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ARTICLE INFO ABSTRACT
Keywords: There is only one way to assign positions to objects arranged in linear orders: following the sequence of natural
Preference learning numbers (1, 2, 3, 4, ...). However, in weak orders, where ties arise, there are different possibilities to assign

Linear orders
Weak orders
Positions
Ranks

positions to tied objects. In this paper, we focus mainly on three relevant cases: the standard, modified, and
fractional ranks. They are differentiated by the spaces that appear after, before, or on either side of the position
values corresponding to the objects that are in a tie. For instance, if two objects are tied and are located immedi-
ately below the top object, these ranks assign the positions (1, 2, 2, 4, ...), (1, 3, 3, 4, ...),and (1, 2.5, 2.5, 4, ...),
respectively. Collectively, and because of the common properties shown here, we call them “competition ranks”.
In this paper, we characterize a parameterized family of position operators which includes the competition ranks.
We also provide specific axiomatizations of each of them, taking into account the spaces in the sequence of as-
signed position numbers. It is shown why the dense rank (1, 2, 2, 3, ...), another position operator where gaps
do not appear, is an essentially different approach. Furthermore, interesting duality relationships are revealed
between the competition ranks and between the properties introduced to characterize them, which allow us
to understand their internal logic and connections. Different examples, mainly from sports, bibliometrics, etc.,
illustrate the introduced concepts.

1. Introduction > Standard competition ranking (“1224” ranking)
[...]

In the following text!, which deals with the treatment of ties in the > Modified competition ranking (“1334” ranking)
setting of ranking data and related contexts, the principal notions ap- [

pearing in this paper are introduced in a non-formal pedagogical way:
> Ordinal ranking (“1 23 4” ranking) [...]
It is not always possible to assign rankings uniquely. > Fractional ranking (“1 2.5 2.5 4” ranking) [...]

For example, in a race or competition two (or more) en-

trants might tie for a place in the ranking [...] In this case,

one of the strategies below for assigning the rankings may

> Dense ranking (“1 22 3” ranking) [...]

The latter is called “dense” due to the absence of gaps in the se-

be adopted. quence of positions?, while the standard, modified and fractional ranks
A common shorthand way to distinguish these rank- consider distinct ways of jumping between assigned numbers when ties
ing strategies is by the ranking numbers that would be arise, leaving spaces after, before, or on both sides of repeated positions,

produced for four items, with the first item ranked ahead

of the second and third (which compare equal) which are 2 We employ “dense rank”, as in Garcfa-Lapresta and Martinez-Panero (2024),

both ranked ahead of the fourth | .. | These names are avoiding “dense ranking”. The same stands for the standard, modified, fractional
: and ordinal ranks. Also, instead of “ranking numbers” assigned to the alterna-

also shown below. tives under a weak order, we use the term “positions”.
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org/wiki/Ranking.
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respectively. In each of these cases, the jumps depend on the number of
ties. On the other hand, the ordinal rank assigns values sequentially, like
the dense rank, but it does not allow repetitions, forcing a tiebreaker at
random or arbitrarily among shared positions®. However, it is worth
noting that none of these methods (including ordinal ranking) performs
a tiebreaker among alternatives.

Although some authors have used other names*, the previous termi-
nology, together with self-descriptive mnemonic help, has become com-
mon in the literature. Let us mention some examples: in contest the-
ory, Vojnovic¢ (2016) provides formal definitions of all these concepts
from the same situation involving four objects; Cline (2021) reproduces
(with slight variants and without any reference) the quotation above
when dealing with rank-based examinations using the R program; and
Dunaiski et al. (2018) as well as Ordufia-Mallea and Pefez-Esparrells
(2021) consider these possibilities for ranking universities and academic
entities depending on the numeric approach adopted. Examples avail-
able online are even more common than those appearing in traditional
or academic sources.

As the competition ranks appearing in the very title of the paper are
not coined as such in the literature®, a comment on this expression is
convenient at this point. The term “competition” usually appears jointly
with the standard and modified ranks (e.g., in all the references above,
except Dunaiski et al., 2018). On the other hand, “competition” is rarely
shown alongside the fractional rank®. However, as we demonstrate in
this paper, all these ranks share connections and similar features, so that
we have gathered all of them, yielding the class of “competition ranks”.

Within this class, one or another way in which objects in a tie are
ranked can be relevant for certain purposes and should be considered
in each specific situation. For example, in the recent bibliometric sce-
nario based on the publication of the Journal Citation Reports (JCR) from
2023, one decimal place, instead of the three previously considered, is
shown in the Journal Impact Factor (JIF) as calculated by Clarivate An-
alytics in the Web of Science database. According to Edmunds (2003),
“with the move to one decimal, ties will be more common [and] the
longstanding approach for JCR is to assign journals with the same JIF
in the same category with the same rank position, skipping the ranking
position or positions for the journal with the next lower JIF value. This
is commonly known as sparse rank””. This situation can be observed in
the Operations Research and Management Science category in 2024. That
year, three journals after EJOR, which ranked 13, shared the same JIF.
Table 1 shows how, as mentioned above, they shared position 14, and
subsequently two places were skipped.

Edmunds (2003) also points out that “rankings for ties can be han-
dled in different ways”. In this case, if the fractional rank had been used
instead of the standard rank, the tied journals would have received a

3 Another interesting possibility, close in some aspects to the ordinal rank,
appears in Grzegorzewski (2006), where an extension of Kendall’s coefficient
is proposed in a context of partial preorders. To this aim, this author models
rankings through IF-sets but, previously, he motivates the need of dealing with
missing information or hesitance. In this last case, the alternatives in the ar-
rangement above would be assigned: 1 (2 or 3) (2 or 3) 4. However, it is
pointed out that “if tied observations also appear then the most common prac-
tice for dealing with them, as in most other nonparametric procedures, is to
assign equal ranks to indistinguishable observations”, which is not true for the
ordinal rank.

4 Fine and Fine (1974) coined the terms strict, weak and average corresponding
to the standard, modified and fractional ranks, respectively. Also, the fractional
rank was called mid-rank by Kendall (1945, 1948).

5 Note, however, that given a sequence S of numbers, Kammer et al. (2025)
define: “The competitive rank of each x € .S is the number of elements in S
that are smaller than x. The dense rank of each x € S is the number of distinct
elements in .S that are smaller than x, i.e., competitive rank counts duplicate
elements and dense rank does not”.

® Some exceptions are https://documentation.sas.com/doc/en/imlug/15.2/
imlug langref sect399.htm and https://rosettacode.org/wiki/Ranking methods.

7 In this paper it is called standard rank.

European Journal of Operational Research xxx (xxxx) xxx

Table 1
First tie in 2024 JIF (Operations research and management science).
Source: ooir.org.

Rank  Journal Impact Factor 2024

13 European Journal of Operational Research 6

14 Production Planning & Control 5.4
- Socio-Economic Planning Sciences 5.4
- Safety Science 5.4

17 Production and Operations Management 5.1

position rank of 15, and would even have dropped to 16 with the modi-
fied rank. It is interesting to note that, as quartiles in each category are
calculated from positions as inputs®, in extreme cases some tied journals
could belong to an upper or lower quartile depending on the rank used,
the current one (the standard rank) being that which presents the best
possible results (among competition ranks) for dealing with ties.

Anyway, rather than focusing on practical applications, here we seek
to understand the internal logic of these competition ranks, usually used
in sports, contests, etc. To this aim, it will be shown how the standard,
modified and fractional ranks can be included in a comprehensive family
of position operators through an aggregation process (or, equivalently,
linear parametric interpolation).

We characterize this parameterized family which extends the com-
petition ranks in several ways, being the common property in all these
axiomatizations that of uniform variation under ties. Afterwards, we also
provide specific characterizations of each competition rank taking into
account the gap structure in the sequence of assigned position numbers,
and we explain the obtained recurrence with duality arguments.

We have not considered the ordinal rank as a final result because,
as commented in footnote 3, it assigns different positions to objects that
compare equal (which is an undesirable property), but we have used it
as a provisional output in some processes (see later footnote 12 for a
more detailed explanation on this exclusion). Finally, we have exten-
sively considered in this paper the dense rank, already characterized in
Garcia-Lapresta and Martinez-Panero (2024), but we have shown that
it is essentially different to the previous ranks, and does not belong to
the introduced parameterized family nor can be obtained by aggrega-
tion in a similar way (moreover, it does not belong to the broader class
of representable position operators).

