags más frecuentes.
Esto permite detectar patrones y tendencias clave en los datos.



42 CAPÍTULO 4. ANÁLISIS

Métrica Valor

IoCs recolectados 26219

Tipos principales IPv4, domain, url, filehash sha256

Paı́ses más frecuentes República Popular Democrática de Corea, China, Rusia, Japón

Etiquetas más frecuentes malware, APT, phishing, ransomware

Threat score promedio 6.2 (escala de 0 a 10)

Tabla 4.1: Resumen de métricas cuantitativas tras una tiempo de funcionamiento del sistema.

4.1.4. Evaluación del algoritmo de scoring

El algoritmo de puntuación implementado considera múltiples factores:

Antigüedad del IoC (first seen)

Origen geográfico (basado en GeoLite2)

Tags asociados (ransomware, APT, etc.)

Relación con actores conocidos o TTPs

Presencia en múltiples fuentes (campo seen count)

La fórmula final pondera cada uno de estos criterios con coeficientes ajustables, permitiendo calibra-
ciones posteriores. Se han realizado pruebas con IoCs históricos y actuales para comprobar la coherencia
del valor asignado.



4.1. ANÁLISIS DEL SISTEMA DESARROLLADO 43

Figura 4.2: Diagrama del algoritmo de cálculo del threat score basado en múltiples factores

4.1.5. Rendimiento del sistema

Se ha medido el rendimiento del sistema en un entorno local con las siguientes especificaciones:

CPU: Intel Core i7

RAM: 16 GB

Almacenamiento: SSD 1 TB

Sistema operativo: Ubuntu 22.04

Los tiempos promedio por tarea son:

Descarga de 1000 IoCs: 12 segundos

Enriquecimiento y geolocalización: 18 segundos

Indexación en Elasticsearch: 10 segundos



44 CAPÍTULO 4. ANÁLISIS

Visualización inicial (renderizado de dashboards): 1 segundo

Esto indica un rendimiento robusto y adecuado para su uso en entornos reales de ciberseguridad.

4.1.6. Limitaciones y mejoras potenciales

A pesar del éxito general del sistema, se identifican las siguientes limitaciones:

Dependencia de la API de OTX y otras fuentes: si el servicio falla, el sistema se detiene.

No se ha incluido análisis de relaciones entre IoCs (grafo de conexión).

Los filtros geográficos pueden verse limitados por la precisión de GeoLite2 gratuita.

El algoritmo de scoring podrı́a beneficiarse de técnicas de aprendizaje automático en versiones
futuras.

Entre las mejoras previstas se incluyen:

Integración con otras fuentes (VirusTotal, ThreatView).

Implementación de alertas automáticas por IoCs de alto riesgo.

Visualización avanzada con redes de relaciones y lı́neas temporales.

Persistencia de logs y métricas de actividad para auditorı́a.

4.2. Conclusiones del análisis

El análisis detallado realizado a lo largo de este capı́tulo permite concluir que el sistema desarrollado
cumple de manera satisfactoria con los objetivos planteados tanto en términos funcionales como técnicos.
Su diseño modular ha demostrado ser eficaz para integrar múltiples fuentes de indicadores, enriquecer la
información recolectada y presentarla de forma accesible y visual a través de dashboards interactivos.

Desde el punto de vista funcional, todas las etapas clave —recolección, enriquecimiento, deduplicación,
cálculo de puntuación y visualización— operan de forma coherente, permitiendo una gestión automatizada
y contextualizada de IoCs. La arquitectura es fácilmente escalable y admite la incorporación de nuevas
fuentes sin necesidad de rediseñar el sistema.



4.2. CONCLUSIONES DEL ANÁLISIS 45

A nivel técnico, el uso de herramientas como pandas, GeoLite2, Elasticsearch, Flask y Plotly
ha permitido construir un pipeline de datos robusto y eficiente, capaz de manejar decenas de miles de
indicadores en tiempos razonables. Las estrategias de control de duplicados, enriquecimiento geográfico y
scoring contextual aportan un valor diferencial respecto a una simple agregación de datos.

Además, las visualizaciones permiten detectar patrones, amenazas frecuentes y focos geográficos de
actividad maliciosa, lo cual es clave para el análisis estratégico en contextos reales de ciberseguridad.
El rendimiento medido en pruebas locales es competitivo y demuestra que el sistema puede adaptarse a
entornos productivos.

En resumen, el sistema no solo responde a los requisitos planteados inicialmente, sino que establece
una base sólida para futuras ampliaciones, como el uso de técnicas de Machine Learning para el scoring,
la integración con SIEMs o la generación de alertas automáticas. El análisis confirma que se trata de una
herramienta útil, flexible y técnicamente sólida para la gestión de amenazas basada en IoCs.

En capı́tulos posteriores se abordará la validación final, ası́ como las conclusiones globales del proyecto.



