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Background: Lipin-2 is a lipid metabolic enzyme.

Results: Lipin-2 levels control the generation of proinflammatory factors in macrophages overloaded with saturated fatty acids.
Conclusion: Lipin-2 has an anti-inflammatory action under fatty acid overload conditions.
Significance: Lipin-2 is involved in the cross-talk between lipid metabolism and inflammation.

Lipin-2 is a member of the lipin family of enzymes, which are
key effectors in the biosynthesis of lipids. Mutations in the
human lipin-2 gene are associated with inflammatory-based dis-
orders; however, the role of lipin-2 in cells of the immune system
remains obscure. In this study, we have investigated the role of
lipin-2 in the proinflammatory action of saturated fatty acids in
murine and human macrophages. Depletion of lipin-2 promotes
the increased expression of the proinflammatory genes 116, Ccl2,
and Tufa, which depends on the overstimulation of the JNK1/c-
Jun pathway by saturated fatty acids. In contrast, overexpression
of lipin-2 reduces the release of proinflammatory factors. Met-
abolically, the absence of lipin-2 reduces the cellular content of
triacylglycerol in saturated fatty acid-overloaded macrophages.
Collectively, these studies demonstrate a protective role for
lipin-2 in proinflammatory signaling mediated by saturated
fatty acids that occurs concomitant with an enhanced cellular
capacity for triacylglycerol synthesis. The data provide new
insights into the role of lipin-2 in human and murine macro-
phage biology and may open new avenues for controlling the
fatty acid-related low grade inflammation that constitutes the
sine qua non of obesity and associated metabolic disorders.

Chronic low grade inflammation produced in the adipose
tissue during obesity is due, at least in part, to the increased
levels of fatty acids released from adipocytes, especially satu-
rated fatty acids, that are able to stimulate tissue resident
macrophages and change their polarization state from an anti-
inflammatory (M2) to a proinflammatory state (M1) (1). Persis-
tent activation of inflammatory pathways and the interplay of
macrophages/adipocytes are important events in the pathogen-
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esis of insulin resistance, which can herald the onset of type 2
diabetes (2). For these reasons, there is much interest in the
study of macrophage activation by saturated fatty acids and the
molecular mechanisms that control their proinflammatory
action.

Saturated fatty acids can affect cellular homeostasis by differ-
ent pathways that could eventually cross-talk. They can activate
TLR4 and TLR2, two members of the Toll-like receptor family
that recognize microorganisms and trigger host responses (3).
The interaction of TLR4/2 receptors with their canonical
ligands (Gram-negative bacterial lipopolysaccharide/lipopep-
tides) induces an intracellular signaling cascade that activates
kinases of the mitogen-activated protein kinase (MAPK) family
and adaptor molecules and ends in the activation of key proin-
flammatory transcription factors such as AP-1 and NF-«B
(4-6). Among the MAPK family of enzymes, JNK1 is a relevant
player in the control of the activation of hypertrophic adipose
tissue infiltrating macrophages by fatty acids (3, 7). JNK1
expression in hematopoietic cells governs diet-induced inflam-
mation and insulin resistance without affecting obesity (8).
Moreover, high saturated fatty acid concentrations show the
ability to induce endoplasmic reticulum stress, triggering the
unfolded protein response, a complex cellular reaction
mounted to restore cellular homeostasis that may ultimately
affect the induction of proinflammatory genes via JNK activa-
tion (8 -10).

Saturated fatty acids, like other fatty acids, are also internal-
ized into the cells and incorporated into triacylglycerol (TAG).?
Recently, it has been shown that the capacity of macrophages to
store saturated fatty acids into TAG correlates inversely with
their capacity to express proinflammatory genes and undergo
M1 polarization, perhaps by reducing the intracellular concen-
tration of free saturated fatty acids and hence their modulation
of proinflammatory pathways (11).

Along the biosynthetic pathway of TAG, lipins, also known
as Mg®"-dependent phosphatidic acid phosphatases, are in
charge of the generation of diacylglycerol pools to be acylated
by the action of diacylglycerol:acyl-CoA acyltransferases (12).

°>The abbreviations used are: TAG, triacylglycerol; UPR, unfolded protein
response; EGFP, enhanced GFP.
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Protective Role of Lipin-2 in Inflammation

