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 a b s t r a c t

There is only one way to assign positions to objects arranged in linear orders: following the sequence of natural 
numbers (1, 2, 3, 4, …). However, in weak orders, where ties arise, there are different possibilities to assign 
positions to tied objects. In this paper, we focus mainly on three relevant cases: the standard, modified, and 
fractional ranks. They are differentiated by the spaces that appear after, before, or on either side of the position 
values corresponding to the objects that are in a tie. For instance, if two objects are tied and are located immedi-
ately below the top object, these ranks assign the positions (1, 2, 2, 4, …), (1, 3, 3, 4, …), and (1, 2.5, 2.5, 4, …), 
respectively. Collectively, and because of the common properties shown here, we call them “competition ranks”. 
In this paper, we characterize a parameterized family of position operators which includes the competition ranks. 
We also provide specific axiomatizations of each of them, taking into account the spaces in the sequence of as-
signed position numbers. It is shown why the dense rank (1, 2, 2, 3, …), another position operator where gaps 
do not appear, is an essentially different approach. Furthermore, interesting duality relationships are revealed 
between the competition ranks and between the properties introduced to characterize them, which allow us 
to understand their internal logic and connections. Different examples, mainly from sports, bibliometrics, etc., 
illustrate the introduced concepts.

1.  Introduction

In the following text1, which deals with the treatment of ties in the 
setting of ranking data and related contexts, the principal notions ap-
pearing in this paper are introduced in a non-formal pedagogical way:

It is not always possible to assign rankings uniquely. 
For example, in a race or competition two (or more) en-
trants might tie for a place in the ranking […] In this case, 
one of the strategies below for assigning the rankings may 
be adopted.

A common shorthand way to distinguish these rank-
ing strategies is by the ranking numbers that would be 
produced for four items, with the first item ranked ahead 
of the second and third (which compare equal) which are 
both ranked ahead of the fourth ⎡⎢
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. These names are 
also shown below.

∗ Corresponding author.
 E-mail addresses: miguel.mpanero@uva.es (M. Martínez-Panero), lapresta@uva.es (J.L. García-Lapresta).
1 Taken from Wikipedia: Strategies for handling ties, in https://en.wikipedia.

org/wiki/Ranking.

⊳ Standard competition ranking (“1 2 2 4” ranking) 
[…]

⊳ Modified competition ranking (“1 3 3 4” ranking) 
[…]

⊳ Ordinal ranking (“1 2 3 4” ranking) […]

⊳ Fractional ranking (“1  2.5  2.5  4” ranking) […]

⊳ Dense ranking (“1 2 2 3” ranking) […]

The latter is called “dense” due to the absence of gaps in the se-
quence of positions2, while the standard, modified and fractional ranks 
consider distinct ways of jumping between assigned numbers when ties 
arise, leaving spaces after, before, or on both sides of repeated positions, 

2 We employ “dense rank”, as in García-Lapresta and Martínez-Panero (2024), 
avoiding “dense ranking”. The same stands for the standard, modified, fractional 
and ordinal ranks. Also, instead of “ranking numbers” assigned to the alterna-
tives under a weak order, we use the term “positions”.
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$\lambda =0$


$\,C_R(x_i) = (a_i,1)\,$


$a_i$


$\,a_i\,$


$\,x_i$


$\,A_i \subseteq X$


$\,O_{R|_{X\setminus A_i}}(x_i)=1$


$R$
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$\,n-a_i-1\,$
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$\,X\setminus \big (A_i \cup \{x_i\}\big )$
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$R$
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$\,x_i\,$


$\,O_R(x_i)=O_{R|_{\{x_i\}}}(x_i)=1$


$\,\{x_i\}$


$\,x_i\,$


$\,O_{R|_{\{x_i\}}}(x_i)=1$


$\,\{x_i\}$


$\,n-1\,$


$x_i$


$R$
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$\,x_i\,$


$\,C_R(x_i)=(n-1, 1)$
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$\varOmega $
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$\,x_i\,$
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$R$


$\,x_{11}\,$


$\,x_1$


$\,x_1\,$


$\,x_{11}\,$


$\,x_1\,$


$\,0.58 \ne 0.53$


$\,R_1$


$x_3$


$\,\#X=3$


$\varOmega $


$\varOmega $


$O$


$\,O = \varOmega ^{\lambda }\,$


$\,\lambda \in [0,1]$


$\,C_R(x_i)=(a_i,b_i)\,$


$\,b_i-1\,$


$\,x_i,$


$\,O_{R|_{(X\setminus T^{a_i})\cup \{x_i\}}}(x_i)=a_i+1$


$\,b_i-1\,$


$R$


$\,\lambda \,$


$\,O_R(x_i)=a_i + 1+ \lambda \cdot (b_i - 1)=\varOmega _R^{\lambda } (x_i)$


$O$


$\,O = \varOmega ^{\lambda }\,$


$\,\lambda \in [0,1]$


$O$


$\,O = \varOmega ^{\lambda }\,$


$\,\lambda \in [0,1]$


$\,\lambda =0$


$\,O_R (x_i) = a_i + 1+ (b_i - 1)^2\,$


$\,O_R (x_i) = a_i + 1 + b_i \,$


$\,O_R (x_i) = n\,$


$\,\varOmega \,$


$\,X=T^{l_1} \cup T^{l_2} \cup \cdots \cup T^{l_t}\,$


$X$


$\,R\in \mathcal {W}(X)$


$\,x_{i_k}\in T^{l_k}$


$O$


$O_R(x_{i_1})=1\,$


$\,O_R(x_{i_{k+1}})=O_R(x_{i_k}) + b_{i_k}\,$


$\,O_R=S_R$


$O_R(x_{i_1})=b_{i_1}\,$


$\,O_R(x_{i_{k+1}})=O_R(x_{i_k}) + b_{i_{k+1}}\,$


$\,O_R=M_R$


$O_R(x_{i_1})=\dfrac {b_{i_1}+1}{2}\,$


$\,O_R(x_{i_{k+1}})=O_R(x_{i_k}) + \dfrac {b_{i_{k}}+b_{i_{k+1}}}{2}\,$


$\,O_R=F_R$


$S_R$


$\,x_{i_1}\in T^{l_1}=T^0$


$\,a_{i_1}=0\,$


$\,S_R(x_{i_1})=0+1=1$


$\,x_{i_k}\,$


$\,x_{i_{k+1}}$


$\,a_{i{_{k+1}}}=a_{i_k}+b_{i_k}$


$\,S_R(x_{i_{k+1}})=a_{i_{k+1}}+1=(a_{i_k}+b_{i_k})+1=(a_{i_k}+1)+ b_{i_k}=S_R(x_{i_k})+b_{i_k}$


$\,O_R\,$


$\,S_R$


$\,O_R(x_{i_1})=1=0+1= a_{i_1}+1=S_R(x_{i_1})$


$k$


$\,x_{i_k}\,$


$\,x_{i_{k+1}}$
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$\,1,2,\dots , n$
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$n+1$


$R\,$


$R^{-1}$


$O$


$O^d$


\begin {equation*}O_R^d(x_i) = n+1 - O_{R^{-1}}(x_i).\end {equation*}
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$\,S_R^d=M_R$
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$\,\varOmega \,$
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$\,\lambda \cdot (b_i-1)=(1-\lambda )\cdot (b_i-1))$


$\,b_i\ne 1$


$\,\lambda =1-\lambda $


$\,\lambda =0.5$


$\left ( O^d \right )^d = O$


$n+1$


$\# T+1$


$\,\lambda \in [0,1]\,$


$\,1-\lambda $


$O$


$\,R\in \mathcal {L}(X)$


$\,O_R(x_i)=a_i+1\,$


$\,x_i\in X\,$


$\,C_R(x_i)=(a_i,1)$


$\,{R^{-1}}\in \mathcal {L}(X)\,$


$\,O^d_R(x_i)=n+1-O_{R{-1}}(x_i)=n+1-((n-a_i-1)+1)=a_i+1$


$\,C_{R^{-1}}(x_i)=(n-a_i-1,1)$


$O^d$


$O$


$x_i$


$R$


$R^{-1}$


$\,O_{R^{-1}}(x_i)=1$


$\,O_R^{d}(x_i)=n+1- 1=n$


$\,O^d$


$\,R' \in \mathcal {W}(X')$


$\,X' = X \cup \{ x_{n+1} \}\,$


$\,x_{n+1} \notin X$


$\,R' \vert _X = R\,$


$\, x_i \,P' x_{n+1}\,$


$\,x_i \in X$


$O$


$\,x_{n+1}\,$


$\, x_i\,$


$R^{-1}$


$\,O_{(R')^{-1}}(x_i)=O_{R^{-1}}(x_i)+1$


\begin {align*}& (n+1)+1-O_{(R')^{-1}}(x_i) =\\ & (n+1)+1-(O_{R^{-1}}(x_i)+1) = \\ & n+1-O_{R^{-1}}(x_i),\end {align*}
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$O$
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$R$
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$C_R^{-1}(x_i)(n-a_i-1,1)$
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$O$


$\,O_R=F_R\,$


$\,R\in \mathcal {W}(X)$


$a_i$


$b_i$


$x_i$


$O$


$\,x_i\in X\,$


$\,C_R(x_i) = (a_i,b_i)$


$O$


$f$


$\,O_R(x_i)=f(a_i,b_i)$
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$x_i$
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$x_i$
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$\,C_{(R')^{-1}}(x_i) = (n'-a_i-b_i,b_i)=(a_i,b_i)$


$\,O_{R'}(x_i)=O_R(x_i)=O_{(R')^{-1}}(x_i)=f(a_i,b_i)$


$O$
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respectively. In each of these cases, the jumps depend on the number of 
ties. On the other hand, the ordinal rank assigns values sequentially, like 
the dense rank, but it does not allow repetitions, forcing a tiebreaker at 
random or arbitrarily among shared positions3. However, it is worth 
noting that none of these methods (including ordinal ranking) performs 
a tiebreaker among alternatives.

Although some authors have used other names4, the previous termi-
nology, together with self-descriptive mnemonic help, has become com-
mon in the literature. Let us mention some examples: in contest the-
ory, Vojnović (2016) provides formal definitions of all these concepts 
from the same situation involving four objects; Cline (2021) reproduces 
(with slight variants and without any reference) the quotation above 
when dealing with rank-based examinations using the R program; and 
Dunaiski et al. (2018) as well as Orduña-Mallea and Peŕez-Esparrells 
(2021) consider these possibilities for ranking universities and academic 
entities depending on the numeric approach adopted. Examples avail-
able online are even more common than those appearing in traditional 
or academic sources.

As the competition ranks appearing in the very title of the paper are 
not coined as such in the literature5, a comment on this expression is 
convenient at this point. The term “competition” usually appears jointly 
with the standard and modified ranks (e.g., in all the references above, 
except Dunaiski et al., 2018). On the other hand, “competition” is rarely 
shown alongside the fractional rank6. However, as we demonstrate in 
this paper, all these ranks share connections and similar features, so that 
we have gathered all of them, yielding the class of “competition ranks”.

Within this class, one or another way in which objects in a tie are 
ranked can be relevant for certain purposes and should be considered 
in each specific situation. For example, in the recent bibliometric sce-
nario based on the publication of the Journal Citation Reports (JCR) from 
2023, one decimal place, instead of the three previously considered, is 
shown in the Journal Impact Factor (JIF) as calculated by Clarivate An-
alytics in the Web of Science database. According to Edmunds (2003), 
“with the move to one decimal, ties will be more common [and] the 
longstanding approach for JCR is to assign journals with the same JIF 
in the same category with the same rank position, skipping the ranking 
position or positions for the journal with the next lower JIF value. This 
is commonly known as sparse rank7”. This situation can be observed in 
the Operations Research and Management Science category in 2024. That 
year, three journals after EJOR, which ranked 13, shared the same JIF. 
Table 1 shows how, as mentioned above, they shared position 14, and 
subsequently two places were skipped.

Edmunds (2003) also points out that “rankings for ties can be han-
dled in different ways”. In this case, if the fractional rank had been used 
instead of the standard rank, the tied journals would have received a 

3 Another interesting possibility, close in some aspects to the ordinal rank, 
appears in Grzegorzewski (2006), where an extension of Kendall’s coefficient 
is proposed in a context of partial preorders. To this aim, this author models 
rankings through IF-sets but, previously, he motivates the need of dealing with 
missing information or hesitance. In this last case, the alternatives in the ar-
rangement above would be assigned: 1 (2 or 3) (2 or 3) 4. However, it is 
pointed out that “if tied observations also appear then the most common prac-
tice for dealing with them, as in most other nonparametric procedures, is to 
assign equal ranks to indistinguishable observations”, which is not true for the 
ordinal rank.
4 Fine and Fine (1974) coined the terms strict, weak and average corresponding 

to the standard, modified and fractional ranks, respectively. Also, the fractional 
rank was called mid-rank by Kendall (1945, 1948).
5 Note, however, that given a sequence 𝑆 of numbers, Kammer et al. (2025) 

define: “The competitive rank of each 𝑥 ∈ 𝑆  is the number of elements in 𝑆
that are smaller than 𝑥. The dense rank of each 𝑥 ∈ 𝑆  is the number of distinct 
elements in 𝑆 that are smaller than 𝑥, i.e., competitive rank counts duplicate 
elements and dense rank does not”.
6 Some exceptions are https://documentation.sas.com/doc/en/imlug/15.2/

imlug_langref_sect399.htm and https://rosettacode.org/wiki/Ranking_methods.
7 In this paper it is called standard rank. 

