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 a b s t r a c t

Computational platforms for high-performance scientific applications are increasingly heterogeneous, incorpo-
rating multiple GPU accelerators. However, differences in GPU vendors, architectures, and programming models 
challenge performance portability and ease of development. SYCL provides a unified programming approach, 
enabling applications to target NVIDIA and AMD GPUs simultaneously while offering higher-level abstractions 
for data and task management. This paper evaluates SYCL’s performance and development effort using the Fi-
nite Time Lyapunov Exponent (FTLE) calculation as a case study. We compare SYCL’s AdaptiveCpp (Ahead-Of-
Time and Just-In-Time) and Intel oneAPI compilers, along with different data management strategies (Unified 
Shared Memory and buffers), against equivalent CUDA and HIP implementations. Our analysis considers single 
and multi-GPU execution, including heterogeneous setups with GPUs from different vendors. Results show that, 
while SYCL introduces additional development effort compared to native CUDA and HIP implementations, it en-
ables multi-vendor portability with minimal performance overhead when using specific design options. Based on 
our findings, we provide development guidelines to help programmers decide when to use SYCL versus vendor-
specific alternatives.

1.  Introduction

The complexity of scientific applications follows an increasing trend 
motivated by society’s needs. Arising from many fields, computational 
applications require as much computational power as possible to con-
tribute efficiently to scientific, commercial, and social progress. To ac-
complish this, high-performance computing (HPC) is vital. HPC relies on 
efficiently using the diversity of resources available in modern compu-
tational systems, which are becoming increasingly heterogeneous. This 
includes exploiting traditional multicore systems and devices such as 
Graphic Processing Units (GPU). In the particular case of GPUs, it has 
been proved that they offer excellent computational capabilities that can 
accelerate many computations by several orders of magnitude.

To take advantage of all the available hardware in a heterogeneous 
system, the first approach is usually to manually develop a specific so-
lution for that particular hardware using vendor toolchains or parallel 
programming models. For example, CUDA [1] for NVIDIA GPUs, or HIP 
[2] for AMD GPUs. Thanks to efficiently managing the hardware re-
sources, these tools and models have demonstrated great capabilities 
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and versatility to obtain the best possible performance for those de-
vices. Nevertheless, experts who do not belong to the HPC field, such 
as other engineers, physicists, or mathematicians, must deal with a non-
negligible learning curve to take advantage of all these programming 
model capabilities. Moreover, using vendor-specific tools, the resulting 
applications are often not easily portable to alternative vendor devices, 
and additional programming efforts are needed to use different hard-
ware.

In recent years, different approaches with an increasing level of ab-
straction have been presented for designing applications that can lever-
age the resources in heterogeneous systems with improved portability. 
OpenCL [3] is a good example of approaches that introduce a first layer 
of abstractions for dealing with the diversity of heterogeneous devices. 
It is an extension of the C/C++ programming language, capable of gen-
erating and running applications on different vendors’ multiprocessors, 
FPGAs, and GPUs. However, OpenCL requires even more development 
effort than, for example, the use of vendor-specific programming mod-
els for GPUs, such as CUDA or HIP. Moreover, OpenCL requires explic-
itly managing the data transfers and synchronization using a low-level 
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\begin {equation*}\dot {\vec x} = \vec v \left (\vec x,\, t \right ),\end {equation*}


\begin {equation*}\Lambda _{t_0}^{t_1}\left (\vec x_0 \right ) = \frac {1}{t_1 - t_0}\log \sqrt {\lambda _n\left ( \vec x_0 \right )}\end {equation*}
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\begin {equation*}C\left (\vec x_0 \right ) = \left [ \nabla F_{t_0}^{t_1} \left (\vec x_0 \right ) \right ]^T \nabla F_{t_0}^{t_1} \left (\vec x_0 \right )\end {equation*}
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event model, further increasing the development effort if the program-
mer wants to perform asynchronous operations to overlap kernel execu-
tions and data transfers. For this reason, learning and using OpenCL is 
cumbersome for those who are not HPC experts but want to maximize 
their intensive-computation applications by exploiting the available re-
sources in different heterogeneous environments.

In contrast, other proposals for higher-level heterogeneous program-
ming simplify the code, require less explicit operations and cumbersome 
initialization, or even make operations such as data transfers transpar-
ent to the programmer. Some examples include SYCL [4], OpenMP [5], 
Kokkos [6], Raja [7], or other more academic approaches such as dOCAL 
[8] or CtrlEvents [9] that pursue a common objective: Offering higher-
level abstractions that simplify and unify the programming of different 
computational resources transparently and effortlessly. While OpenMP 
is widely available in most modern compilers and the other alterna-
tives previously cited have specific advantages, SYCL is becoming more 
and more popular as the available compiler implementations are becom-
ing more mature, complete, robust, and efficient (see, e.g., AdaptiveCpp 
[10], or Intel oneAPI [11]). SYCL advocates a single-code approach, with 
automatic data-dependence analysis and data movements across mem-
ory hierarchies, which are easy to understand and to program by non-
experts in low-level programming of heterogeneous devices. The SYCL 
community strives to make it the functional and performance portability 
baseline. As discussed in Section 9, several works compare the efficiency 
and portability between SYCL and other heterogeneous programming 
models for specific applications and platforms. Currently, it is highly 
relevant to investigate the efficiency and portability offered by the new 
SYCL implementations for real-world applications.

In this paper, we evaluate the current SYCL implementation, us-
ing a real-world application, from two different perspectives: The per-
formance it offers when dealing with single or multiple GPU devices, 
from the same or different vendors, and the development effort re-
quired to implement the code. We compare the performance and the 
code with baselines programmed directly using CUDA or HIP technolo-
gies for NVIDIA and AMD GPUs, isolated or in combination. Moreover, 
we evaluate SYCL performance from three different design choices: The 
available SYCL compilers (AdaptiveCpp and Intel oneAPI), the compiler 
implementation (Single-source, single-compiler pass, and Single-source, 
multiple-compiler passes), and the Data Management (Unified shared 
memory and buffer model). These design choices will be explained in 
Section 2.1. In this comparison, we try to illuminate the advantages 
and limitations of the recent improvements introduced for this high-
level programming model compared to traditional vendor-provided
tools.

We have chosen as the case study the UVaFTLE [12] application, 
which computes the Finite Time Lyapunov Exponent (FTLE), to explore 
this development effort and performance evaluation. On the one hand, 
this application is formed by two conceptually very different kernels: 
One deals with larger data sets and memory accesses. At the same time, 
the other one focuses on solving a collection of linear algebra operations. 
This difference lets us explore whether the key aspects of most scientific 
applications (memory accesses and computations) are better addressed 
by native (vendor-provided) tools than by SYCL. On the other hand, 
we have not found any work in the literature that offers a recent and 
portable version of the FTLE solution, so we also provide the community 
with a novel portable and improved FTLE implementation, based on our 
previous work [12].

The main contributions of this work are:

• We offer a portable version of the UVaFTLE application using SYCL, 
with support to target multiple GPU devices simultaneously, even 
from different vendors.

• We present new baseline implementations of the UVaFTLE applica-
tion. The first one uses CUDA. It increases the use of registers to 
minimize global memory accesses and a new kernel to implement 
the data preprocessing stage in GPU. The second baseline is a port 

of the same program using HIP to target AMD GPU devices. Both 
versions support the specific vendor’s multi-GPU.

• We conduct an in-depth evaluation of the performance, in terms of 
execution time, offered by both the baseline implementations of the 
FTLE computation (based on CUDA and HIP) and the SYCL version, 
considering the main SYCL compiler, the compiler implementation, 
and the data management model.

• We compare the development effort required to implement the 
CUDA and HIP baselines with the SYCL version in terms of several 
classical development-effort metrics.

• Based on the evaluation conducted and its analysis, we provide a 
development strategy with recommendations on how and when to 
use SYCL or the native alternatives.

• This work contributes to open science. All our implementations are 
fully open-source and available by accessing the GitHub repository 
[13].

The rest of the paper is structured as follows: In Section 2, we provide 
a revision of the different SYCL implementations and the mathematical 
background of the FTLE; in Section 3 we describe the FTLE computation 
algorithm and our implementations, covering how we leverage CUDA, 
HIP, and SYCL; in Section 4 we describe how we ported UVaFTLE to 
SYCL and address some of the implementation decisions needed; in Sec-
tion 5 we present an in-depth evaluation of the performance delivered 
by each implementation decision; in Section 6 we analyze the develop-
ment effort associated with each implementation; in Section 7 we sum-
marize the main findings of our evaluation and analysis; in Section 8 
we provide development strategy recommendations and guidelines for 
using SYCL; in Sect. 9 we summarize the main existing works that use 
SYCL in their implementations and those related to the FTLE computa-
tion, comparing them to our work; and in Section 10 we summarize the 
main conclusions derived from this work and finalize by mentioning the 
future work.

2.  Background

In this section, we first summarize the state of the art of SYCL, de-
scribing its different implementations highlightStartblueand the main 
features of each. Then, we describe the case study we utilize in this 
work: FTLE.

2.1.  Heterogeneous computing and SYCL

In 2014, the Khronos Group presented SYCL [4], a standard model 
for cross-platform programming, to achieve both code and performance 
portability and lower the development effort. SYCL organizes the kernels 
using a task graph implicitly constructed by the SYCL runtime. This also 
allows implicitly managing the dependencies between the kernels and 
the data communications, although the developer can still manage them 
explicitly. In this work, we analyze the SYCL ecosystem through three 
main axes:

• SYCL compilers: The SYCL ecosystem has several implementations 
that rely on different compiler backends for different types of de-
vices. Currently, the most widespread compilers are Intel’s oneAPI 
[11] and AdaptiveCpp [10,14] (formerly known as hipSYCL). oneAPI 
supports Intel hardware (CPUs, GPUs, and FPGAs) and has two 
plugins developed by Codeplay to support NVIDIA and AMD de-
vices using alternative backends. However, these backends are in-
compatible with the rest of Intel’s hardware. AdaptiveCpp supports 
CPUs, AMD GPUs, NVIDIA GPUs, and Intel GPUs through OpenMP, 
HIP/ROCm, CUDA, and Level Zero, respectively. Other implementa-
tions are TriSYCL [15], which only supports CPUs and Xilinx FPGAs, 
and Codeplay’s ComputeCPP [16], which supports CPUs and INTEL, 
NVIDIA, and AMD GPUs, but was discontinued after September 2023 
[17]. For these reasons, the AdaptiveCpp and oneAPI compilers have 
been chosen for conducting this study.
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• Compiler design options: There are multiple ways of implementing 
the SYCL compiler. According to the SYCL specification [4], there are 
three different choices:
– Library only-implementation: It is possible to implement SYCL 
as a pure C++ library. For example, this approach is available 
in AdaptiveCpp to target NVIDIA GPUs.

– Single-source, single-compiler pass (SSCP): The compiler 
parses the code only once, simultaneously compiling the host and 
the device code. The application binary can be used on different 
devices (e.g., two GPU models) without recompiling the code. 
AdaptiveCpp has recently presented the first version of an SSCP 
SYCL compiler [18]. Briefly, AdaptiveCpp uses LLVM at compile 
time to generate an intermediate and backend-independent rep-
resentation. This representation is transformed at runtime into 
the format necessary for the backend driver.

– Single-source, multiple-compiler passes (SMCP): The compiler 
parses at least twice times the code, one time for the host code 
and another for the device code. The device code is compiled once 
for each device to use the application on different devices. The 
application binary, also called fat-binary, contains all the device 
images. This is a usual approach, but it requires a higher compi-
lation time.

Since only AdaptiveCpp implements the SSCP model, we analyze the 
performance of SSCP and SMCP approaches using AdaptiveCpp. The 
library-only mode will not be investigated since only NVIDIA GPUs 
are supported. The main focus of this work is to study the perfor-
mance/development effort of porting applications to SYCL, not using 
SYCL as a library for third-party compilers.