Interestingly, before their enzymatic activity was revealed, lip-
ins had been described as proteins implicated in the develop-
ment of fat deposits (13—15). The diacylglycerol pools gener-
ated by lipins can also be used for the synthesis of the major
membrane phospholipids phosphatidylcholine and phosphati-
dylethanolamine (16). Perhaps because of their key cellular
roles, very few known illnesses associated with genetic altera-
tions of lipins have been described (17). Among the three dif-
ferent genes that encode lipin proteins (lipin-1, -2, and -3),
mutations in LPIN2 result in Majeed syndrome, a recessive
Mendelian rare disease characterized by recurrent episodes of
fever and inflammation in bone and skin and congenital dys-
erythropoietic anemia (18). Psoriasis, a skin inflammatory dis-
ease, is also associated with LPIN2 mutations (19). Thus,
human diseases that have been linked to mutations of LPIN2
seem to have an inflammatory foundation. These observations
led us to speculate about a role for lipin-2 in the regulation of
inflammatory processes. In this study, we have identified lipin-2 as
an unexpected player in the proinflammatory action of saturated
fatty acids in both monocyte-derived human macrophages and the
murine macrophage cell line RAW 264.7. Our studies indicate that
lipin-2 is an anti-inflammatory enzyme that controls TAG synthe-
sis, INK/AP-1 pathway activation, and ultimately the up-regula-
tion of proinflammatory genes.

EXPERIMENTAL PROCEDURES

Reagents—Fatty acids, antibody against B-actin, SP600125,
and PD98059 were obtained from Sigma. Antibodies against
ERK, phospho-ERK (Thr***>-Tyr***), JNK, phospho-JNK
(Thr'®-Tyr'®%), phospho-c-Jun, and c-Jun, were purchased
from Cell Signaling (Danvers, MA). BODIPY 493/503 was pur-
chased from Invitrogen. Human macrophage Nucleofection
solution was from Amaxa (Gaithersburg, MD). ON-Target plus
siRNAs against mice mRNAs were obtained from Dharmacon,
and siRNAs Silencer Select against human mRNAs was
obtained from Ambion.

Cells—Human blood monocyte-derived macrophages were
obtained from buffy coats of healthy volunteer donors obtained
from the Centro de Hemoterapia y Hemodonacién de Castillay
Leén (Valladolid, Spain), as described previously (20-22).
Murine RAW 264.7 macrophages were maintained in DMEM
supplemented with 10% FBS, 100 units/ml penicillin, 100
png/ml streptomycin, and 2 mm glutamine at 37 °C ina 5% CO,
humidified incubator. Palmitic acid and oleic acid were com-
plexed to BSA (2:1 molar ratio) as described (23). For gene
expression analysis, an 8-h time treatment of cells with fatty
acids was used, based on time course experiments.

PCR—RNA was extracted using TRIzol reagent method
(Invitrogen) according to the manufacturer’s protocol. First
strand cDNA was then obtained by using the Moloney murine
leukemia virus reverse transcriptase from 1 ug of RNA. PCR
was then performed using specific primers for Lipinla, -1, -2,
and -3 mRNA (see below).

Real Time PCR—RNA was extracted using TRIzol reagent
method (Invitrogen). First strand cDNA was synthesized from 2
g of total RNA using the Transcriptor First Strand cDNA synthe-
sis kit (Roche Applied Science) and random primers. The cDNA
was amplified by real time PCR using the KAPA SYBR master mix
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quantitative PCR (Roche Applied Science) and specific primers for
each gene (24). Sequences of the primers used for murine genes
were as follows: Cyclophilin, 5'-TGGAAGAGCCAAGACAG-
ACA-3" and 5'-GCCGGAGTCGACAATGAT-3'; Lpinl, 5'-
CTCCGCTCCCGAGAGAAG-3' and 5'-TCATGTGCAAATC-
CACGGACT-3'; Lpinla, 5'-GGTCCCCAGCCCCAGTC-
CTT-3' and 5'-GCAGCCTGTGGCAATTCA-3'; Lpinif, 5'-
CATGCTTCGGAAAGTCCTTCA-3" and 5'-GGTTATTCTT-
TGGCGTCAACCT-5'; Lpin2, 5'-AGTTGACCCCATCACCG-
TAG-3' and 5'-CCCAAAGCATCAGACTTGGT-3'; Lpin3, 5'-
TGGAATTGGGATGACAAGGT-3" and 5'-CCCAAAGCAT-
CAGACTTGGT-3'; Tnfa, 5'-ACGGCATGGATCTCAAAA-
GAC-3"and 5'-AGATAGCAAATCGGCTGACG-3"; Ccl2, 5'-A-
GGTCCCATGTCATGCTTCTGG-3' and 5'-CTGCTGCTGG-
TGATCCTCTTG-3';and 1/6, 5'-TAGTCCTTCCTACCCCA-
ATTTCC-3" and 5'-TTGGTCCTTAGCCACTCCTTC-5".
Primers for human genes were as follows: Cyclophilin, 5'-CAGA-
CAAGGTCCCAAAGACAG-3' and 5'-TTGCCATCCAACCA-
CTCAGTC-3'; LPINIa, 5'-TGCTGGAGAGCAGCAGAA-
CTC-3' and 5'-GAACCGGAAGGACTGGGAGTG-3'; LPINI1,
5'-TGCTGGAGAGCAGCAGAACTC-3' and 5'-AAGACTGT-
GGAGGGCAAGAAC-3'; LPIN2, 5'-CCTCTCCTCAGACCA-
GATCG-3' and 5'-GGAGAATCTGTCCCAAAGCA-3'; LPIN3,
5'-CACTCCACCCTCCACTCCTA-3"and 5'-ACAGGTAGAT-
GGTGGCCTTG-3'; TNFo, 5'-ATGAGCACTGAAAGCATGA-
TCC-3'" and 5'-GAGGGCTGATTAGAGAGAGGTC-3'; CCL2,
5'-CAGCCAGATGCAATCAATGCC-3' and 5'-TGGAATCC-
TGAACCCACTTCT-3";and IL6, 5'-AAATTCGGTACATCCT-
CGACGG-3' and 5'-GGAAGGTTCAGGTTGTTTTCTGC-3'.
Primers for LPIN1« and 18 were from Ref. 25. The relative mRNA
abundance for a given gene was calculated using the AACT
method, using cyclophilin as the internal standard (26).

