Universidades de Burgos, Leon y Valladolid

Master universitario

Inteligencia de Negocio y Big Data
en Entornos Seguros

TFM del Master en Inteligencia de Negocio y
Big Data en Entornos Seguros

Estudio de librerias de deteccion de posturas
sobre dispositivos moviles

Presentado por Francisco Javier Romero Carrillo
en Universidad de Valladolid

01 de septiembre de 2025
Tutor: Bruno Baruque Zandn

i

RESUMEN

Este trabajo presenta un estudio comparativo de diversos modelos de vision artificial
preentrenados en estimacion de posturas humanas integrables en dispositivos méviles. Existen
numerosos modelos de estimacion de posturas con caracteristicas muy heterogéneas y
documentaciones dispares segun sus desarrolladores, por lo que la aportacion principal de este
trabajo radica en ofrecer una evaluacion homogénea de su funcionamiento. El objetivo es
facilitar la eleccion del mas adecuado de ellos para su posterior incorporacion en el desarrollo
de una futura aplicacion para la asistencia a ejercicios de tele-rehabilitacion en domicilio que
permita guiar al usuario en estos ejercicios y registrar informacion relevante para el seguimiento
clinico, sin necesidad de sensores adicionales ni conexioén a internet para el proceso de
realizacion de los ejercicios.

Para garantizar un andlisis homogéneo, se eligid un subconjunto de imagenes filtrado
del conjunto de datos COCO, compuesto por 316 imagenes que contienen una Unica persona
con al menos 15 keypoints (puntos clave) anotados sobre el cual se han evaluado diferentes
versiones de tres familias de modelos: MoveNet, BlazePose y YOLOvS8-Pose, desde dos
perspectivas:

- Precision en la deteccion de puntos clave para identificacion de posturas: exactitud
de los modelos al predecir las posturas, medida mediante la métrica AP (Average
Precision). Se ha utilizado con la finalidad de poder validar resultados del modelo
asi como para evaluar la idoneidad de las imagenes seleccionadas.

- Rendimiento: tiempo medio de inferencia por imagen sobre un dispositivo mévil
Android en condiciones reales. Se ha utilizado para medir el rendimiento de cada
modelo (tiempo de ejecucion de cada inferencia de cada imagen) en diferentes
dispositivos con el fin de poder evaluar la velocidad con la que cada modelo efectia
la estimacion.

Los resultados muestran diferencias significativas entre modelos en cuanto a la relacion
precision-tiempo, destacando las variantes de la subfamilia Thunder de MoveNet y la version
Nano de YOLOvVS8-Pose por su equilibrio entre rendimiento y exactitud.

Este estudio aporta una vision clara y practica sobre la aplicabilidad de distintos

enfoques de estimacién de postura en entornos moviles, sirviendo como referencia para
desarrolladores e investigadores interesados en sistemas embebidos de vision por computador.

111

ABSTRACT

This paper presents a comparative study of various pre-trained computer vision models
for human pose estimation that can be integrated into mobile devices. There are numerous pose
estimation models with highly heterogeneous characteristics and uneven documentation
provided by their developers, so the main contribution of this work lies in offering a
homogeneous evaluation of their performance. The aim is to facilitate the selection of the most
suitable model for subsequent incorporation into the development of a future application for
assisting with home telerehabilitation exercises that will guide the user through these exercises
and record relevant information for clinical follow-up, without the need for additional sensors
or an internet connection during the exercise process.

To ensure a homogeneous analysis, a filtered subset of images from the COCO dataset
was selected. This subset consists of 316 images containing a single person with at least 15
annotated keypoints. Different versions of three model families, MoveNet, BlazePose, and
YOLOV8-Pose, were evaluated from two perspectives:

- Keypoint detection accuracy for pose identification: the accuracy of the models in
predicting poses, measured using the Average Precision (AP) metric. It was used to
validate model results and to evaluate the suitability of the selected images.

- Performance: average inference time per image on an Android mobile device under
real-world conditions. It was used to measure the performance of each model
(inference execution time for each image) on different devices to evaluate the speed
with which each model performs the estimation.

The results show significant differences between models in terms of accuracy-time ratio,
with the Thunder subfamily of MoveNet and the Nano version of YOLOv8-Pose standing out
for their balance between performance and accuracy.

This study provides a clear and practical insight into the applicability of different pose

estimation approaches in mobile environments, serving as a reference for developers and
researchers interested in embedded computer vision systems.

v

Indice general

PARTE I: DESCRIPCION DEL PROYECTOcovuiviiiiieieeeeeeeeeeeeeeeseeeseeeses s 1
I. INTRODUGCCIONcoiiiiiiiiiiiettee ettt sttt ettt ettt bttt et sbe et sane et enbeenees 2
L1 COMEEXLO ittt ettt st ettt et s e e bt st e bt sabeesae e e e neee 2
1.2. Motivacion del estudio en diSpositivos MOVIIEScceeeevviieeiiiieeiiieeiieeeiie e 2
1.3, ODJELIVOS .eeeitieiieeiieeiie ettt ettt et e et e et e s taeesbeesabeeseeesbeeseeensaeseeenseessesnsaensseanseenns 3
1.4. Estructura del dOCUMENTOc..eeiuiiiiriieieeiieieeie et 4
2. MARCO TEORICO Y ESTADO DEL ARTEcccciiiiiieieeieeeeeeeee e 5
2.1, EdZe COMPULING.......oociiiiieeiieitieeieeriie ettt ettt e eteesteeesbeessaesnbeesaneasseessaesnseenssesnseenns 5
2.2. Estimacion de posturas hUMaNnas..........c.eevueeeveerieeieenieeieesieeieeseeeseessnesseesssesnseennns 6
2.3. Tecnologias para la estimacion de posturas humanas en edge computing.................. 8
2.4. Frameworks para estimacion de POStUIAS.........ccvevveeriieriieniienieeieeereeieesveeseeseneens 18
2.5. Modelos de estimacion de POSLUIAS.........ccueeevreriierieeiiienieeieeereereesneereeseeeeseeseneens 27
2.6. Datasets de estimacion d€ POSTUTAScccvererieeeiiieeiiieeiteeeieeeeereeeereeesreeesreeesaneeas 36
2.7. MEICas € PIECISION ...cuveeeerieiiieeiiieiieeiieeieeeteeteesteeteesiaeeteessaeeseessseesseesssesnseensseans 44
2.8. Utilizacion en dispositivos moviles y consideraciones t€cnicaseeeeveeerveeennenn. 49
3. METODOLOGIA ...ttt 52
3.1. SelecciOn de MOAELOScc..eeruiiiiiiiiiiiieieee et 52
3.2. Seleccion de dataset de tESTEOeevuviriiiriiiiiiiiiieiee et 58
3.3. Seleccion de IMAZENEes de tESTEO0.....cuuieuieriieiieeiieiie ettt e 60
3.4. Métricas de validacion y evaluacCionccceevvuireriiieriieeniee et 62
3.5. Herramientas y entorno de desarrolloc.ccooocveveriiiiiiiieniieeieeeeeee e 62
PARTE II: PLANIFICACION, IMPLEMENTACION Y RESULTADOS..........c.cccocevviveennnnn. 64
4. PLANIFICACIONiiiiiimiinciine ittt 65
4.1. Workflow general del proyecto y fases del desarrollocccceeecieeeciieenciieenieeenee. 65
4.2. FASE 1: Preparacion del dataset de testeo y obtencion de modelos............cc.cc........ 68
4.3. FASE 2: Desarrollo de la aplicacion para Androidcccceeeeveeeciieeniieeeecieeeeieeeene 69
4.4. FASE 3: Evaluacion y analisis de resultadoscccoecvvveeiiieeiiieeiieeeieeeee e 72
4.5. Planificacion tempPoTal...........ccccuiiiiiiriiiiiiieiie et 74
4.6. Viabilidad tECIICAcouviiiiiiiieiie e 76
5. FASE 1: PREPARACION DEL DATASET DE TESTEO Y OBTENCION DE
IMODELOS ...ttt ettt st a e et bt e bt et sa e bbbt e nae et naeen 77
5.1. Seleccion del dataset de imagenes de teStEO0cvvveeveieiiieeriie e 77

5.2. Obtencion de modelos para el estudio..........ceeeecueieriiiiiiie e 81

5.3. DiSpoSItivos d€ PrUEDacccuviieiiiiiiiecee e 84
6. FASE 2: DESARROLLO DE LA APLICACION PARAANDROIDccceorveren.n. 87
6.1. Analisis, diSENO Y PreParaCiON........ccccueeecuiieeiriieeiieeetieesieeesreeesaeeesreessreesseeesseeenns 87
6.2. Implementacion del nucleo de 1a aplicacioncccveeeveeeriieeiiieecieece e 93
6.3. Generacion y gestion de ficheros de salidacocevcvieiiieiiiiniiiiiiiecceiecees 99
6.4. Desarrollo de 1a 1nterfazoocuiiiiiiiiiiii e 100
6.5. Pruebas ¥ COITECCIONESuvveeuvieeiieeeiieeeieeeeieeeeteeesteeessteeessaeeesseessseessseeessseeessseens 101
7. FASE 3: EVALUACION Y ANALISIS DE RESULTADOScccoeiiiiinieeeiereeeee, 104
7.1. Resultados obtenidos de PreCiSiOnccc.veeeceeeeeieeeiiie et evee e 104
7.2. Resultados obtenidos de rendimiento.............eeveeeiieriieiiiienieeieeie e 116
7.3. Comparativa de reSUltadosccueerviieiiiiiiiiiieeeieee e 124
PARTE III: DISCUSION Y CONCLUSIONESocoiiieieieeieeeeee et 130
8. DISCUSION......ouiiueiretrreireeieseseess s eesse sttt 131
8.1. Interpretacion de los resultados principalesccoocveeveerieriienienieeeenee e 131
8.2. Limitaciones del eStudio.........coiuieiiiiiiiiiieiiieiee e 132
9. CONCLUSIONES Y TRABAJO FUTUROccteiieiieieeeeeeeee e 134
9.1. Revision objetivos principales del estudio........c.eecveervieiiienieeiiieniecieeeeeeeeseve e 134
9.2. Propuestas de mejora y lineas futurascceeveeeieeniiiiiienieeieee e 135
10. REFERENCIAS BIBLIOGRAFICASc.ooivieieeeeeeseeeeeseeeeeeees e 137
L1 ANEXOS ettt sttt ettt et ene e s et ettt e h et et e sneeaeenees 140
Anexo A. Resultados numéricos del eStudio........cc.evvereiniiniinieieniienieieeeeeeeeeeene 140
Anexo B. Ejemplos de visualizacion de keypoints estimados sobre imagenes 142

vi

Indice de figuras

Imagen 1. Arquitectura simple de edge computing (3)cceeveeeeiierieeiiienieeieerie e 5
Imagen 2. Ejemplo de deteccion Single-person (4)eecveeeeieeeiieeeiiee e eeieeeeveeeevee e 7
Imagen 3. Ejemplo de deteccion multi-person (4)oceeeveerieriieeniieeirienieeieeseeeiee e eveesnae e 7
Imagen 4. Esquema operacion basica de convolucion (5)ceeecveeeeiieeiiieecieeeie e 9
Imagen 5. Esquema general de capas de 1as CNNS (11) ..ccueeeiieriiiiiiiniieiienieeiieeeeieeee e 12
Imagen 6. Esquema de arquitectura de la red AlexNet (11)....c.ccevveeeiiieeiieeeiieeeieeeeeeeee e 13
Imagen 7. Representacion arquitectura de red neuronal convolucional VGG-16 (14)............ 14
Imagen 8. Esquema del modelo TensorFlow Lite (18)ccveveeiiieiiieeiiieeieeeieeeee e, 21
Imagen 9. Pasos de la inferencia del modelo MoveNet (30)ccoeevverieeciieniieiiienieeeeere e 30
Imagen 10. Esquema de arquitectura modelo MoveNet (30)........cocceeviiiiieniiiiiienieeiieeeeen, 31
Imagen 11. Representacion de las anotaciones de dataset COCO por persona........................ 38
Imagen 12. Representacion de las anotaciones de dataset MPII por persona...........ccceeeenee. 42
Imagen 13. Representacion IoU (38)coiiiiieiiieiieiieeiieeetesee ettt 46
Imagen 14. Workflow general del proyectococueeieviriiniiiiniiinieenieseeiececeeee e 65
Imagen 15. Diagrama de Gantt del Proyecto........c.eecvveeeiierieeiierieeiieree et 75
Imagen 16. Estructura carpetas descarga imagenes dataset de testeoocoueveviereeeiieeneennen. 79
Imagen 17. Salida de ejecucion de script de obtencidon de dataset de iméagenes de testeo....... 81
Imagen 18. Diagrama de clases de la aplicacion para Android.........cccceeeeeriiiiienieciicenieeen. 91
Imagen 19. Dependencias TensorFlow Lite anadidas al fichero build.gradle.......................... 92
Imagen 20. Interfaz de la aplicacion Android (Samsung Galaxy Tab A9)........cccccevvvvvenennne. 101
Imagen 21. Imagenes de la interfaz con secuencia de inicio y avance del proceso............... 103

Imagen 22

de la aplicacion

Imagen 23
Imagen 24
Imagen 25
Imagen 26
Imagen 27
Imagen 28
Imagen 29
Imagen 30
Imagen 31
Imagen 32

Imagen 33.
Imagen 34.
Imagen 35.
Imagen 36.
Imagen 37.
Imagen 38.
Imagen 39.
Imagen 40.
Imagen 41.
Imagen 42.
Imagen 43.
Imagen 44.

. Imagenes de la interfaz con finalizacion del proceso, compartir resultados y salida
... 103

. AP por dataset del modelo MoveNet Lightning 8.........ccccovviviiiiniiniinininene. 106
. AP por dataset del modelo MoveNet Lightning 16..........ccccceevviiiniieiniiienieen. 106
. AP por dataset del modelo MoveNet Lightning 32..........cccccvveviiieniieeniiienieen, 107
. AP por dataset del modelo MoveNet Thunder 8ccccocveviiviniininininne 107
. AP por dataset del modelo MoveNet Thunder 16cccoeeveeviiiencieeniiieiee, 108
. AP por dataset del modelo MoveNet Thunder 32ccccocevieiiniiniincnicnnnn. 108
. AP por dataset del modelo BlazePose Lite.........cccccocvveeiieinciieniiieeiieeeee e, 109
. AP por dataset del modelo BlazePose Full..........c..ccccooiiiiiiniinininiiicee 109
. AP por dataset del modelo BlazePose Heavy........cccccoevviviniiieniiiiniieeieceieee 110
. AP por dataset del modelo Yolo8-pose Nanocccceveevuerienieniennicncenenicnene 110
AP por dataset del modelo Yolo8-pose Smallccccoeeviieeiiieniiiinieeeieee. 111
AP por dataset del modelo Yolo8-pose Mediumccceeeveeiiieniieniienieiiiee, 111
Comparativa precision/modelos por dispositivo con imagenes inadecuadas...... 112
Comparativa precision/modelos por dispositivo con dataset general 113
Comparativa precision/modelos por dispositivo con imagenes adecuadas......... 114
Tiempo medio inferencia Samsung Galaxy Tab A7 Liteccccocveeviverieeiiennnne 117
Tiempo medio inferencia Samsung Galaxy M32........ccccoeevveeiiieniiiencieeeee e 117
Tiempo medio inferencia Samsung Galaxy Tab A9.........cccoeviiviiiiiiiiiieiiee 118
Comparativa tiempos medio inferencia por modelo por dispositivo 119
Tiempo total inferencia Samsung Galaxy Tab A7 Lit€ccccceeveeeeriienieeiiiennnnne 120
Tiempo total inferencia Samsung Galaxy M32........cccccvveviieeiiieniieeeieeeee e 121
Tiempo total inferencia Samsung Galaxy Tab A9........ccccoevieiiiniiieiiiiiieieee 121

vil

Imagen 45.
Imagen 46.
Imagen 47.
Imagen 48.
Imagen 49.
Imagen 50.
Imagen 51.
Imagen 52.
Imagen 53.
Imagen 54.
Imagen 55.
Imagen 56.
Imagen 57.
Imagen 58.
Imagen 59.
Imagen 60.
Imagen 61.
Imagen 62.
Imagen 63.
Imagen 64.

Comparativa tiempo total inferencia por modelo por dispositivo....................... 122
Comparativa AP vs. Tiempo de inferencia dataset generalcccoceeveereennnne 125
Comparativa AP vs. Tiempo de inferencia dataset de imagenes adecuadas........ 127
Comparativa AP vs. Tiempo de inferencia dataset de imagenes inadecuadas 128
Keypoints estimados por MoveNet Lightning para imagen 22705..................... 143
Keypoints estimados por MoveNet Thunder para imagen 22705....................... 144
Keypoints estimados por BlazePose para imagen 22705............cccocveevcrieerreeenne. 145
Keypoints estimados por Yolo8-pose para imagen 22705cccevvveveenenennnen. 146
Keypoints estimados por MoveNet Lightning para imagen 65736..................... 147
Keypoints estimados por MoveNet Thunder para imagen 65736c..c...... 147
Keypoints estimados por BlazePose para imagen 65736...........ccccceevevveerreenee. 148
Keypoints estimados por Yolo8-pose para imagen 65736ccceeveereenenennen. 148
Keypoints estimados por MoveNet Lightning para imagen 347265................... 149
Keypoints estimados por MoveNet Thunder para imagen 347265 150
Keypoints estimados por BlazePose para imagen 347265ccceveeeieennennen. 151
Keypoints estimados por Yolo8-pose para imagen 347265cccceevvevvenerennen. 152
Keypoints estimados por MoveNet Lightning para imagen 161879................... 153
Keypoints estimados por MoveNet Thunder para imagen 161879..................... 153
Keypoints estimados por BlazePose para imagen 161879.........cccoeoieiienennen. 154
Keypoints estimados por Yolo8-pose para imagen 161879c.ccovvevveenennnnn. 154

viil

Indice de tablas

Tabla 1. Arquitecturas clasicas de CININScceieiiiiiiiiiiierie ettt et eb e eeeas 13
Tabla 2. Arquitecturas optimizadas de CNNSccccecciiiiiiiieiiie e e 15
Tabla 3. Arquitecturas eficientes para edge COMPULING.........cc.eerveeriierieerieerieerieneeereenere e 16
Tabla 4. Arquitecturas hibridas..........ccccueeeiuiiiiiieiiie e e saee e 17
Tabla 5. Frameworks para estimacion de posturas humanas.............cocceeeeveerieeniiencieenieenneenen. 19
Tabla 6. Versiones de modelos YOLO de estimacion de posturas humanas...........cccceeeeeveenee 33
Tabla 7. Resumen caracteristicas modelos preentrenadosc.cecvevveeriienieenieeniieenieeneeeneenn 34
Tabla 8. Resumen arquitecturas modelos preentrenados............cccveeeviieeciieeeiieesiie e 35
Tabla 9. Listado de keypoints de dataset COCO.........cccuveriieiieiieiiiienieeieesie et 39
Tabla 10. Listado de keypoints de dataset MPILcocooiiiiiiiiiiiinieeeee e, 42
Tabla 11. Resumen aplicacion criterios seleccion de modelos...........occveeeveeriieiiienieenieeneneenen. 54
Tabla 12. Equivalencia puntos BIazePoOSe...........cccueieiiiiiiiiieiee et 56
Tabla 13. Resumen de caracteristicas modelos incluidos en el estudiocccceevververieienncne 58
Tabla 14. Resultados criterios seleccion de dataset..........cccveeveeriiiiieenieiiiierieeeee e 59
Tabla 15. Fases generales del Proyectocveviieiierieeiiienieeiiesie et ere e 67
Tabla 16. Sub-fases de la fase de preparacion del dataset de testeo y obtencion de modelos.. 69
Tabla 17. Sub-fases de la fase de desarrollo de la aplicacion para Android...........cccccveeneenee. 72
Tabla 18. Sub-fases de la fase de evaluacion y andlisis de resultadosc..ccceevveeienencicnnnene 74
Tabla 19. Resultados numéricos Samsung Galaxy Tab A7 Lite......c..ccceveveeviierieerieenieeneenne 140
Tabla 20. Resultados numéricos Samsung Galaxy M32c.cceviriiiniininiinieeneneneeees 140
Tabla 21. Resultados numéricos Samsung Galaxy Tab A9ccccccvvvviiviienieniieieeieeee 141

X

Indice de férmulas

Ecuacion 1. CAlculo de ReCall (37) ..ccvieriiioiieiieeieeiee ettt et 46
Ecuacioén 2. Calculo de IoU (Intersection Over Union) (38)eeecveeeiieeeciieeeiieeeieeeiie e 47
Ecuacion 3. Calculo de OKS de COCO (39) cnuiiiiiiiiieiieieecieese ettt 47
Ecuacion 4. Calculo Average Precision €n COCO (40)uvvieoiieeiiieeiieeeieeeee e eevee e 48

PARTE I: DESCRIPCION DEL PROYECTO

1. INTRODUCCION

1.1. Contexto

La estimacion de posturas humanas (HPE, Human Pose Estimation) es una disciplina
dentro de la vision por computador que busca identificar la posicion y orientacion del cuerpo
humano en imagenes o videos mediante la localizacion de keypoints o puntos clave (como ojos,
manos, codos, rodillas, hombros, tobillos, etc.). El interés por la estimacion de posturas
humanas ha crecido significativamente en los ultimos afos debido a su utilidad en ambitos
como el deporte, la salud, la interaccion hombre-maquina, la realidad aumentada o la vigilancia
automatica. Esta tecnologia permite identificar con precision la posicion de las articulaciones
del cuerpo humano a partir de imagenes o video, dando lugar a aplicaciones inteligentes capaces
de interpretar el comportamiento fisico de una persona en tiempo real. Este proceso se describe
detalladamente en la seccion “2.2. Estimacion de posturas humanas™.

Tradicionalmente, los sistemas de estimacion de posturas requerian hardware de alto
rendimiento y ejecucion en servidores remotos. Sin embargo, los avances recientes en modelos
ligeros y técnicas de optimizacion han permitido llevar estas capacidades a dispositivos
moviles, como smartphones y tablets, abriendo la puerta a soluciones descentralizadas,
eficientes y respetuosas con la privacidad del usuario.

En los ultimos afos, los avances en arquitecturas de redes neuronales profundas, junto
con la disponibilidad de datasets anotados como COCO (1) o MPII (2) que vemos mas adelante,
han permitido desarrollar modelos de estimacién de posturas cada vez mas precisos. Sin
embargo, muchos de estos modelos han sido disefiados para ejecutarse en entornos con alto
poder computacional, como servidores con GPU, lo que dificulta su despliegue directo en
dispositivos moviles con recursos limitados.

1.2. Motivacion del estudio en dispositivos moviles

Los teléfonos moviles y dispositivos embebidos han evolucionado significativamente y
cada dia cuentan con capacidades de computacion cada vez mayores. Esto hace que frente al
cloud computing (computacion en la “nube”) donde los datos son procesados en centros de
datos remotos y centralizados, surja un nuevo paradigma llamado edge computing
(computacion en el “borde”) en el cual a diferencia del cloud computing los datos se procesan
cerca de la fuente donde se generan en lugar de enviarse a centros remotos.

A pesar de ello, en estos dispositivos atin siguen existiendo restricciones importantes de
memoria, potencia de calculo y consumo energético que requieren la eleccion cuidadosa de
modelos optimizados para estos entornos.

Evaluar el comportamiento de distintos modelos de estimacion de posturas directamente
sobre dispositivos moéviles resulta interesante para determinar su viabilidad en aplicaciones del
mundo real, especialmente cuando se busca un equilibrio entre precision y velocidad. Este tipo
de andlisis cobra aiin més importancia cuando los modelos deben integrarse en aplicaciones

moviles de salud, deporte o monitoreo, donde la fiabilidad y la latencia son factores
determinantes.

En este contexto, existe una amplia variedad de modelos preentrenados disponibles
publicamente, desarrollados por distintas organizaciones (Google o Ultralytics, entre otras). La
motivacion de este estudio radica, por tanto, en la necesidad de analizar de forma objetiva y
reproducible qué modelos de estimacion de posturas resultan mas adecuados para su uso en
entornos moviles, evaluando tanto su precision en tareas reales como su rendimiento en tiempo
de ejecucion.

Este trabajo no solo permitira identificar los modelos mas equilibrados en términos de
eficiencia y calidad, sino que también servira como referencia técnica para desarrolladores,
investigadores o empresas interesadas en implementar vision por computador avanzada en
entornos moviles.

1.3. Objetivos
Este Trabajo Fin de Master tiene como objetivo principal estudiar y comparar el

comportamiento de distintas librerias y modelos de estimacion de postura humana ejecutados
sobre dispositivos moviles con sistema operativo Android.

1.3.1 Objetivo general
El objetivo general de este Trabajo Fin de Master es realizar un estudio del estado del
arte en estimacion de posturas humanas, que incluye la seleccion de distintas familias de

modelos de referencia y su posterior evaluacion en términos de rendimiento y precision al
ejecutarse sobre dispositivos moviles.

1.3.2 Objetivos especificos

Los objetivos especificos de este Trabajo Fin de Master son:

- Busqueda y seleccion de modelos existentes, revision de documentacion y
seleccion de los modelos para la realizacion del estudio.

- Implementar un sistema de pruebas para la ejecucion de modelos con formato
TensorFlow Lite (TFLite) en un entorno Android.

- Medir y comparar la precision de los modelos mediante métricas como Average
Precision (AP@][0.50:0.95]).

- Medir y comparar el tiempo medio de inferencia por imagen en cada modelo.

- Establecer una relacion entre la calidad de las predicciones y los tiempos de
ejecucion.

- Identificar los modelos mas adecuados para su uso en aplicaciones moviles reales,
considerando el compromiso entre precision y eficiencia.

1.4. Estructura del documento
El contenido de esta memoria se estructura de la siguiente manera:

- Apartado 2: Marco tedrico y estado del arte, se explican los fundamentos de la
estimacion de posturas, los diferentes modelos preentrenados existentes y los
entornos de ejecucion en Android.

- Apartado 3: Metodologia, se detallan los modelos seleccionados para el estudio, la
descripcion del dataset de imagenes comunes que utilizaremos y las métricas,
herramientas y dispositivos utilizados para la realizacion de la evaluacion.

- Apartado 4: Planificacion, se definen las fases y subfases de la que consta el
proyecto y la planificacion temporal prevista.

- Apartado 5: Fase 1: Preparacion del dataset de testeo y obtencion de modelos,
se describe el proceso de seleccion de las imagenes del dataset de testeo asi como el
de la obtencion de los modelos para el estudio.

- Apartado 6: Fase 2: Desarrollo de la aplicacion, se describe el proceso de
desarrollo de la aplicacion para Android donde se integraron y probaron tanto
modelos como imagenes de testeo, asi como la obtencion de los datos de salida para
su evaluacion.

- Apartado 7: Fase 3: Evaluacion y analisis de resultados, se presentan las métricas
obtenidas, tanto de precision como de rendimiento de todos los modelos examinados

y las comparativas entre ambas variables.

- Apartado 8: Discusion, se interpreta los resultados, se discuten las fortalezas y
debilidades de los modelos y se plantean las implicaciones practicas.

- Apartado 9: Conclusiones y trabajo futuro, se resumen los hallazgos mas relevantes
y se proponen futuras lineas de investigacion.

- Apartado 10: Referencias bibliograficas.

- Apartado 11: Anexos.

2. MARCO TEORICO Y ESTADO DEL ARTE

En este apartado se introducen los fundamentos necesarios para comprender el entorno
donde se desarrolla el estudio, el proceso de estimacion de posturas humanas, se describen las
familias de modelos preentrenados existentes y cuales utilizaremos para ser evaluados y se
presentan los aspectos técnicos relacionados con su integracion y ejecucion en dispositivos
moviles. El objetivo es proporcionar un contexto conceptual y tecnologico que justifique la
eleccion de los modelos y la metodologia empleada en este estudio.

2.1. Edge computing

El edge computing (o computacion en el borde) es un paradigma de computacion
distribuida que acerca la computacion y el almacenamiento de datos a los dispositivos donde se
generan, esto es en el “borde” de la red cerca de la fuente de datos (Imagen 1). Esto contrasta
con la computacion en la nube tradicional, donde los datos se procesan en centros de datos
centralizados y a menudo ubicados lejos de la fuente. Al procesar datos en el borde se puede
reducir la latencia, mejorar los tiempos de respuesta y minimizar el uso del ancho de banda pero
los dispositivos utilizados tienen generalmente capacidades de procesamiento y
almacenamiento muy limitadas en comparacion con los servidores en la nube (3).

Simple Edge Computing Architecture

Internet
Cloud Layer
i | .. Edge Networking
Edge La\/er [Edge Node / Server] [Edge Node / Server] [Edge Node / Server]

« > « > _! »

Device Layer D & h .[ﬂ
ol 'm

Mobility Automotive Robotics Factories Field Services

Imagen 1. Arquitectura simple de edge computing (3)

Este trabajo evalta los resultados de llevar a dispositivos de borde (como pueden ser
teléfonos moviles) una tarea como la de estimacién de posturas humanas, que hasta hace
relativamente poco tiempo requeria mayores capacidades de procesamiento que hacian que no
pudieran ser ejecutadas de forma distribuida en dispositivos con menor capacidad de proceso
al alcance de cualquier persona.

2.2. Estimacion de posturas humanas

2.2.1. Conceptos basicos

La estimacion de postura humana es una tarea de vision por computador que consiste
en predecir la ubicacion espacial de puntos clave (keypoints) del cuerpo humano en
imagenes o secuencias de video. Los keypoints suelen incluir articulaciones como codos,
rodillas, tobillos, caderas, hombros, entre otros, y se pueden conectar para formar un
esqueleto digital. Existen multiples enfoques para abordar este problema, y su clasificacion
puede realizarse atendiendo a diferentes criterios que reflejan tanto la estrategia de deteccion
como la forma de representar el cuerpo humano en los modelos computacionales (4).

2.2.2. Clasificacion de los tipos de deteccion de posturas

Desde el punto de vista operativo, los métodos de deteccion pueden clasificarse desde
diferentes enfoques, dependiendo de si atendemos a su clasificacion por tipo espacial (2D o
3D), por cantidad de objetivos (mono-persona o multi-persona), al método de deteccion (fop-
down o bottom-up) o al tipo de modelado (modelos cinematicos, planares o volumétricos). Estas
clasificaciones generales permiten entender la diversidad de enfoques existentes, valorar sus
ventajas y limitaciones en funcion del contexto, y facilitar la seleccion de la solucion mas
adecuada segtin el caso de uso y los recursos disponibles.

Clasificacion por tipo de deteccion espacial

- Estimacion de posturas 2D. Localiza coordenadas en dos dimensiones (X, y) de una
o varias personas sobre el plano de una imagen o video, tiene como ventajas mayor
velocidad y menor coste computacional sobre las estimaciones de posturas en 3D y
como limitaciones que no se obtiene percepcion de profundidad.

- Estimacion de posturas 3D. Afade la dimension Z proporcionando informacion
sobre la profundidad y la orientacion del cuerpo en el entorno fisico. Ofrece un
mayor realismo y precision en tareas biomecanicas, robotica o animaciéon aunque
requiere un coste computacional mayor.

Clasificacion por cantidad de objetivos

- Mono-persona (single-person). El modelo asume que la imagen contiene una Uinica
persona (Imagen 2), generalmente centrada y completamente visible. Este supuesto
permite que la red se enfoque exclusivamente en detectar los keypoints corporales
sin necesidad de mecanismos adicionales de segmentacion o agrupamiento. Por lo
general, estos modelos utilizan una Uinica pasada de inferencia sobre toda la imagen.

Imagen 2. Ejemplo de deteccion single-person (4)

Multi-persona (multi-person). El enfoque multi-person estd disenado para
identificar y estimar la postura de varias personas simultineamente (Imagen 3) en
una misma imagen o secuencia. Este tipo de modelos requiere, ademés de detectar
los keypoints, asignarlos correctamente a cada instancia individual por lo que es mas
costosa computacionalmente.

Imagen 3. Ejemplo de deteccion multi-person (4)

Clasificacion por método de deteccion

- Top-down. Realizan primero una deteccion de personas (caja contenedora) y luego
aplican un modelo de estimacién de postura a cada una de ellas por separado
estimando los keypoints dentro de ella.

- Bottom-up. Detectan primero todos los keypoints en la imagen y posteriormente los
agrupan en funcion de su pertenencia a cada individuo.

Clasificacion por tipo de modelado del cuerpo

- Modelos cinematicos. Representan el cuerpo humano como un sistema articulado
compuesto por un conjunto de puntos clave (keypoints) conectadas por segmentos
que representan el cuerpo como un esqueleto de articulaciones. Esta estructura
permite modelar los grados de libertad y el movimiento relativo entre las partes del
cuerpo. Son ampliamente utilizados en tareas de andlisis de movimiento,
biomecénica y aplicaciones de realidad aumentada.

- Modelos planares. Se centran en la representacion del contorno externo del cuerpo
o de sus partes visibles en una imagen 2D. Utilizan técnicas de segmentacion para
extraer las siluetas y contornos, proporcionando una aproximaciéon mas visual y
basada en la forma.

- Modelos volumétricos. Los modelos volumétricos buscan reconstruir la forma
completa y tridimensional del cuerpo humano, incluyendo su volumen y superficies
internas.

2.3. Tecnologias para la estimacion de posturas humanas en edge computing

La estimacion de posturas humanas mediante vision por computador se apoya
principalmente en el uso de modelos de aprendizaje profundo, concretamente en redes
neuronales convolucionales (CNN por sus siglas en ingles de Convolutional Neural Networks),
por su capacidad para extraer representaciones espaciales jerdrquicas a partir de imagenes. Este
apartado presenta los fundamentos arquitectonicos de las CNNs como base de la mayoria de
modelos utilizados en este estudio, asi como las técnicas de optimizacion necesarias para su
ejecucion eficiente en dispositivos moviles, entre las que destaca la cuantizacion. Estas
estrategias permiten reducir el tamafio y la latencia de los modelos sin comprometer
significativamente su precision, facilitando su integracion en entornos de computacion
embebida o de recursos limitados como dispositivos modviles. La comprension de estos
elementos es clave para contextualizar la seleccion, implementacion y evaluacion de los
modelos estudiados en este trabajo. La naturaleza de este estudio nos lleva a utilizar redes con
tipo de deteccion espacial en 2D, para la identificacion de una unica persona o single-person,
con un enfoque fop-down (mas adecuadas para escenarios single-person) y con tipo de
modelado cinematico (conjunto de puntos clave o keypoints).

2.3.1. Redes neuronales convolucionales (CNNs)

Una red neuronal artificial es un modelo computacional compuesto por capas de
nodos (neuronas) conectados entre si mediante pesos ajustables. Cada nodo aplica una funcién
de activaciéon a la suma ponderada de sus entradas, y la red aprende a realizar tareas (como
clasificacion o regresion) ajustando estos pesos mediante un proceso iterativo de entrenamiento
con retropropagacion.

Una convolucion es una operacion matematica que se aplica a una entrada (como una
imagen) utilizando un pequefio conjunto de pesos llamado filtro, con el objetivo de extraer

caracteristicas locales relevantes como bordes, texturas o formas (Imagen 4). Durante esta
operacion, el filtro se desliza (o convoluciona) sobre la entrada, multiplicando sus valores por
los de la region correspondiente de la imagen y sumando los resultados en cada posicion. El
resultado es un mapa de activacion o mapa de caracteristicas, que conserva la informacién
espacial y refleja la presencia de patrones especificos aprendidos por el filtro. Esta operacion
permite a las CNNs detectar caracteristicas jerarquicas en las primeras capas, detectan
elementos simples (lineas, esquinas), mientras que en capas mds profundas reconocen
estructuras mas complejas (formas, objetos). La convolucion reduce la dimensionalidad y
preserva la relacion espacial, haciendo a las CNNs especialmente eficaces en tareas de vision
por computador.

