
Universidades de Burgos, León y
Valladolid

Máster universitario en Inteligencia de Negocio y Big
Data en Entornos Seguros

TRABAJO FIN DE MÁSTER

14 DE JULIO DE 2025

Validación, almacenamiento y
verificación de integridad de
datos IoT con tecnologías Big

Data y Blockchain

Autor:
Javier Alonso Núñez

Tutores:

Diego R. Llanos Ferraris
Carlos E. Vivaracho Pascual

i

Resumen

El presente Trabajo Fin deMáster propone una arquitectura distribuida

para la gestión segura de datos generados por dispositivos IoT. El sistema

permite recibir datos mediante el protocolo MQTT, validarlos estructural-

mente con esquemas JSON, almacenarlos de forma escalable y eficiente

mediante Delta Lake, y registrar huellas digitales en una red blockchain

para garantizar su integridad y trazabilidad. La solución ha sido diseñada

e implementada utilizando tecnologías como PySpark, AWS S3 y Smart

Contracts, y permite analizar el ciclo completo de vida de los datos en en-

tornos distribuidos. Este trabajo surge a partir de una contribución previa

presentada en las jornadas SARTECO 2025, y representa una evolución del

mismo hacia una arquitectura funcional y evaluable en escenarios reales.

Descriptores

Internet de las Cosas (IoT), validación de datos, Delta Lake, Blockchain,

Trazabilidad, Smart Contracts, MQTT, JSON Schema

ii

Abstract

This Master’s Final Project proposes a distributed architecture for

the secure management of data generated by IoT devices. The system is

capable of receiving data via the MQTT protocol, validating its structure

using JSON Schemas, storing it efficiently and scalably through Delta Lake,

and recording digital fingerprints on a blockchain to ensure data integrity

and traceability. The solution was designed and implemented using tech-

nologies such as PySpark, AWS S3, and Smart Contracts, and it enables

the analysis of the complete data lifecycle in distributed environments.

This work builds upon a previous contribution presented at the SARTECO

2025 conference and extends it into a functional architecture suitable for

real-world scenarios.

Keywords

Internet of Things (IoT), Data validation, Delta Lake, Blockchain, Tra-

ceability, Smart Contracts, MQTT, JSON Schema

iii

Agradecimientos

Este trabajo no habría sido posible sin todas las personas que, de una

forma u otra, me han acompañado en el camino.

A mi pareja, por el cariño incondicional, los ánimos cuando más los

necesitaba y por estar siempre al otro lado del teclado, aunque fueran las

tantas.

Gracias a mi familia, por estar siempre ahí, por enseñarme con el

ejemplo y por hacerme sentir que todo esfuerzo tiene sentido cuando se

hace desde el corazón.

A mis amigos, por su paciencia, por las risas y por esos ratos de des-

conexión tan necesarios. También por saber escuchar, incluso cuando yo

solo hablaba de código, entregas y fechas límite.

A mis profesores, por enseñarme mucho más que teoría: por su pasión,

su tiempo y su capacidad de motivar. Y sobre todo, a los tutores de este

trabajo, que me apoyaron, ayudaron y aconsejaron en todo momento.

Y a todas esas personas que han pasado por mi vida, dejando huella

de una forma u otra. Porque de cada una he aprendido algo, y porque este

trabajo también es, en parte, gracias a ellas.

Índice general

Índice general iv

Índice de figuras vi

Índice de tablas vii

1. Introducción 1
1.1. Contexto . 1
1.2. Motivación . 2
1.3. Objetivos . 2
1.4. Organización de la memoria . 4

2. Conceptos teóricos 7
2.1. Internet de las Cosas (IoT) . 7
2.2. Protocolo MQTT . 9
2.3. Validación de datos con JSON Schema 11
2.4. Almacenamiento distribuido con Delta Lake 14
2.5. Blockchain para trazabilidad e integridad 16
2.6. Árboles de Merkle . 18
2.7. Contratos inteligentes y Web3 21

3. Técnicas y herramientas 25
3.1. Metodología de desarrollo . 25
3.2. Entorno de desarrollo . 26
3.3. Tecnologías utilizadas . 27
3.4. Justificación de las elecciones tecnológicas 32

iv

Índice general v

Resumen del capítulo . 33

4. Análisis y Plan de Proyecto 35
4.1. Análisis de requisitos . 35
4.2. Plan de proyecto . 44

5. Diseño 51
5.1. Diseño de la Arquitectura del Sistema 51
5.2. Diseño de la Aplicación Backend 53
5.3. Diseño de la Interfaz de Usuario (Frontend) 55

6. Implementación 59
6.1. Implementación Técnica . 59

7. Pruebas 67
7.1. Pruebas Realizadas . 67

8. Conclusiones y Líneas de trabajo futuras 81
8.1. Conclusiones . 81
8.2. Trabajo Futuro . 82

Apéndices 84

Apéndice A Documentación técnica de programación 87
A.1. Introducción . 87
A.2. Estructura de directorios . 88
A.3. Manual del programador . 88
A.4. Compilación, instalación y ejecución del proyecto 89
A.5. Pruebas del sistema . 91

Apéndice B Documentación de usuario 93
B.1. Introducción . 93
B.2. Requisitos de usuarios . 93
B.3. Instalación . 94
B.4. Manual del usuario . 94

Bibliografía 99

Índice de figuras

2.1. Diagrama de un arbol de Merkle . 20
4.2. Diagrama de casos de uso . 38
4.3. Diagrama del caso de uso de consultar datos 39
4.4. Diagrama del caso de uso de verificar integridad 41
4.5. Diagrama del caso de uso de envío de datos 43
4.6. Diagrama de Gantt del proyecto . 46
5.7. Arquitectura general del sistema propuesto 53
5.8. Wireframe: visualización de datos 56
5.9. Wireframe: detalle de validación del dato en blockchain 57
7.10. Resultado de la ejecución de pruebas en GitHub Actions 76

B.1. Pantalla de inicio de sesión . 95
B.2. Interfaz principal tras el inicio de sesión 95
B.3. Visualización de los datos de un dispositivo IoT 96
B.4. Comprobación de integridad de los datos mediante blockchain . . . 97
B.5. Detalle de los metadatos del dato y verificación en blockchain . . . 98

vi

Índice de tablas

1.1. Relación entre objetivos y capítulos del documento 4
2.2. Comparativa entre TSA y blockchain para la verificación de integridad 17
3.3. Resumen de herramientas utilizadas y su función en el sistema . . . 34
4.4. Caso de uso UC1: Consultar datos 40
4.5. Caso de uso UC2: Verificar integridad 42
4.6. Caso de uso UC3: Envío de datos . 44
4.7. Planificación temporal y estimación horaria del proyecto 45
4.8. Presupuesto estimado del proyecto 48
4.9. Análisis DAFO del proyecto . 49
7.10. Relación entre pruebas realizadas y requisitos validados 78

vii

Introducción

1.1. Contexto
En los últimos años, el crecimiento exponencial de los dispositivos conec-

tados a Internet, especialmente en el ámbito del Internet de las Cosas (IoT), ha
generado una enorme cantidad de datos que requieren ser procesados, validados
y almacenados de manera segura y eficiente [1] [2]. Esta proliferación de datos
plantea importantes desafíos en cuanto a su integridad, trazabilidad y fiabilidad,
especialmente cuando se utilizan en contextos críticos como la automatización
industrial, la monitorización ambiental o la toma de decisiones en tiempo real
[3].

En este contexto, surge la necesidad de desarrollar sistemas capaces de validar
la estructura y consistencia de los datos en tiempo real, garantizar su almacena-
miento inmutable y proporcionar mecanismos para verificar su autenticidad a
lo largo del tiempo. Tecnologías como los esquemas JSON, los data lakes y las
blockchains permiten construir soluciones robustas a estos desafíos [4] [5] [6],
aunque su integración efectiva presenta dificultades técnicas y arquitectónicas
no triviales.

El presente Trabajo Fin de Máster se enmarca dentro de esta problemática y
tiene su origen en una contribución previa realizada a las jornadas SARTECO
2025 [7] con el título “Arquitectura segura para la trazabilidad basada en IoT y
blockchain”, donde se propuso un sistema para la validación y almacenamiento
seguro de datos provenientes de dispositivos IoT, registrando además su in-
tegridad mediante blockchain. A partir de esta base, el objetivo principal de
este TFM es desarrollar, implementar y evaluar una arquitectura completa que
combine recepción de datos por MQTT [8], validación mediante JSON Schema

1

2 Introducción

[9], persistencia con Delta Lake [10] y registro de huellas digitales en una red
blockchain usando Smart Contracts [11].

1.2. Motivación
En la actualidad, el crecimiento exponencial de dispositivos conectados

mediante tecnologías IoT ha generado un volumen masivo de datos que se
utilizan en ámbitos críticos como la automatización industrial, la monitorización
ambiental o la gestión de infraestructuras inteligentes [12] [13]. Sin embargo,
la utilidad de estos datos depende directamente de su validez, trazabilidad e
integridad.

Muchas soluciones actuales priorizan la captura o visualización de datos, pero
descuidan aspectos fundamentales como la validación estructural, la persistencia
fiable a gran escala o la verificación de su autenticidad a lo largo del tiempo.
Esto representa un riesgo significativo cuando los datos se utilizan para tomar
decisiones automatizadas o se exigen como evidencia en auditorías o entornos
reglamentados.

En este contexto, surge la necesidad de diseñar una arquitectura capaz de:

Validar automáticamente la estructura y consistencia de los datos desde el
origen.

Almacenarlos eficientemente en un sistema escalable que permita su ex-
plotación futura.

Garantizar su integridad mediante mecanismos verificables e inmutables
como blockchain.

Este Trabajo Fin de Máster se motiva por esta problemática real, y busca dar
una respuesta técnica y viable mediante la integración de tecnologías Big Data
[14] (como Delta Lake [10]) y blockchain [15] (mediante contratos inteligentes),
combinadas con protocolos ligeros comoMQTT y estándares de validación como
JSON Schema.

1.3. Objetivos
El objetivo general de este Trabajo Fin de Máster es diseñar e implementar

una arquitectura que permita la validación, almacenamiento y verificación de

1.3. Objetivos 3

integridad de datos generados por dispositivos IoT, garantizando su trazabilidad
a lo largo del tiempo mediante tecnologías Big Data y blockchain.

Para alcanzar este objetivo general, se definen a continuación una serie de
objetivos específicos, organizados en dos bloques: los objetivos funcionales,
relacionados con los requisitos del sistema a construir; y los objetivos técnicos,
centrados en los retos de diseño e implementación del proyecto.

1.3.1. Objetivos funcionales

Recepción de datos IoT a través del protocolo MQTT, de forma asíncrona
y tolerante a fallos.

Validación estructural de los datos mediante esquemas JSON (JSON Sche-
ma), asegurando la conformidad con un modelo predefinido.

Almacenamiento eficiente y escalable de los datos validados utilizando
Delta Lake sobre un sistema de ficheros distribuido (AWS S3 [16]).

Registro de huellas digitales (hashes) de los datos validados en una red
blockchain para garantizar su integridad y trazabilidad.

Persistencia de metadatos y resultados de validación, permitiendo su
posterior análisis o auditoría.

Evaluación del sistema mediante pruebas funcionales y de rendimiento
que permitan medir su eficacia y eficiencia.

1.3.2. Objetivos técnicos

Diseñar una arquitectura modular y desacoplada, compuesta por servicios
independientes e interconectados.

Aplicar buenas prácticas de ingeniería de datos: formatos eficientes (Par-
quet), almacenamiento en capas (bronze, silver, gold) y validación tempra-
na.

Integrar tecnologías heterogéneas como PySpark,Web3.py, AWS S3,MQTT
y JSON Schema de forma coordinada.

Asegurar la robustez y tolerancia a fallos ante caídas de servicios o errores
en los datos.

4 Introducción

Optimizar el rendimiento del sistema: latencia de validación, throughput
de datos y tiempo de escritura en blockchain.

Fomentar la reproducibilidad del despliegue mediante herramientas de
automatización (Docker, scripts) y documentación técnica clara.

Implementar un entorno local que permita el despliegue y prueba de con-
tratos inteligentes sobre una blockchain simulada, facilitando la validación
del sistema sin costes asociados.

1.3.3. Resumen de objetivos
En la siguiente tabla 1.1 se muestra una correspondencia entre los objetivos

definidos y los capítulos donde se desarrollan principalmente:

Objetivo Capítulo
Recepción de datos vía MQTT Capítulo 6.1
Validación con JSON Schema Capítulo 6.1
Almacenamiento en Delta Lake sobre AWS S3 Capítulo 6.1
Registro en blockchain con Web3.py Capítulo 6.1
Evaluación del sistema Capítulo 6.2
Diseño modular y buenas prácticas de arquitec-
tura

Capítulo 5.1

Integración tecnológica (PySpark, Web3.py, etc.) Capítulo 3.3
Tolerancia a fallos y robustez Capítulo 6.2
Optimización y rendimiento Capítulo 6.2
Reproducibilidad del entorno Anexos

Tabla 1.1: Relación entre objetivos y capítulos del documento

1.4. Organización de la memoria
Este documento se estructura de la siguiente manera: en el capítulo 1 se

introduce el trabajo, incluyendo su motivación y los objetivos del proyecto; en el
capítulo 2 se presentan los conceptos teóricos fundamentales relacionados con
el ámbito del proyecto; en el capítulo 3 se describen las técnicas y herramientas
utilizadas durante el desarrollo; en el capítulo 4 se detalla el análisis realizado
y la planificación del proyecto; en el capítulo 5 se recoge el diseño del sistema,
justificando las decisiones arquitectónicas adoptadas; en el capítulo 6 se describe
la implementación técnica y las pruebas realizadas; finalmente, en el capítulo

1.4. Organización de la memoria 5

7 se exponen las conclusiones obtenidas y las posibles líneas de trabajo futuro.
Además, se incluyen dos apéndices con el manual del programador y el manual
de usuario, respectivamente.

En este capítulo se ha contextualizado el problema que aborda el proyecto,
motivando la necesidad de una arquitectura segura y escalable para el tratamien-
to de datos IoT. Además, se han definido los objetivos del trabajo y su alcance. A
continuación, en el siguiente capítulo, se presentan los fundamentos teóricos y
conceptuales que sustentan las decisiones tecnológicas adoptadas.

Conceptos teóricos

En este capítulo se presentan los conceptos fundamentales necesarios para
la comprensión y desarrollo del proyecto. Se abordan las tecnologías clave
involucradas en la arquitectura propuesta, así como los mecanismos utilizados
para garantizar la integridad y trazabilidad de los datos.

2.1. Internet de las Cosas (IoT)
El Internet de las Cosas (IoT, por sus siglas en inglés) se ha consolidado como

una de las tecnologías más relevantes en el ámbito de los sistemas distribuidos.
Su capacidad para interconectar dispositivos físicos que recopilan, procesan y
transmiten datos ha permitido el desarrollo de soluciones inteligentes en sectores
tan diversos como la industria, la salud, la logística o la gestión medioambiental.

2.1.1. Definición y características principales

El IoT puede definirse como una red de objetos físicos equipados con senso-
res, software y conectividad, que les permite recopilar e intercambiar datos a
través de Internet u otras redes. Estos objetos, también conocidos como nodos
IoT, pueden actuar de forma autónoma o cooperativa, y están diseñados para
monitorear su entorno, tomar decisiones o activar procesos en función de los
datos capturados.

Las principales características del IoT son:

7

8 Conceptos teóricos

Conectividad ubicua: los dispositivos están permanentemente conecta-
dos a redes de comunicación, ya sea WiFi, 4G/5G, LoRa, o redes de corto
alcance como Zigbee o Bluetooth.

Sensores y actuadores: la combinación de sensores y actuadores permite
captar parámetros del entorno físico (temperatura, ubicación, humedad,
etc.) y responder con acciones físicas.

Procesamiento local o distribuido: muchos nodos incorporan micro-
controladores que permiten realizar un preprocesamiento de los datos
antes de transmitirlos.

Escalabilidad: la arquitectura del IoT está diseñada para crecer con facili-
dad, integrando nuevos dispositivos sin comprometer la funcionalidad del
sistema.

2.1.2. Aplicaciones en trazabilidad y gestión de residuos
En el contexto de este proyecto, el IoT se aplica al seguimiento y trazabilidad

de residuos, mediante la instalación de dispositivos sensores en contenedores
que permiten capturar datos en tiempo real sobre su estado y localización. Estas
aplicaciones ofrecen múltiples beneficios:

Optimización de rutas de recogida: gracias a la monitorización del
nivel de llenado de los contenedores.

Prevención de riesgos: mediante sensores que miden temperatura o
gases peligrosos.

Auditoría de operaciones: al registrar automáticamente eventos como
el vaciado o traslado del contenedor.

Estos datos constituyen una fuente valiosa de información para mejorar
los procesos logísticos, garantizar el cumplimiento normativo y reducir costes
operativos.

2.1.3. Limitaciones y desafíos actuales
Pese a sus múltiples ventajas, la adopción del IoT plantea diversos retos

técnicos y operativos que deben ser cuidadosamente abordados en entornos
reales. Uno de los principales desafíos es la conectividad intermitente, ya que en

2.2. Protocolo MQTT 9

muchos contextos urbanos o industriales no se dispone de una cobertura de red
estable o continua. Esta limitación obliga a diseñar estrategias de almacenamien-
to local de los datos o mecanismos de retransmisión diferida que garanticen la
persistencia de la información. Por otro lado, el consumo energético representa
una preocupación crítica, especialmente en dispositivos alimentados por batería.
Es necesario optimizar su funcionamiento mediante técnicas de bajo consumo
como el modo deep sleep y limitar la frecuencia de transmisión a lo estrictamente
necesario. Además, la seguridad de los datos se convierte en un factor clave,
dado que estos dispositivos operan en entornos abiertos susceptibles a ataques
como la suplantación de identidad, la interceptación de datos o su alteración
maliciosa. Finalmente, el crecimiento exponencial del número de dispositivos
plantea importantes retos en cuanto a gestión y escalabilidad, ya que se requiere
una infraestructura capaz de administrar de forma remota su configuración,
credenciales y actualizaciones seguras.

Estos desafíos justifican la integración de tecnologías complementarias como
protocolos de comunicación eficientes (por ejemplo, MQTT), mecanismos de
validación estructural (como JSON Schema) y sistemas de trazabilidad inmutable
basados en blockchain, que serán analizados en los apartados siguientes.

