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ARTICLE INFO ABSTRACT
Keywords: We study supermassive black holes (SMBH), surrounded by a dark matter (DM) spike, that can be found at
Modified gravity the centers of Milky Way and M87 galaxies and are accompanied by a specific kind of topological defect.
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The investigation is developed within the framework of Bumblebee Gravity with a global monopole (BGGM).
The dark matter spike is described by a power-law density profile. Our main objective is to assess how the
background arising from spontaneous Lorentz symmetry breaking and the presence of a global monopole
influence the properties of the Kerr BH within the region affected by the spike. Using a spherically symmetric
static BH with BGGM properties as the seed metric, we construct a non-rotating spacetime with a DM spike,
resulting in a BGGM-motivated Schwarzschild-like BH by solving the modified Tolman-Oppenheimer-Volkoff
equations (TOV). Next, we extend this approach to the case of a rotating spacetime resulting in the BGGM-
motivated Kerr-like BH (BGMKLBH). This approach allows us to explore the spacetime structure, and the
BGMKLBH shadows. Then, using available observational data for the DM spike density and considering the
effects of BGGM on Sgr A* and M87" SMBHs, we analyze the shapes of their shadows and put constraints on
the BGGM parameter. Thus, we infer that the BGMKLBHSs could be reliable candidates for the astrophysical
BHs.

1. Introduction exploration of theories of gravity and cosmology through a multitude

of strong-field phenomena, including the BH shadows in the presence

Modified gravity theories, driven by diverse motivations at ultravio-
let regime, such as probing fundamental physics in strong gravitational
fields (GFs), or, at infrared regimes, addressing cosmological and as-
trophysical issues as DM and dark energy, offer a promising avenue
for advancing our understanding of gravity. These theories hold the
potential to unveil new insights into the deep nature of gravity and
the structure of the Universe, making them a vibrant focus point in
today cosmology and astrophysics [1-8] In particular, black holes
(BHs), the most fascinating objects predicted by general relativity (GR),
have garnered significant interest in the realm of astrophysics. Recent
advancements, such as the imaging of M87* [9-14] and Sgr A* [15-
20] SMBHs by the EHT collaboration, along with the detection of
X-rays [21] and gravitational waves [22], have solidified the belief
that, at the centers of galaxies, lie entities governed solely by gravity.
Furthermore, BHs serve as astrophysical laboratories, enabling the
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of DM distributions [23]. Likewise, the Kerr hypothesis proposes that
astrophysical BHs possess unique features that can be described by the
Kerr metric [24]. This metric is the only asymptotically flat, axially
symmetric, and unique stationary vacuum solution of the Einstein
equations [25,26]. Recent EHT images of the SMBHs M87* and Sgr A*
probed that the seen shadows are compatible with what would be
expected from a Kerr BH in the context of GR. Images and shadows [27-
57] resulting from the gravitational lensing (GL) of light [58-64]
provide crucial insights into the GFs surrounding Kerr BHs, helping to
reveal their intrinsic characteristics. The BH event horizon generates an
extremely intense GF, which influences the surrounding spacetime ge-
ometry. This, in turn, can lead to the development of unstable circular
photon orbits, referred to as unstable light rings (or a photon sphere
in the case of spherically symmetric, static BHs). These phenomena
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result in the significant bending of photons, leading to pronounced GL
effects of a remarkable scale. For photons on such unstable orbits, even
a small perturbation can send them off to a distant observer or absorb
them by the BH. Therefore, it appears that the unstable light rings
and the BH event horizon will give rise to a distinctive shadow-like
image of photons from surrounding light sources or radiation from an
accretion flow surrounding the BH — a darker area set against a brighter
background. Although the shadow’s silhouette is related to the apparent
shape of the unstable orbits of the photons [23,65], the influence of
matter accreting and radiating onto the shadow is unavoidable [66,67].
Thus, strong lensing images and shadows provide us with a unique
opportunity to evaluate both GR and alternative gravity theories [54].
Hence, it is key to continue analytical efforts to determine the shapes
of shadows cast by BHs and BH mimickers in various gravity and
astrophysical theories. Shadow images can reveal details regarding a
variety of astrophysical issues, such as matter accretion around BHs and
the distribution of DM in galaxies’ centers [40,41,49,55,56,68-73].

Black holes in our Universe could potentially experience influences
from astronomical surroundings, including the presence of DM in their
vicinity [74-86]. In addition to investigating BH shadows within the
framework of modified gravity, it is noteworthy that examining these
shadows in the presence of DM and dark energy holds particular
significance. This is due to the overwhelming dominance of DM (consti-
tuting 27% of the Universe) and dark energy (making up 68%), while
baryonic matter’s contribution is relatively minor (comprising only 5%
of the total mass-energy of the Universe) according to the Standard
Model (SM) of Cosmology. The cosmic microwave background radi-
ation, baryon acoustic oscillations, spiral galaxy rotation curves, and
mass-luminosity ratios of elliptical galaxies provide compelling evi-
dence for the existence of a surrounding DM halo that extends into the
intergalactic medium [87-89]. This halo’s DM density profile could be
crucial in establishing the real geometry of spacetime around the galac-
tic center [72,73,75,76]. This DM distribution around M87* and Sgr A*
SMBHs, in particular, is highly relevant to verify and further constrain,
the predictions of GR and any alterations beyond GR. Additionally, it
will aid in identifying the DM candidates. It is worth wondering how
the DM around the BHs affects the spacetime associated with these BHs.
Based on the adiabatic approximation, several models for the spacetime
metric around a static and spherically symmetric BH with a DM halo
have been presented [90-93], namely the Navarro-Frenk-White (NFW)
profile [94].

Some prior results [80,94-96] show that the presence of a central
BH causes an accumulation of DM particles in its strong gravitational
potential, generating a spike distribution towards the BH horizon. The
BH gravitational field causes the DM density to substantially increase
by many orders of magnitude. In turn, the intensity of gamma-ray
radiation close to the BH will significantly rise if DM particles are
capable of annihilating into gamma-ray radiation. Hence, this provides
an opportunity to find the DM annihilation signal [75].

A BH has a profound effect on the density distribution of DM [97].
An early groundbreaking paper [80] determined the distribution of cold
DM in the vicinity of galactic centers using a Newtonian approach.
The BH accretion results in the formation of a density cusp, known as
DM spike, characterized by a density profile p ~ r77s», where 2.25 <
¥sp < 2.5. For spherically symmetric BHs, the density reaches its peak at
approximately r ~ 4R, with R; representing the Schwarzschild radius.
Below this point, that is, r = 4R,, there is a rapid decline in DM density,
as particles either annihilate or fall into the BH. When considering
relativistic modifications [81], the density profile exhibits similar traits,
albeit with a change in the cutoff radius, now occurring at r = 2R, (see
Fig. 1).

At the heart of the Milky Way and M87 galaxies, we plan to study
SMBHSs, which are surrounded by a DM spike accompanied by a unique
kind of topological defect. Our investigation is rooted in Bumblebee
Gravity (BG) coupled with a global monopole (GM), with a particular
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Fig. 1. Schematic plot of the galactic central region with an SMBH and a
DM spike distribution in the region r € [r,, R, ], where the inner and outer
edges of the spike region are given by r, and Ry,. Comparison of the density
distribution of DM around Schwarzschild BHs, showing a modified model by
Sadeghian-Ferrer-Will (SFW) (right half of the panel) incorporating general
relativistic corrections, which predicts the DM density to begin at r = 2R, in
contrast to the Gondolo and Silk (GS) consideration (left half of the panel),
where the density was expected to start at r = 4R,.

focus on analyzing the trace of the model parameters (the BGGM
parameters ¢ and ).

Spontaneous symmetry breaking, a fundamental concept in particle
physics, can manifest in two distinct forms: as an internal symmetry or
as a symmetry linked to spacetime transformations. The spontaneous
breaking of internal symmetries gives rise to the formation of global
topological defects [98]. One type of stable topological defect is a
monopole [99,100]. The origin of inflation may come from monopoles
that are created when gauge-symmetry breaks during early Universe
phase transitions. However, at phase transitions in the Universe, global
monopoles arise from a global symmetry breaking of global O(3) sym-
metry into U(1) [98-100]. The BG model is an extension of the standard
framework of GR that allows for the spontaneous breaking of Lorentz
symmetry (LS) via a non-zero vacuum expectation value (VEV) of
the bumblebee vector field, denoted as B,, achieved through an ap-
propriate potential. This model serves as a prominent example of a
theory showcasing Lorentz violation, originating from a single vector
B, acquiring a non-zero VEV. It stands out as one of the simplest
field theories manifesting spontaneous Lorentz and diffeomorphism
violations [98,101-112]. In this case, LS breaking emerges due to the
presence of a potential with a functional form that has a minimum,
leading to the violation of U(1) symmetry. The concept of the bum-
blebee formalism draws inspiration from string theory, where it is
postulated that tensor fields can acquire VEV and thus lead to the
spontaneous breaking of LS [104]. Recent advancements in this domain
include the derivation of the exact solution for the Schwarzschild
Bumblebee BH [98,105,106].