The paper is organized as follows. Section 2 introduces the notation
concerning preferences over alternatives, and proposes the codification
of weak orders followed throughout the paper. In Section 3, we define
position operators, focusing on the competition ranks obtained by aggre-
gation through tie-breaking processes, which allows us to include these
and other ranks in a broad class of representable position operators.
Section 4 provides characterizations of the competition ranks within a
parameterized family of position operators, while Section 5 presents ax-
iomatizations of each particular competition rank attending to the gap
structure in the sequence of assigned position numbers. Section 6 sheds
some more light on properties and ranks taking into account duality by
inversion. Section 7 presents some conclusions and suggests some fur-
ther research lines. Finally, some technical proofs have been omitted in
the main text, although they appear in the Appendix.

2. Codification of weak orders

Consider a finite set of alternatives (or objects) X = {x;,x,,...,X,},
with n > 2. A weak order (or complete preorder) on X is a complete® and

8 See Edmunds (2003) for details.
9 A binary relation R on X is complete if x, Rx; or x; Rx;, forall x;,x; € X.
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transitive'® binary relation on X. A linear order on X is an antisym-
metric!! weak order on X. With W(X) and £(X) we denote the sets
of weak and linear orders on X, respectively. Given R € W(X), with P
and I we denote the asymmetric and symmetric parts of R, respectively:
x; Px; ifnot x; Rx;; and x; I x; if (x; Rx; and x; Rx;).

Given R € W(X) and a permutation ¢ on {1,2,...,n}, we denote
by R° the weak order obtained from R by relabeling the alternatives
according to o, i.e., X; Rx; & Xy R% x,(;), forall i,j € {1,2,...,n}. In
a similar way, we denote by R~! the weak order obtained from R by
inversion, i.e., x; R™! x; © x;Rx;,forall i,j €{1,2,...,n}.

Given R € W(X) and Y C X, the restriction of R to Y, Rly, is de-
fined as x; R|y x; if x; Rx;, for all x;,x; € Y. Note that R|y € W(Y).

In turn, #Y is the cardinality of Y.

Given R € W(X), we next consider the number of alternatives pre-
ferred and indifferent to x; € X. Following the convention of represent-
ing the alternatives from top (best) to bottom (worst), we denote by

A= {xj €X|ijxl-}

the set of alternatives above x; (or dominating x;), and by «; its cardi-
nality, i.e., a; = #4;.
Also, we denote by

B,-={xj€X|inxj}

the set of alternatives beside x;, itself included, and by &; its cardinality,
i.e., b, =#B,.
In this way, a; € {0,1,...,n—1}, b, € {1,2,...,n} and a; + b; < n.
In the following proposition we show the basic relationships between
the weak order and these values. Its proof appears in the Appendix.

Proposition 1. Given R € W(X) and x;,x; € X:

1. x;Px; & a;<a;.
2. x;Ix; © a;=a;
3. x;Ix; = b =b;.

Note that the introduced values faithfully reflect the original struc-

ture. Let us consider again the Wikipedia arrangement to show

this. If we label the item on top as x;, then a; =0 (none above) and
b, =1 (itself counted). If x, and x; share the middle position, then
a, = a3 =1 (one alternative above both of them) and b, = b3 =2 (two
items compared equal). Finally, if x, is at the bottom, then a, = 3 (three
items above) and b, =1 (itself counted). Conversely, it is straightfor-
ward that the original structure can be totally recovered from these val-
ues a; and b;.
Definition 1. Let D= {(a,b) € {0,1,....n— 1} x {1,2,....n} |a+b<
n}. The mapping Ci : X — D is defined as Ci(x;) = (a;, b;).

We say that the vector (Cg(x)),...,Cg(x,)) € D" codifies R€
W(X).
n-(n+1)
—
Example 1. Consider the following weak order R € W({xy,...,xo})

It is easy to check that #D =

Xy X7
X

X5 Xg Xi0

X3 X4 Xg Xg

where alternatives in upper rows are preferred to those located in lower
rows, while the ones in the same row are indifferent. It is codified
through

Cr(xy) = Cr(x7) =(0,2)

10 A binary relation R on X is transitive if (x; Rx; and x; Rx;) implies x; Rx,,
for all X; XX, € X

1 A binary relation R on X is antisymmetric if (x, Rx; and x; Rx,) implies
x; = x;, forall x;,x; € X.
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Crlx) =(2,1)
Cr(xs) = Crlxg) = Cr(x1g) =(3,3)
CRr(x3) = Crlxy) = Cr(xg) = Crlxg) = (6,4).
Note that the vector
(2,1),(0,2),(6,4),(6,4),(3,3),(6,4),(0,2),(3,3),(6,4),(3,3)) € D'

codifies R € W(X), but not all vectors of D!© correspond to the cod-
ification of a weak order. For example, among other relationships to
appear in what follows, the second coordinate b; for each component
(a;,b;) must be the number of components that share the first coordi-
nate q;.

For small values of n, we can make a more accurate description:

e If n=2, then D={(0,1),(0,2),(,1)} and ((0, 1), (1, 1)),
(1,1,(0,1)) and ((0,2),(0,2)) are the vectors of D? that
codify the three weak orders on {x;,x,}. However, the other 6
vectors of D? do not codify any weak order on {x,x,}.

e If n=3, then D = {(0,1),(0,2),(0,3),(1,1),(1,2),(2, 1)} and only 13
out of 216 triples of D3 codify the 13 weak orders on {x, x5, X3}.

o If n=4, then D ={(0,1),(0,2),(0,3),(0,4),(1,1),(1,2),(1,3),2,1),
(2,2),(3,1)} and only 75 out of 1000 4-tuples of D* codify the 75
weak orders on {x;,x,,x3,X,}.

Exact values of the number of weak orders on X can be found in
Santos-Garcia and Alcantud (2025), focusing on the particular case k =
n (or, equivalently, k = 0) in Theorem 1, which provides the cardinality
of preference approval structures on X.

In order to achieve a general description of the structure of those
vectorsin D" codifying weak orders on X, we use another way of sorting
alternatives already introduced in Garcia-Lapresta and Martinez-Panero
(2024).

Given R € W(X), for each a € {0,1,...,n— 1}, with T we denote
the set of all the alternatives that have q alternatives above (tier):

T ={x; € X | a; =a}.
Each tier is an indifference class, because 7% = B; for every x; € T
and then, #T“ = b; (see items 2 and 3 of Proposition 1). Note also that,

unless R € L(X), some T* will be empty. This is the reason why we
define

T={a€(0,1,...n—1}|T* @}

Obviously, T # @, as T° # ¢. From now on, when we say tiers, we
are referring to non-empty tiers, i.e., T with a € T. Notice that a de-
composition of X in tiers, X = U T*, is associated with R € W(X).

aeT
It is interesting to consider only the set of vectors codifying weak
orders:
D* ={((ay, b)), (a3, by), ..., (a,,b,)) € D" | IR € W(X)
(CR(X1), Cpr(xp), ... sCR(xn)) = ((als by),(ay, by), ..., (ay, bn))}-

In the following result we characterize D* in a constructive recursive
way.

Proposition 2. A vector ((a;,b,),(ay,b,), ..., (a,,b,)) € D" belongs to
D* if and only if

#{ie(l,2,...n) |a;=0} =¢; > 1 and b, =,
#{ie{l,Z,...,n}|a[:c0}:c1 and b, =cy,
#lie(l,2,...n) lag=cy+¢;} =, and b, =c,
#lie(l,2....n}lag=cy+c;++¢_ 1} =¢ and b =c,

where the recursive process ends whenever cq +¢| + - + ¢, = n.
The proof appears in the Appendix.

Remark 1. As there is a bijection between weak orders and their cod-
ifications, Santos-Garcia and Alcantud (2025) also provide the value of
#D*.
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Note that the decomposition of X into tiers associated with R can
be more precisely described taking into account the structure of valid
codifications according to Proposition 2: for example, x,, belongs to the
top tier T? if and only if ay = 0. And x, belongs to the bottom tier T if
and only if a, + b, = n. On the other hand, x; is just above x; if and only
if a;=a;+b,.

3. Assigning positions through aggregation functions

A key idea in what follows is to assign natural numbers to the objects
in a sequential manner if there are no ties among them (linear orders);
otherwise (weak orders), those objects involved in a tie should share the
same position after an aggregation process from the linearized situation
in any way (for example, at random). Eventually, in our analysis we
may need to deal with some objects added or withdrawn throughout the
process of assigning positions. Next, we formalize these considerations.

Definition 2. Given R € L£(X), the natural sequential function on R is
the mapping Ny : X — {1,2,...,n} that assigns 1 to the alternative
ranked first, 2 to the alternative ranked second, and so on:

Ngp(x;) =#{xj eX| ijx,-} =#{xj eX| ijx,-} +1=a+1.
In this case, Nz(x;) will be called the natural position of x;.

