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Resumen 

Antecedentes. La Enfermedad Pulmonar Obstructiva Crónica (EPOC) es una patología 

respiratoria caracterizada por la limitación crónica al flujo aéreo, relacionada comúnmente con 

el hábito tabáquico. Afecta principalmente a la población mayor de 40 años y su prevalencia 

mundial en 2024 fue de 391 millones de personas. Según datos de la Organización Mundial de 

la Salud, actualmente constituye la cuarta causa de muerte en el mundo, pero se proyecta un 

aumento de su mortalidad para el año 2030, en el que podría ocupar el tercer puesto. Pese a la 

falta de consenso, las exacerbaciones pueden definirse como un aumento agudo de síntomas 

como disnea, tos o esputo. Sus consecuencias incluyen un empeoramiento de la función 

pulmonar, deterioro de la calidad de vida de los pacientes y aumento de mortalidad. Asimismo, 

representan una elevada carga económica y social, pero su infradiagnóstico persiste y no reciben 

la atención necesaria a pesar de su gran impacto. Esto subraya la necesidad de intervenciones 

urgentes con las que mitigar sus efectos, entre las que se encuentra la implementación de 

herramientas predictivas que permitan adoptar estrategias preventivas, efectuar un correcto 

manejo de las agudizaciones, abaratar costes y mejorar la vida de los pacientes y sus familiares.  

Hipótesis y objetivos. El presente trabajo se elaboró bajo la hipótesis principal de que el 

desarrollo de modelos predictivos basados en técnicas de Machine Learning podría ser útil para 

estimar futuros reingresos por exacerbación de EPOC en los 30 días posteriores al alta. Con este 

fin, se esperaría que las variables recopiladas en el ámbito hospitalario permitiesen reconocer 

patrones asociados al reingreso. Como objetivo principal, se estableció desarrollar y validar un 

modelo predictivo de reingreso por exacerbación en un periodo de 30 días post-alta mediante 

técnicas de aprendizaje automático. Los objetivos específicos fueron: (i) recopilar una base de 

datos retrospectiva y prospectiva procedente del ámbito clínico, destinando la retrospectiva a la 

construcción y validación interna del modelo y la prospectiva a la validación temporal 

independiente del mismo; (ii) determinar las variables más relevantes para la predicción de 

reingresos por agudizaciones de EPOC; (iii) comparar el rendimiento predictivo de sendos 

enfoques de aprendizaje computacional: (a) Random Forest, propuesto como enfoque novedoso 

en el ámbito de la predicción de reingreso; y (b) red neuronal perceptrón multicapa, tomado 

como benchmark de referencia.  

Materiales y métodos. En este estudio observacional ambispectivo de diseño y validación de 

modelos predictivos, se reclutaron pacientes procedentes del Servicio de Neumología del 

Hospital Universitario Río Hortega de Valladolid. El estudio constó de dos fases: una etapa 

retrospectiva, cuyos datos fueron adquiridos entre octubre de 2017 y junio de 2019, y otra 

prospectiva, que abarcó un periodo temporal de enero a junio de 2025. Los pacientes incluidos 

presentaban diagnóstico previo confirmado de EPOC e ingreso hospitalario por exacerbación de 

la patología. La metodología aplicada en este trabajo se dividió en las siguientes etapas: análisis 

descriptivo y curación del dataset, selección de características predictoras, diseño y optimización 

de modelos predictivos y validación temporal en una población prospectiva. En primera 
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instancia, se efectuó una imputación de datos aplicando K vecinos más cercanos. Tras esto, se 

seleccionó un subconjunto de las variables más relevantes y complementarias mediante el 

algoritmo ReliefF. A continuación, se realizó el diseño y optimización de un modelo predictivo 

bajo un enfoque de clasificación binaria: clase positiva (reingreso) o negativa (no reingreso). Para 

ello, se compararon sendos enfoques de aprendizaje computacional: ensemble learning, 

mediante Random Forest (RF) y redes neuronales, mediante un perceptrón multicapa (Multi-

Layer Perceptron, MLP), cuyo rendimiento diagnóstico fue finalmente validado en una población 

prospectiva.  

Resultados. 246 pacientes de la etapa retrospectiva cumplieron los criterios de inclusión, de los 

que finalmente se incluyeron 243 sujetos (42 reingresos y 201 no reingresos). En la base 

prospectiva, por su parte, 75 pacientes cumplieron los criterios de inclusión, incorporando 

finalmente 10 individuos (1 reingreso y 9 no reingresos). El algoritmo ReliefF seleccionó un total 

de 24 variables predictoras, destacando la pauta de mucolíticos al ingreso y alta, la presencia de 

microorganismos resistentes, el test TAI de uso correcto de inhaladores y la prescripción de 

oxigenoterapia domiciliaria basal. En la base de datos retrospectiva, Random Forest presentó 

una sensibilidad del 50.0%, especificidad del 91.7%, precisión o accuracy del 84.7%, F1 score del 

52.2% y AUC de 0.826 en un subconjunto de pacientes de test. La red neuronal obtuvo una 

sensibilidad del 75.0%, especificidad del 85.0%, precisión o accuracy del 83.3%, F1 score del 

60.0% y AUC de 0.857. En la cohorte prospectiva, Random Forest logró una sensibilidad del 100%, 

especificidad del 66.7%, precisión o accuracy del 70.0% y F1 score del 40.0%. La red neuronal 

alcanzó una sensibilidad del 100%, especificidad del 55.6%, precisión o accuracy del 60.0% y F1 

score del 33.3%. MLP resultó ser superior en la base de datos retrospectiva a Random Forest en 

términos de F1 score y AUC, aunque su especificidad alcanzó un valor destacable. En la base de 

datos prospectiva, el modelo basado en Random Forest mostró mayor capacidad de 

generalización que la red neuronal MLP. 

Conclusiones. Los modelos predictivos desarrollados basados en Random Forest y MLP 

mostraron una capacidad predictiva notable para la estimación de reingresos por exacerbación 

de EPOC en los 30 días posteriores al alta. Ambos modelos alcanzaron valores de AUC superiores 

a 0.8, aunque la red MLP mostró un rendimiento mayor. El algoritmo ReliefF seleccionó un 

conjunto de variables que demostraron su utilidad en la identificación de patrones relacionados 

con el reingreso, destacando a su vez la heterogeneidad de la enfermedad. La validación 

temporal confirmó la viabilidad de los modelos en nuevas cohortes, aunque la fiabilidad de sus 

métricas aumentaría con bases de datos prospectivas más amplias. En comparación con otras 

investigaciones previas, los rendimientos predictivos alcanzaron resultados competitivos, incluso 

con un tamaño muestral limitado.  

Palabras clave 

Enfermedad Pulmonar Obstructiva Crónica, reingreso hospitalario, exacerbación, Machine 

Learning, ReliefF, Random Forest, red neuronal perceptrón multicapa. 
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Abstract 

Background. Chronic obstructive pulmonary disease (COPD) is a respiratory condition 

characterised by progressive airflow limitation, commonly associated with smoking. It mainly 

affects people over the age of 40, and its global prevalence in 2024 was 391 million people. 

According to the World Health Organization data, it is currently the fourth leading cause of death 

worldwide, but mortality is projected to increase by 2030, when it could rank third. Despite the 

lack of consensus, exacerbations can be defined as an acute increase in symptoms such as 

dyspnoea, coughing or sputum. Their consequences include worsening lung function, 

deterioration in patients' quality of life and increased mortality. They also represent a high 

economic and social burden, but they remain underdiagnosed and do not receive the necessary 

attention despite their significant impact. This highlights the need for urgent interventions to 

mitigate their effects, including the implementation of predictive tools that enable preventive 

strategies to be adopted, exacerbations to be managed correctly, costs to be reduced, and the 

lives of both patients and their families to be improved.  

Hypothesis and objectives. This study was conducted under the main hypothesis that the 

development of predictive models based on machine learning techniques could be useful to 

estimate future readmissions due to COPD exacerbation within 30 days of discharge. To this end, 

it was expected that the variables collected in the hospital setting would allow patterns 

associated with readmission to be recognised. The main objective was to develop and validate a 

predictive model of readmission due to exacerbation within 30 days of discharge using machine 

learning techniques. The specific objectives were: (i) to build both retrospective and prospective 

databases from the clinical setting, with the retrospective data being used for the construction 

and internal validation of the model and the prospective data for its independent temporal 

validation; (ii) to determine the most relevant variables for predicting readmissions due to COPD 

exacerbations; (iii) to compare the predictive performance of two machine learning approaches: 

(a) Random Forest, proposed as a novel approach in the field of readmission prediction; and (b) 

multilayer perceptron neural network, taken as a benchmark.  

Materials and methods. In this observational, ambispective study of predictive model design 

and validation, patients were recruited from the Pulmonology Department of the Río Hortega 

University Hospital in Valladolid. The study consisted of two phases: a retrospective stage, whose 

data were acquired between October 2017 and June 2019, and a prospective stage, which 

covered a period from January to June 2025. The patients included had a previous confirmed 

diagnosis of COPD and were admitted to hospital due to exacerbation of the disease. The 

methodology applied in this study was divided in the following stages: descriptive analysis and 

data curation of the dataset, selection of predictive variables, design and optimisation of 

predictive models, and temporal validation in a prospective population. First, data imputation 

was performed using K nearest neighbours. After this, a subset of the most relevant and 

complementary variables was selected using the ReliefF algorithm. Next, a predictive model was 
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designed and optimised using a binary classification approach: positive class (readmission) or 

negative class (no readmission). To this end, two machine learning approaches were compared: 

ensemble learning, using Random Forest (RF), and neural networks, using a multi-layer 

perceptron (MLP), whose predictive performance was finally validated in a prospective 

population.  

Results. A total of 246 patients from the retrospective stage met the inclusion criteria, of whom 

243 subjects were finally included (42 readmissions and 201 non-readmissions). In the 

prospective database, 75 patients met the inclusion criteria, with 10 individuals finally being 

included (1 readmission and 9 non-readmissions). The ReliefF algorithm selected a total of 24 

predictor variables, highlighting the pattern of mucolytics at admission and discharge, the 

presence of resistant microorganisms, the TAI test for correct use of inhalers, and the 

prescription of baseline home oxygen therapy. In the retrospective database, Random Forest had 

a sensitivity of 50.0%, specificity of 91.7%, accuracy of 84.7%, F1 score of 52.2%, and AUC of 

0.826. The neural network obtained a sensitivity of 75.0%, specificity of 85.0%, accuracy of 

83.3%, F1 score of 60.0%, and AUC of 0.857. In the prospective cohort, Random Forest achieved 

a sensitivity of 100%, specificity of 66.7%, accuracy of 70.0% and F1 score of 40.0%. The neural 

network achieved a sensitivity of 100%, specificity of 55.6%, accuracy of 60.0% and F1 score of 

33.3%. MLP proved to be superior to Random Forest in the retrospective database, although its 

specificity was noteworthy. In the prospective database, the Random Forest model showed 

higher generalisation ability compared to MLP. 

Conclusions. The predictive models developed based on Random Forest and MLP showed 

remarkable predictive capacity for estimating readmissions due to COPD exacerbation within 30 

days after discharge. Both models have AUCs greater than 0.8, although the MLP network 

reached higher performance. The ReliefF algorithm selected a set of variables that proved to be 

useful in identifying patterns related to readmission, while also highlighting the heterogeneity of 

the disease. Temporal validation confirmed the viability of the models in new cohorts, although 

the reliability of their metrics would increase with larger prospective databases. Compared to 

other previous research, the predictive performance achieved competitive results, even with a 

limited sample size.  

Keywords 

Chronic Obstructive Pulmonary Disease, hospital readmission, exacerbation, Machine Learning, 

ReliefF, Random Forest, multilayer perceptron neural network. 
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DAAT Déficit de α-1 antitripsina 

DL Deep Learning 
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CAPÍTULO 1. INTRODUCCIÓN 
 

La Organización Mundial de la Salud (OMS) define la EPOC (Enfermedad Pulmonar Obstructiva 

Crónica) como una patología pulmonar caracterizada por la disminución persistente del flujo 

aéreo ocasionando múltiples problemas respiratorios [1]. Suele manifestarse en personas 

mayores de 40 años con antecedentes de tabaquismo [2] y cursa con síntomas como tos con 

esputo, disnea, sibilancias y fatiga [1]. A esta sintomatología hay que añadirle un mayor riesgo a 

desarrollar otras afecciones, entre las que se encuentran arritmias, insuficiencia cardíaca, 

cardiopatía isquémica, derrame pleural, neumonía, tromboembolismo pulmonar (TEP), 

neumotórax, síndrome de distrés respiratorio agudo (SDRA), sepsis, cáncer de pulmón, debilidad 

muscular, osteoporosis, depresión, ansiedad y atrofia muscular [1], [3]. Además de su gran carga 

clínica, cabe destacar el significativo impacto socioeconómico de los reingresos por exacerbación 

de la enfermedad y la repercusión sobre la calidad de vida de los pacientes y sus familiares [4]. 

En 2024, es estimó que el 75% de los casos de EPOC no eran identificados en España, 

constituyendo una de las patologías más infradiagnosticadas  [5]. 

 

Todo lo expuesto subraya la necesidad de disponer de herramientas que permitan predecir el 

riesgo de reingreso hospitalario por agudización de EPOC, ya que estas contribuirían a adoptar 

medidas preventivas, optimizar recursos, mejorar el pronóstico del paciente y potenciar tanto su 

bienestar como el de su entorno. Por ello, el presente trabajo se basa en la elaboración de 

modelos predictivos destinados a estimar la probabilidad de reingreso por exacerbación, 

tratando así de proporcionar un aporte complementario que pueda enriquecer este ámbito.  

 

1.1. Estructura del documento 

La estructura del presente TFG se detalla a continuación, garantizando una mayor compresión 

global del mismo mediante una presentación ordenada y coherente de su contenido.  

▪ Capítulo 1: Introducción. Se explican diversos aspectos de la EPOC, como sus 

características clínicas y pronóstico (fisiopatología, formas clínicas y mortalidad), 

etiología, factores de riesgo, diagnóstico, severidad y tratamiento. Tras un conocimiento 

más amplio de la patología, se expone el concepto de “exacerbación de EPOC”, 

abordando sus implicaciones, diagnóstico, gravedad, reingresos, mortalidad, factores 

predisponentes, medidas preventivas y volumen global. También se presenta el impacto 

socioeconómico de estas agudizaciones, resaltando la gran carga que suponen en gran 

diversidad de ámbitos y la necesidad urgente de implementar soluciones a un problema 

en la mayoría de los casos ignorado. Finalmente, se incluye una introducción a la 

Inteligencia Artificial (IA) y su presencia tanto en la vida cotidiana como en la EPOC.  
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▪ Capítulo 2: Hipótesis y objetivos. Se plantean las hipótesis bajo las que se sustenta este 

trabajo, tanto de carácter clínico como técnico. Estas pretenden ser corroboradas a 

través de los objetivos establecidos (principal y específicos).  

 

▪ Capítulo 3: Sujetos y variables de estudio. Se exponen los aspectos éticos pertinentes 

para el desarrollo de este TFG, así como los criterios de inclusión y exclusión, tamaños 

muestrales de las bases de datos, información relativa a la adquisición de las cohortes 

en el ámbito hospitalario y aspectos relacionados con las variables de estudio.  

 

▪ Capítulo 4: Metodología. Se describen los distintos métodos aplicados, profundizando 

en el tratamiento e imputación de datos faltantes, análisis descriptivo de las variables, 

selección de las características predictoras más relevantes y desarrollo de los modelos 

predictivos y su evaluación mediante métricas de rendimiento.  

 

▪ Capítulo 5: Resultados. Se presentan los resultados obtenidos en cada fase descrita en 

el anterior capítulo. 

 

▪ Capítulo 6: Discusión. Se analizan los hallazgos mostrados en los resultados, debatiendo 

su coherencia y tratando de comprender los motivos que han conducido a su obtención. 

Asimismo, se integra un enfoque autocrítico abordando las posibles limitaciones del 

estudio.  

 

▪ Capítulo 7: Conclusiones. En este último capítulo, se exponen las principales 

contribuciones y conclusiones del trabajo, así como futuras líneas de investigación con 

las que contribuir a un mayor alcance del estudio.  

 

1.2.  Características clínicas y pronóstico de la EPOC 

1.2.1. Fisiopatología 

Los procesos fisiopatológicos de la EPOC consisten en alteraciones en las vías respiratorias, el 

parénquima pulmonar y su vasculatura. En este sentido, se experimenta inflamación, daños 

estructurales, limitación al flujo aéreo, disbiosis e infección [4], [3]. 

▪ Inflamación: se produce ante exposiciones inhalatorias, como el humo del tabaco. Estos 

irritantes provocan un incremento de proteasas y una reducción de antiproteasas. En 

condiciones fisiológicas normales, la función de las proteasas es la degradación de la 

elastina y el tejido conectivo para facilitar la reparación tisular. Las antiproteasas, como 
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la α-1 antitripsina, sirven como mecanismo de compensación para mantener el 

equilibrio [3]. 

Sin embargo, en la EPOC se observa un incremento del número de macrófagos, 

neutrófilos activados y linfocitos. La acción conjunta de estas células inflamatorias, junto 

con células epiteliales y estructurales, provoca la liberación de mediadores 

inflamatorios. Esto conlleva la atracción de células inflamatorias desde la circulación, con 

la consiguiente liberación excesiva de proteasas y, finalmente, daño estructural [3], [4]. 

Esta inflamación puede ser también sistémica, hecho que podría explicar la existencia 

de comorbilidades presentes en la EPOC. Cabe destacar que, en algunos pacientes, el 

patrón inflamatorio incluye un aumento de eosinófilos y células linfoides innatas tipo 2 

(ILC2), semejante al de la enfermedad asmática [4]. 

El estrés oxidativo es otro aspecto importante a tener en cuenta. Los niveles elevados 

de neutrófilos y macrófagos, así como la inhalación de partículas nocivas, causan la 

acumulación de radicales libres, aniones superóxido y peróxido de hidrógeno. Este 

último, junto con la 8-isoprostano, es un biomarcador de estrés oxidativo y se halla 

elevado en el aliento exhalado, el esputo y la circulación sistémica. Estos oxidantes, 

sumados al descenso del nivel del factor de crecimiento del endotelio vascular (VEGF) y 

la liberación de neuropéptidos profibróticos, promueven la apoptosis del parénquima 

pulmonar [4], [3].  

La inflamación puede resultar tan severa que, incluso en los perfiles clínicos más graves 

que han abandonado el consumo de tabaco, el proceso inflamatorio no se revierte por 

completo [3]. 

 

▪ Alteraciones estructurales: el desequilibrio previamente mencionado entre los niveles 

de proteasas derivadas de células inflamatorias y epiteliales, y las antiproteasas, 

favorece la degradación de la elastina del tejido conectivo. Además, tras la inflamación 

puede desencadenarse una fibrosis peribronquiolar y producirse múltiples lesiones en 

la pared de la vía aérea. Esto se traduce en un exceso de tejido muscular y fibroso, 

pudiendo incluso generarse obstrucciones respiratorias. Incluso en pacientes con EPOC 

leve se han apreciado cambios estructurales en la vasculatura pulmonar [4].  

 

▪ Limitación al flujo de aire: la hipersecreción de moco debida a la inflamación, los 

tapones mucosos, el broncoespasmo y la fibrosis peribronquial son responsables de la 

disminución de la superficie útil de las vías aéreas y de su obstrucción. Además, el 

parénquima pulmonar pierde su adherencia como consecuencia de la destrucción de los 

tabiques alveolares. Todo ello conlleva un aumento del trabajo respiratorio como 

mecanismo de compensación ante el incremento de resistencia de las vías aéreas. El 

resultado es una hipoventilación alveolar con hipoxia e hipercapnia [3]. 
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▪ Disbiosis: se refiere a la alteración del microbioma observada en pacientes con EPOC. La 

exposición a factores de riesgo provoca daños en el microbioma intestinal y respiratorio, 

además de afectar la inmunidad mucosa e inducir inflamación pulmonar a través de 

respuestas inmunitarias. El microbioma varía tras padecer una infección viral, durante 

las exacerbaciones y en respuesta al uso de antibióticos y corticosteroides, tanto orales 

como inhalados [4]. 

 

▪ Infección: los procesos infecciosos agravan la inflamación y, en consecuencia, afectan 

negativamente la evolución de la enfermedad. La infección se ve favorecida por la 

dificultad para eliminar el moco en las vías aéreas inferiores. Haemophilus influenzae se 

detecta en aproximadamente el 30% de los sujetos con EPOC, mientras que 

Pseudomonas aeruginosa y otras bacterias gramnegativas se encuentran en fases más 

avanzadas [3]. 

 

1.2.2. Formas clínicas 

Aunque EPOC se emplea como término general, este engloba dos entidades: enfisema y 

bronquitis crónica. En gran parte de los pacientes que padecen la enfermedad, coexisten ambos 

trastornos, por lo que se acuña el concepto de EPOC para una mayor precisión [2].  

El enfisema se presenta como una destrucción del parénquima pulmonar, en particular de las 

paredes alveolares, lo que provoca la pérdida del retroceso elástico pulmonar. En consecuencia, 

se incrementa el riesgo de colapso de las vías aéreas debido a la pérdida de tabiques alveolares 

y disminución de la tracción radial. Además, se produce una hiperinsuflación pulmonar y 

atrapamiento de aire. La morfología alveolar se ve alterada y adquieren flacidez. Todo ello 

conduce a un agrandamiento patológico de los espacios aéreos, una reducción del intercambio 

gaseoso y, en ocasiones, el desarrollo de bullas [2], [3].  

En la Figura 1 puede apreciarse una comparativa esquemática entre un acino pulmonar sano y 

uno enfermo por enfisema [6]. En este sentido, se ilustran unos alvéolos debilitados y colapsados 

en contraste a la estructura normal en situación no patológica. 
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Figura 1. Comparativa entre sacos alveolares sanos (abajo) y patológicos por enfisema (arriba) 
[6]. 

 

Por su parte, la bronquitis crónica se manifiesta con irritación e inflamación de los conductos 

bronquiales. Esto se traduce en un engrosamiento del epitelio y producción excesiva de 

mucosidad espesa [2]. Se define por una tos productiva la mayoría de los días de la semana 

durante al menos tres meses al año, en dos años sucesivos [3]. En ocasiones, puede observarse 

la presencia de pus y fosas bronquiales prominentes en las aberturas de las glándulas mucosas 

bronquiales. Las células inflamatorias activan el receptor del factor de crecimiento epidérmico 

(EGFR), provocando la transcripción del gen de mucina (MUC5AC) que desencadena en una 

hipersecreción de moco [7] (véase Figura 2).  

 

 

Figura 2. Comparativa entre bronquios sanos y bronquitis crónica [8]. 

 

En 1955, Dornhorst establece unos rasgos diferenciadores entre el enfisema y la bronquitis 

crónica. El paciente que padecía bronquitis crónica era llamado “Abotagado Azul” (Blue Boaters) 

y se caracteriza por cianosis, obnubilación, hematocrito ≥ 60%, edemas e insuficiencia cardíaca. 
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En cuanto al sujeto enfisematoso, se le denominaba como “Soplador Rosado” (Pink Puffer) con 

una notoria pérdida de peso, disnea progresiva y hematocrito < 55% [9]. En la Figura 3, puede 

observarse el aspecto físico típico de un paciente que sufre bronquitis crónica (izquierda) y 

enfisema (derecha). 

 

 

Figura 3. Rasgos físicos de paciente con bronquitis crónica vs. enfisema [9]. 

 

1.2.3. Mortalidad 

Según datos de la OMS, la EPOC constituye la cuarta causa de muerte a nivel mundial. En 2021 

fue responsable de aproximadamente 3.5 millones de defunciones, lo que equivale al 5% de 

fallecimientos globales [1]. Sin embargo, estas cifras deben interpretarse con precaución, puesto 

que la EPOC es una patología infradiagnosticada con frecuencia [10], lo que podría implicar una 

subestimación de la mortalidad real. Además, la OMS prevé que en el año 2030 la EPOC se 

convierta en la tercera causa de fallecimiento en el mundo, suponiendo el 7.8% de las 

defunciones totales y el 27% de las asociadas al tabaquismo. Solo sería superada por el cáncer 

(33%) y las enfermedades cardiovasculares (29%) [10]. 

El incremento de la mortalidad global se atribuye principalmente al aumento del tabaquismo en 

países de ingresos bajos y medianos, al envejecimiento de la población mundial y a la ausencia 

de tratamientos capaces de alterar el transcurso de la enfermedad [4]. De acuerdo con los datos 

actuales disponibles, se espera que en el año 2060 haya 5.4 millones de muertes anuales 

atribuibles a la EPOC [4].   

En el caso de España, la tasa de mortalidad por EPOC por cada 100 000 habitantes muestra una 

tendencia distinta a la global, con un descenso sostenido tanto en hombres como en mujeres. 

Esto puede observarse en la Figura 4, donde se ilustra la mortalidad por sexos en España entre 

1980 y 2023 [11]. No obstante, hay una diferencia muy significativa entre ambos sexos, 
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presentando los varones unas cifras de mortalidad notablemente superiores a las de las mujeres 

durante todo el intervalo temporal considerado. Esta disparidad podría explicarse por el 

consumo históricamente más elevado de tabaco entre los hombres.  

La curva correspondiente a la población masculina muestra un descenso sostenido desde finales 

de los años 90. En contraposición, la evolución en las mujeres es más estable y presenta un 

descenso mucho más leve desde 1998 aproximadamente.  

Dado que la EPOC está estrechamente vinculada al consumo de tabaco, los patrones 

representados en la Figura 4 pueden interpretarse como el reflejo de las variaciones en los 

hábitos tabáquicos de la población. En ambos sexos, el descenso de la mortalidad podría 

asociarse a una mayor concienciación sobre los efectos nocivos del tabaquismo. Sin embargo, la 

relativa estabilización en la población femenina, junto al aumento del número de mujeres 

fumadoras en los últimos años, alerta sobre la posibilidad de un repunte en el futuro.  

 

 

Figura 4. Tasa de mortalidad por EPOC en España de hombres y mujeres entre 1980 y 2023. Los 
datos fueron facilitados por el Informe del Estado de Salud de la Población (IESP) de la Comunidad 
de Madrid [11], los cuales provienen del Instituto Nacional de Estadística (INE). 

 

1.3. Etiología y factores de riesgo 

La EPOC es una enfermedad con un amplio abanico de factores de riesgo que contribuyen a su 

desarrollo. Estos factores pueden agruparse en dos categorías: ambientales y del huésped, y 

genéticos y epigenéticos [12]. Los principales son recogidos en la Figura 5 [13]:  
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Figura 5. Principales factores de riesgo en EPOC [13]. 

 

1.3.1. Factores de riesgo ambientales y del huésped 

▪ Tabaquismo.  

o Activo. Es el principal factor desencadenante de EPOC. El hábito tabáquico es 

responsable de una disminución del volumen espiratorio forzado en el primer 

segundo (FEV1) respecto a los pacientes no fumadores. Además, su alta 

nocividad puede causar bronquiolitis con aumento de producción mucosa, daño 

en paredes alveolares y fibrosis intersticial [12]. Estos daños estructurales y 

funcionales son clave en la aparición de la enfermedad.  

 

o Pasivo. Aunque los efectos y consecuencias del tabaquismo activo están 

ampliamente documentados, la exposición pasiva al humo del tabaco puede 

ocasionar la enfermedad [13]. Estudios como el de Tan et al. (2015) [14], 

esclarecen unos resultados donde se refleja cómo el tabaquismo pasivo afecta 

principalmente a mujeres. Sin embargo, en una población formada en su 

totalidad por pacientes fumadores, no existen diferencias entre sexos (Figura 6).  
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Figura 6: Comparativa entre sexos (color claro = hombre, color oscuro = mujer) en grupos de 
pacientes fumadores pasivos (never smoker) y activos (ever smoker) [14]. 

 

▪ Polución ambiental. La exposición a monóxido de carbono, óxidos de nitrógeno y 

sulfuro, así como material particulado (PM 2.5, PM 10), contribuye al desarrollo de 

alteraciones pulmonares como asma y EPOC [12].  

 

▪ Combustión de biomasa. La quema de materia orgánica continúa siendo una fuente 

de energía en muchas viviendas, ya sea como método de calefacción o para 

actividades culinarias. Se estima que en torno al 50% de hogares a nivel mundial, y 

el 90% de las viviendas rurales, efectúan esta práctica [12]. Esto se traduce en un 

total de 3000 millones de personas expuestas globalmente al humo de esta 

combustión [12]. Además, el aumento sostenido de los costes de combustibles 

limpios, incluso en países desarrollados, incentiva su uso a pesar de los riesgos para 

la salud que supone.  

Se ha demostrado que la combustión de biomasa provoca una mayor limitación al 

flujo aéreo y debe evitarse especialmente en etapas tempranas de la vida con el fin 

de no condicionar el desarrollo pulmonar [13], [12].  

 

▪ Exposición laboral. Los productos químicos, vapores y polvos orgánicos e 

inorgánicos presentes en actividades ocupacionales promueven la aparición de la 

enfermedad. Esto ha sido respaldado en diversos estudios, destacando el de 

Marchetti et al. (2014) [15], que constata una elevada limitación al flujo aéreo, 

desarrollo de enfisema y atrapamiento aéreo.  
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1.3.2. Factores de riesgo genéticos y epigenéticos 

▪ Déficit de α-1 antitripsina (DAAT). Es una alteración congénita causante de enfisema 

en adultos. Aunque es el factor de riesgo genético más investigado, continúa siendo 

infradiagnosticado. El DAAT provoca una pérdida acelerada del parénquima 

pulmonar [13]. En cuanto a su prevalencia, esta condición es responsable de 1 de 

cada 700 casos de EPOC en el sur europeo y 1 de cada 4500 personas caucásicas se 

ven afectadas por la misma [16].  

 

▪ Modificaciones epigenéticas. Son cambios químicos en el ADN que no dañan su 

secuencia, pero afectan directamente al genoma. Las exposiciones ambientales 

pueden inducir este fenómeno y en ocasiones son heredables. Entre los mecanismos 

más destacables pueden citarse [12]: 

o Metilación del ADN: adición de un grupo metilo a las citosinas adyacentes 

a guaninas.  

o Alteración de histonas: acetilación y metilación.  

o Cambios en los micro-ARN (miARN).  

Cuando los cambios epigenéticos tienen lugar en etapas tempranas de la vida, 

incluido el periodo fetal, pueden afectar de manera permanente la función celular. 

Un ejemplo de ello es el tabaquismo materno durante el embarazo, ya que este se 

asocia a variaciones en la metilación del ADN en el feto. Estos cambios se relacionan 

con un incremento del riesgo de EPOC, así como de su gravedad [12].  

 

1.4. Diagnóstico 

La principal prueba diagnóstica contemplada en la guía GOLD (Global Initiative for Chronic 

Obstructive Lung Disease) para pacientes con sospecha de EPOC es la espirometría 

postbroncodilatadora [4], que proporciona el cociente entre el volumen espiratorio forzado en 

el primer segundo (FEV1) y la capacidad vital forzada (FVC). Esta prueba debe realizarse siempre 

en la fase estable de la enfermedad [16] y, si su valor es < 0.7, se demuestra la existencia de 

obstrucción bronquial. 

No obstante, aunque la espirometría ofrece múltiples ventajas como alta reproducibilidad, bajo 

coste y facilidad de ejecución, tiende a infradiagnosticar en pacientes jóvenes (alcanzando cifras 

de hasta el 75%) [13] y a sobrediagnosticar en edades avanzadas. Esto se debe a que la 

especificidad del criterio FEV1/FVC < 0.7 disminuye con el envejecimiento [13]. Así, algunos 

pacientes fumadores sintomáticos pueden presentar una espirometría normal, mientras su 

parénquima pulmonar muestra alteraciones estructurales en una tomografía computarizada 

(TAC). Asimismo, los parámetros espirométricos pueden ser adecuados, pero la prueba de 

difusión de monóxido de carbono puede revelar daños funcionales [13].  
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Por consiguiente, el diagnóstico basado exclusivamente en la espirometría subestima el 

trastorno fisiológico del sujeto y pone de manifiesto la necesidad de criterios adicionales como 

la exposición a factores de riesgo (especialmente el humo de tabaco) y síntomas de carácter 

respiratorio como disnea de esfuerzo, tos con expectoración e infecciones respiratorias 

recurrentes en las vías aéreas bajas [16].  

Por otra parte, existen pruebas complementarias al diagnóstico que permiten caracterizar la 

enfermedad, identificar comorbilidades y valorar el grado de afectación y pronóstico de la misma 

(Tabla 1) [13]. 

Tabla 1. Pruebas complementarias al diagnóstico. 

Pruebas Indicación 

Analítica de sangre 
Estimación del nivel de eosinófilos y α-1 

antitripsina 

Radiografía de tórax postero-anterior y 
lateral 

Detección de atrapamiento aéreo e 
hiperinsuflación pulmonar 

TAC 
Valoración del enfisema y diagnóstico de 

bronquiectasias 

Volúmenes pulmonares estáticos y 
prueba de difusión de monóxido de 

carbono 

Detección de atrapamiento aéreo, hiperinsuflación 
e impacto funcional de enfisema 

Test de la marcha de 6 minutos Desaturación y capacidad de realizar ejercicio físico 

Gasometría arterial 
Sospecha de insuficiencia respiratoria y/o 

sospecha de hipercapnia 

Cultivo de esputo 
Descarte de infección bronquial en bronquitis 

crónica con exacerbaciones frecuentes 

Ecocardiograma transtorácico 
Sospecha de hipertensión arterial pulmonar y 

comorbilidad cardíaca 

Estudio de sueño 
Sospecha de apnea del sueño o hipertensión 

pulmonar desproporcionada al grado de 
obstrucción 

 

 

1.5. Estratificación de pacientes 

Tras la confirmación del diagnóstico de EPOC mediante espirometría y con el soporte de las 

pruebas complementarias pertinentes, es fundamental valorar la severidad de la enfermedad. 

Esta evaluación integral permite dictaminar el nivel de riesgo del paciente basándose en el grado 

de obstrucción bronquial, intensidad de los síntomas y número de exacerbaciones 

experimentadas en el último año [16]. Una correcta caracterización del riesgo no solo ayuda a 
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predecir las manifestaciones agudas de la enfermedad, sino que permite ofrecer opciones 

terapéuticas óptimas y personalizadas, adaptadas al perfil clínico del paciente en cuestión [16]. 

 

1.5.1. Gravedad de la obstrucción al flujo aéreo 

Bajo la premisa de un cociente FEV1/FVC < 0.7, se establecen diferentes niveles de gravedad 

según el porcentaje del FEV1 con respecto al valor teórico obtenido en la espirometría 

postbroncodilatadora. De este modo, la guía GOLD clasifica la EPOC en cuatro grados (GOLD 1 a 

4), donde una cifra mayor es sinónimo de un mayor nivel de severidad (Tabla 2). Cabe destacar 

que los puntos de corte espirométricos contemplados tienen como finalidad simplificar la 

clasificación clínica [4].  

Tabla 2. Clasificación GOLD de la gravedad de la obstrucción al flujo aéreo. 

Grado GOLD Gravedad 
FEV1 

(% del esperado) 

GOLD 1 Leve ≥ 80 

GOLD 2 Moderada 50-79 

GOLD 3 Grave 30-49 

GOLD 4 Muy grave <30 

 

1.5.2. Clasificación según síntomas y exacerbaciones (GOLD A-B-E) 

La guía GOLD propone una evaluación de los síntomas e historia de agudizaciones del año 

anterior con el objetivo de lograr una estratificación más precisa, yendo más allá de la 

caracterización de obstrucción al flujo aéreo.  

Para el estudio de los síntomas clínicos, se emplean dos escalas validadas: la escala mMRC 

(modified Medical Research Council) y el test CAT (COPD Assessment Test).  

▪ Escala mMRC Se trata del primer cuestionario desarrollado para cuantificar el grado de 

disnea, síntoma altamente prevalente en pacientes con EPOC [4]. Esta escala evalúa la 

dificultad respiratoria en relación con el nivel de esfuerzo físico aplicado. Así, la magnitud 

de la disnea en el paciente puede clasificarse atendiendo a su intensidad (Tabla 3), desde 

un grado 0 en el que la disnea está ausente excepto en esfuerzos intensos, hasta un 

grado 4 donde la gravedad es tan alta que incapacita al sujeto para cualquier actividad 

cotidiana básica [17]. 
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Tabla 3. Escala de disnea mMRC. 

 
ESCALA DE DISNEA MODIFICADA DEL BRITISH MEDICAL RESEARCH COUNCIL 

(mMRC) 

 
GRADO 0 

 
Ausencia de disnea excepto al realizar 

ejercicio intenso. 

 
GRADO 1 

 
Disnea al andar deprisa en llano, o al 
andar subiendo una pendiente poco 

pronunciada. 

 
GRADO 2 

 
La disnea produce incapacidad para 

mantener el paso de otras personas de la 
misma edad caminando en llano o tener 
que parar a descansar al andar en llano 

al propio paso. 

 
GRADO 3 

 
La disnea produce la necesidad de tener 
que parar a descansar al andar unos 100 
metros o después de pocos minutos de 

andar en llano. 

 
GRADO 4 

 
La disnea impide al paciente salir de casa 
o aparece con actividades como vestirse 

o desvestirse. 

 

▪ Test CAT. Consiste en un cuestionario conformado por 8 ítems que revela el estado 

de salud en pacientes con EPOC. Cada una de las preguntas se califica de 0 (mínimo 

impacto en la calidad de vida) a 5 puntos (máximo impacto en el día a día del 

paciente). Por consiguiente, la puntuación total puede oscilar entre 0 y 40 puntos, y 

permite clasificar la repercusión de la enfermedad sobre el paciente [18]: 

o Puntuación < 10: bajo impacto en la calidad de vida del paciente. 

o Puntuación 10-20: impacto moderado. 

o Puntuación > 20: impacto alto. 

En la Figura 7 se presenta una plantilla de este test, mostrándose las distintas 

cuestiones por las que está conformado: 
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Figura 7. Plantilla del test CAT [19].   

 

Además del marco sintomático, es importante considerar los antecedentes de las agudizaciones 

experimentadas. Para ello, debe cuantificarse el número de episodios en el último año, 

permitiendo estratificar al paciente en dos grupos [20]: 

▪ ≥ 2 exacerbaciones moderadas o ≥1, requiriendo de ingreso hospitalario. 
▪ 0 o 1 exacerbación sin necesidad de hospitalización.  

Teniendo presente las consideraciones previas sobre sintomatología y número de 

exacerbaciones, la guía GOLD establece tres grupos: A, B y E (Tabla 4) [4]. El grupo E se caracteriza 

por una alta frecuencia de exacerbaciones, siendo la sintomatología variable a diferencia del 

resto de grupos [4].  

Tabla 4. Caracterización GOLD 2025 de grupos A, B y E en EPOC. 

 mMRC CAT Exacerbaciones 

GRUPO A 0 - 1 < 10 
0 -1 moderadas sin 

ingreso 
GRUPO B ≥ 2 ≥ 10 

GRUPO E ≥ 2 (típico) o 0-1 ≥ 10 (típico) o < 10 
≥ 2 moderadas o ≥ 1 

con ingreso 
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Los sujetos del grupo A se caracterizan por presentar síntomas más leves y poco incapacitantes 

en la vida diaria, junto con pocas exacerbaciones que no motivan ingreso hospitalario. Por su 

parte, el grupo B presenta el mismo perfil de exacerbaciones, pero con mayor carga de síntomas 

e impacto en la calidad de vida. Finalmente, el grupo E se distingue por un elevado número de 

exacerbaciones o por la presencia de agudizaciones que precisan ingreso hospitalario, 

acompañado de sintomatología muy variable [4]. 

 

1.5.3. Clasificación del riesgo clínico según GesEPOC: 

La Guía Española de la EPOC (GesEPOC) surge como una iniciativa de la Sociedad Española de 

Neumología y Cirugía Torácica (SEPAR), con la colaboración de sociedades científicas y del Foro 

Español de Pacientes. Su principal objetivo es mejorar la atención y calidad de vida de pacientes 

con EPOC, así como disminuir su prevalencia. Para ello, la guía integra los avances más recientes 

en diagnóstico, tratamiento y estratificación de la severidad, incluyendo además actualizaciones 

procedentes de la guía GOLD internacional [21]. 

En base a las categorizaciones abordadas previamente, la GesEPOC propone una segmentación 

del riesgo en bajo y alto [16]. Para determinar la inclusión en un grupo u otro, deben reunirse 

una serie de criterios (Figura 8). 

 

Figura 8. Estratificación del riesgo en EPOC [16]. 

 

Existen evidencias de que todos los componentes de esta estratificación permiten predecir la 

mortalidad. Además, investigaciones recientes han demostrado una fuerte asociación entre el 

nivel de riesgo, atención asistencial y selección del tratamiento óptimo [16]. Por tanto, esta 

categorización no solo orienta sobre el pronóstico, sino que sienta las bases para tomar las 

mejores decisiones terapéuticas atendiendo al perfil específico del paciente. 
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1.6. Tratamiento 

Aunque la EPOC es una enfermedad crónica y progresiva y, por tanto, no curable, existen 

tratamientos farmacológicos y no farmacológicos cuyo objetivo es reducir los síntomas y 

minimizar los riesgos asociados [4]. De esta manera, se logra aliviar la sintomatología, mejorar la 

tolerancia al ejercicio físico y el estado de salud del paciente, así como prevenir la progresión de 

la enfermedad y el desarrollo de exacerbaciones, facilitando su manejo y contribuyendo a 

reducir la mortalidad [4].  

 

1.6.1. Terapia propuesta en GOLD 2025 

1.6.1.1. Opciones farmacológicas en EPOC estable 

El tratamiento farmacológico se establece en función del grupo al que pertenece el paciente, 

determinado por el número de exacerbaciones, la carga sintomática y, en ciertos casos, el 

recuento de eosinófilos en sangre. Las indicaciones recogidas en la guía GOLD 2025 se resumen 

en la Tabla 5 [4]: 

Tabla 5. Tratamiento farmacológico por grupos según GOLD 2025. 

GRUPO A GRUPO B GRUPO E 

Broncodilatadores LABA + LAMA 
Monoterapia LABA/LAMA 

LABA + LAMA 
LABA + LAMA +ICS  

 

LABA: Long Acting Beta Agonists (agonistas β2 de acción prolongada). 

LAMA: Long Acting Muscarinic Antragonists (antagonistas muscarínicos de acción prolongada). 

ICS: corticoides inhalados. 
 

▪ Grupo A: se recomienda el uso de broncodilatadores, que pueden ser de acción corta o 

prolongada según el grado de disnea del paciente. Ante una buena disponibilidad y 

reducido coste, es preferible el uso de broncodilatadores de acción duradera, salvo en 

casos de disnea ocasional [4]. 

 

▪ Grupo B: la terapia consiste en la combinación de LABA y LAMA, ambos 

broncodilatadores de acción prolongada. Su acción conjunta ha demostrado una eficacia 

superior al empleo exclusivo de LAMA. No obstante, si su aplicación no es viable, puede 

optarse por la monoterapia con LABA o LAMA. No existen evidencias que respalden la 

superioridad clínica de uno sobre otro, por lo que la selección debe basarse en la 

sensación de alivio del paciente en concreto [4].  

Cabe señalar la probabilidad de que un sujeto perteneciente a este grupo padezca 

comorbilidades que intensifiquen los síntomas y condicionen negativamente el 

pronóstico. Esto subraya la necesidad de identificarlas y tratarlas atendiendo a las guías 

nacionales e internacionales actuales. 
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▪ Grupo E: de forma análoga al grupo B, se opta por la aplicación conjunta de LABA y 

LAMA, dado que su actuación permite reducir las exacerbaciones en comparación a la 

monoterapia de broncodilatadores de acción prolongada. No obstante, si la hematología 

del paciente revela un nivel de eosinófilos en sangre ≥ 300 células μL, puede 

considerarse la triple terapia LABA+LAMA+ICS (corticoides inhalados). En caso de 

padecer asma además de EPOC, la aplicación de ICS es obligatoria [4].  

Independientemente de la pertenencia a un grupo u otro, resulta fundamental revisar, evaluar y 

ajustar el tratamiento atendiendo al contexto específico del paciente [4]: 

- Revisar: síntomas y posible riesgo de exacerbaciones. 

- Evaluar: respuesta al tratamiento y técnica de inhalación. 

- Ajustar: debe adaptarse el tratamiento atendiendo a la revisión clínica efectuada donde se 

estudian efectos adversos.  

 

1.6.1.2. Opciones no farmacológicas: 

Las intervenciones no farmacológicas complementan el tratamiento farmacológico. En todos los 

grupos, se considera prioritario el abandono del hábito tabáquico, recomendándose actividad 

física regular.  Entre las terapias no farmacológicas pueden citarse: vacunas preventivas, 

rehabilitación pulmonar, oxigenoterapia domiciliaria y ventilación mecánica no invasiva (VNI) [4]. 

▪ Vacunaciones preventivas: Según las guías locales, se establece la administración de una 

serie de vacunas preventivas para disminuir el riesgo de padecer infecciones 

respiratorias que puedan agravar la EPOC. Estas vacunaciones incluyen: influenza, 

COVID-19, neumococo, tos ferina, herpes zóster y virus respiratorio sincitial (RSV) [4].   

▪ Rehabilitación pulmonar: Resulta clave para los grupos B y E. Esta terapia se adapta al 

perfil concreto del paciente y a sus comorbilidades. Se recomienda realizar ejercicio 

supervisado al menos dos veces por semana, y sus beneficios son observables tras 

programas de entre 6 y 8 semanas de duración [4].  

 

▪ Oxigenoterapia domiciliaria: Permite mantener una saturación de oxígeno en sangre 

arterial (SaO2) ≥ 90% y está indicada en dos casos [4]: 

 

o Pacientes con una presión de oxígeno arterial (PaO2) ≤ 55 mmHg o una 

saturación de oxígeno ≤ 88%, en presencia o no de hipercapnia.  

o Pacientes con PaO2 entre 55-60 mmHg o una saturación del 88% en caso de 

padecer también hipertensión pulmonar, insuficiencia cardíaca congestiva o 

policitemia. 

Tras un periodo de 60-90 días, es necesario reevaluar si la oxigenoterapia sigue siendo 

necesaria y si su aplicación ha resultado efectiva [4].  
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▪ Ventilación mecánica no invasiva (VNI): Se aplica en sujetos con EPOC estable muy 

severa, especialmente en aquellos que padezcan hipercapnia diurna significativa e 

ingreso hospitalario reciente. En aquellos casos en los que se tenga EPOC y apnea 

obstructiva del sueño (AOS), se han observado mejoras gracias a la aplicación de CPAP 

(presión positiva continua en la vía aérea). Además, la VNI permite reducir la mortalidad, 

la morbilidad en exacerbaciones agudas con presencia de insuficiencia respiratoria y el 

riesgo de hospitalización [4]. 

