Universidades de Burgos, Ledn y
Valladolid

Master universitario en Inteligencia de Negocio y Big
Data en Entornos Seguros

TRABAJO FIN DE MASTER

14 DE JULIO DE 2025

Validacion, almacenamiento y
verificacion de integridad de

datos IoT con tecnologias Big
Data y Blockchain

Autor:
Javier Alonso Nuiiez
Tutores:

Diego R. Llanos Ferraris
Carlos E. Vivaracho Pascual

Resumen

El presente Trabajo Fin de Master propone una arquitectura distribuida
para la gestion segura de datos generados por dispositivos IoT. El sistema
permite recibir datos mediante el protocolo MQTT, validarlos estructural-
mente con esquemas JSON, almacenarlos de forma escalable y eficiente
mediante Delta Lake, y registrar huellas digitales en una red blockchain
para garantizar su integridad y trazabilidad. La solucion ha sido disefiada
e implementada utilizando tecnologias como PySpark, AWS S3 y Smart
Contracts, y permite analizar el ciclo completo de vida de los datos en en-
tornos distribuidos. Este trabajo surge a partir de una contribucién previa
presentada en las jornadas SARTECO 2025, y representa una evolucion del

mismo hacia una arquitectura funcional y evaluable en escenarios reales.

Descriptores

Internet de las Cosas (IoT), validacion de datos, Delta Lake, Blockchain,

Trazabilidad, Smart Contracts, MQTT, JSON Schema

1I

Abstract

This Master’s Final Project proposes a distributed architecture for
the secure management of data generated by IoT devices. The system is
capable of receiving data via the MQTT protocol, validating its structure
using JSON Schemas, storing it efficiently and scalably through Delta Lake,
and recording digital fingerprints on a blockchain to ensure data integrity
and traceability. The solution was designed and implemented using tech-
nologies such as PySpark, AWS S3, and Smart Contracts, and it enables
the analysis of the complete data lifecycle in distributed environments.
This work builds upon a previous contribution presented at the SARTECO
2025 conference and extends it into a functional architecture suitable for

real-world scenarios.

Keywords

Internet of Things (IoT), Data validation, Delta Lake, Blockchain, Tra-
ceability, Smart Contracts, MQTT, JSON Schema

Agradecimientos

Este trabajo no habria sido posible sin todas las personas que, de una

forma u otra, me han acompafiado en el camino.

A mi pareja, por el carifio incondicional, los &nimos cuando mas los
necesitaba y por estar siempre al otro lado del teclado, aunque fueran las

tantas.

Gracias a mi familia, por estar siempre ahi, por enseflarme con el
ejemplo y por hacerme sentir que todo esfuerzo tiene sentido cuando se

hace desde el corazon.

A mis amigos, por su paciencia, por las risas y por esos ratos de des-
conexion tan necesarios. También por saber escuchar, incluso cuando yo

solo hablaba de codigo, entregas y fechas limite.

A mis profesores, por ensefiarme mucho mas que teoria: por su pasion,
su tiempo y su capacidad de motivar. Y sobre todo, a los tutores de este

trabajo, que me apoyaron, ayudaron y aconsejaron en todo momento.

Y a todas esas personas que han pasado por mi vida, dejando huella
de una forma u otra. Porque de cada una he aprendido algo, y porque este

trabajo también es, en parte, gracias a ellas.

II1

Indice general

[indice general|

lindice de figuras|

lIndice de tablas

[1. Introduccién|
1. Contextol
1.2. Motivaciéon|
[1.3. Objetivos|
[1.4. Organizacion de la memoria|

[2. Conceptos teoricos|
[2.1. Internet de las Cosas (IoT)
[2.2. Protocolo MQTT|.
[2.3. Validacién de datos con JSON Schema) . . .
2.4. Almacenamiento distribuido con Delta Lake
2.5. Blockchain para trazabilidad e integridad| .
2.6. Arbolesde Merklel
[2.7. Contratos inteligentes y Web3|

13. Técnicas y herramientas|
13.1. Metodologia de desarrollo|.
3.2. Entorno de desarrollol
13.3. Tecnologias utilizadas|
13.4. Justificacion de las elecciones tecnologicas|

v

IV

VI

VII

11
14
16
18
21

Indice general

Resumen del capitulo]

4. Analisis y Plan de Proyecto]
4.1. Andlisis de requisitos|
4.2. Plande proyecto| L.

[5.1. Disefio de la Arquitectura del Sistema|
[5.2. Diserio de la Aplicacién Backend|.
/5.3. Disefio de la Interfaz de Usuario (Frontend)|

6. Implementacion|
l6.1. Implementacién Técnica]

7.1. Pruebas Realizadas|.

8. Conclusiones y Lineas de trabajo futuras|
B.1. Conclusiones.
[8.2. TrabajoFuturo|

'Apéndice A Documentacion técnica de programacion
[A.1. Introduccién|
|A.2. Estructura de directorios]
IA.3. Manual del programador|
IA.4. Compilacién, instalacion y ejecucién del proyecto]
[A5. Pruebasdelsistemal

'Apéndice B Documentacion de usuario
B.1. Introduccién|
B.2. Requisitos de usuarios|.

B.3. Instalacién|,
B.4. Manualdelusuariol

Bibliografia

33

35
35
44

51
51
53
55

59
59

67
67

81
81
82

84

87
87
88
38
89
91

93
93
93
94
94

99

Indice de figuras

[2.1. Diagrama de unarbolde Merkle|
4.2. Diagramadecasosdeuso|.
|4.3. Diagrama del caso de uso de consultar datos|
|4.4. Diagrama del caso de uso de verificar integridad|
|4.5. Diagrama del caso de uso de envio de datos|
[4.6. Diagrama de Gantt del proyecto|
5.7.

Arquitectura general del sistema propuesto|

5.8. Wireframe: visualizacion de datos|

5.9. Wireframe: detalle de validacion del dato en blockchain|

[7.10. Resultado de la ejecucion de pruebas en GitHub Actions|.

B.1. Pantalladeiniciodesesién|

B.2. Interfaz principal tras el inicio de sesién|.
IB.3. Visualizacion de los datos de un dispositivo IoT|.
IB.4. Comprobacion de integridad de los datos mediante blockchain| . . .
IB.5. Detalle de los metadatos del dato y verificacion en blockchain|

VI

Indice de tablas

[1.1. Relacion entre objetivos y capitulos del documento| 4
2.2. Comparativa entre TSA y blockchain para la verificacion de integridad| 17
3.3. Resumen de herramientas utilizadas y su funcién en el sistema| . . . 34
4.4. Caso de uso UC1: Consultardatos] 40
4.5. Caso de uso UC2: Verificar integridad| 42
4.6. Caso deuso UC3: Enviodedatos| 44
4.7. Planificacién temporal y estimacién horaria del proyecto| 45
4.8. Presupuesto estimado del proyecto|. 0L 48
4.9. Analisis DAFO del proyecto|. 49
7.10. Relacion entre pruebas realizadas y requisitos validados| 78

VII

Introduccion

1.1. Contexto

En los dltimos afios, el crecimiento exponencial de los dispositivos conec-
tados a Internet, especialmente en el ambito del Internet de las Cosas (IoT), ha
generado una enorme cantidad de datos que requieren ser procesados, validados
y almacenados de manera segura y eficiente [1] [2]. Esta proliferacion de datos
plantea importantes desafios en cuanto a su integridad, trazabilidad y fiabilidad,
especialmente cuando se utilizan en contextos criticos como la automatizacion
industrial, la monitorizacion ambiental o la toma de decisiones en tiempo real

13].

En este contexto, surge la necesidad de desarrollar sistemas capaces de validar
la estructura y consistencia de los datos en tiempo real, garantizar su almacena-
miento inmutable y proporcionar mecanismos para verificar su autenticidad a
lo largo del tiempo. Tecnologias como los esquemas JSON, los data lakes y las
blockchains permiten construir soluciones robustas a estos desafios [4] [5] [6],
aunque su integracion efectiva presenta dificultades técnicas y arquitectonicas
no triviales.

El presente Trabajo Fin de Master se enmarca dentro de esta problematica y
tiene su origen en una contribucion previa realizada a las jornadas SARTECO
2025 [7] con el titulo “Arquitectura segura para la trazabilidad basada en [oT y
blockchain”, donde se propuso un sistema para la validaciéon y almacenamiento
seguro de datos provenientes de dispositivos IoT, registrando ademas su in-
tegridad mediante blockchain. A partir de esta base, el objetivo principal de
este TFM es desarrollar, implementar y evaluar una arquitectura completa que
combine recepcion de datos por MQTT [8]], validacion mediante JSON Schema

2 Introduccion

[9], persistencia con Delta Lake [10] y registro de huellas digitales en una red
blockchain usando Smart Contracts [11].

1.2. Motivacion

En la actualidad, el crecimiento exponencial de dispositivos conectados
mediante tecnologias IoT ha generado un volumen masivo de datos que se
utilizan en &mbitos criticos como la automatizacion industrial, la monitorizacién
ambiental o la gestion de infraestructuras inteligentes [12] [13]. Sin embargo,
la utilidad de estos datos depende directamente de su validez, trazabilidad e
integridad.

Muchas soluciones actuales priorizan la captura o visualizacion de datos, pero
descuidan aspectos fundamentales como la validacion estructural, la persistencia
fiable a gran escala o la verificacion de su autenticidad a lo largo del tiempo.
Esto representa un riesgo significativo cuando los datos se utilizan para tomar
decisiones automatizadas o se exigen como evidencia en auditorias o entornos
reglamentados.

En este contexto, surge la necesidad de disefiar una arquitectura capaz de:

» Validar automaticamente la estructura y consistencia de los datos desde el
origen.

» Almacenarlos eficientemente en un sistema escalable que permita su ex-
plotacion futura.

= Garantizar su integridad mediante mecanismos verificables e inmutables
como blockchain.

Este Trabajo Fin de Méaster se motiva por esta problematica real, y busca dar
una respuesta técnica y viable mediante la integracion de tecnologias Big Data
[14] (como Delta Lake [10]) y blockchain [15] (mediante contratos inteligentes),
combinadas con protocolos ligeros como MQTT y estandares de validaciéon como
JSON Schema.

1.3. Objetivos

El objetivo general de este Trabajo Fin de Master es disefiar e implementar
una arquitectura que permita la validacion, almacenamiento y verificacion de

1.3. Objetivos 3

integridad de datos generados por dispositivos IoT, garantizando su trazabilidad
a lo largo del tiempo mediante tecnologias Big Data y blockchain.

Para alcanzar este objetivo general, se definen a continuacion una serie de
objetivos especificos, organizados en dos bloques: los objetivos funcionales,
relacionados con los requisitos del sistema a construir; y los objetivos técnicos,
centrados en los retos de disefio e implementacion del proyecto.

1.3.1. Objetivos funcionales

= Recepcion de datos IoT a través del protocolo MQTT, de forma asincrona
y tolerante a fallos.

» Validacion estructural de los datos mediante esquemas JSON (JSON Sche-
ma), asegurando la conformidad con un modelo predefinido.

» Almacenamiento eficiente y escalable de los datos validados utilizando
Delta Lake sobre un sistema de ficheros distribuido (AWS S3 [16]).

= Registro de huellas digitales (hashes) de los datos validados en una red
blockchain para garantizar su integridad y trazabilidad.

» Persistencia de metadatos y resultados de validacion, permitiendo su
posterior analisis o auditoria.

» Evaluacion del sistema mediante pruebas funcionales y de rendimiento
que permitan medir su eficacia y eficiencia.

1.3.2. Objetivos técnicos

» Disefiar una arquitectura modular y desacoplada, compuesta por servicios
independientes e interconectados.

» Aplicar buenas practicas de ingenieria de datos: formatos eficientes (Par-
quet), almacenamiento en capas (bronze, silver, gold) y validacion tempra-
na.

» Integrar tecnologias heterogéneas como PySpark, Web3.py, AWS S3, MQTT
y JSON Schema de forma coordinada.

= Asegurar la robustez y tolerancia a fallos ante caidas de servicios o errores
en los datos.

4 Introduccion

= Optimizar el rendimiento del sistema: latencia de validacion, throughput
de datos y tiempo de escritura en blockchain.

= Fomentar la reproducibilidad del despliegue mediante herramientas de
automatizacion (Docker, scripts) y documentacion técnica clara.

= Implementar un entorno local que permita el despliegue y prueba de con-
tratos inteligentes sobre una blockchain simulada, facilitando la validacién
del sistema sin costes asociados.

1.3.3. Resumen de objetivos

En la siguiente tabla[1.1]se muestra una correspondencia entre los objetivos
definidos y los capitulos donde se desarrollan principalmente:

Objetivo Capitulo
Recepcion de datos via MQTT Capitulo 6.1
Validacién con JSON Schema Capitulo 6.1
Almacenamiento en Delta Lake sobre AWS S3 | Capitulo 6.1
Registro en blockchain con Web3.py Capitulo 6.1
Evaluacion del sistema Capitulo 6.2
Disefio modular y buenas practicas de arquitec- | Capitulo 5.1
tura

Integracion tecnologica (PySpark, Web3.py, etc.) | Capitulo 3.3
Tolerancia a fallos y robustez Capitulo 6.2
Optimizacién y rendimiento Capitulo 6.2
Reproducibilidad del entorno Anexos

Tabla 1.1: Relacion entre objetivos y capitulos del documento

1.4. Organizacion de la memoria

Este documento se estructura de la siguiente manera: en el capitulo 1 se
introduce el trabajo, incluyendo su motivacion y los objetivos del proyecto; en el
capitulo 2 se presentan los conceptos tedricos fundamentales relacionados con
el ambito del proyecto; en el capitulo 3 se describen las técnicas y herramientas
utilizadas durante el desarrollo; en el capitulo 4 se detalla el analisis realizado
y la planificacion del proyecto; en el capitulo 5 se recoge el disefio del sistema,
justificando las decisiones arquitectonicas adoptadas; en el capitulo 6 se describe
la implementacion técnica y las pruebas realizadas; finalmente, en el capitulo

1.4. Organizacion de la memoria 5

7 se exponen las conclusiones obtenidas y las posibles lineas de trabajo futuro.
Ademas, se incluyen dos apéndices con el manual del programador y el manual
de usuario, respectivamente.

En este capitulo se ha contextualizado el problema que aborda el proyecto,
motivando la necesidad de una arquitectura segura y escalable para el tratamien-
to de datos IoT. Ademas, se han definido los objetivos del trabajo y su alcance. A
continuacion, en el siguiente capitulo, se presentan los fundamentos teéricos y
conceptuales que sustentan las decisiones tecnologicas adoptadas.

Conceptos teoricos

En este capitulo se presentan los conceptos fundamentales necesarios para
la comprension y desarrollo del proyecto. Se abordan las tecnologias clave
involucradas en la arquitectura propuesta, asi como los mecanismos utilizados
para garantizar la integridad y trazabilidad de los datos.

2.1. Internet de las Cosas (IoT)

El Internet de las Cosas (IoT, por sus siglas en inglés) se ha consolidado como
una de las tecnologias mas relevantes en el ambito de los sistemas distribuidos.
Su capacidad para interconectar dispositivos fisicos que recopilan, procesan y
transmiten datos ha permitido el desarrollo de soluciones inteligentes en sectores
tan diversos como la industria, la salud, la logistica o la gestion medioambiental.

2.1.1. Definicion y caracteristicas principales

El IoT puede definirse como una red de objetos fisicos equipados con senso-
res, software y conectividad, que les permite recopilar e intercambiar datos a
través de Internet u otras redes. Estos objetos, también conocidos como nodos
IoT, pueden actuar de forma autébnoma o cooperativa, y estan disefiados para
monitorear su entorno, tomar decisiones o activar procesos en funcioén de los
datos capturados.

Las principales caracteristicas del IoT son:

8 Conceptos tedricos

= Conectividad ubicua: los dispositivos estan permanentemente conecta-
dos a redes de comunicacion, ya sea WiFi, 4G/5G, LoRa, o redes de corto
alcance como Zigbee o Bluetooth.

» Sensores y actuadores: la combinacion de sensores y actuadores permite
captar parametros del entorno fisico (temperatura, ubicacion, humedad,
etc.) y responder con acciones fisicas.

= Procesamiento local o distribuido: muchos nodos incorporan micro-
controladores que permiten realizar un preprocesamiento de los datos
antes de transmitirlos.

» Escalabilidad: la arquitectura del IoT esta disefiada para crecer con facili-
dad, integrando nuevos dispositivos sin comprometer la funcionalidad del
sistema.

2.1.2. Aplicaciones en trazabilidad y gestion de residuos

En el contexto de este proyecto, el IoT se aplica al seguimiento y trazabilidad
de residuos, mediante la instalacion de dispositivos sensores en contenedores
que permiten capturar datos en tiempo real sobre su estado y localizacion. Estas
aplicaciones ofrecen multiples beneficios:

» Optimizacién de rutas de recogida: gracias a la monitorizacion del
nivel de llenado de los contenedores.

» Prevencion de riesgos: mediante sensores que miden temperatura o
gases peligrosos.

» Auditoria de operaciones: al registrar automaticamente eventos como
el vaciado o traslado del contenedor.

Estos datos constituyen una fuente valiosa de informacién para mejorar
los procesos logisticos, garantizar el cumplimiento normativo y reducir costes
operativos.

2.1.3. Limitaciones y desafios actuales

Pese a sus multiples ventajas, la adopcion del IoT plantea diversos retos
técnicos y operativos que deben ser cuidadosamente abordados en entornos
reales. Uno de los principales desafios es la conectividad intermitente, ya que en

2.2. Protocolo MQTT 9

muchos contextos urbanos o industriales no se dispone de una cobertura de red
estable o continua. Esta limitacion obliga a disefiar estrategias de almacenamien-
to local de los datos o mecanismos de retransmision diferida que garanticen la
persistencia de la informacion. Por otro lado, el consumo energético representa
una preocupacion critica, especialmente en dispositivos alimentados por bateria.
Es necesario optimizar su funcionamiento mediante técnicas de bajo consumo
como el modo deep sleep y limitar la frecuencia de transmision a lo estrictamente
necesario. Ademas, la seguridad de los datos se convierte en un factor clave,
dado que estos dispositivos operan en entornos abiertos susceptibles a ataques
como la suplantacion de identidad, la interceptacion de datos o su alteracion
maliciosa. Finalmente, el crecimiento exponencial del nimero de dispositivos
plantea importantes retos en cuanto a gestion y escalabilidad, ya que se requiere
una infraestructura capaz de administrar de forma remota su configuracion,
credenciales y actualizaciones seguras.

Estos desafios justifican la integracion de tecnologias complementarias como
protocolos de comunicacion eficientes (por ejemplo, MQTT), mecanismos de
validacion estructural (como JSON Schema) y sistemas de trazabilidad inmutable
basados en blockchain, que seran analizados en los apartados siguientes.

2.2. Protocolo MQTT

MQTT (Message Queuing Telemetry Transport) es un protocolo de mensaje-
ria ligero disefiado para comunicaciones maquina a maquina (M2M) y sistemas
IoT. Su eficiencia en el uso del ancho de banda, simplicidad y bajo consumo
energético lo han convertido en uno de los protocolos mas adoptados para la
transmision de datos desde sensores y dispositivos conectados.

2.2.1. Modelo publicador/suscriptor

A diferencia del modelo cliente-servidor tradicional, el protocolo MQTT se
basa en una arquitectura de publicador-suscriptor, donde los dispositivos IoT,
actuando como publicadores, envian mensajes a uno o varios topics, mientras
que otros dispositivos o servicios se suscriben a esos mismos topics para recibir
unicamente la informacion relevante. El nicleo de esta arquitectura es el broker,
que actia como intermediario y gestor de los mensajes, desacoplando a los
emisores de los receptores y simplificando las comunicaciones.

