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RESUMEN

Resumen

La Inteligencia Artificial (IA) ha experimentado un gran avance en los últimos años, siendo
aplicada en distintos ámbitos y permitiéndoles evolucionar gracias a su capacidad para
resolver tareas complejas.

Este proyecto estudia la clasificación automática de ecograf́ıas abdominales, prestando
especial atención al h́ıgado y al hepatocarcinoma, mediante modelos de Redes Neuronales
Convolucionales. Para este propósito, se recopilaron y procesaron imágenes de pacientes
reales, aplicándoles prepocesamiento y distintas técnicas de aumento de datos. Por otro
lado, se ha desarrollado una aplicación para la clasificación de estas ecograf́ıas. Esta
aplicación incluye visualizaciones de cómo los modelos toman las decisiones y pretende
facilitar el acceso a usuarios sin experiencia.

Los resultados obtenidos tras la evaluación de los modelos, mostraron que estos lograron
aprender para imágenes ya conocidas; sin embargo, demostraron tener aptitud más limitada
para la generalización en muestras nunca antes vistas. Este sesgo está estrechamente
relacionado con el desequilibrio en las muestras, destacando los insuficientes casos de
hepatocarcinoma con respecto a h́ıgados sanos.
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ABSTRACT

Abstract

Artificial Intelligence (AI) has experienced significant progress in recent years, being
applied across various fields and enabling their advancement thanks to its ability to solve
complex tasks.

This project explores the automatic classification of abdominal ultrasound images, focusing
particularly on the liver and the hepatocellular carcinoma, using Convolutional Neural
Network (CNN) models. For this purpose, real patient images were collected and processed,
applying preprocessing and different data augmentation techniques. Additionally, a web
application has been developed for the classification of these ultrasounds. This application
includes visualizations of how models make decisions and is intended to facilitate use for
users without technical expertise.

The evaluation results showed that the models were able to learn effectively on images they
had previously seen. However, their ability to generalize to unseen samples was more
limited. This bias is closely related to the imbalance in the dataset, highlighting the
insufficient number of hepatocellular carcinoma cases compared to healthy liver images.
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ÍNDICE GENERAL

3. Fundamento Teórico 11
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Índice de figuras

1.1. Anatomı́a del abdomen humano, de Ties van Brussel/tiesworks.nl . . . . . . . 2

1.2. Ecograf́ıa abdominal donde se puede observar un riñón y a su izquierda, par-
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CAPÍTULO 1. INTRODUCCIÓN

Caṕıtulo 1

Introducción

La Inteligencia Artificial (IA) ha experimentado un gran desarrollo en las últimas décadas,
transformando numerosos campos y permitiéndoles avanzar gracias a su capacidad para
resolver tareas complejas de manera automatizada. Entre sus múltiples ramas, los modelos
de Aprendizaje Profundo han demostrado un alto rendimiento en tareas de clasificación y
detección de patrones, especialmente cuando son expuestos a grandes cantidades de datos y
entrenamiento [1].

Dentro de este ámbito, la visión por ordenador permite a las máquinas interpretar imáge-
nes con una precisión cada vez más cercana a la humana. En el campo de la Medicina,
estas tecnoloǵıas han comenzado a desempeñar un papel crucial, asistiendo en diagnósti-
cos, pronósticos y decisiones cĺınicas, especialmente en el análisis de imágenes médicas como
radiograf́ıas, resonancias o ecograf́ıas [2].

1.1. Contexto

Para introducir el marco anatómico del proyecto, primero se debe presentar la región
abdominal humana, la cual incluye diferentes órganos como el bazo, el colon, el estómago, el
h́ıgado, el intestino, el páncreas, la veśıcula, el apéndice y la vejiga, figura 1.1.
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1.1. CONTEXTO

Figura 1.1: Anatomı́a del abdomen humano, de Ties van Brussel/tiesworks.nl
Fuente: https://commons.wikimedia.org/w/index.php?curid=46003785

A continuación, nos enfocaremos en el estudio del h́ıgado, órgano de alta relevancia para
este proyecto, puesto constituye el objetivo de estudio principal del mismo.

1.1.1. Hı́gado

Para contextualizar el proyecto, es importante destacar la relevancia del h́ıgado como
uno de los órganos vitales más importantes del cuerpo humano. Situado en la parte superior
derecha del abdomen, justo debajo del diafragma, este órgano cumple funciones esenciales
para el mantenimiento del equilibrio fisiológico.

Entre sus principales responsabilidades se encuentran la metabolización de nutrientes, la
śıntesis de protéınas, la producción de bilis y, especialmente, la desintoxicación de sustancias
nocivas presentes en la sangre, como el alcohol u otros compuestos potencialmente perju-
diciales. Su correcto funcionamiento es indispensable para la vida, y cualquier alteración
significativa en su estructura o funcionalidad puede comprometer gravemente la salud del
individuo. Dentro del ámbito de este proyecto, se prestará especial atención a dos patoloǵıas
del h́ıgado de gran relevancia cĺınica: la cirrosis hepática y el hepatocarcinoma.

Cirrosis Hepática

La cirrosis hepática es una de las enfermedades crónicas del h́ıgado más graves y frecuen-
tes. Se caracteriza por la progresiva sustitución del tejido hepático sano por tejido cicatricial
como consecuencia de la muerte celular[3]. Este proceso deteriora la estructura del órgano y
afecta severamente a su funcionalidad.

2
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CAPÍTULO 1. INTRODUCCIÓN

Las causas más comunes de esta afección incluyen el consumo excesivo de alcohol, infec-
ciones virales como las hepatitis B y C, aśı como ciertas enfermedades metabólicas. Si no se
detecta y trata a tiempo, la cirrosis puede avanzar hasta causar complicaciones potencialmen-
te mortales. Constituye un importante factor de riesgo para el desarrollo de hepatocarcinoma,
lo que acentúa la importancia de su diagnóstico temprano y seguimiento cĺınico.

Hepatocarcinoma

También conocido como carcinoma hepatocelular (CHC), es el tipo de cáncer de h́ıgado
más frecuente, representando entre el 80 % y el 90 % de los tumores hepáticos malignos.
En aproximadamente el 90 % de los casos, su aparición está estrechamente relacionada con
la cirrosis hepática, como resultado de la acumulación progresiva de tejido cicatricial en el
h́ıgado.

Una de las principales dificultades en su manejo cĺınico reside en que esta patoloǵıa era
casi indetectable en fases iniciales, lo que históricamente ha llevado a que muchos diagnósticos
se realizaran en etapas avanzadas, cuando el tumor ya hab́ıa alcanzado un tamaño considera-
ble y las opciones terapéuticas curativas se hab́ıan reducido notablemente. No obstante, los
avances en las técnicas de imagen, como la ecograf́ıa abdominal, y la inclusión de pacientes
de alto riesgo en programas de seguimiento intencionado han mejorado significativamente la
detección precoz del CHC. Este diagnóstico temprano resulta clave para permitir la aplica-
ción de tratamientos con intención curativa y mejorar exponencialmente el pronóstico de los
pacientes[4].

1.1.2. Ecograf́ıa

La ecograf́ıa es una técnica de diagnóstico por imagen no invasiva ampliamente utilizada
en Medicina para examinar órganos y estructuras internas, entre ellos el h́ıgado. Se basa en
el uso de ultrasonidos (ondas sonoras de alta frecuencia) que, al rebotar en los tejidos del
cuerpo, permiten generar imágenes en tiempo real.

A diferencia de otras pruebas como la radiograf́ıa o la tomograf́ıa computarizada, la eco-
graf́ıa no emplea radiación ionizante, lo que la convierte en una técnica inocua, accesible
y de bajo coste. Por estas razones, es una de las principales herramientas para la evalua-
ción hepática, especialmente útil en la detección de anomaĺıas o signos de cirrosis [5]. A
continuación, en la figura 1.2, se presenta un ejemplo.

3



1.1. CONTEXTO

Figura 1.2: Ecograf́ıa abdominal donde se puede observar un riñón y a su izquierda, parcial-
mente, un h́ıgado.

La ecograf́ıa es una prueba dinámica que depende en gran medida de la habilidad y
experiencia del profesional que la realiza. El transductor, dispositivo que se coloca en contacto
con el cuerpo del paciente, emite y recibe los ultrasonidos mientras se desplaza sobre la piel;
por ello, la calidad y contenido de las imágenes obtenidas pueden variar considerablemente
según la orientación, posición y movimiento de este, lo que introduce una variabilidad en la
interpretación de los resultados. Este factor subjetivo representa una limitación importante,
especialmente en contextos cĺınicos donde se requiere de una alta precisión diagnóstica.

Normalmente, la ecograf́ıa genera una secuencia de imágenes en escala de grises y gene-
ralmente en forma de sector circular, una de las modalidades más utilizadas se conoce como
“brightness mode” (modo B). Sin embargo, existen otras más avanzadas como la ecograf́ıa
dópler, que permite visualizar la circulación del flujo sangúıneo, incluyendo su velocidad y
dirección, mediante codificación por colores. Esta técnica resulta particularmente útil para
evaluar la vascularización del h́ıgado y detectar posibles alteraciones asociadas a patoloǵıas
como el hepatocarcinoma [6].
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CAPÍTULO 1. INTRODUCCIÓN

Figura 1.3: Ecograf́ıa abdominal de un bazo con técnica dópler.
Fuente https://ecografiafacil.com/2023/06/21/

estudio-ecografico-del-bazo-con-smi-de-canon-medical-sistem-los-colores-del-bazo/

En este contexto, la aplicación de modelos de Inteligencia Artificial puede aportar un
valor añadido significativo, al permitir una interpretación automatizada y estandarizada de
las ecograf́ıas, reduciendo la dependencia del operador humano y mejorando la precisión
diagnóstica.

1.2. Estado del Arte

Para llevar acabo este proyecto se han revisado diversos trabajos cuyo contenido abor-
da la aplicación de Redes Neuronales Convolucionales para el diagnóstico de enfermedades
hepáticas mediante ecograf́ıas.

En el estudio de Mitrea et al. (2023) [7] se presenta un sistema h́ıbrido que combina técni-
cas convencionales, como texturas, histogramas y transformaciones de ond́ıcula con modelos
de aprendizaje automático.

Emplearon imágenes de ecograf́ıas Modo B de dos ecógrafos diferentes, consiguiendo un
total de 296 pacientes enfermos, ningún caso con h́ıgado sano. Definieron dos clases, HCC
y cirrótico. De esas imágenes, se seleccionaron manualmente trozos de tamaños 50x50 y
56x56 ṕıxeles, de zonas con tumor o afectadas por cirrosis y se utilizaron para entrenar los
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modelos. Todas estas imágenes se pueden encontrar en el siguinete enlace [8]. En su caso no
se desarrolló ninguna aplicación para la clasificación de ecograf́ıas.

Otro estudio, Byra et al. (2019) [9], utiliza el modelo de Red Convolucional Inception-
ResNet-v2, preentrenada en el conjunto de datos ImageNet, para determinar el nivel de
esteatosis en h́ıgados grasos. Utilizaron 550 ecograf́ıas Modo B, con resolución 434x636 ṕıxeles
de 55 pacientes. Estas imágenes conteńıan, en su totalidad, h́ıgados junto a riñones, y se
seleccionaron manualmente regiones de interés, finalmente no se realizó una aplicación de
medición de esteatosis.

1.3. Planteamiento y Objetivos

Este proyecto se centra en el desarrollo de un sistema de clasificación automática de
ecograf́ıas abdominales mediante el uso de técnicas de Inteligencia Artificial, espećıficamente
Redes Neuronales Convolucionales (CNN). El objetivo principal es construir una aplicación
capaz de clasificar imágenes de ecograf́ıas del h́ıgado. Para esto será necesario:

Conseguir un número suficiente de ecograf́ıas de la región abdominal.

Desarrollar y entrenar modelos de visión por ordenador capaces de realizar tareas de
clasificación.

Poder visualizar la toma de decisiones del modelo mientras realiza la clasificación, pues
esto es muy deseable en el diagnóstico médico.

Desarrollar una aplicación que permita clasificar una ecograf́ıa, devolver el resultado y
mostrar la visualización de dicha clasificación.

La elección de la ecograf́ıa, como técnica de imagen, se debe a su amplia disponibilidad,
seguridad y bajo coste, lo que la convierte en una herramienta importante para el cribado
de pacientes y el seguimiento de enfermedades hepáticas. No obstante, su realización e in-
terpretación requiere personal especializado y puede resultar subjetivo y costoso en términos
de tiempo, por lo que automatizar este proceso mediante modelos de aprendizaje profundo
representa una solución tecnológica de gran valor cĺınico.

A diferencia de otros enfoques de segmentación, este proyecto se centra exclusivamente
en una tarea de clasificación; es decir, no se busca identificar la localización exacta de una
lesión o patoloǵıa, sino simplemente detectar su presencia a partir de la imagen completa. De
este modo, se explora el potencial de las CNN para apoyar el diagnóstico médico de manera
eficiente, contribuyendo aśı al desarrollo de herramientas inteligentes en el ámbito de la salud.

1.4. Estructura

La estructura de caṕıtulos de este trabajo de fin de grado es la siguiente:
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CAPÍTULO 1. INTRODUCCIÓN

Capitulo 1: Introducción. Se contextualiza el problema, se presentan las patoloǵıas
hepáticas abordadas y se define el objetivo general del trabajo.

Capitulo 2: Gestión del proyecto. Se detalla la planificación, organización y control
del proyecto, incluyendo la distribución temporal de tareas para asegurar su correcta
ejecución.

Capitulo 3: Fundamento Teórico. Se explican los conceptos fundamentales de la In-
teligencia Artificial utilizados, haciendo especial énfasis en las redes convolucionales
(CNN).

Capitulo 4: Conjunto de datos. Se describe el proceso de obtención, organización, pre-
procesamiento y tratamiento del conjunto de datos ecográficos empleado para entrenar
y evaluar los modelos.

Capitulo 5: Diseño del sistema. Se expone la arquitectura general del sistema desarrolla-
do, incluyendo el diseño de los modelos, la selección de parámetros y la implementación
de la lógica de clasificación.

Capitulo 6: Evaluación y resultados. Se presentan los resultados obtenidos tras el en-
trenamiento de los modelos, aśı como una evaluación cuantitativa de su rendimiento
mediante métricas espećıficas de clasificación.

