
Universidad de Valladolid
Máster universitario

Ingeniería Informática

Trabajo Fin de Máster

Proyecto Floorify: Generación de Planos
Arquitectónicos Mediante Inteligencia

Artificial Generativa

Realizado por Giovane Eufrasio da Silva
✠✠✠

Universidad de Valladolid
27 de febrero de 2025

Tutor: Valentín Cardeñoso Payo, Guillermo Menguez y Pablo
Garcia Ullan

Universidad de Valladolid

Máster universitario en Ingeniería Informática

D. Valentín Cardeñoso tutor, profesor del departamento de DEPARTAMENTO DE IN-
FORMÁTICA (ATC, CCIA, LSI), área de LENGUAJES Y SISTEMAS INFORMÁTICOS.
D. Guillermo Menguez y D. Pablo Garcia Ullan, tutores por parte de la empresa.

Expone:

Que el alumno D. Giovane Eufrasio da Silva, ha realizado el Trabajo final de Máster
en Ingeniería Informática titulado "Proyecto Floorify: Generación de Planos
Arquitectónicos Mediante Inteligencia Artificial Generativa".

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en
virtud de lo cual se autoriza su presentación y defensa.

En Valladolid, 27 de febrero de 2025

Vº. Bº. del Tutor:

D. Valentín Cardeñoso Payo

Vº. Bº. del Tutores de Empresa:

D. Guillermo Menguez y D. Pablo
Garcia Ullan

5

Agradecimientos

Me gustaria expresar, en primer lugar, mi profunda gratitud a mis tutores Guillermo
Menguez y Pablo García Ullán por la oportunidad de realizar mis prácticas en
HP SCDS, además de orientarme durante la fase de desarrollo del TFM. Agradezco
enormemente vuestra paciencia y flexibilidad, especialmente porque me demoré un poco
en finalizar la parte escrita de la investigación. También agradezco su comprensión de yo
estar trabajar con un tema nuevo, cuyos resultados no fueron extremadamente positivos,
pero que abrió puertas para nuevas y prometedoras investigaciones. Al final el campo de
la IA generativa está en constante desarrollo y cada vez más presente en investigaciones
multidisciplinarias.

También gustaría de agradecer a mi tutor Profesor Valentín Cardeñoso Payo, de
la UVa, por su orientación durante el desarrollo del TFM y por proporcionarme el servidor
del grupo ECA-SIMM para la realización de los ajustes experimentales.

Mis más sinceros agradecimientos a mi madre, Elisangela Eufrasio, quien siempre
me brindó todo su apoyo y fuerza para seguir adelante, posibilitando que viniera a España
a realizar este máster en la UVa. Siento que estoy cumpliendo un sueño tanto mío como
de ella, que, a pesar de las dificultades de la vida, siempre creyó que el único camino
hacia una vida mejor y más feliz sería a través de la educación y el aprendizaje. También
agradezco a mi abuela materna y a toda mi familia por apoyar siempre mi decisión de
seguir una carrera en el área de la tecnología. Además, quiero expresar mi agradecimiento
a mi gran amigo Alfonso González, a quien tuve el privilegio de conocer durante mi
estancia en España, ya que fue la persona que más me animó a no renunciar a mi máster.
Siempre dándome fuerza y coraje para superar todos los desafíos, sin ti jamas habría
llegado al final de esta aventura.

Agradezco profundamente a mis profesores del grado, Diego Fiori, quien identificó
mi potencial y me incentivó a realizar este máster, y agradezco al Omar Mozo, sin ellos
jamás habría tenido esta oportunidad en mi vida. ¡Muchas gracias!

Por último, también dedico estos agradecimientos a la memoria de mi querida amiga
Gabriela de Oliveira Vianna (Gabi), quien nos dejó a mediados de 2023, un mes antes
de que aceptara embarcarme en esta travesía. Su recuerdo y anhelo eterno me acompañarán
por siempre.

I

Resumen

En el mundo contemporáneo, los modelos de Inteligencia Artificial han ganado
una creciente visibilidad e importancia en la sociedad. En este contexto, presentamos
el proyecto Floorify, que explora el uso de técnicas de Fine-Tuning en modelos de
Stable Diffusion con el objetivo de generar automáticamente planos arquitectónicos
en 2D. A partir de datos visuales y textuales, se evaluaron distintos métodos de ajuste
fino, identificándose Text-to-Image como el más adecuado para los propósitos del
proyecto. El objetivo fue entrenar modelos capaces de asociar descripciones textuales
con imágenes de planos arquitectónicos, evaluando la calidad y coherencia de los
resultados mediante métricas como CLIP Score. Como resultado, se logró ajustar el
modelo para la generación de planos arquitectónicos en 2D, sin embargo, los resultados
aún presentaron limitaciones, tales como inexactitudes en la correspondencia entre
texto e imagen y una calidad gráfica insatisfactoria, lo que abre oportunidades para
futuras investigaciones.

Descriptores

Proyecto Floorify, Inteligencia Artificial, Planos Arquitectónicos 2D, Metodos de
Fine-Tuning, Stable Diffusion, Text-to-Image, CLIP Score.

II

Abstract

In the contemporary world, Artificial Intelligence models have gained increasing
visibility and importance in society. In this context, we present the Floorify project,
which explores the use of Fine-Tuning techniques in Stable Diffusion models to
automatically generate 2D architectural plans. Using visual and textual data, different
fine-tuning methods were evaluated, with Text-to-Image identified as the most
suitable for the project’s objectives. The goal was to train models capable of linking
textual descriptions with images of architectural plans, assessing the quality and
coherence of the results using metrics such as CLIP Score. As a result, the model was
successfully adjusted for 2D architectural plan generation. However, the outcomes
still presented limitations, such as inaccuracies in the text-to-image relationship and
unsatisfactory graphical quality, opening up opportunities for further research.

Keywords

Floorify Project, Artificial Intelligence, 2D Architectural Plans, Fine-Tuning
Methods, Stable Diffusion, Text-to-Image, CLIP Score.

Índice general

Índice general III

Índice de figuras V

Índice de tablas VII

1. Introducción 1
1.1. Planteamiento . 1
1.2. Contexto del Trabajo . 2
1.3. Motivación y Justificación . 2
1.4. Estructura del documento . 3

2. Objetivos del proyecto 5

3. Conceptos teóricos 7
3.1. Inteligencia Artificial (IA) . 7
3.2. Inteligencia Artificial Generativa . 12
3.3. Planos Arquitectónicos y Sus Tecnologías 18

4. Estado del Arte 21
4.1. Generación de imágenes mediante IA . 21
4.2. Generación de Planos Arquitectónicos Mediante IA 29

5. Técnicas y herramientas 33
5.1. Infraestructura y Ambiente de Desarrollo del Proyecto 34
5.2. Conjunto de Datos (Dataset de Imágenes) 34
5.3. Fine-Tuning en Modelos de Stable Diffusion y Sus Métodos 37
5.4. Métricas de Evaluación de Modelo Generativo 37

6. Aspectos relevantes del desarrollo del proyecto 39
6.1. Pruebas Mediante Modelo Stable Diffusion Estándar 39

III

Índice general IV

6.2. Transformaciones de Los Conjuntos de Datos Elegidos 42
6.3. Fine-Tuning de Stable Diffusion con el Método Dreambooth y LoRas 45
6.4. Fine-Tuning de Stable Diffusion con el Método Misto Line 48
6.5. Fine-Tuning de Stable Diffusion con el Método Text_To_Image 51
6.6. Desarrollo de la Interfaz de Pruebas Utilizando Gradio 56

7. Discusión de Resultados 59
7.1. Evaluación inicial con Stable Diffusion estándar 59
7.2. Evaluación del Fine-Tuning con DreamBooth y LoRas 60
7.3. Evaluación del Fine-Tuning con Text-to-Image 62
7.4. Comparación de Métodos y Experimentos 68

8. Conclusiones y Líneas de trabajo futuras 70

Apéndices 73

Apéndice A Plan de Proyecto 74
A.1. Planificación del Trabajo . 74
A.2. Ejecución del Trabajo . 75

Apéndice B Manual de Instalación 77
B.1. Infraestructura y Dependencias Utilizadas 77
B.2. Repositorio e instrucciones para su instalación y ejecución 82

Bibliografía 88

Índice de figuras

3.1. Una visión comparativa de la IA [59] . 8
3.2. Ejemplo del generador y el discriminator de las GANs [35]. 14
3.3. Arquitectura de las GANs [13]. 15
3.4. Ejemplos de imágenes generadas con GANs: cebra creada a partir de atributos

de un caballo y viceversa [13]. 16
3.5. Arquitectura de la técnica de Stable Diffusion [72] 17
3.6. Ejemplo de plano arquitectónico 2D, creado con AutoCAD (AutoDesk Revit) [66]. 20
4.7. Comparación de imágenes de planos arquitectónicos generadas a partir de

cuatro tipos de imágenes condicionales [55]. 31
6.8. Imagen generada con el modelo sin ajustes finos (Stable Diffusion) - 1 40
6.9. Imagen generada con el modelo sin ajustes finos (Stable Diffusion) - 2 40
6.10. Imágenes Generadas Después de Ajuste Fino con Dreambooth 46
6.11. Experimento 1: imágenes generadas de pruebas mediante el método LoRas . . 47
6.12. Experimento 2: imágenes de prueba generadas mediante el método LoRas . . . 48
6.13. Imagen generada con el método Misto Line 50
6.14. Experimento 1, Modelo1, Prompt 1: imágenes generadas de pruebas mediante

el método Text-to-Image . 52
6.15. Experimento 2, Modelo1, Prompt 2: imágenes generadas de pruebas mediante

el método Text-to-Image . 52
6.16. Experimento 1, Modelo2, Prompt 1: imágenes generadas de pruebas mediante

el método Text-toImage . 52
6.17. Experimento 2, Modelo2, Prompt 2: imágenes generadas de pruebas mediante

el método Text-to-Image . 53
6.18. Experimento 1, Modelo3, Prompt 1: imágenes generadas de pruebas mediante

el método Text-to-Image . 53
6.19. Experimento 2, Modelo3, Prompt 2: imágenes generadas de pruebas mediante

el método Text-to-Image . 53
6.20. Interface de teste Del generador de planos arquitectónicos hecho con Gradio . 57
7.21. Gráfico ejemplo del entrenamiento del modelo ajustado 1 62
7.22. Comparación de los experimentos de modelos ajustados Text_to_Image 67

V

Índice de figuras VI

7.23. Comparación del calculo FID de los experimentos de los modelos ajustados
Text-to-Image . 68

B.1. Ejemplo del la estancia remota utilizada - Proyecto Floorify 80
B.2. Ejemplo del entorno cubi - Proyecto Floorify 81
B.3. Repositorio Git Hub - Proyecto Floorify . 84

Índice de tablas

4.1. Modelos existentes referenciáis en generación de imágenes - Dalle-E 27
4.2. Modelos existentes referenciáis en generación de imágenes - Stable Diffusion . 28
4.3. Modelos existentes referenciáis en generación de imágenes - MidJourney 28
5.4. Recogido de datasets públicos - 1 . 35
5.5. Recogido de datasets públicos - 2 . 36
6.6. Evaluación con Clip Score de la imagen generada con Misto Line 50
7.7. Evaluación con Clip Score del modelo estándar Stable Diffusion 60
7.8. Evaluación con Clip Score de las imágenes generadas con Dreambooth - 1 . . . 60
7.9. Experimento 1: evaluación de imagenes generadas con LoRas, mediante al CLIP

Score . 61
7.10. Experimento 2: evaluación de imagenes generadas con LoRas, mediante al CLIP

Score . 61
7.11. Datos de los entrenamientos y optimizaciones con el método Text-to-Image . . 62
7.12. Experimento 1 Modelo 1: evaluación de imágenes generadas con Text-to-Image,

mediante al CLIP Score . 64
7.13. Experimento 2, Modelo 2: evaluación de imagenes generadas con Text-to-Image,

mediante al CLIP Score . 65
7.14. Experimento 3, Modelo 3: evaluación de imagenes generadas con Text-to-Image,

mediante al CLIP Score . 67

VII

1: Introducción

En este primer capítulo, se expondrán los aspectos clave considerados en el desarrollo
de esta investigación. Se abordará el problema planteado, el contexto en el que se enmarca,
así como la motivación y justificación que lo sustentan. Además, se presentará la estructura
que organiza el contenido del presente documento.

1.1. Planteamiento
En la actualidad, es cada vez más evidente que tecnologías que en épocas anteriores

eran solo imaginativas o ficticias están cada vez más presentes en nuestra realidad, ya sea
en los ámbitos de la tecnología móvil, espacial, industrial, entre otros. Sin embargo, una
de las tecnologías más visibles en la actualidad es la Inteligencia Artificial. Este campo
de la tecnología busca simular la inteligencia humana mediante automatizaciones, y se
caracteriza por su gran amplitud, abarcando diversos tipos de estudios, investigaciones,
técnicas de programación complejas, aplicaciones de conceptos matemáticos y reflexiones
filosóficas [34]. Uno de los tipos de inteligencia artificial que ha captado mayor atención en
los últimos años por parte de estudios, empresas e incluso de los medios de comunicación
es el modelo generativo. Estos modelos tienen la capacidad de generar imágenes, vídeos y
texto en función de lo que se les solicite o se entrene para crear de manera artificial. Una de
las áreas que ha despertado un gran interés en cuanto a la automatización generativa es la
creación de contenidos y la planificación de productos o proyectos específicos, los cuales a
menudo deben ser presentados inicialmente a través de dibujos que reflejen el pensamiento
y criterio a seguir para su ejecución, como ocurre con los planos arquitectónicos. En este
sentido, numerosas empresas y universidades han impulsado investigaciones innovadoras
con el fin de desarrollar nuevas soluciones y herramientas de trabajo.

A pesar de los numerosos beneficios que ofrece el uso de modelos generativos artificiales,
surge la siguiente pregunta: ¿sería posible emplear una tecnología generativa ya entrenada
para crear planos de construcción en formato 2D a partir de un simple prompt de texto?
Para abordar este desafío, presentamos el proyecto Florify, cuyo objetivo es desarrollar
una inteligencia artificial generativa capaz de generar planos arquitectónicos sencillos,
automatizando así el proceso de creación y diseño de estos planos. En la sección de Contexto

1

Introducción 2

del Trabajo, se detallará el origen de la idea y su relevancia para esta investigación, mientras
que en los capítulos 3: Conceptos teóricos y 4: Estado del Arte se profundizará en la teoría
y las investigaciones relacionadas con el tema.

1.2. Contexto del Trabajo
Este trabajo se enmarca dentro del contexto del TFM (Trabajo de Fin de Máster), con

el objetivo de culminar el máster universitario en Ingeniería Informática, ofrecido por la
Universidad de Valladolid. La temática abordada en esta investigación surgió a raíz de la
asignatura de prácticas de I+D+i en informática, que se desarrolló en colaboración con la
empresa HP SCDS, la cual propuso la idea y el tema de estudio.

La empresa HP SCDS es un centro de innovación e investigación de HP, que colabora
con universidades para promover la innovación y la investigación en áreas de actualidad, con
el fin de lograr avances tanto tecnológicos como humanos. El tema propuesto por HP SCDS
en la asignatura de I+D+i en informática, abordado en esta investigación, se denominó
Florify. Este proyecto tiene como objetivo desarrollar un modelo de inteligencia artificial
generativa de imágenes, específicamente orientado a la creación de planos arquitectónicos
sencillos en formato 2D.

Dado el interés suscitado por el tema, se formalizó un convenio de prácticas que
permitió convertirlo en el TFM con el apoyo de HP SCDS. Durante el período de la
instancia, el objetivo principal de la empresa fue ofrecer una formación sólida en diversas
tecnologías de inteligencia artificial generativa, además de facilitar la realización del estado
del arte en IA y la creación de planos arquitectónicos mediante tecnologías de inteligencia
artificial. Asimismo, se promovió el desarrollo de una IA generativa capaz de crear planos
arquitectónicos.

1.3. Motivación y Justificación
Con la creciente presencia y avance de los medios de automatización laboral y los

sistemas inteligentes en diversos sectores industriales y domésticos, se observa que muchas
áreas del intelecto y el trabajo han logrado adaptar tareas rutinarias de manera más
inteligente y eficiente, reduciendo la necesidad de intervención manual constante [12].
Como se ha demostrado en la sección de Planteamiento de este capítulo, una de las
principales ventajas de utilizar la Inteligencia Artificial Generativa para automatizar los
procesos de creación de planos arquitectónicos radica en su capacidad para adaptarse,
generando numerosos beneficios tanto para los profesionales del diseño arquitectónico como
para una amplia gama de personas. Además, esta tecnología aborda cuestiones sociales
relevantes dentro de este ámbito, ofreciendo soluciones innovadoras que trascienden las
necesidades tradicionales del sector.

Por ejemplo, personas sin conocimientos en dibujo arquitectónico y sin recursos para
contratar a un especialista podrían crear los planos de sus futuras viviendas de manera

Introducción 3

sencilla y sin costes adicionales. Estos planos podrían presentarse como bocetos ante los
organismos responsables para su revisión técnica, detallada y posible aprobación, como
los Colegios de Arquitectos, y, posteriormente, al Ayuntamiento para su aprobación final,
conforme a la legislación vigente de la LOE (Ley de Ordenación de la Edificación) en España
[23]. De este modo, una persona con pocos conocimientos en construcción podría obtener
una primera visualización de un diseño arquitectónico simple, sin necesidad de contar con
un profesional en la fase inicial del proyecto. Además, este enfoque representa un concepto
completamente sostenible, eliminando el uso de papel y otros medios contaminantes
comunes, tal como ya se realiza con softwares comerciales en los ámbitos de la arquitectura
y la ingeniería. En la actualidad, existen programas informáticos comerciales que permiten
este proceso de generación de planos. Sin embargo, la mayoría son de pago y requieren
ciertos conocimientos en el uso de herramientas de diseño. Este tema, junto con las
tecnologías existentes, será abordado en el 4: Estado del Arte.

Otro ejemplo relevante que justifica la investigación de una IA generativa de planos
es la complejidad de su desarrollo. Aunque la idea pueda parecer simple y repetitiva,
resulta extremadamente desafiante crear una IA capaz de generar automáticamente planos,
integrando conceptos vectoriales, mediciones y todos los aspectos técnicos que generalmente
realiza un ser humano en un software de diseño convencional. No obstante, el principal
enfoque de esta investigación, tal como se describe en el capítulo 2: Objetivos del proyecto
sobre los objetivos, será centrarse en la generación de planos sencillos a partir de prompts de
texto. Además, lo que motiva esta investigación es la intención de abordar un tema complejo
e innovador como la inteligencia artificial y sus diversas aplicaciones, un campo cada vez
más relevante y en constante evolución en nuestra sociedad. Esta investigación también
tiene como propósito explorar tanto conceptos novedosos como aprovechar tecnologías
consolidadas, como la tecnología Stable Diffusion, con el fin de adaptar un modelo conforme
a los objetivos establecidos en este estudio.

1.4. Estructura del documento
El presente documento se estructura de la siguiente forma:

Capítulo 1: Introducción. En este capítulo se presenta el problema abordado en
la investigación, el contexto en el que se enmarca y los aspectos que justifican su
relevancia e importancia.

Capítulo 2: Objetivos del proyecto. En este capítulo se detallan los objetivos
generales y específicos que guiaron y orientaron la investigación, estableciendo la
dirección del trabajo .

Capítulo 3: Conceptos teóricos. Este capítulo facilita la comprensión del trabajo
al explicar los conceptos teóricos fundamentales necesarios para el desarrollo de la
investigación.

Introducción 4

Capítulo 4: Estado del Arte. En este capítulo se presenta el estado del arte
recopilado durante el período de prácticas en la estancia I+D+i. Se identifican
trabajos previos relacionados con el tema de la investigación y se analiza el panorama
actual de las tecnologías de IA y generación de planos arquitectónicos disponibles en
el mercado, tanto de código abierto como comerciales.

Capítulo 5: Técnicas y herramientas. En este capítulo se describe la metodología
utilizada en la investigación, detallando los requisitos esenciales para desarrollar el
modelo generativo de planos arquitectónicos. Además, se explican los complementos
utilizados, como la infraestructura, conjuntos de datos, métodos de ajuste fino y
métricas aplicadas para evaluar tanto el desarrollo algorítmico como los resultados
experimentales del modelo.

Capítulo 6: Aspectos relevantes del desarrollo del proyecto. En este capítulo
se narran los pasos del desarrollo, incluyendo las transformaciones en los conjuntos
de datos seleccionados y el ajuste de modelos de Stable Diffusion mediante técnicas
como Dreambooth, LoRAs, Text-to-Image, entre otros, con el fin de generar un modelo
generativo adaptado a las necesidades del proyecto.

Capítulo 7: Discusión de Resultados. En este capítulo se presentan los resultados
obtenidos para cada modelo, evaluados mediante las métricas CLIP Score y FID
(Fréchet Inception Distance). Además, se analizan las funciones de pérdida durante
el entrenamiento, realizando diferentes análisis y profundizando en cada una de las
conclusiones derivadas de los resultados obtenidos.

Capítulo 8: Conclusiones y Líneas de trabajo futuras. Este capítulo expone
las conclusiones finales de la investigación y propone diversas formas de continuar el
trabajo iniciado en el futuro, explorando nuevas posibilidades y desarrollos.

Apéndice A. Plan de Proyecto. En este apéndice se describen las herramientas
utilizadas y la metodología seguida en el proyecto, se detalla el plan inicial de trabajo
y se realiza un breve seguimiento de la planificación y desarrollo del proyecto en sus
primeras etapas.

Apéndice B. Manual de Instalación. En este apéndice se describen las herra-
mientas utilizadas y la metodología seguida en el proyecto, se detalla el plan inicial
de trabajo y se realiza un breve seguimiento de la planificación y desarrollo del
proyecto en sus primeras etapas.

2: Objetivos del proyecto

Para definir de manera más precisa la meta a alcanzar con esta investigación, hemos
establecido una serie de objetivos que guiarán el desarrollo del proyecto en cuestión.

Objetivos Generales
Se ha establecido un objetivo general que captura la esencia del problema, el cual

orienta y da coherencia al desarrollo de la investigación:

Desarrollar un modelo capaz de generar imágenes de planos arquitectó-
nicos en 2D a partir de un simple prompt de texto introducido por el
usuario. El proyecto debe incluir una interfaz gráfica web que permita al usuario
interactuar de manera intuitiva y generar las imágenes de planos arquitectónicos de
acuerdo con especificaciones sencillas y comunes.

Objetivos Específicos
Con base en el objetivo general, se plantean los siguientes objetivos específicos:

Llevar a cabo una investigación con el estado del arte sobre generación
de imágenes mediante IA (Inteligencia Artificial) y generación de pla-
nos mediante IA. En ambas investigaciones, será necesario verificar los modelos
inteligentes y algoritmos existentes, tanto en modalidad pública (Open Source), dis-
ponibles para estudios y modificaciones, como los modelos comerciales, para entender
cómo funcionan las aplicaciones disponibles en el mercado. Además, se investigarán
métricas específicas aplicadas en modelos generativos de imágenes, para evaluar
cómo validar el aprendizaje y la calidad de un modelo sencillo.

Buscar conjuntos de imágenes de planos arquitectónicos públicos dis-
ponibles en la web. Todos los conjuntos de datos recopilados deben detallarse
mediante una lista informativa, que incluya la diferencia entre ellos y el número

5

Objetivos del proyecto 6

total de imágenes por conjunto. Después de analizar los conjuntos de datos, se
seleccionará el que se utilizará para el entrenamiento del modelo. Posteriormente, se
realizarán las transformaciones y limpiezas de datos necesarias para su aplicación en
el entrenamiento del modelo.

Utilizar un modelo preexistente y entrenado para realizar un Fine-Tuning.
En caso de utilizar un modelo ya entrenado, será necesario ajustar los pesos del
modelo al conjunto de imágenes seleccionado para el entrenamiento, realizar el
entrenamiento de la IA y luego probar la generación de imágenes de planos.

Crear una demostración del modelo y realizar pruebas mediante una
interfaz gráfica con la biblioteca de Python, Gradio, para verificar los
resultados generativos en tiempo real.

El sistema debe permitir la descarga de imágenes en diferentes formatos.
Los formatos de imagen disponibles deben incluir formatos RGB comunes como JPG
o PNG, y, si es posible, formatos vectoriales editables como SVG y AutoCAD.

Probar el modelo generativo utilizando métricas algorítmicas específicas o
mediante análisis y pruebas con observación humana. Esto permitirá verificar
la calidad de las imágenes generadas y la precisión en relación con los requisitos
especificados en el prompt de texto que guía la generación de la imagen.

3: Conceptos teóricos

Para una mejor comprensión del tema tratado en este trabajo, es fundamental realizar
un estudio bibliográfico y teórico sobre Inteligencia Artificial y sus diferentes áreas, In-
teligencia Artificial Generativa, así como sobre Planos Arquitectónicos y las tecnologías
asociadas. Además, se llevará a cabo un análisis de las tecnologías y modelos ya entrenados
que actualmente se encuentran presentes en este campo. Los conceptos mencionados ante-
riormente están profundamente vinculados al proyecto desarrollado en esta investigación y
serán abordados en este capítulo de manera estructurada por secciones.

3.1. Inteligencia Artificial (IA)
Actualmente, el campo de estudio y trabajo de la inteligencia artificial es uno de los

más vastos y expansivos en el mercado tecnológico. Gracias al aumento y almacenamiento
de datos por parte de diversas instituciones y empresas, ha sido posible desarrollar modelos
de aprendizaje de alto rendimiento, que buscan automatizar y optimizar la eficiencia de
procesos manuales y repetitivos que anteriormente eran realizados por seres humanos
[46]. No obstante, a pesar del reconocimiento y prestigio que la inteligencia artificial ha
adquirido en la actualidad, es importante entender que este concepto no es nuevo. Para que
existan modelos de aprendizaje tan sofisticados como los actuales, fue necesario atravesar
diferentes etapas de estudio, estabilidad y avance.

El término Inteligencia Artificial (IA) se define como una tecnología computacional
capaz de simular la inteligencia humana en la resolución de problemas matemáticos,
estadísticos y procesos repetitivos, con la capacidad de aprender patrones a partir de
datos de diferentes conceptos. Además, posee una capacidad algorítmica para identificar
materiales y elementos del entorno humano [46]. López y Messenger (2017) mencionan que
los conceptos de inteligencia artificial deben ser entendidos a través de dos concepciones
fundamentales: IA Débil e IA Fuerte, que se corresponden con las siguientes definiciones:
"La IA es la ciencia e ingeniería que permite diseñar y programar ordenadores para realizar
tareas que requieren inteligencia. La IA es la ciencia e ingeniería que permitirá replicar la
inteligencia humana mediante máquinas"(López y Meseguer, 2017, p. 8) [61].

7

Conceptos teóricos 8

El concepto de inteligencia artificial se divide entre IA Débil e IA Fuerte. Esta distinción
fue propuesta en 1980 por el filósofo John Searle, quien intentaba demostrar la dificultad
de crear una IA Fuerte. Según sus estudios, la inteligencia artificial débil se refiere al
diseño y creación de IAs que exhiben comportamientos inteligentes orientados a tareas
muy específicas. En contraste, la IA Fuerte se relaciona con una inteligencia general, con
conocimientos técnicos en diversas áreas, sentimientos, creatividad, y la capacidad de
distinguir lo real de lo irreal en su razonamiento, lo que implica una simulación completa
del cerebro humano. Según López y Meseguer (2017), los avances actuales en IA son
ejemplos de IA Débil, que se enfoca en una inteligencia específica y no general [61].