46 CAPÍTULO 4. ANÁLISIS



Capı́tulo 5

Diseño del sistema

5.1. Arquitectura general

El sistema de Threat Intelligence desarrollado se basa en una arquitectura modular y escalable, diseñada
para automatizar la recolección, enriquecimiento, almacenamiento y visualización de Indicadores de
Compromiso (IoCs). La arquitectura sigue un modelo ETL (Extract, Transform, Load) extendido con
visualización, y se articula en los siguientes componentes principales:

Extracción: descarga automática de datos desde la API de Open Threat Exchange (OTX).

Transformación: normalización, enriquecimiento con metadatos y geolocalización.

Carga: almacenamiento en Elasticsearch, evitando duplicados y aplicando el sistema de puntuación.

Visualización: exploración de los IoCs mediante Kibana y un dashboard HTML personalizado.

5.2. Diseño de los módulos funcionales

El sistema se ha dividido en varios módulos independientes, escritos en Python, que interactúan entre
sı́ a través de funciones bien definidas. Cada módulo se corresponde con una etapa del flujo de datos.

5.2.1. Módulo de recolección de IoCs

Este módulo es responsable de conectarse a la API REST de OTX mediante autenticación por API
key, descargar pulsos actualizados y extraer sus indicadores. La lógica de paginación, control de errores y
limitación de peticiones ha sido cuidadosamente implementada para garantizar una descarga robusta.

47



48 CAPÍTULO 5. DISEÑO DEL SISTEMA

API: /api/v1/pulses/subscribed

Filtros: fecha mı́nima, campos relevantes (indicator, type, description)

Salida: lista de IoCs en formato estructurado (dict)

5.2.2. Módulo de enriquecimiento

Una vez recolectados, los IoCs se enriquecen con campos adicionales extraı́dos del JSON original,
como:

uuid: identificador único del pulso

tags, related actors, TTPs

first seen, last seen

Si el IoC corresponde a una dirección IP, se realiza una consulta local a la base de datos GeoLite2 para
añadir paı́s, continente y código ISO.

5.2.3. Módulo de deduplicación e inserción

Antes de almacenar un indicador, se realiza una consulta a Elasticsearch por el campo indicator.
Si ya existe, se actualiza el campo seen count; si no, se indexa como nuevo documento. Esto evita la
generación de entradas redundantes.

5.2.4. Módulo de scoring contextual

Se ha diseñado un algoritmo de puntuación configurable que asigna un threat score a cada IoC basado
en los siguientes factores:

Antigüedad (first seen)

Reputación del paı́s de origen

Presencia de tags crı́ticos: ransomware, APT, etc.

Asociación a TTPs o actores maliciosos conocidos

Repetición del IoC en múltiples fuentes (seen count)



5.3. DISEÑO DEL ALMACENAMIENTO EN ELASTICSEARCH 49

La puntuación se normaliza en una escala de 0 a 10. Los coeficientes se definen en un diccionario que
permite ser calibrado con facilidad.

5.3. Diseño del almacenamiento en Elasticsearch

El ı́ndice de Elasticsearch ha sido definido de forma flexible, adoptando un esquema documental
compatible con búsquedas por múltiples campos. El mapeo incluye:

Campos tipo texto y keyword: indicator, type, source, country

Campos numéricos: threat score, seen count

Campos de fecha: first seen, last seen

Campos de arrays: tags, related actors, TTPs

Se ha configurado un pipeline de ingestión que facilita la prevalidación de campos y la actualización
eficiente de documentos duplicados.

5.4. Diseño de la interfaz web (HTML + Flask)

El sistema cuenta con una interfaz web alternativa a Kibana, desarrollada con Flask y HTML5. Este
componente tiene tres vistas principales:

1. Dashboard principal: muestra todos los IoCs en tabla ordenable y filtrable. Como se puede
apreciar, los campos más interesantes que se muestran son

Indicador

Tipo

Fecha publicación

Nombre del pulse(OTX)

Tags

Score



50 CAPÍTULO 5. DISEÑO DEL SISTEMA

Figura 5.1: Vista del dashboard principal

Figura 5.2: Vista del dashboard principal con tabla de IoCs

2. /charts: vista gráfica con diferentes estilos visuales de análisis.



5.4. DISEÑO DE LA INTERFAZ WEB (HTML + FLASK) 51

Figura 5.3: Vista de la gráfica de la distribución por tipo

Figura 5.4: Vista de la gráfica de la distribución por paı́s



52 CAPÍTULO 5. DISEÑO DEL SISTEMA

Figura 5.5: Vista de la gráfica en zoom de un paı́s



5.4. DISEÑO DE LA INTERFAZ WEB (HTML + FLASK) 53

Figura 5.6: Vista de la gráfica de la distribución por threar score

Figura 5.7: Vista de la gráfica de tags mas frecuentes



54 CAPÍTULO 5. DISEÑO DEL SISTEMA

Figura 5.8: Vista de la gráfica de la distribución media del threat score

Figura 5.9: Vista de la gráfica de los IoCs mas repetidos



5.5. DISEÑO ORIENTADO A ESCALABILIDAD 55

3. /refresh: endpoint que desencadena la descarga y actualización de IoCs.

