Universidad deValladolid

Escuela de Ingenieria Informatica

de Valladolid

TRABAJO DE FIN DE GRADO

Grado en Ingenieria Informatica
Mencion De Tenconolgias de la Informacién

Sistema de Threat Intelligence para la
evaluacion de Indicadores de Compromiso
(loCs)

Autor:
Victor Martin Miguel

Tutores:
Dr. César Llamas Bello
D. Manuel Lopez Pérez

II

Agradecimientos

Quiero expresar mi més sincero agradecimiento a todas las personas que me han acompaifiado a lo
largo de este camino académico. En primer lugar, a mi familia, por su apoyo incondicional, su paciencia y
por estar siempre presente en los momentos clave de este proceso.

A mis amigos y compafieros de carrera, con quienes he compartido no solo clases y trabajos, sino
también experiencias, desafios y muchas risas que han hecho mas llevadero este recorrido.

Y, por supuesto, a todo el profesorado que me ha acompanado durante estos afos, en especial a
quienes han sabido transmitir su pasién por la informética y han contribuido, directa o indirectamente, a

la realizacion de este trabajo. Gracias por su dedicacién, exigencia y compromiso con nuestra formacion.

A todos, gracias.

111

Iv

Resumen

El crecimiento constante de las amenazas cibernéticas ha impulsado la necesidad de desarrollar
sistemas automatizados capaces de detectar y analizar Indicadores de Compromiso (IoCs) en tiempo real.
Entre los principales retos de este campo se encuentra la integracion eficaz de fuentes de inteligencia,
la normalizacion de datos heterogéneos y la priorizacién de amenazas segun su relevancia. En este
trabajo, se aborda el disefio e implementacién de un sistema de Threat Intelligence que permite la
recoleccidn, enriquecimiento y andlisis de IoCs, con el fin de facilitar la toma de decisiones en entornos

de ciberseguridad.

En concreto, se ha construido una solucién funcional que descarga IoCs desde fuentes publicas como
OTX, ThreatFox,MalwareBazaar, ThreatView y URLhaus los enriquece con informacion contextual (pais,
tipo, palabras clave, repeticiones) y calcula un indice de riesgo que actua como puntuacion mediante
un sistema de scoring. Los datos se almacenan y visualizan mediante una pila ELK personalizada y
dashboards desarrollados con Flask. Se ha comprobado la utilidad del sistema para detectar amenazas

relevantes y facilitar su analisis mediante filtros, graficos y criterios dindmicos de priorizacion.

Palabras clave: Threat Intelligence, Indicadores de Compromiso, [oCs, ciberseguridad, Elasticsearch,

scoring de amenazas.

VI

Abstract

The continuous growth of cyber threats has driven the need to develop automated systems capable
of detecting and analyzing Indicators of Compromise (IoCs) in real time. One of the main challenges
in this domain is the effective integration of intelligence sources, normalization of heterogeneous data,
and prioritization of threats based on contextual relevance. This work presents the analysis, design,
and implementation of a Threat Intelligence system that collects, enriches, and scores IoCs to support

cybersecurity decision-making processes.

Specifically, a functional solution has been developed to retrieve loCs from public sources such as
OTX, ThreatFox,MalwareBazaar, ThreatView and URLhaus enrich them with contextual information
(e.g., country, type, tags, frequency), and compute a threat score based on semantic criteria. The data is
stored and visualized using a custom ELK stack and Flask-based dashboards. The system has been tested
to validate its ability to detect relevant threats and provide useful visual and analytical tools for threat

prioritization and exploration.

Key words: Threat Intelligence, Indicators of Compromise, [0Cs, cybersecurity, Elasticsearch, threat

scoring.

Indice general

1. Introduccion 1
1.1, Motivacion o . e e e e 2
1.2. Metodologia para un Sistema de Threat Intelligence 3

1.2.1. Objetivos o o o e e 3
1.2.2. Etapas metodologicas del sistema 5
1.3. Recursosutilizados L 7
1.4. Casode Negocio o i i i i e 8
1.4.1. Agentes implicadosenel proyecto 8
1.4.2. Presupuesto L 9
1.43. Impacto o e 9
1.5. Organizacion del documento Lo 10

2. Planificacion del Proyecto 11

2.1. Planificaciéon del Proyecto Lo 11
2.1.1. Planificaciéninicial Lo 11
2.1.2. Seguimiento del proyecto L 12

2.2. Gestionde Riesgos L L 13

2.3. Presupuestodel Proyecto 15

VII

VIII INDICE GENERAL

3. Tecnologias utilizadas 19
3.1, Python o 19
32, Flask. o 22
3.3. Elasticsearch 24
34, GeoLite2 26
35. Plotly 28
3.6. APISREST 30
37, Git . oo 32
3.8. Ubuntu/Linux e e e e e e 34
3.9. Valoracién global 35

4. Analisis 39
4.1. Analisis del sistema desarrollado oL L Lo 39

4.1.1. Andlisis funcionalo oL 39
4.1.2. Andlisistécnico L L e 40
4.1.3. Anadlisis de los datos recolectadoso L 41
4.1.4. Evaluacién del algoritmode scoring 42
4.1.5. Rendimientodel sistema L 43
4.1.6. Limitaciones y mejoras potenciales 44
4.2. Conclusiones del andlisis L e 44

5. Diseno del sistema 47
5.1. Arquitecturageneral L 47
5.2. Disefio de los médulos funcionales Lo 47

5.2.1. Moduloderecoleccionde IoCs e 47

INDICE GENERAL

5.2.2. Modulo de enriquecimiento L.
5.2.3. Modulo de deduplicacién e inserciéon
5.2.4. Modulo de scoring contextualo
5.3. Disefio del almacenamiento en Elasticsearch
5.4. Disefio de la interfaz web (HTML + Flask)
5.5. Disefio orientado a escalabilidad L L oo

5.6. Resumendel disefio e e

6. Implementacion
6.1. Entornodedesarrollo
6.2. Automatizacion del fluyjodedatos
6.3. Recoleccion dedatosdesde OTX L
6.4. Recoleccion de datos desde ThreatFox
6.5. Recoleccion de datos desde URLhaus oL
6.6. Recoleccion de datos desde MalwareBazaar
6.7. Recoleccion de datos desde ThreatView,
6.8. Procesamiento y enriquecimiento i e e e e e e
6.9. Sistemadededuplicacion
6.10. Algoritmo de threat score e e e
6.11. Cargade datos en Elasticsearch
6.12. Interfaz webcon Flask
6.13. Documentacién y validaciéon

6.14. Resumen de la implementacidon Lo

7. Pruebas

IX

48

48

48

49

49

55

56

57

57

57

58

59

59

59

60

60

61

61

62

62

62

63

65

7.1. Objetivodelaspruebas
7.2. Pruebas funcionales
7.3. Pruebas de rendimiento
7.4. Pruebas de calidaddedatos

7.5. Pruebas de visualizacién

7.6. Gestion de errores y pruebas negativas

7.7. Validacién global del sistema

7.8. Resumendepruebas

8. Conclusiones y lineas futuras

8.1. Conclusiones generales
8.2. Valoracién del proyecto
8.3. Lineas de trabajo futuras

8.4. Reflexionfinal

A. Repositorio de codigo

A.1. Ubicacién del repositorio
A.2. Organizacion del repositorio

A3. Readme

Bibliografia

INDICE GENERAL

Indice de figuras

1.1. Flujo de trabajo del sistema de Threat Intelligence. 4
1.2. Diagrama de actividades del flujo de gestionde IoCs. 5
2.1. Planificacién inicial del proyectoporfases L. 12
2.2. Matriz de impacto y probabilidad de los riesgos del proyecto 15
4.1. Arquitectura general del sistema de Threat Intelligence 41
4.2. Diagrama del algoritmo de célculo del threat score basado en miultiples factores 43
5.1. Vistadel dashboard principal 50
5.2. Vista del dashboard principal con tablade IoCs 50
5.3. Vista de la gréfica de la distribucién portipo 51
5.4. Vistade la gréifica de la distribucién porpais 51
5.5. Vistadelagrificaenzoomdeunpais 52
5.6. Vista de la gréfica de la distribucién por threar score 53
5.7. Vistade la grifica de tags mas frecuentes 53
5.8. Vista de la gréfica de la distribuciéon media del threat score 54
5.9. Vistade la grificade los IoCs masrepetidos 54
5.10. Vistadel filtrode IoCs 55
7.1. Ejemplo de descarga del totalde IoCs 66

XI

XII

INDICE DE FIGURAS

7.2. Ejemplo de IoC almacenado en Elasticsearch ya enriquecido 66

7.3. Ejemplo de IoC ya almacenado y que se incrementa su contador 67

7.4. Ejemplo de IoC visualizado en el dashboard principal

Indice de tablas

2.1.

2.2.

2.3.

4.1.

7.1.

Comparativa entre planificacion estimada y desarrollo real del proyecto 13
Principales riesgos identificados y estrategias de mitigacién 14
Presupuesto preliminar del proyecto 16
Resumen de métricas cuantitativas tras una tiempo de funcionamiento del sistema. 42
Tiempos promedio de operaciones del sistema 67

XIIT

XIV

INDICE DE TABLAS

Capitulo 1

Introduccion

En los dltimos afos, el crecimiento de las amenazas cibernéticas ha adquirido una dimension sin
precedentes. Cada dia se registran miles de incidentes relacionados con el robo de informacion, fraudes
digitales, ataques de denegacion de servicio (DDoS), y una gran variedad de técnicas ofensivas que
afectan tanto a particulares como a organizaciones publicas y privadas. Frente a este contexto, surge una
necesidad urgente de desarrollar tecnologias que permitan detectar, analizar y mitigar amenazas de forma
eficiente y, sobre todo, proactiva. En este marco, la inteligencia de amenazas (Threat Intelligence) se

posiciona como una disciplina fundamental.

La inteligencia de amenazas es el conjunto de procesos, tecnologias y herramientas orientadas a la
recopilacion y analisis de datos sobre amenazas potenciales o reales. Su objetivo es proporcionar a los
responsables de seguridad la informacion necesaria para prevenir ataques o reducir su impacto. Uno de los
principales pilares sobre los que se construye esta inteligencia es la gestion de Indicadores de Compromiso
(IoCs, por sus siglas en inglés), que son rastros técnicos generados por una actividad maliciosa, como una
direccion IP asociada a un atacante, un hash de un archivo malicioso, un dominio sospechoso o una URL

que aloja malware.

Tradicionalmente, la gestion de estos indicadores se ha realizado manualmente o mediante herramientas
propietarias que dificultan su estudio o integracién con otros sistemas. Ademds, muchos entornos de
seguridad carecen de mecanismos adecuados para enriquecer estos [oCs con informacion contextual,
como su procedencia geogréfica, la fecha de su deteccidn, su relacion con campaiias especificas o grupos
de amenazas persistentes avanzadas (APT). Esta falta de contexto limita la utilidad practica del indicador,
ya que no permite establecer una valoracion precisa de su peligrosidad ni facilita la toma de decisiones

informadas.

Este proyecto aborda precisamente este desafio, proponiendo una solucién completa y modular para
la gestion de IoCs, basada en tecnologias abiertas y facilmente replicables. El objetivo es permitir la
descarga automatizada de indicadores desde fuentes publicas, su enriquecimiento mediante metadatos

relevantes, su almacenamiento en una base de datos escalable (Elasticsearch), y su andlisis y visualizacion

2 CAPITULO 1. INTRODUCCION

a través de dashboards personalizables. Todo esto se realiza con un enfoque académico y préctico, que
permita tanto el aprendizaje profundo del ciclo de vida de un IoC como su implementacion en entornos

reales.

La arquitectura sobre la que se construye este sistema se fundamenta en la pila ELK: Elasticsearch,
Logstash y Kibana. Estas herramientas permiten indexar, transformar y visualizar grandes volimenes
de datos en tiempo real. Sin embargo, se ha optado también por construir un dashboard alternativo en
HTMLS y Flask, con el fin de ofrecer una capa adicional de control, personalizacién y acceso directo a

los datos para usuarios sin conocimientos especificos de Kibana.

El proyecto se centra en la integracion con Open Threat Exchange (OTX) principalmete, una plataforma
colaborativa mantenida por AlienVault (ahora parte de ATT) que permite compartir informacion de
amenazas entre profesionales de la ciberseguridad. OTX ofrece un API REST que permite acceder a
millones de indicadores reportados por la comunidad de diferentes tipos y categorias. Gracias a esta fuente
de datos, el sistema puede obtener en tiempo real informacion sobre nuevas amenazas, incluyendo hashes

de malware, dominios, direcciones IP y URLs asociadas a campafias maliciosas.

La importancia de este trabajo no solo radica en su valor técnico, sino en su aplicabilidad practica. Un
sistema bien disefiado de inteligencia de amenazas permite detectar con anticipacion, comportamientos
anémalos en una red, asociar eventos aparentemente inconexos, y establecer mecanismos de respuesta mas
efectivos. Ademads, permite ahorrar recursos, evitar pérdidas econdmicas a las empresas y particulares y
proteger cualquier tipo de infraestructura critica. En entornos donde no se dispone de grandes presupuestos,

este tipo de soluciones basadas en software libre son especialmente valiosas.

1.1. Motivacion

El presente proyecto tiene multiples motivaciones que abarcan tanto aspectos técnicos como académicos
y profesionales. En primer lugar, surge del interés personal por la ciberseguridad, una disciplina en
constante evolucion que requiere actualizacion y formacion continua. La gestion de IoCs representa uno
de los pilares fundamentales en cualquier estrategia de defensa, y comprender su ciclo de vida es clave

para proteger sistemas informaticos de forma proactiva.

Durante la formacién universitaria, muchas veces se tratan temas de seguridad desde un enfoque
tedrico/practico limitado a llevado a cabo con herramientas concretas, sin llegar a abordar la integracion
completa de un sistema real de analisis de amenazas. Este proyecto busca llenar ese vacio mediante
la construccién desde cero de una arquitectura funcional, desde la obtencion de datos hasta su anélisis
visual final, pasando por el enriquecimiento y el almacenamiento eficiente. Este enfoque integral permite
consolidar multiples competencias adquiridas durante el grado universitario, como la programacion en
Python, la administracion y tecnologias de bases de datos, el disefo de interfaces graficas, el andlisis y

tratamiento de datos y la documentacion técnica de todos estos elementos.

1.2. METODOLOGIA PARA UN SISTEMA DE THREAT INTELLIGENCE 3

A nivel técnico, uno de los grandes desafios era conseguir que el sistema fuera escalable, modular
y resistente a [oCs duplicados, es decir, que no se generaran inconsistencias ni entradas repetidas en
la base de datos. Esto exigio el disefio de una ldgica de control que validara los indicadores antes de
su insercion, usando el campo indicator¢como identificador tinico. Ademads, se propuso un sistema de
scoring o puntuacidn que, a partir de criterios como la antigiiedad del IoC, su procedencia geografica, su
asociacion a actores APT o sus técnicas de ataque (TTPs), pudiera calcular una valoracién cuantitativa del

riesgo que representa.

Desde el punto de vista profesional, este proyecto representa una experiencia valiosa de cara a futuros
entornos laborales en cualquier tipo de empresa. Las herramientas utilizadas (Elasticsearch, APIs REST,
visualizacién web, scoring, etc.) son ampliamente demandadas en el mercado de la ciberseguridad y el
andlisis de datos. Tener experiencia demostrable en la integracion de estas tecnologias, en un contexto

realista y documentado, permite al desarrollador destacar en procesos de seleccion o entrevistas técnicas.

Por altimo, existe una motivacion altruista y académica. Este proyecto puede ser compartido y
reutilizado por otros estudiantes, investigadores o entusiastas de la ciberseguridad que deseen aprender o
construir sobre esta base. Al usar tecnologias abiertas y documentar cada paso del proceso, se favorece la
colaboracion, la reproducibilidad y la mejora continua. Se pretende, en definitiva, crear una herramienta

util, educativa y adaptable a distintos escenarios.