El campo de la Inteligencia Artificial en la actualidad abarca una gran variedad de áreas
de aprendizaje automático, técnicas de programación y campos de estudio. Entre los más
conocidos se encuentran el Machine Learning y el Deep Learning, que se engloban dentro
del campo denominado ciencia de datos. Este campo tiene como objetivo trabajar con
grandes volúmenes de datos para realizar estudios, predicciones y deducciones mediante la
aplicación de ciencias matemáticas y estadísticas a través de algoritmos [48]. Su propósito
es explicar comportamientos, identificar tendencias e incluso hacer previsiones de mercado,
ayudando a empresas y organismos públicos a obtener mejores perspectivas sobre mercados
futuros, aumentar beneficios y atraer visibilidad pública, basándose en diversos tipos de
análisis de datos y filtros [48]. Además, cada vez que se menciona alguna de las áreas de IA,
estamos hablando también de la ciencia de datos, ya que todos los métodos de aprendizaje
requieren conjuntos de datos que deben ser analizados, limpiados y generalmente ser
de gran escala para entrenar nuevos modelos inteligentes. Este enfoque permite llevar a
cabo automatizaciones para resolver problemas de regresión y clasificación, aplicándose
a diversos fines y métodos en campos como Visión Computacional, Procesamiento de
Lenguaje Natural e IA Generativa.

Figura 3.1: Una visión comparativa de la IA [59]

Como se ha mencionado anteriormente, el concepto de Inteligencia Artificial es am-
plio, abarcando diversas áreas y métodos aplicables en el estudio y desarrollo de nuevas
tecnologías. En las subsecciones siguientes, exploraremos brevemente qué es Machine
Learning y, en particular, Deep Learning, que serán fundamentales para comprender cómo

Conceptos teóricos 9

se caracteriza el desarrollo de IAs Generativas, así como su estrecha relación con el tema
tratado en esta investigación.

Machine Learning
El término "Machine learning"fue utilizado por primera vez en 1959 por Arthur Samuel,

y se refiere a una tecnología y área de estudio que utiliza algoritmos matemáticos para
que las computadoras identifiquen patrones en grandes volúmenes de datos con el objetivo
de realizar predicciones o elaborar análisis predictivos sobre temas específicos. "Machine
learning"se resume en el aprendizaje automático mediante scripts, aprovechando el auge
de los datos almacenados en internet y por las empresas a partir de los años 2000. Según
Alecrim (2018, trad. del portugués), el aprendizaje automático es un sistema que puede
modificar su comportamiento de manera autónoma basándose en su propia experiencia [6].
Este proceso permite realizar modificaciones a través de reglas lógicas y reconocimiento
de patrones dentro de un conjunto de datos, generados a través de reglas definidas para
automatizar un sistema o función específica. Según Arthur Samuel (1959, citado por Géron
2019, p.4, trad. del portugués) [37], el aprendizaje automático es el campo de estudio que
otorga a las computadoras la habilidad de aprender sin ser programadas explícitamente.
De este modo, el concepto de Machine Learning se divide en dos vertientes principales:
aprendizaje supervisado y no supervisado.

Sin embargo, actualmente el área de Machine Learning no se limita solo a estas dos
vertientes. Hoy en día, también contamos con métodos de aprendizaje por refuerzo, que
permiten la mejora continua de los modelos mediante la interacción con su entorno. A
continuación, se presenta la definición de cada uno de estos enfoques:

Aprendizaje Supervisado: Según Géron (2019, p. 8, trad. del portugués), En
el aprendizaje supervisado, el conjunto de entrenamiento que se proporciona al
algoritmo incluye las soluciones deseadas, llamadas etiquetas [37]. Las tareas de
clasificación y regresión lineal son algoritmos típicos de aprendizaje supervisado. Las
Definiciones de clasificación y regresión:

• Clasificación: Se define Clasificación como .Acción o efecto de clasificar, de
reunir en clases y en grupos respectivos, según un sistema o método. Un ejemplo
es hacer la clasificación de correos electrónicos nuevos como spam o normales.

• Regresión linear: Matemáticamente, la ’regresión lineal’ es el ’proceso de
trazar una línea recta a través de los datos en un diagrama de dispersión. La
línea resume esos datos, lo cual es útil cuando hacemos predicciones.’ (Khan
Academy, 2022, trad. del portugués)[2]. Con los datos en regresión, es posible
hacer predicciones de un mercado financiero y clasificaciones.

Aprendizaje no Supervisado: El aprendizaje no supervisado tiene como objetivo
aprender de forma autónoma, sin la necesidad de instrucciones o etiquetas de datos
proporcionadas previamente. Este tipo de aprendizaje se utiliza para diversos fines

Conceptos teóricos 10

algorítmicos, como la detección de anomalías, la identificación de novedades y la
búsqueda de agrupaciones naturales en grandes conjuntos de datos. En este enfoque,
la inteligencia artificial intenta aprender de nuevos datos que difieren de los presentes
en el conjunto de entrenamiento, realizando un análisis de patrones. Un ejemplo
de este algoritmo sería el siguiente: si tienes miles de fotos de perros y el 1 % de
ellas son de Chihuahuas, un algoritmo de detección de novedades no debería tratar
las nuevas fotos de Chihuahuas como novedades. Por el contrario, los algoritmos de
detección de anomalías podrían considerar estos perros como tan raros y diferentes
de otros que probablemente los clasificarían como anomalías. (Géron, 2019, p. 11,
trad. del portugués)[37]

Aprendizaje por Refuerzo: El principal objetivo del aprendizaje por refuerzo
es utilizar un algoritmo que aprenda a partir de su propia experiencia, empleando
la técnica de ensayo y error. Este enfoque es ampliamente utilizado en áreas como
juegos, gestión de recursos y robótica, ya que se basa en el método de recompensas
para acelerar el aprendizaje del algoritmo. En el aprendizaje por refuerzo, los
desarrolladores crean un sistema para recompensar comportamientos deseados y
penalizar comportamientos negativos. Se asignan valores positivos a las acciones que
se desean fomentar, incentivando al algoritmo a utilizarlas, mientras que se asignan
valores negativos a las acciones indeseadas para desalentaras. De esta manera, se
programa a la inteligencia artificial para buscar recompensas máximas y a largo plazo,
con el objetivo de alcanzar una solución óptima. Estas metas a largo plazo ayudan a
evitar que el aprendizaje se quede estancado en objetivos menos importantes. Con el
tiempo, la IA aprende a evitar las acciones negativas y a centrarse en las positivas.
(Hashemi-Pour, 2024, trad. del inglés)[38].

Deep Learning (Redes Neuronales)
La subárea de Inteligencia Artificial denominada Deep Learning ofrece un enfoque

más profundo del aprendizaje automático, utilizando redes neuronales profundas para
resolver problemas complejos. Su objetivo es simular el cerebro biológico, pero de manera
algorítmica, matemática y lógica [37]. Actualmente, existen diversos modelos de redes
neuronales que se emplean en la práctica; algunos ejemplos incluyen: Multi-Layer
Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Generative Adversarial Networks (GAN), Transformers,
entre otros modelos que están siendo desarrollados continuamente para aportar innovación
y resolver problemas que requieren una gran cantidad de datos. Además, el Deep Learning
es uno de los métodos más complejos para el desarrollo de modelos inteligentes.

El área de Deep Learning tiene principios fundamentales que deben ser considerados.
No se detallarán todos en esta investigación, ya que son conocimientos básicos para los
lectores de este trabajo. A diferencia de los métodos de Machine Learning que requieren la
extracción manual de características y generalmente se basan en aprendizaje supervisado,
los modelos de Deep Learning son capaces de aprender directamente de las muestras
de entrenamiento, extrayendo automáticamente las características relevantes durante el

Conceptos teóricos 11

proceso de entrenamiento [37]. Aunque Deep Learning se considera más una técnica de
aprendizaje no supervisado, existen diferentes aplicaciones para los distintos tipos de
aprendizaje. A continuación, se enumeran los principios fundamentales de esta tecnología:

Redes Neuronales Artificiales: El área de Deep Learning utiliza redes neuronales
multicapa, ya que cada capa está formada por neuronas artificiales encargadas de
procesar la información. Este principio es esencial para trabajar con el enfoque de
aprendizaje profundo [37].

Entrenamientos: Los procesos de entrenamiento en Deep Learning pueden ser
largos y complejos de ajustar, ya que dependen del uso adecuado de optimizadores,
funciones de activación y otros conceptos fundamentales que forman parte de una
red neuronal, además de la correcta asignación de los pesos. Estos elementos deben
aplicarse de manera precisa según los análisis realizados para resolver distintos
problemas de aprendizaje. Para verificar los ajustes de los pesos, generalmente se
utilizan algoritmos de optimización como el Gradient Descent (función de pérdida)
[37].

Arquitecturas: En la actualidad, existen diversas arquitecturas y modelos entrena-
dos que se utilizan para abordar diferentes tipos de problemas, tales como clasificación
y regresión. Además, todas las redes neuronales requieren grandes volúmenes de
datos de entrenamiento para aprender de manera eficaz. Dependiendo del tipo de
datos, como en el caso del trabajo con imágenes usando la arquitectura CNN, es
fundamental contar con una infraestructura computacional adecuada, empleando
Graphics Processing Unit (GPU) para procesar los datos de manera más ágil y efi-
ciente durante las fases de entrenamiento [49]. Asimismo, casi todas las arquitecturas
utilizan el algoritmo Backpropagation, que es clave para el ajuste de los pesos y la
evaluación de la función de pérdida [37].

Actualmente, esta área se utiliza en problemas específicos que se han convertido en
campos especializados de estudio y aplicación de diversas redes neuronales, las cuales
permiten resolver una amplia gama de problemas e impulsar innovaciones. A continuación,
se enumeran algunas de las áreas, aplicaciones y las redes neuronales más empleadas en
cada uno de estos campos:

Visión Computacional: Este campo tiene como objetivo entrenar redes neuronales
para desarrollar modelos capaces de aprender a partir de la información contenida
en imágenes digitales, videos y otros tipos de datos visuales. La finalidad es realizar
tareas de reconocimiento y clasificación mediante la identificación de patrones que el
modelo ha aprendido durante su entrenamiento. En este ámbito, las redes neuronales
profundas, como las Convolutional Neural Networks (CNN), son fundamentales. Estas
redes permiten entrenar modelos utilizando imágenes etiquetadas para clasificar e
identificar objetivos específicos dentro de una imagen o video [47].

Conceptos teóricos 12

Procesamiento de Lenguaje Natural (NLP): Enfocado en la interacción y
comprensión del lenguaje entre las computadoras y los seres humanos, el Proce-
samiento de Lenguaje Natural busca que las máquinas entiendan idiomas, habla,
sentimientos y otros aspectos derivados del lenguaje humano, para interpretar y
generar textos en lenguaje natural. Entre las herramientas más utilizadas en NLP se
encuentran los Transformers para la generación de texto, traducción de idiomas y
análisis de sentimientos. También se emplean Redes Neuronales Recurrentes (RNN)
para el procesamiento de secuencias y Long Short-Term Memory (LSTM) para
modelos de datos temporales. Un ejemplo destacado de esta tecnología es ChatGPT
de OpenAI, un modelo diseñado para generar textos y responder preguntas de los
usuarios humanos sobre una amplia variedad de temas [46].

IA Generativa: Este campo ha ganado gran notoriedad en los últimos años y se
centra en el desarrollo de modelos de aprendizaje profundo capaces de generar texto,
imágenes, videos y otros contenidos a partir de lo que han aprendido durante su
entrenamiento. La IA generativa combina diferentes tipos de tecnologías y modelos
de aprendizaje para producir contenido. Esta área es una de las más complejas, ya
que demanda una infraestructura de hardware avanzada para entrenar las redes
neuronales. Entre las tecnologías más destacadas en este campo se encuentran las
Generative Adversarial Networks (GAN), Transformers, y Stable Diffusion, entre
otras. En la próxima sección, se profundiza sobre este tema, que es el enfoque
principal de este trabajo [13].

Los campos de estudio e investigación en el área de Deep Learning han experimentado
una evolución constante con el paso del tiempo. Tal como se mencionó anteriormente, han
surgido numerosas subáreas y ramificaciones a partir de esta evolución. No obstante, es
evidente que cada una de estas ramificaciones requiere un perfeccionamiento y desarrollo
continuo, tanto en términos algorítmicos como en la parte investigativa teórica. Este
proceso ha ocurrido a lo largo de varias décadas, produciendo resultados asombrosos que
han beneficiado a la sociedad. Sin embargo, a pesar de estos avances, aún no se ha logrado
desarrollar una IA fuerte, como se explicó anteriormente.

3.2. Inteligencia Artificial Generativa
En los últimos años, la sociedad ha logrado crear innovaciones tecnológicas extraor-

dinarias que, durante gran parte de la historia humana, solo existían en la imaginación.
Una de estas grandes y revolucionarias creaciones son las IAs generativas, cuyo objetivo
específico es generar contenidos de diversos tipos, como imágenes, vídeos, audio, textos,
conversaciones y muchas otras cosas, de una manera diferente, a partir de contenidos que
no existen, sin necesidad de ser creados por manos o intelectos humanos. Según Foster
(2019), un modelo generativo puede definirse de manera amplia como aquel que describe
cómo se genera un conjunto de datos en términos de un modelo probabilístico. Al tomar
muestras de este modelo, es posible generar nuevos datos [28].

Conceptos teóricos 13

La inteligencia artificial generativa no es necesariamente una tecnología reciente. His-
tóricamente, ya en la década de 1960 existían proyectos destinados a crear máquinas
capaces de generar contenido de forma automática y lograr cierto grado de inteligencia
para la automatización. Un ejemplo de ello es el proyecto ELIZA, de 1966, considerado
el primer chatbot de la historia, presentado por el profesor Joseph Weizenbaum. ELIZA
tenía como objetivo simular una conversación de psicoterapia. Sin embargo, los proyectos
de esa época no contaban con los algoritmos complejos, la gran cantidad de datos para
entrenamiento ni la tecnología actual, elementos esenciales para crear una IA que genere
contenido de manera efectiva y precisa [57]. Este avance se estancó y solo se reactivó en
2014 con las tecnologías de aprendizaje profundo, aplicadas en una nueva arquitectura de
Deep Learning denominada Generative Adversarial Networks (GAN), presentada por el
científico Ian Goodfellow [28]. Este estancamiento de la tecnología, también conocido como
los períodos de invierno de la inteligencia artificial, constituyó un período histórico en el
cual la IA no experimentó avances significativos debido a diversos desafíos estructurales,
tanto tecnológicos como éticos. Estos desafíos estuvieron impulsados por el pensamiento
crítico y las limitaciones tecnológicas de la época en la que ocurrieron los tres inviernos de
la IA [75].

Actualmente, el campo de la IA generativa está en constante expansión, con diversos
tipos de algoritmos y arquitecturas que tienen la capacidad de generar contenidos con
una calidad sorprendente. En esta investigación, nos centraremos en la tecnología que
dio origen y revolucionó las IAs generativas, conocida como GAN, y en la arquitectura
que se empleará en esta investigación, denominada Stable Diffusion. En las siguientes
subsecciones, explicaremos cada una de estas tecnologías, destacando sus conceptos y
ventajas.

Generative Adversarial Networks (GAN) - 2014
Las GANs (Generative Adversarial Networks) fueron una de las primeras arquitecturas

generativas eficaces y se han demostrado sumamente útiles para generar imágenes, textos
y música. Su arquitectura se basa en una lógica algorítmica de competencia adversarial,
compuesta por dos elementos clave: el generador y el discriminador. El generador es el
responsable de crear nuevos contenidos de manera realista, mientras que el discriminador
tiene como objetivo identificar si el contenido generado es original o si ha sido producido
por una IA, es decir, reconocer lo que sería un contenido "falso.o "fake". El proceso funciona
como una competencia en la que el generador intenta constantemente mejorar la calidad
de sus contenidos para engañar al discriminador, mientras que este último se esfuerza
por mejorar sus capacidades para identificar correctamente los contenidos generados. La
interacción continua entre ambos adversarios continúa hasta que el generador produce
contenidos tan convincentes que el discriminador ya no puede diferenciar entre lo generado
y lo real. Este proceso de competencia es lo que permite que las GANs mejoren con el
tiempo, generando resultados de alta calidad que, en muchos casos, son indistinguibles de
aquellos creados por seres humanos [28].

Conceptos teóricos 14

Figura 3.2: Ejemplo del generador y el discriminator de las GANs [35].

Para que toda esta lógica funcione y se generen imágenes de manera efectiva, la arqui-
tectura de las GANs opera de forma compleja, requiriendo una ecuación extremadamente
desafiante. El generador se basa en una red neuronal con arquitectura MLP (Multi-Layer
Perceptron) o CNN (Convolutional Neural Network), siendo esta última la más tradicional
para el procesamiento de imágenes. El generador analizará un gran conjunto de datos
de entrenamiento, identificando los atributos presentes en los mismos. Por otro lado, el
discriminador también utiliza una red neuronal que examinará el conjunto de datos de
entrenamiento y distinguirá los atributos de los datos de forma independiente. A través de
este proceso, el generador y el discriminador interactúan y se entrenan de manera conjunta.
A continuación, se detallan los pasos clave en este proceso:

Generador: El generador modifica algunos atributos de los datos al agregar ruido o
realizar cambios aleatorios sobre la imagen o los datos. Estos datos modificados son
luego enviados al discriminador para su análisis [13].

Discriminador: Por su parte, el discriminador, después de procesar los datos
proporcionados por el generador, realiza un cálculo probabilístico para verificar si los
datos generados realmente pertenecen al conjunto de datos original. El discriminador
analiza estos datos, identificando sus atributos, y proporciona resultados y orientación
para el generador. Este, a su vez, tiene como objetivo reducir la aleatorización del
ruido sobre las imágenes, buscando así mantener un equilibrio en lo que se está
generando [13].

Según Amazon AWS, el generador intenta maximizar la probabilidad de error del
discriminador, mientras que este último busca minimizar dicha probabilidad de error.
Durante las iteraciones de entrenamiento, tanto el generador como el discriminador
evolucionan y se enfrentan de manera continua hasta alcanzar un estado de equilibrio.
En este estado, el discriminador ya no es capaz de reconocer los datos sintetizados [13].

Conceptos teóricos 15

En este momento, el proceso de entrenamiento finaliza. A continuación, se presenta un
ejemplo de la arquitectura de GAN :

Figura 3.3: Arquitectura de las GANs [13].

Una de las dudas que siempre surgen al presentar la arquitectura de las GAN es
cómo se generan realmente las imágenes y otros tipos de datos. En esta investigación,
nos enfocaremos específicamente en el contexto de las imágenes, que pueden seguir el
siguiente ejemplo presentado por Amazon AWS [13]. Si la arquitectura recibe fotos de
rostros humanos en su conjunto de datos de entrenamiento, y el objetivo es modificar el
rostro humano o crear uno nuevo, el generador debe identificar los principales atributos del
rostro y generar algo aleatorio. A medida que el proceso avanza, el discriminador analiza
la imagen generada e identifica los atributos de un rostro humano que se asemejan a los
que están contenidos en el conjunto de datos de entrenamiento. Este proceso continúa
hasta que el generador produce una imagen que cumple con los criterios del discriminador.

Un ejemplo similar ocurre con el cambio de estructuras y colores en diferentes objetos
y muestras, como se describe en la figura 3.3. En este caso, el generador recibe imágenes
de cebras en su conjunto de entrenamiento, mientras que el discriminador recibe imágenes
tanto de cebras como de caballos, para aprender los atributos de ambos animales. A partir
de ahí, el generador intenta crear una cebra que tenga los atributos de un caballo. El
discriminador proporciona las indicaciones necesarias para que el generador modifique la
imagen hasta que la cebra tenga la estructura de una cebra, pero con los atributos de un
caballo, lo que resulta en la modificación de los atributos de la imagen generada [13].

Actualmente, los modelos GAN siguen siendo muy populares, con nuevos métodos y
algoritmos aplicados a una amplia variedad de problemas con el objetivo de generar datos.
Sin embargo, las GANs fueron el punto de partida para el desarrollo de nuevas tecnologías
generativas, que abordaremos en este trabajo, y que han ganado un gran reconocimiento
por parte de desarrolladores y empresas tecnológicas.

Conceptos teóricos 16

Figura 3.4: Ejemplos de imágenes generadas con GANs: cebra creada a partir de atributos
de un caballo y viceversa [13].

Stable Diffusion y Los Modelos de Difusión
Con el paso de los años, desde la aparición de las redes generativas adversarias (GANs),

pioneras en el desarrollo de modelos inteligentes capaces de generar imágenes, han surgido
otras tecnologías que han transformado el campo de la inteligencia artificial generativa.
Uno de estos modelos es el que genera imágenes a través de la arquitectura de difusión,
conocida como Stable Diffusion. Presentada por primera vez en 2022 y desarrollada por
Stability AI, esta arquitectura fue considerada una revolución, ya que era capaz de generar
imágenes de alta definición de manera sencilla y, además, era completamente de código
abierto (open source), permitiendo que empresas, desarrolladores y estudiantes pudieran
modificar o adaptar el código a sus necesidades. Esto promovió un mayor avance tecnológico
y aprendizaje en el campo de la IA [67].

Stable Diffusion ha ganado mucha notoriedad no solo por ser de código abierto y generar
imágenes de altísimo calidad, sino también por no requerir infraestructuras computacionales
grandes, complejas y de alto costo, lo que permite a usuarios comunes o empresas con bajo
presupuesto utilizarla, a diferencia de otras tecnologías. Además, cuenta con diferentes
métodos de Fine-Tuning sencillos que permiten a cualquier persona adaptar unas pocas
imágenes de manera simple a modelos pre-entrenados, lo que facilita la mezcla de sus
datos y la creación de nuevos conceptos artísticos o experimentales.

Para entender mejor cómo funciona la arquitectura de Stable Diffusion, insertamos la
figura 3.5 a continuación, que representa todos los componentes algorítmicos involucrados
en la generación de imágenes a través de la manipulación de píxeles, ya sea mediante
la interpretación de texto o el uso de otras imágenes [72]. En esta investigación, no
profundizaremos en la teoría ni en la explicación detallada del concepto de imágenes y

Conceptos teóricos 17

píxeles, ya que se considera un tema de conocimiento básico para los lectores de este
trabajo.

Figura 3.5: Arquitectura de la técnica de Stable Diffusion [72]

Conditioning: Este término se refiere a los datos de entrada en la arquitectura, los
cuales pueden estar compuestos por textos descriptivos, imágenes o representaciones
semánticas. Estos datos son acondicionados por algoritmos específicos; en los casos
de textos, que son los más comunes, el acondicionamiento se realiza mediante la
tokenización de CLIP (Contrastive Language-Image Pre-Training). CLIP analiza
cada palabra del texto y la inserta en un vector específico. Este proceso se repite
varias veces, enviando varios tokens al predictor de ruido U-Net mediante una
transformación de texto en imágenes (píxeles) y capturas semánticas de los datos
realizadas por el CLIP. Así se efectúan las primeras generaciones de imágenes llenas
de ruido [11].

Latent Space: El espacio latente es el proceso principal para generar imágenes,
siendo el espacio que recibe texto o imágenes provenientes del "Conditioning", ya
transformados. En el caso del texto, este llega como tokens, y dentro del espacio
latente se realiza el mapeo en el que se crean los primeros píxeles, basados en los
valores semánticos y características capturadas de los mensajes de texto, con la
adición de ruido. A partir de esto, es posible llevar a cabo el proceso de difusión,
que consiste en una serie gradual de eliminación de ruidos del vector latente para
crear una representación limpia de las características recolectadas de las imágenes, y
que coincida con la información entrenada en el modelo principal. De esta manera,
se puede realizar el proceso de decodificación de vuelta al espacio de píxeles (Pixel
Space), lo que da como resultado una imagen generada correspondiente al vector no
latente, es decir, a los mensajes de texto [72].

Denoising U-Net: La U-Net se conoce comúnmente como el núcleo de la arquitec-
tura, ya que es en esta parte donde se realizan y crean las principales transformaciones.

Conceptos teóricos 18

Se encuentra dentro del componente "Latent Space". Esta sección de la arquitectura
está compuesta por la U-Net, que incluye redes neuronales convolucionales preentre-
nadas con diferentes tipos de imágenes, y cuya función principal es predecir el ruido
en las imágenes para llevar a cabo la limpieza de la foto y su posterior generación
[11]. El Cross-Attention es otro componente crucial, ya que tiene la capacidad
de enfocar y concentrar las semánticas y patrones de los textos, aplicándolos a la
imagen después de las transformaciones realizadas por el Conditioning. Además,
existen las Keys, Queries y Values, que son responsables de toda la lógica aplicada
en el espacio latente. Las Queries se combinan con las Keys para calcular y ajustar
los pesos de las redes neuronales, lo que permite un mejor control y enfoque del
mecanismo en el espacio latente. Por lo tanto, podemos considerar el componente
Denoising U-Net como el núcleo que tiene la capacidad de transformar una imagen
formada por ruido aleatorio en una imagen coherente, hermosa y realista, alineada
con el texto recibido a través del espacio no latente (Conditioning) [72].

Actualmente, Stable Diffusion ofrece diversos métodos y modelos disponibles en formato
de código abierto (Open Source), los cuales pueden ser utilizados para una amplia gama
de fines de desarrollo e investigación. Además, existe una gran diversidad de métodos
para realizar Fine-Tuning en los modelos de difusión, a través de plataformas como
Stability AI, Hugging Face, entre otras. En la actualidad, los métodos de Fine-Tuning
son ampliamente utilizados en modelos generativos, ya que facilitan significativamente la
adaptación de un modelo que ha sido entrenado con una gran cantidad de datos a una
tarea específica, como la generación de contenido particular, ya sea de texto o imágenes.
Cabe recordar que el Fine-Tuning se define como un método para ajustar los pesos de un
modelo o red neuronal previamente entrenada sobre un conjunto de datos más pequeño y
personalizado, estableciendo una nueva tarea específica con esos datos y entrenando el
modelo en consecuencia [7].

Los métodos de Fine-Tuning de Stable Diffusion se abordarán con más detalle en
el capítulo 4: Estado del Arte, ya que esta parte fue realizada de manera sistemática
con el objetivo de estudiar y aplicar los métodos de Fine-Tuning de Stable Diffusion
en el desarrollo de este trabajo, realizado durante el proceso de estancia de I+D+i.
Además, en el capítulo mencionado, presentaremos en formato de tabla los principales
modelos de diferentes tecnologías de generación de imágenes, además de Stable Diffusion,
proporcionando un análisis más profundo sobre el tema.

3.3. Planos Arquitectónicos y Sus Tecnologías
Los planos arquitectónicos han sido de gran importancia en la vida humana desde

que las primeras civilizaciones comenzaron a planificar sus asentamientos. Por ejemplo,
en la civilización del Antiguo Egipto (c. 3100-332 a.C.), según teóricos egiptólogos, la
construcción de las pirámides de Guiza se llevó a cabo utilizando planos de construcción
extremadamente detallados. Estos planos, tal como han descubierto los arqueólogos,

Conceptos teóricos 19

indicaban que los antiguos egipcios posiblemente utilizaban cuerdas, varas y dibujos
para planificar y alinear las pirámides con una precisión astronómica sobre la tierra [74].
Con el tiempo, los planos arquitectónicos se modernizaron y se volvieron cada vez más
relevantes en la sociedad contemporánea. Durante mucho tiempo, estos planos fueron
creados mediante dibujos manuales, hasta la llegada de tecnologías que brindaron soporte
y optimización a un trabajo que, aunque puede parecer sencillo, puede ser extremadamente
complejo, incluso para los algoritmos más sofisticados de la actualidad.

