UNIVERSIDAD DE VALLADOLID
MASTER UNIVERSITARIO

Ingenieria Informatica

Ingenieria
Informatica

UVa

TRABAJO FIN DE MASTER

Proyecto Floorify: Generaciéon de Planos
Arquitectonicos Mediante Inteligencia
Artificial Generativa

Realizado por Giovane Eufrasio da Silva

MLOTOK

Universidad de Valladolid
27 de febrero de 2025
Tutor: Valentin Cardenoso Payo, Guillermo Menguez y Pablo
Garcia Ullan






Universidad de Valladolid

Master universitario en Ingenieria Informatica

D. Valentin Cardenoso tutor, profesor del departamento de DEPARTAMENTO DE IN-
FORMATICA (ATC, CCIA, LSI), drea de LENGUAJES Y SISTEMAS INFORMATICOS.
D. Guillermo Menguez y D. Pablo Garcia Ullan, tutores por parte de la empresa.

Expone:

Que el alumno D. Giovane Eufrasio da Silva, ha realizado el Trabajo final de Master
en Ingenieria Informdtica titulado "PROYECTO FLOORIFY: GENERACION DE PLANOS
ARQUITECTONICOS MEDIANTE INTELIGENCIA ARTIFICIAL GENERATIVA'.

Y que dicho trabajo ha sido realizado por el alumno bajo la direccién del que suscribe, en
virtud de lo cual se autoriza su presentacion y defensa.

En Valladolid, 27 de febrero de 2025

Ve B del Tutor: Ve. B®. del Tutores de Empresa:

D. Guillermo Menguez y D. Pablo

D. Valentin Cardefioso P
alentin Cardenoso FPayo Garcia Ullan






Agradecimientos

Me gustaria expresar, en primer lugar, mi profunda gratitud a mis tutores Guillermo
Menguez y Pablo Garcia UllAn por la oportunidad de realizar mis practicas en
HP SCDS, ademas de orientarme durante la fase de desarrollo del TFM. Agradezco
enormemente vuestra paciencia y flexibilidad, especialmente porque me demoré un poco
en finalizar la parte escrita de la investigacién. También agradezco su comprensioén de yo
estar trabajar con un tema nuevo, cuyos resultados no fueron extremadamente positivos,
pero que abrié puertas para nuevas y prometedoras investigaciones. Al final el campo de
la TA generativa esta en constante desarrollo y cada vez mas presente en investigaciones
multidisciplinarias.

También gustaria de agradecer a mi tutor Profesor Valentin Cardenoso Payo, de
la UVa, por su orientacién durante el desarrollo del TFM y por proporcionarme el servidor
del grupo ECA-SIMM para la realizacién de los ajustes experimentales.

Mis mas sinceros agradecimientos a mi madre, Elisangela Eufrasio, quien siempre
me brindé todo su apoyo y fuerza para seguir adelante, posibilitando que viniera a Espana
a realizar este master en la UVa. Siento que estoy cumpliendo un sueno tanto mio como
de ella, que, a pesar de las dificultades de la vida, siempre creyé que el tinico camino
hacia una vida mejor y mas feliz seria a través de la educacion y el aprendizaje. También
agradezco a mi abuela materna y a toda mi familia por apoyar siempre mi decisiéon de
seguir una carrera en el area de la tecnologia. Ademds, quiero expresar mi agradecimiento
a mi gran amigo Alfonso Gonzalez, a quien tuve el privilegio de conocer durante mi
estancia en Espana, ya que fue la persona que mas me animé a no renunciar a mi master.
Siempre dandome fuerza y coraje para superar todos los desafios, sin ti jamas habria
llegado al final de esta aventura.

Agradezco profundamente a mis profesores del grado, Diego Fiori, quien identificd
mi potencial y me incentivo a realizar este master, y agradezco al Omar Mozo, sin ellos
jamas habria tenido esta oportunidad en mi vida. {Muchas gracias!

Por ultimo, también dedico estos agradecimientos a la memoria de mi querida amiga
Gabriela de Oliveira Vianna (Gabi), quien nos dejé a mediados de 2023, un mes antes
de que aceptara embarcarme en esta travesia. Su recuerdo y anhelo eterno me acompanaran
por siempre.



Resumen

En el mundo contemporaneo, los modelos de Inteligencia Artificial han ganado
una creciente visibilidad e importancia en la sociedad. En este contexto, presentamos
el proyecto Floorify, que explora el uso de técnicas de Fine-Tuning en modelos de
Stable Diffusion con el objetivo de generar automaticamente planos arquitectonicos
en 2D. A partir de datos visuales y textuales, se evaluaron distintos métodos de ajuste
fino, identificAndose Text-to-Image como el mas adecuado para los propésitos del
proyecto. El objetivo fue entrenar modelos capaces de asociar descripciones textuales
con imagenes de planos arquitecténicos, evaluando la calidad y coherencia de los
resultados mediante métricas como CLIP Score. Como resultado, se logrd ajustar el
modelo para la generacion de planos arquitecténicos en 2D, sin embargo, los resultados
aun presentaron limitaciones, tales como inexactitudes en la correspondencia entre
texto e imagen y una calidad grafica insatisfactoria, lo que abre oportunidades para
futuras investigaciones.

Descriptores

Proyecto Floorify, Inteligencia Artificial, Planos Arquitecténicos 2D, Metodos de
Fine-Tuning, Stable Diffusion, Text-to-Image, CLIP Score.



Abstract

In the contemporary world, Artificial Intelligence models have gained increasing
visibility and importance in society. In this context, we present the Floorify project,
which explores the use of Fine-Tuning techniques in Stable Diffusion models to
automatically generate 2D architectural plans. Using visual and textual data, different
fine-tuning methods were evaluated, with Text-to-Image identified as the most
suitable for the project’s objectives. The goal was to train models capable of linking
textual descriptions with images of architectural plans, assessing the quality and
coherence of the results using metrics such as CLIP Score. As a result, the model was
successfully adjusted for 2D architectural plan generation. However, the outcomes
still presented limitations, such as inaccuracies in the text-to-image relationship and
unsatisfactory graphical quality, opening up opportunities for further research.

Keywords

Floorify Project, Artificial Intelligence, 2D Architectural Plans, Fine-Tuning
Methods, Stable Diffusion, Text-to-Image, CLIP Score.

IT



Indice general

Indice general 111
Indice de figuras \%
Indice de tablas VII
1. Introduccién 1
1.1. Planteamiento . . . . . . . . . . . 1
1.2. Contexto del Trabajo . . . . . . . . . .. ... . 2
1.3. Motivacion y Justificacion . . . . . ..o 2
1.4. Estructura del documento . . . . . . .. ... .00 3
2. Objetivos del proyecto 5
3. Conceptos tedricos 7
3.1. Imteligencia Artificial (IA) . . . . .. .. .. ... oL 7
3.2. Inteligencia Artificial Generativa . . . . . . . . . .. ... L. 12
3.3. Planos Arquitectonicos y Sus Tecnologias . . . . . .. .. ... ... ... 18
4. Estado del Arte 21
4.1. Generacion de imagenes mediante IA . . . . . . ... 21
4.2. Generacion de Planos Arquitectonicos Mediante 1A . . . . . . . . . . ... 29
5. Técnicas y herramientas 33
5.1. Infraestructura y Ambiente de Desarrollo del Proyecto . . . . . .. .. .. 34
5.2. Conjunto de Datos (Dataset de Imdgenes) . . . . .. ... ... ... ... 34
5.3. Fine-Tuning en Modelos de Stable Diffusion y Sus Métodos . . . . . . . .. 37
5.4. Métricas de Evaluacion de Modelo Generativo . . . . . .. ... .. .. .. 37
6. Aspectos relevantes del desarrollo del proyecto 39
6.1. Pruebas Mediante Modelo Stable Diffusion Estandar . . . . .. .. .. .. 39

I1I



Indice general

6.2. Transformaciones de Los Conjuntos de Datos Elegidos . . .

6.3. Fine-Tuning de Stable Diffusion con el Método Dreambooth y LoRas . . . .

6.4. Fine-Tuning de Stable Diffusion con el Método Misto Line

6.5. Fine-Tuning de Stable Diffusion con el Método Text To_ Image . . . . . .

6.6. Desarrollo de la Interfaz de Pruebas Utilizando Gradio . .

7. Discusion de Resultados

7.1. Evaluacion inicial con Stable Diffusion estandar . . . . . .
7.2. Evaluacion del Fine-Tuning con DreamBooth y LoRas . . .
7.3. Evaluacion del Fine-Tuning con Text-to-Image . . . . . . .
7.4. Comparacion de Métodos y Experimentos . . . . . . . ..

8. Conclusiones y Lineas de trabajo futuras

Apéndices

Apéndice A Plan de Proyecto

A.1. Planificacién del Trabajo . . . . . . . ... ... ... ...
A.2. Fjecucién del Trabajo . . . . . . . ... ... ... ...

Apéndice B Manual de Instalacion

B.1. Infraestructura y Dependencias Utilizadas . . . . . .. ..

B.2. Repositorio e instrucciones para su instalacion y ejecucion

Bibliografia

IV

42
45
48
51
26

59
29
60
62
68

70

73

74
4
75

77
77
82

88



Indice de figuras

3.1.
3.2.
3.3.
3.4.

3.5.
3.6.
4.7.

6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.
6.20.

7.21.
7.22.

Una vision comparativa de la JA [59] . . . . . .. .. ..o 8
Ejemplo del generador y el discriminator de las GANs [35]. . . . . . . ... .. 14
Arquitectura de las GANs [13]. . . . . . .. ... 15
Ejemplos de imagenes generadas con GANs: cebra creada a partir de atributos

de un caballo y viceversa [13]. . . . . . . . ... oo 16
Arquitectura de la técnica de Stable Diffusion [72] . . . . . . .. .. ... ... 17
Ejemplo de plano arquitecténico 2D, creado con AutoCAD (AutoDesk Rewvit) [66]. 20

Comparacién de imégenes de planos arquitecténicos generadas a partir de
cuatro tipos de imdgenes condicionales [55]. . . . . ... 31
Imagen generada con el modelo sin ajustes finos (Stable Diffusion) -1 . . . . . 40
Imagen generada con el modelo sin ajustes finos (Stable Diffusion) -2 . . . . . 40
Imagenes Generadas Después de Ajuste Fino con Dreambooth . . . . . . . .. 46
Experimento 1: imagenes generadas de pruebas mediante el método LoRas . . 47
Experimento 2: imagenes de prueba generadas mediante el método LoRas . . . 48
Imagen generada con el método Misto Line . . . . . .. .. .. ... ..... 50
Experimento 1, Modelol, Prompt 1: imagenes generadas de pruebas mediante
el método Text-to-Image . . . . . . . . . . 52
Experimento 2, Modelol, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image . . . . . . . . . . 52
Experimento 1, Modelo2, Prompt 1: imagenes generadas de pruebas mediante
el método Text-tolmage . . . . . . . . .. 52
Experimento 2, Modelo2, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image . . . . . . . . . . 53
Experimento 1, Modelo3, Prompt 1: imagenes generadas de pruebas mediante
el método Text-to-Image . . . . . . . . . . 53
Experimento 2, Modelo3, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image . . . . . . . . . . 53
Interface de teste Del generador de planos arquitectonicos hecho con Gradio . 57
Grafico ejemplo del entrenamiento del modelo ajustado 1 . . . . . . . ... .. 62
Comparacion de los experimentos de modelos ajustados Text to Image. . . . 67

\Y



Indice de figuras VI

7.23.

B.1.
B.2.
B.3.

Comparaciéon del calculo FID de los experimentos de los modelos ajustados

Text-to-Image . . . . . . . . . L 68
Ejemplo del la estancia remota utilizada - Proyecto Floorify . . . . . . .. .. 80
Ejemplo del entorno cubi - Proyecto Floorify . . . . . . . . ... .. ... ... 81

Repositorio Git Hub - Proyecto Floorify . . . . . . . . . . ... .. ... ... 84



Indice de tablas

4.1.
4.2.
4.3.
5.4.
5.5.
6.6.
7.7.
7.8.
7.9.

7.10.

7.11.
7.12.

7.13.

7.14.

Modelos existentes referencidis en generacién de imagenes - Dalle-E . . . . . .
Modelos existentes referenciais en generacion de imagenes - Stable Diffusion
Modelos existentes referencidis en generacion de imagenes - MidJourney . . . .
Recogido de datasets ptblicos -1 . . . . . ... ... .0 L
Recogido de datasets ptublicos -2 . . . . . . .. ... oL
Evaluacion con Clip Score de la imagen generada con Misto Line . . . . . ..
Evaluacion con Clip Score del modelo estandar Stable Diffusion . . . . . . ..
Evaluacion con Clip Score de las imagenes generadas con Dreambooth - 1
Experimento 1: evaluacion de imagenes generadas con LoRas, mediante al CLIP
Score . ..
Experimento 2: evaluacion de imagenes generadas con LoRas, mediante al CLIP
SCoTe . .. e
Datos de los entrenamientos y optimizaciones con el método Text-to-Image . .
Experimento 1 Modelo 1: evaluacion de imagenes generadas con Text-to-Image,
mediante al CLIP Score . . . . . . . . . . . .
Experimento 2, Modelo 2: evaluacién de imagenes generadas con Text-to-Image,
mediante al CLIP Score . . . . . . . . . . . .
Experimento 3, Modelo 3: evaluacion de imagenes generadas con Text-to-Image,
mediante al CLIP Score . . . . . . . . . . . . ...

VII

28
28
35
36
20
60

61

61
62



1: Introduccion

En este primer capitulo, se expondran los aspectos clave considerados en el desarrollo
de esta investigacion. Se abordara el problema planteado, el contexto en el que se enmarca,
asi como la motivacion y justificacion que lo sustentan. Ademas, se presentara la estructura
que organiza el contenido del presente documento.

1.1. Planteamiento

En la actualidad, es cada vez mas evidente que tecnologias que en épocas anteriores
eran solo imaginativas o ficticias estdn cada vez mas presentes en nuestra realidad, ya sea
en los ambitos de la tecnologia movil, espacial, industrial, entre otros. Sin embargo, una
de las tecnologias mas visibles en la actualidad es la Inteligencia Artificial. Este campo
de la tecnologia busca simular la inteligencia humana mediante automatizaciones, y se
caracteriza por su gran amplitud, abarcando diversos tipos de estudios, investigaciones,
técnicas de programacion complejas, aplicaciones de conceptos matematicos y reflexiones
filoséficas [34]. Uno de los tipos de inteligencia artificial que ha captado mayor atencién en
los 1ltimos anos por parte de estudios, empresas e incluso de los medios de comunicacion
es el modelo generativo. Estos modelos tienen la capacidad de generar imagenes, videos y
texto en funcion de lo que se les solicite o se entrene para crear de manera artificial. Una de
las areas que ha despertado un gran interés en cuanto a la automatizacién generativa es la
creacion de contenidos y la planificacién de productos o proyectos especificos, los cuales a
menudo deben ser presentados inicialmente a través de dibujos que reflejen el pensamiento
y criterio a seguir para su ejecucion, como ocurre con los planos arquitectonicos. En este
sentido, numerosas empresas y universidades han impulsado investigaciones innovadoras
con el fin de desarrollar nuevas soluciones y herramientas de trabajo.

A pesar de los numerosos beneficios que ofrece el uso de modelos generativos artificiales,
surge la siguiente pregunta: jseria posible emplear una tecnologia generativa ya entrenada
para crear planos de construccion en formato 2D a partir de un simple prompt de texto?
Para abordar este desafio, presentamos el proyecto Florify, cuyo objetivo es desarrollar
una inteligencia artificial generativa capaz de generar planos arquitecténicos sencillos,
automatizando asi el proceso de creacion y disenio de estos planos. En la seccion de Contexto



Introduccion 2

del Trabajo, se detallara el origen de la idea y su relevancia para esta investigacion, mientras
que en los capitulos 3: Conceptos tedricos y 4: Estado del Arte se profundizara en la teoria
y las investigaciones relacionadas con el tema.

1.2. Contexto del Trabajo

Este trabajo se enmarca dentro del contexto del TEFM (Trabajo de Fin de Master), con
el objetivo de culminar el master universitario en Ingenieria Informatica, ofrecido por la
Universidad de Valladolid. La teméatica abordada en esta investigacion surgi6 a raiz de la
asignatura de practicas de I+D+i en informatica, que se desarroll en colaboracion con la
empresa HP SCDS, la cual propuso la idea y el tema de estudio.

La empresa HP SCDS es un centro de innovacion e investigaciéon de HP, que colabora
con universidades para promover la innovacion y la investigacion en areas de actualidad, con
el fin de lograr avances tanto tecnolégicos como humanos. El tema propuesto por HP SCDS
en la asignatura de [+D+i en informatica, abordado en esta investigacién, se denominé
Florify. Este proyecto tiene como objetivo desarrollar un modelo de inteligencia artificial
generativa de imagenes, especificamente orientado a la creacion de planos arquitectonicos
sencillos en formato 2D.

Dado el interés suscitado por el tema, se formalizo un convenio de practicas que
permitié convertirlo en el TFM con el apoyo de HP SCDS. Durante el periodo de la
instancia, el objetivo principal de la empresa fue ofrecer una formacién sélida en diversas
tecnologias de inteligencia artificial generativa, ademas de facilitar la realizacién del estado
del arte en IA y la creacion de planos arquitectonicos mediante tecnologias de inteligencia
artificial. Asimismo, se promovié el desarrollo de una IA generativa capaz de crear planos
arquitectonicos.

1.3. Motivacién y Justificacion

Con la creciente presencia y avance de los medios de automatizacion laboral y los
sistemas inteligentes en diversos sectores industriales y domésticos, se observa que muchas
areas del intelecto y el trabajo han logrado adaptar tareas rutinarias de manera mas
inteligente y eficiente, reduciendo la necesidad de intervenciéon manual constante [12].
Como se ha demostrado en la seccién de Planteamiento de este capitulo, una de las
principales ventajas de utilizar la Inteligencia Artificial Generativa para automatizar los
procesos de creacion de planos arquitectonicos radica en su capacidad para adaptarse,
generando numerosos beneficios tanto para los profesionales del disefio arquitectonico como
para una amplia gama de personas. Ademads, esta tecnologia aborda cuestiones sociales
relevantes dentro de este ambito, ofreciendo soluciones innovadoras que trascienden las
necesidades tradicionales del sector.

Por ejemplo, personas sin conocimientos en dibujo arquitectonico y sin recursos para
contratar a un especialista podrian crear los planos de sus futuras viviendas de manera



Introduccion 3

sencilla y sin costes adicionales. Estos planos podrian presentarse como bocetos ante los
organismos responsables para su revision técnica, detallada y posible aprobaciéon, como
los Colegios de Arquitectos, y, posteriormente, al Ayuntamiento para su aprobacién final,
conforme a la legislacién vigente de la LOE (Ley de Ordenacién de la Edificaciéon) en Espana
[23]. De este modo, una persona con pocos conocimientos en construcciéon podria obtener
una primera visualizacion de un diseno arquitecténico simple, sin necesidad de contar con
un profesional en la fase inicial del proyecto. Ademas, este enfoque representa un concepto
completamente sostenible, eliminando el uso de papel y otros medios contaminantes
comunes, tal como ya se realiza con softwares comerciales en los ambitos de la arquitectura
y la ingenierfa. En la actualidad, existen programas informéaticos comerciales que permiten
este proceso de generaciéon de planos. Sin embargo, la mayoria son de pago y requieren
ciertos conocimientos en el uso de herramientas de disenio. Este tema, junto con las
tecnologias existentes, serd abordado en el 4: Estado del Arte.

Otro ejemplo relevante que justifica la investigacion de una IA generativa de planos
es la complejidad de su desarrollo. Aunque la idea pueda parecer simple y repetitiva,
resulta extremadamente desafiante crear una IA capaz de generar automaticamente planos,
integrando conceptos vectoriales, mediciones y todos los aspectos técnicos que generalmente
realiza un ser humano en un software de diseno convencional. No obstante, el principal
enfoque de esta investigacion, tal como se describe en el capitulo 2: Objetivos del proyecto
sobre los objetivos, sera centrarse en la generacion de planos sencillos a partir de prompts de
texto. Ademas, lo que motiva esta investigacion es la intencion de abordar un tema complejo
e innovador como la inteligencia artificial y sus diversas aplicaciones, un campo cada vez
mas relevante y en constante evolucion en nuestra sociedad. Esta investigacién también
tiene como propodsito explorar tanto conceptos novedosos como aprovechar tecnologias
consolidadas, como la tecnologia Stable Diffusion, con el fin de adaptar un modelo conforme
a los objetivos establecidos en este estudio.

1.4. Estructura del documento

El presente documento se estructura de la siguiente forma:

= Capitulo 1: Introduccion. En este capitulo se presenta el problema abordado en
la investigacion, el contexto en el que se enmarca y los aspectos que justifican su
relevancia e importancia.

» Capitulo 2: Objetivos del proyecto. En este capitulo se detallan los objetivos
generales y especificos que guiaron y orientaron la investigacion, estableciendo la
direccion del trabajo .

» Capitulo 3: Conceptos tedricos. Este capitulo facilita la comprension del trabajo
al explicar los conceptos tedricos fundamentales necesarios para el desarrollo de la
investigacion.



Introduccion 4

s Capitulo 4: Estado del Arte. En este capitulo se presenta el estado del arte
recopilado durante el periodo de practicas en la estancia I+D+i. Se identifican
trabajos previos relacionados con el tema de la investigacion y se analiza el panorama
actual de las tecnologias de IA y generacion de planos arquitectonicos disponibles en
el mercado, tanto de c6digo abierto como comerciales.

= Capitulo 5: Técnicas y herramientas. En este capitulo se describe la metodologia
utilizada en la investigacion, detallando los requisitos esenciales para desarrollar el
modelo generativo de planos arquitecténicos. Ademds, se explican los complementos
utilizados, como la infraestructura, conjuntos de datos, métodos de ajuste fino y
métricas aplicadas para evaluar tanto el desarrollo algoritmico como los resultados
experimentales del modelo.

= Capitulo 6: Aspectos relevantes del desarrollo del proyecto. En este capitulo
se narran los pasos del desarrollo, incluyendo las transformaciones en los conjuntos
de datos seleccionados y el ajuste de modelos de Stable Diffusion mediante técnicas
como Dreambooth, LoRAs, Text-to-Image, entre otros, con el fin de generar un modelo
generativo adaptado a las necesidades del proyecto.

= Capitulo 7: Discusion de Resultados. En este capitulo se presentan los resultados
obtenidos para cada modelo, evaluados mediante las métricas CLIP Score 'y FID
(Fréchet Inception Distance). Ademas, se analizan las funciones de pérdida durante
el entrenamiento, realizando diferentes anélisis y profundizando en cada una de las
conclusiones derivadas de los resultados obtenidos.

= Capitulo 8: Conclusiones y Lineas de trabajo futuras. Este capitulo expone
las conclusiones finales de la investigacién y propone diversas formas de continuar el
trabajo iniciado en el futuro, explorando nuevas posibilidades y desarrollos.

= Apéndice A. Plan de Proyecto. En este apéndice se describen las herramientas
utilizadas y la metodologia seguida en el proyecto, se detalla el plan inicial de trabajo
y se realiza un breve seguimiento de la planificacién y desarrollo del proyecto en sus
primeras etapas.

= Apéndice B. Manual de Instalacion. En este apéndice se describen las herra-
mientas utilizadas y la metodologia seguida en el proyecto, se detalla el plan inicial
de trabajo y se realiza un breve seguimiento de la planificacion y desarrollo del
proyecto en sus primeras etapas.



2: Objetivos del proyecto

Para definir de manera mas precisa la meta a alcanzar con esta investigacion, hemos
establecido una serie de objetivos que guiaran el desarrollo del proyecto en cuestién.

Objetivos Generales

Se ha establecido un objetivo general que captura la esencia del problema, el cual
orienta y da coherencia al desarrollo de la investigacion:

= Desarrollar un modelo capaz de generar imagenes de planos arquitecto-
nicos en 2D a partir de un simple prompt de texto introducido por el
usuario. El proyecto debe incluir una interfaz grafica web que permita al usuario
interactuar de manera intuitiva y generar las imagenes de planos arquitectonicos de
acuerdo con especificaciones sencillas y comunes.

Objetivos Especificos

Con base en el objetivo general, se plantean los siguientes objetivos especificos:

= Llevar a cabo una investigacion con el estado del arte sobre generacion
de imagenes mediante IA (Inteligencia Artificial) y generacién de pla-
nos mediante TA. En ambas investigaciones, sera necesario verificar los modelos
inteligentes y algoritmos existentes, tanto en modalidad publica (Open Source), dis-
ponibles para estudios y modificaciones, como los modelos comerciales, para entender
cémo funcionan las aplicaciones disponibles en el mercado. Ademads, se investigaran
métricas especificas aplicadas en modelos generativos de imagenes, para evaluar
cémo validar el aprendizaje y la calidad de un modelo sencillo.

= Buscar conjuntos de imagenes de planos arquitecténicos publicos dis-
ponibles en la web. Todos los conjuntos de datos recopilados deben detallarse
mediante una lista informativa, que incluya la diferencia entre ellos y el nimero



Objetivos del proyecto 6

total de imagenes por conjunto. Después de analizar los conjuntos de datos, se
seleccionara el que se utilizara para el entrenamiento del modelo. Posteriormente, se
realizaran las transformaciones y limpiezas de datos necesarias para su aplicacion en
el entrenamiento del modelo.

= Utilizar un modelo preexistente y entrenado para realizar un Fine- Tuning.
En caso de utilizar un modelo ya entrenado, serd necesario ajustar los pesos del
modelo al conjunto de imagenes seleccionado para el entrenamiento, realizar el
entrenamiento de la IA y luego probar la generacién de imagenes de planos.

» Crear una demostraciéon del modelo y realizar pruebas mediante una
interfaz grafica con la biblioteca de Python, Gradio, para verificar los
resultados generativos en tiempo real.

= El sistema debe permitir la descarga de imagenes en diferentes formatos.
Los formatos de imagen disponibles deben incluir formatos RGB comunes como JPG
o PNG, y, si es posible, formatos vectoriales editables como SVG y AutoCAD.

= Probar el modelo generativo utilizando métricas algoritmicas especificas o
mediante andlisis y pruebas con observaciéon humana. Esto permitira verificar
la calidad de las imagenes generadas y la precision en relaciéon con los requisitos
especificados en el prompt de texto que guia la generacién de la imagen.



3: Conceptos teodricos

Para una mejor comprensién del tema tratado en este trabajo, es fundamental realizar
un estudio bibliografico y tedrico sobre Inteligencia Artificial y sus diferentes areas, In-
teligencia Artificial Generativa, asi como sobre Planos Arquitecténicos y las tecnologias
asociadas. Ademas, se llevard a cabo un analisis de las tecnologias y modelos ya entrenados
que actualmente se encuentran presentes en este campo. Los conceptos mencionados ante-
riormente estan profundamente vinculados al proyecto desarrollado en esta investigacion y
seran abordados en este capitulo de manera estructurada por secciones.

3.1. Inteligencia Artificial (IA)

Actualmente, el campo de estudio y trabajo de la inteligencia artificial es uno de los
mas vastos y expansivos en el mercado tecnolégico. Gracias al aumento y almacenamiento
de datos por parte de diversas instituciones y empresas, ha sido posible desarrollar modelos
de aprendizaje de alto rendimiento, que buscan automatizar y optimizar la eficiencia de
procesos manuales y repetitivos que anteriormente eran realizados por seres humanos
[46]. No obstante, a pesar del reconocimiento y prestigio que la inteligencia artificial ha
adquirido en la actualidad, es importante entender que este concepto no es nuevo. Para que
existan modelos de aprendizaje tan sofisticados como los actuales, fue necesario atravesar
diferentes etapas de estudio, estabilidad y avance.

El término Inteligencia Artificial (IA) se define como una tecnologia computacional
capaz de simular la inteligencia humana en la resolucién de problemas matematicos,
estadisticos y procesos repetitivos, con la capacidad de aprender patrones a partir de
datos de diferentes conceptos. Ademas, posee una capacidad algoritmica para identificar
materiales y elementos del entorno humano [46]. Lépez y Messenger (2017) mencionan que
los conceptos de inteligencia artificial deben ser entendidos a través de dos concepciones
fundamentales: 1A Débil e IA Fuerte, que se corresponden con las siguientes definiciones:
"La IA es la ciencia e ingenieria que permite disenar y programar ordenadores para realizar
tareas que requieren inteligencia. La [A es la ciencia e ingenieria que permitira replicar la
inteligencia humana mediante maquinas'(Lopez y Meseguer, 2017, p. 8) [61].