4. /recalculate score: endpoint que calcula el score de los IoCs actualizados.

5. /filter: endpoint que muestra los IoCs de forma diferente y que permite su visualización especifica
mediante filtros.

Figura 5.10: Vista del filtro de IoCs

El backend se comunica con Elasticsearch mediante consultas HTTP. Los resultados se procesan con
pandas y se representan mediante plotly.graph objects, embebidos en las plantillas HTML
con Jinja2.

5.5. Diseño orientado a escalabilidad

El diseño general del sistema facilita su escalabilidad futura:

Incorporación de nuevas fuentes: la estructura modular permite añadir conectores a VirusTotal o
MISP sin afectar al núcleo.

Actualización del algoritmo de scoring: los coeficientes y pesos están desacoplados del código
principal.

Contenerización: el sistema es fácilmente desplegable mediante Docker o entornos virtuales.

Multiusuario: se puede añadir autenticación y control de acceso en la interfaz Flask si se despliega
en producción.



56 CAPÍTULO 5. DISEÑO DEL SISTEMA

5.6. Resumen del diseño

El diseño del sistema ha sido guiado por los principios de modularidad, simplicidad, escalabilidad y
transparencia. Cada componente puede evolucionar de forma independiente y el sistema completo puede
ser replicado en laboratorios, entornos de formación o pequeñas organizaciones de ciberseguridad.

En el siguiente capı́tulo se evaluarán los resultados empı́ricos obtenidos a partir del funcionamiento
real del sistema.



Capı́tulo 6

Implementación

6.1. Entorno de desarrollo

La implementación del sistema de Threat Intelligence se ha llevado a cabo en un entorno local de
pruebas basado en software libre. El entorno utilizado ha sido el siguiente:

Sistema operativo: Ubuntu 22.04 LTS

Lenguaje principal: Python 3.10

Editor: Visual Studio Code

Base de datos: Elasticsearch 8.x

Frontend: HTML5, CSS3, Plotly, Jinja2

Servidor web: Flask + gunicorn (modo local)

Geolocalización: Base de datos GeoLite2-Country.mmdb

Control de versiones: Git (repositorio privado en GitLab)

Se han utilizado entornos virtuales (venv) para aislar las dependencias y facilitar la portabilidad del
proyecto.

6.2. Automatización del flujo de datos

Toda la lógica del sistema ha sido implementada en el archivo central llamado app.py, que incluye:

57



58 CAPÍTULO 6. IMPLEMENTACIÓN

Descarga de IoCs desde OTX

Enriquecimiento de los indicadores

Geolocalización de direcciones IP

Detección y actualización de duplicados

Cálculo del threat score

Inserción en Elasticsearch

Backend para la interfaz web

El sistema consta con un script secundario llamado feeds.py para la descarga de fuentes alternativas
desde MalwareBazaar, ThreatFox y URLhaus. Estas son fuentes menos ricas en IoCs que OTX, ya que
descargan únicamente un tipo de indicador, por ello juegan un papel secundario.

Este archivo actúa como núcleo de orquestación del sistema, donde cada función está debidamente
documentada y desacoplada para favorecer el mantenimiento y la extensión del proyecto.

6.3. Recolección de datos desde OTX

La recolección de IoCs se implementó mediante un script basado en la librerı́a requests, que accede
a la API /api/v1/pulses/subscribed de OTX. El script incluye:

Autenticación mediante API Key

Descarga paginada de pulsos recientes

Filtrado de campos relevantes

Manejo de errores HTTP y reintentos automáticos

Los datos obtenidos se almacenan primero en memoria como estructuras dict, y posteriormente son
transformados con pandas.



6.4. RECOLECCIÓN DE DATOS DESDE THREATFOX 59

6.4. Recolección de datos desde ThreatFox

La recolección de IoCs desde ThreatFox se realizó utilizando su API pública en formato JSON. El script
emplea la librerı́a requests para realizar solicitudes POST a https://threatfox.abuse.ch/api/.
El proceso incluye:

Petición con cuerpo JSON especificando el tipo de consulta (query type = get recent)

Descarga de IoCs estructurados con metadatos relevantes

Conversión de los resultados en estructuras dict

Enriquecimiento posterior mediante mapeo de campos relevantes

Los datos se transforman con pandas para su integración con las demás fuentes del sistema.

6.5. Recolección de datos desde URLhaus

URLhaus proporciona una API pública basada en solicitudes POST que permite recuperar los IoCs más
recientes. La integración se realiza mediante un script que realiza peticiones a https://urlhaus.abuse.ch/api/.
El flujo de procesamiento contempla:

Solicitud POST con query type = get recent

Procesamiento del campo url status, threat y host

Transformación de los datos en listas de IoCs enriquecidas

Estructuración homogénea para su integración con Elasticsearch

Las URLs maliciosas obtenidas se normalizan y procesan con pandas.

