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 A B S T R A C T

We study supermassive black holes (SMBH), surrounded by a dark matter (DM) spike, that can be found at 
the centers of Milky Way and M87 galaxies and are accompanied by a specific kind of topological defect. 
The investigation is developed within the framework of Bumblebee Gravity with a global monopole (BGGM). 
The dark matter spike is described by a power-law density profile. Our main objective is to assess how the 
background arising from spontaneous Lorentz symmetry breaking and the presence of a global monopole 
influence the properties of the Kerr BH within the region affected by the spike. Using a spherically symmetric 
static BH with BGGM properties as the seed metric, we construct a non-rotating spacetime with a DM spike, 
resulting in a BGGM-motivated Schwarzschild-like BH by solving the modified Tolman–Oppenheimer–Volkoff 
equations (TOV). Next, we extend this approach to the case of a rotating spacetime resulting in the BGGM-
motivated Kerr-like BH (BGMKLBH). This approach allows us to explore the spacetime structure, and the 
BGMKLBH shadows. Then, using available observational data for the DM spike density and considering the 
effects of BGGM on Sgr A∗ and M87∗ SMBHs, we analyze the shapes of their shadows and put constraints on 
the BGGM parameter. Thus, we infer that the BGMKLBHs could be reliable candidates for the astrophysical 
BHs.
. Introduction

Modified gravity theories, driven by diverse motivations at ultravio-
et regime, such as probing fundamental physics in strong gravitational 
ields (GFs), or, at infrared regimes, addressing cosmological and as-
rophysical issues as DM and dark energy, offer a promising avenue 
or advancing our understanding of gravity. These theories hold the 
otential to unveil new insights into the deep nature of gravity and 
he structure of the Universe, making them a vibrant focus point in 
oday cosmology and astrophysics [1–8] In particular, black holes 
BHs), the most fascinating objects predicted by general relativity (GR), 
ave garnered significant interest in the realm of astrophysics. Recent 
dvancements, such as the imaging of M87∗ [9–14] and Sgr A∗ [15–
0] SMBHs by the EHT collaboration, along with the detection of 
-rays [21] and gravitational waves [22], have solidified the belief 
hat, at the centers of galaxies, lie entities governed solely by gravity. 
urthermore, BHs serve as astrophysical laboratories, enabling the 
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exploration of theories of gravity and cosmology through a multitude 
of strong-field phenomena, including the BH shadows in the presence 
of DM distributions [23]. Likewise, the Kerr hypothesis proposes that 
astrophysical BHs possess unique features that can be described by the 
Kerr metric [24]. This metric is the only asymptotically flat, axially 
symmetric, and unique stationary vacuum solution of the Einstein 
equations [25,26]. Recent EHT images of the SMBHs M87∗ and Sgr A∗

probed that the seen shadows are compatible with what would be 
expected from a Kerr BH in the context of GR. Images and shadows [27–
57] resulting from the gravitational lensing (GL) of light [58–64] 
provide crucial insights into the GFs surrounding Kerr BHs, helping to 
reveal their intrinsic characteristics. The BH event horizon generates an 
extremely intense GF, which influences the surrounding spacetime ge-
ometry. This, in turn, can lead to the development of unstable circular 
photon orbits, referred to as unstable light rings (or a photon sphere 
in the case of spherically symmetric, static BHs). These phenomena 
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result in the significant bending of photons, leading to pronounced GL 
effects of a remarkable scale. For photons on such unstable orbits, even 
a small perturbation can send them off to a distant observer or absorb 
them by the BH. Therefore, it appears that the unstable light rings 
and the BH event horizon will give rise to a distinctive shadow-like 
image of photons from surrounding light sources or radiation from an 
accretion flow surrounding the BH – a darker area set against a brighter 
background. Although the shadow’s silhouette is related to the apparent 
shape of the unstable orbits of the photons [23,65], the influence of 
matter accreting and radiating onto the shadow is unavoidable [66,67]. 
Thus, strong lensing images and shadows provide us with a unique 
opportunity to evaluate both GR and alternative gravity theories [54]. 
Hence, it is key to continue analytical efforts to determine the shapes 
of shadows cast by BHs and BH mimickers in various gravity and 
astrophysical theories. Shadow images can reveal details regarding a 
variety of astrophysical issues, such as matter accretion around BHs and 
the distribution of DM in galaxies’ centers [40,41,49,55,56,68–73].

Black holes in our Universe could potentially experience influences 
from astronomical surroundings, including the presence of DM in their 
vicinity [74–86]. In addition to investigating BH shadows within the 
framework of modified gravity, it is noteworthy that examining these 
shadows in the presence of DM and dark energy holds particular 
significance. This is due to the overwhelming dominance of DM (consti-
tuting 27% of the Universe) and dark energy (making up 68%), while 
baryonic matter’s contribution is relatively minor (comprising only 5% 
of the total mass-energy of the Universe) according to the Standard 
Model (SM) of Cosmology. The cosmic microwave background radi-
ation, baryon acoustic oscillations, spiral galaxy rotation curves, and 
mass-luminosity ratios of elliptical galaxies provide compelling evi-
dence for the existence of a surrounding DM halo that extends into the 
intergalactic medium [87–89]. This halo’s DM density profile could be 
crucial in establishing the real geometry of spacetime around the galac-
tic center [72,73,75,76]. This DM distribution around M87∗ and Sgr A∗

SMBHs, in particular, is highly relevant to verify and further constrain, 
the predictions of GR and any alterations beyond GR. Additionally, it 
will aid in identifying the DM candidates. It is worth wondering how 
the DM around the BHs affects the spacetime associated with these BHs. 
Based on the adiabatic approximation, several models for the spacetime 
metric around a static and spherically symmetric BH with a DM halo 
have been presented [90–93], namely the Navarro-Frenk-White (NFW) 
profile [94].

Some prior results [80,94–96] show that the presence of a central 
BH causes an accumulation of DM particles in its strong gravitational 
potential, generating a spike distribution towards the BH horizon. The 
BH gravitational field causes the DM density to substantially increase 
by many orders of magnitude. In turn, the intensity of gamma-ray 
radiation close to the BH will significantly rise if DM particles are 
capable of annihilating into gamma-ray radiation. Hence, this provides 
an opportunity to find the DM annihilation signal [75].

A BH has a profound effect on the density distribution of DM [97]. 
An early groundbreaking paper [80] determined the distribution of cold 
DM in the vicinity of galactic centers using a Newtonian approach. 
The BH accretion results in the formation of a density cusp, known as 
DM spike, characterized by a density profile 𝜌 ∼ 𝑟−𝛾sp , where 2.25 ≤
𝛾𝑠𝑝 ≤ 2.5. For spherically symmetric BHs, the density reaches its peak at 
approximately 𝑟 ∼ 4𝑅𝑠, with 𝑅s representing the Schwarzschild radius. 
Below this point, that is, 𝑟 = 4𝑅𝑠, there is a rapid decline in DM density, 
as particles either annihilate or fall into the BH. When considering 
relativistic modifications [81], the density profile exhibits similar traits, 
albeit with a change in the cutoff radius, now occurring at 𝑟 = 2𝑅𝑠 (see 
Fig.  1).

At the heart of the Milky Way and M87 galaxies, we plan to study 
SMBHs, which are surrounded by a DM spike accompanied by a unique 
kind of topological defect. Our investigation is rooted in Bumblebee 
Gravity (BG) coupled with a global monopole (GM), with a particular 
2 
Fig. 1. Schematic plot of the galactic central region with an SMBH and a 
DM spike distribution in the region 𝑟 ∈ [𝑟b, 𝑅sp], where the inner and outer 
edges of the spike region are given by 𝑟b and 𝑅sp. Comparison of the density 
distribution of DM around Schwarzschild BHs, showing a modified model by 
Sadeghian-Ferrer-Will (SFW) (right half of the panel) incorporating general 
relativistic corrections, which predicts the DM density to begin at 𝑟 = 2𝑅𝑠, in 
contrast to the Gondolo and Silk (GS) consideration (left half of the panel), 
where the density was expected to start at 𝑟 = 4𝑅𝑠.

focus on analyzing the trace of the model parameters (the BGGM 
parameters 𝓁 and 𝜇̃).

Spontaneous symmetry breaking, a fundamental concept in particle 
physics, can manifest in two distinct forms: as an internal symmetry or 
as a symmetry linked to spacetime transformations. The spontaneous 
breaking of internal symmetries gives rise to the formation of global 
topological defects [98]. One type of stable topological defect is a 
monopole [99,100]. The origin of inflation may come from monopoles 
that are created when gauge-symmetry breaks during early Universe 
phase transitions. However, at phase transitions in the Universe, global 
monopoles arise from a global symmetry breaking of global 𝑂(3) sym-
metry into 𝑈 (1) [98–100]. The BG model is an extension of the standard 
framework of GR that allows for the spontaneous breaking of Lorentz 
symmetry (LS) via a non-zero vacuum expectation value (VEV) of 
the bumblebee vector field, denoted as 𝐵𝜇 , achieved through an ap-
propriate potential. This model serves as a prominent example of a 
theory showcasing Lorentz violation, originating from a single vector 
𝐵𝜇 acquiring a non-zero VEV. It stands out as one of the simplest 
field theories manifesting spontaneous Lorentz and diffeomorphism 
violations [98,101–112]. In this case, LS breaking emerges due to the 
presence of a potential with a functional form that has a minimum, 
leading to the violation of 𝑈 (1) symmetry. The concept of the bum-
blebee formalism draws inspiration from string theory, where it is 
postulated that tensor fields can acquire VEV and thus lead to the 
spontaneous breaking of LS [104]. Recent advancements in this domain 
include the derivation of the exact solution for the Schwarzschild 
Bumblebee BH [98,105,106].

In Ref. [74], the authors employed a robust model consisting of a 
Schwarzschild BH surrounded by a shell of DM. The system is described 
by a mass function incorporating the mass of the DM shell, 𝛥𝑀 , which 
is distributed over a radial extent 𝛥𝑟b with its inner edge located at 
𝑟b ≥ 2𝑀 . In this framework, they investigated the influence of the DM 
shell on the structure of spacetime and geodesic motion, and proposed 
a classification of BH+DM shell spacetimes based on the properties of 
stable circular geodesics governing Keplerian disks. Particular attention 
was paid to epicyclic motion around circular geodesics, which can 
be linked to observational signatures in X-ray emission of Keplerian 
accretion disks, which are assumed to be affected by the DM shell solely 
through their gravitational interaction. In this work, we evaluate the 
effects of an extended gravity model background resulting from spon-
taneous LS breaking and a GM (appropriately considered as the BGGM 
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model) on horizons, static limit surfaces (SLS), ergoregions, and shadow 
silhouettes of the Kerr-type BHs in the spike-affected region. Progress in 
testing the BGGM model through observations is largely hampered by 
the lack of both rotating and non-rotating BH models immersed in a DM 
spike and subject to BGGM effects. We begin our inquiry to tackle this 
problem by taking as the seed metric a spherically symmetric static BH 
with BGGM characteristics. From there, we construct the non-rotating 
Schwarzschild-like spacetimes with a DM spike, which we introduce 
as BGGM-motivated Schwarzschild-like BH (BGMSLBH) spacetimes. 
To construct the BGMSLBH spacetimes, we start with the power-law 
density profile as originally proposed by GS and then solve the modified 
TOV equation, approximating the integral in the leading order for the 
spike density.  Our approach involves the critical condition of matching 
the inner BH spacetime with the outer region, specifically employing 
the condition denoted as f (𝑟b) = 𝑒2𝜒(𝑟b) = 1 − 2𝑀BH

𝑟b
, in line with the 

methodology presented by Nampalliwar et al. Ref. [73]. This process 
yields the corresponding metric components, where f(𝑟) ≠ g(𝑟). We then 
use the modified Newman-Janis (NJ) algorithm to extend this approach 
to the case of a rotating spacetime, yielding BGMKLBH1 spacetimes. 
Next, we investigate the BGMKLBH’s horizons, SLSs, ergoregions, and 
shadow silhouettes.