2.2. Protocolo MQTT
MQTT (Message Queuing Telemetry Transport) es un protocolo de mensaje-

ría ligero diseñado para comunicaciones máquina a máquina (M2M) y sistemas
IoT. Su eficiencia en el uso del ancho de banda, simplicidad y bajo consumo
energético lo han convertido en uno de los protocolos más adoptados para la
transmisión de datos desde sensores y dispositivos conectados.

2.2.1. Modelo publicador/suscriptor
A diferencia del modelo cliente-servidor tradicional, el protocolo MQTT se

basa en una arquitectura de publicador-suscriptor, donde los dispositivos IoT,
actuando como publicadores, envían mensajes a uno o varios topics, mientras
que otros dispositivos o servicios se suscriben a esos mismos topics para recibir
únicamente la información relevante. El núcleo de esta arquitectura es el broker,
que actúa como intermediario y gestor de los mensajes, desacoplando a los
emisores de los receptores y simplificando las comunicaciones.

Este enfoque aporta varias ventajas significativas en entornos distribuidos.
En primer lugar, ofrece independencia temporal entre los publicadores y los

10 Conceptos teóricos

suscriptores, que no necesitan estar conectados al mismo tiempo para que la
comunicación tenga lugar. En segundo lugar, permite una alta escalabilidad, ya
que múltiples clientes pueden suscribirse simultáneamente a los mismos tópicos
sin que ello incremente la carga sobre los publicadores. Por último, proporciona
una gestión simplificada de la distribución de mensajes, ya que es el bróker
quien se encarga de enrutar los mensajes a los destinatarios adecuados según
las reglas de suscripción definidas.

2.2.2. Ventajas en entornos IoT
MQTT ha sido diseñado teniendo en cuenta las restricciones inherentes a

los entornos IoT, en los que la eficiencia en el uso de recursos es una prioridad.
Una de sus principales ventajas es su bajo consumo de ancho de banda, ya
que los mensajes transmitidos tienen un tamaño reducido y la cabecera del
protocolo puede ocupar tan solo 2 bytes, lo que resulta especialmente útil en
redes limitadas o de baja capacidad. Además, el protocolo está preparado para
funcionar de forma eficiente en entornos con conectividad inestable, siendo
capaz de tolerar fallos temporales y reconectarse automáticamente cuando la
red lo permite, sin pérdida de información.

Otro aspecto destacable es la disponibilidad de niveles de calidad de servicio
(QoS) configurables, que permiten adaptar el nivel de fiabilidad de la entrega
de mensajes según los requerimientos del sistema, desde una entrega mínima
garantizada hasta una entrega exactamente una vez, lo cual proporciona flexi-
bilidad en el diseño del sistema. Asimismo, MQTT ofrece un amplio soporte
en múltiples plataformas, con implementaciones en diversos lenguajes de pro-
gramación y entornos embebidos, lo que facilita su integración en una gran
variedad de dispositivos y arquitecturas.

Gracias a estas características, MQTT se presenta como una solución es-
pecialmente adecuada para escenarios en los que los dispositivos presentan
conectividad limitada, baja capacidad de procesamiento o restricciones energéti-
cas, como es el caso de los nodos IoT empleados en este proyecto.

2.2.3. Limitaciones de seguridad y escalabilidad
A pesar de sus múltiples ventajas, el uso de MQTT también conlleva ciertas

limitaciones que deben considerarse cuidadosamente al diseñar sistemas seguros
y escalables. Una de las principales debilidades es su seguridad limitada por
defecto, ya que el protocolo no incorpora mecanismos nativos de cifrado ni
autenticación robusta. Esto implica que, para garantizar la confidencialidad e

2.3. Validación de datos con JSON Schema 11

integridad de los datos transmitidos, es necesario complementarlo con protocolos
adicionales como TLS o implementar soluciones de seguridad personalizadas en
las capas superiores del sistema.

Otra consideración importante es el riesgo asociado al broker centralizado,
que actúa como punto único de intermediación en la comunicación. Si este
componente no se despliega con redundancia o técnicas de balanceo de carga
adecuadas, puede convertirse en un cuello de botella o, peor aún, en un punto
único de fallo o ataque que comprometa la disponibilidad del sistema completo.

Finalmente, la gestión de la autenticación y la autorización de los dispositivos
y usuarios en arquitecturas a gran escala introduce una complejidad adicional.
Es necesario establecer mecanismos para controlar el acceso a los distintos topics
y garantizar que únicamente entidades autorizadas puedan publicar o recibir
mensajes, lo cual requiere una configuración cuidadosa y una infraestructura de
gestión sólida.

En este proyecto, se ha optado por MQTT como protocolo de transporte
principal debido a su eficiencia y compatibilidad con dispositivos embebidos.
Sus limitaciones en materia de seguridad se abordan mediante mecanismos
adicionales, incluyendo la validación estructural de datos, el almacenamiento
confiable en Data Lakes y el uso de blockchain para garantizar la integridad.

2.3. Validación de datos con JSON Schema
La validación de los datos en sistemas distribuidos es un paso crítico para

garantizar su calidad, coherencia y adecuación al modelo esperado. En entor-
nos IoT, donde los dispositivos pueden generar datos con estructuras variables
o erróneas, establecer mecanismos automáticos de validación estructural es
esencial para evitar errores posteriores en el procesamiento, almacenamiento
o análisis de los datos. En este contexto, el estándar JSON Schema ofrece una
solución robusta y ampliamente adoptada.

2.3.1. Introducción al formato JSON
El formato JavaScript Object Notation (JSON) se ha convertido en uno de

los estándares más utilizados para el intercambio de datos entre sistemas. Su
estructura ligera, basada en pares clave-valor y listas, facilita la interoperabilidad
entre distintos lenguajes de programación y plataformas.

Un ejemplo sencillo de objeto JSON puede ser:

12 Conceptos teóricos

{

"deviceId": "abc123",

"timestamp": 1684700000,

"data": {

"temperature": 22.4,

"humidity": 45

}

}

Este formato es fácil de leer, manipular y transformar, lo que lo hace ideal
para sistemas IoT que requieren eficiencia en el envío y recepción de datos.

2.3.2. JSON Schema como mecanismo de validación
JSON Schema es una especificación que permite definir de forma estructurada

las reglas que debe cumplir un documento JSON. A través de este esquema es
posible:

Especificar los tipos de datos esperados (números, cadenas, objetos, etc.).

Definir campos obligatorios (required) y opcionales.

Establecer rangos válidos, patrones de texto o formatos específicos.

Anidar validaciones en objetos complejos y listas de elementos.

Un esquema JSON para validar el ejemplo anterior podría ser:

{

"type": "object",

"required": ["deviceId", "timestamp", "data"],

"properties": {

"deviceId": { "type": "string" },

"timestamp": { "type": "integer" },

2.3. Validación de datos con JSON Schema 13

"data": {

"type": "object",

"required": ["temperature", "humidity"],

"properties": {

"temperature": { "type": "number" },

"humidity": { "type": "integer" }

}

}

}

}

Este tipo de validación es especialmente útil en flujos de datos continuos,
permitiendo detectar errores tempranamente y rechazar mensajes malformados.

2.3.3. Ejemplos de uso y ventajas
La validación estructural mediante JSON Schema aporta una serie de ven-

tajas clave en arquitecturas como la desarrollada en este trabajo. En primer
lugar, permite la detección temprana de errores, ya que los mensajes que no
cumplen con la estructura esperada pueden ser descartados antes de llegar a
las etapas de almacenamiento o procesamiento, evitando así la propagación de
datos inconsistentes en el sistema.

Además, esta validación garantiza la homogeneidad de los datos, al imponer
una estructura unificada sobre todos los mensajes recibidos, lo que facilita
su posterior análisis y tratamiento. Otra ventaja importante es la facilidad de
mantenimiento, ya que los esquemas definidos en JSON Schema son fácilmente
legibles y modificables, lo que permite adaptarse con rapidez a cambios en los
dispositivos o a nuevos requisitos del sistema sin necesidad de reescribir grandes
porciones del código.

Por último, la validación estructural permite la automatización del control de
calidad, al integrarse de forma transparente en los flujos de ingesta y persistencia
de datos. Esto elimina la necesidad de intervención manual en la verificación de
formatos, haciendo el sistema más eficiente, fiable y escalable.

14 Conceptos teóricos

En este proyecto, JSON Schema se utiliza como primer mecanismo de control
tras la recepción de datos por MQTT. Solo aquellos mensajes que superan
la validación son almacenados en el Data Lake y registrados en blockchain,
asegurando así una trazabilidad basada en datos fiables y estructurados.

2.4. Almacenamiento distribuido con Delta Lake
En arquitecturas que manejan grandes volúmenes de datos generados por

dispositivos IoT, es fundamental contar con sistemas de almacenamiento que
permitan escalar horizontalmente, mantener integridad transaccional y ofrecer
flexibilidad en las consultas. Delta Lake es una solución que extiende las capaci-
dades de los data lakes tradicionales, añadiendo características propias de las
bases de datos relacionales, como transacciones ACID, manejo de versiones y
consistencia de los datos.

2.4.1. Data Lake frente a base de datos tradicional
Un Data Lake es un repositorio centralizado que permite almacenar grandes

cantidades de datos, estructurados o no estructurados, en su formato original. A
diferencia de las bases de datos tradicionales, no impone un esquema rígido al
momento de la escritura, lo que lo convierte en una solución ideal para flujos
IoT con formatos de datos variables o en evolución.

Sin embargo, los data lakes convencionales presentan ciertas limitaciones
[17]:

No garantizan integridad transaccional.

No permiten versiones nativas de los datos.

Pueden presentar problemas de consistencia en operaciones concurrentes.

Para superar estas limitaciones sin perder las ventajas del almacenamiento
distribuido, surge Delta Lake como una capa de abstracción que aporta funcio-
nalidades adicionales.

2.4.2. Formato Parquet y almacenamiento en AWS S3
En este proyecto se ha optado por el uso del formato Apache Parquet [18],

un estándar de almacenamiento columnar diseñado específicamente para opti-

2.4. Almacenamiento distribuido con Delta Lake 15

mizar el análisis de grandes volúmenes de datos. Entre sus principales ventajas
se encuentra su capacidad para realizar un almacenamiento eficiente median-
te técnicas de compresión y codificación a nivel de columnas, lo que reduce
significativamente el espacio ocupado en disco sin sacrificar rendimiento.

Además, Parquet permite un acceso rápido a subconjuntos de datos, ya
que su estructura columnar facilita la lectura selectiva de campos, evitando la
necesidad de cargar la totalidad del conjunto de registros en memoria. Esta
característica es especialmente útil en operaciones analíticas intensivas o en
entornos distribuidos donde el rendimiento de lectura es crítico.

Finalmente, su amplia compatibilidad con herramientas del ecosistema Big
Data, como Apache Spark, Trino o Hive, lo convierte en una opción ideal para
arquitecturas que requieren integración flexible con motores de procesamiento
de datos a gran escala.

Parquet se integra perfectamente con soluciones de almacenamiento esca-
lable como AWS S3, que ofrece alta disponibilidad, durabilidad y soporte para
entornos de producción en la nube. Para pruebas locales o despliegues de bajo
coste, se puede utilizar MinIO como alternativa compatible con el API de S3.

2.4.3. Delta Lake: transacciones ACID sobre Data Lakes
Delta Lake actúa como una capa de almacenamiento sobre ficheros Parquet

que añade soporte para operaciones transaccionales en arquitecturas de tipo
data lake. Su principal aportación es la capacidad de realizar transacciones ACID,
lo que garantiza que las operaciones de escritura se ejecuten de forma atómica y
consistente, evitando así lecturas intermedias, estados corruptos o pérdidas de
integridad en entornos concurrentes.

Otra funcionalidad destacada es el control de versiones, que permite mante-
ner un historial completo de los cambios realizados sobre los datos y consultar
su estado en cualquier punto anterior en el tiempo, una característica conocida
como time travel. Este mecanismo resulta especialmente útil para auditorías,
análisis retrospectivos o recuperación ante errores.

Delta Lake también proporciona un manejo eficiente de archivos, mediante
la compactación automática de pequeños ficheros generados por escrituras suce-
sivas y la optimización estructural de los datos, lo que mejora considerablemente
el rendimiento de las consultas. Además, ofrece una integración nativa con
Apache Spark, lo que posibilita ejecutar operaciones analíticas complejas de
forma eficiente y escalable, sin necesidad de mover los datos fuera del entorno
distribuido de procesamiento.

16 Conceptos teóricos

En el contexto de este proyecto, Delta Lake actúa como la capa de persis-
tencia principal, almacenando los datos validados provenientes del sistema IoT.
La integridad y trazabilidad de los datos se refuerzan posteriormente con el
registro de sus huellas digitales en una red blockchain, estableciendo un vínculo
verificable entre el contenido del Data Lake y su representación inmutable en la
cadena de bloques.

2.5. Blockchain para trazabilidad e integridad
La tecnología blockchain ha transformado el modo en que se garantiza la

integridad, trazabilidad y transparencia en entornos distribuidos. Originalmente
concebida como soporte para criptomonedas, su uso se ha extendido a sectores
como la logística, la gestión documental, la sanidad y, como en este caso, el IoT.
Su capacidad para almacenar registros inmutables de forma descentralizada la
convierte en una aliada clave para sistemas que requieren confiabilidad en los
datos.

2.5.1. Principios básicos de blockchain

Una blockchain puede definirse como un libro de registros distribuido y
vinculado criptográficamente, cuya estructura se organiza en bloques que al-
macenan transacciones o datos de forma secuencial e inmutable. Cada uno de
estos bloques contiene un conjunto de transacciones o datos validados, lo que
garantiza que la información registrada ha sido previamente verificada según
las reglas de consenso de la red.

Además, cada bloque incluye un hash del bloque anterior, lo que permite
encadenarlos de forma segura y resistente a manipulaciones: cualquier alteración
en un bloque modificaría su hash, invalidando la integridad de toda la cadena
posterior. Finalmente, cada bloque incorpora una marca de tiempo y metadatos
asociados, que permiten rastrear cuándo y cómo se registró la información,
contribuyendo a la trazabilidad y auditabilidad del sistema.

Las blockchains funcionan en redes de nodos donde se alcanza consenso
mediante algoritmos específicos (Proof of Work, Proof of Stake, etc.) [19]. Una
vez que un bloque es validado y añadido a la cadena, no puede modificarse sin
alterar todos los bloques posteriores, lo que garantiza la inmutabilidad de la
información.

2.5. Blockchain para trazabilidad e integridad 17

2.5.2. Comparación con TSA (Timestamping Authority)
Una de las decisiones clave en el diseño de sistemas orientados a la integridad

y trazabilidad de datos es la elección del mecanismo de verificación temporal.
Tradicionalmente, se ha recurrido a Autoridades de Sellado de Tiempo (TSA)[20],
que actúan como terceros de confianza, generando sellos de tiempo firmados
digitalmente. Si bien estas autoridades cumplen su función en entornos centra-
lizados, presentan limitaciones en cuanto a transparencia, resistencia a fallos
y confianza descentralizada. Sin embargo, la tecnología blockchain ofrece una
alternativa descentralizada y más robusta. La Tabla 2.2 presenta una comparativa
entre ambos enfoques, destacando las ventajas de blockchain en términos de
inmutabilidad, resistencia a fallos, transparencia y automatización mediante
contratos inteligentes. Esta comparación justifica la elección de blockchain en
este proyecto como tecnología base para el registro de huellas digitales de datos
IoT.

Característica TSA
(Centralizado)

Blockchain
(Descentralizado)

Modelo de confian-
za

Basado en entidad de confian-
za

Basado en consenso distribui-
do

Inmutabilidad Depende del proveedor Garantizada criptográfica-
mente

Transparencia Limitada, acceso controlado Pública y auditable
Resistencia a fallos Vulnerable a errores en el ser-

vidor central
Alta disponibilidad por repli-
cación

Automatización Requiere servicios externos Posible mediante contratos in-
teligentes

Tabla 2.2: Comparativa entre TSA y blockchain para la verificación de
integridad

2.5.3. Características clave: inmutabilidad,

descentralización y trazabilidad
En el contexto de este proyecto, blockchain aporta un conjunto de propie-

dades fundamentales que refuerzan la integridad y la fiabilidad del sistema
propuesto. Una de sus características más destacadas es la inmutabilidad, ya
que los datos registrados en la cadena no pueden ser modificados sin invalidar
toda la estructura criptográfica posterior. Esto impide cualquier tipo de altera-

18 Conceptos teóricos

ción maliciosa o no autorizada, garantizando que la información almacenada
permanezca intacta desde el momento de su registro.

Otra propiedad esencial es la descentralización. Al no depender de una única
entidad o nodo, la red blockchain incrementa su resiliencia frente a ataques o
fallos del sistema, distribuyendo la responsabilidad de validación entre múltiples
participantes. Esta característica elimina los puntos únicos de fallo y proporciona
un modelo de confianza más robusto.

La trazabilidad también es un valor clave: cada dato registrado puede ser
rastreado hasta su origen gracias al historial encadenado de transacciones. Esto
permite auditar el ciclo de vida de la información y comprobar su legitimidad
en cualquier momento. Finalmente, la verificabilidad garantiza que cualquier
parte interesada pueda comprobar de forma autónoma que un dato no ha sido
alterado, utilizando funciones hash y pruebas criptográficas como las pruebas
de inclusión basadas en árboles de Merkle.

Estas características hacen que blockchain sea una solución idónea para
reforzar la seguridad e integridad de los datos en sistemas IoT. En esta arqui-
tectura, la blockchain actúa como un registro de huellas digitales de los datos
almacenados, que pueden ser validadas posteriormente frente al contenido en el
Data Lake, asegurando así la fiabilidad del sistema frente a auditorías o disputas.

2.6. Árboles de Merkle
El uso de árboles de Merkle (Merkle Trees)[21] es una estrategia ampliamente

utilizada en sistemas distribuidos y blockchains para verificar la integridad de
grandes volúmenes de datos sin necesidad de almacenarlos todos en la cadena.
Esta estructura permite comprobar de forma eficiente si un determinado conjunto
de datos pertenece a un bloque previamente registrado, mediante una prueba
criptográfica conocida como Merkle proof.

2.6.1. Definición y funcionamiento
Un árbol de Merkle es una estructura de datos jerárquica en la que cada hoja

representa el hash de un dato individual, y cada nodo intermedio representa el
hash de la concatenación de sus nodos hijos. La raíz del árbol, conocida como
Merkle root, resume de forma única todo el contenido del conjunto de datos.

