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RESUMEN

Resumen

La Inteligencia Artificial (IA) ha experimentado un gran avance en los tltimos afios, siendo
aplicada en distintos d&mbitos y permitiéndoles evolucionar gracias a su capacidad para
resolver tareas complejas.

Este proyecto estudia la clasificacién automaética de ecografias abdominales, prestando
especial atencion al higado y al hepatocarcinoma, mediante modelos de Redes Neuronales
Convolucionales. Para este proposito, se recopilaron y procesaron imagenes de pacientes
reales, aplicandoles prepocesamiento y distintas técnicas de aumento de datos. Por otro
lado, se ha desarrollado una aplicacién para la clasificacién de estas ecografias. Esta
aplicacion incluye visualizaciones de como los modelos toman las decisiones y pretende
facilitar el acceso a usuarios sin experiencia.

Los resultados obtenidos tras la evaluacién de los modelos, mostraron que estos lograron
aprender para imagenes ya conocidas; sin embargo, demostraron tener aptitud mas limitada
para la generalizacién en muestras nunca antes vistas. Este sesgo estd estrechamente
relacionado con el desequilibrio en las muestras, destacando los insuficientes casos de
hepatocarcinoma con respecto a higados sanos.
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ABSTRACT

Abstract

Artificial Intelligence (AI) has experienced significant progress in recent years, being
applied across various fields and enabling their advancement thanks to its ability to solve
complex tasks.

This project explores the automatic classification of abdominal ultrasound images, focusing
particularly on the liver and the hepatocellular carcinoma, using Convolutional Neural
Network (CNN) models. For this purpose, real patient images were collected and processed,
applying preprocessing and different data augmentation techniques. Additionally, a web
application has been developed for the classification of these ultrasounds. This application
includes visualizations of how models make decisions and is intended to facilitate use for
users without technical expertise.

The evaluation results showed that the models were able to learn effectively on images they
had previously seen. However, their ability to generalize to unseen samples was more
limited. This bias is closely related to the imbalance in the dataset, highlighting the
insufficient number of hepatocellular carcinoma cases compared to healthy liver images.

VII



ABSTRACT

VIII



INDICE GENERAL

Indice general

|Agradecimientos| 111
[Resumenl A%
[Abstract] VII
|Lista de figuras| XIIT
ILista de tablas| XV
. Introduccion| 1
LI Confextal . . . . . v oot 1
Higado|. . . . . . . . . . e 2

[1.1.2. Ecografia] . . . . . . . ... . . ... 3

1.2, Bstadodel Artel. . . . . . . .. oo o 5
|[1.3. Planteamiento y Objetivos|. . . . . . . . .. ... .o o 6
L4 Estructural. . . . . . . . . o 6

|2. Gestion del proyecto| 9
[2.1. Metodologia de trabajo| . . . . . . . . . .. .. oo 9
2.2. Control de versionesl . . . . .. ... ... ... ... o 10

IX



INDICE GENERAL

8. Fundamento Teodricol

. Conjunto de datos|

[4.1. Descripcion de los datos| . . . . . . . . ..o
/ Origen| . . . . . . . . o

4.2, Preprocesamiento|

121

Hospital Universitario Rio Hortegal . . . . . . . .. ... ... ... ..

4.3. Division del conjunto de datos|. . . . . . . . .. ... ... ... L.

B

Diseno y construccion del sistemal

5.1. Entorno de trabajo|

9.2. Carga de datos|

p.3. Dataset Liverimg|

H.4.1

Custom CNN]|

11

11

12

15

15

17

18

19

20

23

23

23

24

25

26

27

30

31

33

33

34

34

36

36

39



INDICE GENERAL

6. Evaluacion y resultados|

[7.2.2. Arquitectural .

[7.2.3. Diagrama declases|. . . . . . . ... .. ... ... .. .. ...

[7.2.4. Diagramas de secuencia . . . . . . . .. .. ... ... ... ...

[7.3. Implementacion| . . . .

[7.3.1. Tecnologias utilizadas| . . . .. .. ... .. ... ... .. ... ....

[7.3.2. Configuracion de Neginx| . . . . . . . . . .. ... ... ... ......

8. Conclusiones y lineas futuras|

[8.1. Consecucion de objetivos| . . . . . . . . . ...

18.2. Aprendizaje percibido|

18.3. Trabajo futuro| . . . .
[A. Manuales|
AT M e TSt

[A.1.1. Aplicacion web|

43

43

43

46

49

51

o1

51

93

56

o6

57

o7

58

62

62

63

63

65

65

65

66

69

69

69

XI



INDICE GENERAL

70
71
72
B. Contenidos del CD-ROM! 75
|IC. Aporte de imagenes| 77
[D. Abstracil 79
Bibliog 3 81

XII



INDICE DE FIGURAS

Indice de figuras

|1.1. Anatomia del abdomen humano, de Ties van Brussel/tiesworks.nlf. . . . . . . 2
|1.2. Ecogratia abdominal donde se puede observar un rinén y a su izquierda, par- |
| cialmente, un higado.|. . . . . . . . ..o 4
|1.3. Ecografia abdominal de un bazo con técnica dopler.| . . . . . ... ... ... 5
3.1. Capas de una red neuronal artificial| . . . . .. ... ... ... ... .. ... 12
13.2. Comparacion neurona biologica con artificiall . . . . .. ... ... ... ... 13
13.3. Representacion de una CNN|. . . . . .. .. ... ... 0oL 15
13.4.  Ejemplo de calculo de una convolucion. | . . . . . .. .. ... 0oL 16
13.5. Ejemplo de aplicacion de Maxz Pooling| . . . . . . . . .. ... ... ... .. 17
3.6. Ejemplo de aplanado| . . . . . . ... o 18
13.7. Ejemplo de aplicacion de Dropout a unared. . . . . . ... ... ... .... 20
13.8. Ejemplo de Grad-CAM aplicado a una red neuronal convolucional de clasifi- |
| cacion de animales) . . . . . . . Lo Lo 20
13.9. Esquema del procesamiento seguido por de Grad-CAM|. . . . . . ... .. .. 21
4.1. Estructura de carpetas generadas por el ecografo.|. . . . . . . ... ... ... 25
[4.2. Diferencias entre modo B (izquierda) y Dopler (derecha) | . . . ... ... .. 28
4.3. Ejemplo de ecografia recortada. . . . . . . . ... oo oL 29
4.4. Recorte de las anotaciones de las ecografias| . . . . . . . ... ... ... ... 30
[7.1. Diagrama de casos de uso.| . . . . . . . . ... oo 53

XIII



INDICE DE FIGURAS

[7.2. Diagrama de Clases de LwverImg| . . . . . . . . . .. ... 57
[7.3. Diagrama de Clases de los modelos de clasificacion.|. . . . . . ... ... ... 58
|7.4. Diagrama de secuencia del flujo principal de CU-01.| . . . ... ... ... .. 59
[7.5. Diagrama de secuencia del flujo principal de CU-02.| . . . ... .. ... ... 60
[7.6. Diagrama de secuencia del flujo principal de CU-03.| . . . .. ... ... ... 61
[7.7. Diagrama de secuencia del flujo principal de CU-04.| . . . .. ... ... ... 61
|7.8. Diagrama de secuencia del flujo principal de CU-05.| . . . ... .. ... ... 62
|A.1. Vista al entrar en la aplicacion.| . . . . . .. ..o 72
|A.2. Vista tras subir una imagen a la aplicacion.| . . . . . . .. ... oo 73
[A.3. Visualizacion de la toma de decisiones del modelo . . . . . . ... ... ... 73
|A.4. Ejemplo de un informe PDF| una vez descargado y ablerto| . . . . . . .. .. 74
|IC.1. Ecégrato Canon Aplio 1700.| . . . . . . . . . . . .. ... 78

XIV



INDICE DE CUADROS

Indice de cuadros

[4.1. Distribucion del conjunto de 1magenes pertenecientes al OneDrive.| . . . . . . 24
4.2.  Distribucion del conjunto de 1magenes del HURH tras su etiquetado.| . . . . . 26
4.3.  Distribucion del conjunto de 1magenes del OneDrive tras su preprocesado. . . 27
4.4. Distribucion de los modos de 1magen en el conjunto de datos| . . . . . . . .. 28
4.5. Valores de normalizacion de ImageNet|. . . . . . . . ... ... ... 31
[5.1. Numero de parametros, en millones, y coste computacional de los modelos |

preentrenados utilizados, en Giga-FLOPS) . . . v v v v v v i i 39
16.1. Resultados sobre el conjunto de entrenamiento de CIRRHOTIC_STATE. . . . 46
16.2. Resultados sobre el conjunto de prueba de CIRRHOTIC_STATE|. . . . . .. 47
16.3. Resultados sobre el conjunto de entrenamiento de HEALTHY _LIVERS.| . . . 47
16.4. Resultados sobre el conjunto de prueba de HEALTHY_LIVERS| . .. .. .. 48
16.5. Resultados sobre el conjunto de entrenamiento de ORGAN_CLASSIFICATION.| 48
16.6. Resultados sobre el conjunto de prueba de ORGAN_CLASSIFICATION]. . . 49
[7.1. Tabla de requisitos funcionales.| . . . . . . . ... ... ... L. 51
[7.2. Tabla de requisitos no funcionales.| . . . . . . . ... ... ... ... ... 52
[7.3. Tabla de requisitos de informaciéon.| . . . . . . . . ... ... L. 52
[7.4. Descripcion del caso de uso CU-01: Elegir modelo y modalidad.| . . . . . . .. 54
[7.5. Descripcion del caso de uso CU-02: Subir imagen.|. . . . . . . . .. ... ... 54

XV



INDICE DE CUADROS

[7.6. Descripcion del caso de uso CU-03: Clasificar.| . . . . . . ... ... ... ... 55
[7.7. Descripcion del caso de uso CU-04: Visualizar decisionf. . . . . . . .. .. .. 55
|7.8. Descripcion del caso de uso CU-05: Generar Informe.|. . . . . . . ... .. .. 56

XVI



CAPITULO 1. INTRODUCCION

Capitulo 1

Introduccion

La Inteligencia Artificial (IA) ha experimentado un gran desarrollo en las iltimas décadas,
transformando numerosos campos y permitiéndoles avanzar gracias a su capacidad para
resolver tareas complejas de manera automatizada. Entre sus multiples ramas, los modelos
de Aprendizaje Profundo han demostrado un alto rendimiento en tareas de clasificacion y
deteccién de patrones, especialmente cuando son expuestos a grandes cantidades de datos y
entrenamiento [1].

Dentro de este ambito, la vision por ordenador permite a las méquinas interpretar imége-
nes con una precisién cada vez mas cercana a la humana. En el campo de la Medicina,
estas tecnologias han comenzado a desempenar un papel crucial, asistiendo en diagndsti-
cos, prondsticos y decisiones clinicas, especialmente en el andlisis de imagenes médicas como
radiograffas, resonancias o ecografias [2].

1.1. Contexto

Para introducir el marco anatémico del proyecto, primero se debe presentar la regién
abdominal humana, la cual incluye diferentes 6rganos como el bazo, el colon, el estémago, el
higado, el intestino, el pancreas, la vesicula, el apéndice y la vejiga, figura [I.1]
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Figura 1.1: Anatomia del abdomen humano, de Ties van Brussel/tiesworks.nl
Fuente: https://commons.wikimedia.org/w/index.php?curid=46003785

A continuacién, nos enfocaremos en el estudio del higado, érgano de alta relevancia para
este proyecto, puesto constituye el objetivo de estudio principal del mismo.

1.1.1. Higado

Para contextualizar el proyecto, es importante destacar la relevancia del higado como
uno de los 6rganos vitales mas importantes del cuerpo humano. Situado en la parte superior
derecha del abdomen, justo debajo del diafragma, este 6rgano cumple funciones esenciales
para el mantenimiento del equilibrio fisioldgico.

Entre sus principales responsabilidades se encuentran la metabolizacién de nutrientes, la
sintesis de proteinas, la produccion de bilis y, especialmente, la desintoxicaciéon de sustancias
nocivas presentes en la sangre, como el alcohol u otros compuestos potencialmente perju-
diciales. Su correcto funcionamiento es indispensable para la vida, y cualquier alteracién
significativa en su estructura o funcionalidad puede comprometer gravemente la salud del
individuo. Dentro del a&mbito de este proyecto, se prestara especial atencién a dos patologias
del higado de gran relevancia clinica: la cirrosis hepatica y el hepatocarcinoma.

Cirrosis Hepatica

La cirrosis hepéatica es una de las enfermedades crénicas del higado maés graves y frecuen-
tes. Se caracteriza por la progresiva sustitucién del tejido hepético sano por tejido cicatricial
como consecuencia de la muerte celular. Este proceso deteriora la estructura del érgano y
afecta severamente a su funcionalidad.


https://commons.wikimedia.org/w/index.php?curid=46003785
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Las causas mas comunes de esta afeccién incluyen el consumo excesivo de alcohol, infec-
ciones virales como las hepatitis B y C, asi como ciertas enfermedades metabdlicas. Si no se
detecta y trata a tiempo, la cirrosis puede avanzar hasta causar complicaciones potencialmen-
te mortales. Constituye un importante factor de riesgo para el desarrollo de hepatocarcinoma,
lo que acenttiia la importancia de su diagndstico temprano y seguimiento clinico.

Hepatocarcinoma

También conocido como carcinoma hepatocelular (CHC), es el tipo de cdncer de higado
maés frecuente, representando entre el 80% y el 90% de los tumores hepéticos malignos.
En aproximadamente el 90 % de los casos, su aparicién estd estrechamente relacionada con
la cirrosis hepatica, como resultado de la acumulaciéon progresiva de tejido cicatricial en el
higado.

Una de las principales dificultades en su manejo clinico reside en que esta patologia era
casi indetectable en fases iniciales, lo que histéricamente ha llevado a que muchos diagnésticos
se realizaran en etapas avanzadas, cuando el tumor ya habia alcanzado un tamano considera-
ble y las opciones terapéuticas curativas se habian reducido notablemente. No obstante, los
avances en las técnicas de imagen, como la ecografia abdominal, y la inclusién de pacientes
de alto riesgo en programas de seguimiento intencionado han mejorado significativamente la
deteccién precoz del CHC. Este diagndstico temprano resulta clave para permitir la aplica-
cién de tratamientos con intencién curativa y mejorar exponencialmente el prondstico de los
pacientes|4].

1.1.2. Ecografia

La ecografia es una técnica de diagnéstico por imagen no invasiva ampliamente utilizada
en Medicina para examinar érganos y estructuras internas, entre ellos el higado. Se basa en
el uso de ultrasonidos (ondas sonoras de alta frecuencia) que, al rebotar en los tejidos del
cuerpo, permiten generar imagenes en tiempo real.

A diferencia de otras pruebas como la radiografia o la tomografia computarizada, la eco-
grafia no emplea radiacién ionizante, lo que la convierte en una técnica inocua, accesible
y de bajo coste. Por estas razones, es una de las principales herramientas para la evalua-
cién hepética, especialmente 1til en la deteccién de anomalias o signos de cirrosis [5]. A
continuacion, en la figura[I.2] se presenta un ejemplo.
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Figura 1.2: Ecografia abdominal donde se puede observar un rinén y a su izquierda, parcial-
mente, un higado.

La ecografia es una prueba dindmica que depende en gran medida de la habilidad y
experiencia del profesional que la realiza. El transductor, dispositivo que se coloca en contacto
con el cuerpo del paciente, emite y recibe los ultrasonidos mientras se desplaza sobre la piel;
por ello, la calidad y contenido de las imagenes obtenidas pueden variar considerablemente
segun la orientacién, posicién y movimiento de este, lo que introduce una variabilidad en la
interpretacién de los resultados. Este factor subjetivo representa una limitacién importante,
especialmente en contextos clinicos donde se requiere de una alta precisién diagndstica.

Normalmente, la ecografia genera una secuencia de imagenes en escala de grises y gene-
ralmente en forma de sector circular, una de las modalidades mas utilizadas se conoce como
“brightness mode” (modo B). Sin embargo, existen otras mas avanzadas como la ecografia
dopler, que permite visualizar la circulacién del flujo sanguineo, incluyendo su velocidad y
direccién, mediante codificaciéon por colores. Esta técnica resulta particularmente til para
evaluar la vascularizacién del higado y detectar posibles alteraciones asociadas a patologias
como el hepatocarcinoma [6].
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Canon

Aplio Abdomen

Figura 1.3: Ecografia abdominal de un bazo con técnica dépler.
Fuente https://ecografiafacil.com/2023/06/21/
estudio-ecografico-del-bazo-con-smi-de-canon-medical-sistem-los-colores-del-bazo/

En este contexto, la aplicacién de modelos de Inteligencia Artificial puede aportar un
valor anadido significativo, al permitir una interpretaciéon automatizada y estandarizada de
las ecografias, reduciendo la dependencia del operador humano y mejorando la precisién
diagnéstica.