 

En algunos estudios, se ha demostrado que el uso conjunto de oxigenoterapia y VNI en el 

domicilio retrasa el tiempo hasta una nueva hospitalización o incluso el fallecimiento en los 12 

meses siguientes [4].  

Si la respuesta a estos tratamientos es adecuada, deben ofrecerse vacunas anuales, educación 

para que los pacientes sean capaces de manejar la enfermedad en la medida de lo posible y 

valoración de los factores conductuales (exposición a factores de riesgo). En caso de que la 

respuesta no resulte óptima, deben abordarse los rasgos tratables como disnea o exacerbaciones 

[4].  

 

1.6.2. Terapia propuesta por la GesEPOC 

La GesEPOC establece las pautas terapéuticas en función del fenotipo que presenta el paciente. 

Así, pueden citarse tres fenotipos posibles: no agudizador, agudizador eosinofílico y agudizador 

no eosinofílico [16]. 

▪ No agudizador: pacientes que han experimentado, como máximo, una agudización leve en 

el último año sin precisar ingreso hospitalario. Para este perfil clínico, se aplica doble 

broncodilatación (LABA + LAMA), ya que se ha evidenciado una mayor eficacia frente a la 

monoterapia. Las mejorías se reflejan en la disminución de disnea, una mejor calidad de vida 

y la reducción de la necesidad de administrar medicación de rescate [16].  

 

▪ Agudizador eosinofílico: un paciente agudizador es aquel que ha sufrido dos o más 

agudizaciones ambulatorias, o al menos una que haya requerido hospitalización el año 

previo. Para distinguir si estos eventos se deben a una recaída o al fracaso del tratamiento, 

debe transcurrir un intervalo temporal mínimo de cuatro semanas desde la resolución de la 

agudización anterior, o seis semanas desde que comenzó la sintomatología. Por otra parte, 

el fenotipo eosinofílico se define por la presencia de > 300 eosinófilos/mm3 en sangre 

periférica en fase estable. En este perfil de pacientes, la mayor respuesta al tratamiento se 

obtiene con la combinación de ICS y LABA, dado que contribuye a un menor riesgo de 

exacerbaciones. No obstante, investigaciones recientes han concluido que la triple terapia 

(LABA + LAMA + ICS) brinda mejorías más significativas en la función pulmonar, en los 
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síntomas respiratorios y en la disminución de las exacerbaciones en comparación con la 

aplicación de ICS y LABA [16].  

 

▪ Agudizador no eosinofílico: pacientes cuyo perfil encaja con las características del fenotipo 

agudizador, pero que poseen un número de eosinófilos < 300 células/mm3 en sangre 

periférica. Los ICS presentan una eficacia limitada en estos casos, aunque pueden 

administrarse especialmente si los eosinófilos superan las 100 células/mm3. Si el recuento 

es < 100 células/mm3, se desaconseja su empleo debido al riesgo de efectos secundarios. En 

pacientes con cifras de 100-300 células/mm3, se valora la triple terapia (LABA + LAMA + ICS). 

Sin embargo, en la mayoría de los casos se aconseja la aplicación de LABA y LAMA. Esta 

combinación resulta más eficaz que LABA y ICS cuando las exacerbaciones son menos 

frecuentes o se requieren antibióticos [16].  

 

1.7. Exacerbaciones de EPOC 

1.7.1. Concepto e implicaciones de las exacerbaciones 

La Guía GOLD 2025 define la exacerbación de la EPOC como un evento caracterizado por el 

incremento de alguno de los siguientes síntomas: disnea, tos o esputo, con un empeoramiento 

que ocurre en menos de 14 días [4]. Es frecuente que concurran otros signos clínicos, como 

taquipnea y/o taquicardia, así como inflamación local y sistémica desencadenada por 

infecciones, exposición a contaminantes ambientales o irritantes [4]. 

No obstante, no existe una definición universal sobre “exacerbación de la EPOC”, lo que provoca 

que a menudo se infravaloren [22]. Esto constituye un obstáculo relevante, ya que, al ser una 

enfermedad crónica y progresiva, muchos sujetos no solicitan de forma oportuna atención 

médica por atribución de los síntomas a causas benignas como el envejecimiento [22]. Esto 

implica una detección en fases más tardías, lo que agrava el impacto de la EPOC sobre el 

paciente.  

A pesar de esta falta de consenso, las exacerbaciones son ampliamente reconocidas como 

elementos clave con repercusiones significativamente negativas en la historia natural de la EPOC. 

Sus consecuencias incluyen un empeoramiento de la función pulmonar, deterioro en la calidad 

de vida y aumento de la morbilidad [20]. En la Figura 9 se recogen otros efectos importantes.  
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Figura 9. Efectos de las exacerbaciones [20].   

TVP: trombosis venosa profunda; TEP: tromboembolismo pulmonar; IAM: infarto agudo de miocardio; 

ACV: accidente cerebrovascular. 

 

 

1.7.2. Diagnóstico y clasificación de la severidad de las 

exacerbaciones de EPOC 

El diagnóstico diferencial en las agudizaciones es esencial para poder distinguir entre patologías. 

Las pruebas efectuadas con este fin más comunes son [22]:  

▪ Radiografía de tórax: detecta neumonía, neumotórax, derrame pleural o insuficiencia 

cardíaca congestiva. 

▪ Determinación de dímero D y angio-TC torácico, por sospecha de tromboembolia 

pulmonar. 

▪ Electrocardiograma y determinación de troponinas: orientados a identificar arritmias o 

síndrome coronario agudo. 

Actualmente no se dispone de un biomarcador diagnóstico único que presente una elevada 

especificidad y sensibilidad. Por ello, el diagnóstico se efectúa basándose en tres criterios 

objetivables: agravamiento de la disnea, desaturación de oxígeno y biomarcadores alterados 

[22]. 

Tras establecer el diagnóstico, es importante categorizar la gravedad de la exacerbación para 

adoptar las intervenciones terapéuticas más adecuadas. En este sentido, la Propuesta Roma 
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presenta una clasificación de la gravedad de las agudizaciones en tres grados: leve, moderada y 

grave [22]. La inclusión en uno u otro se basa en seis parámetros: disnea, frecuencia respiratoria, 

frecuencia cardíaca, saturación de oxígeno, proteína C reactiva (PCR) y valores gasométricos. En 

la Tabla 6 se muestra esta clasificación [22]:  

Tabla 6. Grados de severidad de las exacerbaciones de EPOC (Impacto de las exacerbaciones en 
la enfermedad pulmonar obstructiva crónica) [22]. 

SEVERIDAD CRITERIOS 

LEVE 

➢ Disnea < 5 evaluada por la escala análoga visual (VAS). 
➢ Frecuencia respiratoria < 24 respiraciones/min. 
➢ Frecuencia cardíaca < 95 latidos/min. 
➢ SaO2 en reposo > 92%, ya sea respirando aire ambiente 

o con oxigenoterapia, y/o variación ≤ 3% respecto a su 
valor basal de SaO2. 

➢ PCR < 10 mg/L. 

MODERADA 

(Cumplir al menos 3 de los 
criterios expuestos) 

➢ Disnea ≥ 5 evaluada por VAS. 
➢ Frecuencia respiratoria ≥ 24 respiraciones/min. 
➢ SaO2 basal < 92% respirando aire ambiente (o con 

oxigenoterapia habitual) y/o variación de la SaO2 ≤ 3% 
respecto a su valor en reposo. 

➢ PCR ≥ 10 mg/L. 
➢ Hipoxemia (PaO2 ≤ 60 mmHg) y/o hipercapnia (PaCO2 

> 45 mmHg), pero sin acidosis (pH > 7.35). 

GRAVE ➢ Hipercapnia con acidosis (pH <7.35).  

 

VAS: escala análoga visual; SaO2: saturación de oxígeno en sangre arterial; PCR: proteína C reactiva: PaO2: 

presión de oxígeno en sangre arterial; PaCO2: presión de dióxido de carbono en sangre arterial. 

 

1.7.3. Reingresos y mortalidad por exacerbaciones 

Tras una exacerbación moderada o grave que requiere hospitalización, el paciente presenta una 

mayor probabilidad de reingreso a los 30 y 90 días del alta. Este riesgo aumenta si el sujeto posee 

antecedentes de agudizaciones previas que hayan precisado hospitalizaciones prolongadas. Los 

reingresos frecuentes por exacerbaciones de EPOC se asocian con una mayor mortalidad [22]. 

Aunque la cantidad de reingresos depende del contexto demográfico, en el meta-análisis de 

Ruan et al. (2023) [23], en el que se analizan un total de 46 estudios de distintos territorios, se 

recogieron las tasas de reingreso por exacerbación 30, 60, 90, 180 y 365 días después del alta. 

De este modo, se ofrecen tasas de reingreso globales más precisas y generalizables que las 

aportadas por estudios individuales cuyos porcentajes pueden depender del contexto nacional. 

A los 30 días, la tasa promedio combinada anual fue del 11%, a los 60 días del 17%, a los 90 días 

del 30% y a los 180 días del 37% [23].  
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En cuanto a la mortalidad intrahospitalaria, se han identificado diversos factores que contribuyen 

a su aumento, como disfunciones cardíacas, estancias prolongadas, envejecimiento, 

comorbilidades, desnutrición y valores alterados de la gasometría arterial al ingreso [22].  

Por otra parte, la mortalidad posterior a la hospitalización es especialmente alta durante la 

primera semana tras el alta y se mantiene elevada tres meses después. Además, es importante 

señalar que la tasa de supervivencia a cinco años después de un ingreso por exacerbación de 

EPOC es inferior al 50% [22]. 

 

1.7.4. Factores de riesgo de reingreso por exacerbación 

Las exacerbaciones de la EPOC constituyen la principal carga sanitaria de la enfermedad [4]. Por 

ello, la identificación de los factores de riesgo de reingreso por exacerbaciones de la EPOC resulta 

fundamental para poder implementar estrategias preventivas, mejorar la comprensión de la 

enfermedad y reducir su impacto. En este sentido, a continuación, se especifican algunos de los 

factores predisponentes [20], [22], [24]:  

▪ Infecciones. Las exacerbaciones se deben en su mayoría a causas infecciosas. El 29.7% 

de las mismas son de causa bacteriana, el 23.3% se deben a virus y el 25% se 

corresponden a coinfecciones virales/bacterianas. 

▪ Antecedentes de exacerbaciones, sobre todo en el último año.  

▪ Tabaquismo. 

▪ Presencia de comorbilidades. 

▪ Uso de oxigenoterapia. 

▪ Grado de severidad. Existe una clara relación entre el grupo GOLD y la frecuencia de las 

exacerbaciones. A mayor grado GOLD, mayor predisposición. 

Conocer estos factores no solo permite optimizar el manejo clínico y disminuir la carga 

socioeconómica y sanitaria, sino que resulta muy relevante para seleccionar las variables con las 

que elaborar los modelos predictivos como el del presente trabajo.  

 

1.7.5. Medidas preventivas y manejo de las exacerbaciones 

La frecuencia de las exacerbaciones puede disminuirse mediante diversas intervenciones según 

la Guía GOLD 2025. Entre ellas, se incluyen [4]: 

▪ Broncodilatadores: LABA, LAMA o combinación de ambas. 

▪ Corticosteroides: LABA + ICS o LABA + LAMA + ICS. 

▪ Antiinflamatorios no esteroideos. 

▪ Antiinfecciosos como vacunas. 

▪ Agentes mucolíticos.  



CAPÍTULO 1   INTRODUCCIÓN 

 

23 
 

▪ Otros: abandono del hábito tabáquico, rehabilitación, vitamina D y medidas de 

protección como uso de mascarilla o higiene de manos.  

Por otra parte, el manejo de las agudizaciones se fundamenta en cinco pilares [20]: 

▪ Broncodilatadores: empleo de SABA (agonistas ꞵ2 de corta acción inhalados), con 

posibilidad de combinación con SAMA (anticolinérgico de corta acción). Estos son 

administrados mediante un inhalador o nebulizador.  

 

▪ Glucocorticoides: optimizan la función pulmonar, mejoran la oxigenación y evitan 

recaídas tempranas. Esto contribuye a prevenir el fracaso de la terapia y reducir la 

estancia hospitalaria. Sin embargo, el uso prolongado de estos fármacos puede favorecer 

el desarrollo de neumonía e incrementar la mortalidad. 

 

▪ Antibióticos: indicados en pacientes con aumento del volumen de esputo y aspecto 

purulento del mismo. La elección del antibiótico depende de los patrones de resistencia 

bacteriana del sujeto y de las guías locales. El periodo de administración es de 

aproximadamente 5-7 días.  

 

▪ Oxígeno: aplicado en situaciones de hipoxemia, con una saturación objetivo del 88-92% 

y con el fin de prevenir el desarrollo de hipercapnia.  

 

▪ Ventilación no invasiva: recomendada en casos de acidosis respiratoria (pH 7.2 -7.35). 

Permite mejorar el intercambio gaseoso y disminuir la frecuencia respiratoria, el trabajo 

respiratorio, la severidad de la disnea, la tasa de intubación, la estancia hospitalaria y la 

mortalidad. En este contexto, la cánula nasal de alto flujo (CNAF) se ha ido consolidando 

recientemente como una herramienta eficaz para tratar la exacerbación.  

 

1.7.6. Volumen global de las exacerbaciones 

El análisis en este apartado se basa en las proyecciones recogidas en un estudio reciente de Boers 

et al. 2025 [25]. En este artículo se emplea un modelo de simulación desarrollado a partir de 

datos objetivos como prevalencia, incidencia y factores de riesgo extraídos de fuentes como la 

Global Burden of Disease (GBD) y el World Bank. Con ello, se efectúan estimaciones del número 

de exacerbaciones desde el presente (2025) al año 2050. Estos datos se recogen en la Tabla 7 

[25], donde se muestra un desglose de la cantidad estimada de exacerbaciones de EPOC por 

región, así como la variación porcentual de agudizaciones para los años considerados. 
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Tabla 7. Número de exacerbaciones de EPOC anuales estimadas [25]. 

 
NÚMERO DE EXACERBACIONES ANUALES (en millones) 

Región 2025 2050 
Variación porcentual 

(%) 

Asia Oriental y el 
Pacífico 

171.30 236.90  +38.30% 

Asia del Sur 145.40 193.60 +33.10% 

Oriente Medio 15.10 19.10 +26.50% 

Latinoamérica 6.60 7.40 +12.10% 

Europa 49.10 48.10 

 

-2.00% 

Recuento global 456.40 567.60 +24.30% 

 

La fuente de la que se obtiene la tabla incluye también datos de Norteamérica. Sin embargo, se han 

observado una inconsistencia en los mismos y se ha optado por no incluirlos para no inducir errores. 

 

Puede apreciarse un aumento generalizado del volumen de exacerbaciones a nivel mundial, con 

un incremento estimado del 24.30% entre 2025 y 2050. Todas las regiones experimentan un 

crecimiento, a excepción de Europa, donde se proyecta una caída leve (-2.0%). El mayor aumento 

se corresponde con Asia Oriental y el Pacífico (+38.3%), seguido de cerca por Asia del Sur 

(+33.1%), reflejando ambas cargas relevantes. Otros territorios como Oriente Medio y 

Latinoamérica, a pesar de registrar cifras absolutas inferiores al resto, también presentan 

crecimientos importantes.  

Ante esta tendencia global de las exacerbaciones, se pone de manifiesto la necesidad de 

confeccionar herramientas capaces de anticipar eventos que puedan suponer una complicación 

tanto para el paciente como para el sistema sanitario en materia de recursos. En este sentido, 

los modelos predictivos resultan clave para ofrecer cuidados personalizados y diseñar estrategias 

eficientes que contribuyan a disminuir el impacto socioeconómico de la EPOC. 
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1.8. Impacto socioeconómico de la EPOC y sus exacerbaciones 

A pesar de que la EPOC representa una crisis significativa de salud pública, continúa siendo 

infradiagnosticada y no recibe la atención necesaria. Se estima que cada hora fallecen 425 

personas en todo el mundo por esta patología [26], cobrándose la vida de más personas que el 

cáncer de pulmón y de mama combinados. En el año 2024, afectaba a 391 millones de personas 

a nivel global [26]. 

 Su devastadora carga subraya la necesidad de otorgar a la EPOC la prioridad adecuada, así como 

una financiación suficiente y opciones terapéuticas óptimas. Las consecuencias de la 

enfermedad abarcan tanto el ámbito social como el económico. La EPOC reduce notablemente 

la calidad de vida de los pacientes y de su entorno familiar, al tiempo que representa una elevada 

carga para el sistema sanitario, que requiere inversiones considerables de recursos para hacerle 

frente.  

 

1.8.1. Carga económica 

Costes totales asociados a la EPOC 

Las muertes asociadas a esta enfermedad disminuyen la población en edad laboral y repercuten 

negativamente en la productividad. Asimismo, se observa un incremento del absentismo laboral 

[27], ya que el 40% de las personas con EPOC tienen que reducir su jornada o incluso abandonar 

su empleo [26]. En países carentes de un sistema de sanidad pública, la economía del núcleo 

familiar se ve condicionada, puesto que deben asumir los gastos derivados de las terapias. Puede 

observarse el mismo efecto en las aseguradoras, ya que, para cubrir los costes y garantizar una 

atención plena, deben incrementar necesariamente las primas. Ambos factores contribuyen a 

impedir la acumulación de capital físico en la economía [27]. 

El efecto que produce la EPOC depende del contexto económico de cada nación. Los países con 

ingresos bajos y medianos (PIBM) son los más afectados, puesto que sus habitantes enfrentan 

múltiples dificultades socioeconómicas y la atención médica es, en muchos casos, limitada. De 

hecho, la OMS afirma que alrededor del 90% de decesos por EPOC en personas menores de 70 

años se producen en este tipo de países. Además, aproximadamente la mitad de los pacientes 

con esta patología en estas regiones experimenta exacerbaciones que requieren la aplicación de 

terapias o incluso motivan la hospitalización [26]. 

En los 365 días tras estas agudizaciones, se estima que el coste medio por paciente en urgencias 

u hospitalizado supera los 6000 euros. Los mayores gastos se dan en la hospitalización, pero 

también en el reingreso, puesto que normalmente un tercio de los pacientes que han sido dados 

de alta requieren ingresar de nuevo meses después [28].  

Estudios efectuados por la OMS junto con otras entidades, evidencian que el acceso a la terapia 

inhalada en los PIBM es muy limitado y que el coste de los medicamentos resulta prácticamente 



CAPÍTULO 1   INTRODUCCIÓN 

 

26 
 

inasumible. El motivo de esto es que, gran parte de los fármacos disponibles proceden de marcas 

prestigiosas y existen pocas alternativas más asequibles [4]. A esto hay que añadir que los 

ministerios de salud no han confeccionado políticas sanitarias suficientes encaminadas a la 

prevención de la EPOC [27].  

En la Unión Europea (UE) los costes totales destinados a las enfermedades respiratorias 

representan el 6% del presupuesto anual de salud. De esta cuantía, la EPOC abarca el 56%, lo 

que se traduce en un total de 38 600 millones de euros [4].  

 

La confección de proyecciones de la carga económica de la EPOC y cómo se distribuye la misma 

entre países es imprescindible para tomar las medidas necesarias que permitan disminuir la 

morbilidad y mortalidad de la EPOC. En este sentido, se ha observado un impacto económico 

mayor en los próximos años. En Estados Unidos, a fecha de 2038, se espera que los costes 

asociados a EPOC supongan 800 900 millones de dólares (aproximadamente 40 000 millones de 

dólares anuales) [25]. En otras regiones como Inglaterra y Escocia, se espera alcanzar un coste 

directo total de 2900 millones de dólares y 264 millones de dólares, respectivamente [25]. 

 

En la Figura 10 [25], se muestra un mapa mundial procedente del estudio de Boers et al. (2025) 

[25], donde se representa la variación porcentual de los costes directos anuales por EPOC entre 

2025 y 2050.  

 

 

Figura 10. Mapa mundial de la variación porcentual estimada de los costes directos anuales 
asociados a EPOC entre 2025 y 2050 [25]. 
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Lo primero que puede observarse es que la evolución de estos costes es totalmente desigual 

entre regiones. El incremento más destacado se registra en Asia Oriental y el Pacífico (+27%), 

que incluye naciones como Japón, Corea del Sur y Filipinas, así como territorios del Pacífico como 

Australia. Le sigue Asia del Sur, con países como Pakistán, India y Bangladés. Europa es la zona 

con menor incremento estimado (+4%) y Norteamérica es la única cuya variación porcentual es 

negativa, aunque no en gran medida (-10%).  

Para complementar la información expuesta, se presenta la Tabla 8, procedente del mismo 

estudio [25], donde se detallan los costes directos anuales asociados a la EPOC para cada región. 

La tabla comprende cuatro columnas diferentes: región, costes estimados en 2025, costes 

predichos para 2050 y variación porcentual entre ambas fechas. Las regiones han sido ordenadas 

de mayor a menor variación porcentual para una mejor compresión.  

Tabla 8. Costes directos anuales por EPOC desde 2025 hasta 2050 por cada región [25]. 

COSTES DIRECTOS ANUALES 

Región 2025 2050 
Variación 

porcentual (%) 

Asia Oriental y 
el Pacífico 

305.49 mil millones USD 388.49 mil millones USD 
+27.0% 

Asia del Sur 
52.70 mil millones USD 63.34 mil millones USD 

+20.2% 

Oriente Medio 
22.80 mil millones USD 26.58 mil millones USD 

+16.6% 

Latinoamérica 
15.66 mil millones USD 16.44 mil millones USD 

+4.8% 

Europa 
170.01 mil millones USD 176.87 mil millones USD 

+4.0% 

Norteamérica 
211.99 mil millones USD 190.69 mil millones USD 

 

-10.0% 

Coste global 778.66 mil millones USD 862.42 mil millones USD +10.8% 

 

Como puede apreciarse, se ha incluido una fila de coste global que resulta del sumatorio total 

de los datos de las columnas. Se estima un crecimiento mundial de costes directos por EPOC 

entre 2025 y 2050 de +10.8%. No obstante, pueden observarse detalles que en la Figura 10 eran 

imperceptibles.  

Algunas regiones presentan costes elevados con variaciones en el periodo temporal considerado 

leves o incluso reducciones. Esto ocurre en el caso de Norteamérica, que ocupa la segunda 

posición en cuanto a costes más altos, pero presenta un decrecimiento porcentual.  Sin embargo, 

otros territorios con una menor carga económica absoluta sufren aumentos significativos, como 
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es el caso de Asia del Sur y Oriente Medio. Por tanto, no existe una relación entre la cuantía del 

gasto y el porcentaje de variación estimado. Esto resalta la importancia de tener en cuenta los 

valores relativos y absolutos para así tener una comprensión correcta del impacto económico 

real de la EPOC.  

En el contexto europeo, España también enfrenta una carga económica importante. En 2020, la 

Estrategia en EPOC del Sistema Nacional de Salud, elaborada por el Ministerio de Sanidad, estimó 

un coste anual de entre 750 y 1000 millones de euros [10]. Esta cuantía incluye costes directos, 

indirectos e intangibles. Por cada paciente, el coste medio directo oscila entre 1712 y 3238 euros 

anuales. Dentro de estos costes, se distinguen tres aspectos principales: hospitalización (40-

45%), tratamientos (35-40%) y consultas y pruebas diagnósticas (15-25%) [10].  

Según el Informe Anual del Sistema Nacional de Salud de 2023, los pacientes con EPOC requieren 

2.5 veces más atención primaria que el resto de la población [29]. Cada año se registran 1.5 

hospitalizaciones por cada 1000 habitantes, con una estancia media de 8 días. De estos ingresos, 

tres de cada cuatro corresponden a varones. Además, el número de urgencias atendidas por esta 

patología es aproximadamente de 90 000 [29].  

 

Costes asociados a exacerbaciones 

En la Figura 11 se muestra una estimación de los costes derivados de las exacerbaciones 

producidas anualmente en un intervalo comprendido entre 2025 y 2050 a nivel global [25]. En 

el año 2025, el gasto estimado es de 456 millones de dólares, mientras que en 2050 la cifra 

asciende hasta alcanzar los 568 millones de dólares. Esto se traduce en un incremento de costes 

del 24.6% en los 25 años considerados.  

 

 

Figura 11. Proyección del coste anual de exacerbaciones de EPOC entre 2025 y 2050 a nivel 
mundial. Elaboración propia. Datos extraídos de [25]. 
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Aunque la tendencia de crecimiento observada no es abrupta, refleja una evolución progresiva 

hacia cifras cada vez más altas. En consecuencia, la carga económica provocada por las 

exacerbaciones podría intensificarse con el tiempo. Un manejo correcto de los reingresos por 

exacerbaciones mediante modelos predictivos puede contribuir a mitigar este impacto.  

 

1.8.2. Carga social 

La carga social de la EPOC se manifiesta principalmente en la mortalidad y la discapacidad 

asociadas a esta afección. En este contexto, el estudio de la Carga Global de Enfermedad (Global 

Burden of Disease, GBD) emplea para su estimación los Años de Vida Ajustados por Discapacidad 

(AVAD, o DALY en inglés) [4]. El cálculo de los AVAD para una patología concreta se basa en la 

suma de los años de vida perdidos (AVP) y los años vividos con discapacidad (AVD), ponderados 

según la gravedad de la condición clínica [30].  

Entre 1990 y 2019, la EPOC fue la responsable predominante de un incremento global de los 

DALY, con un impacto más acentuado en los PIBM. Durante ese mismo periodo, la carga mundial 

asociada a esta enfermedad experimentó un crecimiento desde los 59.2 millones de DALY en 

1990 a 74.4 millones en 2019. Esto supone un crecimiento del 25.7%, reflejado especialmente 

en el sudeste asiático, India, África subsahariana y Sudamérica [4].  

 

En países de ingresos elevados como Estados Unidos, el impacto es aún mayor, ya que en la 

actualidad la EPOC constituye la segunda causa de pérdida de DALY, siendo la primera la 

enfermedad cardíaca isquémica [4].  

 

1.9. Inteligencia Artificial y EPOC 

1.9.1. Introducción a la Inteligencia Artificial (IA) 

El origen teórico de la informática se remonta a 1936, cuando el matemático británico Alan 

Turing presentó la noción de la Máquina de Turing (MT). Este modelo teórico permitía la 

manipulación de símbolos en una cinta dividida en celdas siguiendo un conjunto de reglas [31], 

lo que sentó las bases fundamentales de la computación [32].  

En 1941, el ingeniero alemán Konrad Zuse desarrolló la Z3 [33], considerada la primera 

computadora programable. Esta máquina operaba con un sistema binario y podía almacenar un 

máximo de 64 palabras de 22 bits [32], [33]. Este avance, junto con la Máquina de Turing, 

constituyeron dos hitos que potenciaron el desarrollo de sistemas más complejos.  

En 1956 se celebró la Conferencia de Dartmouth, un encuentro interdisciplinar que reunió a 

especialistas en matemáticas, neurología, psicología e ingeniería eléctrica. Fruto de esta reunión 
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surgió oficialmente el término de “Inteligencia Artificial”, acuñado por el matemático John 

McCarthy. Por ello, este evento marcó el nacimiento formal de la IA [34], considerando esta 

disciplina como un nuevo campo de investigación. 

Desde su reconocimiento oficial, la Inteligencia Artificial ha experimentado una evolución 

importante a lo largo de las últimas décadas, como se ilustra en la Figura 12 [35]: 

 

 

 Figura 12. Evolución histórica de la Inteligencia Artificial (IA) en las últimas décadas [35]. 

 

• Década de 1950: Inteligencia Artificial. Etapa inicial en la que surge el concepto general 

de IA, concebida como la capacidad de las máquinas para reproducir la lógica humana. 

• Década de 1980: Machine Learning (ML). Desarrollo de sistemas de IA capaces de 

aprender a partir de datos históricos. Aplicando algoritmos complejos es posible analizar 

grandes bases de datos, identificar patrones y generar predicciones. Su rendimiento 

mejora notoriamente a medida que aumenta el volumen de datos disponible en el 

entrenamiento [36]. 

• Década de 2010: Deep Learning (DL). Aparición de modelos de ML basados en redes 

neuronales profundas (multicapa), construidas para imitar de manera simplificada el 

funcionamiento del cerebro humano [37].  

• Década de 2020: Generative AI (Gen AI). Transición de los modelos de DL capaces de 

realizar análisis de datos hacia sistemas con la habilidad de crear contenido original en 

respuesta a instrucciones del usuario [38].  

En la actualidad, la Inteligencia Artificial se concibe como un conjunto de algoritmos que permite 

a los sistemas informáticos analizar datos y tomar decisiones en función de su conocimiento 
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adquirido. Las tareas que puede ejecutar son propias de la inteligencia humana, como identificar 

patrones, comprender lenguaje natural y resolver problemas [39]. 

 

1.9.2. Presencia de la Inteligencia Artificial en la EPOC 

El impacto social de la Inteligencia Artificial es innegable y su presencia ha transformado 

prácticamente todos los ámbitos de la vida diaria [40]. El sector sanitario no es una excepción, 

ya que la IA se ha integrado progresivamente en el entorno de los sistemas de salud. Su 

aplicación resulta cada vez más relevante, puesto que impulsa mejoras en la productividad, la 

calidad asistencial, el acceso a los servicios y la participación activa del paciente en el manejo y 

seguimiento de su patología. Todo ello se traduce en una mayor humanización de los procesos, 

al favorecer una mayor dedicación de tiempo de calidad a la relación médico-paciente [41].  

En la EPOC en concreto, la aplicación de la IA ha experimentado un crecimiento sostenido en los 

últimos años. Esto se evidencia en el incremento del número de publicaciones en buscadores 

científicos de gran reconocimiento como PubMed y ScienceDirect sobre esta temática. Los 

resultados anuales proporcionados por ambas plataformas bajo los términos de búsqueda 

“artificial intelligence COPD” reflejan un aumento importante a lo largo del tiempo, sobre todo 

a partir de 2018 como puede verse en las Figuras 13 y 14.  

 

 

Figura 13. Número de publicaciones en PubMed sobre Inteligencia Artificial en EPOC entre 1995 
y 2025. Elaboración propia basada en el recuento total de resultados obtenidos bajo la búsqueda 
“artificial intelligence COPD”.   
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Figura 14. Número de publicaciones en ScienceDirect sobre Inteligencia Artificial en EPOC entre 
1995 y 2025. Elaboración propia basada en el recuento total de resultados obtenidos bajo la 
búsqueda “artificial intelligence COPD”.   

 

En la Figura 15 se presentan distintas aplicaciones de la IA para el abordaje de la EPOC, 

observando su integración en diferentes aspectos de la enfermedad [42]. 

La IA se alimenta de datos procedentes de exploraciones físicas, que brindan información a 

través de cuestionarios, evaluaciones médicas y pruebas como la caminata de seis minutos 

(6MWT, Six Minutes Walking Test). Esta información se complementa con variables fisiológicas 

obtenidas por medio de distintos dispositivos o pruebas, como la frecuencia respiratoria (RR, 

respiratory rate), presión sanguínea (BP, blood pressure), frecuencia cardíaca (HR, heart rate), 

sonidos pulmonares (LS, lung sounds), además de resultados hematológicos y de tomografía 

computarizada (TC), especialmente de tórax. También es importante tener en cuenta factores 

como la genética, las condiciones meteorológicas y el ambiente, que pueden influir 

significativamente en el desarrollo de la enfermedad.  

La combinación de toda esta información permite aplicar modelos de predicción de 

exacerbaciones agudas (AECOPD) mediante Machine Learning. Además, el uso conjunto de 

Machine Learning y Deep Learning proporciona asistencia en el diagnóstico, lo que da lugar a 

otra aplicación de la IA en esta enfermedad: el diagnóstico inteligente. 
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Figura 15. Aplicaciones de la Inteligencia Artificial en EPOC [42]. 

6MWT:6 Minutes Walking Test. RR: respiratory rate. BP: blood pressure. HR: heart rate. LS: lung sound. 
AMP: amplitude. FREQ: frequency.  BT: blood test. EMR: electronic health records. 

 

Sin embargo, más allá del diagnóstico, uno de los desafíos más relevantes en el abordaje de la 

EPOC es el manejo de los reingresos por exacerbaciones. Estos eventos conllevan un deterioro 

en la calidad de vida del paciente, un aumento sustancial de los costes sanitarios, mayor riesgo 

de complicaciones derivadas de la enfermedad e incremento de la tasa de mortalidad en 

comparación con la población general. Por consiguiente, resulta clave identificar los factores de 

riesgo que predisponen a estas agudizaciones y elaborar modelos predictivos simples, eficaces y 

aplicables durante la práctica clínica. Dichos modelos son herramientas con un gran potencial, 

ya que permiten anticipar el posible deterioro de la enfermedad. Con ello, se favorecen 

intervenciones más tempranas y tratamientos adaptados al perfil clínico del paciente, 

contribuyendo significativamente a prolongar su supervivencia y evitar dificultades en su vida 

diaria [43]. 

No obstante, la EPOC es una enfermedad muy heterogénea y actualmente no está lo 

suficientemente reconocida. Esto complica la detección temprana y compromete la fiabilidad de 

las predicciones. A pesar de que se han desarrollado modelos predictivos de reingresos por 

exacerbación con una amplia variedad de características, sus rendimientos y validez clínica 

continúan siendo limitados [43].  

Por ello, el presente trabajo pretende proporcionar una nueva aproximación mediante un 

modelo predictivo de reingresos por exacerbaciones en EPOC, aplicando técnicas de IA sobre 
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variables clínicas recogidas en el ámbito hospitalario. Así, se pretende contribuir a mejorar el 

abordaje de un problema de gran impacto social y económico cuya solución podría marcar una 

gran diferencia en el pronóstico de los pacientes. 
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CAPÍTULO 2. HIPÓTESIS Y OBJETIVOS 
 

2.1. Hipótesis 

El presente trabajo se sustenta en: 

(1) Hipótesis clínica: 

Se espera que las variables de estudio recopiladas en el ámbito hospitalario contengan 

información relevante asociada al reingreso de pacientes por exacerbación de EPOC en 

los 30 días después del alta. 

 

(2) Hipótesis técnica: 

Desde el punto de vista técnico, se espera que los modelos de aprendizaje 

computacional entrenados con un subconjunto óptimo de las variables de estudio sean 

capaces de predecir los reingresos hospitalarios de pacientes de EPOC.  

 

2.2. Objetivos 

El objetivo principal consiste en desarrollar y validar un modelo predictivo de reingreso 

hospitalario por exacerbación en pacientes con EPOC en un periodo de 30 días posterior al alta, 

aplicando técnicas computacionales de aprendizaje automático.  

Con el fin de alcanzar este objetivo general, se detallan a continuación los siguientes objetivos 

específicos:  

I. Determinar el subconjunto de variables más relevantes asociadas con el reingreso 

temprano (30 días) tras el alta hospitalaria en pacientes ingresado por exacerbación de 

EPOC. 

 

II. Desarrollar un modelo predictivo de reingreso mediante el enfoque de ensamble 

learning Random Forest (RF) que tome a su entrada las variables óptimas seleccionadas. 

 

III. Comparar el rendimiento predictivo del modelo RF con el alcanzado por una red 

neuronal perceptrón multicapa (MLP), que se tomará como benchmark de referencia. 

 

IV. Validar de forma independiente (validación temporal) los modelos diseñados en una 

nueva población de estudio recopilada prospectivamente, pudiendo valorar su 

capacidad de generalización.  
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CAPÍTULO 3. SUJETOS Y VARIABLES DE ESTUDIO 
 

3.1. Aspectos éticos 

Este Trabajo de Fin de Grado (TFG) ha sido elaborado cumpliendo rigurosamente con los 

principios éticos y legales pertinentes. Se emitió un dictamen favorable por parte del Comité de 

Ética de la Investigación con medicamentos (CEIm) procedente de las Áreas de Salud de 

Valladolid (Ref.: PI-24-672-H, de 18 de diciembre de 2024) que se rige según las normas de 

Buenas Prácticas Clínicas (BPC, CMP/ICH/135/95). 

Asimismo, las bases de datos recopiladas fueron tratadas conforme al Reglamento (UE) 

2016/679 del Parlamento Europeo y del Consejo relativo a la protección de personas físicas en 

cuanto al tratamiento de sus datos personales y la libre circulación de estos. También se actuó 

de acuerdo con la Ley Orgánica 3/2018 sobre Protección de Datos Personales y garantía de los 

derechos digitales (LOPDPGDD). Por ello, se mantuvo absoluta confidencialidad a lo largo de 

todo el estudio.  

Además, todos los pacientes firmaron un consentimiento informado, a través del cual se les 

explicó en detalle la finalidad del estudio y su derecho a abandonarlo en cualquier momento sin 

consecuencia alguna.  

 

3.2. Diseño del estudio 

El presente trabajo es un estudio observacional ambispectivo de diseño y validación de modelos 

predictivos, con una fase retrospectiva (datos recopilados entre octubre de 2017 y junio de 2019) 

y una etapa prospectiva (datos recopilados entre enero y junio de 2025). Ambos datasets 

contienen información procedente del Servicio de Neumología del Hospital Universitario Río 

Hortega de Valladolid. Los pacientes incluidos debían cumplir los siguientes criterios de 

inclusión:  

- Diagnóstico previo de EPOC confirmado por pruebas clínicas. 

- Ingreso hospitalario por exacerbación de la enfermedad. 

- Edad superior a 18 años. 

Como criterios de exclusión, se establecieron únicamente la ausencia de consentimiento 

informado y no haber cumplido la mayoría de edad.  
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3.3. Tamaños muestrales 

En cuanto a la base de datos retrospectiva, se calculó un tamaño muestral mínimo de 176 

pacientes. Esta estimación se efectuó mediante el software G*Power 3.1 (Heinrich Heine 

Universität Düsseldorf, Germany) para una potencia estadística del 90% y un tamaño de efecto 

de 0.405. Finalmente, se reclutaron 246 pacientes consecutivos, de los cuales 204 no 

reingresaron en el periodo de seguimiento y 42 reingresaron dentro de los 30 días posteriores al 

alta. 

Respecto a la base de datos prospectiva, el tamaño muestral estimado fue calculado como un 

porcentaje del estudio original en base a las particiones comúnmente empleadas en el diseño 

de modelos predictivos (70% de instancias para el entrenamiento y 30% para test). Finalmente, 

para este conjunto de validación se reclutaron un total de 75 pacientes consecutivos, de los 

cuales 70 no reingresaron y 5 fueron rehospitalizados dentro de los 30 días de seguimiento. 

 

3.4. Variables de estudio 

Las bases de datos recogidas se construyeron a partir de la información registrada en la historia 

clínica de los pacientes, incluyendo sus antecedentes generales y los relativos a su EPOC. 

Asimismo, se integraron los datos generados en la práctica clínica habitual durante el ingreso por 

exacerbación. 

Los pacientes fueron caracterizados de forma global a través de un total de 229 variables clínicas, 

incluyendo fechas, la caracterización del reingreso o del fallecimiento, si estos se producían. La 

variable dependiente o target codificó el evento “reingreso”, tomando valores binarios (0/1) 

atendiendo a si se produce (1) o no (0) un reingreso por exacerbación de EPOC durante los 30 

días posteriores al alta.  

A partir de las 229 variables de partida, se identificó un conjunto inicial de variables predictoras 

en base al conocimiento de expertos y hallazgos del estado-del-arte (knowledge-based) 

compuesto por 158 características, agrupadas en los siguientes campos: 

▪ Datos sociodemográficos y antropométricos (12): edad, sexo, procedencia, estado civil, 

hogar, estudios, actividad laboral, movilidad y tipo de cuidador, peso, altura e IMC (índice 

de masa corporal). 

 

▪ Hábitos (3): tabaquismo, índice tabáquico y alcoholismo. 

 

▪ Datos clínicos (5): grupo de riesgo clínico (GRC), anticoagulación, antiagregación, vacuna 

antigripal (año previo) y vacuna antineumocócica. 
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▪ Comorbilidades (18): hipertensión arterial, diabetes mellitus, dislipemia, cardiopatía 

isquémica, insuficiencia cardíaca, insuficiencia respiratoria, bronquiectasias, 

taquiarritmia, accidente cerebrovascular, neoplasia (pulmón, otras), enfermedad renal, 

osteoporosis, ansiedad, depresión, anemia, tromboembolismo pulmonar y síndrome de 

apnea-hipopnea.  

 

▪ Espirometría previa al ingreso (9): FVC basal (capacidad vital forzada), FEV1 basal 

(volumen espiratorio forzado en el primer segundo), FEV1/FVC basal. De cada uno de los 

tres parámetros se obtuvo su valor absoluto, porcentaje sobre el valor teórico y 

normalización z-score. 

 

▪ Caracterización de la gravedad de la enfermedad (5): estratificación del riesgo, fenotipo 

clínico según GesEPOC, grado de obstrucción al flujo aéreo, estadio según GOLD y 

número de exacerbaciones por agudización de EPOC en el año previo. 

 

▪ Terapia basal (20): oxigenoterapia continua domiciliaria, ventilación no invasiva, 

medicación inhaladora (ninguna, SABA, SAMA, LABA, LAMA y corticoides), medicación 

de rescate (ninguna, SABA, SAMA, LABA, LAMA y corticoides), corticoterapia sistémica 

continua, teofilinas, IFDE4 (inhibidores de la fosfodiesterasa tipo 4), mucolíticos, 

antibióticos y rehabilitación respiratoria. 

 

▪ Test de evaluación de influencia de la EPOC en diversos ámbitos de la vida diaria (13):  

- Cuestionario de Barthel (1): puntuación total. Este permite analizar el nivel de 

dependencia [44]. 

- Cuestionario CAT (1): puntuación total. Mide el impacto en la vida diaria (descrito 

previamente). 

- Cuestionario EuroQOL-5D (5): puntuación del grado de movilidad, cuidado 

personal, dificultades en actividades cotidianas, dolor o malestar, y ansiedad o 

depresión. Por tanto, este test proporciona una medición de la calidad de vida 

relacionada con la salud (CVRS) [45].  

- Cuestionario TAI (4): puntuación del nivel de adhesión e incumplimientos errático, 

deliberado e inconsciente. Se trata del único test específico para medir la adhesión 

a los inhaladores [46]. 

- Índice de Comorbilidad de Charlson (1): puntuación total. Este evalúa la 

supervivencia a los diez años [47], atendiendo a la edad del sujeto y sus 

comorbilidades. 

- Escala mMRC (1): puntuación total. Mide el grado de disnea (explicado con 

anterioridad).  
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▪ Duración y motivo de ingreso (5): número de días ingresado, causa de ingreso 

(infecciosa, infecciosa debido a bacterias, infecciosa debido a virus y presencia de 

microorganismos resistentes). 

 

▪ Estado del paciente al ingreso (12):  

- Constantes vitales (3): tensión sistólica, diastólica y frecuencia cardíaca. 

- Gasometría (4): pH, PCO2 (presión parcial de dióxido de carbono en la sangre), PO2 

(presión parcial de oxígeno en la sangre) y HCO3 (concentración de iones de 

bicarbonato). 

- Analítica (5): leucocitos, neutrófilos (valor absoluto y porcentaje) y eosinófilos (valor 

absoluto y porcentaje). El porcentaje hace referencia a la proporción relativa 

respecto al número de leucocitos totales.  

 

▪ Síntomas y complicaciones al ingreso (21): 

- Síntomas clínicos (7): aumento de tos, disnea, expectoración, purulencia del esputo, 

dolor torácico, fiebre y días de clínica que motivan el ingreso. 

- Signos (7): uso de musculatura accesoria, movimientos torácicos paradójicos, 

cianosis, edemas periféricos, inestabilidad hemodinámica, deterioro del estado 

mental y disnea. 

- Complicaciones asociadas (7): arritmias, insuficiencia cardíaca, cardiopatía 

isquémica, derrame pleural, neumonía, sepsis e insuficiencia respiratoria.  

 

▪ Terapia al ingreso (15): medicación inhaladora (ninguna, SABA, SAMA, LABA, LAMA y 

corticoides), corticoterapia sistémica, ingreso en UVI, oxigenoterapia, pauta de 

teofilinas, IFDE4, mucolíticos, ventilación (no invasiva e invasiva) y antibioterapia. 

 

▪ Terapia al alta (20): oxigenoterapia continua domiciliaria, ventilación no invasiva, 

medicación inhaladora (ninguna, SABA, SAMA, LABA, LAMA, corticoides), medicación de 

rescate (ninguna, SABA, SAMA, LABA, LAMA, corticoides), corticoterapia sistémica 

continua, uso de antibióticos, teofilinas, IFDE4, mucolíticos y rehabilitación respiratoria.   
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CAPÍTULO 4. METODOLOGÍA 
 

4.1. Esquema general de trabajo 

Como se ha expuesto con anterioridad, para la elaboración de este estudio se cuenta con dos 

bases de datos diferentes: una retrospectiva y otra prospectiva. A continuación, en este 

apartado, se expone el flujo general de trabajo adoptado. 

Partiendo de la base de datos retrospectiva, en primer lugar, se efectuó el tratamiento de datos 

o data curation. Posteriormente, mediante la aplicación del algoritmo ReliefF que se explicará 

detalladamente en apartados posteriores, se seleccionaron las variables predictoras de mayor 

relevancia, que constituyen las entradas comunes tanto para los modelos predictivos a 

desarrollar como para la futura validación temporal mediante la base de datos prospectiva. De 

este modo, en el procedimiento de recopilación prospectivo fue posible centrar los esfuerzos 

únicamente en las variables más relevantes, proporcionando agilidad en el proceso de 

recolección, transcripción y construcción de la base de datos prospectiva. Cabe destacar que la 

generación de esta cohorte se realizó de forma paralela al diseño y desarrollo de los modelos 

predictivos. 

Una vez determinadas las características de mayor peso en el estudio, se procedió a diseñar y 

optimizar los modelos sobre la base de datos retrospectiva: Random Forest y la red MLP. Estos 

fueron evaluados mediante el cálculo de diversas métricas de rendimiento que se especificarán 

en este capítulo. Tras esto, los modelos se validaron aplicándolos sobre la base de datos 

prospectiva, sin efectuar una nueva optimización de los hiperparámetros. En su lugar, se 

aplicaron los mismos valores que los establecidos previamente con el conjunto retrospectivo y 

su rendimiento fue caracterizado atendiendo a las mismas métricas que las obtenidas en la base 

de datos retrospectiva. Esta validación temporal permitió conocer la capacidad de generalización 

de los modelos sobre un conjunto de datos diferente independiente.  

La Figura 16 resume en forma de diagrama el flujo de trabajo descrito. 