; - =
Imagen de entrada: matizA _—773
// 3 //
o 0| 0
>§f'0 11 3 0 1 1
SR 4 = vl 52 % (1x3)+(0x0)+(1x1)+
6L+ 6 //0' 2 (-2x2)+(0x6)+(2x2) +
;4<’0</ 3 /7 (-1x2)+(0x4)+(1x1) =-3
2 /4’ /ﬂﬁ‘/ 3 b 1]
BB e i
1 A 1 1]
7ﬁ/oﬁ/36 i I Pt B 2
L1 1| 4 0 14 e 1 //
2 // 4 // 6| —~ // L o=
PP =aBagise
1 4 | 7 |1 1
| 2 . , &= | //
Filtro de convolucion //"’// [
. , // /_/ |
Pixel de destinol—1—"1_ 41" | 4+
L1 L
// //
.//
/

Imagen 4. Esquema operacion basica de convolucion (5)

Las redes neuronales convolucionales son un tipo especializado de red neuronal
disefiada para procesar datos con estructura de rejilla (como imagenes) mediante el uso de capas
convolucionales que aprenden representaciones espaciales jerarquicas. Estas redes extraen
automaticamente caracteristicas relevantes aplicando filtros locales y compartiendo pesos, lo
que las hace muy eficientes y efectivas para tareas de vision por computador (5) (6).

Una CNN se construye como una arquitectura jerdrquica compuesta por una secuencia
organizada de capas, cada una con un proposito especifico en el procesamiento y la abstraccion
progresiva de los datos de entrada (generalmente imdagenes). Estas capas se agrupan
funcionalmente en bloques, cuya disposicion refleja el flujo de informacion desde los niveles
bajos de deteccion de patrones simples hasta los niveles superiores de interpretacion semantica.

En el disefio de CNNs por tanto distinguimos entre bloques funcionales y capas
individuales, ya que ambos niveles estructurales cumplen roles diferenciados pero
interrelacionados en el flujo de procesamiento de la informacidon. Mientras que los bloques
agrupan funciones especificas del modelo en etapas coherentes del pipeline de aprendizaje, las
capas son las unidades basicas de operacion que materializan dichas funciones.

A nivel de bloques funcionales nos encontramos varios bloques diferenciados por su
funcién dentro de la arquitectura de la CNN:

- Capa de entrada. Recibe los datos en formato tensorial, por ejemplo, una imagen
RGB representada como un tensor tridimensional (altura x anchura x canales) y
normaliza sus valores si es necesario.

- Feature extraction (extraccion de caracteristicas) (7). Este bloque se corresponde
con las primeras capas de la red y estd compuesto principalmente por capas
convolucionales, para detectar patrones espaciales locales como bordes, texturas y
formas, y capas de activacién no lineales (como ReLU !), que permiten a la red
modelar relaciones complejas y no lineales. Frecuentemente, se afiaden capas de
pooling (como max pooling o average pooling”) que permiten la reduccion de la
dimensionalidad espacial manteniendo informacion relevante, y capas de
normalizaciéon que estabilizan el proceso de entrenamiento disefiadas para
transformar una imagen cruda en un conjunto de representaciones utiles. Este bloque
es esencial porque extrae la informacion visual jerdrquica que luego sera
interpretada por las prediction heads.

- Prediction heads (bloques de prediccion) (8), este bloque estd compuesto por un
conjunto de capas cuya funcion principal es transformar las representaciones
intermedias extraidas por el modelo en predicciones especificas para una tarea
determinada. Estas prediction heads operan sobre los mapas de caracteristicas
generados por el bloque de extraccion de caracteristicas (feature extraction) y
adaptan la salida del modelo a diferentes tipos de problemas, como clasificacion,
regresion, deteccion de objetos, segmentacion o estimacion de posturas humanas.
Desde el punto de vista estructural, las prediction heads pueden estar integradas por
capas completamente conectadas (fully connected layers) también llamadas capas
densas, capas convolucionales adicionales, o incluso subredes especificas disefiadas
para tareas particulares. La eleccion de su arquitectura depende directamente del tipo
de informacidn que se requiere predecir y del grado de detalle espacial que se debe
preservar.

- Capa de salida. Es la responsable de generar la prediccion final del modelo, ya sea
en forma de probabilidades, coordenadas, etiquetas o mapas espaciales,
dependiendo de la tarea especifica para la cual ha sido disefiada la red. La

L ReLU (Rectified Linear Unit): funcidn de activacién que introduce no linealidad en la red, ReLU(x)=max(0,x)
2 Max pooling selecciona el valor méximo dentro de una ventana de agrupacién, mientras que average pooling
calcula el promedio de todos los valores en la ventana.

10

configuracion de la capa de salida varia segun el tipo de problema (clasificacion,
deteccion, segmentacion, etc.), pero siempre esta disenada para ofrecer una
representacion final interpretable y directamente utilizable.

En el disefio estructural de una red neuronal convolucional ademas de las capas
especializadas en el procesamiento espacial de datos, como las capas convolucionales y de
pooling, también se incorporan otros tipos de capas que desempefian un papel crucial en la
integracion y decision final del modelo. Estas capas se dividen fundamentalmente en connected
layers y fully connected layers, y su inclusion varia segun el tipo de tarea a resolver:

- Connected layers o capas conectadas (9). Hacen referencia a aquellas capas en las
que cada nodo de entrada esta conectado a uno o varios nodos de la siguiente capa,
aunque no necesariamente a todos. Este tipo de conexion se utiliza a menudo en
arquitecturas que buscan una transicion progresiva entre la representacion espacial
y la salida vectorial o categdrica, permitiendo una reducciéon gradual de la
dimensionalidad sin perder informacion estructural relevante.

- Fully connected layers o capas densas (10). Representan un caso particular de
connected layers, donde cada neurona de una capa estd conectada a todas las
neuronas de la capa siguiente. Estas capas son especialmente utiles para tareas de
clasificacion y regresion, ya que permiten combinar todas las caracteristicas
aprendidas previamente en una representacion densa que puede ser facilmente
interpretada por una funcién de activacién final (como softmax o sigmoid®).
Aunque son potentes en términos de capacidad de representacion, también implican
un elevado coste computacional y una mayor cantidad de parametros, lo que puede
conllevar un riesgo de sobreajuste si no se utilizan técnicas de regularizacion
adecuadas.

En conjunto, tanto las connected layers como las fully connected layers permiten a la
CNN realizar inferencias de alto nivel, integrando la informacion extraida por las capas
anteriores y generando salidas estructuradas que se ajustan a los requerimientos especificos de
la tarea de aprendizaje supervisado (Imagen 5).

3 La funcidn de activacién softmax transforma un vector entero de nimeros en una distribucién de
probabilidad

4 Funcidn de activacién que toma la suma ponderada de las entradas de la capa anterior y la transformar en un
valor de salidaentreOy 1

11

Output

Input

Full

pooling connections

convolutions pooling

Full
connections

Imagen 5. Esquema general de capas de las CNNs (11)

Arquitecturas de redes neuronales convolucionales

A lo largo de la evolucion de esta disciplina, se han propuesto numerosas arquitecturas,
desde modelos clasicos hasta redes ligeras optimizadas para dispositivos moviles. Estas
arquitecturas responden a las crecientes demandas de precision, eficiencia computacional y
adaptabilidad a diferentes entornos de ejecucion. Algunas estan especificamente disefiadas para
preservar la informacion espacial a lo largo de las distintas capas de la red, lo cual es esencial
para una localizacion precisa de los puntos clave del cuerpo humano, como en el caso de HRNet
o Lite-HRNet. Otras, como MobileNet o GhostNet, han sido optimizadas por grandes
compaiiias tecnologicas como Google (12) y Huawei, respectivamente, con el objetivo de
ofrecer inferencias rapidas en tiempo real, incluso en dispositivos con capacidades limitadas
(13). Estas optimizaciones suelen involucrar técnicas como la cuantizacion de pesos, la poda
de parametros o el uso de bloques convolucionales eficientes. Ademads, la incorporacion de
arquitecturas basadas en transformadores y modelos hibridos ha permitido una mejor
modelizacion contextual y mejoras en tareas mas complejas como la estimacion 3D o la multi-
persona. A continuacion, se presenta una clasificacion de algunas de las arquitecturas de CNNs
mas representativas en el ambito de la estimacion de posturas humanas, destacando sus
principales caracteristicas y como han evolucionado para adaptarse a las distintas necesidades
de esta area de investigacion.

Arquitecturas clasicas (convencionales)

Estas arquitecturas constituyen la base historica del aprendizaje profundo en vision por
computador. Se caracterizan por tener arquitecturas secuenciales y relativamente simples, en
las que las capas convolucionales se intercalan con capas de activacion (ReLLU), pooling y capas
densas finales (Tabla 1). Aunque hoy en dia se consideran menos eficientes, fueron clave en el
avance inicial de la disciplina (11).

- LeNet (1998). Utilizado originalmente para reconocimiento de digitos manuscritos.
Fue pionero en el uso de convoluciones y pooling en redes neuronales.

12

- AlexNet (2012). Revolucioné el campo al ganar el desafio ImageNet® con una gran
mejora de precision. Introdujo el uso de GPU para entrenamiento, activacion ReLU

y regularizacién con dropout® (Imagen 6).

- ZFNet (2013). Introdujo técnicas para visualizar filtros y comprender el

funcionamiento interno de las redes, mejorando la arquitectura de AlexNet.

Arquitectura | Ao Caracteristicas
LeNet 1998 Primer uso practico de CNN; reconocimiento de digitos
AlexNet 2012 ReLU, dropout, GPU training; ganador ImageNet 2012
ZFNet 2013 Mejora de AlexNet, visualizacion de filtros

Aunque ya no son las mas utilizadas, siguen empledndose como puntos de comparacion,
en benchmarks estandarizados o como punto de partida para el aprendizaje transferido. Su papel
historico como base del desarrollo de redes mas modernas les otorga un valor de referencia,
especialmente 1til para evaluar mejoras en precision, eficiencia y capacidad generalizadora.
Ademas, su simplicidad relativa permite entender conceptos fundamentales del disefio de redes

Tabla 1. Arquitecturas clasicas de CNNs

profundas y facilita su implementacion en entornos educativos y de investigacion.

[.(Input)

Y

[1 X 11Convolution
96 Feature-maps

Y

3 x 3Convolution
384 Featurc-maps

Y
Pooling
layer

Y

5 x 5Convolution
256 Feature-maps

3 X 3Convolution
256 Feature-maps

Y

Pooling

layer

Imagen 6. Esquema de arquitectura de la red AlexNet (11)

A4

3 X 3Convolution
384 Feature-maps

Pooling
layer

Fully
connected

A

Fully
connected

Fully
connected

5> ImageNet, desafio anual de reconocimiento visual a gran escala (ILSVRC por sus siglas en inglés)

6 Técnica de regularizacién que se basa en la eliminacién de neuronas en las capas de la red neuronal que es

aplicada en base a la probabilidad dada por la distribucién de Bernoulli

13

Arquitecturas optimizadas con modulos o bloques avanzados

Introducen componentes estructurales innovadores que mejoran la capacidad de
aprendizaje y reducen los problemas de entrenamiento en redes profundas, como la
desaparicion del gradiente (Tabla 2) (11).

- VGG16/VGG19 (2014). Modelos profundos con 16 o 19 capas, conocidos por
utilizar exclusivamente convoluciones 3x3 y pooling 2%2, lo que los hace
conceptualmente simples pero computacionalmente pesados (Imagen 7).

- GoogLeNet / Inception (2014-2016). Introducen modulos Inception, que combinan
convoluciones de distintos tamafios (1x1, 3x3, 5x5) en paralelo dentro de un mismo
bloque. Aportan eficiencia y profundidad sin un incremento excesivo en parametros.

- ResNet (2015). Introduce conexiones residuales (skip connections’) que permiten
entrenar redes de méas de 100 capas sin degradacion del rendimiento. Se convirtid
en el nuevo estandar para tareas de clasificacion y segmentacion.

- DenseNet (2017). Cada capa recibe como entrada todas las salidas anteriores del
bloque. Mejora la reutilizacidon de caracteristicas y permite entrenar modelos muy
profundos con menos parametros.

- ResNeXt. Variante de ResNet que introduce el concepto de cardinalidad (uso de

multiples caminos en paralelo) para mejorar la expresividad sin aumentar demasiado
los parametros.

Conv-1

VGG-16 CNN Architecture

Conv-5
FC-6 FC-7 FC-8

JE =] - ¥
1 x1x4096 1x1x1000

14 x 14 x 512
28 x 28 x 512
TxTx512
1125 112 128 @ convolution+ReLU
U max pooling

~'ﬂ fully connected+ReLU

L
224 x 224 x 64

Imagen 7. Representacion arquitectura de red neuronal convolucional VGG-16 (14)

7 Técnica de disefio de redes neuronales que permite que los gradientes fluyan de manera mas efectiva
durante la retropropagacion, lo que ayuda a entrenar modelos mas profundos.

14

Actualmente, estas arquitecturas son ampliamente utilizadas como backbones® en

modelos mas complejos dentro del campo de la vision por computador, desempenando un papel
central en tareas avanzadas como la estimacion de poses humanas, la segmentacion semantica
y la deteccion de objetos. Su éxito radica en un disefio modular y altamente optimizado que
permite la extraccion jerarquica de caracteristicas, es decir, la progresiva representacion de
patrones visuales desde descriptores de bajo nivel (bordes, texturas y colores locales) hasta
representaciones de alto nivel (formas, articulaciones o estructuras completas).

Gracias a esta capacidad, dichas arquitecturas se integran con facilidad en sistemas mas
sofisticados, actuando como bloques fundamentales de procesamiento y sirviendo como base
para tareas que requieren una representacion espacial rica y profunda.

Arquitectura Afio Caracteristicas
VGG16 2014 16 capas; solo convoluciones 3x3 + max pooling
VGG19 2014 Igual que VGG16 pero con 3 capas mas (19 capas)
GoogleNet 2014 Moédulos Inception; uso de convoluciones 1x1
Inception-v3/v4 2015-16 | Profundidad optimizada; batch norm, factorized convs
ResNet 2015 Residual connections (ResNet-18/34/50/101/152)
DenseNet 2017 Conexiones densas entre capas; mejora gradientes
ResNeXt 2017 Bloques en paralelo (cardinalidad)

Tabla 2. Arquitecturas optimizadas de CNNs

Arquitecturas eficientes para moviles y edge computing

Arquitecturas disefladas para su uso en dispositivos con recursos limitados
(smartphones, 10T, drones). Priorizan el bajo consumo, la velocidad de inferencia y la
compacidad del modelo, a menudo mediante técnicas como cuantizacion, pruning’ o depthwise
separable convolutions'® (Tabla 3).

- MobileNet (v1, v2, v3, de 2017 a 2019). Utiliza convoluciones separables en
profundidad para reducir el nimero de parametros y operaciones. MobileNetV2
introduce linear bottlenecks y conexiones residuales. La v3 combina AutoML para
una arquitectura mas optimizada.

- ShuffleNet. Usa convoluciones agrupadas y un mecanismo de channel shuffle'! para
mezclar informacién entre canales y mantener precision con menor coste
computacional.

8 Columna vertebral, en ocasiones referido al bloque de extraccién de caracteristicas (feature extraction) de la
arquitectura

% Técnica que simplifica o reduce el tamafio de un modelo, generalmente eliminando componentes sin
importancia como pesos en redes neuronales o secciones de arboles de decision.

10 Técnica que descompone la convolucidn estandar en dos pasos: convolucién en profundidad y convolucién
puntual lo que reduce el nimero de parametros y calculos.

1 Técnica para mejorar el flujo de informacién entre grupos de canales en redes neuronales convolucionales.

15

- EfficientNet. Utiliza una técnica de busqueda automatizada de arquitectura (NAS) y
un enfoque de escalamiento compuesto para obtener redes mas pequefias y precisas.

- GhostNet. Es una arquitectura eficiente que genera mapas de caracteristicas
utilizando pocas convoluciones estandar y multiples operaciones lineales simples,
lo que reduce significativamente el coste computacional.

Actualmente son ideales como backbone en tareas en tiempo real, como estimacion de
poses en moviles, deteccion en edge devices o visidn en robots. Su arquitectura ligera y
eficiencia computacional permiten desplegar modelos con baja latencia y alto rendimiento en
entornos con recursos limitados.

Arquitectura | Afio Caracteristicas
MobileNet vl | 2017 Depthwise separable convolutions
MobileNet v2 | 2018 Linear bottlenecks + skip connections
MobileNet v3 | 2019 AutoML + eficiencia optimizada (por Google)
ShuffleNet 2018 Grouped convs + channel shuffle
EfficientNet | 2019 Escalamiento compuesto (depth, width, resolution)
GhostNet 2020 | Reduccion de computacion mediante convoluciones fantasma

Tabla 3. Arquitecturas eficientes para edge computing

Arquitecturas hibridas o de transicion

Combinan la eficacia de las CNNs para captar patrones locales con la capacidad de
Transformers'? para modelar relaciones globales, introduciendo una nueva generaciéon de
arquitecturas en vision artificial (Tabla 4).

- FBNet. Otro enfoque basado en NAS (Neural Architecture Search) optimizado para
dispositivos moviles.

- RegNet. Familia de arquitecturas generadas automaticamente mediante busqueda en
espacios de disefio. Ofrece una buena relacion entre precision y eficiencia.

- ConvNeXt (2022). Arquitectura tipo CNN redisefiada desde cero siguiendo
principios de Transformers, como el uso de normalizacion LayerNorm y kernels
grandes. Mejora el rendimiento en benchmarks sin dejar de ser completamente
convolucional.

Actualmente son utilizadas en tareas complejas de vision por computador, como
clasificacion avanzada, segmentacion semdntica y estimacion de poses en entornos exigentes.
Estas arquitecturas combinan elementos tradicionales de las CNNs con mecanismos mas

12 Un tipo de arquitectura de red neuronal disefiada para procesar secuencias de datos

16

recientes, como bloques de atencion, conexiones residuales, o moédulos de transformacion
espacial, permitiendo una representaciéon mas rica y adaptativa de las caracteristicas visuales.
Su disefio busca un equilibrio entre eficiencia computacional y capacidad expresiva, lo que las
hace especialmente adecuadas para aplicaciones que requieren alta precision en tiempo real,
como vehiculos autonomos, realidad aumentada o analisis biométrico en condiciones no
controladas.

Arquitectura | Ao Caracteristicas
FBNet 2019 Optimizado por busqueda de arquitectura (NAS)
RegNet 2020 Arquitecturas generadas automaticamente
ConvNeXt 2022 CNN moderna inspirada en Vision Transformers

Tabla 4. Arquitecturas hibridas

La mayoria de los modelos de estimacion de posturas se basan en alguna de estas
arquitecturas de CNNs para extraer caracteristicas espaciales de las imagenes ya que permiten
identificar patrones visuales complejos que facilitan la localizaciéon de los keypoints que
definen las posturas de las personas en cada imagen.

2.3.2. Cuantizacion de modelos
La cuantizacion de modelos es una técnica de optimizacion que convierte los valores de
precision flotante (float32) usados en los modelos de redes neuronales a representaciones mas
compactas como int8, uint8 o float16 (15). Esta transformacion reduce el tamanio del modelo y
mejora su eficiencia computacional, especialmente en dispositivos con recursos limitados como
moviles o dispositivos de edge computing. Los principales objetivos de la cuantizacion son:
- Reducir el tamaio del modelo.

- Disminuir el tiempo de inferencia.

- Reducir el consumo energético.

- Facilitar el despliegue en hardware especializado.

Los modelos de estimacion de poses generan coordenadas para los puntos clave
(keypoints) a partir de mapas de calor o regresiones directas. Estos modelos suelen tener
arquitecturas de CNNs pesadas o redes hibridas (CNNs + Transformer), lo que los hace
candidatos ideales para cuantizacion en escenarios moviles o en tiempo real ya que permite
ejecutar inferencias mas rapidas mientras que mantiene una precision aceptable en coordenadas
si se calibra correctamente.

Existen dos formas de realizar la cuantizacién de un modelo:

- Cuantizacion posterior al entrenamiento (PTQ, Post-training Quantization). Se

17

aplica a un modelo ya entrenado, convirtiendo sus pardmetros a una representacion
de menor precision sin necesidad de volver a entrenarlo.

- Cuantizacion consciente del entrenamiento (QAT, Quantization-Aware Training).
Se incorpora la conversion de los parametros durante el proceso de entrenamiento o
ajuste fino del modelo, lo que puede mejorar el rendimiento.

2.4. Frameworks para estimacion de posturas

Un framework es un entorno de desarrollo que permite construir, entrenar y desplegar,
en nuestro caso, modelos de estimacion de posturas humanas. Estos frameworks proporcionan
las herramientas necesarias para entrenar, evaluar y desplegar modelos de deep learning que
detectan posiciones articulares del cuerpo humano en iméagenes o secuencias de video y ofrecen
bibliotecas optimizadas, interfaces modulares y soporte para multiples formatos de despliegue,
facilitando tanto la investigacion como la aplicacion en tiempo real (Tabla 5) (16):

- TensorFlow / Keras, es un framework de codigo abierto desarrollado por Google
que permite implementar y entrenar modelos de aprendizaje profundo. Su
integracion con TensorFlow Lite lo convierte en una opcion ideal para el despliegue
en dispositivos moviles, como ocurre con modelos como MoveNet y BlazePose.

- PyTorch, desarrollado por Meta Al, este framework es ampliamente usado en
investigacion debido a su ejecucion dindmica (define-by-run) y facilidad de
depuracion. Modelos de alta precision como HRNet, AlphaPose y RTMPose se
entrenan habitualmente en PyTorch.

- MediaPipe, es una libreria de Google que ofrece soluciones listas para usar en
vision por computadora en tiempo real. Integra modelos optimizados en flujos de
procesamiento altamente eficientes para tareas como estimacion de pose corporal,
facial y de manos.

- OpenCYV + DNN, biblioteca de vision por computadora que incluye un modulo de
redes neuronales profundas capaz de cargar modelos en formatos como ONNX y
Caffe. Es util para la inferencia ligera en entornos con restricciones de hardware.

- MMPose (OpenMMLab), framework especializado en estimacion de posturas
basado en PyTorch.

- Detectron2, plataforma de visiéon por computadora de Facebook AI Research,

centrada en tareas como segmentacion y deteccion, incluyendo variantes de
estimacion de postura como DensePose.

18

Research (FAIR)

Framework Descripcion Lenguaje Utilizacion Fecha
principal introduccion
(aproximada)
TensorFlow / Framework de codigo Python PoseNet, 2015
Keras abierto ampliamente MoveNet, (TensorFlow Lite
utilizado para deep learning. BlazePose 2017)
PyTorch Framework muy popular en Python HRNet, RTMPose, 2017
investigacion; permite AlphaPose
desarrollo dindmico.
MediaPipe Libreria de Google para C++, BlazePose, 2019
vision por computadora en | Python, JS Holistic
tiempo real.
OpenCV + Libreria con soporte para C++, PoseNet, OpenCV: 2000
DNN modelos preentrenados. Python OpenPose DNN: 2017
(ONNX/Caffe)
MMDetection | Frameworks modulares de Python RTMPose, HRNet, 2020
/ MMPose | OpenMMLab para tareas de ViTPose
vision, incluyendo pose.
Detectron2 | Plataforma de Facebook Al Python DensePose 2019

Tabla 5. Frameworks para estimacion de posturas humanas

2.4.1. TensorFlow

TensorFlow es una plataforma de codigo abierto para aprendizaje automatico,
desarrollada por Google, que permite crear y entrenar modelos de redes neuronales y otras
aplicaciones de aprendizaje automatico. Es utilizado para una amplia variedad de tareas, desde
reconocimiento de imagenes y procesamiento de lenguaje natural hasta predicciéon y modelado
estadistico (17). Sus caracteristicas principales son:

- Cddigo abierto. TensorFlow es gratuito y de codigo abierto, lo que significa que
cualquier persona puede usarlo, modificarlo y distribuirlo.

- Aprendizaje automatico. Se enfoca en el desarrollo y entrenamiento de modelos de
aprendizaje automatico, incluyendo redes neuronales.

- QGraficos de flujo de datos. Utiliza graficos de flujo de datos para representar las
operaciones computacionales, lo que permite una ejecucion eficiente y escalable.

- Amplia gama de aplicaciones. Puede ser aplicado en diversos campos, como vision
por computadora, procesamiento de lenguaje natural, reconocimiento de voz, y

otros.

- Flexibilidad y escalabilidad. Ofrece flexibilidad para construir modelos complejos

y escalarlos para diferentes plataformas, desde dispositivos moviles hasta grandes
servidores en la nube.

- Comunidad activa. Cuenta con una gran comunidad de usuarios y desarrolladores
que contribuyen con recursos, herramientas y soporte.

Componentes de la plataforma TensorFlow

TensorFlow Lite, una version optimizada para dispositivos moéviles y sistemas
embebidos.

- Keras, una API de alto nivel que facilita la construccion de modelos de redes
neuronales.

- TensorFlow.js, permite el desarrollo y despliegue de modelos en navegadores web y
entornos Node.js'.

- TensorFlow Hub, un repositorio de modelos de aprendizaje automatico
preentrenados que pueden ser reutilizados para acelerar el desarrollo.

Ventajas de TensorFlow

Entre las ventajas de uso de TensorFlow se encuentran su facilidad de uso ya que ofrece
APIs intuitivas en diferentes lenguajes, como Python, C++, Java, y Go. También podemos
destacar la facilidad y flexibilidad de su despliegue ya que permite desplegar modelos
entrenados en diversas plataformas y dispositivos. Ademas cuenta con una amplia comunidad
que brinda soporte y recursos para el desarrollo que lo hace una herramienta poderosa y versatil
para el aprendizaje automatico con una amplia gama de aplicaciones.

TensorFlow Lite (TFLite)

TensorFlow Lite (TFLite) es una version optimizada de TensorFlow disefiada para
ejecutar modelos de aprendizaje automatico en dispositivos con recursos limitados. Permite
realizar inferencias rapidas y eficientes mediante técnicas como la cuantizacion, reduciendo el
tamafio del modelo y el consumo de energia sin comprometer significativamente la precision.
El formato de modelo TFLite se distingue por su disefio compacto, portabilidad y
compatibilidad con distintas arquitecturas de hardware.

En Imagen 8 podemos ver la arquitectura de un modelo TensorFlow Lite, con la capa de
entrada en amarillo, en azul las capas de los bloques Feature extraction 'y Prediction heads (con
tres Fully connected layers) y por ultimo en verde la capa de salida.

13 Entorno en tiempo de ejecucién multiplataforma, de cédigo abierto, para crear aplicaciones web rapidas y
escalables basadas en el lenguaje JavaScript.

20

Input (shape=17.,3)

|

Remove the detection scores

|

Normalize the key point's coordinates

l

J
]
]
Fully-connected layer (RelLu6)]
J
]
]

'

Fully-connected layer (ReLu6)

:

Fully-connected layer (softmax)

I

Output (shape=class_count)

Imagen 8. Esquema del modelo TensorFlow Lite (18)

2.4.2. PyTorch

PyTorch es un marco de codigo abierto para aprendizaje automadtico, especialmente
enfocado en aprendizaje profundo, desarrollado originalmente por Meta (anteriormente
Facebook). Se basa en Python y se utiliza para construir modelos de redes neuronales y realizar
calculos numéricos, incluyendo la ejecucion en GPU para acelerar el proceso. PyTorch es
popular tanto en investigacion como en aplicaciones de produccion, incluyendo empresas como
Tesla, Microsoft y OpenAl (19). Sus principales caracteristicas son:

- Framework de cédigo abierto, PyTorch es gratuito y de codigo abierto, lo que
significa que cualquiera puede usarlo, modificarlo y distribuirlo.

- Lenguaje Python, se basa en el lenguaje Python, conocido por su facilidad de uso y
amplia adopcion en ciencia de datos.

- Calculo con tensores, PyTorch utiliza tensores para representar datos y realizar
calculos matematicos, lo que permite operaciones eficientes, especialmente en
GPUs.

- Aprendizaje profundo, es una herramienta fundamental en el desarrollo de redes
neuronales profundas (un tipo de algoritmo de aprendizaje automatico).

- Flexibilidad y rapidez, PyTorch destaca por su flexibilidad para crear prototipos
répidamente y su capacidad de adaptarse a diferentes necesidades de investigacion

y desarrollo.

- Auto-diferenciacion, PyTorch facilita la implementacion de graficos
computacionales y calculos con gradientes, esencial para el entrenamiento de redes

21

neuronales.

- Desarrollo por Meta Al, aunque fue desarrollado originalmente por Meta, ahora es
administrado por la Fundacion PyTorch, que asegura su desarrollo continuo y
colaboracion en la comunidad, donde es una de las herramientas mas populares para
investigacion en aprendizaje profundo y se utiliza en muchos proyectos de IA de
produccion.

PyTorch Mobile

PyTorch Mobile es la extension del framework PyTorch disefiada para permitir la
ejecucion de modelos de aprendizaje profundo en dispositivos méviles y sistemas embebidos.
Surge como una respuesta a la creciente necesidad de desplegar modelos de deep learning en
entornos con recursos limitados, tales como smartphones, tablets o dispositivos IoT, donde la
inferencia debe ser eficiente en cuanto a tiempo de ejecucion, consumo energético y memoria.

A nivel arquitectonico, PyTorch Mobile se basa en el uso de TorchScript, un formato
intermedio que combina las ventajas de la representacion estatica de grafos con la flexibilidad
del entorno dinamico de PyTorch. TorchScript permite transformar un modelo entrenado en
PyTorch estdndar a un formato optimizado (.pt) que puede ejecutarse de manera independiente,
reduciendo la dependencia de librerias pesadas y facilitando la portabilidad.

El proceso general de despliegue en PyTorch Mobile sigue tres fases técnicas:

1. Conversion del modelo. Se utiliza tracing o scripting para transformar el modelo
PyTorch original en un objeto TorchScript.

2. Optimizacion. El modelo puede someterse a técnicas de cuantizacion como PTQ
(cuantizacion posterior al entrenamiento) o QAT (cuantizacion consciente del
entrenamiento), lo que reduce su tamafio y acelera la inferencia, con pérdidas
controladas de precision.

3. Ejecucién en dispositivo. El modelo TorchScript se integra en una aplicacion Android
(Java/Kotlin con JNI) o iOS (Swift/Objective-C) mediante las librerias de PyTorch
Mobile, posibilitando la ejecucion en CPU, NNAPI (Android) o Metal (i0S).

2.4.3. MediaPipe

MediaPipe es un framework de cddigo abierto y multiplataforma desarrollado por
Google para construir y desplegar pipelines de procesamiento multimedia, incluyendo la
estimacion de la postura humana. Ofrece modelos preentrenados y soporte para multiples
plataformas, lo que lo convierte en una herramienta versatil y potente para aplicaciones en
tiempo real (20). Sus principales caracteristicas son:

- Deteccion de rostros, manos y poses, MediaPipe proporciona modelos
preentrenados para la deteccion de estos elementos en imagenes y videos.

- Aprendizaje automatico en dispositivos de edge computing, permite ejecutar

22

modelos en dispositivos moviles, lo que reduce la latencia y la dependencia de la
nube.

- Seguimiento de objetos y reconocimiento de gestos, permite identificar y rastrear
objetos en tiempo real y detecta y reconoce diferentes gestos de manos.

- Personalizacion, permite a los desarrolladores ajustar los modelos predeterminados
con sus propios datos utilizando MediaPipe Model Maker.

- Integracion con otras herramientas, se puede combinar con otras herramientas como
OpenCV para proyectos de vision artificial.

2.4.4. OpenCV + DNN

OpenCV (Open Source Computer Vision Library) es una libreria de visiéon por
computadora ampliamente utilizada en aplicaciones en tiempo real. Su modulo DNN (Deep
Neural Network) permite la ejecucion de redes neuronales preentrenadas sin necesidad de
frameworks externos como TensorFlow o PyTorch. Soporta modelos en formatos como ONNX,
Caffe, TensorFlow y Torch, permitiendo ejecutar tareas de estimacion de posturas y gracias a
su bajo nivel de dependencia y eficiencia computacional, es una opcidon adecuada para
implementaciones ligeras en dispositivos embebidos o en aplicaciones donde se requiere
rapidez de inferencia sin entrenamiento (21).

OpenCV + DNN en si no implementa una arquitectura propia de red neuronal, sino que
funciona como un motor de inferencia que carga y ejecuta modelos preentrenados desarrollados
en otros frameworks (como TensorFlow o PyTorch)

En estimacion de postura, OpenCV + DNN se ha utilizado para desplegar modelos como
PoseNet y versiones convertidas de OpenPose, lo que permite detectar keypoints corporales a
partir de imagenes o video en tiempo real.

2.4.5. MMPose (OpenMMLab)

MMPose es un framework de codigo abierto desarrollado por el grupo OpenMMLab
para la estimacion de posturas humanas 2D y 3D. Est4 basado en PyTorch y proporciona una
infraestructura modular y altamente extensible que facilita el entrenamiento, evaluacion y
comparacion de multiples arquitecturas. Ofrece soporte a gran variedad de backbones como
HRNet, ViTPose, ResNet, MobileNet, etc., y cubre tareas single-person y multi-person.

2.4.6. Detectron2
Detectron2 es un framework de visién por computadora desarrollado por Facebook Al

Research (FAIR), disefiado para tareas avanzadas como deteccion de objetos, segmentacion de
instancias, segmentacion semantica, y estimacion de poses humanas. Estd implementado en

23

PyTorch y es la segunda generacion del sistema original Detectron, basado en Caffe2!.

2.4.7. Formatos de modelos de estimacion de posturas

En el campo del aprendizaje profundo, la representacion y almacenamiento de modelos
entrenados varia en funcion del framework utilizado y del objetivo final del modelo, ya sea
continuar el entrenamiento, realizar inferencia eficiente o garantizar interoperabilidad entre
plataformas. Esta diversidad ha dado Ilugar a multiples formatos de fichero
(como .pth, .pt, .pb, .onnx o .tflite), cada uno con caracteristicas técnicas que responden a
distintos requerimientos de uso, portabilidad y rendimiento.

Los formatos propietarios de frameworks, como .pth (PyTorch) son ideales para el
entrenamiento y reutilizacion dentro del mismo entorno, pero presentan limitaciones para el
despliegue multiplataforma mientras que los formatos interoperables como ONNX (.onnx)
permiten exportar modelos entrenados en distintos frameworks para su ejecucion en multiples
entornos de inferencia. ONNX es ampliamente utilizado en produccion debido a su eficiencia
y portabilidad.

En el contexto de dispositivos méviles o embebidos, formatos como TensorFlow Lite
(.tflite) son comunes. Estos ficheros estdn optimizados para tamainos reducidos y bajo consumo
computacional, y suelen incorporar técnicas de cuantizacion (por ejemplo int8) para acelerar la
inferencia sin comprometer significativamente la precision.

Los formatos mas recientes como TorchScript (.pt) ofrecen un equilibrio entre
rendimiento y compatibilidad en el ecosistema PyTorch, facilitando tanto el despliegue como
la serializacion eficiente.

TensorFlow SavedModel (.pb)

TensorFlow SavedModel es el formato estdndar de serializacién y exportacion de
modelos en TensorFlow, disefiado para almacenar tanto la arquitectura del modelo como sus
pesos y metadatos de forma estructurada y portable. Su principal componente es el archivo .pb
(Protocol Buffer), que representa el grafo computacional del modelo, incluyendo las
operaciones, variables y conexiones necesarias para realizar inferencias.

Este formato permite guardar un modelo completo en un Unico directorio, facilitando su
reutilizacion, despliegue y compatibilidad entre diferentes entornos y versiones de TensorFlow.
Junto al archivo .pb, el directorio SavedModel puede contener subdirectorios como variables
(para los pesos del modelo) y assets (para recursos auxiliares), lo que garantiza una separacion
clara entre los distintos elementos del modelo (22).