1.2. Estado del Arte

Para llevar acabo este proyecto se han revisado diversos trabajos cuyo contenido abor-
da la aplicacién de Redes Neuronales Convolucionales para el diagnéstico de enfermedades
hepaticas mediante ecografias.

En el estudio de Mitrea et al. (2023) [7] se presenta un sistema hibrido que combina técni-
cas convencionales, como texturas, histogramas y transformaciones de ondicula con modelos
de aprendizaje automatico.

Emplearon imégenes de ecografias Modo B de dos ecégrafos diferentes, consiguiendo un
total de 296 pacientes enfermos, ningtin caso con higado sano. Definieron dos clases, HCC
y cirrético. De esas imagenes, se seleccionaron manualmente trozos de tamanos 50x50 y
56x56 pixeles, de zonas con tumor o afectadas por cirrosis y se utilizaron para entrenar los


https://ecografiafacil.com/2023/06/21/estudio-ecografico-del-bazo-con-smi-de-canon-medical-sistem-los-colores-del-bazo/
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modelos. Todas estas imdgenes se pueden encontrar en el siguinete enlace [§]. En su caso no
se desarroll6 ninguna aplicacion para la clasificacién de ecografias.

Otro estudio, Byra et al. (2019) [9], utiliza el modelo de Red Convolucional Inception-
ResNet-v2, preentrenada en el conjunto de datos ImageNet, para determinar el nivel de
esteatosis en higados grasos. Utilizaron 550 ecografias Modo B, con resolucion 434x636 pixeles
de 55 pacientes. Estas imégenes contenian, en su totalidad, higados junto a rinones, y se
seleccionaron manualmente regiones de interés, finalmente no se realizé una aplicacion de
medicion de esteatosis.

1.3. Planteamiento y Objetivos

Este proyecto se centra en el desarrollo de un sistema de clasificacién automatica de
ecografias abdominales mediante el uso de técnicas de Inteligencia Artificial, especificamente
Redes Neuronales Convolucionales (CNN). El objetivo principal es construir una aplicacién
capaz de clasificar imdgenes de ecografias del higado. Para esto serd necesario:

» Conseguir un nimero suficiente de ecografias de la region abdominal.

= Desarrollar y entrenar modelos de visién por ordenador capaces de realizar tareas de
clasificacién.

= Poder visualizar la toma de decisiones del modelo mientras realiza la clasificacién, pues
esto es muy deseable en el diagnéstico médico.

s Desarrollar una aplicacién que permita clasificar una ecografia, devolver el resultado y
mostrar la visualizaciéon de dicha clasificacién.

La eleccién de la ecografia, como técnica de imagen, se debe a su amplia disponibilidad,
seguridad y bajo coste, lo que la convierte en una herramienta importante para el cribado
de pacientes y el seguimiento de enfermedades hepéticas. No obstante, su realizacion e in-
terpretacion requiere personal especializado y puede resultar subjetivo y costoso en términos
de tiempo, por lo que automatizar este proceso mediante modelos de aprendizaje profundo
representa una solucion tecnolégica de gran valor clinico.

A diferencia de otros enfoques de segmentacion, este proyecto se centra exclusivamente
en una tarea de clasificacién; es decir, no se busca identificar la localizacién exacta de una
lesién o patologia, sino simplemente detectar su presencia a partir de la imagen completa. De
este modo, se explora el potencial de las CNN para apoyar el diagndstico médico de manera
eficiente, contribuyendo asi al desarrollo de herramientas inteligentes en el Ambito de la salud.

1.4. Estructura

La estructura de capitulos de este trabajo de fin de grado es la siguiente:
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= Capitulo 1: Introduccién. Se contextualiza el problema, se presentan las patologias
hepaticas abordadas y se define el objetivo general del trabajo.

= Capitulo 2: Gestién del proyecto. Se detalla la planificacién, organizacion y control
del proyecto, incluyendo la distribucién temporal de tareas para asegurar su correcta
ejecucion.

= Capitulo 3: Fundamento Tedrico. Se explican los conceptos fundamentales de la In-

teligencia Artificial utilizados, haciendo especial énfasis en las redes convolucionales
(CNN).

= Capitulo 4: Conjunto de datos. Se describe el proceso de obtencién, organizacion, pre-
procesamiento y tratamiento del conjunto de datos ecograficos empleado para entrenar
y evaluar los modelos.

= Capitulo 5: Diseno del sistema. Se expone la arquitectura general del sistema desarrolla-
do, incluyendo el disenio de los modelos, la seleccién de parametros y la implementacién
de la légica de clasificacion.

= Capitulo 6: Evaluacién y resultados. Se presentan los resultados obtenidos tras el en-
trenamiento de los modelos, asi como una evaluacién cuantitativa de su rendimiento
mediante métricas especificas de clasificacion.

= Capitulo 7: Aplicaciéon y despliegue. Se muestra cémo se ha integrado el modelo en
una aplicacién funcional, junto con su interfaz y caracteristicas principales para el uso
clinico o experimental.

= Capitulo 8: Conclusiones y trabajo futuro. Se resumen los principales logros del pro-
yecto, se valoran las limitaciones encontradas y se proponen posibles lineas de mejora
y continuacién futura del trabajo.
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Capitulo 2

Gestion del proyecto

En este capitulo se recoge todo lo relativo a la gestién del proyecto y se desarrollan
aspectos como la metodologia o los recursos utilizados para la correcta evolucién de este
TFG. Para tal fin se ha utilizado GitLab, que posee tanto herramientas para control de
versiones, como organizacién con hitos y tableros que permiten realizar sprints, planificar
tareas y supervisar el progreso; asi como compartirlo con otras personas.

2.1. Metodologia de trabajo

Para organizar el desarrollo del proyecto se optd por seguir una metodologia similar a
Scrum. Esta forma de planificacion estructura el trabajo en cinco fases que orientan el proceso
[10]):

1. Inicio: En esta fase se define el enfoque que se quiere dar al proyecto y los objetivos
del mismo.

2. Planificacién y estimacién: Aqui se seleccionan las tareas prioritarias del backlog
para incluirlas en el siguiente sprint y se define un objetivo claro para el mismo.

3. Implementacion: En esta fase se desarrolla el trabajo planificado. Cada sprint suele
durar entre una y cuatro semanas (en el caso de este proyecto, fueron de dos), y durante su
transcurso se pretende completar las tareas establecidas.

4. Revisiéon y retrospectiva: Esta fase tiene lugar al final de cada sprint, donde se
realiza una revisién y se presentan los avances alcanzados. Después, se lleva a cabo una
retrospectiva, en la que se evaliian los resultados y posibles mejoras.

5. Lanzamiento: En esta fase se entregan los resultados finales del proyecto. En nuestro
caso incluye la aplicacién, junto a los modelos de TA desarrollados y la documentacién por
escrito.



2.2. CONTROL DE VERSIONES

Como se ha mencionado antes, la metodologia de trabajo empleada se ha basado en
sprints de dos semanas de duracién, al final de los cuales se realizaban reuniones con los
tutores para presentar los avances, evaluar el trabajo y resolver dudas.

Para la organizacion de tareas se han utilizado tres tableros:

= Backlog, donde se anadian las tareas segin se iban definiendo.
= Open, donde se arrastraban las tareas a realizar durante el sprint en cuestién.

= (losed, donde se colocaban las tareas una vez finalizadas.

Al inicio de cada sprint se revisaban las tareas del Backlog y se ahadian nuevas si era
necesario. Después, se seleccionaban las que se abordarian en el sprint y se movian a Open,
las no finalizadas de sprints anteriores se trasladaban al nuevo.

En total, se han llevado a cabo ocho sprints; del Sprint 0, que comenzé el 29/01/2025,
hasta el Sprint 8 que marca la finalizaciéon del proyecto. Esto ha supuesto unas 350 horas
de trabajo entre recogida de imdgenes, desarrollo y realizacién de la memoria. Ademas, se
redacté un Abstract, recogido en el anexo[D] y una presentacién junto al profesional sanitario,
que fueron presentado en el congreso anual del ACYLHE [11], la asociacién castellano-leonesa
de hepatologfa.

2.2. Control de versiones

Para la gestién, almacenamiento y control de versiones del cédigo desarrollado durante
el proyecto, se ha hecho uso de la herramienta GitLab.

El desarrollo se ha realizado principalmente a través de una rama de desarrollo (dev),
donde se desarrollaba el codigo. Una vez obtenida la version final, todos los cambios se
unificaban en la rama principal, de esta manera resulta mas sencillo mantener esta seccién
limpia.

Este sistema de organizacién permite gestionar mas eficazmente el avance de todo el
proyecto, ademas de realizar cambios sin arriesgar la version final y; por iltimo, tener un
seguimiento claro de los cambios realizados a lo largo del desarrollo del trabajo.
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Capitulo 3

Fundamento Teorico

En este capitulo se abordan los conceptos tedricos en los que se basa el desarrollo del
sistema propuesto, de cara a contextualizar el uso de técnicas de Inteligencia Artificial en la
rama del anélisis de imagenes médicas.

3.1. Visién por computador en salud

La Inteligencia Artificial (IA) en el dmbito de la Medicina se basa en el desarrollo de
algoritmos capaces de analizar grandes volimenes de datos clinicos con el objetivo de de-
tectar patologias, predecir riesgos o asistir a los profesionales a realizar sus diagndsticos. Su
aplicacion permite mejorar la precision en la toma de decisiones y acelerar diversos procesos,
convirtiéndose en una herramienta complementaria de gran valor para los profesionales de la
salud [12].

Uno de los ambitos donde el avance ha resultado maés significativo es en el campo de la
radiologia, donde la digitalizacion de la toma de imégenes ha abierto la puerta a la utilizacién
de modelos de aprendizaje automatico que, junto a grandes conjuntos de datos, acompanados
de su diagnéstico, permite entrenar TAs capaces de sugerir autométicamente un diagndstico
a partir de una imagen que no habfan visto previamente [13]. Aunque esta préctica resulta de
gran ayuda al trabajo de los radidlogos, atin no es capaz sustituir el diagnéstico del profesional
en cuestion, pero si apoyarlo para realizar una labor maés eficiente.

Sin embargo, actualmente esto solo se aplica a diagndsticos especificos como la deteccién
de fracturas en radiografias o de nédulos en mamografias, ya que atin presentan limitaciones
a la hora de generalizar para diagndsticos mas complejos.

En el campo de la visién por computador, las Redes Neuronales profundas han demos-

trado unos resultados comparables al de expertos humanos en determinadas dreas, como la
deteccién del céncer de mama, lesiones pulmonares o cerebrales [14]. Ademads de su precision,

11



3.2. REDES NEURONALES ARTIFICIALES

otra ventaja clave de la TA es su capacidad para procesar volimenes masivos de imédgenes
médicas de forma rapida, ayudando a reducir la carga de trabajo del personal sanitario y
destacando automéaticamente aquellas regiones de interés clinico.

3.2. Redes Neuronales Artificiales

Son modelos computacionales de Inteligencia Artificial, encuadrados dentro del Aprendi-
zaje Automatico y que se basan en la estructura y el funcionamiento del cerebro.

Estan compuestas por unidades elementales llamadas neuronas artificiales, que imitan, de
forma simplificada, el comportamiento de las neuronas bioldgicas. Estas neuronas se interco-
nectan entre si, lo que permite que, al trabajar en conjunto, puedan modelar comportamientos
complejos a partir de unidades individuales simples.

Por lo general, las neuronas se organizan en capas: la de entrada, que recibe los datos
iniciales; la de salida, que genera el resultado final; y entre ellas, las ocultas, donde se realizan
miltiples transformaciones intermedias. Esta estructura puede observarse en la figura

Las neuronas de una capa estdn conectadas con las de las capas contiguas, por lo que se
influencian unas a otras. El grado de influencia viene dado por los pesos de la red.

Capa de Capa Capa de

Entrada Oculta Salida
Entrada 1

Enl:ra|:|a24b @ “__ﬁ-_ﬁ’ @

iz~ D Ny
—(G) ® /.®

o /@
(m)

—

Figura 3.1: Capas de una red neuronal artificial
Fuente: https:
//atriainnovation.com/blog/que-son-las-redes-neuronales-y-sus-funciones/

12


https://atriainnovation.com/blog/que-son-las-redes-neuronales-y-sus-funciones/
https://atriainnovation.com/blog/que-son-las-redes-neuronales-y-sus-funciones/

CAPITULO 3. FUNDAMENTO TEORICO

Neurona Artificial

Neuronas
Axén Sinapsis biolégicas
Dendritas Cuerpo

X1 Cuello

del axén

/

Funcion de
activacién

X2

Axon

Salida

Xn

Neuronas
artificiales

Entradas Pesos

Sumatorio y umbral

Figura 3.2: Comparacién neurona biolégica con artificial
Fuente: https://www.cs.us.es/~fsancho/Blog/posts/Redes_Neuronales.md

Las Neuronas Artificiales son modelos mateméticos que, como se muestra en la imagen
B:2] reciben una serie de entradas z,...,x,, cada una de las cuales se multiplica por un
parametro asociado ws, ..., w,, denominados pesos. Estos pesos son los valores que la red
ajusta durante el entrenamiento. La suma ponderada de estas entradas se combina con un
término adicional llamado sesgo (wp). Finalmente, antes de generar la salida de la neurona,
el resultado pasa por la llamada funcién de activacién.

Funcion de Activacion

Una funcién de activacién es una funcién matematica que se aplica antes de la salida de
cada neurona. Estas funciones permiten que la red aprenda y pueda asimilar representaciones
no lineales. Existen multiples y diferentes funciones de activacién, entre ellas cabe destacar
a modo de ejemplo:

= Funcion Sigmoide, utilizada para clasificacién binaria:

- 1
Cl4e

a(z)

» Rectificador Lineal (ReLu):
Relu(z) = max(0, 2)
= Funcién SoftMax, utilizada para clasificaciéon muticlase:

e
0(z)) = —g—— fori=12,....K

Zj:l e
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Funcién de pérdida

Como ya se ha mencionado las redes neuronales aprenden ajustando sus pesos. Para ello,
una vez que la red produce una salida, esta se compara con el resultado real mediante una
funcién de pérdida, que mide cudnto se ha acercado el modelo al resultado deseado.

En base a esto, se aplica la retropropagacién, que actualiza los pesos de la red desde
la capa de salida hasta la capa de entrada, pasando por actualizar las neuronas de la capa
oculta.

Cabe destacar que, durante este proceso, las neuronas de las capas ocultas no reciben
directamente el error total, sino una proporcion. Esta fraccién se calcula en relacién a la
contribuciéon que cada neurona ha tenido originalmente, lo que permite ajustar sus pesos
segun su aportacién en la salida de la red, corrigiéndolos e intentando reducir el valor de la
funcién de pérdida.

Entre las funciones de pérdida més habituales encontramos la Entropia Cruzada, que
puede variar en relacién al tipo de clasificacién que se realice, binaria o multiclase.

Siendo:

= M el nimero de clases.

» log el logaritmo natural.

= 0 la observaciéon o muestra de entrada.

= c la clase real a la que pertenece la muestra.

= y una variable binaria, que indica si la clasificacién es correcta o no para la observacién

(0).

» p la probabilidad predicha de que la observacién (o) sea de la clase (c)

Cuando M = 2 se usa la Entropfa Binaria Cruzada, (BCE) que se define como:

BCE = (ylog(p) + (1 —y)log(1 — p)) (3.1)
Cuando M > 2 se usa la Entropfa Categorfa Cruzada (CCE), que se define como:

M
CCE = Yoclog(po.c) (3.2)
c=1

Calcula una funcién de pérdida independiente para cada clase por cada observacion y suma
el resultado.
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3.3. Redes convolucionales

Las Redes Neuronales Convolucionales (CNN) son una especializacién de las redes neu-
ronales artificiales disenadas para procesar datos estructurados en forma de matriz, como
imégenes. Su principal atributo es la capacidad de extraer automaticamente patrones y ca-
racteristicas espaciales de la imagen que se le aporta .

Esta compuesta, habitualmente, por varias capas convolucionales, que se encargan de
extraer un mapa de caracteristicas; estas suelen ir seguidas por una o més capas lineales
completamente conectadas, que procesan la informacién extraida para realizar la clasificacion.