Table 1 
First tie in 2024 JIF (Operations research and management science). 
Source: ooir.org.
 Rank  Journal  Impact Factor 2024
⋯ ⋯ ⋯
 13  European Journal of Operational Research  6
 14  Production Planning & Control  5.4
 –  Socio-Economic Planning Sciences  5.4
 –  Safety Science  5.4
 17  Production and Operations Management  5.1
⋯ ⋯ ⋯

position rank of 15, and would even have dropped to 16 with the modi-
fied rank. It is interesting to note that, as quartiles in each category are 
calculated from positions as inputs8, in extreme cases some tied journals 
could belong to an upper or lower quartile depending on the rank used, 
the current one (the standard rank) being that which presents the best 
possible results (among competition ranks) for dealing with ties.

Anyway, rather than focusing on practical applications, here we seek 
to understand the internal logic of these competition ranks, usually used 
in sports, contests, etc. To this aim, it will be shown how the standard, 
modified and fractional ranks can be included in a comprehensive family 
of position operators through an aggregation process (or, equivalently, 
linear parametric interpolation).

We characterize this parameterized family which extends the com-
petition ranks in several ways, being the common property in all these 
axiomatizations that of uniform variation under ties. Afterwards, we also 
provide specific characterizations of each competition rank taking into 
account the gap structure in the sequence of assigned position numbers, 
and we explain the obtained recurrence with duality arguments.

We have not considered the ordinal rank as a final result because, 
as commented in footnote 3, it assigns different positions to objects that 
compare equal (which is an undesirable property), but we have used it 
as a provisional output in some processes (see later footnote 12 for a 
more detailed explanation on this exclusion). Finally, we have exten-
sively considered in this paper the dense rank, already characterized in 
García-Lapresta and Martínez-Panero (2024), but we have shown that 
it is essentially different to the previous ranks, and does not belong to 
the introduced parameterized family nor can be obtained by aggrega-
tion in a similar way (moreover, it does not belong to the broader class 
of representable position operators).

The paper is organized as follows. Section 2 introduces the notation 
concerning preferences over alternatives, and proposes the codification 
of weak orders followed throughout the paper. In Section 3, we define 
position operators, focusing on the competition ranks obtained by aggre-
gation through tie-breaking processes, which allows us to include these 
and other ranks in a broad class of representable position operators. 
Section 4 provides characterizations of the competition ranks within a 
parameterized family of position operators, while Section 5 presents ax-
iomatizations of each particular competition rank attending to the gap 
structure in the sequence of assigned position numbers. Section 6 sheds 
some more light on properties and ranks taking into account duality by 
inversion. Section 7 presents some conclusions and suggests some fur-
ther research lines. Finally, some technical proofs have been omitted in 
the main text, although they appear in the Appendix.

2.  Codification of weak orders

Consider a finite set of alternatives (or objects) 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛}, 
with 𝑛 ⩾ 2. A weak order (or complete preorder) on 𝑋 is a complete9 and 

8 See Edmunds (2003) for details.
9 A binary relation 𝑅 on 𝑋 is complete if 𝑥𝑖 𝑅𝑥𝑗  or 𝑥𝑗 𝑅𝑥𝑖, for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑋.
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transitive10 binary relation on 𝑋. A linear order on 𝑋 is an antisym-
metric11 weak order on 𝑋. With (𝑋)  and (𝑋)  we denote the sets 
of weak and linear orders on 𝑋, respectively. Given 𝑅 ∈ (𝑋), with 𝑃
and 𝐼  we denote the asymmetric and symmetric parts of 𝑅, respectively: 
𝑥𝑖 𝑃 𝑥𝑗  if not 𝑥𝑗 𝑅𝑥𝑖; and 𝑥𝑖 𝐼 𝑥𝑗  if (𝑥𝑖 𝑅𝑥𝑗  and 𝑥𝑗 𝑅𝑥𝑖).

Given 𝑅 ∈ (𝑋)  and a permutation 𝜎 on {1, 2,… , 𝑛}, we denote 
by 𝑅𝜎  the weak order obtained from 𝑅 by relabeling the alternatives 
according to 𝜎, i.e., 𝑥𝑖 𝑅𝑥𝑗 ⇔ 𝑥𝜎(𝑖) 𝑅𝜎 𝑥𝜎(𝑗), for all 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}. In 
a similar way, we denote by 𝑅−1  the weak order obtained from 𝑅 by 
inversion, i.e., 𝑥𝑖 𝑅−1 𝑥𝑗 ⇔ 𝑥𝑗 𝑅𝑥𝑖 , for all 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}.

Given 𝑅 ∈ (𝑋)  and 𝑌 ⊆ 𝑋, the restriction of 𝑅 to 𝑌 , 𝑅|𝑌 , is de-
fined as 𝑥𝑖 𝑅|𝑌 𝑥𝑗 if 𝑥𝑖 𝑅𝑥𝑗 , for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑌 . Note that 𝑅|𝑌 ∈ (𝑌 ).

In turn, #𝑌  is the cardinality of 𝑌 .
Given 𝑅 ∈ (𝑋), we next consider the number of alternatives pre-

ferred and indifferent to 𝑥𝑖 ∈ 𝑋. Following the convention of represent-
ing the alternatives from top (best) to bottom (worst), we denote by
𝐴𝑖 =

{

𝑥𝑗 ∈ 𝑋 ∣ 𝑥𝑗 𝑃 𝑥𝑖
}

the set of alternatives above 𝑥𝑖 (or dominating 𝑥𝑖), and by 𝑎𝑖  its cardi-
nality, i.e., 𝑎𝑖 = #𝐴𝑖.

Also, we denote by
𝐵𝑖 =

{

𝑥𝑗 ∈ 𝑋 ∣ 𝑥𝑖 𝐼 𝑥𝑗
}

the set of alternatives beside 𝑥𝑖, itself included, and by 𝑏𝑖  its cardinality, 
i.e., 𝑏𝑖 = #𝐵𝑖.

In this way, 𝑎𝑖 ∈ {0, 1,… , 𝑛 − 1}, 𝑏𝑖 ∈ {1, 2,… , 𝑛}  and 𝑎𝑖 + 𝑏𝑖 ⩽ 𝑛.
In the following proposition we show the basic relationships between 

the weak order and these values. Its proof appears in the Appendix.
Proposition 1. Given 𝑅 ∈ (𝑋) and 𝑥𝑖, 𝑥𝑗 ∈ 𝑋:

1. 𝑥𝑖 𝑃 𝑥𝑗 ⇔ 𝑎𝑖 < 𝑎𝑗 .
2. 𝑥𝑖 𝐼 𝑥𝑗 ⇔ 𝑎𝑖 = 𝑎𝑗 .
3. 𝑥𝑖 𝐼 𝑥𝑗 ⇒ 𝑏𝑖 = 𝑏𝑗 .

Note that the introduced values faithfully reflect the original struc-
ture. Let us consider again the Wikipedia arrangement ⎡⎢

⎢

⎣

∙
∙ ∙
∙

⎤

⎥

⎥

⎦

 to show 
this. If we label the item on top as 𝑥1, then 𝑎1 = 0  (none above) and 
𝑏1 = 1  (itself counted). If 𝑥2 and 𝑥3 share the middle position, then 
𝑎2 = 𝑎3 = 1  (one alternative above both of them) and 𝑏2 = 𝑏3 = 2  (two 
items compared equal). Finally, if 𝑥4 is at the bottom, then 𝑎4 = 3  (three 
items above) and 𝑏4 = 1  (itself counted). Conversely, it is straightfor-
ward that the original structure can be totally recovered from these val-
ues 𝑎𝑖  and 𝑏𝑖.
Definition 1. Let 𝐷 = {(𝑎, 𝑏) ∈ {0, 1,… , 𝑛 − 1} × {1, 2,… , 𝑛} ∣ 𝑎 + 𝑏 ⩽
𝑛}. The mapping 𝐶𝑅 ∶ 𝑋 ⟶ 𝐷  is defined as 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖).

We say that the vector (

𝐶𝑅(𝑥1),… , 𝐶𝑅(𝑥𝑛)
)

∈ 𝐷𝑛  codifies 𝑅 ∈
(𝑋). 

It is easy to check that #𝐷 =
𝑛 ⋅ (𝑛 + 1)

2
.

Example 1. Consider the following weak order 𝑅 ∈ ({𝑥1,… , 𝑥10})

𝑥2 𝑥7
𝑥1

𝑥5 𝑥8 𝑥10
𝑥3 𝑥4 𝑥6 𝑥9

where alternatives in upper rows are preferred to those located in lower 
rows, while the ones in the same row are indifferent. It is codified 
through

𝐶𝑅(𝑥2) = 𝐶𝑅(𝑥7) = (0, 2)

10 A binary relation 𝑅 on 𝑋 is transitive if (𝑥𝑖 𝑅𝑥𝑗  and 𝑥𝑗 𝑅𝑥𝑘) implies 𝑥𝑖 𝑅𝑥𝑘, 
for all 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 ∈ 𝑋.
11 A binary relation 𝑅 on 𝑋 is antisymmetric if (𝑥𝑖 𝑅𝑥𝑗  and 𝑥𝑗 𝑅𝑥𝑖) implies 
𝑥𝑖 = 𝑥𝑗 , for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑋.

𝐶𝑅(𝑥1) = (2, 1)

𝐶𝑅(𝑥5) = 𝐶𝑅(𝑥8) = 𝐶𝑅(𝑥10) = (3, 3)

𝐶𝑅(𝑥3) = 𝐶𝑅(𝑥4) = 𝐶𝑅(𝑥6) = 𝐶𝑅(𝑥9) = (6, 4).

Note that the vector
(

(2, 1), (0, 2), (6, 4), (6, 4), (3, 3), (6, 4), (0, 2), (3, 3), (6, 4), (3, 3)
)

∈ 𝐷10

codifies 𝑅 ∈ (𝑋), but not all vectors of 𝐷10  correspond to the cod-
ification of a weak order. For example, among other relationships to 
appear in what follows, the second coordinate 𝑏𝑖 for each component 
(𝑎𝑖, 𝑏𝑖)  must be the number of components that share the first coordi-
nate 𝑎𝑖.

For small values of 𝑛, we can make a more accurate description:
• If 𝑛 = 2, then 𝐷 = {(0, 1), (0, 2), (1, 1)}  and (

(0, 1), (1, 1)
)

, 
(

(1, 1), (0, 1)
) and (

(0, 2), (0, 2)
)  are the vectors of 𝐷2 that 

codify the three weak orders on {𝑥1, 𝑥2}. However, the other 6 
vectors of 𝐷2 do not codify any weak order on {𝑥1, 𝑥2}.

• If 𝑛 = 3, then 𝐷 = {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1)}  and only 13 
out of 216 triples of 𝐷3 codify the 13 weak orders on {𝑥1, 𝑥2, 𝑥3}.

• If 𝑛 = 4, then 𝐷 = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (3, 1)}  and only 75 out of 1000 4-tuples of 𝐷4 codify the 75 
weak orders on {𝑥1, 𝑥2, 𝑥3, 𝑥4}.

Exact values of the number of weak orders on 𝑋 can be found in 
Santos-García and Alcantud (2025), focusing on the particular case 𝑘 =
𝑛 (or, equivalently, 𝑘 = 0) in Theorem 1, which provides the cardinality 
of preference approval structures on 𝑋.

In order to achieve a general description of the structure of those 
vectors in 𝐷𝑛 codifying weak orders on 𝑋, we use another way of sorting 
alternatives already introduced in García-Lapresta and Martínez-Panero 
(2024).

Given 𝑅 ∈ (𝑋), for each 𝑎 ∈ {0, 1,… , 𝑛 − 1}, with 𝑇 𝑎 we denote 
the set of all the alternatives that have 𝑎 alternatives above (tier):
𝑇 𝑎 = {𝑥𝑖 ∈ 𝑋 ∣ 𝑎𝑖 = 𝑎}.

Each tier is an indifference class, because 𝑇 𝑎 = 𝐵𝑖  for every 𝑥𝑖 ∈ 𝑇 𝑎; 
and then, #𝑇 𝑎 = 𝑏𝑖  (see items 2 and 3 of Proposition 1). Note also that, 
unless 𝑅 ∈ (𝑋), some 𝑇 𝑎  will be empty. This is the reason why we 
define

𝑇 =
{

𝑎 ∈ {0, 1,… , 𝑛 − 1} ∣ 𝑇 𝑎 ≠ ∅
}

.

Obviously, 𝑇 ≠ ∅, as 𝑇 0 ≠ ∅. From now on, when we say tiers, we 
are referring to non-empty tiers, i.e., 𝑇 𝑎  with 𝑎 ∈ 𝑇 . Notice that a de-
composition of 𝑋 in tiers, 𝑋 =

⋃

𝑎∈𝑇
𝑇 𝑎, is associated with 𝑅 ∈ (𝑋).