In Ref. [74], the authors employed a robust model consisting of a
Schwarzschild BH surrounded by a shell of DM. The system is described
by a mass function incorporating the mass of the DM shell, AM, which
is distributed over a radial extent Ar, with its inner edge located at
r, = 2M. In this framework, they investigated the influence of the DM
shell on the structure of spacetime and geodesic motion, and proposed
a classification of BH+DM shell spacetimes based on the properties of
stable circular geodesics governing Keplerian disks. Particular attention
was paid to epicyclic motion around circular geodesics, which can
be linked to observational signatures in X-ray emission of Keplerian
accretion disks, which are assumed to be affected by the DM shell solely
through their gravitational interaction. In this work, we evaluate the
effects of an extended gravity model background resulting from spon-
taneous LS breaking and a GM (appropriately considered as the BGGM
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model) on horizons, static limit surfaces (SLS), ergoregions, and shadow
silhouettes of the Kerr-type BHs in the spike-affected region. Progress in
testing the BGGM model through observations is largely hampered by
the lack of both rotating and non-rotating BH models immersed in a DM
spike and subject to BGGM effects. We begin our inquiry to tackle this
problem by taking as the seed metric a spherically symmetric static BH
with BGGM characteristics. From there, we construct the non-rotating
Schwarzschild-like spacetimes with a DM spike, which we introduce
as BGGM-motivated Schwarzschild-like BH (BGMSLBH) spacetimes.
To construct the BGMSLBH spacetimes, we start with the power-law
density profile as originally proposed by GS and then solve the modified
TOV equation, approximating the integral in the leading order for the
spike density. Our approach involves the critical condition of matching
the inner BH spacetime with the outer region, specifically employing
the condition denoted as f(r,) = 4" = 1 — Men in line with the
methodology presented by Nampalliwar et al. Ref. [73]. This process
yields the corresponding metric components, where f(r) # g(r). We then
use the modified Newman-Janis (NJ) algorithm to extend this approach
to the case of a rotating spacetime, yielding BGMKLBH' spacetimes.
Next, we investigate the BGMKLBH’s horizons, SLSs, ergoregions, and
shadow silhouettes.

Besides, we intend to determine whether the EHT findings for M87*
and Sgr A* can shed light on the BGGM model in the DM spike-affected
region and constrain the BGGM parameter. The EHT has provided
observational results regarding the mass and distance of both M87* and
Sgr A* while setting constraints on their shadow observables. By mod-
eling BGMKLBHs as M87* and Sgr A*, we aim to assess their potential
as candidates for SMBHs and to establish astrophysical bounds on the
BGGM parameter through direct analysis of BH shadows. Additionally,
we seek to ascertain if the BGMKLBH can offer robust constraints on
the BGGM parameter for the M87* and Sgr A* SMBHs.

The paper is organized as follows: In Section 2, we begin by taking a
seed static, spherically symmetric BGGM BH metric. We then introduce
the DM spike profile and proceed to calculate the spacetime metric for
the corresponding Schwarzschild-like BH, which are surrounded by a
DM distribution in the spike-affected region. In Section 3, we calculate
the normalization parameter, p,, and related parameters for the DM
spike profiles at the centers of both Milky Way and M87 galaxies. In
Sections 4 and 5, we derive the BGMKLBHs using the modified NJ
method and we investigate how the BGGM model affects this deformed
Kerr-like BH horizons, SLSs, ergoregions and shadows in the spike
region. In Section 6, we constrain the BGGM parameter using EHT
shadow observations of M87* and Sgr A* at inclination angles of 17°
and 46°. In Section 7, we briefly present our results and draw our
conclusions. Throughout the paper, we adopt natural units, in which
G, ¢, and h are all equal to 1.

2. The Schwarzschild bumblebee BH with a global monopole in
DM spike

Inspired by the investigation of the central BH’s characteristics
within a realistic framework surrounded by a DM distribution and
significantly influenced by the breaking of LS in the presence of a
GM, we will construct the new spacetime metric around a static and
spherically symmetric BGGM-motivated Schwarzschild BH immersed
in a DM spike. To achieve this, we begin with a static, spherically
symmetric BGGM BH seed metric given by [98,105,106,108]

2M, 2Mpy \ 7!
ds®> =-— <w— i)dt2+q<w— i) dr* + rPdQ?. 2.1
r r

Here, the constants w and q are defined as w = 1 —jand ¢ = 1+ ¢,
where the LS breaking parameter, denoted by ¢, takes values in the

1 We refer to Kerr BHs immersed in DM spikes and subjected to BGGM
effects as ’rotating BGMSLBH’ or simply ‘BGMKLBH’ for the sake of clarity
and conciseness in this study.
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range (0, 1) and the GM term is defined as ji = —n%, where 7 is a constant
term corresponding to the GM charge, as well as the line element of unit
two-sphere is given by d2? = d6%+sin” 9d¢>. We note that metric (2.1)
yields the standard spherically symmetric solution with LS breaking
when # equals zero. Moreover, for n equals zero and ¢ approaching
zero, the standard Schwarzschild metric is recovered. Furthermore, in
the presence of BG, which is responsible for the effects of LS breaking,
and the GM, singularities exist at r = 2Mpy/w and r = 0. In this
scenario, the event horizon of the BH is located at g, (ry) = 0, resulting
in ry = 2Mpy/w. It is seen that this value is independent of # and only
relies on ji. Now, let us proceed with the calculation of the Kretschmann
scalar associated with the BGGM metric (2.1) to analyze the nature of
the singularities. The Kretschmann scalar is given by:

2
W _ BMyy  4(g-w)

7276 s ((g—w)r+4Mpy).

Kxretschmann = Rrxﬁyvkaﬂ

(2.2)

In the limit of ¢ and ji approaching to zero, this Kretschmann scalar
(2.2), reduces to 48M§H /r5, corresponding to the Kretschmann scalar of
the standard Schwarzschild BH. As observed in Eq. (2.2), the
Kretschmann scalar at r = 0 exhibits a divergence, indicating the
presence of a physical singularity. However, for r, = 2Mpgy/w, the
Kretschmann scalar is finite, specifically w*(q* + 2w?)/4 Mgy q*. This
implies that the singularity at the event horizon can be eliminated

through a coordinate transformation.
2.1. Dark matter modeling in general relativity

As reported in [41], some approaches exist for modeling super-
massive BHs at the centers of galaxies, based on current cosmological
observations [90-93]. Here, we adopt a more agnostic approach, using
the fact that DM has mass, which can be treated as an additional
effective mass in the collective mass function m(r), embedded within
the most general 4D spherically symmetric static metric [74]:

ds® = —f(r)di* + ﬁdﬂ + r2(d6? + sin? 0d ¢?), (2.3)
r

with f(r) = 1 — 2m(r)/r, where the collective mass function m(r) is
defined as

Mgy, for r<ry
m(r) =4 Mgy + W()AM, for r, <r<ry+4r 2.4
Mgy + AM, for r>ry+4r,

in which W(r) = (3 = 2(r — r,)/Ar)(r — 1,)*/Ar? is defined as a radial
function to ensure the continuity of the mass function and its first
derivative with respect to r (refer to Fig. 2). In this framework for
modeling DM within GR, it is anticipated that the DM density begins
at r, > r, = 2Mpy and extends to r, + Ar. Here, AM represents the
mass of the DM distribution, with AM > 0 indicating positive DM
mass-energy density and AM < 0 signifying a negative density. In this
study, we focus exclusively on the positive case, with Ar representing
the thickness of the DM distribution.

Fig. 3 illustrates the behavior of the metric function f(r) in the DM
model for various combinations of AM and Ar, while holding certain
values of r, and Ar constant. The admissible values of AM and Ar are
subject to constraints. If AM is excessively large, it effectively raises the
total mass of the BH, consequently expanding the radius of the event
horizon. Conversely, reducing the thickness of the DM distribution also
leads to an increase in the event horizon radius.