Capitulo 7: Aplicación y despliegue. Se muestra cómo se ha integrado el modelo en
una aplicación funcional, junto con su interfaz y caracteŕısticas principales para el uso
cĺınico o experimental.

Capitulo 8: Conclusiones y trabajo futuro. Se resumen los principales logros del pro-
yecto, se valoran las limitaciones encontradas y se proponen posibles ĺıneas de mejora
y continuación futura del trabajo.
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CAPÍTULO 2. GESTIÓN DEL PROYECTO

Caṕıtulo 2

Gestión del proyecto

En este caṕıtulo se recoge todo lo relativo a la gestión del proyecto y se desarrollan
aspectos como la metodoloǵıa o los recursos utilizados para la correcta evolución de este
TFG. Para tal fin se ha utilizado GitLab, que posee tanto herramientas para control de
versiones, como organización con hitos y tableros que permiten realizar sprints, planificar
tareas y supervisar el progreso; aśı como compartirlo con otras personas.

2.1. Metodoloǵıa de trabajo

Para organizar el desarrollo del proyecto se optó por seguir una metodoloǵıa similar a
Scrum. Esta forma de planificación estructura el trabajo en cinco fases que orientan el proceso
[10]:

1. Inicio: En esta fase se define el enfoque que se quiere dar al proyecto y los objetivos
del mismo.

2. Planificación y estimación: Aqúı se seleccionan las tareas prioritarias del backlog
para incluirlas en el siguiente sprint y se define un objetivo claro para el mismo.

3. Implementación: En esta fase se desarrolla el trabajo planificado. Cada sprint suele
durar entre una y cuatro semanas (en el caso de este proyecto, fueron de dos), y durante su
transcurso se pretende completar las tareas establecidas.

4. Revisión y retrospectiva: Esta fase tiene lugar al final de cada sprint, donde se
realiza una revisión y se presentan los avances alcanzados. Después, se lleva a cabo una
retrospectiva, en la que se evalúan los resultados y posibles mejoras.

5. Lanzamiento: En esta fase se entregan los resultados finales del proyecto. En nuestro
caso incluye la aplicación, junto a los modelos de IA desarrollados y la documentación por
escrito.
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2.2. CONTROL DE VERSIONES

Como se ha mencionado antes, la metodoloǵıa de trabajo empleada se ha basado en
sprints de dos semanas de duración, al final de los cuales se realizaban reuniones con los
tutores para presentar los avances, evaluar el trabajo y resolver dudas.

Para la organización de tareas se han utilizado tres tableros:

Backlog, donde se añad́ıan las tareas según se iban definiendo.

Open, donde se arrastraban las tareas a realizar durante el sprint en cuestión.

Closed, donde se colocaban las tareas una vez finalizadas.

Al inicio de cada sprint se revisaban las tareas del Backlog y se añad́ıan nuevas si era
necesario. Después, se seleccionaban las que se abordaŕıan en el sprint y se mov́ıan a Open,
las no finalizadas de sprints anteriores se trasladaban al nuevo.

En total, se han llevado a cabo ocho sprints; del Sprint 0, que comenzó el 29/01/2025,
hasta el Sprint 8 que marca la finalización del proyecto. Esto ha supuesto unas 350 horas
de trabajo entre recogida de imágenes, desarrollo y realización de la memoria. Además, se
redactó un Abstract, recogido en el anexo D, y una presentación junto al profesional sanitario,
que fueron presentado en el congreso anual del ACYLHE [11], la asociación castellano-leonesa
de hepatoloǵıa.

2.2. Control de versiones

Para la gestión, almacenamiento y control de versiones del código desarrollado durante
el proyecto, se ha hecho uso de la herramienta GitLab.

El desarrollo se ha realizado principalmente a través de una rama de desarrollo (dev),
donde se desarrollaba el código. Una vez obtenida la versión final, todos los cambios se
unificaban en la rama principal, de esta manera resulta más sencillo mantener esta sección
limpia.

Este sistema de organización permite gestionar más eficazmente el avance de todo el
proyecto, además de realizar cambios sin arriesgar la versión final y; por último, tener un
seguimiento claro de los cambios realizados a lo largo del desarrollo del trabajo.
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CAPÍTULO 3. FUNDAMENTO TEÓRICO

Caṕıtulo 3

Fundamento Teórico

En este caṕıtulo se abordan los conceptos teóricos en los que se basa el desarrollo del
sistema propuesto, de cara a contextualizar el uso de técnicas de Inteligencia Artificial en la
rama del análisis de imágenes médicas.

3.1. Visión por computador en salud

La Inteligencia Artificial (IA) en el ámbito de la Medicina se basa en el desarrollo de
algoritmos capaces de analizar grandes volúmenes de datos cĺınicos con el objetivo de de-
tectar patoloǵıas, predecir riesgos o asistir a los profesionales a realizar sus diagnósticos. Su
aplicación permite mejorar la precisión en la toma de decisiones y acelerar diversos procesos,
convirtiéndose en una herramienta complementaria de gran valor para los profesionales de la
salud [12].

Uno de los ámbitos donde el avance ha resultado más significativo es en el campo de la
radioloǵıa, donde la digitalización de la toma de imágenes ha abierto la puerta a la utilización
de modelos de aprendizaje automático que, junto a grandes conjuntos de datos, acompañados
de su diagnóstico, permite entrenar IAs capaces de sugerir automáticamente un diagnóstico
a partir de una imagen que no hab́ıan visto previamente [13]. Aunque esta práctica resulta de
gran ayuda al trabajo de los radiólogos, aún no es capaz sustituir el diagnóstico del profesional
en cuestión, pero śı apoyarlo para realizar una labor más eficiente.

Sin embargo, actualmente esto solo se aplica a diagnósticos espećıficos como la detección
de fracturas en radiograf́ıas o de nódulos en mamograf́ıas, ya que aún presentan limitaciones
a la hora de generalizar para diagnósticos más complejos.

En el campo de la visión por computador, las Redes Neuronales profundas han demos-
trado unos resultados comparables al de expertos humanos en determinadas áreas, como la
detección del cáncer de mama, lesiones pulmonares o cerebrales [14]. Además de su precisión,
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otra ventaja clave de la IA es su capacidad para procesar volúmenes masivos de imágenes
médicas de forma rápida, ayudando a reducir la carga de trabajo del personal sanitario y
destacando automáticamente aquellas regiones de interés cĺınico.

3.2. Redes Neuronales Artificiales

Son modelos computacionales de Inteligencia Artificial, encuadrados dentro del Aprendi-
zaje Automático y que se basan en la estructura y el funcionamiento del cerebro.

Están compuestas por unidades elementales llamadas neuronas artificiales, que imitan, de
forma simplificada, el comportamiento de las neuronas biológicas. Estas neuronas se interco-
nectan entre śı, lo que permite que, al trabajar en conjunto, puedan modelar comportamientos
complejos a partir de unidades individuales simples.

Por lo general, las neuronas se organizan en capas: la de entrada, que recibe los datos
iniciales; la de salida, que genera el resultado final; y entre ellas, las ocultas, donde se realizan
múltiples transformaciones intermedias. Esta estructura puede observarse en la figura 3.1.

Las neuronas de una capa están conectadas con las de las capas contiguas, por lo que se
influencian unas a otras. El grado de influencia viene dado por los pesos de la red.

Figura 3.1: Capas de una red neuronal artificial
Fuente: https:

//atriainnovation.com/blog/que-son-las-redes-neuronales-y-sus-funciones/
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CAPÍTULO 3. FUNDAMENTO TEÓRICO

Neurona Artificial

Figura 3.2: Comparación neurona biológica con artificial
Fuente: https://www.cs.us.es/~fsancho/Blog/posts/Redes_Neuronales.md

Las Neuronas Artificiales son modelos matemáticos que, como se muestra en la imagen
3.2, reciben una serie de entradas x1, ..., xn, cada una de las cuales se multiplica por un
parámetro asociado w1, ..., wn, denominados pesos. Estos pesos son los valores que la red
ajusta durante el entrenamiento. La suma ponderada de estas entradas se combina con un
término adicional llamado sesgo (w0). Finalmente, antes de generar la salida de la neurona,
el resultado pasa por la llamada función de activación.

Función de Activación

Una función de activación es una función matemática que se aplica antes de la salida de
cada neurona. Estas funciones permiten que la red aprenda y pueda asimilar representaciones
no lineales. Existen múltiples y diferentes funciones de activación, entre ellas cabe destacar
a modo de ejemplo:

Funcion Sigmoide, utilizada para clasificación binaria:

σ(z) =
1

1 + e−z

Rectificador Lineal (ReLu):

Relu(z) = max(0, z)

Función SoftMax, utilizada para clasificación muticlase:

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K
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Función de pérdida

Como ya se ha mencionado las redes neuronales aprenden ajustando sus pesos. Para ello,
una vez que la red produce una salida, esta se compara con el resultado real mediante una
función de pérdida, que mide cuánto se ha acercado el modelo al resultado deseado.

En base a esto, se aplica la retropropagación, que actualiza los pesos de la red desde
la capa de salida hasta la capa de entrada, pasando por actualizar las neuronas de la capa
oculta.

Cabe destacar que, durante este proceso, las neuronas de las capas ocultas no reciben
directamente el error total, sino una proporción. Esta fracción se calcula en relación a la
contribución que cada neurona ha tenido originalmente, lo que permite ajustar sus pesos
según su aportación en la salida de la red, corrigiéndolos e intentando reducir el valor de la
función de pérdida.

Entre las funciones de pérdida más habituales encontramos la Entroṕıa Cruzada, que
puede variar en relación al tipo de clasificación que se realice, binaria o multiclase.

Siendo:

M el número de clases.

log el logaritmo natural.

o la observación o muestra de entrada.

c la clase real a la que pertenece la muestra.

y una variable binaria, que indica si la clasificación es correcta o no para la observación
(o).

p la probabilidad predicha de que la observación (o) sea de la clase (c)

Cuando M = 2 se usa la Entroṕıa Binaria Cruzada, (BCE) que se define como:

BCE = (y log(p) + (1 − y) log(1 − p)) (3.1)

Cuando M > 2 se usa la Entroṕıa Categoŕıa Cruzada (CCE), que se define como:

CCE =

M∑
c=1

yo,c log(po,c) (3.2)

Calcula una función de pérdida independiente para cada clase por cada observación y suma
el resultado.
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3.3. Redes convolucionales

Las Redes Neuronales Convolucionales (CNN) son una especialización de las redes neu-
ronales artificiales diseñadas para procesar datos estructurados en forma de matriz, como
imágenes. Su principal atributo es la capacidad de extraer automáticamente patrones y ca-
racteŕısticas espaciales de la imagen que se le aporta [15].

Está compuesta, habitualmente, por varias capas convolucionales, que se encargan de
extraer un mapa de caracteŕısticas; estas suelen ir seguidas por una o más capas lineales
completamente conectadas, que procesan la información extráıda para realizar la clasificación.
Imagen: 3.3.

Figura 3.3: Representación de una CNN
Fuente: https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/

convolutional-neural-network/

3.3.1. Convolución

La convolución es una operación matemática que se puede definir como el producto de
dos matrices: una imagen o un mapa de caracteŕısticas (como en nuestro caso) y un filtro. La
imagen, que suele representarse como un tensor, puede tener uno o varios canales, en función
de si está en escala de grises o en color. Estos canales o dimensiones, van aumentando según
realizan convoluciones. Se definen tal que (H, W, C) siendo:

H la altura.
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W el ancho

C el número de canales.

Filtro: es una pequeña matriz rectangular, cuyas dimensiones son más pequeñas que
la imagen sobre la que se aplica. Su función es desplazarse sobre la imagen de izquierda a
derecha y de arriba a abajo mediante pasos, multiplicando sus valores por los de la región
que corresponda y sumando todos los resultados.

El trabajo de estos filtros es resaltar ciertas caracteŕısticas espaciales. La caracteŕıstica
a destacar dependerá del tipo de filtro utilizado. La idea es utilizar múltiples filtros que
capturen diferentes particularidades de cada imagen. Lo que nos dará múltiples matrices de
salida, tantas como filtros hayamos usado. Es decir, iremos teniendo más canales.

Paso: corresponde a la cantidad unidades que el filtro se desplaza en cada dirección cada
vez que se va a aplicar.

Rellenado: es la técnica utilizada para mantener el tamaño de la matriz por cada capa de
convolución, o bien para que el filtro tenga espacio de operar dentro de una imagen sin rebasar
el borde, su utilización consiste en rodear la matriz normalmente de ceros. El rellenado define
el numero de pixeles con los que se rodeará la imagen.

Figura 3.4: Ejemplo de calculo de una convolución.
Fuente :https://www.researchgate.net/figure/

An-example-of-convolution-calculation_fig5_313848047

Como se puede observar en la figura 3.4, la matriz original posee unas dimensiones de
6x6 ṕıxeles, mientras que la de salida es de 4x4 ṕıxeles; es decir, el resultado final de la
convolución es una matriz cuyas dimensiones son menores que la matriz de entrada. Por cada
filtro que apliquemos obtendremos una matriz de salida, por lo que aunque se va reduciendo
la resolución (H,W) se va aumentando el numero de canales (C). Es decir, si tenemos una
imagen en escala de grises, de un solo canal (H,W,1) y le aplicamos un filtro de tres canales
(h,w,3), obtendremos tres nuevas matrices más pequeñas [15].
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La reducción del tamaño de una matriz al aplicarle un filtro viene determinada por la
fórmula 3.3, donde, por cada dimensión de la matriz:

N corresponde al tamaño de la matriz.

F corresponde al tamaño del filtro.

S corresponde al paso.

P corresponde al relleno.

[
N − F + 2P

S

]
+ 1 (3.3)

3.3.2. Pooling

Dentro de las CNN, las capas de pooling tienen como objetivo principal reducir la re-
solución espacial de los datos obtenidos, disminuyendo el número de parámetros y, por lo
tanto, reduciendo la cantidad de cálculos a realizar. De igual manera, son utilizadas para
hacer que la red se mantenga invariante ante pequeños desplazamientos y ayudan a reducir
el sobreentranmiento[16].

