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ARTICLE INFO ABSTRACT

Keywords: Computational platforms for high-performance scientific applications are increasingly heterogeneous, incorpo-
SYCL rating multiple GPU accelerators. However, differences in GPU vendors, architectures, and programming models
EIIJI?A challenge performance portability and ease of development. SYCL provides a unified programming approach,

enabling applications to target NVIDIA and AMD GPUs simultaneously while offering higher-level abstractions
for data and task management. This paper evaluates SYCL’s performance and development effort using the Fi-
nite Time Lyapunov Exponent (FTLE) calculation as a case study. We compare SYCL’s AdaptiveCpp (Ahead-Of-
Time and Just-In-Time) and Intel oneAPI compilers, along with different data management strategies (Unified
Shared Memory and buffers), against equivalent CUDA and HIP implementations. Our analysis considers single
and multi-GPU execution, including heterogeneous setups with GPUs from different vendors. Results show that,
while SYCL introduces additional development effort compared to native CUDA and HIP implementations, it en-
ables multi-vendor portability with minimal performance overhead when using specific design options. Based on
our findings, we provide development guidelines to help programmers decide when to use SYCL versus vendor-

Finite Time Lyapunov Exponent
Performance evaluation
Development effort

specific alternatives.

1. Introduction

The complexity of scientific applications follows an increasing trend
motivated by society’s needs. Arising from many fields, computational
applications require as much computational power as possible to con-
tribute efficiently to scientific, commercial, and social progress. To ac-
complish this, high-performance computing (HPC) is vital. HPC relies on
efficiently using the diversity of resources available in modern compu-
tational systems, which are becoming increasingly heterogeneous. This
includes exploiting traditional multicore systems and devices such as
Graphic Processing Units (GPU). In the particular case of GPUs, it has
been proved that they offer excellent computational capabilities that can
accelerate many computations by several orders of magnitude.

To take advantage of all the available hardware in a heterogeneous
system, the first approach is usually to manually develop a specific so-
lution for that particular hardware using vendor toolchains or parallel
programming models. For example, CUDA [1] for NVIDIA GPUs, or HIP
[2] for AMD GPUs. Thanks to efficiently managing the hardware re-
sources, these tools and models have demonstrated great capabilities
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and versatility to obtain the best possible performance for those de-
vices. Nevertheless, experts who do not belong to the HPC field, such
as other engineers, physicists, or mathematicians, must deal with a non-
negligible learning curve to take advantage of all these programming
model capabilities. Moreover, using vendor-specific tools, the resulting
applications are often not easily portable to alternative vendor devices,
and additional programming efforts are needed to use different hard-
ware.

In recent years, different approaches with an increasing level of ab-
straction have been presented for designing applications that can lever-
age the resources in heterogeneous systems with improved portability.
OpenCL [3] is a good example of approaches that introduce a first layer
of abstractions for dealing with the diversity of heterogeneous devices.
It is an extension of the C/C + + programming language, capable of gen-
erating and running applications on different vendors’ multiprocessors,
FPGAs, and GPUs. However, OpenCL requires even more development
effort than, for example, the use of vendor-specific programming mod-
els for GPUs, such as CUDA or HIP. Moreover, OpenCL requires explic-
itly managing the data transfers and synchronization using a low-level
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event model, further increasing the development effort if the program-
mer wants to perform asynchronous operations to overlap kernel execu-
tions and data transfers. For this reason, learning and using OpenCL is
cumbersome for those who are not HPC experts but want to maximize
their intensive-computation applications by exploiting the available re-
sources in different heterogeneous environments.

In contrast, other proposals for higher-level heterogeneous program-
ming simplify the code, require less explicit operations and cumbersome
initialization, or even make operations such as data transfers transpar-
ent to the programmer. Some examples include SYCL [4], OpenMP [5],
Kokkos [6], Raja [7], or other more academic approaches such as dOCAL
[8] or CtrlEvents [9] that pursue a common objective: Offering higher-
level abstractions that simplify and unify the programming of different
computational resources transparently and effortlessly. While OpenMP
is widely available in most modern compilers and the other alterna-
tives previously cited have specific advantages, SYCL is becoming more
and more popular as the available compiler implementations are becom-
ing more mature, complete, robust, and efficient (see, e.g., AdaptiveCpp
[10], or Intel oneAPI [11]). SYCL advocates a single-code approach, with
automatic data-dependence analysis and data movements across mem-
ory hierarchies, which are easy to understand and to program by non-
experts in low-level programming of heterogeneous devices. The SYCL
community strives to make it the functional and performance portability
baseline. As discussed in Section 9, several works compare the efficiency
and portability between SYCL and other heterogeneous programming
models for specific applications and platforms. Currently, it is highly
relevant to investigate the efficiency and portability offered by the new
SYCL implementations for real-world applications.

In this paper, we evaluate the current SYCL implementation, us-
ing a real-world application, from two different perspectives: The per-
formance it offers when dealing with single or multiple GPU devices,
from the same or different vendors, and the development effort re-
quired to implement the code. We compare the performance and the
code with baselines programmed directly using CUDA or HIP technolo-
gies for NVIDIA and AMD GPUs, isolated or in combination. Moreover,
we evaluate SYCL performance from three different design choices: The
available SYCL compilers (AdaptiveCpp and Intel oneAPI), the compiler
implementation (Single-source, single-compiler pass, and Single-source,
multiple-compiler passes), and the Data Management (Unified shared
memory and buffer model). These design choices will be explained in
Section 2.1. In this comparison, we try to illuminate the advantages
and limitations of the recent improvements introduced for this high-
level programming model compared to traditional vendor-provided
tools.

We have chosen as the case study the UVaFTLE [12] application,
which computes the Finite Time Lyapunov Exponent (FTLE), to explore
this development effort and performance evaluation. On the one hand,
this application is formed by two conceptually very different kernels:
One deals with larger data sets and memory accesses. At the same time,
the other one focuses on solving a collection of linear algebra operations.
This difference lets us explore whether the key aspects of most scientific
applications (memory accesses and computations) are better addressed
by native (vendor-provided) tools than by SYCL. On the other hand,
we have not found any work in the literature that offers a recent and
portable version of the FTLE solution, so we also provide the community
with a novel portable and improved FTLE implementation, based on our
previous work [12].

The main contributions of this work are:

o We offer a portable version of the UVaFTLE application using SYCL,
with support to target multiple GPU devices simultaneously, even
from different vendors.

e We present new baseline implementations of the UVaFTLE applica-
tion. The first one uses CUDA. It increases the use of registers to
minimize global memory accesses and a new kernel to implement
the data preprocessing stage in GPU. The second baseline is a port
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of the same program using HIP to target AMD GPU devices. Both
versions support the specific vendor’s multi-GPU.

e We conduct an in-depth evaluation of the performance, in terms of
execution time, offered by both the baseline implementations of the
FTLE computation (based on CUDA and HIP) and the SYCL version,
considering the main SYCL compiler, the compiler implementation,
and the data management model.

e We compare the development effort required to implement the

CUDA and HIP baselines with the SYCL version in terms of several

classical development-effort metrics.

Based on the evaluation conducted and its analysis, we provide a

development strategy with recommendations on how and when to

use SYCL or the native alternatives.

o This work contributes to open science. All our implementations are
fully open-source and available by accessing the GitHub repository
[13].

The rest of the paper is structured as follows: In Section 2, we provide
a revision of the different SYCL implementations and the mathematical
background of the FTLE; in Section 3 we describe the FTLE computation
algorithm and our implementations, covering how we leverage CUDA,
HIP, and SYCL; in Section 4 we describe how we ported UVaFTLE to
SYCL and address some of the implementation decisions needed; in Sec-
tion 5 we present an in-depth evaluation of the performance delivered
by each implementation decision; in Section 6 we analyze the develop-
ment effort associated with each implementation; in Section 7 we sum-
marize the main findings of our evaluation and analysis; in Section 8
we provide development strategy recommendations and guidelines for
using SYCL; in Sect. 9 we summarize the main existing works that use
SYCL in their implementations and those related to the FTLE computa-
tion, comparing them to our work; and in Section 10 we summarize the
main conclusions derived from this work and finalize by mentioning the
future work.

2. Background

In this section, we first summarize the state of the art of SYCL, de-
scribing its different implementations highlightStartblueand the main
features of each. Then, we describe the case study we utilize in this
work: FTLE.

2.1. Heterogeneous computing and SYCL

In 2014, the Khronos Group presented SYCL [4], a standard model
for cross-platform programming, to achieve both code and performance
portability and lower the development effort. SYCL organizes the kernels
using a task graph implicitly constructed by the SYCL runtime. This also
allows implicitly managing the dependencies between the kernels and
the data communications, although the developer can still manage them
explicitly. In this work, we analyze the SYCL ecosystem through three
main axes:

e SYCL compilers: The SYCL ecosystem has several implementations
that rely on different compiler backends for different types of de-
vices. Currently, the most widespread compilers are Intel’s oneAPI
[11] and AdaptiveCpp [10,14] (formerly known as hipSYCL). oneAPI
supports Intel hardware (CPUs, GPUs, and FPGAs) and has two
plugins developed by Codeplay to support NVIDIA and AMD de-
vices using alternative backends. However, these backends are in-
compatible with the rest of Intel’s hardware. AdaptiveCpp supports
CPUs, AMD GPUs, NVIDIA GPUs, and Intel GPUs through OpenMP,
HIP/ROCm, CUDA, and Level Zero, respectively. Other implementa-
tions are TriSYCL [15], which only supports CPUs and Xilinx FPGAs,
and Codeplay’s ComputeCPP [16], which supports CPUs and INTEL,
NVIDIA, and AMD GPUs, but was discontinued after September 2023
[17]. For these reasons, the AdaptiveCpp and oneAPI compilers have
been chosen for conducting this study.
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¢ Compiler design options: There are multiple ways of implementing
the SYCL compiler. According to the SYCL specification [4], there are
three different choices:

- Library only-implementation: It is possible to implement SYCL
as a pure C+ + library. For example, this approach is available
in AdaptiveCpp to target NVIDIA GPUs.

- Single-source, single-compiler pass (SSCP): The compiler
parses the code only once, simultaneously compiling the host and
the device code. The application binary can be used on different
devices (e.g., two GPU models) without recompiling the code.
AdaptiveCpp has recently presented the first version of an SSCP
SYCL compiler [18]. Briefly, AdaptiveCpp uses LLVM at compile
time to generate an intermediate and backend-independent rep-
resentation. This representation is transformed at runtime into
the format necessary for the backend driver.

- Single-source, multiple-compiler passes (SMCP): The compiler
parses at least twice times the code, one time for the host code
and another for the device code. The device code is compiled once
for each device to use the application on different devices. The
application binary, also called fat-binary, contains all the device
images. This is a usual approach, but it requires a higher compi-
lation time.

Since only AdaptiveCpp implements the SSCP model, we analyze the
performance of SSCP and SMCP approaches using AdaptiveCpp. The
library-only mode will not be investigated since only NVIDIA GPUs
are supported. The main focus of this work is to study the perfor-
mance/development effort of porting applications to SYCL, not using
SYCL as a library for third-party compilers.

e Data management: SYCL has three abstractions to manage data:

— Unified Shared Memory (USM) manages the data using a
pointer-based approach based on C and C+ + pointers. USM fa-
cilitates the migration of C/C+ + codes to SYCL and is an ideal
choice if our C/C+ + code is pointer-based. However, not all the
devices support this memory management. Data can be allocated
to the host, the device, or both sides. We will study the FTLE
application using these allocation modes:

* Device: The data is allocated in the device; it is not accessible
by the host, and the data movement is the programmer’s re-
sponsibility. This allocation is made calling to malloc_device()
function, which is equivalent to call cudaMalloc()/hipMalloc()
in CUDA/HIP.

Shared: The data is allocated and accessible on both sides and

automatically migrated between host and device when neces-

sary. This allocation is made calling to malloc shared() func-
tion, which is equivalent to call cudaMallocManaged()/ hip-

MallocManaged() in CUDA/HIP.

From now on, we will use the terms Device and Shared to indi-
cate the memory allocation mode, regardless of whether we are
talking about CUDA, HIP, or SYCL codes.

— Buffers provides a high-level abstraction to manage the data. The
runtime manages the data storage and movement between dif-
ferent memory spaces. Thus, the programmer can skip this part
of the data management tasks. However, using buffers requires
more significant development effort on the programmer than
USM, as new data abstractions (buffers and accessors) should be
explicitly managed.

- Images provides a high-level abstraction to manage image data.
Its interface and data management are essentially the same as the
buffer model, but this abstraction focuses on developing image
and video applications.

*

Currently, AdaptiveCpp and oneAPI support all the data manage-
ment models. However, FTLE is not an image/video application; there-
fore, employing images is out of the scope of this work. Thus, we will
analyze the performance of USM (both device and shared allocations)
and buffer models using both compilers.
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2.2. Case of study: FTLE

Fluid dynamics is a widely explored field. In particular, the fluid
particle trajectories in phase space, often referred to as Lagrangian, are
of great interest. More specifically, calculating the Lagrangian Coherent
Structures (LCS) [19] is key for several disciplines, such as cardiovascular
engineering [20], aerodynamics [21], and geophysical fluid dynamics
[22].

The fluid particle trajectories are defined as solutions of

X =0(%, 1),

where the right-hand side is the fluid’s velocity field in the absence of
molecular diffusion. Solving this system of equations allows for the cal-
culation of the LCS. The main interest in computing the LCS is that they
let a better understanding of the flow phenomena since they can be
broadly interpreted as transport barriers in the flow.

From the computational point of view, the extraction of LCS consists
of two main steps: The flowmap computation and the resolution of the
FTLE. We will focus on the second step, which is mathematically defined
as

- 1 N
A;(‘)(xo) = o log 1/ 4,(%o)

where 1, is the maximum eigenvalue of the Cauchy-Green strain tensor
C, defined as follows

C(fo) = [VF:O] (’%)]TVF:(: (7‘0)

being F the flowmap [21].

The FTLE is a scalar field that works as an objective diagnostic for
LCS: A first-order approach to assess the stability of material surfaces
in the flow under study by detecting material surfaces along which in-
finitesimal deformation is larger or smaller than off these surfaces [19].
Although more reliable mathematical methods have been developed for
the explicit identification of LCS, the FTLE remains the most used metric
for LCS identification.

From the computational point of view, it is essential to highlight
that the FTLE computation is applied to each particle of the flow inde-
pendently of the other particles. Thus, it represents an embarrassingly-
parallel problem [23]. We have already described, explored, and evalu-
ated the FTLE computation in a previous work [12], where we presented
UVaFTLE. This tool incorporates a CUDA-based kernel to use multiple
NVIDIA GPUs in the FTLE computation.

3. Application description and implementation

In this section, we describe the FTLE algorithm. Next, we identify the
regions of code suitable to be executed in GPUs; afterward, we present
the native (CUDA and HIP) and the SYCL implementations of the GPU
kernels; and, finally, we illustrate how to target multiple GPUs using
SYCL. Note that the complete code of all versions is available in the
UVaFTLE repository [13].

