
Escuela de Ingenieŕıa Informática
de Valladolid

TRABAJO FIN DE GRADO

Grado en Ingenieŕıa Informática

Mención Tecnoloǵıas de la Información

AuditSApp: Método para auditar
la seguridad de una aplicación

móvil

Autora:
Jiménez del Bosque, Teresa

Tutora:
Mart́ınez González, Maŕıa de las Mercedes

Agradecimientos

En primer lugar, agradecer a mis padres por ser mi apoyo y estar siempre ah́ı. Siempre habéis sido
y seréis mi mayor inspiración. Esto es tan mı́o como vuestro.

En segundo lugar, agradecer a mi pareja, por estar presente durante todo este tiempo. Gracias por
todo el apoyo y los ánimos, tanto en los momentos de felicidad como en los d́ıas más duros.

En tercer lugar, dar las gracias a todos los familiares y amigos que han estado durante todo este
tiempo, tanto los que ya estaban como las nuevas amistades forjadas a lo largo de la carrera. Sin
vosotros no hubiera sido lo mismo.

Por último, agradecer a mi tutora, Mercedes y a Alejandro, por todo el apoyo, los ánimos, correc-
ciones, indicaciones y el conocimiento proporcionado a lo largo de este proyecto.

3

Resumen

En la actualidad, la privacidad de los datos de los usuarios se ha vuelto un aspecto sumamente
relevante debido al aumento del uso de aplicaciones móviles y, al ataque de éstas por parte de
terceros para extraer información de los usuarios o de la aplicación. Por este motivo se han redactado
diferentes normativas que regulan la protección de los datos y diferentes gúıas que indican los
pasos a llevar a cabo para detectar las vulnerabilidades existentes y, de ese modo, saber actuar
en caso de que las exploten. Es por esto por lo que surge este proyecto, cuyo objetivo es detectar
las vulnerabilidades presentes en una aplicación móvil. Para ello se realizará una búsqueda de
las diferentes normativas y gúıas actuales relacionadas con el tema, posteriormente se elaborará el
diseño de las pruebas que se lanzarán primero en un entorno controlado y después sobre la aplicación
real. Una vez ejecutadas las pruebas, el siguiente paso es proporcionar una serie de medidas y
recomendaciones para minimizar el impacto de las vulnerabilidades encontradas. Finalmente, se
expondrán las conclusiones a las que se ha llegado a lo largo del desarrollo del proyecto.

5

Abstract

Nowadays, the privacy of user data has become an extremely relevant aspect due to the increase
in the use of mobile applications and the attacks on them by third parties to extract information
from users or from the application. For this reason, different regulations have been drafted to
regulate data protection and different guides that indicate the steps to be taken to detect existing
vulnerabilities and, thus, to know how to act in case they are exploited. This is the reason for this
project, the aim of which is to detect the vulnerabilities present in a mobile application. To do this,
a search of the different regulations and current guides related to the subject will be carried out,
after which the design of the tests will be developed, which will be launched first in a controlled
environment and then on the real application. Once the tests have been executed, the next step is
to provide a series of measures and recommendations to minimise the impact of the vulnerabilities
found. Finally, the conclusions reached during the development of the project will be presented.

7

Índice general

Agradecimientos 2

Resumen 3

Abstract 5

1. Introducción 17
1.1. Contexto . 17
1.2. Motivación . 17
1.3. Objetivos . 18
1.4. Organización del documento . 18

2. Planificación del proyecto 21
2.1. Caracteŕısticas del proyecto . 21
2.2. Metodoloǵıa empleada . 22
2.3. Planificación inicial . 22
2.4. Riesgos . 24
2.5. Seguimiento de la planificación. 26

3. Estado del arte 27
3.1. Datos personales . 27
3.2. Normativas de protección de datos: RGPD y LOPDGDD. 28
3.3. Metodoloǵıas de pruebas de auditoŕıa de aplicaciones móviles. 29

3.3.1. OWASP . 29
3.3.2. NIST SP 800-163 . 39
3.3.3. Categoŕıas de análisis para la realización del test de seguridad. 39

4. Análisis de la aplicación. 41
4.1. ¿Qué es AquaCyL? . 41
4.2. Seguridad de los datos . 42
4.3. Permisos . 43
4.4. Familiarización con la aplicación. 43

4.4.1. Aplicación sin iniciar sesión. 44
4.4.2. Aplicación con la sesión iniciada. 47

5. Análisis de la metodoloǵıa OWASP. 51
5.1. Categoŕıas MASVS-OWASP . 53

9

ÍNDICE GENERAL

6. Diseño 55
6.1. Riesgos detectados en la aplicación . 55
6.2. Criterios de selección de las pruebas. 56

6.2.1. Criterios de selección según la metodoloǵıa OWASP. 56
6.2.2. Criterios de selección según AquaCyL. 56

6.3. Tests OWASP para auditoŕıa móvil. 57
6.3.1. Controles . 57
6.3.2. Pruebas . 59

6.4. Diseño de las pruebas. 60
6.4.1. Tipos de pruebas. 60
6.4.2. Categoŕıas de análisis. 60
6.4.3. Diseño de las pruebas seleccionadas. 60

7. Lanzamiento de las pruebas sobre InsecureBankv2. 73
7.1. Preparación del entorno de pruebas. 73

7.1.1. Instalación y configuración del emulador. 73
7.1.2. Puesta en marcha del servidor. 74
7.1.3. Configuración de la aplicación en el emulador. 75

7.2. Familiarización con la aplicación. 75
7.3. Ejecución de la selección de pruebas. 77

7.3.1. MASTG-TEST-0002 - Prueba del almacenamiento local para la validación
de los datos de entrada. 77

7.3.2. MASTG-TEST-0004 - Determinar si se comparten datos confidenciales con
terceros a través de datos embebidos. 78

7.3.3. MASTG-TEST-0008 - Comprobación de la divulgación de datos confidencia-
les a través de la interfaz. 78

7.3.4. MASTG-TEST-0011 - Prueba de memoria de datos confidenciales. 79
7.3.5. MASTG-TEST-0014 - Prueba de la configuración del algoritmo estándar de

criptograf́ıa. 79
7.3.6. MASTG-TEST-0017 - Prueba para confirmar credenciales. 80
7.3.7. MASTG-TEST-0023 - Prueba de proveedor de seguridad. 80
7.3.8. MASTG-TEST-0026 - Prueba de intenciones impĺıcita. 81
7.3.9. MASTG-TEST-0027 - Prueba de carga de URL en WebViews. 81
7.3.10. MASTG-TEST-0036 - Prueba de actualización forzada. 82
7.3.11. MASTG-TEST-0037 - Prueba de limpieza de WebViews. 82
7.3.12. MASTG-TEST-0040 - Prueba de śımbolos de debugging. 83
7.3.13. MASTG-TEST-0043 - Errores de corrupción de memoria. 83
7.3.14. MASTG-TEST-0047 - Prueba de comprobación de integridad de archivos. . 84
7.3.15. MASTG-TEST-0049 - Prueba de la detección del emulador. 84

8. Lanzamiento de las pruebas sobre AquaCyL. 87
8.1. Configuración del entorno de pruebas controlado. 87

8.1.1. Funcionamiento del emulador. 91
8.2. Lanzamiento de las pruebas. 92

8.2.1. MASTG-TEST-0002 - Prueba del almacenamiento local para la validación
de los datos de entrada. 92

8.2.2. MASTG-TEST-0004 - Determinar si se comparten datos confidenciales con
terceros a través de datos embebidos. 94

8.2.3. MASTG-TEST-0008 - Comprobación de la divulgación de datos confidencia-
les a través de la interfaz. 95

10

ÍNDICE GENERAL

8.2.4. MASTG-TEST-0011 - Prueba de memoria de datos confidenciales. 96
8.2.5. MASTG-TEST-0014 - Prueba de la configuración del algoritmo estándar de

criptograf́ıa. 98
8.2.6. MASTG-TEST-0017 - Prueba para confirmar credenciales. 100
8.2.7. MASTG-TEST-0023 - Prueba de proveedor de seguridad. 102
8.2.8. MASTG-TEST-0026 - Prueba de intenciones impĺıcita. 103
8.2.9. MASTG-TEST-0027 - Prueba de carga de URL en WebViews. 105
8.2.10. MASTG-TEST-0036 - Prueba de actualización forzada. 107
8.2.11. MASTG-TEST-0037 - Prueba de limpieza de WebViews. 108
8.2.12. MASTG-TEST-0040 - Prueba de śımbolos de debugging. 110
8.2.13. MASTG-TEST-0043 - Errores de corrupción de memoria. 112
8.2.14. MASTG-TEST-0047 - Prueba de comprobación de integridad de archivos. . 113
8.2.15. MASTG-TEST-0049 - Prueba de la detección del emulador. 114

8.3. Resultados. 115

9. Conclusiones. 119
9.1. Trabajo futuro. 120

Bibliograf́ıa 120

ANEXO I:Pruebas para realizar una auditoŕıa de seguridad móvil según la meto-
doloǵıa OWASP. 131

11

ÍNDICE GENERAL

12

Índice de Figuras

2.1. Estructura del modelo en espiral. 22
2.2. Diagrama de Gantt con las actividades del proyecto. 23
2.3. Matriz de riesgos . 24

3.1. Comparación OWASP Top 10 2024-2016. 29

4.1. Logo AquaCyL . 41
4.2. Primer arranque de la aplicación con las pantallas de notificaciones, inicio de sesión

y home. 44
4.3. Primer arranque de la aplicación con las pantallas de ajustes, ordenar y filtrar. . . 46
4.4. Detalles de una de las zonas de baño y vista de los comentarios. 46
4.5. Vista de las webs, con la ubicación del arroyo y con el sitio web dónde encontrar

alojamiento. 47
4.6. Interfaz de inicio de sesión y menú principal con sesión iniciada. 48
4.7. Interfaces de una zona de baño, la sección de comentarios y la de favoritos. 49

7.1. Error de ejecución de app.py con Python3. 75
7.2. Interfaces Preferences e Inicio de sesión de la aplicación InsecureBankv2. 76
7.3. Interfaces PostLogin, DoTransfer y ViewStatement de la aplicación InsecureBankv2. 77

8.1. Salida de lscpu para ver las caracteŕısticas del procesador. 88
8.2. Salida del comando free para ver la memoria RAM disponible. 88
8.3. Salida de df con el que se ve el espacio de memoria en disco. 89
8.4. Salida del conjunto de comandos xrandr y grep para ver la resolución de pantalla. 89
8.5. Enviar o no estad́ısticas a Google . 90
8.6. Tipo de instalación . 90
8.7. Ajustes finales y licencia . 91
8.8. Interfaz Android Studio . 91
8.9. Dispositivos disponibles para ejecutar en el emulador. 92
8.10. Prueba de volcado de memoria. 97
8.11. Acciones para cambiar el nombre de usuario y la contraseña. 101
8.12. Acciones para cambiar la foto de perfil y eliminar cuenta. 101
8.13. Salida de grep sobre AndroidManifest.xml. 103
8.14. Salida de grep para las intenciones que OWASP propone. 104
8.15. Salida de grep para buscar el uso de la intención impĺıcita android.intent.action.GET CONTENT.104
8.16. Salida de grep para buscar el uso de la función shouldInterceptRequest. 106
8.17. Pantalla de actualización en AquaCyL sin actualizar. 108
8.18. Salida de los comandos adb shell y run-as es.pablo.aquacyl.aqua cyl. 110

13

ÍNDICE DE FIGURAS

8.19. Salida comando find para buscar si existe código nativo. 111
8.20. NDK side by side seleccionado en Android Studio. 111
8.21. Salida de adb devices para averiguar el nombre del emulador en uso. 115

14

Índice de Tablas

2.1. Horas de trabajo en el primer periodo . 22
2.2. Horas de trabajo en el segundo periodo . 23
2.3. Hitos a llevar a cabo en el transcurso del proyecto 24
2.4. Riesgos identificados y su valor cuantificado. 25
2.5. Seguimiento del proyecto. 26

3.1. Descripción de cada factor para el riesgo M1: Uso inadecuado de credenciales. . . . 30
3.2. Descripción de cada factor para el riesgo M2: Seguridad inadecuada de la cadena de

suministro. 31
3.3. Descripción de cada factor para el riesgo M3: Autenticación/autorización insegura.. 32
3.4. Descripción de cada factor para el riesgoM4: Validación de entrada/salida insuficiente. 33
3.5. Descripción de cada factor para el riesgo M5: Comunicación insegura. 33
3.6. Descripción de cada factor para el riesgo M6: Controles de privacidad inadecuados. 34
3.7. Descripción de cada factor para el riesgo M7: Protección binaria insuficiente. . . . 35
3.8. Descripción de cada factor para el riesgo M8: Configuración incorrecta de seguridad. 36
3.9. Descripción de cada factor para el riesgo M9: Almacenamiento de datos inseguro.. 36
3.10. Descripción de cada factor para el riesgo M10: Criptograf́ıa insuficiente.. 37

4.1. Datos recogidos y objetivo. 42

5.1. Relación de los principios de la seguridad informática con las categoŕıas que OWASP-
MASVS propone. 53

5.2. Categoŕıas de seguridad de OWASP-MASVS. 54

6.1. Controles OWASP para la protección de aplicaciones móviles. 58
6.2. Pruebas OWASP seleccionadas para la auditoŕıa de AquaCyL. 59
6.3. Diseño de la prueba MASTG-TEST-0002: Prueba del almacenamiento local para la

validación de los datos de entrada. 61
6.4. Diseño de la prueba MASTG-TEST-0004: Determinar si se comparten datos confi-

denciales con terceros a través de embebidos. 61
6.5. Diseño de la prueba MASTG-TEST-0008: Comprobación de la divulgación de datos

confidenciales a través de la interfaz. 62
6.6. Diseño de la prueba MASTG-TEST-0011: Prueba de memoria de datos confidenciales. 63
6.7. Diseño de la prueba MASTG-TEST-0014: Prueba de la configuración del algoritmo

estándar de criptograf́ıa. 64
6.8. Diseño de la prueba MASTG-TEST-0017: Prueba para confirmar credenciales. . . 64
6.9. Diseño de la prueba MASTG-TEST-0023: Prueba de proveedor de seguridad. . . . 65
6.10. Diseño de la prueba MASTG-TEST-0026: Prueba de intenciones impĺıcita. 66

15

ÍNDICE DE TABLAS

6.11. Diseño de la prueba MASTG-TEST-0027: Prueba de carga de URL en WebViews. 67
6.12. Diseño de la prueba MASTG-TEST-0036: Prueba de actualización forzada. 68
6.13. Diseño de la prueba MASTG-TEST-0037: Prueba de limpieza de WebViews. . . . 69
6.14. Diseño de la prueba MASTG-TEST-0040: Prueba de śımbolos de debugging. . . . 70
6.15. Diseño de la prueba MASTG-TEST-0043: Errores de corrupción de memoria. . . . 71
6.16. Diseño de la prueba MASTG-TEST-0047: Prueba de comprobación de integridad

de archivos. 72
6.17. Diseño de la prueba MASTG-TEST-0049: Prueba de detección del emulador. . . . 72

7.1. Credenciales disponibles en InsecureBankv2. 75

8.1. Resultados del lanzamiento de las pruebas sobre AquaCyL. 116

9.1. Pruebas OWASP para la auditoŕıa de aplicaciones móviles. 134

16

Caṕıtulo 1

Introducción

1.1. Contexto

En la actualidad el uso de los dispositivos móviles se ha vuelto algo rutinario y prácticamente
indispensable. El uso de los datos que estas aplicaciones manejan es elevado y su tendencia sigue
en aumento. Una gran parte de estos datos son aquellos que se denominan como datos de carácter
personal de los usuarios que en ocasiones se recogen sin que lo usuarios tengan conocimiento, y por
ende, lo autoricen. Es por ello por lo que diferentes organizaciones han desarrollado normativas con
la regulación del uso de estos datos como puede ser el Reglamento General del Protección de Datos
(RGPD) [1] a nivel europeo, como la Ley orgánica de Protección de Datos Personales y Garant́ıas
de Derechos Digitales (LOPDGDD) [2] a nivel nacional, donde se requiere que la información de
los usuarios se proteja para que no se pueda identificar a un individuo por medio de esos datos, a
menos que exista un consentimiento expreso para ello por parte de los implicados o haya un interés
leǵıtimo.

Aunque hacer que las aplicaciones no muestren de forma directa estos datos de carácter personal es
importante para la seguridad de la información, en ocasiones existen una serie de vulnerabilidades
dentro de dichas aplicaciones que permitan que terceros puedan acceder a estos datos. Motivo por
el que hay que contar con una serie de medidas de seguridad.

El presente proyecto busca encontrar las diferentes vulnerabilidades de seguridad que pueda tener
una aplicación móvil que se encuentra accesible para todos los usuarios desde Google Play y, en
caso de encontrarlas, proponer unas medidas para mitigarlas o eliminarlas.

1.2. Motivación

Hoy en d́ıa la privacidad, y en especial la privacidad de la información, se ha convertido en un
aspecto de suma importancia ya que con solo unos pocos datos es posible identificar a una persona.
Según las diferentes normativas de seguridad, aquellos datos que permiten identificar a un usuario
deben protegerse para que personas no autorizadas o con intereses ileǵıtimos no puedan acceder a
ellos.

17

CAPÍTULO 1. INTRODUCCIÓN

El hecho de que un atacante obtenga datos personales de otro usuario puede conllevar, entre otros,
suplantaciones de identidad, robo de información, etc; y, con el uso de las aplicaciones móviles
estos ataques han aumentado considerablemente. Aunque este incremento sea evidente y esté a la
orden del d́ıa, aún existen empresas que desarrollan aplicaciones móviles que ignoran este suceso o
la propia seguridad básica pensando que el ataque llegará de una forma sofisticada y complicada.

La motivación de este proyecto viene dada por lo ya mencionado anteriormente, con el fin de
demostrar de una forma sencilla si una aplicación no se encuentra bien protegida, lo que quiere
decir de forma simple si puede obtener información sensible. Por otro lado, se suma el esṕıritu por
aprender cómo se tratan los datos personales en un entorno real y actual en el que la seguridad
informática debe considerarse un pilar fundamental.

1.3. Objetivos

El principal objetivo de este proyecto es proponer una metodoloǵıa para auditar una aplicación
móvil sobre la que se llevará a cabo una búsqueda de vulnerabilidades que puedan afectar a la
seguridad de dicha aplicación. A continuación se explican los objetivos de forma más detallada:

Llevar a cabo un estudio de las normativas que rigen las medidas de seguridad que se deben
implementar en un aplicación móvil, aśı como el de las gúıas de auditoŕıa de seguridad hacia
dispositivos móviles.

Proponer una metodoloǵıa de trabajo para llevar a cabo una auditoŕıa sobre una aplicación
móvil.

Diseñar y lanzar sobre una aplicación móvil una auditoŕıa de seguridad con el fin de detectar
las vulnerabilidades que pueda contener y proponer una salvaguarda para éstas.

1.4. Organización del documento

Caṕıtulo 1. Introducción: Breve descripción del proyecto junto con los aspectos funda-
mentales y los objetivos de éste.

Caṕıtulo 2. Planificación del proyecto: Incluye todo lo relacionado con la planifica-
ción inicial en cuanto a horas para el desarrollo del proyecto y las fechas previstas para la
realización de cada una de las tareas del proyecto junto a los riesgos relacionados.

Caṕıtulo 3. Estado del arte: Recopilación de información sobre la actualidad en lo que a
normativas de protección de datos y las metodoloǵıas para realizar auditoŕıas de seguridad
sobre aplicaciones móviles.

Caṕıtulo 4. Análisis de la aplicación: Estudio de la funcionalidad de la aplicación a
auditar.

Caṕıtulo 5. Análisis de la metodoloǵıa OWASP: Exploración de la metodoloǵıa OWASP,
donde se profundiza en sus categoŕıas y se relacionan con los principios de seguridad informáti-
ca.

Caṕıtulo 6. Diseño: Se muestran los criterios utilizados para la selección de las pruebas a
lanzar sobre la aplicación final y el diseño de cada una de las pruebas.

18

CAPÍTULO 1. INTRODUCCIÓN

Caṕıtulo 7. Lanzamiento de las pruebas sobre InsecureBankv2: Análisis de la apli-
cación vulnerable InsecureBankv2 [3], configuración de ésta en su entorno controlado y lan-
zamiento de las pruebas para verificar que se encuentran bien diseñadas.

Caṕıtulo 8. Lanzamiento de las pruebas sobre AquaCyL: Configuración del entorno
controlado sobre el que se lanzan las pruebas y explicación del proceso de lanzamiento de
pruebas sobre la aplicación final, resultados del lanzamiento y recomendaciones en caso de
encontrarse fallos de seguridad o vulnerabilidades.

Caṕıtulo 9. Conclusiones: Reflexión de los resultados obtenidos tanto para las pruebas
como para el proyecto en general. Se incluye una propuesta de trabajo futuro sobre la que se
podŕıa ampliar el alcance del proyecto.

Anexo I. Pruebas para realizar una auditoŕıa de seguridad móvil según la me-
todoloǵıa OWASP: Información con todas las pruebas que OWASP propone para realizar
una auditoŕıa de seguridad móvil junto a una breve descripción de cada una, si está en uso
o no y si es viable para su lanzamiento sobre AquaCyL.

19

CAPÍTULO 1. INTRODUCCIÓN

20

Caṕıtulo 2

Planificación del proyecto

En el presente caṕıtulo se muestra la planificación desarrollada para el proyecto. Para ello se ha
realizado un análisis de sus caracteŕısticas, se ha seleccionado una metodoloǵıa a emplear y se ha
desarrollado una planificación inicial de la que se han extráıdo los riesgos que pueden tener lugar
durante el desarrollo de éste. Existen múltiples metodoloǵıas para el desarrollo de proyectos, como
pueden ser el modelo en cascada o el modelo en espiral. En el libro Software project management. [4],
aparecen dichas metodoloǵıas y los diferentes motivos por los que seleccionar una u otra en base a las
necesidades de cada proyecto. En los siguientes apartados, se explicará el porqué y la metodoloǵıa
seleccionada para el actual proyecto.

2.1. Caracteŕısticas del proyecto

El proyecto que se presenta tiene como objetivos los ya mencionados anteriormente en la sección
1.3. Al tratarse de un proyecto hay que seguir una serie de pasos para que este se complete sa-
tisfactoriamente. A continuación se muestra un pequeño análisis de las etapas que conformarán el
proyecto:

Búsqueda: En la que se exploran las diferentes normativas existentes relacionadas con el
tema, aśı como las gúıas disponibles y las vulnerabilidades actuales.

Estado del arte: Donde se profundiza en las normativas y gúıas de seguridad encontradas
que mejor se adaptan a lo requerido para explotar el máximo número de vulnerabilidades.

Análisis de la aplicación: En la que se investiga el tratamiento de los datos y se estudia
su funcionamiento.

Diseño: En la que se seleccionarán las pruebas a llevar a cabo de modo que se pueda de-
tectar el mayor número de vulnerabilidades posible. Para ello se seguirá la metodoloǵıa pro-
puesta por OWASP, más concretamente La gúıa Mobile Application Securiry Testing Guide
(MASTG).

Lanzamiento de pruebas: Donde se evaluarán las pruebas obtenidas en el paso anterior.
Primero en un entorno controlado para asegurar que todo se lleve a cabo de la forma esperada,
y, más adelante sobre la aplicación seleccionada. Posteriormente se valora la información
obtenida de las pruebas y se analizan las vulnerabilidades encontradas. En base a lo anterior
se recomiendan diferentes medidas para securizar la aplicación móvil eliminando o mitigando
las vulnerabilidades detectadas.

21

CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Conclusiones: En la que se estudian los resultados obtenidos una vez realizado el proyecto
y se propone trabajo futuro para ampliar su alcance.

2.2. Metodoloǵıa empleada

Una vez contempladas las caracteŕısticas del proyecto, el siguiente paso es seleccionar una meto-
doloǵıa para el desarrollo de éste. En este caso se ha optado por un modelo en espiral [5], lo que
implica que se establezcan una serie de hitos. De este modo cuando se cumpla cada hito, éste se
someterá a revisión periódicamente.

Con este método, al tratarse de un bucle en espiral, cada uno de los hitos pueden revisarse en cada
iteración que se produzca. Por tanto, es más inmediato reparar en errores y solucionarlos.

Figura 2.1: Estructura del modelo en espiral.

2.3. Planificación inicial

La planificación del proyecto se ha realizado para que se lleve a cabo entre el 10 de febrero de
2025 y el 30 de mayo de 2025. Puesto que durante un periodo del cuatrimestre se realizan las
prácticas de empresa dispuesta en el plan de estudios, la distribución horaria se ha dividido en dos
grupos: el primero entre el 10 de febrero y el 10 de abril, y el siguiente, entre el 11 de abril y el
30 de mayo hasta que se completen las 300 horas en las que se reparte el proyecto, tal y como se
muestra a continuación:

Periodo Horario Horas
L-M-X-V 2

Del 10/02 al 10/04
S-D 3,5

Total 15 horas/semana

Tabla 2.1: Horas de trabajo en el primer periodo

22

CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Periodo Horario Horas
L-M-X-V 4,5

Del 11/04 al 30/05
S-D 3,5

Total 25 horas/semana

Tabla 2.2: Horas de trabajo en el segundo periodo

Para contar con una planificación más detallada de las diferentes tareas, se ha realizado el Diagrama
de Gantt [6] que se muestra a continuación:

Figura 2.2: Diagrama de Gantt con las actividades del proyecto.

En lo que al anterior diagrama respecta, se puede ver cómo las diferentes tareas se subdividen
en diferentes actividades de una determinada duración. Cada una de las tareas cuentan con una
actividad de documentación en la que plasmará en el presente documento todos los resultados y
conclusiones obtenidos a lo largo del desarrollo del proyecto.

Una vez definidas las actividades y su planificación a lo largo del tiempo, se han obtenido los
diferentes hitos a llevar a cabo a lo largo del proyecto:

23

CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Hito Fecha planificada
Planificación realizada 16/02/2025

Adquisición del conocimiento de las normativas 23/02/2025
Descubrimiento de las metodoloǵıas necesarias 02/03/2025

Familiarización con la aplicación 22/03/2025
Diseño de pruebas y configuración del entorno seguro 17/04/2025

Detección de vulnerabilidades en la aplicación 19/05/2025
Evaluación de vulnerabilidades obtenidas según criticidad 23/05/2025

Propuesta de medidas de securización 25/05/2025
Finalización del proyecto 30/05/2025

Tabla 2.3: Hitos a llevar a cabo en el transcurso del proyecto

2.4. Riesgos

Una vez descritas las diferentes actividades, hay que realizar un análisis de los riesgos que puedan
poner en peligro el éxito del proyecto.

Para realizar dicho análisis se ha utilizado una matriz de riesgos de modo que cada uno de
los riesgos se ha cuantificado según la métrica probabilidad x impacto. Esto quiere decir que
dependiendo del valor asignado a la probabilidad de que un riesgo tenga lugar, y del impacto
asociado a la ocurrencia del riesgo, se determina la prioridad de dicho riesgo.

Figura 2.3: Matriz de riesgos

Una vez identificado y cuantificado un riesgo, hay qué decidir que medidas se van a llevar a cabo
con él. Éstas pueden ser evitarlo, reducirlo, aceptarlo o transferirlo.

Con lo anterior se han identificado los siguientes riesgos:

24

CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

Riesgo Probabilidad Impacto Valor
Mala estimación de los plazos Normal Alto Alto
Retraso en la fecha de finalización Frecuente Muy alto Muy alto
Sucesos extraordinarios que no permitan la realiza-
ción del proyecto (p.e. enfermedad)

Poco frecuente Alto Medio

Incumplimiento de los horarios establecidos Normal Alto Alto
No contar con el material necesario, (p.e. aveŕıas en
el equipo personal)

Muy poco fre-
cuente

Alto Medio

Cambio de objetivos Poco frecuente Alto Medio
No disponer de la aplicación a auditar Poco frecuente Muy alto Alto
Aparición de riesgos no contemplados Poco frecuente Muy alto Medio
Diseño incorrecto de las pruebas Normal Muy alto Alto

Tabla 2.4: Riesgos identificados y su valor cuantificado.

Para cada uno de los riesgos se han propuesto las siguientes medidas para minimizar el impacto en
lo que al proyecto respecta:

Mala estimación de los plazos: A lo largo de la realización del proyecto, si se detectase
que se ha realizado una estimación incorrecta de los plazos, la solución podŕıa ser hacer más
horas de las establecidas. Si la estimación incorrecta se detectase al final de un entregable, la
forma de actuar seŕıa en función del tipo de tares. Si se trata de una tarea del camino cŕıtico,
ésta se realizaŕıa de forma secuencial con la mayor antelación posible. Si por el contrario no es
una tarea del camino cŕıtico, se valoraŕıa desarrollarla en paralelo a la tarea que se estuviera
realizando en ese momento.

Retraso en la fecha de finalización: Hablar de la situación con la tutora y barajar la
posibilidad de entregarlo en la convocatoria extraordinaria.

Sucesos extraordinarios que no permitan la realización del proyecto (p.e. enfer-
medad): Evaluar cómo suceden los hechos y aumentar el número de horas posteriormente.

Incumplimiento de los horarios establecidos: Si se detectase que los horarios estable-
cidos no se adaptan a las circunstancias personales, éstos se reajustaŕıan.

No contar con el material necesario (p.e. aveŕıas en el equipo personal o no
disponer del software necesario): Contar con copias de seguridad en la nube y trabajar
desde otro dispositivo. Buscar alternativas de software que permitan el desarrollo del proyecto.

Cambio de objetivos: Si a lo largo del desarrollo del proyecto se produce un cambio de
los objetivos, éstos se integrarán de modo que afecten lo menos posible a la finalización del
proyecto

No disponer de la aplicación a auditar: Buscar otra aplicación para llevar a cabo la
auditoŕıa.

Aparición de riesgos no contemplados: Actuar según la gúıa de riesgos del caṕıtulo 7
del libro [4].

