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RESUMEN 

 

Este trabajo presenta un estudio comparativo de diversos modelos de visión artificial 

preentrenados en estimación de posturas humanas integrables en dispositivos móviles. Existen 

numerosos modelos de estimación de posturas con características muy heterogéneas y 

documentaciones dispares según sus desarrolladores, por lo que la aportación principal de este 

trabajo radica en ofrecer una evaluación homogénea de su funcionamiento. El objetivo es 

facilitar la elección del más adecuado de ellos para su posterior incorporación en el desarrollo 

de una futura aplicación para la asistencia a ejercicios de tele-rehabilitación en domicilio que 

permita guiar al usuario en estos ejercicios y registrar información relevante para el seguimiento 

clínico, sin necesidad de sensores adicionales ni conexión a internet para el proceso de 

realización de los ejercicios. 

 

Para garantizar un análisis homogéneo, se eligió un subconjunto de imágenes filtrado 

del conjunto de datos COCO, compuesto por 316 imágenes que contienen una única persona 

con al menos 15 keypoints (puntos clave) anotados sobre el cual se han evaluado diferentes 

versiones de tres familias de modelos: MoveNet, BlazePose y YOLOv8-Pose, desde dos 

perspectivas: 

 

- Precisión en la detección de puntos clave para identificación de posturas: exactitud 

de los modelos al predecir las posturas, medida mediante la métrica AP (Average 

Precision). Se ha utilizado con la finalidad de poder validar resultados del modelo 

así como para evaluar la idoneidad de las imágenes seleccionadas. 

 

- Rendimiento: tiempo medio de inferencia por imagen sobre un dispositivo móvil 

Android en condiciones reales. Se ha utilizado para medir el rendimiento de cada 

modelo (tiempo de ejecución de cada inferencia de cada imagen) en diferentes 

dispositivos con el fin de poder evaluar la velocidad con la que cada modelo efectúa 

la estimación. 

 

Los resultados muestran diferencias significativas entre modelos en cuanto a la relación 

precisión-tiempo, destacando las variantes de la subfamilia Thunder de MoveNet y la versión 

Nano de YOLOv8-Pose por su equilibrio entre rendimiento y exactitud. 

 

Este estudio aporta una visión clara y práctica sobre la aplicabilidad de distintos 

enfoques de estimación de postura en entornos móviles, sirviendo como referencia para 

desarrolladores e investigadores interesados en sistemas embebidos de visión por computador.  

  



iv 

 

ABSTRACT 

 

This paper presents a comparative study of various pre-trained computer vision models 

for human pose estimation that can be integrated into mobile devices. There are numerous pose 

estimation models with highly heterogeneous characteristics and uneven documentation 

provided by their developers, so the main contribution of this work lies in offering a 

homogeneous evaluation of their performance. The aim is to facilitate the selection of the most 

suitable model for subsequent incorporation into the development of a future application for 

assisting with home telerehabilitation exercises that will guide the user through these exercises 

and record relevant information for clinical follow-up, without the need for additional sensors 

or an internet connection during the exercise process. 

 

To ensure a homogeneous analysis, a filtered subset of images from the COCO dataset 

was selected. This subset consists of 316 images containing a single person with at least 15 

annotated keypoints. Different versions of three model families, MoveNet, BlazePose, and 

YOLOv8-Pose, were evaluated from two perspectives: 

 

- Keypoint detection accuracy for pose identification: the accuracy of the models in 

predicting poses, measured using the Average Precision (AP) metric. It was used to 

validate model results and to evaluate the suitability of the selected images. 

 

- Performance: average inference time per image on an Android mobile device under 

real-world conditions. It was used to measure the performance of each model 

(inference execution time for each image) on different devices to evaluate the speed 

with which each model performs the estimation. 

 

The results show significant differences between models in terms of accuracy-time ratio, 

with the Thunder subfamily of MoveNet and the Nano version of YOLOv8-Pose standing out 

for their balance between performance and accuracy. 

 

This study provides a clear and practical insight into the applicability of different pose 

estimation approaches in mobile environments, serving as a reference for developers and 

researchers interested in embedded computer vision systems. 
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1. INTRODUCCION 
 

 

1.1. Contexto 

 

La estimación de posturas humanas (HPE, Human Pose Estimation) es una disciplina 

dentro de la visión por computador que busca identificar la posición y orientación del cuerpo 

humano en imágenes o vídeos mediante la localización de keypoints o puntos clave (como ojos, 

manos, codos, rodillas, hombros, tobillos, etc.). El interés por la estimación de posturas 

humanas ha crecido significativamente en los últimos años debido a su utilidad en ámbitos 

como el deporte, la salud, la interacción hombre-máquina, la realidad aumentada o la vigilancia 

automática. Esta tecnología permite identificar con precisión la posición de las articulaciones 

del cuerpo humano a partir de imágenes o vídeo, dando lugar a aplicaciones inteligentes capaces 

de interpretar el comportamiento físico de una persona en tiempo real. Este proceso se describe 

detalladamente en la sección “2.2. Estimación de posturas humanas”. 

 

Tradicionalmente, los sistemas de estimación de posturas requerían hardware de alto 

rendimiento y ejecución en servidores remotos. Sin embargo, los avances recientes en modelos 

ligeros y técnicas de optimización han permitido llevar estas capacidades a dispositivos 

móviles, como smartphones y tablets, abriendo la puerta a soluciones descentralizadas, 

eficientes y respetuosas con la privacidad del usuario. 

 

 En los últimos años, los avances en arquitecturas de redes neuronales profundas, junto 

con la disponibilidad de datasets anotados como COCO (1) o MPII (2) que vemos más adelante, 

han permitido desarrollar modelos de estimación de posturas cada vez más precisos. Sin 

embargo, muchos de estos modelos han sido diseñados para ejecutarse en entornos con alto 

poder computacional, como servidores con GPU, lo que dificulta su despliegue directo en 

dispositivos móviles con recursos limitados. 

 

 

1.2. Motivación del estudio en dispositivos móviles 

 

 Los teléfonos móviles y dispositivos embebidos han evolucionado significativamente y 

cada día cuentan con capacidades de computación cada vez mayores. Esto hace que frente al 

cloud computing (computación en la “nube”) donde los datos son procesados en centros de 

datos remotos y centralizados, surja un nuevo paradigma llamado edge computing 

(computación en el “borde”) en el cual a diferencia del cloud computing los datos se procesan 

cerca de la fuente donde se generan en lugar de enviarse a centros remotos. 

 

A pesar de ello, en estos dispositivos aún siguen existiendo restricciones importantes de 

memoria, potencia de cálculo y consumo energético que requieren la elección cuidadosa de 

modelos optimizados para estos entornos. 

 

 Evaluar el comportamiento de distintos modelos de estimación de posturas directamente 

sobre dispositivos móviles resulta interesante para determinar su viabilidad en aplicaciones del 

mundo real, especialmente cuando se busca un equilibrio entre precisión y velocidad. Este tipo 

de análisis cobra aún más importancia cuando los modelos deben integrarse en aplicaciones 
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móviles de salud, deporte o monitoreo, donde la fiabilidad y la latencia son factores 

determinantes. 

 

En este contexto, existe una amplia variedad de modelos preentrenados disponibles 

públicamente, desarrollados por distintas organizaciones (Google o Ultralytics, entre otras). La 

motivación de este estudio radica, por tanto, en la necesidad de analizar de forma objetiva y 

reproducible qué modelos de estimación de posturas resultan más adecuados para su uso en 

entornos móviles, evaluando tanto su precisión en tareas reales como su rendimiento en tiempo 

de ejecución.  

 

Este trabajo no solo permitirá identificar los modelos más equilibrados en términos de 

eficiencia y calidad, sino que también servirá como referencia técnica para desarrolladores, 

investigadores o empresas interesadas en implementar visión por computador avanzada en 

entornos móviles. 

 

 

1.3. Objetivos 

 

Este Trabajo Fin de Máster tiene como objetivo principal estudiar y comparar el 

comportamiento de distintas librerías y modelos de estimación de postura humana ejecutados 

sobre dispositivos móviles con sistema operativo Android. 

 

 

1.3.1 Objetivo general 

 

El objetivo general de este Trabajo Fin de Máster es realizar un estudio del estado del 

arte en estimación de posturas humanas, que incluye la selección de distintas familias de 

modelos de referencia y su posterior evaluación en términos de rendimiento y precisión al 

ejecutarse sobre dispositivos móviles. 

 

 

1.3.2 Objetivos específicos 

 

Los objetivos específicos de este Trabajo Fin de Master son: 

 

- Búsqueda y selección de modelos existentes, revisión de documentación y 

selección de los modelos para la realización del estudio. 

 

- Implementar un sistema de pruebas para la ejecución de modelos con formato 

TensorFlow Lite (TFLite) en un entorno Android. 

 

- Medir y comparar la precisión de los modelos mediante métricas como Average 

Precision (AP@[0.50:0.95]). 

 

- Medir y comparar el tiempo medio de inferencia por imagen en cada modelo. 

 

- Establecer una relación entre la calidad de las predicciones y los tiempos de 

ejecución. 
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- Identificar los modelos más adecuados para su uso en aplicaciones móviles reales, 

considerando el compromiso entre precisión y eficiencia. 

 

 

1.4. Estructura del documento 

 

El contenido de esta memoria se estructura de la siguiente manera: 

 

- Apartado 2: Marco teórico y estado del arte, se explican los fundamentos de la 

estimación de posturas, los diferentes modelos preentrenados existentes y los 

entornos de ejecución en Android. 

 

- Apartado 3: Metodología, se detallan los modelos seleccionados para el estudio, la 

descripción del dataset de imágenes comunes que utilizaremos y las métricas, 

herramientas y dispositivos utilizados para la realización de la evaluación. 

 

- Apartado 4: Planificación, se definen las fases y subfases de la que consta el 

proyecto y la planificación temporal prevista. 

 

- Apartado 5: Fase 1: Preparación del dataset de testeo y obtención de modelos, 

se describe el proceso de selección de las imágenes del dataset de testeo así como el 

de la obtención de los modelos para el estudio. 

 

- Apartado 6: Fase 2: Desarrollo de la aplicación, se describe el proceso de 

desarrollo de la aplicación para Android donde se integraron y probaron tanto 

modelos como imágenes de testeo, así como la obtención de los datos de salida para 

su evaluación. 

 

- Apartado 7: Fase 3: Evaluación y análisis de resultados, se presentan las métricas 

obtenidas, tanto de precisión como de rendimiento de todos los modelos examinados 

y las comparativas entre ambas variables. 

 

- Apartado 8: Discusión, se interpreta los resultados, se discuten las fortalezas y 

debilidades de los modelos y se plantean las implicaciones prácticas.  

 

- Apartado 9: Conclusiones y trabajo futuro, se resumen los hallazgos más relevantes 

y se proponen futuras líneas de investigación. 

 

- Apartado 10: Referencias bibliográficas. 

 

- Apartado 11: Anexos. 
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2. MARCO TEORICO Y ESTADO DEL ARTE 
 

 

En este apartado se introducen los fundamentos necesarios para comprender el entorno 

donde se desarrolla el estudio, el proceso de estimación de posturas humanas, se describen las 

familias de modelos preentrenados existentes y cuales utilizaremos para ser evaluados y se 

presentan los aspectos técnicos relacionados con su integración y ejecución en dispositivos 

móviles. El objetivo es proporcionar un contexto conceptual y tecnológico que justifique la 

elección de los modelos y la metodología empleada en este estudio. 

 

 

2.1. Edge computing 

 

El edge computing (o computación en el borde) es un paradigma de computación 

distribuida que acerca la computación y el almacenamiento de datos a los dispositivos donde se 

generan, esto es en el “borde” de la red cerca de la fuente de datos (Imagen 1). Esto contrasta 

con la computación en la nube tradicional, donde los datos se procesan en centros de datos 

centralizados y a menudo ubicados lejos de la fuente. Al procesar datos en el borde se puede 

reducir la latencia, mejorar los tiempos de respuesta y minimizar el uso del ancho de banda pero 

los dispositivos utilizados tienen generalmente capacidades de procesamiento y 

almacenamiento muy limitadas en comparación con los servidores en la nube (3). 

 

 

 

Imagen 1. Arquitectura simple de edge computing (3) 

 

 

Este trabajo evalúa los resultados de llevar a dispositivos de borde (como pueden ser 

teléfonos móviles) una tarea como la de estimación de posturas humanas, que hasta hace 

relativamente poco tiempo requería mayores capacidades de procesamiento que hacían que no 

pudieran ser ejecutadas de forma distribuida en dispositivos con menor capacidad de proceso 

al alcance de cualquier persona. 
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2.2. Estimación de posturas humanas 

 

 

2.2.1. Conceptos básicos 

 

 La estimación de postura humana es una tarea de visión por computador que consiste 

en predecir la ubicación espacial de puntos clave (keypoints) del cuerpo humano en 

imágenes o secuencias de vídeo. Los keypoints suelen incluir articulaciones como codos, 

rodillas, tobillos, caderas, hombros, entre otros, y se pueden conectar para formar un 

esqueleto digital. Existen múltiples enfoques para abordar este problema, y su clasificación 

puede realizarse atendiendo a diferentes criterios que reflejan tanto la estrategia de detección 

como la forma de representar el cuerpo humano en los modelos computacionales (4). 

 

 

2.2.2. Clasificación de los tipos de detección de posturas 

 

Desde el punto de vista operativo, los métodos de detección pueden clasificarse desde 

diferentes enfoques, dependiendo de si atendemos a su clasificación por tipo espacial (2D o 

3D), por cantidad de objetivos (mono-persona o multi-persona), al método de detección (top-

down o bottom-up) o al tipo de modelado (modelos cinemáticos, planares o volumétricos). Estas 

clasificaciones generales permiten entender la diversidad de enfoques existentes, valorar sus 

ventajas y limitaciones en función del contexto, y facilitar la selección de la solución más 

adecuada según el caso de uso y los recursos disponibles. 

 

 

Clasificación por tipo de detección espacial 

 

- Estimación de posturas 2D. Localiza coordenadas en dos dimensiones (x, y) de una 

o varias personas sobre el plano de una imagen o video, tiene como ventajas mayor 

velocidad y menor coste computacional sobre las estimaciones de posturas en 3D y 

como limitaciones que no se obtiene percepción de profundidad. 

 

- Estimación de posturas 3D. Añade la dimensión Z proporcionando información 

sobre la profundidad y la orientación del cuerpo en el entorno físico. Ofrece un 

mayor realismo y precisión en tareas biomecánicas, robótica o animación aunque 

requiere un coste computacional mayor. 

 

 

Clasificación por cantidad de objetivos 

 

- Mono-persona (single-person). El modelo asume que la imagen contiene una única 

persona (Imagen 2), generalmente centrada y completamente visible. Este supuesto 

permite que la red se enfoque exclusivamente en detectar los keypoints corporales 

sin necesidad de mecanismos adicionales de segmentación o agrupamiento. Por lo 

general, estos modelos utilizan una única pasada de inferencia sobre toda la imagen. 
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Imagen 2. Ejemplo de detección single-person (4) 

 

- Multi-persona (multi-person). El enfoque multi-person está diseñado para 

identificar y estimar la postura de varias personas simultáneamente (Imagen 3) en 

una misma imagen o secuencia. Este tipo de modelos requiere, además de detectar 

los keypoints, asignarlos correctamente a cada instancia individual por lo que es más 

costosa computacionalmente. 

 

 

 

Imagen 3. Ejemplo de detección multi-person (4) 

 

Clasificación por método de detección 

 

- Top-down. Realizan primero una detección de personas (caja contenedora) y luego 

aplican un modelo de estimación de postura a cada una de ellas por separado 

estimando los keypoints dentro de ella. 

 

- Bottom-up. Detectan primero todos los keypoints en la imagen y posteriormente los 

agrupan en función de su pertenencia a cada individuo. 
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Clasificación por tipo de modelado del cuerpo 

 

- Modelos cinemáticos. Representan el cuerpo humano como un sistema articulado 

compuesto por un conjunto de puntos clave (keypoints) conectadas por segmentos 

que representan el cuerpo como un esqueleto de articulaciones. Esta estructura 

permite modelar los grados de libertad y el movimiento relativo entre las partes del 

cuerpo. Son ampliamente utilizados en tareas de análisis de movimiento, 

biomecánica y aplicaciones de realidad aumentada. 

 

- Modelos planares. Se centran en la representación del contorno externo del cuerpo 

o de sus partes visibles en una imagen 2D. Utilizan técnicas de segmentación para 

extraer las siluetas y contornos, proporcionando una aproximación más visual y 

basada en la forma. 

 

- Modelos volumétricos. Los modelos volumétricos buscan reconstruir la forma 

completa y tridimensional del cuerpo humano, incluyendo su volumen y superficies 

internas. 

 

 

2.3. Tecnologías para la estimación de posturas humanas en edge computing 

 

La estimación de posturas humanas mediante visión por computador se apoya 

principalmente en el uso de modelos de aprendizaje profundo, concretamente en redes 

neuronales convolucionales (CNN por sus siglas en ingles de Convolutional Neural Networks), 

por su capacidad para extraer representaciones espaciales jerárquicas a partir de imágenes. Este 

apartado presenta los fundamentos arquitectónicos de las CNNs como base de la mayoría de 

modelos utilizados en este estudio, así como las técnicas de optimización necesarias para su 

ejecución eficiente en dispositivos móviles, entre las que destaca la cuantización. Estas 

estrategias permiten reducir el tamaño y la latencia de los modelos sin comprometer 

significativamente su precisión, facilitando su integración en entornos de computación 

embebida o de recursos limitados como dispositivos móviles. La comprensión de estos 

elementos es clave para contextualizar la selección, implementación y evaluación de los 

modelos estudiados en este trabajo. La naturaleza de este estudio nos lleva a utilizar redes con 

tipo de detección espacial en 2D, para la identificación de una única persona o single-person, 

con un enfoque top-down (más adecuadas para escenarios single-person) y con tipo de 

modelado cinemático (conjunto de puntos clave o keypoints). 

 

 

2.3.1. Redes neuronales convolucionales (CNNs) 

 

Una red neuronal artificial es un modelo computacional compuesto por capas de 

nodos (neuronas) conectados entre sí mediante pesos ajustables. Cada nodo aplica una función 

de activación a la suma ponderada de sus entradas, y la red aprende a realizar tareas (como 

clasificación o regresión) ajustando estos pesos mediante un proceso iterativo de entrenamiento 

con retropropagación. 

 

Una convolución es una operación matemática que se aplica a una entrada (como una 

imagen) utilizando un pequeño conjunto de pesos llamado filtro, con el objetivo de extraer 
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características locales relevantes como bordes, texturas o formas (Imagen 4). Durante esta 

operación, el filtro se desliza (o convoluciona) sobre la entrada, multiplicando sus valores por 

los de la región correspondiente de la imagen y sumando los resultados en cada posición. El 

resultado es un mapa de activación o mapa de características, que conserva la información 

espacial y refleja la presencia de patrones específicos aprendidos por el filtro. Esta operación 

permite a las CNNs detectar características jerárquicas en las primeras capas, detectan 

elementos simples (líneas, esquinas), mientras que en capas más profundas reconocen 

estructuras más complejas (formas, objetos). La convolución reduce la dimensionalidad y 

preserva la relación espacial, haciendo a las CNNs especialmente eficaces en tareas de visión 

por computador. 

 

 

 
 

Imagen 4.  Esquema operación básica de convolución (5) 

 

 

Las redes neuronales convolucionales son un tipo especializado de red neuronal 

diseñada para procesar datos con estructura de rejilla (como imágenes) mediante el uso de capas 

convolucionales que aprenden representaciones espaciales jerárquicas. Estas redes extraen 

automáticamente características relevantes aplicando filtros locales y compartiendo pesos, lo 

que las hace muy eficientes y efectivas para tareas de visión por computador (5) (6). 

 

Una CNN se construye como una arquitectura jerárquica compuesta por una secuencia 

organizada de capas, cada una con un propósito específico en el procesamiento y la abstracción 

progresiva de los datos de entrada (generalmente imágenes). Estas capas se agrupan 

funcionalmente en bloques, cuya disposición refleja el flujo de información desde los niveles 

bajos de detección de patrones simples hasta los niveles superiores de interpretación semántica. 
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En el diseño de CNNs por tanto distinguimos entre bloques funcionales y capas 

individuales, ya que ambos niveles estructurales cumplen roles diferenciados pero 

interrelacionados en el flujo de procesamiento de la información. Mientras que los bloques 

agrupan funciones específicas del modelo en etapas coherentes del pipeline de aprendizaje, las 

capas son las unidades básicas de operación que materializan dichas funciones. 

 

A nivel de bloques funcionales nos encontramos varios bloques diferenciados por su 

función dentro de la arquitectura de la CNN: 

 

- Capa de entrada. Recibe los datos en formato tensorial, por ejemplo, una imagen 

RGB representada como un tensor tridimensional (altura × anchura × canales) y 

normaliza sus valores si es necesario. 

 

- Feature extraction (extracción de características) (7). Este bloque se corresponde 

con las primeras capas de la red y está compuesto principalmente por capas 

convolucionales, para detectar patrones espaciales locales como bordes, texturas y 

formas, y capas de activación no lineales (como ReLU 1), que permiten a la red 

modelar relaciones complejas y no lineales. Frecuentemente, se añaden capas de 

pooling (como max pooling o average pooling2) que permiten la reducción de la 

dimensionalidad espacial manteniendo información relevante, y capas de 

normalización que estabilizan el proceso de entrenamiento diseñadas para 

transformar una imagen cruda en un conjunto de representaciones útiles. Este bloque 

es esencial porque extrae la información visual jerárquica que luego será 

interpretada por las prediction heads. 

 

- Prediction heads (bloques de predicción) (8), este bloque está compuesto por un 

conjunto de capas cuya función principal es transformar las representaciones 

intermedias extraídas por el modelo en predicciones específicas para una tarea 

determinada. Estas prediction heads operan sobre los mapas de características 

generados por el bloque de extracción de características (feature extraction) y 

adaptan la salida del modelo a diferentes tipos de problemas, como clasificación, 

regresión, detección de objetos, segmentación o estimación de posturas humanas. 

Desde el punto de vista estructural, las prediction heads pueden estar integradas por 

capas completamente conectadas (fully connected layers) también llamadas capas 

densas, capas convolucionales adicionales, o incluso subredes específicas diseñadas 

para tareas particulares. La elección de su arquitectura depende directamente del tipo 

de información que se requiere predecir y del grado de detalle espacial que se debe 

preservar. 

 

- Capa de salida. Es la responsable de generar la predicción final del modelo, ya sea 

en forma de probabilidades, coordenadas, etiquetas o mapas espaciales, 

dependiendo de la tarea específica para la cual ha sido diseñada la red. La 

                                                 

 
1 ReLU (Rectified Linear Unit): función de activación que introduce no linealidad en la red, ReLU(x)=max(0,x) 
2 Max pooling selecciona el valor máximo dentro de una ventana de agrupación, mientras que average pooling 
calcula el promedio de todos los valores en la ventana. 
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configuración de la capa de salida varía según el tipo de problema (clasificación, 

detección, segmentación, etc.), pero siempre está diseñada para ofrecer una 

representación final interpretable y directamente utilizable.  

 

 

En el diseño estructural de una red neuronal convolucional además de las capas 

especializadas en el procesamiento espacial de datos, como las capas convolucionales y de 

pooling, también se incorporan otros tipos de capas que desempeñan un papel crucial en la 

integración y decisión final del modelo. Estas capas se dividen fundamentalmente en connected 

layers y fully connected layers, y su inclusión varía según el tipo de tarea a resolver: 

 

- Connected layers o capas conectadas (9). Hacen referencia a aquellas capas en las 

que cada nodo de entrada está conectado a uno o varios nodos de la siguiente capa, 

aunque no necesariamente a todos. Este tipo de conexión se utiliza a menudo en 

arquitecturas que buscan una transición progresiva entre la representación espacial 

y la salida vectorial o categórica, permitiendo una reducción gradual de la 

dimensionalidad sin perder información estructural relevante. 

 

- Fully connected layers o capas densas (10). Representan un caso particular de 

connected layers, donde cada neurona de una capa está conectada a todas las 

neuronas de la capa siguiente. Estas capas son especialmente útiles para tareas de 

clasificación y regresión, ya que permiten combinar todas las características 

aprendidas previamente en una representación densa que puede ser fácilmente 

interpretada por una función de activación final (como softmax 3o sigmoid4). 

Aunque son potentes en términos de capacidad de representación, también implican 

un elevado coste computacional y una mayor cantidad de parámetros, lo que puede 

conllevar un riesgo de sobreajuste si no se utilizan técnicas de regularización 

adecuadas. 

 

 

En conjunto, tanto las connected layers como las fully connected layers permiten a la 

CNN realizar inferencias de alto nivel, integrando la información extraída por las capas 

anteriores y generando salidas estructuradas que se ajustan a los requerimientos específicos de 

la tarea de aprendizaje supervisado (Imagen 5). 

 

                                                 

 
3 La función de activación softmax transforma un vector entero de números en una distribución de 
probabilidad 
4 Función de activación que toma la suma ponderada de las entradas de la capa anterior y la transformar en un 
valor de salida entre 0 y 1 
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Imagen 5. Esquema general de capas de las CNNs (11) 

 

 

Arquitecturas de redes neuronales convolucionales 

 

A lo largo de la evolución de esta disciplina, se han propuesto numerosas arquitecturas, 

desde modelos clásicos hasta redes ligeras optimizadas para dispositivos móviles. Estas 

arquitecturas responden a las crecientes demandas de precisión, eficiencia computacional y 

adaptabilidad a diferentes entornos de ejecución. Algunas están específicamente diseñadas para 

preservar la información espacial a lo largo de las distintas capas de la red, lo cual es esencial 

para una localización precisa de los puntos clave del cuerpo humano, como en el caso de HRNet 

o Lite-HRNet. Otras, como MobileNet o GhostNet, han sido optimizadas por grandes 

compañías tecnológicas como Google (12) y Huawei, respectivamente, con el objetivo de 

ofrecer inferencias rápidas en tiempo real, incluso en dispositivos con capacidades limitadas 

(13). Estas optimizaciones suelen involucrar técnicas como la cuantización de pesos, la poda 

de parámetros o el uso de bloques convolucionales eficientes. Además, la incorporación de 

arquitecturas basadas en transformadores y modelos híbridos ha permitido una mejor 

modelización contextual y mejoras en tareas más complejas como la estimación 3D o la multi-

persona. A continuación, se presenta una clasificación de algunas de las arquitecturas de CNNs 

más representativas en el ámbito de la estimación de posturas humanas, destacando sus 

principales características y cómo han evolucionado para adaptarse a las distintas necesidades 

de esta área de investigación. 

 

 

Arquitecturas clásicas (convencionales) 

 

Estas arquitecturas constituyen la base histórica del aprendizaje profundo en visión por 

computador. Se caracterizan por tener arquitecturas secuenciales y relativamente simples, en 

las que las capas convolucionales se intercalan con capas de activación (ReLU), pooling y capas 

densas finales (Tabla 1). Aunque hoy en día se consideran menos eficientes, fueron clave en el 

avance inicial de la disciplina (11). 

 

- LeNet (1998). Utilizado originalmente para reconocimiento de dígitos manuscritos. 

Fue pionero en el uso de convoluciones y pooling en redes neuronales. 
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- AlexNet (2012). Revolucionó el campo al ganar el desafío ImageNet5 con una gran 

mejora de precisión. Introdujo el uso de GPU para entrenamiento, activación ReLU 

y regularización con dropout6 (Imagen 6). 

 

- ZFNet (2013). Introdujo técnicas para visualizar filtros y comprender el 

funcionamiento interno de las redes, mejorando la arquitectura de AlexNet. 

 

 

Arquitectura Año Características 

LeNet 1998 Primer uso práctico de CNN; reconocimiento de dígitos 

AlexNet 2012 ReLU, dropout, GPU training; ganador ImageNet 2012 

ZFNet 2013 Mejora de AlexNet, visualización de filtros 

 
Tabla 1. Arquitecturas clásicas de CNNs 

 

 

Aunque ya no son las más utilizadas, siguen empleándose como puntos de comparación, 

en benchmarks estandarizados o como punto de partida para el aprendizaje transferido. Su papel 

histórico como base del desarrollo de redes más modernas les otorga un valor de referencia, 

especialmente útil para evaluar mejoras en precisión, eficiencia y capacidad generalizadora. 

Además, su simplicidad relativa permite entender conceptos fundamentales del diseño de redes 

profundas y facilita su implementación en entornos educativos y de investigación. 

 

 

 

Imagen 6. Esquema de arquitectura de la red AlexNet (11) 

                                                 

 
5 ImageNet, desafío anual de reconocimiento visual a gran escala (ILSVRC por sus siglas en inglés) 
6 Técnica de regularización que se basa en la eliminación de neuronas en las capas de la red neuronal que es 
aplicada en base a la probabilidad dada por la distribución de Bernoulli 
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Arquitecturas optimizadas con módulos o bloques avanzados 

 

Introducen componentes estructurales innovadores que mejoran la capacidad de 

aprendizaje y reducen los problemas de entrenamiento en redes profundas, como la 

desaparición del gradiente (Tabla 2) (11). 

 

- VGG16/VGG19 (2014). Modelos profundos con 16 o 19 capas, conocidos por 

utilizar exclusivamente convoluciones 3×3 y pooling 2×2, lo que los hace 

conceptualmente simples pero computacionalmente pesados (Imagen 7). 

 

- GoogLeNet / Inception (2014-2016). Introducen módulos Inception, que combinan 

convoluciones de distintos tamaños (1×1, 3×3, 5×5) en paralelo dentro de un mismo 

bloque. Aportan eficiencia y profundidad sin un incremento excesivo en parámetros. 

 

- ResNet (2015). Introduce conexiones residuales (skip connections7) que permiten 

entrenar redes de más de 100 capas sin degradación del rendimiento. Se convirtió 

en el nuevo estándar para tareas de clasificación y segmentación. 

 

- DenseNet (2017). Cada capa recibe como entrada todas las salidas anteriores del 

bloque. Mejora la reutilización de características y permite entrenar modelos muy 

profundos con menos parámetros. 

 

- ResNeXt. Variante de ResNet que introduce el concepto de cardinalidad (uso de 

múltiples caminos en paralelo) para mejorar la expresividad sin aumentar demasiado 

los parámetros. 

 

 

 
 

Imagen 7. Representación arquitectura de red neuronal convolucional VGG-16 (14) 

                                                 

 
7 Técnica de diseño de redes neuronales que permite que los gradientes fluyan de manera más efectiva 
durante la retropropagación, lo que ayuda a entrenar modelos más profundos. 
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Actualmente, estas arquitecturas son ampliamente utilizadas como backbones8 en 

modelos más complejos dentro del campo de la visión por computador, desempeñando un papel 

central en tareas avanzadas como la estimación de poses humanas, la segmentación semántica 

y la detección de objetos. Su éxito radica en un diseño modular y altamente optimizado que 

permite la extracción jerárquica de características, es decir, la progresiva representación de 

patrones visuales desde descriptores de bajo nivel (bordes, texturas y colores locales) hasta 

representaciones de alto nivel (formas, articulaciones o estructuras completas). 

 

Gracias a esta capacidad, dichas arquitecturas se integran con facilidad en sistemas más 

sofisticados, actuando como bloques fundamentales de procesamiento y sirviendo como base 

para tareas que requieren una representación espacial rica y profunda. 

 

 

Arquitectura Año Características 

VGG16 2014 16 capas; solo convoluciones 3x3 + max pooling 

VGG19 2014 Igual que VGG16 pero con 3 capas más (19 capas) 

GoogLeNet  2014 Módulos Inception; uso de convoluciones 1x1 

Inception-v3/v4 2015-16 Profundidad optimizada; batch norm, factorized convs 

ResNet 2015 Residual connections (ResNet-18/34/50/101/152) 

DenseNet 2017 Conexiones densas entre capas; mejora gradientes 

ResNeXt 2017 Bloques en paralelo (cardinalidad) 

 
Tabla 2. Arquitecturas optimizadas de CNNs 

 

 

Arquitecturas eficientes para móviles y edge computing 

 

Arquitecturas diseñadas para su uso en dispositivos con recursos limitados 

(smartphones, IoT, drones). Priorizan el bajo consumo, la velocidad de inferencia y la 

compacidad del modelo, a menudo mediante técnicas como cuantización, pruning9 o depthwise 

separable convolutions10 (Tabla 3). 

 

- MobileNet (v1, v2, v3, de 2017 a 2019). Utiliza convoluciones separables en 

profundidad para reducir el número de parámetros y operaciones. MobileNetV2 

introduce linear bottlenecks y conexiones residuales. La v3 combina AutoML para 

una arquitectura más optimizada. 

 

- ShuffleNet. Usa convoluciones agrupadas y un mecanismo de channel shuffle11 para 

mezclar información entre canales y mantener precisión con menor coste 

computacional. 

 

                                                 

 
8 Columna vertebral, en ocasiones referido al bloque de extracción de características (feature extraction) de la 
arquitectura 
9 Técnica que simplifica o reduce el tamaño de un modelo, generalmente eliminando componentes sin 
importancia como pesos en redes neuronales o secciones de árboles de decisión. 
10 Técnica que descompone la convolución estándar en dos pasos: convolución en profundidad y convolución 
puntual lo que reduce el número de parámetros y cálculos. 
11 Técnica para mejorar el flujo de información entre grupos de canales en redes neuronales convolucionales. 
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- EfficientNet. Utiliza una técnica de búsqueda automatizada de arquitectura (NAS) y 

un enfoque de escalamiento compuesto para obtener redes más pequeñas y precisas. 

 

- GhostNet. Es una arquitectura eficiente que genera mapas de características 

utilizando pocas convoluciones estándar y múltiples operaciones lineales simples, 

lo que reduce significativamente el coste computacional. 

 

 

Actualmente son ideales como backbone en tareas en tiempo real, como estimación de 

poses en móviles, detección en edge devices o visión en robots. Su arquitectura ligera y 

eficiencia computacional permiten desplegar modelos con baja latencia y alto rendimiento en 

entornos con recursos limitados. 

 

 

 

Arquitectura Año Características 

MobileNet v1 2017 Depthwise separable convolutions 

MobileNet v2 2018 Linear bottlenecks + skip connections 

MobileNet v3 2019 AutoML + eficiencia optimizada (por Google) 

ShuffleNet 2018 Grouped convs + channel shuffle 

EfficientNet 2019 Escalamiento compuesto (depth, width, resolution) 

GhostNet 2020 Reducción de computación mediante convoluciones fantasma 

 
Tabla 3. Arquitecturas eficientes para edge computing 

 

 

Arquitecturas híbridas o de transición 

 

Combinan la eficacia de las CNNs para captar patrones locales con la capacidad de 

Transformers12 para modelar relaciones globales, introduciendo una nueva generación de 

arquitecturas en visión artificial (Tabla 4). 

 

- FBNet. Otro enfoque basado en NAS (Neural Architecture Search) optimizado para 

dispositivos móviles. 

 

- RegNet. Familia de arquitecturas generadas automáticamente mediante búsqueda en 

espacios de diseño. Ofrece una buena relación entre precisión y eficiencia. 

 

- ConvNeXt (2022). Arquitectura tipo CNN rediseñada desde cero siguiendo 

principios de Transformers, como el uso de normalización LayerNorm y kernels 

grandes. Mejora el rendimiento en benchmarks sin dejar de ser completamente 

convolucional. 

 

 

Actualmente son utilizadas en tareas complejas de visión por computador, como 

clasificación avanzada, segmentación semántica y estimación de poses en entornos exigentes. 

Estas arquitecturas combinan elementos tradicionales de las CNNs con mecanismos más 

                                                 

 
12 Un tipo de arquitectura de red neuronal diseñada para procesar secuencias de datos 
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recientes, como bloques de atención, conexiones residuales, o módulos de transformación 

espacial, permitiendo una representación más rica y adaptativa de las características visuales. 

Su diseño busca un equilibrio entre eficiencia computacional y capacidad expresiva, lo que las 

hace especialmente adecuadas para aplicaciones que requieren alta precisión en tiempo real, 

como vehículos autónomos, realidad aumentada o análisis biométrico en condiciones no 

controladas. 