3.1. FTLE Algorithm

Provided the information of the mesh that defines the flow to study
(namely the dimension, time instant when the FTLE will be computed,
the mesh points coordinates and faces information, and the flowmap),
the process of computing the FTLE (described in Algorithm 1) consists
of the following steps performed over each point in the mesh:

1. Compute the gradients of the flowmap (see Algorithm 2). Note that
the gradient calculation is based on the Green Gauss theorem [24].

2. Generate the tensors from the gradients and perform the matrix-
matrix product of the previously generated tensors by their trans-
poses (see Algorithm 2).
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Algorithm 1 FTLE.

Require: nDim,t_eval,coords_file, faces_file, flowmap_file
1: nVpF =(nmDim==2)73:4
: {nPoints, coords} = read_coordinates(coords_file)
: {nFaces, faces} = read_faces(faces_file)
: flow = read_flowmap(flowmap_file)
nFpP = create_nFacesPerPoint_vector(nPoints, nFaces, nVpF, faces)

: for ip in range(nPoints) do
if nDim == 2 then

© XN U A WN

10: max_eigen = max_eigenvalue_2D([g1, g2])
11: else

: FpP = create_FacesPerPoint_vector(nPoints, nFaces, nVpF, faces, nFpP)

gl,g2 = 2D_grad_tens (ip, nVpF, coords, flow, faces, nFpP, FpP)

> Triangles or tetrahedrons

12: gl,g2, g3 = 3D_grad_tens (ip, nVpF, coords, flow, faces, nFpP, FpP)

13: max_eigen = max_eigenvalue_3D([g1, g2, g31)
14: end if

15: result[ip] = log(sqrt(max_eigen))/t_eval

16: end for

17: return result[ ]

Algorithm 2 2D_grad_tens.

Require: ip,nP,nV pF,coords[ |, flow, faces[ 1,nFpP[ ], FpP[ ]
1: nFaces = (ip==0) ? nFpPlip] : nFpP[ip] — nFpPlip— 1]

2: left,right, below, above = GreenGauss(nFaces, FpP,nFpP,nV pF, coords)

points
. dx = coords[right - nDim] — coords[left - nDim]
: dy = coords[above - nDim + 1] — coords[below - nDim + 1]
: gral[0] = (flowl[right - nDim] — flowl[left - nDim])/dx
: gral[l] = (flow[right - nDim + 1] — flow[left - nDim + 1])/dx
: gra2[0] = (flowlabove - nDim] — flow|below - nDim])/dy
: gra2[l] = (flow[above - nDim + 1] — flow[below - nDim + 1])/dy
. ftle_m[0] = gral[0] - gral[O] + gral[l] - gral[l]
10: ftle_m[1] = gral[0] - gra2[0] + gral[l] - gra2[1]
11: ftle_m[2] = gra2[0] - gral[0] + gra2[1] - gral[l]
12: ftle_m[3] = gra2[0] - gra2[0] + gra2[1] - gra2[1]
13: gral[0] = ftle_m[0]; gral[l] = ftle_m[1]
14: gra2[0] = ftle_m[2]; gra2[l] = ftle_m[3]
15: ftle_m[0] = gral[0] - gral[0] + gral[l] - gral[l]
16: ftle_m[1] = gral[0] - gra2[0] + gral[l] - gra2[1]
17: ftle_m[2] = gra2[0] - gral[0] + gra2[1] - gral[l]
18: ftle_m[3] = gra2[0] - gra2[0] + gra2[1] - gra2[1]
19: return ftle_m

O 0 N O U AW

> This provides the indices of the left, right, below, above closest

3. Compute the maximum eigenvector of each resulting matrix (see
Algorithm 3). Note that, as we are computing the eigenvalues of
matrices of size 2x2 (2D) or 3x3 (3D), which in practice means re-
spectively solving a 2nd- and 3rd-degree equation, we have directly
implemented this computation, instead of calling mathematical li-
braries that perform this computation for generic matrices of any
size.

4. Calculate the logarithm of the square matrix of the maximum eigen-
value and divide the result by the time instant to evaluate.

Note that we only present the algorithms for the 2D case here because
the 3D case is straightforward.

In addition to the algorithms already described, it is also important
to remark those utilized in lines 5 and 6 in Algorithm 1: create_nFacesPer-
Point vector (see Algorithm 4) and create FacesPerPoint vector (see Algo-
rithm 5). Although they are part of the preprocessing and not the FTLE
computation itself, they are needed to create the data structures called
nFpP and FpP, which respectively contain the number of faces to which
each mesh point belongs and the corresponding face identifiers. These
data structures accelerate the process of computing the FTLE, because
they establish the relationship between the different mesh points and

faces, meaning that this is analyzed only once at the beginning of the
code, instead of each time the Green Gauss algorithm is called.

3.2. GPU Kernels identification

The cost of computing the FTLE algorithm described in the previ-
ous section relies on two main procedures: The create_facesPerPoint vec-
tor function and the linear algebra operations performed for each mesh
point in each iteration of the for loop in line 7 of the Algorithm 1. As
a consequence, this is what is worth it to be computed in the GPU; in
other words, these are the two GPU kernels to build to accelerate the
FTLE computation:

¢ Preprocessing: This kernel implements the create_facesPerPoint vec-
tor function (see Algorithm 5). The create_facesPerPoint_vector ker-
nel implements a memory-bound algorithm to determine the faces
associated with each point within a mesh. The kernel iterates
through all nFaces and checks nVertsPerFace vertices, resulting in
O(nPoints X nFaces x nVertsPerFace) memory accesses, which are
non-coalesced and lack shared memory optimization. This leads to
high memory latency, making global memory access the dominant
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Algorithm 3 max_eigenvalue_2D.

Require: M

1: sq « sqrt(M[21] * M[21] + M[10] = M[10] =2 % (M[10] = M[21]) 4+ 4 = (M[11] * M[20]))

2: eigl « (M[21]+ M[10] + sq)/2
3: eig2 « (M[21] + M[10] — sq)/2
4: return (eigl > eig2) ? eigl : eig

Algorithm 4 create_nFacesPerPoint_vector.

Require: nPoints,nFaces,nV pF, faces| |
: for ip in range(nPoints) do

nFpPlip] =0;
: end for

—

2
3
4: for iface in range(nFaces) do

5 for ipf in range(nV pF) do

6: ip = facesliface-nVpF +ipf]

7 nFpPlip] = nFpPlip] + 1

8 end for

9: end for

10: for ip in range(nPoints) do

11: nFpPlip] = nFpPlip] + nFpPlip — 1]
12: end for

13: return nFpP

Algorithm 5 create_facesPerPoint_vector.

Require: nPoints,nFaces,nV pF, faces[ ,nFpP[ ]
1: for ip in range(nPoints) do
2: count =0

3: iFacesP = (ip==0)?0 : nFpPlip—1]
4: nFacesP = (ip==0) ? nFpPlip] : nFpPlip] — nFpP[ip— 1]
5: while (i face < nFaces) and (count < nFacesP) do
6: for ipf in range(nV pF) do
7: if faces[iface-nVpF +ipf] == ip then
8: FpPlifacesP + count] = iface
9: count = count + 1
10: end if
11: end for
12: end while
13: end for

14: return FpP

bottleneck rather than computation. The arithmetic workload is min-
imal, consisting mainly of integer comparisons and assignments, con-
firming that the limiting factor is memory bandwidth rather than
operational intensity.

e FTLE: This kernel was already described in our previous work [12];
we presented a single CUDA-based kernel to compute everything
described in Algorithms 2 and 3 (or their corresponding 3D ver-
sions), which means using the GPU device to compute lines 9-10
(2D case) or 12-13 (3D case) of the Algorithm 1. Note that this
kernel has two variants: 2D and 3D. The gpu_compute_gradient_2D
kernel builds upon the first algorithm by introducing floating-point
operations for gradient calculations and eigenvalue extraction. How-
ever, the operational intensity is reduced due to its complex mem-
ory access patterns. Thus, the kernel is also memory-bound. The
execution consists of three phases: neighbor search (O(nPoints x
nFaces x nVertsPerFace) memory accesses), gradient computation
(O(nPoints)), and FTLE matrix eigenvalue extraction (O(nPoints)).
The non-coalesced accesses to faces, coordinates, and flowmap cre-
ate significant memory stalls, limiting performance. Additionally,
branch divergence in the neighbor selection further exacerbates ex-
ecution time variability. Despite its higher arithmetic workload, the
kernel’s performance is still limited by memory latency rather than
computation.

¢ 3D kernels: Extending these algorithms to 3D versions (e.g.,
gpu_compute_gradient_3D) results in similar performance character-
istics, as the additional spatial dimension only increases the memory
access complexity while maintaining the same compute-to-memory
imbalance. The search for neighboring points becomes even more
expensive, scaling to O(nPoints x nFaces x nVertsPerFace) in three
dimensions, further amplifying the impact of non-coalesced memory
accesses and branch divergence.

In the following sections, we present details on implementing these
kernels using CUDA or HIP (named native implementations) and SYCL.

3.3. Native implementations

Three different GPU kernels (create_facesPerPoint vector, gpu_com-
pute_gradient 2D, and gpu_compute gradient 3D) have been developed
corresponding to the algorithms described in previous sections. The
gpu_compute gradient 2D and the gpu compute_gradient 3D kernels are im-
proved versions of the CUDA-based implementation of our previous
work, UVaFTLE [12]. Moreover, they have been appropriately ported
to HIP to tackle AMD GPUs.

Whether they use CUDA or HIP, the three kernels perform the same
two initial operations before starting the algorithm. The first operation
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corresponds to the calculation of the thread global identifier. Each iden-
tifier corresponds to a mesh point. For code simplicity, we use one-
dimensional threadBlock and grid, making it easier to calculate the
global index of each thread and reducing the number of kernel instruc-
tions. The following instruction is executed to calculate the thread global
identifier:

intth_id = blocklIdx.x * blockDim.x + threadIdx.x;

The second operation checks that the number of launched threads is not
larger than the number of points in the mesh. For that, we insert the
following condition wrapping each kernel implementation:

if(th_id < numCoords){...}

For each kernel, each thread of the GPU grid executes precisely the
sequence of steps associated with the FTLE kernel described in Sec-
tion 3.2. The implementation can currently leverage all the GPU devices
available in a single node, as in our previous work [12]. Thus, we are
deploying our multi-GPU executions in a shared-memory environment.
We use the OpenMP programming model, instantiating as many threads
as GPU devices to distribute the load among them. In particular, we have
designed a static partitioning of the mesh points based on the number
of GPU devices that take part in the execution.

In contrast to our previous work, pinned memory has been used
to perform the data transfers of the results from the GPU to the host
through cudaHostAlloc or hipHostAlloc primitives. Classical GPU refer-
ence manuals, such as [1], indicate that this kind of memory can be
used when executions or asynchronous transfers are introduced, thus
reducing the latencies in these data transfers.

Furthermore, the GPU community indicates that the best
threadBlock size maximizes the streaming multiprocessor occu-
pancy, such as 256, 512, and 1024. Since it is recommended, we have

using namespace sycl;
int main () {
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selected 512 as the threadBlock size. As this work does not intend to
apply any tuning strategies, we have not evaluated additional sizes.

4. Porting UVaFTLE to SYCL: Implementation decisions

Based on the native implementations, the application has been
ported to SYCL using the USM and the buffer models. Since the com-
plete code of UVaFTLE is very large, we will illustrate the changes made
in our application using a simpler code. Note that the complete SYCL
code of the UVaFTLE can be found in our repository [13]. The example
launches a simple kernel that, given an array A with n elements, calcu-
lates A[i] =2 x A[i] + 1 for each element i, being 0 < i < n. Figs. 1, 3-6,
show the code examples for SYCL buffers, CUDA (device mem.), SYCL
USM-device, CUDA (shared mem.), and SYCL USM-shared versions, re-
spectively. The background of both codes has been colored to help the
reader identify the groups of lines in both codes with the same function-
ality. The parts with white backgrounds correspond to the host code,
which has no differences between versions. Also, note that the HIP code
was not included in the comparison since the differences between the
CUDA and HIP versions are practically negligible.

4.1. Porting the application to SYCL buffers model

First, we focus on the SYCL buffer code (Fig. 1). The first step to
making a SYCL application is choosing the device to execute the code
(code with a blue background). For these purposes, SYCL employs a
queue, an abstraction where the kernels executed on a single device are
submitted. This is performed in line 4 of Fig. 1, where a new queue is
created and attached to a GPU device. Note that, through the usage of
gpu selector{}, the kernel to be executed can be attached to any GPU
in the system (usually the first GPU detected by the SYCL runtime).

// Set the ezecution queue by selecting a GPU
queue my_queue (gpu_selector{});

int elements=100000;
float* h_array =

(float*)malloc(elements*sizeof (float));

[...] // Host memory initialization

1
2
3
4
5 // Host memory allocation
6
7
8
9

// Range declaration

array_range};

the accessor to use the device array

my_handler, read_writel;

my_handler.parallel_for (nd_range (array_range,
[=1(nd_item<1> i){

tdentifier

i.get_global_id (0) ;

d_array[gpu_idl=d_array[gpu_id]l*2+1;

in the host

10 range array_range{elements};
11 range block_range{512};
12 { // Enters in a mnew scope
13 // Buffer declaration
14 buffer dev_buf{h_array,
15 // Submit the kernel to the queue
16 my_queue .submit ([&] (handler &my_handler) {
17 // Create
18 accessor d_array{dev_buff,
19 // Ezecute the kermel with a parallel for
20
block_range),
21 // Get the thread global
22 int gpu_id =
23 // Kermel computation
24 if (gpu_id < elements)
25
26 }); // end parallel for
27 }); // end submit
28 } // Finish the scope to update host memory
29 [...1 // Use the results of the kernel
30 free(h_array);
31 return O0;
32}

Fig. 1. Comparison between CUDA and SYCL buffer version. The lines with the same colors share the same purpose in all codes.

6
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queue getHIPqueue (){
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1

2 auto platform = platform::get_platforms();

3 for (int p=0; p < platform.size(); p++){

4 if ('platform[p].get_info<info::platform::name>().

contains ( M {
5 auto devs= platform[p].get_devices();
6 return queue (devs [0]);
7 }
8 }
9 1}
Fig. 2. Example of a function for getting a queue attached to a HIP device in SYCL.
1 int main(){
2 cudaSetDevice (0); // Set the device
3 // Host memory allocation
4 int elements=100000;
5 float* h_array = (float*)malloc(elements*sizeof (float));
6 [...]1 // Host memory initialization
7 // Declare block and grid
8 dim3 block(512) ;
9 int numBlocks = (int) (ceil ((double)elements/block.x)+1);
10 dim3 grid(numBlocks) ;
11 // Device memory allocation
12 float* d_array;
13 cudaMalloc (d_array, elements*sizeof (float));
14 // Synchronous Copy host memory to the device
15 cudaMemcpy (d_array, h_array, elements*sizeof (float),
cudaMemcpyHostToDevice) ;
16 // Kernel launch
17 my_kernel <<<grid, block, cudaStreamDefault >>>(d_array,
elements) ;
18 // Asynchronous copy from device to host
19 cudaMemcpyAsync (h_array, d_array, elementsx*sizeof (float),
cudaMemcpyDeviceToHost , cudaStreamDefault) ;
20 // Now we can do other things while data async. transfer
21 [...]
22 //But we need to sync to use the updated h_array
23 cudaDeviceSynchronize () ;
24 cudaFree (d_array);// Free device memory
25 [...]1 // Use the results of the kernel in the host
26 free(h_array);
27 return 0;
28 }
29 // Kernel declaration
30 __global__ void my_kernel (float* d_array, int elements){
31 // Get the thread global tdentifier
32 int gpu_id = blockIdx.x*blockDim.x + threadIdx.x;
33 // Kernel computation
34 if (gpu_id < elements)
35 d_array[gpu_id] = d_array[gpu_id]l* 2 +1;
36

Fig. 3. Comparison between CUDA (with device memory) and SYCL. The lines with the same background colors share the same purpose in all codes.