• Data management: SYCL has three abstractions to manage data:
– Unified Shared Memory (USM) manages the data using a 
pointer-based approach based on C and C++ pointers. USM fa-
cilitates the migration of C/C++ codes to SYCL and is an ideal 
choice if our C/C++ code is pointer-based. However, not all the 
devices support this memory management. Data can be allocated 
to the host, the device, or both sides. We will study the FTLE 
application using these allocation modes:
∗ Device: The data is allocated in the device; it is not accessible 
by the host, and the data movement is the programmer’s re-
sponsibility. This allocation is made calling to malloc_device()
function, which is equivalent to call cudaMalloc()/hipMalloc()
in CUDA/HIP.

∗ Shared: The data is allocated and accessible on both sides and 
automatically migrated between host and device when neces-
sary. This allocation is made calling to malloc_shared() func-
tion, which is equivalent to call cudaMallocManaged()/ hip-
MallocManaged() in CUDA/HIP.

From now on, we will use the terms Device and Shared to indi-
cate the memory allocation mode, regardless of whether we are 
talking about CUDA, HIP, or SYCL codes.

– Buffers provides a high-level abstraction to manage the data. The 
runtime manages the data storage and movement between dif-
ferent memory spaces. Thus, the programmer can skip this part 
of the data management tasks. However, using buffers requires 
more significant development effort on the programmer than 
USM, as new data abstractions (buffers and accessors) should be 
explicitly managed.

– Images provides a high-level abstraction to manage image data. 
Its interface and data management are essentially the same as the 
buffer model, but this abstraction focuses on developing image 
and video applications.

Currently, AdaptiveCpp and oneAPI support all the data manage-
ment models. However, FTLE is not an image/video application; there-
fore, employing images is out of the scope of this work. Thus, we will 
analyze the performance of USM (both device and shared allocations) 
and buffer models using both compilers.

2.2.  Case of study: FTLE

Fluid dynamics is a widely explored field. In particular, the fluid 
particle trajectories in phase space, often referred to as Lagrangian, are 
of great interest. More specifically, calculating the Lagrangian Coherent 
Structures (LCS) [19] is key for several disciplines, such as cardiovascular 
engineering [20], aerodynamics [21], and geophysical fluid dynamics 
[22].

The fluid particle trajectories are defined as solutions of
̇⃗𝑥 = 𝑣

(

𝑥⃗, 𝑡
)

,

where the right-hand side is the fluid’s velocity field in the absence of 
molecular diffusion. Solving this system of equations allows for the cal-
culation of the LCS. The main interest in computing the LCS is that they 
let a better understanding of the flow phenomena since they can be 
broadly interpreted as transport barriers in the flow.

From the computational point of view, the extraction of LCS consists 
of two main steps: The flowmap computation and the resolution of the 
FTLE. We will focus on the second step, which is mathematically defined 
as

Λ𝑡1
𝑡0

(

𝑥⃗0
)

= 1
𝑡1 − 𝑡0

log
√

𝜆𝑛
(

𝑥⃗0
)

where 𝜆𝑛 is the maximum eigenvalue of the Cauchy-Green strain tensor 
𝐶, defined as follows

𝐶
(

𝑥⃗0
)

=
[

∇𝐹 𝑡1
𝑡0

(

𝑥⃗0
)

]𝑇
∇𝐹 𝑡1

𝑡0

(

𝑥⃗0
)

being 𝐹  the flowmap [21].
The FTLE is a scalar field that works as an objective diagnostic for 

LCS: A first-order approach to assess the stability of material surfaces 
in the flow under study by detecting material surfaces along which in-
finitesimal deformation is larger or smaller than off these surfaces [19]. 
Although more reliable mathematical methods have been developed for 
the explicit identification of LCS, the FTLE remains the most used metric 
for LCS identification.

From the computational point of view, it is essential to highlight 
that the FTLE computation is applied to each particle of the flow inde-
pendently of the other particles. Thus, it represents an embarrassingly-
parallel problem [23]. We have already described, explored, and evalu-
ated the FTLE computation in a previous work [12], where we presented 
UVaFTLE. This tool incorporates a CUDA-based kernel to use multiple 
NVIDIA GPUs in the FTLE computation.

3.  Application description and implementation

In this section, we describe the FTLE algorithm. Next, we identify the 
regions of code suitable to be executed in GPUs; afterward, we present 
the native (CUDA and HIP) and the SYCL implementations of the GPU 
kernels; and, finally, we illustrate how to target multiple GPUs using 
SYCL. Note that the complete code of all versions is available in the 
UVaFTLE repository [13].

3.1.  FTLE Algorithm

Provided the information of the mesh that defines the flow to study 
(namely the dimension, time instant when the FTLE will be computed, 
the mesh points coordinates and faces information, and the flowmap), 
the process of computing the FTLE (described in Algorithm 1) consists 
of the following steps performed over each point in the mesh:

1. Compute the gradients of the flowmap (see Algorithm 2). Note that 
the gradient calculation is based on the Green Gauss theorem [24].

2. Generate the tensors from the gradients and perform the matrix-
matrix product of the previously generated tensors by their trans-
poses (see Algorithm 2).
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Algorithm 1 FTLE.
Require: 𝑛𝐷𝑖𝑚, 𝑡_𝑒𝑣𝑎𝑙, 𝑐𝑜𝑜𝑟𝑑𝑠_𝑓𝑖𝑙𝑒, 𝑓𝑎𝑐𝑒𝑠_𝑓𝑖𝑙𝑒, 𝑓 𝑙𝑜𝑤𝑚𝑎𝑝_𝑓𝑖𝑙𝑒
1: 𝑛𝑉 𝑝𝐹 = (𝑛𝐷𝑖𝑚 == 2) ? 3 ∶ 4 ⊳ Triangles or tetrahedrons
2: {𝑛𝑃𝑜𝑖𝑛𝑡𝑠, 𝑐𝑜𝑜𝑟𝑑𝑠} = read_coordinates(coords_file)
3: {𝑛𝐹𝑎𝑐𝑒𝑠, 𝑓𝑎𝑐𝑒𝑠} = read_faces(faces_file)
4: 𝑓𝑙𝑜𝑤 = read_flowmap(flowmap_file)
5: 𝑛𝐹𝑝𝑃 = create_nFacesPerPoint_vector(nPoints, nFaces, nVpF, faces)
6: 𝐹𝑝𝑃 = create_FacesPerPoint_vector(nPoints, nFaces, nVpF, faces, nFpP)
7: for 𝑖𝑝 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑃𝑜𝑖𝑛𝑡𝑠) do
8:  if 𝑛𝐷𝑖𝑚 == 2 then
9:  𝑔1, 𝑔2 = 2D_grad_tens (ip, nVpF, coords, flow, faces, nFpP, FpP)
10:  𝑚𝑎𝑥_𝑒𝑖𝑔𝑒𝑛 = max_eigenvalue_2D([g1, g2])
11:  else
12:  𝑔1, 𝑔2, 𝑔3 = 3D_grad_tens (ip, nVpF, coords, flow, faces, nFpP, FpP)
13:  𝑚𝑎𝑥_𝑒𝑖𝑔𝑒𝑛 = max_eigenvalue_3D([g1, g2, g3])
14:  end if
15:  𝑟𝑒𝑠𝑢𝑙𝑡[𝑖𝑝] = 𝑙𝑜𝑔(𝑠𝑞𝑟𝑡(𝑚𝑎𝑥_𝑒𝑖𝑔𝑒𝑛))∕𝑡_𝑒𝑣𝑎𝑙
16: end for
17: return 𝑟𝑒𝑠𝑢𝑙𝑡[ ]

Algorithm 2 2D_grad_tens.
Require: 𝑖𝑝, 𝑛𝑃 , 𝑛𝑉 𝑝𝐹 , 𝑐𝑜𝑜𝑟𝑑𝑠[ ], 𝑓 𝑙𝑜𝑤, 𝑓𝑎𝑐𝑒𝑠[ ], 𝑛𝐹𝑝𝑃 [ ], 𝐹 𝑝𝑃 [ ]
1: 𝑛𝐹𝑎𝑐𝑒𝑠 = (𝑖𝑝 == 0) ? 𝑛𝐹𝑝𝑃 [𝑖𝑝] ∶ 𝑛𝐹𝑝𝑃 [𝑖𝑝] − 𝑛𝐹𝑝𝑃 [𝑖𝑝 − 1]
2: 𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑏𝑒𝑙𝑜𝑤, 𝑎𝑏𝑜𝑣𝑒 = 𝐺𝑟𝑒𝑒𝑛𝐺𝑎𝑢𝑠𝑠(𝑛𝐹𝑎𝑐𝑒𝑠, 𝐹𝑝𝑃 , 𝑛𝐹𝑝𝑃 , 𝑛𝑉 𝑝𝐹 , 𝑐𝑜𝑜𝑟𝑑𝑠) ⊳ This provides the indices of the left, right, below, above closest 
points

3: 𝑑𝑥 = 𝑐𝑜𝑜𝑟𝑑𝑠[𝑟𝑖𝑔ℎ𝑡 ⋅ 𝑛𝐷𝑖𝑚] − 𝑐𝑜𝑜𝑟𝑑𝑠[𝑙𝑒𝑓 𝑡 ⋅ 𝑛𝐷𝑖𝑚]
4: 𝑑𝑦 = 𝑐𝑜𝑜𝑟𝑑𝑠[𝑎𝑏𝑜𝑣𝑒 ⋅ 𝑛𝐷𝑖𝑚 + 1] − 𝑐𝑜𝑜𝑟𝑑𝑠[𝑏𝑒𝑙𝑜𝑤 ⋅ 𝑛𝐷𝑖𝑚 + 1]
5: 𝑔𝑟𝑎1[0] = (𝑓𝑙𝑜𝑤[𝑟𝑖𝑔ℎ𝑡 ⋅ 𝑛𝐷𝑖𝑚] − 𝑓𝑙𝑜𝑤[𝑙𝑒𝑓 𝑡 ⋅ 𝑛𝐷𝑖𝑚])∕𝑑𝑥
6: 𝑔𝑟𝑎1[1] = (𝑓𝑙𝑜𝑤[𝑟𝑖𝑔ℎ𝑡 ⋅ 𝑛𝐷𝑖𝑚 + 1] − 𝑓𝑙𝑜𝑤[𝑙𝑒𝑓 𝑡 ⋅ 𝑛𝐷𝑖𝑚 + 1])∕𝑑𝑥
7: 𝑔𝑟𝑎2[0] = (𝑓𝑙𝑜𝑤[𝑎𝑏𝑜𝑣𝑒 ⋅ 𝑛𝐷𝑖𝑚] − 𝑓𝑙𝑜𝑤[𝑏𝑒𝑙𝑜𝑤 ⋅ 𝑛𝐷𝑖𝑚])∕𝑑𝑦
8: 𝑔𝑟𝑎2[1] = (𝑓𝑙𝑜𝑤[𝑎𝑏𝑜𝑣𝑒 ⋅ 𝑛𝐷𝑖𝑚 + 1] − 𝑓𝑙𝑜𝑤[𝑏𝑒𝑙𝑜𝑤 ⋅ 𝑛𝐷𝑖𝑚 + 1])∕𝑑𝑦
9: 𝑓𝑡𝑙𝑒_𝑚[0] = 𝑔𝑟𝑎1[0] ⋅ 𝑔𝑟𝑎1[0] + 𝑔𝑟𝑎1[1] ⋅ 𝑔𝑟𝑎1[1]
10: 𝑓𝑡𝑙𝑒_𝑚[1] = 𝑔𝑟𝑎1[0] ⋅ 𝑔𝑟𝑎2[0] + 𝑔𝑟𝑎1[1] ⋅ 𝑔𝑟𝑎2[1]
11: 𝑓𝑡𝑙𝑒_𝑚[2] = 𝑔𝑟𝑎2[0] ⋅ 𝑔𝑟𝑎1[0] + 𝑔𝑟𝑎2[1] ⋅ 𝑔𝑟𝑎1[1]
12: 𝑓𝑡𝑙𝑒_𝑚[3] = 𝑔𝑟𝑎2[0] ⋅ 𝑔𝑟𝑎2[0] + 𝑔𝑟𝑎2[1] ⋅ 𝑔𝑟𝑎2[1]
13: 𝑔𝑟𝑎1[0] = 𝑓𝑡𝑙𝑒_𝑚[0]; 𝑔𝑟𝑎1[1] = 𝑓𝑡𝑙𝑒_𝑚[1]
14: 𝑔𝑟𝑎2[0] = 𝑓𝑡𝑙𝑒_𝑚[2]; 𝑔𝑟𝑎2[1] = 𝑓𝑡𝑙𝑒_𝑚[3]
15: 𝑓𝑡𝑙𝑒_𝑚[0] = 𝑔𝑟𝑎1[0] ⋅ 𝑔𝑟𝑎1[0] + 𝑔𝑟𝑎1[1] ⋅ 𝑔𝑟𝑎1[1]
16: 𝑓𝑡𝑙𝑒_𝑚[1] = 𝑔𝑟𝑎1[0] ⋅ 𝑔𝑟𝑎2[0] + 𝑔𝑟𝑎1[1] ⋅ 𝑔𝑟𝑎2[1]
17: 𝑓𝑡𝑙𝑒_𝑚[2] = 𝑔𝑟𝑎2[0] ⋅ 𝑔𝑟𝑎1[0] + 𝑔𝑟𝑎2[1] ⋅ 𝑔𝑟𝑎1[1]
18: 𝑓𝑡𝑙𝑒_𝑚[3] = 𝑔𝑟𝑎2[0] ⋅ 𝑔𝑟𝑎2[0] + 𝑔𝑟𝑎2[1] ⋅ 𝑔𝑟𝑎2[1]
19: return 𝑓𝑡𝑙𝑒_𝑚