Este enfoque aporta varias ventajas significativas en entornos distribuidos.
En primer lugar, ofrece independencia temporal entre los publicadores y los

10 Conceptos tedricos

suscriptores, que no necesitan estar conectados al mismo tiempo para que la
comunicacion tenga lugar. En segundo lugar, permite una alta escalabilidad, ya
que multiples clientes pueden suscribirse simultaneamente a los mismos topicos
sin que ello incremente la carga sobre los publicadores. Por ultimo, proporciona
una gestion simplificada de la distribucion de mensajes, ya que es el broker
quien se encarga de enrutar los mensajes a los destinatarios adecuados segun
las reglas de suscripcion definidas.

2.2.2. Ventajas en entornos IoT

MQTT ha sido disefiado teniendo en cuenta las restricciones inherentes a
los entornos 10T, en los que la eficiencia en el uso de recursos es una prioridad.
Una de sus principales ventajas es su bajo consumo de ancho de banda, ya
que los mensajes transmitidos tienen un tamarfio reducido y la cabecera del
protocolo puede ocupar tan solo 2 bytes, lo que resulta especialmente util en
redes limitadas o de baja capacidad. Ademas, el protocolo esta preparado para
funcionar de forma eficiente en entornos con conectividad inestable, siendo
capaz de tolerar fallos temporales y reconectarse automaticamente cuando la
red lo permite, sin pérdida de informacion.

Otro aspecto destacable es la disponibilidad de niveles de calidad de servicio
(QoS) configurables, que permiten adaptar el nivel de fiabilidad de la entrega
de mensajes segun los requerimientos del sistema, desde una entrega minima
garantizada hasta una entrega exactamente una vez, lo cual proporciona flexi-
bilidad en el disefio del sistema. Asimismo, MQTT ofrece un amplio soporte
en multiples plataformas, con implementaciones en diversos lenguajes de pro-
gramacion y entornos embebidos, lo que facilita su integracion en una gran
variedad de dispositivos y arquitecturas.

Gracias a estas caracteristicas, MQTT se presenta como una solucién es-
pecialmente adecuada para escenarios en los que los dispositivos presentan
conectividad limitada, baja capacidad de procesamiento o restricciones energéti-
cas, como es el caso de los nodos IoT empleados en este proyecto.

2.2.3. Limitaciones de seguridad y escalabilidad

A pesar de sus multiples ventajas, el uso de MQTT también conlleva ciertas
limitaciones que deben considerarse cuidadosamente al disefiar sistemas seguros
y escalables. Una de las principales debilidades es su seguridad limitada por
defecto, ya que el protocolo no incorpora mecanismos nativos de cifrado ni
autenticacion robusta. Esto implica que, para garantizar la confidencialidad e

2.3. Validacion de datos con JSON Schema 11

integridad de los datos transmitidos, es necesario complementarlo con protocolos
adicionales como TLS o implementar soluciones de seguridad personalizadas en
las capas superiores del sistema.

Otra consideracion importante es el riesgo asociado al broker centralizado,
que actia como punto Unico de intermediaciéon en la comunicacion. Si este
componente no se despliega con redundancia o técnicas de balanceo de carga
adecuadas, puede convertirse en un cuello de botella o, peor atin, en un punto
unico de fallo o ataque que comprometa la disponibilidad del sistema completo.

Finalmente, la gestion de la autenticacion y la autorizacion de los dispositivos
y usuarios en arquitecturas a gran escala introduce una complejidad adicional.
Es necesario establecer mecanismos para controlar el acceso a los distintos topics
y garantizar que Unicamente entidades autorizadas puedan publicar o recibir
mensajes, lo cual requiere una configuracion cuidadosa y una infraestructura de
gestion solida.

En este proyecto, se ha optado por MQTT como protocolo de transporte
principal debido a su eficiencia y compatibilidad con dispositivos embebidos.
Sus limitaciones en materia de seguridad se abordan mediante mecanismos
adicionales, incluyendo la validacion estructural de datos, el almacenamiento
confiable en Data Lakes y el uso de blockchain para garantizar la integridad.

2.3. Validacion de datos con JSON Schema

La validacion de los datos en sistemas distribuidos es un paso critico para
garantizar su calidad, coherencia y adecuacion al modelo esperado. En entor-
nos IoT, donde los dispositivos pueden generar datos con estructuras variables
o erroneas, establecer mecanismos automaticos de validacién estructural es
esencial para evitar errores posteriores en el procesamiento, almacenamiento
o analisis de los datos. En este contexto, el estandar JSON Schema ofrece una
solucion robusta y ampliamente adoptada.

2.3.1. Introduccion al formato JSON

El formato JavaScript Object Notation (JSON) se ha convertido en uno de
los estandares mas utilizados para el intercambio de datos entre sistemas. Su
estructura ligera, basada en pares clave-valor y listas, facilita la interoperabilidad
entre distintos lenguajes de programacion y plataformas.

Un ejemplo sencillo de objeto JSON puede ser:

12 Conceptos tedricos

{
"deviceld": "abc123",
"timestamp”: 1684700000,
"data": {
"temperature”: 22.4,
"humidity”: 45
3
}

Este formato es facil de leer, manipular y transformar, lo que lo hace ideal
para sistemas IoT que requieren eficiencia en el envio y recepcién de datos.

2.3.2. JSON Schema como mecanismo de validacion

JSON Schema es una especificacion que permite definir de forma estructurada
las reglas que debe cumplir un documento JSON. A través de este esquema es
posible:

= Especificar los tipos de datos esperados (numeros, cadenas, objetos, etc.).

» Definir campos obligatorios (required) y opcionales.

= Establecer rangos validos, patrones de texto o formatos especificos.

» Anidar validaciones en objetos complejos y listas de elementos.

Un esquema JSON para validar el ejemplo anterior podria ser:

"type"”: "object”,
"required”: ["deviceld"”, "timestamp", "data"],
"properties”: {

"deviceId"”: { "type": "string" 3},

"timestamp”: { "type”: "integer" 1},

2.3. Validacion de datos con JSON Schema 13

"data"”: {
"type": "object”,
"required”: ["temperature”, "humidity"],
"properties”: {
"temperature”: { "type": "number" 3},

"humidity"”: { "type": "integer"” }

Este tipo de validacion es especialmente util en flujos de datos continuos,
permitiendo detectar errores tempranamente y rechazar mensajes malformados.

2.3.3. Ejemplos de uso y ventajas

La validacion estructural mediante JSON Schema aporta una serie de ven-
tajas clave en arquitecturas como la desarrollada en este trabajo. En primer
lugar, permite la deteccion temprana de errores, ya que los mensajes que no
cumplen con la estructura esperada pueden ser descartados antes de llegar a
las etapas de almacenamiento o procesamiento, evitando asi la propagacion de
datos inconsistentes en el sistema.

Ademas, esta validacion garantiza la homogeneidad de los datos, al imponer
una estructura unificada sobre todos los mensajes recibidos, lo que facilita
su posterior analisis y tratamiento. Otra ventaja importante es la facilidad de
mantenimiento, ya que los esquemas definidos en JSON Schema son facilmente
legibles y modificables, lo que permite adaptarse con rapidez a cambios en los
dispositivos o a nuevos requisitos del sistema sin necesidad de reescribir grandes
porciones del codigo.

Por dltimo, la validacion estructural permite la automatizacion del control de
calidad, al integrarse de forma transparente en los flujos de ingesta y persistencia
de datos. Esto elimina la necesidad de intervencién manual en la verificaciéon de
formatos, haciendo el sistema mas eficiente, fiable y escalable.

14 Conceptos tedricos

En este proyecto, JSON Schema se utiliza como primer mecanismo de control
tras la recepcién de datos por MQTT. Solo aquellos mensajes que superan
la validaciéon son almacenados en el Data Lake y registrados en blockchain,
asegurando asi una trazabilidad basada en datos fiables y estructurados.

2.4. Almacenamiento distribuido con Delta Lake

En arquitecturas que manejan grandes volimenes de datos generados por
dispositivos IoT, es fundamental contar con sistemas de almacenamiento que
permitan escalar horizontalmente, mantener integridad transaccional y ofrecer
flexibilidad en las consultas. Delta Lake es una soluciéon que extiende las capaci-
dades de los data lakes tradicionales, afiadiendo caracteristicas propias de las
bases de datos relacionales, como transacciones ACID, manejo de versiones y
consistencia de los datos.

2.4.1. Data Lake frente a base de datos tradicional

Un Data Lake es un repositorio centralizado que permite almacenar grandes
cantidades de datos, estructurados o no estructurados, en su formato original. A
diferencia de las bases de datos tradicionales, no impone un esquema rigido al
momento de la escritura, lo que lo convierte en una solucion ideal para flujos
IoT con formatos de datos variables o en evolucion.

Sin embargo, los data lakes convencionales presentan ciertas limitaciones
[17]:

» No garantizan integridad transaccional.

= No permiten versiones nativas de los datos.

» Pueden presentar problemas de consistencia en operaciones concurrentes.

Para superar estas limitaciones sin perder las ventajas del almacenamiento

distribuido, surge Delta Lake como una capa de abstraccion que aporta funcio-
nalidades adicionales.

2.4.2. Formato Parquet y almacenamiento en AWS S3

En este proyecto se ha optado por el uso del formato Apache Parquet [18],
un estandar de almacenamiento columnar disenado especificamente para opti-

2.4. Almacenamiento distribuido con Delta Lake 15

mizar el analisis de grandes volimenes de datos. Entre sus principales ventajas
se encuentra su capacidad para realizar un almacenamiento eficiente median-
te técnicas de compresion y codificacion a nivel de columnas, lo que reduce
significativamente el espacio ocupado en disco sin sacrificar rendimiento.

Ademas, Parquet permite un acceso rapido a subconjuntos de datos, ya
que su estructura columnar facilita la lectura selectiva de campos, evitando la
necesidad de cargar la totalidad del conjunto de registros en memoria. Esta
caracteristica es especialmente util en operaciones analiticas intensivas o en
entornos distribuidos donde el rendimiento de lectura es critico.

Finalmente, su amplia compatibilidad con herramientas del ecosistema Big
Data, como Apache Spark, Trino o Hive, lo convierte en una opcién ideal para
arquitecturas que requieren integracion flexible con motores de procesamiento
de datos a gran escala.

Parquet se integra perfectamente con soluciones de almacenamiento esca-
lable como AWS S3, que ofrece alta disponibilidad, durabilidad y soporte para
entornos de produccion en la nube. Para pruebas locales o despliegues de bajo
coste, se puede utilizar MinIO como alternativa compatible con el API de S3.

2.4.3. Delta Lake: transacciones ACID sobre Data Lakes

Delta Lake actia como una capa de almacenamiento sobre ficheros Parquet
que afnade soporte para operaciones transaccionales en arquitecturas de tipo
data lake. Su principal aportacion es la capacidad de realizar transacciones ACID,
lo que garantiza que las operaciones de escritura se ejecuten de forma atéomica y
consistente, evitando asi lecturas intermedias, estados corruptos o pérdidas de
integridad en entornos concurrentes.

Otra funcionalidad destacada es el control de versiones, que permite mante-
ner un historial completo de los cambios realizados sobre los datos y consultar
su estado en cualquier punto anterior en el tiempo, una caracteristica conocida
como time travel. Este mecanismo resulta especialmente util para auditorias,
analisis retrospectivos o recuperacion ante errores.

Delta Lake también proporciona un manejo eficiente de archivos, mediante
la compactacion automatica de pequefios ficheros generados por escrituras suce-
sivas y la optimizacion estructural de los datos, lo que mejora considerablemente
el rendimiento de las consultas. Ademas, ofrece una integraciéon nativa con
Apache Spark, lo que posibilita ejecutar operaciones analiticas complejas de
forma eficiente y escalable, sin necesidad de mover los datos fuera del entorno
distribuido de procesamiento.

16 Conceptos tedricos

En el contexto de este proyecto, Delta Lake actiia como la capa de persis-
tencia principal, almacenando los datos validados provenientes del sistema IoT.
La integridad y trazabilidad de los datos se refuerzan posteriormente con el
registro de sus huellas digitales en una red blockchain, estableciendo un vinculo
verificable entre el contenido del Data Lake y su representacion inmutable en la
cadena de bloques.

2.5. Blockchain para trazabilidad e integridad

La tecnologia blockchain ha transformado el modo en que se garantiza la
integridad, trazabilidad y transparencia en entornos distribuidos. Originalmente
concebida como soporte para criptomonedas, su uso se ha extendido a sectores
como la logistica, la gestion documental, la sanidad y, como en este caso, el [oT.
Su capacidad para almacenar registros inmutables de forma descentralizada la
convierte en una aliada clave para sistemas que requieren confiabilidad en los
datos.

2.5.1. Principios basicos de blockchain

Una blockchain puede definirse como un libro de registros distribuido y
vinculado criptograficamente, cuya estructura se organiza en bloques que al-
macenan transacciones o datos de forma secuencial e inmutable. Cada uno de
estos bloques contiene un conjunto de transacciones o datos validados, lo que
garantiza que la informacion registrada ha sido previamente verificada segun
las reglas de consenso de la red.

Ademas, cada bloque incluye un hash del bloque anterior, lo que permite
encadenarlos de forma segura y resistente a manipulaciones: cualquier alteracion
en un bloque modificaria su hash, invalidando la integridad de toda la cadena
posterior. Finalmente, cada bloque incorpora una marca de tiempo y metadatos
asociados, que permiten rastrear cuando y como se registrd la informacioén,
contribuyendo a la trazabilidad y auditabilidad del sistema.

Las blockchains funcionan en redes de nodos donde se alcanza consenso
mediante algoritmos especificos (Proof of Work, Proof of Stake, etc.) [19]. Una
vez que un bloque es validado y anadido a la cadena, no puede modificarse sin
alterar todos los bloques posteriores, lo que garantiza la inmutabilidad de la
informacion.

2.5. Blockchain para trazabilidad e integridad 17

2.5.2. Comparacion con TSA (Timestamping Authority)

Una de las decisiones clave en el disefio de sistemas orientados a la integridad
y trazabilidad de datos es la eleccion del mecanismo de verificacion temporal.
Tradicionalmente, se ha recurrido a Autoridades de Sellado de Tiempo (TSA)[20],
que actdan como terceros de confianza, generando sellos de tiempo firmados
digitalmente. Si bien estas autoridades cumplen su funcién en entornos centra-
lizados, presentan limitaciones en cuanto a transparencia, resistencia a fallos
y confianza descentralizada. Sin embargo, la tecnologia blockchain ofrece una
alternativa descentralizada y mas robusta. La Tabla[2.2|presenta una comparativa
entre ambos enfoques, destacando las ventajas de blockchain en términos de
inmutabilidad, resistencia a fallos, transparencia y automatizacién mediante
contratos inteligentes. Esta comparacion justifica la eleccion de blockchain en
este proyecto como tecnologia base para el registro de huellas digitales de datos
IoT.

TSA Blockchain

Caracteristi -)
aracteristica (Centralizado) (Descentralizado)

Modelo de confian- Basado en entidad de confian- Basado en consenso distribui-

za za do

Inmutabilidad Depende del proveedor Garantizada criptografica-
mente

Transparencia Limitada, acceso controlado Publica y auditable

Resistencia a fallos Vulnerable a errores en el ser- Alta disponibilidad por repli-

vidor central cacion

Automatizaciéon Requiere servicios externos Posible mediante contratos in-

teligentes

Tabla 2.2: Comparativa entre TSA y blockchain para la verificacién de
integridad

2.5.3. Caracteristicas clave: inmutabilidad,

descentralizacion y trazabilidad

En el contexto de este proyecto, blockchain aporta un conjunto de propie-
dades fundamentales que refuerzan la integridad y la fiabilidad del sistema
propuesto. Una de sus caracteristicas mas destacadas es la inmutabilidad, ya
que los datos registrados en la cadena no pueden ser modificados sin invalidar
toda la estructura criptografica posterior. Esto impide cualquier tipo de altera-

18 Conceptos tedricos

cion maliciosa o no autorizada, garantizando que la informacién almacenada
permanezca intacta desde el momento de su registro.

Otra propiedad esencial es la descentralizacion. Al no depender de una unica
entidad o nodo, la red blockchain incrementa su resiliencia frente a ataques o
fallos del sistema, distribuyendo la responsabilidad de validacion entre multiples
participantes. Esta caracteristica elimina los puntos tnicos de fallo y proporciona
un modelo de confianza mas robusto.

La trazabilidad también es un valor clave: cada dato registrado puede ser
rastreado hasta su origen gracias al historial encadenado de transacciones. Esto
permite auditar el ciclo de vida de la informacién y comprobar su legitimidad
en cualquier momento. Finalmente, la verificabilidad garantiza que cualquier
parte interesada pueda comprobar de forma auténoma que un dato no ha sido
alterado, utilizando funciones hash y pruebas criptograficas como las pruebas
de inclusién basadas en arboles de Merkle.

Estas caracteristicas hacen que blockchain sea una solucion idénea para
reforzar la seguridad e integridad de los datos en sistemas IoT. En esta arqui-
tectura, la blockchain actiia como un registro de huellas digitales de los datos
almacenados, que pueden ser validadas posteriormente frente al contenido en el
Data Lake, asegurando asi la fiabilidad del sistema frente a auditorias o disputas.

2.6. Arboles de Merkle

El uso de arboles de Merkle (Merkle Trees)[21] es una estrategia ampliamente
utilizada en sistemas distribuidos y blockchains para verificar la integridad de
grandes volimenes de datos sin necesidad de almacenarlos todos en la cadena.
Esta estructura permite comprobar de forma eficiente si un determinado conjunto
de datos pertenece a un bloque previamente registrado, mediante una prueba
criptografica conocida como Merkle proof.

2.6.1. Definicion y funcionamiento

Un arbol de Merkle es una estructura de datos jerarquica en la que cada hoja
representa el hash de un dato individual, y cada nodo intermedio representa el
hash de la concatenacion de sus nodos hijos. La raiz del arbol, conocida como
Merkle root, resume de forma unica todo el contenido del conjunto de datos.

El proceso de construccion es el siguiente:

2.6. Arboles de Merkle 19

1. Se calcula el hash de cada dato individual y se colocan como hojas del
arbol.

2. Se agrupan los hashes de dos en dos y se calcula su hash combinado.

3. Se repite el proceso hasta llegar a un tinico nodo raiz.

Este disefio permite que cualquier modificaciéon en un dato cambie su hash,
lo que se propaga hasta la raiz, facilitando asi la deteccién de alteraciones.

2.6.2. Ventajas en optimizacion de almacenamiento en

blockchain

Registrar cada dato individual en una red blockchain publica puede resultar
ineficiente, tanto por el espacio que ocupa como por el coste econémico asociado
al consumo Gas [22]. Para mitigar este problema, el uso de arboles de Merkle
se presenta como una solucién altamente eficiente. Gracias a su estructura
jerarquica de hashes, es posible representar multiples datos mediante un tinico
valor: la raiz del arbol. Esto permite una notable reduccién del espacio requerido,
ya que Unicamente se necesita almacenar esta raiz en la blockchain, en lugar de
registrar cada uno de los elementos de forma individual [23].

Ademas, los arboles de Merkle permiten una agrupacion eficiente de los
datos, generando una representacion criptografica compacta que resume todo
el conjunto. De esta forma, el sistema puede escalar sin comprometer la veri-
ficabilidad de los datos almacenados. La escalabilidad es otra ventaja clave, ya
que permite validar la integridad de un dato concreto sin necesidad de consultar
o registrar todos los hashes intermedios en la red. Este enfoque mantiene la
fiabilidad del sistema y reduce significativamente los costes asociados a la per-
sistencia en blockchain, especialmente en escenarios donde se generan grandes
volimenes de datos de forma continua.