Besides, we intend to determine whether the EHT findings for M87∗
and Sgr A∗ can shed light on the BGGM model in the DM spike-affected 
region and constrain the BGGM parameter. The EHT has provided 
observational results regarding the mass and distance of both M87∗ and 
Sgr A∗ while setting constraints on their shadow observables. By mod-
eling BGMKLBHs as M87∗ and Sgr A∗, we aim to assess their potential 
as candidates for SMBHs and to establish astrophysical bounds on the 
BGGM parameter through direct analysis of BH shadows. Additionally, 
we seek to ascertain if the BGMKLBH can offer robust constraints on 
the BGGM parameter for the M87∗ and Sgr A∗ SMBHs.

The paper is organized as follows: In Section 2, we begin by taking a 
seed static, spherically symmetric BGGM BH metric. We then introduce 
the DM spike profile and proceed to calculate the spacetime metric for 
the corresponding Schwarzschild-like BH, which are surrounded by a 
DM distribution in the spike-affected region. In Section 3, we calculate 
the normalization parameter, 𝜌0, and related parameters for the DM 
spike profiles at the centers of both Milky Way and M87 galaxies. In 
Sections 4 and 5, we derive the BGMKLBHs using the modified NJ 
method and we investigate how the BGGM model affects this deformed 
Kerr-like BH horizons, SLSs, ergoregions and shadows in the spike 
region. In Section 6, we constrain the BGGM parameter using EHT 
shadow observations of M87∗ and Sgr A∗ at inclination angles of 17◦
and 46◦. In Section 7, we briefly present our results and draw our 
conclusions. Throughout the paper, we adopt natural units, in which 
𝐺, 𝑐, and ℏ are all equal to 1.

2. The Schwarzschild bumblebee BH with a global monopole in 
DM spike

Inspired by the investigation of the central BH’s characteristics 
within a realistic framework surrounded by a DM distribution and 
significantly influenced by the breaking of LS in the presence of a 
GM, we will construct the new spacetime metric around a static and 
spherically symmetric BGGM-motivated Schwarzschild BH immersed 
in a DM spike. To achieve this, we begin with a static, spherically 
symmetric BGGM BH seed metric given by [98,105,106,108] 

𝑑𝑠2 = −
(

𝑤 −
2𝑀BH

𝑟

)

𝑑𝑡2 + 𝑞
(

𝑤 −
2𝑀BH

𝑟

)−1
𝑑𝑟2 + 𝑟2𝑑𝛺2. (2.1)

Here, the constants 𝑤 and 𝑞 are defined as 𝑤 = 1 − 𝜇̃ and 𝑞 = 1 + 𝓁, 
where the LS breaking parameter, denoted by 𝓁, takes values in the 

1 We refer to Kerr BHs immersed in DM spikes and subjected to BGGM 
effects as ’rotating BGMSLBH’ or simply ‘BGMKLBH’ for the sake of clarity 
and conciseness in this study.
3 
range (0, 1) and the GM term is defined as 𝜇̃ = −𝜂2, where 𝜂 is a constant 
term corresponding to the GM charge, as well as the line element of unit 
two-sphere is given by 𝑑𝛺2 = 𝑑𝜃2+sin2 𝜃𝑑𝜑2. We note that metric (2.1) 
yields the standard spherically symmetric solution with LS breaking 
when 𝜂 equals zero. Moreover, for 𝜂 equals zero and 𝓁 approaching 
zero, the standard Schwarzschild metric is recovered. Furthermore, in 
the presence of BG, which is responsible for the effects of LS breaking, 
and the GM, singularities exist at 𝑟 = 2𝑀BH∕𝑤 and 𝑟 = 0. In this 
scenario, the event horizon of the BH is located at 𝑔𝑡𝑡(𝑟0) = 0, resulting 
in 𝑟0 = 2𝑀BH∕𝑤. It is seen that this value is independent of 𝓁 and only 
relies on 𝜇̃. Now, let us proceed with the calculation of the Kretschmann 
scalar associated with the BGGM metric (2.1) to analyze the nature of 
the singularities. The Kretschmann scalar is given by: 

𝐾Kretschmann = 𝛼𝛽𝜇𝜈𝛼𝛽𝜇𝜈 =
48𝑀2

BH
𝑞2𝑟6

+
4 (𝑞 −𝑤)
𝑞2𝑟5

(

(𝑞 −𝑤) 𝑟 + 4𝑀BH
)

.

(2.2)

In the limit of 𝓁 and 𝜇̃ approaching to zero, this Kretschmann scalar 
(2.2), reduces to 48𝑀2

BH∕𝑟
6, corresponding to the Kretschmann scalar of 

the standard Schwarzschild BH. As observed in Eq. (2.2), the
Kretschmann scalar at 𝑟 = 0 exhibits a divergence, indicating the 
presence of a physical singularity. However, for 𝑟0 = 2𝑀BH∕𝑤, the 
Kretschmann scalar is finite, specifically 𝑤4(𝑞2 + 2𝑤2)∕4𝑀4

BH𝑞
2. This 

implies that the singularity at the event horizon can be eliminated 
through a coordinate transformation.

2.1. Dark matter modeling in general relativity

As reported in [41], some approaches exist for modeling super-
massive BHs at the centers of galaxies, based on current cosmological 
observations [90–93]. Here, we adopt a more agnostic approach, using 
the fact that DM has mass, which can be treated as an additional 
effective mass in the collective mass function 𝑚(𝑟), embedded within 
the most general 4D spherically symmetric static metric [74]: 

𝑑𝑠2 = −𝑓 (𝑟)𝑑𝑡2 + 1
𝑓 (𝑟)

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2), (2.3)

with 𝑓 (𝑟) = 1 − 2𝑚(𝑟)∕𝑟, where the collective mass function 𝑚(𝑟) is 
defined as 

𝑚(𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑀BH, for 𝑟 ≤ 𝑟b;
𝑀BH +𝑊 (𝑟)𝛥𝑀, for 𝑟b ≤ 𝑟 ≤ 𝑟b + 𝛥𝑟;
𝑀BH + 𝛥𝑀, for 𝑟 > 𝑟b + 𝛥𝑟,

(2.4)

in which 𝑊 (𝑟) = (3 − 2(𝑟 − 𝑟b)∕𝛥𝑟)(𝑟 − 𝑟b)2∕𝛥𝑟2 is defined as a radial 
function to ensure the continuity of the mass function and its first 
derivative with respect to 𝑟 (refer to Fig.  2). In this framework for 
modeling DM within GR, it is anticipated that the DM density begins 
at 𝑟b > 𝑟+ = 2𝑀BH and extends to 𝑟b + 𝛥𝑟. Here, 𝛥𝑀 represents the 
mass of the DM distribution, with 𝛥𝑀 > 0 indicating positive DM 
mass-energy density and 𝛥𝑀 < 0 signifying a negative density. In this 
study, we focus exclusively on the positive case, with 𝛥𝑟 representing 
the thickness of the DM distribution.

Fig.  3 illustrates the behavior of the metric function 𝑓 (𝑟) in the DM 
model for various combinations of 𝛥𝑀 and 𝛥𝑟, while holding certain 
values of 𝑟b and 𝛥𝑟 constant. The admissible values of 𝛥𝑀 and 𝛥𝑟 are 
subject to constraints. If 𝛥𝑀 is excessively large, it effectively raises the 
total mass of the BH, consequently expanding the radius of the event 
horizon. Conversely, reducing the thickness of the DM distribution also 
leads to an increase in the event horizon radius.

2.2. The modified TOV equations with DM spike

We proceed by considering a BH positioned at the center of a DM 
halo. The BH possesses a mass denoted as 𝑀BH. Initially, the DM halo 
exhibits a power-law density profile in close proximity to the galactic 
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Fig. 2. Schematic plot of the galactic central region with an SMBH and a DM 
distribution in the region 𝑟 ∈ [𝑟b, 𝑟b + 𝛥𝑟], where the inner and outer edges of 
the DM region are given by 𝑟 = 𝑟b ≥ 2𝑀BH and 𝑟 = 𝑟b + 𝛥𝑟. The event horizon 
is identified at 𝑟+ = 2𝑀BH. The shaded region illustrates a steep DM density 
profile around a BH, resulting from the BH’s gravitational pull. This occurs 
as DM is adiabatically drawn inward, causing a significant increase in density 
near the BH.

center, expressed as 𝜌DM(𝑟) ≃ 𝜌0(𝑟0∕𝑟)𝛾 . Here, 𝛾 represents the power-
law index, while 𝜌0 and 𝑟0 serve as the parameters characterizing the 
halo. In a study by Gondolo and Silk [80], it was demonstrated that 
the formation of a DM spike follows an adiabatic process, resulting in 
a density profile 𝜌spDM equal to 

𝜌spDM(𝑟) = 𝜌sp

(𝑅sp
𝑟

)𝛾sp
, (2.5)

where 𝜌sp = 𝜌0
(

𝑅sp∕𝑟0
)−𝛾 refers to the DM density, while 𝑅sp =

𝛾 𝑟0(𝑀BH∕𝜌0𝑟30)
1∕(3−𝛾) corresponds to the spike radius (see Fig.  1). Both 

𝜌sp and 𝑅sp are associated with the outer edge of the spike region [72,
73,75,76,81–86]. Here, the quantity 𝛾sp is defined as (9−2𝛾)∕(4−𝛾) with 
𝛾 ∈ [0, 2], and 𝑅s represents the Schwarzschild radius of the BH and it is 
approximately equal to 2𝑀BH ≃ 2.95(𝑀BH∕𝑀⊙) km. By employing this 
approach, it is possible to demonstrate that the normalization constant 
𝛾 is connected to the spike parameters through the relation [76] 

𝛾 ≃

(

𝑀BH

𝜌sp𝑅3
sp

)3−𝛾

. (2.6)