Los planos arquitectónicos se definen como un conjunto extenso de dibujos que describen
cada parte de edificios y viviendas, detallando cómo deben construirse las edificaciones.
Los detalles en un plano de construcción pueden variar, desde los materiales y acabados
hasta la definición de toda la parte eléctrica y mecánica de un edificio. Estos conjuntos de
dibujos se crean con el propósito de visualizar y planificar un proyecto que se llevará a
cabo en una posible construcción, en colaboración con un equipo especializado [16]. La
elaboración profesional de planos arquitectónicos suele ser responsabilidad de arquitectos,
aunque es posible que personas no profesionales realicen bocetos, siempre y cuando estos
sean posteriormente revisados por un equipo profesional y aprobados para ser considerados
en el proceso de construcción. En España, por ejemplo, existe una ley denominada LOE
(Ley de Ordenación de la Edificación), que establece que todos los planos arquitectónicos
realizados por personas no profesionales deben ser revisados y mejorados por un colegio de
arquitectos. Tras su aprobación, deben ser tramitados ante el ayuntamiento de la ciudad
donde se desea construir el edificio. Lo mismo aplica a proyectos realizados directamente
por un arquitecto [23].

A continuación, se enumeran algunos de los planos arquitectónicos que se realizan
comúnmente en la actualidad:

Planos de Situación y de Casas: Estos planos pueden presentarse en formatos 2D
o 3D y son particularmente útiles para visualizar un terreno urbano en su totalidad,
además de servir como base para la construcción de una vivienda o la reforma
de un espacio específico dentro de una edificación. Son los planos más conocidos,
generalmente elaborados por arquitectos, y comúnmente se les denomina plantas
bajas, ya que ofrecen una representación del contexto del plano desde una vista
superior [16].

Planos Mecánicos y Eléctricos: Los planos de este tipo tienen como objetivo
mostrar todos los sistemas de tuberías y la instalación eléctrica de una edificación. A
menudo, pueden estar incluidos junto con los planos de situación y de la casa. Este
tipo de plano generalmente es elaborado por ingenieros especializados en cada área,
quienes posteriormente lo combinan con los planos realizados por los arquitectos
[16].

En el período contemporáneo, existen numerosas herramientas disponibles para la
creación de planos arquitectónicos. Los softwares más utilizados actualmente incluyen
AutoCAD Architecture, Revit (AutoDesk y AutoCAD), Civil 3D, Draft IT, entre otros [20].

Conceptos teóricos 20

Existe una amplia variedad de software en el mercado para la elaboración de plantas bajas,
algunos más profesionales y de pago, mientras que otros son más simples y gratuitos. La
elección de la herramienta adecuada generalmente depende de las necesidades específicas
de cada usuario o del tipo de proyecto que se esté desarrollando.

Figura 3.6: Ejemplo de plano arquitectónico 2D, creado con AutoCAD (AutoDesk Revit)
[66].

A pesar de la existencia de diversas herramientas para la creación de planos arquitectó-
nicos, se observa una notable carencia tecnológica en cuanto a la ampliación y mejora de
este tipo de procesos, especialmente en un momento en que se habla cada vez más de la
automatización del trabajo. Actualmente, existe una gran necesidad de aplicar conceptos
de inteligencia artificial para automatizar el proceso de diseño de planos de casas, ya que
el proceso creativo a menudo puede ser repetitivo y llevar mucho tiempo de creación para
los profesionales [53]. En el capítulo 4: Estado del Arte, nos centraremos en demostrar
tecnologías y productos comerciales que ya utilizan IA generativa para crear planos, además
de presentar investigaciones que intentan automatizar este proceso y guiar el rumbo de
nuestra investigación.

4: Estado del Arte

Previo a este trabajo, se realizó un estudio exhaustivo sobre la cantidad de inves-
tigaciones y las tecnologías disponibles relacionadas con los temas de Generación de
Imágenes mediante IA y Generación de Planos mediante IA. En este capítulo, se presenta
una revisión detallada de los temas mencionados, destacando trabajos científicos clave y
proporcionando una visión general de las últimas tecnologías disponibles, tanto en formato
de código abierto (Open Source) como en productos comerciales. Cabe recordar que esta
investigación se llevó a cabo originalmente durante la fase de la estancia I+D+i, como se
mencionó en el capítulo 1: Introducción. Los temas mencionados ya fueron abordados de
manera general en el capítulo 3: Conceptos teóricos, donde se presentaron las teorías y
conceptos más tradicionales. En este capítulo, profundizaremos más en el conocimiento
sobre estos temas, presentando aspectos más relevantes que fueron determinantes para la
elección de la tecnología utilizada en el desarrollo del modelo generativo discutido en esta
investigación.

4.1. Generación de imágenes mediante IA
Como se mencionó en el capítulo 3: Conceptos teóricos de esta investigación, los

modelos generativos han experimentado una evolución constante, produciendo contenidos
cada vez más realistas. Es importante recordar que estos modelos se basan en una gran
cantidad de datos que han sido entrenados sobre su arquitectura, con el objetivo de generar
contenido específico. En este trabajo, nos enfocaremos completamente en la generación
de imágenes mediante IA, un campo que, como hemos visto, ha logrado consolidarse a
través de diversas técnicas y arquitecturas de inteligencia artificial. Como se presentó en
los conceptos teóricos, las inteligencias artificiales generativas alcanzaron su apogeo con
las arquitecturas GANs, que fueron introducidas en 2014. Sin embargo, con el tiempo han
surgido nuevas arquitecturas que, cada vez más, son mejores y más fáciles de usar para los
desarrolladores.

En este capítulo, nos centraremos en detallar la tecnología de Stable Diffusion y
los procesos de generación de imágenes con esta arquitectura, considerando las diversas

21

Estado del Arte 22

funcionalidades que, por varios motivos que se citarán, nos llevaron a elegirla para llevar a
cabo el desarrollo del objetivo principal de este proyecto.

Como mencionamos anteriormente, la tecnología Stable Diffusion ha evolucionado
notablemente, produciendo imágenes de alta definición cada vez más realistas. Además,
ha facilitado su uso para diversos temas de desarrollo, principalmente porque es com-
pletamente Open Source. También ofrece métodos de Fine-Tuning, muchos de los cuales
son proporcionados por la propia Stability AI a través de comunidades de desarrolla-
dores y bibliotecas de programación de otras empresas tecnológicas. Asimismo, muchas
comunidades de desarrolladores con un enfoque en Inteligencia Artificial han mejorado y
modificado algunas funcionalidades y entrenamientos de los modelos de Stable Diffusion,
lo que permite realizar Fine-Tunings con diferentes propósitos de manera más sencilla.

Los métodos de Fine-Tuning de Stable Diffusion son conocidos como Diffusers Trai-
ning y son proporcionados por la empresa Hugging Face. Su objetivo es ofrecer métodos
algorítmicos ya preparados, para que los desarrolladores puedan ajustarlos fácilmente a
sus necesidades. A continuación, listamos algunos de estos métodos:

Dreambooth: Es un método utilizado para personalizar modelos de texto a imagen
(text-to-image), como Stable Diffusion, utilizando solo unas pocas imágenes (general-
mente de 3 a 5) de un tema específico. DreamBooth fue presentado por primera vez
en el artículo científico titulado "DreamBooth: Fine-Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation"[65]. Este fue el primer método de ajuste fino
(fine-tuning) desarrollado para Stable Diffusion, permitiendo que el desarrollador
aplique únicamente unas pocas imágenes para personalizar el modelo, junto con una
única frase que identifica el tipo de imagen que se desea generar. Es un método
potente, capaz de adaptarse a diversos temas de imágenes, aunque presenta algu-
nas limitaciones en cuanto al entrenamiento de imágenes y frases de identificación
(embeddings) [41].

Text-to-Image: Es el nuevo método de ajuste fino para las tecnologías de Stable
Diffusion, que aunque aún se encuentra en fase experimental en 2024, ya está
disponible para los desarrolladores. Este ajuste es fácil de aplicar y extremadamente
poderoso, permitiendo ajustar conjuntos de imágenes de gran escala mediante un
simple archivo .Json, que debe contener una variedad de frases relacionadas con
cada imagen. Con este enfoque, es posible trabajar con temas más complejos en la
generación de imágenes, lo que proporciona una amplia gama de interacciones para
generar diferentes tipos de fotos, ilustraciones y dibujos [44].

LoRa (Low-Rank Adaptation): LoRa es una técnica que optimiza los métodos
de Fine-Tuning de Dreambooth y Text-to-Image, permitiendo un ajuste más eficiente.
LoRa fue presentado por primera vez en el artículo científico titulado "LoRA: Low-
Rank Adaptation of Large Language Models"[22]. Inicialmente, su propósito era
ser un método exclusivo para el procesamiento de lenguaje natural (generación de
texto), pero debido a su versatilidad, se adaptó también para los ajustes finos en

Estado del Arte 23

la generación de imágenes. LoRa permite adaptar modelos previamente entrenados
añadiendo pares de matrices de peso de descomposición de rango bajo, llamadas
matrices de actualización, a los pesos existentes y entrenando solo estos nuevos pesos
añadidos. Esto permite realizar el ajuste fino de manera más eficiente en términos
de uso de memoria y procesamiento en la GPU, aunque no impide que se generen
modelos más grandes en cuanto a ocupación de memoria, lo que puede requerir más
tiempo de entrenamiento. En general, LoRa es una técnica eficiente para ajustar
grandes modelos de difusión con menos esfuerzo computacional, manteniendo la
capacidad del modelo para generar salidas de alta calidad [43].

Actualmente, todos los métodos mencionados anteriormente están disponibles de
manera simplificada a través de una biblioteca llamada Diffusers, creada por la empresa
Hugging Face. A través de esta biblioteca, los usuarios pueden acceder completamente a los
algoritmos de Stable Diffusion, desarrollados por Stability AI. Esto facilita la posibilidad
de realizar ajustes finos sin necesidad de adaptar todo un contexto algorítmico para
un problema específico, ya que el Fine-Tuning proporciona esta capacidad de forma
automática.

Con el respaldo de las comunidades y de la propia Stability AI para realizar ajustes
finos en sus modelos, con el objetivo de resolver diversos problemas, parece muy sensato
optar por un Fine-Tuning para generar imágenes relacionadas con nuestro tema, que es
el desarrollo de un modelo capaz de generar imágenes de planos arquitectónicos. En las
siguientes subsecciones, abordaremos algunos temas clave, como la autoría de las imágenes
creadas por IA, así como los productos y tecnologías disponibles en el mercado en la
actualidad.

Autoría de Imágenes Creadas Por IAs Generativas
Un tema que debe ser abordado al referirse a la inteligencia artificial generativa es

el de los derechos de autor sobre el contenido generado por la IA. Este es un tema que
aún se encuentra en un intenso debate, dado que la tecnología ha logrado evolucionar
y tener éxito en sus creaciones recientemente. Por ello, se examina y debate quién es el
verdadero propietario de una imagen, texto o video creado por una IA. Según investigaciones
realizadas, muchas empresas y especialistas en el tema defienden que solo la persona que
generó el contenido, a través de un texto o prompt, es quien detenta todos los derechos de
autor sobre el contenido específico generado por la IA [15].

En territorio español y europeo en general, se sostiene que las obras producidas de
forma autónoma por agentes artificiales y robots no deben ser elegibles para protección de
derechos de autor, con el fin de respetar el principio de originalidad, el cual está vinculado
a una persona física (humana). No obstante, en ciertas situaciones, la IA puede actuar
como una herramienta adicional para el autor, enriqueciendo su creatividad mediante
instrucciones adecuadas [70]. Sin embargo, en los sitios web de muchas empresas que
ofrecen productos de IA generativa, como OpenAI, se puede observar que se atribuye el
derecho de autor a la persona que generó la imagen, quedando a su criterio cómo utilizarla.

Estado del Arte 24

En la sección de Productos y Tecnologías Disponibles y Comerciales de Generación de
Imágenes de este capítulo, identificaremos cómo cada empresa atribuye los derechos de
autor a sus usuarios.

Métricas de Evaluación de Modelos Generativos
Con los avances de los modelos de IA generativos, se hace evidente la gran necesidad

de realizar evaluaciones sobre la calidad de los contenidos generados. A diferencia de otros
modelos de inteligencia artificial, cuyo objetivo es evaluar la precisión o la tasa de acierto
de clasificaciones y predicciones, los modelos generativos solo disponen de la verificación
de las tasas de aprendizaje, sin ser sometidos inicialmente a métricas específicas definidas
para ellos. Las métricas de evaluación de modelos generativos son diversas, pero existe una
gran complejidad en garantizar la calidad de los contenidos generados, ya que el proceso
de evaluación del nivel de calidad de un modelo es detallado y varía considerablemente de
un modelo a otro, siendo necesario emplear varias métricas para verificar la calidad [52].

Actualmente, los modelos generativos de imágenes requieren evaluaciones tanto algorít-
micas como humanas para verificar la autenticidad, la calidad y el buen proceso creativo
en la imagen generada. A continuación, listamos algunas de las métricas más utilizadas,
según investigaciones:

Evaluación Humana (Human Evaluation): La evaluación humana es indis-
pensable para verificar la calidad de las imágenes generadas a partir de textos. Sin
embargo, presenta algunas desventajas, ya que generalmente puede ser un proceso
demorado y está sujeta a opiniones subjetivas. Por lo tanto, se considera una métrica
complementaria en la evaluación de modelos generativos de imágenes [52].

Métricas Basadas en Píxeles (Pixel-Based Metrics): Esta métrica utiliza
algoritmos métricos como el Error Cuadrático Medio (MSE), el índice de similitud
estructural (SSIM) y otros. Estos algoritmos consisten en comparar las imágenes
generadas (píxeles) con imágenes reales del mismo dominio. La métrica evalúa la
calidad de la imagen en función de la similitud entre los píxeles, proporcionando una
evaluación cuantitativa de la precisión visual [52].

Métricas Basadas en Características (Feature-Based Metrics): Esta métrica
emplea métodos de evaluación como el Inception Score (IS), la Fréchet Inception
Distance (FID) y otros. Estos métodos comparan las distribuciones de características
entre las imágenes generadas y las imágenes reales, y determinan cómo el modelo ha
logrado preservar la calidad y diversidad del tema tratado en la imagen [52].

Métricas Basadas en Tareas (Task-based Metrics): La evaluación de modelos
generativos también puede involucrar el uso de métricas orientadas a tareas, evaluando
qué tan bien las imágenes generadas cumplen con funciones posteriores, como
clasificación, segmentación, etiquetado o recuperación. Esta métrica, sin embargo, no
siempre es eficaz en todos los casos, ya que está más orientada a contextos textuales

Estado del Arte 25

que a imágenes. Algunos ejemplos de algoritmos utilizados incluyen la precisión de
clasificación, la precisión de segmentación, la puntuación BLEU, entre otros [52].

Métricas Basadas en Novedad (Novelty-Based Metrics): En este enfoque
se utilizan métodos como la distancia al vecino más cercano (nearest neighbor
distance), cobertura (coverage) y entropía (entropy). Estos métodos intentan evaluar
la diferencia y diversidad de las imágenes generadas en comparación con las existentes
dentro de un dominio de entrenamiento o de un tema similar. Sin embargo, es
importante señalar que, aunque estas métricas destacan la creatividad, pueden no
tener en cuenta el realismo y la relevancia de las imágenes creadas, favoreciendo
resultados que pueden ser poco realistas o irrelevantes [52].

Como podemos observar, la calidad de las imágenes generadas puede evaluarse de
diversas maneras. Sin embargo, los métodos cuantitativos (algorítmicos) suelen ser los
más utilizados para definir la calidad, ya que el método cualitativo, que implica la visión y
evaluación humana, puede generar resultados más subjetivos, siendo a menudo utilizado
solo para complementar las métricas ya empleadas.

Otra opción para evaluar la calidad de un modelo generativo de imágenes es utilizando
una herramienta innovadora lanzada por OpenAI, denominada CLIP (Contrastive
Language-Image Pretraining), un modelo entrenado para aprender y relacionar
textos con imágenes [5] [40]. Esta tecnología es especialmente indicada para trabajar con
modelos generativos denominados Text-to-Image, ya que resulta muy útil para evaluar
la coherencia entre las imágenes generadas y el texto utilizado [77].

El proceso de utilización de CLIP se ve influenciado en el momento de generar las
imágenes, ya que su objetivo es calcular la similitud entre la descripción textual original y
la imagen generada. CLIP proporciona una puntuación que indica el grado de similitud
entre el texto y la imagen generada, cuanto mayor sea el valor o mas próximo esté de 1,
mayor será la similitud y correspondencia. En comparación con otras métricas comúnmente
utilizadas, como el Inception Score (IS) y el Fréchet Inception Distance (FID), CLIP se
presenta como una herramienta más inteligente y robusta. Mientras que las métricas IS
y FID calculan la distancia entre características y la diversidad entre imágenes, CLIP
supera estas tecnologías al realizar una evaluación de calidad similar, pero verificando la
similitud entre el texto recibido y la imagen generada (embeddings) [42]. No obstante, es
crucial considerar las métricas IS y FID, ya que fueron las primeras utilizadas para evaluar
este tipo de inteligencia artificial, y siguen siendo las principales métricas orientadas a
características [14].

La aplicación de cada tipo de métrica dependerá del tipo de sistema inteligente que
se desee crear y probar, y muchas veces puede ser necesario utilizar más de una métrica.
Cabe recordar que todas las métricas mencionadas tienen como objetivo evaluar el nivel
creativo y generativo de la inteligencia artificial.

Estado del Arte 26

Productos y Tecnologías Disponibles y Comerciales de
Generación de Imágenes

En esta subsección, presentaremos algunas tablas obtenidas a partir de una recopilación
de información, organizada de acuerdo con cada empresa y tecnología indicada, además
de datos provenientes de las comunidades de desarrolladores. El propósito de incluir esta
información es permitir una visualización clara de las diferencias entre cada tecnología
generativa y proporcionar una visión general de lo que está disponible en el mercado
tecnológico. A continuación, se presentan las tablas:

Sistema
Inteligente

DALL-E (Open AI)

Modelo DALL-E Mini
(Boris Dayma)

DALL-E 2 DALL-E 3

Descripción DALL-E Mini es una
IA generativa capaz
de crear imágenes a
partir de descripciones
de texto. Utiliza
técnicas de
aprendizaje profundo
para generar imágenes
que coincidan con las
descripciones
proporcionadas. Es
una tecnología open
source, desarrollada
por el programador
Boris Dayma en 2022.

DALL-E es un modelo
de IA desarrollado por
OpenAI que genera
imágenes a partir de
descripciones
textuales.
Actualmente tiene dos
modelos de pagos
creados entre 2021 y
2024.

DALL-E es un
modelo desarrollado
por OpenAI que
genera imágenes a
partir de descripciones
textuales.

Costo General
y Tipo 2024

Open-Source (Abierto) Comercial: De $0,16
por imagen a $0,18

por imagen

Comercial: De $0,40
por imagen a $0,120

por imagen
Derechos del

Autor
Segunda la Open AI, üsted es propietario de las imágenes que crea
con DALL-E, incluida el derecho a reimprimir, vender, y mercancías,
independientemente de si su imagen se generó a través de un crédito
gratuito o de pago."

Infraestructura
para la

Aplicación

DALL-E y Dayma no lo definen en su documentación, sin embargo, al
ser un medio para manipular imágenes en RGB, lo mejor es tener una
infraestructura con una GPU de 8 GB de VRAM o más.

Estado del Arte 27

Compatibilidad
(Fine-

Tunning)

La documentación no
deja clara la
posibilidad de la
existencia de
Fine-Tunning, es
decir, el modelo está
completamente
disponible en
repositorios públicos
en Internet y puede
modificarse.

OpenAI no deja clara la posibilidad y no ofrece
soporte en su documentación de productos y apli-
caciones finales.

Tabla 4.1: Modelos existentes referenciáis en generación de imágenes - Dalle-E

Sistema
Inteligente Stable Diffusion (Stability AI)

Modelo Stable Diffusion 3 Stable Diffusion
XL SDXL Turbo

Descripción Stable Diffusion es un motor de inteligencia artificial diseñado para crear
imágenes a partir de texto, fue creado por la empresa Stability AI en
2022. Actualmente cuenta con tres modelos principales para la generación
de imágenes.

Costo General
y Tipo 2024 Open-Source (Abierto), para uso no comercial, pero hay planes para

asociarse a la tecnología y obtener algunas herramientas adicionales para
desarrollar en su entorno, además del ser model ideal para que las empresas
apliquen la tecnología con fines comerciales.

Costo
Comercial

2024
Costo de $20.00, para el plan Professional o costo personalizado para el
plan Enterprise, para uso comercial.

Derechos del
Autor Las imágenes de Stable Diffusion como cualquier otra forma de contenido

creativo, están sujetas a protección de derechos de autor.
Infraestructura

para la
Aplicación

Mínimo: GPU - 6/8 GB de VRAM

Estado del Arte 28

Compatibilidad
(Fine-

Tunning)
Existen algunas posibilidades de Fine-Tuning que pueden ser visualizadas
en la propia documentación de Stability AI. Para el SDXL, XL y Turbo,
existen los tipos Face Mode, Juggernaut XL, DreamShaper XL, RealVi-
siXL, Animagine XL, Object Mode, Juggernaut, RealCarto y Style Mode.
Además, hay algunos métodos de ajuste disponibles en Huggin Face lla-
mados DreamBooth, LoRA, Textual inversion, Text-to-image, entre otros.
Los métodos como LoRA pueden implementarse fácilmente utilizando
Python.

Tabla 4.2: Modelos existentes referenciáis en generación de imágenes - Stable Diffusion

Sistema
Inteligente MidJourney

Modelo Model 6 Model Niji 6 Model 5.2
Descripción El Modelo MidJourney es una tecnología, de sistemas inteligentes, que

tiene objetivo de crear imágenes a partir de texto, fue creada por un
laboratorio independiente en Sao Francisco en 2022.

Costo General
2024 Los planes están todos pagados y están diseñados para todos los modelos.

Están incluidos en los planes el Basic, Standard, Pro y Mega. Los precios
van desde 10,00hasta120.00.

Derechos del
Autor Según MidJourney, los suscriptores de MidJourney tienen acceso a todas

las imágenes que han creado, incluso si la suscripción ha caducado, y son
libres de usar esas imágenes como deseen.

Infraestructura
para la

Aplicación
No es necesario descargar en la máquina local. El usuario puede generar
las imágenes en el propio sitio web o en el telegrama de la herramienta
MidJourney.

Compatibilidad
(Fine-

Tunning)
Existe la posibilidad de utilizar un sintonizador de estilo de herramienta,
de los cuales es posible utilizar métodos de ajuste fino con la propia
herramienta MidJourney.

Tabla 4.3: Modelos existentes referenciáis en generación de imágenes - MidJourney

Al comparar los tres principales modelos presentados en las tablas anteriores, podemos
observar que cada uno de ellos ofrece diversas opciones adicionales, además de presentar
varios tipos de planes tanto comerciales como profesionales para satisfacer las necesidades
de cada usuario. Al analizar las opciones disponibles, se destaca que todos los modelos
generan imágenes a partir del texto proporcionado en el prompt de comandos de cada uno.
La mayoría de las tecnologías tienen una vertiente de código abierto, lo que significa que

Estado del Arte 29

su código está disponible para ser modificado y adaptado a problemas específicos de algún
proyecto o investigación.

Dentro de los modelos de código abierto, los de Stable Diffusion de Stability AI son los
que más ventajas ofrecen, ya que todos sus modelos están disponibles de forma abierta.
No obstante, cuentan con un plan de asociación de desarrolladores que otorga acceso a
algunos recursos adicionales de forma ilimitada. Por otro lado, DALL-E de OpenAI solo
tiene una versión de código abierto llamada DALL-E Mini, un proyecto basado en el
sistema inteligente de OpenAI que fue creado por Boris Dayma. Según diversas fuentes,
este modelo logra dar resultados sorprendentes y eficaces. También está MidJourney, que
ofrece todas las versiones de su modelo bajo planes de pago, aunque en algunas excepciones
de experimentación, los usuarios pueden generar algunas imágenes de forma gratuita a
través de su extensión en Discord, una red social.

Un aspecto muy interesante a considerar en la investigación son las compatibilidades
para realizar Fine-Tuning en un modelo, especialmente en aquellos que son de código
abierto. Algunas tecnologías, como Stable Diffusion, cuentan con varios modelos ajustados
con compatibilidad para realizar Fine-Tuning, cubriendo diferentes temas y métodos,
como es el caso de Dreambooth, LoRa y otros. Sin embargo, sistemas inteligentes como
MidJourney o DALL-E no cuentan con soporte ni modelos específicos para el refinamiento
del modelo (Fine-Tuning).

4.2. Generación de Planos Arquitectónicos Mediante
IA

Con los avances en las áreas de inteligencia artificial generativa, muchas empresas y
emprendedores han encontrado una nueva fuente de innovación, motivados por la creación
de soluciones basadas en lo que ya existe para automatizar parte de su trabajo diario o
para utilizar la tecnología como un nuevo medio comercial. Aunque sigue siendo un tema
complejo para aquellos sin el conocimiento adecuado en tecnología, muchas empresas han
invertido considerablemente para desarrollar nuevos sistemas generativos, especialmente
en áreas específicas de conocimiento y trabajo. Las organizaciones están invirtiendo cada
vez más en estos sistemas para refinar, optimizar y simplificar muchos procesos de trabajo,
cuyas aplicaciones pueden abarcar desde la mejora de experiencias de atención al cliente
hasta la creación de nuevos productos [8].

Como se mencionó en el capítulo 3: Conceptos teóricos, los planos de una vivienda son
la representación gráfica de dicho inmueble, sirviendo como una herramienta básica y un
elemento esencial del diseño que permite plasmar y comunicar información precisa sobre un
proyecto arquitectónico [9]. Hoy en día, la creación de muchos proyectos de construcción
se lleva a cabo en software de modelado 2D y 3D, como Revit, AutoDesk Studio, entre
otros. Además, algunos proyectos se desarrollan en herramientas de realidad aumentada
o virtual, aunque la forma más tradicional sigue siendo el modelado 2D, conocido como
planos bajos. El proceso de desarrollo de un plano abarca varias etapas, desde la creación

Estado del Arte 30

de los primeros bocetos, que consideran los requisitos del cliente y del profesional, hasta el
desarrollo de un proyecto estructural que garantice la seguridad del edificio y la creación
de un proyecto arquitectónico definitivo. Hoy en día, el proceso de diseño ya cuenta con el
apoyo de herramientas tecnológicas para los profesionales, pero creemos que sería mucho
más ágil y eficaz utilizar un tipo de apoyo más inteligente que genere planos bajos listos,
cumpliendo con los requisitos del cliente. Dado lo esencial de la representación gráfica
y todo el trabajo involucrado en la creación de un proyecto de construcción, se vuelve
crucial el uso de inteligencia artificial para generar imágenes y automatizar este trabajo
creativo. Según Anglen, J. (2023), el futuro de la arquitectura y la construcción está siendo
transformado rápidamente por los avances en inteligencia artificial y automatización. Un
área particularmente interesante es el diseño generativo, donde algoritmos de IA pueden
crear infinitas variaciones y optimizaciones del proyecto de un edificio para cumplir con
los parámetros deseados [51].