El proceso de construcción es el siguiente:

2.6. Árboles de Merkle 19

1. Se calcula el hash de cada dato individual y se colocan como hojas del
árbol.

2. Se agrupan los hashes de dos en dos y se calcula su hash combinado.
3. Se repite el proceso hasta llegar a un único nodo raíz.

Este diseño permite que cualquier modificación en un dato cambie su hash,
lo que se propaga hasta la raíz, facilitando así la detección de alteraciones.

2.6.2. Ventajas en optimización de almacenamiento en

blockchain

Registrar cada dato individual en una red blockchain pública puede resultar
ineficiente, tanto por el espacio que ocupa como por el coste económico asociado
al consumo Gas [22]. Para mitigar este problema, el uso de árboles de Merkle
se presenta como una solución altamente eficiente. Gracias a su estructura
jerárquica de hashes, es posible representar múltiples datos mediante un único
valor: la raíz del árbol. Esto permite una notable reducción del espacio requerido,
ya que únicamente se necesita almacenar esta raíz en la blockchain, en lugar de
registrar cada uno de los elementos de forma individual [23].

Además, los árboles de Merkle permiten una agrupación eficiente de los
datos, generando una representación criptográfica compacta que resume todo
el conjunto. De esta forma, el sistema puede escalar sin comprometer la veri-
ficabilidad de los datos almacenados. La escalabilidad es otra ventaja clave, ya
que permite validar la integridad de un dato concreto sin necesidad de consultar
o registrar todos los hashes intermedios en la red. Este enfoque mantiene la
fiabilidad del sistema y reduce significativamente los costes asociados a la per-
sistencia en blockchain, especialmente en escenarios donde se generan grandes
volúmenes de datos de forma continua.

Por ejemplo, si un mensaje contiene 10 mediciones, en lugar de registrar 10
hashes en la blockchain, se calcula la raíz del árbol Merkle correspondiente y
se registra solo ese valor. Las pruebas de inclusión permiten después validar
cualquier dato individual frente a la raíz almacenada.

20 Conceptos teóricos

Figura 2.1: Diagrama de un arbol de Merkle

El árbol de Merkle representado en la Figura 2.1 muestra cómo es posible
verificar la integridad de un dato individual, como el dato A, sin necesidad de
recorrer o almacenar todo el conjunto de datos. Esta estructura, ampliamente
utilizada en sistemas distribuidos y tecnologías blockchain, permite generar una
raíz de hash que resume criptográficamente todo el contenido del árbol.

Cada nodo hoja del árbol representa el hash de un dato original (A, B, C, D),
mientras que los nodos intermedios almacenan el hash de la concatenación de los
hashes de sus nodos hijos. El nodo superior, denominado hash raíz, constituye
un resumen criptográfico único de toda la estructura.

Para comprobar si el dato A ha sido modificado, no es necesario tener acceso
a todos los datos ni recorrer el árbol completo. Basta con conocer el hash raíz y
un conjunto mínimo de nodos intermedios, marcados en color azul en la figura,
que actúan como prueba de inclusión (Merkle proof). Este proceso consiste en:

1. Calcular localmente el Hash(A) a partir del dato original.
2. Combinar este hash con el Hash(B) (parte de la prueba), generando el

hash del nodo superior: Hash(Hash(A) + Hash(B)).
3. Combinar este resultado con el valor Hash(Hash(C) + Hash(D)), también

incluido en la prueba, para obtener finalmente el hash raíz.
Si el valor calculado coincide con el hash raíz almacenado en la blockchain,

se puede garantizar que el dato A no ha sido alterado.
Este mecanismo permite validar datos de forma eficiente y segura, utilizando

una cantidad mínima de información, y resulta especialmente útil en entor-
nos donde se registran grandes volúmenes de datos, pero se requiere verificar
únicamente partes específicas del conjunto.

2.7. Contratos inteligentes y Web3 21

2.6.3. Pruebas de inclusión y verificación eficiente
Una Merkle proof es un conjunto de hashes hermanos necesarios para re-

construir la raíz del árbol partiendo del dato a verificar. Para un árbol binario
con N hojas, el tamaño de la prueba es proporcional a ⌈log2(N)⌉, lo que la hace
extremadamente eficiente incluso en conjuntos grandes.

Cada prueba contiene solo los hashes necesarios para reconstruir la cadena
de combinaciones desde la hoja hasta la raíz.

La verificación consiste en aplicar recursivamente la función de hash a
los valores proporcionados y comprobar que el resultado coincide con la
raíz registrada en la blockchain.

En el sistema desarrollado, las pruebas de inclusión se almacenan en el Data
Lake junto con los datos originales. Así, al recalcular el hash de un dato y su
Merkle proof, es posible comprobar su validez sin necesidad de acceder al resto
del conjunto, reduciendo el uso de la blockchain y facilitando auditorías rápidas
y precisas [23].

2.7. Contratos inteligentes y Web3
Los contratos inteligentes (smart contracts) son piezas de código que se

ejecutan de forma automática en una red blockchain cuando se cumplen ciertas
condiciones. Esta funcionalidad permite automatizar procesos sin necesidad de
intermediarios, garantizando transparencia, inmutabilidad y confianza entre
las partes. En este proyecto, se utilizan contratos inteligentes para registrar la
integridad de los datos y permitir su verificación posterior.

2.7.1. Qué son los contratos inteligentes
Un contrato inteligente es un programa almacenado en la blockchain que

define reglas y condiciones lógicas para ejecutar operaciones de forma autóno-
ma. Estos contratos se despliegan en redes como Ethereum o Hyperledger y
responden a eventos generados por usuarios o sistemas externos.

Los contratos inteligentes presentan una serie de propiedades clave que los
convierten en una herramienta fundamental para la automatización segura de
procesos en entornos distribuidos. En primer lugar, destacan por su carácter

22 Conceptos teóricos

descentralizado, ya que su ejecución se lleva a cabo directamente en la red block-
chain, sin depender de servidores centrales ni intermediarios, lo que incrementa
la resiliencia y la confiabilidad del sistema.

Otra propiedad esencial es su inmutabilidad. Una vez que un contrato ha
sido desplegado en la red, su código no puede ser modificado, salvo que se hayan
diseñado mecanismos explícitos de actualización. Esto garantiza que las reglas
del contrato permanecen constantes, evitando manipulaciones o alteraciones
posteriores.

Además, los contratos inteligentes proporcionan un alto grado de transpa-
rencia, dado que su código es público y auditable, y todas sus ejecuciones quedan
registradas de forma permanente en la blockchain. Esta trazabilidad facilita la
verificación independiente y la confianza entre partes que no necesariamente
comparten una relación previa.

Finalmente, una de sus características más destacadas es la automatización:
los contratos se ejecutan de manera automática cuando se cumplen las condi-
ciones previamente definidas, sin necesidad de intervención humana, lo que
permite construir flujos de trabajo autónomos, fiables y verificables.

En este trabajo, los contratos inteligentes se encargan de almacenar el hash
raíz del árbol de Merkle generado a partir de los datos IoT, estableciendo así
un vínculo entre los registros almacenados en el Data Lake y su representación
verificable en la blockchain. Además, su desarrollo se ha realizado en un entorno
controlado que permite la ejecución local del código y la validación automatizada
mediante una suite de pruebas, lo que ha facilitado la verificación del correcto
funcionamiento del contrato antes de su despliegue en producción.

2.7.2. Interacción desde Python con Web3.py
Para interactuar con contratos inteligentes desde aplicaciones externas se

empleaWeb3.py, una biblioteca de Python que permite conectarse a nodos de
Ethereum, enviar transacciones, leer datos de contratos y desplegar nuevos
contratos.

La bibliotecaWeb3.py, utilizada en este proyecto para interactuar con contra-
tos inteligentes desde Python, ofrece una amplia gama de funcionalidades que
facilitan la integración de aplicaciones externas con redes blockchain. Entre sus
capacidades más destacadas se encuentra la posibilidad de establecer conexión
con diferentes tipos de redes Ethereum, ya sean entornos locales de desarrollo,
redes de pruebas (testnet) o la red principal (mainnet).

2.7. Contratos inteligentes y Web3 23

Asimismo, permite realizar tanto la lectura como la escritura de variables
de contrato, facilitando el acceso a datos persistentes en la blockchain. Además,
proporciona soporte para la ejecución de funciones de solo lectura (sin coste
de gas) y para el envío de transacciones firmadas que modifican el estado del
contrato. Otra funcionalidad relevante es la posibilidad de obtener el identificador
de la transacción (transaction hash) y los eventos emitidos por el contrato, lo
que resulta fundamental para rastrear operaciones y vincular datos persistentes
con registros blockchain verificables.

Web3.py permite integrar fácilmente la lógica blockchain dentro de los flujos
de procesamiento de datos en Python, lo que ha sido clave en la implementación
del módulo Blockchain Controller del sistema.

2.7.3. Consideraciones de seguridad y gas
El diseño de contratos inteligentes requiere tener en cuenta ciertos aspectos

técnicos y económicos:

Coste de ejecución (gas): cada operación tiene un coste medido en gas,
que debe ser pagado en la moneda nativa de la red (por ejemplo, Ether en
Ethereum).

Eficiencia del código: el uso de estructuras como árboles de Merkle
reduce el número de transacciones y el consumo de gas, optimizando el
rendimiento.

Errores irreversibles: un contrato mal diseñado o con fallos puede gene-
rar pérdidas o comportamientos no deseados, por lo que es fundamental
su validación exhaustiva antes del despliegue.

Privacidad: la información registrada en blockchains públicas es acce-
sible a cualquiera, por lo que debe evitarse almacenar datos sensibles
directamente.

En este proyecto se ha optado por almacenar únicamente hashes, garantizan-
do así la integridad sin comprometer la privacidad ni generar costes excesivos.
Además, se han realizado pruebas en entornos de red de pruebas locales para
validar el correcto funcionamiento antes de desplegar en entornos reales.

24 Conceptos teóricos

Este capítulo ha introducido los conceptos clave relacionados con IoT, block-
chain, data lakes y validación de datos, proporcionando el marco teórico nece-
sario para entender el sistema propuesto. Sobre esta base, el siguiente capítulo
describe las herramientas tecnológicas y frameworks utilizados para su imple-
mentación.

Técnicas y
herramientas

Este capítulo describe las técnicas metodológicas y herramientas utilizadas
durante el desarrollo del proyecto. Se aborda, en primer lugar, la estrategia
de trabajo adoptada y, posteriormente, las tecnologías, frameworks y librerías
empleadas para implementar los diferentes componentes del sistema. También
se justifica la elección de estas herramientas frente a posibles alternativas consi-
deradas.

3.1. Metodología de desarrollo
El desarrollo del proyecto ha seguido un enfoque ágil, centrado en la entrega

incremental de valor. En lugar de construir una solución monolítica en una
única fase, se optó por dividir el proyecto en unidades funcionales que pudieran
ser desarrolladas, probadas y evaluadas de forma independiente. Este enfoque
permitió validar las decisiones arquitectónicas, detectar problemas técnicos en
fases tempranas y adaptar la evolución del sistema a medida que se comprendían
mejor sus necesidades operativas y de integración.

La planificación del trabajo se organizó utilizando un sistema de tareas de
estilo Kanban, que permitía visualizar el flujo de trabajo y priorizar los objetivos
de cada iteración. Cada bloque funcional, por ejemplo, la validación de datos, el
almacenamiento en el data lake o la interacción con la blockchain, se trató como
una unidad entregable completa, compuesta por código funcional acompañado
de pruebas asociadas.

25

26 Técnicas y herramientas

La validación de cada módulo se realizó a través de un conjunto de pruebas
automatizadas y revisión manual, aplicando criterios de aceptación definidos
previamente. Aunque el proyecto fue desarrollado de forma individual, hubo
un componente colaborativo inicial para consensuar el esquema de datos JSON
con la persona encargada del desarrollo del dispositivo IoT, garantizando así la
interoperabilidad del sistema.

El entorno de trabajo se mantuvo completamente local durante todo el
desarrollo, empleando contenedores para reproducir los distintos servicios. Esta
estrategia permitió realizar pruebas realistas sin depender de entornos externos
ni servicios en la nube, asegurando control total sobre las configuraciones y
facilitando la depuración de errores en cada fase del proyecto.

3.2. Entorno de desarrollo
El entorno de desarrollo ha sido diseñado para fomentar la reproducibili-

dad, la modularidad y la automatización, elementos esenciales en un sistema
compuesto por múltiples servicios interconectados. Desde las etapas iniciales,
se priorizó la construcción de un entorno portable, que permitiera replicar la
ejecución del sistema completo en diferentes máquinas sin necesidad de realizar
configuraciones manuales o ajustes dependientes del sistema operativo.

Para los componentes desarrollados en Python, se utilizó Poetry como herra-
mienta de gestión de dependencias y entornos virtuales. Esta elección permitió
definir explícitamente las versiones de cada librería utilizada en el proyecto
mediante los ficheros pyproject.toml y poetry.lock, facilitando tanto la ins-
talación reproducible del entorno como su mantenimiento a lo largo del tiempo.

Todos los servicios principales, incluyendo el backend, el broker MQTT, el
servicio de almacenamiento, el cliente de Web3 y la red blockchain local, han si-
do contenedorizados mediante Docker y orquestados con Docker Compose. Esta
infraestructura permitió levantar el sistema completo de forma automatizada
y coherente, simulando un entorno de producción sin necesidad de configu-
rar manualmente cada componente. Además, la contenedorización facilitó la
integración de librerías específicas, como aquellas necesarias para la interac-
ción con MinIO, PySpark o Web3.py, reduciendo problemas de compatibilidad o
configuración entre sistemas.

El control de versiones se ha gestionado mediante Git, con un repositorio
público en GitHub que contiene tanto el código fuente como la documentación
técnica mínima necesaria para su instalación y ejecución. En particular, el fichero
README.md incluye instrucciones para levantar el entorno con Docker, ejecutar

3.3. Tecnologías utilizadas 27

las pruebas automatizadas y verificar la interacción entre componentes. Esta
estrategia no solo facilita la colaboración futura y la extensión del sistema, sino
que también mejora la trazabilidad de los cambios y el mantenimiento del código.

Además, el uso de herramientas como .env para la configuración de variables
sensibles y la organización del código por servicios (según patrones de diseño
modulares) contribuyó a mantener un entorno limpio, estructurado y fácilmente
escalable. Esta aproximación también facilita su posterior despliegue en entornos
más complejos, como servidores de integración continua o plataformas cloud.

3.3. Tecnologías utilizadas

3.3.1. Procesamiento y validación de datos
Una de las prioridades del sistema propuesto ha sido garantizar que los datos

recibidos desde los dispositivos IoT tengan una estructura coherente, predecible
y válida antes de ser almacenados o procesados. Para ello, se ha empleado JSON
Schema como mecanismo de validación estructural. Esta tecnología permite
definir con precisión el formato esperado de cada mensaje, incluyendo tipos
de datos, campos obligatorios, formatos específicos y estructuras anidadas, y
aplicar automáticamente reglas de validación sobre cada mensaje recibido. Los
mensajes que no cumplen con el esquema definido son descartados, evitando
así la propagación de datos erróneos o incompletos al sistema de persistencia y
análisis.

La validación mediante JSON Schema se integra en la etapa de ingesta, justo
después de recibir el mensaje a través de MQTT, y actúa como un primer filtro de
control de calidad de los datos. Esta validación temprana reduce la complejidad
de las etapas posteriores del sistema y mejora su robustez frente a entradas
inesperadas o corruptas.

Para el procesamiento y transformación de los datos validados, se ha utilizado
PySpark, la interfaz de Python para Apache Spark. Esta herramienta proporciona
unmotor de análisis distribuido capaz de manejar grandes volúmenes de datos de
forma paralela, lo cual resulta especialmente útil cuando se trabaja con historiales
IoT extensos o se requieren aplicar operaciones de agregación, filtrado o análisis
temporal a gran escala.

Sobre el sistema de ficheros distribuido se ha empleado Delta Lake como
capa de almacenamiento transaccional. Delta Lake extiende las capacidades del
formato Parquet con funcionalidades adicionales como control de versiones,

28 Técnicas y herramientas

manejo eficiente de actualizaciones e inserciones, y soporte para transacciones
ACID. Esta capa permite mantener la consistencia del sistema incluso en esce-
narios de escritura concurrente, y facilita el desarrollo de pipelines de datos
escalables que pueden evolucionar sin perder control sobre el linaje de los datos.

La combinación de PySpark con Delta Lake proporciona un entorno de
procesamiento robusto, flexible y orientado a la analítica de datos históricos,
alineado con las necesidades de un sistema IoT orientado a la trazabilidad e
integridad de los datos. Además, esta arquitectura deja abierta la posibilidad
de incorporar futuras extensiones basadas en machine learning o inteligencia
artificial, aprovechando el mismo ecosistema de herramientas.

3.3.2. Comunicación IoT
La comunicación entre los dispositivos IoT y el sistema backend se ha imple-

mentado utilizando el protocolo MQTT (Message Queuing Telemetry Transport),
ampliamente reconocido por su ligereza, eficiencia y orientación a entornos
con restricciones de ancho de banda o conectividad intermitente. Su modelo de
comunicación basado en el patrón publicador-suscriptor, junto con una arquitec-
tura centrada en un broker, lo convierten en una solución ideal para sistemas
distribuidos donde múltiples sensores deben enviar datos de forma periódica a
un sistema centralizado sin acoplamiento directo entre emisores y receptores.

En este proyecto, se ha adoptado Eclipse Mosquitto como broker MQTT por
tratarse de una solución ligera, de código abierto y de fácil integración, tanto
en entornos de desarrollo como en despliegues de producción a pequeña escala.
Mosquitto ofrece un rendimiento estable con bajo consumo de recursos, lo que
facilita su ejecución en contenedores dentro del entorno Docker orquestado del
sistema.

La recepción de los mensajes en el backend desarrollado en Python se ha
implementado mediante la librería paho-mqtt, mantenida por la Eclipse Founda-
tion. Esta librería proporciona una interfaz sencilla y eficiente para conectarse
al broker, suscribirse a topics, recibir mensajes en tiempo real y gestionarlos de
manera asíncrona. Su compatibilidad con múltiples versiones del protocolo y su
documentación consolidada han sido factores clave en su elección.