However, the SYCL API offers methods to attach a GPU from a specific
platform, model, etc. For example, Fig. 2 shows a function for creating
a queue attached to a HIP device, getting at first the list of devices for
the HIP platform. Attaching the queue to a CUDA device is also possible
by simply comparing the string “CUDA” with the platform name.

After that, both CUDA and SYCL buffer codes allocate and initial-
ize the host array. Next, the native implementation specifies the CUDA
numBlocks and grid sizes (code with purple background). In SYCL, we
must specify the range of our arrays (array_range in the example) and
the range of the thread block (block range). array_range will be used later
to create the buffer. Both ranges will be necessary to launch the kernel.
Therefore, we create the needed ranges to port our application to SYCL.

Note that, for the simplicity of the example, we only use 1-dimensional
ranges, but we can also specify 2-dimensional or 3-dimensional ranges.

The next step in CUDA is to allocate the device data and to copy the
data from the host to the device (line 11 of Fig. 3, green-background
code). In SYCL, buffers will be used to manage the data instead of allo-
cating and copying it on the device. Buffers provide an abstract view of
the memory accessible from the host and the devices. The buffers also
allow the SYCL runtime to manage the memory transfers transparently
to the programmer. On the contrary, in the native implementation, we
manually allocate and free the device memory and manually manage
the data transfers (both synchronous and asynchronous versions) be-
tween the host and devices or between devices. Therefore, the buffer
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abstraction simplifies the memory management. For example, let’s sup-
pose three kernels: K; and K,, which have no data dependencies, and
K3, which needs the results of the first two kernels to make their work.
The SYCL runtime transparently transfers the host data to the devices
running K, and K, using the buffer abstraction. Since both kernels have
no data dependencies, both kernels can run concurrently on different
devices. Once the kernels have finished, the SYCL runtime will trans-
fer the necessary data to run Kj; in its device and finally transfer the
resulting data to the host.

Thus, we must declare the buffers for managing the memory. The
buffer declaration requires specifying the host memory to be managed
and the buffer range (line 14 of Fig. 1). Therefore, to port UVaFTLE to
SYCL, we have created the necessary buffers to manage all the applica-
tion data.

After that, we specify the kernel declaration (code with dark red
background) and its launch (code with light red background). In the
native implementation, we should declare the kernel as a function (lines
30-36 in Fig. 3) and launch this function inside the host code using a
specific syntax (line 17 in Fig. 3). In SYCL, the submit() method is used to
submit the kernel in the desired queue (line 16 in Fig. 1). Using lambda
functions, we perform the submission and define the kernel code. In the
example, a parallel for and nd range kernel (lines 13-17 in Fig. 1)) are
employed to perform the same work as the CUDA kernel, i.e., to launch
a kernel with elements threads organized in blocks of 512 threads. Since
the main purpose is not to describe the SYCL API, we will not go into
more detail about the declaration of lambda functions. Please consult
the reference guide [4] for further information.

However, the programmer does not directly access the buffers in the
kernels. To read and write buffers, we must create an accessor object
(line 18 in Fig. 1), specifying the accessed buffer and the access mode
(read, write, or read_write). The kernel code is the same in both versions.
If we appropriately name the accessors, making changes in kernel code is
unnecessary. The only difference between native and SYCL kernel codes
is how to obtain the global index to access the data (line 22, Fig. 1).
Note also that the CUDA/HIP index ordering differs from SYCL index
ordering. When we work with structures of more than one dimension,
we must interchange the x- and y-index to exploit the data coalescence.

Finally, note that the buffer, kernel submit, etc., are created inside
a new scope. A buffer updates the host memory when it is destroyed.
Using a new scope, the host memory will be updated when the scope
ends and destroys the buffer, avoiding explicitly transferring data and
synchronizing the host and device. However, SYCL allows manually up-
dating the host memory inside the scope if the programmer requires it.

4.2. Porting the application to SYCL USM-device model

As shown in Fig. 4, the only differences between buffers and USM-
device models lie in memory management (code with green back-
ground). Queue declaration, range declaration, kernel declaration, and
kernel launch are the same in both models. Using USM and device al-
location, we must allocate the memory on the host (line 7, Fig. 4) and
the device (line 13, Fig. 4). To port this to the SYCL USM-device model,
we change the cudaMalloc call by a malloc_device call'. Since the array is
allocated on the device, we must explicitly transfer the data from host
to device before launching the kernel. This can be done by replacing
the cudaMalloc call by the function memcpy of the queue class (line 14,
Fig. 4).

After that, we launch the kernel (line 16, Fig. 4). Again, if we appro-
priately name the device arrays, making changes in kernel code is un-
necessary. Note that submit() scope is not present in the code. Since the
SYCL 2020 specification, the queues can directly use the parallel for()
without the submit() scope, therefore reducing the code lines.

! In the example, we have used C-style allocators, but C+ +-style and
C+ +-allocator-style are also available. Please consult the reference guide [4]
for more information.
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Finally, we need to transfer the data from the device to the host
calling again memcpy (line 22, Fig. 4). However, to use the data in the
host code, the queue must finish all its work (kernel execution and data
transfer). Then, we need to manually synchronize the host and device
using wait function of the queue class (line 24, Fig. 4. After that, we can
free the device memory (replacing cudaFree by free) and use the data in
the host.

4.3. Porting the application to SYCL USM-shared model

Using the shared memory (named in CUDA as managed memory)
allows us to use the same data structure both in the host and the device.
The data transfer is transparent to the programmer, and the runtime
migrates the data between the host and the device when necessary. This
also reduces the lines of code required to write our application.

First, we will briefly compare the CUDA code using device memory
(Fig. 3) and shared memory (Fig. 5). As can be seen, only one allo-
cation using cudaMallocManaged is necessary (line 5, Fig. 5), and one
deallocation using cudaFree (line 11, Fig. 5). No explicit data transfers
or synchronizations are required to use the data in the host or the device.

Fig. 6 shows the SYCL USM-shared code. As in the previous SYCL
models, queue declaration, range declaration, and kernel launch are the
same. We only need to change the memory management. If we start from
the shared-memory CUDA code, we must change the calls to cudaMalloc-
Managed and cudaFree by malloc_shared and free, respectively. Starting
from the device-memory CUDA code, we must replace the host mem-
ory allocation and deallocation with these SYCL functions and remove
all the CUDA functions to manage the device memory. Appropriately
naming the shared arrays means that changes in the code are minimal.

4.4. SYCL Porting process: Summary

We now summarize the steps to port UVaFTLE to SYCL, starting
with the first version written in CUDA and using device memory.

SYCL using buffers model.

1. Create a queue attached to the desired GPU device.

2. Copy the original host code as the declaration and initialization of
the host memory, management of the application’s final results, etc.,
avoiding copying the kernel code and the calls to the CUDA API (as
cudaMalloc(), cudaMemcpy, etc.).

3. Start a new scope and define the buffers to manage the data.

4. At the preprocessing kernel launch location in the CUDA code, sub-
mit this kernel to the queue using the submit scope.

(a) Create the accessors with the appropriate names to avoid rewrit-
ing the kernel code.

(b) Launch the kernel using an nd-range parallel for.

(c) Copy the kernel code, changing the index calculation to SYCL
syntax.

5. Repeat the step and sub-steps of step 4 for the FTLE kernel.

6. End the scope to update the host memory.

SYCL using USM-device model.

1. Create a queue attached to the desired GPU device.
2. Copy the original host code, including the calls to CUDA API, but not
the kernel definitions and callings.
3. Change the cudaMalloc(), cudaMemcpy and cudaFree() calls for the
SYCL functions malloc_device(), queue.memcpy() and free().
4. At the preprocessing kernel launch location in the CUDA code, sub-
mit this kernel to the queue using the nd-range parallel for scope.
(a) Copy the kernel code, changing the index calculation to SYCL
syntax.
(b) Wait for kernel completion using queue.wait() to use the correct
data in the next step (or declare and ordered-queue on step 1.).
5. Repeat the step and sub-steps of step 4 for the FTLE kernel.
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

28
29
30

using namespace sycl;
int main(){

}

// Set the ezecution queue by selecting a GPU

queue my_queue (gpu_selector{}) ;

// Host memory allocation

int elements=100000;

float* h_array = (float*)malloc(elements*sizeof (float));
[...] // Host memory initialization

// Range declaration

range array_range{elements};

range block_range{512};
// Mem. device allocation and initialization

float* d_array=malloc_device<float>(elements, my_queue);

my_queue .memcpy (d_array, h_array, elements*sizeof(float));
// Ezecute the kermel with a parallel for

my_queue .parallel_for (nd_range (array_range ,block_range),
[=](nd_item<1> i){
int gpu_id = i.get_global_id (0);
if (gpu_id < elements)
d_array[gpu_id]l=d_array[gpu_id]*2+1;
}); // end parallel for
//Copy the final results to the host and wait for them
my_queue .memcpy (h_array, d_array, elements*sizeof(float));
//wait for kernel and data transfer completion
my_queue .wait () ;
// Free device memory

free(d_array, my_queue) ;
[...1 // Use the results of the kernel in the host

free(h_array);
return O;

Fig. 4. Comparison between CUDA and SYCL USM version with device memory. The lines with the same background colors share the same purpose in all codes.
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int main(){

}

cudaSetDevice (0);// Set the device
int elements=100000;
float* sh_array; // Shared memory allocation

cudaMallocManaged (sh_array, elements*sizeof (float));

[...] // Memory initialization
// Declare block and grid (mo changes from CUDA device)
Loool

my_kernel <<<grid, block, 0, cudaStreamDefault>>>(sh_array,
elements) ;

[...] // Use the results of the kernel in the host

cudaFree (sh_array); //Free the shared array

return O0;

Fig. 5. Comparison between CUDA (main() with shared memory) and SYCL. The lines with the same background colors share the same purpose in all codes.

SYCL using USM-shared model.

To facilitate the reader’s understanding of the main differences be-
tween models, we include Table 1, which shows the codes that perform

1. Create a queue attached to the desired GPU device. the same functionality in CUDA/HIP, SYCL USM model, and SYCL buffer
2. Copy the original host code as the declaration and initialization of model. Since the CUDA code is practically the same as the HIP code, only
the host memory, management of the application’s final results, etc., changing the word “cuda” to the word “hip”, the last one is not included

avoiding copying the kernel code and the calls to the CUDA API (as in the table.
cudaMalloc(), cudaMemcpy, etc.).

3. Change the malloc() and free() calls for the SYCL functions mal- 4.5. Targeting multiple GPUs and vendors with SYCL

loc_shared() and free().

4. At the preprocessing kernel launch location in the CUDA code, sub- At this point, UVaFTLE has been ported to SYCL and can be exe-
mit this kernel to the queue using the nd-range parallel for scope. cuted on NVIDIA and AMD GPUs. However, the application still does
(a) Copy the kernel code, changing the index calculation to SYCL not support multi-GPU execution. From now on, we will use the term

syntax. “sub-kernel” to refer to one part of a single kernel distributed across
(b) Wait for kernel completion using queue.wait() to use the cor- different devices, while the term “kernel” will refer to the execution of
rect data in the next step (or declare and ordered-queue on all the parts of the kernel. The native application uses OpenMP to in-
step 1.). stance multiple threads, and each thread performs a part of the compu-

5. Repeat the step and sub-steps of step 4 for the FTLE kernel. tational work or sub-kernel using a different GPU device, as explained in
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// Memory allocation (accessible from host and device)
malloc_shared<float>(elements,

my_queue) ;

my_queue .parallel_for (nd_range (array_range ,block_range),

sh_array[gpu_id]l=sh_array[gpu_id]*2+1;

completion to use the data

inm the host

1 using namespace sycl;
2 int main(){
3 // Set the ezecution queue by selecting a GPU
4 queue my_queue (gpu_selector{});
5 int elements=100000;
6
7 float* sh_array =
8 [...] // Host memory initialization
9 // Range declaration
10 range array_range{elements};
11 range block_range{512};
12 // Ezecute the kernel with a parallel for
13
[=] (nd_item<1> i){
14 int gpu_id = i.get_global_id (0);
15 if (gpu_id < elements)
16
17 }); // end parallel for
18 //wait for the kernel
19 my_queue .wait () ;
20 [...] // Use the results of the kernel
21 free(sh_array, my_queue);
22 return 0;
23}

Fig. 6. Comparison between CUDA and SYCL USM version with shared memory. The lines with the same background colors share the same purpose in all codes.

Table 1

Memory management in CUDA using device memory, CUDA using shared memory, SYCL USM using device memory (shown as
S-USM device), SYCL USM using shared memory (shown as S-USM shared) and SYCL Buffers (shown as S-Buffers device).

Action

Language and model

Function

CUDA device
CUDA shared
S-USM device
S-USM shared
S-Buffers

CUDA device
CUDA shared
S-USM device
S-USM shared

Allocate device memory

Access to device memory inside the kernel

S-Buffers

CUDA device
(Sync)

CUDA device
(Asycn.)
CUDA shared
S-USM device
S-USM shared

Copy data between host and device

S-Buffers
CUDA device
CUDA share
S-USM (both)
S-Buffers
CUDA (both)
S-USM (both)
S-Buffers

Sync. to ensure the host mem. is updated

Free device memory

cudaMalloc(dev_array, mem _size)
cudaMallocManaged(shared_array, mem_size)

dev_array = malloc_device <double> (num_elements, my_queue)
shared_array = malloc_shared <double > (num_elements, my_queue)
buffer buff array{h_array, range{num_elements)}}

Declare the array in the kernel prototype and

include dev_array/shared_array in the kernel invocation

Use dev_array in kernel code

Use shared_array in kernel code

Create an accessor in kernel submit and use it in kernel code
accessor acc_array {buf array, my_handler, read_write}
cudaMemcpy(dst_array, src_array, mem_size,
cudaMemcpyHostToDevice|cudaMemcpyDevicetoHost)
cudaMemcpyAsync(dst_array, src_array, mem_size,
cudaMemcpyHostToDevice| cudaMemcpyDevicetoHost, cudaStream)
Implicitly done by CUDA runtime when shared_array is used
my_queue.memcpy(dst_array, src_array, mem_size)

Implicitly done by SYCL runtime when shared_array (USM)

or acc_array (Buffers) is used in a device kernel

cudaDeviceSynchronize() (only if asynchronous copy)

Implicitly done by CUDA runtime when shared_array is used
my_queue.wait()

Implicitly done by SYCL runtime when the scope of dev_buf ends
cudaFree(array)

free(array, my_queue)

Implicitly done by SYCL runtime when the scope of dev_buf ends

Section 3.3. However, this solution is impossible since SYCL kernels can
not be used inside OpenMP target regions [25].