 

4.2. Data curation 

4.2.1. Exploración de datos perdidos 

El punto de partida de este trabajo es la base de datos retrospectiva, que contiene la información 

de las variables previamente descritas y que fue transcrita en Excel para su análisis y tratamiento 

posterior. Sin embargo, se identificaron valores faltantes, definidos como aquellos que no han 

sido almacenados para una variable en la muestra de interés. Su correcta gestión resulta 
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fundamental para evitar los múltiples problemas derivados de los mismos, que pueden 

condicionar significativamente los resultados de cualquier estudio [48]. 

 

 

Figura 16. Diagrama de flujo de trabajo adoptado en el estudio. 

 

Entre sus efectos negativos se incluyen la reducción de la potencia estadística, posibles sesgos 

en las estimaciones de parámetros, menor representatividad de las muestras y dificultades en el 

análisis. Estos factores comprometen la validez, conclusiones y robustez del trabajo, 

subrayándose la importancia de un tratamiento adecuado [48].  

En este trabajo, se aplicó un proceso estructurado para garantizar la correcta gestión de los datos 

faltantes durante el preprocesamiento de la base de datos retrospectiva. A continuación, se 

describen las estrategias implementadas: 

 

▪ Eliminación de pacientes fallecidos. En primer lugar, se excluyeron de los datos aquellos 

pacientes cuyo motivo de alta fue el fallecimiento durante el ingreso. Dado que se 

pretende predecir los reingresos durante los 30 días posteriores al alta, no se ha podido 

efectuar un seguimiento de los mismos durante dicho periodo. 
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▪ Obtención inicial de valores ausentes. Tras prescindir de las filas que representan 

pacientes fallecidos, se procedió a calcular el porcentaje de datos perdidos o NaNs (Not 

a Number) tanto por cada paciente (fila), como por cada columna (variable recogida). 

Esta etapa facilitó una visión preliminar de la distribución y alcance de los datos faltantes. 

 

▪ Exclusión de columnas con elevado porcentaje de NaNs y baja varianza. Una vez 

conocidas visualmente aquellas variables cuyo porcentaje de datos ausentes era 

superior al umbral establecido, se procedió a excluirlas. Asimismo, aquellas cuyo 

sumatorio total de muestras fuese 0 o 1 también fueron eliminadas del estudio. Esta 

decisión se basa en que su variabilidad es insuficiente para contribuir a la discriminación 

entre la clase positiva y negativa y, por consiguiente, su inclusión podría afectar la 

capacidad predictiva del modelo.  

 

▪ Actualización del porcentaje de datos perdidos por paciente. Tras el filtrado previo de 

columnas, se reevaluaron los datos ausentes por cada paciente o fila, ya que, al haberse 

eliminado variables, las estimaciones previas de pérdida de datos dejarían de tener 

validez. En este caso, se optó por no establecer un umbral con el que eliminar filas, 

puesto que el porcentaje de datos perdidos resultó ser bajo. Además, dado el limitado 

número de pacientes del estudio, se priorizó la preservación de la mayor cantidad 

posible de registros. De este modo, se maximiza la representatividad de los datos. 

 

4.2.2. Imputación de datos: K vecinos más cercanos (KNN) 

El manejo de datos perdidos puede abordarse mediante distintas estrategias, como la 

eliminación de instancias o el reemplazo por valores estimados. Esta última actuación se conoce 

como imputación, para la cual se dispone de diversas técnicas [49]. 

En este trabajo, se aplicó el algoritmo K vecinos más cercanos (K-Nearest Neighbors, KNN), un 

método no paramétrico de aprendizaje supervisado creado en 1951 por los estadísticos Evelyn 

Fix y Joseph Hodge [50]. Esta herramienta identifica a los K vecinos más cercanos de los valores 

ausentes y emplea estos para poder realizar la imputación atendiendo a una distancia entre las 

instancias [49]. 

A pesar de que existen diferentes métricas de distancia (Manhattan, Mahalanobis o coeficientes 

de correlación) [50], se optó por aplicar la distancia euclídea en este caso, ya que ha demostrado 

mayor eficiencia y resulta ser la más habitual en la literatura [49].  

Dado que se tienen filas o pacientes con datos incompletos, esta métrica se implementó 

únicamente con las variables no vacías de estos casos. Además, se prescindió de la variable 

objetivo (reingreso), puesto que no debe participar en la etapa de imputación.  
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Ante el carácter mixto de las variables contenidas en esta base de datos retrospectiva, fue 

preciso discriminar entre variables continuas y categóricas. Así, para las primeras citadas se 

calculó la media de los K vecinos más cercanos (mean rule), mientras que para las segundas se 

obtuvo la moda (majority rule) [51]. 

Por otra parte, cada valor ausente a estimar se imputó atendiendo únicamente a aquellos 

vecinos pertenecientes a la misma clase (reingreso o no reingreso). El fin de esta actuación es 

prevenir mezclas entre clases que puedan incorporar valores no representativos del grupo de 

pacientes del que forma parte dicho sujeto con datos incompletos.  

Respecto al número de vecinos, se asignó un valor de K = 5, decisión respaldada por su eficacia 

en otros estudios previos, donde también se aplicó KNN  [52-55]. El uso de K > 1 contribuye a 

controlar el ruido en los datos, mientras que valores demasiado bajos podrían introducir una 

gran sensibilidad a valores atípicos. No obstante, un número excesivamente elevado provoca una 

distorsión en la distribución de los datos [55]. Dado que se ha apreciado que los valores K = 3, 5, 

y 7 ofrecen diferencias mínimas en términos de rendimiento [54], y teniendo en cuenta las 

consideraciones previas, se decidió asignar un valor intermedio razonable y ampliamente 

contrastado (K= 5).  

 

4.3. Análisis descriptivo 

Tras el tratamiento de los datos perdidos y la imputación de estos, se procedió a efectuar un 

análisis descriptivo, cuyo objetivo es resumir las variables mediante métricas representativas y 

visualizar los datos. De este modo, es posible identificar tendencias, patrones y alcanzar una 

mayor comprensión de la información disponible [56]. Para este análisis, se calcularon los 

estadísticos descriptivos convencionales de tendencia central y dispersión, adoptando distintas 

estrategias en función de la naturaleza de la variable, es decir, si es continua o categórica. 

Respecto a las continuas, se calculó la mediana, primer cuartil (Q1), tercer cuartil (Q3) y rango 

intercuartílico (IQR).  

▪ Mediana: es el valor que divide un conjunto de datos ordenados de menor a mayor en 

dos subconjuntos iguales. Es decir, la mitad de las observaciones se encuentran por 

debajo de la mediana y el otro 50% por encima. Además, dependiendo del tamaño 

muestral [57]: 

o Si el número de datos (n) es impar, la mediana coincide con el dato central. 

o Si n es par, la mediana se obtiene como la media de los dos datos centrales.  

 

▪ Cuartiles (Q1, Q2, Q3): son medidas de posición de tendencia no central que dividen la 

población de estudio en cuatro partes iguales. Q1 se corresponde con el valor por debajo 



CAPÍTULO 4  METODOLOGÍA 

 

45 
 

del cual se sitúa el 25% de las observaciones; Q2 (también denominado mediana) deja 

el 50% de los datos por debajo de él; y Q3, el 75% [57].  

 

▪ Rango intercuartílico (IQR): medida de dispersión absoluta que representa la distancia 

entre el primer y tercer cuartil (Q3-Q1). Es un estadístico robusto, poco sensible a valores 

atípicos y muy útil para observar la variabilidad central de las muestras [58], [59]. 

 

Para el análisis de las variables categóricas, se han obtenido las frecuencias absolutas (número 

total de observaciones por categoría) y relativas (porcentajes).  

 

4.4. Selección de variables 

Tras conseguir una base de datos con todas las instancias completas, se procedió a seleccionar 

las variables que constituirán las entradas de los modelos predictivos a desarrollar. Uno de los 

desafíos más importantes en minería de datos es la caracterización de las relaciones entre una 

o más variables y la variable objetivo (reingreso en este trabajo).  

Aunque se tengan conjuntos de datos comprendidos por varias características, en la mayoría de 

los casos tan solo una proporción de las mismas resulta relevante. El problema es que es muy 

difícil conocer a priori estas variables irrelevantes y su inclusión provoca un incremento de la 

complejidad y de la carga computacional. Por ello, es necesaria la aplicación de métodos que 

permitan identificar las características de mayor peso en un estudio y descarten aquellas que 

podrían dificultar posteriores tratamientos y no contribuyan a aportar información valiosa 

adicional. 

Con este fin, se ha implementado el algoritmo ReliefF, que permite calcular una estadística para 

cada variable que refleje su calidad o relevancia respecto a la variable objetivo reingreso. Estas 

estadísticas se denominan pesos o puntuaciones y pueden adquirir valores dentro del intervalo 

[-1, 1], siendo -1 la relevancia mínima y 1 la máxima [60], [61]. 

La aplicación de ReliefF precisa la asignación de un número de vecinos (K). Para cada instancia 

del dataset, se efectúa una búsqueda de los K vecinos más cercanos que sean similares y 

pertenezcan a la misma categoría (denominados hits), así como de los K vecinos más cercanos 

que también sean similares, pero pertenezcan a una clase diferente (llamados misses) [60]. 

El algoritmo compara las variables entre la instancia o fila actual y las correspondientes a sus K 

vecinos más cercanos. Si su valor difiere de uno de los misses, esto refleja que dicha característica 

contribuye a discriminar entre clases, por lo que su peso o puntuación aumenta. Por el contrario, 

si el valor de la instancia actual difiere respecto al de uno de los hits, dicha variable no permite 

distinguir entre categorías y el peso de la misma disminuye.  
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El peso calculado para una variable A (W[A]) puede definirse desde un punto de vista 

probabilístico, siendo este la diferencia entre dos probabilidades condicionadas: la probabilidad 

de que un vecino de tipo miss posea un valor distinto de A y la probabilidad de que un vecino de 

clase hit tenga un valor diferente [60]. 

𝑊[𝐴] = 𝑃 (𝑣𝑎𝑙𝑜𝑟 𝑑𝑖𝑠𝑡𝑖𝑛𝑡𝑜 𝑑𝑒 𝐴 | 𝑣𝑒𝑐𝑖𝑛𝑜 𝑚𝑖𝑠𝑠) − 𝑃 (𝑣𝑎𝑙𝑜𝑟 𝑑𝑖𝑠𝑡𝑖𝑛𝑡𝑜 𝑑𝑒 𝐴 | 𝑣𝑒𝑐𝑖𝑛𝑜 ℎ𝑖𝑡) (4.1) 

Las variables predictoras del conjunto de datos fueron previamente estandarizadas para evitar 

escalas diferentes.  

Atendiendo a las mismas recomendaciones detalladas para determinar el valor más adecuado 

de K en la etapa de imputación de datos (es decir, evitar tanto valores muy pequeños, que 

podrían ser afectados por espúreos, como valores muy grandes, que podrían diluir las 

diferencias), se fijó K = 5.  

Finalmente, la selección de características se efectuó sobre la lista ordenada de variables según 

la puntuación otorgada por ReliefF. Siguiendo la regla empírica de 10 instancias por variable y 

dado que se disponía de una muestra de 243 pacientes, se seleccionaron las 24 variables con 

mayor peso, descartando el resto.  

 

4.5. Desarrollo de modelos predictivos 

Una vez seleccionadas las características que guardan mayor relación con la variable objetivo 

(reingreso), se desarrollaron los modelos predictivos capaces de predecir los reingresos por 

exacerbación de EPOC en los 30 días posteriores al alta. En este TFG se confeccionaron dos 

enfoques de Machine Learning: un modelo principal basado en Random Forest y una red 

perceptrón multicapa (MLP).  

Para el diseño y optimización de los modelos se utilizó la base de datos retrospectiva 

previamente depurada, conformada únicamente por las 24 variables predictoras seleccionadas 

y un total de 243 pacientes. Este conjunto de partida se dividió en un grupo de entrenamiento 

(train1), que incluye el 70% de los pacientes; y un grupo de prueba (test), que se corresponde 

con el 30% restante. A su vez, el conjunto de entrenamiento se dividió en un grupo de 

entrenamiento final (train2), que representa el 70% del mismo; y un conjunto de validación 

conformado por el 30% restante para así optimizar los hiperparámetros pertinentes. A través de 

este entrenamiento y validación interna, se calcularon finalmente métricas que permitieron 

caracterizar el rendimiento de los modelos y comparar su capacidad predictiva. En la Figura 17, 

se ilustra de manera esquemática estas particiones y el número de pacientes resultante en cada 

uno de los conjuntos: 
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Figura 17. Divisiones de la población bajo estudio a lo largo del desarrollo de los modelos 
predictivos.  

 

4.5.1. Random Forest 

Random Forest (RF) es, como se ha adelantado previamente, la técnica de Machine Learning 

aplicada para desarrollar el modelo predictivo principal de este TFG. Esta herramienta fue 

elaborada por Breiman en el año 2001 y se basa en la generación de múltiples árboles de 

decisión aleatorios sobre un conjunto de datos de entrenamiento [62]. Este algoritmo forma 

parte de los ensemble methods, es decir, métodos que combinan las predicciones de diferentes 

estimadores proporcionando resultados más robustos y una mejora en la capacidad de 

generalización del modelo [63].  

En este caso en particular, RF reduce la varianza y evita el sobreajuste en comparación con los 

árboles de decisión individuales [63], [64]. Cada árbol contiene un subconjunto de variables 

predictoras m que debe ser inferior al número total de características predictoras M (es decir, 

debe cumplirse la condición m < M) [62]. Asimismo, mediante la aplicación de Bootstrap, cada 

árbol es entrenado a partir de instancias (pacientes en este estudio) seleccionadas 

aleatoriamente.  

Cabe destacar que, las variables e instancias atribuidas a uno de los árboles generados pueden 

ser comunes a los asignados al resto. Es decir, pueden repetirse características y pacientes entre 

diferentes árboles de decisión. Sin embargo, existe la posibilidad de que algunas de las instancias 

no hayan sido asignadas a ninguno de estos. Estas son denominadas popularmente como out of 

the bag (OBB) y se utilizan para validaciones internas automáticas [62]. 

Finalmente, las salidas de todos los árboles creados se combinan para proporcionar la salida final 

del modelo, conocida como ensamblado. Para el cálculo de la misma, debe realizarse una 

distinción sobre la variable objetivo a estimar. Si esta es continua, RF estaría aplicándose a un 

problema de regresión y la salida final se obtendría normalmente mediante el promedio de las 
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predicciones de todos los árboles. Por el contrario, si la variable target es categórica 

(reingreso/no reingreso), se trataría de un problema de clasificación y se aplicaría el voto por 

mayoría [62]. 

A continuación, en la Figura 18 se ilustra gráficamente el funcionamiento del algoritmo Random 

Forest [62]: 

 

Figura 18. Esquema del funcionamiento de Random Forest [62]. 

 

En este esquema se resume visualmente cómo RF selecciona aleatoriamente diferentes 

subgrupos de pacientes procedentes del conjunto de datos inicial y se aplican sobre los árboles 

de decisión confeccionados, devolviendo finalmente una salida conjunta Y. En la parte inferior 

se incluyen tres instancias que, como puede apreciarse, no han sido asignadas a ningún 

estimador (out of the bags).  

Random Forest es actualmente el método de Machine Learning más implementado en modelos 

predictivos. Este hecho es gracias a las múltiples ventajas que proporciona y que respaldan su 

idoneidad [64], [62]: 

▪ Adaptación natural tanto a problemas de regresión como de clasificación. 

▪ Velocidad óptima de entrenamiento y predicción. 

▪ Desempeño óptimo sobre bases de datos de elevada dimensionalidad. 

▪ Mayor simplicidad para ser entrenado respecto a herramientas de mayor complejidad, 

pero con un rendimiento muy similar. 
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Estas ventajas motivaron la inclusión de esta técnica en el presente estudio. Para su 

implementación, se dispone de diversos hiperparámetros configurables por el usuario, que 

consisten en variables definidas de antemano que permiten optimizar el entrenamiento del 

modelo de aprendizaje automático. Su adecuado ajuste garantiza un buen desempeño y una 

gran eficiencia computacional. En consecuencia, se llevó a cabo la optimización de los siguientes 

hiperparámetros: 

 

▪ Número de árboles de decisión. A mayor cantidad de estos estimadores, mejor 

rendimiento, pero mayor carga computacional. Además, a partir de un número de 

árboles, el modelo habrá alcanzado su rendimiento máximo, por lo que dejará de 

mejorar [63]. 

 

▪ Coste. Generalmente, se trata de una matriz cuadrada en la que las filas se corresponden 

con las clases verdaderas (true class), mientras que las columnas son las clases predichas 

(predicted class) [65]. El objetivo de esta matriz de costes es definir las penalizaciones 

asociadas a los errores en la clasificación [63]. Dada la naturaleza desbalanceada de los 

datos disponibles, la configuración de este hiperparámetro permitió asignar un coste o 

penalización mayor a la predicción errónea de “no reingreso” cuando la clase verdadera 

es “reingreso”. De este modo, se otorga más peso a la clase positiva, ya que esta es la 

minoritaria. Así, se consigue mitigar los efectos de dicho desbalance tan marcado 

(aunque común en el ámbito clínico), que puede afectar negativamente a la sensibilidad 

del modelo. La estructura general de esta matriz de costes se muestra en la Tabla 9: 

Tabla 9. Estructura de la matriz de costes para Random Forest. 

 

 

CLASE DE DATOS 

 

 
 

Clase predicha (predicted class) 

 
0 = No reingreso 

 
1 = Reingreso 

 
Clase verdadera 

 (true class) 

 
0 = No reingreso 

 
0 

 
Coste de FP 

 
1 = Reingreso 

 
Coste de FN 

 
0 

 
FP: falsos positivos; FN: falsos negativos. 
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Como puede observarse, la diagonal principal de la matriz presenta valores nulos, puesto 

que, en esos casos, la clase predicha coincide con la verdadera. Por consiguiente, el 

modelo no habría cometido ningún error y no tendría sentido una penalización distinta 

de cero.  

 

▪ Tamaño mínimo de hoja. Número mínimo de observaciones por cada hoja [65].  

 

▪ Número máximo de divisiones. Está relacionado directamente con la profundidad 

máxima de los árboles. Dado que los modelos cuyos estimadores son árboles tienen 

mayor riesgo de sobreajuste, no es recomendable profundidades grandes [63].  

 

▪ Número de predictores. Con este hiperparámetro, se determina el número de 

características predictoras elegidas aleatoriamente para cada división en los árboles de 

decisión [65]. Para cada nodo del árbol que se está generando, se selecciona con 

probabilidad uniforme un subconjunto de variables en base al conjunto inicial. Entre las 

características seleccionadas, el algoritmo aplica, atendiendo a un criterio estadístico 

como el índice de Gini o la entropía, la división que produce la mejor partición de los 

datos. A menor valor de este hiperparámetro, mayor será la reducción de la varianza, 

pero el sesgo se verá aumentado [63]. 

 

Respecto a la dinámica de optimización, esta se efectuó de manera secuencial. Para cada uno de 

los hiperparámetros previamente mencionados, se estableció un rango de valores predefinido y 

se entrenó el modelo con train2, probando cada valor de dicho intervalo mientras los demás 

hiperparámetros se mantuvieron fijos en valores acordes con el contexto y lo observado en la 

literatura. En la primera optimización (número de árboles), los valores fijados fueron arbitrarios, 

mientras que, en las sucesivas iteraciones, se aplicaban los hiperparámetros optimizados hasta 

el momento de forma secuencial. La métrica F1 score fue la empleada para guiar la búsqueda 

del valor óptimo, calculada a partir de la matriz de confusión del conjunto de validación. Además 

de ajustar los hiperparámetros, se optimizó el umbral de decisión en la predicción atendiendo al 

mismo criterio de maximización de F1 score, pero aplicando la curva ROC para conocer el 

rendimiento en distintos umbrales. 

Tras identificar los valores óptimos, se reentrenó el modelo final con el conjunto de 

entrenamiento train1 para posteriormente ser evaluado en el conjunto test. 
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4.5.2. Red neuronal perceptrón multicapa (Multi-Layer Perceptron, 

MLP) 

En 1969, Minsky y Papert manifestaron las dificultades que presentaba el perceptrón simple para 

la resolución de problemas no lineales. No obstante, se observó que la combinación de varios 

perceptrones podía cubrir sus limitaciones [66]. 

Rumelhart y sus colaboradores presentaron en 1986 la Regla Delta Generalizada, un algoritmo 

para entrenar redes neuronales. A partir del mismo fue posible adaptar los pesos mediante 

retropropagación del error y se extendió a arquitecturas con múltiples capas y funciones de 

activación no lineales. Finalmente, en 1989 se demuestra que MLP es un aproximador universal, 

es decir, es capaz de aproximar cualquier función continua. Hoy en día, es una de las 

arquitecturas más empleadas [66].  

Un perceptrón multicapa es un tipo de red neuronal artificial constituida por una capa de 

entrada, una de salida y una o más capas ocultas. Sin embargo, se ha demostrado que, por lo 

general, basta con una sola capa oculta para obtener resultados óptimos, motivo por el que se 

opta en este trabajo por construir una red con solo una de ellas [67].  

A continuación, se explica más detalladamente esta estructura [66]: 

▪ Capa de entrada. Su función se basa en la recepción de las entradas al modelo y 

propagación de las mismas a la siguiente capa. 

▪ Capa de salida. Devuelve el resultado de la red generada por cada patrón de entrada. 

▪ Capas ocultas. Efectúan el procesamiento no lineal de las entradas de la red. 

 

Para complementar esta descripción, se muestra la arquitectura clásica de un perceptrón 

multicapa constituido por una sola capa oculta (Figura 19):  
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Figura 19. Arquitectura de perceptrón multicapa de una sola capa oculta [67].  

𝑥𝑖: entrada recibida por la neurona “i” de la capa de entrada.  
𝑤𝑗𝑖 : peso de conexión entre la neurona “i” de la capa de entrada y la neurona “j” de la capa oculta. 

𝑏𝑗: salida de la neurona oculta “j”. 

𝑣𝑘𝑗 :  peso de conexión entre la neurona “j” de la capa oculta y la neurona “k” de la capa de salida.  

𝑦𝑘 : salida de la neurona “k” de la capa de salida. 
 

Como puede observarse, la capa de entrada consta de N neuronas. Cada una de ellas recibe una 

entrada x, que es transferida a todas las neuronas que constituyen la capa oculta. En dicha capa, 

las entradas se combinan con los pesos w y, mediante la aplicación de una función de activación, 

se generan las salidas b de cada neurona de la capa oculta. Finalmente, estas salidas son 

transmitidas a la capa de salida, combinándose con los pesos v. De este modo, se obtiene la 

salida final del modelo. 

Otra característica de estos modelos es que son redes feedforward, es decir, las conexiones entre 

las neuronas se establecen siempre desde una capa hacia las neuronas de la siguiente [67]. 

Además, no pueden existir conexiones entre neuronas que formen parte de la misma capa 

(conexiones laterales). Por tanto, el flujo de información en estos casos es unidireccional. 

Respecto al cálculo que se efectúa en este tipo de redes, para cada neurona oculta se obtiene su 

entrada neta o total. Por ejemplo, para la neurona j de la capa oculta, esta entrada neta (𝑛𝑒𝑡𝑗) 

se define como [67]: 

 𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖 + 𝜃𝑗

𝑁

𝑖=1
     (4.2) 

𝜃𝑗 representa el sesgo, que se suma para ajustar la activación de la neurona. A raíz de esta 

entrada neta, es posible determinar la salida de esta misma neurona (𝑏𝑗) implementando la 

función de activación f [67]: 
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𝑏𝑗 = 𝑓(𝑛𝑒𝑡𝑗)      (4.3) 

Análogamente, la entrada neta para la neurona k de la capa de salida (𝑛𝑒𝑡𝑘) se rige por la 

siguiente ecuación [67]: 

𝑛𝑒𝑡𝑘 = ∑ 𝑣𝑘𝑗𝑏𝑗 + 𝜃𝑘

𝐿

𝑗=1
     (4.4) 

Igual que en el caso anterior, 𝜃𝑘 constituye el sesgo. Por último, la salida de esta neurona (𝑦𝑘) 

se calcula aplicando la función de transferencia a su entrada neta (𝑛𝑒𝑡𝑘) [67]: 

𝑦𝑘 = 𝑓(𝑛𝑒𝑡𝑗)      (4.5) 

Por tanto, cada neurona suma las entradas multiplicadas por los pesos y las ajusta mediante el 

sesgo. El resultado de esto es transformado por una función de activación, generando así una 

salida que se emite hacia la siguiente capa.  

En este TFG, el modelo predictivo basado en el MLP fue implementado con las dos funciones de 

activación más empleadas en la actualidad: la tangente hiperbólica para la capa oculta y la 

función sigmoidal para la capa de salida. A continuación, se incluyen sus representaciones 

gráficas, expresiones matemáticas y una breve descripción de cada una de ellas: 

▪ Tangente hiperbólica. Es muy parecida a la sigmoide, pero a diferencia de esta, devuelve 

valores entre -1 y 1 (Figura 20). Además, dicha salida está centrada en 0, lo que indica 

que las entradas negativas producen salidas negativas, mientras que las positivas 

generan salidas positivas. Una ventaja clave de esta función de activación es que puede 

proporcionar un entrenamiento más rápido y estable [68]. Todas estas prestaciones 

justifican su uso frecuente en las capas ocultas de redes neuronales y explican por qué 

se optó finalmente por aplicarla como función de transferencia en la capa oculta del 

modelo predictivo.  

 

Figura 20. Gráfica de la función de activación de la tangente hiperbólica y su expresión 
matemática [69]. 
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▪ Función sigmoidal. Devuelve valores entre 0 y 1, lo que la hace especialmente útil en 

problemas de clasificación binaria, como es el caso del presente estudio (reingreso vs. 

no reingreso) [69]. Este rasgo característico permite interpretar su salida como valores 

probabilísticos, motivo por el que se aplicó en la capa de salida del modelo diseñado. En 

la Figura 21, se expone el aspecto y expresión matemática de esta función: 

 

 

Figura 21. Gráfica de la función de activación sigmoidal y su expresión matemática [69]. 

 

Análogamente al modelo predictivo basado en Random Forest, se optimizaron los 

hiperparámetros de la red neuronal perceptrón multicapa. El enfoque se centró en ajustar el 

número de neuronas en la única capa oculta y el parámetro de regularización. 

La estrategia consistió en entrenar la red probando diferentes combinaciones de estos 

hiperparámetros mediante un bucle anidado, empleando el conjunto train2 para el 

entrenamiento (véase Figura 17). El rendimiento de cada una de estas combinaciones se calculó 

mediante la métrica F1 score en el conjunto de validación, seleccionando finalmente aquella que 

maximizase esta métrica. 

Tras la obtención del número de neuronas y el parámetro de regularización óptimos, se procedió 

a ajustar el umbral de decisión, que por defecto es 0.5. La dinámica aplicada fue la misma que 

para optimizar los hiperparámetros, es decir, se consideró como mejor umbral aquel cuyo F1 

score fuese superior al resto en el conjunto de validación.  

Definidos los tres parámetros (número de neuronas en la capa oculta, regularización y umbral), 

el modelo predictivo fue reentrenado con el conjunto de entrenamiento train1 y se evaluó en el 

conjunto test.  
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4.6. Parámetros y métricas de rendimiento para evaluación de 

modelos predictivos 

La evaluación de los modelos predictivos binarios expuestos anteriormente (Random Forest y la 

red neuronal perceptrón multicapa) ha sido efectuada mediante una serie de métricas que 

cuantifican la capacidad de los mismos para discriminar adecuadamente entre pacientes que 

reingresarán y pacientes que no lo harán en los 30 días posteriores al alta. Todas las métricas 

aplicadas derivan de cálculos realizados a partir de los parámetros de la matriz de confusión.  

La matriz de confusión, creada en 1904 por Karl Pearson, es una matriz cuadrada de tamaño N x 

N, donde N alude al número de clases de salida [70]. En este trabajo en particular, solo existen 

dos posibles clases: positiva (reingreso) o negativa (no reingreso). Por tanto, la dimensión de la 

matriz construida es de 2 x 2.  

En cuanto a su estructura, aunque el orden puede ser intercambiable, se ha confeccionado una 

matriz de confusión en la que las filas denotan la clase verdadera, mientras que las columnas 

representan la clase predicha [71]. A continuación, en la Tabla 10 se muestra el aspecto general 

de la misma: 

Tabla 10. Estructura de una matriz de confusión de clasificación binaria. 

 

 

CLASE DE DATOS 

 

 
 

Clase predicha (predicted class) 

 
0 = No reingreso 

 
1 = Reingreso 

 
Clase verdadera 

 (true class) 

 
0 = No reingreso 

 
TN 

 
FP 

 
1 = Reingreso 

 
FN 

 
TP 

 

TN: verdaderos negativos; FP: falsos positivos; FN: falsos negativos; TP: verdaderos positivos 

 

Sus componentes son: 

▪ Verdaderos negativos (TN): número de pacientes predichos por el modelo como no 

reingreso y que realmente no reingresan en los 30 días posteriores al alta. 
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▪ Falsos positivos (FP): número de pacientes que el modelo predice que serán readmitidos 

por exacerbación de EPOC, pero que finalmente acaban no reingresando en los 30 días 

posteriores al alta. 

 

▪ Falsos negativos (FN): número de pacientes predichos por el modelo como no reingreso, 

pero que sí reingresan en los 30 días posteriores al alta. 

 

▪ Verdaderos positivos (TP): número de pacientes que el modelo predice que 

reingresarán y que, efectivamente son readmitidos por exacerbación de EPOC en los 30 

días posteriores al alta.  

 

Las métricas de rendimiento, como se ha indicado previamente, derivan de los elementos de la 

matriz de confusión definidos. Estas son: sensibilidad, especificidad, valor predictivo positivo, 

valor predictivo negativo, razón de verosimilitud positiva, razón de verosimilitud negativa, 

precisión, F1 score y área bajo la curva ROC (AUC). 

▪ Sensibilidad (Se). También conocida como recall, es la fracción de casos positivos 

(reingresos) predichos como positivos [72]: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (4.6) 

▪ Especificidad (Sp). Fracción de casos negativos (no reingresos) predichos como 

negativos [72]: 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (4.7) 

 

▪ Valor predictivo positivo (PPV). Fracción de casos positivos reales (reingresos) respecto 

al total de casos que el modelo predijo como positivos [72]: 

                       𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (4.8)  

 

▪ Valor predictivo negativo (NPV). Fracción de casos negativos verdaderos (no reingresos) 

respecto al total de casos que el modelo predijo como negativos [72]: 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                      (4.9) 

 

▪ Razón de verosimilitud positiva (positive likelihood ratio, LR+). Describe cuánto más 

probable es que el test bajo estudio sea positivo al aplicarse sobre un paciente realmente 

positivo o patológico que al aplicarse sobre uno negativo [73]: 

 𝐿𝑅+ =
𝑆𝑒

1−𝑆𝑝
           (4.10) 
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▪ Razón de verosimilitud negativa (negative likelihood ratio, LR-). Describe cuánto más 

probable es que el test bajo estudio sea negativo al aplicarse sobre un sujeto realmente 

positivo o patológico que al aplicarse sobre uno negativo/no-patológico [73]: 

𝐿𝑅− =
1−𝑆𝑒

𝑆𝑝
      (4.11) 

 

▪ Precisión (Acc). También conocida como accuracy, es la proporción de predicciones 

correctas respecto al total de predicciones efectuadas [70]: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
           (4.12) 

 

▪ F1 score. Media armónica del valor predictivo positivo y la sensibilidad. Como se ha 

adelantado en anteriores apartados, esta fue la métrica principal para la optimización 

de los hiperparámetros de los modelos predictivos propuestos. El motivo de esta 

decisión se basa en la capacidad de F1 score para equilibrar sensibilidad y el valor 

predictivo positivo (PPV). Asimismo, a pesar de que la precisión suele ser la métrica 

habitual aplicada en estos contextos, F1 score resulta más idónea cuando se dispone de 

bases de datos con clases desbalanceadas, como es el caso de este trabajo [70]. Se 

define como [72]: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ·
𝑃𝑃𝑉 · 𝑆𝑒

𝑃𝑃𝑉+𝑆𝑒
           (4.13) 

 

▪ Curva ROC y área bajo la curva ROC (AUC):  

La curva ROC (Receiver Operating Characteristic) es una gráfica que representa la tasa 

de verdaderos positivos (TPR) o sensibilidad, frente a la tasa de falsos positivos (FPR), 

calculada como 1 – especificidad. Permite observar el rendimiento del modelo en todos 

los umbrales de clasificación trazando los valores de FPR y TPR para cada umbral. Es por 

ello que resulta una herramienta muy útil para establecer un umbral de clasificación. El 

aspecto ideal de una curva ROC se caracteriza por poseer una tasa de verdaderos 

positivos del 100% y una tasa de falsos positivos del 0% [70].  

Un parámetro importante que puede extraerse de la misma es el área bajo la curva ROC 

(AUC), comúnmente aplicada para evaluar modelos predictivos de clasificación binaria. 

Esta métrica mide el área total bajo la curva y es capaz de predecir la calidad 

independientemente del umbral de decisión establecido. Su valor oscila entre 0.5 y 1, 

siendo 0.5 un comportamiento aleatorio y 1 un indicativo de que es completamente 

correcto [70].  

En la Figura 22, se muestra un ejemplo de una curva ROC, ilustrando diferentes 

rendimientos hipotéticos mediante distintos colores [70]. 
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Figura 22. Aspecto de la curva ROC y diferentes escenarios posibles [70]. 

 

Los escenarios mostrados se detallan a continuación:  

▪ Gráfica roja discontinua: dada su coincidencia con la línea diagonal, el rendimiento que 

refleja es característico de un clasificador aleatorio, es decir, el modelo predictivo 

correspondiente no tiene capacidad para diferenciar entre pacientes que reingresarán y 

aquellos que no lo harán. Además, su AUC es de aproximadamente 0.5 y valores más 

bajos supondrían modelos predictivos de muy baja calidad. 

 

▪ Gráfica naranja continua: se encuentra ligeramente por encima de la diagonal, por lo 

que es indicativo de un rendimiento superior al de un clasificador aleatorio, pero aún 

algo limitado.  

 

▪ Gráfica verde continua: su rápido crecimiento y mayor proximidad a la esquina superior 

izquierda ilustran un modelo predictivo con una capacidad predictiva destacable. 

Asimismo, el valor de AUC en este caso se aproxima a 1 (valor ideal). 

 

▪ Gráfica azul continua: representa el rendimiento predictivo de un modelo ideal y una 

AUC = 1. No obstante, este escenario es difícil de alcanzar, puesto que no puede 

ignorarse la naturaleza variable de los datos clínicos.  
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4.7. Análisis estadístico 

4.7.1. Variables continuas: prueba U de Mann-Whitney 

Para poder establecer una comparativa de las variables continuas entre los grupos reingreso 

(clase 1) y no reingreso (clase 0), se ha aplicado la prueba U de Mann-Whitney considerando un 

nivel de significancia estadística de α = 0.05. Esta prueba permite determinar la existencia de 

diferencias estadísticamente significativas entre dos grupos independientes [74]. Además, dado 

que es una técnica no paramétrica, una de sus principales características es que es de 

“distribución libre”, es decir, no asume una distribución concreta sobre la población. Asimismo, 

su aplicación resulta idónea cuando se trata de muestras reducidas, hecho que también lo hace 

útil en el contexto médico y, por tanto, en este trabajo [75].  

Las hipótesis a contrastar en esta prueba son [74]: 

▪ Hipótesis nula (H0): no existe diferencia entre los dos grupos independientes. 

▪ Hipótesis alternativa (H1): existe una diferencia entre los dos grupos independientes. 

 

Para efectuar su cálculo, en primer lugar, deben combinarse todas las observaciones de la 

variable concreta a analizar de ambos conjuntos de datos. De esta forma, se dispone de un único 

grupo de tamaño N (suma total del número de muestras) sobre el que se asigna un rango en 

sentido creciente desde 1 hasta N [75], [76]. 

Una vez establecido el ranking, se efectúa la suma de los rangos para cada grupo, calculándose 

así los parámetros Ta y Tb. Siendo na y nb el tamaño muestral de cada uno de los conjuntos, el 

estadístico U se obtiene de la siguiente manera [76]: 

▪ Si na > nb: 

𝑈 = 𝑇𝑎 −
𝑛𝑎(𝑛𝑎+1)

2
     (4.14) 

 

▪ Si na < nb: 

𝑈 = 𝑇𝑏 −
𝑛𝑏(𝑛𝑏+1)

2
    (4.15) 

 

Finalmente, este estadístico U es comparado con un valor crítico para poder dictaminar si se 

rechaza H0. Si U es mayor que este, se rechaza la hipótesis. Normalmente, el nivel de significancia 

aplicado es del 0.05.  
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4.7.2. Variables categóricas: test exacto de Fisher 

El test exacto de Fisher es una herramienta que permite determinar si existe una diferencia 

estadísticamente significativa entre dos variables categóricas [77]. Además, su precisión 

aumenta ante un tamaño bajo de observaciones [78], hecho que lo hace idóneo para el ámbito 

médico y este TFG. Análogamente a la prueba U de Mann-Whitney, se ha aplicado un nivel de 

significancia estadística de α = 0.05. 

Las hipótesis contrastadas en este test son [77]: 

▪ Hipótesis nula (H0): no existe asociación entre los grupos reingreso y no reingreso, es 

decir, no hay diferencias significativas. 

▪ Hipótesis alternativa (H1): existe asociación entre los grupos.  

 

Para realizar el test, los datos recopilados se disponen en una tabla de contingencia, con al menos 

dos filas (una categoría de esa variable y las demás combinadas) y dos columnas (reingreso y no 

reingreso). Esta tabla contiene las frecuencias de aparición de cada combinación de categoría 

(fila) y grupo (columna) [79]. En este trabajo, se genera una tabla de contingencia para cada 

categoría de una variable y se compara con las otras categorías de dicha variable juntas. Para 

ilustrar bien este concepto y ofrecer una mayor claridad en la explicación, se presenta en la Tabla 

11 un ejemplo de la estructura de una tabla de contingencia con una fila y columna de totales: 

Tabla 11. Ejemplo de estructura de una tabla de contingencia para una variable categórica. 

 
Reingreso  No reingreso Total 

Categoría específica a b a + b 

Resto de categorías c d c + d 

Total a + c b + d n = a + b + c + d 

 

▪ a: pacientes que reingresaron y pertenecen a la categoría específica. 

▪ b: pacientes que no reingresaron y pertenecen a la categoría específica. 

▪ c: pacientes que reingresaron y pertenecen al resto de categorías. 

▪ d: pacientes que no reingresaron y pertenecen al resto de categorías. 

▪ n: total de observaciones. 

Con ello, es posible calcular la probabilidad exacta de obtener la distribución observada en la 

tabla atendiendo a la siguiente fórmula [78]: 
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𝑝 =
(

𝑎+𝑏
𝑎

)(
𝑐+𝑑

𝑐
)

(
𝑛

𝑎+𝑐
)

=
(𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!

𝑎!𝑏!𝑐!𝑑!𝑛!
   (4.16) 

Tras esto, se calcula el p-valor sumando la probabilidad de la tabla de contingencia y de todas 

aquellas cuyos sumatorios en filas y columnas sean los mismos, aunque con diferencias más 

notorias entre reingreso y no reingreso. 
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CAPÍTULO 5. RESULTADOS 
 

El presente capítulo expone los hallazgos derivados del proceso metodológico descrito en la 

anterior sección. Entre estos resultados se incluye el análisis de la población bajo estudio para 

obtener los pacientes que finalmente formaron parte del trabajo, la descripción estadística de 

las variables disponibles, el análisis de datos perdidos por paciente y por variable, la selección 

final de características predictoras que constituirán las entradas a los modelos predictivos, la 

optimización de los hiperparámetros en los modelos de Random Forest y red neuronal 

perceptrón multicapa, y la evaluación de su capacidad predictiva mediante las métricas 

pertinentes. Todos estos resultados sientan las bases para la posterior discusión que se abordará 

en el siguiente capítulo. 

 

5.1. Población bajo estudio 

En este TFG se dispone de dos poblaciones: (i) retrospectiva, para diseño y validación interna; y 

(ii) prospectiva, para validación temporal independiente. A continuación, se analiza el flujo de 

pacientes y sus características de ambas por separado, ya que son independientes entre sí. 

▪ Población retrospectiva. Un total de 246 pacientes fueron fieles a los criterios de 

inclusión establecidos y firmaron asimismo el consentimiento informado. Sin embargo, 

de estos, 3 sujetos fueron excluidos, ya que representaban pacientes cuya alta fue 

motivada por su fallecimiento. Por consiguiente, no pudo efectuarse el seguimiento 

estipulado durante el periodo de 30 días posteriores al alta. Este descarte resulta 

finalmente en un tamaño muestral de 243 registros, siendo el 76.54% hombres (186 en 

cifras absolutas) y el 23.46% mujeres (57 en cifras absolutas). Además, 42 son reingresos 

(clase positiva) y 201 no reingresos (clase negativa), con una edad media de 73.48 años. 

El número medio de días transcurridos desde el alta al reingreso fue de 15.43 días, 

falleciendo el 4.76% de sujetos en el transcurso de su rehospitalización.  

 

A continuación, en la Figura 23, se expone el diagrama de flujo descriptivo de la 

población retrospectiva final: 
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Figura 23. Diagrama de flujo de pacientes que forman parte de la población retrospectiva. 

 

▪ Población prospectiva. Un total de 75 pacientes cumplieron los criterios de inclusión 

acordados (los mismos que en la base de datos retrospectiva) y firmaron el 

consentimiento informado. No obstante, de ellos, 1 paciente fue registrado como alta 

por fallecimiento. De los sujetos restantes, en 64 hubo dificultades en la adquisición de 

algunas variables. Finalmente, pudieron ser analizados un total de 10 pacientes (8 

hombres y 2 mujeres). Además, 1 reingresó (clase positiva) y 9 no reingresaron (clase 

negativa).  

 

A continuación, en la Figura 24, se presenta el diagrama de flujo descriptivo de la 

población prospectiva final: 
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Figura 24. Diagrama de flujo de pacientes que forman parte de la población prospectiva. 

 

5.2. Análisis de datos perdidos 

A continuación, se exponen los resultados del tratamiento de datos perdidos (NaNs). Esta etapa 

resulta fundamental, ya que, como se expresó en el capítulo Metodología, un adecuado abordaje 

evita comprometer la validez y robustez de los modelos predictivos diseñados. 

En primer lugar, como se indicó previamente, se efectuó una exploración inicial de los datos 

faltantes por variable y paciente antes de la aplicación de cualquier estrategia o filtrado. Esto 

permitió conocer aquellos pacientes y variables cuya proporción de datos perdidos era elevada. 

En la Tabla 12, se recoge el porcentaje de datos perdidos por variable, apreciándose diversas 

características cuyo valor superó el umbral establecido (10%). De hecho, la elección de este valor 

como umbral para la eliminación de variables tiene su origen en esta exploración inicial. A pesar 

de que se identificó una variable con un porcentaje de NaNs próximo al 10% (en concreto 9.88%), 
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la variable consecutiva en orden creciente de datos perdidos presentaba un 28.81% de NaNs. 

Por consiguiente, se optó por determinar un valor del 10% como límite razonable con el que se 

pretendía conservar el máximo número de variables posible, a la vez que no interferir en la 

calidad de los datos.  

Para favorecer una mejor comprensión y claridad de los resultados, se destacan en rojo las 

variables con un porcentaje superior al umbral. Por otra parte, en amarillo se denotan aquellas 

con nula o mínima variabilidad o representatividad, es decir, cuando la totalidad de los pacientes, 

o todos menos uno de ellos, pertenezcan a la misma clase. 

Tabla 12 - I. Exploración de datos perdidos por variable antes del filtrado. 

Variable % NaNs Variable % NaNs Variable % NaNs 

Edad 0.00 Medicación de rescate 
basal LABA 

0.00 Complicación: 
sepsis 

0.00 

Sexo 0.00 Medicación de rescate 
basal LAMA 

0.00 
Complicación: 
insuficiencia 
respiratoria 

0.00 

Peso 0.00 Medicación de rescate 
basal corticoides 

0.00 Medicación 
inhaladora al 
ingreso, ninguna 

0.00 

Altura 0.00 Corticoterapia 
sistémica basal 
continua 

0.00 Medicación 
inhaladora al 
ingreso, SABA 

0.00 

Índice de Masa 
Corporal (IMC) 

0.00 Teofilinas en estado 
basal 

0.00 Medicación 
inhaladora al 
ingreso, SAMA 

0.00 

Procedencia 0.00 IDFE4 en estado basal 0.00 Medicación 
inhaladora al 
ingreso, LABA 

010 

Estado civil 0.00 Mucolíticos en estado 
basal 

0.00 Medicación 
inhaladora al 
ingreso, LAMA 

0.00 

Hogar 0.00 Antibióticos en estado 
basal 

0.00 Medicación 
inhaladora al 
ingreso, corticoides 

0.00 

Actividad laboral 0.00 Test mMRC 0.00 Corticoterapia 
sistémica al ingreso 

0.00 

Movilidad 0.41 Test CAT 2.06 Ingreso en UVI 0.00 

Cuidador 0.41 Test TAI_Ade 1.65 Oxigenoterapia al 
ingreso 

0.00 

Test Barthel 0.00 Test_TAI_I_Err 1.65 Teofilinas al ingreso 0.00 

Tabaquismo 0.00 Test_TAI_I_Del 1.65 IDFE4 al ingreso 0.00 

Índice tabáquico 0.00 Test_TAI_I_Inc 1.65 Mucolíticos al 
ingreso 

0.00 

Alcohol 0.41 Test EuroQol-5D: 
movilidad 

0.00 Ventilación no 
invasiva al ingreso 

0.00 

 

Test_TAI_Ade: test de TAI, nivel de adhesión; Test_TAI_I_Err: test de TAI, incumplimiento errático; 

Test_TAI_I_Del: test de TAI, incumplimiento deliberado; Test_TAI_I_Inc: test de TAI, incumplimiento 

inconsciente. 
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Tabla 12 - II (cont.) Exploración de datos perdidos por variable antes del filtrado. 