Aunque existen otras alternativas comerciales y open source como HiveMQ
o EMQX, se optó por Mosquitto por su facilidad de configuración, su uso exten-
dido en proyectos IoT reales y su integración directa con bibliotecas de cliente
ampliamente soportadas. Esta elección ha permitido centrar el esfuerzo de de-
sarrollo en la lógica de validación, procesamiento y trazabilidad, minimizando

3.3. Tecnologías utilizadas 29

las fricciones técnicas en la capa de comunicación. En futuras versiones del pro-
yecto, Mosquitto podría ser reemplazado por brokers más robustos o escalables
como EMQX, especialmente si se requiere autenticación avanzada, clustering o
métricas en tiempo real.

3.3.3. Persistencia de datos
Una vez validados, los datos IoT deben ser almacenados de forma segura,

estructurada y con soporte para consultas analíticas y trazabilidad histórica.
Para cumplir con estos requisitos, se ha implementado un data lake utilizando
Delta Lake como capa de control transaccional sobre un sistema de almace-
namiento basado en MinIO, una solución compatible con la API de Amazon
S3. Cabe destacar que, aunque en este proyecto se ha utilizado MinIO como
sistema de almacenamiento local compatible con la API de Amazon S3, Delta
Lake ofrece soporte para conectarse de forma transparente a otros servicios
de almacenamiento en la nube como Amazon S3, Azure Data Lake Storage o
Google Cloud Storage. Esto facilita la portabilidad de la solución y su posible
escalado a entornos productivos en la nube, sin requerir cambios significativos
en la lógica de acceso a datos.

El uso de Delta Lake permite organizar el almacenamiento en diferentes
capas, comúnmente conocidas como bronze, silver y gold, lo que facilita la evolu-
ción progresiva de los datos desde su estado original hasta versiones limpias y
enriquecidas, listas para su análisis. Esta separación no solo mejora la organiza-
ción lógica de la información, sino que permite definir políticas de retención,
control de calidad y versionado sobre cada nivel del ciclo de vida de los datos.

Una de las principales ventajas de Delta Lake es su soporte para transacciones
ACID, incluso en entornos de ficheros distribuidos como S3 o MinIO. Gracias
a este mecanismo, se garantiza que las operaciones de inserción, actualización
o eliminación se realizan de manera consistente y segura, evitando estados
intermedios o duplicidades que puedan comprometer la integridad del sistema.
Además, Delta Lake permite realizar time travel, es decir, consultar el estado
histórico de los datos en versiones anteriores, lo que resulta de gran utilidad en
procesos de auditoría o en la reconstrucción de eventos.

Para el almacenamiento físico, se ha utilizado MinIO por tratarse de una
solución ligera, autoalojada y completamente compatible con la interfaz de AWS
S3. Esta elección ha permitido simular un entorno de almacenamiento en la nube
dentro del entorno de desarrollo local mediante contenedores Docker, facilitando
la portabilidad del sistema sin dependencia directa de servicios externos.

30 Técnicas y herramientas

Si bien inicialmente se valoró el uso de bases de datos relacionales conven-
cionales para la persistencia, estas fueron descartadas por su menor flexibilidad
en el manejo de datos semiestructurados y por sus limitaciones en escenarios
de escalabilidad horizontal y análisis histórico. La arquitectura basada en Delta
Lake no solo ofrece un rendimiento adecuado para flujos de datos IoT, sino que
también deja la puerta abierta a futuras integraciones con herramientas del
ecosistema Big Data como Apache Spark, Trino o Apache Flink, lo que refuerza
su elección como componente clave del sistema.

3.3.4. Blockchain y contratos inteligentes
La verificación de la integridad de los datos IoT se ha implementado mediante

el uso de contratos inteligentes desarrollados en Solidity y desplegados sobre
una red Ethereum local, simulada y gestionada con Hardhat. Estos contratos
actúan como anclas criptográficas que registran las huellas digitales de los
datos validados, en forma de hashes raíz de árboles de Merkle, proporcionando
un mecanismo descentralizado, inmutable y verificable para garantizar que la
información almacenada no ha sido manipulada tras su recepción.

La elección de Ethereum como plataforma blockchain se fundamentó en su
amplio soporte para contratos inteligentes, su madurez tecnológica y la disponi-
bilidad de un conjunto consolidado de herramientas de desarrollo. Aunque se
valoró el uso de alternativas como Hyperledger Fabric, esta fue descartada por la
mayor complejidad que implica su despliegue y configuración, así como por su
menor grado de integración con herramientas comunes del ecosistema Python.
En un entorno de trabajo individual, y con necesidad de reproducibilidad local,
Ethereum y sus herramientas asociadas ofrecieron una solución más directa,
eficiente y alineada con los objetivos del proyecto.

Para facilitar la interacción entre el backend desarrollado en Python y la
red Ethereum, se ha utilizado la biblioteca Web3.py. Esta librería proporciona
una interfaz completa para conectarse a nodos Ethereum, desplegar contratos,
enviar transacciones, leer eventos emitidos por los contratos y consultar datos
almacenados en la blockchain. Su integración directa con el lenguaje Python
fue decisiva para su elección frente a alternativas como Web3.js, permitiendo
mantener coherencia en el stack tecnológico y evitando la necesidad de introdu-
cir un componente adicional basado en JavaScript en un entorno centrado en
Python.

El entorno de pruebas se construyó utilizando la funcionalidad de redes
locales de Hardhat, lo que permitió simular el comportamiento de una red Ethe-
reum sin necesidad de acceder a testnets públicas. Esta configuración facilitó

3.3. Tecnologías utilizadas 31

una ejecución rápida y controlada de pruebas sobre los contratos inteligentes,
incluyendo la validación de funcionalidades como el almacenamiento de hashes,
la recuperación de identificadores de transacción y la verificación de la integri-
dad de datos mediante pruebas de inclusión. Adicionalmente, se desarrollaron
pruebas automatizadas para los contratos utilizando la infraestructura de testing
integrada en Hardhat, garantizando la robustez del código antes de integrarlo
con el resto del sistema. No obstante, el uso de Hardhat como entorno de desa-
rrollo no permite persistir el estado de la blockchain entre ejecuciones, por lo
que al reiniciar el contenedor se pierde toda la información almacenada. Para
solventar esta limitación en la fase final del proyecto, se sustituyó Hardhat por
Ganache como nodo de blockchain, exclusivamente en esta parte del sistema,
permitiendo así conservar el estado de la cadena entre sesiones.

Esta integración entre contratos inteligentes y backend permite construir
un sistema auditable, en el que cada dato IoT almacenado en el Data Lake puede
ser verificado a posteriori mediante su hash raíz registrado en la blockchain,
asegurando así la trazabilidad y fiabilidad del sistema en todo momento.

3.3.5. Pruebas y despliegue

La fiabilidad del sistema ha sido garantizada mediante una combinación de
pruebas unitarias, centradas en módulos individuales, y pruebas de integración,
orientadas a validar el correcto funcionamiento entre componentes. Este enfoque
ha permitido asegurar tanto el comportamiento aislado de cada parte como su
interacción en un entorno completo.

En el caso de los contratos inteligentes, se ha utilizado la suite de pruebas
incluida en Hardhat, que ofrece un entorno robusto para simular llamadas,
eventos y transacciones en una red Ethereum local. Las pruebas han cubierto
funcionalidades críticas como el almacenamiento de hashes, la recuperación de
identificadores de transacción y la verificación de datos mediante estructuras
de Merkle. Este entorno también ha permitido ejecutar escenarios de error y
comprobar el manejo de excepciones dentro del contrato.

En el backend desarrollado en Python, se han implementado pruebas au-
tomatizadas utilizando pytest, con el objetivo de validar la lógica asociada a la
ingesta de mensajes, la validación mediante JSON Schema y la persistencia en el
Data Lake. Estas pruebas han sido especialmente importantes para garantizar la
robustez del sistema frente a entradas malformadas, errores en el procesamiento
de datos o pérdidas de conectividad con los servicios asociados.

32 Técnicas y herramientas

Para garantizar coherencia entre los entornos de desarrollo, prueba y ejecu-
ción, se ha adoptado una estrategia de despliegue local basado en contenedores,
utilizando Docker para empaquetar todos los servicios necesarios: el broker
MQTT, el backend de procesamiento, el servicio de almacenamiento basado en
MinIO y la red blockchain local gestionada con Hardhat. La orquestación de estos
servicios se realiza mediante Docker Compose, lo que facilita la configuración
inicial, el arranque simultáneo y la monitorización de todos los componentes
del sistema.

Este enfoque permite replicar de forma exacta el entorno de desarrollo en
cualquier máquina, evitando problemas derivados de diferencias de configura-
ción, versiones de librerías o dependencias del sistema operativo. Además, deja
abierta la posibilidad de extender el sistema a entornos de integración continua o
despliegue en la nube, manteniendo una base sólida y automatizada para futuras
evoluciones del proyecto.

3.4. Justificación de las elecciones tecnológicas
Durante el desarrollo del proyecto se analizaron distintas alternativas tecno-

lógicas para cada uno de los componentes clave del sistema. La elección final
de herramientas y plataformas respondió tanto a criterios técnicos como a la
coherencia con el stack general de desarrollo, priorizando la integración fluida
entre módulos, la facilidad de uso en entornos locales y la proyección a futuro
del sistema.

En lo referente a la interacción con la red blockchain, se consideró inicial-
mente el uso de Web3.js, una librería ampliamente utilizada en el ecosistema
Ethereum para desarrollos en JavaScript. Sin embargo, se optó por Web3.py
debido a su integración natural con el backend implementado en Python. Esta
elección evitó la incorporación de dependencias innecesarias en otros lenguajes y
permitió mantener un stack tecnológico homogéneo, reduciendo la complejidad
del desarrollo y favoreciendo la mantenibilidad del código.

En cuanto al almacenamiento persistente de los datos IoT, se evaluó el uso
de bases de datos relacionales tradicionales como alternativa al enfoque basado
en data lakes. No obstante, estas fueron descartadas por su menor capacidad
de adaptación a flujos de datos semiestructurados, su rigidez en esquemas y su
menor eficiencia en escenarios de análisis de grandes volúmenes históricos. Por
el contrario, la combinación de Delta Lake con almacenamiento S3-compatible
(MinIO) ofrecía una solución más adecuada a los requerimientos del sistema, pro-

3.4. Justificación de las elecciones tecnológicas 33

porcionando flexibilidad, control de versiones y compatibilidad con herramientas
del ecosistema Big Data.

Asimismo, se valoró la posibilidad de utilizar Hyperledger como platafor-
ma blockchain. A pesar de sus ventajas en entornos corporativos privados, su
complejidad de despliegue y configuración, unida a su menor integración con
herramientas como Web3.py o Hardhat, hicieron que Ethereum resultara más
conveniente para los fines del proyecto. La existencia de entornos de desarrollo
maduros, documentación abundante y herramientas de testing como Hardhat
fueron factores clave para esta decisión.

En conjunto, las elecciones tecnológicas adoptadas han permitido construir
un sistema modular, reproducible y fácilmente ampliable. La selección de he-
rramientas ampliamente adoptadas y bien integradas entre sí ha facilitado el
desarrollo y ha reducido las barreras técnicas en fases críticas del proyecto,
asegurando una base sólida sobre la que se podrían realizar futuras evoluciones
o despliegues en producción.

Resumen del capítulo

A lo largo de este capítulo se han descrito las principales decisiones me-
todológicas y técnicas adoptadas durante el desarrollo del proyecto. Desde el
uso de un enfoque ágil basado en entregas incrementales, hasta la integración
de tecnologías especializadas en validación, almacenamiento y trazabilidad de
datos, cada componente ha sido seleccionado y configurado en función de su
idoneidad para los objetivos definidos.

La elección de herramientas como JSON Schema, PySpark, Delta Lake,
Web3.py y Hardhat ha permitido construir un sistema modular, reproducible y
orientado a la escalabilidad. Asimismo, el uso de Docker como plataforma de
despliegue ha facilitado la coherencia entre entornos y ha contribuido a la man-
tenibilidad del sistema a largo plazo. En conjunto, estas técnicas y herramientas
han conformado una arquitectura robusta y versátil, adecuada para gestionar
datos IoT con garantías de integridad y trazabilidad.

Por lo tanto, las herramientas empleadas a lo largo del proyecto han si-
do seleccionadas cuidadosamente en función de su propósito específico y su
compatibilidad con el resto del sistema, como se muestra en la Tabla 3.3.

34 Técnicas y herramientas

HerramientaFinalidad Justificación

Poetry Gestión de dependen-
cias en Python

Aislamiento y reproducibilidad del
entorno

Docker
/ Docker
Compose

Contenerización y or-
questación de servicios

Despliegue local reproducible y mo-
dular

PySpark Procesamiento distribui-
do de datos IoT

Escalabilidad y compatibilidad con
Big Data

Delta Lake Almacenamiento con
control ACID

Integridad y versionado de datos

MinIO Almacenamiento S3-
compatible local

Simulación de almacenamiento
cloud

JSON Sche-
ma

Validación estructural
de mensajes

Prevención de errores en la ingesta
de datos

MQTT +
Mosquitto

Comunicación IoT efi-
ciente

Protocolos ligeros y fiables para IoT

Web3.py Interacción con block-
chain desde Python

Integración directa con el stack del
backend

Solidity +
Hardhat

Contratos inteligentes y
pruebas

Trazabilidad y verificación de inte-
gridad en blockchain

pytest Pruebas automatizadas
en Python

Verificación funcional de los módu-
los

Git +
GitHub

Control de versiones y
documentación

Trazabilidad del código y colabora-
ción futura

Tabla 3.3: Resumen de herramientas utilizadas y su función en el sistema

Tras revisar las tecnologías utilizadas como MQTT, Delta Lake, Ethereum,
etc, este capítulo ha sentado las bases prácticas del desarrollo. En el capítulo
siguiente se explican los detalles de análisis y planificación que permitieron
estructurar la solución propuesta.

Análisis y Plan de
Proyecto

4.1. Análisis de requisitos

Antes del diseño e implementación del sistema, resulta fundamental identifi-
car y analizar los requisitos que deben cumplirse para garantizar que la solución
propuesta sea funcional, escalable y alineada con los objetivos del proyecto.
Esta sección presenta un análisis detallado de los requisitos tanto funcionales
como no funcionales, teniendo en cuenta las necesidades del sistema desde el
punto de vista del usuario final, los componentes tecnológicos involucrados y
las restricciones propias del contexto IoT y blockchain.

El análisis se ha estructurado en torno a los siguientes aspectos: funcio-
nalidades clave esperadas del sistema, rendimiento, seguridad, persistencia de
datos, validación, trazabilidad y compatibilidad con tecnologías de despliegue y
desarrollo.

4.1.1. Requisitos

El sistema propuesto debe cumplir una serie de requisitos para garantizar su
funcionalidad, rendimiento y viabilidad técnica. A continuación, se detallan los
requisitos funcionales y no funcionales identificados durante el desarrollo del
proyecto.

35

36 Análisis y Plan de Proyecto

4.1.2. Requisitos funcionales
Los requisitos funcionales describen las capacidades y servicios específicos

que debe ofrecer el sistema. Entre ellos se encuentran:

RF1: Recolección de datos IoT. El sistema debe ser capaz de recibir
datos en tiempo real procedentes de dispositivos IoT mediante el protocolo
MQTT.

RF2: Validación de datos. Cada mensaje recibido debe ser validado con-
forme a un esquema definido en JSON Schema antes de su procesamiento.

RF3: Almacenamiento de datos. Los datos validados deben almacenar-
se en un sistema de ficheros tipo data lake basado en Delta Lake sobre
almacenamiento AWS S3 o compatible.

RF4: Registro de integridad en blockchain. El sistema debe calcular
un hash del conjunto de los datos a almacenar de un mensaje y registrar
dicho hash en una red blockchain.

RF5: Verificación de integridad. Debe existir una funcionalidad pa-
ra comprobar la integridad de los datos almacenados a partir del hash
registrado en blockchain.

RF6: Interfaz de usuario. Se debe proporcionar una interfaz web sen-
cilla para mostrar los datos almacenados y facilitar la verificación de su
integridad.

4.1.3. Requisitos no funcionales
Los requisitos no funcionales definen características de calidad que debe cum-

plir el sistema, aunque no estén directamente relacionadas con funcionalidades
específicas:

RNF1: Escalabilidad. El sistema debe ser capaz de escalar horizontal-
mente para gestionar un aumento en el número de dispositivos IoT o en
el volumen de datos.

RNF2: Fiabilidad. El sistema debe garantizar la disponibilidad y consis-
tencia de los datos, incluso en caso de pérdida de conectividad temporal.

4.1. Análisis de requisitos 37

RNF3: Seguridad. La arquitectura debe asegurar la confidencialidad, inte-
gridad y autenticidad de los datos durante su transmisión, almacenamiento
y registro.

RNF4: Trazabilidad. Debe ser posible rastrear el origen y evolución de
cada dato, incluyendo su hash y el momento de registro en la blockchain.

RNF5: Compatibilidad. El sistema debe estar diseñado para integrarse fá-
cilmente con otras herramientas del ecosistema Big Data o con soluciones
blockchain híbridas.

RNF6: Usabilidad. La interfaz de usuario debe ser intuitiva y accesible
para usuarios técnicos y no técnicos.

4.1.4. Casos de uso

El análisis de casos de uso permite identificar los principales actores que
interactúan con el sistema y las funcionalidades clave que deben estar disponibles.
A partir de estos casos, se definen los requisitos funcionales y se orienta el diseño
técnico del sistema.

En el contexto de este proyecto, los principales actores son:

Usuario final: Consulta datos, verifica su integridad y visualiza el estado
del sistema desde la interfaz web.

Dispositivo IoT: Encargado de enviar datos sensorizados al sistema me-
diante MQTT.

A continuación, en la Figura 4.2, se presenta el diagrama de casos de uso que
resume las principales interacciones entre los actores y el sistema.

38 Análisis y Plan de Proyecto

Figura 4.2: Diagrama de casos de uso

Asimismo, para detallar el flujo de operaciones internas de los diferentes
casos de uso, se incluyen una serie de diagramas de actividades que representan
el proceso completo del caso de uso.

4.1.4.1. UC1 - Consultar datos

La funcionalidad de consulta de datos permite al usuario acceder a la infor-
mación sensorizada previamente registrada por los dispositivos IoT asociados a
su cuenta. Este caso de uso refleja una de las interacciones principales con el
sistema, ya que proporciona visibilidad sobre los datos almacenados en el data
lake, así como la base para otras operaciones como la verificación de integridad.