Con base en investigaciones recientes, ya existen sistemas inteligentes que generan
imágenes de planos bajos como herramientas comerciales, como es el caso de Market.AI,
una plataforma de software integrada con inteligencia artificial (IA) desarrollada para
arquitectos y profesionales en el campo de la planificación de viviendas y edificios. Esta
tecnología permite generar rápidamente múltiples opciones de diseño para un proyecto
determinado, considerando los requisitos de generación de planos de planta (Floor Plan) y
diseño visual de espacios (Designer Visual). Además, ofrece la capacidad de generar planos
a través de texto y realizar modificaciones en planos existentes mediante su integración con
AutoCAD. La tecnología cuenta con un plan de pruebas [63]. Otro ejemplo de tecnología
generativa comercial en este campo es Getfloorplan, un sistema donde el profesional
especifica requisitos en la plataforma y esta genera los planos en formato 2D y 3D. Es una
herramienta sencilla y eficaz como soporte para la creación de planos, aunque, al ser una
tecnología comercial, no ofrece la posibilidad de pruebas gratuitas [31].

Al revisar trabajos científicos, encontramos pocos estudios que exploren el uso de la
inteligencia artificial para generar planos arquitectónicos, especialmente en el contexto
de tener como entrada un texto detallado. Lo que se encuentra con mayor frecuencia
son investigaciones que utilizan imágenes o siluetas de planos para generar otros planos,
manteniendo las condiciones propias de un plano arquitectónico, como se indica en la
imagen. Este enfoque se conoce como el método Pix-to-Pix. El artículo científico que mejor
describe este proceso es "FloorDiffusion: Diffusion model-based conditional floorplan image
generation method using parameter-efficient fine-tuning and image inpainting" [55].

Este artículo tiene como objetivo presentar una forma de generar planos mediante
ajustes finos con Stable Diffusion, utilizando la función Pix-to-Pix, cuyo propósito es
mejorar una imagen o realizar el relleno de espacios vacíos visibles en una imagen. En
la investigación, se utiliza esta técnica para crear nuevos planos a partir de siluetas e
imágenes vacías, así como de imágenes que tienen menciones y condiciones específicas para
realizar los debidos rellenos. El modelo generativo detallado y comparado se muestra en la
figura 4.7, donde se observa la entrada y las condiciones impuestas en cada proceso de
generación. Estas condiciones se definen mediante demarcaciones coloridas que identifican

Estado del Arte 31

cada habitación y espacio de un simple plano arquitectónico. Todo el desarrollo se realiza
utilizando el método LoRa, aplicando la función Pix-to-Pix.

Figura 4.7: Comparación de imágenes de planos arquitectónicos generadas a partir de
cuatro tipos de imágenes condicionales [55].

El artículo evidencia que el uso de Stable Diffusion es más adecuado para este problema
generativo que la arquitectura tradicional de GANs, ya que es mucho más frecuente que
los modelos entrenados con GANs generen imágenes con mucho ruido o distorsión debido
a inestabilidades durante el entrenamiento. Además, las GANs no son capaces de generar
condiciones no existentes que no hayan sido sometidas al entrenamiento, lo que requiere
una gran cantidad de datos para obtener un modelo aceptable en términos de criterios
condicionales. La arquitectura de difusión, en cambio, puede ofrecer mejores resultados en
este sentido de relleno y mejora de condiciones generativas, ya que sus modelos contienen
una enorme cantidad de datos aleatorios entrenados [55].

Muchos de los artículos consultados identifican las diversas posibilidades de generar
planos arquitectónicos mediante IA. Sin embargo, la mayoría de las investigaciones se
centran en condicionar la generación de imágenes utilizando la función Pix-To-Pix, que
trabaja con el relleno de imágenes utilizando semántica e identificación de diferentes
atributos en una imagen para procesarla y generar otra. Son pocos los estudios que
tratan la función Text-To-Pix como un método ajustable para generar diferentes planos
arquitectónicos. Sin embargo, podemos observar que muchas investigaciones mencionan
esta función como un método utilizado en el contexto de generar imágenes de planos
estándar, entrenados sobre modelos estándar sin la necesidad de realizar Fine-Tuning, lo
que lo convierte en un posible apoyo creativo para arquitectos y personas comunes [81].

El artículo .Automating Computational Design with Generative AI" [54] presenta un
intento de ajustar los modelos de difusión utilizando imágenes generadas automáticamente
mediante algoritmos procedurales como conjunto de datos de entrenamiento, empleando
el método Dreambooth para el ajuste. Sin embargo, los resultados obtenidos no fueron

Estado del Arte 32

tan efectivos, ya que produjeron imágenes no reconocibles o planos confusos. No obstante,
mejoraron el contexto de Stable Diffusion, permitiendo generar imágenes basadas en
patrones del modelo previamente entrenado. Los autores de la investigación sugieren que
las deficiencias pueden deberse a que las imágenes no están etiquetadas adecuadamente,
semánticamente, como sucede en las funciones comunes de Pix-To-Pix. Además, destacan
la necesidad de utilizar imágenes más realistas para llevar a cabo esta tarea compleja, junto
con un enfoque en la semántica y el texto descriptivo que se utilizará en el entrenamiento.

En este trabajo, utilizaremos tecnologías existentes para crear un sistema inteligente
que, mediante la interpretación de texto, genere planos de casas creados a través de
inteligencia artificial. Como se evidencia, utilizaremos la tecnología Text-to-Image para
esta acción, realizando un ajuste fino sobre los modelos de Stable Diffusion, y considerando
los problemas y deficiencias mencionados en el capítulo 4: Estado del Arte. Sin embargo,
también realizaremos pruebas sobre estos mismos temas. Los detalles sobre el ajuste, el
conjunto de datos utilizado y otros aspectos del desarrollo serán abordados en el capítulo
5: Técnicas y herramientas.

5: Técnicas y herramientas

En este capítulo presentaremos la metodología que se llevó a cabo para alcanzar los
objetivos estipulados para esta investigación. Cabe recordar que la metodología descrita aquí
comenzó a aplicarse durante el proceso de desarrollo de la estancia I+D+i en informática,
ya comentado en capítulos anteriores. Nuestra investigación seguirá un método más
experimental, ya que nuestro objetivo es evaluar la capacidad de ajustar un modelo ya
entrenado y verificar su capacidad para generar planos arquitectónicos en formato 2D, de
acuerdo con textos ingresados a través de prompts. La decisión de realizar una investigación
más experimental surgió del proceso que hemos llevado a cabo probando diferentes métodos
de ajustes finos en los modelos de Stable Diffusion.

Para el desarrollo del sistema generativo, seguimos algunos requisitos establecidos tras
el establecimiento de los objetivos, las revisiones literarias y la verificación de tecnologías
ya existentes que dieron origen al capítulo 4: Estado del Arte. Los requisitos establecidos
son:

Establecer una infraestructura computacional con GPU y encontrar un conjunto de
imágenes de planos arquitectónicos para el desarrollo del modelo.

Verificar los diversos tipos de métodos de Fine-Tuning de Stable Diffusion disponibles
y probarlos para identificar cuál se adecuaba mejor a nuestro problema generativo.

Crear una interfaz web integrando el sistema generativo, para realizar pruebas de
manera sencilla.

Probar el sistema generativo con métricas capaces de evaluar el sistema de manera
eficiente.

En las próximas secciones de este capítulo, detallaremos cada uno de los requisitos,
evidenciando las técnicas y herramientas empleadas para que pudiéramos desarrollar
el sistema generativo durante el proceso de investigación y pruebas. Algunos aspectos,
como el enlace al repositorio de código en línea donde se almacena el proyecto, junto

33

Técnicas y herramientas 34

con información técnica más detallada sobre la configuración de entornos del servidor e
instalación de bibliotecas específicas necesarias para la implementación, se encuentran
disponibles en el manual de instalación de este proyecto, en el Apéndice B.

5.1. Infraestructura y Ambiente de Desarrollo del
Proyecto

Para desarrollar los requisitos establecidos para el proyecto Floorify, tuvimos que elegir
y definir una infraestructura que incluyera GPU (Unidad de Procesamiento Gráfico),
lenguaje de programación y entorno de desarrollo, para que dicha acción pudiera ser
completada. En cuanto a la infraestructura, se nos proporcionó una conexión a un servidor
del grupo de investigación ECA-SIMM, de la Escuela de Informática de la Universidad de
Valladolid, que contaba con un almacenamiento dinámico, con una GPU NVIDIA GeForce
A40 de 48 GB. El trabajo se realizó en un entorno compartido del uso de la GPU y del
almacenamiento interno, en el que nuestra investigación utilizaba un total de 24 GB de
GPU. El uso de la GPU era de gran importancia, ya que el entrenamiento de las redes
neuronales que componían los modelos de Stable Diffusion requería el procesamiento de
una gran cantidad de imágenes del tema a ser ajustado.

El lenguaje de programación elegido para el desarrollo de la investigación fue Python,
un lenguaje de programación orientado a múltiples paradigmas [78]. Su elección se basó
en la facilidad para manejar grandes cantidades de datos, además de la facilidad para
manipular modelos de Deep Learning y estar completamente integrado con los modelos y
métodos de Stable Diffusion a través de la biblioteca Diffusion. Además, decidimos trabajar
con los entornos de programación Visual Studio Code y también se nos proporcionó por
el grupo ECA-SIMM el entorno de desarrollo Jupyter Notebook, conocido por su fácil
manipulación de todo el contenido relacionado con Inteligencia Artificial y Ciencia de
Datos. Sin embargo, el entorno en el que realizamos más desarrollo y pruebas fue Visual
Studio Code dentro de la conexión del servidor de ECA-SIMM, ya que la mayoría de
los métodos de ajuste fino requerían que los scripts se ejecutaran localmente a través de
archivos con extensión ".bash"(Bourne Again Shell), lo cual se detalla más en la sección de
Fine-Tuning con Stable Diffusion y Sus Métodos.

5.2. Conjunto de Datos (Dataset de Imágenes)
Para el desarrollo del ajuste fino, necesitábamos un conjunto de imágenes en gran

cantidad, además de que estas tuvieran frases o descripciones textuales relacionadas con
cada imagen representada, para que el modelo pudiera aprender y adaptarse generando
nuestras imágenes de acuerdo con su debido contexto textual entrenado. Sin embargo, fue
uno de los ítems más difíciles de encontrar, ya que no había muchos conjuntos de datos
de planos arquitectónicos disponibles públicamente, y rara vez encontrábamos conjuntos
que contuvieran planos arquitectónicos de gran escala, relacionados con un conjunto de
datos descriptivos de cada imagen. Para esto, realizamos un estudio sobre cada conjunto

Técnicas y herramientas 35

disponible en internet para elegir con cuál sería más conveniente trabajar. A continuación se
presentan las tablas que evidencian los conjuntos de datos disponibles y sus características:

Dataset CubiCasa5k sudo-floor-plan-
12k

Total samples 5.000 12.000
Size dataset files 105 GB 4GB

Etiquetas (Tag) Imágenes generadas a
partir de la biblioteca
FloorPlanSVG Python,
tiene identificación, pe-
ro no tiene texto de
descripción relaciona-
do.

Los datos están etique-
tados de forma prede-
terminada según sus
índices informados en
el alcance predetermi-
nado de HuginFace.
Tiene Descripciones re-
lacionadas.

Data
Argumentation

Existe la posibilidad de aplicar aumento de
datos a todos los conjuntos de datos, sin em-
bargo, algunos datos estarán en un formato
más comprimido o vectorial, como es el caso
de CubiCasa5k.

Informaciones
Extras

El conjunto de datos
contiene un modelo de
red neuronal que tie-
ne como objetivo con-
vertir una imagen de
plano (dibujó) en una
representación gráfica
vectorial, para identifi-
car mejor cada espacio
en los planos de una ca-
sa.

Las imágenes contie-
nen descripciones y di-
ferentes tipos de imáge-
nes identificativas con
colores para efectuar la
técnica Pix-To-Pix, pe-
ro las imágenes están
en ángulos extraños.

Enlace de la pagina
web

[56] [71]

Tabla 5.4: Recogido de datasets públicos - 1

Técnicas y herramientas 36

Dataset FloorPlansV2 FloorPlanCAD New Floorplan
demo dataset

Total samples 2.831 15.663 101
Size dataset files 1.13 GB 6 GB 8.4 MB
Etiquetas (Tag) Los datos tienen una

etiqueta específica se-
gún las clases a las que
están asociados. Las
clases se dividen por
el número de habitacio-
nes que hay en cada pi-
so.

Hay un código identifi-
cativo en cada imagen.

No contiene etiquetas
en las imagenes, pero
todas las imágenes
tiene una correlación
con descripciones de
texto.

Data
Argumentation

Existe la posibilidad de aplicar aumento de datos a todos los conjuntos de
datos, sin embargo, algunos datos estarán en un formato más comprimido
o vectorial, como es el caso de CubiCasa5k.

Extras Datos basasados en
CubiCasa5k

Enlace de la pagina
web

[50] [60] [76]

Tabla 5.5: Recogido de datasets públicos - 2

Como podemos visualizar, cada conjunto de imágenes contenía sus ventajas y desven-
tajas, y por eso optamos por trabajar con el conjunto de CubiCasa5K, ya que contenía
una cantidad masiva de datos y sus imágenes eran de buena calidad y muy similares a las
empleadas en el mundo real de la arquitectura de planos bajos en 2D. Las imágenes del
conjunto CubiCasa5K eran buenas porque fueron generadas a partir de transformaciones
de imágenes de planos reales en imágenes vectoriales, lo que dejaba las imágenes en
un contexto más claro y de buena calidad. También trabajamos con otros conjuntos de
datos realizando entrenamientos y pruebas como el dataset New FloorPlan demo Dataset,
que era basado en CubiCasa5K. Uno de los conjuntos que era muy interesante era el
Pseudo-floor-plan-12k, ya que tenía buenas descripciones textuales e identificaciones claras
de cada habitación dentro de la imagen, pero las imágenes contenían ángulos extraños que
no serían muy útiles para realizar entrenamientos. Cabe recordar que para trabajar con el
conjunto de CubiCasa5K tuvimos que crear una pequeña automatización que generara
los contextos textuales para relacionar con cada imagen, formando el conjunto de datos
textual para llevar a cabo el entrenamiento, combinando estos dos embeddings de texto e
imagen. Esto y otros aspectos de los caminos de elección los explicamos con mayor claridad
en el capítulo 6: Aspectos relevantes del desarrollo del proyecto.

Técnicas y herramientas 37

5.3. Fine-Tuning en Modelos de Stable Diffusion y
Sus Métodos

Después de estudiar diferentes tecnologías de generación de imágenes, decidimos que el
mejor camino sería utilizar los modelos de Stable Diffusion para realizar un ajuste fino y
así probar la capacidad de su tecnología para adaptarse a nuestro conjunto de datos. Con
esto, decidimos realizar pruebas con los métodos de Fine-Tuning como Dreambooth [41],
Misto Line [62], LoRas [43] y Text-To-Image [44]. Además, también probamos el modelo
básico sin realizar ajuste fino para verificar la capacidad de la versión estándar de Stable
Diffusion en generar planos arquitectónicos a partir de texto. Uno de los métodos de ajuste
fino que incluimos en la lista sin realizar un estudio previo fue el Misto Line [62], creado
y ajustado por la empresa The Misto.AI, miembros colaboradores de la comunidad de
desarrollo Hugging Face. La decisión de incluirlo se tomó después de visualizar buenas
evaluaciones sobre su método de ajuste fino en modelos de difusión y nivel de detalles que
tenían vuestras imágenes generadas y para tener una referencia del funcionamiento entre
el text-to-image y el pix-to-pix.

Las pruebas con cada método se realizaron utilizando una variedad de versiones
de modelos de Stable Diffusion, siguiendo los consejos proporcionados por la propia
documentación de Diffusion, que es la biblioteca de Python proporcionada por Hugging
Face. Para los modelos de Dreambooth utilizamos el modelo "stable-diffusion-v1-4 "[17]
y para LoRas y Text-To-Image utilizamos el "stable-diffusion-v1-5 "[18]. El Misto Line
utilizaba por defecto el modelo "stable-diffusion-xl-base-1.0 "[3]. Cada modelo tenía su
ventaja en términos de mejor rendimiento y mejor comprensión del contexto entre las
embeddings para generar imágenes. El único método que utilizaba un modelo diferente del
estándar era Misto Line, que utilizaba el modelo más nuevo SDXL de Stability AI. Este
modelo tenía mucha más capacidad de tener detalles en sus imágenes generadas y un mejor
desempeño en la comprensión del contexto entre las embeddings, pero su estructura requería
infraestructuras más potentes para realizar los ajustes finos. Los desafíos encontrados con
el modelo utilizado en Misto Line y los otros métodos se detallan en el capítulo 6: Aspectos
relevantes del desarrollo del proyecto.

5.4. Métricas de Evaluación de Modelo Generativo
Como ya se mencionó en el capítulo 4: Estado del Arte, es indispensable que el sistema

generativo cuente con métodos de evaluación para verificar sus niveles de calidad tanto
a nivel de imagen como de contexto entre embeddings. Por ello, decidimos utilizar dos
métricas algorítmicas que se aplicarán al modelo después de los ajustes finos: CLIP
Score (Contrastive Language-Image Pretraining) [40] y Fréchet Inception Distance [30].
Utilizaremos el CLIP Score en un contexto más evaluativo entre los embeddings para
verificar en qué medida las imágenes generadas coinciden con el texto ingresado por
el usuario. Esta métrica, creada por OpenAI, es adecuada para realizar la verificación
contextual, sin embargo, dado que es bastante nueva, tiene sus limitaciones, ya que se trata

Técnicas y herramientas 38

de una IA entrenada con una cantidad masiva de datos, pero no infinitos y totalmente
actuales, ya que siempre está en actualización. El objetivo del CLIP Score será presentar
valores altos o bajos de acuerdo con su evaluación. Siempre que el score sea alto o próximo
a 1, representará un buen contexto semántico y de características entre los embeddings,
mientras que un valor bajo indicará lo contrario, es decir, un contexto deficiente.

Para evaluar el contexto de calidad de la imagen en su totalidad a nivel de textura
y características, utilizaremos el tradicional FID, que es una métrica orientada a la
evaluación de características, indicando el nivel de las imágenes según su realismo y calidad
de características. Dado que sus medidas se basan en el cálculo de la distancia entre
imágenes de prueba, el objetivo será verificar que cuanto menor sea el valor del FID, mejor
será la calidad de las imágenes, ya que se estará acercando al mismo nivel que las imágenes
en cuestión en términos de características, o verificar si el valor es muy alto, demostrando
baja cualidad en comparación con las imágenes de prueba [30]. En esta investigación,
no utilizamos métricas de observación humana, ya que, como se mencionó en el capítulo
4: Estado del Arte, pueden introducir mucha subjetividad, además de que se utilizan
más como métricas complementarias y no principales, como es el caso de las presentadas
anteriormente.

6: Aspectos relevantes del desarrollo del
proyecto

En este capítulo se presenta el desarrollo del modelo generativo, junto con los diversos
experimentos realizados para validar la eficacia de los ajustes de modelos de Stable Diffusion
en la generación de imágenes de planos arquitectónicos en formato 2D. Cabe recordar
que, para evaluar los modelos generativos ajustados, se llevarán a cabo pruebas sobre las
imágenes generadas a partir de sus condiciones, empleando Clip Score y FID (Fréchet
Inception Distance).

Todos los scripts originales y el desarrollo detallado en esta sección se encuentran
disponibles en el repositorio público, cuyo enlace se proporciona en el apéndice B de este
trabajo.

6.1. Pruebas Mediante Modelo Stable Diffusion
Estándar

Para iniciar la etapa de desarrollo, realizamos una serie de pruebas con el modelo
estándar de Stable Diffusion con el objetivo de evaluar las imágenes generadas a partir de
prompts de texto que describían las características deseadas en un plano arquitectónico [4].
A continuación, se presentan algunos ejemplos de los resultados obtenidos.

1 import requests
2
3 response = requests .post(
4 f"https :// api. stability .ai/ v2beta /stable -image/ generate /core",
5 headers ={
6 " authorization ": f"sk -

rkyXQ2L0sm6s1uRG6zIRQdYBTNKTzLGy5zSgRIed8ELqXdFM ",
7 " accept ": "image /*"
8 },
9 files ={"none": ''},

10 data ={

39

Aspectos relevantes del desarrollo del proyecto 40

11 " prompt ": "Floor Plan 2D with 2 bedrooms , 1 bathroom and living
room",

12 " output_format ": "webp",
13 },)

Fragmento de código 6.1: Ejemplo de Generar Planos Arquitectonicos en Script Padron
de Stable Diffusion Free

En el ejemplo mostrado en el fragmento de código 6.1, se presenta el código básico
utilizado para las pruebas con el script estándar de Stable Diffusion, sin la aplicación de
ningún ajuste fino. Las pruebas fueron realizadas a partir de dos generaciones de planos
arquitectónicos, condicionados por las siguientes entradas: House Plan 2D, One Bathroom
and One Bedroom y House Plan 2D. Las imágenes generadas a partir de estas pruebas
pueden visualizarse en los ejemplos de la figura 6.8 y la figura 6.9.

Figura 6.8: Imagen generada con el modelo sin ajustes finos (Stable Diffusion) - 1

Figura 6.9: Imagen generada con el modelo sin ajustes finos (Stable Diffusion) - 2

Ambas imágenes presentan una buena calidad en términos de resolución, y muchas de
las condiciones establecidas en el prompt de texto se cumplen. No obstante, observamos que
era necesario generar más de cuatro imágenes antes de obtener resultados que comenzaran
a satisfacer el mínimo de condiciones estipuladas. Es decir, el modelo requería múltiples
intentos para mejorar la coherencia con el prompt y captar con mayor precisión el contexto
del plano arquitectónico. La principal dificultad en la generación de imágenes radicaba
en que el modelo no lograba producir imágenes en tonos de gris y, por defecto, tendía a
generar representaciones en 3D en lugar de planos bidimensionales. Para evaluar la relación
entre el texto y las imágenes generadas, sometimos los resultados a pruebas algorítmicas

Aspectos relevantes del desarrollo del proyecto 41

con CLIP Score. Decidimos no aplicar FID en esta etapa inicial, ya que para ello sería
necesario contar con un conjunto de referencia bien definido para validar las características
de las imágenes. En esta primera prueba, nuestro objetivo fue únicamente analizar la
coherencia semántica entre los embeddings de texto e imagen generados a partir del prompt
condicionado.

1 from transformers import CLIPProcessor , CLIPModel
2 from PIL import Image
3 import torch
4
5 # Load the CLIP model and processor
6 model = CLIPModel . from_pretrained (" openai /clip -vit -base - patch32 ")
7 processor = CLIPProcessor . from_pretrained (" openai /clip -vit -base - patch32 "

)
8
9 # Load an image and a phrase

10 image = Image.open("/")
11 texts = ["Floor Plan 2D", "Floor Plan 2D with 2 bedrooms , 1 bathroom and

living room"]
12
13 # Preprocess the image and the text
14 inputs = processor (text=texts [0], images =image , return_tensors ="pt",

padding =True)
15
16 # Pass the inputs through the model
17 outputs = model (** inputs)
18
19 # Extract the embeddings from the image and text
20 image_embeddings = outputs . image_embeds
21 text_embeddings = outputs . text_embeds
22
23 # Compute the similarity (cosine similarity)
24 similarity = torch.nn. functional . cosine_similarity (image_embeddings ,

text_embeddings)
25
26 # Display the similarity score
27 print("CLIP Score Value: " + str(similarity))

Fragmento de código 6.2: Script de aplicación de métricas de CLIP SCORE

El script presentado en la referencia 6.2 ha sido desarrollado y empleado para la
aplicación de la métrica CLIP (Contrastive Language-Image Pretraining) de OpenAI, per-
mitiendo calcular la similitud entre una imagen y un texto representados como embeddings,
tal como se explicó previamente en este estudio en el capítulo 5: Técnicas y herramientas,
sección 5.4. Su propósito es evaluar la correspondencia semántica entre las imágenes
generadas y sus descripciones textuales. Para ello, el script carga el modelo pre-entrenado
clip-vit-base-patch32 [68] junto con su procesador, abre una imagen almacenada en disco y
define una frase descriptiva, en este caso, "Floor Plan 2D", "Floor Plan 2D with 2 bedrooms,
1 bathroom and living room". A continuación, preprocesa la imagen y el texto mediante el
procesador de CLIP y los convierte en tensores de PyTorch, los cuales son procesados por
el modelo para generar embeddings tanto de la imagen como del texto. Para cuantificar

Aspectos relevantes del desarrollo del proyecto 42

su relación semántica, calcula la similitud del coseno entre los embeddings obtenidos y,
finalmente, imprime el valor del CLIP Score, indicando el grado de coherencia entre la
imagen generada y la descripción textual proporcionada. Este script será fundamental
para la evaluación de futuros ajustes finos (fine-tuning) y desempeñará un papel clave en
la validación de modelos optimizados en este estudio.

Las pruebas realizadas con los datos del CLIP Score se detallan en el capítulo 7:
Discusión de Resultados. En las siguientes secciones, se presentará una descripción detallada
de cada uno de los ajustes finos (fine-tuning) realizados, empleando distintos métodos de
Stable Diffusion.

6.2. Transformaciones de Los Conjuntos de Datos
Elegidos

Después de realizar un análisis detallado de los conjuntos de datos en el capítulo 5: Téc-
nicas y herramientas, fue posible identificar tanto la variedad de opciones disponibles como
sus respectivas limitaciones. Tras esta evaluación, se optó por trabajar con CubiCasa5k, ya
que este conjunto de datos presentaba imágenes con una resolución adecuada, además de
incluir descripciones textuales o simbólicas de los espacios representados en cada imagen.
Sin embargo, se observó que las imágenes de mayor calidad dentro del conjunto estaban
almacenadas en formatos vectoriales, como .SVG, debido a que CubiCasa5k empleaba una
inteligencia artificial para convertir imágenes de planos arquitectónicos convencionales
en representaciones vectoriales. Este formato, aunque ventajoso para ciertos análisis, no
era el más adecuado para el propósito de este estudio. Por esta razón, se llevaron a cabo
transformaciones en el conjunto de datos, con el objetivo de adecuarlo a los requisitos del
modelo utilizado. Se optó por convertir todas las imágenes al formato .JPG, utilizando el
lenguaje de programación Python junto con la biblioteca de procesamiento de imágenes PIL
(Python Imaging Library). Esta conversión permitió mantener la calidad visual necesaria
para el entrenamiento del modelo, al tiempo que garantizaba la compatibilidad con los
métodos de ajuste fino y generación de imágenes empleados en este trabajo.

Con este procedimiento, ya contábamos con las imágenes adecuadas para el entrena-
miento. Para optimizar el proceso y facilitar la convergencia del modelo, decidimos trabajar
exclusivamente con imágenes de planos arquitectónicos que representaban una única planta,
lo que permitió simplificar el aprendizaje y filtrar la gran cantidad de datos disponibles.
Como resultado, el conjunto de datos final utilizado para el entrenamiento quedó reducido
a un total de 450 imágenes. Además, uno de nuestros objetivos era establecer una relación
entre las imágenes y descripciones textuales mediante embeddings, lo que requería que
cada imagen tuviera una descripción asociada. Sin embargo, CubiCasa5k no proporcionaba
descripciones textuales detalladas de cada plano, sino que contenía información en forma
de anotaciones simbólicas dentro de las propias imágenes. Para superar esta limitación,
decidimos generar frases estandarizadas basadas en estos símbolos, permitiendo así esta-
blecer una correspondencia clara entre cada imagen y su descripción. Para la generación
de estas descripciones, seguimos el estándar recomendado por Hugging Face, que sugiere

Aspectos relevantes del desarrollo del proyecto 43

estructurar los datos en un archivo .json [26]. En este archivo, cada imagen es identificada
mediante su nombre de archivo como clave, y su descripción se asocia como valor. Además,
este archivo debía ser almacenado en la misma carpeta que las imágenes de entrenamiento
para asegurar su correcta vinculación durante el ajuste fino. Con el fin de automatizar
este proceso, utilizamos Python y la biblioteca de reconocimiento óptico de caracteres
paddleocr [10], la cual permitió extraer y leer automáticamente los textos presentes en las
imágenes, generando así las descripciones correspondientes sin intervención manual. Esta
automatización queda reflejada en los fragmentos de código 6.3 y 6.4.