The notion of position operator, introduced in Garcia-Lapresta and
Martinez-Panero (2024), allows to deal with the alternatives in a dynam-
ical way, similarly to what happens in voting theory when a variable
electorate is considered (see Smith (1973)).

Definition 3. Given a universe of alternatives U and X C U finite, a
position operator O assigns to each R € W(X) a function Oy : X — R.
We say that Og(x;) is the position of the alternative x; € X in the weak
order R.

Note that we do not impose here any restrictions to the reached po-
sition values although, later on, we will include some conditions that
position operators may fulfill. For example, it seems reasonable to con-
sider stable position operators, i.e., those that assign the same position
to all the alternatives in each indifference class'?.

Perhaps, the most immediate way to assign positions is to use tiers
as entity units, and then apply the natural sequential function on them.
This could be formalized through the concept of quotient set (see Garcia-
Lapresta & Martinez-Panero, 2024), but here we follow a more direct
approach.

Definition 4. The dense rank is the position operator defined as
Drix)=#T —#{d €T |d >a}=#{d €T |d <a} +1,
where x; € T* in R € W(X).

Example 2. Following with Example 1, we can obtain the dense rank
as the number of tiers above plus one, as appearing in Table 2.

Another possible way to achieve stable position operators is that all
the alternatives in each tier or indifference class share the same value
as the result of applying a compensative aggregation function to their
positions, if they were randomly linearized (ordinal rank). We note that,
previously, a similar idea was successfully used in a voting context by
Garcia-Lapresta and Martinez-Panero (2017).

An aggregation function is a function G : [0, 1] — [0, 1] that fulfills
the boundary conditions: G(0,0,...,0)=0 and G(1,1,...,1) =1, and

12 We formalize this stability condition as equality in Definition 12. As com-
mented before, this is the main reason why, although the ordinal rank will ap-
pear as a provisional stage in some forthcoming processes, we do not consider
this method to have a similar status to other ranks (competition, dense, etc.)
discussed in the paper. Even more, as shown below, all of the latter fit the (de-
terministic) definition of position operator, while the ordinal rank does not, due
to the randomness or arbitrariness required to decide tiebreakers.
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Table 2
Positions under dense rank in Example 1.
R tierin  tiers above  Dg(x;)
Xy Xp 70 none 1
x; T2 T° 2
X5 Xg X T3 T°, 1 3
X3 X4 Xg Xg T® T°, 72,73 4

monotonicity: for all (y,y,,....¥). (21, 2y, ..., z,) € [0, 1] such that y; >
Z1, Vg 2 Zgs .3 Vs 2 24 it holds G(y, ¥y, ..., ¥) = G(zy, 2y, ..., z;). Addi-
tionally, if = 1, then G(y) =y for every y € [0, 1].

An aggregation function G : [0, 1] — [0, 1] is compensative (or aver-
aging) if min{y;,y,,....y,} < Gy}, 5, ..., ¥) < max{y;, y,, ...,y }, for ev-
ery (y1.¥.....¥) €[0,17].

It is easy to see that, by monotonicity, compensativeness is equiva-
lent to idempotency: G(y,y,...,y) =y for every y € [0, 1].

We can generalize compensative aggregation functions to intervals
[c,d] as functions G : [c,d]' — [c,d] that fulfill

1. Boundary conditions: G(c,c,...,¢) =c and G(d,d,...,d) =d.
2. Monotonicity: for all (y,,y,,..., ), (21,23, ..., 2;) € [¢,d]" such that

VI 221,y 2 2, ... s Yy 2 %, it holds
G(1s Y25 Y) 2 G(21, 295 -5 Zy)
3. Compensativeness: for every (y;,y,,...,¥,) € [c,d]’, it holds

min{y;, ¥y, ..., ¥} < GOy, ¥p, > ¥) S max{yy, yp, ..., ¥}

hence idempotency: G(y,y,...,y) =y for every y € [c,d].
4. If t =1, then G(y) =y for every y € [c,d].
On aggregation functions, see Beliakov et al. (2007).

Definition 5. Given a compensative aggregation function G :
[1,n]" — [1, n], the position operator associated with G is defined as

Op(x))=G(a; + 1,a; +2,...,a; + b)). 1)
Note that in the previous definition ¢ = b;.

Example 3. Consider again Example 1. Since

ay=a;=0 and by =b; =2

a;=2 and b =1

as=ag=a;y=3 and bs=bg=b;y=3

ay=ay,=ag=dg =06 and by = by = bg = by =4,

we have

ORr(xy) = Op(x7) = G(1,2)

Or(x))=G3)=3

OR(x5) = Og(xg) = Og(x1y) = G(4,5,6)

OR(x3) = Og(xy) = Og(xg) = Op(x9) = G(7,8,9,10).

The most prominent compensative aggregation functions are the
minimum, the arithmetic mean, the median and the maximum, which
lead by aggregation (according to Definition 5) to the competition ranks,
as shown in what follows.

3.1. Minimum

If G is the minimum, Eq. (1) becomes
Op(x)=min (a;+ L,a; +2,...,a,+ b)) =a; + 1,

i.e., x; has the best position in the indifference class'®.

13 In words of Kendall: “ties should all be ranked as if they were the highest
member of the tie. This is subject to the obvious disadvantages that it gives
different results if one ranks from the other end of the scale and that it destroys
the useful property that the mean rank of the whole series shall be "zll” (see
Kendall (1945) and references therein).
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Definition 6. The standard (competition) rank is the position operator
defined as

Sp(x;) =a; + 1.

It is the most common way to establish a ranking with only nat-
ural numbers. Just to mention an interesting example of its use in
sport competitions, if we identify gold, silver and bronze medals in the
Olympic Games with positions 1, 2 and 3, respectively, if there is a tie
among laureate athletes and under some circumstances, these medals
are awarded according to the standard rank (see Garcia-Lapresta and
Martinez-Panero (2024) and references therein for details).

It corresponds to the RANK or RANK . EQ functions in Excel. It also ap-
pears as LOW in SPSS and it is called min by the R programming language
in their methods to handle ties.

It is interesting to mention that the standard rank has been defined
here in a similar way to that of the restricted Borda function considered
by Gardenfors (1973) in his analysis of positional voting systems, where
also “the alternatives in a tie are assigned the minimum they would have
become in any straightening to a linear order”. And the same idea is un-
derlying in Bridges and Mehta (1995, Theorem 1.2.1), where a utility
function is associated with a weak order by means of the cardinalities of
their strict lower sections!*. On the other hand, Alcantud et al. (2013)
and Gonzalez-Arteaga et al. (2016) have considered the standard rank
as a suitable way of assigning positions in the design of consensus mea-
sures.

3.2. Arithmetic mean

If G is the arithmetic mean, Eq. (1) becomes (using the expression of
the sum of terms in an arithmetic progression)

(@ + D+ (a; +2)+ - +(a; +b)
™ =

i

OR(x;) =

(a;+ 1)+ (a; +b;)
f'bf_ b +1
b~ =aqa; .

1 ! 2

In this way, x; has the average position in the indifference class'®.

Definition 7. The fractional rank is the position operator defined as
b +1

T2

Remark 2. Since a; + 1, a; +2, ...,a; + b; are consecutive integer num-

bers, their median and arithmetic mean coincide. On the other hand,
from

Fr(x;)) =a; +

b - Fp(x)) =(a; + 1)+ (a; +2) + --- +(a; + b;)

in each tier T% with a; € T, we obtain that all the positions assigned by

n-(n+1)

means of the fractional rank add up 1+ - +n= , even under

ties.

Sometimes the fractional rank is used but not cited by this name. For
example, in Cook (2006) several formats of representing ordinal data are
surveyed, and that called “vector representation” uses this rank to ob-
tain the corresponding coordinates. On the other hand, the fractional

14 Note, however, that in the frameworks of utility and voting functions, the
larger, the better; while in the framework of position operators, the smaller the
value of the position, the better. Concerning these connections, see Remark 4
in Garcia-Lapresta and Martinez-Panero (2024). Take also into account that if
the position of an alternative improves, then its corresponding position num-
ber decreases; and, similarly, if the position of an alternative worsens, then its
corresponding position number increases.