En la Figura 4.3 se presenta el diagrama de casos de uso correspondiente, que
ilustra la interacción entre el usuario y el sistema. A continuación, la Tabla 4.4
detalla la descripción completa del caso de uso UC1, incluyendo su secuencia
normal, flujos alternativos y postcondiciones.

4.1. Análisis de requisitos 39

Figura 4.3: Diagrama del caso de uso de consultar datos

40 Análisis y Plan de Proyecto

UC1 Consultar datos

Descripción El usuario consulta los datos almacenados de
un dispositivo IoT desde la interfaz del sistema.

Secuencia normal 1. El usuario accede a la página de visualiza-
ción de datos.

2. El sistema obtiene los dispositivos asocia-
dos al usuario.

3. El usuario selecciona un dispositivo de la
lista.

4. El sistema recupera los últimos datos dis-
ponibles del dispositivo.

5. El sistema muestra el listado de datos al
usuario.

Flujos alternativos 4a-1. No existen datos registrados para el dis-
positivo.

4a-2. El sistema informa al usuario de que no
hay datos disponibles.

4a-3. El caso de uso finaliza sin mostrar datos.

Postcondición El usuario ha visualizado los datos disponibles
o ha sido informado de su ausencia.

Tabla 4.4: Caso de uso UC1: Consultar datos

4.1.4.2. UC2 - Verificar integridad

La funcionalidad de verificación de integridad permite al usuario comprobar
si los datos almacenados de un dispositivo IoT coinciden con el valor hash
previamente registrado en la blockchain. Este caso de uso es fundamental para
garantizar la trazabilidad y confiabilidad de la información registrada en el
sistema, detectando posibles alteraciones o manipulaciones.

La Figura 4.4 muestra el diagrama de actividades asociado al caso de uso,
donde se detallan las acciones tanto del usuario como del sistema. Posteriormente,
la Tabla 4.5 recoge la descripción formal del caso de uso UC2, incluyendo su
flujo principal, flujos alternativos y la postcondición esperada.

4.1. Análisis de requisitos 41

Figura 4.4: Diagrama del caso de uso de verificar integridad

42 Análisis y Plan de Proyecto

UC2 Verificar integridad

Descripción El usuario solicita comprobar si los datos alma-
cenados de un dispositivo coinciden con el hash
registrado en la blockchain, validando así su in-
tegridad.

Secuencia normal 1. El usuario pulsa la opción para verificar
un dato desde la interfaz.

2. El sistema obtiene los metadatos asocia-
dos al dato.

3. El sistema recupera el hash previamente
registrado en la blockchain.

4. El sistema compara el hash calculado con
los metadatos y el registrado en la block-
chain.

5. El sistema devuelve al usuario la infor-
mación de verificación si la integridad es
válida.

Flujos alternativos 4a-1. El hash calculado no coincide con el re-
gistrado en la blockchain.

4a-2. El sistema informa al usuario de que la
integridad del dato no ha podido ser veri-
ficada.

4a-3. El caso de uso finaliza sin mostrar la in-
formación validada.

Postcondición El usuario ha sido informado de si el dato con-
sultado mantiene su integridad respecto al valor
registrado en la blockchain.

Tabla 4.5: Caso de uso UC2: Verificar integridad

4.1.4.3. UC3 - Envío de datos

El envío de datos constituye el punto de entrada del sistema, en el que los
dispositivos IoT transmiten información sensorizada en formato JSON. Esta
funcionalidad permite al sistema recibir, validar y almacenar dichos datos de

4.1. Análisis de requisitos 43

forma segura, además de registrar un identificador de integridad (hash) en la
blockchain como mecanismo de trazabilidad y verificación futura.

La Figura 4.5 muestra el diagrama de actividades asociado al caso de uso
UC3, en el que se representan los pasos realizados tanto por el dispositivo como
por el sistema, incluyendo el tratamiento de errores en caso de que el mensaje
recibido no cumpla con el formato esperado. A continuación, en la Tabla 4.6 se
recoge la especificación completa del caso de uso.

Figura 4.5: Diagrama del caso de uso de envío de datos

44 Análisis y Plan de Proyecto

UC3 Envío de datos

Descripción Un dispositivo IoT envía un mensaje JSON con datos sensorizados
al sistema. Este los procesa, valida y registra si cumplen el formato
establecido. En caso contrario, se registra el error y se descarta el
mensaje.

Secuencia normal 1. El dispositivo IoT envía un mensaje en formato JSON.
2. El sistema encola el mensaje recibido.
3. El sistema verifica que el formato del mensaje sea válido.
4. Si el mensaje es válido:

a) Se genera un hash a partir de los datos.
b) Se almacenan los datos y metadatos en el data lake.
c) Se registra el hash en la blockchain.

Flujos alternativos 3a-1. El mensaje no cumple con el formato esperado.
3a-2. El sistema registra un error asociado al mensaje.
3a-3. El mensaje es descartado y no se almacena.

Postcondición El mensaje ha sido procesado y almacenado correctamente con su
hash registrado en blockchain, o ha sido descartado tras su validación
fallida.

Tabla 4.6: Caso de uso UC3: Envío de datos

4.2. Plan de proyecto
El objetivo de esta sección es definir el plan de proyecto seguido durante el

desarrollo del Trabajo Fin de Máster. Se describe la planificación temporal, así
como un estudio básico de viabilidad en sus dimensiones económica y legal. Dado
el carácter académico del proyecto, la planificación se ha ajustado al calendario
del curso y a los hitos intermedios de entrega.

4.2.1. Planificación temporal
El proyecto ha sido desarrollado a lo largo de varios meses siguiendo un

enfoque iterativo. Cada bloque funcional se ha abordado como una unidad

4.2. Plan de proyecto 45

independiente de trabajo, permitiendo realizar entregas parciales que aportaban
valor y facilitaban la integración progresiva de los componentes.

La tabla 4.7 presenta una estimación de la duración y dedicación horaria
aproximada de cada fase del proyecto, considerando una media de 20 horas
semanales de dedicación:

Fase Duración Horas estimadas
Análisis y diseño preliminar 3 semanas 60 h
Validación de datos con JSON Sche-
ma

2 semanas 40 h

Persistencia en Delta Lake y pruebas
locales con MinIO

3 semanas 60 h

Desarrollo del contrato inteligente
y pruebas con Hardhat

2 semanas 40 h

Integración del backend con
Web3.py

2 semanas 40 h

Pruebas funcionales e integración
total con Docker Compose

3 semanas 60 h

Documentación, redacción de me-
moria y presentación

4 semanas 80 h

Total estimado 19 semanas 380 h

Tabla 4.7: Planificación temporal y estimación horaria del proyecto

La planificación temporal detallada puede visualizarse en el diagrama de
Gantt de la figura 4.6, donde se muestra la distribución estimada de las tareas a
lo largo del calendario de desarrollo.

46
A
nálisis

y
Plan

de
Proyecto

2025

Enero Febrero Marzo Abril Mayo

Análisis y diseño
preliminar

Validación con
JSON Schema

Persistencia en
Delta Lake

Contrato inteligente
y pruebas

Integración backend
y Web3.py

Pruebas e integración
final

Documentación y
presentación

Figura 4.6: Diagrama de Gantt del proyecto

4.2. Plan de proyecto 47

4.2.2. Estudio de viabilidad

4.2.2.1. Presupuesto

A partir de la planificación estimada y los recursos empleados, se ha calculado
un presupuesto orientativo del proyecto. Se parte de un coste salarial anual total
de 50.000 euros (incluyendo costes salariales y sociales), lo que, considerando una
dedicación anual de 1750 horas, supone un coste horario de aproximadamente
28,57 €/hora.c

El desarrollo del proyecto, sin la documentación y la presentación, ha re-
querido una dedicación aproximada de 300 horas, lo que se traduce en un coste
laboral directo de:

300 h × 28,57 €/h = 8.571 €

A ello se suma el coste proporcional del equipo informático utilizado, valo-
rado en 1200 euros y amortizado en tres años. Dado que el periodo de trabajo
ha sido de unos seis meses, se estima un coste de 200 euros:

(1200 € ÷ 3 años) × 0,5 años = 200 €

El coste total sin beneficio asciende, por tanto, a 8.771 €. Considerando un
beneficio industrial del 7 %, se obtiene:

8.771 € × 1,07 = 9.384,97 €

Por tanto, el precio estimado de venta del trabajo, incluyendo margen em-
presarial, asciende a 9.384,97 euros. Desde un punto de vista más comercial, se
podría redondear el precio de venta a 10.000 euros y jugar con márgenes para
realizar descuentos a clientes.

En la tabla 4.8 se presenta un desglose del presupuesto estimado del proyecto
como resumen de los cálculos realizados anteriormente.

48 Análisis y Plan de Proyecto

Concepto Coste (€)

Coste horario estimado 28,57
Horas de trabajo estimadas 300
Coste laboral (28,57 € × 300 h) 8.571
Coste de uso del equipo (6 meses) 200,00

Subtotal (sin beneficio) 8.771
Beneficio industrial (7 %) 614,00

Precio final del proyecto 9.384,97

Tabla 4.8: Presupuesto estimado del proyecto

4.2.2.2. Viabilidad económica

El proyecto se ha desarrollado íntegramente utilizando herramientas de códi-
go abierto y gratuitas, lo que reduce prácticamente a cero los costes económicos
en tecnología. Las tecnologías empleadas han sido:

Python, PySpark, Poetry

Delta Lake y Parquet

Docker, Docker Compose, MinIO

Solidity, Hardhat, Ganache, Web3.py

GitHub, Visual Studio Code

Los únicos recursos utilizados han sido un equipo personal con entorno
MacOS y una conexión a Internet. Esto hace que el proyecto sea económicamente
viable tanto en un contexto académico como para posibles desarrollos futuros
en pequeña escala.

El proyecto se ha podido realizar con una blockchain local y, por lo tanto,
no se ha realizado ningún gasto asociado a la compra de criptomonedas para
poner en marcha el proyecto en una red blockchain Ethereum de producción.

4.2. Plan de proyecto 49

4.2.2.3. Viabilidad legal

El sistema desarrollado no gestiona datos personales ni sensibles, por lo que
no está sujeto a restricciones legales directas en materia de protección de datos
(como el RGPD). En caso de extender el sistema a un entorno real con datos
de usuarios, sería necesario llevar a cabo un análisis de impacto conforme a la
normativa vigente.

Las tecnologías empleadas (software libre y de código abierto) permiten su
uso, modificación y distribución en entornos académicos y comerciales, conforme
a sus respectivas licencias. Además, el uso de blockchain y almacenamiento local
evita el envío de información a terceros, reduciendo riesgos de cumplimiento
normativo.

4.2.3. Análisis DAFO
En la Tabla 4.9 se presenta un análisis DAFO del proyecto, con el objetivo de

evaluar sus puntos fuertes y débiles, así como los factores externos que podrían
representar una oportunidad o una amenaza en su evolución hacia un entorno
real.

Fortalezas (F) Debilidades (D)

– Arquitectura modular y escalable
– Tecnologías open source
– Registro inmutable con blockchain
– Validación automática de datos IoT
– Reproducibilidad con Docker y Ma-
kefile

– Alta curva de aprendizaje en block-
chain
– Sin pruebas reales con dispositivos
IoT
– Falta de interfaz de usuario
– Documentación limitada para no
técnicos

Oportunidades (O) Amenazas (A)

– Aplicación a trazabilidad real (resi-
duos, alimentos...)
– Integración con plataformas cloud
– Análisis predictivo futuro
– Potencial para investigación acadé-
mica

– Complejidad técnica para adopción
– Obsolescencia tecnológica
– Desconfianza hacia blockchain
– Riesgos legales con datos persona-
les

Tabla 4.9: Análisis DAFO del proyecto

Como se puede observar en la tabla 4.9, entre las fortalezas, destaca el
diseño modular y escalable de la arquitectura, el uso de tecnologías ampliamente

50 Análisis y Plan de Proyecto

adoptadas en la industria (comoDocker, PySpark o Ethereum), y la incorporación
de mecanismos avanzados como la validación estructural automática de datos
IoT y la verificación de integridad basada en blockchain. Estas características,
junto con la reproducibilidad del entorno gracias a herramientas como Docker
y Makefile, refuerzan la robustez técnica del sistema.

No obstante, también se reconocen debilidades importantes, como la ausencia
de pruebas reales con dispositivos IoT, una interfaz de usuario limitada, y la
elevada complejidad técnica asociada a conceptos como los árboles de Merkle o
el despliegue de contratos inteligentes. En cuanto al entorno externo, el proyecto
presenta oportunidades claras de aplicación en trazabilidad de datos en sectores
como la gestión de residuos, la industria alimentaria o el transporte. También se
abre la posibilidad de extender la solución con módulos de análisis predictivo o
integraciones con plataformas cloud. Sin embargo, existen amenazas que deben
tenerse en cuenta, como la rápida evolución tecnológica, la posible resistencia a
soluciones blockchain por parte de ciertos sectores, y las implicaciones legales
si se incorporan datos personales en escenarios reales.

Este capítulo ha detallado los requisitos funcionales y no funcionales del
sistema, así como los principales casos de uso y la planificación temporal del
proyecto. Con esta información como base, el siguiente capítulo aborda el diseño
de la arquitectura y las decisiones estructurales adoptadas.

Diseño

5.1. Diseño de la Arquitectura del Sistema
La arquitectura del sistema propuesta ha sido diseñada con el objetivo de

garantizar la trazabilidad, integridad y disponibilidad de los datos generados
por dispositivos IoT en entornos distribuidos. Para ello, se ha optado por una
arquitectura modular en la que cada componente cumple una función claramente
definida, lo que facilita su desarrollo, prueba y despliegue.

El sistema se estructura en cuatro grandes bloques: captura y validación de
datos, almacenamiento en Data Lake, registro de huellas digitales en blockchain y
visualización de datos y validación en blockchain. La elección de una arquitectura
actual está desacoplada, usando para ello llamadas HTTP entre los servicios.
Como trabajo futuro de mejora, esta arquitectura puede pasar a ser basada en
eventos, permitiendo una mayor escalabilidad y flexibilidad ante cambios o
ampliaciones futuras.

5.1.1. Componentes principales

Dispositivos IoT: sensores físicos que recolectan datos (como tempera-
tura, posición GPS, humedad, etc.) y los publican mediante el protocolo
MQTT.

Broker MQTT: punto de entrada de los datos, encargado de recibir los
mensajes publicados por los dispositivos y redirigirlos al sistema.

Servicio de procesamiento: desarrollado en Python, mediante una sus-
cripción al broker MQTT, se encarga de:

51

52 Diseño

• Validar los mensajes conforme a un esquema JSON.
• Calcular una huella digital criptográfica de los datos (hash SHA-256).
• Enviar los datos válidos al sistema de almacenamiento (Delta Lake).
• Registrar el hash y metadatos en un contrato inteligente desplegado
sobre la blockchain.

Sistema de almacenamiento: se utiliza Delta Lake sobre MinIO (S3-
compatible) para almacenar los datos de forma estructurada y versionada,
facilitando su análisis futuro y garantizando su inmutabilidad.

Blockchain: En este proyecto, Ethereum se emplea como sistema de
registro descentralizado, donde se almacenan los hashes de los datos,
el identificador del dispositivo y la marca temporal, garantizando así la
trazabilidad y la no repudiación.

Frontend: Interfaz de usuario desarrollada para visualizar el estado de los
datos recibidos, consultar la trazabilidad y lanzar acciones de verificación.
Sirve como punto de entrada para la interacción con el sistema de forma
accesible y visual.

Backend API: Servicio responsable de gestionar la lógica de negocio y
exponer los endpoints necesarios para la comunicación entre el frontend,
la base de datos y la blockchain. Esta se ha desarrollado en Python creando
una API GraphQL.

5.1.2. Justificación de la arquitectura
La decisión de emplear una arquitectura basada en microcomponentes comu-

nicados por HTTP o suscripción y con almacenamiento desacoplado responde a
varias motivaciones:

Escalabilidad horizontal: los distintos servicios pueden replicarse y
escalar de forma independiente si aumenta la carga de trabajo.

Trazabilidad robusta: separar el almacenamiento del contenido completo
(en Delta Lake) del almacenamiento del resumen (en blockchain) permite
verificar la integridad sin congestionar la red.

Facilidad de auditoría: al estar cada componente claramente definido y
al registrar huellas digitales en blockchain, es sencillo reconstruir el flujo
de datos en caso de auditoría.

5.2. Diseño de la Aplicación Backend 53

Adaptabilidad tecnológica: el uso de estándares abiertos como MQTT,
JSON yHTTP facilita la interoperabilidad con otros sistemas o dispositivos.

5.1.3. Diagrama de arquitectura
A continuación semuestra el diagrama general del sistema, donde se visualiza

los diferentes componentes y sus conexiones:

Figura 5.7: Arquitectura general del sistema propuesto

5.2. Diseño de la Aplicación Backend
El backend del sistema ha sido diseñado con el objetivo de gestionar de forma

eficiente el flujo de datos provenientes de los dispositivos IoT, garantizando su
validación, trazabilidad y almacenamiento seguro. La aplicación se ha desarro-
llado en Python, siguiendo principios de modularidad, responsabilidad única y
separación de capas.

5.2.1. Estructura general
La aplicación se organiza en módulos independientes, cada uno de los cuales

encapsula una funcionalidad concreta del sistema. Esta separación permite faci-
litar tanto las pruebas unitarias como el mantenimiento evolutivo del software.
Los principales módulos son los siguientes:

54 Diseño

Recepción de datos: encargado de suscribirse a un broker MQTT y
recibir los mensajes publicados por los dispositivos. Se utiliza la librería
paho-mqtt para gestionar las conexiones y el flujo de mensajes.

Validación: cada mensaje recibido se valida mediante un esquema JSON
Schema, asegurando que la estructura y los tipos de datos sean correctos
antes de ser procesados.

Hashing: se calcula una huella digital criptográfica (SHA-256) sobre el
contenido del mensaje validado, que se usará como identificador de inte-
gridad.

Almacenamiento: los datos validados se almacenan en un Data Lake
basado en Delta Lake, alojado sobre un sistema compatible con S3 (Mi-
nIO), permitiendo almacenamiento distribuido, versionado y consultas
eficientes.