Este proceso divide la matriz en subconjuntos de tamaño NxN y aplica la misma función
a cada uno de ellos, como se puede ver más adelante en la figura 3.5. Las funciones de pooling
más utilizadas son [17]:

Max Pooling : devuelve el valor máximo del subconjunto que captura el filtro. Esto
ayuda a resaltar las caracteŕısticas dominantes de la matriz.

Average Pooling : devuelve el promedio de los valores del subconjunto que captura el
filtro. Esto suaviza las caracteŕısticas y reduce el ruido de los datos.

Figura 3.5: Ejemplo de aplicación de Max Pooling
Fuente: https://commons.wikimedia.org/w/index.php?curid=150823502
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3.3.3. Paso de capas convolucionales a capas lineales

Uno de los pasos fundamentales en una CNN es la transición espacial de los mapas de
caracteŕısticas a un vector que pueda ser trasferido a las capas completamente conectadas.
Existen vaŕıas estrategias para realizar esta operación, entre las que destacan:

Aplanado

El aplanado, tal y como se puede ver en la imagen 3.6, consiste en transformar la salida de
una capa convolucional; es decir, el mapa de caracteŕısticas, de dimensiones (H, W, C) a un
vector unidimensional de tamaño (HxWxC) que sirva de entrada a las capas completamente
conectadas. Esta técnica es ventajosa puesto que preserva toda la información espacial de
canales de la capa convolucional; sin embargo, genera un gran número de parámetros, lo
que incrementa el uso de memoria y el sobreajuste, especialmente en conjuntos de datos
pequeños.

Figura 3.6: Ejemplo de aplanado
Fuente: https://www.superdatascience.com/blogs/

convolutional-neural-networks-cnn-step-3-flattening

Global Average Pooling

Otra forma de conectar las capas convolucionales con el clasificador es utilizar Gloval
Average Pooling (GAP). En lugar de aplanar, promedia cada canal del mapa de caracteŕısti-
cas (H, W, C), de esta forma reduce las dimensiones espaciales (H,W) a un único valor, lo
que resulta en un vector de tamaño C, considerablemente más pequeño que en el aplanado;
asimismo, reduce el número de parámetros, minimiza el sobreajuste y actúa como regulari-
zador estructural, forzando al modelo a detectar qué hay en la imagen, más que dónde está
[18].
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3.4. Sobreajuste

El sobreajuste es un problema de los modelos de Aprendizaje Automático, este se produce
cuando los modelos se ajustan demasiado bien a los datos de entrenamiento, hasta el punto
de aprendérselos y memorizar el ruido; es decir, información irrelevante, lo que impide que
generalicen a nuevas muestras no conocidas [19]. Esto puede suceder por múltiples factores:

Un modelo con demasiada complejidad.

Un conjunto de datos demasiado pequeño.

Entrenamientos demasiado prolongados en el tiempo.

Una combinación de los tres anteriores.

Existen múltiples técnicas para combatir este sobreajuste detalladas a continuación.

Parada Temprana

Esta técnica consiste en detener el entrenamiento del modelo de manera temprana. No
obstante, esto puede provocar que el modelo quede infraajustado y no aprenda correctamente.

Normalización por lotes

La normalización por lotes (Bacth Normalization) es una técnica que, mediante el ajuste
de las entradas de cada capa, centrándolas alrededor de cero y reescalándolas a un tamaño
estándar, tiene el efecto de agilizar y aumentar la estabilidad del entrenamiento de las redes
neuronales[20]. Esto se logra gracias a que:

Ayuda a reducir el desplazamiento de las covariables internas; es decir, los cambios en
las distribuciones de las activaciones de las capas de la red.

Actúa como regularizador al introducir ruido en el entrenamiento.

Mitiga el desvanecimiento y explosión de los gradientes de la red.

Dropout

El dropout es una técnica de regularización que consiste en apagar las conexiones, dándo-
les el valor cero, de algunas de las neuronas de forma aleatoria durante el entrenamiento,
afectando tanto a su cálculo hacia adelante, como a su retropropagación. Esto contribuye
principalmente a combatir el sobreajuste de la red; asimismo, dado que tiene que calcular
menos parámetros, también permite a la misma entrenar más rápido [21].
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A continuación, en la figura 3.7 se puede ver un esquema representativo de la técnica
previamente citada.

Figura 3.7: Ejemplo de aplicación de Dropout a una red.
Fuente: http://jmlr.org/papers/v15/srivastava14a.html

3.4.1. Grad-CAM

El principal problema de las redes neuronales es su escasa interpretabilidad, lo cual se
acentúa según los modelos crecen y se hacen mas profundos. Las decisiones que toma una red
vienen dadas por los pesos de la red. Sin embargo, para los humanos estos números no ofrecen
una explicación comprensible de cómo ha llegado la red a determinadas clasificaciones. Por
ello, a menudo se suele decir que las redes neuronales son cajas negras, ya que producen una
salida a partir de una entrada, pero nos es demasiado dif́ıcil interpretar el razonamiento que
condujo a esa salida[22].

No obstante, las CNN tienen una ventaja, ya que es posible visualizar las activaciones de
sus capas convolucionales, y esto nos dará una idea de a qué partes de la imagen está pres-
tando mas atención la red, como en la imagen 3.8. Para ello existen múltiples técnicas, entre
las que cabe destacar Grad-CAM (Gradient-weighted Class Activation Mapping), utilizada
en este proyecto.

Figura 3.8: Ejemplo de Grad-CAM aplicado a una red neuronal convolucional de clasificación
de animales.

Fuente: https://dlhr.de/assets/8-0.jpg
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La técnica de aplicación de activación de clase ponderada por gradiente (Grad-CAM),
genera un mapa de calor de los gradientes de las activaciones de las neuronas de una capa
convolucional, normalmente la última, para una clase objetivo (por ejemplo, “enfermo”). Tal
y como se puede ver en la imagen 3.9, los gradientes indican en qué dirección van a cambiar
los pesos de una red respecto a la salida que ha producido, indicándonos si contribuyen
positiva o negativamente; a pesar de que, normalmente, solo se utilizan las contribuciones
positivas [23]. De esta manera, proporciona una herramienta visual que mejora notablemente
la interpretabilidad.

Figura 3.9: Esquema del procesamiento seguido por de Grad-CAM
Fuente: https://www.frontiersin.org/files/Articles/583427/
frai-03-583427-HTML-r1/image_m/frai-03-583427-g004.jpg
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Caṕıtulo 4

Conjunto de datos

En este caṕıtulo se describe el conjunto de datos utilizado para entrenar y evaluar el
modelo. Se detallan las transformaciones aplicadas durante el preprocesamiento y la división
en los subconjuntos de entrenamiento y test.

4.1. Descripción de los datos

El conjunto de datos está formado por archivos de imágenes JPG de ecograf́ıas de dife-
rentes órganos de la región abdominal, principalmente h́ıgados. Estas imágenes proceden de
dos fuentes de datos distintas, con lo cual siguen dos procesamientos ligeramente diferentes.

Estas ecograf́ıas han sido obtenidas con un ecógrafo Cannon Aplio i700, imagen incluida
en el anexo C.1, este produce unas imágenes con resolución de 1280x960 ṕıxeles, en formato
JPG y con una interfaz como la que se muestra en la imagen 1.2.

4.1.1. Origen

Hospital Universitario Rı́o Hortega

La primera fuente de imágenes ha sido proporcionada por el Hospital Universitario Rio
Hortega (HURH), recogidas de forma manual del ecógrafo previamente mencionado. En total,
se han recogido 12156 imágenes, inicialmente sin etiquetar ni filtrar, que posteriormente han
sido categorizadas por un radiólogo.

La recogida y etiquetado de esta imágenes no se realizó en una sola sesión, sino que se
llevó a cabo mediante visitas periódicas al hospital. Las categoŕıas creadas por el profesional
fueron las siguientes: bazo, cálculos y pólipos en la veśıcula, páncreas, riñón, h́ıgados sanos,
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h́ıgados con esteatosis, h́ıgados con cirrosis, h́ıgados con hepatocarcinoma y lesiones hepáticas
benignas.

OneDrive

La segunda fuente de imágenes procede de un repositorio de OneDrive compartido por
los médicos con los que se ha colaborado, este contiene una selección de 954 imágenes de
h́ıgados divididas en tres categoŕıas. Esta distribución se puede ver en la tabla 4.1.

Categoŕıas Imágenes Proporción
Hı́gados sano 274 28.72 %
Hı́gados con cirrosis 476 49.90 %
Hı́gados con hepatocarcinoma 204 21.38 %
Total: 954 100 %

Cuadro 4.1: Distribución del conjunto de imágenes pertenecientes al OneDrive.

Estás imágenes han sido extráıdas de su sistema informático y pertenecen a diferentes
hospitales de Castilla y León, detallados en el anexo C.

4.2. Preprocesamiento

Todo el preprocesamiento está gobernado por unos scripts en Python que se encargan
de cada paso descrito. Finalmente, hay un script encargado de controlar toda la tubeŕıa de
procesamiento y lanzar el resto en orden. Esto se hace aśı para tener modularidad y para
poder, en caso de desearlo, lanzarlos por separado o sólo hasta solo cierto punto; de esta
manera se pueden llevar a cabo más pruebas, subcategoŕıas o un refinamiento más espećıfico
de las imágenes.

Desde el inicio del proceso, antes de clasificar las imágenes manualmente, y durante
todos los pasos, se han ido construyendo archivos CSV con la información original de las
imágenes como: nombres, rutas de procedencia y finales, categoŕıa a la que pertenecen y
método ecográfico utilizado. De este modo, a la hora de cargarlas al modelo, se pueden
seleccionar aquellas que se quieren y realizar diferentes pruebas con ellas.

Esto se realiza, además, para poder trazar los cambios que han ido sufriendo las imágenes y
para, en caso de necesitarlo, relacionar aquellas que originalmente veńıan juntas, pues podŕıa
resultar interesante para comparar zonas diferentes de un mismo h́ıgado, o para unir varias
imágenes de un mismo paciente y utilizarlas como una única. Sin embargo, esto finalmente
no se llevó a cabo.

Por último, estos CSV también son útiles por si se produce algún error en las imágenes
o se pierden, ya que facilitan su identificación sin necesidad de iniciar el procesado completo
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CAPÍTULO 4. CONJUNTO DE DATOS

de ellas y se pueden usar como archivos de anotaciones para cargar los datos y entrenar los
modelos.

4.2.1. Hospital Universitario Rı́o Hortega

Las imágenes se extraen directamente del ecógrafo, que se encarga de anonimizarlas, a un
disco duro externo, siguiendo una estructura de carpetas como la que se muestra en la figura
4.1. Estas carpetas toman como nombre la marca temporal correspondiente al momento
en que se ponen en cola para ser exportadas al disco duro. En su interior, se encuentra
otra carpeta similar que, finalmente, contiene las imágenes; estas, al estar anonimizadas, no
contienen el nombre de los pacientes, pero śı incluyen la marca temporal de cuando fueron
tomadas, junto a un identificador numérico diferente por cada imagen en la carpeta. Por lo
que, aunque fueran separadas, se podŕıan volver a relacionar entre śı.

Figura 4.1: Estructura de carpetas generadas por el ecógrafo.

Esta estructura hace dif́ıcil y tedioso su etiquetado manual. Por lo que, una vez en el
disco duro, se hace un primer preprocesamiento, con un script en BASH, que mueve todas
las imágenes a la carpeta ráız Convert, borra los v́ıdeos, elimina toda la estructura de carpetas
y crea las carpetas de las categoŕıas creadas por el profesional para que el etiquetado suponga
unicamente arrastrar la imagen a la carpeta de la categoŕıa correspondiente o se descarte.

Una vez extráıdas, un radiólogo especializado en el sistema digestivo clasifica las imágenes
en las categoŕıas mencionadas. Asimismo, descarta las que no se ven correctamente, las que
pertenecen a órganos que no tienen interés, tienen menús del ecógrafo o; que por cualquier
otra caracteŕıstica o defecto, sean consideradas no aptas por el profesional.

Durante este proceso, se realizó un primer análisis exploratorio de las imágenes y se
descubrió que, aunque la primera muestra data del 24/08/2024, no hay imágenes de forma
consistente hasta el 29/01/2025, pues el ecógrafo no las almacenaba correctamente. Por
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ello, se partió de menos imágenes de la esperadas, esto obligó a realizar distintas visitas
adicionales al hospital a lo largo del tiempo y motivó a la búsqueda de otras fuentes de datos
complementarias.

Una vez completado el proceso de etiquetado y recolección, se realizó un análisis de las
imágenes para conocer la cantidad definitiva en cada categoŕıa. Más adelante, en la tabla 4.2,
se presenta ya distribuido el resultado final tras todas las visitas al hospital. De las 12156
imágenes extráıdas originalmente, se conservaron 5314, es decir, el 43.72 %, lo cual nos deja
con no demasiadas imágenes.

Durante este análisis, también se observó que algunas de las imágenes presentan colores
sobre la zona de la ecograf́ıa, debido a la técnica Dópler. Esto se tratará más adelante en la
sección de preprocesamiento común.

Categoŕıa Imágenes Proporción
Bazo 330 6.21 %
Cálculos y pólipos en la veśıcula 191 3.59 %
Páncreas 314 5.91 %
Riñón 356 6.7 %
Hı́gados sanos 2600 48.93 %
Hı́gados con esteatosis 684 12.87 %
Hı́gados con cirrosis 540 10.16 %
Hı́gados con hepatocarcinoma 20 0.38 %
Lesiones hepáticas benignas 279 5.25 %
Total 5314 100 %

Cuadro 4.2: Distribución del conjunto de imágenes del HURH tras su etiquetado.

4.2.2. OneDrive

Las imágenes del OneDrive compartido por el equipo médico también se encontraban
anonimizadas. Cada una cuenta con un número identificador aleatorio por paciente, seguido
de un guion y un subidentificador por cada ecograf́ıa del paciente. Tal que el formato seŕıa:
‘295166-1’ junto a la extensión del archivo.