It is interesting to consider only the set of vectors codifying weak 
orders:

𝐷∗ =
{(

(𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑛, 𝑏𝑛)
)

∈ 𝐷𝑛 ∣ ∃𝑅 ∈ (𝑋)
(

𝐶𝑅(𝑥1), 𝐶𝑅(𝑥2),… , 𝐶𝑅(𝑥𝑛)
)

=
(

(𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑛, 𝑏𝑛)
)}

.

In the following result we characterize 𝐷∗ in a constructive recursive 
way.

Proposition 2. A vector ((𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑛, 𝑏𝑛)
)

∈ 𝐷𝑛  belongs to 
𝐷∗ if and only if
#
{

𝑖 ∈ {1, 2,… , 𝑛} ∣ 𝑎𝑖 = 0
}

= 𝑐0 ⩾ 1 and 𝑏𝑖 = 𝑐0,
#
{

𝑖 ∈ {1, 2,… , 𝑛} ∣ 𝑎𝑖 = 𝑐0
}

= 𝑐1 and 𝑏𝑖 = 𝑐1,
#
{

𝑖 ∈ {1, 2,… , 𝑛} ∣ 𝑎𝑖 = 𝑐0 + 𝑐1
}

= 𝑐2 and 𝑏𝑖 = 𝑐2,
⋮ ⋮ ⋮

#
{

𝑖 ∈ {1, 2… , 𝑛} ∣ 𝑎𝑖 = 𝑐0 + 𝑐1 +⋯ + 𝑐𝑡−1
}

= 𝑐𝑡 and 𝑏𝑖 = 𝑐𝑡,

where the recursive process ends whenever 𝑐0 + 𝑐1 +⋯ + 𝑐𝑡 = 𝑛. 
The proof appears in the Appendix.

Remark 1.  As there is a bijection between weak orders and their cod-
ifications, Santos-García and Alcantud (2025) also provide the value of 
#𝐷∗.
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Note that the decomposition of 𝑋 into tiers associated with 𝑅 can 
be more precisely described taking into account the structure of valid 
codifications according to Proposition 2: for example, 𝑥0 belongs to the 
top tier 𝑇 0 if and only if 𝑎0 = 0. And 𝑥𝑡 belongs to the bottom tier 𝑇 𝑡 if 
and only if 𝑎𝑡 + 𝑏𝑡 = 𝑛. On the other hand, 𝑥𝑖 is just above 𝑥𝑗 if and only 
if 𝑎𝑗 = 𝑎𝑖 + 𝑏𝑖. 

3.  Assigning positions through aggregation functions

A key idea in what follows is to assign natural numbers to the objects 
in a sequential manner if there are no ties among them (linear orders); 
otherwise (weak orders), those objects involved in a tie should share the 
same position after an aggregation process from the linearized situation 
in any way (for example, at random). Eventually, in our analysis we 
may need to deal with some objects added or withdrawn throughout the 
process of assigning positions. Next, we formalize these considerations.
Definition 2. Given 𝑅 ∈ (𝑋), the natural sequential function on 𝑅 is 
the mapping 𝑁𝑅 ∶ 𝑋 ⟶ {1, 2,… , 𝑛}  that assigns 1 to the alternative 
ranked first, 2 to the alternative ranked second, and so on:
𝑁𝑅(𝑥𝑖) = #

{

𝑥𝑗 ∈ 𝑋 ∣ 𝑥𝑗 𝑅𝑥𝑖
}

= #
{

𝑥𝑗 ∈ 𝑋 ∣ 𝑥𝑗 𝑃 𝑥𝑖
}

+ 1 = 𝑎𝑖 + 1.

In this case, 𝑁𝑅(𝑥𝑖)  will be called the natural position of 𝑥𝑖. 
The notion of position operator, introduced in García-Lapresta and 

Martínez-Panero (2024), allows to deal with the alternatives in a dynam-
ical way, similarly to what happens in voting theory when a variable 
electorate is considered (see Smith (1973)).
Definition 3. Given a universe of alternatives 𝑈 and 𝑋 ⊆ 𝑈  finite, a 
position operator 𝑂 assigns to each 𝑅 ∈ (𝑋)  a function 𝑂𝑅 ∶ 𝑋 ⟶ ℝ. 
We say that 𝑂𝑅(𝑥𝑖)  is the position of the alternative 𝑥𝑖 ∈ 𝑋  in the weak 
order 𝑅. 

Note that we do not impose here any restrictions to the reached po-
sition values although, later on, we will include some conditions that 
position operators may fulfill. For example, it seems reasonable to con-
sider stable position operators, i.e., those that assign the same position 
to all the alternatives in each indifference class12.

Perhaps, the most immediate way to assign positions is to use tiers 
as entity units, and then apply the natural sequential function on them. 
This could be formalized through the concept of quotient set (see García-
Lapresta & Martínez-Panero, 2024), but here we follow a more direct 
approach.

Definition 4. The dense rank is the position operator defined as
𝐷𝑅(𝑥𝑖) = #𝑇 − #{𝑎′ ∈ 𝑇 ∣ 𝑎′ > 𝑎} = #{𝑎′ ∈ 𝑇 ∣ 𝑎′ < 𝑎} + 1,

where 𝑥𝑖 ∈ 𝑇 𝑎  in 𝑅 ∈ (𝑋). 
Example 2. Following with Example 1, we can obtain the dense rank 
as the number of tiers above plus one, as appearing in Table 2.

Another possible way to achieve stable position operators is that all 
the alternatives in each tier or indifference class share the same value 
as the result of applying a compensative aggregation function to their 
positions, if they were randomly linearized (ordinal rank). We note that, 
previously, a similar idea was successfully used in a voting context by 
García-Lapresta and Martínez-Panero (2017).

An aggregation function is a function 𝐺 ∶ [0, 1]𝑡 ⟶ [0, 1]  that fulfills 
the boundary conditions: 𝐺(0, 0,… , 0) = 0  and 𝐺(1, 1,… , 1) = 1, and 

12 We formalize this stability condition as equality in Definition 12. As com-
mented before, this is the main reason why, although the ordinal rank will ap-
pear as a provisional stage in some forthcoming processes, we do not consider 
this method to have a similar status to other ranks (competition, dense, etc.) 
discussed in the paper. Even more, as shown below, all of the latter fit the (de-
terministic) definition of position operator, while the ordinal rank does not, due 
to the randomness or arbitrariness required to decide tiebreakers. 

Table 2 
Positions under dense rank in Example 1.
𝑅  tier in  tiers above 𝐷𝑅(𝑥𝑖)

𝑥2 𝑥7 𝑇 0  none  1
𝑥1 𝑇 2 𝑇 0  2
𝑥5 𝑥8 𝑥10 𝑇 3 𝑇 0 , 𝑇 2  3
𝑥3 𝑥4 𝑥6 𝑥9 𝑇 6 𝑇 0 , 𝑇 2 , 𝑇 3  4

monotonicity: for all (𝑦1, 𝑦2,… , 𝑦𝑡), (𝑧1, 𝑧2,… , 𝑧𝑡) ∈ [0, 1]𝑡 such that 𝑦1 ⩾
𝑧1, 𝑦2 ⩾ 𝑧2,… , 𝑦𝑡 ⩾ 𝑧𝑡, it holds 𝐺(𝑦1, 𝑦2,… , 𝑦𝑡) ⩾ 𝐺(𝑧1, 𝑧2,… , 𝑧𝑡). Addi-
tionally, if 𝑡 = 1, then 𝐺(𝑦) = 𝑦  for every 𝑦 ∈ [0, 1].

An aggregation function 𝐺 ∶ [0, 1]𝑡 ⟶ [0, 1]  is compensative (or aver-
aging) if min{𝑦1, 𝑦2,… , 𝑦𝑡} ⩽ 𝐺(𝑦1, 𝑦2,… , 𝑦𝑡) ⩽ max{𝑦1, 𝑦2,… , 𝑦𝑡}, for ev-
ery (𝑦1, 𝑦2,… , 𝑦𝑡) ∈ [0, 1]𝑡.

It is easy to see that, by monotonicity, compensativeness is equiva-
lent to idempotency: 𝐺(𝑦, 𝑦,… , 𝑦) = 𝑦  for every 𝑦 ∈ [0, 1].

We can generalize compensative aggregation functions to intervals 
[𝑐, 𝑑]  as functions 𝐺 ∶ [𝑐, 𝑑]𝑡 ⟶ [𝑐, 𝑑]  that fulfill
1. Boundary conditions: 𝐺(𝑐, 𝑐,… , 𝑐) = 𝑐  and 𝐺(𝑑, 𝑑,… , 𝑑) = 𝑑.
2. Monotonicity: for all (𝑦1, 𝑦2,… , 𝑦𝑡), (𝑧1, 𝑧2,… , 𝑧𝑡) ∈ [𝑐, 𝑑]𝑡  such that 

𝑦1 ⩾ 𝑧1, 𝑦2 ⩾ 𝑧2,… , 𝑦𝑡 ⩾ 𝑧𝑡, it holds
𝐺(𝑦1, 𝑦2,… , 𝑦𝑡) ⩾ 𝐺(𝑧1, 𝑧2,… , 𝑧𝑡).

3. Compensativeness: for every (𝑦1, 𝑦2,… , 𝑦𝑡) ∈ [𝑐, 𝑑]𝑡, it holds
min{𝑦1, 𝑦2,… , 𝑦𝑡} ⩽ 𝐺(𝑦1, 𝑦2,… , 𝑦𝑡) ⩽ max{𝑦1, 𝑦2,… , 𝑦𝑡},

hence idempotency: 𝐺(𝑦, 𝑦,… , 𝑦) = 𝑦  for every 𝑦 ∈ [𝑐, 𝑑].
4. If 𝑡 = 1, then 𝐺(𝑦) = 𝑦  for every 𝑦 ∈ [𝑐, 𝑑].

On aggregation functions, see Beliakov et al. (2007).
Definition 5. Given a compensative aggregation function 𝐺 ∶
[1, 𝑛]𝑡 ⟶ [1, 𝑛], the position operator associated with 𝐺 is defined as
𝑂𝑅(𝑥𝑖) = 𝐺(𝑎𝑖 + 1, 𝑎𝑖 + 2,… , 𝑎𝑖 + 𝑏𝑖). (1)

Note that in the previous definition 𝑡 = 𝑏𝑖.

Example 3. Consider again Example 1. Since
𝑎2 = 𝑎7 = 0  and 𝑏2 = 𝑏7 = 2

𝑎1 = 2  and 𝑏1 = 1

𝑎5 = 𝑎8 = 𝑎10 = 3  and 𝑏5 = 𝑏8 = 𝑏10 = 3

𝑎3 = 𝑎4 = 𝑎6 = 𝑎9 = 6  and 𝑏3 = 𝑏4 = 𝑏6 = 𝑏9 = 4,

we have
𝑂𝑅(𝑥2) = 𝑂𝑅(𝑥7) = 𝐺(1, 2)

𝑂𝑅(𝑥1) = 𝐺(3) = 3

𝑂𝑅(𝑥5) = 𝑂𝑅(𝑥8) = 𝑂𝑅(𝑥10) = 𝐺(4, 5, 6)

𝑂𝑅(𝑥3) = 𝑂𝑅(𝑥4) = 𝑂𝑅(𝑥6) = 𝑂𝑅(𝑥9) = 𝐺(7, 8, 9, 10).

The most prominent compensative aggregation functions are the 
minimum, the arithmetic mean, the median and the maximum, which 
lead by aggregation (according to Definition 5) to the competition ranks, 
as shown in what follows.

3.1.  Minimum

If 𝐺 is the minimum, Eq. (1) becomes
𝑂𝑅(𝑥𝑖) = min

(

𝑎𝑖 + 1, 𝑎𝑖 + 2,… , 𝑎𝑖 + 𝑏𝑖
)

= 𝑎𝑖 + 1,

i.e., 𝑥𝑖 has the best position in the indifference class13.

13 In words of Kendall: “ties should all be ranked as if they were the highest 
member of the tie. This is subject to the obvious disadvantages that it gives 
different results if one ranks from the other end of the scale and that it destroys 
the useful property that the mean rank of the whole series shall be 𝑛+1

2
” (see 

Kendall (1945) and references therein).
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Definition 6. The standard (competition) rank is the position operator 
defined as
𝑆𝑅(𝑥𝑖) = 𝑎𝑖 + 1.

It is the most common way to establish a ranking with only nat-
ural numbers. Just to mention an interesting example of its use in 
sport competitions, if we identify gold, silver and bronze medals in the 
Olympic Games with positions 1, 2 and 3, respectively, if there is a tie 
among laureate athletes and under some circumstances, these medals 
are awarded according to the standard rank (see García-Lapresta and 
Martínez-Panero (2024) and references therein for details).

It corresponds to the RANK or RANK.EQ functions in Excel. It also ap-
pears as LOW in SPSS and it is called min by the R programming language 
in their methods to handle ties.