Finalmente, para garantizar la compatibilidad con los métodos de ajuste fino de Stable
Diffusion, cambiamos el tamaño de todas las imágenes a una resolución de 512x512 píxeles,
siguiendo las especificaciones recomendadas en la documentación oficial de los modelos de
ajuste fino. En la continuación enseñamos el código para las transformaciones y creaciones
del dataset:

1 from paddleocr import PaddleOCR
2 import cv2
3 import os
4 import json
5
6 # Script that performs text recognition on filtered images from

CubiCasa5k to define the Json metadata for FineTuning .
7
8 #The script also creates json identification images and their respective

IDs and texts detailing the architectural plans.
9

10 def detect_h_and_others (image_path):
11
12 # Count occurrences
13 habitacion_solo_count = detected_texts .count('H')
14 habitacion2_solo_count = detected_texts .count('MH ')
15 cozina_solo_count = detected_texts .count('K')
16 bano_solo_count = detected_texts .count('KPH ')
17 bano2_solo_count = detected_texts .count('WC ')
18 Salon_solo_count = detected_texts .count('OH ')
19 Undefined = detected_texts .count('UNDEFINED ')
20
21 # {.........}
22
23 # Create the result message
24 result_message = (
25 f"The text contains the following words :\n\n{

detected_texts_summary }\n\n"
26 f"'Bedroom ' detected alone in the image {

habitacion_solo_count + habitacion2_solo_count } time(s).\n\n"
27 f"'Kitchen ' detected alone in the image { cozina_solo_count }

time(s).\n\n"
28 f"'Bathroom ' detected alone in the image { bano_solo_count +

bano2_solo_count } time(s).\n\n"
29 f"'Living room ' detected alone in the image {

Salon_solo_count } time(s).\n\n")

Aspectos relevantes del desarrollo del proyecto 44

30 # {.........}

Fragmento de código 6.3: Script de detección de texto y creación de frases

1 {
2 " file_name ": " Imagen_id_10796 .jpg", "text": "Floor Plan 2D, 1

Bedroom , 1 Kitchen , 1 Bathroom , 1 Living room"
3 },
4 {
5 " file_name ": " Imagen_id_10004 .jpg", "text": "Floor Plan 2D, 1

Bedroom , 1 Kitchen , 1 Bathroom , 1 Living room"
6 },
7 {
8 " file_name ": " Imagen_id_1072 .jpg", "text": "Floor Plan 2D, 2

Bedroom , 1 Kitchen , 1 Bathroom , 1 Living room"
9 },

Fragmento de código 6.4: Archivo JSON Generado Para el Entrenamiento

Otro conjunto de datos empleado en nuestros experimentos fue New Floor Plan, el cual
contenía imágenes derivadas de CubiCasa5k junto con un conjunto de frases generadas de
manera personalizada para cada imagen. Este dataset se encuentra disponible públicamente
y fue utilizado exclusivamente en los entrenamientos realizados con el método de ajuste
fino LoRAs. La decisión de utilizar New Floor Plan en este contexto se basó en dos
factores clave, en primer lugar, el método LoRAs no requiere un conjunto de datos tan
extenso como otros métodos de ajuste fino, lo que hacía viable su aplicación sobre este
dataset en segundo lugar, queríamos evaluar el rendimiento del ajuste fino en imágenes
sin transformaciones significativas, es decir, en las imágenes originales de CubiCasa5k,
con el fin de analizar su impacto en la generación de planos arquitectónicos. La única
modificación aplicada a New Floor Plan fue el cambio de tamaño de todas las imágenes a
512x512 píxeles, siguiendo la recomendación establecida en la documentación del método
LoRAs para garantizar una correcta entrada de datos en el entrenamiento del modelo.

Para realizar los entrenamientos, utilizamos el conjunto de datos completo para el
entrenamiento, sin dividirlo en subconjuntos de entrenamiento, validación y prueba. Esto
se debe a que los modelos generativos, como Stable Diffusion, no emplean conjuntos de
validación para detectar overfitting ni para ajustar hiperparámetros, ni tampoco utilizan
conjuntos de prueba. En su lugar, la evaluación del modelo se basa en métricas específicas y
aleatorias, ya sean algorítmicas o mediante evaluación visual humana, dado que se trata de
un modelo generativo, estas métricas permiten medir la calidad de las imágenes generadas
sin necesidad de recurrir a los enfoques tradicionales de validación y prueba [25].

Aspectos relevantes del desarrollo del proyecto 45

6.3. Fine-Tuning de Stable Diffusion con el Método
Dreambooth y LoRas

Tal como se demostró en las secciones anteriores, DreamBooth fue el primer método
de ajuste fino presentado para la personalización de modelos de Stable Diffusion. Su
versatilidad y facilidad de uso han sido ampliamente reconocidas, ya que permite realizar
ajustes con un número reducido de imágenes sobre un tema específico, empleando una
frase clave para iniciar el entrenamiento del modelo de difusión. Para utilizar este modelo,
clonamos la biblioteca Diffusion, conforme a las indicaciones, dado que incluye todos
los algoritmos necesarios para la realización de ajustes finos de manera local. Una de
las características imprescindibles de esta biblioteca es que todos los métodos deben
configurarse y ejecutarse mediante un archivo ".bash", lo que posibilita la realización del
ajuste fino directamente en la GPU y optimiza su desempeño dentro de la arquitectura
computacional.

1 import subprocess
2 import os
3 from PIL import Image
4
5 # {.........}
6
7 input_directory = "./"
8 output_directory = "./"
9

10
11 resize_images (input_directory , output_directory , size =(512 , 512))
12
13 command = [
14 " accelerate ", " launch ", "./ diffusers / examples / dreambooth /

train_dreambooth .py",
15 "-- pretrained_model_name_or_path = CompVis /stable -diffusion -v1 -4",
16 "-- instance_data_dir =./",
17 "--output_dir =./ Dreambooth /Model/ My_Model_Trained ",
18 "--instance_prompt =Floor Plan 2D",
19 "--resolution =512",
20 "--train_batch_size =1",
21 "-- gradient_accumulation_steps =1",
22 "--learning_rate =5e-6",
23 "--lr_scheduler = constant ",
24 "--lr_warmup_steps =0",
25 "--max_train_steps =300",
26 "--push_to_hub "
27]
28
29 subprocess .run(command)

Fragmento de código 6.5: Script de uso del metodo dreambooth

Tal como se muestra en el fragmento de código, optamos por Python para configurar
y ejecutar el ajuste fino de manera local, ya que simplificaba la configuración y ofrecía

Aspectos relevantes del desarrollo del proyecto 46

los mismos resultados que un script ".bash". El conjunto de datos empleado para este
entrenamiento fue New Floor Plan, del cual seleccionamos seis imágenes de planos. Según
la arquitectura del ajuste fino, entre cinco y siete imágenes son suficientes para realizar los
ajustes. No obstante, encontramos una limitación: no era posible entrenar las imágenes con
diferentes frases, sino únicamente con una predeterminada, lo que restringía la versatilidad
del ajuste fino y reducía las posibilidades de generar distintos planos a partir de texto. La
resolución de las imágenes empleadas fue la estándar establecida, tal como se mencionó
anteriormente en este capítulo. En cuanto a los demás parámetros, como la tasa de
aprendizaje y los tamaños de lote, utilizamos los valores predeterminados proporcionados
por los ejemplos de la propia biblioteca Diffusion de Hugging Face.

Figura 6.10: Imágenes Generadas Después de Ajuste Fino con Dreambooth

Los experimentos con DreamBooth no incluyeron una amplia variedad de frases de
inferencia ni de parámetros de ajuste fino, ya que anticipamos que este método no lograría
el objetivo de nuestra investigación: alcanzar una alta aleatoriedad en frases e imágenes. No
obstante, decidimos evaluarlo para comprobar la efectividad de los ajustes finos y analizar
cómo, a pesar de su simplicidad, podría generar planos arquitectónicos. Como se observa
en la figura 6.10, las imágenes resultantes corresponden a planos arquitectónicos en 2D, tal
como se esperaba, sin embargo, muchas de ellas presentan inconsistencias, como colores
sobresaturados. Además, las pruebas se limitaron a una única frase como parámetro, lo
que restringió la generación de imágenes bajo distintas condiciones a partir de prompts de
texto.

Tras los experimentos realizados con DreamBooth, decidimos emplear el otro método
de ajuste fino de Stable Diffusion, denominado LoRAs. Este método compartía el mismo
principio que el previamente probado en esta investigación, pero presentaba ventajas
significativas: era más ligero de aplicar y permitía la incorporación de un mayor número
de imágenes, lo que favorecía un aprendizaje más eficiente y resultados más precisos. No
obstante, la principal limitación de LoRAs residía en la imposibilidad de utilizar múltiples
frases para entrenar un gran conjunto de imágenes, lo que restringía su adaptabilidad a
los requisitos específicos de nuestra investigación. A pesar de esta limitación contextual,
decidimos evaluarlo con el propósito de analizar su desempeño en la generación de imágenes,
dado que su método de ajuste fino era similar al de DreamBooth, pero más rápido y liviano
de implementar. A continuación, se presentan el script de ajuste utilizado y resultados
obtenidos:

1 import subprocess
2 import os
3 import wandb

Aspectos relevantes del desarrollo del proyecto 47

4
5 # {.........}
6
7 # Define the training command
8 command_train = [
9 " accelerate ", " launch ", "./ diffusers / examples / dreambooth /

train_dreambooth_lora .py",
10 "-- pretrained_model_name_or_path = runwayml /stable -diffusion -v1 -5",
11 "-- instance_data_dir =./ Dataset ",
12 "--output_dir =./ Model_Test ",
13 "--instance_prompt =floor plan 2D",
14 "--resolution =512",
15 "--train_batch_size =3",
16 "-- gradient_accumulation_steps =3",
17 "-- checkpointing_steps =100",
18 "--learning_rate =5e-5",
19 "--report_to =wandb",
20 "--lr_scheduler = constant ",
21 "--lr_warmup_steps =0",
22 "--num_train_epochs =100",
23 "--max_train_steps =1000",
24 "-- validation_prompt =floor plan 2D",
25 "-- validation_epochs =50",
26 "--seed =0",
27 "--push_to_hub ",
28 "--mixed_precision =fp16",
29 "-- gradient_checkpointing "
30]
31
32 # Run the training command
33 subprocess .run(command_train)

Fragmento de código 6.6: Script de uso del metodo LoRas

Figura 6.11: Experimento 1: imágenes generadas de pruebas mediante el método LoRas

Aspectos relevantes del desarrollo del proyecto 48

Figura 6.12: Experimento 2: imágenes de prueba generadas mediante el método LoRas

Las imágenes resultantes del fine-tuning con LoRAs mostraron resultados interesantes,
aunque también inesperados. Muchas carecían de contexto y presentaban errores, como
borrosidad y falta de coherencia con la solicitud inicial, que consistía en generar planos
arquitectónicos básicos. De manera sorprendente, la mayoría de las imágenes generadas
eran a color, a pesar de que las imágenes de entrenamiento estaban en escala de grises. Esto
sugiere una capacidad intrínseca de LoRAs para completar y reinterpretar las imágenes
durante el proceso de generación tras el ajuste fino.

El conjunto de datos utilizado fue CubiCasa5k, del cual se seleccionaron 100 muestras
para el entrenamiento con el método LoRas. En total, se llevaron a cabo 35 pruebas,
en las que se modificaron diversos parámetros del ajuste fino. Sin embargo, para este
documento, los resultados se redujeron a solo dos pruebas, identificadas como las que
presentaron la mayor evolución en el proceso de ajuste. Las frases utilizadas tanto para el
entrenamiento como para la inferencia fueron de contexto limitado y poco detallado, debido
a la incapacidad de ambos métodos, DreamBooth y LoRAs, de trabajar con múltiples
embeddings relacionados.

Ante esta situación, se identificó la necesidad de un método que, por defecto, permita
relacionar múltiples parámetros durante el entrenamiento. Este aspecto será abordado en
la próxima sección de este capítulo (6.5).

6.4. Fine-Tuning de Stable Diffusion con el Método
Misto Line

El método Misto Line fue elegido para hacer el ajuste fino de nuestro problema debido
a su buena reputación en la comunidad de Hugging Face. Este método empleaba el modelo
SDXL de Stable Diffusion, que no era el clásico utilizado para métodos de ajuste fino. Sus
ventajas en rapidez y gran calidad de imágenes generadas llamaban mucho la atención.
Sin embargo, después de estudiar con él más a fondo, nos dimos cuenta de que no era
el método más adecuado para ajustar embeddings del tipo text-to-image, sino más bien
para pix-to-pix, ya que es mejor para condicionamientos mediante líneas de boceto sobre
una imagen. Los testes para los métodos del Mixto Line no fueron muy profundos, ya que
no era un método muy específico para nuestro problema. A continuación, destacamos las
imágenes generadas y sus respectivas evaluaciones utilizando solamente el Clip Score.

Aspectos relevantes del desarrollo del proyecto 49

El fragmento de código a continuación nos muestra que podíamos enviar un prompt
para detallar una condición de lo que queríamos visualizar sobre la imagen. Sin embargo,
observamos en la primera prueba que la imagen generada seguiría más las expresiones de
la figura enviada como ejemplo a seguir para generar una imagen. Este método simple es
capaz de ajustarse a una sola imagen, pero siempre es necesario enviar una imagen de base
para que pueda tener bocetos que condicionen su generación de imágenes. Además, dado
que el modelo SDXL es muy detallista, podemos observar que solo sería posible generar
imágenes de planos en 3D, con tonalidades RGB.

1 from diffusers import ControlNetModel ,
StableDiffusionXLControlNetPipeline , AutoencoderKL

2 from diffusers .utils import load_image
3 from PIL import Image
4 import torch
5 import numpy as np
6 import cv2
7
8 prompt = "Floor Plan 2D, Many Details , Image of white background "
9 negative_prompt = 'low quality , bad quality , sketches '

10
11 image = load_image (f" teste5 .png")
12
13 controlnet_conditioning_scale = 0.5
14
15 controlnet = ControlNetModel . from_pretrained (
16 " TheMistoAI / MistoLine ",
17 torch_dtype =torch.float16 ,
18 variant ="fp16",
19)
20 vae = AutoencoderKL . from_pretrained (" madebyollin /sdxl -vae -fp16 -fix",

torch_dtype =torch. float16)
21 pipe = StableDiffusionXLControlNetPipeline . from_pretrained (
22 " stabilityai /stable -diffusion -xl -base -1.0",
23 controlnet =controlnet ,
24 vae=vae ,
25 torch_dtype =torch.float16 ,
26)
27 pipe. enable_model_cpu_offload ()
28
29 image = np.array(image)
30 image = cv2.Canny(image , 100, 200)
31 image = image [:, :, None]
32 image = np. concatenate ([image , image , image], axis =2)
33 image = Image. fromarray (image)
34
35 images = pipe(
36 prompt , negative_prompt = negative_prompt , image=image ,

controlnet_conditioning_scale = controlnet_conditioning_scale ,
37). images
38

Aspectos relevantes del desarrollo del proyecto 50

39 images [0]. save(f" hug_lab .png")

Fragmento de código 6.7: Ejemplo de generar planos arquitectonicos con el metodo
Misto Line

En la figura 6.13, podemos visualizar la prueba generada con el método de Misto Line,
la cual nos muestra claramente como el modelo SDXL tiene la capacidad de detallar las
imágenes entrenadas para hacer sus inferencias, sin embargo vemos que las imágenes nos
traen un contexto más 3D, que no nos interesa traer en este punto de esta investigación.
Para generar esta imagen, utilizamos una de las imágenes básicas, proporcionada por el
conjunto de datos CubiCasa5k.

Figura 6.13: Imagen generada con el método Misto Line

Figuras de Teste Frase de
Inferencias

Evaluación CLIP
Score

Figura: 6.13 Floor Plan 2D, Many
Details, Image of
white background

0.2765

Tabla 6.6: Evaluación con Clip Score de la imagen generada con Misto Line

No realizamos muchas pruebas con Misto Line porque, al igual que Dreambooth, tenía
un objetivo que no correspondía a nuestra meta, que era efectuar un entrenamiento
masivo sobre un ajuste fino, hasta obtener imagenes igual planos bajos 2D. Además, la
tecnologia produce muchos más resultados cuando se condiciona con bocetos en una imagen,
permitiendo así realizar rellenos e inserciones en una imagen con el método pix-to-pix. Sin
embargo, pudimos visualizar cómo funcionaba su tecnología, además de realizar inferencias
importantes y observar el nivel de detalles que se insertan, junto con un toque más artístico.
Una de las cosas que no fue posible lograr fue que generara imágenes en tonos de gris y
con un aspecto más de plano bajo, y si solamente como una imagen con aspecto mas 3D y
artístico, lo que nos llevó a descartar su uso para este proyecto.

Aspectos relevantes del desarrollo del proyecto 51

6.5. Fine-Tuning de Stable Diffusion con el Método
Text_To_Image

Después de realizar experimentos con los métodos de Fine-Tuning de Dreabooth, LoRas
y Misto Line, pudimos evidenciar que los modelos de difusión eran capaces de ajustarse a
las imágenes de nuestros diferentes conjuntos de datos. Sin embargo, un problema que
enfrentábamos era la imposibilidad de relacionar múltiples embeddings, es decir, diversas
imágenes relacionadas con un tipo o múltiples frases. Solo podíamos tener una frase
estándar para todo un ajuste fino. Con este problema, nos dimos cuenta de que era
necesario utilizar un método que relacionara estos embeddings de manera múltiple y
eficiente. Fue entonces que encontramos un método que aún está en experimentación
denominado Text-to-Image de la biblioteca Diffusion, el cual tiene el poder de realizar
ajuste fino en modelos Stable Diffusion mediante diversas imágenes relacionadas con
diversas frases. No obstante, este método nos requería una serie de imágenes adicionales
en comparación con los otros métodos para realizar los entrenamientos. Dado que también
teníamos dificultades para encontrar las imágenes necesarias, fue necesario utilizar las
imágenes del dataset CubiCasa5k transformado, como se detalla en la sección 6.2 de
este capítulo. Con las transformaciones del dataset, teníamos un total de 450 imágenes
para entrenar, además de 450 frases en un archivo .json que fue ejemplificado en la
documentación de Diffusion para ser utilizado en el método de ajuste fino.

Como el método cumplía con lo que considerábamos más adecuado para nuestra
investigación, decidimos entrenar diferentes modelos con distintos parámetros para observar
cómo cada modelo podría ajustarse a nuestro conjunto de datos y generar las imágenes,
teniendo en cuenta el contexto textual de cada experimento. A continuación, detallamos
los experimentos realizados:

1 command_train = [
2 " accelerate ", " launch ", "/home/data/ giovan / testes / Dreambooth /Model/

diffusers / examples / text_to_image / train_text_to_image .py",
3 "-- pretrained_model_name_or_path ", model_name ,
4 "--train_data_dir ", train_dir ,
5 "--use_ema ",
6 "--resolution ", "512", "--center_crop ", "--random_flip ",
7 "--train_batch_size ", "4",
8 "-- gradient_accumulation_steps ", "4",
9 "-- gradient_checkpointing ",

10 "--mixed_precision ", "fp16",
11 "--max_train_steps ", "1500",
12 "--learning_rate ", "5e-6",
13 "--max_grad_norm ", "4",
14 "--lr_scheduler ", " constant ", "--lr_warmup_steps ", "0",
15 "--output_dir ", output_dir ,
16 "--logging_dir ", " output_log1 "
17]

Fragmento de código 6.8: Ejemplo de entrenamiento de ajuste fino Text_To_Image

Aspectos relevantes del desarrollo del proyecto 52

El entrenamiento, como se muestra en el fragmento 6.8, nos permite visualizar que en
este primer modelo utilizamos el estándar especificado por la biblioteca Diffusion, lo cual
generó un modelo generativo con el que realizamos dos diferentes inferencias que resultaron
en las imágenes descritas en las figuras 6.14 y 6.15. Podemos observar en las figuras que,
en cuanto a la calidad de imagen, los planos generados en formato .png nos presentan una
buena calidad de píxeles, especialmente por haber utilizado las imágenes de CubiCasa5k,
que contaban con buenos ejemplos transformados. En el contexto de la calidad, podemos
notar que las imágenes tienen una mejor resolución, sin embargo, presentan descripciones
erróneas en las imágenes y sin contexto, lo que podría indicarnos que no deberíamos haber
utilizado las imágenes del conjunto con la descripción textual (anotaciones) adentro de las
imágenes de cada habitación desde el inicio de los entrenamientos.

Figura 6.14: Experimento 1, Modelo1, Prompt 1: imágenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.15: Experimento 2, Modelo1, Prompt 2: imágenes generadas de pruebas mediante
el método Text-to-Image

En la continuación es demostrados los experimentos realizados con cambio en los
parámetros del ajuste fino del método y nuevas inferencias realizadas:

Figura 6.16: Experimento 1, Modelo2, Prompt 1: imágenes generadas de pruebas mediante
el método Text-toImage

Aspectos relevantes del desarrollo del proyecto 53

Figura 6.17: Experimento 2, Modelo2, Prompt 2: imágenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.18: Experimento 1, Modelo3, Prompt 1: imágenes generadas de pruebas mediante
el método Text-to-Image

Figura 6.19: Experimento 2, Modelo3, Prompt 2: imágenes generadas de pruebas mediante
el método Text-to-Image

Los cambios realizados en los entrenamientos de los modelos que presentaron los
resultados anteriores incluyeron modificaciones en la tasa de aprendizaje, el tamaño del
batch utilizado en cada entrenamiento y el ajuste del número de steps de entrenamiento
para controlar los niveles de aprendizaje del modelo. Los resultados de estos entrenamientos
se presentan en el Capítulo 7: Discusión de Resultados.

Una de las dificultades que encontramos al realizar los ajustes finos fueron las limitacio-
nes con la infraestructura computacional, ya que muchas veces el ajuste generaba modelos
muy grandes y la infraestructura no contaba con espacio de almacenamiento suficiente
para soportarlos, o la memoria de la GPU superaba su límite, debido al procesamiento de
una gran cantidad de algoritmos de difusión, a medida que aumentábamos la cantidad de
datos utilizados para mejorar el ajuste fino.

Para un análisis más preciso de las pruebas realizadas, utilizamos el algoritmo CLIP
Score, al igual que en los métodos experimentales anteriores, y también aplicamos la
métrica FID, dado que este algoritmo parecía cumplir con los objetivos de nuestra in-
vestigación. Su implementación nos permitiría evaluar con mayor profundidad la calidad
de las imágenes generadas. A continuación, presentaremos el proceso de implementación
de ambas métricas, con el fin de evaluar la coherencia contextual entre los embeddings
textuales y las características de cualidad de los modelos ajustados mediante el método
text-to-image.

Aspectos relevantes del desarrollo del proyecto 54

1 from transformers import CLIPProcessor , CLIPModel
2 from PIL import Image
3 import torch
4 import os
5
6 # List of image files for Test 01 - LoRa
7 Test_01_LoRa_Files = [" output_Teste_1 .png", " output_Teste_2 .png", "

output_Teste_3 .png", " output_Teste_4 .png"]
8 Test_01_LoRa_Path = ..\ Text_to_Image_Testes \ Model_3 \ Prompt_1 "
9

10 # Generate full file paths
11 Full_Files_Test_1 = [os.path.join(Test_01_LoRa_Path , file) for file in

Test_01_LoRa_Files]
12 Image_Counter_Test_1 = 0
13
14 #{.........}
15
16 # Loop through each file
17 for Open_File in Full_Files_Test_1 :
18
19 Image_Counter_Test_1 += 1
20
21 image = Image.open(Open_File)
22
23 texts1 = ["Floor Plan 2D, 1 bedroom , 1 kitchen , 1 bathroom , 1 living

room"]
24
25 # Load the CLIP model and processor
26 model = CLIPModel . from_pretrained (" openai /clip -vit -base - patch32 ")
27 processor = CLIPProcessor . from_pretrained (" openai /clip -vit -base -

patch32 ")
28
29 # Preprocess the image and text
30 inputs = processor (text=texts1 , images =image , return_tensors ="pt",

padding =True)
31
32 # Pass the inputs through the model
33 outputs = model (** inputs)
34
35 # Extract image and text embeddings
36 image_embeddings = outputs . image_embeds
37 text_embeddings = outputs . text_embeds
38
39 # Compute similarity (cosine similarity)
40 similarity = torch.nn. functional . cosine_similarity (image_embeddings ,

text_embeddings)
41
42 # Display similarity score
43 print("CLIP Score Value for Test 1, Figure " + str(

Image_Counter_Test_1) + ": " + str(similarity))
44

Aspectos relevantes del desarrollo del proyecto 55

45 #{.........}

Fragmento de código 6.9: Evaluacion con CLIP Score

Aplicamos el CLIP Score de la misma manera que se demostró en la sesión 6.3. Sin
embargo, la diferencia en nuestra metodología radica en que incorporamos un bucle para
evaluar las imágenes de acuerdo con el prompt y el modelo especificado en la ruta de
acceso (path). Esto nos permitió verificar los cálculos y generar las tablas de resultados.

Después de llevar a cabo la evaluación de las imágenes generadas mediante CLIP Score,
decidimos emplear la métrica FID para evaluar la calidad de los planos generados. Para
esta evaluación, utilizamos una pequeña fracción de imágenes que no se emplearon en
el ajuste fino, ya que contenían valores simbólicos (anotaciones) nulos. Esto nos llevó a
descartar dichos planos de nuestro conjunto de entrenamiento y, en su lugar, utilizarlos
para la evaluación con FID. Cada imagen generada por los modelos fue procesada para
extraer sus características y compararlas con las imágenes originales, permitiendo así el
cálculo del FID. Cabe recordar que un valor alto de FID indica una mayor diferencia
entre las imágenes comparadas, lo cual, dependiendo del enfoque de investigación, puede
considerarse un resultado no deseado. En nuestro estudio, establecemos que los resultados
deben mantenerse en un promedio equilibrado, evitando valores extremos, ya que las
estructuras de las imágenes deben asemejarse a los planos de entrenamiento, pero sin
ser completamente idénticas, con el fin de preservar la diversidad en la generación de
contenido arquitectónico.

A continuación, se presentan el fragmento de código de FID utilizado para realizar la
evaluación de cada imagen.

1 import os
2 import torch
3 from pytorch_fid import fid_score
4
5 def main ():
6 # Define the paths to the folders containing the reference and

generated images
7 real_images_path = ..\ FID_Evaluacion \ Imagenes_Testes_Reais "
8 fake_images_path = ..\ FID_Evaluacion \ Imagenes_Pruebas "
9

10 # Calculate the FID score
11 fid_value = fid_score . calculate_fid_given_paths (
12 [real_images_path , fake_images_path],
13 batch_size =16,
14 dims =2048 ,
15 device ='cuda ' if torch.cuda. is_available () else 'cpu '
16)
17
18 print(f'FID Score: { fid_value }')

Fragmento de código 6.10: Calculo de FID

Aspectos relevantes del desarrollo del proyecto 56

6.6. Desarrollo de la Interfaz de Pruebas Utilizando
Gradio

Con el objetivo de facilitar la visualización y prueba de los modelos generativos,
optamos por desarrollar una interfaz web utilizando la biblioteca de Python denominada
Gradio. Esta biblioteca fue diseñada específicamente para la evaluación de modelos de
inteligencia artificial, así como de otros modelos matemáticos y predictivos, proporcionando
una manera sencilla e interactiva de realizar pruebas sin necesidad de implementar una
interfaz gráfica compleja.