Constructs and Transfections—Lipin2-EGFP plasmid was
generated by introducing the cDNA sequence of the mouse
Ilpin2 (Thermo Scientific, clone 5101211) in the EGFP expres-
sion vector pEGFP-N3 (Clontech) by using HindIII and Sall
restriction enzymes. The primers used were as follows: 5'-CAC-
ACAAAGCTTAAATGAATTATGTGGGCCAGCT-3" and
5'-CACACAGTCGACAGCCAGGTCATCCAGGTCC-3'.
Confirmation of the correct insertion of the cDNA was per-
formed by sequencing. Plasmids (EGFP or lipin2-EGFP) were
transfected using Lipofectamine™ LTX and PLUS™ reagents
following the manufacturer’s instructions. After 24 h of trans-
fection, fluorescent cells were selected by cell sorting using a
FACS Aria. Cells were allowed to recover for 48 h in the pres-
ence of 1 mg/ml geneticin and then used for experiments. At
that time, more of 90% of the cells exhibited fluorescence.

Small Interfering RNA (siRNA) Transfection—RAW 264.7
cells (2 X 10°) were transiently transfected with siRNAs (20 nm)
in the presence of 5 ul/ml Lipofectamine™ RNAIMAX (Invit-
rogen) under serum-free conditions for 5 h. Afterward, 5%
serum was added, and the cells were maintained at normal culture
conditions for 48 h. A scrambled siRNA was used as a negative
control. By using a negative fluorescent siRNA, we estimated that
95% of the cells were transfected. Also, the siRNAs produced a
70-90% reduction in the expression of the corresponding targets.
Transfection of human macrophages was achieved by the Nucleo-
fection method as described previously (20).
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FIGURE 1. Expression of lipins and role in macrophages. A, PCR analysis of LpinT1a, -183, -2, and -3 mRNA expression in RAW 264.7 macrophages. B, cells were
transfected with control siRNA (siCtrl., open bars) or siRNA against Lpin1, -2, or -3 (siLpin1, -2, or -3, black bars), and after 48 h, the levels of mRNA expression for
each lipin gene was analyzed. G, cells transfected with control siRNA or siRNA against Lpin1, -2, or -3 were treated with vehicle (open bars) or 300 um palmitic acid
(black bars) for 8 h, and mRNA levels for /16, Ccl2, and Tnfa were analyzed by real time PCR. Data are representative of at least three independent experiments.

Error bars represent = S.E. (n = 3).

Immunoblot—After cellular stimulation, cells were lysed
with 20 mm Tris-HCI (pH 7.4), containing 150 mm NaCl, 0.5%
Triton X-100, 1 mm NazVO,, 150 mm NaF, 1 mm PMSF, and a
protease inhibitor mixture (Sigma) at 4 °C. Homogenates were
then clarified by centrifugation at 13,000 X g for 10 min. Protein
from the supernatants was quantified by the Bradford protein
assay kit (Bio-Rad), and 100 ug of protein was analyzed by immu-
noblot using specific antibodies. Detection of immunoreactive
bands was conducted by chemiluminescence (ECL™, Amersham
Biosciences) using a Bio-Rad VersaDoc 5000 system. The resulting
digital images were analyzed for quantitative band densitometry at
different time exposures within the linear response defined by
Quantity One software (Version 4.5.2; Bio-Rad).

IL-6, TNF-o, and M CP-1 Quantification— After cellular acti-
vation, supernatants were used for quantification of IL-6,
TNEF-a, and MCP-1 by specific ELISA kits (eBioscience, San
Diego) following the manufacturer’s instructions.