Estos archivos se encuentran divididos en tres carpetas, cada una correspondiente a las
categoŕıas previamente descritas, y Éstas, a su vez, organizadas en subcarpetas corrrespon-
dientes a cada subida de imágenes realizada por el profesional. Al agrupar todas las imágenes
de las subcarpetas de una misma categoŕıa, se observa que puede haber imágenes de un mis-
mo paciente, con subidentificadores de ecograf́ıa iguales en distintas subcarpetas, lo cual
produce colisiones en los nombres de los archivos.

Esto puede deberse a dos motivos:

Que sean el mismo archivo duplicado y que haya sido etiquetado varias veces, en oca-
siones distintas, con el mismo identificador.
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Que sean archivos diferentes del mismo paciente, pero al ser subidas por separado
tengan el mismo subindentificador y, por lo tanto, el mismo nombre.

La agrupación de las imágenes se realiza mediante el cálculo del hash, esto permite deter-
minar si son o no iguales a una ya existente en la categoŕıa. En el caso de que el duplicado sea
exacto, una de las dos imágenes se descarta. Si son diferentes, se va aumentando en uno el
subidentificador hasta que no produzca choques. Durante este proceso, también se detectaron
algunas imágenes corruptas, para esta tarea se usó del paquete Pillow de Python, y fueron
descartadas.

Una vez solucionado esto, se abordó el siguiente problema, y es que cada ecógrafo produce
imágenes muy desiguales entre śı, con diferentes resoluciones, interfaces, escalas de grises, tex-
turas de ecograf́ıa, técnicas de ecograf́ıa, anotaciones sobre la imagen y sectores de ecograf́ıa
dentro de la imagen.

Estas variaciones suponen un problema muy grave para el entrenamiento del modelo, ya
que si las ecograf́ıas recogidas del Aplio poseen muchos menos hepatocarcinomas que otras,
las CNN no aprenderán a centrarse en las caracteŕısticas más relevantes, si no que lo harán
en las diferencias de las imágenes. Además, esto imposibilitaŕıa llevar a cabo la solución que
propuesta para dividir las ecograf́ıas Dópler de las de Modo B.

Tras un análisis, se concluyó que la manera más conveniente de abordar el problema es
categorizar las imágenes en sus diferentes resoluciones, de forma que, una vez separadas,
se pueda elegir las que fueran más similares a las que ya se poséıa. Finalmente se decidió
utilizar solo las imágenes que proced́ıan de ecógrafos Aplio, como las recogidas en el HURH.
Por lo que, de todo el conjunto, únicamente se seleccionaron las imágenes que poséıan una
resolución 1280x960 ṕıxeles.

Tras todo este proceso de filtrado y clasificación, se conservaron 368 imágenes, entre Modo
B y Dópler, lo que representa el 38.57 % de las originales, estas se pueden ver en la tabla 4.3.

Categorias Imagenes Proporción
Hı́gados sanos 243 66.03 %
Hı́gados con cirrosis: 90 24.46 %
Hı́gados con hepatocarcinoma 35 9.51 %
Total 368 100 %

Cuadro 4.3: Distribución del conjunto de imágenes del OneDrive tras su preprocesado.

4.2.3. Preprocesamiento común

Como se ha mencionado anteriormente, las imágenes con técnica Dópler presentan colores
sobre la zona de interés de la ecograf́ıa; ya que no hay manera de evitar esto, y además
provocan diferencias que pueden perjudicar el entrenamiento de los modelos, se decide separar
estas imágenes de las de Modo B.
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Para ello, se utiliza una zona concreta de la imagen: un medidor que normalmente está
en escala de grises si la ecograf́ıa es Modo B, pero que tiene colores si se está usando la
técnica Dópler, véase figura 4.2. Con lo cual, se hace un recorte de la imagen a ese medidor
y se analizan las diferencias entre las medias de los tres canales RGB. Esto no se aplica a la
imagen completa, puesto que al tener muchos más ṕıxeles, las diferencias entre las medias se
diluyen y vaŕıan notablemente entre las imágenes, lo que no permite una división precisa de
ellas.

Figura 4.2: Diferencias entre modo B (izquierda) y Dópler (derecha)

Llegados a este punto, como se puede ver en la tabla 4.4, entre ambas fuentes de datos,
se tienen 5682 imágenes fusionando ambos modos.

Modo Ecograf́ıa Imágenes Proporción
Modo B 4607 81.08 %
Dópler 1075 18.92 %
Total 5682 100 %

Cuadro 4.4: Distribución de los modos de imagen en el conjunto de datos.

Una vez realizada esta parte, y antes de entrenar los modelos con las imágenes, se recortan
al sector de la ecograf́ıa; es decir, la zona de interés. Este paso se realiza por dos razones:

Las imágenes poseen una resolución considerablemente grande, en términos de entrenar
modelos. Esto incrementa el número de parámetros; y, a su vez, ralentiza el entrena-
miento y aumenta el uso de memoria, lo que dificulta entrenar modelos mas complejos.

Existe mucha información de la interfaz que no aporta información relevante o que
incluso puede perjudicar para el aprendizaje del modelo.
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Figura 4.3: Ejemplo de ecograf́ıa recortada.

A la hora de realizar el recorte de las imágenes se presenta una dificultad: dependiendo
de los ajustes del ecógrafo en el momento de tomar la ecograf́ıa, la zona de la ecograf́ıa no
es igual para todas las muestras, produciendo sectores ecográficos que vaŕıan en tamaño y
en desplazamiento. Por ello, no hay una única medida de recorte que se adecúe a todas las
ecograf́ıas.

Primero, se opta por buscar el mı́nimo cuadrado que contenga a la mayoŕıa de sector de
las ecograf́ıas. Ya que, ser agresivos con el recorte no es una opción idónea debido a que nada
asegura que la información cĺınica relevante de la ecograf́ıa este centrada.

Por ello, se concluyó que la mejor opción era hacer una distribución de la posición y el
tamaño de cada recuadro. Estos datos no siguen una distribución normal, por lo que usar la
media y la desviación para captar la mayoŕıa de ellos no es la mejor opción. En su lugar, se
opta por usar los cuartiles 10 y 90 para las cotas inferior y superior respectivamente.

Esto produce imágenes con un tamaño de 1004x661 ṕıxeles, como se muestra en la figura
4.3. Este recorte se produce en el momento de cargar los datos al modelo, de manera que las
imágenes se conservan intactas hasta entonces, lo cual permite realizar múltiples pruebas.

Los resultados de este primer intento no fueron favorables y, tras aplicar Grad-Cam, se
detectó que el modelo estaba trampeando los resultados, fijándose en anotaciones que se
cuelan al recorte, véase figura 4.4. En principio las anotaciones pueden parecer inocuas; sin
embargo, son más habituales en las ecograf́ıas en las que hay una dolencia, por lo que son
contraproducentes a la hora de que el modelo aprenda, ya que tiende a prestar atención en
la presencia o ausencia de ellas en vez de en la zona de interés de la ecograf́ıa.

Por este motivo, es necesario eliminar algunas anotaciones visibles en las imágenes, pro-
ducidas por la interfaz del ecógrafo a la hora de realizarlas. Se pueden identificar dos tipos
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de anotaciones:

Las mediciones, que generan uno varios marcos en la parte inferior izquierda de la
ecograf́ıa y unos puntos dentro de la zona de interés. Estos marcos, que también pueden
variar de posición y tamaño, pueden intentar ocultarse. Sin embargo, respecto a los
puntos no se ha encontrado solución, ya que taparlos también revelaŕıa su presencia.

Esquemas anatómicos, usados para identificar la zona que es representada, y que apa-
recen con mas frecuencia en las imágenes que muestran patoloǵıas.

Descartar estas imágenes no parece la mejor opción, pues se cuenta con un número li-
mitado de muestras. Por ello, se opta por eliminar las anotaciones cuando sea posible, y
finalmente, se consiguió ocultar un gran número de etiquetas.

Figura 4.4: Recorte de las anotaciones de las ecograf́ıas.

En ambos casos se utiliza OpenCV para encontrar contornos en las zonas donde poten-
cialmente puede haberlos, y cubrirlos con el color de fondo de la ecograf́ıa. Sin embargo,
realizar todo este proceso para las diferentes ecograf́ıas del OneDrive hubiese sido complejo
y hubiera requerido mucho tiempo, lo cual excede completamente del alcance del proyecto.

4.2.4. Transformaciones a los datos

Hasta este punto se ha descrito el preprocesamiento que se realiza a las imágenes an-
tes de entrenar los modelos con ellas. A la hora de hacerlo, se ha creado una tubeŕıa de
transformaciones que permite:

Pasar las imágenes a escala de grises o dejarlas en RGB.

Recortar las imágenes a los tamaños descritos, asegurando que se conserva la región de
interés.

Espejar horizontalmente un porcentaje de las imágenes de entrenamiento de forma
aleatoria (normalmente el 50 %) con el objetivo de aumentar la variabilidad de los
datos.
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Reducir el tamaño de las imágenes, normalmente a la mitad, resultando en una resolu-
ción de 502x331 ṕıxeles, o distintas variaciones dependiendo del modelo que se quiera
entrenar.

Normalizar las imágenes, tanto si están en RGB o escala de grises, de alguna de las
siguientes formas:

• Aplicando los valores de media y desviación estándar que se deseen.

• Calculando la media y la desviación estándar para el conjunto de datos de entre-
namiento deseado.

• Normalizando los valores de los pixeles al rango [-1,1] utilizando media 0.5 y
desviación 0.5.

• Usando los valores de ImageNet [24] ampliamente recomendados. Estos valores se
muestran en la siguiente tabla: 4.5

RGB Escala de grises
Media 0.485, 0.456, 0.406 0.0840

Desviación 0.229, 0.224, 0.225 0.1069

Cuadro 4.5: Valores de normalización de ImageNet.

4.3. División del conjunto de datos

Para entrenar los modelos de clasificación, se divide el conjunto de datos en dos subcon-
juntos: entrenamiento y prueba. Esta división otorga 2/3 de los datos para el entrenamiento y
1/3 para el conjunto de pruebas, esto permite disponer de numerosos ejemplos para entrenar
al modelo asegurando que los resultados sean válidos.

Una parte importante a la hora de realizar esta distribución es tener en cuenta que las
clases no están equilibradas; es decir, en las muestras predominan los h́ıgados sanos frente
a otros, especialmente los hepatocarcinomas. Por ello, se tiene en cuenta la distribución
inicial de clases del conjunto y se mantiene esa proporción en ambos subconjuntos; de esta
manera, se asegura que tanto el conjunto de entrenamiento como el de prueba sigan siendo
representativo y que no favorezca a una clase por encima de otra durante el entrenamiento
y la evaluación.

De esta división se encarga una clase creada LiverImg, que forma parte de la estructu-
ra de carga de datos y que se desarrollará más adelante. Esta clase se vale de la función
train test split del paquete scikit-learn a la hora de realizar las divisiones.
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Caṕıtulo 5

Diseño y construcción del
sistema

En este caṕıtulo se describe cómo se ha desarrollado el sistema de clasificación de eco-
graf́ıas: desde el entorno de trabajo del proyecto y la carga de datos, pasando por el diseño
de la red hasta el uso de modelos preentrenados y el entrenamiento.

5.1. Entorno de trabajo

Para el desarrollo y entrenamiento de los modelos se han utilizado las siguientes herra-
mientas:

Sistema Operativo: Ubuntu 24.04.2 LTS.

GPU: GeForce GTX 1060 3GB VRAM. La que se dispońıa en el momento de realiza-
ción del trabajo.

Lenguaje de programación: Python 3.12.3.

Libreŕıa de aprendizaje profundo: Pytorch 2.6.0, seleccionado por su sencillez,
grado de precisión y personalización a la hora de crear los modelos, frente a otros como
Keras o Tensorflow.

Monitorización de entrenamiento: Tensorboard, para la visualización de métricas
y gráficos en tiempo real.

Optimización de parámetros: Optuna, para la exploración y búsqueda de los hi-
perparámetros más eficientes.
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5.2. Carga de datos

El código para procesar y cargar las muestras de datos puede resultar confuso y dif́ıcil
de mantener. Lo ideal es que el código de nuestro conjunto de datos sea independiente
del modelo; de esta manera aseguramos una mejor legibilidad, modularidad y reutilización.
PyTorch ofrece dos primitivas de datos para ayudar con esta tarea: torch.utils.data.Dataset
y torch.utils.data.DataLoader, que permiten tanto el uso de conjuntos de datos propios como
conjuntos de datos precargados.

Dataset se encarga de gestionar las muestras y sus etiquetas correspondientes; aśı como
de las caracteŕısticas y etiquetas de nuestro conjunto de datos, devolviendo una muestra cada
vez. Al entrenar un modelo, se busca pasar muestras en pequeños lotes para acelerar la carga
de datos y reducir el sobreajuste del modelo. Esta es la tarea de DataLoader que se encarga
de envolver un iterable alrededor de Dataset que abstrae esta complejidad para facilitar el
acceso a las muestras[25].

5.3. Dataset LiverImg

Ya que se dispone de ecograf́ıas de múltiples órganos de la región abdominal, se ha desarro-
llado un conjunto de datos con tres modos de funcionamiento (ORGAN CLASSIFICATION
HEALTHY LIVERS y CIRRHOTIC STATE ), en los que se profundizará más adelante.

Para este proyecto se ha creado una clase llamada LiverImg que hereda de torchvi-
sion.dataset.Dataset, que puede ser usada con DataLoaders, y que se usa para entrenar los
modelos. Esta clase encapsula toda la lógica correspondiente a la carga de datos y se encarga
de:

Carga de imágenes según el modo de funcionamiento.

Búsqueda del ultimo CSV de anotaciones disponible (o uno en espećıfico).

Carga del conjunto de datos completo, de entrenamiento o de prueba.

Selección de las imágenes correctas correspondientes al conjunto y al modo de funcio-
namiento deseados.

Filtrado según las especificaciones de las ecograf́ıas (Modo B o Dópler).

Aplicación de transformaciones a las imágenes y sus correspondientes etiquetas.

La lista de modos disponibles que se detallan a continuación está modelizada por la clase
DatasetMode.
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ORGAN CLASSIFICATION

El modo ORGAN CLASSIFICATION tiene como propósito englobar todo el conjunto
de imágenes disponibles agrupadas en cinco clases diferentes:

Hı́gado (sanos, con cirrosis, con hepatocarcinoma, con esteatosis y lesiones benignas).