2.2. The modified TOV equations with DM spike
We proceed by considering a BH positioned at the center of a DM

halo. The BH possesses a mass denoted as Mpy. Initially, the DM halo
exhibits a power-law density profile in close proximity to the galactic
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M(r)1
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Mpy
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Fig. 2. Schematic plot of the galactic central region with an SMBH and a DM
distribution in the region r € [ry, ry, + Ar], where the inner and outer edges of
the DM region are given by r = r, > 2Myy and r = r, + Ar. The event horizon
is identified at r, = 2Myy. The shaded region illustrates a steep DM density
profile around a BH, resulting from the BH’s gravitational pull. This occurs
as DM is adiabatically drawn inward, causing a significant increase in density
near the BH.

center, expressed as ppy(r) =~ po(ry/r)’. Here, y represents the power-
law index, while p, and r, serve as the parameters characterizing the
halo. In a study by Gondolo and Silk [80], it was demonstrated that
the formation of a DM spike follows an adiabatic process, resulting in
a density profile pstM equal to

Ry, \ 7P
p]S)PM(r) = psp (%) 5 (2.5)

where pg, = py(Ry,/rg)”" refers to the DM density, while Ry, =
N, ro(Mgy/ pory)'/@=7 corresponds to the spike radius (see Fig. 1). Both
psp and Rg, are associated with the outer edge of the spike region [72,
73,75,76,81-86]. Here, the quantity Yep IS defined as (9—-2y)/(4—y) with
y € [0,2], and R, represents the Schwarzschild radius of the BH and it is
approximately equal to 2Mpy ~ 2.95(Mpy /M) km. By employing this
approach, it is possible to demonstrate that the normalization constant
N, is connected to the spike parameters through the relation [76]

M\
N, = <—B§> _ (2.6)
PspRsp

It is worth noting that the density profile of this DM distribution differs
from the NFW density profile, which is based on numerical simulations
of collisionless DM particles in galactic halos, with values of y equal to
1 and 0, along with BH masses of My = 10° M, or Mpy = 105M, [85].
An intriguing aspect is the significant enhancement of DM density by
several orders of magnitude within the spike region. Therefore, it is of
great interest to explore the potential implications of this phenomenon
on observable signatures originating from central SMBHs, such as
Sgr A* and M87*, situated in spacetime with topological defects, that
is, with GMs, within the framework of BG. The next step is to construct
a BGMSLBH metric background that incorporates both the effects of
the GM and spontaneous breaking of LS, and governs the trajectories
of particles, both massive and massless. To do so, we proceed to solve
the modified TOV equations [113,114] arising from the corresponding
background, in the DM distribution surrounding the BH. Within this
framework, to analyze the gravitational signatures of the interacting
system between the DM in the spike region and the BH in the BGGM
background, we begin with a spherically symmetric static metric that
resembles the metric given in Eq. (2.1), called the BGGM BH metric.
The metric can be expressed as

ds? = =20 g1 4 2202 4 2492, 2.7)

where y(r) and ¢(r), valid in the region r, < r < Ry, represent the
sought metric functions. It is noteworthy that choosing e~ = g(r) is
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always possible, resulting in:

g =q" <w - M) . (2.8)

r

Here, we adapt the mass function m(r) given in Eq. (2.4) to define
M(r), specifically tailored for the DM spike. Hence, the collective mass
function M(r) can be taken as the combination of the BH mass, and a
mass function associated with the presence of DM distribution within
the spike region (see Figs. 1 and 2). Thus, the resulting collective mass
function can be denoted as [41]

M(r) = Mgy + M> (). (2.9)

By employing the density profile described in Eq. (2.5), we derive the
mass function corresponding to the distribution of DM within the spike
region, restricted to the range ry, <7 < Ry, which can be expressed as

4z pg
7 - 3=,
LR (P - ),
3- Ysp

B

SP oy R,

M5 —47r/r P (PP dr = (2.10)
b

where r,, represents the inner edge of the spike region. Speaking of

which, for this scenario, the collective mass function across various

regions can be rewritten using Egs. (2.4), (2.9) and (2.10) as follows

Mgy, for r<ry;
M(r) = Mgy + M» (1), for ry, <r < Rgy; (2.11)
Mgy + My, for r> Ry,

The DM mass shell, My, is fundamentally a constant mass that relies
on its density and position. Specifically, for large scales where r > Ry,
the spacetime can be seamlessly connected with the density profiles
of DM halos that extend beyond the spike region [73]. Meanwhile,
the influence of the DM distribution beyond the spike region on the
gravitational signatures originating from the BH at the galactic center
is considered negligible.

In this way, the energy—-momentum tensors associated with the
spacetime metric for such a interacting system can be expressed as
T!, = diag [-p(r), P.(r), Py(r), P,,(r)]. Thus, these considerations lead to
the derivation of the Einstein field equations G, = 82T, as

!
8zp(r) = le\/{(")’ (2.12a)
qr
_ 2M(®) 2(w— M))('(r)
87P.(r) = -+ + oy ’ , (2.12b)
r2 qr? qr
_ !
87 Py(r) = w - % (M) +r (-w+M' (1)) 1'(r)
+ g (rw — 2M(r)) 7' ()2 + g (rw —2M() 1" (), (2.120)
87 P, (r) = 8 sin” OPy(r). (2.12d)

Here, the prime indicates the derivative of the functions with respect
to r. When the limits w — 1 and ¢ — 1 are applied to the Einstein
field equations in Eq. (2.12), they reduce to their standard form, which
corresponds to the generic ansatz in the standard static and spherically
symmetric form g, = diag(—e?*(), e ), 12, r2sin?6). Then, by combin-
ing the equation of state P.(r) = wp(r) and the GF equation, given in
(2.12a) and (2.12b), as well as considering the conservation law of the
energy-momentum tensor, 7" = 0, the modified TOV equations can
be written as

dy) MO+ (£-2)r+4np0)

ar F(wor — 2MI(7) ’ (2.132)
P dy(r)
=~ (p+P) ==, (2.13b)

where P,.(r) represents the pseudo-pressure of the DM, which can be
defined even for collisionless particles [78,115]. We adopt the equation
of state for the DM spike as P.(r) = a)pls)pM(r), where @ can be a
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Fig. 3. Plot of the metric function versus radial coordinate for Ar = 70 showing variations in AM (first panel) and for AM = 10Myy with varying Ar (second

panel), with parameters set to My =1 and r, = 8.

constant. In order to derive an analytical expression for y(r), we are
confronted with a complex integral. In this particular case, we employ
an asymptotic expansion technique to attain the desired analytical form
for y(r). Here, to simplify the analysis, we consider the case where the
DM distribution possesses an equation of state with w = 0 [56,73].
Consequently, in Eq. (2.13a), the contribution of the term 4z P.(r) can
be disregarded when compared to M(r) [76]. Thus, Eq. (2.13a) can be
rewritten as

de) L af__1
dr — 2r 2 \wr-2M(r) )’

At this stage, in order to integrate Eq. (2.14) and determine the metric
function f(r) = e*#(7, we have the option to approximate the integral in
the leading order with respect to pg;,. Additionally, using the condition
f(rp) = 200 = 1w~ 21\11%,2 the metric function f(r) can be expressed as:

(2.14)

r w? (ysp - 3) (ysp - 2) r
w2r (ysp—S) —q(ysp—Z) r_H'%rb <RSP>VSP

w?r (rgp =3) (rsp —2) Ty

f(r)sz% +w-1-

(2.15)

+8mpgp r%

It is observed that this metric is valid in the range r € [ry, Ryp]. In the
BGMSLBH spacetime described by metric (2.7), in the limit of w — 1
and g — 1, where the BGGM is absent, metric function (2.15) simplifies
to metric function (18) of Ref. [73], as well as when the DM spike
disappears (i.e., psp = 00T — ), the sought metric functions f(r) and
g(r) reduces to

2Mpy
ry ’

rllrrrll) f(r) = rlerré gr)=1- (2.16)

w—1 w—1
g—1 g1

It is worth noting that the matching condition f(r) = g(r) is achieved
at the horizon of the BH in the absence of the BGGM. Furthermore,
Eq. (2.15) reveals that the event horizon of the BGMSLBH is influenced
by the BGGM effects. Consequently, changes in the variables such as w,
q and pg, can alter the horizon as expected. Furthermore, the presence
of the BGGM suggests that our spacetime is not asymptotically flat.
To show the behavior of the metric function f(r), we plot Eq. (2.15)
in Fig. 4, with all parameters scaled to the BH parameters. It is observed
that f(r) reveals considerable variations for higher values of Psp and
model parameters, both in the vicinity of the BH and at larger distances.
Curvature invariants are quantities that facilitate the understanding
of the spacetime properties of a geometric body, such as a BH. The
Kretschmann scalar (Kretschmann = Rapw R**Y, i.€., the square of the
Riemann curvature tensor), and the Ricci scalar (i.e., R = g‘”RW)

2 To find further details about the condition, please refer to Ref. [73].
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Fig. 4. Plots of the metric function f(r) as a function of the radial coordinate,
showing the impact of varying /i for the M87* BH surrounded by a DM spike.
The dashed gray lines indicate the scenario without the BGGM effect.

are well-known scalar invariants. Here, we investigate these quanti-
ties influenced by the DM distribution by examining their graphical
behaviors. It is obvious that deriving closed analytical expressions
for the scalar invariants of interest-namely, the Ricci scalar and the
Kretschmann scalar-is very difficult in this setting due to the complex-
ity of the mass function and the corresponding metric functions, which
give rise to long and cumbersome equations. We therefore illustrate
their behavior using numerically obtained graphs. The left panel of Fig.
5 shows that the Ricci scalar approaches infinity as r — 0, indicating
that the spacetime surrounding the BGMSLBH is not Ricci-flat. The
Ricci scalar grows with increasing of py,. As shown in the right panel
of Fig. 5, the Kretschmann scalar provides more information about
the spacetime curvature. It can be seen that the Kretchmann scalar
decreases as py, increases.