Diseño incorrecto de las pruebas: Validarlo con la tutora.

25

CAPÍTULO 2. PLANIFICACIÓN DEL PROYECTO

2.5. Seguimiento de la planificación.

En el transcurso del desarrollo del presente proyecto, el seguimiento no ha seguido la planificación
inicial tal y como se esperaba. Aunque se diseñó teniendo en cuenta los posibles riesgos, siendo uno
de ellos el retraso del proyecto, por diversos motivos no se ha llegado a seguir dicha planificación.

A lo largo de los primeros meses, se avanzó de una forma más lenta. No fue hasta finales de abril que
se produjo un cambio significativo, donde se realizó una reorganización del trabajo y se comenzó a
trabajar de una forma más intensa y de forma regular.

El cambio de dinámica hizo que se recuperase el tiempo que se perdió al inicio del proyecto, de
modo que se realizó la selección y diseño de las pruebas.

Una vez realizado lo anterior, se procedió a lanzar las pruebas tanto en una aplicación vulnerable
como en AquaCyL, se analizaron los resultados y se mencionaron ciertas recomendaciones de se-
guridad.

Por último se finalizó el proyecto con las conclusiones, dándolo por acabado.

Gracias a la reorganización que se produjo, el proyecto se ha podido concluir, aunque más tarde
de lo estimado, aún en plazo de presentación, realizándose entre el 10 de febrero y el 1 de julio.

A continuación se muestra una tabla en la que se explica de una forma más detallada el desarrollo
del proyecto en relación a las fechas en las que han tenido lugar realmente:

Tarea Fecha de finalización

Elaboración de la planificación 20/02/2025

Análisis de normativas y metodoloǵıas existentes 05/03/2025

Estudio de la aplicación 20/03/2025

Análisis de la metodoloǵıa OWASP 27/03/2025

Diseño de las pruebas 04/05/2025

Configuración del entorno controlado 12/05/2025

Lanzamiento de las pruebas sobre la aplicación vulnerable 31/05/2025

Lanzamiento de las pruebas sobre la aplicación final 28/06/2025

Conclusiones 01/07/2025

Tabla 2.5: Seguimiento del proyecto.

26

Caṕıtulo 3

Estado del arte

En el capitulo actual se lleva a cabo un análisis de las condiciones de privacidad y seguridad que las
aplicaciones móviles deben cumplir según las normativas de privacidad de datos actuales. También
se realiza una breve descripción de las metodoloǵıas actuales relacionadas con las auditoŕıas de
seguridad para aplicaciones móviles más usadas en la actualidad, y cómo mediante ellas se pueden
detectar vulnerabilidades que pueden poner en riesgo aspectos como los datos personales de los
usuarios.

3.1. Datos personales

Según el diccionario panhispánico del español juŕıdico, elaborado por la Real Academia Española
(RAE) [7], se define como dato personal todo tipo de información ya sea alfabética, numérica,
gráfica, acústica, fotográfica o de cualquier otro tipo que concierna a personas f́ısicas identificadas
o identificables [8].

En base a la anterior definición, se consideran datos personales los siguientes:

Nombre y apellidos.

DNI, pasaporte y NSS1.

Datos bancarios.

Datos médicos.

Dirección.

Datos genéticos o biométricos.

Certificados electrónicos y firma.

Datos personales que revelen el origen racial o étnico.

Opiniones poĺıticas.

Convenciones religiosas o filosóficas.

Afiliación sindical

1Número Seguridad social.

27

CAPÍTULO 3. ESTADO DEL ARTE

Algunos de los anteriores datos personales, se consideran como sensibles y por tanto deben tra-
tarse de una forma espećıfica como por ejemplo los datos médicos o aquellos relacionados con la
información genética o biométrica, los cuales se pueden usar únicamente con el fin de identificar a
un ser humano.

Por otro lado, hay que tener en cuenta que el tratamiento de los datos personales no es igual para
un adulto que para un menor de edad [9]. Para poder recabar datos personales sobre estos últimos
se tienen que tener en cuenta algunas consideraciones:

Los datos pueden ser recabados siempre que se sigan las normas establecidas en el RGPD
relacionadas con la recolección de datos personales.

Para recoger datos de menores es necesario que el consentimiento sea expreso y que, si el
menor tiene 14 años o menos, ese consentimiento debe ser aportado por sus padres o tutores
legales.

3.2. Normativas de protección de datos: RGPD y LOPDGDD.

En la actualidad son dos las principales fuentes reguladoras en lo que a protección de datos se
refiere, el Reglamento General de Protección de Datos (RGPD), con alcance europeo y la Ley
orgánica de Protección de Datos Personales y Garant́ıas de Derechos Digitales LOPDGDD a
nivel nacional, cuyo objetivo es la adaptación de la legislación española a la europea.

Dentro del RGPD se definen una serie de principios que los responsables del tratamiento de datos
personales deben tener en cuenta:

Principio de licitud, transparencia y lealtad, referido a que los datos deben tratarse
siguiendo la ley y de forma transparente para el usuario interesado.

Principio de minimización de datos, aplicar las medidas necesarias para garantizar que
el tratamiento de los datos sea únicamente el preciso para el fin especificado.

Principio de limitación del plazo de conservación, determina que la conservación de los
datos debe limitarse en el tiempo hasta que se logren los fines por los que se persigue el trata-
miento. Tras alcanzar dichas finalidades, los datos deben borrarse, bloquearse o anonimizarse
para evitar que se pueda identificar a los interesados.

Principio de responsabilidad activa o responsabilidad demostrada, obliga a los res-
ponsables del tratamiento de los datos a mantener dirigencia permanente para proteger y
garantizar los derechos y libertades de las personas cuyos datos son tratados por medio de
un análisis de los riesgos que el tratamiento supone y representa para dichos derechos y li-
bertades. El responsable debe poder garantizar y estar en condiciones de demostrar que el
tratamiento se ajusta dentro de lo que se rige en el RGPD y en la LOPDGDD.

Principio de seguridad, que obliga a los responsables del tratamiento de los datos el análisis
de riesgos necesario orientado a determinar las medidas organizativas y técnicas requeridas
para garantizar la integridad, confidencialidad y disponibilidad de los datos que se traten.

Principio de exactitud, impone a los responsables a contar con medidas para que los datos
estén actualizados, se eliminen o modifiquen cuando sean inexactos respecto a los fines por
los que se tratan.

28

CAPÍTULO 3. ESTADO DEL ARTE

Principio de finalidad, implica la obligación de que los datos se traten para finalidades
determinadas, leǵıtimas y expĺıcitas y proh́ıbe que los datos recogidos para un fin se utilicen
posteriormente de una manera incompatible con estos fines.

Con los anteriores principios se determina como deben de tratarse los datos de los usuarios, si dentro
de una aplicación móvil se encontrase que estos principios no se cumplen, se estaŕıa violando el
RGPD por lo que es un aspecto a tener en cuenta a la hora de realizar la auditoria móvil.

3.3. Metodoloǵıas de pruebas de auditoŕıa de aplicaciones
móviles.

Para poder detectar e identificar las diferentes situaciones en las que se ponga en riesgo la privacidad
y los datos personales de los usuarios en una aplicación móvil, es necesario lanzar una serie de
pruebas sobre ellas. Es por este motivo por el que algunas organizaciones han desarrollado una
serie de metodoloǵıas que rigen los pasos para lanzar estas pruebas y que a d́ıa de hoy se han
vuelto estándares. A continuación se hace un estudio de diferentes metodoloǵıas relacionadas con
las auditoŕıas de seguridad en aplicaciones móviles.

3.3.1. OWASP

El proyecto Abierto de Seguridad de Aplicaciones Web (OWASP, The Open Source Web Appli-
cation Security Project es un fundación sin animo de lucro que ofrece metodoloǵıas para que el
software sea seguro.

Dentro de OWASP, se define MAS, el proyecto para la seguridad de las aplicaciones móviles,
donde se proporciona un estándar de seguridad para las aplicaciones móviles OWASP MASVS
y una gúıa de pruebas OWASP MASTG que explica las técnicas y herramientas y pruebas para
evaluar la seguridad de las aplicaciones móviles.

OWASP Mobile Top 10.

OWASP recopila las 10 vulnerabilidades más explotadas en OWASP Mobile Top 10 [10], donde
explica cada vulnerabilidad, cómo se produce y cómo evitarla. La última publicación se produjo
en 2024, donde, a parte de las nuevas vulnerabilidades, se muestra una comparación entre el Top
10 de la anterior publicación, 2016, y la nueva:

Figura 3.1: Comparación OWASP Top 10 2024-2016.

29

CAPÍTULO 3. ESTADO DEL ARTE

En la anterior figura se puede ver cómo entre 2016 y 2024, la mayoŕıa de las vulnerabilidades son
nuevas, aunque siguen existiendo algunas que, o se han fusionado, o se han movido en la clasifica-
ción.

A continuación, se detalla cada uno de los riesgos clasificados en OWASP Top 10 en el año 2024 y
como evitarlos:

M1: Uso inadecuado de credenciales. [11]

Factor Descripción

Agentes de amenaza Los agentes que explotan credenciales pueden incluir ata-
ques automatizados. Estos ataques pueden explotar creden-
ciales o aprovechar vulnerabilidades.

Vectores de ataque Los atacantes pueden explotar credenciales codificadas aśı
como el uso indebidos de éstas.

Debilidad de seguridad Usar credenciales codificadas junto a un manejo inadecuado
puede causar vulnerabilidades de seguridad graves.

Impactos técnicos Que un usuario acceda a información confidencial de una
aplicación puede causar filtraciones de datos y actividades
fraudulentas.

Mitigación
Evitar el uso de credenciales codificadas: Un
atacante podŕıa descubrirlas fácilmente y acceder a
datos de los usuarios.
Manejar adecuadamente las credenciales de
usuario: Las credenciales deben almacenarse, trans-
mitirse y autenticarse de forma segura.

Tabla 3.1: Descripción de cada factor para el riesgo M1: Uso inadecuado de credenciales.

M2: Seguridad inadecuada de la cadena de suministro. [12]

Factor Descripción

Agentes de amenaza El atacante puede manipular la funcionalidad de la apli-
cación por medio de vulnerabilidades dentro de la cadena
de suministro de la aplicación. Esto puede permitir a dicho
atacante robar datos o incluso tomar el control del disposi-
tivo móvil.

Vectores de ataque Un atacante puede inyectar código malicioso en la fase de
desarrollo de la aplicación y posteriormente comprometer
las claves de firma para firmar el código maliciosos como
confiable.

30

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Debilidad de seguridad Esta vulnerabilidad tiene lugar por la falta de prácticas de
codificación seguras, revisiones de código y pruebas insu-
ficientes de forma que se incluyen vulnerabilidades en la
aplicación sin saberlo cuando con los anteriores mecanis-
mos se podŕıan evitar.

Impactos técnicos
Filtración de datos: El atacante puede robar datos
personales como credenciales. Si filtrase esos datos,
las personas a las que se las ha robado la información
podŕıan sufrir suplantaciones de identidad.
Infección de malware: Si el atacante introduce
malware en la aplicación, el dispositivo en el que se
instale puede verse gravemente perjudicado como con-
secuencia de la ejecución del código malicioso sobre el
dispositivo.
Acceso no autorizado: El atacante puede acceder
al servidor de la aplicación y realizar actividades no
autorizadas como la denegación del servicio del dis-
positivo atacado.
Compromiso del sistema: Comprometer la aplica-
ción móvil puede suponer la pérdida total de control
del sistema lo que puede suponer una pérdida perma-
nente de los datos y un daño a largo plazo sobre la
reputación del desarrollador de la aplicación móvil.

Mitigación
Establecer controles de seguridad de forma periódica
para buscar vulnerabilidades o fallos de seguridad.
Monitorizar para detectar incidentes de seguridad me-
diante pruebas de seguridad o escaneos.
Usar únicamente bibliotecas y funciones de terceros
confiables y validados para reducir vulnerabilidades.
Implementar prácticas de codificación seguras y prue-
bas durante todo el ciclo de vida de desarrollo del
proyecto.
Asegurarse que los procesos de firma y distribución
de la aplicación sean seguros con el fin de evitar que
los atacantes puedan firmar la aplicación con código
malicioso.

Tabla 3.2: Descripción de cada factor para el riesgo M2: Seguridad inadecuada de la cadena de
suministro.

M3: Autenticación/autorización insegura. [13]

31

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Agentes de amenaza Los atacantes explotan este tipo de vulnerabilidades me-
diante ataques automatizados que usan herramientas exis-
tentes o personalizadas.

Vectores de ataque Cuando el atacante entiende las vulnerabilidades relaciona-
das con la autenticación y la autorización, puede explotarlas
falsificándolas o eludiéndolas o accediendo a la aplicación
con las credenciales de un usuario leǵıtimo suplantando su
identidad.

Debilidad de seguridad Para detectar los esquemas de autenticación y autorización
deficiente se pueden realizar ataques binarios contra la apli-
cación y probar a ejecutar funciones privilegiadas que solo
deben poder ejecutarlas usuarios con más privilegios.

Impactos técnicos Dependiendo de la funcionalidad a la que el atacante logre
acceder, el impacto puede ser más o menos severo. Las re-
percusiones se producen cuando no se puede identificar al
usuario que está realizando la acción.

Mitigación
Evitar patrones débiles: Seguir buenas prácticas
cómo evitar almacenar la contraseña dentro de la fun-
ción Recordarme o no permitir que el usuario utilice
códigos PIN de 4 o menos d́ıgitos.

Tabla 3.3: Descripción de cada factor para el riesgo M3: Autenticación/autorización insegura..

M4: Validación de entrada/salida insuficiente. [14]

Factor Descripción

Agentes de amenaza Las aplicaciones que no validan o desinfectan de forma co-
rrecta los datos de entrada o salida pueden correr el riesgo
de sufrir ataques como inyecciones.

Vectores de ataque Este tipo de vulnerabilidades pueden causar accesos no au-
torizados, ejecución de código malicioso y manipulación de
los datos.

Debilidad de seguridad Si los datos de entrada y salida no se validan o se saniti-
zan correctamente, pueden darse ataques de manipulación
e incluso ataques de inyección como SQL o XSS.

Impactos técnicos Pueden darse diversos impactos técnicos como la ejecución
de código malicioso dentro de la aplicación o permitir que
loa atacantes manipulen la entrada o la salida de los datos
para conducir al acceso no autorizado y a la extracción de
los datos confidenciales.

32

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Mitigación
Validación de entrada.
Sanitización de salida.
Validación espećıfica del contenido.
Pruebas de seguridad periódicas.
Comprobaciones de integridad de los datos.
Prácticas de codificación segura.

Tabla 3.4: Descripción de cada factor para el riesgo M4: Validación de entrada/salida insuficiente.

M5: Comunicación insegura. [15]

Factor Descripción

Agentes de amenaza Las aplicaciones móviles modernas cambian datos con di-
ferentes servidores remotos. Al trasmitir los datos, si un
tercero intercepta el tráfico puede obtenerlos e incluso mo-
dificarlos antes de que lleguen al destino.

Vectores de ataque Las aplicaciones dependen de protocolos criptográficos, pe-
ro en ocasiones la implementación puede tener fallos como
el uso de protocolos obsoletos o estar configurados de forma
incorrectos

Debilidad de seguridad Aunque las aplicaciones modernas suelen proteger el tráfico
de red puede haber inconsistencias en su implementación, lo
que puede generar vulnerabilidades con las que se exponen
los datos del ususario o los datos de la sesión.

Impactos técnicos Esta vulnerabilidad puede exponer datos del usuario, lo que
puede implicar apropiación de cuentas de usuario, fugas de
datos o suplantación de identidad.

Mitigación
Utilizar cifrados sólidos con longitudes de de clave
adecuadas.
No enviar datos confidenciales por canales como SMS.
Alertar a los usuarios a través de la interfaz de usuario
si la aplicación detecta un certificado no válido.

Tabla 3.5: Descripción de cada factor para el riesgo M5: Comunicación insegura.

M6: Controles de privacidad inadecuados. [16]

33

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Agentes de amenaza Los controles de seguridad se encargan de proteger la in-
formación de identificación personal (PII). Los atacantes
podŕıan suplantar la identidad de la v́ıctima o hacerle chan-
taje con sus datos. En general, la información personal
podŕıa filtrarse, manipularse, destruirse o bloquearse.

Vectores de ataque Obtener información de identificación personal requiere que
el atacante primero vulnere la seguridad a otro nivel, por
ejemplo espiando la comunicación de red.

Debilidad de seguridad Los riesgos de violación de la privacidad aumentan por el
manejo de forma descuidada por parte de los desarrolla-
dores. La información debe procesarse siempre teniendo en
cuenta la posibilidad de que un atacante pueda acceder al
almacenamiento.

Impactos técnicos Si se manipulan los datos del usuario, el sistema puede que-
dar inutilizable. Por otro lado, si los datos están mal for-
mados, el backend puede verse gravemente afectado si no
se limpian o se gestionan las excepciones adecuadas.

Mitigación La información de identificación personal no necesaria no
debe almacenarse ni transmitirse a menos que sea extricta-
mente necesario.

Tabla 3.6: Descripción de cada factor para el riesgo M6: Controles de privacidad inadecuados.

M7: Protección binaria insuficiente. [17]

Factor Descripción

Agentes de amenaza El binario de la aplicación puede contener secretos valiosos
como secretos criptográficos codificados que los atacantes
pueden usar de forma indebida. A parte de recopilar infor-
mación, también podŕıan querer acceder gratis a funciones
de pago o eludir mecanismos de seguridad.

Vectores de ataque El binario podŕıa estar sujeto a dos tipos de ataques: inge-
nieŕıa inversa y manipulación del código.

Debilidad de seguridad Puesto que todas las aplicaciones tienen ficheros binarios,
deben implementar contramedidas para defenderse de los
posibles atacantes el tiempo necesario hasta que el atacan-
te se de por vencido. Hay que tener en cuenta que las apli-
caciones modificadas posiblemente sean reistribúıdas desde
las tiendas de aplicaciones por lo que resulta conveniente
contar con mecanismos de detección y denuncia dentro de
las propias aplicaciones.

34

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Impactos técnicos Si se filtran secretos como consecuencia de un ataque de
ingenieŕıa inversa, estos deben reemplazarse lo más rápido
posible en todo el sistema. Las fugas de información del
binario puede revelar vulnerabilidades de seguridad en el
backend.

Mitigación
Evitar la ingenieŕıa inversa: Para evitar este ries-
go, el binario de la aplicación debe ser incomprensible.
Para ello hay que ofuscar su contenido con algoritmos
robustos.
Romper mecanismos de seguridad: Deben existir
mecanismos de seguridad locales implementados por
el backend. Por otro lado, las comprobaciones de inte-
gridad ayudan a detectar la manipulación del código.

Tabla 3.7: Descripción de cada factor para el riesgo M7: Protección binaria insuficiente.

M8: Configuración incorrecta de seguridad. [18]

Factor Descripción

Agentes de amenaza La configuración incorrecta de seguridad en las aplicaciones
móviles está referido a la configuración incorrecta de per-
misos, controles de seguridad o ajustes, lo que puede llevar
a accesos no autorizados o vulnerabilidades. Los atacantes
pueden explotarlo obteniendo acceso no autorizado a datos
de carácter confidencial o realizar acciones maliciosas.

Vectores de ataque Las configuraciones incorrectas se pueden explotar con con-
troles de acceso inadecuados o mal configurados, almace-
namiento de datos sin protección, gestión de sesiones de
usuario mal configurada o un cifrado hash débiles o mal
implementados, con los que se puede obtener acceso a in-
formación confidencial.

Debilidad de seguridad Este tipo de vulnerabilidad es común en las aplicaciones
por factores como falta de tiempo, de conocimiento o erro-
res humanos a lo largo del desarrollo. Se pueden detectar
mediante la revisión manual del código.

Impactos técnicos La configuración incorrecta de la seguridad puede implicar
acceso no autorizado a datos confidenciales y secuestro o
suplantación de cuentas de usuarios.

35

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Mitigación
Evitar almacenar archivos de aplicaciones con dema-
siados permisos.
Configurar la red de forma segura, impidiendo tráfico
sin formato.
Deshabilitar la depuración del código.
Abstenerse de usar credenciales predeterminadas.
Solicitar solamente los permisos necesarios para el
funcionamiento correcto de la aplicación.

Tabla 3.8: Descripción de cada factor para el riesgo M8: Configuración incorrecta de seguridad.

M9: Almacenamiento de datos inseguro. [19]

Factor Descripción

Agentes de amenaza Almacenar datos de forma insegura puede atraer múltiples
agentes de amenazas que quieren explotar las vulnerabili-
dades y obtener acceso no autorizado a la información con-
fidencial.

Vectores de ataque El almacenamiento de los datos de forma insegura expo-
ne vulnerabilidades a múltiples vectores de ataque que los
atacantes pueden explotar. Estos vectores incluyen acceso
al sistema no autorizado o la interceptación de transmisio-
nes de datos.

Debilidad de seguridad La ausencia de protocolos seguros de transmisión de datos
causa que los datos sean vulnerables a la interceptación del
tráfico entre la aplicación y los servidores, lo que puede
llevar a filtraciones de datos.

Impactos técnicos Almacenar de forma insegura los datos puede causar fallos
como problemas de integridad y manipulación de los datos,
filtraciones de datos y daños a la reputación y confianza del
desarrollador de la aplicación móvil.

Mitigación
Uso de un cifrado robusto.
Transmisión segura de los datos.
Implementar controles de acceso adecuados.
Validar la entrada y sanitizar los datos.
Implementar mecanismos de almacenamiento seguro.

Tabla 3.9: Descripción de cada factor para el riesgo M9: Almacenamiento de datos inseguro..

M10: Criptograf́ıa insuficiente. [20]

36

CAPÍTULO 3. ESTADO DEL ARTE

Factor Descripción

Agentes de amenaza Para explotar la vulnerabilidad, los atacantes pueden so-
cavar la confidencialidad, autenticidad e integridad de la
información sensible.

Vectores de ataque El vector de ataque para la criptograf́ıa insegura en una
aplicación consiste en explotar vulnerabilidades en los me-
canismos criptográficos usados para proteger la información
confidencial.

Debilidad de seguridad La criptograf́ıa insegura puede introducir vulnerabilidades
de seguridad que pueden incluir el uso de algoritmos de ci-
frado débiles o longitudes de clave inadecuadas. Las funcio-
nes hash inseguras plantean vulnerabilidades de seguridad
graves por los conflictos que estas funciones causan.

Impactos técnicos Esta vulnerabilidad provoca la recuperación no autorizada
de la información confidencial del dispositivo.

Mitigación
Usar algoritmos de cifrado robustos.
Implementar el cifrado de forma correcta.
Asegurarse que la longitud de la clave es suficiente.
Almacenamiento de claves de cifrado seguro.
Usar una capa de transporte segura.
Realizar pruebas de seguridad periódicas.

Tabla 3.10: Descripción de cada factor para el riesgo M10: Criptograf́ıa insuficiente..

Estándar de Verificación de Seguridad de Aplicaciones Móviles (MASVS) y Gúıa de
Pruebas de Seguridad para Aplicaciones Móviles (MASTG).

Con el auge de las aplicaciones móviles, la seguridad en este ámbito se ha convertido en algo cŕıtico
dentro del desarrollo y la auditoŕıa. Es por ello que OWASP, ha desarrollado diferentes gúıas
espećıficas para las aplicaciones móviles entre las que se encuentran Mobile Application Security
Verification Standart (MASVS) y Mobile Application Security Testing Guide (MASTG).

MASVS [21] define qué debe buscarse y verificarse dentro de la aplicación, mientras que MASTG
[22] muestra como hacerlo. Con ello, ambas gúıas permiten estructurar las auditoŕıas de seguridad
mostrando a quién debe encargarse de la tarea cómo hacerlo y que buscar.

Mobile Application Security Verification Standart (MASVS).

MASVS es un estándar que defina los requisitos mı́nimos de seguridad que una aplicación móvil
debeŕıa cumplir en función del nivel de protección deseado. El objetivo principal es ser un punto en
común con los desarrolladores y auditores de seguridad para establecer unos estándares comunes
sobre qué se considera una aplicación segura.

MASVS se organiza en diferentes niveles:

MASVS-L1: Requisitos de seguridad básicos que todas las aplicaciones, independientemente

37

CAPÍTULO 3. ESTADO DEL ARTE

de su naturaleza, debeŕıan cumplir.

MASVS-L2: Requisitos de seguridad adicionales para aquellas aplicaciones que manejen
datos sensibles o que necesiten una protección reforzada.

MASVS-R: Requisitos relacionadas con la resiliencia de la aplicación frente a ataques de
ingenieŕıa inversa o manipulación del entorno de ejecución.

Dentro de cada uno de los anteriores niveles, se encuentran una serie de controles que se clasifican
según su área:

MASVS-STORAGE: Almacenamiento seguro de datos confidenciales.

MASVS-CRYPTO: Funcionalidad criptográfica usada para proteger los datos confidencia-
les.

MASVS-AUTH: Mecanismos de autorización y autenticación usados por la aplicación.

MASVS-NETWORK: Comunicación de red segura entre la aplicación y el exterior.

MASVS-PLATFORM: Interacción segura con la plataforma móvil y otras aplicaciones
instaladas.

MASVS-CODE: Mejores prácticas de seguridad para el procesamiento de datos y para
mantener la aplicación actualizada.

MASVS-RESILIENCE: Resiliencia a ingenieŕıa inversa e intentos de manipulación.

MASVS-PRIVACY: Controles de privacidad para proteger la privacidad del usuario.

Mobile Application Security Testing Guide (MASTG).

En base a los controles que OWASP MASVS define, se basa OWASP MASTG, una gúıa con las di-
ferentes puebas de seguridad para las aplicaciones móviles. Completa a MASVS ya que proporciona
los procedimientos y herramientas para verificar si una aplicación cumple o no con los requisitos
que se establecen en MASVS.

Para cada una de las pruebas que propone, tanto para Android como para IOS, el sistema operativo
de Apple, la gúıa se organiza por las categoŕıas que se proponen en MASVS.

La gúıa MASTG incluye pruebas de análisis estático y de análisis dinámico para cubrir todos los
controles y niveles que OWASP establece. Cada una de las pruebas cuenta con:

Identificador único.

Descripción de la prueba.

Objetivo de la prueba.

Metodoloǵıa propuesta.

Comandos y herramientas sugeridas.

Con ello, tanto el desarrollador como el auditor pueden conocer la forma de evaluación de la
aplicación y ser capaces de llevar a cabo sus tareas con el objetivo de garantizar la seguridad en la
aplicación siguiendo esta metodoloǵıa.

38

CAPÍTULO 3. ESTADO DEL ARTE

3.3.2. NIST SP 800-163

El Instituto Nacional de Estándares y Tecnoloǵıa de Estados Unidos (NIST, National Institute
of Standards and Technology [23] propone una gúıa para evaluar la seguridad de las aplicaciones
móviles. Dicha gúıa esta pensada para:

Evaluar los riesgos de seguridad de las aplicaciones.

Integrar los procesos de seguridad.

Estandarizar el proyecto de análisis mediante pruebas tanto de análisis estático como de
análisis dinámico.

3.3.3. Categoŕıas de análisis para la realización del test de seguridad.

A la hora de realizar un análisis de seguridad sobre una aplicación móvil, hay que tener en cuenta
que existe una clasificación en función al tipo de análisis que se va a realizar. Estos pueden ser:

Análisis estático: Consiste en analizar el código fuente de la aplicación sin ejecutarlo o en
reposo. Se busca estudiar la estructura del código y del software disponible con el objetivo
de buscar vulnerabilidades, errores de lógica o malas prácticas de programación.

Análisis dinámico: Se ejecuta la aplicación, y con ella corriendo se observa su comporta-
miento en tiempo real dentro de un entorno controlado, que puede ser tanto un dispositivo
real como un emulador.

39

CAPÍTULO 3. ESTADO DEL ARTE

40

Caṕıtulo 4

Análisis de la aplicación.

En el presente caṕıtulo se realiza un análisis tanto a nivel técnico como funcionalidad de la aplicación
móvil AquaCyL [24], desarrollada por Pablo Varela Vázquez para que los usuarios puedan conocer
el estado de las diferentes áreas de baño disponibles en Castilla y León.

Se realizará un análisis de la aplicación en base a la información que se ofrece en Google Play
teniendo en cuenta permisos, datos que se recogen y como se gestionan los datos que ésta usa.
Finalmente se ejecutará la aplicación con el fin de descubrir su finalidad y familiarizarse con ella.

4.1. ¿Qué es AquaCyL?

AquaCyL [24] es una gúıa con la que se puede obtener información sobre las zonas de baño dispo-
nibles en Castilla y León. Con ella se puede consultar el estado de las zonas de baño, el pronóstico
del tiempo en dichos puntos, la localidad en la que se encuentra y puntos de interés en la zona. Es
posible publicar comentarios y ver la experiencia de otros usuarios.
Para instalarla, hay que hacerlo desde Google Play con un dispositivo Android que cuente con la
versión 10 o superior. Hay que tener en cuenta que está clasificada como PEGI3 [25], lo que quiere
decir que se considera adecuada para todos los grupos de edad.

Figura 4.1: Logo AquaCyL

41

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

4.2. Seguridad de los datos

La seguridad de los datos de una aplicación dentro de Google Play es información que el desarro-
llador proporciona con el fin de informar a los usuarios cómo recoge, trata y comparte los datos
dentro de la aplicación. [26]

Se indica que la aplicación no comparte datos con terceros. Esto significa que la información que
recoge del usuario no se comparte con otras organizaciones u empresas.

Datos que se recogen:

Cuando un desarrollador desea subir su aplicación a GooglePlay, uno de los pasos necesarios es
elegir dentro de una serie de tipos de datos fijos cuáles son los que la aplicación va a recoger [27].
En la siguiente tabla se muestran los datos que AquaCyL recoge y con qué finalidad lo hace:

Tabla 4.1: Datos recogidos y objetivo.