Imagen: [3.3]

CONVOLUTIONAL NEURAL NETWORK (CNN)

L
o | g
{
r Olz (U_iﬁ
I
Capas
«——— Capas convolucionales——— <« completamente —
conectadas
Extraccién de caracteristicas Clasificacién Anélisis de probabilidad

IONOS

Figura 3.3: Representacion de una CNN
Fuente: https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/
convolutional-neural-network/

3.3.1. Convolucién

La convolucién es una operacién matematica que se puede definir como el producto de
dos matrices: una imagen o un mapa de caracteristicas (como en nuestro caso) y un filtro. La
imagen, que suele representarse como un tensor, puede tener uno o varios canales, en funcién
de si estd en escala de grises o en color. Estos canales o dimensiones, van aumentando segin
realizan convoluciones. Se definen tal que (H, W, C) siendo:

= H la altura.
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= W el ancho

= C el ndamero de canales.

Filtro: es una pequena matriz rectangular, cuyas dimensiones son mas pequenas que
la imagen sobre la que se aplica. Su funcién es desplazarse sobre la imagen de izquierda a
derecha y de arriba a abajo mediante pasos, multiplicando sus valores por los de la region
que corresponda y sumando todos los resultados.

El trabajo de estos filtros es resaltar ciertas caracteristicas espaciales. La caracteristica
a destacar dependera del tipo de filtro utilizado. La idea es utilizar multiples filtros que
capturen diferentes particularidades de cada imagen. Lo que nos dard multiples matrices de
salida, tantas como filtros hayamos usado. Es decir, iremos teniendo més canales.

Paso: corresponde a la cantidad unidades que el filtro se desplaza en cada direccién cada
vez que se va a aplicar.

Rellenado: es la técnica utilizada para mantener el tamano de la matriz por cada capa de
convolucidn, o bien para que el filtro tenga espacio de operar dentro de una imagen sin rebasar
el borde, su utilizacién consiste en rodear la matriz normalmente de ceros. El rellenado define
el numero de pixeles con los que se rodeard la imagen.

Matriz original
3 156 | 2515562
92 |213] 7 [ 32 m%\ﬁmo\
17 [178] 86 | 33 | 12 | 21
2311-87_ |8 | 5123|234
59 | 56 [[5s5 [45-| 3 [218
82 | 97 4 | 33 | 238 4

291

Operacidon de Convolucién

Ix1+15x1+64x1+92x1+213x0+7 %2+
17x1+178x0+86x1= 291

Figura 3.4: Ejemplo de calculo de una convolucién.
Fuente :https://www.researchgate.net/figure/
An-example-of-convolution-calculation_figh_313848047

Como se puede observar en la figura [3.4] la matriz original posee unas dimensiones de
6x6 pixeles, mientras que la de salida es de 4x4 pixeles; es decir, el resultado final de la
convolucién es una matriz cuyas dimensiones son menores que la matriz de entrada. Por cada
filtro que apliquemos obtendremos una matriz de salida, por lo que aunque se va reduciendo
la resolucién (H,W) se va aumentando el numero de canales (C). Es decir, si tenemos una
imagen en escala de grises, de un solo canal (H,W,1) y le aplicamos un filtro de tres canales
(h,w,3), obtendremos tres nuevas matrices mas pequenas .
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La reduccién del tamano de una matriz al aplicarle un filtro viene determinada por la
férmula [3:3] donde, por cada dimensién de la matriz:

N corresponde al tamano de la matriz.

F corresponde al tamaifio del filtro.
= S corresponde al paso.

= P corresponde al relleno.

[N—F+2P

5 } +1 (3.3)

3.3.2. Pooling

Dentro de las CNN, las capas de pooling tienen como objetivo principal reducir la re-
solucién espacial de los datos obtenidos, disminuyendo el nimero de parametros y, por lo
tanto, reduciendo la cantidad de calculos a realizar. De igual manera, son utilizadas para
hacer que la red se mantenga invariante ante pequenos desplazamientos y ayudan a reducir
el sobreentranmiento[16].

Este proceso divide la matriz en subconjuntos de tamano NxN y aplica la misma funcién
a cada uno de ellos, como se puede ver més adelante en la figura[3.5] Las funciones de pooling
mas utilizadas son :

Mazx Pooling: devuelve el valor maximo del subconjunto que captura el filtro. Esto
ayuda a resaltar las caracteristicas dominantes de la matriz.

Average Pooling: devuelve el promedio de los valores del subconjunto que captura el
filtro. Esto suaviza las caracteristicas y reduce el ruido de los datos.

Pooling (2 x 2)

1 I 1 I
Single Channel Image -19 22: :—20 »12: :»17 11
19| 22 1-20]-121-17] 11 16 (301 1-1|231 -7 |-14 Max
: : P (E— [ S L
16 |30) -1 |23} 7 |-14 22 [ 23 | 11
== + -1 r-—r—m
-14|240 7 | -2 14241 17 |21 24 | 7
1
45 |-101 -1 | -1 5(-107 g1 |-1} 13 | 13 | 13
L : I L2
13| 131-11| 5113 -7 1x1x3x3
[~ r-=r-—m r-=r—-
18| 9 118/ 131 3| 4 13/131 1|51 1137
1X1x6x6 18|l o) lasliz] 134

Figura 3.5: Ejemplo de aplicacién de Max Pooling
Fuente: https://commons.wikimedia.org/w/index.php?curid=150823502
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3.3.3. Paso de capas convolucionales a capas lineales

Uno de los pasos fundamentales en una CNN es la transicién espacial de los mapas de
caracteristicas a un vector que pueda ser trasferido a las capas completamente conectadas.
Existen varias estrategias para realizar esta operacién, entre las que destacan:

Aplanado

El aplanado, tal y como se puede ver en la imagen [3.6] consiste en transformar la salida de
una capa convolucional; es decir, el mapa de caracteristicas, de dimensiones (H, W, C) a un
vector unidimensional de tamano (HxWxC) que sirva de entrada a las capas completamente
conectadas. Esta técnica es ventajosa puesto que preserva toda la informacién espacial de
canales de la capa convolucional; sin embargo, genera un gran nimero de parametros, lo
que incrementa el uso de memoria y el sobreajuste, especialmente en conjuntos de datos
pequenos.

1

1

110 0
Flattening 1
412 |1 4_
2|1 _2

il

Feature Map 0

2

1

Figura 3.6: Ejemplo de aplanado
Fuente: https://www.superdatascience.com/blogs/
convolutional-neural-networks-cnn-step-3-flattening

Global Average Pooling

Otra forma de conectar las capas convolucionales con el clasificador es utilizar Gloval
Average Pooling (GAP). En lugar de aplanar, promedia cada canal del mapa de caracteristi-
cas (H, W, C), de esta forma reduce las dimensiones espaciales (H,W) a un tnico valor, lo
que resulta en un vector de tamano C, considerablemente més pequeno que en el aplanado;
asimismo, reduce el nimero de parametros, minimiza el sobreajuste y actia como regulari-
zador estructural, forzando al modelo a detectar qué hay en la imagen, mas que donde esta
[18].
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3.4. Sobreajuste

El sobreajuste es un problema de los modelos de Aprendizaje Automaético, este se produce
cuando los modelos se ajustan demasiado bien a los datos de entrenamiento, hasta el punto
de aprendérselos y memorizar el ruido; es decir, informacion irrelevante, lo que impide que
generalicen a nuevas muestras no conocidas [19]. Esto puede suceder por multiples factores:

= Un modelo con demasiada complejidad.
= Un conjunto de datos demasiado pequeno.
= Entrenamientos demasiado prolongados en el tiempo.

» Una combinacién de los tres anteriores.

Existen multiples técnicas para combatir este sobreajuste detalladas a continuacién.

Parada Temprana

Esta técnica consiste en detener el entrenamiento del modelo de manera temprana. No
obstante, esto puede provocar que el modelo quede infraajustado y no aprenda correctamente.

Normalizaciéon por lotes

La normalizacién por lotes (Bacth Normalization) es una técnica que, mediante el ajuste
de las entradas de cada capa, centrandolas alrededor de cero y reescaldndolas a un tamano
estandar, tiene el efecto de agilizar y aumentar la estabilidad del entrenamiento de las redes
neuronales|20]. Esto se logra gracias a que:

= Ayuda a reducir el desplazamiento de las covariables internas; es decir, los cambios en
las distribuciones de las activaciones de las capas de la red.
= Actia como regularizador al introducir ruido en el entrenamiento.

= Mitiga el desvanecimiento y explosion de los gradientes de la red.

Dropout

El dropout es una técnica de regularizacién que consiste en apagar las conexiones, dando-
les el valor cero, de algunas de las neuronas de forma aleatoria durante el entrenamiento,
afectando tanto a su célculo hacia adelante, como a su retropropagacién. Esto contribuye
principalmente a combatir el sobreajuste de la red; asimismo, dado que tiene que calcular
menos pardmetros, también permite a la misma entrenar més rapido [21].
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A continuacién, en la figura se puede ver un esquema representativo de la técnica
previamente citada.

(a) Standard Neural Net (b) After applying dropout.

Figura 3.7: Ejemplo de aplicaciéon de Dropout a una red.
Fuente: http://jmlr.org/papers/vi5/srivastavald4a.html

3.4.1. Grad-CAM

El principal problema de las redes neuronales es su escasa interpretabilidad, lo cual se
acentua segun los modelos crecen y se hacen mas profundos. Las decisiones que toma una red
vienen dadas por los pesos de la red. Sin embargo, para los humanos estos niimeros no ofrecen
una explicacion comprensible de cémo ha llegado la red a determinadas clasificaciones. Por
ello, a menudo se suele decir que las redes neuronales son cajas negras, ya que producen una
salida a partir de una entrada, pero nos es demasiado dificil interpretar el razonamiento que
condujo a esa salida.

No obstante, las CNN tienen una ventaja, ya que es posible visualizar las activaciones de
sus capas convolucionales, y esto nos dard una idea de a qué partes de la imagen esta pres-
tando mas atencién la red, como en la imagen [3.8] Para ello existen multiples técnicas, entre
las que cabe destacar Grad-CAM (Gradient-weighted Class Activation Mapping), utilizada
en este proyecto.

Original N Normalized Grad-CAM N Applied Grad-CAM

Raw Grad-CAM

Figura 3.8: Ejemplo de Grad-CAM aplicado a una red neuronal convolucional de clasificacién
de animales.
Fuente: https://dlhr.de/assets/8-0. jpg
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La técnica de aplicacién de activacién de clase ponderada por gradiente (Grad-CAM),
genera un mapa de calor de los gradientes de las activaciones de las neuronas de una capa
convolucional, normalmente la ultima, para una clase objetivo (por ejemplo, “enfermo”). Tal
y como se puede ver en la imagen los gradientes indican en qué direcciéon van a cambiar
los pesos de una red respecto a la salida que ha producido, indicandonos si contribuyen
positiva o negativamente; a pesar de que, normalmente, solo se utilizan las contribuciones

positivas . De esta manera, proporciona una herramienta visual que mejora notablemente
la interpretabilidad.

)
TN
| L Class 1
Global - - L/
~ Average -
P ,‘/ 3_ Class 2
C C (5 =
0 0 @ }
N N 3 .
v VvV [ .
Class n
—
L J

Attention Map

¥
wai* + w2 + .+ Wen* =
B

Figura 3.9: Esquema del procesamiento seguido por de Grad-CAM
Fuente: https://www.frontiersin.org/files/Articles/583427/
frai-03-583427-HTML-r1/image_m/frai-03-583427-g004. jpg
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Capitulo 4

Conjunto de datos

En este capitulo se describe el conjunto de datos utilizado para entrenar y evaluar el
modelo. Se detallan las transformaciones aplicadas durante el preprocesamiento y la divisién
en los subconjuntos de entrenamiento y test.

4.1. Descripcion de los datos

El conjunto de datos estd formado por archivos de imégenes JPG de ecografias de dife-
rentes 6rganos de la regién abdominal, principalmente higados. Estas imagenes proceden de
dos fuentes de datos distintas, con lo cual siguen dos procesamientos ligeramente diferentes.

Estas ecografias han sido obtenidas con un ecégrafo Cannon Aplio i700, imagen incluida
en el anexo este produce unas imdgenes con resolucién de 1280x960 pixeles, en formato
JPG y con una interfaz como la que se muestra en la imagen [1.2

4.1.1. Origen
Hospital Universitario Rio Hortega

La primera fuente de imagenes ha sido proporcionada por el Hospital Universitario Rio
Hortega (HURH), recogidas de forma manual del ecgrafo previamente mencionado. En total,
se han recogido 12156 imagenes, inicialmente sin etiquetar ni filtrar, que posteriormente han
sido categorizadas por un radiélogo.

La recogida y etiquetado de esta imagenes no se realizd en una sola sesién, sino que se
llevé a cabo mediante visitas periddicas al hospital. Las categorias creadas por el profesional
fueron las siguientes: bazo, cdlculos y pdlipos en la vesicula, pancreas, rinén, higados sanos,
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higados con esteatosis, higados con cirrosis, higados con hepatocarcinoma y lesiones hepaticas
benignas.

OneDrive

La segunda fuente de imagenes procede de un repositorio de OneDrive compartido por
los médicos con los que se ha colaborado, este contiene una seleccion de 954 iméagenes de
higados divididas en tres categorias. Esta distribucién se puede ver en la tabla

Categorias Imégenes | Proporcion
Higados sano 274 28.72%
Higados con cirrosis 476 49.90 %
Higados con hepatocarcinoma 204 21.38%
Total: 954 100 %

Cuadro 4.1: Distribucién del conjunto de imagenes pertenecientes al OneDrive.

Estas imédgenes han sido extraidas de su sistema informatico y pertenecen a diferentes
hospitales de Castilla y Ledn, detallados en el anexo [C]

4.2. Preprocesamiento

Todo el preprocesamiento estd gobernado por unos scripts en Python que se encargan
de cada paso descrito. Finalmente, hay un script encargado de controlar toda la tuberia de
procesamiento y lanzar el resto en orden. Esto se hace asi para tener modularidad y para
poder, en caso de desearlo, lanzarlos por separado o sélo hasta solo cierto punto; de esta
manera se pueden llevar a cabo mas pruebas, subcategorias o un refinamiento mas especifico
de las iméagenes.

Desde el inicio del proceso, antes de clasificar las imagenes manualmente, y durante
todos los pasos, se han ido construyendo archivos CSV con la informacién original de las
imégenes como: nombres, rutas de procedencia y finales, categoria a la que pertenecen y
método ecografico utilizado. De este modo, a la hora de cargarlas al modelo, se pueden
seleccionar aquellas que se quieren y realizar diferentes pruebas con ellas.

Esto se realiza, ademads, para poder trazar los cambios que han ido sufriendo las imégenes y
para, en caso de necesitarlo, relacionar aquellas que originalmente venian juntas, pues podria
resultar interesante para comparar zonas diferentes de un mismo higado, o para unir varias
imagenes de un mismo paciente y utilizarlas como una tnica. Sin embargo, esto finalmente
no se llevé a cabo.

Por 1ltimo, estos CSV también son tutiles por si se produce algin error en las imagenes
o se pierden, ya que facilitan su identificacién sin necesidad de iniciar el procesado completo
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de ellas y se pueden usar como archivos de anotaciones para cargar los datos y entrenar los
modelos.

4.2.1. Hospital Universitario Rio Hortega

Las imagenes se extraen directamente del ecégrafo, que se encarga de anonimizarlas, a un
disco duro externo, siguiendo una estructura de carpetas como la que se muestra en la figura
Estas carpetas toman como nombre la marca temporal correspondiente al momento
en que se ponen en cola para ser exportadas al disco duro. En su interior, se encuentra
otra carpeta similar que, finalmente, contiene las imégenes; estas, al estar anonimizadas, no
contienen el nombre de los pacientes, pero si incluyen la marca temporal de cuando fueron
tomadas, junto a un identificador numeérico diferente por cada imagen en la carpeta. Por lo
que, aunque fueran separadas, se podrian volver a relacionar entre si.

Convert

120250226
— — 140305766001.jp
» Deld-20250226 20250226
140205.766 }—> 140305766
220250226

[140305766002.jp

— —
| Deld-20250226 20250226 1 20250226
140306.420 140306420 [140206420001.jp

1 20250226
. |Deld-20250226 20250226 [140206485001.jp:
7| 140306.485 140306485

220250226
[140306485002.jp

i

Figura 4.1: Estructura de carpetas generadas por el ecografo.