3. Normalization of the DM spike profile

Based on the observational data for Sgr A* and M87* SMBHs taken
from Refs. [73,76,79,82-84], and following the procedure provided in
Refs. [82-84], we determine the normalization parameter p, for the
DM spike profile (2.5) at the centers of both the Milky Way and M87
galaxies, with the halo parameter r, being fixed at 20kpc for both
galaxies.

We find the value of p, by ensuring that the density profile aligns
with both the total mass of the galaxy and the mass encompassed within
the radius of influence of the SMBHs, typically around 10°Rq. Thus,
the DM mass within the relevant region for determining the BH mass,
typically within Ry, = 10°Rg, must be smaller than the uncertainty on
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Fig. 5. Behavior of the Ricci scalar (left panel) and the Kretchmann scalar (right panel) in the BGMSLBH spacetime described by the Eq. (2.7), for different
values of the DM density p,, surrounding the SMBH M87*. The dashed gray lines indicate the scenario without the DM spike distribution.

Table 1

The DM spike’s parameters for the Milky Way galaxy.
) N 7o pe™) Ry, (pC) PpMg PC™?) Mg (M)
9/4 0.1 2.53x10'8 1.20 x 107> 2.53%x 10'8 6.38 x 10*
7/3 0.1 8.04 x 107 1.60 x 107* 1.00 x 10'6 7.50 x 10°

the BH mass AMpy. In order to determine p,, we solve the following
integral equation

109 Rg
/ 4rr? poy(Pdr = AMgy, 3.1)
)

in which we can suppose that the DM density profile vanishes below
a certain radius, denoted as r,, which is equal to either 4R, for the
Newtonian approximation [80] or 2R, for the full relativistic case of
a static BH [81]. This occurs due to the capture of DM particles by
the BH. We encounter an additional complication due to the non-linear
dependence of p, in the integral mentioned above, which arises from
its correlation with pp)y;. However, we can simplify this situation by
considering that the mass is primarily dominated by contributions from
regions where r > R, typically r > r, — O(100R,). In this regime,
we can approximate ppy = pISfM. Moreover, we may factorize the
dependence of p, in pSpM as pSDpM(r) = p(l)/ (4_7)([{51, /ro)™ (Rgp /r)'se, where
Ry, = N, ro(Mgy /ry)'/C7). By doing so, Eq. (3.1) becomes linear in p,
leading us to the following expression

= - 5\ 7s 5 75 y—4
4 ro ro Ry
=7/ .

(ysp - 3) AMBH

2 3.2)

In this paper, we will adopt y = 1 as the value for practical purposes,
associated with the NFW density profile. For this choice, the associated
DM spike profile possesses a power-law index of yy, = 7/3.

3.1. The Milky Way galaxy

Now, by using the observational data for the Sgr A* SMBH, located
at the center of the Milky Way galaxy, with a mass of Mgy = 4.1 X
10° My, and an uncertainty in mass of AMgy = 3 X 10’ M, along with
the corresponding Schwarzschild radius R ~ 3.9 x 10~7 pc, we obtain
the data that appear in Table 1, that includes the value for W, the
derived p,, and the radius Rgps the density Psps and the total mass of

the DM spike Mtsgt, obtained using Egs. (2.5), (2.10) and (3.2).
3.2. The M87 galaxy

In a similar way, we consider the available data for the SMBH M87,
which has a mass of Myy = 6.4 x 10° M, and an uncertainty in mass

of AMpy = 5 x 108 M. The corresponding Schwarzschild radius is
approximately Ry ~ 6 x 107 pc. Based on this information, we obtain
the data shown in Table 2, which includes the value for N, 7 the derived
po, and the radius Rgp, the density Psp> and the total mass of the DM
spike Mtsft. These quantities are obtained using Egs. (2.5), (2.10), and
(3.2).

4. The Kerr bumblebee BH with a global monopole in DM spike

In Section 2, we derived the BGMSLBH solution, which is influenced
by the bumblebee field in the presence of the GM, along with the
surrounding DM spike. We now begin with a general seed spherically
symmetric and static metric expressed as follows:

ds? = —F(r)dt* + ﬁdﬂ +h(r) (d6? + sin> 0d ¢?) .
With the idea of extending our BGMSLBH solution to incorporate
rotation, introducing a spin parameter denoted as a, using the modified
NJ method [116-121] following the approach presented in [116-118].
The modified version of the NJ method that we employ here differs
from the original one [122] by excluding one of its steps, specifically,
the complexification of coordinates. Instead, we utilize an alternate
coordinate transformation as given in [116]. Moreover, this modified
NJ method has been applied in several significant studies within the
framework of rotating DM-BH systems [56,69,71,75,123-125]. By ap-
plying the modified NJ method, we derive the metric describing the
Kerr Bumblebee BH spacetime with GM, encompassed by the DM spike
as follows

4.1)

2 _ b4 2 22 ) Y ., ) ESil'lz@ 2
ds? = - (1 - §> A+ = dr=2a — sin’0 didg+ 2 46>+ =502 dg’,
(4.2a)
defining new notations
X% =K + a*cos?9, ¥ =K — G(rh(r),
K(r) = h(r) %, A(r) = G(Hh(r) + a?, (4.2b)

== (K+a)’ - d4sin’0.

The modified Kerr BH metric (4.2) returns to the Kerr BH metric as
the BGGM parameters w and g approaches one, assuming the presence
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Table 2

The DM spike’s parameters for the M87 galaxy.
Yer N, oM pe) Ry, (po) psp(Mg pC™) M5 (M)
9/4 0.1 1.43 x 10* 7.65 1.43 x 10* 1.07 x 108
7/3 0.1 6.52x 1072 221.54 5.89 121 x 10°

of the DM spike. Similarly, in the absence of the DM spike, the metric
reverts to the standard Kerr BH metric as the limit Psp = 0(orr — rp)is
taken. Additionally, when the parameter a tends to zero, the modified
Kerr BH spacetime converges to the spherically symmetric metric (4.1).
Similar to the Kerr spacetime, the modified Kerr BH spacetime also
possesses two Killing vectors denoted by 5(’:) =5/ and 5(‘;,) = 6, which
remain invariant under transformations involving the time coordinate
t and the azimuthal angle ¢.

Let us now investigate the effects of the BGGM and the DM dis-
tribution within the spike region, described by the density profile in
Eq. (2.5), on the horizon, SLS, and ergoregion® of the BGMKLBH. Due to
the complexity arising from the DM mass function appearing in solving
A = 0 and g, = 0, we need to numerically analyze the impacts of
the spike profile and the BGGM theoretically through some plots and
tables. Subsequently, we will apply this analysis to the cases of the M87
and Milky Way galaxies, which host the well-known SMBHs M87* and
Sgr A", respectively. To do this, we will make use of the observational
data for the mentioned SMBHs and their corresponding galaxies, as
presented in Section 3, for the DM spike profile. It is worth noting that
the observational data for the DM spike profile in the Milky Way galaxy,
in terms of the parameters of the SMBH Sgr A*, can be expressed as
Ry, ~ 407.16Rg and pg, = 6.15 x 107'0ppyy, where pgy = Mpy /(47 Ry /3).
Similarly, the observational data for the spike profile in the M87 galaxy,
associated with the M87* SMBH parameters, can be represented as
Ry, ~ 37X 105R, and pgp =~ 8.32 x 10719 pgyy.