En la anterior tabla se muestran los diferentes datos que se recogen y el fin por el que lo hacen.
Puede ser para diferentes fines entre los que se encuentran los siguientes:

Analizar aspectos como las interacciones con la aplicación.

Comprobar la funcionalidad revisando el registro de fallos.

Personalizar la aplicación mediante el nombre o el correo electrónico.

42

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

Gestionar la cuenta gracias a los identificadores de usuario.

Prácticas de seguridad:

Transferencia de datos segura.

Posibilidad de eliminar los datos si se solicita.

4.3. Permisos

Al igual que el resto de aplicaciones, ésta también requiere de permisos que se solicitan al usuario
con el fin de poder utilizar ciertos elementos del dispositivo móvil. Con ello, la aplicación puede
acceder a los siguientes elementos en función de cada categoŕıa:

Fotos/multimedia/archivos

• Leer el contenido del almacenamiento USB.

• Modificar o eliminar contenido del almacenamiento USB.

Micrófono

• Grabación de sonido.

Cámara

• Realizar v́ıdeos o fotograf́ıas.

Almacenamiento

• Modificar o eliminar contenido del almacenamiento USB.

• Leer el contenido del almacenamiento USB.

Otro motivo

• Acceso completo a red.

• Ver conexiones de red.

• Recibir datos de internet.

• Impedir que el dispositivo se suspenda.

• Control de la vibración.

• Lectura de la configuración de los Servicios de Google.

• Comprobación de licencia de Google Play.

4.4. Familiarización con la aplicación.

Tal y como se verá en el caṕıtulo 8, para lanzar la aplicación se ha utilizado el emulador con
Android 16 para ejecutar la aplicación.

Lo primero es abrir el proyecto. Una vez hecho, e iniciado el emulador, hay que ejecutar la APK
con la aplicación. Para ello hay que abrir una terminal dentro de Android Studio y ejecutar el
siguiente comando:

43

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

adb install AquaCyL 1.0.0 010000000.apk

En este caso adb no se encuentra instalado por lo que hay que hacerlo con el comando:

sudo apt install adb

4.4.1. Aplicación sin iniciar sesión.

Tras instalarlo y volver a ejecutar lo anterior en el emulador ya aparece la aplicación. Una vez se
pulsa en el icono de la aplicación, esta se abre. Lo primero que se pregunta es si se desea permitir
que la aplicación env́ıe notificaciones, a lo que se ha optado por no permitirlo.

El siguiente paso es decidir si iniciar sesión o continuar como invitado. Ya que el objetivo de esta
sección es familiarizarse con la aplicación se ha continuado como invitado. La siguiente pantalla
es el menú de inicio en el que se pueden ver los botones de inicio, ajustes, filtros, ordenación de
resultados y perfil.

Figura 4.2: Primer arranque de la aplicación con las pantallas de notificaciones, inicio de sesión y
home.

44

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

En la siguiente figura se puede ver como se ha accedido al menú de ajustes para, a parte de navegar
por él, cambiar el idioma de la aplicación al español para un mejor entendimiento y comprensión
del entorno. Por otro lado se puede ver como las zonas de baño se pueden ordenar por nombre,
municipio, localidad, provincia o estado. Este último no se refiere al páıs si no a cómo se encuentra
el lugar de baño.
También es posible filtrar por provincia, ya que es una aplicación de Castilla y León, solo se pueden
filtrar según las nueve provincias pertenecientes a la comunidad, y por estado de la zona de baño.

Estados por los que se puede filtrar:

Apto.

No apto.

Agua sin analizar.

Fuera de temporada.

Desconocido.

Provincias por las que las que filtrar:

Ávila.

Burgos.

León.

Palencia.

Salamanca.

Segovia.

Soria.

Valladolid.

Zamora.

45

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

Figura 4.3: Primer arranque de la aplicación con las pantallas de ajustes, ordenar y filtrar.

Para cada una de las zonas de baño se puede ver la previsión del tiempo de la semana actual, aśı
como la opción de ver los comentarios que otros usuarios han dejado de ese embalse, información
sobre como llegar a esa zona de baño mediante una redirección a Google Maps [28] y los alojamientos
disponibles en la zona redirigiendo a EscapadaRural [29], que es un sitio web para ver y reservar
alojamientos en zonas rurales:

Figura 4.4: Detalles de una de las zonas de baño y vista de los comentarios.

46

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

En la anterior figura puede verse que en la pantalla de comentarios, si se desease comentar algo,
esto no se podŕıa dar puesto que dicho campo se encuentra deshabilitado. Por otro lado, los comen-
tarios se clasifican en Permanentes, lo cuales, tal y como indica la palabra, se encuentran siempre
disponibles; o en comentarios Flash que se eliminan tras 24 horas.

Figura 4.5: Vista de las webs, con la ubicación del arroyo y con el sitio web dónde encontrar
alojamiento.

Si se continúa como invitado, no da la opción de tener zonas favoritas, o de hacer comentarios,
habilitando únicamente su visualización, pero si se inicia sesión o se crea una cuenta estas funciones
se encuentran disponibles.

4.4.2. Aplicación con la sesión iniciada.

Para crear una cuenta, los datos que se solicitan son los siguientes:

Nombre.

Correo electrónico.

Contraseña.

Repetir contraseña.

Una vez introducidos los datos, es necesario verificar la cuenta recién creada mediante un enlace
que se env́ıa al correo indicado.

47

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

Tras su validación, ya se puede iniciar sesión con la cuenta recién creada.

Para iniciar sesión se solicitan:

Correo electrónico.

Contraseña.

Una vez iniciada la sesión, se puede ver como aparece el botón de favoritos, donde se pueden añadir
aquellas zonas de baño de preferencia.

Figura 4.6: Interfaz de inicio de sesión y menú principal con sesión iniciada.

En la siguiente figura se puede observar cómo en la vista de una zona de baño, en la esquina
superior derecha, aparece un icono de un corazón, desde donde se puede añadir a favoritos esa zona
de baño. Por otro lado, en la sección Favoritos se puede ver la lista de todas las zonas añadidas a
dicha categoŕıa. Finalmente, si se quiere hacer un comentario, aparece el nombre de usuario y el
correo electrónico, junto con la posibilidad de elegir si en el comentario se quiere que se vean las
credenciales del usuario que lo publica, el tipo de comentario y una caja de texto donde introducir
el comentario deseado.

48

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

Figura 4.7: Interfaces de una zona de baño, la sección de comentarios y la de favoritos.

En lo que al resto de la funcionalidad respecta, se mantiene igual tanto con la sesión iniciada como
entrando como invitado.

49

CAPÍTULO 4. ANÁLISIS DE LA APLICACIÓN.

50

Caṕıtulo 5

Análisis de la metodoloǵıa
OWASP.

OWASP (Open Web Application Security Project) [30], tal y como se ha mencionado en caṕıtulos
anteriores, es una fundación sin ánimo de lucro que promueve buenas prácticas de seguridad y
trabaja para mejorar la seguridad del software. Para las aplicaciones móviles OWASP propone
una serie de controles y tests para probar, por medio de auditoŕıas móviles, la seguridad de las
aplicaciones. [31]

Según OWASP, una aplicación móvil es vulnerable si se viola alguno de los requisitos de seguridad de
los que se proponen en OWASP-MASVS (Mobile Application Security Verification Standard) [21].
Para verificar si dicha violación se produce, se puede comprobar con la evidencia técnica que se
puede obtener mediante las pruebas que se proponen en OWASP-MASTG (Mobile Application
Security Testing Guide) [22].

Según lo anterior, la vulnerabilidad tiene como fundamento tres grandes pilares:

Estándar MASVS: Que define los controles de seguridad en las diferentes categoŕıas para
estructuras las distintas pruebas que aparecen en MASTG. Cada uno de los controles se
encuentra estructurado en niveles de seguridad.

Verificación con las pruebas MASTG: Con las pruebas proporcionadas por MASTG,
se puede comprobar de forma técnica si se cumplen los controles propuestos por MASVS.
Dichas pruebas pueden requerir de:

• Análisis estático: de la APK descompilada o del código fuente.

• Análisis dinámico: sobre la aplicación en ejecución sobre un emulador o un dispositivo
real.

Impacto sobre la seguridad de la aplicación a auditar: Si realizando una de las pruebas
que OWASP propone, ésta encuentra una vulnerabilidad, se considera que conlleva un riesgo
potencial para la seguridad de la aplicación. Es importante que una vez se encuentre dicha
vulnerabilidad hay que documentarla y definir el impacto que tiene sobre la aplicación.

En la seguridad informática, se definen cuatro principios fundamentales a modo de base sobre

51

CAPÍTULO 5. ANÁLISIS DE LA METODOLOGÍA OWASP.

la que se diseñan, implementan y evalúan los mecanismos de protección de un sistema o una
aplicación móvil. [32] Estos principios son de gran utilidad para establecer criterios para identificar
vulnerabilidades en una aplicación. Se trata de los siguientes:

Autenticidad: Asegura que la información de la que se cuenta sobre la aplicación es la que
realmente es. El software debe ser capaz de verificar que el usuario que firma un mensaje es
quien dice ser.

Confidencialidad de la información: O privacidad de la información, se refiere a que la
información solo debe ser conocida por aquellos que necesitan conocerla y cuentan con la
correspondiente autorización para ello.

Disponibilidad de la información: Referido a que la información debe estar disponible
cada vez que las personas autorizadas a acceder a ella y modificarla cuando quieran. Por
otro lado debe poder recuperarse en caso de que tenga lugar un incidente de seguridad que
implique su corrupción o pérdida.

Integridad de la información: Hace referencia a que la información que se haya alma-
cenado o que haya sido transmitida, no ha sido manipulada por terceros. De este modo se
garantiza que la información no va a ser modificada por personas no autorizadas.

Los anteriores principios se pueden relacionar con OWASP y las vulnerabilidades que busca detectar
de modo que cada una de las categoŕıas que aparecen en OWASP-MASVS responde a la necesidad
de proteger alguno de los principios que se han mencionado anteriormente.

A continuación se muestra como se vincula cada uno de los principios con los controles que MASVS
ofrece. De este modo se puede justificar por qué una aplicación se puede considerar vulnerable si
incumple alguno de los principios:

Autenticidad:
La autenticidad es un control que OWASP aborda mediante controles que comprueban la identidad
leǵıtima de usuarios y la restricción del acceso en función a los permisos con los que se cuente. Se
relaciona con la categoŕıa MASVS-AUTH, de modo que se considera que existe una vulnerabi-
lidad si se puede acceder a funcionalidades restringidas o acceder a la aplicación sin pasar por los
diferentes métodos de autenticación.

Confidencialidad:
En OWASP la confidencialidad se muestra mediante canales orientados a la protección de la in-
formación sensible frente a los intentos no autorizados ya sea en reposo o en tránsito. Está fuerte-
mente relacionado con las categoŕıasMASVS-STORAGE,MASVS-NETWORK y MASVS-
CRYPTO. Se considera que hay una vulnerabilidad si se encuentran datos de carácter sensible
accesibles sin que haya medidas de protección.

Disponibilidad:
La disponibilidad se evalúa de forma indirecta en relación con OWASP, lo que conlleva que se
compruebe la robustez de la aplicación frente a fallos, manipulaciones o interrupciones del servicio.
OWASP busca que la aplicación siga funcionando a pesar de fallos provocados o no provocados.
Se relaciona con MASVS-RESILIENCE y MASVS-PLATFORM, de forma que se valora si
existe una vulnerabilidad si la aplicación deja de prestar servicio o si se muestra inestable en ciertas
condiciones.

Integridad:
OWASP refleja la integridad asegurando que ni los datos ni el código fuente de la aplicación pueden
ser alterados sin que se detecte. Está relacionado con MASVS-CODE, MASVS-PLATFORM
y MASVS-RESILIENCE. Se considera vulnerable si la aplicación se puede modificar sin que

52

CAPÍTULO 5. ANÁLISIS DE LA METODOLOGÍA OWASP.

haya mecanismos de detección o que lo impidan.

En la siguiente tabla se muestra de una forma mas visual, la relación entre los principios de la
seguridad informática ya mencionados antes con las categoŕıas propuestas por OWASP en su gúıa
OWASP-MASVS:

Principio de seguridad Categoŕıas relacionadas

Autenticidad
MASVS-AUTH

Confidencialidad
MASVS-CRYPTO
MASVS-NETWORK
MASVS-STORAGE

Disponibilidad
MASVS-PLATFORM
MASVS-RESILIENCE

Integridad
MASVS-CODE
MASVS-PLATFORM
MASVS-RESILIENCE

Tabla 5.1: Relación de los principios de la seguridad informática con las categoŕıas que OWASP-
MASVS propone.

5.1. Categoŕıas MASVS-OWASP

OWASP propone una agrupación de las pruebas según las categoŕıas de requisitos de seguridad que
se muestran en la tabla 5.2. Cada una de ellas incluye una serie de pruebas que evalúan distintos
controles:

Categoŕıa Nombre Descripción

Almacenamiento MASVS-STORAGE Comprobación del almacenamiento de
datos de forma segura en el dispositivo
en el que se ejecuta la aplicación.

Autenticación y autori-
zación

MASVS-AUTH Revisión de las credenciales de acceso,
gestión de las sesiones de usuario den-
tro de la aplicación, aśı como de los to-
kens de sesión [33] o valores alfanuméri-
cos asignados por el servidor al cliente
cuando se inicia sesión.

53

CAPÍTULO 5. ANÁLISIS DE LA METODOLOGÍA OWASP.

Categoŕıa Nombre Descripción

Código MASVS-CODE Evaluación del código fuente y su pro-
tección, ingenieŕıa inversa, ofuscación y
validación de su integridad.

Comunicación de red MASVS-NETWORK Verificar que las conexiones sean segu-
ras. Comprobar que se utiliza el pro-
tocolo HTTPS y el almacenamiento de
una copia del certificado del servidor en
el dispositivo local.

Criptograf́ıa MASVS-CRYPTO Uso adecuado de los diferentes algorit-
mos criptográficos, aśı como el almace-
namiento y la transmisión segura de los
datos con su debida protección previa.

Plataforma MASVS-PLATFORM Correcta utilización de las interfaces
de programación de aplicaciones o API
[34] de la plataforma Android o IOS. En
el caso de este proyecto, Android.

Resiliencia MASVS-RESILIENCE Resistencia a la manipulación en tiem-
po de ejecución o dinámica, debugging
y análisis de malware.

Tabla 5.2: Categoŕıas de seguridad de OWASP-MASVS.

54

Caṕıtulo 6

Diseño

En el presente caṕıtulo se recoge el diseño de las pruebas realizadas para evaluar las vulnerabilidades
con las que puede contar la aplicación que se va a auditar. Resulta una fase esencial para garantizar
que la auditoŕıa se realice según establece la gúıa OWASP. Para ello se ha tomado como referencia
la gúıa de pruebas OWASP-MASTG, que define los tests que hay que realizar, clasificándolos en
las diferentes categoŕıas y controles plasmados en la gúıa OWASP-MASVS.

En primer lugar, se han detectado una serie de riesgos que podŕıan afectar a la seguridad de la
aplicación en caso de producirse. Seguidamente se ha realizado una selección de pruebas en función
a una serie de criterios con los que se justifican las decisiones tomadas según la funcionalidad de
la aplicación, la viabilidad técnica y el impacto en la seguridad.

Posteriormente se realiza una planificación para la ejecución de los pasos que se describen a lo largo
del presente caṕıtulo.

Finalmente, se diseñan las pruebas seleccionadas, donde se muestra el objetivo de cada una de ellas
aśı como en qué consistirá la prueba en lo que a análisis estático y dinámico se refiere.

6.1. Riesgos detectados en la aplicación

Un vez realizado el análisis de la aplicación a auditar, como se ha visto en el caṕıtulo 4, y antes
de comenzar a establecer los criterios de selección de las pruebas previo diseño, hay que identificar
los riesgos de seguridad que puede tener la aplicación.

A continuación se muestra una lista de los posibles riesgos de seguridad que pueden darse en la
aplicación:

Acceso no autorizado: El atacante accede a partes de la aplicación donde no debeŕıa.

Suplantación de identidad: Un tercero accede a la aplicación con las credenciales de otro
usuario haciéndose pasar por él.

Fuga de datos personales: Los datos de los usuarios se ven comprometidos ante ataques
de terceros.

Almacenamiento inseguro: La información sensible de la aplicación se almacena sin cifrar
y, por tanto, de forma no segura.

55

CAPÍTULO 6. DISEÑO

Tráfico de datos no seguro: Los datos en tránsito se env́ıan sin cifrar por lo que está
sometida a ataques en los que la información se ve comprometida.

Uso de algoritmos criptográficos obsoletos o inseguros: La información se almacena
con algoritmos criptográficos no seguros u obsoletos.

Existencia de datos personales en WebViews [35]: Los datos personales del usuario se
comparten en las webs a las que se acceden desde la aplicación.

Manipulación del código: Los atacantes alteran el código para acceder a datos sensibles.

Fugas de información a través de la interfaz: Se muestran datos sensibles en la interfaz,
v́ıa notificaciones, capturas de pantalla, etc.

Persistencia de datos tras cerrar la sesión: Una vez un usuario cierra la sesión, los datos
del usuario se mantienen presentes.

Una vez identificados los riesgos en la aplicación, el siguiente paso es definir los criterios de selección
de las pruebas que se van a lanzar para comprobar la seguridad.

6.2. Criterios de selección de las pruebas.

A la hora de seleccionar las pruebas que se van a lanzar sobre la aplicación móvil para realizar
la auditoŕıa, se han tenido en cuenta una serie de criterios para garantizar una cobertura lo más
completa posible.

6.2.1. Criterios de selección según la metodoloǵıa OWASP.

Validez y versión de las pruebas: Han sido excluidas aquellas pruebas que OWASP marca
como obsoletas en su versión oficial en MASTG, aśı como aquellas pruebas de la versión 2
(v2 beta) con el fin de garantizar fiabilidad y estabilidad de las pruebas.

Cobertura de las categoŕıas que establece OWASP-MASVS: Las pruebas se han
elegido de modo que se cubren todas las categoŕıas que se definen en MASVS para contar
con una auditoŕıa que dé cobertura en los campos de seguridad que se especifican.

Equilibrio de pruebas de análisis estático y dinámico: Se ha buscado incluir tanto
pruebas de análisis estático (revisión de la configuración, recursos y código fuente) aśı como
análisis dinámico (observación del comportamiento de la aplicación en tiempo de ejecución)
con el fin de obtener una visión lo más completa posible de cómo de segura es la aplicación
y de las vulnerabilidades con las que cuenta.

Viabilidad técnica: Para la selección de las pruebas también se han teniendo en cuenta
los recursos técnicos disponibles, es decir, herramientas como Android Studio y su emulador,
para poder ejecutar la aplicación, y otras como Frida [36] para poder comprobar la seguridad
de la misma.

6.2.2. Criterios de selección según AquaCyL.

De forma adicional a los criterios anteriores, las pruebas se han elegido también en base al conoci-
miento con el que se cuenta de AquaCyL, obtenido en la fase de familiarización de la aplicación, qué
se muestra en el caṕıtulo 4. Con esto, los criterios que se han tenido en cuenta son los siguientes:

Presencia de mecanismos de autenticación: La aplicación permite navegación tanto
como invitado como mediante el registro y posterior inicio de sesión a través de correo

56

CAPÍTULO 6. DISEÑO

electrónico y contraseña. Por ello se han seleccionado pruebas relacionadas con el tratamiento
de información personal y su debida protección.

Manejo de datos de carácter confidencial y almacenamiento local: Puesto que se
utiliza almacenamiento local, se recopilan identificadores y se permite gestionar el perfil,
se han incluido una serie de pruebas que evalúan cómo se procesan y almacenan los datos
sensibles y si se utilizan algoritmos criptográficos seguros y actuales.

Interacción con Webs: Dado que la aplicación hace uso de sitios web dentro de śı misma,
se ha seleccionado una bateŕıa de pruebas orientadas a detectar posibles vulnerabilidades
relacionadas con ejecución de código no deseado y persistencia de datos en dichas webs.

Resiliencia frente ataques: Puesto que se busca evaluar qué tan robusta frente a mani-
pulaciones es la aplicación, se han incluido pruebas que evalúen si la aplicación es capaz de
detectar si está siendo ejecutada en un emulador.

Uso de permisos y comunicación con el Sistema Operativo: Ya que la aplicación
hace uso de diferentes permisos relacionados con almacenamiento, micrófono y cámara, se
ha considerado relevante incluir pruebas que evalúan la interacción de la aplicación con los
servicios de Android.

Uso de la interfaz: La aplicación gestiona notificaciones y datos que se pueden mostrar por
pantalla, por lo tanto se han elegido pruebas para analizar cómo se usa la información en la
interfaz y cómo se depura dicha información.

6.3. Tests OWASP para auditoŕıa móvil.

OWASP Mobile Application Security Verification Standard (MASVS) [21] define el modelo de se-
guridad de una aplicación móvil y lista los requisitos generales de seguridad para esta. Por otro
lado OWASP Mobile Application Security Testing Guide (MASTG) [22] es la gúıa para lanzar las
pruebas en base a los requisitos establecidos en OWASP MASVS.

En base a lo anterior, en MASTG se establecen las siguientes categoŕıas, las cuales cuentan con las
pruebas espećıficas:

MASVS-AUTH: Autenticación y Autorización.

MASVS-CODE: Calidad del Código y Mitigación de Exploits.

MASVS-CRYPTO: Criptograf́ıa.

MASVS-NETWORK: Comunicación de Red.

MASVS-PLATFORM: Interacción con la plataforma Móvil.

MASVS-RESILIENCE: Antimanipulación y Antireversión.

MASVS-STORAGE: Almacenamiento de Datos y Privacidad.

6.3.1. Controles

Para cada una de las categoŕıas mencionadas anteriormente, OWASP define distintos controles que
son medidas técnicas o prácticas que describen cómo se debe proteger la aplicación móvil. En la
siguiente tabla se muestran dichos controles junto a una breve descripción en la que se habla de
qué consiste cada uno:

57

CAPÍTULO 6. DISEÑO

Control Descripción

MASVS-AUTH-1 La aplicación usa protocolos de autenticación y autorización seguros si-
guiendo buenas prácticas.

MASVS-AUTH-2 La aplicación realiza la autenticación local de forma segura según las
mejores prácticas de la plataforma.

MASVS-AUTH-3 La aplicación protege las operaciones sensibles mediante autenticación
adicional.

MASVS-CODE-1 La aplicación requiere una versión actualizada de la plataforma.

MASVS-CODE-2 La aplicación cuenta con un mecanismo para cumplir las actualizaciones
de la aplicación.

MASVS-CODE-3 La aplicación únicamente usa componentes software sin vulnerabilidades
conocidas.

MASVS-CODE-4 La aplicación valida y sanitiza todas las entradas no confiables.

MASVS-CRYPTO-1 La aplicación utiliza criptograf́ıa sólida y la usa según las mejores prácti-
cas.

MASVS-CRYPTO-2 La aplicación realiza la gestión de claves según las mejores prácticas.

MASVS-NETWORK-1 La aplicación securiza todo el tráfico de red según las mejores prácticas
actuales.

MASVS-NETWORK-2 La aplicación realiza la fijación de la identidad para cada uno de los
puntos finales remotos bajo el control del desarrollador.

MASVS-PLATFORM-1 La aplicación utiliza comunicación entre procesos de forma segura.

MASVS-PLATFORM-2 La aplicación usa WebViews1 de forma segura.

MASVS-PLATFORM-3 La aplicación usa la interfaz de usuario de forma segura.

MASVS-PRIVACY-1 La aplicación minimiza el acceso a los datos sensibles y recursos.

MASVS-PRIVACY-2 La aplicación impide la identificación del usuario.

MASVS-PRIVACY-3 La aplicación es transparente sobre la recolección de datos y su uso.

MASVS-PRIVACY-4 La aplicación ofrece al usuario control sobre sus datos.

MASVS-RESILIENCE-1 La aplicación valida la integridad de la plataforma.

MASVS-RESILIENCE-2 La aplicación implementa mecanismos antimanipulación.

MASVS-RESILIENCE-3 La aplicación implementa mecanismos de análisis antiestático.

MASVS-RESILIENCE-4 La aplicación implementa técnicas de análisis antidinámicos.

MASVS-STORAGE-1 La aplicación almacena de forma segura los datos sensibles.

MASVS-STORAGE-2 La aplicación previene la fuga de datos confidenciales.

Tabla 6.1: Controles OWASP para la protección de aplicaciones móviles.

58

CAPÍTULO 6. DISEÑO

6.3.2. Pruebas

Dentro de cada uno de los controles, se definen una serie de pruebas para comprobar si en una
aplicación móvil se cumplen los controles propuestos anteriormente.

En la siguiente tabla se muestran las pruebas seleccionadas para realizar la auditoŕıa de seguridad
en la aplicación móvil AquaCyL, una breve descripción de cada una y la categoŕıa de OWASP-
MASVS en la que se clasifica:

Categoŕıa Prueba Descripción

MASVS-AUTH MASTG-TEST-0017 Prueba para confirmar credenciales.

MASVS-CODE MASTG-TEST-0002 Prueba del almacenamiento local para la
validación de los datos de entrada.

MASVS-CODE MASTG-TEST-0026 Prueba de intenciones impĺıcitas.

MASVS-CODE MASTG-TEST-0027 Prueba de carga de URL en WebViews.

MASVS-CODE MASTG-TEST-0036 Prueba de actualización forzada.

MASVS-CODE MASTG-TEST-0043 Errores de corrupción de memoria.

MASVS-
CRYPTO

MASTG-TEST-0014 Prueba de la configuración del algoritmo
estándar de criptograf́ıa.

MASVS-
NETWORK

MASTG-TEST-0023 Prueba del proveedor de seguridad.

MASVS-
PLATFORM

MASTG-TEST-0008 Comprobación de la divulgación de datos
confidenciales a través de la interfaz de
usuario.

MASVS-
PLATFORM

MASTG-TEST-0037 Prueba de limpieza de WebViews.

MASVS-
RESILIENCE

MASTG-TEST-0040 Prueba de śımbolos de debugging.

MASVS-
RESILIENCE

MASTG-TEST-0047 Prueba de comprobación de integridad
de archivos.

MASVS-
RESILIENCE

MASTG-TEST-0049 Prueba de la detección del emulador.

MASVS-
STORAGE

MASTG-TEST-0004 Determinar si se comparten datos confi-
denciales con terceros a través de embe-
bidos.

MASVS-
STORAGE

MASTG-TEST-0011 Prueba de memoria de datos confidencia-
les.

Tabla 6.2: Pruebas OWASP seleccionadas para la auditoŕıa de AquaCyL.

1Componente nativo para embeber dentro de las apps contenido web.

59

CAPÍTULO 6. DISEÑO

En la anterior tabla, se puede ver como se cubren todas las categoŕıas que OWASP presenta.
Teniendo en cuenta lo anterior y observando las pruebas seleccionadas, se puede comprobar que
se cumplen los criterios de selección que se han mencionado anteriormente y, con ello se puede
comenzar a realizar el diseño de ellas.

6.4. Diseño de las pruebas.

Una vez seleccionadas las pruebas a lanzar, el siguiente paso es realizar su diseño. Para ello hay
que tener en cuenta los diferentes tipos de pruebas que existen, aśı como las categoŕıas de análisis
que se utilizan. Con lo anterior se puede realizar el diseño de cada una de las pruebas escogidas.

6.4.1. Tipos de pruebas.

A la hora de realizar las diferentes pruebas, ésta se pueden clasificar según el conocimiento que la
persona encargada para realizar las pruebas tenga sobre el código fuente de la aplicación [37]:

Caja negra: Se prueba la funcionalidad de la aplicación desde el punto de vista del usuario
final, sin conocer el código fuente o la estructura de datos que se analiza.

Caja blanca: Se cuenta con el código fuente de la aplicación, de modo que se puede analizar
de forma profunda el código y por ende la estructura a bajo nivel de la aplicación.

Caja gris: Se tiene acceso parcial al código fuente, aśı como un conocimiento limitado
del sistema. Es una mezcla de las pruebas de caja blanca y caja negra aprovechando el
conocimiento ambas sin llegar a ser pruebas de ninguno de los dos tipos.

6.4.2. Categoŕıas de análisis.

Por otro lado, las pruebas pueden ser clasificadas según el estado de la aplicación en el momento
de la realización de la prueba. Existen dos tipos de análisis en función de lo anterior [38]:

Análisis estático: Análisis del código fuente sin ejecutarlo o en reposo. Se analiza la estruc-
tura del código y del software disponible. Se trata de buscar vulnerabilidades, malas prácticas
o errores de lógica.

Análisis dinámico: Se realiza con la aplicación en ejecución. Se busca observar el compor-
tamiento de la aplicación en tiempo real dentro de un entorno controlado, que puede ser un
emulador o un dispositivo real.

6.4.3. Diseño de las pruebas seleccionadas.

Dentro de todas las pruebas disponibles, se ha realizado una selección de 15 pruebas cuyos resul-
tados, en caso de explotar vulnerabilidades, podŕıan dar acceso a datos de carácter personal. El
resto de pruebas de las que se ha hablado previamente pueden ser lanzadas con el fin de explotar
más vulnerabilidades. No obstante, esto supondŕıa una extensión mayor a lo que abarca el presente
proyecto.

A continuación se detalla el diseño de cada una de las pruebas elegidas:

60

CAPÍTULO 6. DISEÑO

MASTG-TEST-0002 Prueba del almacenamiento local para la validación de los datos
de entrada.

Objetivos Constatar que los datos que se almacenan de forma local no se utilicen
sin validar antes de volver a usarse.

Pruebas
Análisis estático:

• Inspección del código fuente para buscar si se utiliza Shared-
Preferences puesto que con ello no es posible verificar si los
datos de tipo int, boolean o long se sobreescriben.

• En caso de que se use SharedPreferences [39], comprobar que
se valida su uso.

Tabla 6.3: Diseño de la prueba MASTG-TEST-0002: Prueba del almacenamiento local para la
validación de los datos de entrada.

MASTG-TEST-0004 Determinar si se comparten datos confidenciales con terceros
a través de embebidos.