15 Again, according to Kendall (1945), “the method of allocating ranking num-
bers to tied individuals in general use [in ranking correlation methods] is to
average the ranks which they cover. This is known as the mid-rank method and
is the only one I shall consider”.
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rank corresponds to the RANK.AVG function in Excel and MEAN in SPSS.
Also, it is called average by the R programming language. It is used
in some situations where positions need to be translated into scores, as
happens with some positional voting systems known as scoring rules'®;
or in many sports, where the fractional rank is used (implicitly) in pair-
wise tournaments or matches where a victory computes 1 point, a tie
0.5 points and a defeat 0 points. In Remark 5 we will develop this last
assertion.

3.3. Maximum

If G is the maximum, Eq. (1) becomes
OR(x;) = max (a,- +1,a,+2,...,a; +b,~) =a; +b;,
i.e., x; has the greatest value in the indifference class.

Definition 8. The modified (competition) rank is the position operator
defined as

Mp(x;) = a; + b;.

Therefore, if some elements share the same rank, the worst position
would be assigned (if all ties were broken at random). Consequently this
rank guarantees that an alternative achieves the position k if and only
if there are k alternatives at the same level or higher (what is not true
for standard or fractional ranks).

The modified rank corresponds to HIGH in SPSS and it appears as max
in the R programming language. However, it is not considered in Excel.
And taking into account the reversal of positions/utilities pointed out in
footnote 14, it can be related to the restricted Borda funcion considered
by Gérdenfors (1973) rather than to the standard rank. Also, the modi-
fied rank has been used in some situations to apply the Ockham’s razor
principle, because its maximum possible penalization could prevent the
duplication of information data (see Singer et al., 2014 and Walk et al.,
2015). On the other hand, it is used in some competitions and sports
(see later, Remark 5).

Sr(x;) + Mp(x;
Remark 3. Note that Fy(x;) = Selx) + M)

more connections will appear that relate these ranks.

. In Section 6, some

3.4. The Q family of position operators

We now introduce a family of position operators that generalize the
competition ranks. To this aim, notice that the expression of the frac-
tional rank appearing immediately above in Remark 3 uses the arith-
metic mean of the standard and modified ranks, but other weighted
means can also be employed in the aggregation process. In other words,
this can be practically done by allowing any convex combination of the
worst and best possible positions in the indifference class of x;, i.e.:

Mp(x;) Sr(x;)
— —~
A-(@i+bp)+(1 =24 -(ag;+ D) =a; +14+1-(b; = 1),

with 4 € [0, 1].

Equivalently, this family generalizes competition ranks in a contin-
uous way through linear parametric interpolation, allowing all possible
intermediate values between those corresponding to extreme treatments
of ties.

16 The arithmetic mean (and, hence, the fractional rank) is related to the most
relevant positional voting system, the Borda count, when it is adjusted to allow
weak orders in agents’ preferences (see, for instance, Gardenfors (1973), Black
(1976) and Cook (2006), among many others). It is worth mentioning that the
Borda count (and indirectly the fractional rank) has been used recurrently to
achieve rankings of sets of objects based on rankings of the single objects and,
related with this approach, in fair division and allocation problems (see Dar-
mann and Klamler (2019) and references therein).
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Definition 9. Given R € W(X) and 4 € [0, 1], the position operator
Q% is defined as

Q) =a;+1+4-(b;—1). (2)

We denote by Q2 the parameterized family of position operators ©*
for A €[0,1].

Remark 4. Note that Q9(x;), 253(x;) and Q4(x,) are the three most
relevant members of this family, corresponding to the best, the average
(and also the median) and the worst positions in the indifference class
of x;, respectively, i.e., to the standard rank Sy, the fractional rank Fp
and the modified rank M.

Remark 5. Other values of 1 naturally arise or can be considered. For
example, in football (soccer) matches before 1994, 2 points were given
to the winner, 0 points to the loser, and 1 point to each team in case of
a tie. After this date, FIFA changed the victory score from 2 to 3 (wins
are worth more than two ties) aiming to encourage the competition (see
Garicano & Palacios-Huerta, 2014, Chapter 8).

We can understand this last situation as follows:

e One team wins (position 1, 3 points) and the another team is defeated
(position 2, 0 points)
e There is a tie (joint position to be determined, 1 point each).

If we translate scores into positions (usually the process is just the
opposite) through a linear affine function (i.e., by linear interpolation),
it is easy to check that the resultant joint position is 5/3, obtained by
taking 4 =2/3 in the 2 family'”. Also it is straightforward that before
1994 the resultant joint position was 1.5, obtained by taking 1 =1/2,
which corresponds to the fractional rank.

Interestingly, in GO Battle League, a feature in the mobile game
Pokémon GO'8, ties are a loss for both opponents and only wins are
counted. This fact was expressly taken into account in Crane et al. (2021,
Algorithm 2) and, following our scheme, it would correspond to consider
the extreme value A =1 in the £ family, corresponding to the modified
competition rank'®.

3.5. Other position operators obtained through aggregation

Another relevant family of compensative aggregation functions is
that of power means, defined as

r roa... r 1/r
YV, +y,>

G,(yl,yz,u.,y,)=( ;

with r # 0.
This family includes some of the previous aggregation functions and
introduces some other new?° :

17 Equivalent scores leading to the same positions have also been used in chess
tournaments. For example, for tie-breaking purposes, Kashdan’s system adds
four points for each game won, two points for each game drawn, and one point
for each game lost (see Wikipedia: Kashdan, in https://en.wikipedia.org/wiki/
Tie-breaking_Swiss-system_tournaments).

18 More concretely, it is a matchmaking system where players compete against
each other in online trainer battles around the world, earning rewards and
improving their global ranking. Additional information can be found at https:
//pokemongo.fandom.com/wiki/GO_Battle_League.

19 In this way, if the Olympic athletes in a tie had to decide between breaking
the tie or be awarded the corresponding medal following the modified rank, they
would surely choose the tiebreaker, which allows them to improve. The current
use of the standard rank does not encourage the competition, because it assigns
the best (maximum) possible position (see Garcia-Lapresta and Martinez-Panero
(2024)).

20 Other compensative aggregation functions can be considered; for instance,
other OWA operators (the maximum, the arithmetic mean, the median and the
minimum are also specific cases of OWA operators) or quasiarithmetic means.
On this, see Beliakov et al. (2007, Chapter 2).
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Table 3
Positions under competition and DuBois ranks in Example 1.

R Ng(x;) Sp(x)  Mgp(x)  Fp(x)  Bgr(x)
Xy X; 1,2 1 2 1.5 1.58
X 3 3 3 3 3

X5 Xg X 4,5,6 4 6 5 5.06
X3 X4 Xg Xg 7,8,9,10 7 10 8.5 8.57

e The minimum (leading to the standard rank), the maximum (this, to
the modified rank) and the geometric mean, by convergence when r
tends to —oo, oo and 0, respectively;

e The harmonic mean (whose inverse value is called mean reciprocal
rank), if r = —1;

e The arithmetic mean (leading to the fractional rank), if r =1

e The quadratic mean (leading to the DuBois rank, if r = 2.

Due to its (theoretical) importance, next we develop the last one.

3.6. The DuBois rank
As mentioned just above, if G is the quadratic mean, i.e.

VAt

,,V,)= fs

Gy, Y2, ---
then, Eq. (1) becomes

Or(x))=G(a; +1,a; +2,...,a; + b)) =

3

b,

1

\/(ai + 12+ (a; +2)2 + - + (a; + b)?

While the arithmetic mean leads to position values so that they

. 1 .
m, ever under ties (see Remark 2), Dubois

addup 1+ +n=
(1939) considered the use of the quadratic mean instead of the average.
In words of Kendall (1945): “Dubois (1939) [...] has suggested allotting
the ties an equal rank but proposes to determine it so that the sum of

squares of the ranks shall be that of an untied ranking, namely, of the
. . . )-2n+1
first n integers, 12 422 + - 4 n* = M”.

After some computations and renaming O according to the previous
comment, Eq. (3) appears as below.

Definition 10. The DuBois rank is the position operator defined as

(b, — 1) - (6a; + 2b; +5)
e .

Under linear orders, as b; = 1, the DuBois rank replicates the natural
position for x;, i.e., Bg(x;) =a; + 1.

Bgr(x;) = \/(ai +1)2+

Example 4. Following with Examples 1 and 3, taking A as the min-
imum, maximum, arithmetic mean and quadratic mean of the natural
positions in any linearization (ordinal rank), we obtain what appears in
Table 3.

Note that all the expressions of the ranks appearing just above in-
volve a; and b; through suitable functions. However, it will be shown
in what follows that this feature is not shared in general.