We observe that the influence of DM on the horizon and SLS,
and subsequently on the ergoregion, primarily depends on the mass
distribution in close proximity to the SMBH at the center of the galaxy.
Therefore, we can neglect the contribution of DM located far from
the spike, particularly in regions where r significantly exceeds R,.
Now, our focus shifts towards understanding the characteristics of the
BGMKLBHs given in (4.2). The objective here is to demonstrate that
their attributes closely resemble those of the Kerr BH. Specifically,
we explore the horizons and SLSs and delineate the region situated
between the corresponding event horizon and the outer SLS. This region
is known as the ergoregion [126,127]. We intend to analyze the effects
of BGGM on the ergoregion structure and its two boundaries — namely,
the event horizon and the outer SLS. The horizons of the BGMKLBH
can be considered as the solutions to the following equation

C(Hh(r) +a*> =0, 4.3)

which also corresponds to the coordinate singularity of the metric (4.2).
Through numerical analysis, it becomes apparent that, contingent upon
the values of the parameters in the DM spike mass function, the spin
parameter a, and the BGGM parameters ji and #, Eq. (4.3) can yield
a maximum of two distinct real positive roots, degenerate roots, or
no-real positive roots. These results correspond respectively to non-
extremal modified Kerr BH configurations, extremal modified Kerr BH
configurations, and modified Kerr naked singularities [128] for the
metric (4.2). The two real positive roots of Eq. (4.3) are recognized
as the radii of the Cauchy horizon (r_) and the event horizon (r,), with
the condition that r_ < r, (as shown in Figs. 6 and 7). Figs. 6 and 7, as
well as Tables 3 and 4, illustrate the behavior of the horizon radii r,
as the spin parameter ¢ and model parameters vary.

For given values of DM spike parameters, as the spin parameter
a and the model parameters # and j vary, the event horizon radius

3 The region lying between the SLS and the event horizon can be defined

using 6o, = rg g = ry-

r, decreases (increases), while the Cauchy horizon radius r_ increases
(decreases) with rising a and # (f).* For a fixed value of a (¢ and
ji), there exists a critical value #.; and fi., (a.x) where both horizons
coincide, resulting in r_ = r,. This signifies that for 7 < f., and
¢ > Ceox (a > agy), Eq. (4.3) possesses no roots, and for j > j,, and
¢ < le (a < a,,), two distinct roots emerge (as can be seen in Fig.
6). Furthermore, for consistent values of the DM spike parameter and
spin a, the presence of the BGGM parameters leads to a reduction in
r, and an increase in r_. Moreover, the GM effect contributes more
significantly to this scenario than the BG effect.

In the absence of BH spin, the SLS overlap with the BH’s event
horizon. However, in the presence of non-zero spin, two SLSs emerge
positioned distinctively apart from the event horizon, viz., the outer
SLS (r;rLs) and inner SLS (r;Ls) [75]. This scenario holds true for the
BGMKLBH metric given in Eq. (4.2) as well. Now, let us proceed to
determine the SLS for the BGMKLBH in the F # G spacetime configura-
tion. This can be achieved by considering the condition g, = 0, which
can be expressed as

2oy =0, (4.9)

where, 32 and ¥ are defined in Eq. (4.2b). Through numerical com-
putation of this equation and its integration with the event horizon
findings of the BGMKLBH, it becomes evident that, aside from the
parameters related to BH and the DM spike masses, changes occur in
Fys r;LS and 6, as a, ji and ¢ vary. Specifically, when ¢ increases and
i decreases individually while keeping a constant, r;fLS decreases and
8er increases. Conversely, for fixed values of # and /i, an increase in a
leads to an decrease in ’;Ls and a increase in §, (cf. Figs. 8 as well as
Tables 3, and 4).

5. The shadow of a deformed kerr BH in DM spike

The BH shadow emerges as the optical manifestation resulting from
the strong GL of light in the vicinity of these compact entities, pre-
senting itself as a two-dimensional dark region when observed from a
considerable distance. Now, we consider BGMKLBH as SMBH located at
the center of the M87 galaxy. In this section, we employ observational
data of the SMBH and the DM spike profile within the M87 galaxy.
To explore the influence of the BGGM effect on the dark shadow cast
by the BH within the DM spike, we investigate the impact of the
parameter space (a,Z, ji) on the geodesic motion of photons around
the BGMKLBH. Additionally, the size and shape of the shadows are
found to be dependent on the BGMKLBH parameters. The shadow, in
turn, has played a crucial role in estimating and measuring various
BH parameters, such as mass and spin angular momentum, as well as
facilitating the estimation of the BGGM parameter associated with an
extended gravity model [1-8,129-134].

Our focus now turns to the study of photon geodesic motion within
metric spacetime (4.2). We begin with the Lagrangian £ for geodesic
motion, given by 2L = g, x#x", where the values of 2L are -1,0, 1 re-
spectively for timelike, null, and spacelike geodesics. Here, the overdot
denotes a derivative concerning the affine parameter 4, connected to
proper time via r = Am, wherein m signifies the mass of the test particle.
However, in the case of photons, we have m = 0. In this context, the
null geodesics can be derived by employing the method of separating
variables within the Hamilton-Jacobi equation [135-137]

_ 95 _ 1 095 9S _

- Euv gxn oxv

~5=3 6.1

4 Please refer to Fig. 7, as well as Tables 3 and 4.
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Fig. 6. Plot illustrating the horizon behavior (4vsr) in the BGMKLBH spacetime for the M87 galaxy. The left panel shows results for fixed values of i = —0.3
and ¢ = 0.1 with varying a, while the right panel depicts fixed a = 0.75 with varying 7 and #. We have set My = 1 in all cases. The dashed gray lines indicate

the scenario without the BGGM effect.
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Fig. 7. Plot illustrates the variation of the event horizon r, (solid lines) and the Cauchy horizon r_ (dashed lines) concerning the spin parameter a and model

parameters ¢ and ji for the BGMKLBH.

in which H and S represent the canonical Hamiltonian and the Jacobi
action, respectively. Given that the BGMKLBH spacetime (4.2) remains
independent of 7 and ¢, these coordinates can be regarded as cyclic, and
the associated Killing vectors are expressed as é:g) =6/ and (‘; = 6.
Hence, we are able to introduce the conserved energy E ancf the z
component of angular momentum L,, being their explicit definitions

295 : . 25
E= _E = —gul — Ept P> and Lz = %

To obtain a separable solution for Eq. (5.1), we can represent the Jacobi
action in terms of the constants of motion E and L, as follows:

= 8l + 8y ®- (5.2)

S = —Et+ Lo+ S,(r) + Sy(6), (5.3)

where S.(r) and S,(0) exclusively depend on the r and 6 coordinates,
respectively. In the geodesic equations of motion, there exist four
constants of motion that enable us to formulate the null geodesic
equation in a first-order format: the Lagrangian £ = 0, the energy E,

the z component of angular momentum L,, and the Carter constant K.
This final constant of motion can appear through the separation process
of the Hamilton-Jacobi equation. By inserting the Jacobi action (5.3)
into Eq. (5.1), the resulting expression becomes:

05,\2 (VWE-aL)’ [05,\> (L. -aEsin®0)’
_A<ar> " A <¥> " sin® 6 =5

5.4)

where each side depends on either r or 6. This implies that both sides
are equal the Carter constant K. Besides, /(r) = h(r)\/m +a? =
K(r) + 2. In the absence of the BGGM effect, where ¢ — 1 and w — 1
(or # - 0 and i — 0), and without the DM spike, as psp = 0 (or
r — ry), the function U'(r) reduces to that of the standard Kerr BH
metric [24], which is (2 +4?). Following this, we derive four first-order
differential equations describing the geodesic motions in the vicinity of
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The horizons, SLSs, and the region between the SLS and the event horizon of the BGMKLBH spacetime related to the M87 galaxy,

showcasing variations based on different values of a, i and 7.

a re Iy r;Ls Oer
M a=0.75, ¢ =0.01
0.00 0.34285 1.65711 1.84608 0.18897
- 0.01 0.34375 1.63640 1.82614 0.18974
- 0.02 0.34466 1.61608 1.80658 0.19050
- 0.03 0.34558 1.59612 1.78740 0.19128
(I a=0.5, £ =0.01
0.00 0.13543 1.86453 1.93470 0.07017
- 0.01 0.13553 1.84462 1.91487 0.07025
- 0.02 0.13564 1.82510 1.89544 0.07034
- 0.03 0.13575 1.80596 1.87638 0.07042
3 r_ r, ais Ber
(M a=0.75, ji =-0.01
0.00 0.33946 1.64070 1.82780 0.18710
0.01 0.34375 1.63640 1.82614 0.18974
0.02 0.34808 1.63208 1.82447 0.19239
0.03 0.35243 1.62773 1.82280 0.19507
(D a=05, i=-001
0.00 0.13409 1.84607 1.91554 0.06947
0.01 0.13553 1.84462 1.91487 0.07025
0.02 0.13698 1.84317 1.91421 0.07104
0.03 0.13844 1.84172 1.91354 0.07182
Table 4