Registro en Blockchain: se utiliza la librería web3.py para interactuar
con un contrato inteligente en Ethereum. Se registra un identificador único
(UUID), el hash de los datos, el identificador del dispositivo y una marca
temporal.

5.2.2. Flujo de ejecución
El flujo básico seguido por la aplicación puede resumirse en los siguientes

pasos:
1. Suscripción al topic correspondiente del broker MQTT.
2. Recepción de un mensaje con datos IoT.
3. Validación del mensaje contra el esquema definido.
4. Generación del hash criptográfico mediante la generación de un árbol de

Merkle.
5. Persistencia del mensaje en el Data Lake junto a los metadatos.
6. Registro del hash y metadatos en el contrato inteligente.
Este flujo garantiza que sólo los datos válidos y correctamente estructurados

se almacenen y se tracen en blockchain, proporcionando integridad desde la
entrada hasta el registro descentralizado.

5.2.3. Consideraciones adicionales
Se han implementado mecanismos de gestión de errores y reintentos automá-

ticos para operaciones críticas, como la conexión al broker MQTT o el envío de

5.3. Diseño de la Interfaz de Usuario (Frontend) 55

transacciones a la blockchain. Además, se ha integrado un sistema de logging
estructurado para facilitar el monitoreo y la trazabilidad de eventos.

La arquitectura modular también permite procesar tanto mensajes indivi-
duales como lotes de datos, facilitando futuras integraciones con sistemas de
procesamiento distribuido (batch o streaming).

5.3. Diseño de la Interfaz de Usuario (Frontend)
La interfaz de usuario ha sido desarrollada utilizando el framework Angular

2+, con el objetivo de ofrecer una visualización clara, estructurada y usable de
los datos procesados por el sistema. Se ha optado por una aplicación de tipo
Single Page Application (SPA), que permite una experiencia fluida y sin recargas
completas del navegador, mejorando la interactividad y reduciendo los tiempos
de espera del usuario.

5.3.1. Objetivos del diseño
Los objetivos principales de la interfaz de usuario son:

Facilitar la consulta de los datos recopilados por los dispositivos IoT, ya
validados y almacenados.

Permitir la verificación de la integridad de los datos mediante la compara-
ción de la huella digital almacenada en la blockchain.

Ofrecer una navegación sencilla, centrada en los flujos principales de uso,
con un diseño responsive compatible con distintos tamaños de pantalla.

5.3.2. Estructura de la aplicación
La aplicación Angular se ha estructurado siguiendo las buenas prácticas

del framework, separando componentes, servicios y modelos. Los principales
elementos de la interfaz son:

Vista principal: muestra un mensaje de bienvenida e indica que se nave-
gue al apartado Datos en el menú.

Vista de datos: página en la que se puede seleccionar el dispositivo y el
rango de fechas de los datos a visualizar.

56 Diseño

Verificación de integridad: funcionalidad que permite consultar la block-
chain para verificar si el hash de un conjunto de datos está registrado,
garantizando así su autenticidad.

Servicios: se han desarrollado servicios en Angular para consumir las
APIs GraphQL expuestas por el backend y para interactuar con el nodo
Ethereum a través de web3.js, adaptado al navegador.

5.3.3. Diseño visual y usabilidad
Para el diseño visual se ha utilizado Angular Material, que proporciona

componentes accesibles y con un estilo moderno y uniforme. Se ha priorizado la
simplicidad, eliminando elementos visuales innecesarios y centrando la atención
del usuario en la información relevante.

El diseño responsive permite utilizar la interfaz desde dispositivos móviles y
tablets, facilitando su acceso en entornos industriales o de campo. Asimismo,
se ha validado la accesibilidad básica del sistema, siguiendo pautas como el
contraste de colores y la navegación por teclado.

5.3.4. Wireframes
A continuación se presentan algunos bocetos de las principales pantallas de

la interfaz, que sirvieron de guía durante el desarrollo:

Figura 5.8: Wireframe: visualización de datos

5.3. Diseño de la Interfaz de Usuario (Frontend) 57

Figura 5.9: Wireframe: detalle de validación del dato en blockchain

Aquí se ha descrito la arquitectura modular del sistema, así como las relaciones
entre sus componentes. Este diseño es la base sobre la que se ha construido la
implementación del sistema, la cual se detalla en el próximo capítulo.

Implementación

6.1. Implementación Técnica

6.1.1. Implementación del procesamiento de datos

El procesamiento de los datos recibidos desde los dispositivos IoT constituye
una de las piezas fundamentales del sistema. Esta funcionalidad ha sido desa-
rrollada en Python, haciendo uso de librerías especializadas para la gestión de
flujos de datos, validación estructural, generación de hashes criptográficos y
escritura en sistemas de almacenamiento distribuidos.

Recepción de mensajes MQTT

La aplicación se conecta a un broker MQTT, al que los dispositivos publican
mensajes con los datos recogidos. Para gestionar esta comunicación, se ha
utilizado la librería paho-mqtt, que permite suscribirse a uno o varios topics y
definir funciones de callback para cada mensaje recibido.

El flujo básico consiste en:

1. Suscripción al topic configurado.
2. Ejecución automática de la función de procesamiento al recibir un nuevo

mensaje.
3. Decodificación del mensaje en formato JSON.

59

60 Implementación

Validación estructural de los datos

Una vez recibido y decodificado el mensaje, se lleva a cabo una validación
de su estructura utilizando esquemas JSON Schema. Esto permite asegurar
que el mensaje cumple con el formato esperado antes de continuar con su
procesamiento. Entre las validaciones realizadas se incluyen:

Presencia obligatoria de campos como timestamp, lat, long, temp, etc.

Tipos correctos para cada valor (números, cadenas, arreglos).

Formatos y rangos válidos (por ejemplo, rangos de temperatura razona-
bles).

En caso de que el mensaje no supere la validación, se descarta y se registra
el error en el sistema de logging para su posterior análisis.

Generación de hash criptográfico

Una vez validado, se calcula una huella digital (hash) del contenido del
mensaje. Para ello se utiliza el algoritmo SHA-256, que genera un resumen único
e inmutable. Esta huella servirá como verificación de que el dato enviado por el
dispositivo IoT no ha sido alterado.

Una vez varificado y validado el mensaje se procesan los datos de tal forma
que se genera un arbol de Merkle con ellos. Esto generará un hash raiz y un
conjunto de hashes llamados pruebas de Merkle que servirán para la validación
del dato de forma individual. Las pruebas de Merkle se almacenan junto a cada
dato a almacenar como un metadato y a un UUID. Por otro lado, El hash raíz se
envía a la blockchain para su almacenamiento junto al UUID. Esta forma nos
permite en el futuro validar que el dato forma parte de una hoja del arbol del
Merkle cuya raíz corresponde al UUID almacecnado.

El proceso incluye:

Serialización determinista del mensaje (orden de claves consistente).

Codificación en UTF-8 y aplicación de hashlib.sha256.

6.1. Implementación Técnica 61

Almacenamiento en Delta Lake

El mensaje original validado se almacena en formato Parquet utilizando
Delta Lake como sistema de gestión de datos. Para ello, se emplea PySpark,
permitiendo:

Escribir en un Data Lake basado en MinIO (compatible con S3).

Añadir particiones por fecha u otros criterios relevantes, como el identifi-
cador del dispositivo.

Garantizar versionado, transacciones ACID y consultas eficientes.

Cada lote de datos procesados se escribe como una nueva versión del conjunto
de datos, lo que permite mantener un histórico completo sin sobrescrituras.

Registro en la blockchain

Finalmente, se realiza una llamada al contrato inteligente desplegado en
Ethereum mediante la librería web3.py. En esta transacción se incluyen:

El identificador del dispositivo.

El hash generado, es decir, la raíz del árbol de Merkle.

Un identificador único de registro (recordId).

El timestamp.

El identificador generado se recupera desde el recibo de la transacción,
permitiendo su almacenamiento externo para futuras consultas. Este proceso
asegura la trazabilidad y la inmutabilidad del dato, sin almacenar información
confidencial directamente en la blockchain. Esto se debe a que, aun teniendo el
identificador de la transacción, blockchain no permite acceder directamente al
dato.

6.1.2. Implementación del contrato inteligente
Para garantizar la integridad y trazabilidad de los datos recolectados por

los dispositivos IoT, se ha desarrollado un contrato inteligente (smart contract)
en el lenguaje Solidity, desplegado sobre una red Ethereum compatible. Este

62 Implementación

contrato actúa como un registro inmutable que almacena referencias a los da-
tos procesados, en forma de huellas digitales (hashes), junto con información
contextual relevante.

Estructura del contrato

El contrato, denominado IoTDataRegistry, permite almacenar y consultar
los registros asociados a cada dispositivo. La estructura principal es la siguiente:

Estructura DataRecord: contiene el hash del dato (dataHash) y la marca
temporal (timestamp).

Mapa records: relaciona cada identificador de dispositivo (deviceId)
con una lista de registros de tipo DataRecord.

Mapa recordIds: permite asociar un identificador único (recordId) con
un registro específico de un dispositivo.

La lógica de almacenamiento se ha optimizado para garantizar eficiencia en
el uso de gas y facilitar la recuperación de datos por parte del cliente.

Funciones principales

Las funciones clave implementadas en el contrato son:

storeData(string memory deviceId, string memory dataHash,
uint256 timestamp): almacena un nuevo registro para un dispositivo,
genera internamente un recordId único y lo asocia al dispositivo. Esta
función emite un evento con el identificador generado.

getData(string memory deviceId): devuelve todos los registros aso-
ciados a un deviceId, permitiendo consultar su historial completo de
huellas.

getDataWithRecordId(string memory deviceId,
string memory recordId): permite recuperar únicamente el registro
que coincide con el recordId indicado, útil para trazabilidad precisa desde
el exterior del sistema.

6.1. Implementación Técnica 63

Despliegue y pruebas

El contrato ha sido desarrollado y probado utilizando el entorno Hardhat,
lo que permite compilar, desplegar y testear el contrato localmente o en redes
públicas de pruebas como Sepolia. Durante el proceso se han realizado pruebas
unitarias para verificar el correcto comportamiento de cada función, asegurando:

El correcto almacenamiento de registros.

La recuperación precisa de datos mediante deviceId o recordId.

La generación y persistencia del identificador único (recordId) dentro de
la blockchain.

Además, se ha integrado web3.py en el backend del sistema, lo que permite
invocar las funciones del contrato desde Python de forma programática, firmando
las transacciones con una clave privada local o de entorno seguro. El identificador
de registro (recordId) se recupera desde el recibo de transacción y se conserva
junto con el dato completo para futuras comprobaciones.

Optimización de costes

Se han aplicado varias técnicas para minimizar el coste de gas de las opera-
ciones:

Uso de tipos de datos compactos y estructuras planas.

Separación de datos completos (almacenados en el Data Lake) y metadatos
(registrados en la blockchain).

Uso de eventos para obtener información desde el exterior sin necesidad
de llamadas adicionales a la cadena.

Uso de árboles de Merkle para compactar las huellas digitales de los
datos y facilitar la verificación de integridad ante posibles alteraciones,
minimizando el espacio requerido en blockchain.

Esta aproximación permite escalar el sistema sin incurrir en costes elevados
por el uso de la red Ethereum, al mismo tiempo que se garantiza la trazabilidad
e integridad de los datos.

64 Implementación

6.1.3. Implementación del frontend
La interfaz de usuario del sistema ha sido desarrollada utilizando Angular

2+, un framework de desarrollo frontend basado en TypeScript que permite crear
aplicaciones web reactivas, modulares y de fácil mantenimiento. La aplicación
tiene como objetivo principal facilitar el acceso a los datos procesados y validados,
así como permitir la verificación de su integridad mediante la interacción con la
blockchain.

Estructura de la aplicación

El frontend se ha organizado en base a componentes reutilizables y servicios
centralizados. La estructura sigue las convenciones de Angular y está compuesta
principalmente por:

Componentes: encargados de representar visualmente las vistas de la
aplicación. Entre los principales se encuentran:

• DeviceListComponent: muestra un listado de dispositivos IoT regis-
trados.

• DeviceDetailComponent: presenta los datos individuales enviados
por un dispositivo concreto, junto con sus hashes y timestamps.

• VerificationComponent: permite al usuario verificar si un hash
está registrado en la blockchain y visualizar los detalles asociados.

Servicios: gestionan la lógica de negocio y la comunicación con APIs
externas. Los más relevantes son:

• DataService: se comunica con el backend para obtener los datos
almacenados en el Data Lake.

• BlockchainService: interactúa con la red Ethereum (a través de
web3.js) para consultar el contrato inteligente.

Integración con el backend y la blockchain

El frontend consume dos tipos de fuentes de datos:

1. API GraphQL desarrollada en Python, que expone los datos recolectados
y validados, permitiendo su consulta mediante llamadas HTTP.

2. Contrato inteligente desplegado en Ethereum, al que se accede desde el
navegador mediante web3.js y el proveedor inyectado por MetaMask.

6.1. Implementación Técnica 65

Esta doble fuente permite comparar los datos almacenados con los registros
en blockchain, validando así su integridad de forma transparente para el usuario.

Diseño visual

Se ha utilizado Angular Material como biblioteca de componentes UI
para garantizar una apariencia moderna, accesible y coherente. Además, se
ha aplicado un diseño responsive, lo que permite utilizar la aplicación desde
diferentes dispositivos (PC, tablet o móvil) sin pérdida de funcionalidad.

Las vistas se han diseñado priorizando la simplicidad y claridad, mostrando
la información relevante en primer plano y reduciendo al mínimo las acciones
necesarias para acceder a los datos o verificar su validez.

Navegación y flujo de uso

La navegación se estructura en rutas claramente diferenciadas:

/devices: listado de dispositivos registrados.

/data: para la visualización de los datos.

/users: para la visualización de los usuarios.

El flujo de uso está pensado para que un usuario pueda, en pocos pasos,
consultar los datos de un dispositivo, visualizarlos en detalle y verificar su
autenticidad, todo ello sin necesidad de conocimientos técnicos avanzados.

Este capítulo ha detallado el proceso de implementación técnica del sistema,
abordando de forma modular la lógica de procesamiento de datos, el contrato
inteligente desarrollado en Solidity y la interfaz web construida con Angular. Se
ha documentado cómo cada componente interactúa dentro de la arquitectura
propuesta, asegurando la integración entre tecnologías IoT, Big Data y block-
chain. En el siguiente capítulo se describe la estrategia de validación seguida y
las pruebas realizadas para verificar el correcto funcionamiento del sistema.

Pruebas

7.1. Pruebas Realizadas
Durante el desarrollo del sistema se han llevado a cabo diversas pruebas

con el fin de validar tanto su correcto funcionamiento como el cumplimiento
de los objetivos planteados. Estas pruebas permiten verificar la robustez de los
distintos módulos, detectar posibles errores en fases tempranas y asegurar la
integridad de los datos desde su recepción hasta su verificación en blockchain.

El sistema, al estar compuesto por múltiples componentes distribuidos (ser-
vicios de backend, frontend, worker de procesamiento, almacenamiento en Data
Lake y contratos inteligentes), requiere una estrategia de pruebas completa que
abarque las distintas capas de la arquitectura. En esta sección se detallan los
tipos de pruebas realizados, la metodología seguida y los resultados obtenidos.

7.1.1. Estrategia de pruebas
La estrategia de pruebas adoptada tiene como objetivo garantizar la correcta

funcionalidad, fiabilidad e integridad del sistema desarrollado. Para ello, se
ha seguido un enfoque progresivo que incluye pruebas unitarias, pruebas de
integración y pruebas funcionales, abarcando tanto el backend como el frontend,
así como la interacción con la blockchain.

Tipos de pruebas

Se han definido los siguientes tipos de pruebas, cada uno orientado a validar
distintos niveles del sistema:

67

68 Pruebas

Pruebas unitarias: verifican el comportamiento de funciones y módulos
individuales, como la validación de mensajes, el cálculo de hashes o la
lógica del contrato inteligente.

Pruebas de integración: aseguran que los distintos componentes del
sistema (por ejemplo, recepción de datos, almacenamiento en Delta Lake
y registro en blockchain) funcionan correctamente en conjunto.

Pruebas funcionales: simulan casos de uso reales para validar que el
sistema cumple con los requisitos funcionales definidos.

Pruebas end-to-end: ejecutadas desde el frontend, verifican que los datos
se visualizan correctamente, que las verificaciones contra la blockchain
funcionan como se espera y que el usuario puede completar flujos com-
pletos sin errores.

Herramientas utilizadas

Para la ejecución y automatización de las pruebas se han utilizado las si-
guientes herramientas:

pytest: para las pruebas unitarias e integración del backend Python.

Hardhat: para pruebas automatizadas del contrato inteligente en entornos
de test.

web3.py y web3.js: para invocar y verificar funciones del contrato desde
backend y frontend, respectivamente.

Jasmine y Karma: para pruebas unitarias en el frontend Angular.

MetaMask: como proveedor de Web3 para pruebas desde navegador con
interacción directa con la blockchain.

Entorno de pruebas

Durante el desarrollo se ha utilizado un entorno local compuesto por con-
tenedores Docker, que permite simular todos los componentes necesarios del
sistema:

MinIO: como sistema de almacenamiento compatible con la API de S3.

7.1. Pruebas Realizadas 69

Backend y frontend: desplegados en contenedores separados para facili-
tar la modularidad y las pruebas independientes.

Red Ethereum local: utilizando Hardhat o Ganache como nodos de
desarrollo para el despliegue y prueba de contratos inteligentes.

Este entorno ha permitido realizar pruebas rápidas, reproducibles y sin costes,
facilitando el desarrollo iterativo y la validación del sistema de forma completa
en local.

Cobertura y enfoque incremental

La estrategia de pruebas ha sido incremental, validando progresivamente
cada componente conforme se completaba su desarrollo. Se ha buscado alcanzar
una alta cobertura de código en el backend, así como asegurar la robustez del
contrato inteligente ante entradas maliciosas o inesperadas. Las pruebas han sido
documentadas para permitir su reproducción, y se han automatizado aquellas
susceptibles de ser ejecutadas en CI/CD en el futuro.

7.1.2. Pruebas del backend
El backend del sistema, desarrollado en Python, ha sido sometido a un con-

junto de pruebas orientadas a validar tanto la lógica de procesamiento de datos
como la interacción con los sistemas de almacenamiento y con la blockchain.
Estas pruebas se han dividido en pruebas unitarias y pruebas de integración,
empleando datos simulados representativos de los dispositivos IoT.