Conceptos teoricos 8

El concepto de inteligencia artificial se divide entre IA Débil e IA Fuerte. Esta distincion
fue propuesta en 1980 por el filésofo John Searle, quien intentaba demostrar la dificultad
de crear una [A Fuerte. Segiin sus estudios, la inteligencia artificial débil se refiere al
diseno y creacién de IAs que exhiben comportamientos inteligentes orientados a tareas
muy especificas. En contraste, la IA Fuerte se relaciona con una inteligencia general, con
conocimientos técnicos en diversas areas, sentimientos, creatividad, y la capacidad de
distinguir lo real de lo irreal en su razonamiento, lo que implica una simulaciéon completa
del cerebro humano. Segin Lopez y Meseguer (2017), los avances actuales en A son
ejemplos de TA Débil, que se enfoca en una inteligencia especifica y no general [61].

El campo de la Inteligencia Artificial en la actualidad abarca una gran variedad de areas
de aprendizaje automatico, técnicas de programaciéon y campos de estudio. Entre los mas
conocidos se encuentran el Machine Learning y el Deep Learning, que se engloban dentro
del campo denominado ciencia de datos. Este campo tiene como objetivo trabajar con
grandes volumenes de datos para realizar estudios, predicciones y deducciones mediante la
aplicacion de ciencias matematicas y estadisticas a través de algoritmos [48]. Su propésito
es explicar comportamientos, identificar tendencias e incluso hacer previsiones de mercado,
ayudando a empresas y organismos publicos a obtener mejores perspectivas sobre mercados
futuros, aumentar beneficios y atraer visibilidad publica, basandose en diversos tipos de
analisis de datos y filtros [48]. Ademés, cada vez que se menciona alguna de las dreas de A,
estamos hablando también de la ciencia de datos, ya que todos los métodos de aprendizaje
requieren conjuntos de datos que deben ser analizados, limpiados y generalmente ser
de gran escala para entrenar nuevos modelos inteligentes. Este enfoque permite llevar a
cabo automatizaciones para resolver problemas de regresion y clasificacion, aplicandose
a diversos fines y métodos en campos como Vision Computacional, Procesamiento de
Lenguaje Natural e IA Generativa.

Artificial Intelligence

Alinvoives teshniques that equip computers to
emulate human behavior, enabling them to lear,
make decisions, recognize pattems, and solve:
complex problems in a manner akin to human
inteligence.

Artificial Intelligence

Machine Learning

ML is a subset of Al, uses advanced algorithms to
detect patterns in large data sets, allowng
Imachines to leamn and adapt. ML algorithms use

Deep Learning

DL s a subset of ML which uses neural networks
{or in-depth data processing and analytcal tasks. _
DL leverages multiple layers of artificial neural Deep Learning
networks to extract high-level features from raw
input data, simulating the way human brains
perceive and understand the worl,

Generative Al
(Generative Al is a subset of DL models that
generates content like lext, images, or code based

Al

on pre
models detect patierns and create outputs without
explict instruction, using a mix of supervised and
unsupervised learing.

Figura 3.1: Una visién comparativa de la 1A [59]

Como se ha mencionado anteriormente, el concepto de Inteligencia Artificial es am-
plio, abarcando diversas areas y métodos aplicables en el estudio y desarrollo de nuevas
tecnologias. En las subsecciones siguientes, exploraremos brevemente qué es Machine
Learning y, en particular, Deep Learning, que seran fundamentales para comprender como



Conceptos teoricos 9

se caracteriza el desarrollo de IAs Generativas, asi como su estrecha relacién con el tema
tratado en esta investigacion.

Machine Learning

El término "Machine learning"fue utilizado por primera vez en 1959 por Arthur Samuel,
y se refiere a una tecnologia y area de estudio que utiliza algoritmos matematicos para
que las computadoras identifiquen patrones en grandes volimenes de datos con el objetivo
de realizar predicciones o elaborar analisis predictivos sobre temas especificos. " Machine
learning"se resume en el aprendizaje automatico mediante scripts, aprovechando el auge
de los datos almacenados en internet y por las empresas a partir de los anios 2000. Segin
Alecrim (2018, trad. del portugués), el aprendizaje automatico es un sistema que puede
modificar su comportamiento de manera auténoma basdndose en su propia experiencia [6].
Este proceso permite realizar modificaciones a través de reglas légicas y reconocimiento
de patrones dentro de un conjunto de datos, generados a través de reglas definidas para
automatizar un sistema o funcién especifica. Segiin Arthur Samuel (1959, citado por Géron
2019, p.4, trad. del portugués) [37], el aprendizaje automaético es el campo de estudio que
otorga a las computadoras la habilidad de aprender sin ser programadas explicitamente.
De este modo, el concepto de Machine Learning se divide en dos vertientes principales:
aprendizaje supervisado y no supervisado.

Sin embargo, actualmente el area de Machine Learning no se limita solo a estas dos
vertientes. Hoy en dia, también contamos con métodos de aprendizaje por refuerzo, que
permiten la mejora continua de los modelos mediante la interaccién con su entorno. A
continuaciéon, se presenta la definicion de cada uno de estos enfoques:

» Aprendizaje Supervisado: Segin Géron (2019, p. 8, trad. del portugués), En
el aprendizaje supervisado, el conjunto de entrenamiento que se proporciona al
algoritmo incluye las soluciones deseadas, llamadas etiquetas [37]. Las tareas de
clasificacion y regresion lineal son algoritmos tipicos de aprendizaje supervisado. Las
Definiciones de clasificacion y regresion:

o Clasificacién: Se define Clasificacién como .“ccién o efecto de clasificar, de
reunir en clases y en grupos respectivos, segtin un sistema o método. Un ejemplo
es hacer la clasificacion de correos electrénicos nuevos como spam o normales.

» Regresion linear: Matematicamente, la 'regresion lineal” es el 'proceso de
trazar una linea recta a través de los datos en un diagrama de dispersion. La
linea resume esos datos, lo cual es 1til cuando hacemos predicciones.” (Khan
Academy, 2022, trad. del portugués)[2]. Con los datos en regresién, es posible
hacer predicciones de un mercado financiero y clasificaciones.

= Aprendizaje no Supervisado: El aprendizaje no supervisado tiene como objetivo
aprender de forma auténoma, sin la necesidad de instrucciones o etiquetas de datos
proporcionadas previamente. Este tipo de aprendizaje se utiliza para diversos fines



Conceptos teoricos 10

algoritmicos, como la deteccién de anomalias, la identificacién de novedades y la
busqueda de agrupaciones naturales en grandes conjuntos de datos. En este enfoque,
la inteligencia artificial intenta aprender de nuevos datos que difieren de los presentes
en el conjunto de entrenamiento, realizando un analisis de patrones. Un ejemplo
de este algoritmo seria el siguiente: si tienes miles de fotos de perros y el 1% de
ellas son de Chihuahuas, un algoritmo de deteccion de novedades no deberia tratar
las nuevas fotos de Chihuahuas como novedades. Por el contrario, los algoritmos de
deteccion de anomalias podrian considerar estos perros como tan raros y diferentes
de otros que probablemente los clasificarian como anomalias. (Géron, 2019, p. 11,
trad. del portugués)[37]

= Aprendizaje por Refuerzo: El principal objetivo del aprendizaje por refuerzo
es utilizar un algoritmo que aprenda a partir de su propia experiencia, empleando
la técnica de ensayo y error. Este enfoque es ampliamente utilizado en areas como
juegos, gestion de recursos y roboética, ya que se basa en el método de recompensas
para acelerar el aprendizaje del algoritmo. En el aprendizaje por refuerzo, los
desarrolladores crean un sistema para recompensar comportamientos deseados y
penalizar comportamientos negativos. Se asignan valores positivos a las acciones que
se desean fomentar, incentivando al algoritmo a utilizarlas, mientras que se asignan
valores negativos a las acciones indeseadas para desalentaras. De esta manera, se
programa a la inteligencia artificial para buscar recompensas méximas y a largo plazo,
con el objetivo de alcanzar una solucion 6ptima. Estas metas a largo plazo ayudan a
evitar que el aprendizaje se quede estancado en objetivos menos importantes. Con el
tiempo, la IA aprende a evitar las acciones negativas y a centrarse en las positivas.
(Hashemi-Pour, 2024, trad. del inglés)[38].

Deep Learning (Redes Neuronales)

La subarea de Inteligencia Artificial denominada Deep Learning ofrece un enfoque
mas profundo del aprendizaje automatico, utilizando redes neuronales profundas para
resolver problemas complejos. Su objetivo es simular el cerebro biologico, pero de manera
algoritmica, matematica y logica [37]. Actualmente, existen diversos modelos de redes
neuronales que se emplean en la practica; algunos ejemplos incluyen: Multi- Layer
Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Generative Adversarial Networks (GAN), Transformers,
entre otros modelos que estéan siendo desarrollados continuamente para aportar innovacion
y resolver problemas que requieren una gran cantidad de datos. Ademas, el Deep Learning
es uno de los métodos mas complejos para el desarrollo de modelos inteligentes.

El area de Deep Learning tiene principios fundamentales que deben ser considerados.
No se detallaran todos en esta investigacion, ya que son conocimientos basicos para los
lectores de este trabajo. A diferencia de los métodos de Machine Learning que requieren la
extraccion manual de caracteristicas y generalmente se basan en aprendizaje supervisado,
los modelos de Deep Learning son capaces de aprender directamente de las muestras
de entrenamiento, extrayendo automaticamente las caracteristicas relevantes durante el



Conceptos teoricos 11

proceso de entrenamiento [37]. Aunque Deep Learning se considera mas una técnica de
aprendizaje no supervisado, existen diferentes aplicaciones para los distintos tipos de
aprendizaje. A continuacion, se enumeran los principios fundamentales de esta tecnologia:

= Redes Neuronales Artificiales: El area de Deep Learning utiliza redes neuronales
multicapa, ya que cada capa esta formada por neuronas artificiales encargadas de
procesar la informacion. Este principio es esencial para trabajar con el enfoque de
aprendizaje profundo [37].

= Entrenamientos: Los procesos de entrenamiento en Deep Learning pueden ser
largos y complejos de ajustar, ya que dependen del uso adecuado de optimizadores,
funciones de activacién y otros conceptos fundamentales que forman parte de una
red neuronal, ademas de la correcta asignacion de los pesos. Estos elementos deben
aplicarse de manera precisa segin los analisis realizados para resolver distintos
problemas de aprendizaje. Para verificar los ajustes de los pesos, generalmente se
utilizan algoritmos de optimizacion como el Gradient Descent (funcién de pérdida)
37].

= Arquitecturas: En la actualidad, existen diversas arquitecturas y modelos entrena-
dos que se utilizan para abordar diferentes tipos de problemas, tales como clasificacién
y regresion. Ademas, todas las redes neuronales requieren grandes volimenes de
datos de entrenamiento para aprender de manera eficaz. Dependiendo del tipo de
datos, como en el caso del trabajo con imagenes usando la arquitectura CNN, es
fundamental contar con una infraestructura computacional adecuada, empleando
Graphics Processing Unit (GPU) para procesar los datos de manera més agil y efi-
ciente durante las fases de entrenamiento [49]. Asimismo, casi todas las arquitecturas
utilizan el algoritmo Backpropagation, que es clave para el ajuste de los pesos y la
evaluacion de la funcién de pérdida [37].

Actualmente, esta area se utiliza en problemas especificos que se han convertido en
campos especializados de estudio y aplicaciéon de diversas redes neuronales, las cuales
permiten resolver una amplia gama de problemas e impulsar innovaciones. A continuacién,
se enumeran algunas de las areas, aplicaciones y las redes neuronales mas empleadas en
cada uno de estos campos:

» Visiéon Computacional: Este campo tiene como objetivo entrenar redes neuronales
para desarrollar modelos capaces de aprender a partir de la informacién contenida
en imagenes digitales, videos y otros tipos de datos visuales. La finalidad es realizar
tareas de reconocimiento y clasificacion mediante la identificacion de patrones que el
modelo ha aprendido durante su entrenamiento. En este ambito, las redes neuronales
profundas, como las Convolutional Neural Networks (CNN), son fundamentales. Estas
redes permiten entrenar modelos utilizando imagenes etiquetadas para clasificar e
identificar objetivos especificos dentro de una imagen o video [47].



Conceptos teoricos 12

» Procesamiento de Lenguaje Natural (NLP): Enfocado en la interaccién y
comprension del lenguaje entre las computadoras y los seres humanos, el Proce-
samiento de Lenguaje Natural busca que las maquinas entiendan idiomas, habla,
sentimientos y otros aspectos derivados del lenguaje humano, para interpretar y
generar textos en lenguaje natural. Entre las herramientas mas utilizadas en NLP se
encuentran los Transformers para la generacion de texto, traduccion de idiomas y
analisis de sentimientos. También se emplean Redes Neuronales Recurrentes (RNN)
para el procesamiento de secuencias y Long Short-Term Memory (LSTM) para
modelos de datos temporales. Un ejemplo destacado de esta tecnologia es ChatGPT
de OpenAlI, un modelo diseniado para generar textos y responder preguntas de los
usuarios humanos sobre una amplia variedad de temas [46].

s JA Generativa: Este campo ha ganado gran notoriedad en los tdltimos anos y se
centra en el desarrollo de modelos de aprendizaje profundo capaces de generar texto,
imagenes, videos y otros contenidos a partir de lo que han aprendido durante su
entrenamiento. La [A generativa combina diferentes tipos de tecnologias y modelos
de aprendizaje para producir contenido. Esta area es una de las mas complejas, ya
que demanda una infraestructura de hardware avanzada para entrenar las redes
neuronales. Entre las tecnologias més destacadas en este campo se encuentran las
Generative Adversarial Networks (GAN), Transformers, y Stable Diffusion, entre
otras. En la proxima seccion, se profundiza sobre este tema, que es el enfoque
principal de este trabajo [13].

Los campos de estudio e investigacion en el area de Deep Learning han experimentado
una evolucion constante con el paso del tiempo. Tal como se mencioné anteriormente, han
surgido numerosas subareas y ramificaciones a partir de esta evolucién. No obstante, es
evidente que cada una de estas ramificaciones requiere un perfeccionamiento y desarrollo
continuo, tanto en términos algoritmicos como en la parte investigativa tedrica. Este
proceso ha ocurrido a lo largo de varias décadas, produciendo resultados asombrosos que
han beneficiado a la sociedad. Sin embargo, a pesar de estos avances, atin no se ha logrado
desarrollar una IA fuerte, como se explic6 anteriormente.

3.2. Inteligencia Artificial Generativa

En los ultimos afios, la sociedad ha logrado crear innovaciones tecnolégicas extraor-
dinarias que, durante gran parte de la historia humana, solo existian en la imaginacién.
Una de estas grandes y revolucionarias creaciones son las [As generativas, cuyo objetivo
especifico es generar contenidos de diversos tipos, como imagenes, videos, audio, textos,
conversaciones y muchas otras cosas, de una manera diferente, a partir de contenidos que
no existen, sin necesidad de ser creados por manos o intelectos humanos. Segin Foster
(2019), un modelo generativo puede definirse de manera amplia como aquel que describe
cémo se genera un conjunto de datos en términos de un modelo probabilistico. Al tomar
muestras de este modelo, es posible generar nuevos datos [28].



Conceptos teoricos 13

La inteligencia artificial generativa no es necesariamente una tecnologia reciente. His-
toricamente, ya en la década de 1960 existian proyectos destinados a crear méaquinas
capaces de generar contenido de forma automatica y lograr cierto grado de inteligencia
para la automatizacion. Un ejemplo de ello es el proyecto ELIZA, de 1966, considerado
el primer chatbot de la historia, presentado por el profesor Joseph Weizenbaum. FLIZA
tenia como objetivo simular una conversacion de psicoterapia. Sin embargo, los proyectos
de esa época no contaban con los algoritmos complejos, la gran cantidad de datos para
entrenamiento ni la tecnologia actual, elementos esenciales para crear una IA que genere
contenido de manera efectiva y precisa [57]. Este avance se estanco y solo se reactiv en
2014 con las tecnologias de aprendizaje profundo, aplicadas en una nueva arquitectura de
Deep Learning denominada Generative Adversarial Networks (GAN), presentada por el
cientifico lan Goodfellow [28]. Este estancamiento de la tecnologia, también conocido como
los periodos de invierno de la inteligencia artificial, constituyé un periodo histérico en el
cual la IA no experimentd avances significativos debido a diversos desafios estructurales,
tanto tecnologicos como éticos. Estos desafios estuvieron impulsados por el pensamiento
critico y las limitaciones tecnologicas de la época en la que ocurrieron los tres inviernos de

la IA [75].

Actualmente, el campo de la IA generativa estd en constante expansiéon, con diversos
tipos de algoritmos y arquitecturas que tienen la capacidad de generar contenidos con
una calidad sorprendente. En esta investigacion, nos centraremos en la tecnologia que
dio origen y revoluciono las IAs generativas, conocida como GAN, y en la arquitectura
que se empleara en esta investigacion, denominada Stable Diffusion. En las siguientes
subsecciones, explicaremos cada una de estas tecnologias, destacando sus conceptos y
ventajas.

Generative Adversarial Networks (GAN) - 2014

Las GANs (Generative Adversarial Networks) fueron una de las primeras arquitecturas
generativas eficaces y se han demostrado sumamente utiles para generar imagenes, textos
y musica. Su arquitectura se basa en una logica algoritmica de competencia adversarial,
compuesta por dos elementos clave: el generador y el discriminador. El generador es el
responsable de crear nuevos contenidos de manera realista, mientras que el discriminador
tiene como objetivo identificar si el contenido generado es original o si ha sido producido
por una IA, es decir, reconocer lo que seria un contenido "falso.° "fake". El proceso funciona
como una competencia en la que el generador intenta constantemente mejorar la calidad
de sus contenidos para enganar al discriminador, mientras que este tltimo se esfuerza
por mejorar sus capacidades para identificar correctamente los contenidos generados. La
interaccién continua entre ambos adversarios contintia hasta que el generador produce
contenidos tan convincentes que el discriminador ya no puede diferenciar entre lo generado
y lo real. Este proceso de competencia es lo que permite que las GANs mejoren con el
tiempo, generando resultados de alta calidad que, en muchos casos, son indistinguibles de
aquellos creados por seres humanos [28].



Conceptos teodricos 14

Generated Data Driscriminator Real Data
‘|{ﬂ. - — FAKE REAL — -
10 . — FAKE REAL —
(==)
T. I'. '.
L REAL ReaL——— | @ 4% '@
= ATHECTHET T

Figura 3.2: Ejemplo del generador y el discriminator de las GANs [35].

Para que toda esta logica funcione y se generen imagenes de manera efectiva, la arqui-
tectura de las GANs opera de forma compleja, requiriendo una ecuacién extremadamente
desafiante. El generador se basa en una red neuronal con arquitectura MLP (Multi-Layer
Perceptron) o CNN (Convolutional Neural Network), siendo esta tltima la més tradicional
para el procesamiento de imégenes. El generador analizard un gran conjunto de datos
de entrenamiento, identificando los atributos presentes en los mismos. Por otro lado, el
discriminador también utiliza una red neuronal que examinara el conjunto de datos de
entrenamiento y distinguira los atributos de los datos de forma independiente. A través de
este proceso, el generador y el discriminador interactiian y se entrenan de manera conjunta.
A continuacién, se detallan los pasos clave en este proceso:

= Generador: El generador modifica algunos atributos de los datos al agregar ruido o
realizar cambios aleatorios sobre la imagen o los datos. Estos datos modificados son
luego enviados al discriminador para su analisis [13].

s Discriminador: Por su parte, el discriminador, después de procesar los datos
proporcionados por el generador, realiza un calculo probabilistico para verificar si los
datos generados realmente pertenecen al conjunto de datos original. El discriminador
analiza estos datos, identificando sus atributos, y proporciona resultados y orientacion
para el generador. Este, a su vez, tiene como objetivo reducir la aleatorizacion del
ruido sobre las imagenes, buscando asi mantener un equilibrio en lo que se esta
generando [13].

Segun Amazon AWS, el generador intenta maximizar la probabilidad de error del
discriminador, mientras que este tltimo busca minimizar dicha probabilidad de error.
Durante las iteraciones de entrenamiento, tanto el generador como el discriminador
evolucionan y se enfrentan de manera continua hasta alcanzar un estado de equilibrio.
En este estado, el discriminador ya no es capaz de reconocer los datos sintetizados [13].



Conceptos teoricos 15

En este momento, el proceso de entrenamiento finaliza. A continuacién, se presenta un
ejemplo de la arquitectura de GAN:

——

o Generator
z Sample

R

Generator

Loss

1]

Discriminator

Discriminator

Loss

Figura 3.3: Arquitectura de las GANs [13].

Una de las dudas que siempre surgen al presentar la arquitectura de las GAN es
cOmo se generan realmente las imégenes y otros tipos de datos. En esta investigacion,
nos enfocaremos especificamente en el contexto de las imagenes, que pueden seguir el
siguiente ejemplo presentado por Amazon AWS [13]. Si la arquitectura recibe fotos de
rostros humanos en su conjunto de datos de entrenamiento, y el objetivo es modificar el
rostro humano o crear uno nuevo, el generador debe identificar los principales atributos del
rostro y generar algo aleatorio. A medida que el proceso avanza, el discriminador analiza
la imagen generada e identifica los atributos de un rostro humano que se asemejan a los
que estan contenidos en el conjunto de datos de entrenamiento. Este proceso continta
hasta que el generador produce una imagen que cumple con los criterios del discriminador.

Un ejemplo similar ocurre con el cambio de estructuras y colores en diferentes objetos
y muestras, como se describe en la figura 3.3. En este caso, el generador recibe imagenes
de cebras en su conjunto de entrenamiento, mientras que el discriminador recibe imagenes
tanto de cebras como de caballos, para aprender los atributos de ambos animales. A partir
de ahi, el generador intenta crear una cebra que tenga los atributos de un caballo. El
discriminador proporciona las indicaciones necesarias para que el generador modifique la
imagen hasta que la cebra tenga la estructura de una cebra, pero con los atributos de un
caballo, lo que resulta en la modificacién de los atributos de la imagen generada [13].

Actualmente, los modelos GAN siguen siendo muy populares, con nuevos métodos y
algoritmos aplicados a una amplia variedad de problemas con el objetivo de generar datos.
Sin embargo, las GANs fueron el punto de partida para el desarrollo de nuevas tecnologias
generativas, que abordaremos en este trabajo, y que han ganado un gran reconocimiento
por parte de desarrolladores y empresas tecnoldgicas.



Conceptos teodricos 16

- P AT
1 ‘\\_‘tk'\m I ;
zebra —» horse

horse —» zebra

Figura 3.4: Ejemplos de imagenes generadas con GANs: cebra creada a partir de atributos
de un caballo y viceversa [13].

Stable Diffusion y Los Modelos de Difusion

Con el paso de los anos, desde la aparicion de las redes generativas adversarias (GANs),
pioneras en el desarrollo de modelos inteligentes capaces de generar imagenes, han surgido
otras tecnologias que han transformado el campo de la inteligencia artificial generativa.
Uno de estos modelos es el que genera imagenes a través de la arquitectura de difusion,
conocida como Stable Diffusion. Presentada por primera vez en 2022 y desarrollada por
Stability Al esta arquitectura fue considerada una revolucion, ya que era capaz de generar
iméagenes de alta definicion de manera sencilla y, ademés, era completamente de cdédigo
abierto (open source), permitiendo que empresas, desarrolladores y estudiantes pudieran
modificar o adaptar el codigo a sus necesidades. Esto promovié un mayor avance tecnolégico
y aprendizaje en el campo de la JA [67].

Stable Diffusion ha ganado mucha notoriedad no solo por ser de c6digo abierto y generar
imagenes de altisimo calidad, sino también por no requerir infraestructuras computacionales
grandes, complejas y de alto costo, lo que permite a usuarios comunes o empresas con bajo
presupuesto utilizarla, a diferencia de otras tecnologias. Ademas, cuenta con diferentes
métodos de Fine-Tuning sencillos que permiten a cualquier persona adaptar unas pocas
imagenes de manera simple a modelos pre-entrenados, lo que facilita la mezcla de sus
datos y la creaciéon de nuevos conceptos artisticos o experimentales.

Para entender mejor cémo funciona la arquitectura de Stable Diffusion, insertamos la
figura 3.5 a continuaciéon, que representa todos los componentes algoritmicos involucrados
en la generacion de iméagenes a través de la manipulacién de pixeles, ya sea mediante
la interpretacién de texto o el uso de otras imagenes [72]. En esta investigacion, no
profundizaremos en la teoria ni en la explicacion detallada del concepto de iméagenes y



Conceptos teoricos 17

pixeles, ya que se considera un tema de conocimiento basico para los lectores de este
trabajo.

Diffusion Process ——» Eemantiq
Ma

T ! I Latent Space 6onditionina
Z

Denoising U-Net €p 27 Text

Repres
entations

H
~—_—

Figura 3.5: Arquitectura de la técnica de Stable Diffusion [72]

i <D

Pixel Space|
pd

denoising step crossattention  switch  skip connection concat

s Conditioning: Este término se refiere a los datos de entrada en la arquitectura, los
cuales pueden estar compuestos por textos descriptivos, imagenes o representaciones
semanticas. Estos datos son acondicionados por algoritmos especificos; en los casos
de textos, que son los mas comunes, el acondicionamiento se realiza mediante la
tokenizacion de CLIP (Contrastive Language-Image Pre-Training). CLIP analiza
cada palabra del texto y la inserta en un vector especifico. Este proceso se repite
varias veces, enviando varios tokens al predictor de ruido U-Net mediante una
transformacion de texto en iméagenes (pixeles) y capturas semanticas de los datos
realizadas por el CLIP. Asi se efectiian las primeras generaciones de imagenes llenas
de ruido [11].

= Latent Space: El espacio latente es el proceso principal para generar imagenes,
siendo el espacio que recibe texto o iméagenes provenientes del " Conditioning", ya
transformados. En el caso del texto, este llega como tokens, y dentro del espacio
latente se realiza el mapeo en el que se crean los primeros pixeles, basados en los
valores seménticos y caracteristicas capturadas de los mensajes de texto, con la
adicion de ruido. A partir de esto, es posible llevar a cabo el proceso de difusién,
que consiste en una serie gradual de eliminacién de ruidos del vector latente para
crear una representacion limpia de las caracteristicas recolectadas de las imagenes, y
que coincida con la informacién entrenada en el modelo principal. De esta manera,
se puede realizar el proceso de decodificacion de vuelta al espacio de pixeles (Pizel
Space), 1o que da como resultado una imagen generada correspondiente al vector no
latente, es decir, a los mensajes de texto [72].

= Denoising U-Net: La U-Net se conoce comtnmente como el nicleo de la arquitec-
tura, ya que es en esta parte donde se realizan y crean las principales transformaciones.



Conceptos teoricos 18

Se encuentra dentro del componente "Latent Space'. Esta seccion de la arquitectura
estd compuesta por la U-Net, que incluye redes neuronales convolucionales preentre-
nadas con diferentes tipos de imagenes, y cuya funcién principal es predecir el ruido
en las iméagenes para llevar a cabo la limpieza de la foto y su posterior generacion
[11]. El Cross-Attention es otro componente crucial, ya que tiene la capacidad
de enfocar y concentrar las semanticas y patrones de los textos, aplicandolos a la
imagen después de las transformaciones realizadas por el Conditioning. Ademas,
existen las Keys, Queries y Values, que son responsables de toda la légica aplicada
en el espacio latente. Las Queries se combinan con las Keys para calcular y ajustar
los pesos de las redes neuronales, lo que permite un mejor control y enfoque del
mecanismo en el espacio latente. Por lo tanto, podemos considerar el componente
Denoising U-Net como el nicleo que tiene la capacidad de transformar una imagen
formada por ruido aleatorio en una imagen coherente, hermosa y realista, alineada
con el texto recibido a través del espacio no latente (Conditioning) [72].

Actualmente, Stable Diffusion ofrece diversos métodos y modelos disponibles en formato
de cédigo abierto (Open Source), los cuales pueden ser utilizados para una amplia gama
de fines de desarrollo e investigacién. Ademads, existe una gran diversidad de métodos
para realizar Fine-Tuning en los modelos de difusiéon, a través de plataformas como
Stability AI, Hugging Face, entre otras. En la actualidad, los métodos de Fine-Tuning
son ampliamente utilizados en modelos generativos, ya que facilitan significativamente la
adaptacion de un modelo que ha sido entrenado con una gran cantidad de datos a una
tarea especifica, como la generacién de contenido particular, ya sea de texto o imagenes.
Cabe recordar que el Fine-Tuning se define como un método para ajustar los pesos de un
modelo o red neuronal previamente entrenada sobre un conjunto de datos mas pequeno y
personalizado, estableciendo una nueva tarea especifica con esos datos y entrenando el
modelo en consecuencia [7].