3. Compute the maximum eigenvector of each resulting matrix (see 
Algorithm 3). Note that, as we are computing the eigenvalues of 
matrices of size 2x2 (2D) or 3x3 (3D), which in practice means re-
spectively solving a 2nd- and 3rd-degree equation, we have directly 
implemented this computation, instead of calling mathematical li-
braries that perform this computation for generic matrices of any 
size.

4. Calculate the logarithm of the square matrix of the maximum eigen-
value and divide the result by the time instant to evaluate.

Note that we only present the algorithms for the 2D case here because 
the 3D case is straightforward.

In addition to the algorithms already described, it is also important 
to remark those utilized in lines 5 and 6 in Algorithm 1: create_nFacesPer-
Point_vector (see Algorithm 4) and create_FacesPerPoint_vector (see Algo-
rithm 5). Although they are part of the preprocessing and not the FTLE 
computation itself, they are needed to create the data structures called 
nFpP and FpP, which respectively contain the number of faces to which 
each mesh point belongs and the corresponding face identifiers. These 
data structures accelerate the process of computing the FTLE, because 
they establish the relationship between the different mesh points and 

faces, meaning that this is analyzed only once at the beginning of the 
code, instead of each time the Green Gauss algorithm is called.

3.2.  GPU Kernels identification

The cost of computing the FTLE algorithm described in the previ-
ous section relies on two main procedures: The create_facesPerPoint_vec-
tor function and the linear algebra operations performed for each mesh 
point in each iteration of the for loop in line 7 of the Algorithm 1. As 
a consequence, this is what is worth it to be computed in the GPU; in 
other words, these are the two GPU kernels to build to accelerate the 
FTLE computation:

• Preprocessing: This kernel implements the create_facesPerPoint_vec-
tor function (see Algorithm 5). The create_facesPerPoint_vector ker-
nel implements a memory-bound algorithm to determine the faces 
associated with each point within a mesh. The kernel iterates 
through all nFaces and checks nVertsPerFace vertices, resulting in 
O(nPoints × nFaces × nVertsPerFace) memory accesses, which are 
non-coalesced and lack shared memory optimization. This leads to 
high memory latency, making global memory access the dominant 
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Algorithm 3 max_eigenvalue_2D.
Require: 𝑀
1: 𝑠𝑞 ← 𝑠𝑞𝑟𝑡(𝑀[21] ∗ 𝑀[21] +𝑀[10] ∗ 𝑀[10] − 2 ∗ (𝑀[10] ∗ 𝑀[21]) + 4 ∗ (𝑀[11] ∗ 𝑀[20]))
2: 𝑒𝑖𝑔1 ← (𝑀[21] +𝑀[10] + 𝑠𝑞)∕2
3: 𝑒𝑖𝑔2 ← (𝑀[21] +𝑀[10] − 𝑠𝑞)∕2
4: return (𝑒𝑖𝑔1 > 𝑒𝑖𝑔2) ? 𝑒𝑖𝑔1 ∶ 𝑒𝑖𝑔

Algorithm 4 create_nFacesPerPoint_vector.
Require: 𝑛𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝐹𝑎𝑐𝑒𝑠, 𝑛𝑉 𝑝𝐹 , 𝑓𝑎𝑐𝑒𝑠[ ]
1: for 𝑖𝑝 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑃𝑜𝑖𝑛𝑡𝑠) do
2:  𝑛𝐹𝑝𝑃 [𝑖𝑝] = 0;
3: end for
4: for 𝑖𝑓𝑎𝑐𝑒 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝐹𝑎𝑐𝑒𝑠) do
5:  for 𝑖𝑝𝑓 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑉 𝑝𝐹 ) do
6:  𝑖𝑝 = 𝑓𝑎𝑐𝑒𝑠[𝑖𝑓𝑎𝑐𝑒 ⋅ 𝑛𝑉 𝑝𝐹 + 𝑖𝑝𝑓 ]
7:  𝑛𝐹𝑝𝑃 [𝑖𝑝] = 𝑛𝐹𝑝𝑃 [𝑖𝑝] + 1
8:  end for
9: end for
10: for 𝑖𝑝 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑃𝑜𝑖𝑛𝑡𝑠) do
11:  𝑛𝐹𝑝𝑃 [𝑖𝑝] = 𝑛𝐹𝑝𝑃 [𝑖𝑝] + 𝑛𝐹𝑝𝑃 [𝑖𝑝 − 1]
12: end for
13: return 𝑛𝐹𝑝𝑃

Algorithm 5 create_facesPerPoint_vector.
Require: 𝑛𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝐹𝑎𝑐𝑒𝑠, 𝑛𝑉 𝑝𝐹 , 𝑓𝑎𝑐𝑒𝑠[ ], 𝑛𝐹𝑝𝑃 [ ]
1: for 𝑖𝑝 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑃𝑜𝑖𝑛𝑡𝑠) do
2:  𝑐𝑜𝑢𝑛𝑡 = 0
3:  𝑖𝐹 𝑎𝑐𝑒𝑠𝑃 = (𝑖𝑝 == 0) ? 0 ∶ 𝑛𝐹𝑝𝑃 [𝑖𝑝 − 1]
4:  𝑛𝐹𝑎𝑐𝑒𝑠𝑃 = (𝑖𝑝 == 0) ? 𝑛𝐹𝑝𝑃 [𝑖𝑝] ∶ 𝑛𝐹𝑝𝑃 [𝑖𝑝] − 𝑛𝐹𝑝𝑃 [𝑖𝑝 − 1]
5:  while (𝑖𝑓𝑎𝑐𝑒 < 𝑛𝐹𝑎𝑐𝑒𝑠) 𝑎𝑛𝑑 (𝑐𝑜𝑢𝑛𝑡 < 𝑛𝐹𝑎𝑐𝑒𝑠𝑃 ) do
6:  for 𝑖𝑝𝑓 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑉 𝑝𝐹 ) do
7:  if 𝑓𝑎𝑐𝑒𝑠[𝑖𝑓𝑎𝑐𝑒 ⋅ 𝑛𝑉 𝑝𝐹 + 𝑖𝑝𝑓 ] == 𝑖𝑝 then
8:  𝐹𝑝𝑃 [𝑖𝑓𝑎𝑐𝑒𝑠𝑃 + 𝑐𝑜𝑢𝑛𝑡] = 𝑖𝑓𝑎𝑐𝑒
9:  𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
10:  end if
11:  end for
12:  end while
13: end for
14: return 𝐹𝑝𝑃

bottleneck rather than computation. The arithmetic workload is min-
imal, consisting mainly of integer comparisons and assignments, con-
firming that the limiting factor is memory bandwidth rather than 
operational intensity.

• FTLE: This kernel was already described in our previous work [12]; 
we presented a single CUDA-based kernel to compute everything 
described in Algorithms 2 and 3 (or their corresponding 3D ver-
sions), which means using the GPU device to compute lines 9–10 
(2D case) or 12–13 (3D case) of the Algorithm 1. Note that this 
kernel has two variants: 2D and 3D. The gpu_compute_gradient_2D 
kernel builds upon the first algorithm by introducing floating-point 
operations for gradient calculations and eigenvalue extraction. How-
ever, the operational intensity is reduced due to its complex mem-
ory access patterns. Thus, the kernel is also memory-bound. The 
execution consists of three phases: neighbor search (O(nPoints ×
nFaces × nVertsPerFace) memory accesses), gradient computation 
(O(nPoints)), and FTLE matrix eigenvalue extraction (O(nPoints)). 
The non-coalesced accesses to faces, coordinates, and flowmap cre-
ate significant memory stalls, limiting performance. Additionally, 
branch divergence in the neighbor selection further exacerbates ex-
ecution time variability. Despite its higher arithmetic workload, the 
kernel’s performance is still limited by memory latency rather than
computation. 

• 3D kernels: Extending these algorithms to 3D versions (e.g., 
gpu_compute_gradient_3D) results in similar performance character-
istics, as the additional spatial dimension only increases the memory 
access complexity while maintaining the same compute-to-memory 
imbalance. The search for neighboring points becomes even more 
expensive, scaling to O(nPoints × nFaces × nVertsPerFace) in three 
dimensions, further amplifying the impact of non-coalesced memory 
accesses and branch divergence. 

In the following sections, we present details on implementing these 
kernels using CUDA or HIP (named native implementations) and SYCL.

3.3.  Native implementations

Three different GPU kernels (create_facesPerPoint_vector, gpu_com-
pute_gradient_2D, and gpu_compute_gradient_3D) have been developed 
corresponding to the algorithms described in previous sections. The 
gpu_compute_gradient_2D and the gpu_compute_gradient_3D kernels are im-
proved versions of the CUDA-based implementation of our previous 
work, UVaFTLE [12]. Moreover, they have been appropriately ported 
to HIP to tackle AMD GPUs.

Whether they use CUDA or HIP, the three kernels perform the same 
two initial operations before starting the algorithm. The first operation 
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corresponds to the calculation of the thread global identifier. Each iden-
tifier corresponds to a mesh point. For code simplicity, we use one-
dimensional threadBlock and grid, making it easier to calculate the 
global index of each thread and reducing the number of kernel instruc-
tions. The following instruction is executed to calculate the thread global 
identifier:

𝑖𝑛𝑡𝑡ℎ_𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥;

The second operation checks that the number of launched threads is not 
larger than the number of points in the mesh. For that, we insert the 
following condition wrapping each kernel implementation:
𝑖𝑓 (𝑡ℎ_𝑖𝑑 < 𝑛𝑢𝑚𝐶𝑜𝑜𝑟𝑑𝑠){…}

For each kernel, each thread of the GPU grid executes precisely the 
sequence of steps associated with the FTLE kernel described in Sec-
tion 3.2. The implementation can currently leverage all the GPU devices 
available in a single node, as in our previous work [12]. Thus, we are 
deploying our multi-GPU executions in a shared-memory environment. 
We use the OpenMP programming model, instantiating as many threads 
as GPU devices to distribute the load among them. In particular, we have 
designed a static partitioning of the mesh points based on the number 
of GPU devices that take part in the execution.