Flow Cytometry—After the various treatments, cells were
scraped, washed with phosphate-buffered saline, and stained
with 0.2 ug/ml BODIPY 493/503 for 5 min as described previ-
ously (20). Cells were washed, and fluorescence was analyzed by
flow cytometry in a FACS Gallios (Beckman Coulter) using the
FL1 detector. Fluorescence data were measured in linear scale.

DNA Binding Assays—The DNA binding activity of nuclear
c-Jun was assayed by a commercial kit (Active Motif) following
the manufacturer’s instructions. Nuclear extracts from acti-
vated cells were prepared as described previously (27).

Microscopy—After treatments, cells were stained with 2
png/ml BODIPY 493/503 for 5 min. The cells were then washed

with PBS, fixed with 4% paraformaldehyde, and mounted using
an antifade medium. Fluorescence was monitored by confocal
microscopy using a Bio-Rad Radiance 2100 laser-scanning sys-
tem coupled to a Nikon TE-2000U. The objective was CFI Plan
Apo X60, 1.4 numerical aperture, oil immersion. The fluores-
cence of BODIPY 493/503 was monitored at 488 nm argon
excitation using the combination of the long pass filter
HQS500LP and the short pass filter HQ560SP.

TAG Analysis by Mass Spectrometry—Analysis of the fatty
acids of TAG was performed by gas chromatography/mass
spectrometry. Briefly, the total cellular TAG fraction isolated
by thin layer chromatography with hexane/ether/acetic acid
(70:30:1, v/v/v) as a mobile phase, was transmethylated with
500 pl of 0.5 M KOH in MeOH for 30 min at 37 °C. One volume
of 0.5 M HCI was added to neutralize, and fatty acid methyl
esters were extracted twice with 2 volumes of n-hexane. Anal-
ysis of fatty acid methyl esters was carried out in an Agilent
7890A gas chromatograph coupled to an Agilent 5975C mass
selective detector operated in electron impact mode (70 eV),
equipped with an Agilent DB23 column (60 m X 0.25 mm inner
diameter X 0.15 wm film thickness), under the conditions
described previously (28, 29). Data acquisition was carried out
both in scan, for identification, and selected ion monitoring
mode for quantitation, using 74 and 87 fragments for saturated,
83 for monounsaturated, 67 and 81 for diunsaturated, and 79
and 91 for polyunsaturated fatty acid methyl esters. A 37-com-
ponent mixture from Supelco was used for calibration curves,
and nonadecanoic acid was used as an internal standard. Data
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FIGURE 2. Lipin-2 levels regulate the expression of proinflammatory genes in macrophages. A, RAW 264.7 cells were transfected with control siRNA (siCtrl)
orsiRNA against Lpin2 (siLpin2) as indicated, treated with vehicle (open bars), 300 um oleic acid (gray bars), or 300 um palmitic acid (black bars) for 8 h,and mRNA
levels for Il6, Ccl2, and Tnfa were analyzed by real time PCR. B, cellular supernatants from cells transfected as in A and treated with vehicle (open bars) or 300 um
palmitic acid (black bars) for 24 h were assayed for the indicated proinflammatory factors by using ELISA. C, cells expressing either the pEGFP or the lipin2-EGFP
plasmids were activated with vehicle (open bars) or 300 um palmitic acid (black bars) for 8 h, and the levels of mMRNA for /16, Ccl2, and TNFa were analyzed by real
time PCR. Data are representative of at least three independent experiments. Error bars represent + S.E. (n = 3).

analysis was carried out with the Agilent G1701EA MSD Pro-
ductivity Chemstation software, revision E.02.00.

Statistical Analysis—Experiments were carried out at least
three times in duplicate or triplicate. Statistical analysis was
carried out by the Student’s ¢ test, with p values <0.05 taken as
statistically significant.

RESULTS

Lipin-2 Levels Regulate the Expression of Proinflammatory
Genes—Saturated fatty acids activate macrophages and induce
the production of proinflammatory cytokines (30). Because lip-