Por ejemplo, si un mensaje contiene 10 mediciones, en lugar de registrar 10
hashes en la blockchain, se calcula la raiz del arbol Merkle correspondiente y
se registra solo ese valor. Las pruebas de inclusion permiten después validar
cualquier dato individual frente a la raiz almacenada.

20 Conceptos tedricos

Hash root
Hash(Hash(A) + Hash(B)) Hash(Hash(C) + Hash(D))
Hash(A) Hash(B) Hash(C) ‘ Hash(D)

’ A B c D ‘
Figura 2.1: Diagrama de un arbol de Merkle

El arbol de Merkle representado en la Figura [2.1)muestra como es posible
verificar la integridad de un dato individual, como el dato A, sin necesidad de
recorrer o almacenar todo el conjunto de datos. Esta estructura, ampliamente
utilizada en sistemas distribuidos y tecnologias blockchain, permite generar una
raiz de hash que resume criptograficamente todo el contenido del arbol.

Cada nodo hoja del arbol representa el hash de un dato original (A, B, C, D),
mientras que los nodos intermedios almacenan el hash de la concatenacion de los
hashes de sus nodos hijos. El nodo superior, denominado hash raiz, constituye
un resumen criptografico unico de toda la estructura.

Para comprobar si el dato A ha sido modificado, no es necesario tener acceso
a todos los datos ni recorrer el arbol completo. Basta con conocer el hash raiz y
un conjunto minimo de nodos intermedios, marcados en color azul en la figura,
que actiian como prueba de inclusion (Merkle proof). Este proceso consiste en:

1. Calcular localmente el Hash(A) a partir del dato original.

2. Combinar este hash con el Hash(B) (parte de la prueba), generando el
hash del nodo superior: Hash(Hash(A) + Hash(B)).

3. Combinar este resultado con el valor Hash (Hash(C) + Hash(D)), también
incluido en la prueba, para obtener finalmente el hash raiz.

Si el valor calculado coincide con el hash raiz almacenado en la blockchain,
se puede garantizar que el dato A no ha sido alterado.

Este mecanismo permite validar datos de forma eficiente y segura, utilizando
una cantidad minima de informacion, y resulta especialmente util en entor-
nos donde se registran grandes volimenes de datos, pero se requiere verificar
unicamente partes especificas del conjunto.

2.7. Contratos inteligentes y Web3 21

2.6.3. Pruebas de inclusion y verificacion eficiente

Una Merkle proof es un conjunto de hashes hermanos necesarios para re-
construir la raiz del arbol partiendo del dato a verificar. Para un arbol binario
con N hojas, el tamafio de la prueba es proporcional a [log,(/N)], lo que la hace
extremadamente eficiente incluso en conjuntos grandes.

» Cada prueba contiene solo los hashes necesarios para reconstruir la cadena
de combinaciones desde la hoja hasta la raiz.

» La verificacidn consiste en aplicar recursivamente la funcién de hash a
los valores proporcionados y comprobar que el resultado coincide con la
raiz registrada en la blockchain.

En el sistema desarrollado, las pruebas de inclusion se almacenan en el Data
Lake junto con los datos originales. Asi, al recalcular el hash de un dato y su
Merkle proof, es posible comprobar su validez sin necesidad de acceder al resto
del conjunto, reduciendo el uso de la blockchain y facilitando auditorias rapidas
y precisas [23].

2.7. Contratos inteligentes y Web3

Los contratos inteligentes (smart contracts) son piezas de cédigo que se
ejecutan de forma automatica en una red blockchain cuando se cumplen ciertas
condiciones. Esta funcionalidad permite automatizar procesos sin necesidad de
intermediarios, garantizando transparencia, inmutabilidad y confianza entre
las partes. En este proyecto, se utilizan contratos inteligentes para registrar la
integridad de los datos y permitir su verificacion posterior.

2.7.1. Qué son los contratos inteligentes

Un contrato inteligente es un programa almacenado en la blockchain que
define reglas y condiciones logicas para ejecutar operaciones de forma auténo-
ma. Estos contratos se despliegan en redes como Ethereum o Hyperledger y
responden a eventos generados por usuarios o sistemas externos.

Los contratos inteligentes presentan una serie de propiedades clave que los
convierten en una herramienta fundamental para la automatizacion segura de
procesos en entornos distribuidos. En primer lugar, destacan por su caracter

22 Conceptos tedricos

descentralizado, ya que su ejecucion se lleva a cabo directamente en la red block-
chain, sin depender de servidores centrales ni intermediarios, lo que incrementa
la resiliencia y la confiabilidad del sistema.

Otra propiedad esencial es su inmutabilidad. Una vez que un contrato ha
sido desplegado en la red, su c6digo no puede ser modificado, salvo que se hayan
disefiado mecanismos explicitos de actualizacion. Esto garantiza que las reglas
del contrato permanecen constantes, evitando manipulaciones o alteraciones
posteriores.

Ademas, los contratos inteligentes proporcionan un alto grado de transpa-
rencia, dado que su codigo es publico y auditable, y todas sus ejecuciones quedan
registradas de forma permanente en la blockchain. Esta trazabilidad facilita la
verificacion independiente y la confianza entre partes que no necesariamente
comparten una relacion previa.

Finalmente, una de sus caracteristicas mas destacadas es la automatizacion:
los contratos se ejecutan de manera automatica cuando se cumplen las condi-
ciones previamente definidas, sin necesidad de intervencion humana, lo que
permite construir flujos de trabajo auténomos, fiables y verificables.

En este trabajo, los contratos inteligentes se encargan de almacenar el hash
raiz del arbol de Merkle generado a partir de los datos IoT, estableciendo asi
un vinculo entre los registros almacenados en el Data Lake y su representacion
verificable en la blockchain. Ademas, su desarrollo se ha realizado en un entorno
controlado que permite la ejecucion local del codigo y la validaciéon automatizada
mediante una suite de pruebas, lo que ha facilitado la verificacion del correcto
funcionamiento del contrato antes de su despliegue en produccion.

2.7.2. Interaccion desde Python con Web3.py

Para interactuar con contratos inteligentes desde aplicaciones externas se
emplea Web3.py, una biblioteca de Python que permite conectarse a nodos de
Ethereum, enviar transacciones, leer datos de contratos y desplegar nuevos
contratos.

La biblioteca Web3.py, utilizada en este proyecto para interactuar con contra-
tos inteligentes desde Python, ofrece una amplia gama de funcionalidades que
facilitan la integracion de aplicaciones externas con redes blockchain. Entre sus
capacidades mas destacadas se encuentra la posibilidad de establecer conexién
con diferentes tipos de redes Ethereum, ya sean entornos locales de desarrollo,
redes de pruebas (testnet) o la red principal (mainnet).

2.7. Contratos inteligentes y Web3 23

Asimismo, permite realizar tanto la lectura como la escritura de variables
de contrato, facilitando el acceso a datos persistentes en la blockchain. Ademas,
proporciona soporte para la ejecucion de funciones de solo lectura (sin coste
de gas) y para el envio de transacciones firmadas que modifican el estado del
contrato. Otra funcionalidad relevante es la posibilidad de obtener el identificador
de la transaccion (transaction hash) y los eventos emitidos por el contrato, lo
que resulta fundamental para rastrear operaciones y vincular datos persistentes
con registros blockchain verificables.

Web3.py permite integrar facilmente la logica blockchain dentro de los flujos
de procesamiento de datos en Python, lo que ha sido clave en la implementacion
del moédulo Blockchain Controller del sistema.

2.7.3. Consideraciones de seguridad y gas

El disefio de contratos inteligentes requiere tener en cuenta ciertos aspectos
técnicos y econémicos:

» Coste de ejecucion (gas): cada operacion tiene un coste medido en gas,
que debe ser pagado en la moneda nativa de la red (por ejemplo, Ether en
Ethereum).

» Eficiencia del codigo: el uso de estructuras como arboles de Merkle
reduce el nimero de transacciones y el consumo de gas, optimizando el
rendimiento.

= Errores irreversibles: un contrato mal disefiado o con fallos puede gene-
rar pérdidas o comportamientos no deseados, por lo que es fundamental
su validacion exhaustiva antes del despliegue.

» Privacidad: la informacion registrada en blockchains publicas es acce-
sible a cualquiera, por lo que debe evitarse almacenar datos sensibles
directamente.

En este proyecto se ha optado por almacenar Gnicamente hashes, garantizan-
do asi la integridad sin comprometer la privacidad ni generar costes excesivos.
Ademas, se han realizado pruebas en entornos de red de pruebas locales para
validar el correcto funcionamiento antes de desplegar en entornos reales.

24 Conceptos tedricos

Este capitulo ha introducido los conceptos clave relacionados con IoT, block-
chain, data lakes y validacion de datos, proporcionando el marco teérico nece-
sario para entender el sistema propuesto. Sobre esta base, el siguiente capitulo
describe las herramientas tecnoldgicas y frameworks utilizados para su imple-
mentacion.

Técnicas y
herramientas

Este capitulo describe las técnicas metodologicas y herramientas utilizadas
durante el desarrollo del proyecto. Se aborda, en primer lugar, la estrategia
de trabajo adoptada y, posteriormente, las tecnologias, frameworks y librerias
empleadas para implementar los diferentes componentes del sistema. También
se justifica la eleccion de estas herramientas frente a posibles alternativas consi-
deradas.

3.1. Metodologia de desarrollo

El desarrollo del proyecto ha seguido un enfoque agil, centrado en la entrega
incremental de valor. En lugar de construir una solucién monolitica en una
unica fase, se opt6 por dividir el proyecto en unidades funcionales que pudieran
ser desarrolladas, probadas y evaluadas de forma independiente. Este enfoque
permitié validar las decisiones arquitectonicas, detectar problemas técnicos en
fases tempranas y adaptar la evolucion del sistema a medida que se comprendian
mejor sus necesidades operativas y de integracion.

La planificacion del trabajo se organizoé utilizando un sistema de tareas de
estilo Kanban, que permitia visualizar el flujo de trabajo y priorizar los objetivos
de cada iteracion. Cada bloque funcional, por ejemplo, la validacion de datos, el
almacenamiento en el data lake o la interaccién con la blockchain, se traté como
una unidad entregable completa, compuesta por cédigo funcional acompafiado
de pruebas asociadas.

25

26 Técnicas y herramientas

La validacion de cada modulo se realiz6 a través de un conjunto de pruebas
automatizadas y revision manual, aplicando criterios de aceptacion definidos
previamente. Aunque el proyecto fue desarrollado de forma individual, hubo
un componente colaborativo inicial para consensuar el esquema de datos JSON
con la persona encargada del desarrollo del dispositivo IoT, garantizando asi la
interoperabilidad del sistema.

El entorno de trabajo se mantuvo completamente local durante todo el
desarrollo, empleando contenedores para reproducir los distintos servicios. Esta
estrategia permitio realizar pruebas realistas sin depender de entornos externos
ni servicios en la nube, asegurando control total sobre las configuraciones y
facilitando la depuracion de errores en cada fase del proyecto.

3.2. Entorno de desarrollo

El entorno de desarrollo ha sido disefiado para fomentar la reproducibili-
dad, la modularidad y la automatizacion, elementos esenciales en un sistema
compuesto por multiples servicios interconectados. Desde las etapas iniciales,
se prioriz6 la construccion de un entorno portable, que permitiera replicar la
ejecucion del sistema completo en diferentes maquinas sin necesidad de realizar
configuraciones manuales o ajustes dependientes del sistema operativo.

Para los componentes desarrollados en Python, se utilizé Poetry como herra-
mienta de gestion de dependencias y entornos virtuales. Esta eleccién permiti6
definir explicitamente las versiones de cada libreria utilizada en el proyecto
mediante los ficheros pyproject.toml y poetry. lock, facilitando tanto la ins-
talacion reproducible del entorno como su mantenimiento a lo largo del tiempo.

Todos los servicios principales, incluyendo el backend, el broker MQTT, el
servicio de almacenamiento, el cliente de Web3 y la red blockchain local, han si-
do contenedorizados mediante Docker y orquestados con Docker Compose. Esta
infraestructura permitio levantar el sistema completo de forma automatizada
y coherente, simulando un entorno de produccién sin necesidad de configu-
rar manualmente cada componente. Ademas, la contenedorizacion facilit6 la
integracion de librerias especificas, como aquellas necesarias para la interac-
cién con MinlO, PySpark o Web3.py, reduciendo problemas de compatibilidad o
configuracion entre sistemas.

El control de versiones se ha gestionado mediante Git, con un repositorio
publico en GitHub que contiene tanto el cddigo fuente como la documentacion
técnica minima necesaria para su instalacion y ejecucion. En particular, el fichero
README . md incluye instrucciones para levantar el entorno con Docker, ejecutar

3.3. Tecnologias utilizadas 27

las pruebas automatizadas y verificar la interacciéon entre componentes. Esta
estrategia no solo facilita la colaboracién futura y la extension del sistema, sino
que también mejora la trazabilidad de los cambios y el mantenimiento del codigo.

Ademas, el uso de herramientas como . env para la configuracion de variables
sensibles y la organizacion del codigo por servicios (segin patrones de disefio
modulares) contribuy6 a mantener un entorno limpio, estructurado y facilmente
escalable. Esta aproximacion también facilita su posterior despliegue en entornos
mas complejos, como servidores de integracion continua o plataformas cloud.

3.3. Tecnologias utilizadas

3.3.1. Procesamiento y validacion de datos

Una de las prioridades del sistema propuesto ha sido garantizar que los datos
recibidos desde los dispositivos IoT tengan una estructura coherente, predecible
y vélida antes de ser almacenados o procesados. Para ello, se ha empleado JSON
Schema como mecanismo de validacion estructural. Esta tecnologia permite
definir con precision el formato esperado de cada mensaje, incluyendo tipos
de datos, campos obligatorios, formatos especificos y estructuras anidadas, y
aplicar automaticamente reglas de validacion sobre cada mensaje recibido. Los
mensajes que no cumplen con el esquema definido son descartados, evitando
asi la propagacion de datos erréoneos o incompletos al sistema de persistencia y
analisis.

La validacion mediante JSON Schema se integra en la etapa de ingesta, justo
después de recibir el mensaje a través de MQTT, y actia como un primer filtro de
control de calidad de los datos. Esta validaciéon temprana reduce la complejidad
de las etapas posteriores del sistema y mejora su robustez frente a entradas
inesperadas o corruptas.

Para el procesamiento y transformacion de los datos validados, se ha utilizado
PySpark, la interfaz de Python para Apache Spark. Esta herramienta proporciona
un motor de analisis distribuido capaz de manejar grandes volimenes de datos de
forma paralela, lo cual resulta especialmente util cuando se trabaja con historiales
IoT extensos o se requieren aplicar operaciones de agregacion, filtrado o analisis
temporal a gran escala.

Sobre el sistema de ficheros distribuido se ha empleado Delta Lake como
capa de almacenamiento transaccional. Delta Lake extiende las capacidades del
formato Parquet con funcionalidades adicionales como control de versiones,

28 Técnicas y herramientas

manejo eficiente de actualizaciones e inserciones, y soporte para transacciones
ACID. Esta capa permite mantener la consistencia del sistema incluso en esce-
narios de escritura concurrente, y facilita el desarrollo de pipelines de datos
escalables que pueden evolucionar sin perder control sobre el linaje de los datos.

La combinaciéon de PySpark con Delta Lake proporciona un entorno de
procesamiento robusto, flexible y orientado a la analitica de datos histéricos,
alineado con las necesidades de un sistema IoT orientado a la trazabilidad e
integridad de los datos. Ademas, esta arquitectura deja abierta la posibilidad
de incorporar futuras extensiones basadas en machine learning o inteligencia
artificial, aprovechando el mismo ecosistema de herramientas.

3.3.2. Comunicacion IoT

La comunicacion entre los dispositivos IoT y el sistema backend se ha imple-
mentado utilizando el protocolo MQTT (Message Queuing Telemetry Transport),
ampliamente reconocido por su ligereza, eficiencia y orientacién a entornos
con restricciones de ancho de banda o conectividad intermitente. Su modelo de
comunicacion basado en el patron publicador-suscriptor, junto con una arquitec-
tura centrada en un broker, lo convierten en una solucién ideal para sistemas
distribuidos donde multiples sensores deben enviar datos de forma periddica a
un sistema centralizado sin acoplamiento directo entre emisores y receptores.

En este proyecto, se ha adoptado Eclipse Mosquitto como broker MQTT por
tratarse de una solucion ligera, de c6digo abierto y de facil integracion, tanto
en entornos de desarrollo como en despliegues de produccién a pequefia escala.
Mosquitto ofrece un rendimiento estable con bajo consumo de recursos, lo que
facilita su ejecucion en contenedores dentro del entorno Docker orquestado del
sistema.

La recepcion de los mensajes en el backend desarrollado en Python se ha
implementado mediante la libreria paho-mqtt, mantenida por la Eclipse Founda-
tion. Esta libreria proporciona una interfaz sencilla y eficiente para conectarse
al broker, suscribirse a topics, recibir mensajes en tiempo real y gestionarlos de
manera asincrona. Su compatibilidad con multiples versiones del protocolo y su
documentacion consolidada han sido factores clave en su eleccion.

Aunque existen otras alternativas comerciales y open source como HiveMQ
0o EMQX, se optd por Mosquitto por su facilidad de configuracion, su uso exten-
dido en proyectos IoT reales y su integracion directa con bibliotecas de cliente
ampliamente soportadas. Esta eleccion ha permitido centrar el esfuerzo de de-
sarrollo en la 16gica de validacion, procesamiento y trazabilidad, minimizando

3.3. Tecnologias utilizadas 29

las fricciones técnicas en la capa de comunicacion. En futuras versiones del pro-
yecto, Mosquitto podria ser reemplazado por brokers mas robustos o escalables
como EMQX, especialmente si se requiere autenticacion avanzada, clustering o
métricas en tiempo real.

3.3.3. Persistencia de datos

Una vez validados, los datos IoT deben ser almacenados de forma segura,
estructurada y con soporte para consultas analiticas y trazabilidad historica.
Para cumplir con estos requisitos, se ha implementado un data lake utilizando
Delta Lake como capa de control transaccional sobre un sistema de almace-
namiento basado en MinIO, una solucién compatible con la API de Amazon
S3. Cabe destacar que, aunque en este proyecto se ha utilizado MinIO como
sistema de almacenamiento local compatible con la API de Amazon S3, Delta
Lake ofrece soporte para conectarse de forma transparente a otros servicios
de almacenamiento en la nube como Amazon S3, Azure Data Lake Storage o
Google Cloud Storage. Esto facilita la portabilidad de la solucién y su posible
escalado a entornos productivos en la nube, sin requerir cambios significativos
en la logica de acceso a datos.

El uso de Delta Lake permite organizar el almacenamiento en diferentes
capas, comunmente conocidas como bronze, silver y gold, 1o que facilita la evolu-
cion progresiva de los datos desde su estado original hasta versiones limpias y
enriquecidas, listas para su analisis. Esta separacion no solo mejora la organiza-
cion logica de la informacion, sino que permite definir politicas de retencion,
control de calidad y versionado sobre cada nivel del ciclo de vida de los datos.

Una de las principales ventajas de Delta Lake es su soporte para transacciones
ACID, incluso en entornos de ficheros distribuidos como S3 o MinlO. Gracias
a este mecanismo, se garantiza que las operaciones de insercion, actualizacion
o eliminacion se realizan de manera consistente y segura, evitando estados
intermedios o duplicidades que puedan comprometer la integridad del sistema.
Ademas, Delta Lake permite realizar time travel, es decir, consultar el estado
historico de los datos en versiones anteriores, lo que resulta de gran utilidad en
procesos de auditoria o en la reconstrucciéon de eventos.