In contrast to our previous work, pinned memory has been used 
to perform the data transfers of the results from the GPU to the host 
through cudaHostAlloc or hipHostAlloc primitives. Classical GPU refer-
ence manuals, such as [1], indicate that this kind of memory can be 
used when executions or asynchronous transfers are introduced, thus 
reducing the latencies in these data transfers.

Furthermore, the GPU community indicates that the best
threadBlock size maximizes the streaming multiprocessor occu-
pancy, such as 256, 512, and 1024. Since it is recommended, we have 

selected 512 as the threadBlock size. As this work does not intend to 
apply any tuning strategies, we have not evaluated additional sizes.

4.  Porting UVaFTLE to SYCL: Implementation decisions

Based on the native implementations, the application has been 
ported to SYCL using the USM and the buffer models. Since the com-
plete code of UVaFTLE is very large, we will illustrate the changes made 
in our application using a simpler code. Note that the complete SYCL 
code of the UVaFTLE can be found in our repository [13]. The example 
launches a simple kernel that, given an array 𝐴 with 𝑛 elements, calcu-
lates 𝐴[𝑖] = 2 × 𝐴[𝑖] + 1 for each element 𝑖, being 0 ≤ 𝑖 < 𝑛. Figs. 1, 3–6, 
show the code examples for SYCL buffers, CUDA (device mem.), SYCL 
USM-device, CUDA (shared mem.), and SYCL USM-shared versions, re-
spectively. The background of both codes has been colored to help the 
reader identify the groups of lines in both codes with the same function-
ality. The parts with white backgrounds correspond to the host code, 
which has no differences between versions. Also, note that the HIP code 
was not included in the comparison since the differences between the 
CUDA and HIP versions are practically negligible.

4.1.  Porting the application to SYCL buffers model

First, we focus on the SYCL buffer code (Fig. 1). The first step to 
making a SYCL application is choosing the device to execute the code 
(code with a blue background). For these purposes, SYCL employs a 
queue, an abstraction where the kernels executed on a single device are 
submitted. This is performed in line 4 of Fig. 1, where a new queue is 
created and attached to a GPU device. Note that, through the usage of 
gpu_selector{}, the kernel to be executed can be attached to any GPU 
in the system (usually the first GPU detected by the SYCL runtime). 

Fig. 1. Comparison between CUDA and SYCL buffer version. The lines with the same colors share the same purpose in all codes.
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Fig. 2. Example of a function for getting a queue attached to a HIP device in SYCL.

Fig. 3. Comparison between CUDA (with device memory) and SYCL. The lines with the same background colors share the same purpose in all codes.

However, the SYCL API offers methods to attach a GPU from a specific 
platform, model, etc. For example, Fig. 2 shows a function for creating 
a queue attached to a HIP device, getting at first the list of devices for 
the HIP platform. Attaching the queue to a CUDA device is also possible 
by simply comparing the string “CUDA” with the platform name.

After that, both CUDA and SYCL buffer codes allocate and initial-
ize the host array. Next, the native implementation specifies the CUDA
numBlocks and grid sizes (code with purple background). In SYCL, we 
must specify the range of our arrays (array_range in the example) and 
the range of the thread block (block_range). array_range will be used later 
to create the buffer. Both ranges will be necessary to launch the kernel. 
Therefore, we create the needed ranges to port our application to SYCL. 

Note that, for the simplicity of the example, we only use 1-dimensional 
ranges, but we can also specify 2-dimensional or 3-dimensional ranges.

The next step in CUDA is to allocate the device data and to copy the 
data from the host to the device (line 11 of Fig. 3, green-background 
code). In SYCL, buffers will be used to manage the data instead of allo-
cating and copying it on the device. Buffers provide an abstract view of 
the memory accessible from the host and the devices. The buffers also 
allow the SYCL runtime to manage the memory transfers transparently 
to the programmer. On the contrary, in the native implementation, we 
manually allocate and free the device memory and manually manage 
the data transfers (both synchronous and asynchronous versions) be-
tween the host and devices or between devices. Therefore, the buffer 
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abstraction simplifies the memory management. For example, let’s sup-
pose three kernels: 𝐾1 and 𝐾2, which have no data dependencies, and 
𝐾3, which needs the results of the first two kernels to make their work. 
The SYCL runtime transparently transfers the host data to the devices 
running 𝐾1 and 𝐾2 using the buffer abstraction. Since both kernels have 
no data dependencies, both kernels can run concurrently on different 
devices. Once the kernels have finished, the SYCL runtime will trans-
fer the necessary data to run 𝐾3 in its device and finally transfer the 
resulting data to the host.

Thus, we must declare the buffers for managing the memory. The 
buffer declaration requires specifying the host memory to be managed 
and the buffer range (line 14 of Fig. 1). Therefore, to port UVaFTLE to 
SYCL, we have created the necessary buffers to manage all the applica-
tion data.

After that, we specify the kernel declaration (code with dark red 
background) and its launch (code with light red background). In the 
native implementation, we should declare the kernel as a function (lines 
30–36 in Fig. 3) and launch this function inside the host code using a 
specific syntax (line 17 in Fig. 3). In SYCL, the submit() method is used to 
submit the kernel in the desired queue (line 16 in Fig. 1). Using lambda 
functions, we perform the submission and define the kernel code. In the 
example, a parallel_for and nd_range kernel (lines 13–17 in Fig. 1)) are 
employed to perform the same work as the CUDA kernel, i.e., to launch 
a kernel with elements threads organized in blocks of 512 threads. Since 
the main purpose is not to describe the SYCL API, we will not go into 
more detail about the declaration of lambda functions. Please consult 
the reference guide [4] for further information.

However, the programmer does not directly access the buffers in the 
kernels. To read and write buffers, we must create an accessor object 
(line 18 in Fig. 1), specifying the accessed buffer and the access mode 
(read, write, or read_write). The kernel code is the same in both versions. 
If we appropriately name the accessors, making changes in kernel code is 
unnecessary. The only difference between native and SYCL kernel codes 
is how to obtain the global index to access the data (line 22, Fig. 1). 
Note also that the CUDA/HIP index ordering differs from SYCL index 
ordering. When we work with structures of more than one dimension, 
we must interchange the x- and y-index to exploit the data coalescence.

Finally, note that the buffer, kernel submit, etc., are created inside 
a new scope. A buffer updates the host memory when it is destroyed. 
Using a new scope, the host memory will be updated when the scope 
ends and destroys the buffer, avoiding explicitly transferring data and 
synchronizing the host and device. However, SYCL allows manually up-
dating the host memory inside the scope if the programmer requires it.

4.2.  Porting the application to SYCL USM-device model

As shown in Fig. 4, the only differences between buffers and USM-
device models lie in memory management (code with green back-
ground). Queue declaration, range declaration, kernel declaration, and 
kernel launch are the same in both models. Using USM and device al-
location, we must allocate the memory on the host (line 7, Fig. 4) and 
the device (line 13, Fig. 4). To port this to the SYCL USM-device model, 
we change the cudaMalloc call by a malloc_device call1. Since the array is 
allocated on the device, we must explicitly transfer the data from host 
to device before launching the kernel. This can be done by replacing 
the cudaMalloc call by the function memcpy of the queue class (line 14, 
Fig. 4).

After that, we launch the kernel (line 16, Fig. 4). Again, if we appro-
priately name the device arrays, making changes in kernel code is un-
necessary. Note that submit() scope is not present in the code. Since the 
SYCL 2020 specification, the queues can directly use the parallel_for()
without the submit() scope, therefore reducing the code lines.

1 In the example, we have used C–style allocators, but C++–style and 
C++–allocator-style are also available. Please consult the reference guide [4] 
for more information.

Finally, we need to transfer the data from the device to the host 
calling again memcpy (line 22, Fig. 4). However, to use the data in the 
host code, the queue must finish all its work (kernel execution and data 
transfer). Then, we need to manually synchronize the host and device 
using wait function of the queue class (line 24, Fig. 4. After that, we can 
free the device memory (replacing cudaFree by free) and use the data in 
the host.

4.3.  Porting the application to SYCL USM-shared model

Using the shared memory (named in CUDA as managed memory) 
allows us to use the same data structure both in the host and the device. 
The data transfer is transparent to the programmer, and the runtime 
migrates the data between the host and the device when necessary. This 
also reduces the lines of code required to write our application.

First, we will briefly compare the CUDA code using device memory 
(Fig. 3) and shared memory (Fig. 5). As can be seen, only one allo-
cation using cudaMallocManaged is necessary (line 5, Fig. 5), and one
deallocation using cudaFree (line 11, Fig. 5). No explicit data transfers 
or synchronizations are required to use the data in the host or the device.

Fig. 6 shows the SYCL USM-shared code. As in the previous SYCL 
models, queue declaration, range declaration, and kernel launch are the 
same. We only need to change the memory management. If we start from 
the shared-memory CUDA code, we must change the calls to cudaMalloc-
Managed and cudaFree by malloc_shared and free, respectively. Starting 
from the device-memory CUDA code, we must replace the host mem-
ory allocation and deallocation with these SYCL functions and remove 
all the CUDA functions to manage the device memory. Appropriately 
naming the shared arrays means that changes in the code are minimal.

4.4.  SYCL Porting process: Summary

We now summarize the steps to port UVaFTLE to SYCL, starting 
with the first version written in CUDA and using device memory.

SYCL using buffers model.

1. Create a queue attached to the desired GPU device.
2. Copy the original host code as the declaration and initialization of 
the host memory, management of the application’s final results, etc., 
avoiding copying the kernel code and the calls to the CUDA API (as 
cudaMalloc(), cudaMemcpy, etc.).

3. Start a new scope and define the buffers to manage the data.
4. At the preprocessing kernel launch location in the CUDA code, sub-
mit this kernel to the queue using the submit scope.
(a) Create the accessors with the appropriate names to avoid rewrit-

ing the kernel code.
(b) Launch the kernel using an nd-range parallel for.
(c) Copy the kernel code, changing the index calculation to SYCL 

syntax.
5. Repeat the step and sub-steps of step 4 for the FTLE kernel.
6. End the scope to update the host memory.

SYCL using USM-device model.

1. Create a queue attached to the desired GPU device.
2. Copy the original host code, including the calls to CUDA API, but not 
the kernel definitions and callings.

3. Change the cudaMalloc(), cudaMemcpy and cudaFree() calls for the 
SYCL functions malloc_device(), queue.memcpy() and free().

4. At the preprocessing kernel launch location in the CUDA code, sub-
mit this kernel to the queue using the nd-range parallel for scope.
(a) Copy the kernel code, changing the index calculation to SYCL 

syntax.
(b) Wait for kernel completion using queue.wait() to use the correct 

data in the next step (or declare and ordered-queue on step 1.).
5. Repeat the step and sub-steps of step 4 for the FTLE kernel.
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Fig. 4. Comparison between CUDA and SYCL USM version with device memory. The lines with the same background colors share the same purpose in all codes.

Fig. 5. Comparison between CUDA (main() with shared memory) and SYCL. The lines with the same background colors share the same purpose in all codes.

SYCL using USM-shared model.

1. Create a queue attached to the desired GPU device.
2. Copy the original host code as the declaration and initialization of 
the host memory, management of the application’s final results, etc., 
avoiding copying the kernel code and the calls to the CUDA API (as 
cudaMalloc(), cudaMemcpy, etc.).

3. Change the malloc() and free() calls for the SYCL functions mal-
loc_shared() and free().

4. At the preprocessing kernel launch location in the CUDA code, sub-
mit this kernel to the queue using the nd-range parallel for scope.
(a) Copy the kernel code, changing the index calculation to SYCL 

syntax.
(b) Wait for kernel completion using queue.wait() to use the cor-

rect data in the next step (or declare and ordered-queue on
step 1.).

5. Repeat the step and sub-steps of step 4 for the FTLE kernel.

To facilitate the reader’s understanding of the main differences be-
tween models, we include Table 1, which shows the codes that perform 
the same functionality in CUDA/HIP, SYCL USM model, and SYCL buffer 
model. Since the CUDA code is practically the same as the HIP code, only 
changing the word “cuda” to the word “hip”, the last one is not included 
in the table.