 

 

Arquitectura Año Características 

FBNet 2019 Optimizado por búsqueda de arquitectura (NAS) 

RegNet 2020 Arquitecturas generadas automáticamente 

ConvNeXt 2022 CNN moderna inspirada en Vision Transformers 

 
Tabla 4. Arquitecturas híbridas 

 

 

La mayoría de los modelos de estimación de posturas se basan en alguna de estas 

arquitecturas de CNNs para extraer características espaciales de las imágenes ya que permiten 

identificar patrones visuales complejos que facilitan la localización de los keypoints que 

definen las posturas de las personas en cada imagen. 

 

 

2.3.2. Cuantización de modelos 

 

La cuantización de modelos es una técnica de optimización que convierte los valores de 

precisión flotante (float32) usados en los modelos de redes neuronales a representaciones más 

compactas como int8, uint8 o float16 (15). Esta transformación reduce el tamaño del modelo y 

mejora su eficiencia computacional, especialmente en dispositivos con recursos limitados como 

móviles o dispositivos de edge computing. Los principales objetivos de la cuantización son: 

 

- Reducir el tamaño del modelo. 

 

- Disminuir el tiempo de inferencia. 

 

- Reducir el consumo energético. 

 

- Facilitar el despliegue en hardware especializado. 

 

 

Los modelos de estimación de poses generan coordenadas para los puntos clave 

(keypoints) a partir de mapas de calor o regresiones directas. Estos modelos suelen tener 

arquitecturas de CNNs pesadas o redes híbridas (CNNs + Transformer), lo que los hace 

candidatos ideales para cuantización en escenarios móviles o en tiempo real ya que permite 

ejecutar inferencias más rápidas mientras que mantiene una precisión aceptable en coordenadas 

si se calibra correctamente. 

 

Existen dos formas de realizar la cuantización de un modelo: 

 

- Cuantización posterior al entrenamiento (PTQ, Post-training Quantization). Se 
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aplica a un modelo ya entrenado, convirtiendo sus parámetros a una representación 

de menor precisión sin necesidad de volver a entrenarlo. 

 

- Cuantización consciente del entrenamiento (QAT, Quantization-Aware Training). 

Se incorpora la conversión de los parámetros durante el proceso de entrenamiento o 

ajuste fino del modelo, lo que puede mejorar el rendimiento. 

 

 

2.4. Frameworks para estimación de posturas 

 

Un framework es un entorno de desarrollo que permite construir, entrenar y desplegar, 

en nuestro caso, modelos de estimación de posturas humanas. Estos frameworks proporcionan 

las herramientas necesarias para entrenar, evaluar y desplegar modelos de deep learning que 

detectan posiciones articulares del cuerpo humano en imágenes o secuencias de video y ofrecen 

bibliotecas optimizadas, interfaces modulares y soporte para múltiples formatos de despliegue, 

facilitando tanto la investigación como la aplicación en tiempo real (Tabla 5) (16): 

 

- TensorFlow / Keras, es un framework de código abierto desarrollado por Google 

que permite implementar y entrenar modelos de aprendizaje profundo. Su 

integración con TensorFlow Lite lo convierte en una opción ideal para el despliegue 

en dispositivos móviles, como ocurre con modelos como MoveNet y BlazePose. 

 

- PyTorch, desarrollado por Meta AI, este framework es ampliamente usado en 

investigación debido a su ejecución dinámica (define-by-run) y facilidad de 

depuración. Modelos de alta precisión como HRNet, AlphaPose y RTMPose se 

entrenan habitualmente en PyTorch. 

 

- MediaPipe, es una librería de Google que ofrece soluciones listas para usar en 

visión por computadora en tiempo real. Integra modelos optimizados en flujos de 

procesamiento altamente eficientes para tareas como estimación de pose corporal, 

facial y de manos. 

 

- OpenCV + DNN, biblioteca de visión por computadora que incluye un módulo de 

redes neuronales profundas capaz de cargar modelos en formatos como ONNX y 

Caffe. Es útil para la inferencia ligera en entornos con restricciones de hardware. 

 

- MMPose (OpenMMLab), framework especializado en estimación de posturas 

basado en PyTorch. 

 

- Detectron2, plataforma de visión por computadora de Facebook AI Research, 

centrada en tareas como segmentación y detección, incluyendo variantes de 

estimación de postura como DensePose. 
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Framework Descripción Lenguaje 

principal 

Utilización Fecha 

introducción 

(aproximada) 

TensorFlow / 

Keras 

Framework de código 

abierto ampliamente 

utilizado para deep learning. 

Python PoseNet, 

MoveNet, 

BlazePose 

2015 

(TensorFlow Lite 

2017) 

PyTorch Framework muy popular en 

investigación; permite 

desarrollo dinámico. 

Python HRNet, RTMPose, 

AlphaPose 

2017 

MediaPipe Librería de Google para 

visión por computadora en 

tiempo real. 

C++, 

Python, JS 

BlazePose, 

Holistic 

2019 

OpenCV + 

DNN 

Librería con soporte para 

modelos preentrenados. 

C++, 

Python 

PoseNet, 

OpenPose 

(ONNX/Caffe) 

OpenCV: 2000 

DNN: 2017 

MMDetection 

/ MMPose 

Frameworks modulares de 

OpenMMLab para tareas de 

visión, incluyendo pose. 

Python RTMPose, HRNet, 

ViTPose 

2020 

Detectron2 Plataforma de Facebook AI 

Research (FAIR) 

Python DensePose 2019 

 
Tabla 5. Frameworks para estimación de posturas humanas 

 

 

2.4.1. TensorFlow 

 

TensorFlow es una plataforma de código abierto para aprendizaje automático, 

desarrollada por Google, que permite crear y entrenar modelos de redes neuronales y otras 

aplicaciones de aprendizaje automático. Es utilizado para una amplia variedad de tareas, desde 

reconocimiento de imágenes y procesamiento de lenguaje natural hasta predicción y modelado 

estadístico (17). Sus características principales son: 

 

- Código abierto. TensorFlow es gratuito y de código abierto, lo que significa que 

cualquier persona puede usarlo, modificarlo y distribuirlo. 

 

- Aprendizaje automático. Se enfoca en el desarrollo y entrenamiento de modelos de 

aprendizaje automático, incluyendo redes neuronales.  

 

- Gráficos de flujo de datos. Utiliza gráficos de flujo de datos para representar las 

operaciones computacionales, lo que permite una ejecución eficiente y escalable.  

 

- Amplia gama de aplicaciones. Puede ser aplicado en diversos campos, como visión 

por computadora, procesamiento de lenguaje natural, reconocimiento de voz, y 

otros.  

 

- Flexibilidad y escalabilidad. Ofrece flexibilidad para construir modelos complejos 
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y escalarlos para diferentes plataformas, desde dispositivos móviles hasta grandes 

servidores en la nube.  

 

- Comunidad activa. Cuenta con una gran comunidad de usuarios y desarrolladores 

que contribuyen con recursos, herramientas y soporte.  

 

 

Componentes de la plataforma TensorFlow 

 

- TensorFlow Lite, una versión optimizada para dispositivos móviles y sistemas 

embebidos.  

 

- Keras, una API de alto nivel que facilita la construcción de modelos de redes 

neuronales.  

 

- TensorFlow.js, permite el desarrollo y despliegue de modelos en navegadores web y 

entornos Node.js13.  

 

- TensorFlow Hub, un repositorio de modelos de aprendizaje automático 

preentrenados que pueden ser reutilizados para acelerar el desarrollo.  

 

 

Ventajas de TensorFlow 

 

Entre las ventajas de uso de TensorFlow se encuentran su facilidad de uso ya que ofrece 

APIs intuitivas en diferentes lenguajes, como Python, C++, Java, y Go. También podemos 

destacar la facilidad y flexibilidad de su despliegue ya que permite desplegar modelos 

entrenados en diversas plataformas y dispositivos. Además cuenta con una amplia comunidad 

que brinda soporte y recursos para el desarrollo que lo hace una herramienta poderosa y versátil 

para el aprendizaje automático con una amplia gama de aplicaciones. 

 

 

TensorFlow Lite (TFLite) 

 

TensorFlow Lite (TFLite) es una versión optimizada de TensorFlow diseñada para 

ejecutar modelos de aprendizaje automático en dispositivos con recursos limitados. Permite 

realizar inferencias rápidas y eficientes mediante técnicas como la cuantización, reduciendo el 

tamaño del modelo y el consumo de energía sin comprometer significativamente la precisión. 

El formato de modelo TFLite se distingue por su diseño compacto, portabilidad y 

compatibilidad con distintas arquitecturas de hardware. 

 

En Imagen 8 podemos ver la arquitectura de un modelo TensorFlow Lite, con la capa de 

entrada en amarillo, en azul las capas de los bloques Feature extraction y Prediction heads (con 

tres Fully connected layers) y por último en verde la capa de salida. 

 

                                                 

 
13 Entorno en tiempo de ejecución multiplataforma, de código abierto, para crear aplicaciones web rápidas y 
escalables basadas en el lenguaje JavaScript. 
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Imagen 8. Esquema del modelo TensorFlow Lite (18) 

 

 

2.4.2. PyTorch 

 

PyTorch es un marco de código abierto para aprendizaje automático, especialmente 

enfocado en aprendizaje profundo, desarrollado originalmente por Meta (anteriormente 

Facebook). Se basa en Python y se utiliza para construir modelos de redes neuronales y realizar 

cálculos numéricos, incluyendo la ejecución en GPU para acelerar el proceso. PyTorch es 

popular tanto en investigación como en aplicaciones de producción, incluyendo empresas como 

Tesla, Microsoft y OpenAI (19). Sus principales características son: 

 

- Framework de código abierto, PyTorch es gratuito y de código abierto, lo que 

significa que cualquiera puede usarlo, modificarlo y distribuirlo.  

 

- Lenguaje Python, se basa en el lenguaje Python, conocido por su facilidad de uso y 

amplia adopción en ciencia de datos.  

 

- Cálculo con tensores, PyTorch utiliza tensores para representar datos y realizar 

cálculos matemáticos, lo que permite operaciones eficientes, especialmente en 

GPUs.  

 

- Aprendizaje profundo, es una herramienta fundamental en el desarrollo de redes 

neuronales profundas (un tipo de algoritmo de aprendizaje automático). 

 

- Flexibilidad y rapidez, PyTorch destaca por su flexibilidad para crear prototipos 

rápidamente y su capacidad de adaptarse a diferentes necesidades de investigación 

y desarrollo.  

 

- Auto-diferenciación, PyTorch facilita la implementación de gráficos 

computacionales y cálculos con gradientes, esencial para el entrenamiento de redes 
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neuronales.  

 

- Desarrollo por Meta AI, aunque fue desarrollado originalmente por Meta, ahora es 

administrado por la Fundación PyTorch, que asegura su desarrollo continuo y 

colaboración en la comunidad, donde es una de las herramientas más populares para 

investigación en aprendizaje profundo y se utiliza en muchos proyectos de IA de 

producción. 

 

 

PyTorch Mobile 

 

PyTorch Mobile es la extensión del framework PyTorch diseñada para permitir la 

ejecución de modelos de aprendizaje profundo en dispositivos móviles y sistemas embebidos. 

Surge como una respuesta a la creciente necesidad de desplegar modelos de deep learning en 

entornos con recursos limitados, tales como smartphones, tablets o dispositivos IoT, donde la 

inferencia debe ser eficiente en cuanto a tiempo de ejecución, consumo energético y memoria. 

 

A nivel arquitectónico, PyTorch Mobile se basa en el uso de TorchScript, un formato 

intermedio que combina las ventajas de la representación estática de grafos con la flexibilidad 

del entorno dinámico de PyTorch. TorchScript permite transformar un modelo entrenado en 

PyTorch estándar a un formato optimizado (.pt) que puede ejecutarse de manera independiente, 

reduciendo la dependencia de librerías pesadas y facilitando la portabilidad. 

 

El proceso general de despliegue en PyTorch Mobile sigue tres fases técnicas: 

 

1. Conversión del modelo. Se utiliza tracing o scripting para transformar el modelo 

PyTorch original en un objeto TorchScript. 

 

2. Optimización. El modelo puede someterse a técnicas de cuantización como PTQ 

(cuantización posterior al entrenamiento) o QAT (cuantización consciente del 

entrenamiento), lo que reduce su tamaño y acelera la inferencia, con pérdidas 

controladas de precisión. 

 

3. Ejecución en dispositivo. El modelo TorchScript se integra en una aplicación Android 

(Java/Kotlin con JNI) o iOS (Swift/Objective-C) mediante las librerías de PyTorch 

Mobile, posibilitando la ejecución en CPU, NNAPI (Android) o Metal (iOS). 

 

 

2.4.3. MediaPipe 

 

MediaPipe es un framework de código abierto y multiplataforma desarrollado por 

Google para construir y desplegar pipelines de procesamiento multimedia, incluyendo la 

estimación de la postura humana. Ofrece modelos preentrenados y soporte para múltiples 

plataformas, lo que lo convierte en una herramienta versátil y potente para aplicaciones en 

tiempo real (20). Sus principales características son: 

 

- Detección de rostros, manos y poses, MediaPipe proporciona modelos 

preentrenados para la detección de estos elementos en imágenes y videos.  

 

- Aprendizaje automático en dispositivos de edge computing, permite ejecutar 
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modelos en dispositivos móviles, lo que reduce la latencia y la dependencia de la 

nube.  

 

- Seguimiento de objetos y reconocimiento de gestos, permite identificar y rastrear 

objetos en tiempo real y detecta y reconoce diferentes gestos de manos.  

 

- Personalización, permite a los desarrolladores ajustar los modelos predeterminados 

con sus propios datos utilizando MediaPipe Model Maker.  

 

- Integración con otras herramientas, se puede combinar con otras herramientas como 

OpenCV para proyectos de visión artificial.  

 

 

2.4.4. OpenCV + DNN 

 

OpenCV (Open Source Computer Vision Library) es una librería de visión por 

computadora ampliamente utilizada en aplicaciones en tiempo real. Su módulo DNN (Deep 

Neural Network) permite la ejecución de redes neuronales preentrenadas sin necesidad de 

frameworks externos como TensorFlow o PyTorch. Soporta modelos en formatos como ONNX, 

Caffe, TensorFlow y Torch, permitiendo ejecutar tareas de estimación de posturas y gracias a 

su bajo nivel de dependencia y eficiencia computacional, es una opción adecuada para 

implementaciones ligeras en dispositivos embebidos o en aplicaciones donde se requiere 

rapidez de inferencia sin entrenamiento (21). 

 

OpenCV + DNN en sí no implementa una arquitectura propia de red neuronal, sino que 

funciona como un motor de inferencia que carga y ejecuta modelos preentrenados desarrollados 

en otros frameworks (como TensorFlow o PyTorch) 

 

En estimación de postura, OpenCV + DNN se ha utilizado para desplegar modelos como 

PoseNet y versiones convertidas de OpenPose, lo que permite detectar keypoints corporales a 

partir de imágenes o video en tiempo real. 

 

 

2.4.5. MMPose (OpenMMLab) 

 

MMPose es un framework de código abierto desarrollado por el grupo OpenMMLab 

para la estimación de posturas humanas 2D y 3D. Está basado en PyTorch y proporciona una 

infraestructura modular y altamente extensible que facilita el entrenamiento, evaluación y 

comparación de múltiples arquitecturas. Ofrece soporte a gran variedad de backbones como 

HRNet, ViTPose, ResNet, MobileNet, etc., y cubre tareas single-person y multi-person. 

 

 

2.4.6. Detectron2 

 

Detectron2 es un framework de visión por computadora desarrollado por Facebook AI 

Research (FAIR), diseñado para tareas avanzadas como detección de objetos, segmentación de 

instancias, segmentación semántica, y estimación de poses humanas. Está implementado en 
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PyTorch y es la segunda generación del sistema original Detectron, basado en Caffe214. 

 

 

2.4.7. Formatos de modelos de estimación de posturas 

 

En el campo del aprendizaje profundo, la representación y almacenamiento de modelos 

entrenados varía en función del framework utilizado y del objetivo final del modelo, ya sea 

continuar el entrenamiento, realizar inferencia eficiente o garantizar interoperabilidad entre 

plataformas. Esta diversidad ha dado lugar a múltiples formatos de fichero 

(como .pth, .pt, .pb, .onnx o .tflite), cada uno con características técnicas que responden a 

distintos requerimientos de uso, portabilidad y rendimiento. 

 

Los formatos propietarios de frameworks, como .pth (PyTorch) son ideales para el 

entrenamiento y reutilización dentro del mismo entorno, pero presentan limitaciones para el 

despliegue multiplataforma mientras que los  formatos interoperables como ONNX (.onnx) 

permiten exportar modelos entrenados en distintos frameworks para su ejecución en múltiples 

entornos de inferencia. ONNX es ampliamente utilizado en producción debido a su eficiencia 

y portabilidad. 

 

En el contexto de dispositivos móviles o embebidos, formatos como TensorFlow Lite 

(.tflite) son comunes. Estos ficheros están optimizados para tamaños reducidos y bajo consumo 

computacional, y suelen incorporar técnicas de cuantización (por ejemplo int8) para acelerar la 

inferencia sin comprometer significativamente la precisión. 

 

Los formatos más recientes como TorchScript (.pt) ofrecen un equilibrio entre 

rendimiento y compatibilidad en el ecosistema PyTorch, facilitando tanto el despliegue como 

la serialización eficiente. 

 

 

TensorFlow SavedModel (.pb) 

 

TensorFlow SavedModel es el formato estándar de serialización y exportación de 

modelos en TensorFlow, diseñado para almacenar tanto la arquitectura del modelo como sus 

pesos y metadatos de forma estructurada y portable. Su principal componente es el archivo .pb 

(Protocol Buffer), que representa el grafo computacional del modelo, incluyendo las 

operaciones, variables y conexiones necesarias para realizar inferencias. 

 

Este formato permite guardar un modelo completo en un único directorio, facilitando su 

reutilización, despliegue y compatibilidad entre diferentes entornos y versiones de TensorFlow. 

Junto al archivo .pb, el directorio SavedModel puede contener subdirectorios como variables 

(para los pesos del modelo) y assets (para recursos auxiliares), lo que garantiza una separación 

clara entre los distintos elementos del modelo (22). 

 

El formato SavedModel es ampliamente utilizado en aplicaciones de producción, ya que 

admite inferencias eficientes en servidores, exportación a otras plataformas como TensorFlow 

Lite (TFLite) o TensorFlow.js, y compatibilidad con APIs de TensorFlow Serving para entornos 

de despliegue escalables. Gracias a su diseño modular y extensible, el formato .pb también 

                                                 

 
14 Caffe2 actualmente está deprecado habiendo sido integrado en PyTorch 
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facilita tareas como la congelación del grafo, la optimización para hardware específico (TPUs, 

GPUs), y la integración en flujos de trabajo de machine learning end-to-end. 

 

 

TensorFlow Lite (.tflite) 

 

Los modelos de TensorFlow Lite se almacenan en un archivo binario con 

extensión .tflite, el cual representa una versión serializada y optimizada de un modelo de 

TensorFlow convencional. Esta serialización utiliza el formato FlatBuffers, una biblioteca de 

serialización binaria de alto rendimiento que permite la lectura directa de datos sin necesidad 

de descompresión o análisis complejo, lo que reduce significativamente la latencia en el inicio 

de la inferencia (23). El archivo .tflite encapsula varios elementos clave: 

 

- Metadatos del modelo. Incluye información básica como nombres de entrada y 

salida, formas (shapes), tipos de datos (por ejemplo, float32, int8, etc.), y posibles 

etiquetas semánticas para facilitar la integración con bibliotecas de procesamiento 

de datos o interfaces de usuario. 

 

- Red neuronal codificada. Contiene una representación compacta del grafo 

computacional, incluyendo las operaciones (kernels) soportadas por TFLite. Estas 

operaciones han sido previamente convertidas desde el grafo original de TensorFlow 

mediante el TFLite Converter. 

 

- Pesos y parámetros preentrenados. Los valores numéricos entrenados durante la fase 

de aprendizaje son empaquetados en el modelo, con posibles técnicas de 

cuantización para reducir el tamaño del archivo y acelerar su ejecución. 

 

- Soporte para delegados: Aunque el modelo es independiente de la plataforma, 

TFLite puede emplear "delegados" en tiempo de ejecución para redirigir la ejecución 

a aceleradores de hardware específicos, como GPU, DSP o unidades de inferencia 

(TPU). 

 

 

Una característica fundamental del formato TFLite es su compatibilidad con técnicas de 

optimización como la cuantización post-entrenamiento y la cuantización durante el 

entrenamiento, que permiten reducir el tamaño del modelo y el uso de memoria, además de 

incrementar la velocidad de inferencia. Estas optimizaciones transforman los parámetros y 

activaciones del modelo de precisión flotante a tipos enteros, como int8 o uint8, manteniendo 

un impacto mínimo en la precisión del modelo. 

 

El formato .tflite es independiente de la plataforma y puede ejecutarse en diversos 

entornos mediante el uso del TensorFlow Lite Interpreter. Este intérprete está disponible para 

múltiples sistemas operativos y arquitecturas, incluidos Android, iOS, Linux embebido y 

microcontroladores (a través de TFLite Micro). 

 

 

ONNX (.omnx) 

 

ONNX (Open Neural Network Exchange) es un formato de especificación abierta 

diseñado para representar modelos de aprendizaje automático de manera interoperable entre 
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diferentes frameworks. Fue desarrollado inicialmente por Facebook y Microsoft, y actualmente 

es mantenido por la comunidad en colaboración con la Linux Foundation y la iniciativa AI 

Infra. Su propósito principal es facilitar el intercambio y despliegue de modelos en diversos 

entornos, incluyendo servidores, dispositivos embebidos y plataformas en la nube. El formato 

ONNX representa un estándar abierto, eficiente y extensible para la representación de modelos 

de aprendizaje automático (24). 

 

Los modelos ONNX se almacenan en archivos binarios con la extensión .onnx, 

estructurados utilizando el formato de serialización Protocol Buffers (Protobuf), desarrollado 

por Google. Este formato permite representar estructuras de datos complejas de manera 

eficiente, lo cual es esencial para modelos de redes neuronales con múltiples capas, pesos y 

configuraciones. Un archivo de modelo ONNX incluye los siguientes componentes principales: 

 

- Grafo computacional. Representa el flujo de datos a través de la red neuronal. Este 

grafo está compuesto por nodos, donde cada nodo corresponde a una operación (por 

ejemplo, convolución, activación, normalización). Cada nodo incluye información 

sobre sus entradas, salidas y atributos específicos. 

 

- Operadores estándar. ONNX define un conjunto estandarizado de operadores que 

son independientes del framework original. Esto garantiza que un modelo exportado 

desde PyTorch, TensorFlow, MXNet u otro entorno, pueda ser interpretado 

correctamente en cualquier motor de inferencia compatible con ONNX. 

 

- Inicializadores. Contienen los parámetros entrenados del modelo, como pesos y 

sesgos, empaquetados como tensores dentro del archivo. Estos datos están 

almacenados directamente en el archivo .onnx, lo que garantiza que el modelo es 

autosuficiente y portable. 

 

- Metadatos. Incluyen información adicional como el nombre del modelo, la versión 

del operador, la versión de la especificación ONNX utilizada, y los nombres y 

formas de las entradas y salidas. Esta información es esencial para la integración en 

sistemas de producción y para la depuración del modelo. 

 

 

PyTorch (.pt/.pth) 

 

El formato PyTorch (.pt o .pth) es el estándar utilizado por la biblioteca PyTorch para 

almacenar modelos de aprendizaje profundo entrenados. Este formato permite guardar tanto los 

pesos del modelo como, opcionalmente, la estructura del modelo (si se utiliza el enfoque de 

serialización completa). Los archivos .pt y .pth no difieren funcionalmente; su elección suele 

responder a convenciones del desarrollador (25). 

 

Desde una perspectiva académica, este formato se basa en el módulo torch.save(), que 

emplea el sistema de serialización de Python (pickle) para codificar los objetos del modelo. 

Esto permite conservar de forma eficiente el estado interno de la red neuronal, que incluye los 

tensores de pesos, sesgos y parámetros de entrenamiento. 

 

Existen dos formas principales de guardar modelos en PyTorch: 

 

- Solo el state_dict: es la forma recomendada y más robusta, ya que separa la definición 
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del modelo del almacenamiento de los pesos. Esto facilita portabilidad y 

reutilización. 

 

- Serialización completa del modelo: guarda tanto la arquitectura como los pesos, pero 

puede generar problemas de compatibilidad entre versiones o entornos. 

 

 

El formato .pt/.pth es ampliamente utilizado en investigación y producción debido a su 

flexibilidad, compatibilidad con GPU/CPU, y facilidad de integración en flujos de trabajo de 

inferencia o transferencia de aprendizaje. 

 

 

2.5. Modelos de estimación de posturas 

 

Este apartado presenta una revisión de los preentrenados más relevantes desarrollados 

para la estimación de posturas humanas, abarcando tanto enfoques clásicos como modernos. Se 

incluyen todos los modelos diseñados para estimación 2D y 3D, así como aquellos orientados 

a dispositivos móviles y entornos de alta complejidad, como escenas con múltiples personas o 

una única persona. La descripción de cada modelo contiene sus arquitecturas, características 

técnicas, ventajas, limitaciones, número de keypoints que estiman, etc., con el objetivo de 

ofrecer un panorama claro y actualizado sobre el estado del arte en esta área de investigación. 

 

 

2.5.1. OpenPose (2017) 

 

OpenPose es uno de los modelos pioneros y más influyentes en la estimación de posturas 

humanas. Desarrollado por el Carnegie Mellon Perceptual Computing Lab, introduce una 

arquitectura bottom-up que detecta de manera simultánea los keypoints de múltiples personas 

en una imagen sin necesidad de una etapa previa de detección individual. Su innovación central 

son los Part Affinity Fields (PAFs), campos vectoriales que permiten asociar puntos clave entre 

sí para reconstruir estructuras corporales completas, incluso en entornos con múltiples 

individuos y oclusiones (26). 

 

OpenPose puede estimar diferentes configuraciones de puntos: 18 puntos (COCO), 25 

(BODY-25) y configuraciones extendidas incluyendo manos (21 puntos por mano) y rostro (70 

puntos), superando los 135 keypoints en total. Aunque es altamente preciso, OpenPose es 

computacionalmente intensivo, lo que limita su uso en dispositivos móviles o en tiempo real 

sin hardware especializado (GPU). 

 

El sistema está implementado principalmente en C++ y es de código abierto, lo que ha 

facilitado su adopción en investigación, salud, deportes, animación y robótica. Su estructura 

modular también ha inspirado el desarrollo de variantes más ligeras y eficientes. 

 

 

2.5.2. AlphaPose (2018) 

 

AlphaPose es un modelo destacado en la estimación de posturas humanas, reconocido 

por su enfoque top-down que primero detecta individuos en la imagen y luego estima sus poses 

de manera independiente. Propuesto inicialmente en 2018, AlphaPose se caracteriza por su alta 

precisión y capacidad para manejar múltiples personas en escenarios complejos. Su arquitectura 
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combina detectores de objetos eficientes con redes neuronales convolucionales para predecir 

keypoints de manera precisa y robusta. AlphaPose utiliza postprocesamiento para refinar las 

estimaciones y mejorar la coherencia espacial de las articulaciones (27). 

 

El modelo típicamente estima 17 keypoints principales según el estándar COCO, 

abarcando las articulaciones principales del cuerpo humano. Aunque su enfoque top-down 

ofrece una precisión superior comparado con métodos bottom-up, su costo computacional es 

mayor, lo que puede limitar su aplicación en tiempo real o dispositivos con recursos limitados. 

AlphaPose ha sido ampliamente adoptado en aplicaciones de análisis de movimiento, 

vigilancia, y realidad aumentada, y ha inspirado versiones optimizadas para entornos móviles 

y de baja latencia. 

 

 

2.5.3. PoseNet (2018) 

 

PoseNet es un modelo ligero y eficiente para la estimación de posturas humanas en 

imágenes, diseñado especialmente para su uso en dispositivos móviles y navegadores web. 

Introducido en 2018 por Google, PoseNet utiliza arquitecturas basadas en MobileNet para 

realizar la predicción de 17 keypoints en tiempo real con un consumo de recursos reducido. Su 

enfoque está orientado a la estimación de poses individuales (single-person) o múltiples 

personas (multi-person) mediante un diseño flexible y modular (28). 

 

PoseNet destaca por su capacidad de funcionar en tiempo real con hardware limitado, 

gracias a su compatibilidad con TensorFlow Lite, lo que facilita su integración en aplicaciones 

móviles y web. Sin embargo, su precisión es inferior comparada con modelos más complejos y 

pesados, lo que limita su uso en escenarios que requieren alta fidelidad. A pesar de estas 

limitaciones, PoseNet ha sido fundamental para democratizar el acceso a tecnologías de 

estimación de postura, facilitando su aplicación en ámbitos de fitness, juegos interactivos y 

accesibilidad. 

 

 

2.5.4. DensePose (2018) 

 

DensePose es un modelo avanzado desarrollado por Facebook AI Research en 2018 que 

va más allá de la estimación clásica de posturas humanas 2D, mapeando cada píxel del cuerpo 

humano visible en una imagen a una superficie 3D paramétrica del cuerpo. A diferencia de otros 

modelos que estiman únicamente un conjunto discreto de keypoints, DensePose realiza una 

segmentación densa y una correspondencia directa con un modelo 3D anatómico, permitiendo 

reconstrucciones detalladas de la forma y la postura humana (29). 

 

Esta capacidad ofrece un nivel de detalle muy superior, ideal para aplicaciones en 

realidad aumentada, animación digital y análisis biomédico. Sin embargo, DensePose requiere 

una gran potencia computacional y no es adecuado para ejecución en dispositivos móviles o en 

tiempo real. Además, su entrenamiento y despliegue son más complejos debido a la necesidad 

de datos anotados en 3D. DensePose representa un importante avance en la representación 

morfológica del cuerpo humano en visión por computador, ampliando las fronteras entre visión 

2D y reconstrucción 3D. 

 

 



29 

 

2.5.5. HRNet (2019) 

 

HRNet (High-Resolution Network) es un modelo diseñado para tareas de visión por 

computadora que requieren una preservación precisa de detalles espaciales, como la estimación 

de postura humana. A diferencia de muchas arquitecturas convencionales que reducen 

progresivamente la resolución de las características a lo largo de la red, HRNet mantiene 

representaciones de alta resolución durante todo el proceso de inferencia. Para lograr esto, 

introduce un enfoque de procesamiento paralelo mediante múltiples ramas que operan a 

diferentes resoluciones y se comunican continuamente entre sí mediante fusión de información, 

permitiendo una integración efectiva de contextos locales y globales. Esta arquitectura mejora 

significativamente la precisión en la localización de puntos clave del cuerpo humano, incluso 

en condiciones de oclusión o poses complejas. HRNet ha demostrado resultados de vanguardia 

en benchmarks como COCO y MPII, siendo ampliamente adoptado en aplicaciones de análisis 

de movimiento, interfaces hombre-máquina y medicina deportiva. Su diseño innovador 

establece un nuevo paradigma en el equilibrio entre precisión espacial y capacidad semántica 

en redes profundas.  

 

 

2.5.6. EfficientPose (2020) 

 

Basado en la arquitectura EfficientNet, este modelo optimiza el balance entre velocidad 

y rendimiento, permitiendo una detección robusta de las articulaciones humanas en tiempo real. 

EfficientPose incorpora una técnica de aprendizaje multitarea que mejora la precisión en la 

detección de múltiples personas y reduce errores en escenarios con oclusiones, lo que lo vuelve 

más robusto frente a condiciones del mundo real comparado con modelos tradicionales. Su 

diseño modular facilita la integración en sistemas de visión por computadora, aplicaciones de 

realidad aumentada y análisis de movimientos deportivos. También destaca por su capacidad 

para funcionar en dispositivos con recursos limitados, sin sacrificar la calidad de la estimación. 

Este enfoque representa un avance significativo en el campo de la visión artificial aplicada a la 

interacción humano-computadora y el análisis biomecánico.  

 

 

2.5.7. MoveNet (2020) 

 

MoveNet es un modelo de estimación de posturas bottom-up que utiliza mapas de calor 

(heatmaps) para localizar con precisión los puntos clave del cuerpo humano. Su arquitectura se 

compone de dos partes principales: un feature extractor (un componente de una red neuronal 

que extrae características de la imagen) y un conjunto de prediction heads (un componente de 

una red neuronal que transforma características aprendidas en predicciones específicas 

normalmente situado al final de la red). Todos los modelos se entrenan utilizando la API de 

detección de objetos de TensorFlow (30). 

 

La arquitectura de la CNN que utiliza MoveNet es MobileNetV2 junto con una red de 

pirámide de características (FPN), lo que permite generar mapas de características de alta 

resolución con gran riqueza semántica. El extractor se conecta con cuatro prediction heads, cada 

una encargada de estimar lo siguiente (Imagen 9): 

 

- Mapa de calor del centro de la persona, predice el centro geométrico de cada 

instancia de persona. 
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- Campo de regresión de puntos clave, predice el conjunto completo de puntos clave 

por persona, útil para agruparlos en instancias individuales. 

 

- Mapa de calor de puntos clave, predice la ubicación de todos los puntos clave, 

independientemente de a qué persona pertenecen. 

 

- Campo de desplazamiento 2D por punto clave, predice el desplazamiento local 

desde cada píxel del mapa de características hasta la ubicación precisa (subpíxel) de 

cada punto clave.  

 

 

 

Imagen 9. Pasos de la inferencia del modelo MoveNet (30) 

 

MoveNet tiene dos variantes: MoveNet Lightning y MoveNet Thunder. 

MoveNet Lightning es un modelo de estimación de posturas humanas desarrollado por 

Google en 2020, diseñado para ofrecer una solución extremadamente rápida y eficiente en 

dispositivos con recursos limitados, como teléfonos móviles y sistemas embebidos. Forma parte 

de la familia MoveNet y está optimizado para lograr baja latencia manteniendo una precisión 

competitiva en la predicción de 17 keypoints principales, siguiendo el estándar COCO. 

 

MoveNet Lightning emplea una arquitectura ligera basada en convoluciones eficientes 

y técnicas de optimización (Imagen 10) que permiten su ejecución en tiempo real incluso en 

CPUs de gama baja. Aunque sacrifica algo de precisión en comparación con su contraparte más 

robusta, MoveNet Thunder, su velocidad y tamaño reducido lo hacen ideal para aplicaciones en 

tiempo real que requieren un balance entre rendimiento y eficiencia, como fitness, juegos 

interactivos y realidad aumentada. Además, su compatibilidad con TensorFlow Lite facilita su 

integración en aplicaciones móviles y de edge computing. 
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Imagen 10. Esquema de arquitectura modelo MoveNet (30) 

 

 

MoveNet Thunder es la otra variante del modelo MoveNet lanzada por Google en 

2020, diseñada para ofrecer una mayor precisión en la estimación de posturas humanas a costa 

de un mayor consumo computacional en comparación con MoveNet Lightning. Este modelo 

predice 17 keypoints clave siguiendo el estándar COCO, y está optimizado para ejecutarse en 

tiempo real en dispositivos con mayor capacidad de procesamiento, como GPUs móviles o 

CPUs de alto rendimiento. 

 

MoveNet Thunder emplea una arquitectura más profunda y compleja que incorpora 

convoluciones eficientes y técnicas avanzadas de aprendizaje profundo para mejorar la 

exactitud y robustez frente a variaciones de pose, oclusiones y condiciones de iluminación 

adversas. Su diseño equilibra la necesidad de precisión con la latencia, siendo adecuado para 

aplicaciones que requieren un análisis detallado del movimiento humano, como rehabilitación, 

deportes y análisis biomecánico. Asimismo, es compatible con TensorFlow Lite, facilitando su 

despliegue en entornos móviles y edge computing con hardware más potente. 