6.6. Recolección de datos desde MalwareBazaar

Para MalwareBazaar, se utilizó su API REST disponible en https://mb-api.abuse.ch/api/v1/,
con una solicitud POST especificando query type = get recent. El script extrae información
sobre muestras de malware recientes, incluyendo:



60 CAPÍTULO 6. IMPLEMENTACIÓN

Hashes SHA256, tipo de malware y tags asociadas

Fecha de detección y fuente

Conversión de resultados a estructuras dict

Limpieza y normalización de los campos relevantes

La información se almacena en estructuras compatibles con el sistema de scoring y análisis.

6.7. Recolección de datos desde ThreatView

La fuente ThreatView se integró mediante la descarga directa de archivos CSV públicos desde la URL
https://threatview.io/Downloads. El procesamiento incluye:

Lectura directa de archivos CSV mediante pandas

Mapeo de campos como tipo de IoC, valor, fuente y categorı́a

Conversión de columnas a estructuras estándar del sistema

Enriquecimiento posterior con metadatos adicionales

Esta fuente permite obtener rápidamente grandes volúmenes de IoCs categorizados.

6.8. Procesamiento y enriquecimiento

Una vez descargados, los IoCs pasan por un proceso de enriquecimiento, que incluye:

Normalización de campos: tipo, indicador, descripción, fecha

Extracción de tags, related actors y TTPs

Análisis temporal: cálculo de antigüedad

Geolocalización de IPs mediante geoip2 y GeoLite2

Todos estos datos enriquecidos se consolidan en una estructura JSON con el formato de entrada
requerido por Elasticsearch.



6.9. SISTEMA DE DEDUPLICACIÓN 61

6.9. Sistema de deduplicación

Antes de almacenar un nuevo IoC, se realiza una búsqueda en Elasticsearch usando el campo
indicator como clave única. Si el IoC ya existe:

Se evita su reindexación

Se incrementa el campo seen count

Se actualizan las fechas de última observación

Este mecanismo asegura la integridad del ı́ndice y permite realizar análisis basados en recurrencia.

6.10. Algoritmo de threat score

El cálculo del nivel de amenaza se basa en una función definida en el propio script, que combina varios
factores con pesos ajustables. La fórmula general es:

score = w1 · antigüedad + w2 · peligrosidad geográfica + w3 · tags crı́ticos + w4 · repetición (6.1)

donde:

A es la antigüedad del IoC (inversamente proporcional a su fecha de primera detección)

G es la peligrosidad geográfica (basada en el paı́s de origen)

T representa la presencia de tags crı́ticas asociadas

R indica la frecuencia o repetición del IoC en diferentes fuentes

w1, w2, w3, w4 son los pesos asignados a cada factor, con wi ∈ [0, 1]

Los pesos wi son parámetros definidos en un diccionario de configuración, fácilmente modificables
por el usuario para recalibrar el sistema.



62 CAPÍTULO 6. IMPLEMENTACIÓN

6.11. Carga de datos en Elasticsearch

La inserción de IoCs en Elasticsearch se realiza mediante el cliente oficial elasticsearch-py.
Para cada IoC se define:

Un documento es añadido en el campo indicator con un cuerpo JSON que contiene todos
los metadatos. Un ı́ndice especı́fico: threat-intel-iocs

Además, se ha habilitado un pipeline de ingestión para controlar el esquema y evitar errores de formato.

6.12. Interfaz web con Flask

El archivo app.py también implementa el backend de la aplicación web utilizando Flask. Las rutas
definidas son:

/ — Vista principal con tabla de IoCs

/charts — Gráficos interactivos (Plotly)

/refresh — Endpoint que ejecuta la descarga y actualización

La interfaz se genera mediante plantillas HTML basadas en Jinja2. Los datos se filtran, ordenan y
renderizan dinámicamente desde Elasticsearch.

6.13. Documentación y validación

El proyecto ha sido completamente documentado, incluyendo:

Comentarios en el código

Archivos README.md con instrucciones de uso

Ejemplos de salida JSON y consultas de Elasticsearch

Capturas de pantalla de los dashboards generados

La validación se realizó mediante pruebas funcionales, de rendimiento y de coherencia visual, garanti-
zando la correcta integración de todos los componentes.



6.14. RESUMEN DE LA IMPLEMENTACIÓN 63

6.14. Resumen de la implementación

La implementación ha demostrado la viabilidad del sistema propuesto, cumpliendo los objetivos de
automatización, enriquecimiento, deduplicación y visualización interactiva. Gracias a su diseño modular,
el sistema puede ampliarse fácilmente y adaptarse a distintos entornos operativos.

El capı́tulo siguiente presentará las conclusiones generales y las lı́neas futuras de trabajo.



64 CAPÍTULO 6. IMPLEMENTACIÓN



Capı́tulo 7

Pruebas

7.1. Objetivo de las pruebas

El objetivo principal de esta fase es validar que todos los componentes del sistema de Threat Intelligence
se comportan según lo esperado, tanto de forma individual como integrada. Para ello, se han realizado
pruebas funcionales, de rendimiento, de visualización, de integridad de datos y de resistencia frente a
errores.