It is interesting to mention that the standard rank has been defined 
here in a similar way to that of the restricted Borda function considered 
by Gärdenfors (1973) in his analysis of positional voting systems, where 
also “the alternatives in a tie are assigned the minimum they would have 
become in any straightening to a linear order”. And the same idea is un-
derlying in Bridges and Mehta (1995, Theorem 1.2.1), where a utility 
function is associated with a weak order by means of the cardinalities of 
their strict lower sections14. On the other hand, Alcantud et al. (2013) 
and González-Arteaga et al. (2016) have considered the standard rank 
as a suitable way of assigning positions in the design of consensus mea-
sures.

3.2.  Arithmetic mean

If 𝐺 is the arithmetic mean, Eq. (1) becomes (using the expression of 
the sum of terms in an arithmetic progression)

𝑂𝑅(𝑥𝑖) =
(𝑎𝑖 + 1) + (𝑎𝑖 + 2) +⋯ + (𝑎𝑖 + 𝑏𝑖)

𝑏𝑖
=

(𝑎𝑖 + 1) + (𝑎𝑖 + 𝑏𝑖)
2

⋅ 𝑏𝑖

𝑏𝑖
= 𝑎𝑖 +

𝑏𝑖 + 1
2

.

In this way, 𝑥𝑖 has the average position in the indifference class15.
Definition 7. The fractional rank is the position operator defined as

𝐹𝑅(𝑥𝑖) = 𝑎𝑖 +
𝑏𝑖 + 1
2

.

Remark 2. Since 𝑎𝑖 + 1, 𝑎𝑖 + 2,… , 𝑎𝑖 + 𝑏𝑖  are consecutive integer num-
bers, their median and arithmetic mean coincide. On the other hand, 
from

𝑏𝑖 ⋅ 𝐹𝑅(𝑥𝑖) = (𝑎𝑖 + 1) + (𝑎𝑖 + 2) +⋯ + (𝑎𝑖 + 𝑏𝑖)

in each tier 𝑇 𝑎𝑖  with 𝑎𝑖 ∈ 𝑇 , we obtain that all the positions assigned by 
means of the fractional rank add up 1 +⋯ + 𝑛 =

𝑛 ⋅ (𝑛 + 1)
2

, even under 
ties. 

Sometimes the fractional rank is used but not cited by this name. For 
example, in Cook (2006) several formats of representing ordinal data are 
surveyed, and that called “vector representation” uses this rank to ob-
tain the corresponding coordinates. On the other hand, the fractional 

14 Note, however, that in the frameworks of utility and voting functions, the 
larger, the better; while in the framework of position operators, the smaller the 
value of the position, the better. Concerning these connections, see Remark 4 
in García-Lapresta and Martínez-Panero (2024). Take also into account that if 
the position of an alternative improves, then its corresponding position num-
ber decreases; and, similarly, if the position of an alternative worsens, then its 
corresponding position number increases.
15 Again, according to Kendall (1945), “the method of allocating ranking num-
bers to tied individuals in general use [in ranking correlation methods] is to 
average the ranks which they cover. This is known as the mid-rank method and 
is the only one I shall consider”. 

rank corresponds to the RANK.AVG function in Excel and MEAN in SPSS. 
Also, it is called average by the R programming language. It is used 
in some situations where positions need to be translated into scores, as 
happens with some positional voting systems known as scoring rules16; 
or in many sports, where the fractional rank is used (implicitly) in pair-
wise tournaments or matches where a victory computes 1 point, a tie 
0.5 points and a defeat 0 points. In Remark 5 we will develop this last 
assertion.

3.3.  Maximum

If 𝐺 is the maximum, Eq. (1) becomes
𝑂𝑅(𝑥𝑖) = max

(

𝑎𝑖 + 1, 𝑎𝑖 + 2,… , 𝑎𝑖 + 𝑏𝑖
)

= 𝑎𝑖 + 𝑏𝑖,

i.e., 𝑥𝑖 has the greatest value in the indifference class.
Definition 8. The modified (competition) rank is the position operator 
defined as
𝑀𝑅(𝑥𝑖) = 𝑎𝑖 + 𝑏𝑖.

Therefore, if some elements share the same rank, the worst position 
would be assigned (if all ties were broken at random). Consequently this 
rank guarantees that an alternative achieves the position 𝑘 if and only 
if there are 𝑘 alternatives at the same level or higher (what is not true 
for standard or fractional ranks).

The modified rank corresponds to HIGH in SPSS and it appears as max
in the R programming language. However, it is not considered in Excel. 
And taking into account the reversal of positions/utilities pointed out in 
footnote 14, it can be related to the restricted Borda funcion considered 
by Gärdenfors (1973) rather than to the standard rank. Also, the modi-
fied rank has been used in some situations to apply the Ockham’s razor 
principle, because its maximum possible penalization could prevent the 
duplication of information data (see Singer et al., 2014 and Walk et al., 
2015). On the other hand, it is used in some competitions and sports 
(see later, Remark 5).

Remark 3. Note that 𝐹𝑅(𝑥𝑖) =
𝑆𝑅(𝑥𝑖) +𝑀𝑅(𝑥𝑖)

2
. In Section 6, some 

more connections will appear that relate these ranks. 

3.4.  The 𝛺  family of position operators

We now introduce a family of position operators that generalize the 
competition ranks. To this aim, notice that the expression of the frac-
tional rank appearing immediately above in Remark 3 uses the arith-
metic mean of the standard and modified ranks, but other weighted 
means can also be employed in the aggregation process. In other words, 
this can be practically done by allowing any convex combination of the 
worst and best possible positions in the indifference class of 𝑥𝑖, i.e.:

𝜆 ⋅

𝑀𝑅(𝑥𝑖)
⏞⏞⏞⏞⏞
(𝑎𝑖 + 𝑏𝑖) +(1 − 𝜆) ⋅

𝑆𝑅(𝑥𝑖)
⏞⏞⏞
(𝑎𝑖 + 1) = 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1),

with 𝜆 ∈ [0, 1].
Equivalently, this family generalizes competition ranks in a contin-

uous way through linear parametric interpolation, allowing all possible 
intermediate values between those corresponding to extreme treatments 
of ties.

16 The arithmetic mean (and, hence, the fractional rank) is related to the most 
relevant positional voting system, the Borda count, when it is adjusted to allow 
weak orders in agents’ preferences (see, for instance, Gärdenfors (1973), Black 
(1976) and Cook (2006), among many others). It is worth mentioning that the 
Borda count (and indirectly the fractional rank) has been used recurrently to 
achieve rankings of sets of objects based on rankings of the single objects and, 
related with this approach, in fair division and allocation problems (see Dar-
mann and Klamler (2019) and references therein).
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Definition 9. Given 𝑅 ∈ (𝑋)  and 𝜆 ∈ [0, 1], the position operator 
𝛺𝜆  is defined as
𝛺𝜆

𝑅(𝑥𝑖) = 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1). (2)

We denote by 𝛺  the parameterized family of position operators 𝛺𝜆

for 𝜆 ∈ [0, 1]. 
Remark 4. Note that 𝛺 0

𝑅(𝑥𝑖), 𝛺 0.5
𝑅 (𝑥𝑖)  and 𝛺 1

𝑅(𝑥𝑖)  are the three most 
relevant members of this family, corresponding to the best, the average 
(and also the median) and the worst positions in the indifference class 
of 𝑥𝑖, respectively, i.e., to the standard rank 𝑆𝑅, the fractional rank 𝐹𝑅
and the modified rank 𝑀𝑅. 
Remark 5. Other values of 𝜆  naturally arise or can be considered. For 
example, in football (soccer) matches before 1994, 2 points were given 
to the winner, 0 points to the loser, and 1 point to each team in case of 
a tie. After this date, FIFA changed the victory score from 2 to 3 (wins 
are worth more than two ties) aiming to encourage the competition (see 
Garicano & Palacios-Huerta, 2014, Chapter 8).

We can understand this last situation as follows:

• One team wins (position 1, 3 points) and the another team is defeated 
(position 2, 0 points)

• There is a tie (joint position to be determined, 1 point each).

If we translate scores into positions (usually the process is just the 
opposite) through a linear affine function (i.e., by linear interpolation), 
it is easy to check that the resultant joint position is 5/3, obtained by 
taking 𝜆 = 2∕3  in the 𝛺  family17. Also it is straightforward that before 
1994 the resultant joint position was 1.5, obtained by taking 𝜆 = 1∕2, 
which corresponds to the fractional rank.

Interestingly, in GO Battle League, a feature in the mobile game 
Pokémon GO18, ties are a loss for both opponents and only wins are 
counted. This fact was expressly taken into account in Crane et al. (2021, 
Algorithm 2) and, following our scheme, it would correspond to consider 
the extreme value 𝜆 = 1  in the 𝛺  family, corresponding to the modified 
competition rank19. 

3.5.  Other position operators obtained through aggregation

Another relevant family of compensative aggregation functions is 
that of power means, defined as

𝐺𝑟(𝑦1, 𝑦2,… , 𝑦𝑡) =
( 𝑦𝑟1 + 𝑦𝑟2 +⋯ + 𝑦𝑟𝑡

𝑡

)1∕𝑟

,

with 𝑟 ≠ 0.
This family includes some of the previous aggregation functions and 

introduces some other new20 :

17 Equivalent scores leading to the same positions have also been used in chess 
tournaments. For example, for tie-breaking purposes, Kashdan’s system adds 
four points for each game won, two points for each game drawn, and one point 
for each game lost (see Wikipedia: Kashdan, in https://en.wikipedia.org/wiki/
Tie-breaking_Swiss-system_tournaments).
18 More concretely, it is a matchmaking system where players compete against 
each other in online trainer battles around the world, earning rewards and 
improving their global ranking. Additional information can be found at https:
//pokemongo.fandom.com/wiki/GO_Battle_League.
19 In this way, if the Olympic athletes in a tie had to decide between breaking 
the tie or be awarded the corresponding medal following the modified rank, they 
would surely choose the tiebreaker, which allows them to improve. The current 
use of the standard rank does not encourage the competition, because it assigns 
the best (maximum) possible position (see García-Lapresta and Martínez-Panero 
(2024)).
20 Other compensative aggregation functions can be considered; for instance, 
other OWA operators (the maximum, the arithmetic mean, the median and the 
minimum are also specific cases of OWA operators) or quasiarithmetic means. 
On this, see Beliakov et al. (2007, Chapter 2).

Table 3 
Positions under competition and DuBois ranks in Example 1.
𝑅 𝑁𝑅(𝑥𝑖) 𝑆𝑅(𝑥𝑖) 𝑀𝑅(𝑥𝑖) 𝐹𝑅(𝑥𝑖) 𝐵𝑅(𝑥𝑖)

𝑥2 𝑥7  1, 2  1  2  1.5  1.58
𝑥1  3  3  3  3  3
𝑥5 𝑥8 𝑥10  4, 5, 6  4  6  5  5.06
𝑥3 𝑥4 𝑥6 𝑥9  7, 8, 9, 10  7  10  8.5  8.57

• The minimum (leading to the standard rank), the maximum (this, to 
the modified rank) and the geometric mean, by convergence when 𝑟
tends to −∞, ∞ and 0, respectively;

• The harmonic mean (whose inverse value is called mean reciprocal 
rank), if 𝑟 = −1;

• The arithmetic mean (leading to the fractional rank), if 𝑟 = 1
• The quadratic mean (leading to the DuBois rank, if 𝑟 = 2.

Due to its (theoretical) importance, next we develop the last one.

3.6.  The DuBois rank

As mentioned just above, if 𝐺 is the quadratic mean, i.e.

𝐺(𝑦1, 𝑦2,… , 𝑦𝑡) =

√

𝑦21 + 𝑦22 +⋯ + 𝑦2𝑡
𝑡

,

then, Eq. (1) becomes
𝑂𝑅(𝑥𝑖) = 𝐺(𝑎𝑖 + 1, 𝑎𝑖 + 2,… , 𝑎𝑖 + 𝑏𝑖) =

√

(𝑎𝑖 + 1)2 + (𝑎𝑖 + 2)2 +⋯ + (𝑎𝑖 + 𝑏𝑖)2

𝑏𝑖
. (3)

While the arithmetic mean leads to position values so that they 
add up 1 +⋯ + 𝑛 =

𝑛 ⋅ (𝑛 + 1)
2

, ever under ties (see Remark 2), Dubois 
(1939) considered the use of the quadratic mean instead of the average. 
In words of Kendall (1945): “Dubois (1939) […] has suggested allotting 
the ties an equal rank but proposes to determine it so that the sum of 
squares of the ranks shall be that of an untied ranking, namely, of the 
first 𝑛 integers, 12 + 22 +⋯ + 𝑛2 =

𝑛 ⋅ (𝑛 + 1) ⋅ (2𝑛 + 1)
6

”.
After some computations and renaming 𝑂𝑅 according to the previous 

comment, Eq. (3) appears as below.

Definition 10. The DuBois rank is the position operator defined as

𝐵𝑅(𝑥𝑖) =

√

(𝑎𝑖 + 1)2 +
(𝑏𝑖 − 1) ⋅ (6𝑎𝑖 + 2𝑏𝑖 + 5)

6
.

Under linear orders, as 𝑏𝑖 = 1, the DuBois rank replicates the natural 
position for 𝑥𝑖, i.e., 𝐵𝑅(𝑥𝑖) = 𝑎𝑖 + 1.