Para el almacenamiento fisico, se ha utilizado MinIO por tratarse de una
solucion ligera, autoalojada y completamente compatible con la interfaz de AWS
S3. Esta eleccion ha permitido simular un entorno de almacenamiento en la nube
dentro del entorno de desarrollo local mediante contenedores Docker, facilitando
la portabilidad del sistema sin dependencia directa de servicios externos.

30 Técnicas y herramientas

Si bien inicialmente se valor6 el uso de bases de datos relacionales conven-
cionales para la persistencia, estas fueron descartadas por su menor flexibilidad
en el manejo de datos semiestructurados y por sus limitaciones en escenarios
de escalabilidad horizontal y analisis historico. La arquitectura basada en Delta
Lake no solo ofrece un rendimiento adecuado para flujos de datos IoT, sino que
también deja la puerta abierta a futuras integraciones con herramientas del
ecosistema Big Data como Apache Spark, Trino o Apache Flink, lo que refuerza
su eleccion como componente clave del sistema.

3.3.4. Blockchain y contratos inteligentes

La verificacion de la integridad de los datos IoT se ha implementado mediante
el uso de contratos inteligentes desarrollados en Solidity y desplegados sobre
una red Ethereum local, simulada y gestionada con Hardhat. Estos contratos
actian como anclas criptograficas que registran las huellas digitales de los
datos validados, en forma de hashes raiz de arboles de Merkle, proporcionando
un mecanismo descentralizado, inmutable y verificable para garantizar que la
informacion almacenada no ha sido manipulada tras su recepcion.

La eleccion de Ethereum como plataforma blockchain se fundamento en su
amplio soporte para contratos inteligentes, su madurez tecnologica y la disponi-
bilidad de un conjunto consolidado de herramientas de desarrollo. Aunque se
valoré el uso de alternativas como Hyperledger Fabric, esta fue descartada por la
mayor complejidad que implica su despliegue y configuracion, asi como por su
menor grado de integracion con herramientas comunes del ecosistema Python.
En un entorno de trabajo individual, y con necesidad de reproducibilidad local,
Ethereum y sus herramientas asociadas ofrecieron una soluciéon mas directa,
eficiente y alineada con los objetivos del proyecto.

Para facilitar la interaccion entre el backend desarrollado en Python y la
red Ethereum, se ha utilizado la biblioteca Web3.py. Esta libreria proporciona
una interfaz completa para conectarse a nodos Ethereum, desplegar contratos,
enviar transacciones, leer eventos emitidos por los contratos y consultar datos
almacenados en la blockchain. Su integracion directa con el lenguaje Python
fue decisiva para su eleccion frente a alternativas como Web3.js, permitiendo
mantener coherencia en el stack tecnoldgico y evitando la necesidad de introdu-
cir un componente adicional basado en JavaScript en un entorno centrado en
Python.

El entorno de pruebas se construy6 utilizando la funcionalidad de redes
locales de Hardhat, lo que permitié simular el comportamiento de una red Ethe-
reum sin necesidad de acceder a testnets publicas. Esta configuracion facilito

3.3. Tecnologias utilizadas 31

una ejecucion rapida y controlada de pruebas sobre los contratos inteligentes,
incluyendo la validacién de funcionalidades como el almacenamiento de hashes,
la recuperacion de identificadores de transaccion y la verificacion de la integri-
dad de datos mediante pruebas de inclusion. Adicionalmente, se desarrollaron
pruebas automatizadas para los contratos utilizando la infraestructura de testing
integrada en Hardhat, garantizando la robustez del codigo antes de integrarlo
con el resto del sistema. No obstante, el uso de Hardhat como entorno de desa-
rrollo no permite persistir el estado de la blockchain entre ejecuciones, por lo
que al reiniciar el contenedor se pierde toda la informacioén almacenada. Para
solventar esta limitacion en la fase final del proyecto, se sustituyé Hardhat por
Ganache como nodo de blockchain, exclusivamente en esta parte del sistema,
permitiendo asi conservar el estado de la cadena entre sesiones.

Esta integracion entre contratos inteligentes y backend permite construir
un sistema auditable, en el que cada dato IoT almacenado en el Data Lake puede
ser verificado a posteriori mediante su hash raiz registrado en la blockchain,
asegurando asi la trazabilidad y fiabilidad del sistema en todo momento.

3.3.5. Pruebas y despliegue

La fiabilidad del sistema ha sido garantizada mediante una combinacion de
pruebas unitarias, centradas en médulos individuales, y pruebas de integracion,
orientadas a validar el correcto funcionamiento entre componentes. Este enfoque
ha permitido asegurar tanto el comportamiento aislado de cada parte como su
interaccion en un entorno completo.

En el caso de los contratos inteligentes, se ha utilizado la suite de pruebas
incluida en Hardhat, que ofrece un entorno robusto para simular llamadas,
eventos y transacciones en una red Ethereum local. Las pruebas han cubierto
funcionalidades criticas como el almacenamiento de hashes, la recuperacion de
identificadores de transaccion y la verificaciéon de datos mediante estructuras
de Merkle. Este entorno también ha permitido ejecutar escenarios de error y
comprobar el manejo de excepciones dentro del contrato.

En el backend desarrollado en Python, se han implementado pruebas au-
tomatizadas utilizando pytest, con el objetivo de validar la l6gica asociada a la
ingesta de mensajes, la validacion mediante JSON Schema y la persistencia en el
Data Lake. Estas pruebas han sido especialmente importantes para garantizar la
robustez del sistema frente a entradas malformadas, errores en el procesamiento
de datos o pérdidas de conectividad con los servicios asociados.

32 Técnicas y herramientas

Para garantizar coherencia entre los entornos de desarrollo, prueba y ejecu-
cion, se ha adoptado una estrategia de despliegue local basado en contenedores,
utilizando Docker para empaquetar todos los servicios necesarios: el broker
MQTT, el backend de procesamiento, el servicio de almacenamiento basado en
MinIO y la red blockchain local gestionada con Hardhat. La orquestacion de estos
servicios se realiza mediante Docker Compose, lo que facilita la configuracion
inicial, el arranque simultaneo y la monitorizacién de todos los componentes
del sistema.

Este enfoque permite replicar de forma exacta el entorno de desarrollo en
cualquier maquina, evitando problemas derivados de diferencias de configura-
cion, versiones de librerias o dependencias del sistema operativo. Ademas, deja
abierta la posibilidad de extender el sistema a entornos de integraciéon continua o
despliegue en la nube, manteniendo una base sdlida y automatizada para futuras
evoluciones del proyecto.

3.4. Justificacion de las elecciones tecnologicas

Durante el desarrollo del proyecto se analizaron distintas alternativas tecno-
logicas para cada uno de los componentes clave del sistema. La eleccion final
de herramientas y plataformas respondié tanto a criterios técnicos como a la
coherencia con el stack general de desarrollo, priorizando la integracion fluida
entre modulos, la facilidad de uso en entornos locales y la proyeccion a futuro
del sistema.

En lo referente a la interaccion con la red blockchain, se consideré inicial-
mente el uso de Web3.js, una libreria ampliamente utilizada en el ecosistema
Ethereum para desarrollos en JavaScript. Sin embargo, se optd por Web3.py
debido a su integracion natural con el backend implementado en Python. Esta
eleccion evitd la incorporacion de dependencias innecesarias en otros lenguajes y
permitié mantener un stack tecnolégico homogéneo, reduciendo la complejidad
del desarrollo y favoreciendo la mantenibilidad del codigo.

En cuanto al almacenamiento persistente de los datos IoT, se evalud el uso
de bases de datos relacionales tradicionales como alternativa al enfoque basado
en data lakes. No obstante, estas fueron descartadas por su menor capacidad
de adaptacion a flujos de datos semiestructurados, su rigidez en esquemas y su
menor eficiencia en escenarios de analisis de grandes volimenes historicos. Por
el contrario, la combinacion de Delta Lake con almacenamiento S3-compatible
(MinIO) ofrecia una solucion mas adecuada a los requerimientos del sistema, pro-

3.4. Fustificacion de las elecciones tecnologicas 33

porcionando flexibilidad, control de versiones y compatibilidad con herramientas
del ecosistema Big Data.

Asimismo, se valor6 la posibilidad de utilizar Hyperledger como platafor-
ma blockchain. A pesar de sus ventajas en entornos corporativos privados, su
complejidad de despliegue y configuracion, unida a su menor integraciéon con
herramientas como Web3.py o Hardhat, hicieron que Ethereum resultara mas
conveniente para los fines del proyecto. La existencia de entornos de desarrollo
maduros, documentacion abundante y herramientas de testing como Hardhat
fueron factores clave para esta decision.

En conjunto, las elecciones tecnoldgicas adoptadas han permitido construir
un sistema modular, reproducible y facilmente ampliable. La seleccién de he-
rramientas ampliamente adoptadas y bien integradas entre si ha facilitado el
desarrollo y ha reducido las barreras técnicas en fases criticas del proyecto,
asegurando una base so6lida sobre la que se podrian realizar futuras evoluciones
o despliegues en produccion.

Resumen del capitulo

A lo largo de este capitulo se han descrito las principales decisiones me-
todologicas y técnicas adoptadas durante el desarrollo del proyecto. Desde el
uso de un enfoque agil basado en entregas incrementales, hasta la integracion
de tecnologias especializadas en validacion, almacenamiento y trazabilidad de
datos, cada componente ha sido seleccionado y configurado en funciéon de su
idoneidad para los objetivos definidos.

La eleccién de herramientas como JSON Schema, PySpark, Delta Lake,
Web3.py y Hardhat ha permitido construir un sistema modular, reproducible y
orientado a la escalabilidad. Asimismo, el uso de Docker como plataforma de
despliegue ha facilitado la coherencia entre entornos y ha contribuido a la man-
tenibilidad del sistema a largo plazo. En conjunto, estas técnicas y herramientas
han conformado una arquitectura robusta y versatil, adecuada para gestionar
datos IoT con garantias de integridad y trazabilidad.

Por lo tanto, las herramientas empleadas a lo largo del proyecto han si-
do seleccionadas cuidadosamente en funcioén de su proposito especifico y su
compatibilidad con el resto del sistema, como se muestra en la Tabla

34

Técnicas y herramientas

HerramientaFinalidad

Justificacion

Poetry Gestion de dependen- Aislamiento y reproducibilidad del
cias en Python entorno

Docker Contenerizaciéon y or- Despliegue local reproducible y mo-

/ Docker questacion de servicios dular

Compose

PySpark Procesamiento distribui- Escalabilidad y compatibilidad con
do de datos IoT Big Data

Delta Lake =~ Almacenamiento con Integridad y versionado de datos
control ACID

MinIO Almacenamiento S3- Simulacién de almacenamiento
compatible local cloud

JSON Sche- Validacion estructural Prevencion de errores en la ingesta

ma de mensajes de datos

MQTT + Comunicacion IoT efi- Protocolos ligeros y fiables para [oT

Mosquitto ciente

Web3.py Interaccion con block- Integracion directa con el stack del
chain desde Python backend

Solidity + Contratos inteligentes y Trazabilidad y verificacion de inte-

Hardhat pruebas gridad en blockchain

pytest Pruebas automatizadas Verificacion funcional de los modu-
en Python los

Git + Control de versiones y Trazabilidad del codigo y colabora-

GitHub documentacion cion futura

Tabla 3.3: Resumen de herramientas utilizadas y su funcién en el sistema

Tras revisar las tecnologias utilizadas como MQTT, Delta Lake, Ethereum,
etc, este capitulo ha sentado las bases practicas del desarrollo. En el capitulo
siguiente se explican los detalles de analisis y planificaciéon que permitieron
estructurar la soluciéon propuesta.

Analisis y Plan de
Proyecto

4.1. Analisis de requisitos

Antes del disefio e implementacion del sistema, resulta fundamental identifi-
car y analizar los requisitos que deben cumplirse para garantizar que la solucion
propuesta sea funcional, escalable y alineada con los objetivos del proyecto.
Esta seccion presenta un analisis detallado de los requisitos tanto funcionales
como no funcionales, teniendo en cuenta las necesidades del sistema desde el
punto de vista del usuario final, los componentes tecnologicos involucrados y
las restricciones propias del contexto IoT y blockchain.

El anélisis se ha estructurado en torno a los siguientes aspectos: funcio-
nalidades clave esperadas del sistema, rendimiento, seguridad, persistencia de
datos, validacion, trazabilidad y compatibilidad con tecnologias de despliegue y
desarrollo.

4.1.1. Requisitos

El sistema propuesto debe cumplir una serie de requisitos para garantizar su
funcionalidad, rendimiento y viabilidad técnica. A continuacion, se detallan los
requisitos funcionales y no funcionales identificados durante el desarrollo del
proyecto.

35

36 Analisis y Plan de Proyecto

4.1.2. Requisitos funcionales

Los requisitos funcionales describen las capacidades y servicios especificos
que debe ofrecer el sistema. Entre ellos se encuentran:

= RF1: Recoleccion de datos IoT. El sistema debe ser capaz de recibir

datos en tiempo real procedentes de dispositivos IoT mediante el protocolo
MOQTT.

» RF2: Validacion de datos. Cada mensaje recibido debe ser validado con-
forme a un esquema definido en JSON Schema antes de su procesamiento.

» RF3: Almacenamiento de datos. Los datos validados deben almacenar-
se en un sistema de ficheros tipo data lake basado en Delta Lake sobre
almacenamiento AWS S3 o compatible.

» RF4: Registro de integridad en blockchain. El sistema debe calcular
un hash del conjunto de los datos a almacenar de un mensaje y registrar
dicho hash en una red blockchain.

» RF5: Verificacion de integridad. Debe existir una funcionalidad pa-
ra comprobar la integridad de los datos almacenados a partir del hash
registrado en blockchain.

» RF6: Interfaz de usuario. Se debe proporcionar una interfaz web sen-
cilla para mostrar los datos almacenados y facilitar la verificacion de su
integridad.

4.1.3. Requisitos no funcionales

Los requisitos no funcionales definen caracteristicas de calidad que debe cum-
plir el sistema, aunque no estén directamente relacionadas con funcionalidades
especificas:

= RNF1: Escalabilidad. El sistema debe ser capaz de escalar horizontal-
mente para gestionar un aumento en el nimero de dispositivos IoT o en
el volumen de datos.

= RNF2: Fiabilidad. El sistema debe garantizar la disponibilidad y consis-
tencia de los datos, incluso en caso de pérdida de conectividad temporal.

4.1. Analisis de requisitos 37

= RNF3: Seguridad. La arquitectura debe asegurar la confidencialidad, inte-
gridad y autenticidad de los datos durante su transmisioén, almacenamiento
y registro.

» RNF4: Trazabilidad. Debe ser posible rastrear el origen y evolucion de
cada dato, incluyendo su hash y el momento de registro en la blockchain.

» RNF5: Compatibilidad. El sistema debe estar disefiado para integrarse fa-
cilmente con otras herramientas del ecosistema Big Data o con soluciones
blockchain hibridas.

= RNF6: Usabilidad. La interfaz de usuario debe ser intuitiva y accesible
para usuarios técnicos y no técnicos.

4.1.4. Casos de uso

El anélisis de casos de uso permite identificar los principales actores que
interactian con el sistema y las funcionalidades clave que deben estar disponibles.
A partir de estos casos, se definen los requisitos funcionales y se orienta el disefio
técnico del sistema.

En el contexto de este proyecto, los principales actores son:

» Usuario final: Consulta datos, verifica su integridad y visualiza el estado
del sistema desde la interfaz web.

» Dispositivo IoT: Encargado de enviar datos sensorizados al sistema me-
diante MQTT.

A continuacién, en la Figura [4.2] se presenta el diagrama de casos de uso que
resume las principales interacciones entre los actores y el sistema.

38 Analisis y Plan de Proyecto

/ I

<<extend>>

: : ‘
Usuario
Verificar integridad
q Validary Registrar hash en
i blockchain

Dispositivo loT

Figura 4.2: Diagrama de casos de uso

Asimismo, para detallar el flujo de operaciones internas de los diferentes
casos de uso, se incluyen una serie de diagramas de actividades que representan
el proceso completo del caso de uso.

4.1.4.1. UC1 - Consultar datos

La funcionalidad de consulta de datos permite al usuario acceder a la infor-
macion sensorizada previamente registrada por los dispositivos IoT asociados a
su cuenta. Este caso de uso refleja una de las interacciones principales con el
sistema, ya que proporciona visibilidad sobre los datos almacenados en el data
lake, asi como la base para otras operaciones como la verificacion de integridad.

En la Figura[4.3|se presenta el diagrama de casos de uso correspondiente, que
ilustra la interaccion entre el usuario y el sistema. A continuacion, la Tabla
detalla la descripcion completa del caso de uso UC1, incluyendo su secuencia
normal, flujos alternativos y postcondiciones.

4.1. Analisis de requisitos

act UC1 - Consultar datos)

Usuario

Sistema

[Visitar pdgina de datos]

~f

) 4

>l Obtener dispositivos asociados]

[Seleccionar Dispositivo IS

Obtener dltimos datos del
dispositivo

[sin datos]

Devolver
mensaje
informativo

[con datos]

Devolver listado de
datos

Figura 4.3: Diagrama del caso de uso de consultar datos

39

40 Analisis y Plan de Proyecto

UC1 Consultar datos

Descripcion El usuario consulta los datos almacenados de
un dispositivo [oT desde la interfaz del sistema.

Secuencia normal . . .)
1. El usuario accede a la pagina de visualiza-

cion de datos.

2. El sistema obtiene los dispositivos asocia-
dos al usuario.

3. El usuario selecciona un dispositivo de la
lista.

4. El sistema recupera los ultimos datos dis-
ponibles del dispositivo.

5. El sistema muestra el listado de datos al
usuario.

Flujos alternativos . . .
4a-1. No existen datos registrados para el dis-

positivo.

4a-2. El sistema informa al usuario de que no
hay datos disponibles.

4a-3. El caso de uso finaliza sin mostrar datos.

Postcondicion El usuario ha visualizado los datos disponibles
o ha sido informado de su ausencia.

Tabla 4.4: Caso de uso UC1: Consultar datos

4.1.4.2. UC2 - Verificar integridad

La funcionalidad de verificacion de integridad permite al usuario comprobar
si los datos almacenados de un dispositivo IoT coinciden con el valor hash
previamente registrado en la blockchain. Este caso de uso es fundamental para
garantizar la trazabilidad y confiabilidad de la informacion registrada en el
sistema, detectando posibles alteraciones o manipulaciones.

La Figura 4.4/ muestra el diagrama de actividades asociado al caso de uso,
donde se detallan las acciones tanto del usuario como del sistema. Posteriormente,
la Tabla[4.5]recoge la descripcién formal del caso de uso UC2, incluyendo su
flujo principal, flujos alternativos y la postcondicion esperada.

4.1. Analisis de requisitos

act UC2 - Verilficar integridad)

Usuario Sistema

[Pulsar verificar dato]

>{ Obtener metadatos]

Obtener hash

de la blockchain

Validar hash con
metadatos

[invdlid o] [vélido]

Devolver

mensaje
informativo

| Devolver
informacién de

dato validado

Figura 4.4: Diagrama del caso de uso de verificar integridad

42 Analisis y Plan de Proyecto

UC2 Verificar integridad

Descripcion El usuario solicita comprobar si los datos alma-
cenados de un dispositivo coinciden con el hash
registrado en la blockchain, validando asi su in-
tegridad.

Secuencia normal) » .
1. El usuario pulsa la opcion para verificar

un dato desde la interfaz.

2. El sistema obtiene los metadatos asocia-
dos al dato.

3. El sistema recupera el hash previamente
registrado en la blockchain.

4. El sistema compara el hash calculado con
los metadatos y el registrado en la block-
chain.

5. El sistema devuelve al usuario la infor-
macion de verificacion si la integridad es
valida.

Flujos alternativos
J 4a-1. El hash calculado no coincide con el re-

gistrado en la blockchain.