It is worth noting that the density profile of this DM distribution differs 
from the NFW density profile, which is based on numerical simulations 
of collisionless DM particles in galactic halos, with values of 𝛾 equal to 
1 and 0, along with BH masses of 𝑀BH = 105𝑀⊙ or 𝑀BH = 106𝑀⊙ [85]. 
An intriguing aspect is the significant enhancement of DM density by 
several orders of magnitude within the spike region. Therefore, it is of 
great interest to explore the potential implications of this phenomenon 
on observable signatures originating from central SMBHs, such as 
Sgr A∗ and M87∗, situated in spacetime with topological defects, that 
is, with GMs, within the framework of BG. The next step is to construct 
a BGMSLBH metric background that incorporates both the effects of 
the GM and spontaneous breaking of LS, and governs the trajectories 
of particles, both massive and massless. To do so, we proceed to solve 
the modified TOV equations [113,114] arising from the corresponding 
background, in the DM distribution surrounding the BH. Within this 
framework, to analyze the gravitational signatures of the interacting 
system between the DM in the spike region and the BH in the BGGM 
background, we begin with a spherically symmetric static metric that 
resembles the metric given in Eq. (2.1), called the BGGM BH metric. 
The metric can be expressed as 

𝑑𝑠2 = −𝑒2𝜒(𝑟)𝑑𝑡2 + 𝑒2𝜁 (𝑟)𝑑𝑟2 + 𝑟2𝑑𝛺2, (2.7)

where 𝜒(𝑟) and 𝜁 (𝑟), valid in the region 𝑟b ≤ 𝑟 ≤ 𝑅sp, represent the 
sought metric functions. It is noteworthy that choosing 𝑒−2𝜁 (𝑟) = g(𝑟) is 
4 
always possible, resulting in: 

g(𝑟) = 𝑞−1
(

𝑤 −
2M(𝑟)

𝑟

)

. (2.8)

Here, we adapt the mass function 𝑚(𝑟) given in Eq. (2.4) to define 
M(𝑟), specifically tailored for the DM spike. Hence, the collective mass 
function M(𝑟) can be taken as the combination of the BH mass, and a 
mass function associated with the presence of DM distribution within 
the spike region (see Figs.  1 and 2). Thus, the resulting collective mass 
function can be denoted as [41] 
M(𝑟) = 𝑀BH +𝑀 sp

DM(𝑟). (2.9)

By employing the density profile described in Eq. (2.5), we derive the 
mass function corresponding to the distribution of DM within the spike 
region, restricted to the range 𝑟b ≤ 𝑟 ≤ 𝑅sp, which can be expressed as 

𝑀 sp
DM(𝑟) = 4𝜋 ∫

𝑟

𝑟b
𝜌spDM(𝑟̄)𝑟̄

2 𝑑𝑟̄ =
4𝜋𝜌sp
3 − 𝛾sp

𝑅
𝛾sp
sp

(

𝑟3−𝛾sp − 𝑟
3−𝛾sp
b

)

, (2.10)

where 𝑟b represents the inner edge of the spike region. Speaking of 
which, for this scenario, the collective mass function across various 
regions can be rewritten using Eqs. (2.4), (2.9) and (2.10) as follows 

M(𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑀BH, for 𝑟 ≤ 𝑟b;
𝑀BH +𝑀 sp

DM(𝑟), for 𝑟b ≤ 𝑟 ≤ 𝑅sp;
𝑀BH +𝑀DM, for 𝑟 > 𝑅sp.

(2.11)

The DM mass shell, 𝑀DM, is fundamentally a constant mass that relies 
on its density and position. Specifically, for large scales where 𝑟 ≥ 𝑅sp, 
the spacetime can be seamlessly connected with the density profiles 
of DM halos that extend beyond the spike region [73]. Meanwhile, 
the influence of the DM distribution beyond the spike region on the 
gravitational signatures originating from the BH at the galactic center 
is considered negligible.

In this way, the energy–momentum tensors associated with the 
spacetime metric for such a interacting system can be expressed as 
𝑇 𝜇

𝜈 = diag
[

−𝜌(𝑟), 𝑃𝑟(𝑟), 𝑃𝜃(𝑟), 𝑃𝜑(𝑟)
]

. Thus, these considerations lead to 
the derivation of the Einstein field equations 𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈 as 

8𝜋𝜌(𝑟) =
𝑞 −𝑤 + 2M′(𝑟)

𝑞𝑟2
, (2.12a)

8𝜋𝑃𝑟(𝑟) = − 1
𝑟2

+
𝑤 − 2M(𝑟)

𝑟

𝑞𝑟2
+

2
(

𝑤 − 2M(𝑟)
𝑟

)

𝜒 ′(𝑟)

𝑞𝑟
, (2.12b)

8𝜋𝑃𝜃(𝑟) =
M(𝑟) − 𝑟M′(𝑟)

𝑞 𝑟
− 1

𝑞
(

M(𝑟) + 𝑟
(

−𝑤 +M′(𝑟)
))

𝜒 ′(𝑟)

+ 𝑟
𝑞
(𝑟𝑤 − 2M(𝑟))𝜒 ′(𝑟)2 + 𝑟

𝑞
(𝑟𝑤 − 2M(𝑟))𝜒 ′′(𝑟), (2.12c)

8𝜋𝑃𝜑(𝑟) = 8𝜋 sin2 𝜃𝑃𝜃(𝑟). (2.12d)

Here, the prime indicates the derivative of the functions with respect 
to 𝑟. When the limits 𝑤 → 1 and 𝑞 → 1 are applied to the Einstein 
field equations in Eq. (2.12), they reduce to their standard form, which 
corresponds to the generic ansatz in the standard static and spherically 
symmetric form 𝑔𝜇𝜈 = diag(−𝑒2𝜒(𝑟), 𝑒2𝜁 (𝑟), 𝑟2, 𝑟2sin2𝜃). Then, by combin-
ing the equation of state 𝑃𝑟(𝑟) = 𝜔𝜌(𝑟) and the GF equation, given in 
(2.12a) and (2.12b), as well as considering the conservation law of the 
energy–momentum tensor, 𝑇 𝜇𝜈

;𝜈 = 0, the modified TOV equations can 
be written as 

𝑑𝜒(𝑟)
𝑑𝑟

=
M(𝑟) +

(

𝑞
2 − 𝑤

𝑞

)

𝑟 + 4𝜋𝑟3𝑃𝑟(𝑟)

𝑟(𝑤𝑟 − 2M(𝑟))
, (2.13a)

𝑑𝑃𝑟(𝑟)
𝑑𝑟

= −
(

𝜌(𝑟) + 𝑃𝑟(𝑟)
) 𝑑𝜒(𝑟)

𝑑𝑟
, (2.13b)

where 𝑃𝑟(𝑟) represents the pseudo-pressure of the DM, which can be 
defined even for collisionless particles [78,115]. We adopt the equation 
of state for the DM spike as 𝑃 (𝑟) = 𝜔𝜌sp (𝑟), where 𝜔 can be a 
𝑟 DM
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Fig. 3. Plot of the metric function versus radial coordinate for 𝛥𝑟 = 70 showing variations in 𝛥𝑀 (first panel) and for 𝛥𝑀 = 10𝑀BH with varying 𝛥𝑟 (second 
panel), with parameters set to 𝑀BH = 1 and 𝑟b = 8.
constant. In order to derive an analytical expression for 𝜒(𝑟), we are 
confronted with a complex integral. In this particular case, we employ 
an asymptotic expansion technique to attain the desired analytical form 
for 𝜒(𝑟). Here, to simplify the analysis, we consider the case where the 
DM distribution possesses an equation of state with 𝜔 = 0 [56,73]. 
Consequently, in Eq. (2.13a), the contribution of the term 4𝜋𝑟3𝑃𝑟(𝑟) can 
be disregarded when compared to M(𝑟) [76]. Thus, Eq. (2.13a) can be 
rewritten as 
𝑑𝜒(𝑟)
𝑑𝑟

= − 1
2𝑟

+
𝑞
2

(

1
𝑤𝑟 − 2M(𝑟)

)

. (2.14)

At this stage, in order to integrate Eq. (2.14) and determine the metric 
function f(𝑟) = 𝑒2𝜒(𝑟), we have the option to approximate the integral in 
the leading order with respect to 𝜌sp. Additionally, using the condition 
f (𝑟b) = 𝑒2𝜒(𝑟b) = 𝑤− 2MBH

𝑟b
,2 the metric function f(𝑟) can be expressed as: 

f(𝑟) ≃ 𝑟−1+
𝑞
𝑤 +𝑤 − 1 −

2MBH
𝑟

+
8𝜋𝑞𝜌sp 𝑟

1+ 𝑞
𝑤

𝑤2
(

𝛾sp − 3
) (

𝛾sp − 2
)

(𝑅sp
𝑟

)𝛾sp

+ 8𝜋𝜌sp 𝑟2b
⎛

⎜

⎜

⎝

𝑤2𝑟
(

𝛾sp − 3
)

− 𝑞
(

𝛾sp − 2
)

𝑟−1+
𝑞
𝑤 𝑟b

𝑤2𝑟
(

𝛾sp − 3
) (

𝛾sp − 2
)

⎞

⎟

⎟

⎠

(𝑅sp
𝑟b

)𝛾sp
.

(2.15)

It is observed that this metric is valid in the range 𝑟 ∈ [𝑟b, 𝑅sp].  In the 
BGMSLBH spacetime described by metric (2.7), in the limit of 𝑤 → 1
and 𝑞 → 1, where the BGGM is absent, metric function (2.15) simplifies 
to metric function (18) of Ref. [73], as well as when the DM spike 
disappears (i.e., 𝜌sp → 0 or 𝑟 → 𝑟b), the sought metric functions f(𝑟) and 
g(𝑟) reduces to 

lim
𝑟→𝑟b
𝑤→1
𝑞→1

f(𝑟) = lim
𝑟→𝑟b
𝑤→1
𝑞→1

g(𝑟) = 1 −
2𝑀BH
𝑟b

. (2.16)

It is worth noting that the matching condition f(𝑟) = g(𝑟) is achieved 
at the horizon of the BH in the absence of the BGGM. Furthermore, 
Eq. (2.15) reveals that the event horizon of the BGMSLBH is influenced 
by the BGGM effects. Consequently, changes in the variables such as 𝑤, 
𝑞 and 𝜌sp can alter the horizon as expected. Furthermore, the presence 
of the BGGM suggests that our spacetime is not asymptotically flat.

To show the behavior of the metric function f(𝑟), we plot Eq. (2.15) 
in Fig.  4, with all parameters scaled to the BH parameters. It is observed 
that f(𝑟) reveals considerable variations for higher values of 𝜌sp and 
model parameters, both in the vicinity of the BH and at larger distances.