1.2. Metodologia para un Sistema de Threat Intelligence

1.2.1. Objetivos

El objetivo general del proyecto es disefiar e implementar un sistema completo de Threat Intelligence
que permita gestionar loCs de forma automatizada, eficiente y visual. Este sistema debe incluir las

siguientes capacidades:

= Obtener indicadores de compromiso desde la API de OTX principalmente, pero también del resto
de fuentes.

= Enriquecer los IoCs con informacion contextual relevante: fechas de aparicion, fuente, actor

relacionado, TTP, pais de origen, fags, etc.
= Incorporar datos de geolocalizacion de IPs a través de la base de datos GeoLite2.

= Validar que los indicadores no estén duplicados antes de su insercion, empleando mecanismos

previas mediante un ID tnico como es el campo indicator.

= Almacenar los datos en un indice de Elasticsearch optimizado para busquedas rapidas y filtrados

multiples.

4 CAPITULO 1. INTRODUCCION

Calcular un threat score para cada indicador segun un algoritmo de puntuacion basado en criterios

objetivos.

Visualizar los indicadores en entornos graficos: Una web en HTML con filtros interactivos y Kibana

(gracias a su facil integracion con Elasticsearch)

Facilitar la integracion del sistema con nuevas fuentes de datos en el futuro.

Documentar todos los componentes del sistema para su reutilizacion.

A continuacion, se presenta la arquitectura general del sistema y el flujo de actividades asociado al

proceso de gestion de indicadores de compromiso:

‘Script Python Enriqueciminento de-
Fuentes loCs # ﬁ Mgzﬁgn:recl::o Control de duplicados Calculo Threat score Visualizacién

Figura 1.1: Flujo de trabajo del sistema de Threat Intelligence.

La Figura 1.1 muestra los principales mddulos del sistema: desde la obtencion de datos desde OTX, su
enriquecimiento con metadatos y geolocalizacion, control de duplicados y almacenamiento en Elastic-

search, hasta su visualizacion mediante Kibana o un dashboard HTML personalizado.

1.2. METODOLOGIA PARA UN SISTEMA DE THREAT INTELLIGENCE 5

Descarga IoCs desde OTX

A J

)
Y
@e duplicados
Y
@ en Elasticsearch

y
Calculo de @

L J
Visualizacion (Kibana + HTML)

Figura 1.2: Diagrama de actividades del flujo de gestion de [oCs.

La Figura 1.2 representa el flujo 16gico de las actividades del sistema, desde la recoleccion de IoCs
hasta su andlisis visual, facilitando la comprension del ciclo de vida completo del dato dentro del sistema

propuesto.

1.2.2. Etapas metodolégicas del sistema

El sistema se estructura en una serie de etapas que definen el mecanismo de resoluciéon empleado. Esta
metodologia estd basada en buenas practicas extraidas de la literatura especializada [1-3] y se alinea con
los principios de ciberinteligencia proactiva. A continuacion, se describen las fases principales:

1. Recoleccion de datos desde OTX y demas fuentes:

» Estudio de la documentacién de la API.

= Desarrollo del script de descarga automatica.

CAPITULO 1. INTRODUCCION

» Almacenamiento inicial en CSV.
. Normalizacion y enriquecimiento:

» Estandarizacion de campos (type, indicator, description, ...).
= Enriquecimiento con metadatos extraidos de los pulses.

= Incorporacion de campos como uuid, category, tags, first seen, last seen.
. Geolocalizacion de IPs:

= Implementacién de busqueda por IP usando la base GeoLite2.

= Asociacién automaética de pais, ciudad y continente.
. Almacenamiento en Elasticsearch:

= [nstalacion y configuracion del cluster local.
= Definicion del esquema de los documentos.

= Indexacion de los [oCs desde Python.
. Deteccion de duplicados:

= Consulta previa por campo indicator.

» [6gica de insercion condicional y campo seen_count.
. Scoring contextual:

= Disefio del algoritmo de puntuacion.

m Pruebas de calibracidon con valores reales.
. Visualizacion con Kibana:

= Dashboards por tipo, pais, puntuacion.

= Mapas de calor y tablas dindmicas.
. Visualizacion en HTML.:

= Desarrollo con Flask y plantillas HTML.

= Filtros interactivos por tipo, pais y score.
. Validacion y documentacion:

= Pruebas funcionales y rendimiento.

» Redaccion de manuales técnicos.

1.3. RECURSOS UTILIZADOS 7

Justificacion metodologica

Este enfoque metodoldgico refleja una arquitectura modular y escalable, orientada al tratamiento
completo de los IoCs. Cada etapa se implementa de forma desacoplada, lo que permite actualizar
componentes sin afectar al sistema global. Este modelo es especialmente til en entornos donde los datos

cambian continuamente y la adaptabilidad es critica.

La planificacion concreta de cada tarea, con fechas y entregables, se aborda detalladamente en el
Capitulo 2.

1.3. Recursos utilizados

Para el desarrollo de este proyecto, se han empleado recursos tanto fisicos como 16gicos, todos
seleccionados con el objetivo de crear un entorno controlado, reproducible y econdémico. A continuacioén
se detallan los principales componentes empleados:

Recursos fisicos

= Ordenador personal con sistema operativo Ubuntu 22.04 LTS, procesador Intel i7, 16 GB de RAM
y 1 TB de almacenamiento SSD. Este equipo ha servido como entorno de desarrollo principal y
nodo de pruebas para el sistema Elasticsearch.

= Conexion a internet de fibra Optica para realizar pruebas de conexion con APIs externas y actualizar
los paquetes necesarios durante el desarrollo.

= Memoria USB para copias de seguridad y transporte de ficheros entre dispositivos.

Recursos de software

= Python 3.10: lenguaje de programacion principal para el desarrollo de scripts de recoleccion de

IoCs, enriquecimiento y conexion con Elasticsearch.
= Librerias Python utilizadas:

* requests: para la conexién con la API REST de OTX.
* pandas: para el tratamiento y transformacién de datos tabulares.
* elasticsearch: cliente oficial para la conexion a Elasticsearch desde Python.

» flask: para el desarrollo de la aplicacién web personalizada.

CAPITULO 1. INTRODUCCION

* plotly: parala generacion de graficos interactivos.

* geoip2: para realizar consultas de geolocalizacién mediante MaxMind GeoLite?2.

Elasticsearch 8.x: motor de bisqueda y base de datos documental para almacenar y consultar IoCs
de forma répida.

Kibana: plataforma de visualizacion acoplada a Elasticsearch para la creacion de dashboards de

analisis visual.

GeoLite2: base de datos gratuita de MaxMind utilizada para geolocalizar direcciones IP extraidas
de los IoCs.

Git: sistema de control de versiones utilizado para gestionar el desarrollo del proyecto.

Este conjunto de herramientas ha permitido construir un sistema completamente funcional sin necesidad

de licencias comerciales, promoviendo asi el uso de software libre y fomentando la posibilidad de

reproducir este entorno en laboratorios académicos u organizaciones con recursos limitados.

1.4.

Caso de Negocio

1.4.1. Agentes implicados en el proyecto

El desarrollo de este sistema, aunque ejecutado de forma individual como parte de un trabajo de

fin de grado, contempla varios agentes y perfiles que se benefician directa o indirectamente de sus

funcionalidades:

Desarrollador: autor del proyecto, encargado del disefio, implementacion, pruebas y documentacion

del sistema.

Usuario final: profesional de ciberseguridad o analista de amenazas que consulta los [oCs a través

de los dashboards implementados.

Administrador del sistema: responsable de desplegar, mantener y actualizar los componentes del

sistema.

Supervisor académico: docente que valida la calidad técnica, metodoldgica y documental del

trabajo realizado.

Supervisor de empresa: Tutor empresarial que propone, evalia y gestiona el proyecto desde el

punto de vista de su organizacion.

1.4. CASO DE NEGOCIO 9

1.4.2. Presupuesto

En una primera aproximacion al coste estimado de este proyecto, se han tenido en cuenta tanto factores
materiales como el tiempo de desarrollo invertido. Aunque el proyecto se ha realizado en un entorno no

comercial, se estima un presupuesto teérico basado en los siguientes conceptos:

Coste de hardware y software:

= Ordenador personal (amortizacién estimada por 4 afios): 1000 € /4 = 250 €
= Conectividad, electricidad y almacenamiento adicional: 50 €

= Total estimado en recursos materiales: 300 €

Coste de trabajo:

= Estimacion de 4 horas diarias desde febrero hasta junio (aproximadamente 120 dias): 4 x 120 =
480 horas

= Segun datos recogidos en Glassdoor [4], el salario promedio de un ingeniero informético junior en
Espafia ronda los 10€/hora. Esta cifra se ha tomado como referencia para estimar el coste laboral

tedrico del proyecto.

= Total estimado en trabajo: 4800 €

Presupuesto total estimado: 5100 €

1.4.3. Impacto

La creacion de este sistema aporta multiples beneficios desde el punto de vista técnico, académico y

profesional:

= Impacto técnico: permite automatizar la recoleccion, enriquecimiento y visualizacién de IoCs,
integrando distintas tecnologias como APIs REST, bases de datos documentales y herramientas de

visualizacion.

= Impacto académico: sirve como modelo de implementacion de un sistema de inteligencia de

amenazas en contextos educativos, siendo replicable por estudiantes o investigadores.

= Impacto profesional: capacita al desarrollador con competencias aplicables en el sector de la

ciberseguridad, especialmente en areas de Threat Intelligence, anlisis de datos y desarrollo backend.

10 CAPITULO 1. INTRODUCCION

= Impacto social: promueve el uso de herramientas abiertas y el intercambio de conocimiento,

favoreciendo una cultura de colaboracion y defensa comun frente a amenazas digitales.

Este proyecto puede escalarse facilmente para integrar multiples fuentes de datos, incluir nuevas capas

de anélisis o desplegarse en entornos corporativos de mayor envergadura.

1.5. Organizacion del documento
Este Trabajo de Fin de Grado se organiza en los siguientes capitulos:

= Capitulo 1: Introduccion. Se presenta el contexto del proyecto, su motivacion, objetivos generales
y especificos, asi como el alcance del sistema desarrollado.

= Capitulo 2: Planificacion. Describe la metodologia de trabajo, el cronograma seguido y las
herramientas utilizadas para la gestién del proyecto.

= Capitulo 3: Tecnologias utilizadas. Se explican en detalle las tecnologias, lenguajes, frameworks
y herramientas empleadas para desarrollar el sistema de Threat Intelligence.

= Capitulo 4: Analisis. Se identifican los requisitos del sistema y se realiza un estudio de las fuentes
de IoCs y criterios para su seleccion y tratamiento.

= Capitulo 5: Diseiio. Presenta la arquitectura del sistema, la estructura de datos empleada y el disefio

de la puntuacién de amenazas.

= Capitulo 6: Implementacion. Se detalla cémo se ha llevado a cabo la implementacién técnica del

sistema, incluyendo el backend en Flask, la integracion con Elasticsearch y la interfaz web.

= Capitulo 7: Pruebas. Se documentan las pruebas realizadas para verificar la correcta funcionalidad

del sistema, asi como algunos ejemplos de casos reales procesados.

= Capitulo 8: Conclusiones. Recoge los resultados obtenidos, las principales conclusiones y posibles

lineas de mejora o evolucion futura del sistema.

Capitulo 2
Planificacion del Proyecto

En este capitulo se lleva a cabo la planificacion del proyecto siguiendo la guia de PMBOK [?]. La
elaboracidn del sistema definido en los objetivos se realiza mediante un proceso iterativo, ya que se puede

dividir facilmente en etapas bien definidas.

En primer lugar, se realiza una planificacion inicial con el disefio de las tareas a partir de las etapas del
proyecto definidas en la seccion Etapas, en la que ademads se definen los hitos y por tanto los entregables.
Posteriormente, mediante un cronograma se muestra la gestion del tiempo. También se realiza la gestion
de los riesgos que pueden aparecer a lo largo del proyecto y por tltimo se realiza una estimacion de los

costes materiales y laborales.

2.1. Planificacion del Proyecto

2.1.1. Planificacion inicial

La planificacidn inicial del proyecto se construy6 siguiendo una guia de alto nivel orientada a proyectos
de inteligencia de amenazas, tal como fue recomendada por el tutor académico. Esta guia deriva de buenas
practicas descritas en marcos como los de ENISA [3] y NIST [5], donde se promueve una aproximacion

iterativa, basada en tareas funcionales con entregables parciales.

Dado que este proyecto no se basa en una arquitectura puramente software tradicional, no se estructuré
en fases como “andlisis”, “disefio” o “implementacion”, sino que se organizo por bloques de funcionalidad
operativa. Cada fase se abord6 con un enfoque de desarrollo incremental, mediante la creacion de
prototipos funcionales que permitieron validar los avances y detectar ajustes necesarios antes de continuar

con la siguiente etapa.

11

12 CAPITULO 2. PLANIFICACION DEL PROYECTO

La dedicacién estimada fue de 15-20 horas semanales, distribuidas en sesiones de 3 a 4 horas diarias.

El proyecto se dividi6 en seis grandes bloques funcionales:

= Fase 1 — Preparacion del entorno (Semanas 1-2): instalacion de tecnologias base (Python,
Elasticsearch, Kibana, Flask), exploracion de la API de OTX y verificacion del flujo de conexion

inicial.

= Fase 2 — Recoleccion de datos (Semanas 3—4): desarrollo de un script robusto en Python para la
obtencion automatizada de IoCs desde OTX, guardado en CSV y validacion de estructura de datos.

= Fase 3 — Enriquecimiento y geolocalizacion (Semanas 5-6): integracién de metadatos (tags,
actores, TTPs, fechas), y aplicacion de geolocalizacion mediante GeoLite2 para direcciones IP.

= Fase 4 — Scoring y deduplicacion (Semanas 7-8): implementacion de un sistema de puntuacién

contextual configurable y deteccion de duplicados mediante consulta previa en Elasticsearch.

= Fase 5 — Visualizacion (Semanas 9-10): disefio de dashboards en Kibana y creacion de un

dashboard HTML en Flask, incluyendo graficos interactivos y filtros personalizados.

= Fase 6 — Validacion y documentacion (Semanas 11-12): integracion final, pruebas de rendimiento,

documentacion técnica y preparacion de entregables.

En cada fase se construy6 un prototipo parcial o funcional (por ejemplo, script de descarga, indice
en Elasticsearch, interfaz HTML), que sirvi6 para evaluar el resultado antes de continuar. Este enfoque

ayud¢ a identificar posibles mejoras sin comprometer el avance general.

Enriqueciminento y Scoring y Validacion y
Preparacion del Recoleccion loCs P i Visualizacion y .
entomo (Sem 1.2) # (sem34) # e # G TEE D # gréficos (Sem 5-10) # documentacin (sem

Figura 2.1: Planificacién inicial del proyecto por fases

2.1.2. Seguimiento del proyecto

Durante el desarrollo del proyecto se adopté un enfoque de seguimiento iterativo, apoyado en la
construccion de prototipos funcionales en cada fase. Este enfoque permiti6 verificar el cumplimiento de
los objetivos parciales y ajustar las tareas y tiempos en funcién de la experiencia real acumulada.

En lugar de seguir un cronograma cerrado, se evaluaba peridédicamente el progreso, lo que permitié
aplicar correcciones tempranas. Por ejemplo, el diseiio del dashboard HTML resulté mas complejo de lo
esperado, lo que requiri6 redistribuir tiempo desde otras fases. Por el contrario, la automatizacién de la

descarga desde OTX se implementd de forma maés répida de lo previsto.