El formato SavedModel es ampliamente utilizado en aplicaciones de produccion, ya que
admite inferencias eficientes en servidores, exportacion a otras plataformas como TensorFlow
Lite (TFLite) o TensorFlow.js, y compatibilidad con APIs de TensorFlow Serving para entornos
de despliegue escalables. Gracias a su disefio modular y extensible, el formato .pb también

14 caffe2 actualmente estd deprecado habiendo sido integrado en PyTorch

24

facilita tareas como la congelacion del grafo, la optimizacion para hardware especifico (TPUs,
GPUs), y la integracion en flujos de trabajo de machine learning end-fo-end.

TensorFlow Lite (.tflite)

Los modelos de TensorFlow Lite se almacenan en un archivo binario con
extension .tflite, el cual representa una version serializada y optimizada de un modelo de
TensorFlow convencional. Esta serializacion utiliza el formato FlatBuffers, una biblioteca de
serializacion binaria de alto rendimiento que permite la lectura directa de datos sin necesidad
de descompresion o analisis complejo, lo que reduce significativamente la latencia en el inicio
de la inferencia (23). El archivo .tflite encapsula varios elementos clave:

- Metadatos del modelo. Incluye informacioén béasica como nombres de entrada y
salida, formas (shapes), tipos de datos (por ejemplo, float32, int8, etc.), y posibles
etiquetas semanticas para facilitar la integracion con bibliotecas de procesamiento
de datos o interfaces de usuario.

- Red neuronal codificada. Contiene una representacion compacta del grafo
computacional, incluyendo las operaciones (kernels) soportadas por TFLite. Estas
operaciones han sido previamente convertidas desde el grafo original de TensorFlow
mediante el TFLite Converter.

- Pesos y parametros preentrenados. Los valores numéricos entrenados durante la fase
de aprendizaje son empaquetados en el modelo, con posibles técnicas de
cuantizacion para reducir el tamano del archivo y acelerar su ejecucion.

- Soporte para delegados: Aunque el modelo es independiente de la plataforma,
TFLite puede emplear "delegados" en tiempo de ejecucion para redirigir la ejecucion
a aceleradores de hardware especificos, como GPU, DSP o unidades de inferencia
(TPU).

Una caracteristica fundamental del formato TFLite es su compatibilidad con técnicas de
optimizacion como la cuantizacion post-entrenamiento y la cuantizacion durante el
entrenamiento, que permiten reducir el tamano del modelo y el uso de memoria, ademas de
incrementar la velocidad de inferencia. Estas optimizaciones transforman los parametros y
activaciones del modelo de precision flotante a tipos enteros, como int8 o uint8, manteniendo
un impacto minimo en la precision del modelo.

El formato .tflite es independiente de la plataforma y puede ejecutarse en diversos
entornos mediante el uso del TensorFlow Lite Interpreter. Este intérprete esta disponible para
multiples sistemas operativos y arquitecturas, incluidos Android, 10S, Linux embebido y
microcontroladores (a través de TFLite Micro).

ONNX (.omnx)

ONNX (Open Neural Network Exchange) es un formato de especificacion abierta
disefiado para representar modelos de aprendizaje automatico de manera interoperable entre

25

diferentes frameworks. Fue desarrollado inicialmente por Facebook y Microsoft, y actualmente
es mantenido por la comunidad en colaboracion con la Linux Foundation y la iniciativa Al
Infra. Su proposito principal es facilitar el intercambio y despliegue de modelos en diversos
entornos, incluyendo servidores, dispositivos embebidos y plataformas en la nube. El formato
ONNX representa un estandar abierto, eficiente y extensible para la representacion de modelos
de aprendizaje automatico (24).

Los modelos ONNX se almacenan en archivos binarios con la extension .onnx,
estructurados utilizando el formato de serializacion Protocol Buffers (Protobuf), desarrollado
por Google. Este formato permite representar estructuras de datos complejas de manera
eficiente, lo cual es esencial para modelos de redes neuronales con multiples capas, pesos y
configuraciones. Un archivo de modelo ONNX incluye los siguientes componentes principales:

- Grafo computacional. Representa el flujo de datos a través de la red neuronal. Este
grafo estd compuesto por nodos, donde cada nodo corresponde a una operacion (por
ejemplo, convolucidn, activacion, normalizacion). Cada nodo incluye informacion
sobre sus entradas, salidas y atributos especificos.

- Operadores estandar. ONNX define un conjunto estandarizado de operadores que
son independientes del framework original. Esto garantiza que un modelo exportado
desde PyTorch, TensorFlow, MXNet u otro entorno, pueda ser interpretado
correctamente en cualquier motor de inferencia compatible con ONNX.

- Inicializadores. Contienen los parametros entrenados del modelo, como pesos y
sesgos, empaquetados como tensores dentro del archivo. Estos datos estan
almacenados directamente en el archivo .onnx, lo que garantiza que el modelo es
autosuficiente y portable.

- Metadatos. Incluyen informacion adicional como el nombre del modelo, la version
del operador, la version de la especificacion ONNX utilizada, y los nombres y
formas de las entradas y salidas. Esta informacion es esencial para la integracion en
sistemas de produccion y para la depuracion del modelo.

PyTorch (.pt/.pth)

El formato PyTorch (.pt o .pth) es el estdndar utilizado por la biblioteca PyTorch para
almacenar modelos de aprendizaje profundo entrenados. Este formato permite guardar tanto los
pesos del modelo como, opcionalmente, la estructura del modelo (si se utiliza el enfoque de
serializacion completa). Los archivos .pt y .pth no difieren funcionalmente; su eleccion suele
responder a convenciones del desarrollador (25).

Desde una perspectiva académica, este formato se basa en el modulo torch.save(), que
emplea el sistema de serializacion de Python (pickle) para codificar los objetos del modelo.
Esto permite conservar de forma eficiente el estado interno de la red neuronal, que incluye los
tensores de pesos, sesgos y parametros de entrenamiento.

Existen dos formas principales de guardar modelos en PyTorch:

- Solo el state_dict: es la forma recomendada y mas robusta, ya que separa la definicion

26

del modelo del almacenamiento de los pesos. Esto facilita portabilidad y
reutilizacion.

- Serializacion completa del modelo: guarda tanto la arquitectura como los pesos, pero
puede generar problemas de compatibilidad entre versiones o entornos.

El formato .pt/.pth es ampliamente utilizado en investigacion y produccion debido a su
flexibilidad, compatibilidad con GPU/CPU, y facilidad de integracion en flujos de trabajo de
inferencia o transferencia de aprendizaje.

2.5. Modelos de estimacion de posturas

Este apartado presenta una revision de los preentrenados mas relevantes desarrollados
para la estimacion de posturas humanas, abarcando tanto enfoques clasicos como modernos. Se
incluyen todos los modelos disefiados para estimacion 2D y 3D, asi como aquellos orientados
a dispositivos modviles y entornos de alta complejidad, como escenas con multiples personas o
una unica persona. La descripcion de cada modelo contiene sus arquitecturas, caracteristicas
técnicas, ventajas, limitaciones, numero de keypoints que estiman, etc., con el objetivo de
ofrecer un panorama claro y actualizado sobre el estado del arte en esta area de investigacion.

2.5.1. OpenPose (2017)

OpenPose es uno de los modelos pioneros y mas influyentes en la estimacion de posturas
humanas. Desarrollado por el Carnegie Mellon Perceptual Computing Lab, introduce una
arquitectura bottom-up que detecta de manera simultanea los keypoints de multiples personas
en una imagen sin necesidad de una etapa previa de deteccion individual. Su innovacion central
son los Part Affinity Fields (PAFs), campos vectoriales que permiten asociar puntos clave entre
si para reconstruir estructuras corporales completas, incluso en entornos con multiples
individuos y oclusiones (26).

OpenPose puede estimar diferentes configuraciones de puntos: 18 puntos (COCO), 25
(BODY-25) y configuraciones extendidas incluyendo manos (21 puntos por mano) y rostro (70
puntos), superando los 135 keypoints en total. Aunque es altamente preciso, OpenPose es
computacionalmente intensivo, lo que limita su uso en dispositivos méviles o en tiempo real
sin hardware especializado (GPU).

El sistema estd implementado principalmente en C++ y es de codigo abierto, lo que ha
facilitado su adopcidn en investigacion, salud, deportes, animacion y robdtica. Su estructura
modular también ha inspirado el desarrollo de variantes mas ligeras y eficientes.

2.5.2. AlphaPose (2018)

AlphaPose es un modelo destacado en la estimacion de posturas humanas, reconocido
por su enfoque fop-down que primero detecta individuos en la imagen y luego estima sus poses
de manera independiente. Propuesto inicialmente en 2018, AlphaPose se caracteriza por su alta
precision y capacidad para manejar multiples personas en escenarios complejos. Su arquitectura

27

combina detectores de objetos eficientes con redes neuronales convolucionales para predecir
keypoints de manera precisa y robusta. AlphaPose utiliza postprocesamiento para refinar las
estimaciones y mejorar la coherencia espacial de las articulaciones (27).

El modelo tipicamente estima 17 keypoints principales segin el estandar COCO,
abarcando las articulaciones principales del cuerpo humano. Aunque su enfoque fop-down
ofrece una precision superior comparado con métodos bottom-up, su costo computacional es
mayor, lo que puede limitar su aplicacion en tiempo real o dispositivos con recursos limitados.
AlphaPose ha sido ampliamente adoptado en aplicaciones de analisis de movimiento,
vigilancia, y realidad aumentada, y ha inspirado versiones optimizadas para entornos moviles
y de baja latencia.

2.5.3. PoseNet (2018)

PoseNet es un modelo ligero y eficiente para la estimacién de posturas humanas en
imagenes, disefiado especialmente para su uso en dispositivos moviles y navegadores web.
Introducido en 2018 por Google, PoseNet utiliza arquitecturas basadas en MobileNet para
realizar la prediccion de 17 keypoints en tiempo real con un consumo de recursos reducido. Su
enfoque esta orientado a la estimacion de poses individuales (single-person) o multiples
personas (multi-person) mediante un diseno flexible y modular (28).

PoseNet destaca por su capacidad de funcionar en tiempo real con hardware limitado,
gracias a su compatibilidad con TensorFlow Lite, lo que facilita su integracion en aplicaciones
moviles y web. Sin embargo, su precision es inferior comparada con modelos mas complejos y
pesados, lo que limita su uso en escenarios que requieren alta fidelidad. A pesar de estas
limitaciones, PoseNet ha sido fundamental para democratizar el acceso a tecnologias de
estimacion de postura, facilitando su aplicacion en ambitos de fitness, juegos interactivos y
accesibilidad.

2.5.4. DensePose (2018)

DensePose es un modelo avanzado desarrollado por Facebook AI Research en 2018 que
va mas alla de la estimaciodn clasica de posturas humanas 2D, mapeando cada pixel del cuerpo
humano visible en una imagen a una superficie 3D paramétrica del cuerpo. A diferencia de otros
modelos que estiman unicamente un conjunto discreto de keypoints, DensePose realiza una
segmentacion densa y una correspondencia directa con un modelo 3D anatomico, permitiendo
reconstrucciones detalladas de la forma y la postura humana (29).

Esta capacidad ofrece un nivel de detalle muy superior, ideal para aplicaciones en
realidad aumentada, animacion digital y andlisis biomédico. Sin embargo, DensePose requiere
una gran potencia computacional y no es adecuado para ejecucion en dispositivos méviles o en
tiempo real. Ademas, su entrenamiento y despliegue son més complejos debido a la necesidad
de datos anotados en 3D. DensePose representa un importante avance en la representacion
morfolédgica del cuerpo humano en vision por computador, ampliando las fronteras entre vision
2D y reconstruccion 3D.

28

2.5.5. HRNet (2019)

HRNet (High-Resolution Network) es un modelo disefiado para tareas de vision por
computadora que requieren una preservacion precisa de detalles espaciales, como la estimacion
de postura humana. A diferencia de muchas arquitecturas convencionales que reducen
progresivamente la resolucion de las caracteristicas a lo largo de la red, HRNet mantiene
representaciones de alta resolucion durante todo el proceso de inferencia. Para lograr esto,
introduce un enfoque de procesamiento paralelo mediante multiples ramas que operan a
diferentes resoluciones y se comunican continuamente entre si mediante fusion de informacion,
permitiendo una integracion efectiva de contextos locales y globales. Esta arquitectura mejora
significativamente la precision en la localizacion de puntos clave del cuerpo humano, incluso
en condiciones de oclusion o poses complejas. HRNet ha demostrado resultados de vanguardia
en benchmarks como COCO y MPII, siendo ampliamente adoptado en aplicaciones de analisis
de movimiento, interfaces hombre-maquina y medicina deportiva. Su disefio innovador
establece un nuevo paradigma en el equilibrio entre precision espacial y capacidad semantica
en redes profundas.

2.5.6. EfficientPose (2020)

Basado en la arquitectura EfficientNet, este modelo optimiza el balance entre velocidad
y rendimiento, permitiendo una deteccion robusta de las articulaciones humanas en tiempo real.
EfficientPose incorpora una técnica de aprendizaje multitarea que mejora la precision en la
deteccion de multiples personas y reduce errores en escenarios con oclusiones, lo que lo vuelve
mas robusto frente a condiciones del mundo real comparado con modelos tradicionales. Su
disefio modular facilita la integracion en sistemas de vision por computadora, aplicaciones de
realidad aumentada y anélisis de movimientos deportivos. También destaca por su capacidad
para funcionar en dispositivos con recursos limitados, sin sacrificar la calidad de la estimacion.
Este enfoque representa un avance significativo en el campo de la vision artificial aplicada a la
interaccion humano-computadora y el anélisis biomecanico.

2.5.7. MoveNet (2020)

MoveNet es un modelo de estimacion de posturas bottom-up que utiliza mapas de calor
(heatmaps) para localizar con precision los puntos clave del cuerpo humano. Su arquitectura se
compone de dos partes principales: un feature extractor (un componente de una red neuronal
que extrae caracteristicas de la imagen) y un conjunto de prediction heads (un componente de
una red neuronal que transforma caracteristicas aprendidas en predicciones especificas
normalmente situado al final de la red). Todos los modelos se entrenan utilizando la API de
deteccion de objetos de TensorFlow (30).

La arquitectura de la CNN que utiliza MoveNet es MobileNetV2 junto con una red de
piramide de caracteristicas (FPN), lo que permite generar mapas de caracteristicas de alta
resolucion con gran riqueza semantica. El extractor se conecta con cuatro prediction heads, cada
una encargada de estimar lo siguiente (Imagen 9):

- Mapa de calor del centro de la persona, predice el centro geométrico de cada
instancia de persona.

29

- Campo de regresion de puntos clave, predice el conjunto completo de puntos clave
por persona, util para agruparlos en instancias individuales.

- Mapa de calor de puntos clave, predice la ubicacion de todos los puntos clave,
independientemente de a qué persona pertenecen.

- Campo de desplazamiento 2D por punto clave, predice el desplazamiento local
desde cada pixel del mapa de caracteristicas hasta la ubicacion precisa (subpixel) de
cada punto clave.

Step 1 Step 2 Step 4
Weight the object center Slice out the keypoint Weight each keypoint Compute the location of
heatmap based on the regression vector at the heatmap based on the the maximum heatmap
inverse distance from peak center location. inverse distance from the value, and add the local
frame center. Compute ~ regressed location. This 2D offset at that location.
the location of the attenuates the scores
maximum heatmap value. from the background

keypoints.

Imagen 9. Pasos de la inferencia del modelo MoveNet (30)

MoveNet tiene dos variantes: MoveNet Lightning y MoveNet Thunder.

MoveNet Lightning es un modelo de estimacion de posturas humanas desarrollado por
Google en 2020, disenado para ofrecer una solucion extremadamente répida y eficiente en
dispositivos con recursos limitados, como teléfonos moviles y sistemas embebidos. Forma parte
de la familia MoveNet y esta optimizado para lograr baja latencia manteniendo una precision
competitiva en la prediccion de 17 keypoints principales, siguiendo el estandar COCO.

MoveNet Lightning emplea una arquitectura ligera basada en convoluciones eficientes
y técnicas de optimizacion (Imagen 10) que permiten su ejecucion en tiempo real incluso en
CPUs de gama baja. Aunque sacrifica algo de precision en comparacion con su contraparte mas
robusta, MoveNet Thunder, su velocidad y tamafio reducido lo hacen ideal para aplicaciones en
tiempo real que requieren un balance entre rendimiento y eficiencia, como fitness, juegos
interactivos y realidad aumentada. Ademas, su compatibilidad con TensorFlow Lite facilita su
integracion en aplicaciones moviles y de edge computing.

30

Center

—| 3x3 1x1 ! B, h, w, 1]

A

Keypoint
1x1 | Regression
[B. h, w, 2K]

3x3

Y

Image
[B,H, W, 3]

Keypoint
1x1 | Heatmap
[B, h, w, K]

3x3

\

Local
1x1 | Offsets
[B, h, w, 2K]

| 3x3

Y

Hh=4
k = num keypaints

Imagen 10. Esquema de arquitectura modelo MoveNet (30)

MoveNet Thunder es la otra variante del modelo MoveNet lanzada por Google en
2020, disefiada para ofrecer una mayor precision en la estimacion de posturas humanas a costa
de un mayor consumo computacional en comparacion con MoveNet Lightning. Este modelo
predice 17 keypoints clave siguiendo el estdndar COCO, y esta optimizado para ejecutarse en
tiempo real en dispositivos con mayor capacidad de procesamiento, como GPUs mdviles o
CPUs de alto rendimiento.

MoveNet Thunder emplea una arquitectura mas profunda y compleja que incorpora
convoluciones eficientes y técnicas avanzadas de aprendizaje profundo para mejorar la
exactitud y robustez frente a variaciones de pose, oclusiones y condiciones de iluminacion
adversas. Su disefio equilibra la necesidad de precision con la latencia, siendo adecuado para
aplicaciones que requieren un analisis detallado del movimiento humano, como rehabilitacion,
deportes y andlisis biomecanico. Asimismo, es compatible con TensorFlow Lite, facilitando su
despliegue en entornos moviles y edge computing con hardware mas potente.

2.5.8. BlazePose (2021)

BlazePose es un modelo de estimacion de posturas humanas desarrollado por Google
(31), disenado para ofrecer un seguimiento preciso y en tiempo real de la postura corporal en
dispositivos moéviles. Su arquitectura ligera permite la inferencia en dispositivos con recursos
limitados, alcanzando mas de 30 fotogramas por segundo en un Google Pixel 2.

BlazePose estima 33 puntos clave del cuerpo humano, incluyendo cabeza, tronco,
extremidades y manos, proporcionando una representacion detallada de la postura humana. Su
disefio modular consta de dos componentes principales: un detector que identifica la region del
cuerpo en la imagen y un estimador que predice las coordenadas de los puntos clave. El
estimador utiliza una combinacion de mapas de calor y regresion directa para mejorar la

31

precision y eficiencia.

Este modelo ha sido ampliamente utilizado en aplicaciones de seguimiento de actividad
fisica, control gestual y realidad aumentada, gracias a su capacidad para operar en tiempo real
sin la necesidad de hardware especializado. Ademas, su implementacion en MediaPipe facilita
su integracion en diversas plataformas y dispositivos.

2.5.9. PoseWarper (2021)

PoseWarper es un modelo avanzado de estimacioén de postura humana en video que
introduce un enfoque novedoso para explotar la informacion temporal mediante el alineamiento
espacial entre fotogramas consecutivos. A diferencia de métodos tradicionales que procesan
cada frame de manera independiente, PoseWarper utiliza una arquitectura basada en "warping"
o deformacion de caracteristicas, lo que permite transferir informacion clave desde frames
anteriores al frame actual. Esta técnica mejora la coherencia temporal y la precision en la
deteccion de articulaciones, especialmente en casos de oclusiones, movimientos rapidos o poses
poco convencionales. El modelo emplea una red de extraccion de caracteristicas que aprende a
alinear mapas de calor de keypoints a través del tiempo, reduciendo errores comunes en
secuencias de video. PoseWarper se basa en una arquitectura eficiente y modular, lo que facilita
su integracion en sistemas de andlisis de movimiento en tiempo real. Su enfoque temporal
representa un avance significativo frente a modelos estaticos, logrando mejoras sustanciales en
benchmarks como PoseTrack y subrayando la importancia de la dindmica del movimiento en
la estimacion de postura humana.

2.5.10. YOLO-Pose (2021)

YOLO-Pose es un modelo de estimacion de posturas humanas basado en la arquitectura
YOLO (You Only Look Once), conocido por su capacidad para realizar deteccion de objetos
en tiempo real con alta precision. Adaptado para la tarea de estimacion de posturas, YOLO-
Pose integra una prediction head especializada para predecir keypoints corporales directamente
junto con la deteccidon de personas en una sola pasada, optimizando la eficiencia y velocidad de
procesamiento (32).

Este enfoque single-shot permite la estimacion simultanea de multiples poses en escenas
con varias personas, generalmente prediciendo 17 keypoints conforme al estandar COCO.
YOLO-Pose destaca por su equilibrio entre precision y rendimiento, haciéndolo adecuado para
aplicaciones en tiempo real como vigilancia, analisis deportivo y realidad aumentada. Ademas,
su disefio modular facilita la implementacion en dispositivos con recursos limitados y su
compatibilidad con frameworks como PyTorch y TensorFlow amplia su aplicabilidad en
entornos moéviles y edge computing.

YOLO-pose tiene diferentes versiones publicadas hasta la fecha como se puede ver en
la Tabla 6.

32

Version YOLO | Variantes Tamafio aprox. | Caracteristicas
YOLOvV5-Pose | YOLOv5s-Pose ~14 MB Version pequeia, rapida
YOLOvS5m-Pose ~41 MB Balance entre tamafio y
precision
YOLOvVS5I1-Pose ~88 MB Mayor precision
YOLOvS5x-Pose ~168 MB Version extra grande
YOLOv7-Pose | YOLOv7-tiny-Pose ~14 MB Version ligera para edge
YOLOv7-Pose (full) ~70-90 MB Version completa
YOLOv8-Pose | YOLOv8n-Pose (nano) ~6 MB Muy ligero
YOLOv8s-Pose (small) ~22 MB Ligero
YOLOv8m-Pose (medium) | ~50 MB Balance
YOLOVS8I-Pose (large) ~87 MB Alta precision
YOLOv8x-Pose (x-large) ~136 MB Muy alta precision
YOLOvI11-Pose | YOLOvIIn-Pose (nano) ~6 MB Muy ligero
YOLOv11s-Pose (small) ~19 MB Ligero
YOLOv11m-Pose (medium) | ~40 MB Balance
YOLOv11I-Pose (large) ~60 MB Alta precision
YOLOvl11x-Pose (x-large) | ~120 MB Muy alta precision

Tabla 6. Versiones de modelos YOLO de estimacion de posturas humanas

2.5.11. RTMPose (2023)

RTMPose (Real-Time Multi-Person Pose Estimation) es un modelo de estimacion de
postura humana disefiado especificamente para lograr alto rendimiento en tareas en tiempo real,
sin comprometer la precision. Desarrollado con un enfoque modular y eficiente, RTMPose
utiliza técnicas modernas como el backbone RTMDet basado en la arquitectura ConvNeXt y
estrategias de optimizacion ligeras para acelerar la inferencia, siendo especialmente adecuado
para aplicaciones en dispositivos con recursos limitados. A diferencia de modelos tradicionales,
RTMPose emplea una representacion directa de keypoints y una arquitectura centrada en la
eficiencia computacional, eliminando componentes costosos como el procesamiento de mapas
de calor. Ademas, introduce un esquema de entrenamiento robusto, basado en técnicas como
SimDR (Simple Disentangled Representation), que mejora la estabilidad y la precision de la
prediccion de coordenadas. Este modelo es altamente competitivo en benchmarks como COCO
y CrowdPose, destacando por su capacidad para manejar multiples personas, oclusiones y
variabilidad en las poses. Su disefio versatil lo hace ideal para aplicaciones en vision artificial,
realidad aumentada, deportes y vigilancia inteligente.

2.5.12. Resumen

Ademas de las caracteristicas descritas existen otros parametros importantes a la hora
de seleccionar un modelo muy dependiente el entorno donde se vaya a utilizar y son su tamatfio
y su formato (ver Tabla 7 para tamafios aproximados y formatos).

El tamaiio de los modelos es tan variable como versiones y/o familias del modelo se

hayan desarrollado, como ya vimos en el apartado “2.3.2 Cuantizacion de modelos” existen
técnicas para reducir el tamafio de un modelo sin que la precision del mismo se vea

33

excesivamente comprometida. Las versiones sin “cuantizar” suelen usar precision de 32 bits en
punto flotante (float32), lo cual produce modelos grandes pero precisos. La cuantizacion a
menor precision (como int8 o floatl6), utilizada en modelos como MoveNet o BlazePose,
reduce significativamente el tamafio del modelo, ademas de mejorar la velocidad de inferencia
y disminuir el consumo de memoria.

La arquitectura base (backbone) empleada en un modelo tiene un impacto sustancial en
su tamano. Modelos como HRNet, OpenPose o AlphaPose (basados en la arquitectura ResNet)
utilizan backbones pesados y profundos (por ejemplo, ResNet-101 o HRNet-W48), disefiados
para preservar informacion espacial a lo largo de toda la red, lo cual incrementa tanto el nimero
de parametros como el tamafio total del modelo. En cambio, arquitecturas ligeras como
MobileNet, utilizadas por modelos como PoseNet o MoveNet Lightning, estan especificamente
optimizadas para reducir la complejidad computacional, lo que resulta en tamafos
significativamente menores.

Ademas de la arquitectura, los modelos suelen ofrecer multiples variantes (por ejemplo
versiones tiny, small, medium, large, nano, etc.), cada una con diferentes profundidades y
anchos de red. Estas variantes permiten al usuario seleccionar un punto de equilibrio entre
precision, latencia y tamafio de almacenamiento, lo cual es crucial en aplicaciones para
dispositivos de edge computing (Tabla 8).

Modelo Fecha Formato de Fichero Tamafio aproximado
OpenPose 2017 .caffemodel / .onnx ~100 MB
AlphaPose 2018 .pth (PyTorch) ~92 MB
PoseNet 2018 tflite / .json / .pb ~5 MB
DensePose 2018 .pkl/ .pth ~13.8 MB
HRNet 2019 .pth ~112 MB
EfficientPose | 2020 .h5 / .onnx <10 MB
MoveNet 2020 tflite 5-20 MB
BlazePose 2021 tlite / .pb 3-26 MB
PoseWarper 2021 .pth N/D
YOLO-Pose | 2021 .pt (—.onnx, —- tflite) 6-200 MB
RTMPose 2023 .onnx / .pth 18-65 MB

Tabla 7. Resumen caracteristicas modelos preentrenados

34

Modelo Entrada Feature Extraction Prediction Heads Salida (estimacion poses)
OpenPose Imagen RGB VGG-19 o variantes Heatmaps de keypoints + 18-135 keypoints
personalizadas mapas de afinidad (PAFs) (cuerpo/rostro/manos)
AlphaPose Imagen RGB ResNet (usualmente ResNet-50 | Heatmaps de keypoints + 17-136 keypoints
o ResNet-101) regresion de offsets
PoseNet Imagen RGB MobileNet o ResNet Heatmaps de keypoints 17 keypoints
DensePose Imagen RGB ResNet-101 Mapas de UV (superficie Cuerpo completo en malla UV
corporal) + segmentacion (no keypoints estandar)
HRNet Imagen RGB High-Resolution Network Heatmaps de keypoints 17 (COCO) /16 (MPII)
(multiples ramas paralelas) keypoints
EfficientPose | Imagen RGB EfficientNet (B0-B4) Heatmaps de keypoints + 17 keypoints
offsets (opcional)
MoveNet Imagen RGB CNN propietaria optimizada Regresion directa de 17 keypoints
para mévil coordenadas keypoints
BlazePose Imagen RGB (ROI del cuerpo) | MobileNetV2 ligera o CNN Regresion directa de 33 keypoints
personalizada keypoints 3D
PoseWarper | Secuencia de imagenes Hourglass o ResNet Heatmaps de keypoints + 17 keypoints
modulo de warping
YOLO-Pose | Imagen RGB CSPDarknet (YOLO Regresion directa de 17 keypoints
backbone) bounding boxes + keypoints
RTMPose Imagen RGB MobileNetV3 o HRNet-lite Regresion directa o 17 keypoints

heatmaps simplificados

Tabla 8. Resumen arquitecturas modelos preentrenados

35

2.6. Datasets de estimacion de posturas

El desarrollo de algoritmos robustos de estimaciéon de posturas ha dependido
criticamente de la disponibilidad de datasets publicos bien anotados, que sirven como base
tanto para el entrenamiento como para la evaluacion de modelos supervisados.

Los datasets de estimacion de postura pueden clasificarse segun varias dimensiones
técnicas: tipo de anotacion (2D o 3D), nimero de personas por imagen (single-person o multi-
person), tipo de sensor (RGB, RGB-D, multivista), y contexto (interior, exterior, sintético o
realista). Entre los mas influyentes se encuentran COCO Keypoints y MPII Human Pose, cada
uno con diferentes coberturas de poses, diversidad de sujetos, condiciones de iluminacién, y
esquemas de anotacion.

Técnicamente, un dataset de postura humana incluye no solo las imagenes, sino también
las coordenadas (en pixeles o en 3D) de los puntos anatomicos relevantes (como hombros,
codos, rodillas, tobillos, etc.), frecuentemente junto con etiquetas de visibilidad o confiabilidad.
La calidad, cantidad y diversidad de estos datos tienen un impacto directo sobre la capacidad
de generalizacion de los modelos entrenados, especialmente en escenarios desafiantes como la
oclusion, las poses poco frecuentes o las variaciones culturales.

Para la realizacion de este estudio se han analizado los dos datasets mas utilizados y
relevantes en el ambito de la vision por computador, COCO (1) y MPII (2).

2.6.1. Dataset COCO (Common Objects in COntext)

El dataset COCO (Common Objects in COntext) es un conjunto de datos ampliamente
utilizado en la investigacion y desarrollo de modelos de vision por computador. Fue introducido
por Microsoft en 2014 con el objetivo de proporcionar un recurso estandarizado para el
entrenamiento y la evaluacion de algoritmos en tareas complejas como deteccion de objetos,
segmentacion semantica, segmentacion de instancias, deteccion de poses humanas y captioning
de imagenes. Su disefo se centra en ofrecer imagenes realistas con objetos en contextos
naturales, lo que lo diferencia de conjuntos anteriores con escenarios mas simplificados o
sintéticos.

Es uno de los datasets mas reconocidos desde su aparicion, y, desde 2015, la COCO
Challenge' ha sido un catalizador permanente de nuevos state-of-the-art en tareas clave como
deteccion, segmentacion y estimacion de posturas. La primera edicion se celebro en 2015 y el
ganador fue el modelo Faster R-CNN (33) que es considerado un avance crucial en deteccion
de objetos porque introduce el Region Proposal Network (RPN), un sub-modulo entrenable
dentro de la red que aprende a generar propuestas de regiones directamente desde los feature
maps'® de 1a CNN que hace que el tiempo de inferencia pase de segundos por imagen a solo 0.2
segundos aproximadamente, haciendo posible la deteccion casi en tiempo real.

15 COCO Challenge es una competencia anual que mide los algoritmos mds avanzados en deteccidn,
segmentacion, poses y captioning, usando el dataset COCO como referencia.

16 Son las estructuras de datos especificas dentro de las capas de extraccion de caracteristicas (Feature
extraction) que contienen estas caracteristicas aprendidas de una manera espacialmente organizada

36

También ha sido designado como un estandar para la comunidad de deteccion de objetos
en papers como “Recent Advances in Object Detection in the Age of Deep Convolutional Neural
Networks” (34) donde se cita textualmente:

“Like ImageNet in its time, MS-COCO has become the de facto standard for the object
detection community and any method winning the state-of-the-art on it is assured to gain
much traction and visibility.”

COCO esta compuesto por mas de 330.000 imagenes, de las cuales mas de 200.000
cuentan con anotaciones detalladas que abarcan mas de 1,5 millones de instancias de objetos.
Estos objetos pertenecen a 80 categorias comunes que incluyen personas, animales, vehiculos,
muebles, utensilios cotidianos, entre otros, lo que permite abordar tareas de deteccion y
segmentacion de objetos en contextos muy variados y realistas.

En el ambito de la estimacion de poses humanas, COCO ofrece anotaciones precisas de
keypoints corporales para mas de 250.000 personas. Estas anotaciones incluyen posiciones de
articulaciones clave como hombros, codos, mufiecas, caderas, rodillas y tobillos,
proporcionando una base so6lida para entrenar y evaluar modelos de estimacion de postura en
2D bajo condiciones complejas, con variaciones de iluminacion, oclusion, perspectiva y
diversidad de posturas.

El dataset se organiza en varias particiones para facilitar el desarrollo y la evaluacion de
modelos:

- train2017: conjunto de entrenamiento con aproximadamente 123.000 imagenes
anotadas, utilizadas para ajustar los parametros de los modelos.

- val2017: conjunto de validacion con unas 5.000 imagenes, destinado a ajustar
hiperparametros y realizar pruebas preliminares de desempeio.

- test-dev2017 y test-challenge2017: conjuntos de prueba sin etiquetas visibles
publicamente, disefiados para evaluaciones de benchmark oficiales, donde los
resultados se comparan de manera objetiva entre diferentes algoritmos.

Puntos clave o keypoints

Son coordenadas especificas que en estimacion de poses humanas se corresponden con
una articulacion o region anatomica relevante como hombros, codos, rodillas o tobillos (Imagen
11) y su deteccion precisa permite reconstruir la estructura y postura del cuerpo. Estos puntos
se utilizan como entidades de referencia para tareas de analisis de movimiento, biometria,
interaccion hombre-maquina y seguimiento visual, y suelen ir acompafiados de indicadores de
visibilidad o confianza que cuantifican la certeza del modelo en su localizacion.

37

[L]
._n

a9 2 ®3
100 ‘e N 09
e o7
12¢ o11
14@ ®13
160 ®15

Imagen 11. Representacion de las anotaciones de dataset COCO por persona

El dataset COCO incluye un subconjunto especificamente disefiado para la tarea de
estimacion de posturas humanas en 2D, que constituye uno de los estandares de referencia mas
utilizados en vision por computador. En este subconjunto, cada instancia de persona estd
anotada mediante un conjunto fijo de 17 keypoints corporales (Tabla 9), definidos para
capturar la estructura esquelética humana de manera coherente, reproducible y adecuada para
diferentes escenarios de aplicacion.

Estos keypoints corresponden a las principales articulaciones y regiones anatomicas del
cuerpo humano: nariz, ojos, orejas, hombros, codos, muiiecas, caderas, rodillas y tobillos. La
disposicion de estas anotaciones permite representar de forma aproximada la cinematica del
cuerpo y posibilita la construccion de esqueletos simplificados que pueden ser empleados en
tareas de analisis de movimiento, interaccion humano-computadora, biometria o deportes.

Un aspecto clave de COCO es que estas anotaciones estan recogidas en condiciones
no controladas, es decir, en escenas naturales y cotidianas con variaciones significativas en
iluminacion, poses, oclusiones parciales, angulos de vision y escalas de representacion. Esta
diversidad dota al dataset de un alto nivel de complejidad y realismo, lo que lo convierte en un
recurso fundamental para evaluar la robustez de los modelos de estimacion de postura en
contextos desafiantes.

Cada uno de los keypoints se anotan con coordenadas (X, y) y con una etiqueta de
visibilidad con los valores 0 (no visible), 1 (marcado pero no visible), 2 (visible).