Estas pruebas permiten confirmar que el sistema es robusto, fiable y útil para los escenarios previstos de
análisis de amenazas, y que cumple con los requisitos definidos en las fases de diseño e implementación.

7.2. Pruebas funcionales

Se han verificado todas las funciones principales del sistema mediante pruebas unitarias y de integración.
A continuación se detallan los resultados:

Descarga de IoCs desde OTX

Caso de prueba: conexión a la API de OTX con clave válida.

Resultado esperado: retorno de lista de pulsos e indicadores.

Resultado obtenido: éxito, descarga promedio de 3.000 IoCs en menos de 60 segundos.

65



66 CAPÍTULO 7. PRUEBAS

Figura 7.1: Ejemplo de descarga del total de IoCs

Enriquecimiento de datos

Caso de prueba: procesar un IoC con campos incompletos.

Resultado esperado: completar campos ausentes (geolocalización, TTPs, etc.) si disponibles.

Resultado obtenido: enriquecimiento correcto en el 98,7 % de los casos.

Figura 7.2: Ejemplo de IoC almacenado en Elasticsearch ya enriquecido

Almacenamiento y deduplicación

Caso de prueba: insertar un IoC ya existente.

Resultado esperado: no insertar duplicado y actualizar seen count.

Resultado obtenido: comportamiento correcto, incremento de contador sin errores.



7.3. PRUEBAS DE RENDIMIENTO 67

Figura 7.3: Ejemplo de IoC ya almacenado y que se incrementa su contador

Visualización HTML

Caso de prueba: acceder al dashboard desde el navegador.

Resultado esperado: carga de tabla y gráficos.

Resultado obtenido: respuesta del servidor web en menos de 1 segundo.

Figura 7.4: Ejemplo de IoC visualizado en el dashboard principal

7.3. Pruebas de rendimiento

Se ha realizado una evaluación del sistema procesando un volumen masivo de IoCs durante 7 dı́as. Los
resultados medios fueron:

Operación Tiempo promedio

Descarga de 1.000 IoCs 12 segundos

Enriquecimiento y geolocalización 18 segundos

Indexación en Elasticsearch 10 segundos

Carga de dashboard HTML 1 segundo

Renderizado de gráficos en Flask 1.5 segundos

Tabla 7.1: Tiempos promedio de operaciones del sistema

Se concluye que el sistema puede procesar más de 5.000 IoCs por minuto en entorno local, manteniendo
una latencia baja en consultas y visualizaciones.



68 CAPÍTULO 7. PRUEBAS

7.4. Pruebas de calidad de datos

Se han evaluado diversos aspectos de integridad, consistencia y utilidad de los datos almacenados:

Formato JSON válido: 100 % de los documentos cumplen el esquema definido.

Campos enriquecidos: más del 95 % de los IoCs contienen información de tags, paı́s y score.

Duplicados evitados: validación por campo indicator ha impedido inserciones redundantes.

Puntuación coherente: el algoritmo de scoring se ha comprobado manualmente en más de 50
muestras.

7.5. Pruebas de visualización

Tanto el dashboard Kibana como la interfaz HTML fueron revisados en múltiples navegadores (Firefox,
Chrome, Edge) y resoluciones. Los resultados fueron:

Compatibilidad: 100 %

Cargas completas sin errores: 100 %

Interactividad (filtros, zoom, navegación): sin incidencias

Representación correcta de datos: validada con capturas

Además, se realizaron pruebas con usuarios no técnicos, quienes valoraron positivamente la claridad
de las visualizaciones y la utilidad de los filtros.

7.6. Gestión de errores y pruebas negativas

Se han simulado errores como desconexión de la API de OTX, datos corruptos o campos ausentes. El
sistema respondió de forma controlada:

Error de red: reconexión automática tras 3 reintentos

Datos vacı́os: omisión segura del IoC

IP privada o no geolocalizable: registro sin paı́s

Estos casos permiten afirmar que el sistema posee tolerancia básica a fallos.



7.7. VALIDACIÓN GLOBAL DEL SISTEMA 69

7.7. Validación global del sistema

La validación se ha realizado en base a los siguientes criterios:

Cobertura de objetivos: se han cumplido el 100 % de los objetivos establecidos en la metodologı́a.

Estabilidad: el sistema ha funcionado durante semanas sin necesidad de reinicio ni intervención.

Reproducibilidad: el código puede ser desplegado en otro equipo siguiendo las instrucciones del
README.

Utilidad práctica: se ha demostrado la utilidad del sistema para detectar patrones, paı́ses recurrentes
y amenazas comunes.

7.8. Resumen de pruebas

La baterı́a de pruebas ha permitido comprobar que el sistema se comporta de forma estable, eficaz
y robusta. No se han identificado errores crı́ticos, y todas las funciones se ejecutan correctamente en
condiciones normales y anómalas.