4.5.  Targeting multiple GPUs and vendors with SYCL

At this point, UVaFTLE has been ported to SYCL and can be exe-
cuted on NVIDIA and AMD GPUs. However, the application still does 
not support multi-GPU execution. From now on, we will use the term 
“sub-kernel” to refer to one part of a single kernel distributed across 
different devices, while the term “kernel” will refer to the execution of 
all the parts of the kernel. The native application uses OpenMP to in-
stance multiple threads, and each thread performs a part of the compu-
tational work or sub-kernel using a different GPU device, as explained in
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Fig. 6. Comparison between CUDA and SYCL USM version with shared memory. The lines with the same background colors share the same purpose in all codes.

Table 1 
Memory management in CUDA using device memory, CUDA using shared memory, SYCL USM using device memory (shown as 
S-USM device), SYCL USM using shared memory (shown as S-USM shared) and SYCL Buffers (shown as S-Buffers device).
 Action  Language and model  Function
 Allocate device memory  CUDA device  cudaMalloc(dev_array, mem_size)

 CUDA shared  cudaMallocManaged(shared_array, mem_size)
 S-USM device  dev_array = malloc_device<double> (num_elements, my_queue)
 S-USM shared  shared_array = malloc_shared<double> (num_elements, my_queue)
 S-Buffers  buffer buff_array{h_array, range{num_elements)}}

 Access to device memory inside the kernel  CUDA device  Declare the array in the kernel prototype and
 CUDA shared  include dev_array/shared_array in the kernel invocation
 S-USM device  Use dev_array in kernel code
 S-USM shared  Use shared_array in kernel code
S-Buffers

 Create an accessor in kernel submit and use it in kernel code
 accessor acc_array {buf_array, my_handler, read_write}

 Copy data between host and device  CUDA device  cudaMemcpy(dst_array, src_array, mem_size,
 (Sync)  cudaMemcpyHostToDevice|cudaMemcpyDevicetoHost)
 CUDA device  cudaMemcpyAsync(dst_array, src_array, mem_size,
 (Asycn.)  cudaMemcpyHostToDevice| cudaMemcpyDevicetoHost, cudaStream)
 CUDA shared  Implicitly done by CUDA runtime when shared_array is used
 S-USM device  my_queue.memcpy(dst_array, src_array, mem_size)
 S-USM shared  Implicitly done by SYCL runtime when shared_array (USM)

 or acc_array (Buffers) is used in a device kernel
 S-Buffers

Sync. to ensure the host mem. is updated
 CUDA device  cudaDeviceSynchronize() (only if asynchronous copy)
 CUDA share  Implicitly done by CUDA runtime when shared_array is used
 S-USM (both)  my_queue.wait()
 S-Buffers  Implicitly done by SYCL runtime when the scope of dev_buf ends

Free device memory
 CUDA (both)  cudaFree(array)
 S-USM (both)  free(array, my_queue)
 S-Buffers  Implicitly done by SYCL runtime when the scope of dev_buf ends

Section 3.3. However, this solution is impossible since SYCL kernels can 
not be used inside OpenMP target regions [25].

Fortunately, we can do the same job instantiating as many SYCL 
queues as devices we need and attaching each queue to a different de-
vice. Moreover, the queue abstraction allows us to use GPUs from differ-
ent architectures, such as NVIDIA and AMD. For example, the function 
shown in Fig. 2 could be easily modified to get a vector of queues with 
all the AMD GPUs attached to the current node, and Fig. 7 shows a func-
tion that returns a queue vector to use all the node’s GPUs, regardless 
of their vendor or architecture. If the program was compiled targeting 
all the GPUs on the system using an SMCP compiler or with an SSCP 

compiler (see Section 2.1), the application kernels can be run on any 
device.

In contrast, targeting multiple GPUs from different vendors using 
CUDA or HIP requires compiling each native kernel implementation 
utilizing the specific compiler and developing a host code capable of 
supporting memory management, data transfers, and kernel launching. 
The host code is responsible for calling the correct compiled version of 
the code, depending on the targeted platform. This imposes a significant 
extra development effort compared to what is necessary with SYCL.

However, to distribute the computation of one kernel across all de-
vices and to run all the sub-kernels concurrently, it is required that there 
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Fig. 7. Example of a function for getting a vector of SYCL queues that attaches all the GPUs of the node.

are no data dependencies between sub-kernels; i.e., the range of the 
output data of each sub-kernel does not overlap any other sub-kernels’ 
range. Using the buffer model, the SYCL runtime will serialize the exe-
cution of the sub-kernels after detecting the data dependencies, giving 
no advantage to using multiple GPUs. For example, let’s suppose that 
the output of our kernel is an array of 1000 elements, and we have two 
GPUs to execute the kernel. A non-overlapping data distribution could 
be the range [0, 511] for the first GPU and [512, 999] for the second, and 
the sub-kernels can run concurrently. An overlapping distribution of the 
data could be the range [0, 511] for the first GPU and [500, 999] for the 
second; in this case, the execution of the sub-kernels would be serial-
ized. Using the USM model and overlapping ranges requires extra de-
velopment effort to synchronize the data and to ensure the results are 
correct.

Focusing on the buffer model, the SYCL standard offers two ways to 
separate the data ranges: Ranged accessors and sub-buffers. A ranged 
accessor is built from a sub-range of a buffer, limiting the buffer el-
ements that can be accessed. However, the ranged accessor creates a 
requisite for the entire buffer [26]2. Therefore, since all the sub-kernels 
write the same buffer, their execution is serialized, although each sub-
kernel writes a non-overlapping range. The sub-buffers are buffers cre-
ated from a sub-range of a buffer previously created. If the ranges of two 
sub-buffers created from the same buffer, 𝐵1 and 𝐵2, do not overlap, the 
accessors created from them, 𝐴1 and 𝐴2, will not overlap. Therefore, if a 
kernel 𝐾1 uses 𝐴1 and a kernel 𝐾2 uses 𝐴2, both kernels can be concur-
rently executed. Unfortunately, AdaptiveCpp does not currently support 
the sub-buffer feature, and oneAPI supports them but also serializes the 
kernels.

The only solution is to create a buffer array with a separate buffer for 
each sub-kernel, ensuring their ranges do not overlap. Note the buffers 
must be explicitly initialized with a brace-enclosed expression or equiv-
alent (aggregate initialization) in the array declaration. In another case, 
the compilation fails in the array declaration (e.g., using buffer* followed 
by a malloc; or creating an empty std::vector of buffers and later adding 
the buffers). Moreover, the buffer cannot be created inside a for loop. 
Since each loop iteration creates a new scope, the SYCL runtime will cre-
ate and destroy the buffer, serializing the kernels instead of concurrently 
executing them.

Therefore, creating one buffer for each possible sub-kernel is neces-
sary, although the final number of executed sub-kernels is smaller. To 
illustrate this, Fig. 8 shows how the data is partitioned, assuming that 
there are three GPUs in the node (therefore creating three buffers) but 
using only two GPUs afterward. At first, two vectors are created to store 
the offsets and ranges. The vector size is the maximum number of de-
vices (lines 9 and 10). After that, the values of the vector are initialized. 
When the device 𝑑 is used, the offset and range are calculated such that 
the data among sub-kernels is equally distributed (lines 13–16). If the 
device 𝑑 is not used, we must also initialize the offset and range (lines 
17–21).

2 Note that AdaptiveCpp has an extension that allows to run concurrent ker-
nels [62] using non-overlapping sub-ranges. However, this extension does not 
comply with the SYCL 2020 specification and can not be used in other compilers, 
like oneAPI.

After that, we create an array of three buffers and explicitly ini-
tialize it with a brace-enclosed expression using the previously calcu-
lated offsets and ranges (lines 26–29)3. Although the third device is not 
used, the third buffer is always created (line 29). If the third buffer is 
wrongly initialized, the application will be aborted. Correctly initializ-
ing the buffers ensures that the application works for a maximum of 
three devices, independently of the number of used devices. In the ex-
ample of Fig. 8, the ranges of dev_buf[0], dev_buf[1] and dev_buf[2] are 
[0, 49 999], [50 000, 99 999] and [0, 0], respectively. Note that although the 
ranges of dev_buf[0] and dev_buf[2] overlap, the two sub-kernels can be 
concurrently executed since dev_buf[2] is never used and does not create 
data dependencies. Finally, the code starts a for loop with usedDevices it-
erations (line 31). At each iteration, the kernel is submitted to the queue 
𝑑; an accessor is created using dev_buf[d] (line 34), and a parallel_for is 
launched using a range of ranges[d] elements (line 35).

Using the buffers this way allows distributing the computation be-
tween several GPUs, but it increases the development effort, as will be 
seen in Section 6. Note that the example of Fig. 8 only works for a maxi-
mum of three GPUs. An array of six buffers will be required in a six-GPU 
system. This extra development effort is more significant when the num-
ber of GPUs or data structures to distribute increases. This does not hap-
pen with the native versions, which can run with any number of GPUs 
without modifications. However, combining NVIDIA and AMD GPUs is 
easier using SYCL than combining the CUDA and HIP native versions, 
as explained at the beginning of the section.

In contrast, targeting multiple GPUs using the USM model is easier. 
We start considering the SYCL USM-device model. We only need to

1. Create the queue, the offset, and the range vectors.
2. Create one array per device of size ranges[d] (line 9, Fig. 9).
3. Copy ranges[d] items from address h_array + offset[d] to device array 
(line 10, Fig. 9).

4. Launch the kernels in queues[d] using a parallel_for with ranges[d]
elements, as in the buffer model case (line 12, Fig. 9).

5. Copy ranges[d] elements from device array to address h_array + off-
set[d] (line 15, Fig. 9).

However, if our program has two or more kernels, as UVaFTLE, we 
must synchronize the first kernel finishing with the second kernel start-
ing. In this case, we cannot call queues[d].wait() since this would seri-
alize the execution of all kernels. This can be resolved in a simple way 
using an in-order queue (line 3, Fig. 9). This queue serializes all the ac-
tions submitted to queues[d], but the actions of two different queues 
can run in parallel. Once all the kernels are submitted, we wait for the 
completion of all the submitted actions in all queues (line 18, Fig. 9). 
Note that queues[d].wait() must be called in its own for loop. Including 
these calls inside the main for loop would serialize the executions of 
each queue.

Using the SYCL USM-device model for targeting multiple GPUs is 
even simpler (Fig. 10). Since all the shared arrays are accessible by all 

3 To use std::vector is also possible simply replacing buffer<int,1>dev_buf[3] 
= {…} by std::vector<buffer<int,1»dev_buf = {…}. To use std::array is also pos-
sible.
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Fig. 8. Distributing kernel work on multiple GPUs using SYCL buffer model.

Fig. 9. Distributing kernel submission on multiple GPUs using SYCL USM-device model.
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Fig. 10. Launching the kernels in multiple GPUs using SYCL USM-shared model.

devices, we only need to: i) create the in-order-queue, the offset, and the 
range vectors; ii) Launch the kernels in queues[d] using a parallel_for
with ranges[d] elements, and iii) modify the gpu_id index calculation 
adding offset[d].

However, a final consideration should be taken into account. Al-
though SYCL supports simultaneously executing kernels in NVIDIA and 
AMD GPUs, the GPU drivers do not support transparently performing 
data transfers between both architectures. This can be solved in two 
ways: 1) manually transferring data from one device to another through 
the host, or 2) ensuring that there are no data dependencies between 
the devices of the different vendors. In our case, the second one is the 
best option since the data has already been distributed, avoiding data 
dependencies and thus ensuring the concurrent execution of all the sub-
kernels. However, it does not work in all the models since UVaFTLE has 
several data arrays that the two kernels only read:

• In buffers model, the SYCL runtime copies the only-read arrays to each 
device. Since each GPU only has a disjoint set of items of the read-
write arrays, there are no data transfers between different GPU ar-
chitectures. Therefore, the application properly combines AMD and 
NVIDIA GPUs without code modifications.