Objetivos Averiguar si la aplicación comparte datos sensibles del usuario con ter-
ceros sin consentimiento o conocimiento expĺıcito de dicho usuario.

Pruebas
Análisis estático:

• Revisar el código fuente, los permisos que se solicitan y veri-
ficar si existen vulnerabilidades conocidas.

• Verificar que los datos que se env́ıan a terceros se anonimizan
para evitar que se exponga información de carácter personal
que permita a éstos identificar al usuario. Los identificadores
que se asignan a la cuenta no deben ser enviados a terceros.

Análisis dinámico:
• Lanzar un ataque Man-in-the-middle [40] para interceptar y
analizar el tráfico entre el cliente y el servidor. Con ello se
puede tratar de rastrear el tráfico entre aplicación y servidor
de modo que aquellas solicitudes de la aplicación que no se
env́ıan de forma directa al servidor deben revisarse para lo-
calizar información confidencial.

• Revisar las solicitudes a servicios externos a la aplicación para
hallar si se comparte información confidencial.

Tabla 6.4: Diseño de la prueba MASTG-TEST-0004: Determinar si se comparten datos confiden-
ciales con terceros a través de embebidos.

61

CAPÍTULO 6. DISEÑO

MASTG-TEST-0008 Comprobación de la divulgación de datos confidenciales a
través de la interfaz.

Objetivos Verificar que no se comparten datos de carácter confidencial por medio
de la interfaz.

Pruebas
Análisis estático: Buscar en el código fuente la gestión de las
notificaciones, en concreto el uso de NotificationManager [41] en
busca de indicios de que la aplicación env́ıe datos personales y
asegurarse que en los campos EditText [42] las contraseñas se en-
mascaren (se use android:inputType=“textPassword”).
Análisis dinámico: Revisar la aplicación y su funcionalidad bus-
cando formas de activar las notificaciones evaluando si contiene
información confidencial.

Tabla 6.5: Diseño de la prueba MASTG-TEST-0008: Comprobación de la divulgación de datos
confidenciales a través de la interfaz.

62

CAPÍTULO 6. DISEÑO

MASTG-TEST-0011 Prueba de memoria de datos confidenciales.

Objetivos Determinar si los datos sensibles permanecen almacenados en memoria
en texto plano mientras se usan, o después, o si por el contrario se eli-
minan de forma adecuada. Es de especial relevancia que se encuentren
cifrados para que ningún atacante pueda tener acceso a estos.

Pruebas
Análisis estático: Para identificar datos confidenciales expuestos
en memoria hay que:

• Asegurarse que los datos confidenciales sean manejados por
el menor número posible de componentes.

• Identificar los componentes de la aplicación y averiguar dónde
se utilizan los datos.

• Asegurarse de que se solicite la recolección de basura una vez
se hayan eliminado las referencias.

• Afianzar que las referencias de los objetos se eliminan de for-
ma correcta y segura una vez que el objeto que cuenta con los
datos confidenciales ya no sea necesario.

• Cerciorarse de que los datos de carácter confidencial se so-
brescriben tan pronto como ya no sean necesarios:
◦ Se evitan los tipos de datos no primitivos.
◦ Se preste atención a los componentes de terceros como

APIs públicas, frameworks o bibliotecas.
◦ No represente datos confidenciales con datos inmutables.
◦ Sobrescriba las referencias antes de eliminarlas fuera de

la cláusula finalize2.
Análisis dinámico: Realización de un volcado y análisis expĺıcito
del heap de Java mediante las diferentes herramientas integradas
en Android Studio de modo que, durante el análisis se busquen:

• Patrones indicativos de datos confidenciales.
• Nombres de campo indicativos como puede ser contraseña,
pin, secreto, etc.

• Secretos conocidos como por ejemplo algún dato personal.

Tabla 6.6: Diseño de la prueba MASTG-TEST-0011: Prueba de memoria de datos confidenciales.

2Permite controlar la finalización.

63

CAPÍTULO 6. DISEÑO

MASTG-TEST-0014 Prueba de la configuración del algoritmo estándar de cripto-
graf́ıa.

Objetivos Comprobar que la aplicación:
Utiliza algoritmos criptográficos seguros (evitando aquellos insegu-
ros como SHA-1 o MD5).
Usa bibliotecas en uso y seguras en lugar de implementarlas desde
cero.

Pruebas
Análisis estático: Identificar las clases, funciones, interfaces o ex-
cepciones relacionadas con la criptograf́ıa dentro del código fuente
de la aplicación.
Análisis dinámico: Ejecutar la aplicación con el fin de:

• Interceptar llamadas a funciones criptográficas.
• Verificar si las contraseñas se almacenan haciendo uso de fun-
ciones inseguras.

• Inspección en tiempo real de los datos cifrados y de los algo-
ritmos usados.

Tabla 6.7: Diseño de la prueba MASTG-TEST-0014: Prueba de la configuración del algoritmo
estándar de criptograf́ıa.

MASTG-TEST-0017 Prueba para confirmar credenciales.

Objetivos
Verificar que la aplicación solicita al usuario confirmar sus creden-
ciales antes de realizar diferentes operaciones como:

• Eliminar la cuenta.
• Cambiar información sensible del perfil.
• Modificar la contraseña.

Evitar que los usuarios no autorizados realicen acciones cŕıticas
con la cuenta de otro usuario.

Pruebas
Análisis estático: Confirmar que la clave desbloqueada se use du-
rante el flujo de la aplicación. Si solamente comprueba si el usuario
ha desbloqueado la clave, puede ser vulnerable a una omisión de
autenticación local.
Análisis dinámico: En el caso en el que setUserAuthentication-
Required3 se utiliza, hay que validar el tiempo durante el cual se
autoriza el uso de la clave una vez el usuario se ha autenticado
correctamente.

Tabla 6.8: Diseño de la prueba MASTG-TEST-0017: Prueba para confirmar credenciales.

3Habilita o deshabilita que el usuario tenga que autenticarse en el momento de la conexión.

64

CAPÍTULO 6. DISEÑO

MASTG-TEST-0023 Prueba de proveedor de seguridad.

Objetivos Asegurar que la aplicación no requiera de implementaciones no segu-
ras de los servicios de Google (GooglePlayServices) y del proveedor de
seguridad de Android (Android Security Provider), encargado de certi-
ficados, criptograf́ıa, etc; y que las versiones que utiliza son fiables y se
encuentran en su última versión.

Pruebas
Análisis estático:

• Verificar que la aplicación está basada en el SDK de Android
y si es el caso que dependa de GooglePlayServices.

• Asegurar que la clase ProviderInstaller4 se llame con insta-
llIfNeeded5 o installIfNeededAsync6.

• Comprobar que un componente de la aplicación llame a Pro-
viderInstaller lo antes posible y que las excepciones generadas
por los métodos se detecten y gestionen de forma correcta.

• Verificar que la aplicación gestione de forma correcta las ex-
cepciones relacionadas con las actualizaciones del proveedor
de seguridad y que informe al BackEnd cuando ésta funciona
con un proveedor de seguridad sin parchear.

Análisis dinámico: Seguir los siguientes pasos:
• Ejecutar la aplicación en modo depuración.
• Crear un punto de interrupción donde la aplicación se comu-
nica primero con los puntos finales.

• Evaluar la expresión resaltada.
• Escribir Security.getProviders()7.
• Verificar los proveedores e intentar encontrar GmsCo-
re OpenSSL8.

Tabla 6.9: Diseño de la prueba MASTG-TEST-0023: Prueba de proveedor de seguridad.

4Clase para instalar un proveedor de forma dinámica.
5Instala el proveedor de seguridad dinámicamente si no se encuentra instalado.
6Instala de forma aśıncrona el proveedor de seguridad de forma dinámica si no está instalado.
7Devuelve todos los proveedores instalados.
8Tipo de proveedor utilizado con ProviderInstaller.

65

CAPÍTULO 6. DISEÑO

MASTG-TEST-0026 Prueba de intenciones impĺıcita.

Objetivos
Comprobar si la aplicación es vulnerable a ataques de inyección o
a filtraciones de datos de carácter confidencial.
Evaluar si existen intenciones impĺıcitas [43], que son aquellas que
no se refieren a un componente espećıfico, si no que declaran una
acción genérica que un componente de otra aplicación puede eje-
cutar. El uso de dichas intenciones pueden producir riesgos de se-
guridad, como la filtración de datos confidenciales.

Pruebas
Análisis estático: Inspeccionar el fichero AndroidManifest9 con
el fin de buscar firmas definidas en sus bloques internos, donde se
especifica el conjunto de otras aplicaciones con las que la aplicación
busca interaccionar y verificar si contiene alguna acción del siste-
ma como pueden ser android.intent.action.GET CONTENT10,
android.intent.action.PICK11 o android.media.action.IMAGE
CAPTURE 12.
Análisis dinámico: Usar Frida o Frida-trace [44], conectar los
métodos startActivityForResult13 y onActivityResult14 e inspeccio-
nar las intenciones proporcionadas y aquellos datos que contienen.

Tabla 6.10: Diseño de la prueba MASTG-TEST-0026: Prueba de intenciones impĺıcita.

9Fichero que cuenta con información esencial de la aplicación para las herramientas de compilación de Android,
el sistema operativo y Google Play.

10Muestra diferentes datos para que el usuario seleccione el que requiera.
11Devuelve una lista de recursos que el usuario selecciona para devolverlo al elemento que lo ha llamado.
12Permite capturar una foto.
13Inicia una actividad de la que se desea obtener un resultado al acabar.
14Devuelve un objeto del tipo definido en ActivityResultContract.

66

CAPÍTULO 6. DISEÑO

MASTG-TEST-0027 Prueba de carga de URL en WebViews.

Objetivos Comprobar que la aplicación carga URLs de forma segura, de modo
que se impida que se pueda redirigir al usuario a sitios fraudulentos o
maliciosos, aśı como ejecutar ataques de inyección o phishing.

Pruebas
Análisis estático:

• Comprobar la anulación del manejo de la navegación de la
página. Para ello hay que inspeccionar lo que devuelven las
siguientes funciones:
◦ shouldOverrideUrlLoading : Permite que la web cargue la
URL si devuelve false o que cancele la carga con contenido
sospechoso al devolver true. Hay que tener en cuenta las
siguientes consideraciones:
⋄ No se llama para solicitudes del tipo POST15.
⋄ No se llama para iFrames16, XmlHttpRequest17 ni

atributos src incluidos en el HTML o en las etiquetas
script18. De esto debe encargarse shouldInterceptRe-
quest.

◦ shouldInterceptRequest : Deja que la aplicación retorne los
datos de las distintas solicitudes de los recursos. En caso
de retornar un valor nulo, la WebView seguirá cargando
el recurso de forma normal. De lo contrario se utilizan
aquellos datos que retorna el método. Consideraciones:
⋄ Si la navegación segura se encuentra habilitada, las

URLs se someten a las verificaciones de navegación
segura aunque el desarrollador puede permitir la URL
o ignorar la advertencia mediante el retorno de la
llamada onSafeBrowsingHit19.

⋄ No se requiere para JavaScript [45] ni blob20 o para
recursos accedidos v́ıa file:///android asset/ 21 o fi-
le:///android res/ 22. En el caso de redirecciones, úni-
camente se requiere para URL inicial, no para las que
se redirige.

⋄ El retorno de la función se invoca para varios URL
como pueden ser http(s):23, file:24, data:25, etc.

• Verificar que EnableSafeBrowsing26 se encuentra habilitado.
Hay que revisar el fichero AndroidManifest.xml27 y ver el es-
tado de dicho componente.

Análisis dinámico: Ejecutar Frida o frida-trace [44] para conectar
los métodos shouldOverrideUrlLoading y shouldInterceptRequest y
hacer click en los enlaces dentro de la web. A mayores hay que
conectar otros métodos como getHost28, getScheme29 o getPath30

para inspeccionar las solicitudes, listas de denegación o patrones
conocidos.

Tabla 6.11: Diseño de la prueba MASTG-TEST-0027: Prueba de carga de URL en WebViews.

67

CAPÍTULO 6. DISEÑO

MASTG-TEST-0036 Prueba de actualización forzada.

Objetivos Verificar si la aplicación:
Tiene soporte para actualizaciones.
Se implementa correctamente, de modo que el usuario no pueda
seguir usando la aplicación sin actualizarla primera.

Pruebas
Análisis estático: Analizar el código fuente en busca de fragmen-
tos relacionados con el control de versiones, condiciones de funcio-
namiento en caso de versiones inferiores o si existe una lógica que
active algún tipo de mecanismo que impida el funcionamiento de
la aplicación y que obligue a la actualización en caso de contar con
una versión anterior.
Análisis dinámico:

• Probar a descargar una versión anterior de la aplicación para
comprobar si deja ejecutarla o si por el contrario obliga a
actualizar.

• Tratar de modificar el número de versión de la aplicación a la
vez que se intercepta su tráfico mediante un proxy MIMT [46]
para ver como responde el backend.

Tabla 6.12: Diseño de la prueba MASTG-TEST-0036: Prueba de actualización forzada.

15Método para enviar datos a un servidor.
16Elemento HTML para insertar contenido de otro sitio web dentro de la página web actual.
17Objeto que permite a un navegador web realizar peticiones HTTPS y HTTP a un servidor y recibir respuestas

sin recargar la página.
18Etiqueta para insertar o referenciar código ejecutable dentro de las webs.
19Servicio por el que se detecta si un sitio web es o no seguro advirtiendo al usuario si acceder o no.
20Tipo de dato usado para almacenar grandes cantidades de datos.
21Identificador de Recurso Uniforma referido al directorio de recursos de una aplicación.
22Esquema de URL usado para referenciar recursos dentro de una aplicación.
23Indica que la dirección se refiere a un recurso en linea.
24Indica que la dirección se refiere a un fichero local.
25Esquema que permite insertar datos en la URL de forma directa.
26Permite comprobar si una WebView es segura.
27Fichero que cuenta con información esencial de la aplicación para las herramientas de compilación de Android,

el sistema operativo y Google Play.
28Método para obtener el host de un sitio web.
29Permite recuperar información de la estructura de datos de una web.
30Método para obtener la ruta de una web.

68

CAPÍTULO 6. DISEÑO

MASTG-TEST-0037 Prueba de limpieza de WebViews.

Objetivos Probar que las aplicaciones que hacen uso de WebViews eliminan los
datos de esta WebView (datos sensibles, historial, caché, trazas, etc...)
tras cerrar la aplicación, la sesión o al desinstalar.

Pruebas
Análisis estático: Identificar el uso de las API de WebView que
se muestran a continuación:

• Inicialización: La aplicación podŕıa inicializar la WebView
con el objetivo de evitar almacenar cierta información.

• Caché: La clase WebView31, ofrece el método clearCaché [47]
para borrar la caché en todas las WebViews usadas por la apli-
cación. Cuenta con el parámetro includeDiskFiles, si devuelve
true, borra todos los recursos almacenados incluida la RAM
32, si por el contrario, devuelve false solo se borra la caché
RAM.

• API de WebStorage33: WebStorage.deleteAllData [48] se
puede usar para borrar el almacenamiento que usan las API
de almacenamiento de JavaScript [45], incluyendo las bases
de datos SQL [49] web y las API [34] de almacenamiento web
de HTML5 [50].

• Cookies: Verificar que las cookies existentes se eliminan. Pa-
ra ello se puede usar CookieManager.removeAllCookies.

• API de archivos: Comprobar que se eliminan de forma co-
rrecta los datos, incluyendo los de ciertos directorios que con-
tienen información del usuario, en los que se hace de forma
manual.

Análisis dinámico: Abrir una WebView que acceda a datos de
carácter confidencial y cerrar la sesión de la aplicación. Acceder
al contenedor de almacenamiento de la aplicación asegurándose
de eliminar todos los ficheros relacionados con esa WebView. Los
siguientes ficheros y directorios suelen estar relacionados con las
WebViews:

• Cookies34

• app webview35

• blob storage36

• pref store37

• Session Storage38

• Web Data39

• Service Worker40

Tabla 6.13: Diseño de la prueba MASTG-TEST-0037: Prueba de limpieza de WebViews.

69

CAPÍTULO 6. DISEÑO

MASTG-TEST-0040 Prueba de śımbolos de debugging.

Objetivos Verificar que los ficheros de la aplicación no cuenten con śımbolos de
depuración, datos innecesarios que pueden facilitar ingenieŕıa inversa o
metadatos.

Pruebas
Análisis estático: Puesto que normalmente, los śımbolos se eli-
minan durante el proceso de compilación, se requiere el código en
bytes y las bibliotecas compiladas, con el fin de asegurar que se
hayan descartado los metadatos innecesarios.

• En primer lugar hay que buscar el binario nm41 en el NDK
de Android42 y exportarlo.

• Mostrar los śımbolos de depuración o verificar los śımbolos
manualmente mediante un desensamblador.

Análisis dinámico: Se debe usar el análisis estático para llevar a
cabo esta prueba.

Tabla 6.14: Diseño de la prueba MASTG-TEST-0040: Prueba de śımbolos de debugging.

31Componente nativo para embeber dentro de las aplicaciones contenido web.
32Tipo de memoria que almacena información de forma temporal.
33API del almacenamiento de la WebView.
34Almacena las cookies de la WebViews.
35Guarda la información necesaria para que se pueda mostrar la WebView desde la aplicación.
36Almacena objetos inmutables.
37Almacena datos relacionados con las preferencias de la WebView.
38Guarda información sobre el los datos que se almacenan en una sesión de usuario.
39Almacena información sobre la WebView.
40Guarda información relacionada con las notificaciones, caché y gestión de recursos de la WebView dentro de la

aplicación.
41Parte del nombre del binario que hay que buscar para exportarlo y lanzar la prueba.
42Conjunto de herramientas que permite a los desarrolladores incorporar código C o C++ en las aplicaciones.

70

CAPÍTULO 6. DISEÑO

MASTG-TEST-0043 Errores de corrupción de memoria.

Objetivos Comprobar que la aplicación no es vulnerable a los diferentes errores de
memoria como pueden ser:

Uso de la memoria tras liberarla.
Desbordamiento de búfer.
Condiciones de carrera.
Escritura fuera de los ĺımites establecidos.

Pruebas
Análisis estático: Buscar dentro del código los siguientes elemen-
tos:

• Código Java o Kotlin [51]: Buscar problemas de serializa-
ción/deserialización.

• Código nativo: Si es el caso, revisar problemas de corrupción
de memoria.

Análisis dinámico: Seguir los siguientes pasos:
• Si hay código nativo, usar Valgrind [52] o con el fin de analizar
el uso de la memoria y las llamadas a memoria que realiza el
código.

• Si hay código en Java/Kotlin, tratar de volver a compilar la
aplicación y usarla con Squares leak canary [53].

• Para vulnerabilidades de serialización seguir Android Java
Deserialization Vulnerability Tester [54].

• Comprobar el generador de perfiles de memoria de AndroidS-
tudio en caso de existencia de fugas.

Tabla 6.15: Diseño de la prueba MASTG-TEST-0043: Errores de corrupción de memoria.

71

CAPÍTULO 6. DISEÑO

MASTG-TEST-0047 Prueba de comprobación de integridad de archivos.

Objetivos Comprobar que la aplicación implementa comprobaciones de integridad
para detectar cambios no autorizados, para evitar la manipulación de la
APK, ingenieŕıa inversa, inyección de código, etc...

Pruebas
Comprobación de integridad de la fuente de la aplicación:
Hay que responder a las siguientes preguntas:

• ¿Cómo de dif́ıcil resulta la identificación de código anti-
depuración mediante análisis estático y dinámico?

• ¿Fue necesario escribir código para desactivar las defensas?
• ¿Se pueden eludir los mecanismos de forma trivial?

Comprobación de integridad del almacenamiento: Al igual
que en el anterior caso, hay que responder ciertas preguntas:

• ¿Se pueden eludir los mecanismos de forma trivial?
• ¿Cómo de fácil es obtener la clave privada asimétrica o la clave
HMAC (Hash-based Message Authentication Code o Código
de Autenticación de Mensaje basado en Hash) [55]?

• ¿Hubo que desarrollar código para desactivar las defensas?

Tabla 6.16: Diseño de la prueba MASTG-TEST-0047: Prueba de comprobación de integridad de
archivos.

MASTG-TEST-0049 Prueba de la detección del emulador

Objetivos Verificar si la aplicación cuenta con algún mecanismo para identificar si
está siendo ejecutada en algún emulador, en vez de en un dispositivo
real. La ejecución en un emulador puede tener como finalidad la auto-
matización de ataques o el análisis dinámico.

Pruebas
Análisis dinámico: Ejecutar la aplicación en un emulador. La
aplicación debe detectar que está siendo ejecutada en un emulador
y, como respuesta finalizar o rechazar la ejecución de la funciona-
lidad que debe proteger.

Tabla 6.17: Diseño de la prueba MASTG-TEST-0049: Prueba de detección del emulador.

72

Caṕıtulo 7

Lanzamiento de las pruebas sobre
InsecureBankv2.

Antes de realizar la auditoŕıa de seguridad sobre AquaCyL, se ha considerado realizar una primera
ejecución de las pruebas ya seleccionadas y diseñadas sobre una aplicación vulnerable conocida.
De este modo se puede verificar la viabilidad técnica y si el diseño que se ha realizado es el más
adecuado de cara a la aplicación real.

Con el anterior objetivo, se ha seleccionado InsecureBankv2, un aplicación que simula una aplica-
ción bancaria, con sus funcionalidades t́ıpicas, desarrollada con vulnerabilidades con la finalidad
de enseñar a quien esté interesado a auditar y aprender aspectos de seguridad. Se puede obtener
desde su repositorio oficial en GitHub [56]. Es una de las aplicaciones que OWASP propone para
explotar vulnerabilidades, siendo la aplicación denominada como MASTG-APP-0010 [57].

En el presente caṕıtulo se documenta la famiilarización con el entorno de la aplicación, aśı como
el resultado de lanzar las pruebas seleccionadas con el objetivo de comprobar si el diseño realizado
permite identificar las vulnerabilidades que puedan existir en la aplicación.

7.1. Preparación del entorno de pruebas.

En el repositorio de GitHub de InsecureBankv2, aparece un manual de configuración de la aplica-
ción. Para ejecutar la aplicación hay que completar dos pasos: configuración de la aplicación dentro
del emulador y puesta en marcha del servidor.

7.1.1. Instalación y configuración del emulador.

Para poder ejecutar la aplicación, es necesario crear un dispositivo virtual. Para ello, hay que crear
una cuenta en Genymotion [58], el emulador que desde la documentación de InsecureBankv2 pro-
pone.

Para crear la cuenta se solicitan los siguientes datos:

Correo electrónico.

73

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Contraseña.

Uso: Seleccionar Development and testing1.

Tipo de empresa: Seleccionar Others2.

Páıs.

Una vez creada la cuenta, hay que activarla mediante un enlace que se env́ıa al correo electrónico
proporcionado.

Tras activar la cuenta, hay que navegar al menú Get Licence3, donde se elegirá la licencia gratuita
de uso personal. Seguidamente, hay que descargar la versión del emulador para el sistema operativo
que se desee. En este caso Linux.

El siguiente paso es iniciar Genymotion y seleccionar Śı para añadir un nuevo dispositivo virtual.
Posteriormente hay que iniciar sesión con la cuenta que se ha creado previamente y, una vez hecho
esto hay que configurar un nuevo dispositivo virtual, con los datos:

Google Nexus 5X { Android 8.0 { API 26 { 1080x1920

Lo siguiente es iniciar el dispositivo virtual y asegurarse de que funciona correctamente y ejecutar
el siguiente comando en la máquina local para instalar adb:

sudo apt install android-tools-adb

7.1.2. Puesta en marcha del servidor.

En primer lugar hay que clonar el repositorio a la máquina local con el comando:

git clone https://github.com/dineshshetty/Android-InsecureBankv2

El siguiente paso es navegar hacia el directorio AndroLabServer e instalar las dependencias que el
servidor requiere [59]:

cd Android-InsecureBankv2/AndroLabServer

pip install -r requirements.txt

Una vez hecho lo anterior, hay que ejecutar el servidor en el puerto por defecto, (8888 HTTP :

python2 app.py

1Desarrollo y pruebas.
2Otros.
3Obtener licencia.

74

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

La decisión de utilizar Python2 frente a Python3 es puesto que app.py está escrito en sintaxis para
Python2 [60]. Esto se puede comprobar al ejecutarlo con Python3, ya que aparece el siguiente error:

Figura 7.1: Error de ejecución de app.py con Python3.

Al ejecutarlo con Python2, el servidor está corriendo en el puerto 8888.

7.1.3. Configuración de la aplicación en el emulador.

Una vez corriendo el servidor y con el emulador en marcha, el siguiente paso es realizar la configu-
ración para ejecutar la aplicación en el emulador.

Para ello hay que utilizar el comando adb desde el directorio para instalar la aplicación en el na-
vegador:

adb install InsecureBankv2.apk

Con lo anterior, ya se puede acceder a InsecureBankv2 desde el emulador ya configurado.

7.2. Familiarización con la aplicación.

El primer paso nada más abrir la aplicación, es acceder a Preferences (preferencias), ubicado en el
panel superior izquierdo pulsando sobre los tres puntos. Ah́ı hay que comprobar que la dirección
IP del servidor es la 10.0.2.24 y que el puerto en el que está siendo ejecutado es el 8888.

Con lo anterior, ya se puede acceder a la aplicación con cualquiera de las credenciales:

Usuario Contraseña

dinesh Dinesh@123$

jack Jack@123$

Tabla 7.1: Credenciales disponibles en InsecureBankv2.

En este caso se ha optado por iniciar sesión con el usuario jack, aunque la interfaz y el funciona-
miento de la aplicación es similar para ambos usuarios.

4En ocasiones, la dirección IP que hay que poner es la 10.0.2.3. Para averiguar cual de las dos es, basta con abrir
el navegador disponible en el emulador y buscar la IP con el formato http://IP:8888/, la IP correcta será aquella que
se muestre con un mensaje de Not Found, esto es porque aún no hay nada asignado a / en la web pero el servidor
es encontrado por el emulador.

75

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Figura 7.2: Interfaces Preferences e Inicio de sesión de la aplicación InsecureBankv2.

En la figura anterior se pueden ver las interfaces de inicio y de preferencias. Esta última con la
información correspondiente para la correcta conexión con el servidor ya configurado anteriormente.

Para iniciar sesión es únicamente necesario usuario y contraseña. Aunque también se da la opción
de autorellenar las credenciales (Autofill Credentials), en el primer arranque aparece un mensaje
que indica que aún no se ha iniciado sesión con ningún usuario. No obstante, si se inicia sesión, se
cierra la aplicación y se vuelve a abrir. Al intentar hacerlo si se pulsa sobre dicho botón, aparecen
las credenciales (usuario y contraseña) del último usuario que se ha iniciado sesión.

Una vez las credenciales son las correctas, se redirige a la pantalla de inicio o PostLogin, como
lo denomina la aplicación. Ah́ı se muestra el mensaje Rooted Device!!, lo que significa que se
tiene acceso como root o superusuario en el dispositivo. Esto tiene sentido ya que se trata de un
dispositivo con la aplicación con fines de aprendizaje. Por otro lado se muestran tres botones:

Transfer: Redirige a otra pantalla donde se da la opción de transferir. Es necesario la cuenta
de origen y la de destino, pero si se pulsa en el botón Ger Accounts se muestran unas
cuentas por defecto. También se solicita la cantidad a tranferir y un número de teléfono.

View Statement: En el primer arranque de la aplicación, al pulsar sobre el botón aparece un
mensaje que dice que no existe. No obstante, si se realiza una transferencia aparece reflejada.

Change Password: Permite cambiar la contraseña de un usuario insertando nombre de
usuario y nueva contraseña.

En la siguiente figura se muestran las interfaces de inicio y de transferencia, que cuentan con los
elementos previamente explicados:

76

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Figura 7.3: Interfaces PostLogin, DoTransfer y ViewStatement de la aplicación InsecureBankv2.

7.3. Ejecución de la selección de pruebas.

En la presente sección se describe, de forma breve el comportamiento de la aplicación ante cada
prueba y se analiza si, en base a los resultados obtenidos, la prueba está correctamente diseñada y
por ende, se puede lanzar sobre AquaCyL.

7.3.1. MASTG-TEST-0002 - Prueba del almacenamiento local para la
validación de los datos de entrada.

Objetivo: Constatar que los datos que se almacenan de forma local no se utilicen sin validar antes
de volver a usarse [61].

Herramientas utilizadas: Editor de texto, comandos cat [62] y grep [63].

Análisis estático: Se ha realizado un análisis directamente sobre el código fuente del proyecto,
de modo que abriendo los ficheros Java disponibles con un editor de texto, se ha buscado el uso
de la clase SharedPreferences, donde se identifica que se usa en múltiples ocasiones con el fin
de almacenar información relacionada con el usuario (Por ejemplo en el fichero DoLogin.java). Se
puede ver como esta información se recupera posteriormente sin hacer ningún tipo de validación.

Por otro lado, se ha probado desde terminal con los comandos cat y grep, para una búsqueda más
rápida. Con el siguiente comando se muestran todas las entradas que contienen SharedPreferen-
ces dentro de un fichero Java5:

cat fichero.java | grep SharedPreferences

5Si se desease ver todas las apariciones de la clase buscando en todos los ficheros del directorio en el que se
encuentra, bastaŕıa por sustituir el nombre del fichero por un *.

77

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Resultado en InsecureBankv2: Prueba válida. La aplicación reutiliza datos de carácter sensible
sin validar.

7.3.2. MASTG-TEST-0004 - Determinar si se comparten datos confi-
denciales con terceros a través de datos embebidos.

Objetivo: Averiguar si la aplicación comparte datos sensibles del usuario con terceros sin consen-
timiento o conocimiento expĺıcito de dicho usuario [64].

Herramientas utilizadas: Editor de texto, Burp Suite [65], Genymotion [58].