Estas anotaciones permiten no solo la localizacion precisa de cada keypoint, sino
también la evaluacion estructurada de modelos bajo métricas ampliamente adoptadas que
veremos mas adelante como Average Precision (AP), Object Keypoint Similarity (OKS) y
Average Recall (AR) por lo que ademas de su uso como benchmark, COCO se ha consolidado
como estandar de facto para la comparacion entre arquitecturas de vision.

38

N° de keypoint | Nombre del keypoint | Descripcion anatomica

1 Nose Punta de la nariz

2 Left Eye Centro del ojo izquierdo

3 Right Eye Centro del ojo derecho

4 Left Ear Parte visible de la oreja izquierda
5 Right Ear Parte visible de la oreja derecha

6 Left Shoulder Articulacion del hombro izquierdo
7 Right Shoulder Articulacion del hombro derecho

8 Left Elbow Articulacion del codo izquierdo

9 Right Elbow Articulacion del codo derecho

10 Left Wrist Articulacion de la mufieca izquierda
11 Right Wrist Articulacion de la mufieca derecha
12 Left Hip Articulacion de la cadera izquierda
13 Right Hip Articulacion de la cadera derecha
14 Left Knee Articulacion de la rodilla izquierda
15 Right Knee Articulacion de la rodilla derecha
16 Left Ankle Articulacion del tobillo izquierdo
17 Right Ankle Articulacion del tobillo derecho

Tabla 9. Listado de keypoints de dataset COCO

Anotaciones de COCO para la estimacion de posturas humanas

Para las anotaciones el dataset utiliza un esquema jerarquico en formato JSON siguiendo
una especificacion propia conocida como COCO JSON Format que permite no solo entrenar
modelos supervisados de estimacidon de pose 2D sino también evaluar modelos bajo métricas
como AP, OKS y AR, generar esqueletos y visualizar poses humanas en entornos reales y

complejos, etc.. Cada anotacion de persona contiene los siguientes campos:

- image_id: ID de la imagen donde se encuentra la persona.

- category_id: Siempre 1 para personas.

- keypoints: Lista de 51 valores (17 keypoints x 3 valores por keypoint).
Cada keypoint contiene: (X, y, v):

o X, y: coordenadas del punto en pixeles.

o v: visibilidad (0=no etiquetado, 1=etiquetado pero no visible, 2=etiquetado

y visible).

- num_keypoints: nimero de puntos anotados con v > 0.

- bbox: coordenadas [x, y, width, height] de la caja que rodea a la persona.

- area: area de la caja (util para normalizar el error en métricas como OKS).

- iscrowd: si la anotacion pertenece a un grupo denso de personas (0 o 1).

39

- segmentation: poligonos que segmentan la silueta del cuerpo (opcional).

Validacion de resultados con COCO

El calculo de resultados en la API de COCO para estimacion de poses humanas se basa

en una evaluacion que mide la precision y exhaustividad de la localizacion de puntos clave
(keypoints) en imagenes. Técnicamente, el proceso sigue estas etapas fundamentales:

1.

Entrada de predicciones. El modelo genera un conjunto de predicciones para cada
persona detectada en la imagen, donde cada prediccion contiene coordenadas (X, y) para
17 keypoints predefinidos (hombros, codos, etc.) y una puntuacién de confianza.

Correspondencia con anotaciones (ground truth). Cada prediccion se asocia con una
anotacion real mediante la métrica de similitud de puntos clave (OKS). El OKS evalua
la proximidad espacial entre los keypoints predichos y anotados, normalizada por la
escala del objeto y ponderada por la visibilidad de cada punto.

. Asignacion de verdaderos positivos y falsos positivos:

o Para distintos umbrales de OKS (desde 0.50 a 0.95 en incrementos de 0.05),
la API asigna cada prediccion a una anotacion unica si el OKS excede el
umbral, clasificandola como verdadero positivo (TP).

o Predicciones sin correspondencia o con OKS bajo el umbral se consideran
falsos positivos (FP).

o Las anotaciones no detectadas cuentan como falsos negativos (FN).

Construccion de la curva Precision-Recall. Para cada umbral, se calcula la precision y
el recall acumulados ordenando las predicciones seglin su puntuacion de confianza. Esto
permite trazar la curva de precision en funcion del recall.

Calculo del Average Precision (AP). La métrica AP se obtiene integrando el area bajo la
curva Precision-Recall interpolada en 101 puntos de recall, proporcionando una medida
robusta y estable del rendimiento del modelo.

Agregacion multi-umbral y global. Finalmente, la API calcula el mean Average
Precision (mAP) promediando los AP obtenidos en los diferentes umbrales de OKS,
reflejando la capacidad del modelo para localizar con precision keypoints en diversos
grados de tolerancia espacial. En los resultados de la API COCO se considera como
la métrica principal (mAP) al valor de AP [1oU=0.50:0.95].

Este método garantiza una evaluacion precisa, que tiene en cuenta la variabilidad en la

visibilidad y escala de las personas, y promueve la comparacion justa y estandarizada entre
diferentes modelos de estimacion de poses humanas.

40

2.6.2. MPII (Max Planck Institute for Informatics)

El dataset MPII Human Pose es otra referencia fundamental en el campo de la
estimacion de poses humanas en imagenes. Desarrollado por el Max Planck Institute for
Informatics (MPII) en Alemania (centro de investigacion lider en vision por computador y
aprendizaje automatico) para capturar la diversidad y complejidad de posturas humanas en
contextos cotidianos. MPII contiene aproximadamente 25.000 imagenes extraidas de videos
reales, abarcando una amplia variedad de actividades y situaciones. Cada persona en estas
imagenes estad anotada con 16 puntos clave (keypoints) que representan las principales
articulaciones y partes del cuerpo, como cabeza, hombros, codos y rodillas, proporcionando
una representacion detallada de la configuracion corporal en 2D (2).

Ademas de las coordenadas anatomicas, MPII incluye informacion contextual sobre la
actividad realizada por la persona, lo que enriquece su utilidad para tareas que combinan
estimacion de pose y reconocimiento de acciones. Este dataset se ha convertido en un estandar
para la evaluacién de algoritmos de estimacion de pose gracias a la calidad y precision de sus
anotaciones, asi como a la diversidad de su contenido.

Utilizado en numerosos estudios y trabajos importantes como por ejemplo
“Compositional Human Pose Regression” (35) que introduce un enfoque de regresion
estructurada para estimacion de postura que permite modelar dependencias espaciales entre
articulaciones, base para muchos métodos posteriores, o “P-CNN: Pose-based CNN Features
for Action Recognition” (36) que introduce la combinacion de pose + CNN para reconocimiento
de acciones y donde MPII se usa como benchmark para evaluar la precision de keypoints
humanos contribuyendo a popularizar el uso de poses humanas como caracteristica para tareas
adicionales de vision.

Puntos clave o keypoints

Los 16 keypoints de MPII (Imagen 12) incluyen posiciones en 2D correspondientes a
cabeza, cuello, hombros, codos, mufiecas, caderas, rodillas y tobillos, proporcionando una
cobertura detallada de las principales articulaciones para la reconstruccion precisa de la postura
humana. Las anotaciones son realizadas manualmente sobre imagenes provenientes de videos
cotidianos con gran diversidad de posturas, actividades y condiciones visuales, lo que permite
modelar un amplio rango de configuraciones corporales.

A diferencia de otros datasets como COCO, MPII pone énfasis en posturas complejas
y dinamicas en actividades especificas, ofreciendo ademds metadatos con informaciéon
contextual sobre la actividad realizada, lo que posibilita un andlisis mas rico y aplicaciones
avanzadas en reconocimiento de acciones.

41

Imagen 12. Representacion de las anotaciones de dataset MPII por persona

MPII al igual que COCO incluye informacion especializada para la tarea de estimacion
de posturas humanas en 2D, donde cada instancia de persona est4d anotada con un conjunto fijo
en este caso de 16 keypoints corporales por los 17 que tiene COCO. Estas anotaciones son
similares a las de COCO, aunque no iguales, pero también estan disefiadas para capturar la
estructura esquelética humana y se encuentran distribuidas en las principales articulaciones y
regiones del cuerpo humano: cabeza, cuello, pelvis, torso, hombros, codos, muiiecas, caderas,
rodillas y tobillos.

N° de keypoint | Nombre del keypoint Descripcion anatomica

0 Right Ankle Articulacion del tobillo derecho

1 Right Knee Articulacion de la rodilla derecha
2 Right Hip Articulacion de la cadera derecha
3 Left Hip Articulacion de la cadera izquierda
4 Left Knee Articulacion de la rodilla izquierda
5 Left Ankle Articulacion del tobillo izquierdo

6 Pelvis Centro de la pelvis / region lumbar
7 Thorax Centro superior del torso

8 Neck Base del cuello

9 Head Parte superior de la cabeza

10 Right Wrist Articulacion de la mufieca derecha
11 Right Elbow Articulacion del codo derecho

12 Right Shoulder Articulacion del hombro derecho
13 Left Shoulder Articulacion del hombro izquierdo
14 Left Elbow Articulacion del codo izquierdo

15 Left Wrist Articulacion de la mufieca izquierda

Tabla 10. Listado de keypoints de dataset MPII

42

Anotaciones de MPII para la estimacion de posturas humanas

Las anotaciones de keypoints en el dataset MPII Human Pose se almacenan
principalmente en archivos MATLAB, que contienen estructuras de datos detalladas para cada
imagen y persona anotada. Cada entrada incluye coordenadas 2D (x, y) de 16 keypoints
anatomicos especificos, numerados y definidos dentro de cada anotacioén de cada persona, que
contiene los siguientes campos:

- .annolist(imgidx): anotaciones para la imagen imgidx

o .image.name: nombre del fichero de la imagen
o .annorect(ridx): anotaciones corporales de la persona ridx
e x1,.y1, X2, .y2: coordenadas del rectangulo de la cabeza
e .scale: escale de la persona
e .0bjpos: posicion humana en la imagen
e .annopoints.point: anotaciones de los keypoint
e X, .y: coordenadas del punto
e id: identificador del punto (Tabla 10)
e is_visible: visibilidad del punto
o .vidx: indice en el video video_list
o .frame_sec: posicion de la imagen en el video en segundos

- img_train(imgidx): asignacion de la imagen a training/testing
- single_person(imgidx): rectangulo con identificador ridx
- act(imgidx): etiqueta de actividad/categoria para la imagen imgidx

o act_name: nombre de actividad
o cat_name: nombre de categoria
o act_id: identificador de la actividad

- video_list(videoidx): identificador del video de YouTube. Para visualizarlo ir a
https://www.youtube.com/watch?v=video_list(videoidx)

Medidas de precision de dataset MPII

Las medidas de precision empleadas en el dataset MPII Human Pose para la evaluacion
de modelos de estimacion de postura humana estan disefiadas para cuantificar la exactitud en
la localizacion de los keypoints en imdgenes 2D. La métrica principal es el PCKh (Percentage
of Correct Keypoints, head-normalized), que calcula el porcentaje de keypoints correctamente
detectados dentro de un umbral de distancia relativo al tamafio de la cabeza del sujeto.

Matematicamente, un keypoint se considera correctamente estimado si la distancia
euclidiana entre la prediccion y la anotacion ground truth es menor que un umbral
a x head size, donde el pardmetro @ suele establecerse en 0.5. Este criterio de normalizacion
mediante el tamaiio de la cabeza permite adaptar la evaluacion a diferentes escalas y tamanos
corporales, ofreciendo una comparacion justa y robusta entre individuos y escenarios variados.

43

Ademas del PCKh, se utiliza el PCK (Percentage of Correct Keypoints) en otras
variantes, que emplea umbrales absolutos o relativos a otras dimensiones corporales para casos
especificos o comparaciones con otros datasets. La métrica PCKh se reporta tanto para cada
articulacion individual como en forma agregada, proporcionando un analisis detallado de las
fortalezas y limitaciones del modelo en distintas regiones corporales.

El dataset MPII también incluye evaluaciones con curvas PCK, que representan la
precision en funcidon del umbral de distancia, y métricas complementarias como el error medio
euclidiano, para una comprension mas fina del desempefio.

Validacion de resultados con MPII

El proceso de validacion de resultados con el dataset MPII Human Pose se realiza
mediante la evaluacion cuantitativa de las predicciones del modelo sobre un conjunto de
imagenes de prueba etiquetadas con anotaciones ground truth de keypoints. Este procedimiento
sigue los siguientes pasos técnicos y académicos:

1. Preparacion de datos. Se utilizan las imdgenes de test con sus correspondientes
anotaciones de 16 keypoints y sus estados de visibilidad. Estas anotaciones actiian como
referencia para comparar las predicciones del modelo.

2. Prediccion de keypoints. El modelo genera estimaciones de las posiciones 2D de los
keypoints para cada persona en las imagenes de test. Las predicciones deben estar en el
mismo sistema de coordenadas y escala que las anotaciones ground truth.

3. Normalizacion y umbral. Para evaluar la precision, se normalizan las distancias entre
los keypoints predichos y los anotados usando la dimension de la cabeza (head size),
que es un indicador del tamafio relativo del sujeto. Se define un umbral, cominmente el
50% del tamafio de la cabeza (PCKh@0.5), para determinar si un keypoint esta
correctamente localizado.

4. Célculo de métricas. Se calcula el porcentaje de keypoints detectados correctamente
(PCKh) y se reporta para cada articulacion y globalmente. También se pueden analizar
curvas PCK que muestran la precision en funcién de distintos umbrales, asi como
errores promedio.

5. Tratamiento de visibilidad. Los keypoints marcados como no visibles o fuera de imagen

en las anotaciones ground truth se excluyen de la evaluacion para evitar penalizar al
modelo por detectar puntos imposibles de observar.

2.7. Métricas de precision
Las métricas de precision constituyen herramientas cuantitativas disefiadas para evaluar

de manera objetiva el rendimiento de modelos en tareas como deteccion de objetos,
clasificacion y estimacion de poses. Su funcion es medir, bajo diferentes perspectivas, el grado

44

de concordancia entre las predicciones del modelo y el ground truth'’, permitiendo
comparaciones entre arquitecturas, configuraciones y datasets.

Técnicamente, estas métricas se apoyan en la teoria de deteccion de sefiales y en el
analisis de TP (True Positives), FP (False Positives), TN (True Negatives) y FN (False
Negatives), adaptando su formulacion a la naturaleza de cada tarea:

- En clasificacidn, la métrica base es la precision (accuracy), que mide la proporcion
de predicciones correctas sobre el total, complementada con métricas como recall y
matrices de confusion para abordar problemas de clases desbalanceadas.

- Endeteccion de objetos, se utilizan métricas basadas en el solapamiento geométrico,
como el IoU (Intersection over Union), y medidas agregadas como el AP (4Average
Precision) y mAP (mean Average Precision), evaluando el rendimiento bajo
multiples umbrales de coincidencia para capturar tanto la capacidad de localizar
como de clasificar correctamente.

- Enestimacion de poses, las métricas deben adaptarse a datos estructurados de puntos
clave. Aqui, el OKS (Object Keypoint Similarity) sustituye al loU, ya que considera
distancias euclidianas normalizadas, escala del objeto y visibilidad de keypoints.
Sobre esta base se calculan métricas como AP/AR de COCO keypoints, que miden
simultaneamente exhaustividad y precision a distintos niveles de tolerancia.

La seleccion y andlisis de estas métricas no solo determina la interpretacion del
rendimiento de un modelo, sino que también condiciona el desarrollo de arquitecturas y técnicas
de entrenamiento, ya que optimizar para una métrica especifica puede producir sesgos hacia
ciertos aspectos de la tarea (por ejemplo alta precision pero bajo recall, o viceversa).

2.7.1. Recall

Recall (exhaustividad o sensibilidad) es la métrica que mide la capacidad de un modelo
para encontrar todas las instancias relevantes de la clase objetivo dentro de un conjunto de
datos. Un recall alto indica que el modelo detecta la mayoria de los objetos reales (o keypoints),
aunque no necesariamente con alta precision (37).

Desde un punto de vista matematico, recall se define como vemos en la Ecuacion 1
cantidad de casos correctamente acertados dividido entre casos correctamente acertados + casos
relevantes no acertados.

7 Conjunto de datos o anotaciones de referencia verificadas manualmente contra la cual se comparan y
evaluan las predicciones de un modelo.

45

TP

RCC&].]. = m

donde:

e TP (True Positives): casos relevantes correctamente detectados.

* FN (False Negatives): casos relevantes que el modelo no detecto.

Ecuacion 1. Calculo de Recall (37)

2.7.2. Intersection over Union (IoU)

La IoU es una métrica ampliamente utilizada en vision por computador para cuantificar
la superposicion entre dos regiones, una region predicha y su correspondiente ground truth
(valores de referencia) (Imagen 13). Es un indicador clave en tareas de deteccion de objetos,
segmentacion semantica, instancia y estimacion de poses (cuando se evaltian bounding boxes'®)
(38).

El calculo de IoU produce un valor normalizado entre 0 y 1. Un valor cercano a 1 indica
una prediccion con una alta coincidencia espacial respecto a la anotacion de referencia, mientras
que valores bajos reflejan discrepancias significativas en localizacion, escala o forma. En la
practica, la IoU se utiliza con umbrales definidos (por ejemplo, IoU > 0.5) para determinar si
una prediccion se considera un acierto o un fallo. La variacion de dichos umbrales da lugar a
métricas mas expresivas, como la AP en intervalos multiples (AP@][0.5:0.95]), ampliamente
adoptada en benchmarks como COCO.

Area of Overlap
IoU =

Area of Union

Imagen 13. Representacion loU (38)

18 Una caja delimitadora (bounding box en inglés) es un rectdngulo que se utiliza para delimitar la posicién y el
tamafio de un objeto dentro de una imagen o un fotograma de video.

46

Desde un punto de vista matematico, el IoU se define como el cociente entre el area de
la interseccion de las dos regiones y el area de su unién como se puede ver en la Ecuacion 2.

o |Bp N B.c,r£|

IoU =
|Bju U B.c,rt|

donde:

* B, es el bounding box (o mascara) predicho por el modelo.
. By,: es el bounding box (o mascara) de referencia.

o |- | denota el area.

Ecuacion 2. Calculo de loU (Intersection Over Union) (38)

2.7.3. Estimacion de puntos clave: Object Keypoint Similarity (OKS)

IoU es la métrica de referencia para medir la precision de la deteccion de objetos pero
al calcularse utilizando las areas de las regiones predichas y real no puede ser aplicada cuanto
estamos trabajando con deteccion de puntos. En la estimacion de puntos clave la métrica
homologa a IoU es el OKS (Object Keypoint Similarity) (39), que es una métrica de evaluacion
utilizada para cuantificar la similitud entre los keypoints predichos por un modelo de estimacion
de pose humana y los keypoints de referencia (ground truth) en un contexto de objetos con
estructura articulada como personas. Esta métrica fue introducida por el equipo de COCO como
una generalizacion del IoU, adaptada a la naturaleza puntual y estructural de los esqueletos
humanos.

OKS se define como una funcién de penalizacion basada en la distancia euclidiana entre
cada par de keypoints (el predicho y el real), normalizada por la escala del objeto y ponderada
por un factor de visibilidad anatomica. Su expresion matematica se puede ver en la Ecuacion 3.

> [cxp(%12) - 6(v; > 0)]
> 0(v; > 0)

OKS =

donde:
* d;: distancia euclidiana entre el keypoint predicho y el real para la articulacion i.
* s:escala del objeto (normalmente el area de la persona anotada).
* k;: constante que controla la tolerancia al error para el keypoint i; define la sensibilidad anatémica
(algunos puntos permiten mayor error).
e o;: visibilidad del keypoint ¢ (0 = no etiquetado, 1 = etiquetado no visible, 2 = visible).

» &(v; > 0):indica si ese punto fue etiquetado.

Ecuacion 3. Calculo de OKS de COCO (39)

47

El OKS toma valores en el rango [0,1], donde 1 indica una coincidencia perfecta entre
la prediccion y la anotacion. A diferencia del IoU, el OKS es robusto a errores de localizacion
relativa gracias a la normalizacion por escala y sensibilidad. Es la métrica oficial para los
benchmarks de COCO Keypoints y se utiliza para calcular métricas como:

mAP (media de AP en multiplos de OKS de 0.50 a 0.95).
AP@OKS=0.75 (estricto).

AP@OKS=0.50 (tolerante).

2.7.4. Medidas de precision de dataset COCO

Para evaluar la precision de los modelos de estimacion de postura humana en el dataset
COCO se utilizan las métricas definidas por el COCO Keypoint Evaluation API, que siguen los
criterios de deteccion de objetos adaptados al contexto de keypoints. Las métricas principales

son:

AP. Average Precision (precision promedio). Es una métrica integral que
cuantifica el rendimiento de un modelo promediando la precision a lo largo de
distintos niveles de exhaustividad (recall) (40). En lugar de evaluar la precision en
un unico punto, COCO integra el area bajo la curva Precision-Recall, 1o que
proporciona una medida mas estable y representativa del comportamiento global del
sistema (Ecuacion 4).

COCO define AP como la media de la precision calculada para un conjunto discreto
de niveles de recall, tipicamente 101 puntos equidistantes en el intervalo [0,1]. En
la tarea de deteccion de objetos y estimacion de poses, la API no calcula AP para un
unico umbral de coincidencia, sino que la promedia sobre multiples umbrales de loU
(en deteccion) u OKS (en pose), con pasos de 0.05, cubriendo desde 0.50 hasta 0.95.

1
A-'P(:,L - F E Pénfr:-rp(r)
T reR

donde:
* R es el conjunto de niveles de recall evaluados (101 en COCO),
. Pimf__.,.p('r) es la precision interpolada para el recall r,

* NN, es el numero total de niveles de recall considerados.

Ecuacion 4. Calculo Average Precision en COCO (40)

AR. Average Recall (recuperacion media). La recuperacion media AR evalua la
capacidad del modelo para detectar todas las personas y sus keypoints relevantes, es
decir, cuantos casos relevantes logra capturar correctamente, sin importar tanto la
confianza del score. En contextos de estimacion de postura, es importante para medir

48

si un modelo no deja sin detectar personas o keypoints, especialmente en escenas
complejas o con multiples sujetos. Una AR elevado indica que el modelo es capaz
de recuperar la mayoria de las poses humanas relevantes, aunque algunas
estimaciones no sean perfectas en todos los puntos.

2.8. Utilizacion en dispositivos moviles y consideraciones técnicas

La integracion de modelos de estimacion de posturas humanas en dispositivos moviles
constituye un area de investigacion y desarrollo de creciente relevancia debido a la necesidad
de soluciones portables, en tiempo real y con bajo consumo de recursos computacionales. Estos
modelos permiten identificar y localizar puntos clave en el cuerpo humano directamente desde
la camara del dispositivo, habilitando aplicaciones en ambitos como la salud digital, el deporte,
la rehabilitacion, la interaccion hombre-maquina, el entretenimiento y la realidad aumentada.

2.8.1. Hardware

La ejecucion de modelos de estimacion de posturas en dispositivos moviles puede
abordarse desde diferentes estrategias tedricas, las cuales dependen de la disponibilidad de
recursos de hardware, del ecosistema de software del dispositivo y de los requisitos de precision
y latencia de la aplicacion. Estas estrategias pueden implementarse mediante frameworks
optimizados para entornos méviles como TensorFlow Lite, PyTorch Mobile, CoreML, NNAPI
(Android Neural Networks API) o OpenVINO para dispositivos edge, que proporcionan las
abstracciones necesarias para ejecutar el mismo modelo en diferentes backends (CPU, GPU,
NPU). La seleccion del método depende de los criterios de disefio del sistema, el tipo de
aplicacion y las limitaciones impuestas por el hardware del dispositivo. De manera general, se
pueden distinguir cuatro enfoques principales.

Ejecucion directa en CPU

Los modelos pueden ejecutarse en la unidad central de procesamiento (CPU) del
dispositivo, sin requerir hardware especializado. Este enfoque maximiza la portabilidad y
compatibilidad, ya que practicamente todos los dispositivos moéviles disponen de CPU. Sin
embargo, su principal limitacion radica en la baja velocidad de inferencia en comparacion con
otros métodos, lo que restringe su uso a modelos altamente optimizados o aplicaciones con
requisitos de latencia poco estrictos.

Aceleracion mediante GPU movil

La unidad de procesamiento grafico (GPU) integrada en los dispositivos moviles puede
aprovecharse para la ejecucion de estos modelos, especialmente aquellos basados en
operaciones de convolucion intensiva. Frameworks como TensorFlow Lite GPU Delegate o
Metal Performance Shaders (en iOS) permiten explotar el paralelismo masivo de la GPU,
incrementando la velocidad de inferencia de manera significativa.

En la practica, este enfoque es posible gracias a las GPUs integradas en los SoCs
modernos que equipan a la mayoria de teléfonos y tablets actuales. Entre ellas se incluyen

49

arquitecturas Mali (ARM), Adreno (Qualcomm), PowerVR (Imagination Technologies) y las
GPUs disefiadas por Apple, todas con soporte para APIs graficas como OpenGL ES 3.x, Vulkan
o Metal, segin la plataforma. Estas capacidades permiten ejecutar cargas de trabajo de
inferencia en paralelo, aunque con diferencias en rendimiento y eficiencia energética segun la
generacion y el nivel del hardware. No obstante, el consumo energético y la variabilidad de
soporte entre diferentes dispositivos constituyen limitaciones importantes.

Uso de aceleradores especializados (NPUs, DSPs, TPUs moviles)

Una tendencia creciente en la computacion movil es la incorporacion de unidades de
procesamiento neuronal (NPUs) o Digital Signal Processors (DSPs) especializados en la
ejecucion de cargas de trabajo de inteligencia artificial. Fabricantes como Qualcomm (Hexagon
DSP), Huawei (Ascend NPU) o Google (Edge TPU en dispositivos Pixel) integran este tipo de
hardware. El uso de estas unidades permite una ejecucion altamente eficiente en términos
energéticos, con latencias muy bajas y optimizacion para inferencia en tiempo real, lo que los
convierte en la opcion mas adecuada para aplicaciones de estimacion de posturas en entornos
moviles.

Ejecucion hibrida con soporte en la nube

Una alternativa tedrica consiste en combinar la inferencia en el dispositivo con el
procesamiento en la nube. En este escenario, el dispositivo movil ejecuta una primera etapa de
procesamiento (ej. deteccion de personas en la escena) y delega la parte més costosa del modelo
a servidores remotos. Esto reduce los requisitos de hardware en el mévil y posibilita el uso de
modelos de gran escala, aunque introduce problemas de latencia, dependencia de conectividad
y privacidad de los datos.

2.8.2. Android

La ejecucion de modelos de estimacion de posturas humanas en dispositivos moéviles
depende en gran medida del framework de inferencia utilizado (TensorFlow Lite, PyTorch
Mobile, entre otros), asi como del soporte de hardware (CPU, GPU, NPU/TPU) disponible en
el dispositivo. No obstante es posible establecer un rango de requisitos minimos en cuanto a
versiones de Android que aseguren la compatibilidad.

- TensorFlow Lite (TFLite) requiere como minimo Android 4.1 (API 16, Jelly Bean),
ya que esta implementado sobre el Android NDK y puede ejecutarse en arquitecturas
ARMV7 y superiores. Sin embargo, a partir de Android 8.0 (API 26, Oreo) se
introdujeron mejoras en la API de aceleracion de hardware (NNAPI, Neural
Networks API), lo que permite una ejecuciéon mucho mas eficiente en procesadores
modernos.

- PyTorch Mobile requiere Android 5.0 (API 21, Lollipop) como versiéon minima para
la ejecucion basica en CPU. Sin embargo, el soporte para aceleracion mediante GPU
(Vulkan, OpenGL) y optimizaciones recientes esta pensado para dispositivos con
Android 8.1 (API 27) o superior.

50

- ONNX Runtime Mobile en su configuracion estdndar admite dispositivos con
Android 5.0 (API 21) en adelante, aunque al igual que PyTorch y TensorFlow Lite,
el rendimiento real depende del acceso a bibliotecas de computo optimizado como
NNAPI o Core ML (en iOS).

Por tanto aunque la ejecucion basica de estos frameworks es posible en Android 5.0
(API 21) en adelante, se considera que la version minima recomendada para la ejecucion de
modelos de estimacion de posturas humanas en condiciones practicas y eficientes es Android
8.0 (API 26). A partir de esta version, los dispositivos incluyen soporte maduro para NNAPI,
drivers mas optimizados para GPU y librerias de aceleracion de hardware que resultan
esenciales en modelos de vision por computadora de alta carga computacional, como los de
estimacion de posturas.

Segtin el analisis de Wikipedia de datos de Statcounter Global Stats' la cuota de
mercado de las versiones de Android mas utilizadas hasta abril del 2025 son:

1. Android 14.0 - 33.44 %

2. Android 13.0 - 16.94 %

3. Android 12.0 - 12.11 %

4. Android 11.0 - 10.41 %

5. Android 15.0 - 10.06 %

6. Android 10.0 - 5.57 %

7. Android 9.0 Pie - 3.18 %

8. Android 8.0 Oreo - 2.18 %

9. Android 5.0 Lollipop - 1.74 %
10. Otros - 4.37 %

Por lo que sumando los porcentajes se estima que a hasta abril de 2025 un 93,89% de
los dispositivos Android en el mercado tienen una version igual o superior a la 8.0 y podrian
ejecutar este estudio.

19 https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide

51

3. METODOLOGIA

El objetivo general de este apartado es definir una metodologia que permita seleccionar
un conjunto de modelos y un dataset de testeo para evaluar y comparar su precision y
rendimiento computacional en la deteccion de posturas humanas utilizando varios dispositivos
moviles, proporcionando criterios objetivos para la seleccion de los modelos adecuados para el
estudio.

En este contexto se ha elegido Android como plataforma base para la implementacion
y validacion por criterios tanto técnicos como de aplicabilidad practica, Android constituye el
sistema operativo movil mas ampliamente utilizado a nivel global, con una cuota de mercado
superior al 70 %, lo que garantiza la relevancia y transferibilidad de los resultados a un gran
espectro de dispositivos y escenarios de uso.

Por otro lado entre los diversos frameworks disponibles, TensorFlow Lite se presenta
como una opcion preferente para implementaciones en dispositivos Android, por varias razones,
primero porque mantiene la compatibilidad con modelos previamente entrenados en
TensorFlow permitiendo la conversion a un formato optimizado para moviles sin perder la
arquitectura ni la precisiéon del modelo original, y también porque la infraestructura de
TensorFlow Lite incluye soporte nativo para Android mediante APIs estables y documentadas,
lo que simplifica la integracion de modelos de vision por computadora en aplicaciones moviles.
Esto reduce la complejidad del desarrollo y permite focalizar los recursos en el disefio
experimental y la evaluacion de métricas

3.1. Seleccion de modelos

Como hemos visto en el apartado “2.5. Modelos de estimacion de posturas” se dispone
de un amplio espectro de familias de modelos desarrolladas por la comunidad académica e
industrial, muchas de las cuales presentan similitudes estructurales (por ejemplo, en la
arquitectura de red empleada, el nimero y disposicion de keypoints que predicen o la naturaleza
del backbone de extraccion de caracteristicas), mientras que otras difieren sustancialmente en
su enfoque metodoldgico, el tipo de inferencia (top-down, bottom-up, hibrido), o el formato de
salida.

Un aspecto comun a la mayoria de estas familias es la existencia de multiples versiones
derivadas del modelo base, disefiadas para satisfacer diferentes compromisos entre precision,
latencia y uso de recursos. Dichas variantes suelen generarse mediante técnicas de optimizacion
y compresion de modelos, como la cuantizacion (descrita en el apartado “2.3.2. Cuantizacion
de modelos™),

Debido a la gran cantidad de modelos existentes, las diferencias entre ellos y a las
versiones o familias derivadas de cada uno resultaria inviable incluirlos todos en un mismo
estudio por lo que para este estudio comparativo se pretende seleccionar Unicamente 2 o 3
modelos principales e incluir todas las familias o variantes de los mismos que sean posibles
para poder analizar como se comportan los diferentes modelos seleccionados no solo en
comparacion de otros modelos sino también en comparacion con otras versiones de su propia
familia, lo que puede constituir un estudio bastante extenso.

52

3.1.1. Criterios de seleccion y modelos seleccionados

En este apartado trataremos de justificar los criterios en base a los cuales
seleccionaremos los modelos para el estudio. Se wvaloraran diferentes aspectos que
consideramos fundamentales:

- Disponibilidad y accesibilidad como modelo preentrenado. Este factor resulta
determinante para garantizar la reproducibilidad del estudio y la viabilidad técnica
de su implementacion en la plataforma objetivo. Debera existir un modelo accesible
para su descarga y posterior integracion en la plataforma de estudio, en cualquier
formato que pueda ser integrado en un framework para dispositivos moviles con
sistema operativo Android.

- Estimacion de posturas humanas, single-person, 2D y keypoints consistentes y
comunes?’. Otro criterio clave en la seleccion de modelos sera la capacidad del
modelo para predecir una unica persona en dos dimensiones y con un conjunto de
keypoints consistente y comun entre las diferentes arquitecturas evaluadas. Este
aspecto es fundamental para garantizar la comparabilidad directa de los resultados,
ya que la precision y las métricas de evaluacion solo son validas si se calculan sobre
puntos anatomicos equivalentes en todas las predicciones.

- Madurez/obsolescencia del modelo. La madurez temporal de un modelo constituye
un indicador clave para valorar su estabilidad tecnologica, grado de adopcion y nivel
de validacion por parte de la comunidad cientifica e industrial. En el presente
estudio, se establece como criterio que los modelos seleccionados tengan al menos
un afio de disponibilidad publica y no superen los cinco afios desde su
lanzamiento oficial. El requisito de un minimo de un afio responde a la necesidad
de garantizar que el modelo ha pasado por un ciclo razonable de uso, validaciéon y
retroalimentacion por parte de desarrolladores e investigadores y el limite de cinco
afios desde su lanzamiento busca evitar la seleccion de modelos que, si bien pudieron
ser punteros en su momento, pueden estar tecnolégicamente superados por nuevas
arquitecturas o por versiones mas eficientes y precisas.

- Tamaiio del modelo. Cuando el despliegue se orienta a dispositivos con recursos
limitados como teléfonos mdviles, tabletas o sistemas embebidos (edge devices) el
tamano del modelo tiene que ser adecuado a este entorno. En este estudio, se
establece un umbral recomendado de aproximadamente S0 MB para el fichero
de pesos del modelo dejando fuera del estudio modelos que aunque presuponen
mejor precision podrian no ser adecuados para dispositivos con pocos recursos por
su gran tamaio (tamafio de almacenamiento de la APP en la que se integrara, tamafio
en memoria RAM, etc.,).

- Facilidad de integracion (existencia de APIs, documentacion, demos). Si bien este
ultimo punto no es determinante es un criterio a tener en cuenta en la seleccion, ya
que determina el esfuerzo técnico y los recursos necesarios para integrar el modelo
en un entorno funcional.

20 Recordemos que el objetivo del estudio descrito en el Abstract es la recomendacion de modelos para una
futura APP de tele rehabilitacion, lo que reduce el ambito del estudio a estimacion single-person y 2D.

53

Los resultados obtenidos tras aplicar los criterios establecidos en esta investigacion
indican que, en una primera instancia, los modelos que se perfilan como més adecuados para
ser incluidos en el estudio comparativo como se puede ver en la Tabla 11 son MoveNet,
BlazePose y YOLO-Pose. Estos tres modelos representan una muestra representativa y
diversificada de arquitecturas contemporaneas y robustas, especificamente disenadas o
adaptadas para la estimacion de posturas humanas en entornos moviles.

Modelo

Seleccionable
segun criterios

Razones

OpenPose

No

Ano 2017
Tamafio < 100MB
Numero de keypoints no estandarizado (18-135)

AlphaPose

No

Afo 2018
Tamano < 92MB

PoseNet

No

Ano 2018

Superado por MoveNet?!