2.2. GESTION DE RIESGOS 13

El tutor académico fue informado semanalmente del avance, y los hitos se validaron mediante entregas
funcionales de scripts, configuraciones de Elasticsearch, y prototipos visuales. Esta dindmica proporciond

un marco agil, pero suficientemente estructurado, para garantizar la calidad del sistema final.

La siguiente tabla recoge las tareas principales, comparando la duracion estimada en la planificacion

inicial con la duracidn real obtenida tras finalizar el proyecto:

Tarea principal Duracion estimada | Duracion real

Preparacién del entorno y | 2 semanas 2 semanas

pruebas iniciales

Recoleccion de IoCs desde | 2 semanas 1.5 semanas
OoTX
Enriquecimiento, normaliza- | 2 semanas 2 semanas

cién y geolocalizacion

Scoring y deteccion de dupli- | 2 semanas 2.5 semanas
cados

Visualizacién: Kibana + | 2 semanas 3 semanas
HTML Flask

Validacioén final y documenta- | 2 semanas 2 semanas

cion técnica

Tabla 2.1: Comparativa entre planificacion estimada y desarrollo real del proyecto

El prototipado continuo permitié detectar problemas tempranos (como la configuracion de filtros
dindmicos o los indices geograficos), lo que favorecié una mejor asignacion de tiempos. Esta flexibilidad
fue clave para mantener el proyecto alineado con sus objetivos funcionales, garantizando la entrega de un

sistema completo, funcional y reutilizable.

2.2. Gestion de Riesgos

La gestion de riesgos del proyecto se ha basado en la clasificacién de Barry Boehm, que distingue varios
tipos de riesgos asociados al desarrollo de sistemas técnicos: tecnoldgicos, de personal, de planificacion,
organizativos y externos. Cada riesgo identificado ha sido evaluado en términos de su probabilidad de

ocurrencia y el impacto potencial en los objetivos del proyecto.

14

CAPITULO 2. PLANIFICACION DEL PROYECTO

A continuacién se muestra una tabla simplificada que recoge los principales riesgos detectados, su

categoria, valoracion y estrategia de respuesta:

Riesgo Categoria Prob. Impacto | Mitigacion Contingencia
Fallos en la conexién | Técnico Alta Media Uso de logs y control | Reintento automatico
con la API de OTX de errores. Tests pre- | o cambio temporal a
vios con curl. carga local desde CSV.
Complejidad inespe- | Técnico Media Alta Prototipado incremen- | Sustitucion por dash-
rada en visualizacion tal. Uso de librerias co- | board basico en Kiba-
HTML nocidas (Plotly, Flask). | na si hay bloqueo.
Falta de tiempo por | Personal Alta Alta Planificacion conserva- | Reorganizacion de ta-
carga académica si- dora. Reservas de tiem- | reas para centrar en lo
multidnea po de ajuste. esencial.
Cambios en los re- | Organizativo | Media Media Contacto frecuente con | Adaptacioén del calen-
quisitos 0 recomen- el tutor, entregas par- | dario a tareas criticas.
daciones del tutor ciales.
Pérdida de datos o | Externo Baja Alta Backups regulares del | Restauracion desde co-
dafio del entorno de repositorio y entorno | pia en nube (GitHub,
trabajo virtual. GDrive).

Tabla 2.2: Principales riesgos identificados y estrategias de mitigacion

Con el fin de visualizar de forma mds clara la distribucion de riesgos, se ha construido una matriz

personalizada que representa la probabilidad frente al impacto para cada caso identificado. Esta matriz

permite priorizar acciones y establecer el umbral de tolerancia segtin la naturaleza especifica del proyecto.

2.3. PRESUPUESTO DEL PROYECTO 15

Matriz de Impacto de Riesgos del Proyecto

Falta de tiempo
Muy alta [
Fallo API OTX
Alta ([
©
©
g Cambios del tutor Visualizacién HTML
% Media | ([o
o)
)
.
a
Pérdida de datos
Baja o
Muy baja
Muy bajo Bajo Medio Alto Critico

Impacto

Figura 2.2: Matriz de impacto y probabilidad de los riesgos del proyecto

2.3. Presupuesto del Proyecto

Aunque el presente trabajo no ha supuesto un coste econémico real, es posible estimar su valor en un
contexto profesional, considerando tanto la dedicacion invertida como los recursos necesarios para su
desarrollo y eventual despliegue en produccion.

Criterios de estimacion

La estimacion del coste del proyecto se ha realizado segtin dos bloques principales:

= Coste de desarrollo: calculo del valor econémico del trabajo técnico en base a un perfil junior
multitarea, que ha ejercido funciones de desarrollo backend, andlisis, visualizacion de datos y
documentacién técnica.

= Coste de infraestructura: simulacioén del coste de ejecuciéon en un entorno de nube publica
(Amazon Web Services) utilizando instancias estandar EC2.

16 CAPITULO 2. PLANIFICACION DEL PROYECTO

Coste estimado de desarrollo

El desarrollo se ha realizado en 12 semanas, con una media de 20 horas semanales, lo que equivale a
un total de 240 horas. Como referencia salarial, se ha tomado un perfil técnico junior en Espafia, con un
coste de 10€/hora segin datos de Glassdoor [4].

No obstante, en un escenario real de contratacion, el coste para el empresario incluiria cotizaciones
sociales, seguros, licencias, etc. Por ello, se estima un factor de coste empresarial del 1,5 sobre el coste

base, resultando en un coste real de 15€/hora.

240 horas x 15/hora = 3.600€

Coste estimado de infraestructura en la nube

En caso de querer desplegar el sistema en produccidn, se ha simulado su ejecucién en Amazon
Web Services (AWS), utilizando una instancia t3.medium (2 vCPU, 4 GB RAM), suficiente para alojar

Elasticsearch, Flask y servicios auxiliares en entorno de pruebas. El coste aproximado seria:

= Instancia EC2 t3.medium (on-demand): 0,0416€/h x 24h x 30 dias 30€/mes
= Almacenamiento EBS 50 GB SSD: 0,10€/GB/mes x 50 5€/mes

= Transferencia de datos estimada (5 GB/mes): incluido en capa gratuita

Total mensual estimado de infraestructura: 35€/mes

Resumen del presupuesto estimado

Concepto Coste (€)
Desarrollo técnico (240h x 15€/h) 3.600€
Infraestructura en AWS (1 mes) 35€
Licencias y herramientas (software libre) 0€
Coste total estimado 3.635€

Tabla 2.3: Presupuesto preliminar del proyecto

2.3. PRESUPUESTO DEL PROYECTO 17

Este presupuesto representa una aproximacion realista del valor econémico del proyecto, util para
evaluar su viabilidad futura en un entorno profesional. La utilizacion de software libre y el bajo consumo

de infraestructura hacen que el sistema sea facilmente escalable y sostenible en costes.

18

CAPITULO 2. PLANIFICACION DEL PROYECTO

Capitulo 3
Tecnologias utilizadas

El desarrollo del presente sistema de Threat Intelligence ha requerido la integracién y uso de multiples
tecnologias, tanto a nivel de backend como de visualizacion y gestion de datos. Dado que uno de los
objetivos clave del proyecto es la posibilidad de ser replicado por otros usuarios sin coste, se ha priorizado
el uso de herramientas de codigo abierto, ampliamente documentadas y con una comunidad activa. Este
capitulo expone las tecnologias seleccionadas, su papel dentro del sistema, y una evaluacion critica basada
en la experiencia adquirida durante el desarrollo.

Cada tecnologia serd presentada desde tres enfoques: su propdsito dentro del sistema, sus caracteristicas

principales y una evaluacion propia de ventajas, limitaciones y posibles alternativas.

3.1. Python

Descripcion general

Python es un lenguaje de programacién de alto nivel, interpretado y multiparadigma, que soporta
programacion imperativa, orientada a objetos y funcional. Fue creado por Guido van Rossum y publicado
por primera vez en 1991. Su disefio enfatiza la legibilidad del c6digo y la productividad del desarrollador
gracias a una sintaxis clara y concisa. Hoy en dia, Python es uno de los lenguajes mas utilizados
en el &mbito académico y profesional, siendo especialmente popular en dreas como ciencia de datos,
automatizacion de tareas, desarrollo web y ciberseguridad [6]. En este proyecto se ha utilizado Python
en su version 3.11.8.

Su popularidad ha crecido de forma exponencial en los ultimos afios. Segtn el indice TIOBE de junio
de 2025, Python es el lenguaje mas popular del mundo por cuarto afio consecutivo [7]. También es el

lenguaje mas ensefiado en universidades, tanto para iniciacion a la programacién como para asignaturas

19

20

CAPITULO 3. TECNOLOGIAS UTILIZADAS

de anélisis de datos o inteligencia artificial [8].

Rol dentro del proyecto

Python ha constituido la columna vertebral del sistema de Threat Intelligence desarrollado. Se ha

utilizado en todos los niveles de la arquitectura software, desde la automatizacion de descargas de IoCs

(Indicadores de Compromiso) hasta el procesamiento, enriquecimiento, insercion en la base de datos y

visualizacion web mediante un backend personalizado. Las principales funciones desarrolladas en Python

han sido:

Descarga automatizada de [oCs desde la API REST de Open Threat Exchange (OTX), utilizando la

libreria requests.

Transformacién y enriquecimiento de datos mediante pandas, para aplicar limpieza, normalizacion
y estructuracion de campos como type, indicator,tags, first_seen,related actors,

etc.

Implementacién del algoritmo de scoring que evalia el riesgo de un IoC en funcién de criterios

como antigiiedad, origen geografico, TTPs asociadas y presencia en multiples fuentes.

Indexacién en Elasticsearch, utilizando la libreria oficial elasticsearch-py, que permite la

insercion y consulta eficiente de documentos JSON.

Geolocalizacién de direcciones IP mediante la libreria geoip2, accediendo a la base de datos
GeoLite2 de MaxMind.

Desarrollo del backend web del dashboard HTML, implementado con el microframework Flask.

Esta versatilidad permite a Python asumir tanto tareas de scripting como de backend web, lo cual

reduce la complejidad del proyecto y evita dependencias con multiples lenguajes.

Ventajas y puntos fuertes

El uso de Python ha ofrecido numerosas ventajas en el desarrollo del sistema:

= Productividad y rapidez de desarrollo: gracias a su sintaxis clara, se ha podido desarrollar y

depurar cédigo rapidamente, reduciendo el tiempo de implementacidn y facilitando la integracion

entre componentes [9].

3.1. PYTHON 21

= Amplio ecosistema de librerias: se dispone de bibliotecas maduras y bien documentadas para
practicamente cualquier tarea, desde acceso a APIs (request s) hasta visualizacion (plotly) o

bases de datos (elasticsearch, sgqlite3, sglalchemny).

= Comunidad activa y soporte técnico: Python cuenta con una de las comunidades mas activas
del mundo del software libre, lo cual se traduce en abundante documentacion, foros de soporte y
ejemplos de codigo.

= Facilidad de aprendizaje: la curva de aprendizaje de Python es baja, lo cual ha permitido centrar
los esfuerzos en el disefio del sistema y el andlisis de amenazas, en lugar de en la sintaxis o

depuracion compleja.

Limitaciones observadas

A pesar de sus muchas ventajas, también se han identificado algunas limitaciones durante el desarrollo:

= Rendimiento: al ser un lenguaje interpretado y de tipado dindmico, Python no estd optimizado para
tareas de computacion intensiva o concurrencia de bajo nivel. Sin embargo, esto no ha supuesto un

cuello de botella en este proyecto, dado que las operaciones son mayoritariamente I/O-bound y no
CPU-bound.

= Gestion de entornos: en proyectos con multiples dependencias, es imprescindible usar entornos
virtuales (venv, poetry, conda) para evitar conflictos entre versiones de librerias. Esto afiade
una complejidad inicial en la configuracion del entorno de trabajo.

= Despliegue en produccion: aunque es ideal para prototipado y desarrollo, desplegar aplicacio-
nes Python a produccién (por ejemplo, usando gunicorn y nginx) requiere conocimientos
adicionales, especialmente en comparacion con lenguajes mds orientados a sistemas como Go o
Java.

Alternativas consideradas

Durante la fase de disefio, se valoraron otras opciones tecnoldgicas para el nicleo del sistema:

= Go (Golang): ofrece mejor rendimiento y compilacion a binario estatico, ideal para microservi-
cios. Sin embargo, su ecosistema es menos completo en librerias especificas de ciberseguridad o
visualizacion.

= Java: ofrece robustez y madurez para sistemas empresariales, pero introduce una gran sobrecarga
sintictica, poco adecuada para un desarrollo agil en el contexto de un TFG.

22 CAPITULO 3. TECNOLOGIAS UTILIZADAS

= Node.js (JavaScript): muy popular para desarrollo web, pero menos orientado a tareas de andlisis

de datos y manipulacién de ficheros estructurados.

Finalmente, Python fue elegido por su equilibrio entre facilidad de uso, madurez de bibliotecas,

integracion con Elasticsearch y capacidades de scripting.

Valoracion final

Python ha resultado ser una eleccidon adecuada, alineada tanto con los objetivos técnicos como
académicos del proyecto. Su uso ha facilitado la implementacion de un sistema completo y funcional,
promoviendo ademds buenas practicas de ingenieria software: modularidad, reutilizacién de cédigo,
claridad en la documentacién y portabilidad. Su popularidad en el sector de la ciberseguridad y andlisis

de amenazas refuerza su idoneidad para este tipo de sistemas [10, 11].

3.2. Flask

Descripcion general. Flask es un microframework de desarrollo web escrito en Python, disefiado
para ser ligero, flexible y facil de extender. Fue creado por Armin Ronacher en 2010 como parte de la
iniciativa Pocoo. A diferencia de frameworks mas complejos como Django, Flask sigue una filosofia
minimalista: proporciona lo esencial para crear una aplicacion web (enrutamiento, servidor, plantillas),
dejando al desarrollador la libertad de decidir como organizar el resto del sistema [12]. En este proyecto
se ha utilizado Flask en su version 2.3.3.

Estd basado en el estindar WSGI (Web Server Gateway Interface) y utiliza Jinja2 como motor de
plantillas. Esta simplicidad lo convierte en una opcién ideal para proyectos académicos, APIs REST o

sistemas con légica de backend personalizada, como el caso de este sistema de Threat Intelligence.

Uso en el proyecto. Flask ha sido utilizado para implementar el dashboard web personalizado, una
interfaz alternativa a Kibana que permite visualizar los IoCs procesados y almacenados en Elasticsearch.
Su objetivo principal es ofrecer una visualizacion accesible a usuarios sin conocimientos técnicos, con

filtros interactivos y graficos generados dindmicamente mediante JavaScript y Plotly.

Las funcionalidades implementadas con Flask han sido:

= Desarrollo del backend web para servir paginas HTML con los datos actualizados.

= Comunicacion con Elasticsearch a través de consultas HTTP y parsing de resultados.

3.2. FLASK 23

= Enrutamiento dindmico para acceder a las vistas de tabla principal, visualizacién grafica (/charts)
y refresco de 1oCs (/refresh).

= [ntegracion con templates Jinja2 para mostrar datos filtrables y ordenables desde el navegador.

Esta solucion permite separar el componente de visualizacién del motor de andlisis y almacenamiento,
siguiendo una arquitectura modular y escalable.

Ventajas observadas. Durante el desarrollo del sistema, Flask ha ofrecido multiples ventajas:

» Facilidad de aprendizaje: su estructura simple y la claridad de su documentacion han permitido una
implementacion rdpida sin curva de aprendizaje pronunciada.

» Flexibilidad total: no impone estructura de carpetas, ORM ni componentes forzados, lo que lo hace
ideal para proyectos personalizados.

» Compatibilidad con librerias externas: se ha integrado sin problemas con bibliotecas como

elasticsearch,plotly ogeoip?2.