Análisis estático: Se ha inspeccionado el código fuente con el fin de localizar los permisos que se
utilizan y si se llama a bibliotecas o funciones de terceros. Se ha encontrado que se usa la biblioteca
externa Toasteroid, que sirve para mostrar las notificaciones de tipo toast [66]6. Dicha biblioteca
no realiza conexiones a terceros. Por otro lado, no se ha encontrado evidencia de que se env́ıen
datos a terceros

Análisis dinámico: Se ha lanzado un ataque Man-in-the-middle mediante Burp suite [65] con el
fin de interceptar y analizar el tráfico de la aplicación mientras se usa. No se ha detectado comu-
nicación con terceros.

Resultado en InsecureBankv2: InsecureBankv2 no comparte datos confidenciales con terceros.

7.3.3. MASTG-TEST-0008 - Comprobación de la divulgación de datos
confidenciales a través de la interfaz.

Objetivo: Verificar que no se comparten datos de carácter confidencial por medio de la interfaz [67].

Herramientas utilizadas: Editor de texto, Genymotion [58].

Análisis estático: Se ha inspeccionado dentro del directorio res/layout, cada fichero con el fin de
encontrar el uso de android:inputType=“textPassword”. Se busca únicamente en dicho directorio
ya que es en el que se define la interfaz gráfica de usuario. En ninguno de los ficheros, cuando
aparece EditText se usa android:inputType=“textPassword”.

Por otro lado, se ha buscado el uso de NotificationManager7 para evaluar la gestión de las no-
tificaciones. En este caso, no se utiliza dicha clase por lo que se puede concluir que no se usan
notificaciones.

Análisis dinámico: Se ha ejecutado la aplicación en el emulador iniciando sesión y cambiando la
contraseña. Puesto que ambos campos aparecen enmascarados (con puntos), no hay fugas por la
interfaz.

6Notificaciones de alerta que muestran retroalimentación al usuario.
7Notifica al usuario que un evento está teniendo lugar.

78

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

En lo que a las notificaciones se refiere, durante el manejo de la aplicación no se ha encontrado
evidencia de que aparezcan notificaciones.

Resultado en InsecureBankv2: Aunque no se utilice la función correspondiente para la gestión
de contraseñas, en la aplicación en ejecución si que se muestran enmascaradas. InsecureBankv2 no
lanza notificaciones.

7.3.4. MASTG-TEST-0011 - Prueba de memoria de datos confidencia-
les.

Objetivo: Determinar si los datos sensibles permanecen almacenados en memoria en texto plano
mientras se usan, o después, o si por el contrario se eliminan de forma adecuada [68].

Herramientas utilizadas: Editor de texto, Android Studio, comando strings [69], Genymotion.

Análisis estático: Se ha analizado el código fuente correspondiente a acciones relacionadas con el
inicio de sesión, el resultado obtenido es que se usa el tipo de dato primitivo String para almacenar
datos sensibles como puede ser la contraseña del usuario, no se eliminan las referencias y no hay
evidencia de llamadas a funciones de recolección de basura.

Análisis dinámico: Mediante Android Studio, y con la aplicación ejecutándose desde Genymo-
tion con la sesión iniciada se ha realizado un volcado de memoria, con éste se ha usado el comando
strings para comprobar si hay datos en texto plano en memoria. Se ha probado a buscar las cre-
denciales del usario y se han encontrado en texto plano.

Resultado en InsecureBankv2: La aplicación resulta vulnerable tanto desde el punto de vista
del análisis estático como del dinámico ya que se puede ver como se almacena la información en
texto plano y no se gestiona de forma segura en el código fuente.

7.3.5. MASTG-TEST-0014 - Prueba de la configuración del algoritmo
estándar de criptograf́ıa.

Objetivo: Comprobar que la aplicación [70]:

Utiliza algoritmos criptográficos seguros (evitando aquellos inseguros como SHA-1 o MD5
[71]).

Usa bibliotecas en uso y seguras en lugar de implementarlas desde cero.

Herramientas utilizadas: Comando grep, Frida, Genymotion

Análisis estático: Analizando el código fuente con la ayuda del comando grep se ha encontrado el
uso de la clase Cipher, no obstante aunque aparecen funciones como getInstance, la lógica de cifrado
se realiza mediante la clase CryptoClass lo que indica que se implementa la función criptográfica
en vez de usar bibliotecas ya existentes.

79

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Análisis dinámico: Se ha utilizado Frida [36] para interceptar en tiempo real las llamadas crip-
tográficas que realiza la aplicación en ejecución, en este caso al iniciar sesión. El resultado es que
la clave que descifra se ha creado con AES [72] y devuelve la clave en hexadecimal lo que lo vuelve
sumamente vulnerable por la facilidad de obtención del texto en plano.

Resultado en InsecureBankv2: La implementación criptográfica es incorrecta tal y como se ha
comprobado con ambos análisis. A nivel de código se usan funciones propias en vez de bibliotecas
conocidas, y en el análisis dinámico se ha visto como la clave criptográfica que puede interceptar
en texto claro gracias a Frida.

7.3.6. MASTG-TEST-0017 - Prueba para confirmar credenciales.

Objetivo:

Verificar que la aplicación solicita al usuario confirmar sus credenciales antes de realizar
diferentes operaciones como: [73]

• Eliminar la cuenta.

• Cambiar información sensible del perfil.

• Modificar la contraseña.

Evitar que los usuarios no autorizados realicen acciones cŕıticas con la cuenta de otro usuario.

Herramientas utilizadas: Editor de texto, Genymotion.

Análisis estático: Se ha analizado el código fuente en busca de evidencias en las que se muestre
que se puedan hacer tareas como puede ser cambiar la contraseña sin verificar credenciales. Tam-
poco hay un tiempo ĺımite en el que la clave del usuario sea válida antes de expirar y requerir
nueva autenticación.

Análisis dinámico: Se ha comprobado que no se utiliza setUserAuthenticationRequired [74] en
ninguna de las funciones por lo que no hay tiempo ĺımite por el que se autoriza el uso de la clave
al usuario. Por otro lado, para modificar la contraseña, en ningún momento se solicita al usuario
una confirmación de sus credenciales.

Resultado en InsecureBankv2: La aplicación no pasa la prueba ya que no cumple con los
requisitos establecidos ni para análisis estático ni dinámica al no solicitar confirmación de las cre-
denciales ni existir un tiempo ĺımite de uso.

7.3.7. MASTG-TEST-0023 - Prueba de proveedor de seguridad.

Objetivo: Asegurar que la aplicación no requiera de implementaciones no seguras de los servicios
de Google (GooglePlayServices) y del proveedor de seguridad de Android (Android Security Pro-
vider), encargado de certificados, criptograf́ıa, etc. Y que las versiones que utiliza son fiables y se
encuentran en su última versión [75].

80

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Herramientas utilizadas: Editor de texto, comando grep,

Análisis estático: Se ha analizado el código fuente en búsqueda del uso de la clase ProviderIns-
taller [76] o que la aplicación esté basado en el SDK de Android. En este caso no se ha encontrado
evidencia de uso para ninguna de los dos elementos, ni elementos relacionados con un proveedor
de seguridad.

Análisis dinámico: Puesto que en análisis estático no hay evidencia de uso de proveedor de se-
guridad, no hay punto de interrupción en el que interceptar su ejecución.

Resultado en InsecureBankv2: No existe referencia al uso de un proveedor de seguridad y por
ende el uso de las funciones y elementos de seguridad que éstos proponen.

7.3.8. MASTG-TEST-0026 - Prueba de intenciones impĺıcita.

Objetivo: [77]

Comprobar si la aplicación es vulnerable a ataques de inyección o a filtraciones de datos de
carácter confidencial.

Evaluar si existen intenciones impĺıcitas, que son aquellas que no se refieren a un componente
espećıfico, si no que declaran una acción genérica que un componente de otra aplicación puede
ejecutar. El uso de dichas intenciones pueden producir riesgos de seguridad, como la filtración
de datos confidenciales.

Herramientas utilizadas: Comandos grep y cat, Genymotion, Frida.

Análisis estático: Se ha analizado el fichero AndroidManifest.xml en busca de firmas definidas
dentro del bloque intent, no obstante no se ha encontrado nada.

Análisis dinámico: Se ha ejecutado Frida con la aplicación en ejecución sobre el emulador conec-
tando los métodos startActivityForResult8 y onActivityResult9 para inspeccionar las intenciones
impĺıcitas devueltas. Se ha encontrado que utiliza startActivityForResult, no obstante la intención
devuelta es null por lo que se concluye que no hay intenciones impĺıcitas.

Resultado en InsecureBankv2: Se ha observado como no existen intenciones impĺıcitas ni una
declaración de ellas en el código fuente.

7.3.9. MASTG-TEST-0027 - Prueba de carga de URL en WebViews.

Objetivo: Comprobar que la aplicación carga URLs de forma segura, de modo que se impida
que se pueda redirigir al usuario a sitios fraudulentos o maliciosos, aśı como ejecutar ataques de
inyección o phishing [78].

8Inicia una actividad y recibe un resultado de ella.
9Recibe datos de una actividad creada con startActivityForResult.

81

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Herramientas utilizadas: Comandos cat y grep, Frida y Genymotion.

Análisis estático: Se ha revisado el código fuente en busca del uso de la clase WebViewClient
aśı como el uso de la función shouldOverrideUrlLoading10, las cuales se han encontrado en el fi-
chero MyWebViewClient.java donde se sobrescribe la función nativa por otra que admite todas las
URL sin comprobar origen. En AndroidManifest.xml se ha buscado que EnableSafeBrowsing11 se
encuentra habilitado, no obstante este componente no existe en dicho fichero.

Análisis dinámico: Se ha ejecutado Frida con la aplicación en ejecución sobre el emulador para
inspeccionar las conexiones a las webs. La salida obtenida indica que no se restringe el origen del
contenido. Tal y como también se ha demostrado en el análisis estático.

Resultado en InsecureBankv2: Se ha confirmado que la aplicación no carga de forma segura
las URL puesto que no verifica su origen.

7.3.10. MASTG-TEST-0036 - Prueba de actualización forzada.

Objetivo: [79]

Tiene soporte para actualizaciones.

Se implementa correctamente, de modo que el usuario no pueda seguir usando la aplicación
sin actualizarla primera.

Herramientas utilizadas: Comando grep, vim [80].

Análisis estático: Se ha inspeccionado el código fuente en busca de algún elemento relacionado
con el control de la versión y de actualizaciones. No obstante no se ha encontrado ninguna referen-
cia en el código que controle esto.

Análisis dinámico: Se ha probado a cambiar el número de versión de la aplicación y lanzarla,
no obstante al tratar de generar la nueva APK da error ya que hay paquetes que no se encuentran
disponibles para su descarga por lo que no se ha realizado el análisis dinámico.

Resultado en InsecureBankv2: Aunque no se haya podido realizar el análisis dinámico, se ha
visto cómo en el código fuente no se gestiona el control de versiones por lo que es muy posible que
dinámicamente la aplicación funcione en versiones anteriores sin impedir la ejecución.

7.3.11. MASTG-TEST-0037 - Prueba de limpieza de WebViews.

Objetivo: Probar que las aplicaciones que hacen uso de WebViews eliminan los datos de esta
WebView (datos sensibles, historial, caché, trazas, etc...) tras cerrar la aplicación, la sesión o al
desinstalar [81].

10Permite que la aplicación tome el control sobre la carga de una URL dentro de una WebView.
11Permite comprobar si una WebView es segura.

82

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

Herramientas utilizadas: Comandos grep, adb, cd, ls y cat, Genymotion.

Análisis estático: Se ha buscado en el código fuente el uso de APIs relacionadas con WebViews
para la inicialización de las vistas, caché, almacenamiento y cookies. No se ha encontrado nada
relacionado con esto por lo que se puede decir que la aplicación no elimina la información de la
sesión una vez se cierra.

Análisis dinámico: Se ha iniciado sesión en la aplicación y realizado una transferencia. Poste-
riormente se ha cerrado sesión y se ha accedido al almacenamiento de la aplicación, donde se ha
encontrado la existencia de diferentes ficheros y directorios como Web Data o blob storage, los
cuales al cerrar la sesión en la aplcación debeŕıan haber sido eliminados.

Resultado en InsecureBankv2: La aplicación no elimina los datos de las WebViews una vez se
cierra la sesión.

7.3.12. MASTG-TEST-0040 - Prueba de śımbolos de debugging.

Objetivo: Verificar que los ficheros de la aplicación no cuenten con śımbolos de depuración, datos
innecesarios que pueden facilitar ingenieŕıa inversa o metadatos [82].

Herramientas utilizadas: Comandos cat y grep.

Análisis estático: Se ha inspeccionado el código fuente en busca del binario nm. No se ha encon-
trado dicho binario por lo que no usa código nativo por lo que la prueba no aplica a esta aplicación.

Resultado en InsecureBankv2: La aplicación no usa código nativo, por lo que la prueba no
aplica.

7.3.13. MASTG-TEST-0043 - Errores de corrupción de memoria.

Objetivo: Comprobar que la aplicación no es vulnerable a los diferentes errores de memoria como
pueden ser [83]:

Uso de la memoria tras liberarla.

Desbordamiento de búfer.

Condiciones de carrera.

Escritura fuera de los ĺımites establecidos.

Herramientas utilizadas: Comando grep.

Análisis estático: Inspeccionando el código fuente no se ha encontrado ningún uso de código nati-
vo, no obstante si que se han encontrado funciones relacionadas con la serialización/deserialización
como puede ser BroadcastReceiber [84], sin embargo no es causante de fugas puesto que en An-
droidManifest.xml está declarado de forma estática. Aún aśı es peligroso ya que sigue habiendo

83

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

riesgo de corrupción de memoria por el uso de elementos como MODE WORLD READABLE [85],
elemento inseguro y obsoleto de Java.

Análisis dinámico: Al intentar probar a compilar de nuevo la aplicación y usar LeakCanary [53],
aparecen errores ya que las versiones de algunas herramientas como Gradle [86], usada en la apli-
cación es muy antigua y entra en conflicto. Actualizarla no es una opción ya que el código cuenta
con funciones obsoletas e incompatibles en versiones más actuales.

Resultado en InsecureBankv2: A pesar de no haber sido posible el análisis dinámico, por medio
del estático se ha encontrado que se utilizan funciones que suponen un riesgo de seguridad para la
aplicación relacionado con la corrupción de memoria.

7.3.14. MASTG-TEST-0047 - Prueba de comprobación de integridad de
archivos.

Objetivo: Comprobar que la aplicación implementa comprobaciones de integridad para detectar
cambios no autorizados, para evitar la manipulación de la APK, ingenieŕıa inversa, inyección de
código, etc... [87]

Herramientas utilizadas: Comandos adb y grep, vim, frida, Genymotion.

Comprobación de integridad de la fuente de la aplicación: Debido a conflictos con las
versiones de la aplicación y firma de la APK para probarla modificada en el emulador, no ha sido
posible probar la integridad del código fuente.

Comprobación de integridad del almacenamiento: Se ha modificado el fichero .html corres-
pondiente al usuario dinesh y se ha vuelto a subir a la apk. Al ejecutar la aplicación aparece el
fichero modificado sin mostrar ningún tipo de error. Por lo que las defensas son fácilmente eludibles
sin necesidad de desarrollar código. La clave HMAC es fácilmente accesible si se realiza el inicio de
sesión y se intercepta el tráfico con Frida.

Resultado en InsecureBankv2: La aplicación no cuenta con comprobaciones de integridad de
almacenamiento.

7.3.15. MASTG-TEST-0049 - Prueba de la detección del emulador.

Objetivo: Verificar si la aplicación cuenta con algún mecanismo para identificar si está siendo
ejecutada en algún emulador, en vez de en un dispositivo real. La ejecución en un emulador puede
tener como finalidad la automatización de ataques o el análisis dinámico [88].

Herramientas utilizadas: Genymotion.

Análisis dinámico: Se ha ejecutado la aplicación desde un emulador y se ha interaccionado con
ella. La aplicación no presenta ningún tipo de rechazo, bloqueo o comportamiento extraño por ser

84

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

ejecutada en un emulador.

Resultado en InsecureBankv2: La aplicación no altera su comportamiento al ser ejecutada en
un emulador.

Una vez lanzadas todas las pruebas seleccionadas sobre la aplicación vulnerable dentro de un
entorno seguro, se puede concluir que las pruebas en su totalidad se encuentran diseñadas correc-
tamente ya que cumplen con su objetivo principal.

85

CAPÍTULO 7. LANZAMIENTO DE LAS PRUEBAS SOBRE INSECUREBANKV2.

86

Caṕıtulo 8

Lanzamiento de las pruebas sobre
AquaCyL.

Una vez se ha corroborado que el diseño de las pruebas seleccionadas es el correcto, el siguiente
paso es lanzarlas sobre la aplicación real: AquaCyL. Esto tiene como objetivo comprobar si la
aplicación cumple con los criterios que OWASP establece. Es por ello por lo que se ejecutarán las
pruebas una a una, a nivel estático y dinámico según lo establecido en el diseño.

Con los resultados que se obtengan de la ejecución de cada una de las pruebas, se podrá identificar
si la aplicación tiene vulnerabilidades, su criticidad y el riesgo que suponen. A partir de ello, se
realizará una serie de recomendaciones con el fin de ayudar a corregir o mitigar las vulnerabilidades
encontradas para reforzar AquaCyL y proteger los datos.

El primer paso a llevar a cabo antes del lanzamiento de las pruebas es obtener el código fuente de
la aplicación. Para el análisis estático es necesario descompilar la APK. Para ello basta con instalar
y ejecutar apktool [89] con los comandos que se muestran a continuación:

sudo apt install apktook

apktool d AquaCyL 1.0.0 010000000.apk -o AquaCyL decoded

Tras la ejecución de los comandos anteriores, en el directorio AquaCyL decoded se cuenta con el
código en formato smali [90], que es una representación del código a bajo nivel.

En lo que a nivel dinámico respecta, es necesario contar con un entorno controlado sobre el que
ejecutar la aplicación. Para ello se ha seleccionado Android Studio [91], cuya configuración se
muestra a continuación:

8.1. Configuración del entorno de pruebas controlado.

En la presente sección se muestran los pasos llevados a cabo para la configuración del entorno
de pruebas controlado. Esto consiste en la instalación de Android Studio, entorno sobre el que se

87

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

ejecutará la AquaCyL para lanzar las pruebas.

En primer lugar hay que verificar que la máquina sobre la que se va a instaurar el programa cuenta
con los requisitos necesarios para su instalación. La máquina en cuestión es una Ubuntu 22.04 por
lo que los requisitos mı́nimos de instalación son los siguientes:

Cualquier distribución Linux 64 bits compatible con Gnome, KDE o Unity DE.

Arquitectura CPU x86 64.

Al menos 8 GB RAM.

Al menos 8 GB espacio de disco disponible.

Resolución mı́nima de pantalla de 1280 x 800.

Para verificar los requisitos en la máquina que se va a utilizar hay que ejecutar los siguientes
comandos en una terminal:

Figura 8.1: Salida de lscpu para ver las caracteŕısticas del procesador.

Tal y como puede verse en la anterior figura, al ejecutar el comando lscpu [92] se muestran las
caracteŕısticas del procesador. En este caso, en la linea Arquitectura se puede ver que se trata de
una x86 64 tal y como se requiere, y en la linea Nombre del modelo se puede ver que éste es un
Intel Core i7.

Figura 8.2: Salida del comando free para ver la memoria RAM disponible.

Mediante el comando free -m [93] se puede ver como hay casi 16 GB de memoria RAM, más del
doble del mı́nimo por lo que también se cumple con dicho requisito.

88

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Figura 8.3: Salida de df con el que se ve el espacio de memoria en disco.

En la imagen anterior se muestra la salida del comando df -h [94], lo que devuelve cuanto espacio
disponible hay en disco. De las múltiples salidas que hay, la que es de interés es la del directorio
ráız o root (/). Se puede ver cómo hay disponibles 128 GB, lo cual supera con creces el mı́nimo
requerido de 8 GB.

Figura 8.4: Salida del conjunto de comandos xrandr y grep para ver la resolución de pantalla.

Por último, para ver la resolución de la pantalla, basta con ejecutar los comandos xrandr [95],
encargado de gestionar la configuración de las pantallas junto con grep [63] para filtrar por cadenas
de texto. Con ello, la salida muestra qué resolución tiene la pantalla, en este caso 1920 x 1080,
lo cual también está por encima del requisito establecido.

Una vez comprobado que se cumplen los requisitos necesarios para la instalación, lo siguiente es
descargar el programa desde la página oficial1. Desde alĺı hay que aceptar los términos y condicio-
nes para poder proceder con la descarga. Una vez hecha, hay que extraer el fichero con el siguiente
comando:

tar -xzvf android-studio-2024.3.2.15-linux.tar.gz [96]

Lo siguiente es dirigirse al directorio android-studio/bin con el comando cd [97] y ejecutar studio.sh
de la siguiente forma:

./studio.sh

Con ello se abre la aplicación. Lo primero es elegir si se desea que se env́ıen estad́ısticas a Google
o no, en este caso se ha optado por no hacerlo.

1https://developer.android.com/studio/?gclid=Cj0KCQiAjJOQBhCkARIsAEKMtO3zEhdK4 I0CEZic3UH4dl-
9gVXuHFR9dCl3TOHKjmv3xWLU3UxfhYaApfAEALw wcB&gclsrc=aw.ds&hl=es-419

89

https://developer.android.com/studio/?gclid=Cj0KCQiAjJOQBhCkARIsAEKMtO3zEhdK4_I0CEZic3UH4dl-9gVXuHFR9dCl3TOHKjmv3xWLU3UxfhYaApfAEALw_wcB&gclsrc=aw.ds&hl=es-419

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Figura 8.5: Enviar o no estad́ısticas a Google

Una vez aceptado o rechazado lo anterior, se muestra un asistente de configuración.
En primer lugar, hay que elegir entre el tipo de setup que se desea para la aplicación. Se puede
optar entre la versión estándar, con los ajustes predeterminados, o por la versión personalizada,
en la que se puede elegir la configuración. Para este caso, ya que la página de instalación de la
aplicación lo recomienda [98], se ha optado por elegir la versión estándar tal y como se muestra en
la siguiente figura.

Figura 8.6: Tipo de instalación

Los siguientes pasos consisten en confirmar los ajustes, en los que se muestran los diferentes paque-
tes y aceptar la licencia de acuerdo. Una vez se completen estos pasos, hay que finalizar el proceso
con lo que se instalarán los paquetes necesarios.

90

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Figura 8.7: Ajustes finales y licencia

Tras finalizar la instalación, se mostrará la interfaz final sobre la que se va a trabajar:

Figura 8.8: Interfaz Android Studio

8.1.1. Funcionamiento del emulador.

Para poder ejecutar una aplicación desde un ordenador portátil es necesario un emulador [99]. En
este caso Android Studio cuenta con uno. Para acceder a él hay que navegar por el menú:

Tools >Device manager

Lo anterior despliega un panel lateral que muestra lo siguiente:

91

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Figura 8.9: Dispositivos disponibles para ejecutar en el emulador.

Tal y como se puede ver en la figura anterior, aparece creado de forma predeterminada un teléfono
con sistema operativo Android 16. En caso de querer, se puede crear un dispositivo nuevo desde
el śımbolo +. En este caso como existe uno ya creado, se va a omitir este último paso y se va a
ejecutar el emulador con el dispositivo con Android 16 pulsando sobre el botón play2 que aparece
al lado derecho de cada una de las opciones.

8.2. Lanzamiento de las pruebas.

Una vez configurado el entorno controlado, obtenido el código fuente de la aplicación y esta última
en ejecución sobre dicho entorno se pueden lanzar las pruebas sobre AquaCyL. En las siguientes
secciones se muestran los pasos llevados a cabo para lanzar cada una de las pruebas, los resultados
obtenidos y en caso de haber encontrado alguna vulnerabilidad, una serie de recomendaciones para
evitarlas o mitigarlas.

8.2.1. MASTG-TEST-0002 - Prueba del almacenamiento local para la
validación de los datos de entrada.

Para la ejecución de la prueba, se ha buscado dentro del código fuente el uso de SharedPreferences,
para comprobar que no se utilicen sin ser previamente validados [61].

Con el comando grep, se ha buscado el uso de SharedPreferences en el código ya extráıdo de la
APK con el siguiente comando:

grep -r SharedPreferences *

La salida del comando muestra que se hace uso en múltiples ocasione de SharedPreferences. Esto
puede verse reflejado en diferentes ficheros, siendo uno de ellos k.smali, donde se puede ver que
se obtiene la instancia a SharedPreferences, se asigna el campo de la clase y se leen los datos
persistentes:

invoke-virtual p1, p2, v0, Landroid/content/Context;->

2Botón que permite ejecutar el emulador.

92

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

getSharedPreferences(Ljava /lang/String;I)Landroid/content/SharedPreferences;

iput-object p1, p0, La6/k;->a:Landroid/content/SharedPreferences;

invoke-interface v0, v1, v2, v3, Landroid/content/SharedPreferences;->getLong(Ljava

/lang/String;J)

En la última linea de código se puede ver como se recuperan valores de tipo String directamente
desde el almacenamiento.

Por otro lado, se ha comprobado si al usar SharedPreferences.Editor para leer o almacenar claves.
En las siguientes lineas se puede ver como se escriben elementos en SharedPreference sin aparente
un control previo:

invoke-interface v2, v3, v4, Landroid/content/SharedPreferences$Editor;->
putStringSet(Ljava/lang/String;Ljava/util/Set;)Landroid/content/

SharedPreferences$Editor;

invoke-interface v0, Landroid/content/SharedPreferences$Editor;->commit()Z

No se ha encontrado evidencia del uso de operaciones de cifrado para los datos que se manejan con
SharedPreferences.

Conclusión de la prueba.

En base al análisis estático sobre el código de la aplicación, se puede concluir que se utiliza Sha-
redPreferences en múltiples ocasiones como método de persistencia de los datos, lo que implica
que se guarda información en el almacenamiento interno de la aplicación. Por otro lado, no se ha
encontrado evidencia del uso de funciones de cifrado para proteger los datos que se almacenan con
SharedPreferences.

Por tanto, se puede concluir que la aplicación no supera la prueba puesto que no garantiza que
los datos persistentes de validen antes de usarse, lo que puede implicar que se use información
manipulada o no válida.

Recomendaciones.

Evitar el uso de los valores locales de forma directa sin antes verificar el origen del que
provienen o su integridad.

Considerar aplicar mecanismos de protección mediante funciones criptográficas con el fin de
evitar almacenar la información v́ıa SharedPreferences en texto plano.

93

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

8.2.2. MASTG-TEST-0004 - Determinar si se comparten datos confi-
denciales con terceros a través de datos embebidos.

Con el fin de descubrir si la aplicación comparte datos de carácter sensible al usuario con terceros,
hay que realizar tanto el análisis estático como el dinámico sobre la aplicación [64]:

Análisis estático.

En primer lugar se han buscado los permisos que se solicitan. Para ello hay que buscar en Andro-
idManifest.xml, en el cual se muestra que los permisos que se utilizan son los siguientes [100]:

android.permission.INTERNET: Para realizar operaciones en internet, como puede ser
conectarse [101].

android.permission.ACCESS NETWORK STATE: Para realizar operaciones en in-
ternet, como puede ser conectarse.

android.permission.READ EXTERNAL STORAGE: Permite a la aplicación leer des-
de el almacenamiento externo.

android.permission.READ MEDIA IMAGES: Permite que la aplicación lea imágenes
desde el almacenamiento externo.

android.permission.READ MEDIA VIDEO: Permite que la aplicación lea videos desde
el almacenamiento externo.

android.permission.READ MEDIA VISUAL USER SELECTED: Permite que la
aplicación lea imágenes o videos desde un almacenamiento externo que el usuario haya selec-
cionado.

android.permission.CAMERA: Requerido para acceder a la cámara del dispositivo.

android.permission.ACCESS MEDIA LOCATION: Permite que la aplicación acceda
a cualquier ubicación geográfica en la colección compartida del usuario.

android.permission.RECORD AUDIO: Permite grabar video.

android.permission.POST NOTIFICATIONS: Para publicar notificaciones.

com.google.android.gms.permission.AD ID: Para monetizar aplicaciones y publicidad
[102].

Cada uno de los permisos que se utilizan están justificados por la funcionalidad que presenta la
aplicación, o por decisiones del desarrollador para obtener beneficios como puede ser el último
permiso que se menciona en la lista.

Por otro lado, se ha inspeccionado el código fuente en busca de bibliotecas de terceros que puedan
presentar algún tipo de riesgo de seguridad. Para ello se ha buscado mediante el comando grep, la
presencia de elementos como token, password, auth, session, email o clave. Con ello se ha encontrado
que se utilizan bibliotecas como com.google.android.gms.internal.auth, o com.google.firebase.auth
para gestionar la autenticación del usuario. Puesto que se trata de bibliotecas de terceros, aunque
estén gestionadas por Google, manejan elementos sensibles como puede ser el email del usuario,
será en el análisis dinámico donde se comprobará si se utilizan correctamente y de forma segura.

94

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Análisis dinámico.

Con el fin de interceptar el tráfico que sale o entra de la aplicación, se ha utilizado Burp [65] para
llevar a cabo dicha tarea. En primer lugar se ha encendido el emulador y se ha ejecutado el siguiente
comando para activar el proxy [103] para que Burp pueda capturar el tráfico:

adb shell settings put global http proxy 10.0.2.2:8080

Posteriormente, dentro de Burp, se ha navegado hacia Proxy - HTTP history y se ha comenzado
a interaccionar con el emulador [104]. En primer lugar, para comprobar que el tráfico se captura
correctamente se ha lanzado una búsqueda sobre el navegador. Posteriormente se ha navegado por
la aplicación. No obstante, al comprobar el tráfico capturado se ha descubierto que no es posible
capturar el tráfico. Tras investigar los motivos que podŕıan causar el problema, se ha descubierto
que, en versiones actuales de Android, a partir de la 11 no se pueden instalar el certificado que
Burp requiere ya que el sistema operativo lo impide.