 

 

2.5.8. BlazePose (2021) 

 

BlazePose es un modelo de estimación de posturas humanas desarrollado por Google 

(31), diseñado para ofrecer un seguimiento preciso y en tiempo real de la postura corporal en 

dispositivos móviles. Su arquitectura ligera permite la inferencia en dispositivos con recursos 

limitados, alcanzando más de 30 fotogramas por segundo en un Google Pixel 2. 

 

BlazePose estima 33 puntos clave del cuerpo humano, incluyendo cabeza, tronco, 

extremidades y manos, proporcionando una representación detallada de la postura humana. Su 

diseño modular consta de dos componentes principales: un detector que identifica la región del 

cuerpo en la imagen y un estimador que predice las coordenadas de los puntos clave. El 

estimador utiliza una combinación de mapas de calor y regresión directa para mejorar la 
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precisión y eficiencia. 

 

Este modelo ha sido ampliamente utilizado en aplicaciones de seguimiento de actividad 

física, control gestual y realidad aumentada, gracias a su capacidad para operar en tiempo real 

sin la necesidad de hardware especializado. Además, su implementación en MediaPipe facilita 

su integración en diversas plataformas y dispositivos. 

 

 

2.5.9. PoseWarper (2021) 

 

PoseWarper es un modelo avanzado de estimación de postura humana en video que 

introduce un enfoque novedoso para explotar la información temporal mediante el alineamiento 

espacial entre fotogramas consecutivos. A diferencia de métodos tradicionales que procesan 

cada frame de manera independiente, PoseWarper utiliza una arquitectura basada en "warping" 

o deformación de características, lo que permite transferir información clave desde frames 

anteriores al frame actual. Esta técnica mejora la coherencia temporal y la precisión en la 

detección de articulaciones, especialmente en casos de oclusiones, movimientos rápidos o poses 

poco convencionales. El modelo emplea una red de extracción de características que aprende a 

alinear mapas de calor de keypoints a través del tiempo, reduciendo errores comunes en 

secuencias de video. PoseWarper se basa en una arquitectura eficiente y modular, lo que facilita 

su integración en sistemas de análisis de movimiento en tiempo real. Su enfoque temporal 

representa un avance significativo frente a modelos estáticos, logrando mejoras sustanciales en 

benchmarks como PoseTrack y subrayando la importancia de la dinámica del movimiento en 

la estimación de postura humana. 

 

 

2.5.10. YOLO-Pose (2021) 

 

YOLO-Pose es un modelo de estimación de posturas humanas basado en la arquitectura 

YOLO (You Only Look Once), conocido por su capacidad para realizar detección de objetos 

en tiempo real con alta precisión. Adaptado para la tarea de estimación de posturas, YOLO-

Pose integra una prediction head especializada para predecir keypoints corporales directamente 

junto con la detección de personas en una sola pasada, optimizando la eficiencia y velocidad de 

procesamiento (32). 

 

Este enfoque single-shot permite la estimación simultánea de múltiples poses en escenas 

con varias personas, generalmente prediciendo 17 keypoints conforme al estándar COCO. 

YOLO-Pose destaca por su equilibrio entre precisión y rendimiento, haciéndolo adecuado para 

aplicaciones en tiempo real como vigilancia, análisis deportivo y realidad aumentada. Además, 

su diseño modular facilita la implementación en dispositivos con recursos limitados y su 

compatibilidad con frameworks como PyTorch y TensorFlow amplía su aplicabilidad en 

entornos móviles y edge computing. 

 

YOLO-pose tiene diferentes versiones publicadas hasta la fecha como se puede ver en 

la Tabla 6. 
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Versión YOLO Variantes Tamaño aprox. Características 

YOLOv5-Pose YOLOv5s-Pose ~14 MB Versión pequeña, rápida 

 YOLOv5m-Pose ~41 MB Balance entre tamaño y 

precisión 

 YOLOv5l-Pose ~88 MB Mayor precisión 

 YOLOv5x-Pose ~168 MB Versión extra grande 

YOLOv7-Pose YOLOv7-tiny-Pose ~14 MB Versión ligera para edge 

 YOLOv7-Pose (full) ~70-90 MB Versión completa 

YOLOv8-Pose YOLOv8n-Pose (nano) ~6 MB Muy ligero 

 YOLOv8s-Pose (small) ~22 MB Ligero 

 YOLOv8m-Pose (medium) ~50 MB Balance 

 YOLOv8l-Pose (large) ~87 MB Alta precisión 

 YOLOv8x-Pose (x-large) ~136 MB Muy alta precisión  

YOLOv11-Pose YOLOv11n-Pose (nano) ~6 MB Muy ligero 

 YOLOv11s-Pose (small) ~19 MB Ligero 

 YOLOv11m-Pose (medium) ~40 MB Balance 

 YOLOv11l-Pose (large) ~60 MB Alta precisión 

 YOLOv11x-Pose (x-large) ~120 MB Muy alta precisión  

 
Tabla 6. Versiones de modelos YOLO de estimación de posturas humanas 

 

2.5.11. RTMPose (2023) 

 

RTMPose (Real-Time Multi-Person Pose Estimation) es un modelo de estimación de 

postura humana diseñado específicamente para lograr alto rendimiento en tareas en tiempo real, 

sin comprometer la precisión. Desarrollado con un enfoque modular y eficiente, RTMPose 

utiliza técnicas modernas como el backbone RTMDet basado en la arquitectura ConvNeXt y 

estrategias de optimización ligeras para acelerar la inferencia, siendo especialmente adecuado 

para aplicaciones en dispositivos con recursos limitados. A diferencia de modelos tradicionales, 

RTMPose emplea una representación directa de keypoints y una arquitectura centrada en la 

eficiencia computacional, eliminando componentes costosos como el procesamiento de mapas 

de calor. Además, introduce un esquema de entrenamiento robusto, basado en técnicas como 

SimDR (Simple Disentangled Representation), que mejora la estabilidad y la precisión de la 

predicción de coordenadas. Este modelo es altamente competitivo en benchmarks como COCO 

y CrowdPose, destacando por su capacidad para manejar múltiples personas, oclusiones y 

variabilidad en las poses. Su diseño versátil lo hace ideal para aplicaciones en visión artificial, 

realidad aumentada, deportes y vigilancia inteligente. 

 

 

2.5.12. Resumen 

 

 Además de las características descritas existen otros parámetros importantes a la hora 

de seleccionar un modelo muy dependiente el entorno donde se vaya a utilizar y son su tamaño 

y su formato (ver Tabla 7 para tamaños aproximados y formatos).  

 

El tamaño de los modelos es tan variable como versiones y/o familias del modelo se 

hayan desarrollado, como ya vimos en el apartado “2.3.2 Cuantización de modelos” existen 

técnicas para reducir el tamaño de un modelo sin que la precisión del mismo se vea 
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excesivamente comprometida. Las versiones sin “cuantizar” suelen usar precisión de 32 bits en 

punto flotante (float32), lo cual produce modelos grandes pero precisos. La cuantización a 

menor precisión (como int8 o float16), utilizada en modelos como MoveNet o BlazePose, 

reduce significativamente el tamaño del modelo, además de mejorar la velocidad de inferencia 

y disminuir el consumo de memoria. 

 

La arquitectura base (backbone) empleada en un modelo tiene un impacto sustancial en 

su tamaño. Modelos como HRNet, OpenPose o AlphaPose (basados en la arquitectura ResNet) 

utilizan backbones pesados y profundos (por ejemplo, ResNet-101 o HRNet-W48), diseñados 

para preservar información espacial a lo largo de toda la red, lo cual incrementa tanto el número 

de parámetros como el tamaño total del modelo. En cambio, arquitecturas ligeras como 

MobileNet, utilizadas por modelos como PoseNet o MoveNet Lightning, están específicamente 

optimizadas para reducir la complejidad computacional, lo que resulta en tamaños 

significativamente menores. 

 

Además de la arquitectura, los modelos suelen ofrecer múltiples variantes (por ejemplo 

versiones tiny, small, medium, large, nano, etc.), cada una con diferentes profundidades y 

anchos de red. Estas variantes permiten al usuario seleccionar un punto de equilibrio entre 

precisión, latencia y tamaño de almacenamiento, lo cual es crucial en aplicaciones para 

dispositivos de edge computing (Tabla 8). 

 

 

 

Modelo Fecha Formato de Fichero Tamaño aproximado 

OpenPose 2017 .caffemodel / .onnx ~100 MB 

AlphaPose 2018 .pth (PyTorch) ~92 MB 

PoseNet 2018 .tflite / .json / .pb ~5 MB 

DensePose 2018 .pkl / .pth ~13.8 MB 

HRNet 2019 .pth ~112 MB 

EfficientPose 2020 .h5 / .onnx <10 MB 

MoveNet 2020 .tflite 5-20 MB 

BlazePose 2021 .tflite / .pb 3-26 MB 

PoseWarper 2021 .pth N/D 

YOLO-Pose 2021 .pt (→.onnx, →.tflite) 6-200 MB 

RTMPose 2023 .onnx / .pth 18-65 MB 

 
Tabla 7. Resumen características modelos preentrenados 
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Modelo Entrada Feature Extraction Prediction Heads Salida (estimación poses) 

OpenPose Imagen RGB VGG-19 o variantes 

personalizadas 

Heatmaps de keypoints + 

mapas de afinidad (PAFs) 

18-135 keypoints 

(cuerpo/rostro/manos) 

AlphaPose Imagen RGB ResNet (usualmente ResNet-50 

o ResNet-101) 

Heatmaps de keypoints + 

regresión de offsets 

17-136 keypoints 

PoseNet Imagen RGB MobileNet o ResNet Heatmaps de keypoints 17 keypoints 

DensePose Imagen RGB ResNet-101 Mapas de UV (superficie 

corporal) + segmentación 

Cuerpo completo en malla UV 

(no keypoints estándar) 

HRNet Imagen RGB High-Resolution Network 

(múltiples ramas paralelas) 

Heatmaps de keypoints 17 (COCO) / 16 (MPII) 

keypoints 

EfficientPose Imagen RGB EfficientNet (B0-B4) Heatmaps de keypoints + 

offsets (opcional) 

17 keypoints 

MoveNet Imagen RGB CNN propietaria optimizada 

para móvil 

Regresión directa de 

coordenadas keypoints 

17 keypoints 

BlazePose Imagen RGB (ROI del cuerpo) MobileNetV2 ligera o CNN 

personalizada 

Regresión directa de 

keypoints 3D 

33 keypoints 

PoseWarper Secuencia de imágenes Hourglass o ResNet Heatmaps de keypoints + 

módulo de warping 

17 keypoints 

YOLO-Pose Imagen RGB CSPDarknet (YOLO 

backbone) 

Regresión directa de 

bounding boxes + keypoints 

17 keypoints 

RTMPose Imagen RGB MobileNetV3 o HRNet-lite Regresión directa o 

heatmaps simplificados 

17 keypoints 

 
Tabla 8. Resumen arquitecturas modelos preentrenados
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2.6. Datasets de estimación de posturas 

 

El desarrollo de algoritmos robustos de estimación de posturas ha dependido 

críticamente de la disponibilidad de datasets públicos bien anotados, que sirven como base 

tanto para el entrenamiento como para la evaluación de modelos supervisados. 

 

Los datasets de estimación de postura pueden clasificarse según varias dimensiones 

técnicas: tipo de anotación (2D o 3D), número de personas por imagen (single-person o multi-

person), tipo de sensor (RGB, RGB-D, multivista), y contexto (interior, exterior, sintético o 

realista). Entre los más influyentes se encuentran COCO Keypoints y MPII Human Pose, cada 

uno con diferentes coberturas de poses, diversidad de sujetos, condiciones de iluminación, y 

esquemas de anotación. 

 

Técnicamente, un dataset de postura humana incluye no solo las imágenes, sino también 

las coordenadas (en píxeles o en 3D) de los puntos anatómicos relevantes (como hombros, 

codos, rodillas, tobillos, etc.), frecuentemente junto con etiquetas de visibilidad o confiabilidad. 

La calidad, cantidad y diversidad de estos datos tienen un impacto directo sobre la capacidad 

de generalización de los modelos entrenados, especialmente en escenarios desafiantes como la 

oclusión, las poses poco frecuentes o las variaciones culturales. 

 

Para la realización de este estudio se han analizado los dos datasets más utilizados y 

relevantes en el ámbito de la visión por computador, COCO (1) y MPII (2). 

 

 

2.6.1. Dataset COCO (Common Objects in COntext) 

 

El dataset COCO (Common Objects in COntext) es un conjunto de datos ampliamente 

utilizado en la investigación y desarrollo de modelos de visión por computador. Fue introducido 

por Microsoft en 2014 con el objetivo de proporcionar un recurso estandarizado para el 

entrenamiento y la evaluación de algoritmos en tareas complejas como detección de objetos, 

segmentación semántica, segmentación de instancias, detección de poses humanas y captioning 

de imágenes. Su diseño se centra en ofrecer imágenes realistas con objetos en contextos 

naturales, lo que lo diferencia de conjuntos anteriores con escenarios más simplificados o 

sintéticos.  

 

Es uno de los datasets más reconocidos desde su aparición, y, desde 2015, la COCO 

Challenge15 ha sido un catalizador permanente de nuevos state-of-the-art en tareas clave como 

detección, segmentación y estimación de posturas. La primera edición se celebró en 2015 y el 

ganador fue el modelo Faster R-CNN (33) que es considerado un avance crucial en detección 

de objetos porque introduce el Region Proposal Network (RPN), un sub-módulo entrenable 

dentro de la red que aprende a generar propuestas de regiones directamente desde los feature 

maps16 de la CNN que hace que el tiempo de inferencia pase de segundos por imagen a solo 0.2 

segundos aproximadamente, haciendo posible la detección casi en tiempo real. 

                                                 

 
15 COCO Challenge es una competencia anual que mide los algoritmos más avanzados en detección, 
segmentación, poses y captioning, usando el dataset COCO como referencia. 
16 Son las estructuras de datos específicas dentro de las capas de extracción de características (Feature 
extraction) que contienen estas características aprendidas de una manera espacialmente organizada 
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También ha sido designado como un estándar para la comunidad de detección de objetos 

en papers como “Recent Advances in Object Detection in the Age of Deep Convolutional Neural 

Networks” (34) donde se cita textualmente: 

 

“Like ImageNet in its time, MS-COCO has become the de facto standard for the object 

detection community and any method winning the state-of-the-art on it is assured to gain 

much traction and visibility.” 

 

COCO está compuesto por más de 330.000 imágenes, de las cuales más de 200.000 

cuentan con anotaciones detalladas que abarcan más de 1,5 millones de instancias de objetos. 

Estos objetos pertenecen a 80 categorías comunes que incluyen personas, animales, vehículos, 

muebles, utensilios cotidianos, entre otros, lo que permite abordar tareas de detección y 

segmentación de objetos en contextos muy variados y realistas. 

 

En el ámbito de la estimación de poses humanas, COCO ofrece anotaciones precisas de 

keypoints corporales para más de 250.000 personas. Estas anotaciones incluyen posiciones de 

articulaciones clave como hombros, codos, muñecas, caderas, rodillas y tobillos, 

proporcionando una base sólida para entrenar y evaluar modelos de estimación de postura en 

2D bajo condiciones complejas, con variaciones de iluminación, oclusión, perspectiva y 

diversidad de posturas.  

 

El dataset se organiza en varias particiones para facilitar el desarrollo y la evaluación de 

modelos: 

 

- train2017: conjunto de entrenamiento con aproximadamente 123.000 imágenes 

anotadas, utilizadas para ajustar los parámetros de los modelos. 

 

- val2017: conjunto de validación con unas 5.000 imágenes, destinado a ajustar 

hiperparámetros y realizar pruebas preliminares de desempeño. 

 

- test-dev2017 y test-challenge2017: conjuntos de prueba sin etiquetas visibles 

públicamente, diseñados para evaluaciones de benchmark oficiales, donde los 

resultados se comparan de manera objetiva entre diferentes algoritmos. 

 

 

Puntos clave o keypoints 

 

Son coordenadas específicas que en estimación de poses humanas se corresponden con 

una articulación o región anatómica relevante como hombros, codos, rodillas o tobillos (Imagen 

11) y su detección precisa permite reconstruir la estructura y postura del cuerpo. Estos puntos 

se utilizan como entidades de referencia para tareas de análisis de movimiento, biometría, 

interacción hombre-máquina y seguimiento visual, y suelen ir acompañados de indicadores de 

visibilidad o confianza que cuantifican la certeza del modelo en su localización. 
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Imagen 11. Representación de las anotaciones de dataset COCO por persona 

 

 

El dataset COCO incluye un subconjunto específicamente diseñado para la tarea de 

estimación de posturas humanas en 2D, que constituye uno de los estándares de referencia más 

utilizados en visión por computador. En este subconjunto, cada instancia de persona está 

anotada mediante un conjunto fijo de 17 keypoints corporales (Tabla 9), definidos para 

capturar la estructura esquelética humana de manera coherente, reproducible y adecuada para 

diferentes escenarios de aplicación. 

 

Estos keypoints corresponden a las principales articulaciones y regiones anatómicas del 

cuerpo humano: nariz, ojos, orejas, hombros, codos, muñecas, caderas, rodillas y tobillos. La 

disposición de estas anotaciones permite representar de forma aproximada la cinemática del 

cuerpo y posibilita la construcción de esqueletos simplificados que pueden ser empleados en 

tareas de análisis de movimiento, interacción humano-computadora, biometría o deportes. 

 

Un aspecto clave de COCO es que estas anotaciones están recogidas en condiciones 

no controladas, es decir, en escenas naturales y cotidianas con variaciones significativas en 

iluminación, poses, oclusiones parciales, ángulos de visión y escalas de representación. Esta 

diversidad dota al dataset de un alto nivel de complejidad y realismo, lo que lo convierte en un 

recurso fundamental para evaluar la robustez de los modelos de estimación de postura en 

contextos desafiantes. 

 

Cada uno de los keypoints se anotan con coordenadas (x, y) y con una etiqueta de 

visibilidad con los valores 0 (no visible), 1 (marcado pero no visible), 2 (visible). 

Estas anotaciones permiten no solo la localización precisa de cada keypoint, sino 

también la evaluación estructurada de modelos bajo métricas ampliamente adoptadas que 

veremos más adelante como Average Precision (AP), Object Keypoint Similarity (OKS) y 

Average Recall (AR) por lo que además de su uso como benchmark, COCO se ha consolidado 

como estándar de facto para la comparación entre arquitecturas de visión. 
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Nº de keypoint Nombre del keypoint Descripción anatómica 

1 Nose Punta de la nariz 

2 Left Eye Centro del ojo izquierdo 

3 Right Eye Centro del ojo derecho 

4 Left Ear Parte visible de la oreja izquierda 

5 Right Ear Parte visible de la oreja derecha 

6 Left Shoulder Articulación del hombro izquierdo 

7 Right Shoulder Articulación del hombro derecho 

8 Left Elbow Articulación del codo izquierdo 

9 Right Elbow Articulación del codo derecho 

10 Left Wrist Articulación de la muñeca izquierda 

11 Right Wrist Articulación de la muñeca derecha 

12 Left Hip Articulación de la cadera izquierda 

13 Right Hip Articulación de la cadera derecha 

14 Left Knee Articulación de la rodilla izquierda 

15 Right Knee Articulación de la rodilla derecha 

16 Left Ankle Articulación del tobillo izquierdo 

17 Right Ankle Articulación del tobillo derecho 

 
Tabla 9. Listado de keypoints de dataset COCO 

 

 

Anotaciones de COCO para la estimación de posturas humanas 

 

Para las anotaciones el dataset utiliza un esquema jerárquico en formato JSON siguiendo 

una especificación propia conocida como COCO JSON Format que permite no solo entrenar 

modelos supervisados de estimación de pose 2D sino también evaluar modelos bajo métricas 

como AP, OKS y AR, generar esqueletos y visualizar poses humanas en entornos reales y 

complejos, etc.. Cada anotación de persona contiene los siguientes campos:  

 

- image_id: ID de la imagen donde se encuentra la persona. 

 

- category_id: Siempre 1 para personas. 

 

- keypoints: Lista de 51 valores (17 keypoints × 3 valores por keypoint). 

Cada keypoint contiene: (x, y, v): 

 

o x, y: coordenadas del punto en píxeles. 

 

o v: visibilidad (0=no etiquetado, 1=etiquetado pero no visible, 2=etiquetado 

y visible). 

 

- num_keypoints: número de puntos anotados con v > 0. 

 

- bbox: coordenadas [x, y, width, height] de la caja que rodea a la persona. 

 

- area: área de la caja (útil para normalizar el error en métricas como OKS). 

 

- iscrowd: si la anotación pertenece a un grupo denso de personas (0 o 1). 
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- segmentation: polígonos que segmentan la silueta del cuerpo (opcional). 

 

 

Validación de resultados con COCO 

 

El cálculo de resultados en la API de COCO para estimación de poses humanas se basa 

en una evaluación que mide la precisión y exhaustividad de la localización de puntos clave 

(keypoints) en imágenes. Técnicamente, el proceso sigue estas etapas fundamentales: 

 

1. Entrada de predicciones. El modelo genera un conjunto de predicciones para cada 

persona detectada en la imagen, donde cada predicción contiene coordenadas (x, y) para 

17 keypoints predefinidos (hombros, codos, etc.) y una puntuación de confianza. 

 

2. Correspondencia con anotaciones (ground truth). Cada predicción se asocia con una 

anotación real mediante la métrica de similitud de puntos clave (OKS). El OKS evalúa 

la proximidad espacial entre los keypoints predichos y anotados, normalizada por la 

escala del objeto y ponderada por la visibilidad de cada punto. 

 

3. Asignación de verdaderos positivos y falsos positivos: 

 

o Para distintos umbrales de OKS (desde 0.50 a 0.95 en incrementos de 0.05), 

la API asigna cada predicción a una anotación única si el OKS excede el 

umbral, clasificándola como verdadero positivo (TP). 

 

o Predicciones sin correspondencia o con OKS bajo el umbral se consideran 

falsos positivos (FP). 

 

o Las anotaciones no detectadas cuentan como falsos negativos (FN). 

 

4. Construcción de la curva Precision-Recall. Para cada umbral, se calcula la precisión y 

el recall acumulados ordenando las predicciones según su puntuación de confianza. Esto 

permite trazar la curva de precisión en función del recall. 

 

5. Cálculo del Average Precision (AP). La métrica AP se obtiene integrando el área bajo la 

curva Precision-Recall interpolada en 101 puntos de recall, proporcionando una medida 

robusta y estable del rendimiento del modelo. 

 

6. Agregación multi-umbral y global. Finalmente, la API calcula el mean Average 

Precision (mAP) promediando los AP obtenidos en los diferentes umbrales de OKS, 

reflejando la capacidad del modelo para localizar con precisión keypoints en diversos 

grados de tolerancia espacial. En los resultados de la API COCO se considera como 

la métrica principal (mAP) al valor de AP [IoU=0.50:0.95]. 

 

 

Este método garantiza una evaluación precisa, que tiene en cuenta la variabilidad en la 

visibilidad y escala de las personas, y promueve la comparación justa y estandarizada entre 

diferentes modelos de estimación de poses humanas. 
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2.6.2. MPII (Max Planck Institute for Informatics) 

 

El dataset MPII Human Pose es otra referencia fundamental en el campo de la 

estimación de poses humanas en imágenes. Desarrollado por el Max Planck Institute for 

Informatics (MPII) en Alemania (centro de investigación líder en visión por computador y 

aprendizaje automático) para capturar la diversidad y complejidad de posturas humanas en 

contextos cotidianos. MPII contiene aproximadamente 25.000 imágenes extraídas de videos 

reales, abarcando una amplia variedad de actividades y situaciones. Cada persona en estas 

imágenes está anotada con 16 puntos clave (keypoints) que representan las principales 

articulaciones y partes del cuerpo, como cabeza, hombros, codos y rodillas, proporcionando 

una representación detallada de la configuración corporal en 2D (2). 

 

Además de las coordenadas anatómicas, MPII incluye información contextual sobre la 

actividad realizada por la persona, lo que enriquece su utilidad para tareas que combinan 

estimación de pose y reconocimiento de acciones. Este dataset se ha convertido en un estándar 

para la evaluación de algoritmos de estimación de pose gracias a la calidad y precisión de sus 

anotaciones, así como a la diversidad de su contenido. 

 

Utilizado en numerosos estudios y trabajos importantes como por ejemplo 

“Compositional Human Pose Regression” (35) que introduce un enfoque de regresión 

estructurada para estimación de postura que permite modelar dependencias espaciales entre 

articulaciones, base para muchos métodos posteriores, o “P-CNN: Pose-based CNN Features 

for Action Recognition” (36) que introduce la combinación de pose + CNN para reconocimiento 

de acciones y donde MPII se usa como benchmark para evaluar la precisión de keypoints 

humanos contribuyendo a popularizar el uso de poses humanas como característica para tareas 

adicionales de visión. 

 

 

Puntos clave o keypoints 

 

Los 16 keypoints de MPII (Imagen 12) incluyen posiciones en 2D correspondientes a 

cabeza, cuello, hombros, codos, muñecas, caderas, rodillas y tobillos, proporcionando una 

cobertura detallada de las principales articulaciones para la reconstrucción precisa de la postura 

humana. Las anotaciones son realizadas manualmente sobre imágenes provenientes de videos 

cotidianos con gran diversidad de posturas, actividades y condiciones visuales, lo que permite 

modelar un amplio rango de configuraciones corporales. 

A diferencia de otros datasets como COCO, MPII pone énfasis en posturas complejas 

y dinámicas en actividades específicas, ofreciendo además metadatos con información 

contextual sobre la actividad realizada, lo que posibilita un análisis más rico y aplicaciones 

avanzadas en reconocimiento de acciones. 
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Imagen 12. Representación de las anotaciones de dataset MPII por persona 

 

MPII al igual que COCO incluye información especializada para la tarea de estimación 

de posturas humanas en 2D, donde cada instancia de persona está anotada con un conjunto fijo 

en este caso de 16 keypoints corporales por los 17 que tiene COCO. Estas anotaciones son 

similares a las de COCO, aunque no iguales, pero también están diseñadas para capturar la 

estructura esquelética humana y se encuentran distribuidas en las principales articulaciones y 

regiones del cuerpo humano: cabeza, cuello, pelvis, torso, hombros, codos, muñecas, caderas, 

rodillas y tobillos.  

 

Nº de keypoint Nombre del keypoint Descripción anatómica 

0 Right Ankle Articulación del tobillo derecho 

1 Right Knee Articulación de la rodilla derecha 

2 Right Hip Articulación de la cadera derecha 

3 Left Hip Articulación de la cadera izquierda 

4 Left Knee Articulación de la rodilla izquierda 

5 Left Ankle Articulación del tobillo izquierdo 

6 Pelvis Centro de la pelvis / región lumbar 

7 Thorax Centro superior del torso 

8 Neck Base del cuello 

9 Head Parte superior de la cabeza 

10 Right Wrist Articulación de la muñeca derecha 

11 Right Elbow Articulación del codo derecho 

12 Right Shoulder Articulación del hombro derecho 

13 Left Shoulder Articulación del hombro izquierdo 

14 Left Elbow Articulación del codo izquierdo 

15 Left Wrist Articulación de la muñeca izquierda 
 

Tabla 10. Listado de keypoints de dataset MPII 
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Anotaciones de MPII para la estimación de posturas humanas 

 

Las anotaciones de keypoints en el dataset MPII Human Pose se almacenan 

principalmente en archivos MATLAB, que contienen estructuras de datos detalladas para cada 

imagen y persona anotada. Cada entrada incluye coordenadas 2D (x, y) de 16 keypoints 

anatómicos específicos, numerados y definidos dentro de cada anotación de cada persona, que  

contiene los siguientes campos:  

 

- .annolist(imgidx): anotaciones para la imagen imgidx 

 

o .image.name: nombre del fichero de la imagen 

o .annorect(ridx): anotaciones corporales de la persona ridx 

 .x1, .y1, .x2, .y2: coordenadas del rectángulo de la cabeza 

 .scale: escale de la persona 

 .objpos: posición humana en la  imagen 

 .annopoints.point: anotaciones de los keypoint 

 .x, .y: coordenadas del punto 

 id: identificador del punto (Tabla 10) 

 is_visible: visibilidad del punto  

o .vidx: índice en el video video_list 

o .frame_sec: posición de la imagen en el video en segundos 

 

- img_train(imgidx): asignación de la imagen a training/testing 

 

- single_person(imgidx): rectángulo con identificador ridx  

 

- act(imgidx): etiqueta de actividad/categoría para la imagen imgidx 

 

o act_name: nombre de actividad 

o cat_name: nombre de categoría 

o act_id: identificador de la actividad 

 

- video_list(videoidx): identificador del video de YouTube. Para visualizarlo ir a 

https://www.youtube.com/watch?v=video_list(videoidx) 

 

 

Medidas de precisión de dataset MPII 

 

Las medidas de precisión empleadas en el dataset MPII Human Pose para la evaluación 

de modelos de estimación de postura humana están diseñadas para cuantificar la exactitud en 

la localización de los keypoints en imágenes 2D. La métrica principal es el PCKh (Percentage 

of Correct Keypoints, head-normalized), que calcula el porcentaje de keypoints correctamente 

detectados dentro de un umbral de distancia relativo al tamaño de la cabeza del sujeto. 

 

Matemáticamente, un keypoint se considera correctamente estimado si la distancia 

euclidiana entre la predicción y la anotación ground truth es menor que un umbral  

𝛼��× head size, donde el parámetro 𝛼��suele establecerse en 0.5. Este criterio de normalización 

mediante el tamaño de la cabeza permite adaptar la evaluación a diferentes escalas y tamaños 

corporales, ofreciendo una comparación justa y robusta entre individuos y escenarios variados. 
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Además del PCKh, se utiliza el PCK (Percentage of Correct Keypoints) en otras 

variantes, que emplea umbrales absolutos o relativos a otras dimensiones corporales para casos 

específicos o comparaciones con otros datasets. La métrica PCKh se reporta tanto para cada 

articulación individual como en forma agregada, proporcionando un análisis detallado de las 

fortalezas y limitaciones del modelo en distintas regiones corporales. 

 

El dataset MPII también incluye evaluaciones con curvas PCK, que representan la 

precisión en función del umbral de distancia, y métricas complementarias como el error medio 

euclidiano, para una comprensión más fina del desempeño. 

 

 

Validación de resultados con MPII 

 

El proceso de validación de resultados con el dataset MPII Human Pose se realiza 

mediante la evaluación cuantitativa de las predicciones del modelo sobre un conjunto de 

imágenes de prueba etiquetadas con anotaciones ground truth de keypoints. Este procedimiento 

sigue los siguientes pasos técnicos y académicos: 

 

1. Preparación de datos. Se utilizan las imágenes de test con sus correspondientes 

anotaciones de 16 keypoints y sus estados de visibilidad. Estas anotaciones actúan como 

referencia para comparar las predicciones del modelo. 

 

2. Predicción de keypoints. El modelo genera estimaciones de las posiciones 2D de los 

keypoints para cada persona en las imágenes de test. Las predicciones deben estar en el 

mismo sistema de coordenadas y escala que las anotaciones ground truth. 

 

3. Normalización y umbral. Para evaluar la precisión, se normalizan las distancias entre 

los keypoints predichos y los anotados usando la dimensión de la cabeza (head size), 

que es un indicador del tamaño relativo del sujeto. Se define un umbral, comúnmente el 

50% del tamaño de la cabeza (PCKh@0.5), para determinar si un keypoint está 

correctamente localizado. 

 

4. Cálculo de métricas. Se calcula el porcentaje de keypoints detectados correctamente 

(PCKh) y se reporta para cada articulación y globalmente. También se pueden analizar 

curvas PCK que muestran la precisión en función de distintos umbrales, así como 

errores promedio. 

 

5. Tratamiento de visibilidad. Los keypoints marcados como no visibles o fuera de imagen 

en las anotaciones ground truth se excluyen de la evaluación para evitar penalizar al 

modelo por detectar puntos imposibles de observar. 

 

 

2.7. Métricas de precisión 

 

Las métricas de precisión constituyen herramientas cuantitativas diseñadas para evaluar 

de manera objetiva el rendimiento de modelos en tareas como detección de objetos, 

clasificación y estimación de poses. Su función es medir, bajo diferentes perspectivas, el grado 
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de concordancia entre las predicciones del modelo y el ground truth17, permitiendo 

comparaciones entre arquitecturas, configuraciones y datasets. 

 

Técnicamente, estas métricas se apoyan en la teoría de detección de señales y en el 

análisis de TP (True Positives), FP (False Positives), TN (True Negatives) y FN (False 

Negatives), adaptando su formulación a la naturaleza de cada tarea: 

 

- En clasificación, la métrica base es la precisión (accuracy), que mide la proporción 

de predicciones correctas sobre el total, complementada con métricas como recall y 

matrices de confusión para abordar problemas de clases desbalanceadas. 

 

- En detección de objetos, se utilizan métricas basadas en el solapamiento geométrico, 

como el IoU (Intersection over Union), y medidas agregadas como el AP (Average 

Precision) y mAP (mean Average Precision), evaluando el rendimiento bajo 

múltiples umbrales de coincidencia para capturar tanto la capacidad de localizar 

como de clasificar correctamente. 

 

- En estimación de poses, las métricas deben adaptarse a datos estructurados de puntos 

clave. Aquí, el OKS (Object Keypoint Similarity) sustituye al IoU, ya que considera 

distancias euclidianas normalizadas, escala del objeto y visibilidad de keypoints. 

Sobre esta base se calculan métricas como AP/AR de COCO keypoints, que miden 

simultáneamente exhaustividad y precisión a distintos niveles de tolerancia. 

 

La selección y análisis de estas métricas no solo determina la interpretación del 

rendimiento de un modelo, sino que también condiciona el desarrollo de arquitecturas y técnicas 

de entrenamiento, ya que optimizar para una métrica específica puede producir sesgos hacia 

ciertos aspectos de la tarea (por ejemplo alta precisión pero bajo recall, o viceversa). 

 

 

2.7.1. Recall 

 

Recall (exhaustividad o sensibilidad) es la métrica que mide la capacidad de un modelo 

para encontrar todas las instancias relevantes de la clase objetivo dentro de un conjunto de 

datos. Un recall alto indica que el modelo detecta la mayoría de los objetos reales (o keypoints), 

aunque no necesariamente con alta precisión (37). 

 

Desde un punto de vista matemático, recall se define como vemos en la Ecuación 1 

cantidad de casos correctamente acertados dividido entre casos correctamente acertados + casos 

relevantes no acertados. 

 

                                                 

 
17 Conjunto de datos o anotaciones de referencia verificadas manualmente contra la cual se comparan y 
evalúan las predicciones de un modelo. 
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Ecuación 1. Cálculo de Recall (37) 

 

 

2.7.2. Intersection over Union (IoU) 

 

La IoU es una métrica ampliamente utilizada en visión por computador para cuantificar 

la superposición entre dos regiones, una región predicha y su correspondiente ground truth 

(valores de referencia) (Imagen 13). Es un indicador clave en tareas de detección de objetos, 

segmentación semántica, instancia y estimación de poses (cuando se evalúan bounding boxes18) 

(38). 

 

El cálculo de IoU produce un valor normalizado entre 0 y 1. Un valor cercano a 1 indica 

una predicción con una alta coincidencia espacial respecto a la anotación de referencia, mientras 

que valores bajos reflejan discrepancias significativas en localización, escala o forma. En la 

práctica, la IoU se utiliza con umbrales definidos (por ejemplo, IoU ≥ 0.5) para determinar si 

una predicción se considera un acierto o un fallo. La variación de dichos umbrales da lugar a 

métricas más expresivas, como la AP en intervalos múltiples (AP@[0.5:0.95]), ampliamente 

adoptada en benchmarks como COCO. 

 

 

 
 

Imagen 13. Representación IoU (38) 

                                                 

 
18 Una caja delimitadora (bounding box en inglés) es un rectángulo que se utiliza para delimitar la posición y el 
tamaño de un objeto dentro de una imagen o un fotograma de vídeo. 
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Desde un punto de vista matemático, el IoU se define como el cociente entre el área de 

la intersección de las dos regiones y el área de su unión como se puede ver en la Ecuación 2. 