Example 4. Following with Examples 1 and 3, taking 𝐴  as the min-
imum, maximum, arithmetic mean and quadratic mean of the natural 
positions in any linearization (ordinal rank), we obtain what appears in 
Table 3.

Note that all the expressions of the ranks appearing just above in-
volve 𝑎𝑖  and 𝑏𝑖  through suitable functions. However, it will be shown 
in what follows that this feature is not shared in general.

3.7.  Representable position operators

We now introduce a broad class of position operators that assign po-
sitions to the alternatives through a function of their codifying vectors. 
This means that alternatives with the same codification, even across dif-
ferent preference profiles, should be assigned identical positions.
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Definition 11. A position operator 𝑂 is representable if there exists a 
function 𝑓 ∶ 𝐷 ⟶ R  such that
𝑂𝑅(𝑥𝑖) = 𝑓

(

𝐶𝑅(𝑥𝑖)
)

= 𝑓 (𝑎𝑖, 𝑏𝑖) (4)

for every 𝑅 ∈ (𝑋). 
Although the parameterized family 𝛺 and, more generally, those po-

sition operators obtained through a tie-breaking aggregation process, as 
the DuBois rank, are representable (this can be seen from their defining 
expressions), next we prove that the dense rank is not.
Proposition 3. The dense rank is not representable. 
Proof.  Consider the two following orders:
𝑅1 𝑅2
𝑥1 𝑥2 𝑥1
𝑥3 𝑥2

𝑥3

Using the dense rank, 𝑥3 occupies the second and third positions in 
𝑅1 and 𝑅2, respectively, i.e., 𝐷𝑅1

(𝑥3) = 2  and 𝐷𝑅2
(𝑥3) = 3. However 

𝐶𝑅1
(𝑥3) = 𝐶𝑅2

(𝑥3) = (2, 1); thus, if the dense rank were representable, 
𝑥3 should have the same position: 𝑓 (2, 1)  in both cases. ∎
Remark 6. Since the dense rank is not representable, it cannot be 
obtained by means of any tie-breaking process through any aggregat-
ing function 𝐴 (all of which lead to representable ranks, as mentioned 
above). If this were possible, according to Eq. (1), in the situation ap-
pearing in the proof of Proposition 3, it should be 𝐷𝑅1

(𝑥3) = 𝐷𝑅2
(𝑥3) =

𝐴(2 + 1) = 3, which is not the case.
In summary, for non-representable position operators, the previous 

argument shows that the mere knowledge of 𝑎𝑖 and 𝑏𝑖, for a particular 
𝑥𝑖 ∈ 𝑋, it might not be enough to establish its position through a func-
tion of its codification. A direct consequence is that the dense rank, as a 
non-representable position operator, is aside the competition ranks and 
cannot be found in the 𝛺 family for any 𝜆 ∈ [0, 1]. 

4.  Characterizations of the parameterized family 𝜴

We now consider some basic properties that position operators on 
weak orders might (or should) verify. Note that we do not a priori im-
pose compelling requirements in order to assign the same positions to 
indifferent alternatives, etc. Some of these properties had already ap-
peared in García-Lapresta and Martínez-Panero (2024).
Definition 12. Let 𝑂 be a position operator and 𝑂𝑅 ∶ 𝑋 ⟶ ℝ  the 
function that assigns a position to each alternative of 𝑋 in the weak 
order 𝑅 ∈ (𝑋). We say that the position operator 𝑂 satisfies the fol-
lowing conditions, when they are fulfilled for all 𝑋 ⊆ 𝑈  finite and 
𝑅 ∈ (𝑋):

1. Sequentiality: if 𝑅 ∈ (𝑋), then 𝑂𝑅(𝑥𝑖) = 𝑁𝑅(𝑥𝑖)  for every 𝑥𝑖 ∈ 𝑋.
2. Equality: 𝑥𝑖 𝐼 𝑥𝑗 ⇒ 𝑂𝑅(𝑥𝑖) = 𝑂𝑅(𝑥𝑗 ), for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑋.
3. Monotonicity: 𝑥𝑖 𝑅𝑥𝑗 ⇔ 𝑂𝑅(𝑥𝑖) ⩽ 𝑂𝑅(𝑥𝑗 ), for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑋.
4. Neutrality: 𝑂𝑅𝜎 (𝑥𝜎(𝑖)) = 𝑂𝑅(𝑥𝑖)  for every permutation 𝜎 on 

{1, 2,… , 𝑛}.
5. Independence of dominated alternatives21: 𝑂𝑅|𝑋⧵{𝑥𝑗 }

(𝑥𝑖) = 𝑂𝑅(𝑥𝑖), for 
every 𝑥𝑖 ∈ 𝑋 such that 𝑥𝑖 𝑃 𝑥𝑗 .

Remark 7. Sequentiality is a compelling condition of extension to weak 
orders the particular case of linear orders and their natural positions, for-
malizing the convention of assigning unit-equidistant positions starting 
from one if there are no ties.

Equality entails that indifferent alternatives are indistinguishable 
from a positional point of view.

21 In fact, this condition is equivalent to that of truncation appearing in García-
Lapresta and Martínez-Panero (2024) characterizing the dense rank.

Monotonicity, a stronger condition than equality, means that the bet-
ter the alternative, the less the position value, and vice-versa.

Neutrality guarantees an equal treatment of alternatives.
Independence of dominated alternatives requires that the deletion of 

alternatives below that the one to be assigned a position has no effect on 
it. It is important to note that this property entails that not only remov-
ing, but also adding alternatives below, will not change the positions 
of the alternatives above, since by successive withdrawals, the situation 
prior to the enlargement could be attained once more. 
Remark 8. Standard, modified, fractional and dense ranks satisfy all 
the above properties (see García-Lapresta & Martínez-Panero, 2024 for 
details). The same stands for the DuBois rank22. 

Consequently, as we are interested in characterization results for the 
family 𝛺  enclosing the standard, modified and fractional ranks (but 
not the dense rank, which stands aside of them (see Proposition 3 and, 
later on, Remark 13), those properties in Definition 12 will not be selec-
tive enough for our purposes; so we have to analyze further appropriate 
conditions capturing the very essence of the parameterized family.

We first introduce a set of properties concerning alternatives not af-
fected by ties.
Definition 13. We say that a position operator 𝑂 satisfies the following 
conditions, when they are fulfilled for all 𝑋 ⊆ 𝑈  finite and 𝑅 ∈ (𝑋):

1. Natural subsequency: if 𝑅 ∈ (𝑋), then 𝑂𝑅(𝑥𝑖) = 𝑎𝑖 + 1  for every 
𝑥𝑖 ∈ 𝑋 such that 𝑏𝑖 = 1.

2. Primacy: if 𝑅 ∈ (𝑋)  and 𝑥𝑖 𝑃 𝑥𝑗  for every 𝑥𝑗 ≠ 𝑥𝑖, then 𝑂𝑅(𝑥𝑖) =
1.

3. Ultimacy: if 𝑅 ∈ (𝑋)  and 𝑥𝑗 𝑃 𝑥𝑖  for every 𝑥𝑗 ≠ 𝑥𝑖, then 𝑂𝑅(𝑥𝑖) =
𝑛.

Remark 9. Natural subsequency means that if there are no ties at 
a tier, being this a singleton, then the position of its unique element, 
subsequent to those above, must be precisely the number of such pre-
vious alternatives, whatever their arrangement will be, plus one (itself 
counted). It is a stronger condition than sequentiality and it also implies 
primacy and ultimacy as particular cases: if an alternative stays alone on 
the top or at the bottom, its position will be 1 or 𝑛, respectively (these 
and other relations will be gathered in Proposition 4). 

Also, in the following characterizations we will consider some other 
properties related to the positional behavior of alternatives when af-
fected by the appearance of new others (or the withdrawal of existing 
ones).

Definition 14. We say that a position operator 𝑂 satisfies the following 
conditions, when they are fulfilled for all 𝑋 ⊆ 𝑈  finite and 𝑅 ∈ (𝑋):

1. Posteriority: if 𝑅′ ∈ (𝑋′), with 𝑋′ = 𝑋 ∪ {𝑥𝑛+1}  such that 𝑥𝑛+1 ∉
𝑋, 𝑅′

|𝑋 = 𝑅  and 𝑥𝑛+1 𝑃 ′ 𝑥𝑖  for some 𝑥𝑖 ∈ 𝑋, then 𝑂𝑅′ (𝑥𝑖) =
𝑂𝑅(𝑥𝑖) + 1.

2. Uniform variation: if 𝑅′ ∈ (𝑋′), with 𝑋′ = 𝑋 ∪ {𝑥𝑛+1} such that 
𝑥𝑛+1 ∉ 𝑋, 𝑅′

|𝑋 = 𝑅  and 𝑥𝑛+1 𝐼 ′ 𝑥𝑖  for some 𝑥𝑖 ∈ 𝑋, then there exists 
𝜆 ∈ [0, 1] such that 𝑂𝑅′ (𝑥𝑖) = 𝑂𝑅(𝑥𝑖) + 𝜆.

Remark 10. Posteriority means that if a new alternative appears above 
another one staying below it, then the position of the latter worsens 
by exactly one unit (equivalently, the alternative above can also be re-
moved and in such case the position of any alternative below improves 
by one unit).

Uniform variation can be explained in a dynamical manner as fol-
lows: if a considered alternative has a (provisional) position in a sit-
uation in progress and, finally, another appearing alternative reaches 

22 In fact, it is straightforward that all representable position operators (a class 
including the competition and DuBois ranks), due to their expression just in-
volving 𝑎𝑖 and 𝑏𝑖, verify neutrality (and hence equality) and independence of 
dominated alternatives.
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the former one in a tie, then the previous position number can increase 
by at most a step not greater than one, being such step uniform, i.e., 
regular at any tier (again, the withdrawal of an alternative at the same 
level also means a decrease of the position number by the same step of 
those remaining at the same level). In particular, duplication, a property 
appearing in the characterization of the dense rank (García-Lapresta & 
Martínez-Panero, 2024), implies uniform variation when the step is null 
(𝜆 = 0). 

Notice that these properties establish what happens when new al-
ternatives are considered above or at the same level than that already 
positioned. Their natural complement, concerning alternatives below, 
is independence of dominated alternatives, already defined (see Defini-
tion 12).
Proposition 4. 
1. Primacy and posteriority together imply natural subsequency.
2. Independence of dominated alternatives and ultimacy together imply nat-
ural subsequency.

3. Sequentiality and independence of dominated alternatives imply primacy.
4. Sequentiality and posteriority together imply ultimacy.
5. Natural subsequency implies sequentiality, primacy and ultimacy.
Proof. 
1. Suppose that 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 1)  and first, applying posteriority 𝑎𝑖 times, 
delete all 𝑎𝑖  alternatives dominating 𝑥𝑖, i.e, belonging to the subset 
𝐴𝑖 ⊆ 𝑋. Then, due to primacy, we have 𝑂𝑅|𝑋⧵𝐴𝑖

(𝑥𝑖) = 1. Restoring 
the deleted alternatives for recovering 𝑅, and again by posteriority, 
we finally obtain 𝑂𝑅(𝑥𝑖) = 1 + 𝑎𝑖.

Notice that the reciprocal does not hold. Although natural sub-
sequency implies primacy (as commented in Remark 9 and will be 
shown in item 5 of this proposition), it does not imply posteriority: 
see the DuBois rank in Remark 11.

2. Suppose that 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 1)  and first, applying independence of 
dominated alternatives 𝑛 − 𝑎𝑖 − 1  times, delete all 𝑛 − 𝑎𝑖 − 1  alter-
natives dominated by 𝑥𝑖, i.e, belonging to the subset 𝑋 ⧵

(

𝐴𝑖 ∪ {𝑥𝑖}
)

. 
Then, due to ultimacy, we have 𝑂𝑅|𝑋⧵(𝐴𝑖∪{𝑥𝑖})

(𝑥𝑖) = 𝑎𝑖 + 1. Restoring 
the deleted alternatives to recover 𝑅, and again by independence of 
dominated alternatives, we finally obtain 𝑂𝑅(𝑥𝑖) = 𝑎𝑖 + 1.

Also, the reciprocal is not true, because natural subsequency 
does imply ultimacy as a particular case (again, as commented in 
Remark 9 and will be shown in item 5 of this proposition), but 
not independence of dominated alternatives: it suffices to consider 
𝑂𝑅(𝑥𝑖) = 𝑎𝑖 + 1 + (𝑏𝑖 − 1) ⋅ 𝑛, which verifies natural subsequency, but 
not independence of dominated alternatives.

3. Suppose that 𝑥𝑖  dominates all other alternatives. Then, by indepen-
dence of dominated alternatives, 𝑂𝑅(𝑥𝑖) = 𝑂𝑅|{𝑥𝑖}

(𝑥𝑖) = 1, this value 
coming from sequentiality applied to the singleton {𝑥𝑖}.