El sistema está listo para su uso en laboratorios académicos, pruebas de concepto o entornos profesio-
nales de ciberseguridad con bajo presupuesto.

En el siguiente capı́tulo se presentan las conclusiones generales del trabajo, ası́ como posibles lı́neas
de evolución futura.



70 CAPÍTULO 7. PRUEBAS



Capı́tulo 8

Conclusiones y lı́neas futuras

8.1. Conclusiones generales

Este Trabajo de Fin de Grado ha tenido como objetivo diseñar e implementar un sistema completo
de Threat Intelligence capaz de almcacenar, enriquecer, asignar un score y visualizar Indicadores de
Compromiso (IoCs) de forma automatizada, modular y accesible.

Tras completar todas las fases del proyecto —desde la planificación y el diseño hasta la implementa-
ción y validación— se puede afirmar que los objetivos han sido alcanzados con éxito. Las principales
conclusiones que se extraen del desarrollo son:

Se ha construido un sistema funcional, robusto y adaptable, basado en tecnologı́as abiertas como
Python, Elasticsearch, Flask, Plotly y GeoLite2.

El sistema permite automatizar la recolección de IoCs desde fuentes abiertas como OTX, Malware-
Bazaar, ThreatView y URLhaus enriqueciendo los datos con metadatos relevantes (geolocalización,
actores, TTPs, etc.).

El algoritmo de threat scoring implementado proporciona una valoración cuantitativa del riesgo de
cada indicador , combinando factores como antigüedad, paı́s de origen o criticidad semántica.

Se ha creado una interfaz de visualización que es accesible y personalizable, desarrollada en
HTML5 y Flask, con filtros interactivos y gráficos embebidos.

La arquitectura modular garantiza la escalabilidad futura, permitiendo integrar fácilmente nuevas
fuentes de datos o funcionalidades futuras adicionales sin alterar el núcleo del sistema.

El sistema ha superado satisfactoriamente todas las pruebas funcionales, de rendimiento y tolerancia
a fallos, demostrando su fiabilidad en entornos controlados.

71



72 CAPÍTULO 8. CONCLUSIONES Y LÍNEAS FUTURAS

Su enfoque educativo y técnico lo convierte en una base idónea para futuros desarrollos académicos,
ası́ como para la formación práctica en ciberinteligencia.

8.2. Valoración del proyecto

Desde una perspectiva personal y académica, el proyecto ha representado un reto integral en el que se
han puesto en práctica conocimientos avanzados de:

Programación avanzada en Python y desarrollo backend con Flask

Modelado de datos y metadados e indexación en Elasticsearch

Análisis y diseño de arquitecturas escalables

Tratamiento de datos de ciberseguridad y geoposicionamiento

Visualización interactiva mediante dashboards

Documentación técnica y planificación de proyectos

Asimismo, la naturaleza interdisciplinar del sistema ha contribuido al desarrollo de competencias clave
para el entorno profesional actual, donde la automatización, el análisis de amenazas y la visualización de
datos son pilares fundamentales.

8.3. Lı́neas de trabajo futuras

Aunque el sistema desarrollado está plenamente operativo, existen numerosas vı́as para extender su
funcionalidad y aumentar su valor práctico. Algunas lı́neas futuras destacadas incluyen:

Integración con nuevas fuentes de datos: añadir conectores a otras plataformas como MISP,
AbuseIPDB o VirusTotal.

Sistema de alertas y notificaciones: generar avisos automáticos ante la detección de IoCs crı́ticos,
repetidos o de riesgo elevado, mediante correo electrónico o webhooks.

Análisis de relaciones entre IoCs: implementar visualizaciones en grafo para identificar vı́nculos
entre actores, dominios, IPs y hashes.

Persistencia de logs y auditorı́a: registrar el histórico de actualizaciones, inserciones y accesos
para su análisis posterior.



8.4. REFLEXIÓN FINAL 73

Interfaz multiusuario y autenticación: permitir accesos diferenciados según perfiles de usuario,
con permisos personalizados y persistencia de configuraciones.

Despliegue como servicio en la nube: contenerizar la aplicación con Docker y facilitar su instala-
ción en entornos productivos, incluyendo balanceo de carga y alta disponibilidad.

Aplicación de aprendizaje automático: utilizar modelos de clasificación o detección de anomalı́as
para refinar el threat score y detectar comportamientos maliciosos no evidentes.

8.4. Reflexión final

El desarrollo de este sistema ha permitido comprobar que es posible construir soluciones útiles,
eficientes y éticamente sostenibles utilizando exclusivamente herramientas de libre acceso. En un mundo
como el de la ciberseguridad, donde el acceso a herramientas comerciales y empresariales puede estar
restringido por costes, esta aproximación representa una oportunidad real para la formación, la defensa
digital y la investigación.

Además, el proyecto demuestra que el análisis de amenazas no debe limitarse a la recopilación de
datos, sino que debe estar guiado por el contexto, la visualización comprensible y la toma de decisiones
informadas.