Curvature invariants are quantities that facilitate the understanding 
of the spacetime properties of a geometric body, such as a BH. The 
Kretschmann scalar (𝐾Kretschmann = 𝛼𝛽𝜇𝜈𝛼𝛽𝜇𝜈 , i.e., the square of the 
Riemann curvature tensor), and the Ricci scalar (i.e.,  = 𝑔𝜇𝜈𝜇𝜈) 

2 To find further details about the condition, please refer to Ref. [73].
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Fig. 4. Plots of the metric function f(𝑟) as a function of the radial coordinate, 
showing the impact of varying 𝜇̃ for the M87∗ BH surrounded by a DM spike. 
The dashed gray lines indicate the scenario without the BGGM effect.

are well-known scalar invariants. Here, we investigate these quanti-
ties influenced by the DM distribution by examining their graphical 
behaviors. It is obvious that deriving closed analytical expressions 
for the scalar invariants of interest–namely, the Ricci scalar and the 
Kretschmann scalar–is very difficult in this setting due to the complex-
ity of the mass function and the corresponding metric functions, which 
give rise to long and cumbersome equations. We therefore illustrate 
their behavior using numerically obtained graphs. The left panel of Fig. 
5 shows that the Ricci scalar approaches infinity as 𝑟 → 0, indicating 
that the spacetime surrounding the BGMSLBH is not Ricci-flat. The 
Ricci scalar grows with increasing of 𝜌sp. As shown in the right panel 
of Fig.  5, the Kretschmann scalar provides more information about 
the spacetime curvature. It can be seen that the Kretchmann scalar 
decreases as 𝜌sp increases. 

3. Normalization of the DM spike profile 

Based on the observational data for Sgr A∗ and M87∗ SMBHs taken 
from Refs. [73,76,79,82–84], and following the procedure provided in 
Refs. [82–84], we determine the normalization parameter 𝜌0 for the 
DM spike profile (2.5) at the centers of both the Milky Way and M87
galaxies, with the halo parameter 𝑟0 being fixed at 20 kpc for both 
galaxies.

We find the value of 𝜌0 by ensuring that the density profile aligns 
with both the total mass of the galaxy and the mass encompassed within 
the radius of influence of the SMBHs, typically around 105𝑅s. Thus, 
the DM mass within the relevant region for determining the BH mass, 
typically within 𝑅 = 105𝑅 , must be smaller than the uncertainty on 
0 s
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Fig. 5.  Behavior of the Ricci scalar (left panel) and the Kretchmann scalar (right panel) in the BGMSLBH spacetime described by the Eq. (2.7), for different 
values of the DM density 𝜌sp surrounding the SMBH M87*. The dashed gray lines indicate the scenario without the DM spike distribution.
Table 1
The DM spike’s parameters for the Milky Way galaxy.
 𝛾sp 𝛾 𝜌0(M⊙ pc−3) 𝑅sp(pc) 𝜌sp(M⊙ pc−3) 𝑀 sp

tot(M⊙)  
 9/4 0.1 2.53 × 1018 1.20 × 10−5 2.53 × 1018 6.38 × 104 
 7/3 0.1 8.04 × 107 1.60 × 10−4 1.00 × 1016 7.50 × 105 
the BH mass 𝛥𝑀BH. In order to determine 𝜌0, we solve the following 
integral equation 

∫

105𝑅s

𝑟b
4𝜋𝑟2𝜌DM(𝑟)𝑑𝑟 = 𝛥𝑀BH, (3.1)

in which we can suppose that the DM density profile vanishes below 
a certain radius, denoted as 𝑟b, which is equal to either 4𝑅s for the 
Newtonian approximation [80] or 2𝑅s for the full relativistic case of 
a static BH [81]. This occurs due to the capture of DM particles by 
the BH. We encounter an additional complication due to the non-linear 
dependence of 𝜌0 in the integral mentioned above, which arises from 
its correlation with 𝜌DM. However, we can simplify this situation by 
considering that the mass is primarily dominated by contributions from 
regions where 𝑟 ≫ 𝑅s, typically 𝑟 > 𝑟b → (100𝑅𝑠). In this regime, 
we can approximate 𝜌DM ≃ 𝜌spDM. Moreover, we may factorize the 
dependence of 𝜌0 in 𝜌spDM as 𝜌spDM(𝑟) = 𝜌1∕(4−𝛾)0 (𝑅̃sp∕𝑟0)−𝛾 (𝑅̃sp∕𝑟)

𝛾sp , where 
𝑅̃sp = 𝛾 𝑟0(𝑀BH∕𝑟30)

1∕(3−𝛾). By doing so, Eq. (3.1) becomes linear in 𝜌0, 
leading us to the following expression 

𝜌0 = 𝜋𝛾−4

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑅̃sp
𝑟0

)−𝛾 (

4𝑟3b

(

𝑅̃sp
𝑟0

)𝛾sp
− 4𝑅3

0

(

𝑅̃sp
𝑅0

)𝛾sp)

(

𝛾sp − 3
)

𝛥𝑀BH

⎞

⎟

⎟

⎟

⎟

⎠

𝛾−4

. (3.2)

In this paper, we will adopt 𝛾 = 1 as the value for practical purposes, 
associated with the NFW density profile. For this choice, the associated 
DM spike profile possesses a power-law index of 𝛾sp = 7∕3.

3.1. The Milky Way galaxy

Now, by using the observational data for the Sgr A∗ SMBH, located 
at the center of the Milky Way galaxy, with a mass of 𝑀BH = 4.1 ×
106 𝑀⊙ and an uncertainty in mass of 𝛥𝑀BH = 3 × 107 𝑀⊙, along with 
the corresponding Schwarzschild radius 𝑅s ≃ 3.9 × 10−7 pc, we obtain 
the data that appear in Table  1, that includes the value for 𝛾 , the 
derived 𝜌0, and the radius 𝑅sp, the density 𝜌sp, and the total mass of 
the DM spike 𝑀 sp

tot, obtained using Eqs. (2.5), (2.10) and (3.2).

3.2. The M87 galaxy

In a similar way, we consider the available data for the SMBH M87∗, 
which has a mass of 𝑀 = 6.4 × 109 𝑀  and an uncertainty in mass 
BH ⊙

6 
of 𝛥𝑀BH = 5 × 108 𝑀⊙. The corresponding Schwarzschild radius is 
approximately 𝑅s ≃ 6 × 10−4 pc. Based on this information, we obtain 
the data shown in Table  2, which includes the value for 𝛾 , the derived 
𝜌0, and the radius 𝑅sp, the density 𝜌sp, and the total mass of the DM 
spike 𝑀 sp

tot. These quantities are obtained using Eqs. (2.5), (2.10), and 
(3.2).

4. The Kerr bumblebee BH with a global monopole in DM spike 

In Section 2, we derived the BGMSLBH solution, which is influenced 
by the bumblebee field in the presence of the GM, along with the 
surrounding DM spike. We now begin with a general seed spherically 
symmetric and static metric expressed as follows: 

d𝑠2 = − (𝑟)𝑑𝑡2 + 1
(𝑟)

𝑑𝑟2 + h(𝑟)
(

𝑑𝜃2 + sin2 𝜃𝑑𝜑2) . (4.1)

With the idea of extending our BGMSLBH solution to incorporate 
rotation, introducing a spin parameter denoted as 𝑎, using the modified 
NJ method [116–121] following the approach presented in [116–118]. 
The modified version of the NJ method that we employ here differs 
from the original one [122] by excluding one of its steps, specifically, 
the complexification of coordinates. Instead, we utilize an alternate 
coordinate transformation as given in [116]. Moreover, this modified 
NJ method has been applied in several significant studies within the 
framework of rotating DM-BH systems [56,69,71,75,123–125]. By ap-
plying the modified NJ method, we derive the metric describing the 
Kerr Bumblebee BH spacetime with GM, encompassed by the DM spike 
as follows 

𝑑𝑠2 = −
(

1 − 𝛹
𝛴2

)

𝑑𝑡2+𝛴2

𝛥
𝑑𝑟2−2𝑎 𝛹

𝛴2
sin2𝜃 𝑑𝑡𝑑𝜑+𝛴2 𝑑𝜃2+𝛯 sin2𝜃

𝛴2
𝑑𝜑2,

(4.2a)

defining new notations
𝛴2 = K + 𝑎2cos2𝜃, 𝛹 = K − (𝑟)h(𝑟),

K(𝑟) = h(𝑟)

√

(𝑟)
 (𝑟)

, 𝛥(𝑟) = (𝑟)h(𝑟) + 𝑎2, (4.2b)

𝛯 =
(

K + 𝑎2
)2 − 𝑎2𝛥 sin2𝜃.

The modified Kerr BH metric (4.2) returns to the Kerr BH metric as 
the BGGM parameters 𝑤 and 𝑞 approaches one, assuming the presence 
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Table 2
The DM spike’s parameters for the M87 galaxy.
 𝛾sp 𝛾 𝜌0(M⊙ pc−3) 𝑅sp(pc) 𝜌sp(M⊙ pc−3) 𝑀 sp

tot(M⊙)  
 9/4 0.1 1.43 × 104 7.65 1.43 × 104 1.07 × 108 
 7/3 0.1 6.52 × 10−2 221.54 5.89 1.21 × 109 
of the DM spike. Similarly, in the absence of the DM spike, the metric 
reverts to the standard Kerr BH metric as the limit 𝜌sp → 0 (or 𝑟 → 𝑟b) is 
taken. Additionally, when the parameter 𝑎 tends to zero, the modified 
Kerr BH spacetime converges to the spherically symmetric metric (4.1). 
Similar to the Kerr spacetime, the modified Kerr BH spacetime also 
possesses two Killing vectors denoted by 𝜉𝜇(𝑡) = 𝛿𝜇𝑡  and 𝜉𝜇(𝜑) = 𝛿𝜇𝜑, which 
remain invariant under transformations involving the time coordinate 
𝑡 and the azimuthal angle 𝜑.

Let us now investigate the effects of the BGGM and the DM dis-
tribution within the spike region, described by the density profile in 
Eq. (2.5), on the horizon, SLS, and ergoregion3 of the BGMKLBH. Due to 
the complexity arising from the DM mass function appearing in solving 
𝛥 = 0 and 𝑔𝑡𝑡 = 0, we need to numerically analyze the impacts of 
the spike profile and the BGGM theoretically through some plots and 
tables. Subsequently, we will apply this analysis to the cases of the M87
and Milky Way galaxies, which host the well-known SMBHs M87∗ and 
Sgr A∗, respectively. To do this, we will make use of the observational 
data for the mentioned SMBHs and their corresponding galaxies, as 
presented in Section 3, for the DM spike profile. It is worth noting that 
the observational data for the DM spike profile in the Milky Way galaxy, 
in terms of the parameters of the SMBH Sgr A∗, can be expressed as 
𝑅sp ≃ 407.16𝑅s and 𝜌sp ≃ 6.15 × 10−10𝜌BH, where 𝜌BH = 𝑀BH∕(4𝜋𝑅s∕3). 
Similarly, the observational data for the spike profile in the M87 galaxy, 
associated with the M87∗ SMBH parameters, can be represented as 
𝑅sp ≃ 3.7 × 105𝑅s and 𝜌sp ≃ 8.32 × 10−19𝜌BH.