4. If t 𝑥𝑖  is dominated by all other alternatives, then 𝑂𝑅|{𝑥𝑖}
(𝑥𝑖) = 1, 

due to sequentiality applied to the singleton {𝑥𝑖}. Restoring all other 
𝑛 − 1  alternatives above 𝑥𝑖 to recover 𝑅 and iterating posteriority, it 
should be 𝑂𝑅(𝑥𝑖) = 1 + (𝑛 − 1) = 𝑛.

5. First, sequentiality trivially holds, just applying natural subsequency 
to linear orders. On the other hand, primacy and ultimacy are but 
particular cases of natural subsequency. Indeed, if 𝑥𝑖 𝑃 𝑥𝑗  for all 𝑥𝑗 ≠
𝑥𝑖, then 𝑥𝑖  is the only alternative on the top, and hence 𝐶𝑅(𝑥𝑖) =
(0, 1). Then, by natural subsequency 𝑂𝑅(𝑥𝑖) = 0 + 1 = 1. Similarly, 
if 𝑥𝑗 𝑃 𝑥𝑖  for all 𝑥𝑗 ≠ 𝑥𝑖, then 𝑥𝑖  is the only alternative at the bot-
tom, and hence 𝐶𝑅(𝑥𝑖) = (𝑛 − 1, 1). Again, by natural subsequency 
𝑂𝑅(𝑥𝑖) = (𝑛 − 1) + 1 = 𝑛.

  ∎
Remark 11. In Table 4, it is shown the fulfillment of the forthcoming 
characterization conditions by the position operators appearing in this 
paper.

Table 4 
Properties and their fulfillment.

𝛺 family  DuBois  Dense rank

 Sequentiality  yes  yes  yes
 Indep. dom. alt.  yes  yes  yes
 Nat. subseq.  yes  yes  no
 Primacy  yes  yes  yes
 Ultimacy  yes  yes  no
 Posteriority  yes  no  no
 Uniform var.  yes  no  yes

It is easy to check the total fulfillment of the properties by the 𝛺
family. Taking into account items 1 and 5 of Proposition 4, it suffices 
to prove primacy, posteriority, independence of dominated alternatives, 
and uniform variation. These properties easily follow from the expres-
sion 𝛺𝜆

𝑅(𝑥𝑖) = 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1):

• Primacy: if 𝑥𝑖  dominates all other alternatives, 𝐶𝑅(𝑥𝑖) = (0, 1) and 
hence 𝛺𝜆

𝑅(𝑥𝑖) = 0 + 1 + 𝜆 ⋅ 0 = 1.
• Posteriority: if a new alternative arises above 𝑥𝑖 , then 𝑎𝑖  increases 
one unit, so that its position also increases one unit.

• Independence of dominated alternatives: if a new alternative arises 
below 𝑥𝑖, as 𝑎𝑖  and 𝑏𝑖 do not change, neither does the position of 
𝑥𝑖 (as mentioned in footnote 22, this is also true for all representable 
position operators).

• Uniform variation: if a new alternative arises beside 𝑥𝑖 , then 𝑏𝑖  in-
creases one unit, so that its position also increases one unit multiplied 
by 𝜆.

The DuBois rank fulfills natural subsequency: due to its expression 
(see Definition 10), if 𝑏𝑖 = 1, then 𝐵𝑅(𝑥𝑖) = 𝑎𝑖 + 1. Consequently, by 
item 5 in Proposition 4, sequentiality, primacy and ultimacy also hold. It 
also satisfies independence of dominated alternatives (again, because it 
is representable). However, it does not satisfy posteriority: if we extend 
𝑅 in Example 1 by adding a new alternative 𝑥11  indifferent to 𝑥1, then 
all three alternatives just below drop from position 5.06 to 6.05, which 
is less than one unit. And it does not fulfill uniform variation neither: in 
this new situation, the joint position of both 𝑥1  and 𝑥11  would be 3.53 
instead of 3 for 𝑥1  alone; but if any other new alternative still appears 
in the top tier, the joint position of the former ones in the top tier would 
drop from 1.58 to 2.16, with a non-uniform variation: 0.58 ≠ 0.53.

Finally, the dense rank satisfies sequentiality, what is trivial from 
Definition 4 taking into account that tiers are singletons in linear or-
ders; and primacy, because all the alternatives in the top tier should 
have position 1. Also uniform variation and independence of dominated 
alternatives are fulfilled (see Remark 10 and footnote 21, respectively). 
However, ultimacy does not hold: in the proof of Proposition 3, accord-
ing to 𝑅1, the alternative 𝑥3 appears alone at the bottom and reaches 
position 2, although #𝑋 = 3. And, consequently, natural subsequency 
and posteriority do not hold neither (see items 4 and 5 of Proposition 4). 
Note that the unfulfillment of these last three properties is another ar-
gument for excluding the dense rank of the 𝛺 family. 

Next we show how some combinations of the aforementioned prop-
erties lead to different characterizations of the 𝛺 family.

Theorem 1. A position operator 𝑂 satisfies natural subsequency and uni-
form variation if and only if 𝑂 = 𝛺𝜆  for some 𝜆 ∈ [0, 1]. 
Proof.  We have already pointed out that the parameterized family 
satisfies these properties (see Remark 11). Conversely, suppose that 
𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖)  and first delete all 𝑏𝑖 − 1  alternatives indifferent to 𝑥𝑖,
itself excluded. Then, we have 𝑂𝑅|(𝑋⧵𝑇 𝑎𝑖 )∪{𝑥𝑖}

(𝑥𝑖) = 𝑎𝑖 + 1, due to natural 
subsequency. Now, restoring the previously deleted 𝑏𝑖 − 1  alternatives 
to recover 𝑅, and adding 𝜆  each time by uniform variation, we finally 
obtain 𝑂𝑅(𝑥𝑖) = 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1) = 𝛺𝜆

𝑅(𝑥𝑖). ∎
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Fig. 1. Properties involved in the characterizations of the 𝛺  family.

The following corollaries provide other characterizations with 
weaker conditions than natural subsequency, i.e., primacy or ultimacy, 
but then adding independence of dominated alternatives or posteriority, 
respectively. They easily follow from Theorem 1 and items 1 and 2 of 
Proposition 4.

Corollary 1. A position operator 𝑂 satisfies primacy, posteriority and uni-
form variation if and only if 𝑂 = 𝛺𝜆  for some 𝜆 ∈ [0, 1]. 

Corollary 2. A position operator 𝑂 satisfies independence of dominated 
alternatives, ultimacy and uniform variation if and only if 𝑂 = 𝛺𝜆  for some 
𝜆 ∈ [0, 1]. 

Next we prove the independence of the above characterizing proper-
ties. Also, it will be immediately shown why we cannot use just sequen-
tiality, as happened in the characterizations of the dense rank provided 
by García-Lapresta and Martínez-Panero (2024).

Proposition 5. The conditions appearing in Theorem 1, Corollaries 1 and 
2 are independent. 

Proof.  See Remark 11 about the properties mentioned in this proof and 
their fulfillment by the dense and the DuBois ranks.

1. Concerning Theorem 1, the DuBois rank verifies natural subsequency 
but not uniform variation. The dense rank verifies uniform variation 
for 𝜆 = 0, but not natural subsequency.

2. Concerning Corollary 1, the position operator defined as 𝑂𝑅(𝑥𝑖) =
𝑎𝑖 + 1 + (𝑏𝑖 − 1)2  verifies primacy and posteriority, but not uniform 
variation. The dense rank verifies primacy and uniform variation, 
but not posteriority. The position operator defined as 𝑂𝑅(𝑥𝑖) = 𝑎𝑖 +
1 + 𝑏𝑖  verifies posteriority and uniform variation, but not primacy.

3. Concerning Corollary 2, the DuBois rank verifies ultimacy and in-
dependence of dominated alternatives, but not uniform variation. 
The position operator defined as 𝑂𝑅(𝑥𝑖) = 𝑛  verifies ultimacy and 
uniform variation, but not independence of dominated alternatives. 
The dense rank verifies independence of dominated alternatives and 
uniform variation, but not ultimacy.

 ∎

Remark 12.  Natural subsequency cannot be weakened by sequential-
ity in Theorem 1, because the dense rank satisfies sequentiality and uni-
form variation (see Remarks 8 and 10), but it does not belong to the 
parameterized family (see Remark 6). This also stands for primacy and 
posteriority in Corollary 1, as well as for independence of dominated 
alternatives and ultimacy in Corollary 2 (due to items 1 and 2 of Propo-
sition 4). 

Fig. 1 shows an overview of the characterizations obtained for the 
parameterized family of position operators. Some other relationships 
between the properties involved will appear in Section 6 (Fig. 2).

5.  Particular characterizations of the competition ranks

Next we present specific characterizations of the standard, modified 
and fractional ranks attending to the size and place of the gaps between 
position values of the alternatives in connection to their ties.

Proposition 6. Let 𝑋 = 𝑇 𝑙1 ∪ 𝑇 𝑙2 ∪⋯ ∪ 𝑇 𝑙𝑡  be the decomposition of 𝑋
into tiers, from top to bottom, associated with the weak order 𝑅 ∈ (𝑋), 
where 𝑥𝑖𝑘 ∈ 𝑇 𝑙𝑘 . Then, for any position operator 𝑂 it holds:

1. 𝑂𝑅(𝑥𝑖1 ) = 1  and 𝑂𝑅(𝑥𝑖𝑘+1 ) = 𝑂𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘  if and only if 𝑂𝑅 = 𝑆𝑅.
2. 𝑂𝑅(𝑥𝑖1 ) = 𝑏𝑖1  and 𝑂𝑅(𝑥𝑖𝑘+1 ) = 𝑂𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘+1  if and only if 𝑂𝑅 = 𝑀𝑅.

3. 𝑂𝑅(𝑥𝑖1 ) =
𝑏𝑖1 + 1

2
 and 𝑂𝑅(𝑥𝑖𝑘+1 ) = 𝑂𝑅(𝑥𝑖𝑘 ) +

𝑏𝑖𝑘 + 𝑏𝑖𝑘+1
2

 if and only if 
𝑂𝑅 = 𝐹𝑅.

Proof. 

1. First we show that 𝑆𝑅 satisfies the above conditions. As 𝑥𝑖1 ∈ 𝑇 𝑙1 =
𝑇 0, 𝑎𝑖1 = 0  and 𝑆𝑅(𝑥𝑖1 ) = 0 + 1 = 1. In addition, notice that 𝑥𝑖𝑘  is 
just above 𝑥𝑖𝑘+1 ; hence, 𝑎𝑖𝑘+1 = 𝑎𝑖𝑘 + 𝑏𝑖𝑘 . Then, 𝑆𝑅(𝑥𝑖𝑘+1 ) = 𝑎𝑖𝑘+1 +
1 = (𝑎𝑖𝑘 + 𝑏𝑖𝑘 ) + 1 = (𝑎𝑖𝑘 + 1) + 𝑏𝑖𝑘 = 𝑆𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘 .

Conversely, if 𝑂𝑅  satisfies both conditions, it must coincide 
with 𝑆𝑅. Indeed, the first one ensures 𝑂𝑅(𝑥𝑖1 ) = 1 = 0 + 1 = 𝑎𝑖1 +
1 = 𝑆𝑅(𝑥𝑖1 ). And by induction on 𝑘, again taking into account the 
contiguity of 𝑥𝑖𝑘  and 𝑥𝑖𝑘+1 , also the second condition is easily 
checked: 𝑂𝑅(𝑥𝑖𝑘+1) = 𝑂𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘 = 𝑆𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘 = (𝑎𝑖𝑘 + 1) + 𝑏𝑖𝑘 =
(𝑎𝑖𝑘 + 𝑏𝑖𝑘 ) + 1 = 𝑎𝑖𝑘+1 + 1 = 𝑆𝑅(𝑥𝑖𝑘+1), as 𝑂𝑅(𝑥𝑖𝑘 ) = 𝑆𝑅(𝑥𝑖𝑘 )  by induc-
tion hypothesis.

2. In a similar way, as 𝑥𝑖1 ∈ 𝑇 𝑙1 = 𝑇 0, 𝑎𝑖1 = 0 and 𝑀𝑅(𝑥𝑖1 ) = 0 + 𝑏𝑖1 =
𝑏𝑖1 . And using again the contiguity of 𝑥𝑖𝑘  and 𝑥𝑖𝑘+1  we now obtain 
𝑀𝑅(𝑥𝑖𝑘+1 ) = 𝑎𝑖𝑘+1 + 𝑏𝑖𝑘+1 = (𝑎𝑖𝑘 + 𝑏𝑖𝑘 ) + 𝑏𝑖𝑘+1 = 𝑀𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘+1 .

Conversely, if 𝑂𝑅  satisfies both conditions, it must coin-
cide with 𝑀𝑅 , because the first one ensures 𝑂𝑅(𝑥𝑖1 ) = 𝑏𝑖1 =
0 + 𝑏𝑖1 = 𝑀𝑅(𝑥𝑖1 ), as 𝑎𝑖1 = 0. And by induction on 𝑘, again 
taking into account the contiguity of 𝑥𝑖𝑘  and 𝑥𝑖𝑘+1 , also 
we have 𝑂𝑅(𝑥𝑖𝑘+1) = 𝑂𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘+1 = 𝑀𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘+1 = (𝑎𝑖𝑘 + 𝑏𝑖𝑘 ) +
𝑏𝑖𝑘+1 = 𝑎𝑖𝑘+1 + 𝑏𝑖𝑘+1 = 𝑂𝑅(𝑥𝑖𝑘+1), as 𝑂𝑅(𝑥𝑖𝑘 ) = 𝑀𝑅(𝑥𝑖𝑘 )  by induction 
hypothesis.