4a-2. El sistema informa al usuario de que la
integridad del dato no ha podido ser veri-
ficada.

4a-3. El caso de uso finaliza sin mostrar la in-
formacion validada.

Postcondicion El usuario ha sido informado de si el dato con-
sultado mantiene su integridad respecto al valor
registrado en la blockchain.

Tabla 4.5: Caso de uso UC2: Verificar integridad

4.1.4.3. UCS3 - Envio de datos

El envio de datos constituye el punto de entrada del sistema, en el que los
dispositivos IoT transmiten informaciéon sensorizada en formato JSON. Esta
funcionalidad permite al sistema recibir, validar y almacenar dichos datos de

4.1. Analisis de requisitos 43

forma segura, ademas de registrar un identificador de integridad (hash) en la
blockchain como mecanismo de trazabilidad y verificacion futura.

La Figura[4.5| muestra el diagrama de actividades asociado al caso de uso
UC3, en el que se representan los pasos realizados tanto por el dispositivo como
por el sistema, incluyendo el tratamiento de errores en caso de que el mensaje
recibido no cumpla con el formato esperado. A continuacién, en la Tabla[4.6|se
recoge la especificaciéon completa del caso de uso.

act UC3 - Envio de datos J

Dispositivo loT Sistema

Enviar mensaje JSON

= Encolar mensaje

Verificar formato

[formato invdlido] [formato valido]

N
A
egistrar error e
Guardar datos
y metadatos en
data lake
Almacenar hash en
blockchain

Figura 4.5: Diagrama del caso de uso de envio de datos

44 Analisis y Plan de Proyecto

UCs3 Envio de datos

Descripcion Un dispositivo IoT envia un mensaje JSON con datos sensorizados
al sistema. Este los procesa, valida y registra si cumplen el formato
establecido. En caso contrario, se registra el error y se descarta el
mensaje.

Secuencia normal . o] .
El dispositivo IoT envia un mensaje en formato JSON.

El sistema encola el mensaje recibido.
El sistema verifica que el formato del mensaje sea valido.
Si el mensaje es valido:
a) Se genera un hash a partir de los datos.
b) Se almacenan los datos y metadatos en el data lake.
c¢) Se registra el hash en la blockchain.

L e

Flujos alternativos .
3a-1. El mensaje no cumple con el formato esperado.

3a-2. El sistema registra un error asociado al mensaje.
3a-3. El mensaje es descartado y no se almacena.

Postcondicion El mensaje ha sido procesado y almacenado correctamente con su
hash registrado en blockchain, o ha sido descartado tras su validacion

fallida.

Tabla 4.6: Caso de uso UC3: Envio de datos

4.2. Plan de proyecto

El objetivo de esta seccion es definir el plan de proyecto seguido durante el
desarrollo del Trabajo Fin de Master. Se describe la planificaciéon temporal, asi
como un estudio basico de viabilidad en sus dimensiones econémica y legal. Dado
el caracter académico del proyecto, la planificacion se ha ajustado al calendario
del curso y a los hitos intermedios de entrega.

4.2.1. Planificacion temporal

El proyecto ha sido desarrollado a lo largo de varios meses siguiendo un
enfoque iterativo. Cada bloque funcional se ha abordado como una unidad

4.2. Plan de proyecto 45

independiente de trabajo, permitiendo realizar entregas parciales que aportaban
valor y facilitaban la integracion progresiva de los componentes.

La tabla [4.7| presenta una estimacion de la duracion y dedicacion horaria
aproximada de cada fase del proyecto, considerando una media de 20 horas
semanales de dedicacion:

Fase Duracion | Horas estimadas
Analisis y disefio preliminar 3 semanas 60 h
Validacion de datos con JSON Sche- | 2 semanas 40 h
ma

Persistencia en Delta Lake y pruebas | 3 semanas 60 h
locales con MinIO

Desarrollo del contrato inteligente | 2 semanas 40 h
y pruebas con Hardhat

Integracion del backend con | 2 semanas 40 h
Web3.py

Pruebas funcionales e integracion | 3 semanas 60 h

total con Docker Compose

Documentacién, redaccion de me-| 4 semanas 80 h
moria y presentacion

Total estimado 19 semanas 380 h

Tabla 4.7: Planificacion temporal y estimacion horaria del proyecto

La planificacion temporal detallada puede visualizarse en el diagrama de
Gantt de la figura[4.6] donde se muestra la distribucion estimada de las tareas a
lo largo del calendario de desarrollo.

Analisis y disefio
preliminar

Validacién con
JSON Schema

Persistencia en
Delta Lake

Contrato inteligente
y pruebas

Integracion backend
y Web3.py

Pruebas e integracion

final

Documentacioén y
presentacion

2025

Enero

| Febrero Marzo

Abril

Mayo

Figura 4.6: Diagrama de Gantt del proyecto

9%

0199f04g ap uvjq A sisypuy

4.2. Plan de proyecto 47

4.2.2. Estudio de viabilidad

4.2.2.1. Presupuesto

A partir de la planificacion estimada y los recursos empleados, se ha calculado
un presupuesto orientativo del proyecto. Se parte de un coste salarial anual total
de 50.000 euros (incluyendo costes salariales y sociales), lo que, considerando una
dedicacion anual de 1750 horas, supone un coste horario de aproximadamente
28,57 €/hora.c

El desarrollo del proyecto, sin la documentacion y la presentacion, ha re-
querido una dedicacion aproximada de 300 horas, lo que se traduce en un coste
laboral directo de:

300h x 28,57 €/h = 8.571€

A ello se suma el coste proporcional del equipo informatico utilizado, valo-
rado en 1200 euros y amortizado en tres afios. Dado que el periodo de trabajo
ha sido de unos seis meses, se estima un coste de 200 euros:

(1200 € + 3 afios) x 0,5 afos = 200 €

El coste total sin beneficio asciende, por tanto, a 8.771 €. Considerando un
beneficio industrial del 7 %, se obtiene:

8.771€ x 1,07 = 9.384,97 €

Por tanto, el precio estimado de venta del trabajo, incluyendo margen em-
presarial, asciende a 9.384,97 euros. Desde un punto de vista mas comercial, se
podria redondear el precio de venta a 10.000 euros y jugar con margenes para
realizar descuentos a clientes.

En la tabla[4.8se presenta un desglose del presupuesto estimado del proyecto
como resumen de los calculos realizados anteriormente.

48 Analisis y Plan de Proyecto

Concepto Coste (€)
Coste horario estimado 28,57
Horas de trabajo estimadas 300
Coste laboral (28,57 € x 300 h) 8.571

Coste de uso del equipo (6 meses) 200,00

Subtotal (sin beneficio) 8.771
Beneficio industrial (7 %) 614,00
Precio final del proyecto 9.384,97

Tabla 4.8: Presupuesto estimado del proyecto

4.2.2.2. Viabilidad econémica

El proyecto se ha desarrollado integramente utilizando herramientas de codi-
go abierto y gratuitas, lo que reduce practicamente a cero los costes econémicos
en tecnologia. Las tecnologias empleadas han sido:

Python, PySpark, Poetry

Delta Lake y Parquet

Docker, Docker Compose, MinIO

Solidity, Hardhat, Ganache, Web3.py

GitHub, Visual Studio Code

Los unicos recursos utilizados han sido un equipo personal con entorno
MacOS y una conexion a Internet. Esto hace que el proyecto sea econémicamente
viable tanto en un contexto académico como para posibles desarrollos futuros
en pequeiia escala.

El proyecto se ha podido realizar con una blockchain local y, por lo tanto,
no se ha realizado ningtin gasto asociado a la compra de criptomonedas para
poner en marcha el proyecto en una red blockchain Ethereum de produccion.

4.2. Plan de proyecto 49

4.2.2.3. Viabilidad legal

El sistema desarrollado no gestiona datos personales ni sensibles, por lo que
no esta sujeto a restricciones legales directas en materia de proteccion de datos
(como el RGPD). En caso de extender el sistema a un entorno real con datos
de usuarios, seria necesario llevar a cabo un analisis de impacto conforme a la
normativa vigente.

Las tecnologias empleadas (software libre y de codigo abierto) permiten su
uso, modificacion y distribucion en entornos académicos y comerciales, conforme
a sus respectivas licencias. Ademas, el uso de blockchain y almacenamiento local
evita el envio de informacion a terceros, reduciendo riesgos de cumplimiento
normativo.

4.2.3. Analisis DAFO

En la Tabla[4.9)se presenta un analisis DAFO del proyecto, con el objetivo de
evaluar sus puntos fuertes y débiles, asi como los factores externos que podrian
representar una oportunidad o una amenaza en su evolucion hacia un entorno
real.

Fortalezas (F) Debilidades (D)

— Alta curva de aprendizaje en block-
chain

- Arquitectura modular y escalable
- Tecnologias open source

- Registro inmutable con blockchain
— Validacién automatica de datos IoT
— Reproducibilidad con Docker y Ma-
kefile

- Sin pruebas reales con dispositivos
IoT

— Falta de interfaz de usuario

— Documentacién limitada para no
técnicos

Oportunidades (O)

Amenazas (A)

— Aplicacioén a trazabilidad real (resi-
duos, alimentos...)

— Integracién con plataformas cloud
- Analisis predictivo futuro

— Potencial para investigacion acadé-
mica

— Complejidad técnica para adopcion
— Obsolescencia tecnologica

- Desconfianza hacia blockchain

— Riesgos legales con datos persona-
les

Tabla 4.9: Analisis DAFO del proyecto

Como se puede observar en la tabla entre las fortalezas, destaca el
disefio modular y escalable de la arquitectura, el uso de tecnologias ampliamente

50 Analisis y Plan de Proyecto

adoptadas en la industria (como Docker, PySpark o Ethereum), y la incorporacion
de mecanismos avanzados como la validacion estructural automatica de datos
IoT y la verificacion de integridad basada en blockchain. Estas caracteristicas,
junto con la reproducibilidad del entorno gracias a herramientas como Docker
y Makefile, refuerzan la robustez técnica del sistema.

No obstante, también se reconocen debilidades importantes, como la ausencia
de pruebas reales con dispositivos 10T, una interfaz de usuario limitada, y la
elevada complejidad técnica asociada a conceptos como los arboles de Merkle o
el despliegue de contratos inteligentes. En cuanto al entorno externo, el proyecto
presenta oportunidades claras de aplicacion en trazabilidad de datos en sectores
como la gestion de residuos, la industria alimentaria o el transporte. También se
abre la posibilidad de extender la solucién con moédulos de analisis predictivo o
integraciones con plataformas cloud. Sin embargo, existen amenazas que deben
tenerse en cuenta, como la rapida evolucion tecnologica, la posible resistencia a
soluciones blockchain por parte de ciertos sectores, y las implicaciones legales
si se incorporan datos personales en escenarios reales.

Este capitulo ha detallado los requisitos funcionales y no funcionales del
sistema, asi como los principales casos de uso y la planificaciéon temporal del
proyecto. Con esta informacion como base, el siguiente capitulo aborda el diseno
de la arquitectura y las decisiones estructurales adoptadas.

Diseno

5.1. Disefno de la Arquitectura del Sistema

La arquitectura del sistema propuesta ha sido disefiada con el objetivo de
garantizar la trazabilidad, integridad y disponibilidad de los datos generados
por dispositivos IoT en entornos distribuidos. Para ello, se ha optado por una
arquitectura modular en la que cada componente cumple una funcion claramente
definida, lo que facilita su desarrollo, prueba y despliegue.

El sistema se estructura en cuatro grandes bloques: captura y validacion de
datos, almacenamiento en Data Lake, registro de huellas digitales en blockchain y
visualizacion de datos y validacion en blockchain. La eleccion de una arquitectura
actual esta desacoplada, usando para ello llamadas HTTP entre los servicios.
Como trabajo futuro de mejora, esta arquitectura puede pasar a ser basada en
eventos, permitiendo una mayor escalabilidad y flexibilidad ante cambios o
ampliaciones futuras.

5.1.1. Componentes principales

» Dispositivos IoT: sensores fisicos que recolectan datos (como tempera-
tura, posiciéon GPS, humedad, etc.) y los publican mediante el protocolo
MOQTT.

» Broker MQTT: punto de entrada de los datos, encargado de recibir los
mensajes publicados por los dispositivos y redirigirlos al sistema.

= Servicio de procesamiento: desarrollado en Python, mediante una sus-
cripcion al broker MQTT, se encarga de:

51

52 Diserio

« Validar los mensajes conforme a un esquema JSON.
« Calcular una huella digital criptografica de los datos (hash SHA-256).
« Enviar los datos validos al sistema de almacenamiento (Delta Lake).

« Registrar el hash y metadatos en un contrato inteligente desplegado
sobre la blockchain.

= Sistema de almacenamiento: se utiliza Delta Lake sobre MinlIO (S3-
compatible) para almacenar los datos de forma estructurada y versionada,
facilitando su analisis futuro y garantizando su inmutabilidad.

» Blockchain: En este proyecto, Ethereum se emplea como sistema de
registro descentralizado, donde se almacenan los hashes de los datos,
el identificador del dispositivo y la marca temporal, garantizando asi la
trazabilidad y la no repudiacion.

» Frontend: Interfaz de usuario desarrollada para visualizar el estado de los
datos recibidos, consultar la trazabilidad y lanzar acciones de verificacion.
Sirve como punto de entrada para la interaccién con el sistema de forma
accesible y visual.

= Backend API: Servicio responsable de gestionar la l6gica de negocio y
exponer los endpoints necesarios para la comunicacion entre el frontend,
la base de datos y la blockchain. Esta se ha desarrollado en Python creando
una API GraphQL.

5.1.2. Justificacion de la arquitectura

La decision de emplear una arquitectura basada en microcomponentes comu-
nicados por HTTP o suscripcion y con almacenamiento desacoplado responde a
varias motivaciones:

= Escalabilidad horizontal: los distintos servicios pueden replicarse y
escalar de forma independiente si aumenta la carga de trabajo.

» Trazabilidad robusta: separar el almacenamiento del contenido completo
(en Delta Lake) del almacenamiento del resumen (en blockchain) permite
verificar la integridad sin congestionar la red.

» Facilidad de auditoria: al estar cada componente claramente definido y
al registrar huellas digitales en blockchain, es sencillo reconstruir el flujo
de datos en caso de auditoria.

5.2. Disefio de la Aplicacion Backend 53

= Adaptabilidad tecnologica: el uso de estandares abiertos como MQTT,
JSON y HT TP facilita la interoperabilidad con otros sistemas o dispositivos.

5.1.3. Diagrama de arquitectura

A continuacién se muestra el diagrama general del sistema, donde se visualiza
los diferentes componentes y sus conexiones:

— Front service

Web browser —HTTPs—|
i ——— Back service (API)

AP Gateway
Persistence Deltal ake
1 Collector (MQTT} |——o ool
ontroller —
loT Device MaTT
Smart
Blockchain Controller [20NtACtS

Figura 5.7: Arquitectura general del sistema propuesto

5.2. Diseno de la Aplicacion Backend

El backend del sistema ha sido disefiado con el objetivo de gestionar de forma
eficiente el flujo de datos provenientes de los dispositivos IoT, garantizando su
validacion, trazabilidad y almacenamiento seguro. La aplicacion se ha desarro-
llado en Python, siguiendo principios de modularidad, responsabilidad tnica y
separacion de capas.

5.2.1. Estructura general

La aplicacién se organiza en moédulos independientes, cada uno de los cuales
encapsula una funcionalidad concreta del sistema. Esta separacion permite faci-
litar tanto las pruebas unitarias como el mantenimiento evolutivo del software.
Los principales modulos son los siguientes:

54

Diserio

Recepcion de datos: encargado de suscribirse a un broker MQTT vy
recibir los mensajes publicados por los dispositivos. Se utiliza la libreria
paho-mqtt para gestionar las conexiones y el flujo de mensajes.

Validacion: cada mensaje recibido se valida mediante un esquema JSON
Schema, asegurando que la estructura y los tipos de datos sean correctos
antes de ser procesados.

Hashing: se calcula una huella digital criptografica (SHA-256) sobre el
contenido del mensaje validado, que se usara como identificador de inte-
gridad.

Almacenamiento: los datos validados se almacenan en un Data Lake
basado en Delta Lake, alojado sobre un sistema compatible con S3 (Mi-
nlO), permitiendo almacenamiento distribuido, versionado y consultas
eficientes.

Registro en Blockchain: se utiliza la libreria web3. py para interactuar
con un contrato inteligente en Ethereum. Se registra un identificador inico
(UUID), el hash de los datos, el identificador del dispositivo y una marca
temporal.

5.2.2. Flujo de ejecucion

El flujo basico seguido por la aplicaciéon puede resumirse en los siguientes
pasos:

L e

5.
6.

Suscripcion al topic correspondiente del broker MQTT.

Recepcion de un mensaje con datos IoT.

Validacion del mensaje contra el esquema definido.

Generacion del hash criptografico mediante la generacion de un arbol de
Merkle.

Persistencia del mensaje en el Data Lake junto a los metadatos.

Registro del hash y metadatos en el contrato inteligente.

Este flujo garantiza que solo los datos validos y correctamente estructurados
se almacenen y se tracen en blockchain, proporcionando integridad desde la
entrada hasta el registro descentralizado.

5.2.3. Consideraciones adicionales

Se han implementado mecanismos de gestion de errores y reintentos automa-
ticos para operaciones criticas, como la conexion al broker MQTT o el envio de

5.3. Diserio de la Interfaz de Usuario (Frontend) 55

transacciones a la blockchain. Ademas, se ha integrado un sistema de logging
estructurado para facilitar el monitoreo y la trazabilidad de eventos.

La arquitectura modular también permite procesar tanto mensajes indivi-
duales como lotes de datos, facilitando futuras integraciones con sistemas de
procesamiento distribuido (batch o streaming).

5.3. Disefo de la Interfaz de Usuario (Frontend)

La interfaz de usuario ha sido desarrollada utilizando el framework Angular
2+, con el objetivo de ofrecer una visualizacion clara, estructurada y usable de
los datos procesados por el sistema. Se ha optado por una aplicacion de tipo
Single Page Application (SPA), que permite una experiencia fluida y sin recargas
completas del navegador, mejorando la interactividad y reduciendo los tiempos
de espera del usuario.

5.3.1. Objetivos del disefnio
Los objetivos principales de la interfaz de usuario son:
» Facilitar la consulta de los datos recopilados por los dispositivos 10T, ya
validados y almacenados.

» Permitir la verificacion de la integridad de los datos mediante la compara-
cién de la huella digital almacenada en la blockchain.

= Ofrecer una navegacion sencilla, centrada en los flujos principales de uso,
con un disefio responsive compatible con distintos tamafios de pantalla.

5.3.2. Estructura de la aplicacion

La aplicacion Angular se ha estructurado siguiendo las buenas practicas
del framework, separando componentes, servicios y modelos. Los principales
elementos de la interfaz son:

» Vista principal: muestra un mensaje de bienvenida e indica que se nave-
gue al apartado Datos en el menu.

= Vista de datos: pagina en la que se puede seleccionar el dispositivo y el
rango de fechas de los datos a visualizar.

56 Diserio

= Verificacion de integridad: funcionalidad que permite consultar la block-
chain para verificar si el hash de un conjunto de datos esta registrado,
garantizando asi su autenticidad.

» Servicios: se han desarrollado servicios en Angular para consumir las
APIs GraphQL expuestas por el backend y para interactuar con el nodo
Ethereum a través de web3. js, adaptado al navegador.

5.3.3. Diseio visual y usabilidad

Para el disefio visual se ha utilizado Angular Material, que proporciona
componentes accesibles y con un estilo moderno y uniforme. Se ha priorizado la
simplicidad, eliminando elementos visuales innecesarios y centrando la atencion
del usuario en la informacion relevante.