Validación de mensajes

Se han definido múltiples casos de prueba para verificar que el módulo de
validación JSON Schema rechaza correctamente los mensajes mal formados. Se
han comprobado:

Rechazo de mensajes con campos ausentes o vacíos.

Rechazo de tipos de datos incorrectos (por ejemplo, texto en lugar de
números).

Aceptación demensajes válidos con valores dentro de los rangos esperados.

70 Pruebas

Cada caso ha sido probado mediante funciones de test utilizando pytest,
garantizando que sólo los mensajes bien estructurados avanzan en el flujo del
sistema.

Cálculo de hash

Se ha verificado que el algoritmo de hashing genera resultados consistentes
y deterministas para entradas idénticas. También se ha comprobado que cual-
quier modificación, por mínima que sea, en los datos de entrada, produce un
hash completamente distinto, cumpliendo así con las propiedades deseadas del
algoritmo SHA-256.

Almacenamiento en Delta Lake

Para validar el almacenamiento, se han ejecutado pruebas que:

Comprueban que los datos se escriben correctamente en formato Parquet.

Verifican la creación de particiones por fecha y su correcta resolución
mediante consultas.

Evalúan la existencia de versiones anteriores de los datos mediante la
funcionalidad de time travel.

Se ha empleado PySpark con consultas directas sobre los datos almacenados
en MinIO para validar el contenido de los ficheros generados.

Manejo de errores y reintentos

Se han simulado fallos comunes como:

Desconexión del broker MQTT.

Fallo de escritura en el Data Lake.

Error de conexión con el nodo blockchain.

El sistema responde ante estos fallos mediante mecanismos de reconexión,
reintentos controlados y registro estructurado de errores. Estas pruebas aseguran
que el backend puede recuperarse de errores transitorios sin pérdida de datos ni
necesidad de intervención manual inmediata.

7.1. Pruebas Realizadas 71

Invocación del contrato inteligente

Se han probado las funciones de interacción con el contratomediante web3.py.
En concreto, se ha verificado:

El envío correcto de transacciones con datos válidos.

La recepción del receipt y extracción del recordId.

El comportamiento del sistema ante transacciones fallidas (por ejemplo,
por falta de gas).

Todas las pruebas se han realizado inicialmente en una red local con HardHat
o Ganache, utilizando ETH de prueba para evaluar el consumo real de gas en
condiciones cercanas al entorno de producción.

Estas pruebas permiten verificar el cumplimiento de los requisitos RF1 (reco-
lección de datos IoT), RF2 (validación de datos) y RF3 (almacenamiento de datos),
al garantizar que los mensajes recibidos se validan estructuralmente mediante
JSON Schema y se almacenan de forma persistente. También contribuyen al
cumplimiento de los requisitos no funcionales RNF2 (fiabilidad del sistema frente
a entradas inválidas) y RNF5 (compatibilidad con formatos estandarizados como
JSON).

7.1.3. Pruebas del contrato inteligente
El contrato inteligente desarrollado en Solidity ha sido sometido a pruebas

exhaustivas para validar su correcto funcionamiento, garantizar la integridad de
los datos almacenados y asegurar un uso eficiente del gas. Las pruebas se han
llevado a cabo utilizando el entorno de desarrollo Hardhat, que permite ejecutar
test automatizados sobre una red Ethereum local simulada.

Pruebas unitarias

Se han diseñado pruebas unitarias para cada una de las funciones principales
del contrato:

storeData: se ha comprobado que permite almacenar registros correcta-
mente, que emite el evento correspondiente con el recordId generado y
que se puede invocar múltiples veces con distintos dispositivos.

72 Pruebas

getData: se ha verificado que devuelve la lista de registros completa para
un deviceId determinado, en el mismo orden en que fueron almacenados.

getDataWithRecordId: se han probado casos positivos (el recordId exis-
te y coincide) y casos negativos (no existe el registro o no pertenece al
dispositivo consultado), evaluando que el contrato responde correctamen-
te.

Estas pruebas se han implementado en JavaScript utilizando la API de
ethers.js, incluida en Hardhat, permitiendo verificar tanto el estado interno
del contrato como los eventos emitidos.

Pruebas de consistencia y validación

Además de las pruebas funcionales, se han llevado a cabo pruebas orientadas
a asegurar la consistencia de los datos y la protección frente a entradasmaliciosas.
Entre ellas:

Almacenamiento de registros con elmismo hash para dispositivos distintos:
el contrato debe permitirlo, ya que el hash representa datos equivalentes
generados en distintos contextos.

Intentos de almacenar registros con campos vacíos o inválidos: se ha
comprobado que la validación se realiza en la capa del backend, y que el
contrato asume que los datos ya han sido preprocesados y validados.

Detección de recordId duplicado: se ha verificado que el contrato genera
internamente un identificador único para cada registro mediante una
combinación de keccak256, lo que garantiza la unicidad sin intervención
externa.

Medición de gas y eficiencia

Se ha prestado especial atención al consumo de gas de las funciones del
contrato. Se han medido los costes de las operaciones de escritura y lectura con
distintos tamaños de entrada y número de registros por dispositivo. Las pruebas
han demostrado que:

El coste de la función storeData se mantiene dentro de límites razonables,
incluso con múltiples registros.

7.1. Pruebas Realizadas 73

Las funciones de consulta no generan consumo de gas al ser llamadas como
view, permitiendo su uso libre desde el frontend o scripts de backend.

La emisión de eventos con el recordId permite recuperar la información
necesaria sin almacenar datos redundantes.

Las pruebas realizadas sobre el contrato inteligente permiten verificar los
requisitos RF4 (registro de integridad en blockchain) y RF5 (verificación de inte-
gridad), ya que validan el correcto almacenamiento del hash raíz del árbol de
Merkle y su recuperación posterior. Asimismo, satisfacen los requisitos no fun-
cionales RNF3 (seguridad e inmutabilidad de los registros) y RNF4 (trazabilidad
completa del ciclo de vida de los datos).

7.1.4. Pruebas de la interfaz de usuario
La interfaz de usuario desarrollada con Angular 2+ ha sido sometida a

pruebas orientadas a verificar la correcta visualización de los datos, la fluidez de
la navegación y la interacción con el backend y la blockchain. Se han llevado a
cabo pruebas tanto manuales como automatizadas, utilizando datos simulados y
reales procedentes de la red de pruebas.

Pruebas funcionales

Se han ejecutado pruebas funcionales para validar los flujos principales del
sistema desde el punto de vista del usuario final:

Carga del listado de dispositivos registrados.

Acceso al detalle de un dispositivo y visualización de los datos recogidos.

Visualización de los hashes y timestamps asociados a cada entrada.

Consulta de la existencia de un hash en la blockchain a través de la interfaz
de verificación.

Manejo de errores de red o fallos en la conexión con el backend o el nodo
Web3.

Estas pruebas han permitido identificar y corregir errores de integración y
validaciones incompletas en etapas tempranas del desarrollo.

74 Pruebas

Pruebas de interacción con la blockchain

Dado que la aplicación permite al usuario verificar la integridad de los datos
consultando directamente a la blockchain, se han realizado pruebas específicas
para este módulo. Se ha verificado que:

La conexión con MetaMask se establece correctamente al cargar la página.

El contrato inteligente se consulta adecuadamente mediante web3.js, y
los datos devueltos coinciden con los registrados.

Los errores de red o fallos en la carga de la blockchain son detectados y
mostrados al usuario de forma clara.

Estas pruebas se han realizado exclusivamente en un entorno local, lo que
ha permitido validar la interoperabilidad de la interfaz con una red Ethereum
simulada, reproduciendo condiciones similares a un entorno real sin incurrir en
costes ni depender de infraestructura externa. Este enfoque facilita una futura
migración a una red pública o privada de Ethereum, ya que los contratos y la
lógica de interacción están diseñados para ser compatibles con redes EVM sin
requerir modificaciones sustanciales.

Pruebas de usabilidad y diseño responsive

Se ha evaluado la experiencia de usuario en distintos dispositivos y tamaños
de pantalla. Gracias al uso de Angular Material y diseño adaptativo (responsive),
la aplicación se adapta correctamente a:

Escritorios con resoluciones altas y bajas.

Tablets en orientación horizontal y vertical.

Teléfonos móviles de diferentes tamaños.

Además, se han realizado pruebas con usuarios ajenos al desarrollo para
evaluar la claridad de las vistas, la facilidad de navegación y la comprensibilidad
de los datos presentados.

7.1. Pruebas Realizadas 75

Pruebas unitarias en Angular

Se han desarrollado pruebas unitarias para los componentes y servicios de
Angular mediante Jasmine y Karma. Estas pruebas aseguran:

La correcta inicialización de los componentes principales.

El funcionamiento esperado de los servicios HTTP al consumir la API
REST.

El correcto tratamiento de errores y estados de carga.

Estas pruebas se integran con el sistema de desarrollo continuo, permitiendo
validar rápidamente cambios antes de realizar despliegues.

La interfaz ha sido probada en distintos escenarios de visualización y verifi-
cación de datos, satisfaciendo los requisitos RF6 (interfaz de usuario funcional
y accesible) y RF5 (verificación de integridad desde el cliente). Estas pruebas
también contribuyen al cumplimiento de los requisitos no funcionales RNF6
(usabilidad de la aplicación por usuarios sin conocimientos técnicos) y RNF1
(escalabilidad, al permitir la visualización de múltiples dispositivos).

7.1.5. Ejecución de las pruebas en CI/CD
Con el objetivo de garantizar la calidad y estabilidad del sistema, se ha

configurado un flujo de integración continua (CI) mediante GitHub Actions,
una plataforma que permite definir y automatizar tareas como la ejecución de
pruebas, compilación o despliegue en respuesta a eventos sobre el repositorio.

En este proyecto, se ha definido un flujo de trabajo (workflow) que se activa
automáticamente en los siguientes casos:

Cuando se realiza un push sobre la rama principal o de desarrollo.

Cuando se crea un pull request, permitiendo validar los cambios antes de
su fusión.

Por ejemplo, el workflow para el código en Python, ejecuta los siguientes
pasos:

1. Se instala el entorno de Python y las dependencias del proyecto definidas
en pyproject.toml.

76 Pruebas

2. Se lanza la ejecución de las pruebas unitarias mediante pytest.
3. Se muestra el resultado del conjunto de pruebas, indicando si todas han

sido superadas correctamente o si existen errores.

Esta automatización permite detectar errores de forma temprana, prevenir
regresiones y facilitar la colaboración segura en el código fuente. Además, el re-
sultado de las pruebas queda visible directamente en la interfaz de GitHub, tanto
en la vista de confirmaciones (commits) como en las solicitudes de incorporación
de cambios (pull requests).

En la Figura 7.10 se muestra un ejemplo del resultado de una ejecución
correcta del flujo de pruebas sobre una pull request en Github.

Figura 7.10: Resultado de la ejecución de pruebas en GitHub Actions

7.1.6. Resultados de las pruebas
Tras la ejecución de las distintas pruebas descritas en los apartados anteriores,

se ha podido comprobar que el sistema desarrollado cumple satisfactoriamente
con los objetivos funcionales y no funcionales definidos al inicio del proyecto. Las
pruebas han permitido validar tanto la correcta integración entre componentes
como la robustez del sistema frente a errores esperados.

Validación de los objetivos funcionales

Los resultados obtenidos permiten afirmar que los requisitos principales han
sido alcanzados:

Los datos enviados por los dispositivos IoT se reciben correctamente a
través del broker MQTT, se validan y almacenan en el Data Lake de forma
estructurada.

7.1. Pruebas Realizadas 77

Se calcula una huella digital de los datos y se registra en la blockchain
pública, asegurando su trazabilidad e integridad.

La interfaz de usuario permite consultar los datos recolectados y verificar
su existencia y consistencia en la blockchain de forma intuitiva.

El contrato inteligente permite almacenar y recuperar datos de forma
eficiente, incluyendo la búsqueda por identificador único de registro
(recordId).

Cobertura de pruebas y estabilidad del sistema

Las pruebas unitarias alcanzan una alta cobertura de código en el backend,
validando los módulos de recepción, validación, hash y escritura en el Data Lake.
Asimismo, las pruebas automatizadas del contrato inteligente y las pruebas
funcionales del frontend confirman la correcta operatividad de las interfaces y
la lógica del sistema.

Durante las pruebas de integración realizadas en el entorno local, el sistema
ha demostrado una estabilidad adecuada ante condiciones adversas, como la
pérdida de conexión con servicios externos o la introducción de datos inválidos,
recuperándose de forma automática sin necesidad de intervención manual.

Aspectos detectados y posibles mejoras

Durante la fase de pruebas también se han identificado algunos aspectos
susceptibles de mejora en futuras iteraciones del sistema:

Optimización del consumo de gas: aunque el contrato funciona correc-
tamente, su eficiencia podría mejorarse mediante el uso de estructuras
más compactas o almacenamiento más directo.

Gestión de errores más informativa en frontend: en algunos casos de
fallo en la conexión blockchain, los mensajes al usuario podrían ser más
específicos y orientativos.

Automatización del despliegue: la integración de herramientas de
CI/CD permitiría acelerar los ciclos de prueba y despliegue tanto para el
backend como para el frontend y el contrato.

Pruebas de rendimiento a gran escala: sería conveniente evaluar el
sistema con un volumen elevado de dispositivos y datos para validar su
comportamiento en escenarios de producción real.

78 Pruebas

Conclusión

En conjunto, los resultados obtenidos confirman que la solución propuesta es
técnicamente viable, funcional y robusta. Las pruebas realizadas han permitido
no sólo validar los objetivos alcanzados, sino también sentar las bases para
futuras mejoras que refuercen la escalabilidad, eficiencia y experiencia de usuario
del sistema.

A la vista de los resultados obtenidos, se puede afirmar que el sistema cumple
con todos los requisitos funcionales definidos (RF1–RF6), cubriendo desde la
captura y validación de datos IoT hasta su trazabilidad en blockchain y consulta
desde la interfaz. Del mismo modo, se satisfacen los principales requisitos no
funcionales (RNF1–RNF6), relacionados con la fiabilidad, seguridad, trazabilidad,
compatibilidad y usabilidad del sistema.

Para finalizar, en la tabla 7.10 se presenta un resumen de la relación entre
las pruebas realizadas y los requisitos funcionales y no funcionales validados.
Esta trazabilidad permite comprobar de forma clara que todos los objetivos
planteados en el análisis han sido correctamente cubiertos mediante el sistema
desarrollado.

Prueba realizada Requisitos funcio-
nales validados

Requisitos no
funcionales vali-
dados

Validación de datos IoT en el bac-
kend

RF1, RF2, RF3 RNF2, RNF5

Registro y verificación en block-
chain

RF4, RF5 RNF3, RNF4

Consulta y verificación desde la
interfaz web

RF5, RF6 RNF1, RNF6

Pruebas de integración y flujo
completo de datos

RF1–RF6 RNF1, RNF2, RNF4

Tabla 7.10: Relación entre pruebas realizadas y requisitos validados

A lo largo de este capítulo se ha presentado la estrategia de pruebas utilizada
para verificar la funcionalidad y robustez del sistema. Se han descrito las pruebas
unitarias, funcionales e integradas aplicadas a los distintos módulos, así como la
automatización de pruebas mediante GitHub Actions. Los resultados obtenidos
confirman el cumplimiento de los requisitos definidos. En el próximo capítulo

7.1. Pruebas Realizadas 79

se extraen las conclusiones del trabajo realizado y se plantean posibles líneas de
mejora y desarrollo futuro.

Conclusiones y Líneas
de trabajo futuras

8.1. Conclusiones
El trabajo realizado ha abordado con éxito el diseño e implementación de

una arquitectura segura y trazable para el almacenamiento de datos IoT. Se han
cumplido los objetivos establecidos, desarrollando una solución técnicamente
robusta que integra tecnologías modernas como Delta Lake, MQTT y Ethereum
blockchain.

A modo de resumen, los principales logros alcanzados durante el desarrollo
del proyecto son los siguientes:

Se ha diseñado e implementado una arquitectura modular, escalable y
desacoplada.

Se ha desarrollado un sistema de recolección de datos IoT basado enMQTT
y validación con JSON Schema.

Se ha integrado un sistema de almacenamiento escalable usando Delta
Lake sobre MinIO.

Se ha implementado un contrato inteligente en Ethereum para registrar
hashes de datos y garantizar su integridad.

Se ha desarrollado una interfaz web funcional para consultar y verificar la
consistencia de los datos almacenados.

81

82 Conclusiones y Líneas de trabajo futuras

Se ha evaluado la solución en un entorno local mediante pruebas unitarias,
de integración y funcionales.

Se ha automatizado la ejecución de pruebas en flujos CI/CD con GitHub
Actions.

Se ha documentado todo el sistema, incluyendo aspectos técnicos y de
usuario.

La arquitectura propuesta demuestra ser viable desde el punto de vista
técnico, combinando fiabilidad, trazabilidad y descentralización. Además, el
sistema está preparado para escalar horizontalmente y adaptarse a futuros
requisitos sin modificaciones estructurales profundas.

El sistema resultante ha demostrado ser funcional, fiable y fácilmente exten-
sible. Además, permite una aplicación realista de blockchain en contextos no
financieros y sirve como base para líneas de investigación académica o industrial.

8.2. Trabajo Futuro
Durante el desarrollo del proyecto han surgido oportunidades de mejora y

ampliación que podrían ser abordadas en futuras fases o por otros investigadores
interesados en la temática. Entre ellas destacan:

Firma digital de los datos: integrar mecanismos de firma electrónica
desde el propio dispositivo para asegurar también el origen de los datos,
no solo su integridad.

Auditoría automatizada de integridad: desarrollar un servicio que
periódicamente verifique que los datos almacenados en el Data Lake siguen
coincidiendo con los hashes registrados en blockchain, detectando posibles
manipulaciones.

Visualización avanzada: incorporar herramientas de visualización grá-
fica (por ejemplo, dashboards en tiempo real o mapas interactivos) para
facilitar la explotación visual de los datos recogidos.

Despliegue sobre infraestructura en la nube: migrar la solución a
un entorno cloud completo (por ejemplo, AWS o GCP), aprovechando
servicios gestionados para escalar de forma automática y segura.

8.2. Trabajo Futuro 83

Evaluación con dispositivos reales en escenarios reales: desplegar
el sistema en un entorno industrial o de monitorización ambiental con
múltiples sensores distribuidos y analizar su comportamiento bajo carga.