DensePose

No

Ao 2018
No enfocado en keypoints 2d estandar

HRNet

No

Afio 2019
Tamano < 112MB

EfficientPose

No

Facilidad de integracion (dificultad para
encontrar documentacion técnica)

MoveNet

Si

Afi02020

Disponibilidad y accesibilidad

Estimacion single-person, 2D y 17 keypoints
Tamafio 3-25 MB

BlazePose

Si

An02021

Disponibilidad y accesibilidad

Estimacion single-person, 2D y 33 keypoints (17
comunes)

Tamafio 3-26 MB

PoseWarper

No

Disponibilidad y accesibilidad (dificultad para
encontrar modelo preentrenado)

Facilidad de integracion (dificultad para
encontrar documentacion técnica)

YOLO-Pose

Si

An02021-2024 (segln version)
Disponibilidad y accesibilidad

Estimacion single-person, 2D y 17 keypoints
Tamafio 5-50 MB

RTMPose

Disponibilidad y accesibilidad
Facilidad de integracion (dificultad para
encontrar documentacion técnica)
Basado en arquitectura YOLO

Tabla 11. Resumen aplicacion criterios seleccion de modelos

21 Ambos modelos desarrollados por Google (aunque por diferentes equipos)

54

Los tres modelos seleccionados (MoveNet, BlazePose y YOLO-Pose) son
representativos y estan consolidados para la estimacion de posturas humanas. Cada uno ofrece
un enfoque arquitectonico distinto y caracteristicas técnicas que permiten abordar la tarea con
diferentes balances entre precision, velocidad y eficiencia computacional.

3.1.2. MoveNet (Google)

MoveNet se basa en una arquitectura ligera y eficiente de red neuronal convolucional
propia disefada para inferencias rapidas en dispositivos con recursos limitados. Su disefio
utiliza convoluciones profundas optimizadas para mantener un alto rendimiento en tiempo real.
MoveNet prioriza un procesamiento rapido y un tamafio reducido del modelo, lo que lo hace
ideal para aplicaciones moéviles y en tiempo real.

Esté orientado a la deteccion de 17 puntos clave estandar del cuerpo humano siguiendo
la convencion del dataset COCO (nariz, ojos, orejas, hombros, codos, mufiecas, caderas,
rodillas y tobillos), donde cada keypoint estimado incluye:

- Coordenadas (x, y) normalizadas al tamafio de entrada.

- Score de confianza asociado.

Como ya vimos en la descripcion previa en el apartado “2.5.7. MoveNet” cuenta con
dos variantes principales cada una de ellas a su vez con varias versiones cuantizadas:

MoveNet Lightning

- Tamafo de la imagen de entrada: 192x192 pixeles.

- Optimizado para latencia minima y procesamiento en tiempo real en dispositivos
moviles.

- Arquitectura reducida y mas agresivamente cuantizada.

- Menor precision que Thunder, pero tiempos de inferencia muy bajos.

MoveNet Thunder

Tamafo de la imagen de entrada: 256x256 pixeles.

Optimizado para méxima precision manteniendo latencia aceptable.

Arquitectura mas profunda con mayor capacidad de extraccion de caracteristicas.

Mayor tamano de entrada y mayor coste computacional.

55

Tanto la variante Lightning como la variante Thunder tienen 3 versiones, la estandar con
representacion en 32 bits, una version reducida mediante cuantizacion a 16 bits y otra alin mas
reducida de 8 bits. Con el objetivo no solo de comparar precisiones y rendimientos de modelos
entre si sino de poder observar los efectos de técnicas como la cuantizacion sobre los mismos
modelos en este estudio se incluiran todas las versiones de ambas variantes de la familia
MoveNet, con un total de 6 modelos: MoveNet Lightning 8, 16 y 32 y MoveNet Thunder 8, 16
y 32.

3.1.3. BlazePose (Google MediaPipe)

BlazePose, desarrollado por Google MediaPipe, emplea una arquitectura de red
convolucional compacta (MobileNetV2). A diferencia de otros modelos, BlazePose estima un
conjunto mas amplio de 33 keypoints, (incluyendo articulaciones detalladas y puntos faciales)
pero a su vez manteniendo la compatibilidad con los puntos mas estandarizados para la
estimacion de posturas humanas (17 de los 33 son comunes) coincidiendo con el resto de
modelos seleccionados. Esta capacidad lo hace especialmente adecuado para aplicaciones de
fitness, realidad aumentada y entornos donde se requiera un seguimiento detallado y preciso.

Aunque los modelos de la familia BlazePose trabajan con salidas de 33 keypoints
estimados mantienen una compatibilidad con los 17 puntos estandar que suelen estimar la
mayoria de los modelos al coincidir 17 de los 33 puntos estimados por BlazePose con estos 17
puntos como vemos en la Tabla 12. BlazePose hace una estimacion de keypoints extendida
(estima mas puntos) pero compatible con el resto de modelos a nivel de estudio comparativo.

N° keypoint estindar | N° keypoint BlazePose | Descripcion anatomica

0 0 Nariz

1 2 Ojo izquierdo

2 5 Ojo derecho

3 7 Oreja izquierda

4 8 Oreja derecha

5 11 Hombro izquierdo
6 12 Hombro derecho
7 13 Codo izquierdo

8 14 Codo derecho

9 15 Muiieca izquierda

10 16 Muiieca derecha
11 23 Cadera izquierda
12 24 Cadera derecha
13 25 Rodilla izquierda
14 26 Rodilla derecha
15 27 Tobillo izquierdo
16 28 Tobillo derecho

Tabla 12. Equivalencia puntos BlazePose

56

BlazePose presenta tres versiones con distinto grado de cuantizacion: Lite, Full y Heavy
todas ellas con el mismo tamafio de la imagen de entrada (256x256 pixeles). En este estudio
se incluiran las tres versiones de familia BlazePose.

3.1.4. YOLOv8-Pose (Ultralytics)

Ultralytics es la compaiiia que desarrolla y mantiene el ecosistema de software del
mismo nombre especializado en vision por computadora y aprendizaje profundo, ampliamente
reconocida por ser la responsable del desarrollo y mantenimiento de los modelos YOLO (You
Only Look Once).

YOLO-Pose adapta la reconocida arquitectura de deteccion rapida YOLO para la
estimacion de poses, integrando prediction heads especializadas para la regresion de keypoints
después de la deteccion de personas. Esta aproximacién de una sola etapa permite realizar
detecciones y estimaciones simultaneas, logrando un equilibrio eficiente entre rapidez y
precision. YOLO-Pose destaca por su capacidad para manejar multiples personas en imagenes
con alta velocidad, manteniendo una precision competitiva, ideal para entornos moviles y
aplicaciones en tiempo real.

Como hemos visto en el apartado “2.5.10. YOLO-Pose” este modelo ha ido
evolucionando en el tiempo con la aparicion de diferentes versiones, habiendo para la
estimacion de posturas humanas varias versiones disponibles: YOLOv5-Pose, YOLOv7-Pose,
YOLOvS8-Pose y YOLOv11-Pose. Atendiendo a los criterios fijados para la seleccion de
modelos y tratdndose la Gltima version (YOLOv11-Pose) de una version relativamente reciente
(menos de un afio) durante el desarrollo de este estudio, se opta por incorporar la version
YOLOVS8-Pose en lugar de la ultima para intentar realizar la comparativa con los otros modelos
con versiones similares en el tiempo.

El modelo YOLOvS8-Pose al igual que los anteriores tiene diferentes versiones
publicadas, siendo algunas de ellas susceptibles de ser aptas para su utilizacion en dispositivos
edge (apartado “2.5.10. YOLO-Pose™) segun los criterios de tamafio de seleccion de modelos
que hemos definido:

- YOLOv8n-Pose. Version “nano”.

- YOLOvS8s-Pose. Version “small”.

- YOLOv8m-Pose. Version “medium”.

En el estudio se incluiran estas tres versiones que cumplen los criterios de seleccion
mientras que no se consideran adecuadas las versiones YOLOv8I-Pose (“large”) y YOLOv8x-
Pose (“extra large”) por exceder su tamafo el criterio que hemos establecido como méximo

para su utilizacion en dispositivos moviles.

Como vimos anteriormente (Tabla 7, “Resumen caracteristicas modelos preentrenados’)
los modelos YOLO se encuentran en un formato PyTorch (.pt) ya que es el formato nativo de

57

entrenamiento e inferencia usado por Ultralytics para sus modelos por lo que es seguro que para
homogeneizar todos los modelos que vamos a incluir en el estudio con un mismo formato haya
que realizar una conversion de formatos durante el proceso de implementacion.

Nombre del modelo Puntos clave Formato Tamaiio (KBytes)
estimados

MoveNet Lightining 8 17 TFLite 2.895
MoveNet Lightining 16 17 TFLite 4.759
MoveNet Lightining 32 17 TFLite 9.373
MoveNet Thunder 8 17 TFLite 7.127
MoveNet Thunder 16 17 TFLite 12.584
MoveNet Thunder 32 17 TFLite 25.026
BlazePose Lite 33 MediaPipe / TFLite 2.818
BlazePose Full 33 MediaPipe / TFLite 6.441
BlazePose Heavy 33 MediaPipe / TFLite 27.709
Yolo8-pose Nano 17 ONNX / TFLite 6.771
Yolo8-pose Small 17 ONNX / TFLite 23.422
Yolo8-pose Medium 17 ONNX / TFLite 50.120

Tabla 13. Resumen de caracteristicas modelos incluidos en el estudio

3.2. Seleccion de dataset de testeo

La eleccion del dataset de testeo es un paso fundamental en la evaluacion rigurosa y
objetiva de modelos de estimacion de posturas humanas. Un dataset representativo y bien
anotado permite no solo medir con precision la capacidad del modelo para detectar y localizar
puntos clave del cuerpo, sino también evaluar su robustez frente a variaciones en pose,
iluminacién, entorno y sujetos. La calidad y diversidad de las anotaciones, junto con un
protocolo de evaluacion estandarizado, facilitan la comparacion directa entre diferentes
arquitecturas y versiones de modelos. Ademas, la accesibilidad y documentacion del dataset
son cruciales para reproducibilidad y validacion externa. Por ltimo la compatibilidad con los
modelos seleccionados previamente tiene una importancia casi definitiva a la hora de escoger
un dataset sobre los que vimos en el apartado “2.6. Datasets de estimacion de posturas”.

3.2.1. Criterios de seleccion

En este apartado trataremos de justificar los criterios en base a los cuales
seleccionaremos al dataset que utilizaremos para el estudio de los modelos. Se valoraran
diferentes aspectos que consideramos fundamentales, si bien como hemos ido viendo durante
el analisis del marco tedérico y estado del arte en el apartado 2 y durante la seleccion de los
modelos a estudiar, estos criterios van a tener una menor influencia en la deteccion del datset
en tanto en cuanto la mayoria de modelos observados (incluidos los seleccionados en el punto
anterior para el estudio) no solo adoptan el estandar de keypoints del dataset COCO sino que
ademas estan entrenados o mejorados en cierta manera con datos de este dataset y como vimos
en “Tabla 8. Resumen arquitecturas modelos preentrenados” estan disefiados para una

58

estimacion de 17 keypoints coincidentes con el nimero de anotaciones por persona existente
en el dataset COCO. Aun asi definiremos los siguientes criterios de seleccion:

- Cobertura y diversidad de poses. El dataset debe incluir una amplia variedad de
posturas, movimientos y actividades para reflejar escenarios reales. Esto asegura que
el modelo evaluado sea robusto a diferentes posiciones y articulaciones.

- Cantidad y calidad de anotaciones (keypoints). Numero de keypoints anotados
por persona, compatibilidad con los modelos seleccionados para facilitar
comparativas. Precision y consistencia en las anotaciones (manuales o automaticas)
que minimicen ruido y errores.

- Diversidad de sujetos y variedad en condiciones de captura. Incluir diferentes
edades, géneros, tipos corporales y condiciones para evitar sesgos y asegurar
generalizacion. Inclusion de diversos fondos, iluminacion, dngulos de cémara, y
resolucion de imagen. Entornos controlados y no controlados (interiores y
exteriores).

- Disponibilidad y accesibilidad. Dataset publico, con documentacion clara,

formatos estandar y licencia compatible con investigacion y desarrollo.

Criterio COCO MPII

Cobertura y diversidad de | Alta diversidad con Enfocado principalmente

poses escenas cotidianas y en actividades humanas
actividades variadas; diarias, especialmente
incluye poses complejas y | deportes, con buena
contextos con multiples variedad pero menos
personas. contexto complejo.

Cantidad y calidad de 17 keypoints bien 16 keypoints con

anotaciones (keypoints)

definidos; anotaciones
extensas y precisas, con
estandares para métricas
como OKS.

anotaciones detalladas en
articulaciones principales;
calidad alta pero menos
cantidad total.

Diversidad de sujetos y
condiciones de captura

Gran variedad de sujetos,
etnias y entornos;
imagenes tomadas en
condiciones muy variadas
(interior, exterior,
iluminacién, fondo).

Menor diversidad en
sujetos y escenarios;
principalmente imagenes
enfocadas en personas
individuales y deportes,
con condiciones mas

controladas.
Disponibilidad y Publicado ampliamente También publico y
accesibilidad con facil acceso, accesible, con

documentacion completa

y soporte para evaluacion
automatizada; estandar de
facto en la comunidad.

documentacion clara, pero
menos extendido como
benchmark comparativo
global.

Tabla 14. Resultados criterios seleccion de dataset

59

La Tabla 14 sintetiza las principales razones que hacen de COCO un dataset preferido
para evaluacion general, mientras que MPII puede ser mas especifico para ciertos dominios
como andlisis de movimientos deportivos. Por tanto el resultado de la seleccion de dataset de
testeo indica como mejor opcion utilizar el dataset COCO para el estudio.

Para llevar a cabo una mejor evaluacion de los modelos, se seleccionan ademas dentro
del dataset de testeo dos subconjuntos especificos de imagenes. Esta segmentacion busca
analizar el desempefio del modelo bajo condiciones variadas y realistas, diferenciando entre
situaciones Optimas de inferencia y situaciones desafiantes.

3.3. Seleccion de imagenes de testeo

Debido a la naturaleza heterogénea de COCO, se establecera un proceso de filtrado
sistemdtico con el fin de generar un subconjunto controlado de imagenes especificamente
disefiado para pruebas comparativas bajo condiciones constantes. Dicho filtrado se realizara a
partir de dos criterios principales:

- Una unica persona visible en la imagen. Este criterio responde al objetivo inicial
del proyecto (estudio de modelos para la realizacion de una aplicacion de tele-
rehabilitacion) el cual iria dirigido a la utilizacion por parte de un tnico usuario. Este
criterio ademas elimina la complejidad derivada de la presencia de multiples
individuos en el mismo cuadro, lo que puede introducir ambigiiedad en la asignacion
de keypoints y en la interpretacion de los resultados. Al garantizar un Unico sujeto,
se reduce la variabilidad no deseada y se asegura que los errores de inferencia estén
asociados unicamente al modelo, y no a interferencias en la segmentacion de
multiples instancias.

- Al menos 15 de los 17 keypoints correctamente anotados. Al igual que con el
anterior criterio, en el marco del proyecto es razonable asumir que el sujeto que esta
realizando los ejercicios de tele-rehabilitacion tendra una visibilidad méaxima dentro
de la aplicacion, por lo que, incluyendo una pequena tolerancia, estableceremos que
de los 17 keypoints anotados al menos 15 estén presentes en las imagenes de
pruebas. Este requisito asegura la calidad de las anotaciones de referencia (ground
truth) y permite contar con una representacion anatomica casi completa de la
persona en la imagen. La disponibilidad de la mayoria de los puntos clave evita que
la evaluacion se vea afectada por anotaciones incompletas, incrementando la
confiabilidad de las métricas de desempefio.

La aplicacion de estos criterios generara un subconjunto controlado de iméagenes, con
condiciones homogéneas de anotacidon y representacion corporal, que constituird la base
experimental para la comparacion de los diferentes modelos. Este enfoque metodologico
permite minimizar fuentes externas de variabilidad, garantizando que las diferencias observadas
en las métricas de precision puedan atribuirse de manera directa a las capacidades de los
modelos, y no a inconsistencias del dataset de testeo.

60

3.3.1. Subconjuntos del dataset de testeo

La eleccion de los dos subconjuntos diferenciados dentro del dataset general de testeo
se fundamenta en la necesidad de evaluar de manera completa y representativa la precision de
los modelos ya que cada subconjunto cumple una funcion especifica que contribuye a la
caracterizacion del rendimiento del modelo bajo distintas condiciones de captura y que nos
permitira comparar los resultados obtenidos en cuanto a precision se refiere de cada uno de los
modelos en condiciones muy diferentes.

Imagenes con caracteristicas adecuadas para la estimacion de posturas

El primer subconjunto agrupa imagenes clasificadas como adecuadas para la estimacion
de posturas humanas y estaria compuesto por instancias seleccionadas para representar
condiciones Optimas de captura visual. Cada imagen contiene una Unica persona situada de
manera centrada en el encuadre, con una proximidad suficiente a la cdmara que permite la
observacion clara de las articulaciones principales, incluyendo hombros, codos, muiiecas,
caderas, rodillas y tobillos. Ademas el tamafo relativo de la persona respecto al tamafio de la
imagen asegura que las proporciones de las articulaciones se representen consistentemente,
reduciendo la variabilidad introducida por escalas extremas Esta disposicion garantiza que los
modelos puedan realizar inferencias precisas sobre la geometria corporal y la posicion de cada
articulacion.

Este subconjunto cumple un rol fundamental en la evaluacion de modelos ya que
permite medir una precision “maxima’ alcanzable en condiciones controladas, sirviendo como
referencia para comparar el rendimiento del modelo frente a escenarios mds complejos o
adversos. Al centrarse en imagenes donde la persona es claramente observable y la postura es
discernible, se garantiza que los errores de estimacion se deban principalmente a las
limitaciones del modelo y no a deficiencias en la calidad de los datos de entrada.

Imagenes con caracteristicas inadecuadas para la estimacion de posturas

El subconjunto de imégenes clasificadas como no adecuadas para la estimacion de
posturas humanas incluiria instancias que representan condiciones adversas o desafiantes para
la inferencia de posturas. Estas imagenes contienen personas que se encuentran descentradas o
lejanas a la cdmara, lo que dificulta la observacion clara de hombros, codos, mufiecas, caderas,
rodillas y tobillos. La disposicion de la persona en el encuadre, asi como la variabilidad en el
tamafio relativo y la orientacion, introduce complejidades que simulan escenarios del mundo
real donde la calidad de la captura puede ser suboptima.

El anélisis de este subconjunto proporcionara informacion valiosa sobre las limitaciones
del modelo, identificando casos en los que la precision se ve comprometida debido a factores
externos a la arquitectura del algoritmo. De esta manera, se logra una evaluacion mas completa
y realista del desempefio del modelo, complementando los resultados obtenidos con el
subconjunto de imagenes adecuadas y permitiendo derivar conclusiones sobre su aplicabilidad
en entornos no controlados.

61

3.4. Métricas de validacion y evaluacion

La evaluacion de modelos de estimacion de posturas humanas requiere la adopcion de
métricas que permitan cuantificar tanto la calidad de las predicciones como la eficiencia en su
ejecucion. En este contexto, las dos dimensiones fundamentales consideradas son precision y
rendimiento, las cuales ofrecen una vision complementaria del desempefio del modelo en
condiciones practicas.

Ambas métricas deben analizarse de manera conjunta, ya que un modelo
extremadamente preciso puede resultar inviable si su latencia es demasiado alta, mientras que
un modelo muy rapido pero con baja precision carece de utilidad practica. La evaluacion
equilibrada de precision y rendimiento permite establecer compromisos Optimos, adaptados a
los requerimientos especificos de la aplicacion.

3.4.1. Precision

La precision se refiere al grado de correspondencia entre los puntos clave (keypoints)
predichos por el modelo y las anotaciones de referencia (ground truth). En estudios de posturas
como ya hemos visto en el apartado “2.7. Métricas de precision”, esta métrica suele calcularse
mediante indicadores como OKS (Object Keypoint Similarity) o Mean Average Precision
(mAP), que permiten evaluar qué tan cercanos estan los keypoints estimados a sus posiciones
reales en la imagen.

Una alta precision implica que el modelo es capaz de identificar correctamente las
articulaciones incluso en posturas complejas o bajo condiciones variables de iluminacion,
escala y perspectiva. Esta métrica es esencial para determinar la validez técnica del modelo y
su aplicabilidad en contextos donde la exactitud en la identificacion de posturas es critica, como
en rehabilitacion médica, analisis deportivo o interaccion en entornos de realidad aumentada.

3.4.2. Rendimiento

El rendimiento se relaciona con la eficiencia computacional del modelo, es decir, con la
velocidad y los recursos necesarios para realizar inferencias en tiempo real. En entornos moviles
o embebidos, como dispositivos Android, el rendimiento se mide a través de métricas como la
latencia de inferencia (tiempo necesario para procesar una imagen), el nimero de frames por
segundo (FPS) alcanzado y el consumo de memoria y energia durante la ejecucion. En nuestro
estudio tomaremos los tiempos de ejecucion de cada inferencia para cada imagen del dataset de
testeo.

Un alto rendimiento implica que el modelo es capaz de operar en condiciones de baja

capacidad de computo, lo cual es fundamental para garantizar una experiencia de usuario fluida
y sostenible en aplicaciones en dispositivos edge.

3.5. Herramientas y entorno de desarrollo

El presente estudio se desarrolla utilizando como entorno base el sistema operativo
Windows 10 version 10.0.

62

Para la obtencion de datos de testeo, conversion de modelos y comprobacion de
resultados se utiliza Jupyter Notebook 6.4.5, un entorno basado en Python que facilita la
exploracion de datasets y el trabajo con los resultados obtenidos a través de la integracion de
bibliotecas cientificas y de vision por computadora para la evaluacion de precision de los
modelos.

La construccion de aplicaciones moviles para la plataforma Android se lleva a cabo
mediante Android Studio Electric Eel | 2022.1.1 Patch 2 (Build #AI-
221.6008.13.2211.9619390), que proporciona un entorno completo de desarrollo integrado con
soporte nativo para el lenguaje Kotlin, Java y herramientas de depuracion especificas de
Android. Este IDE permite la integraciéon de modelos mediante TensorFlow Lite, asi como la
generacion de ficheros de aplicacion (apk) para Android para la realizacion de pruebas directa
de inferencia en dispositivos moviles.

Adicionalmente, se incorpora el plugin PlantUML integration (6.0.0-1J2020.3) para la

creacion de diagramas UML directamente dentro de Android Studio, que facilita la
documentacién de la arquitectura del sistema.

63

PARTE II: PLANIFICACION, IMPLEMENTACION Y
RESULTADOS

64

4. PLANIFICACION

4.1. Workflow general del proyecto y fases del desarrollo

En este apartado se describe el workflow general adoptado en este estudio, organizado
en tres fases principales: preparacion, desarrollo y evaluacion/analisis de resultados. En cada
fase se utilizan herramientas diferentes para su ejecucion, mientras que las fases de obtencion
de datos de testeo y andlisis de resultados se realizan utilizando Jupyter Notebook, Excel y
Word, la fase desarrollo se utiliza Android Studio para implementar la aplicacion que ejecuta el
proyecto (Imagen 14).

® Obtencion de dataset de imagenes seleccionado
* Obtencion de modelos en formato TFLite

* Obtencion fichero ZIP con resultados

* Obtencion de métricas de resultados

Word/Excel e Andlisis de resultados

Imagen 14. Workflow general del proyecto

4.1.1. Fase 1: preparacion del dataset de testeo y obtencion de modelos

En esta primera etapa se lleva a cabo la recopilacion y configuracion de los recursos
fundamentales para el proyecto: modelos de estimacion e imagenes de testeo. El ella se utiliza
Jupyter Notebook para implementar una serie de scripts en lenguaje Python que permitan
obtener tanto el dataset de las imagenes que cumplan los requisitos descritos previamente como
los modelos seleccionados en formato TensorFlow Lite (TFLite).

Obtencion del dataset de imagenes seleccionado

Se realiza la definicion y filtrado del conjunto de datos de referencia (del dataset
COCO), aplicando los criterios definidos previamente de calidad y representatividad (imagenes

65

con una Unica persona y keypoints correctamente anotados) con el fin de garantizar un
subconjunto adecuado para las pruebas comparativas bajo condiciones constantes. La salida es
un subconjunto de imagenes de testeo (dataset filtrado).

Obtencion de modelos en formato TFLite.

Incluye la descarga directa (en caso de existir los modelos seleccionados en formato
TFLite) y la conversion (de los modelos que lo requieran) a formato TFLite, formato
optimizado para dispositivos moviles. Como resultado obtenemos los modelos en un formato
homogéneo que constituyen la base para la implementacion de la aplicacion de pruebas de
modelos en Android.

4.1.2. Fase 2: desarrollo de la aplicacion

En esta fase de desarrollo se lleva a cabo la implementacion de la aplicacion Android,
utilizando como lenguaje de programacion Java, debido a su compatibilidad nativa con el
ecosistema Android y a la disponibilidad de librerias optimizadas para la gestion de recursos y
la ejecucion de modelos de aprendizaje automatico en dispositivos moéviles. La aplicacion
integra los modelos previamente seleccionados en formato TFLite, los cuales han sido
seleccionados por su ligereza y eficiencia en entornos con recursos limitados, como
smartphones y tablets.

El flujo de trabajo de la aplicacion contempla la carga e integracion de los modelos
TFLite, seguidos de la procesamiento de las imagenes de testeo extraidas del dataset de
validacion. Cada imagen es sometida a un proceso de inferencia a través del modelo
correspondiente, y los resultados son gestionados de forma sistematica. Para garantizar un
analisis exhaustivo, la aplicacion genera dos tipos de ficheros de salida independientes por cada
modelo:

- Un fichero destinado a almacenar las métricas de precision, donde se registran los
valores de exactitud obtenidos en cada prediccion de cada imagen, permitiendo asi
evaluar la capacidad del modelo para reconocer correctamente las instancias del
dataset.

- Un fichero orientado a almacenar las métricas de rendimiento computacional, en el
que se registra el tiempo de ejecucion requerido por cada estimacion, con el fin de
valorar la eficiencia del modelo en dispositivos moviles.

Posteriormente, todos los ficheros generados se compilan y organizan en un archivo
comprimido (ZIP), lo que no solo asegura una gestion mas estructurada y compacta de los
resultados, sino que también facilita su transferencia, almacenamiento y analisis posterior. Esta
estrategia permite disponer de un repositorio unificado de resultados, optimizando tanto la
trazabilidad de los resultados como la comparacion entre diferentes modelos bajo condiciones
homogéneas de evaluacion.

66

4.1.3. Fase 3: evaluacion, analisis de resultados y documentacion

La etapa final del proceso se centra en la interpretacion y analisis del desempefio de los
modelos, constituyendo un componente esencial para la validacion de la investigacion. En este
punto no solo se recopilan las métricas obtenidas en fases anteriores, sino que ademas se
someten a un proceso comparativo lo que permite establecer relaciones entre los diferentes
modelos bajo condiciones experimentales homogéneas.

La evaluacion contempla tanto métricas de precision como métricas de eficiencia
computacional (rendimiento del modelo). Este enfoque posibilita una caracterizacion mas
completa de cada modelo, superando las limitaciones de un analisis basado Unicamente en la
precision. Para la automatizacion de este proceso, se desarrollan scripts especificos en Python,
ejecutados en el entorno Jupyter Notebook que permiten procesar los resultados generados
por los modelos y calcular métricas de desempefio clave tales como AP (Average Precision).
Este enfoque garantiza que la comparacion se realice bajo condiciones homogéneas y
reproducibles, eliminando posibles sesgos derivados de procedimientos manuales o
inconsistentes.

Durante la interpretacion se identifican fortalezas y limitaciones de cada modelo. Por
ejemplo, un modelo puede presentar un alto nivel de exactitud pero requerir un tiempo de
inferencia excesivo, lo que lo haria menos viable en dispositivos con recursos restringidos. En
contraste, otro modelo podria mostrar un rendimiento computacional 6ptimo, aunque con
ligeras pérdidas en precision. La comparacion permite establecer un balance entre la calidad de
las predicciones y la eficiencia en la ejecucion. Los hallazgos de esta fase constituyen la base
para la formulacion de conclusiones y la propuesta de lineas de investigacion futura.

Fase Nombre Duracion | Objetivo
estimada
Preparacion del | 2-3 Obtencidn de un dataset homogéneo de imagenes de
dataset de testeo | semanas testeo con el que poder validar los modelos.
y obtencion de Obtencion de los ficheros de los modelos a testear.
modelos
FASE 2 | Desarrollo de la | 8-10 Desarrollar una aplicacion para Android en la que
aplicacion semanas poder integrar los modelos y las imagenes de testeo
para obtener resultados de precision de estimacion
de posturas de los modelos asi como de rendimiento
(tiempo que tarda cada modelo en realizar la
inferencia).
FASE 3 | Evaluacion, 3-4 Ejecucion en distintos dispositivos, recopilacion y
analisis de semanas analisis de los resultados. Generacion de
resultados y documentacion con la descripcion del desarrollo del
documentaciéon proyecto, documentacion técnica asociada,
realizacion de graficos, tablas e ilustraciones para la
descripcion de los resultados obtenidos, discusion
de posibles aplicaciones y futuras ampliaciones y
conclusiones.

Tabla 15. Fases generales del proyecto

67

4.2. FASE 1: Preparacion del dataset de testeo y obtencion de modelos

4.2.1. Analisis del dataset COCO

Como ya vimos en el apartado “2.6.1. Dataset COCO (Common Objects in COntext)”
el dataset COCO se caracteriza por su disefio jerarquico, en el cual las imagenes se encuentran
vinculadas a metadatos en formato JSON que describen instancias de objetos, anotaciones de
keypoints, segmentaciones y categorias.

En la primera etapa del proyecto se lleva a cabo un andlisis detallado de la estructura
del dataset COCO con el propoésito de comprender la organizacion de los datos, las categorias
disponibles, todas las anotaciones asociadas a las imagenes y las herramientas disponibles para
la evaluacion de los modelos.

4.2.2. Seleccion del dataset de imagenes de testeo

Una vez comprendida la estructura del dataset COCO vy los recursos asociados, la
siguiente etapa consiste en el disefio y ejecucion de scripts automatizados para la seleccion de
imagenes de testeo que utilizaremos en la aplicacion Android. Esta fase es clave para la
preparacion del conjunto de datos de prueba, ya que permite garantizar la reproducibilidad del
proceso, la trazabilidad de las imagenes seleccionadas y la consistencia de los criterios
aplicados para todos los modelos de forma homogénea.

El proposito de los scripts es seleccionar y posteriormente automatizar la extraccion de
un subconjunto controlado de imagenes del dataset COCO, en concordancia con los criterios
definidos previamente, inclusion de imagenes con una unica persona visible y eleccion de
imagenes con al menos 15 de los 17 keypoints anotados visibles, e incluir un fichero auxiliar
para el registro y control de las imagenes utilizadas y que sirva ademas para facilitar la ejecucion
dentro la aplicacion Android.

Los scripts se desarrollan en Python, haciendo uso de la API oficial de COCO para la
gestion de anotaciones y metadatos, asi como de un conjunto de librerias complementarias
orientadas al manejo de datos y operaciones cientificas como pycocotools, fundamental para la
interaccion estructurada con las anotaciones del dataset. La instalacion y verificacion de estas
dependencias constituye un paso previo indispensable para la configuracion del entorno de
trabajo.

La ejecucion de estos scripts realiza la descarga fisica de los archivos de las imagenes a
disco, los cuales se almacenan en formatos estandar como JPEG o PNG para su posterior
incorporacion en la aplicacion Android. Ademas de la descarga se genera un fichero de texto
que contiene una lista con los nombres de las imagenes descargadas y que facilita el control de
estos asi como un acceso mas eficiente a las imagenes en etapas posteriores, particularmente
durante la ejecucion de la aplicacion Android para la evaluacion de los modelos.

4.2.3. Obtencion de modelos para el estudio

Posteriormente se realiza la obtencion de los modelos ya preentrenados mediante la

68

descarga directa de los sitios oficiales cuando estan disponibles y mediante descarga directa de
los sitios oficiales y conversion de formato en caso de que sea necesario al formato homogéneo
para todos los modelos que utilizamos en el estudio (TensorFlow Lite). Los ficheros de los
modelos preentrenados obtenidos junto con el dataset seleccionado en el punto anterior
constituyen los elementos principales para este estudio de estimacion de posturas humanas.

Fase

Nombre

Duracion
estimada

Objetivo

Analisis del dataset
COCO.

0,5 semanas

Estudio de la estructura del dataset
COCO, categorias, numero de imagenes
de personas, anotaciones disponibles y
API de testeo de resultados.

Seleccion del dataset
de imagenes de testeo.

1-2 semanas

Realizacion de un script para descarga
de las imagenes filtradas validas para la
estimacion de posturas humanas.
Ejecucion del script de descarga y
verificacion del contenido del dataset,
ajustes y correcciones del proceso.

Obtencion de modelos
para el estudio.

0,5 semanas

Descarga y conversion de los ficheros
de los modelos seleccionados.

Tabla 16. Sub-fases de la fase de preparacion del dataset de testeo y obtencion de modelos

4.3. FASE 2: Desarrollo de la aplicacion para Android

4.3.1. Analisis, disefo y preparacion

Esta subfase constituye el punto de partida del ciclo de desarrollo del proyecto de

estimacion de posturas humanas. En esta etapa se integran diversas actividades fundamentales
que permiten establecer las bases para la implementacion de las fases posteriores:

Analisis de requisitos funcionales y no funcionales de la aplicacion.

Disefio de la arquitectura del codigo. Separacion de componentes para facilitar la
reutilizacion y escalabilidad.

Disefio de la salida. Especificaciéon de estructura para el almacenamiento de
predicciones y tiempos de inferencia en ficheros estructurados (JSON /CSV)
integrados en un fichero ZIP de salida, asegurando que contenga métricas de
predicciones y rendimiento en un formato reproducible.

69

Diseno de la interfaz de usuario.

Analisis de las estructuras de entrada y salida de los modelos TFLite. Identificacion
de los tensores de entrada (necesidades de preprocesamiento y normalizacion de
imagenes especificas) y salida (vectores de keypoints y scores de confianza).

Configuracion del entorno de trabajo. Instalacion y verificacion de dependencias
necesarias (TensorFlow Lite), integracion con Android Studio como entorno de
despliegue.

Implementacion de un sistema de versionado (GIT) para garantizar la seguridad y
seguimiento del desarrollo.

4.3.2. Implementacion del nacleo de la aplicacion

Esta subfase consiste en la construccion de una aplicacion moévil en Java utilizando
Android Studio, cuyo propdsito es ejecutar el pipeline de inferencia en dispositivos Android.
Se aborda en tres dimensiones principales:

Implementacion de arquitectura de clases Java de la aplicacion, clase de control,
clases para soporte de la inferencia de los modelos seleccionados y clases base para
la optimizacion de la arquitectura. Esta implementacion gestiona el ciclo de
inferencia, desde la carga de tensores hasta la recuperacion de los vectores de salida
de keypoints.

Integracion de los modelos con formato TFLite en la aplicacion Android. Se utiliza
la API de TensorFlow Lite Java (integrando TensorFlow Lite Interpreter) para cargar
y ejecutar los modelos previamente seleccionados.

Integracion de las imagenes del dataset seleccionado dentro de la aplicacion para su
carga desde el almacenamiento interno del dispositivo. Implementacién de las
acciones de preprocesamiento necesarias sobre las imdgenes de entrada
(redimensionamiento, normalizacion de valores de pixeles y conversion a
ByteBuffer compatible con TFLite).