Esta estructura hace dificil y tedioso su etiquetado manual. Por lo que, una vez en el
disco duro, se hace un primer preprocesamiento, con un script en BASH, que mueve todas
las imédgenes a la carpeta raiz Convert, borra los videos, elimina toda la estructura de carpetas
y crea las carpetas de las categorias creadas por el profesional para que el etiquetado suponga
unicamente arrastrar la imagen a la carpeta de la categoria correspondiente o se descarte.

Una vez extraidas, un radiélogo especializado en el sistema digestivo clasifica las imagenes
en las categorias mencionadas. Asimismo, descarta las que no se ven correctamente, las que
pertenecen a érganos que no tienen interés, tienen menus del ecégrafo o; que por cualquier
otra caracteristica o defecto, sean consideradas no aptas por el profesional.

Durante este proceso, se realizé un primer analisis exploratorio de las imégenes y se

descubrié que, aunque la primera muestra data del 24/08/2024, no hay imdgenes de forma
consistente hasta el 29/01/2025, pues el ecégrafo no las almacenaba correctamente. Por
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ello, se partié de menos imédgenes de la esperadas, esto obligé a realizar distintas visitas
adicionales al hospital a lo largo del tiempo y motivé a la busqueda de otras fuentes de datos
complementarias.

Una vez completado el proceso de etiquetado y recoleccién, se realizdé un analisis de las
imdgenes para conocer la cantidad definitiva en cada categorfa. Més adelante, en la tabla[4.2]
se presenta ya distribuido el resultado final tras todas las visitas al hospital. De las 12156
imdgenes extraidas originalmente, se conservaron 5314, es decir, el 43.72 %, lo cual nos deja
con no demasiadas imagenes.

Durante este analisis, también se observd que algunas de las imagenes presentan colores
sobre la zona de la ecografia, debido a la técnica Dépler. Esto se tratard mas adelante en la
seccién de preprocesamiento comun.

Categoria Imégenes | Proporcion
Bazo 330 6.21 %
Célculos y polipos en la vesicula 191 3.59%
Pancreas 314 5.91%
Rinén 356 6.7 %
Higados sanos 2600 48.93 %
Higados con esteatosis 684 12.87%
Higados con cirrosis 540 10.16 %
Higados con hepatocarcinoma 20 0.38%
Lesiones hepaticas benignas 279 5.25%
Total 5314 100 %

Cuadro 4.2: Distribucién del conjunto de imagenes del HURH tras su etiquetado.

4.2.2. OneDrive

Las imagenes del OneDrive compartido por el equipo médico también se encontraban
anonimizadas. Cada una cuenta con un nimero identificador aleatorio por paciente, seguido
de un guion y un subidentificador por cada ecografia del paciente. Tal que el formato seria:
295166-1’ junto a la extension del archivo.

Estos archivos se encuentran divididos en tres carpetas, cada una correspondiente a las
categorfas previamente descritas, y Estas, a su vez, organizadas en subcarpetas corrrespon-
dientes a cada subida de imédgenes realizada por el profesional. Al agrupar todas las imagenes
de las subcarpetas de una misma categoria, se observa que puede haber imagenes de un mis-
mo paciente, con subidentificadores de ecografia iguales en distintas subcarpetas, lo cual
produce colisiones en los nombres de los archivos.

Esto puede deberse a dos motivos:

= Que sean el mismo archivo duplicado y que haya sido etiquetado varias veces, en oca-
siones distintas, con el mismo identificador.
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= Que sean archivos diferentes del mismo paciente, pero al ser subidas por separado
tengan el mismo subindentificador y, por lo tanto, el mismo nombre.

La agrupacion de las imagenes se realiza mediante el calculo del hash, esto permite deter-
minar si son o no iguales a una ya existente en la categoria. En el caso de que el duplicado sea
exacto, una de las dos imdgenes se descarta. Si son diferentes, se va aumentando en uno el
subidentificador hasta que no produzca choques. Durante este proceso, también se detectaron
algunas imagenes corruptas, para esta tarea se usé del paquete Pillow de Python, y fueron
descartadas.

Una vez solucionado esto, se abordé el siguiente problema, y es que cada ecégrafo produce
iméagenes muy desiguales entre si, con diferentes resoluciones, interfaces, escalas de grises, tex-
turas de ecografia, técnicas de ecografia, anotaciones sobre la imagen y sectores de ecografia
dentro de la imagen.

Estas variaciones suponen un problema muy grave para el entrenamiento del modelo, ya
que si las ecografias recogidas del Aplio poseen muchos menos hepatocarcinomas que otras,
las CNN no aprenderan a centrarse en las caracteristicas més relevantes, si no que lo haran
en las diferencias de las imagenes. Ademas, esto imposibilitaria llevar a cabo la solucién que
propuesta para dividir las ecografias Dépler de las de Modo B.

Tras un analisis, se concluyé que la manera més conveniente de abordar el problema es
categorizar las imdgenes en sus diferentes resoluciones, de forma que, una vez separadas,
se pueda elegir las que fueran mds similares a las que ya se posefa. Finalmente se decidi6
utilizar solo las imagenes que procedian de ecografos Aplio, como las recogidas en el HURH.
Por lo que, de todo el conjunto, inicamente se seleccionaron las imagenes que poseian una
resolucién 1280x960 pixeles.

Tras todo este proceso de filtrado y clasificacién, se conservaron 368 imégenes, entre Modo
B y Dépler, lo que representa el 38.57 % de las originales, estas se pueden ver en la tabla[4.3

Categorias Imagenes | Proporcion
Higados sanos 243 66.03 %
Higados con cirrosis: 90 24.46 %
Higados con hepatocarcinoma 35 9.51%
Total 368 100 %

Cuadro 4.3: Distribucién del conjunto de imagenes del OneDrive tras su preprocesado.

4.2.3. Preprocesamiento comun

Como se ha mencionado anteriormente, las imagenes con técnica Dépler presentan colores
sobre la zona de interés de la ecografia; ya que no hay manera de evitar esto, y ademads
provocan diferencias que pueden perjudicar el entrenamiento de los modelos, se decide separar
estas imagenes de las de Modo B.
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Para ello, se utiliza una zona concreta de la imagen: un medidor que normalmente esta
en escala de grises si la ecografia es Modo B, pero que tiene colores si se estd usando la
técnica Dopler, véase figura Con lo cual, se hace un recorte de la imagen a ese medidor
y se analizan las diferencias entre las medias de los tres canales RGB. Esto no se aplica a la
imagen completa, puesto que al tener muchos maés pixeles, las diferencias entre las medias se
diluyen y varian notablemente entre las imagenes, lo que no permite una divisién precisa de

ellas.

recision+ Pure+
- + + [e]

M o0

Figura 4.2: Diferencias entre modo B (izquierda) y Dépler (derecha)

recision+ Pure

+

+ + [e]
16.7
MI o0
(1.5)
i8CX1
d5.0i
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Qscan
G:81 *
DR:70
16.7 *
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CG:44

Llegados a este punto, como se puede ver en la tabla entre ambas fuentes de datos,

se tienen 5682 imagenes fusionando ambos modos.
Modo Ecografia | Imagenes | Proporcién
Modo B 4607 81.08%
Dépler 1075 18.92 %
Total 5682 100 %

Cuadro 4.4: Distribucién de los modos de imagen en el conjunto de datos.

Una vez realizada esta parte, y antes de entrenar los modelos con las imagenes, se recortan

al sector de la ecografia; es decir, la zona de interés. Este paso se realiza por dos razones:

= Las imagenes poseen una resolucién considerablemente grande, en términos de entrenar
modelos. Esto incrementa el ntimero de pardmetros; y, a su vez, ralentiza el entrena-
miento y aumenta el uso de memoria, lo que dificulta entrenar modelos mas complejos.

= Existe mucha informacion de la interfaz que no aporta informacién relevante o que
incluso puede perjudicar para el aprendizaje del modelo.
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Figura 4.3: Ejemplo de ecografia recortada.

A la hora de realizar el recorte de las imagenes se presenta una dificultad: dependiendo
de los ajustes del ecégrafo en el momento de tomar la ecografia, la zona de la ecografia no
es igual para todas las muestras, produciendo sectores ecograficos que varian en tamano y
en desplazamiento. Por ello, no hay una tnica medida de recorte que se adectie a todas las
ecografias.

Primero, se opta por buscar el minimo cuadrado que contenga a la mayoria de sector de
las ecograffas. Ya que, ser agresivos con el recorte no es una opcién idénea debido a que nada
asegura que la informacién clinica relevante de la ecografia este centrada.

Por ello, se concluyé que la mejor opcion era hacer una distribucién de la posicién y el
tamano de cada recuadro. Estos datos no siguen una distribucién normal, por lo que usar la
media y la desviacién para captar la mayoria de ellos no es la mejor opcién. En su lugar, se
opta por usar los cuartiles 10 y 90 para las cotas inferior y superior respectivamente.

Esto produce imagenes con un tamano de 1004x661 pixeles, como se muestra en la figura
[4.3] Este recorte se produce en el momento de cargar los datos al modelo, de manera que las
iméagenes se conservan intactas hasta entonces, lo cual permite realizar multiples pruebas.

Los resultados de este primer intento no fueron favorables y, tras aplicar Grad-Cam, se
detecté que el modelo estaba trampeando los resultados, fijindose en anotaciones que se
cuelan al recorte, véase figura En principio las anotaciones pueden parecer inocuas; sin
embargo, son mas habituales en las ecografias en las que hay una dolencia, por lo que son
contraproducentes a la hora de que el modelo aprenda, ya que tiende a prestar atencién en
la presencia o ausencia de ellas en vez de en la zona de interés de la ecografia.

Por este motivo, es necesario eliminar algunas anotaciones visibles en las imagenes, pro-
ducidas por la interfaz del ecégrafo a la hora de realizarlas. Se pueden identificar dos tipos
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de anotaciones:

= Las mediciones, que generan uno varios marcos en la parte inferior izquierda de la
ecografia y unos puntos dentro de la zona de interés. Estos marcos, que también pueden
variar de posicién y tamano, pueden intentar ocultarse. Sin embargo, respecto a los
puntos no se ha encontrado solucién, ya que taparlos también revelaria su presencia.

= Esquemas anatémicos, usados para identificar la zona que es representada, y que apa-
recen con mas frecuencia en las imagenes que muestran patologias.

Descartar estas imagenes no parece la mejor opcién, pues se cuenta con un numero li-
mitado de muestras. Por ello, se opta por eliminar las anotaciones cuando sea posible, y
finalmente, se consiguié ocultar un gran numero de etiquetas.

| DistA 10.8mm

Figura 4.4: Recorte de las anotaciones de las ecografias.

En ambos casos se utiliza OpenC'V para encontrar contornos en las zonas donde poten-
cialmente puede haberlos, y cubrirlos con el color de fondo de la ecografia. Sin embargo,
realizar todo este proceso para las diferentes ecografias del OneDrive hubiese sido complejo
y hubiera requerido mucho tiempo, lo cual excede completamente del alcance del proyecto.

4.2.4. Transformaciones a los datos

Hasta este punto se ha descrito el preprocesamiento que se realiza a las imagenes an-
tes de entrenar los modelos con ellas. A la hora de hacerlo, se ha creado una tuberia de
transformaciones que permite:

= Pasar las imédgenes a escala de grises o dejarlas en RGB.

= Recortar las imagenes a los tamanos descritos, asegurando que se conserva la region de
interés.

= Espejar horizontalmente un porcentaje de las imédgenes de entrenamiento de forma
aleatoria (normalmente el 50 %) con el objetivo de aumentar la variabilidad de los
datos.
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= Reducir el tamano de las imagenes, normalmente a la mitad, resultando en una resolu-
cion de 502x331 pixeles, o distintas variaciones dependiendo del modelo que se quiera
entrenar.

= Normalizar las imagenes, tanto si estdn en RGB o escala de grises, de alguna de las
siguientes formas:
e Aplicando los valores de media y desviacion estandar que se deseen.

e (Calculando la media y la desviacién estandar para el conjunto de datos de entre-
namiento deseado.

e Normalizando los valores de los pixeles al rango [-1,1] utilizando media 0.5 y
desviacion 0.5.

e Usando los valores de ImageNet|24] ampliamente recomendados. Estos valores se
muestran en la siguiente tabla:

RGB Escala de grises
Media 0.485, 0.456, 0.406 0.0840
Desviacién | 0.229, 0.224, 0.225 0.1069

Cuadro 4.5: Valores de normalizacién de ImageNet.

4.3. Division del conjunto de datos

Para entrenar los modelos de clasificacion, se divide el conjunto de datos en dos subcon-
juntos: entrenamiento y prueba. Esta divisién otorga 2/3 de los datos para el entrenamiento y
1/3 para el conjunto de pruebas, esto permite disponer de numerosos ejemplos para entrenar
al modelo asegurando que los resultados sean validos.

Una parte importante a la hora de realizar esta distribucién es tener en cuenta que las
clases no estan equilibradas; es decir, en las muestras predominan los higados sanos frente
a otros, especialmente los hepatocarcinomas. Por ello, se tiene en cuenta la distribucién
inicial de clases del conjunto y se mantiene esa proporciéon en ambos subconjuntos; de esta
manera, se asegura que tanto el conjunto de entrenamiento como el de prueba sigan siendo
representativo y que no favorezca a una clase por encima de otra durante el entrenamiento
y la evaluacion.

De esta division se encarga una clase creada LiverImg, que forma parte de la estructu-

ra de carga de datos y que se desarrollard més adelante. Esta clase se vale de la funcién
train_test_split del paquete scikit-learn a la hora de realizar las divisiones.
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Capitulo 5

Diseno y construccion del
sistema

En este capitulo se describe como se ha desarrollado el sistema de clasificacion de eco-
grafias: desde el entorno de trabajo del proyecto y la carga de datos, pasando por el diseno
de la red hasta el uso de modelos preentrenados y el entrenamiento.

5.1. Entorno de trabajo

Para el desarrollo y entrenamiento de los modelos se han utilizado las siguientes herra-
mientas:
= Sistema Operativo: Ubuntu 24.04.2 LTS.

= GPU: GeForce GTX 1060 3GB VRAM. La que se disponia en el momento de realiza-
cién del trabajo.

= Lenguaje de programacién: Python 3.12.3.

= Libreria de aprendizaje profundo: Pytorch 2.6.0, seleccionado por su sencillez,
grado de precision y personalizacion a la hora de crear los modelos, frente a otros como
Keras o Tensorflow.

= Monitorizacién de entrenamiento: Tensorboard, para la visualizacién de métricas
y gréficos en tiempo real.

= Optimizacién de parametros: Optuna, para la exploraciéon y bisqueda de los hi-
perparametros més eficientes.
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5.2. Carga de datos

El cédigo para procesar y cargar las muestras de datos puede resultar confuso y dificil
de mantener. Lo ideal es que el cédigo de nuestro conjunto de datos sea independiente
del modelo; de esta manera aseguramos una mejor legibilidad, modularidad y reutilizacion.
PyTorch ofrece dos primitivas de datos para ayudar con esta tarea: torch.utils.data. Dataset
y torch.utils.data. DataLoader, que permiten tanto el uso de conjuntos de datos propios como
conjuntos de datos precargados.

Dataset se encarga de gestionar las muestras y sus etiquetas correspondientes; asi como
de las caracteristicas y etiquetas de nuestro conjunto de datos, devolviendo una muestra cada
vez. Al entrenar un modelo, se busca pasar muestras en pequenos lotes para acelerar la carga
de datos y reducir el sobreajuste del modelo. Esta es la tarea de DataLoader que se encarga

de envolver un iterable alrededor de Dataset que abstrae esta complejidad para facilitar el
acceso a las muestras|25].

5.3. Dataset LiverImg

Ya que se dispone de ecografias de multiples érganos de la regién abdominal, se ha desarro-
llado un conjunto de datos con tres modos de funcionamiento (ORGAN_CLASSIFICATION
HEALTHY_LIVERS y CIRRHOTIC_STATE), en los que se profundizard mds adelante.

Para este proyecto se ha creado una clase llamada Liverlmg que hereda de torchuvi-
ston.dataset. Dataset, que puede ser usada con DataLoaders, y que se usa para entrenar los
modelos. Esta clase encapsula toda la légica correspondiente a la carga de datos y se encarga
de:

s Carga de imégenes segin el modo de funcionamiento.
» Biisqueda del ultimo CSV de anotaciones disponible (o uno en especifico).
s Carga del conjunto de datos completo, de entrenamiento o de prueba.