Variable % NaNs Variable % NaNs Variable % NaNs 

Gramos diarios de 
alcohol 

76.54 Test_E5D_CPe 0.00 Ventilación invasiva 
al ingreso 

0.00 

Grupo de riesgo 
clínico 

0.00 Test_E5D_ACo 0.00 Días de ventilación 
invasiva 

99.59 

Tratamiento 
anticoagulación 

0.00 Test_E5D_Dol 0.00 Antibióticos al 
ingreso 

0.00 

Tratamiento 
antiagregación 

0.00 Test_E5D_Dep 0.00 Tensión sistólica al 
alta 

28.81 

Vacuna antigripal 0.00 Número de días 
ingresado 

0.00 Tensión diastólica al 
alta 

28.81 

Vacuna 
antineumocócica 

0.00 Tensión sistólica al 
ingreso 

2.06 Saturación basal al 
alta 

65.02 

Hipertensión 
arterial 

0.00 Tensión diastólica al 
ingreso 

2.06 Saturación con O2 
suplementario al 
alta 

57.20 

Diabetes mellitus 0.00 Saturación basal al 
ingreso 

32.10 Litros de O2 
suplementario al 
alta 

58.85 

Dislipemia 0.00 Saturación con O2 

suplementario al 
ingreso 

56.79 Frecuencia cardíaca 
al alta 

30.86 

Cardiopatía 
isquémica 

0.00 Litros de O2 

suplementario al 
ingreso 

67.49 Frecuencia 
respiratoria al alta 

94.24 

Insuficiencia 
cardíaca 

0.00 Frecuencia cardíaca al 
ingreso 

2.47 pH al alta 60.49 

Insuficiencia 
respiratoria 

0.00 Frecuencia 
respiratoria al ingreso 

41.56 PCO2 al alta 60.49 

Bronquiectasias 0.00 pH al ingreso 7.00 PO2 al alta 60.49 

Revascularización 0.00 PCO2 al ingreso 7.00 HCO3 al alta 60.49 

Taquiarritmia 0.00 PO2 al ingreso 7.00 A_Gas_A_a 73.25 

Accidente 
cerebrovascular 

0.00 HCO3 al ingreso 7.41 FiO2 al alta 69.14 

Demencia 0.00 Gradiente arterio-
alveolar al ingreso 

53.50 FVC al alta 97.12 

Neoplasia 
pulmonar 

0.00 
FiO2 al ingreso 

39.51 FVC al alta (% 
teórico) 

97.12 

Otras neoplasias 0.00 Leucocitos al ingreso 1.65 FVC al alta (z score) 98.35 

Enfermedad renal 0.00 Neutrófilos al ingreso 1.65 FEV1 al alta 97.12 

Osteoporosis 0.00 Neutrófilos al ingreso 
(%) 

1.65 FEV1_al alta (% 
teórico) 

97.12 

Ansiedad 0.00 Eosinófilos al ingreso 1.65 FEV1_al ata (z score) 98.35 

Depresión 0.00 Eosinófilos al ingreso 
(%) 

1.65 FEV1/FVC al alta 97.12 

Anemia 0.00 Aumento tos 0.00 
FEV1/FVC al alta (% 
teórico) 

98.35 

Tromboembolismo 
pulmonar 

0.00 Aumento disnea 0.00 FEV1/FVC al alta (z 
score) 

98.35 

 

Test_E5D_CPe: test EuroQoL-5D, cuidado personal; Test_E5D_Aco: test EuroQoL-5D, actividades 

cotidianas; Test_E5D_Dol: test EuroQoL-5D, dolor; Test_E5D_Dep: test EuroQoL-5D, depresión. 
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Tabla 12 - III (cont.) Exploración de datos perdidos por variable antes del filtrado. 

Variable % NaNs Variable % NaNs Variable % NaNs 

Síndrome apnea-
hipopnea 

0.00 Aumento 
expectoración 

0.00 Leucocitos al alta 55.14 

Test Charlson 0.00 Purulencia esputo 0.00 Neutrófilos al alta 55.14 

FVC basal 1.65 Dolor torácico 0.00 Neutrófilos al alta 
(%) 

55.14 

FVC basal (% 
teórico) 

1.65 Fiebre 0.00 Eosinófilos al alta 55.14 

FVC basal (z score) 1.65 Número de días de 
síntomas 

9.88 Eosinófilos al alta 
(%) 

55.14 

FEV1 basal 1.23 Uso musculatura 
accesoria 

0.00 
Oxigenoterapia 
domiciliaria al alta 

0.00 

FEV1 basal (% 
teórico) 

1.23 Movimientos 
torácicos 

0.00 
Ventilación no 
invasiva al alta 

0.00 

FEV1 basal (z 
score) 

1.23 Cianosis 0.00 
Medicación 
inhaladora al alta, 
ninguna 

0.00 

FEV1/FVC basal 1.23 Edemas periféricos 0.00 
Medicación 
inhaladora al alta, 
SABA 

0.00 

FEV1/FVC basal (% 
teórico) 

1.23 Inestabilidad 
hemodinámica 

0.00 
medicación 
inhaladora al alta, 
SAMA 

0.00 

FEV1/FVC basal (z 
score) 

1.23 Deterioro mental 0.00 
Medicación 
inhaladora al alta, 
LABA 

0.00 

Estratificación del 
riesgo 

0.00 Parada respiratoria 0.00 
Medicación 
inhaladora al alta, 
LAMA 

0.00 

Fenotipo 0.00 Disnea 0.00 
Medicación 
inhaladora al alta, 
corticoides; 

0.00 

Grado de 
obstrucción 

1.23 Causa infecciosa 0.00 
Medicación de 
rescate al alta, 
ninguna 

0.00 

Gold 0.00 Causa bacteriana 0.00 
Medicación de 
rescate al alta, SABA 

0.00 

Ingresos por 
agudización (año 
previo) 

0.00 Causa vírica 0.00 Medicación de 
rescate al alta, 
SAMA 

0.00 

Oxigenoterapia 
domiciliaria basal 

0.00 Microorganismos 
resistentes 

0.00 
Medicación de 
rescate al alta, 
LAMA 

0.00 

Ventilación no 
invasiva basal 

0.00 Cultivo germen 49.38 Medicación de 
rescate al alta, 
corticoides 

0.00 

Medicación 
inhaladora basal, 
ninguna 

0.00 Complicación: 
arritmias 

0.00 Corticoterapia 
sistémica al alta 

0.00 

Medicación 
inhaladora basal, 
SABA 

0.00 Complicación: 
insuficiencia cardíaca 

0.00 Antibióticos al alta 0.00 
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Tabla 12 - IV (cont.) Exploración de datos perdidos por variable antes del filtrado. 

Variable % NaNs Variable % NaNs Variable % NaNs 

Medicación 
inhaladora basal, 
SAMA 

0.00 
Complicación: 
cardiopatía isquémica 

0.00 Teofilinas al alta 0.00 

Medicación 
inhaladora basal, 
LABA 

0.00 Complicación: 
derrame pleural 

0.00 IDFE4 al alta 0.00 

Medicación 
inhaladora basal, 
LAMA 

0.00 Complicación: 
neumonía 

0.00 Mucolíticos al alta 0.00 

Medicación 
inhaladora basal, 
corticoides 

0.00 Complicación: 
tromboembolismo 
pulmonar 

0.00 Rehabilitación 
respiratoria al alta 

0.00 

Medicación de 
rescate basal, 
ninguna 

0.00 Complicación: 
neumotórax 

0.00   

Medicación de 
rescate basal, 
SABA 

0.00 Complicación: 
síndrome de distrés 
respiratorio agudo 

0.00   

Medicación de 
rescate basal, 
SAMA 

0.00 Medicación de rescate 
al alta, LABA 

0.00   

 

En esta Tabla 12, las variables marcadas suponen un total de 42 características, que serán 

eliminadas por superar el umbral del 10% de datos ausentes (36 variables, en rojo) o por implicar 

una nula o mínima variabilidad/representatividad de una de las clases (6 variables, en amarillo). 

Las restantes constituyen el conjunto de características sobre las que se aplicará el proceso de 

selección de variables posterior una vez imputadas. En el caso de los pacientes, se calculó el 

porcentaje de datos faltantes, puesto que la supresión de variables influye directamente en la 

cantidad de NaNs por sujeto. Esto último es recogido en la Tabla 13.  

Dado que la pérdida máxima de datos por paciente fue del 7.59%, no se suprimió ningún sujeto, 

en contraste con lo efectuado con las variables. De esta manera, se priorizó mantener el mayor 

número de pacientes en el estudio, ya que el tamaño de la población recogida es reducido.  

Además, en la base de datos prospectiva se detectó una variable con un significativo porcentaje 

de datos perdidos. Esto ocasionó el descarte de un elevado número de pacientes, siendo 

excluidos 36 sujetos (48% de la cohorte inicial compuesta por 75 individuos).  
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Tabla 13 - I. Exploración de datos perdidos por paciente después del filtrado. 

Paciente % NaNs Paciente % NaNs Paciente % NaNs 

1 2.53 82 0.00 163 0.00 

2 0.00 83 0.00 164 0.00 

3 0.00 84 0.00 165 0.00 

4 0.00 85 0.00 166 0.00 

5 0.00 86 0.00 167 0.00 

6 2.53 87 0.00 168 2.53 

7 0.00 88 0.00 169 0.00 

8 0.00 89 0.00 170 4.43 

9 0.00 90 0.00 171 0.63 

10 0.00 91 0.00 172 0.63 

11 0.00 92 0.00 173 1.90 

12 0.00 93 0.00 174 0.63 

13 0.00 94 0.00 175 0.00 

14 0.00 95 0.00 176 0.63 

15 0.00 96 0.00 177 0.00 

16 2.53 97 0.00 178 0.00 

17 0.00 98 0.00 179 0.63 

18 0.00 99 0.00 180 0.00 

19 0.00 100 0.00 181 0.00 

20 0.00 101 0.00 182 0.00 

21 0.00 102 0.00 183 0.63 

22 0.00 103 2.53 184 3.80 

23 0.00 104 7.59 185 0.00 

24 0.00 105 0.00 186 0.63 

25 0.00 106 0.00 187 0.00 

26 2.53 107 0.00 188 0.63 

27 0.00 108 0.00 189 0.00 

28 0.00 109 0.00 190 0.00 

29 0.00 110 0.00 191 0.00 

30 0.00 111 0.00 192 0.00 

31 0.00 112 0.00 193 0.00 

32 0.63 113 0.00 194 0.00 

33 0.00 114 1.90 195 0.00 

34 0.00 115 2.53 196 0.63 

35 2.53 116 0.00 197 0.63 

36 0.00 117 1.90 198 0.00 

37 0.00 118 6.33 199 0.00 

38 0.00 119 0.00 200 0.00 

39 0.00 120 2.53 201 0.63 

40 0.00 121 0.00 202 0.00 

41 0.00 122 0.63 203 3.16 

42 0.00 123 0.63 204 0.00 

43 2.53 124 3.80 205 0.63 

44 0.00 125 0.00 206 0.00 

45 2.53 126 0.00 207 0.00 
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Tabla 13 - II (cont.) Exploración de datos perdidos por paciente después del filtrado. 

Paciente % NaNs Paciente % NaNs Paciente % NaNs 

46 0.00 127 0.63 208 0.00 

47 0.00 128 1.90 209 0.00 

48 2.53 129 0.00 210 0.00 

49 0.00 130 0.63 211 0.00 

50 0.00 131 0.00 212 0.00 

51 0.00 132 0.00 213 0.00 

52 0.00 133 0.00 214 0.63 

53 0.00 134 0.00 215 0.00 

54 0.00 135 0.00 216 3.16 

55 0.00 136 0.00 217 0.00 

56 0.00 137 0.00 218 0.00 

57 0.00 138 0.00 219 0.63 

58 0.00 139 0.00 220 0.63 

59 0.00 140 0.00 221 0.00 

60 6.33 141 0.00 222 0.00 

61 0.00 142 0.00 223 0.00 

62 0.00 143 0.00 224 2.53 

63 0.00 144 0.00 225 0.00 

64 1.90 145 0.00 226 0.00 

65 0.00 146 0.00 227 0.00 

66 0.00 147 0.00 228 2.53 

67 0.00 148 0.00 229 0.00 

68 0.00 149 1.27 230 0.00 

69 0.00 150 0.63 231 0.00 

70 6.33 151 0.00 232 0.63 

71 0.00 152 2.53 233 0.63 

72 2.53 153 0.00 234 0.00 

73 0.00 154 0.00 235 2.53 

74 0.00 155 0.00 236 0.00 

75 0.00 156 0.00 237 0.63 

76 0.00 157 0.00 238 0.63 

77 0.00 158 0.00 239 0.00 

78 0.00 159 0.00 240 0.00 

79 3.16 160 0.00 241 0.63 

80 0.00 161 0.00 242 0.00 

81 0.00 162 0.00 243 0.00 

 

5.3. Análisis descriptivo de la base de datos 

5.3.1. Base de datos retrospectiva 

En la presente sección, se expone la caracterización estadística de las variables que conforman 

la base de datos principal (retrospectiva). Dada la naturaleza mixta propia de estas 

características, se ha optado por su agrupación en tablas (Tabla 14-27) según su temática, 
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manteniendo la clasificación que se indicó en el capítulo Sujetos y Variables de Estudio. A 

continuación de cada una de ellas, se exhiben los diagramas de cajas o boxplots 

correspondientes a aquellas variables continuas que presentan diferencias estadísticamente 

significativas entre las clases. La inclusión de los mismos es meramente informativa, ya que en 

el contexto de este trabajo no resulta razonable la identificación de outliers. Los valores 

obtenidos son un reflejo del grado de afectación de la enfermedad sobre el estado del paciente, 

por lo que la variabilidad mostrada en ellos es únicamente una evidencia de la heterogeneidad 

de la patología.  

En relación con los datos sociodemográficos y antropométricos de los pacientes, la Tabla 14 

muestra diferencias significativas entre clases en las variables Hogar y Cuidador.  Respecto a la 

primera, la residencia resultó ser predominante en los reingresos. Por otra parte, la ausencia de 

cuidador fue más común en la clase negativa que en la positiva. 

Tabla 14 - I. Caracterización de los datos sociodemográficos y antropométricos para las dos clases 
bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Edad 74.0 (66.0, 81.0) 74.0 (66.0, 81.0) 74.5 (67.0, 82.0) 0.4981 

Sexo     
Mujer 57 (23.5%) 48 (23.9%) 9 (21.4%) 0.8427 

Hombre 186 (76.5%) 153 (76.1%) 33 (78.6%)  
Peso 73.0 (63.0, 81.0) 73.0 (63.0, 83.0) 74.0 (64.0, 80.0) 0.9144 

Altura 165.0 (160.0, 170.0) 165.0 (160.0, 170.0) 165.0 (158.0, 171.0) 0.7285 

IMC 26.6 (24.0, 29.9) 26.5 (24.0, 30.1) 27.4 (24.4, 29.4) 0.6922 

Procedencia     
Rural 

Urbana 
78 (32.1%) 69 (34.3%) 9 (21.4%) 0.1451 

165 (67.9%) 132 (65.7%) 33 (78.6%)  
Estado civil     

Soltero 31 (12.8%) 29 (14.4%) 2 (4.8%) 0.1247 

Casado 
Viudo 

155 (63.8%) 129 (64.2%) 26 (61.9%) 0.8602 
39 (16.0%) 28 (13.9%) 11 (26.2%) 0.0634 

Separado 18 (7.4%) 15 (7.5%) 3 (7.1%) 1.0000 

Hogar     
Residencia 11 (4.5%) 6 (3.0%) 5 (11.9%) 0.0253 

Solo 43 (17.7%) 38 (18.9%) 5 (11.9%) 0.3751 

Familiares 189 (77.8%) 157 (78.1%) 32 (76.2%) 0.8387 

Estudios     
Sin estudios 52 (21.4%) 44 (21.9%) 8 (19.0%) 0.8367 

Primarios 153 (63.0%) 127 (63.2%) 26 (61.9%) 0.8626 
Secundarios 25 (10.3%) 20 (10.0%) 5 (11.9%) 0.7795 

Universitarios 13 (5.3%) 10 (5.0%) 3 (7.1%) 0.4754 
 

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 
número y porcentaje para las variables categóricas. IMC: Índice de Masa Corporal. 
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Tabla 14 – II (cont.) Caracterización de los datos sociodemográficos y antropométricos para las 
dos clases bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Actividad laboral     
Activo 8 (3.3%) 8 (4.0%) 0 (0.0%) 0.3572 

Jubilado 
Incapacitado 
Baja laboral 

215 (88.5%) 178 (88.6%) 37 (88.1%) 1.0000 

20 (8.2%) 15 (7.5%) 5 (11.9%) 0.3554 

0(0.0%) 0(0.0%) 0(0.0%) ~ 

Movilidad     
Cama-sillón 18 (7.4%) 15 (7.5%) 3 (7.1%) 1.0000 

Paseo en domicilio 
Salir a la calle 

37 (15.2%) 27 (13.4%) 10 (23.8%) 0.1001 

188 (77.4%) 159 (79.1%) 29 (69.0%) 0.1608 

Cuidador     
No 

Familiar 
Cónyuge 

Profesional 

112 (46.1%) 100 (49.8%) 12 (28.6%) 0.0166 

60 (24.7%) 50 (24.9%) 10 (23.8%) 1.0000 

53 (21.8%) 39 (19.4%) 14 (33.3%) 0.0631 

18 (7.4%) 12 (6.0%) 6 (14.3%) 0.0965 
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

Por otra parte, no se observaron diferencias significativas entre los grupos de estudio para las 

variables recogidas en la Tabla 15 relacionadas con los hábitos de los pacientes (Tabaquismo, 

índice Tabáquico y Alcohol), y las recogidas en la Tabla 16 relacionadas con los datos clínicos de 

los sujetos (Grupo de riesgo clínico, Anticoagulación, Antiagregación, Vacuna antigripal en el año 

anterior y Vacuna antinemocócica).  

Tabla 15. Caracterización de los hábitos del paciente para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Tabaquismo     
No 6 (2.5%) 4 (2.0%) 2 (4.8%) 0.2775 

Fumador 62 (25.5%) 53 (26.4%) 9 (21.4%) 0.5647 

Ex fumador 175 (72.0%) 144 (71.6%) 31 (73.8%) 0.8518 

Índice tabáquico 50.0 (30.0, 78.0) 52.0 (30.0, 78.5) 48.0 (33.0, 78.0) 0.8299 

Alcohol     
No bebedor 184 (75.7%) 150 (74.6%) 34 (81.0%) 0.4352 

Bebedor 59 (24.3%) 51 (25.4%) 8 (19.0%) 0.4352 
 

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 
número y porcentaje para las variables categóricas. 
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Tabla 16. Caracterización de los datos clínicos para las dos clases bajo estudio en la cohorte 
retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Grupo de riesgo 
clínico     

Grupo 0 31 (12.8%) 26 (12.9%) 5 (11.9%) 1.0000 

Grupo 1 45 (18.5%) 38 (18.9%) 7 (16.7%) 0.8300 

Grupo 2 60 (24.7%) 50 (24.9%) 10 (23.8%) 1.0000 

Grupo 3 107 (44.0%) 87 (43.3%) 20 (47.6%) 0.6129 

Anticoagulación     
No 201 (82.7%) 165 (82.1%) 36 (85.7%) 0.6596 

Sí 
42 (17.3%) 36 (17.9%) 6 (14.3%)  

Antiagregación     
No 187 (77.0%) 157 (78.1%) 30 (71.4%) 0.4199 

Sí 
56 (23.0%) 44 (21.9%) 12 (28.6%)  

Vacuna 
antigripal (año 

anterior)     
No 82 (33.7%) 71 (35.3%) 11 (26.2%) 0.2862 

Sí 161 (66.3%) 130 (64.7%) 31 (73.8%)  
Vacuna 

antineumocócica     
No 151 (62.1%) 127 (63.2%) 24 (57.1%) 0.4874 

Sí 
92 (37.9%) 74 (36.8%) 18 (42.9%)  

 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

Respecto a las comorbilidades de los pacientes, las diferencias significativas entre grupos se 

dieron para las variables Insuficiencia respiratoria y Taquiarritmia. La insuficiencia respiratoria 

predominó en pacientes de clase positiva, mientras que la ausencia de la misma fue más 

frecuente en la clase negativa. Por otro lado, la taquiarritmia fue más común en los sujetos que 

reingresan que en los que no. Estos hallazgos pueden observarse en la Tabla 17. 
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Tabla 17 - I. Caracterización de las comorbilidades previas para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Hipertensión arterial     
No 88 (36.2%) 73 (36.3%) 15 (35.7%) 1.0000 

Sí 155 (63.8%) 128 (63.7%) 27 (64.3%)  
Diabetes mellitus     

No 180 (74.1%) 148 (73.6%) 32 (76.2%) 0.8474 

Sí 63 (25.9%) 53 (26.4%) 10 (23.8%)  
Dislipemia     

No 149 (61.3%) 122 (60.7%) 27 (64.3%) 0.7295 

Sí 94 (38.7%) 79 (39.3%) 15 (35.7%)  
Cardiopatía isquémica     

No 225 (92.6%) 187 (93.0%) 38 (90.5%) 0.5249 

Sí 18 (7.4%) 14 (7.0%) 4 (9.5%)  
Insuficiencia cardíaca     

No 218 (89.7%) 180 (89.6%) 38 (90.5%) 1.0000 

Sí 25 (10.3%) 21 (10.4%) 4 (9.5%)  
Insuficiencia respiratoria     

No 122 (50.2%) 112 (55.7%) 10 (23.8%) 0.0002 

Sí 121 (49.8%) 89 (44.3%) 32 (76.2%)  
Bronquiectasias     

No 194 (79.8%) 159 (79.1%) 35 (83.3%) 0.6736 

Sí 49 (20.2%) 42 (20.9%) 7 (16.7%)  
Taquiarritmia     

No 230 (94.7%) 194 (96.5%) 36 (85.7%) 0.0126 

Sí 13 (5.3%) 7 (3.5%) 6 (14.3%)  
Accidente cerebrovascular     

No 233 (95.9%) 192 (95.5%) 41 (97.6%) 1.0000 

Sí 10 (4.1%) 9 (4.5%) 1 (2.4%)  
Neoplasia pulmonar     

No 232 (95.5%) 191 (95.0%) 41 (97.6%) 0.6950 

Sí 11 (4.5%) 10 (5.0%) 1 (2.4%)  
Otras neoplasias     

No 190 (78.2%) 156 (77.6%) 34 (81.0%) 0.8373 

Sí 53 (21.8%) 45 (22.4%) 8 (19.0%)  
Enfermedad renal     

No 239 (98.4%) 199 (99.0%) 40 (95.2%) 0.1392 

Sí 4 (1.6%) 2 (1.0%) 2 (4.8%)  
Osteoporosis     

No 231 (95.1%) 190 (94.5%) 41 (97.6%) 0.6971 

Sí 12 (4.9%) 11 (5.5%) 1 (2.4%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 
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Tabla 17 - II (cont.) Caracterización de las comorbilidades previas para las dos clases bajo estudio 
en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Ansiedad     
No 225 (92.6%) 185 (92.0%) 40 (95.2%) 0.7462 

Sí 18 (7.4%) 16 (8.0%) 2 (4.8%)  
Depresión     

No 233 (95.9%) 194 (96.5%) 39 (92.9%) 0.3835 

Sí 10 (4.1%) 7 (3.5%) 3 (7.1%)  
Anemia     

No 235 (96.7%) 195 (97.0%) 40 (95.2%) 0.6297 

Sí 8 (3.3%) 6 (3.0%) 2 (4.8%)  
Tromboembolismo pulmonar     

No 232 (95.5%) 192 (95.5%) 40 (95.2%) 1.0000 

Sí 11 (4.5%) 9 (4.5%) 2 (4.8%)  
Síndrome de apnea-hipopnea     

No 178 (73.3%) 146 (72.6%) 32 (76.2%) 0.7051 

Sí 65 (26.7%) 55 (27.4%) 10 (23.8%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

En cuanto a la espirometría previa al ingreso, el grupo Reingreso mostró unos valores 

significativamente más bajos de FVC basal (% teórico) en comparación con los no reingresos. 

Asimismo, FEV1 basal y FEV1 (% teórico) presentaron valores significativamente inferiores en los 

pacientes que reingresan. Todo ello es recogido en la Tabla 18. Además, las Figuras 25-27 

constituyen el diagrama de cajas de estas tres variables.  

Tabla 18. Caracterización de la espirometría previa al ingreso para las dos clases bajo estudio en 
la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

FVC basal 2.1 (1.7, 2.7) 2.2 (1.7, 2.8) 2.0 (1.5, 2.3) 0.0601 

FVC basal (% teórico) 64.7 (54.7, 78.1) 66.0 (55.5, 79.3) 59.7 (52.0, 70.7) 0.0375 

FVC basal (z score) -2.1 (-2.9, -1.4) -2.1 (-2.9, -1.3) -2.4 (-3.1, -1.8) 0.0542 

FEV1 basal 1.2 (0.8, 1.5) 1.2 (0.8, 1.6) 1.0 (0.8, 1.3) 0.0186 

FEV1 basal (% teórico) 47.6 (35.4, 59.5) 48.9 (35.7, 61.0) 40.6 (32.8, 50.9) 0.0164 

FEV1 basal (z score) -2.9 (-3.5, -2.3) -2.9 (-3.5, -2.2) -3.2 (-3.9, -2.5) 0.0547 

FEV1/FVC basal 0.6 (0.5, 0.6) 0.6 (0.5, 0.6) 0.5 (0.4, 0.6) 0.2549 

FEV1/FVC basal (% teórico) 71.4 (60.5, 82.9) 72.1 (61.0, 83.0) 68.8 (55.8, 82.3) 0.3090 

FEV1/FVC basal (z score) -2.5 (-3.3, -1.5) -2.5 (-3.3, -1.5) -2.7 (-3.6, -1.5) 0.3889 
  

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas. 
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Figura 25. Diagrama de cajas para la variable “FVC basal (% teórico)”. Denotación: 
B_Esp_FVC_p. 

 

 

 

Figura 26. Diagrama de cajas para la variable “FEV1 basal”. Denotación: B_Esp_FEV1. 
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Figura 27. Diagrama de cajas para la variable “FEV1 basal (% teórico)”. Denotación: 
B_Esp_FEV1_p. 

 

En referencia a la clasificación de pacientes, se observaron diferencias significativas entre grupos 

para Estratificación del riesgo, Fenotipo (GesEPOC), estadio GOLD y Número de ingresos por 

agudización (año previo). En la estratificación del riesgo, fue significativamente más común el 

nivel de riesgo bajo para los pacientes que no reingresan, mientras que el riesgo alto fue 

predominante en los reingresos. En el fenotipo según GesEPOC, los sujetos no agudizadores 

predominaron en la clase negativa, mientras que los agudizadores con enfisema resultaron más 

habituales en la clase positiva. En el estadio GOLD, una proporción importante de los pacientes 

de la categoría B (menor gravedad) resultaron ser de la clase No Reingreso, mientras que la 

categoría D (mayor gravedad) fue significativamente más frecuente para los sujetos que 

reingresaron. Por otro lado, el número de ingresos por agudización en el año previo fue superior 

en el grupo positivo. Estos hallazgos se incluyen en la Tabla 19. Asimismo, la Figura 28 representa 

el diagrama de cajas de la variable Número de ingresos por agudización (año previo). 
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Tabla 19. Caracterización basal de la EPOC de acuerdo a las guías clínicas para las dos clases bajo 
estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Estratificación del riesgo     
Bajo 51 (21.0%) 50 (24.9%) 1 (2.4%) 0.0003 

Alto 192 (79.0%) 151 (75.1%) 41 (97.6%)  
Fenotipo (GesEPOC)     

No agudizador 105 (43.2%) 93 (46.3%) 12 (28.6%) 0.0403 

Agudizador con enfisema 62 (25.5%) 44 (21.9%) 18 (42.9%) 0.0065 

Agudizador con bronquitis 
crónica 33 (13.6%) 28 (13.9%) 5 (11.9%) 1.0000 

Mixto 43 (17.7%) 36 (17.9%) 7 (16.7%) 1.0000 

Grado obstrucción flujo 
aéreo (GOLD)     

Leve 14 (5.8%) 14 (7.0%) 0 (0.0%) 0.1373 

Moderado 99 (40.7%) 87 (43.3%) 12 (28.6%) 0.0862 

Grave 90 (37.0%) 70 (34.8%) 20 (47.6%) 0.1592 

Muy grave 40 (16.5%) 30 (14.9%) 10 (23.8%) 0.1719 

Estadio GOLD     
A 34 (14.0%) 32 (15.9%) 2 (4.8%) 0.0836 

B 120 (49.4%) 108 (53.7%) 12 (28.6%) 0.0037 

C 9 (3.7%) 8 (4.0%) 1 (2.4%) 1.0000 

D 80 (32.9%) 53 (26.4%) 27 (64.3%) < 0.0001 

Número de ingresos por 
agudización (año previo) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 1.5 (0.0, 3.0) < 0.0001 

  

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

 

Figura 28. Diagrama de cajas para la variable “Número de ingresos por agudización (año previo)”. 
Denotación: N_Ingresos. 
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En lo relativo a las variables relacionadas con la terapia basal recogidas en la Tabla 20, las 

características Oxigenoterapia basal continua domiciliaria y Medicación de rescate basal: SABA 

presentaron diferencias significativas entre clases. La pauta de oxigenoterapia domiciliaria fue 

más común en pacientes que reingresaron, mientras que la falta de esta fue más característica 

en sujetos que no reingresaron. Por otra parte, la administración de SABA fue más frecuente en 

pacientes de la clase positiva y la ausencia de su suministro fue más habitual en aquellos de la 

clase negativa.  

Tabla 20 - I. Caracterización de la terapia basal para las dos clases bajo estudio en la cohorte 
retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Oxigenoterapia basal continua 
domiciliaria     

No 141 (58.0%) 126 (62.7%) 15 (35.7%) 0.0018 

Sí 102 (42.0%) 75 (37.3%) 27 (64.3%)  
Ventilación no invasiva basal     

No 195 (80.2%) 165 (82.1%) 30 (71.4%) 0.1356 

Sí 48 (19.8%) 36 (17.9%) 12 (28.6%)  

Medicación inhaladora basal: 
ninguna 

    
No 234 (96.3%) 192 (95.5%) 42 (100.0%) 0.3654 

Sí 9 (3.7%) 9 (4.5%) 0 (0.0%)  
Medicación inhaladora basal: 

SABA     
No 229 (94.2%) 192 (95.5%) 37 (88.1%) 0.0726 

Sí 14 (5.8%) 9 (4.5%) 5 (11.9%)  
Medicación inhaladora basal: 

SAMA     
No 229 (94.2%) 190 (94.5%) 39 (92.9%) 0.7147 

Sí 14 (5.8%) 11 (5.5%) 3 (7.1%)  
Medicación inhaladora basal: 

LABA     
No 36 (14.8%) 32 (15.9%) 4 (9.5%) 0.3483 

Sí 207 (85.2%) 169 (84.1%) 38 (90.5%)  
Medicación inhaladora basal: 

LAMA     
No 49 (20.2%) 44 (21.9%) 5 (11.9%) 0.2034 

Sí 194 (79.8%) 157 (78.1%) 37 (88.1%)  
Medicación inhaladora basal: 

corticoides     
No 75 (30.9%) 67 (33.3%) 8 (19.0%) 0.0971 

Sí 168 (69.1%) 134 (66.7%) 34 (81.0%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 
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Tabla 20 - II (cont.) Caracterización de la terapia basal para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Medicación de rescate basal: 
ninguna     

No 167 (68.7%) 136 (67.7%) 31 (73.8%) 0.4707 

Sí 76 (31.3%) 65 (32.3%) 11 (26.2%)  
Medicación de rescate basal: 

SABA     
No 153 (63.0%) 133 (66.2%) 20 (47.6%) 0.0341 

Sí 90 (37.0%) 68 (33.8%) 22 (52.4%)  

Medicación de rescate basal: 
SAMA 

    
No 230 (94.7%) 192 (95.5%) 38 (90.5%) 0.2481 

Sí 13 (5.3%) 9 (4.5%) 4 (9.5%)  
Medicación de rescate basal: 

LABA     
No 235 (96.7%) 196 (97.5%) 39 (92.9%) 0.1434 

Sí 8 (3.3%) 5 (2.5%) 3 (7.1%)  
Medicación de rescate basal: 

LAMA     
No 241 (99.2%) 200 (99.5%) 41 (97.6%) 0.3164 

Sí 2 (0.8%) 1 (0.5%) 1 (2.4%)  

Medicación de rescate basal: 
corticoides 

    
No 233 (95.9%) 195 (97.0%) 38 (90.5%) 0.0738 

Sí 10 (4.1%) 6 (3.0%) 4 (9.5%)  
Corticoterapia sistémica basal 

continua     
No 235 (96.7%) 194 (96.5%) 41 (97.6%) 1.0000 

Sí 8 (3.3%) 7 (3.5%) 1 (2.4%)  
Teofilinas en estado basal     

No 217 (89.3%) 182 (90.5%) 35 (83.3%) 0.1748 

Sí 26 (10.7%) 19 (9.5%) 7 (16.7%)  
IDFE4 en estado basal     

No 236 (97.1%) 195 (97.0%) 41 (97.6%) 1.0000 

Sí 7 (2.9%) 6 (3.0%) 1 (2.4%)  
Mucolíticos en estado basal     

No 227 (93.4%) 188 (93.5%) 39 (92.9%) 0.7440 

Sí 16 (6.6%) 13 (6.5%) 3 (7.1%)  
Antibióticos en estado basal     

No 241 (99.2%) 199 (99.0%) 42 (100.0%) 1.0000 

Sí 2 (0.8%) 2 (1.0%) 0 (0.0%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 
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Tabla 20 - III (cont.) Caracterización de la terapia basal para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Rehabilitación respiratoria en 
estado basal     

No 239 (98.4%) 197 (98.0%) 42 (100.0%) 1.0000 

Sí 4 (1.6%) 4 (2.0%) 0 (0.0%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

Respecto a los test efectuados y sus puntuaciones, las diferencias significativas se dieron en el 

test de Barthel, test de CAT y test EuroQol-5D (apartado de evaluación de movilidad, cuidado 

personal y actividades cotidianas), según muestra la Tabla 21. En el test de Barthel, los sujetos 

que reingresaron obtuvieron una puntuación inferior, pero superior en el test CAT que los no 

reingresos. En el EuroQoL-5D, una proporción baja de los pacientes que reingresaron reflejaron 

no tener ningún problema de movilidad. Los sujetos que constataron tener algunos problemas 

de movilidad fueron predominantemente los de clase positiva. Asimismo, los pacientes que 

reingresaron presentaron una mayor proporción con algunos problemas tanto en el cuidado 

personal como en la ejecución de actividades cotidianas.  

En las Figuras 29 y 30, se representa el diagrama de cajas para el test de Barthel y de CAT, 

respectivamente. 

Tabla 21 - I. Caracterización de los tests efectuados y sus puntuaciones para las dos clases bajo 
estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Test_Barthel 95.0 (85.0, 100.0) 100.0 (85.0, 100.0) 90.0 (75.0, 100.0) 0.0189 

Test_Charlson 5.0 (4.0, 6.0) 5.0 (4.0, 6.0) 5.0 (4.0, 7.0) 0.5648 

Test de disnea (mMRC)     
0 puntos 16 (6.6%) 15 (7.5%) 1 (2.4%) 0.3193 

1 punto 57 (23.5%) 50 (24.9%) 7 (16.7%) 0.3187 

2 puntos 52 (21.4%) 44 (21.9%) 8 (19.0%) 0.8367 

3 puntos 79 (32.5%) 63 (31.3%) 16 (38.1%) 0.4690 

4 puntos 39 (16.0%) 29 (14.4%) 10 (23.8%) 0.1637 

Test_CAT 23.0 (16.0, 28.0) 22.0 (15.8, 28.0) 27.0 (19.0, 32.0) 0.0232 

Test TAI: adhesión     
Mala adhesión 30 (12.3%) 25 (12.4%) 5 (11.9%) 1.0000 

Adhesión intermedia 43 (17.7%) 33 (16.4%) 10 (23.8%) 0.2688 

Buena adhesión 170 (70.0%) 143 (71.1%) 27 (64.3%) 0.4592 
  

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 

número y porcentaje para las variables categóricas.  
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Tabla 21 - II (cont.) Caracterización de los tests efectuados y sus puntuaciones para las dos clases 
bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Test TAI: incumplimiento 
errático     

No 181 (74.5%) 152 (75.6%) 29 (69.0%) 0.4363 

Sí 62 (25.5%) 49 (24.4%) 13 (31.0%)  
Test TAI: incumplimiento 

deliberado     
No 210 (86.4%) 173 (86.1%) 37 (88.1%) 1.0000 

Sí 33 (13.6%) 28 (13.9%) 5 (11.9%)  
Test TAI: incumplimiento 

inconsciente     
No 53 (21.8%) 39 (19.4%) 14 (33.3%) 0.0631 

Sí 190 (78.2%) 162 (80.6%) 28 (66.7%)  

Test EuroQoL-5D: movilidad 
    

Sin problemas 122 (50.2%) 108 (53.7%) 14 (33.3%) 0.0179 

Algunos problemas 117 (48.1%) 89 (44.3%) 28 (66.7%) 0.0105 

En cama 4 (1.6%) 4 (2.0%) 0 (0.0%) 1.0000 

Test EuroQoL-5D: cuidado 
personal     

Sin problemas 170 (70.0%) 150 (74.6%) 20 (47.6%) 0.0008 

Algunos problemas 62 (25.5%) 42 (20.9%) 20 (47.6%) 0.0007 

Incapaz 11 (4.5%) 9 (4.5%) 2 (4.8%) 1.0000 

Test EuroQoL-5D: actividades 
cotidianas     

Sin problemas 140 (57.6%) 123 (61.2%) 17 (40.5%) 0.0163 

Algunos problemas 83 (34.2%) 61 (30.3%) 22 (52.4%) 0.0076 

Incapaz 20 (8.2%) 17 (8.5%) 3 (7.1%) 1.0000 

Test EuroQoL-5D: 
dolor/malestar     

Sin dolor 102 (42.0%) 89 (44.3%) 13 (31.0%) 0.1243 

Dolor moderado 125 (51.4%) 99 (49.3%) 26 (61.9%) 0.1743 

Mucho dolor 15 (6.2%) 12 (6.0%) 3 (7.1%) 0.7283 

Test EuroQoL-5D: 
ansiedad/depresión     

No 134 (55.1%) 115 (57.2%) 19 (45.2%) 0.1745 

Moderada 86 (35.4%) 68 (33.8%) 18 (42.9%) 0.2896 

Muy ansioso/deprimido 23 (9.5%) 18 (9.0%) 5 (11.9%) 0.5636 
 

Los datos se expresan en número y porcentaje para las variables categóricas. 
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Figura 29. Diagrama de cajas para la variable “Test de Barthel”. Denotación: Test_Barthel. 

 

 
Figura 30. Diagrama de cajas para la variable “Test CAT”. Denotación: Test_CAT. 

 

En cuanto a las variables relacionadas con la duración y motivo de ingreso contenidas en la Tabla 

22, las diferencias estadísticas significativas se muestran para la duración de la hospitalización, 

siendo superior en la clase positiva. Además, la Tabla 23 presenta las variables acerca de los 

resultados de las pruebas realizadas durante dicho ingreso, pudiéndose observar unos valores 

significativamente superiores en el grupo Reingreso en los niveles de PCO2 y HCO3. 
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Tabla 22. Caracterización de la duración y motivo de ingreso para las dos clases bajo estudio en 
la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Número de días 
ingresado 7.0 (5.0, 10.0) 7.0 (5.0, 10.0) 8.5 (6.0, 14.0) 0.0062 

Causa infecciosa     
No 102 (42.0%) 90 (44.8%) 12 (28.6%) 0.0597 

Sí 141 (58.0%) 111 (55.2%) 30 (71.4%)  
Causa bacteriana     

No 183 (75.3%) 156 (77.6%) 27 (64.3%) 0.0781 

Sí 60 (24.7%) 45 (22.4%) 15 (35.7%)  
Causa vírica     

No 195 (80.2%) 162 (80.6%) 33 (78.6%) 0.8314 

Sí 48 (19.8%) 39 (19.4%) 9 (21.4%)  
Microorganismos 

resistentes     
No 233 (95.9%) 195 (97.0%) 38 (90.5%) 0.0738 

Sí 10 (4.1%) 6 (3.0%) 4 (9.5%)  
  

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 

número y porcentaje para las variables categóricas.  

 

A continuación, se muestra el diagrama de cajas para la variable Número de días ingresado 

(Figura 31): 

 

Figura 31. Diagrama de cajas para la variable “Número de días ingresado”. Denotación: 
N_Dias_Ing. 
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Tabla 23. Caracterización de los resultados de pruebas realizadas al ingreso para las dos clases 
bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Tensión sistólica al ingreso 137.0 (122.0, 152.0) 137.0 (122.0, 151.0) 142.1 (125.0, 155.0) 0.2233 

Tensión diastólica al 
ingreso 71.0 (62.0, 82.0) 72.0 (62.0, 82.0) 70.0 (61.0, 83.0) 0.6309 

Frecuencia cardíaca al 
ingreso 96.0 (82.0, 107.0) 94.0 (81.8, 106.0) 102.5 (87.0, 114.0) 0.1919 

pH al ingreso 7.4 (7.4, 7.5) 7.4 (7.4, 7.5) 7.4 (7.4, 7.4) 0.0798 

PCO2 al ingreso 43.0 (39.0, 50.0) 42.0 (38.0, 49.0) 47.5 (42.0, 53.0) 0.0104 

PO2 al ingreso 65.0 (54.0, 85.0) 64.0 (53.0, 89.0) 66.5 (57.0, 79.0) 0.5121 

HCO3 al ingreso 28.1 (24.9, 31.2) 27.9 (24.7, 30.6) 29.2 (26.0, 32.5) 0.0336 

Leucocitos al ingreso 9900.0 (8000.0, 12900.0) 9800.0 (8000.0, 13000.0) 9900.0 (7500.0, 12100.0) 0.6284 

Neutrófilos al ingreso 7812.2 (5627.6, 10361.2) 7838.3 (5747.5, 10370.7) 7710.8 (5616.0, 10331.1) 0.5929 

Neutrófilos (%) al ingreso 78.2 (69.8, 85.3) 78.3 (69.5, 85.5) 76.8 (70.5, 83.2) 0.5406 

Eosinófilos al ingreso 67.5 (16.4, 139.0) 68.0 (17.9, 142.0) 65.5 (12.9, 127.6) 0.5458 

Eosinófilos (%) al ingreso 0.6 (0.1, 1.6) 0.6 (0.2, 1.7) 0.8 (0.1, 1.4) 0.7476 
 

 Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas. 

 

Las Figuras 32 y 33 constituyen el diagrama de cajas para la variable PCO2 al ingreso y HCO3 al 

ingreso, respectivamente. 

 

Figura 32. Diagrama de cajas para la variable “PCO2 al ingreso”. Denotación: I_Gas_PCO2. 
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Figura 33. Diagrama de cajas para la variable “HCO3 al ingreso”. Denotación: I_Gas_HCO3. 

 

Por otro lado, no se observaron diferencias significativas entre los grupos de estudio para las 

variables recogidas en la Tabla 24 relacionadas con los síntomas y complicaciones al ingreso. 

Tabla 24 - I. Caracterización de los síntomas y complicaciones al ingreso para las dos clases bajo 
estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Aumento de tos     
No 47 (19.3%) 36 (17.9%) 11 (26.2%) 0.2813 

Sí 196 (80.7%) 165 (82.1%) 31 (73.8%)  
Aumento de disnea     

No 15 (6.2%) 13 (6.5%) 2 (4.8%) 1.0000 

Sí 228 (93.8%) 188 (93.5%) 40 (95.2%)  
Aumento de expectoración     

No 94 (38.7%) 81 (40.3%) 13 (31.0%) 0.2985 

Sí 149 (61.3%) 120 (59.7%) 29 (69.0%)  
Purulencia del esputo     

No 158 (65.0%) 134 (66.7%) 24 (57.1%) 0.2861 

Sí 85 (35.0%) 67 (33.3%) 18 (42.9%)  
Dolor torácico     

No 203 (83.5%) 167 (83.1%) 36 (85.7%) 0.8206 

Sí 40 (16.5%) 34 (16.9%) 6 (14.3%)  
Fiebre     

No 174 (71.6%) 144 (71.6%) 30 (71.4%) 1.0000 

Sí 69 (28.4%) 57 (28.4%) 12 (28.6%)  
 

 Los datos se expresan en forma de número y porcentaje para las variables categóricas.  
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Tabla 24 - II (cont.) Caracterización de los síntomas y complicaciones al ingreso para las dos clases 
bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Días de clínica que motivan 
el ingreso 4.0 (3.0, 7.0) 4.0 (3.0, 7.0) 4.1 (2.0, 7.0) 0.3150 

Uso de musculatura 
accesoria     

No 156 (64.2%) 133 (66.2%) 23 (54.8%) 0.2149 

Sí 87 (35.8%) 68 (33.8%) 19 (45.2%)  
Movimientos torácicos 

paradójicos     
No 225 (92.6%) 188 (93.5%) 37 (88.1%) 0.2089 

Sí 18 (7.4%) 13 (6.5%) 5 (11.9%)  
Cianosis     

No 229 (94.2%) 189 (94.0%) 40 (95.2%) 1.0000 

Sí 14 (5.8%) 12 (6.0%) 2 (4.8%)  
Edemas periféricos     

No 201 (82.7%) 165 (82.1%) 36 (85.7%) 0.6596 

Sí 42 (17.3%) 36 (17.9%) 6 (14.3%)  
Inestabilidad hemodinámica     

No 238 (97.9%) 197 (98.0%) 41 (97.6%) 1.0000 

Sí 5 (2.1%) 4 (2.0%) 1 (2.4%)  
Deterioro mental     

No 230 (94.7%) 189 (94.0%) 41 (97.6%) 0.7040 

Sí 13 (5.3%) 12 (6.0%) 1 (2.4%)  
Disnea     

No 84 (34.6%) 72 (35.8%) 12 (28.6%) 0.4758 

Sí 159 (65.4%) 129 (64.2%) 30 (71.4%)  
Arritmias     

No 234 (96.3%) 196 (97.5%) 38 (90.5%) 0.0506 

Sí 9 (3.7%) 5 (2.5%) 4 (9.5%)  
Insuficiencia cardíaca     

No 217 (89.3%) 178 (88.6%) 39 (92.9%) 0.5850 

Sí 26 (10.7%) 23 (11.4%) 3 (7.1%)  
Cardiopatía isquémica     

No 241 (99.2%) 200 (99.5%) 41 (97.6%) 0.3164 

Sí 2 (0.8%) 1 (0.5%) 1 (2.4%)  
Derrame pleural     

No 237 (97.5%) 197 (98.0%) 40 (95.2%) 0.2775 

Sí 6 (2.5%) 4 (2.0%) 2 (4.8%)  
 

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 

número y porcentaje para las variables categóricas.  
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Tabla 24 – III (cont.) Caracterización de los síntomas y complicaciones al ingreso para las dos 
clases bajo estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Neumonía     
No 209 (86.0%) 175 (87.1%) 34 (81.0%) 0.3282 

Sí 34 (14.0%) 26 (12.9%) 8 (19.0%)  
Sepsis     

No 240 (98.8%) 199 (99.0%) 41 (97.6%) 0.4355 

Sí 3 (1.2%) 2 (1.0%) 1 (2.4%)  

Insuficiencia respiratoria     

No 100 (41.2%) 81 (40.3%) 19 (45.2%) 0.6065 

Sí 143 (58.8%) 120 (59.7%) 23 (54.8%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

En referencia a la terapia al ingreso (Tabla 25) y al alta (Tabla 26), se hallaron diferencias 

significativas entre clases en el uso de mucolíticos, la aplicación de ventilación no invasiva y la 

administración de teofilinas. La pauta de mucolíticos y ventilación no invasiva al ingreso 

resultaron más comunes en pacientes del grupo positivo (Reingreso). Las teofilinas, por su parte, 

fueron suministradas con una frecuencia significativamente superior en los pacientes que 

reingresaron.  