3.7. Representable position operators

We now introduce a broad class of position operators that assign po-
sitions to the alternatives through a function of their codifying vectors.
This means that alternatives with the same codification, even across dif-
ferent preference profiles, should be assigned identical positions.


https://en.wikipedia.org/wiki/Tie-breaking_Swiss-system_tournaments
https://en.wikipedia.org/wiki/Tie-breaking_Swiss-system_tournaments
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https://pokemongo.fandom.com/wiki/GO_Battle_League
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Definition 11. A position operator O is representable if there exists a
function f : D — R such that

Op(x;) = f(CR(xi)) = f(a;, b;) @
for every R € W(X).

Although the parameterized family £ and, more generally, those po-
sition operators obtained through a tie-breaking aggregation process, as
the DuBois rank, are representable (this can be seen from their defining
expressions), next we prove that the dense rank is not.

Proposition 3. The dense rank is not representable.

Proof. Consider the two following orders:

R, R,

X1 X2 X1

X3 X2
X3

Using the dense rank, x; occupies the second and third positions in
R; and R,, respectively, i.e., Dp (x3) =2 and Dg (x3) = 3. However
Cp, (x3) = Cg,(x3) = (2, 1); thus, if the dense rank were representable,
x5 should have the same position: f(2,1) in both cases. [

Remark 6. Since the dense rank is not representable, it cannot be
obtained by means of any tie-breaking process through any aggregat-
ing function A (all of which lead to representable ranks, as mentioned
above). If this were possible, according to Eq. (1), in the situation ap-
pearing in the proof of Proposition 3, it should be Dg, (x3) = Dg,(x3) =
A(2 + 1) = 3, which is not the case.

In summary, for non-representable position operators, the previous
argument shows that the mere knowledge of a; and b;, for a particular
x; € X, it might not be enough to establish its position through a func-
tion of its codification. A direct consequence is that the dense rank, as a
non-representable position operator, is aside the competition ranks and
cannot be found in the 2 family for any 4 € [0, 1].

4. Characterizations of the parameterized family Q

We now consider some basic properties that position operators on
weak orders might (or should) verify. Note that we do not a priori im-
pose compelling requirements in order to assign the same positions to
indifferent alternatives, etc. Some of these properties had already ap-
peared in Garcia-Lapresta and Martinez-Panero (2024).

Definition 12. Let O be a position operator and Oy : X — R the

function that assigns a position to each alternative of X in the weak

order R € W(X). We say that the position operator O satisfies the fol-

lowing conditions, when they are fulfilled for all X C U finite and

R e W(X):

. Sequentiality: if R € L(X), then Og(x;) = Ng(x;) for every x; € X.

. Equality: x; I x; = Og(x;) = Og(x)), for all x;,x; € X.

. Monotonicity: x; Rx; & Og(x;) < Og(x)), for all x;,x; € X.

. Neutrdlity: Opo(x,)) = Og(x;) for every permutation ¢ on
{1,2,...,n}.

5. Independence of dominated alternatives®': ORiy iy, (X1) = OR(x); for
%

H W N

every x; € X such that x; Px;.

Remark 7. Sequentiality is a compelling condition of extension to weak
orders the particular case of linear orders and their natural positions, for-
malizing the convention of assigning unit-equidistant positions starting
from one if there are no ties.

Equality entails that indifferent alternatives are indistinguishable
from a positional point of view.

21 In fact, this condition is equivalent to that of truncation appearing in Garcia-
Lapresta and Martinez-Panero (2024) characterizing the dense rank.
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Monotonicity, a stronger condition than equality, means that the bet-
ter the alternative, the less the position value, and vice-versa.

Neutrality guarantees an equal treatment of alternatives.

Independence of dominated alternatives requires that the deletion of
alternatives below that the one to be assigned a position has no effect on
it. It is important to note that this property entails that not only remov-
ing, but also adding alternatives below, will not change the positions
of the alternatives above, since by successive withdrawals, the situation
prior to the enlargement could be attained once more.

Remark 8. Standard, modified, fractional and dense ranks satisfy all
the above properties (see Garcia-Lapresta & Martinez-Panero, 2024 for
details). The same stands for the DuBois rank?2.

Consequently, as we are interested in characterization results for the
family Q enclosing the standard, modified and fractional ranks (but
not the dense rank, which stands aside of them (see Proposition 3 and,
later on, Remark 13), those properties in Definition 12 will not be selec-
tive enough for our purposes; so we have to analyze further appropriate
conditions capturing the very essence of the parameterized family.

We first introduce a set of properties concerning alternatives not af-
fected by ties.

Definition 13. We say that a position operator O satisfies the following
conditions, when they are fulfilled for all X C U finite and R € W(X):

1. Natural subsequency: if R € W(X), then Og(x;) =a; +1 for every
x; € X such that b, = 1.

2. Primacy: if R € W(X) and x; Px; for every x; # x;, then Og(x;) =
1.

3. Ultimacy: if R € W(X) and x; P x; for every x; # x;, then Og(x;) =
n.

Remark 9. Natural subsequency means that if there are no ties at
a tier, being this a singleton, then the position of its unique element,
subsequent to those above, must be precisely the number of such pre-
vious alternatives, whatever their arrangement will be, plus one (itself
counted). It is a stronger condition than sequentiality and it also implies
primacy and ultimacy as particular cases: if an alternative stays alone on
the top or at the bottom, its position will be 1 or n, respectively (these
and other relations will be gathered in Proposition 4).

Also, in the following characterizations we will consider some other
properties related to the positional behavior of alternatives when af-
fected by the appearance of new others (or the withdrawal of existing
ones).

Definition 14. We say that a position operator O satisfies the following
conditions, when they are fulfilled for all X C U finite and R € W(X):

1. Posteriority: if R’ € W(X'), with X' = X U {x,,,} such that x,,, &
X, R'|y=R and x,,, P'x; for some x; € X, then Op(x;) =
OR(x) + 1.

2. Uniform variation: if R’ € W(X’), with X’ = X U {x,,,} such that
X,41 € X, R'|xy = R and x,,; I’ x; for some x; € X, then there exists
4 €1[0,1] such that Og/(x;) = Og(x,) + 4.

Remark 10. Posteriority means that if a new alternative appears above
another one staying below it, then the position of the latter worsens
by exactly one unit (equivalently, the alternative above can also be re-
moved and in such case the position of any alternative below improves
by one unit).

Uniform variation can be explained in a dynamical manner as fol-
lows: if a considered alternative has a (provisional) position in a sit-
uation in progress and, finally, another appearing alternative reaches

22 In fact, it is straightforward that all representable position operators (a class
including the competition and DuBois ranks), due to their expression just in-
volving a; and b;, verify neutrality (and hence equality) and independence of
dominated alternatives.
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the former one in a tie, then the previous position number can increase
by at most a step not greater than one, being such step uniform, i.e.,
regular at any tier (again, the withdrawal of an alternative at the same
level also means a decrease of the position number by the same step of
those remaining at the same level). In particular, duplication, a property
appearing in the characterization of the dense rank (Garcia-Lapresta &
Martinez-Panero, 2024), implies uniform variation when the step is null
(1=0).

Notice that these properties establish what happens when new al-
ternatives are considered above or at the same level than that already
positioned. Their natural complement, concerning alternatives below,
is independence of dominated alternatives, already defined (see Defini-
tion 12).

Proposition 4.

1. Primacy and posteriority together imply natural subsequency.

2. Independence of dominated alternatives and ultimacy together imply nat-
ural subsequency.

3. Sequentiality and independence of dominated alternatives imply primacy.
4. Sequentiality and posteriority together imply ultimacy.

5. Natural subsequency implies sequentiality, primacy and ultimacy.
Proof.

1. Suppose that Cg(x;) = (g;, 1) and first, applying posteriority g; times,
delete all g; alternatives dominating x;, i.e, belonging to the subset
A; C X. Then, due to primacy, we have OR\X\A,- (x;) = 1. Restoring
the deleted alternatives for recovering R, and again by posteriority,
we finally obtain Ogx(x;) =1+ a;.

Notice that the reciprocal does not hold. Although natural sub-
sequency implies primacy (as commented in Remark 9 and will be
shown in item 5 of this proposition), it does not imply posteriority:
see the DuBois rank in Remark 11.

2. Suppose that Cgr(x;) =(a;,1) and first, applying independence of
dominated alternatives n —a; — 1 times, delete all n—a; — 1 alter-
natives dominated by x;, i.e, belonging to the subset X \ (4; U {x;}).
Then, due to ultimacy, we have O Rix\ao (x,-))(x") =a; + 1. Restoring
the deleted alternatives to recover R, and again by independence of
dominated alternatives, we finally obtain Og(x;) =a; + 1.