The horizons, SLSs, and the region between the SLS and the event horizon of the BGMKLBH spacetime related to the Milky Way
galaxy, showcasing variations based on different values of a, 7 and 7.

i r r s O
M a=0.75, £=0.01
0.00 0.34511 1.65110 1.84137 0.19027
- 0.01 0.34603 1.63037 1.82142 0.19105
- 0.02 0.34696 1.61002 1.80186 0.19184
- 0.03 0.34791 1.59004 1.78268 0.19264
(ID) a=0.5, £ =0.01
0.00 0.13618 1.85993 1.93045 0.07052
- 0.01 0.13629 1.84001 1.91062 0.07061
- 0.02 0.13640 1.82048 1.89118 0.07070
- 0.03 0.13651 1.80133 1.87211 0.07078
¢ r_ r, Tais ey
(M a=0.75, i =-0.01
0.00 0.34170 1.63470 1.82310 0.18840
0.01 0.34603 1.63037 1.82142 0.19105
0.02 0.35040 1.62601 1.81975 0.19374
0.03 0.35479 1.62162 1.81807 0.19645
(D a=05, ji=-001
0.00 0.13483 1.84146 1.91129 0.06983
0.01 0.13629 1.84001 1.91062 0.07061
0.02 0.13775 1.83855 1.90994 0.07139
0.03 0.13921 1.83709 1.90927 0.07218

the BGMKLBH, which is influenced by a distribution of DM and the
BGGM effect. Thus, the equations of motion are as follows

Si=a(L,-aksino) + & (VE-aL,), (5.52)
Sp= L _upi 8 (VE-aL,), (5.5b)
sin®@ 4
3% = £V/R(@), (5.5¢)
320 = +4/0(0), (5.5d)
where
2 aSr : 2 2
Rn=4(—=) =E [(V —a&)* - AC], (5.6a)
_(05\" ., i &\’
o) = (¥> =E“|C- (a sin@ — pror (5.6b)

and the dimensionless impact parameters are symbolized as ¢ = L,/E
and 5 = K/E?. The impact parameters ¢ and 5 have a connection
with the constant C given by C = 5 + (a— &) [26,29,70,138-146].
In examining the BH shadow, our focus lies on the unstable circular
photon orbits. This involves satisfying conditions: R(rp,) =0, R’ (rpn) =
0, and R” <0, with r = ry, denoting the unstable photon orbit radius.
Using the aforementioned conditions, the critical impact parameters
(&..n,) for the unstable orbits that could determine the shape of the BH
shadow can be obtained as

VA, 24V,
é = — s (5.7a)
ad, r=rph
4@ V24— (U = a®) 4, -2U,4)°
AR (Vs 20 o
a?A?

r=rph
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Fig. 8. Visualizing the behavior of the ergoregion in the xz-plane of the BGMKLBH spacetime corresponding to the M87* BH with the dark blue and cyan lines

assigned to the SLS and horizons, respectively.

To explore how the BGGM model influences the shadow images
of the BGMKLBH, we consider an observer positioned at coordinates
(r,. 0,), where r, represents the observer’s distance and 6, is the angular
position in the sky. The BGMKLBH shadow shape relies on the deviation
parameters, spin a, and the observation angle 6, relative to the spin
axis. By using the tetrad components of the four-momentum p*), the
connection between the observer’s celestial coordinates (X,Y) and the
critical impact parameters is given by:

(1) ’
2 . &
/Zopl <1 + gi§c>
kg (r—=rp,0—-0y)
(5.8a)
O \/ 1. + a*cos2f — E2cot?0
Y = —ryp— = #r s
p(T) z &g
V8006 | 1+ g—fc
iad (r—rg,0-0y)
with
- &
Z= 2#‘ (5.8b)
8o ~ 8189

In the case of non-asymptotically flat spacetime, which arises due to
the existence of the BGGM background encompassing the combined
influences of the GM and the spontaneous breaking of LS, and assuming
that the observer is positioned at a finite distance away from the BH but
still far away, with distances between the observer and the Sgr A* and
M87* SMBHs being approximately 8.3 kpc and 16.8 Mpc, respectively,
the celestial coordinates given in Eq. (5.8) can be expressed in a
simplified form [69-73]

X ==y

sinf,’
For an observer situated in the equatorial plane with a latitude angle
of (6, = #/2), Eq. (5.9) can be reduced as

X = —/f(ry)&,, Y = £y/f(ro)\/n,.

Here, to delineate the BGMKLBH shadow, one can then plot Y versus
X, where the celestial coordinates X and Y satisfy the following

Y = i\/f(’o)\/ﬂc + a?cos2f, — £2cot?6,.  (5.9)

(5.10)

10

relationship:

44V, (Ur _ A,r)

X2+ Y% =1(rg) (& +1,) = f(ry) <—a2 +2U + yo

(5.11)

when the shadow is observed from the equatorial plane (6, = x/2).
It is noteworthy to mention that the manifestation of a BH shadow,
as perceived by an observer located at an infinite distance, is the
result of the combined influence of all photon trajectories that do not
intersect the photon sphere. Additionally, it is assumed that there is no
internal light source within the photon sphere that could illuminate the
shadow. The arrangement of light sources just influences the luminosity
in the area surrounding the shadow, known as the photon shell, and
does not influence the geometry of the shadow itself. Nevertheless,
the geometric form is contingent upon the inclination angle 6, [30].
Likewise, the greatest deformation of a BH shadow shape appears
at its highest acceptable angular momentum when observed from a
particular angle 6,. A DMS-BH interacting system with a particular
mass, BGGM parameters, and angular momentum exhibits the highest
distortion at §, = z/2, which is also observable from the equatorial
plane.

The shadows of the BGMKLBH scenario for the M87* SMBH, shown
in Fig. 9, reveal intriguing details by taking realistic parameters for
the DM spike, allowing us to observe how these shadows change with
variations in the parameter space (a, i, ¢). Regardless of the presence of
the BGGM effect, an increase in DM density (psp) is expected to grad-
ually expand the shadow radius [73]. The shadow size is significantly
influenced when the BGGM parameters (ji, #) vary by an order of 1073,
The upper panels of 9, with 6, = 17°, demonstrate that the shadow’s
boundary remains nearly circular even at extreme spin parameters,
significantly influenced by variations in ji and # on the order of 10~3.
In contrast, the geometry of the BGMKLBH shadow exhibits significant
changes for inclination angles exceeding 86°— a common theoretical
choice — as illustrated in the lower panels of Fig. 9, where 6, = 90°.
It is observed that when the influence of the BGGM diminishes, the BH
shadow size approaches the Schwarzschild shadow radius of 3\/§M .
Indeed, the shadow size decreases monotonically with reduced values
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Fig. 9. Shadow silhouette of the BGMKLBH, varying the parameter space (a, fi,¢) at inclination angles 6, = 17° (top row) and 6, = 90° (bottom row). First column:
Shadow shape variations with a = 0.5, i = —0.02, and variable #. Second column: Shadow shape variations with a = 0.5, # = 0.02, and variable /. Third column:
Shadow shape changes with @ = 0.98, i = —0.02, and variable #. Fourth column: Shadow shape changes with a = 0.98, # = 0.01, and variable j. Here, we set

Mgy =1, r, = 2R, and the observer located at r, =2.8 X 101°R,.

of ji and 7. As shown in the third and fourth columns of Fig. 9, the
shadow deformation becomes more pronounced as the spin parameter
a approaches 1. Unlike the standard Kerr case, where the shadow
deformation manifests as an indentation on the left side due to the
Lense-Thirring effect [147], here we observe a distinct deformation,
that is, the left side of the shadow bulges outward, moving away from
the center, rather than exhibiting the typical indentation characteristic
of the Kerr scenario. We also observe a horizontal shift in the shadow’s
center along the positive direction of the X-axis, which depends on
increasing the parameter space (a,?, ji). One notable characteristic of
the shadow of a BH surrounded by a DM spike and influenced by the
BGGM effect is its tendency for the left edge of the shadow to shift left-
ward, while the shadow’s center shifts to the right. This shift becomes
more pronounced as the parameter space (a, ji, ¢) increases, by varying
one parameter while holding the others constant. This phenomenon is
not observed in the case of Kerr BHs. Motivated by these distinctive
shadow features of BGMKLBH, we will use the shadow radius to impose
constraints on the BGGM parameters. To achieve the goal of plotting
Fig. 9, we followed the definition provided in Ref. [30], where the
typical shadow radius is established by considering the leftmost and
rightmost coordinates relative to "oh and r;'h. This radius is given by

R =3 (¥ () =% ().