3. Immediate, taking into account Remark 3.

 ∎

Remark 13. In each case, the values 𝑂𝑅(𝑥𝑖1 ) jointly with the other 
conditions relating contiguous positions provide alternative expressions 
of the competition ranks that are interesting for algorithmic or program-
ming purposes, due to their recursive nature. It is also interesting to em-
phasize that only by knowing the position values reached under a com-
petition rank and how many alternatives share them (i.e, repetitions in 
position numbers), it is possible to determine (up to permutations) the 
corresponding weak order. Next we show this in simple practical situa-
tions.

If we know that a competition rank has been used and the positions 
reached (with repetitions) have been (1, 2, 2, 4)  , then the standard rank 
ought to be the one employed, because of the gap after 2, and the origi-
nal structure would correspond to the Wikipedia example ⎡⎢

⎢

⎣

∙
∙ ∙
∙

⎤

⎥

⎥

⎦

. On the 
other hand, if the ranks were (2, 2, 3, 4), this would necessarily be pro-
duced by the modified rank (due to the gap before 2), being ⎡⎢

⎢

⎣

∙ ∙
∙
∙

⎤

⎥

⎥

⎦

 the 
corresponding arrangement. Finally, with positions (1, 2, 3.5, 3.5), the 
only possibility is ⎡⎢

⎢

⎣

∙
∙
∙ ∙

⎤

⎥

⎥

⎦

 under the fractional rank (gaps on both sides 
of 3.5). Note in each case how gaps in position numbers are directly 
related to the associated 𝑏𝑖 values.

Even more, with competition ranks we would be able to recover the 
original weak order only by knowing the number of alternatives and 
the reached positions without repetitions. This does not hold for the 
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Table 5 
Positions and their inverse values.
𝑅 𝑆𝑅(𝑥𝑖) 𝑀𝑅(𝑥𝑖) 𝐹𝑅(𝑥𝑖) 𝑆𝑅−1 (𝑥𝑖) 𝑀𝑅−1 (𝑥𝑖) 𝐹𝑅−1 (𝑥𝑖)

𝑥2 𝑥7  1  2  1.5  9  10  9.5
𝑥1  3  3  3  8  8  8
𝑥5 𝑥8 𝑥10  4  6  5  5  7  6
𝑥3 𝑥4 𝑥6 𝑥9  7  10  8.5  1  4  2.5

dense rank23, which depends on the global tier structure ignoring tie 
sizes, and not merely on the local codification of each alternative, as 
competition ranks do. Definitely, this fact sheds light on how the dense 
rank essentially differs from the standard, modified and fractional ranks.

Note also that if the position operator 𝑂 already belongs to the 𝛺
family (which has not been assumed in the statement of Proposition 6), 
the imposition of the initial values 𝑂𝑅(𝑥𝑖1 ) can be avoided, because 
they become forced, leaving only the corresponding recurrence con-
ditions. For example, if 𝛺𝜆

𝑅(𝑥𝑖) = 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1)  verifies the recur-
rence 𝛺𝜆

𝑅(𝑥𝑖𝑘+1 ) = 𝛺𝜆
𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘 , it must hold

𝑎𝑖𝑘+1 + 1 + 𝜆 ⋅ (𝑏𝑖𝑘+1 − 1) = 𝑎𝑖𝑘 + 1 + 𝜆 ⋅ (𝑏𝑖𝑘 − 1) + 𝑏𝑖𝑘 .

As 𝑎𝑖𝑘+1 = 𝑎𝑖𝑘 + 𝑏𝑖𝑘 ,

𝑎𝑖𝑘 + 𝑏𝑖𝑘 + 1 + 𝜆 ⋅ (𝑏𝑖𝑘+1 − 1) = 𝑎𝑖𝑘 + 1 + 𝜆 ⋅ (𝑏𝑖𝑘 − 1) + 𝑏𝑖𝑘 .

Simplifying, 𝜆 ⋅ (𝑏𝑖𝑘+1 − 𝑏𝑖𝑘 ) = 0.
Now, to maintain the generality of the result, as 𝑏𝑖𝑘+1  may be differ-

ent from 𝑏𝑖𝑘 , it will be necessary that 𝜆 = 0, which corresponds to the 
standard rank (similar arguments can be presented for the other com-
petition ranks). 

6.  Duality

Suppose a situation where there are no ties and, consequently, the 
positions are 1, 2,… , 𝑛. But there has been a mistake in the order scale 
and everything is upside down, so those positions should be reallocated. 
The problem is trivial in this case, because the new positions should 
be 𝑛, 𝑛 − 1,… , 2, 1, where in both sequences the relationship between 
homologous terms adds up to 𝑛 + 1.

More generally, can we recover the positions in a weak order 𝑅  from 
those of its inverse order 𝑅−1? Table 5 shows what happens with the 
competition ranks when applied to the weak order corresponding to 
Example 1, as well as to the inverse.

Some relationships can be observed, and the following concept of 
dual position operator is helpful to understand and formalize them.
Definition 15. Given a position operator 𝑂, its dual 𝑂𝑑 is the position 
operator defined as
𝑂𝑑
𝑅(𝑥𝑖) = 𝑛 + 1 − 𝑂𝑅−1 (𝑥𝑖).

Proposition 7. The standard and modified ranks are mutually dual and 
the fractional rank is self-dual, i.e., 𝑀𝑑

𝑅 = 𝑆𝑅, 𝑆𝑑
𝑅 = 𝑀𝑅, 𝐹 𝑑

𝑅 = 𝐹𝑅  and, 
in general, (𝛺 𝜆

𝑅)
𝑑 = 𝛺1−𝜆

𝑅 . 
Proof.  Taking into account Remark 4, it is sufficient to prove the last 
expression. To this aim, notice that if 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖), it also holds that 
𝐶𝑅−1 (𝑥𝑖) = (𝑛 − 𝑎𝑖 − 𝑏𝑖, 𝑏𝑖). Then,
𝛺1−𝜆

𝑅 (𝑥𝑖) +𝛺𝜆
𝑅−1 (𝑥𝑖) =

23 As already argued in García-Lapresta and Martínez-Panero (2024) for a situ-
ation with three alternatives, if just positions 1 and 3 are reached by them under 
the standard rank, this necessarily should correspond to the following arrange-
ment: any two of them on top and the other on the bottom. The same stands for 
positions 2 and 3 with the modified rank, as well as 1.5 and 3 with the fractional 
rank. However, if the dense rank is used, only knowing that positions 1 and 2 
have been occupied, we cannot recover the weak order structure; this informa-
tion only allows us to affirm that the alternatives are distributed in two tiers, 
but we cannot determine the cardinality of each tier.

𝑎𝑖 + 1 + (1 − 𝜆) ⋅ (𝑏𝑖 − 1) + 𝑛 − 𝑎𝑖 − 𝑏𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1) =

1 + 𝑛 − 𝑏𝑖 + (1 − 𝜆 + 𝜆) ⋅ 𝑏𝑖 = 1 + 𝑛 − 𝑏𝑖 + 𝑏𝑖 = 1 + 𝑛.

Consequently, 𝛺1−𝜆
𝑅 (𝑥𝑖) = 𝑛 + 1 −𝛺𝜆

𝑅−1 (𝑥𝑖) = (𝛺 𝜆
𝑅)

𝑑 (𝑥𝑖). ∎
Remark 14. It is worth to emphasize the role of the fractional rank 
as the only self-dual position operator within the 𝛺  family, which 
will be determinant in Theorem 2. This happens because such dual 
symmetry forces (and is forced by) the balanced treatment of ties. In-
deed, this uniqueness result can be directly obtained taking into ac-
count that 𝛺𝜆

𝑅(𝑥𝑖) = (𝛺𝜆
𝑅)

𝑑 (𝑥𝑖)  if and only if 𝑎𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1) = 𝑛 + 1 −
(𝑛 − 𝑎𝑖 − 𝑏𝑖 + 1 + 𝜆 ⋅ (𝑏𝑖 − 1)). Then, after easy computations, we obtain 
𝜆 ⋅ (𝑏𝑖 − 1) = (1 − 𝜆) ⋅ (𝑏𝑖 − 1)). As this may occur being 𝑏𝑖 ≠ 1, it follows 
that necessarily 𝜆 = 1 − 𝜆, and hence 𝜆 = 0.5, which corresponds to the 
fractional rank. 
Remark 15. As happens in different contexts where this notion arises, 
dualization is an involution: (𝑂𝑑)𝑑 = 𝑂.

On the other hand, the dense rank is also self-dual if we change 𝑛 + 1
for #𝑇 + 1 in Definition 15. 
Proposition 8. 
1. Sequentiality is self-dual; i.e., a position operator satisfies sequentiality if 
and only if its dual also does.

2. Primacy and ultimacy are mutually dual; i.e., a position operator satisfies 
primacy (respectively, ultimacy) if and only if its dual verifies ultimacy 
(respectively, primacy).

3. Posteriority and independence of dominated alternatives are mutually 
dual; i.e., a position operator satisfies posteriority (respectively, indepen-
dence of dominated alternatives) if and only if its dual verifies indepen-
dence of dominated alternatives (respectively, posteriority).

4. Natural subsequency is self-dual; i.e., a position operator satisfies natural 
subsequency if and only if its dual also does.

5. Uniform variation is self-dual; concretely, a position operator satisfies 
uniform variation for 𝜆 ∈ [0, 1]  if and only if its dual also does for 1 − 𝜆.

Proof.  It is enough to prove the direct statements, because the recipro-
cals are fulfilled by duality (see Remark 15).
1. If the position operator 𝑂 satisfies sequentiality and 𝑅 ∈ (𝑋), then 

𝑂𝑅(𝑥𝑖) = 𝑎𝑖 + 1  for each 𝑥𝑖 ∈ 𝑋  such that 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 1). Conse-
quently, also 𝑅−1 ∈ (𝑋)  and 𝑂𝑑

𝑅(𝑥𝑖) = 𝑛 + 1 − 𝑂𝑅−1(𝑥𝑖) = 𝑛 + 1 −
((𝑛 − 𝑎𝑖 − 1) + 1) = 𝑎𝑖 + 1, because 𝐶𝑅−1 (𝑥𝑖) = (𝑛 − 𝑎𝑖 − 1, 1). Hence, 
𝑂𝑑 satisfies sequentiality too.

2. Suppose that 𝑂 satisfies primacy. If 𝑥𝑖 stays alone at the bottom in 𝑅, 
it will be on the top in 𝑅−1. Then, 𝑂𝑅−1 (𝑥𝑖) = 1, and hence 𝑂𝑑

𝑅(𝑥𝑖) =
𝑛 + 1 − 1 = 𝑛. Consequently, 𝑂𝑑 satisfies ultimacy.

The statement interchanging the properties can be proven in a 
similar way.

3. Consider 𝑅′ ∈ (𝑋′), with 𝑋′ = 𝑋 ∪ {𝑥𝑛+1}  such that 𝑥𝑛+1 ∉ 𝑋, 
𝑅′

|𝑋 = 𝑅  and 𝑥𝑖 𝑃 ′𝑥𝑛+1  for some 𝑥𝑖 ∈ 𝑋.
Then, as we assume that 𝑂 satisfies posteriority and 𝑥𝑛+1  is above 

𝑥𝑖  in 𝑅−1, we have 𝑂(𝑅′)−1 (𝑥𝑖) = 𝑂𝑅−1 (𝑥𝑖) + 1. Now, taking into ac-
count the extra element,
(𝑛 + 1) + 1 − 𝑂(𝑅′)−1 (𝑥𝑖) =

(𝑛 + 1) + 1 − (𝑂𝑅−1 (𝑥𝑖) + 1) =

𝑛 + 1 − 𝑂𝑅−1 (𝑥𝑖),

and hence 𝑂𝑑
𝑅′ (𝑥𝑖) = 𝑂𝑑

𝑅(𝑥𝑖), i.e., the dual operator verifies indepen-
dence of dominated alternatives.

Again, the statement interchanging the properties can be proven 
in a similar way.

4. Suppose that 𝑂 satisfies natural subsequency and 𝑥𝑖 stays alone 
at its tier in 𝑅, i.e., 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 1). Then (similarly to what hap-
pens in item 1 of this proposition), as it is also alone in its tier in 
𝑅−1, where 𝐶−1

𝑅 (𝑥𝑖)(𝑛 − 𝑎𝑖 − 1, 1), we have 𝑂𝑅−1 (𝑥𝑖) = (𝑛 − 𝑎𝑖 − 1) +
1 = 𝑛 − 𝑎𝑖. Now
𝑛 + 1 − 𝑂𝑅−1 (𝑥𝑖) = 𝑛 + 1 − (𝑛 − 𝑎𝑖) = 𝑎𝑖 + 1.
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Fig. 2. Duality in characterizing properties.