Como vimos en el apartado “2.8.1. Hardware” existe una gran heterogeneidad en cuanto
a hardware disponible para la ejecucion de aplicaciones dentro del ecosistema Android en cada
dispositivo (CPU, GPU, NPU,...). Dicha variabilidad puede generar diferencias significativas
en el rendimiento y la precision de los modelos, dificultando la comparacion entre dispositivos
por lo que con el fin de realizar una implementacion lo mas homogénea posible y que pueda
ser ejecutada en el mayor nimero de dispositivos posible en la implementacion de este estudio
se ha decidido emplear exclusivamente la Unidad Central de Procesamiento (CPU) como
recurso de ejecucion. Al emplear Uinicamente la CPU, se garantiza un entorno de ejecucion
uniforme y controlado, independiente de las configuraciones especificas de cada dispositivo de

prueba.

70

4.3.3. Generacion y gestion de ficheros de salida

Se generan ficheros de salida por cada modelo evaluado, un fichero de predicciones para
el posterior calculo de precision en formato JSON y un fichero de tiempos de inferencia por
cada imagen en formato CSV para el posterior analisis de rendimiento. Todos los ficheros de
salida de todos los modelos se integran al final del proceso en un tnico fichero ZIP para su
mejor exportacion y manejo.

Ficheros de predicciones.

Para cada modelo se generan archivos JSON que contienen las predicciones de los
keypoints de las posturas humanas sobre cada imagen del conjunto de prueba. Estos ficheros
constituyen la base para el célculo posterior de métricas de precision, permitiendo evaluar de
manera cuantitativa la exactitud del modelo en la estimacién de posiciones articulares. La
generacion de estos ficheros se realiza de manera estandarizada, asegurando que cada entrada
corresponda de forma inequivoca a la imagen original y manteniendo la trazabilidad de los
datos.

Ficheros de tiempos de inferencia.

Paralelamente, se registra el tiempo de inferencia por imagen de cada modelo en ficheros
con formato CSV, documentando la duracion de la ejecucion en el dispositivo mévil donde se
realiza la ejecucion. Esta informacion es esencial para el andlisis de rendimiento, permitiendo
comparar la eficiencia de los distintos modelos y su viabilidad para aplicaciones en tiempo real.

4.3.4. Desarrollo de la interfaz

En esta subfase se desarrolla una interfaz de usuario especializada con el objetivo de
facilitar la ejecucion sistematica del proceso de inferencia sobre el conjunto completo de datos
de prueba para cada modelo. Esta interfaz cumple el doble propodsito de automatizar el
procesamiento de grandes volimenes de imagenes y de proporcionar informacion en tiempo
real sobre el progreso de la ejecucion.

La interfaz permite ejecutar de manera consecutiva la inferencia sobre todas las
imagenes del dataset en cada uno de los modelos. Este enfoque garantiza que cada modelo se
evaltie bajo condiciones homogéneas, eliminando la necesidad de intervencion manual
repetitiva y minimizando errores operativos.

Durante el proceso de inferencia, la interfaz muestra visualmente una lista de los
modelos en ejecucion de forma que cada uno de ellos va evolucionando a través de un codigo
de colores segtin va finalizando su ejecucion para monitorizar el estado global de la ejecucion.

Una vez finalizado el proceso de inferencia, la interfaz ofrece la posibilidad de exportar

(compartir) de manera directa el fichero ZIP que integra todos los resultados generados,
incluyendo las predicciones de keypoints y los tiempos de inferencia por imagen.

71

4.3.5. Pruebas y correcciones

Pruebas funcionales, de estabilidad y de portabilidad. Comprobacién de que las
imagenes procesadas generan predicciones validas con keypoints consistentes, medicion de la
latencia por inferencia (ms/imagen) y ejecucion continia de la aplicacion durante intervalos
prolongados para detectar posibles fugas de memoria, caidas de la aplicacion o degradacion de
rendimiento. Validacion en distintos dispositivos Android para evaluar variaciones de
rendimiento debidas a las caracteristicas del hardware.

Fase Nombre Duracion Objetivo

estimada

Fase 2.1 | Anadlisis, disefio y 1 semana Definicion de la arquitectura de la

preparacion. aplicacion, estructuras de datos, workflows
y ficheros de salida. Preparacion del
entorno de desarrollo.

Fase 2.2 | Implementacion. 4-5 semanas | Implementacion de la estructura de clases
Java de la aplicacion, integracion de
modelos TFLite y dataset de imagenes de
testeo, ejecucion de inferencias de los
modelos sobre el dataset de testeo,
obtencion de datos de precisiones por
modelo y recopilacion de tiempos de
inferencia por modelo.

Fase 2.3 | Generacion y gestion | 1 semana Creacion de ficheros de salida con los

de ficheros de salida. datos obtenidos.

Fase 2.4 | Desarrollo de la 1 semana Creacioén de una interfaz con las

interfaz. operaciones disponibles en la aplicacion.

Fase 2.5 | Pruebasy 1-2 semanas | Pruebas de ejecucion en diferentes

correcciones. dispositivos y correccion de bugs
observados.

Tabla 17. Sub-fases de la fase de desarrollo de la aplicacion para Android

4.4. FASE 3: Evaluacion y analisis de resultados

4.4.1. Evaluacion de precision obtenida

Nucleo del andlisis orientado a la evaluacion de la precision de los modelos de
estimacion de posturas humanas. En esta etapa se examina la capacidad de los modelos
incluidos en este estudio para predecir la localizacion de los puntos clave del cuerpo humano,
comparando los resultados obtenidos frente a los valores esperados de referencia.

72

La precision es evaluada mediante métricas estandarizadas en el campo de la vision por
computadora como AP (Average Precision), ampliamente utilizada en benchmarks como
COCO, que evaliia la precision media considerando diferentes umbrales de tolerancia,
ofreciendo una medida global del desempefio del modelo (ver apartado “2.6.1. Dataset COCO
(Common Objects in COntext)”).

Con el objetivo de obtener una vision estructurada y comparativa de los resultados se
generan tablas de precision por modelo, en las que se reflejan los valores de AP a nivel global
y se elaboran graficos de barras comparativos, permitiendo identificar de forma visual las
diferencias de precision entre modelos evaluados. Adicionalmente se analizan las diferencias
entre la precision en escenarios ptimos (subconjunto de imagenes adecuadas para estimacion
de posturas humanas) y los resultados en escenarios de condiciones adversas o desafiantes
(subconjunto de imagenes menos adecuadas para estimacion de posturas humanas).

4.4.2. Evaluacion del rendimiento obtenido

Analisis del rendimiento computacional de los modelos de estimacién de posturas en
distintos dispositivos Android. El objetivo principal es caracterizar la eficiencia de los modelos
en condiciones reales de ejecucion moévil considerando métricas de velocidad de inferencia.
Este analisis complementa la evaluacion de precision realizada en la fase anterior, permitiendo
determinar el balance entre exactitud y eficiencia alcanzado por cada modelo.

El rendimiento se mide en base a indicadores clave ampliamente utilizados en entornos
de computacion movil como el tiempo de inferencia (ms/img) que es el tiempo promedio
requerido por el modelo para procesar una unica imagen de entrada.

Con el fin de asegurar la validez de los resultados, se realizan las pruebas ejecutando la
aplicacion en varios dispositivos Android con caracteristicas de hardware diferenciadas. Esta
variacion permite estudiar como factores como el tipo de CPU, la memoria o la version de
Android impactan en el rendimiento de los modelos.

Para documentar y comparar de manera clara los resultados obtenidos, se elaboran
graficos de barras agrupadas comparativas de rendimiento organizadas por dispositivo y
modelo, incluyendo valores de tiempo de inferencia promedio.

Por ultimo se generan graficos de dispersion mostrando la relacion entre tiempo de
inferencia y precision comparativamente entre todos los modelos estudiados para tener de una
forma visual directa una imagen comparativa del desempefio de los modelos estudiados.

4.4.3. Realizacion de la memoria del proyecto

Constituye el cierre formal del proceso metodolégico y tiene como objetivo la
recopilacion, sistematizacion y publicacion de la memoria técnica del proyecto. Esta etapa es
fundamental desde una perspectiva académica y cientifica, ya que transforma los resultados
experimentales y de implementacion en un documento estructurado, verificable y transferible,
garantizando tanto la reproducibilidad del estudio como la difusion del conocimiento generado.

Incluye la descripcion detallada del marco tedrico en el que se desarrolla este estudio,

73

la metodologia aplicada para la seleccion y preparacion de los modelos a estudiar y del dataset
empleado (incluyendo el filtrado de imagenes y las condiciones de control experimental), el
detalle del workflow de desarrollo, desde la fase de preparacion de datos y modelos hasta la
implementacion en Android y la evaluacion de resultados y por ultimo la recopilacion de
métricas de precision y rendimiento, en forma de tablas y graficos, organizadas para permitir
un analisis comparativo entre modelos y dispositivos.

Fase Nombre Duracion Objetivo
estimada
Fase 3.1 | Evaluacion de precision | 0,5 semanas | Generacion de graficos y tablas con la
obtenida. precision obtenida por cada modelo y

comparativas con la precision esperada.

Fase 3.2 | Evaluacion del 0,5 semanas | Generacion de graficos y tablas con los
rendimiento obtenido. datos de rendimiento obtenidos por cada
modelo en cada dispositivo.

Fase 3.3 | Realizacion de 1-2 semanas | Recopilacion y publicacion de la
comparativas, extraccion memoria relativa al desarrollo del
de conclusiones y proyecto.

realizacion de la
memoria del proyecto.

Tabla 18. Sub-fases de la fase de evaluacion y andlisis de resultados

4.5. Planificacion temporal

La planificacion temporal representa un componente esencial dentro de la gestion de
proyectos de investigacion aplicada en informatica, al proporcionar un marco estructurado que
posibilita una distribucién eficiente de los recursos disponibles, el cumplimiento de plazos
establecidos y la organizacion de las actividades. Su importancia radica no solo en la asignacion
temporal de tareas, sino también en la capacidad de establecer dependencias entre fases y
garantizar la coherencia metodoldgica durante todo el ciclo de vida del proyecto.

En el presente estudio se adopta una metodologia secuencial organizada en fases y
subfases, pensada para proporcionar un desarrollo progresivo, desde la preparacion inicial de
los datos y modelos hasta la obtencion, andlisis e interpretacion de los resultados finales. Cada
fase responde a un objetivo especifico claramente delimitado, lo cual facilita el seguimiento del
avance, la identificacion de hitos criticos y la evaluacion continua del grado de cumplimiento
de los objetivos planteados.

En Imagen 15 podemos ver un diagrama de Gantt con la planificacion temporal de la
evolucion del proyecto basado en las estimaciones temporales definidas durante la planificacion
y reflejadas en Tabla 15 (fases generales) y Tabla 16, Tabla 17 y Tabla 18 (subfases) con los
codigos de color utilizados para cada una de ellas.

74

Diagrama de Gantt - Estudio de librerfas de deteccion de posturas humanas en dispositivos moviles

Fase 1.1: Andlss de COCO

Fase 1.2: Selecrion del dainset -

Fase 1.3: Chiencin de modedog -

Fase 2.1: Andlsn, diselio ¥y preparacion -
Fase 2 2: Implementacian

Fase 2 3: Gegtion de ficheras de salida -
Fase 2. 4: Desarmlln de la interfaz 4

Fese 2 5: Pruehas ¥ ciTECCiones 1

Fase 3.1: Evaluacion precsian -

Fase 1 2: Evaluacitn rendimiento -

Fase 1.3: Memaria del proyecin -

12-May

19-May

26-May D!-jurl I:H-jun 1B-jun 23-I]un 30-|]ur1 I.'ﬂ'-ljul 14—I]ul Zl-ljul ZII-I]uI Dll-llhug L'l-JI\.ug 1H-Aug
Fecha

Imagen 15. Diagrama de Gantt del proyecto

75

4.6. Viabilidad técnica

La viabilidad técnica de un proyecto orientado a la estimacion de posturas humanas
depende de la disponibilidad, estabilidad y licenciamiento de los modelos de inteligencia
artificial que se empleen, asi como de los conjuntos de datos utilizados para su entrenamiento
y validacién. En este sentido, resulta fundamental evaluar también las condiciones legales y
técnicas bajo las cuales pueden integrarse en una solucion final.

Modelos de Estimacion de Posturas Humanas

MoveNet (Lightning y Thunder). El modelo MoveNet en sus variantes Lightning y
Thunder esta licenciado bajo Apache 2.0, tal como esta especificado en su ficha
técnica ("Model Card") de Google (41).

BlazePose (Lite, Full, Heavy). El modelo GHUM-3D (Lite, Full, Heavy) de
BlazePose esta licenciado bajo Apache License, Version 2.0. En la documentacion
oficial de MediaPipe/BlazePose, se indica que el contenido general y ejemplos de
cdodigo estan bajo Creative Commons Attribution 4.0 y Apache 2.0 para los ejemplos
(42).

YOLOV8-pose (Nano, Small, Medium). La licencia del codigo de YOLOVS, que
incluye modelos como los especializados para pose, es AGPL-3.0. Es una licencia
de codigo abierto aprobada por la OSI “ideal para estudiantes ya que promueve la
colaboracion abierta y el intercambio de conocimientos™ (32).

Conjuntos de Datos de Pose Estimation

COCO (Common Objects in COntext). El dataset COCO utiliza varias licencias de
Creative Commons (1).

MPII Human Pose Dataset- Estd licenciado bajo una Simplified BSD License,
version 2 clausulas (BSD-2-Clause) pero aclaran que el uso es libre solo con fines
de investigacion, y no se permite el uso comercial, debido a que el instituto no posee
los derechos de las imagenes (2).

76

5. FASE 1: PREPARACION DEL DATASET DE TESTEO Y
OBTENCION DE MODELOS

5.1. Seleccion del dataset de imagenes de testeo

Como hemos visto (apartado “2.6.1. Dataset COCO (Common Objects in COntext)”) el
dataset COCO esta compuesto por cientos de miles de imagenes distribuidas en distintas
categorias, entre las cuales destaca el conjunto de anotaciones para keypoints humanos lo que
lo convierte en una base idonea para el entrenamiento, y, en nuestro caso de estudio, evaluacion
de modelos de estimacion de posturas humanas.

Como vimos también COCO se organiza en diferentes subconjuntos:

Entrenamiento (train2017, imégenes con anotaciones, utilizadas para el
entrenamiento y ajuste de parametros de los modelos)

Validacion (val2017, aproximadamente 5.000 imdagenes, utilizadas para ajustar
hiperparametros y realizar comprobaciones preliminares del desempefio).

Testeo (test-dev y test-challenge): sin anotaciones visibles, se emplea en
competiciones y evaluaciones finales mediante envio a los servidores oficiales de
COCO.

En este estudio el foco se encuentra en la fase de evaluacion, por lo que adoptamos el
conjunto val2017 como referencia principal. Su tamafio intermedio y diversidad de contextos
lo hacen ideal para pruebas controladas, garantizando una validacion robusta de la capacidad
de los modelos sin incurrir en sobreajuste.

Librerias necesarias

El proceso de seleccion y descarga del subconjunto de imagenes se apoya en un conjunto
de librerias especializadas de Python:

pycocotools.coco.COCO. La clase COCO, incluida en el paquete pycocotools,
constituye la API oficial del dataset COCO. Su finalidad es entre otras gestionar y
manipular las anotaciones del dataset, permitiendo cargar y explorar los ficheros de
anotaciones en formato JSON, acceder a categorias, imagenes y anotaciones de
keypoints humanos, filtrar subconjuntos de datos en funcion de criterios definidos
(por ejemplo, nimero de personas en una imagen o cantidad de keypoints visibles)
y obtener las rutas de descarga de las iméagenes asociadas a cada anotacion.
Sintetizando, pycocotools.coco.COCO proporciona la infraestructura bésica para
interactuar con el dataset COCO, automatizando el acceso a metadatos y facilitando
la preparacion de subconjuntos para pruebas.

pathlib.Path. El mdédulo Path de la libreria estandar pathlib en Python ofrece una
interfaz para el manejo de rutas de archivos y directorios que permite entre otras
operaciones construir rutas de forma segura e independiente del sistema operativo
(Windows, Linux, macOS), crear y verificar la existencia de directorios para

77

almacenar imagenes descargadas y resultados de inferencia, gestionar operaciones
como concatenar rutas y listar ficheros o mover elementos dentro de la estructura
del proyecto.

En este contexto, Path se utiliza principalmente para organizar de manera
estructurada y reproducible el almacenamiento local de los subconjuntos de
imagenes y ficheros derivados del proceso experimental.

Descarga del fichero de anotaciones

El dataset COCO esta organizado en diferentes componentes: imagenes, anotaciones y
utilidades asociadas. Dentro de las anotaciones, los archivos JSON contienen informacion
estructurada que describe categorias, instancias, bounding boxes y keypoints. El fichero
person_keypoints_val2017.json constituye la base de referencia para evaluar modelos de
estimacion de poses en el subconjunto de validacion del dataset COCO. Su descarga se realiza
a través del paquete oficial annotations_trainval2017.zip, ya sea manualmente desde la web
de COCO o de forma automatizada mediante codigo Python.

La ubicacion oficial de los ficheros de anotaciones de COCO se distribuyen desde la
pagina oficial del dataset’? y los ficheros de anotaciones estdin en el ZIP
annotations_trainval2017.zip. Este archivo contiene varios ficheros JSON, entre ellos el de las
anotaciones relativas a keypoints que necesitamos (person keypoints val2017.json) y que
encontramos en la carpeta “annotations” al descomprimir annotations_trainval2017.zip.

Por tanto para el caso del estudio de estimacion de posturas humanas el fichero que
contiene la informacion de validacion de las imagenes del conjunto de validacion se encuentra
dentro del ZIP annotations_trainval2017.zip descargado de la pagina oficial del dataset COCO
en la siguiente ruta:

annotations/person_keypoints val2017.json

Estructura de carpetas del dataset

El dataset de testeo se descarga mediante un script realizado en Python generando una
estructura sencilla de carpetas y archivos, formada por una carpeta principal “Dataset” que
contendra una carpeta “Images” en la cual se incluyen las imagenes seleccionadas para testeo
(con el mismo nombre que tienen en las anotaciones COCOQO) y un fichero de texto
(imageFileNames.txt) con los nombres de la imagenes descargadas para labores de control y
para facilitar la localizacion e identificacion de las imagenes que componen el dataset de testeo
(Imagen 16).

En el dataset COCO, el campo file_name dentro de las anotaciones hace referencia al
nombre de cada archivo de imagen tal y como estd almacenado en el conjunto de datos

(val2017). El formato de los nombres de archivo sigue esta convencion:

[identificador de imagen 12 digitos].jpg

22 http://cocodataset.org/#download

78

http://cocodataset.org/#download

Cada nombre de archivo estd compuesto por un identificador numérico unico de 12
digitos. Este identificador se corresponde con el campo id de la anotacion de imagen dentro del
fichero JSON y la extension utilizada es siempre JPG (por ejemplo 000000000785.jpg).

Dataset/Images

| G

| 000000000785.jpg

N/

| G

L 000000001490.jpg

| 000000575081.jpg

N/

| G

— imageFileNames.txt

N/

Imagen 16. Estructura carpetas descarga imagenes dataset de testeo

Script de descarga de imagenes del dataset

El algoritmo del script Python tiene como propdsito seleccionar, filtrar y descargar un
subconjunto de imagenes del dataset COCO que cumpla unos criterios de validez para el estudio
anteriormente definido. Su funcionamiento puede dividirse en varias etapas:

- Definicion de criterios de filtrado. Se establece como condicion inicial que una
imagen sera considerada valida inicamente si contiene al menos un nimero minimo
de keypoints visibles en las anotaciones de la persona. Este umbral actia como filtro
de calidad, descartando imégenes en las que la anotacion carezca de informacion
suficiente para un analisis fiable.

- Carga de anotaciones y metadatos. Se cargan las anotaciones asociadas a la
categoria "persona", incluyendo los keypoints de las distintas instancias. Para ello:

o Se obtiene el identificador unico de la categoria de personas.

o Se recupera la lista de identificadores de imagenes que pertenecen a dicha
categoria.

o Se accede a las anotaciones especificas de cada imagen, que contienen los
vectores de keypoints y metadatos adicionales (por ejemplo, bounding
boxes).

79

- Identificacion de imagenes candidatas. Se implementa una estrategia de seleccion
que evita el uso de imagenes con multiples personas.

o Se mantiene un array temporal donde se almacenan los IDs de todas las
imagenes procesadas.

o En paralelo, se registra en una lista separada el conjunto de imagenes con
mas de una anotacidn, lo que indica que contienen mas de una persona.

o Filtramos el primer array temporal con los IDs de todas las imagenes
procesadas con la lista del conjunto de imagenes con mas de una anotacion
para obtener Unicamente los IDs de las imagenes que no tienen mas de una
anotacion (lo que supone que solo hay una persona en la imagen).

De este modo, es posible aislar un subconjunto de imagenes con
unicamente una persona visible, condicion definida previamente.

- Filtrado por keypoints y seleccion final. Entre las imagenes con una sola persona,
se realiza un filtrado adicional:

o Se descartan aquellas en las que la anotacion tenga menos del niimero
minimo de keypoints visibles definido previamente.

o Se conserva una lista definitiva con los identificadores de imagenes validas
para descarga.

- Preparacion del entorno local. Antes de iniciar la descarga, el algoritmo prepara
la estructura de directorios en el sistema local creando una carpeta principal con una
subcarpeta destinada a albergar el dataset filtrado.

- Descargay registro de imagenes. Se procede a la descarga de las iméagenes filtradas
desde el repositorio oficial de COCO:

o Cada imagen seleccionada se descarga y se almacena en la carpeta
previamente creada.

o Se mantiene una lista de control con los nombres de las imagenes
descargadas, lo que permite verificar la integridad del proceso y garantizar
la reproducibilidad.

o Finalmente, se genera un fichero de control, en el que se documentan los
nombres de todas las imagenes descargadas.

- Seguimiento del proceso. Durante la ejecucion, el algoritmo incluye mecanismos
de impresion de datos en consola, que sirven como traza de seguimiento. Esto
permite monitorizar el progreso de la descarga y detectar posibles incidencias, tales
como la ausencia de imagenes o fallos en la conexion.

En Imagen 17 se puede observar que el conjunto de imagenes de validacion val2017 de
COCO tiene 2.693 imagenes pertenecientes a la categoria person (personas) las cuales estan
anotadas con 11.004 anotaciones y de las cuales 1.045 iméagenes tienen una sola persona 'y 316
tienen ademds el nimero minimo de keypoints que hemos definido que necesitamos para el
estudio.

80

loading annotations into memory...
Done (t=0.33s)

creating index...

index created!

Id de la categoria "person”: [1]
Namero de imagenes pertenecientes a la categoria "person™: 2693

Anotaciones totales para las imagenes de la categoria "person” (por numero total de ids): 11@e4

Anotaciones totales para las imagenes de la categoria "person” (cargadas del fichero json):
Numero de imdgenes con una sola persona: 1045
Numero de imagenes con una sola persona filtradas (tienen 15 o mas keypoints): 316

Descargando imagenes del dataset...
Descargando imagenes del dataset...Finalizado

Imagen 17. Salida de ejecucion de script de obtencion de dataset de imdgenes de testeo

5.2. Obtencion de modelos para el estudio

Se utilizan dos procedimientos principales para la obtencion de los ficheros de los
modelos preentrenados que utilizamos en este estudio, la descarga directa de modelos
publicados en formato TFLite y la descarga con posterior conversion a este formato.

5.2.1. Modelos con opcion de descarga directa en formato TFLite

Los modelos disefiados y publicados oficialmente por equipos de investigacion o
plataformas reconocidas (por ejemplo, TensorFlow Hub, Google Research o el propio
repositorio de TensorFlow Lite) representan una fuente fiable y estandarizada. Estas versiones
suelen estar optimizadas especificamente para ejecucion en entornos moéviles y embebidos, y
se publican en formatos ya adaptados, como TFLite. Estos modelos estan preentrenados y
optimizados, son distribuidos en formatos listos para su ejecucion en entornos moviles y estan
disponibles en repositorios oficiales. Los modelos incluidos en este estudio que ofrecen la
posibilidad de una descarga directa desde un repositorio oficial son los siguientes:

- MoveNet. Los seis modelos (las tres versiones cuantizadas de la version Lightning
mas las tres versiones cuantizadas de la familia Thunder) de la familia MoveNet
incluidos en el estudio estan disponibles para su descarga directa en formato TFLite
desde la plataforma Kaggle, plataforma en la que TensorFlow Hub integro sus

81

1iee4

modelos. Se pueden descargar de forma directa en este enlace®’, al que a su vez se
puede acceder desde el siguiente enlace®* de TensorFlow Hub (opcion “See TF Hub
models”).

- BlazePose. Los tres modelos (Lite, Full y Heavy) de la familia BlazePose incluidos
en el estudio estan disponibles para su descarga directa en formato TFLite desde el
repositorio de github del framework MediaPipe®®, desde donde podemos acceder a
la descarga de los modelos concretamente en el apartado “Pose landmark model”
de la pagina “MediaPipe Models and Model Cards” siguiendo este enlace®.

Como se puede observar en el aviso de la front page para mas informacion acerca
del framework MediaPipe debemos redirigirnos a la nueva URL donde ha migrado
la documentacion:

“Attention: We have moved to https://developers.google.com/mediapipe as the
primary developer documentation site for MediaPipe as of April 3, 2023.”

5.2.2. Modelos que requieren conversion de formato

La segunda opcion de obtencién de modelos se utiliza en la obtencion de los modelos
YOLO de Ultralytics que como vimos en el apartado “3.1.4. YOLOv8-Pose (Ultralytics)”
originalmente se distribuyen en formato PyTorch (.pt) por lo que para su inclusion en nuestro
estudio después de la obtencion de los modelos es necesario realizar un proceso de conversion
de formato (para mantener la homogeneidad con el resto de modelos), generalmente hacia
ONNX y posteriormente hacia TensorFlow Lite (TFLite).

Estructura de carpetas de descarga y conversion

Se genera una sencilla estructura formada por una carpeta “Modelos YOLOS” donde
se descargan los modelos en su formato original (PyTorch) y desde la cual se realiza la
conversion al formato necesario para su integracion en la aplicacion de Android desarrollada
para el estudio.

Descarga directa de modelos originales en formato PyTorch (.pt)

Los tres modelos que utilizamos de la familia YOLO (Lite, Full y Heavy) estan
disponibles para su descarga directa en formato PyTorch (.pt) desde este enlace?’ oficial
proporcionado por la compafiia que los desarrolla y mantiene actualmente (Ultralytics) lo que
garantiza la utilizacion de versiones fiables, verificadas y actualizadas. Pinchando en cada uno
de los tres modelos que incluimos en el estudio realizamos la descarga en la carpeta de descarga
descrita anteriormente.

23 https://www.kaggle.com/models/google/movenet

24 https://www.tensorflow.org/hub/tutorials/movenet

25 https://github.com/google-ai-edge/mediapipe

26 https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose

27 https://docs.ultralytics.com/es/models/yolov8/#performance-metrics

82

https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose
https://docs.ultralytics.com/es/models/yolov8/#performance-metrics
https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose

Librerias necesarias para la conversion de formato

El proceso de conversion de los modelos de la familia YOLO descargados implica la
utilizacion de las librerias del framework de Ultralytics:

- ultralytics.YOLO. Se utiliza como entorno integral para trabajar con modelos
YOLO, proporcionando herramientas de entrenamiento, inferencia, evaluacion y
exportacion. Permite convertir modelos a otros formatos como ONNX o TensorFlow
Lite.

Conversion de modelos YOLO a formato TensorFlow Lite

Los modelos del framework YOLO pueden exportarse a multiples formatos
(TorchScript, ONNX, TensorRT, CoreML, TensorFlow Lite,...). Durante este proceso de
exportacion se pueden aplicar ciertos parametros de configuracion que ajustan el
comportamiento del modelo y que resultan especialmente importantes para nuestro caso de
estudio al exportar modelos para entornos méviles.

La libreria Ultralytics provee un método directo para esta conversion mediante la
funcién export, que permite ajustar parametros clave que influyen tanto en la compatibilidad
como en el rendimiento de los modelos (42). Para este estudio el script de Python que utiliza la
libreria ultralytics. YOLO para la descarga de los modelos YOLO realiza varias acciones
adicionales sobre el modelo:

- Especificacion del formato de exportacion (format="tflite"). Indica que el modelo debe
exportarse en formato TensorFlow Lite. Como ya hemos visto este formato esta
disefiado para ejecutar inferencias de forma eficiente en dispositivos moviles,
reduciendo el tamafio del modelo y optimizando la velocidad de célculo sin
comprometer de manera significativa la precision.

- Especificacion del tamaiio de las imagenes (imgsz=320). Define el tamaio de entrada
de la imagen en 320x320 pixeles (por defecto 640x640 pixeles). Este valor implica
un equilibrio entre velocidad y precision al tener dimensiones menores permiten una
inferencia mas répida, lo que resulta ventajoso en dispositivos con recursos
limitados mientras asegura un nivel de detalle suficiente para detectar personas y
keypoints sin degradar drasticamente la exactitud del modelo. Como vimos en los
apartados “3.1.2. MoveNet (Google)” y “3.1.3. BlazePose (Google MediaPipe)” el
resto de modelos del estudio utiliza tamafios de entrada de imagenes de 192x192
pixeles y 256x256 pixeles las familias de MoveNet Lightning y Thunder
respectivamente y de 256x256 pixeles la familia BlazePose por lo que el tamafo de
imagen de entrada seleccionado para los modelos YOLO es el mas aproximado al
resto de entre los disponibles.

- Especificacion numero maximo de detecciones por imagen (max_det=1). Limita el
numero maximo de detecciones por imagen a una sola instancia. Dado que el
objetivo es trabajar con imdgenes de una Unica persona este valor elimina falsos
positivos derivados de multiples detecciones y simplifica el analisis posterior de
precision y rendimiento.

&3

- Activacion del uso de Non-Maximum Suppression (nms=True). Elimina
predicciones redundantes que se solapan, manteniendo tnicamente la deteccion mas
confiable lo que contribuye a asegurar que unicamente se retenga la prediccion mas
relevante para cada imagen, evitando duplicidades en la salida.

Como entrada al proceso de exportacion utilizamos la ruta de cada uno de los tres
modelos descargados en la carpeta de descarga en formato .pt y como resultado de la
exportacion obtenemos en la misma carpeta de descarga, ademas de ficheros temporales en
formato .omnx de cada modelo, tres subcarpetas, una para cada modelo, que contienen entre
otros ficheros dos versiones cuantizadas de cada uno de los modelos, una float32 y otra float16.
Como el objetivo de este estudio es analizar el rendimiento en dispositivos edge utilizaremos
unicamente las versiones cuantizadas float16 de cada uno de ellos ya que son las que se adaptan
a las condiciones que habiamos descrito en el apartado “3.1.1. Criterios de seleccion y modelos
seleccionados” ocupando bastante menos espacio que sus homoélogas float32.

5.3. Dispositivos de prueba
Para evaluar el rendimiento de los modelos de estimacion de poses implementados en
dispositivos Android, se ha seleccionado una muestra representativa de terminales con
diferentes configuraciones de hardware. La seleccion incluye tanto teléfonos moéviles como

tabletas, cubriendo distintas gamas de rendimiento y versiones del sistema operativo, con el fin
de analizar la escalabilidad de los modelos y su aplicabilidad en contextos reales.

5.3.1. Listado de dispositivos de prueba

En este apartado se describen las caracteristicas técnicas de cada uno de los tres
dispositivos utilizados en las pruebas de medicion de precision y rendimiento: una Tablet
Samsung Galaxy Tab A7 Lite, un movil Samsung Galaxy M32 y una Tablet Samsung Galaxy
Tab A9.

Samsung Galaxy Tab A7 Lite (Tablet)

- Procesador (SoC): MediaTek MT8768T Helio P22T, Octa-core (4x2.3 GHz & 4x1.8
GHz Cortex-AS53)

- GPU: PowerVR GE8320

- Memoria RAM: 3 GB

- Almacenamiento: 32 GB

- Sistema operativo: Android 14

- Pantalla: 8.7" TFT, resolucion 800 x 1340 pixeles

Esta tablet representa la gama de entrada, con recursos limitados en CPU, GPU y RAM.

84

Se incluye para evaluar el comportamiento de los modelos en dispositivos con restricciones de
capacidad, comunes en entornos educativos, sanitarios o de bajo coste.

Samsung Galaxy M32 (Movil)

Procesador (SoC): MediaTek Helio G80, Octa-core (2x2.0 GHz Cortex-A75 &
6x1.8 GHz Cortex-AS55)

GPU: Mali-G52 MC2

Memoria RAM: 6 GB

Almacenamiento: 128 GB

Sistema operativo: Android 13

Pantalla: 6.4" Siper AMOLED, resolucion 1080 x 2400 pixeles

Otros: Bateria de 6000 mAh

El Galaxy M32 representa un dispositivo de gama media con buen rendimiento grafico
y capacidad suficiente para ejecutar modelos ligeros y medios. Es adecuado para evaluar la
eficiencia de inferencia en terminales moviles convencionales.

Samsung Galaxy Tab A9 (Tablet)

Procesador (SoC): Unisoc T618, Octa-core (2x2.0 GHz Cortex-A75 & 6x1.8 GHz
Cortex-ASS5)

GPU: Mali-G52 MP2
Memoria RAM: 4 GB
Almacenamiento: 64 GB
Sistema operativo: Android 15

Pantalla: 8.7" TFT LCD, resolucién 800 x 1340 pixeles

La tablet Galaxy Tab A9 se sitlia en una gama media actualizada, con mejor capacidad
de procesamiento que la Tab A7 Lite, aunque sin alcanzar el nivel de un smartphone moderno.
Este dispositivo permite medir la eficiencia de los modelos en un entorno mas equilibrado, ideal
para aplicaciones industriales, educativas o comerciales.

85

5.3.2. Justificacion de la seleccion
La eleccion de estos dispositivos responde a los siguientes criterios:

- Diversidad de capacidades de hardware (procesadores ARM heterogéneos, distintas
GPUs).

- Representatividad de escenarios reales de uso (moviles, tablets, gama baja/media).

- Compatibilidad con Android 12 o superior, necesaria para ejecutar modelos con
soporte NNAPI y TFLite.

Esta variedad permite analizar el rendimiento cruzado de los modelos y determinar qué
configuraciones de hardware resultan mas adecuadas para cada tipo de modelo de estimacion
de posturas, desde los mas ligeros hasta los mas complejos.

86

6. FASE 2: DESARROLLO DE LA APLICACION PARA ANDROID

Este apartado describe el proceso de implementacion técnica de la aplicacion Android
donde se cargan los modelos seleccionados junto a las imagenes del dataset seleccionadas para
extraer resultados de predicciones y tiempos de inferencia de los modelos sobre el dataset. Esta
seccion por lo tanto constituye el nucleo técnico del proyecto y conecta directamente la
investigacion y analisis previos con la validacion practica del desempefio de los modelos en un
entorno real de ejecucion.

La arquitectura implementada en la aplicacién garantiza la ejecucidon secuencial y
automatizada de todos los modelos sobre el conjunto de imagenes definido, lo que facilita la
recoleccion sistematica de datos para su posterior analisis comparativo.

6.1. Analisis, disefio y preparacion

6.1.1. Analisis y disefio

Esta fase se concibe con varios objetivos, definir los requisitos funcionales y no
funcionales de la aplicacion, disefiar una arquitectura que garantice eficiencia, mantenibilidad
y escalabilidad, definir las estructuras de datos que se utilizan en la exportacion de resultados,
disenar la interfaz que interactuara con el usuario y por ultimo analizar las estructuras de datos
tanto de entrada como de salida de cada modelo del estudio.

Analisis de requisitos

Los requisitos funcionales se centran en las capacidades que debe ofrecer la aplicacion
para cumplir los objetivos del proyecto:

- Carga y gestion de modelos. La aplicacion debe poder integrar diferentes modelos
de estimacion de posturas en formato TFLite.