Interoperabilidad con otras blockchains o sistemas externos: es-
tudiar la posibilidad de usar otras redes (como Hyperledger o Polygon),
así como integraciones con sistemas ERP, bases de datos tradicionales o
herramientas de análisis Big Data.

Estas líneas abren un camino claro para continuar explorando soluciones
seguras y trazables en entornos IoT, ampliando tanto el alcance del sistema como
su robustez frente a escenarios más exigentes.

Este capítulo ha sintetizado las principales conclusiones del trabajo, eva-
luando el grado de cumplimiento de los objetivos planteados y destacando las
aportaciones técnicas del sistema propuesto en el contexto de la validación,
almacenamiento y verificación de integridad de datos IoT. Asimismo, se han
identificado varias líneas de trabajo futuro orientadas a la mejora de la solución,
incluyendo pruebas con dispositivos reales, despliegue en entornos productivos
o ampliación de funcionalidades mediante analítica avanzada. Con ello, se da
por finalizado el presente Trabajo Fin de Máster.

Apéndices

85

Apéndice A

Documentación
técnica de

programación

A.1. Introducción
Este apéndice recoge la documentación técnica del proyecto desarrollado

como parte del Trabajo Fin de Máster. Incluye detalles sobre la estructura del
repositorio, instrucciones de instalación, ejecución, pruebas y el uso de los
principales servicios que componen la arquitectura.

El código fuente completo está disponible en el siguiente repositorio público:

RepositorioGitHub: https://github.com/javalon/iot-trace-chain

La documentación adicional del proyecto puede consultarse en:

Deepwiki: https://deepwiki.com/javalon/iot-trace-chain

El proyecto permite procesar datos IoT en tiempo real, validarlos, almacenar-
los en un Data Lake y registrar su integridad en una red blockchain simulada.

87

https://github.com/javalon/iot-trace-chain
https://deepwiki.com/javalon/iot-trace-chain

88 Apéndice A. Documentación técnica de programación

También incluye una interfaz web para la visualización y verificación de dichos
datos.

A.2. Estructura de directorios
La estructura general del repositorio es la siguiente:

persistence-worker/ ...Lógica de procesamiento, validación y hash

blockchain/Contratos inteligentes y scripts de Hardhat

mosquitto/Configuración del broker MQTT

minio-mirror/Herramientas para consulta local (DuckDB)

back-api/Backend API con FastAPI + GraphQL

delta-reader/ Servicio de lectura desde Delta Lake

iot-chain-front/Aplicación web en Angular

docker-compose.yamlOrquestación de servicios

README.md ..Documentación

A.3. Manual del programador
El código está modularizado en servicios Docker, cada uno con un propósito

concreto. La lógica del sistema sigue una arquitectura basada en microservicios.
Los puntos clave para desarrolladores son:

persistence-worker: contiene la lógica de ingestión MQTT, validación
con JSON Schema, cálculo de hashes y escritura en Delta Lake.

blockchain: define y despliega el contrato inteligente en una red local
(Hardhat o Ganache).

back-api y delta-reader: exponen servicios GraphQL/REST para acceder
a los datos.

iot-chain-front: permite consultar y verificar los datos vía interfaz gráfi-
ca.

A.4. Compilación, instalación y ejecución del proyecto 89

Las dependencias de Python se gestionan con Poetry. El sistema puede
iniciarse completamente mediante Docker Compose.

A.4. Compilación, instalación y ejecución del

proyecto
Para iniciar el entorno completo en desarrollo, se requiere tener instalado

Docker y Docker Compose.

Inicio completo del sistema
Para facilitar el despliegue del sistema en entornos de desarrollo y pruebas, se

ha definido una configuración basada en Docker Compose que permite levantar
todos los servicios principales de forma automatizada. Esta aproximación garan-
tiza la reproducibilidad del entorno, simplifica la instalación de dependencias y
facilita la ejecución coordinada de los diferentes módulos del sistema.

La instrucción que se muestra a continuación construye las imágenes nece-
sarias (en caso de que no existan localmente) y lanza todos los contenedores
definidos en el archivo docker-compose.yaml.

docker compose up --build

Al ejecutar este comando, se pondrán en marcha los siguientes componentes
clave de la arquitectura:

Broker MQTT (Mosquitto): encargado de recibir los mensajes de los
dispositivos IoT.

Almacenamiento (MinIO + Delta Lake): infraestructura de almacena-
miento escalable y compatible con S3.

Contrato blockchain (Ganache): red Ethereum local para registrar
huellas digitales (hashes).

Backend y frontend: servicios de API (FastAPI + GraphQL) y aplicación
web (Angular) para visualización e interacción.

90 Apéndice A. Documentación técnica de programación

Ejecución de servicios auxiliares (perfil manual)
Además de los servicios principales, el sistema cuenta con herramientas

opcionales que pueden facilitar el desarrollo, la depuración y la exploración
de datos. Estos servicios no se lanzan por defecto, pero pueden activarse de
forma individual mediante el perfil manual definido en docker-compose.yaml.
Las variables de entorno utilizadas en dicho archivo disponen de un valor por
defecto, pero pueden ser fácilmente sobrescritas si existen variables de entorno
definidas en el sistema en el momento de ejecutar el comando, lo que permite
adaptar el entorno sin necesidad de modificar los ficheros de configuración.

Por ejemplo, si se desea cambiar el valor por defecto de la variable
BLOCKCHAIN_RPC_URL, se puede ejecutar el siguiente comando:

BLOCKCHAIN_RPC_URL=http://localhost:8545 \\

docker compose --profile manual up expedition

En este caso, el valor proporcionado sobrescribirá el definido por defecto en
el archivo docker-compose.yaml, sin necesidad de modificarlo manualmente.

De forma alternativa, es posible definir variables de entorno de manera
persistente mediante un archivo .env en la raíz del proyecto. Docker Compose
las detectará automáticamente al iniciar los servicios. Por ejemplo, el siguiente
contenido en un archivo .env establecerá la URL del nodo blockchain:

BLOCKCHAIN_RPC_URL=http://localhost:8545

DATA_LAKE_BUCKET=trace-data

...

Este enfoque permite personalizar el entorno de ejecución sin modificar
directamente el archivo docker-compose.yaml, facilitando la portabilidad y el
versionado del proyecto.

Para ejecutar uno de estos servicios, se debe emplear el siguiente comando,
sustituyendo el nombre por el del servicio deseado:

docker compose --profile manual up mqtt-explorer

A.5. Pruebas del sistema 91

Entre los servicios auxiliares más destacados se encuentran:

MQTT Explorer: una herramienta con interfaz gráfica para inspeccionar
temas MQTT y los mensajes recibidos en tiempo real.

Expedition: explorador web para redes Ethereum locales, útil para visua-
lizar transacciones, bloques y contratos desplegados.

minio-mirror: servicio para crear una copia local de los datos almacena-
dos en MinIO, útil para análisis offline.

duckdb: entorno SQL interactivo que permite consultar datos en formato
Parquet o Delta directamente desde el sistema de archivos.

Estos servicios se inician de forma aislada, lo que permite activarlos única-
mente cuando se necesitan, sin afectar al resto de la infraestructura.

Ejecución manual del worker
En caso de querer ejecutar el módulo principal manualmente:

cd persistence-worker

poetry install

poetry run poe start-local

Opcionalmente, se puede usar:

poetry run poe publish-message

para enviar un mensaje de prueba MQTT.

A.5. Pruebas del sistema
El proyecto incorpora pruebas en varias capas:

Backend: pruebas unitarias con pytest para validación, hash y escritura.

92 Apéndice A. Documentación técnica de programación

Contratos inteligentes: pruebas con Hardhat (JavaScript) sobre red local.

Frontend: pruebas unitarias con Jasmine/Karma en Angular.

CI/CD: ejecución automática de tests mediante GitHub Actions en cada
push o pull request.

Apéndice B

Documentación de
usuario

B.1. Introducción
Este apéndice está dirigido a los usuarios finales del sistema, en especial

a aquellos que necesitan consultar los datos generados por dispositivos IoT,
verificar su integridad o interactuar con el sistema a través de su interfaz web. Se
describe el proceso de instalación, los requisitos necesarios y un manual básico
de uso orientado a usuarios no técnicos.

B.2. Requisitos de usuarios
Para utilizar la plataforma se requiere acceso a un navegador moderno y co-

nexión a la red donde esté desplegado el sistema. Las funcionalidades principales
disponibles para el usuario son:

Visualización de dispositivos IoT registrados.

Consulta de datos sensorizados almacenados.

Verificación de la integridad de los datos mediante blockchain.

Interacción con la interfaz web desarrollada en Angular.

93

94 Apéndice B. Documentación de usuario

No se requieren conocimientos técnicos sobre blockchain, IoT o big data
para la utilización básica del sistema.

B.3. Instalación
En entornos de producción, la instalación del sistema será realizada por

personal técnico. No obstante, para entornos de prueba o demostración, el
usuario puede clonar el repositorio y lanzar el sistema con Docker:

git clone https://github.com/javalon/iot-trace-chain.git

cd iot-trace-chain

docker compose up --build

Una vez desplegado, se puede acceder a la interfaz web a través de la URL:

http://localhost:4200

B.4. Manual del usuario
La interacción con el sistema se realiza a través de una interfaz web accesible

desde el navegador. A continuación, se describen los pasos principales para
comenzar a utilizarla, así como las funcionalidades disponibles.

Inicio de sesión
Para acceder al sistema, el usuario debe autenticarse con unas credenciales

predefinidas. Por defecto, se puede utilizar el siguiente usuario de prueba con
rol de administrador:

Usuario: john@doe.es

Contraseña: securepassword123

B.4. Manual del usuario 95

En la Figura B.1 se muestra la pantalla de inicio de sesión.

Figura B.1: Pantalla de inicio de sesión

Pantalla principal
Una vez autenticado, el usuario accede a la pantalla principal del sistema,

donde se resumen las opciones disponibles. Desde aquí puede navegar al listado
de usuarios, listado de dispositivos o consultar datos registrados.

Figura B.2: Interfaz principal tras el inicio de sesión

Visualización de dispositivos y datos
En la sección Datos, el usuario puede visualizar los dispositivos disponibles.

Al seleccionar uno, se accede a la vista de datos sensorizados almacenados. Estos
datos pueden incluir temperatura, posición geográfica u otras variables.

96 Apéndice B. Documentación de usuario

Figura B.3: Visualización de los datos de un dispositivo IoT

Verificación de integridad

Mediante los botones de verificación, el usuario puede iniciar la verificación
de los datos frente a la blockchain y comprobar si los datos almacenados han
sido alterados. El sistema realiza la verificación de integridad comparando los
datos y metadatos almacenados localmente con el hash raíz del árbol de Merkle
que fue previamente registrado en la blockchain. Para ello, se emplean pruebas
de Merkle (Merkle proofs) que permiten reconstruir el camino desde el dato
hasta la raíz, garantizando así que el dato no ha sido alterado desde su inserción
original. La Figura B.4 muestra la pantalla con los datos validados.

B.4. Manual del usuario 97

Figura B.4: Comprobación de integridad de los datos mediante blockchain

Esta verificación proporciona garantías de que los datos no han sido mani-
pulados desde su recepción, aportando transparencia y trazabilidad al sistema.

En la sección Blockchain Data se muestra la información relacionada con la
verificación de integridad del dato seleccionado, tal y como se puede observar
en la Figura B.5. Se incluyen los identificadores clave del registro, como el Tx
(hash de la transacción en blockchain), el Hash del dato concreto, el RecordId
asociado y el Merkle root, que representa el hash raíz del árbol de Merkle en el
que se agrupan los datos validados. Justo debajo, se presenta la Merkle proof en
formato JSON, que contiene los metadatos del algoritmo de hash utilizado (por
ejemplo, sha256), el tamaño del árbol y la secuencia de nodos (path) necesarios
para verificar criptográficamente que el dato pertenece al árbol cuya raíz está
registrada en la blockchain. Esta información permite validar la integridad
del dato sin necesidad de acceder al resto del conjunto de datos, garantizando
trazabilidad y seguridad.

98 Apéndice B. Documentación de usuario

Figura B.5: Detalle de los metadatos del dato y verificación en blockchain

Bibliografía

[1] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645–1660,
2013.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer Networks, 54(15):2787–2805, 2010.

[3] Ana Reyna, Cristian Martín, Jaime Chen, Enrique Soler, and Manuel Díaz.
On blockchain and its integration with iot. challenges and opportunities.
Future Generation Computer Systems, 88:173–190, 2018.

[4] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoc. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, pages 263–273, 2016.

[5] Pwint Phyu Khine and Zaw Wang. Data lake: A new ideology in big data
era. In 2018 6th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), volume 2, pages 311–315. IEEE, 2018.

[6] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart
contracts for the internet of things. IEEE Access, 4:2292–2303, 2016.

[7] SARTECO. Jornadas sarteco – sociedad de arquitectura y tecnología de
computadores. https://jornadassarteco.org/, 2025. Consultado en
julio de 2025.

[8] MQTT Organization. Mqtt - the standard for iot messaging. https://
mqtt.org/, 2025. Consultado en julio de 2025.

99

https://jornadassarteco.org/
https://mqtt.org/
https://mqtt.org/

100 Bibliografía

[9] JSON Schema. Json schema - a vocabulary that allows you to annotate and
validate json documents. https://json-schema.org/, 2025. Consultado
en julio de 2025.

[10] Delta Lake Project. Delta lake: Open-source storage framework for reliable
data lakes. https://delta.io/, 2025. Consultado en julio de 2025.

[11] Wikipedia. Contrato inteligente. https://es.wikipedia.org/wiki/
Contrato_inteligente, 2025. Consultado en julio de 2025.

[12] IoT Analytics. State of iot summer 2024 – number of connected iot devices.
Press release, 2024. 16.6 B devices in 2023; 18.8 B forecast for 2024; 40 B by
2030; accessed July 2025.

[13] Estuary. 72+ eye-opening iot statistics, facts, & trends for 2024. Online
article, 2024. Accessed July 2025.

[14] PowerData. ¿qué es big data? https://www.powerdata.es/big-data,
2025. Consultado en julio de 2025.

[15] IBM. ¿qué es blockchain? https://www.ibm.com/es-es/topics/
blockchain, 2025. Consultado en julio de 2025.

[16] AmazonWeb Services. Amazon simple storage service (amazon s3). https:
//aws.amazon.com/es/s3/, 2025. Consultado en julio de 2025.

[17] Michael Armbrust, Tathagata Das, Shixuan Zhu, Reynold Xin Hernandez,
et al. Delta lake: High-performance acid table storage over cloud object
stores. In Proceedings of the VLDB Endowment, volume 13, pages 3411–3424,
2020.

[18] Apache Software Foundation. Apache parquet. https://parquet.apache.
org/, 2025. Consultado en julio de 2025.

[19] KeepCoding. ¿qué son los algoritmos de consen-
so en blockchain? https://keepcoding.io/blog/
que-son-algoritmos-de-consenso-blockchain/, 2025. Consul-
tado en julio de 2025.

[20] Wikipedia. Sellado de tiempo confiable. https://es.wikipedia.org/
wiki/Sellado_de_tiempo_confiable, 2025. Consultado en julio de 2025.

[21] Wikipedia. Árbol de merkle. https://es.wikipedia.org/wiki/%C3%
81rbol_de_Merkle, 2025. Consultado en julio de 2025.

https://json-schema.org/
https://delta.io/
https://es.wikipedia.org/wiki/Contrato_inteligente
https://es.wikipedia.org/wiki/Contrato_inteligente
https://www.powerdata.es/big-data
https://www.ibm.com/es-es/topics/blockchain
https://www.ibm.com/es-es/topics/blockchain
https://aws.amazon.com/es/s3/
https://aws.amazon.com/es/s3/
https://parquet.apache.org/
https://parquet.apache.org/
https://keepcoding.io/blog/que-son-algoritmos-de-consenso-blockchain/
https://keepcoding.io/blog/que-son-algoritmos-de-consenso-blockchain/
https://es.wikipedia.org/wiki/Sellado_de_tiempo_confiable
https://es.wikipedia.org/wiki/Sellado_de_tiempo_confiable
https://es.wikipedia.org/wiki/%C3%81rbol_de_Merkle
https://es.wikipedia.org/wiki/%C3%81rbol_de_Merkle

Bibliografía 101

[22] Kraken Learn team. What is a blockchain gas fee? https://www.kraken.
com/learn/what-is-a-blockchain-gas-fee, 2023. Consultado en julio
de 2025.

[23] Javier Alonso-Núñez, Daniel López-Martínez, and Diego R. Llanos. Arqui-
tectura segura para la trazabilidad basada en iot y blockchain. In XXXV
Jornadas de Paralelismo (JP2025), Sevilla, Spain, 2025. Universidad de Sevi-
lla.

https://www.kraken.com/learn/what-is-a-blockchain-gas-fee
https://www.kraken.com/learn/what-is-a-blockchain-gas-fee

	Índice general
	Índice de figuras
	Índice de tablas
	1. Introducción
	Contexto
	Motivación
	Objetivos
	Organización de la memoria

	2. Conceptos teóricos
	Internet de las Cosas (IoT)
	Protocolo MQTT
	Validación de datos con JSON Schema
	Almacenamiento distribuido con Delta Lake
	Blockchain para trazabilidad e integridad
	Árboles de Merkle
	Contratos inteligentes y Web3

	3. Técnicas y herramientas
	Metodología de desarrollo
	Entorno de desarrollo
	Tecnologías utilizadas
	Justificación de las elecciones tecnológicas
	Resumen del capítulo

	4. Análisis y Plan de Proyecto
	Análisis de requisitos
	Plan de proyecto

	5. Diseño
	Diseño de la Arquitectura del Sistema
	Diseño de la Aplicación Backend
	Diseño de la Interfaz de Usuario (Frontend)

	6. Implementación
	Implementación Técnica

	7. Pruebas
	Pruebas Realizadas

	8. Conclusiones y Líneas de trabajo futuras
	Conclusiones
	Trabajo Futuro

	Apéndices
	Documentación técnica de programación
	Introducción
	Estructura de directorios
	Manual del programador
	Compilación, instalación y ejecución del proyecto
	Pruebas del sistema

	Documentación de usuario
	Introducción
	Requisitos de usuarios
	Instalación
	Manual del usuario

	Bibliografía