Fortunately, we can do the same job instantiating as many SYCL
queues as devices we need and attaching each queue to a different de-
vice. Moreover, the queue abstraction allows us to use GPUs from differ-
ent architectures, such as NVIDIA and AMD. For example, the function
shown in Fig. 2 could be easily modified to get a vector of queues with
all the AMD GPUs attached to the current node, and Fig. 7 shows a func-
tion that returns a queue vector to use all the node’s GPUs, regardless
of their vendor or architecture. If the program was compiled targeting
all the GPUs on the system using an SMCP compiler or with an SSCP

10

compiler (see Section 2.1), the application kernels can be run on any
device.

In contrast, targeting multiple GPUs from different vendors using
CUDA or HIP requires compiling each native kernel implementation
utilizing the specific compiler and developing a host code capable of
supporting memory management, data transfers, and kernel launching.
The host code is responsible for calling the correct compiled version of
the code, depending on the targeted platform. This imposes a significant
extra development effort compared to what is necessary with SYCL.

However, to distribute the computation of one kernel across all de-
vices and to run all the sub-kernels concurrently, it is required that there
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auto devs =

for (int d=0;
queues [d] =
}

return queues;

0 O Ut W N

“w
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std::vector<queue> getAllQueues (){
device::get_devices(info::device_type::gpu);
std::vector<queue> queues (devs.size());

d < devs.size();
queue (devs [d]);

d++)A{

Fig. 7. Example of a function for getting a vector of SYCL queues that attaches all the GPUs of the node.

are no data dependencies between sub-kernels; i.e., the range of the
output data of each sub-kernel does not overlap any other sub-kernels’
range. Using the buffer model, the SYCL runtime will serialize the exe-
cution of the sub-kernels after detecting the data dependencies, giving
no advantage to using multiple GPUs. For example, let’s suppose that
the output of our kernel is an array of 1 000 elements, and we have two
GPUs to execute the kernel. A non-overlapping data distribution could
be the range [0, 511] for the first GPU and [512,999] for the second, and
the sub-kernels can run concurrently. An overlapping distribution of the
data could be the range [0,511] for the first GPU and [500,999] for the
second; in this case, the execution of the sub-kernels would be serial-
ized. Using the USM model and overlapping ranges requires extra de-
velopment effort to synchronize the data and to ensure the results are
correct.

Focusing on the buffer model, the SYCL standard offers two ways to
separate the data ranges: Ranged accessors and sub-buffers. A ranged
accessor is built from a sub-range of a buffer, limiting the buffer el-
ements that can be accessed. However, the ranged accessor creates a
requisite for the entire buffer [26]%. Therefore, since all the sub-kernels
write the same buffer, their execution is serialized, although each sub-
kernel writes a non-overlapping range. The sub-buffers are buffers cre-
ated from a sub-range of a buffer previously created. If the ranges of two
sub-buffers created from the same buffer, B, and B,, do not overlap, the
accessors created from them, A; and A,, will not overlap. Therefore, if a
kernel K, uses A, and a kernel K, uses A,, both kernels can be concur-
rently executed. Unfortunately, AdaptiveCpp does not currently support
the sub-buffer feature, and oneAPI supports them but also serializes the
kernels.

The only solution is to create a buffer array with a separate buffer for
each sub-kernel, ensuring their ranges do not overlap. Note the buffers
must be explicitly initialized with a brace-enclosed expression or equiv-
alent (aggregate initialization) in the array declaration. In another case,
the compilation fails in the array declaration (e.g., using buffer* followed
by a malloc; or creating an empty std::vector of buffers and later adding
the buffers). Moreover, the buffer cannot be created inside a for loop.
Since each loop iteration creates a new scope, the SYCL runtime will cre-
ate and destroy the buffer, serializing the kernels instead of concurrently
executing them.

Therefore, creating one buffer for each possible sub-kernel is neces-
sary, although the final number of executed sub-kernels is smaller. To
illustrate this, Fig. 8 shows how the data is partitioned, assuming that
there are three GPUs in the node (therefore creating three buffers) but
using only two GPUs afterward. At first, two vectors are created to store
the offsets and ranges. The vector size is the maximum number of de-
vices (lines 9 and 10). After that, the values of the vector are initialized.
When the device d is used, the offset and range are calculated such that
the data among sub-kernels is equally distributed (lines 13-16). If the
device d is not used, we must also initialize the offset and range (lines
17-21).

2 Note that AdaptiveCpp has an extension that allows to run concurrent ker-
nels [62] using non-overlapping sub-ranges. However, this extension does not
comply with the SYCL 2020 specification and can not be used in other compilers,
like oneAPI.
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After that, we create an array of three buffers and explicitly ini-
tialize it with a brace-enclosed expression using the previously calcu-
lated offsets and ranges (lines 26-29)°. Although the third device is not
used, the third buffer is always created (line 29). If the third buffer is
wrongly initialized, the application will be aborted. Correctly initializ-
ing the buffers ensures that the application works for a maximum of
three devices, independently of the number of used devices. In the ex-
ample of Fig. 8, the ranges of dev buf[0], dev buf[1] and dev buf[2] are
[0,49999], [50 000,99 999] and [0, 0], respectively. Note that although the
ranges of dev buf[0] and dev buf[2] overlap, the two sub-kernels can be
concurrently executed since dev buf[2] is never used and does not create
data dependencies. Finally, the code starts a for loop with usedDevices it-
erations (line 31). At each iteration, the kernel is submitted to the queue
d; an accessor is created using dev_buf[d] (line 34), and a parallel for is
launched using a range of ranges[d] elements (line 35).

Using the buffers this way allows distributing the computation be-
tween several GPUs, but it increases the development effort, as will be
seen in Section 6. Note that the example of Fig. 8 only works for a maxi-
mum of three GPUs. An array of six buffers will be required in a six-GPU
system. This extra development effort is more significant when the num-
ber of GPUs or data structures to distribute increases. This does not hap-
pen with the native versions, which can run with any number of GPUs
without modifications. However, combining NVIDIA and AMD GPUs is
easier using SYCL than combining the CUDA and HIP native versions,
as explained at the beginning of the section.

In contrast, targeting multiple GPUs using the USM model is easier.
We start considering the SYCL USM-device model. We only need to

1. Create the queue, the offset, and the range vectors.

2. Create one array per device of size ranges[d] (line 9, Fig. 9).

3. Copy ranges[d] items from address h array + offset[d] to device array
(line 10, Fig. 9).

4. Launch the kernels in queues[d] using a parallel for with ranges[d]
elements, as in the buffer model case (line 12, Fig. 9).

5. Copy ranges[d] elements from device array to address h array + off-
set[d] (line 15, Fig. 9).

However, if our program has two or more kernels, as UVaFTLE, we
must synchronize the first kernel finishing with the second kernel start-
ing. In this case, we cannot call queues[d].wait() since this would seri-
alize the execution of all kernels. This can be resolved in a simple way
using an in-order queue (line 3, Fig. 9). This queue serializes all the ac-
tions submitted to queues[d], but the actions of two different queues
can run in parallel. Once all the kernels are submitted, we wait for the
completion of all the submitted actions in all queues (line 18, Fig. 9).
Note that queues[d].wait() must be called in its own for loop. Including
these calls inside the main for loop would serialize the executions of
each queue.

Using the SYCL USM-device model for targeting multiple GPUs is
even simpler (Fig. 10). Since all the shared arrays are accessible by all

3 To use std::vector is also possible simply replacing buffer <int, 1> dev_buf[3]
= {...} by std::vector < buffer <int,1»dev_buf = {...}. To use std::array is also pos-
sible.
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1 [...]

2 int elements = 100000; //host memory declaration

3 float h_array [elements];

4 [...1//host memory initialization

5 //Get all the possible queues. Let’s assume three queues

6 auto queues = getAllQueues();

7 int numMaxDevices = queues.size(), usedDevices = 2;

8 //Create the offset and range vectors

9 std::vector<int> offset (numMaxDevices);

10 std::vector<int> ranges (numMaxDevices);

11 int chunk = elements / usedDevices;

12 for(int d=0; d<numMaxDevices; d++){

13 if (d < usedDevices){

14 //Used buffer, calculate range and offset

15 offset [d] = chunk*d;

16 ranges [d] = chunk;

17 Yelsed{

18 /*Ensure the unused buffer can be created. This will not
affect the kernels since the buffer 4is not used*/

19 offset [d] = 0;

20 ranges [d] = 1;

21 }

22}

23 //The last device will compute the padded elements

24 ranges[usedDevices - 1] += elements % usedDevices;

25 {//Start a mew scope and create the buffers
26 buffer<int, 1> dev_buf[3]= {

27 buffer (h_array + offset[0], range{ranges[0]}),
28 buffer (h_array + offset[1], range{ranges[1]}),
29 buffer (h_array + offset[2], range{ranges[2]})};

30 //submit the kernels

31 for(int d=0; d < usedDevices; d++)

32 queues [d] . submit ([&] (handler &my_handler){

33 //Create the accessor using the appropriate buffer

34 accessor array{dev_buff[d], my_handler, read_write};
35 my_handler.parallel_for (range{ranges[d]}) [=](id<1> i){
36 int gpu_id = i.get_global_id (0);

37 [...10);

38 1)

39 } //end of scope and start the host code

40 [...]

Fig. 8. Distributing kernel work on multiple GPUs using SYCL buffer model.

1 [...]

2 //In Code of function getdllQueue ()

3 queues[d] =

4 queue (devs [d], property_list{property::queue::in_order ()1});
5 [...]

6 //create a vector of pointers (could also use std::vector)

7 float* d_array[usedDevices];

8 for(int d=0; d < usedDevices; d++){

9 d_array[d] = malloc_device<int>(ranges[d], queues[d]);

10 queues [d] .memcpy(d_array[d], h_array+offset[d], ranges([d]);
11 //Launch first kernel

12 queues [d] .parallel_for (range{ranges[d]}) [=](id<1> i){[...1});
13 //Launch the second kernel

14 queues [d] .parallel_for (range{ranges[d]}) [=] (id<1> i){[...1});
15 queues [d] .memcpy (h_array+offset[d], d_array[d], ranges([d]);
16}

17 for(int d=0; d < usedDevices; d++)

18 queues [d].wait () ;

19 [...]

Fig. 9. Distributing kernel submission on multiple GPUs using SYCL USM-device model.

12



F.J. Andiijar, R. Carratald-Sdez, Y. Torres et al.
//Launching a kernel
int gpu_id =

//kernel code
[...17 1)

DU W N
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queues [d] .parallel_for (range{ranges[d]l}) [=](id<1> i){
i.get_global_id (0) + offset[d];

Fig. 10. Launching the kernels in multiple GPUs using SYCL USM-shared model.

devices, we only need to: i) create the in-order-queue, the offset, and the
range vectors; ii) Launch the kernels in queues[d] using a parallel for
with ranges[d] elements, and iii) modify the gpu id index calculation
adding offset[d].

However, a final consideration should be taken into account. Al-
though SYCL supports simultaneously executing kernels in NVIDIA and
AMD GPUs, the GPU drivers do not support transparently performing
data transfers between both architectures. This can be solved in two
ways: 1) manually transferring data from one device to another through
the host, or 2) ensuring that there are no data dependencies between
the devices of the different vendors. In our case, the second one is the
best option since the data has already been distributed, avoiding data
dependencies and thus ensuring the concurrent execution of all the sub-
kernels. However, it does not work in all the models since UVaFTLE has
several data arrays that the two kernels only read:

o In buffers model, the SYCL runtime copies the only-read arrays to each
device. Since each GPU only has a disjoint set of items of the read-
write arrays, there are no data transfers between different GPU ar-
chitectures. Therefore, the application properly combines AMD and
NVIDIA GPUs without code modifications.

¢ In USM-device model, all the GPUs work using their device memory,
and the code does not require modification to run simultaneously in
AMD and NVIDIA GPUs.

e In USM-shared model, when a malloc_shared is performed, SYCL in-
ternally calls to cudaMallocManaged or hipMallocManaged. Since each
GPU architecture works with its own memory space, we cannot make
data transfers between CUDA and HIP memory spaces. It will re-
quire duplicating all the common data arrays (one copy for AMD
architecture and another for NVIDIA architecture) and splitting the
read-write arrays. This supposes an extra development effort, so the
SYCL USM-shared version has not been tested combining AMD and
NVIDIA GPUs in Section 5.

4.6. Using multiple GPUs with SYCL: Summary

The steps to enable using multiple GPUs in the SYCL version of the
UVaFTLE, assuming that our system has four GPUs, are the following:

1. Get a vector of queues to allow using all the GPUs. For both USM
models, create the queues as in-order queues.

2. Calculate the range and offset of each sub-kernel for:

(a) The output array of the preprocessing kernel (also used as an
input in the second kernel).
(b) The output array of FTLE kernel.

3. (Buffer model) Start a new scope, define and explicitly initialize two
arrays of buffers, using the ranges and offsets previously calculated:
b_preproc to manage the output array of the preprocessing kernel,
and b_flte to manage the output array of the FTLE kernel.

4. Start a for loop with one iteration per used device. In iteration d:
(a) Submit the preprocessing kernel, storing the event ev generated

by the queue[d]:
i. (Buffer model) Create the output accessor from b_preproc[d].
ii. Launch the kernel using an nd-range parallel for using the de-
vice range.
iii. (USM-shared model) Change the index calculation by adding
the offset of each device.
(b) Submit the FTLE kernel:
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i. (Buffer model) Create the input accessor from b_preproc[d]
and the output accessor from b file[d].
ii. Launch the kernel using an nd-range parallel for using the de-
vice range.
iii. (USM-shared model) Change the index calculation by adding
the offset of each device.
5. End the for loop and:
(a) (Buffer model) End the scope to update the host memory
(b) (Both USM models) Wait for the kernel completion using
queue[d].wait() inside a new for loop.

5. Evaluating the effects of porting decisions in terms of
performance

5.1. Platform under test

The experiments have been conducted in a computing server prop-
erty of the Universidad de Valladolid, which features two Intel(R) Xeon(R)
Platinum 8160 CPU @ 2.10GHz, with 24 Core Processors and 48 phys-
ical threads each. The first socket has connected two AMD Vega 10 XT
Radeon PRO WX 9100 GPUs with AMD 6.7.0 driver, while the second
has two NVIDIA Tesla V100 PCle 32 GB GPUs with NVIDIA 560.35.03
driver. The server is equipped with a Rocky Linux 9.3 operating system.
The toolchains used are GCC 11.4, CUDA 12.4, ROCm 6.1.0, oneAPI
2024.1.0 and LLVM 17.0.6. This LLVM distribution has been used to
compile AdaptiveCpp 24.02.0.