Se ha probado a configurar todo nuevamente desde un Android inferior, primero con la versión
7, pero la aplicación no es compatible con un sistema operativo tan antiguo, y posteriormente
sobre Android 11 y nuevamente, no se puede instalar el certificado. En Android 10, el certificado
puede instalarse pero la aplicación da error cada vez que se quiere abrir y se cierra inesperadamente.

Es por lo anterior por lo que no se ha podido realizar un análisis dinámico satisfactorio con el que
concluir si se env́ıan datos personales en claro y sin la autorización de un tercero.

Conclusión de la prueba.

Aunque solo se tenga en cuenta el análisis estático, ya que con el dinámico no ha sido posible obtener
nada, se puede concluir que no hay evidencia de que la aplicación comparta datos confidenciales
del usuario con terceros.

8.2.3. MASTG-TEST-0008 - Comprobación de la divulgación de datos
confidenciales a través de la interfaz.

Para verificar que no se comparten datos de carácter personal mediante la interfaz se ha realizado
el análisis estático sobre el código fuente y el dinámico sobre la aplicación en ejecución [67]:

Análisis estático.

Se ha buscado en el código fuente la gestión de las notificaciones mediante NotificationManager
con el objetivo de buscar si la aplicación env́ıa algún tipo de dato personal a través de éstas. Para
ello se ha utilizado el comando grep tal y como se muestra a continuación:

grep -r NotificationManager

Con ello se ha descubierto que NotificationManager se utiliza en múltiples ocasiones, no obstante,
no se ha encontrado evidencia de que la aplicación env́ıe datos de carácter personal a través de las
notificaciones.

95

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Por otro lado, se ha buscado que las contraseñas de los campos EditText se utilice android: in-
putType=“textPassword”. Para ello se han ejecutado los dos siguientes comandos:

grep -r EditText

grep -r android:inputType=‘‘textPassword’’

Con ello se ha encontrado que EditText se usa varias veces, pero sin usarse para contraseñas. Hay
que destacar que el segundo comando no devuelve nada. Esto seŕıa un problema en el caso en el que
se usara EditText para gestionar contraseñas, pero al no ser el caso no supone ningún problema.

Análisis dinámico.

Se ha ejecutado la aplicación en el emulador con el fin de descubrir si por medio de alguna notifica-
ción se env́ıan datos personales del usuario. Tras realizar distintas transacciones, como cambiar la
contraseña o interaccionar con las diferentes vistas de la aplicación. Las contraseñas se encuentran
enmascaradas (se muestran con puntos en vez de en plano).

Resultado de la prueba.

La aplicación pasa la prueba puesto que ni en análisis estático ni en análisis dinámico se han
encontrado evidencias de la divulgación de datos personales a través de la interfaz.

8.2.4. MASTG-TEST-0011 - Prueba de memoria de datos confidencia-
les.

Con el objetivo de determinar si los datos sensibles permanecen en texto plano almacenados en
memoria o mientras se usan o si se eliminan correctamente tras usarse se han realizado análisis
estático y dinámico sobre la aplicación [68]:

Análisis estático.

Analizando el código fuente, se ha encontrado que el inicio de sesión, que es el principal uso de
datos confidenciales, se realiza mediante Firebase [105], componente de Google para gestionar la
autenticación de los usuarios. Se ha buscado la gestión de usuario, contraseña y correo electrónico
mediante el comando grep:

grep -r email * >email.txt

grep -r password * >paswword.txt

grep -r user * >user.txt

Tras inspeccionar la salida del anterior comando en los ficheros anteriores, se ha descubierto que
tanto email como contraseña se utilizan en múltiples ficheros. Por otro lado, se ha concluido que
se tratan de datos tipo String tal y como se puede ver en lineas como pueden ser:

const-string v1, ‘‘email’’

96

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

invoke-virtual v0, v1, v2, Lorg/json/JSONObject;->optString(Ljava/lang/

String;Ljava/lang/String;)Ljava/lang/String;

Esto presenta un problema de seguridad ya que se trata de datos inmutables.

Por otro lado, no se han encontrado indicios del uso de sistemas de eliminación de datos que no se
utilizan o recolectores de basura como System.gb() [106].

Análisis dinámico.

Para la realización del análisis dinámico hay que realizar un volcado de memoria para comprobar
si las credenciales del usuario con la sesión iniciada se pueden obtener del volcado, es decir, si
continúan en memoria una vez se ha iniciado sesión.

En primer lugar hay que abrir Android Studio y con la aplicación abierta y con la sesión iniciada
navegar a Profiler para realizar el Heap Dump. No obstante, al intentar hacerlo aparece un error
en el que se indica que no se puede realizar el volcado.

Se ha optado por probar otra forma de realizar el volcado con los siguientes comandos:

adb shell pm list packages | grep aquacyl

adb shell pidof es.pablo.aquacyl.aqua cyl

adb shell am dumpheap 4117 /sdcard/heap-aquacyl.hp

Figura 8.10: Prueba de volcado de memoria.

El último comando devuelve error, lo que significa que la aplicación no es debuggueable por lo que
el volcado de memoria no puede realizarse.

Conclusiones de la prueba.

Aunque no ha sido posible realizar el volcado de memoria ya que la aplicación no es debugueable,
en el análisis estático se han encontrado algunos fallos de seguridad que provocan que la aplicación
no pasa la prueba ya que se utilizan tipos de datos String, y no se realiza ningún tipo de solicitud
para la recolección de basura una vez se hayan terminado de utilizar los datos. Esto implica una
vulnerabilidad ya que se podŕıa capturar información mientras se usan o tras usarlos.

Recomendaciones.

Utilizar otro tipo de datos diferente a String para almacenar tipos de datos sensibles como las
direcciones de correo electrónico o las contraseñas de los usuarios. También se recomienda realizar
la limpieza de los datos cuando no se utilicen con mecanismos de recolección de basura como puede
ser System.gb().

97

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

8.2.5. MASTG-TEST-0014 - Prueba de la configuración del algoritmo
estándar de criptograf́ıa.

Con el objetivo de comprobar si la aplicación utiliza bibliotecas seguras antes que implementar
nuevas, y verificar el uso de algoritmos criptográficos seguros se ha realizado el análisis estático y
dinámico de la aplicación [70].

Análisis estático.

Se ha analizado el código fuente en busca de diferentes funciones, clases, interfaces o excepciones
que indiquen el uso de criptograf́ıa para proteger datos sensibles:

grep -rE ’Cipher|Mac|MessageDigest|Signature’ * >clases.txt

grep -rE ’Key|PrivateKey|PublicKey|SecretKey’ * >interfaces.txt

grep -rE ’getInstance|generateKey’ * >funciones.txt

grep -rE ’KeyStoreException|CertificateException|NoSuchAlgorithmException’ * >

excepciones.txt

grep -rE ’SHA’ * >sha.txt

Se ha redirigido la salida del comando a diferentes ficheros con el fin de facilitar la comprensión del
código ya que la salida de algunos es considerablemente grande y desde un fichero se puede buscar
con más facilidad.

Dentro de los diferentes ficheros se ha descubierto que se utilizan bibliotecas como javax.crypto
[107], biblioteca oficial. Por otro lado, no se han encontrado funciones propias e inseguras crip-
tográficas.

Dentro de los ficheros analizados, se ha encontrado que existen referencias a clases como:

Cipher: Proporciona funcionalidad de un cifrado criptográfico para cifrado y descifrado [108].

Mac: Proporciona la funcionalidad de MAC o Código de Autenticación de Mensajes [109].

Signature: Proporciona a la aplicación la funcionalidad de un algortimo de firma digital
[110].

KeyGenerator: Facilita la funcionalidad de un generador de clave simétrica [111].

KeyStore: Permite almacenar claves criptográficas y certificados [112].

Por otro lado, en lo que a algoritmos criptográficos se refiere, se ha encontrado el uso de funciones
seguras como puede ser SHA-256 o SHA-512 [71], que son funciones seguras. No obstante, también
se menciona el uso de SHA-1, conocida por sus colisiones e inseguridad en ficheros como m.smali
o zzach.smali.

Análisis dinámico.

Con el fin de interceptar llamadas criptográficas, comprobar si las contraseñas de los usuarios se
almacenan en texto plano e inspeccionar en tiempo real los datos confidenciales, se ha optado por
ejecutar Frida [36], una aplicación para monitorizar la información en tránsito con la aplicación.

98

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Para ejecutar Frida sobre la aplicación hay que tener la aplicación en ejecución sobre el emulador
y conectar Frida al proceso de la aplicación:

frida -U -n AquaCyL

El proceso anterior indica que el servidor no se encuentra en ejecución, por lo que hay que ejecutar:

adb push frida-server-16.1.2-android-x86 64 /data/local/tmp/frida-server

adb shell ‘‘chmod 755 /data/local/tmp/frida-server’’

adb shell

su

/data/local/tmp/fridaa-server

Los pasos anteriores dan error. Esto es puesto que para que Frida funcione, es necesario que se
cumplan o bien ambas de las siguientes condiciones o al menos una:

El emulador sea rooteable, es decir, tenga permisos de root.

La aplicación sea debuggueable.

Con el fin de poder lanzar las pruebas se ha probado a realizar los cambios necesarios para que se
cumplan las condiciones:

1. Decompilar la aplicación

2. Modificación de AndroidManifest.xml añadiendo android:debuggable=“true”.

3. Compilar la aplicación.

4. Firmar la aplicación.

5. Instalar la aplicación en el emulador

Los pasos anteriores resultan en error por conflicto de firmas. Es por ello por lo que se repitieron los
pasos pero con apk-mitm [113], ya que de este modo se modifica AndroidManifest.xml únicamente
sin modificar firmas. No obstante, sigue dando error.

Finalmente, se ha probado a realizar los cambios sobre AndroidManiefst.xml pero compilando la
aplicación con las bibliotecas de la APK original y no con las modificadas. Tras realizar los pasos,
la aplicación se firma correctamente pero sigue sin ser debuggueabke.

Puesto que no ha sido posible hacer que la aplicación sea debuggueable, se ha probado a instalar
la aplicación en un emulador rooteado en genymotion. Al intentar ejecutar la aplicación esta se
cierra repentinamente.

Con los anteriores resultados se puede concluir que no puede realizarse el análisis dinámico de esta
prueba sobre AquaCyL ya que la aplicación no es debuggueable y no se puede transformar, y la
aplicación no funciona en entornos con permisos de root.

99

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

En términos de seguridad, el hecho de que la aplicación rechace estos mecanismos
implica que se encuentra protegida ante vulnerabilidades que impliquen que la apli-
cación pueda ser debuggueada o su ejecución en entornos root, lo cual puede estar
relacionado con ataques malintencionados.

Conclusión de la prueba.

Aunque el análisis dinámico no haya podido realizarse, se ha encontrado que al ser una aplicación
no debuggueable y que no se puede ejecutar sobre emuladores con permisos de root, lo cual de-
muestra que se trata de una aplicación segura en estos casos.

Por otro lado, en el análisis estático se ha encontrado que se usan bibliotecas y clases predefinidas
seguras. No obstante se ha encontrado el uso de algoritmos de criptograf́ıa inseguros como SHA-1,
lo cual hace que la aplicación no pase la prueba.

Recomendaciones.

Cambiar el uso de los algoritmos criptográficos inseguros como SHA-1 por otros maś robustos y
seguros.

8.2.6. MASTG-TEST-0017 - Prueba para confirmar credenciales.

Con el objetivo de verificar si existe un tiempo ĺımite establecido con el que la sesión permanezca
activa o si para realizar algún cambio se solicitan las credenciales se ha realizado el análisis estático
y el análisis dinámico sobre la aplicación [73].

Análisis estático.

Se ha inspeccionado el código fuente con el comando grep con el objetivo de buscar si existe alguna
restricción en el uso de las claves del usuario, sobre todo a la hora de realizar acciones cŕıticas como
la eliminación de la cuenta o el cambio de la contraseña.

Para realizar la búsqueda se han ejecutado los siguientes comandos con el objetivo de encontrar si
se utilizan dichas funciones o relacionadas:

grep -r setUserAuthenticationRequired3 *

grep -r UserAuthentication4 *

En ambos casos la salida ha sido vaćıa, lo que implica que no existen medidas con las que se requiera
de autenticación o que exista un tiempo máximo durante la que dicha autenticación es válida para
realizar acciones importantes sobre la cuenta.

Análisis dinámico.

Dado que, tal y como se ha comentado en el análisis estático, no se ha encontrado el uso de
setUserAuthenticationRequired [74], no es necesario medir el tiempo durante el que las credenciales
del usuario están disponibles antes de que caduquen ya que este tiempo no existe.

3Habilita o deshabilita que el usuario tenga que autenticarse en el momento de la conexión.
4Gestiona la autenticación del usuario dentro de la aplicación.

100

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Por otro lado, se han realizado diferentes tareas sobre la aplicación como cambiar la contraseña,
cambiar el nombre de usuario, cambiar la foto de perfil o eliminar la cuenta. Únicamente para
cambiar la foto de perfil se lleva a la pantalla de inicio de sesión, para el resto con tener la
aplicación con la sesión iniciada es suficiente. No obstante, después de iniciar sesión para cambiar
la foto de perfil no aparece ninguna página en la que hacerlo, y si se vuelve a navegar hacia esa
zona, se vuelven a repetir los pasos anteriormente mencionados:

Figura 8.11: Acciones para cambiar el nombre de usuario y la contraseña.

Figura 8.12: Acciones para cambiar la foto de perfil y eliminar cuenta.

101

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Conclusión de la prueba.

No se han encontrado mecanismos que gestione la solicitud de credenciales para eventos cŕıticos
como cambiar la contraseña o eliminar la cuenta, ni tampoco la existencia de un tiempo ĺımite
en el que las credenciales sean válidas para realizar las diferentes acciones cŕıticas ya mencionadas
anteriormente.

Recomendaciones.

Requerir al usuario sus credenciales cuando se quiera hacer algún cambio en su cuenta como
puede ser cambiar la contraseña o eliminar la cuenta.

Establecer un tiempo máximo en la que se puedan realizar acciones en la cuenta con la sesión
iniciada. Esto puede realizarse con setUserAuthenticationRequired.

8.2.7. MASTG-TEST-0023 - Prueba de proveedor de seguridad.

Con el fin de asegurar que la aplicación no utilice implementaciones no seguras de los servicios
de Google y del proveedor de seguridad se van a lanzar el análisis estático y dinámico sobre
AquaCyL [75].

Análisis estático.

Se ha analizado el código fuente para comprobar que la aplicación está basada en el SDK de An-
droid. Para ello se ha ejecutado el siguiente comando desde el directorio en el que se encuentra la
APK previamente descompilada:

grep -r Android *

grep -r android *

El uso de múltiples elementos relacionados con Android confirman que se utiliza el SDK de Android.

Por otro lado se ha buscado el uso de ProviderInstaller [76] para verificar su correcto funciona-
miento. Se ha ejecutado el siguiente comando:

grep -r ProviderInstaller *

Tras ejecutar el comando anterior no se ha encontrado que se utilice ProviderInstaller en el código.
No obstante, se ha descubierto que para aplicaciones que utilizan los Servicios de Google en su
versión 5 o superior no requieren de dicho proveedor ya que el servicio se da de forma automática
al usar esa versión [114].

Análisis dinámico.

Tal y como se ha mencionado en pruebas anteriores, la aplicación no es debuggueable ni puede
ser ejecutada en dispositivos rooteados. Por ende, no puede ser ejecutada en modo depuración ni
utilizar Frida para monitorizar el tráfico de datos existente.

102

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Conclusiones de la prueba.

El hecho de que no se haya podido realizar el análisis dinámico sobre la aplicación implica que ésta
no es debuggeable ni se puede ejecutar en entornos con permisos de root. Esto aporta seguridad
en la aplicación, por lo tanto, pasa la prueba.

Por otro lado, en el análisis estático se ha descubierto que se utiliza el SDK de Android y que,
aunque no se utilice la clase ProviderInstaller, al requerir la aplicación de Android 10 o posterior
para funcionar, necesita los Servicios de Google en una versión mayor que 5, lo que implica que ya
tiene cobertura de proveedor y no es necesario su uso.

8.2.8. MASTG-TEST-0026 - Prueba de intenciones impĺıcita.

Con el fin de comprobar si la aplicación es vulnerable a ataques de inyección o filtración de datos
personales o si existen intenciones impĺıcitas, se ha realizado el análisis estático y dinámico sobre
la aplicación [77].

Análisis estático.

Se ha buscado en el código fuente, inspeccionando el fichero AndroidManifest.xml para buscar fir-
mas definidas, información que se puede buscar dentro de intent y se puede ver con el siguiente
comando:

grep -r intent AndroidManifest.xml

Figura 8.13: Salida de grep sobre AndroidManifest.xml.

En la figura anterior se pueden ver las diferentes intenciones declaradas para la aplicación. Llama

103

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

la atención el uso de android.intent.action.GET CONTENT [115], la cual puede ser especialmente
peligrosa si transmite información de caracter sensible.

Por otro lado, tal y como se sugiere para realizar la prueba correctamente, se han buscado las inten-
ciones android.intent.action.GET CONTENT, android.intent.action.PICK y android.media.action.
IMAGE CAPTURES [116]. Para realizar dicha búsqueda se han lanzado los siguientes comandos:

grep -r android.intent.action.GET CONTENT

grep -r android.intent.action.PICK

grep -r android.media.action.IMAGE CAPTURES

Figura 8.14: Salida de grep para las intenciones que OWASP propone.

En la anterior figura se puede ver cómo la aplicación utiliza las tres intenciones que se buscan.
La primera sirve para seleccionar un recurso del dispositivo como un documento o una imagen.
La segunda devuelve una clase una vez elegida una actividad según una intención lo que quiere
decir que selecciona un elemento de una fuente espećıfica como puede ser una imagen. La tercera
permite ejecutar la cámara para hacer una foto. La diferencia entre la primera intención y la segun-
da es que la primera puede no tener un destino espećıfico y en la segunda éste se encuentra definido.

Es importante descubrir con qué fin se usa android.intent.action.GET CONTENT ya que puede
ser usada con fines leǵıtimos, como seleccionar una imagen desde el almacenamiento de dispositivo,
o con fines ileǵıtimos si no se emplean restricciones o validaciones. Como se trata de una intención
impĺıcita se puede interceptar por aplicaciones de terceros y manipular la información. Por este
motivo, se ha buscado para qué se utiliza dicha intención impĺıcita. Para ello se ha utilizado el
comando grep:

grep -r GET CONTENT *

Figura 8.15: Salida de grep para buscar el uso de la intención impĺıcita andro-
id.intent.action.GET CONTENT.

104

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

En la anterior figura se puede ver como android.intent.action.GET CONTENT se utiliza de forma
leǵıtima por Flutter [117], usada para crear la interfaz de usuario, para subir archivos a la aplicación
como imágenes.

Análisis dinámico.

Para realizar en análisis dinámico, es necesario lanzar Frida para interceptar las intenciones impĺıci-
tas. No obstante, tal y como se ha comentado en pruebas anteriores, no se puede lanzar ya que la
aplicación no es debuggueable ni se puede ejecutar sobre máquinas con permisos de root.

Conclusiones de la prueba.

Aunque no se ha podido realizar el análisis dinámico ya que la aplicación está protegida a la mo-
dificación para transformarla en debuggueable y no permite la ejecución en sistemas con permisos
de root, en el análisis estático se ha comprobado que las intenciones impĺıcitas se usan de forma
leǵıtima para subir imágenes a la aplicación por medio de la interfaz gestionada por Flutter, por
lo que pasa la prueba.

8.2.9. MASTG-TEST-0027 - Prueba de carga de URL en WebViews.

El objetivo de la prueba es comprobar que la aplicación carga las direcciones de las páginas web
de forma segura, impidiendo que se redirija al usuario a sitios inseguros, fraudulentos o maliciosos.
Para ello se ha realizado el análisis estático y dinámico. Finalmente, se concluirá si la aplicación
pasa o no la prueba y por ende es segura para los casos en cuestión que se describen [78].

Análisis estático.

Por un lado, se ha inspeccionado AndroidManifest.xml en busca de EnableSafeBrowsing, ya que,
aunque aparece activado por defecto, en ocasiones el desarrollador puede desactivarlo. Para realizar
la búsqueda se ha usado el comando grep tal y como se muestra a continuación:

grep -r EnableSafeBrowsing AndroidManifest.xml

El comando no devuelve nada, lo que significa que EnableSafeBrosing se encuentra activo.

Por otro lado, se han inspeccionado el resto del código del que se dispone para analizar lo que
devuelven las funciones shouldOverrideUrlLoading y shouldInterceptRequest.

shouldOverrideUrlLoading:

Se ha ejecutado grep para encontrar los ficheros en los que se utiliza dicha función:

grep -r shouldOverrideUrlLoading *

Lo anterior revela que se utiliza en varios ficheros smali como pueden ser g4aa.smali, o5$a.smali
o o5$c.smali, en los que se puede ver cómo se hace uso de la función shouldOverrideUrlLoading.

105

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

En los tres ficheros se define el método de dos formas diferentes. En la primera se llama a un
WebViewClient personalizado, y en el segundo si la URL que se pasa es de tipo String:

.method public shouldOverrideUrlLoading(Landroid/webkit/WebView;Landroid/webkit

/WebResourceRequest;)Z

.method public shouldOverrideUrlLoading(Landroid/webkit/WebView;Ljava

/lang/String;)Z

Dentro de cada método se obtiene la URL, se llama a WebViewClient y si este cliente devuelve
true significa que ya se ha gestionado o bloqueado la dirección. Si por el contrario se devuelve false
el código carga la dirección de forma manual. Finalmente siempre se devuelve true al final para
bloquear el resto de las direcciones.

shouldInterceptRequest:

Con el fin de buscar si se usa la función shoudlInterceptRequest, se ha ejecutado grep sobre el
directorio en el que se encuentra la aplicación decompilada:

grep -r shouldInterceptRequest

En la siguiente figura se puede ver la salida resultante de la ejecución del comando grep, en ella
se observa cómo se usa únicamente en componentes relacionados con reCaptcha [118] o interfaces
abstractas para la compatibilidad con ServiceWorkers [119].

Figura 8.16: Salida de grep para buscar el uso de la función shouldInterceptRequest.

Tras analizar el código fuente de las funciones que grep indica que se utiliza dicha función, única-
mente se ha encontrado que se delega directamente al comportamiento por defecto de la función
sin validar la URL ni filtrando recursos:

invoke-super {p0, p1, p2}, Landroid/webkit/WebViewClient;-

>shouldInterceptRequest(Landroid/webkit/WebView;Ljava/lang/String;)

Landroid/webkit/WebResourceResponse;

Análisis dinámico.

Para realizar el análisis dinámico de la aplicación hay que utilizar Frida para monitorizarla. Tal y
como se ha explicado en anteriores pruebas, la aplicación no permite la modificación de su código
para volverla debuggueable ni ser ejecutada en entornos con permisos de root. Por lo que no puede
lanzarse la prueba ya que ésta cuenta con mecanismos de seguridad para estos casos.

106

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Conclusión de la prueba.

Por un lado, en el análisis estático se ha concluido que la navegación segura se encuentra habili-
tada. En cuanto a la función shouldOverrideUrlLoading, ésta delega el filtro de URLs al cliente.
Por último, en lo que respecta a shouldInterceptRequest, únicamente se utiliza para componentes
relacionados con Google o compatibilidad. En ambos casos solamente se invoca al comportamiento
por defecto sin añadir validaciones personalizadas.

El análisis dinámico no ha podido ser realizado por medidas de seguridad con las que cuenta la
aplicación.

Se concluye que la aplicación utiliza una navegación segura basada en un WebViewClient que
permite configurar que las solicitudes de navegación sean gestionadas por la propia aplicación, y
que por tanto pasa la prueba.

8.2.10. MASTG-TEST-0036 - Prueba de actualización forzada.

Con el objetivo de comprobar si se puede seguir utilizando la aplicación en caso de que exista una
actualización no instalada en el dispositivo se ha realizado el análisis estático y dinámico sobre la
aplicación [79].

Análisis estático.

Se ha inspeccionado el código fuente con el objetivo de buscar fragmentos relacionados con el con-
trol de versiones y lógica para controlar la aplicación en caso de contar con una versión anterior.
Pare ello se ha usado el comando grep desde el directorio en el que se encuentra la APK descom-
pilada:

grep -r update * >update.txt

La salida se ha redirigido a un fichero ya que saĺıan múltiples coincidencias y de esta forma resul-
taban mas fáciles de manejar.

Posteriormente se ha inspeccionado el fichero de salida en el que se puede ver que a mayoŕıa de los
mensajes corresponden a los diccionarios de idiomas de la aplicación, es decir, lo que se usan en
función del idioma que se tenga seleccionado para informar de la actualización de la contraseña,
nombre de usuario o correo electrónico.

Llama la atención algunos mensajes que mencionan que a menos que se actualicen los Servicios
de Google la aplicación no funciona, pero esto se refiere a servicios externos, no relacionados con
la aplicación en śı. En lo que a esto último se refiere no se ha encontrado evidencia de control de
actualización.

Análisis dinámico.

Para realizar el análisis dinámico se ha encontrado que en el momento de realizar la prueba, la
aplicación descargada desde Google Play se actualizó, de modo que en el emulador se contó con la
aplicación sin actualizar en ese momento.

107

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Al abrirla sin la última versión se muestra una pantalla de Google Play en la que se indica que hay
una actualización disponible y que para usar la aplicación hay que descargar la última versión. No
obstante si se pulsa en la cruz de la esquina superior derecha la aplicación carga y funciona con
normalidad sin ninguna restricción.

Posteriormente se ha cerrado la aplicación y se ha vuelto a abrir y la pantalla de actualización no
ha vuelto ha mostrarse y para actualizar la aplicación ha sido necesario actualizarla manualmente
desde Google Play.

Figura 8.17: Pantalla de actualización en AquaCyL sin actualizar.

Conclusión de la prueba.

La aplicación no cuenta con mecanismos para forzar la actualización de la aplicación en caso de
existir una nueva versión y tampoco impide su utilización con normalidad. Esto implica que no
pase la prueba.

Recomendaciones.

Para evitar que el usuario utilice una versión no actualizada de la aplicación se recomienda imple-
mentar las siguientes medidas:

Integrar mecanismos de actualización forzada para forzar al usuario a actualizar la aplicación
en caso de que haya una nueva versión.

Mostrar avisos que no se puedan descartar si se detecta que la versión de la aplicación no es
la más actual.

Evitar que la aplicación se ejecute con normalidad si no se cuenta con la versión más actual.

8.2.11. MASTG-TEST-0037 - Prueba de limpieza de WebViews.

Para probar si la aplicación elimina los datos de las WebViews que se utilizan una vez se cierra
la aplicación o la sesión, se ha realizado el análisis estático y dinámico sobre ella, finalmente se
exponen las conclusiones obtenidas tras realizar la prueba [81].

108

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Análisis estático.

Se ha inspeccionado el código fuente en busca de APIs de WebView relacionadas con caché, inicia-
lización, almacenamiento, cookies y archivos. Para ello se ha buscado con el comando grep algunas
de las funciones relacionadas con cada una de las APIs. Esto se ha hecho con las funciones que
OWASP indica:

setDomStorageEnabled: Inicializa la vista web para evitar que almacenen cierta informa-
ción.

setAppCacheEnabled: Habilita o deshabilita el almacenamiento caché.

setDatabaseEnabled: Habilita o deshabilita el almacenamiento de la base de datos.

android.webkit.WebSettings: Administra el estado de la configuración de una WebView
[120].

clearCache: Elimina la caché.

onRenderProcessUnresponsive: Recibe las llamadas de los eventos de la WebView [121].

WebStorage.deleteAllData: Elimina todos los datos del almacenamiento de la vista web.

CookieManager.removeAllCookies: Elimina todas las cookies almacenadas.

java.io.File.deleteRecursively: Para eliminar manualmente ciertos directorios que contie-
nen información del usuario [122].

Para buscar las funciones anteriores en el código fuente se ha ejecutado grep tal y como se muestra
a continuación:

grep -r setDomStorageEnabled

grep -r setAppCacheEnabled

grep -r setDatabaseEnabled

grep -r android.webkit.WebSettings

grep -r clearCache

grep -r onRenderProcessUnresponsive

grep -r WebStorage.deleteAllData

grep -r CookieManager.removeAllCookies

grep -r java.io.File.deleteRecursively

De todas las búsquedas solo han devuelto resultados clearCache y setDomStorageEnabled. Con ello
se puede concluir que las cachés de almacenamiento de la base de datos se encuentran deshabili-
tadas. Que la caché de las WebViews no se elimina, las cookies, el almacenamiento y los archivos
tampoco se eliminan.

De las funciones que se utilizan en la aplicación, se ha descubierto que la ésta inicializa la vista
web para evitar que se almacene cierta información y que la caché de las WebViews se elimina, lo
cual ambas son buenas prácticas de seguridad.

Análisis dinámico.

Para la realización del análisis dinámico hay que ejecutar la aplicación dentro del emulador y abrir
un terminal para ejecutar los siguientes comandos:

109

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

adb shell

run-as es.pablo.aquacyl.aqua cyl

La salida de los comandos anteriores es la siguiente:

Figura 8.18: Salida de los comandos adb shell y run-as es.pablo.aquacyl.aqua cyl.

Tal y como se puede ver en la figura anterior, el análisis dinámico no puede realizarse puesto que
la aplicación no es debuggueable, y las medidas de seguridad propias de la aplicación no permite
convertirla; el resultado de la prueba es el obtenido por el análisis estático.

Conclusiones de la prueba.

En el análisis estático se ha encontrado que aunque se implementen algunas medidas para la
eliminación de información que pueden almacenar las WebViews como puede ser la caché, se ha
encontrado que no hay evidencia de la eliminación de otros elementos como cookies que pueden
almacenar información relacionada con la aplicación incluso una vez ésta ha sido cerrada o la sesión
de usuario haya finalizado. Un tercero podŕıa utilizar dichos datos para fines ileǵıtimos por lo que
no pasa la prueba.

Recomendaciones.