Los métodos de Fine-Tuning de Stable Diffusion se abordaran con més detalle en
el capitulo 4: Estado del Arte, ya que esta parte fue realizada de manera sisteméatica
con el objetivo de estudiar y aplicar los métodos de Fine-Tuning de Stable Diffusion
en el desarrollo de este trabajo, realizado durante el proceso de estancia de I+D+i.
Ademas, en el capitulo mencionado, presentaremos en formato de tabla los principales
modelos de diferentes tecnologias de generacion de imagenes, ademéas de Stable Diffusion,
proporcionando un analisis mas profundo sobre el tema.

3.3. Planos Arquitecténicos y Sus Tecnologias

Los planos arquitecténicos han sido de gran importancia en la vida humana desde
que las primeras civilizaciones comenzaron a planificar sus asentamientos. Por ejemplo,
en la civilizacién del Antiguo Egipto (c. 3100-332 a.C.), segin tedricos egiptélogos, la
construccion de las piramides de Guiza se llevé a cabo utilizando planos de construccion
extremadamente detallados. Estos planos, tal como han descubierto los arquedlogos,



Conceptos teoricos 19

indicaban que los antiguos egipcios posiblemente utilizaban cuerdas, varas y dibujos
para planificar y alinear las pirdmides con una precisién astronémica sobre la tierra [74].
Con el tiempo, los planos arquitectéonicos se modernizaron y se volvieron cada vez méas
relevantes en la sociedad contemporanea. Durante mucho tiempo, estos planos fueron
creados mediante dibujos manuales, hasta la llegada de tecnologias que brindaron soporte
y optimizacién a un trabajo que, aunque puede parecer sencillo, puede ser extremadamente
complejo, incluso para los algoritmos mas sofisticados de la actualidad.

Los planos arquitectonicos se definen como un conjunto extenso de dibujos que describen
cada parte de edificios y viviendas, detallando como deben construirse las edificaciones.
Los detalles en un plano de construccién pueden variar, desde los materiales y acabados
hasta la definicién de toda la parte eléctrica y mecanica de un edificio. Estos conjuntos de
dibujos se crean con el proposito de visualizar y planificar un proyecto que se llevara a
cabo en una posible construccién, en colaboracién con un equipo especializado [16]. La
elaboraciéon profesional de planos arquitecténicos suele ser responsabilidad de arquitectos,
aunque es posible que personas no profesionales realicen bocetos, siempre y cuando estos
sean posteriormente revisados por un equipo profesional y aprobados para ser considerados
en el proceso de construccién. En Espana, por ejemplo, existe una ley denominada LOE
(Ley de Ordenacion de la Edificacion), que establece que todos los planos arquitectonicos
realizados por personas no profesionales deben ser revisados y mejorados por un colegio de
arquitectos. Tras su aprobacion, deben ser tramitados ante el ayuntamiento de la ciudad
donde se desea construir el edificio. Lo mismo aplica a proyectos realizados directamente
por un arquitecto [23].

A continuacién, se enumeran algunos de los planos arquitectonicos que se realizan
cominmente en la actualidad:

= Planos de Situaciéon y de Casas: Estos planos pueden presentarse en formatos 2D
o 3D y son particularmente ttiles para visualizar un terreno urbano en su totalidad,
ademas de servir como base para la construccion de una vivienda o la reforma
de un espacio especifico dentro de una edificacién. Son los planos mas conocidos,
generalmente elaborados por arquitectos, y cominmente se les denomina plantas
bajas, ya que ofrecen una representacion del contexto del plano desde una vista
superior [16].

= Planos Mecanicos y Eléctricos: Los planos de este tipo tienen como objetivo
mostrar todos los sistemas de tuberias y la instalacion eléctrica de una edificacién. A
menudo, pueden estar incluidos junto con los planos de situacién y de la casa. Este
tipo de plano generalmente es elaborado por ingenieros especializados en cada area,
quienes posteriormente lo combinan con los planos realizados por los arquitectos

[16].

En el periodo contemporaneo, existen numerosas herramientas disponibles para la
creacion de planos arquitectonicos. Los softwares més utilizados actualmente incluyen
AutoCAD Architecture, Revit (AutoDesk y AutoCAD), Civil 3D, Draft IT, entre otros [20].



Conceptos teoricos 20

Existe una amplia variedad de software en el mercado para la elaboracién de plantas bajas,
algunos mas profesionales y de pago, mientras que otros son mas simples y gratuitos. La
eleccion de la herramienta adecuada generalmente depende de las necesidades especificas
de cada usuario o del tipo de proyecto que se esté desarrollando.

Lo

Figura 3.6: Ejemplo de plano arquitecténico 2D, creado con AutoCAD (AutoDesk Rewvit)
66].

A pesar de la existencia de diversas herramientas para la creacién de planos arquitecto-
nicos, se observa una notable carencia tecnologica en cuanto a la ampliacién y mejora de
este tipo de procesos, especialmente en un momento en que se habla cada vez méas de la
automatizacion del trabajo. Actualmente, existe una gran necesidad de aplicar conceptos
de inteligencia artificial para automatizar el proceso de disenio de planos de casas, ya que
el proceso creativo a menudo puede ser repetitivo y llevar mucho tiempo de creacion para
los profesionales [53]. En el capitulo 4: Estado del Arte, nos centraremos en demostrar
tecnologias y productos comerciales que ya utilizan IA generativa para crear planos, ademés
de presentar investigaciones que intentan automatizar este proceso y guiar el rumbo de
nuestra investigacion.



4: Estado del Arte

Previo a este trabajo, se realiz6 un estudio exhaustivo sobre la cantidad de inves-
tigaciones y las tecnologias disponibles relacionadas con los temas de Generacion de
Iméagenes mediante [A y Generacién de Planos mediante [A. En este capitulo, se presenta
una revision detallada de los temas mencionados, destacando trabajos cientificos clave y
proporcionando una visién general de las 1ltimas tecnologias disponibles, tanto en formato
de cédigo abierto (Open Source) como en productos comerciales. Cabe recordar que esta
investigacion se llevé a cabo originalmente durante la fase de la estancia I+D-i, como se
mencioné en el capitulo 1: Introduccién. Los temas mencionados ya fueron abordados de
manera general en el capitulo 3: Conceptos tedricos, donde se presentaron las teorias y
conceptos mas tradicionales. En este capitulo, profundizaremos més en el conocimiento
sobre estos temas, presentando aspectos mas relevantes que fueron determinantes para la
eleccion de la tecnologia utilizada en el desarrollo del modelo generativo discutido en esta
investigacion.

4.1. Generacion de imagenes mediante TA

Como se mencion6 en el capitulo 3: Conceptos tedricos de esta investigacion, los
modelos generativos han experimentado una evolucion constante, produciendo contenidos
cada vez mas realistas. Es importante recordar que estos modelos se basan en una gran
cantidad de datos que han sido entrenados sobre su arquitectura, con el objetivo de generar
contenido especifico. En este trabajo, nos enfocaremos completamente en la generacién
de imagenes mediante A, un campo que, como hemos visto, ha logrado consolidarse a
través de diversas técnicas y arquitecturas de inteligencia artificial. Como se present6 en
los conceptos tedricos, las inteligencias artificiales generativas alcanzaron su apogeo con
las arquitecturas GANSs, que fueron introducidas en 2014. Sin embargo, con el tiempo han
surgido nuevas arquitecturas que, cada vez mas, son mejores y mas faciles de usar para los
desarrolladores.

En este capitulo, nos centraremos en detallar la tecnologia de Stable Diffusion y
los procesos de generacion de imagenes con esta arquitectura, considerando las diversas

21



Estado del Arte 22

funcionalidades que, por varios motivos que se citaran, nos llevaron a elegirla para llevar a
cabo el desarrollo del objetivo principal de este proyecto.

Como mencionamos anteriormente, la tecnologia Stable Diffusion ha evolucionado
notablemente, produciendo imégenes de alta definicién cada vez mas realistas. Ademas,
ha facilitado su uso para diversos temas de desarrollo, principalmente porque es com-
pletamente Open Source. También ofrece métodos de Fine-Tuning, muchos de los cuales
son proporcionados por la propia Stability Al a través de comunidades de desarrolla-
dores y bibliotecas de programacion de otras empresas tecnolégicas. Asimismo, muchas
comunidades de desarrolladores con un enfoque en Inteligencia Artificial han mejorado y
modificado algunas funcionalidades y entrenamientos de los modelos de Stable Diffusion,
lo que permite realizar Fine-Tunings con diferentes propoésitos de manera mas sencilla.

Los métodos de Fine-Tuning de Stable Diffusion son conocidos como Diffusers Trai-
ning y son proporcionados por la empresa Hugging Face. Su objetivo es ofrecer métodos
algoritmicos ya preparados, para que los desarrolladores puedan ajustarlos facilmente a
sus necesidades. A continuacién, listamos algunos de estos métodos:

= Dreambooth: Es un método utilizado para personalizar modelos de texto a imagen
(text-to-image), como Stable Diffusion, utilizando solo unas pocas imagenes (general-
mente de 3 a 5) de un tema especifico. DreamBooth fue presentado por primera vez
en el articulo cientifico titulado "DreamBooth: Fine-Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation"[65]. Este fue el primer método de ajuste fino
(fine-tuning) desarrollado para Stable Diffusion, permitiendo que el desarrollador
aplique Unicamente unas pocas imagenes para personalizar el modelo, junto con una
unica frase que identifica el tipo de imagen que se desea generar. Es un método
potente, capaz de adaptarse a diversos temas de imagenes, aunque presenta algu-
nas limitaciones en cuanto al entrenamiento de imagenes y frases de identificacion
(embeddings) [41].

» Text-to-Image: Es el nuevo método de ajuste fino para las tecnologias de Stable
Diffusion, que aunque aun se encuentra en fase experimental en 2024, ya esta
disponible para los desarrolladores. Este ajuste es facil de aplicar y extremadamente
poderoso, permitiendo ajustar conjuntos de imégenes de gran escala mediante un
simple archivo .Json, que debe contener una variedad de frases relacionadas con
cada imagen. Con este enfoque, es posible trabajar con temas méas complejos en la
generacion de imagenes, lo que proporciona una amplia gama de interacciones para
generar diferentes tipos de fotos, ilustraciones y dibujos [44].

» LoRa (Low-Rank Adaptation): LoRa es una técnica que optimiza los métodos
de Fine-Tuning de Dreambooth y Text-to-Image, permitiendo un ajuste mas eficiente.
LoRa fue presentado por primera vez en el articulo cientifico titulado 'LoRA: Low-
Rank Adaptation of Large Language Models'[22]. Inicialmente, su propédsito era
ser un método exclusivo para el procesamiento de lenguaje natural (generacién de
texto), pero debido a su versatilidad, se adapté también para los ajustes finos en



Estado del Arte 23

la generacion de imagenes. LoRa permite adaptar modelos previamente entrenados
anadiendo pares de matrices de peso de descomposicion de rango bajo, llamadas
matrices de actualizacion, a los pesos existentes y entrenando solo estos nuevos pesos
anadidos. Esto permite realizar el ajuste fino de manera mas eficiente en términos
de uso de memoria y procesamiento en la GPU, aunque no impide que se generen
modelos mas grandes en cuanto a ocupacion de memoria, lo que puede requerir mas
tiempo de entrenamiento. En general, LoRa es una técnica eficiente para ajustar
grandes modelos de difusion con menos esfuerzo computacional, manteniendo la
capacidad del modelo para generar salidas de alta calidad [43].

Actualmente, todos los métodos mencionados anteriormente estan disponibles de
manera simplificada a través de una biblioteca llamada Diffusers, creada por la empresa
Hugging Face. A través de esta biblioteca, los usuarios pueden acceder completamente a los
algoritmos de Stable Diffusion, desarrollados por Stability Al Esto facilita la posibilidad
de realizar ajustes finos sin necesidad de adaptar todo un contexto algoritmico para
un problema especifico, ya que el Fine-Tuning proporciona esta capacidad de forma
automatica.

Con el respaldo de las comunidades y de la propia Stability AI para realizar ajustes
finos en sus modelos, con el objetivo de resolver diversos problemas, parece muy sensato
optar por un Fine-Tuning para generar imagenes relacionadas con nuestro tema, que es
el desarrollo de un modelo capaz de generar imagenes de planos arquitectonicos. En las
siguientes subsecciones, abordaremos algunos temas clave, como la autoria de las imagenes
creadas por A, asi como los productos y tecnologias disponibles en el mercado en la
actualidad.

Autoria de Imagenes Creadas Por IAs Generativas

Un tema que debe ser abordado al referirse a la inteligencia artificial generativa es
el de los derechos de autor sobre el contenido generado por la [A. Este es un tema que
aun se encuentra en un intenso debate, dado que la tecnologia ha logrado evolucionar
y tener éxito en sus creaciones recientemente. Por ello, se examina y debate quién es el
verdadero propietario de una imagen, texto o video creado por una IA. Segtin investigaciones
realizadas, muchas empresas y especialistas en el tema defienden que solo la persona que
genero el contenido, a través de un texto o prompt, es quien detenta todos los derechos de
autor sobre el contenido especifico generado por la IA [15].

En territorio espanol y europeo en general, se sostiene que las obras producidas de
forma auténoma por agentes artificiales y robots no deben ser elegibles para proteccion de
derechos de autor, con el fin de respetar el principio de originalidad, el cual esta vinculado
a una persona fisica (humana). No obstante, en ciertas situaciones, la IA puede actuar
como una herramienta adicional para el autor, enriqueciendo su creatividad mediante
instrucciones adecuadas [70]. Sin embargo, en los sitios web de muchas empresas que
ofrecen productos de [A generativa, como OpenAl, se puede observar que se atribuye el
derecho de autor a la persona que generé la imagen, quedando a su criterio como utilizarla.



Estado del Arte 24

En la seccién de Productos y Tecnologias Disponibles y Comerciales de Generacién de
Iméagenes de este capitulo, identificaremos como cada empresa atribuye los derechos de
autor a sus usuarios.

Métricas de Evaluacion de Modelos Generativos

Con los avances de los modelos de A generativos, se hace evidente la gran necesidad
de realizar evaluaciones sobre la calidad de los contenidos generados. A diferencia de otros
modelos de inteligencia artificial, cuyo objetivo es evaluar la precision o la tasa de acierto
de clasificaciones y predicciones, los modelos generativos solo disponen de la verificacién
de las tasas de aprendizaje, sin ser sometidos inicialmente a métricas especificas definidas
para ellos. Las métricas de evaluacion de modelos generativos son diversas, pero existe una
gran complejidad en garantizar la calidad de los contenidos generados, ya que el proceso
de evaluacion del nivel de calidad de un modelo es detallado y varia considerablemente de
un modelo a otro, siendo necesario emplear varias métricas para verificar la calidad [52].

Actualmente, los modelos generativos de imégenes requieren evaluaciones tanto algorit-
micas como humanas para verificar la autenticidad, la calidad y el buen proceso creativo
en la imagen generada. A continuacion, listamos algunas de las métricas mas utilizadas,
segin investigaciones:

» Evaluacién Humana (Human Evaluation): La evaluacién humana es indis-
pensable para verificar la calidad de las imdgenes generadas a partir de textos. Sin
embargo, presenta algunas desventajas, ya que generalmente puede ser un proceso
demorado y esta sujeta a opiniones subjetivas. Por lo tanto, se considera una métrica
complementaria en la evaluacién de modelos generativos de imagenes [52].

» Métricas Basadas en Pixeles (Pizel-Based Metrics): Esta métrica utiliza
algoritmos métricos como el Error Cuadrético Medio (MSE), el indice de similitud
estructural (SSIM) y otros. Estos algoritmos consisten en comparar las imégenes
generadas (pixeles) con imagenes reales del mismo dominio. La métrica evalia la
calidad de la imagen en funcion de la similitud entre los pixeles, proporcionando una
evaluacion cuantitativa de la precisién visual [52].

» Métricas Basadas en Caracteristicas (Feature-Based Metrics): Esta métrica
emplea métodos de evaluacién como el Inception Score (1S), la Fréchet Inception
Distance (FID) y otros. Estos métodos comparan las distribuciones de caracteristicas
entre las imagenes generadas y las imagenes reales, y determinan como el modelo ha
logrado preservar la calidad y diversidad del tema tratado en la imagen [52].

» Métricas Basadas en Tareas (Task-based Metrics): La evaluacién de modelos
generativos también puede involucrar el uso de métricas orientadas a tareas, evaluando
qué tan bien las imagenes generadas cumplen con funciones posteriores, como
clasificacién, segmentacion, etiquetado o recuperacion. Esta métrica, sin embargo, no
siempre es eficaz en todos los casos, ya que estd mas orientada a contextos textuales



Estado del Arte 25

que a iméagenes. Algunos ejemplos de algoritmos utilizados incluyen la precisién de
clasificacion, la precision de segmentacién, la puntuacion BLEU, entre otros [52].

» Métricas Basadas en Novedad (Nowvelty-Based Metrics): En este enfoque
se utilizan métodos como la distancia al vecino mas cercano (nearest neighbor
distance), cobertura (coverage) y entropia (entropy). Estos métodos intentan evaluar
la diferencia y diversidad de las imagenes generadas en comparacion con las existentes
dentro de un dominio de entrenamiento o de un tema similar. Sin embargo, es
importante senalar que, aunque estas métricas destacan la creatividad, pueden no
tener en cuenta el realismo y la relevancia de las imagenes creadas, favoreciendo
resultados que pueden ser poco realistas o irrelevantes [52].

Como podemos observar, la calidad de las imagenes generadas puede evaluarse de
diversas maneras. Sin embargo, los métodos cuantitativos (algoritmicos) suelen ser los
mas utilizados para definir la calidad, ya que el método cualitativo, que implica la vision y
evaluacién humana, puede generar resultados mas subjetivos, siendo a menudo utilizado
solo para complementar las métricas ya empleadas.

Otra opcion para evaluar la calidad de un modelo generativo de imagenes es utilizando
una herramienta innovadora lanzada por OpenAl, denominada CLIP (Contrastive
Language-Image Pretraining), un modelo entrenado para aprender y relacionar
textos con imégenes [5] [40]. Esta tecnologia es especialmente indicada para trabajar con
modelos generativos denominados Text-to-Image, ya que resulta muy util para evaluar
la coherencia entre las imégenes generadas y el texto utilizado [77].

El proceso de utilizaciéon de CLIP se ve influenciado en el momento de generar las
imagenes, ya que su objetivo es calcular la similitud entre la descripcion textual original y
la imagen generada. CLIP proporciona una puntuacién que indica el grado de similitud
entre el texto y la imagen generada, cuanto mayor sea el valor o mas préximo esté de 1,
mayor sera la similitud y correspondencia. En comparacion con otras métricas cominmente
utilizadas, como el Inception Score (IS)y el Fréchet Inception Distance (FID), CLIP se
presenta como una herramienta mas inteligente y robusta. Mientras que las métricas IS
y FID calculan la distancia entre caracteristicas y la diversidad entre imagenes, CLIP
supera estas tecnologias al realizar una evaluacion de calidad similar, pero verificando la
similitud entre el texto recibido y la imagen generada (embeddings) [42]. No obstante, es
crucial considerar las métricas IS y FID, ya que fueron las primeras utilizadas para evaluar
este tipo de inteligencia artificial, y siguen siendo las principales métricas orientadas a
caracteristicas [14].

La aplicacion de cada tipo de métrica dependera del tipo de sistema inteligente que
se desee crear y probar, y muchas veces puede ser necesario utilizar més de una métrica.
Cabe recordar que todas las métricas mencionadas tienen como objetivo evaluar el nivel
creativo y generativo de la inteligencia artificial.



Estado del Arte

26

Productos y Tecnologias Disponibles y Comerciales de
Generacion de Imagenes

En esta subseccion, presentaremos algunas tablas obtenidas a partir de una recopilacién
de informacion, organizada de acuerdo con cada empresa y tecnologia indicada, ademas
de datos provenientes de las comunidades de desarrolladores. El propésito de incluir esta
informaciéon es permitir una visualizacién clara de las diferencias entre cada tecnologia
generativa y proporcionar una vision general de lo que estd disponible en el mercado
tecnologico. A continuacién, se presentan las tablas:

IA generativa capaz
de crear imagenes a
partir de descripciones
de texto. Utiliza
técnicas de
aprendizaje profundo
para generar imagenes
que coincidan con las
descripciones
proporcionadas. Es
una tecnologia open
source, desarrollada
por el programador
Boris Dayma en 2022.

de IA desarrollado por
OpenAl que genera
imagenes a partir de
descripciones
textuales.
Actualmente tiene dos
modelos de pagos
creados entre 2021 y
2024.

Sistema DALL-E (Open Al)
Inteligente
Modelo DALL-E Mini DALL-E 2 DALL-E 3
(Boris Dayma)
Descripcién DALL-E Mini es una | DALL-E es un modelo | DALL-FE es un

modelo desarrollado
por OpenAl que
genera imagenes a
partir de descripciones
textuales.

Costo General
y Tipo 2024

Open-Source (Abierto)

Comercial: De $0,16
por imagen a $0,18
por imagen

Comercial: De $0,40
por imagen a $0,120
por imagen

Derechos del

Segunda la Open Al iisted es propietario de las imédgenes que crea

Aplicaciéon

Autor con DALL-F, incluida el derecho a reimprimir, vender, y mercancias,
independientemente de si su imagen se generd a través de un crédito
gratuito o de pago."

Infraestructura| DALL-FE y Dayma no lo definen en su documentacion, sin embargo, al
para la ser un medio para manipular imagenes en RGB, lo mejor es tener una

infraestructura con una GPU de 8 GB de VRAM o maés.




Estado del Arte

27

Compatibilidad
(Fine-
Tunning)

La documentaciéon no
deja clara la
posibilidad de la
existencia de
Fine-Tunning, es
decir, el modelo esta
completamente
disponible en
repositorios ptublicos
en Internet y puede
modificarse.

OpenAl no deja clara la posibilidad y no ofrece
soporte en su documentacion de productos y apli-

caciones finales.

Tabla 4.1: Modelos existentes referencidis en generacion de imagenes - Dalle-E

Sistema . . _
Inteligente Stable Diffusion (Stability AI)

Modelo Stable Diffusion 3 Stable ?zﬁuszon SDXL Turbo
Descripciéon Stable Diffusion es un motor de inteligencia artificial diseiado para crear

iméagenes a partir de texto, fue creado por la empresa Stability Al en
2022. Actualmente cuenta con tres modelos principales para la generacion

de imégenes.

Costo General

Open-Source (Abierto), para uso no comercial, pero hay planes para

y Tipo 2024 asociarse a la tecnologia y obtener algunas herramientas adicionales para
desarrollar en su entorno, ademas del ser model ideal para que las empresas
apliquen la tecnologia con fines comerciales.

Costo
Comercial Costo de $20.00, para el plan Professional o costo personalizado para el
2024 plan Enterprise, para uso comercial.
Derechos del Las imagenes de Stable Diffusion como cualquier otra forma de contenido
Autor . , . L,
creativo, estan sujetas a proteccién de derechos de autor.
Infraestructura
para la Minimo: GPU - 6/8 GB de VRAM

Aplicacién




Estado del Arte

28

Compatibilidad
(Fine-
Tunning)

Existen algunas posibilidades de Fine-Tuning que pueden ser visualizadas
en la propia documentacion de Stability Al Para el SDXL, XL y Turbo,
existen los tipos Face Mode, Juggernaut XL, DreamShaper XL, RealVi-
siXL, Animagine XL, Object Mode, Juggernaut, RealCarto y Style Mode.
Ademas, hay algunos métodos de ajuste disponibles en Huggin Fuace lla-
mados DreamBooth, LoRA, Textual inversion, Text-to-image, entre otros.
Los métodos como LoRA pueden implementarse facilmente utilizando
Python.

Tabla 4.2: Modelos existentes referenciais en generacion de imagenes - Stable Diffusion

Sistema .
Inteligente MidJourney

Modelo Model 6 ‘ Model Niji 6 ‘ Model 5.2
Descripcién El Modelo MidJourney es una tecnologia, de sistemas inteligentes, que

tiene objetivo de crear imagenes a partir de texto, fue creada por un
laboratorio independiente en Sao Francisco en 2022.

Costo General
2024

Los planes estan todos pagados y estan disenados para todos los modelos.
Estan incluidos en los planes el Basic, Standard, Pro y Mega. Los precios
van desde 10,00hasta120.00.

Derechos del

Segun MidJourney, los suscriptores de MidJourney tienen acceso a todas

Autor las imégenes que han creado, incluso si la suscripcién ha caducado, y son
libres de usar esas imégenes como deseen.
Infraestructura
para la No es necesario descargar en la maquina local. El usuario puede generar
Aplicacién las imégenes en el propio sitio web o en el telegrama de la herramienta
MidJourney.
Compatibilidad
(Fine- Existe la posibilidad de utilizar un sintonizador de estilo de herramienta,
Tunning) de los cuales es posible utilizar métodos de ajuste fino con la propia

herramienta MidJourney.

Tabla 4.3: Modelos existentes referenciais en generacion de imagenes - MidJourney

Al comparar los tres principales modelos presentados en las tablas anteriores, podemos
observar que cada uno de ellos ofrece diversas opciones adicionales, ademas de presentar
varios tipos de planes tanto comerciales como profesionales para satisfacer las necesidades
de cada usuario. Al analizar las opciones disponibles, se destaca que todos los modelos
generan imagenes a partir del texto proporcionado en el prompt de comandos de cada uno.
La mayoria de las tecnologias tienen una vertiente de codigo abierto, lo que significa que




Estado del Arte 29

su codigo esta disponible para ser modificado y adaptado a problemas especificos de algin
proyecto o investigacion.

Dentro de los modelos de codigo abierto, los de Stable Diffusion de Stability AI son los
que mas ventajas ofrecen, ya que todos sus modelos estan disponibles de forma abierta.
No obstante, cuentan con un plan de asociacién de desarrolladores que otorga acceso a
algunos recursos adicionales de forma ilimitada. Por otro lado, DALL-E de OpenAl solo
tiene una version de cédigo abierto llamada DALL-E Mini, un proyecto basado en el
sistema inteligente de OpenAI que fue creado por Boris Dayma. Segin diversas fuentes,
este modelo logra dar resultados sorprendentes y eficaces. También esta MidJourney, que
ofrece todas las versiones de su modelo bajo planes de pago, aunque en algunas excepciones
de experimentacién, los usuarios pueden generar algunas imagenes de forma gratuita a
través de su extensién en Discord, una red social.

Un aspecto muy interesante a considerar en la investigacién son las compatibilidades
para realizar Fine-Tuning en un modelo, especialmente en aquellos que son de codigo
abierto. Algunas tecnologias, como Stable Diffusion, cuentan con varios modelos ajustados
con compatibilidad para realizar Fine-Tuning, cubriendo diferentes temas y métodos,
como es el caso de Dreambooth, LoRa y otros. Sin embargo, sistemas inteligentes como
MidJourney o DALL-FE no cuentan con soporte ni modelos especificos para el refinamiento
del modelo (Fine-Tuning).

4.2. Generacion de Planos Arquitectonicos Mediante
IA

Con los avances en las areas de inteligencia artificial generativa, muchas empresas y
emprendedores han encontrado una nueva fuente de innovacién, motivados por la creacion
de soluciones basadas en lo que ya existe para automatizar parte de su trabajo diario o
para utilizar la tecnologia como un nuevo medio comercial. Aunque sigue siendo un tema
complejo para aquellos sin el conocimiento adecuado en tecnologia, muchas empresas han
invertido considerablemente para desarrollar nuevos sistemas generativos, especialmente
en areas especificas de conocimiento y trabajo. Las organizaciones estan invirtiendo cada
vez mas en estos sistemas para refinar, optimizar y simplificar muchos procesos de trabajo,
cuyas aplicaciones pueden abarcar desde la mejora de experiencias de atencion al cliente
hasta la creacién de nuevos productos [§].

Como se mencioné en el capitulo 3: Conceptos tedricos, los planos de una vivienda son
la representacion grafica de dicho inmueble, sirviendo como una herramienta basica y un
elemento esencial del diseno que permite plasmar y comunicar informacion precisa sobre un
proyecto arquitecténico [9]. Hoy en dia, la creacién de muchos proyectos de construccién
se lleva a cabo en software de modelado 2D y 3D, como Rewvit, AutoDesk Studio, entre
otros. Ademsds, algunos proyectos se desarrollan en herramientas de realidad aumentada
o virtual, aunque la forma mas tradicional sigue siendo el modelado 2D, conocido como
planos bajos. El proceso de desarrollo de un plano abarca varias etapas, desde la creacion



Estado del Arte 30

de los primeros bocetos, que consideran los requisitos del cliente y del profesional, hasta el
desarrollo de un proyecto estructural que garantice la seguridad del edificio y la creacion
de un proyecto arquitecténico definitivo. Hoy en dia, el proceso de diseno ya cuenta con el
apoyo de herramientas tecnologicas para los profesionales, pero creemos que seria mucho
mas agil y eficaz utilizar un tipo de apoyo maés inteligente que genere planos bajos listos,
cumpliendo con los requisitos del cliente. Dado lo esencial de la representacion grafica
y todo el trabajo involucrado en la creaciéon de un proyecto de construccién, se vuelve
crucial el uso de inteligencia artificial para generar imdgenes y automatizar este trabajo
creativo. Segin Anglen, J. (2023), el futuro de la arquitectura y la construccién esta siendo
transformado rapidamente por los avances en inteligencia artificial y automatizacién. Un
area particularmente interesante es el disenio generativo, donde algoritmos de IA pueden
crear infinitas variaciones y optimizaciones del proyecto de un edificio para cumplir con
los parametros deseados [51].