4 JOURNAL OF BIOLOGICAL CHEMISTRY

ins can participate in macrophage signaling cascades by
impacting on cellular concentrations of diacylglycerol and
phosphatidic acid (31-33), we began our study by testing
whether lipins could be involved in the up-regulation of proin-
flammatory genes under pathophysiologically relevant condi-
tions, i.e. exposure of the cells to high concentrations of pal-
mitic acid. For this purpose, lipin levels were decreased by
siRNA technology. RAW 264.7 macrophages express the three
types of lipins known to date, lipin-1, -2, and -3 (Fig. 14), and
conditions were established to achieve silencing of all three
forms (Fig. 1B). Inhibition of lipin-2 expression but not of
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lipin-1 or lipin-3 resulted in a strong enhancement of the induc-
tion of the proinflammatory genes 116, Ccl2, and Tnfo by pal-
mitic acid (Fig. 1C). In the absence of palmitic acid stimulation,
reduction of the expression of any of the lipins did not alter the
basal expression level of the genes under analysis. Importantly,
the enhancing effect of lipin-2 depletion on the expression of
proinflammatory genes was found to be selective for palmitic
acid stimulation, because treating the cells with oleic acid, a
monounsaturated fatty acid, showed a much lower effect (Fig.
2A). ELISA measurements confirmed that the increased
expression of /6, Ccl2, and Tnfo in lipin-2-depleted and pal-
mitic acid-stimulated cells did result in increased synthesis of
their protein products, IL-6, MCP-1, and TNF, respectively
(Fig. 2B). To characterize further the effect of lipin-2 on proin-
flammatory gene expression, cellular levels of this protein were
increased by transfecting the cells with a lipin-2-EGFP plasmid.
The induction of proinflammatory cytokines by palmitic acid
was reduced in cells overexpressing lipin-2 with respect to con-
trol cells transfected only with the EGFP plasmid (Fig. 2C). Col-
lectively, these data suggest that lipin-2 plays a key regulatory
role in proinflammatory gene expression by macrophages
exposed to saturated fatty acids.

Lipin-2 Regulates Proinflammatory Cytokine Production via
JNK1—Members of the MAPK family, especially JNK, have
been implicated in the proinflammatory stimulation of macro-
phages by fatty acids (3, 8, 30). Therefore, the impact of lipin-2
on the phosphorylation/activation status of different MAPKs
after palmitic acid treatment was studied. Treatment of the
macrophages with palmitic acid significantly induced the phos-
phorylation of ERKs (p42/p44) and JNK1 (Fig. 3). When the
cells were transfected with siRNA against lipin-2, palmitic acid
treatment promoted a clear enhancement of the phosphoryla-
tion of the above-mentioned kinases (Fig. 3). These results
demonstrate that lipin-2 limits the activation of ERK and JNK
induced by palmitic acid in macrophages.

The involvement of JNK and ERK in the increased produc-
tion of proinflammatory genes by lipin-2-depleted and palmitic
acid-treated cells was studied next. The inhibitors SB600125
(specific for JNK (34)) and PD98059 ( specific for MEK1/2, i.e.
the kinase that phosphorylates and activates the ERKs (35))
were initially used for this purpose. As shown in Fig. 44, the
expression of Tufa, Ccl2, and Il6 was strongly inhibited by
SB600125 in palmitic acid-treated cells. Importantly, SB600125
was also capable of inhibiting the up-regulation of these genes
in lipin-2-depleted cells (Fig. 44). Confirmation of this effect at
the protein level was obtained by measuring protein levels of
IL-6, MCP-1, and TNEF-« by specific ELISAs (Fig. 4B). In con-
trast to the data obtained with SB600125, the effect of PD98059
was not as pronounced, suggesting a lesser role for ERKs in
mediating these processes.

To further substantiate the above findings, siRNAs against
JNK1 were utilized next. Cells depleted of INK1 demonstrated a
strong inhibition of mRNA and protein levels of the aforemen-
tioned proinflammatory factors in response to palmitic acid,
both in control siRNA-transfected cells and in lipin-2-depleted
cells (Fig. 5, A and B). From these data, it is apparent that JNK1
constitutes an obligatory key component of the signaling cas-
cade triggered by palmitic acid, which leads to the induction of
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FIGURE 3. Lipin-2 controls the phosphorylation levels of JNK1 and ERK.
RAW 264.7 macrophages were transfected with control siRNA or siRNA
against Lpin2 as indicated and treated with 300 um palmitic acid for the indi-
cated periods of time. Phosphorylation levels and total protein for JNK and
ERK were assayed by Western blot (upper panel). B-Actin levels were also
assayed for protein loading. Relative intensity of phosphorylated bands
against total protein was analyzed for JNK1, ERK p42, and ERK p44, and the
results are represented in the lower panel. Data are representative of three
independent experiments.

proinflammatory genes, and that this cascade can be overstim-
ulated when lipin-2 is decreased.

Lipin-2 Regulates the Activation of c-Jun—Among many
other proteins, JNK phosphorylates c-Jun, a member of the Jun
family of proteins that forms part of the transcription factor
AP-1, implicated in the transcriptional regulation of different
proinflammatory genes (36). Thus, the possible role of c-Jun
during palmitic acid activation and its regulation by lipin-2 was
analyzed. Interestingly, it was appreciated that phosphorylation
of c-Jun increased in cells lacking lipin-2 at almost all the time
points tested (Fig. 6A). Nuclear c-Jun activation was assayed
using a commercially available kit (Active Motif), and a clearly
enhanced activation of c-Jun by palmitic acid was observed
when lipin-2-depleted cells were used (Fig. 6B). Such enhance-
ment was inhibited by SP600125, providing further evidence
that JNK is critically involved under these conditions (Fig. 6B).
By using siRNA technology, the effect of c-Jun on the capacity
of the cells to produce proinflammatory mediators in response
to palmitic acid was analyzed next. Depletion of cellular c-Jun
levels inhibited the up-regulation of mRNA for /6, Cc/2, and
Tnfa, an effect that was particularly striking when lipin-2-de-
pleted cells were used (Fig. 6C). Thus, these data demonstrate
that the extent of JNK-mediated c-Jun activation in palmitic
acid-treated cells is controlled by lipin-2.
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assayed for the indicated proinflammatory factors by specific ELISAs. Data are representative of at least three independent experiments. Error bars
represent = S.E. (n = 3).
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6 JOURNAL OF BIOLOGICAL CHEMISTRY Y2SEVE VOLUME 287-NUMBER 722222 22, 2012