» Despliegue sencillo en local o produccion: mediante servidores ligeros como gunicorn, Flask

puede escalar de pruebas locales a entornos productivos reales.

Limitaciones encontradas. A pesar de sus fortalezas, se identificaron algunas limitaciones:

» Ausencia de funcionalidades por defecto: funcionalidades como autenticacion, sesiones o validacion
de formularios deben implementarse manualmente o mediante extensiones, lo que puede aumentar
la complejidad en sistemas mds grandes.

» Estructura no opinada: si bien esto permite flexibilidad, también puede provocar desorganizacion

en equipos grandes o en proyectos de larga duracidn sin un disefio inicial sélido.

» Menor rendimiento que frameworks asincronicos: al ser sincronico por defecto, Flask no es ideal

para aplicaciones que requieran manejo intensivo de conexiones concurrentes, como WebSockets.

Alternativas consideradas. Se valoraron las siguientes alternativas a Flask:

= Django: framework completo con ORM, autenticacion y panel de administracion incluidos. Fue

descartado por su complejidad innecesaria para un sistema de visualizacién liviano.

24 CAPITULO 3. TECNOLOGIAS UTILIZADAS

= FastAPI: mis moderno y eficiente, basado en Python asincrono y con validacién automatica de
datos usando pydantic. Aunque prometedor, su sintaxis y despliegue requerian una curva de

aprendizaje adicional.

= Dash: framework especifico para dashboards interactivos en Python. Se descart6 por sus limitaciones

de personalizacion del frontend y falta de control del backend.

Valoracion final. Flask ha resultado una eleccion adecuada para implementar un sistema web ligero,
rapido de desarrollar y ficilmente integrable con el resto de componentes Python del sistema. Su estructura
ha permitido implementar una interfaz accesible y funcional sin necesidad de tecnologias adicionales ni

frameworks pesados.

3.3. Elasticsearch

Descripcion general. Elasticsearch es un motor de bisqueda y analisis de texto en tiempo real,
distribuido y de cddigo abierto, basado en Apache Lucene. Fue desarrollado originalmente por Shay
Banon en 2010 y es mantenido por Elastic NV. Elasticsearch permite almacenar, indexar y consultar
grandes volumenes de datos semiestructurados, utilizando un modelo documental (JSON) y una potente
sintaxis de consulta declarativa llamada Query DSL [13]. En este proyecto se ha utilizado Elasticsearch
en su version 8.13.0.

Gracias a su escalabilidad horizontal, tolerancia a fallos y capacidades analiticas, Elasticsearch se ha
convertido en una herramienta de referencia en proyectos de andlisis de datos, observabilidad (logging,

métricas), ciberseguridad y motores de recomendacion.

Uso en el proyecto. En el sistema de Threat Intelligence desarrollado, Elasticsearch ha sido utilizado
como base de datos documental principal para almacenar y consultar los Indicadores de Compromiso
(IoCs). Su eleccion se ha basado en las siguientes necesidades:

= Indexacion flexible: cada IoC se almacena como un documento JSON, lo que permite anadir
campos enriquecidos como geolocalizacion, score, TTPs o actores asociados sin necesidad de

esquema rigido.

= Busqueda eficiente: permite consultas rapidas por cualquier campo (tipo, pais, fecha, etc.), incluso

sobre conjuntos de datos con decenas de miles de elementos.

= Integracion con visualizacion: se puede conecta de forma nativa con Kibana para la creacion de

dashboards interactivos.

3.3. ELASTICSEARCH 25

= Compatibilidad con Python: se ha utilizado el cliente oficial elasticsearch-py para insertar,

consultar y actualizar documentos directamente desde los scripts del sistema.

El indice creado contiene campos normalizados como indicator, type,description, country,
threat_score, first_seen, tags y otros metadatos. Ademds, se ha habilitado un pipeline de in-

gestion para controlar la estructura y evitar duplicados.

Ventajas observadas. Elasticsearch ha demostrado ser una herramienta eficaz y adecuada para el tipo
de datos tratados:

» Rendimiento y escalabilidad: permite manejar decenas de miles de documentos con baja latencia,

tanto en insercion como en busqueda.

= Modelo flexible: el uso de JSON como estructura de almacenamiento facilita el enriquecimiento

progresivo de datos sin redefinir el esquema.

= Consultas complejas: gracias a Query DSL se pueden aplicar filtros compuestos, agregaciones
estadisticas y busquedas por coincidencia parcial.

» Visualizacion integrada: su integracion con Kibana permite construir dashboards de forma rapida

sin necesidad de programar visualizaciones desde cero.

Limitaciones encontradas. Pese a sus multiples ventajas, también se detectaron algunas dificultades:

= Curva de aprendizaje inicial: la sintaxis de las consultas y el disefio de indices requiere cierta

experiencia previa.

= Uso intensivo de memoria: especialmente en entornos locales o con poca RAM, Elasticsearch puede

consumir recursos considerables.

» Gestion de duplicados: aunque se puede controlar con l6gica externa (usando el campo indicator

como ID), no existe una deduplicacion automatica nativa.

» Persistencia no relacional: su modelo documental, si bien flexible, puede ser problematico si se

requieren relaciones entre entidades complejas.

Alternativas consideradas. Durante la fase de diseio, se estudiaron otras posibles tecnologias de

almacenamiento:

26 CAPITULO 3. TECNOLOGIAS UTILIZADAS

= MongoDB: también basado en documentos JSON, pero con menor potencia en busquedas complejas.

Mis orientado a almacenamiento general que a andlisis.

= PostgreSQL: sistema relacional robusto con soporte para JSON y extensiones geograficas, pero

menos eficiente en buisquedas de texto libre o agregaciones rapidas.

= Apache Solr: basado en Lucene, como Elasticsearch, pero con menor integracion visual y mas

orientado a entornos empresariales.

Se opt6 por Elasticsearch por su excelente equilibrio entre rendimiento, flexibilidad y visualizacién

integrada.

Valoracion final. La adopcion de Elasticsearch ha permitido construir un sistema agil, escalable y
centrado en el andlisis de amenazas, con consultas ricas y visualizacion inmediata. Su combinacion con
Kibana y el ecosistema Elastic lo convierte en una solucién ideal para proyectos de ciberseguridad y

monitorizacion de eventos.

3.4. Geolite2

Descripcion general. GeoLite2 es una base de datos de geolocalizacion IP gratuita, mantenida por
la empresa MaxMind. Permite asociar direcciones IPv4 o IPv6 con informacion geogréfica como pais,
ciudad, continente, ASN (Autonomous System Number) y organizacion. La base de datos se distribuye en
formato binario MMDB (MaxMind DB) y puede ser consultada mediante la libreria oficial geoip2 en
multiples lenguajes de programacion, incluido Python [14]. En este proyecto se ha utilizado la libreria
geoip2 en su version 4.7.0.

GeoLite2 se ofrece bajo la licencia Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) [15],
lo que la convierte en una opcién popular para proyectos académicos, de investigacion o de seguridad

informatica. También existe una version comercial de mayor precision: GeolP2.

Uso en el proyecto. GeoLite2 ha sido empleada en este sistema como herramienta para enriquecer
los IoCs que contienen direcciones IP. Su finalidad es afiadir contexto geografico que permita mejorar la

valoracion de riesgo (threat_score) y facilitar el andlisis visual posterior.

En concreto, se utilizo la base de datos GeoLite2-Country .mmdb, que permite mapear cada IP a
un pais y continente. Esta informacién se afade como nuevos campos al documento antes de ser indexado

en Elasticsearch.

3.4. GEOLITE2 27

= Se empled la libreria oficial geoip2 en Python para realizar consultas rapidas desde archivo
local [16].

= [a busqueda por IP se realiza en tiempo de ejecucion, justo antes del almacenamiento en Elastic-
search.

= Se extraen los codigos ISO del pais y continente, ademas del nombre legible.

Este proceso de enriquecimiento ha permitido afiadir valor contextual sin necesidad de conexiones

externas ni APIs de pago, cumpliendo asi con el requisito de reproducibilidad del entorno.

Ventajas observadas. La integracion de GeoLite2 ha aportado multiples beneficios al sistema:

Consulta local y rdpida: al residir en disco, no depende de conectividad externa ni genera latencia
de red.

Datos estructurados y precisos a nivel de pais: permite visualizaciones geograficas precisas en

mapas o dashboards.

Licencia libre para uso académico: cumple con los requisitos éticos y legales del proyecto [15].

Fdcil integracion con Python: el cliente geoip?2 tiene una interfaz clara y bien documentada [16].

Limitaciones encontradas. Durante su uso se han detectado ciertas limitaciones inherentes al producto:

» Nivel de precision limitado: 1a version gratuita so6lo incluye datos a nivel de pais. Para ciudad o

ASN es necesario GeolP2 (comercial).

= Datos estdticos: la base debe actualizarse manualmente, ya que las asignaciones IP cambian con el

tiempo.

» Cobertura parcial en direcciones privadas o reservadas: las IPs internas (como 192.168.x.x) o de

pruebas no tienen mapeo geogréfico valido.

Alternativas consideradas. Se analizaron otras opciones de geolocalizacion IP:

= [Pinfo.io: servicio web con API REST y version gratuita limitada. Requiere conexion a internet y
gestion de claves API.

= DB-IP Free Edition: similar a GeoLite2, pero con menor documentacién y comunidad.

28 CAPITULO 3. TECNOLOGIAS UTILIZADAS

= Whois + ASN parsing: solucién manual basada en registros publicos, menos robusta y mas
compleja de automatizar.

Se opt6 por GeoLite2 por su equilibrio entre calidad, licencia, facilidad de uso y soporte para integracion
local.

Valoracion final. GeoLite2 ha sido una pieza clave en la fase de enriquecimiento del sistema, pro-
porcionando metadatos geograficos esenciales para el andlisis contextual de amenazas. Su integracion
sencilla, su fiabilidad y su bajo coste la convierten en una tecnologia muy recomendable para sistemas de
Threat Intelligence o analisis de seguridad a nivel global.

3.5. Plotly

Descripcion general. Plotly es una biblioteca de visualizacion interactiva para lenguajes como Python,
JavaScript, R y Julia. En su versién para Python (plotly.py), permite generar graficos dinimicos
basados en D3.js, WebGL y SVG, que pueden ser renderizados en navegadores web o embebidos en
aplicaciones web usando frameworks como Flask o Dash [17]. En este proyecto se ha utilizado la
biblioteca plotly en su version 5.22.0.

La principal ventaja de Plotly frente a bibliotecas como Matplotlib o Seaborn es su interactividad: el
usuario puede acercar, filtrar, seleccionar, exportar y explorar datos directamente sobre el grafico generado.
Esto lo convierte en una herramienta especialmente util en proyectos de analitica exploratoria, reporting

dindmico y dashboards de ciberseguridad.

Uso en el proyecto. Plotly se ha utilizado en el sistema como componente de visualizacion dentro del
dashboard HTML personalizado (desarrollado con Flask). Se ha empleado principalmente para representar

los datos procesados desde Elasticsearch en forma de graficos interactivos accesibles desde el navegador.

Entre las visualizaciones implementadas con Plotly destacan:

Griafico de barras del nimero de IoCs por tipo (IP, URL, hash, etc.).

Grafico de barras de media de threat_score por tipo de indicador.

Grafico de barras horizontales con el top 10 de tags por puntuacién promedio.

Nube de palabras dindmica (integrada mediante HTML/CSS complementario).

3.5. PLOTLY 29

Los datos necesarios para estos graficos son obtenidos mediante consultas al indice de Elasticsearch,
parseados en Python y transformados en objetos plotly.graph_objects antes de ser enviados al

navegador como HTML embebido.

Ventajas observadas. Plotly ha ofrecido miiltiples ventajas frente a otras alternativas:

» Grdficos interactivos sin necesidad de JavaScript: permite construir visualizaciones complejas

directamente desde Python, con interactividad incorporada.

» [ntegracion con Flask: los graficos pueden exportarse a HTML y embeberse facilmente en las
plantillas del dashboard.

= Amplio repertorio de grdficos: incluye soporte para histogramas, series temporales, diagramas de

dispersion, mapas geograficos, cajas de bigotes, entre otros.

» Personalizacion avanzada: permite modificar estilos, colores, anotaciones y animaciones mediante
atributos JSON.

Limitaciones encontradas. A pesar de su potencia visual, también se observaron ciertas limitaciones:

= Tamario de carga en el navegador: al incrustar multiples graficos, los tiempos de renderizado en el

cliente pueden incrementarse, especialmente con muchos puntos de datos.

» Mayor consumo de memoria: tanto en el servidor como en el navegador, debido a la generacion

previa del HTML completo de cada grafico.

» Dependencia de JavaScript y D3.js: aunque no se escribe directamente, la libreria genera c6digo

que requiere renderizado por el navegador.

Alternativas consideradas. Se analizaron varias bibliotecas y herramientas antes de elegir Plotly:

= Matplotlib: mis clésico, robusto y adecuado para graficos estaticos. Se descarté por su falta de
interactividad.

= Dash: framework de dashboards de Plotly, muy potente pero requiere una arquitectura dedicada
tipo SPA (Single Page Application).

= Chart.js o D3.js: potentes en JavaScript puro, pero menos integrables directamente desde Python.

30 CAPITULO 3. TECNOLOGIAS UTILIZADAS

Se eligi6 Plotly por su equilibrio entre facilidad de uso desde Python, calidad visual y grado de

interactividad.

Valoracion final. Plotly ha sido una tecnologia clave para dotar al sistema de una visualizacién
avanzada y atractiva, sin requerir conocimientos de frontend ni JavaScript. Su integracion con Flask ha
permitido mantener una arquitectura simple pero potente, facilitando el andlisis visual y la comprension

de patrones en los datos IoC por parte del usuario final.

3.6. APIs REST

Descripcion general. Una API REST (Representational State Transfer) es una interfaz que permite
la comunicacion entre sistemas mediante operaciones estandar del protocolo HTTP (GET, POST, PUT,
DELETE). Fue propuesta por Roy Fielding en su tesis doctoral en el afio 2000 [18] y se ha consolidado
como uno de los paradigmas mds utilizados para el disefio de servicios web debido a su simplicidad,
escalabilidad y compatibilidad con miiltiples plataformas. En este proyecto, el acceso a APIs REST se
ha realizado mediante la biblioteca requests (v2.31.0) y el backend web desarrollado con Flask
(v2.3.3).

Las APIs REST se basan en recursos identificables mediante URLSs, intercambian informacion en
formatos estdandar como JSON o XML, y utilizan métodos HTTP para definir acciones. Son especialmente

adecuadas para aplicaciones distribuidas, integraciones entre servicios y consumo de datos abiertos (Open
Data) [19].

Uso en el proyecto. El sistema desarrollado consume datos desde una API REST externa: Open Threat
Exchange (OTX), una plataforma de threat intelligence gestionada por AT&T Cybersecurity. Esta API
permite acceder a pulsos (pulses) que contienen multiples IoCs generados por usuarios, organizaciones o

comunidades de ciberseguridad [20].

El uso de APIs REST ha sido esencial en varias fases del sistema:

» Autenticacion por API Key: el acceso a OTX requiere enviar una clave privada como cabecera en

cada solicitud.

» Descarga paginada de pulsos: se ha desarrollado una légica de iteracion para recorrer paginas de

resultados hasta completar la recoleccion de [oCs.

» Pardmetros de filtrado temporal: el sistema consulta inicamente los pulsos creados o actualizados

en los ultimos dias, optimizando el volumen de datos.

3.6. APIS REST 31

= Procesamiento del formato JSON: se ha utilizado la libreria request s para realizar peticiones

HTTP y json para deserializar la respuesta en objetos Python.

El endpoint utilizado hasido https://otx.alienvault.com/api/vl/pulses/subscribed,

con parametros de fecha y limite de resultados.