 

 
 

Ecuación 2. Cálculo de IoU (Intersection Over Union) (38) 

 

 

2.7.3. Estimación de puntos clave: Object Keypoint Similarity (OKS) 

 

IoU es la métrica de referencia para medir la precisión de la detección de objetos pero 

al calcularse utilizando las áreas de las regiones predichas y real no puede ser aplicada cuanto 

estamos trabajando con detección de puntos. En la estimación de puntos clave la métrica 

homóloga a IoU es el OKS (Object Keypoint Similarity) (39), que es una métrica de evaluación 

utilizada para cuantificar la similitud entre los keypoints predichos por un modelo de estimación 

de pose humana y los keypoints de referencia (ground truth) en un contexto de objetos con 

estructura articulada como personas. Esta métrica fue introducida por el equipo de COCO como 

una generalización del IoU, adaptada a la naturaleza puntual y estructural de los esqueletos 

humanos. 

 

OKS se define como una función de penalización basada en la distancia euclidiana entre 

cada par de keypoints (el predicho y el real), normalizada por la escala del objeto y ponderada 

por un factor de visibilidad anatómica. Su expresión matemática se puede ver en la Ecuación 3. 

 

 
 

Ecuación 3. Cálculo de OKS de COCO (39) 
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El OKS toma valores en el rango [0,1], donde 1 indica una coincidencia perfecta entre 

la predicción y la anotación. A diferencia del IoU, el OKS es robusto a errores de localización 

relativa gracias a la normalización por escala y sensibilidad. Es la métrica oficial para los 

benchmarks de COCO Keypoints y se utiliza para calcular métricas como: 

 

- mAP (media de AP en múltiplos de OKS de 0.50 a 0.95). 

 

- AP@OKS=0.75 (estricto). 

 

- AP@OKS=0.50 (tolerante). 

 

 

2.7.4. Medidas de precisión de dataset COCO 

 

Para evaluar la precisión de los modelos de estimación de postura humana en el dataset 

COCO se utilizan las métricas definidas por el COCO Keypoint Evaluation API, que siguen los 

criterios de detección de objetos adaptados al contexto de keypoints. Las métricas principales 

son: 

 

- AP. Average Precision (precisión promedio). Es una métrica integral que 

cuantifica el rendimiento de un modelo promediando la precisión a lo largo de 

distintos niveles de exhaustividad (recall) (40). En lugar de evaluar la precisión en 

un único punto, COCO integra el área bajo la curva Precision-Recall, lo que 

proporciona una medida más estable y representativa del comportamiento global del 

sistema (Ecuación 4). 

 

COCO define AP como la media de la precisión calculada para un conjunto discreto 

de niveles de recall, típicamente 101 puntos equidistantes en el intervalo [0,1]. En 

la tarea de detección de objetos y estimación de poses, la API no calcula AP para un 

único umbral de coincidencia, sino que la promedia sobre múltiples umbrales de IoU 

(en detección) u OKS (en pose), con pasos de 0.05, cubriendo desde 0.50 hasta 0.95. 

 

Ecuación 4. Cálculo Average Precision en COCO (40) 

 

- AR. Average Recall (recuperación media). La recuperación media AR evalúa la 

capacidad del modelo para detectar todas las personas y sus keypoints relevantes, es 

decir, cuántos casos relevantes logra capturar correctamente, sin importar tanto la 

confianza del score. En contextos de estimación de postura, es importante para medir 
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si un modelo no deja sin detectar personas o keypoints, especialmente en escenas 

complejas o con múltiples sujetos. Una AR elevado indica que el modelo es capaz 

de recuperar la mayoría de las poses humanas relevantes, aunque algunas 

estimaciones no sean perfectas en todos los puntos.  

 

 

2.8. Utilización en dispositivos móviles y consideraciones técnicas 

 

La integración de modelos de estimación de posturas humanas en dispositivos móviles 

constituye un área de investigación y desarrollo de creciente relevancia debido a la necesidad 

de soluciones portables, en tiempo real y con bajo consumo de recursos computacionales. Estos 

modelos permiten identificar y localizar puntos clave en el cuerpo humano directamente desde 

la cámara del dispositivo, habilitando aplicaciones en ámbitos como la salud digital, el deporte, 

la rehabilitación, la interacción hombre-máquina, el entretenimiento y la realidad aumentada. 

 

 

2.8.1. Hardware 

 

La ejecución de modelos de estimación de posturas en dispositivos móviles puede 

abordarse desde diferentes estrategias teóricas, las cuales dependen de la disponibilidad de 

recursos de hardware, del ecosistema de software del dispositivo y de los requisitos de precisión 

y latencia de la aplicación. Estas estrategias pueden implementarse mediante frameworks 

optimizados para entornos móviles como TensorFlow Lite, PyTorch Mobile, CoreML, NNAPI 

(Android Neural Networks API) o OpenVINO para dispositivos edge, que proporcionan las 

abstracciones necesarias para ejecutar el mismo modelo en diferentes backends (CPU, GPU, 

NPU). La selección del método depende de los criterios de diseño del sistema, el tipo de 

aplicación y las limitaciones impuestas por el hardware del dispositivo. De manera general, se 

pueden distinguir cuatro enfoques principales. 

 

 

Ejecución directa en CPU 

 

Los modelos pueden ejecutarse en la unidad central de procesamiento (CPU) del 

dispositivo, sin requerir hardware especializado. Este enfoque maximiza la portabilidad y 

compatibilidad, ya que prácticamente todos los dispositivos móviles disponen de CPU. Sin 

embargo, su principal limitación radica en la baja velocidad de inferencia en comparación con 

otros métodos, lo que restringe su uso a modelos altamente optimizados o aplicaciones con 

requisitos de latencia poco estrictos. 

 

 

Aceleración mediante GPU móvil 

 

La unidad de procesamiento gráfico (GPU) integrada en los dispositivos móviles puede 

aprovecharse para la ejecución de estos modelos, especialmente aquellos basados en 

operaciones de convolución intensiva. Frameworks como TensorFlow Lite GPU Delegate o 

Metal Performance Shaders (en iOS) permiten explotar el paralelismo masivo de la GPU, 

incrementando la velocidad de inferencia de manera significativa.  

 

En la práctica, este enfoque es posible gracias a las GPUs integradas en los SoCs 

modernos que equipan a la mayoría de teléfonos y tablets actuales. Entre ellas se incluyen 
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arquitecturas Mali (ARM), Adreno (Qualcomm), PowerVR (Imagination Technologies) y las 

GPUs diseñadas por Apple, todas con soporte para APIs gráficas como OpenGL ES 3.x, Vulkan 

o Metal, según la plataforma. Estas capacidades permiten ejecutar cargas de trabajo de 

inferencia en paralelo, aunque con diferencias en rendimiento y eficiencia energética según la 

generación y el nivel del hardware. No obstante, el consumo energético y la variabilidad de 

soporte entre diferentes dispositivos constituyen limitaciones importantes. 

 

 

Uso de aceleradores especializados (NPUs, DSPs, TPUs móviles) 

 

Una tendencia creciente en la computación móvil es la incorporación de unidades de 

procesamiento neuronal (NPUs) o Digital Signal Processors (DSPs) especializados en la 

ejecución de cargas de trabajo de inteligencia artificial. Fabricantes como Qualcomm (Hexagon 

DSP), Huawei (Ascend NPU) o Google (Edge TPU en dispositivos Pixel) integran este tipo de 

hardware. El uso de estas unidades permite una ejecución altamente eficiente en términos 

energéticos, con latencias muy bajas y optimización para inferencia en tiempo real, lo que los 

convierte en la opción más adecuada para aplicaciones de estimación de posturas en entornos 

móviles. 

 

 

Ejecución híbrida con soporte en la nube 

 

Una alternativa teórica consiste en combinar la inferencia en el dispositivo con el 

procesamiento en la nube. En este escenario, el dispositivo móvil ejecuta una primera etapa de 

procesamiento (ej. detección de personas en la escena) y delega la parte más costosa del modelo 

a servidores remotos. Esto reduce los requisitos de hardware en el móvil y posibilita el uso de 

modelos de gran escala, aunque introduce problemas de latencia, dependencia de conectividad 

y privacidad de los datos. 

 

 

2.8.2. Android 

 

La ejecución de modelos de estimación de posturas humanas en dispositivos móviles 

depende en gran medida del framework de inferencia utilizado (TensorFlow Lite, PyTorch 

Mobile, entre otros), así como del soporte de hardware (CPU, GPU, NPU/TPU) disponible en 

el dispositivo. No obstante es posible establecer un rango de requisitos mínimos en cuanto a 

versiones de Android que aseguren la compatibilidad. 

 

- TensorFlow Lite (TFLite) requiere como mínimo Android 4.1 (API 16, Jelly Bean), 

ya que está implementado sobre el Android NDK y puede ejecutarse en arquitecturas 

ARMv7 y superiores. Sin embargo, a partir de Android 8.0 (API 26, Oreo) se 

introdujeron mejoras en la API de aceleración de hardware (NNAPI, Neural 

Networks API), lo que permite una ejecución mucho más eficiente en procesadores 

modernos. 

 

- PyTorch Mobile requiere Android 5.0 (API 21, Lollipop) como versión mínima para 

la ejecución básica en CPU. Sin embargo, el soporte para aceleración mediante GPU 

(Vulkan, OpenGL) y optimizaciones recientes está pensado para dispositivos con 

Android 8.1 (API 27) o superior. 
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- ONNX Runtime Mobile en su configuración estándar admite dispositivos con 

Android 5.0 (API 21) en adelante, aunque al igual que PyTorch y TensorFlow Lite, 

el rendimiento real depende del acceso a bibliotecas de cómputo optimizado como 

NNAPI o Core ML (en iOS). 

 

 

Por tanto aunque la ejecución básica de estos frameworks es posible en Android 5.0 

(API 21) en adelante, se considera que la versión mínima recomendada para la ejecución de 

modelos de estimación de posturas humanas en condiciones prácticas y eficientes es Android 

8.0 (API 26). A partir de esta versión, los dispositivos incluyen soporte maduro para NNAPI, 

drivers más optimizados para GPU y librerías de aceleración de hardware que resultan 

esenciales en modelos de visión por computadora de alta carga computacional, como los de 

estimación de posturas. 

 

Según el análisis de Wikipedia de datos de Statcounter Global Stats19 la cuota de 

mercado de las versiones de Android más utilizadas hasta abril del 2025 son: 

 

1. Android 14.0 - 33.44 % 

2. Android 13.0 - 16.94 % 

3. Android 12.0 - 12.11 % 

4. Android 11.0 - 10.41 % 

5. Android 15.0 - 10.06 % 

6. Android 10.0 - 5.57 % 

7. Android 9.0 Pie - 3.18 % 

8. Android 8.0 Oreo - 2.18 % 

9. Android 5.0 Lollipop - 1.74 % 

10. Otros - 4.37 % 

 

 Por lo que sumando los porcentajes se estima que a hasta abril de 2025 un 93,89% de 

los dispositivos Android en el mercado tienen una versión igual o superior a la 8.0 y podrían 

ejecutar este estudio. 

  

                                                 

 
19 https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide 
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3. METODOLOGÍA 
 

 

El objetivo general de este apartado es definir una metodología que permita seleccionar 

un conjunto de modelos y un dataset de testeo para evaluar y comparar su precisión y 

rendimiento computacional en la detección de posturas humanas utilizando varios dispositivos 

móviles, proporcionando criterios objetivos para la selección de los modelos adecuados para el 

estudio. 

 

En este contexto se ha elegido Android como plataforma base para la implementación 

y validación por criterios tanto técnicos como de aplicabilidad práctica, Android constituye el 

sistema operativo móvil más ampliamente utilizado a nivel global, con una cuota de mercado 

superior al 70 %, lo que garantiza la relevancia y transferibilidad de los resultados a un gran 

espectro de dispositivos y escenarios de uso. 

 

Por otro lado entre los diversos frameworks disponibles, TensorFlow Lite se presenta 

como una opción preferente para implementaciones en dispositivos Android, por varias razones, 

primero porque mantiene la compatibilidad con modelos previamente entrenados en 

TensorFlow permitiendo la conversión a un formato optimizado para móviles sin perder la 

arquitectura ni la precisión del modelo original, y también porque la infraestructura de 

TensorFlow Lite incluye soporte nativo para Android mediante APIs estables y documentadas, 

lo que simplifica la integración de modelos de visión por computadora en aplicaciones móviles. 

Esto reduce la complejidad del desarrollo y permite focalizar los recursos en el diseño 

experimental y la evaluación de métricas 

 

 

3.1. Selección de modelos 

 

 Como hemos visto en el apartado “2.5. Modelos de estimación de posturas” se dispone 

de un amplio espectro de familias de modelos desarrolladas por la comunidad académica e 

industrial, muchas de las cuales presentan similitudes estructurales (por ejemplo, en la 

arquitectura de red empleada, el número y disposición de keypoints que predicen o la naturaleza 

del backbone de extracción de características), mientras que otras difieren sustancialmente en 

su enfoque metodológico, el tipo de inferencia (top-down, bottom-up, híbrido), o el formato de 

salida. 

 

Un aspecto común a la mayoría de estas familias es la existencia de múltiples versiones 

derivadas del modelo base, diseñadas para satisfacer diferentes compromisos entre precisión, 

latencia y uso de recursos. Dichas variantes suelen generarse mediante técnicas de optimización 

y compresión de modelos, como la cuantización (descrita en el apartado “2.3.2. Cuantización 

de modelos”), 

 

 Debido a la gran cantidad de modelos existentes, las diferencias entre ellos y a las 

versiones o familias derivadas de cada uno resultaría inviable incluirlos todos en un mismo 

estudio por lo que para este estudio comparativo se pretende seleccionar únicamente 2 o 3 

modelos principales e incluir todas las familias o variantes de los mismos que sean posibles 

para poder analizar cómo se comportan los diferentes modelos seleccionados no solo en 

comparación de otros modelos sino también en comparación con otras versiones de su propia 

familia, lo que puede constituir un estudio bastante extenso. 
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3.1.1. Criterios de selección y modelos seleccionados 

 

En este apartado trataremos de justificar los criterios en base a los cuales 

seleccionaremos los modelos para el estudio. Se valoraran diferentes aspectos que 

consideramos fundamentales: 

 

- Disponibilidad y accesibilidad como modelo preentrenado. Este factor resulta 

determinante para garantizar la reproducibilidad del estudio y la viabilidad técnica 

de su implementación en la plataforma objetivo. Deberá existir un modelo accesible 

para su descarga y posterior integración en la plataforma de estudio, en cualquier 

formato que pueda ser integrado en un framework para dispositivos móviles con 

sistema operativo Android. 

 

- Estimación de posturas humanas, single-person, 2D y keypoints consistentes y 

comunes20. Otro criterio clave en la selección de modelos será la capacidad del 

modelo para predecir una única persona en dos dimensiones y con un conjunto de 

keypoints consistente y común entre las diferentes arquitecturas evaluadas. Este 

aspecto es fundamental para garantizar la comparabilidad directa de los resultados, 

ya que la precisión y las métricas de evaluación solo son válidas si se calculan sobre 

puntos anatómicos equivalentes en todas las predicciones. 

 

- Madurez/obsolescencia del modelo. La madurez temporal de un modelo constituye 

un indicador clave para valorar su estabilidad tecnológica, grado de adopción y nivel 

de validación por parte de la comunidad científica e industrial. En el presente 

estudio, se establece como criterio que los modelos seleccionados tengan al menos 

un año de disponibilidad pública y no superen los cinco años desde su 

lanzamiento oficial. El requisito de un mínimo de un año responde a la necesidad 

de garantizar que el modelo ha pasado por un ciclo razonable de uso, validación y 

retroalimentación por parte de desarrolladores e investigadores y el límite de cinco 

años desde su lanzamiento busca evitar la selección de modelos que, si bien pudieron 

ser punteros en su momento, pueden estar tecnológicamente superados por nuevas 

arquitecturas o por versiones más eficientes y precisas. 

 

- Tamaño del modelo. Cuando el despliegue se orienta a dispositivos con recursos 

limitados como teléfonos móviles, tabletas o sistemas embebidos (edge devices) el 

tamaño del modelo tiene que ser adecuado a este entorno. En este estudio, se 

establece un umbral recomendado de aproximadamente 50 MB para el fichero 

de pesos del modelo dejando fuera del estudio modelos que aunque presuponen 

mejor precisión podrían no ser adecuados para dispositivos con pocos recursos por 

su gran tamaño (tamaño de almacenamiento de la APP en la que se integrara, tamaño 

en memoria RAM, etc.,).  

 

- Facilidad de integración (existencia de APIs, documentación, demos). Si bien este 

último punto no es determinante es un criterio a tener en cuenta en la selección, ya 

que determina el esfuerzo técnico y los recursos necesarios para integrar el modelo 

en un entorno funcional. 

 

                                                 

 
20 Recordemos que el objetivo del estudio descrito en el Abstract es la recomendación de modelos para una 

futura APP de tele rehabilitación, lo que reduce el ámbito del estudio a estimación single-person y 2D. 
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Los resultados obtenidos tras aplicar los criterios establecidos en esta investigación 

indican que, en una primera instancia, los modelos que se perfilan como más adecuados para 

ser incluidos en el estudio comparativo como se puede ver en la Tabla 11 son MoveNet, 

BlazePose y YOLO-Pose. Estos tres modelos representan una muestra representativa y 

diversificada de arquitecturas contemporáneas y robustas, específicamente diseñadas o 

adaptadas para la estimación de posturas humanas en entornos móviles. 

 

 

Modelo Seleccionable 

según criterios 

Razones 

OpenPose No - Año 2017 

- Tamaño < 100MB 

- Número de keypoints no estandarizado (18-135)  

AlphaPose No - Año 2018 

- Tamaño < 92MB 

PoseNet No - Año 2018 

- Superado por MoveNet21 

DensePose No - Año 2018 

- No enfocado en keypoints 2d estándar 

HRNet No - Año 2019 

- Tamaño < 112MB 

EfficientPose No - Facilidad de integración (dificultad para 

encontrar documentación técnica) 

MoveNet Sí - Año2020 

- Disponibilidad y accesibilidad 

- Estimación single-person, 2D y 17 keypoints 

- Tamaño 3-25 MB 

BlazePose Sí - Año2021 

- Disponibilidad y accesibilidad 

- Estimación single-person, 2D y 33 keypoints (17 

comunes) 

- Tamaño 3-26 MB 

PoseWarper No - Disponibilidad y accesibilidad (dificultad para 

encontrar modelo preentrenado) 

- Facilidad de integración (dificultad para 

encontrar documentación técnica) 

YOLO-Pose Sí - Año2021-2024 (según versión) 

- Disponibilidad y accesibilidad 

- Estimación single-person, 2D y 17 keypoints 

- Tamaño 5-50 MB 

RTMPose No - Disponibilidad y accesibilidad 

- Facilidad de integración (dificultad para 

encontrar documentación técnica) 

- Basado en arquitectura YOLO 

 
Tabla 11. Resumen aplicación criterios selección de modelos 

                                                 

 
21 Ambos modelos desarrollados por Google (aunque por diferentes equipos) 
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Los tres modelos seleccionados (MoveNet, BlazePose y YOLO-Pose) son 

representativos y están consolidados para la estimación de posturas humanas. Cada uno ofrece 

un enfoque arquitectónico distinto y características técnicas que permiten abordar la tarea con 

diferentes balances entre precisión, velocidad y eficiencia computacional. 

 

 

3.1.2. MoveNet (Google) 

 

MoveNet se basa en una arquitectura ligera y eficiente de red neuronal convolucional 

propia diseñada para inferencias rápidas en dispositivos con recursos limitados. Su diseño 

utiliza convoluciones profundas optimizadas para mantener un alto rendimiento en tiempo real. 

MoveNet prioriza un procesamiento rápido y un tamaño reducido del modelo, lo que lo hace 

ideal para aplicaciones móviles y en tiempo real. 

 

Está orientado a la detección de 17 puntos clave estándar del cuerpo humano siguiendo 

la convención del dataset COCO (nariz, ojos, orejas, hombros, codos, muñecas, caderas, 

rodillas y tobillos), donde cada keypoint estimado incluye: 

 

- Coordenadas (x, y) normalizadas al tamaño de entrada. 

 

- Score de confianza asociado. 

 

 

Como ya vimos en la descripción previa en el apartado “2.5.7. MoveNet” cuenta con 

dos variantes principales cada una de ellas a su vez con varias versiones cuantizadas: 

 

 

MoveNet Lightning 

 

- Tamaño de la imagen de entrada: 192×192 píxeles. 

 

- Optimizado para latencia mínima y procesamiento en tiempo real en dispositivos 

móviles. 

 

- Arquitectura reducida y más agresivamente cuantizada. 

 

- Menor precisión que Thunder, pero tiempos de inferencia muy bajos. 

 

 

MoveNet Thunder 

 

- Tamaño de la imagen de entrada: 256×256 píxeles. 

 

- Optimizado para máxima precisión manteniendo latencia aceptable. 

 

- Arquitectura más profunda con mayor capacidad de extracción de características. 

 

- Mayor tamaño de entrada y mayor coste computacional. 
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Tanto la variante Lightning como la variante Thunder tienen 3 versiones, la estándar con 

representación en 32 bits, una versión reducida mediante cuantización a 16 bits y otra aún más 

reducida de 8 bits. Con el objetivo no solo de comparar precisiones y rendimientos de  modelos 

entre si sino de poder observar los efectos de técnicas como la cuantización sobre los mismos 

modelos en este estudio se incluirán todas las versiones de ambas variantes de la familia 

MoveNet, con un total de 6 modelos: MoveNet Lightning 8, 16 y 32 y MoveNet Thunder 8, 16 

y 32. 

 

 

3.1.3. BlazePose (Google MediaPipe) 

 

BlazePose, desarrollado por Google MediaPipe, emplea una arquitectura de red 

convolucional compacta (MobileNetV2). A diferencia de otros modelos, BlazePose estima un 

conjunto más amplio de 33 keypoints, (incluyendo articulaciones detalladas y puntos faciales) 

pero a su vez manteniendo la compatibilidad con los puntos más estandarizados para la 

estimación de posturas humanas (17 de los 33 son comunes) coincidiendo con el resto de 

modelos seleccionados. Esta capacidad lo hace especialmente adecuado para aplicaciones de 

fitness, realidad aumentada y entornos donde se requiera un seguimiento detallado y preciso. 

  

 Aunque los modelos de la familia BlazePose trabajan con salidas de 33 keypoints 

estimados mantienen una compatibilidad con los 17 puntos estándar que suelen estimar la 

mayoría de los modelos al coincidir 17 de los 33 puntos estimados por BlazePose con estos 17 

puntos como vemos en la Tabla 12. BlazePose hace una estimación de keypoints extendida 

(estima más puntos) pero compatible con el resto de modelos a nivel de estudio comparativo. 

 

 

Nº keypoint estándar Nº keypoint BlazePose Descripción anatómica 

0 0 Nariz 

1 2 Ojo izquierdo 

2 5 Ojo derecho 

3 7 Oreja izquierda 

4 8 Oreja derecha 

5 11 Hombro izquierdo 

6 12 Hombro derecho 

7 13 Codo izquierdo 

8 14 Codo derecho 

9 15 Muñeca izquierda 

10 16 Muñeca derecha 

11 23 Cadera izquierda 

12 24 Cadera derecha 

13 25 Rodilla izquierda 

14 26 Rodilla derecha 

15 27 Tobillo izquierdo 

16 28 Tobillo derecho 

 
Tabla 12. Equivalencia puntos BlazePose 
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BlazePose presenta tres versiones con distinto grado de cuantización: Lite, Full y Heavy 

todas ellas con el mismo tamaño de la imagen de entrada (256×256 píxeles). En este estudio 

se incluirán las tres versiones de familia BlazePose. 
 

 

3.1.4. YOLOv8-Pose (Ultralytics) 

 

Ultralytics es la compañía que desarrolla y mantiene el ecosistema de software del 

mismo nombre especializado en visión por computadora y aprendizaje profundo, ampliamente 

reconocida por ser la responsable del desarrollo y mantenimiento de los modelos YOLO (You 

Only Look Once). 

 

YOLO-Pose adapta la reconocida arquitectura de detección rápida YOLO para la 

estimación de poses, integrando prediction heads especializadas para la regresión de keypoints 

después de la detección de personas. Esta aproximación de una sola etapa permite realizar 

detecciones y estimaciones simultáneas, logrando un equilibrio eficiente entre rapidez y 

precisión. YOLO-Pose destaca por su capacidad para manejar múltiples personas en imágenes 

con alta velocidad, manteniendo una precisión competitiva, ideal para entornos móviles y 

aplicaciones en tiempo real. 

 

Como hemos visto en el apartado “2.5.10. YOLO-Pose” este modelo ha ido 

evolucionando en el tiempo con la aparición de diferentes versiones, habiendo para la 

estimación de posturas humanas varias versiones disponibles: YOLOv5-Pose, YOLOv7-Pose, 

YOLOv8-Pose y YOLOv11-Pose. Atendiendo a los criterios fijados para la selección de 

modelos y tratándose la última versión (YOLOv11-Pose) de una versión relativamente reciente 

(menos de un año) durante el desarrollo de este estudio, se opta por incorporar la versión 

YOLOv8-Pose en lugar de la última para intentar realizar la comparativa con los otros modelos 

con versiones similares en el tiempo. 

 

El modelo YOLOv8-Pose al igual que los anteriores tiene diferentes versiones 

publicadas, siendo algunas de ellas susceptibles de ser aptas para su utilización en dispositivos 

edge (apartado “2.5.10. YOLO-Pose”) según los criterios de tamaño de selección de modelos 

que hemos definido: 

 

- YOLOv8n-Pose. Versión “nano”. 

 

- YOLOv8s-Pose. Versión “small”. 

 

- YOLOv8m-Pose. Versión “medium”. 

 

 

En el estudio se incluirán estas tres versiones que cumplen los criterios de selección 

mientras que no se consideran adecuadas las versiones YOLOv8l-Pose (“large”) y YOLOv8x-

Pose (“extra large”) por exceder su tamaño el criterio que hemos establecido como máximo 

para su utilización en dispositivos móviles. 

 

 Como vimos anteriormente (Tabla 7, “Resumen características modelos preentrenados”) 

los modelos YOLO se encuentran en un formato PyTorch (.pt) ya que es el formato nativo de 
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entrenamiento e inferencia usado por Ultralytics para sus modelos por lo que es seguro que para 

homogeneizar todos los modelos que vamos a incluir en el estudio con un mismo formato haya 

que realizar una conversión de formatos durante el proceso de implementación. 

 

 

 

Nombre del modelo Puntos clave 

estimados 

Formato Tamaño (KBytes) 

MoveNet Lightining 8 17 TFLite 2.895 

MoveNet Lightining 16 17 TFLite 4.759 

MoveNet Lightining 32 17 TFLite 9.373 

MoveNet Thunder 8 17 TFLite 7.127 

MoveNet Thunder 16 17 TFLite 12.584 

MoveNet Thunder 32 17 TFLite 25.026 

BlazePose Lite 33 MediaPipe / TFLite 2.818 

BlazePose Full 33 MediaPipe / TFLite 6.441 

BlazePose Heavy 33 MediaPipe / TFLite 27.709 

Yolo8-pose Nano 17 ONNX / TFLite 6.771 

Yolo8-pose Small 17 ONNX / TFLite 23.422 

Yolo8-pose Medium 17 ONNX / TFLite 50.120 

 
Tabla 13. Resumen de características modelos incluidos en el estudio 

 

 

3.2. Selección de dataset de testeo 

 

La elección del dataset de testeo es un paso fundamental en la evaluación rigurosa y 

objetiva de modelos de estimación de posturas humanas. Un dataset representativo y bien 

anotado permite no solo medir con precisión la capacidad del modelo para detectar y localizar 

puntos clave del cuerpo, sino también evaluar su robustez frente a variaciones en pose, 

iluminación, entorno y sujetos. La calidad y diversidad de las anotaciones, junto con un 

protocolo de evaluación estandarizado, facilitan la comparación directa entre diferentes 

arquitecturas y versiones de modelos. Además, la accesibilidad y documentación del dataset 

son cruciales para reproducibilidad y validación externa. Por último la compatibilidad con los 

modelos seleccionados previamente tiene una importancia casi definitiva a la hora de escoger 

un dataset sobre los que vimos en el apartado “2.6. Datasets de estimación de posturas”. 

 

 

3.2.1. Criterios de selección 

 

En este apartado trataremos de justificar los criterios en base a los cuales 

seleccionaremos al dataset que utilizaremos para el estudio de los modelos. Se valoraran 

diferentes aspectos que consideramos fundamentales, si bien como hemos ido viendo durante 

el análisis del marco teórico y estado del arte en el apartado 2 y durante la selección de los 

modelos a estudiar, estos criterios van a tener una menor influencia en la detección del datset 

en tanto en cuanto la mayoría de modelos observados (incluidos los seleccionados en el punto 

anterior para el estudio) no solo adoptan el estándar de keypoints del dataset COCO sino que 

además están entrenados o mejorados en cierta manera con datos de este dataset y como vimos 

en “Tabla 8. Resumen arquitecturas modelos preentrenados” están diseñados para una 
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estimación de 17 keypoints coincidentes con el número de anotaciones por persona existente 

en el dataset COCO. Aun así definiremos los siguientes criterios de selección: 

 

- Cobertura y diversidad de poses. El dataset debe incluir una amplia variedad de 

posturas, movimientos y actividades para reflejar escenarios reales. Esto asegura que 

el modelo evaluado sea robusto a diferentes posiciones y articulaciones.  

 

- Cantidad y calidad de anotaciones (keypoints). Número de keypoints anotados 

por persona, compatibilidad con los modelos seleccionados para facilitar 

comparativas. Precisión y consistencia en las anotaciones (manuales o automáticas) 

que minimicen ruido y errores. 

 

- Diversidad de sujetos y variedad en condiciones de captura. Incluir diferentes 

edades, géneros, tipos corporales y condiciones para evitar sesgos y asegurar 

generalización. Inclusión de diversos fondos, iluminación, ángulos de cámara, y 

resolución de imagen. Entornos controlados y no controlados (interiores y 

exteriores). 

 

- Disponibilidad y accesibilidad. Dataset público, con documentación clara, 

formatos estándar y licencia compatible con investigación y desarrollo. 

 

 

 

Criterio COCO MPII 

Cobertura y diversidad de 

poses 

Alta diversidad con 

escenas cotidianas y 

actividades variadas; 

incluye poses complejas y 

contextos con múltiples 

personas. 

Enfocado principalmente 

en actividades humanas 

diarias, especialmente 

deportes, con buena 

variedad pero menos 

contexto complejo. 

Cantidad y calidad de 

anotaciones (keypoints) 

17 keypoints bien 

definidos; anotaciones 

extensas y precisas, con 

estándares para métricas 

como OKS. 

16 keypoints con 

anotaciones detalladas en 

articulaciones principales; 

calidad alta pero menos 

cantidad total. 

Diversidad de sujetos y 

condiciones de captura 

Gran variedad de sujetos, 

etnias y entornos; 

imágenes tomadas en 

condiciones muy variadas 

(interior, exterior, 

iluminación, fondo). 

Menor diversidad en 

sujetos y escenarios; 

principalmente imágenes 

enfocadas en personas 

individuales y deportes, 

con condiciones más 

controladas. 

Disponibilidad y 

accesibilidad 

Publicado ampliamente 

con fácil acceso, 

documentación completa 

y soporte para evaluación 

automatizada; estándar de 

facto en la comunidad. 

También público y 

accesible, con 

documentación clara, pero 

menos extendido como 

benchmark comparativo 

global. 

 
Tabla 14. Resultados criterios selección de dataset 
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La Tabla 14 sintetiza las principales razones que hacen de COCO un dataset preferido 

para evaluación general, mientras que MPII puede ser más específico para ciertos dominios 

como análisis de movimientos deportivos. Por tanto el resultado de la selección de dataset de 

testeo indica como mejor opción utilizar el dataset COCO para el estudio. 

 

Para llevar a cabo una mejor evaluación de los modelos, se seleccionan además dentro 

del dataset de testeo dos subconjuntos específicos de imágenes. Esta segmentación busca 

analizar el desempeño del modelo bajo condiciones variadas y realistas, diferenciando entre 

situaciones óptimas de inferencia y situaciones desafiantes. 

 

 

3.3. Selección de imágenes de testeo 

 

Debido a la naturaleza heterogénea de COCO, se establecerá un proceso de filtrado 

sistemático con el fin de generar un subconjunto controlado de imágenes específicamente 

diseñado para pruebas comparativas bajo condiciones constantes. Dicho filtrado se realizará a 

partir de dos criterios principales: 

 

- Una única persona visible en la imagen. Este criterio responde al objetivo inicial 

del proyecto (estudio de modelos para la realización de una aplicación de tele-

rehabilitación) el cual iría dirigido a la utilización por parte de un único usuario. Este 

criterio además elimina la complejidad derivada de la presencia de múltiples 

individuos en el mismo cuadro, lo que puede introducir ambigüedad en la asignación 

de keypoints y en la interpretación de los resultados. Al garantizar un único sujeto, 

se reduce la variabilidad no deseada y se asegura que los errores de inferencia estén 

asociados únicamente al modelo, y no a interferencias en la segmentación de 

múltiples instancias. 

 

- Al menos 15 de los 17 keypoints correctamente anotados. Al igual que con el 

anterior criterio, en el marco del proyecto es razonable asumir que el sujeto que está 

realizando los ejercicios de tele-rehabilitación tendrá una visibilidad máxima dentro 

de la aplicación, por lo que, incluyendo una pequeña tolerancia, estableceremos que 

de los 17 keypoints anotados al menos 15 estén presentes en las imágenes de 

pruebas. Este requisito asegura la calidad de las anotaciones de referencia (ground 

truth) y permite contar con una representación anatómica casi completa de la 

persona en la imagen. La disponibilidad de la mayoría de los puntos clave evita que 

la evaluación se vea afectada por anotaciones incompletas, incrementando la 

confiabilidad de las métricas de desempeño. 

 

 

La aplicación de estos criterios generará un subconjunto controlado de imágenes, con 

condiciones homogéneas de anotación y representación corporal, que constituirá la base 

experimental para la comparación de los diferentes modelos. Este enfoque metodológico 

permite minimizar fuentes externas de variabilidad, garantizando que las diferencias observadas 

en las métricas de precisión puedan atribuirse de manera directa a las capacidades de los 

modelos, y no a inconsistencias del dataset de testeo. 
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3.3.1. Subconjuntos del dataset de testeo 

 

La elección de los dos subconjuntos diferenciados dentro del dataset general de testeo 

se fundamenta en la necesidad de evaluar de manera completa y representativa la precisión de 

los modelos ya que cada subconjunto cumple una función específica que contribuye a la 

caracterización del rendimiento del modelo bajo distintas condiciones de captura y que nos 

permitirá comparar los resultados obtenidos en cuanto a precisión se refiere de cada uno de los 

modelos en condiciones muy diferentes. 

 

 

Imágenes con características adecuadas para la estimación de posturas 

 

El primer subconjunto agrupa imágenes clasificadas como adecuadas para la estimación 

de posturas humanas y estaría compuesto por instancias seleccionadas para representar 

condiciones óptimas de captura visual. Cada imagen contiene una única persona situada de 

manera centrada en el encuadre, con una proximidad suficiente a la cámara que permite la 

observación clara de las articulaciones principales, incluyendo hombros, codos, muñecas, 

caderas, rodillas y tobillos. Además el tamaño relativo de la persona respecto al tamaño de la 

imagen asegura que las proporciones de las articulaciones se representen consistentemente, 

reduciendo la variabilidad introducida por escalas extremas Esta disposición garantiza que los 

modelos puedan realizar inferencias precisas sobre la geometría corporal y la posición de cada 

articulación. 