Con base en investigaciones recientes, ya existen sistemas inteligentes que generan
iméagenes de planos bajos como herramientas comerciales, como es el caso de Market. Al
una plataforma de software integrada con inteligencia artificial (IA) desarrollada para
arquitectos y profesionales en el campo de la planificacion de viviendas y edificios. Esta
tecnologia permite generar rapidamente multiples opciones de disefio para un proyecto
determinado, considerando los requisitos de generacion de planos de planta (Floor Plan) y
disenio visual de espacios (Designer Visual). Ademads, ofrece la capacidad de generar planos
a través de texto y realizar modificaciones en planos existentes mediante su integracién con
AutoCAD. La tecnologia cuenta con un plan de pruebas [63]. Otro ejemplo de tecnologia
generativa comercial en este campo es Getfloorplan, un sistema donde el profesional
especifica requisitos en la plataforma y esta genera los planos en formato 2D y 3D. Es una
herramienta sencilla y eficaz como soporte para la creaciéon de planos, aunque, al ser una
tecnologia comercial, no ofrece la posibilidad de pruebas gratuitas [31].

Al revisar trabajos cientificos, encontramos pocos estudios que exploren el uso de la
inteligencia artificial para generar planos arquitecténicos, especialmente en el contexto
de tener como entrada un texto detallado. Lo que se encuentra con mayor frecuencia
son investigaciones que utilizan imagenes o siluetas de planos para generar otros planos,
manteniendo las condiciones propias de un plano arquitecténico, como se indica en la
imagen. Este enfoque se conoce como el método Pix-to-Pix. El articulo cientifico que mejor
describe este proceso es "FloorDiffusion: Diffusion model-based conditional floorplan image
generation method using parameter-efficient fine-tuning and image inpainting" [55].

Este articulo tiene como objetivo presentar una forma de generar planos mediante
ajustes finos con Stable Diffusion, utilizando la funcién Piz-to-Piz, cuyo proposito es
mejorar una imagen o realizar el relleno de espacios vacios visibles en una imagen. En
la investigacion, se utiliza esta técnica para crear nuevos planos a partir de siluetas e
imagenes vacias, asi como de imagenes que tienen menciones y condiciones especificas para
realizar los debidos rellenos. El modelo generativo detallado y comparado se muestra en la
figura 4.7, donde se observa la entrada y las condiciones impuestas en cada proceso de
generacion. Estas condiciones se definen mediante demarcaciones coloridas que identifican



Estado del Arte 31

cada habitacion y espacio de un simple plano arquitectonico. Todo el desarrollo se realiza
utilizando el método LoRa, aplicando la funciéon Pixz-to-Pix.

Conditional images . FloorDiffusion Pix2PixHD GauGAN

Silhouette

Silhouette + doors

- IR Y

Silhouette + rooms |~

Silhouette + doors
+ rooms

Figura 4.7: Comparaciéon de imagenes de planos arquitecténicos generadas a partir de
cuatro tipos de imégenes condicionales [55].

El articulo evidencia que el uso de Stable Diffusion es mas adecuado para este problema
generativo que la arquitectura tradicional de GANs, ya que es mucho més frecuente que
los modelos entrenados con GANs generen iméagenes con mucho ruido o distorsion debido
a inestabilidades durante el entrenamiento. Ademas, las GANs no son capaces de generar
condiciones no existentes que no hayan sido sometidas al entrenamiento, lo que requiere
una gran cantidad de datos para obtener un modelo aceptable en términos de criterios
condicionales. La arquitectura de difusién, en cambio, puede ofrecer mejores resultados en
este sentido de relleno y mejora de condiciones generativas, ya que sus modelos contienen
una enorme cantidad de datos aleatorios entrenados [55].

Muchos de los articulos consultados identifican las diversas posibilidades de generar
planos arquitecténicos mediante IA. Sin embargo, la mayoria de las investigaciones se
centran en condicionar la generaciéon de iméagenes utilizando la funciéon Piz-To-Piz, que
trabaja con el relleno de imagenes utilizando semantica e identificacién de diferentes
atributos en una imagen para procesarla y generar otra. Son pocos los estudios que
tratan la funcion Text-To-Pix como un método ajustable para generar diferentes planos
arquitecténicos. Sin embargo, podemos observar que muchas investigaciones mencionan
esta funcion como un método utilizado en el contexto de generar imagenes de planos
estandar, entrenados sobre modelos estandar sin la necesidad de realizar Fine-Tuning, lo
que lo convierte en un posible apoyo creativo para arquitectos y personas comunes [81].

El articulo .Automating Computational Design with Generative AI" [54] presenta un
intento de ajustar los modelos de difusién utilizando imagenes generadas automaticamente
mediante algoritmos procedurales como conjunto de datos de entrenamiento, empleando
el método Dreambooth para el ajuste. Sin embargo, los resultados obtenidos no fueron



Estado del Arte 32

tan efectivos, ya que produjeron imagenes no reconocibles o planos confusos. No obstante,
mejoraron el contexto de Stable Diffusion, permitiendo generar imagenes basadas en
patrones del modelo previamente entrenado. Los autores de la investigacién sugieren que
las deficiencias pueden deberse a que las imagenes no estan etiquetadas adecuadamente,
semanticamente, como sucede en las funciones comunes de Piz-To-Pix. Ademas, destacan
la necesidad de utilizar imégenes més realistas para llevar a cabo esta tarea compleja, junto
con un enfoque en la semantica y el texto descriptivo que se utilizara en el entrenamiento.

En este trabajo, utilizaremos tecnologias existentes para crear un sistema inteligente
que, mediante la interpretacion de texto, genere planos de casas creados a través de
inteligencia artificial. Como se evidencia, utilizaremos la tecnologia Text-to-Image para
esta accion, realizando un ajuste fino sobre los modelos de Stable Diffusion, y considerando
los problemas y deficiencias mencionados en el capitulo 4: Estado del Arte. Sin embargo,
también realizaremos pruebas sobre estos mismos temas. Los detalles sobre el ajuste, el
conjunto de datos utilizado y otros aspectos del desarrollo seran abordados en el capitulo
5: Técnicas y herramientas.



5: Técnicas y herramientas

En este capitulo presentaremos la metodologia que se llevd a cabo para alcanzar los
objetivos estipulados para esta investigacion. Cabe recordar que la metodologia descrita aqui
comenzd a aplicarse durante el proceso de desarrollo de la estancia I4+D+i en informatica,
ya comentado en capitulos anteriores. Nuestra investigacion seguird un método maés
experimental, ya que nuestro objetivo es evaluar la capacidad de ajustar un modelo ya
entrenado y verificar su capacidad para generar planos arquitectonicos en formato 2D, de
acuerdo con textos ingresados a través de prompts. La decisién de realizar una investigacion
mas experimental surgié del proceso que hemos llevado a cabo probando diferentes métodos
de ajustes finos en los modelos de Stable Diffusion.

Para el desarrollo del sistema generativo, seguimos algunos requisitos establecidos tras
el establecimiento de los objetivos, las revisiones literarias y la verificacion de tecnologias
ya existentes que dieron origen al capitulo 4: Estado del Arte. Los requisitos establecidos
son:

» Establecer una infraestructura computacional con GPU y encontrar un conjunto de
imagenes de planos arquitectonicos para el desarrollo del modelo.

= Verificar los diversos tipos de métodos de Fine-Tuning de Stable Diffusion disponibles
y probarlos para identificar cudl se adecuaba mejor a nuestro problema generativo.

» Crear una interfaz web integrando el sistema generativo, para realizar pruebas de
manera sencilla.

= Probar el sistema generativo con métricas capaces de evaluar el sistema de manera
eficiente.

En las préximas secciones de este capitulo, detallaremos cada uno de los requisitos,
evidenciando las técnicas y herramientas empleadas para que pudiéramos desarrollar
el sistema generativo durante el proceso de investigacion y pruebas. Algunos aspectos,
como el enlace al repositorio de c6digo en linea donde se almacena el proyecto, junto

33



Técnicas y herramientas 34

con informacién técnica mas detallada sobre la configuracién de entornos del servidor e
instalacién de bibliotecas especificas necesarias para la implementacién, se encuentran
disponibles en el manual de instalacion de este proyecto, en el Apéndice B.

5.1. Infraestructura y Ambiente de Desarrollo del
Proyecto

Para desarrollar los requisitos establecidos para el proyecto Floorify, tuvimos que elegir
y definir una infraestructura que incluyera GPU (Unidad de Procesamiento Grafico),
lenguaje de programacién y entorno de desarrollo, para que dicha acciéon pudiera ser
completada. En cuanto a la infraestructura, se nos proporcioné una conexién a un servidor
del grupo de investigacion FCA-SIMM, de la Escuela de Informéatica de la Universidad de
Valladolid, que contaba con un almacenamiento dinamico, con una GPU NVIDIA GeForce
A40 de 48 GB. El trabajo se realizd en un entorno compartido del uso de la GPU y del
almacenamiento interno, en el que nuestra investigaciéon utilizaba un total de 24 GB de
GPU. El uso de la GPU era de gran importancia, ya que el entrenamiento de las redes
neuronales que componian los modelos de Stable Diffusion requeria el procesamiento de
una gran cantidad de imagenes del tema a ser ajustado.

El lenguaje de programacion elegido para el desarrollo de la investigacion fue Python,
un lenguaje de programacion orientado a multiples paradigmas [78]. Su eleccién se basd
en la facilidad para manejar grandes cantidades de datos, ademas de la facilidad para
manipular modelos de Deep Learning y estar completamente integrado con los modelos y
métodos de Stable Diffusion a través de la biblioteca Diffusion. Ademas, decidimos trabajar
con los entornos de programacién Visual Studio Code y también se nos proporciond por
el grupo ECA-SIMM el entorno de desarrollo Jupyter Notebook, conocido por su facil
manipulacién de todo el contenido relacionado con Inteligencia Artificial y Ciencia de
Datos. Sin embargo, el entorno en el que realizamos méas desarrollo y pruebas fue Visual
Studio Code dentro de la conexién del servidor de FCA-SIMM, ya que la mayoria de
los métodos de ajuste fino requerian que los scripts se ejecutaran localmente a través de
archivos con extensién ".bash'(Bourne Again Shell), lo cual se detalla més en la seccién de
Fine-Tuning con Stable Diffusion y Sus Métodos.

5.2. Conjunto de Datos (Dataset de Imagenes)

Para el desarrollo del ajuste fino, necesitdbamos un conjunto de imagenes en gran
cantidad, ademas de que estas tuvieran frases o descripciones textuales relacionadas con
cada imagen representada, para que el modelo pudiera aprender y adaptarse generando
nuestras imagenes de acuerdo con su debido contexto textual entrenado. Sin embargo, fue
uno de los items mas dificiles de encontrar, ya que no habia muchos conjuntos de datos
de planos arquitectonicos disponibles publicamente, y rara vez encontrabamos conjuntos
que contuvieran planos arquitecténicos de gran escala, relacionados con un conjunto de
datos descriptivos de cada imagen. Para esto, realizamos un estudio sobre cada conjunto



Técnicas y herramientas 35

disponible en internet para elegir con cudl serfa més conveniente trabajar. A continuacion se
presentan las tablas que evidencian los conjuntos de datos disponibles y sus caracteristicas:

Dataset CubiCasask sudo-floor-plan-
12k
Total samples 5.000 12.000
Size dataset files 105 GB 4GB

Etiquetas (Tag)

Iméagenes generadas a
partir de la biblioteca
FloorPlanSVG Python,
tiene identificacion, pe-
ro no tiene texto de
descripcién relaciona-

do.

Los datos estan etique-
tados de forma prede-
terminada segin sus
indices informados en
el alcance predetermi-
nado de HuginFace.
Tiene Descripciones re-
lacionadas.

Data Existe la posibilidad de aplicar aumento de
Argumentation datos a todos los conjuntos de datos, sin em-
bargo, algunos datos estaran en un formato
mas comprimido o vectorial, como es el caso
de CubiCasabk.
Informaciones El conjunto de datos | Las im&agenes contie-
Extras contiene un modelo de | nen descripciones y di-

red neuronal que tie-
ne como objetivo con-
vertir una imagen de
plano (dibujé) en una
representacion grafica
vectorial, para identifi-
car mejor cada espacio
en los planos de una ca-
sa.

ferentes tipos de image-
nes identificativas con
colores para efectuar la
técnica Piz-To-Pix, pe-
ro las imagenes estan
en angulos extranos.

Enlace de la pagina
web

[56]

[71]

Tabla 5.4: Recogido de datasets publicos - 1



Técnicas y herramientas

36

Dataset FloorPlansV?2 FloorPlanCAD New Floorplan
demo dataset
Total samples 2.831 15.663 101
Size dataset files 1.13 GB 6 GB 8.4 MB

Etiquetas (Tag)

Los datos tienen una
etiqueta especifica se-
gun las clases a las que
estan asociados. Las
clases se dividen por
el nimero de habitacio-
nes que hay en cada pi-
SO.

Hay un codigo identifi-
cativo en cada imagen.

No contiene etiquetas
en las imagenes, pero
todas las imagenes
tiene una correlacion
con descripciones de
texto.

Data Existe la posibilidad de aplicar aumento de datos a todos los conjuntos de
Argumentation datos, sin embargo, algunos datos estaran en un formato mas comprimido
o vectorial, como es el caso de CubiCasadk.
Extras Datos basasados en
CubiCasadk
Enlace de la pagina [50] [60] [76]

web

Tabla 5.5: Recogido de datasets publicos - 2

Como podemos visualizar, cada conjunto de imagenes contenia sus ventajas y desven-
tajas, y por eso optamos por trabajar con el conjunto de CubiCasadK, ya que contenia
una cantidad masiva de datos y sus imagenes eran de buena calidad y muy similares a las
empleadas en el mundo real de la arquitectura de planos bajos en 2D. Las imagenes del
conjunto CubiCasabK eran buenas porque fueron generadas a partir de transformaciones
de imagenes de planos reales en imagenes vectoriales, lo que dejaba las imagenes en
un contexto mas claro y de buena calidad. También trabajamos con otros conjuntos de
datos realizando entrenamientos y pruebas como el dataset New FloorPlan demo Dataset,
que era basado en CubiCasa5K. Uno de los conjuntos que era muy interesante era el
Pseudo-floor-plan-12k, ya que tenia buenas descripciones textuales e identificaciones claras
de cada habitacion dentro de la imagen, pero las imagenes contenian angulos extranos que
no serian muy ttiles para realizar entrenamientos. Cabe recordar que para trabajar con el
conjunto de CubiCasab5K tuvimos que crear una pequena automatizacién que generara
los contextos textuales para relacionar con cada imagen, formando el conjunto de datos
textual para llevar a cabo el entrenamiento, combinando estos dos embeddings de texto e
imagen. Esto y otros aspectos de los caminos de elecciéon los explicamos con mayor claridad
en el capitulo 6: Aspectos relevantes del desarrollo del proyecto.



Técnicas y herramientas 37

5.3. Fine-Tuning en Modelos de Stable Diffusion y
Sus Métodos

Después de estudiar diferentes tecnologias de generacién de iméagenes, decidimos que el
mejor camino seria utilizar los modelos de Stable Diffusion para realizar un ajuste fino y
asi probar la capacidad de su tecnologia para adaptarse a nuestro conjunto de datos. Con
esto, decidimos realizar pruebas con los métodos de Fine-Tuning como Dreambooth [41],
Misto Line [62], LoRas [43] y Text-To-Image [44]. Ademds, también probamos el modelo
basico sin realizar ajuste fino para verificar la capacidad de la version estandar de Stable
Diffusion en generar planos arquitectonicos a partir de texto. Uno de los métodos de ajuste
fino que incluimos en la lista sin realizar un estudio previo fue el Misto Line [62], creado
y ajustado por la empresa The Misto.Al, miembros colaboradores de la comunidad de
desarrollo Hugging Face. La decision de incluirlo se tomé después de visualizar buenas
evaluaciones sobre su método de ajuste fino en modelos de difusion y nivel de detalles que
tenian vuestras imagenes generadas y para tener una referencia del funcionamiento entre
el text-to-image y el piz-to-pix.

Las pruebas con cada método se realizaron utilizando una variedad de versiones
de modelos de Stable Diffusion, siguiendo los consejos proporcionados por la propia
documentacion de Diffusion, que es la biblioteca de Python proporcionada por Hugging
Face. Para los modelos de Dreambooth utilizamos el modelo "stable-diffusion-v1-4"[17]
y para LoRas y Text-To-Image utilizamos el "stable-diffusion-v1-5"[18]. E1l Misto Line
utilizaba por defecto el modelo "stable-diffusion-zl-base-1.0"[3]. Cada modelo tenia su
ventaja en términos de mejor rendimiento y mejor comprension del contexto entre las
embeddings para generar imagenes. El tinico método que utilizaba un modelo diferente del
estandar era Misto Line, que utilizaba el modelo mas nuevo SDXL de Stability Al Este
modelo tenia mucha mas capacidad de tener detalles en sus imagenes generadas y un mejor
desempeno en la comprension del contexto entre las embeddings, pero su estructura requeria
infraestructuras mas potentes para realizar los ajustes finos. Los desafios encontrados con
el modelo utilizado en Misto Line y los otros métodos se detallan en el capitulo 6: Aspectos
relevantes del desarrollo del proyecto.

5.4. Métricas de Evaluacion de Modelo Generativo

Como ya se mencioné en el capitulo 4: Estado del Arte, es indispensable que el sistema
generativo cuente con métodos de evaluaciéon para verificar sus niveles de calidad tanto
a nivel de imagen como de contexto entre embeddings. Por ello, decidimos utilizar dos
métricas algoritmicas que se aplicaran al modelo después de los ajustes finos: CLIP
Score (Contrastive Language-Image Pretraining) [40] y Fréchet Inception Distance [30)].
Utilizaremos el CLIP Score en un contexto mas evaluativo entre los embeddings para
verificar en qué medida las imagenes generadas coinciden con el texto ingresado por
el usuario. Esta métrica, creada por OpenAl, es adecuada para realizar la verificacion
contextual, sin embargo, dado que es bastante nueva, tiene sus limitaciones, ya que se trata



Técnicas y herramientas 38

de una A entrenada con una cantidad masiva de datos, pero no infinitos y totalmente
actuales, ya que siempre estd en actualizacién. El objetivo del CLIP Score seré presentar
valores altos o bajos de acuerdo con su evaluacion. Siempre que el score sea alto o préximo
a 1, representara un buen contexto semantico y de caracteristicas entre los embeddings,
mientras que un valor bajo indicara lo contrario, es decir, un contexto deficiente.

Para evaluar el contexto de calidad de la imagen en su totalidad a nivel de textura
y caracteristicas, utilizaremos el tradicional FID, que es una métrica orientada a la
evaluaciéon de caracteristicas, indicando el nivel de las imagenes segin su realismo y calidad
de caracteristicas. Dado que sus medidas se basan en el calculo de la distancia entre
imagenes de prueba, el objetivo serd verificar que cuanto menor sea el valor del FID, mejor
serd la calidad de las imagenes, ya que se estard acercando al mismo nivel que las imagenes
en cuestion en términos de caracteristicas, o verificar si el valor es muy alto, demostrando
baja cualidad en comparaciéon con las imdgenes de prueba [30]. En esta investigacion,
no utilizamos métricas de observaciéon humana, ya que, como se mencioné en el capitulo
4: Estado del Arte, pueden introducir mucha subjetividad, ademas de que se utilizan
mas como métricas complementarias y no principales, como es el caso de las presentadas
anteriormente.



6: Aspectos relevantes del desarrollo del
proyecto

En este capitulo se presenta el desarrollo del modelo generativo, junto con los diversos
experimentos realizados para validar la eficacia de los ajustes de modelos de Stable Diffusion
en la generacion de imagenes de planos arquitectonicos en formato 2D. Cabe recordar
que, para evaluar los modelos generativos ajustados, se llevaran a cabo pruebas sobre las
imégenes generadas a partir de sus condiciones, empleando Clip Score y FID (Fréchet
Inception Distance).

Todos los scripts originales y el desarrollo detallado en esta seccién se encuentran
disponibles en el repositorio publico, cuyo enlace se proporciona en el apéndice B de este
trabajo.

6.1. Pruebas Mediante Modelo Stable Diffusion
Estandar

Para iniciar la etapa de desarrollo, realizamos una serie de pruebas con el modelo
estandar de Stable Diffusion con el objetivo de evaluar las imagenes generadas a partir de
prompts de texto que describian las caracteristicas deseadas en un plano arquitecténico [4].
A continuacién, se presentan algunos ejemplos de los resultados obtenidos.

Il import requests

2

3 response = requests.post(

A f"https://api.stability.ai/v2beta/stable-image/generate/core",

5 headers={

6 "authorization": f'"sk-
rkyXQ2LOsm6s1uRG6zIRQAAYBTNKTzLGy5zSgRIed8ELqXdFM",

7 "accept": "image/*"

8 T,

9 files={"none": ''},

10 data={

39



11

12
13

Aspectos relevantes del desarrollo del proyecto 40

"prompt": "Floor Plan 2D with 2 bedrooms, 1 bathroom and living
room",
"output_format": "webp",

Yol

Fragmento de cddigo 6.1: Ejemplo de Generar Planos Arquitectonicos en Script Padron
de Stable Diffusion Free

En el ejemplo mostrado en el fragmento de cédigo 6.1, se presenta el cédigo basico
utilizado para las pruebas con el script estandar de Stable Diffusion, sin la aplicacién de
ningun ajuste fino. Las pruebas fueron realizadas a partir de dos generaciones de planos
arquitecténicos, condicionados por las siguientes entradas: House Plan 2D, One Bathroom
and One Bedroom y House Plan 2D. Las imagenes generadas a partir de estas pruebas
pueden visualizarse en los ejemplos de la figura 6.8 y la figura 6.9.

Figura 6.9: Imagen generada con el modelo sin ajustes finos (Stable Diffusion) - 2

Ambas imagenes presentan una buena calidad en términos de resolucion, y muchas de
las condiciones establecidas en el prompt de texto se cumplen. No obstante, observamos que
era necesario generar mas de cuatro imagenes antes de obtener resultados que comenzaran
a satisfacer el minimo de condiciones estipuladas. Es decir, el modelo requeria multiples
intentos para mejorar la coherencia con el prompt y captar con mayor precision el contexto
del plano arquitectonico. La principal dificultad en la generacién de imagenes radicaba
en que el modelo no lograba producir imagenes en tonos de gris y, por defecto, tendia a
generar representaciones en 3D en lugar de planos bidimensionales. Para evaluar la relacion
entre el texto y las imagenes generadas, sometimos los resultados a pruebas algoritmicas



G W N e

18
19
20

Aspectos relevantes del desarrollo del proyecto 41

con CLIP Score. Decidimos no aplicar FID en esta etapa inicial, ya que para ello seria
necesario contar con un conjunto de referencia bien definido para validar las caracteristicas
de las imagenes. En esta primera prueba, nuestro objetivo fue inicamente analizar la
coherencia semantica entre los embeddings de texto e imagen generados a partir del prompt
condicionado.

from transformers import CLIPProcessor, CLIPModel

from PIL import Image
import torch

# Load the CLIP model and processor
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32"
)

# Load an image and a phrase

image = Image.open("/")

texts = ["Floor Plan 2D", "Floor Plan 2D with 2 bedrooms, 1 bathroom and

living room"]

# Preprocess the image and the text
inputs = processor (text=texts[0], images=image, return_tensors="pt",
padding=True)

; # Pass the inputs through the model

outputs = model (x*inputs)

# Extract the embeddings from the image and text
image_embeddings = outputs.image_embeds
text_embeddings = outputs.text_embeds

# Compute the similarity (cosine similarity)
similarity = torch.nn.functional.cosine_similarity(image_embeddings,
text_embeddings)

; # Display the similarity score
" print ("CLIP Score Value: " + str(similarity))

Fragmento de cddigo 6.2: Script de aplicacién de métricas de CLIP SCORE

El script presentado en la referencia 6.2 ha sido desarrollado y empleado para la
aplicacion de la métrica CLIP (Contrastive Language-Image Pretraining) de OpenAl, per-
mitiendo calcular la similitud entre una imagen y un texto representados como embeddings,
tal como se explico previamente en este estudio en el capitulo 5: Técnicas y herramientas,
seccion 5.4. Su proposito es evaluar la correspondencia seméntica entre las imagenes
generadas y sus descripciones textuales. Para ello, el script carga el modelo pre-entrenado
clip-vit-base-patch32 [68] junto con su procesador, abre una imagen almacenada en disco y
define una frase descriptiva, en este caso, "Floor Plan 2D, "Floor Plan 2D with 2 bedrooms,
1 bathroom and living room". A continuacion, preprocesa la imagen y el texto mediante el
procesador de CLIP y los convierte en tensores de PyTorch, los cuales son procesados por
el modelo para generar embeddings tanto de la imagen como del texto. Para cuantificar



Aspectos relevantes del desarrollo del proyecto 42

su relacion semantica, calcula la similitud del coseno entre los embeddings obtenidos vy,
finalmente, imprime el valor del CLIP Score, indicando el grado de coherencia entre la
imagen generada y la descripcién textual proporcionada. Este script serda fundamental
para la evaluacién de futuros ajustes finos (fine-tuning) y desempenard un papel clave en
la validacién de modelos optimizados en este estudio.

Las pruebas realizadas con los datos del CLIP Score se detallan en el capitulo 7:
Discusion de Resultados. En las siguientes secciones, se presentara una descripcion detallada
de cada uno de los ajustes finos (fine-tuning) realizados, empleando distintos métodos de
Stable Diffusion.

6.2. Transformaciones de Los Conjuntos de Datos
Elegidos

Después de realizar un analisis detallado de los conjuntos de datos en el capitulo 5: Téc-
nicas y herramientas, fue posible identificar tanto la variedad de opciones disponibles como
sus respectivas limitaciones. Tras esta evaluacion, se optd por trabajar con CubiCasadk, ya
que este conjunto de datos presentaba imagenes con una resolucion adecuada, ademas de
incluir descripciones textuales o simbélicas de los espacios representados en cada imagen.
Sin embargo, se observd que las imagenes de mayor calidad dentro del conjunto estaban
almacenadas en formatos vectoriales, como .SVG, debido a que CubiCasadk empleaba una
inteligencia artificial para convertir imagenes de planos arquitecténicos convencionales
en representaciones vectoriales. Este formato, aunque ventajoso para ciertos anélisis, no
era el mas adecuado para el propédsito de este estudio. Por esta razon, se llevaron a cabo
transformaciones en el conjunto de datos, con el objetivo de adecuarlo a los requisitos del
modelo utilizado. Se opt6 por convertir todas las imagenes al formato .JPG, utilizando el
lenguaje de programacion Python junto con la biblioteca de procesamiento de imagenes PIL
(Python Imaging Library). Esta conversién permitié mantener la calidad visual necesaria
para el entrenamiento del modelo, al tiempo que garantizaba la compatibilidad con los
métodos de ajuste fino y generacion de imagenes empleados en este trabajo.