We observe that the influence of DM on the horizon and SLS, 
and subsequently on the ergoregion, primarily depends on the mass 
distribution in close proximity to the SMBH at the center of the galaxy. 
Therefore, we can neglect the contribution of DM located far from 
the spike, particularly in regions where 𝑟 significantly exceeds 𝑅sp. 
Now, our focus shifts towards understanding the characteristics of the 
BGMKLBHs given in (4.2). The objective here is to demonstrate that 
their attributes closely resemble those of the Kerr BH. Specifically, 
we explore the horizons and SLSs and delineate the region situated 
between the corresponding event horizon and the outer SLS. This region 
is known as the ergoregion [126,127]. We intend to analyze the effects 
of BGGM on the ergoregion structure and its two boundaries – namely, 
the event horizon and the outer SLS. The horizons of the BGMKLBH 
can be considered as the solutions to the following equation 
(𝑟)h(𝑟) + 𝑎2 = 0, (4.3)

which also corresponds to the coordinate singularity of the metric (4.2). 
Through numerical analysis, it becomes apparent that, contingent upon 
the values of the parameters in the DM spike mass function, the spin 
parameter 𝑎, and the BGGM parameters 𝜇̃ and 𝓁, Eq. (4.3) can yield 
a maximum of two distinct real positive roots, degenerate roots, or 
no-real positive roots. These results correspond respectively to non-
extremal modified Kerr BH configurations, extremal modified Kerr BH 
configurations, and modified Kerr naked singularities [128] for the 
metric (4.2). The two real positive roots of Eq. (4.3) are recognized 
as the radii of the Cauchy horizon (𝑟−) and the event horizon (𝑟+), with 
the condition that 𝑟− ≤ 𝑟+ (as shown in Figs.  6 and 7). Figs.  6 and 7, as 
well as Tables  3 and 4, illustrate the behavior of the horizon radii 𝑟±
as the spin parameter 𝑎 and model parameters vary.

For given values of DM spike parameters, as the spin parameter 
𝑎 and the model parameters 𝓁 and 𝜇̃ vary, the event horizon radius 

3 The region lying between the SLS and the event horizon can be defined 
using 𝛿 = 𝑟+ − 𝑟 .
er SLS +
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𝑟+ decreases (increases), while the Cauchy horizon radius 𝑟− increases 
(decreases) with rising 𝑎 and 𝓁 (𝜇̃).4 For a fixed value of 𝑎 (𝓁 and 
𝜇̃), there exists a critical value 𝓁ex and 𝜇̃ex (𝑎ex) where both horizons 
coincide, resulting in 𝑟− = 𝑟+. This signifies that for 𝜇̃ < 𝜇̃ex and 
𝓁 > 𝓁ex (𝑎 > 𝑎ex), Eq. (4.3) possesses no roots, and for 𝜇̃ > 𝜇̃𝑒𝑥 and 
𝓁 < 𝓁ex (𝑎 < 𝑎𝑒𝑥), two distinct roots emerge (as can be seen in Fig. 
6). Furthermore, for consistent values of the DM spike parameter and 
spin 𝑎, the presence of the BGGM parameters leads to a reduction in 
𝑟+ and an increase in 𝑟−. Moreover, the GM effect contributes more 
significantly to this scenario than the BG effect.

In the absence of BH spin, the SLS overlap with the BH’s event 
horizon. However, in the presence of non-zero spin, two SLSs emerge 
positioned distinctively apart from the event horizon, viz., the outer 
SLS (𝑟+SLS) and inner SLS (𝑟−SLS) [75]. This scenario holds true for the 
BGMKLBH metric given in Eq. (4.2) as well. Now, let us proceed to 
determine the SLS for the BGMKLBH in the  ≠  spacetime configura-
tion. This can be achieved by considering the condition 𝑔𝑡𝑡 = 0, which 
can be expressed as 
𝛴2 − 𝛹 = 0, (4.4)

where, 𝛴2 and 𝛹 are defined in Eq. (4.2b). Through numerical com-
putation of this equation and its integration with the event horizon 
findings of the BGMKLBH, it becomes evident that, aside from the 
parameters related to BH and the DM spike masses, changes occur in 
𝑟+, 𝑟+SLS and 𝛿er as 𝑎, 𝜇̃ and 𝓁 vary. Specifically, when 𝓁 increases and 
𝜇̃ decreases individually while keeping 𝑎 constant, 𝑟+SLS decreases and 
𝛿er increases. Conversely, for fixed values of 𝓁 and 𝜇̃, an increase in 𝑎
leads to an decrease in 𝑟+SLS and a increase in 𝛿er (cf. Figs.  8 as well as 
Tables  3, and 4).

5. The shadow of a deformed kerr BH in DM spike

The BH shadow emerges as the optical manifestation resulting from 
the strong GL of light in the vicinity of these compact entities, pre-
senting itself as a two-dimensional dark region when observed from a 
considerable distance. Now, we consider BGMKLBH as SMBH located at 
the center of the M87 galaxy. In this section, we employ observational 
data of the SMBH and the DM spike profile within the M87 galaxy. 
To explore the influence of the BGGM effect on the dark shadow cast 
by the BH within the DM spike, we investigate the impact of the 
parameter space (𝑎,𝓁, 𝜇̃) on the geodesic motion of photons around 
the BGMKLBH. Additionally, the size and shape of the shadows are 
found to be dependent on the BGMKLBH parameters. The shadow, in 
turn, has played a crucial role in estimating and measuring various 
BH parameters, such as mass and spin angular momentum, as well as 
facilitating the estimation of the BGGM parameter associated with an 
extended gravity model [1–8,129–134].

Our focus now turns to the study of photon geodesic motion within 
metric spacetime (4.2). We begin with the Lagrangian  for geodesic 
motion, given by 2 = 𝑔𝜇𝜈 𝑥̇𝜇 𝑥̇𝜈 , where the values of 2 are −1, 0, 1 re-
spectively for timelike, null, and spacelike geodesics. Here, the overdot 
denotes a derivative concerning the affine parameter 𝜆, connected to 
proper time via 𝜏 = 𝜆𝑚, wherein 𝑚 signifies the mass of the test particle. 
However, in the case of photons, we have 𝑚 = 0. In this context, the 
null geodesics can be derived by employing the method of separating 
variables within the Hamilton–Jacobi equation [135–137] 

 = − 𝜕𝑆
𝜕𝜆

= 1
2
𝑔𝜇𝜈

𝜕𝑆
𝜕𝑥𝜇

𝜕𝑆
𝜕𝑥𝜈

= 0, (5.1)

4 Please refer to Fig.  7, as well as Tables  3 and 4.
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Fig. 6. Plot illustrating the horizon behavior (𝛥 vs 𝑟) in the BGMKLBH spacetime for the M87 galaxy. The left panel shows results for fixed values of 𝜇̃ = −0.3
and 𝓁 = 0.1 with varying 𝑎, while the right panel depicts fixed 𝑎 = 0.75 with varying 𝜇̃ and 𝓁. We have set 𝑀BH = 1 in all cases. The dashed gray lines indicate 
the scenario without the BGGM effect.
Fig. 7. Plot illustrates the variation of the event horizon 𝑟+ (solid lines) and the Cauchy horizon 𝑟− (dashed lines) concerning the spin parameter 𝑎 and model 
parameters 𝓁 and 𝜇̃ for the BGMKLBH.
in which  and 𝑆 represent the canonical Hamiltonian and the Jacobi 
action, respectively. Given that the BGMKLBH spacetime (4.2) remains 
independent of 𝑡 and 𝜑, these coordinates can be regarded as cyclic, and 
the associated Killing vectors are expressed as 𝜉𝜇(𝑡) = 𝛿𝜇𝑡  and 𝜉𝜇(𝜑) = 𝛿𝜇𝜑. 
Hence, we are able to introduce the conserved energy 𝐸 and the 𝑧
component of angular momentum 𝐿𝑧, being their explicit definitions

𝐸 = − 𝜕𝑆
𝜕𝑡

= −𝑔𝑡𝑡 𝑡̇ − 𝑔𝜑𝑡𝜑̇, and 𝐿𝑧 =
𝜕𝑆
𝜕𝜑

= 𝑔𝜑𝑡 𝑡̇ + 𝑔𝜑𝜑𝜑̇. (5.2)

To obtain a separable solution for Eq. (5.1), we can represent the Jacobi 
action in terms of the constants of motion 𝐸 and 𝐿𝑧 as follows: 
𝑆 = −𝐸𝑡 + 𝐿𝑧𝜑 + 𝑆𝑟(𝑟) + 𝑆𝜃(𝜃), (5.3)

where 𝑆𝑟(𝑟) and 𝑆𝜃(𝜃) exclusively depend on the 𝑟 and 𝜃 coordinates, 
respectively. In the geodesic equations of motion, there exist four 
constants of motion that enable us to formulate the null geodesic 
equation in a first-order format: the Lagrangian  = 0, the energy 𝐸, 
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the 𝑧 component of angular momentum 𝐿𝑧, and the Carter constant . 
This final constant of motion can appear through the separation process 
of the Hamilton–Jacobi equation. By inserting the Jacobi action (5.3) 
into Eq. (5.1), the resulting expression becomes: 

− 𝛥
(

𝜕𝑆𝑟
𝜕𝑟

)2
+

(

 (𝑟)𝐸 − 𝑎𝐿𝑧
)2

𝛥
=
(

𝜕𝑆𝜃
𝜕𝜃

)2
+

(

𝐿𝑧 − 𝑎𝐸 sin2 𝜃
)2

sin2 𝜃
= ,

(5.4)

where each side depends on either 𝑟 or 𝜃. This implies that both sides 
are equal the Carter constant . Besides,  (𝑟) = h(𝑟)