Riñón.

Bazo.

Páncreas.

Veśıcula.

La intención de este modo es poder entrenar modelos que diferencien entre diferentes
órganos, lo cual, aunque no alcanza una gran relevancia cĺınica, es útil para aprendizaje
sobre el desarrollo de modelos de aprendizaje automático.

HEALTHY LIVERS

Dado que el proyecto está centrado en h́ıgados, se ha implementado también el modo
HEALTHY LIVERS, que carga únicamente imágenes hepáticas. Esta modalidad surge como
respuesta a la insuficiencia de muestras de hepatocarcinomas, lo cual perjudica una división
más detallada; por ello, el objetivo de este modo es establecer una clasificación binaria entre
h́ıgados. Agrupándolos, según su diagnóstico, en:

Hı́gado sano.

Hı́gado enfermo, que engloba: h́ıgado con cirrosis, h́ıgado con hepatocarcinoma, h́ıgado
con esteatosis y lesiones hepáticas benignas.

La decisión de introducir las lesiones hepáticas benignas dentro de la categoŕıa “enfermo”
viene justificada por que, aunque no se consideren malignas, siguen siendo, principalmen-
te, tumores, y aunque no supongan un riesgo debeŕıan ser detectados. Asimismo, colocarlos
dentro de la categoŕıa “sano” podŕıa hacer que, al asemejarse a un hepatocarcinoma, aumen-
taran las probabilidades de que este se clasificase, eqúıvocamente, como sano y es preferible
clasificar como “enfermo” una lesión benigna, que dejar pasar un cáncer.

CIRRHOTIC STATE

Finalmente, dado que el objetivo del proyecto es la detección de cirrosis y hepatocarci-
nomas, se creó el modo CIRRHOTIC STATE, englobando las categoŕıas de:
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Hı́gado sano.

Hı́gado con cirrosis.

Hı́gado con hepatocarcinoma.

Puesto que la finalidad perseguida por este proyecto es diferenciar entre estos tres casos,
el resto de categoŕıas de h́ıgado no han sido incluidas.

5.4. Creación de modelos

Para la realización de este trabajo se han desarrollado dos clases diferentes que se encargan
de la creación, entrenamiento, validación, guardado y carga de sus respectivos modelos de
IA. Estas clases son: CustomCNN, una red neuronal personalizable, y PretrainedModels, que
engloba múltiples modelos preentrenados.

5.4.1. CustomCNN

El objetivo, al desarrollar este modelo de red convolucional, es diseñar una arquitectura
adaptable que facilite la experimentación y se ajuste adecuadamente a los requerimientos
de la tarea de clasificación. Por ello, se ha implementado una red neuronal convolucional,
CustomCNN, heredando de la clase torch.nn.Module de Pytorch, diseñada para ser modular,
configurable y compatible tanto con clasificación binaria como multiclase.

Inicialización

La clase CustomCNN permite en sus parámetros de entrada una configuración flexible
de:

El tamaño de la entrada.

El número de capas convolucionales junto a sus correspondientes parámetros: canales,
tamaños de filtro, paso y rellenado.

Capas de pooling con sus respectivos parámetros de filtro, paso y rellenado.

Capas, opcionales, de Batch Normalization.

Una capa, opcional, de GAP entre las capas convolucionales y lineales, si no, se usa un
aplanado normal.

Número configurable de capas lineales completamente conectadas, con sus respectivos
tamaños.
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Número de capas, configurables de Dropout.

Para lograr este objetivo, se tomó la decisión de implementar dos funciones privadas, que
son llamadas en el constructor de la clase. Estas son:

make conv(), responsable de la construcción de los bloques convolucionales. Cada uno
de ellos se compone de una capa convolucional 2D, opcionalmente seguida de una capa
de Batch Normalization, una activación ReLU y una capa de MaxPooling.

make fcl(), encargada de construir los bloques lineales completamente conectados. Ca-
da uno de ellos se compone de una capa lineal, seguida opcionalmente por una capa de
Dropout, excepto en la última capa antes de la salida, donde no se aplica para evitar
posibles efectos negativos en el rendimiento de la clasificación.

Los bloques convolucionales y los bloques lineales se añaden por separado en listas, que
se encapsulan mediante nn.Sequential. Esta arquitectura modular permite que PyTorch ges-
tione automáticamente la conexión secuencial entre los bloques, reduciendo la complejidad y
simplificando la implementación de la función forward(), encargada de la propagación hacia
adelante.

Entrenamiento

La función fit() se implementó con el objetivo de que se responsabilizara de toda la lógica
del entrenamiento el modelo, incluyendo parada temprana ante la falta de mejora, validación
opcional del modelo, registro opcional en TensorBoard y callback para Optuna.

Esta función acepta como entradas los DataLoaders de entrenamiento y validación, una
función de pérdida, un optimizador, un scheduler (ajustador automático de la tasa de apren-
dizaje) e hiperparametros como max epochs, patience y batch size. Para esto se vale de un
bucle de entrenamiento donde se llama a train loop y, finalmente, devuelve tres listas con los
valores de:

La pérdida sobre el conjunto de entrenamiento.

La pérdida sobre el conjunto de validación

La exactitud sobre el conjunto de validación.

Época de entrenamiento

Para encapsular el código a una época completa del bucle de entrenamiento, se ha imple-
mentado la función train loop. Esta se encarga de:

El env́ıo de datos al dispositivo de computo correspondiente (CPU o GPU).
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Realizar la propagación hacia adelante del modelo.

Calcular el valor de la función de pérdida.

Propagar el error hacia atrás y actualizar los pesos mediante el optimizador.

La función acepta como argumentos un DataLoader, la función de pérdida y el optimiza-
dor, y devuelve el valor promedio de la pérdida obtenida durante la epoca.

Evaluación

Para evaluar el rendimiento del modelo se ha implementado la función evaluation loop,
que activa el modo evaluación del modelo. Esto fuerza que las capas Dropout y Batch Nor-
malization se comporten de forma determinista.

A continuación, se inicializan las métricas necesarias para la evaluación y, con el cálculo
de gradientes desactivado, se realizan los cálculos de correspondientes. La función contempla
tanto el caso de clasificación binaria como multiclase, ajustando las métricas según corres-
ponda. Al finalizar, devuelve un diccionario con las métricas ya calculadas.

Puntos de guardado

Con el fin de permitir la interrupción y reanudación del entrenamiento, se han desarrollado
puntos de guardado en archivos pth (una extensión de archivos de Pytorch). Cada modelo
se guarda en una ruta espećıfica que refleja tanto el modo de uso del conjunto de datos
(DatasetMode) de LiverImg como la arquitectura de capas utilizada.

Para gestionar los puntos de guardado, se han implementado dos funciones:

save checkpoint que guarda en un archivo pth los hiperparámetros, la arquitectura del
modelo, los pesos, el optimizador y su estado, el scheduler y su estado, la pérdida y las
épocas entrenadas. En caso de que existiera un archivo de guardado del mismo modelo
con peores resultados, este es eliminado y sustituido por el nuevo.

save checkpoint se encarga de cargar únicamente los pesos del modelo. Se usa principal-
mente para recuperar la mejor versión del modelo (que no necesariamente corresponde
con la última época) para su posterior evaluación.

Carga de modelos

Para realizar la carga completa de modelos, incluyendo toda la información guardada con
save checkpoint, se ha implementado el método de clase load model, que se encarga de leer
los datos del archivo de guardado y, a partir de ellos:
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Inicializar una instancia del modelo y cargar sus pesos.

Inicializar el optimizador con el que se entrenó y cargar su estado.

Inicializar el scheduler y recuperar su estado correspondiente.

Finalmente, devuelve estos componentes junto a toda la información necesaria para continuar
con el entrenamiento: el número de época, el valor de la pérdida, aśı como los parámetros
relacionados con la carga, las transformaciones y el modo de los datos utilizados.

Registro

Con el objetivo de facilitar la depuración de los modelos, analizar su evolución y trazar
el proceso de entrenamiento, se ha implementado un sistema de registro. En cada época, el
método report csv, registra la arquitectura del modelo, las métricas y los hiperparámetros
relevantes en un archivo CSV, generando una fila por época.

Adicionalmente, se integra el uso de TensorBoard, lo que permite visualizar en tiempo real
la evolución de las métricas y facilita el análisis comparativo entre distintas configuraciones
de entrenamiento.

5.4.2. PretrainedModel

La clase PetrainedModel proporciona un envoltorio para un acceso unificado del entrena-
miento y evaluación con modelos preentrenados. Esta ha sido desarrollada para facilitar la
comparación con y entre este tipo de modelos.

Los modelos, listados en la tabla 5.1, se han utilizado con sus pesos por defecto; y,
posteriormente, se han continuado entrenando con nuestras imágenes. La elección de estos
modelos y no otros reside en las diferencias de sus distintas arquitecturas CNN y ViT, y en
que son los que mejor encajaban con la capacidad de cómputo disponible.

Modelo Número de parámetros GFLOPS
ConvNeXt Tiny 28.6M 4.46
Densenet-121 8.0M 2.83
ResNet-18 11.7M 1.81
EfficientNet B0 5.3M 0.39
ViT B 16 86.6M 17.56

Cuadro 5.1: Número de parámetros, en millones, y coste computacional de los modelos preen-
trenados utilizados, en Giga-FLOPS.

Ademas, PetrainedModel se encarga de adaptar el número de clases según el modo del
conjunto de datos utilizado, definido en DatasetMode. Para ello modifica la capa de salida
del modelo seleccionado, asegurando su compatibilidad con la tarea de clasificación corres-
pondiente
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Inicialización

Para instanciar un objeto de esta clase basta con indicar tres parámetros:

El nombre del modelo deseado de la lista de modelos disponibles en ModelNames.

El modo de conjunto de datos deseado de la lista de modos definida en DatasetMode.

De manera opcional, descargar los pesos preentrenados por defecto, lo cual se puede
omitir si posteriormente se va a cargar una versión de ese modelo desde un archivo.

Esto simplifica la creación de modelos ya que:

Evita la definición manual del número de capas.

Abstrae de la carga de pesos o modelos.

Centraliza la inicialización de múltiples arquitecturas en una única interfaz.

Gestiona la ruta de guardado y carga del modelo según su configuración, facilitando la
trazabilidad y reproducibilidad.

Transformaciones

Otra de las funciones que realiza esta clase es la adaptación de la tubeŕıa de transforma-
ciones (que incluye el recorte de imágenes, la normalización y la conversión a tensor) según
el modelo seleccionado, dado que no todos los modelos aceptan cualquier tamaño de entrada.

En el caso de ViT, solo acepta entradas de tamaño 224x224 ṕıxeles y; para el resto, utiliza
el tamaño de las ecograf́ıas recortadas y reducidas aproximadamente 4.5 veces.

Entrenamiento

Al igual que con CustomCNN, se ha implementado un método fit encargado de gestionar
todo el proceso de entrenamiento de la red. Esto incluye validación, parada temprana y
guardado automático del modelo con mejor puntuación. No se desarrolla en detalle en el
proyecto puesto que su implementación presenta muchas similitudes con la de CustomCNN

Época de entrenamiento

Durante el entrenamiento, fit utiliza train loop, que ejecuta la propagación hacia ade-
lante, el cálculo de la pérdida, la retropropagación y la actualización de pesos para cada
lote de imágenes en cada época. Dado que esta implementación también es muy similar a
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la de CustomCNN, se destacarán exclusivamente las mejoras espećıficas para el uso de mo-
delos con altas exigencias computacionales y de memoria. Para lo cual se ha integrado el
uso detorch.amp, que realiza el entrenamiento con precisión mixta y ayuda a reducir sig-
nificativamente el consumo de memoria y acelera los cálculos sin sacrificar la precisión del
modelo.

Además, se añade una gestión manual de memoria, liberándola mediante llamadas a
gc.collect() y torch.cuda.empty cache().

Evaluación

Se implementa una función que, a partir de un DataLoader, permite la evaluación del
modelo elegido calculando las métricas de pérdida, exactitud, F1 y AUROC. Permite, además,
guardar el modelo si se desea.

Carga y guardado de modelos

Se implementa el método save, que se encarga de guardar los pesos del modelo junto a
sus transformaciones. Asimismo, se implementa el método load, que restaura los pesos y las
transformaciones del modelo, a partir de un archivo pth.

De la misma manera que con CustomCNN, las rutas se generan a partir del modo de
funcionamiento y la arquitectura del modelo.

Carga de Datos

Se crea la función get dataloaders que se encarga de generar los DataLoaders para el
entrenamiento y la validación. Esta función recibe una clase, como LiverImg y aplica las
transformaciones necesarias según el modelo correspondiente.

Acceso a Capas Intermedias y Grad-CAM

Se define la propiedad get last conv layer que proporciona acceso transparente a la última
capa convolucional del modelo, facilitando la aplicación de la técnica Grad-CAM. Esta fun-
cionalidad está disponible para todas las arquitecturas basadas en CNN; sin embargo, no se
implementa para el modelo ViT debido a su arquitectura no convolucional, lo cual dificulta
este proceso.
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5.4. CREACIÓN DE MODELOS

42
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Caṕıtulo 6

Evaluación y resultados

En este caṕıtulo se recogen y analizan los resultados obtenidos durante la fase de evalua-
ción del proyecto. Los resultados se organizan en función de las tres tareas de clasificación
planteadas, abordando tanto el comportamiento sobre el conjunto de entrenamiento como su
capacidad de generalización sobre el conjunto de prueba.

6.1. Evaluación

El proceso de evaluación permite comprobar si los modelos han aprendido patrones co-
rrectamente y si son capaces de generalizar a datos nunca vistos. Para ello, se detallan las
técnicas utilizadas y se comparan los resultados.

6.1.1. Métricas

La evaluación de los modelos entrenados se ha llevado a cabo mediante el uso de diferentes
métricas estándar en problemas de clasificación como la exactitud, precisión, sensibilidad,
especificidad y la puntuación F1. A continuación, se definen distintos términos de los que se
ha hecho uso:

TP: Verdaderos positivos.

TN: Verdaderos negativos.

FP: Falsos positivos.

FN: Falsos negativos.

P: Número de muestras positivas en el conjunto. P = TP + FN .
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N: Número de muestras negativas en el conjunto. N = FP + TN .