• In USM-device model, all the GPUs work using their device memory, 
and the code does not require modification to run simultaneously in 
AMD and NVIDIA GPUs.

• In USM-shared model, when a malloc_shared is performed, SYCL in-
ternally calls to cudaMallocManaged or hipMallocManaged. Since each 
GPU architecture works with its own memory space, we cannot make 
data transfers between CUDA and HIP memory spaces. It will re-
quire duplicating all the common data arrays (one copy for AMD 
architecture and another for NVIDIA architecture) and splitting the 
read-write arrays. This supposes an extra development effort, so the 
SYCL USM-shared version has not been tested combining AMD and 
NVIDIA GPUs in Section 5.

4.6.  Using multiple GPUs with SYCL: Summary

The steps to enable using multiple GPUs in the SYCL version of the 
UVaFTLE, assuming that our system has four GPUs, are the following:

1. Get a vector of queues to allow using all the GPUs. For both USM 
models, create the queues as in-order queues.

2. Calculate the range and offset of each sub-kernel for:
(a) The output array of the preprocessing kernel (also used as an 

input in the second kernel).
(b) The output array of FTLE kernel.

3. (Buffer model) Start a new scope, define and explicitly initialize two 
arrays of buffers, using the ranges and offsets previously calculated: 
b_preproc to manage the output array of the preprocessing kernel, 
and b_flte to manage the output array of the FTLE kernel.

4. Start a for loop with one iteration per used device. In iteration d:
(a) Submit the preprocessing kernel, storing the event ev generated 

by the queue[d]:
i. (Buffer model) Create the output accessor from b_preproc[d].
ii. Launch the kernel using an nd-range parallel for using the de-

vice range.
iii. (USM-shared model) Change the index calculation by adding 

the offset of each device.
(b) Submit the FTLE kernel:

i. (Buffer model) Create the input accessor from b_preproc[d]
and the output accessor from b_ftle[d].

ii. Launch the kernel using an nd-range parallel for using the de-
vice range.

iii. (USM-shared model) Change the index calculation by adding 
the offset of each device.

5. End the for loop and:
(a) (Buffer model) End the scope to update the host memory
(b) (Both USM models) Wait for the kernel completion using 

queue[d].wait() inside a new for loop.

5.  Evaluating the effects of porting decisions in terms of 
performance

5.1.  Platform under test

The experiments have been conducted in a computing server prop-
erty of the Universidad de Valladolid, which features two Intel(R) Xeon(R) 
Platinum 8160 CPU @ 2.10GHz, with 24 Core Processors and 48 phys-
ical threads each. The first socket has connected two AMD Vega 10 XT 
Radeon PRO WX 9100 GPUs with AMD 6.7.0 driver, while the second 
has two NVIDIA Tesla V100 PCIe 32 GB GPUs with NVIDIA 560.35.03 
driver. The server is equipped with a Rocky Linux 9.3 operating system. 
The toolchains used are GCC 11.4, CUDA 12.4, ROCm 6.1.0, oneAPI 
2024.1.0 and LLVM 17.0.6. This LLVM distribution has been used to 
compile AdaptiveCpp 24.02.0.

Different compilers activate different optimization chains and mod-
ules for the same optimization flags. Thus, the resulting codes may per-
form differently. This is the motivation to test different compilers in-
stead of trying to generalize the results of a single one. The -O3 flag is 
the typical optimization flag that HPC programmers use by default. Ac-
cording to the documentation of the considered compilers, it activates a 
selection of optimization modules that at least include the same types of 
general techniques. Thus, we consider that the results using -O3 as the 
only optimization flag represent what a regular HPC programmer can 
expect from the compiler, presenting the fairest comparison scenario for 
the results obtained with different ones in an HPC environment.

The experiments of Section 5.3.1 to test the HIP-based application 
using shared memory XNACK have been conducted in LUMI Supercom-
puter [27]. The computing node is a 64-core AMD EPYC 7A53 “Trento” 
CPU with four AMD MI250X GPUs. The toolchains used are Cray Pro-
gramming Environment 8.5.0 and ROCm 6.0.3.

5.2.  Test cases

To conduct the performance evaluation, we have chosen two ap-
plications widely used in the literature when evaluating flowmap and 
FTLE computations: The Double–Gyre flow [28] for the 2D case and the 
Arnold–Beltrami–Childress (ABC) flow or Gromeka–Arnold–Beltrami-
Childress (GABC) flow [29] for the 3D case. In particular, our evalu-
ation in the 2D case uses a mesh composed of 10000000 points, and in 
the 3D case, a mesh consisting of 1000000 points. Table 2 reflects the 
details associated with each mesh geometry: The dimensions, the num-
ber of mesh points and mesh simplex (either triangles or tetrahedrons), 
the interval of interest at each axis, and the number of elements in the 
interval at each axis taken to define the mesh points.
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Table 2 
Description of the test cases used in our experiments.

 2D  3D
 Dim ≈10000 K (9 998244)  1000K
 nFaces  19983842  5821794
 min-max(x, y, z)  (0–2, 0–1, 0-0)  (0–1, 0–1, 0–1)
 length(x, y, z)  (3 162, 3162, 0)  (100, 100, 100)

For each described FTLE test case, we evaluate the performance (in 
terms of execution time) by exploring six different axes: GPU vendor 
(NVIDIA, AMD), GPU count (one or two devices), programming model 
(CUDA, HIP, SYCL), compiler (nvcc, hipcc, clang, AdaptiveCpp, Intel 
oneAPI), compilation mode for SYCL (SSCP compiler, from now on Just-
in-time, or JIT compiler; and SMCP compiler, from now on Ahead-Of-
time, or AOT compiler), and data management strategy (device, shared 
or buffers, the last one only for SYCL). Fig. 11 details all the different op-
tions for each evaluated axis. From this, thirteen tests are conducted over 
NVIDIA GPUs and ten over AMD GPUs, using one and two devices with 
each vendor for each test. Note that we have indicated each configura-
tion’s name in gray to help you better understand the later result plots.

When opting for the AOT mode, each kernel of our program is com-
piled for each of the architectures specified during the build process. 
All the binary kernels are included in the final executable, and at run-
time, the backend selects one kernel or another, depending on the target 
device. With JIT, contrarily, the compiler generates intermediate code 
for each of the kernels using LLVM; at runtime, the backend performs 
the compilation for the target device, regardless of its type. To avoid 
compiling at every program execution, a kernel cache is stored in the 
user’s directory, so it will only be necessary to compile the kernel the 
first time the program is run (or if the backend detects that the program 
has changed).

AdaptiveCpp allows both AOT and JIT modes. Thus, we have tested 
both. In both cases, the programs can combine kernels executed on 
CPUs, AMD, and NVIDIA devices. The only restriction is that there 
should be no memory transfers between cards from different vendors 
(transfers between CPU and GPUs are not an issue). Thanks to this, 
we have included in our experiments an evaluation of the performance 
when using AdaptiveCpp with either AOT or JIT to target NVIDIA and 
AMD devices simultaneously. Nevertheless, in the case of oneAPI, we 
only test the AOT mode because JIT is not supported.

Regarding the different vendors, oneAPI includes a plugin for launch-
ing SYCL applications on NVIDIA cards. However, when using the re-
cently released plugin for AMD with a profiler and two GPUs, the 
program crashes. Thus, when using oneAPI, we only experiment with 
NVIDIA GPU devices, while in any other case, we also test AMD GPUs.

In addition to these configurations, we also explore the multi-GPU 
performance using AdaptiveCpp and concurrently leveraging NVIDIA 
and AMD GPUs.

When a test is launched, the application is mapped to the socket 
connected to the tested GPU. In the experiments using both AMD and 
NVIDIA GPUs, the application was mapped to the AMD socket. Each test 
was repeated 30 times, and the results show the average of all of them. 
Note that when a kernel is executed using two or more GPUs, we take 
the longest execution time observed for all the sub-kernels; this is the 
one associated with the slowest sub-kernel execution.

Finally, we want to highlight that the preprocessing kernel takes 
more time to execute than the FTLE kernel. Thus, the execution time 
shown for the first kernel is reflected in seconds and milliseconds for 
the second.

In the following sections, we analyze in detail these results concern-
ing each of the evaluated axes.

5.3.  Performance evaluation

This section presents the performance evaluation of the tested im-
plementations using different compilers and execution modes, incorpo-

rating the updated results shown in Figs. 12, 13, and 15. In Fig. 12, we 
illustrate the performance evaluation results of each kernel when target-
ing NVIDIA GPU devices for the 2D and 3D FTLE test cases. The same 
is done in Fig. 13 for the AMD GPU devices. The analysis focuses on 
execution times across various configurations and highlights the impact 
of different factors on performance.

5.3.1.  Impact of data management strategy
A comparison between the three SYCL data management strategies 

shows that the USM-shared model obtains the worst performance. In 
NVIDIA GPUs, when the preprocessing kernel runs in only one device, 
there are no significant differences between the three memory models. 
However, splitting this kernel into two NVIDIA GPUs with USM-shared 
leads to performance degradation. The performance of the second kernel 
(FTLE) is severely degraded when using USM-shared with both one and 
two GPUs. The execution time of the 2D application is degraded to the 
point that it does not scale, and the time using two GPUs is higher than 
using one. The 3D application slightly scales with 2 GPUs, as the second 
kernel that is badly affected by the use of USM-shared has a much lower 
load than the preprocessing kernel. However, the buffer and USM-device 
versions continue to achieve better results.

In the AMD GPUs, the USM-shared code obtains systematically worse 
performance. This performance degradation is also observed using the 
native compilers (nvcc/hipcc) and clang. Note that the AMD Vega 10 
XT GPUs do not support XNACK. XNACK allows AMD GPUs to migrate 
memory pages between the CPU and the GPU when a page fault occurs, 
improving the application performance when shared (or, in HIP termi-
nology, managed) memory is used. To test the effects of shared mem-
ory in more modern architectures and the XNACK feature, we conduct 
a test using two AMD Instinct MI250X GPUs on LUMI supercomputer 
[27]. We run HIP-based FTLE applications considering three scenarios: 
i) using device memory, ii) using managed memory without XNACK, 
and iii) using managed memory activating XNACK. Fig. 14 shows the 
results. We observe that using managed memory severely degrades the 
application’s performance. When XNACK is activated, the preprocessing 
kernel obtains the same performance as device memory if the kernel is 
executed on one GPU. However, the performance degradation on two 
GPUs is even more significant when XNACK is activated. Moreover, the 
second kernel always worsens its execution time, no matter the number 
of GPUs. Then, the problem of managed memory persists if the applica-
tion has two or more kernels or is executed on several GPUs, even when 
XNACK is active.

Our experimentation shows that the USM-shared model systemati-
cally leads to performance degradation, regardless of the platform or 
programming language used. The second kernel (FTLE) always suffers 
from reduced performance, while the first kernel also experiences slow-
downs when split between two GPUs. Using a fine-grain memory control 
could improve performance, at the cost of increasing the development 
effort.

Comparing the USM-device and buffer-based implementations, when 
AdaptiveCpp is used, the buffer-based management introduces a small 
overhead (1.5%–3%). This degradation is more noticeable in the 3D 
application on AMD GPUs. However, when the application is compiled 
with oneAPI, the buffer-based management obtains the best results. Al-
though the improvement is slight in the 2D application (only 1%), the 
3D application speeds up by 20%.

Given these findings, we recommend carefully evaluating USM-
device and buffer-based strategies depending on the specific hardware 
and workload characteristics. Due to the current state of the shared 
memory implementation, it would be a good choice if our application 
has a single kernel and runs on a single GPU. Other cases would re-
quire tuning the memory access to improve performance by adding new 
code with hints declared in the language of the specific backend. This 
kind of tuning compromises portability. Thus, performance portability 
is simpler using the device memory model, which is the most common 
approach to implement GPU applications.
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Fig. 11. Scheme of the different configurations tested for the performance evaluation. The gray boxes reflect each configuration’s name used in the plots; the colors 
also correspond to those used in the plots.