El disefio responsive permite utilizar la interfaz desde dispositivos moéviles y
tablets, facilitando su acceso en entornos industriales o de campo. Asimismo,
se ha validado la accesibilidad basica del sistema, siguiendo pautas como el
contraste de colores y la navegacion por teclado.

5.3.4. Wireframes

A continuacién se presentan algunos bocetos de las principales pantallas de
la interfaz, que sirvieron de guia durante el desarrollo:

AWeb Page

O C:) x {} [hitps://) @

Usuarios Dispositivos Datos Hela, John Doe
Selecciona Dispositivo | ~] [01/02/2025 - 2770272025 |igg
Dispositivo 1
Dispesitivo 2
e Data [Blockehain

01/02/2025 10:00:01 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:02 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:03 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:04 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:05 Lat: -42.345 Long: 23 HASH: 12345657890 v

01/02/2025 10:00:06 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:07 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

01/02/2025 10:00:08 Lat: -42.345 Long: 2.3 HASH: 12345657890 v

[

Figura 5.8: Wireframe: visualizacion de datos

5.3. Diserio de la Interfaz de Usuario (Frontend)

O C> x Q { https://

A Web Page

) @ D

Usuarios Dispositivos Datos

Hola, John Doe

Selecciona Dispositive '] -

[o1/02/2025 - 27/02/2025 | i

Validar datos

01/02/2025 10:00:02

Lat: -42.345 Long: 2.3

Dispositivo 1

Dispositive 2

—_—

Time Data [Blockehain

01/02/2025 10:00:01 Lat: -42.345 Long: 2.3 HASH: 12345657890 v
Tx: 0987654321

Recordl: 1234-5678-91011
Merkle prof:

{
M324123....
3

Validar en Blockchain

HASH: 12345657890 v

v

Figura 5.9: Wireframe: detalle de validacion del dato en blockchain

Aqui se ha descrito la arquitectura modular del sistema, asi como las relaciones
entre sus componentes. Este diseno es la base sobre la que se ha construido la
implementacion del sistema, la cual se detalla en el préximo capitulo.

Implementacion

6.1. Implementacion Técnica

6.1.1. Implementacion del procesamiento de datos

El procesamiento de los datos recibidos desde los dispositivos IoT constituye
una de las piezas fundamentales del sistema. Esta funcionalidad ha sido desa-
rrollada en Python, haciendo uso de librerias especializadas para la gestion de
flujos de datos, validacion estructural, generacion de hashes criptograficos y
escritura en sistemas de almacenamiento distribuidos.

Recepcion de mensajes MQTT

La aplicacion se conecta a un broker MQTT, al que los dispositivos publican
mensajes con los datos recogidos. Para gestionar esta comunicacion, se ha
utilizado la libreria paho-mqtt, que permite suscribirse a uno o varios topics y
definir funciones de callback para cada mensaje recibido.

El flujo basico consiste en:

1. Suscripcion al topic configurado.
2. Ejecucion automatica de la funciéon de procesamiento al recibir un nuevo

mensaje.
3. Decodificacion del mensaje en formato JSON.

59

60 Implementacion

Validacion estructural de los datos

Una vez recibido y decodificado el mensaje, se lleva a cabo una validacion
de su estructura utilizando esquemas JSON Schema. Esto permite asegurar
que el mensaje cumple con el formato esperado antes de continuar con su
procesamiento. Entre las validaciones realizadas se incluyen:

= Presencia obligatoria de campos como timestamp, lat, long, temp, etc.
» Tipos correctos para cada valor (nimeros, cadenas, arreglos).

» Formatos y rangos validos (por ejemplo, rangos de temperatura razona-

bles).

En caso de que el mensaje no supere la validacion, se descarta y se registra
el error en el sistema de logging para su posterior analisis.

Generacion de hash criptografico

Una vez validado, se calcula una huella digital (hash) del contenido del
mensaje. Para ello se utiliza el algoritmo SHA-256, que genera un resumen tnico
e inmutable. Esta huella servira como verificacion de que el dato enviado por el
dispositivo IoT no ha sido alterado.

Una vez varificado y validado el mensaje se procesan los datos de tal forma
que se genera un arbol de Merkle con ellos. Esto generara un hash raiz y un
conjunto de hashes llamados pruebas de Merkle que serviran para la validacion
del dato de forma individual. Las pruebas de Merkle se almacenan junto a cada
dato a almacenar como un metadato y a un UUID. Por otro lado, El hash raiz se
envia a la blockchain para su almacenamiento junto al UUID. Esta forma nos
permite en el futuro validar que el dato forma parte de una hoja del arbol del
Merkle cuya raiz corresponde al UUID almacecnado.

El proceso incluye:

» Serializacion determinista del mensaje (orden de claves consistente).

» Codificacion en UTF-8 y aplicacion de hashlib. sha256.

6.1. Implementacion Técnica 61

Almacenamiento en Delta Lake

El mensaje original validado se almacena en formato Parquet utilizando
Delta Lake como sistema de gestion de datos. Para ello, se emplea PySpark,
permitiendo:

= Escribir en un Data Lake basado en MinlO (compatible con S3).

» Afadir particiones por fecha u otros criterios relevantes, como el identifi-
cador del dispositivo.

» Garantizar versionado, transacciones ACID y consultas eficientes.

Cada lote de datos procesados se escribe como una nueva version del conjunto
de datos, lo que permite mantener un historico completo sin sobrescrituras.

Registro en la blockchain

Finalmente, se realiza una llamada al contrato inteligente desplegado en
Ethereum mediante la libreria web3. py. En esta transaccion se incluyen:

El identificador del dispositivo.

El hash generado, es decir, la raiz del arbol de Merkle.

Un identificador unico de registro (recordId).

El timestamp.

El identificador generado se recupera desde el recibo de la transaccion,
permitiendo su almacenamiento externo para futuras consultas. Este proceso
asegura la trazabilidad y la inmutabilidad del dato, sin almacenar informaciéon
confidencial directamente en la blockchain. Esto se debe a que, aun teniendo el
identificador de la transaccion, blockchain no permite acceder directamente al
dato.

6.1.2. Implementacion del contrato inteligente

Para garantizar la integridad y trazabilidad de los datos recolectados por
los dispositivos IoT, se ha desarrollado un contrato inteligente (smart contract)
en el lenguaje Solidity, desplegado sobre una red Ethereum compatible. Este

62 Implementacion

contrato actiia como un registro inmutable que almacena referencias a los da-
tos procesados, en forma de huellas digitales (hashes), junto con informaciéon
contextual relevante.

Estructura del contrato

El contrato, denominado IoTDataRegistry, permite almacenar y consultar
los registros asociados a cada dispositivo. La estructura principal es la siguiente:

» Estructura DataRecord: contiene el hash del dato (dataHash) y la marca
temporal (timestamp).

= Mapa records: relaciona cada identificador de dispositivo (deviceId)
con una lista de registros de tipo DataRecord.

= Mapa recordIds: permite asociar un identificador unico (recordId) con
un registro especifico de un dispositivo.

La logica de almacenamiento se ha optimizado para garantizar eficiencia en
el uso de gas y facilitar la recuperaciéon de datos por parte del cliente.

Funciones principales

Las funciones clave implementadas en el contrato son:

s storeData(string memory deviceld, string memory dataHash,
uint256 timestamp): almacena un nuevo registro para un dispositivo,
genera internamente un recordId unico y lo asocia al dispositivo. Esta
funcién emite un evento con el identificador generado.

» getData(string memory deviceld): devuelve todos los registros aso-
ciados a un deviceld, permitiendo consultar su historial completo de
huellas.

= getDataWithRecordId(string memory deviceld,
string memory recordId): permite recuperar inicamente el registro
que coincide con el recordId indicado, util para trazabilidad precisa desde
el exterior del sistema.

6.1. Implementacion Técnica 63

Despliegue y pruebas

El contrato ha sido desarrollado y probado utilizando el entorno Hardhat,
lo que permite compilar, desplegar y testear el contrato localmente o en redes
publicas de pruebas como Sepolia. Durante el proceso se han realizado pruebas
unitarias para verificar el correcto comportamiento de cada funcién, asegurando:

» El correcto almacenamiento de registros.
» La recuperacion precisa de datos mediante deviceId o recordId.

» La generacion y persistencia del identificador tnico (recordId) dentro de
la blockchain.

Ademas, se ha integrado web3. py en el backend del sistema, lo que permite
invocar las funciones del contrato desde Python de forma programatica, firmando
las transacciones con una clave privada local o de entorno seguro. El identificador
de registro (recordld) se recupera desde el recibo de transaccion y se conserva
junto con el dato completo para futuras comprobaciones.

Optimizacion de costes

Se han aplicado varias técnicas para minimizar el coste de gas de las opera-
ciones:

= Uso de tipos de datos compactos y estructuras planas.

= Separacion de datos completos (almacenados en el Data Lake) y metadatos
(registrados en la blockchain).

= Uso de eventos para obtener informacién desde el exterior sin necesidad
de llamadas adicionales a la cadena.

= Uso de arboles de Merkle para compactar las huellas digitales de los
datos y facilitar la verificacion de integridad ante posibles alteraciones,
minimizando el espacio requerido en blockchain.

Esta aproximacion permite escalar el sistema sin incurrir en costes elevados
por el uso de la red Ethereum, al mismo tiempo que se garantiza la trazabilidad
e integridad de los datos.

64 Implementacion

6.1.3. Implementacion del frontend

La interfaz de usuario del sistema ha sido desarrollada utilizando Angular
2+, un framework de desarrollo frontend basado en TypeScript que permite crear
aplicaciones web reactivas, modulares y de facil mantenimiento. La aplicacion
tiene como objetivo principal facilitar el acceso a los datos procesados y validados,
asi como permitir la verificacion de su integridad mediante la interaccion con la

blockchain.

Estructura de la aplicacion

El frontend se ha organizado en base a componentes reutilizables y servicios
centralizados. La estructura sigue las convenciones de Angular y esta compuesta
principalmente por:

= Componentes: encargados de representar visualmente las vistas de la
aplicacion. Entre los principales se encuentran:

+ DevicelListComponent: muestra un listado de dispositivos IoT regis-
trados.

« DeviceDetailComponent: presenta los datos individuales enviados
por un dispositivo concreto, junto con sus hashes y timestamps.

+ VerificationComponent: permite al usuario verificar si un hash
esta registrado en la blockchain y visualizar los detalles asociados.

= Servicios: gestionan la logica de negocio y la comunicacion con APIs
externas. Los mas relevantes son:

» DataService: se comunica con el backend para obtener los datos
almacenados en el Data Lake.

« BlockchainService: interactda con la red Ethereum (a través de
web3. js) para consultar el contrato inteligente.

Integracion con el backend y la blockchain
El frontend consume dos tipos de fuentes de datos:

1. API GraphQL desarrollada en Python, que expone los datos recolectados
y validados, permitiendo su consulta mediante llamadas HTTP.

2. Contrato inteligente desplegado en Ethereum, al que se accede desde el
navegador mediante web3. js y el proveedor inyectado por MetaMask.

6.1. Implementacion Técnica 65

Esta doble fuente permite comparar los datos almacenados con los registros
en blockchain, validando asi su integridad de forma transparente para el usuario.

Diseno visual

Se ha utilizado Angular Material como biblioteca de componentes Ul
para garantizar una apariencia moderna, accesible y coherente. Ademas, se
ha aplicado un disefio responsive, lo que permite utilizar la aplicacion desde
diferentes dispositivos (PC, tablet o movil) sin pérdida de funcionalidad.

Las vistas se han disefiado priorizando la simplicidad y claridad, mostrando
la informacion relevante en primer plano y reduciendo al minimo las acciones
necesarias para acceder a los datos o verificar su validez.

Navegacion y flujo de uso

La navegacion se estructura en rutas claramente diferenciadas:

» /devices: listado de dispositivos registrados.
» /data: para la visualizacion de los datos.

= /users: para la visualizacion de los usuarios.

El flujo de uso esta pensado para que un usuario pueda, en pocos pasos,
consultar los datos de un dispositivo, visualizarlos en detalle y verificar su
autenticidad, todo ello sin necesidad de conocimientos técnicos avanzados.

Este capitulo ha detallado el proceso de implementacion técnica del sistema,
abordando de forma modular la légica de procesamiento de datos, el contrato
inteligente desarrollado en Solidity y la interfaz web construida con Angular. Se
ha documentado como cada componente interactiia dentro de la arquitectura
propuesta, asegurando la integracion entre tecnologias IoT, Big Data y block-
chain. En el siguiente capitulo se describe la estrategia de validacion seguida y
las pruebas realizadas para verificar el correcto funcionamiento del sistema.

Pruebas

7.1. Pruebas Realizadas

Durante el desarrollo del sistema se han llevado a cabo diversas pruebas
con el fin de validar tanto su correcto funcionamiento como el cumplimiento
de los objetivos planteados. Estas pruebas permiten verificar la robustez de los
distintos mddulos, detectar posibles errores en fases tempranas y asegurar la
integridad de los datos desde su recepcion hasta su verificacion en blockchain.

El sistema, al estar compuesto por multiples componentes distribuidos (ser-
vicios de backend, frontend, worker de procesamiento, almacenamiento en Data
Lake y contratos inteligentes), requiere una estrategia de pruebas completa que
abarque las distintas capas de la arquitectura. En esta seccion se detallan los
tipos de pruebas realizados, la metodologia seguida y los resultados obtenidos.

7.1.1. Estrategia de pruebas

La estrategia de pruebas adoptada tiene como objetivo garantizar la correcta
funcionalidad, fiabilidad e integridad del sistema desarrollado. Para ello, se
ha seguido un enfoque progresivo que incluye pruebas unitarias, pruebas de
integracion y pruebas funcionales, abarcando tanto el backend como el frontend,
asi como la interaccion con la blockchain.

Tipos de pruebas

Se han definido los siguientes tipos de pruebas, cada uno orientado a validar
distintos niveles del sistema:

67

68

Pruebas

Pruebas unitarias: verifican el comportamiento de funciones y médulos
individuales, como la validacién de mensajes, el calculo de hashes o la
logica del contrato inteligente.

Pruebas de integracion: aseguran que los distintos componentes del
sistema (por ejemplo, recepcion de datos, almacenamiento en Delta Lake
y registro en blockchain) funcionan correctamente en conjunto.

Pruebas funcionales: simulan casos de uso reales para validar que el
sistema cumple con los requisitos funcionales definidos.

Pruebas end-to-end: ejecutadas desde el frontend, verifican que los datos
se visualizan correctamente, que las verificaciones contra la blockchain
funcionan como se espera y que el usuario puede completar flujos com-
pletos sin errores.

Herramientas utilizadas

Para la ejecucion y automatizacion de las pruebas se han utilizado las si-

guientes herramientas:

pytest: para las pruebas unitarias e integracién del backend Python.

Hardhat: para pruebas automatizadas del contrato inteligente en entornos
de test.

web3.py y web3. js: para invocar y verificar funciones del contrato desde
backend y frontend, respectivamente.

Jasmine y Karma: para pruebas unitarias en el frontend Angular.

MetaMask: como proveedor de Web3 para pruebas desde navegador con
interaccion directa con la blockchain.

Entorno de pruebas

Durante el desarrollo se ha utilizado un entorno local compuesto por con-

tenedores Docker, que permite simular todos los componentes necesarios del
sistema:

= MinlO: como sistema de almacenamiento compatible con la API de S3.

7.1. Pruebas Realizadas 69

= Backend y frontend: desplegados en contenedores separados para facili-
tar la modularidad y las pruebas independientes.

» Red Ethereum local: utilizando Hardhat o Ganache como nodos de
desarrollo para el despliegue y prueba de contratos inteligentes.

Este entorno ha permitido realizar pruebas rapidas, reproducibles y sin costes,
facilitando el desarrollo iterativo y la validacion del sistema de forma completa
en local.

Cobertura y enfoque incremental

La estrategia de pruebas ha sido incremental, validando progresivamente
cada componente conforme se completaba su desarrollo. Se ha buscado alcanzar
una alta cobertura de c6digo en el backend, asi como asegurar la robustez del
contrato inteligente ante entradas maliciosas o inesperadas. Las pruebas han sido
documentadas para permitir su reproduccion, y se han automatizado aquellas
susceptibles de ser ejecutadas en CI/CD en el futuro.

7.1.2. Pruebas del backend

El backend del sistema, desarrollado en Python, ha sido sometido a un con-
junto de pruebas orientadas a validar tanto la lo6gica de procesamiento de datos
como la interaccion con los sistemas de almacenamiento y con la blockchain.
Estas pruebas se han dividido en pruebas unitarias y pruebas de integracion,
empleando datos simulados representativos de los dispositivos IoT.

Validacion de mensajes

Se han definido multiples casos de prueba para verificar que el mddulo de
validacion JSON Schema rechaza correctamente los mensajes mal formados. Se
han comprobado:

» Rechazo de mensajes con campos ausentes o vacios.

= Rechazo de tipos de datos incorrectos (por ejemplo, texto en lugar de
numeros).

» Aceptacion de mensajes validos con valores dentro de los rangos esperados.

70 Pruebas

Cada caso ha sido probado mediante funciones de test utilizando pytest,
garantizando que s6lo los mensajes bien estructurados avanzan en el flujo del
sistema.

Calculo de hash

Se ha verificado que el algoritmo de hashing genera resultados consistentes
y deterministas para entradas idénticas. También se ha comprobado que cual-
quier modificaciéon, por minima que sea, en los datos de entrada, produce un
hash completamente distinto, cumpliendo asi con las propiedades deseadas del
algoritmo SHA-256.

Almacenamiento en Delta Lake

Para validar el almacenamiento, se han ejecutado pruebas que:

» Comprueban que los datos se escriben correctamente en formato Parquet.

» Verifican la creacion de particiones por fecha y su correcta resolucion
mediante consultas.

s Evaluan la existencia de versiones anteriores de los datos mediante la

funcionalidad de time travel.

Se ha empleado PySpark con consultas directas sobre los datos almacenados
en MinlO para validar el contenido de los ficheros generados.

Manejo de errores y reintentos

Se han simulado fallos comunes como:

= Desconexion del broker MQTT.

= Fallo de escritura en el Data Lake.

= Error de conexioén con el nodo blockchain.

El sistema responde ante estos fallos mediante mecanismos de reconexion,
reintentos controlados y registro estructurado de errores. Estas pruebas aseguran

que el backend puede recuperarse de errores transitorios sin pérdida de datos ni
necesidad de intervenciéon manual inmediata.

7.1. Pruebas Realizadas 71

Invocacion del contrato inteligente

Se han probado las funciones de interaccion con el contrato mediante web3. py.
En concreto, se ha verificado:

» El envio correcto de transacciones con datos validos.
» La recepcion del receipt y extraccion del recordId.

» El comportamiento del sistema ante transacciones fallidas (por ejemplo,
por falta de gas).

Todas las pruebas se han realizado inicialmente en una red local con HardHat
o Ganache, utilizando ETH de prueba para evaluar el consumo real de gas en
condiciones cercanas al entorno de produccion.

Estas pruebas permiten verificar el cumplimiento de los requisitos (reco-
leccion de datos IoT),[RF2|(validacion de datos) y RF3|(almacenamiento de datos),
al garantizar que los mensajes recibidos se validan estructuralmente mediante
JSON Schema y se almacenan de forma persistente. También contribuyen al
cumplimiento de los requisitos no funcionales[RNF2|(fiabilidad del sistema frente
a entradas invalidas) y [RNF5| (compatibilidad con formatos estandarizados como
JSON).

7.1.3. Pruebas del contrato inteligente

El contrato inteligente desarrollado en Solidity ha sido sometido a pruebas
exhaustivas para validar su correcto funcionamiento, garantizar la integridad de
los datos almacenados y asegurar un uso eficiente del gas. Las pruebas se han
llevado a cabo utilizando el entorno de desarrollo Hardhat, que permite ejecutar
test automatizados sobre una red Ethereum local simulada.