En la continuación, se detallará el desarrollo de esta interfaz, describiendo su imple-
mentación, configuración y los resultados obtenidos a partir de su uso en la evaluación de
los modelos generativos.

1 import gradio as gr
2 from diffusers import StableDiffusionPipeline
3 import torch
4
5 # Cargue el modelo entrenado para inferencia
6 output_dir = "./"
7 pipeline = StableDiffusionPipeline . from_pretrained (output_dir ,

torch_dtype =torch. float16).to("cuda")
8
9 # Funcion para generar imagenes .

10 def generate_images (prompt , width , height , num_steps , num_images =4):
11 images = []
12 for _ in range(num_images):
13 result = pipeline (prompt , num_inference_steps =num_steps , height =

height , width=width)
14 if " images " in result :
15 image = result [" images "][0]
16 else:
17 raise ValueError (" Unexpected output format from pipeline ")
18 images . append (image)
19 return images
20
21 # Interfaz Gradio para generar imagenes .
22 interface = gr. Interface (
23 fn= generate_images ,
24 inputs =[
25 gr. Textbox (lines =2, placeholder =" Escribe tu mensaje aqui ...",

label=" Prompt "),
26 gr. Slider (minimum =256 , maximum =1024 , step =64, value =512 , label="

Ancho de la imagen "),
27 gr. Slider (minimum =256 , maximum =1024 , step =64, value =512 , label="

Altura de imagen "),
28 gr. Slider (minimum =10, maximum =100 , step =10, value =50, label="

Numero de pasos")
29],
30 outputs =[gr.Image(type="pil", label=f" Imagen {i+1}") for i in range

(4)],

Aspectos relevantes del desarrollo del proyecto 57

31 title=" Generador de Planos - Florify ",
32 description =" Ingrese un mensaje de texto y el modelo generara cuatro

imagenes basadas en el."
33)
34
35 # Inicie la interfaz
36 interface . launch ()

Fragmento de código 6.11: Ejemplo del código de ejecución de interface gradio con el
modelo generativo

Figura 6.20: Interface de teste Del generador de planos arquitectónicos hecho con Gradio

A partir de la observación del fragmento 6.11 y la figura 6.20, se puede notar que ambos
cuentan con un campo específico para la inserción de mensajes destinados a la generación
de planos. Es importante recordar que, para garantizar el correcto funcionamiento del
sistema, los mensajes deben seguir el mismo formato de estilo que fue definido en las frases
de entrenamiento dentro del archivo .json, el cual fue previamente mencionado en las
secciones anteriores 6.2. Para la interfaz web, continuamos con las pruebas utilizando el
modelo experimental 3 ajustado con text-to-image, ya que este fue el modelo que obtuvo el
mejor rendimiento en términos de coherencia contextual, de acuerdo con las evaluaciones
realizadas mediante la métrica CLIP Score.

Durante la generación de los planos, establecimos que, por defecto, se realizarían
cuatro inferencias por modelo, lo que nos permitiría disponer de múltiples opciones y,
de esta manera, evaluar visualmente cuál era la mejor imagen generada. Sin embargo,
los resultados obtenidos mostraron ciertas inconsistencias. Las imágenes generadas no
lograban una puntuación alta en las métricas de evaluación, tales como CLIP Score y
FID, y además fueron evaluadas visualmente por los investigadores de esta investigación,
quienes identificaron que, en muchas ocasiones, las imágenes generadas no mantenían
coherencia con la descripción proporcionada en el prompt de texto, temas que se tratarán
en el próximo capítulo. 7: Discusión de Resultados. Debido a estos problemas, se decidió no
incluir un conversor de imágenes que transformara las salidas en extensiones vectoriales u

Aspectos relevantes del desarrollo del proyecto 58

otros formatos distintos al estándar .jpg en esta fase del estudio. No obstante, se considera
que este aspecto puede ser una línea de investigación futura con el propósito de mejorar la
precisión del sistema en la generación de planos arquitectónicos a partir de descripciones
textuales.

7: Discusión de Resultados

En este capítulo, analizaremos los resultados obtenidos a partir de las implementaciones
y experimentos realizados con base en el capítulo anterior 7: Discusión de Resultados. Dicho
capítulo tuvo como propósito presentar los datos y scripts claves utilizados durante el
desarrollo y la ejecución de los procesos de Fine-Tuning, lo que permitió extraer información
valiosa para un análisis más profundo y específico. A partir de estos datos preliminares,
este capítulo se enfocará en un estudio detallado de los resultados obtenidos, con el objetivo
de evaluar de manera concluyente la efectividad del Fine-Tuning en el cumplimiento de los
objetivos de esta investigación. Para ello, realizaremos un análisis textual de los siguientes
métodos de ajuste fino: DreamBooth, LoRAs y Text-to-Image. Cabe destacar que no se
incluirá un análisis del modelo ajustado The Misto Line, dado que se concluyó que dicho
experimento no era preciso ni esencial para esta investigación, al no contribuir de manera
significativa al objetivo principal del estudio, pero hicimos un pequeño análisis sobre esto
en el capítulo anterior adentro de su sección 6.4. A continuación, se detallan el proceso y
los resultados obtenidos.

7.1. Evaluación inicial con Stable Diffusion estándar
El primer experimento empleó el modelo estándar de Stable Diffusion para generar pla-

nos arquitectónicos sin realizar ajustes previos. Se generaron varias imágenes condicionadas
por descripciones textuales como “Floor Plan 2D with 2 bedrooms, 1 bathroom and living
room”. Aunque las imágenes resultaron visualmente atractivas, el modelo requirió múltiples
intentos para cumplir con las condiciones específicas del prompt, mostrando una falta
de consistencia inicial. Las evaluaciones mediante CLIP Score reflejaron una correlación
positiva moderada entre texto e imagen, con valores cercanos a 0.30, lo cual indicó que los
embeddings evaluados eran similares pero insuficientes para cumplir completamente con
las expectativas del proyecto. En la continuación es posible mirar la tabla de prueba con
Clip Score:

Figuras de Teste Frase de
Inferencias

Evaluación CLIP
Score

59

Discusión de Resultados 60

Figura: 6.8 Floor Plan 2D with 2
bedrooms, 1 bathroom
and living room

0.3084

Figura: 6.9 Floor Plan 2D with 4
bedrooms, 2 bathroom,
a kitchen and living
room

0.3250

Tabla 7.7: Evaluación con Clip Score del modelo estándar Stable Diffusion

Como podemos visualizar, los resultados obtenidos a partir del CLIP Score son positivos
y se acercan al valor de 1, lo que significa que los embeddings evaluados son muy similares
y correspondientes. Además, se identifican diferencias entre ellos, ya que el valor positivo
es bajo, lo que indica que son correspondencias, aunque existen algunas faltas de contexto
en la imagen generada en relación con la condición especificada en el prompt de texto.

7.2. Evaluación del Fine-Tuning con DreamBooth y
LoRas

El método DreamBooth, reconocido por su facilidad de uso y capacidad para personalizar
modelos con pocas imágenes, fue el primer enfoque de ajuste fino implementado. Este
método permitió entrenar el modelo utilizando el conjunto de datos New Floor Plan,
compuesto por 6 imágenes seleccionadas. Aunque este enfoque simplificó el entrenamiento,
presentó limitaciones significativas, ya que las imágenes generadas estaban condicionadas
por una única frase de entrenamiento. Esto restringió la diversidad de resultados, haciendo
que los planos generados fueran poco flexibles frente a distintas condiciones textuales.

Los resultados evaluados mediante CLIP Score arrojaron valores en un rango de
0.3034 a 0.3334, confirmando que las imágenes generadas cumplían parcialmente con las
especificaciones. Sin embargo, los planos carecían de precisión y presentaban inconsistencias
como saturación de colores y falta de coherencia estructural. Aunque el método DreamBooth
demostró ser viable para personalizar modelos, sus limitaciones lo hicieron menos adecuado
para los objetivos de este proyecto.

Figuras de Teste Frase de
Inferencias

Evaluación CLIP
Score

Imagen 1 Floor Plan 2D 0.3334
Imagen 2 Floor Plan 2D 0.3273
Imagen 3 Floor Plan 2D 0.3255
Imagen 4 Floor Plan 2D 0.3034
Imagen 5 Floor Plan 2D 0.3239

Tabla 7.8: Evaluación con Clip Score de las imágenes generadas con Dreambooth - 1

Discusión de Resultados 61

El método LoRAs se implementó como una alternativa más eficiente y flexible. Este
enfoque permitió trabajar con un mayor volumen de datos, utilizando 100 imágenes
seleccionadas de CubiCasa5k. Durante el entrenamiento, se realizaron múltiples pruebas
con modificaciones en los parámetros, como la tasa de aprendizaje y el tamaño del lote.
Aunque LoRAs presentó ventajas en términos de eficiencia computacional y capacidad para
manejar grandes conjuntos de datos, las imágenes generadas carecieron de coherencia en
algunos casos, mostrando problemas visuales como borrosidad y tonalidades inesperadas.
Esto podría deberse a la limitada cantidad de imágenes en su conjunto de entrenamiento
para el ajuste fino, lo que afectó la capacidad del modelo para generalizar correctamente y
producir resultados visualmente más precisos y alineados con las descripciones textuales
proporcionadas.

Figuras de Teste Frase de
Inferencias

Evaluación CLIP
Score

Imagen 1 Floor Plan 2D 0.3126
Imagen 2 Floor Plan 2D 0.3152
Imagen 3 Floor Plan 2D 0.3173
Imagen 4 Floor Plan 2D 0.3206

Tabla 7.9: Experimento 1: evaluación de imagenes generadas con LoRas, mediante al CLIP
Score

Figuras de Teste Frase de
Inferencias

Evaluación CLIP
Score

Imagen 1 Floor Plan 2D 0.3098
Imagen 2 Floor Plan 2D 0.3200
Imagen 3 Floor Plan 2D 0.2642
Imagen 4 Floor Plan 2D 0.3029
Imagen 5 Floor Plan 2D 0.3256

Tabla 7.10: Experimento 2: evaluación de imagenes generadas con LoRas, mediante al
CLIP Score

Los resultados del CLIP Score presentados en las tablas abajo, oscilaron entre 0.3098
y 0.3256, indicando mejoras moderadas en la correlación entre texto e imagen 7.9 7.10.
Sin embargo, estas mejoras no fueron suficientes para cumplir con las expectativas del
proyecto. Además, las pruebas evidenciaron una tendencia del modelo a generar imágenes
en color, a pesar de que los datos de entrenamiento estaban en escala de grises, lo que
reveló un comportamiento inesperado del modelo al completar y personalizar espacios en
blanco o en tonos de gris. Este fenómeno también podría estar relacionado con el reducido
número de imágenes de entrenamiento.

Discusión de Resultados 62

7.3. Evaluación del Fine-Tuning con Text-to-Image
El método Text-to-Image, perteneciente a la biblioteca Diffusion, se implementó para

abordar las limitaciones observadas en los enfoques anteriores. Este método permitió
establecer relaciones más robustas entre múltiples embeddings de texto e imagen, facilitando
el trabajo con un mayor volumen de imágenes y descripciones textuales. Para este ajuste
fino, se utilizó el conjunto de datos transformado de CubiCasa5k, compuesto por 450
imágenes y sus respectivas descripciones en un archivo .json.

Se entrenaron tres modelos distintos con configuraciones variables, ajustando hiperpa-
rámetros clave como la tasa de aprendizaje, el tamaño del lote (batch size) y el número de
steps de entrenamiento. El número de steps definía automáticamente el total de épocas;
sin embargo, decidimos entrenar todos los modelos con el mismo valor predeterminado
descrito en la documentación del ajuste fino. A medida que avanzamos en los experimentos,
incrementamos gradualmente las tasas de aprendizaje y los tamaños del batch, asegurán-
donos de no sobrecargar la GPU para evitar interrupciones en el entrenamiento. En la
siguiente tabla 7.11, se presentan los valores de los hiperparámetros utilizados, así como
las pérdidas finales obtenidas y un grafico de apoyo hecho con TensorBoard. Como se
puede observar, la pérdida total mostró una evolución a lo largo de los entrenamientos.

Hiperparámetros y Total de Perda Modelo 01 Modelo 02 Modelo 03
Taja de Aprendizaje 1e-05 3e-05 5e-06

train_batch_size 1 2 4
max_train_steps 1500 1500 1500

Total de La Perda (Final) 0,0406 0,0364 0,0277

Tabla 7.11: Datos de los entrenamientos y optimizaciones con el método Text-to-Image

Figura 7.21: Gráfico ejemplo del entrenamiento del modelo ajustado 1

La Figura 7.21 muestra el historial de pérdida (loss) durante el entrenamiento de ajuste
fino, el cual, como podemos identificar, es bastante agresivo, algo común en ajustes finos
en modelos de Transformers y Stable Diffusion [39]. Además, podemos observar una gran
oscilación que podría estar indicando una cierta tendencia al overfitting (sobreajuste). Sin
embargo, esto no puede confirmarse con certeza, ya que optamos por no trabajar con
datasets de validación para medir los niveles de pérdida del modelo. Como se identificó

Discusión de Resultados 63

en el Capítulo 5: Técnicas y herramientas, estos no son muy eficaces en modelos como
Stable Diffusion, donde es necesario utilizar métricas específicas para evaluar la calidad de
los modelos. Aun así, en el gráfico podemos notar una marcada tendencia a la oscilación,
además de una disminución en los niveles de pérdida, lo que indica que el modelo está
aprendiendo. Optamos por no mostrar los gráficos de los otros modelos, ya que presentaban
prácticamente los mismos resultados en términos de oscilación, agresividad y reducción de
la pérdida.

Los resultados de las evaluaciones con las métricas indicaron avances significativos en
la calidad y el contexto de las imágenes generadas. En particular, los valores obtenidos
mediante CLIP Score alcanzaron hasta 0.3412, lo que sugiere una mayor correlación entre
las descripciones textuales y las imágenes producidas. Además, se utilizó la métrica FID
(Fréchet Inception Distance) para evaluar la similitud entre las imágenes generadas y las
originales, obteniendo resultados que reflejaron un equilibrio adecuado entre diversidad
visual y coherencia estructural.

A pesar de las mejoras observadas en los modelos entrenados bajo este enfoque,
también se identificaron ciertas limitaciones relacionadas con la coherencia entre el texto y
la imagen. En algunos casos, las imágenes generadas contenían descripciones imprecisas
(anotaciones) o inconsistencias estructurales que comprometían su aplicabilidad como
planos arquitectónicos de alta precisión.

Los experimentos reflejados en la tabla muestran que el CLIP Score evalúa las imágenes
en función de su contexto, validando su relevancia semántica. Sin embargo, se observa una
repetición de tendencias en los resultados, en concordancia con pruebas previas realizadas
mediante otros métodos, lo que sugiere la necesidad de exploraciones adicionales para
optimizar la fidelidad semántica del modelo.

Modelo 1
Prompt Figuras de

Teste
Frase de

Inferencias
Evaluación

CLIP
Score

Evaluación
FID

Prompt 1 Figura 1 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3353 97,777

Prompt 1 Figura 2 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3272 187,019

Discusión de Resultados 64

Prompt 1 Figura 3 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3285 158,063

Prompt 1 Figura 4 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3408 122,168

Prompt 2 Figura 1 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3307 61,499

Prompt 2 Figura 2 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3245 66,054

Prompt 2 Figura 3 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3228 57,636

Tabla 7.12: Experimento 1 Modelo 1: evaluación de imágenes generadas con Text-to-Image,
mediante al CLIP Score

Modelo 02
Prompt Figuras de

Teste
Frase de

Inferencias
Evaluación

CLIP
Score

Evaluación
FID

Prompt 1 Figura 1 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3290 370,998

Discusión de Resultados 65

Prompt 1 Figura 2 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3333 59,675

Prompt 1 Figura 3 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3308 66,111

Prompt 1 Figura 4 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3362 52,619

Prompt 2 Figura 1 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3233 93,297

Prompt 2 Figura 2 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3326 64,571

Prompt 2 Figura 3 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3256 61,205

Prompt 2 Figura 4 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3302 55,226

Tabla 7.13: Experimento 2, Modelo 2: evaluación de imagenes generadas con Text-to-Image,
mediante al CLIP Score

Modelo 03

Discusión de Resultados 66

Prompt Figuras de
Teste

Frase de
Inferencias

Evaluación
CLIP
Score

Evaluación
FID

Prompt 1 Figura 1 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3380 239,756

Prompt 1 Figura 2 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3289 57,785

Prompt 1 Figura 3 Floor Plan 2D,
1 bedroom, 1

kitchen, 1
bathroom, 1
living room

0.3412 85,844

Prompt 1 Figura 4 Floor Plan 2D, 1
bedroom, 1
kitchen, 1

bathroom, 1
living room

0.3291 91,106

Prompt 2 Figura 1 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3243 96,945

Prompt 2 Figura 2 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3293 77,581

Prompt 2 Figura 3 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3235 134,003

Discusión de Resultados 67

Prompt 2 Figura 4 Floor Plan 2D,
2 bedroom, 1

kitchen, 2
bathroom, 1
living room

0.3381 232,512

Tabla 7.14: Experimento 3, Modelo 3: evaluación de imagenes generadas con Text-to-Image,
mediante al CLIP Score

Comparando los valores obtenidos en la evaluación mediante CLIP Score en cada
experimento de los distintos modelos, se observa que las diferencias entre ellos son mínimas.
Los resultados muestran una gran similitud tanto entre los modelos evaluados como con
los valores obtenidos en imágenes generadas tras los ajustes finos con otros métodos. En la
Figura 7.22, se presenta un gráfico con los valores más altos obtenidos en CLIP Score para
cada experimento, destacando el mejor resultado registrado en cada modelo. Se evidencia
que la variación entre los modelos es marginal, aunque el Modelo 3 muestra una ligera
ventaja sobre los Modelos 1 y 2 en términos de coherencia contextual entre la descripción
textual y la imagen generada.

Figura 7.22: Comparación de los experimentos de modelos ajustados Text_to_Image

Para visualizar qué modelos obtuvieron los mejores resultados en relación con las
características evaluadas mediante el cálculo de FID, se generó un gráfico que se presenta
en la Figura 7.23. Este gráfico destaca el menor valor obtenido en la evaluación, lo que indica
una mayor similitud entre las imágenes generadas y los planos arquitectónicos originales
utilizados en el entrenamiento. A partir de los resultados, se observa que el Modelo 2 es
el que mejor logra generar imágenes con características de alta calidad, mostrando una
mayor correspondencia con los planos originales. Sin embargo, es importante considerar
que, aunque los valores de FID reflejan esta similitud, aún pueden existir diferencias
estructurales entre las imágenes generadas y los datos de referencia.

Discusión de Resultados 68

Figura 7.23: Comparación del calculo FID de los experimentos de los modelos ajustados
Text-to-Image

Después de analizar ambos resultados con las dos métricas de evaluación, podemos
identificar que, en el caso del CLIP Score, que evalúa la correspondencia entre el contexto
textual y la imagen generada, el modelo que mejor desempeñó esta tarea fue el Modelo 3.
Por otro lado, el FID, que mide la similitud entre las imágenes generadas y las imágenes
reales de referencia, indica que el Modelo 2 presentó la mejor calidad, ya que obtuvo
valores más bajos, lo cual es un indicador positivo en esta métrica. Estos resultados
reflejan un empate en términos de calidad y evaluación, demostrando que cada modelo
sobresale en un aspecto específico. Sin embargo, a pesar de las métricas obtenidas, un
análisis más profundo revela que ambos modelos aún presentan problemas significativos
en la generación de imágenes, la coherencia contextual entre los embeddings y la calidad
visual de los planos generados. Estos resultados sugieren que es necesario continuar con
investigaciones adicionales para mejorar el sistema generativo de planos arquitectónicos.
En el Capítulo 8: Conclusiones y Líneas de trabajo futuras, se presentarán análisis más
detallados y consideraciones finales sobre el desempeño del modelo y las oportunidades de
mejora identificadas.

7.4. Comparación de Métodos y Experimentos
Al evaluar los métodos implementados en este trabajo, se identificaron diferencias clave

en términos de calidad visual, coherencia textual y demanda computacional. En primer
lugar, los enfoques basados en DreamBooth y LoRAs presentaron ciertas limitaciones debido
a su dependencia de conjuntos de datos específicos y restricciones en la diversidad de
frases de entrenamiento. En particular, estos métodos mostraron problemas de coherencia
visual en la generación de planos arquitectónicos, lo que sugiere que pueden no ser la
opción más óptima para el objetivo de la investigación. Por otro lado, el método Text-to-
Image, implementado a través de la biblioteca Diffusers, mostró un desempeño superior en

Discusión de Resultados 69

términos de contextualización textual y calidad de los planos generados. Su capacidad para
integrar múltiples embeddings permitió que los planos resultantes fueran más coherentes con
las descripciones proporcionadas en el prompt, acercándonos al objetivo principal de esta
investigación. No obstante, este método también enfrentó desafíos significativos relacionados
con la infraestructura computacional, ya que el tamaño de los modelos generados y el
consumo de memoria GPU fueron considerablemente más altos en comparación con
DreamBooth y LoRAs.

En términos de evaluación cuantitativa, los resultados obtenidos mediante CLIP
Score y FID revelan que cada modelo posee ventajas distintas. El modelo 3, entrenado
con el método Text-to-Image, sobresalió en la generación de imágenes que guardaban
mayor coherencia con el texto de entrada, obteniendo el mejor puntaje en CLIP Score.
Esto sugiere que, desde una perspectiva de contextualización semántica, este modelo fue
capaz de comprender y representar con mayor precisión las características arquitectónicas
especificadas en el prompt. Por otro lado, el modelo 2 del text-to-image, demostró un mejor
desempeño en términos de calidad estructural, según los valores obtenidos en la métrica
FID. Este resultado indica que las imágenes generadas por este modelo presentaron mayor
similitud con los planos arquitectónicos originales, lo que sugiere una menor distorsión y
una mayor fidelidad respecto a los datos de entrenamiento.

Ambos métodos siguen presentando desafíos en la generación de planos con calidad
óptima, ya que algunas imágenes generadas muestran inconsistencias estructurales y falta
de alineación con los requerimientos del usuario. Por lo tanto, se evidencia la necesidad de
optimizar los métodos implementados, buscando un equilibrio entre la contextualización
textual y la fidelidad visual. Este análisis también nos llevó a reflexionar sobre la posibilidad
de incorporar un método de Pix-to-Pix para mejorar el ajuste del modelo, permitiendo
completar automáticamente las áreas faltantes en las imágenes generadas. Esta estrategia
podría hacer que la generación de planos arquitectónicos fuera más coherente con las
especificaciones solicitadas en los prompts, optimizando la precisión y utilidad de los
resultados. Esta idea surgió en parte a partir de la evaluación de un modelo ajustado
descartado en este proyecto, denominado Misto Line, cuyo desempeño no cumplió con las
expectativas en términos de coherencia estructural y precisión en los detalles arquitectónicos
y no parecía complementar en la investigación, pero algunas técnicas suyas pueden ser de
gran utilidad para optimizar el proyecto.

8: Conclusiones y Líneas de trabajo
futuras

Después de terminar el proceso de desarrollo de los ajustes finos y análisis de resultados
sobre cada experimento realizado, pudimos concluir que logramos cumplir con algunos
de nuestros objetivos y descubrir un espacio para nuevas investigaciones y mejoras para
ajustar un modelo generativo de difusión en función de las necesidades del proyecto
Floorify. Además, hemos descubierto un campo de investigación que no contiene grandes
cantidades de estudios y trabajos previos, siendo generalmente los campos de investigación
más enfocados en los métodos de pix-to-pix, insertando las condiciones en las propias
imágenes y no en texto para transformarlas en planos arquitectónicos, como lo hemos
hecho en esta investigación experimental.

En nuestra investigación, logramos realizar el ajuste fino en varios métodos de Stable
Diffusion, el cual era la mejor opción para llevar a cabo esta acción, ya que era completa-
mente gratuito y contenía su código fuente en modo Open Source, lo que nos ayudó mucho
y nos permitió realizar ajuste fino con 4 métodos diferentes. Llegamos a la conclusión de
que el mejor método que cumplía con nuestra necesidad era el Text-to-Image, pues nos
permitía entrenar una cantidad masiva de datos relacionados, a pesar de ser un método
que aún está en etapa de desarrollo hasta el año actual de esta investigación.

En las fases de desarrollo, fue posible observar que, después de los ajustes finos con el
método mencionado anteriormente, nuestro modelo generativo generaba las imágenes de
planos en 2D de acuerdo con lo que se condicionaba en el prompt de texto, cumpliendo
así uno de los principales objetivos de este proyecto. Sin embargo, con las evaluaciones
realizadas utilizando el CLIP Score, pudimos verificar que las imágenes estaban de acuerdo
con el contexto solicitado en el prompt textual, considerando el modelo 3 del experimento
como el mejor en términos de contexto entre los embeddings, aunque con una puntuación
muy baja, lo que nos señalaba la falta o divergencia de algunos contextos respecto a la
imagen que se había solicitado. El cálculo del FID, que evaluaba las características de
calidad de la imagen, nos arrojó excelentes resultados en algunos experimentos realizados
con el método Text-to-Image, indicando que muchas de las imágenes estaban de acuerdo
con las que se habían entrenado en el proceso de ajuste, considerando el modelo 2 del

70

Conclusiones y Líneas de trabajo futuras 71

experimento como el mejor resultado en este nivel. Además, evaluamos visualmente y
pudimos notar que muchas de las imágenes presentaban errores en su contexto de dibujo
y generación, generando contextos extraños y sin sentido para la visión humana. Esto
nos demostró que, aunque los modelos lograban generar los planos 2D, aún había mucho
trabajo por hacer y mejoras por implementar para que pudieran alcanzar un nivel aceptable
a nivel profesional como imágenes útiles de planos arquitectónicos.

Con esto, concluimos que, como posibles mejoras futuras para este experimento, sería
conveniente intentar realizar modificaciones en el proceso de entrenamiento del método
Text-to-Image, para visualizar si existe una mejor manera de optimizar su aprendizaje,
además de probar con algún otro modelo de Inteligencia Artificial o con alguna otra
arquitectura generativa de imágenes. También observamos que muchas veces el CLIP
Score nos devolvía puntuaciones muy similares en las imágenes generadas por métodos que
no tenían relación con diferentes embeddings en su entrenamiento, lo que podría representar
un error por parte del CLIP Score, ya que es una métrica constituida por un modelo de
inteligencia artificial, el cual puede cometer errores, dado que su entrenamiento se basa
en grandes cantidades de datos, pero no en un conjunto infinito. Con esto consideramos
que sería interesante intentar mejorar este proyecto y realizar evaluaciones desde el punto
de vista humano, para obtener una opinión más complementaria acerca del contexto
generativo entre prompt y imagen.

Como lineas de trabajos futuros y mejorías, dejo las siguientes recomendaciones, tras
las conclusiones obtenidas con esta investigación:

Mejora el contexto textual relacionado con las imágenes de entrenamiento
para ajustar nuevamente el método Text-To-Image. La mejora en el contexto
textual debe centrarse en crear frases más naturales para ser entrenadas en el método,
ya que en este proyecto, al investigar cómo funcionaba el método, terminamos
insertando frases algo robóticas y simplemente enumerando cada habitación de un
plano bajo.

Modificar el conjunto de datos CubiCasa5k añadiendo más muestras
de planos. Uno de los problemas que pueden estar provocando imágenes de baja
calidad y poco contexto se debe a la escasez de muestras entrenadas en el modelo
inteligente, ya que, como se investigó, fue muy difícil encontrar conjuntos de datos
que contuvieran una gran cantidad de planos de buena calidad. Por lo tanto, creemos
que sería de gran ventaja ampliar el número de muestras de entrenamiento para
mejorar los resultados.