Tabla 25 - I. Caracterización de la terapia al ingreso para las dos clases bajo estudio en la cohorte 
retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Medicación inhaladora al 
ingreso: ninguna     

No 241 (99.2%) 199 (99.0%) 42 (100.0%) 1.0000 

Sí 2 (0.8%) 2 (1.0%) 0 (0.0%)  
Medicación inhaladora al 

ingreso: SABA     
No 54 (22.2%) 44 (21.9%) 10 (23.8%) 0.8387 

Sí 189 (77.8%) 157 (78.1%) 32 (76.2%)  
Medicación inhaladora al 

ingreso: SAMA     
No 61 (25.1%) 50 (24.9%) 11 (26.2%) 0.8466 

Sí 182 (74.9%) 151 (75.1%) 31 (73.8%)  
  

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 
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Tabla 25 - II (cont.) Caracterización de la terapia al ingreso para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Medicación inhaladora al 
ingreso: LABA     

No 214 (88.1%) 179 (89.1%) 35 (83.3%) 0.2999 

Sí 29 (11.9%) 22 (10.9%) 7 (16.7%)  
Medicación inhaladora al 

ingreso: LAMA     
No 185 (76.1%) 157 (78.1%) 28 (66.7%) 0.1166 

Sí 58 (23.9%) 44 (21.9%) 14 (33.3%)  
Medicación inhaladora al 

ingreso: corticoides     
No 112 (46.1%) 98 (48.8%) 14 (33.3%) 0.0883 

Sí 131 (53.9%) 103 (51.2%) 28 (66.7%)  
Corticoterapia sistémica al 

ingreso     
No 24 (9.9%) 23 (11.4%) 1 (2.4%) 0.0890 

Sí 219 (90.1%) 178 (88.6%) 41 (97.6%)  
Ingreso en UVI     

No 237 (97.5%) 197 (98.0%) 40 (95.2%) 0.2775 

Sí 6 (2.5%) 4 (2.0%) 2 (4.8%)  
Oxigenoterapia al ingreso     

No 23 (9.5%) 22 (10.9%) 1 (2.4%) 0.1419 

Sí 220 (90.5%) 179 (89.1%) 41 (97.6%)  
Teofilinas en el ingreso     

No 224 (92.2%) 186 (92.5%) 38 (90.5%) 0.7508 

Sí 19 (7.8%) 15 (7.5%) 4 (9.5%)  
IDFE4 en el ingreso     

No 238 (97.9%) 196 (97.5%) 42 (100.0%) 0.5908 

Sí 5 (2.1%) 5 (2.5%) 0 (0.0%)  
Mucolíticos en el ingreso     

No 185 (76.1%) 160 (79.6%) 25 (59.5%) 0.0090 

Sí 58 (23.9%) 41 (20.4%) 17 (40.5%)  
Ventilación no invasiva al 

ingreso     
No 200 (82.3%) 172 (85.6%) 28 (66.7%) 0.0067 

Sí 43 (17.7%) 29 (14.4%) 14 (33.3%)  
Ventilación invasiva al 

ingreso     
No 241 (99.2%) 200 (99.5%) 41 (97.6%) 0.3164 

Sí 2 (0.8%) 1 (0.5%) 1 (2.4%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas.  
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Tabla 25 - III (cont.) Caracterización de la terapia al ingreso para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Antibioterapia al ingreso     
No 21 (8.6%) 19 (9.5%) 2 (4.8%) 0.5446 

Sí 222 (91.4%) 182 (90.5%) 40 (95.2%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

Tabla 26 - I. Caracterización de la terapia al alta para las dos clases bajo estudio en la cohorte 
retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Oxigenoterapia continua domiciliaria 
al alta     

No 109 (44.9%) 96 (47.8%) 13 (31.0%) 0.0601 

Sí 134 (55.1%) 105 (52.2%) 29 (69.0%)  
Ventilación no invasiva al alta     

No 197 (81.1%) 166 (82.6%) 31 (73.8%) 0.1971 

Sí 46 (18.9%) 35 (17.4%) 11 (26.2%)  
Medicación inhaladora al alta: 

ninguna     
No 239 (98.4%) 197 (98.0%) 42 (100.0%) 1.0000 

Sí 4 (1.6%) 4 (2.0%) 0 (0.0%)  
Medicación inhaladora al alta: SABA     

No 224 (92.2%) 187 (93.0%) 37 (88.1%) 0.3385 

Sí 19 (7.8%) 14 (7.0%) 5 (11.9%)  
Medicación inhaladora al alta: SAMA     

No 224 (92.2%) 188 (93.5%) 36 (85.7%) 0.1097 

Sí 19 (7.8%) 13 (6.5%) 6 (14.3%)  
Medicación inhaladora al alta: LABA     

No 39 (16.0%) 33 (16.4%) 6 (14.3%) 0.8214 

Sí 204 (84.0%) 168 (83.6%) 36 (85.7%)  
Medicación inhaladora al alta: LAMA     

No 40 (16.5%) 33 (16.4%) 7 (16.7%) 1.0000 

Sí 203 (83.5%) 168 (83.6%) 35 (83.3%)  
Medicación inhaladora al alta: 

corticoides     
No 67 (27.6%) 58 (28.9%) 9 (21.4%) 0.4476 

Sí 176 (72.4%) 143 (71.1%) 33 (78.6%)  
Medicación de rescate al alta: ninguna     

No 174 (71.6%) 144 (71.6%) 30 (71.4%) 1.0000 

Sí 69 (28.4%) 57 (28.4%) 12 (28.6%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas.  
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Tabla 26 - II (cont.) Caracterización de la terapia al alta para las dos clases bajo estudio en la 
cohorte retrospectiva. 

Variable Total sujetos 
Clase 0 (no 

reingreso) 
Clase 1 (reingreso) p-valor 

Medicación de rescate al alta: SABA     
No 156 (64.2%) 135 (67.2%) 21 (50.0%) 0.0505 

Sí 87 (35.8%) 66 (32.8%) 21 (50.0%)  
Medicación de rescate al alta: SAMA     

No 234 (96.3%) 195 (97.0%) 39 (92.9%) 0.1898 

Sí 9 (3.7%) 6 (3.0%) 3 (7.1%)  
Medicación de rescate al alta: LABA     

No 234 (96.3%) 194 (96.5%) 40 (95.2%) 0.6561 

Sí 9 (3.7%) 7 (3.5%) 2 (4.8%)  
Medicación de rescate al alta: LAMA     

No 238 (97.9%) 196 (97.5%) 42 (100.0%) 0.5908 

Sí 5 (2.1%) 5 (2.5%) 0 (0.0%)  
Medicación de rescate al alta: 

corticoides     
No 229 (94.2%) 190 (94.5%) 39 (92.9%) 0.7147 

Sí 14 (5.8%) 11 (5.5%) 3 (7.1%)  
Corticoterapia sistémica continua al 

alta     
No 93 (38.3%) 80 (39.8%) 13 (31.0%) 0.3015 

Sí 150 (61.7%) 121 (60.2%) 29 (69.0%)  
Antibióticos al alta     

No 118 (48.6%) 95 (47.3%) 23 (54.8%) 0.4003 

Sí 125 (51.4%) 106 (52.7%) 19 (45.2%)  
Teofilinas al alta     

No 210 (86.4%) 178 (88.6%) 32 (76.2%) 0.0459 

Sí 33 (13.6%) 23 (11.4%) 10 (23.8%)  
IDFE4 al alta     

No 237 (97.5%) 196 (97.5%) 41 (97.6%) 1.0000 

Sí 6 (2.5%) 5 (2.5%) 1 (2.4%)  
Mucolíticos al alta     

No 194 (79.8%) 165 (82.1%) 29 (69.0%) 0.0884 

Sí 49 (20.2%) 36 (17.9%) 13 (31.0%)  
Rehabilitación respiratoria al alta     

No 228 (93.8%) 187 (93.0%) 41 (97.6%) 0.4792 

Sí 15 (6.2%) 14 (7.0%) 1 (2.4%)  
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 

 

 



CAPÍTULO 5  RESULTADOS 

 

93 
 

Por último, en lo relativo a los datos relacionados con el reingreso incluidos en la Tabla 27, se 

muestran diferencias significativas entre grupos en la cantidad de visitas a urgencias en los 30 

días posteriores al alta. La clase prioritaria fue la positiva, es decir, acudieron más a urgencias los 

pacientes que finalmente reingresaron que los que no. 

Tabla 27. Caracterización de los datos relacionados con el reingreso para las dos clases bajo 
estudio en la cohorte retrospectiva. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) p-valor 

Días desde el alta al exitus 830.0 (421.0, 1120.0) 880.0 (437.2, 1117.0) 662.0 (178.5, 1180.8) 0.5063 

Exitus durante los 30 días 
post-alta 

No 238 (97.9%) 198 (98.5%) 40 (95.2%) 0.2070 

Sí 5 (2.1%) 3 (1.5%) 2 (4.8%)  
Visitas a Urgencias (en los 

30 días post-alta) 
0 visitas 193 (79.4%) 189 (94.0%) 4 (9.5%) < 0.0001 

1 visita 45 (18.5%) 11 (5.5%) 34 (81.0%) < 0.0001 

2 visitas 4 (1.6%) 1 (0.5%) 3 (7.1%) 0.0171 

3 visitas 1 (0.4%) 0 (0.0%) 1 (2.4%) 0.1728 

Visitas a consultas de 
Neumología (en los 30 

días post-alta) 
0 visitas 206 (85.1%) 166 (83.0%) 40 (95.2%) 0.0540 

1 visita 35 (14.5%) 33 (16.5%) 2 (4.8%) 0.0539 

2 visitas 1 (0.4%) 1 (0.5%) 0 (0.0%) 1.0000 
 

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 

número y porcentaje para las variables categóricas.  

 

5.3.2. Base de datos prospectiva 

En la Tabla 28 se resume la caracterización de las variables que conforman la base de datos 

prospectiva. En ella, se observan ciertas diferencias entre el paciente que reingresó (clase 1) y 

los pacientes que no reingresaron (clase 0). El sujeto del grupo positivo muestra una mediana 

del número de ingresos por agudización en el año previo superior a los sujetos del grupo 

negativo, así como un mayor empleo de mucolíticos al ingreso y en estado basal, oxigenoterapia 

basal continua domiciliaria e incumplimiento errático según el test TAI. No obstante, el limitado 

tamaño muestral para la clase positiva impide generalizar.  

Respecto a los microorganismos resistentes, movimientos torácicos paradójicos, anemia, 

neumonía y ventilación no invasiva al ingreso, no se registró ningún paciente con su presencia.  
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Tabla 28 - I. Caracterización de las variables de la cohorte prospectiva para las dos clases bajo 
estudio. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) 

Número de ingresos por 
agudización (año previo) 

0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 3.0 (3.0, 3.0) 

Mucolíticos en el ingreso       
No 6 (60.0%) 6 (66.7%) 0 (0.0%) 
Sí 4 (40.0%) 3 (33.3%) 1 (100.0%) 

Mucolíticos al alta       
No 9 (90.0%) 8 (88.9%) 1 (100.0%) 
Sí 1 (10.0%) 1 (11.1%) 0 (0.0%) 

Microorganismos resistentes       
No 10 (100.0%) 9 (100.0%) 1 (100.0%) 
Sí 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Test TAI: incumplimiento 
inconsciente       

No 6 (60.0%) 5 (55.6%) 1 (100.0%) 
Sí 4 (40.0%) 4 (44.4%) 0 (0.0%) 

Oxigenoterapia basal continua 
domiciliaria       

No 6 (60.0%) 6 (66.7%) 0 (0.0%) 
Sí 4 (40.0%) 3 (33.3%) 1 (100.0%) 

Teofilinas al alta       
No 9 (90.0%) 8 (88.9%) 1 (100.0%) 
Sí 1 (10.0%) 1 (11.1%) 0 (0.0%) 

Uso de musculatura accesoria       
No 8 (80.0%) 7 (77.8%) 1 (100.0%) 
Sí 2 (20.0%) 2 (22.2%) 0 (0.0%) 

Causa bacteriana       
No 6 (60.0%) 5 (55.6%) 1 (100.0%) 
Sí 4 (40.0%) 4 (44.4%) 0 (0.0%) 

Teofilinas en estado basal       
No 9 (90.0%) 8 (88.9%) 1 (100.0%) 
Sí 1 (10.0%) 1 (11.1%) 0 (0.0%) 

Grado obstrucción flujo aéreo 
(GOLD)       

Leve 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Moderado 2 (20.0%) 2 (22.2%) 0 (0.0%) 

Grave 5 (50.0%) 4 (44.4%) 1 (100.0%) 
Muy grave 3 (30.0%) 3 (33.3%) 0 (0.0%) 

Medicación inhaladora al 
ingreso: LABA       

No 7 (70.0%) 6 (66.7%) 1 (100.0%) 
Sí 3 (30.0%) 3 (33.3%) 0 (0.0%) 

 

Los datos se expresan en forma de mediana y rango intercuartil (IQR) para las variables continuas, y en 

número y porcentaje para las variables categóricas.  
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Tabla 28 - II (cont.) Caracterización de las variables de la cohorte prospectiva para las dos clases 
bajo estudio. 

Variable Total sujetos Clase 0 (no reingreso) Clase 1 (reingreso) 

Medicación inhaladora al ingreso: 
SABA       

No 4 (40.0%) 4 (44.4%) 0 (0.0%) 

Sí 6 (60.0%) 5 (55.6%) 1 (100.0%) 

Test EuroQoL-5D: cuidado personal       

Sin problemas 6 (60.0%) 5 (55.6%) 1 (100.0%) 

Algunos problemas 4 (40.0%) 4 (44.4%) 0 (0.0%) 
Incapaz 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Movimientos torácicos paradójicos       

No 10 (100.0%) 9 (100.0%) 1 (100.0%) 
Sí 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Arritmias       

No 9 (90.0%) 8 (88.9%) 1 (100.0%) 

Sí 1 (10.0%) 1 (11.1%) 0 (0.0%) 

Teofilinas en el ingreso       
No 8 (80.0%) 7 (77.8%) 1 (100.0%) 
Sí 2 (20.0%) 2 (22.2%) 0 (0.0%) 

Anemia       

No 10 (100.0%) 9 (100.0%) 1 (100.0%) 

Sí 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Medicación inhaladora al alta: 
SABA 

  
    

No 8 (80.0%) 7 (77.8%) 1 (100.0%) 

Sí 2 (20.0%) 2 (22.2%) 0 (0.0%) 

Edemas periféricos       

No 9 (90.0%) 9 (100.0%) 0 (0.0%) 

Sí 1 (10.0%) 0 (0.0%) 1 (100.0%) 

Ventilación no invasiva al ingreso       

No 10 (100.0%) 9 (100.0%) 1 (100.0%) 

Sí 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Mucolíticos en estado basal       
No 8 (80.0%) 8 (88.9%) 0 (0.0%) 
Sí 2 (20.0%) 1 (11.1%) 1 (100.0%) 

Test TAI: incumplimiento errático       

No 6 (60.0%) 6 (66.7%) 0 (0.0%) 

Sí 4 (40.0%) 3 (33.3%) 1 (100.0%) 

Neumonía       

No 10 (100.0%) 9 (100.0%) 1 (100.0%) 

Sí 0 (0.0%) 0 (0.0%) 0 (0.0%) 
 

Los datos se expresan en forma de número y porcentaje para las variables categóricas. 
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5.4. Selección de variables  

El algoritmo ReliefF, explicado en la sección de metodología, seleccionó las variables mostradas 

en la Tabla 29 para distintos valores de K. Se adjuntan también las puntuaciones o pesos de cada 

una de las características. Se observó que, independientemente del valor de K aplicado, algunas 

de las variables más relevantes, aunque los pesos asignados a ellas difiriesen.  

Como se indicó previamente, finalmente se utilizó el subconjunto de variables obtenido para K 

=5. No obstante, la tabla incluye resultados con otros valores para evidenciar la coincidencia 

mencionada.   

Tabla 29 - I. Variables seleccionadas con ReliefF para distintos valores de K. 

K = 5 K = 10 K = 15 

Variable Peso Variable Peso Variable Peso 

Mucolíticos al 
ingreso 

0.158 
Microorganismos 
resistentes 

0.1347 
Microorganismos 
resistentes 

0.1255 

Mucolíticos al alta 0.1461 Mucolíticos al alta 0.1112 Teofilinas al alta 0.0977 

Microorganismos 
resistentes 

0.1366 Mucolíticos al ingreso 0.1082 
Mucolíticos al 
ingreso 

0.0959 

Test_TAI_I_Inc 0.1265 Causa bacteriana 0.0986 Mucolíticos al alta 0.0956 

Oxigenoterapia 
domiciliaria basal 

0.1176 
Uso musculatura 
accesoria 

0.0948 
Oxigenoterapia 
domiciliaria basal 

0.0923 

Uso musculatura 
accesoria 

0.0955 Gold 0.0907 Gold 0.0916 

Teofilinas al alta 0.0903 
Oxigenoterapia 
domiciliaria basal 

0.0899 I_Min_LABA 0.0891 

Causa bacteriana 0.0900 Teofilinas al alta 0.0869 
Teofilinas en estado 
basal 

0.0864 

Gold 0.0872 
Teofilinas en estado 
basal 

0.0864 Causa bacteriana 0.0837 

Teofilinas en estado 
basal 

0.0852 I_Min_LABA 0.0838 I_Min_SABA 0.0806 

I_Min_LABA 0.0833 Test_TAI_I_Inc 0.0802 
Uso musculatura 
accesoria 

0.0782 

Test_E5D_CPe 0.0791 
Complicación: 
arritmias 

0.0731 Test_TAI_I_Inc 0.0723 

Movimientos 
torácicos 

0.0771 Test_E5D_CPe 0.0716 
Complicación: 
arritmias 

0.0713 

I_Min_SABA 0.0742 I_Min_SABA 0.0711 I_VNI 0.0641 

Complicación: 
arritmias 

0.0704 N_Ingresos 0.0677 N_Ingresos 0.0636 

N_Ingresos 0.0642 Movimientos torácicos 0.0623 
Movimientos 
torácicos 

0.0622 

Teofilinas al ingreso 0.0598 I_VNI 0.0613 Test_E5D_CPe 0.0620 

 

Test_TAI_I_Inc: test de TAI, incumplimiento inconsciente de la pauta del inhalador; Test_E5D_CPe: test 

EuroQoL-5D, cuidado personal; I_Min_LABA: medicación inhaladora al ingreso, LABA; I_Min_SABA: 

medicación inhaladora al ingreso, SABA; N_Ingresos: número de ingresos por agudización (año previo); 

I_VNI: ventilación no invasiva al ingreso. 
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Tabla 29 - II (cont.). Variables seleccionadas con ReliefF para distintos valores de K. 

K = 5 K = 10 K = 15 

Variable Peso Variable Peso Variable Peso 

A_Min_SABA 0.0547 Anemia 0.0517 Hogar 0.0553 

Anemia 0.0514 A_Mre_SABA 0.0486 Taquiarritmia 0.0549 

Edemas periféricos 0.0468 Aumento de tos 0.0469 I_Min_LAMA 0.0544 

I_VNI 0.0451 B_Mre_SABA 0.0468 Teofilinas al ingreso 0.0532 

Test_TAI_I_Err 0.0443 A_Min_SABA 0.0455 B_Mre_CI 0.0499 

Complicación: neumonía 0.0436 Test_TAI_I_Err 0.0453 Complicación: neumonía 0.0454 

Mucolíticos en estado basal 0.0424 Hogar 0.0436 B_Mre_SABA 0.0432 

 

A_Min_SABA: medicación inhaladora al alta, SABA; Test_TAI_I_Err: test de TAI, incumplimiento errático de 

la pauta del inhalador; Test_E5D_CPe: test EuroQoL-5D, cuidado personal; A_Mre_SABA: medicación de 

rescate al alta, SABA; B_Mre_SABA: mediación de rescate basal, SABA; I_Min_LAMA: medicación 

inhaladora al ingreso, LAMA; B_Mre_CI: medicación de rescate basal, corticoides; I_VNI: ventilación no 

invasiva al ingreso. 
 

Para una mayor claridad visual, se adjunta a continuación un diagrama de barras de las variables 

seleccionadas con K = 5 y sus correspondientes pesos (Figura 34):  

 

Figura 34. Diagrama de barras de las 24 variables de mayor relevancia según ReliefF y sus 
correspondientes pesos para K = 5.  

I Muco: mucolíticos en el ingreso; A Muco: mucolíticos al alta; Microorg Resis: microorganismos 

resistentes; Test TAI I Inc: test de TAI, incumplimiento inconsciente de la pauta del inhalador; B Oxi Dom: 

oxigenoterapia continua domiciliaria basal; Uso Muscul Acce: uso de musculatura accesoria; A Teo: 

teofilinas al alta; B Teo: teofilinas en estado basal; I Min LABA: medicación inhaladora al ingreso, LABA; 

Test E5D CPe: test EuroQoL-5D, cuidado personal; Mov Torácicos: movimientos torácicos paradójicos; I 

Min SABA: medicación inhaladora al ingreso, SABA; Comp Arritmias: complicación de arritmias; N Ingresos: 

número de ingresos por agudización (año previo); I Teo: teofilinas en el ingreso; A Min SABA: medicación 

inhaladora al alta, SABA; Edemas Per: edemas periféricos; I VNI: ventilación no invasiva al ingreso; Test TAI 

I Err: test de TAI, incumplimiento errático de la pauta del inhalador; Comp Neumonía: complicación de 

neumonía; B Muco: mucolíticos en estado basal. 



CAPÍTULO 5  RESULTADOS 

 

98 
 

5.5. Diseño de modelos predictivos y optimización de sus 

hiperparámetros 

Tras determinar las variables seleccionadas, estas sirvieron como entradas para los dos modelos 

predictivos desarrollados. En este apartado, se exponen los resultados de la optimización de 

hiperparámetros. 

 

5.5.1. Random Forest 

En la Tabla 30, se recogen los hiperparámetros finalmente aplicados tras la búsqueda orientada 

a maximizar la métrica de rendimiento F1- score en el conjunto de validación. Asimismo, en las 

Figuras 35-40 se muestra la evolución de la métrica F1 score en función del rango de valores 

considerado para cada hiperparámetro dentro del procedimiento de optimización secuencial 

descrito en el capítulo de metodología. El máximo de cada una de las gráficas se muestra 

marcado con un círculo rojo, indicando el punto óptimo finalmente elegido y aplicado en el 

entrenamiento final del modelo. 

Tabla 30. Valores óptimos de los hiperparámetros para el modelo basado en Random Forest 

sobre la base de datos retrospectiva. 

Hiperparámetro Valor optimizado 

Número de árboles 215 

Penalización para los falsos positivos 2.5 

Penalización para los falsos negativos 23 

Tamaño mínimo de hoja 15 

Número de predictores a muestrear 4 

Número máximo de divisiones 80 

Umbral de predicción 0.7 

 

 

Figura 35. Optimización del número de árboles (numTrees) según F1 score. 
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Figura 36. Optimización de la penalización de los falsos positivos según F1 score. 

 

 

Figura 37. Optimización de la penalización de los falsos negativos según F1 score. 
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Figura 38. Optimización del tamaño mínimo de hoja (MinLeafSize) según F1 score. 

 

 

Figura 39. Optimización del número de predictores a muestrear (NumPredictorsToSample) 
según F1 score. 
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Figura 40. Optimización del máximo número de divisiones (MaxNumSplits) según F1 score. 

 

5.5.2. Red neuronal perceptrón multicapa (MLP) 

Los hiperparámetros a optimizar fueron el número de neuronas en la capa oculta, el parámetro 

de regularización y el umbral de decisión. Como se explicó en la sección de metodología de este 

trabajo, la optimización de cada uno de ellos se efectuó estableciendo el valor que maximizase 

la métrica de F1 score en el conjunto de validez. Es decir, se mantuvo el mismo criterio que en el 

modelo basado en Random Forest.  

La Tabla 31 expone los valores finalmente asignados para estos hiperparámetros: 

Tabla 31. Valores óptimos de los hiperparámetros para el modelo basado en un MLP sobre la 

base de datos retrospectiva. 

Hiperparámetro Valor optimizado 

Neuronas en la capa oculta 28 

Parámetro de regularización 0.2 

Umbral de decisión 0.3 

 

La Figura 41 exhibe el F1 score resultante de las distintas combinaciones de los hiperparámetros 

del número de neuronas en la capa oculta y el parámetro de regularización denotado como 

alpha. Con ello, se pretende mostrar de manera visual, el punto máximo obtenido para dicha 

métrica que representa la configuración óptima de la red. En este caso, se han identificado dos 

combinaciones óptimas, cuyo valor de F1 score es del 52.6%: 
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1 Número de neuronas en capa oculta: 28. Parámetro de regularización (alpha): 0.2. 

2 Número de neuronas en capa oculta: 38. Parámetro de regularización (alpha): 0.25. 

Puesto que ambas combinaciones ofrecen el mismo rendimiento, se optó por la configuración 

de 28 neuronas y alpha = 0.2, evitando el desarrollo de una red neuronal de mayor complejidad 

innecesariamente y promoviendo su eficiencia.  

 

 

 

5.6. Validación de los modelos 

Una vez determinados los hiperparámetros óptimos y haber completado el entrenamiento, se 

efectuó la validación de los dos modelos generados (RF y red MLP). En el presente apartado, se 

exponen los resultados de estas validaciones, incluyéndose tanto la validación interna basada en 

la base de datos retrospectiva, como la validación temporal independiente a partir de la cohorte 

prospectiva. 

 

5.6.1. Random Forest 

Validación interna 

La Figura 42 muestra la curva ROC del modelo predictivo confeccionado basado en RF y evaluado 

sobre el conjunto test de los datos retrospectivos: 

Figura 41. Selección del número de neuronas en la capa oculta y el parámetro de regularización (alpha) que 
maximizan el F1 score en la red neuronal MLP. 
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Figura 42. Curva ROC del modelo predictivo basado en Random Forest sobre el conjunto test de 
los datos retrospectivos. 

 

A continuación, en la Figura 43 se expone la matriz de confusión resultante al evaluar el 

rendimiento del modelo en el conjunto test: 

C
la

se
 v

e
rd

ad
e

ra
 Clase 0 55 5 

 

 

 

  

Clase 1 6 6 

 

 

 

 

  

  Clase 0 Clase 1  

                     Clase predicha  
 

 

Figura 43. Matriz de confusión para la evaluación interna de la eficacia del modelo basado en 
Random Forest sobre el conjunto test de la base de datos retrospectiva. 

 

Se puede apreciar que, de los 60 pacientes correspondientes a la clase negativa, 55 fueron 

predichos correctamente como no reingreso y 5 fueron clasificados erróneamente como 

reingreso. Respecto a la clase positiva conformada por 12 pacientes, 6 fueron clasificados 

erróneamente y otros 6 correctamente.  
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En la Tabla 32 se resumen las métricas de rendimiento calculadas. Dado el marcado desequilibrio 

entre clases presente en el conjunto de datos, se observa un notable desbalance entre la 

sensibilidad (Se) y especificidad (Sp).  

Tabla 32. Métricas de rendimiento para la validación interna del modelo predictivo basado en 
Random Forest sobre la base de datos retrospectiva. 

Se Sp Acc F1 score LR+ LR- NPV PPV AUC 

50.0% 91.7% 84.7% 52.2% 6.00 0.55 90.2% 54.6% 0.826 
 

Se: sensibilidad; Sp: especificidad; Acc: precisión; LR+: razón de verosimilitud positiva; LR-: razón de 

verosimilitud negativa; NPV: valor predictivo negativo; PPV: valor predictivo positivo; AUC: área bajo la 

curva ROC. 

 

Validación temporal prospectiva 

En la Figura 44 se muestra la matriz de confusión obtenida en esta validación: 

C
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se
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 Clase 0 6 3 

 

 

 

  

Clase 1 0 1 

 

 

 

 

  

  Clase 0 Clase 1  

                     Clase predicha  
 

Figura 44. Matriz de confusión para la evaluación de la eficacia del modelo basado en Random 
Forest sobre la base de datos prospectiva. 

 

En ella se observa que, de los 9 sujetos de clase 0 (no reingreso), 6 se clasificaron correctamente 

y 3 fueron identificados erróneamente como reingresos. Cabe destacar que, aunque esta base 

de datos dispusiese únicamente de un paciente de clase positiva, el modelo fue aun así capaz de 

detectarlo correctamente. Si bien puede parecer a simple vista un número muy bajo de casos 

positivos, encaja con la proporción habitual en el ámbito clínico según la literatura, donde se 

estima que en torno al 11% de sujetos reingresan.  

Por otra parte, la Tabla 33 refleja las métricas de rendimiento obtenidas: 
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Tabla 33. Métricas de rendimiento para la evaluación del modelo predictivo basado en Random 
Forest sobre la base de datos prospectiva. 

Se Sp Acc F1 score LR+ LR- NPV PPV 

100% 66.7% 70.0% 40.0% 3.00 0.0 100% 25.0% 
 

Se: sensibilidad; Sp: especificidad; Acc: precisión; LR+: razón de verosimilitud positiva; LR-: razón de 

verosimilitud negativa; NPV: valor predictivo negativo; PPV: valor predictivo positivo. 

 

5.6.2. Red neuronal MLP 

Validación interna 

La Figura 45 muestra la curva ROC del modelo predictivo confeccionado basado en MLP y 

evaluado sobre el conjunto test de los datos retrospectivos. Asimismo, la Figura 46 constituye la 

matriz de confusión resultante para la aplicación del modelo sobre esta partición de test. 

 

Figura 45. Curva ROC del modelo predictivo basado en una red neuronal MLP sobre el conjunto 
test de los datos retrospectivos. 
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                     Clase predicha  
 

    

Figura 46. Matriz de confusión para la validación interna de la eficacia del modelo basado en 
MLP sobre el conjunto test de la base de datos retrospectiva. 



CAPÍTULO 5  RESULTADOS 

 

106 
 

En esta última puede verse que, del total de 60 pacientes de clase negativa, 51 fueron clasificados 

correctamente y 9 fueron asignados erróneamente como reingresos. En cuanto a la clase positiva 

compuesta por 12 pacientes, 9 fueron categorizados adecuadamente como reingresos, mientras 

que 3 se atribuyeron a la clase negativa sin serlo.  

Por otro lado, la Tabla 34 recoge las métricas de rendimiento obtenidas en este caso: 

Tabla 34. Métricas de rendimiento para la evaluación interna del modelo predictivo basado en 
MLP sobre el conjunto test de la base de datos retrospectiva. 

Se Sp Acc F1 score LR+ LR- NPV PPV AUC 

75.0% 85.0% 83.3% 60.0% 5.0 0.3 94.4% 50.0% 0.857 
 

Se: sensibilidad; Sp: especificidad; Acc: precisión; LR+: razón de verosimilitud positiva; LR-: razón de 

verosimilitud negativa; NPV: valor predictivo negativo; PPV: valor predictivo positivo; AUC: área bajo la 

curva ROC. 

 

Validación temporal prospectiva 

La Figura 47 representa la matriz de confusión resultante:  
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Clase 1 0 1 

 

 
 

 

  

  Clase 0 Clase 1  

                     Clase predicha  
 

Figura 47. Matriz de confusión para la evaluación de la eficacia del modelo basado en MLP sobre 
la base de datos prospectiva. 

 

De los 9 pacientes de la clase negativa, 5 fueron clasificados correctamente, mientras que 4 

fueron considerados erróneamente como reingresos. Por otra parte, al igual que en la aplicación 

del conjunto prospectivo en Random Forest, el único sujeto de la clase positiva fue identificado 

adecuadamente.  

Finalmente, en la Tabla 35 se exponen las métricas de rendimiento calculadas: 
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Tabla 35. Métricas de rendimiento para la evaluación temporal del modelo predictivo basado en 
la red neuronal MLP sobre la base de datos prospectiva. 

Se Sp Acc F1 score LR+ LR- NPV PPV 

 100% 55.6% 60.0% 33.3% 2.25 0.0 100% 20.0% 
 

Se: sensibilidad; Sp: especificidad; Acc: precisión; NPV: valor predictivo negativo; PPV: valor predictivo 

positivo. 
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CAPÍTULO 6. DISCUSIÓN 
 

Tras la presentación de los resultados obtenidos en la sección anterior, el presente capítulo tiene 

como objetivo analizar e interpretar los hallazgos principales. Con ello, no solo se pretende 

alcanzar una mayor compresión de los resultados, sino también proporcionar un enfoque crítico 

y reconocer posibles limitaciones en el estudio. En primer lugar, se profundizará en la extracción 

de características y su análisis descriptivo. Tras ello, se abordará la selección de variables, 

tratando de relacionar la elección automática de las mismas con aspectos clave de la enfermedad 

que contribuyen a que éstas tengan gran peso en el modelo final. Posteriormente, se abarcará 

el desempeño predictivo de los modelos automáticos diseñados, estableciendo también una 

comparativa entre los mismos. Por último, se reflexionará acerca de las posibles limitaciones 

inherentes al estudio, entendiendo éstas como aspectos que podrían haber condicionado 

algunos de los resultados expuestos.  

 

6.1. Extracción de características y análisis descriptivo 

En el presente apartado, se discutirán las diferencias observadas entre las clases bajo estudio, 

tanto de la cohorte retrospectiva como prospectiva, comenzando por la primera de estas. 

Respecto a las variables sociodemográficas y antropométricas, se observaron diferencias 

estadísticamente significativas en la variable “Hogar (Residencia)”, con una mayor proporción de 

pacientes en residencias pertenecientes al grupo de reingreso frente al grupo de no reingreso. 

Este resultado no es esperable, puesto que, en estos centros, la atención médica continua y el 

control diario brindado por cuidadores deberían contribuir a disminuir la probabilidad de 

reingreso hospitalario. Este hallazgo inesperado podría explicarse por posibles comorbilidades 

severas en estos pacientes. Este resultado guarda relación con las diferencias apreciadas en la 

categoría “No” de “Cuidador”. Una menor frecuencia de reingreso en sujetos que no disponen 

de cuidador es un evento inesperado, pero podría justificarse por un posible grado de autonomía 

elevado en pacientes cuya EPOC está controlada o no se encuentra en fases tardías.  

En cuanto a los hábitos y datos clínicos, como se indicó con anterioridad, no se mostraron 

diferencias significativas. No obstante, cabría esperar diferencia en el hábito e índice tabáquico, 

ya que este es uno de los principales factores de riesgo de la enfermedad y está estrechamente 

relacionado con su progresión (como se explicó en el capítulo introductorio). 

En referencia a las comorbilidades, el predominio de insuficiencia respiratoria en pacientes de 

clase positiva frente a los de clase negativa resulta razonable, dado que esta patología es una de 

las causas más frecuentes de fallecimiento en individuos con EPOC [80]Por tanto, cabe esperar 

que quienes la padecen reingresen más a menudo. Asimismo, las taquiarritmias son más 
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frecuentes con la EPOC y sus agudizaciones, lo que explicaría una mayor proporción de reingreso 

para los que la sufren [81].  

Por otra parte, la espirometría previa al ingreso muestra valores significativamente más bajos en 

“FVC (% teórico)”, FEV1 y “FEV1 (% teórico) en la clase positiva frente a la negativa. Este hallazgo 

es coherente con la fisiopatología de la enfermedad, puesto que, como se indicó en el capítulo 

introductorio, el curso de la EPOC se caracteriza por una disminución del área funcional de las 

vías aéreas y la obstrucción de estas. Por tanto, los niveles inferiores de FVC y FEV1 reflejan una 

mayor severidad de la enfermedad y, por ende, mayor probabilidad de reingreso en pacientes 

con este perfil clínico. 

Por otro lado, los pacientes del grupo de reingreso presentan una mayor proporción de riesgo 

alto, fenotipo agudizador con enfisema, estadio GOLD D y más ingresos previos por agudización, 

además de una proporción inferior en el estadio GOLD B frente a la clase negativa. Estos 

hallazgos son esperables, dado que pacientes con fenotipo agudizador y estadios con mayor 

carga sintomática pueden relacionarse con una mayor probabilidad de reingreso. Asimismo, 

como se comentó previamente en este trabajo, los antecedentes de ingresos por exacerbaciones 

aumentan la probabilidad de ingresar de nuevo.  

Respecto a la terapia basal, la mayor aplicación de oxigenoterapia continua domiciliaria y de 

medicación de rescate con SABA en el grupo de clase positiva (reingreso) respecto a la clase 

negativa, podría ser un indicativo de mayor severidad de la EPOC. Por tanto, estos eventos son 

esperables, dado que una mayor gravedad de la enfermedad puede asociarse a exacerbaciones 

más frecuentes y, en consecuencia, mayor probabilidad de reingreso.  

En relación a los tests y cuestionarios realizados, las diferencias significativas vistas en el test de 

Barthel resultan esperables, ya que una mayor puntuación en el grupo de no reingreso indica 

mayor autonomía. Asimismo, las puntuaciones más elevadas en el test de CAT para los reingresos 

y la mayor proporción de pacientes de clase positiva que presentan problemas de movilidad, 

cuidado personal y relacionados con actividades cotidianas según EuroQol-5D, son eventos 

coherentes con el deterioro asociado a la enfermedad.  

La duración de la estancia hospitalaria en el ingreso presenta también diferencias significativas 

entre los dos grupos. El hecho de que la duración resulte mayor en los sujetos de clase positiva 

es un hallazgo que podría dar lugar a dos interpretaciones opuestas. Por un lado, podría 

relacionarse una estancia más prolongada con una clínica más severa del paciente, lo que 

justificaría un posterior reingreso. Sin embargo, otro punto de vista es que, una prolongación del 

número de días hospitalizado se traduce en un mayor periodo en un entorno controlado en el 

que se brindan cuidados y la atención médica necesaria al sujeto. Esto debería evitar un 

potencial reingreso a posteriori, por lo que el evento podría ser no esperable.  

Por otra parte, los pacientes que reingresan presentan diferencias significativas en la PCO2 

(presión parcial de CO2 en sangre) y bicarbonato al ingreso respecto a los que no reingresan. Los 
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valores de los sujetos de clase 1 son superiores en los dos casos. Atendiendo a los resultados 

normales de una gasometría (PCO2: 38-42 mmHg y HCO3: 22 -28 mol/L) [82], la mediana de los 

niveles de PCO2 en ambos grupos es superior al rango de normalidad, pero mucho mayor en los 

que finalmente reingresan (43.3 frente a 47 mmHg), manifestando hipercapnia y una mayor 

severidad de la enfermedad. En cuanto a los niveles de bicarbonato, únicamente la clase positiva 

presenta valores más elevados de la normalidad, por lo que también implica mayor gravedad de 

su EPOC.  

Respecto a la terapia al ingreso, un mayor número de pacientes de clase positiva muestra un 

mayor empleo de mucolíticos y ventilación no invasiva frente a la clase negativa. Estos hallazgos 

pueden tener, al igual que ocurría en la duración de la estancia hospitalaria, una interpretación 

dual. Por un lado, una aplicación superior de estas estrategias terapéuticas podría traducirse en 

una mayor severidad de la enfermedad, hecho que explicaría un reingreso posterior. No 

obstante, algunos estudios han demostrado una reducción del número de exacerbaciones 

gracias a la administración de mucolíticos [83], mientras que la aplicación de ventilación no 

invasiva (VNI) contribuye a mejorar el pH y la PCO2 [84]. Esto podría disminuir las 

rehospitalizaciones, por lo que el resultado obtenido es parcialmente inesperado.  

En cuanto a la terapia al alta, el uso de teofilinas muestra una proporción superior en los 

reingresos. Este hecho no es esperable, ya que está demostrado que la pauta de teofilinas mejora 

la función respiratoria y la oxigenación en sujetos con EPOC [85]. 

Por último, los pacientes que reingresan asisten más a urgencias tras el alta que la clase negativa, 

lo que podría reflejar un estado de salud inestable.  

Por otro lado, en la base de datos prospectiva, el paciente que reingresó presenta un mayor 

número de ingresos por exacerbación en el año previo. Este hallazgo resulta coherente con lo 

explicado en el capítulo introductorio y en este apartado, ya que un mayor número de ingresos 

por agudización se asocia a un mayor riesgo de reingreso y, por tanto, peor pronóstico. Asimismo, 

la mayor prevalencia de incumplimiento errático según el test TAI en la clase positiva constituye 

un evento esperable, puesto que alteraciones en la pauta de inhaladores podrían traducirse en 

un control inadecuado de la enfermedad y, por consiguiente, mayor probabilidad de reingreso. 

Esto destaca la importancia de la adherencia al tratamiento en la evolución de la patología. 

La administración de mucolíticos al ingreso y en estado basal, el empleo de oxigenoterapia basal 

domiciliaria y un grado de obstrucción al flujo aéreo grave en el sujeto que reingresó, reflejan 

una mayor severidad de la EPOC. Por tanto, la presencia de estos factores podría ser un indicativo 

de mayor riesgo de rehospitalización. Sin embargo, como se ha expuesto anteriormente, 

estudios previos han demostrado una reducción de las agudizaciones mediante la administración 

de mucolíticos, por lo que su presencia en el reingreso no es completamente esperable. Aun así, 

es importante tener en cuenta que la clase positiva consta únicamente de 1 paciente, por lo que 

las interpretaciones extraídas podrían estar sesgadas y no son generalizables.  
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Finalmente, la ausencia de casos con movimientos torácicos paradójicos, anemia, neumonía, 

ventilación no invasiva al ingreso y microorganismos resistentes como causa de ingreso podría 

deberse al reducido tamaño muestral del que se dispone, lo que condiciona su detección.  

 

6.2. Selección de variables 

El algoritmo ReliefF seleccionó 24 variables predictivas, observándose algunas coincidencias en 

distintos conjuntos de características al variar K. Esto evidencia que las variables finalmente 

implementadas en los modelos son realmente aspectos determinantes en el desarrollo y curso 

de la enfermedad, con independencia de los parámetros aplicados.  

La pauta de mucolíticos fue la característica a la que ReliefF atribuyó una mayor importancia en 

el estudio. Como se mencionó en el anterior apartado, su administración reduce el número de 

exacerbaciones. Por tanto, es un predictor clave de reingresos, esperando que su aplicación 

mitigue considerablemente el riesgo de rehospitalización. Su uso tanto al alta (segunda variable 

más relevante) como terapia basal destaca su relevancia independientemente del contexto 

temporal. 

La presencia de microorganismos resistentes como motivo de ingreso constituyó la tercera 

característica con mayor peso. Esta está vinculada a la causa bacteriana (también seleccionada), 

puesto que ambas resaltan la importancia de las infecciones y los problemas derivados del uso 

de antibióticos. Estos últimos provocan resistencia en los microorganismos patológicos. Además, 

como se ha expuesto al comienzo de este trabajo, las infecciones son uno de los procesos 

fisiopatológicos más característicos de la enfermedad. Por ello, resulta lógico que ambas 

variables fueran seleccionadas en el estudio. 

El test de TAI adopta un papel fundamental en la predicción de reingresos, con el incumplimiento 

inconsciente como la cuarta variable con más puntuación y el incumplimiento errático también 

incluido. El valor predictivo de ambos reside en que éstos constatan la adherencia a los 

inhaladores, por lo que un incumplimiento de la pauta de los mismos conlleva a un descontrol 

de las manifestaciones de la enfermedad y, por consiguiente, un mayor riesgo de reingresar. Otro 

test seleccionado por ReliefF es el EuroQoL-5D, particularmente la sección que evalúa las 

dificultades presentadas en el desarrollo de las actividades relacionadas con el cuidado personal. 

La presencia de limitaciones en el cuidado personal es indicativa de un menor grado de 

autonomía, contribuyendo a potenciar el evento de reingreso. 

Por otra parte, la oxigenoterapia domiciliaria basal es la quinta variable seleccionada. Como se 

ha explicado en el apartado anterior, así como en la introducción de este estudio, los pacientes 

con EPOC experimentan una obstrucción al flujo aéreo. En consecuencia, se desencadena un 

déficit de oxígeno que debe ser solventado mediante el suministro de una fuente externa. Esto 

justificaría su selección como variable predictora. Además, el hecho de necesitar ser pautada 
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para algún paciente revela un estadio severo de la enfermedad. Esto refuerza la inclusión de esta 

característica en los modelos. 

También son relevantes para la predicción otras terapias al alta, como las teofilinas (sexta 

característica seleccionada), cuyo fin es mejorar la oxigenación, como se mencionó previamente. 

Su uso como terapia basal y al ingreso constituye también otras dos variables seleccionadas y 

refuerza la importancia de su administración. 

El uso de musculatura accesoria (séptima variable seleccionada) está estrechamente ligado con 

la limitación al flujo aéreo recién comentada. Esta intervención muscular podría explicarse por 

el trabajo respiratorio adicional efectuado por el paciente como estrategia compensatoria a la 

falta de oxigenación. Por tanto, el empleo de la misma podría ser un claro predictor de 

exacerbaciones graves. Esta misma explicación puede extrapolarse a la detección de 

movimientos torácicos paradójicos, siendo otro reflejo de distrés respiratorio al ingreso que debe 

ser tratado adecuadamente porque podrían ser claros determinantes de una nueva agudización 

que motive el reingreso.  

Asimismo, el estadio GOLD es otra de las variables predictoras seleccionadas. Esto resulta 

esperable, ya que aporta información tanto de la carga sintomatológica, como del número de 

exacerbaciones. Ambos aspectos están correlacionados con un riesgo mayor de reingreso.  

La administración de broncodilatadores (LABA y SABA) al ingreso, así como al alta (SABA) fueron 

también incluidas en el conjunto de entrada de los modelos predictivos. Su uso supone una 

intervención para disminuir la frecuencia de las exacerbaciones, como se ha expresado en la 

introducción. Por ello, su inclusión como predictores resulta razonable.  Además, como terapia 

al ingreso, destaca también la aplicación de ventilación no invasiva que mejora los parámetros 

gasométricos según se ha explicado en el anterior apartado. 