= Seleccién de las imagenes correctas correspondientes al conjunto y al modo de funcio-
namiento deseados.

» Filtrado segin las especificaciones de las ecografias (Modo B o Dépler).

s Aplicacién de transformaciones a las imagenes y sus correspondientes etiquetas.

La lista de modos disponibles que se detallan a continuacién estd modelizada por la clase
DatasetMode.
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ORGAN_CLASSIFICATION

El modo ORGAN_CLASSIFICATION tiene como propoésito englobar todo el conjunto
de imagenes disponibles agrupadas en cinco clases diferentes:

Higado (sanos, con cirrosis, con hepatocarcinoma, con esteatosis y lesiones benignas).
= Rinén.
= Bazo.

Pancreas.

Vesicula.

La intencién de este modo es poder entrenar modelos que diferencien entre diferentes
organos, lo cual, aunque no alcanza una gran relevancia clinica, es util para aprendizaje
sobre el desarrollo de modelos de aprendizaje automatico.

HFEALTHY_LIVERS

Dado que el proyecto estd centrado en higados, se ha implementado también el modo
HEALTHY_LIVERS, que carga inicamente imégenes hepéaticas. Esta modalidad surge como
respuesta a la insuficiencia de muestras de hepatocarcinomas, lo cual perjudica una divisién
mads detallada; por ello, el objetivo de este modo es establecer una clasificacién binaria entre
higados. Agrupandolos, segun su diagndstico, en:

= Higado sano.

= Higado enfermo, que engloba: higado con cirrosis, higado con hepatocarcinoma, higado
con esteatosis y lesiones hepaticas benignas.

La decisién de introducir las lesiones hepaticas benignas dentro de la categoria “enfermo”
viene justificada por que, aunque no se consideren malignas, siguen siendo, principalmen-
te, tumores, y aunque no supongan un riesgo deberian ser detectados. Asimismo, colocarlos
dentro de la categoria “sano” podria hacer que, al asemejarse a un hepatocarcinoma, aumen-
taran las probabilidades de que este se clasificase, equivocamente, como sano y es preferible
clasificar como “enfermo” una lesién benigna, que dejar pasar un cancer.

CIRRHOTIC_STATE

Finalmente, dado que el objetivo del proyecto es la deteccién de cirrosis y hepatocarci-
nomas, se cred el modo CIRRHOTIC_STATE, englobando las categorias de:
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» Higado sano.
= Higado con cirrosis.

= Higado con hepatocarcinoma.

Puesto que la finalidad perseguida por este proyecto es diferenciar entre estos tres casos,
el resto de categorias de higado no han sido incluidas.

5.4. Creacion de modelos

Para la realizacion de este trabajo se han desarrollado dos clases diferentes que se encargan
de la creacion, entrenamiento, validacion, guardado y carga de sus respectivos modelos de
TA. Estas clases son: CustomCNN, una red neuronal personalizable, y PretrainedModels, que
engloba miiltiples modelos preentrenados.

5.4.1. CustomCNN

El objetivo, al desarrollar este modelo de red convolucional, es disenar una arquitectura
adaptable que facilite la experimentacion y se ajuste adecuadamente a los requerimientos
de la tarea de clasificacion. Por ello, se ha implementado una red neuronal convolucional,
CustomCNN, heredando de la clase torch.nn.Module de Pytorch, disefiada para ser modular,
configurable y compatible tanto con clasificacién binaria como multiclase.

Inicializacién

La clase CustomCNN permite en sus parametros de entrada una configuracién flexible
de:
= El tamano de la entrada.

= El ntmero de capas convolucionales junto a sus correspondientes parametros: canales,
tamarnios de filtro, paso y rellenado.

= Capas de pooling con sus respectivos parametros de filtro, paso y rellenado.
= Capas, opcionales, de Batch Normalization.

= Una capa, opcional, de GAP entre las capas convolucionales y lineales, si no, se usa un
aplanado normal.

= Numero configurable de capas lineales completamente conectadas, con sus respectivos
tamanos.
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= Numero de capas, configurables de Dropout.

Para lograr este objetivo, se tomd la decision de implementar dos funciones privadas, que
son llamadas en el constructor de la clase. Estas son:

= _make_conv(), responsable de la construccién de los bloques convolucionales. Cada uno
de ellos se compone de una capa convolucional 2D, opcionalmente seguida de una capa
de Batch Normalization, una activacién ReLU y una capa de MazPooling.

= _make_fcl(), encargada de construir los bloques lineales completamente conectados. Ca-
da uno de ellos se compone de una capa lineal, seguida opcionalmente por una capa de
Dropout, excepto en la tltima capa antes de la salida, donde no se aplica para evitar
posibles efectos negativos en el rendimiento de la clasificacién.

Los bloques convolucionales y los bloques lineales se anaden por separado en listas, que
se encapsulan mediante nn.Sequential. Esta arquitectura modular permite que PyTorch ges-
tione automéaticamente la conexion secuencial entre los bloques, reduciendo la complejidad y
simplificando la implementacién de la funcién forward(), encargada de la propagacién hacia
adelante.

Entrenamiento

La funcién fit() se implement6 con el objetivo de que se responsabilizara de toda la l6gica
del entrenamiento el modelo, incluyendo parada temprana ante la falta de mejora, validacion
opcional del modelo, registro opcional en TensorBoard y callback para Optuna.

Esta funcién acepta como entradas los DataLoaders de entrenamiento y validacién, una
funcién de pérdida, un optimizador, un scheduler (ajustador automadtico de la tasa de apren-
dizaje) e hiperparametros como maz_epochs, patience y batch_size. Para esto se vale de un
bucle de entrenamiento donde se llama a train_loop y, finalmente, devuelve tres listas con los
valores de:

= La pérdida sobre el conjunto de entrenamiento.

= La pérdida sobre el conjunto de validaciéon

= La exactitud sobre el conjunto de validacién.

Epoca de entrenamiento

Para encapsular el cédigo a una época completa del bucle de entrenamiento, se ha imple-
mentado la funcién train_loop. Esta se encarga de:

= El envio de datos al dispositivo de computo correspondiente (CPU o GPU).
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= Realizar la propagacion hacia adelante del modelo.
= Calcular el valor de la funcién de pérdida.

= Propagar el error hacia atras y actualizar los pesos mediante el optimizador.

La funcién acepta como argumentos un DataLoader, la funcién de pérdida y el optimiza-
dor, y devuelve el valor promedio de la pérdida obtenida durante la epoca.

Evaluacién

Para evaluar el rendimiento del modelo se ha implementado la funcién evaluation_loop,
que activa el modo evaluacién del modelo. Esto fuerza que las capas Dropout y Batch Nor-
malization se comporten de forma determinista.

A continuacion, se inicializan las métricas necesarias para la evaluacién y, con el célculo
de gradientes desactivado, se realizan los calculos de correspondientes. La funcién contempla
tanto el caso de clasificacién binaria como multiclase, ajustando las métricas segin corres-
ponda. Al finalizar, devuelve un diccionario con las métricas ya calculadas.

Puntos de guardado

Con el fin de permitir la interrupcién y reanudacion del entrenamiento, se han desarrollado
puntos de guardado en archivos pth (una extensién de archivos de Pytorch). Cada modelo
se guarda en una ruta especifica que refleja tanto el modo de uso del conjunto de datos
(DatasetMode) de LiverImg como la arquitectura de capas utilizada.

Para gestionar los puntos de guardado, se han implementado dos funciones:

= save_checkpoint que guarda en un archivo pth los hiperparametros, la arquitectura del
modelo, los pesos, el optimizador y su estado, el scheduler y su estado, la pérdida y las
épocas entrenadas. En caso de que existiera un archivo de guardado del mismo modelo
con peores resultados, este es eliminado y sustituido por el nuevo.

» save_checkpoint se encarga de cargar tinicamente los pesos del modelo. Se usa principal-
mente para recuperar la mejor versién del modelo (que no necesariamente corresponde
con la tltima época) para su posterior evaluacién.

Carga de modelos

Para realizar la carga completa de modelos, incluyendo toda la informacién guardada con
save_checkpoint, se ha implementado el método de clase load_model, que se encarga de leer
los datos del archivo de guardado y, a partir de ellos:
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= Inicializar una instancia del modelo y cargar sus pesos.
= Inicializar el optimizador con el que se entrend y cargar su estado.

= Inicializar el scheduler y recuperar su estado correspondiente.

Finalmente, devuelve estos componentes junto a toda la informacién necesaria para continuar
con el entrenamiento: el nimero de época, el valor de la pérdida, asi como los parametros
relacionados con la carga, las transformaciones y el modo de los datos utilizados.

Registro

Con el objetivo de facilitar la depuracién de los modelos, analizar su evolucién y trazar
el proceso de entrenamiento, se ha implementado un sistema de registro. En cada época, el
método report_csv, registra la arquitectura del modelo, las métricas y los hiperparametros
relevantes en un archivo CSV, generando una fila por época.

Adicionalmente, se integra el uso de TensorBoard, lo que permite visualizar en tiempo real
la evolucién de las métricas y facilita el andlisis comparativo entre distintas configuraciones
de entrenamiento.

5.4.2. PretrainedModel

La clase PetrainedModel proporciona un envoltorio para un acceso unificado del entrena-
miento y evaluaciéon con modelos preentrenados. Esta ha sido desarrollada para facilitar la
comparacion con y entre este tipo de modelos.

Los modelos, listados en la tabla se han utilizado con sus pesos por defecto; vy,
posteriormente, se han continuado entrenando con nuestras iméagenes. La eleccién de estos
modelos y no otros reside en las diferencias de sus distintas arquitecturas CNN y ViT, y en
que son los que mejor encajaban con la capacidad de cémputo disponible.

Modelo Numero de parametros | GFLOPS
ConvNeXt_Tiny 28.6M 4.46
Densenet-121 8.0M 2.83
ResNet-18 11.7M 1.81
EfficientNet BO 5.3M 0.39
ViT_B_16 86.6M 17.56

Cuadro 5.1: Numero de parametros, en millones, y coste computacional de los modelos preen-
trenados utilizados, en Giga-FLOPS.

Ademas, PetrainedModel se encarga de adaptar el nimero de clases segin el modo del
conjunto de datos utilizado, definido en DatasetMode. Para ello modifica la capa de salida
del modelo seleccionado, asegurando su compatibilidad con la tarea de clasificacién corres-
pondiente
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Inicializacion
Para instanciar un objeto de esta clase basta con indicar tres pardmetros:

= El nombre del modelo deseado de la lista de modelos disponibles en ModelNames.
= El modo de conjunto de datos deseado de la lista de modos definida en DatasetMode.

= De manera opcional, descargar los pesos preentrenados por defecto, lo cual se puede
omitir si posteriormente se va a cargar una versién de ese modelo desde un archivo.

Esto simplifica la creaciéon de modelos ya que:

= Evita la definicién manual del niimero de capas.
= Abstrae de la carga de pesos o modelos.
= Centraliza la inicializacién de multiples arquitecturas en una unica interfaz.

= Gestiona la ruta de guardado y carga del modelo segin su configuracion, facilitando la
trazabilidad y reproducibilidad.

Transformaciones

Otra de las funciones que realiza esta clase es la adaptacion de la tuberia de transforma-
ciones (que incluye el recorte de imdgenes, la normalizacién y la conversién a tensor) segin
el modelo seleccionado, dado que no todos los modelos aceptan cualquier tamano de entrada.

En el caso de ViT, solo acepta entradas de tamano 224x224 pixeles y; para el resto, utiliza
el tamano de las ecografias recortadas y reducidas aproximadamente 4.5 veces.

Entrenamiento

Al igual que con CustomCNN, se ha implementado un método fit encargado de gestionar
todo el proceso de entrenamiento de la red. Esto incluye validacién, parada temprana y
guardado automaético del modelo con mejor puntuacién. No se desarrolla en detalle en el
proyecto puesto que su implementacion presenta muchas similitudes con la de CustomCNN

Epoca de entrenamiento

Durante el entrenamiento, fit utiliza train_loop, que ejecuta la propagacién hacia ade-
lante, el calculo de la pérdida, la retropropagacién y la actualizacién de pesos para cada
lote de imégenes en cada época. Dado que esta implementaciéon también es muy similar a
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la de CustomCNN, se destacaran exclusivamente las mejoras especificas para el uso de mo-
delos con altas exigencias computacionales y de memoria. Para lo cual se ha integrado el
uso detorch.amp, que realiza el entrenamiento con precisién mixta y ayuda a reducir sig-
nificativamente el consumo de memoria y acelera los cédlculos sin sacrificar la precision del
modelo.

Ademés, se anade una gestiéon manual de memoria, liberdndola mediante llamadas a
gc.collect() y torch.cuda.empty_cache().

Evaluacién

Se implementa una funcién que, a partir de un Datal.oader, permite la evaluacion del
modelo elegido calculando las métricas de pérdida, exactitud, F1 y AUROC. Permite, ademaés,
guardar el modelo si se desea.

Carga y guardado de modelos

Se implementa el método save, que se encarga de guardar los pesos del modelo junto a
sus transformaciones. Asimismo, se implementa el método load, que restaura los pesos y las
transformaciones del modelo, a partir de un archivo pth.

De la misma manera que con CustomCNN, las rutas se generan a partir del modo de
funcionamiento y la arquitectura del modelo.

Carga de Datos

Se crea la funcién get_dataloaders que se encarga de generar los DataLoaders para el
entrenamiento y la validacién. Esta funcion recibe una clase, como LiverImg y aplica las
transformaciones necesarias segun el modelo correspondiente.

Acceso a Capas Intermedias y Grad-CAM

Se define la propiedad get_last_conv_layer que proporciona acceso transparente a la dltima
capa convolucional del modelo, facilitando la aplicacién de la técnica Grad-CAM. Esta fun-
cionalidad esta disponible para todas las arquitecturas basadas en CNN; sin embargo, no se
implementa para el modelo ViT debido a su arquitectura no convolucional, lo cual dificulta
este proceso.
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Capitulo 6

Evaluacion y resultados

En este capitulo se recogen y analizan los resultados obtenidos durante la fase de evalua-
cién del proyecto. Los resultados se organizan en funcién de las tres tareas de clasificacion
planteadas, abordando tanto el comportamiento sobre el conjunto de entrenamiento como su
capacidad de generalizacién sobre el conjunto de prueba.

6.1. Evaluacion

El proceso de evaluacién permite comprobar si los modelos han aprendido patrones co-
rrectamente y si son capaces de generalizar a datos nunca vistos. Para ello, se detallan las
técnicas utilizadas y se comparan los resultados.

6.1.1. Meétricas

La evaluacién de los modelos entrenados se ha llevado a cabo mediante el uso de diferentes
métricas estandar en problemas de clasificacién como la exactitud, precisién, sensibilidad,
especificidad y la puntuacién F1. A continuacion, se definen distintos términos de los que se
ha hecho uso:

TP: Verdaderos positivos.

= TN: Verdaderos negativos.

FP: Falsos positivos.

FN: Falsos negativos.

= P: Nimero de muestras positivas en el conjunto. P =TP + F'N.
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= N: Numero de muestras negativas en el conjunto. N = FP + TN.

Las métricas utilizadas han sido:

Exactitud

La exactitud aporta una idea general de la cantidad de aciertos de un modelo; no obstante,
puede resultar enganosa para conjuntos de datos con clases desbalanceadas. Se calcula como
la proporcién de las muestras clasificadas correctamente frente al total [26].

TP+TN

Exactitud = PIN

Para conjuntos con varias clases desbalanceadas es conveniente utilizar la Macro Exac-
titud, que calcula la exactitud por cada clase de manera independiente; de esta manera se
otorga la misma importancia a cada clase a pesar de contar con menos muestras. Una equi-
vocacién o acierto en una clase minoritaria tendra el mismo peso que en una mayoritaria
[27]. Su célculo se lleva a cabo mediante la siguiente férmula:

H

c
1
Exactitudmacro = = E
acro C —

i
)

Z

donde:

= C: Numero de clases.
= T;: Numero de predicciones correctas para cada clase 1.

= N;: Numero de muestras totales para la clase 1.

Esto asegura que en casos como el de este proyecto, donde la clase Hepatocarcinoma es
minoritaria, esta reciba la misma atencién que aquellas con un elevado nimero de muestras.
Ademds, resulta de gran utilidad dada la relevancia de conocer la capacidad de nuestros
modelos para clasificar la clase Hepatocarcinoma.