Las métricas utilizadas han sido:

Exactitud

La exactitud aporta una idea general de la cantidad de aciertos de un modelo; no obstante,
puede resultar engañosa para conjuntos de datos con clases desbalanceadas. Se calcula como
la proporción de las muestras clasificadas correctamente frente al total [26].

Exactitud =
TP + TN

P +N

Para conjuntos con varias clases desbalanceadas es conveniente utilizar la Macro Exac-
titud, que calcula la exactitud por cada clase de manera independiente; de esta manera se
otorga la misma importancia a cada clase a pesar de contar con menos muestras. Una equi-
vocación o acierto en una clase minoritaria tendrá el mismo peso que en una mayoritaria
[27]. Su cálculo se lleva a cabo mediante la siguiente fórmula:

Exactitudmacro =
1

C

C∑
i=1

Ti

Ni

donde:

C: Número de clases.

Ti: Número de predicciones correctas para cada clase i.

Ni: Número de muestras totales para la clase i.

Esto asegura que en casos como el de este proyecto, donde la clase Hepatocarcinoma es
minoritaria, esta reciba la misma atención que aquellas con un elevado número de muestras.
Además, resulta de gran utilidad dada la relevancia de conocer la capacidad de nuestros
modelos para clasificar la clase Hepatocarcinoma.

Precisión

La precisión (o valor predictivo positivo) indica la cantidad de los positivos predichos que
son verdaderamente positivos y refleja cuán exactas y fiables son las predicciones positivas
de nuestro modelo. Su cálculo se expresa mediante la siguiente fórmula:
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Precision =
TP

TP + FP

Una alta precisión se traducirá en que se produzcan menos falsos positivos [28]. No obs-
tante, en nuestro caso esto no posee especial relevancia, ya que la ecograf́ıa no deja de ser
una prueba de cribado. Por ello, no es de gravedad predecir que un paciente pueda tener un
problema, ya que se descartará más adelante.

Sensibilidad

La sensibilidad (o tasa de verdaderos positivos) indica la cantidad de positivos reales que
el modelo es capaz de detectar. Su cálculo se lleva a cabo mediante la siguiente fórmula:

Sensibilidad =
TP

TP + FN

Una alta sensibilidad implica la presencia de menos falsos negativos [28]. Esto es esencial
en nuestro caso, ya que catalogar como sano a un paciente enfermo puede presentar un alto
riesgo para su salud.

Especificidad

La especificidad (o tasa de verdaderos negativos) indica la proporción de negativos reales
que nuestro modelo es capaz de detectar correctamente; esto resulta crucial para prevenir
falsas alarmas innecesarias. Se calcula como:

Especificidad =
TN

TN + FP

En nuestro caso, a pesar de la importancia que posee, resulta menos relevante que la
sensibilidad, ya que la presencia de demasiados falsos positivos podŕıa llevar a la realización
de otras pruebas de forma necesaria y generar malestar en los pacientes.

Puntuación F1

La puntuación F representa la media armónica entre la precisión y la sensibilidad, de
manera que permite representar ambas en una sola métrica. Su cálculo se realiza mediante
la siguiente fórmula:

F1 = 2 × Precision × Especificidad

Precision + Especificidad
=

2 TP

2 TP + FP + FN
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6.1.2. Comparativa de modelos

En esta sección se realiza una comparación de los resultados de los modelos entrenados.
Se comparan las mejores versiones encontradas para cada modelo.

Primero mostraremos las métricas del conjunto de entrenamiento para comprobar si los
modelos han conseguido aprender sobre los datos. Después, se presentan los resultados sobre
el conjunto de prueba, donde se puede ver cuánto consiguen generalizar los modelos ante
nuevas muestras.

Categorización CIRRHOTIC STATE

El objetivo principal del proyecto es la detección del hepatocarcinoma, por lo que primero
nos centraremos en estos resultados. En esta categoŕıa tenemos tres clases.

EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud macro 33.13 % 83.98 % 41.89 % 33.01 % 33.33 % 39.78 %
Exactitud 69.43 % 92.53 % 50.8 % 25.82 % 71.6 % 73.41 %
Precision 31.59 % 92.89 % 40.24 % 18.85 % 23.87 % 70.20 %
Sensibilidad 33.13 % 83.98 % 41.89 % 33.01 % 33.33 % 39.78 %
Especificidad 66.45 % 91.87 % 74.99 % 66.18 % 66.67 % 70.47 %
F1 29.43 % 87.75 % 34.16 % 13.88 % 27.82 % 40.54 %

Cuadro 6.1: Resultados sobre el conjunto de entrenamiento de CIRRHOTIC STATE.

Viendo los resultados de los modelos preentrenados sobre el conjunto de entrenamiento,
Tabla: 6.1, se puede decir que el desequilibrio de clases afecta gravemente al redimiento. La
mayoŕıa de los modelos apenas alcanzan una macro exactitud del 33 %, lo que indica que
tienden a predecir casi exclusivamente una única clase (Hı́gado Sano), haciendo que estas
conclusiones sean esperables. CONV es el modelo que mejores resultados ha obtenido a la
hora de aprender sobre los datos, con una Macro Exactitud del 83.98 % y F1 87.75 % lo que
indica un buen balance entre Sensibilidad, de espacial importancia, y Precisión.

Por su parte, el modelo CustomCNN presenta un desempeño más modesto en entre-
namiento, con una Exactitud Macro del 39.78 % y un F1 del 40.54 %. A pesar de que su
rendimiento está por debajo de CONV, estos valores sugieren que también está siendo capaz
de aprender patrones relevantes para distinguir las tres clases; sin embargo, su efectividad es
menor. Su sensibilidad 39.78 % y precisión 70.20 % indican que posee un mejor control para
evitar falsos positivos, aunque le cuesta mantener un equilibrio en la detección de las clases
minoritarias.
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EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud macro 33.74 % 45.67 % 38.21 % 32.97 % 33.33 % 36.33 %
Exactitud 71.05 % 78.6 % 46.43 % 25.59 % 72.17 % 73.15 %
Precision 34.82 % 62.63 % 37.36 % 8.57 % 24.06 % 43.11 %
Sensibilidad 33.74 % 45.67 % 38.21 % 32.97 % 33.33 % 36.33 %
Especificidad 67.11 % 76.7 % 71.73 % 66.23 % 66.67 % 69.84 %
F1 30.18 % 48.27 % 31.14 % 13.6 % 27.94 % 34.59 %

Cuadro 6.2: Resultados sobre el conjunto de prueba de CIRRHOTIC STATE.

Respecto a los resultados sobre el conjunto de prueba, Tabla: 6.2, se puede observar que,
como es esperable, el rendimiento disminuye. Sigue destacando CONV, habiendo conseguido
generalizar lo aprendido de manera más eficiente, superando el 45 % en exactitud macro y
el 48 % en F1. El resto de modelos preentreandos siguen mostrando resultados cercanos a
predecir aleatoriamente, lo que confirma que no han aprendido a diferenciar adecuadamente
las clases minoritarias (cirrosis y hepatocarcinoma).

En este caso CustomCNN presenta un rendimiento intermedio. No llega alcanzar los
resultados de CONV pero supera al resto de modelos en métricas clave. Demuestra tener
cierta capacidad de generalización y sugiere que, pese a no ser óptimo, tiene potencial para
mejorar con ajustes adicionales en arquitectura o entrenamiento.

Categorización HEALTHY LIVERS

EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud 50.13 % 78.86 % 47.86 % 52.14 % 64.82 % 75.49 %
Precision 48.48 % 72.22 % 47.86 % 0 % 87.06 % 76.61 %
Sensibilidad 67.19 % 90.75 % 100 % 0 % 31.13 % 70.24 %
Especificidad 34.46 % 67.95 % 0 % 100 % 95.75 % 80.31 %
F1 56.32 % 80.43 % 64.74 % 0 % 45.86 % 73.29 %

Cuadro 6.3: Resultados sobre el conjunto de entrenamiento de HEALTHY LIVERS.

Al analizar los resultados de los modelos preentrenados en el conjunto de entrenamiento,
Tabla: 6.3, se observa cómo la mayoŕıa de los clasificadores obtienen malos resultados, estando
cerca de la predicción aleatoria. Destaca, por encima de los demás, CONV que consigue una
F1 de 80.43 %, lo que denota un aprendizaje equilibrado entre sano y enfermo, alcanzando
además una alta sensibilidad 90.75 %, especialmente relevante en un contexto cĺınico.

El modelo CustomCNN, espećıficamente entrenado para esta tarea, obtiene buenos resul-
tados con una Exactitud del 75.49 %, F1 del 73.29 % y una sensibilidad del 70.24 %. Aunque
no alcanza la sensibilidad tan alta de CONV, mantiene un buen balance general, con una
precisión del 76.61 % y una especificidad del 80.31 %, lo que sugiere que es efectivo para evitar
falsos positivos, un aspecto también importante para no sobrediagnosticar a los pacientes.
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Esto indica que CustomCNN logra un aprendizaje equilibrado, con capacidad para distinguir
adecuadamente entre sanos y enfermos.

EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud 47.98 % 72.64 % 47.56 % 52.44 % 60.21 % 70.36 %
Precision 46.59 % 66.39 % 47.56 % 0 % 74.83 % 69.70 %
Sensibilidad 64.05 % 86.06 % 100 % 0 % 24.62 % 66.67 %
Especificidad 33.4 % 60.47 % 0 % 100 % 92.49 % 73.72 %
F1 53.94 % 74.95 % 64.47 % 0 % 37.05 % 68.15 %

Cuadro 6.4: Resultados sobre el conjunto de prueba de HEALTHY LIVERS.

Respecto a los resultados de los modelos preentrenados sobre el conjunto de prueba,
Tabla: 6.4, podemos ver que CONV continúa siendo modelo que mejor se comporta, habien-
do conseguido generalizar parte de lo aprendido en el entrenamiento. El resto de modelos,
EfficientNet, DenseNet, ResNet y ViT, muestran rendimientos muy limitados tanto en entre-
namiento como en prueba, con valores bajos en métricas clave como precisión y sensibilidad,
lo que evidencia su incapacidad para distinguir correctamente las clases en este problema.

Por su parte, CustomCNN también muestra una generalización adecuada, con una Exacti-
tud del 70.36 %, F1 del 68.15 %, y sensibilidad del 66.67 %. Aunque estas métricas disminuyen
respecto al entrenamiento, siguen siendo superiores a la mayoŕıa de los modelos preentrena-
dos restantes, lo que confirma que su arquitectura y entrenamiento personalizado contribuyen
a una capacidad sólida de clasificación binaria.

Categorización ORGAN CLASSIFICATION

EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud macro 20.46 % 79.37 % 20.1 % 20.08 % 38.21 % 91.28 %
Exactitud 73.02 % 92.58 % 73.05 % 72.98 % 78.35 % 95.33 %
Precision 23.2 % 93.39 % 24.61 % 17.48 % 68.25 % 60.52 %
Sensibilidad 20.46 % 79.37 % 20.1 % 20.08 % 38.21 % 80.36 %
Especificidad 80.07 % 95.58 % 80.02 % 80.06 % 85.01 % 95.33 %
F1 17.82 % 83.51 % 17.1 % 17.09 % 39.01 % 86.56 %

Cuadro 6.5: Resultados sobre el conjunto de entrenamiento de ORGAN CLASSIFICATION.

En los resultados de los modelos preentrenados, Tabla: 6.5, se puede ver cómo la mayoŕıa
de modelos consiguen una Exactitud Macro cercana al 20 %; no obstante, su Exactitud normal
es más alta, lo cual indica que tienden a predecir una única clase. CONV es, de nuevo, el
modelo que mejor ha aprendido sobre los datos.

Respecto a nuestro modelo personalizado, CustomCNN obtiene los mejores resultados,
con una Exactitud Macro de 91.28 %, una sensibilidad del 80.36 % y un F1 de 86.56 %. Esto
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indica que, demás de aprender a diferenciar entre las cinco clases, tiene un buen balance de
Precisión y Sensibilidad.

EFFICIENT CONV DENSE RESNET VIT CustomCNN
Exactitud macro 19.96 % 64.34 % 20 % 19.98 % 39.19 % 69.38 %
Exactitud 73.39 % 87.47 % 73.54 % 73.46 % 79.47 % 80.43 %
Precision 14.7 % 88.23 % 14.71 % 14.73 % 69.68 % 62.63 %
Sensibilidad 19.96 % 64.34 % 20 % 19.98 % 39.19 % 69.38 %
Especificidad 79.97 % 92.17 % 80 % 80.06 % 85.32 % 92.51 %
F1 16.93 % 69.08 % 16.95 % 16.95 % 41.32 % 65.60 %

Cuadro 6.6: Resultados sobre el conjunto de prueba de ORGAN CLASSIFICATION.

En cuanto a los resultados obtenidos de los modelos preentrenados sobre el conjunto de
prueba, Tabla: 6.6, CONV continua posicionado como el único modelo que consigue aprender
y generalizar. Los demás mantienen sus malos resultados, siendo incapaces de reconocer más
de una clase.

El modelo personalizado, CustomCNN, sigue mostrando un rendimiento mejor que los
preentrenados, a pesar de que tampoco consiga generalizar eficazmente su conocimiento, lo
cual podŕıa indicar cierto sobreajuste de los datos del entrenamiento.

6.2. Resultados

De los resultados obtenidos se puede concluir que, los modelos preentrenados, a excepción
de CONV, no han logrado aprender e identificar con eficacia las imágenes que ya han visto, y
por lo tanto no generalizan su conocimiento a imágenes desconocidas. Sus resultados son bajos
y cercanos a la probabilidad de elegir aleatoriamente, lo que indica que tienden a predecir
la clase mayoritaria. El modelo CustomCNN creado de cero, no alcanza los resultados de
CONV pero obtiene un rendimiento intermedio, consiguiendo superar al resto de modelos.

Esto puede atribuirse a varios factores:

No haber sabido encontrar modelos con arquitecturas lo suficientemente adecuadas
para esta tarea, ni una configuración óptima de hiperparámetros espećıfica para este
tipo de imágenes.

No haber aplicado las transformaciones apropiadas a los datos respecto al tamaño de
entrada, normalización o canales.