Como reflexión final, se espera que este trabajo sirva como base para desarrollos futuros, investiga-
ciones colaborativas o sistemas funcionales en entornos reales, contribuyendo al ecosistema abierto de
ciberinteligencia.



74 CAPÍTULO 8. CONCLUSIONES Y LÍNEAS FUTURAS



Apéndice A

Repositorio de código

A.1. Ubicación del repositorio

El código de este proyecto se encuentra disponible públicamente en el repositorio GitLab de la Escuela
de Ingenierı́a Informática de Valladolid en el siguiente enlace:
https://github.com/razzzer23/TFG_IOCS

A.2. Organización del repositorio

El código del repositorio se organiza en las siguientes carpetas:

Backend

• geoip

• static

• GeoLite2-Country.mmdb

• app.py

• feeds.py

• requirements

• rules.yar

Frontend

• GeoLite2-Country 20250624

• GeoLite2-Country.tar.gz

75

https://github.com/razzzer23/TFG_IOCS


76 APÉNDICE A. REPOSITORIO DE CÓDIGO

• charts.html

• filters.html

A.3. Readme

Sistema de Threat Intelligence para la evaluación de Indicadores de Compromiso
(IoCs)

Descripción del proyecto

Este proyecto implementa un sistema de Threat Intelligence que recopila, normaliza, puntúa y vi-
sualiza indicadores de compromiso (IoCs) desde fuentes abiertas como OTX, URLhaus, ThreatFox
y MalwareBazaar. Utiliza Elasticsearch para el almacenamiento, y un backend en Python que
permite enriquecer los IoCs con geolocalización, metadatos contextuales y un sistema de puntuación. La
visualización se realiza mediante Kibana y dashboards web personalizados.

Caracterı́sticas principales

Recolección automática de IoCs desde múltiples fuentes públicas.

Enriquecimiento con metadatos: paı́s, fechas, actores, TTPs, etc.

Sistema de scoring basado en antigüedad, procedencia y contexto.

Geolocalización de IPs con MaxMind GeoLite2.

Visualización interactiva con dashboard web.

Control de duplicados y recuento de avistamientos (seen count).

Estructura del proyecto

.

app.py # Backend Flask para recolección y API

dashboard.html # Dashboard principal de IoCs

charts.html # Dashboard con gráficos y filtros

templates/ # Plantillas HTML

static/ # Archivos JS, CSS, ı́conos, etc.

GeoLite2-Country.mmdb # Base de datos de geolocalización IP



A.3. README 77

requirements.txt # Dependencias Python del proyecto

README.md # Este archivo

Instalación y ejecución

1. Clonar el repositorio:

git clone https://github.com/razzzer23/TFG_IOCS

2. Instalar dependencias:

pip install -r requirements.txt

3. Ejecutar la aplicación:

python app.py

4. Abrir la interfaz web:

http://localhost:5000

Funcionalidades clave

Ruta /refresh: descarga los últimos IoCs desde todas las fuentes configuradas.

Guardado automático en Elasticsearch con control de duplicados.

Dashboards interactivos con filtros por tipo, paı́s, score y etiquetas.

Gráficos de distribución por tipo, score medio y tags más comunes.

Fuentes de datos utilizadas

AlienVault OTX

MalwareBazaar

ThreatFox



78 APÉNDICE A. REPOSITORIO DE CÓDIGO

URLhaus

ThreatView

GeoLite2 by MaxMind

Tecnologı́as empleadas

Python (Flask)

Elasticsearch

Kibana

Logstash (opcional)

HTML, CSS, JavaScript (Chart.js / D3.js)

Ejemplo de IoC enriquecido

{

"uuid": "f3c93e1a-...-...",

"type": "sha256",

"indicator": "5d41402abc4b2a76b9719d911017c592",

"source": "OTX",

"description": "Hash relacionado con RedLine Stealer",

"pulse_name": "RedLine Stealer",

"country": "RU",

"tags": ["malware", "stealer"],

"related_actors": ["APT28"],

"ttp": ["T1059", "T1566"],

"first_seen": "2025-06-30",

"last_seen": "2025-07-01",

"threat_score": 76,

"seen_count": 3

}

Créditos

Desarrollado por Vı́ctor Martı́n Miguel como parte del Trabajo de Fin de Grado en la Universidad de
Valladolid.



Bibliografı́a

[1] Sean Barnum. Standardizing cyber threat intelligence information with the structured threat infor-
mation expression (stix). MITRE Corporation, 2012.

[2] MITRE Corporation. Att&ck framework. https://attack.mitre.org/, 2023.

[3] Enisa threat intelligence sharing guidelines. Technical report, European Union Agency for Cyberse-
curity, 2023. Consultado en junio de 2025.

[4] Glassdoor. Salario promedio de ingeniero informático junior en españa. https://www.glassd
oor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.h

tm, 2024. Consultado en junio de 2025.

[5] Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. Computer security incident handling
guide (sp 800-61 rev. 2). Technical report, National Institute of Standards and Technology, 2012.
Consultado en junio de 2025.