 

Este subconjunto cumple un rol fundamental en la evaluación de modelos ya que 

permite medir una precisión “máxima” alcanzable en condiciones controladas, sirviendo como 

referencia para comparar el rendimiento del modelo frente a escenarios más complejos o 

adversos. Al centrarse en imágenes donde la persona es claramente observable y la postura es 

discernible, se garantiza que los errores de estimación se deban principalmente a las 

limitaciones del modelo y no a deficiencias en la calidad de los datos de entrada. 

 

Imágenes con características inadecuadas para la estimación de posturas 

 

El subconjunto de imágenes clasificadas como no adecuadas para la estimación de 

posturas humanas incluiría instancias que representan condiciones adversas o desafiantes para 

la inferencia de posturas. Estas imágenes contienen personas que se encuentran descentradas o 

lejanas a la cámara, lo que dificulta la observación clara de hombros, codos, muñecas, caderas, 

rodillas y tobillos. La disposición de la persona en el encuadre, así como la variabilidad en el 

tamaño relativo y la orientación, introduce complejidades que simulan escenarios del mundo 

real donde la calidad de la captura puede ser subóptima. 

 

El análisis de este subconjunto proporcionará información valiosa sobre las limitaciones 

del modelo, identificando casos en los que la precisión se ve comprometida debido a factores 

externos a la arquitectura del algoritmo. De esta manera, se logra una evaluación más completa 

y realista del desempeño del modelo, complementando los resultados obtenidos con el 

subconjunto de imágenes adecuadas y permitiendo derivar conclusiones sobre su aplicabilidad 

en entornos no controlados. 
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3.4. Métricas de validación y evaluación 

 

La evaluación de modelos de estimación de posturas humanas requiere la adopción de 

métricas que permitan cuantificar tanto la calidad de las predicciones como la eficiencia en su 

ejecución. En este contexto, las dos dimensiones fundamentales consideradas son precisión y 

rendimiento, las cuales ofrecen una visión complementaria del desempeño del modelo en 

condiciones prácticas. 

 

Ambas métricas deben analizarse de manera conjunta, ya que un modelo 

extremadamente preciso puede resultar inviable si su latencia es demasiado alta, mientras que 

un modelo muy rápido pero con baja precisión carece de utilidad práctica. La evaluación 

equilibrada de precisión y rendimiento permite establecer compromisos óptimos, adaptados a 

los requerimientos específicos de la aplicación. 

 

 

3.4.1. Precisión 

 

La precisión se refiere al grado de correspondencia entre los puntos clave (keypoints) 

predichos por el modelo y las anotaciones de referencia (ground truth). En estudios de posturas 

como ya hemos visto en el apartado “2.7. Métricas de precisión”, esta métrica suele calcularse 

mediante indicadores como OKS (Object Keypoint Similarity) o Mean Average Precision 

(mAP), que permiten evaluar qué tan cercanos están los keypoints estimados a sus posiciones 

reales en la imagen. 

 

Una alta precisión implica que el modelo es capaz de identificar correctamente las 

articulaciones incluso en posturas complejas o bajo condiciones variables de iluminación, 

escala y perspectiva. Esta métrica es esencial para determinar la validez técnica del modelo y 

su aplicabilidad en contextos donde la exactitud en la identificación de posturas es crítica, como 

en rehabilitación médica, análisis deportivo o interacción en entornos de realidad aumentada. 

 

 

3.4.2. Rendimiento 

 

El rendimiento se relaciona con la eficiencia computacional del modelo, es decir, con la 

velocidad y los recursos necesarios para realizar inferencias en tiempo real. En entornos móviles 

o embebidos, como dispositivos Android, el rendimiento se mide a través de métricas como la 

latencia de inferencia (tiempo necesario para procesar una imagen), el número de frames por 

segundo (FPS) alcanzado y el consumo de memoria y energía durante la ejecución. En nuestro 

estudio tomaremos los tiempos de ejecución de cada inferencia para cada imagen del dataset de 

testeo. 

 

Un alto rendimiento implica que el modelo es capaz de operar en condiciones de baja 

capacidad de cómputo, lo cual es fundamental para garantizar una experiencia de usuario fluida 

y sostenible en aplicaciones en dispositivos edge. 

 

 

3.5. Herramientas y entorno de desarrollo 

 

El presente estudio se desarrolla utilizando como entorno base el sistema operativo 

Windows 10 versión 10.0. 
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Para la obtención de datos de testeo, conversión de modelos y comprobación de 

resultados se utiliza Jupyter Notebook 6.4.5, un entorno basado en Python que facilita la 

exploración de datasets y el trabajo con los resultados obtenidos a través de la integración de 

bibliotecas científicas y de visión por computadora para la evaluación de precisión de los 

modelos. 

 

La construcción de aplicaciones móviles para la plataforma Android se lleva a cabo 

mediante Android Studio Electric Eel | 2022.1.1 Patch 2 (Build #AI-

221.6008.13.2211.9619390), que proporciona un entorno completo de desarrollo integrado con 

soporte nativo para el lenguaje Kotlin, Java y herramientas de depuración específicas de 

Android. Este IDE permite la integración de modelos mediante TensorFlow Lite, así como la 

generación de ficheros de aplicación (apk) para Android para la realización de pruebas directa 

de inferencia en dispositivos móviles. 

 

Adicionalmente, se incorpora el plugin PlantUML integration (6.0.0-IJ2020.3) para la 

creación de diagramas UML directamente dentro de Android Studio, que facilita la 

documentación de la arquitectura del sistema. 
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4. PLANIFICACIÓN 
 

4.1. Workflow general del proyecto y fases del desarrollo 

 

En este apartado se describe el workflow general adoptado en este estudio, organizado 

en tres fases principales: preparación, desarrollo y evaluación/análisis de resultados. En cada 

fase se utilizan herramientas diferentes para su ejecución, mientras que las fases de obtención 

de datos de testeo y análisis de resultados se realizan utilizando Jupyter Notebook, Excel y 

Word, la fase desarrollo se utiliza Android Studio para implementar la aplicación que ejecuta el 

proyecto (Imagen 14). 

 

 
 

Imagen 14. Workflow general del proyecto 

 

 

4.1.1. Fase 1: preparación del dataset de testeo y obtención de modelos 

 

En esta primera etapa se lleva a cabo la recopilación y configuración de los recursos 

fundamentales para el proyecto: modelos de estimación e imágenes de testeo. El ella se utiliza 

Jupyter Notebook para implementar una serie de scripts en lenguaje Python que permitan 

obtener tanto el dataset de las imágenes que cumplan los requisitos descritos previamente como 

los modelos seleccionados en formato TensorFlow Lite (TFLite). 

 

 

Obtención del dataset de imágenes seleccionado 

 

Se realiza la definición y filtrado del conjunto de datos de referencia (del dataset 

COCO), aplicando los criterios definidos previamente de calidad y representatividad (imágenes 

Jupyter 
notebook 
(Python)

• Obtención de dataset de imagenes seleccionado

• Obtención de modelos en formato TFLite

Android

(Java)
• Obtención fichero ZIP con resultados

Jupyter 
notebook 
(Python)

• Obtención de métricas de resultados

Word/Excel • Análisis de resultados
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con una única persona y keypoints correctamente anotados) con el fin de garantizar un 

subconjunto adecuado para las pruebas comparativas bajo condiciones constantes. La salida es 

un subconjunto de imágenes de testeo (dataset filtrado). 

 

 

Obtención de modelos en formato TFLite.  

 

Incluye la descarga directa (en caso de existir los modelos seleccionados en formato 

TFLite) y la conversión (de los modelos que lo requieran) a formato TFLite, formato 

optimizado para dispositivos móviles. Como resultado obtenemos los modelos en un formato 

homogéneo que constituyen la base para la implementación de la aplicación de pruebas de 

modelos en Android. 

 

 

4.1.2. Fase 2: desarrollo de la aplicación 

 

En esta fase de desarrollo se lleva a cabo la implementación de la aplicación Android, 

utilizando como lenguaje de programación Java, debido a su compatibilidad nativa con el 

ecosistema Android y a la disponibilidad de librerías optimizadas para la gestión de recursos y 

la ejecución de modelos de aprendizaje automático en dispositivos móviles. La aplicación 

integra los modelos previamente seleccionados en formato TFLite, los cuales han sido 

seleccionados por su ligereza y eficiencia en entornos con recursos limitados, como 

smartphones y tablets. 

 

El flujo de trabajo de la aplicación contempla la carga e integración de los modelos 

TFLite, seguidos de la procesamiento de las imágenes de testeo extraídas del dataset de 

validación. Cada imagen es sometida a un proceso de inferencia a través del modelo 

correspondiente, y los resultados son gestionados de forma sistemática. Para garantizar un 

análisis exhaustivo, la aplicación genera dos tipos de ficheros de salida independientes por cada 

modelo: 

 

- Un fichero destinado a almacenar las métricas de precisión, donde se registran los 

valores de exactitud obtenidos en cada predicción de cada imagen, permitiendo así 

evaluar la capacidad del modelo para reconocer correctamente las instancias del 

dataset. 

 

- Un fichero orientado a almacenar las métricas de rendimiento computacional, en el 

que se registra el tiempo de ejecución requerido por cada estimación, con el fin de 

valorar la eficiencia del modelo en dispositivos móviles. 

 

 

Posteriormente, todos los ficheros generados se compilan y organizan en un archivo 

comprimido (ZIP), lo que no solo asegura una gestión más estructurada y compacta de los 

resultados, sino que también facilita su transferencia, almacenamiento y análisis posterior. Esta 

estrategia permite disponer de un repositorio unificado de resultados, optimizando tanto la 

trazabilidad de los resultados como la comparación entre diferentes modelos bajo condiciones 

homogéneas de evaluación. 
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4.1.3. Fase 3: evaluación, análisis de resultados y documentación 

 

La etapa final del proceso se centra en la interpretación y análisis del desempeño de los 

modelos, constituyendo un componente esencial para la validación de la investigación. En este 

punto no solo se recopilan las métricas obtenidas en fases anteriores, sino que además se 

someten a un proceso comparativo lo que permite establecer relaciones entre los diferentes 

modelos bajo condiciones experimentales homogéneas. 

 

La evaluación contempla tanto métricas de precisión como métricas de eficiencia 

computacional (rendimiento del modelo). Este enfoque posibilita una caracterización más 

completa de cada modelo, superando las limitaciones de un análisis basado únicamente en la 

precisión. Para la automatización de este proceso, se desarrollan scripts específicos en Python, 

ejecutados en el entorno Jupyter Notebook que permiten procesar los resultados generados 

por los modelos y calcular métricas de desempeño clave tales como AP (Average Precision). 

Este enfoque garantiza que la comparación se realice bajo condiciones homogéneas y 

reproducibles, eliminando posibles sesgos derivados de procedimientos manuales o 

inconsistentes. 

 

Durante la interpretación se identifican fortalezas y limitaciones de cada modelo. Por 

ejemplo, un modelo puede presentar un alto nivel de exactitud pero requerir un tiempo de 

inferencia excesivo, lo que lo haría menos viable en dispositivos con recursos restringidos. En 

contraste, otro modelo podría mostrar un rendimiento computacional óptimo, aunque con 

ligeras pérdidas en precisión. La comparación permite establecer un balance entre la calidad de 

las predicciones y la eficiencia en la ejecución. Los hallazgos de esta fase constituyen la base 

para la formulación de conclusiones y la propuesta de líneas de investigación futura. 

 

 

Fase Nombre Duración 

estimada 

Objetivo 

FASE 1 Preparación del 

dataset de testeo 

y obtención de 

modelos 

 

2-3 

semanas 

Obtención de un dataset homogéneo de imágenes de 

testeo con el que poder validar los modelos. 

Obtención de los ficheros de los modelos a testear. 

FASE 2 Desarrollo de la 

aplicación  

8-10 

semanas 

Desarrollar una aplicación para Android en la que 

poder integrar los modelos y las imágenes de testeo 

para obtener resultados de precisión de estimación 

de posturas de los modelos así como de rendimiento 

(tiempo que tarda cada modelo en realizar la 

inferencia). 

FASE 3 Evaluación, 

análisis de 

resultados y 

documentación 

3-4 

semanas 

Ejecución en distintos dispositivos, recopilación y 

análisis de los resultados. Generación de 

documentación con la descripción del desarrollo del 

proyecto, documentación técnica asociada, 

realización de gráficos, tablas e ilustraciones para la 

descripción de los resultados obtenidos, discusión 

de posibles aplicaciones y futuras ampliaciones y 

conclusiones. 

 
Tabla 15. Fases generales del proyecto 
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4.2. FASE 1: Preparación del dataset de testeo y obtención de modelos 

 

 

4.2.1. Análisis del dataset COCO 

 

Como ya vimos en el apartado “2.6.1. Dataset COCO (Common Objects in COntext)” 

el dataset COCO se caracteriza por su diseño jerárquico, en el cual las imágenes se encuentran 

vinculadas a metadatos en formato JSON que describen instancias de objetos, anotaciones de 

keypoints, segmentaciones y categorías.  

 

En la primera etapa del proyecto se lleva a cabo un análisis detallado de la estructura 

del dataset COCO con el propósito de comprender la organización de los datos, las categorías 

disponibles, todas las anotaciones asociadas a las imágenes y las herramientas disponibles para 

la evaluación de los modelos. 

 

 

4.2.2. Selección del dataset de imágenes de testeo 

 

Una vez comprendida la estructura del dataset COCO y los recursos asociados, la 

siguiente etapa consiste en el diseño y ejecución de scripts automatizados para la selección de 

imágenes de testeo que utilizaremos en la aplicación Android. Esta fase es clave para la 

preparación del conjunto de datos de prueba, ya que permite garantizar la reproducibilidad del 

proceso, la trazabilidad de las imágenes seleccionadas y la consistencia de los criterios 

aplicados para todos los modelos de forma homogénea. 

 

El propósito de los scripts es seleccionar y posteriormente automatizar la extracción de 

un subconjunto controlado de imágenes del dataset COCO, en concordancia con los criterios 

definidos previamente, inclusión de imágenes con una única persona visible y elección de 

imágenes con al menos 15 de los 17 keypoints anotados visibles, e incluir un fichero auxiliar 

para el registro y control de las imágenes utilizadas y que sirva además para facilitar la ejecución 

dentro la aplicación Android. 

 

Los scripts se desarrollan en Python, haciendo uso de la API oficial de COCO para la 

gestión de anotaciones y metadatos, así como de un conjunto de librerías complementarias 

orientadas al manejo de datos y operaciones científicas como pycocotools, fundamental para la 

interacción estructurada con las anotaciones del dataset. La instalación y verificación de estas 

dependencias constituye un paso previo indispensable para la configuración del entorno de 

trabajo. 

 

La ejecución de estos scripts realiza la descarga física de los archivos de las imágenes a 

disco, los cuales se almacenan en formatos estándar como JPEG o PNG para su posterior 

incorporación en la aplicación Android. Además de la descarga se genera un fichero de texto 

que contiene una lista con los nombres de las imágenes descargadas y que facilita el control de 

estos así como un acceso más eficiente a las imágenes en etapas posteriores, particularmente 

durante la ejecución de la aplicación Android para la evaluación de los modelos. 

 

 

4.2.3. Obtención de modelos para el estudio 

 

Posteriormente se realiza la obtención de los modelos ya preentrenados mediante la 
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descarga directa de los sitios oficiales cuando están disponibles y mediante descarga directa de 

los sitios oficiales y conversión de formato en caso de que sea necesario al formato homogéneo 

para todos los modelos que utilizamos en el estudio (TensorFlow Lite). Los ficheros de los 

modelos preentrenados obtenidos junto con el dataset seleccionado en el punto anterior 

constituyen los elementos principales para este estudio de estimación de posturas humanas. 

 

 

 

Fase Nombre Duración 

estimada 

Objetivo 

Fase 1.1 Análisis del dataset 

COCO. 

0,5 semanas Estudio de la estructura del dataset 

COCO, categorías, número de imágenes 

de personas, anotaciones disponibles y 

API de testeo de resultados. 

 

Fase 1.2 Selección del dataset 

de imágenes de testeo. 

1-2 semanas Realización de un script para descarga 

de las imágenes filtradas válidas para la 

estimación de posturas humanas. 

Ejecución del script de descarga y 

verificación del contenido del dataset, 

ajustes y correcciones del proceso. 

 

Fase 1.3 Obtención de modelos 

para el estudio. 

 

0,5 semanas Descarga y conversión de los ficheros 

de los modelos seleccionados. 

 
Tabla 16. Sub-fases de la fase de preparación del dataset de testeo y obtención de modelos 

 

 

4.3. FASE 2: Desarrollo de la aplicación para Android 

 

 

4.3.1. Análisis, diseño y preparación 

 

Esta subfase constituye el punto de partida del ciclo de desarrollo del proyecto de 

estimación de posturas humanas. En esta etapa se integran diversas actividades fundamentales 

que permiten establecer las bases para la implementación de las fases posteriores: 

 

 

- Análisis de requisitos funcionales y no funcionales de la aplicación.  

 

- Diseño de la arquitectura del código. Separación de componentes para facilitar la 

reutilización y escalabilidad. 

 

- Diseño de la salida. Especificación de estructura para el almacenamiento de 

predicciones y tiempos de inferencia en ficheros estructurados (JSON /CSV) 

integrados en un fichero ZIP de salida, asegurando que contenga métricas de 

predicciones y rendimiento en un formato reproducible. 
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- Diseño de la interfaz de usuario. 

 

- Análisis de las estructuras de entrada y salida de los modelos TFLite. Identificación 

de los tensores de entrada (necesidades de preprocesamiento y normalización de 

imágenes específicas) y salida (vectores de keypoints y scores de confianza). 

 

- Configuración del entorno de trabajo. Instalación y verificación de dependencias 

necesarias (TensorFlow Lite), integración con Android Studio como entorno de 

despliegue. 

 

- Implementación de un sistema de versionado (GIT) para garantizar la seguridad y 

seguimiento del desarrollo. 

 

 

4.3.2. Implementación del núcleo de la aplicación 

 

Esta subfase consiste en la construcción de una aplicación móvil en Java utilizando 

Android Studio, cuyo propósito es ejecutar el pipeline de inferencia en dispositivos Android. 

Se aborda en tres dimensiones principales: 

 

- Implementación de arquitectura de clases Java de la aplicación, clase de control, 

clases para soporte de la inferencia de los modelos seleccionados y clases base para 

la optimización de la arquitectura. Esta implementación gestiona el ciclo de 

inferencia, desde la carga de tensores hasta la recuperación de los vectores de salida 

de keypoints. 

 

- Integración de los modelos con formato TFLite en la aplicación Android. Se utiliza 

la API de TensorFlow Lite Java (integrando TensorFlow Lite Interpreter) para cargar 

y ejecutar los modelos previamente seleccionados. 

 

- Integración de las imágenes del dataset seleccionado dentro de la aplicación para su 

carga desde el almacenamiento interno del dispositivo. Implementación de las 

acciones de preprocesamiento necesarias sobre las imágenes de entrada 

(redimensionamiento, normalización de valores de píxeles y conversión a 

ByteBuffer compatible con TFLite). 

 

 

Como vimos en el apartado “2.8.1. Hardware” existe una gran heterogeneidad en cuanto 

a hardware disponible para la ejecución de aplicaciones dentro del ecosistema Android en cada 

dispositivo (CPU, GPU, NPU,…). Dicha variabilidad puede generar diferencias significativas 

en el rendimiento y la precisión de los modelos, dificultando la comparación entre dispositivos 

por lo que con el fin de realizar una implementación lo más homogénea posible y que pueda 

ser ejecutada en el mayor número de dispositivos posible en la implementación de este estudio 

se ha decidido emplear exclusivamente la Unidad Central de Procesamiento (CPU) como 

recurso de ejecución. Al emplear únicamente la CPU, se garantiza un entorno de ejecución 

uniforme y controlado, independiente de las configuraciones específicas de cada dispositivo de 

prueba. 
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4.3.3. Generación y gestión de ficheros de salida 

 

Se generan ficheros de salida por cada modelo evaluado, un fichero de predicciones para 

el posterior cálculo de precisión en formato JSON y un fichero de tiempos de inferencia por 

cada imagen en formato CSV para el posterior análisis de rendimiento. Todos los ficheros de 

salida de todos los modelos se integran al final del proceso en un único fichero ZIP para su 

mejor exportación y manejo. 

 

 

Ficheros de predicciones. 

 

Para cada modelo se generan archivos JSON que contienen las predicciones de los 

keypoints de las posturas humanas sobre cada imagen del conjunto de prueba. Estos ficheros 

constituyen la base para el cálculo posterior de métricas de precisión, permitiendo evaluar de 

manera cuantitativa la exactitud del modelo en la estimación de posiciones articulares. La 

generación de estos ficheros se realiza de manera estandarizada, asegurando que cada entrada 

corresponda de forma inequívoca a la imagen original y manteniendo la trazabilidad de los 

datos. 

 

Ficheros de tiempos de inferencia. 

 

Paralelamente, se registra el tiempo de inferencia por imagen de cada modelo en ficheros 

con formato CSV, documentando la duración de la ejecución en el dispositivo móvil donde se 

realiza la ejecución. Esta información es esencial para el análisis de rendimiento, permitiendo 

comparar la eficiencia de los distintos modelos y su viabilidad para aplicaciones en tiempo real. 

 

4.3.4. Desarrollo de la interfaz 

 

En esta subfase se desarrolla una interfaz de usuario especializada con el objetivo de 

facilitar la ejecución sistemática del proceso de inferencia sobre el conjunto completo de datos 

de prueba para cada modelo. Esta interfaz cumple el doble propósito de automatizar el 

procesamiento de grandes volúmenes de imágenes y de proporcionar información en tiempo 

real sobre el progreso de la ejecución. 

 

La interfaz permite ejecutar de manera consecutiva la inferencia sobre todas las 

imágenes del dataset en cada uno de los modelos. Este enfoque garantiza que cada modelo se 

evalúe bajo condiciones homogéneas, eliminando la necesidad de intervención manual 

repetitiva y minimizando errores operativos.  

 

Durante el proceso de inferencia, la interfaz muestra visualmente una lista de los 

modelos en ejecución de forma que cada uno de ellos va evolucionando a través de un código 

de colores según va finalizando su ejecución para monitorizar el estado global de la ejecución. 

 

Una vez finalizado el proceso de inferencia, la interfaz ofrece la posibilidad de exportar 

(compartir) de manera directa el fichero ZIP que integra todos los resultados generados, 

incluyendo las predicciones de keypoints y los tiempos de inferencia por imagen.  
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4.3.5. Pruebas y correcciones 

 

Pruebas funcionales, de estabilidad y de portabilidad. Comprobación de que las 

imágenes procesadas generan predicciones válidas con keypoints consistentes, medición de la 

latencia por inferencia (ms/imagen) y ejecución continúa de la aplicación durante intervalos 

prolongados para detectar posibles fugas de memoria, caídas de la aplicación o degradación de 

rendimiento. Validación en distintos dispositivos Android para evaluar variaciones de 

rendimiento debidas a las características del hardware. 

 

 

 

Fase Nombre Duración 

estimada 

Objetivo 

Fase 2.1 Análisis, diseño y 

preparación. 

1 semana Definición de la arquitectura de la 

aplicación, estructuras de datos, workflows 

y ficheros de salida. Preparación del 

entorno de desarrollo. 

 

Fase 2.2 Implementación. 4-5 semanas Implementación de la estructura de clases 

Java de la aplicación, integración de 

modelos TFLite y dataset de imágenes de 

testeo, ejecución de inferencias de los 

modelos sobre el dataset de testeo, 

obtención de datos de precisiones por 

modelo y recopilación de tiempos de 

inferencia por modelo. 

 

Fase 2.3 Generación y gestión 

de ficheros de salida. 

 

1 semana Creación de ficheros de salida con los 

datos obtenidos. 

Fase 2.4 Desarrollo de la 

interfaz. 

 

1 semana Creación de una interfaz con las 

operaciones disponibles en la aplicación. 

Fase 2.5 Pruebas y 

correcciones. 

1-2 semanas Pruebas de ejecución en diferentes 

dispositivos y corrección de bugs 

observados. 

 

 
Tabla 17. Sub-fases de la fase de desarrollo de la aplicación para Android 

 

 

4.4. FASE 3: Evaluación y análisis de resultados 

 

4.4.1. Evaluación de precisión obtenida 

 

Núcleo del análisis orientado a la evaluación de la precisión de los modelos de 

estimación de posturas humanas. En esta etapa se examina la capacidad de los modelos 

incluidos en este estudio para predecir la localización de los puntos clave del cuerpo humano, 

comparando los resultados obtenidos frente a los valores esperados de referencia. 
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La precisión es evaluada mediante métricas estandarizadas en el campo de la visión por 

computadora como AP (Average Precision), ampliamente utilizada en benchmarks como 

COCO, que evalúa la precisión media considerando diferentes umbrales de tolerancia, 

ofreciendo una medida global del desempeño del modelo (ver apartado “2.6.1. Dataset COCO 

(Common Objects in COntext)”). 

 

Con el objetivo de obtener una visión estructurada y comparativa de los resultados se 

generan tablas de precisión por modelo, en las que se reflejan los valores de AP a nivel global 

y se elaboran gráficos de barras comparativos, permitiendo identificar de forma visual las 

diferencias de precisión entre modelos evaluados. Adicionalmente se analizan las diferencias 

entre la precisión en escenarios óptimos (subconjunto de imágenes adecuadas para estimación 

de posturas humanas) y los resultados en escenarios de condiciones adversas o desafiantes 

(subconjunto de imágenes menos adecuadas para estimación de posturas humanas). 

 

4.4.2. Evaluación del rendimiento obtenido 

 

Análisis del rendimiento computacional de los modelos de estimación de posturas en 

distintos dispositivos Android. El objetivo principal es caracterizar la eficiencia de los modelos 

en condiciones reales de ejecución móvil considerando métricas de velocidad de inferencia. 

Este análisis complementa la evaluación de precisión realizada en la fase anterior, permitiendo 

determinar el balance entre exactitud y eficiencia alcanzado por cada modelo. 

 

El rendimiento se mide en base a indicadores clave ampliamente utilizados en entornos 

de computación móvil como el tiempo de inferencia (ms/img) que es el tiempo promedio 

requerido por el modelo para procesar una única imagen de entrada. 

 

Con el fin de asegurar la validez de los resultados, se realizan las pruebas ejecutando la 

aplicación en varios dispositivos Android con características de hardware diferenciadas. Esta 

variación permite estudiar cómo factores como el tipo de CPU, la memoria o la versión de 

Android impactan en el rendimiento de los modelos. 

 

Para documentar y comparar de manera clara los resultados obtenidos, se elaboran 

gráficos de barras agrupadas comparativas de rendimiento organizadas por dispositivo y 

modelo, incluyendo valores de tiempo de inferencia promedio. 

 

Por último se generan gráficos de dispersión mostrando la relación entre tiempo de 

inferencia y precisión comparativamente entre todos los modelos estudiados para tener de una 

forma visual directa una imagen comparativa del desempeño de los modelos estudiados. 

 

4.4.3. Realización de la memoria del proyecto 

 

Constituye el cierre formal del proceso metodológico y tiene como objetivo la 

recopilación, sistematización y publicación de la memoria técnica del proyecto. Esta etapa es 

fundamental desde una perspectiva académica y científica, ya que transforma los resultados 

experimentales y de implementación en un documento estructurado, verificable y transferible, 

garantizando tanto la reproducibilidad del estudio como la difusión del conocimiento generado. 

 

Incluye la descripción detallada del marco teórico en el que se desarrolla este estudio, 
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la metodología aplicada para la selección y preparación de los modelos a estudiar y del dataset 

empleado (incluyendo el filtrado de imágenes y las condiciones de control experimental), el 

detalle del workflow de desarrollo, desde la fase de preparación de datos y modelos hasta la 

implementación en Android y la evaluación de resultados y por último la recopilación de 

métricas de precisión y rendimiento, en forma de tablas y gráficos, organizadas para permitir 

un análisis comparativo entre modelos y dispositivos. 

 

 

 

Fase Nombre Duración 

estimada 

Objetivo 

Fase 3.1 Evaluación de precisión 

obtenida. 

0,5 semanas Generación de gráficos y tablas con la 

precisión obtenida por cada modelo y 

comparativas con la precisión esperada. 

 

Fase 3.2 Evaluación del 

rendimiento obtenido. 

0,5 semanas Generación de gráficos y tablas con los 

datos de rendimiento obtenidos por cada 

modelo en cada dispositivo. 

 

Fase 3.3 Realización de 

comparativas, extracción 

de conclusiones y 

realización de la 

memoria del proyecto. 

 

1-2 semanas Recopilación y publicación de la 

memoria relativa al desarrollo del 

proyecto. 

 

 
Tabla 18. Sub-fases de la fase de evaluación y análisis de resultados 

 

 

4.5. Planificación temporal 

 

La planificación temporal representa un componente esencial dentro de la gestión de 

proyectos de investigación aplicada en informática, al proporcionar un marco estructurado que 

posibilita una distribución eficiente de los recursos disponibles, el cumplimiento de plazos 

establecidos y la organización de las actividades. Su importancia radica no solo en la asignación 

temporal de tareas, sino también en la capacidad de establecer dependencias entre fases y 

garantizar la coherencia metodológica durante todo el ciclo de vida del proyecto. 

 

En el presente estudio se adopta una metodología secuencial organizada en fases y 

subfases, pensada para proporcionar un desarrollo progresivo, desde la preparación inicial de 

los datos y modelos hasta la obtención, análisis e interpretación de los resultados finales. Cada 

fase responde a un objetivo específico claramente delimitado, lo cual facilita el seguimiento del 

avance, la identificación de hitos críticos y la evaluación continua del grado de cumplimiento 

de los objetivos planteados. 

 

En Imagen 15 podemos ver un diagrama de Gantt con la planificación temporal de la 

evolución del proyecto basado en las estimaciones temporales definidas durante la planificación 

y reflejadas en Tabla 15 (fases generales) y Tabla 16, Tabla 17 y Tabla 18 (subfases) con los 

códigos de color utilizados para cada una de ellas.      
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Imagen 15. Diagrama de Gantt del proyecto 
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4.6. Viabilidad técnica 

 

La viabilidad técnica de un proyecto orientado a la estimación de posturas humanas 

depende de la disponibilidad, estabilidad y licenciamiento de los modelos de inteligencia 

artificial que se empleen, así como de los conjuntos de datos utilizados para su entrenamiento 

y validación. En este sentido, resulta fundamental evaluar también las condiciones legales y 

técnicas bajo las cuales pueden integrarse en una solución final. 

 

 

 Modelos de Estimación de Posturas Humanas 

 

- MoveNet (Lightning y Thunder). El modelo MoveNet en sus variantes Lightning y 

Thunder está licenciado bajo Apache 2.0, tal como está especificado en su ficha 

técnica ("Model Card") de Google (41). 

 

- BlazePose (Lite, Full, Heavy). El modelo GHUM-3D (Lite, Full, Heavy) de 

BlazePose está licenciado bajo Apache License, Version 2.0. En la documentación 

oficial de MediaPipe/BlazePose, se indica que el contenido general y ejemplos de 

código están bajo Creative Commons Attribution 4.0 y Apache 2.0 para los ejemplos 

(42). 

 

- YOLOv8-pose (Nano, Small, Medium). La licencia del código de YOLOv8, que 

incluye modelos como los especializados para pose, es AGPL-3.0. Es una licencia 

de código abierto aprobada por la OSI “ideal para estudiantes ya que promueve la 

colaboración abierta y el intercambio de conocimientos” (32). 

 

 

Conjuntos de Datos de Pose Estimation 

 

- COCO (Common Objects in COntext). El dataset COCO utiliza varias licencias de 

Creative Commons (1). 

 

- MPII Human Pose Dataset- Está licenciado bajo una Simplified BSD License, 

versión 2 cláusulas (BSD-2-Clause) pero aclaran que el uso es libre solo con fines 

de investigación, y no se permite el uso comercial, debido a que el instituto no posee 

los derechos de las imágenes (2). 
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5. FASE 1: PREPARACIÓN DEL DATASET DE TESTEO Y 

OBTENCIÓN DE MODELOS 
 

5.1. Selección del dataset de imágenes de testeo 

 

Como hemos visto (apartado “2.6.1. Dataset COCO (Common Objects in COntext)”) el 

dataset COCO está compuesto por cientos de miles de imágenes distribuidas en distintas 

categorías, entre las cuales destaca el conjunto de anotaciones para keypoints humanos lo que 

lo convierte en una base idónea para el entrenamiento, y, en nuestro caso de estudio, evaluación 

de modelos de estimación de posturas humanas. 

 

Como vimos también COCO se organiza en diferentes subconjuntos: 

 

- Entrenamiento (train2017, imágenes con anotaciones, utilizadas para el 

entrenamiento y ajuste de parámetros de los modelos) 

 

- Validación (val2017, aproximadamente 5.000 imágenes, utilizadas para ajustar 

hiperparámetros y realizar comprobaciones preliminares del desempeño). 

 

- Testeo (test-dev y test-challenge): sin anotaciones visibles, se emplea en 

competiciones y evaluaciones finales mediante envío a los servidores oficiales de 

COCO. 

 

 

En este estudio el foco se encuentra en la fase de evaluación, por lo que adoptamos el 

conjunto val2017 como referencia principal. Su tamaño intermedio y diversidad de contextos 

lo hacen ideal para pruebas controladas, garantizando una validación robusta de la capacidad 

de los modelos sin incurrir en sobreajuste. 

 

Librerías necesarias 

 

El proceso de selección y descarga del subconjunto de imágenes se apoya en un conjunto 

de librerías especializadas de Python: 

 

- pycocotools.coco.COCO. La clase COCO, incluida en el paquete pycocotools, 

constituye la API oficial del dataset COCO. Su finalidad es entre otras gestionar y 

manipular las anotaciones del dataset, permitiendo cargar y explorar los ficheros de 

anotaciones en formato JSON, acceder a categorías, imágenes y anotaciones de 

keypoints humanos, filtrar subconjuntos de datos en función de criterios definidos 

(por ejemplo, número de personas en una imagen o cantidad de keypoints visibles) 

y obtener las rutas de descarga de las imágenes asociadas a cada anotación.  

Sintetizando, pycocotools.coco.COCO proporciona la infraestructura básica para 

interactuar con el dataset COCO, automatizando el acceso a metadatos y facilitando 

la preparación de subconjuntos para pruebas. 

 

- pathlib.Path. El módulo Path de la librería estándar pathlib en Python ofrece una 

interfaz para el manejo de rutas de archivos y directorios que permite entre otras 

operaciones construir rutas de forma segura e independiente del sistema operativo 

(Windows, Linux, macOS), crear y verificar la existencia de directorios para 
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almacenar imágenes descargadas y resultados de inferencia, gestionar operaciones 

como concatenar rutas y listar ficheros o mover elementos dentro de la estructura 

del proyecto. 

En este contexto, Path se utiliza principalmente para organizar de manera 

estructurada y reproducible el almacenamiento local de los subconjuntos de 

imágenes y ficheros derivados del proceso experimental. 

 

Descarga del fichero de anotaciones 

 

El dataset COCO está organizado en diferentes componentes: imágenes, anotaciones y 

utilidades asociadas. Dentro de las anotaciones, los archivos JSON contienen información 

estructurada que describe categorías, instancias, bounding boxes y keypoints. El fichero 

person_keypoints_val2017.json constituye la base de referencia para evaluar modelos de 

estimación de poses en el subconjunto de validación del dataset COCO. Su descarga se realiza 

a través del paquete oficial annotations_trainval2017.zip, ya sea manualmente desde la web 

de COCO o de forma automatizada mediante código Python. 

 

La ubicación oficial de los ficheros de anotaciones de COCO se distribuyen desde la 

página oficial del dataset22 y los ficheros de anotaciones están en el ZIP 

annotations_trainval2017.zip. Este archivo contiene varios ficheros JSON, entre ellos el de las 

anotaciones relativas a keypoints que necesitamos (person_keypoints_val2017.json) y que 

encontramos en la carpeta “annotations” al descomprimir annotations_trainval2017.zip. 