Different compilers activate different optimization chains and mod-
ules for the same optimization flags. Thus, the resulting codes may per-
form differently. This is the motivation to test different compilers in-
stead of trying to generalize the results of a single one. The -O3 flag is
the typical optimization flag that HPC programmers use by default. Ac-
cording to the documentation of the considered compilers, it activates a
selection of optimization modules that at least include the same types of
general techniques. Thus, we consider that the results using -O3 as the
only optimization flag represent what a regular HPC programmer can
expect from the compiler, presenting the fairest comparison scenario for
the results obtained with different ones in an HPC environment.

The experiments of Section 5.3.1 to test the HIP-based application
using shared memory XNACK have been conducted in LUMI Supercom-
puter [27]. The computing node is a 64-core AMD EPYC 7A53 “Trento”
CPU with four AMD MI250X GPUs. The toolchains used are Cray Pro-
gramming Environment 8.5.0 and ROCm 6.0.3.

5.2. Test cases

To conduct the performance evaluation, we have chosen two ap-
plications widely used in the literature when evaluating flowmap and
FTLE computations: The Double-Gyre flow [28] for the 2D case and the
Arnold-Beltrami-Childress (ABC) flow or Gromeka-Arnold-Beltrami-
Childress (GABC) flow [29] for the 3D case. In particular, our evalu-
ation in the 2D case uses a mesh composed of 10 000 000 points, and in
the 3D case, a mesh consisting of 1000 000 points. Table 2 reflects the
details associated with each mesh geometry: The dimensions, the num-
ber of mesh points and mesh simplex (either triangles or tetrahedrons),
the interval of interest at each axis, and the number of elements in the
interval at each axis taken to define the mesh points.
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Table 2
Description of the test cases used in our experiments.
2D 3D
Dim ~10000 K (9998 244) 1000K
nFaces 19983 842 5821794
min-max(x, y, z) (0-2, 0-1, 0-0) (0-1, 0-1,0-1)

length(x, y, z) (3162, 3162, 0) (100, 100, 100)

For each described FTLE test case, we evaluate the performance (in
terms of execution time) by exploring six different axes: GPU vendor
(NVIDIA, AMD), GPU count (one or two devices), programming model
(CUDA, HIP, SYCL), compiler (nvcc, hipce, clang, AdaptiveCpp, Intel
oneAPI), compilation mode for SYCL (SSCP compiler, from now on Just-
in-time, or JIT compiler; and SMCP compiler, from now on Ahead-Of-
time, or AOT compiler), and data management strategy (device, shared
or buffers, the last one only for SYCL). Fig. 11 details all the different op-
tions for each evaluated axis. From this, thirteen tests are conducted over
NVIDIA GPUs and ten over AMD GPUs, using one and two devices with
each vendor for each test. Note that we have indicated each configura-
tion’s name in gray to help you better understand the later result plots.

When opting for the AOT mode, each kernel of our program is com-
piled for each of the architectures specified during the build process.
All the binary kernels are included in the final executable, and at run-
time, the backend selects one kernel or another, depending on the target
device. With JIT, contrarily, the compiler generates intermediate code
for each of the kernels using LLVM; at runtime, the backend performs
the compilation for the target device, regardless of its type. To avoid
compiling at every program execution, a kernel cache is stored in the
user’s directory, so it will only be necessary to compile the kernel the
first time the program is run (or if the backend detects that the program
has changed).

AdaptiveCpp allows both AOT and JIT modes. Thus, we have tested
both. In both cases, the programs can combine kernels executed on
CPUs, AMD, and NVIDIA devices. The only restriction is that there
should be no memory transfers between cards from different vendors
(transfers between CPU and GPUs are not an issue). Thanks to this,
we have included in our experiments an evaluation of the performance
when using AdaptiveCpp with either AOT or JIT to target NVIDIA and
AMD devices simultaneously. Nevertheless, in the case of oneAPI, we
only test the AOT mode because JIT is not supported.

Regarding the different vendors, oneAPI includes a plugin for launch-
ing SYCL applications on NVIDIA cards. However, when using the re-
cently released plugin for AMD with a profiler and two GPUs, the
program crashes. Thus, when using oneAPI, we only experiment with
NVIDIA GPU devices, while in any other case, we also test AMD GPUs.

In addition to these configurations, we also explore the multi-GPU
performance using AdaptiveCpp and concurrently leveraging NVIDIA
and AMD GPUs.

When a test is launched, the application is mapped to the socket
connected to the tested GPU. In the experiments using both AMD and
NVIDIA GPUs, the application was mapped to the AMD socket. Each test
was repeated 30 times, and the results show the average of all of them.
Note that when a kernel is executed using two or more GPUs, we take
the longest execution time observed for all the sub-kernels; this is the
one associated with the slowest sub-kernel execution.

Finally, we want to highlight that the preprocessing kernel takes
more time to execute than the FTLE kernel. Thus, the execution time
shown for the first kernel is reflected in seconds and milliseconds for
the second.

In the following sections, we analyze in detail these results concern-
ing each of the evaluated axes.

5.3. Performance evaluation

This section presents the performance evaluation of the tested im-
plementations using different compilers and execution modes, incorpo-
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rating the updated results shown in Figs. 12, 13, and 15. In Fig. 12, we
illustrate the performance evaluation results of each kernel when target-
ing NVIDIA GPU devices for the 2D and 3D FTLE test cases. The same
is done in Fig. 13 for the AMD GPU devices. The analysis focuses on
execution times across various configurations and highlights the impact
of different factors on performance.

5.3.1. Impact of data management strategy

A comparison between the three SYCL data management strategies
shows that the USM-shared model obtains the worst performance. In
NVIDIA GPUs, when the preprocessing kernel runs in only one device,
there are no significant differences between the three memory models.
However, splitting this kernel into two NVIDIA GPUs with USM-shared
leads to performance degradation. The performance of the second kernel
(FTLE) is severely degraded when using USM-shared with both one and
two GPUs. The execution time of the 2D application is degraded to the
point that it does not scale, and the time using two GPUs is higher than
using one. The 3D application slightly scales with 2 GPUs, as the second
kernel that is badly affected by the use of USM-shared has a much lower
load than the preprocessing kernel. However, the buffer and USM-device
versions continue to achieve better results.

In the AMD GPUs, the USM-shared code obtains systematically worse
performance. This performance degradation is also observed using the
native compilers (nvec/hipee) and clang. Note that the AMD Vega 10
XT GPUs do not support XNACK. XNACK allows AMD GPUs to migrate
memory pages between the CPU and the GPU when a page fault occurs,
improving the application performance when shared (or, in HIP termi-
nology, managed) memory is used. To test the effects of shared mem-
ory in more modern architectures and the XNACK feature, we conduct
a test using two AMD Instinct MI250X GPUs on LUMI supercomputer
[27]. We run HIP-based FTLE applications considering three scenarios:
i) using device memory, ii) using managed memory without XNACK,
and iii) using managed memory activating XNACK. Fig. 14 shows the
results. We observe that using managed memory severely degrades the
application’s performance. When XNACK is activated, the preprocessing
kernel obtains the same performance as device memory if the kernel is
executed on one GPU. However, the performance degradation on two
GPUs is even more significant when XNACK is activated. Moreover, the
second kernel always worsens its execution time, no matter the number
of GPUs. Then, the problem of managed memory persists if the applica-
tion has two or more kernels or is executed on several GPUs, even when
XNACK is active.

Our experimentation shows that the USM-shared model systemati-
cally leads to performance degradation, regardless of the platform or
programming language used. The second kernel (FTLE) always suffers
from reduced performance, while the first kernel also experiences slow-
downs when split between two GPUs. Using a fine-grain memory control
could improve performance, at the cost of increasing the development
effort.

Comparing the USM-device and buffer-based implementations, when
AdaptiveCpp is used, the buffer-based management introduces a small
overhead (1.5%-3%). This degradation is more noticeable in the 3D
application on AMD GPUs. However, when the application is compiled
with oneAP]I, the buffer-based management obtains the best results. Al-
though the improvement is slight in the 2D application (only 1 %), the
3D application speeds up by 20 %.

Given these findings, we recommend carefully evaluating USM-
device and buffer-based strategies depending on the specific hardware
and workload characteristics. Due to the current state of the shared
memory implementation, it would be a good choice if our application
has a single kernel and runs on a single GPU. Other cases would re-
quire tuning the memory access to improve performance by adding new
code with hints declared in the language of the specific backend. This
kind of tuning compromises portability. Thus, performance portability
is simpler using the device memory model, which is the most common
approach to implement GPU applications.
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Fig. 11. Scheme of the different configurations tested for the performance evaluation. The gray boxes reflect each configuration’s name used in the plots; the colors

also correspond to those used in the plots.

From now on, the performance discussion in subsequent sections is
centered on buffer and USM-device implementations.

5.3.2. Effects of compiler choice
Analyzing first the NVIDIA devices results (Fig. 12), we see that the
workload against imposes non-negligible differences:

e With the preprocessing kernel, which has a greater workload, nvcc
is always the best option. AdaptiveCpp and clang offer very similar
results, and oneAPI is either similar to them or close to nvce (in the
3D case).

e When the load is smaller, like in the FTLE kernel, surprisingly, the
compilers used for SYCL outperform both nvce (which offers the
worst results) and clang. In particular, oneAPI combined with the
buffer implementation is the best one.

Compiler differences are less pronounced for AMD GPUs. The pre-
processing kernel delivers similar performance across all tested compil-
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ers, while AdaptiveCpp combined with the USM-device model slightly
surpasses HIPCC for the 2D FTLE kernel and the 3D application. These
results suggest that compiler selection significantly influences NVIDIA
GPUs more than AMD GPUs. Therefore, the native compiler nvcc is
preferable for high-workload kernels for NVIDIA GPUs. In contrast,
SYCL implementations, particularly those compiled with AdaptiveCpp
and oneAPI, provide competitive or superior performance in lower
workload scenarios.

5.3.3. Comparison between SYCL and native programming models

A key objective of this study is to assess SYCL’s performance rela-
tive to native programming models such as CUDA and HIP. For AMD
GPUs, SYCL achieves performance levels comparable to native imple-
mentations across all cases. For NVIDIA GPUs, the performance com-
parison depends on workload complexity. High-workload kernels, such
as preprocessing, reveal a significant performance gap, with nvce main-
taining a clear advantage over SYCL. However, this gap narrows in 3D
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Fig. 12. Performance evaluation results of each kernel when targeting NVIDIA GPU devices for the 2D and 3D FTLE test cases.

test cases, where oneAPI compiled SYCL implementations nearly match
nvce. Notably, for low-workload kernels like FTLE, SYCL implementa-
tions actually outperform nvce. These findings suggest that SYCL, when
compiled with AdaptiveCpp or oneAPI, can serve as a competitive al-
ternative to native programming models, offering strong performance
along with portability advantages.

5.3.4. Effects of SYCL compilation mode for AdaptiveCpp: AOT vs. JIT

Finally, we discuss whether it is better to opt for AOT or JIT compila-
tion modes when using AdaptiveCpp to compile SYCL codes. Although
the general agreement is that JIT compiling can produce better opti-
mizations, our results, and those presented by compiler designers (such
as [18]), show that there are applications and situations where they
lead to the opposite effect. With our chosen scenarios, there is only one
case where the performance using AOT or JIT significantly differs: Us-
ing NVIDIA devices and running kernels with considerable workload
(see Fig. 12, preprocessing kernel). In that case, AOT offers better re-
sults than JIT. In contrast, on AMD GPUs (see Fig. 13), JIT-compiled
kernels run slightly better.

Consequently, the general recommendation would be to use AOT for
NVIDIA GPUs and JIT for AMD GPUs. However, consider that the JIT
compiler also achieves good performance, and it would be helpful when
we want a completely portable application or when we do not know the
architecture of the target device.

5.3.5. Multi-GPU and multi-vendor performance

Multi-GPU and multi-vendor performance evaluations provide fur-
ther insights. Figs. 12 and 13 illustrate scalability trends when running
test cases on up to two GPUs of the same vendor, demonstrating limited
scalability due to the moderate workload of the kernels. Extending this
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evaluation, Fig. 15 presents results for SYCL compiled with AdaptiveCpp
running on multiple GPUs from different vendors (NVIDIA and AMD).

The key takeaways from this analysis indicate that multi-vendor exe-
cution is feasible, showcasing SYCL’s strength in heterogeneous environ-
ments. Unlike CUDA or HIP, which require vendor-specific frameworks
and binaries, SYCL enables a unified codebase that effectively utilizes
all available GPUs. The preprocessing kernel exhibits scalable perfor-
mance, with improvements observed as the number of GPUs increases
from two to four. However, scalability in the FTLE kernel stagnates due
to its relatively low workload.

Additionally, using the four cards, AOT slightly outperforms JIT in
most cases. Using only NVIDIA GPUs, AOT works better. On AMD GPUs,
JIT works better. Nevertheless, the absolute gains of NVIDIA GPUs in
the experimental platform are higher than the gains on the AMD GPUs.
Thus, the overall result with the four GPUS is better using AOT.

Overall, these results emphasize SYCL’s potential in multi-vendor,
multi-GPU execution scenarios. Its ability to bridge performance
gaps while maintaining portability makes it a promising alterna-
tive to proprietary solutions, particularly in heterogeneous computing
environments.

6. Development effort

This section analyzes the differences in development efforts between
CUDA, HIP, and SYCL codes of UVaFTLE. We consider four classical
development effort metrics: The number of lines of code (LOC), the
number of code tokens (TOK), McCabe’s cyclomatic complexity (CCN)
[30], and Halstead’s development effort [31]. The first two metrics
measure the code volume that the user should program. The third
measures the rational effort required to program it, including code
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Fig. 14. Performance results targeting AMD Instinct MI250X on LUMI supercomputer using the HIP-based FTLE application using device memory, managed memory,

and managed memory activating XNACK.

divergences and potential issues that should be considered when de-
veloping, testing, and debugging the program. The last metric mea-
sures code complexity and volume indicators, obtaining a comprehen-
sive measure of the development effort.

The measured codes include the management of data structures, ker-
nel definitions, and coordination host codes. For a fair comparison, each
version is written in a single source code file and formatted according
to the same criteria. The differences between codes are strictly neces-
sary and are associated with the particularities of each programming
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model. For example, comparing the FTLE kernels in CUDA and SYCL,
the main differences are how the thread global index is calculated,
as explained in Section 4, and certain calls to perform mathematical
operations, such as square root or cosine. The CUDA and HIP versions
of the program support multiple GPUs of the corresponding vendor and
the SYCL USM-based implementations. However, as we explain in Sec-
tion 4.5, by enabling multi-GPU execution when the buffer model is
used, the final SYCL code changes in volume depending on the maxi-
mum number of GPUs allowed. For this reason, we have compared four
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Fig. 15. AdaptiveCpp performance evaluation results of each kernel targeting AMD and NVIDIA GPUs simultaneously for the 2D and 3D FTLE test cases.

versions of the SYCL buffer code, allowing a maximum of 1, 2, 4, and
8 GPUs, respectively. The cleaned versions of both the SYCL programs
and the CUDA and HIP versions can be found in our repository, in the
folder measure-codes [13].