Se recomienda implementar las funciones mencionadas en el análisis estático para que las webs que
se utilizan desde la aplicación no almacenen información y se borre la caché, cookies, almacena-
miento y archivos, puesto que las WebViews pueden verse comprometidas y terceros con intenciones
ileǵıtimas podŕıan obtener información de la aplicación o del usuario.

8.2.12. MASTG-TEST-0040 - Prueba de śımbolos de debugging.

Para comprobar que los ficheros de la aplicación no cuenten con śımbolos de depuración con datos
que un atacante pueda usar para realizar ingenieŕıa inversa, se ha realizado el análisis estático sobre
el código fuente de la aplicación [82].

Análisis estático

En primer lugar, hay que averiguar si la aplicación utiliza código nativo. Para ello hay que averiguar
si una vez descompilada la aplicación existen ficheros con la extensión .so [123]:

find . -name "*.so"

110

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Figura 8.19: Salida comando find para buscar si existe código nativo.

En la anterior figura se puede ver la salida del comando anterior, en la que se muestra cómo śı que
existen ficheros con código nativo. El siguiente paso es iniciar Android Studio y comprobar que en
SDK Manager - SDK Tools, NDK side by side se encuentra seleccionado:

Figura 8.20: NDK side by side seleccionado en Android Studio.

El siguiente paso es buscar cuál es la ruta en la que se encuentra llvm-nm, necesaria para expor-
tarlo:

find /Android/Sdk/ndk/ -name "llvm-nm"

Sabiendo cuál es la ruta se puede exportar el binario nm en el NDK de Android:

111

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

export NM=/home/teresa/Android/Sdk/ndk/29.0.13599879/toolchains/llvm/prebuilt

/linux-x86 64/bin/llvm-nm

Para cada uno de los ficheros .so encontrados previamente, se han buscado tanto los śımbolos de
depuración como los śımbolos dinámicos. Para ello se han ejecutado los siguientes comandos tanto
para śımbolos de depuración como para śımbolos dinámicos:

$NM -a nombreFichero.so

$NM -D nombreFichero.so

Para los śımbolos de depuración, con cada una de los ficheros con los que se contaba, el comando
ha devuelto “no symbols”, lo que significa que éstos no están expuestos y no se facilita la ingenieŕıa
inversa.

Por otro lado, con los śımbolos dinámicos, para cada uno de los ficheros se han devuelto śımbolos
dinámicos relacionados con funciones como puede ser Java androidx camera core ImageProcessin-
gUtil nativeShiftPixel@@VERS 1.0. Esto no implica ningún fallo de seguridad ya que se muestran
śımbolos para la ejecución de tareas que deben ser visibles.

Conclusiones de la prueba.

Tanto para la búsqueda de śımbolos de depuración como para los dinámicos, no se ha encontrado
ninguna evidencia de que éstos se encuentren expuestos ni que impliquen fallos de seguridad. Con
lo anterior se puede concluir que la aplicación pasa la prueba.

8.2.13. MASTG-TEST-0043 - Errores de corrupción de memoria.

Para comprobar si la aplicación es o no vulnerable a los diferentes tipos de errores de memoria, se
ha realizado un análisis estático sobre el código descompilado de la APK de la que se dispone y un
análisis dinámico sobre la aplicación en ejecución [83]:

Análisis estático.

Se ha inspeccionado el código fuente en busca de fragmentos relacionados con la serialización. Para
ello se ha ejecutado el comando grep dentro del directorio en el que se encuentra la APK decom-
pilada tal y como se muestra a continuación:

grep -r Serializable *

El comando devuelve que la serialización se usa en múltiples ocasiones pero relacionadas con
elementos externos como puede ser ReCaptcha, Flutter o Firebase. Por lo tanto, al ser gestionadas
y tener como origen recursos seguros, no supone un peligro de seguridad.

En lo que al código nativo se refiere, se han buscado la presencia de métodos relacionados con

112

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

la gestión de la memoria como pueden ser strcpy5, sprintf 6, malloc7, free8, memcpy9, new10 o
delete11. Para ello se ha ejecutado el comando strings junto a grep sobre cada uno de los ficheros
con extensión .so encontrados en la anterior prueba. La estructura del comando es la siguiente:

strings ruta/*.so | grep -Ei ‘‘malloc|free|memcpy’’

En los ficheros se ha encontrado el uso de los mencionados elementos, no obstante cuando se realizan
acciones sobre la memoria se tratan correctamente. Por ejemplo, si se reserva memoria con malloc,
ésta se libera cuando se termina de usar con free.

Análisis dinámico.

Para realizar el análisis dinámico hay que volver a compilar la aplicación realizando un cambio
sobre ella y lanzarla con leakcanary [53]. No obstante, al igual que ha sucedido en pruebas anterio-
res, la aplicación no funciona de forma correcta o bien no deja volver a compilarla o firmarla tras
realizar modificaciones por la seguridad con la que cuenta por lo que esta parte del análisis no se
puede realizar.

Para inspeccionar el código nativo de forma dinámica hay que usar Valgrind [52] para analizar el uso
y las llamadas a memoria desde la aplicación. No obstante, para utilizar Valgrind para Android
es necesario que el dispositivo esté rooteado por lo que tampoco se puede probar los erroes de
memoria de esta forma [124].

Conclusiones de la prueba.

Aunque por restricciones de seguridad de la aplicación el análisis dinámico no se ha podido realizar,
con el análisis estático no se ha encontrado evidencia de que existan errores de corrupción de la
memoria.

8.2.14. MASTG-TEST-0047 - Prueba de comprobación de integridad de
archivos.

Con el fin de verificar si la aplicación implementa algún tipo de comprobación de integridad para
detectar cambios no autorizados tanto en el código fuente como en los ficheros relacionados con
el de la aplicación, la prueba se divide en la comprobación de integridad de la fuente de ésta y la
comprobación de integridad del almacenamiento [87].

Comprobación de integridad de la fuente de la aplicación.

Tal y como se ha comentado en pruebas anteriores, al tratar de modificar partes del código fuente
de la aplicación, al volver a firmarla, o bien no permite completar la firma por conflicto con
las bibliotecas, o bien si se firma, al ejecutarla se cierra y no permite su funcionamiento. Por lo

5Copia una cadena de caracteres en otra.
6Formatea texto y lo escribe en una cadena.
7Reserva memoria de forma dinámica.
8Libera la memoria previamente reservada con malloc tras su uso.
9Copia un bloque de memoria de un lugar a otro.

10Reserva memoria dinámicamente y crea variables en tiempo de ejecución.
11Libera la memoria previamente reservada con new.

113

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

tanto, se puede confirmar que cuenta con mecanismos de seguridad para impedir que se realicen
modificaciones en su código fuente.

Comprobación de integridad del almacenamiento.

Al igual que para la anterior comprobación, la aplicación no admite modificaciones de elementos
relacionados con el almacenamiento como pueden ser imágenes almacenadas. Se ha intentado lanzar
la aplicación para buscar evidencias de defensas eludibles pero no se ha encontrado nada, solo
un mensaje en el que se indicaba que la aplicación no es debuggueable, al probar a ejecutar la
aplicación con adb. La aplicación tiene mecanismos que impiden que se comprometa la integridad
del almacenamiento.

Conclusiones de la prueba.

La aplicación cuenta con mecanismos de seguridad tanto para evitar que se comprometa la inte-
gridad del código fuente de la aplicación como la integridad de los ficheros que almacena. Se puede
concluir que la aplicación pasa la prueba.

8.2.15. MASTG-TEST-0049 - Prueba de la detección del emulador.

Para comprobar si la aplicación es capaz de detectar si está siendo ejecutada en un emulador, y
por tanto impedir ciertas acciones o incluso bloquear su uso, se ha realizado el análisis dinámico
sobre esta.

Análisis dinámico.

Tal y como se ha visto a lo largo del documento, la aplicación se ha lanzado sobre un emulador sin
ningún impedimento. Para realizar la prueba se ha vuelto a navegar por la aplicación nuevamente
realizando tareas como ver zonas de baño, filtrar por estado de la zona o por provincia, añadir a
favoritos una zona de baño o ver los comentarios de la zona. En ningún momento se bloquea o se
impide su ejecución [88].

Conclusiones de la prueba.

Puesto que la aplicación permite su uso en emuladores, la aplicación no pasa la prueba. Un atacante
podŕıa aprovechar los emuladores para lanzar ataques contra ésta.

Recomendaciones

Aunque la aplicación no realiza acciones cŕıticas sobre datos del usuario, si que utiliza datos per-
sonales como el correo electrónico y la contraseña de la cuenta, śı que podŕıa resultar conveniente
que la aplicación impida realizar ciertas acciones en caso de ser ejecutada en un emulador como
por ejemplo solo poder iniciar la sesión como invitado.

Para detectar el emulador se puede tratar de obtener la información del modelo, ya que suele contar
con información como emulator en el nombre. Para comprobarlo desde un dispositivo Linux, por
ejemplo, basta con ejecutar el siguiente comando:

adb devices

114

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

En la siguiente figura se puede ver cómo, al tener el emulador en marcha, con adb se detecta que hay
un emulador llamado emulator-5554. Con esta información se puede limitar el uso de la aplicación
si se encuentra un patrón aśı en la información del dispositivo:

Figura 8.21: Salida de adb devices para averiguar el nombre del emulador en uso.

8.3. Resultados.

Una vez lanzadas las pruebas sobre la aplicación y comprobado si esta las pasa, o si por el contrario
cuenta con alguna vulnerabilidad de seguridad, se han realizado unas tablas para poder ver de una
forma más clara los resultados obtenidos.

En la siguiente tabla se muestran las pruebas que se han lanzado sobre AquaCyL, desglosando
su resultado en análisis estático, análisis dinámico y el resultado global. Puesto que en algunas
pruebas, debido a las medidas de seguridad de la aplicación o que no procede para dicha prueba,
no se ha podido lanzar; estos resultados se muestran en la tabla pero no se tienen en cuenta para
el resultado total de la prueba.

El criterio que determina el resultado final de la prueba sobre la aplicación es el siguiente:

Pasa análisis estático (✓) y pasa análisis dinámico (✓): Pasa la prueba (✓).

Pasa análisis estático (✓) y no pasa análisis dinámico (✗): No pasa la prueba (✗).

No pasa análisis estático (✗) y no pasa análisis dinámico (✗): No pasa la prueba (✗).

Pasa análisis estático (✓) y análisis dinámico no realizado (-): Pasa la prueba (✓).

Análisis estático no realizado (-) y pasa análisis dinámico (✓): Pasa la prueba (✓).

No pasa análisis estático (✗) y análisis dinámico no realizado (-): No pasa la prueba (✗).

Análisis estático no realizado (-) y no pasa análisis dinámico (✗): No pasa la prueba (✗).

115

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Prueba Análisis estático Análisis dinámico Resultado

MASTG-TEST-0002: Prueba del
almacenamiento local para la va-
lidación de los datos de entrada

✗ - ✗

MASTG-TEST-0004: Determi-
nar si se comparten datos confi-
denciales con terceros a través de
datos embebidos

✓ - ✓

MASTG-TEST-0008: Compro-
bación de la divulgación de da-
tos confidenciales a través de la
interfaz

✓ ✓ ✓

MASTG-TEST-0011: Prueba de
memoria de datos confidenciales

✗ - ✗

MASTG-TEST-0014: Prueba de
la configuración del algoritmo
estándar de criptograf́ıa

✗ - ✗

MASTG-TEST-0017: Prueba
para confirmar credenciales

✗ ✗ ✗

MASTG-TEST-0023: Prueba de
proveedor de seguridad

✓ - ✓

MASTG-TEST-0026: Prueba de
intenciones impĺıcitas

✓ - ✓

MASTG-TEST-0027: Prueba de
carga de URL en WebViews

✓ - ✓

MASTG-TEST-0036: Prueba de
actualización forzada

✗ ✗ ✗

MASTG-TEST-0037: Prueba de
limpieza de WebViews

✗ ✗ ✗

MASTG-TEST-0040: Prueba de
śımbolos de debugging

✓ - ✓

MASTG-TEST-0043: Errores de
corrupción de memoria

✓ - ✓

MASTG-TEST-0047: Prueba de
comprobación de integridad de
archivos

✓ ✓ ✓

MASTG-TEST-0049: Prueba de
la detección del emulador

- ✗ ✗

Tabla 8.1: Resultados del lanzamiento de las pruebas sobre AquaCyL.

116

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

Observando los resultados de las pruebas en la tabla anterior, se puede ver como de las 15 de
las lanzadas, sin tener en cuenta aquellas que no se han podido ya sea porque no aplican para la
prueba o por tener restricciones de seguridad que implican su lanzamiento, se puede ver como 8
pasan el análisis estático, 2 el dinámico, y 8 resultan positivas, es decir, que pasan la prueba. Esto
supone un 53,3% del total, lo que implica que parte de la aplicación cuenta con los mecanismos de
seguridad básicos para protegerse de parte de las vulnerabilidades, no obstante para aquellas para
las que no se ha previsto protegerse, la aplicación es totalmente vulnerables.

117

CAPÍTULO 8. LANZAMIENTO DE LAS PRUEBAS SOBRE AQUACYL.

118

Caṕıtulo 9

Conclusiones.

El proyecto se ha realizado casi en su totalidad cumpliendo con el objetivo principal. Aunque no
se han diseñado y lanzado todas las pruebas viables a probar sobre la aplicación, hacerlo habŕıa
extendido con creces el tiempo de trabajo estimado para un Trabajo de Fin de Grado.

En primer lugar, se ha llevado a cabo un estudio de la normativa actual vigente en lo relacionado
a la protección de los datos de carácter personal, teniendo como principales el RGPD a nivel
europeo y la LOPDGDD a nivel nacional. En la primera se marcan una serie de principios que
se tienen que cumplir para que la gestión de los datos personales sea segura. Por otro lado, se han
estudiado diferentes metodoloǵıas para llevar a cabo una auditoŕıa móvil con el fin de ampliar el
conocimiento sobre como probar la seguridad de una aplicación móvil. Finalmente, se ha realizado
un análisis sobre las vulnerabilidades más comunes en la actualidad según refleja OWASP Mobile
Top 10, indicando en qué consiste cada una, cómo los atacantes la explotan y cómo mitigarla, con
el fin de que la aplicación sea más segura.

En segundo lugar, se ha realizado un análisis de la aplicación que se ha auditado, de modo que se
ha investigado su funcionamiento y el tratamiento de datos que hace la aplicación, aśı como los
permisos de los que requiere para funcionar. En paralelo a esto, se ha realizado un análisis de la
metodoloǵıa OWASP, con el fin de comprender cómo funciona, sobre todo la orientada a aplicacio-
nes móviles; con ello se han relacionado los diferentes principios de la seguridad informática con
las diferentes categoŕıas que OWASP propone para verificar la seguridad en aplicaciones.

Una vez realizado lo anterior, se ha procedido al diseño de las pruebas a lanzar. Para ello se han
establecido unos criterios de selección basados en la metodoloǵıa OWASP y en la aplicación móvil.
Una vez seleccionadas, se ha comenzado con su diseño siguiendo OWASP-MASTG. Con el fin de
verificar que éste se ha realizado correctamente, se han lanzado las diferentes pruebas sobre una
aplicación vulnerable, propuesta por OWASP. Posteriormente se han lanzado sobre AquaCyL, la
aplicación elegida para ser auditada.

Tras lanzar las pruebas sobre AquaCyL, se han analizado los resultados una a una, proponiendo
ciertas medidas para evitar o mitigar las vulnerabilidades encontradas. Por último se han estudiado
los resultados en conjunto con el fin de contar con una visión más general de la seguridad de la

119

CAPÍTULO 9. CONCLUSIONES.

aplicación auditada.

Cabe destacar que el proyecto estaba previsto para desarrollarse completamente entre el 10 de
febrero y el 30 de mayo, siendo un total de 16 semanas. No obstante, en realidad ha requerido de
casi 5 semanas más de lo establecido, lo que supone aproximadamente un 30% más de lo estimado
en la planificación inicial. Con esto, el principal riesgo ha sido la mala estimación del tiempo,
contrarrestándose entregándolo en convocatoria extraordinaria y realizando más horas de trabajo.

9.1. Trabajo futuro.

Como trabajo futuro se plantea completar el trabajo que en śı supondŕıa una auditoŕıa completa
de seguridad. Esto es, diseñar cada una de las pruebas que resultan viables para ser lanzadas sobre
AquaCyL y lanzarlas, para aśı contar con una visión completa de la seguridad de la aplicación y
conocer todas las vulnerabilidades con las que puede contar según establece la metodoloǵıa OWASP.

Por otro lado, resultaŕıa una gran mejora automatizar todo el proceso del lanzamiento de las prue-
bas por medio de scripts para que, únicamente haya que ejecutar el programa que contenga todas
las pruebas para obtener el resultado de la auditoŕıa. Esto permitiŕıa obtener conclusiones y fallos
de seguridad en una menor cantidad de tiempo, lo que haŕıa que se solucionasen antes, implicando
que los atacantes reales cuenten con menos tiempo para explotar dichas vulnerabilidades.

Por último, seŕıa interesante instalar la aplicación sobre un sistema operativo como GrapheneOS
[125] y probar a auditar la aplicación desde alĺı, ya que, aunque la aplicación sea la misma, al
tratarse de un sistema operativo que busca ofrecer privacidad al usuario, cabe la posibilidad que
la aplicación reaccione de forma diferente en ese tipo de entornos.

120

Bibliograf́ıa

[1] U. Europea. (2025) Reglamento general de protección de datos (rgpd) — eur-lex. Unión
Europea. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://eur-lex.europa.eu/
ES/legal-content/summary/general-data-protection-regulation-gdpr.html.

[2] B. O. del Estado. (2025) Boe-a-2018-16673 ley orgánica 3/2018, de 5 de diciembre, de pro-
tección de datos personales y garant́ıa de los derechos digitales. Bolet́ın Oficial del Estado.
Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://www.boe.es/buscar/act.php?
id=BOE-A-2018-16673.

[3] Dineshhetty. (2025) Github - dineshshetty/android-insecurebankv2: Vulnerable android ap-
plication for developers and security enthusiasts to learn about android insecurities. Di-
neshhetty. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://github.com/
dineshshetty/Android-InsecureBankv2.

[4] B. Hughes and M. Cotterell, Software project management, 5th ed. McGraw-Hill, 2009.

[5] Ryte. (2022) Modelo en espiral: todo lo que necesitas saber - ryte wiki. Ryte. Acceso: 15 de
febrero de 2025. [En linea]. Disponible en: https://es.ryte.com/wiki/Modelo en Espiral.

[6] Atlassian. (2025) ¿qué es un diagrama de gantt? la hoja de ruta para el éxito del proyect.
Atlassian. Acceso: 15 de febrero de 2025. [En linea]. Disponible en: https://www.atlassian.
com/es/agile/project-management/gantt-chart.

[7] R. A. Española. (2022) Inicio — real academia española. RAE. Acceso: 12 de mayo de 2025.
[En linea]. Disponible en: https://www.rae.es/.

[8] ——. (2022) Definición de dato de carácter personal - diccionario panhispánico del español
juŕıdico - rae. RAE. Acceso: 12 de mayo de 2025. [En linea]. Disponible en: https://dpej.rae.
es/lema/dato-de-car%C3%A1cter-personal.

[9] A. E. de Protección de Datos. (2025) ¿se pueden recabar y tratar datos personales de me-
nores? — aepd. Agencia Española de Protección de Datos. Acceso: 1 de julio de 2025. [En
linea]. Disponible en: https://www.aepd.es/preguntas-frecuentes/10-menores-y-educacion/
FAQ-1002-se-puede-recabar-y-tratar-datos-personales-de-menores.

[10] OWASP. (2024) Owasp mobile top 10 — owasp foundation. OWASP. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/.

[11] ——. (2024) M1: Improper credential usage — owasp foundation. OWASP. Acceso: 1 de
julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m1-improper-credential-usage.html.

121

https://eur-lex.europa.eu/ES/legal-content/summary/general-data-protection-regulation-gdpr.html
https://eur-lex.europa.eu/ES/legal-content/summary/general-data-protection-regulation-gdpr.html
https://www.boe.es/buscar/act.php?id=BOE-A-2018-16673
https://www.boe.es/buscar/act.php?id=BOE-A-2018-16673
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://es.ryte.com/wiki/Modelo_en_Espiral
https://www.atlassian.com/es/agile/project-management/gantt-chart
https://www.atlassian.com/es/agile/project-management/gantt-chart
https://www.rae.es/
https://dpej.rae.es/lema/dato-de-car%C3%A1cter-personal
https://dpej.rae.es/lema/dato-de-car%C3%A1cter-personal
https://www.aepd.es/preguntas-frecuentes/10-menores-y-educacion/FAQ-1002-se-puede-recabar-y-tratar-datos-personales-de-menores
https://www.aepd.es/preguntas-frecuentes/10-menores-y-educacion/FAQ-1002-se-puede-recabar-y-tratar-datos-personales-de-menores
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/2023-risks/m1-improper-credential-usage.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m1-improper-credential-usage.html

BIBLIOGRAFÍA

[12] ——. (2024) M2: Inadequate supply chain security — owasp foundation. OWASP. Acceso: 1
de julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m2-inadequate-supply-chain-security.html.

[13] ——. (2024) M3: Insecure authentication/authorization — owasp foundation.
OWASP. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://owasp.org/
www-project-mobile-top-10/2023-risks/m3-insecure-authentication-authorization.html.

[14] ——. (2024) M4: Insufficient input/output validation — owasp foundation. OWASP. Acceso:
1 de julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m4-insufficient-input-output-validation.html.

[15] ——. (2024) M5: Insecure communication — owasp foundation. OWASP. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/2023-risks/
m5-insecure-communication.html.

[16] ——. (2024) M6: Inadequate privacy controls — owasp foundation. OWASP. Acceso: 1
de julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m6-inadequate-privacy-controls.html.

[17] ——. (2024) M7: Insufficient binary protection — owasp foundation. OWASP. Acceso: 1
de julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m7-insufficient-binary-protection.html.

[18] ——. (2024) M8: Security misconfiguration — owasp foundation. OWASP. Acceso: 1 de
julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m8-security-misconfiguration.html.

[19] ——. (2024) M9: Insecure data storage — owasp foundation. OWASP. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/2023-risks/
m9-insecure-data-storage.html.

[20] ——. (2024) M10: Insufficient cryptography — owasp foundation. OWASP. Acceso: 1 de
julio de 2025. [En linea]. Disponible en: https://owasp.org/www-project-mobile-top-10/
2023-risks/m10-insufficient-cryptography.html.

[21] ——. (2025) Owasp masvs - owasp mobile application security. OWASP. Acceso: 1 de julio
de 2025. [En linea]. Disponible en: https://mas.owasp.org/MASVS/.

[22] ——. (2025) Owasp mastg - owasp mobile application security. OWASP. Acceso: 1 de julio
de 2025. [En linea]. Disponible en: https://mas.owasp.org/MASTG/.

[23] C. S. R. Center. (2025) Sp 800-163 rev. 1, vetting the security of mobile applications — csrc.
Computer Security Resource Center. Acceso: 1 de julio de 2025. [En linea]. Disponible en:
https://csrc.nist.gov/pubs/sp/800/163/r1/final.

[24] (2025) Aquacyl - aplicaciones en google play. Google Play. Acceso: 26 de junio de 2025.
[En linea]. Disponible en: https://play.google.com/store/apps/details?id=es.pablo.aquacyl.
aqua cyl&hl=es&pli=1.

[25] G. Play. (2025) Clasificación del contenido de aplicaciones y juegos en google play - ayuda
de google play. Google Play. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://
support.google.com/googleplay/answer/6209544?visit id=638844717946658080-987820150&
p=appgame ratings&rd=1#zippy=%2Ceuropa-y-oriente-medio.

[26] ——. (2025) Entender las prácticas de privacidad y seguridad de las aplicaciones con la sección
seguridad de los datos de google play - ordenador - ayuda de google play. Google Play. Acceso:

122

https://owasp.org/www-project-mobile-top-10/2023-risks/m2-inadequate-supply-chain-security.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m2-inadequate-supply-chain-security.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m3-insecure-authentication-authorization.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m3-insecure-authentication-authorization.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m4-insufficient-input-output-validation.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m4-insufficient-input-output-validation.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m5-insecure-communication.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m5-insecure-communication.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m6-inadequate-privacy-controls.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m6-inadequate-privacy-controls.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m7-insufficient-binary-protection.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m7-insufficient-binary-protection.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m8-security-misconfiguration.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m8-security-misconfiguration.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m9-insecure-data-storage.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m9-insecure-data-storage.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m10-insufficient-cryptography.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m10-insufficient-cryptography.html
https://mas.owasp.org/MASVS/
https://mas.owasp.org/MASTG/
https://csrc.nist.gov/pubs/sp/800/163/r1/final
https://play.google.com/store/apps/details?id=es.pablo.aquacyl.aqua_cyl&hl=es&pli=1
https://play.google.com/store/apps/details?id=es.pablo.aquacyl.aqua_cyl&hl=es&pli=1
https://support.google.com/googleplay/answer/6209544?visit_id=638844717946658080-987820150&p=appgame_ratings&rd=1#zippy=%2Ceuropa-y-oriente-medio
https://support.google.com/googleplay/answer/6209544?visit_id=638844717946658080-987820150&p=appgame_ratings&rd=1#zippy=%2Ceuropa-y-oriente-medio
https://support.google.com/googleplay/answer/6209544?visit_id=638844717946658080-987820150&p=appgame_ratings&rd=1#zippy=%2Ceuropa-y-oriente-medio

BIBLIOGRAFÍA

1 de julio de 2025. [En linea]. Disponible en: https://support.google.com/googleplay/answer/
11416267?hl=es&visit id=638869822440286322-1486938361&p=data-safety&rd=1.

[27] Google. (2025) Proporcionar información sobre la sección seguridad de los datos de goo-
gle play - ayuda de play console. Google. Acceso: 26 de junio de 2025. [En linea]. Dispo-
nible en: https://support.google.com/googleplay/android-developer/answer/10787469?hl=
en#zippy=%2Cpurposes%2Cdata-types.

[28] G. Maps. (2025) Google maps. Google Maps. Acceso: 26 de junio de 2025. [En linea]. Dispo-
nible en: https://www.google.com/maps.

[29] E. rural. (2025) Escapadarural — reserva la casa rural para tu escapada. Escapada rural.
Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://www.escapadarural.com/.

[30] OWASP. (2025) Owasp foundation, the open source foundation for application security —
owasp foundation. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https:
//owasp.org/.

[31] ——. (2025) Owasp mobile application security. OWASP. Acceso: 1 de julio de 2025. [En
linea]. Disponible en: https://mas.owasp.org/.

[32] UNIR. (2025) Principios de la seguridad informática: lo que debes conocer. UNIR. Acce-
so: 1 de julio de 2025. [En linea]. Disponible en: https://www.unir.net/revista/ingenieria/
principios-seguridad-informatica/.

[33] K. coding. (2025) ¿qué es un token de sesión? [2025] — keepcoding bootcamps. Keep co-
ding. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://keepcoding.io/blog/
que-es-un-token-de-sesion/.

[34] M. goodwin. (2025) ¿qué es una api (interfaz de programación de aplicaciones)? — ibm.
Michael Goodwin. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://www.ibm.
com/es-es/think/topics/api.

[35] P. digital. (2025) Webviews: puente nativo a operativas web - paradigma. Paradigma digital.
Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://www.paradigmadigital.com/
dev/webviews-puente-nativo-operativas-web/.

[36] Frida. (2025) Gadget — frida • a world-class dynamic instrumentation toolkit. Frida. Acceso:
26 de junio de 2025. [En linea]. Disponible en: https://frida.re/docs/gadget/.

[37] ClickUp. (2025) Comprender las pruebas de caja negra, caja blanca y caja gris. ClickUp.
Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://clickup.com/es-ES/blog/
220921/caja-negra-caja-blanca-caja-gris-pruebas.

[38] R. Camacho. (2025) Análisis estático y análisis dinámico. Ricardo Camacho. Ac-
ceso: 26 de junio de 2025. [En linea]. Disponible en: https://es.parasoft.com/blog/
static-analysis-and-dynamic-analysis/.

[39] Android. (2024) Cómo guardar datos simples con sharedpreferences app data and files android
developers. Android. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://developer.
android.com/training/data-storage/shared-preferences?hl=es-419.

[40] INCIBE. (2025) El ataque del “man in the middle” en la empresa, ries-
gos y formas de evitarlo — empresas — incibe. INCIBE. Acceso: 26 de ju-
nio de 2025. [En linea]. Disponible en: https://www.incibe.es/empresas/blog/
el-ataque-del-man-middle-empresa-riesgos-y-formas-evitarlo.

123

https://support.google.com/googleplay/answer/11416267?hl=es&visit_id=638869822440286322-1486938361&p=data-safety&rd=1
https://support.google.com/googleplay/answer/11416267?hl=es&visit_id=638869822440286322-1486938361&p=data-safety&rd=1
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Cpurposes%2Cdata-types
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Cpurposes%2Cdata-types
https://www.google.com/maps
https://www.escapadarural.com/
https://owasp.org/
https://owasp.org/
https://mas.owasp.org/
https://www.unir.net/revista/ingenieria/principios-seguridad-informatica/
https://www.unir.net/revista/ingenieria/principios-seguridad-informatica/
https://keepcoding.io/blog/que-es-un-token-de-sesion/
https://keepcoding.io/blog/que-es-un-token-de-sesion/
https://www.ibm.com/es-es/think/topics/api
https://www.ibm.com/es-es/think/topics/api
https://www.paradigmadigital.com/dev/webviews-puente-nativo-operativas-web/
https://www.paradigmadigital.com/dev/webviews-puente-nativo-operativas-web/
https://frida.re/docs/gadget/
https://clickup.com/es-ES/blog/220921/caja-negra-caja-blanca-caja-gris-pruebas
https://clickup.com/es-ES/blog/220921/caja-negra-caja-blanca-caja-gris-pruebas
https://es.parasoft.com/blog/static-analysis-and-dynamic-analysis/
https://es.parasoft.com/blog/static-analysis-and-dynamic-analysis/
https://developer.android.com/training/data-storage/shared-preferences?hl=es-419
https://developer.android.com/training/data-storage/shared-preferences?hl=es-419
https://www.incibe.es/empresas/blog/el-ataque-del-man-middle-empresa-riesgos-y-formas-evitarlo
https://www.incibe.es/empresas/blog/el-ataque-del-man-middle-empresa-riesgos-y-formas-evitarlo

BIBLIOGRAFÍA

[41] Android. (2025) Notificationmanager api reference android developers. Android. Acceso: 1 de
julio de 2025. [En linea]. Disponible en: https://developer.android.com/reference/android/
app/NotificationManager.