 

Por tanto para el caso del estudio de estimación de posturas humanas el fichero que 

contiene la información de validación de las imágenes del conjunto de validación se encuentra 

dentro del ZIP annotations_trainval2017.zip descargado de la página oficial del dataset COCO 

en la siguiente ruta: 

 

annotations/person_keypoints_val2017.json 

 

Estructura de carpetas del dataset 

 

El dataset de testeo se descarga mediante un script realizado en Python generando una 

estructura sencilla de carpetas y archivos, formada por una carpeta principal “Dataset” que 

contendrá una carpeta “Images” en la cual se incluyen las imágenes seleccionadas para testeo 

(con el mismo nombre que tienen en las anotaciones COCO) y un fichero de texto 

(imageFileNames.txt) con los nombres de la imágenes descargadas para labores de control y 

para facilitar la localización e identificación de las imágenes que componen el dataset de testeo 

(Imagen 16). 

 

En el dataset COCO, el campo file_name dentro de las anotaciones hace referencia al 

nombre de cada archivo de imagen tal y como está almacenado en el conjunto de datos 

(val2017). El formato de los nombres de archivo sigue esta convención: 

 

[identificador_de_imagen_12_digitos].jpg 

 

                                                 

 
22 http://cocodataset.org/#download 

http://cocodataset.org/#download
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Cada nombre de archivo está compuesto por un identificador numérico único de 12 

dígitos. Este identificador se corresponde con el campo id de la anotación de imagen dentro del 

fichero JSON y la extensión utilizada es siempre JPG (por ejemplo 000000000785.jpg). 

 

 

 

 
 

Imagen 16. Estructura carpetas descarga imágenes dataset de testeo 

 

Script de descarga de imágenes del dataset 

 

El algoritmo del script Python tiene como propósito seleccionar, filtrar y descargar un 

subconjunto de imágenes del dataset COCO que cumpla unos criterios de validez para el estudio 

anteriormente definido. Su funcionamiento puede dividirse en varias etapas: 

 

- Definición de criterios de filtrado. Se establece como condición inicial que una 

imagen será considerada válida únicamente si contiene al menos un número mínimo 

de keypoints visibles en las anotaciones de la persona. Este umbral actúa como filtro 

de calidad, descartando imágenes en las que la anotación carezca de información 

suficiente para un análisis fiable. 

 

- Carga de anotaciones y metadatos. Se cargan las anotaciones asociadas a la 

categoría "persona", incluyendo los keypoints de las distintas instancias. Para ello: 

 

o Se obtiene el identificador único de la categoría de personas. 

o Se recupera la lista de identificadores de imágenes que pertenecen a dicha 

categoría. 

o Se accede a las anotaciones específicas de cada imagen, que contienen los 

vectores de keypoints y metadatos adicionales (por ejemplo, bounding 

boxes). 

 

Dataset/Images

000000000785.jpg

000000001490.jpg

.....

000000575081.jpg

imageFileNames.txt
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- Identificación de imágenes candidatas. Se implementa una estrategia de selección 

que evita el uso de imágenes con múltiples personas. 

 

o Se mantiene un array temporal donde se almacenan los IDs de todas las 

imágenes procesadas. 

o En paralelo, se registra en una lista separada el conjunto de imágenes con 

más de una anotación, lo que indica que contienen más de una persona. 

o Filtramos el primer array temporal con los IDs de todas las imágenes 

procesadas con la lista del conjunto de imágenes con más de una anotación 

para obtener únicamente los IDs de las imágenes que no tienen más de una 

anotación (lo que supone que solo hay una persona en la imagen). 

 

De este modo, es posible aislar un subconjunto de imágenes con 

únicamente una persona visible, condición definida previamente. 

 

- Filtrado por keypoints y selección final. Entre las imágenes con una sola persona, 

se realiza un filtrado adicional: 

 

o Se descartan aquellas en las que la anotación tenga menos del número 

mínimo de keypoints visibles definido previamente. 

o Se conserva una lista definitiva con los identificadores de imágenes válidas 

para descarga. 

 

- Preparación del entorno local. Antes de iniciar la descarga, el algoritmo prepara 

la estructura de directorios en el sistema local creando una carpeta principal con una 

subcarpeta destinada a albergar el dataset filtrado. 

 

- Descarga y registro de imágenes. Se procede a la descarga de las imágenes filtradas 

desde el repositorio oficial de COCO: 

 

o Cada imagen seleccionada se descarga y se almacena en la carpeta 

previamente creada. 

o Se mantiene una lista de control con los nombres de las imágenes 

descargadas, lo que permite verificar la integridad del proceso y garantizar 

la reproducibilidad. 

o Finalmente, se genera un fichero de control, en el que se documentan los  

nombres de todas las imágenes descargadas. 

 

- Seguimiento del proceso. Durante la ejecución, el algoritmo incluye mecanismos 

de impresión de datos en consola, que sirven como traza de seguimiento. Esto 

permite monitorizar el progreso de la descarga y detectar posibles incidencias, tales 

como la ausencia de imágenes o fallos en la conexión. 

 

 

En Imagen 17 se puede observar que el conjunto de imágenes de validación val2017 de 

COCO tiene 2.693 imágenes pertenecientes a la categoría person (personas) las cuales están 

anotadas con 11.004 anotaciones y de las cuales 1.045 imágenes tienen una sola persona y 316 

tienen además el número mínimo de keypoints que hemos definido que necesitamos para el 

estudio. 
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Imagen 17. Salida de ejecución de script de obtención de dataset de imágenes de testeo 

 

5.2. Obtención de modelos para el estudio 

 

Se utilizan dos procedimientos principales para la obtención de los ficheros de los 

modelos preentrenados que utilizamos en este estudio, la descarga directa de modelos 

publicados en formato TFLite y la descarga con posterior conversión a este formato. 

 

5.2.1. Modelos con opción de descarga directa en formato TFLite 

 

Los modelos diseñados y publicados oficialmente por equipos de investigación o 

plataformas reconocidas (por ejemplo, TensorFlow Hub, Google Research o el propio 

repositorio de TensorFlow Lite) representan una fuente fiable y estandarizada. Estas versiones 

suelen estar optimizadas específicamente para ejecución en entornos móviles y embebidos, y 

se publican en formatos ya adaptados, como TFLite. Estos modelos están preentrenados y 

optimizados, son distribuidos en formatos listos para su ejecución en entornos móviles y están 

disponibles en repositorios oficiales. Los modelos incluidos en este estudio que ofrecen la 

posibilidad de una descarga directa desde un repositorio oficial son los siguientes: 

 

- MoveNet. Los seis modelos (las tres versiones cuantizadas de la versión Lightning 

más las tres versiones cuantizadas de la familia Thunder) de la familia MoveNet 

incluidos en el estudio están disponibles para su descarga directa en formato TFLite 

desde la plataforma Kaggle, plataforma en la que TensorFlow Hub integró sus 
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modelos. Se pueden descargar de forma directa en este enlace23
, al que a su vez se 

puede acceder desde el siguiente enlace24 de TensorFlow Hub (opción “See TF Hub 

models”). 

 

- BlazePose. Los tres modelos (Lite, Full y Heavy) de la familia BlazePose incluidos 

en el estudio están disponibles para su descarga directa en formato TFLite desde el 

repositorio de github del framework MediaPipe25, desde donde podemos acceder a 

la descarga de los modelos concretamente en el apartado “Pose landmark model” 

de la página “MediaPipe Models and Model Cards” siguiendo este enlace26. 

 

Como se puede observar en el aviso de la front page para más información acerca 

del framework MediaPipe debemos redirigirnos a la nueva URL donde ha migrado 

la documentación: 

 

“Attention: We have moved to https://developers.google.com/mediapipe as the 

primary developer documentation site for MediaPipe as of April 3, 2023.” 

 

5.2.2. Modelos que requieren conversión de formato 

 

La segunda opción de obtención de modelos se utiliza en la obtención de los modelos 

YOLO de Ultralytics que como vimos en el apartado “3.1.4. YOLOv8-Pose (Ultralytics)” 

originalmente se distribuyen en formato PyTorch (.pt) por lo que para su inclusión en nuestro 

estudio después de la obtención de los modelos es necesario realizar un proceso de conversión 

de formato (para mantener la homogeneidad con el resto de modelos), generalmente hacia 

ONNX y posteriormente hacia TensorFlow Lite (TFLite). 

 

Estructura de carpetas de descarga y conversión 

 

Se genera una sencilla estructura formada por una carpeta “Modelos_YOLO8” donde 

se descargan los modelos en su formato original (PyTorch) y desde la cual se realiza la 

conversión al formato necesario para su integración en la aplicación de Android desarrollada 

para el estudio. 

 

Descarga directa de modelos originales en formato PyTorch (.pt) 

 

Los tres modelos que utilizamos de la familia YOLO (Lite, Full y Heavy) están 

disponibles para su descarga directa en formato PyTorch (.pt) desde este enlace27 oficial 

proporcionado por la compañía que los desarrolla y mantiene actualmente (Ultralytics) lo que 

garantiza la utilización de versiones fiables, verificadas y actualizadas. Pinchando en cada uno 

de los tres modelos que incluimos en el estudio realizamos la descarga en la carpeta de descarga 

descrita anteriormente. 

 

                                                 

 
23 https://www.kaggle.com/models/google/movenet 
24 https://www.tensorflow.org/hub/tutorials/movenet 

25 https://github.com/google-ai-edge/mediapipe 

26 https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose 

27 https://docs.ultralytics.com/es/models/yolov8/#performance-metrics 

https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose
https://docs.ultralytics.com/es/models/yolov8/#performance-metrics
https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose
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Librerías necesarias para la conversión de formato 

 

El proceso de conversión de los modelos de la familia YOLO descargados implica la 

utilización de las librerías del framework de Ultralytics: 

 

- ultralytics.YOLO. Se utiliza como entorno integral para trabajar con modelos 

YOLO, proporcionando herramientas de entrenamiento, inferencia, evaluación y 

exportación. Permite convertir modelos a otros formatos como ONNX o TensorFlow 

Lite. 

 

Conversión de modelos YOLO a formato TensorFlow Lite 

 

Los modelos del framework YOLO pueden exportarse a múltiples formatos 

(TorchScript, ONNX, TensorRT, CoreML, TensorFlow Lite,…). Durante este proceso de 

exportación se pueden aplicar ciertos parámetros de configuración que ajustan el 

comportamiento del modelo y que resultan especialmente importantes para nuestro caso de 

estudio al exportar modelos para entornos móviles. 

 

La librería Ultralytics provee un método directo para esta conversión mediante la 

función export, que permite ajustar parámetros clave que influyen tanto en la compatibilidad 

como en el rendimiento de los modelos (42). Para este estudio el script de Python que utiliza la 

librería ultralytics.YOLO para la descarga de los modelos YOLO realiza varias acciones 

adicionales sobre el modelo: 

 

- Especificación del formato de exportación (format="tflite"). Indica que el modelo debe 

exportarse en formato TensorFlow Lite. Como ya hemos visto este formato está 

diseñado para ejecutar inferencias de forma eficiente en dispositivos móviles, 

reduciendo el tamaño del modelo y optimizando la velocidad de cálculo sin 

comprometer de manera significativa la precisión. 

 

- Especificación del tamaño de las imágenes (imgsz=320). Define el tamaño de entrada 

de la imagen en 320×320 píxeles (por defecto 640×640 píxeles). Este valor implica 

un equilibrio entre velocidad y precisión al tener dimensiones menores permiten una 

inferencia más rápida, lo que resulta ventajoso en dispositivos con recursos 

limitados mientras asegura un nivel de detalle suficiente para detectar personas y 

keypoints sin degradar drásticamente la exactitud del modelo. Como vimos en los 

apartados “3.1.2. MoveNet (Google)” y “3.1.3. BlazePose (Google MediaPipe)” el 

resto de modelos del estudio utiliza tamaños de entrada de imágenes de 192×192 

píxeles y 256×256 píxeles las familias de MoveNet Lightning y Thunder 

respectivamente y de 256×256 píxeles la familia BlazePose por lo que el tamaño de 

imagen de entrada seleccionado para los modelos YOLO es el más aproximado al 

resto de entre los disponibles. 

 

- Especificación número máximo de detecciones por imagen (max_det=1). Limita el 

número máximo de detecciones por imagen a una sola instancia. Dado que el 

objetivo es trabajar con imágenes de una única persona este valor elimina falsos 

positivos derivados de múltiples detecciones y simplifica el análisis posterior de 

precisión y rendimiento. 
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- Activación del uso de Non-Maximum Suppression (nms=True). Elimina 

predicciones redundantes que se solapan, manteniendo únicamente la detección más 

confiable lo que contribuye a asegurar que únicamente se retenga la predicción más 

relevante para cada imagen, evitando duplicidades en la salida. 

 

Como entrada al proceso de exportación utilizamos la ruta de cada uno de los tres 

modelos descargados en la carpeta de descarga en formato .pt y como resultado de la 

exportación obtenemos en la misma carpeta de descarga, además de ficheros temporales en 

formato .omnx de cada modelo, tres subcarpetas, una para cada modelo, que contienen entre 

otros ficheros dos versiones cuantizadas de cada uno de los modelos, una float32 y otra float16. 

Como el objetivo de este estudio es analizar el rendimiento en dispositivos edge utilizaremos 

únicamente las versiones cuantizadas float16 de cada uno de ellos ya que son las que se adaptan 

a las condiciones que habíamos descrito en el apartado “3.1.1. Criterios de selección y modelos 

seleccionados” ocupando bastante menos espacio que sus homólogas float32. 

 

5.3. Dispositivos de prueba 

 

Para evaluar el rendimiento de los modelos de estimación de poses implementados en 

dispositivos Android, se ha seleccionado una muestra representativa de terminales con 

diferentes configuraciones de hardware. La selección incluye tanto teléfonos móviles como 

tabletas, cubriendo distintas gamas de rendimiento y versiones del sistema operativo, con el fin 

de analizar la escalabilidad de los modelos y su aplicabilidad en contextos reales. 

 

5.3.1. Listado de dispositivos de prueba 

 

En este apartado se describen las características técnicas de cada uno de los tres 

dispositivos utilizados en las pruebas de medición de precisión y rendimiento: una Tablet 

Samsung Galaxy Tab A7 Lite, un móvil Samsung Galaxy M32 y una Tablet Samsung Galaxy 

Tab A9. 

 

Samsung Galaxy Tab A7 Lite (Tablet) 

- Procesador (SoC): MediaTek MT8768T Helio P22T, Octa-core (4x2.3 GHz & 4x1.8 

GHz Cortex-A53) 

 

- GPU: PowerVR GE8320 

 

- Memoria RAM: 3 GB 

 

- Almacenamiento: 32 GB 

 

- Sistema operativo: Android 14 

 

- Pantalla: 8.7" TFT, resolución 800 × 1340 píxeles 

 

Esta tablet representa la gama de entrada, con recursos limitados en CPU, GPU y RAM. 
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Se incluye para evaluar el comportamiento de los modelos en dispositivos con restricciones de 

capacidad, comunes en entornos educativos, sanitarios o de bajo coste. 

 

Samsung Galaxy M32 (Móvil) 

- Procesador (SoC): MediaTek Helio G80, Octa-core (2x2.0 GHz Cortex-A75 & 

6x1.8 GHz Cortex-A55) 

 

- GPU: Mali-G52 MC2 

 

- Memoria RAM: 6 GB 

 

- Almacenamiento: 128 GB 

 

- Sistema operativo: Android 13 

 

- Pantalla: 6.4" Súper AMOLED, resolución 1080 × 2400 píxeles 

 

- Otros: Batería de 6000 mAh 

 

 

El Galaxy M32 representa un dispositivo de gama media con buen rendimiento gráfico 

y capacidad suficiente para ejecutar modelos ligeros y medios. Es adecuado para evaluar la 

eficiencia de inferencia en terminales móviles convencionales. 

 

Samsung Galaxy Tab A9 (Tablet) 

- Procesador (SoC): Unisoc T618, Octa-core (2x2.0 GHz Cortex-A75 & 6x1.8 GHz 

Cortex-A55) 

 

- GPU: Mali-G52 MP2 

 

- Memoria RAM: 4 GB 

 

- Almacenamiento: 64 GB 

 

- Sistema operativo: Android 15 

 

- Pantalla: 8.7" TFT LCD, resolución 800 × 1340 píxeles 

 

 

La tablet Galaxy Tab A9 se sitúa en una gama media actualizada, con mejor capacidad 

de procesamiento que la Tab A7 Lite, aunque sin alcanzar el nivel de un smartphone moderno. 

Este dispositivo permite medir la eficiencia de los modelos en un entorno más equilibrado, ideal 

para aplicaciones industriales, educativas o comerciales. 
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5.3.2. Justificación de la selección 

 

La elección de estos dispositivos responde a los siguientes criterios: 

 

- Diversidad de capacidades de hardware (procesadores ARM heterogéneos, distintas 

GPUs). 

 

- Representatividad de escenarios reales de uso (móviles, tablets, gama baja/media). 

 

- Compatibilidad con Android 12 o superior, necesaria para ejecutar modelos con 

soporte NNAPI y TFLite. 

 

Esta variedad permite analizar el rendimiento cruzado de los modelos y determinar qué 

configuraciones de hardware resultan más adecuadas para cada tipo de modelo de estimación 

de posturas, desde los más ligeros hasta los más complejos. 
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6. FASE 2: DESARROLLO DE LA APLICACIÓN PARA ANDROID 
 

 

Este apartado describe el proceso de implementación técnica de la aplicación Android 

donde se cargan los modelos seleccionados junto a las imágenes del dataset seleccionadas para 

extraer resultados de predicciones y tiempos de inferencia de los modelos sobre el dataset. Esta 

sección por lo tanto constituye el núcleo técnico del proyecto y conecta directamente la 

investigación y análisis previos con la validación práctica del desempeño de los modelos en un 

entorno real de ejecución. 

 

La arquitectura implementada en la aplicación garantiza la ejecución secuencial y 

automatizada de todos los modelos sobre el conjunto de imágenes definido, lo que facilita la 

recolección sistemática de datos para su posterior análisis comparativo. 

 

6.1. Análisis, diseño y preparación 

 

6.1.1. Análisis y diseño 

 

Esta fase se concibe con varios objetivos, definir los requisitos funcionales y no 

funcionales de la aplicación, diseñar una arquitectura que garantice eficiencia, mantenibilidad 

y escalabilidad, definir las estructuras de datos que se utilizan en la exportación de resultados, 

diseñar la interfaz que interactuará con el usuario y por último analizar las estructuras de datos 

tanto de entrada como de salida de cada modelo del estudio. 

 

Análisis de requisitos 

 

Los requisitos funcionales se centran en las capacidades que debe ofrecer la aplicación 

para cumplir los objetivos del proyecto: 

 

- Carga y gestión de modelos. La aplicación debe poder integrar diferentes modelos 

de estimación de posturas en formato TFLite. 

 

- Ejecución de inferencias sobre un dataset de imágenes. Debe permitir cargar 

imágenes desde una carpeta, procesarlas y obtener y registrar los keypoints 

correspondientes. 

 

- Medición del tiempo de inferencia. El sistema debe registrar el tiempo de 

procesamiento por imagen y por modelo. 

 

- Almacenamiento y exportación de resultados. Los resultados de inferencia 

registrados (keypoints y tiempos) deben guardarse en ficheros estructurados y 

exportarse en un contenedor ZIP. 

 

- Interfaz de usuario básica. Debe proveer un mecanismo simple para iniciar el 

proceso de inferencia, mostrar el progreso y confirmar la correcta finalización de la 

tarea. 
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Además de las funcionalidades principales, la aplicación debe cumplir con una serie de 

restricciones técnicas o requisitos no funcionales: 

 

- Compatibilidad. el nivel mínimo de SDK debe asegurar ejecución en un amplio 

rango de dispositivos Android contemporáneos. 

 

- Mantenibilidad, el código debe estar modularizado y documentado para facilitar 

futuras mejoras o integración de nuevos modelos. 

 

- Escalabilidad, la arquitectura debe permitir incorporar nuevas métricas o datasets 

sin necesidad de rediseñar el núcleo de la aplicación. 

 

Diseño de la arquitectura 

 

La arquitectura planteada guarda similitudes con el patrón MVC (Modelo-Vista-

Controlador), ampliamente utilizado en el desarrollo de aplicaciones por su capacidad de 

separar responsabilidades y promover la escalabilidad. En este contexto, se ha diseñado sobre 

los principios de herencia y polimorfismo, características intrínsecas de los lenguajes orientados 

a objetos, lo que permite reutilizar código común y, al mismo tiempo, adaptar el 

comportamiento específico a cada modelo de estimación de posturas humanas que estamos 

estudiando. 

 

El Modelo representa la capa encargada de la gestión de datos y lógica de negocio, lo 

que incluye el manejo de las imágenes de entrada, la carga y ejecución de los modelos de 

inferencia en formato TensorFlow Lite, y la organización y persistencia de los ficheros de salida 

generados (predicciones y tiempos de inferencia). Esta capa abstrae la complejidad del 

preprocesamiento, inferencia y postprocesamiento, de modo que la lógica asociada a cada 

modelo concreto queda contenida en subclases especializadas que heredan de una clase base 

común. 

 

La Vista constituye la capa de interacción con el usuario y es responsable de visualizar 

las operaciones y resultados. En el caso de una aplicación Android, esto se materializa mediante 

actividades o interfaces gráficas que muestran el estado de ejecución e indicadores de progreso. 

La Vista es deliberadamente independiente de la lógica del modelo, de manera que su papel se 

centra en presentar información y recibir interacciones del usuario sin conocer en detalle cómo 

se ejecutan las operaciones subyacentes. 

 

El Controlador actúa como capa intermedia que coordina la comunicación entre la Vista 

y el Modelo. Su función es recibir las acciones iniciadas desde la interfaz de usuario (ejecución 

de las pruebas o exportación de resultados), traducirlas en operaciones sobre el Modelo y 

devolver a la Vista los resultados o el estado actualizado. En este sentido, el Controlador 

encapsula la sincronización entre procesos, asegurando que las respuestas se gestionan de 

manera coherente y en tiempo oportuno. 

 

Este esquema facilita el mantenimiento y la extensión del sistema (nuevos modelos de 

estimación pueden integrarse mediante la adición de subclases que respeten la interfaz definida 

en el modelo base) mientras que permite una modularización del código que mejora la 

legibilidad. 
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Diseño de estructuras de datos 

 

Se definen las estructuras de datos necesarias para almacenar los datos de salida de la 

ejecución del test. Esta salida está compuesta por dos ficheros por cada modelo incluido: 

 

- Fichero de predicciones. Este fichero en formato JSON está formado por un array 

con las predicciones del modelo para cada imagen del dataset de testeo. El formato 

de cada una de las predicciones viene determinado por el formato utilizado por el 

dataset COCO para evaluar los resultados de predicciones de modelos, que es muy 

similar al descrito en el apartado “2.6.1. Dataset COCO (Common Objects in 

COntext)” para las anotaciones del dataset y se compone de los siguientes campos 

para cada imagen: 

 

 

o image_id: ID de la imagen donde se encuentra la persona. 

 

o category_id: Siempre 1 para personas. 

 

o keypoints: Lista de 51 valores (17 keypoints × 3 valores por keypoint). 

Cada keypoint contiene: (x, y, v) donde x e y son las coordenadas 2D del 

keypoint en píxeles y v es un código de visibilidad del keypoint (0=no 

etiquetado, 1=etiquetado pero no visible, 2=etiquetado y visible). 

 

o score: valor numérico (normalmente entre 0 y 1) que indica el nivel de 

confianza del modelo en la predicción de la posición de ese keypoint. 

 

 

- Fichero de tiempos de inferencia. Fichero de texto en formato CSV donde cada línea 

del fichero incluye información con el nombre de la imagen a modo de identificador 

y los valores de los tiempos de inferencia del modelo para esa imagen separados por 

comas. 

 

 

Diseño de la Interfaz de Usuario 

 

Aunque la aplicación no requiere una interfaz compleja, se definen ciertos elementos 

que deben estar presentes en la pantalla principal: 

 

- Información de modelos de estimación de posturas incluidos en el test. Listado con 

todos los modelos que ejecutarán inferencias sobre el dataset de imágenes de prueba. 

 

- Botón de inicio del test en el dispositivo. Botón para iniciar el test en el dispositivo. 

 

- Indicador visual de progreso de la ejecución del test. Avance de la ejecución por 

modelo. 

 

- Botón de exportación de resultados. Botón para exportar los ficheros con los 

resultados de inferencia y rendimiento de todos los modelos testados. 

 

- Botón de salir de la aplicación. 
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Análisis de entradas y salidas de los modelos 

 

La estimación de posturas humanas mediante redes neuronales requiere comprender las 

estructuras de entrada y salida de los modelos empleados. Estas estructuras determinan tanto la 

forma en que las imágenes deben preprocesarse como la interpretación de los resultados 

generados por cada modelo. En términos de entrada, todos los modelos reciben tensores que 

representan imágenes RGB redimensionadas a unas resoluciones fijas y normalizadas en 

rango de valores. El tamaño de estos tensores difiere según el modelo y la versión: 

 

- MoveNet utiliza entradas compactas de 192×192 píxeles (Lightning) o 256×256 

píxeles (Thunder) para sus dos variantes que representan imágenes RGB 

normalizadas, redimensionadas al tamaño requerido por cada versión. 

 

- BlazePose requiere imágenes de resolución 256×256 píxeles igualmente 

representando imágenes RGB normalizadas y redimensionadas. 

 

- YOLOv8-Pose emplea entradas por defecto con tensores de 640×640 píxeles, 

aunque en este estudio y como hemos comentado anteriormente los modelos 

exportados a formato TFLite para su integración en la aplicación han sido adaptados 

para soportar una entrada de 320×320 píxeles de un tamaño más parecido al resto 

de modelos. 

 

 

Respecto a la salida, cada modelo proporciona tensores estructurados con distinta 

granularidad de información: 

 

- MoveNet devuelve un tensor de tamaño [1, 1, 17, 3]. Cada uno de los 17 keypoints 

del estándar COCO está representado por con las coordenadas (x, y) normalizadas 

y el nivel de confianza para los 17 keypoints definidos por el estándar COCO (41). 

 

- BlazePose, más detallado, devuelve un tensor de tamaño [1, 195] ya que estima 

hasta 33 keypoints, incluyendo las coordenadas (x, y) normalizadas más una 

componente z que representa la profundidad relativa del punto respecto al cuerpo, 

además de otros dos valores, confianza de visibilidad (0 a 1) y presencia del keypoint 

(0 a 1) (43). 

 

- YOLOv8-Pose integra detección de personas y estimación de posturas en un único 

proceso, generando bounding boxes, scores globales y los 17 keypoints de COCO 

para cada persona detectada en la imagen. Devuelve un tensor de tamaño [N, 57] 

donde N es el número máximo de detecciones que durante la exportación del modelo 

hemos establecido a 1 con el parámetro max_det=1 (ver apartado “5.2.2. Modelos 

que requieren conversión de formato”) por lo que en nuestro caso el tensor devuelto 

por los modelos YOLO es de tamaño [1, 57] y está compuesto por varios valores de 

bounding box (x, y, w, h), confianza (score), clase, y 17×3 valores correspondientes 

a los keypoints (x, y, score). 

 

6.1.2. Diagrama de clases 

 

El diagrama de clases es una representación fundamental dentro de la documentación 
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técnica del proyecto, ya que permite visualizar la estructura estática de la aplicación y las 

relaciones entre sus componentes principales. En este caso, el diagrama refleja la arquitectura 

orientada a objetos definida, mostrando la jerarquía de herencia, la interacción entre las 

diferentes clases que conforman el sistema y los componentes públicos, protegidos y privados 

de cada clase con sus parámetros en el caso de los métodos (Imagen 18). 

 

 

 

 
 

Imagen 18. Diagrama de clases de la aplicación para Android. 

 

 

6.1.3. Preparación 

 

Preparación entorno de desarrollo 

 

El proceso se inicia mediante la generación de un nuevo proyecto de tipo "Empty 

Activity", que se selecciona por su carácter básico y altamente personalizable. Esta plantilla 

ofrece una estructura mínima sobre la cual es posible construir la aplicación de manera 

progresiva, integrando los componentes específicos requeridos para la ejecución de modelos de 

estimación de posturas humanas. 

 

- Creación del proyecto. El asistente de creación de proyectos de Android Studio 

permite definir la configuración inicial del proyecto en varios pasos: 

 

o Asignación del nombre del proyecto y del paquete de aplicación 
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(Application ID), que servirán como identificadores únicos en el ecosistema 

Android. 

 

o Definición de la ubicación de almacenamiento del proyecto en el sistema 

local. 

 

o Selección del lenguaje de programación (en este caso, Java). 

 

o Configuración del nivel mínimo de SDK (API Level mínimo). 

 

 

Como resultado de este proceso tenemos una aplicación inicial funcional que 

contiene un único archivo de actividad principal (MainActivity) y los recursos 

básicos asociados, como el layout en XML. Sobre esta base mínima se construye la 

lógica necesaria para la gestión del dataset, la carga y ejecución de los modelos 

TFLite. 

 

- Incorporación de las dependencias de las librerías TensorFlow. En el fichero 

build.gradle (Module:app) se añaden las dependencias necesarias para el 

funcionamiento del framework TensorFlow (Imagen 19): 

 

o tensorflow-lite:2.12.0. Es la librería principal de TensorFlow Lite, 

encargada de la ejecución de modelos de aprendizaje automático 

optimizados en dispositivos móviles y embebidos. Proporciona el motor de 

inferencia que permite cargar un modelo en formato TFLite y ejecutar 

predicciones de manera eficiente en la CPU (o en otros delegados cuando se 

configuran). Se utiliza por tanto para ejecutar los modelos de estimación de 

posturas en Android con bajo consumo de recursos y alta eficiencia. 

 

o tensorflow-lite-metadata:0.1.0. Librería orientada al manejo de la 

información descriptiva (metadatos) incluida dentro de algunos modelos 

TFLite. Estos metadatos contiene detalles como nombres de entradas y 

salidas, dimensiones de tensores, escalas de normalización o categorías de 

salida. Permite interpretar de manera más sencilla los resultados de la 

inferencia. 

 

o tensorflow-lite-support:0.4.3. Conjunto de utilidades complementarias que 

extiende TensorFlow Lite, proporcionando funciones de preprocesamiento y 

postprocesamiento de datos (como manipulación de imágenes, conversión 

de tensores, normalización y transformación de formatos).  

 

 
dependencies { 

 

    …… 

 

    implementation 'org.tensorflow:tensorflow-lite:2.12.0' 

    implementation 'org.tensorflow:tensorflow-lite-metadata:0.1.0' 

    implementation 'org.tensorflow:tensorflow-lite-support:0.4.3' 

} 

 
Imagen 19. Dependencias TensorFlow Lite añadidas al fichero build.gradle 
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- Creación de carpeta de recursos para almacenamiento de las imágenes del dataset. 

En esta carpeta se introducen las imágenes descargadas en el apartado “5.1. 

Selección del dataset de imágenes de testeo” junto con el fichero de control generado 

en esa misma fase, imageFileNames.txt. 

 

- Importación uno por uno de todos los modelos en formato TFLite obtenidos en el 

apartado “5.2. Obtención de modelos para el estudio” a la aplicación mediante la 

opción "New -> Other -> TensorFlow Lite Model" del menú contextual de la carpeta 

de recursos del proyecto. 

 

Repositorio GIT 
 

La utilización de un sistema de control de versiones es una práctica fundamental en 

proyectos de investigación aplicada e ingeniería de software. En este caso, la elección de GIT 

como herramienta central permite garantizar la seguridad, trazabilidad, organización y 

replicabilidad de todas las fases de desarrollo. 

 

Teniendo en cuenta las fases del proyecto el repositorio está dividido en dos partes: 

 

- APP. Contiene todo el proyecto de la aplicación Android (Fase 2), incluidos: 

 

o Dataset de imágenes utilizado (APP/TFM/app/src/main/resources). 

 

o Modelos estudiados (APP/TFM/app/src/main/ml). 

 

o Código fuente de la aplicación (APP/TFM/app/src/main/java). 

 

o Ficheros de configuración del proyecto Android Studio (build.graddle, 

AndroidManifest.xml, etc,..). 

 

- Notebook. Contiene un notebook de Jupyter Notebook (TFM.ipynb) con los scripts 

de preparación del dataset de testeo (Fase 1) y los scripts de evaluación de resultados 

(Fase 3). 

 

La localización del repositorio está disponible en este enlace28. 

 

 

6.2. Implementación del núcleo de la aplicación 

 

La fase de implementación constituye el punto en el que se materializa el diseño 

previamente definido, trasladando los modelos y el dataset a una aplicación funcional para 

dispositivos Android. 

 

La implementación incluye la programación de las clases Java que definen la 

arquitectura de la aplicación, la incorporación de los modelos en formato TensorFlow Lite y la 

adopción de los mecanismos necesarios para la carga, preprocesamiento y ejecución del dataset 

                                                 

 
28 https://github.com/jr-gh/TFM 

https://github.com/jr-gh/TFM
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de imágenes. Asimismo, se desarrollan las rutinas específicas para la obtención de predicciones 

de keypoints y la medición precisa de los tiempos de inferencia por imagen. 

 

 

6.2.1. Arquitectura de la aplicación 

 

La arquitectura de la aplicación Android se organiza en torno a un diseño orientado a 

objetos que sigue un esquema inspirado en el patrón Modelo-Vista-Controlador (MVC Model 

View Controler). En este caso, las diferentes clases cumplen roles claramente diferenciados y 

colaboran entre sí para ejecutar el flujo completo de inferencia de modelos de estimación de 

posturas humanas.  

 

 

6.2.2. Librerías TensorFlow Lite. 

 

Para la implementación de las clases se utilizan diferentes clases proporcionadas por la 

API y las librerías de TensorFlow Lite. Estas clases permiten gestionar de manera eficiente 

tanto el preprocesamiento de datos como la ejecución de inferencias y el manejo de resultados. 

Las funciones principales de cada una de ellas son: 

 

- org.tensorflow.lite.DataType. Define los tipos de datos soportados por los tensores 

de TensorFlow Lite (por ejemplo, FLOAT32, UINT8). Se utiliza para garantizar que 

las estructuras de entrada y salida del modelo se correspondan con los formatos 

esperados evitando incompatibilidades. 

 

- org.tensorflow.lite.InterpreterApi. Representa la interfaz de alto nivel que permite 

cargar un modelo TFLite y ejecutar inferencias sobre él. A través de esta clase se 

inicializa el intérprete con un modelo previamente cargado y se proporcionan los 

tensores de entrada y salida necesarios para la ejecución del modelo. 

 

- org.tensorflow.lite.support.common.FileUtil. Proporciona utilidades para gestionar 

la lectura de ficheros como el propio archivo .tflite del modelo y preparar su 

integración en el intérprete. 

 

- org.tensorflow.lite.support.common.ops.CastOp. Permite realizar conversiones de 

tipo de dato en tensores, por ejemplo de UINT8 a FLOAT32. Se utiliza en las fases 

de preprocesamiento y postprocesamiento para garantizar la compatibilidad entre 

los datos de entrada/salida y el modelo de TensorFlow Lite. 

 

- org.tensorflow.lite.support.common.ops.NormalizeOp. Encapsula operaciones de 

normalización de datos, generalmente aplicadas sobre imágenes antes de ser 

procesadas por el modelo. Por ejemplo, permite escalar valores de píxeles a rangos 

específicos como [0,1]. 

 

- org.tensorflow.lite.support.image.ImageProcessor. Componente fundamental para 

el preprocesamiento de imágenes. Permite construir pipelines de transformación 

(como redimensionado, normalización o rotación), asegurando que las imágenes de 

entrada se ajusten a los requisitos de cada modelo. 

 

- org.tensorflow.lite.support.image.TensorImage Representa imágenes en forma de 
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tensores compatibles con los modelos TFLite. Facilita la conversión desde formatos 

comunes (Bitmap, JPEG, etc.) a tensores que pueden ser interpretados directamente 

por el modelo durante la inferencia. 

 

- org.tensorflow.lite.support.image.ops.ResizeOp. Permite redimensionar imágenes a 

un tamaño específico generalmente requerido como paso previo al procesamiento 

por el modelo. Se integra dentro de ImageProcessor y es esencial para ajustar 

imágenes a resoluciones como 192x192 o 256x256, dependiendo del modelo. 