El desequilibrio entre las categoŕıas, predominando las imágenes de h́ıgados sanos por
encima de las patoloǵıas. Especialmente relevante la escasez de muestras de imágenes
de hepatocarcinoma, limitando significativamente el proyecto.
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La variación entre la posición de los órganos y su orientación entre las ecograf́ıas. Esto
sugiere que la ecograf́ıa no es la mejor prueba de imagen para estos modelos, ya que es
un estudio muy dinámico y operador-dependiente, pudiendo la toma de estas imágenes
estar sesgada a la preferencia personal del operador. Podŕıan ser más adecuadas pruebas
que generan imágenes más estáticas como los TAC (Tomograf́ıa Axial Computarizada)
o la RM (Resonancia Magnética), que no tienen estás dependencias, y sobre las cuales
hay muchos más trabajos con aplicación de modelos de visión por ordenador.

Sin que esto haya afectado negativamente a los resultado, una consideración importante
es que la gran mayoŕıa de las ecograf́ıas han sido etiquetadas por un único profesional. Esto
podŕıa haber transferido, de forma no intencionada, sus propios sesgos a los modelos. Lo
ideal hubiera sido contar con varios profesionales para la tarea de anotación, lo que aportaŕıa
más diversidad y objetividad a las clasificaciones.

Finalmente, aunque el conjunto de datos utilizado en este trabajo ha sido ampliado res-
pecto al empleado en el abstract recogido en el anexo D,los resultados y las conclusiones
extráıdas coinciden en gran medida con los alĺı presentados.
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Caṕıtulo 7

Aplicación y despliegue

A pesar de que el objetivo del presente proyecto ha sido desarrollar los modelos, el pre-
procesamiento y la preparación de los datos, se ha considerado necesario el desarrollo de una
aplicación web que integre los modelos de clasificación entrenados, facilitando su uso a los
usuarios sin conocimientos previos. Este caṕıtulo se centra en el proceso de elaboración de
dicha web, aśı como en la fase de despliegue.

7.1. Análisis

7.1.1. Requisitos

Requisitos funcionales

ID Nombre Descripción

RF-01 Elegir modelo
El sistema debe permitir elegir entre múltiples modelos pa-
ra clasificar.

RF-02 Elegir modalidad
El sistema debe permitir elegir entre tres modalidades de
clasificación.

RF-03 Subir imagen
El sistema debe permitir la subida de imágenes para su
clasificación.

RF-04 Clasificar El sistema debe poder clasificar ecograf́ıas.

RF-05 Visualizar decisión
El sistema debe mostrar cómo ha tomado la decisión me-
diante el algoritmo Grad-CAM.

RF-06 Generar informe
El sistema debe permitir generar y descargar un informe
PDF del diagnóstico.

Cuadro 7.1: Tabla de requisitos funcionales.
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Requisitos no funcionales

ID Nombre Descripción

RNF-01 Facilidad de uso
La aplicación debe de poder ser usada por un usuario sin
amplios conocimientos de informática.

RNF-02
Lenguaje de progra-
mación

El sistema debe desarrollarse en Python 3.12.

RNF-03 Imágenes
El sistema debe poder aceptar imágenes en formato PNG,
JPG, JPEG y BMP.

RNF-04 Entorno
El sistema se deberá poder ejecutar en cualquier maquina
que tenga Docker instalado.

RNF-05 Accesibilidad
La aplicación debe de poder ser accedida a través de un
navegador web.

RNF-06 Rapidez
La aplicación debe de poder realizar la clasificación y vi-
sualización en menos de un minuto.

Cuadro 7.2: Tabla de requisitos no funcionales.

Requisitos de información

ID Nombre Descripción

RI-01 Modelos
El sistema debe almacenar los modelos utilizados para cla-
sificar.

Cuadro 7.3: Tabla de requisitos de información.
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7.1.2. Casos de uso

Diagrama de casos de uso

Figura 7.1: Diagrama de casos de uso.
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Descripción de los casos de uso

CU-01 Elegir modelo y modalidad
Actor Usuario.

Descripción
El sistema debe permitir al usuario elegir uno de los posibles modelos
para una de las tres modalidades de clasificación.

Precondiciones
1. Tanto la aplicación como el servidor están funcionando.
2. El usuario ha accedido a la web.

Flujo principal

1. El sistema selecciona automáticamente una modalidad por defecto.
2. El sistema selecciona automáticamente un modelo por defecto.
3. El sistema busca la mejor versión del modelo seleccionado para la
modalidad elegida.
4. El sistema carga el modelo para esa modalidad y se lo indica al
usuario.
5. El usuario puede modificar alguna selección o mantenerlas.

Flujo alternativo

3a. El sistema no encuentra ninguna versión del modelo para esa mo-
dalidad.
3b. El sistema comunica al usuario que el modelo no está disponible
para esa modalidad.
5a. El usuario cambia una de las opciones. Se vuelve al paso 3.

Cuadro 7.4: Descripción del caso de uso CU-01: Elegir modelo y modalidad.

CU-02 Subir imagen
Actor Usuario.

Descripción
El sistema debe permitir al usuario subir imágenes desde su máquina
local.

Precondiciones
1. Se ha ejecutado el CU-01: Elegir modelo y modalidad.
2. Hay un modelo cargado en el sistema.

Flujo principal

1. El usuario sube una imagen al sistema.
2. El sistema comprueba que la imagen está en un formato compatible.
3. El sistema muestra la imagen que se ha subido al usuario.
4. El sistema ejecuta automáticamente el CU-03: Clasificar.

Flujo alternativo
2a. El sistema detecta un formato de archivo no compatible.
2b. El sistema comunica al usuario que el formato no es valido. Se
vuelve al paso 1.

Cuadro 7.5: Descripción del caso de uso CU-02: Subir imagen.
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CU-03 Clasificar
Actor Sistema.

Descripción
El sistema debe clasificar la imagen subida para la modalidad selec-
cionada con el modelo elegido.

Precondiciones
1. Hay una imagen subida al sistema.
2. Hay un modelo seleccionado y cargado.

Flujo principal

1. El sistema procesa la imagen.
2. El sistema pasa la imagen por el modelo.
3. El sistema obtiene una predicción y la muestra.
4. El sistema comprueba que se puede realizar visualización.
5. De ser posible, el sistema invoca el caso de uso CU-04: Visualizar
decisión.

Flujo alternativo
4a. El sistema determina que no se puede realizar la visualización.
4a. El sistema termina el caso de uso sin invocar el CU-04: Visualizar
decisión.

Cuadro 7.6: Descripción del caso de uso CU-03: Clasificar.

CU-04 Visualizar Decisión
Actor Sistema.

Descripción
El sistema procesa la visualización de interpretabilidad sobre la ima-
gen cargada.

Precondiciones

1. Hay una imagen cargada en el sistema.
2. Hay un modelo cargado en el sistema.
3. Se ha obtenido un diagnóstico.
4. El modelo cargado debe de poder visualizar decisión.

Flujo principal

1. El sistema carga los ajustes de visualización por defecto.
2. El sistema procesa la imagen.
3. El sistema genera visualización de interpretabilidad.
4. El sistema le muestra al usuario la visualización generada.
5. El sistema permite al usuario cambiar los ajustes de la visualización.

Flujo alternativo 5a. Si el usuario elige otra opción el sistema vuelve al paso 3.

Cuadro 7.7: Descripción del caso de uso CU-04: Visualizar decisión.
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CU-05 Generar informe
Actor Usuario.

Descripción
El sistema debe permitir al usuario generar un informe con los resul-
tados de la clasificación.

Precondiciones 1. Se ha obtenido un diagnóstico.

Flujo principal

1. El usuario selecciona generar el informe.
2. El sistema añade al informe los resultados de la clasificación.
3. El sistema comprueba que haya una visualización hecha.
4. Si existe, el sistema añade la visualización al informe.
5. El sistema genera el PDF.
5. El sistema descarga el informe.

Flujo alternativo
3a Si sistema no encuentra la visualización, el sistema continua con el
paso 5 sin incluirla.

Cuadro 7.8: Descripción del caso de uso CU-05: Generar Informe.

7.2. Diseño

7.2.1. Patrones de diseño

Patrón Modelo-Vista-Controlador (MVC)

El patrón Modelo-Vista-Controlador (MVC) es una arquitectura de software que separa
una aplicación en tres componentes principales:

Modelo: encargado de la gestión de los datos, la lógica de negocio y el estado de la
aplicación.

Vista: encargada de la presentación y la interfaz con el usuario.

Controlador: encargado de orquestar el flujo entre el modelo y la vista, respondiendo
a las acciones del usuario.

A pesar de que Streamlit no sigue un MVC clásico, ya que mezcla interacción y renderizado
en un mismo flujo, se ha intentado estructurar la aplicación en tres módulos que lo adaptan.

main.py actúa como Controlador, encargándose del flujo general. Hace de intermediario
entre app logic.py y app view.py.

app logic.py actúa como Modelo, manejando la lógica de negocio. Contiene las funcio-
nes para la búsqueda y carga de modelos, el preprocesamiento de las imágenes y la
generación de informes.

app view.py actúa como Vista, definiendo la interfaz visual.
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Aunque esta división no cumple estrictamente con el patrón MVC, śı respeta el principio de
separación de responsabilidades. Esto hace que el código sea modular, escalable y más fácil
de mantener; asimismo, evita mezclar la lógica con la presentación, lo que permite modificar
la interfaz sin afectar la lógica interna.

7.2.2. Arquitectura

7.2.3. Diagrama de clases

Por cuestiones de claridad, el diagrama de clases ha sido divido en dos partes:

LiverImg y sus clases adyacentes. Figura: 7.2.

Los modelos de clasificación y sus clases adyacentes. Figura: 7.3.

Figura 7.2: Diagrama de Clases de LiverImg.
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Figura 7.3: Diagrama de Clases de los modelos de clasificación.

7.2.4. Diagramas de secuencia

En esta sección se presentan los diagramas de secuencia asociados a los casos de uso y se
describe el flujo principal de la aplicación.
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CU-01: Elegir modelo y modalidad

Figura 7.4: Diagrama de secuencia del flujo principal de CU-01.
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CU-02: Subir imagen

Figura 7.5: Diagrama de secuencia del flujo principal de CU-02.
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CU-03: Clasificar

Figura 7.6: Diagrama de secuencia del flujo principal de CU-03.

CU-04: Visualizar decisión

Figura 7.7: Diagrama de secuencia del flujo principal de CU-04.
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CU-05: Generar Informe

Figura 7.8: Diagrama de secuencia del flujo principal de CU-05.

7.3. Implementación

7.3.1. Tecnoloǵıas utilizadas

En el desarrollo de la aplicación web, se ha hecho uso de las siguientes tecnoloǵıas:

Python: elegido por su coherencia con el resto del proyecto,por su rapidez a la hora
de desarrollar código y por sus múltiples opciones de frameworks web, como Flask,
Django, FastAPI o Streamlit.

Streamlit: biblioteca de Python de código abierto, especialmente popular en proyectos
de Aprendizaje Automático. Permite un desarrollo rápido de aplicaciones web ya que se
puede hacer uso Python; además, tolera el uso de código HTML y CSS y el despliegue
de la aplicación en plataformas como Streamlit Community Cloud, Heroku, o AWS [29].

Nginx: utilizado como proxy inverso y para el manejo de las conexiones SSL.

Docker: utilizado para el despliegue del proyecto. Permite ser desplegado en cualquier
máquina que lo tenga instalado.
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7.3.2. Configuración de Nginx

La configuración de Nginx ha sido diseñada para:

Redirigir el tráfico del puerto 80, conexiones HTTP, al 443, HTTPS.

Servir HTTPS utilizando certificados SSL que actualmente son autofirmados, por ser
un proyecto de TFG.

Actuar como proxy inverso de la aplicación de Streamlit, evitando exponer el puerto
directamente.

7.3.3. Docker

Para el despliegue de la aplicación en Docker se han utilizado dos contenedores: uno para
Streamlit y otro para Nginx. El levantamiento de ambos se hace a través de un docker-
compose que, además de la configuración de cada contenedor, crea una red interna para que
se puedan comunicar.

Contenedor Streamlit

Su función consiste en:

Construir la imagen con un Dockerfile e indicar desde dónde montar la imagen.

Levantar volúmenes para los modelos de IA, lo que hace que los modelos no se tengan
que cargar en la imagen y aśı ocupe menos. De esta manera, se tarda menos en cargar y
construir. Además, sirve para evitar reconstruir la imagen si se actualizan los modelos,
por lo que su entrenamiento queda completamente independiente de la web.

Exponer solo a la red interna el puerto 8501, que es el utilizado por defecto por Stream-
lit.

Relanzar el contenedor en caso de fallo.

El Dockerfile se encarga de, partiendo de una imagen python:3.12-slim, crear la estructura
de carpetas necesarias para el funcionamiento de la aplicación, instalar dependencias del
sistema, instalar los paquetes Python necesarios, copiar los archivos de código y lanzar la
aplicación.

Contenedor Nginx

En el caso de este contenedor, se utiliza la ultima imagen de Nginx almacenada en el
servidor de Dockerhub. Asimismo, se montan volúmenes para los certificados y para el archivo
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de configuración; de este modo los certificados o la configuración pueden ser cambiados o
renovados sin necesidad de relanzar el contenedor. Además, se exponen al exterior los puertos,
80 y 443, necesarios para HTTP y HTTPS.
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Caṕıtulo 8

Conclusiones y ĺıneas futuras

En este caṕıtulo se recogen las conclusiones más relevantes derivadas del trabajo reali-
zado. A partir de los resultados obtenidos, se reflexiona sobre los objetivos alcanzados y el
aprendizaje recibido. Además, se plantean posibles ĺıneas futuras de investigación y mejoras
que podŕıan mejorar el proyecto.

8.1. Consecución de objetivos

Respecto a los objetivos propuestos al inicio del proyecto se consideran logrados satisfac-
toriamente:

El haber conseguido un significativo número de imágenes de ecograf́ıas y que estás se
hayan procesado de forma que puedan ser reutilizadas en trabajos futuros.

El desarrollo de modelos personalizables de visión por ordenador, que pueden aplicarse
a otros contextos, con otros conjuntos de datos y que aceptan tanto clasificación binaria
como multiclase.