√

(𝑟)∕ (𝑟) + 𝑎2 ≡
K(𝑟) + 𝑎2. In the absence of the BGGM effect, where 𝑞 → 1 and 𝑤 → 1
(or 𝓁 → 0 and 𝜇̃ → 0), and without the DM spike, as 𝜌sp → 0 (or 
𝑟 → 𝑟b), the function  (𝑟) reduces to that of the standard Kerr BH 
metric [24], which is (𝑟2+𝑎2). Following this, we derive four first-order 
differential equations describing the geodesic motions in the vicinity of 
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Table 3
The horizons, SLSs, and the region between the SLS and the event horizon of the BGMKLBH spacetime related to the M87 galaxy, 
showcasing variations based on different values of 𝑎, 𝜇̃ and 𝓁.
 𝜇̃ 𝑟− 𝑟+ 𝑟+SLS 𝛿er  
 (I) 𝑎 = 0.75, 𝓁 = 0.01  
 0.00 0.34285 1.65711 1.84608 0.18897 
 - 0.01 0.34375 1.63640 1.82614 0.18974 
 - 0.02 0.34466 1.61608 1.80658 0.19050 
 - 0.03 0.34558 1.59612 1.78740 0.19128 
 (II) 𝑎 = 0.5, 𝓁 = 0.01  
 0.00 0.13543 1.86453 1.93470 0.07017 
 - 0.01 0.13553 1.84462 1.91487 0.07025 
 - 0.02 0.13564 1.82510 1.89544 0.07034 
 - 0.03 0.13575 1.80596 1.87638 0.07042 
 𝓁 𝑟− 𝑟+ 𝑟+SLS 𝛿er  
 (I) 𝑎 = 0.75, 𝜇̃ = −0.01  
 0.00 0.33946 1.64070 1.82780 0.18710 
 0.01 0.34375 1.63640 1.82614 0.18974 
 0.02 0.34808 1.63208 1.82447 0.19239 
 0.03 0.35243 1.62773 1.82280 0.19507 
 (I) 𝑎 = 0.5, 𝜇̃ = −0.01  
 0.00 0.13409 1.84607 1.91554 0.06947 
 0.01 0.13553 1.84462 1.91487 0.07025 
 0.02 0.13698 1.84317 1.91421 0.07104 
 0.03 0.13844 1.84172 1.91354 0.07182 
Table 4
The horizons, SLSs, and the region between the SLS and the event horizon of the BGMKLBH spacetime related to the Milky Way 
galaxy, showcasing variations based on different values of 𝑎, 𝜇̃ and 𝓁.
 𝜇̃ 𝑟− 𝑟+ 𝑟+SLS 𝛿er  
 (I) 𝑎 = 0.75, 𝓁 = 0.01  
 0.00 0.34511 1.65110 1.84137 0.19027 
 - 0.01 0.34603 1.63037 1.82142 0.19105 
 - 0.02 0.34696 1.61002 1.80186 0.19184 
 - 0.03 0.34791 1.59004 1.78268 0.19264 
 (II) 𝑎 = 0.5, 𝓁 = 0.01  
 0.00 0.13618 1.85993 1.93045 0.07052 
 - 0.01 0.13629 1.84001 1.91062 0.07061 
 - 0.02 0.13640 1.82048 1.89118 0.07070 
 - 0.03 0.13651 1.80133 1.87211 0.07078 
 𝓁 𝑟− 𝑟+ 𝑟+SLS 𝛿er  
 (I) 𝑎 = 0.75, 𝜇̃ = −0.01  
 0.00 0.34170 1.63470 1.82310 0.18840 
 0.01 0.34603 1.63037 1.82142 0.19105 
 0.02 0.35040 1.62601 1.81975 0.19374 
 0.03 0.35479 1.62162 1.81807 0.19645 
 (I) 𝑎 = 0.5, 𝜇̃ = −0.01  
 0.00 0.13483 1.84146 1.91129 0.06983 
 0.01 0.13629 1.84001 1.91062 0.07061 
 0.02 0.13775 1.83855 1.90994 0.07139 
 0.03 0.13921 1.83709 1.90927 0.07218 
the BGMKLBH, which is influenced by a distribution of DM and the 
BGGM effect. Thus, the equations of motion are as follows 

𝛴2 𝑡̇ = 𝑎
(

𝐿𝑧 − 𝑎𝐸 sin2𝜃
)

+ 
𝛥

(

𝐸 − 𝑎𝐿𝑧
)

, (5.5a)

𝛴2𝜑̇ =
𝐿𝑧

sin2𝜃
− 𝑎𝐸 + 𝑎

𝛥
(

𝐸 − 𝑎𝐿𝑧
)

, (5.5b)

𝛴2 𝑟̇ = ±
√

𝑅(𝑟), (5.5c)

𝛴2𝜃̇ = ±
√

𝛩(𝜃), (5.5d)

where 

𝑅(𝑟) ≡ 𝛥2
(

𝜕𝑆𝑟
𝜕𝑟

)2
= 𝐸2 [( − 𝑎𝜉)2 − 𝛥

]

, (5.6a)

𝛩(𝜃) ≡
(

𝜕𝑆𝜃
)2

= 𝐸2

[

 −
(

𝑎 sin 𝜃 −
𝜉

)2
]

, (5.6b)

𝜕𝜃 sin 𝜃
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and the dimensionless impact parameters are symbolized as 𝜉 = 𝐿𝑧∕𝐸
and 𝜂 = ∕𝐸2. The impact parameters 𝜉 and 𝜂 have a connection 
with the constant  given by  = 𝜂 + (𝑎 − 𝜉)2 [26,29,70,138–146]. 
In examining the BH shadow, our focus lies on the unstable circular 
photon orbits. This involves satisfying conditions: 𝑅(𝑟ph) = 0, 𝑅′(𝑟ph) =
0, and 𝑅′′ ≤ 0, with 𝑟 = 𝑟ph denoting the unstable photon orbit radius. 
Using the aforementioned conditions, the critical impact parameters 
(𝜉𝑐 , 𝜂𝑐 ) for the unstable orbits that could determine the shape of the BH 
shadow can be obtained as 

𝜉𝑐 =
𝛥,𝑟 − 2𝛥,𝑟

𝑎𝛥,𝑟

|

|

|

|

|𝑟→𝑟ph

, (5.7a)

𝜂𝑐 =
4𝑎2  2

,𝑟𝛥 −
((

 − 𝑎2
)

𝛥,𝑟 − 2,𝑟𝛥
)2

𝑎2𝛥2
,𝑟

|

|

|

|

|

|𝑟→𝑟ph

. (5.7b)
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Fig. 8. Visualizing the behavior of the ergoregion in the xz-plane of the BGMKLBH spacetime corresponding to the M87∗ BH with the dark blue and cyan lines 
assigned to the SLS and horizons, respectively.
To explore how the BGGM model influences the shadow images 
of the BGMKLBH, we consider an observer positioned at coordinates 
(𝑟𝑜, 𝜃𝑜), where 𝑟𝑜 represents the observer’s distance and 𝜃𝑜 is the angular 
position in the sky. The BGMKLBH shadow shape relies on the deviation 
parameters, spin 𝑎, and the observation angle 𝜃𝑜 relative to the spin 
axis. By using the tetrad components of the four-momentum 𝑝(𝜇), the 
connection between the observer’s celestial coordinates (𝑋, 𝑌 ) and the 
critical impact parameters is given by: 

𝑋 = −𝑟0
𝑝(𝜑)

𝑝(𝑡)
= −𝑟0

𝜉𝑐
√

𝑔𝜑𝜑𝜁
(

1 + 𝑔𝑡𝜑
𝑔𝜑𝜑

𝜉𝑐

)

|

|

|

|

|

|

|

|

|(𝑟→𝑟0 , 𝜃→𝜃0)

,

𝑌 = −𝑟0
𝑝(𝜃)

𝑝(𝑡)
= ±𝑟0

√

𝜂𝑐 + 𝑎2cos2𝜃 − 𝜉2𝑐 cot2𝜃

√

𝑔𝜃𝜃𝜁
(

1 + 𝑔𝑡𝜑
𝑔𝜑𝜑

𝜉𝑐

)

|

|

|

|

|

|

|

|

|(𝑟→𝑟0 , 𝜃→𝜃0)

,

(5.8a)

with 

𝜁 =
√

𝑔𝜑𝜑
𝑔2𝑡𝜑 − 𝑔𝑡𝑡𝑔𝜑𝜑

. (5.8b)

In the case of non-asymptotically flat spacetime, which arises due to 
the existence of the BGGM background encompassing the combined 
influences of the GM and the spontaneous breaking of LS, and assuming 
that the observer is positioned at a finite distance away from the BH but 
still far away, with distances between the observer and the Sgr A∗ and 
M87∗ SMBHs being approximately 8.3 kpc and 16.8Mpc, respectively, 
the celestial coordinates given in Eq. (5.8) can be expressed in a 
simplified form [69–73] 

𝑋 = −
√

f(𝑟0)
𝜉𝑐

sin 𝜃0
, 𝑌 = ±

√

f(𝑟0)
√

𝜂𝑐 + 𝑎2cos2𝜃0 − 𝜉2𝑐 cot2𝜃0. (5.9)

For an observer situated in the equatorial plane with a latitude angle 
of (𝜃0 = 𝜋∕2), Eq. (5.9) can be reduced as 

𝑋 = −
√

f(𝑟0)𝜉𝑐 , 𝑌 = ±
√

f(𝑟0)
√

𝜂𝑐 . (5.10)

Here, to delineate the BGMKLBH shadow, one can then plot 𝑌  versus 
𝑋, where the celestial coordinates 𝑋 and 𝑌  satisfy the following 
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relationship: 

𝑋2 + 𝑌 2 = f(𝑟0)
(

𝜉2𝑐 + 𝜂𝑐
)

= f(𝑟0)
(

−𝑎2 + 2 +
4𝛥,𝑟

(

,𝑟 − 𝛥,𝑟
)

𝛥2
,𝑟

)

,

(5.11)

when the shadow is observed from the equatorial plane (𝜃0 = 𝜋∕2). 
It is noteworthy to mention that the manifestation of a BH shadow, 
as perceived by an observer located at an infinite distance, is the 
result of the combined influence of all photon trajectories that do not 
intersect the photon sphere. Additionally, it is assumed that there is no 
internal light source within the photon sphere that could illuminate the 
shadow. The arrangement of light sources just influences the luminosity 
in the area surrounding the shadow, known as the photon shell, and 
does not influence the geometry of the shadow itself. Nevertheless, 
the geometric form is contingent upon the inclination angle 𝜃0 [30]. 
Likewise, the greatest deformation of a BH shadow shape appears 
at its highest acceptable angular momentum when observed from a 
particular angle 𝜃0. A DMS-BH interacting system with a particular 
mass, BGGM parameters, and angular momentum exhibits the highest 
distortion at 𝜃0 = 𝜋∕2, which is also observable from the equatorial 
plane.