For general values of 6, (except when viewing the shadow from the
north pole, §, = 0, or the equivalent south pole, §, = z), we can obtain
rli;h by solving the equation Y (r = r;fh,ﬁo) =0.

(5.12)

6. Constraints from the EHT observations

The shadow of BHs, which embodies the characteristics of the back-
ground spacetime in its distinctive shape and size, can be employed as
a valuable tool for examining the fundamental theories of gravity and
cosmology. Additionally, it can be employed to constrain the deviation
parameters within these theories. In this section, our motivation is to
assess the validity of the BGGM model in the context of a deformed
Kerr BH surrounded by the DM spike, using of the EHT results within
the strong-field regime [9-20,47,148-152]. To achieve this goal, it is
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necessary to do further investigation into the BGMKLBH spacetime.
Therefore, applying shadow observable, such as shadow radius/angular
diameter, we are able to make an estimation of the BGGM parameters /i
and 7. In this approach, we consider M87* [9-14] and Sgr A* [15-20]
SMBHs as BGMKLBHs. We put constraints on the BGGM parameters
using EHT shadow observations for M87* and Sgr A, as summarized
in Tables 5 and 6, at inclination angles of 17° and 46°, respectively [43,
153-156]. To achieve this, we exploit observational data associated
with the SMBHs and the DM spike profile within the M87 and Milky
Way galaxies. To characterize the BGMKLBH shadows and estimate the
BGGM parameters, we examine two shadow observables: the shadow
radius and the angular diameter. The shadow radius allows us to
impose constraints on the BGGM parameters.

As shown in Refs. [40,56,68-73], the shadow radius increases grad-
ually with increasing DM density; nonetheless, for realistic DM settings,
the BH shadows in our scenario remain nearly unchanged from what
they would be in the absence of DM distribution. Nonetheless, the
shadow silhouette is quite sensitive to the value of the model param-
eters, particularly in the case where our Kerr-DMS BHs behave as an
extreme or near-extreme Kerr BH, with a spin parameter of a — 1.

Refs. [9,14] reported that the mass of M87* is Mg, = (6.5 +
0.7) x 10° My, with an angular diameter yg;« = 42 + 3 pas of the BH
shadow, as well as a distance from Earth of Dygy« = 16.8 + 0.8 Mpc.
Taking into account the Schwarzschild shadow deviations &yg7+ =
—0.01 + 0.17, the relation % = 3\/5(1 + Syigy+) gives that the shadow
radius of M87* is restricted to the range [4.26, 6.03] in the 1¢ confidence
levels (CLs). As mentioned in Ref. [15], results of Sgr A* show an
angular diameter 6gg, 5+ = 48.7 + 7 uas of the BH shadow. The inferred
distance from Sgr A* to Earth is given as Dgy o+ = 8277 £ 9 +33pc
(VLTI standing for “Very Large Telescope Interferometer”), 7953 +50+
32pc(Keck), with the BH mass Mgg o« = (4297 + 0.012 + 0.040) X
106 M, (VLTD), (3.951 +0.047) x 10° M, (Keck), (4.0%}1) x 10° M, (EHT).
Based on Keck and VLTI measurements, the fractional deviation from
the expected Schwarzschild values for Sgr A* is reported as g o+ =
~0.08*00 (VLTD) and gg, o+ = —0.0470% (Keck) [20,148,149]. Taking

-0.09 ~0.10
the average of the Keck and VLTI estimates, represented as dggr o+ =

0.0601’8:822 (Avg), and applying % = 3\/5(1 + Oggr a) to define the



S. Capozziello et al.

Table 5

Physics of the Dark Universe 50 (2025) 102065

Acceptable values for # and ji can be determined based on three different values of a = 0.5,0.75,
and 0.94, depicted in Fig. 10 by cyan, green, and blue lines, respectively. These values correspond
to the BH shadow radius that matches the EHT horizon-scale image of M87" within the 1 and

20 confidence levels.

4 lo 20

Lower Upper Lower Upper
a=05 0.0034 0.0384 - 0.0519
a=0.75 0.0054 - - -
a=094 0.0078 - - -
i lo 20

Upper Lower Upper Lower
a=05 —-0.0037 —-0.0355 - —-0.0602
a=0.75 - —-0.0335 - —0.0582
a=094 - —-0.0312 - —-0.0560

Table 6

Acceptable values for # and ji can be determined based on three different values of a = 0.5,0.75,
and 0.94, depicted in Fig. 10 by cyan, green, and blue lines, respectively. These values correspond
to the BH shadow radius that matches the EHT horizon-scale image of Sgr A* within the 1o and

2¢ confidence levels.

12 lo 20

Lower Upper Lower Upper
a=05 0.0096 0.0239 0.0015 0.0304
a=0.75 0.0115 - 0.0030 -
a=094 0.0125 - 0.0039 -
i lo 20

Upper Lower Upper Lower
a=05 -0.0165 —-0.0295 -0.0107 —-0.0373
a=0.75 - -0.0278 - —-0.0357
a=094 - —0.0268 - —-0.0349

shadow radius level, the size of the Sgr A* shadow is constrained
within the range [4.55,5.22] in the lo CLs. These derived bounds aim
to constrain the deviations of the BGMKLBHs from Kerr BHs. For the
current analysis, we use the observational data for the SMBHs and their
associated galaxies to the DM spike profile, as detailed in Section 3.
Using the observable Ry, the shadow observable, namely the angular
diameter of the M87* and Sgr A* SMBHs, can be determined as
eshDO

Mpy

According to Eq. (6.1), the shadow radii of the M87* and Sgr.A* that

have been identified is strikingly compatible with the Schwarzschild BH

surrounded by the realistic DM spike distribution. This can be verified

via setting the theoretical shadow diameter as d;;‘e" = 2Ry,. Then,

Eq. (6.1) can also be rewritten as

Oy = 2 x 9.87008 x 10~ R, B 1kpe
M, D,

2Ry, = (6.1)

uas. (6.2)

The first and third columns of Fig. 10 display how the shadow radius
varies with model parameters ¢ and /i for M87* and Sgr A*. It illustrates
how the EHT-derived allowed shadow radius region constrains ¢ and j
at 1o and 26 CLs as a varies from 0.5 to 94, providing lower and upper
bounds for these parameters while varying one and holding the others
constant. The numerical bounds for # and ji are provided in Tables 5
and 6. No upper bounds were observed for the BGGM parameters when
a was fixed at 0.75 and 0.94. Thus, it not only offers the critical bounds
for # and i, but also indicates how the shadow radius evolves as # (or
i) changes, while keeping the observer’s radial distance r, = D, from
the black hole fixed.

Besides, Fig. 10 presents the connection between the shadow radius
and angular diameter, respectively, with respect to the parameter space
(a,?, ji) and the observable Ry, for SMBHs M87* and Sgr A*. In the
second and fourth columns of Fig. 10, we depict the angular diameter
(6.2) versus Ry, for M87* and Sgr A*, respectively, as a function of j
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and ¢ for three distinct a values. In this figure, the angular diameter
is calculated using previously determined values for the distance, with
Dy = 16.8Mpc and mass My« = 6.4 x 10°M, for M87*, and D, =
8.3kpc and mass Mgy p+ = 4.1 X 10°M, for Sgr A*. In standard as-
sumptions, the DM profile is commonly considered to disappear below
4R [80], or 2R, according to full relativistic calculations for a static
BH [81], due to the BH capturing DM particles. To simplify, when
constraining the model parameters ;i and ¢ using EHT observations
of M87* and Sgr A* shadows, assuming a power-law density for the
DM spike near these SMBHs, we adopt a DM spike extending all the
way down to 2R, for the BGMKLBHs. However, this simplification has
a minimal impact on our results.