Also, the reciprocal is not true, because natural subsequency
does imply ultimacy as a particular case (again, as commented in
Remark 9 and will be shown in item 5 of this proposition), but
not independence of dominated alternatives: it suffices to consider
Or(x;) = a; + 1+ (b; — 1) - n, which verifies natural subsequency, but
not independence of dominated alternatives.

3. Suppose that x; dominates all other alternatives. Then, by indepen-
dence of dominated alternatives, Og(x;) = O R| m)(x,-) =1, this value
coming from sequentiality applied to the singleton {x;}.

4. If t x; is dominated by all other alternatives, then OR‘(X”(x,-) =1,
due to sequentiality applied to the singleton {x;}. Restoring all other
n—1 alternatives above x; to recover R and iterating posteriority, it
should be Ox(x)=1+(n—-1)=n.

5. First, sequentiality trivially holds, just applying natural subsequency
to linear orders. On the other hand, primacy and ultimacy are but
particular cases of natural subsequency. Indeed, if x; P x; forall x; #
x;, then x; is the only alternative on the top, and hence Cg(x;) =
(0,1). Then, by natural subsequency Og(x;) =0+ 1= 1. Similarly,
if x; Px; for all x; # x;, then x; is the only alternative at the bot-
tom, and hence Cg(x;) = (n—1,1). Again, by natural subsequency
Oprx)=m—-1D+1=n.

O

Remark 11. In Table 4, it is shown the fulfillment of the forthcoming
characterization conditions by the position operators appearing in this

paper.
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Table 4
Properties and their fulfillment.
Q family  DuBois  Dense rank

Sequentiality yes yes yes
Indep. dom. alt.  yes yes yes
Nat. subseq. yes yes no
Primacy yes yes yes
Ultimacy yes yes no
Posteriority yes no no
Uniform var. yes no yes

It is easy to check the total fulfillment of the properties by the Q
family. Taking into account items 1 and 5 of Proposition 4, it suffices
to prove primacy, posteriority, independence of dominated alternatives,
and uniform variation. These properties easily follow from the expres-
sion Q4(x)=a;+1+4- (b, — 1)

e Primacy: if x; dominates all other alternatives, Cp(x;) =(0,1) and
hence Q4(x;)=0+1+4-0=1.

e Posteriority: if a new alternative arises above x;, then g; increases
one unit, so that its position also increases one unit.

¢ Independence of dominated alternatives: if a new alternative arises
below x;, as ¢; and b; do not change, neither does the position of
x; (as mentioned in footnote 22, this is also true for all representable
position operators).

¢ Uniform variation: if a new alternative arises beside x;, then b, in-
creases one unit, so that its position also increases one unit multiplied
by 4.

The DuBois rank fulfills natural subsequency: due to its expression
(see Definition 10), if b, =1, then Bg(x;) = a; + 1. Consequently, by
item 5 in Proposition 4, sequentiality, primacy and ultimacy also hold. It
also satisfies independence of dominated alternatives (again, because it
is representable). However, it does not satisfy posteriority: if we extend
R in Example 1 by adding a new alternative x;; indifferent to x,, then
all three alternatives just below drop from position 5.06 to 6.05, which
is less than one unit. And it does not fulfill uniform variation neither: in
this new situation, the joint position of both x, and x;; would be 3.53
instead of 3 for x; alone; but if any other new alternative still appears
in the top tier, the joint position of the former ones in the top tier would
drop from 1.58 to 2.16, with a non-uniform variation: 0.58 # 0.53.

Finally, the dense rank satisfies sequentiality, what is trivial from
Definition 4 taking into account that tiers are singletons in linear or-
ders; and primacy, because all the alternatives in the top tier should
have position 1. Also uniform variation and independence of dominated
alternatives are fulfilled (see Remark 10 and footnote 21, respectively).
However, ultimacy does not hold: in the proof of Proposition 3, accord-
ing to R;, the alternative x; appears alone at the bottom and reaches
position 2, although #X = 3. And, consequently, natural subsequency
and posteriority do not hold neither (see items 4 and 5 of Proposition 4).
Note that the unfulfillment of these last three properties is another ar-
gument for excluding the dense rank of the £ family.

Next we show how some combinations of the aforementioned prop-
erties lead to different characterizations of the Q2 family.

Theorem 1. A position operator O satisfies natural subsequency and uni-
form variation if and only if O = Q* for some 1 € [0, 1].

Proof. We have already pointed out that the parameterized family
satisfies these properties (see Remark 11). Conversely, suppose that
Cr(x;) = (g;,b;) and first delete all b, — 1 alternatives indifferent to x;,
itself excluded. Then, we have O Rlgeyrai )u(xi)(xi) = ag; + 1, due to natural
subsequency. Now, restoring the previously deleted b, — 1 alternatives
to recover R, and adding A each time by uniform variation, we finally
obtain Og(x;)=a; +1+4-(b;—1)=Q4(x). O
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—————— Primacy e Posteriority |-----» Corollary 1
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------ Indep. dom. alt. |------- Ultimacy -----» Corollary 2

Fig. 1. Properties involved in the characterizations of the 2 family.

The following corollaries provide other characterizations with
weaker conditions than natural subsequency, i.e., primacy or ultimacy,
but then adding independence of dominated alternatives or posteriority,
respectively. They easily follow from Theorem 1 and items 1 and 2 of
Proposition 4.

Corollary 1. A position operator O satisfies primacy, posteriority and uni-
form variation if and only if O = Q% for some A € [0, 1].

Corollary 2. A position operator O satisfies independence of dominated
alternatives, ultimacy and uniform variation if and only if O = Q* for some
A€ 0,1].

Next we prove the independence of the above characterizing proper-
ties. Also, it will be immediately shown why we cannot use just sequen-
tiality, as happened in the characterizations of the dense rank provided
by Garcia-Lapresta and Martinez-Panero (2024).

Proposition 5. The conditions appearing in Theorem 1, Corollaries 1 and
2 are independent.

Proof. See Remark 11 about the properties mentioned in this proof and
their fulfillment by the dense and the DuBois ranks.

1. Concerning Theorem 1, the DuBois rank verifies natural subsequency
but not uniform variation. The dense rank verifies uniform variation
for A =0, but not natural subsequency.

2. Concerning Corollary 1, the position operator defined as Ogx(x;) =
a; + 1+ (b; — 1)? verifies primacy and posteriority, but not uniform
variation. The dense rank verifies primacy and uniform variation,
but not posteriority. The position operator defined as Ogx(x;) = a; +
1 + b; verifies posteriority and uniform variation, but not primacy.

3. Concerning Corollary 2, the DuBois rank verifies ultimacy and in-
dependence of dominated alternatives, but not uniform variation.
The position operator defined as Og(x;) = n verifies ultimacy and
uniform variation, but not independence of dominated alternatives.
The dense rank verifies independence of dominated alternatives and
uniform variation, but not ultimacy.

O

Remark 12. Natural subsequency cannot be weakened by sequential-
ity in Theorem 1, because the dense rank satisfies sequentiality and uni-
form variation (see Remarks 8 and 10), but it does not belong to the
parameterized family (see Remark 6). This also stands for primacy and
posteriority in Corollary 1, as well as for independence of dominated
alternatives and ultimacy in Corollary 2 (due to items 1 and 2 of Propo-
sition 4).

Fig. 1 shows an overview of the characterizations obtained for the
parameterized family of position operators. Some other relationships
between the properties involved will appear in Section 6 (Fig. 2).

European Journal of Operational Research xxx (xxxx) xxx

5. Particular characterizations of the competition ranks

Next we present specific characterizations of the standard, modified
and fractional ranks attending to the size and place of the gaps between
position values of the alternatives in connection to their ties.

Proposition 6. Let X =T UT?2 u--UT" be the decomposition of X
into tiers, from top to bottom, associated with the weak order R € W(X),
where x; €T !k, Then, for any position operator O it holds:

1. Or(x;) =1 and Og(x;

Tk+1

)=Or(x;) +b;, if and only if Og = Sg.

2. Og(x;) =b;, and Og(x;, ) = Og(x; ) +b; ,, ifandonlyif O = M.
b +1 by, +b;,,, .
3. Og(x;) = 7 and Og(x;,, ) = Og(x;) + — if and only if
Og = Fp.
Proof.