The shadows of the BGMKLBH scenario for the M87∗ SMBH, shown 
in Fig.  9, reveal intriguing details by taking realistic parameters for 
the DM spike, allowing us to observe how these shadows change with 
variations in the parameter space (𝑎, 𝜇̃,𝓁). Regardless of the presence of 
the BGGM effect, an increase in DM density (𝜌sp) is expected to grad-
ually expand the shadow radius [73]. The shadow size is significantly 
influenced when the BGGM parameters (𝜇̃,𝓁) vary by an order of 10−3. 
The upper panels of 9, with 𝜃0 = 17◦, demonstrate that the shadow’s 
boundary remains nearly circular even at extreme spin parameters, 
significantly influenced by variations in 𝜇̃ and 𝓁 on the order of 10−3. 
In contrast, the geometry of the BGMKLBH shadow exhibits significant 
changes for inclination angles exceeding 86◦– a common theoretical 
choice – as illustrated in the lower panels of Fig.  9, where 𝜃0 = 90◦. 
It is observed that when the influence of the BGGM diminishes, the BH 
shadow size approaches the Schwarzschild shadow radius of 3

√

3𝑀 . 
Indeed, the shadow size decreases monotonically with reduced values 
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Fig. 9. Shadow silhouette of the BGMKLBH, varying the parameter space (𝑎, 𝜇̃,𝓁) at inclination angles 𝜃0 = 17◦ (top row) and 𝜃0 = 90◦ (bottom row). First column: 
Shadow shape variations with 𝑎 = 0.5, 𝜇̃ = −0.02, and variable 𝓁. Second column: Shadow shape variations with 𝑎 = 0.5, 𝓁 = 0.02, and variable 𝜇̃. Third column: 
Shadow shape changes with 𝑎 = 0.98, 𝜇̃ = −0.02, and variable 𝓁. Fourth column: Shadow shape changes with 𝑎 = 0.98, 𝓁 = 0.01, and variable 𝜇̃. Here, we set 
𝑀BH = 1, 𝑟b = 2𝑅s, and the observer located at 𝑟O = 2.8 × 1010𝑅s.
of 𝜇̃ and 𝓁. As shown in the third and fourth columns of Fig.  9, the 
shadow deformation becomes more pronounced as the spin parameter 
𝑎 approaches 1. Unlike the standard Kerr case, where the shadow 
deformation manifests as an indentation on the left side due to the 
Lense-Thirring effect [147], here we observe a distinct deformation, 
that is, the left side of the shadow bulges outward, moving away from 
the center, rather than exhibiting the typical indentation characteristic 
of the Kerr scenario. We also observe a horizontal shift in the shadow’s 
center along the positive direction of the 𝑋-axis, which depends on 
increasing the parameter space (𝑎,𝓁, 𝜇̃). One notable characteristic of 
the shadow of a BH surrounded by a DM spike and influenced by the 
BGGM effect is its tendency for the left edge of the shadow to shift left-
ward, while the shadow’s center shifts to the right. This shift becomes 
more pronounced as the parameter space (𝑎, 𝜇̃,𝓁) increases, by varying 
one parameter while holding the others constant. This phenomenon is 
not observed in the case of Kerr BHs. Motivated by these distinctive 
shadow features of BGMKLBH, we will use the shadow radius to impose 
constraints on the BGGM parameters. To achieve the goal of plotting 
Fig.  9, we followed the definition provided in Ref. [30], where the 
typical shadow radius is established by considering the leftmost and 
rightmost coordinates relative to 𝑟−ph and 𝑟+ph. This radius is given by 

𝑅sh = 1
2

(

𝑋
(

𝑟+ph
)

−𝑋
(

𝑟−ph
))

. (5.12)

For general values of 𝜃0 (except when viewing the shadow from the 
north pole, 𝜃0 = 0, or the equivalent south pole, 𝜃0 = 𝜋), we can obtain 
𝑟±ph by solving the equation 𝑌 (𝑟 = 𝑟±ph, 𝜃0) = 0.

6. Constraints from the EHT observations

The shadow of BHs, which embodies the characteristics of the back-
ground spacetime in its distinctive shape and size, can be employed as 
a valuable tool for examining the fundamental theories of gravity and 
cosmology. Additionally, it can be employed to constrain the deviation 
parameters within these theories. In this section, our motivation is to 
assess the validity of the BGGM model in the context of a deformed 
Kerr BH surrounded by the DM spike, using of the EHT results within 
the strong-field regime [9–20,47,148–152]. To achieve this goal, it is 
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necessary to do further investigation into the BGMKLBH spacetime. 
Therefore, applying shadow observable, such as shadow radius/angular 
diameter, we are able to make an estimation of the BGGM parameters 𝜇̃
and 𝓁. In this approach, we consider M87∗ [9–14] and Sgr A∗ [15–20] 
SMBHs as BGMKLBHs. We put constraints on the BGGM parameters 
using EHT shadow observations for M87∗ and Sgr A∗, as summarized 
in Tables  5 and 6, at inclination angles of 17◦ and 46◦, respectively [43,
153–156]. To achieve this, we exploit observational data associated 
with the SMBHs and the DM spike profile within the M87 and Milky 
Way galaxies. To characterize the BGMKLBH shadows and estimate the 
BGGM parameters, we examine two shadow observables: the shadow 
radius and the angular diameter. The shadow radius allows us to 
impose constraints on the BGGM parameters.

As shown in Refs. [40,56,68–73], the shadow radius increases grad-
ually with increasing DM density; nonetheless, for realistic DM settings, 
the BH shadows in our scenario remain nearly unchanged from what 
they would be in the absence of DM distribution. Nonetheless, the 
shadow silhouette is quite sensitive to the value of the model param-
eters, particularly in the case where our Kerr-DMS BHs behave as an 
extreme or near-extreme Kerr BH, with a spin parameter of 𝑎 → 1.

Refs. [9,14] reported that the mass of M87* is 𝑀M87* = (6.5 ±
0.7) × 109M⊙, with an angular diameter 𝜃M87* = 42 ± 3𝜇as of the BH 
shadow, as well as a distance from Earth of 𝐷M87* = 16.8 ± 0.8Mpc. 
Taking into account the Schwarzschild shadow deviations 𝛿M87* =
−0.01 ± 0.17, the relation 𝑅Sh𝑀 = 3

√

3(1 + 𝛿M87*) gives that the shadow 
radius of M87* is restricted to the range [4.26, 6.03] in the 1𝜎 confidence 
levels (CLs). As mentioned in Ref. [15], results of Sgr A* show an 
angular diameter 𝜃Sgr A* = 48.7 ± 7𝜇as of the BH shadow. The inferred 
distance from Sgr A* to Earth is given as 𝐷Sgr A* = 8277 ± 9 ± 33pc
(VLTI, standing for ‘‘Very Large Telescope Interferometer’’), 7953±50±
32pc (Keck), with the BH mass 𝑀Sgr A* = (4.297 ± 0.012 ± 0.040) ×
106M⊙ (VLTI), (3.951 ± 0.047) × 106M⊙ (Keck), (4.0+1.1−0.6) × 106M⊙ (EHT). 
Based on Keck and VLTI measurements, the fractional deviation from 
the expected Schwarzschild values for Sgr A* is reported as 𝛿Sgr A* =
−0.08+0.09−0.09 (VLTI) and 𝛿Sgr A* = −0.04+0.09−0.10 (Keck) [20,148,149]. Taking 
the average of the Keck and VLTI estimates, represented as 𝛿Sgr A* ≃
0.060+0.065 (Avg), and applying 𝑅Sh = 3

√

3(1 + 𝛿 ) to define the 
−0.065 𝑀 Sgr A*
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Table 5
Acceptable values for 𝓁 and 𝜇̃ can be determined based on three different values of 𝑎 = 0.5, 0.75,
and 0.94, depicted in Fig.  10 by cyan, green, and blue lines, respectively. These values correspond 
to the BH shadow radius that matches the EHT horizon-scale image of M87∗ within the 1𝜎 and 
2𝜎 confidence levels. 
 𝓁 1𝜎 2𝜎

 Lower Upper Lower Upper  
 𝑎 = 0.5 0.0034 0.0384 – 0.0519  
 𝑎 = 0.75 0.0054 – – –  
 𝑎 = 0.94 0.0078 – – –  
 𝜇̃ 1𝜎 2𝜎

 Upper Lower Upper Lower  
 𝑎 = 0.5 −0.0037 −0.0355 – −0.0602 
 𝑎 = 0.75 – −0.0335 – −0.0582 
 𝑎 = 0.94 – −0.0312 – −0.0560 
Table 6
Acceptable values for 𝓁 and 𝜇̃ can be determined based on three different values of 𝑎 = 0.5, 0.75,
and 0.94, depicted in Fig.  10 by cyan, green, and blue lines, respectively. These values correspond 
to the BH shadow radius that matches the EHT horizon-scale image of Sgr A∗ within the 1𝜎 and 
2𝜎 confidence levels.
 𝓁 1𝜎 2𝜎

 Lower Upper Lower Upper  
 𝑎 = 0.5 0.0096 0.0239 0.0015 0.0304  
 𝑎 = 0.75 0.0115 – 0.0030 –  
 𝑎 = 0.94 0.0125 – 0.0039 –  
 𝜇̃ 1𝜎 2𝜎

 Upper Lower Upper Lower  
 𝑎 = 0.5 −0.0165 −0.0295 −0.0107 −0.0373 
 𝑎 = 0.75 – −0.0278 – −0.0357 
 𝑎 = 0.94 – −0.0268 – −0.0349 
shadow radius level, the size of the Sgr A* shadow is constrained 
within the range [4.55, 5.22] in the 1𝜎 CLs. These derived bounds aim 
to constrain the deviations of the BGMKLBHs from Kerr BHs. For the 
current analysis, we use the observational data for the SMBHs and their 
associated galaxies to the DM spike profile, as detailed in Section 3. 
Using the observable 𝑅sh, the shadow observable, namely the angular 
diameter of the M87∗ and Sgr A∗ SMBHs, can be determined as 

2𝑅sh =
𝜃sh𝐷𝑂
𝑀BH

. (6.1)

According to Eq. (6.1), the shadow radii of the M87∗ and Sgr.A∗ that 
have been identified is strikingly compatible with the Schwarzschild BH 
surrounded by the realistic DM spike distribution. This can be verified 
via setting the theoretical shadow diameter as 𝑑theosh = 2𝑅sh. Then, 
Eq. (6.1) can also be rewritten as 

𝜃sh = 2 × 9.87098 × 10−6𝑅sh
𝑀BH
𝑀⊙

1 kpc
𝐷𝑂

𝜇as. (6.2)

The first and third columns of Fig.  10 display how the shadow radius 
varies with model parameters 𝓁 and 𝜇̃ for M87∗ and Sgr A∗. It illustrates 
how the EHT-derived allowed shadow radius region constrains 𝓁 and 𝜇̃
at 1𝜎 and 2𝜎 CLs as 𝑎 varies from 0.5 to 94, providing lower and upper 
bounds for these parameters while varying one and holding the others 
constant. The numerical bounds for 𝓁 and 𝜇̃ are provided in Tables  5
and 6. No upper bounds were observed for the BGGM parameters when 
𝑎 was fixed at 0.75 and 0.94. Thus, it not only offers the critical bounds 
for 𝓁 and 𝜇̃, but also indicates how the shadow radius evolves as 𝓁 (or 
𝜇̃) changes, while keeping the observer’s radial distance 𝑟𝑂 ≡ 𝐷𝑂 from 
the black hole fixed.

Besides, Fig.  10 presents the connection between the shadow radius 
and angular diameter, respectively, with respect to the parameter space 
(𝑎,𝓁, 𝜇̃) and the observable 𝑅sh for SMBHs M87∗ and Sgr A∗. In the 
second and fourth columns of Fig.  10, we depict the angular diameter 
(6.2) versus 𝑅  for M87∗ and Sgr A∗, respectively, as a function of 𝜇̃
sh
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and 𝓁 for three distinct 𝑎 values. In this figure, the angular diameter 
is calculated using previously determined values for the distance, with 
𝐷𝑂 = 16.8Mpc and mass 𝑀M87∗ = 6.4 × 109𝑀⊙ for M87∗, and 𝐷𝑂 =
8.3 kpc and mass 𝑀Sgr.A∗ = 4.1 × 106𝑀⊙ for Sgr A∗. In standard as-
sumptions, the DM profile is commonly considered to disappear below 
4𝑅𝑠 [80], or 2𝑅𝑠 according to full relativistic calculations for a static 
BH [81], due to the BH capturing DM particles. To simplify, when 
constraining the model parameters 𝜇̃ and 𝓁 using EHT observations 
of M87∗ and Sgr A∗ shadows, assuming a power-law density for the 
DM spike near these SMBHs, we adopt a DM spike extending all the 
way down to 2𝑅𝑠 for the BGMKLBHs. However, this simplification has 
a minimal impact on our results.