 

- org.tensorflow.lite.support.tensorbuffer.TensorBuffer. Utilizada para gestionar los 

tensores de salida generados por el modelo. Permite almacenar, acceder y manipular 

los resultados de la inferencia en diferentes formatos, facilitando la posterior 

interpretación de keypoints, coordenadas o métricas derivadas del procesamiento 

realizado. 

 

 

6.2.3. Implementación de las clases de la aplicación 

 

 

Clase MainActivity (controlador principal) 

 

La clase MainActivity actúa como punto de entrada y controlador principal de la 

aplicación. Su función es coordinar las interacciones entre la vista (interfaz de usuario) y el 

modelo (clases que gestionan los modelos TensorFlow Lite). 

 

Su implementación incluye acciones como gestionar el ciclo de vida de la aplicación en 

Android, inicializar y configurar los modelos que se ejecutan en el test, ejecutar la inferencia 

de cada modelo sobre el conjunto de imágenes del dataset de testeo, mostrar el progreso de la 

ejecución en la interfaz gráfica y habilitar la exportación de resultados (ficheros de predicciones 

y tiempos de inferencia). 

 

De esta forma, MainActivity actúa como organizador sin concentrar lógica de 

procesamiento que queda delegada en las clases de modelos. 

 

 

Clase TensorFlowLiteModel (clase base abstracta) 

 

La clase TensorFlowLiteModel constituye la superclase abstracta que encapsula las 

operaciones comunes a todos los modelos. 

 

Entre sus acciones implementadas se incluyen la lectura de la lista de imágenes del 

dataset para su procesamiento por el modelo, la gestión de las estructuras de almacenamiento 

de los datos de salida (estimaciones de keypoints y tiempos de inferencia) y el almacenamiento 

de estos resultados en ficheros. 

 

Esta clase es abstracta y no se instancia directamente, su propósito es proveer una base 

sólida para la implementación de los modelos concretos. 
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Clase Movenet (subclase de TensorFlowLiteModel) 

 

Especialización de la clase base para los modelos Movenet (Lightning y Thunder). Su 

constructor admite todos los parámetros necesarios para definir el tipo de modelo que ejecuta y 

sus tipos de datos para los seis modelos MoveNet (los tres de la familia Lightning y los tres de 

la familia Thunder). La ejecución del test del modelo sobre el dataset de imágenes se compone 

de las siguientes acciones para la inferencia: 

 

1. Inicialización del modelo. Se instancia el modelo MoveNet en memoria mediante el 

intérprete oficial (InterpreterApi). 

 

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, configurado en el 

tipo de dato requerido por el modelo (UINT8, FLOAT16 o FLOAT32). 

 

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 17, 3), 

que representa una imagen procesada, 17 puntos clave, y tres valores por keypoint (x, y 

y score). 

 

4. Se recorre la lista de imágenes a procesar y para cada una: 

 

a. Se obtiene un bitmap de la imagen en formato estándar. 

 

b. La imagen se carga en el objeto TensorImage. 

 

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño) 

para adaptarla a la estructura de entrada del modelo (imágenes de 192×192 o 

256×256 píxeles según si el modelo es de tipo Lightning o Thunder). 

 

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de 

TensorFlow Lite. 

 

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento) 

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete. 

 

f. Se recuperan las dimensiones originales de la imagen, con el fin de normalizar 

las coordenadas estimadas y adaptarlas al tamaño real de la imagen. 

 

g. Se accede al array de salida del modelo, recorriendo los 17 keypoints estimados 

y almacenando sus coordenadas normalizadas al tamaño real de la imagen. 

 

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos 

que contienen las predicciones de keypoints y los tiempos de inferencia. 

 

5. Se procede al cierre del modelo y liberación de los recursos asociados. 

 

6. Se escribe en disco la información de las estructuras de datos con las predicciones de 

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente 

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y 

rendimiento. 
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Clase BlazePose (subclase de TensorFlowLiteModel) 

 

Subclase encargada de gestionar los modelos BlazePose (Lite, Full y Heavy). A 

diferencia de las otras clases wrapper de los otros modelos esta clase realiza un mapeo de los 

17 puntos que queremos estudiar, coincidentes con el resto de modelos y con el estándar del 

dataset COCO, sobre los 33 que estima el modelo para extraer únicamente estos 17 puntos del 

resultado de la inferencia (Tabla 12 “Equivalencia puntos BlazePose”). Sus funciones son 

análogas a las de la clase Movenet: 

 

1. Inicialización del modelo. Se instancia el modelo BlazePose en memoria mediante el 

intérprete oficial (InterpreterApi). 

 

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, de tipo común para 

los modelos de la familia (FLOAT32). 

 

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 195), cuyos 

primeros 165 valores (33×5) representan los keypoints inferidos en la imagen con 5 

atributos (x, y, z, visibility, presence). 

 

4. Se recorre la lista de imágenes a procesar y para cada una: 

 

a. Se obtiene un bitmap de la imagen en formato estándar. 

 

b. La imagen se carga en el objeto TensorImage. 

 

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño) 

para adaptarla a la estructura de entrada del modelo (imágenes de 256×256 

píxeles), una normalización y una conversión del tipo de datos a FLOAT32. 

 

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de 

TensorFlow Lite. 

 

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento) 

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete. 

 

f. Se calcula los ratios de ancho y alto con respecto a la imagen original para la 

normalización de las coordenadas de los keypoints. 

 

g. Se accede al array de salida de landmarks del modelo que contiene las 

predicciones de los 33 keypoints estimados y utilizando la estructura de mapeo 

de la clase (ver apartado “3.1.3. BlazePose (Google MediaPipe)”) se extraen 

únicamente las correspondientes a los 17 keypoints que estamos estudiando, 

almacenando sus coordenadas normalizadas al tamaño real de la imagen. 

 

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos 

que contienen las predicciones de keypoints y los tiempos de inferencia. 

 

5. Se procede al cierre del modelo y liberación de los recursos asociados. 

 

6. Se escribe en disco la información de las estructuras de datos con las predicciones de 



98 

 

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente 

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y 

rendimiento. 

 

 

Clase Yolo (subclase de TensorFlowLiteModel) 

 

Subclase orientada a gestión de los modelos YOLOv8-Pose (Nano, Small, Medium) 

exportados a TensorFlow Lite. Sus funciones son análogas a las del resto de wrappers de 

modelos adaptadas a las características del modelo YOLO: 

 

1. Inicialización del modelo. Se instancia el modelo Yolo en memoria mediante el 

intérprete oficial (InterpreterApi). 

 

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, de tipo común para 

los modelos de la familia (FLOAT32). 

 

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 57), que 

representa una imagen procesada, con máximo una detección de personas (como 

habíamos especificado en la exportación del modelo a formato TFLite, ver apartado 

“5.2.2. Modelos que requieren conversión de formato”) y 57 puntos clave que definen 

cuatro puntos de bounding boxes, objectness (confianza), clase y los keypoints inferidos 

en formato (x, y, score). 

 

4. Se recorre la lista de imágenes a procesar y para cada una: 

 

a. Se obtiene un bitmap de la imagen en formato estándar. 

 

b. La imagen se carga en el objeto TensorImage. 

 

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño) 

para adaptarla a la estructura de entrada del modelo (imágenes de 320×320 

píxeles) y una normalización. 

 

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de 

TensorFlow Lite. 

 

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento) 

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete. 

 

f. Se recuperan las dimensiones originales de la imagen, con el fin de normalizar 

las coordenadas estimadas y adaptarlas al tamaño real de la imagen. 

 

g. Se accede al array de salida del modelo, recorriendo en el array de salida los 17 

keypoints estimados y almacenando sus coordenadas normalizadas al tamaño 

real de la imagen. 

 

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos 

que contienen las predicciones de keypoints y los tiempos de inferencia. 
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5. Se procede al cierre del modelo y liberación de los recursos asociados. 

 

6. Se escribe en disco la información de las estructuras de datos con las predicciones de 

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente 

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y 

rendimiento. 

 

 

Relación entre las clases 

 

MainActivity instancia y gestiona objetos de tipo Movenet, BlazePose y Yolo, los cuales 

heredan de TensorFlowLiteModel. Utilizando polimorfismo, MainActivity invoca métodos 

comunes (run()) definidos en la clase base TensorFlowLiteModel. 

 

De esta manera, la arquitectura resulta modular, extensible y mantenible, permitiendo 

incorporar nuevos modelos en el futuro simplemente creando nuevas subclases de 

TensorFlowLiteModel e implementando las características propias de preprocesamiento y 

postprocesamiento de cada modelo. 

 

 

Consideración sobre scoring/visibility/presence 

 

Las predicciones que estima cada modelo se componen básicamente de coordenadas (x, 

y) más valores de confianza del modelo en la predicción que son heterogéneos por cada modelo 

como vimos en el apartado “6.1.1. Análisis y diseño” en “Análisis de entradas y salidas de los 

modelos”, unos modelos calculan un score mientras que otros calculan visibility y presence. 

Como estos valores no tienen influencia posterior en el cálculo de la precisión, durante la 

implementación se ha incluido un valor fijo para todos ellos. 

 

 

6.3. Generación y gestión de ficheros de salida 

 

 En la fase de análisis (apartado “6.1.1. Análisis y diseño” dentro de “Diseño de 

estructuras de datos”) se definen los formatos de los ficheros de salida con las predicciones y 

tiempos de inferencia de la aplicación.  

 

La implementación de la gestión de estos ficheros de salida está integrada en la 

superclase abstracta que encapsula las operaciones comunes a todos los modelos, siendo ésta la 

que ofrece las labores de almacenamiento temporal de los datos de inferencia y tiempos en 

estructuras de datos durante la ejecución del test para posteriormente al finalizar la inferencia 

de todo el dataset por parte del modelo realizar el volcado de todos los datos en los ficheros de 

salida del modelo. Estas estructuras temporales son: 

 

- imagePredictionsMap. Estructura para almacenar las predicciones de keypoints, es 

un HashMap con una cadena como clave (nombre de la imagen de inferencia) y un 

array de valores float como valor que almacena secuencialmente los keypoints 

estimados por el modelo para esa imagen. 

 

- modelPerformanceMap. Estructura para almacenar los tiempos de inferencia del 

modelo por cada imagen. Es otro HashMap con una cadena como clave (nombre de 
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la imagen de inferencia) y otra cadena como valor donde se almacena en formato 

texto los tiempos de inferencia del modelo para la imagen. 

 

 

Al finalizar la inferencia por parte del modelo de todo el dataset se realiza el proceso de 

almacenamiento en disco de los resultados almacenados temporalmente en estas estructuras en 

los ficheros descritos en el apartado “6.1.1. Análisis y diseño”, manteniendo una nomenclatura 

que permite identificar a que modelo pertenece cada fichero de resultados. En total se generan 

dos ficheros por modelo en el estudio (el fichero JSON de predicciones y el fichero de texto 

con formato CSV con los tiempos de inferencia) lo que al tratarse de 12 modelos hace un total 

de 24 ficheros de salida que al finalizar el proceso global son incluidos en un ZIP para su 

exportación y posterior análisis. 

 

 

6.4. Desarrollo de la interfaz 

 

 La estructura principal de la interfaz está definida en el archivo activity_main.xml, 

generado y editado desde Android Studio, empleando el editor de diseño integrado. Este archivo 

XML constituye la descripción declarativa de los elementos gráficos que conforman la pantalla 

principal de la aplicación, así como de su disposición, estilos y comportamiento básico. 

 

En primer lugar, incorpora una lista estática en la que aparecen todos los modelos 

incluidos en el estudio, es decir, los distintos algoritmos de estimación de posturas previamente 

integrados en la aplicación (todas las versiones de MoveNet, BlazePose y YOLO-Pose). Esta 

lista constituye el núcleo visual de la interfaz (Imagen 20), ya que sobre ella el usuario identifica 

qué modelos van a ser evaluados y, además, recibe información dinámica sobre el estado de 

cada uno durante la ejecución del test. 

 

La interacción se organiza en torno a tres botones principales: 

 

- Botón "EJECUTAR TEST". Inicia el proceso de inferencia de cada modelo sobre el 

conjunto de imágenes seleccionado como dataset de testeo. Durante este proceso, la 

lista de modelos se actualiza dinámicamente para reflejar el progreso, los modelos 

en ejecución cambian de color a amarillo, lo que comunica al usuario que el 

algoritmo está siendo evaluado y una vez completada la ejecución 

satisfactoriamente, el nombre del modelo pasa a verde, indicando la finalización 

correcta. En caso de error o fallo durante la inferencia, el modelo se marca en rojo, 

proporcionando una señal inmediata del problema ocurrido. 

 

- Botón "COMPARTIR RESULTADOS". Permanece inicialmente inactivo 

(deshabilitado), activándose únicamente al concluir la ejecución completa del test 

sobre todos los modelos. Su función es facilitar la exportación de resultados de 

manera intuitiva, generando un fichero comprimido ZIP que contiene tanto los 

archivos de predicciones (keypoints estimados) como los registros de tiempos de 

inferencia por imagen. A través de la integración con los mecanismos estándar de 

Android (Intents), este botón permite enviar el fichero ZIP al usuario mediante 

diversos canales disponibles en el dispositivo, como correo electrónico, aplicaciones 

de mensajería o almacenamiento en la nube. 

 

- Botón "SALIR": proporciona un mecanismo directo para cerrar la aplicación, 
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finalizando la sesión de uso de manera controlada y limpia. 

 

 

La lógica de actualización dinámica de la lista de modelos y el cambio de colores 

durante la ejecución hace que la interfaz no solo cumpla una función estética, sino también de 

monitorización en tiempo real de la evaluación de los modelos. 

 

 

 

 
 

Imagen 20. Interfaz de la aplicación Android (Samsung Galaxy Tab A9) 

 

 

6.5. Pruebas y correcciones 

 

Se realizan pruebas unitarias centradas en la correcta implementación de cada clase de 

modelo integrada en la aplicación. Cada modelo, ya sea MoveNet, BlazePose o YOLO-Pose, 

fue evaluado de manera independiente para verificar que la lectura de imágenes desde el dataset 

seleccionado se realizaba correctamente, el preprocesamiento de las imágenes se ajustaba a los 

requisitos de entrada del modelo, incluyendo la normalización y el dimensionamiento de los 

tensores de entrada, la ejecución de la inferencia generaba salidas consistentes con la estructura 

esperada de keypoints y probabilidades de visibilidad y los tiempos de inferencia por imagen 

se recogían de manera precisa y se almacenaban correctamente en los ficheros de salida. 
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Posteriormente, se llevan a cabo pruebas de integración, centradas en la interacción 

entre los distintos componentes de la aplicación, la clase principal de control (MainActivity), 

las clases de los modelos y los mecanismos de almacenamiento de resultados. Durante estas 

pruebas se evalúa que la ejecución secuencial de los modelos sobre el dataset completo se 

realiza sin interrupciones, la interfaz gráfica refleja correctamente el estado de cada modelo 

mediante los cambios de color en la lista (amarillo, verde y rojo) durante la ejecución y los 

botones de la interfaz funcionaran según lo esperado, habilitando la opción de compartir 

resultados únicamente al finalizar todas las inferencias y permitiendo la salida de la aplicación 

sin bloqueos o pérdidas de datos. 

 

Durante la fase de pruebas se identificaron diversos errores relacionados con la 

interpretación de los datos de salida de los modelos, un aspecto crítico y complejo debido a la 

heterogeneidad de las salidas de cada modelo. Cada familia de modelos, ya sea MoveNet, 

BlazePose o YOLO-Pose, genera resultados en formatos distintos, con estructuras de tensores, 

dimensiones y significados de cada valor específicos, lo que dificultó la correcta normalización 

y almacenamiento de los keypoints y sus probabilidades de visibilidad. 

 

Los errores detectados incluyen: 

 

- Confusión en los índices de los keypoints, especialmente en BlazePose, donde la 

correspondencia entre la posición del tensor y la articulación real requiere un mapeo 

explícito. 

 

- Interpretación errónea de los valores de visibilidad o confianza, lo que generaba 

la inclusión de keypoints poco fiables en los ficheros de salida. 

 

 

La corrección de estos errores implicó una labor cuidadosa de análisis de la 

documentación oficial de cada modelo, pruebas unitarias de cada salida. Durante el proceso de 

prueba además se detectaron y corrigieron los siguientes problemas menores: 

 

- Errores de compatibilidad de tipos de datos en la carga de imágenes y en la ejecución 

de modelos, solucionados mediante ajustes en las clases de TensorFlow Lite, 

incluyendo el uso adecuado de TensorImage y TensorBuffer. 

 

- Fallos de sincronización en la interfaz, que impedían la actualización inmediata de 

los colores de la lista de modelos, solucionadas mediante la ejecución de la acción 

especificada en el subproceso de la interfaz de usuario que garantiza la actualización 

en el hilo principal de la interfaz. 

 

- Problemas en la generación de los ficheros de resultados y del fichero ZIP de 

general, que fueron corregidos configurando la carpeta Documents como 

“external_documents” en fichero file_paths.xml. 

 

 

Finalmente se realizan pruebas de aceptación, ejecutando la aplicación completa que 

permiten validar la aplicación, procesar todo el dataset correctamente, ejecutar todos los 

modelos de manera fiable, generar y almacenar los resultados de forma estructurada y accesible, 

proporcionar al usuario retroalimentación visual clara sobre el estado de cada modelo y 

compartir los resultados a través de los canales de Android sin pérdida de información.  
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Imagen 21. Imágenes de la interfaz con secuencia de inicio y avance del proceso 

 

 

 

 

               
 

 
Imagen 22. Imágenes de la interfaz con finalización del proceso, compartir resultados y salida de la aplicación 
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7. FASE 3: EVALUACION Y ANALISIS DE RESULTADOS 
 

La evaluación de los resultados se realiza de forma dual, primero enfocada en la 

precisión obtenida por las predicciones de los modelos estudiados con el dataset seleccionado 

y después analizando los tiempos de inferencia de esas mismas predicciones. 

 

 

7.1. Resultados obtenidos de precisión  

 

La obtención de las medidas de precisión se realiza mediante el uso de la API oficial de 

COCO y de scripts desarrollados en Python ejecutados en un entorno Jupyter Notebook. La API 

de COCO permite evaluar los keypoints estimados por cada modelo comparándolos con las 

anotaciones de referencia (ground truth) disponibles en los ficheros de anotaciones del dataset. 

Para ello, se utilizan métricas consolidadas en la comunidad de visión por computador, tales 

como el Average Precision (AP) y el Average Recall (AR) bajo distintos umbrales de 

coincidencia. Estos cálculos requieren la generación previa de ficheros de predicciones por cada 

modelo como los obtenidos en este estudio, los cuales incluyen las coordenadas estimadas de 

los keypoints y sus valores de confianza, que posteriormente son procesados por la API para 

determinar el grado de concordancia con las anotaciones reales del dataset. 

 

En este apartado se presentan los resultados obtenidos en la evaluación de precisión de 

los modelos de estimación de poses humanas estudiados, utilizando como métrica principal la 

Average Precision definida en el protocolo de evaluación de COCO. Para realizar esta 

evaluación se han tomado de los ficheros ZIP de resultados exportados de la ejecución de los 

tres dispositivos de prueba los ficheros relativos a precisiones de cada modelo (formato 

JSON).  

 

Como ya hemos visto, se han evaluado un total de 12 modelos ya descritos, MoveNet 

(Lightning y Thunder, en resoluciones 8, 16 y 32), BlazePose (Lite, Full y Heavy) y YOLOv8-

Pose (Nano, Small y Medium), y se ha utilizado un dataset general de 316 imágenes extraídas 

del dataset COCO (filtradas con las condiciones ya descritas). Sobre este dataset, como se 

describió en al apartado “3.3.1. Subconjuntos del dataset de testeo” de la metodología, 

trabajamos con tres subconjuntos de imágenes para poder evaluar la influencia de las 

características de las imágenes en las precisiones obtenidas de los modelos: 

 

- Dataset general. Contiene la totalidad de las 316 imágenes seleccionadas con las 

que se ha ejecutado el test a los modelos. 

 

- Dataset de imágenes adecuadas: formado por un subconjunto de 65 imágenes del 

dataset general (316 imágenes) donde la persona aparece centrada y a distancia 

cercana (condiciones óptimas para estimación de posturas). 

 

- Dataset de imágenes no adecuadas: formado por un subconjunto de 61 imágenes 

del dataset general (316 imágenes) donde la persona aparece descentrada de la 

imagen o de un tamaño reducido, lo que implica lejanía (condiciones adversas para 

estimación de posturas). 

 

 

Los procesos de filtrado de imágenes adecuadas/no adecuadas, obtención de las medidas 
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de precisión, la evaluación de los resultados se apoyan en librerías especializadas de Python. 

 

 

Librerías necesarias 

 

- pycocotools.coco.COCO. La clase COCO constituye la API oficial del dataset 

COCO. Su finalidad es entre otras validar resultados de inferencia mediante la 

comparación con las anotaciones de referencia, calculando métricas estándar como 

AP (Average Precision) y AR (Average Recall). 

 

- pycocotools.cocoeval.COCOeval. Es la clase principal de evaluación de COCO 

API. Permite comparar las predicciones generadas por un modelo (detección, 

segmentación o keypoints) contra las anotaciones reales del dataset COCO, 

obteniendo métricas como AP (Average Precision) o AR (Average Recall) bajo 

distintos umbrales de coincidencia. 

 

- json. Sirve para leer y escribir ficheros en formato JSON, que es el estándar utilizado 

por COCO para almacenar anotaciones y también el formato en que suelen 

exportarse las predicciones de los modelos. 

 

 

Dataset de imágenes adecuadas 

 

Los criterios seleccionados e implementados en el script de selección de este 

subconjunto son que las imágenes más adecuadas para estimación de posturas son las que tienen 

una persona cuya caja (bounding box) ocupa un mínimo del 25% del ancho de la imagen o un 

75% del alto de la imagen (implica que la persona puede estar cerca en el plano) y además 

el centro de la caja de la persona no está más alejado de un 15% del centro de la imagen (implica 

que la persona está centrada en la imagen). 

 

 

Dataset de imágenes no adecuadas 

 

A su vez los criterios seleccionados e implementados en el script de selección de este 

subconjunto son que las imágenes no adecuadas para estimación de posturas son las que tienen 

una persona cuya caja (bounding box) ocupa menos del 25% del ancho o del alto de la imagen 

(implica que la persona puede no estar cerca en el plano) o el centro de la caja de la persona 

está más alejado de un 25% del centro de la imagen (implica que la persona no está centrada 

en la imagen). 

 

 

7.1.1. Resultados obtenidos de precisión AP (Average Precision) 

 

A continuación se presentan los resultados obtenidos de AP para cada modelo en el 

dispositivo Samsung Galaxy M32 con los tres subconjuntos de datos mediante gráficas de 

barras comparativas que permiten visualizar la precisión relativa de cada variante y familia con 

cada dataset, ordenadas por dataset de menor a mayor precisión obtenida. 
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Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 8. 

 

 
 

Imagen 23. AP por dataset del modelo MoveNet Lightning 8 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 16. 

 

 
 

Imagen 24. AP por dataset del modelo MoveNet Lightning 16 

 

 

0,055

0,293

0,656

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
A

P
 [

Io
U

=0
.5

0
:0

.9
5

]

Dataset de imágenes

No adecuadas General Adecuadas

0,084

0,348

0,719

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas



107 

 

 

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 32. 

 

 
 

Imagen 25. AP por dataset del modelo MoveNet Lightning 32 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 8. 

 

 
 

Imagen 26. AP por dataset del modelo MoveNet Thunder 8 
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Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 16. 

 

 
 

Imagen 27. AP por dataset del modelo MoveNet Thunder 16 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 32. 

 

 
 

Imagen 28. AP por dataset del modelo MoveNet Thunder 32 
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Gráfica con los resultados de precisión (AP) para el modelo BlazePose Lite. 

 

 
 

Imagen 29. AP por dataset del modelo BlazePose Lite 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo BlazePose Full. 

 

 
 

Imagen 30. AP por dataset del modelo BlazePose Full 
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Gráfica con los resultados de precisión (AP) para el modelo BlazePose Heavy. 

 

 
 

Imagen 31. AP por dataset del modelo BlazePose Heavy 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Nano. 

 

 
 

Imagen 32. AP por dataset del modelo Yolo8-pose Nano 
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Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Small. 

 

 
 

Imagen 33. AP por dataset del modelo Yolo8-pose Small 

 

 

 

Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Medium. 

 

 
 

Imagen 34. AP por dataset del modelo Yolo8-pose Medium 
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Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imágenes inadecuadas. 

 
Imagen 35. Comparativa precisión/modelos por dispositivo con imágenes inadecuadas 

A9

M32

A7Lite

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 0,053 0,084 0,095 0,138 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

M32 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

A7Lite 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

D
is

p
o

si
ti

voA
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Modelo



113 

 

Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset general de imágenes. 

 
Imagen 36. Comparativa precisión/modelos por dispositivo con dataset general 
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Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imágenes adecuadas. 

 
Imagen 37. Comparativa precisión/modelos por dispositivo con imágenes adecuadas 
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7.1.2. Análisis resultados precisión 

 

En cuanto al desempeño comparativo entre familias de modelos, se observa que los 

modelos de la familia YOLO son los que alcanzan una mejor precisión. Estos modelos 

destacan por su robustez frente a variaciones en la posición de la persona y por la capacidad de 

mantener niveles de desempeño relativamente altos incluso cuando las condiciones de las 

imágenes no son óptimas (Imagen 35). En el extremo opuesto, los modelos de la familia 

BlazePose presentan el peor comportamiento, evidenciando mayores dificultades en la 

identificación de keypoints en escenarios desfavorables y ofreciendo resultados inferiores de 

manera consistente en todos los subconjuntos evaluados. 

 

El pobre desempeño de los modelos de la familia BlazePose sobre todo con imágenes 

menos adecuadas (obtienen un 0 de precisión) (Imagen 35) puede ser debido a que estos estén 

diseñados para ser utilizados junto con otras herramientas de preprocesado previo de las 

imágenes (identificación de la persona en la imagen, crop de área y centrado, etc,..) ya que 

como su propia documentación indica quedan fuera de su alcance “Personas demasiado alejadas 

de la cámara (p. ej., a más de 4 metros)” o imágenes donde “La cabeza no es visible”. 

 

Un hallazgo especialmente interesante se observa en los modelos de la familia 

MoveNet. Si bien su desempeño general puede considerarse intermedio, son los modelos que 

muestran una mayor sensibilidad a la idoneidad de las imágenes empleadas. Esto se traduce 

en una marcada diferencia de precisión entre los subconjuntos adecuados e inadecuados, los 

modelos MoveNet mejoran significativamente cuando se trabaja con imágenes donde la 

persona está centrada y correctamente representada, pero degradan su precisión de forma 

acusada en presencia de condiciones adversas. Este comportamiento pone de manifiesto que, 

aunque la arquitectura MoveNet está optimizada para dispositivos móviles y entornos de 

inferencia en tiempo real, su desempeño se ve afectado por la calidad de entrada de los datos 

visuales. 

 

En relación con el entorno de ejecución, los experimentos confirman algo lógico y 

esperado, que la precisión obtenida por los modelos no varía en función del dispositivo 

(Imagen 35, Imagen 36 e Imagen 37) en el que se lleva a cabo la inferencia. Este resultado era 

previsible, dado que la precisión está determinada por la arquitectura del modelo y el algoritmo 

de inferencia, y no por las características del hardware en el que se ejecuta. El dispositivo podría 

afectar de forma clara al rendimiento temporal (tiempo de inferencia por imagen), pero no a la 

exactitud de los keypoints detectados. 

 

 

Resumen 

 

En las gráficas de resultados se observa a simple vista que si bien como era de esperar 

la precisión es independiente del dispositivo en que se ejecute, ésta si está altamente 

influenciada por las condiciones visuales de las imágenes de entrada.  

 

Los modelos de mayor complejidad (YOLOv8-Pose versiones small y medium) ofrecen 

una mejor generalización, mientras que los modelos ligeros sufren caídas significativas de 

precisión en escenarios adversos, más acentuadas en los modelos de la familia BlazePose que 

en los de la familia MoveNet. 
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7.2. Resultados obtenidos de rendimiento 

 

En este apartado se presentan los resultados de rendimiento (en tiempos de 

inferencia) de cada modelo medido en tres dispositivos representativos de gamas medias y 

bajas del mercado, todos con sistema operativo Android y arquitectura ARM y con las 

características que vimos en el apartado “5.3.1. Listado de dispositivos de prueba”: 

 

- Samsung Galaxy Tab A7 Lite (Tablet) 

Procesador: MediaTek Helio P22T, Memoria: 3GB, Versión de android: 14 

 

- Samsung Galaxy M32 (Móvil) 

Procesador: MediaTek Helio G80, Memoria: 6GB, Versión de android: 13 

 

- Samsung Galaxy Tab A9 (Tablet) 

Procesador: MediaTek Helio G99, Memoria: 4GB, Versión de android: 15 

 

 

Para realizar esta evaluación se han tomado de los ficheros ZIP de resultados exportados 

de la ejecución de los tres dispositivos de prueba los ficheros relativos a tiempos de inferencia 

de cada modelo (ficheros de texto con formato CSV) por lo que se ha utilizado los tiempos de 

inferencia de cada modelo para el dataset general de 316 imágenes extraídas del dataset 

COCO (filtradas con las condiciones ya descritas). Sobre los tiempos obtenidos por cada 

modelo para cada imagen se calculan los tiempos medios de inferencia por cada modelo y los 

tiempos totales del proceso completo por modelo y en base a ellos se elaboran las gráficas de 

este apartado. 

 

El objetivo es determinar la viabilidad real de cada modelo para ser utilizado en 

dispositivos móviles Android, teniendo en cuenta las limitaciones de CPU, GPU y memoria de 

cada terminal. 

 

 

7.2.1. Gráficas comparativas de tiempos de estimación 

 

En este apartado se presentan las gráficas del rendimiento en tiempo de ejecución, 

centrado en la latencia de inferencia o tiempo medio de procesamiento por imagen 

(expresado en milisegundos). Para obtener estos datos se utiliza la medición de la operación de 

inferencia que hace el propio interprete de la API de TensorFlow Lite mediante el método 

getLastNativeInferenceDurationNanoseconds() (como vimos en el apartado “6.2.3. Implementación 

de las clases de la aplicación”) y que hemos recopilado en los ficheros de salida relativos a 

tiempos de inferencia. 

 

En las siguientes gráficas comparativas para una mejor visualización se han querido 

agrupar por colores las familias a las que pertenece cada modelo: 

 

- MoveNet en azul. 

 

- BlazePose en verde. 

 

- Yolo8-pose en gris. 
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Gráfica con resultados de rendimiento para la tablet Samsung Galaxy Tab A7 Lite. 

 
Imagen 38. Tiempo medio inferencia Samsung Galaxy Tab A7 Lite 

 

Gráfica con resultados de rendimiento para el teléfono móvil Samsung Galaxy M32. 

 
Imagen 39. Tiempo medio inferencia Samsung Galaxy M32 
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Gráfica con resultados de rendimiento para la tablet Samsung Galaxy Tab A9.  

 
Imagen 40. Tiempo medio inferencia Samsung Galaxy Tab A9 
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Comparativa de tiempo MEDIO de inferencia (en milisegundos) por imagen del dataset general por modelo en diferentes dispositivos. 

 
Imagen 41. Comparativa tiempos medio inferencia por modelo por dispositivo
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Aunque las siguientes gráficas pudieran considerarse en cierto modo redundantes 

respecto a los análisis anteriores centrados en los tiempos medios de inferencia por imagen, se 

ha considerado oportuno incluir también la representación de los tiempos totales de ejecución 

que requirió cada modelo al procesar el conjunto completo de imágenes del dataset general (316 

imágenes filtradas del dataset COCO, correspondientes a escenarios de una sola persona y con 

al menos 15 keypoints visibles). 

 

Esta inclusión permite complementar la perspectiva de los tiempos promedio por 

imagen con una visión global del coste temporal agregado, lo que resulta especialmente 

relevante en aplicaciones reales donde no se procesan imágenes de manera aislada, sino lotes 

completos de datos. Por otro lado, facilita la comparación directa entre dispositivos de prueba, 

ya que los tiempos totales reflejan con claridad las diferencias de rendimiento cuando la carga 

de trabajo se mantiene constante para todos los modelos. 

 

En estas gráficas se presentan los tiempos totales consumidos por cada modelo al 

ejecutar la inferencia sobre el dataset completo de testeo. A diferencia de las gráficas anteriores 

(donde la métrica principal eran los milisegundos por imagen) en esta ocasión los valores se 

expresan en segundos, dado que se trata de intervalos de tiempo considerablemente más 

elevados. Este cambio de escala responde a la necesidad de presentar resultados más legibles y 

comprensibles, evitando una precisión excesiva que no aporta valor analítico en este contexto. 

 

 

Gráfica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A7 Lite. 

 

 
Imagen 42. Tiempo total inferencia Samsung Galaxy Tab A7 Lite 
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Gráfica con tiempo total de inferencia en el móvil Samsung Galaxy M32. 

 

 
Imagen 43. Tiempo total inferencia Samsung Galaxy M32 

 

Gráfica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A9. 

 

 
Imagen 44. Tiempo total inferencia Samsung Galaxy Tab A9

11,5 18,564 19,638 41,366
82,333 90,594

59,935 87,805

277,123

106,524

269,534

821,587

0

200

400

600

800

1000

1200

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

Se
gu

n
d

o
s

Modelo

Tiempo total de inferencia dataset completo por modelo (segundos)

4,708 7,178 7,132 14,105 29,958 30,137 8,387 13,291
52,764 30,414

183,791

370,026

0

200

400

600

800

1000

1200

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

Se
gu

n
d

o
s

Modelo

Tiempo total de inferencia dataset completo por modelo (segundos)



122 

 

Gráfica comparativa de tiempo TOTAL de inferencia (en segundos) del dataset general por modelo en diferentes dispositivos. 

 
Imagen 45. Comparativa tiempo total inferencia por modelo por dispositivo
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7.2.2. Análisis resultados rendimiento 

 

 La comparación de los rendimientos obtenidos por los modelos en los distintos 

dispositivos de prueba permite extraer varias conclusiones acerca de su comportamiento y 

eficiencia. En términos generales, los resultados muestran que, aunque todos los modelos tienen 

una tendencia esperada (el rendimiento de todos los modelos mejora de forma clara cuando se 

ejecutan en dispositivos con mayor capacidad de procesamiento), las diferencias entre ellos son 

notables y permiten establecer tres grupos en función de su rendimiento relativo: 

 

- Modelos con bajo rendimiento. Se identifican algunos modelos que, 

independientemente del dispositivo utilizado, presentan tiempos de inferencia 

significativamente superiores al resto (Imagen 41 e Imagen 45). Dentro de este 

grupo se encuentran YOLOv8-Pose Small, YOLOv8-Pose Medium y BlazePose 

Heavy, cuya complejidad estructural los convierte en opciones poco adecuadas para 

dispositivos móviles o de recursos limitados. 

 

- Modelos con rendimiento intermedio. Un segundo grupo lo conforman aquellos 

que ofrecen un rendimiento aceptable, aunque no sobresaliente. Entre ellos se 

encuentran las tres versiones de la familia MoveNet Thunder, junto con BlazePose 

Full y YOLOv8-Pose Nano. Estos modelos representan una solución equilibrada, 

con tiempos de inferencia moderados y una viabilidad de uso razonable en la 

mayoría de escenarios, aunque sin alcanzar la agilidad de los más eficientes. 

 

- Modelos con alto rendimiento. Finalmente, destacan los modelos con los mejores 

tiempos de inferencia y mayor consistencia en todos los dispositivos. Este grupo está 

formado por las tres versiones de MoveNet Lightning y por BlazePose Lite, que 

se posicionan como las alternativas más ligeras y rápidas, adecuadas para 

aplicaciones en tiempo real y entornos de hardware limitado. 