Table 3 reflects the measures of the four development-effort metrics
for each one of the functions that present changes that depend on the
programming model chosen. They include the three critical functions
that have been transformed into kernels (preprocessing, and the 2D and
3D FTLE functions), the main function, which contains the memory man-
agement and kernel calls, and the whole program, including the previ-
ous code and other auxiliary functions and declarations independent of
the heterogeneous programming model selected.

The metrics reveal that the development effort of CUDA and HIP
versions regarding the kernels are almost the same, because their imple-
mentations are identical. Considering the SYCL version of the kernels,
the values measured for the four metrics are higher than the CUDA/HIP
results. Nevertheless, the CCN results present almost the same values
as those observed for the native versions. These LOC and TOK higher
values are mainly due to the submit lambda function, the creation of
the accessors (in SYCL buffer code), and the nd-range parallel for lambda
function (in all SYCL codes). The preprocessing kernel is the most af-
fected one by this increase, as it is the smallest kernel, being its code
lines increased by 31 % (with buffers) and 5% (with USM), and its num-
ber of tokens by 65 % (with buffers) and 30 % (with USM). Halstead’s
development effort is around twice as much in SYCL than in the other
two versions. This difference is less significant in the other two kernels:
7 % (buffers) and 1 % (USM) more lines, 17 % (buffers) and 6 % (USM)
more tokens, and 17 % (buffers) and 15 % (USM) more Halstead’s devel-
opment effort for the 2D kernel; and 5 % (buffers) and 1 % (USM) more
lines, 11 % (buffers) and 5% (USM) more tokens, and 16 % (buffers)
and 15 % (USM) more Halstead’s development effort for the 3D kernel.
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These measures indicate that the increase in development effort is more
significant with small kernels than with large kernels due to the min-
imum programming structures, declarations, and initialization needed
in a SYCL kernel.

When analyzing the main function of the code, we see that the dif-
ferences between CUDA and HIP are minor. In the particular case of
CUDA/HIP devices, LOC is the same, while TOK is slightly smaller for
HIP (0.5 % less) and Halstead (5 % less). The same applies to CUDA/HIP
Shared. When comparing Shared against Device in the main function,
Shared presents better results with around 13 % less LOC, 21 % less TOK,
17 % less CNN, and 26 % less Halstead values. All these differences in
the main function are consequently also observed in the whole code for
CUDA and HIP.

SYCL generally offers worse results than CUDA/HIP, with around
40 % higher CNN values. Taking as a reference the best CUDA/HIP case
(Shared), when using SYCL with buffers, the LOC starts being 1 % higher
for 1 GPU and reaches up to 14 % higher when using 8 GPUs; the TOK
is 25% higher with 1 GPU and reaches 57 % higher with 8 GPUs; and
the Halstead metrics start at 34 % higher with 1 GPU, reaching more
than double of the corresponding value for CUDA/HIP when using 8
GPUs. Note that, in modern systems with a vast number of GPUs, the
development effort with SYCL using buffers would reach an impassable
level of development (see the explanation in Section 4.5). Considering
the SYCL USM versions, the Shared one requires less effort than the
Device-based one. Compared with CUDA/HIP, the differences between
those observed when using buffers are significantly reduced. Concretely,
with SYCL USM Shared, the LOC is 2 % smaller, the TOK is 12 % higher
with SYCL, and the Halstead metrics are 22 % higher.

Analyzing the whole code globally, it can be seen that the SYCL code
has greater development effort metrics than native versions, even in a
single GPU version, especially for the TOK and Halstead metrics. The



F.J. Andiijar, R. Carratald-Sdez, Y. Torres et al.

Journal of Parallel and Distributed Computing 207 (2026) 105188

Table 3
Development effort metrics according to the programming model employed.

Function/Kernel Code version LOC TOK CCN Halstead

Preprocessing CUDA (Device and Shared) 19 190 8 23908
HIP (Device and Shared) 19 190 8 23908
SYCL Buffers 25 314 9 52657
SYCL USM (Device and Shared) 20 248 9 41474

FTLE 2D CUDA (Device and Shared) 134 1090 26 508 649
HIP (Device and Shared) 134 1090 26 508 649
SYCL Buffers 144 1273 27 596 583
SYCL USM (Device and Shared) 136 1159 27 585189

FTLE 3D CUDA (Device and Shared) 194 1785 40 918499
HIP (Device and Shared) 194 1785 40 918499
SYCL Buffers 204 1982 41 1070756
SYCL USM (Device and Shared) 196 1868 41 1061277

main CUDA Device 178 1557 17 603399
CUDA Shared 154 1225 14 442444
HIP Device 178 1548 17 571032
HIP Shared 154 1216 14 418225
SYCL Buf. (1 GPU) 157 1511 20 594992
SYCL Buf. (2 GPUs) 163 1594 20 650984
SYCL Buf. (4 GPUs) 167 1694 20 718834
SYCL Buf. (8 GPUs) 175 1926 20 897778
SYCL USM Device 176 1782 20 787 955
SYCL USM Shared 151 1372 20 542507

Whole code CUDA Device 625 5201 110 5276951
CUDA Shared 601 4870 107 4940742
HIP Device 625 5193 110 5231299
HIP Shared 601 4861 107 4895645
SYCL Buf. (1 GPU) 630 5660 116 6716551
SYCL Buf. (2 GPUs) 636 5743 116 6890008
SYCL Buf. (4 GPUs) 640 5843 116 7093358
SYCL Buf. (8 GPUs) 648 6075 116 7600510
SYCL USM Device 628 5637 116 6763383
SYCL USM Shared 603 5227 116 6123110

only exception is the LOC value when using USM Shared with SYCL,
which is slightly smaller than that for either CUDA or HIP.

In summary, in SYCL, the transparent management of buffers and
memory movements for a single device and queue is more straightfor-
ward and comparable to orchestrating the equivalent asynchronous op-
erations in CUDA or HIP. However, the elaborated syntax and declara-
tions needed for kernels increase their complexity, especially for simple
or small kernels. Moreover, in the SYCL host code with buffers, manag-
ing each extra device introduces more complexity. In contrast, managing
an arbitrary number of devices can be easily abstracted in the CUDA and
HIP versions. However, this SYCL problem could be solved in the future
if the compilers include full support for sub-buffers (see Section 4.5).
Considering the SYCL case when using USM, the development effort
is notably smaller in general than that seen with buffers. However, it
is still slightly greater than the equivalent measures for CUDA or HIP.
Finally, using shared memory always obtains the lowest development
effort metrics. However, the performance problems detected in current
USM memory implementations (see Section 5) may discourage its use
except for applications with only one kernel executed in one GPU, or if
memory access is manually tuned.

7. Key findings and insights

Based on the experiments conducted and the analysis carried out,
the main findings that can be extracted from this work are as follows:

¢ In general, the performance results reveal that, when using buffers
or USM with device memory, there is not a remarkable overhead
associated with SYCL usage in terms of the GPU kernel execution
times compared to using kernel native implementations based on
CUDA or HIP. This result is consistent when compiling it with either
AdaptiveCpp or oneAPI. The only exception is when comparing the
preprocessing kernel in the CUDA-based version compiled with nvee
against the one compiled with clang or the equivalent SYCL version.
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The first one is faster. When using USM and shared memory in SYCL
(or managed memory in CUDA/HIP), the performance notably wors-
ens. It would be advisable to use shared/managed memory: (1) To
obtain an initial version of the application due to its lower develop-
ment effort; (2) When the application has only one kernel and does
not distribute the computation in two or more GPUs, or (3) When
the programmer is eager to take the effort to manually optimize the
application memory accesses by adding code with hints declared in
the language of the specific backend, diminishing portability.

We have evaluated two very different kernels in their nature: As ex-
plained in previous sections, the preprocessing kernel is much more
memory-intensive than the FTLE one, which focuses on solving a
collection of linear algebra operations and is much faster to com-
plete. Although the kernels’ typology is very different the scalability
observed with the native versions and SYCL is equivalent.
Regarding the multi-GPU programs with SYCL and AdaptiveCpp for
four GPU devices, two NVIDIA, and two AMD, the first observation is
that the code can indeed simultaneously leverage all of them because
the application tested does not need communications across devices
that require different backends. The performance results reflect that
using the four GPU devices improves the results for the preprocessing
kernel. However, this is not true for the FTLE kernel because the
load is distributed by balanced blocks, not taking into account the
different computational power of each device. Thus, the final load is
unbalanced due to the lower computational power of the AMD GPUs
in our experimental platform compared to the NVIDIA ones.

The development effort measures indicate that using CUDA/HIP is
slightly easier than programming in SYCL (both USM and buffer
memory management models). The least complexity values regard-
ing memory movements are observed when opting for shared mem-
ory, regardless of the programming model. The basic kernel syntax
and the inner declarations needed with SYCL are slightly higher than
for CUDA or HIP. Using buffers with SYCL increases the complexity
of the kernels.
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Fig. 16. Decision tree to assist in selecting the programming model, according to the number of GPUs to use and their vendor.

e With the current development status of the SYCL compilers, the de-
velopment effort metrics reveal that the management of each extra
device introduces more code complexity when opting for buffers.
In contrast, managing an arbitrary number of devices can be easily
abstracted in the CUDA and HIP versions. Using SYCL with USM is
slightly more costly than opting for CUDA or HIP. Still, the complex-
ity is constant, regardless of the number of devices targeted, contrary
to the equivalent case when using buffers, where increasing the num-
ber of GPUs implies also increasing the complexity.

Although the development effort is generally higher, the SYCL pro-
grams are more portable. They can run the application and distribute
the computation in both NVIDIA and AMD GPUs, even combining
the GPUs of the two vendors in the same execution. With vendor-
provided models, this could only be done by combining them in a
much more complicated code that should include the solutions in
both models, adding some data communication across them.

8. Putting all together: A general development strategy

This section provides general insights to help choose the best pro-
gramming model, compiler, and data management model. Although our
findings have been obtained with a particular application there are gen-

l

CUDA Which HIP
programming
model?

NVIDIA
Use nvee

Y

Use
oneAPI

eral conclusions that can help guide the early stages of development of
other parallel applications.

First, if the primary objective is to ensure code portability, it is ev-
ident that SYCL is a good choice. Of the different options considered
in this study, it is the only one that allows the use of GPUs of differ-
ent vendors, as far as there are no data communications across devices.
Nevertheless, several other aspects must also be considered if the goal
is to maximize performance. The first thing to consider is the number
of GPUs and vendors to use. In Fig. 16, we illustrate schematically the
decisions to select the most appropriate programming model (CUDA,
HIP, or SYCL). If GPUs from different vendors are employed, SYCL is
the best option; otherwise, if NVIDIA devices are used, CUDA offers the
best performance, and for AMD devices, both SYCL and HIP are equally
good options.

After choosing the programming model, the next step is to choose
the most suitable compiler. Fig. 17 provides a schematic represen-
tation of the key considerations for this decision. In summary, to
use CUDA, the best compiler option is nvcc; to use HIP, the recom-
mended compiler is hipcc; with SYCL, for NVIDIA GPUs, oneAPI is the
preferred choice, while for AMD GPUs, we would recommend using
AdaptiveCpp.

Finally, it is also important to choose the data management strat-
egy correctly. When nvcc or hipce compilers are used, the best option

Y

Use hipce

Y

Use
AdaptiveCpp

Fig. 17. Decision tree to assist in selecting the compiler, according to the programming model chosen.
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Fig. 18. Decision tree to assist in selecting the data management according to the programming model and compiler chosen.

in terms of performance is the USM-device data management strategy.
With SYCL, if the AdaptiveCpp compiler is employed, also the USM-
device data management strategy is the best option. With oneAP]I, the
buffer data management strategy is better. Fig. 18 provides a schema of
these considerations.

9. Related work

In this section, we briefly describe the landscape of contributions that
study the functional and performance portability of SYCL and its asso-
ciated problems, as well as the works that focus on FTLE computation
and their limitations.

9.1. SYCL Portability

Due to the growing interest in heterogeneous computing and SYCL,
several works have used this standard and studied its portability. Some
of these works are focused on code migration to SYCL from other lan-
guages like CUDA [32-34], OpenCL [35,36], or OpenMP [37], com-
paring the performance of both versions. Other papers present SYCL
libraries to speed up and make portable other scientific works, such as
machine learning [38], or neural network [39] algorithms, or present
SYCL hand-tuned versions of a specific algorithm, comparing them with
the state-of-the-art algorithms [40]. Other works extensively study the
performance portability of SYCL across different device types for spe-
cific classes of applications (see e.g. [41]). There are also extensions to
SYCL that explore the portability and efficiency of applications across
multiple accelerators of different types using their own execution model,
such as CHARM-SYCL [42].

Other works are focused on the performance evaluation of SYCL
compilers. In [43], the authors made a comparative study of OpenCL,
OpenMP, and TriSYCL in multiprocessors. However, TriSYCL currently
does not support GPUs. In [44], a comparison using several benchmarks
and the Intel LLVM-SYCL compiler against CUDA using Tesla V-100 is
presented. However, AMD architecture is not studied. Other works com-
pare several SYCL compilers [45-47] against multiple AMD and NVIDIA
GPUs models.

Focusing on the SYCL memory management models, some works re-
port that using the USM memory model with device allocation in dis-
crete devices does not lead to performance penalties [48]. Other works
point out that for other applications, using USM with shared (or man-
aged) allocation implies significant performance degradation due to
page fault handling and PCle latencies [49]. The study of the perfor-
mance portability of the SYCL memory management models depends
on the communication structure of the application and the classes of
different devices involved.
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To the best of our knowledge, none of the existing works explore
the possibilities offered by SYCL of using multiple GPUs of different
vendors simultaneously (such as NVIDIA and AMD) while analyzing the
development effort implications of coding in SYCL for several devices
with varying models of memory allocation.

9.2. FTLE Computation

In the literature, previous works offer optimizations in the context
of the FTLE computation. Some [50-54] focus on speeding up the cal-
culations of the FTLE by applying some optimization techniques such
as reducing I/0, optimizing the use of the memory hierarchy, or using
multiple CPUs. Other authors [55-60] focus on exploiting GPU devices
to accelerate FTLE computation. Another study proposes using an Ac-
celerated Processing Unit (APU) to speed up the computation of FTLEs
[61].

As we described in our previous work [12], the main problems of
the existing proposals that leverage GPU devices to compute the FTLE
are that most of them are old and based on outdated tools incapable
of tackling modern devices. Besides, in general, a multi-GPU scheme is
not supported. Moreover, neither an in-depth description of the GPU
implementation nor the source code are provided. For these reasons,
our previous work offered a competitive, open-source implementation of
the FTLE computation (named UVaFTLE) equipped with a CUDA kernel
capable of simultaneously using multiple NVIDIA GPU devices.

To the best of our knowledge, in the existing literature, there is a lack
of updated proposals for FTLE computation that tackle heterogeneous
environments provided with GPU devices from different vendors. To fill
this gap, in this work, we re-design UVaFTLE to use SYCL in such a
way that it can leverage any GPU device, regardless of its vendor. For
completeness, we also present a novel UVaFTLE implementation that
uses HIP instead of CUDA to tackle AMD GPU devices. Moreover, we
evaluate the SYCL performance compared to the implementations based
on HIP or CUDA.