Ventajas observadas. El uso de APIs REST en este sistema ha proporcionado multiples ventajas:

» Acceso automatizado y actualizado a fuentes de amenazas: permite descargar IoCs de forma

periddica sin intervencion humana.

» Formato JSON estructurado: facilita el parseo y tratamiento de datos en Python sin necesidad de

transformaciones intermedias.

» [nteroperabilidad: el protocolo HTTP es universal y compatible con firewalls, proxies y sistemas

heterogéneos.

» Facilidad de integracion en scripts: con pocas lineas de c6digo se puede establecer comunicacion

COoN Servicios externos.

Limitaciones encontradas. A pesar de su robustez, se observaron algunos desafios durante su integra-

cion:
» Tasa de peticiones limitada (rate limit): OTX impone un limite de peticiones por minuto, lo que

obliga a incluir mecanismos de espera o reintentos.

» Falta de documentacion detallada para ciertos campos: algunos atributos devueltos por la API no

estan explicados en la documentacién oficial [20].

= Dependencia de servicio externo: si el servicio de OTX no estd disponible, la recoleccion de

indicadores se interrumpe.

Alternativas consideradas. Se evaluaron otras APIs ptblicas de threat intelligence, como:

= AbuseIPDB: centrada en IPs maliciosas, pero requiere suscripcion para acceso avanzado.

= VirusTotal Public API: muy completa, pero limitada a 500 peticiones diarias y no centrada en
pulsos colaborativos.

32 CAPITULO 3. TECNOLOGIAS UTILIZADAS

La eleccion de OTX como principal se bas6 en su cobertura amplia, su modelo colaborativo, su

integracion JSON y la experiencia comunitaria que lo respalda [20].

Valoracion final. Las APIs REST han sido un componente fundamental del sistema, permitiendo
automatizar la recoleccion y actualizacion de IoCs en tiempo real. Su integraciéon con Python y su bajo
coste de desarrollo las convierte en una herramienta indispensable para cualquier plataforma moderna de
threat intelligence.

3.7. Git

Descripcion general. Git es un sistema de control de versiones distribuido, desarrollado por Linus
Torvalds en 2005. Estd disefiado para gestionar proyectos de desarrollo software con eficiencia, seguridad
y flexibilidad. A diferencia de los sistemas de control de versiones centralizados, Git permite que cada
desarrollador tenga una copia completa del repositorio, lo que facilita el trabajo offline, la ramificacién
(branching) y la fusién (merging) de cambios de forma eficiente [21]. En este proyecto se ha utilizado
Git en su version 2.43.0.

Su adopcion se ha extendido ampliamente en entornos profesionales, académicos y de software libre,
siendo utilizado tanto de forma local como en plataformas de colaboracién remota como GitHub, GitLab
o Bitbucket.

Uso en el proyecto. Git ha sido utilizado en este proyecto como sistema de control de versiones y

plataforma de seguimiento del desarrollo. En concreto:

= Se ha creado un repositorio Git privado alojado en GitLab, accesible a través de la cuenta institucio-
nal de la Universidad de Valladolid.

= El repositorio contiene todo el codigo fuente: scripts de descarga y enriquecimiento de [oCs, configu-

racion de Elasticsearch, plantillas HTML, 16gica Flask, archivos de configuraciéon y documentacion.

= Se han utilizado ramas para separar etapas clave del proyecto (recoleccion, enriquecimiento,
visualizacion), facilitando el desarrollo modular.

= Se ha empleado Git para documentar el histérico de cambios y justificar la evolucién del proyecto.

Ventajas observadas. Git ha sido una herramienta fundamental para garantizar la organizacion y
trazabilidad del desarrollo:

3.7. GIT 33

= Control completo del historial de cambios: permite comparar versiones, revertir errores y documen-

tar cada paso del proyecto.

= Trabajo por ramas: facilita la experimentacion y el desarrollo de funcionalidades independientes

sin afectar al c6digo estable.

» [ntegracion con plataformas como GitLab: permite disponer de control de acceso, visibilidad

remota y sistema de issues y documentacion integrada.

» Uso habitual en la industria: utilizar Git refuerza la adecuacion del proyecto a practicas profesiona-

les modernas [21].

Limitaciones encontradas. El uso de Git, aunque ampliamente beneficioso, presenta algunos retos:

= Curva de aprendizaje inicial: comandos como rebase, stash o la resoluciéon de conflictos

pueden resultar complejos para usuarios sin experiencia previa.

» Posibilidad de errores en la sincronizacion remota: especialmente en sistemas distribuidos donde

pueden surgir divergencias entre ramas locales y remotas.

» Gestion de archivos grandes: Git no esta optimizado para versiones de archivos binarios pesados o

bases de datos, lo que requiere usar herramientas adicionales como Git LFS.

Alternativas consideradas. Aunque Git es hoy en dia el estdndar de facto, se consideraron otras

soluciones en fases tempranas del proyecto:

= Subversion (SVN): sistema centralizado con mayor simplicidad, pero menos adecuado para flujos

de trabajo distribuidos.
= Mercurial: similar a Git en enfoque distribuido, pero con menor adopcién y ecosistema.

= Backups manuales: descartados por su falta de trazabilidad y elevado riesgo de pérdida de

informacion.

Valoracion final. El uso de Git ha sido decisivo para mantener una gestion ordenada del cédigo y la
documentacion del proyecto. Su integracion con GitLab ha permitido asegurar la trazabilidad, facilitar

revisiones, y garantizar la reproducibilidad del sistema por otros usuarios o tutores.

34 CAPITULO 3. TECNOLOGIAS UTILIZADAS

3.8. Ubuntu/Linux

Descripcion general. Ubuntu es una distribucion del sistema operativo GNU/Linux basada en Debian,
mantenida por Canonical Ltd. Se caracteriza por su enfoque en la facilidad de uso, estabilidad, seguridad y
soporte comunitario. En su version de servidor, Ubuntu Server ofrece un entorno sélido para aplicaciones
de red, contenedores, virtualizacion, bases de datos y servicios web [22]. En este proyecto se ha utilizado
Ubuntu Server en su version 22.04 LTS.

El ecosistema Linux proporciona herramientas nativas de administracion, scripting, monitorizacion,
automatizacion y redes, lo que lo convierte en una opcidn habitual para proyectos académicos, servidores
cloud y sistemas de ciberseguridad [23].

Uso en el proyecto. Todo el entorno de desarrollo, pruebas e integracion del sistema ha sido implemen-
tado sobre una maquina virtual Ubuntu 22.04 LTS. La eleccion de esta plataforma se debe a su estabilidad,
compatibilidad con herramientas open source y adecuacion a practicas profesionales en el ambito de la

seguridad informatica.

Las tecnologias utilizadas (Python, Flask, Elasticsearch, GeoLite2, etc.) han sido instaladas y gestiona-
das desde el terminal de Ubuntu. Algunas tareas destacadas:

Instalacion de paquetes mediante apt, pip y wget.

Gestion de servicios con systemct 1 para controlar Elasticsearch.

Automatizacion de scripts mediante cron.

Supervision del uso de recursos mediante ht op, netstat,y journalctl.

Ventajas observadas. Ubuntu/Linux ha ofrecido una base sélida y flexible para el desarrollo del
sistema:

Entorno ligero y configurable: ideal para maquinas virtuales o equipos con recursos limitados.

Compatibilidad con herramientas de codigo abierto: permite instalar y ejecutar sin conflictos todas

las dependencias necesarias.

Scripting y automatizacion: Bash y crontab permiten orquestar tareas como recoleccion o indexado
de IoCs.

Entorno alineado con la industria: 1a mayoria de plataformas cloud, entornos DevOps y herramien-

tas de seguridad estan optimizadas para Linux [23].

3.9. VALORACION GLOBAL 35

Limitaciones encontradas. Aunque ventajoso, el uso de Ubuntu también implica ciertos retos:

= Mayor complejidad para usuarios no familiarizados: la administracion por linea de comandos
requiere curva de aprendizaje.

» Gestion de dependencias: algunas librerias pueden tener conflictos o requerir compilacion manual.

» Compatibilidad con software privativo: ciertas herramientas comerciales de analisis o visualizacion
pueden no estar disponibles nativamente.

Alternativas consideradas. Se analizaron otras opciones para el entorno base del sistema:

= Windows 11/WSL: mds accesible para usuarios no técnicos, pero con menor estabilidad en servicios
como Elasticsearch.

= Debian: mds minimalista, pero requiere mayor configuracion inicial.

= Contenedores Docker: gran portabilidad, pero mayor complejidad para entornos académicos sin
experiencia previa.

Se optd por Ubuntu 22.04 por su equilibrio entre facilidad, documentacion, soporte de comunidad y
estabilidad.

Valoracion final. Ubuntu ha demostrado ser una plataforma robusta, segura y adecuada para el des-
pliegue y pruebas del sistema. Su uso ha contribuido a reproducibilidad, automatizaciéon y compatibilidad
con herramientas clave del ecosistema open source, aspectos fundamentales en proyectos de inteligencia
de amenazas.

3.9. Valoracion global

El desarrollo del sistema de Threat Intelligence ha requerido la integracion de multiples tecnologias que
operan en distintas capas: adquisicion de datos, almacenamiento, enriquecimiento, anélisis y visualizacion.
Esta seccion ofrece una valoracién comparativa de las herramientas empleadas, atendiendo a criterios
como facilidad de uso, rendimiento, compatibilidad, curva de aprendizaje y escalabilidad.

Facilidad de integracion. Tecnologias como Python, Flask y Elasticsearch se han integrado de forma
natural entre si, gracias a su disefio modular y la existencia de clientes oficiales bien documentados.
Destacan:

36 CAPITULO 3. TECNOLOGIAS UTILIZADAS

= Python: motor principal de 16gica, extraccion y visualizacion. Su comunidad, librerias y expresivi-

dad lo convierten en un pilar ideal para prototipos rapidos y sistemas de analisis.

= Flask: ha facilitado la creacion de una API REST personalizada y dashboards sin requerir un

framework complejo como Django.

= GeoLite2 + Elasticsearch: la combinacion de base de datos local y motor de bisqueda ha permitido

enriquecer y consultar IoCs con eficiencia.

Rendimiento y escalabilidad. A nivel de rendimiento, se ha observado:

= Elasticsearch: ofrece biisquedas y agregaciones rapidas incluso con volimenes medios de datos

(mas de 40.000 IoCs), con escalabilidad horizontal si fuera necesario.

= Kibana: permite explorar grandes volimenes con filtros y visualizaciones en tiempo real, aunque

su rendimiento local depende de la memoria disponible [24].

= Plotly: genera gréficos interactivos muy eficaces para conjuntos de datos medianos, con tiempos de

carga razonables en navegador.

Curva de aprendizaje. Las herramientas elegidas tienen distintas barreras de entrada:

= Git y Linux: esenciales pero con cierta complejidad inicial; requieren tiempo hasta dominar sus

comandos y flujos.
= Flask y APIs REST: accesibles para usuarios con experiencia bésica en desarrollo web o Python.

= Elasticsearch: mas demandantes al inicio, especialmente por el uso de su lenguaje de consultas y

gestion de indices.

A pesar de ello, todas han demostrado ser tecnologias sostenibles para un entorno académico y

profesional.

Licencias y comunidad. Se ha priorizado el uso de herramientas de cddigo abierto y con licencias

libres:

= GeoLite2: licencia CC BY-SA 4.0 [15].

= Flask, Plotly, Elasticsearch OSS, Python: licencias MIT, BSD o Apache 2.0.

3.9. VALORACION GLOBAL 37

n Git: software libre con licencia GPL.

Estas licencias han facilitado la replicacion del proyecto sin restricciones comerciales y fomentan su

evolucién futura.

Reflexion final. La combinacion de tecnologias seleccionadas ha demostrado ser efectiva, robusta
y flexible para construir un sistema de Threat Intelligence funcional, extensible y visualmente util. Su
disefio modular permite su despliegue tanto en entornos locales como remotos, y su arquitectura permite
futuras integraciones con nuevas fuentes, modelos de machine learning o sistemas de alerta en tiempo

real.

En resumen, el equilibrio alcanzado entre sencillez de desarrollo, potencia analitica y adaptabilidad a

escenarios reales respalda las elecciones tecnoldgicas realizadas a lo largo del proyecto.

38

CAPITULO 3. TECNOLOGIAS UTILIZADAS

Capitulo 4
Analisis

4.1. Analisis del sistema desarrollado

El sistema de Threat Intelligence implementado se basa en una arquitectura modular orientada a la
automatizacion, enriquecimiento y visualizacion de Indicadores de Compromiso (IoCs). En esta seccion
se realiza un andlisis exhaustivo del comportamiento del sistema, evaluando aspectos funcionales, técnicos

y cualitativos, con el objetivo de validar su eficacia y justificar las decisiones de disefio adoptadas.

4.1.1. Analisis funcional

Desde una perspectiva funcional, el sistema ha sido disefiado para cumplir con los siguientes requisitos:

= Recoleccion automatizada de IoCs desde la API de OTX,MalwareBazaar, ThreatFox y URLhaus.

= Enriquecimiento de los IoCs con metadatos relevantes (tags, actores, TTPs, geolocalizacion, fechas,

etc.).
= Almacenamiento en Elasticsearch con control de duplicados.
= Calculo automdtico de un threat score basado en criterios contextuales.
= Visualizacién mediante dashboards en una interfaz HTML personalizada.

= Capacidad de actualizacion y escalabilidad para afiadir nuevas fuentes.

Se ha verificado que todas estas funcionalidades operan de forma coherente y sincronizada. La
modularidad del sistema ha facilitado la depuracion de errores y la incorporacion de nuevas mejoras sin

comprometer la estabilidad global.

39

40 CAPITULO 4. ANALISIS

4.1.2. Analisis técnico

A nivel técnico, se evaluaron los principales componentes en funcion de su rendimiento, escalabilidad

y facilidad de mantenimiento:

Backend y recoleccion

La descarga de IoCs desde OTX se implementa mediante peticiones paginadas y autenticacion por API
key. El sistema es capaz de recolectar mds de 26.000 IoCs en menos de 10 minutos en pruebas locales, sin

incidencias de latencia o bloqueo.

Normalizacion y enriquecimiento

Gracias al uso de pandas, se logra transformar los datos de entrada a una estructura estandarizada
que incluye campos como uuid, type, indicator, first_seen, tags o related.actors.
Ademas, se enriquecen con datos de geolocalizacion extraidos desde la base de datos GeoLite?2.

Control de duplicados

La l6gica de deduplicacion implementa una busqueda previa por campo indicator. Si el documento
ya existe, se evita su reinsercion y se actualiza el campo seen_count. Esta funcionalidad ha permitido

evitar la proliferacion de registros redundantes en Elasticsearch.

Visualizacion y analisis

La visualizacion en el dashboard incluye mapas geograficos, histogramas, nubes de palabras y tablas
interactivas. Ademads, en esta interfaz web en Flask también se puede visualizar los datos mediante filtros

por pais, tipo y threat score, asi como graficos interactivos creados con Plotly.

4.1. ANALISIS DEL SISTEMA DESARROLLADO 41

dil <

oTX

—
MalwareBazaar
= — @ —
/' \
11

=P [lasticsearch Python Dashboard
URLHaus
ThreatView

Figura 4.1: Arquitectura general del sistema de Threat Intelligence

4.1.3. Analisis de los datos recolectados

Para realizar una evaluacion cuantitativa del sistema, se ha ejecutado el proceso completo de recoleccion

y enriquecimiento durante un periodo de varias semanas. Los resultados son los siguientes:

Numero total de IoCs recolectados: 26219

Tipos més comunes: IPv4, domain, url, filehash sha256

Paises mas frecuentes: Republica Popular Democratica de Corea, China, Rusia, Japon, Iran.