Precisién
La precisién (o valor predictivo positivo) indica la cantidad de los positivos predichos que
son verdaderamente positivos y refleja cuan exactas y fiables son las predicciones positivas

de nuestro modelo. Su célculo se expresa mediante la siguiente férmula:
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TP
TP + FP

Precision =

Una alta precisién se traducird en que se produzcan menos falsos positivos [28]. No obs-
tante, en nuestro caso esto no posee especial relevancia, ya que la ecografia no deja de ser
una prueba de cribado. Por ello, no es de gravedad predecir que un paciente pueda tener un
problema, ya que se descartard mas adelante.

Sensibilidad

La sensibilidad (o tasa de verdaderos positivos) indica la cantidad de positivos reales que
el modelo es capaz de detectar. Su célculo se lleva a cabo mediante la siguiente férmula:

- TP
Sensibilidad = m

Una alta sensibilidad implica la presencia de menos falsos negativos [28]. Esto es esencial
en nuestro caso, ya que catalogar como sano a un paciente enfermo puede presentar un alto
riesgo para su salud.

Especificidad

La especificidad (o tasa de verdaderos negativos) indica la proporcién de negativos reales
que nuestro modelo es capaz de detectar correctamente; esto resulta crucial para prevenir
falsas alarmas innecesarias. Se calcula como:

o TN
Especificidad = TN 7P

En nuestro caso, a pesar de la importancia que posee, resulta menos relevante que la
sensibilidad, ya que la presencia de demasiados falsos positivos podria llevar a la realizacién
de otras pruebas de forma necesaria y generar malestar en los pacientes.

Puntuacion F1

La puntuaciéon F representa la media armoénica entre la precision y la sensibilidad, de
manera que permite representar ambas en una sola métrica. Su céalculo se realiza mediante
la siguiente férmulas:

Precision x Especificidad 2TP

=2 =
! % Precision + Especificidad  2TP + FP + FN
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6.1.2. Comparativa de modelos

En esta seccién se realiza una comparacién de los resultados de los modelos entrenados.
Se comparan las mejores versiones encontradas para cada modelo.

Primero mostraremos las métricas del conjunto de entrenamiento para comprobar si los
modelos han conseguido aprender sobre los datos. Después, se presentan los resultados sobre
el conjunto de prueba, donde se puede ver cudnto consiguen generalizar los modelos ante
nuevas muestras.

Categorizacion CIRRHOTIC_STATE

El objetivo principal del proyecto es la deteccion del hepatocarcinoma, por lo que primero
nos centraremos en estos resultados. En esta categoria tenemos tres clases.

EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud macro 33.13% 83.98% | 41.89% | 33.01% | 33.33% 39.78 %
Exactitud 69.43 % 92.53% | 50.8% 25.82% 71.6 % 73.41%
Precision 31.59 % 92.89% | 40.24% 18.85% | 23.87% 70.20 %
Sensibilidad 33.13% 83.98% | 41.89% | 33.01% | 33.33% 39.78 %
Especificidad 66.45 % 91.87% | 74.99% | 66.18% | 66.67% 70.47 %
F1 29.43% 87.75% | 34.16% 13.88% | 27.82% 40.54 %

Cuadro 6.1: Resultados sobre el conjunto de entrenamiento de CIRRHOTIC_STATE.

Viendo los resultados de los modelos preentrenados sobre el conjunto de entrenamiento,
Tabla: se puede decir que el desequilibrio de clases afecta gravemente al redimiento. La
mayoria de los modelos apenas alcanzan una macro exactitud del 33 %, lo que indica que
tienden a predecir casi exclusivamente una tnica clase (Higado Sano), haciendo que estas
conclusiones sean esperables. CONV es el modelo que mejores resultados ha obtenido a la
hora de aprender sobre los datos, con una Macro Exactitud del 83.98% y F1 87.75% lo que
indica un buen balance entre Sensibilidad, de espacial importancia, y Precision.

Por su parte, el modelo CustomCNN presenta un desempeno mas modesto en entre-
namiento, con una Exactitud Macro del 39.78 % y un F1 del 40.54%. A pesar de que su
rendimiento estd por debajo de CONV, estos valores sugieren que también esta siendo capaz
de aprender patrones relevantes para distinguir las tres clases; sin embargo, su efectividad es
menor. Su sensibilidad 39.78 % y precisién 70.20 % indican que posee un mejor control para
evitar falsos positivos, aunque le cuesta mantener un equilibrio en la deteccién de las clases
minoritarias.
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EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud macro 33.74 % 45.67% | 3821% | 32.97% | 33.33% 36.33 %
Exactitud 71.05 % 78.6% | 46.43% | 2559% | 72.17% 73.15%
Precision 34.82 % 62.63% | 37.36 % 8.57 % 24.06 % 43.11%
Sensibilidad 33.74 % 45.67% | 3821% | 32.97% | 33.33% 36.33 %
Especificidad 67.11% 76.7% | T1.73% | 66.23% | 66.67% 69.84 %
F1 30.18 % 48.27% | 31.14% 13.6 % 27.94% 34.59 %

Cuadro 6.2: Resultados sobre el conjunto de prueba de CIRRHOTIC_STATE.

Respecto a los resultados sobre el conjunto de prueba, Tabla: se puede observar que,
como es esperable, el rendimiento disminuye. Sigue destacando CONV, habiendo conseguido
generalizar lo aprendido de manera més eficiente, superando el 45 % en exactitud macro y
el 48% en F1. El resto de modelos preentreandos siguen mostrando resultados cercanos a
predecir aleatoriamente, lo que confirma que no han aprendido a diferenciar adecuadamente
las clases minoritarias (cirrosis y hepatocarcinoma).

En este caso CustomCNN presenta un rendimiento intermedio. No llega alcanzar los
resultados de CONV pero supera al resto de modelos en métricas clave. Demuestra tener
cierta capacidad de generalizacion y sugiere que, pese a no ser 6ptimo, tiene potencial para
mejorar con ajustes adicionales en arquitectura o entrenamiento.

Categorizacion HEALTHY _LIVERS

EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud 50.13 % 78.86% | 47.86% | 52.14% | 64.82% 75.49 %
Precision 48.48 % 72.22% | 47.86% 0% 87.06 % 76.61 %
Sensibilidad 67.19 % 90.75% | 100 % 0% 31.13% 70.24 %
Especificidad 34.46 % 67.95% 0% 100 % 95.75 % 80.31 %
F1 56.32 % 80.43% | 64.74% 0% 45.86 % 73.29%

Cuadro 6.3: Resultados sobre el conjunto de entrenamiento de HEALTHY _LIVERS.

Al analizar los resultados de los modelos preentrenados en el conjunto de entrenamiento,
Tabla: se observa cémo la mayoria de los clasificadores obtienen malos resultados, estando
cerca de la prediccion aleatoria. Destaca, por encima de los demas, CONV que consigue una
F1 de 80.43 %, lo que denota un aprendizaje equilibrado entre sano y enfermo, alcanzando
ademds una alta sensibilidad 90.75 %, especialmente relevante en un contexto clinico.

El modelo CustomCNN, especificamente entrenado para esta tarea, obtiene buenos resul-
tados con una Exactitud del 75.49 %, F1 del 73.29 % y una sensibilidad del 70.24 %. Aunque
no alcanza la sensibilidad tan alta de CONV, mantiene un buen balance general, con una
precision del 76.61 % y una especificidad del 80.31 %, lo que sugiere que es efectivo para evitar
falsos positivos, un aspecto también importante para no sobrediagnosticar a los pacientes.
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Esto indica que CustomCNN logra un aprendizaje equilibrado, con capacidad para distinguir
adecuadamente entre sanos y enfermos.

EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud 47.98% 72.64% | 47.56% | 52.44% | 60.21% 70.36 %
Precision 46.59 % 66.39% | 47.56 % 0% 74.83 % 69.70 %
Sensibilidad 64.05 % 86.06% | 100 % 0% 24.62 % 66.67 %
Especificidad 33.4% 60.47 % 0% 100 % 92.49% 73.72%
F1 53.94 % 74.95% | 64.47% 0% 37.05 % 68.15%

Cuadro 6.4: Resultados sobre el conjunto de prueba de HEALTHY _LIVERS.

Respecto a los resultados de los modelos preentrenados sobre el conjunto de prueba,
Tabla: podemos ver que CONYV contintia siendo modelo que mejor se comporta, habien-
do conseguido generalizar parte de lo aprendido en el entrenamiento. El resto de modelos,
EfficientNet, DenseNet, ResNet y ViT, muestran rendimientos muy limitados tanto en entre-
namiento como en prueba, con valores bajos en métricas clave como precision y sensibilidad,
lo que evidencia su incapacidad para distinguir correctamente las clases en este problema.

Por su parte, CustomCNN también muestra una generalizacién adecuada, con una Exacti-
tud del 70.36 %, F1 del 68.15 %, y sensibilidad del 66.67 %. Aunque estas métricas disminuyen
respecto al entrenamiento, siguen siendo superiores a la mayoria de los modelos preentrena-
dos restantes, lo que confirma que su arquitectura y entrenamiento personalizado contribuyen
a una capacidad sélida de clasificacién binaria.

Categorizacion ORGAN_CLASSIFICATION

EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud macro 20.46 % 79.37% | 20.1% 20.08% | 38.21% 91.28 %
Exactitud 73.02 % 92.58 % | 73.05% 72.98 % 78.35% 95.33 %
Precision 23.2% 93.39% | 24.61% 17.48% | 68.25% 60.52 %
Sensibilidad 20.46 % 79.37 % 20.1% 20.08 % 38.21% 80.36 %
Especificidad 80.07 % 95.58 % | 80.02% 80.06 % 85.01 % 95.33 %
F1 17.82% 83.51 % 17.1% 17.09% 39.01 % 86.56 %

Cuadro 6.5: Resultados sobre el conjunto de entrenamiento de ORGAN_CLASSIFICATION.

En los resultados de los modelos preentrenados, Tabla: se puede ver cémo la mayoria
de modelos consiguen una Exactitud Macro cercana al 20 %; no obstante, su Exactitud normal
es mas alta, lo cual indica que tienden a predecir una unica clase. CONV es, de nuevo, el
modelo que mejor ha aprendido sobre los datos.

Respecto a nuestro modelo personalizado, CustomCNN obtiene los mejores resultados,
con una Exactitud Macro de 91.28 %, una sensibilidad del 80.36 % y un F1 de 86.56 %. Esto
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indica que, demas de aprender a diferenciar entre las cinco clases, tiene un buen balance de
Precisién y Sensibilidad.

EFFICIENT | CONV | DENSE | RESNET VIT CustomCNN
Exactitud macro 19.96 % 64.34 % 20 % 19.98% | 39.19% 69.38 %
Exactitud 73.39% 87.47% | 73.54% 73.46 % 79.47% 80.43 %
Precision 14.7 % 88.23% | 14.71% 14.73 % 69.68 % 62.63 %
Sensibilidad 19.96 % 64.34 % 20 % 19.98 % 39.19% 69.38 %
Especificidad 79.97% 92.17% 80 % 80.06 % 85.32 % 92.51 %
F1 16.93 % 69.08% | 16.95% 16.95% 41.32 % 65.60 %

Cuadro 6.6: Resultados sobre el conjunto de prueba de ORGAN_CLASSIFICATION.

En cuanto a los resultados obtenidos de los modelos preentrenados sobre el conjunto de
prueba, Tabla: CONYV continua posicionado como el tinico modelo que consigue aprender
y generalizar. Los demés mantienen sus malos resultados, siendo incapaces de reconocer mas
de una clase.

El modelo personalizado, CustomCNN, sigue mostrando un rendimiento mejor que los
preentrenados, a pesar de que tampoco consiga generalizar eficazmente su conocimiento, lo
cual podria indicar cierto sobreajuste de los datos del entrenamiento.

6.2. Resultados

De los resultados obtenidos se puede concluir que, los modelos preentrenados, a excepcién
de CONV, no han logrado aprender e identificar con eficacia las imagenes que ya han visto, y
por lo tanto no generalizan su conocimiento a imagenes desconocidas. Sus resultados son bajos
y cercanos a la probabilidad de elegir aleatoriamente, lo que indica que tienden a predecir
la clase mayoritaria. El modelo CustomCNN creado de cero, no alcanza los resultados de
CONYV pero obtiene un rendimiento intermedio, consiguiendo superar al resto de modelos.

Esto puede atribuirse a varios factores:
= No haber sabido encontrar modelos con arquitecturas lo suficientemente adecuadas

para esta tarea, ni una configuracién éptima de hiperparametros especifica para este
tipo de imégenes.

= No haber aplicado las transformaciones apropiadas a los datos respecto al tamano de
entrada, normalizaciéon o canales.

= Kl desequilibrio entre las categorias, predominando las imagenes de higados sanos por
encima de las patologias. Especialmente relevante la escasez de muestras de imagenes
de hepatocarcinoma, limitando significativamente el proyecto.
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= La variacién entre la posicién de los érganos y su orientacién entre las ecografias. Esto
sugiere que la ecografia no es la mejor prueba de imagen para estos modelos, ya que es
un estudio muy dindmico y operador-dependiente, pudiendo la toma de estas imagenes
estar sesgada a la preferencia personal del operador. Podrian ser méas adecuadas pruebas
que generan imégenes m4s estdticas como los TAC (Tomografifa Axial Computarizada)
o la RM (Resonancia Magnética), que no tienen estds dependencias, y sobre las cuales
hay muchos més trabajos con aplicacién de modelos de visién por ordenador.

Sin que esto haya afectado negativamente a los resultado, una consideracién importante
es que la gran mayoria de las ecografias han sido etiquetadas por un dnico profesional. Esto
podria haber transferido, de forma no intencionada, sus propios sesgos a los modelos. Lo
ideal hubiera sido contar con varios profesionales para la tarea de anotacién, lo que aportaria
mas diversidad y objetividad a las clasificaciones.

Finalmente, aunque el conjunto de datos utilizado en este trabajo ha sido ampliado res-
pecto al empleado en el abstract recogido en el anexo [D}los resultados y las conclusiones
extraidas coinciden en gran medida con los alli presentados.
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CAPITULO 7. APLICACION Y DESPLIEGUE

Capitulo 7

Aplicacion y despliegue

A pesar de que el objetivo del presente proyecto ha sido desarrollar los modelos, el pre-
procesamiento y la preparacién de los datos, se ha considerado necesario el desarrollo de una
aplicacién web que integre los modelos de clasificacién entrenados, facilitando su uso a los
usuarios sin conocimientos previos. Este capitulo se centra en el proceso de elaboracion de
dicha web, asi como en la fase de despliegue.

7.1.

7.1.1.

Analisis

Requisitos

Requisitos funcionales

ID Nombre Descripcion

RF-01 | Elegir modelo El s1st§ma debe permitir elegir entre multiples modelos pa-
ra clasificar.

RF-02 | Flegir modalidad El s.lstem% debe permitir elegir entre tres modalidades de
clasificacién.

RF-03 | Subir imagen El s.1sten.12,1 debe permitir la subida de imégenes para su
clasificacién.

RF-04 | Clasificar El sistema debe poder clasificar ecografias.

. . C El sistema debe mostrar como ha tomado la decisién me-
RF-05 | Visualizar decision diante el algoritmo Grad-CAM.
RF-06 | Generar informe El sistema debe permitir generar y descargar un informe

PDF del diagnéstico.

Cuadro 7.1: Tabla de requisitos funcionales.
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7.1. ANALISIS

Requisitos no funcionales

ID Nombre Descripcion
- La aplicacion debe de poder ser usada por un usuario sin
RNF-01 | Facilidad de uso . . . (s
amplios conocimientos de informatica.
RNF-02 Lengl}aje de progra- El sistema debe desarrollarse en Python 3.12.
macién
, El sistema debe poder aceptar imégenes en formato PNG,
RNF-03 | Iméagenes JPG, JPEG y BMP.
RNF-04 | Entorno El sistema se debgra poder ejecutar en cualquier maquina
que tenga Docker instalado.
RNF-05 | Accesibilidad La aplicacién debe de poder ser accedida a través de un
navegador web.
RNF-06 | Rapidez La gphc.a’b(:lon debe de poder .reahzar la clasificacién y vi-
sualizacién en menos de un minuto.
Cuadro 7.2: Tabla de requisitos no funcionales.