1. First we show that Sy satisfies the above conditions. As x; € Th
T% a; =0 and Sg(x;)=0+ 1= 1. In addition, notice that x; is
just above x; ; hence, a;  =a; +b; . Then, Sg(x; )=a;  +

1= (a, +b,)+1=(a, +1)+b, =Sp(x;)+b,.
Conversely, if Oy satisfies both conditions, it must coincide

with Sg. Indeed, the first one ensures Og(x;)=1=0+1=gq; +

1 = Sg(x;)). And by induction on k, again taking into account the

contiguity of x; and x; , also the second condition is easily
checked: Og(x;, 1)) = Op(x; ) +b; = Sp(x; ) +b;, =(a; +1)+b, =
(@, +b)+1= a4, + 1= 8g(x;11); as Op(x;,) = Sg(x;,) by induc-
tion hypothesis.

2. In a similar way, as x; € T =T, a; =0and Mg(x;)=0+b; =
b; . And using again the contiguity of x; and x; , we now obtain
MR(kaH) = T bik+1 = (aik + bfk) + bik+1 = MR(X"k) + bik+1'

Conversely, if Op satisfies both conditions, it must coin-
cide with Mg, because the first one ensures Og(x;)=b; =

0+b; = Mg(x;), as a; =0. And by induction on k, again

it

i

taking into account the contiguity of x; and x; , also
we have Og(x; 1) = Op(x;) +b;,, = Mg(x; )+ b, =(a, +b)+
it = g + b, = Or(x; 41), as Og(x; ) = Mg(x; ) by induction
hypothesis.
3. Immediate, taking into account Remark 3.
O
Remark 13. In each case, the values Og(x; ) jointly with the other

conditions relating contiguous positions provide alternative expressions
of the competition ranks that are interesting for algorithmic or program-
ming purposes, due to their recursive nature. It is also interesting to em-
phasize that only by knowing the position values reached under a com-
petition rank and how many alternatives share them (i.e, repetitions in
position numbers), it is possible to determine (up to permutations) the
corresponding weak order. Next we show this in simple practical situa-
tions.

If we know that a competition rank has been used and the positions
reached (with repetitions) have been (1,2,2,4) , then the standard rank
ought to be the one employed, because of the gap after 2, and the origi-

nal structure would correspond to the Wikipedia example . On the

other hand, if the ranks were (2,2, 3,4), this would necessarily be pro-
duced by the modified rank (due to the gap before 2), being | - |[the

corresponding arrangement. Finally, with positions (1,2,3.5,3.5), the

only possibility is under the fractional rank (gaps on both sides

of 3.5). Note in each case how gaps in position numbers are directly
related to the associated b; values.

Even more, with competition ranks we would be able to recover the
original weak order only by knowing the number of alternatives and
the reached positions without repetitions. This does not hold for the
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Table 5
Positions and their inverse values.
R Sp(x)  Mg(x)  Fp(x)  Sga(x)  Mga(x)  Fra(x)
Xy Xy 1 2 1.5 9 10 9.5
X, 3 3 3 8 8 8
X5 Xg Xjg 4 6 5 5 7 6
X3 X4 Xg Xg 7 10 8.5 1 4 2.5

dense rank??, which depends on the global tier structure ignoring tie
sizes, and not merely on the local codification of each alternative, as
competition ranks do. Definitely, this fact sheds light on how the dense
rank essentially differs from the standard, modified and fractional ranks.
Note also that if the position operator O already belongs to the 2
family (which has not been assumed in the statement of Proposition 6),
the imposition of the initial values Og(x;)) can be avoided, because
they become forced, leaving only the corresponding recurrence con-
ditions. For example, if “Q;e(xi) =a;+ 1+ A-(b; — 1) verifies the recur-
rence sz(x,.kﬂ) = .sz(x,-k) + b, , it must hold
+1+A-(b,

Tkt+1

1’

a “D=ay +1+4-(b, —1)+b,.

It
As 4, 41 =a; + bik,
—D=a, +1+4i-(b, —)+b,.

Simplifying, 4-(b;,,, —b;,)=0.

Now, to maintain the generality of the result, as b; , may be differ-
ent from b; , it will be necessary that 1 =0, which corresponds to the
standard rank (similar arguments can be presented for the other com-
petition ranks).

ay +b, +1+4-(b

Tkt1

6. Duality

Suppose a situation where there are no ties and, consequently, the
positions are 1,2, ..., n. But there has been a mistake in the order scale
and everything is upside down, so those positions should be reallocated.
The problem is trivial in this case, because the new positions should
be n,n—1,...,2,1, where in both sequences the relationship between
homologous terms adds up to n + 1.

More generally, can we recover the positions in a weak order R from
those of its inverse order R™!? Table 5 shows what happens with the
competition ranks when applied to the weak order corresponding to
Example 1, as well as to the inverse.

Some relationships can be observed, and the following concept of
dual position operator is helpful to understand and formalize them.

Definition 15. Given a position operator O, its dual O? is the position
operator defined as

0%(x) =n+1-0gi(x)).

Proposition 7. The standard and modified ranks are mutually dual and
the fractional rank is self-dual, i.e., M3 =Sy, S% =My, Fi=Fg and,
in general, (24! = Q1.

Proof. Taking into account Remark 4, it is sufficient to prove the last
expression. To this aim, notice that if Cr(x;) = (g;, b;), it also holds that
Cp-1(x;) = (n—a; — b, b;). Then,

Q)+ QL () =

23 As already argued in Garcia-Lapresta and Martinez-Panero (2024) for a situ-
ation with three alternatives, if just positions 1 and 3 are reached by them under
the standard rank, this necessarily should correspond to the following arrange-
ment: any two of them on top and the other on the bottom. The same stands for
positions 2 and 3 with the modified rank, as well as 1.5 and 3 with the fractional
rank. However, if the dense rank is used, only knowing that positions 1 and 2
have been occupied, we cannot recover the weak order structure; this informa-
tion only allows us to affirm that the alternatives are distributed in two tiers,
but we cannot determine the cardinality of each tier.

10
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G +1+(0—A)- (b= +n—a—b+1+A-(b;—1)=
Il+n=b+(1—-A+A)-bj=1+n—-b;+b;=1+n.

Consequently, Q14 (x;)=n+1- ‘qu—l () =@, O

Remark 14. It is worth to emphasize the role of the fractional rank
as the only self-dual position operator within the £ family, which
will be determinant in Theorem 2. This happens because such dual
symmetry forces (and is forced by) the balanced treatment of ties. In-
deed, this uniqueness result can be directly obtained taking into ac-
count that Q4(x;) = (2%)(x,) ifandonlyif a; + 1+ A-(b; - ) =n+1-
(n—a; —b; + 14 4-(b; — 1)). Then, after easy computations, we obtain
A-(b; —1)=(1—4)-(b; — 1)). As this may occur being b, # 1, it follows
that necessarily 4 =1 — 4, and hence A = 0.5, which corresponds to the
fractional rank.

Remark 15. As happens in different contexts where this notion arises,
dualization is an involution: (Od)d =0.

On the other hand, the dense rank is also self-dual if we change n + 1
for #T + 1 in Definition 15.

Proposition 8.

1. Sequentiality is self-dual; i.e., a position operator satisfies sequentiality if
and only if its dual also does.

2. Primacy and ultimacy are mutually dual; i.e., a position operator satisfies
primacy (respectively, ultimacy) if and only if its dual verifies ultimacy
(respectively, primacy).

3. Posteriority and independence of dominated alternatives are mutually
dual; i.e., a position operator satisfies posteriority (respectively, indepen-
dence of dominated alternatives) if and only if its dual verifies indepen-
dence of dominated alternatives (respectively, posteriority).

4. Natural subsequency is self-dual; i.e., a position operator satisfies natural
subsequency if and only if its dual also does.

5. Uniform variation is self-dual; concretely, a position operator satisfies
uniform variation for A € [0, 1] if and only if its dual also does for 1 — A.

Proof. It is enough to prove the direct statements, because the recipro-
cals are fulfilled by duality (see Remark 15).

1. If the position operator O satisfies sequentiality and R € L£(X), then
Or(x;))=a; +1 for each x; € X such that Cg(x;) = (a;,1). Conse-
quently, also R™! € £(X) and O‘I"{(x,-) =n+1-0Op_(x)=n+1-
((n—a;— 1)+ 1)=a;+1, because Cg-1(x;) =(n—a; —1,1). Hence,
0 satisfies sequentiality too.

2. Suppose that O satisfies primacy. If x; stays alone at the bottom in R,
it will be on the top in R™'. Then, Og-1(x;) = 1, and hence 0%(x,) =
n+1—1=n. Consequently, O? satisfies ultimacy.

The statement interchanging the properties can be proven in a
similar way.