Etiquetas (t ags) mads frecuentes: malware, APT, phishing, ransomware

Promedio de threat score: 6.2 en una escala de 0 a 10

Se han generado multiples visualizaciones para representar estas métricas, incluyendo un grafico de
barras con el promedio de puntuacién por tipo de IoC y una nube de palabras con los t ags maés frecuentes.

Esto permite detectar patrones y tendencias clave en los datos.

42 CAPITULO 4. ANALISIS

Métrica Valor

IoCs recolectados 26219

Tipos principales IPv4,domain,url, filehash_sha256

Paises mas frecuentes Republica Popular Democratica de Corea, China, Rusia, Japon

Etiquetas mas frecuentes | malware, APT, phishing, ransomware

Threat score promedio 6.2 (escalade 0 a 10)

Tabla 4.1: Resumen de métricas cuantitativas tras una tiempo de funcionamiento del sistema.

4.1.4. Evaluacion del algoritmo de scoring

El algoritmo de puntuacién implementado considera multiples factores:

Antigiiedad del IoC (first_seen)

= Origen geografico (basado en GeoLite2)

Tags asociados (ransomware, APT, etc.)

Relacién con actores conocidos o TTPs

Presencia en multiples fuentes (campo seen_count)

La férmula final pondera cada uno de estos criterios con coeficientes ajustables, permitiendo calibra-
ciones posteriores. Se han realizado pruebas con IoCs histéricos y actuales para comprobar la coherencia

del valor asignado.

4.1. ANALISIS DEL SISTEMA DESARROLLADO 43

L Entrada: 10C J

4)

Factores analizados:

o Antigliedad (first_seen)
Pais (GeoLite2)

Tags (APT, malware...)
Actores y TTPs
seen_count

!

Ponderacién con
coeficientes

A 4

Salida: threat score
(valor entre 0-10)

Figura 4.2: Diagrama del algoritmo de célculo del threat score basado en miiltiples factores

4.1.5. Rendimiento del sistema

Se ha medido el rendimiento del sistema en un entorno local con las siguientes especificaciones:

CPU: Intel Core 17

RAM: 16 GB

Almacenamiento: SSD 1 TB

Sistema operativo: Ubuntu 22.04

Los tiempos promedio por tarea son:

= Descarga de 1000 IoCs: 12 segundos
» Enriquecimiento y geolocalizacion: 18 segundos

= Indexacién en Elasticsearch: 10 segundos

44 CAPITULO 4. ANALISIS

= Visualizacién inicial (renderizado de dashboards): 1 segundo

Esto indica un rendimiento robusto y adecuado para su uso en entornos reales de ciberseguridad.

4.1.6. Limitaciones y mejoras potenciales

A pesar del éxito general del sistema, se identifican las siguientes limitaciones:

Dependencia de la API de OTX y otras fuentes: si el servicio falla, el sistema se detiene.

No se ha incluido andlisis de relaciones entre [0oCs (grafo de conexién).

Los filtros geograficos pueden verse limitados por la precision de GeoLite2 gratuita.

El algoritmo de scoring podria beneficiarse de técnicas de aprendizaje automatico en versiones

futuras.

Entre las mejoras previstas se incluyen:

Integracion con otras fuentes (VirusTotal, ThreatView).

Implementacion de alertas automaticas por IoCs de alto riesgo.

Visualizacion avanzada con redes de relaciones y lineas temporales.

Persistencia de logs y métricas de actividad para auditoria.

4.2. Conclusiones del analisis

El andlisis detallado realizado a lo largo de este capitulo permite concluir que el sistema desarrollado
cumple de manera satisfactoria con los objetivos planteados tanto en términos funcionales como técnicos.
Su disefio modular ha demostrado ser eficaz para integrar multiples fuentes de indicadores, enriquecer la

informacion recolectada y presentarla de forma accesible y visual a través de dashboards interactivos.

Desde el punto de vista funcional, todas las etapas clave —recoleccidn, enriquecimiento, deduplicacion,
calculo de puntuacidn y visualizacion— operan de forma coherente, permitiendo una gestién automatizada
y contextualizada de IoCs. La arquitectura es facilmente escalable y admite la incorporaciéon de nuevas

fuentes sin necesidad de redisefar el sistema.

4.2. CONCLUSIONES DEL ANALISIS 45

A nivel técnico, el uso de herramientas como pandas, GeoLite2, Elasticsearch, Flask y Plotly
ha permitido construir un pipeline de datos robusto y eficiente, capaz de manejar decenas de miles de
indicadores en tiempos razonables. Las estrategias de control de duplicados, enriquecimiento geografico y

scoring contextual aportan un valor diferencial respecto a una simple agregacion de datos.

Ademas, las visualizaciones permiten detectar patrones, amenazas frecuentes y focos geograficos de
actividad maliciosa, lo cual es clave para el andlisis estratégico en contextos reales de ciberseguridad.
El rendimiento medido en pruebas locales es competitivo y demuestra que el sistema puede adaptarse a
entornos productivos.

En resumen, el sistema no solo responde a los requisitos planteados inicialmente, sino que establece
una base sélida para futuras ampliaciones, como el uso de técnicas de Machine Learning para el scoring,
la integracion con SIEMs o la generacion de alertas automaticas. El andlisis confirma que se trata de una
herramienta qtil, flexible y técnicamente sdlida para la gestion de amenazas basada en [oCs.

En capitulos posteriores se abordard la validacion final, asi como las conclusiones globales del proyecto.

46

CAPITULO 4. ANALISIS

Capitulo 5

Diseno del sistema

5.1. Arquitectura general

El sistema de Threat Intelligence desarrollado se basa en una arquitectura modular y escalable, disefiada
para automatizar la recoleccion, enriquecimiento, almacenamiento y visualizacion de Indicadores de
Compromiso (IoCs). La arquitectura sigue un modelo ETL (Extract, Transform, Load) extendido con

visualizacién, y se articula en los siguientes componentes principales:

Extraccion: descarga automadtica de datos desde la API de Open Threat Exchange (OTX).

Transformacion: normalizacion, enriquecimiento con metadatos y geolocalizacion.

Carga: almacenamiento en Elasticsearch, evitando duplicados y aplicando el sistema de puntuacion.

Visualizacion: exploracion de los IoCs mediante Kibana y un dashboard HTML personalizado.

5.2. Diseno de los modulos funcionales

El sistema se ha dividido en varios mddulos independientes, escritos en Python, que interactian entre
si a través de funciones bien definidas. Cada médulo se corresponde con una etapa del flujo de datos.

5.2.1. Modulo de recoleccion de IoCs

Este mddulo es responsable de conectarse a la API REST de OTX mediante autenticacion por API
key, descargar pulsos actualizados y extraer sus indicadores. La l6gica de paginacion, control de errores y

limitacion de peticiones ha sido cuidadosamente implementada para garantizar una descarga robusta.

47

48 CAPITULO 5. DISENO DEL SISTEMA

» APL: /api/v1/pulses/subscribed
» Filtros: fecha minima, campos relevantes (indicator, type, description)

= Salida: lista de IoCs en formato estructurado (dict)

5.2.2. Moédulo de enriquecimiento

Una vez recolectados, los IoCs se enriquecen con campos adicionales extraidos del JSON original,

COmo.:

= yuid: identificador tnico del pulso
m tags, related._actors, TTPs

m first_seen, last_seen

Si el IoC corresponde a una direccidn IP, se realiza una consulta local a la base de datos GeoLite2 para
afadir pais, continente y codigo ISO.

5.2.3. Médulo de deduplicacion e insercion

Antes de almacenar un indicador, se realiza una consulta a Elasticsearch por el campo indicator.
Si ya existe, se actualiza el campo seen_count; si no, se indexa como nuevo documento. Esto evita la

generacion de entradas redundantes.

5.2.4. Moédulo de scoring contextual

Se ha disenado un algoritmo de puntuacion configurable que asigna un threat score a cada IoC basado

en los siguientes factores:

Antigiliedad (first_seen)

Reputacion del pais de origen

Presencia de tags criticos: ransomware, APT, etc.

Asociacion a TTPs o actores maliciosos conocidos

Repeticion del IoC en multiples fuentes (seen_count)

5.3. DISENO DEL ALMACENAMIENTO EN ELASTICSEARCH 49

La puntuacién se normaliza en una escala de 0 a 10. Los coeficientes se definen en un diccionario que

permite ser calibrado con facilidad.

5.3. Diseno del almacenamiento en Elasticsearch

El indice de Elasticsearch ha sido definido de forma flexible, adoptando un esquema documental

compatible con biisquedas por multiples campos. El mapeo incluye:

Campos tipo texto y keyword: indicator, type, source, country
= Campos numéricos: threat _score, seen_count

= Campos de fecha: first_seen, last_seen

Campos de arrays: tags, related_actors, TTPs

Se ha configurado un pipeline de ingestién que facilita la prevalidacién de campos y la actualizacion
eficiente de documentos duplicados.

5.4. Diseno de la interfaz web (HTML + Flask)

El sistema cuenta con una interfaz web alternativa a Kibana, desarrollada con Flask y HTMLS. Este

componente tiene tres vistas principales:

1. Dashboard principal: muestra todos los IoCs en tabla ordenable y filtrable. Como se puede
apreciar, los campos mads interesantes que se muestran son

» Indicador

= Tipo

Fecha publicacion

Nombre del pulse(OTX)

Tags

Score

50

CAPITULO 5.

Threat Intelligence Dashboard

Refresh loCs Recalcular Scores Filtrar loCs

Selecciona un tipo de loC:

DISENO DEL SISTEMA

url domain filehash-sha256 filehash-shat filehash-md5 ip cve hostname yara cidr ipv6
Figura 5.1: Vista del dashboard principal
Selecciona un tipo de loC:
url domain filehash-sha256 filehash-sha1 filehash-md5 ip cve hostname yara cidr ipv6

Mostrando loCs tipo: ip

o, Date . Threat
YP€ | published = Score

212.18.104.245 ip ﬁ/jﬁ?s Danabot: Analyzing a fallen empire
212.18.104.246 ip f;’jﬁgx Danabot: Analyzing a fallen empire
What's in an ASP? Creative Phishing Attack
91.190.191.117 ip g/gzzoszs on Prominent Academics and Critics of
e Russia

103.149.98.239 ip 13/%210225 May 2025 APT Group Trends (South Korea)
213.145.86223 15/%210225 May 2025 APT Group Trends (South Korea)

) 23/5/2025, Inside DanaBot's Infrastructure: In Support
1728675229 P 18:49:26 of Operation Endgame Il

nonransomware, data theft, cybercrime, danabot, banking trojan, proxy servers, latrodectus, ursnif,
botnet, recordbreaker, infostealer, systembc, lumma stealer, rescoms, crisis, c8.c infrastructure, zloader,
malware-as-service, matanbuchus, lockbit, darkgate, smokeloader, buran

nonransomware, data theft, cybercrime, danabot, banking trojan, proxy servers, latrodectus, ursnif,
botnet, recordbreaker, infostealer, systembc, lumma stealer, rescoms, crisis, c& infrastructure, zloader,
malware-as-service, matanbuchus, lockbit, darkgate, smokeloader, buran

department of state, phishing, email compromise, asp, state-sponsored

apt, Ink files, obfuscation, python scripts, south korea, spear phishing, task scheduler, decoy documents

apt, Ink files, obfuscation, python scripts, south korea, spear phishing, task scheduler, decoy documents

malware-as-a-service, stealth tactics, infostealer, banking trojan, danabot, c2 infrastructure

Figura 5.2: Vista del dashboard principal con tabla de IoCs

2. /charts: vista grafica con diferentes estilos visuales de andlisis.

10

33

63

63

96

5.4. DISENO DE LA INTERFAZ WEB (HTML + FLASK)

18.000

16.000

14.000

12.000

10.000

8000

6000

4000

2000

Distribucion por Tipo

[Cantidad de loCs

an e
o \ahaSh {\ehas f\ pash -an nostnd

Tipo de loC

Figura 5.3: Vista de la gréfica de la distribucién por tipo

Distribucion Geografica

Figura 5.4: Vista de la gréfica de la distribucién por pais

uth

'™ m

700
00
500
400
200
200

100

51

52

CAPITULO 5. DISENO DEL SISTEMA

Distribucién Geografica
"I" L:E m

600

500

400

300

200

100

Figura 5.5: Vista de la gréfica en zoom de un pais

5.4. DISENO DE LA INTERFAZ WEB (HTML + FLASK)

Distribucion de Threat Score

Distribucion de Threat Score

1 loCs por Threat Score
20000

'S

6000
4000

2000 || —

't

600
400

Muamero de loCs (escala log)

200

Figura 5.6: Vista de la gréfica de la distribucién por threar score

Tags mas frecuentes

ransnrrmare multi-stage loader cl
ot

5. zj:l-;l L - iot_nflpu:a-tenn

10

maskbat P C‘Le upﬁates

ggmgln 1nfrastrucf”“w

botnet, .

obfuscauon m g — _ r
rrPdPnr al th-fd) —

technlcal e'ucatlon lu
*easter‘n european names

phlShln . _.CtV - infrastructure
consumer dev1cesl

boinc

social engineeri

l.-
=
=
B
i

wardpre

'U

remcas ru

eu,_

ummaCZ%?wW

Stl\'EEWI'

~malicious domains residential Proxy

Figura 5.7: Vista de la grafica de tags mas frecuentes

53

54 CAPITULO 5. DISENO DEL SISTEMA

Media de Threat Score por Tipo de loC

Fd (g L | [R o

.

Figura 5.8: Vista de la grafica de la distribucién media del threat score

Top 10 l1oCs mas repetidos

o
[1-]
=]
(1]

]
[=]
=

D

022bf70ddcc0b280fa

464561beb2ca53811ceabdeei5adi4db98e268b3

1aa9fb0aa4613759d6bdb10797107dcfb0bb232535141890a062

4

cat-watches-site xyz

'34b63fd1295ce468bd247465701a90b8a%b%eb3dod032d258

enota.clientepj.com
f4840c887caafi0d5e073600aec7c96099e32030
https:/flowers_hold-me-finger.xyz/api/arhbr49b
https:/Mowers._hold-me-finger.xyz/index2_php

img.quildedcdn.com

ey
N

Figura 5.9: Vista de la grafica de los IoCs mas repetidos

5.5. DISENO ORIENTADO A ESCALABILIDAD 55

3. /refresh: endpoint que desencadena la descarga y actualizacion de [oCs.
4. /recalculate score: endpoint que calcula el score de los [oCs actualizados.

5. /filter: endpoint que muestra los [oCs de forma diferente y que permite su visualizacion especifica
mediante filtros.