La anemia elegida como variable predictora constituye una comorbilidad importante, dado que 

puede afectar negativamente a diferentes factores de la enfermedad, como la disnea, la 

tolerancia a la actividad física y la calidad de vida  [86]. Por ende, su papel como característica 

predictora es destacable. Otra comorbilidad importante es la depresión, ya que la disnea 

provocada por la enfermedad se traduce en un estrés crónico para el paciente que limita sus 

actividades cotidianas y desencadena en un estado mental alterado. Asimismo, la depresión 

constituye un predictor de mortalidad para sujetos con EPOC severa [87]. La integración de esta 

variable en los modelos predictivos ensalza la importancia de los trastornos psicológicos en el 

curso de la enfermedad, aspecto muchas veces ignorado, pero con un potencial impacto. 

Los edemas periféricos al ingreso son uno de los signos de agudización grave [88], además de 

suponer una clara sospecha de insuficiencia respiratoria en el paciente [89]. Por ello, su inclusión 

como variable predictora resulta previsible. 

 



CAPÍTULO 6  DISCUSIÓN 

 

114 
 

Además, la selección de complicaciones por arritmias por parte de ReliefF es esperable, ya que, 

como se indicó en el anterior apartado, la incidencia de las mismas aumenta en las 

agudizaciones. Por consiguiente, su existencia podría ser un determinante de que se producirán 

reingresos con mayor probabilidad. 

Por último, pero no menos relevante, el número de exacerbaciones por agudización el año previo 

es una variable que cabía esperar que fuese incluida. Dado que los ingresos guardan relación con 

la mortalidad, como se explicó en la introducción de este trabajo, un mayor número de 

exacerbaciones es sinónimo de mayor gravedad de la enfermedad y, en consecuencia, mayor 

riesgo de volver a ingresar. 

 

6.3. Evaluación de la predicción de los modelos y comparativa 

entre ambos 

En esta sección, se analizan los resultados obtenidos por el modelo predictivo basado en Random 

Forest, así como por la red neuronal MLP. Con este fin, la estructura de este apartado es la 

siguiente: en primer lugar, se evaluará el rendimiento predictivo de RF tanto sobre la base de 

datos retrospectiva como prospectiva; tras esto, se procederá a realizar un análisis análogo para 

MLP y, finalmente, se establecerá una comparativa entre ambos modelos predictivos tratando 

de concluir cuál de ellos presenta una mayor capacidad predictiva. 

 

6.3.1. Random Forest 

Los resultados de este modelo predictivo en ambos conjuntos de datos muestran un desempeño 

sólido. Sin embargo, es importante destacar ciertos aspectos ocasionados por la naturaleza 

desbalanceada de ambos grupos.  

En el conjunto de test de la base de datos retrospectiva (validación interna), la especificidad 

alcanzada fue alta (91.7%), mientras que la sensibilidad resultó ser moderada (50.0%). Esto 

puede traducirse en una capacidad elevada para clasificar correctamente los pacientes del grupo 

no reingreso, pero algo comprometida para detectar los de clase positiva. Por su parte, la F1 

score (52.2%) refleja una capacidad moderada para distinguir entre grupos, dado que la 

sensibilidad se ve algo disminuida. Este hecho podría deberse al gran desequilibrio entre clases 

del dataset de entrenamiento train2, ya que se disponen de 21 reingresos y 99 no reingresos, lo 

que condiciona el aprendizaje de patrones de pacientes de clase positiva. En la matriz de 

confusión (Figura 43) puede apreciarse cierta dificultad para identificar casos de reingresos (de 

12 casos positivos, se detectan 6).  No obstante, el valor de AUC obtenido es de 0.826, lo que 

demuestra que, a pesar del desbalance, el modelo tiene una capacidad predictiva destacable. 
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Respecto a la base de datos prospectiva (validación temporal), un aspecto positivo a destacar es 

que el modelo fue capaz de identificar el único paciente de clase positiva, motivo por el que su 

sensibilidad fue del 100%. Sin embargo, su especificidad resultó ser del 66.7%, apreciándose 3 

falsos positivos en su matriz de confusión (Figura 44). Esto podría ser un indicativo de 

sobreestimación de los casos positivos, conclusión reforzada por el valor reducido de PPV 

(25.0%). Dado que la F1 score es una métrica dependiente de la sensibilidad y el PPV, esta se ve 

algo reducida (40.0%).  

En ambas bases de datos, el modelo basado en Random Forest logra un potencial predictivo 

satisfactorio. La elevada especificidad (91.7%) y el valor de AUC próximo a la unidad (0.826) en 

la base retrospectiva, avalan su notable desempeño y destaca su detección adecuada de 

pacientes de clase negativa (no reingresos). En contraste, en la base de datos prospectiva, a pesar 

de su reducida población de estudio (10 pacientes), se alcanza la máxima sensibilidad posible 

(100%), subrayando su superioridad para identificar casos positivos respecto a la retrospectiva. 

Sin embargo, las dimensiones tan reducidas de su muestra limitan métricas como la F1 score 

(40.0%) y la precisión (70%), siendo esta última inferior a la obtenida en los datos retrospectivos 

(84.7%).  

Un aspecto notable es precisamente el comportamiento opuesto entre las métricas de 

sensibilidad y especificidad en las dos bases de datos. La cohorte retrospectiva posee una 

sensibilidad menor que su especificidad, mientras que la prospectiva consta de una sensibilidad 

superior a su especificidad. Esto podría atribuirse a las diferencias en las características de las 

cohortes, puesto que la retrospectiva se recopiló antes de la pandemia de COVID-19 y la 

prospectiva posteriormente. Por tanto, todos los cambios organizativos y la implementación de 

nuevos protocolos que tuvieron lugar entre las adquisiciones de datos pudieron suponer un 

factor introductor de variabilidad entre ellas.  

En términos generales, la base de datos retrospectiva presenta un mayor rendimiento, además 

de constar de un mayor número de pacientes que hace sus resultados más generalizables. A 

pesar de esto, dado que la base de datos prospectiva es aplicada en este trabajo como validación 

temporal independiente del modelo generado con la retrospectiva, esta confirma un 

funcionamiento satisfactorio de Random Forest en nuevos conjuntos de datos, observando su 

habilidad para identificar pacientes que reingresan incluso cuando los tamaños muestrales son 

tan disminuidos.  

 

6.3.2. Red neuronal perceptrón multicapa 

En el conjunto de test de la base de datos retrospectiva (validación interna), el modelo refleja 

un rendimiento satisfactorio, evidenciado por su sensibilidad (75.0%), especificidad (85.0%) y 

precisión (83.3%). Estos valores muestran su capacidad para clasificar adecuadamente tanto a 

los pacientes de clase positiva, como a los de clase negativa. En su matriz de confusión (Figura 
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46), se aprecian valores reducidos de falsos positivos (9 sobre 60) y negativos (3 de 12) en 

comparación con la clase verdadera total, lo que constituye un indicio más de su funcionamiento 

satisfactorio en la tarea predictiva.  

Asimismo, el F1 score fue del 60.0%, lo que implica un equilibrio moderado entre la sensibilidad 

del modelo y su valor predictivo positivo o PPV (50.0%). Este último sugiere que la mitad de las 

predicciones positivas del modelo eran realmente reingresos, por lo que podrían aplicarse 

estrategias para optimizar este aspecto. No obstante, este hecho puede atribuirse al desbalance 

de clases, siendo mayoritaria la clase negativa y dificultando el aprendizaje del grupo positivo.  

Por otra parte, su valor predictivo negativo (NPV) del 94.4% revela que se clasificaron 

adecuadamente al 94.4% de sujetos del grupo de no reingreso. Además, el AUC fue de 0.857, lo 

que se traduce en una buena capacidad predictiva del modelo. 

En cuanto a la base de datos prospectiva (validación temporal), se alcanzó una sensibilidad del 

100%, puesto que la red pudo identificar el único paciente perteneciente a la clase positiva. No 

obstante, su especificidad (55.6%) revela ciertas dificultades para predecir los casos negativos. 

Esto es avalado por la matriz de confusión resultante (Figura 47), en la que puede observarse un 

total de 4 falsos positivos sobre 9 pacientes de clase negativa. Su PPV del 20.0% indica una 

capacidad baja de predecir correctamente los reingresos, a pesar de sí haberlo hecho para el 

único paciente del que se dispone. Esto ocasiona cierta desconfianza en sus predicciones 

positivas, aunque podría estar motivado por el disminuido número de reingresos del conjunto. 

Un aspecto destacado es que todas las predicciones negativas (no reingreso) fueron correctas, 

hecho que justifica su NPV del 100%.  

Dado que en este estudio la base de datos prospectiva se integra como validación temporal 

independiente, es importante destacar que, a pesar de sus limitaciones por la baja disponibilidad 

de datos, métricas como el NPV (100%) y la sensibilidad (100%) muestran valores muy 

satisfactorios. Estos reflejan una capacidad prometedora de generalización en nuevas bases de 

datos, pero con matices de mejora como implementaciones en conjuntos más grandes que 

permitan optimizar el rendimiento predictivo del modelo.  

Por último, al igual que ocurría en RF, se observa un comportamiento opuesto entre la 

sensibilidad y especificidad en las bases de datos, reflejando la cohorte retrospectiva (anterior 

al COVID-19) una menor sensibilidad que especificidad, y la prospectiva (post COVID-19) lo 

inverso. Como se ha expuesto con anterioridad, esto podría deberse a los cambios organizativos 

y protocolos entre ambas, lo que aporta cierta variabilidad.  

 

 



CAPÍTULO 6  DISCUSIÓN 

 

117 
 

6.3.3. Comparativa entre Random Forest y MLP 

Pese a que la red neuronal perceptrón multicapa fue diseñada como modelo de referencia frente 

al principal (Random Forest), en la base de datos retrospectiva ha demostrado un rendimiento 

predictivo global superior (ver Tablas 32 y 34). Su elevada sensibilidad (75.0%) destaca sobre la 

obtenida en Random Forest (50.0%), demostrando una mayor capacidad de detección de casos 

positivos, un aspecto crítico en el ámbito clínico para adoptar medidas preventivas. Asimismo, 

en la red neuronal se mitiga en mayor medida el desbalance entre sensibilidad y especificidad 

observado en RF, derivado del gran desequilibrio entre clases. Esto indica que este modelo 

maneja de manera más optima conjuntos de datos con una clase mayoritaria muy por encima 

de la minoritaria como es este caso.  

Por otra parte, el F1 score en esta cohorte retrospectiva es superior en el MLP (60.0% frente a 

52.2%), por lo que en este modelo existe un mayor equilibrio entre sensibilidad y valor predictivo 

positivo (PPV). No obstante, el PPV es ligeramente superior en Random Forest (54.6% frente a 

50.0%), lo que se traduce en una fiabilidad levemente superior en sus predicciones positivas. Por 

tanto, al tratarse de una discrepancia tan pequeña, este hallazgo no es un indicio claro de mejor 

capacidad predictiva de RF.  

Este último, en contraste con la red neuronal, presenta una especificidad superior (91.7% frente 

a 85.0%), lo que significa que posee una capacidad elevada para identificar los pacientes del 

grupo de no reingreso. Este aspecto permite evitar falsos positivos, lo que puede extrapolarse a 

una menor inversión de recursos clínicos innecesarios. 

La precisión (accuracy) no muestra prácticamente discrepancias entre ambos modelos, 

obteniéndose resultados muy similares (84.7% en Random Forest y 83.3% en el MLP). Esto 

destaca la eficacia de los dos diseños ya que sugiere una elevada proporción de predicciones 

correctas sobre el total de predicciones efectuadas. Sin embargo, el AUC en la red neuronal 

(0.857) destaca sobre el calculado en Random Forest (0.826), lo que sugiere que la capacidad 

predictiva del MLP resulta superior. Esto no excluye a RF de ser un modelo eficiente, ya que 

valores superiores a 0.8 reflejan una buena capacidad discriminativa entre clases. 

En resumen, el rendimiento del MLP en la cohorte retrospectiva resulta superior, lo que se 

evidencia en métricas como la sensibilidad, F1 score y AUC. Por consiguiente, resulta más 

efectivo en la detección de pacientes que reingresan, un aspecto clave en este trabajo dado que 

la clase minoritaria, con bastante discrepancia, es la positiva. No obstante, Random Forest posee 

una capacidad superior en cuanto a la predicción de no reingresos, dada su elevada 

especificidad, por lo que evita falsos positivos. 

El motivo por el que MLP ofrece un mejor funcionamiento que RF podría residir en que este 

último dispone de un mayor número de hiperparámetros a optimizar. A mayor número de 

hiperparámetros, más instancias o pacientes se requieren para lograr una optimización global 

adecuada, lo que se traduce en un modelo con un desempeño superior. Dado que la red MLP 
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consta únicamente de tres hiperparámetros a ajustar (número de neuronas en la capa oculta, 

parámetro de regularización y umbral de decisión), la optimización resultó más efectiva con el 

mismo número de pacientes.  

Respecto a la base de datos prospectiva, pese a que ambos modelos alcanzaron una sensibilidad 

del 100%, RF posee una especificidad superior (66.7% frente a 55.6% en la red MLP). Esto es 

indicativo de una mayor capacidad de identificar a los pacientes de clase negativa, mitigando los 

falsos positivos. Este hallazgo se ve reforzado por su PPV mayor (25.0% frente a 20.0% en MLP). 

En cuanto a la precisión, RF también demuestra su superioridad con un valor del 70.0% en 

comparación con el 60.0% obtenido en la red neuronal. Por tanto, RF ofrece una mayor 

proporción de predicciones correctas sobre el total de predicciones realizadas. Además, la 

métrica F1 score resulta más adecuada en el caso de RF (40.0% frente a 33.3% en MLP), por lo 

que este modelo demuestra un mayor equilibrio entre la sensibilidad y el valor predictivo 

positivo (PPV).  

Otro punto a destacar es que ambos modelos logran un NPV del 100%, es decir, todos los casos 

predichos como negativos resultaron ser finalmente no reingresos. Por tanto, tanto RF como la 

red MLP reflejan una gran habilidad para descartar falsos negativos.  

En definitiva, Random Forest posee una capacidad de generalización superior al implementarse 

sobre conjuntos de datos nuevos, aspecto que puede observarse en métricas como la 

especificidad, F1 score, PPV y precisión. Por consiguiente, el modelo basado en RF demuestra 

una mayor robustez y, en consecuencia, mayor fiabilidad de sus predicciones en entornos 

clínicos.  

 

6.4. Comparación con otros estudios 

La predicción de reingresos hospitalarios por exacerbación de EPOC mediante técnicas de 

Machine Learning ha sido abordada ampliamente en la literatura. Existe una gran diversidad de 

técnicas para construir los modelos, más allá de Random Forest y el perceptrón multicapa (MLP). 

Este gran abanico de oportunidades brinda la posibilidad de adoptar distintas estrategias y 

configuraciones que maximicen el rendimiento según el contexto específico. 

Se han identificado varias coincidencias en las variables utilizadas respecto a otras 

investigaciones previas tales como la edad, el sexo, test de Charlson, neumonía como 

comorbilidad, duración de la estancia hospitalaria, número de exacerbaciones previas, aplicación 

de broncodilatadores (LAMA, SAMA, LABA y SABA), uso de corticoides, diabetes, hipertensión, 

presión arterial sistólica y diastólica, frecuencia respiratoria y cardíaca, resultados de analíticas y 

espirometría, grado de disnea y test de CAT, entre otras [90], [91]. Aunque no todas ellas fueron 

seleccionadas por ReliefF, el hecho de que existan variables comunes con otros estudios refuerza 

la validez metodológica del presente trabajo.  



CAPÍTULO 6  DISCUSIÓN 

 

119 
 

El estudio de Lin et al. (2024) [90] propone diversos modelos predictivos de readmisión 

hospitalaria en los 30 días posteriores al alta mediante regresión logística, Random Forest, 

Extreme Gradient Boosting (XGBoost) y una red neuronal. Su base de datos incluyó 101011 

pacientes retrospectivos y 17565 prospectivos, tamaños muestrales significativamente mayores 

que los de este TFG. El número de exacerbaciones en el año previo fue una de las variables 

predictoras clave, al igual que resultó serlo en este trabajo. 

Su conjunto retrospectivo proporciona valores inferiores a los obtenidos aquí, 

independientemente de la técnica de Machine Learning propuesta. En concreto, sus métricas de 

AUC resultaron ser 0.706 para Random Forest y 0.707 para el MLP. Respecto a la base de datos 

prospectiva, Random Forest mostró una AUC de 0.714, sensibilidad de 62.0%, especificidad de 

69.3%, PPV de 43.4% y NPV de 82.7%. En comparación con las métricas prospectivas de este TFG, 

las de Lin et al. (2024) [90] muestran una sensibilidad, NPV y AUC inferior, pero mayor 

especificidad y PPV. La red neuronal de Lin et al. (2024) [90] obtuvo una AUC del 0.707, también 

inferior a la de este trabajo. Además, el conjunto prospectivo reflejó una AUC del 0.717, 

sensibilidad de 68.0%, especificidad de 64.1%, PPV de 41.9% y NPV de 84.1%. Esto implica que 

sus valores fueron inferiores a los obtenidos en este TFG en términos de sensibilidad, AUC y NPV, 

pero superiores en especificidad y PPV. Sin embargo, la limitada base de datos prospectiva de 

este TFG reduce la representatividad de las métricas frente al elevado tamaño muestral de Lin 

et al. (2024) [90]. Asimismo, este artículo integra un enfoque adicional para predecir la 

mortalidad temprana de estos pacientes. 

Por su parte, Chen et al. (2021) [91], analizaron una cohorte de 650 sujetos, reducida a 636 tras 

la aplicación de criterios de inclusión y exclusión. Los autores propusieron dos modelos 

predictivos (regresión logística y XGBoost) para predecir el reingreso de pacientes por 

exacerbación de EPOC. Este artículo propone dos enfoques diferentes: en primer lugar, las 

técnicas de Machine Learning implementadas difieren de las desarrolladas en este TFG, 

mostrando alternativas funcionales. Por otra parte, en lugar de centrar la predicción en los 30 

días posteriores al alta, el artículo abarca un periodo de un año.  

El modelo logístico alcanzó unos resultados de 66.7% de sensibilidad; 66.4% de especificidad; 

precisión de 66.5% y AUC de 0.699. El modelo XGBoost obtuvo una sensibilidad de 63.5%; 

especificidad de 75.0%; precisión de 71.2% y AUC de 0.722. Comparando estas técnicas con las 

desarrolladas en este trabajo, ambos modelos superan al Random Forest solo en sensibilidad, 

mostrando inferioridad en el resto de las métricas. Además, el MLP de este TFG supera a ambos 

modelos en todos los aspectos. Esto refuerza la robustez de los modelos desarrollados en el 

presente TFG, ya que, a pesar de disponer de una cohorte limitada, ha logrado alcanzar 

rendimientos superiores a los dados mediante bases de datos más grandes. 

Finalmente, López et al. (2023) [92], incluyeron 1905 pacientes con EPOC pertenecientes a una 

cohorte retrospectiva como entrada a los modelos predictivos. En este caso, la readmisión a los 

30 días posteriores al alta constituye una variable predictora, en lugar de ser la variable target. 
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Sin embargo, los modelos propuestos tratan de predecir readmisiones, pero sin especificar un 

periodo temporal concreto a diferencia de este trabajo. Este estudio introduce técnicas no 

tratadas en los anteriores ejemplos, como Naive Bayes y SVM (Support Vector Machine).  

Naive Bayes alcanzó una sensibilidad del 13.0%, especificidad del 97.0%, precisión del 79.0% y 

AUC del 0.830. En comparación con el modelo Random Forest de este TFG, Naive Bayes ofreció 

mayor especificidad y su AUC fue levemente superior (0.830 vs. 0.826). No obstante, para el 

resto de las métricas, Random Forest resultó predominante. Por su parte, la red neuronal MLP 

de este trabajo fue superior en todos los aspectos al de Naive Bayes, salvo en la métrica de 

especificidad. 

SVM ofreció una sensibilidad del 62.0%, especificidad del 88.0%, precisión o accuracy del 80.0% 

y AUC del 0.88. Esta técnica resultó superior en términos de sensibilidad y AUC respecto al 

modelo basado en Random Forest, y también en especificidad y AUC en comparación al MLP. 

Estas superioridades podrían explicarse por la diferencia sustancial en las dimensiones de la 

población bajo estudio. Además, las diferencias en AUC son pequeñas, especialmente en la red 

neuronal (0.857 frente a 0.888 de SVM).  

Además, los autores también entrenaron sendos modelos predictivos basados en RF y en redes 

neuronales MLP. El modelo Random Forest de López et al. mostró una sensibilidad del 58.0%, 

especificidad del 90.0%, precisión de 79.0% y AUC del 0.87. Estos resultados son superiores en 

términos de sensibilidad y AUC al modelo RF desarrollado en este trabajo. No obstante, la 

discrepancia en la sensibilidad es leve (50.0% en el diseñado y 58.0% en el proporcionado en la 

publicación). Su red neuronal perceptrón multicapa también resultó superior en las dos métricas 

citadas, aunque solo ligeramente. Su AUC fue del 0.87, mientras que la obtenida en el presente 

TFG es de 0.857. Además, su sensibilidad fue del 84.0% frente al modelo RF propuesto en este 

trabajo, del 75.0%.  

Las diferencias observadas con otros estudios similares presente en el estado del arte sugieren 

que, con una mayor cohorte, los modelos planteados en este TFG potenciarían su capacidad 

predictiva, puesto que ya resultan competitivos ante investigaciones basadas en conjuntos de 

datos superiores.  

En la Tabla 36, se sintetiza la comparación del presente estudio con las investigaciones recién 

descritas, permitiendo apreciar de una forma más visual las diferencias entre ellas. 
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Tabla 36. Comparativa del estudio actual con otras publicaciones científicas similares. 

Autor Año 
Tamaño 

población 

Periodo para 
considerar 
reingreso 

Tipo de variables 
Sensibilidad 

(Se) 

Especificidad 
(Sp) AUC 

 
 
 
 

Lin et 
al. [90] 

 

2024 

 

Retrospectiva:
101011 

Prospectiva: 
17565 

 

30 días 

Demográficas 
Clínicas 

Condiciones 
ambientales 

Analíticas 
Comorbilidades 

Antropométricas 
Terapia al ingreso 

Retrospectiva: 
- RF:  s/n 

- MLP: s/n 
 

Prospectiva: 
- RF: 62.0% 

- MLP: 68.0% 
 

Retrospectiva: 
- RF:  s/n 

- MLP: s/n 
 

Prospectiva: 
- RF: 69.3% 

- MLP: 64.1% 
 

Retrospectiva: 
- RF: 0.706 

- MLP: 0.707 
 

Prospectiva: 
- RF: 0.714 

- MLP: 0.717 
 

 
 
 

Chen et 
al. [91] 

 
 
 

2021 

 
 
 

636 

 
 
 

365 días 

Demográficas 
Terapia clínica 
Antecedentes 
Cuestionarios 

Analíticas 

Regresión 
logística: 

66.7% 
 

XGBoost: 
63.5% 

 

Regresión 
logística: 

66.4% 
 

XGBoost: 
75.0% 

 

Regresión 
logística: 

0.699 
 

XGBoost: 
0.722 

 

 
 
 

López 
et al. 
[92] 

 
 
 

2023 

 
 
 

1905 

 
 
 

Sin 
especificar 

Demográficas 
Antropométricas 

Sociales 
Comorbilidades 

Terapia al ingreso 
Analíticas 

Antecedentes 

Naive Bayes: 
13.0% 

 
SVM: 62.0% 

Naive Bayes: 
97.0% 

 
SVM: 88.0% 

Naive Bayes: 
0.830 

 
SVM: 0.880 

 
 

Tamayo 
Polo. 

M. 
(actual 
TFG) 

 
 
 
 

2025 

Retrospectiva: 
243 

Prospectiva: 
10 

 
 
 
 

30 días 

Terapia al ingreso 
Terapia al alta 
Cuestionarios 
Terapia Basal 

Comorbilidades 
Gravedad 

enfermedad 
Causas ingreso 

Retrospectiva: 
- RF:  50.0% 

- MLP: 75.0% 
 

Prospectiva: 
- RF: 100.0% 

- MLP: 100.0% 
 

Retrospectiva: 
- RF:  91.7% 

- MLP: 85.0% 
 

Prospectiva: 
- RF: 66.7% 

- MLP: 55.6% 
 

Retrospectiva: 
- RF:  0.826 

- MLP: 0.857 
 

Prospectiva: 
- RF: s/n 

- MLP: s/n 
 

s/n: sin número. 

 

6.5. Limitaciones del estudio 

Todo estudio está sujeto a limitaciones, por lo que el presente trabajo no está exento de ellas. 

Esta sección resulta muy relevante, pues permite identificar ciertos puntos débiles que podrían 

condicionar los resultados finales obtenidos.  

Una de las principales limitaciones es su diseño unicéntrico, es decir, haber sido desarrollado en 

un único centro hospitalario (Hospital Universitario Río Hortega de Valladolid). Esto compromete 

la generalización del modelo, ya que las variables que conforman la base de datos pueden 

adquirir valores diferentes en función de distintos contextos geográficos, demográficos o 
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sociales. No obstante, un único centro de recogida de datos favorece un mayor control en la 

elaboración de las cohortes. 

Otro aspecto destacable son las reducidas dimensiones de las bases de datos, especialmente de 

la prospectiva conformada tan solo por 10 sujetos, lo que contribuye a una reducción de la 

robustez de los resultados. Asimismo, las cohortes presentan un desbalance marcado entre la 

clase positiva (reingreso) y la negativa (no reingreso), potenciando el sesgo hacia la clase 

mayoritaria (no reingreso en este caso) y dificultando la detección de los casos positivos. 

Por otra parte, la variabilidad derivada de los cambios organizativos y de protocolos entre la base 

retrospectiva (pre COVID-19) y prospectiva (post COVID-19), responsable de diferencias en las 

características de estas, condiciona la comparabilidad de los resultados. 

En cuanto a la recogida de datos prospectivos, el periodo temporal en el que esta tuvo lugar 

(enero a junio de 2025) coincidió con un descenso en la frecuencia de ingresos por exacerbación 

de EPOC, dado que estos suelen disminuir a medida que se abandonan las épocas invernales. 

Esto pudo infrarrepresentar las agudizaciones, limitando el tamaño de la cohorte. 

Por otro lado, las predicciones de reingreso se centraron en un periodo de 30 días tras el alta, 

imposibilitando la extrapolación de los resultados a posibles ingresos tardíos. Asimismo, el 

estudio se limitó a dos enfoques de aprendizaje computacional (Random Forest y MLP), lo que 

sugiere la posibilidad de aplicar otras estrategias en trabajos futuros.   
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CAPÍTULO 7. CONCLUSIONES 
 

La Enfermedad Pulmonar Obstructiva Crónica (EPOC) es actualmente la cuarta causa de muerte 

en el mundo, pudiendo alcanzar el tercer puesto en 2030. Su elevada mortalidad, discapacidad 

asociada y gran carga económica y asistencial evidencian que se trata de un problema de salud 

prioritario. Este hecho subraya la imperatividad de adoptar estrategias que contribuyan a su 

prevención, finalidad buscada en este estudio a través del desarrollo de modelos predictivos de 

reingresos por exacerbación de EPOC en los 30 días posteriores al alta. De esta forma, resultaría 

posible implementar medidas preventivas, optimizar la gestión de la enfermedad y mitigar su 

impacto tanto en la calidad de vida de los pacientes, como en el sistema sanitario.  

Para la realización de este estudio, se elaboraron dos bases de datos (una retrospectiva y otra 

prospectiva) procedentes del Servicio de Neumología del Hospital Universitario Río Hortega de 

Valladolid. La población retrospectiva constó de 246 sujetos, mientras que la prospectiva de 75. 

Esta última fue recogida para la validación temporal independiente de los modelos diseñados. 

Entre estos pacientes, se distinguen dos grupos: clase positiva (reingreso) y negativa (no 

reingreso). Las variables recogidas fueron de diversa naturaleza, tratando de capturar la enorme 

heterogeneidad de la enfermedad.  

La metodología implementada se basó en cuatro etapas diferentes: (i) data curation, (ii) 

selección automática de las variables predictoras, (iii) diseño y optimización de modelos 

predictivos de clasificación binaria (reingresos vs. no reingreso); y (iv) validación independiente 

de los modelos, tanto interna como temporal. La selección de variables predictoras se efectuó 

mediante el algoritmo ReliefF, mientras que la clasificación se basó en dos modelos predictivos: 

Random Forest (RF) y red neuronal artificial perceptrón multicapa (MLP).  

Por último, se estableció una comparativa entre el rendimiento de ambos modelos y de estos 

con los resultantes de investigaciones similares previas en el contexto de la predicción de 

reingreso por exacerbación de EPOC. De este modo, se evidenció una ligera superioridad de la 

red neuronal MLP con respecto al modelo RF. En comparación con los resultados de otros 

estudios, se demostró la superioridad de los modelos desarrollados con respecto a algunos 

estudios que presentaban cohortes con dimensiones mucho mayores en comparación a las 

empleadas en este TFG.  
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7.1. Contribuciones 

Las principales contribuciones que derivan de este trabajo son las siguientes: 

▪ Análisis exhaustivo de una base de datos retrospectiva conformada por decenas de 

variables de caracterización de la enfermedad de EPOC, desde el estado basal del 

paciente hasta la gravedad de la exacerbación, pasando por el estado al ingreso y al alta. 

Esto permitió caracterizar estadísticamente las mismas y conocer la influencia de cada 

una de ellas en el evento de reingreso. 

▪ Selección e identificación de las variables predictoras óptimas a través del algoritmo 

ReliefF, constituyendo un conjunto de características multifactoriales que refleja la 

heterogeneidad de la enfermedad y la importancia de considerar la misma. 

▪ Desarrollo de nuevos modelos predictivos basados en Random Forest y red MLP con AUC 

superiores a 0.8 en ambos casos, cuyo fin es predecir reingresos por exacerbación de 

EPOC en los 30 días post-alta y favorecer el ahorro de recursos. 

▪ Validación temporal independiente en una cohorte prospectiva, destacando la 

importancia de efectuar las validaciones en conjuntos de grandes dimensiones para 

garantizar una generalización fiable.  

 

7.2. Principales conclusiones del estudio 

A continuación, se exponen las principales conclusiones derivadas de este trabajo: 

1. El conjunto de variables seleccionadas ha demostrado ser útil para identificar los 

patrones relacionados con el reingreso por exacerbación de EPOC, validándose la 

hipótesis clínica. Destacan la pauta de mucolíticos al ingreso y alta, la presencia de 

microorganismos resistentes, el test TAI de uso correcto de inhaladores y la prescripción 

de oxigenoterapia domiciliaria basal. Además, la naturaleza diversa de las variables 

ensalza la importancia de implementar enfoques de análisis de datos multimodales 

debido a los múltiples factores que influyen sobre el curso de la enfermedad. 

 

2. Los modelos predictivos basados en técnicas de Machine Learning, en particular 

Random Forest y red neuronal MLP, demostraron ser efectivos en la predicción de 

reingresos por exacerbación de EPOC en los 30 días posteriores al alta. Las métricas de 

rendimiento reflejaron una AUC de 0.826 para Random Forest y de 0.857 para la red 

MLP. El buen desempeño de los modelos en la base de datos retrospectiva confirma la 

hipótesis técnica establecida.  
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3. La validación temporal independiente con la base de datos prospectiva confirmó la 

viabilidad de los modelos en nuevas cohortes. No obstante, dado su reducido tamaño 

muestral, resultaría esencial aplicar un conjunto de datos más grande para esta 

validación, consolidando la fiabilidad de las métricas de rendimiento. 

4. La comparativa establecida con otros estudios reveló una capacidad predictiva 

competitiva y, en ciertos casos, superior a estudios que disponen de cohortes de mayor 

tamaño. Esto sugiere un diseño adecuado y robusto con gran potencial para futuras 

aplicaciones a pesar del tamaño muestral limitado.  

 

7.3. Líneas futuras de investigación 

De acuerdo con las limitaciones expuestas en el anterior capítulo, a continuación, se presentan 

posibles líneas futuras de investigación que permitan integrar mejoras y contribuir a un mayor 

alcance del estudio. 

Dado que las dimensiones de la cohorte prospectiva son limitadas y el desbalance de clases es 

muy marcado, el estudio podría beneficiarse de la aplicación de técnicas como SMOTE. Esto 

posibilitaría la creación de muestras sintéticas de la clase reingreso (minoritaria), aportando una 

mayor representabilidad de la misma sobre el conjunto de datos y contribuyendo a aumentar la 

sensibilidad de los modelos.  

En relación con este último aspecto sobre el tamaño reducido de los datos prospectivos, puesto 

que estos se emplean para la validación temporal de los modelos, futuras validaciones 

independientes podrían incluir cohortes más grandes, permitiendo una validación más fiable. 

La incorporación al estudio de un mayor número de centros hospitalarios podría suponer un 

avance significativo, puesto que evitaría sesgos relacionados con diversos contextos del paciente, 

permitiría la disponibilidad de bases de datos más amplias y, por consiguiente, potenciaría la 

generalización de los modelos predictivos desarrollados. 

Teniendo en cuenta su satisfactorio desempeño a pesar de las limitaciones en cuanto a 

disponibilidad de datos, su aplicación podría extenderse a periodos temporales superiores a los 

30 días al alta. En este sentido, resultaría valioso explorar y comparar diferentes periodos de 

seguimiento a corto (semanas), medio (meses) y largo plazo (1 año). Con ello, sería posible 

identificar el marco temporal óptimo para la implementación de medidas preventivas que 

permitan optimizar recursos y preservar la calidad de vida de los pacientes.   

Por otra parte, podría ser interesante la evaluación del rendimiento de otros enfoques 

predictivos, como SVM, métodos de ensemble learning diferentes a RF tales como AdaBoost, e 

incluso arquitecturas de Deep Learning, en el supuesto de disponer de suficientes datos.  
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De cara a su implementación en el ámbito clínico, resultaría de gran impacto la integración de 

técnicas de Explainable Artificial Intelligence (XAI). Esto condicionaría positivamente la 

aceptación de los modelos por parte del personal sanitario dada su escasa familiarización con 

estas herramientas. Además, permitiría alcanzar la explotación máxima de los modelos, 

aprovechando las prestaciones que proporciona. 
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ANEXOS 
 

En la siguiente sección, se adjunta el código desarrollado en las distintas etapas del presente 

trabajo. Esto incluye el análisis estadístico de las variables, tratamiento e imputación de datos 

perdidos, selección de características predictoras y los distintos modelos predictivos elaborados 

junto a su evaluación y validación independiente. 

 

ANEXO 1. Código tratamiento e imputación de datos faltantes. 

En primer lugar, se adjunta el código desarrollado para eliminar variables identificativas, 

relacionadas con el reingreso, fechas o incluso aquellas que fueron recogidas para facilitar la 

construcción de la base de datos, pero que no tienen ningún tipo de valor predictivo. Se excluye 

también a aquellos pacientes cuyo alta fuese motivado por su exitus y, por tanto, no se pudo 

realizar el seguimiento de 30 días posteriores al alta como se tenía establecido. Además, se 

calcula el porcentaje de datos perdidos por fila (paciente) y columna (variable): 

%----------------------------------------------------------------------- 

%----------------------------------------------------------------------- 

%          EXPLORACIÓN INICIAL DE LA BASE DE DATOS RETROSPECTIVA 

%----------------------------------------------------------------------- 

%----------------------------------------------------------------------- 

 

% En primer lugar, se calcula el porcentaje de NaNs para cada fila 

(paciente) 

% y cada columna (variable) sobre la base de datos retrospectiva 

% "cruda" (sin tratar) 

  

% Cargo los datos de la base retrospectiva: 

datos_tabla = readtable('DatosEPOC.xlsx'); 

 

% Guardo el orden original de las variables 

orden_original = datos_tabla.Properties.VariableNames; 

  

% Elimino variables identificativas, relacionadas con el reingreso (ya 

que 

% es lo que se va a predecir), fechas y todas aquellas que han sido 

% incluidas simplemente para facilitar el proceso de recogida de datos: 

variables_elim = {'REV','VALIDO','NH', 'Nombre', 'Apellido_1', 

'Apellido_2', ... 

    'R_Causa', 'R_Serv', 'F_Ingreso', 'F_Alta', 'F_Nacimiento', ... 

    'F_Exitus', 'F_Reingreso', 'R_Exitus','N_Dias_Tran','Dias_alt_exi', 

... 
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    'R_N_Ur_Hosp', 'R_N_NMLC', 'A_Neumo', 'B_Minhaladora', 

'Test_CAT_01','EPOC_Eosinofilico_Y', ... 

    'EPOC_Eosinofilico_O', 'I_MLargaDuracion','A_Minhaladora', 

'I_Minhaladora','Exitus_30', 'Reingreso'}; 

 

datos_tabla(:, variables_elim) = [];  

 

% Además, necesito eliminar aquellos pacientes que durante el ingreso han 

% fallecido y que, por tanto, no han podido entrar en el seguimiento de 

los 

% 30 días post alta para predecir su reingreso. Estos son aquellos 

pacientes 

% con la variable "A_Exitus = 1": 

datos_tabla = datos_tabla(datos_tabla.('A_Exitus') ~= 1, :); 

variable_exitus_elim = {'A_Exitus'}; 

 

datos_tabla(:, variable_exitus_elim) = []; 

 

% Calculo el porcentaje de NaN en cada columna: 

porcentaje_NaN_columnas = sum(ismissing(datos_tabla), 1) / 

height(datos_tabla) * 100; 

disp('% de NaN por cada variable'); 

nombres_variables = datos_tabla.Properties.VariableNames; 

 

for i = 1:length(nombres_variables) 

    fprintf('%s: %.2f%%\n', nombres_variables{i}, 

porcentaje_NaN_columnas(i)); 

end 

 

% Creo una nueva fila cuyos elementos son los porcentajes de NaN de cada 

variable 

porcentaje_NaN_ant_columnas = zeros(1, length(orden_original)); 

 

for i = 1:length(orden_original) 

     

    if ismember(orden_original{i}, datos_tabla.Properties.VariableNames) 

        idx = strcmp(datos_tabla.Properties.VariableNames, 

orden_original{i}); 

        porcentaje_NaN_ant_columnas(i) = porcentaje_NaN_columnas(idx); 

    else 

        porcentaje_NaN_ant_columnas(i) = NaN; 

    end 

end 

 

% Me quedo solo con las variables finales 

variables_finales = datos_tabla.Properties.VariableNames; 

idx_finales = ismember(orden_original, variables_finales); 

porcentaje_NaN_usar = porcentaje_NaN_ant_columnas(idx_finales);  
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fila_nan = array2table(porcentaje_NaN_usar, 'VariableNames', 

variables_finales); 

 

% Concateno la fila de porcentajes de datos perdidos por cada variable a 

la 

% tabla final, siendo esta fila la última en la base de datos del Excel 

nueva_Tabla_filaPerdColum = [datos_tabla; fila_nan]; 

  

 

% Calculo el % de NaNs por fila (paciente):  

datosPerdidos_filas = sum(ismissing(datos_tabla), 2) / width(datos_tabla) 

* 100; 

fprintf('\nPorcentaje de NaN por fila:\n'); 

 

for i = 1:length(datosPerdidos_filas) 

    fprintf('Fila %d: %.2f%%\n', i, datosPerdidos_filas(i) ); 

end 

 

% Creo una nueva columna con los valores de NaNs por fila 

columna_perdidas = num2cell(datosPerdidos_filas); 

columna_perdidas = [columna_perdidas; {NaN}]; 

tabla_perdidas = cell2table(columna_perdidas, 'VariableNames', {'% 

perd_filas'}); 

 

% Concateno horizontalmente, de forma que la columna de NaNs por fila 

ocupe 

% la última columna de la base de datos 

nueva_Tabla_filaPerdColum = [nueva_Tabla_filaPerdColum, tabla_perdidas]; 

 

% Guardo el resultado en Excel y nombro el archivo. La base de datos 

% retrospectiva contendrá ahora una última fila de datos perdidos por 

% variable y una última columna de NaNs por paciente:  

writetable(nueva_Tabla_filaPerdColum, 

'DatosEPOC_Porcentajes_NaN_FINAL.xlsx'); 
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En segundo lugar, para facilitar la identificación de variables que superasen el umbral de pérdidas 

impuesto, se elaboró un script que permitiese visualizar de color rojo dichas variables: 

%-------------------------------------------------------------------- 

%-------------------------------------------------------------------- 

%IDENTIFICACIÓN VISUAL DE LAS COLUMNAS (VARIABLES) CUYO PORCENTAJE DE 

DATOS 

%PERDIDOS ES > 10%. 

%-------------------------------------------------------------------- 

%-------------------------------------------------------------------- 

 

nombre_archivo = 'DatosEPOC_Porcentajes_NaN_FINAL.xlsx'; 

hoja = 1; 

umbral = 10; % Establezco un umbral del 10% de NaNs por columna. 

 

% Cargo la tabla conservando el nombre original de las columnas: 

elem_tabla = readtable(nombre_archivo, 'VariableNamingRule', 'preserve'); 

nombres_variables = elem_tabla.Properties.VariableNames; 

 

% Identifico y guardo la última fila del script que es la que contiene el 

número de NaNs por columna: 

fila_nan = elem_tabla(end, :); 

 

% Se identifican las variables con más del 10% de datos perdidos. 

columnas_mas_10_NaN = {}; %Inicializo 

 

for i = 1:width(fila_nan) 

    valor = fila_nan{1, i}; 

    if isnumeric(valor) && ~isnan(valor) && valor > umbral 

        columnas_mas_10_NaN{end+1} = nombres_variables{i}; % Recojo los 

nombres de las variables que superan el umbral. 

    end 

end 

 

excel = actxserver('Excel.Application'); 

excel.Visible = true; 

wb = excel.Workbooks.Open(fullfile(pwd, nombre_archivo)); 

ws = wb.Sheets.Item(hoja); 

 

% Se pinta de rojo las columnas que superan el 10% de NaNs: 

for i = 1:length(columnas_mas_10_NaN) 

    nombre_col = columnas_mas_10_NaN{i}; 

    fprintf("Columna con > %d%% NaN: %s\n", umbral, nombre_col); 

    col_index = find(strcmp(nombres_variables, nombre_col)); 

 

    if ~isempty(col_index) 

        col_letra = obtener_letra_col_excel(col_index); 
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        rango_col = sprintf('%s2:%s%d', col_letra, col_letra, 

height(elem_tabla) + 1); % Se añade "+1" porque la fila que contiene el 

porcentaje de NaNs por columna es la última de todas. 

        ws.Range(rango_col).Interior.Color = 255; % 255 es el número 

correspondiente al color rojo. 

    end 

end 

 

% Función auxiliar 

function letra = obtener_letra_col_excel(n) 

% Transforma un número de columna a su letra correspondiente en Excel, ya 

% que este último identifica las columnas por letras. 

%Entrada: n - Valor numérico del índice de la columna. 

%Salida: letra - String de la letra que se corresponde a la columna de 

%Excel. 

 

    % Convierte un número de columna a letra estilo Excel (1 -> A, 27 -> 

AA) 

    letra = ''; 

    while n > 0 

        resto_div = mod(n - 1, 26); 

        letra = [char(65 + resto_div) letra]; 

        n = floor((n - 1) / 26); 

    end 

end 
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Tras esto, se muestra el código mediante el cual se prescinde de las variables que superan el 

umbral y de aquellas cuyo sumatorio de valores resultase ser 0 o 1. Tras esta eliminación, se 

presenta el cálculo de nuevo de los datos perdidos, tanto por paciente como por variable, 

comprobado que el tratamiento de estos datos se ha realizado correctamente: 

%-------------------------------------------------------------------- 

%-------------------------------------------------------------------- 

% FILTRADO DE LA BASE DE DATOS RETROSPECTIVA 

%-------------------------------------------------------------------- 

%-------------------------------------------------------------------- 

 

% Cargo la tabla que contiene el porcentaje de los datos perdidos. 

datos_tabla = readtable('DatosEPOC_Porcentajes_NaN_FINAL.xlsx', 

'VariableNamingRule', 'preserve'); 

 

% Separar la última fila (porcentajes de NaNs por columna) 

% Identifico y separo la última columna, que es la que contiene el 

porcentaje de NaNs. 

 

fila_nan = datos_tabla(end, :); % Selecciono y recojo en una variable la 

última fila (% NaNs). 

datos_tabla_final = datos_tabla(1:end-1, :);   % Selecciono y recojo en 

una variable el resto de pacientes 

 

% Se establece el umbral de datos perdidos, eliminado aquellas variables 

% que superen el mismo: 

umbral = 10; 

columnas_mas_10_NaN = {}; % Inicializo 

variable_names = datos_tabla.Properties.VariableNames; 

 

for i = 1:width(fila_nan) 

    valor = fila_nan{1, i}; 

    if isnumeric(valor) && ~isnan(valor) && valor > umbral 

        columnas_mas_10_NaN{end+1} = variable_names{i}; 

    end 

end 

 

fprintf('Columnas que presentan más de un 10% de NaNs:\n'); 

disp(columnas_mas_10_NaN); % Muestro las columnas que han superado el 

umbral. 

 

datos_filtrados = removevars(datos_tabla_final, columnas_mas_10_NaN); 

 

% A continuación, se eliminan aquellas variables cuyo sumatorio es 0 o 1 

% (no tienen suficiente varianza como para discriminar entre clases): 

 

num_columnas = width(datos_filtrados); % Calculo el número de variables 
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columnas_numericas = false(1, num_columnas); %  Se identifican las 

columnas numéricas. 

 

for i = 1:num_columnas 

    columnas_numericas(i) = isnumeric(datos_filtrados{:, i}); % Se 

comprueba si cada columna es o no numérica.  

end 

 

datos_numericos = datos_filtrados(:, columnas_numericas); 

 

% Se obtiene el sumatorio de los elementos de cada variable omitiendo los 

% NaNs: 

num_columnas_numericas = width(datos_numericos);  

result_sum_colum = zeros(1, num_columnas_numericas); % Inicializo la 

variable donde se guardarán los sumatorios.  

 

for i = 1:num_columnas_numericas 

    result_sum_colum(i) = sum(datos_numericos{:, i}, 'omitnan'); % 

Sumatorio por cada variable. 

end 

 

columnas_a_eliminar = result_sum_colum == 0 | result_sum_colum == 1; % 

Aplico la condición: suma 0 o 1. 

 

nombres_columnas_eliminar = 

datos_numericos.Properties.VariableNames(columnas_a_eliminar); 

datos_filtrados = removevars(datos_filtrados, nombres_columnas_eliminar); 

% Elimino dichas variables. 