- Ejecucion de inferencias sobre un dataset de imagenes. Debe permitir cargar
imagenes desde una carpeta, procesarlas y obtener y registrar los keypoints
correspondientes.

- Medicion del tiempo de inferencia. El sistema debe registrar el tiempo de
procesamiento por imagen y por modelo.

- Almacenamiento y exportacion de resultados. Los resultados de inferencia
registrados (keypoints y tiempos) deben guardarse en ficheros estructurados y
exportarse en un contenedor ZIP.

- Interfaz de usuario basica. Debe proveer un mecanismo simple para iniciar el

proceso de inferencia, mostrar el progreso y confirmar la correcta finalizacion de la
tarea.

87

Ademas de las funcionalidades principales, la aplicacion debe cumplir con una serie de
restricciones técnicas o requisitos no funcionales:

- Compatibilidad. el nivel minimo de SDK debe asegurar ejecucion en un amplio
rango de dispositivos Android contemporaneos.

- Mantenibilidad, el codigo debe estar modularizado y documentado para facilitar
futuras mejoras o integracion de nuevos modelos.

- Escalabilidad, la arquitectura debe permitir incorporar nuevas métricas o datasets
sin necesidad de redisefiar el nucleo de la aplicacion.

Diseiio de la arquitectura

La arquitectura planteada guarda similitudes con el patron MVC (Modelo-Vista-
Controlador), ampliamente utilizado en el desarrollo de aplicaciones por su capacidad de
separar responsabilidades y promover la escalabilidad. En este contexto, se ha disefiado sobre
los principios de herencia y polimorfismo, caracteristicas intrinsecas de los lenguajes orientados
a objetos, lo que permite reutilizar codigo comun y, al mismo tiempo, adaptar el
comportamiento especifico a cada modelo de estimacidén de posturas humanas que estamos
estudiando.

El Modelo representa la capa encargada de la gestion de datos y logica de negocio, lo
que incluye el manejo de las imagenes de entrada, la carga y ejecucion de los modelos de
inferencia en formato TensorFlow Lite, y la organizacion y persistencia de los ficheros de salida
generados (predicciones y tiempos de inferencia). Esta capa abstrae la complejidad del
preprocesamiento, inferencia y postprocesamiento, de modo que la ldgica asociada a cada
modelo concreto queda contenida en subclases especializadas que heredan de una clase base
comun.

La Vista constituye la capa de interaccion con el usuario y es responsable de visualizar
las operaciones y resultados. En el caso de una aplicacion Android, esto se materializa mediante
actividades o interfaces graficas que muestran el estado de ejecucion e indicadores de progreso.
La Vista es deliberadamente independiente de la 16gica del modelo, de manera que su papel se
centra en presentar informacion y recibir interacciones del usuario sin conocer en detalle como
se ejecutan las operaciones subyacentes.

El Controlador actlia como capa intermedia que coordina la comunicacion entre la Vista
y el Modelo. Su funcidn es recibir las acciones iniciadas desde la interfaz de usuario (ejecucion
de las pruebas o exportacion de resultados), traducirlas en operaciones sobre el Modelo y
devolver a la Vista los resultados o el estado actualizado. En este sentido, el Controlador
encapsula la sincronizacion entre procesos, asegurando que las respuestas se gestionan de
manera coherente y en tiempo oportuno.

Este esquema facilita el mantenimiento y la extension del sistema (nuevos modelos de
estimacion pueden integrarse mediante la adicion de subclases que respeten la interfaz definida
en el modelo base) mientras que permite una modularizacion del cddigo que mejora la
legibilidad.

88

Disefno de estructuras de datos

Se definen las estructuras de datos necesarias para almacenar los datos de salida de la
ejecucion del test. Esta salida esta compuesta por dos ficheros por cada modelo incluido:

Fichero de predicciones. Este fichero en formato JSON est4 formado por un array
con las predicciones del modelo para cada imagen del dataset de testeo. El formato
de cada una de las predicciones viene determinado por el formato utilizado por el
dataset COCO para evaluar los resultados de predicciones de modelos, que es muy
similar al descrito en el apartado “2.6.1. Dataset COCO (Common Objects in
COntext)” para las anotaciones del dataset y se compone de los siguientes campos
para cada imagen:

o image_id: ID de la imagen donde se encuentra la persona.
o category_id: Siempre 1 para personas.

o keypoints: Lista de 51 valores (17 keypoints x 3 valores por keypoint).

Cada keypoint contiene: (X, y, v) donde x e y son las coordenadas 2D del
keypoint en pixeles y v es un codigo de visibilidad del keypoint (0=no
etiquetado, 1=etiquetado pero no visible, 2=etiquetado y visible).

o score: valor numérico (normalmente entre 0 y 1) que indica el nivel de
confianza del modelo en la prediccion de la posicion de ese keypoint.

Fichero de tiempos de inferencia. Fichero de texto en formato CSV donde cada linea
del fichero incluye informacion con el nombre de la imagen a modo de identificador
y los valores de los tiempos de inferencia del modelo para esa imagen separados por
comas.

Diseno de la Interfaz de Usuario

Aunque la aplicacidon no requiere una interfaz compleja, se definen ciertos elementos
que deben estar presentes en la pantalla principal:

Informacién de modelos de estimacion de posturas incluidos en el test. Listado con
todos los modelos que ejecutaran inferencias sobre el dataset de imagenes de prueba.

Boton de inicio del test en el dispositivo. Boton para iniciar el test en el dispositivo.

Indicador visual de progreso de la ejecucion del test. Avance de la ejecucion por
modelo.

Boton de exportacion de resultados. Boton para exportar los ficheros con los
resultados de inferencia y rendimiento de todos los modelos testados.

Boton de salir de la aplicacion.

&9

Analisis de entradas y salidas de los modelos

La estimacion de posturas humanas mediante redes neuronales requiere comprender las
estructuras de entrada y salida de los modelos empleados. Estas estructuras determinan tanto la
forma en que las imagenes deben preprocesarse como la interpretacion de los resultados
generados por cada modelo. En términos de entrada, todos los modelos reciben tensores que
representan imagenes RGB redimensionadas a unas resoluciones fijas y normalizadas en
rango de valores. El tamafio de estos tensores difiere segiin el modelo y la version:

- MoveNet utiliza entradas compactas de 192x192 pixeles (Lightning) o 256%256
pixeles (Thunder) para sus dos variantes que representan imagenes RGB
normalizadas, redimensionadas al tamafio requerido por cada version.

- BlazePose requiere imagenes de resolucion 256x256 pixeles igualmente
representando imagenes RGB normalizadas y redimensionadas.

- YOLOvS8-Pose emplea entradas por defecto con tensores de 640x640 pixeles,
aunque en este estudio y como hemos comentado anteriormente los modelos
exportados a formato TFLite para su integracion en la aplicacion han sido adaptados
para soportar una entrada de 320%320 pixeles de un tamafio mas parecido al resto
de modelos.

Respecto a la salida, cada modelo proporciona tensores estructurados con distinta
granularidad de informacion:

- MoveNet devuelve un tensor de tamaiio [1, 1, 17, 3]. Cada uno de los 17 keypoints
del estindar COCO esté representado por con las coordenadas (X, y) normalizadas
y el nivel de confianza para los 17 keypoints definidos por el estindar COCO (41).

- BlazePose, mas detallado, devuelve un tensor de tamaiio [1, 195] ya que estima
hasta 33 keypoints, incluyendo las coordenadas (x, y) normalizadas mas una
componente z que representa la profundidad relativa del punto respecto al cuerpo,
ademas de otros dos valores, confianza de visibilidad (0 a 1) y presencia del keypoint
(0al)(43).

- YOLOvS-Pose integra deteccion de personas y estimacion de posturas en un unico
proceso, generando bounding boxes, scores globales y los 17 keypoints de COCO
para cada persona detectada en la imagen. Devuelve un tensor de tamaiio [N, 57]
donde N es el nimero maximo de detecciones que durante la exportacion del modelo
hemos establecido a 1 con el parametro max_det=1 (ver apartado “5.2.2. Modelos
que requieren conversion de formato”) por lo que en nuestro caso el tensor devuelto
por los modelos YOLO es de tamafio [1, 57] y estd compuesto por varios valores de
bounding box (X, y, w, h), confianza (score), clase, y 17x3 valores correspondientes
a los keypoints (X, y, score).

6.1.2. Diagrama de clases

El diagrama de clases es una representacion fundamental dentro de la documentacion

90

técnica del proyecto, ya que permite visualizar la estructura estatica de la aplicacion y las
relaciones entre sus componentes principales. En este caso, el diagrama refleja la arquitectura
orientada a objetos definida, mostrando la jerarquia de herencia, la interaccion entre las
diferentes clases que conforman el sistema y los componentes publicos, protegidos y privados

de cada clase con sus parametros en el caso de los métodos (Imagen 18).

(®) TensorFiowLiteModel

(©) wmainactivity

o outputFolderFile: File

o APP_NAME: static String "TFM_PoseTest"
o ZIP_NAME: static String "TFM_PoseTest zip"

void onCreate(Bundle)
m void executeModels()
m void generateOutputZipFile()

NUM_KEYPOINTS_PREDICTION: static int 17
mainActivity: MainActivity

component; Textview

modelName: String

fileModelName: String
outputPredictionsFileName: String
outputPerformanceFileName: String
imageFileMamesList: List<String>
imagePredictionsMap: HashMap<String, float[]>
maodelPerfarmanceMap: HashMap<String, String=
imageProcessar: ImageProcessar

List<String= readimageFileMNames()
void writeResults ToFiles()

void writePredictionsTaFile()

m void writePerfarmanceToFile()

@ Mowvenet

o TYPE_LIGHTNING: static int 1

o TYPE_THUNDER: static int 2

o DATA_TYPE_UINTS: static int 1

o DATA_TYPE_FLOAT16: static int 2
o DATA_TYPE_FLOAT32: static int 3
o modelDataType: DataType

O inputWidth: int

O inputHeight: int

© BlazeFPose

o TYPE_LITE: static int 1

o TYPE_FULL: static int 2

o TYPE_HEAWY: static int 3
o modelDataType: DataType
O inputWidth: int 256

O inputHeight: int 256

0 COCO_BLAZEPOSE_KEYFOINTS_MAP: Map<Integer, Integer>

© voio

o TYPE_NANO: static int 1

o TYPE_SMALL: static int 2
o TYPE_MEDIUM: static int 3
o modelDataType: DataType
o inputWidth: int 320

O inputHeight: int 320

Movenet{MainActivity, int TYFE, int DATA_TYPE)
© void run()

BlazePose(MainActivity, int TYPE)
@ void run()

Yalo(MainActivity, int TYPE)
e void run()

Imagen 18. Diagrama de clases de la aplicacion para Android.

6.1.3. Preparacion

Preparacion entorno de desarrollo

El proceso se inicia mediante la generacion de un nuevo proyecto de tipo "Empty
Activity", que se selecciona por su cardcter basico y altamente personalizable. Esta plantilla
ofrece una estructura minima sobre la cual es posible construir la aplicacion de manera
progresiva, integrando los componentes especificos requeridos para la ejecucion de modelos de

estimacion de posturas humanas.

- Creacion del proyecto. El asistente de creacion de proyectos de Android Studio

permite definir la configuracion inicial del proyecto en varios pasos:

o Asignacion del nombre del proyecto y del paquete de aplicacion

91

(Application ID), que serviran como identificadores Uinicos en el ecosistema
Android.

o Definicion de la ubicacion de almacenamiento del proyecto en el sistema
local.

o Seleccion del lenguaje de programacion (en este caso, Java).

o Configuracion del nivel minimo de SDK (API Level minimo).

Como resultado de este proceso tenemos una aplicacion inicial funcional que
contiene un unico archivo de actividad principal (MainActivity) y los recursos
basicos asociados, como el layout en XML. Sobre esta base minima se construye la
logica necesaria para la gestion del dataset, la carga y ejecucion de los modelos
TFLite.

- Incorporaciéon de las dependencias de las librerias TensorFlow. En el fichero
build.gradle (Module:app) se afiaden las dependencias necesarias para el
funcionamiento del framework TensorFlow (Imagen 19):

o tensorflow-lite:2.12.0. Es la libreria principal de TensorFlow Lite,
encargada de la ejecucion de modelos de aprendizaje automadtico
optimizados en dispositivos méviles y embebidos. Proporciona el motor de
inferencia que permite cargar un modelo en formato TFLite y ejecutar
predicciones de manera eficiente en la CPU (o en otros delegados cuando se
configuran). Se utiliza por tanto para ejecutar los modelos de estimacion de
posturas en Android con bajo consumo de recursos y alta eficiencia.

o tensorflow-lite-metadata:0.1.0. Libreria orientada al manejo de la
informacion descriptiva (metadatos) incluida dentro de algunos modelos
TFLite. Estos metadatos contiene detalles como nombres de entradas y
salidas, dimensiones de tensores, escalas de normalizacion o categorias de
salida. Permite interpretar de manera mas sencilla los resultados de la
inferencia.

o tensorflow-lite-support:0.4.3. Conjunto de utilidades complementarias que
extiende TensorFlow Lite, proporcionando funciones de preprocesamiento y
postprocesamiento de datos (como manipulacion de imagenes, conversion
de tensores, normalizacion y transformacion de formatos).

implementation

implementation
implementation

Imagen 19. Dependencias TensorFlow Lite ariadidas al fichero build.gradle

92

- Creacidn de carpeta de recursos para almacenamiento de las imagenes del dataset.
En esta carpeta se introducen las imagenes descargadas en el apartado “5.1.
Seleccion del dataset de imagenes de testeo”™ junto con el fichero de control generado
en esa misma fase, imageFileNames.txt.

- Importacién uno por uno de todos los modelos en formato TFLite obtenidos en el
apartado “5.2. Obtencion de modelos para el estudio” a la aplicaciéon mediante la

opcion "New -> Other -> TensorFlow Lite Model" del menu contextual de la carpeta
de recursos del proyecto.

Repositorio GIT
La utilizacién de un sistema de control de versiones es una practica fundamental en
proyectos de investigacion aplicada e ingenieria de software. En este caso, la eleccion de GIT
como herramienta central permite garantizar la seguridad, trazabilidad, organizacion y
replicabilidad de todas las fases de desarrollo.
Teniendo en cuenta las fases del proyecto el repositorio esta dividido en dos partes:
- APP. Contiene todo el proyecto de la aplicacion Android (Fase 2), incluidos:
o Dataset de imagenes utilizado (APP/TFM/app/src/main/resources).
o Modelos estudiados (APP/TFM/app/src/main/ml).
o Caddigo fuente de la aplicacion (APP/TFM/app/src/main/java).

o Ficheros de configuracion del proyecto Android Studio (build.graddle,
AndroidManifest.xml, etc,..).

- Notebook. Contiene un notebook de Jupyter Notebook (TFM.ipynb) con los scripts
de preparacion del dataset de testeo (Fase 1) y los scripts de evaluacion de resultados
(Fase 3).

La localizacion del repositorio estd disponible en este enlace?®.

6.2. Implementacion del nucleo de la aplicacion

La fase de implementacién constituye el punto en el que se materializa el disefio
previamente definido, trasladando los modelos y el dataset a una aplicacion funcional para
dispositivos Android.

La implementacion incluye la programacion de las clases Java que definen la
arquitectura de la aplicacion, la incorporacion de los modelos en formato TensorFlow Lite y la
adopcion de los mecanismos necesarios para la carga, preprocesamiento y ejecucion del dataset

28 https://github.com/jr-gh/TFM
93

https://github.com/jr-gh/TFM

de imagenes. Asimismo, se desarrollan las rutinas especificas para la obtencion de predicciones
de keypoints y la medicién precisa de los tiempos de inferencia por imagen.

6.2.1. Arquitectura de la aplicacion

La arquitectura de la aplicacion Android se organiza en torno a un disefio orientado a
objetos que sigue un esquema inspirado en el patron Modelo-Vista-Controlador (MVC Model
View Controler). En este caso, las diferentes clases cumplen roles claramente diferenciados y
colaboran entre si para ejecutar el flujo completo de inferencia de modelos de estimacion de
posturas humanas.

6.2.2. Librerias TensorFlow Lite.

Para la implementacion de las clases se utilizan diferentes clases proporcionadas por la
API y las librerias de TensorFlow Lite. Estas clases permiten gestionar de manera eficiente
tanto el preprocesamiento de datos como la ejecucion de inferencias y el manejo de resultados.
Las funciones principales de cada una de ellas son:

- org.tensorflow.lite.DataType. Define los tipos de datos soportados por los tensores
de TensorFlow Lite (por ejemplo, FLOAT32, UINTS8). Se utiliza para garantizar que
las estructuras de entrada y salida del modelo se correspondan con los formatos
esperados evitando incompatibilidades.

- org.tensorflow.lite.InterpreterApi. Representa la interfaz de alto nivel que permite
cargar un modelo TFLite y ejecutar inferencias sobre €l. A través de esta clase se
inicializa el intérprete con un modelo previamente cargado y se proporcionan los
tensores de entrada y salida necesarios para la ejecucion del modelo.

- org.tensorflow.lite.support.common.FileUtil. Proporciona utilidades para gestionar
la lectura de ficheros como el propio archivo .tflite del modelo y preparar su
integracion en el intérprete.

- org.tensorflow.lite.support.common.ops.CastOp. Permite realizar conversiones de
tipo de dato en tensores, por ejemplo de UINT8 a FLOAT32. Se utiliza en las fases
de preprocesamiento y postprocesamiento para garantizar la compatibilidad entre
los datos de entrada/salida y el modelo de TensorFlow Lite.

- org.tensorflow.lite.support.common.ops.NormalizeOp. Encapsula operaciones de
normalizacion de datos, generalmente aplicadas sobre imégenes antes de ser
procesadas por el modelo. Por ejemplo, permite escalar valores de pixeles a rangos
especificos como [0,1].

- org.tensorflow.lite.support.image.ImageProcessor. Componente fundamental para
el preprocesamiento de imagenes. Permite construir pipelines de transformacion
(como redimensionado, normalizacion o rotacion), asegurando que las imagenes de
entrada se ajusten a los requisitos de cada modelo.

- org.tensorflow.lite.support.image. TensorImage Representa imagenes en forma de

94

tensores compatibles con los modelos TFLite. Facilita la conversion desde formatos
comunes (Bitmap, JPEG, etc.) a tensores que pueden ser interpretados directamente
por el modelo durante la inferencia.

- org.tensorflow.lite.support.image.ops.ResizeOp. Permite redimensionar imagenes a
un tamafio especifico generalmente requerido como paso previo al procesamiento
por el modelo. Se integra dentro de ImageProcessor y es esencial para ajustar
imagenes a resoluciones como 192x192 o0 256x256, dependiendo del modelo.

- org.tensorflow.lite.support.tensorbuffer. TensorBuffer. Utilizada para gestionar los
tensores de salida generados por el modelo. Permite almacenar, acceder y manipular
los resultados de la inferencia en diferentes formatos, facilitando la posterior
interpretacion de keypoints, coordenadas o métricas derivadas del procesamiento
realizado.

6.2.3. Implementacion de las clases de la aplicacion

Clase MainActivity (controlador principal)

La clase MainActivity actua como punto de entrada y controlador principal de la
aplicacion. Su funcidn es coordinar las interacciones entre la vista (interfaz de usuario) y el
modelo (clases que gestionan los modelos TensorFlow Lite).

Su implementacidn incluye acciones como gestionar el ciclo de vida de la aplicacion en
Android, inicializar y configurar los modelos que se ejecutan en el test, ejecutar la inferencia
de cada modelo sobre el conjunto de imagenes del dataset de testeo, mostrar el progreso de la
ejecucion en la interfaz grafica y habilitar la exportacion de resultados (ficheros de predicciones
y tiempos de inferencia).

De esta forma, MainActivity actia como organizador sin concentrar logica de
procesamiento que queda delegada en las clases de modelos.
Clase TensorFlowLiteModel (clase base abstracta)

La clase TensorFlowLiteModel constituye la superclase abstracta que encapsula las
operaciones comunes a todos los modelos.

Entre sus acciones implementadas se incluyen la lectura de la lista de imagenes del
dataset para su procesamiento por el modelo, la gestion de las estructuras de almacenamiento
de los datos de salida (estimaciones de keypoints y tiempos de inferencia) y el almacenamiento
de estos resultados en ficheros.

Esta clase es abstracta y no se instancia directamente, su proposito es proveer una base
solida para la implementacion de los modelos concretos.

95

Clase Movenet (subclase de TensorFlowLiteModel)

Especializacion de la clase base para los modelos Movenet (Lightning y Thunder). Su
constructor admite todos los parametros necesarios para definir el tipo de modelo que ejecuta y
sus tipos de datos para los seis modelos MoveNet (los tres de la familia Lightning y los tres de
la familia Thunder). La ejecucion del test del modelo sobre el dataset de imagenes se compone
de las siguientes acciones para la inferencia:

1. Inicializacién del modelo. Se instancia el modelo MoveNet en memoria mediante el
intérprete oficial (InterpreterApi).

2. Se crea un objeto Tensorlmage, contenedor de la imagen de entrada, configurado en el
tipo de dato requerido por el modelo (UINTS, FLOAT16 o FLOAT32).

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 17, 3),
que representa una imagen procesada, 17 puntos clave, y tres valores por keypoint (X, y
y score).

4. Se recorre la lista de imagenes a procesar y para cada una:

a.

b.

Se obtiene un bitmap de la imagen en formato estandar.

La imagen se carga en el objeto Tensorlmage.

Se aplica un proceso de preprocesamiento a la imagen (cambio de tamafio)
para adaptarla a la estructura de entrada del modelo (imagenes de 192x192 o

256%256 pixeles segtn si el modelo es de tipo Lightning o Thunder).

Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de
TensorFlow Lite.

Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)
mediante el método getlLastNativelnferenceDurationNanoseconds() del interprete.

Se recuperan las dimensiones originales de la imagen, con el fin de normalizar
las coordenadas estimadas y adaptarlas al tamafio real de la imagen.

Se accede al array de salida del modelo, recorriendo los 17 keypoints estimados
y almacenando sus coordenadas normalizadas al tamafo real de la imagen.

Se almacenan los resultados de la inferencia de la imagen en estructuras de datos
que contienen las predicciones de keypoints y los tiempos de inferencia.

5. Se procede al cierre del modelo y liberacion de los recursos asociados.

6. Se escribe en disco la informacion de las estructuras de datos con las predicciones de
keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente
(apartado “6.1.1. Analisis y disefio””) para el posterior andlisis de precision y
rendimiento.

96

Clase BlazePose (subclase de TensorFlowLiteModel)

Subclase encargada de gestionar los modelos BlazePose (Lite, Full y Heavy). A
diferencia de las otras clases wrapper de los otros modelos esta clase realiza un mapeo de los
17 puntos que queremos estudiar, coincidentes con el resto de modelos y con el estandar del
dataset COCO, sobre los 33 que estima el modelo para extraer unicamente estos 17 puntos del
resultado de la inferencia (Tabla 12 “Equivalencia puntos BlazePose”). Sus funciones son
andlogas a las de la clase Movenet:

1. Inicializacion del modelo. Se instancia el modelo BlazePose en memoria mediante el
intérprete oficial (InterpreterApi).

2. Se crea un objeto Tensorlmage, contenedor de la imagen de entrada, de tipo comtn para
los modelos de la familia (FLOAT32).

3. Seinstancia un TensorBuffer con la forma de salida esperada del modelo (1, 195), cuyos
primeros 165 valores (33%5) representan los keypoints inferidos en la imagen con 5
atributos (x, y, z, visibility, presence).

4. Serecorre la lista de imagenes a procesar y para cada una:

a.

b.

Se obtiene un bitmap de la imagen en formato estandar.
La imagen se carga en el objeto Tensorlmage.

Se aplica un proceso de preprocesamiento a la imagen (cambio de tamafio)
para adaptarla a la estructura de entrada del modelo (iméagenes de 256%256
pixeles), una normalizacion y una conversion del tipo de datos a FLOAT32.

Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de
TensorFlow Lite.

Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)
mediante el método getLastNativelnferenceDurationNanoseconds() del interprete.

Se calcula los ratios de ancho y alto con respecto a la imagen original para la
normalizacion de las coordenadas de los keypoints.

Se accede al array de salida de landmarks del modelo que contiene las
predicciones de los 33 keypoints estimados y utilizando la estructura de mapeo
de la clase (ver apartado “3.1.3. BlazePose (Google MediaPipe)”) se extraen
unicamente las correspondientes a los 17 keypoints que estamos estudiando,
almacenando sus coordenadas normalizadas al tamafio real de la imagen.

Se almacenan los resultados de la inferencia de la imagen en estructuras de datos
que contienen las predicciones de keypoints y los tiempos de inferencia.

5. Se procede al cierre del modelo y liberacion de los recursos asociados.

6. Se escribe en disco la informacion de las estructuras de datos con las predicciones de

97

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente
(apartado “6.1.1. Analisis y disefio”) para el posterior andlisis de precision y
rendimiento.

Clase Yolo (subclase de TensorFlowLiteModel)

Subclase orientada a gestion de los modelos YOLOv8-Pose (Nano, Small, Medium)

exportados a TensorFlow Lite. Sus funciones son analogas a las del resto de wrappers de
modelos adaptadas a las caracteristicas del modelo YOLO:

1.

Inicializacion del modelo. Se instancia el modelo Yolo en memoria mediante el
intérprete oficial (InterpreterApi).

Se crea un objeto Tensorlmage, contenedor de la imagen de entrada, de tipo comun para
los modelos de la familia (FLOAT32).

Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 57), que
representa una imagen procesada, con maximo una detecciéon de personas (como
habiamos especificado en la exportacion del modelo a formato TFLite, ver apartado
“5.2.2. Modelos que requieren conversion de formato™) y 57 puntos clave que definen
cuatro puntos de bounding boxes, objectness (confianza), clase y los keypoints inferidos
en formato (X, y, score).

4. Se recorre la lista de imagenes a procesar y para cada una:

a. Se obtiene un bitmap de la imagen en formato estandar.

b. Laimagen se carga en el objeto TensorImage.

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamafio)
para adaptarla a la estructura de entrada del modelo (imégenes de 320%320

pixeles) y una normalizacion.

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de
TensorFlow Lite.

e. Seregistra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)
mediante el método getLastNativelnferenceDurationNanoseconds() del interprete.

f. Se recuperan las dimensiones originales de la imagen, con el fin de normalizar
las coordenadas estimadas y adaptarlas al tamafio real de la imagen.

g. Se accede al array de salida del modelo, recorriendo en el array de salida los 17
keypoints estimados y almacenando sus coordenadas normalizadas al tamafio

real de la imagen.

h. Sealmacenan los resultados de la inferencia de la imagen en estructuras de datos
que contienen las predicciones de keypoints y los tiempos de inferencia.

98

5. Se procede al cierre del modelo y liberacion de los recursos asociados.

6. Se escribe en disco la informacion de las estructuras de datos con las predicciones de
keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente
(apartado “6.1.1. Analisis y disefio””) para el posterior analisis de precision y
rendimiento.

Relacion entre las clases

MainActivity instancia y gestiona objetos de tipo Movenet, BlazePose y Yolo, los cuales
heredan de TensorFlowLiteModel. Utilizando polimorfismo, MainActivity invoca métodos
comunes (run()) definidos en la clase base TensorFlowLiteModel.

De esta manera, la arquitectura resulta modular, extensible y mantenible, permitiendo
incorporar nuevos modelos en el futuro simplemente creando nuevas subclases de
TensorFlowLiteModel e implementando las caracteristicas propias de preprocesamiento y
postprocesamiento de cada modelo.

Consideracion sobre scoring/visibility/presence

Las predicciones que estima cada modelo se componen basicamente de coordenadas (x,
y) mas valores de confianza del modelo en la prediccién que son heterogéneos por cada modelo
como vimos en el apartado “6.1.1. Andlisis y disefio” en “Anélisis de entradas y salidas de los
modelos”, unos modelos calculan un score mientras que otros calculan visibility y presence.
Como estos valores no tienen influencia posterior en el calculo de la precision, durante la
implementacién se ha incluido un valor fijo para todos ellos.

6.3. Generacion y gestion de ficheros de salida

En la fase de analisis (apartado “6.1.1. Analisis y disefio” dentro de “Diseio de
estructuras de datos”) se definen los formatos de los ficheros de salida con las predicciones y
tiempos de inferencia de la aplicacion.

La implementacion de la gestion de estos ficheros de salida estd integrada en la
superclase abstracta que encapsula las operaciones comunes a todos los modelos, siendo ésta la
que ofrece las labores de almacenamiento temporal de los datos de inferencia y tiempos en
estructuras de datos durante la ejecucion del test para posteriormente al finalizar la inferencia
de todo el dataset por parte del modelo realizar el volcado de todos los datos en los ficheros de
salida del modelo. Estas estructuras temporales son:

- imagePredictionsMap. Estructura para almacenar las predicciones de keypoints, es
un HashMap con una cadena como clave (nombre de la imagen de inferencia) y un
array de valores float como valor que almacena secuencialmente los keypoints
estimados por el modelo para esa imagen.

- modelPerformanceMap. Estructura para almacenar los tiempos de inferencia del
modelo por cada imagen. Es otro HashMap con una cadena como clave (nombre de

99

la imagen de inferencia) y otra cadena como valor donde se almacena en formato
texto los tiempos de inferencia del modelo para la imagen.

Al finalizar la inferencia por parte del modelo de todo el dataset se realiza el proceso de
almacenamiento en disco de los resultados almacenados temporalmente en estas estructuras en
los ficheros descritos en el apartado “6.1.1. Andlisis y disefio”, manteniendo una nomenclatura
que permite identificar a que modelo pertenece cada fichero de resultados. En total se generan
dos ficheros por modelo en el estudio (el fichero JSON de predicciones y el fichero de texto
con formato CSV con los tiempos de inferencia) lo que al tratarse de 12 modelos hace un total
de 24 ficheros de salida que al finalizar el proceso global son incluidos en un ZIP para su
exportacion y posterior analisis.

6.4. Desarrollo de la interfaz

La estructura principal de la interfaz estd definida en el archivo activity main.xml,
generado y editado desde Android Studio, empleando el editor de disefio integrado. Este archivo
XML constituye la descripcion declarativa de los elementos graficos que conforman la pantalla
principal de la aplicacion, asi como de su disposicion, estilos y comportamiento basico.

En primer lugar, incorpora una lista estitica en la que aparecen todos los modelos
incluidos en el estudio, es decir, los distintos algoritmos de estimacion de posturas previamente
integrados en la aplicacion (todas las versiones de MoveNet, BlazePose y YOLO-Pose). Esta
lista constituye el niicleo visual de la interfaz (Imagen 20), ya que sobre ella el usuario identifica
qué modelos van a ser evaluados y, ademads, recibe informacion dinamica sobre el estado de
cada uno durante la ejecucion del test.

La interaccidn se organiza en torno a tres botones principales:

- Boton "EJECUTAR TEST". Inicia el proceso de inferencia de cada modelo sobre el
conjunto de imagenes seleccionado como dataset de testeo. Durante este proceso, la
lista de modelos se actualiza dinamicamente para reflejar el progreso, los modelos
en ejecucion cambian de color a amarillo, lo que comunica al usuario que el
algoritmo estd siendo evaluado y una vez completada la ejecucion
satisfactoriamente, el nombre del modelo pasa a verde, indicando la finalizacién
correcta. En caso de error o fallo durante la inferencia, el modelo se marca en rojo,
proporcionando una sefial inmediata del problema ocurrido.

- Boton "COMPARTIR RESULTADOS". Permanece inicialmente inactivo
(deshabilitado), activandose inicamente al concluir la ejecucion completa del test
sobre todos los modelos. Su funcion es facilitar la exportacion de resultados de
manera intuitiva, generando un fichero comprimido ZIP que contiene tanto los
archivos de predicciones (keypoints estimados) como los registros de tiempos de
inferencia por imagen. A través de la integracion con los mecanismos estandar de
Android (Intents), este boton permite enviar el fichero ZIP al usuario mediante
diversos canales disponibles en el dispositivo, como correo electronico, aplicaciones
de mensajeria o almacenamiento en la nube.

- Boton "SALIR": proporciona un mecanismo directo para cerrar la aplicacion,

100

finalizando la sesioén de uso de manera controlada y limpia.

La logica de actualizacion dindmica de la lista de modelos y el cambio de colores
durante la ejecucion hace que la interfaz no solo cumpla una funcién estética, sino también de
monitorizacidon en tiempo real de la evaluacion de los modelos.

Estudio de modelos de estimacién de poses

4
o b
Yo

£

o

&

Universidad deValladolid

Modelos incluidos en el test

Movenet lightning 8
) 1et lightning 16

net lightning 32

Al pulsar EJECUTAR TEST se ejecutaran los modelos para la estimacion de poses sobre
un dataset de 316 imagenes y se generaran ficheros de salida con los resultados de
precision y rendimiento de cada modelo en este dispositivo

EJECUTAR TEST

COMPARTIR RESULTADOS

SALIR

Imagen 20. Interfaz de la aplicacion Android (Samsung Galaxy Tab A9)

6.5. Pruebas y correcciones

Se realizan pruebas unitarias centradas en la correcta implementacion de cada clase de
modelo integrada en la aplicacion. Cada modelo, ya sea MoveNet, BlazePose o0 YOLO-Pose,
fue evaluado de manera independiente para verificar que la lectura de imagenes desde el dataset
seleccionado se realizaba correctamente, el preprocesamiento de las imagenes se ajustaba a los
requisitos de entrada del modelo, incluyendo la normalizacién y el dimensionamiento de los
tensores de entrada, la ejecucion de la inferencia generaba salidas consistentes con la estructura
esperada de keypoints y probabilidades de visibilidad y los tiempos de inferencia por imagen
se recogian de manera precisa y se almacenaban correctamente en los ficheros de salida.

101

Posteriormente, se llevan a cabo pruebas de integracion, centradas en la interaccion
entre los distintos componentes de la aplicacion, la clase principal de control (MainActivity),
las clases de los modelos y los mecanismos de almacenamiento de resultados. Durante estas
pruebas se evaltia que la ejecucion secuencial de los modelos sobre el dataset completo se
realiza sin interrupciones, la interfaz grafica refleja correctamente el estado de cada modelo
mediante los cambios de color en la lista (amarillo, verde y rojo) durante la ejecucion y los
botones de la interfaz funcionaran segin lo esperado, habilitando la opcién de compartir
resultados inicamente al finalizar todas las inferencias y permitiendo la salida de la aplicacion
sin bloqueos o pérdidas de datos.

Durante la fase de pruebas se identificaron diversos errores relacionados con la
interpretacion de los datos de salida de los modelos, un aspecto critico y complejo debido a la
heterogeneidad de las salidas de cada modelo. Cada familia de modelos, ya sea MoveNet,
BlazePose o0 YOLO-Pose, genera resultados en formatos distintos, con estructuras de tensores,
dimensiones y significados de cada valor especificos, lo que dificulto la correcta normalizacion
y almacenamiento de los keypoints y sus probabilidades de visibilidad.

Los errores detectados incluyen:

- Confusion en los indices de los keypoints, especialmente en BlazePose, donde la
correspondencia entre la posicion del tensor y la articulacion real requiere un mapeo
explicito.

- Interpretacion errénea de los valores de visibilidad o confianza, lo que generaba
la inclusion de keypoints poco fiables en los ficheros de salida.

La correccion de estos errores implicd una labor cuidadosa de analisis de la
documentacion oficial de cada modelo, pruebas unitarias de cada salida. Durante el proceso de
prueba ademas se detectaron y corrigieron los siguientes problemas menores:

- Errores de compatibilidad de tipos de datos en la carga de imagenes y en la ejecucion
de modelos, solucionados mediante ajustes en las clases de TensorFlow Lite,
incluyendo el uso adecuado de Tensorlmage y TensorBuffer.