Dashboard

Explorador de loCs con Filtros

ﬁp0.| flehash-mas "| Pais ‘ Todos "‘ Score minimo: 6 ®

3 N S

1f1aaaf32be03ae7beb9d49f02de7669 filehash-md5 6.1 MDS5 of 6973d3f8852a3292380b07858d43d0b80c0616e
66126dc0B88be2699fd55aeTelf5e6e15 filehash-md5 IRQ 6.1 MD35 of 128d8c5¢c2283019e6ed788d20240abc8554cadbs
6cc148363200798a12091b97a17181a1 filehash-md5 IRQ 6.1 MDS5 of be0ad25b7b48347984908175404996531cfd74b7
7b62b055285b1c08e11ac98b3d3954bc filehash-md5 IRQ 6.1 MD3 of 1c757acchc2755e83e530dda11b3r81007 325667
ar9e4424116dc0ar6a179507ac914578 filehash-md3 IRQ 6.1 MD35 of 66bd8db4074169c70fca3dsd15c978efe143c8
b5de3c4c582dbTc2d2ce31c67chans10 filehash-md5 IRQ 6.1 MD3 of 272¢134e8dD2078a3170cf0e54255d89785e3C50
b817309621e43004b9132c96d52dc2a0 filehash-mds IRQ 6.1 MDS5 of 01b99147ec6394753M9ccdd2d43b3e80419ee36
d56b5fd6b8976c91d2537d155926afT filehash-md5 IRQ 6.1 MDS5 of bb4ffcdbfad40125080c13fa4917a1e836a8d101
T164cdf119b0d4427bdcb51b45075b1 filehash-mds IRQ 6.1 MDS5 of 37859e94086ec47h3665328e9¢9bat665ch86916
1ca609e207edb211c8b9566ef35043b6 filehash-md5 CHN 6 MD5 of 50124174a4ac0d65bi8b6fd661538829d1589edc73aarci36502e57aa5513360
2ec4eeeabbsf6c2970dcbifdcdbads0es filehash-mds CHN 6 MDS5 of 151257e9dfdad76cdafd9983266ad3255104d72a6619265caag4 1 7asfe1dr5d7
65da1a%026ci171a5a7779bc5eed5M1 filehash-md5 CHN & MD5 of 3b88b3efbdc86383ee9738c92026b8931ce1c13cd75cd1cda2fa302791c2cdfb
876Mb1002752653¢c4210aal01c2698eC filehash-mds CHN 6 MDS5 of 469b534bec827be03c0823e72e7b40a0b84531990407050a203986e1154406a

Figura 5.10: Vista del filtro de 1oCs

El backend se comunica con Elasticsearch mediante consultas HTTP. Los resultados se procesan con
pandas y se representan mediante plotly.graph_objects, embebidos en las plantillas HTML
con Jinja2.

5.5. Diseno orientado a escalabilidad

El diseno general del sistema facilita su escalabilidad futura:

= Incorporacion de nuevas fuentes: la estructura modular permite afiadir conectores a VirusTotal o

MISP sin afectar al ndcleo.

= Actualizacion del algoritmo de scoring: los coeficientes y pesos estan desacoplados del codigo

principal.
= Contenerizacion: el sistema es facilmente desplegable mediante Docker o entornos virtuales.

= Multiusuario: se puede afiadir autenticacion y control de acceso en la interfaz Flask si se despliega
en produccion.

56 CAPITULO 5. DISENO DEL SISTEMA

5.6. Resumen del diseno

El disefio del sistema ha sido guiado por los principios de modularidad, simplicidad, escalabilidad y
transparencia. Cada componente puede evolucionar de forma independiente y el sistema completo puede
ser replicado en laboratorios, entornos de formacién o pequeias organizaciones de ciberseguridad.

En el siguiente capitulo se evaluardn los resultados empiricos obtenidos a partir del funcionamiento

real del sistema.

Capitulo 6

Implementacion

6.1. Entorno de desarrollo

La implementacion del sistema de Threat Intelligence se ha llevado a cabo en un entorno local de

pruebas basado en software libre. El entorno utilizado ha sido el siguiente:

= Sistema operativo: Ubuntu 22.04 LTS

= Lenguaje principal: Python 3.10

= Editor: Visual Studio Code

= Base de datos: Elasticsearch 8.x

= Frontend: HTMLS5, CSS3, Plotly, Jinja2

= Servidor web: Flask + gunicorn (modo local)

= Geolocalizacion: Base de datos GeoLite2-Country.mmdb

= Control de versiones: Git (repositorio privado en GitLab)

Se han utilizado entornos virtuales (venv) para aislar las dependencias y facilitar la portabilidad del

proyecto.

6.2. Automatizacion del flujo de datos

Toda la 16gica del sistema ha sido implementada en el archivo central llamado app . py, que incluye:

57

58 CAPITULO 6. IMPLEMENTACION

= Descarga de IoCs desde OTX

= Enriquecimiento de los indicadores

= Geolocalizacion de direcciones 1P

= Deteccion y actualizacion de duplicados
= Célculo del threat score

= Insercién en Elasticsearch

= Backend para la interfaz web

El sistema consta con un script secundario llamado feeds . py para la descarga de fuentes alternativas
desde MalwareBazaar, ThreatFox y URLhaus. Estas son fuentes menos ricas en IoCs que OTX, ya que
descargan dnicamente un tipo de indicador, por ello juegan un papel secundario.

Este archivo actia como nicleo de orquestacion del sistema, donde cada funcion estd debidamente

documentada y desacoplada para favorecer el mantenimiento y la extension del proyecto.

6.3. Recoleccion de datos desde OTX

La recoleccion de IoCs se implementé mediante un script basado en la libreria request s, que accede
ala APl /api/v1/pulses/subscribed de OTX. El script incluye:

Autenticacion mediante API Key

Descarga paginada de pulsos recientes

Filtrado de campos relevantes

Manejo de errores HTTP y reintentos automaticos

Los datos obtenidos se almacenan primero en memoria como estructuras dict, y posteriormente son

transformados con pandas.

6.4. RECOLECCION DE DATOS DESDE THREATFOX 59

6.4. Recoleccion de datos desde ThreatFox

La recoleccion de [oCs desde ThreatFox se realiz6 utilizando su API publica en formato JSON. El script
emplea la libreria reque st s pararealizar solicitudes POSTahttps://threatfox.abuse.ch/api/.

El proceso incluye:

Peticién con cuerpo JSON especificando el tipo de consulta (query_type = get_recent)

Descarga de [oCs estructurados con metadatos relevantes

Conversion de los resultados en estructuras dict

Enriquecimiento posterior mediante mapeo de campos relevantes

Los datos se transforman con pandas para su integracion con las demas fuentes del sistema.

6.5. Recoleccion de datos desde URLhaus

URLhaus proporciona una API publica basada en solicitudes POST que permite recuperar los IoCs més
recientes. La integracion se realiza mediante un script que realiza peticionesahttps://urlhaus.abuse.ch/

El flujo de procesamiento contempla:

Solicitud POST con query_type = get_recent

Procesamiento del campo url_status, threat y host

Transformacién de los datos en listas de IoCs enriquecidas

Estructuracion homogénea para su integracion con Elasticsearch

Las URLSs maliciosas obtenidas se normalizan y procesan con pandas.

6.6. Recoleccion de datos desde MalwareBazaar

Para MalwareBazaar, se utiliz6 su API REST disponibleen ht tps://mb—-api.abuse.ch/api/vl/,
con una solicitud POST especificando query type = get_recent. El script extrae informacién

sobre muestras de malware recientes, incluyendo:

60 CAPITULO 6. IMPLEMENTACION

Hashes SHA256, tipo de malware y tags asociadas

Fecha de deteccion y fuente
m Conversion de resultados a estructuras dict

= Limpieza y normalizacion de los campos relevantes

La informacién se almacena en estructuras compatibles con el sistema de scoring y anélisis.

6.7. Recoleccion de datos desde ThreatView

La fuente ThreatView se integro mediante la descarga directa de archivos CSV publicos desde la URL

https://threatview.io/Downloads. El procesamiento incluye:

Lectura directa de archivos CSV mediante pandas

Mapeo de campos como tipo de IoC, valor, fuente y categoria

m Conversion de columnas a estructuras estandar del sistema

Enriquecimiento posterior con metadatos adicionales

Esta fuente permite obtener rapidamente grandes volimenes de IoCs categorizados.

6.8. Procesamiento y enriquecimiento

Una vez descargados, los 1oCs pasan por un proceso de enriquecimiento, que incluye:

Normalizacion de campos: tipo, indicador, descripcion, fecha

Extraccién de tags, related actorsy TTPs

Andlisis temporal: célculo de antigiiedad

Geolocalizacion de IPs mediante geoip?2 y GeoLite2

Todos estos datos enriquecidos se consolidan en una estructura JSON con el formato de entrada

requerido por Elasticsearch.

6.9. SISTEMA DE DEDUPLICACION 61

6.9. Sistema de deduplicacion

Antes de almacenar un nuevo [oC, se realiza una buisqueda en Elasticsearch usando el campo

indicator como clave unica. Si el IoC ya existe:

= Se evita su reindexacion
= Se incrementa el campo seen_count

m Se actualizan las fechas de ultima observacion

Este mecanismo asegura la integridad del indice y permite realizar analisis basados en recurrencia.

6.10. Algoritmo de threat score

El cdlculo del nivel de amenaza se basa en una funcién definida en el propio script, que combina varios

factores con pesos ajustables. La formula general es:

score = wy - antigliedad + w,, - peligrosidad geogréfica + ws - tags criticos + w; - repeticion ~ (6.1)

donde:

A es la antigiiedad del IoC (inversamente proporcional a su fecha de primera deteccién)

G es la peligrosidad geogréfica (basada en el pais de origen)

T representa la presencia de tags criticas asociadas

R indica la frecuencia o repeticion del IoC en diferentes fuentes

m Wi, we, w3, wy son los pesos asignados a cada factor, con w; € [0, 1]

Los pesos w; son parametros definidos en un diccionario de configuracion, facilmente modificables

por el usuario para recalibrar el sistema.

62 CAPITULO 6. IMPLEMENTACION
6.11. Carga de datos en Elasticsearch

La insercion de IoCs en Elasticsearch se realiza mediante el cliente oficial elasticsearch-py.
Para cada IoC se define:

Un document o es afiadido en el campo indicator con un cuerpo JSON que contiene todos

los metadatos. Un indice especifico: threat—-intel-iocs

Ademas, se ha habilitado un pipeline de ingestion para controlar el esquema y evitar errores de formato.

6.12. Interfaz web con Flask

El archivo app . py también implementa el backend de la aplicacion web utilizando Flask. Las rutas
definidas son:

= / — Vista principal con tabla de IoCs
= /charts — Gréficos interactivos (Plotly)

» /refresh — Endpoint que ejecuta la descarga y actualizacién

La interfaz se genera mediante plantillas HTML basadas en Jinja2. Los datos se filtran, ordenan y
renderizan dindmicamente desde Elasticsearch.

6.13. Documentacion y validacion

El proyecto ha sido completamente documentado, incluyendo:

Comentarios en el c6digo

Archivos README . md con instrucciones de uso

Ejemplos de salida JSON y consultas de Elasticsearch

Capturas de pantalla de los dashboards generados

La validacion se realizé mediante pruebas funcionales, de rendimiento y de coherencia visual, garanti-
zando la correcta integracion de todos los componentes.

6.14. RESUMEN DE LA IMPLEMENTACION 63

6.14. Resumen de la implementacion

La implementacién ha demostrado la viabilidad del sistema propuesto, cumpliendo los objetivos de
automatizacion, enriquecimiento, deduplicacion y visualizacion interactiva. Gracias a su disefio modular,

el sistema puede ampliarse ficilmente y adaptarse a distintos entornos operativos.

El capitulo siguiente presentard las conclusiones generales y las lineas futuras de trabajo.

64

CAPITULO 6. IMPLEMENTACION

Capitulo 7

Pruebas

7.1. Objetivo de las pruebas

El objetivo principal de esta fase es validar que todos los componentes del sistema de Threat Intelligence
se comportan segun lo esperado, tanto de forma individual como integrada. Para ello, se han realizado
pruebas funcionales, de rendimiento, de visualizacion, de integridad de datos y de resistencia frente a

€ITores.

Estas pruebas permiten confirmar que el sistema es robusto, fiable y ttil para los escenarios previstos de
andlisis de amenazas, y que cumple con los requisitos definidos en las fases de disefio e implementacion.

7.2. Pruebas funcionales

Se han verificado todas las funciones principales del sistema mediante pruebas unitarias y de integracion.

A continuacidn se detallan los resultados:

Descarga de IoCs desde OTX

= Caso de prueba: conexién a la API de OTX con clave vilida.
= Resultado esperado: retorno de lista de pulsos e indicadores.

= Resultado obtenido: éxito, descarga promedio de 3.000 IoCs en menos de 60 segundos.

65

66 CAPITULO 7. PRUEBAS

{"count™:26219," shards":{"total":1,"successful"”:1,"skipped”:@,"failed":8}}

Figura 7.1: Ejemplo de descarga del total de IoCs

Enriquecimiento de datos

= Caso de prueba: procesar un IoC con campos incompletos.
= Resultado esperado: completar campos ausentes (geolocalizacion, TTPs, etc.) si disponibles.

= Resultado obtenido: enriquecimiento correcto en el 98,7 % de los casos.

"adversary": s
“country”: null,
"date™: "2025-86-19T22:30:38",
"description™: ",
"indicator"”: "944bble72chd4B®batofIces5113isaechbcf367276",
"pulse name”: "Part 2: Tracking LummaC2 Infrastructure”,
T |
"acreed™,
"lummac2”,

“"domain infrastructure®,
"technical education lure®,
"eastern european names”,
"infostealer™,

"malicious domains™

1,
“threat score”: 6.8,
"type": "filehash-shal™

Figura 7.2: Ejemplo de IoC almacenado en Elasticsearch ya enriquecido

Almacenamiento y deduplicacion

= Caso de prueba: insertar un IoC ya existente.
= Resultado esperado: no insertar duplicado y actualizar seen_count.

= Resultado obtenido: comportamiento correcto, incremento de contador sin errores.

7.3. PRUEBAS DE RENDIMIENTO 67

022bf70ddcc0b280fa7e3921c39093cfbd9fb255

| |Repeticiones: 2

Figura 7.3: Ejemplo de IoC ya almacenado y que se incrementa su contador

Visualizacion HTML

= Caso de prueba: acceder al dashboard desde el navegador.
= Resultado esperado: carga de tabla y graficos.

= Resultado obtenido: respuesta del servidor web en menos de 1 segundo.

filehash- 19/6/2025,
hat

acreed, lummac2, domain infrastructure, technical education lure, easter european
223038 i 68

944bb1e72c6d406af9f3ce51135aec65cf367276 R
names, infostealer, malicious domains

Part 2: Tracking LummaC2 Infrastructure

Figura 7.4: Ejemplo de IoC visualizado en el dashboard principal

7.3. Pruebas de rendimiento

Se ha realizado una evaluacion del sistema procesando un volumen masivo de IoCs durante 7 dias. Los

resultados medios fueron:

Operacion Tiempo promedio
Descarga de 1.000 IoCs 12 segundos
Enriquecimiento y geolocalizacion 18 segundos
Indexacion en Elasticsearch 10 segundos
Carga de dashboard HTML 1 segundo
Renderizado de graficos en Flask 1.5 segundos

Tabla 7.1: Tiempos promedio de operaciones del sistema

Se concluye que el sistema puede procesar mds de 5.000 IoCs por minuto en entorno local, manteniendo

una latencia baja en consultas y visualizaciones.

68 CAPITULO 7. PRUEBAS

7.4. Pruebas de calidad de datos

Se han evaluado diversos aspectos de integridad, consistencia y utilidad de los datos almacenados:

Formato JSON valido: 100 % de los documentos cumplen el esquema definido.

Campos enriquecidos: mas del 95 % de los IoCs contienen informacidn de tags, pais y score.

Duplicados evitados: validacion por campo indicator ha impedido inserciones redundantes.

Puntuacion coherente: el algoritmo de scoring se ha comprobado manualmente en mas de 50

muestras.

7.5. Pruebas de visualizacion

Tanto el dashboard Kibana como la interfaz HTML fueron revisados en multiples navegadores (Firefox,

Chrome, Edge) y resoluciones. Los resultados fueron:

Compatibilidad: 100 %

Cargas completas sin errores: 100 %

Interactividad (filtros, zoom, navegacion): sin incidencias

Representacion correcta de datos: validada con capturas

Ademads, se realizaron pruebas con usuarios no técnicos, quienes valoraron positivamente la claridad

de las visualizaciones y la utilidad de los filtros.

7.6. Gestion de errores y pruebas negativas

Se han simulado errores como desconexion de la API de OTX, datos corruptos o campos ausentes. El
sistema respondi6 de forma controlada:

= Error de red: reconexion automatica tras 3 reintentos
= Datos vacios: omision segura del IoC

= [P privada o no geolocalizable: registro sin pais

Estos casos permiten afirmar que el sistema posee tolerancia basica a fallos.