 

% Elimino también la última columna, que contiene el porcentaje de NaNs 

por 

% fila, dado que al eliminar variables, los porcentajes de datos perdidos 

% por paciente han variado y ya no se corresponden con los previos. 

datos_filtrados(:, end) = []; 

 

% Calculo de nuevo el porcentaje de NaNs por paciente tras el filtrado de 

% variables  

porcentaje_nan_filas = sum(ismissing(datos_filtrados), 2) / 

width(datos_filtrados) * 100; 

 

% Añado esa columna a la tabla de datos. 

datos_filtrados.Porcentaje_NaNs_Fila = porcentaje_nan_filas;  

 

% Tras el filtrado de variables, se calculan de nuevo los porcentajes de 

% datos perdidos por columnas que, aunque no varían, sirve para comprobar 

% que ninguna de las variables restantes contiene más de un 10% de NaNs. 
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% Además, estas características serán las proporcionadas más tarde al 

% algoritmo de selección de variables.  

porcentaje_fila_final = sum(ismissing(datos_filtrados), 1) / 

height(datos_filtrados) * 100; 

fila_porcentaje_columnas = array2table(porcentaje_fila_final, 

'VariableNames', datos_filtrados.Properties.VariableNames); 

 

% Añado la fila de datos perdidos por variable como última fila.  

datos_completo = [datos_filtrados; fila_porcentaje_columnas];  

 

% Se muestran los resultados: 

fprintf('\nPorcentaje de NaNs por paciente después del filtrado:\n'); 

 

for i = 1:length(porcentaje_nan_filas) 

    fprintf('Fila %d: %.2f%%\n', i, porcentaje_nan_filas(i)); 

end 

 

fprintf('\nPorcentaje de NaNs por variable después del filtrado:\n'); 

 

for j = 1:width(datos_filtrados) 

    fprintf('%s: %.2f%%\n', datos_filtrados.Properties.VariableNames{j}, 

porcentaje_fila_final(j)); 

end 

 

% Se guarda el resultado en un Excel nuevo: 

writetable(datos_completo, 'DatosEPOC_Filtrados_Completo_FINAL.xlsx'); 
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A continuación, se expone el script elaborado para la imputación (K vecinos más cercanos), con 

un número de vecinos de 5. En las variables categóricas, se emplea la moda (voto mayoritario o 

majority rule), mientras que para las continuas se aplica la media (mean rule). 

%----------------------------------------------------------------------- 

%----------------------------------------------------------------------- 

% IMPUTACIÓN DE DATOS: K VECINOS MÁS CERCANOS 

%----------------------------------------------------------------------- 

%----------------------------------------------------------------------- 

 

% Se cargan los datos ya filtrados (con las eliminaciones de columnas 

% pertinentes): 

datos_vecinos = readtable("DatosEPOC_Filtrados_Completo_FINAL.xlsx"); 

 

datos_tabla_origen = readtable('DatosEPOC.xlsx'); 

datos_tabla_origen = datos_tabla_origen(datos_tabla_origen.('A_Exitus') 

~= 1, :); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

 

variables_continuas = {'Edad', 'Peso', 'Altura', 'IMC', 

'I_Tabaquico','Test_Charlson', ... 

    'B_Esp_FVC', 'B_Esp_FVC_p', 'B_Esp_FVC_iz', 'B_Esp_FEV1', 

'B_Esp_FEV1_p', ... 

    'B_Esp_FEV1_iz', 'B_Esp_FEV1FVC', 'B_Esp_FEV1FVC_p', 

'B_Esp_FEV1FVC_iz', ... 

    'N_Ingresos', 'Test_Barthel','Test_CAT', 

'N_Dias_Ing','N_Dias_Sintomas', 'I_CV_TAS', 'I_CV_TAD',... 

    'I_CV_FC', 'I_Gas_PH', 'I_Gas_PCO2', 'I_Gas_PO2', 'I_Gas_HCO3',... 

    'I_Ana_Leuc', 'I_Ana_Neu', 'I_Ana_Neup','I_Ana_Eos', 'I_Ana_Eosp'}; 

 

% Variablescategóricas: 

variables_categoricas = {'Sexo', 'Procedencia', 'E_Civil', 'Hogar', 

'Estudios', 'A_Laboral', ... 

    'Movilidad', 'Cuidador', 'Tabaquismo','Alcohol', 'GRC', 'Anti_Coag', 

'Anti_Agreg', ... 

    'V_Gripe', 'V_Neumo', 'HTA', 'DM', 'Dislipemia', 'Card_Isq', 

'Ins_Card', 'Ins_Resp', ... 

    'Bronqui', 'Taquiarritmia', 'ACV', 'Neo_Pulmon', 'Neo_Otras', ... 

    'Enf_Renal', 'Osteopor', 'Ansiedad', 'Depresion', 'Anemia', 'TEP', 

'SAHS', 'Estr_Riesgo', ... 

    'Fenotipo', 'Grd_Obst', 'Gold', 'B_Oxi_Dom', 'B_VNI', 

'B_Min_Ninguna', 'B_Min_SABA', ... 

    'B_Min_SAMA', 'B_Min_LABA', 'B_Min_LAMA', 'B_Min_CI', 

'B_Mre_Ninguna', 'B_Mre_SABA', ... 

    'B_Mre_SAMA', 'B_Mre_LABA', 'B_Mre_LAMA', 'B_Mre_CI', 'B_Corti', 

'B_Teo', 'B_IDFE4', ... 

    'B_Muco', 'B_Antibio', 'B_FisioRes','Test_mMRC','Test_TAI_Ade', ... 
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    'Test_TAI_I_Err', 'Test_TAI_I_Del', 'Test_TAI_I_Inc', 'Test_E5D_Mov', 

'Test_E5D_CPe', ... 

    'Test_E5D_ACo', 'Test_E5D_Dol', 'Test_E5D_Dep', ... 

    'Aumento_Tos', 'Aumento_Disnea', 'Aumento_Expect', 'Purul_Esputo', 

'Dolor_Tracico', 'Fiebre', ... 

    'Uso_Muscul_Acce', 'Mov_Toracicos', 'Cianosis', 'Edemas_Per', 

'Inest_Hemod', 'Deter_Mental', ... 

    'Disnea', 'Causa_Infecciosa', 'Causa_Bacteriana', 'Causa_Virica', 

'Microorg_Resis', ... 

    'Comp_Arritmias', 'Comp_Insuf_Cardia', 'Comp_Card_Isquem', 

'Comp_Derr_Pleural', ... 

    'Comp_Neumonia', 'Comp_Sepsis', 'Comp_Insuf_Respir', ... 

    'I_Min_Ninguna', 'I_Min_SABA', 'I_Min_SAMA', 'I_Min_LABA', 

'I_Min_LAMA', 'I_Min_CI', ... 

    'I_Corti', 'I_UVI', 'I_Oxi', 'I_Teo', 'I_IDFE4', ... 

    'I_Muco', 'I_VNI', 'I_VIN', 'I_Antibio', 'A_Oxi_Dom', 'A_VNI', 

'A_Min_Ninguna', ... 

    'A_Min_SABA', 'A_Min_SAMA', 'A_Min_LABA', 'A_Min_LAMA', 'A_Min_CI', 

... 

    'A_Mre_Ninguna', 'A_Mre_SABA', 'A_Mre_SAMA', 'A_Mre_LABA', 

'A_Mre_LAMA', 'A_Mre_CI', ... 

    'A_Corti', 'A_Antibio', 'A_Teo', 'A_IDFE4', 'A_Muco', 'A_FisioRes'}; 

 

if height(datos_vecinos) > length(datos_reingreso) 

    datos_reingreso = [datos_reingreso; 0]; 

end 

datos_vecinos.Reingreso = datos_reingreso; 

 

indice_porcentaje_nan = 

find(strcmp(datos_vecinos.Properties.VariableNames, 

'Porcentaje_NaNs_Fila')); 

datos_vecinos(:, indice_porcentaje_nan) = []; 

 

columna_reingreso = find(strcmp(datos_vecinos.Properties.VariableNames, 

'Reingreso')); % Se guarda el índice correspondiente a la variable target 

(reingreso) 

datos_matriz = datos_vecinos{:, :}; %Guardamos como matriz 

 

% Dado que la última fila y columna se correspondían con el porcentaje de 

NaNs por variable y paciente respectivamente, se eliminan para la 

imputación: 

datos_matriz(end, :) = []; % Se elimina la fila de NaNs por variable 

(última fila de la base de datos). 

 

% datos_matriz(:, end) = []; % Se elimina la última columna de NaNs por 

paciente (última columna de la base de datos). 
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reingreso_col = datos_matriz(:, columna_reingreso); % Se guarda en una 

variable la columna correspondiente a la variable target "reingreso".  

 

% Se excluye la variable target (reingreso), ya que esta no debe 

intervenir 

% en la etapa de imputación de datos perdidos: 

datos_matriz(:, columna_reingreso) = []; 

 

% Dado que la base de datos posee variables de carácter mixto, se 

discrimina 

% entre variables continuas y categóricas para la imputación.  

 

%En primer lugar, se considera categórica las variables con valores sin 

%parte decimal. Para ello, se aplica una tolerancia, determinando si se 

%trata o no de un valor entero: 

num_columnas = size(datos_matriz, 2); 

esCategorica = false(1, num_columnas); 

variable_names = datos_vecinos.Properties.VariableNames(setdiff(1:end, 

columna_reingreso)); 

for j = 1:num_columnas 

    esCategorica(j) = ismember(variable_names{j}, variables_categoricas); 

end 

 

[num_nan, ~] = size(datos_matriz); 

[filas, colum] = find(isnan(datos_matriz)); % Se recogen los índices que 

contienen los NaNs. 

 

k = 5; % Número de vecinos implementado. 

 

for i = 1:length(filas) 

 

    fila_idx = filas(i); 

    col_idx = colum(i); 

     

    % Se extrae la fila actual y se elimina la columna del valor perdido. 

    Y = datos_matriz(fila_idx, :); 

    Y(:, col_idx) = []; 

     

    % Guardar la clase a la que pertenece el paciente de la fila actual: 

    clase_reingreso = reingreso_col(fila_idx); 

     

    % De X, se conserva únicamente los pacientes del mismo grupo o clase: 

    X = datos_matriz(reingreso_col == clase_reingreso, :); 

    X(:, col_idx) = []; 

     

    % Se aplica K vecinos más cercanos mediante la función knnsearch: 

    idx = knnsearch(X, Y, 'K', k); 
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    % Mapear los índices de X a los índices originales en datos_matriz 

    idx_original = find(reingreso_col == clase_reingreso); 

    idx_original = idx_original(idx); 

     

    % Para la imputación, en las variables continuas se calcula la media 

de 

    % los K vecinos más cercanos, mientras que para las categóricas se 

    % emplea la moda: 

    if esCategorica(col_idx) 

        % Variables categóricas: moda (voto mayoritario o majority rule) 

        imputado = mode(datos_matriz(idx_original, col_idx)); 

    else 

        % Variables continuas: media (mean rule) 

        imputado = mean(datos_matriz(idx_original, col_idx), 'omitnan'); 

    end 

     

    % El valor imputado calculado se sustituye en la posición que 

corresponda: 

    datos_matriz(fila_idx, col_idx) = imputado; 

end 

 

% Se elimina la última fila y columna de la tabla original para que sus 

% dimensiones coincidan con datos_matriz: 

datos_vecinos(end, :) = []; 

 

datos_vecinos(:, end) = []; 

 

% Se actualiza la base de datos los resultados de la imputación, sin 

% incluir la variable target: 

datos_vecinos{:, setdiff(1:size(datos_vecinos, 2), columna_reingreso)} = 

datos_matriz; 

 

% Se guardan los resultados en un archivo Excel: 

archivo_kvecinos = 'Datos_imputacionkVecinosAplicado_FINAL.xlsx'; 

writetable(datos_vecinos, archivo_kvecinos); 
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ANEXO 2. Código análisis descriptivo de variables. 

En este código, se incluye el cálculo de estadísticos descriptivos de las variables que forman parte 

de las bases de datos, tanto de la retrospectiva como la prospectiva. Se distingue entre variables 

continuas y categóricas. Para las primeras, se calcula la mediana y primer y tercer cuartil, 

mientras que para las segundas se efectúa un recuento de pacientes por cada categoría y se 

expresa en porcentaje. Todos los estadísticos calculados mediante el siguiente código se recogen 

en una tabla conformada por 4 columnas. La primera columna se corresponde con el grupo total 

de pacientes, la segunda con la clase negativa (no reingreso), la tercera con la clase positiva 

(reingreso) y finalmente, la cuarta con el p-valor. Este último se obtiene mediante el Test de 

Fisher para las variables categóricas y el Test de Mann-Whitney para las continuas. 

Cohorte retrospectiva 

% Cargo la base de datos: 

datos_tabla = readtable('Datos_imputacionkVecinosAplicado_FINAL.xlsx', 

'VariableNamingRule', 'preserve'); 

 

datos_tabla_origen = readtable('DatosEPOC.xlsx'); 

datos_tabla_origen = datos_tabla_origen(datos_tabla_origen.('A_Exitus') 

~= 1, :); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

 

% Defino las variables de interés: 

% Variables continuas: 

variables_continuas = {'Edad', 'Peso', 'Altura', 'IMC', 

'I_Tabaquico','Test_Charlson', ... 

    'B_Esp_FVC', 'B_Esp_FVC_p', 'B_Esp_FVC_iz', 'B_Esp_FEV1', 

'B_Esp_FEV1_p', ... 

    'B_Esp_FEV1_iz', 'B_Esp_FEV1FVC', 'B_Esp_FEV1FVC_p', 

'B_Esp_FEV1FVC_iz', ... 

    'N_Ingresos', 'Test_Barthel','Test_CAT', 

'N_Dias_Ing','N_Dias_Sintomas', 'I_CV_TAS', 'I_CV_TAD',... 

    'I_CV_FC', 'I_Gas_PH', 'I_Gas_PCO2', 'I_Gas_PO2', 'I_Gas_HCO3',... 

    'I_Ana_Leuc', 'I_Ana_Neu', 'I_Ana_Neup','I_Ana_Eos', 'I_Ana_Eosp'}; 

 

% Variablescategóricas: 

variables_categoricas = {'Sexo', 'Procedencia', 'E_Civil', 'Hogar', 

'Estudios', 'A_Laboral', ... 

    'Movilidad', 'Cuidador', 'Tabaquismo','Alcohol', 'GRC', 'Anti_Coag', 

'Anti_Agreg', ... 

    'V_Gripe', 'V_Neumo', 'HTA', 'DM', 'Dislipemia', 'Card_Isq', 

'Ins_Card', 'Ins_Resp', ... 

    'Bronqui', 'Taquiarritmia', 'ACV', 'Neo_Pulmon', 'Neo_Otras', ... 

    'Enf_Renal', 'Osteopor', 'Ansiedad', 'Depresion', 'Anemia', 'TEP', 

'SAHS', 'Estr_Riesgo', ... 
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    'Fenotipo', 'Grd_Obst', 'Gold', 'B_Oxi_Dom', 'B_VNI', 

'B_Min_Ninguna', 'B_Min_SABA', ... 

    'B_Min_SAMA', 'B_Min_LABA', 'B_Min_LAMA', 'B_Min_CI', 

'B_Mre_Ninguna', 'B_Mre_SABA', ... 

    'B_Mre_SAMA', 'B_Mre_LABA', 'B_Mre_LAMA', 'B_Mre_CI', 'B_Corti', 

'B_Teo', 'B_IDFE4', ... 

    'B_Muco', 'B_Antibio', 'B_FisioRes','Test_mMRC','Test_TAI_Ade', ... 

    'Test_TAI_I_Err', 'Test_TAI_I_Del', 'Test_TAI_I_Inc', 'Test_E5D_Mov', 

'Test_E5D_CPe', ... 

    'Test_E5D_ACo', 'Test_E5D_Dol', 'Test_E5D_Dep', ... 

    'Aumento_Tos', 'Aumento_Disnea', 'Aumento_Expect', 'Purul_Esputo', 

'Dolor_Tracico', 'Fiebre', ... 

    'Uso_Muscul_Acce', 'Mov_Toracicos', 'Cianosis', 'Edemas_Per', 

'Inest_Hemod', 'Deter_Mental', ... 

    'Disnea', 'Causa_Infecciosa', 'Causa_Bacteriana', 'Causa_Virica', 

'Microorg_Resis', ... 

    'Comp_Arritmias', 'Comp_Insuf_Cardia', 'Comp_Card_Isquem', 

'Comp_Derr_Pleural', ... 

    'Comp_Neumonia', 'Comp_Sepsis', 'Comp_Insuf_Respir', ... 

    'I_Min_Ninguna', 'I_Min_SABA', 'I_Min_SAMA', 'I_Min_LABA', 

'I_Min_LAMA', 'I_Min_CI', ... 

    'I_Corti', 'I_UVI', 'I_Oxi', 'I_Teo', 'I_IDFE4', ... 

    'I_Muco', 'I_VNI', 'I_VIN', 'I_Antibio', 'A_Oxi_Dom', 'A_VNI', 

'A_Min_Ninguna', ... 

    'A_Min_SABA', 'A_Min_SAMA', 'A_Min_LABA', 'A_Min_LAMA', 'A_Min_CI', 

... 

    'A_Mre_Ninguna', 'A_Mre_SABA', 'A_Mre_SAMA', 'A_Mre_LABA', 

'A_Mre_LAMA', 'A_Mre_CI', ... 

    'A_Corti', 'A_Antibio', 'A_Teo', 'A_IDFE4', 'A_Muco', 'A_FisioRes'}; 

 

datos_tabla.Reingreso = datos_reingreso; 

 

grupo_no_reingreso = datos_tabla.Reingreso == 0; % Almaceno el grupo de 

no reingreso. 

grupo_reingreso = datos_tabla.Reingreso == 1; % Almaceno el grupo 

reingreso. 

 

% Calculo el número de pacientes de cada clase: 

fprintf('Tamaño grupo "no reingreso": %d\n', sum(grupo_no_reingreso)); 

fprintf('Tamaño grupo "reingreso": %d\n', sum(grupo_reingreso)); 

 

% Inicializo la tabla de resultados: 

resultados = table(); 

 

% Calculo los estadísticos descriptivos para las variables previas: 

for i = 1:length(variables_continuas) 

    variable_actual = variables_continuas{i}; 
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    datos_no_reingreso = datos_tabla{grupo_no_reingreso, 

variable_actual}; 

    datos_reingreso = datos_tabla{grupo_reingreso, variable_actual}; 

 

    datos_total = datos_tabla{:, variable_actual}; 

     

    % Me quedo con los que no contegan NaN: 

    valid_no_reingreso = sum(~isnan(datos_no_reingreso)); 

    valid_reingreso = sum(~isnan(datos_reingreso)); 

    valid_total = sum(~isnan(datos_total)); 

 

    fprintf('Variable: %s, Datos válidos "no reingreso" : %d, 

"reingreso": %d, Total: %d\n', ... 

        variable_actual, valid_no_reingreso, valid_reingreso, 

valid_total); 

     

    % Calculo la mediana, primer y tercer cuartil: 

    mediana_no_reingreso = NaN;  

    q1_no_reingreso = NaN;  

    q3_no_reingreso = NaN; 

 

    mediana_reingreso = NaN;  

    q1_reingreso = NaN;  

    q3_reingreso = NaN; 

 

    mediana_total = NaN;  

    q1_total = NaN;  

    q3_total = NaN; 

 

    p_valor = NaN; 

     

    if valid_no_reingreso > 0 

        mediana_no_reingreso = median(datos_no_reingreso, 'omitnan'); 

 

        q1_no_reingreso = quantile(datos_no_reingreso, 0.25); % Primer 

cuartil. 

        q3_no_reingreso = quantile(datos_no_reingreso, 0.75); % Tercer 

cuartil. 

    end 

 

    if valid_reingreso > 0 

        mediana_reingreso = median(datos_reingreso, 'omitnan'); 

 

        q1_reingreso = quantile(datos_reingreso, 0.25); % Primer cuartil. 

        q3_reingreso = quantile(datos_reingreso, 0.75); % Tercer cuartil. 

    end 

 

    if valid_total > 0 

        mediana_total = median(datos_total, 'omitnan'); 
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        q1_total = quantile(datos_total, 0.25); % Primer cuartil. 

        q3_total = quantile(datos_total, 0.75); % Tercer cuartil. 

    end 

     

    if valid_no_reingreso >= 1 && valid_reingreso >= 1 

        try 

            [p_valor, ~]= ranksum(datos_no_reingreso, datos_reingreso); % 

Test Mann-Whitney 

        catch 

            fprintf('Imposible aplicar Mann-Whitney para %s: faltan 

datos\n', variable_actual); 

        end 

    end 

     

    % Genero la tabla de estadísticos descriptivos: 

    resultados =[resultados; table({variable_actual}, ... 

        {[num2str(mediana_total, '%.1f') ' (' num2str(q1_total, '%.1f') 

', ' num2str(q3_total, '%.1f') ')']}, ... 

        {[num2str(mediana_no_reingreso, '%.1f') ' (' 

num2str(q1_no_reingreso, '%.1f') ', ' num2str(q3_no_reingreso, '%.1f') 

')']}, ... 

        {[num2str(mediana_reingreso, '%.1f') ' (' num2str(q1_reingreso, 

'%.1f') ', ' num2str(q3_reingreso, '%.1f') ')']}, ... 

        {p_valor}, 'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

end 

 

% Calculo en forma de porcentaje los pacientes que hay en cada categoría: 

for i = 1:length(variables_categoricas) 

    variable = variables_categoricas{i}; 

    if ~iscategorical(datos_tabla.(variable)) 

        datos_tabla.(variable) = categorical(datos_tabla.(variable)); 

    end 

     

    % Por cada categoría, calculo ese porcentaje: 

    categorias = categories(datos_tabla.(variable)); 

 

    for j = 1:length(categorias) 

         

        categoria = categorias{j}; 

        fprintf(variable + " "+ categoria +"\n"); 

 

        if ~(strcmp(variable, 'Test_E5D_Dol') && strcmp(categoria, '0')) 

             

            sum_no_reingreso = sum(datos_tabla{grupo_no_reingreso, 

variable} == categoria); 



  ANEXOS 

 

143 
 

            sum_reingreso = sum(datos_tabla{grupo_reingreso, variable} == 

categoria); 

     

            total_no_reingreso = sum(grupo_no_reingreso); 

            total_reingreso = sum(grupo_reingreso); 

            total_sample =height(datos_tabla);  

            sum_total = sum(datos_tabla{:, variable} == categoria); 

     

            porcentaje_no_reingreso = (sum_no_reingreso / 

total_no_reingreso) * 100; 

            porcentaje_reingreso = (sum_reingreso / total_reingreso) * 

100; 

            porcentaje_total = (sum_total / total_sample) * 100; 

             

            tabla_contingencia =[sum_no_reingreso, total_no_reingreso - 

sum_no_reingreso; ... 

                                 sum_reingreso, total_reingreso - 

sum_reingreso]; 

     

            p_valor = NaN; 

     

            if any(tabla_contingencia(:) > 0) % Manejo de posibles datos 

faltantes. 

                try 

                    [~, p_valor] = fishertest(tabla_contingencia); % 

Aplico el Test de Fisher. 

                catch 

                    fprintf('Imposible aplicar el Test de Fisher para %s 

(%s): faltan datos\n', variable, categoria); 

                end 

            end 

             

            % Muestro los resultados del test en la tabla: 

            resultados =[resultados; table({[variable ' (' categoria 

')']}, ... 

                {[num2str(sum_total) ' (' num2str(porcentaje_total, 

'%.1f') '%)']}, ... 

                {[num2str(sum_no_reingreso) ' (' 

num2str(porcentaje_no_reingreso, '%.1f') '%)']}, ... 

                {[num2str(sum_reingreso) ' (' 

num2str(porcentaje_reingreso, '%.1f') '%)']}, ... 

                {p_valor}, ... 

                'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

 

        end 

    end 

end 
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% Muestro los resultados de los estadísticos, tanto de variables 

continuas como categóricas, en tabla: 

disp(resultados); 

 

% Guardo los resultados en un nuevo Excel: 

writetable(resultados, 'Resultados_EstDescriptivos_postNan.xlsx'); 

 

% Filtrar variables continuas con p-valor < 0.05 

significativas = {}; 

for i = 1:height(resultados) 

    var = resultados.Variable{i}; 

    if ismember(var, variables_continuas) && 

~isnan(resultados.p_valor{i}) && resultados.p_valor{i} < 0.05 

        significativas = [significativas; var]; 

    end 

end 

 

num_sig = length(significativas); 

 

if num_sig == 0 

    disp('No hay variables continuas con diferencias significativas.'); 

else 

    % Calcular cuántas figuras se necesitan (máximo 2 subplots por 

figura) 

    num_figs = ceil(num_sig); 

    for f = 1:num_figs 

        figure; 

        for s = 1 

            idx = (f-1)+ s; 

            if idx > num_sig 

                break; 

            end 

            var = significativas{idx}; 

 

            % Preparar datos para el boxplot 

            datos_no = datos_tabla{grupo_no_reingreso, var}; 

            datos_re = datos_tabla{grupo_reingreso, var}; 

            data = [datos_no; datos_re]; 

            group = [ones(length(datos_no).1); 

2*ones(length(datos_re).1)]; 

 

            % Crear subplot y boxplot 

            boxplot(data, group, 'Notch', 'off', 'Labels', {'No 

Reingreso', 'Reingreso'}); 

            title(['Diagrama de cajas para la variable ' var], 

'FontSize', 12, 'Interpreter', 'none'); 

            ylabel(['Valores de la variable ' var], 'FontSize', 12, 

'Interpreter', 'none'); 
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            xlabel('Grupos bajo estudio', 'FontSize', 12); 

 

            if ~exist('C:\plot', 'dir') 

                mkdir('C:\plot'); 

            end 

            print(['C:\\plot\\graf' num2str(f) '.png'], '-dpng'); 

        end 

    end 

end 

 

 

 

A continuación, se exhibe también el análisis descriptivo de las variables relacionadas 

directamente con el reingreso. Su estudio estadístico se realiza por separado, ya que estas 

variables no deben ser filtradas atendiendo a su porcentaje de datos perdidos, ni deben formar 

parte del conjunto candidato de variables de entrada a los modelos predictivos. Su valor en este 

trabajo es meramente informativo. 

%Cargamos la base de datos original y recogemos las variables especiales  

datos_tabla = readtable('DatosEPOC.xlsx'); 

% Eliminamos pacientes con A_Exitus = 1 

datos_tabla = datos_tabla(datos_tabla.('A_Exitus') ~= 1, :);  

 

pacientes_reingreso = datos_tabla(datos_tabla.('Reingreso') ~= 0, :);  

porcentaje_r_exitus = mean(pacientes_reingreso.R_Exitus)*100; 

media_n_dias_tran = mean(pacientes_reingreso.N_Dias_Tran); 

 

fprintf('porcentaje_r_exitus = %.2f%%\n', porcentaje_r_exitus); 

fprintf('media_n_dias_tran = %.2f dias\n', media_n_dias_tran); 

 

variables_guardar = { 'Dias_alt_exi','R_N_Ur_Hosp', 'R_N_NMLC', 

'Exitus_30', 'Reingreso'}; 

tabla_filtrada = datos_tabla(:, variables_guardar); 

 

% Guardar la tabla filtrada en un nuevo archivo Excel 

writetable(tabla_filtrada, 'DatosEPOC_especiales.xlsx'); 

% Cargo la base de datos: 

 

datos_tabla = readtable('DatosEPOC_especiales.xlsx', 

'VariableNamingRule', 'preserve'); 

% Defino las variables de interés: 

% Variables continuas: 

variables_continuas = {'Dias_alt_exi' }; 

% Variablescategóricas: 

variables_categoricas = {'R_N_Ur_Hosp', 'R_N_NMLC', 'Exitus_30'}; 

grupo_no_reingreso = datos_tabla.Reingreso == 0; % Almaceno el grupo de 

no reingreso. 
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grupo_reingreso = datos_tabla.Reingreso == 1; % Almaceno el grupo 

reingreso. 

% Calculo el número de pacientes de cada clase: 

fprintf('Tamaño grupo "no reingreso": %d\n', sum(grupo_no_reingreso)); 

fprintf('Tamaño grupo "reingreso": %d\n', sum(grupo_reingreso)); 

 

% Inicializo la tabla de resultados: 

resultados = table(); 

% Calculo los estadísticos descriptivos para las variables previas: 

for i = 1:length(variables_continuas) 

    variable_actual = variables_continuas{i}; 

    datos_no_reingreso = datos_tabla{grupo_no_reingreso, 

variable_actual}; 

    datos_reingreso = datos_tabla{grupo_reingreso, variable_actual}; 

    datos_total = datos_tabla{:, variable_actual}; 

     

    % Me quedo con los que no contegan NaN: 

    valid_no_reingreso = sum(~isnan(datos_no_reingreso)); 

    valid_reingreso = sum(~isnan(datos_reingreso)); 

    valid_total = sum(~isnan(datos_total)); 

    fprintf('Variable: %s, Datos válidos "no reingreso" : %d, 

"reingreso": %d, Total: %d\n', ... 

        variable_actual, valid_no_reingreso, valid_reingreso, 

valid_total); 

     

    % Calculo la mediana, primer y tercer cuartil: 

    mediana_no_reingreso = NaN;  

    q1_no_reingreso = NaN; 

    q3_no_reingreso = NaN; 

 

    mediana_reingreso = NaN; 

    q1_reingreso = NaN; 

    q3_reingreso = NaN; 

 

    mediana_total = NaN; 

    q1_total = NaN; 

    q3_total = NaN; 

 

    p_valor = NaN; 

     

    if valid_no_reingreso > 0 

        mediana_no_reingreso = median(datos_no_reingreso, 'omitnan'); 

        q1_no_reingreso = quantile(datos_no_reingreso, 0.25); % Primer 

cuartil. 

        q3_no_reingreso = quantile(datos_no_reingreso, 0.75); % Tercer 

cuartil. 

    end 

    if valid_reingreso > 0 

        mediana_reingreso = median(datos_reingreso, 'omitnan'); 
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        q1_reingreso = quantile(datos_reingreso, 0.25); % Primer cuartil. 

        q3_reingreso = quantile(datos_reingreso, 0.75); % Tercer cuartil. 

    end 

    if valid_total > 0 

        mediana_total = median(datos_total, 'omitnan'); 

        q1_total = quantile(datos_total, 0.25); % Primer cuartil. 

        q3_total = quantile(datos_total, 0.75); % Tercer cuartil. 

    end 

     

    if valid_no_reingreso >= 1 && valid_reingreso >= 1 

        try 

            [p_valor, ~]= ranksum(datos_no_reingreso, datos_reingreso); % 

Test Mann-Whitney 

        catch 

            fprintf('Imposible aplicar Mann-Whitney para %s: faltan 

datos\n', variable_actual); 

        end 

    end 

     

    % Genero la tabla de estadísticos descriptivos: 

    resultados =[resultados; table({variable_actual}, ... 

        {[num2str(mediana_total, '%.1f') ' (' num2str(q1_total, '%.1f') 

', ' num2str(q3_total, '%.1f') ')']}, ... 

        {[num2str(mediana_no_reingreso, '%.1f') ' (' 

num2str(q1_no_reingreso, '%.1f') ', ' num2str(q3_no_reingreso, '%.1f') 

')']}, ... 

        {[num2str(mediana_reingreso, '%.1f') ' (' num2str(q1_reingreso, 

'%.1f') ', ' num2str(q3_reingreso, '%.1f') ')']}, ... 

        {p_valor}, 'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

end 

% Calculo los estadísticos descriptivos para las variables previas:% 

Calculo en forma de porcentaje los pacientes que hay en cada categoría: 

for i = 1:length(variables_categoricas) 

    variable = variables_categoricas{i}; 

    if ~iscategorical(datos_tabla.(variable)) 

        datos_tabla.(variable) = categorical(datos_tabla.(variable), 

'Ordinal', false); 

    end 

     

    % Obtenenemos las categorías válidas. 

    categorias = categories(datos_tabla.(variable)); 

     

    for j = 1:length(categorias) 

        categoria = categorias{j}; 

         

        % Filtro todos los datos no nulos. 

        datos_no_reingreso = datos_tabla{grupo_no_reingreso, variable}; 

        datos_reingreso = datos_tabla{grupo_reingreso, variable}; 
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        datos_total = datos_tabla{:, variable}; 

         

        % Contabilizamos solo valores no nulos. 

        sum_no_reingreso = sum(datos_no_reingreso == categoria & 

~ismissing(datos_no_reingreso)); 

        sum_reingreso = sum(datos_reingreso == categoria & 

~ismissing(datos_reingreso)); 

        sum_total = sum(datos_total == categoria & 

~ismissing(datos_total)); 

         

        total_no_reingreso = sum(~ismissing(datos_no_reingreso)); 

        total_reingreso = sum(~ismissing(datos_reingreso)); 

        total_sample = sum(~ismissing(datos_total)); 

         

        % Calculaculamos los porcentajes. 

        porcentaje_no_reingreso = (sum_no_reingreso / total_no_reingreso) 

* 100; 

        porcentaje_reingreso = (sum_reingreso / total_reingreso) * 100; 

        porcentaje_total = (sum_total / total_sample) * 100; 

         

        % Creamos la tabla de contingencia. 

        tabla_contingencia = [sum_no_reingreso, total_no_reingreso - 

sum_no_reingreso; ... 

                             sum_reingreso, total_reingreso - 

sum_reingreso]; 

         

        p_valor = NaN; 

         

        % Test de Fisher solo si la tabla tiene datos válidos y no es 

singular. 

        if all(tabla_contingencia(:) >= 0) && sum(tabla_contingencia(:)) 

> 0 && ~any(all(tabla_contingencia == 0, 1)) && 

~any(all(tabla_contingencia == 0, 2)) 

            try 

                [~, p_valor] = fishertest(tabla_contingencia); 

            catch 

                fprintf('Imposible aplicar el Test de Fisher para %s 

(%s): datos insuficientes\n', variable, categoria); 

            end 

        else 

            fprintf('Test de Fisher no aplicable para %s (%s): tabla de 

contingencia singular\n', variable, categoria); 

        end 

         

        % Agregamos a tabla de resultados. 

        resultados = [resultados; table({[variable ' (' categoria ')']}, 

... 

            {[num2str(sum_total) ' (' num2str(porcentaje_total, '%.1f') 

'%)']}, ... 
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            {[num2str(sum_no_reingreso) ' (' 

num2str(porcentaje_no_reingreso, '%.1f') '%)']}, ... 

            {[num2str(sum_reingreso) ' (' num2str(porcentaje_reingreso, 

'%.1f') '%)']}, ... 

            {p_valor}, ... 

            'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

    end 

end 

% Muestro los resultados de los estadísticos, tanto de variables 

continuas como categóricas, en tabla: 

disp(resultados); 

% Guardo los resultados en un nuevo Excel: 

writetable(resultados, 'Resultados_EstDescriptivos_Especiales.xlsx'); 

% Filtrar variables continuas con p-valor < 0.05. 

significativas = {}; 

for i = 1:height(resultados) 

    var = resultados.Variable{i}; 

    if ismember(var, variables_continuas) && 

~isnan(resultados.p_valor{i}) && resultados.p_valor{i} < 0.05 

        significativas = [significativas; var]; 

    end 

end 

num_sig = length(significativas); 

if num_sig == 0 

    disp('No hay variables continuas con diferencias significativas.'); 

else 

    % Calculo cuántas figuras se necesitan. 

    num_figs = ceil(num_sig); 

    for f = 1:num_figs 

        figure; 

        for s = 1 

            idx = (f-1)+ s; 

            if idx > num_sig 

                break; 

            end 

            var = significativas{idx}; 

            % Diagrama de cajas. 

            datos_no = datos_tabla{grupo_no_reingreso, var}; 

            datos_re = datos_tabla{grupo_reingreso, var}; 

            data = [datos_no; datos_re]; 

            group = [ones(length(datos_no).1); 

2*ones(length(datos_re).1)]; 

 

            boxplot(data, group, 'Notch', 'off', 'Labels', {'No 

Reingreso', 'Reingreso'}); 

            title(var, 'FontSize', 8, 'Interpreter', 'none'); 

            ylabel(var, 'FontSize', 8, 'Interpreter', 'none'); 
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        end 

    end 

end 
 

Cohorte prospectiva 

% Cargo la base de datos: 

datos_tabla = readtable('DatosRecogidos_FILTRADOS.xlsx', 

'VariableNamingRule', 'preserve'); 

 

datos_tabla_origen = readtable('Reingresos_DatosRecogidos.xlsx'); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

 

% Defino las variables de interés: 

% Variables continuas: 

variables_continuas = {'N_ingresos'}; 

 

% Variables categóricas: 

variables_categoricas = {'I_Muco', 'A_Muco', ... 

    'Microorg_Resis','Test_TAI_I_Inc',... 

    'B_Oxi_Dom', 'A_Teo', 'Uso_Muscul_Acce', ... 

    'Causa_Bacteriana', 'B_Teo', 'Gold', ... 

    'I_Min_LABA', 'I_Min_SABA', 'Test_E5D_Cpe',... 

    'Mov_Toracicos','Comp_Arritmias', ... 

    'I_Teo', 'Anemia', 'A_Min_SABA', ... 

    'Edemas_Per','I_VNI','B_Muco',... 

    'Test_TAI_I_Err','Comp_Neumonia'}; 

 

datos_tabla.Reingreso = datos_reingreso; 

 

grupo_no_reingreso = datos_tabla.Reingreso == 0; % Almaceno el grupo de 

no reingreso. 

grupo_reingreso = datos_tabla.Reingreso == 1; % Almaceno el grupo 

reingreso. 

 

% Calculo el número de pacientes de cada clase: 

fprintf('Tamaño grupo "no reingreso": %d\n', sum(grupo_no_reingreso)); 

fprintf('Tamaño grupo "reingreso": %d\n', sum(grupo_reingreso)); 

 

% Inicializo la tabla de resultados: 

resultados = table(); 

 

% Calculo los estadísticos descriptivos para las variables previas: 

for i = 1:length(variables_continuas) 

    variable_actual = variables_continuas{i}; 
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    datos_no_reingreso = datos_tabla{grupo_no_reingreso, 

variable_actual}; 

    datos_reingreso = datos_tabla{grupo_reingreso, variable_actual}; 

 

    datos_total = datos_tabla{:, variable_actual}; 

     

    % Me quedo con los que no contegan NaN: 

    valid_no_reingreso = sum(~isnan(datos_no_reingreso)); 

    valid_reingreso = sum(~isnan(datos_reingreso)); 

    valid_total = sum(~isnan(datos_total)); 

 

    fprintf('Variable: %s, Datos válidos "no reingreso" : %d, 

"reingreso": %d, Total: %d\n', ... 

        variable_actual, valid_no_reingreso, valid_reingreso, 

valid_total); 

     

    % Calculo la mediana, primer y tercer cuartil: 

    mediana_no_reingreso = NaN;  

    q1_no_reingreso = NaN;  

    q3_no_reingreso = NaN; 

 

    mediana_reingreso = NaN;  

    q1_reingreso = NaN;  

    q3_reingreso = NaN; 

 

    mediana_total = NaN;  

    q1_total = NaN;  

    q3_total = NaN; 

 

    p_valor = NaN; 

     

    if valid_no_reingreso > 0 

        mediana_no_reingreso = median(datos_no_reingreso, 'omitnan'); 

 

        q1_no_reingreso = quantile(datos_no_reingreso, 0.25); % Primer 

cuartil. 

        q3_no_reingreso = quantile(datos_no_reingreso, 0.75); % Tercer 

cuartil. 

    end 

 

    if valid_reingreso > 0 

        mediana_reingreso = median(datos_reingreso, 'omitnan'); 

 

        q1_reingreso = quantile(datos_reingreso, 0.25); % Primer cuartil. 

        q3_reingreso = quantile(datos_reingreso, 0.75); % Tercer cuartil. 

    end 

 

    if valid_total > 0 

        mediana_total = median(datos_total, 'omitnan'); 
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        q1_total = quantile(datos_total, 0.25); % Primer cuartil. 

        q3_total = quantile(datos_total, 0.75); % Tercer cuartil. 

    end 

     

    if valid_no_reingreso >= 1 && valid_reingreso >= 1 

        try 

            [p_valor, ~]= ranksum(datos_no_reingreso, datos_reingreso); % 

Test Mann-Whitney 

        catch 

            fprintf('Imposible aplicar Mann-Whitney para %s: faltan 

datos\n', variable_actual); 

        end 

    end 

     

    % Genero la tabla de estadísticos descriptivos: 

    resultados =[resultados; table({variable_actual}, ... 

        {[num2str(mediana_total, '%.1f') ' (' num2str(q1_total, '%.1f') 

', ' num2str(q3_total, '%.1f') ')']}, ... 

        {[num2str(mediana_no_reingreso, '%.1f') ' (' 

num2str(q1_no_reingreso, '%.1f') ', ' num2str(q3_no_reingreso, '%.1f') 

')']}, ... 

        {[num2str(mediana_reingreso, '%.1f') ' (' num2str(q1_reingreso, 

'%.1f') ', ' num2str(q3_reingreso, '%.1f') ')']}, ... 

        {p_valor}, 'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

end 

 

% Calculo en forma de porcentaje los pacientes que hay en cada categoría: 

for i = 1:length(variables_categoricas) 

    variable = variables_categoricas{i}; 

    if ~iscategorical(datos_tabla.(variable)) 

        datos_tabla.(variable) = categorical(datos_tabla.(variable)); 

    end 

     

    % Por cada categoría, calculo ese porcentaje: 

    categorias = categories(datos_tabla.(variable)); 

 

    for j = 1:length(categorias) 

         

        categoria = categorias{j}; 

        fprintf(variable + " "+ categoria +"\n"); 

 

        if ~(strcmp(variable, 'Test_E5D_Dol') && strcmp(categoria, '0')) 

             

            sum_no_reingreso = sum(datos_tabla{grupo_no_reingreso, 

variable} == categoria); 
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            sum_reingreso = sum(datos_tabla{grupo_reingreso, variable} == 

categoria); 

     

            total_no_reingreso = sum(grupo_no_reingreso); 

            total_reingreso = sum(grupo_reingreso); 

            total_sample =height(datos_tabla);  

            sum_total = sum(datos_tabla{:, variable} == categoria); 

     

            porcentaje_no_reingreso = (sum_no_reingreso / 

total_no_reingreso) * 100; 

            porcentaje_reingreso = (sum_reingreso / total_reingreso) * 

100; 

            porcentaje_total = (sum_total / total_sample) * 100; 

             

            tabla_contingencia =[sum_no_reingreso, total_no_reingreso - 

sum_no_reingreso; ... 

                                 sum_reingreso, total_reingreso - 

sum_reingreso]; 

     

            p_valor = NaN; 

     

            if any(tabla_contingencia(:) > 0) % Manejo de posibles datos 

faltantes. 

                try 

                    [~, p_valor] = fishertest(tabla_contingencia); % 

Aplico el Test de Fisher. 

                catch 

                    fprintf('Imposible aplicar el Test de Fisher para %s 

(%s): faltan datos\n', variable, categoria); 

                end 

            end 

             

            % Muestro los resultados del test en la tabla: 

            resultados =[resultados; table({[variable ' (' categoria 

')']}, ... 

                {[num2str(sum_total) ' (' num2str(porcentaje_total, 

'%.1f') '%)']}, ... 

                {[num2str(sum_no_reingreso) ' (' 

num2str(porcentaje_no_reingreso, '%.1f') '%)']}, ... 

                {[num2str(sum_reingreso) ' (' 

num2str(porcentaje_reingreso, '%.1f') '%)']}, ... 

                {p_valor}, ... 

                'VariableNames', {'Variable', 'Total', 'No reingreso', 

'Reingreso', 'p_valor'})]; 

 

        end 

    end 

end 
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% Muestro los resultados de los estadísticos, tanto de variables 

continuas como categóricas, en tabla: 

disp(resultados); 

 

% Guardo los resultados en un nuevo Excel: 

writetable(resultados, 'Resultados_EstDescriptivos_prospectiva.xlsx'); 

 

% Filtrar variables continuas con p-valor < 0.05 

significativas = {}; 

for i = 1:height(resultados) 

    var = resultados.Variable{i}; 

    if ismember(var, variables_continuas) && 

~isnan(resultados.p_valor{i}) && resultados.p_valor{i} < 0.05 

        significativas = [significativas; var]; 

    end 

end 

 

num_sig = length(significativas); 

 

if num_sig == 0 

    disp('No hay variables continuas con diferencias significativas.'); 

else 

    % Calcular cuántas figuras se necesitan (máximo 2 subplots por 

figura) 

    num_figs = ceil(num_sig); 

    for f = 1:num_figs 

        figure; 

        for s = 1 

            idx = (f-1)+ s; 

            if idx > num_sig 

                break; 

            end 

            var = significativas{idx}; 

 

            % Preparar datos para el boxplot 

            datos_no = datos_tabla{grupo_no_reingreso, var}; 

            datos_re = datos_tabla{grupo_reingreso, var}; 

            data = [datos_no; datos_re]; 

            group = [ones(length(datos_no).1); 

2*ones(length(datos_re).1)]; 

 

            % Crear subplot y boxplot 

            boxplot(data, group, 'Notch', 'off', 'Labels', {'No 

Reingreso', 'Reingreso'}); 

            title(['Diagrama de cajas para la variable ' var], 

'FontSize', 12, 'Interpreter', 'none'); 

            ylabel(['Valores de la variable ' var], 'FontSize', 12, 

'Interpreter', 'none'); 
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            xlabel('Grupos bajo estudio', 'FontSize', 12); 

 

            if ~exist('C:\plot', 'dir') 

                mkdir('C:\plot'); 

            end 

            print(['C:\\plot\\graf' num2str(f) '.png'], '-dpng'); 

        end 

    end 

end 
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ANEXO 3. Código selección de variables predictoras 

En el siguiente código, se presenta la selección de características predictoras mediante ReliefF, 

calculándose los pesos o relevancia por cada variable y almacenando aquellas que superasen el 

umbral establecido. Se aplica para K un valor de 5. 

% Cargo los datos: 

tabla = readtable('Datos_imputacionkVecinosAplicado_FINAL.xlsx'); 

 

datos_tabla_origen = readtable('DatosEPOC.xlsx'); 

datos_tabla_origen = datos_tabla_origen(datos_tabla_origen.('A_Exitus') 

~= 1, :); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

 

tabla.Reingreso = datos_reingreso; 

 

% Las variables predictoras se almacenan en X y la variable target se 

guarda en Y: 

Y_tabla = tabla(:, 'Reingreso'); %Variable target 

 

nom_variables = tabla.Properties.VariableNames; 

indice_col_reingreso = find(strcmp(nom_variables, 'Reingreso')); 

indices_col = 1:width(tabla); 

incides_var_predictoras = setdiff(indices_col, indice_col_reingreso); 

 

% Variables predictoras 

X_tabla = tabla(:, incides_var_predictoras);  

 

X = table2array(X_tabla); 

Y = table2array(Y_tabla); 

 

X_std = zscore(X); % Estandarizo las variables predictoras almacenadas en 

X. 

k = 5; %Número de vecinos 

[indices, weights] = relieff(X_std, Y, k); % Proporciona los índices 

ordenados y los pesos/puntuaciones de importancia sobre el conjunto. 