From now on, the performance discussion in subsequent sections is 
centered on buffer and USM-device implementations.

5.3.2.  Effects of compiler choice
Analyzing first the NVIDIA devices results (Fig. 12), we see that the 

workload against imposes non-negligible differences:
• With the preprocessing kernel, which has a greater workload, nvcc 
is always the best option. AdaptiveCpp and clang offer very similar 
results, and oneAPI is either similar to them or close to nvcc (in the 
3D case).

• When the load is smaller, like in the FTLE kernel, surprisingly, the 
compilers used for SYCL outperform both nvcc (which offers the 
worst results) and clang. In particular, oneAPI combined with the 
buffer implementation is the best one.

Compiler differences are less pronounced for AMD GPUs. The pre-
processing kernel delivers similar performance across all tested compil-

ers, while AdaptiveCpp combined with the USM-device model slightly 
surpasses HIPCC for the 2D FTLE kernel and the 3D application. These 
results suggest that compiler selection significantly influences NVIDIA 
GPUs more than AMD GPUs. Therefore, the native compiler nvcc is 
preferable for high-workload kernels for NVIDIA GPUs. In contrast, 
SYCL implementations, particularly those compiled with AdaptiveCpp 
and oneAPI, provide competitive or superior performance in lower 
workload scenarios.

5.3.3.  Comparison between SYCL and native programming models
A key objective of this study is to assess SYCL’s performance rela-

tive to native programming models such as CUDA and HIP. For AMD 
GPUs, SYCL achieves performance levels comparable to native imple-
mentations across all cases. For NVIDIA GPUs, the performance com-
parison depends on workload complexity. High-workload kernels, such 
as preprocessing, reveal a significant performance gap, with nvcc main-
taining a clear advantage over SYCL. However, this gap narrows in 3D 

Journal of Parallel and Distributed Computing 207 (2026) 105188 

15 



F.J. Andújar, R. Carratalá-Sáez, Y. Torres et al.

Fig. 12. Performance evaluation results of each kernel when targeting NVIDIA GPU devices for the 2D and 3D FTLE test cases.

test cases, where oneAPI compiled SYCL implementations nearly match 
nvcc. Notably, for low-workload kernels like FTLE, SYCL implementa-
tions actually outperform nvcc. These findings suggest that SYCL, when 
compiled with AdaptiveCpp or oneAPI, can serve as a competitive al-
ternative to native programming models, offering strong performance 
along with portability advantages.

5.3.4.  Effects of SYCL compilation mode for AdaptiveCpp: AOT vs. JIT
Finally, we discuss whether it is better to opt for AOT or JIT compila-

tion modes when using AdaptiveCpp to compile SYCL codes. Although 
the general agreement is that JIT compiling can produce better opti-
mizations, our results, and those presented by compiler designers (such 
as [18]), show that there are applications and situations where they 
lead to the opposite effect. With our chosen scenarios, there is only one 
case where the performance using AOT or JIT significantly differs: Us-
ing NVIDIA devices and running kernels with considerable workload 
(see Fig. 12, preprocessing kernel). In that case, AOT offers better re-
sults than JIT. In contrast, on AMD GPUs (see Fig. 13), JIT-compiled 
kernels run slightly better.

Consequently, the general recommendation would be to use AOT for 
NVIDIA GPUs and JIT for AMD GPUs. However, consider that the JIT 
compiler also achieves good performance, and it would be helpful when 
we want a completely portable application or when we do not know the 
architecture of the target device.

5.3.5.  Multi-GPU and multi-vendor performance
Multi-GPU and multi-vendor performance evaluations provide fur-

ther insights. Figs. 12 and 13 illustrate scalability trends when running 
test cases on up to two GPUs of the same vendor, demonstrating limited 
scalability due to the moderate workload of the kernels. Extending this 

evaluation, Fig. 15 presents results for SYCL compiled with AdaptiveCpp 
running on multiple GPUs from different vendors (NVIDIA and AMD).

The key takeaways from this analysis indicate that multi-vendor exe-
cution is feasible, showcasing SYCL’s strength in heterogeneous environ-
ments. Unlike CUDA or HIP, which require vendor-specific frameworks 
and binaries, SYCL enables a unified codebase that effectively utilizes 
all available GPUs. The preprocessing kernel exhibits scalable perfor-
mance, with improvements observed as the number of GPUs increases 
from two to four. However, scalability in the FTLE kernel stagnates due 
to its relatively low workload.

Additionally, using the four cards, AOT slightly outperforms JIT in 
most cases. Using only NVIDIA GPUs, AOT works better. On AMD GPUs, 
JIT works better. Nevertheless, the absolute gains of NVIDIA GPUs in 
the experimental platform are higher than the gains on the AMD GPUs. 
Thus, the overall result with the four GPUS is better using AOT.

Overall, these results emphasize SYCL’s potential in multi-vendor, 
multi-GPU execution scenarios. Its ability to bridge performance 
gaps while maintaining portability makes it a promising alterna-
tive to proprietary solutions, particularly in heterogeneous computing
environments.

6.  Development effort

This section analyzes the differences in development efforts between 
CUDA, HIP, and SYCL codes of UVaFTLE. We consider four classical 
development effort metrics: The number of lines of code (LOC), the
number of code tokens (TOK), McCabe’s cyclomatic complexity (CCN) 
[30], and Halstead’s development effort [31]. The first two metrics 
measure the code volume that the user should program. The third 
measures the rational effort required to program it, including code
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Fig. 13. Performance evaluation results of each kernel when targeting AMD GPU devices for the 2D and 3D FTLE test cases.

Fig. 14. Performance results targeting AMD Instinct MI250X on LUMI supercomputer using the HIP-based FTLE application using device memory, managed memory, 
and managed memory activating XNACK.

divergences and potential issues that should be considered when de-
veloping, testing, and debugging the program. The last metric mea-
sures code complexity and volume indicators, obtaining a comprehen-
sive measure of the development effort.

The measured codes include the management of data structures, ker-
nel definitions, and coordination host codes. For a fair comparison, each 
version is written in a single source code file and formatted according 
to the same criteria. The differences between codes are strictly neces-
sary and are associated with the particularities of each programming 

model. For example, comparing the FTLE kernels in CUDA and SYCL, 
the main differences are how the thread global index is calculated, 
as explained in Section 4, and certain calls to perform mathematical
operations, such as square root or cosine. The CUDA and HIP versions 
of the program support multiple GPUs of the corresponding vendor and 
the SYCL USM-based implementations. However, as we explain in Sec-
tion 4.5, by enabling multi-GPU execution when the buffer model is 
used, the final SYCL code changes in volume depending on the maxi-
mum number of GPUs allowed. For this reason, we have compared four 
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Fig. 15. AdaptiveCpp performance evaluation results of each kernel targeting AMD and NVIDIA GPUs simultaneously for the 2D and 3D FTLE test cases.

versions of the SYCL buffer code, allowing a maximum of 1, 2, 4, and 
8 GPUs, respectively. The cleaned versions of both the SYCL programs 
and the CUDA and HIP versions can be found in our repository, in the 
folder measure-codes [13].

Table 3 reflects the measures of the four development-effort metrics 
for each one of the functions that present changes that depend on the 
programming model chosen. They include the three critical functions 
that have been transformed into kernels (preprocessing, and the 2D and 
3D FTLE functions), the main function, which contains the memory man-
agement and kernel calls, and the whole program, including the previ-
ous code and other auxiliary functions and declarations independent of 
the heterogeneous programming model selected.

The metrics reveal that the development effort of CUDA and HIP 
versions regarding the kernels are almost the same, because their imple-
mentations are identical. Considering the SYCL version of the kernels, 
the values measured for the four metrics are higher than the CUDA/HIP 
results. Nevertheless, the CCN results present almost the same values 
as those observed for the native versions. These LOC and TOK higher 
values are mainly due to the submit lambda function, the creation of 
the accessors (in SYCL buffer code), and the nd-range parallel for lambda 
function (in all SYCL codes). The preprocessing kernel is the most af-
fected one by this increase, as it is the smallest kernel, being its code 
lines increased by 31% (with buffers) and 5% (with USM), and its num-
ber of tokens by 65% (with buffers) and 30% (with USM). Halstead’s 
development effort is around twice as much in SYCL than in the other 
two versions. This difference is less significant in the other two kernels: 
7% (buffers) and 1% (USM) more lines, 17% (buffers) and 6% (USM) 
more tokens, and 17% (buffers) and 15% (USM) more Halstead’s devel-
opment effort for the 2D kernel; and 5% (buffers) and 1% (USM) more 
lines, 11% (buffers) and 5% (USM) more tokens, and 16% (buffers) 
and 15% (USM) more Halstead’s development effort for the 3D kernel. 

These measures indicate that the increase in development effort is more 
significant with small kernels than with large kernels due to the min-
imum programming structures, declarations, and initialization needed 
in a SYCL kernel.

When analyzing the main function of the code, we see that the dif-
ferences between CUDA and HIP are minor. In the particular case of 
CUDA/HIP devices, LOC is the same, while TOK is slightly smaller for 
HIP (0.5% less) and Halstead (5% less). The same applies to CUDA/HIP 
Shared. When comparing Shared against Device in the main function, 
Shared presents better results with around 13% less LOC, 21% less TOK, 
17% less CNN, and 26% less Halstead values. All these differences in 
the main function are consequently also observed in the whole code for 
CUDA and HIP.

SYCL generally offers worse results than CUDA/HIP, with around 
40% higher CNN values. Taking as a reference the best CUDA/HIP case 
(Shared), when using SYCL with buffers, the LOC starts being 1% higher 
for 1 GPU and reaches up to 14% higher when using 8 GPUs; the TOK 
is 25% higher with 1 GPU and reaches 57% higher with 8 GPUs; and 
the Halstead metrics start at 34% higher with 1 GPU, reaching more 
than double of the corresponding value for CUDA/HIP when using 8 
GPUs. Note that, in modern systems with a vast number of GPUs, the 
development effort with SYCL using buffers would reach an impassable 
level of development (see the explanation in Section 4.5). Considering 
the SYCL USM versions, the Shared one requires less effort than the 
Device-based one. Compared with CUDA/HIP, the differences between 
those observed when using buffers are significantly reduced. Concretely, 
with SYCL USM Shared, the LOC is 2% smaller, the TOK is 12% higher 
with SYCL, and the Halstead metrics are 22% higher.

Analyzing the whole code globally, it can be seen that the SYCL code 
has greater development effort metrics than native versions, even in a 
single GPU version, especially for the TOK and Halstead metrics. The 
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Table 3 
Development effort metrics according to the programming model employed.
 Function/Kernel  Code version  LOC  TOK  CCN  Halstead
 Preprocessing  CUDA (Device and Shared)  19  190  8  23908

 HIP (Device and Shared)  19  190  8  23908
 SYCL Buffers  25  314  9  52657
 SYCL USM (Device and Shared)  20  248  9  41474

 FTLE 2D  CUDA (Device and Shared)  134  1090  26  508649
 HIP (Device and Shared)  134  1090  26  508649
 SYCL Buffers  144  1273  27  596583
 SYCL USM (Device and Shared)  136  1159  27  585189

 FTLE 3D  CUDA (Device and Shared)  194  1785  40  918499
 HIP (Device and Shared)  194  1785  40  918499
 SYCL Buffers  204  1982  41  1070756
 SYCL USM (Device and Shared)  196  1868  41  1061277

 main  CUDA Device  178  1557  17  603399
 CUDA Shared  154  1225  14  442444
 HIP Device  178  1548  17  571032
 HIP Shared  154  1216  14  418225
 SYCL Buf. (1 GPU)  157  1511  20  594992
 SYCL Buf. (2 GPUs)  163  1594  20  650984
 SYCL Buf. (4 GPUs)  167  1694  20  718834
 SYCL Buf. (8 GPUs)  175  1926  20  897778
 SYCL USM Device  176  1782  20  787955
 SYCL USM Shared  151  1372  20  542507

 Whole code  CUDA Device  625  5201  110  5276951
 CUDA Shared  601  4870  107  4940742
 HIP Device  625  5193  110  5231299
 HIP Shared  601  4861  107  4895645
 SYCL Buf. (1 GPU)  630  5660  116  6716551
 SYCL Buf. (2 GPUs)  636  5743  116  6890008
 SYCL Buf. (4 GPUs)  640  5843  116  7093358
 SYCL Buf. (8 GPUs)  648  6075  116  7600510
 SYCL USM Device  628  5637  116  6763383
 SYCL USM Shared  603  5227  116  6123110

only exception is the LOC value when using USM Shared with SYCL, 
which is slightly smaller than that for either CUDA or HIP.