10. Concluding remarks

Ensuring performance portability across heterogeneous GPU archi-
tectures remains a crucial challenge in high-performance computing.
In this work, we show that SYCL can provide a viable alternative to
vendor-specific programming models, enabling multi-GPU execution
across different architectures with competitive performance. Our evalu-
ation of the FTLE application shows that SYCL, particularly with USM-
device memory, achieves performance close to CUDA and HIP while
significantly improving portability. However, the shared (SYCL) or man-
aged (CUDA/HIP) memory management model introduces performance
penalties, particularly in multi-GPU setups.
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The results highlight that while SYCL increases development ef-
fort compared to native programming models, it offers an important
advantage: a unified programming approach across different GPU ven-
dors. This makes it an attractive option for developers who prioritize
portability without sacrificing significant performance.

Given these findings, future work should explore improved load-
balancing techniques for SYCL multi-GPU applications, study the un-
solved problem of communications across different backends in SYCL,
and extend evaluations to additional architectures such as FPGAs. We
also encourage researchers and developers to contribute to the ongoing
refinement of SYCL implementations to further enhance performance
portability. As SYCL continues to mature, it has the potential to become
a standard tool for high-performance heterogeneous computing.

CRediT authorship contribution statement

Francisco J. Anddjar: Software, Validation, Investigation, Formal
analysis, Data curation, Conceptualization, Writing - review & editing,
Resources, Visualization, Methodology, Writing - original draft; Rocio
Carratala-Saez: Software, Investigation, Formal analysis, Data cura-
tion, Conceptualization, Writing - review & editing, Resources, Visual-
ization, Methodology, Writing - original draft; Yuri Torres: Visualiza-
tion, Formal analysis, Methodology, Data curation, Writing - original
draft, Conceptualization, Validation, Writing - review & editing, Soft-
ware, Investigation; Arturo Gonzalez-Escribano: Supervision, Investi-
gation, Funding acquisition, Project administration, Conceptualization,
Writing - review & editing, Resources, Validation, Methodology, Writing
- original draft; Diego R. Llanos: Writing - review & editing, Supervi-
sion, Project administration, Conceptualization, Methodology, Writing
- original draft, Funding acquisition, Visualization, Resources.

Data availability

All the codes and data are available in a GitHub repository included
in our manuscript.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Francisco J. Andujar reports financial support was provided by Spain
Ministry of Science and Innovation. Rocio Carratala-Saez reports finan-
cial support was provided by Spain Ministry of Science and Innovation.
Yuri Torres reports financial support was provided by Spain Ministry
of Science and Innovation. Arturo Gonzalez-Escribano reports finan-
cial support was provided by Spain Ministry of Science and Innovation.
Diego R. Llanos reports financial support was provided by Spain Ministry
of Science and Innovation. Francisco J. Andujar reports financial sup-
port was provided by Government of Castile and Leén. Rocio Carratala-
Saez reports financial support was provided by Government of Castile
and Ledn. Yuri Torres reports financial support was provided by Gov-
ernment of Castile and Le6n. Arturo Gonzalez-Escribano reports finan-
cial support was provided by Government of Castile and Leén. Diego R.
Llanos reports financial support was provided by Government of Castile
and Leén. Diego R. Llanos reports financial support was provided by
Spain Ministry of Science and Innovation. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work was supported in part by the Spanish Ministerio de Ciencia
e Innovacién and by the European Regional Development Fund’s “A Way
of Making Europe” (NATASHA project, Grant PID2022142292NB-100,
funded by MCIN/AEI/10.13059/501100011033), by Junta de Castilla y

22

Journal of Parallel and Distributed Computing 207 (2026) 105188

Le6n FEDER Grant VA226P20 (PROPHET-2 Project), EuroHPC Joint Un-
dertaking for awarding us access to LUMI at CSC, Finland (project EHPC-
DEV-2024D07-079), and by Grant TED2021-130367B-100, funded by
MCIN/AEI/10.13039/501100011033, and by Next Generation EU —
Plan de Recuperacién, Transformacién y Resiliencia.

References
[1] NVIDIA, CUDA Toolkit Documentation v12.5, 2024, http://docs.nvidia.com/cuda/,

(accessed July 9, 2024).

AMD, AMD ROCm Documentation, 2024, https://rocm.docs.amd.com/en/latest/

(accessed July 9, 2024).

The Khronos Group Inc, Open Computing Language (OpenCL) Overview, 2020, http:

//www.khronos.org/opencl/ (accessed July 9, 2024).

Khronos OpenCL working group, et al., SYCL 2020 Specification (revision 8),

2023, https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf (ac-

cessed June 26, 2024).

OpenMP Consortium, OpenMP Specifications, 2021, https://www.openmp.org/

specifications/, (accessed July 9, 2024).

H.C. Edwards, C.R. Trott, Kokkos: enabling performance portability across manycore

architectures, in: 2013 Extreme Scaling Workshop (xsw 2013), 2013, pp. 18-24.

https://doi.org/10.1109/XSW.2013.7

D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.

Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: portable performance for

large-scale scientific applications, in: 2019 IEEE/ACM International Workshop on

Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 71-81. https:

//doi.org/10.1109/P3HPC49587.2019.00012

A. Rasch, J. Bigge, M. Wrodarczyk, R. Schulze, S. Gorlatch, dOCAL: high-level

distributed programming with OpenCL and CUDA, J. Supercomput. 76 (2020)

5117-5138. https://doi.org/10.1007/s11227-019-02829-2

Y. Torres, F.J. Andijar, A. Gonzalez-Escribano, D.R. Llanos, Supporting efficient

overlapping of host-device operations for heterogeneous programming with Ctr-

1Events, J. Parallel Distrib. Comput. 179 (2023) 104708, https://doi.org/10.1016/

j-jpdc.2023.04.009

A. Alpay, B. Soproni, H. Wiinsche, V. Heuveline, Exploring the possibility of a

hipSYCL-based implementation of oneAPI, in: Proceedings of the 10th International

Workshop on OpenCL, IWOCL ’22, Association for Computing Machinery, New York,

NY, USA, 2022, pp. 1-12. https://doi.org/10.1145/3529538.3530005

Intel Corporation, Intel oneAPI webpage, 2024, https://www.intel.com/content/

www/us/en/developer/tools/oneapi/overview.html (accessed July 9, 2024).

R. Carratala-Séez, Y. Torres J. Sierra-Pallares S. Lopez-Huguet D. R. Llanos, UVaF-

TLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic

applicationl, J. Supercomput. 79 (2023) 9635-9665. https://doi.org/10.1007/

s11227-022-05017-x

R. Carratald, et al., Git Repository of UVaFTLE project, 2023, https://github.com/

uva-trasgo/UVaFTLE (accessed July 9, 2024).

AdaptiveCpp, Home of the AdaptiveCpp Project, 2024, https://github.com/

AdaptiveCpp/AdaptiveCpp (accessed July 9, 2024).

TriSYCL, The triSYCL Project, 2016, https://github.com/triSYCL/triSYCL (accessed

Jun 20, 2024).

A. Murray, E. Crawford, Compute Aorta: a toolkit for implementing heterogeneous

programming models, in: Proceedings of the International Workshop on OpenCL,

IWOCL 20, Association for Computing Machinery, New York, NY, USA, 2020, pp.

1-2. https://doi.org/10.1145/3388333.3388652

Codeplay Software Ltd., The Future of ComputeCpp, 2023, https://codeplay.com/

portal/news/2023/07/07 /the-future-of-computecpp (accessed July 14, 2024).

A. Alpay, V. Heuveline, One pass to bind them: the first single-pass SYCL compiler

with unified code representation across backends, in: Proceedings of the 2023 Inter-

national Workshop on OpenCL, IWOCL ’23, Association for Computing Machinery,

New York, NY, USA, 2023, pp. 1-12. https://doi.org/10.1145/3585341.3585351

G. Haller, Lagrangian coherent structures, Annu. Rev. Fluid Mech. 47 (2015)

137-162. https://doi.org/10.1063/1.3690153

S.S. Meschi, A. Farghadan, A. Arzani, Flow topology and targeted drug delivery in

cardiovascular disease, J. Biomech. 119 (2021) 110307. https://doi.org/10.1016/j.

jbiomech.2021.110307

S. Brunton, C. Rowley, Modeling the unsteady aerodynamic forces on small-

scale wings, in: 47th AIAA Aerospace Sciences Meeting Including the New Hori-

zons Forum and Aerospace Exposition, 2009, p. 1127. https://doi.org/10.2514/6.

2009-1127

M. Serra, P. Sathe, F. Beron-Vera, G. Haller, Uncovering the edge of the polar vortex,

J. Atmos. Sci. 74 (11) (2017) 3871-3885. https://doi.org/10.1175/JAS-D-17-0052.

1

M. Mikolajczak, Designing and building parallel programs: concepts and tools for

parallel software engineering [book review], IEEE Concurr. 5 (2) (1997) 88-90.

https://doi.org/10.1109/MCC.1997.588301

D.J. Mavriplis, Unstructured grid techniques, Annu. Rev. Fluid Mech. 29 (1) (1997)

473-514. https://doi.org/10.1146/annurev.fluid.29.1.473

Intel Corporation, C/C++ OpenMP and SYCL Composability, 2024,

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/

2024-1/c-c-openmp-and-sycl-composability.html (accessed July 9, 2024).

Khronos OpenCL working group, et al., Ranged accessors on SYCL 2020 Specification

(revision 7), 2020, https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-

2020.html#sec:accessors.ranged (accessed July 9, 2024).

[2]
[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]


http://docs.nvidia.com/cuda/
https://rocm.docs.amd.com/en/latest/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1007/s11227-019-02829-2
https://doi.org/10.1007/s11227-019-02829-2
https://doi.org/10.1016/j.jpdc.2023.04.009
https://doi.org/10.1016/j.jpdc.2023.04.009
https://doi.org/10.1016/j.jpdc.2023.04.009
https://doi.org/10.1016/j.jpdc.2023.04.009
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://doi.org/10.1007/s11227-022-05017-x
https://doi.org/10.1007/s11227-022-05017-x
https://doi.org/10.1007/s11227-022-05017-x
https://doi.org/10.1007/s11227-022-05017-x
https://github.com/uva-trasgo/UVaFTLE
https://github.com/uva-trasgo/UVaFTLE
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/triSYCL/triSYCL
https://doi.org/10.1145/3388333.3388652
https://doi.org/10.1145/3388333.3388652
https://codeplay.com/portal/news/2023/07/07/the-future-of-computecpp
https://codeplay.com/portal/news/2023/07/07/the-future-of-computecpp
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.1063/1.3690153
https://doi.org/10.1063/1.3690153
https://doi.org/10.1016/j.jbiomech.2021.110307
https://doi.org/10.1016/j.jbiomech.2021.110307
https://doi.org/10.1016/j.jbiomech.2021.110307
https://doi.org/10.1016/j.jbiomech.2021.110307
https://doi.org/10.2514/6.2009-1127
https://doi.org/10.2514/6.2009-1127
https://doi.org/10.2514/6.2009-1127
https://doi.org/10.2514/6.2009-1127
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1109/MCC.1997.588301
https://doi.org/10.1109/MCC.1997.588301
https://doi.org/10.1146/annurev.fluid.29.1.473
https://doi.org/10.1146/annurev.fluid.29.1.473
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/c-c-openmp-and-sycl-composability.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/c-c-openmp-and-sycl-composability.html

F.J. Andiijar, R. Carratald-Sdez, Y. Torres et al.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

LUMI  consortium, LUMI supercomputer webpage,
lumi-supercomputer.eu/ (accessed February 20, 2025).

C. Coulliette, S. Wiggins, Intergyre transport in a wind-driven, quasigeostrophic
double gyre: an application of lobe dynamics, Nonlinear Process. Geophys. 7 (1/2)
(2000) 59-85. https://doi.org/10.5194/npg-7-59-2000

X.H. Zhao, K.H. Kwek, J.B. Li, K.L. Huang, Chaotic and resonant streamlines in
the ABC flow, SIAM J. Appl. Math. 53 (1) (1993) 71-77. https://doi.org/10.1137/
0153005

T.J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (4) (1976)
308-320. https://doi.org/10.1109/TSE.1976.233837

M.H. Halstead, Elements of Software Science (Operating and Programming Systems
Series), Elsevier Science Inc., 1977. https://doi.org/10.5555/540137

Z. Wang, Y. Plyakhin, C. Sun, Z. Zhang, Z. Jiang, A. Huang, H. Wang, A source-to-
source CUDA to SYCL code migration tool: Intel® DPC+ + compatibility tool, in:
International Workshop on OpenCL, IWOCL’22, Association for Computing Machin-
ery, New York, NY, USA, 2022, pp. 1-2. https://doi.org/10.1145/3529538.3529562
L. Solis-Vasquez, E. Mascarenhas, A. Koch, Experiences migrating CUDA to SYCL: a
molecular docking case study, in: IWOCL "23: Proceedings of the 2023 International
Workshop on OpenCL, Association for Computing Machinery, New York, NY, USA,
2023, pp. 1-11. https://doi.org/10.1145/3585341.3585372

G. Castafio, Y. Faqir-Rhazoui, C. Garcia, M. Prieto-Matias, Evaluation of Intel’s
DPC+ + compatibility tool in heterogeneous computing, J. Parallel Distrib. Com-
put. 165 (2022) 120-129. https://doi.org/10.1016/j.jpdc.2022.03.017

Z. Jin, H. Finkel, A case study of k-means clustering using SYCL, in: 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 4466—4471. https://doi.
org/10.1109/BigData47090.2019.9005555

Z. Jin, V. Morozov, H. Finkel, A case study on the HACCmk routine in SYCL on
integrated graphics, in: 2020 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), 2020, pp. 368-374. https://doi.org/10.1109/
IPDPSW50202.2020.00071

Y. Faqir-Rhazoui, C. Garcia, F. Tirado, Performance portability assessment: non-
negative matrix factorization as a case study, in: Euro-Par 2022: Parallel Process-
ing Workshops: Euro-Par 2022 International Workshops, Glasgow, UK, August 22-
26, 2022, Revised Selected Papers, Springer-Verlag, Berlin, Heidelberg, 2023, p.
239-250. https://doi.org/10.1007/978-3-031-31209-0_18

M. Goli, L. Iwanski, A. Richards, Accelerated machine learning using TensorFlow
and SYCL on OpenCL devices, in: IWOCL 2017: Proceedings of the 5th International
Workshop on OpenCL, IWOCL 2017, Association for Computing Machinery, New
York, NY, USA, 2017, pp. 1-4. https://doi.org/10.1145/3078155.3078160

R. Burns, J. Lawson, D. McBain, D. Soutar, Accelerated neural networks on OpenCL
devices using SYCL-DNN, in: Proceedings of the International Workshop on OpenCL,
IWOCL’19, Association for Computing Machinery, New York, NY, USA, 2019, pp.
1-4. https://doi.org/10.1145/3318170.3318183

Y. Fagir-Rhazoui, C. Garcia, Exploring the performance and portability of the k-
means algorithm on SYCL across CPU and GPU architectures, J. Supercomput.
(2023). https://doi.org/10.1007/s11227-023-05373-2