In this way, we infer that the EHT observations of the M87* and
Sgr A* BH shadows do not exclude the rotating Kerr-like BH within the
BGGM gravity model. By modeling the rotating BGGM-BH surrounded
by a DM spike as the SMBHs M87* and Sgr A*, we report the most
stringent constraints on the BGGM parameters at a < 0.5. Specifically,
the curves in Fig. 10 demonstrate that the spin parameter strongly
influences the constraints on the model parameters. Thus, we fix a = 0.5
and plot the CLs, showing the upper limits for # and /i from the EHT
observations. At the 95% CLs, the upper limits are # < 0.0384,/ <
—0.0037 for M87* and ¢ < 0.0239,i < -0.0165 for Sgr A*. At the

68% CLs, the upper limits are # < 0.0519, 7 < None for M87* and

¢ < 0.0304,i7 < —-0.0107 for Sgr A* [25,157]. From Tables 5 and 6,
we infer that the astrophysical constraints on the parameters # and
i indicate that Sgr A* yields stronger constraints than those derived
for M87*. Given the current precision of astrophysical observations, we

find that M87* and Sgr A* could be BGMKLBHs.
7. Discussion and conclusions
A unique opportunity to test the strong-field predictions of GR and

shed light on metric theories of gravity is provided by the SMBHs, M87*
and Sgr A*, at the core of the M87 and Milky Way galaxies. Although
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Fig. 10. Figure depicting the shadow radius and angular diameter dependencies on #, ji and the observable R, respectively, for three distinct a values at an
inclination angle 6, = 17°. First column: BGMKLBH shadow radius plotted against parameter ¢ for ji = —0.02 with three values of a (0.5, 0.75, 0.94), represented
by cyan, green (dashed), and blue curves, respectively. Third column: shadow radius vs. i for # = 0.02 with the same « values and color scheme. The BH mass is
set to My = 1. Second and fourth columns: angular diameter behavior for BGMKLBH in terms of the observable R, showing dependencies on ¢ (with g = —0.02
and a = 0.5,0.75, in the second column), and on j (with # =0.02 and a = 0.5,0.75,0.94, in the fourth column, with dotted blue for a = 0.94). Red shaded regions
highlight values of # and j inconsistent with stellar dynamics observations for M87* (top row) and Sgr A* (bottom row). White and light pink areas represent
ranges consistent with EHT horizon-scale images for M87* and Sgr A" at 1o and 2¢ CLs, while in the bottom row, these shaded regions align with Keck and VLTI

mass-to-distance ratio priors for Sgr A*.

facing certain theoretical challenges, these two compact entities appear
to be highly plausible candidates for representing astrophysical BHs.
Images of the compact objects at the Galactic Centers obtained by
the EHT collaboration inspired us to investigate the properties of BHs
in a novel configuration: the BG combined with a GM in the region
impacted by the DM spike. As we have previously stated, topolog-
ical defects such as GMs may emerge in Lorentz violating theories,
where the bumblebee field might effectively cause Lorentz violation.
If isolated, GMs might persist in the Universe up today.

We assume that the central regions, including the SMBHs them-
selves, are immersed in a DM spike characterized by a power-law
density profile. In the DM spike-affected region, we investigate the
combined impact of BG and GM effects, particularly focusing on the
influence of parameters # and j on Kerr BH features like the hori-
zons, ergoregions, SLSs, and shadows. Thus, the combination of both
these components — the BGGM effect and the DM spike profile — may
present a realistic platform for exploring the characteristics of the Kerr
BH. It should be mentioned that no prior study has been done on a
configuration containing these concepts. Therefore, we expect that this
study will make a substantial contribution to our understanding of the
effects of the bumblebee field, GM, and DM spike on the horizons,
SLSs, ergoregions, and shadow silhouettes. For this aim, we estimated
the normalization parameter, p,, and associated parameters for the DM
spike profiles in both the Milky Way and M87 galaxy centers.

The scarcity of rotating BHe models within a DM spike, influenced
by BGGM effects, hampers progress in testing the BGGM model using
observations, such as the EHT results of M87* and Sgr A*. To tackle
this challenge, we commenced our study by considering a spherically
symmetric, static BH with BGGM properties as the seed metric. From
there, we develop a non-rotating spacetime incorporating a DM spike
resulting in the emergence of the BGMSLBH spacetime. To create the
BGMSLBH spacetime, we began with a power-law density profile and
solved the modified TOV equation, approximating the integral in the
leading order for the spike density. Our approach involved the critical
condition of matching the inner BH spacetime with the outer region,
specifically employing the condition denoted as f(r,) = €240 = 1 —
ZA;IBH, in line with the methodology presented by Nampalliwar et al.
(2621). This process resulted in the calculation of corresponding metric
components, where f(r) # g(r).

We applied the modified NJ algorithm to generalize our approach
to the rotating scenario, resulting in BGMKLBH spacetime metrics with
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a Kerr-like form. EHT results are in line with Kerr metric predictions,
with no evidence of GR violations. We then explored BGMKLBH, exam-
ining horizons, SLSs, ergoregions, and shadow images. Once the BGGM
effects are turned off (i.e., # = 0 = ji) and the DM spike vanishes
(i.e., psp > 0o0rr— rp), the BGMKLBH solutions reduce to the standard
Kerr solution.

By modeling BGMKLBHs as M87* and Sgr A* SMBHs and using
the estimated BH mass and distances, we demonstrated that various
BH characteristics, such as the event horizon, outer SLS, shadow ra-
dius, and angular diameter remain almost unchanged compared to
their counterparts without DM distribution for realistic DM parameters.
However, we expect that a rise in the DM spike density would have
a significant impact on these BH characteristics’ sizes. Our findings
indicated that, based on the existing observational data regarding
DM spike density, the influence of DM is minimal. In our case, the
modification introduced by BGGM is distinctive and discernible from
the effects of BH spin and the surrounding DM spike.

Through numerical analysis of the event horizon (r,), outer SLS
(r;LS), and ergoregion (6,.), we found that, aside from the parameters
related to BH and the DM spike masses, changes occur in r, r;LS and
ber as a, £ and ji vary. Specifically, as ¢ increases and ji decreases
individually, with a held constant, r, and r;LS reduce, while _ and &,
expand. Likewise, with fixed # and #, raising a decreases r, and r;Ls
and increases r_ and §... To be more precise, for fixed values of the
DM spike parameter and spin a, the GM effect has a greater influence
in this scenario than the BG effect.

In our shadow analysis, we addressed photon geodesic equations,
which we solved analytically in a first-order differential form. In more
realistic DM spike scenarios, we observe that even at extreme spin
values, the BGMKLBH shadows with an inclination angle of 6, = 17°
maintain a nearly circular boundary, with minimal impact from the
parameters 7 and ji on the distortion of the BH shadow. However, a
significant change in the geometry of the BGMKLBH shadow is evident
at an inclination angle of 6, = 90°. It is observed that as the BG and
GM influences weaken, i.e., when # and /i tend to zero, the BH shadow
shrinks and expands, respectively.

As such, the shadow shape is quite sensitive to the BGGM pa-
rameters value, particularly in the case where the BGMKLBH exhibits
characteristics of an extreme or near-extreme modified Kerr BH, with
a spin parameter of « — 1, in such a case, at the inclination angle
of 6, = 90°, a significant impact of the # and ji parameters on the
distortion of the BH shadow is observed.
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In the case of the BGMKLBH, the shadow deformation differs from
the standard Kerr scenario. Instead of the typical indentation on the
left side caused by the Lense-Thirring effect, the left edge of the
shadow exhibits a bulge outward, away from the center. Additionally,
a horizontal shift of the shadow’s center along the positive X-axis is
observed, which depends on increasing the parameter space (a,?, ji).
A notable feature is that as the parameter values increase, the left
edge of the shadow shifts leftward while the center moves rightward,
behavior is not observed in Kerr BHs. Motivated by the distinct shadow
features of BGMKLBH, we employ the shadow radius to constrain
the BGGM parameters. The shadow observables, including the shadow
radius and angular diameter, were employed to quantify shadow size,
enabling the estimation of BGGM parameters and the exploration of the
BGMKLBH solution. As such, we considered M87* and Sgr A* SMBHs
as BGMKLBHs. We put constraints on the BGGM parameters, using
EHT shadow observations for M87* and Sgr A* at inclination angles of
17° and 46°, respectively. To obtain admissible values for the model
parameters, we utilized available observational data associated with
the SMBHs and the DM spike profiles within the M87 and Milky Way
galaxies and derived constraints on the shadow radius from the EHT
data. Observations of Sgr A* constrained the parameters within a more
confined range, whereas M87* suggested a wider one. Notably, the
Sgr A* data impose more robust constraints on the model parameters,
including values extending beyond the upper 2¢ CLs, compared to those
for M87*. Within a consistent parameter space for a modified Kerr
BH surrounded by a DM spike and subject to the BGGM effect, EHT
observations do not rule out the BGGM influence at galactic centers.
Therefore, BGMKLBHSs remain viable candidates for astrophysical BHs.
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