Pruebas unitarias

Se han disefiado pruebas unitarias para cada una de las funciones principales
del contrato:

» storeData: se ha comprobado que permite almacenar registros correcta-
mente, que emite el evento correspondiente con el recordId generado y
que se puede invocar multiples veces con distintos dispositivos.

72 Pruebas

= getData: se ha verificado que devuelve la lista de registros completa para
un deviceId determinado, en el mismo orden en que fueron almacenados.

» getDataWithRecordId: se han probado casos positivos (el recordId exis-
te y coincide) y casos negativos (no existe el registro o no pertenece al
dispositivo consultado), evaluando que el contrato responde correctamen-
te.

Estas pruebas se han implementado en JavaScript utilizando la API de
ethers. js, incluida en Hardhat, permitiendo verificar tanto el estado interno
del contrato como los eventos emitidos.

Pruebas de consistencia y validacion

Ademas de las pruebas funcionales, se han llevado a cabo pruebas orientadas
aasegurar la consistencia de los datos y la proteccion frente a entradas maliciosas.
Entre ellas:

» Almacenamiento de registros con el mismo hash para dispositivos distintos:
el contrato debe permitirlo, ya que el hash representa datos equivalentes
generados en distintos contextos.

» Intentos de almacenar registros con campos vacios o invalidos: se ha
comprobado que la validacion se realiza en la capa del backend, y que el
contrato asume que los datos ya han sido preprocesados y validados.

» Deteccion de recordId duplicado: se ha verificado que el contrato genera
internamente un identificador Gnico para cada registro mediante una
combinacion de keccak256, lo que garantiza la unicidad sin intervencion
externa.

Medicion de gas y eficiencia

Se ha prestado especial atencion al consumo de gas de las funciones del
contrato. Se han medido los costes de las operaciones de escritura y lectura con
distintos tamafios de entrada y nimero de registros por dispositivo. Las pruebas
han demostrado que:

» El coste de la funcidon storeData se mantiene dentro de limites razonables,
incluso con multiples registros.

7.1. Pruebas Realizadas 73

= Las funciones de consulta no generan consumo de gas al ser llamadas como
view, permitiendo su uso libre desde el frontend o scripts de backend.

» La emision de eventos con el recordId permite recuperar la informacion
necesaria sin almacenar datos redundantes.

Las pruebas realizadas sobre el contrato inteligente permiten verificar los
requisitos (registro de integridad en blockchain) y[RF5|(verificacion de inte-
gridad), ya que validan el correcto almacenamiento del hash raiz del arbol de
Merkle y su recuperacion posterior. Asimismo, satisfacen los requisitos no fun-
cionales (seguridad e inmutabilidad de los registros) y RNF4 (trazabilidad
completa del ciclo de vida de los datos).

7.1.4. Pruebas de la interfaz de usuario

La interfaz de usuario desarrollada con Angular 2+ ha sido sometida a
pruebas orientadas a verificar la correcta visualizacién de los datos, la fluidez de
la navegacion y la interaccion con el backend y la blockchain. Se han llevado a
cabo pruebas tanto manuales como automatizadas, utilizando datos simulados y
reales procedentes de la red de pruebas.

Pruebas funcionales

Se han ejecutado pruebas funcionales para validar los flujos principales del
sistema desde el punto de vista del usuario final:

= Carga del listado de dispositivos registrados.

Acceso al detalle de un dispositivo y visualizacion de los datos recogidos.

Visualizacion de los hashes y timestamps asociados a cada entrada.

Consulta de la existencia de un hash en la blockchain a través de la interfaz
de verificacion.

Manejo de errores de red o fallos en la conexion con el backend o el nodo
Web3.

Estas pruebas han permitido identificar y corregir errores de integraciéon y
validaciones incompletas en etapas tempranas del desarrollo.

74 Pruebas

Pruebas de interaccion con la blockchain

Dado que la aplicacion permite al usuario verificar la integridad de los datos
consultando directamente a la blockchain, se han realizado pruebas especificas
para este modulo. Se ha verificado que:

» La conexioén con MetaMask se establece correctamente al cargar la pagina.

= El contrato inteligente se consulta adecuadamente mediante web3. js, y
los datos devueltos coinciden con los registrados.

» Los errores de red o fallos en la carga de la blockchain son detectados y
mostrados al usuario de forma clara.

Estas pruebas se han realizado exclusivamente en un entorno local, lo que
ha permitido validar la interoperabilidad de la interfaz con una red Ethereum
simulada, reproduciendo condiciones similares a un entorno real sin incurrir en
costes ni depender de infraestructura externa. Este enfoque facilita una futura
migracién a una red publica o privada de Ethereum, ya que los contratos y la
logica de interaccion estan disefiados para ser compatibles con redes EVM sin
requerir modificaciones sustanciales.

Pruebas de usabilidad y diseiio responsive

Se ha evaluado la experiencia de usuario en distintos dispositivos y tamafios
de pantalla. Gracias al uso de Angular Material y disefio adaptativo (responsive),
la aplicacion se adapta correctamente a:

» Escritorios con resoluciones altas y bajas.

= Tablets en orientacion horizontal y vertical.

» Teléfonos moviles de diferentes tamarfios.

Ademas, se han realizado pruebas con usuarios ajenos al desarrollo para

evaluar la claridad de las vistas, la facilidad de navegacién y la comprensibilidad
de los datos presentados.

7.1. Pruebas Realizadas 75

Pruebas unitarias en Angular

Se han desarrollado pruebas unitarias para los componentes y servicios de
Angular mediante Jasmine y Karma. Estas pruebas aseguran:

» La correcta inicializacion de los componentes principales.

» El funcionamiento esperado de los servicios HTTP al consumir la API
REST.

» El correcto tratamiento de errores y estados de carga.

Estas pruebas se integran con el sistema de desarrollo continuo, permitiendo
validar rapidamente cambios antes de realizar despliegues.

La interfaz ha sido probada en distintos escenarios de visualizacion y verifi-
cacion de datos, satisfaciendo los requisitos (interfaz de usuario funcional
y accesible) y[RF5| (verificacion de integridad desde el cliente). Estas pruebas
también contribuyen al cumplimiento de los requisitos no funcionales
(usabilidad de la aplicacién por usuarios sin conocimientos técnicos) y [RNF]]
(escalabilidad, al permitir la visualizaciéon de multiples dispositivos).

7.1.5. Ejecucion de las pruebas en CI/CD

Con el objetivo de garantizar la calidad y estabilidad del sistema, se ha
configurado un flujo de integracion continua (CI) mediante GitHub Actions,
una plataforma que permite definir y automatizar tareas como la ejecucion de
pruebas, compilacion o despliegue en respuesta a eventos sobre el repositorio.

En este proyecto, se ha definido un flujo de trabajo (workflow) que se activa
automaticamente en los siguientes casos:

» Cuando se realiza un push sobre la rama principal o de desarrollo.

= Cuando se crea un pull request, permitiendo validar los cambios antes de
su fusion.

Por ejemplo, el workflow para el cédigo en Python, ejecuta los siguientes
pasos:

1. Se instala el entorno de Python y las dependencias del proyecto definidas
en pyproject.toml.

76 Pruebas

2. Se lanza la ejecucion de las pruebas unitarias mediante pytest.
3. Se muestra el resultado del conjunto de pruebas, indicando si todas han
sido superadas correctamente o si existen errores.

Esta automatizaciéon permite detectar errores de forma temprana, prevenir
regresiones y facilitar la colaboracion segura en el codigo fuente. Ademas, el re-
sultado de las pruebas queda visible directamente en la interfaz de GitHub, tanto
en la vista de confirmaciones (commits) como en las solicitudes de incorporacion
de cambios (pull requests).

En la Figura se muestra un ejemplo del resultado de una ejecucion
correcta del flujo de pruebas sobre una pull request en Github.

° All checks have passed ~

3 successful checks

v Test Persistence Worker / test (pull_request) Successful in 46s
v Test Smart Contracts / test-smart-contracts (pull_request) Successfulin 21s
v Test Smart Contracts / test-smart-contracts (push) Successful in 18s

° No conflicts with base branch
Merging can be performed automatically.

(VETE TR NI Al You can also merge this with the command line. View command line instructions.

Figura 7.10: Resultado de la ejecucion de pruebas en GitHub Actions

7.1.6. Resultados de las pruebas

Tras la ejecucion de las distintas pruebas descritas en los apartados anteriores,
se ha podido comprobar que el sistema desarrollado cumple satisfactoriamente
con los objetivos funcionales y no funcionales definidos al inicio del proyecto. Las
pruebas han permitido validar tanto la correcta integracion entre componentes
como la robustez del sistema frente a errores esperados.

Validacion de los objetivos funcionales

Los resultados obtenidos permiten afirmar que los requisitos principales han
sido alcanzados:

» Los datos enviados por los dispositivos IoT se reciben correctamente a
través del broker MQTT, se validan y almacenan en el Data Lake de forma
estructurada.

7.1. Pruebas Realizadas 77

= Se calcula una huella digital de los datos y se registra en la blockchain
publica, asegurando su trazabilidad e integridad.

» La interfaz de usuario permite consultar los datos recolectados y verificar
su existencia y consistencia en la blockchain de forma intuitiva.

» El contrato inteligente permite almacenar y recuperar datos de forma
eficiente, incluyendo la busqueda por identificador tnico de registro
(recordId).

Cobertura de pruebas y estabilidad del sistema

Las pruebas unitarias alcanzan una alta cobertura de co6digo en el backend,
validando los médulos de recepcion, validacion, hash y escritura en el Data Lake.
Asimismo, las pruebas automatizadas del contrato inteligente y las pruebas
funcionales del frontend confirman la correcta operatividad de las interfaces y
la 16gica del sistema.

Durante las pruebas de integraciéon realizadas en el entorno local, el sistema
ha demostrado una estabilidad adecuada ante condiciones adversas, como la
pérdida de conexion con servicios externos o la introduccién de datos invalidos,
recuperandose de forma automatica sin necesidad de intervenciéon manual.

Aspectos detectados y posibles mejoras

Durante la fase de pruebas también se han identificado algunos aspectos
susceptibles de mejora en futuras iteraciones del sistema:

= Optimizacion del consumo de gas: aunque el contrato funciona correc-
tamente, su eficiencia podria mejorarse mediante el uso de estructuras
mas compactas o almacenamiento mas directo.

= Gestion de errores mas informativa en frontend: en algunos casos de
fallo en la conexion blockchain, los mensajes al usuario podrian ser mas
especificos y orientativos.

= Automatizacion del despliegue: la integraciéon de herramientas de
CI/CD permitiria acelerar los ciclos de prueba y despliegue tanto para el
backend como para el frontend y el contrato.

» Pruebas de rendimiento a gran escala: seria conveniente evaluar el
sistema con un volumen elevado de dispositivos y datos para validar su
comportamiento en escenarios de produccion real.

78 Pruebas

Conclusion

En conjunto, los resultados obtenidos confirman que la solucion propuesta es
técnicamente viable, funcional y robusta. Las pruebas realizadas han permitido
no sélo validar los objetivos alcanzados, sino también sentar las bases para
futuras mejoras que refuercen la escalabilidad, eficiencia y experiencia de usuario
del sistema.

Alavista de los resultados obtenidos, se puede afirmar que el sistema cumple
con todos los requisitos funcionales definidos |(RF1-RF6), cubriendo desde la
captura y validacion de datos IoT hasta su trazabilidad en blockchain y consulta
desde la interfaz. Del mismo modo, se satisfacen los principales requisitos no
funcionales |(RNF1-RNF6)| relacionados con la fiabilidad, seguridad, trazabilidad,
compatibilidad y usabilidad del sistema.

Para finalizar, en la tabla se presenta un resumen de la relacion entre
las pruebas realizadas y los requisitos funcionales y no funcionales validados.
Esta trazabilidad permite comprobar de forma clara que todos los objetivos
planteados en el analisis han sido correctamente cubiertos mediante el sistema
desarrollado.

Prueba realizada Requisitos funcio- | Requisitos no

nales validados funcionales vali-
dados

Validacion de datos IoT en el bac- | [RF1, RF2, RF3 RNF2, RNF5

kend

Registro y verificacion en block- | [RF4, RF5 RNF3, RNF4

chain

Consulta y verificacion desde la | [RF5, RF6 RNF1, RNF6

interfaz web

Pruebas de integracion y flujo | RF1-RF6 RNF1, RNF2, RNF4

completo de datos

Tabla 7.10: Relacion entre pruebas realizadas y requisitos validados

A lo largo de este capitulo se ha presentado la estrategia de pruebas utilizada
para verificar la funcionalidad y robustez del sistema. Se han descrito las pruebas
unitarias, funcionales e integradas aplicadas a los distintos médulos, asi como la
automatizacion de pruebas mediante GitHub Actions. Los resultados obtenidos
confirman el cumplimiento de los requisitos definidos. En el proximo capitulo

7.1. Pruebas Realizadas 79

se extraen las conclusiones del trabajo realizado y se plantean posibles lineas de
mejora y desarrollo futuro.

Conclusiones y Lineas
de trabajo futuras

8.1. Conclusiones

El trabajo realizado ha abordado con éxito el disefio e implementacion de
una arquitectura segura y trazable para el almacenamiento de datos IoT. Se han
cumplido los objetivos establecidos, desarrollando una solucién técnicamente
robusta que integra tecnologias modernas como Delta Lake, MQTT y Ethereum
blockchain.

A modo de resumen, los principales logros alcanzados durante el desarrollo
del proyecto son los siguientes:

= Se ha disefiado e implementado una arquitectura modular, escalable y
desacoplada.

= Se ha desarrollado un sistema de recoleccion de datos IoT basado en MQTT
y validacion con JSON Schema.

» Se ha integrado un sistema de almacenamiento escalable usando Delta
Lake sobre MinlIO.

» Se ha implementado un contrato inteligente en Ethereum para registrar
hashes de datos y garantizar su integridad.

= Se ha desarrollado una interfaz web funcional para consultar y verificar la
consistencia de los datos almacenados.

81

82 Conclusiones y Lineas de trabajo futuras

= Se ha evaluado la solucién en un entorno local mediante pruebas unitarias,
de integracion y funcionales.

= Se ha automatizado la ejecucion de pruebas en flujos CI/CD con GitHub
Actions.

= Se ha documentado todo el sistema, incluyendo aspectos técnicos y de
usuario.

La arquitectura propuesta demuestra ser viable desde el punto de vista
técnico, combinando fiabilidad, trazabilidad y descentralizacion. Ademas, el
sistema esta preparado para escalar horizontalmente y adaptarse a futuros
requisitos sin modificaciones estructurales profundas.

El sistema resultante ha demostrado ser funcional, fiable y facilmente exten-
sible. Ademas, permite una aplicacion realista de blockchain en contextos no
financieros y sirve como base para lineas de investigaciéon académica o industrial.

8.2. Trabajo Futuro

Durante el desarrollo del proyecto han surgido oportunidades de mejora y
ampliacion que podrian ser abordadas en futuras fases o por otros investigadores
interesados en la tematica. Entre ellas destacan:

» Firma digital de los datos: integrar mecanismos de firma electrénica
desde el propio dispositivo para asegurar también el origen de los datos,
no solo su integridad.

» Auditoria automatizada de integridad: desarrollar un servicio que
periddicamente verifique que los datos almacenados en el Data Lake siguen
coincidiendo con los hashes registrados en blockchain, detectando posibles
manipulaciones.

» Visualizacion avanzada: incorporar herramientas de visualizacion gra-
fica (por ejemplo, dashboards en tiempo real o mapas interactivos) para
facilitar la explotacion visual de los datos recogidos.

» Despliegue sobre infraestructura en la nube: migrar la solucién a
un entorno cloud completo (por ejemplo, AWS o GCP), aprovechando
servicios gestionados para escalar de forma automatica y segura.

8.2. Trabajo Futuro 83

= Evaluacion con dispositivos reales en escenarios reales: desplegar
el sistema en un entorno industrial o de monitorizacién ambiental con
multiples sensores distribuidos y analizar su comportamiento bajo carga.

» Interoperabilidad con otras blockchains o sistemas externos: es-
tudiar la posibilidad de usar otras redes (como Hyperledger o Polygon),
asi como integraciones con sistemas ERP, bases de datos tradicionales o
herramientas de analisis Big Data.

Estas lineas abren un camino claro para continuar explorando soluciones
seguras y trazables en entornos IoT, ampliando tanto el alcance del sistema como
su robustez frente a escenarios mas exigentes.

Este capitulo ha sintetizado las principales conclusiones del trabajo, eva-
luando el grado de cumplimiento de los objetivos planteados y destacando las
aportaciones técnicas del sistema propuesto en el contexto de la validacion,
almacenamiento y verificacion de integridad de datos IoT. Asimismo, se han
identificado varias lineas de trabajo futuro orientadas a la mejora de la solucion,
incluyendo pruebas con dispositivos reales, despliegue en entornos productivos
o ampliacion de funcionalidades mediante analitica avanzada. Con ello, se da
por finalizado el presente Trabajo Fin de Master.

Apéndices

85

Apéndice A

Documentacion
tecnica de
programacion

A.1. Introduccion

Este apéndice recoge la documentacion técnica del proyecto desarrollado
como parte del Trabajo Fin de Master. Incluye detalles sobre la estructura del
repositorio, instrucciones de instalacion, ejecucién, pruebas y el uso de los
principales servicios que componen la arquitectura.

El codigo fuente completo esta disponible en el siguiente repositorio publico:
» Repositorio GitHub: https://github.com/javalon/iot-trace-chain
La documentacion adicional del proyecto puede consultarse en:

» Deepwiki: https://deepwiki.com/javalon/iot-trace-chain

El proyecto permite procesar datos IoT en tiempo real, validarlos, almacenar-
los en un Data Lake y registrar su integridad en una red blockchain simulada.

87

https://github.com/javalon/iot-trace-chain
https://deepwiki.com/javalon/iot-trace-chain

88 Apéndice A. Documentacion técnica de programacion

También incluye una interfaz web para la visualizaciéon y verificacién de dichos
datos.

A.2. Estructura de directorios

La estructura general del repositorio es la siguiente:

—persistence-worker/ ...Logica de procesamiento, validacion y hash
—blockchain/ Contratos inteligentes y scripts de Hardhat
rmosquitto/ ...l Configuracion del broker MQTT
—minio-mirror/ Herramientas para consulta local (DuckDB)
—back-api/ ...l Backend API con FastAPI + GraphQL
—delta-reader/ Servicio de lectura desde Delta Lake
—iot-chain-front/ Aplicacion web en Angular
—docker-compose.yaml Orquestacion de servicios
—README.Mmd ... Documentacion

A.3. Manual del programador

El codigo esta modularizado en servicios Docker, cada uno con un propoésito
concreto. La logica del sistema sigue una arquitectura basada en microservicios.
Los puntos clave para desarrolladores son:

= persistence-worker: contiene la logica de ingestion MQTT, validacion
con JSON Schema, céalculo de hashes y escritura en Delta Lake.

» blockchain: define y despliega el contrato inteligente en una red local
(Hardhat o Ganache).

= back-api y delta-reader: exponen servicios GraphQL/REST para acceder
a los datos.

» iot-chain-front: permite consultar y verificar los datos via interfaz grafi-
ca.

A.4. Compilacion, instalacion y ejecucion del proyecto 89

Las dependencias de Python se gestionan con Poetry. El sistema puede
iniciarse completamente mediante Docker Compose.

A.4. Compilacion, instalacion y ejecucion del

proyecto

Para iniciar el entorno completo en desarrollo, se requiere tener instalado
Docker y Docker Compose.