Con este procedimiento, ya contdbamos con las imagenes adecuadas para el entrena-
miento. Para optimizar el proceso y facilitar la convergencia del modelo, decidimos trabajar
exclusivamente con imagenes de planos arquitecténicos que representaban una tnica planta,
lo que permiti6 simplificar el aprendizaje y filtrar la gran cantidad de datos disponibles.
Como resultado, el conjunto de datos final utilizado para el entrenamiento quedo6 reducido
a un total de 450 imagenes. Ademas, uno de nuestros objetivos era establecer una relacion
entre las imagenes y descripciones textuales mediante embeddings, lo que requeria que
cada imagen tuviera una descripcion asociada. Sin embargo, CubiCasa5k no proporcionaba
descripciones textuales detalladas de cada plano, sino que contenia informacién en forma
de anotaciones simbélicas dentro de las propias imagenes. Para superar esta limitacion,
decidimos generar frases estandarizadas basadas en estos simbolos, permitiendo asi esta-
blecer una correspondencia clara entre cada imagen y su descripcién. Para la generacion
de estas descripciones, seguimos el estandar recomendado por Hugging Face, que sugiere



T = W N

19
20

Aspectos relevantes del desarrollo del proyecto 43

estructurar los datos en un archivo .json [26]. En este archivo, cada imagen es identificada
mediante su nombre de archivo como clave, y su descripcién se asocia como valor. Ademas,
este archivo debia ser almacenado en la misma carpeta que las imagenes de entrenamiento
para asegurar su correcta vinculacion durante el ajuste fino. Con el fin de automatizar
este proceso, utilizamos Python y la biblioteca de reconocimiento 6ptico de caracteres
paddleocr [10], la cual permiti6 extraer y leer automaticamente los textos presentes en las
imagenes, generando asi las descripciones correspondientes sin intervencién manual. Esta
automatizacion queda reflejada en los fragmentos de cédigo 6.3 y 6.4.

Finalmente, para garantizar la compatibilidad con los métodos de ajuste fino de Stable
Diffusion, cambiamos el tamafio de todas las imagenes a una resolucion de 512x512 pixeles,
siguiendo las especificaciones recomendadas en la documentacion oficial de los modelos de
ajuste fino. En la continuacion enseniamos el codigo para las transformaciones y creaciones
del dataset:

from paddleocr import PaddleOCR
import cv2

import os

import json

#Script that performs text recognition on filtered images from
CubiCasabk to define the Json metadata for FineTuning.

#The script also creates json identification images and their respective
IDs and texts detailing the architectural plans.

def detect_h_and_others(image_path):

# Count occurrences

habitacion_solo_count = detected_texts.count('H')
habitacion2_solo_count = detected_texts.count('MH')
cozina_solo_count = detected_texts.count('K')
bano_solo_count = detected_texts.count ('KPH')
bano2_solo_count = detected_texts.count('WC')
Salon_solo_count = detected_texts.count('0H')

Undefined = detected_texts.count ('UNDEFINED')

# Create the result message
result_message = (
f"The text contains the following words:\n\n{
detected_texts_summary}\n\n"
f"'Bedroom' detected alone in the image {
habitacion_solo_count + habitacion2_solo_count} time(s).\n\n"
f"'Kitchen' detected alone in the image {cozina_solo_count}
time (s) .\n\n"
f"'Bathroom' detected alone in the image {bano_solo_count +
bano2_solo_count} time(s).\n\n"
f"'Living room' detected alone in the image {
Salon_solo_count} time(s).\n\n")



w

Aspectos relevantes del desarrollo del proyecto 44

Fragmento de cédigo 6.3: Script de deteccién de texto y creaciéon de frases

{
"file_name": "Imagen_id_10796. jpg", "text": "Floor Plan 2D, 1
Bedroom, 1 Kitchen, 1 Bathroom, 1 Living room"
I
{
"file_name": "Imagen_id_10004. jpg", "text": "Floor Plan 2D, 1
Bedroom, 1 Kitchen, 1 Bathroom, 1 Living room"
o
{
"file_name": "Imagen_id_1072. jpg", "text": "Floor Plan 2D, 2
Bedroom, 1 Kitchen, 1 Bathroom, 1 Living room"
o

Fragmento de cédigo 6.4: Archivo JSON Generado Para el Entrenamiento

Otro conjunto de datos empleado en nuestros experimentos fue New Floor Plan, el cual
contenia imagenes derivadas de CubiCasadk junto con un conjunto de frases generadas de
manera personalizada para cada imagen. Este dataset se encuentra disponible publicamente
y fue utilizado exclusivamente en los entrenamientos realizados con el método de ajuste
fino LoRAs. La decisién de utilizar New Floor Plan en este contexto se basé en dos
factores clave, en primer lugar, el método LoRAs no requiere un conjunto de datos tan
extenso como otros métodos de ajuste fino, lo que hacia viable su aplicaciéon sobre este
dataset en segundo lugar, queriamos evaluar el rendimiento del ajuste fino en iméagenes
sin transformaciones significativas, es decir, en las imagenes originales de CubiCasadk,
con el fin de analizar su impacto en la generacién de planos arquitectéonicos. La tnica
modificacion aplicada a New Floor Plan fue el cambio de tamafio de todas las imégenes a
5122512 pixeles, siguiendo la recomendacion establecida en la documentacion del método
LoRAs para garantizar una correcta entrada de datos en el entrenamiento del modelo.

Para realizar los entrenamientos, utilizamos el conjunto de datos completo para el
entrenamiento, sin dividirlo en subconjuntos de entrenamiento, validacién y prueba. Esto
se debe a que los modelos generativos, como Stable Diffusion, no emplean conjuntos de
validacién para detectar overfitting ni para ajustar hiperparametros, ni tampoco utilizan
conjuntos de prueba. En su lugar, la evaluacion del modelo se basa en métricas especificas y
aleatorias, ya sean algoritmicas o mediante evaluacion visual humana, dado que se trata de
un modelo generativo, estas métricas permiten medir la calidad de las imagenes generadas
sin necesidad de recurrir a los enfoques tradicionales de validacién y prueba [25].



1
2
3
4
5
6
7
8
9
10
11
12
13

14

29

Aspectos relevantes del desarrollo del proyecto 45

6.3. Fine-Tuning de Stable Diffusion con el Método
Dreambooth y LoRas

Tal como se demostrd en las secciones anteriores, DreamBooth fue el primer método
de ajuste fino presentado para la personalizacion de modelos de Stable Diffusion. Su
versatilidad y facilidad de uso han sido ampliamente reconocidas, ya que permite realizar
ajustes con un nimero reducido de iméagenes sobre un tema especifico, empleando una
frase clave para iniciar el entrenamiento del modelo de difusion. Para utilizar este modelo,
clonamos la biblioteca Diffusion, conforme a las indicaciones, dado que incluye todos
los algoritmos necesarios para la realizaciéon de ajustes finos de manera local. Una de
las caracteristicas imprescindibles de esta biblioteca es que todos los métodos deben
configurarse y ejecutarse mediante un archivo ".bash", lo que posibilita la realizacion del
ajuste fino directamente en la GPU y optimiza su desempeno dentro de la arquitectura
computacional.
import subprocess

import os
from PIL import Image

#{...... ... T
input_directory = "./"
output_directory = "./"

resize_images (input_directory, output_directory, size=(512, 512))

command = [

"accelerate", "launch", "./diffusers/examples/dreambooth/
train_dreambooth.py",

"--pretrained_model_name_or_path=CompVis/stable-diffusion-v1-4",
"-—-instance_data_dir=./",
"--output_dir=./Dreambooth/Model/My_Model_Trained",
"--instance_prompt=Floor Plan 2D",
"--resolution=512",
"--train_batch_size=1",
"--gradient_accumulation_steps=1",
"--learning_rate=5e-6",
"--1r scheduler=constant",
"--1lr_warmup_steps=0",
"--max_train_steps=300",
"--push_to_hub"

subprocess.run (command)

Fragmento de cédigo 6.5: Script de uso del metodo dreambooth

Tal como se muestra en el fragmento de c6édigo, optamos por Python para configurar
y ejecutar el ajuste fino de manera local, ya que simplificaba la configuracion y ofrecia



1
2
3

Aspectos relevantes del desarrollo del proyecto 46

los mismos resultados que un script ".bash". El conjunto de datos empleado para este
entrenamiento fue New Floor Plan, del cual seleccionamos seis imagenes de planos. Segun
la arquitectura del ajuste fino, entre cinco y siete imagenes son suficientes para realizar los
ajustes. No obstante, encontramos una limitacion: no era posible entrenar las imégenes con
diferentes frases, sino inicamente con una predeterminada, lo que restringia la versatilidad
del ajuste fino y reducia las posibilidades de generar distintos planos a partir de texto. La
resolucion de las imagenes empleadas fue la estandar establecida, tal como se menciond
anteriormente en este capitulo. En cuanto a los demds parametros, como la tasa de
aprendizaje y los tamafos de lote, utilizamos los valores predeterminados proporcionados
por los ejemplos de la propia biblioteca Diffusion de Hugging Face.

Imagen 1 Imagen 2 Imagen 3 Imagen 4 Imagen 5
- E } S -
Alce] |
g E :B |
Elinl=t % U
o = €] i ™ e — 7:
O B I = =
L - IS
N, LD, e — L _

Figura 6.10: Imagenes Generadas Después de Ajuste Fino con Dreambooth

Los experimentos con DreamBooth no incluyeron una amplia variedad de frases de
inferencia ni de parametros de ajuste fino, ya que anticipamos que este método no lograria
el objetivo de nuestra investigacion: alcanzar una alta aleatoriedad en frases e imagenes. No
obstante, decidimos evaluarlo para comprobar la efectividad de los ajustes finos y analizar
cémo, a pesar de su simplicidad, podria generar planos arquitectonicos. Como se observa
en la figura 6.10, las imagenes resultantes corresponden a planos arquitectonicos en 2D, tal
como se esperaba, sin embargo, muchas de ellas presentan inconsistencias, como colores
sobresaturados. Ademas, las pruebas se limitaron a una tunica frase como parametro, lo
que restringio la generacion de imagenes bajo distintas condiciones a partir de prompts de
texto.

Tras los experimentos realizados con DreamBooth, decidimos emplear el otro método
de ajuste fino de Stable Diffusion, denominado LoRAs. Este método compartia el mismo
principio que el previamente probado en esta investigacion, pero presentaba ventajas
significativas: era mas ligero de aplicar y permitia la incorporacién de un mayor nimero
de imégenes, lo que favorecia un aprendizaje mas eficiente y resultados mas precisos. No
obstante, la principal limitacién de LoRAs residia en la imposibilidad de utilizar multiples
frases para entrenar un gran conjunto de imagenes, lo que restringia su adaptabilidad a
los requisitos especificos de nuestra investigacion. A pesar de esta limitacién contextual,
decidimos evaluarlo con el propésito de analizar su desempeno en la generacion de imagenes,
dado que su método de ajuste fino era similar al de DreamBooth, pero mas rapido y liviano
de implementar. A continuacion, se presentan el script de ajuste utilizado y resultados
obtenidos:
import subprocess

import os
import wandb



Aspectos relevantes del desarrollo del proyecto 47

4

5 #{. .. ... }

6

7 # Define the training command

8 command_train = [

9 "accelerate", "launch", "./diffusers/examples/dreambooth/
train_dreambooth_lora.py",

10 "--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5",

11 "--instance_data_dir=./Dataset",

12 "--output_dir=./Model_Test",

13 "--instance_prompt=floor plan 2D",

14 "--resolution=512",

15 "--train_batch_size=3",

16 "--gradient_accumulation_steps=3",

17 "--checkpointing_steps=100",

18 "--learning_rate=5e-5",

19 "--report_to=wandb",

20 "--1lr scheduler=constant",

21 "--1lr_warmup_steps=0",

22 "--num_train_epochs=100",

23 "--max_train_steps=1000",

24 "--validation_prompt=floor plan 2D",

25 "--validation_epochs=50",

26 "--seed=0",

27 "--push_to_hub",

28 "--mixed_precision=fpl6",

29 "--gradient_checkpointing"

30 1]

31

32 # Run the training command
33 subprocess.run(command_train)

Fragmento de cddigo 6.6: Script de uso del metodo LoRas

-~ 7Imagen 1 Imagen 2 Imagen 3 Imagen 4
[D ! i : l %j ﬂuwﬁ
) i =
oDeopn © - | L

Figura 6.11: Experimento 1: imagenes generadas de pruebas mediante el método LoRas



Aspectos relevantes del desarrollo del proyecto 48
Imagen 1 Imagen 2 Imagen 3 Imagen 4 Imagen 5

]

]

0

ms

ol

1 i)
]

(mmm

[l =] -
= =

il:la

Figura 6.12: Experimento 2: imagenes de prueba generadas mediante el método LoRas

Las imagenes resultantes del fine-tuning con LoRAs mostraron resultados interesantes,
aunque también inesperados. Muchas carecian de contexto y presentaban errores, como
borrosidad y falta de coherencia con la solicitud inicial, que consistia en generar planos
arquitectonicos basicos. De manera sorprendente, la mayoria de las imagenes generadas
eran a color, a pesar de que las imagenes de entrenamiento estaban en escala de grises. Esto
sugiere una capacidad intrinseca de LoRAs para completar y reinterpretar las imagenes
durante el proceso de generacién tras el ajuste fino.

El conjunto de datos utilizado fue CubiCasadk, del cual se seleccionaron 100 muestras
para el entrenamiento con el método LoRas. En total, se llevaron a cabo 35 pruebas,
en las que se modificaron diversos parametros del ajuste fino. Sin embargo, para este
documento, los resultados se redujeron a solo dos pruebas, identificadas como las que
presentaron la mayor evolucién en el proceso de ajuste. Las frases utilizadas tanto para el
entrenamiento como para la inferencia fueron de contexto limitado y poco detallado, debido
a la incapacidad de ambos métodos, DreamBooth y LoRAs, de trabajar con multiples
embeddings relacionados.

Ante esta situacion, se identificé la necesidad de un método que, por defecto, permita
relacionar multiples parametros durante el entrenamiento. Este aspecto sera abordado en
la préxima seccion de este capitulo (6.5).

6.4. Fine-Tuning de Stable Diffusion con el Método
Misto Line

El método Misto Line fue elegido para hacer el ajuste fino de nuestro problema debido
a su buena reputaciéon en la comunidad de Hugging Face. Este método empleaba el modelo
SDXL de Stable Diffusion, que no era el clasico utilizado para métodos de ajuste fino. Sus
ventajas en rapidez y gran calidad de imagenes generadas llamaban mucho la atencién.
Sin embargo, después de estudiar con él mas a fondo, nos dimos cuenta de que no era
el método mas adecuado para ajustar embeddings del tipo text-to-image, sino mas bien
para piz-to-piz, ya que es mejor para condicionamientos mediante lineas de boceto sobre
una imagen. Los testes para los métodos del Mixto Line no fueron muy profundos, ya que
no era un método muy especifico para nuestro problema. A continuacion, destacamos las
imagenes generadas y sus respectivas evaluaciones utilizando solamente el Clip Score.



16

Aspectos relevantes del desarrollo del proyecto 49

El fragmento de c6digo a continuacién nos muestra que podiamos enviar un prompt
para detallar una condicion de lo que queriamos visualizar sobre la imagen. Sin embargo,
observamos en la primera prueba que la imagen generada seguiria mas las expresiones de
la figura enviada como ejemplo a seguir para generar una imagen. Este método simple es
capaz de ajustarse a una sola imagen, pero siempre es necesario enviar una imagen de base
para que pueda tener bocetos que condicionen su generacion de imagenes. Ademas, dado
que el modelo SDXL es muy detallista, podemos observar que solo seria posible generar
imagenes de planos en 3D, con tonalidades RGB.

from diffusers import ControlNetModel,
StableDiffusionXLControlNetPipeline, AutoencoderKL

from diffusers.utils import load_image

from PIL import Image

import torch

import numpy as np

import cv2

prompt = "Floor Plan 2D, Many Details, Image of white background"
negative_prompt = 'low quality, bad quality, sketches'

image = load_image(f"testeb.png")
controlnet_conditioning_scale = 0.5

controlnet = ControlNetModel.from_pretrained/(
"TheMistoAI/MistoLine",
torch_dtype=torch.floatl6,
variant="fpl6",

)

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fpl6-fix",
torch_dtype=torch.floatl16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.floatl6,

)

/ pipe.enable_model_cpu_offload()

image = np.array(image)

image = cv2.Canny(image, 100, 200)

image = imagel[:, :, Nonel

image = np.concatenate ([image, image, image], axis=2)
image = Image.fromarray (image)

images = pipe(

prompt , negative_prompt=negative_prompt, image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
) .images



Aspectos relevantes del desarrollo del proyecto 50

39 images [0] .save (f"hug_lab.png")

Fragmento de cédigo 6.7: Ejemplo de generar planos arquitectonicos con el metodo
Misto Line

En la figura 6.13, podemos visualizar la prueba generada con el método de Misto Line,
la cual nos muestra claramente como el modelo SDXL tiene la capacidad de detallar las
imégenes entrenadas para hacer sus inferencias, sin embargo vemos que las imagenes nos
traen un contexto mas 3D, que no nos interesa traer en este punto de esta investigacion.
Para generar esta imagen, utilizamos una de las imagenes basicas, proporcionada por el
conjunto de datos CubiCasadk.

Figura 6.13: Imagen generada con el método Misto Line

Figuras de Teste Frase de Evaluacién CLIP
Inferencias Score
Figura: 6.13 Floor Plan 2D, Many 0.2765

Details, Image of
white background

Tabla 6.6: Evaluacién con Clip Score de la imagen generada con Misto Line

No realizamos muchas pruebas con Misto Line porque, al igual que Dreambooth, tenia
un objetivo que no correspondia a nuestra meta, que era efectuar un entrenamiento
masivo sobre un ajuste fino, hasta obtener imagenes igual planos bajos 2D. Ademas, la
tecnologia produce muchos mas resultados cuando se condiciona con bocetos en una imagen,
permitiendo asi realizar rellenos e inserciones en una imagen con el método piz-to-pix. Sin
embargo, pudimos visualizar como funcionaba su tecnologia, ademas de realizar inferencias
importantes y observar el nivel de detalles que se insertan, junto con un toque mas artistico.
Una de las cosas que no fue posible lograr fue que generara imagenes en tonos de gris y
con un aspecto mas de plano bajo, y si solamente como una imagen con aspecto mas 3D y
artistico, lo que nos llevd a descartar su uso para este proyecto.



1

Tt o= W

-3

oo

Aspectos relevantes del desarrollo del proyecto 51

6.5. Fine-Tuning de Stable Diffusion con el Método
Text To Image

Después de realizar experimentos con los métodos de Fine-Tuning de Dreabooth, LoRas
y Misto Line, pudimos evidenciar que los modelos de difusién eran capaces de ajustarse a
las iméagenes de nuestros diferentes conjuntos de datos. Sin embargo, un problema que
enfrentabamos era la imposibilidad de relacionar multiples embeddings, es decir, diversas
imégenes relacionadas con un tipo o multiples frases. Solo podiamos tener una frase
estandar para todo un ajuste fino. Con este problema, nos dimos cuenta de que era
necesario utilizar un método que relacionara estos embeddings de manera multiple y
eficiente. Fue entonces que encontramos un método que atn esta en experimentacion
denominado Text-to-Image de la biblioteca Diffusion, el cual tiene el poder de realizar
ajuste fino en modelos Stable Diffusion mediante diversas imagenes relacionadas con
diversas frases. No obstante, este método nos requeria una serie de imagenes adicionales
en comparaciéon con los otros métodos para realizar los entrenamientos. Dado que también
teniamos dificultades para encontrar las imagenes necesarias, fue necesario utilizar las
iméagenes del dataset CubiCasadk transformado, como se detalla en la seccién 6.2 de
este capitulo. Con las transformaciones del dataset, teniamos un total de 450 imagenes
para entrenar, ademas de 450 frases en un archivo .json que fue ejemplificado en la
documentacion de Diffusion para ser utilizado en el método de ajuste fino.

Como el método cumplia con lo que considerdbamos méas adecuado para nuestra
investigacion, decidimos entrenar diferentes modelos con distintos pardmetros para observar
cémo cada modelo podria ajustarse a nuestro conjunto de datos y generar las imagenes,
teniendo en cuenta el contexto textual de cada experimento. A continuacién, detallamos
los experimentos realizados:

command_train = [
"accelerate", "launch", "/home/data/giovan/testes/Dreambooth/Model/
diffusers/examples/text_to_image/train_text_to_image.py",
"--pretrained_model_name_or_path", model_name,
"--train_data_dir", train_dir,
"--use_ema'",
"--resolution", "512", "--center_crop", "--random_£flip",
"--train_batch_size", "4",
"--gradient_accumulation_steps", "4",
"--gradient_checkpointing",
"--mixed_precision", "fpl6",
"--max_train_steps", "1500",
"--learning_rate", "5e-6",
"--max_grad_norm", "4",
"--1lr_scheduler", "constant",
"--output_dir", output_dir,
"--logging_dir", "output_logl"

"--1lr_warmup_steps", "O",

Fragmento de cédigo 6.8: Ejemplo de entrenamiento de ajuste fino Text To Image



Aspectos relevantes del desarrollo del proyecto 52

El entrenamiento, como se muestra en el fragmento 6.8, nos permite visualizar que en
este primer modelo utilizamos el estandar especificado por la biblioteca Diffusion, lo cual
gener6 un modelo generativo con el que realizamos dos diferentes inferencias que resultaron
en las imagenes descritas en las figuras 6.14 y 6.15. Podemos observar en las figuras que,
en cuanto a la calidad de imagen, los planos generados en formato .png nos presentan una
buena calidad de pixeles, especialmente por haber utilizado las imagenes de CubiCasabk,
que contaban con buenos ejemplos transformados. En el contexto de la calidad, podemos
notar que las imagenes tienen una mejor resolucion, sin embargo, presentan descripciones
erroneas en las imagenes y sin contexto, lo que podria indicarnos que no deberiamos haber
utilizado las imégenes del conjunto con la descripcion textual (anotaciones) adentro de las
imagenes de cada habitacion desde el inicio de los entrenamientos.

Imagen 1 Imagen 2 Imagen 3 Imagen 4

Figura 6.14: Experimento 1, Modelol, Prompt 1: imégenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.15: Experimento 2, Modelol, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image

En la continuacion es demostrados los experimentos realizados con cambio en los
parametros del ajuste fino del método y nuevas inferencias realizadas:

Imagen 1 Imagen 2 Imagen 3 Imagen 4

N

A~

Figura 6.16: Experimento 1, Modelo2, Prompt 1: imégenes generadas de pruebas mediante
el método Text-toImage



Aspectos relevantes del desarrollo del proyecto 53

Imagen 4

Figura 6.17: Experimento 2, Modelo2, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.18: Experimento 1, Modelo3, Prompt 1: imagenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.19: Experimento 2, Modelo3, Prompt 2: imagenes generadas de pruebas mediante
el método Text-to-Image

Los cambios realizados en los entrenamientos de los modelos que presentaron los
resultados anteriores incluyeron modificaciones en la tasa de aprendizaje, el tamano del
batch utilizado en cada entrenamiento y el ajuste del nimero de steps de entrenamiento
para controlar los niveles de aprendizaje del modelo. Los resultados de estos entrenamientos
se presentan en el Capitulo 7: Discusion de Resultados.

Una de las dificultades que encontramos al realizar los ajustes finos fueron las limitacio-
nes con la infraestructura computacional, ya que muchas veces el ajuste generaba modelos
muy grandes y la infraestructura no contaba con espacio de almacenamiento suficiente
para soportarlos, o la memoria de la GPU superaba su limite, debido al procesamiento de
una gran cantidad de algoritmos de difusion, a medida que aumentdbamos la cantidad de
datos utilizados para mejorar el ajuste fino.

Para un analisis méas preciso de las pruebas realizadas, utilizamos el algoritmo CLIP
Score, al igual que en los métodos experimentales anteriores, y también aplicamos la
métrica FID, dado que este algoritmo parecia cumplir con los objetivos de nuestra in-
vestigacion. Su implementacion nos permitiria evaluar con mayor profundidad la calidad
de las imagenes generadas. A continuacién, presentaremos el proceso de implementacion
de ambas métricas, con el fin de evaluar la coherencia contextual entre los embeddings
textuales y las caracteristicas de cualidad de los modelos ajustados mediante el método
text-to-image.



w N =

ov ok

-~

10
11

12
13
14
15
16
17
18
19
20
21
22
23

29

31
32
33
34

36

37

38

40

41

42

43

Aspectos relevantes del desarrollo del proyecto 54

from transformers import CLIPProcessor, CLIPModel
from PIL import Image

import torch

import os

# List of image files for Test 01 - LoRa

Test_01_LoRa_Files = ["output_Teste_1.png", "output_Teste_2.png", "
output_Teste_3.png", "output_Teste_4.png"]
Test_01_LoRa_Path = ..\Text_to_Image_Testes\Model_3\Prompt_1"

# Generate full file paths

Full_Files_Test_1 = [os.path.join(Test_01_LoRa_Path, file) for file in
Test_01_LoRa_Files]

Image_Counter_Test_1 = 0

# Loop through each file
for Open_File in Full_Files_Test_1:

Image_Counter_Test_1 += 1

image = Image.open(Open_File)
textsl = ["Floor Plan 2D, 1 bedroom, 1 kitchen, 1 bathroom, 1 living
room"]

# Load the CLIP model and processor

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-
patch32")

# Preprocess the image and text
inputs = processor (text=textsl, images=image, return_tensors="pt",
padding=True)

# Pass the inputs through the model
outputs = model (x*inputs)

# Extract image and text embeddings
image_embeddings = outputs.image_embeds
text_embeddings = outputs.text_embeds

# Compute similarity (cosine similarity)
similarity = torch.nn.functional.cosine_similarity(image_embeddings,
text_embeddings)

# Display similarity score
print ("CLIP Score Value for Test 1, Figure " + str(
Image_Counter_Test_1) + ": " + str(similarity))



1
2
3
4
5

6

15
16
17

18

Aspectos relevantes del desarrollo del proyecto 55

Fragmento de cédigo 6.9: Evaluacion con CLIP Score

Aplicamos el CLIP Score de la misma manera que se demostrd en la sesién 6.3. Sin
embargo, la diferencia en nuestra metodologia radica en que incorporamos un bucle para
evaluar las imagenes de acuerdo con el prompt y el modelo especificado en la ruta de
acceso (path). Esto nos permitié verificar los calculos y generar las tablas de resultados.

Después de llevar a cabo la evaluacién de las imagenes generadas mediante CLIP Score,
decidimos emplear la métrica FID para evaluar la calidad de los planos generados. Para
esta evaluacion, utilizamos una pequena fraccion de imagenes que no se emplearon en
el ajuste fino, ya que contenian valores simboélicos (anotaciones) nulos. Esto nos llevé a
descartar dichos planos de nuestro conjunto de entrenamiento y, en su lugar, utilizarlos
para la evaluacion con FID. Cada imagen generada por los modelos fue procesada para
extraer sus caracteristicas y compararlas con las imagenes originales, permitiendo asi el
calculo del FID. Cabe recordar que un valor alto de FID indica una mayor diferencia
entre las imagenes comparadas, lo cual, dependiendo del enfoque de investigacion, puede
considerarse un resultado no deseado. En nuestro estudio, establecemos que los resultados
deben mantenerse en un promedio equilibrado, evitando valores extremos, ya que las
estructuras de las imagenes deben asemejarse a los planos de entrenamiento, pero sin
ser completamente idénticas, con el fin de preservar la diversidad en la generacion de
contenido arquitectonico.

A continuacién, se presentan el fragmento de codigo de FID utilizado para realizar la
evaluaciéon de cada imagen.

import os
import torch
from pytorch_fid import fid_score

def main():
# Define the paths to the folders containing the reference and
generated images
real_images_path
fake_images_path

..\FID _Evaluacion\Imagenes_Testes_Reais"
..\FID_Evaluacion\Imagenes_Pruebas"

# Calculate the FID score
fid_value = fid_score.calculate_fid_given_paths(
[real_images_path, fake_images_path],
batch_size=16,
dims=2048,
device='cuda' if torch.cuda.is_available() else 'cpu'

print (£ 'FID Score: {fid_valuel}')
Fragmento de cdédigo 6.10: Calculo de FID



1
2
3
|
5

6

7

8
9
10
11
12
13

14
15
16
17

Aspectos relevantes del desarrollo del proyecto 56

6.6. Desarrollo de la Interfaz de Pruebas Utilizando
Gradio

Con el objetivo de facilitar la visualizacién y prueba de los modelos generativos,
optamos por desarrollar una interfaz web utilizando la biblioteca de Python denominada
Gradio. Esta biblioteca fue disenada especificamente para la evaluaciéon de modelos de
inteligencia artificial, asi como de otros modelos matematicos y predictivos, proporcionando
una manera sencilla e interactiva de realizar pruebas sin necesidad de implementar una
interfaz grafica compleja.