3. Consider R’ € W(X'), with X' = XU {x,,;} such that x,,, & X,
R'|xy =R and x; P'x,, for some x; € X.

Then, as we assume that O satisfies posteriority and x,, is above
x; in R™!, we have O(rry-1(x;) = Op-1(x;) + 1. Now, taking into ac-
count the extra element,
n+1)+1- O(Rr)—] (x) =
M+ D+1=Opi(x)+1) =
n+1—=0p1(x)),
and hence Of{,(x,.) = sz(xi), i.e., the dual operator verifies indepen-
dence of dominated alternatives.

Again, the statement interchanging the properties can be proven
in a similar way.

4. Suppose that O satisfies natural subsequency and x; stays alone
at its tier in R, i.e., Cr(x;) = (g;,1). Then (similarly to what hap-
pens in item 1 of this proposition), as it is also alone in its tier in
R~!, where C;'(x))(n —a; — 1,1), we have Op-i(x)=(n—a;— 1)+
1 =n-a;. Now

n+1-=0p1(x)=n+1-n-a)=a;+1.
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Fig. 2. Duality in characterizing properties.

Consequently, sz(xi) =a; + 1 and the dual position operator satis-
fies natural subsequency.
5. Consider R’ € W(X’), with X’ = X U {x,,,} such that x,,, & X,
R'|x =R and x; I’ x,, for some x; € X.
Then, as we assume that O satisfies uniform variation for A and
x,41 is also beside x; in R™', we have Oiy-1(x;) = Op-1(x,) + A.
Now, taking into account the extra element,

04, (x)=(n+ 1)+ 1= Ogr-1(x)) =
n+ D+ 1= (Op1(x)+4) =
n+1—O0pa(x)+1-A=0%x)+1- 4

i.e., the dual operator verifies uniform variation for 1 — A.

O

Remark 16. Fig. 2 shows the above duality relationships between the
properties already appeared in Fig. 1. Here, solid lines frame self-dual
properties, while dashed lines with the same design frame mutually dual
properties.

On the other hand, notice that duality also explains the different
jumps in the recurrent expressions of the standard and modified ranks
appearing in items 1 and 2 of Proposition 6, taking into account the
following equivalent identities:

Sp-1(x;,) = Sp-1(x;

Tkt1

)+ b,

L1
n+1-=Spi(x)=n+1-Sp1(x

’k+l)_b
)—b

Tl

d _ qd
SR(xik) - SR(xik+1 it

Mp(x; )= Mg(x;, )~ b

ikl Tt

M g(x;

Tkt 1

)= MR(xik) + b,»H1 .

Next we present another characterization theorem of the fractional
rank within the class of representable ranks, that takes into account its
symmetry>*.

Theorem 2. A position operator O is representable and self-dual if and only
if Op = Fg for every R € W(X).

Proof. The fractional rank is representable according to Definitions 7
and 11: its expression just involves g; and b; for assigning the position
of x;. It is also self-dual (see Proposition 7).

Conversely, let O be a representable and self-dual position opera-
tor. Consider x; € X such that Cyp(x;) = (g;, b;). Being O representable,
there exists a function f such that Og(x;) = f(qg;, b;). Now, as O satisfies
independence of dominated alternatives (see footnote 22), if necessary,

24 This symmetry, which was already considered in Remark 14, is the main
reason for the extended use of the fractional rank (mid-rank) in correlation
analysis (see footnotes 13 and 15). Similarly, note also that the symmetry of
the Borda rule (whose relationship to the fractional rank was explained in foot-
note 16) gives this method a relevant role within the class of scoring rules in
Social Choice.
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Fig. 3. Map of position operators.

-

we can add or remove alternatives below x; to obtain a new weak order
R’ € W(X') in such a way that x; has as many alternatives above as be-
low; i.e., Og/(x;) = Og(x;) and n’ —a; — b; = a;, where n’ = #X'. Even
more, Cp(x;) = Cp(x;) = (g;,b;) and also Corry-1(xp) = (' —a; —b;,b;) =
(a;, b;), so that Opi(x;) = Og(x;) = Orr)-1(x;) = f(a;, by). Then, by self-
duality of O, we have

Op(x;) = Ogrya (x;) = 0" + 1= Oy (x;) = 0 + 1 = Ope(ay, by).

Consequently, 2 - Og(x;) = n’ + 1, and hence

n+1 2a+b+1 b +1
= =a +

Op(x) = Op(x) = 7 = ) =q R Fr(x;).

O

7. Concluding remarks

Gérdenfors (1973, p. 2) asserted that “the positionalist concept is
somewhat vague”. In his relevant Social Choice analysis, the positional-
ist voting functions are not defined in a formal precise way, just pointing
out that they “are those social choice functions where the positions of the
alternatives in the voter’s preference orders crucially influence the social
ordering of the alternatives”. In this way, implicitly, the Borda function
takes into account the fractional rank, the restricted Borda function con-
siders the modified rank, and the ranking level function operates with
the dense rank. Although Gardenfors is very careful with the proper-
ties that are fulfilled in each case, other authors have used these and
other Borda-type procedures indiscriminately and without any precau-
tion (see, for instance, Madani et al. (2014)).

To avoid vagueness or poor implementation in fields like Social
Choice, Contest Theory, Bibliometrics, etc., it seems appropriate to es-
tablish the foundations of a theory of positions or ranks as a first step
towards further developments. In this way, the present paper, as well
as Garcia-Lapresta and Martinez-Panero (2024), provide the basis on
which positionalist approaches could be built. As a guide, Fig. 3 syn-
optically shows the place of the competition and the dense ranks with
respect to other ranks and families or classes of position operators. The
two papers mentioned provide a catalog of properties that characterize
them.

As future research we can point out some possible lines. It would
be interesting to make a positional analysis of n-tiles (introduced by
Galton in 1885), where monotonicity fails (an alternative might be bet-
ter than another one, and be allocated in the same n-tile). This lack of
monotonicity also appears when establishing weights in scoring rules,
the main positionalist voting functions (an alternative might be better
than another, even sharing the same weights), and this is the reason
why the connection between positions and weights should be properly
determined. And an important task is to characterize the representable
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position operators, a result which would clearly place the border be-
tween the competition ranks and the dense rank.
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Appendix

Proof of Proposition 1

1. =) Suppose x; Px;. First we show that A; C A;. If x, € 4;, then
x; Px; and, by transitivity of P, we have x, Px;, hence x; € 4;.
Since x; € A; \ 4;, we obtain A; C A; and, consequently, g, < a;.

<) By way of contradiction, suppose that a; < a; and not x; P x;.
There exist two cases:
* x; P x;. Following the same reasoning as before, we have A; C 4,
and, consequently, a; < a;, that is a contradiction.

e x; Ix;.If x € A;, then x, Px; and, by transitivity of R, we have
x; P x;, hence x;, € A;; then, A; C A; and g; < g;, that is a con-
tradiction too.

2. x; I x; if and only if neither x; P x; nor x; P x;. Taken into account

item 1 of this proposition, this is equivalent to both a; > a; and a; >
a;, i.e., a; = a;.

3. First we show that B; C B;. If x; € B;, then x; I x; and, by transi-
tivity of 1, we have x, I x;, hence x, € B;. Analogously, we obtain
B; C B;. Then, we have B; = B}, and hence b, =b;. O

Proof of Proposition 2

In what follows, it is taken into account that Cg(x;) = (g;, ;) if and
only if x; € T% and #T“% = b; (see Proposition 1).

=) If ((a,b)),(ay, by), ..., (a,,b,)) € D* codifies R € W(X), we will
show that it has the above structure.

e Take ¢y = #T° =#T'1 > 1 and every x; € Tt will be represented by
Cr(x;) = (0,¢p).

e Take ¢; = #T"2 and every x; € T2 will be represented by Cg(x;) =
(cg-cp)-

e Take c, = #T"3 and every x; € T'3 will be represented by Cg(x;) =

(co +¢1,0)-

e Take ¢, = #T' and every x; € T will be represented by Cg(x;) =
(cg+cy+ - +c_y,c)
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And the process necessarily stops whenever cy +c¢; + - +¢, =n.

&) Conversely, if ((a;.b)).(ay.by),....(a,.b,)) has the structure of
the proposition, we will find R € W(X) codified by such vector, deter-
mining its associated decomposition into tiers, as follows:

e All ¢, couples with a; = 0 will represent those x; € T't =T,,.
e All ¢; couples with ¢; = ¢, will represent those x; € T'2.
e All ¢, couples with a@; = ¢, + ¢, will represent those x; € T%.

o .
e All ¢, =n—(c;+cy++++c¢,_y) couples with a; =c; + ¢, + - +¢,_4
will represent those x; € Th. O
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