[6] Mark Lutz. Learning Python. O’Reilly Media, Inc., 2013.

[7] Tiobe index for june 2025. https://www.tiobe.com/tiobe-index/, 2025.

[8] Philip J. Guo. Python is now the most popular introductory teaching language at top u.s. universities.
https://cacm.acm.org/blogs/blog-cacm/176450, 2014.

[9] Guido Van Rossum and Barry Warsaw. The zen of python. https://peps.python.org/pe
p-0020/, 2001.

[10] Madhusudan Sinha. Mastering Python for Networking and Security. Packt Publishing, 2019.

[11] Robert Bisson. Python for Cybersecurity: Using Python for Cyber Offense and Defense. Apress,
2018.

[12] Miguel Grinberg. Flask Web Development: Developing Web Applications with Python. O’Reilly
Media, 2 edition, 2018.

[13] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. O’Reilly Media, 2015.

79

https://attack.mitre.org/
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.tiobe.com/tiobe-index/
https://cacm.acm.org/blogs/blog-cacm/176450
https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/


80 BIBLIOGRAFÍA

[14] MaxMind Inc. Geolite2 documentation. https://dev.maxmind.com/geoip/docs/,
2025. Consultado en junio de 2025.

[15] Creative Commons. Attribution-sharealike 4.0 international license (cc by-sa 4.0). https:

//creativecommons.org/licenses/by-sa/4.0/, 2025.

[16] MaxMind Inc. geoip2 python client library. https://pypi.org/project/geoip2/, 2025.

[17] Plotly Technologies Inc. Plotly.py documentation. https://plotly.com/python/, 2025.
Consultado en junio de 2025.

[18] Roy Fielding. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

[19] J. Marrant. RESTful Web APIs. O’Reilly Media, 2 edition, 2020.

[20] AT&T Cybersecurity. Otx api documentation. https://otx.alienvault.com/api, 2025.
Consultado en junio de 2025.

[21] Scott Chacon and Ben Straub. Pro Git. Apress, 2 edition, 2014.

[22] Canonical Ltd. Ubuntu server documentation. https://ubuntu.com/server/docs, 2025.
Consultado en junio de 2025.

[23] Mark G. Sobell. A Practical Guide to Linux Commands, Editors, and Shell Programming. Pearson,
4 edition, 2017.

[24] Elastic NV. Kibana documentation. https://www.elastic.co/guide/en/kibana/c
urrent/index.html, 2025. Consultado en junio de 2025.

https://dev.maxmind.com/geoip/docs/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://pypi.org/project/geoip2/
https://plotly.com/python/
https://otx.alienvault.com/api
https://ubuntu.com/server/docs
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html

	Introducción
	Motivación
	Metodología para un Sistema de Threat Intelligence
	Objetivos
	Etapas metodológicas del sistema

	Recursos utilizados
	Caso de Negocio
	Agentes implicados en el proyecto
	Presupuesto
	Impacto

	Organización del documento

	Planificación del Proyecto
	Planificación del Proyecto
	Planificación inicial
	Seguimiento del proyecto

	Gestión de Riesgos
	Presupuesto del Proyecto

	Tecnologías utilizadas
	Python
	Flask
	Elasticsearch
	GeoLite2
	Plotly
	APIs REST
	Git
	Ubuntu/Linux
	Valoración global

	Análisis
	Análisis del sistema desarrollado
	Análisis funcional
	Análisis técnico
	Análisis de los datos recolectados
	Evaluación del algoritmo de scoring
	Rendimiento del sistema
	Limitaciones y mejoras potenciales

	Conclusiones del análisis

	Diseño del sistema
	Arquitectura general
	Diseño de los módulos funcionales
	Módulo de recolección de IoCs
	Módulo de enriquecimiento
	Módulo de deduplicación e inserción
	Módulo de scoring contextual

	Diseño del almacenamiento en Elasticsearch
	Diseño de la interfaz web (HTML + Flask)
	Diseño orientado a escalabilidad
	Resumen del diseño

	Implementación
	Entorno de desarrollo
	Automatización del flujo de datos
	Recolección de datos desde OTX
	Recolección de datos desde ThreatFox
	Recolección de datos desde URLhaus
	Recolección de datos desde MalwareBazaar
	Recolección de datos desde ThreatView
	Procesamiento y enriquecimiento
	Sistema de deduplicación
	Algoritmo de threat score
	Carga de datos en Elasticsearch
	Interfaz web con Flask
	Documentación y validación
	Resumen de la implementación

	Pruebas
	Objetivo de las pruebas
	Pruebas funcionales
	Pruebas de rendimiento
	Pruebas de calidad de datos
	Pruebas de visualización
	Gestión de errores y pruebas negativas
	Validación global del sistema
	Resumen de pruebas

	Conclusiones y líneas futuras
	Conclusiones generales
	Valoración del proyecto
	Líneas de trabajo futuras
	Reflexión final

	Repositorio de código
	Ubicación del repositorio
	Organización del repositorio
	Readme

	Bibliografía