Requisitos de informacién

ID Nombre Descripcion
RLOL | Modelos g}i(s:;s:ema debe almacenar los modelos utilizados para cla-

Cuadro 7.3:

Tabla de requisitos de informacién.
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7.1.2. Casos de uso

Diagrama de casos de uso

Casos de
uso

Elegir modelo y
modalidad

T gsincludes=

=zinclude==

Subir Imagen

Visualizar decision

Usuario

=<include== _.-*"

Condition: {modelo # \m}b\

o

Generar informe

Figura 7.1: Diagrama de casos de uso.
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Descripcién de los

casos de uso

CU-01 Elegir modelo y modalidad
Actor Usuario.
S El sistema debe permitir al usuario elegir uno de los posibles modelos
Descripcién . . .
para una de las tres modalidades de clasificacién.
.. 1. Tanto la aplicacién como el servidor estan funcionando.
Precondiciones

2. El usuario ha accedido a la web.

Flujo principal

1. El sistema selecciona autométicamente una modalidad por defecto.
2. El sistema selecciona automaéaticamente un modelo por defecto.

3. El sistema busca la mejor version del modelo seleccionado para la
modalidad elegida.

4. El sistema carga el modelo para esa modalidad y se lo indica al
usuario.

5. El usuario puede modificar alguna seleccién o mantenerlas.

Flujo alternativo

3a. El sistema no encuentra ninguna version del modelo para esa mo-
dalidad.

3b. El sistema comunica al usuario que el modelo no estd disponible
para esa modalidad.

5a. El usuario cambia una de las opciones. Se vuelve al paso 3.

Cuadro 7.4: Descripcion del caso de uso CU-01: Elegir modelo y modalidad.

CU-02 Subir imagen
Actor Usuario.
. El sistema debe permitir al usuario subir imégenes desde su maquina
Descripcién
local.
.. 1. Se ha ejecutado el CU-01: Elegir modelo y modalidad.
Precondiciones

2. Hay un modelo cargado en el sistema.

Flujo principal

1. El usuario sube una imagen al sistema.

2. El sistema comprueba que la imagen estd en un formato compatible.
3. El sistema muestra la imagen que se ha subido al usuario.

4. El sistema ejecuta automaticamente el CU-03: Clasificar.

Flujo alternativo

2a. El sistema detecta un formato de archivo no compatible.
2b. El sistema comunica al usuario que el formato no es valido. Se
vuelve al paso 1.

Cuadro 7.5: Descripcién del caso de uso CU-02: Subir imagen.
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CU-03 Clasificar
Actor Sistema.
. El sistema debe clasificar la imagen subida para la modalidad selec-
Descripcion . .
cionada con el modelo elegido.
- . Hay una imagen subida al sistema.
Precondiciones

. Hay un modelo seleccionado y cargado.

Flujo principal

. El sistema procesa la imagen.

. El sistema pasa la imagen por el modelo.

. El sistema obtiene una prediccién y la muestra.

. El sistema comprueba que se puede realizar visualizacion.

. De ser posible, el sistema invoca el caso de uso CU-04: Visualizar
decisién.

QU W N [N =

Flujo alternativo

4a. El sistema determina que no se puede realizar la visualizacion.
4a. El sistema termina el caso de uso sin invocar el CU-04: Visualizar
decision.

Cuadro 7.6: Descripcién del caso de uso CU-03: Clasificar.

CU-04 Visualizar Decisién
Actor Sistema.
. El sistema procesa la visualizaciéon de interpretabilidad sobre la ima-
Descripcién
gen cargada.
1. Hay una imagen cargada en el sistema.
.. . Hay un modelo cargado en el sistema.
Precondiciones

. Se ha obtenido un diagnéstico.
. El modelo cargado debe de poder visualizar decisién.

Flujo principal

. El sistema carga los ajustes de visualizacién por defecto.

. El sistema procesa la imagen.

. El sistema genera visualizacién de interpretabilidad.

. El sistema le muestra al usuario la visualizaciéon generada.

. El sistema permite al usuario cambiar los ajustes de la visualizacién.

QU = W N k= Wi

Flujo alternativo

Ha. Si el usuario elige otra opcidn el sistema vuelve al paso 3.

Cuadro 7.7: Descripcion del caso de uso CU-04: Visualizar decisién.
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CU-05 Generar informe
Actor Usuario.
o El sistema debe permitir al usuario generar un informe con los resul-
Descripcién . ./
tados de la clasificacion.
Precondiciones . Se ha obtenido un diagnéstico.

. El usuario selecciona generar el informe.

. El sistema afiade al informe los resultados de la clasificacion.

. El sistema comprueba que haya una visualizacién hecha.

. Si existe, el sistema anade la visualizacién al informe.

. El sistema genera el PDF.

. El sistema descarga el informe.

3a Si sistema no encuentra la visualizacién, el sistema continua con el
paso 5 sin incluirla.

Flujo principal

T UL W N ==

Flujo alternativo

Cuadro 7.8: Descripcién del caso de uso CU-05: Generar Informe.

7.2. Diseno

7.2.1. Patrones de diseno
Patrén Modelo-Vista-Controlador (MVC)

El patrén Modelo-Vista-Controlador (MVC) es una arquitectura de software que separa
una aplicacién en tres componentes principales:

= Modelo: encargado de la gestiéon de los datos, la légica de negocio y el estado de la
aplicacion.

= Vista: encargada de la presentacién y la interfaz con el usuario.

= Controlador: encargado de orquestar el flujo entre el modelo y la vista, respondiendo
a las acciones del usuario.

A pesar de que Streamlit no sigue un MVC clésico, ya que mezcla interaccién y renderizado
en un mismo flujo, se ha intentado estructurar la aplicacién en tres médulos que lo adaptan.

= main.py actia como Controlador, encargandose del flujo general. Hace de intermediario
entre app_logic.py y app_view.py.

» app_logic.py actia como Modelo, manejando la 16gica de negocio. Contiene las funcio-
nes para la busqueda y carga de modelos, el preprocesamiento de las imégenes y la
generacién de informes.

= app_view.py actia como Vista, definiendo la interfaz visual.
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Aunque esta divisién no cumple estrictamente con el patrén MVC, si respeta el principio de
separacion de responsabilidades. Esto hace que el cédigo sea modular, escalable y mas facil
de mantener; asimismo, evita mezclar la légica con la presentacién, lo que permite modificar
la interfaz sin afectar la légica interna.

7.2.2.

7.2.3.

Por cuestiones de claridad, el diagrama de clases ha sido divido en dos partes:

» LiverImg y sus clases adyacentes. Figura:

Arquitectura

Diagrama de clases

= Los modelos de clasificacién y sus clases adyacentes. Figura:

ModeDirs

+MAIN_DIR: Path

+ CIRRHOTIC_STATE: Path
+HEALTHY_LIVERS_OR_NOT: Path
+ ORGAN_CLASSIFICATION: Path

ImageDirs

+MAIN_DIR: Path
+ CONVERT: Path
+ HURH: Path

+ ONEDRIVE: Path

AnnotationDirs

+MAIN_DIR: Path

+ HURH: Path

+ ONEDRIVE: Path

+ FINAL: Path

+ CONVERT: Path
+POST_CLASSIFICATION: Path

<<Enumeration>>

<<Enumeration>>

+ SPLEEN

DatasetMode + GALLBLADDER
+ ORGAN_CLASIFICATION -+ gf&:gg‘g
+HEALTHY_LIVERS +HCC
+ CIRRHOTIC_STATE 0. + HEALTHY_LIVER

GRS e el = o JEELTY

EE A 3| + PANCREAS
+ from_num_classes(n: int) <<class>> + KIDNEY
+ all() <<class>> +BENIGN_LIVER INJURY
+num_classes(): int <<praperty=>>
+ categories() +all(): list <<class>>
Engis mappina() +livers(): list <<class>>
+ directory() + cirmhee_livers(): list <<class>>
+diseased_livers(): list <<class>>
+ cirrhotic_state(): list <<class>>
Liverimg

+ dataset_mode: Datase]

+only_bmode: Boolean
1 + test_size: Fioat
+ split: Literal

+ classes: List
+class_distribution: List

Mode

+img_transform: Compose
+target_transform: Compase

+ annotations: DataFrame

#__len_ ()
#_getitem_ (idx: None)

Liverimg(dataset_mode: DatasetMode, img_transform: Compose, annotations_file: None, target_transform: Compose, spiit: None, test_size: float, only_bmade: bool)
#_annotation_mapping_(annotations: None)

Figura 7.2: Diagrama de Clases de LiverImyg.
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ImageTrim
+ LEFT:int + device: sir
+ RIGHT. int + taks,_type: st
+TOP: int + num_clases: int
+BOT. int + meries: dict CusinmChill
S < gmensions: upe
+ HEIGHT(): int <<property>> MetricsManager(metrics_to_use: None, num_classes: None, ity
+ C_width(r:int): int device: None, defaul_average_type: sir) e
+ C_heigh(n: int): int + update(preds: None, targets: None, prabs: None) + ou dhannak: uple
+ resize(n: ini) + compute() + i vt b
+reset() + all_channets: list
+ print_summary() + ou_kemels: list
o + o stides: st
Susex) = + o paddings list
i +<+.._| + pool_kemels: st
: E + pool_strides: list
PretraineConfig i + pool_paddings: st
+ gradEam_compatible: bool
+BATCH_SIZE ; + gap_outputs: tuple
+ MAX_EPOGHS : + model_director
+ MAX_PATIENCE auses> + cony_fayers: Sequentia
bt e 7 + gap: AdapiiveAvgPool2d
L LEARNING_RATE i + hum_hidden_ et len
+IMG_SIZE H R
+MODEL FILE . ! + fc_layers: Sequential
1 + use. cropout: st
PretrainedMiodel CustomENN{ru_dimrsions: None, um_lasss: . dectr: None, o chanes:one. o_enes Nore,
g=x s Norie, ov_paciings: None, pool_kernels: None, pool_sirdes: None, pool_paddings: None,
model_name: ModeiName o ot bocl 40, ot None, maden. ayers: Hore. o Sropouts: ok
: root_path: sir # _make_conv(ev_index: inf): Sequential
Y num_classesint #Imake_oltl . ) Sequente
grayscale: bool # e con o
ImageNormalization e gk "ty o -
img st + gel_last_conv_layer(): Module <<property>>
+IMAGENET_GRAY: wple deee: st : f’uaa,mnae\(panfmf)mm\: Nond)<coibons
+ IMAGENET_COLOR: tuple model nn Modie  forward(c: None)
~ SIMPLE_GRAY: tuple Thodel pain: st ¥ send 1o deviceforce._opu baol) s
+SIMPLE_COLOR: tuple input_size: tuple + save_checkpoini(epoch: int, optimizer: None, loss: flal, accuracy: float. scheduler: None, hyperparameters: dict):str
gradcam_compatible: bool + load_checkpoint(path to_model: si): Moduie
+ repot_csv(epoch: i, hyperparameders: dict, optimizer: None, scheduler: _LRScheduler, metrics: dict)
+ i{oaders: None, crterion: None, optmizer. None, scheduler: None, hyperparameters: dict, validation: bodl, trial None)
|_name dataset_mode + rain_loop(ioader. None, crierion: None, optimizer: Nonel: float
- '\:::;TLUET&:,HVSV:QNS bool) + evallation_loop(loader: None, criterion: None): dict
#_build_model(download_weights: boo): Module + predici(img_tensor: None)
+ get_transforms(); Compose
+ get_last_conv_layer(: Module <<property>> ks
+rain_loop(train_loader: None, epoch: None, optimizer: None, crterion: None, scaler: None):foat
+ firain_loader. DataLoader, valld_loader: DataLoader)
+ validate{loader: DataL oader, riterion: _Loss) "
+ save(model_paih: None)
i o v
+ evaluate(loader: Dataloader, save: bool) + wide: wple +BMODE
+get_model_pathi(fie_name: st). Path + DOPPLER
+ pradict{img_tensor: None)

7.2.4.

En esta seccién se presentan los diagramas de secuencia asociados a los casos de uso

<<Enumelal|an>>
ModelNam:

+ EFFICIENT
+DENSE
+RESNET
+ MYCNN

+ pretrained() <<class>>
+ all() <<class:
+ from_value(value: sir) <<class>>

+model: Module

+ conv_layer: Module
+ novmalllauun

+ device: st
ﬂs,\mevamve bool
+ timestamp: Date.

ModelVisualizer(model: Module, Gonv_layer: Module, normalization: tuple, device: str)
<+ unnormalize_tensor(tensor: Tensor)
+tensor_to_pil(tensor: Tensor

)
+compute_gradcam(input_tensor: Tensor, target: int, relu_attributions: bo

ol)
+ averlay_heatmap (original_image: Image, attributions: None, heatmap_cmap: str, alpha: float, interface:_color: str, scale: int, save: bool)

Figura 7.3: Diagrama de Clases de los modelos de clasificacion.

Diagramas de secuencia

describe el flujo principal de la aplicacion.

y se
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CU-01: Elegir modelo y modalidad

Cu-01 J

Usuario

mmeeeee]

main.py

app_view.py

app_lagic.py

how_main_block()

[———show_selection_cols(}

4 - =elected_madel, working_mode— -

find_selected_madel{mode_dir. dataset_made. selected_madel)

haows_mde_selectioni)

howi_meedel_selection()

transform, model_name, model_acc, model

show_moded_iay

how_gradcam_info(gradcam_avakable)

I
froce|_name, woikng_mode(ndex ], model_acck H
*[]
'

show_mmage_uploader()

5
0

ind_best_ model{mode_dir)

repare_modelbest_model_path)

copreatps—#|

model :Model

Figura 7.4: Diagrama de secuencia del flujo principal de CU-01.
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CU-02: Subir imagen

Cu-02 .J

Usuario
)

app_view.py

main.py
-
l &
Subir Image
uploaded_file
.ﬁ _________ E_ . — — =
=how

t.file _uploader()

T
¢ _cercered Imgiimg, caption, spacej "'[I
Lot

ref

CU-03: Clasificar

app_logic.py

Figura 7.5: Diagrama de secuencia del flujo principal de CU-02.
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CU-03: Clasificar

Ccu-03 .J

X

main.py

.
Usuario
T

'

'

'

'

P
o

prepracess_imageimg,device, transkrmy

app_logic.py

maodel:Model

app_view.py

Y

predict{img_tensar)t
1

------------- predicted, confidencer - -----

pet_targets_text{dataset_maode, targpet]) i
L
text_result D

o

'
owi_predict_text{dataset_mode, texd, predicted)
'

ref )

CU-04: Visualizar decision

Ll W

Figura 7.6: Diagrama de secuencia del flujo principal de CU-03.

CU-04: Visualizar decisién

CU-Or-'I-)

i main.py

Usuario
1

}-----1

show_wisualization_settngs()

app_view.py app_logic.py

Viz_settings|

get_attribations{tran=form, img_tensor, model, predicted, relu_atiribution

L get_nommalization|transfoom)

— model_vis:
i L modet ModelVisualizer
model_vis compute_gradeam]
L ki
3 o . img_tensorpredicted relu_atiributions)
overlay_heatmap{heatmap_cmap, alpha, inerface_color) o
Img_neatmap
e : s e e e
'
I
I
'
I
I
'
I
I
'
I
I
I
I

-

Figura 7.7: Diagrama de secuencia del flujo principal de CU-04.
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CU-05: Generar Informe

Cu-05

% : model_vis: .
main. = app_logic,
Py ModeMNisualizer Pp_0gic-py
Usuario ]
H aoverlay_heatmap{heatmap_cmap, alpha, inerface_caolor)

Zla B
=

img_heatmap_pdf

Generar PDFE__ |

Ll
create_pdifprediction_tex, sebected_model, accuracy, selected_mode, mage)

informe_ecografia. pdf =L R R L e ET S BE R SRR R LR R R R R

e S

Figura 7.8: Diagrama de secuencia del flujo principal de CU-05.

7.3. Implementacion

7.3.1. Tecnologias utilizadas
En el desarrollo de la aplicacién web, se ha hecho uso de las siguientes tecnologias:

= Python: elegido por su coherencia con el resto del proyecto,por su rapidez a la hora
de desarrollar codigo y por sus multiples opciones de frameworks web, como Flask,
Django, FastAPI o Streamlit.

= Streamlit: biblioteca de Python de cédigo abierto, especialmente popular en proyectos
de Aprendizaje Automatico. Permite un desarrollo rapido de aplicaciones web ya que se
puede hacer uso Python; ademas, tolera el uso de cédigo HTML y CSS y el despliegue
de la aplicacién en plataformas como Streamlit Community Cloud, Heroku, o AWS|[29].

» Nginx: utilizado como proxy inverso y para el manejo de las conexiones SSL.

= Docker: utilizado para el despliegue del proyecto. Permite ser desplegado en cualquier
maquina que lo tenga instalado.
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7.3.2. Configuracién de Nginx
La configuracién de Nginx ha sido disenada para:

= Redirigir el trafico del puerto 80, conexiones HTTP, al 443, HTTPS.