Intentar realizar un procesamiento de imágenes coloreando cada habitación
con su debida identificación, es decir, implementar una variante de la
técnica Pix-to-Pix para complementar el ajuste del modelo así como sus
inferencias. Una de las grandes ventajas de utilizar el método pix-to-pix es la
facilidad con la que podemos identificar cada habitación mediante el uso de colores,
como se demostró en el capítulo 4: Estado del Arte. Esta característica proporciona

Conclusiones y Líneas de trabajo futuras 72

una ventaja significativa al recibir condiciones de relleno en las siluetas de imágenes
de planos arquitectónicos, lo cual resulta interesante para intentar aplicarlo en las
imágenes de entrenamiento del método Text-to-Image con el fin de generar planos.

Realizar pruebas complementarias mediante la visión humana. Una de las
métricas que puede proporcionar un cierto feedback subjetivo, pero válido, además
de complementar los algoritmos, es la métrica de percepción humana. Pensamos que,
con mejoras en el ajuste del modelo generativo, sería ideal realizar pruebas con seres
humanos para ver cómo son capaces de generar imágenes, además de insertar frases
más naturales y elegir cuáles son las imágenes que tienen más contexto con lo que
ellos ingresaron a través del prompt de texto.

Con esto concluimos esta investigación, dejando varios campos abiertos para que se
puedan realizar más investigaciones y mejoras, hasta que el sistema generativo de planos
arquitectónicos pueda generar imágenes útiles y de calidad. En este momento, podemos
ver que nuestros resultados no tuvieron un gran avance positivo, pero pudimos verificar y
experimentar con varios métodos de ajuste fino, además de llegar a diversas conclusiones
sobre por qué hubo resultados negativos en nuestra investigación. Esto abre espacio para
nuevos experimentos y pruebas en futuros proyectos, y con ello concluimos el proyecto
Floorify.

Apéndices

73

Apéndice A

Plan de Proyecto

Para el desarrollo de este trabajo, se llevó a cabo una secuencia de metodologías y
planificaciones, para que pudiéramos desarrollar todo el proyecto Floorify y así redactar
toda la parte escrita del TFM con el tema del proyecto Floorify abordado en esta
investigación. A continuación, detallamos todo el proceso de planificación utilizado.

A.1. Planificación del Trabajo
La planificación del desarrollo del trabajo se inició tras la finalización de la estancia de

I+D+i. Después de concluir la estancia, ya teníamos los experimentos y modelos ajustados
y almacenados. A partir de esto, elaboramos la metodología para extraer los resultados
algorítmicos de los experimentos, aunque aún no habíamos realizado las evaluaciones con
las métricas determinadas en el capítulo de Técnicas y Herramientas. Con ello, elaboramos
el siguiente plan a seguir para la realización del TFM, teniendo en cuenta que el Trabajo
de Fin de Máster tiene una carga de 6 ECTS, correspondiente a 150 horas, las fases
planificadas y la dedicación estimada a cada una de ellas son:

Fase 1: Estudio y Desarrollo de las evaluaciones algorítmicas (Metodología)
de cada experimento realizado. Cuando finalizamos la estancia de I+D+i, no
habíamos concluido cómo serían las evaluaciones de cada experimento en cuanto al
nivel de calidad de cada imagen generada. Con esto, el TFM dio inicio a estudios
para llevar a cabo los procesos de metodología. Dedicación estimada: 24 horas

Fase 2: Documentación Inicial del TFM (Introducción, Objetivos, Marco
Teórico y Estado del Arte). Tras la conclusión de todos los estudios y pruebas
algorítmicas para llevar a cabo el proceso de metodología de este trabajo, iniciaremos
la redacción de la introducción, la definición de objetivos, además de realizar una
revisión bibliográfica de los principales temas de la investigación, adaptando teorías
ya vistas, y adaptando también el estado del arte realizado en el proceso de la
estancia de I+D+i con HP SCDS. Dedicación estimada: 56 horas

74

Apéndice A. Plan de Proyecto 75

Fase 3: Documentación Central del TFM (Técnicas y Herramientas y
Aspectos Relevantes del Desarrollo del Proyecto). Una vez realizado el proceso
de estudio y desarrollo de la metodología del proyecto estipulado en la fase 1, llegó
el momento de redactar sobre todas las herramientas utilizadas, además de detallar
todo el proceso experimental con el modelo generativo y los resultados evaluativos
obtenidos a partir de las métricas establecidas para evaluarlo. Dedicación estimada:
80 horas.

Fase 4: Documentación Final del TFM (Conclusiones y Apéndice Plan
de Proyecto). Para finalizar el trabajo, se realizará un repaso de todos los puntos
principales del trabajo realizados en esta investigación, como los objetivos cumplidos y
no cumplidos, y los resultados obtenidos a partir del desarrollo del modelo generativo
y los experimentos realizados y evaluados mediante métricas específicas. También
crearemos un apéndice que detallará todo el proceso de planificación que se llevó
a cabo para la realización de la parte técnica y la redacción del TFM denominado
Plan de Proyecto. Dedicación estimada: 8 horas.

Fase 5: Revisión y Corrección. El último paso antes de dar por concluido
totalmente el trabajo es recibir el feedback de los tutores, y para eso se revisa el
trabajo entero y se aplican las correcciones y cambios sugeridos por los mismos.
Dedicación estimada: 50 horas.

Dedicación total estimada: 218 horas.

A.2. Ejecución del Trabajo
Este trabajo tuvo su inicio a partir de las prácticas de I+D+i en informática, de acuerdo

con las asignaturas de prácticas curriculares, del Máster en Ingeniería Informática. La
siguiente planificación y desarrollo de este TFM se llevó a cabo durante el curso 2023/2024,
realizándose entre los meses de mayo y septiembre. El proceso de documentación se
desarrolló entre agosto y septiembre, totalizando 2 meses de trabajo. A continuación, se
detallan las fases de desarrollo y el tiempo real dedicado a cada una de ellas:

Fase 1: Estudio y Desarrollo de las evaluaciones algorítmicas (Metodología) de cada
experimento realizado. 30 horas de dedicación.

Fase 2: Documentación Inicial del TFM (Introducción, Objetivos, Marco Teórico y
Estado del Arte). 56 horas de dedicación.

Fase 3: Documentación Central del TFM (Técnicas y Herramientas y Aspectos
Relevantes del Desarrollo del Proyecto). 80 horas de dedicación.

Fase 4: Documentación Final del TFM (Conclusiones, Apéndice Plan de Proyecto
y Apéndice Manual Instalación). 8 horas de dedicación.

Apéndice A. Plan de Proyecto 76

Fase 5: Revisión y Corrección. 68 horas de dedicación.

Por tanto, la dedicación total real para la realización del Trabajo de Fin de Máster ha
sido de 242 horas.

Apéndice B

Manual de Instalación

Este apéndice tiene como objetivo proporcionar el repositorio oficial del proyecto, ya
mencionado en el apéndice anterior, pero retomado aquí para definir los pasos necesarios
para la instalación y configuración del entorno, permitiendo así la ejecución del proyecto y
sus respectivos experimentos, incluyendo las dependencias y conjuntos de datos utilizados.
Además, se presentará la infraestructura requerida y empleada para la reproducción del
fine-tuning de un modelo de inteligencia artificial generativa basado en Stable Diffusion,
además de demostrar la localización y el uso de las métricas de evaluación de contexto y
calidad de los sistemas generativos empleados en el proyecto.

B.1. Infraestructura y Dependencias Utilizadas
La infraestructura utilizada en este proyecto, como se mencionó en el capítulo 5: Técnicas

y herramientas, se basó en el servidor ECA-SIMM de la Universidad de Valladolid. Este
servidor está equipado con una GPU NVIDIA GeForce A40 de 48 GB y almacenamiento
dinámico, proporcionando la capacidad de procesamiento necesaria para el entrenamiento
de modelos de Stable Diffusion, que requieren un alto rendimiento en el procesamiento
de imágenes. La investigación se llevó a cabo en un entorno compartido, utilizando
24 GB de VRAM, un recurso fundamental para la optimización y ajuste fino de redes
neuronales avanzadas. Generalmente, el desarrollo de proyectos de esta magnitud exige una
infraestructura computacional física de alto rendimiento. Sin embargo, estudios recientes
sugieren que GPUs con menor consumo energético y menor cantidad de VRAM, como la
NVIDIA RTX 3060 Ti de 8 GB, pueden representar un requisito mínimo viable para la
experimentación con fine-tuning de modelos Stable Diffusion, como se ha demostrado en
este proyecto [58]. El sistema operativo de la máquina virtual de ECA-SIM es Ubuntu
22.04.5 LTS (Jammy), con una arquitectura x86_64 (64 bits) y un kernel 6.8.0-51-generic.

Una vez confirmada la idoneidad de la GPU para el experimento, resulta esencial la
configuración de un entorno de desarrollo adecuado, que no solo permita la ejecución y
validación del código, sino que también garantice la instalación del lenguaje de programación

77

Apéndice B. Manual de Instalación 78

y sus respectivas dependencias. Para una guía técnica detallada sobre la instalación del
entorno, en la siguiente sección Repositorios y Ejecuciones B.2 se proporcionan enlaces
a repositorios en línea y de acceso público, donde se especifican los procedimientos para
la instalación y ejecución del proyecto. Además, se describe el proceso para visualizar
y descargar el modelo óptimamente ajustado en los experimentos de text-to-image. A
continuación, se presenta el lenguaje de programación utilizado, las bibliotecas esenciales
y el método más eficiente para la instalación de dependencias en un entorno Windows,
junto con la IDE (Integrated Development Environment) empleada en el desarrollo de este
trabajo.

Herramientas de Desarollo

Visual Studio Code. Editor de código fuente desarrollado por Microsoft. Es
una herramienta ligera y altamente personalizable, utilizada por programadores
para escribir, depurar y ejecutar código en diversos lenguajes de programación. Fue
utilizado en toda la fase de programación, ya que teníamos que realizar los fine-
tunings mediante la ejecución de archivos ".bash", a través de código Python sencillo.
Llegamos a utilizar Jupyter Notebook, pero solo para realizar el procesamiento de
imágenes, y fue utilizado muy poco. Es muy importante en la instalación que tu
tengas instalado, ya que ayudara a ver el código y hacer cambios [19].

Python. Lenguaje de programación recomendado para manipular grandes cantidades
de datos, además de gestionar modelos y entrenamiento de inteligencia artificial de
manera fácil e intuitiva. El lenguaje fue utilizado para desarrollar todo el proyecto
Floorify, es muy importante que la tengas instalado para que pueda hacer la ejecución
de los scripts. La versión python utilizada fue la 3.10.12 [29].

Dependencias y Librerías
Todas las dependencias mencionadas a continuación forman parte del lenguaje de

programación Python y están diseñadas para trabajar en conjunto, garantizando compati-
bilidad entre sus versiones. La instalación de estas dependencias sigue el método estándar
de Python a través de pip. Todas las bibliotecas necesarias se instalan automáticamente
mediante la ejecución del archivo "install_dependencias_and_modelos.sh", el cual
se encarga de configurar el entorno de trabajo en Linux sin necesidad de instalación
manual. En la siguiente sección B.2, se detalla el procedimiento de ejecución de este
archivo, así como la configuración del entorno y la gestión de repositorios para el correcto
funcionamiento del proyecto. Las tecnologías presentadas a continuación fueron utilizadas
en diferentes etapas del desarrollo. La mayoría de ellas han sido desarrolladas por Hugging
Face y fueron fundamentales para llevar a cabo el ajuste fino de modelos. Además, se
empleó PyTorch para realizar inferencias y cargar modelos, y Gradio para ejecutar pruebas
de manera gráfica, facilitando la interacción y evaluación de los modelos generados.

Apéndice B. Manual de Instalación 79

Accelerate. Es una biblioteca desarrollada por Hugging Face que facilita la ejecución
de código PyTorch en diversas configuraciones distribuidas, incluyendo soporte para
entrenamiento en múltiples GPUs, TPUs y precisión mixta. Simplifica el proceso
de escalado de modelos sin necesidad de modificar significativamente el código base
[36]. La versión utilizada es la 1.3.0.

Datasets. Desarrollada por Hugging Face, esta biblioteca proporciona una colección
amplia de conjuntos de datos para tareas de procesamiento de lenguaje natural y
visión por computadora. Ofrece herramientas para cargar, preprocesar y manipular
datos de manera eficiente, integrándose perfectamente con PyTorch y TensorFlow
[27]. La versión utilizada es la 3.2.0.

Diffusers. Es una biblioteca de Hugging Face que implementa modelos de difusión
de última generación para la generación de imágenes, videos y audio en PyTorch y
FLAX. Facilita la experimentación y el desarrollo de modelos generativos basados
en procesos de difusión [79]. La versión utilizada es la 0.32.2.

Gradio. Es una biblioteca que permite crear interfaces de usuario interactivas
para modelos de aprendizaje automático de manera sencilla. Facilita la creación de
demostraciones web para probar y compartir modelos con otros, sin necesidad de
conocimientos profundos en desarrollo web [1]. El Gradio fue utilizado para hacer la
creación de nuestra interface gráfica de pruebas.La versión utilizada es la 5.15.0.

Huggingface_hub. Es una biblioteca que proporciona herramientas para inter-
actuar con el Hub de Hugging Face, permitiendo la carga, descarga y gestión de
modelos y conjuntos de datos [24]. Facilita la integración y el despliegue de modelos
en diversas aplicaciones. La versión utilizada es la 0.28.1.

Pytorch o torch. Es una biblioteca de código abierto para aprendizaje automático
desarrollada por Facebook’s AI Research lab. Ofrece una amplia gama de herramientas
para construir y entrenar modelos de aprendizaje profundo, siendo ampliamente
utilizada en investigación y producción [69]. La versión utilizada es la 2.6.0.

Torch Vision. Es una biblioteca complementaria a PyTorch que proporciona con-
juntos de datos, modelos pre-entrenado y transformaciones comunes para visión por
computadora. Facilita el desarrollo de aplicaciones de visión al ofrecer componentes
reutilizables y optimizados [64]. La versión utilizada es la 0.21.0.

Transformers. La biblioteca Transformers, desarrollada por Hugging Face, propor-
ciona modelos pre-entrenado para NLP y visión computacional, incluyendo GPT, y
Stable Diffusion. Es de gran importancia para este proyecto, utilizada tanto para
instanciar los algoritmos de ajuste fino de Stable Diffusion como para la aplicación de
la métrica CLIP Score, permitiendo evaluar el contexto entre inferencias generadas
[80]. La versión utilizada es la 4.49.0.

Pythorch_Fid. La biblioteca pytorch_fid se utiliza para calcular el Fréchet Incep-
tion Distance (FID), una métrica ampliamente aplicada en la evaluación de la calidad

Apéndice B. Manual de Instalación 80

de imágenes generadas por modelos generativos, comparando estadísticamente sus
características con imágenes reales mediante redes neuronales pre-entrenadas. En
este estudio, se empleó para evaluar las imágenes generadas a partir de inferencias en
modelos ajustados con el método text-to-image, permitiendo un análisis cuantitativo
de la similitud estructural y la diversidad de las imágenes sintetizadas [73]. La versión
utilizada es la 0.3.0.

Docker en Floorify: Contenedorización y Gestión del Entorno
En esta subsección, nos centraremos en presentar la máquina virtual y el proceso de

construcción, visualización y arquitectura del entorno de desarrollo del proyecto Floorify.
Sin embargo, para llevar a cabo el desarrollo del proyecto, contamos con el apoyo de la
plataforma Docker , utilizada para emular la máquina virtual y gestionar las dependencias,
instalaciones, memoria y uso de la GPU. El contenedor de Docker que sirvió como base para
la instancia virtual utilizada en esta investigación fue proporcionado por el profesor tutor
Valentín Cadeñoso Payo y el grupo de investigación ECA-SIM . En esta subsección,
no abordaremos los aspectos relacionados con la infraestructura de la máquina virtual,
ya que estos fueron tratados en el capítulo 5: Técnicas y herramientas y al inicio de esta
sección.

El contenedor Docker fue utilizado para crear nuestra instancia de TFM e I+D+i en
el desarrollo del proyecto Floorify, dado que la empresa HP no pudo proporcionarla para
la realización de las prácticas. Recordemos que Docker no es más que una plataforma
con la capacidad de empaquetar sistemas, scripts y datos, con el objetivo de distribuir y
ejecutar aplicaciones de forma aislada y portátil, independientemente del entorno local [21].
Dentro de la infraestructura creada por docker, contamos con los recursos mencionados
anteriormente, asignando un total de 24 GB de GPU para llevar a cabo los entrenamientos.
Cabe destacar que esta cantidad fue la única disponible, ya que otros estudiantes también
estaban en proceso de desarrollo de sus TFM y TFG y necesitaban utilizar la GPU.

Figura B.1: Ejemplo del la estancia remota utilizada - Proyecto Floorify

El contenedor fue personalizado con el nombre "cubi", en referencia al primer conjunto
de datos investigado para este estudio científico, el cual se analiza en detalle en los capítulos
5: Técnicas y herramientas y 6: Aspectos relevantes del desarrollo del proyecto. En esta fase
experimental, se ha configurado un entorno basado en Docker y JupyterLab, optimizado
para la ejecución de modelos en GPU NVIDIA y gestionado con permisos específicos

Apéndice B. Manual de Instalación 81

para evitar problemas de acceso a archivos locales. Este entorno permite la ejecución
de experimentos en un entorno portátil y reproducible, garantizando flexibilidad para
distintos usuarios. Para iniciar el entorno, primero se construye la imagen Docker a partir
de un Dockerfile ubicado en el directorio ./cubi/CubiCasa5k. Durante la construcción,
se incluyen variables de usuario y grupo (UID, GID, UNAME, GNAME), extraídas del
sistema con id -u y id -g. Esto garantiza que el contenedor herede los permisos del usuario
local, evitando conflictos al acceder a archivos montados. La imagen resultante se etiqueta
como cubi-jupyterlab.

Antes de ejecutar el contenedor, se define un conjunto de variables de entorno dentro
de un archivo user.env, donde se especifican los identificadores de usuario y grupo, el
token de Jupyter, y la asignación de GPU con NVIDIA_VISIBLE_DEVICES=0. Este
archivo se enlaza a la configuración del contenedor para que se mantengan los valores
adecuados en cada sesión. Para la ejecución del contenedor, se emplea docker-compose,
utilizando el archivo compose.yaml. Este archivo configura el servicio jupyterlab, asignando
un nombre fijo al contenedor (jp-cubi-giovane) y exponiendo los puertos 8888, 6006 y 7960
para acceder a JupyterLab y otras herramientas. Además, se montan volúmenes desde el
host para garantizar la persistencia de datos y resultados experimentales.

En casos donde se requiere una sesión interactiva, se utiliza un segundo archivo,
compose-interactive.yaml, que permite ejecutar el contenedor en modo temporal. En esta
configuración, se habilita el soporte para GPU NVIDIA y la compartición de memoria
interprocesos, optimizando el rendimiento en tareas intensivas. Finalmente, para gestionar
la ejecución y limpieza del entorno, se han definido scripts adicionales que eliminan archivos
temporales y detienen el contenedor una vez finalizados los experimentos. Esta estructura
automatiza el proceso, asegurando una configuración eficiente y escalable.

Figura B.2: Ejemplo del entorno cubi - Proyecto Floorify

Anteriormente, mencionamos brevemente la configuración del entorno de JupyterLab,
el cual fue configurado por el profesor Valentín. Sin embargo, su uso fue limitado, ya que,
como se evidencia en los capítulos 5: Técnicas y herramientas y 6: Aspectos relevantes
del desarrollo del proyecto, los fine tunings se ejecutaban mayormente en formato Bash.
Esto nos llevó a adaptarlos para su ejecución en Python, convirtiéndolos en archivos .py
ejecutables dentro del entorno virtual. A pesar de ello, algunas tareas de preprocesamiento,
como la generación de datasets y ciertas técnicas de manipulación de datos, se realizaron
inicialmente en Jupyter Notebook. No obstante, posteriormente, todos los procesos fueron
trasladados a scripts .py ejecutables para optimizar la ejecución y automatización. Del
mismo modo, muchas de las configuraciones implementadas para trabajar con CubiCasa5k
tuvieron un uso limitado dentro de Jupyter Notebook en el proyecto Floorify. La ejecución
principal del proyecto se llevó a cabo a través del entorno Docker, utilizando la GPU
NVIDIA directamente desde la terminal.

Apéndice B. Manual de Instalación 82

Dentro del entorno remoto, implementamos una carpeta específica para almacenar los
modelos entrenados, ya que la memoria de la instancia virtual era limitada y no permitía
guardar múltiples versiones de los modelos ajustados. Para solucionar este problema,
el tutor de este trabajo proporcionó recursos adicionales mediante la habilitación de la
carpeta ./data/, ubicada fuera del entorno principal. Esta carpeta fue configurada como
un almacenamiento externo, integrándola al sistema mediante un montaje de volumen,
lo que permitió acceder a ella de forma transparente desde el entorno de trabajo. De
esta manera, los modelos eran generados dentro del entorno virtual y luego transferidos
automáticamente a ./data/, asegurando su persistencia sin comprometer la memoria de la
instancia

B.2. Repositorio e instrucciones para su instalación
y ejecución

En esta sección, se detallarán todos los repositorios que contienen el código y la estruc-
tura utilizados para llevar a cabo los experimentos. Además, se presentará el repositorio
del modelo ajustado que obtuvo los mejores resultados según las métricas empleadas,
como se mencionó previamente en el capítulo 7: Discusión de Resultados. Asimismo, se
describirá el procedimiento completo para la clonación de los proyectos y del modelo, la
instalación de sus dependencias y la ejecución final. De este modo, cualquier persona o
evaluador independiente podrá replicar el experimento en su propio equipo, garantizando
la reproducibilidad de los resultados obtenidos. Antes de continuar, asegúrese de contar
con la infraestructura computacional mínima requerida, tal como se describe en la sección
anterior de este apéndice. Esto garantizará que el entorno de ejecución sea adecuado para
la correcta reproducción de los experimentos y el procesamiento eficiente del modelo.

Repositorios
Este trabajo está compuesto por tres repositorios distintos, de los cuales dos contienen

el desarrollo de los experimentos. Uno de ellos se encuentra en GitLab, es de acceso privado
y pertenece a HP SCDS, donde fue utilizado para actividades de I+D+i. Por otro lado, el
repositorio en GitHub alberga la última versión del proyecto Floorify desarrollada para el
TFM, optimizada para la ejecución de experimentos y completamente pública, permitiendo
el acceso al código fuente.

Adicionalmente, disponemos de un repositorio en Hugging Face, el cual almacena el
modelo experimental ajustado que has obtenido mejor resultado. Este modelo puede ser
descargado para realizar inferencias de manera inmediata, sin embargo, es importante
disponer de suficiente capacidad de almacenamiento, ya que su tamaño es considerablemente
grande. A continuación, se presentan los repositorios junto con sus respectivos enlaces:

GitLab. Sistema de repositorios en línea dentro del servidor de la empresa donde
realicé el desarrollo, que utiliza el sistema de control de versiones Git, en formato

Apéndice B. Manual de Instalación 83

pago y empresarial [33]. Utilizamos GitLab de la empresa HP SCDS para almacenar
todo el desarrollo y los experimentos realizados en este proyecto, lo que permitió
guardar y controlar las versiones a medida que realizábamos los experimentos.

• Disponible de forma privada en: Repositorio HP SCDS Floorify

GitHub. Es una plataforma de alojamiento y gestión de proyectos de software
que utiliza el sistema de control de versiones Git. Permite a los desarrolladores
colaborar, compartir código, rastrear cambios, reportar problemas y organizar el
trabajo en repositorios. Además, ofrece funcionalidades para la revisión de código,
integración continua y documentación de proyectos, siendo ampliamente utilizada
por desarrolladores y equipos para la colaboración y el desarrollo de software de
forma distribuida y organizada [32]. Para la conclusión de este trabajo, optamos por
publicar el proyecto en un repositorio de GitHub con el objetivo de hacerlo público,
ya que el repositorio de GitLab se mantendrá privado para la empresa HP SCDS. De
esta manera, la investigación realizada estará disponible para todos los interesados.

• Disponible de forma Publica en: Repositorio Publico Floorify UVa

Huggin Face Models. Es una plataforma líder en inteligencia artificial que propor-
ciona modelos pre-entrenado, herramientas y APIs para procesamiento de lenguaje
natural, visión por computadora y más. Permite compartir modelos, entrenar redes
neuronales y acceder a bibliotecas como Transformers y Diffusers, facilitando el
desarrollo de aplicaciones de aprendizaje automático. Además, dentro del entorno
de Hugging Face, cada perfil tiene la capacidad de crear y almacenar sus propios
modelos, con la posibilidad de integrarlos en GitHub o compartirlos públicamente con
otros desarrolladores [45]. La plataforma desempeñó un papel fundamental en este
trabajo, ya que nos permitió validar y evaluar nuestro modelo de diffusion, finalizando
con el almacenamiento del mejor modelo obtenido durante la fase experimental de
text-to-image de acuerdo con el capítulo 7: Discusión de Resultados.

• Disponible de forma Publica en: Repositorio Publico del Modelo Experi-
mental Ajustado Text_to_Image

Instalación y Ejecución
Para instalar el proyecto Floorify y manipular los experimentos, es necesario que el usua-

rio clone el repositorio desde GitHub, recordando que el enlace al repositorio se encuentra
en la subsección anterior de este trabajo. Una vez completada la clonación, podrá explorar
todo el contenido del repositorio, que está estructurado en cinco carpetas principales: Gra-
dio_Script, Imagenes_Test_Modelos, Metrics_Evaluation_Adjusted_Models
y Model_Test_Local y git_Img. Además, se incluye un archivo independiente des-
tinado a la instalación de dependencias de Python, así como la clonación del proyecto
Diffusers, lo que permite acceder a los métodos de fine-tuning de la biblioteca Hugging
Face.

https://gitlab.com/HP-SCDS/Observatorio/2023-2024/florify/uva-florify
https://github.com/Gi-Eufrasio/Floorify-TFM
https://huggingface.co/gigio-br/Experiment_Fine_Tuning_Model_Diffusion_Text_to_Image_Floor_Plan_Project
https://huggingface.co/gigio-br/Experiment_Fine_Tuning_Model_Diffusion_Text_to_Image_Floor_Plan_Project

Apéndice B. Manual de Instalación 84

A continuación, se detallará el procedimiento para ejecutar los comandos necesarios
para instalar las dependencias y realizar la ejecución final del proyecto. Según sus necesi-
dades, el usuario podrá optar por dos enfoques: probar el modelo ya ajustado, permitiendo
la ejecución inmediata de inferencias, o ajustar un nuevo modelo con parámetros perso-
nalizados para generar un experimento optimizado. De esta manera, el proyecto ofrece
flexibilidad tanto para la validación de modelos previamente entrenados como para la
personalización de nuevos entrenamientos.

Figura B.3: Repositorio Git Hub - Proyecto Floorify

El siguiente comando garantiza la clonación del repositorio y la ejecución de la
instalación de dependencias, a través del archivo .sh de instalación denominado
install_dependencias_and_modelos.sh. El uso del comando de permisos chmod
puede ser opcional, dependiendo de cómo se haya clonado el proyecto. En algunos casos,
el archivo de instalación de dependencias no se descarga con permisos de ejecución, por lo
que es necesario aplicar el comando de permisos antes de ejecutarlo, asegurando así su
correcta ejecución en el entorno de desarrollo..