En la continuacién, se detallard el desarrollo de esta interfaz, describiendo su imple-
mentacion, configuracion y los resultados obtenidos a partir de su uso en la evaluacion de
los modelos generativos.
import gradio as gr
from diffusers import StableDiffusionPipeline
import torch

# Cargue el modelo entrenado para inferencia

output_dir = "./"

pipeline = StableDiffusionPipeline.from_pretrained(output_dir,
torch_dtype=torch.floatl16).to("cuda")

# Funcion para generar imagenes.
def generate_images (prompt, width, height, num_steps, num_images=4):

images = []
for _ in range(num_images):
result = pipeline(prompt, num_inference_steps=num_steps, height=

height, width=width)
if "images" in result:
image = result["images"][0]
else:
raise ValueError ("Unexpected output format from pipeline")
images .append (image)
return images

# Interfaz Gradio para generar imagenes.
interface = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(lines=2, placeholder="Escribe tu mensaje aqui...",
label="Prompt"),
gr.Slider (minimum=256, maximum=1024, step=64, value=512, label="
Ancho de la imagen"),
gr.Slider (minimum=256, maximum=1024, step=64, value=512, label="
Altura de imagen"),
gr.Slider (minimum=10, maximum=100, step=10, value=50, label="
Numero de pasos")
1,
outputs=[gr.Image(type="pil", label=f"Imagen {i+1}") for i in range
47,



Aspectos relevantes del desarrollo del proyecto 57

title="Generador de Planos - Florify",
description="Ingrese un mensaje de texto y el modelo generara cuatro
imagenes basadas en el."

# Inicie la interfaz
interface.launch ()

Fragmento de cédigo 6.11: Ejemplo del cédigo de ejecucién de interface gradio con el
modelo generativo

Generador de Planos - Florify

Clear

Figura 6.20: Interface de teste Del generador de planos arquitectonicos hecho con Gradio

A partir de la observacion del fragmento 6.11 y la figura 6.20, se puede notar que ambos
cuentan con un campo especifico para la inserciéon de mensajes destinados a la generacion
de planos. Es importante recordar que, para garantizar el correcto funcionamiento del
sistema, los mensajes deben seguir el mismo formato de estilo que fue definido en las frases
de entrenamiento dentro del archivo .json, el cual fue previamente mencionado en las
secciones anteriores 6.2. Para la interfaz web, continuamos con las pruebas utilizando el
modelo experimental 3 ajustado con text-to-image, ya que este fue el modelo que obtuvo el
mejor rendimiento en términos de coherencia contextual, de acuerdo con las evaluaciones
realizadas mediante la métrica CLIP Score.

Durante la generacion de los planos, establecimos que, por defecto, se realizarian
cuatro inferencias por modelo, lo que nos permitiria disponer de multiples opciones vy,
de esta manera, evaluar visualmente cudl era la mejor imagen generada. Sin embargo,
los resultados obtenidos mostraron ciertas inconsistencias. Las imagenes generadas no
lograban una puntuacién alta en las métricas de evaluacion, tales como CLIP Score y
FID, y ademés fueron evaluadas visualmente por los investigadores de esta investigacion,
quienes identificaron que, en muchas ocasiones, las imagenes generadas no mantenian
coherencia con la descripcion proporcionada en el prompt de texto, temas que se trataran
en el proximo capitulo. 7: Discusion de Resultados. Debido a estos problemas, se decidié no
incluir un conversor de imagenes que transformara las salidas en extensiones vectoriales u



Aspectos relevantes del desarrollo del proyecto 58

otros formatos distintos al estandar .jpg en esta fase del estudio. No obstante, se considera
que este aspecto puede ser una linea de investigacién futura con el propdsito de mejorar la
precision del sistema en la generacion de planos arquitecténicos a partir de descripciones
textuales.



7: Discusion de Resultados

En este capitulo, analizaremos los resultados obtenidos a partir de las implementaciones
y experimentos realizados con base en el capitulo anterior 7: Discusién de Resultados. Dicho
capitulo tuvo como proposito presentar los datos y scripts claves utilizados durante el
desarrollo y la ejecucion de los procesos de Fine-Tuning, lo que permitio extraer informacion
valiosa para un andlisis mas profundo y especifico. A partir de estos datos preliminares,
este capitulo se enfocard en un estudio detallado de los resultados obtenidos, con el objetivo
de evaluar de manera concluyente la efectividad del Fine-Tuning en el cumplimiento de los
objetivos de esta investigacion. Para ello, realizaremos un analisis textual de los siguientes
métodos de ajuste fino: DreamBooth, LoRAs y Text-to-Image. Cabe destacar que no se
incluird un analisis del modelo ajustado The Misto Line, dado que se concluyé que dicho
experimento no era preciso ni esencial para esta investigaciéon, al no contribuir de manera
significativa al objetivo principal del estudio, pero hicimos un pequefio analisis sobre esto
en el capitulo anterior adentro de su seccién 6.4. A continuacién, se detallan el proceso y
los resultados obtenidos.

7.1. Evaluacién inicial con Stable Diffusion estandar

El primer experimento empled el modelo estandar de Stable Diffusion para generar pla-
nos arquitecténicos sin realizar ajustes previos. Se generaron varias imégenes condicionadas
por descripciones textuales como “Floor Plan 2D with 2 bedrooms, 1 bathroom and living
room”. Aunque las imagenes resultaron visualmente atractivas, el modelo requirié multiples
intentos para cumplir con las condiciones especificas del prompt, mostrando una falta
de consistencia inicial. Las evaluaciones mediante CLIP Score reflejaron una correlacion
positiva moderada entre texto e imagen, con valores cercanos a 0.30, lo cual indicé que los
embeddings evaluados eran similares pero insuficientes para cumplir completamente con
las expectativas del proyecto. En la continuacién es posible mirar la tabla de prueba con
Clip Score:

Figuras de Teste Frase de Evaluacién CLIP
Inferencias Score

29



Discusioén de Resultados 60

Figura: 6.8 Floor Plan 2D with 2 0.3084
bedrooms, 1 bathroom
and living room
Figura: 6.9 Floor Plan 2D with 4 0.3250
bedrooms, 2 bathroom,
a kitchen and living
room

Tabla 7.7: Evaluacién con Clip Score del modelo estandar Stable Diffusion

Como podemos visualizar, los resultados obtenidos a partir del CLIP Score son positivos
y se acercan al valor de 1, lo que significa que los embeddings evaluados son muy similares
y correspondientes. Ademas, se identifican diferencias entre ellos, ya que el valor positivo
es bajo, lo que indica que son correspondencias, aunque existen algunas faltas de contexto
en la imagen generada en relacion con la condicion especificada en el prompt de texto.

7.2. Evaluacion del Fine-Tuning con DreamBooth y
LoRas

El método DreamBooth, reconocido por su facilidad de uso y capacidad para personalizar
modelos con pocas iméagenes, fue el primer enfoque de ajuste fino implementado. Este
método permitié entrenar el modelo utilizando el conjunto de datos New Floor Plan,
compuesto por 6 imagenes seleccionadas. Aunque este enfoque simplifico el entrenamiento,
presenté limitaciones significativas, ya que las imagenes generadas estaban condicionadas
por una tnica frase de entrenamiento. Esto restringio la diversidad de resultados, haciendo
que los planos generados fueran poco flexibles frente a distintas condiciones textuales.

Los resultados evaluados mediante CLIP Score arrojaron valores en un rango de
0.3034 a 0.3334, confirmando que las imagenes generadas cumplian parcialmente con las
especificaciones. Sin embargo, los planos carecian de precisién y presentaban inconsistencias
como saturacion de colores y falta de coherencia estructural. Aunque el método DreamBooth
demostré ser viable para personalizar modelos, sus limitaciones lo hicieron menos adecuado
para los objetivos de este proyecto.

Figuras de Teste Frase de Evaluacién CLIP
Inferencias Score
Imagen 1 Floor Plan 2D 0.3334
Imagen 2 Floor Plan 2D 0.3273
Imagen 3 Floor Plan 2D 0.3255
Imagen 4 Floor Plan 2D 0.3034
Imagen 5 Floor Plan 2D 0.3239

Tabla 7.8: Evaluacion con Clip Score de las imagenes generadas con Dreambooth - 1



Discusioén de Resultados 61

El método LoRAs se implementd como una alternativa més eficiente y flexible. Este
enfoque permitié trabajar con un mayor volumen de datos, utilizando 100 imagenes
seleccionadas de CubiCasadk. Durante el entrenamiento, se realizaron multiples pruebas
con modificaciones en los parametros, como la tasa de aprendizaje y el tamano del lote.
Aunque LoRAs present6 ventajas en términos de eficiencia computacional y capacidad para
manejar grandes conjuntos de datos, las imagenes generadas carecieron de coherencia en
algunos casos, mostrando problemas visuales como borrosidad y tonalidades inesperadas.
Esto podria deberse a la limitada cantidad de imagenes en su conjunto de entrenamiento
para el ajuste fino, lo que afecté la capacidad del modelo para generalizar correctamente y
producir resultados visualmente mas precisos y alineados con las descripciones textuales
proporcionadas.

Figuras de Teste Frase de Evaluaciéon CLIP
Inferencias Score
Imagen 1 Floor Plan 2D 0.3126
Imagen 2 Floor Plan 2D 0.3152
Imagen 3 Floor Plan 2D 0.3173
Imagen 4 Floor Plan 2D 0.3206

Tabla 7.9: Experimento 1: evaluacion de imagenes generadas con LoRas, mediante al CLIP
Score

Figuras de Teste Frase de Evaluacién CLIP
Inferencias Score
Imagen 1 Floor Plan 2D 0.3098
Imagen 2 Floor Plan 2D 0.3200
Imagen 3 Floor Plan 2D 0.2642
Imagen 4 Floor Plan 2D 0.3029
Imagen 5 Floor Plan 2D 0.3256

Tabla 7.10: Experimento 2: evaluacion de imagenes generadas con LoRas, mediante al

CLIP Score

Los resultados del CLIP Score presentados en las tablas abajo, oscilaron entre 0.3098
y 0.3256, indicando mejoras moderadas en la correlaciéon entre texto e imagen 7.9 7.10.
Sin embargo, estas mejoras no fueron suficientes para cumplir con las expectativas del
proyecto. Ademsds, las pruebas evidenciaron una tendencia del modelo a generar imagenes
en color, a pesar de que los datos de entrenamiento estaban en escala de grises, lo que
revelé un comportamiento inesperado del modelo al completar y personalizar espacios en
blanco o en tonos de gris. Este fenémeno también podria estar relacionado con el reducido
numero de imagenes de entrenamiento.



Discusioén de Resultados 62

7.3.

El método Text-to-Image, perteneciente a la biblioteca Diffusion, se implement6 para
abordar las limitaciones observadas en los enfoques anteriores. Este método permiti
establecer relaciones mas robustas entre multiples embeddings de texto e imagen, facilitando
el trabajo con un mayor volumen de iméagenes y descripciones textuales. Para este ajuste
fino, se utiliz6 el conjunto de datos transformado de CubiCasadk, compuesto por 450
iméagenes y sus respectivas descripciones en un archivo .json.

Evaluacién del Fine-Tuning con Text-to-Image

Se entrenaron tres modelos distintos con configuraciones variables, ajustando hiperpa-
rametros clave como la tasa de aprendizaje, el tamartio del lote (batch size) y el nimero de
steps de entrenamiento. El nimero de steps definia automaticamente el total de épocas;
sin embargo, decidimos entrenar todos los modelos con el mismo valor predeterminado
descrito en la documentacion del ajuste fino. A medida que avanzamos en los experimentos,
incrementamos gradualmente las tasas de aprendizaje y los tamanos del batch, aseguran-
donos de no sobrecargar la GPU para evitar interrupciones en el entrenamiento. En la
siguiente tabla 7.11, se presentan los valores de los hiperparametros utilizados, asi como
las pérdidas finales obtenidas y un grafico de apoyo hecho con TensorBoard. Como se
puede observar, la pérdida total mostré una evolucion a lo largo de los entrenamientos.

Hiperparametros y Total de Perda | Modelo 01 | Modelo 02 | Modelo 03
Taja de Aprendizaje le-05 Je-05 be-06
train_ batch size 1 2 4
max__train__steps 1500 1500 1500
Total de La Perda (Final) 0,0406 0,0364 0,0277

Tabla 7.11: Datos de los entrenamientos y optimizaciones con el método Text-to-Image

iy
'Uﬂ'l" ll\r N g lmmvmlr

I m wu W

Value
00406

—_

0l I '
(AN ‘\' 'Ihll"n‘u-! 1!

W d
ARt

L G

Figura 7.21: Grafico ejemplo del entrenamiento del modelo ajustado 1

Relative
13.21hr

Smoothed
0,0309

Step
1500

La Figura 7.21 muestra el historial de pérdida (loss) durante el entrenamiento de ajuste
fino, el cual, como podemos identificar, es bastante agresivo, algo comun en ajustes finos
en modelos de Transformers y Stable Diffusion [39]. Ademds, podemos observar una gran
oscilacion que podria estar indicando una cierta tendencia al overfitting (sobreajuste). Sin
embargo, esto no puede confirmarse con certeza, ya que optamos por no trabajar con
datasets de validacién para medir los niveles de pérdida del modelo. Como se identifico



Discusioén de Resultados 63

en el Capitulo 5: Técnicas y herramientas, estos no son muy eficaces en modelos como
Stable Diffusion, donde es necesario utilizar métricas especificas para evaluar la calidad de
los modelos. Aun asi, en el grafico podemos notar una marcada tendencia a la oscilacién,
ademdas de una disminucion en los niveles de pérdida, lo que indica que el modelo esta
aprendiendo. Optamos por no mostrar los graficos de los otros modelos, ya que presentaban
practicamente los mismos resultados en términos de oscilacion, agresividad y reducciéon de
la pérdida.

Los resultados de las evaluaciones con las métricas indicaron avances significativos en
la calidad y el contexto de las imagenes generadas. En particular, los valores obtenidos
mediante CLIP Score alcanzaron hasta 0.3412, lo que sugiere una mayor correlacién entre
las descripciones textuales y las imagenes producidas. Ademas, se utilizé la métrica FID
(Fréchet Inception Distance) para evaluar la similitud entre las imdgenes generadas y las
originales, obteniendo resultados que reflejaron un equilibrio adecuado entre diversidad
visual y coherencia estructural.

A pesar de las mejoras observadas en los modelos entrenados bajo este enfoque,
también se identificaron ciertas limitaciones relacionadas con la coherencia entre el texto y
la imagen. En algunos casos, las imagenes generadas contenian descripciones imprecisas
(anotaciones) o inconsistencias estructurales que comprometian su aplicabilidad como
planos arquitecténicos de alta precision.

Los experimentos reflejados en la tabla muestran que el CLIP Score evaltia las imagenes
en funcién de su contexto, validando su relevancia semantica. Sin embargo, se observa una
repeticion de tendencias en los resultados, en concordancia con pruebas previas realizadas
mediante otros métodos, lo que sugiere la necesidad de exploraciones adicionales para
optimizar la fidelidad seméantica del modelo.

Modelo 1
Prompt Figuras de Frase de Evaluaciéon| Evaluacién
Teste Inferencias CLIP FID
Score
Prompt 1 Figura 1 Floor Plan 2D, 1 0.3353 97,777
bedroom, 1
kitchen, 1
bathroom, 1
living room
Prompt 1 Figura 2 Floor Plan 2D, 1 0.3272 187,019
bedroom, 1
kitchen, 1
bathroom, 1
living room




Discusioén de Resultados

64

Prompt 1

Figura 3

Floor Plan 2D, 1
bedroom, 1
kitchen, 1
bathroom, 1
living room

0.3285

158,063

Prompt 1

Figura 4

Floor Plan 2D, 1
bedroom, 1
kitchen, 1
bathroom, 1
living room

0.3408

122,168

Prompt 2

Figura 1

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3307

61,499

Prompt 2

Figura 2

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3245

66,054

Prompt 2

Figura 3

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3228

57,636

Tabla 7.12: Experimento 1 Modelo 1: evaluacion de imégenes generadas con Text-to-Image,

mediante al CLIP Score

bedroom, 1
kitchen, 1
bathroom, 1
living room

Modelo 02
Prompt Figuras de Frase de Evaluaciéon| Evaluacién
Teste Inferencias CLIP FID
Score
Prompt 1 Figura 1 Floor Plan 2D, 1 0.3290 370,998




Discusioén de Resultados

65

Prompt 1

Figura 2

Floor Plan 2D, 1
bedroom, 1
kitchen, 1
bathroom, 1
living room

0.3333

59,675

Prompt 1

Figura 3

Floor Plan 2D, 1
bedroom, 1
kitchen, 1
bathroom, 1
living room

0.3308

66,111

Prompt 1

Figura 4

Floor Plan 2D, 1
bedroom, 1
kitchen, 1
bathroom, 1
living room

0.3362

52,619

Prompt 2

Figura 1

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3233

93,297

Prompt 2

Figura 2

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3326

64,571

Prompt 2

Figura 3

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3256

61,205

Prompt 2

Figura 4

Floor Plan 2D,
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

0.3302

55,226

Tabla 7.13: Experimento 2, Modelo 2: evaluacion de imagenes generadas con Text-to-Image,

mediante al CLIP Score

Modelo 03




Discusioén de Resultados 66

Figuras de Frase de Evaluacién| Evaluacion
Teste Inferencias CLIP FID

Score
Floor Plan 2D, 1 0.3380 239,756

bedroom, 1
kitchen, 1
bathroom, 1
living room
Floor Plan 2D, 1 0.3289 57,785
bedroom, 1
kitchen, 1
bathroom, 1
living room
Floor Plan 2D, 0.3412 85,844
1 bedroom, 1
kitchen, 1
bathroom, 1
living room
Floor Plan 2D, 1 0.3291 91,106
bedroom, 1
kitchen, 1
bathroom, 1
living room
Floor Plan 2D, 0.3243 96,945
2 bedroom, 1
kitchen, 2
bathroom, 1
living room
Floor Plan 2D, 0.3293 77,581
2 bedroom, 1
kitchen, 2
bathroom, 1
living room
Floor Plan 2D, 0.3235 134,003
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

Prompt

Prompt 1 Figura 1

Prompt 1 Figura 2

Prompt 1 Figura 3

Prompt 1 Figura 4

Prompt 2 Figura 1

Prompt 2 Figura 2

Prompt 2 Figura 3




Discusioén de Resultados 67

Prompt 2 Figura 4 Floor Plan 2D, 0.3381 232,512
2 bedroom, 1
kitchen, 2
bathroom, 1
living room

Tabla 7.14: Experimento 3, Modelo 3: evaluaciéon de imagenes generadas con Text-to-Image,
mediante al CLIP Score

Comparando los valores obtenidos en la evaluaciéon mediante CLIP Score en cada
experimento de los distintos modelos, se observa que las diferencias entre ellos son minimas.
Los resultados muestran una gran similitud tanto entre los modelos evaluados como con
los valores obtenidos en imégenes generadas tras los ajustes finos con otros métodos. En la
Figura 7.22, se presenta un grafico con los valores mas altos obtenidos en CLIP Score para
cada experimento, destacando el mejor resultado registrado en cada modelo. Se evidencia
que la variacién entre los modelos es marginal, aunque el Modelo 3 muestra una ligera
ventaja sobre los Modelos 1 y 2 en términos de coherencia contextual entre la descripcion
textual y la imagen generada.

B Modelot B Modelo 2 Modelo 3

3412

Valores del CLIP Score - Modelos

0 1.000 2.000 3.000 4.000

Figura 7.22: Comparacion de los experimentos de modelos ajustados Text to Image

Para visualizar qué modelos obtuvieron los mejores resultados en relacién con las
caracteristicas evaluadas mediante el calculo de FID, se gener6 un grafico que se presenta
en la Figura 7.23. Este grafico destaca el menor valor obtenido en la evaluacion, lo que indica
una mayor similitud entre las imégenes generadas y los planos arquitecténicos originales
utilizados en el entrenamiento. A partir de los resultados, se observa que el Modelo 2 es
el que mejor logra generar imégenes con caracteristicas de alta calidad, mostrando una
mayor correspondencia con los planos originales. Sin embargo, es importante considerar
que, aunque los valores de FID reflejan esta similitud, ain pueden existir diferencias
estructurales entre las imagenes generadas y los datos de referencia.



Discusioén de Resultados 68

W Modelot M Modelo 2 Maodelo 3

Valores del Calculo de Caracteristicas FID - Modelos

60

Figura 7.23: Comparacion del calculo FID de los experimentos de los modelos ajustados
Text-to-Image

Después de analizar ambos resultados con las dos métricas de evaluacién, podemos
identificar que, en el caso del CLIP Score, que evalia la correspondencia entre el contexto
textual y la imagen generada, el modelo que mejor desempeii6 esta tarea fue el Modelo 3.
Por otro lado, el FID, que mide la similitud entre las imagenes generadas y las imégenes
reales de referencia, indica que el Modelo 2 presenté la mejor calidad, ya que obtuvo
valores més bajos, lo cual es un indicador positivo en esta métrica. Estos resultados
reflejan un empate en términos de calidad y evaluacion, demostrando que cada modelo
sobresale en un aspecto especifico. Sin embargo, a pesar de las métricas obtenidas, un
analisis mas profundo revela que ambos modelos atin presentan problemas significativos
en la generacién de iméagenes, la coherencia contextual entre los embeddings y la calidad
visual de los planos generados. Estos resultados sugieren que es necesario continuar con
investigaciones adicionales para mejorar el sistema generativo de planos arquitecténicos.
En el Capitulo 8: Conclusiones y Lineas de trabajo futuras, se presentaran analisis mas
detallados y consideraciones finales sobre el desempefio del modelo y las oportunidades de
mejora identificadas.

7.4. Comparacion de Métodos y Experimentos

Al evaluar los métodos implementados en este trabajo, se identificaron diferencias clave
en términos de calidad visual, coherencia textual y demanda computacional. En primer
lugar, los enfoques basados en DreamBooth' y LoRAs presentaron ciertas limitaciones debido
a su dependencia de conjuntos de datos especificos y restricciones en la diversidad de
frases de entrenamiento. En particular, estos métodos mostraron problemas de coherencia
visual en la generacion de planos arquitecténicos, lo que sugiere que pueden no ser la
opcion mas o6ptima para el objetivo de la investigacion. Por otro lado, el método Text-to-
Image, implementado a través de la biblioteca Diffusers, mostré un desempefio superior en



Discusioén de Resultados 69

términos de contextualizacion textual y calidad de los planos generados. Su capacidad para
integrar multiples embeddings permitié que los planos resultantes fueran mas coherentes con
las descripciones proporcionadas en el prompt, acercandonos al objetivo principal de esta
investigacion. No obstante, este método también enfrentd desafios significativos relacionados
con la infraestructura computacional, ya que el tamano de los modelos generados y el
consumo de memoria GPU fueron considerablemente més altos en comparacién con
DreamBooth y LoRAs.

En términos de evaluaciéon cuantitativa, los resultados obtenidos mediante CLIP
Score y FID revelan que cada modelo posee ventajas distintas. El modelo 3, entrenado
con el método Text-to-Image, sobresalié en la generacién de imagenes que guardaban
mayor coherencia con el texto de entrada, obteniendo el mejor puntaje en CLIP Score.
Esto sugiere que, desde una perspectiva de contextualizacion semantica, este modelo fue
capaz de comprender y representar con mayor precision las caracteristicas arquitectonicas
especificadas en el prompt. Por otro lado, el modelo 2 del text-to-image, demostré un mejor
desempeno en términos de calidad estructural, segin los valores obtenidos en la métrica
FID. Este resultado indica que las imagenes generadas por este modelo presentaron mayor
similitud con los planos arquitectonicos originales, lo que sugiere una menor distorsion y
una mayor fidelidad respecto a los datos de entrenamiento.

Ambos métodos siguen presentando desafios en la generacién de planos con calidad
Optima, ya que algunas imagenes generadas muestran inconsistencias estructurales y falta
de alineacién con los requerimientos del usuario. Por lo tanto, se evidencia la necesidad de
optimizar los métodos implementados, buscando un equilibrio entre la contextualizacion
textual y la fidelidad visual. Este analisis también nos llevé a reflexionar sobre la posibilidad
de incorporar un método de Piz-to-Pixr para mejorar el ajuste del modelo, permitiendo
completar automaticamente las areas faltantes en las imagenes generadas. Esta estrategia
podria hacer que la generacion de planos arquitectonicos fuera mas coherente con las
especificaciones solicitadas en los prompts, optimizando la precisién y utilidad de los
resultados. Esta idea surgié en parte a partir de la evaluacion de un modelo ajustado
descartado en este proyecto, denominado Misto Line, cuyo desempenio no cumplié con las
expectativas en términos de coherencia estructural y precision en los detalles arquitecténicos
y no parecia complementar en la investigacion, pero algunas técnicas suyas pueden ser de
gran utilidad para optimizar el proyecto.



8: Conclusiones y Lineas de trabajo
futuras

Después de terminar el proceso de desarrollo de los ajustes finos y analisis de resultados
sobre cada experimento realizado, pudimos concluir que logramos cumplir con algunos
de nuestros objetivos y descubrir un espacio para nuevas investigaciones y mejoras para
ajustar un modelo generativo de difusion en funcién de las necesidades del proyecto
Floorify. Ademas, hemos descubierto un campo de investigacién que no contiene grandes
cantidades de estudios y trabajos previos, siendo generalmente los campos de investigacion
mas enfocados en los métodos de pix-to-pix, insertando las condiciones en las propias
iméagenes y no en texto para transformarlas en planos arquitecténicos, como lo hemos
hecho en esta investigacion experimental.

En nuestra investigacién, logramos realizar el ajuste fino en varios métodos de Stable
Diffusion, el cual era la mejor opcion para llevar a cabo esta accion, ya que era completa-
mente gratuito y contenia su c6digo fuente en modo Open Source, lo que nos ayudé mucho
y nos permitié realizar ajuste fino con 4 métodos diferentes. Llegamos a la conclusion de
que el mejor método que cumplia con nuestra necesidad era el Text-to-Image, pues nos
permitia entrenar una cantidad masiva de datos relacionados, a pesar de ser un método
que aun esta en etapa de desarrollo hasta el ano actual de esta investigacion.

En las fases de desarrollo, fue posible observar que, después de los ajustes finos con el
método mencionado anteriormente, nuestro modelo generativo generaba las imégenes de
planos en 2D de acuerdo con lo que se condicionaba en el prompt de texto, cumpliendo
asi uno de los principales objetivos de este proyecto. Sin embargo, con las evaluaciones
realizadas utilizando el CLIP Score, pudimos verificar que las imagenes estaban de acuerdo
con el contexto solicitado en el prompt textual, considerando el modelo 3 del experimento
como el mejor en términos de contexto entre los embeddings, aunque con una puntuacion
muy baja, lo que nos senalaba la falta o divergencia de algunos contextos respecto a la
imagen que se habia solicitado. El célculo del FID, que evaluaba las caracteristicas de
calidad de la imagen, nos arrojé excelentes resultados en algunos experimentos realizados
con el método Text-to-Image, indicando que muchas de las imagenes estaban de acuerdo
con las que se habian entrenado en el proceso de ajuste, considerando el modelo 2 del

70



Conclusiones y Lineas de trabajo futuras 71

experimento como el mejor resultado en este nivel. Ademads, evaluamos visualmente y
pudimos notar que muchas de las imagenes presentaban errores en su contexto de dibujo
y generacion, generando contextos extranos y sin sentido para la vision humana. Esto
nos demostré que, aunque los modelos lograban generar los planos 2D, ain habia mucho
trabajo por hacer y mejoras por implementar para que pudieran alcanzar un nivel aceptable
a nivel profesional como imégenes ttiles de planos arquitectonicos.

Con esto, concluimos que, como posibles mejoras futuras para este experimento, seria
conveniente intentar realizar modificaciones en el proceso de entrenamiento del método
Text-to-Image, para visualizar si existe una mejor manera de optimizar su aprendizaje,
ademdas de probar con algtin otro modelo de Inteligencia Artificial o con alguna otra
arquitectura generativa de imagenes. También observamos que muchas veces el CLIP
Score nos devolvia puntuaciones muy similares en las imagenes generadas por métodos que
no tenian relacion con diferentes embeddings en su entrenamiento, lo que podria representar
un error por parte del CLIP Score, ya que es una métrica constituida por un modelo de
inteligencia artificial, el cual puede cometer errores, dado que su entrenamiento se basa
en grandes cantidades de datos, pero no en un conjunto infinito. Con esto consideramos
que seria interesante intentar mejorar este proyecto y realizar evaluaciones desde el punto
de vista humano, para obtener una opinién mas complementaria acerca del contexto
generativo entre prompt y imagen.

Como lineas de trabajos futuros y mejorias, dejo las siguientes recomendaciones, tras
las conclusiones obtenidas con esta investigacion:

= Mejora el contexto textual relacionado con las imagenes de entrenamiento
para ajustar nuevamente el método Text-To-Image. La mejora en el contexto
textual debe centrarse en crear frases mas naturales para ser entrenadas en el método,
yva que en este proyecto, al investigar cémo funcionaba el método, terminamos
insertando frases algo robdticas y simplemente enumerando cada habitacién de un
plano bajo.