Inicio completo del sistema

Para facilitar el despliegue del sistema en entornos de desarrollo y pruebas, se
ha definido una configuracién basada en Docker Compose que permite levantar
todos los servicios principales de forma automatizada. Esta aproximacién garan-
tiza la reproducibilidad del entorno, simplifica la instalaciéon de dependencias y
facilita la ejecucion coordinada de los diferentes modulos del sistema.

La instruccion que se muestra a continuacién construye las imagenes nece-
sarias (en caso de que no existan localmente) y lanza todos los contenedores
definidos en el archivo docker-compose.yaml.

docker compose up --build

Al ejecutar este comando, se pondran en marcha los siguientes componentes
clave de la arquitectura:

= Broker MQTT (Mosquitto): encargado de recibir los mensajes de los
dispositivos IoT.

= Almacenamiento (MinlO + Delta Lake): infraestructura de almacena-
miento escalable y compatible con S3.

= Contrato blockchain (Ganache): red Ethereum local para registrar
huellas digitales (hashes).

= Backend y frontend: servicios de API (FastAPI + GraphQL) y aplicacién
web (Angular) para visualizacién e interaccion.

90 Apéndice A. Documentacion técnica de programacion

Ejecucion de servicios auxiliares (perfil manual)

Ademas de los servicios principales, el sistema cuenta con herramientas
opcionales que pueden facilitar el desarrollo, la depuracion y la exploraciéon
de datos. Estos servicios no se lanzan por defecto, pero pueden activarse de
forma individual mediante el perfil manual definido en docker-compose.yaml.
Las variables de entorno utilizadas en dicho archivo disponen de un valor por
defecto, pero pueden ser facilmente sobrescritas si existen variables de entorno
definidas en el sistema en el momento de ejecutar el comando, lo que permite
adaptar el entorno sin necesidad de modificar los ficheros de configuracion.

Por ejemplo, si se desea cambiar el valor por defecto de la variable
BLOCKCHAIN_RPC_URL, se puede ejecutar el siguiente comando:

BLOCKCHAIN_RPC_URL=http://localhost:8545 \\

docker compose --profile manual up expedition

En este caso, el valor proporcionado sobrescribira el definido por defecto en
el archivo docker-compose.yaml, sin necesidad de modificarlo manualmente.

De forma alternativa, es posible definir variables de entorno de manera
persistente mediante un archivo .env en la raiz del proyecto. Docker Compose
las detectara automaticamente al iniciar los servicios. Por ejemplo, el siguiente
contenido en un archivo .env establecera la URL del nodo blockchain:

BLOCKCHAIN_RPC_URL=http://localhost: 8545
DATA_LAKE_BUCKET=trace-data

Este enfoque permite personalizar el entorno de ejecucién sin modificar
directamente el archivo docker-compose.yaml, facilitando la portabilidad y el
versionado del proyecto.

Para ejecutar uno de estos servicios, se debe emplear el siguiente comando,
sustituyendo el nombre por el del servicio deseado:

docker compose --profile manual up mgtt-explorer

A.5. Pruebas del sistema 91

Entre los servicios auxiliares més destacados se encuentran:

» MQTT Explorer: una herramienta con interfaz grafica para inspeccionar
temas MQTT y los mensajes recibidos en tiempo real.

» Expedition: explorador web para redes Ethereum locales, util para visua-
lizar transacciones, bloques y contratos desplegados.

= minio-mirror: servicio para crear una copia local de los datos almacena-
dos en MinlO, util para analisis offline.

= duckdb: entorno SQL interactivo que permite consultar datos en formato
Parquet o Delta directamente desde el sistema de archivos.

Estos servicios se inician de forma aislada, lo que permite activarlos Unica-
mente cuando se necesitan, sin afectar al resto de la infraestructura.

Ejecucion manual del worker

En caso de querer ejecutar el mdédulo principal manualmente:

cd persistence-worker
poetry install

poetry run poe start-local

Opcionalmente, se puede usar:

poetry run poe publish-message

para enviar un mensaje de prueba MQTT.

A.5. Pruebas del sistema

El proyecto incorpora pruebas en varias capas:

» Backend: pruebas unitarias con pytest para validacion, hash y escritura.

92

Apéndice A. Documentacion técnica de programacion

» Contratos inteligentes: pruebas con Hardhat (JavaScript) sobre red local.
» Frontend: pruebas unitarias con Jasmine/Karma en Angular.

» CI/CD: ejecucion automatica de tests mediante GitHub Actions en cada
push o pull request.

Apéndice B

Documentacion de
usuario

B.1. Introducciéon

Este apéndice esta dirigido a los usuarios finales del sistema, en especial
a aquellos que necesitan consultar los datos generados por dispositivos IoT,
verificar su integridad o interactuar con el sistema a través de su interfaz web. Se
describe el proceso de instalacion, los requisitos necesarios y un manual basico
de uso orientado a usuarios no técnicos.

B.2. Requisitos de usuarios

Para utilizar la plataforma se requiere acceso a un navegador moderno y co-
nexion a la red donde esté desplegado el sistema. Las funcionalidades principales
disponibles para el usuario son:

Visualizacién de dispositivos IoT registrados.

Consulta de datos sensorizados almacenados.

Verificacion de la integridad de los datos mediante blockchain.

Interaccion con la interfaz web desarrollada en Angular.

93

94 Apéndice B. Documentacion de usuario

No se requieren conocimientos técnicos sobre blockchain, IoT o big data
para la utilizacion basica del sistema.

B.3. Instalacion

En entornos de produccioén, la instalacion del sistema sera realizada por
personal técnico. No obstante, para entornos de prueba o demostracion, el
usuario puede clonar el repositorio y lanzar el sistema con Docker:

git clone https://github.com/javalon/iot-trace-chain.git
cd iot-trace-chain

docker compose up --build

Una vez desplegado, se puede acceder a la interfaz web a través de la URL:

http://localhost: 4200

B.4. Manual del usuario

La interaccion con el sistema se realiza a través de una interfaz web accesible
desde el navegador. A continuacion, se describen los pasos principales para
comenzar a utilizarla, asi como las funcionalidades disponibles.

Inicio de sesion

Para acceder al sistema, el usuario debe autenticarse con unas credenciales
predefinidas. Por defecto, se puede utilizar el siguiente usuario de prueba con
rol de administrador:

s Usuario: john@doe.es

= Contrasena: securepassword123

B.4. Manual del usuario 95

En la Figura B.1]se muestra la pantalla de inicio de sesion.

Iniciar Sesion

— Email*

john@doe.es ‘

— Contrasefia*

Iniciar sesion

Figura B.1: Pantalla de inicio de sesion

Pantalla principal

Una vez autenticado, el usuario accede a la pantalla principal del sistema,
donde se resumen las opciones disponibles. Desde aqui puede navegar al listado
de usuarios, listado de dispositivos o consultar datos registrados.

Inicio Usuarios Dispositivos Datos Hola, John Doe

= A
S

Bienvenido a IoT Trace Chain

Usd el menii superior para navegar entre las secciones.

Figura B.2: Interfaz principal tras el inicio de sesion

Visualizacion de dispositivos y datos

En la seccion Datos, el usuario puede visualizar los dispositivos disponibles.
Al seleccionar uno, se accede a la vista de datos sensorizados almacenados. Estos
datos pueden incluir temperatura, posicion geografica u otras variables.

96 Apéndice B. Documentacion de usuario

Inicio Usuarios Dispositivos Datos Hola, John Doe

Selecciona un dispositivo Selecciona fecha y hora IMEL 123456789012345

Test device 1 T 12/6/2025 - 13/6/2025 [0 MAC: IEESS944FET9 c Verificar tadas & Exportar CSV
Device ID: 2bd16..59017

DD/MM/YYYY — DD/MM/YYYY

Lat Long Temp Timestamp Proofdata

41.29444 -4.30642 17 13/06/2025, 17:38:47 Blockchain Data @ v
41.16894 -4.8266 21 13/06/2025, 17:38:46 Blockchain Data Q v
41.4868 -4.30230 2 13/06/2025, 17:38:45 Blockchain Data @ v
41.5815 -4.1836 23 13/06/2025, 17:38:44 Blockchain Data Q v
41.15898 -4.854 17 13/06/2025, 17:38:44 Blockchain Data 0 ~
41.25807 -4.4650 21 13/06/2025, 17:38:43 Blockchain Data @ v
41.28010 -4.27269 20 13/06/2025, 17:38:43 Blockchain Data 0 ~
41.9906 -4.29009 19 13/06/2025, 17:38:42 Blockchain Data @ v
41.22132 -4.30406 24 13/06/2025, 17:38:42 Blockchain Data 0 ~
412088 -4.20721 15 13/06/2025, 17:38:41 Blockchain Data @ v
41.5883 -4.1769 23 13/06/2025, 17:38:41 Blockchain Data Q v
41.20768 -4.9410 21 13/06/2025, 17:38:40 Blockchain Data @ v

Figura B.3: Visualizacion de los datos de un dispositivo IoT

Verificacion de integridad

Mediante los botones de verificacion, el usuario puede iniciar la verificacion
de los datos frente a la blockchain y comprobar si los datos almacenados han
sido alterados. El sistema realiza la verificacion de integridad comparando los
datos y metadatos almacenados localmente con el hash raiz del arbol de Merkle
que fue previamente registrado en la blockchain. Para ello, se emplean pruebas
de Merkle (Merkle proofs) que permiten reconstruir el camino desde el dato
hasta la raiz, garantizando asi que el dato no ha sido alterado desde su insercion
original. La Figura B.4|muestra la pantalla con los datos validados.

B.4. Manual del usuario 97

Inicio Usuarios Dispositivos Datos Hola, John Doe

Selecciona un dispositive Selecclona fecha y hora TMEI: 123436769012343

Test device 1 ' 12/6/2025 - 13/6/2025) MAC: IEESS944FE:19 (<} Verificar todas & Exportar CSV
Device ID: 2bd16..69017

DD/MM/YYYY — DD/MM/YYYY

Lat Long Temp Timestamp Proofdata

41.29444 430642 17 13/06/2025, 17:38:47 Blockchain Data @ v
4116894 -4.8266 21 13/06/2025, 17:38:46 Blockchain Data @ v
414868 -4.30230 22 13/06/2025, 17:38:45 Blockchain Data @ v
41.5815 -4.1836 23 13/06/2025, 17:38:44 Blockchain Data @ v
4115898 -4.854 17 13/06/2025, 17:38:44 Blockchain Data @ v
41.25807 -4.4650 21 13/06/2025, 17:38:43 Blockchain Data @ v
41.28010 -4.27269 20 13/06/2025, 17:38:43 Blockchain Data @ v
41.9906 -4.29009 19 13/06/2025, 17:38:42 Blockchain Data & v
4122132 -4.30406 24 13/06/2025, 17:38:42 Blockchain Data & v
41.2988 -4.20721 15 13/06/2025, 17:38:41 Blockchain Data & v
415883 -4.1769 23 13/06/2025, 17:38:41 Blockchain Data & v
4120768 -4.9410 21 13/06/2025, 17:38:40 Blockchain Data @ v
4120282 -4.17551 18 13/06/2025, 17:38:40 Blockchain Data @ v

Figura B.4: Comprobacién de integridad de los datos mediante blockchain

Esta verificacion proporciona garantias de que los datos no han sido mani-
pulados desde su recepcion, aportando transparencia y trazabilidad al sistema.

En la seccion Blockchain Data se muestra la informacion relacionada con la
verificacion de integridad del dato seleccionado, tal y como se puede observar
en la Figura B.5] Se incluyen los identificadores clave del registro, como el Tx
(hash de la transaccion en blockchain), el Hash del dato concreto, el RecordId
asociado y el Merkle root, que representa el hash raiz del arbol de Merkle en el
que se agrupan los datos validados. Justo debajo, se presenta la Merkle proof en
formato JSON, que contiene los metadatos del algoritmo de hash utilizado (por
ejemplo, sha256), el tamario del arbol y la secuencia de nodos (path) necesarios
para verificar criptograficamente que el dato pertenece al arbol cuya raiz esta
registrada en la blockchain. Esta informacion permite validar la integridad
del dato sin necesidad de acceder al resto del conjunto de datos, garantizando
trazabilidad y seguridad.

Apéndice B. Documentacion de usuario

Dispositivos Datos Hola, John Doe
Selecciona fecha y hora m IMEL: 123456789012345
12/6/2025 ~ 13/6/2025 MAC: 1E:E5:89:44:FE:19 a B3 Verificar todas & Exportar GSV
Device ID: 2bd16..59017
DD/MM/YYYY — DD/MM/YYYY
Temp Timestamp Proofdata

Blockchain Data &

Tx: 883500f2ac3bb222cd8497160654113533745a34316e29e143a7f6d62834bf57 0

Hash: 3fb232e9b723111b94abb17e0b172673152¢78458a3066c4bdcc93741d26¢240 0
Recordld: 4bcdf7b835be6712fa10f6ed3eb525a9ce5celalcc9e82669d94fb1d0815(259 T
Merkle root: c92c858fc1bcf02ffbffbec2285d4ead932522¢75e58a553d39abd5e01cd5ad2 D

Merkle Proof json
{
"metadata": {
"algorithm": "sha256',
"security”: true,
"size": 11
17 13/06/2025, 17:38:47 h
"rule”: [
il
il

[}
0

"subset": [],

"path”: [
"3fb232e9b723111b94abb17e0b17a673152e78458a3066¢4bdcc93741d26¢240",
"7d1410e51d1653¢cf1ea81758¢93a5ffcf87b8b6a8773d76ea7314eba2b781c8",
"378a2d5d68a21a8e844648be319367db49a5f62153be099443820794eb%absee”

1

}

(]

21 13/06/2025, 17:38:46 Blockchain Data @

Figura B.5: Detalle de los metadatos del dato y verificacién en blockchain

Bibliografia

(4]

(5]

(6]

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645-1660,
2013.

Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things:
A survey. Computer Networks, 54(15):2787-2805, 2010.

Ana Reyna, Cristian Martin, Jaime Chen, Enrique Soler, and Manuel Diaz.
On blockchain and its integration with iot. challenges and opportunities.
Future Generation Computer Systems, 88:173-190, 2018.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martin Ugarte, and Domagoj
Vrgoc. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, pages 263-273, 2016.

Pwint Phyu Khine and Zaw Wang. Data lake: A new ideology in big data
era. In 2018 6th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), volume 2, pages 311-315. IEEE, 2018.

Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart
contracts for the internet of things. IEEE Access, 4:2292-2303, 2016.

SARTECO. Jornadas sarteco — sociedad de arquitectura y tecnologia de
computadores. https://jornadassarteco.org/, 2025. Consultado en
julio de 2025.

MQTT Organization. Mqtt - the standard for iot messaging. https://
mqtt.org/, 2025. Consultado en julio de 2025.

99

https://jornadassarteco.org/
https://mqtt.org/
https://mqtt.org/

100

[9]

[13]

[14]

[15]

[21]

Bibliografia

JSON Schema. Json schema - a vocabulary that allows you to annotate and
validate json documents. https://json-schema.org/, 2025. Consultado
en julio de 2025.

Delta Lake Project. Delta lake: Open-source storage framework for reliable
data lakes. https://delta.io/, 2025. Consultado en julio de 2025.

Wikipedia. Contrato inteligente. https://es.wikipedia.org/wiki/
Contrato_inteligente, 2025. Consultado en julio de 2025.

IoT Analytics. State of iot summer 2024 — number of connected iot devices.
Press release, 2024. 16.6 B devices in 2023; 18.8 B forecast for 2024; 40 B by
2030; accessed July 2025.

Estuary. 72+ eye-opening iot statistics, facts, & trends for 2024. Online
article, 2024. Accessed July 2025.

PowerData. ;qué es big data? https://www.powerdata.es/big-data,
2025. Consultado en julio de 2025.

IBM. ;qué es blockchain? https://www.ibm.com/es-es/topics/
blockchain, 2025. Consultado en julio de 2025.

Amazon Web Services. Amazon simple storage service (amazon s3). https:
//aws.amazon.com/es/s3/, 2025. Consultado en julio de 2025.

Michael Armbrust, Tathagata Das, Shixuan Zhu, Reynold Xin Hernandez,
et al. Delta lake: High-performance acid table storage over cloud object
stores. In Proceedings of the VLDB Endowment, volume 13, pages 3411-3424,
2020.

Apache Software Foundation. Apache parquet. https://parquet.apache.
org/, 2025. Consultado en julio de 2025.

KeepCoding. ;qué son los algoritmos de consen-
SO en blockchain? https://keepcoding.io/blog/
que-son-algoritmos-de-consenso-blockchain/, 2025. Consul-

tado en julio de 2025.

Wikipedia. Sellado de tiempo confiable. https://es.wikipedia.org/
wiki/Sellado_de_tiempo_confiable, 2025. Consultado en julio de 2025.

Wikipedia. Arbol de merkle. https://es.wikipedia.org/wiki/%C3%
81rbol_de_Merkle, 2025. Consultado en julio de 2025.

https://json-schema.org/
https://delta.io/
https://es.wikipedia.org/wiki/Contrato_inteligente
https://es.wikipedia.org/wiki/Contrato_inteligente
https://www.powerdata.es/big-data
https://www.ibm.com/es-es/topics/blockchain
https://www.ibm.com/es-es/topics/blockchain
https://aws.amazon.com/es/s3/
https://aws.amazon.com/es/s3/
https://parquet.apache.org/
https://parquet.apache.org/
https://keepcoding.io/blog/que-son-algoritmos-de-consenso-blockchain/
https://keepcoding.io/blog/que-son-algoritmos-de-consenso-blockchain/
https://es.wikipedia.org/wiki/Sellado_de_tiempo_confiable
https://es.wikipedia.org/wiki/Sellado_de_tiempo_confiable
https://es.wikipedia.org/wiki/%C3%81rbol_de_Merkle
https://es.wikipedia.org/wiki/%C3%81rbol_de_Merkle

Bibliografia 101

[22] Kraken Learn team. What is a blockchain gas fee? https://www.kraken.

com/learn/what-is-a-blockchain-gas-fee, 2023. Consultado en julio
de 2025.

[23] Javier Alonso-Nuiiez, Daniel Lopez-Martinez, and Diego R. Llanos. Arqui-
tectura segura para la trazabilidad basada en iot y blockchain. In XXXV

Jornadas de Paralelismo (JP2025), Sevilla, Spain, 2025. Universidad de Sevi-
lla.

https://www.kraken.com/learn/what-is-a-blockchain-gas-fee
https://www.kraken.com/learn/what-is-a-blockchain-gas-fee

	Índice general
	Índice de figuras
	Índice de tablas
	1. Introducción
	Contexto
	Motivación
	Objetivos
	Organización de la memoria

	2. Conceptos teóricos
	Internet de las Cosas (IoT)
	Protocolo MQTT
	Validación de datos con JSON Schema
	Almacenamiento distribuido con Delta Lake
	Blockchain para trazabilidad e integridad
	Árboles de Merkle
	Contratos inteligentes y Web3

	3. Técnicas y herramientas
	Metodología de desarrollo
	Entorno de desarrollo
	Tecnologías utilizadas
	Justificación de las elecciones tecnológicas
	Resumen del capítulo

	4. Análisis y Plan de Proyecto
	Análisis de requisitos
	Plan de proyecto

	5. Diseño
	Diseño de la Arquitectura del Sistema
	Diseño de la Aplicación Backend
	Diseño de la Interfaz de Usuario (Frontend)

	6. Implementación
	Implementación Técnica

	7. Pruebas
	Pruebas Realizadas

	8. Conclusiones y Líneas de trabajo futuras
	Conclusiones
	Trabajo Futuro

	Apéndices
	Documentación técnica de programación
	Introducción
	Estructura de directorios
	Manual del programador
	Compilación, instalación y ejecución del proyecto
	Pruebas del sistema

	Documentación de usuario
	Introducción
	Requisitos de usuarios
	Instalación
	Manual del usuario

	Bibliografía