[42] ——. (2025) Edittext api reference android developers. Android. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://developer.android.com/reference/android/widget/
EditText.

[43] A. Developers. (2023) Intents pendientes - security - android developers. Android Develo-
pers. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://developer.android.com/
privacy-and-security/risks/pending-intent?hl=es-419.

[44] Frida. (2025) frida-trace — frida a world-class dynamic instrumentation toolkit. Frida. Ac-
ceso: 1 de julio de 2025. [En linea]. Disponible en: https://frida.re/docs/frida-trace/.

[45] A. W. Services. (2025) ¿qué es javascript? - explicación de javascript (js) - aws. Amazon Web
Services. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://aws.amazon.com/es/
what-is/javascript/.

[46] J. Carrión. (2025) Man in the middle: cómo generar tu propio proxy – visión de funnel.
Jorge Carrión. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://visiondefunnel.
wordpress.com/2023/03/16/man-in-the-middle-como-generar-tu-propio-proxy/.

[47] Android. (2025) Webview api reference android developers. Android. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://developer.android.com/reference/android/webkit/
WebView#clearCache(boolean).

[48] ——. (2025) Webstorage api reference android developers. Android. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://developer.android.com/reference/android/webkit/
WebStorage#deleteAllData.

[49] A. W. Services. (2025) ¿qué es sql? - explicación de lenguaje de consulta estructurado (sql)
- aws. Amazon Web Services. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https:
//aws.amazon.com/es/what-is/sql/.

[50] E. University. Html5: qué es, caracteŕısticas y cómo funciona — esic.

[51] Kotlin. (2025) Kotlin programming language. Kotlin. Acceso: 1 de julio de 2025. [En linea].
Disponible en: https://kotlinlang.org/.

[52] Valgrind. (2025) Valgrind home. Valgrind. Acceso: 26 de junio de 2025. [En linea]. Disponible
en: https://valgrind.org/.

[53] L. Canary. (2025) Github - square/leakcanary: A memory leak detection library for android.
Leak Canary. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://github.com/
square/leakcanary.

[54] modzero. (2025) Github - modzero/modjoda: Java object deserialization on android. mod-
zero. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://github.com/modzero/
modjoda.

[55] Keepcoding. (2025) ¿qué son los algoritmos hmac? — keepcoding bootcamps. Keepco-
ding. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://keepcoding.io/blog/
que-son-los-algoritmos-hmac/.

[56] GitHub. (2025) Github · build and ship software on a single, collaborative platform · github.
GitHub. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://github.com/.

124

https://developer.android.com/reference/android/app/NotificationManager
https://developer.android.com/reference/android/app/NotificationManager
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/privacy-and-security/risks/pending-intent?hl=es-419
https://developer.android.com/privacy-and-security/risks/pending-intent?hl=es-419
https://frida.re/docs/frida-trace/
https://aws.amazon.com/es/what-is/javascript/
https://aws.amazon.com/es/what-is/javascript/
https://visiondefunnel.wordpress.com/2023/03/16/man-in-the-middle-como-generar-tu-propio-proxy/
https://visiondefunnel.wordpress.com/2023/03/16/man-in-the-middle-como-generar-tu-propio-proxy/
https://developer.android.com/reference/android/webkit/WebView#clearCache(boolean)
https://developer.android.com/reference/android/webkit/WebView#clearCache(boolean)
https://developer.android.com/reference/android/webkit/WebStorage#deleteAllData
https://developer.android.com/reference/android/webkit/WebStorage#deleteAllData
https://aws.amazon.com/es/what-is/sql/
https://aws.amazon.com/es/what-is/sql/
https://kotlinlang.org/
https://valgrind.org/
https://github.com/square/leakcanary
https://github.com/square/leakcanary
https://github.com/modzero/modjoda
https://github.com/modzero/modjoda
https://keepcoding.io/blog/que-son-los-algoritmos-hmac/
https://keepcoding.io/blog/que-son-los-algoritmos-hmac/
https://github.com/

BIBLIOGRAFÍA

[57] OWASP. (2025) Mastg-app-0010: Insecurebankv2 - owasp mobile application security.
OWASP. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://mas.owasp.org/
MASTG/apps/android/MASTG-APP-0010/.

[58] Genymotion. (2025) Account creation – genymotion android emulator. Genymotion. Acceso:
26 de junio de 2025. [En linea]. Disponible en: https://www-v1.genymotion.com/account/
create/.

[59] L. C. Library. (2025) pip man — linux command library. Linux Command Library. Acceso:
26 de junio de 2025. [En linea]. Disponible en: https://linuxcommandlibrary.com/man/pip.

[60] Python. (2025) Python release python 2.7.2 — python.org. Pyhton. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://www.python.org/downloads/release/python-272/.

[61] OWASP. (2025) Mastg-test-0002: Testing local storage for input validation - owasp mobile
application security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https:
//mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0002/.

[62] L. Die. (2025) cat(1): concatenate files/print on stdout - linux man page. Linux Die. Acceso:
26 de junio de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/cat.

[63] ——. (2025) grep(1): print lines matching pattern - linux man page. Linux Die. Acceso: 26
de junio de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/grep.

[64] OWASP. (2025) Mastg-test-0004: Determining whether sensitive data is shared with third
parties via embedded services - owasp mobile application security. OWASP. Acceso: 26
de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/MASTG/tests/android/
MASVS-STORAGE/MASTG-TEST-0004/.

[65] ——. (2025) Mastg-tool-0077: Burp suite - owasp mobile application security. OWASP. Ac-
ceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/MASTG/tools/
network/MASTG-TOOL-0077/.

[66] Xammy. (2025) Toast en .net maui – askxammy. Xammy. Acceso: 26 de junio de 2025. [En
linea]. Disponible en: https://es.askxammy.com/toast-en-net-maui/.

[67] OWASP. (2025) Mastg-test-0008: Checking for sensitive data disclosure through the user
interface - owasp mobile application security. OWASP. Acceso: 26 de junio de 2025. [En li-
nea]. Disponible en: https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/
MASTG-TEST-0008/.

[68] ——. (2025) Mastg-test-0011: Testing memory for sensitive data - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/.

[69] L. Die. (2025) strings(1) - linux man page. Linux Die. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://linux.die.net/man/1/strings.

[70] OWASP. (2025) Mastg-test-0014: Testing the configuration of cryptographic standard al-
gorithms - owasp mobile application security. OWASP. Acceso: 26 de junio de 2025. [En
linea]. Disponible en: https://mas.owasp.org/MASTG/tests/android/MASVS-CRYPTO/
MASTG-TEST-0014/.

[71] S. Dragon. (2025) Sha1 vs sha2 vs sha256 vs sha512 - ssl dragon. SSL Dragon. Acce-
so: 26 de junio de 2025. [En linea]. Disponible en: https://www.ssldragon.com/es/blog/
sha1-sha2-sha256-sha-512/.

125

https://mas.owasp.org/MASTG/apps/android/MASTG-APP-0010/
https://mas.owasp.org/MASTG/apps/android/MASTG-APP-0010/
https://www-v1.genymotion.com/account/create/
https://www-v1.genymotion.com/account/create/
https://linuxcommandlibrary.com/man/pip
https://www.python.org/downloads/release/python-272/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0002/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0002/
https://linux.die.net/man/1/cat
https://linux.die.net/man/1/grep
https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0004/
https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0004/
https://mas.owasp.org/MASTG/tools/network/MASTG-TOOL-0077/
https://mas.owasp.org/MASTG/tools/network/MASTG-TOOL-0077/
https://es.askxammy.com/toast-en-net-maui/
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0008/
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0008/
https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
https://linux.die.net/man/1/strings
https://mas.owasp.org/MASTG/tests/android/MASVS-CRYPTO/MASTG-TEST-0014/
https://mas.owasp.org/MASTG/tests/android/MASVS-CRYPTO/MASTG-TEST-0014/
https://www.ssldragon.com/es/blog/sha1-sha2-sha256-sha-512/
https://www.ssldragon.com/es/blog/sha1-sha2-sha256-sha-512/

BIBLIOGRAFÍA

[72] P. Security. (2025) ¿qué es el cifrado aes? - panda security. Panda Security. Acceso: 1 de
julio de 2025. [En linea]. Disponible en: https://www.pandasecurity.com/es/mediacenter/
cifrado-aes-guia/.

[73] OWASP. (2025) Mastg-test-0017: Testing confirm credentials - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-AUTH/MASTG-TEST-0017/.

[74] Microsoft. (2024) Método setuserauthenticationrequired de la clase win32 tsgeneralsetting
- win32 apps microsoft learn. Microsoft. Acceso: 26 de junio de 2025. [En li-
nea]. Disponible en: https://learn.microsoft.com/es-es/windows/win32/termserv/
setuserauthenticationrequired-win32-tsgeneralsetting.

[75] OWASP. (2025) Mastg-test-0023: Testing the security provider - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-NETWORK/MASTG-TEST-0023/.

[76] Google. (2024) Providerinstaller google play services google for developers. Google. Acceso: 26
de junio de 2025. [En linea]. Disponible en: https://developers.google.com/android/reference/
com/google/android/gms/security/ProviderInstaller.

[77] OWASP. (2025) Mastg-test-0026: Testing implicit intents - owasp mobile application security.
OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/
MASTG/tests/android/MASVS-CODE/MASTG-TEST-0026/.

[78] ——. (2025) Mastg-test-0027: Testing for url loading in webviews - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0027/.

[79] ——. (2025) Mastg-test-0036: Testing enforced updating - owasp mobile application security.
OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/
MASTG/tests/android/MASVS-CODE/MASTG-TEST-0036/.

[80] L. Die. (2025) vi(1): Vi improved, programmers text editor - linux man page. Linux Die.
Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/vi.

[81] OWASP. (2025) Mastg-test-0037: Testing webviews cleanup - owasp mobile application se-
curity. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0037/.

[82] ——. (2025) Mastg-test-0040: Testing for debugging symbols - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0040/.

[83] ——. (2025) Mastg-test-0043: Memory corruption bugs - owasp mobile application security.
OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/
MASTG/tests/android/MASVS-CODE/MASTG-TEST-0043/.

[84] A. Developer. (2025) Broadcastreceiver api reference android developers. Android Develo-
per. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://developer.android.com/
reference/android/content/BroadcastReceiver.

[85] S. Overflow. (2025) android - java.lang.securityexception: Mode world readable
no longer supported - stack overflow. Stack Overflow. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://stackoverflow.com/questions/39121052/
java-lang-securityexception-mode-world-readable-no-longer-supported.

126

https://www.pandasecurity.com/es/mediacenter/cifrado-aes-guia/
https://www.pandasecurity.com/es/mediacenter/cifrado-aes-guia/
https://mas.owasp.org/MASTG/tests/android/MASVS-AUTH/MASTG-TEST-0017/
https://mas.owasp.org/MASTG/tests/android/MASVS-AUTH/MASTG-TEST-0017/
https://learn.microsoft.com/es-es/windows/win32/termserv/setuserauthenticationrequired-win32-tsgeneralsetting
https://learn.microsoft.com/es-es/windows/win32/termserv/setuserauthenticationrequired-win32-tsgeneralsetting
https://mas.owasp.org/MASTG/tests/android/MASVS-NETWORK/MASTG-TEST-0023/
https://mas.owasp.org/MASTG/tests/android/MASVS-NETWORK/MASTG-TEST-0023/
https://developers.google.com/android/reference/com/google/android/gms/security/ProviderInstaller
https://developers.google.com/android/reference/com/google/android/gms/security/ProviderInstaller
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0026/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0026/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0027/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0027/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0036/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0036/
https://linux.die.net/man/1/vi
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0037/
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0037/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0040/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0040/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0043/
https://mas.owasp.org/MASTG/tests/android/MASVS-CODE/MASTG-TEST-0043/
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://stackoverflow.com/questions/39121052/java-lang-securityexception-mode-world-readable-no-longer-supported
https://stackoverflow.com/questions/39121052/java-lang-securityexception-mode-world-readable-no-longer-supported

BIBLIOGRAFÍA

[86] Gradle. (2025) Gradle build tool. Gradle. Acceso: 26 de junio de 2025. [En linea]. Disponible
en: https://gradle.org/.

[87] OWASP. (2025) Mastg-test-0047: Testing file integrity checks - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0047/.

[88] ——. (2025) Mastg-test-0049: Testing emulator detection - owasp mobile application security.
OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.org/
MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0049/.

[89] Apktool. (2025) Apktool. Apktool. Acceso: 26 de junio de 2025. [En linea]. Disponible en:
https://apktool.org/.

[90] J. M. Arenas. (2019) Que es smali y como parchear una aplicación android - hackpuntes.
José Maŕıa Arenas. Acceso: 1 de julio de 2025. [En linea]. Disponible en: https://hackpuntes.
com/que-es-smali-y-como-parchear-una-aplicacion-android/.

[91] Android. (2025) Descarga e instala android studio. Android. Acceso: 26 de ju-
nio de 2025. [En linea]. Disponible en: https://developer.android.com/codelabs/
basic-android-kotlin-compose-install-android-studio?hl=es-419#5.

[92] L. die. (2025) lscpu(1): Cpu architecture - linux man page. Linux die. Acceso: 1 de julio de
2025. [En linea]. Disponible en: https://linux.die.net/man/1/lscpu.

[93] ——. (2025) free(3): allocate/free dynamic memory - linux man page. Linux die. Acceso: 1
de julio de 2025. [En linea]. Disponible en: https://linux.die.net/man/3/free.

[94] ——. (2025) df(1): report file system disk space usage - linux man page. Linux die. Acceso:
1 de julio de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/df.

[95] ——. (2025) xrandr(1): primitive cli to randr extension - linux man page. Linux die. Acceso:
1 de julio de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/xrandr.

[96] ——. (2025) tar(1): manual page for tar 1.23 - linux man page. Linux die. Acceso: 1 de julio
de 2025. [En linea]. Disponible en: https://linux.die.net/man/1/tar.

[97] L. M. Page. (2025) cd(1p) - linux manual page. Linux Manual Page. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://man7.org/linux/man-pages/man1/cd.1p.html.

[98] Android. (2025) Cómo instalar android studio android developers. Android. Acceso: 1 de julio
de 2025. [En linea]. Disponible en: https://developer.android.com/studio/install?hl=es-419.

[99] IBM. (2025) Emuladores - documentación de ibm. IBM. Acceso: 1 de julio de 2025. [En linea].
Disponible en: https://www.ibm.com/docs/es/aix/7.2.0?topic=concepts-emulators.

[100] A. Developers. (2025) Manifest.permission api reference android developers. Android Develo-
pers. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://developer.android.com/
reference/android/Manifest.permission.

[101] ——. (2025) Cómo conectarse a una red connectivity android developers. Android Develo-
pers. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://developer.android.com/
develop/connectivity/network-ops/connecting?hl=es-419.

[102] Google. (2025) Id de publicidad - ayuda de play console. Google. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://support.google.com/googleplay/android-developer/
answer/6048248?hl=es.

127

https://gradle.org/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0047/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0047/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0049/
https://mas.owasp.org/MASTG/tests/android/MASVS-RESILIENCE/MASTG-TEST-0049/
https://apktool.org/
https://hackpuntes.com/que-es-smali-y-como-parchear-una-aplicacion-android/
https://hackpuntes.com/que-es-smali-y-como-parchear-una-aplicacion-android/
https://developer.android.com/codelabs/basic-android-kotlin-compose-install-android-studio?hl=es-419#5
https://developer.android.com/codelabs/basic-android-kotlin-compose-install-android-studio?hl=es-419#5
https://linux.die.net/man/1/lscpu
https://linux.die.net/man/3/free
https://linux.die.net/man/1/df
https://linux.die.net/man/1/xrandr
https://linux.die.net/man/1/tar
https://man7.org/linux/man-pages/man1/cd.1p.html
https://developer.android.com/studio/install?hl=es-419
https://www.ibm.com/docs/es/aix/7.2.0?topic=concepts-emulators
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/develop/connectivity/network-ops/connecting?hl=es-419
https://developer.android.com/develop/connectivity/network-ops/connecting?hl=es-419
https://support.google.com/googleplay/android-developer/answer/6048248?hl=es
https://support.google.com/googleplay/android-developer/answer/6048248?hl=es

BIBLIOGRAFÍA

[103] OWASP. (2025) Mastg-tech-0011: Setting up an interception proxy - owasp mobile application
security. OWASP. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://mas.owasp.
org/MASTG/tools/network/MASTG-TOOL-0077/.

[104] PortSwigger. (2025) Configuring an android device to work with burp suite - portswigger.
PortSwigger. Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://portswigger.net/
burp/documentation/desktop/mobile/config-android-device.

[105] Firebase. (2025) Firebase authentication. Firebase. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://firebase.google.com/docs/auth?hl=es-419.

[106] IBM. (2025) ¿qué es garbage collection de java? — ibm. IBM. Acceso: 26 de junio de 2025.
[En linea]. Disponible en: https://www.ibm.com/mx-es/topics/garbage-collection-java.

[107] Oracle. (2025) javax.crypto (java platform se 8). Oracle. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://docs.oracle.com/javase/8/docs/api/javax/crypto/
package-summary.html.

[108] ——. (2025) Cipher (java platform se 8). Oracle. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html.

[109] ——. (2025) Mac (java platform se 8). Oracle. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://docs.oracle.com/javase/8/docs/api/javax/crypto/Mac.html.

[110] Microsoft. (2025) Signature clase (java.security) microsoft learn. Microsoft. Acceso: 26 de
junio de 2025. [En linea]. Disponible en: https://learn.microsoft.com/es-es/dotnet/api/java.
security.signature?view=net-android-34.0.

[111] Oracle. (2025) Keygenerator (java platform se 8). Oracle. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://docs.oracle.com/javase/8/docs/api/javax/crypto/
KeyGenerator.html.

[112] ——. (2025) Keystore (java platform se 7). Oracle. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html.

[113] niklashigi. (2025) Github - niklashigi/apk-mitm: A cli application that automatically prepares
android apk files for https inspection. niklashigi. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://github.com/niklashigi/apk-mitm.

[114] Android. (2025) Cómo actualizar tu proveedor de seguridad para protegerte contra exploits de
ssl security android developers. Android. Acceso: 26 de junio de 2025. [En linea]. Disponible
en: https://developer.android.com/privacy-and-security/security-gms-provider?hl=es-419.

[115] ——. (2025) Intent api reference android developers. Android. Acceso: 26 de junio de 2025.
[En linea]. Disponible en: https://developer.android.com/reference/android/content/Intent.

[116] ——. (2025) Intents de cámara android media android developers. Android. Acceso: 26
de junio de 2025. [En linea]. Disponible en: https://developer.android.com/media/camera/
camera-intents?hl=es-419.

[117] Flutter. (2025) Flutter - build apps for any screen. Flutter. Acceso: 26 de junio de 2025. [En
linea]. Disponible en: https://flutter.dev/.

[118] Google. (2024) recaptcha google for developers. Google. Acceso: 26 de junio de 2025. [En
linea]. Disponible en: https://developers.google.com/recaptcha?hl=es-419.

128

https://mas.owasp.org/MASTG/tools/network/MASTG-TOOL-0077/
https://mas.owasp.org/MASTG/tools/network/MASTG-TOOL-0077/
https://portswigger.net/burp/documentation/desktop/mobile/config-android-device
https://portswigger.net/burp/documentation/desktop/mobile/config-android-device
https://firebase.google.com/docs/auth?hl=es-419
https://www.ibm.com/mx-es/topics/garbage-collection-java
https://docs.oracle.com/javase/8/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html
https://docs.oracle.com/javase/8/docs/api/javax/crypto/Mac.html
https://learn.microsoft.com/es-es/dotnet/api/java.security.signature?view=net-android-34.0
https://learn.microsoft.com/es-es/dotnet/api/java.security.signature?view=net-android-34.0
https://docs.oracle.com/javase/8/docs/api/javax/crypto/KeyGenerator.html
https://docs.oracle.com/javase/8/docs/api/javax/crypto/KeyGenerator.html
https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html
https://github.com/niklashigi/apk-mitm
https://developer.android.com/privacy-and-security/security-gms-provider?hl=es-419
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/media/camera/camera-intents?hl=es-419
https://developer.android.com/media/camera/camera-intents?hl=es-419
https://flutter.dev/
https://developers.google.com/recaptcha?hl=es-419

BIBLIOGRAFÍA

[119] ——. (2021) Descripción general del service worker workbox chrome for developers. Google.
Acceso: 26 de junio de 2025. [En linea]. Disponible en: https://developer.chrome.com/docs/
workbox/service-worker-overview?hl=es-419.

[120] Android. (2025) Websettings api reference android developers. Android. Acceso: 26 de junio
de 2025. [En linea]. Disponible en: https://developer.android.com/reference/android/webkit/
WebSettings.

[121] ——. (2025) Webviewrenderprocessclient api reference android developers. Android. Acceso:
26 de junio de 2025. [En linea]. Disponible en: https://developer.android.com/reference/
android/webkit/WebViewRenderProcessClient.

[122] Kotlin. (2025) deleterecursively. Kotlin. Acceso: 26 de junio de 2025. [En linea]. Disponible
en: https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.io/delete-recursively.html#.

[123] L. Die. (2025) find(1) - linux man page. Linux Die. Acceso: 26 de junio de 2025. [En linea].
Disponible en: https://linux.die.net/man/1/find.

[124] S. Overflow. (2025) permissions - valgrind cannot execute memcheck tool
on android os? - stack overflow. Stack Overflow. Acceso: 26 de junio de
2025. [En linea]. Disponible en: https://stackoverflow.com/questions/19641111/
valgrind-cannot-execute-memcheck-tool-on-android-os.

[125] GrapheneOS. (2025) Grapheneos: the private and secure mobile os. GrapheneOS. Acceso: 1
de julio de 2025. [En linea]. Disponible en: https://grapheneos.org/.

129

https://developer.chrome.com/docs/workbox/service-worker-overview?hl=es-419
https://developer.chrome.com/docs/workbox/service-worker-overview?hl=es-419
https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebViewRenderProcessClient
https://developer.android.com/reference/android/webkit/WebViewRenderProcessClient
https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.io/delete-recursively.html#
https://linux.die.net/man/1/find
https://stackoverflow.com/questions/19641111/valgrind-cannot-execute-memcheck-tool-on-android-os
https://stackoverflow.com/questions/19641111/valgrind-cannot-execute-memcheck-tool-on-android-os
https://grapheneos.org/

ANEXO I: Pruebas para realizar
una auditoŕıa de seguridad móvil
según la metodoloǵıa OWASP.

En el presente anexo se muestran las pruebas que OWASP ofrece para auditar una aplicación móvil.
Por otro lado se indica si la prueba está o no en uso, es decir si se considera o no como obsoleta y
si para la aplicación auditada en el presente proyecto, AquaCyL, es viable de realizar o no:

Categoŕıa Prueba Descripción En uso Viable

MASVS-AUTH MASTG-TEST-0017 Prueba para confirmar credenciales. Śı ✓

MASVS-AUTH MASTG-TEST-0018 Prueba de autenticación biométrica. Śı ✗

MASVS-CODE MASTG-TEST-0002 Prueba del almacenamiento local para la
validación de los datos de entrada.

Śı ✓

MASVS-CODE MASTG-TEST-0025 Prueba de defectos de inyección. Śı ✓

MASVS-CODE MASTG-TEST-0026 Prueba de intenciones impĺıcitas. Śı ✓

MASVS-CODE MASTG-TEST-0027 Prueba de carga de URL en WebViews. Śı ✓

MASVS-CODE MASTG-TEST-0034 Prueba de persistencia de objetos. Śı ✓

MASVS-CODE MASTG-TEST-0036 Prueba de actualización forzada. Śı ✓

MASVS-CODE MASTG-TEST-0042 Comprobación de debilidades en biblio-
tecas de terceros.

No ✗

MASVS-CODE MASTG-TEST-0043 Errores de corrupción de memoria. Śı ✓

MASVS-CODE MASTG-TEST-0044 Prueba de que las funciones de seguridad
gratuitas están activadas.

No ✗

131

ANEXO I: Pruebas para realizar una auditoŕıa de seguridad móvil según la metodoloǵıa OWASP.

Categoŕıa Prueba Descripción En uso Viable

MASVS-
CRYPTO

MASTG-TEST-0013 Prueba de criptograf́ıa simétrica. No ✗

MASVS-
CRYPTO

MASTG-TEST-0014 Prueba de la configuración del algoritmo
estándar de criptograf́ıa.

Śı ✓

MASVS-
CRYPTO

MASTG-TEST-0015 Prueba del propósito de las claves. Śı ✓

MASVS-
CRYPTO

MASTG-TEST-0016 Prueba del generador aleatorio de núme-
ros.

No ✗

MASVS-
NETWORK

MASTG-TEST-0019 Prueba de cifrado de datos en la red. No ✗

MASVS-
NETWORK

MASTG-TEST-0020 Probando la configuración de TLS1. No ✗

MASVS-
NETWORK

MASTG-TEST-0021 Prueba de verificación de identidad del
endpoint.

Śı ✓

MASVS-
NETWORK

MASTG-TEST-0022 Prueba de almacenes de certificados y fi-
jación de certificados.

No ✗

MASVS-
NETWORK

MASTG-TEST-0023 Prueba del proveedor de seguridad. Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0007 Determinar si se han expuesto datos sen-
sibles almacenados a través de mecanis-
mos de IPC.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0008 Comprobación de la divulgación de datos
confidenciales a través de la interfaz de
usuario.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0010 Búsqueda de información confidencial
en capturas de pantalla generadas au-
tomáticamente.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0024 Prueba de permisos de aplicaciones. No ✗

MASVS-
PLATFORM

MASTG-TEST-0028 Prueba de enlaces profundos. Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0029 Prueba de exposición de funcionalidad
sensible a través de IPC.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0030 Prueba de implementación vulnerable de
PendingIntent2.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0031 Prueba de ejecución de JavaScript en
WebViews.

Śı ✓

132

ANEXO I: Pruebas para realizar una auditoŕıa de seguridad móvil según la metodoloǵıa OWASP.

Categoŕıa Prueba Descripción En uso Viable

MASVS-
PLATFORM

MASTG-TEST-0032 Prueba de controladores del protocolo
WebView.

No ✗

MASVS-
PLATFORM

MASTG-TEST-0033 Prueba de objetos Java expuestos a
través de WebViews.

Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0035 Prueba de ataques de superposición. Śı ✓

MASVS-
PLATFORM

MASTG-TEST-0037 Prueba de limpieza de WebViews. Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0038 Asegurarse de que la aplicación esté co-
rrectamente firmada.

No ✗

MASVS-
RESILIENCE

MASTG-TEST-0039 Probar si la aplicación se puede depurar. No ✗

MASVS-
RESILIENCE

MASTG-TEST-0040 Prueba de śımbolos de debugging. Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0041 Prueba de código de depuración y regis-
tro de errores detallado.

No ✗

MASVS-
RESILIENCE

MASTG-TEST-0045 Prueba de detección de root. Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0046 Prueba de detección anti-depuración. Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0047 Prueba de comprobación de integridad
de archivos.

Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0048 Prueba de detección de herramientas de
ingenieŕıa inversa.

Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0049 Prueba de la detección del emulador. Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0050 Comprobaciones de integridad en tiempo
de ejecución.

Śı ✓

MASVS-
RESILIENCE

MASTG-TEST-0051 Prueba de ofuscación. Śı ✓

MASVS-
STORAGE

MASTG-TEST-0001 Prueba de almacenamiento local para da-
tos confidenciales.

No ✗

MASVS-
STORAGE

MASTG-TEST-0003 Prueba de registros en busca de datos
confidenciales.

No ✗

MASVS-
STORAGE

MASTG-TEST-0004 Determinar si se comparten datos confi-
denciales con terceros a través de embe-
bidos.

Śı ✓

133

ANEXO I: Pruebas para realizar una auditoŕıa de seguridad móvil según la metodoloǵıa OWASP.

Categoŕıa Prueba Descripción En uso Viable

MASVS-
STORAGE

MASTG-TEST-0005 Determinar si se comparten datos sensi-
bles a través de las notificaciones.

Śı ✓

MASVS-
STORAGE

MASTG-TEST-0006 Determinar si la caché del teclado está
deshabilitado para los campos de entrada
de texto.

No ✗

MASVS-
STORAGE

MASTG-TEST-0009 Prueba de copias de seguridad de datos
confidenciales.

No ✗

MASVS-
STORAGE

MASTG-TEST-0011 Prueba de memoria de datos confidencia-
les.

Śı ✓

MASVS-
STORAGE

MASTG-TEST-0012 Prueba de la poĺıtica de seguridad de ac-
ceso al dispositivo.

No ✗

Tabla 9.1: Pruebas OWASP para la auditoŕıa de aplicaciones móviles.

En la anterior tabla, se puede ver como algunas de las pruebas que se muestran se encuentran en
estado obsoleto. Esto puede deberse a diferentes cambios en el sistema operativo o a cambios en lo
que a las buenas prácticas sobre seguridad se refiere.

Por otra parte, a parte de las anteriores pruebas, OWASP cuenta con una serie de test que se
denominan Tests (v2 Beta). Para el presente proyecto, se ha optado por no utilizar dichas pruebas
ya que las versiones beta aún se encuentran en un estado preliminar y sujeto a cambios. Con ello se
busca mantener una solidez de la metodoloǵıa aśı como asegurar unos resultados válidos al contar
con una metodoloǵıa revisada y validada.

134