» Modificar el conjunto de datos CubiCasa5k anadiendo mas muestras
de planos. Uno de los problemas que pueden estar provocando imagenes de baja
calidad y poco contexto se debe a la escasez de muestras entrenadas en el modelo
inteligente, ya que, como se investigd, fue muy dificil encontrar conjuntos de datos
que contuvieran una gran cantidad de planos de buena calidad. Por lo tanto, creemos
que seria de gran ventaja ampliar el nimero de muestras de entrenamiento para
mejorar los resultados.

= Intentar realizar un procesamiento de imagenes coloreando cada habitacion
con su debida identificaciéon, es decir, implementar una variante de la
técnica Pix-to-Pix para complementar el ajuste del modelo asi como sus
inferencias. Una de las grandes ventajas de utilizar el método piz-to-pix es la
facilidad con la que podemos identificar cada habitacion mediante el uso de colores,
como se demostro en el capitulo 4: Estado del Arte. Esta caracteristica proporciona



Conclusiones y Lineas de trabajo futuras 72

una ventaja significativa al recibir condiciones de relleno en las siluetas de imagenes
de planos arquitectonicos, lo cual resulta interesante para intentar aplicarlo en las
imagenes de entrenamiento del método Text-to-Image con el fin de generar planos.

» Realizar pruebas complementarias mediante la visién humana. Una de las
métricas que puede proporcionar un cierto feedback subjetivo, pero valido, ademés
de complementar los algoritmos, es la métrica de percepcion humana. Pensamos que,
con mejoras en el ajuste del modelo generativo, seria ideal realizar pruebas con seres
humanos para ver como son capaces de generar imagenes, ademas de insertar frases
mas naturales y elegir cuales son las imagenes que tienen mas contexto con lo que
ellos ingresaron a través del prompt de texto.

Con esto concluimos esta investigacion, dejando varios campos abiertos para que se
puedan realizar mas investigaciones y mejoras, hasta que el sistema generativo de planos
arquitecténicos pueda generar imagenes ttiles y de calidad. En este momento, podemos
ver que nuestros resultados no tuvieron un gran avance positivo, pero pudimos verificar y
experimentar con varios métodos de ajuste fino, ademas de llegar a diversas conclusiones
sobre por qué hubo resultados negativos en nuestra investigacion. Esto abre espacio para
nuevos experimentos y pruebas en futuros proyectos, y con ello concluimos el proyecto
Floorify.



Apéndices

73



Apéndice A

Plan de Proyecto

Para el desarrollo de este trabajo, se llevé a cabo una secuencia de metodologias y
planificaciones, para que pudiéramos desarrollar todo el proyecto Floorify y asi redactar
toda la parte escrita del TFM con el tema del proyecto Floorify abordado en esta
investigacién. A continuacién, detallamos todo el proceso de planificacién utilizado.

A.1. Planificacion del Trabajo

La planificacién del desarrollo del trabajo se inici6 tras la finalizacién de la estancia de
[+D+i. Después de concluir la estancia, ya teniamos los experimentos y modelos ajustados
y almacenados. A partir de esto, elaboramos la metodologia para extraer los resultados
algoritmicos de los experimentos, aunque aiin no habiamos realizado las evaluaciones con
las métricas determinadas en el capitulo de Técnicas y Herramientas. Con ello, elaboramos
el siguiente plan a seguir para la realizacion del TFM, teniendo en cuenta que el Trabajo
de Fin de Master tiene una carga de 6 ECTS, correspondiente a 150 horas, las fases
planificadas y la dedicacién estimada a cada una de ellas son:

» Fase 1: Estudio y Desarrollo de las evaluaciones algoritmicas (Metodologia)
de cada experimento realizado. Cuando finalizamos la estancia de I+D+i, no
habiamos concluido como serian las evaluaciones de cada experimento en cuanto al
nivel de calidad de cada imagen generada. Con esto, el TFM dio inicio a estudios
para llevar a cabo los procesos de metodologia. Dedicacion estimada: 24 horas

» Fase 2: Documentacién Inicial del TFM (Introduccién, Objetivos, Marco
Teébrico y Estado del Arte). Tras la conclusién de todos los estudios y pruebas
algoritmicas para llevar a cabo el proceso de metodologia de este trabajo, iniciaremos
la redaccion de la introduccion, la definicién de objetivos, ademéas de realizar una
revision bibliografica de los principales temas de la investigacion, adaptando teorias
ya vistas, y adaptando también el estado del arte realizado en el proceso de la
estancia de I+D+i con HP SCDS. Dedicacion estimada: 56 horas

74



Apéndice A. Plan de Proyecto 75

» Fase 3: Documentacién Central del TFM (Técnicas y Herramientas y
Aspectos Relevantes del Desarrollo del Proyecto). Una vez realizado el proceso
de estudio y desarrollo de la metodologia del proyecto estipulado en la fase 1, llegd
el momento de redactar sobre todas las herramientas utilizadas, ademas de detallar
todo el proceso experimental con el modelo generativo y los resultados evaluativos
obtenidos a partir de las métricas establecidas para evaluarlo. Dedicacion estimada:
80 horas.

» Fase 4: Documentacién Final del TFM (Conclusiones y Apéndice Plan
de Proyecto). Para finalizar el trabajo, se realizard un repaso de todos los puntos
principales del trabajo realizados en esta investigacién, como los objetivos cumplidos y
no cumplidos, y los resultados obtenidos a partir del desarrollo del modelo generativo
y los experimentos realizados y evaluados mediante métricas especificas. También
crearemos un apéndice que detallara todo el proceso de planificacion que se llevo
a cabo para la realizacién de la parte técnica y la redaccion del TFM denominado
Plan de Proyecto. Dedicaciéon estimada: 8 horas.

= Fase 5: Revisiéon y Correccién. El ultimo paso antes de dar por concluido
totalmente el trabajo es recibir el feedback de los tutores, y para eso se revisa el
trabajo entero y se aplican las correcciones y cambios sugeridos por los mismos.
Dedicacion estimada: 50 horas.

Dedicacién total estimada: 218 horas.

A.2. Ejecucion del Trabajo

Este trabajo tuvo su inicio a partir de las practicas de I+D+i en informatica, de acuerdo
con las asignaturas de practicas curriculares, del Master en Ingenieria Informatica. La
siguiente planificacién y desarrollo de este TFM se llevé a cabo durante el curso 2023/2024,
realizandose entre los meses de mayo y septiembre. El proceso de documentacion se
desarroll6 entre agosto y septiembre, totalizando 2 meses de trabajo. A continuacién, se
detallan las fases de desarrollo y el tiempo real dedicado a cada una de ellas:

» Fase 1: Estudio y Desarrollo de las evaluaciones algoritmicas (Metodologia) de cada
experimento realizado. 30 horas de dedicacion.

» Fase 2: Documentacién Inicial del TFM (Introduccién, Objetivos, Marco Tedrico y
Estado del Arte). 56 horas de dedicacién.

» Fase 3: Documentacién Central del TFM (Técnicas y Herramientas y Aspectos
Relevantes del Desarrollo del Proyecto). 80 horas de dedicacion.

» Fase 4: Documentacién Final del TFM (Conclusiones, Apéndice Plan de Proyecto
y Apéndice Manual Instalacién). 8 horas de dedicacion.



Apéndice A. Plan de Proyecto 76

= Fase 5: Revision y Correccion. 68 horas de dedicacion.

Por tanto, la dedicacion total real para la realizacion del Trabajo de Fin de Master ha
sido de 242 horas.



Apéndice B

Manual de Instalacion

Este apéndice tiene como objetivo proporcionar el repositorio oficial del proyecto, ya
mencionado en el apéndice anterior, pero retomado aqui para definir los pasos necesarios
para la instalacion y configuracion del entorno, permitiendo asi la ejecucién del proyecto y
sus respectivos experimentos, incluyendo las dependencias y conjuntos de datos utilizados.
Ademés, se presentard la infraestructura requerida y empleada para la reproduccion del
fine-tuning de un modelo de inteligencia artificial generativa basado en Stable Diffusion,
ademas de demostrar la localizacion y el uso de las métricas de evaluacion de contexto y
calidad de los sistemas generativos empleados en el proyecto.

B.1. Infraestructura y Dependencias Utilizadas

La infraestructura utilizada en este proyecto, como se mencion6 en el capitulo 5: Técnicas
y herramientas, se basé en el servidor ECA-SIMM de la Universidad de Valladolid. Este
servidor esta equipado con una GPU NVIDIA GeForce A40 de 48 GB y almacenamiento
dinamico, proporcionando la capacidad de procesamiento necesaria para el entrenamiento
de modelos de Stable Diffusion, que requieren un alto rendimiento en el procesamiento
de iméagenes. La investigacion se llevd a cabo en un entorno compartido, utilizando
24 GB de VRAM, un recurso fundamental para la optimizacién y ajuste fino de redes
neuronales avanzadas. Generalmente, el desarrollo de proyectos de esta magnitud exige una
infraestructura computacional fisica de alto rendimiento. Sin embargo, estudios recientes
sugieren que G'PUs con menor consumo energético y menor cantidad de VRAM, como la
NVIDIA RTX 3060 Ti de 8 GB, pueden representar un requisito minimo viable para la
experimentacién con fine-tuning de modelos Stable Diffusion, como se ha demostrado en
este proyecto [58]. El sistema operativo de la maquina virtual de ECA-SIM es Ubuntu
22.04.5 LTS (Jammy), con una arquitectura z86_ 64 (64 bits) y un kernel 6.8.0-51-generic.

Una vez confirmada la idoneidad de la GPU para el experimento, resulta esencial la
configuraciéon de un entorno de desarrollo adecuado, que no solo permita la ejecucién y
validacion del codigo, sino que también garantice la instalacion del lenguaje de programacion

77



Apéndice B. Manual de Instalacion 78

y sus respectivas dependencias. Para una guia técnica detallada sobre la instalacion del
entorno, en la siguiente secciéon Repositorios y Ejecuciones B.2 se proporcionan enlaces
a repositorios en linea y de acceso publico, donde se especifican los procedimientos para
la instalacién y ejecucion del proyecto. Ademads, se describe el proceso para visualizar
y descargar el modelo 6ptimamente ajustado en los experimentos de text-to-image. A
continuacién, se presenta el lenguaje de programacion utilizado, las bibliotecas esenciales
y el método mas eficiente para la instalacion de dependencias en un entorno Windows,
junto con la IDE (Integrated Development Environment) empleada en el desarrollo de este
trabajo.

Herramientas de Desarollo

» Visual Studio Code. Editor de cédigo fuente desarrollado por Microsoft. Es
una herramienta ligera y altamente personalizable, utilizada por programadores
para escribir, depurar y ejecutar codigo en diversos lenguajes de programaciéon. Fue
utilizado en toda la fase de programacion, ya que teniamos que realizar los fine-
tunings mediante la ejecucion de archivos ".bash", a través de codigo Python sencillo.
Llegamos a utilizar Jupyter Notebook, pero solo para realizar el procesamiento de
imagenes, y fue utilizado muy poco. Es muy importante en la instalaciéon que tu
tengas instalado, ya que ayudara a ver el cddigo y hacer cambios [19].

» Python. Lenguaje de programacion recomendado para manipular grandes cantidades
de datos, ademas de gestionar modelos y entrenamiento de inteligencia artificial de
manera facil e intuitiva. El lenguaje fue utilizado para desarrollar todo el proyecto
Floorify, es muy importante que la tengas instalado para que pueda hacer la ejecucion
de los scripts. La version python utilizada fue la 3.10.12 [29].

Dependencias y Librerias

Todas las dependencias mencionadas a continuaciéon forman parte del lenguaje de
programacion Python y estan disefiadas para trabajar en conjunto, garantizando compati-
bilidad entre sus versiones. La instalacién de estas dependencias sigue el método estandar
de Python a través de pip. Todas las bibliotecas necesarias se instalan automaticamente
mediante la ejecucion del archivo "install _dependencias__and__modelos.sh", el cual
se encarga de configurar el entorno de trabajo en Linux sin necesidad de instalacién
manual. En la siguiente seccién B.2, se detalla el procedimiento de ejecucion de este
archivo, asi como la configuracion del entorno y la gestiéon de repositorios para el correcto
funcionamiento del proyecto. Las tecnologias presentadas a continuacion fueron utilizadas
en diferentes etapas del desarrollo. La mayoria de ellas han sido desarrolladas por Hugging
Face y fueron fundamentales para llevar a cabo el ajuste fino de modelos. Ademas, se
empled PyTorch para realizar inferencias y cargar modelos, y Gradio para ejecutar pruebas
de manera gréfica, facilitando la interaccion y evaluacion de los modelos generados.



Apéndice B. Manual de Instalacion 79

= Accelerate. Es una biblioteca desarrollada por Hugging Face que facilita la ejecucion
de coédigo PyTorch en diversas configuraciones distribuidas, incluyendo soporte para
entrenamiento en multiples GPUs, TPUs y precision mixta. Simplifica el proceso
de escalado de modelos sin necesidad de modificar significativamente el cédigo base
[36]. La versién utilizada es la 1.3.0.

= Datasets. Desarrollada por Hugging Face, esta biblioteca proporciona una coleccion
amplia de conjuntos de datos para tareas de procesamiento de lenguaje natural y
vision por computadora. Ofrece herramientas para cargar, preprocesar y manipular
datos de manera eficiente, integrandose perfectamente con PyTorch y TensorFlow
[27]. La versién utilizada es la 3.2.0.

» Diffusers. Es una biblioteca de Hugging Face que implementa modelos de difusién
de ultima generacion para la generacion de imagenes, videos y audio en PyTorch y
FLAX. Facilita la experimentacién y el desarrollo de modelos generativos basados
en procesos de difusién [79]. La version utilizada es la 0.32.2.

= Gradio. Es una biblioteca que permite crear interfaces de usuario interactivas
para modelos de aprendizaje automatico de manera sencilla. Facilita la creacién de
demostraciones web para probar y compartir modelos con otros, sin necesidad de
conocimientos profundos en desarrollo web [1]. El Gradio fue utilizado para hacer la
creacion de nuestra interface grafica de pruebas.La version utilizada es la 5.15.0.

» Huggingface__hub. Es una biblioteca que proporciona herramientas para inter-
actuar con el Hub de Hugging Fuace, permitiendo la carga, descarga y gestion de
modelos y conjuntos de datos [24]. Facilita la integracién y el despliegue de modelos
en diversas aplicaciones. La version utilizada es la 0.28.1.

= Pytorch o torch. Es una biblioteca de codigo abierto para aprendizaje automatico
desarrollada por Facebook’s AI Research lab. Ofrece una amplia gama de herramientas
para construir y entrenar modelos de aprendizaje profundo, siendo ampliamente
utilizada en investigacion y produccién [69]. La versién utilizada es la 2.6.0.

= Torch Vision. Es una biblioteca complementaria a PyTorch que proporciona con-
juntos de datos, modelos pre-entrenado y transformaciones comunes para visiéon por
computadora. Facilita el desarrollo de aplicaciones de visién al ofrecer componentes
reutilizables y optimizados [64]. La version utilizada es la 0.21.0.

s Transformers. La biblioteca Transformers, desarrollada por Hugging Face, propor-
ciona modelos pre-entrenado para NLP y vision computacional, incluyendo GPT, y
Stable Diffusion. Es de gran importancia para este proyecto, utilizada tanto para
instanciar los algoritmos de ajuste fino de Stable Diffusion como para la aplicacién de
la métrica CLIP Score, permitiendo evaluar el contexto entre inferencias generadas
[80]. La versién utilizada es la 4.49.0.

s Pythorch__Fid. La biblioteca pytorch_fid se utiliza para calcular el Fréchet Incep-
tion Distance (FID), una métrica ampliamente aplicada en la evaluacion de la calidad



Apéndice B. Manual de Instalacion 80

de imagenes generadas por modelos generativos, comparando estadisticamente sus
caracteristicas con imagenes reales mediante redes neuronales pre-entrenadas. En
este estudio, se empled para evaluar las imagenes generadas a partir de inferencias en
modelos ajustados con el método text-to-image, permitiendo un andlisis cuantitativo
de la similitud estructural y la diversidad de las imagenes sintetizadas [73]. La versién
utilizada es la 0.3.0.

Docker en Floorify: Contenedorizacion y Gestion del Entorno

En esta subseccion, nos centraremos en presentar la maquina virtual y el proceso de
construccion, visualizacién y arquitectura del entorno de desarrollo del proyecto Floorify.
Sin embargo, para llevar a cabo el desarrollo del proyecto, contamos con el apoyo de la
plataforma Docker, utilizada para emular la maquina virtual y gestionar las dependencias,
instalaciones, memoria y uso de la GPU. El contenedor de Docker que sirvié como base para
la instancia virtual utilizada en esta investigacion fue proporcionado por el profesor tutor
Valentin Cadenoso Payo y el grupo de investigacion ECA-SIM . En esta subseccion,
no abordaremos los aspectos relacionados con la infraestructura de la maquina virtual,
ya que estos fueron tratados en el capitulo 5: Técnicas y herramientas y al inicio de esta
seccion.

El contenedor Docker fue utilizado para crear nuestra instancia de TFM e [+D+i en
el desarrollo del proyecto Floorify, dado que la empresa HP no pudo proporcionarla para
la realizacion de las practicas. Recordemos que Docker no es méas que una plataforma
con la capacidad de empaquetar sistemas, scripts y datos, con el objetivo de distribuir y
ejecutar aplicaciones de forma aislada y portatil, independientemente del entorno local [21].
Dentro de la infraestructura creada por docker, contamos con los recursos mencionados
anteriormente, asignando un total de 24 GB de GPU para llevar a cabo los entrenamientos.
Cabe destacar que esta cantidad fue la tnica disponible, ya que otros estudiantes también
estaban en proceso de desarrollo de sus TFM y TFG y necesitaban utilizar la GPU.

HuBHaEE Y
# #

#

##HEH i2:2:2:2:4 HitHEH
# HH#AHAH

# ## #

HEHEHESE  HEHEE # #

HEHHE B SRR
# # #

HEHHE  BHBEE OB HHBEE Baaad # # # BHHEE S Basad
# # # # HiHEHE
# # # # # #

HHdHE  HHEEEE # # #

Last login: Fri Feb 7 16:52:21 2025 from 157.88.142.146
i~$ |

Figura B.1: Ejemplo del la estancia remota utilizada - Proyecto Floorify

El contenedor fue personalizado con el nombre "cubi", en referencia al primer conjunto
de datos investigado para este estudio cientifico, el cual se analiza en detalle en los capitulos
5: Técnicas y herramientas y 6: Aspectos relevantes del desarrollo del proyecto. En esta fase
experimental, se ha configurado un entorno basado en Docker y JupyterLab, optimizado
para la ejecuciéon de modelos en GPU NVIDIA y gestionado con permisos especificos



Apéndice B. Manual de Instalacion 81

para evitar problemas de acceso a archivos locales. Este entorno permite la ejecucion
de experimentos en un entorno portatil y reproducible, garantizando flexibilidad para
distintos usuarios. Para iniciar el entorno, primero se construye la imagen Docker a partir
de un Dockerfile ubicado en el directorio ./cubi/CubiCasadk. Durante la construccién,
se incluyen variables de usuario y grupo (UID, GID, UNAME, GNAME), extraidas del
sistema con id -u y id -g. Esto garantiza que el contenedor herede los permisos del usuario
local, evitando conflictos al acceder a archivos montados. La imagen resultante se etiqueta
como cubi-jupyterlab.

Antes de ejecutar el contenedor, se define un conjunto de variables de entorno dentro
de un archivo user.env, donde se especifican los identificadores de usuario y grupo, el
token de Jupyter, y la asignacion de GPU con NVIDIA__VISIBLE DEVICES=0. Este
archivo se enlaza a la configuracion del contenedor para que se mantengan los valores
adecuados en cada sesién. Para la ejecucion del contenedor, se emplea docker-compose,
utilizando el archivo compose.yaml. Este archivo configura el servicio jupyterlab, asignando
un nombre fijo al contenedor (jp-cubi-giovane) y exponiendo los puertos 8888, 6006 y 7960
para acceder a JupyterLab y otras herramientas. Ademas, se montan voliimenes desde el
host para garantizar la persistencia de datos y resultados experimentales.

En casos donde se requiere una sesién interactiva, se utiliza un segundo archivo,
compose-interactive.yaml, que permite ejecutar el contenedor en modo temporal. En esta
configuracion, se habilita el soporte para GPU NVIDIA y la comparticién de memoria
interprocesos, optimizando el rendimiento en tareas intensivas. Finalmente, para gestionar
la ejecucion y limpieza del entorno, se han definido scripts adicionales que eliminan archivos
temporales y detienen el contenedor una vez finalizados los experimentos. Esta estructura
automatiza el proceso, asegurando una configuracion eficiente y escalable.

B $ 1s
compose—interactive.yaml compose.yaml jplab-settings.json user.env

$ |
Figura B.2: Ejemplo del entorno cubi - Proyecto Floorify

Anteriormente, mencionamos brevemente la configuraciéon del entorno de JupyterLab,
el cual fue configurado por el profesor Valentin. Sin embargo, su uso fue limitado, ya que,
como se evidencia en los capitulos 5: Técnicas y herramientas y 6: Aspectos relevantes
del desarrollo del proyecto, los fine tunings se ejecutaban mayormente en formato Bash.
Esto nos llevd a adaptarlos para su ejecucion en Python, convirtiéndolos en archivos .py
ejecutables dentro del entorno virtual. A pesar de ello, algunas tareas de preprocesamiento,
como la generacién de datasets y ciertas técnicas de manipulacion de datos, se realizaron
inicialmente en Jupyter Notebook. No obstante, posteriormente, todos los procesos fueron
trasladados a scripts .py ejecutables para optimizar la ejecucion y automatizacion. Del
mismo modo, muchas de las configuraciones implementadas para trabajar con CubiCasadk
tuvieron un uso limitado dentro de Jupyter Notebook en el proyecto Floorify. La ejecucion
principal del proyecto se llevé a cabo a través del entorno Docker, utilizando la GPU
NVIDIA directamente desde la terminal.



Apéndice B. Manual de Instalacion 82

Dentro del entorno remoto, implementamos una carpeta especifica para almacenar los
modelos entrenados, ya que la memoria de la instancia virtual era limitada y no permitia
guardar multiples versiones de los modelos ajustados. Para solucionar este problema,
el tutor de este trabajo proporcioné recursos adicionales mediante la habilitacion de la
carpeta ./data/, ubicada fuera del entorno principal. Esta carpeta fue configurada como
un almacenamiento externo, integrandola al sistema mediante un montaje de volumen,
lo que permitié acceder a ella de forma transparente desde el entorno de trabajo. De
esta manera, los modelos eran generados dentro del entorno virtual y luego transferidos
automaticamente a ./data/, asegurando su persistencia sin comprometer la memoria de la
instancia

B.2. Repositorio e instrucciones para su instalacién
y ejecuciéon

En esta seccién, se detallaran todos los repositorios que contienen el codigo y la estruc-
tura utilizados para llevar a cabo los experimentos. Ademas, se presentara el repositorio
del modelo ajustado que obtuvo los mejores resultados segtin las métricas empleadas,
como se mencioné previamente en el capitulo 7: Discusién de Resultados. Asimismo, se
describira el procedimiento completo para la clonacién de los proyectos y del modelo, la
instalacién de sus dependencias y la ejecucion final. De este modo, cualquier persona o
evaluador independiente podra replicar el experimento en su propio equipo, garantizando
la reproducibilidad de los resultados obtenidos. Antes de continuar, asegirese de contar
con la infraestructura computacional minima requerida, tal como se describe en la seccion
anterior de este apéndice. Esto garantizara que el entorno de ejecucion sea adecuado para
la correcta reproduccion de los experimentos y el procesamiento eficiente del modelo.

Repositorios

Este trabajo estd compuesto por tres repositorios distintos, de los cuales dos contienen
el desarrollo de los experimentos. Uno de ellos se encuentra en GitLab, es de acceso privado
y pertenece a HP SCDS, donde fue utilizado para actividades de I+D+i. Por otro lado, el
repositorio en GitHub alberga la tltima versién del proyecto Floorify desarrollada para el
TFM, optimizada para la ejecucion de experimentos y completamente publica, permitiendo
el acceso al cédigo fuente.

Adicionalmente, disponemos de un repositorio en Hugging Face, el cual almacena el
modelo experimental ajustado que has obtenido mejor resultado. Este modelo puede ser
descargado para realizar inferencias de manera inmediata, sin embargo, es importante
disponer de suficiente capacidad de almacenamiento, ya que su tamaiio es considerablemente
grande. A continuacién, se presentan los repositorios junto con sus respectivos enlaces:

= GitLab. Sistema de repositorios en linea dentro del servidor de la empresa donde
realicé el desarrollo, que utiliza el sistema de control de versiones Git, en formato



Apéndice B. Manual de Instalacion 83

pago y empresarial [33]. Utilizamos GitLab de la empresa HP SCDS para almacenar
todo el desarrollo y los experimentos realizados en este proyecto, lo que permitié
guardar y controlar las versiones a medida que realizdbamos los experimentos.

« Disponible de forma privada en: Repositorio HP SCDS Floorify

s GitHub. Es una plataforma de alojamiento y gestion de proyectos de software
que utiliza el sistema de control de versiones Git. Permite a los desarrolladores
colaborar, compartir cédigo, rastrear cambios, reportar problemas y organizar el
trabajo en repositorios. Ademaés, ofrece funcionalidades para la revisién de codigo,
integracion continua y documentacion de proyectos, siendo ampliamente utilizada
por desarrolladores y equipos para la colaboracion y el desarrollo de software de
forma distribuida y organizada [32]. Para la conclusién de este trabajo, optamos por
publicar el proyecto en un repositorio de GitHub con el objetivo de hacerlo piblico,
va que el repositorio de GitLab se mantendra privado para la empresa HP SCDS. De
esta manera, la investigacion realizada estara disponible para todos los interesados.

e Disponible de forma Publica en: Repositorio Publico Floorify UVa

» Huggin Face Models. Es una plataforma lider en inteligencia artificial que propor-
ciona modelos pre-entrenado, herramientas y APIs para procesamiento de lenguaje
natural, visién por computadora y mas. Permite compartir modelos, entrenar redes
neuronales y acceder a bibliotecas como Transformers y Diffusers, facilitando el
desarrollo de aplicaciones de aprendizaje automéatico. Ademés, dentro del entorno
de Hugging Face, cada perfil tiene la capacidad de crear y almacenar sus propios
modelos, con la posibilidad de integrarlos en GitHub o compartirlos piiblicamente con
otros desarrolladores [45]. La plataforma desempend un papel fundamental en este
trabajo, ya que nos permitio validar y evaluar nuestro modelo de diffusion, finalizando
con el almacenamiento del mejor modelo obtenido durante la fase experimental de
text-to-image de acuerdo con el capitulo 7: Discusion de Resultados.

« Disponible de forma Publica en: Repositorio Publico del Modelo Experi-
mental Ajustado Text to Image

Instalaciéon y Ejecucion

Para instalar el proyecto Floorify y manipular los experimentos, es necesario que el usua-
rio clone el repositorio desde GitHub, recordando que el enlace al repositorio se encuentra
en la subseccion anterior de este trabajo. Una vez completada la clonaciéon, podra explorar
todo el contenido del repositorio, que esta estructurado en cinco carpetas principales: Gra-
dio__Script, Imagenes__Test Modelos, Metrics _FEvaluation__Adjusted__Models
y Model __Test Local y git _Img. Ademas, se incluye un archivo independiente des-
tinado a la instalacion de dependencias de Python, asi como la clonacion del proyecto
Diffusers, lo que permite acceder a los métodos de fine-tuning de la biblioteca Hugging
Face.


https://gitlab.com/HP-SCDS/Observatorio/2023-2024/florify/uva-florify
https://github.com/Gi-Eufrasio/Floorify-TFM
https://huggingface.co/gigio-br/Experiment_Fine_Tuning_Model_Diffusion_Text_to_Image_Floor_Plan_Project
https://huggingface.co/gigio-br/Experiment_Fine_Tuning_Model_Diffusion_Text_to_Image_Floor_Plan_Project

O s W N =

Apéndice B. Manual de Instalacion 84

A continuacion, se detallard el procedimiento para ejecutar los comandos necesarios
para instalar las dependencias y realizar la ejecucion final del proyecto. Segtin sus necesi-
dades, el usuario podra optar por dos enfoques: probar el modelo ya ajustado, permitiendo
la ejecucion inmediata de inferencias, o ajustar un nuevo modelo con parametros perso-
nalizados para generar un experimento optimizado. De esta manera, el proyecto ofrece
flexibilidad tanto para la validacion de modelos previamente entrenados como para la
personalizacion de nuevos entrenamientos.