Consequently, 𝑂𝑑
𝑅(𝑥𝑖) = 𝑎𝑖 + 1  and the dual position operator satis-

fies natural subsequency.
5. Consider 𝑅′ ∈ (𝑋′), with 𝑋′ = 𝑋 ∪ {𝑥𝑛+1}  such that 𝑥𝑛+1 ∉ 𝑋, 

𝑅′
|𝑋 = 𝑅  and 𝑥𝑖 𝐼 ′ 𝑥𝑛+1  for some 𝑥𝑖 ∈ 𝑋.
Then, as we assume that 𝑂 satisfies uniform variation for 𝜆 and 

𝑥𝑛+1  is also beside 𝑥𝑖 in 𝑅−1 , we have 𝑂(𝑅′)−1 (𝑥𝑖) = 𝑂𝑅−1 (𝑥𝑖) + 𝜆. 
Now, taking into account the extra element,
𝑂𝑑
𝑅′ (𝑥𝑖) = (𝑛 + 1) + 1 − 𝑂(𝑅′)−1 (𝑥𝑖) =

(𝑛 + 1) + 1 − (𝑂𝑅−1 (𝑥𝑖) + 𝜆) =

𝑛 + 1 − 𝑂𝑅−1 (𝑥𝑖) + 1 − 𝜆 = 𝑂𝑑
𝑅(𝑥𝑖) + 1 − 𝜆,

i.e., the dual operator verifies uniform variation for 1 − 𝜆.

 ∎
Remark 16. Fig. 2 shows the above duality relationships between the 
properties already appeared in Fig. 1. Here, solid lines frame self-dual 
properties, while dashed lines with the same design frame mutually dual 
properties.

On the other hand, notice that duality also explains the different 
jumps in the recurrent expressions of the standard and modified ranks 
appearing in items 1 and 2 of Proposition 6, taking into account the 
following equivalent identities:
𝑆𝑅−1 (𝑥𝑖𝑘 ) = 𝑆𝑅−1 (𝑥𝑖𝑘+1 ) + 𝑏𝑖𝑘+1
𝑛 + 1 − 𝑆𝑅−1 (𝑥𝑖𝑘 ) = 𝑛 + 1 − 𝑆𝑅−1 (𝑥𝑖𝑘+1 ) − 𝑏𝑖𝑘+1
𝑆𝑑
𝑅(𝑥𝑖𝑘 ) = 𝑆𝑑

𝑅(𝑥𝑖𝑘+1 ) − 𝑏𝑖𝑘+1
𝑀𝑅(𝑥𝑖𝑘 ) = 𝑀𝑅(𝑥𝑖𝑘+1 ) − 𝑏𝑖𝑘+1
𝑀𝑅(𝑥𝑖𝑘+1 ) = 𝑀𝑅(𝑥𝑖𝑘 ) + 𝑏𝑖𝑘+1 .

Next we present another characterization theorem of the fractional 
rank within the class of representable ranks, that takes into account its 
symmetry24.

Theorem 2. A position operator 𝑂 is representable and self-dual if and only 
if 𝑂𝑅 = 𝐹𝑅  for every 𝑅 ∈ (𝑋).

Proof.  The fractional rank is representable according to Definitions 7 
and 11: its expression just involves 𝑎𝑖 and 𝑏𝑖 for assigning the position 
of 𝑥𝑖. It is also self-dual (see Proposition 7).

Conversely, let 𝑂 be a representable and self-dual position opera-
tor. Consider 𝑥𝑖 ∈ 𝑋  such that 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖). Being 𝑂 representable, 
there exists a function 𝑓 such that 𝑂𝑅(𝑥𝑖) = 𝑓 (𝑎𝑖, 𝑏𝑖). Now, as 𝑂 satisfies 
independence of dominated alternatives (see footnote 22), if necessary, 

24 This symmetry, which was already considered in Remark 14, is the main 
reason for the extended use of the fractional rank (mid-rank) in correlation 
analysis (see footnotes 13 and 15). Similarly, note also that the symmetry of 
the Borda rule (whose relationship to the fractional rank was explained in foot-
note 16) gives this method a relevant role within the class of scoring rules in 
Social Choice.

Fig. 3. Map of position operators.

we can add or remove alternatives below 𝑥𝑖 to obtain a new weak order 
𝑅′ ∈ (𝑋′)  in such a way that 𝑥𝑖 has as many alternatives above as be-
low; i.e., 𝑂𝑅′ (𝑥𝑖) = 𝑂𝑅(𝑥𝑖)  and 𝑛′ − 𝑎𝑖 − 𝑏𝑖 = 𝑎𝑖, where 𝑛′ = #𝑋′. Even 
more, 𝐶𝑅′ (𝑥𝑖) = 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖)  and also 𝐶(𝑅′)−1 (𝑥𝑖) = (𝑛′ − 𝑎𝑖 − 𝑏𝑖, 𝑏𝑖) =
(𝑎𝑖, 𝑏𝑖), so that 𝑂𝑅′ (𝑥𝑖) = 𝑂𝑅(𝑥𝑖) = 𝑂(𝑅′)−1 (𝑥𝑖) = 𝑓 (𝑎𝑖, 𝑏𝑖). Then, by self-
duality of 𝑂, we have
𝑂𝑅′ (𝑥𝑖) = 𝑂(𝑅′)𝑑 (𝑥𝑖) = 𝑛′ + 1 − 𝑂(𝑅′)−1 (𝑥𝑖) = 𝑛′ + 1 − 𝑂𝑅′ (𝑎𝑖, 𝑏𝑖).

Consequently, 2 ⋅ 𝑂𝑅′ (𝑥𝑖) = 𝑛′ + 1, and hence

𝑂𝑅(𝑥𝑖) = 𝑂𝑅′ (𝑥𝑖) =
𝑛′ + 1
2

=
2𝑎𝑖 + 𝑏𝑖 + 1

2
= 𝑎𝑖 +

𝑏𝑖 + 1
2

= 𝐹𝑅(𝑥𝑖).

 ∎

7.  Concluding remarks

Gärdenfors (1973, p. 2) asserted that “the positionalist concept is 
somewhat vague”. In his relevant Social Choice analysis, the positional-
ist voting functions are not defined in a formal precise way, just pointing 
out that they “are those social choice functions where the positions of the 
alternatives in the voter’s preference orders crucially influence the social 
ordering of the alternatives”. In this way, implicitly, the Borda function 
takes into account the fractional rank, the restricted Borda function con-
siders the modified rank, and the ranking level function operates with 
the dense rank. Although Gärdenfors is very careful with the proper-
ties that are fulfilled in each case, other authors have used these and 
other Borda-type procedures indiscriminately and without any precau-
tion (see, for instance, Madani et al. (2014)).

To avoid vagueness or poor implementation in fields like Social 
Choice, Contest Theory, Bibliometrics, etc., it seems appropriate to es-
tablish the foundations of a theory of positions or ranks as a first step 
towards further developments. In this way, the present paper, as well 
as García-Lapresta and Martínez-Panero (2024), provide the basis on 
which positionalist approaches could be built. As a guide, Fig. 3 syn-
optically shows the place of the competition and the dense ranks with 
respect to other ranks and families or classes of position operators. The 
two papers mentioned provide a catalog of properties that characterize 
them.

As future research we can point out some possible lines. It would 
be interesting to make a positional analysis of 𝑛-tiles (introduced by 
Galton in 1885), where monotonicity fails (an alternative might be bet-
ter than another one, and be allocated in the same 𝑛-tile). This lack of 
monotonicity also appears when establishing weights in scoring rules, 
the main positionalist voting functions (an alternative might be better 
than another, even sharing the same weights), and this is the reason 
why the connection between positions and weights should be properly 
determined. And an important task is to characterize the representable 
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position operators, a result which would clearly place the border be-
tween the competition ranks and the dense rank.
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Appendix

Proof of Proposition 1

1. ⇒) Suppose 𝑥𝑖 𝑃 𝑥𝑗 . First we show that 𝐴𝑖 ⊆ 𝐴𝑗 . If 𝑥𝑘 ∈ 𝐴𝑖, then 
𝑥𝑘 𝑃 𝑥𝑖  and, by transitivity of 𝑃 , we have 𝑥𝑘 𝑃 𝑥𝑗 , hence 𝑥𝑘 ∈ 𝐴𝑗 . 
Since 𝑥𝑖 ∈ 𝐴𝑗 ⧵ 𝐴𝑖, we obtain 𝐴𝑖 ⊊ 𝐴𝑗  and, consequently, 𝑎𝑖 < 𝑎𝑗 .

⇐) By way of contradiction, suppose that 𝑎𝑖 < 𝑎𝑗  and not 𝑥𝑖 𝑃 𝑥𝑗 . 
There exist two cases:

• 𝑥𝑗 𝑃 𝑥𝑖. Following the same reasoning as before, we have 𝐴𝑗 ⊊ 𝐴𝑖
and, consequently, 𝑎𝑗 < 𝑎𝑖, that is a contradiction.

• 𝑥𝑗 𝐼 𝑥𝑖. If 𝑥𝑘 ∈ 𝐴𝑗 , then 𝑥𝑘 𝑃 𝑥𝑗  and, by transitivity of 𝑅, we have 
𝑥𝑘 𝑃 𝑥𝑖, hence 𝑥𝑘 ∈ 𝐴𝑖; then, 𝐴𝑗 ⊆ 𝐴𝑖  and 𝑎𝑗 ⩽ 𝑎𝑖, that is a con-
tradiction too.

2. 𝑥𝑖 𝐼 𝑥𝑗 if and only if neither 𝑥𝑖 𝑃 𝑥𝑗  nor 𝑥𝑗 𝑃 𝑥𝑖. Taken into account 
item 1 of this proposition, this is equivalent to both 𝑎𝑖 ⩾ 𝑎𝑗  and 𝑎𝑗 ⩾
𝑎𝑖, i.e., 𝑎𝑖 = 𝑎𝑗 .

3. First we show that 𝐵𝑖 ⊆ 𝐵𝑗 . If 𝑥𝑘 ∈ 𝐵𝑖, then 𝑥𝑘 𝐼 𝑥𝑖  and, by transi-
tivity of 𝐼 , we have 𝑥𝑘 𝐼 𝑥𝑗 , hence 𝑥𝑘 ∈ 𝐵𝑗 . Analogously, we obtain 
𝐵𝑗 ⊆ 𝐵𝑖. Then, we have 𝐵𝑖 = 𝐵𝑗 , and hence 𝑏𝑖 = 𝑏𝑗 . ∎

Proof of Proposition 2
In what follows, it is taken into account that 𝐶𝑅(𝑥𝑖) = (𝑎𝑖, 𝑏𝑖)  if and 

only if 𝑥𝑖 ∈ 𝑇 𝑎𝑖  and #𝑇 𝑎𝑖 = 𝑏𝑖  (see Proposition 1).
⇒)  If ((𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑛, 𝑏𝑛)

)

∈ 𝐷∗ codifies 𝑅 ∈ (𝑋), we will 
show that it has the above structure.

• Take 𝑐0 = #𝑇 0 = #𝑇 𝑙1 ⩾ 1  and every 𝑥𝑖 ∈ 𝑇 𝑙1  will be represented by 
𝐶𝑅(𝑥𝑖) = (0, 𝑐0).

• Take 𝑐1 = #𝑇 𝑙2  and every 𝑥𝑖 ∈ 𝑇 𝑙2  will be represented by 𝐶𝑅(𝑥𝑖) =
(𝑐0, 𝑐1).

• Take 𝑐2 = #𝑇 𝑙3  and every 𝑥𝑖 ∈ 𝑇 𝑙3  will be represented by 𝐶𝑅(𝑥𝑖) =
(𝑐0 + 𝑐1, 𝑐2).

• ⋮
• Take 𝑐𝑡 = #𝑇 𝑙𝑡  and every 𝑥𝑖 ∈ 𝑇 𝑙𝑡  will be represented by 𝐶𝑅(𝑥𝑖) =

(𝑐0 + 𝑐1 +⋯ + 𝑐𝑡−1, 𝑐𝑡).

And the process necessarily stops whenever 𝑐0 + 𝑐1 +⋯ + 𝑐𝑡 = 𝑛.
⇐)  Conversely, if ((𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑛, 𝑏𝑛)

)  has the structure of 
the proposition, we will find 𝑅 ∈ (𝑋)  codified by such vector, deter-
mining its associated decomposition into tiers, as follows:

• All 𝑐0  couples with 𝑎𝑖 = 0  will represent those 𝑥𝑖 ∈ 𝑇 𝑙1 = 𝑇0.
• All 𝑐1  couples with 𝑎𝑖 = 𝑐0  will represent those 𝑥𝑖 ∈ 𝑇 𝑙2 .
• All 𝑐2  couples with 𝑎𝑖 = 𝑐0 + 𝑐1  will represent those 𝑥𝑖 ∈ 𝑇 𝑙3 .
• ⋮
• All 𝑐𝑡 = 𝑛 − (𝑐1 + 𝑐2 +⋯ + 𝑐𝑡−1)  couples with 𝑎𝑖 = 𝑐1 + 𝑐2 +⋯ + 𝑐𝑡−1
will represent those 𝑥𝑖 ∈ 𝑇 𝑙𝑡 . ∎
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