balt3/zbc-bc/zbc-bc/zbc01512/zbc0296-12z  ZSUBMIT 18  xppws S=1  23/2/12 9:27 | 4/Color Figure(s) F7 | ARTNO: M112.342915

Protective Role of Lipin-2 in Inflammation

Lipin-2 Regulates the Incorporation of Fatty Acids in TAG in

A Macrophages—The enzymatic activity of lipins (Mg**-depen-
P-cJun[ = = == - — - ._'l dent phosphatidic acid phosphatases) is centrally involved in
the de novo synthesis of lipids (37). Because the specific role of

[ SEESSSSS Lovo Sy i o
the various lipin isoforms in lipid metabolism in macrophages
2 S00F i and other cells is not well defined, studies were conducted to
% 4001 7 assess whether lipin-2 plays a regulatory role in TAG synthesis
< 300k i by macrophages exposed to saturated fatty acids. Because TAG
'é 200l | molecules are stored in cytoplasmic lipid droplets, these organ-
p=] elles were studied by microscopy after staining with BODIPY
E 100 1 493/503. As shown in Fig. 74, depletion of lipin-2 by siRNA

resulted in a considerable reduction of the lipid droplet content
of macrophages. These results were confirmed by flow cytom-
etry, which allows quantification (Fig. 7B). Direct measure-
ments of total TAG mass were carried out by mass spectrome-
try. Cell treatment with palmitic acid increased cellular TAG

[ Vehicle content by about 30% (Fig. 7C). However, in the absence of

I Palmitate lipin-2, palmitic acid-induced TAG synthesis was strongly
I reduced, thus demonstrating the key role of lipin-2 in this pro-
cess. Analyses of the fatty acid composition of TAG in the RAW

i 1 264.7 macrophages revealed that this neutral lipid was com-

posed almost exclusively of palmitic acid (16:0) and stearic acid
i 1 (18:0). The content of both fatty acids increased in TAG after
| "I 1 exposure of the cells to palmitic acid but that did not happen

0
ttme 0051 36 0051 3 6
Control siRNA Lpin2 siRNA

e
~
O

15
oy
=

o
[
S

e
—
W

when lipin-2-depleted cells were used (Fig. 7D).
Human Macrophages Exhibit an Exacerbated Proinflamma-
Control SP 600125 Control SP 600125 tory Response in Absence of Lipin-2—Experiments were also
Control SiRNA ~ Lpin2 siRNA conducted with human blood m.onocyt‘e—derived macrophages
to assess whether our observations with RAW 264.7 macro-
phages could be extended to primary cells and thus bear patho-
120 16 I vehicle physiological relevance. Like RAW 264.7 macrophages, hum'fm
100 F B Palmitatd macrophages also express LPIN1, -1(3, -2, and -3 mRNAs (Fig.
8A). Treatment of human macrophages with palmitic acid
induced the expression of the proinflammatory genes 7/6 and
Tnfa, and the lack of lipin-2 promoted a very marked up-regu-

401 1 lation of them (Fig. 8B). In these cells, a quantitative depletion
20} J of lipin-2 (>80%) was achieved by siRNA technology (Fig. 8C).
0 Also, in agreement with the results mentioned above, TAG

90 mass measurements by mass spectrometry confirmed that
depletion of lipin-2 strongly reduced the TAG content in
human macrophages after palmitic acid treatment (Fig. 8D).
Note that the basal TAG content in human macrophages is very
high. In these cells, nine fatty acids were readily detectable in
TAG (Fig. 8E). Treatment of the cells with palmitic acid
increased the content of this fatty acid in TAG and, curiously,
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FIGURE 6. c-Jun is overactivated in lipin-2-deficient macrophages. A, RAW
264.7 macrophages were transfected with control siRNA or siRNA against
Lpin2 and treated with 300 um palmitic acid for the indicated periods of time.
Phosphorylation levels and total c-Jun were assayed by Western blot. The
lower panel represents the quantification of the relative intensity of the phos-
phorylated bands against total c-Jun protein. B, nuclear c-Jun DNA binding
activity was assayed by a specific kit in cells transfected with either control
siRNA or siRNA against Lpin2 and then treated with vehicle (open bars) or 300
um palmitic acid (black bars) in the absence or presence of 10 um SP600125 for
3 h, as indicated. Absorbance at 450 nm is shown. C, real time PCR analysis of
the expression of /16, Ccl2, and Tnfa mRNA in cells transfected with control
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sentative of at least three independent experiments. Error bars represent *