1 $ git clone https :// github .com/Gi - Eufrasio /Floorify -TFM.git
2 $ cd Floorify -TFM
3
4 $ chmod +x install_dependencias_and_modelos .sh # opcional
5 $ sudo ./ install_dependencias_and_modelos .sh

Fragmento de ejecución de código B.1: Ejemplo de Clonacion del Proyecto Floorify

El siguiente comando debe ejecutarse en caso de que el usuario desee realizar un nuevo
ajuste fino utilizando el conjunto de datos proporcionado por CubiCasa5k, el cual ha sido
previamente ajustado y preprocesado, conforme se explica en el Capítulo 5: Técnicas y
herramientas. Sin embargo, si el objetivo es únicamente realizar inferencias sobre el modelo
ya ajustado o crear un nuevo conjunto de datos, no se recomienda descomprimir este
archivo dentro del método text_to_image_testes, con el fin de evitar posibles conflictos

Apéndice B. Manual de Instalación 85

en la organización y estructura del proyecto.

1 $ cd Model_Test_Local / Text_to_Image_Testes /Model
2 $ unzip Dataset_Resize_Cubi_Casa_5K .zip

Fragmento de ejecución de código B.2: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo Text_to_image

El último comando para ejecutar dentro del método text_to_image_testes permite
tanto la realización de nuevos fine-tunings, como su propio nombre indica el método
Script_Entrenamiento_Fine_Tuning.py, como también la ejecución de inferencias
directamente desde el código a través del terminal. No obstante, es recomendable realizar
todas las pruebas mediante Gradio, ya que ofrece una interfaz web más intuitiva para la
verificación de los experimentos. Sin embargo, si el usuario desea realizar pruebas rápidas
después del ajuste fino, puede ejecutar el Script_inferencias.py para obtener resultados
de manera inmediata.

1 $ cd Model_Test_Local / Text_to_Image_Testes /Model
2 $ python3 Script_Entrenamiento_Fine_Tuning .py
3 $ python3 Script_Inferencias .py

Fragmento de ejecución de código B.3: Experimentos de ajuste fino e inferencias con
el metodo Text_to_image

Los comandos de Gradio se dividen en dos categorías. Si el usuario desea utilizar el
modelo ajustado mediante Fine-Tuning para realizar inferencias con Gradio, es necesario
ejecutar el archivo Script_Download_Model_Experiment.py, lo que permitirá des-
cargar el modelo en la carpeta text_to_image_testes, garantizando así una ejecución
fluida de las inferencias. Por otro lado, si el usuario ya ha realizado un nuevo fine-tuning,
basta con ejecutar Script_Inferencias_Gradio_Model.py, que iniciará automática-
mente la interfaz web con el modelo cargado. Es importante recordar que la descarga del
modelo se realiza desde el repositorio de Hugging Face, tal como se ejemplificó en la
subsección anterior sobre los repositorios.

1 $ cd Floorify -TFM/ Gradio_Script /
2 $ python3 Script_Download_Model_Experiment .py
3 $ python3 Script_Inferencias_Gradio_Model .py

Fragmento de ejecución de código B.4: Descargue del modelo ajustado del experimento
Floorify y la ejecución de Gradio

Ambos los comandos a continuación tienen el mismo propósito: realizar la descompresión
de conjuntos de datos, ejecutar nuevos fine-tunings y llevar a cabo inferencias a través
de la ejecución de código desde el terminal. Sin embargo, a diferencia de los comandos
mencionados anteriormente, los métodos utilizados para los experimentos en este caso son
Dreambooth y LoRAs.

Apéndice B. Manual de Instalación 86

Para experimentar con las inferencias, es imprescindible realizar el fine-tuning, ya que,
debido a las limitaciones de almacenamiento y repositorios señaladas en el Capítulo 6:
Aspectos relevantes del desarrollo del proyecto, no se almacenaron los modelos finales.
En su lugar, únicamente se guardaron los parámetros de entrenamiento, los cuales deben
alcanzar el mismo o aproximado nivel métrico y de precisión que los obtenidos durante la
fase de desarrollo y pruebas.

1 $ cd Floorify -TFM/ Model_Test_Local / Dreambooth /Model
2 $ unzip Floor_Plan_2D_Dataset .zip
3 $ python3 script_Entrenamiento_Dreambooth .py
4 $ python3 script_Inferencias .py

Fragmento de ejecución de código B.5: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo Dreambooth

1 $ cd Floorify -TFM/ Model_Test_Local /LoRas/Model
2 $ unzip Dataset .zip
3 $ python3 script_Entrenamiento .py
4 $ python3 Inferencias .py

Fragmento de ejecución de código B.6: Ejemplo para descomprimir el conjunto de
datos de entrenamiento del metodo LoRas

Si el usuario que manipula los scripts de los experimentos lo desea, puede realizar
modificaciones y adaptaciones para otros contextos o para implementar las mejoras y
refinamientos señalados en el capítulo 8: Conclusiones y Líneas de trabajo futuras. En
esta sección no abordaremos una perspectiva sobre los scripts utilizados en este proyecto,
dado que fueron considerados y ejemplificados en el capítulo 6: Aspectos relevantes del
desarrollo del proyecto.

Para finalizar las ejecuciones, podemos realizar la evaluación de las inferencias obtenidas
para determinar si la relación contextual entre los embeddings es adecuada utilizando
el CLIP Score o si la imagen generada posee buena calidad y guarda similitud con
alguna imagen de prueba del conjunto de datos, manteniendo, no obstante, una diversidad
equilibrada. Para ello, es necesario configurar las carpetas de imágenes y conjuntos de
datos ubicadas en metrics_Evaluation_Adjusted_Models. Simplemente se deben
colocar las imágenes extraídas de las inferencias en sus respectivas bases y ejecutar los
scripts disponibles en la carpeta de métricas, lo que permitirá obtener los valores a través
del terminal utilizando Python. Los comandos ejemplos están en la continuación:

1 $ cd Floorify -TFM/ metrics_Evaluation_Adjusted_Models
2 $ python3 Evaluacion_CLIP_Dreambooth_and_Misto_Line .py
3 $ python3 Evaluacion_CLIP_LoRas .py
4 $ python3 Evaluacion_CLIP_Text_To_Image .py
5 $ python3 Evaluacion_FID_Text_To_Image .py

Fragmento de ejecución de código B.7: Ejemplo para Ejecutar los Scripts de Métricas
con CLIP Score y FID

Apéndice B. Manual de Instalación 87

Para una mejor visualización del proceso de instalación, ejecución, fine-tuning e
inferencias, acceda al repositorio de GitHub en la subsección anterior B.2. Allí encontrará
detalles sobre la configuración del entorno, los scripts utilizados y ejemplos prácticos para
replicar los experimentos.

Bibliografía

[1] Abid, A., Abdalla, A., Abid, A., Khan, D., Alfozan, A., and Zou, J.
Gradio: Hassle-free sharing and testing of ml models in the wild. arXiv preprint
arXiv:1906.02569 (2019).

[2] Academy, K. Revisão sobre regressão linear. https://pt.khanacademy.org/math/
statistics-probability/describing-relationships-quantitative-data/
introduction-to-trend-lines/a/linear-regression-review, 2021. [Internet;
descargado 10-julio-2024].

[3] AI, S. Stable diffusion xl base 1.0. https://huggingface.co/stabilityai/
stable-diffusion-xl-base-1.0, 2023. Accessed: 2025-02-16.

[4] AI, S. Stable image generation api - v2 beta. https://api.stability.ai/v2beta/
stable-image/generate/core, 2025. Accessed: 2025-02-16.

[5] Alec Radford, Jong Wook Kim, C. H., Ramesh, A., Goh, G., Agarwal,
S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and
Sutskever, I. Learning transferable visual models from natural language supervision.
artXiv 1, 2103.00020 (2021).

[6] Alecrim, E. Machine learning: o que é e por que é tão importante. https://
tecnoblog.net/responde/machine-learning-ia-o-que-e/, 2018. [Internet; des-
cargado 10-julio-2024].

[7] Amanatullah. Fine-tuning the model: What, why, and how. https://medium.com/
@amanatulla1606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf,
2023. [Internet; descargado 01-agosto-2024].

[8] Amber Aragon. Advantages of generative ai-driven process automation. https:
//blogs.mulesoft.com/automation/ai-driven-process-automation/, 2024. [In-
ternet; descargado 01-agosto-2024].

88

https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://api.stability.ai/v2beta/stable-image/generate/core
https://api.stability.ai/v2beta/stable-image/generate/core
https://tecnoblog.net/responde/machine-learning-ia-o-que-e/
https://tecnoblog.net/responde/machine-learning-ia-o-que-e/
https://medium.com/@amanatulla1606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf
https://medium.com/@amanatulla1606/fine-tuning-the-model-what-why-and-how-e7fa52bc8ddf
https://blogs.mulesoft.com/automation/ai-driven-process-automation/
https://blogs.mulesoft.com/automation/ai-driven-process-automation/

Bibliografía 89

[9] Arquitasa. Planos vivienda. https://arquitasa.com/planos-vivienda/#:
~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%
20proyecto%20arquitect%C3%B3nico, 2023. [Internet; descargado 01-agosto-
2024].

[10] Authors, P. Paddleocr: Multi-language optical character recognition tool. https:
//github.com/PaddlePaddle/PaddleOCR, 2023. Accessed: 2025-02-08.

[11] AWS. What is stable diffusion? https://aws.amazon.com/what-is/
stable-diffusion/?nc1=h_ls, 2023. [Internet; descargado 01-agosto-2024].

[12] AWS. ¿qué es la automatización inteligente? https://aws.amazon.com/es/
what-is/intelligent-automation/, 2023. [Internet; descargado 01-agosto-2024].

[13] AWS. What is gan? https://aws.amazon.com/es/what-is/gan/, 2024. [Internet;
descargado 05-agosto-2024].

[14] Bugendai Tech. Performance metrics in evaluating stable diffusion
models. https://www.bugendaitech.com/blogdetails/blog-details/
performance-metrics-in-evaluating-stable-diffusion-models, 2023. [Inter-
net; descargado 01-agosto-2024].

[15] Caldwell, M. What is an “author”? - copyright authorship of ai art through a
philosophical lens. Houston Law Review 61, 411 (2023).

[16] Cedreo. 13 tipos de planos arquitectónicos. https://cedreo.com/es/blog/
planos-arquitectonicos/, 2023. [Internet; descargado 05-agosto-2024].

[17] CompVis. Stable diffusion v1-4, 2022. Accessed: 2025-02-16.

[18] CompVis, and Runway. Stable diffusion v1-5. https://huggingface.co/
runwayml/stable-diffusion-v1-5, 2022. Accessed: 2025-02-16.

[19] Corporation, M. Visual studio code. https://code.visualstudio.com/, 2024.
Último acceso: 8 de febrero de 2025.

[20] DDL. 12 floor plan design tools and tips for beginners and experts. https://
drylayout.com/en/articles/floor-design-plan, 2023. [Internet; descargado 05-
agosto-2024].

[21] Docker, Inc. What is docker? https://docs.docker.com/get-started/
docker-overview/, 2025. Accessed: 12-Feb-2025.

[22] Edward J. Hu, Yelong Shen, P. W., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., and Chen, W. Lora: Low-rank adaptation of large language models.
artXiv 2, 2106.09685 (2021).

https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://arquitasa.com/planos-vivienda/#:~:text=Los%20planos%20de%20una%20vivienda,precisa%20sobre%20un%20proyecto%20arquitect%C3%B3nico
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://aws.amazon.com/what-is/stable-diffusion/?nc1=h_ls
https://aws.amazon.com/what-is/stable-diffusion/?nc1=h_ls
https://aws.amazon.com/es/what-is/intelligent-automation/
https://aws.amazon.com/es/what-is/intelligent-automation/
https://aws.amazon.com/es/what-is/gan/
https://www.bugendaitech.com/blogdetails/blog-details/performance-metrics-in-evaluating-stable-diffusion-models
https://www.bugendaitech.com/blogdetails/blog-details/performance-metrics-in-evaluating-stable-diffusion-models
https://cedreo.com/es/blog/planos-arquitectonicos/
https://cedreo.com/es/blog/planos-arquitectonicos/
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://code.visualstudio.com/
https://drylayout.com/en/articles/floor-design-plan
https://drylayout.com/en/articles/floor-design-plan
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/

Bibliografía 90

[23] España. Legislación consolidada: Ley 38/1999, de 5 de noviembre, de ordenación de
la edificación. https://www.boe.es/buscar/act.php?id=BOE-A-1999-21567, 1999.
[BOE núm. 266, de 6 de noviembre de 1999;Internet; descargado 02-agosto-2024].

[24] Face, H. The hugging face hub. https://huggingface.co/docs/huggingface_hub,
2023.

[25] Face, H. Evaluation of diffusion models. https://huggingface.co/docs/
diffusers/en/conceptual/evaluation, 2024. Accessed: 2024-02-18.

[26] Face, H. Loading image datasets with metadata. https://huggingface.co/docs/
datasets/v2.4.0/en/image_load#imagefolder-with-metadata, 2024. Accessed:
2025-02-08.

[27] Face, H. Hugging face datasets documentation. https://huggingface.co/docs/
datasets/index, 2025. Accessed: 2025-02-20.

[28] Foster, D. Generative Deep Learning: Teaching Machines to Paint, Write, Compose
and Play. O’Reilly, 2019.

[29] Foundation, P. S. Python 3.10.12. https://www.python.org/downloads/
release/python-31012/, 2023. Último acceso: 8 de febrero de 2025.

[30] George Lawton. Fréchet inception distance (fid). https://www.techtarget.
com/searchenterpriseai/definition/Frechet-inception-distance-FID, 2023.
[Internet; descargado 01-agosto-2024].

[31] Getfloorplan. Floor plan in 24 hours. https://getfloorplan.com/, 2024. [In-
ternet; descargado 01-agosto-2024].

[32] GitHub, Inc. Github: Where the world builds software. https://github.com/,
2024. Accessed: February 2024.

[33] GitLab Inc. Gitlab: The complete devops platform. https://about.gitlab.com/,
2024. Accessed: February 2024.

[34] Google Cloud. What is artificial intelligence (ai)? https://cloud.google.com/
learn/what-is-artificial-intelligence?hl=en, 2024. [Internet; descargado 05-
agosto-2024].

[35] Google Developer Machine Learning. Overview of gan structu-
re. https://developers.google.com/machine-learning/gan/gan_structure?
hl=es-419, 2022. [Internet; descargado 05-agosto-2024].

[36] Gugger, S., Debut, L., Wolf, T., Schmid, P., Mueller, Z., Mangrulkar,
S., Sun, M., and Bossan, B. Accelerate: Training and inference at scale made
simple, efficient and adaptable. https://github.com/huggingface/accelerate,
2022.

https://www.boe.es/buscar/act.php?id=BOE-A-1999-21567
https://huggingface.co/docs/huggingface_hub
https://huggingface.co/docs/diffusers/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/en/conceptual/evaluation
https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata
https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://www.python.org/downloads/release/python-31012/
https://www.python.org/downloads/release/python-31012/
https://www.techtarget.com/searchenterpriseai/definition/Frechet-inception-distance-FID
https://www.techtarget.com/searchenterpriseai/definition/Frechet-inception-distance-FID
https://getfloorplan.com/
https://github.com/
https://about.gitlab.com/
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en
https://developers.google.com/machine-learning/gan/gan_structure?hl=es-419
https://developers.google.com/machine-learning/gan/gan_structure?hl=es-419
https://github.com/huggingface/accelerate

Bibliografía 91

[37] Géron, A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras &
TensorFlow. O’Reilly, 2021.

[38] Hashemi-Pour, C. Reinforcement learning. https://pt.khanacademy.org/math/
statistics-probability/describing-relationships-quantitative-data/
introduction-to-trend-lines/a/linear-regression-review, 2023. [Internet;
descargado 10-julio-2024].

[39] Huang, Z., Zhou, P., Yan, S., and Lin, L. Scalelong: Towards more stable
training of diffusion model via scaling network long skip connection, 2023.

[40] Huggin Face. Clip. https://huggingface.co/docs/transformers/model_doc/
clip#overview, 2024. [Internet; descargado 01-agosto-2024].

[41] Huggin Face. Dreambooth. https://huggingface.co/docs/diffusers/v0.30.
0/training/dreambooth, 2024. [Internet; descargado 01-agosto-2024].

[42] Huggin Face. Evaluating diffusion models. https://huggingface.co/docs/
diffusers/main/en/conceptual/evaluation, 2024. [Internet; descargado 01-
agosto-2024].

[43] Huggin Face. Lora. https://huggingface.co/docs/diffusers/v0.30.0/
training/lora, 2024. [Internet; descargado 01-agosto-2024].

[44] Huggin Face. Text-to-image. https://huggingface.co/docs/diffusers/v0.30.
0/training/text2image, 2024. [Internet; descargado 01-agosto-2024].

[45] Hugging Face, Inc. Hugging face: The ai community building the future. https:
//huggingface.co/, 2024. Accessed: February 2024.

[46] IBM. What is artificial intelligence (ai)? https://www.ibm.com/topics/
artificial-intelligence, 2024. [Internet; descargado 05-agosto-2024].

[47] IBM. What is computer vision? https://www.ibm.com/topics/computer-vision,
2024. [Internet; descargado 05-agosto-2024].

[48] IBM. What is data science? https://www.ibm.com/topics/data-science, 2024.
[Internet; descargado 01-agosto-2024].

[49] IBM. What is deep learning? https://www.ibm.com/topics/deep-learning, 2024.
[Internet; descargado 05-agosto-2024].

[50] Jamie Parkinson. Floorplansv2. https://huggingface.co/datasets/jprve/
FloorPlansV2, 2024. [Internet; descargado 01-agosto-2024].

[51] Jesse Anglen. Ai meets architecture: Generative design and the au-
tomated production of buildings. https://www.linkedin.com/pulse/
ai-meets-architecture-generative-design-automated-buildings-anglen/,
2023. [Internet; descargado 01-agosto-2024].

https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://pt.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/introduction-to-trend-lines/a/linear-regression-review
https://huggingface.co/docs/transformers/model_doc/clip#overview
https://huggingface.co/docs/transformers/model_doc/clip#overview
https://huggingface.co/docs/diffusers/v0.30.0/training/dreambooth
https://huggingface.co/docs/diffusers/v0.30.0/training/dreambooth
https://huggingface.co/docs/diffusers/main/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/main/en/conceptual/evaluation
https://huggingface.co/docs/diffusers/v0.30.0/training/lora
https://huggingface.co/docs/diffusers/v0.30.0/training/lora
https://huggingface.co/docs/diffusers/v0.30.0/training/text2image
https://huggingface.co/docs/diffusers/v0.30.0/training/text2image
https://huggingface.co/
https://huggingface.co/
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/data-science
https://www.ibm.com/topics/deep-learning
https://huggingface.co/datasets/jprve/FloorPlansV2
https://huggingface.co/datasets/jprve/FloorPlansV2
https://www.linkedin.com/pulse/ai-meets-architecture-generative-design-automated-buildings-anglen/
https://www.linkedin.com/pulse/ai-meets-architecture-generative-design-automated-buildings-anglen/

Bibliografía 92

[52] Jesús López Baeza-Rojano. How to evaluate generative image models. https:
//dagshub.com/blog/how-to-evaluate-generative-image-models/, 2024. [Inter-
net; descargado 01-agosto-2024].

[53] Jobs.Archi. The challenges of technology for architects’ work. https://jobs.
archi/2024/03/21/the-challenges-of-technology-for-architects-work/,
2024. [Internet; descargado 01-agosto-2024].

[54] Joern Ploennigs, M. B. Automating computational design with generative ai.
artXiv 2, 2307.02511 (2023).

[55] Jonghwa Shim, Jaeuk Moon, H. K., and Hwang, E. Floordiffusion: Diffusion
model-based conditional floorplan image generation method using parameter-efficient
fine-tuning and image inpainting. Journal of Building Engineering 95, 110320 (2024).

[56] kaleaht. Cubicasa5k: A dataset and an improved multi-task model for floorplan
image analysis. https://github.com/CubiCasa/CubiCasa5k, 2019. [Internet; des-
cargado 01-agosto-2024].

[57] Lawton, G. What is generative ai? everything you need to know. https://www.
techtarget.com/searchenterpriseai/definition/generative-AI, 2024. [Inter-
net; descargado 10-julio-2024].

[58] Lee, Y., Park, K., Cho, Y., Lee, Y.-J., and Hwang, S. J. Koala: Empirical
lessons toward memory-efficient and fast diffusion models for text-to-image synthesis.
https://arxiv.org/abs/2312.04005, 2024.

[59] Lily Zhuhadar. Unraveling ai complexity - a comparative view of ai, machine
learning, deep learning, and generative ai. https://commons.wikimedia.org/wiki/
File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_
Learning,_Deep_Learning,_and_Generative_AI.jpg, 2023. [Internet; descargado
05-agosto-2024].

[60] Lingjie Zhu. Floorplancad dataset. https://floorplancad.github.io/, 2024.
[Internet; descargado 01-agosto-2024].

[61] Lopez de Mataras Badia, R., and Meseguer Gonzales, P. Inteligencia
Artificial. CSIC, 2017.

[62] Lvmin Zhang, Anyi Rao, M. A. Adding conditional control to text-to-image dif-
fusion models. https://huggingface.co/TheMistoAI/MistoLine, 2023. [Internet;
descargado 01-agosto-2024].

[63] Maket.AI. Generative design for residential planning. https://www.maket.ai/,
2024. [Internet; descargado 01-agosto-2024].

[64] Marcel, S., and Rodriguez, Y. Torchvision the machine-vision package. https:
//pytorch.org/vision/stable/index.html, 2010.

https://dagshub.com/blog/how-to-evaluate-generative-image-models/
https://dagshub.com/blog/how-to-evaluate-generative-image-models/
https://jobs.archi/2024/03/21/the-challenges-of-technology-for-architects-work/
https://jobs.archi/2024/03/21/the-challenges-of-technology-for-architects-work/
https://github.com/CubiCasa/CubiCasa5k
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://arxiv.org/abs/2312.04005
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://commons.wikimedia.org/wiki/File:Unraveling_AI_Complexity_-_A_Comparative_View_of_AI,_Machine_Learning,_Deep_Learning,_and_Generative_AI.jpg
https://floorplancad.github.io/
https://huggingface.co/TheMistoAI/MistoLine
https://www.maket.ai/
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html

Bibliografía 93

[65] Nataniel Ruiz, Yuanzhen Li, V. J., Pritch, Y., Rubinstein, M., and
Aberman, K. Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation. artXiv 2, 2208.12242 (2022).

[66] Nicolas Catellier. 14 beginner tips to create a floor plan in revit. https://
revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit,
2020. [Internet; descargado 05-agosto-2024].

[67] Onkar Mishra. Stable diffusion explained. https://medium.com/@onkarmishra/
stable-diffusion-explained-1f101284484d, 2023. [Internet; descargado 01-
agosto-2024].

[68] OpenAI. Clip vit-b/32. https://huggingface.co/openai/
clip-vit-base-patch32, 2021. Accessed: 2025-02-08.

[69] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing
Systems 32 (2019).

[70] Patricia Ayala Jiménez. Spain: Can ai creations be protected by intellectual
property? https://www.roedl.com/insights/intellectual-property/2023-2/
spain-can-ai-creations-be-protected-by-intellectual-property, 2023. [In-
ternet; descargado 01-agosto-2024].

[71] Polina Kazakova. Pseudo-floor-plan-12k. https://huggingface.co/datasets/
zimhe/pseudo-floor-plan-12k, 2023. [Internet; descargado 01-agosto-2024].

[72] Robin Rombach, Andreas Blattamann, P. E., and Ommer, B. High-
resolution image synthesis with latent diffusion models. artXiv 2, 2112.10752 (2022).

[73] Seitzer, M. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

[74] Shaw, I. The Oxford History Of Ancient Egypt. Oxford University Press, 2000.

[75] Taulli, T. Introdução à Inteligência Artificial: uma Abordagem Não Técnica. Nova-
tech, 2020.

[76] umesh verma. New floorplan demo dataset. https://huggingface.co/datasets/
umesh16071973/, 2024. [Internet; descargado 01-agosto-2024].

[77] Uni matrix Zero. Using clip score to evaluated images. https://unimatrixz.
com/blog/latent-space-clip-score/, 2023. [Internet; descargado 01-agosto-2024].

[78] van Rossum et al., G. Python programming language. https://www.python.
org/, 1991. Acesso em: Fev. 2025.

https://revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit
https://revitpure.com/blog/14-beginner-tips-to-create-a-floor-plan-in-revit
https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://www.roedl.com/insights/intellectual-property/2023-2/spain-can-ai-creations-be-protected-by-intellectual-property
https://www.roedl.com/insights/intellectual-property/2023-2/spain-can-ai-creations-be-protected-by-intellectual-property
https://huggingface.co/datasets/zimhe/pseudo-floor-plan-12k
https://huggingface.co/datasets/zimhe/pseudo-floor-plan-12k
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://huggingface.co/datasets/umesh16071973/
https://huggingface.co/datasets/umesh16071973/
https://unimatrixz.com/blog/latent-space-clip-score/
https://unimatrixz.com/blog/latent-space-clip-score/
https://www.python.org/
https://www.python.org/

Bibliografía 94

[79] von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul,
K., Davaadorj, M., Nair, D., Paul, S., Berman, W., Xu, Y., Liu, S.,
and Wolf, T. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

[80] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. Trans-
formers: State-of-the-art natural language processing. https://huggingface.co/
transformers/, 2020. Accessed: 2025-02-08.

[81] Xiaoyu Li, Jonathan Benjamin, X. Z. From text to blueprint: Leveraging
text-to-image tools for floor plan creation. artXiv 1, 2405.17236 (2024).

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://huggingface.co/transformers/
https://huggingface.co/transformers/

	Índice general
	Índice de figuras
	Índice de tablas
	1. Introducción
	Planteamiento
	Contexto del Trabajo
	Motivación y Justificación
	Estructura del documento

	2. Objetivos del proyecto
	3. Conceptos teóricos
	Inteligencia Artificial (IA)
	Inteligencia Artificial Generativa
	Planos Arquitectónicos y Sus Tecnologías

	4. Estado del Arte
	Generación de imágenes mediante IA
	Generación de Planos Arquitectónicos Mediante IA

	5. Técnicas y herramientas
	Infraestructura y Ambiente de Desarrollo del Proyecto
	Conjunto de Datos (Dataset de Imágenes)
	Fine-Tuning en Modelos de Stable Diffusion y Sus Métodos
	Métricas de Evaluación de Modelo Generativo

	6. Aspectos relevantes del desarrollo del proyecto
	Pruebas Mediante Modelo Stable Diffusion Estándar
	Transformaciones de Los Conjuntos de Datos Elegidos
	Fine-Tuning de Stable Diffusion con el Método Dreambooth y LoRas
	Fine-Tuning de Stable Diffusion con el Método Misto Line
	Fine-Tuning de Stable Diffusion con el Método Text_To_Image
	Desarrollo de la Interfaz de Pruebas Utilizando Gradio

	7. Discusión de Resultados
	Evaluación inicial con Stable Diffusion estándar
	Evaluación del Fine-Tuning con DreamBooth y LoRas
	Evaluación del Fine-Tuning con Text-to-Image
	Comparación de Métodos y Experimentos

	8. Conclusiones y Líneas de trabajo futuras
	Apéndices
	Plan de Proyecto
	Planificación del Trabajo
	Ejecución del Trabajo

	Manual de Instalación
	Infraestructura y Dependencias Utilizadas
	Repositorio e instrucciones para su instalación y ejecución

	Bibliografía