1.Z. Reguly, Evaluating the performance portability of SYCL across CPUs and GPUs
on bandwidth-bound applications, in: Proceedings of the SC ’23 Workshops of the
International Conference on High Performance Computing, Network, Storage, and
Analysis, SC-W ’23, Association for Computing Machinery, New York, NY, USA,
2023, p. 1038-1047. https://doi.org/10.1145/3624062.3624180

N. Fujita, B. Johnston, R. Kobayashi, K. Teranishi, S. Lee, T. Boku, J.S. Vet-
ter, CHARM-SYCL: new unified programming environment for multiple accelera-
tor types, in: Proceedings of the SC '23 Workshops of the International Confer-
ence on High Performance Computing, Network, Storage, and Analysis, SC-W ’23,
Association for Computing Machinery, New York, NY, USA, 2023, p. 1651-1661.
https://doi.org/10.1145/3624062.3624244

H.C. da Silva, F. Pisani, E. Borin, A comparative study of SYCL, OpenCL, and
OpenMP, in: 2016 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), 2016, pp. 61-66. https://doi.
org/10.1109/SBAC-PADW.2016.19

G.K. Reddy Kuncham, R. Vaidya, M. Barve, Performance study of GPU applica-
tions using SYCL and CUDA on Tesla V100 GPU, in: 2021 IEEE High Performance
Extreme Computing Conference (HPEC), 2021, pp. 1-7. https://doi.org/10.1109/
HPEC49654.2021.9622813

T. Deakin, S. McIntosh-Smith, Evaluating the performance of HPC-Style SYCL ap-
plications, in: Proceedings of the International Workshop on OpenCL, IWOCL ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 1-11. https:
//doi.org/10.1145/3388333.3388643

M. Breyer, A.V. Craen, D. Pfliiger, Performance evolution of different SYCL im-
plementations based on the parallel least squares support vector machine library,
in: Proceedings of the 2023 International Workshop on OpenCL, IWOCL 23, As-
sociation for Computing Machinery, New York, NY, USA, 2023, pp. 1-12. https:
//doi.org/10.1145/3585341.3585369

M. Breyer, A.V. Craen, D. Pfliiger, A comparison of SYCL, OpenCL, CUDA, and
OpenMP for massively parallel support vector machine classification on multi-
vendor hardware, in: Proceedings of the 2022 International Workshop on OpenCL,
IWOCL 22, Association for Computing Machinery, New York, NY, USA, 2022, pp.
1-12. https://doi.org/10.1145/3529538.3529980

C.Q. Peralta, M.M. Trompouki, L. Kosmidis, Evaluation of SYCL’s suitability for high-
performance critical systems, in: Proceedings of the 2023 International Workshop
on OpenCL, IWOCL ’23, Association for Computing Machinery, New York, NY, USA,
2023, pp. 1-11. https://doi.org/10.1145/3585341.3585378

H. Kim, H. Han, GPU Thread throttling for page-level thrashing reduction via
static analysis, J. Supercomput. 80 (7) (2024) 9829-9847. https://doi.org/10.1007/
s11227-023-05787-y

2025, https://

23

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Journal of Parallel and Distributed Computing 207 (2026) 105188

F. Sadlo, A. Rigazzi, R. Peikert, Time-Dependent Visualization of Lagrangian Coher-
ent Structures by Grid Advection, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 151-165. https://doi.org/10.1007/978-3-642-15014-2_13

B. Nouanesengsy, T.Y. Lee, K. Lu, H.W. Shen, T. Peterka, Parallel particle advection
and FTLE computation for time-varying flow fields, in: SC "12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1-11. https://doi.org/10.1109/5C.2012.93

A. Kuhn, C. Rossl, T. Weinkauf, H. Theisel, A benchmark for evaluating FTLE
computations, in: 2012 IEEE Pacific Visualization Symposium, 2012, pp. 121-128.
https://doi.org/10.1109/PacificVis.2012.6183582

C.M. Chen, H.W. Shen, Graph-based seed scheduling for out-of-core FTLE and path-
line computation, in: 2013 IEEE Symposium on Large-Scale Data Analysis and Visu-
alization (LDAV), 2013, pp. 15-23. https://doi.org/10.1109/LDAV.2013.6675154

F. Wang, L. Deng, D. Zhao, S. Li, An efficient preprocessing and composition based
finite-time Lyapunov exponent visualization algorithm for unsteady flow field, in:
2016 International Conference on Virtual Reality and Visualization (ICVRV), 2016,
pp. 497-502. https://doi.org/10.1109/ICVRV.2016.89

C. Garth, F. Gerhardt, X. Tricoche, H. Hans, Efficient computation and visualization
of coherent structures in fluid flow applications, IEEE Trans. Vis. Comput. Graph.
13 (6) (2007) 1464-1471. https://doi.org/10.1109/TVCG.2007.70551

T.F. Dauch, T. Rapp, G. Chaussonnet, S. Braun, M.C. Keller, J. Kaden, R. Koch, C.
Dachsbacher, H.J. Bauer, Highly efficient computation of finite-time Lyapunov ex-
ponents (FTLE) on GPUs based on three-dimensional SPH datasets, Comput. Fluids
175 (2018) 129-141. https://doi.org/10.1016/j.compfluid.2018.07.015

M. Lin, M. Xu, X. Fu, GPU-Accelerated computing for Lagrangian coherent structures
of multi-body gravitational regimes, Astrophys. Space Sci. 362 (2017) 1572-9460.
https://doi.org/10.1007/510509-017-3050-y

M. Hlawatsch, F. Sadlo, D. Weiskopf, Hierarchical line integration, IEEE Trans. Vis.
Comput. Graph. 17 (8) (2011) 1148-1163. https://doi.org/10.1109/TVCG.2010.
227

C. Garth, G.S. Li, X. Tricoche, C.D. Hansen, H. Hagen, Visualization of Coherent
Structures in Transient 2D Flows, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009, pp. 1-13. https://doi.org/10.1007/978-3-540-88606-8_1

A. Sagrista, S. Jordan, F. Sadlo, Visual analysis of the Finite-Time Lyapunov Expo-
nent, Comput. Graphics Forum 39 (3) (2020) 331-342. https://doi.org/10.1111/
cgf.13984

C. Conti, D. Rossinelli, P. Koumoutsakos, GPU and APU computations of Finite Time
Lyapunov Exponent fields, J. Comput. Phys. 231 (5) (2012) 2229-2244. https://doi.
org/10.1016/j.jcp.2011.10.032

AdaptiveCpp, et al., Expose buffer page size as property for concurrent kernel
buffer access, 2021, https://github.com/AdaptiveCpp/AdaptiveCpp/pull/513 (ac-
cessed February 1, 2025).

Francisco J. Anddjar received the M.Sc. degree in Computer
Science from the University of Castilla-La Mancha, Spain, in
2010, and the Ph.D. degree from the University of Castilla-
La Mancha in 2015. He worked in the Universitat Politec-
nica de Valéncia under a post-doctoral contract Juan-de la
Cierva, and currently works as Associate Professor on Com-
puter Science at Universidad de Valladolid. His research in-
terests include multicomputer systems, cluster computing,
HPC interconnection networks, switch architecture, and sim-
ulation tools.

Rocio Carratala-Saez received a B.Sc. Degree in Computa-
tional Mathematics by Universitat Jaume I (UJI) of Castell
6n (Spain) in 2015, M.Sc. Degree in Parallel and Distributed
Computing by Universitat Politécnica de Valéncia (Spain) in
2016, and Ph.D. in Computer Science by UJI in 2021. She
is currently an Assistant Professor at Universitat de Valénica
in the Department of Computer Science. Her main research
interest is High-Performance Computing, focused on the par-
allelization of linear algebra operations and scientific appli-
cations. More information about her research can be found
at http://rociocarratalasaez.es/

Yuri Torres de la Sierra received the B.S. degree in Com-
puter Science and Engineering from University of Valladolid,
Spain, in 2009. He received the M.S. degree in Informa-
tion Communications in 2010, and the Ph.D. degree in Com-
puter Science in 2014, both from the University of Valladolid,
Spain. From 2014 to 2017, he was Associate Professor at Is-
abel I University, Burgos, Spain. He is currently Assistant Pro-
fessor of computer science at the Universidad of Valladolid.
His research interests include parallel and distributed com-
puting, parallel programming models, and embedded com-
puting. More information about his current research activi-
ties can be found at http://www.infor.uva.es/~yuri.torres.


https://lumi-supercomputer.eu/
https://lumi-supercomputer.eu/
https://doi.org/10.5194/npg-7-59-2000
https://doi.org/10.5194/npg-7-59-2000
https://doi.org/10.1137/0153005
https://doi.org/10.1137/0153005
https://doi.org/10.1137/0153005
https://doi.org/10.1137/0153005
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.5555/540137
https://doi.org/10.5555/540137
https://doi.org/10.1145/3529538.3529562
https://doi.org/10.1145/3529538.3529562
https://doi.org/10.1145/3585341.3585372
https://doi.org/10.1145/3585341.3585372
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1109/BigData47090.2019.9005555
https://doi.org/10.1109/BigData47090.2019.9005555
https://doi.org/10.1109/BigData47090.2019.9005555
https://doi.org/10.1109/BigData47090.2019.9005555
https://doi.org/10.1109/IPDPSW50202.2020.00071
https://doi.org/10.1109/IPDPSW50202.2020.00071
https://doi.org/10.1109/IPDPSW50202.2020.00071
https://doi.org/10.1109/IPDPSW50202.2020.00071
https://doi.org/10.1007/978-3-031-31209-0_18
https://doi.org/10.1007/978-3-031-31209-0_18
https://doi.org/10.1145/3078155.3078160
https://doi.org/10.1145/3078155.3078160
https://doi.org/10.1145/3318170.3318183
https://doi.org/10.1145/3318170.3318183
https://doi.org/10.1007/s11227-023-05373-2
https://doi.org/10.1007/s11227-023-05373-2
https://doi.org/10.1145/3624062.3624180
https://doi.org/10.1145/3624062.3624180
https://doi.org/10.1145/3624062.3624244
https://doi.org/10.1145/3624062.3624244
https://doi.org/10.1109/SBAC-PADW.2016.19
https://doi.org/10.1109/SBAC-PADW.2016.19
https://doi.org/10.1109/SBAC-PADW.2016.19
https://doi.org/10.1109/SBAC-PADW.2016.19
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3585341.3585369
https://doi.org/10.1145/3585341.3585369
https://doi.org/10.1145/3585341.3585369
https://doi.org/10.1145/3585341.3585369
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1145/3585341.3585378
https://doi.org/10.1145/3585341.3585378
https://doi.org/10.1007/s11227-023-05787-y
https://doi.org/10.1007/s11227-023-05787-y
https://doi.org/10.1007/s11227-023-05787-y
https://doi.org/10.1007/s11227-023-05787-y
https://doi.org/10.1007/978-3-642-15014-2_13
https://doi.org/10.1007/978-3-642-15014-2_13
https://doi.org/10.1109/SC.2012.93
https://doi.org/10.1109/SC.2012.93
https://doi.org/10.1109/PacificVis.2012.6183582
https://doi.org/10.1109/PacificVis.2012.6183582
https://doi.org/10.1109/LDAV.2013.6675154
https://doi.org/10.1109/LDAV.2013.6675154
https://doi.org/10.1109/ICVRV.2016.89
https://doi.org/10.1109/ICVRV.2016.89
https://doi.org/10.1109/TVCG.2007.70551
https://doi.org/10.1109/TVCG.2007.70551
https://doi.org/10.1016/j.compfluid.2018.07.015
https://doi.org/10.1016/j.compfluid.2018.07.015
https://doi.org/10.1007/s10509-017-3050-y
https://doi.org/10.1007/s10509-017-3050-y
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1007/978-3-540-88606-8_1
https://doi.org/10.1007/978-3-540-88606-8_1
https://doi.org/10.1111/cgf.13984
https://doi.org/10.1111/cgf.13984
https://doi.org/10.1111/cgf.13984
https://doi.org/10.1111/cgf.13984
https://doi.org/10.1016/j.jcp.2011.10.032
https://doi.org/10.1016/j.jcp.2011.10.032
https://doi.org/10.1016/j.jcp.2011.10.032
https://doi.org/10.1016/j.jcp.2011.10.032
https://github.com/AdaptiveCpp/AdaptiveCpp/pull/513
http://rociocarratalasaez.es/
http://www.infor.uva.es/~yuri.torres.

F.J. Andiijar, R. Carratald-Sdez, Y. Torres et al.

Arturo Gonzalez-Escribano received his M.S. and Ph.D. de-
grees in computer science from the University of Valladolid,
Spain, in 1996 and 2003, respectively. He is Associate Pro-
fessor of computer science at the Universidad de Valladolid
since 2008. He has participated in more than 100 scientific
papers in journals and conferences. He has been principal re-
searcher of national funded projects, lead several research
contracts with enterprises, and participated in the commit-
tee of several international conferences. His research inter-
ests include parallel and distributed computing, parallel pro-
gramming models, portability in heterogeneous systems, and
embedded computing.

24

Journal of Parallel and Distributed Computing 207 (2026) 105188

Diego R. Llanos received his MS and PhD degrees in Com-
puter Science from the University of Valladolid, Spain, in
1996 and 2000, respectively. He is a recipient of the Span-
ish government’s national award for academic excellence.
Prof. Llanos is Full Professor of Computer Architecture at
the Universidad de Valladolid, and his research interests in-
clude parallel and distributed computing, automatic paral-
lelization of sequential code, and embedded computing. He
is a Senior Member of the IEEE and Senior Member of the
ACM, and has co-founded RDNest, a company that trans-
fers to market research results in the field of Internet of
Things and high-performance computing. More information
about his current research activities can be found at http:

//www.infor.uva.es/~diego.


http://www.infor.uva.es/~diego.
http://www.infor.uva.es/~diego.

	On the development of high-performance, multi-GPU applications on heterogeneous systems leveraging SYCL 
	1 Introduction
	2 Background
	2.1 Heterogeneous computing and SYCL
	2.2 Case of study: FTLE

	3 Application description and implementation
	3.1 FTLE Algorithm
	3.2 GPU Kernels identification
	3.3 Native implementations

	4 Porting UVaFTLE to SYCL: Implementation decisions
	4.1 Porting the application to SYCL buffers model
	4.2 Porting the application to SYCL USM-device model
	4.3 Porting the application to SYCL USM-shared model
	4.4 SYCL Porting process: Summary
	4.5 Targeting multiple GPUs and vendors with SYCL
	4.6 Using multiple GPUs with SYCL: Summary

	5 Evaluating the effects of porting decisions in terms of performance
	5.1 Platform under test
	5.2 Test cases
	5.3   Performance evaluation
	5.3.1 Impact of data management strategy
	5.3.2 Effects of compiler choice
	5.3.3 Comparison between SYCL and native programming models
	5.3.4 Effects of SYCL compilation mode for AdaptiveCpp: AOT vs. JIT
	5.3.5 Multi-GPU and multi-vendor performance


	6 Development effort
	7 Key findings and insights
	8 Putting all together: A general development strategy
	9 Related work
	9.1 SYCL Portability
	9.2 FTLE Computation

	10 Concluding remarks