Gi-Eufrasio co

Gradio_Script

Images_Test_Muodels

Model_Test_Local

git_Img

metrics_Evaluation_Adjusted_Models

README.md

install_dependencias_and_modelos.sh

Figura B.3: Repositorio Git Hub - Proyecto Floorify

El siguiente comando garantiza la clonacion del repositorio y la ejecucion de la
instalacién de dependencias, a través del archivo .sh de instalacién denominado
itnstall _dependencias _and__modelos.sh. El uso del comando de permisos chmod
puede ser opcional, dependiendo de cémo se haya clonado el proyecto. En algunos casos,
el archivo de instalacién de dependencias no se descarga con permisos de ejecucion, por lo
que es necesario aplicar el comando de permisos antes de ejecutarlo, asegurando asi su
correcta ejecucion en el entorno de desarrollo..

$ git clone https://github.com/Gi-Eufrasio/Floorify-TFM.git
$ cd Floorify-TFM

$ chmod +x install_dependencias_and_modelos.sh #opcional
$ sudo ./install_dependencias_and_modelos.sh

Fragmento de ejecuciéon de cddigo B.1: Ejemplo de Clonacion del Proyecto Floorify

El siguiente comando debe ejecutarse en caso de que el usuario desee realizar un nuevo
ajuste fino utilizando el conjunto de datos proporcionado por CubiCasadk, el cual ha sido
previamente ajustado y preprocesado, conforme se explica en el Capitulo 5: Técnicas y
herramientas. Sin embargo, si el objetivo es inicamente realizar inferencias sobre el modelo
ya ajustado o crear un nuevo conjunto de datos, no se recomienda descomprimir este
archivo dentro del método text to image testes, con el fin de evitar posibles conflictos



Apéndice B. Manual de Instalacion 85

en la organizacion y estructura del proyecto.

1 $§ cd Model_Test_Local/Text_to_Image_Testes/Model

W N =

w N o=

$ unzip Dataset_Resize_Cubi_Casa_5K.zip

Fragmento de ejecucion de cédigo B.2: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo Text to image

El altimo comando para ejecutar dentro del método text to_image testes permite
tanto la realizacién de nuevos fine-tunings, como su propio nombre indica el método
Script__Entrenamiento_Fine_ Tuning.py, como también la ejecuciéon de inferencias
directamente desde el codigo a través del terminal. No obstante, es recomendable realizar
todas las pruebas mediante Gradio, ya que ofrece una interfaz web mas intuitiva para la
verificacion de los experimentos. Sin embargo, si el usuario desea realizar pruebas rapidas
después del ajuste fino, puede ejecutar el Seript__inferencias.py para obtener resultados
de manera inmediata.

$ cd Model_Test_Local/Text_to_Image_Testes/Model

$ python3 Script_Entrenamiento_Fine_Tuning.py

$ python3 Script_Inferencias.py

Fragmento de ejecuciéon de cddigo B.3: Experimentos de ajuste fino e inferencias con
el metodo Text to_image

Los comandos de Gradio se dividen en dos categorias. Si el usuario desea utilizar el
modelo ajustado mediante Fine-Tuning para realizar inferencias con Gradio, es necesario
ejecutar el archivo Script _Download__Model _Experiment.py, lo que permitira des-
cargar el modelo en la carpeta text to_image__testes, garantizando asi una ejecucion
fluida de las inferencias. Por otro lado, si el usuario ya ha realizado un nuevo fine-tuning,
basta con ejecutar Script _Inferencias _Gradio__Model.py, que iniciard automatica-
mente la interfaz web con el modelo cargado. Es importante recordar que la descarga del
modelo se realiza desde el repositorio de Hugging Face, tal como se ejemplificé en la
subseccion anterior sobre los repositorios.

$ cd Floorify-TFM/Gradio_Script/

$ python3 Script_Download_Model_Experiment.py

$ python3 Script_Inferencias_Gradio_Model.py

Fragmento de ejecucion de cédigo B.4: Descargue del modelo ajustado del experimento
Floorify y la ejecucién de Gradio

Ambos los comandos a continuacién tienen el mismo propésito: realizar la descompresion
de conjuntos de datos, ejecutar nuevos fine-tunings y llevar a cabo inferencias a través
de la ejecucion de cédigo desde el terminal. Sin embargo, a diferencia de los comandos

mencionados anteriormente, los métodos utilizados para los experimentos en este caso son
Dreambooth y LoRAs.



= W N =

¥ hH P P

= W N =

UL = W N =

P hH P P &P

Apéndice B. Manual de Instalacion 86

Para experimentar con las inferencias, es imprescindible realizar el fine-tuning, ya que,
debido a las limitaciones de almacenamiento y repositorios senaladas en el Capitulo 6:
Aspectos relevantes del desarrollo del proyecto, no se almacenaron los modelos finales.
En su lugar, tinicamente se guardaron los parametros de entrenamiento, los cuales deben
alcanzar el mismo o aproximado nivel métrico y de precision que los obtenidos durante la
fase de desarrollo y pruebas.

cd Floorify-TFM/Model_Test_Local/Dreambooth/Model
unzip Floor_Plan_2D_Dataset.zip

python3 script_Entrenamiento_Dreambooth.py
python3 script_Inferencias.py

Fragmento de ejecuciéon de cédigo B.5: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo Dreambooth

cd Floorify-TFM/Model_Test_Local/LoRas/Model
unzip Dataset.zip

python3 script_Entrenamiento.py

python3 Inferencias.py

“ H P &P

Fragmento de ejecucion de cédigo B.6: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo LoRas

Si el usuario que manipula los scripts de los experimentos lo desea, puede realizar
modificaciones y adaptaciones para otros contextos o para implementar las mejoras y
refinamientos senalados en el capitulo 8: Conclusiones y Lineas de trabajo futuras. En
esta seccién no abordaremos una perspectiva sobre los scripts utilizados en este proyecto,
dado que fueron considerados y ejemplificados en el capitulo 6: Aspectos relevantes del
desarrollo del proyecto.

Para finalizar las ejecuciones, podemos realizar la evaluacién de las inferencias obtenidas
para determinar si la relacién contextual entre los embeddings es adecuada utilizando
el CLIP Score o si la imagen generada posee buena calidad y guarda similitud con
alguna imagen de prueba del conjunto de datos, manteniendo, no obstante, una diversidad
equilibrada. Para ello, es necesario configurar las carpetas de imagenes y conjuntos de
datos ubicadas en metrics__FEvaluation__Adjusted__Models. Simplemente se deben
colocar las imagenes extraidas de las inferencias en sus respectivas bases y ejecutar los
scripts disponibles en la carpeta de métricas, lo que permitira obtener los valores a través
del terminal utilizando Python. Los comandos ejemplos estan en la continuacion:
cd Floorify-TFM/metrics_Evaluation_Adjusted_Models
python3 Evaluacion_CLIP_Dreambooth_and_Misto_Line.py
python3 Evaluacion_CLIP_LoRas.py
python3 Evaluacion_CLIP_Text_To_Image.py
python3 Evaluacion_FID_Text_To_Image.py
Fragmento de ejecucién de cédigo B.7: Ejemplo para Ejecutar los Scripts de Métricas
con CLIP Score y FID



Apéndice B. Manual de Instalacion 87

Para una mejor visualizacién del proceso de instalacién, ejecucion, fine-tuning e
inferencias, acceda al repositorio de GitHub en la subseccién anterior B.2. Alli encontrara
detalles sobre la configuracion del entorno, los scripts utilizados y ejemplos practicos para
replicar los experimentos.



Bibliografia

ABID, A., ABpDALLA, A., ABID, A., KHAN, D., ALFOZAN, A., AND ZOU, J.

Gradio: Hassle-free sharing and testing of ml models in the wild. arXiv preprint
arXiv:1906.02569 (2019).

AcADEMY, K. Revisdo sobre regressao linear. https://pt.khanacademy.org/math/
statistics-probability/describing-relationships-quantitative-data/

introduction-to-trend-lines/a/linear-regression-review, 2021. [Internet;
descargado 10-julio-2024].

AI, S. Stable diffusion xl base 1.0. https://huggingface.co/stabilityai/
stable-diffusion-xl-base-1.0, 2023. Accessed: 2025-02-16.

Al S. Stable image generation api - v2 beta. https://api.stability.ai/v2beta/
stable-image/generate/core, 2025. Accessed: 2025-02-16.

ALEC RADFORD, JONG Wook KiMm, C. H., RAMESH, A., GOH, G., AGARWAL,
S., SASTRY, G., ASKELL, A., MISHKIN, P., CLARK, J., KRUEGER, G., AND

SUTSKEVER, 1. Learning transferable visual models from natural language supervision.
artXiv 1, 2103.00020 (2021).

ALECRIM, E. Machine learning: o que é e por que ¢ tao importante. https://
tecnoblog.net/responde/machine-learning-ia-o-que-e/, 2018. [Internet; des-
cargado 10-julio-2024].

AMANATULLAH. Fine-tuning the model: What, why, and how. https://medium.com/
@amanatullal606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf,
2023. [Internet; descargado 01-agosto-2024].

AMBER ARAGON. Advantages of generative ai-driven process automation. https:
//blogs.mulesoft.com/automation/ai-driven-process-automation/, 2024. [In-
ternet; descargado 01-agosto-2024].

38


https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://api.stability.ai/v2beta/stable-image/generate/core
https://api.stability.ai/v2beta/stable-image/generate/core
https://tecnoblog.net/responde/machine-learning-ia-o-que-e/
https://tecnoblog.net/responde/machine-learning-ia-o-que-e/
https://medium.com/@amanatulla1606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf
https://medium.com/@amanatulla1606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf
https://blogs.mulesoft.com/automation/ai-driven-process-automation/
https://blogs.mulesoft.com/automation/ai-driven-process-automation/

Bibliografia 89

[9]

[15]

[16]

[17]
[18]

[19]

[20]

ARQUITASA. Planos vivienda. https://arquitasa.com/planos-vivienda/#:
~:text=Los%20planos’20de’%20una%%20vivienda, precisa’%20sobre’20uny
20proyecto’20arquitect%C3%B3nico, 2023. [Internet; descargado 0l-agosto-
2024].

AUTHORS, P. Paddleocr: Multi-language optical character recognition tool. https:
//github.com/PaddlePaddle/Padd1e0CR, 2023. Accessed: 2025-02-08.

AWS. What is stable diffusion? https://aws.amazon.com/what-is/
stable-diffusion/?ncl=h_ls, 2023. [Internet; descargado 01-agosto-2024].

AWS. ;qué es la automatizacion inteligente? https://aws.amazon.com/es/
what-is/intelligent-automation/, 2023. [Internet; descargado 01-agosto-2024].

AWS. What is gan? https://aws.amazon.com/es/what-is/gan/, 2024. [Internet;
descargado 05-agosto-2024].

BUGENDAT TECH. Performance metrics in evaluating stable diffusion
models. https://www.bugendaitech.com/blogdetails/blog-details/
performance-metrics-in-evaluating-stable-diffusion-models, 2023. [Inter-
net; descargado 01-agosto-2024].

CALDWELL, M. What is an “author”? - copyright authorship of ai art through a
philosophical lens. Houston Law Review 61, 411 (2023).

CEDREO. 13 tipos de planos arquitectonicos. https://cedreo.com/es/blog/
planos-arquitectonicos/, 2023. [Internet; descargado 05-agosto-2024].

ComPVIs. Stable diffusion v1-4, 2022. Accessed: 2025-02-16.

ComPVis, AND RuNway. Stable diffusion v1-5. https://huggingface.co/
runwayml/stable-diffusion-v1-5, 2022. Accessed: 2025-02-16.

CORPORATION, M. Visual studio code. https://code.visualstudio.com/, 2024.
Ultimo acceso: 8 de febrero de 2025.

DDL. 12 floor plan design tools and tips for beginners and experts. https://
drylayout.com/en/articles/floor-design-plan, 2023. [Internet; descargado 05-
agosto-2024].

DockER, INc. What is docker? https://docs.docker.com/get-started/
docker-overview/, 2025. Accessed: 12-Feb-2025.

EpwARrD J. HU, YELONG SHEN, P. W., ALLEN-ZHU, Z., L1, Y., WANG, S.,
Wana, L., AND CHEN, W. Lora: Low-rank adaptation of large language models.
artXiv 2, 2106.09685 (2021).


https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://aws.amazon.com/what-is/stable-diffusion/?nc1=h_ls
https://aws.amazon.com/what-is/stable-diffusion/?nc1=h_ls
https://aws.amazon.com/es/what-is/intelligent-automation/
https://aws.amazon.com/es/what-is/intelligent-automation/
https://aws.amazon.com/es/what-is/gan/
https://www.bugendaitech.com/blogdetails/blog-details/performance-metrics-in-evaluating-stable-diffusion-models
https://www.bugendaitech.com/blogdetails/blog-details/performance-metrics-in-evaluating-stable-diffusion-models
https://cedreo.com/es/blog/planos-arquitectonicos/
https://cedreo.com/es/blog/planos-arquitectonicos/
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://code.visualstudio.com/
https://drylayout.com/en/articles/floor-design-plan
https://drylayout.com/en/articles/floor-design-plan
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/

Bibliografia 90

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

ESPANA. Legislacién consolidada: Ley 38/1999, de 5 de noviembre, de ordenacién de
la edificacion. https://www.boe.es/buscar/act.php?id=BOE-A-1999-21567, 1999.
[BOE nim. 266, de 6 de noviembre de 1999;Internet; descargado 02-agosto-2024].

FAcE, H. The hugging face hub. https://huggingface.co/docs/huggingface_hub,
2023.

FAace, H. Evaluation of diffusion models. https://huggingface.co/docs/
diffusers/en/conceptual/evaluation, 2024. Accessed: 2024-02-18.

FAcE, H. Loading image datasets with metadata. https://huggingface.co/docs/
datasets/v2.4.0/en/image_load#imagefolder-with-metadata, 2024. Accessed:
2025-02-08.

Face, H. Hugging face datasets documentation. https://huggingface.co/docs/
datasets/index, 2025. Accessed: 2025-02-20.

FOSTER, D. Generative Deep Learning: Teaching Machines to Paint, Write, Compose
and Play. O’Reilly, 2019.

FounbpaTioN, P. S. Python 3.10.12. https://www.python.org/downloads/
release/python-31012/, 2023. Ultimo acceso: 8 de febrero de 2025.

GEORGE LAWTON. Fréchet inception distance (fid). https://www.techtarget.
com/searchenterpriseai/definition/Frechet-inception-distance-FID, 2023.
[Internet; descargado 01-agosto-2024].

GETFLOORPLAN. Floor plan in 24 hours. https://getfloorplan.com/, 2024. [In-
ternet; descargado 01-agosto-2024].

GiTHuUB, INc. Github: Where the world builds software. https://github.com/,
2024. Accessed: February 2024.

GI1TLAB INC. Gitlab: The complete devops platform. https://about.gitlab.com/,
2024. Accessed: February 2024.

GOOGLE CLouD. What is artificial intelligence (ai)? https://cloud.google.com/
learn/what-is-artificial-intelligence?hl=en, 2024. [Internet; descargado 05-
agosto-2024].

GOOGLE DEVELOPER MACHINE LEARNING. Overview of gan structu-

re. https://developers.google.com/machine-learning/gan/gan_structure?
hl=es-419, 2022. [Internet; descargado 05-agosto-2024].

GUGGER, S., DEBUT, L., WoOLF, T., SCHMID, P., MUELLER, Z., MANGRULKAR,
S., SuN, M., AND B0ssAN, B. Accelerate: Training and inference at scale made

simple, efficient and adaptable. https://github.com/huggingface/accelerate,
2022.


https://www.boe.es/buscar/act.php?id=BOE-A-1999-21567
https://huggingface.co/docs/huggingface_hub
https://huggingface.co/docs/diffusers/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/en/conceptual/evaluation
https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata
https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://www.python.org/downloads/release/python-31012/
https://www.python.org/downloads/release/python-31012/
https://www.techtarget.com/searchenterpriseai/definition/Frechet-inception-distance-FID
https://www.techtarget.com/searchenterpriseai/definition/Frechet-inception-distance-FID
https://getfloorplan.com/
https://github.com/
https://about.gitlab.com/
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en
https://developers.google.com/machine-learning/gan/gan_structure?hl=es-419
https://developers.google.com/machine-learning/gan/gan_structure?hl=es-419
https://github.com/huggingface/accelerate

Bibliografia 91

[37]

[38]

[39]

[40]

[41]

[42]

GERON, A. Maos a Obra: Aprendizado de Mdquina com Scikit-Learn, Keras €
TensorFlow. O'Reilly, 2021.

HASHEMI-POUR, C. Reinforcement learning. https://pt.khanacademy.org/math/
statistics-probability/describing-relationships-quantitative-data/

introduction-to-trend-lines/a/linear-regression-review, 2023. [Internet;
descargado 10-julio-2024].

HuanaG, Z., ZHoUu, P., YAN, S.; AND LIN, L. Scalelong: Towards more stable
training of diffusion model via scaling network long skip connection, 2023.

HuccIiN FAcCE. Clip. https://huggingface.co/docs/transformers/model_doc/
clip#overview, 2024. [Internet; descargado 0l-agosto-2024].

HuccIiN FACE. Dreambooth. https://huggingface.co/docs/diffusers/v0.30.
0/training/dreambooth, 2024. [Internet; descargado 01-agosto-2024].

HucciN FAceE. Evaluating diffusion models. https://huggingface.co/docs/
diffusers/main/en/conceptual/evaluation, 2024. [Internet; descargado 01-
agosto-2024].

HuGGIN FACE. Lora. https://huggingface.co/docs/diffusers/v0.30.0/
training/lora, 2024. [Internet; descargado 01-agosto-2024].

HUGGIN FACE. Text-to-image. https://huggingface.co/docs/diffusers/v0.30.
0/training/text2image, 2024. [Internet; descargado 01-agosto-2024].

HuccIinGg FACE, INc. Hugging face: The ai community building the future. https:
//huggingface.co/, 2024. Accessed: February 2024.

IBM. What is artificial intelligence (ai)?  https://www.ibm.com/topics/
artificial-intelligence, 2024. [Internet; descargado 05-agosto-2024].

IBM. What is computer vision? https://www.ibm.com/topics/computer-vision,
2024. [Internet; descargado 05-agosto-2024].

IBM. What is data science? https://www.ibm.com/topics/data-science, 2024.
[Internet; descargado 01-agosto-2024].

IBM. What is deep learning? https://www.ibm.com/topics/deep-learning, 2024.
[Internet; descargado 05-agosto-2024].

JAMIE PARKINSON. Floorplansv2. https://huggingface.co/datasets/jprve/
FloorPlansV2, 2024. [Internet; descargado 01l-agosto-2024].

JESSE ANGLEN. Ai meets architecture: Generative design and the au-
tomated production of buildings. https://www.linkedin.com/pulse/
ai-meets-architecture-generative-design-automated-buildings-anglen/,
2023. [Internet; descargado 01-agosto-2024].


https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://huggingface.co/docs/transformers/model_doc/clip#overview
https://huggingface.co/docs/transformers/model_doc/clip#overview
https://huggingface.co/docs/diffusers/v0.30.0/training/dreambooth
https://huggingface.co/docs/diffusers/v0.30.0/training/dreambooth
https://huggingface.co/docs/diffusers/main/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/main/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/v0.30.0/training/lora
https://huggingface.co/docs/diffusers/v0.30.0/training/lora
https://huggingface.co/docs/diffusers/v0.30.0/training/text2image
https://huggingface.co/docs/diffusers/v0.30.0/training/text2image
https://huggingface.co/
https://huggingface.co/
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/data-science
https://www.ibm.com/topics/deep-learning
https://huggingface.co/datasets/jprve/FloorPlansV2
https://huggingface.co/datasets/jprve/FloorPlansV2
https://www.linkedin.com/pulse/ai-meets-architecture-generative-design-automated-buildings-anglen/
https://www.linkedin.com/pulse/ai-meets-architecture-generative-design-automated-buildings-anglen/

Bibliografia 92

[52]

[53]

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

JESUS LOPEZ BAEZA-ROJANO. How to evaluate generative image models. https:
//dagshub.com/blog/how-to-evaluate-generative-image-models/, 2024. [Inter-
net; descargado 01-agosto-2024].

JoBS.ARCHI. The challenges of technology for architects’ work. https://jobs.
archi/2024/03/21/the-challenges-of-technology-for-architects-work/,
2024. [Internet; descargado 01-agosto-2024].

JOERN PLOENNIGS, M. B. Automating computational design with generative ai.
artXiv 2, 2307.02511 (2023).

JONGHWA SHIM, JAEUK MooN, H. K., AND HwANG, E. Floordiffusion: Diffusion
model-based conditional floorplan image generation method using parameter-efficient
fine-tuning and image inpainting. Journal of Building Engineering 95, 110320 (2024).

KALEAHT. Cubicasabk: A dataset and an improved multi-task model for floorplan
image analysis. https://github.com/CubiCasa/CubiCasabk, 2019. [Internet; des-
cargado 01-agosto-2024].

LAawTON, G. What is generative ai? everything you need to know. https://www.
techtarget.com/searchenterpriseai/definition/generative-AI, 2024. [Inter-
net; descargado 10-julio-2024].

LEE, Y., PARK, K., CHO, Y., LEE, Y.-J., AND HWANG, S. J. Koala: Empirical
lessons toward memory-efficient and fast diffusion models for text-to-image synthesis.
https://arxiv.org/abs/2312.04005, 2024.

Lity ZHUHADAR. Unraveling ai complexity - a comparative view of ai, machine
learning, deep learning, and generative ai. https://commons.wikimedia.org/wiki/
File:Unraveling AI Complexity_ -_A Comparative View_of AI, Machine_
Learning, Deep_Learning, and_Generative_AI.jpg, 2023. [Internet; descargado
05-agosto-2024].

LiNcJIE ZHU. Floorplancad dataset. https://floorplancad.github.io/, 2024.
[Internet; descargado 01-agosto-2024].

LoPEz DE MATARAS BADIA, R., AND MESEGUER GONZALES, P. Inteligencia
Artificial. CSIC, 2017.

LvMIN ZHANG, ANYI RAO, M. A. Adding conditional control to text-to-image dif-
fusion models. https://huggingface.co/TheMistoAI/MistoLine, 2023. [Internet;
descargado 01-agosto-2024].

MAKET.AI. Generative design for residential planning. https://www.maket.ai/,
2024. [Internet; descargado 01-agosto-2024].

MARCEL, S., AND RODRIGUEZ, Y. Torchvision the machine-vision package. https:
//pytorch.org/vision/stable/index.html, 2010.


https://dagshub.com/blog/how-to-evaluate-generative-image-models/
https://dagshub.com/blog/how-to-evaluate-generative-image-models/
https://jobs.archi/2024/03/21/the-challenges-of-technology-for-architects-work/
https://jobs.archi/2024/03/21/the-challenges-of-technology-for-architects-work/
https://github.com/CubiCasa/CubiCasa5k
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://arxiv.org/abs/2312.04005
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://floorplancad.github.io/
https://huggingface.co/TheMistoAI/MistoLine
https://www.maket.ai/
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html

Bibliografia 93

[65]

[66]

[67]

[71]

[72]

[73]

[74]
[75]

[76]

[77]

(78]

NATANIEL Ruiz, YUANZHEN L1, V. J., PRITCH, Y., RUBINSTEIN, M., AND

ABERMAN, K. Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation. artXiv 2, 2208.12242 (2022).

NicorLAs CATELLIER. 14 beginner tips to create a floor plan in revit. https://
revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit,
2020. [Internet; descargado 05-agosto-2024].

ONKAR MISHRA. Stable diffusion explained. https://medium.com/@onkarmishra/
stable-diffusion-explained-1£101284484d, 2023. [Internet; descargado 01-
agosto-2024].

OPENAL Clip  vit-b/32. https://huggingface.co/openai/
clip-vit-base-patch32, 2021. Accessed: 2025-02-08.

PAszkE, A., GROss, S., MAssA, F., LERER, A., BRADBURY, J., CHANAN, G.,
KiLLeeN, T., LiN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF,
A., YAaNG, E., DEVITO, Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S.,
STEINER, B., FANG, L., BA1, J., AND CHINTALA, S. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing
Systems 32 (2019).

PATRICIA AYALA JIMENEZ. Spain: Can ai creations be protected by intellectual
property? https://www.roedl.com/insights/intellectual-property/2023-2/
spain-can-ai-creations-be-protected-by-intellectual-property, 2023. [In-
ternet; descargado 01-agosto-2024].

PorLiNA KAZAKOVA. Pseudo-floor-plan-12k. https://huggingface.co/datasets/
zimhe/pseudo-floor-plan-12k, 2023. [Internet; descargado 01-agosto-2024].

ROBIN ROMBACH, ANDREAS BLATTAMANN, P. E., AND OMMER, B. High-
resolution image synthesis with latent diffusion models. artXiv 2, 2112.10752 (2022).

SEITZER, M. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

SHAW, I. The Oxford History Of Ancient Eqypt. Oxford University Press, 2000.

Tauvrrr, T. Introducao a Inteligéncia Artificial: uma Abordagem Ndo Técnica. Nova-
tech, 2020.

UMESH VERMA. New floorplan demo dataset. https://huggingface.co/datasets/
umesh16071973/, 2024. [Internet; descargado 01-agosto-2024].

UNI MATRIX ZERO. Using clip score to evaluated images. https://unimatrixz.
com/blog/latent-space-clip-score/, 2023. [Internet; descargado 01-agosto-2024].

VAN R0OSSuM ET AL., G. Python programming language. https://www.python.
org/, 1991. Acesso em: Fev. 2025.


https://revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit
https://revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit
https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://www.roedl.com/insights/intellectual-property/2023-2/spain-can-ai-creations-be-protected-by-intellectual-property
https://www.roedl.com/insights/intellectual-property/2023-2/spain-can-ai-creations-be-protected-by-intellectual-property
https://huggingface.co/datasets/zimhe/pseudo-floor-plan-12k
https://huggingface.co/datasets/zimhe/pseudo-floor-plan-12k
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://huggingface.co/datasets/umesh16071973/
https://huggingface.co/datasets/umesh16071973/
https://unimatrixz.com/blog/latent-space-clip-score/
https://unimatrixz.com/blog/latent-space-clip-score/
https://www.python.org/
https://www.python.org/

Bibliografia 94

[79] VON PLATEN, P., PaTIL, S., LozHKOV, A., CUENCA, P., LAMBERT, N., RASuL,
K., DAVAADORJ, M., NaIr, D., Paur, S., BErmaN, W., XU, Y., Liu, S,
AND WoLrF, T. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

[80] WoLF, T., DEBUT, L., SANH, V., CHAUMOND, J., DELANGUE, C., MoI, A.,
Cistac, P., Rauvrr, T., Lour, R., FunTtowicz, M., AND BREwW, J. Trans-
formers: State-of-the-art natural language processing. https://huggingface.co/
transformers/, 2020. Accessed: 2025-02-08.

[81] X1aoyu Li, JONATHAN BENJAMIN, X. Z. From text to blueprint: Leveraging
text-to-image tools for floor plan creation. artXiv 1, 2405.17236 (2024).


https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://huggingface.co/transformers/
https://huggingface.co/transformers/

	Índice general
	Índice de figuras
	Índice de tablas
	1. Introducción
	Planteamiento
	Contexto del Trabajo
	Motivación y Justificación
	Estructura del documento

	2. Objetivos del proyecto
	3. Conceptos teóricos
	Inteligencia Artificial (IA)
	Inteligencia Artificial Generativa
	Planos Arquitectónicos y Sus Tecnologías 

	4. Estado del Arte
	Generación de imágenes mediante IA
	Generación de Planos Arquitectónicos Mediante IA

	5. Técnicas y herramientas
	Infraestructura y Ambiente de Desarrollo del Proyecto
	Conjunto de Datos (Dataset de Imágenes)
	Fine-Tuning en Modelos de Stable Diffusion y Sus Métodos
	Métricas de Evaluación de Modelo Generativo

	6. Aspectos relevantes del desarrollo del proyecto
	Pruebas Mediante Modelo Stable Diffusion Estándar
	Transformaciones de Los Conjuntos de Datos Elegidos
	Fine-Tuning de Stable Diffusion con el Método Dreambooth y LoRas
	Fine-Tuning de Stable Diffusion con el Método Misto Line
	Fine-Tuning de Stable Diffusion con el Método Text_To_Image
	Desarrollo de la Interfaz de Pruebas Utilizando Gradio 

	7. Discusión de Resultados
	Evaluación inicial con Stable Diffusion estándar
	Evaluación del Fine-Tuning con DreamBooth y LoRas
	Evaluación del Fine-Tuning con Text-to-Image
	Comparación de Métodos y Experimentos

	8. Conclusiones y Líneas de trabajo futuras
	Apéndices
	Plan de Proyecto
	Planificación del Trabajo
	Ejecución del Trabajo

	Manual de Instalación
	Infraestructura y Dependencias Utilizadas
	Repositorio e instrucciones para su instalación y ejecución

	Bibliografía