= Servir HTTPS utilizando certificados SSL que actualmente son autofirmados, por ser
un proyecto de TFG.

= Actuar como proxy inverso de la aplicacién de Streamlit, evitando exponer el puerto
directamente.

7.3.3. Docker

Para el despliegue de la aplicacion en Docker se han utilizado dos contenedores: uno para
Streamlit y otro para Nginx. El levantamiento de ambos se hace a través de un docker-
compose que, ademads de la configuracion de cada contenedor, crea una red interna para que
se puedan comunicar.

Contenedor Streamlit
Su funcién consiste en:

= Construir la imagen con un Dockerfile e indicar desde dénde montar la imagen.

= Levantar voliumenes para los modelos de IA, lo que hace que los modelos no se tengan
que cargar en la imagen y asi ocupe menos. De esta manera, se tarda menos en cargar y
construir. Ademds, sirve para evitar reconstruir la imagen si se actualizan los modelos,
por lo que su entrenamiento queda completamente independiente de la web.

= Exponer solo a la red interna el puerto 8501, que es el utilizado por defecto por Stream-
lit.

» Relanzar el contenedor en caso de fallo.

El Dockerfile se encarga de, partiendo de una imagen python:3.12-slim, crear la estructura
de carpetas necesarias para el funcionamiento de la aplicacién, instalar dependencias del
sistema, instalar los paquetes Python necesarios, copiar los archivos de cédigo y lanzar la
aplicacion.

Contenedor Nginx

En el caso de este contenedor, se utiliza la ultima imagen de Nginx almacenada en el
servidor de Dockerhub. Asimismo, se montan voliimenes para los certificados y para el archivo
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de configuracién; de este modo los certificados o la configuracion pueden ser cambiados o
renovados sin necesidad de relanzar el contenedor. Ademads, se exponen al exterior los puertos,

80 y 443, necesarios para HTTP y HTTPS.
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Capitulo 8

Conclusiones y lineas futuras

En este capitulo se recogen las conclusiones méas relevantes derivadas del trabajo reali-
zado. A partir de los resultados obtenidos, se reflexiona sobre los objetivos alcanzados y el
aprendizaje recibido. Ademads, se plantean posibles lineas futuras de investigacién y mejoras
que podrian mejorar el proyecto.

8.1. Consecucion de objetivos

Respecto a los objetivos propuestos al inicio del proyecto se consideran logrados satisfac-
toriamente:

= El haber conseguido un significativo nimero de imagenes de ecografias y que estés se
hayan procesado de forma que puedan ser reutilizadas en trabajos futuros.

= Kl desarrollo de modelos personalizables de visién por ordenador, que pueden aplicarse
a otros contextos, con otros conjuntos de datos y que aceptan tanto clasificacion binaria
como multiclase.

= El entrenado de modelos preentrenados y propios para clasificar imdgenes de ecografias
de la regiéon abdominal.

= La implementacion de una aplicaciéon que, dada una ecografia, pueda realizar una cla-
sificacién incluyendo la visualizacion de la toma de decisiones del modelo.

8.2. Aprendizaje percibido

Durante el desarrollo de este proyecto se ha percibido un aprendizaje significativo en las
siguientes dreas:
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» Programacion Orientada a Objetos.

= Desarrollo de modelos de Aprendizaje Automatico, con especial énfasis en modelos de
visién por ordenador y, en concreto, las Redes Neuronales Convolucionales.

= Uso de tecnologias de contenedores como es Docker.

= Aplicacién de Patrones de Diseno.

Desarrollo de aplicaciones web.

= Organizacién y planificacion del trabajo, tanto de manera individual como en lo relativo
a la recogida escalonada de los datos.

De todo este proceso cabe poner en valor lo enriquecedor que ha sido:

= Trabajar con datos reales, habiendo sido extraidos directamente de la fuente. Para ello
fue necesario acudir al hospital, lo que permitié hablar con los médicos ademds de ver
y aprender de primera mano los procesos que se realizan a las muestras.

= Desarrollar una tuberia completa para el procesado de estos datos, desde la extraccién
en crudo hasta su preparacién final para el entrenamiento de modelos.

= Colaborar junto a profesionales de la salud, lo cual desembocé en la posibilidad de
colaborar en la escritura y publicacién del abstract previamente mencionado.

8.3. Trabajo futuro

A pesar de que se considera satisfactoria la consecucion de los objetivos establecidos,
existen distintas lineas de trabajo sobre las que se podrian realizar avances en las siguientes
areas:

Respecto a las imagenes:

= Ampliar la diversidad de imdgenes de ecografias. De forma que no exista un desequili-
brio tan grande entre las clases.

s Jgualar la cantidad y distribucién de iméagenes obtenidas de cada ecégrafo.

= Realizar un preprocesamiento maés intensivo de las imagenes que permita aprovechar
un mayor nimero de las que los expertos etiquetan o aplicar diferentes aproximaciones
(como dividir en partes el sector ecogréfico), de una forma mds similar a la realizada
en los trabajos mencionados en la seccién del estado del arte.

= Implementar técnicas de aumento de datos aplicadas unicamente a las clases donde se
tienen menos muestras, reduciendo el desbalance.
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Respecto a los modelos de TA:

= Implementar conexiones residuales en CustomCNN, convirtiéndola una de las opciones
de la arquitectura.

= Integrar en CustomCNN los mecanismos de optimizacién de memoria utilizados en
PretrainedModels.

= Aplicar técnicas de entrenamiento mas avanzadas, como puede ser la Validaciéon Cruza-
da, lo que contribuiria a obtener estimaciones mas fiables del rendimiento del modelo,
aproximandolo mejor al error esperado.

= Entrenar los modelos en maquinas mas potentes que admitieran arquitecturas mas pro-
fundas y complejas, lotes de tamanos mas grandes y reducir el tiempo de entrenamiento
de los modelos. Asimismo, implementar mecanismos como la paralelizacion.

Respecto a la aplicacion web:

= Mostrar mas informacién sobre los modelos utilizados para clasificar, como sus métricas
o graficos de entrenamiento.

= Incorporar una opcién que utilice un ensamblaje de modelos para la prediccién, lo cual
permitiria alcanzar un diagndstico mas eficaz.

= Mejorar la seguridad, ya que se realiza un tratamiento de datos médicos potencialmente
sensibles.
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Apéndice A

Manuales

A.1. Manual de instalacién

Este anexo detalla los pasos a seguir para llevar a cabo la instalacién de la aplicacién web
desarrollada en el proyecto, asi como la informacién necesaria para el correcto uso de ella
por los usuarios.

A.1.1. Aplicacién web

El lanzamiento de la aplicacién web se debe hacer desde la raiz del proyecto, ejecutando
el siguiente comando:

docker compose up

Como requisito, es necesario tener instalado Docker|30] y Docker Compose[31]. Depen-
diendo del sistema operativo, puede que se requieran permisos de superusuario (sudo).

Para levantar los contedores también se puede utilizar el script rebuild.sh, que:

1. Detiene contenedores y volimenes existentes.
2. Elimina los contenedores no utilizados.
3. Reconstruye y reinicia los contenedores desde cero.

Este script es util para reiniciar el entorno en caso de errores o para aplicar cambios en
el cédigo.
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Modelos

Para que la aplicacién pueda clasificar imagenes, es necesario que los modelos estén dis-
ponibles en las rutas correspondientes, sobre las cuales Docker monta los volimenes.

Se puede lanzar la aplicacién sin modelos, pero en ese caso no podra realizar tareas de
clasificacién. Mas adelante, pueden entrenarse o reentrenarse sin necesidad de reiniciar la
aplicacion.

Los modelos se almacenan en:

data/model_state/<modo_funcionamiento>/<tipo_modelo>/

A.1.2. Entrenamiento de modelos

Para entrenar los modelos, primero deben instalarse las dependencias de Python mediante:

pip install —r requirements.txt

Existen dos tipos de modelos, cada uno con su propio script de entrenamiento. Ambos
deben ejecutarse desde la raiz del proyecto:

= Modelo personalizado:

python —m code.scripts.models.train_custom

= Modelos preentrenados:

python —m code.scripts.models. train_pretrained

Ambos scripts solicitan argumentos que deben proporcionarse en su ejecucion.

Si la ejecucion de un modelo personalizado se detiene, puede retomarse con:

python —m code.scripts.models.retrain_custom

Alternativa con PYTHONPATH

También es posible definir la raiz del proyecto como PYTHONPATH para ejecutar los scripts
directamente:

export PYTHONPATH=$ (pwd)
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En ese caso, serd necesario una de las siguientes opciones:

= Dar permisos de ejecucién:

chmod 4+x ruta_al_archivo.py

= O utilizar el intérprete de Python:

python ruta_al_archivo.py

Requisitos de datos

Para entrenar los modelos, se requieren imagenes en las siguientes carpetas:

data/images/HURH/<categoria>/<modo_ecografia>/
data/images/OneDrive/<categoria>/1280x960/<modo_ecografia>/

Asi como los archivos de anotaciones correspondientes en:

data/csv/final/

Si no se dispone de ellos, es necesario ejecutar el proceso de preprocesamiento de imagenes
para generarlos.

A.1.3. Preprocesamiento

Para ejecutar los scripts de preprocesamiento es necesario tener imagenes almacenadas
en dos carpetas. Ademas de las imédgenes, en cada carpeta se podra encontrar:

= Ocho directorios que representan categorias de imagenes cuya ruta es:
data/images/HURH/
= Tres directorios que representan categorias de imégenes cuya ruta es:

data/images/OneDrive/

No es necesario disponer de imagenes de ambas fuentes para realizar el preprocesamiento.
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Ejecucion del preprocesamiento

Para preparar los datos, ejecute el siguiente script desde la carpeta raiz del proyecto:

python —m code.scripts.preprocessing. pipeline_classification

Una vez lanzado, este script realiza las siguientes tareas:

1. Eliminar artefactos y anotaciones visibles de la interfaz de las ecografias.
2. Separar las imdgenes en dos carpetas segun la técnica: bmode (modo B) y doppler.

3. En el caso de OneDrive, filtrar las imagenes compatibles con las del ecografo Aplio i700
y aplicar los pasos anteriores.

Asimismo, genera archivos CSV con informacién de anotacién para:

= Registrar las rutas de las imédgenes.
» Indicar la técnica utilizada (modo B o Doppler).

= Permitir la reconstruccién del proceso en caso de error.

A.2. Manual de usuario

Tras haber lanzado los contenedores de Streamlit y Nginx, la web serd accesible desde
un navegador. Para acceder desde el mismo equipo, vaya a la siguiente direccion:

https://localhost

Esto lanzara la vista de la aplicacion, tal y como se muestra en la figura:

Clasificador de Ecografias Abdominales

Modo de funcionamiento de modelo

Tasa de acierto de ResNet para clasificar Estado Cirrotico: 82.2%.

&= Cargue una ecografia

Figura A.1: Vista al entrar en la aplicacién.
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A partir de aqui, el usuario tiene opcion de:

= Cambiar las selecciones del modo de clasificacién y de los modelos usados para clasificar.

= Subir una imagen, ya sea arrastrandola o seleccionando el botén de subir imagen.

Una vez cargada la imagen, se mostrard en pantalla y serd clasificada automaticamente
por el sistema, exponiendo un resultado por pantalla, como se observa en la figura

canon

Prediccién: Higado Sano con probabilidad 95.93%.

Figura A.2: Vista tras subir una imagen a la aplicacion.

Debajo de la imagen, apareceran nuevas opciones para ajustar la visualizacién de la toma
de decisiones del modelo, junto con dicha visualizacién. Como se muestra en la figura:

Figura A.3: Visualizacién de la toma de decisiones del modelo.

Tanto si se ha conseguido mostrar la visualizacién, como si no, en la parte inferior de la
pagina aparecerd un botén para descargar un informe en formato PDF con los resultados
obtenidos. Figura[A.4]
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Informe de Clasificacion

Modelo utilizado:
CustomCNN

Precision del modelo:
79.93%

Modo de funcionamiento:
Sano o Enfermo: Determina si un Higade esta sano o enfermo

Prediccion:
Higado Sano con probabilidad 95.93%.

Imagen:

Ecografia con Grad-CAM superpuesto.

Asignacion Automatica

Figura A.4: Ejemplo de un informe PDF, una vez descargado y abierto.
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Apéndice B

Contenidos del CD-ROM
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Apéndice C
Aporte de imagenes

Lista de Hospitales que han proporcionado imagenes para el proyecto:

= Hospital Universitario Rio Hortega en Valladolid.
= Hospital Clinico Universitario de Valladolid.

= Hospital Virgen De La Concha en Zamora.

= Hospital Provincial de Zamora.

= Hospital Santa Barbara en Soria.

= Hospital Nuestra Senora de Sonsonetes en Avila.
= Hospital Comarcal de Medina del Campo.

= Hospital de Leon.

= Hospital del Bierzo en Ponferrada.

= Hospital Comarcal de Benavente.

= Hospital Santiago Apéstol Miranda de Ebro.

= Hospital General Rio Carrién de Palencia.

= Hospital Clinico Universitario de Salamanca.

Ecégrafo del que se han obtenido las imagenes usadas en el proyecto:



Canon

Figura C.1: Ecégrafo Canon Aplio i700.
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Apéndice D

Abstract

Titulo: APLICACION DE MODELOS DE INTELIGENCIA ARTIFICIAL EN EL DIAGNC)STI—
CO ECOGRAFICO DE CIRROSIS Y HEPATOCARCINOMA. ;SOBRAREMOS LOS MEDI-
COS EN EL FUTURO?

Autores: Diego Rodriguez Arroyo (1), Marina de Benito Sanz (2), Daniela Samantha
Ortiz Chimbo (2), Elena Velasco Martinez (2), Jorge Ruiz Rodriguez (2), Marfa Jordén de
la Fuente (2), Laura Jiménez Gonzilez (2), Irene Penas Herrero (2), Félix Garcia Pajares
(2), Rail Garcfa Pajares (3), Adridn Sanchez Zapico (3), Gloria Sdnchez Antolin (2). (1)
Estudiante de Ingenieria Informética de la UVA. (2) Servicio de Digestivo, HURH, Valladolid.
(3) Ingeniero de HP SCDS.

Introduccién: La ecografia es una prueba de imagen accesible, inocua y sencilla de apli-
car en el cribado de los pacientes cirréticos; sin embargo, requiere de un operador entrenado
y consume tiempo, por lo que seria interesante automatizar el diagndstico.

Materiales y métodos: Se recogieron 1079 imagenes ecograficas de higado clasificadas
en 3 categorias: 755 higados sanos, 313 cirrdticos y 11 con hepatocarcinoma (CHC). Para
el preprocesamiento de las imégenes y construccion de los modelos se utiliza Python 3.12
y Pytorch, y se ejecutan en una maquina Linux con una GPU 1060 3Gb. Las imégenes
son recortadas a la zona de interés y se aplican CNN con diferentes arquitecturas, asi como
modelos ViT. Los datos se dividen en 2/3 para el entrenamiento y 1/3 para la evaluacidn,
manteniendo la distribucion de categorias del conjunto inicial.

Objetivo principal: Desarrollar modelos para la deteccién de CHC mediante ecografias
de higado.

Resultados: Cuando se trata de clasificar inicamente un higado en sano o enfermo, los
modelos CNN obtienen tasas de acierto en torno al 98 % en las imdgenes que ya han visto
y un 75% en las que no. Cuando se trata de diferenciar entre sano, cirrosis o CHC; los
CNN tienen una tasa de acierto de aproximadamente 75% en las imdgenes que han visto
previamente y 56 % en las que no, con mejores resultados del modelo de desarrollo propio
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frente a los preentrenados en las imagenes de evaluacién.

Conclusiones: Los modelos logran aprender e identificar con eficacia las imégenes que ya
han visto; sin embargo, no generalizan eficazmente su conocimiento a imagenes desconocidas.
Esto puede deberse al desequilibrio entre las 3 categorias, habiendo solo 11 imagenes de CHC
(lo cual es la gran limitacién de nuestro estudio, estando actualmente aumentando el nimero
de imagenes ecograficas con CHC) y a que la posicién de los érganos y su orientacién varia
mucho entre las ecografias. Nuestros resultados sugieren que la ecografia no es la mejor prueba
de imagen para estos modelos ya que es un estudio muy dindmico y operador-dependiente,
pudiendo ser més adecuadas pruebas que generan imagenes més estaticas como el TAC o la
RM.
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