S.E.(n = 3).
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FIGURE 7. Lipin-2-deficient macrophages exhibit a diminished capacity to produce TAG. A, RAW 264.7 macrophages transfected with control siRNA or
siRNA against Lpin2 were treated with 300 um palmitic acid for 16 h. Cells were stained with BODYPI 493/503 and visualized by fluorescence microscopy. B, cells
treated as in A were analyzed by flow cytometry. Green traces refer to untreated cells and red traces to palmitic acid-treated cells. Numbers close to the traces
represent the mean fluorescence intensity for each condition. C and D, cells transfected with control siRNA or siRNA against Lpin2 were treated with vehicle
(green bars) or 300 um palmitic acid (red bars) for 16 h. Fatty acids present in TAG were analyzed by mass spectrometry as described under “Experimental
Procedures.” Total cellular TAG is represented in C, and quantification of palmitic acid (16:0) and stearic acid (18:0), accounting for more than 90% of total fatty
acids in TAG, is represented in D. Data are representative of at least three independent experiments. Error bars represent = S.E. (n = 3) (*, p < 0.05).

decreased the content of oleic acid (18:1) and linoleic acid (18:
2). Whether this finding bears any biological significance
remains to be elucidated. Analysis of TAG fatty acid content in
lipin-2-depleted cells revealed a general decrease in all fatty
acids (Fig. 8E). After palmitic acid treatment, the TAG fraction
of lipin-2-depleted cells did not experience the enrichment in
this fatty acid that occurred in control cells (Fig. 8E). Collec-
tively, these results indicate that human macrophages mount a
proinflammatory response to saturated fatty acids, the extent of
which appears to be controlled by lipin-2, possibly by driving
the incorporation of these fatty acids into TAG.

DISCUSSION

Macrophages exhibit marked cellular responses to saturated
fatty acids and play an important role in metabolic disorders
that involve increased lipid exposure such as atherosclerosis or
obesity (1-3). Saturated fatty acids are also known to promote
endoplasmic reticulum stress and the activation of the unfolded
protein response that ultimately intersects with different sig-
naling pathways to generate a low grade chronic inflammatory
state (9). Although a great deal of effort has been put into
unveiling the role of kinases, chaperones, and nuclear factors in
the regulation and integration of all of these processes, very
little is known about the role of lipid-modifying enzyme effec-
tors (9). Our data provide insights into the role of lipin-2 as a
key player in human and murine macrophage proinflammatory
activation by saturated fatty acids. Here, we demonstrate that
lipin-2 uncouples saturated fatty acid activation from proin-
flammatory gene expression. We also show that reduction of
lipin-2 expression promotes an increased proinflammatory

8 JOURNAL OF BIOLOGICAL CHEMISTRY

state through the overstimulation of the JNK1/AP-1 pathway.
Finally, we show that lipin-2 controls the incorporation of free
fatty acids into TAGs, especially during fatty acid overload con-
ditions, thereby reducing the damage generated. A schematic
representation of all these findings is shown in Fig. 9. Collec-
tively, the data uncover lipin-2 as a new player in the proinflam-
matory activation driven by saturated fatty acids, which sug-
gests new opportunities for pharmacological intervention for
the treatment of pathological conditions associated with these
processes.

In our experiments, activation of JNK1/c-Jun appears to con-
stitute the major cellular contributor to inflammatory signal-
ing. This observation is in agreement with previous studies sug-
gesting that hematopoietic JNK is the main pathway for the
expression of proinflammatory factors and macrophage infil-
tration in the adipose tissue of mice on a high fat diet (3, 8).

Recently, it has been reported that deletion of yeast phos-
phatidate phosphatase makes the cells more sensitive to fatty
acid-induced toxicity (38), a finding that concurs with the
results presented here. Yeast possesses only one gene coding for
phosphatidate phosphatase, whereas mammals possess three
genes that encode for lipin proteins, and one of them, Lpinli,
undergoes alternative splicing to generate two more lipin vari-
ants in mouse (lipin-1a and -18) and three in humans (lipin-1¢,
-1, and -17). Evidence is accumulating to indicate that some of
these proteins may regulate distinct processes in cellular phys-
iology. For example, lipin-1a and -1f3 appear to control differ-
ent aspects of adipocyte differentiation (39). The protective
anti-inflammatory role attributed to lipin-2 in this work