 

% Guardo los nombres de las variables predictoras (X) y de esos nombres 

ordenados según la puntuación obtenida (relevancia). 

 

nombres_variables = X_tabla.Properties.VariableNames; % Sin variable 

Reingreso. 

nombres_ordenados = nombres_variables(indices); % Orden atendiendo a su 

relevancia. 
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pesos_ordenados = weights(indices); % Puntuaciones ordenadas de mayor a 

menor.  

pesos_positivos = [] % Inicializo. 

for i = 1:length(pesos_ordenados) 

    if pesos_ordenados(i)> 0 

        pesos_positivos(i) = pesos_ordenados(i) % Guardo solo los pesos 

positivos. 

    end 

end 

 

media_pesos = mean(pesos_positivos) % Calculo la media de esos pesos 

positivos obtenidos para facilitar la elección del valor de "K" tras 

varias 

% pruebas, pudiendo ver cuál de las "K" devuelve un promedio con valores 

más cercanos a 1.  

 

% Me quedo con las 24 variables de mayor peso, cumpliendo así la regla 

empírica de 10 instancias por variable. 

num_variables = 24; 

 

% Genero una tabla con los nombres de las variables y sus pesos ordenados 

de mayor a menor. 

tabla_importancia_5 = table(nombres_ordenados', pesos_ordenados', ... 

    'VariableNames', {'Variable', 'Peso'}); 

disp('Tabla de variables ordenadas por puntuación (peso):'); 

disp(tabla_importancia_5); 

 

tabla_seleccionada_5 = tabla_importancia_5(1:num_variables, :); % Me 

quedo únicamente con las 24 variables de mayor peso. 

disp('Primeras 24 variables predictoras seleccionadas:'); 

disp(tabla_seleccionada_5); 

 

% Genero una matriz que contenga únicamente esas variables. 

indices_seleccionados = indices(1:num_variables); 

X_selected = X(:, indices_seleccionados);  

nombres_seleccionados = nombres_ordenados(1:num_variables); 

tabla_X_selected = array2table(X_selected, 'VariableNames', 

nombres_seleccionados); 

 

% Guardo los resultados en Excel. 

writetable(tabla_X_selected, 'variablesElegidasRelief_K5.xlsx'); 

 

% Creo un gráfico de barras que muestre las 24 variables seleccionadas y 

sus pesos. 

figure; 

bar(tabla_seleccionada_5.Peso); 

nombres_con_espacios = strrep(tabla_seleccionada_5.Variable, '_', ' '); 

 

set(gca, 'XTick', 1:num_variables, 'XTickLabel', nombres_con_espacios); 
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xtickangle(45); 

xlabel('Variables'); 

ylabel('Puntuación (Peso)'); 

title('Primeras 24 variables predictoras seleccionadas con K = 5'); 

grid on; 
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ANEXO 4. Código modelo predictivo basado en Random Forest. 

Se adjunta el script que contiene el modelo predictivo basado en Random Forest. En primer lugar, 

se almacena la variable target y aquellas seleccionadas finalmente por ReliefF, que resultaron 

ser las 24 variables con los mayores pesos. Tras esto, puede observarse la partición de los datos 

en test y train1. Este último se divide a su vez en train2 y val. Estos cuatro conjuntos se 

estandarizan y se realiza la optimización de los hiperparámetros y umbral de decisión. Para 

obtener el mejor valor para dichos hiperparámetros, se establece como criterio de selección la 

maximización de F1 score. Después, se reentrena el modelo final con todos los hiperparámetros 

ya optimizados mediante el conjunto train1 y finalmente se aplican diversas métricas de 

rendimiento.  

% En primer lugar, se obtiene la variable target (objetivo) de la tabla: 

tabla_partida = readtable('Datos_imputacionkVecinosAplicado_FINAL.xlsx'); 

 

datos_tabla_origen = readtable('DatosEPOC.xlsx'); 

datos_tabla_origen = datos_tabla_origen(datos_tabla_origen.('A_Exitus') 

~= 1, :); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

Y_target = datos_reingreso; 

 

% Cargo los datos con las variables seleccionadas: 

tabla_variables_seleccionadas = 

readtable("variablesElegidasRelief_K5.xlsx"); 

tabla_variables_seleccionadas = tabla_variables_seleccionadas(:, 1:24); % 

Selecciono las 24 primeras variables predictoras. 

matriz_variables_seleccionadas = 

table2array(tabla_variables_seleccionadas); % Convierto la tabla en 

matriz. 

 

% PRIMERA DIVISIÓN DE LOS DATOS EN train1 y test: 

cv_1 = cvpartition(Y_target, 'HoldOut', 0.3); % El 70% de los datos: 

entrenamiento. El resto (30%): test. 

idx_Train1 = training(cv_1); % Índices de los datos que pertenecen a 

entrenamiento. 

idx_Test = test(cv_1); % Índices de los datos que pertenecen a test. 

 

X_train1 = matriz_variables_seleccionadas(idx_Train1,:); 

Y_train1 = Y_target(idx_Train1); 

 

X_test = matriz_variables_seleccionadas(idx_Test,:); 

Y_test = Y_target(idx_Test); 

 

% SEGUNDA PARTICIÓN SOBRE train1: 
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cv_2 = cvpartition(Y_train1, "HoldOut", 0.3); % Vuelvo a dividir los 

datos de la misma manera: 70% train2 y 30% para el conjunto val. 

idx_Train2 = training(cv_2); % Índices de los datos que pertenecen a 

entrenamiento. 

idx_Val = test(cv_2); % Índices de los datos que pertenecen a test. 

 

X_train2 = X_train1(idx_Train2, :); 

Y_train2 = Y_train1(idx_Train2); 

 

X_valid = X_train1(idx_Val, :); 

Y_val = Y_train1(idx_Val); 

 

% Estandarizo: 

mu = mean(X_train2); 

sigma = std(X_train2); 

% Para evitar que se produzacn divisiones entre 0, se reemplazan las 

desviaciones nulas por 1. 

sigma(sigma == 0) = 1; 

X_train2 = (X_train2 - mu) ./ sigma; 

X_valid = (X_valid - mu) ./ sigma; 

X_test = (X_test - mu) ./ sigma; 

X_train1 = (X_train1 - mu) ./ sigma; 

 

%------------------------------------------------------------------------

---------------- 

% OPTIMIZACIÓN DE LOS HIPERPARÁMETROS:  

% Loas hiperparámetrros a optimizar son: meanleafsize, numpredictors, 

maxnumsplits, num_arboles y penalizaciones de falsos positivos y falsos 

negativos. 

 

%1º OPTIMIZACIÓN: numero de arboles 

% Valores fijos supuestos: 

NumPredictorsToSample = 5; % Número de predictores a muestrear. 

MaxNumSplits = 20; % Máximo número de divisiones. 

MinLeafSize = 5; % Tamaño mínimo de hoja. 

matrizCostes = [0 5; 10 0]; % [coste TN, coste FP; coste FN, coste TP]. 

Se le otorga mayor penalización a los falsos negativos, para mitigar 

%el desbalance de clases. 

 

% Rango de posibles valores para el número de árboles: 

numTrees = 5:10:400; 

 

F1_scores_trees = zeros(size(numTrees)); % Inicializo F1 score. 

 

% Pruebo los distintos números de árboles, seleccionando el que maximice 

F1 score: 

for i = 1:length(numTrees) 

    nTrees = numTrees(i); 

    RandomF = TreeBagger(nTrees, X_train2, Y_train2, ... 
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                         'Method', 'classification', ... 

                         'NumPredictorsToSample', NumPredictorsToSample, 

... 

                         'MaxNumSplits', MaxNumSplits, ... 

                         'MinLeafSize', MinLeafSize, ... 

                         'Cost', matrizCostes); 

 

    [pred_trees, scores] = RandomF.predict(X_valid); 

    pred_trees = str2double(pred_trees);  

 

    % Me aseguro de que las predicciones se hayan realizado 

correctamente: 

    if any(isnan(pred_trees)) || isempty(pred_trees) 

        warning('Predicciones no válidas para el número de árboles = %d', 

nTrees); 

        F1_scores_trees(i) = 0; 

        continue; 

    end 

 

    % A continuación, calculo F1 score. Para ello, necesito primero 

obtener la matriz de confusión: 

    matrizConfusion_trees = confusionmat(Y_val, pred_trees,'Order', [0 

1]); % Matriz de confusión 

    if sum(sum(matrizConfusion_trees)) == 0 %Me aseguro de que la matriz 

recién creada no presente valores vacíos.  

        warning('Matriz de confusión sin valores con un número de árboles 

de = %d', nTrees); 

        F1_scores_trees(i) = 0; 

        continue; 

    end 

 

    fprintf('numTrees=%d', nTrees); 

    F1_scores_trees(i) = Calc_f1Score(matrizConfusion_trees); 

end 

 

[bestNumTrees, maxF1_trees] = Plot_f1_param(numTrees, F1_scores_trees, 

... 

    'Número de árboles', 'Optimización del hiperparámetro numTrees', 

'Número de árboles'); 

 

     

%------------------------------------------------------------------------

---------------- 

%2º OPTIMIZACIÓN: penalización para falsos positivos. 

costFP_values = 2:0.5:15;  % Pruebo valores de de 2 a 15 en pasos de 0.5. 

F1_score_FPcost = zeros(size(costFP_values)); 

 

% Entreno el modelo para cada valor de prueba, integrando ya el número de 

árboles optimizado: 
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for i = 1:length(costFP_values) 

    cost_FP = costFP_values(i); 

    matriz_costes_op_FP = [0 cost_FP; 10 0];  % Fijo una penalización de 

10 para falsos negativos. 

 

   

    RF = TreeBagger(bestNumTrees, X_train2, Y_train2, ...  

                    'Method', 'classification', ... 

                    'NumPredictorsToSample', NumPredictorsToSample, ... 

                    'MaxNumSplits', MaxNumSplits, ... 

                    'MinLeafSize', MinLeafSize, ... 

                    'Cost', matriz_costes_op_FP); 

 

    % Realizo la predicción sobre el conjunto de validación: 

    [predCost_FP, ~] = RF.predict(X_valid); 

    predCost_FP = str2double(predCost_FP); 

 

    % Me aseguro de que las predicciones se hayan realizado 

correctamente: 

    if any(isnan(predCost_FP)) || isempty(predCost_FP) 

        warning('Predicciones no válidas para una penalización de FP de = 

%.2f', cost_FP); 

        F1_score_FPcost(i) = 0; 

        continue; 

    end 

 

    % Calculo F1 score, pero primero necesito la matriz de confusión: 

    matrizConfusionCost_FP = confusionmat(Y_val, predCost_FP, 'Order', [0 

1]); 

    if sum(sum(matrizConfusionCost_FP)) == 0 % Me aseguro de que la 

matriz recién creada no presente valores vacíos.  

        warning('Matriz de confusión con valores faltantes para una 

penalización de FP = %.2f', cost_FP); 

        F1_score_FPcost(i) = 0; 

        continue; 

    end 

 

    fprintf('costFP=%.2f', cost_FP); 

    F1_score_FPcost(i) = Calc_f1Score(matrizConfusionCost_FP); 

end 

 

[bestCostFP, maxF1_FP] = Plot_f1_param(costFP_values, F1_score_FPcost, 

... 

    'Coste de Falso Positivo', 'Optimización del hiperparámetro: Coste 

FP', 'Penalización de FP'); 

 

%------------------------------------------------------------------------

---------------- 
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%3º OPTIMIZACIÓN: penalización para falsos negativos. 

costFN_values = 16:0.5:30;  % Pruebo valores de 16 a 30 en pasos de 0.5. 

F1_score_FNcost = zeros(size(costFN_values)); 

 

% Entreno de nuevo, pero esta vez con el número de árboles y penalización 

de FP ya optimizados: 

for i = 1:length(costFN_values) 

    cost_FN = costFN_values(i); 

    matriz_costes_op_FN = [0 bestCostFP; cost_FN 0];  

 

    

    RF = TreeBagger(bestNumTrees, X_train2, Y_train2, ... 

                    'Method', 'classification', ... 

                    'NumPredictorsToSample', NumPredictorsToSample, ... 

                    'MaxNumSplits', MaxNumSplits, ... 

                    'MinLeafSize', MinLeafSize, ... 

                    'Cost', matriz_costes_op_FN); 

 

   

    [predCost_FN, ~] = RF.predict(X_valid); 

    predCost_FN = str2double(predCost_FN); 

 

   

    if any(isnan(predCost_FN)) || isempty(predCost_FN) 

        warning('Predicciones no válidas para una penalización de FN de = 

%.2f', cost_FN); 

        F1_score_FNcost(i) = 0; 

        continue; 

    end 

 

    % Calculo la matriz de confusión para luego obtener F1 score: 

    matrizConfusionCost_FN = confusionmat(Y_val, predCost_FN, 'Order', [0 

1]); 

    if sum(sum(matrizConfusionCost_FN)) == 0 

        warning('Matriz de confusión con datos vacíos para una 

penalización de FN = %.2f', cost_FN); 

        F1_score_FNcost(i) = 0; 

        continue; 

    end 

 

    fprintf('costFN=%.2f', cost_FN); 

    F1_score_FNcost(i) = Calc_f1Score(matrizConfusionCost_FN); 

     

end 

 

[bestCostFN, maxF1_FN] = Plot_f1_param(costFN_values, F1_score_FNcost, 

... 

    'Coste de Falso Negativo', 'Optimización del hiperparámetro: Coste 

FN', 'Penalización de FN'); 
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%------------------------------------------------------------------------

---------------- 

% 4º OPTIMIZACIÓN: MinLeafSize (tamaño mínimo de hoja) 

NumPredictorsToSample = 5; 

MaxNumSplits = 20; 

matrizCostes_op = [0 bestCostFP; bestCostFN 0]; % Integro para el 

entrenamiento las penalizaciones ya optimizadas. 

 

minLeafSize_valores = 5:1:15; % Pruebo valores de 5 a 15 de 1 en 1. 

F1_scores_leaf = zeros(size(minLeafSize_valores)); 

 

% Entreno con las penalizaciones ya optimizadas y el número de árboles: 

for i = 1:length(minLeafSize_valores) 

    min_hoja = minLeafSize_valores(i); 

 

    RF = TreeBagger(bestNumTrees, X_train2, Y_train2, ... 

                    'Method', 'classification', ... 

                    'NumPredictorsToSample', NumPredictorsToSample, ... 

                    'MaxNumSplits', MaxNumSplits, ... 

                    'MinLeafSize', min_hoja, ... 

                    'Cost', matrizCostes_op); 

 

    [pred_leaf, ~] = RF.predict(X_valid); 

    pred_leaf = str2double(pred_leaf); 

 

    if any(isnan(pred_leaf)) || isempty(pred_leaf) 

        warning('Predicciones no válidas para un tamaño mínimo de hoja de 

= %d', min_hoja); 

        F1_scores_leaf(i) = 0; 

        continue; 

    end 

 

    % Calculo la matriz de confusión: 

    matrizConfusion_leaf = confusionmat(Y_val, pred_leaf, 'Order', [0 

1]); 

    if sum(sum(matrizConfusion_leaf)) == 0 

        warning('Matriz de confusión vacía para MinLeafSize = %d', 

min_hoja); 

        F1_scores_leaf(i) = 0; 

        continue; 

    end 

 

    fprintf('MinLeafSize=%d', min_hoja); 

    F1_scores_leaf(i) = Calc_f1Score(matrizConfusion_leaf); 

end 
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[bestMinLeafSize, maxF1_leaf] = Plot_f1_param(minLeafSize_valores, 

F1_scores_leaf, ... 

    'MinLeafSize', 'Optimización del hiperparámetro: MinLeafSize', 

'Tamaño mínimo de hoja'); 

 

%------------------------------------------------------------------------

----------------------------------- 

% 5º OPTIMIZACIÓN: número de predictores 

MaxNumSplits = 20; 

num_features = size(X_train2, 2); 

predictor_values = 2:1:num_features; 

F1_predictor = zeros(size(predictor_values)); 

 

for i = 1:length(predictor_values) 

    nPred = predictor_values(i); 

 

    RF = TreeBagger(bestNumTrees, X_train2, Y_train2, ... 

                    'Method', 'classification', ... 

                    'NumPredictorsToSample', nPred, ... 

                    'MinLeafSize', bestMinLeafSize, ... 

                    'MaxNumSplits', MaxNumSplits, ... 

                    'Cost', [0 bestCostFP; bestCostFN 0]); 

 

    [pred_predictors, ~] = RF.predict(X_valid); 

    pred_predictors = str2double(pred_predictors); 

 

    if any(isnan(pred_predictors)) || isempty(pred_predictors) 

        warning('Predicciones no válidas para un número de predictores de 

= %d', nPred); 

        F1_predictor(i) = 0; 

        continue; 

    end 

 

    % Matriz de confusión: 

    confusion_pred = confusionmat(Y_val, pred_predictors, 'Order', [0 

1]); 

    if sum(sum(confusion_pred)) == 0 

        warning('Matriz de confusión con datos faltantes para un númeero 

de predictores = %d', nPred); 

        F1_predictor(i) = 0; 

        continue; 

    end 

 

    fprintf('NumPredictors=%d', nPred); 

    F1_predictor(i) = Calc_f1Score(confusion_pred); 

end 
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[bestNumPredictors, maxF1_pred] = Plot_f1_param(predictor_values, 

F1_predictor, ... 

    'NumPredictorsToSample', 'Optimización de NumPredictorsToSample', 

'Número de predictores'); 

 

%------------------------------------------------------------------------

-- 

% 6º OPTIMIZACIÓN: número máximo de divisiones (MaxNumSplits) 

maxSplits_range = 10:10:100; % Pruebo valores en este rango. 

F1_maxSplits = zeros(size(maxSplits_range)); 

 

for i = 1:length(maxSplits_range) 

    maxSplits = maxSplits_range(i); 

 

    RF = TreeBagger(bestNumTrees, X_train2, Y_train2, ... 

                    'Method', 'classification', ... 

                    'NumPredictorsToSample', bestNumPredictors, ... 

                    'MinLeafSize', bestMinLeafSize, ... 

                    'MaxNumSplits', maxSplits, ... 

                    'Cost', [0 bestCostFP; bestCostFN 0]); 

 

    [pred_splits, ~] = RF.predict(X_valid); 

    pred_splits = str2double(pred_splits); 

 

    if any(isnan(pred_splits)) || isempty(pred_splits) 

        warning('Predicciones no válidas para un número máximo de 

divisiones = %d', maxSplits); 

        F1_maxSplits(i) = 0; 

        continue; 

    end 

 

    % Matriz de confusión: 

    matrizConfusion_splits = confusionmat(Y_val, pred_splits, 'Order', [0 

1]); 

    if sum(sum(matrizConfusion_splits)) == 0 

        warning('Matriz de confusión con datos vacíos para un número 

máximo de divisiones = %d', maxSplits); 

        F1_maxSplits(i) = 0; 

        continue; 

    end 

 

    fprintf('MaxNumSplits=%d', maxSplits); 

    F1_maxSplits(i) = Calc_f1Score(matrizConfusion_splits); 

end 

 

[bestMaxSplits, maxF1_splits] = Plot_f1_param(maxSplits_range, 

F1_maxSplits, ... 
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    'MaxNumSplits', 'Optimización del hiperparámetro: MaxNumSplits', 

'Número de divisiones'); 

 

%------------------------------------------------------------------------

------------------------------ 

% 7º OPTIMIZACIÓN: Umbral de decisión 

% Una vez obtenidos los hiperparámetros óptimos del árbol, se optimiza el 

umbral de predicción: 

modeloVal = TreeBagger(bestNumTrees, X_train1, Y_train1, ... 

                       'Method', 'classification', ... 

                       'NumPredictorsToSample', bestNumPredictors, ... 

                       'MinLeafSize', bestMinLeafSize, ... 

                       'MaxNumSplits', bestMaxSplits, ... 

                       'Cost', [0 bestCostFP; bestCostFN 0]); 

 

[~, scoresVal] = modeloVal.predict(X_valid); 

scoresVal = scoresVal(:, 2); % Probabilidad de obtener la clase positiva. 

 

% Obtengo la curva ROC: 

[X_roc, Y_roc, T_roc, AUC] = perfcurve(Y_val, scoresVal, 1); 

 

% Obtengo F1 Score para cada umbral mediante la curva ROC recién 

obtenida. 

F1_scores_umbral = zeros(size(T_roc)); 

for i = 1:length(T_roc) 

    thresh = T_roc(i); 

    pred_umbral = double(scoresVal >= thresh); 

 

    if any(isnan(pred_umbral)) || isempty(pred_umbral) 

        warning('Predicciones no válidas para un umbral de = %.2f', 

thresh); 

        F1_scores_umbral(i) = 0; 

        continue; 

    end 

 

    % Matriz de confusión: 

    matrizConfusion_umbral = confusionmat(Y_val, pred_umbral, 'Order', [0 

1]); 

    if sum(sum(matrizConfusion_umbral)) == 0 

        warning('Matriz de confusión con daltos faltantes para un umbral 

de = %.2f', thresh); 

        F1_scores_umbral(i) = 0; 

        continue; 

    end 

 

    fprintf('umbral=%.2f', thresh); 
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    F1_scores_umbral(i) = Calc_f1Score(matrizConfusion_umbral); 

end 

 

% Elimino los NaNs: 

valid_idx = ~isnan(F1_scores_umbral); 

T_roc_clean = T_roc(valid_idx); 

F1_scores_umbral_clean = F1_scores_umbral(valid_idx); 

X_roc_clean = X_roc(valid_idx); 

Y_roc_clean = Y_roc(valid_idx); 

 

% Me quedo con el umbral que maximiza el F1 score: 

[maxF1_umbral, idxMaxF1_umbral] = max(F1_scores_umbral_clean); 

mejor_umbral = T_roc_clean(idxMaxF1_umbral); 

bestX = X_roc_clean(idxMaxF1_umbral); 

bestY = Y_roc_clean(idxMaxF1_umbral); 

 

% Represento la curva ROC: 

figure; 

plot(X_roc_clean, Y_roc_clean, 'b-', 'LineWidth', 2); 

hold on; 

 

% Marco en la curva ROC el mejor punto de F1 score: 

plot(bestX, bestY, 'ro', 'MarkerSize', 8, 'LineWidth', 2); 

 

xlabel('Tasa de falsos positivos (FPR)'); 

ylabel('Tasa de verdaderos positivos (TPR)'); 

title('Curva ROC y umbral óptimo'); 

legend('Curva ROC', 'Máximo F1', 'Location', 'southeast'); 

grid on; 

hold off; 

 

fprintf('Umbral de decisión optimizado = %.2f con F1 score = %.4f\n', 

mejor_umbral, maxF1_umbral); 

fprintf('AUC obtenido por el modelo: %.4f\n', AUC); 

 

%------------------------------------------------------------------------

----- 

% Evaluación del modelo ya optimizado y con el úmbral también optimizado: 

modelo_def = TreeBagger(bestNumTrees, X_train1, Y_train1, ... 

                       'Method', 'classification', ... 

                       'NumPredictorsToSample', bestNumPredictors, ... 

                       'MinLeafSize', bestMinLeafSize, ... 

                       'MaxNumSplits', bestMaxSplits, ... 

                       'Cost', [0 bestCostFP; bestCostFN 0]); 

 

% Ahora las predicciones se realizan sobre el conjunto test: 

[~, scoresDef] = modelo_def.predict(X_test); 

scoresDef = scoresDef(:, 2); % Probabilidad de obtener la clase positiva. 
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% Obtener la curva ROC y AUC: 

[fpr, tpr, ~, AUC] = perfcurve(Y_test, scoresDef, 1); 

fprintf('AUC del modelo final: %.4f\n', AUC); 

 

% Curva ROC: 

figure; 

plot(fpr, tpr, 'LineWidth', 2); 

xlabel('1 - Especificidad (FPR)'); 

ylabel('Sensibilidad (TPR)'); 

title(sprintf('Curva ROC (AUC = %.4f)', AUC)); 

grid on; 

predTest = double(scoresDef >= mejor_umbral); 

 

if any(isnan(predTest)) || isempty(predTest) 

    error('Predicciones no válidas en el conjunto test'); 

end 

 

% Matriz de confusión: 

matrizConfusion_final = confusionmat(Y_test, predTest, 'Order', [0 1]); 

if sum(sum(matrizConfusion_final)) == 0 

    error('Matriz de confusión con datos faltantes en el conjunto de 

test'); 

end 

 

TN = matrizConfusion_final(1.1); 

FP = matrizConfusion_final(1.2); 

FN = matrizConfusion_final(2.1); 

TP = matrizConfusion_final(2.2); 

 

se = TP / (TP + FN); 

sp = TN / (TN + FP); 

acc = (TP + TN) / (TP + FN + TN + FP); % accuracy 

ppv = TP / (TP + FP);  

F1_score_final = 2 * ((ppv * se) / (ppv + se)); 

LR_pos = se / (1 - sp); % Relación de verosimilitud positiva. 

LR_neg = (1 - se) / sp; % Relación de verosimilitud negativa. 

npv = TN / (TN + FN); % Valor predictivo negativo. 

 

fprintf('\n--- RESULTADOS SOBRE TEST SET (UMBRAL OPTIMIZADO) ---\n'); 

fprintf('Sensibilidad: %.4f\n', se); 

fprintf('Especificidad: %.4f\n', sp); 

fprintf('Precisión (accuracy): %.4f\n', acc); 

fprintf('F1 score: %.4f\n', F1_score_final); 

fprintf('LR positiva: %.4f\n', LR_pos); 

fprintf('LR negativa: %.4f\n', LR_neg); 



  ANEXOS 

 

170 
 

fprintf('NPV: %.4f\n', npv); 

fprintf('PPV: %.4f\n', ppv); 

disp('Matriz de confusión:'); 

disp(matrizConfusion_final); 

 

function [F1_score] = Calc_f1Score(matrizConfusion_umbral) 

    % Función que calcula F1 score a partir de la  

    % matriz de confusion 

    TN = matrizConfusion_umbral(1.1); 

    FP = matrizConfusion_umbral(1.2); 

    FN = matrizConfusion_umbral(2.1); 

    TP = matrizConfusion_umbral(2.2); 

 

    se = TP / (TP + FN); 

    ppv = TP / (TP + FP); 

    F1_score = 2 * ((se * ppv) / (se + ppv)); 

 

    fprintf('TP=%d, FP=%d, FN=%d, TN=%d, se=%.4f, ppv=%.4f, F1=%.4f\n', 

... 

            TP, FP, FN, TN, se, ppv, F1_score); 

end 

 

function [bestParam, maxF1] = Plot_f1_param(valores_x, valores_f1, 

xLabelStr, titulo_plot, nombre_parametro) 

    % Función para representar la evolución de f1 score  

    % frente al rango de hiperpárametros a provar 

    valid_idx = ~isnan(valores_f1); 

    x_clean = valores_x(valid_idx); 

    F1_clean = valores_f1(valid_idx); 

 

    figure; 

    plot(x_clean, F1_clean, '-o', 'LineWidth', 1.5); 

    hold on; 

 

    % Busca el valor óptimo 

    [maxF1, idxMax] = max(F1_clean); 

    bestParam = x_clean(idxMax); 

 

    % Marca el punto óptimo 

    plot(bestParam, maxF1, 'ro', 'MarkerSize', 8, 'LineWidth', 2); 

 

    % Etiquetas 

    xlabel(xLabelStr); 

    ylabel('F1 Score'); 

    title(titulo_plot); 

    legend('F1 Score', 'Máximo F1', 'Location', 'best'); 

    grid on; 

    hold off; 
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    % Imprime resultados 

    if isnumeric(bestParam) && mod(bestParam.1)==0 

        fprintf('%s óptimo = %d con F1 score = %.4f\n', nombre_parametro, 

bestParam, maxF1); 

    else 

        fprintf('%s óptimo = %.2f con F1 score = %.4f\n', 

nombre_parametro, bestParam, maxF1); 

    end 

end 
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ANEXO 5. Código modelo predictivo basado en red neuronal 

perceptrón multicapa. 

Análogamente al anterior script, se realizan las mismas particiones de datos expuestas para 

Random Forest. Se estandarizan los mismos y se lleva a cabo la optimización de dos 

hiperparámetros de la red: el número de neuronas de la capa oculta y el parámetro de 

regularización (alpha). Se genera una matriz cuyos elementos son el F1 score calculado para cada 

combinación de los hiperparámetros. De nuevo, la combinación óptima será aquella que 

maximice F1 score. También se adjunta la optimización del umbral de decisión. Por último, se 

reentrena el modelo con train1 aplicando todos los parámetros ya optimizados y finalmente se 

calculan las métricas de rendimiento para evaluar la red neuronal. 

% Cargo la base de datos y extraigo de ella la variable reingreso 

(target): 

tabla_partida = readtable('Datos_imputacionkVecinosAplicado_FINAL.xlsx'); 

 

datos_tabla_origen = readtable('DatosEPOC.xlsx'); 

datos_tabla_origen = datos_tabla_origen(datos_tabla_origen.('A_Exitus') 

~= 1, :); 

variable_reingreso = {'Reingreso'} 

datos_reingreso = datos_tabla_origen{:, variable_reingreso} 

tabla_partida.Reingreso = datos_reingreso; 

 

Y_target = tabla_partida.Reingreso; 

 

tabla_variables_seleccionadas = 

readtable("variablesElegidasRelief_K5.xlsx"); % Cargo el Excel que 

contiene las variables que superaban el umbral. 

tabla_variables_seleccionadas = tabla_variables_seleccionadas(:, 1:24); % 

De las variables resultantes de ReliefF, me quedo con las 24 de mayor 

peso. 

matriz_variables_seleccionadas = 

table2array(tabla_variables_seleccionadas); 

 

% Creación de los conjuntos: 

cv_1 = cvpartition(Y_target, 'HoldOut', 0.3); % Entrenamiento: 70%. Test: 

30%.  

idx_Train1 = training(cv_1); 

idx_Test = test(cv_1); 

 

X_train1 = matriz_variables_seleccionadas(idx_Train1,:); 

Y_train1 = Y_target(idx_Train1); 

X_test = matriz_variables_seleccionadas(idx_Test,:); 

Y_test = Y_target(idx_Test); 

 

cv_2 = cvpartition(Y_train1, 'HoldOut', 0.3); 
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idx_Train2 = training(cv_2); 

idx_Val = test(cv_2); 

 

X_train2 = X_train1(idx_Train2, :); 

Y_train2 = Y_train1(idx_Train2); 

X_val = X_train1(idx_Val, :); 

Y_val = Y_train1(idx_Val); 

 

% Estandarizo los conjuntos: 

mu = mean(X_train2); 

sigma = std(X_train2); 

X_train2_scaled = (X_train2 - mu) ./ sigma; 

X_val_scaled = (X_val - mu) ./ sigma; 

 

% OPTIMIZACIÓN DE LOS HIPERPARÁMETOS: parámetro de regularización y 

número de neuronas en la capa oculta. 

regularizacion = 0.1:0.05:1;   

num_neuronas = 2:1:50; 

 

f1_matrix = NaN(length(num_neuronas), length(regularizacion));  

F1_max = 0; 

 

% Busco la combinación de valores de los dos parámetros que me maximice 

F1 score: 

for i = 1:length(num_neuronas) 

    for j = 1:length(regularizacion) 

        net = patternnet(num_neuronas(i)); 

        % Funciones de activación aplicadas en la capa oculta y la de 

salida: 

        net.layers{1}.transferFcn = 'tansig'; % Capa oculta 

        net.layers{2}.transferFcn = 'logsig'; % Capa de salida 

        net.performParam.regularization = regularizacion(j); % Parámetro 

de regularización. 

        net.trainParam.showWindow = false; % Instrucción para no mostrar 

la ventana de entrenamiento. 

        net = train(net, X_train2_scaled', Y_train2'); %Entrenamiento de 

la red. 

 

        Y_val_pred_prob = net(X_val_scaled'); 

        Y_val_pred = double(Y_val_pred_prob >= 0.5); 

 

        C = confusionmat(Y_val, Y_val_pred); %Calculo la matriz de 

confusión 

        TN = C(1.1); % Verdaderos negativos. 

        FP = C(1.2); % Falsos positivos. 

        FN = C(2.1); % Falsos negativos. 

        TP = C(2.2); % Verdaderos positivos. 

 

        se = TP/(TP + FN); % Sensibilidad. 
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        ppv = TP/(TP + FP); % Valor Predictivo Positivo. 

        F1 = 2 * (se * ppv)/(se + ppv);  % Calculo la F1 score. 

 

        if ~isnan(F1) % Manejo los posibles NaNs. 

            f1_matrix(i, j) = F1 * 100; %Alamceno los F1 score de cada 

combinación en la matriz como porcentaje. 

 

            if F1 > F1_max 

                F1_max = F1; 

                num_neuronas_opt = num_neuronas(i); 

                reg_opt = regularizacion(j); 

            end 

 

        end 

 

    end 

end 

 

% Creación de una gráfica que muestre el F1 score (eje Y), número de 

neuoronas (eje X) y parámetro de regularización (alpha). 

figure; 

hold on; 

colors = lines(length(regularizacion)); 

 

for j = 1:length(regularizacion) 

    plot(num_neuronas, f1_matrix(:, j), '-^', 'LineWidth', 1.5, ... 

        'Color', colors(j,:), ... 

        'DisplayName', sprintf('alpha = %.3f', regularizacion(j))); 

end 

 

hold off; 

xlabel('Número de nodos en la capa oculta'); 

ylabel('F1 Score (%)'); 

title('F1 Score para distintas combinaciones de hiperparámetros'); 

legend('Location', 'best'); 

grid on; 

 

% Optimizo el umbral de decisión: 

net_opt = patternnet(num_neuronas_opt); 

net_opt.layers{1}.transferFcn = 'tansig'; % Funciones de activación. 

net_opt.layers{2}.transferFcn = 'logsig'; 

net_opt.performParam.regularization = reg_opt; 

net_opt.trainParam.showWindow = false; 

net_opt= train(net_opt, X_train2_scaled', Y_train2'); 

 

Y_val_pred_prob = net_opt(X_val_scaled'); 

umbrales = 0.3:0.01:1; % Rango de umbrales. 

F1_umbrales = NaN(size(umbrales)); %Inicializo F1 score. 
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for k = 1:length(umbrales) 

    Y_val_pred = double(Y_val_pred_prob >= umbrales(k)); 

    C = confusionmat(Y_val, Y_val_pred);  % Matriz de confusión. 

    TN = C(1.1); % Verdaderos negativos. 

    FP = C(1.2); % Falsos positivos. 

    FN = C(2.1); % Falsos negativos. 

    TP = C(2.2); % Verdaderos positivos. 

 

    se = TP/(TP + FN); % Sensibilidad. 

    ppv = TP/(TP + FP); % Valor Predictivo Positivo. 

    F1 = 2 * (se * ppv)/(se + ppv); % Calculo la F1 score. 

 

    if ~isnan(F1) 

        F1_umbrales(k) = F1; 

    end 

 

end 

 

[maxF1_val, idx_umbral] = max(F1_umbrales, [], 'omitnan'); % Me quedo con 

el umbral que maximina F1 score. 

umbral_opt = umbrales(idx_umbral); 

 

% Vuelvo a entrenar, pero con train1: 

X_train1_scaled = (X_train1 - mu) ./ sigma; 

X_test_scaled= (X_test - mu) ./ sigma; 

 

net_final = patternnet(num_neuronas_opt); 

net_final.layers{1}.transferFcn = 'tansig'; % Funciones de activación. 

net_final.layers{2}.transferFcn = 'logsig'; 

net_final.performParam.regularization = reg_opt; 

net_final.trainParam.showWindow = true; 

net_final = train(net_final, X_train1_scaled', Y_train1'); 

 

% Predicción sobre el conjunto test: 

Y_test_pred_prob = net_final(X_test_scaled'); 

Y_test_pred = double(Y_test_pred_prob >= umbral_opt); 

 

C_test = confusionmat(Y_test, Y_test_pred); 

TN = C_test(1.1);  

FP = C_test(1.2);  

FN = C_test(2.1);  

TP = C_test(2.2); 

 

% Métricas de rendimiento: 

Se = TP/(TP + FN); 

Sp = TN/(TN + FP); 

PPV = TP/(TP + FP); 

NPV = TN/(TN + FN); % Valor predictivo negativo. 

LR_pos = Se/(1 - Sp); % Razón de verosimilitud positiva. 
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LR_neg =(1 - Se)/(Sp); % Razón de vero similitud negativa. 

Accuracy = (TP + TN)/(TP + FN + TN + FP); % Precisión. 

F1 = 2 * (Se * PPV)/(Se + PPV); 

 

[X_roc, Y_roc, ~, AUC] = perfcurve(Y_test, Y_test_pred_prob, 1); %Calculo 

la Curva ROC y AUC.  

 

% Muestro los reusltados finales: 

fprintf('-- Hiperparámetros óptimos --\n'); 

fprintf('Neuronas ocultas en la capa oculta: %d\n', num_neuronas_opt); 

fprintf('Parámetro de regularización (alpha): %.3f\n', reg_opt); 

fprintf('Umbral óptimo: %.2f\n', umbral_opt); 

fprintf('F1 score sobre el conjunto de validación con umbral óptimo: 

%.3f\n', maxF1_val); 

 

fprintf('\n-- Resultados sobre el conjunto TEST --\n'); 

disp(C_test); 

fprintf('Sensibilidad: %.3f\n', Se); 

fprintf('Especificidad: %.3f\n', Sp); 

fprintf('PPV: %.3f\n', PPV); 

fprintf('NPV: %.3f\n', NPV); 

fprintf('LR+: %.3f\n', LR_pos); 

fprintf('LR-: %.3f\n', LR_neg); 

fprintf('Accuracy: %.3f\n', Accuracy); 

fprintf('F1 score: %.3f\n', F1); 

fprintf('AUC (área bajo la curva): %.3f\n', AUC); 

 

% Genero la Curva ROC: 

figure; 

plot(X_roc, Y_roc, 'b-', 'LineWidth', 2); 

hold on; 

plot([0 1], [0 1], 'k--'); 

xlabel('1 - Especificidad (FPR)'); 

ylabel('Sensibilidad (TPR)'); 

title(sprintf('Curva ROC (AUC = %.3f)', AUC)); 

grid on; 

axis square; 
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ANEXO 6. Validación temporal prospectiva del modelo predictivo 

basado en Random Forest 

A continuación, se muestra la validación temporal de Random Forest mediante la base de datos 

prospectiva recogida. Su implementación se efectúa sobre el modelo ya optimizado y se calculan 

diversas métricas de rendimiento con el fin de determinar la capacidad predictiva del modelo en 

bases de datos independientes.  

% Cargo la base de datos prospectiva: 

tabla_nueva = readtable('DatosRecogidos_FILTRADOS.xlsx'); 

reingresos_nueva = readtable('Reingresos_DatosRecogidos.xlsx'); 

Y_nueva = reingresos_nueva.Reingreso; % Variable target. 

 

%  Almaceno las 24 primeras variables extraídas de ReliefF (son las 

mismas que las aplicadas en el conjunto retrospectivo). 

X_nueva = table2array(tabla_nueva(:, 1:24)); 

 

% Estandarizo mediante mu y sigma calculados en el modelo original: 

X_nueva_estandarizada = (X_nueva - mu) ./ sigma; 

 

% Las predicciones se hacen en este caso sobre el modelo ya ooptimizado. 

[~, scores_nueva] = modelo_def.predict(X_nueva_estandarizada); 

scores_nueva = scores_nueva(:, 2); % Probabilidad de pertenecer a la 

clase positiva. 

 

% Utilizo el umbral óptimo ya calculado: 

pred_nueva = double(scores_nueva >= mejor_umbral); 

 

% Matriz de confusión: 

matriz_confusion_nueva = confusionmat(Y_nueva, pred_nueva, 'Order', [0 

1]); 

 

% Comprobar si a la matriz de confusión le faltan datos: 

if sum(sum(matriz_confusion_nueva)) == 0 

    error('Matriz de confusión con datos faltantes'); 

end 

 

TN = matriz_confusion_nueva(1.1); % Verdaderos negativos. 

FP = matriz_confusion_nueva(1.2); % Falsos positivos. 

FN = matriz_confusion_nueva(2.1); % Falsos negativos. 

TP = matriz_confusion_nueva(2.2); % Verdaderos positivos. 

 

% Métricas de rendimiento: 

se = TP / (TP + FN); % Sensibilidad. 

sp = TN / (TN + FP); % Especificidad. 

acc = (TP + TN) / (TP + FN + TN + FP); % Precisión o accuracy. 

ppv = TP / (TP + FP); % Valor predictivo positivo. 

npv = TN / (TN + FN); % Valor predictivo negativo. 
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F1_score_nueva = 2 * ((ppv * se) / (ppv + se)); % F1 score. 

LR_pos = se / (1 - sp); % Razón de verosimilitud positiva. 

LR_neg = (1 - se) / sp; % Razón de verosimilitud negativa. 

 

fprintf('\n--- RESULTADOS VALIDACIÓN EXTERNA ---\n'); 

fprintf('Sensibilidad: %.4f\n', se); 

fprintf('Especificidad: %.4f\n', sp); 

fprintf('Precisión o accuracy: %.4f\n', acc); 

fprintf('F1 score: %.4f\n', F1_score_nueva); 

fprintf('LR positiva: %.4f\n', LR_pos); 

fprintf('LR negativa: %.4f\n', LR_neg); 

fprintf('PPV: %.4f\n', ppv); 

fprintf('NPV: %.4f\n', npv); 

disp('Matriz de confusión:'); 

disp(matriz_confusion_nueva); 

 

% Obtengo la curva ROC y AUC: 

[fpr, tpr, ~, AUC_nueva] = perfcurve(Y_nueva, scores_nueva, 1); 

fprintf('AUC del modelo en nuevos datos: %.4f\n', AUC_nueva); 

 

% Represento la curva ROC: 

figure; 

 

plot(fpr, tpr, 'LineWidth', 2); 

xlabel('1 - Especificidad (FPR)'); 

ylabel('Sensibilidad (TPR)'); 

title(sprintf('Curva ROC: Nuevos datos en validación externa (AUC = 

%.4f)', AUC_nueva)); 

grid on; 
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ANEXO 7. Validación temporal prospectiva del modelo predictivo 

basado en MLP 

Se adjunta, análogamente a lo expuesto sobre Random Forest, la validación temporal del modelo 

con la base de datos prospectiva y sobre la red neuronal perceptrón multicapa ya optimizada. 

Además, se incluyen métricas de rendimiento con las que evaluar su capacidad predictiva en 

conjuntos de datos nuevos. 

% Cargo la base de datos prospectiva, que contiene únicamente las 

predictoras. 

tabla_nueva = readtable('DatosRecogidos_FILTRADOS.xlsx'); 

 

% Cargo también la variable target (reingreso): 

tabla_reingreso = readtable('Reingresos_DatosRecogidos.xlsx'); 

Y_nueva_target = tabla_reingreso.Reingreso; 

if iscategorical(Y_nueva_target) || isstring(Y_nueva_target) || 

iscellstr(Y_nueva_target) 

    Y_nueva_target = double(strcmp(string(Y_nueva_target), 'Sí')); 

end 

 

% Almaceno las 24 variables predictoras: 

matriz_nueva = table2array(tabla_nueva(:, 1:24)); 

 

% Estandarizo con el mismo mu y sigma que en el modelo ya optimizado: 

X_nueva_scaled = (matriz_nueva - mu) ./ sigma; 

 

% Hago las predicciones sobre el modelo optimizado obtenido anteriormente 

(net final) 

Y_nueva_pred_prob = net_final(X_nueva_scaled'); 

Y_nueva_pred = double(Y_nueva_pred_prob >= umbral_opt); 

 

% Matriz de confusión: 

confusion_nueva = confusionmat(Y_nueva_target, Y_nueva_pred); 

TN = confusion_nueva(1.1); FP = confusion_nueva(1.2); FN = 

confusion_nueva(2.1); TP = confusion_nueva(2.2); 

 

% Muestro los parámetros de la matriz de confusión: 

fprintf('Parámetros de matriz de confusión (True Negatives, False 

Positives, False Negatives, True Positives): [%d, %d, %d, %d]\n', TN, FP, 

FN, TP); 

 

% Métricas de rendimiento manejando NaNs: 

if TP + FN > 0  

    Se = TP / (TP + FN); 

else 

    Se = NaN; 

    warning('Denominador nulo: TP + FN = 0'); 

end 
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if TN + FP > 0 

    Sp = TN / (TN + FP); 

else 

    Sp = NaN; 

    warning('Denominador nulo: TN + FP = 0'); 

end 

 

if TP + FP > 0 

    PPV = TP / (TP + FP); 

else 

    PPV = NaN; 

    warning('Denominador nulo: TP + FP = 0'); 

end 

  

if TN + FN > 0 

    NPV = TN / (TN + FN); 

else 

    NPV = NaN; 

    warning('Denominador nulo: TN + FN = 0'); 

end 

 

if TP + FN + TN + FP > 0 

    Accuracy = (TP + TN) / (TP + FN + TN + FP); 

else 

    Accuracy = NaN; 

    warning('Denominador nulo: TP + FN + TN + FP = 0'); 

end 

 

if ~isnan(Se) && ~isnan(PPV) && (Se + PPV > 0) 

    F1 = 2 * (Se * PPV) / (Se + PPV); 

elseif isnan(Se) || isnan(PPV) 

    F1 = NaN; 

    warning('Sensibilidad o PPV es NaN'); 

else 

    F1 = NaN; 

    warning('Denominador nulo: Se + PPV = 0'); 

end 

  

 

[X_roc, Y_roc, ~, AUC] = perfcurve(Y_nueva_target, Y_nueva_pred_prob, 1); 

 

fprintf('\n--- Rendimiento de MLP en datos prospectivos (validación 

externa) ---\n'); 

disp('Matriz de confusión:'); 

disp(confusion_nueva); 

fprintf('Sensibilidad: %.3f\n', Se); 

fprintf('Especificidad: %.3f\n', Sp); 
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fprintf('PPV: %.3f\n', PPV); 

fprintf('NPV: %.3f\n', NPV); 

fprintf('Precisión o accuracy: %.3f\n', Accuracy); 

fprintf('F1 score: %.3f\n', F1); 

fprintf('AUC: %.3f\n', AUC); 
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