In summary, in SYCL, the transparent management of buffers and 
memory movements for a single device and queue is more straightfor-
ward and comparable to orchestrating the equivalent asynchronous op-
erations in CUDA or HIP. However, the elaborated syntax and declara-
tions needed for kernels increase their complexity, especially for simple 
or small kernels. Moreover, in the SYCL host code with buffers, manag-
ing each extra device introduces more complexity. In contrast, managing 
an arbitrary number of devices can be easily abstracted in the CUDA and 
HIP versions. However, this SYCL problem could be solved in the future 
if the compilers include full support for sub-buffers (see Section 4.5). 
Considering the SYCL case when using USM, the development effort 
is notably smaller in general than that seen with buffers. However, it 
is still slightly greater than the equivalent measures for CUDA or HIP. 
Finally, using shared memory always obtains the lowest development 
effort metrics. However, the performance problems detected in current 
USM memory implementations (see Section 5) may discourage its use 
except for applications with only one kernel executed in one GPU, or if 
memory access is manually tuned.

7.  Key findings and insights

Based on the experiments conducted and the analysis carried out, 
the main findings that can be extracted from this work are as follows:

• In general, the performance results reveal that, when using buffers 
or USM with device memory, there is not a remarkable overhead 
associated with SYCL usage in terms of the GPU kernel execution 
times compared to using kernel native implementations based on 
CUDA or HIP. This result is consistent when compiling it with either 
AdaptiveCpp or oneAPI. The only exception is when comparing the 
preprocessing kernel in the CUDA-based version compiled with nvcc 
against the one compiled with clang or the equivalent SYCL version. 

The first one is faster. When using USM and shared memory in SYCL 
(or managed memory in CUDA/HIP), the performance notably wors-
ens. It would be advisable to use shared/managed memory: (1) To 
obtain an initial version of the application due to its lower develop-
ment effort; (2) When the application has only one kernel and does 
not distribute the computation in two or more GPUs, or (3) When 
the programmer is eager to take the effort to manually optimize the 
application memory accesses by adding code with hints declared in 
the language of the specific backend, diminishing portability.

• We have evaluated two very different kernels in their nature: As ex-
plained in previous sections, the preprocessing kernel is much more 
memory-intensive than the FTLE one, which focuses on solving a 
collection of linear algebra operations and is much faster to com-
plete. Although the kernels’ typology is very different the scalability 
observed with the native versions and SYCL is equivalent.

• Regarding the multi-GPU programs with SYCL and AdaptiveCpp for 
four GPU devices, two NVIDIA, and two AMD, the first observation is 
that the code can indeed simultaneously leverage all of them because 
the application tested does not need communications across devices 
that require different backends. The performance results reflect that 
using the four GPU devices improves the results for the preprocessing 
kernel. However, this is not true for the FTLE kernel because the 
load is distributed by balanced blocks, not taking into account the 
different computational power of each device. Thus, the final load is 
unbalanced due to the lower computational power of the AMD GPUs 
in our experimental platform compared to the NVIDIA ones.

• The development effort measures indicate that using CUDA/HIP is 
slightly easier than programming in SYCL (both USM and buffer 
memory management models). The least complexity values regard-
ing memory movements are observed when opting for shared mem-
ory, regardless of the programming model. The basic kernel syntax 
and the inner declarations needed with SYCL are slightly higher than 
for CUDA or HIP. Using buffers with SYCL increases the complexity 
of the kernels.
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Fig. 16. Decision tree to assist in selecting the programming model, according to the number of GPUs to use and their vendor.

• With the current development status of the SYCL compilers, the de-
velopment effort metrics reveal that the management of each extra 
device introduces more code complexity when opting for buffers. 
In contrast, managing an arbitrary number of devices can be easily 
abstracted in the CUDA and HIP versions. Using SYCL with USM is 
slightly more costly than opting for CUDA or HIP. Still, the complex-
ity is constant, regardless of the number of devices targeted, contrary 
to the equivalent case when using buffers, where increasing the num-
ber of GPUs implies also increasing the complexity.

• Although the development effort is generally higher, the SYCL pro-
grams are more portable. They can run the application and distribute 
the computation in both NVIDIA and AMD GPUs, even combining 
the GPUs of the two vendors in the same execution. With vendor-
provided models, this could only be done by combining them in a 
much more complicated code that should include the solutions in 
both models, adding some data communication across them.

8.  Putting all together: A general development strategy

This section provides general insights to help choose the best pro-
gramming model, compiler, and data management model. Although our 
findings have been obtained with a particular application there are gen-

eral conclusions that can help guide the early stages of development of 
other parallel applications.

First, if the primary objective is to ensure code portability, it is ev-
ident that SYCL is a good choice. Of the different options considered 
in this study, it is the only one that allows the use of GPUs of differ-
ent vendors, as far as there are no data communications across devices. 
Nevertheless, several other aspects must also be considered if the goal 
is to maximize performance. The first thing to consider is the number 
of GPUs and vendors to use. In Fig. 16, we illustrate schematically the 
decisions to select the most appropriate programming model (CUDA, 
HIP, or SYCL). If GPUs from different vendors are employed, SYCL is 
the best option; otherwise, if NVIDIA devices are used, CUDA offers the 
best performance, and for AMD devices, both SYCL and HIP are equally 
good options.

After choosing the programming model, the next step is to choose 
the most suitable compiler. Fig. 17 provides a schematic represen-
tation of the key considerations for this decision. In summary, to 
use CUDA, the best compiler option is nvcc; to use HIP, the recom-
mended compiler is hipcc; with SYCL, for NVIDIA GPUs, oneAPI is the 
preferred choice, while for AMD GPUs, we would recommend using
AdaptiveCpp.

Finally, it is also important to choose the data management strat-
egy correctly. When nvcc or hipcc compilers are used, the best option 

Fig. 17. Decision tree to assist in selecting the compiler, according to the programming model chosen.
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Fig. 18. Decision tree to assist in selecting the data management according to the programming model and compiler chosen.

in terms of performance is the USM-device data management strategy. 
With SYCL, if the AdaptiveCpp compiler is employed, also the USM-
device data management strategy is the best option. With oneAPI, the 
buffer data management strategy is better. Fig. 18 provides a schema of 
these considerations.

9.  Related work

In this section, we briefly describe the landscape of contributions that 
study the functional and performance portability of SYCL and its asso-
ciated problems, as well as the works that focus on FTLE computation 
and their limitations.

9.1.  SYCL Portability

Due to the growing interest in heterogeneous computing and SYCL, 
several works have used this standard and studied its portability. Some 
of these works are focused on code migration to SYCL from other lan-
guages like CUDA [32–34], OpenCL [35,36], or OpenMP [37], com-
paring the performance of both versions. Other papers present SYCL 
libraries to speed up and make portable other scientific works, such as 
machine learning [38], or neural network [39] algorithms, or present 
SYCL hand-tuned versions of a specific algorithm, comparing them with 
the state-of-the-art algorithms [40]. Other works extensively study the 
performance portability of SYCL across different device types for spe-
cific classes of applications (see e.g. [41]). There are also extensions to 
SYCL that explore the portability and efficiency of applications across 
multiple accelerators of different types using their own execution model, 
such as CHARM-SYCL [42].

Other works are focused on the performance evaluation of SYCL 
compilers. In [43], the authors made a comparative study of OpenCL, 
OpenMP, and TriSYCL in multiprocessors. However, TriSYCL currently 
does not support GPUs. In [44], a comparison using several benchmarks 
and the Intel LLVM-SYCL compiler against CUDA using Tesla V-100 is 
presented. However, AMD architecture is not studied. Other works com-
pare several SYCL compilers [45–47] against multiple AMD and NVIDIA 
GPUs models.

Focusing on the SYCL memory management models, some works re-
port that using the USM memory model with device allocation in dis-
crete devices does not lead to performance penalties [48]. Other works 
point out that for other applications, using USM with shared (or man-
aged) allocation implies significant performance degradation due to 
page fault handling and PCIe latencies [49]. The study of the perfor-
mance portability of the SYCL memory management models depends 
on the communication structure of the application and the classes of 
different devices involved.

To the best of our knowledge, none of the existing works explore 
the possibilities offered by SYCL of using multiple GPUs of different 
vendors simultaneously (such as NVIDIA and AMD) while analyzing the 
development effort implications of coding in SYCL for several devices 
with varying models of memory allocation.

9.2.  FTLE Computation

In the literature, previous works offer optimizations in the context 
of the FTLE computation. Some [50–54] focus on speeding up the cal-
culations of the FTLE by applying some optimization techniques such 
as reducing I/O, optimizing the use of the memory hierarchy, or using 
multiple CPUs. Other authors [55–60] focus on exploiting GPU devices 
to accelerate FTLE computation. Another study proposes using an Ac-
celerated Processing Unit (APU) to speed up the computation of FTLEs 
[61].

As we described in our previous work [12], the main problems of 
the existing proposals that leverage GPU devices to compute the FTLE 
are that most of them are old and based on outdated tools incapable 
of tackling modern devices. Besides, in general, a multi-GPU scheme is 
not supported. Moreover, neither an in-depth description of the GPU 
implementation nor the source code are provided. For these reasons, 
our previous work offered a competitive, open-source implementation of 
the FTLE computation (named UVaFTLE) equipped with a CUDA kernel 
capable of simultaneously using multiple NVIDIA GPU devices.

To the best of our knowledge, in the existing literature, there is a lack 
of updated proposals for FTLE computation that tackle heterogeneous 
environments provided with GPU devices from different vendors. To fill 
this gap, in this work, we re-design UVaFTLE to use SYCL in such a 
way that it can leverage any GPU device, regardless of its vendor. For 
completeness, we also present a novel UVaFTLE implementation that 
uses HIP instead of CUDA to tackle AMD GPU devices. Moreover, we 
evaluate the SYCL performance compared to the implementations based 
on HIP or CUDA.

10.  Concluding remarks

Ensuring performance portability across heterogeneous GPU archi-
tectures remains a crucial challenge in high-performance computing. 
In this work, we show that SYCL can provide a viable alternative to 
vendor-specific programming models, enabling multi-GPU execution 
across different architectures with competitive performance. Our evalu-
ation of the FTLE application shows that SYCL, particularly with USM-
device memory, achieves performance close to CUDA and HIP while 
significantly improving portability. However, the shared (SYCL) or man-
aged (CUDA/HIP) memory management model introduces performance 
penalties, particularly in multi-GPU setups.
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The results highlight that while SYCL increases development ef-
fort compared to native programming models, it offers an important
advantage: a unified programming approach across different GPU ven-
dors. This makes it an attractive option for developers who prioritize 
portability without sacrificing significant performance.

Given these findings, future work should explore improved load-
balancing techniques for SYCL multi-GPU applications, study the un-
solved problem of communications across different backends in SYCL, 
and extend evaluations to additional architectures such as FPGAs. We 
also encourage researchers and developers to contribute to the ongoing 
refinement of SYCL implementations to further enhance performance 
portability. As SYCL continues to mature, it has the potential to become 
a standard tool for high-performance heterogeneous computing.
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