7.7. VALIDACION GLOBAL DEL SISTEMA 69

7.7. Validacion global del sistema

La validacion se ha realizado en base a los siguientes criterios:

Cobertura de objetivos: se han cumplido el 100 % de los objetivos establecidos en la metodologia.

Estabilidad: el sistema ha funcionado durante semanas sin necesidad de reinicio ni intervencion.

Reproducibilidad: el cédigo puede ser desplegado en otro equipo siguiendo las instrucciones del
README.

Utilidad practica: se ha demostrado la utilidad del sistema para detectar patrones, paises recurrentes

Yy amenazas comunes.

7.8. Resumen de pruebas

La bateria de pruebas ha permitido comprobar que el sistema se comporta de forma estable, eficaz
y robusta. No se han identificado errores criticos, y todas las funciones se ejecutan correctamente en

condiciones normales y andmalas.

El sistema esta listo para su uso en laboratorios académicos, pruebas de concepto o entornos profesio-

nales de ciberseguridad con bajo presupuesto.

En el siguiente capitulo se presentan las conclusiones generales del trabajo, asi como posibles lineas

de evolucion futura.

70

CAPITULO 7. PRUEBAS

Capitulo 8

Conclusiones y lineas futuras

8.1. Conclusiones generales

Este Trabajo de Fin de Grado ha tenido como objetivo disefiar e implementar un sistema completo
de Threat Intelligence capaz de almcacenar, enriquecer, asignar un score y visualizar Indicadores de

Compromiso (IoCs) de forma automatizada, modular y accesible.

Tras completar todas las fases del proyecto —desde la planificacion y el disefio hasta la implementa-
cién y validacion— se puede afirmar que los objetivos han sido alcanzados con éxito. Las principales

conclusiones que se extraen del desarrollo son:

= Se ha construido un sistema funcional, robusto y adaptable, basado en tecnologias abiertas como
Python, Elasticsearch, Flask, Plotly y GeoLite2.

= El sistema permite automatizar la recoleccion de IoCs desde fuentes abiertas como OTX, Malware-
Bazaar, ThreatView y URLhaus enriqueciendo los datos con metadatos relevantes (geolocalizacion,
actores, TTPs, etc.).

= El algoritmo de threat scoring implementado proporciona una valoracion cuantitativa del riesgo de

cada indicador , combinando factores como antigiiedad, pais de origen o criticidad seméntica.

= Se ha creado una interfaz de visualizacidon que es accesible y personalizable, desarrollada en
HTMLS y Flask, con filtros interactivos y graficos embebidos.

» La arquitectura modular garantiza la escalabilidad futura, permitiendo integrar facilmente nuevas

fuentes de datos o funcionalidades futuras adicionales sin alterar el ndcleo del sistema.

= FEl sistema ha superado satisfactoriamente todas las pruebas funcionales, de rendimiento y tolerancia

a fallos, demostrando su fiabilidad en entornos controlados.

71

72 CAPITULO 8. CONCLUSIONES Y LINEAS FUTURAS

= Su enfoque educativo y técnico lo convierte en una base idonea para futuros desarrollos académicos,

asi como para la formacidn préctica en ciberinteligencia.

8.2. Valoracion del proyecto

Desde una perspectiva personal y académica, el proyecto ha representado un reto integral en el que se

han puesto en practica conocimientos avanzados de:

= Programacién avanzada en Python y desarrollo backend con Flask

Modelado de datos y metadados e indexacion en Elasticsearch

Andlisis y disefio de arquitecturas escalables

Tratamiento de datos de ciberseguridad y geoposicionamiento

Visualizacion interactiva mediante dashboards

= Documentacién técnica y planificacion de proyectos

Asimismo, la naturaleza interdisciplinar del sistema ha contribuido al desarrollo de competencias clave
para el entorno profesional actual, donde la automatizacion, el anélisis de amenazas y la visualizacion de

datos son pilares fundamentales.

8.3. Lineas de trabajo futuras

Aunque el sistema desarrollado esta plenamente operativo, existen numerosas vias para extender su

funcionalidad y aumentar su valor practico. Algunas lineas futuras destacadas incluyen:

Integracion con nuevas fuentes de datos: afadir conectores a otras plataformas como MISP,
AbuselPDB o VirusTotal.

= Sistema de alertas y notificaciones: generar avisos automdticos ante la deteccion de [oCs criticos,
repetidos o de riesgo elevado, mediante correo electrénico o webhooks.

= Analisis de relaciones entre IoCs: implementar visualizaciones en grafo para identificar vinculos

entre actores, dominios, IPs y hashes.

= Persistencia de logs y auditoria: registrar el histdrico de actualizaciones, inserciones y accesos

para su andlisis posterior.

8.4. REFLEXION FINAL 73

= Interfaz multiusuario y autenticacion: permitir accesos diferenciados segtin perfiles de usuario,

con permisos personalizados y persistencia de configuraciones.

= Despliegue como servicio en la nube: contenerizar la aplicacién con Docker y facilitar su instala-

cidn en entornos productivos, incluyendo balanceo de carga y alta disponibilidad.

= Aplicacion de aprendizaje automatico: utilizar modelos de clasificacion o deteccion de anomalias

para refinar el threat score y detectar comportamientos maliciosos no evidentes.

8.4. Reflexion final

El desarrollo de este sistema ha permitido comprobar que es posible construir soluciones utiles,
eficientes y éticamente sostenibles utilizando exclusivamente herramientas de libre acceso. En un mundo
como el de la ciberseguridad, donde el acceso a herramientas comerciales y empresariales puede estar
restringido por costes, esta aproximacion representa una oportunidad real para la formacion, la defensa
digital y la investigacion.

Ademis, el proyecto demuestra que el analisis de amenazas no debe limitarse a la recopilacion de

datos, sino que debe estar guiado por el contexto, la visualizaciéon comprensible y la toma de decisiones
informadas.

Como reflexion final, se espera que este trabajo sirva como base para desarrollos futuros, investiga-
ciones colaborativas o sistemas funcionales en entornos reales, contribuyendo al ecosistema abierto de
ciberinteligencia.

74

CAPITULO 8. CONCLUSIONES Y LINEAS FUTURAS

Apéndice A

Repositorio de codigo

A.1. Ubicacion del repositorio

El cédigo de este proyecto se encuentra disponible puiblicamente en el repositorio GitLab de la Escuela
de Ingenieria Informética de Valladolid en el siguiente enlace:
https://github.com/razzzer23/TFG_IOCS

A.2. Organizacion del repositorio

El cédigo del repositorio se organiza en las siguientes carpetas:

= Backend
* geoip
* static
* GeoLite2-Country.mmdb
* app.-py
* feeds.py
* requirements

* rules.yar
= Frontend

* GeoLite2-Country_ 20250624

* GeoLite2-Country.tar.gz

75

https://github.com/razzzer23/TFG_IOCS

76 APENDICE A. REPOSITORIO DE CODIGO

e charts.html

e filters.html

A.3. Readme

Sistema de Threat Intelligence para la evaluacion de Indicadores de Compromiso
(IoCs)

Descripcion del proyecto

Este proyecto implementa un sistema de Threat Intelligence que recopila, normaliza, puntia y vi-
sualiza indicadores de compromiso (IoCs) desde fuentes abiertas como OTX, URLhaus, ThreatFox
y MalwareBazaar. Utiliza Elasticsearch para el almacenamiento, y un backend en Python que
permite enriquecer los [oCs con geolocalizacion, metadatos contextuales y un sistema de puntuacion. La

visualizacion se realiza mediante Kibana y dashboards web personalizados.

Caracteristicas principales

= Recoleccién automatica de 1oCs desde multiples fuentes publicas.

Enriquecimiento con metadatos: pais, fechas, actores, TTPs, etc.

Sistema de scoring basado en antigiiedad, procedencia y contexto.

Geolocalizacion de IPs con MaxMind GeoLite?2.

Visualizacion interactiva con dashboard web.

Control de duplicados y recuento de avistamientos (seen_count).

Estructura del proyecto

app.py # Backend Flask para recoleccidén y API
dashboard.html # Dashboard principal de IoCs
charts.html # Dashboard con graficos y filtros
templates/ # Plantillas HTML
static/ # Archivos JS, CSS, iconos, etc.

#

GeolLiteZ2—-Country.mmdb Base de datos de geolocalizacidn IP

A.3. README
requirements.txt # Dependencias Python del proyecto
README . md # Este archivo

Instalacion y ejecucion
1. Clonar el repositorio:

git clone https://github.com/razzzer23/TFG_IOCS

2. Instalar dependencias:

pip install -r requirements.txt

3. Ejecutar la aplicacion:

python app.py

4. Abrir la interfaz web:

http://localhost:5000

Funcionalidades clave

= Ruta /refresh: descarga los ultimos IoCs desde todas las fuentes configuradas.
» Guardado automatico en Elasticsearch con control de duplicados.
= Dashboards interactivos con filtros por tipo, pais, score y etiquetas.

= QGréficos de distribucidn por tipo, score medio y tags mds comunes.

Fuentes de datos utilizadas

m AlienVault OTX
s MalwareBazaar

s ThreatFox

7

78 APENDICE A. REPOSITORIO DE CODIGO

s URLhaus
» ThreatView

= GeoLite2 by MaxMind

Tecnologias empleadas

Python (Flask)

Elasticsearch

Kibana

Logstash (opcional)

HTML, CSS, JavaScript (Chart.js / D3.js)

Ejemplo de IoC enriquecido

"uuid": "f3c93ela-...-...",
"type": "sha256",
"indicator": "5d41402abc4b2a76b9719d911017c592",
"source": "OTX",
"description": "Hash relacionado con RedLine Stealer",
"pulse_name": "RedLine Stealer",
"country": "RU",
"tags": ["malware", "stealer"],
"related_actors": ["APT28"],
"ttp": ["T1059", "Tl566"],
"first_seen": "2025-06-30",
"last_seen": "2025-07-01",
"threat_score": 76,
"seen_count": 3
}
Créditos

Desarrollado por Victor Martin Miguel como parte del Trabajo de Fin de Grado en la Universidad de
Valladolid.

Bibliografia

[1] Sean Barnum. Standardizing cyber threat intelligence information with the structured threat infor-

mation expression (stix). MITRE Corporation, 2012.
[2] MITRE Corporation. Att&ck framework. https://attack.mitre.org/, 2023.

[3] Enisa threat intelligence sharing guidelines. Technical report, European Union Agency for Cyberse-
curity, 2023. Consultado en junio de 2025.

[4] Glassdoor. Salario promedio de ingeniero informdtico junior en espafia. https://www.glassd
oor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0OO0, 30.h
tm, 2024. Consultado en junio de 2025.

[5] Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. Computer security incident handling
guide (sp 800-61 rev. 2). Technical report, National Institute of Standards and Technology, 2012.
Consultado en junio de 2025.

[6] Mark Lutz. Learning Python. O’Reilly Media, Inc., 2013.
[7] Tiobe index for june 2025. https://www.tiobe.com/tiobe-index/, 2025.

[8] Philip J. Guo. Python is now the most popular introductory teaching language at top u.s. universities.
https://cacm.acm.org/blogs/blog-cacm/176450,2014.

[9] Guido Van Rossum and Barry Warsaw. The zen of python. https://peps.python.org/pe
p-0020/,2001.

[10] Madhusudan Sinha. Mastering Python for Networking and Security. Packt Publishing, 2019.

[11] Robert Bisson. Python for Cybersecurity: Using Python for Cyber Offense and Defense. Apress,
2018.

[12] Miguel Grinberg. Flask Web Development: Developing Web Applications with Python. O’Reilly
Media, 2 edition, 2018.

[13] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. O’Reilly Media, 2015.

79

https://attack.mitre.org/
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.glassdoor.es/Sueldos/ingeniero-informatico-junior-sueldo-SRCH_KO0,30.htm
https://www.tiobe.com/tiobe-index/
https://cacm.acm.org/blogs/blog-cacm/176450
https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/

80 BIBLIOGRAFIA

[14] MaxMind Inc. Geolite2 documentation. https://dev.maxmind.com/geoip/docs/,
2025. Consultado en junio de 2025.

[15] Creative Commons. Attribution-sharealike 4.0 international license (cc by-sa 4.0). https:

//creativecommons.org/licenses/by—-sa/4.0/,2025.
[16] MaxMind Inc. geoip2 python client library. https://pypi.org/project/geoip2/, 2025.

[17] Plotly Technologies Inc. Plotly.py documentation. https://plotly.com/python/, 2025.
Consultado en junio de 2025.

[18] Roy Fielding. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

[19] J. Marrant. RESTful Web APIs. O’Reilly Media, 2 edition, 2020.

[20] AT&T Cybersecurity. Otx api documentation. https://otx.alienvault.com/api, 2025.
Consultado en junio de 2025.

[21] Scott Chacon and Ben Straub. Pro Git. Apress, 2 edition, 2014.

[22] Canonical Ltd. Ubuntu server documentation. https://ubuntu.com/server/docs, 2025.
Consultado en junio de 2025.

[23] Mark G. Sobell. A Practical Guide to Linux Commands, Editors, and Shell Programming. Pearson,
4 edition, 2017.

[24] Elastic NV. Kibana documentation. https://www.elastic.co/guide/en/kibana/c
urrent/index.html, 2025. Consultado en junio de 2025.

https://dev.maxmind.com/geoip/docs/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://pypi.org/project/geoip2/
https://plotly.com/python/
https://otx.alienvault.com/api
https://ubuntu.com/server/docs
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html

	Introducción
	Motivación
	Metodología para un Sistema de Threat Intelligence
	Objetivos
	Etapas metodológicas del sistema

	Recursos utilizados
	Caso de Negocio
	Agentes implicados en el proyecto
	Presupuesto
	Impacto

	Organización del documento

	Planificación del Proyecto
	Planificación del Proyecto
	Planificación inicial
	Seguimiento del proyecto

	Gestión de Riesgos
	Presupuesto del Proyecto

	Tecnologías utilizadas
	Python
	Flask
	Elasticsearch
	GeoLite2
	Plotly
	APIs REST
	Git
	Ubuntu/Linux
	Valoración global

	Análisis
	Análisis del sistema desarrollado
	Análisis funcional
	Análisis técnico
	Análisis de los datos recolectados
	Evaluación del algoritmo de scoring
	Rendimiento del sistema
	Limitaciones y mejoras potenciales

	Conclusiones del análisis

	Diseño del sistema
	Arquitectura general
	Diseño de los módulos funcionales
	Módulo de recolección de IoCs
	Módulo de enriquecimiento
	Módulo de deduplicación e inserción
	Módulo de scoring contextual

	Diseño del almacenamiento en Elasticsearch
	Diseño de la interfaz web (HTML + Flask)
	Diseño orientado a escalabilidad
	Resumen del diseño

	Implementación
	Entorno de desarrollo
	Automatización del flujo de datos
	Recolección de datos desde OTX
	Recolección de datos desde ThreatFox
	Recolección de datos desde URLhaus
	Recolección de datos desde MalwareBazaar
	Recolección de datos desde ThreatView
	Procesamiento y enriquecimiento
	Sistema de deduplicación
	Algoritmo de threat score
	Carga de datos en Elasticsearch
	Interfaz web con Flask
	Documentación y validación
	Resumen de la implementación

	Pruebas
	Objetivo de las pruebas
	Pruebas funcionales
	Pruebas de rendimiento
	Pruebas de calidad de datos
	Pruebas de visualización
	Gestión de errores y pruebas negativas
	Validación global del sistema
	Resumen de pruebas

	Conclusiones y líneas futuras
	Conclusiones generales
	Valoración del proyecto
	Líneas de trabajo futuras
	Reflexión final

	Repositorio de código
	Ubicación del repositorio
	Organización del repositorio
	Readme

	Bibliografía