In this way, we infer that the EHT observations of the M87∗ and 
Sgr A∗ BH shadows do not exclude the rotating Kerr-like BH within the 
BGGM gravity model. By modeling the rotating BGGM-BH surrounded 
by a DM spike as the SMBHs M87∗ and Sgr A∗, we report the most 
stringent constraints on the BGGM parameters at 𝑎 ≤ 0.5. Specifically, 
the curves in Fig.  10 demonstrate that the spin parameter strongly 
influences the constraints on the model parameters. Thus, we fix 𝑎 = 0.5
and plot the CLs, showing the upper limits for 𝓁 and 𝜇̃ from the EHT 
observations. At the 95% CLs, the upper limits are 𝓁 ≤ 0.0384, 𝜇̃ ≤
−0.0037 for M87∗ and 𝓁 ≤ 0.0239, 𝜇̃ ≤ −0.0165 for Sgr A∗. At the 
68% CLs, the upper limits are 𝓁 ≤ 0.0519, 𝜇̃ ≤ None for M87∗ and 
𝓁 ≤ 0.0304, 𝜇̃ ≤ −0.0107 for Sgr A∗ [25,157]. From Tables  5 and 6, 
we infer that the astrophysical constraints on the parameters 𝓁 and 
𝜇̃ indicate that Sgr A∗ yields stronger constraints than those derived 
for M87∗. Given the current precision of astrophysical observations, we 
find that M87∗ and Sgr A∗ could be BGMKLBHs.

7. Discussion and conclusions 

A unique opportunity to test the strong-field predictions of GR and 
shed light on metric theories of gravity is provided by the SMBHs, M87∗

and Sgr A∗, at the core of the M87 and Milky Way galaxies. Although 
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Fig. 10. Figure depicting the shadow radius and angular diameter dependencies on 𝓁, 𝜇̃ and the observable 𝑅sh, respectively, for three distinct 𝑎 values at an 
inclination angle 𝜃0 = 17◦. First column: BGMKLBH shadow radius plotted against parameter 𝓁 for 𝜇̃ = −0.02 with three values of 𝑎 (0.5, 0.75, 0.94), represented 
by cyan, green (dashed), and blue curves, respectively. Third column: shadow radius vs. 𝜇̃ for 𝓁 = 0.02 with the same 𝑎 values and color scheme. The BH mass is 
set to 𝑀BH = 1. Second and fourth columns: angular diameter behavior for BGMKLBH in terms of the observable 𝑅sh, showing dependencies on 𝓁 (with 𝜇̃ = −0.02
and 𝑎 = 0.5, 0.75, in the second column), and on 𝜇̃ (with 𝓁 = 0.02 and 𝑎 = 0.5, 0.75, 0.94, in the fourth column, with dotted blue for 𝑎 = 0.94). Red shaded regions 
highlight values of 𝓁 and 𝜇̃ inconsistent with stellar dynamics observations for M87∗ (top row) and Sgr A∗ (bottom row). White and light pink areas represent 
ranges consistent with EHT horizon-scale images for M87∗ and Sgr A∗ at 1𝜎 and 2𝜎 CLs, while in the bottom row, these shaded regions align with Keck and VLTI 
mass-to-distance ratio priors for Sgr A∗.
facing certain theoretical challenges, these two compact entities appear 
to be highly plausible candidates for representing astrophysical BHs. 
Images of the compact objects at the Galactic Centers obtained by 
the EHT collaboration inspired us to investigate the properties of BHs 
in a novel configuration: the BG combined with a GM in the region 
impacted by the DM spike. As we have previously stated, topolog-
ical defects such as GMs may emerge in Lorentz violating theories, 
where the bumblebee field might effectively cause Lorentz violation. 
If isolated, GMs might persist in the Universe up today.

We assume that the central regions, including the SMBHs them-
selves, are immersed in a DM spike characterized by a power-law 
density profile. In the DM spike-affected region, we investigate the 
combined impact of BG and GM effects, particularly focusing on the 
influence of parameters 𝓁 and 𝜇̃ on Kerr BH features like the hori-
zons, ergoregions, SLSs, and shadows. Thus, the combination of both 
these components – the BGGM effect and the DM spike profile – may 
present a realistic platform for exploring the characteristics of the Kerr 
BH. It should be mentioned that no prior study has been done on a 
configuration containing these concepts. Therefore, we expect that this 
study will make a substantial contribution to our understanding of the 
effects of the bumblebee field, GM, and DM spike on the horizons, 
SLSs, ergoregions, and shadow silhouettes. For this aim, we estimated 
the normalization parameter, 𝜌0, and associated parameters for the DM 
spike profiles in both the Milky Way and M87 galaxy centers.

The scarcity of rotating BHe models within a DM spike, influenced 
by BGGM effects, hampers progress in testing the BGGM model using 
observations, such as the EHT results of M87∗ and Sgr A∗. To tackle 
this challenge, we commenced our study by considering a spherically 
symmetric, static BH with BGGM properties as the seed metric. From 
there, we develop a non-rotating spacetime incorporating a DM spike 
resulting in the emergence of the BGMSLBH spacetime. To create the 
BGMSLBH spacetime, we began with a power-law density profile and 
solved the modified TOV equation, approximating the integral in the 
leading order for the spike density. Our approach involved the critical 
condition of matching the inner BH spacetime with the outer region, 
specifically employing the condition denoted as f (𝑟b) = 𝑒2𝜒(𝑟b) = 1 −
2𝑀BH
𝑟b

, in line with the methodology presented by Nampalliwar et al. 
(2021). This process resulted in the calculation of corresponding metric 
components, where f(𝑟) ≠ g(𝑟).

We applied the modified NJ algorithm to generalize our approach 
to the rotating scenario, resulting in BGMKLBH spacetime metrics with 
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a Kerr-like form. EHT results are in line with Kerr metric predictions, 
with no evidence of GR violations. We then explored BGMKLBH, exam-
ining horizons, SLSs, ergoregions, and shadow images. Once the BGGM 
effects are turned off (i.e., 𝓁 = 0 = 𝜇̃) and the DM spike vanishes 
(i.e., 𝜌sp → 0 or 𝑟 → 𝑟b), the BGMKLBH solutions reduce to the standard 
Kerr solution.

By modeling BGMKLBHs as M87∗ and Sgr A∗ SMBHs and using 
the estimated BH mass and distances, we demonstrated that various 
BH characteristics, such as the event horizon, outer SLS, shadow ra-
dius, and angular diameter remain almost unchanged compared to 
their counterparts without DM distribution for realistic DM parameters. 
However, we expect that a rise in the DM spike density would have 
a significant impact on these BH characteristics’ sizes. Our findings 
indicated that, based on the existing observational data regarding 
DM spike density, the influence of DM is minimal. In our case, the 
modification introduced by BGGM is distinctive and discernible from 
the effects of BH spin and the surrounding DM spike.

Through numerical analysis of the event horizon (𝑟+), outer SLS 
(𝑟+SLS), and ergoregion (𝛿er), we found that, aside from the parameters 
related to BH and the DM spike masses, changes occur in 𝑟+, 𝑟+SLS and 
𝛿er as 𝑎, 𝓁 and 𝜇̃ vary. Specifically, as 𝓁 increases and 𝜇̃ decreases 
individually, with 𝑎 held constant, 𝑟+ and 𝑟+SLS reduce, while 𝑟− and 𝛿er
expand. Likewise, with fixed 𝓁 and 𝜇̃, raising 𝑎 decreases 𝑟+ and 𝑟+SLS
and increases 𝑟− and 𝛿er. To be more precise, for fixed values of the 
DM spike parameter and spin 𝑎, the GM effect has a greater influence 
in this scenario than the BG effect.

In our shadow analysis, we addressed photon geodesic equations, 
which we solved analytically in a first-order differential form. In more 
realistic DM spike scenarios, we observe that even at extreme spin 
values, the BGMKLBH shadows with an inclination angle of 𝜃0 = 17◦
maintain a nearly circular boundary, with minimal impact from the 
parameters 𝓁 and 𝜇̃ on the distortion of the BH shadow. However, a 
significant change in the geometry of the BGMKLBH shadow is evident 
at an inclination angle of 𝜃0 = 90◦. It is observed that as the BG and 
GM influences weaken, i.e., when 𝓁 and 𝜇̃ tend to zero, the BH shadow 
shrinks and expands, respectively.

As such, the shadow shape is quite sensitive to the BGGM pa-
rameters value, particularly in the case where the BGMKLBH exhibits 
characteristics of an extreme or near-extreme modified Kerr BH, with 
a spin parameter of 𝑎 → 1, in such a case, at the inclination angle 
of 𝜃0 = 90◦, a significant impact of the 𝓁 and 𝜇̃ parameters on the 
distortion of the BH shadow is observed.
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In the case of the BGMKLBH, the shadow deformation differs from 
the standard Kerr scenario. Instead of the typical indentation on the 
left side caused by the Lense-Thirring effect, the left edge of the 
shadow exhibits a bulge outward, away from the center. Additionally, 
a horizontal shift of the shadow’s center along the positive 𝑋-axis is 
observed, which depends on increasing the parameter space (𝑎,𝓁, 𝜇̃). 
A notable feature is that as the parameter values increase, the left 
edge of the shadow shifts leftward while the center moves rightward, 
behavior is not observed in Kerr BHs. Motivated by the distinct shadow 
features of BGMKLBH, we employ the shadow radius to constrain 
the BGGM parameters. The shadow observables, including the shadow 
radius and angular diameter, were employed to quantify shadow size, 
enabling the estimation of BGGM parameters and the exploration of the 
BGMKLBH solution. As such, we considered M87∗ and Sgr A∗ SMBHs 
as BGMKLBHs. We put constraints on the BGGM parameters, using 
EHT shadow observations for M87∗ and Sgr A∗ at inclination angles of 
17◦ and 46◦, respectively. To obtain admissible values for the model 
parameters, we utilized available observational data associated with 
the SMBHs and the DM spike profiles within the M87 and Milky Way 
galaxies and derived constraints on the shadow radius from the EHT 
data. Observations of Sgr A∗ constrained the parameters within a more 
confined range, whereas M87∗ suggested a wider one. Notably, the 
Sgr A∗ data impose more robust constraints on the model parameters, 
including values extending beyond the upper 2𝜎 CLs, compared to those 
for M87∗. Within a consistent parameter space for a modified Kerr 
BH surrounded by a DM spike and subject to the BGGM effect, EHT 
observations do not rule out the BGGM influence at galactic centers. 
Therefore, BGMKLBHs remain viable candidates for astrophysical BHs. 
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