 

 

Familia MoveNet Lightning 

 

Los modelos MoveNet Lightning se posicionan como los más eficientes en cuanto a 

velocidad de ejecución. En todos los dispositivos utilizados para las pruebas, 

independientemente de su capacidad de procesamiento, esta variante se mantuvo como la más 

rápida, confirmando su idoneidad para aplicaciones en tiempo real. Además, cabe resaltar que 

el rendimiento de Lightning es consistente: el cambio de dispositivo apenas afecta a los tiempos 

de inferencia, lo que indica una arquitectura altamente optimizada y con un coste computacional 

estable. Esto los convierte en candidatos idóneos para integraciones móviles donde los recursos 

de hardware son limitados. 

 

 

Familia MoveNet Thunder 

 

Los modelos MoveNet Thunder presentan un rendimiento intermedio. En particular, 

la versión cuantizada a int8 logra unos tiempos de inferencia competitivos, siendo la que 

muestra los mejores resultados dentro de esta familia. En contraste, las versiones en float16 y 

float32 empeoran ligeramente en rendimiento, probablemente debido al mayor coste 

computacional asociado al manejo de mayor precisión numérica. Aunque siguen siendo 

relativamente rápidas, muestran una sensibilidad más marcada a las limitaciones de hardware 
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que Lightning. 

 

 

Familia BlazePose 

 

Los modelos de la familia BlazePose obtienen un rendimiento medio aceptable en las 

versiones Lite y Full. Sin embargo, la versión Heavy dispara sus tiempos de ejecución de 

manera notable, situándose como la tercera peor opción por detrás de los modelos Small y 

Medium de Yolo. Esta diferencia refleja el alto coste computacional de las arquitecturas 

pesadas, que si bien pueden aportar mejoras de precisión en determinados escenarios, resultan 

menos prácticas para su uso en dispositivos con recursos limitados. 

 

 

Familia YOLO-Pose (v8) 

 

La familia YOLO muestra una marcada disparidad en su rendimiento según la variante, 

la versión Nano es la única que obtiene tiempos de inferencia medio aceptables, permitiendo 

pensar en posibles aplicaciones móviles con ciertas restricciones. La versión Small experimenta 

tiempos de inferencia muy elevados, alejándose de los valores prácticos requeridos para 

aplicaciones en tiempo real. La versión Medium presenta tiempos de inferencia 

desproporcionados en la mayoría de los dispositivos con respecto al resto de modelos. No 

obstante, se observa una mejora significativa en su rendimiento cuando se ejecuta en 

dispositivos con hardware más potente, lo que evidencia que este modelo está pensado para 

entornos de mayor capacidad de cómputo y no para hardware móvil estándar. 

 

 

Resumen 

 

El análisis de los tiempos de inferencia evidencia diferencias claras entre las familias de 

modelos evaluadas. Los modelos de la familia MoveNet Lightning destacan como los más 

rápidos y estables, siendo apenas sensibles al cambio de dispositivo, lo que los convierte en la 

opción más adecuada para aplicaciones móviles en tiempo real. Los modelos de la familia 

MoveNet Thunder alcanzan un rendimiento intermedio aceptable (en especial su versión 

cuantizada a int8), aunque las versiones de mayor precisión numérica se ven penalizadas en 

velocidad. Los modelos BlazePose Lite y Full mantienen tiempos de ejecución razonables, 

mientras que la versión Heavy resulta inviable por sus elevadas necesidades de cómputo. En la 

familia YOLO-Pose, solo la variante Nano ofrece tiempos aceptables, en cambio, Small y 

sobre todo Medium presentan inferencias muy lentas, aunque su rendimiento se ve más 

beneficiado con la utilización de dispositivos con mejor hardware. 

 

 

7.3. Comparativa de resultados 

 

 La intención de esta comparativa no es únicamente señalar qué modelos son más 

precisos o más rápidos, sino identificar el equilibrio entre ambas dimensiones, lo que resulta 

fundamental en aplicaciones prácticas. En entornos de uso real, como dispositivos móviles, no 

basta con contar con una alta exactitud en las estimaciones sino que también es necesario que 

los tiempos de inferencia sean compatibles con un uso en tiempo real. 

 



125 

 

7.3.1. AP general vs. Tiempo medio 

 

El análisis conjunto de precisión (Average Precision, AP) y tiempo de inferencia para el 

dataset general de imágenes que incluye el total de las imágenes de testeo seleccionadas para el 

estudio (316 imágenes), revela diferencias claras en la eficiencia relativa de las familias de 

modelos estudiados. En este apartado se muestra dicha comparativa para el resultado obtenido 

en el dispositivo con más prestaciones utilizado (Samsung Galaxy A9 Tab). 

 

Se ha elaborado una gráfica de dispersión (Imagen 46) en la que cada punto representa 

a uno de los modelos evaluados. En este caso, el eje horizontal muestra la precisión obtenida 

(AP), mientras que el eje vertical refleja los tiempos medios de inferencia por imagen. Esta 

gráfica permite observar cómo aumenta el coste computacional conforme se avanza hacia 

modelos más precisos. Los modelos situados en la parte inferior derecha de la gráfica pueden 

considerarse los más ventajosos, al combinar altos niveles de precisión con tiempos de 

ejecución reducidos. En contraste, aquellos que se ubican en la zona superior derecha ofrecen 

buena precisión, pero a costa de tiempos de inferencia elevados. Por último, los modelos en la 

parte inferior izquierda muestran tiempos de inferencia bajos pero una precisión insuficiente. 

 

 

 

 
 

Imagen 46. Comparativa AP vs. Tiempo de inferencia dataset general 

 

 

MoveNet Thunder (float16 y float32) 

 

Estas versiones destacan como las más equilibradas en el conjunto de pruebas. Aunque 

no alcanzan las cifras absolutas de precisión de algunos modelos más complejos, logran una 

relación muy favorable entre la calidad de las predicciones y el coste computacional. En 
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consecuencia, ofrecen un compromiso idóneo para aplicaciones en dispositivos móviles donde 

la velocidad es importante pero no puede sacrificarse demasiado la exactitud. 

 

 

YOLOv8-Pose Nano 

 

También presenta una relación adecuada entre precisión y rendimiento. Su capacidad 

de mantener un nivel de exactitud aceptable con tiempos de inferencia moderados lo convierte 

en una opción práctica, aunque se sitúa por debajo de MoveNet Thunder en términos de 

equilibrio global. 

 

 

YOLOv8-Pose Small y Medium 

 

Estos modelos alcanzan los mejores valores de precisión del estudio, lo que los 

posiciona como referentes desde el punto de vista de la exactitud en la estimación de 

keypoints. Sin embargo, esta ventaja se ve contrarrestada por tiempos de inferencia 

considerablemente altos, que limitan su aplicabilidad a entornos con hardware de altas 

prestaciones. Su uso en dispositivos generales resultaría poco viable debido al coste temporal 

de la ejecución. 

 

 

BlazePose 

 

A pesar de ofrecer tiempos de inferencia reducidos, los resultados de precisión son 

notablemente inferiores al resto de familias. Este desequilibrio los hace menos adecuados para 

tareas en las que la calidad de la estimación es prioritaria, ya que la rapidez en el cálculo no 

compensa la baja fiabilidad de los resultados obtenidos. 

 

 

7.3.2. AP por tipo de imagen (más adecuadas y menos adecuadas) vs. Tiempo medio 

 

El análisis conjunto de precisión (Average Precision, AP) y tiempo de inferencia para 

los dos datasets (subconjuntos del dataset general de imágenes) que incluyen las imágenes 

consideradas más adecuadas (65 imágenes) y menos adecuadas para estimación de posturas 

humanas (61 imágenes) nos revela todavía más diferencias claras en la eficiencia relativa de las 

familias de modelos estudiados. En este apartado se muestran los resultados obtenidos con 

ambos subconjuntos del dataset de testeo en el dispositivo con más prestaciones utilizado 

(Samsung Galaxy A9 Tab). 

  

 

Análisis AP/Tiempo de inferencia en subconjunto de imágenes adecuadas 

 

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto 

de imágenes filtradas para su idoneidad (personas centradas y cercanas) permite observar 

tendencias significativas que complementan y amplían los hallazgos obtenidos con el dataset 

completo (Imagen 47). Este subconjunto, al ofrecer condiciones visuales óptimas para la 

estimación de posturas, permite medir el máximo potencial de precisión de cada modelo, al 

tiempo que se comparan sus tiempos de inferencia acumulados. 
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Imagen 47. Comparativa AP vs. Tiempo de inferencia dataset de imágenes adecuadas 

 

 

En primer lugar, los modelos MoveNet Thunder destacan de manera sobresaliente. 

Las versiones float32 y float 16, y en menor medida la versión cuantizada int8, logran cifras de 

precisión espectaculares, cercanas al máximo teórico que cada arquitectura puede ofrecer. 

Además mantienen un rendimiento muy eficiente, igual al observado en el dataset completo, lo 

que evidencia la capacidad de estas arquitecturas para combinar exactitud y velocidad sin 

comprometer la inferencia. Esta combinación los posiciona como la opción más equilibrada 

para aplicaciones móviles o en tiempo real donde la exactitud es prioritaria. 

 

Por otro lado, los modelos YOLOv8-Pose Small y Medium también alcanzan niveles 

de precisión igualmente elevados, reflejando su capacidad para detectar keypoints de manera 

muy precisa en condiciones visuales óptimas. No obstante, esta mejora en precisión mantiene 

un coste considerable en términos de rendimiento al igual que para las imágenes del dataset 

completo. La versión Small registra un rendimiento bajo, mientras que Medium alcanza 

tiempos de inferencia extremadamente altos, desaconsejando su uso en dispositivos con 

recursos limitados. Sin embargo, en entornos con hardware de alta gama, estas versiones 

pueden ser útiles cuando la prioridad absoluta es la precisión. 

 

Los modelos MoveNet Lightning y YOLOv8-Pose Nano muestran un 

comportamiento equilibrado en este subconjunto, su precisión es buena, aunque ligeramente 

inferior a la de los modelos Thunder o las versiones más pesadas de YOLO, pero sus tiempos 

de inferencia son muy competitivos, posicionándolos como alternativas fiables para 

aplicaciones que requieren velocidad y respuesta en tiempo real. Su desempeño refleja la 

efectividad de estas arquitecturas ligeras para escenarios móviles sin comprometer 
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excesivamente la exactitud. 

 

En cuanto a los modelos BlazePose, se observa un aumento notable de la precisión, 

pero insuficiente en comparación con el conjunto completo, lo que confirma que la idoneidad 

de las imágenes tiene un impacto positivo en su desempeño. Sin embargo, incluso en este 

subconjunto optimizado, BlazePose sigue siendo la familia que presenta mayor pérdida de 

precisión relativa respecto a las demás familias de modelos. Esta pérdida es más acentuada en 

la versión Lite, seguida por Full, mientras que la versión Heavy muestra una degradación algo 

menor, aunque no alcanza los niveles de precisión de MoveNet Thunder o YOLOv8-Pose 

Medium. En términos de rendimiento, BlazePose mantiene tiempos de inferencia similares a 

los observados en el dataset completo, reflejando una eficiencia estable que, no obstante, no 

compensa su menor exactitud. 

 

 

Análisis AP/Tiempo de inferencia en subconjunto de imágenes inadecuadas 

 

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto 

de imágenes filtradas menos adecuadas (con personas no centradas o lejanas) también permite 

sacar algunas conclusiones significativas complementarias a los hallazgos obtenidos con el 

dataset completo (Imagen 48). Este subconjunto con condiciones visuales negativas para la 

estimación de posturas nos permite observar cómo se defienden los modelos en estas 

condiciones mientras que se observa si sus tiempos de inferencia se ven influidos por las 

características de las imágenes inferidas. 

 

 

 
 

 
Imagen 48. Comparativa AP vs. Tiempo de inferencia dataset de imágenes inadecuadas 

 

Movenet Lightning 8

Movenet Lightning 16

Movenet Lightning 32

Movenet Thunder 8

Movenet Thunder 16

Movenet Thunder 32

BlazePose Lite

BlazePose Full

BlazePose Heavy

Yolo8 Nano

Yolo8 Small

Yolo8 Medium

0,00

200,00

400,00

600,00

800,00

1.000,00

1.200,00

1.400,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

Ti
em

p
o

 m
ed

io
 in

fe
re

n
ci

a 
p

o
r 

im
ág

en
 (

m
ili

se
gu

n
d

o
s)

AP (Average Precision) para el dataset imágenes INADECUADAS

Samsung Galaxy A9



129 

 

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto 

de imágenes clasificadas como inadecuadas (aquellas en las que la persona no se encuentra 

centrada o aparece lejana) aporta una perspectiva complementaria respecto al comportamiento 

de estas arquitecturas bajo condiciones adversas. Este análisis permite caracterizar las 

limitaciones de cada familia de modelos y comprobar su capacidad de generalización fuera de 

escenarios óptimos. 

 

Un primer resultado destacable es el comportamiento de los modelos más pesados, en 

particular YOLOv8-Pose Small y Medium. A pesar de la dificultad inherente de este 

subconjunto, estas versiones logran mantener una precisión media (aunque no elevada), lo 

que refleja la robustez de estas arquitecturas. En especial, la versión Medium demuestra una 

cierta resiliencia, probablemente atribuida a su mayor número de parámetros y profundidad de 

red, que le permiten manejar mejor escenarios con oclusiones o poses poco definidas. No 

obstante, esta ganancia relativa en precisión se produce manteniendo los altos tiempos de 

inferencia que caracterizan a estas versiones, lo que limita su aplicabilidad en dispositivos con 

restricciones de hardware. 

 

Los modelos MoveNet Thunder y YOLO Nano, que en el subconjunto de imágenes 

adecuadas mostraban un desempeño notable en cuanto a la relación precisión/rendimiento, 

experimentan aquí una penalización significativa en la precisión. Aunque sus tiempos de 

inferencia se mantienen estables, la pérdida de exactitud en la localización de keypoints 

evidencia que en condiciones adversas, la eficiencia de estas arquitecturas no basta para 

compensar las dificultades en la detección. Este resultado indica que los modelos de tamaño 

intermedio o ligero (efectivos en entornos favorables) presentan mayor vulnerabilidad en la 

generalización. 

 

Los modelos MoveNet Lightning resultan ser los más afectados en este subconjunto. 

Su precisión cae de manera drástica, incluso más que la de Thunder o Nano, lo que pone de 

manifiesto que el diseño ultraligero de esta familia, pensado para priorizar la velocidad en 

dispositivos móviles, conlleva un coste elevado en términos de robustez. La capacidad reducida 

de representación no permite a estas arquitecturas mantener un desempeño aceptable cuando 

las condiciones de la imagen no favorecen la tarea de estimación de poses. 

 

Por último, los resultados de los modelos BlazePose son concluyentes: su precisión en 

este subconjunto es prácticamente nula, situándose en valores equivalentes a cero. En otras 

palabras, BlazePose se muestra inadecuado para la estimación de posturas humanas en 

contextos adversos, sin importar la variante (Lite, Full o Heavy). Esto refuerza lo observado en 

el dataset completo y en las imágenes adecuadas, donde BlazePose ya mostraba un rendimiento 

inferior respecto a otras familias. 

 

En cuanto a los tiempos de inferencia, el análisis confirma un aspecto importante, estos 

no se ven afectados por el tipo de imagen. Al igual que en el dataset completo y en el 

subconjunto de imágenes adecuadas, los tiempos de ejecución se mantienen prácticamente 

idénticos. Esto implica que la carga computacional de los modelos depende únicamente de la 

arquitectura y del hardware disponible, no de la idoneidad de las imágenes procesadas. Por 

tanto, el tipo de imagen influye de manera directa en la precisión pero no en el rendimiento 

computacional. 
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8. DISCUSIÓN 
 

En primer lugar se aborda la interpretación de los resultados principales, destacando los 

comportamientos diferenciales de los modelos estudiados en términos de precisión y 

rendimiento, así como el impacto que el tipo de dataset ha tenido en sus estimaciones. Este 

análisis permitirá evidenciar qué modelos ofrecen un equilibrio más adecuado entre exactitud 

y eficiencia y cuáles presentan limitaciones intrínsecas. 

 

A continuación, se incluirán las limitaciones del estudio, entendidas como los factores 

metodológicos, técnicos o contextuales que han podido condicionar los resultados. Estas 

limitaciones abarcan desde la heterogeneidad en las estructuras de salida de los modelos hasta 

las restricciones impuestas por el dataset empleado y el hardware utilizado. Reconocer estos 

aspectos no solo aporta transparencia, sino que además abre la posibilidad de plantear futuras 

mejoras y ampliaciones del trabajo. 

 

8.1. Interpretación de los resultados principales 

 

Los resultados obtenidos permiten establecer varias conclusiones relevantes acerca del 

comportamiento de los modelos de estimación de posturas humanas bajo distintas condiciones. 

En primer lugar y como era de esperar se confirma que la precisión de los modelos muestra 

una alta sensibilidad a las condiciones visuales de las imágenes de entrada. En este sentido, los 

modelos de mayor complejidad (YOLOv8-Pose en sus versiones Small y Medium) exhiben una 

mayor capacidad de generalización, mientras que los modelos de menor tamaño sufren pérdidas 

significativas de exactitud en escenarios adversos. Esta degradación resulta particularmente 

acusada en la familia BlazePose, mientras que los modelos MoveNet mantienen un 

comportamiento relativamente más robusto. 

 

En cuanto al rendimiento computacional, el análisis de los tiempos de inferencia revela 

diferencias sustanciales entre familias. Los modelos MoveNet Lightning se consolidan como 

los más rápidos y estables, apenas afectados por el dispositivo de ejecución, lo que los convierte 

en candidatos idóneos para aplicaciones móviles en tiempo real. Los MoveNet Thunder ofrecen 

un rendimiento intermedio: la versión cuantizada a int8 se aproxima a los tiempos de Lightning, 

mientras que las versiones en float16 y float32 sacrifican velocidad en favor de precisión. Por 

su parte, BlazePose Lite y Full mantienen tiempos razonables, mientras que la versión Heavy 

resulta computacionalmente inviable. En la familia YOLO-Pose, únicamente la variante Nano 

alcanza tiempos aceptables, frente a Small y, especialmente, Medium, que presentan inferencias 

lentas pero que escalan favorablemente en hardware de mayores prestaciones. 

 

El análisis conjunto de precisión y tiempos de inferencia permite identificar aquellos 

modelos que presentan una mejor relación entre exactitud y eficiencia computacional, lo que 

resulta clave para su posible integración en aplicaciones prácticas de estimación de posturas 

humanas. Los modelos de la familia MoveNet Thunder, especialmente en sus variantes 16 

y 32, se posicionan como la opción más equilibrada. Estos alcanzan niveles de precisión muy 

altos, comparables a los de arquitecturas de mayor tamaño, sin comprometer en exceso el 

tiempo de inferencia. Su rendimiento los hace especialmente adecuados para aplicaciones que 

requieran un compromiso sólido entre calidad de predicción y velocidad de procesamiento, 

incluso en dispositivos con recursos limitados. En un escalón próximo se sitúa el modelo 

YOLOv8-Pose Nano, que logra una precisión buena  con tiempos de inferencia muy 

competitivos. Esta combinación también lo convierte en un candidato interesante para 
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aplicaciones móviles o embebidas, donde las restricciones de hardware son críticas. Los 

modelos YOLOv8-Pose Small y Medium destacan por su elevada precisión, pero sus elevados 

tiempos de inferencia limitan su aplicabilidad a escenarios en los que se disponga de hardware 

de alto rendimiento o donde la inferencia en tiempo real no sea un requisito estricto. Finalmente, 

los modelos BlazePose, pese a sus tiempos de ejecución reducidos, presentan deficiencias 

importantes en términos de precisión, lo que los sitúa en una muy clara desventaja frente a 

las demás familias para estimación de posturas humanas. 

 

En síntesis, los MoveNet Thunder y YOLO Nano representan las opciones más 

adecuadas para su incorporación en aplicaciones orientadas a la estimación de posturas 

humanas en tiempo real, equilibrando correctamente precisión y rendimiento. 

 

Por último, los tiempos de inferencia permanecen invariables ante el tipo de imagen 

procesada. Tanto en el dataset general como en los subconjuntos de imágenes adecuadas e 

inadecuadas, la duración del proceso de inferencia se mantiene en tiempos prácticamente 

constantes. Esto confirma que la carga computacional está determinada por la arquitectura del 

modelo y la capacidad del hardware, sin influencia de la idoneidad del contenido visual. En 

consecuencia, el tipo de imagen afecta de manera directa a la precisión de las estimaciones, 

pero no al rendimiento computacional. 

 

 

8.2. Limitaciones del estudio 

 

El estudio presenta una serie de limitaciones relacionadas principalmente con el alcance 

de la experimentación y la representatividad de los escenarios analizados: 

 

- Una primera limitación es la lista de modelos evaluados. Si bien se han considerado 

arquitecturas representativas de las familias más relevantes (MoveNet, BlazePose y 

YOLO-Pose), el panorama actual de la estimación de posturas humanas es dinámico 

y en constante evolución. Existen otros modelos recientes, tanto ligeros como de 

mayor complejidad, que no fueron incluidos y cuya incorporación permitiría una 

visión más completa del estado del arte, así como una comparación más rica entre 

diferentes enfoques arquitectónicos. 

 

- El número reducido de imágenes disponibles en el dataset utilizado, que asciende 

únicamente a 316. Si bien estas imágenes han permitido llevar a cabo una primera 

evaluación del comportamiento de los modelos, dicho volumen resulta limitado para 

extraer conclusiones con mayor robustez estadística y capacidad de generalización. 

Sería recomendable disponer de imágenes que reflejen ejercicios de rehabilitación 

de forma específica, ya que constituyen el contexto real en el que se prevé aplicar 

los modelos de estimación de posturas humanas. La inclusión de personas de 

diferentes edades, condiciones físicas y contextos demográficos (incluyendo 

diversidad racial y corporal) permitiría evaluar con mayor fidelidad la capacidad de 

generalización de las arquitecturas bajo estudio. 

 

- Otra limitación importante se refiere al soporte multiplataforma, ya que los 

experimentos se han llevado a cabo exclusivamente en dispositivos Android. La 

ausencia de una evaluación en entornos iOS restringe la generalización de los 

resultados. Las diferencias entre las librerías de soporte, las optimizaciones 

específicas del sistema operativo y la gestión de hardware podrían alterar de manera 
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sustancial tanto la precisión como los tiempos de inferencia, por lo que este aspecto 

queda pendiente de ser explorado. 

 

- Asimismo, el estudio se ve limitado por el número y variedad de dispositivos 

empleados en la experimentación. Aunque se han contemplado varias 

configuraciones con prestaciones diferenciadas, la muestra es insuficiente para 

reflejar la gran heterogeneidad existente en el ecosistema de hardware. No se 

incluyen, por ejemplo, dispositivos de gama muy baja, que representarían un 

escenario especialmente crítico para el despliegue de modelos en entornos con 

recursos limitados. Tampoco se han evaluado dispositivos de gama muy alta que 

podrían ofrecer un rendimiento significativamente superior, lo cual restringe la 

validez externa de las conclusiones en contextos más extremos. 

 

 

Estas limitaciones condicionan la amplitud de las conclusiones y ponen de manifiesto 

la necesidad de extender el análisis en futuras investigaciones, tanto mediante la incorporación 

de más arquitecturas como ampliando la diversidad de plataformas y dispositivos evaluados.   
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9. CONCLUSIONES Y TRABAJO FUTURO 
 

El trabajo permite evaluar de manera sistemática la precisión y el rendimiento de 

diversas arquitecturas de estimación de posturas humanas en dispositivos móviles, cumpliendo 

con el objetivo de identificar modelos adecuados para su implementación práctica en 

aplicaciones en tiempo real. 

 

Además, este estudio ha puesto de manifiesto áreas de mejora y posibles líneas de 

trabajo futuro, tales como la ampliación de la lista de modelos evaluados, la incorporación de 

soporte para entornos iOS y la extensión de las pruebas a dispositivos con prestaciones más 

variadas. Estas propuestas buscan aumentar la robustez, generalización y aplicabilidad de los 

resultados, ofreciendo una base sólida para investigaciones posteriores y para la optimización 

de aplicaciones de estimación de posturas humanas en contextos reales. 

 

 

9.1. Revisión objetivos principales del estudio 

 

Según se describió en los apartados “1.3.1 Objetivo general” y “1.3.2 Objetivos 

específicos” el proyecto ha logrado cumplir de manera satisfactoria con los objetivos 

planteados, tanto en su dimensión general como en los objetivos específicos. 

 

En cuanto al objetivo general, se ha llevado a cabo una búsqueda y selección de modelos 

de estimación de posturas humanas aptos para poder ser utilizados en dispositivos de edge 

computing, y la evaluación del rendimiento y la precisión de tres familias de ellos (MoveNet, 

BlazePose y YOLOv8-Pose) en dispositivos móviles. Esto ha permitido caracterizar el 

comportamiento de cada arquitectura estudiada bajo condiciones controladas y representativas, 

ofreciendo una visión comparativa de su aplicabilidad en entornos móviles. 

 

Respecto a los objetivos específicos, el proyecto ha alcanzado los siguientes logros: 

 

- Búsqueda y selección de modelos aptos para el estudio en base a las especificaciones 

definidas en la metodología. 

 

- Implementación de un sistema de pruebas en Android capaz de ejecutar modelos en 

formato TensorFlow Lite (TFLite) y gestionar la inferencia sobre un conjunto 

filtrado de imágenes del dataset COCO. 

 

- Medición y comparación de la precisión de los modelos, utilizando métricas 

estándar como Average Precision (AP@[0.50:0.95]), tanto sobre el dataset completo 

como en subconjuntos diferenciados por idoneidad de las imágenes para estimación 

de posturas. 

 

- Medición y comparación de los tiempos de inferencia por imagen, evaluando el 

rendimiento de cada modelo en distintos dispositivos móviles.  

 

- Establecimiento de la relación entre precisión y rendimiento, identificando qué 

modelos ofrecen el equilibrio más adecuado entre exactitud de predicciones y 

eficiencia computacional, y cuáles presentan limitaciones para su integración en 

aplicaciones móviles en tiempo real. 
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En conjunto, los resultados obtenidos confirman que los objetivos del proyecto se han 

cumplido, proporcionando una base sólida para seleccionar modelos óptimos según los 

requisitos de precisión y rendimiento, y ofreciendo directrices claras para futuras 

implementaciones en aplicaciones móviles de estimación de posturas humanas. 

 

 

9.2. Propuestas de mejora y líneas futuras 

 

El proyecto abre diversas líneas de mejora y expansión que permitirían aumentar su 

alcance y aplicabilidad en el ámbito de la estimación de posturas humanas en dispositivos 

móviles. 

 

 

Ampliación para estudio de nuevos modelos emergentes 

 

En primer lugar, se propone la ampliación del estudio a nuevos modelos ya existentes 

(como los evaluados en el punto “2.5. Modelos de estimación de posturas”) y otros posibles 

emergentes, incorporando arquitecturas recientes que puedan ofrecer mejoras en precisión, 

eficiencia o robustez frente a condiciones adversas. Esto permitiría mantener el análisis 

actualizado y comparativo frente al estado del arte. 

 

 

Ampliación para soporte multi-dispositivo (Apple iOS) 

 

Otra línea relevante es la compatibilidad multiplataforma, extendiendo el soporte a 

dispositivos Apple iOS, lo que facilitaría la implementación de aplicaciones móviles de 

estimación de posturas humanas en un ecosistema más amplio y heterogéneo. 

Complementariamente, se plantea la evaluación en nuevos dispositivos, tanto de gama baja 

como alta, para validar la generalización de los resultados y conocer la influencia del hardware 

sobre la precisión y el rendimiento de los modelos. 

 

 

Utilización de aceleradores de hardware específicos (GPU) 

 

Se sugiere la inclusión en la aplicación Android de la utilización de aceleradores de 

hardware específicos, como GPUs o NPUs (descritos en el apartado “2.8.1. Hardware”), con el 

objetivo de mejorar los tiempos de inferencia y permitir la ejecución en tiempo real de modelos 

más complejos, ampliando las posibilidades de aplicación práctica en ámbitos más exigentes 

en términos de capacidad de computación. 

 

 

Ampliación para estimación de posturas sobre entradas de vídeo 

 

En términos de entrada de datos, se considera la ampliación para la estimación de 

posturas sobre secuencias de vídeo, lo que permitiría evaluar la estabilidad temporal de los 

modelos y su desempeño en aplicaciones dinámicas, como seguimiento en tiempo real o análisis 

de movimiento continuo. 
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Ampliación para reentrenamiento de modelos existentes 

 

Por último, se contempla la posibilidad de reentrenamiento o fine-tuning de modelos 

existentes con datasets específicos, lo que permitiría adaptar los modelos a contextos 

particulares, mejorar su precisión y robustez frente a escenarios concretos, y optimizar su 

desempeño en aplicaciones móviles específicas. 
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11.  ANEXOS 
 

Anexo A. Resultados numéricos del estudio 

 

 En este anexo se incluyen los resultados obtenidos de todos los modelos en los distintos 

dispositivos de prueba en formato tabla. 

 

 

Samsung Galaxy Tab A7 Lite (Tablet) 

 
Modelo Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 316 imágenes) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 65 imágenes 

adecuadas) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 61 imágenes 

inadecuadas) 

Tiempo medio 

inferencia por 

imagen (ms) (dataset 

316 imágenes) 

MoveNet Lightining 8 0,296 0,656 0,055 66,24 

MoveNet Lightining 16 0,348 0,719 0,084 100,45 

MoveNet Lightining 32 0,346 0,721 0,095 101,88 

MoveNet Thunder 8 0,456 0,788 0,140 253,68 

MoveNet Thunder 16 0,509 0,824 0,200 479,73 

MoveNet Thunder 32 0,498 0,842 0,199 478,59 

BlazePose Lite 0,101 0,349 0,000 138,86 

BlazePose Full 0,136 0,441 0,000 249,60 

BlazePose Heavy 0,176 0,487 0,000 905,98 

Yolo8-pose Nano 0,473 0,696 0,218 352,46 

Yolo8-pose Small 0,628 0,822 0,392 1.251,36 

Yolo8-pose Medium 0,686 0,839 0,495 3.697,21 

 

Tabla 19. Resultados numéricos Samsung Galaxy Tab A7 Lite 

 

Samsung Galaxy M32 (Móvil) 

 
Modelo Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 316 imágenes) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 65 imágenes 

adecuadas) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 61 imágenes 

inadecuadas) 

Tiempo medio 

inferencia por 

imagen (ms) (dataset 

316 imágenes) 

MoveNet Lightining 8 0,293 0,656 0,055 36,39 

MoveNet Lightining 16 0,348 0,719 0,084 58,75 

MoveNet Lightining 32 0,346 0,721 0,095 62,15 

MoveNet Thunder 8 0,456 0,788 0,140 130,91 

MoveNet Thunder 16 0,510 0,824 0,200 260,55 

MoveNet Thunder 32 0,498 0,842 0,199 286,69 

BlazePose Lite 0,101 0,349 0,000 189,67 

BlazePose Full 0,136 0,441 0,000 277,86 

BlazePose Heavy 0,176 0,487 0,000 876,97 

Yolo8-pose Nano 0,472 0,696 0,218 337,10 

Yolo8-pose Small 0,628 0,822 0,392 852,96 

Yolo8-pose Medium 0,686 0,839 0,495 2.599,96 

 

Tabla 20. Resultados numéricos Samsung Galaxy M32 
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Samsung Galaxy Tab A9 (Tablet) 

 
Modelo Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 316 imágenes) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 65 imágenes 

adecuadas) 

Precisión obtenida 

AP [IoU=0.50:0.95] 

(dataset 61 imágenes 

inadecuadas) 

Tiempo medio 

inferencia por 

imagen (ms) (dataset 

316 imágenes) 

MoveNet Lightining 8 0,296 0,659 0,053 14,90 

MoveNet Lightining 16 0,348 0,719 0,084 22,72 

MoveNet Lightining 32 0,346 0,721 0,095 22,57 

MoveNet Thunder 8 0,451 0,789 0,138 44,64 

MoveNet Thunder 16 0,509 0,824 0,200 94,80 

MoveNet Thunder 32 0,498 0,842 0,199 95,37 

BlazePose Lite 0,101 0,349 0,000 26,54 

BlazePose Full 0,136 0,441 0,000 42,06 

BlazePose Heavy 0,176 0,485 0,000 166,97 

Yolo8-pose Nano 0,473 0,696 0,218 96,25 

Yolo8-pose Small 0,628 0,822 0,392 581,62 

Yolo8-pose Medium 0,686 0,839 0,495 1.170,97 

 
Tabla 21. Resultados numéricos Samsung Galaxy Tab A9 
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Anexo B. Ejemplos de visualización de keypoints estimados sobre imágenes 

 

En las imágenes de este apartado se muestran ejemplos de imágenes procedentes del 

conjunto de validación del dataset de datos COCO sobre las cuales se representan los keypoints 

estimados por distintos modelos de redes convolucionales evaluados en este estudio, 

superpuestos a las anotaciones de referencia (ground truth) proporcionadas por el dataset. 

 

Los puntos en rojo corresponden a las posiciones exactas de articulaciones definidas en 

las anotaciones de COCO, que incluyen 17 localizaciones corporales como hombros, codos, 

muñecas, caderas, rodillas y tobillos. En contraste, los keypoints predichos por los modelos 

aparecen en colores verde, azul y cian, permitiendo una comparación visual entre la predicción 

automática y la verdad de referencia. 

 

Para la representación de los keypoints sobre las imágenes se ha utilizado Jupyter 

Notebook y, además de las librerías ya descritas en el apartado “7.1. Resultados obtenidos de 

precisión” (pycocotools.coco, json), se han utilizado las siguientes librerías de Python: 

 

- skimage.io. Permite leer y mostrar imágenes en distintos formatos directamente 

desde archivos o URLs. Es útil para cargar imágenes del dataset COCO. 

 

- matplotlib.pyplot. Herramienta de visualización que permite mostrar imágenes y 

superponer elementos gráficos, como los keypoints predichos o anotaciones de 

referencia. 

 

- PIL.Image. Parte de la librería Pillow, utilizada para abrir, procesar y manipular 

imágenes de manera flexible. 

 

- numpy. Biblioteca fundamental para el cálculo numérico en Python. Se utiliza para 

manejar arreglos multidimensionales, coordenadas y operaciones matemáticas 

asociadas a imágenes y keypoints. 

 

- pylab. Entorno de visualización que combina funcionalidades de matplotlib y 

numpy, útil para configurar parámetros gráficos y mostrar imágenes con 

anotaciones. 

 

Ejemplos de estimaciones para imágenes adecuadas (personas centradas y cercanas): 
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Imagen 49. Keypoints estimados por MoveNet Lightning para imagen 22705 
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Imagen 50. Keypoints estimados por MoveNet Thunder para imagen 22705 
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Imagen 51. Keypoints estimados por BlazePose para imagen 22705 



146 

 

 

 

Imagen 52. Keypoints estimados por Yolo8-pose para imagen 22705 
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Imagen 53. Keypoints estimados por MoveNet Lightning para imagen 65736 

 

Imagen 54. Keypoints estimados por MoveNet Thunder para imagen 65736 
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Imagen 55. Keypoints estimados por BlazePose para imagen 65736 

 

Imagen 56. Keypoints estimados por Yolo8-pose para imagen 65736 
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Ejemplos de estimaciones para imágenes inadecuadas (personas no centradas o lejanas): 

 

 

Imagen 57. Keypoints estimados por MoveNet Lightning para imagen 347265 
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Imagen 58. Keypoints estimados por MoveNet Thunder para imagen 347265 
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Imagen 59. Keypoints estimados por BlazePose para imagen 347265 
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Imagen 60. Keypoints estimados por Yolo8-pose para imagen 347265 
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Imagen 61. Keypoints estimados por MoveNet Lightning para imagen 161879 

 

Imagen 62. Keypoints estimados por MoveNet Thunder para imagen 161879 
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Imagen 63. Keypoints estimados por BlazePose para imagen 161879 

 

Imagen 64. Keypoints estimados por Yolo8-pose para imagen 161879 