El entrenado de modelos preentrenados y propios para clasificar imágenes de ecograf́ıas
de la región abdominal.

La implementación de una aplicación que, dada una ecograf́ıa, pueda realizar una cla-
sificación incluyendo la visualización de la toma de decisiones del modelo.

8.2. Aprendizaje percibido

Durante el desarrollo de este proyecto se ha percibido un aprendizaje significativo en las
siguientes áreas:
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Programación Orientada a Objetos.

Desarrollo de modelos de Aprendizaje Automático, con especial énfasis en modelos de
visión por ordenador y, en concreto, las Redes Neuronales Convolucionales.

Uso de tecnoloǵıas de contenedores como es Docker.

Aplicación de Patrones de Diseño.

Desarrollo de aplicaciones web.

Organización y planificación del trabajo, tanto de manera individual como en lo relativo
a la recogida escalonada de los datos.

De todo este proceso cabe poner en valor lo enriquecedor que ha sido:

Trabajar con datos reales, habiendo sido extráıdos directamente de la fuente. Para ello
fue necesario acudir al hospital, lo que permitió hablar con los médicos además de ver
y aprender de primera mano los procesos que se realizan a las muestras.

Desarrollar una tubeŕıa completa para el procesado de estos datos, desde la extracción
en crudo hasta su preparación final para el entrenamiento de modelos.

Colaborar junto a profesionales de la salud, lo cual desembocó en la posibilidad de
colaborar en la escritura y publicación del abstract previamente mencionado.

8.3. Trabajo futuro

A pesar de que se considera satisfactoria la consecución de los objetivos establecidos,
existen distintas ĺıneas de trabajo sobre las que se podŕıan realizar avances en las siguientes
áreas:

Respecto a las imágenes:

Ampliar la diversidad de imágenes de ecograf́ıas. De forma que no exista un desequili-
brio tan grande entre las clases.

Igualar la cantidad y distribución de imágenes obtenidas de cada ecógrafo.

Realizar un preprocesamiento más intensivo de las imágenes que permita aprovechar
un mayor número de las que los expertos etiquetan o aplicar diferentes aproximaciones
(como dividir en partes el sector ecográfico), de una forma más similar a la realizada
en los trabajos mencionados en la sección del estado del arte.

Implementar técnicas de aumento de datos aplicadas únicamente a las clases donde se
tienen menos muestras, reduciendo el desbalance.
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Respecto a los modelos de IA:

Implementar conexiones residuales en CustomCNN, convirtiéndola una de las opciones
de la arquitectura.

Integrar en CustomCNN los mecanismos de optimización de memoria utilizados en
PretrainedModels.

Aplicar técnicas de entrenamiento más avanzadas, como puede ser la Validación Cruza-
da, lo que contribuiŕıa a obtener estimaciones más fiables del rendimiento del modelo,
aproximándolo mejor al error esperado.

Entrenar los modelos en máquinas más potentes que admitieran arquitecturas más pro-
fundas y complejas, lotes de tamaños más grandes y reducir el tiempo de entrenamiento
de los modelos. Asimismo, implementar mecanismos como la paralelización.

Respecto a la aplicación web:

Mostrar más información sobre los modelos utilizados para clasificar, como sus métricas
o gráficos de entrenamiento.

Incorporar una opción que utilice un ensamblaje de modelos para la predicción, lo cual
permitiŕıa alcanzar un diagnóstico más eficaz.

Mejorar la seguridad, ya que se realiza un tratamiento de datos médicos potencialmente
sensibles.
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Apéndice A

Manuales

A.1. Manual de instalación

Este anexo detalla los pasos a seguir para llevar a cabo la instalación de la aplicación web
desarrollada en el proyecto, aśı como la información necesaria para el correcto uso de ella
por los usuarios.

A.1.1. Aplicación web

El lanzamiento de la aplicación web se debe hacer desde la ráız del proyecto, ejecutando
el siguiente comando:

docker compose up

Como requisito, es necesario tener instalado Docker[30] y Docker Compose[31]. Depen-
diendo del sistema operativo, puede que se requieran permisos de superusuario (sudo).

Para levantar los contedores también se puede utilizar el script rebuild.sh, que:

1. Detiene contenedores y volúmenes existentes.

2. Elimina los contenedores no utilizados.

3. Reconstruye y reinicia los contenedores desde cero.

Este script es útil para reiniciar el entorno en caso de errores o para aplicar cambios en
el código.
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Modelos

Para que la aplicación pueda clasificar imágenes, es necesario que los modelos estén dis-
ponibles en las rutas correspondientes, sobre las cuales Docker monta los volúmenes.

Se puede lanzar la aplicación sin modelos, pero en ese caso no podrá realizar tareas de
clasificación. Más adelante, pueden entrenarse o reentrenarse sin necesidad de reiniciar la
aplicación.

Los modelos se almacenan en:

data/model_state/<modo_funcionamiento>/<tipo_modelo>/

A.1.2. Entrenamiento de modelos

Para entrenar los modelos, primero deben instalarse las dependencias de Python mediante:

pip i n s t a l l −r requ i rements . txt

Existen dos tipos de modelos, cada uno con su propio script de entrenamiento. Ambos
deben ejecutarse desde la ráız del proyecto:

Modelo personalizado:

python −m code . s c r i p t s . models . t ra in custom

Modelos preentrenados:

python −m code . s c r i p t s . models . t r a i n p r e t r a i n e d

Ambos scripts solicitan argumentos que deben proporcionarse en su ejecución.

Si la ejecución de un modelo personalizado se detiene, puede retomarse con:

python −m code . s c r i p t s . models . r e t ra in cus tom

Alternativa con PYTHONPATH

También es posible definir la ráız del proyecto como PYTHONPATH para ejecutar los scripts
directamente:

export PYTHONPATH=$ (pwd)
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En ese caso, será necesario una de las siguientes opciones:

Dar permisos de ejecución:

chmod +x r u t a a l a r c h i v o . py

O utilizar el intérprete de Python:

python r u t a a l a r c h i v o . py

Requisitos de datos

Para entrenar los modelos, se requieren imágenes en las siguientes carpetas:

data/images/HURH/<categoria>/<modo_ecografia>/

data/images/OneDrive/<categoria>/1280x960/<modo_ecografia>/

Aśı como los archivos de anotaciones correspondientes en:

data/csv/final/

Si no se dispone de ellos, es necesario ejecutar el proceso de preprocesamiento de imágenes
para generarlos.

A.1.3. Preprocesamiento

Para ejecutar los scripts de preprocesamiento es necesario tener imágenes almacenadas
en dos carpetas. Además de las imágenes, en cada carpeta se podrá encontrar:

Ocho directorios que representan categoŕıas de imágenes cuya ruta es:

data/images/HURH/

Tres directorios que representan categoŕıas de imágenes cuya ruta es:

data/images/OneDrive/

No es necesario disponer de imágenes de ambas fuentes para realizar el preprocesamiento.
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Ejecución del preprocesamiento

Para preparar los datos, ejecute el siguiente script desde la carpeta raiz del proyecto:

python −m code . s c r i p t s . p r e p r o c e s s i n g . p i p e l i n e c l a s s i f i c a t i o n

Una vez lanzado, este script realiza las siguientes tareas:

1. Eliminar artefactos y anotaciones visibles de la interfaz de las ecograf́ıas.

2. Separar las imágenes en dos carpetas según la técnica: bmode (modo B) y doppler.

3. En el caso de OneDrive, filtrar las imágenes compatibles con las del ecógrafo Aplio i700
y aplicar los pasos anteriores.

Asimismo, genera archivos CSV con información de anotación para:

Registrar las rutas de las imágenes.

Indicar la técnica utilizada (modo B o Doppler).

Permitir la reconstrucción del proceso en caso de error.

A.2. Manual de usuario

Tras haber lanzado los contenedores de Streamlit y Nginx, la web será accesible desde
un navegador. Para acceder desde el mismo equipo, vaya a la siguiente dirección:

https://localhost

Esto lanzará la vista de la aplicación, tal y como se muestra en la figura: A.1.

Figura A.1: Vista al entrar en la aplicación.
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A partir de aqúı, el usuario tiene opción de:

Cambiar las selecciones del modo de clasificación y de los modelos usados para clasificar.

Subir una imagen, ya sea arrastrándola o seleccionando el botón de subir imagen.

Una vez cargada la imagen, se mostrará en pantalla y será clasificada automáticamente
por el sistema, exponiendo un resultado por pantalla, como se observa en la figura A.2.

Figura A.2: Vista tras subir una imagen a la aplicación.

Debajo de la imagen, aparecerán nuevas opciones para ajustar la visualización de la toma
de decisiones del modelo, junto con dicha visualización. Como se muestra en la figura: A.3.

Figura A.3: Visualización de la toma de decisiones del modelo.

Tanto si se ha conseguido mostrar la visualización, como si no, en la parte inferior de la
página aparecerá un botón para descargar un informe en formato PDF con los resultados
obtenidos. Figura A.4.
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Figura A.4: Ejemplo de un informe PDF, una vez descargado y abierto.
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Apéndice B

Contenidos del CD-ROM
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Apéndice C

Aporte de imágenes

Lista de Hospitales que han proporcionado imágenes para el proyecto:

Hospital Universitario Rio Hortega en Valladolid.

Hospital Cĺınico Universitario de Valladolid.

Hospital Virgen De La Concha en Zamora.

Hospital Provincial de Zamora.

Hospital Santa Bárbara en Soria.

Hospital Nuestra Señora de Sonsonetes en Ávila.

Hospital Comarcal de Medina del Campo.

Hospital de León.

Hospital del Bierzo en Ponferrada.

Hospital Comarcal de Benavente.

Hospital Santiago Apóstol Miranda de Ebro.

Hospital General Ŕıo Carrión de Palencia.

Hospital Cĺınico Universitario de Salamanca.

Ecógrafo del que se han obtenido las imágenes usadas en el proyecto:
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Figura C.1: Ecógrafo Canon Aplio i700.
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Apéndice D

Abstract

T́ıtulo: APLICACIÓN DE MODELOS DE INTELIGENCIA ARTIFICIAL EN EL DIAGNÓSTI-
CO ECOGRÁFICO DE CIRROSIS Y HEPATOCARCINOMA. ¿SOBRAREMOS LOS MÉDI-
COS EN EL FUTURO?

Autores: Diego Rodŕıguez Arroyo (1), Marina de Benito Sanz (2), Daniela Samantha
Ortiz Chimbo (2), Elena Velasco Mart́ınez (2), Jorge Ruiz Rodŕıguez (2), Maŕıa Jordán de
la Fuente (2), Laura Jiménez González (2), Irene Peñas Herrero (2), Félix Garćıa Pajares
(2), Raúl Garćıa Pajares (3), Adrián Sánchez Zapico (3), Gloria Sánchez Antoĺın (2). (1)
Estudiante de Ingenieŕıa Informática de la UVA. (2) Servicio de Digestivo, HURH, Valladolid.
(3) Ingeniero de HP SCDS.

Introducción: La ecograf́ıa es una prueba de imagen accesible, inocua y sencilla de apli-
car en el cribado de los pacientes cirróticos; sin embargo, requiere de un operador entrenado
y consume tiempo, por lo que seŕıa interesante automatizar el diagnóstico.

Materiales y métodos: Se recogieron 1079 imágenes ecográficas de h́ıgado clasificadas
en 3 categoŕıas: 755 h́ıgados sanos, 313 cirróticos y 11 con hepatocarcinoma (CHC). Para
el preprocesamiento de las imágenes y construcción de los modelos se utiliza Python 3.12
y Pytorch, y se ejecutan en una máquina Linux con una GPU 1060 3Gb. Las imágenes
son recortadas a la zona de interés y se aplican CNN con diferentes arquitecturas, aśı como
modelos ViT. Los datos se dividen en 2/3 para el entrenamiento y 1/3 para la evaluación,
manteniendo la distribución de categoŕıas del conjunto inicial.

Objetivo principal: Desarrollar modelos para la detección de CHC mediante ecograf́ıas
de h́ıgado.

Resultados: Cuando se trata de clasificar únicamente un h́ıgado en sano o enfermo, los
modelos CNN obtienen tasas de acierto en torno al 98 % en las imágenes que ya han visto
y un 75 % en las que no. Cuando se trata de diferenciar entre sano, cirrosis o CHC; los
CNN tienen una tasa de acierto de aproximadamente 75 % en las imágenes que han visto
previamente y 56 % en las que no, con mejores resultados del modelo de desarrollo propio
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frente a los preentrenados en las imágenes de evaluación.

Conclusiones: Los modelos logran aprender e identificar con eficacia las imágenes que ya
han visto; sin embargo, no generalizan eficazmente su conocimiento a imágenes desconocidas.
Esto puede deberse al desequilibrio entre las 3 categoŕıas, habiendo solo 11 imágenes de CHC
(lo cual es la gran limitación de nuestro estudio, estando actualmente aumentando el número
de imágenes ecográficas con CHC) y a que la posición de los órganos y su orientación vaŕıa
mucho entre las ecograf́ıas. Nuestros resultados sugieren que la ecograf́ıa no es la mejor prueba
de imagen para estos modelos ya que es un estudio muy dinámico y operador-dependiente,
pudiendo ser más adecuadas pruebas que generan imágenes más estáticas como el TAC o la
RM.
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26/06/2025. Invox Medical. 2023. url: https://www.invoxmedical.com/blog/usos-
de-la-inteligencia-artificial-para-el-diagnostico-medico.

[14] IBM Corporation. Inteligencia artificial en medicina. Accedido: 26/06/2025. IBM.
2024. url: https://www.ibm.com/es- es/topics/artificial- intelligence-

medicine.

[15] Aditi Kothiya. Understanding “convolution” operations in CNN. Analytics Vidhya.
Jun. de 2021. url: https://medium.com/analytics-vidhya/convolution-operations-
in-cnn-deep-learning-compter-vision-128906ece7d3.

[16] Dominik Scherer, Andreas Müller y Sven Behnke. “Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition”. En: Artificial Neural Networks –
ICANN 2010. Ed. por Konstantinos Diamantaras, Wlodek Duch y Lazaros S. Iliadis.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, págs. 92-101. isbn: 978-3-642-
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