S
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FIGURE 8. Lipin-2 controls proinflammatory gene expression and TAG storage in human macrophages. A, PCR analysis of LPINTe, -1, -2, and -3 mRNA in
human macrophages. B, human macrophages were transfected with a control siRNA (open bars) or siRNA against LPIN2 (black bars) and then treated or not with
300 um palmitic acid for 8 h as indicated. mRNA levels for TNFa and IL6 were analyzed by real time PCR. C, mRNA expression levels of LPIN2 in cells transfected
with control siRNA (open bar) or against LPIN2 (black bar) for 48 h. D and E, mass spectrometry analysis of fatty acids esterified into TAG of human macrophages
transfected with control siRNA or siRNA against LPIN2 and treated with vehicle (open bars) or 300 um palmitic acid (black bars) for 16 h. Total TAG content is
shown in D and fatty acid composition of TAG is shown in E. Data are representative of at least three independent experiments. Error bars represent = S.E. (n =

3) (%, p < 0.05).
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FIGURE 9. Role of lipin-2 in the generation of proinflammatory mediators
in macrophages stimulated with saturated fatty acids. Saturated fatty
acids such as palmitic acid impact on cellular homeostasis by two different
mechanisms. In the first mechanism, saturated fatty acids act through TLR4/2
and turn on a cascade of signals that culminate in JNK/AP-1 activation. In the
second mechanism, saturated fatty acids enter the cell and promote cellular
damage. Both pathways end in the up-regulation of proinflammatory genes
by macrophages. Lipin-2, by controlling the biosynthesis of TAG and hence
theincorporation of fatty acids into neutral lipids, attenuates the activation of
JNK/c-Jun and the levels of proinflammatory mediators such as IL-6, MCP-1,
and TNFa.

appears to be specific for this protein, because depletion of
either lipin-1 or lipin-3 does not show any appreciable effect
during palmitic acid overload.

In previous work, we demonstrated that lipin-1 modulates
size, amount, and TAG fatty acid composition of lipid droplets
in human macrophages (20). However, TAG synthesis itself

does not appear to be regulated by lipin-1, because depletion of
this protein does not affect the rate of fatty acid incorporation
into TAG (20). In this study, we have observed that TAG mass
in lipin-2-depleted macrophages, either human or murine, is
significantly decreased as compared with cells expressing nor-
mal lipin-2 levels, and this occurs under normal or fatty acid
overload conditions. Putting all these observations together, it
appears clear that in macrophages, lipin-1 and lipin-2 play dif-
ferent roles. On the one hand, lipin-1 regulates lipid droplet
formation by impinging upon cytosolic group IVA phospho-
lipase A,-mediated signaling (20, 40 —42); on the other hand,
lipin-2 acts to regulate cellular TAG mass levels. Lipin-2 would
therefore be a “metabolic” enzyme, producing diacylglycerol
moieties to accommodate fatty acids in TAG, thereby antago-
nizing the stress produced by excess free fatty acids.

The results presented in this work might provide clues to
explain, at least in part, the episodes of inflammation that occur
in patients with Majeed syndrome and psoriasis, which are
associated to lipin-2 mutations (18, 19). For example, in those
patients who have an inflammatory process already ongoing, sat-
urated fatty acids could produce an exacerbated inflammatory
state in macrophages, generating more proinflammatory cyto-
kines and contributing to the maintenance of inflammation. In the
same line of thought, it has been described that obese patients with
psoriasis are more difficult to treat than non-obese individuals (43,
44). Several trials have demonstrated that psoriatic patients have
partially recovered after weight loss and that increases in weight
worsen the symptoms (43, 44).
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In a recent study with a Dutch population, researchers dis-
covered a single nucleotide polymorphism (SNP9-rs3745012)
within the 3'-untranslated region of LPIN2 that is significantly
associated with type-2 diabetes in individuals with a high body
mass index that affects fat distribution, making it a candidate to
be a thrifty allele (45, 46). Because SPN9 is a noncoding poly-
morphism, the authors claim that it could produce its effects by
changing the levels of expression of LPIN2. While waiting for
the real consequences of this polymorphism, this observation is
in agreement with our results suggesting that mutations that
affect lipin-2 in humans may influence the development of con-
ditions like type-2 diabetes, which are related to the adipose
tissue inflammatory state of the patient.

In summary, results from this work have unveiled a role for
lipin-2 as a key participant in the regulation of proinflammatory
gene expression by saturated fatty acids in macrophages. Our
observations show that the expression levels of cellular lipin-2
may have important consequences not only for the incorpora-
tion of fatty acids to TAG but also for the damage produced by
those fatty acids to the cell and for the proinflammatory
response in macrophages. Because we have extended our stud-
ies to human macrophages, these results could have relevance
in the development of new strategies to treat lipid-related low
inflammation conditions.
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