- Fallos de sincronizacion en la interfaz, que impedian la actualizacion inmediata de
los colores de la lista de modelos, solucionadas mediante la ejecucion de la accion
especificada en el subproceso de la interfaz de usuario que garantiza la actualizacion
en el hilo principal de la interfaz.

- Problemas en la generacion de los ficheros de resultados y del fichero ZIP de
general, que fueron corregidos configurando la carpeta Documents como
“external_documents” en fichero file paths.xml.

Finalmente se realizan pruebas de aceptacion, ejecutando la aplicacidn completa que
permiten validar la aplicacion, procesar todo el dataset correctamente, ejecutar todos los
modelos de manera fiable, generar y almacenar los resultados de forma estructurada y accesible,
proporcionar al usuario retroalimentacion visual clara sobre el estado de cada modelo y
compartir los resultados a través de los canales de Android sin pérdida de informacion.

102

19:27 mié, 20 ago

Estudio de modelos de estimacién de poses

Universidad deValladolid
Modelos incluides en el test

Movenet lightning &
Movenet lightning 16
Movenet lightn

Movenet 1

gz
unde
der 16
under 32

Movenet

Estudio de modelos de estimacién de poses

los resutados de
aplicaciones antes de ejecutar el test,

todas las

¥
Volog-pase

Este test puede tardar entre 15y 30 minutos dependiendo del
dispasitivo gejecutar el test ahora?

un datsset de 316 imagenes y se generarin ficheros de salida con los resultados de.
precision y rendimiznto de cada madels en este dispasitive.

CAMNCELAR ACEPTAR
EJECUTAR TEST

COMPART IR RESULTADOS

SALIR

Imagen 21. Imagenes de la

Estudio de modelos de
Estudio de modelos de estimacidn de poses

Universidad deValladolid

Universidad deValladolid Modelos incluidos en el test

Modelos incluidos en el test

A1 pulssr EJECUTAR TEST se ejecutarn 1o5 modelos para 1 estimacion de poses 3obre un datast de 316 imdganes y 5o generarin fcheros de sallda con los resultados de
un dataset de 316 imagenes y. ficheros los ” ¥
precision y rendimiento de cada modelo en este dispositivo.

EJECUTAR TEST
COMPARTIR RESULTADOS

SALIR

1 elemento

1 TeM_PoseTestzin

& B M

Diive

nenrive

® 0

Quicksnice Bluetootn

Elacaa Wi, Gl Ouneak

1] (8] < 1 (@] <

Al pulsar EJECUTAR TEST se ejecutarén los modelos para la estimacion de poses sobre

Al puilsar EJECUTAR TEST se ejecutarén los modelos para la estimacin de poses sobre

Estudio de modelos de estimacién de poses

Universidad deValladolid

Modelos incluidos en el test

Blazero:
Yalos-pose nano
Yalod-pose s
Yalog-pose m

Al pulsar EJECUTAR TEST se efecutardn los modelos para la estimacidn de poses sobre
un dataset de 316 imagenes ¥ se generaran ficheros de salida con Ios resultados de
precision i

EJECUTAR TEST

COMPARTIR RESULTADOS

SALIR

interfaz con secuencia de inicio y avance del proceso

19:41 mié, 20 ago

Estudio de modelos de estimacion de poses

4Salir de la aplicacién?

CANCELAR AGEPTAR

¢

i

Imagen 22. Imagenes de la interfaz con finalizacion del proceso, compartir vesultados y salida de la aplicacion

103

7. FASE 3: EVALUACION Y ANALISIS DE RESULTADOS

La evaluacion de los resultados se realiza de forma dual, primero enfocada en la
precision obtenida por las predicciones de los modelos estudiados con el dataset seleccionado
y después analizando los tiempos de inferencia de esas mismas predicciones.

7.1. Resultados obtenidos de precision

La obtencion de las medidas de precision se realiza mediante el uso de la API oficial de
COCO y de scripts desarrollados en Python ejecutados en un entorno Jupyter Notebook. La API
de COCO permite evaluar los keypoints estimados por cada modelo comparandolos con las
anotaciones de referencia (ground truth) disponibles en los ficheros de anotaciones del dataset.
Para ello, se utilizan métricas consolidadas en la comunidad de visién por computador, tales
como el Average Precision (AP) y el Average Recall (AR) bajo distintos umbrales de
coincidencia. Estos calculos requieren la generacion previa de ficheros de predicciones por cada
modelo como los obtenidos en este estudio, los cuales incluyen las coordenadas estimadas de
los keypoints y sus valores de confianza, que posteriormente son procesados por la API para
determinar el grado de concordancia con las anotaciones reales del dataset.

En este apartado se presentan los resultados obtenidos en la evaluacion de precision de
los modelos de estimacion de poses humanas estudiados, utilizando como métrica principal la
Average Precision definida en el protocolo de evaluacion de COCO. Para realizar esta
evaluacion se han tomado de los ficheros ZIP de resultados exportados de la ejecucion de los
tres dispositivos de prueba los ficheros relativos a precisiones de cada modelo (formato
JSON).

Como ya hemos visto, se han evaluado un total de 12 modelos ya descritos, MoveNet
(Lightning y Thunder, en resoluciones 8, 16 y 32), BlazePose (Lite, Full y Heavy) y YOLOvVS-
Pose (Nano, Small y Medium), y se ha utilizado un dataset general de 316 iméagenes extraidas
del dataset COCO (filtradas con las condiciones ya descritas). Sobre este dataset, como se
describio en al apartado “3.3.1. Subconjuntos del dataset de testeo” de la metodologia,
trabajamos con tres subconjuntos de imagenes para poder evaluar la influencia de las
caracteristicas de las imagenes en las precisiones obtenidas de los modelos:

- Dataset general. Contiene la totalidad de las 316 imagenes seleccionadas con las
que se ha ejecutado el test a los modelos.

- Dataset de imagenes adecuadas: formado por un subconjunto de 65 imagenes del
dataset general (316 imagenes) donde la persona aparece centrada y a distancia
cercana (condiciones Optimas para estimacion de posturas).

- Dataset de imagenes no adecuadas: formado por un subconjunto de 61 imagenes
del dataset general (316 imagenes) donde la persona aparece descentrada de la
imagen o de un tamafio reducido, lo que implica lejania (condiciones adversas para
estimacion de posturas).

Los procesos de filtrado de imagenes adecuadas/no adecuadas, obtencion de las medidas

104

de precision, la evaluacion de los resultados se apoyan en librerias especializadas de Python.

Librerias necesarias

- pycocotools.coco.COCO. La clase COCO constituye la API oficial del dataset
COCO. Su finalidad es entre otras validar resultados de inferencia mediante la

comparacion con las anotaciones de referencia, calculando métricas estaindar como
AP (Average Precision) y AR (Average Recall).

- pycocotools.cocoeval. COCOQOeval. Es la clase principal de evaluacion de COCO
APIL. Permite comparar las predicciones generadas por un modelo (deteccion,
segmentacion o keypoints) contra las anotaciones reales del dataset COCO,
obteniendo métricas como AP (Average Precision) o AR (Average Recall) bajo
distintos umbrales de coincidencia.

- json. Sirve para leer y escribir ficheros en formato JSON, que es el estandar utilizado
por COCO para almacenar anotaciones y también el formato en que suelen
exportarse las predicciones de los modelos.

Dataset de imagenes adecuadas

Los criterios seleccionados e implementados en el script de seleccion de este
subconjunto son que las imagenes mas adecuadas para estimacion de posturas son las que tienen
una persona cuya caja (bounding box) ocupa un minimo del 25% del ancho de la imagen o un
75% del alto de la imagen (implica que la persona puede estar cerca en el plano) y ademas
el centro de la caja de la persona no estd mas alejado de un 15% del centro de la imagen (implica
que la persona esta centrada en la imagen).

Dataset de imagenes no adecuadas

A su vez los criterios seleccionados e implementados en el script de seleccion de este
subconjunto son que las imagenes no adecuadas para estimacion de posturas son las que tienen
una persona cuya caja (bounding box) ocupa menos del 25% del ancho o del alto de la imagen
(implica que la persona puede no estar cerca en el plano) o el centro de la caja de la persona
esta mas alejado de un 25% del centro de la imagen (implica que la persona no esta centrada
en la imagen).

7.1.1. Resultados obtenidos de precision AP (Average Precision)

A continuacion se presentan los resultados obtenidos de AP para cada modelo en el
dispositivo Samsung Galaxy M32 con los tres subconjuntos de datos mediante graficas de
barras comparativas que permiten visualizar la precision relativa de cada variante y familia con
cada dataset, ordenadas por dataset de menor a mayor precision obtenida.

105

Grafica con los resultados de precision (AP) para el modelo MoveNet Lightning 8.

0.50:0.95]

AP [loU

0,9
0,8
0,7
0,6
0,5
0,4
03
0,2

0,1

0,656

0,293

0,055

Dataset de imagenes

No adecuadas General ®Adecuadas

Imagen 23. AP por dataset del modelo MoveNet Lightning 8

Gréfica con los resultados de precision (AP) para el modelo MoveNet Lightning 16.

0.50:0.95]

AP [loU

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1

0,719

0,348

0,084

Dataset de imagenes

No adecuadas General MW Adecuadas

Imagen 24. AP por dataset del modelo MoveNet Lightning 16

106

Grafica con los resultados de precision (AP) para el modelo MoveNet Lightning 32.

0,9
038 0,721
0,7
0,6

0,5

0.50:0.95]

0,4 0,346

0,3

AP [loU

0,2
0,095
0,1

Dataset de imagenes

No adecuadas General ®Adecuadas

Imagen 25. AP por dataset del modelo MoveNet Lightning 32

Grafica con los resultados de precision (AP) para el modelo MoveNet Thunder 8.

0,9
0,788

0,8

0,7

0,6

0,5 0,456

0.50:0.95]

0,4

0,3

AP [loU

0,2 0,14
0,1

Dataset de imagenes

No adecuadas General MW Adecuadas

Imagen 26. AP por dataset del modelo MoveNet Thunder 8

107

Grafica con los resultados de precision (AP) para el modelo MoveNet Thunder 16.

0.9 0,824
08
0,7
0,6

0,51
0,5

0.50:0.95]

0,4

0,3

AP [loU

0,2
0,2

0,1

Dataset de imagenes

No adecuadas General ®Adecuadas

Imagen 27. AP por dataset del modelo MoveNet Thunder 16

Grafica con los resultados de precision (AP) para el modelo MoveNet Thunder 32.

0,9 0,842
0,8
0,7
0,6

0,498
0,5

0.50:0.95]

0,4

0,3

AP [loU

0,199
0,2

0,1

Dataset de imagenes

No adecuadas General MW Adecuadas

Imagen 28. AP por dataset del modelo MoveNet Thunder 32

108

Grafica con los resultados de precision (AP) para el modelo BlazePose Lite.

=0.50:0.95]

AP [loU

o
w

o
©

e o0 o 9o
&) N

o
~

o
N)

o

)]

=

o

0,349

0,101

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 29. AP por dataset del modelo BlazePose Lite

Grafica con los resultados de precision (AP) para el modelo BlazePose Full.

0.50:0.95]

AP [loU

o

o

o

o

(=}

o

o

o

(=)

(o]

(o]

~

[&)]

w

S

w

N

=

o

0,441

0,136

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 30. AP por dataset del modelo BlazePose Full

109

Grafica con los resultados de precision (AP) para el modelo BlazePose Heavy.

e o o
N o ©

o
o

0,487

0.50:0.95]
o
w

o
~

AP [loU
o
w

0,176

o
N)

o
=

o

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 31. AP por dataset del modelo BlazePose Heavy

Grafica con los resultados de precision (AP) para el modelo Yolo8-pose Nano.

o
©

o
00

0,696

o
~

o
o

0,472

0.50:0.95]
o
(2]

o
~

AP [loU
o
w

0,218

o
[N)

o
=

o

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 32. AP por dataset del modelo Yolo§-pose Nano

110

Grafica con los resultados de precision (AP) para el modelo Yolo8-pose Small.

=0.50:0.95]

AP [loU

o
w

o
©

e o0 o 9o
&) N

o
~

o
N)

o

)]

=

o

0,822

0,628

0,392

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 33. AP por dataset del modelo Yolo8-pose Small

Grafica con los resultados de precision (AP) para el modelo Yolo8-pose Medium.

0.50:0.95]

AP [loU

o

o

o

o

(=}

o

o

o

(=)

(o]

(o]

~

[&)]

w

S

w

N

=

o

0,839

0,686

0,495

Dataset de imagenes

No adecuadas General W Adecuadas

Imagen 34. AP por dataset del modelo Yolo8-pose Medium

111

0.50:0.95]

AP [loU

Grafica comparativa de precision (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imagenes inadecuadas.

0,900
0,800
0,700
0,600
0,500
0,400
0,300
0,200 ' ﬂ ' ﬂ A A A A7Lite
0,100 . K ﬂ ﬂ l -_— e . M32
0,000 < A A A9
' Movenet Movenet Movenet Movenet = Movenet @ Movenet BlazePose | BlazePose @ BlazePose Yolo8 Yolo8 Yolo8

Lightning = Lightning = Lightning | Thunder8 @ Thunder Thunder Lite Full Heavy Nano Small Medium

8 16 32 16 32
A9 0,053 0,084 0,095 0,138 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495
M32 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495
A7Lite 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495
Modelo

Imagen 35. Comparativa precision/modelos por dispositivo con imdgenes inadecuadas

112

Dispositivo

0.50:0.95]

AP [loU

Grafica comparativa de precision (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset general de imagenes.

0,900
0,800
0,700
0,600
0,500
0,400
0,300
0,200
0,100
0,000

A9
M32
A7lite

Movenet
Lightning
8
0,296
0,293

0,296

Movenet
Lightning
16
0,348
0,348

0,348

Movenet
Lightning
32
0,346
0,346

0,346

A9
Movenet = Movenet = Movenet BlazePose BlazePose @ BlazePose Yolo8 Yolo8 Yolo8
Thunder 8 = Thunder Thunder Lite Full Heavy Nano Small Medium
16 32
0,451 0,509 0,498 0,101 0,136 0,176 0,473 0,628 0,686
0,456 0,510 0,498 0,101 0,136 0,176 0,472 0,628 0,686
0,456 0,509 0,498 0,101 0,136 0,176 0,473 0,628 0,686
Modelo

Imagen 36. Comparativa precision/modelos por dispositivo con dataset general

113

A7lite
M32

Dispositivo

0.50:0.95]

AP [loU

Grafica comparativa de precision (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imagenes adecuadas.

0,900
0,800
0,700
0,600
0,500
0,400
0,300
0,200 A7Lite
0,100 M32
A9

0,000

Movenet Movenet Movenet Movenet Movenet Movenet @ BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8

Lightning = Lightning = Lightning = Thunder 8 @ Thunder Thunder Lite Full Heavy Nano Small Medium

8 16 32 16 32
A9 0,659 0,719 0,721 0,789 0,824 0,842 0,349 0,441 0,485 0,696 0,822 0,839
M32 0,656 0,719 0,721 0,788 0,824 0,842 0,349 0,441 0,487 0,696 0,822 0,839
A7Lite 0,656 0,719 0,721 0,788 0,824 0,842 0,349 0,441 0,487 0,696 0,822 0,839
Modelo

Imagen 37. Comparativa precision/modelos por dispositivo con imdagenes adecuadas

114

Dispositivo

7.1.2. Andlisis resultados precision

En cuanto al desempefio comparativo entre familias de modelos, se observa que los
modelos de la familia YOLO son los que alcanzan una mejor precision. Estos modelos
destacan por su robustez frente a variaciones en la posicion de la persona y por la capacidad de
mantener niveles de desempeno relativamente altos incluso cuando las condiciones de las
imagenes no son optimas (Imagen 35). En el extremo opuesto, los modelos de la familia
BlazePose presentan el peor comportamiento, evidenciando mayores dificultades en la
identificacion de keypoints en escenarios desfavorables y ofreciendo resultados inferiores de
manera consistente en todos los subconjuntos evaluados.

El pobre desempeio de los modelos de la familia BlazePose sobre todo con imagenes
menos adecuadas (obtienen un 0 de precision) (Imagen 35) puede ser debido a que estos estén
disefiados para ser utilizados junto con otras herramientas de preprocesado previo de las
imagenes (identificacion de la persona en la imagen, crop de 4rea y centrado, etc,..) ya que
como su propia documentacion indica quedan fuera de su alcance “Personas demasiado alejadas
de la camara (p. ej., a mas de 4 metros)” o imagenes donde “La cabeza no es visible”.

Un hallazgo especialmente interesante se observa en los modelos de la familia
MoveNet. Si bien su desempefio general puede considerarse intermedio, son los modelos que
muestran una mayor sensibilidad a la idoneidad de las imagenes empleadas. Esto se traduce
en una marcada diferencia de precision entre los subconjuntos adecuados e inadecuados, los
modelos MoveNet mejoran significativamente cuando se trabaja con imdgenes donde la
persona estd centrada y correctamente representada, pero degradan su precision de forma
acusada en presencia de condiciones adversas. Este comportamiento pone de manifiesto que,
aunque la arquitectura MoveNet esta optimizada para dispositivos modviles y entornos de
inferencia en tiempo real, su desempeno se ve afectado por la calidad de entrada de los datos
visuales.

En relacion con el entorno de ejecucidn, los experimentos confirman algo logico y
esperado, que la precision obtenida por los modelos no varia en funcion del dispositivo
(Imagen 35, Imagen 36 e Imagen 37) en el que se lleva a cabo la inferencia. Este resultado era
previsible, dado que la precision estd determinada por la arquitectura del modelo y el algoritmo
de inferencia, y no por las caracteristicas del hardware en el que se ejecuta. El dispositivo podria
afectar de forma clara al rendimiento temporal (tiempo de inferencia por imagen), pero no a la
exactitud de los keypoints detectados.

Resumen

En las graficas de resultados se observa a simple vista que si bien como era de esperar
la precision es independiente del dispositivo en que se ejecute, ésta si estad altamente
influenciada por las condiciones visuales de las imagenes de entrada.

Los modelos de mayor complejidad (YOLOv8-Pose versiones small y medium) ofrecen
una mejor generalizacion, mientras que los modelos ligeros sufren caidas significativas de
precision en escenarios adversos, mas acentuadas en los modelos de la familia BlazePose que
en los de la familia MoveNet.

115

7.2. Resultados obtenidos de rendimiento

En este apartado se presentan los resultados de rendimiento (en tiempos de
inferencia) de cada modelo medido en tres dispositivos representativos de gamas medias y
bajas del mercado, todos con sistema operativo Android y arquitectura ARM y con las
caracteristicas que vimos en el apartado “5.3.1. Listado de dispositivos de prueba”:

- Samsung Galaxy Tab A7 Lite (Tablet)
Procesador: MediaTek Helio P22T, Memoria: 3GB, Version de android: 14

- Samsung Galaxy M32 (Movil)
Procesador: MediaTek Helio G80, Memoria: 6GB, Version de android: 13

- Samsung Galaxy Tab A9 (Tablet)
Procesador: MediaTek Helio G99, Memoria: 4GB, Version de android: 15

Para realizar esta evaluacion se han tomado de los ficheros ZIP de resultados exportados
de la ejecucion de los tres dispositivos de prueba los ficheros relativos a tiempos de inferencia
de cada modelo (ficheros de texto con formato CSV) por lo que se ha utilizado los tiempos de
inferencia de cada modelo para el dataset general de 316 imagenes extraidas del dataset
COCO (filtradas con las condiciones ya descritas). Sobre los tiempos obtenidos por cada
modelo para cada imagen se calculan los tiempos medios de inferencia por cada modelo y los
tiempos totales del proceso completo por modelo y en base a ellos se elaboran las graficas de
este apartado.

El objetivo es determinar la viabilidad real de cada modelo para ser utilizado en
dispositivos moéviles Android, teniendo en cuenta las limitaciones de CPU, GPU y memoria de
cada terminal.

7.2.1. Graficas comparativas de tiempos de estimacion

En este apartado se presentan las graficas del rendimiento en tiempo de ejecucion,
centrado en la latencia de inferencia o tiempo medio de procesamiento por imagen
(expresado en milisegundos). Para obtener estos datos se utiliza la medicion de la operacion de
inferencia que hace el propio interprete de la API de TensorFlow Lite mediante el método
getLastNativelnferenceDurationNanoseconds() (como vimos en el apartado “6.2.3. Implementacion
de las clases de la aplicacion™) y que hemos recopilado en los ficheros de salida relativos a
tiempos de inferencia.

En las siguientes graficas comparativas para una mejor visualizacion se han querido
agrupar por colores las familias a las que pertenece cada modelo:

- MoveNet en
- BlazePose en
- Yolo8-pose en gris.

116

Grafica con resultados de rendimiento para la tablet Samsung Galaxy Tab A7 Lite.

Tiempo medio de inferencia por imagen por modelo (milisegundos)

4.000,00 3.697,21
3.500,00
3.000,00
w 2.500,00
[=]
e
[=4
§° 2.000,00
§
1.500,00 1.251,36
1.000,00 905,98
479,73 478,59
500,00 253,68 249,60 352,46
66,24 10045 101,88 . . 138,86
0,00 — | |
Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8
Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
Modelo
Imagen 38. Tiempo medio inferencia Samsung Galaxy Tab A7 Lite
Gréfica con resultados de rendimiento para el teléfono movil Samsung Galaxy M32.
Tiempo medio de inferencia por imagen por modelo (milisegundos)
4.000,00
3.500,00
3.000,00
2.599,96
w 2.500,00
[=]
-]
[=4
§° 2.000,00
= 1.500,00
1.000,00 876,97 852,96
500,00 260,55 286,69 oqc; 277,86 337,10
130,91 ’
3639 5875 62,15)
0,00 ||
Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8
Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
Modelo

Imagen 39. Tiempo medio inferencia Samsung Galaxy M32

117

4.000,00

3.500,00

3.000,00

2.500,00

2.000,00

Milisegundos

1.500,00

1.000,00

500,00

0,00

Grafica con resultados de rendimiento para la tablet Samsung Galaxy Tab A9.

14,90

22,72

Tiempo medio de inferencia por imagen por modelo (milisegundos)

22,57 4464 9480 9537 554 42,06
[] []

Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose

Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full

8

16

32 16 32
Modelo

Imagen 40. Tiempo medio inferencia Samsung Galaxy Tab A9

118

166,97

Heavy

96,25

Yolo8
Nano

581,62

Yolo8
Small

1.170,97

Yolo8
Medium

Comparativa de tiempo MEDIO de inferencia (en milisegundos) por imagen del dataset general por modelo en diferentes dispositivos.

Dispositivo

4.000,00
3.500,00
3.000,00
S
S 2.500,00
S
8?2‘000’00
2
'i 1.500,00
1.000,00
A7Lite
500,00 M32
0,00
Movenet = Movenet | Movenet = Movenet @ Movenet | Movenet BlazePose BlazePose | BlazePose Yolo8 Yolo8 Yolo8
Lightning = Lightning = Lightning Thunder8 @ Thunder | Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
A9 14,90 22,72 22,57 44,64 94,80 95,37 26,54 42,06 166,97 96,25 581,62 1.170,97
M32 36,39 58,75 62,15 130,91 260,55 286,69 189,67 277,86 876,97 337,10 852,96 2.599,96
A7Lite 66,24 100,45 101,88 253,68 479,73 478,59 138,86 249,60 905,98 352,46 1.251,36 3.697,21
Modelo

Imagen 41. Comparativa tiempos medio inferencia por modelo por dispositivo

119

Segundos

Aunque las siguientes graficas pudieran considerarse en cierto modo redundantes
respecto a los andlisis anteriores centrados en los tiempos medios de inferencia por imagen, se
ha considerado oportuno incluir también la representacion de los tiempos totales de ejecucion
que requirié cada modelo al procesar el conjunto completo de iméagenes del dataset general (316
imagenes filtradas del dataset COCO, correspondientes a escenarios de una sola persona y con
al menos 15 keypoints visibles).

Esta inclusion permite complementar la perspectiva de los tiempos promedio por
imagen con una vision global del coste temporal agregado, lo que resulta especialmente
relevante en aplicaciones reales donde no se procesan imagenes de manera aislada, sino lotes
completos de datos. Por otro lado, facilita la comparacion directa entre dispositivos de prueba,
ya que los tiempos totales reflejan con claridad las diferencias de rendimiento cuando la carga
de trabajo se mantiene constante para todos los modelos.

En estas graficas se presentan los tiempos totales consumidos por cada modelo al
ejecutar la inferencia sobre el dataset completo de testeo. A diferencia de las graficas anteriores
(donde la métrica principal eran los milisegundos por imagen) en esta ocasion los valores se
expresan en segundos, dado que se trata de intervalos de tiempo considerablemente mas
elevados. Este cambio de escala responde a la necesidad de presentar resultados mas legibles y
comprensibles, evitando una precision excesiva que no aporta valor analitico en este contexto.

Grafica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A7 Lite.

Tiempo total de inferencia dataset completo por modelo (segundos)

1200 1168,318
1000
800
600
395,43
400
286,291
151,595 151,235
200 111,378
80,162 78,875
209031 31742 32,193 . . 43,879
0 — | | | |
Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8
Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
Modelo

Imagen 42. Tiempo total inferencia Samsung Galaxy Tab A7 Lite

120

Grafica con tiempo total de inferencia en el mévil Samsung Galaxy M32.

Tiempo total de inferencia dataset completo por modelo (segundos)

1200
1000
821,587
800
3
T©
S 600
[T
&
400
277,123 269,534
200
82,333 90,594 oo 87,805 106,524
41,366 ’
11,5 18,564 19,638 ’
0 |
Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8
Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
Modelo
Imagen 43. Tiempo total inferencia Samsung Galaxy M32
Grafica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A9.
Tiempo total de inferencia dataset completo por modelo (segundos)
1200
1000
800
)
T
S 600
oo
&
400 370,026
183,791
200
52,764
4708 7,178 7,132 14105 29958 30,137 g3g7 13291 30,414
0 —— ——
Movenet Movenet Movenet Movenet Movenet Movenet BlazePose BlazePose BlazePose Yolo8 Yolo8 Yolo8
Lightning Lightning Lightning Thunder 8 Thunder Thunder Lite Full Heavy Nano Small Medium
8 16 32 16 32
Modelo

Imagen 44. Tiempo total inferencia Samsung Galaxy Tab A9

121

Segundos

Grafica comparativa de tiempo TOTAL de inferencia (en segundos) del dataset general por modelo en diferentes dispositivos.

Comparativa de tiempos totales de inferencia del dataset completo por modelo (segundos) en diferentes dispositivos

1.200,00
1.000,00
800,00
600,00
400,00
200,00
0,00
Movenet Movenet
Lightning = Lightning
8 16
A9 4,71 7,18
M32 11,50 18,56
A7Lite 20,93 31,74

Movenet

Movenet
Lightning = Thunder 8
32

7,13 14,11
19,64 41,37
32,19 80,16

Movenet
Thunder
16

29,96
82,33
151,60

Movenet BlazePose BlazePose
Thunder Lite Full
32
30,14 8,39 13,29
90,59 59,94 87,81
151,24 43,88 78,88
Modelo

BlazePose Yolo8
Heavy Nano
52,76 30,41

277,12 106,52
286,29 111,38

Imagen 45. Comparativa tiempo total inferencia por modelo por dispositivo

122

Yolo8
Small

183,79
269,53
395,43

Yolo8
Medium

370,03
821,59
1.168,32

A9

A7lite
M32

Dispositivo

7.2.2. Analisis resultados rendimiento

La comparacion de los rendimientos obtenidos por los modelos en los distintos
dispositivos de prueba permite extraer varias conclusiones acerca de su comportamiento y
eficiencia. En términos generales, los resultados muestran que, aunque todos los modelos tienen
una tendencia esperada (el rendimiento de todos los modelos mejora de forma clara cuando se
ejecutan en dispositivos con mayor capacidad de procesamiento), las diferencias entre ellos son
notables y permiten establecer tres grupos en funcidon de su rendimiento relativo:

- Modelos con bajo rendimiento. Se identifican algunos modelos que,
independientemente del dispositivo utilizado, presentan tiempos de inferencia
significativamente superiores al resto (Imagen 41 e Imagen 45). Dentro de este
grupo se encuentran YOLOvV8-Pose Small, YOLOv8-Pose Medium y BlazePose
Heavy, cuya complejidad estructural los convierte en opciones poco adecuadas para
dispositivos moviles o de recursos limitados.

- Modelos con rendimiento intermedio. Un segundo grupo lo conforman aquellos
que ofrecen un rendimiento aceptable, aunque no sobresaliente. Entre ellos se
encuentran las tres versiones de la familia MoveNet Thunder, junto con BlazePose
Full y YOLOV8-Pose Nano. Estos modelos representan una solucion equilibrada,
con tiempos de inferencia moderados y una viabilidad de uso razonable en la
mayoria de escenarios, aunque sin alcanzar la agilidad de los mas eficientes.

- Modelos con alto rendimiento. Finalmente, destacan los modelos con los mejores
tiempos de inferencia y mayor consistencia en todos los dispositivos. Este grupo esta
formado por las tres versiones de MoveNet Lightning y por BlazePose Lite, que
se posicionan como las alternativas mas ligeras y rapidas, adecuadas para
aplicaciones en tiempo real y entornos de hardware limitado.

Familia MoveNet Lightning

Los modelos MoveNet Lightning se posicionan como los mas eficientes en cuanto a
velocidad de ejecucion. En todos los dispositivos utilizados para las pruebas,
independientemente de su capacidad de procesamiento, esta variante se mantuvo como la mas
rapida, confirmando su idoneidad para aplicaciones en tiempo real. Ademas, cabe resaltar que
el rendimiento de Lightning es consistente: el cambio de dispositivo apenas afecta a los tiempos
de inferencia, lo que indica una arquitectura altamente optimizada y con un coste computacional
estable. Esto los convierte en candidatos idoneos para integraciones méviles donde los recursos
de hardware son limitados.

Familia MoveNet Thunder

Los modelos MoveNet Thunder presentan un rendimiento intermedio. En particular,
la version cuantizada a int8 logra unos tiempos de inferencia competitivos, siendo la que
muestra los mejores resultados dentro de esta familia. En contraste, las versiones en floatl6 y
float32 empeoran ligeramente en rendimiento, probablemente debido al mayor coste
computacional asociado al manejo de mayor precision numérica. Aunque siguen siendo
relativamente rapidas, muestran una sensibilidad mas marcada a las limitaciones de hardware

123

que Lightning.

Familia BlazePose

Los modelos de la familia BlazePose obtienen un rendimiento medio aceptable en las
versiones Lite y Full. Sin embargo, la version Heavy dispara sus tiempos de ejecucion de
manera notable, situandose como la tercera peor opcion por detras de los modelos Small y
Medium de Yolo. Esta diferencia refleja el alto coste computacional de las arquitecturas
pesadas, que si bien pueden aportar mejoras de precision en determinados escenarios, resultan
menos practicas para su uso en dispositivos con recursos limitados.

Familia YOLO-Pose (v8)

La familia YOLO muestra una marcada disparidad en su rendimiento segun la variante,
la version Nano es la tinica que obtiene tiempos de inferencia medio aceptables, permitiendo
pensar en posibles aplicaciones moviles con ciertas restricciones. La version Small experimenta
tiempos de inferencia muy elevados, alejaindose de los valores practicos requeridos para
aplicaciones en tiempo real. La version Medium presenta tiempos de inferencia
desproporcionados en la mayoria de los dispositivos con respecto al resto de modelos. No
obstante, se observa una mejora significativa en su rendimiento cuando se ejecuta en
dispositivos con hardware mas potente, lo que evidencia que este modelo estd pensado para
entornos de mayor capacidad de computo y no para hardware movil estandar.

Resumen

El anélisis de los tiempos de inferencia evidencia diferencias claras entre las familias de
modelos evaluadas. Los modelos de la familia MoveNet Lightning destacan como los mas
rapidos y estables, siendo apenas sensibles al cambio de dispositivo, lo que los convierte en la
opcion mas adecuada para aplicaciones moviles en tiempo real. Los modelos de la familia
MoveNet Thunder alcanzan un rendimiento intermedio aceptable (en especial su version
cuantizada a int8), aunque las versiones de mayor precision numérica se ven penalizadas en
velocidad. Los modelos BlazePose Lite y Full mantienen tiempos de ejecucion razonables,
mientras que la version Heavy resulta inviable por sus elevadas necesidades de computo. En la
familia YOLO-Pose, solo la variante Nano ofrece tiempos aceptables, en cambio, Small y
sobre todo Medium presentan inferencias muy lentas, aunque su rendimiento se ve mas
beneficiado con la utilizacion de dispositivos con mejor hardware.

7.3. Comparativa de resultados

La intencion de esta comparativa no es unicamente sefialar qué modelos son mas
precisos o mas rapidos, sino identificar el equilibrio entre ambas dimensiones, lo que resulta
fundamental en aplicaciones précticas. En entornos de uso real, como dispositivos moviles, no
basta con contar con una alta exactitud en las estimaciones sino que también es necesario que
los tiempos de inferencia sean compatibles con un uso en tiempo real.

124

Tiempo medio inferencia por imagen (milisegundos)

7.3.1. AP general vs. Tiempo medio

El analisis conjunto de precision (Average Precision, AP) y tiempo de inferencia para el
dataset general de imagenes que incluye el total de las imagenes de testeo seleccionadas para el
estudio (316 imagenes), revela diferencias claras en la eficiencia relativa de las familias de
modelos estudiados. En este apartado se muestra dicha comparativa para el resultado obtenido
en el dispositivo con mas prestaciones utilizado (Samsung Galaxy A9 Tab).

Se ha elaborado una grafica de dispersion (Imagen 46) en la que cada punto representa
a uno de los modelos evaluados. En este caso, el eje horizontal muestra la precision obtenida
(AP), mientras que el eje vertical refleja los tiempos medios de inferencia por imagen. Esta
grafica permite observar como aumenta el coste computacional conforme se avanza hacia
modelos mas precisos. Los modelos situados en la parte inferior derecha de la grafica pueden
considerarse los mas ventajosos, al combinar altos niveles de precision con tiempos de
ejecucion reducidos. En contraste, aquellos que se ubican en la zona superior derecha ofrecen
buena precision, pero a costa de tiempos de inferencia elevados. Por ultimo, los modelos en la
parte inferior izquierda muestran tiempos de inferencia bajos pero una precision insuficiente.

Samsung Galaxy A9

1.400,00
Yolo8 Medium
1.200,00 ®
1.000,00
800,00
Yolo8 Small
600,00 ®
BlazePose Heavy M Th
400,00 Movenet Lightning 16 ovenet Thundet 8
BlazePose Full . . Yolo8 Nano
Movenet Lightning 32
Movenet Thunder 32

200,00 BlazePose Lite ® Movenet Lightning 8

é o Movenet Thunder 16

[] []
0,00 LJ e ©
0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800 0,900
AP (Average Precision) para el dataset GENERAL

Imagen 46. Comparativa AP vs. Tiempo de inferencia dataset general

MoveNet Thunder (float16 y float32)

Estas versiones destacan como las mas equilibradas en el conjunto de pruebas. Aunque
no alcanzan las cifras absolutas de precision de algunos modelos mas complejos, logran una
relacion muy favorable entre la calidad de las predicciones y el coste computacional. En

125

consecuencia, ofrecen un compromiso idéneo para aplicaciones en dispositivos méviles donde
la velocidad es importante pero no puede sacrificarse demasiado la exactitud.

YOLOVS8-Pose Nano

También presenta una relacion adecuada entre precision y rendimiento. Su capacidad
de mantener un nivel de exactitud aceptable con tiempos de inferencia moderados lo convierte
en una opcidn practica, aunque se situa por debajo de MoveNet Thunder en términos de
equilibrio global.

YOLOVS8-Pose Small y Medium

Estos modelos alcanzan los mejores valores de precision del estudio, lo que los
posiciona como referentes desde el punto de vista de la exactitud en la estimacién de
keypoints. Sin embargo, esta ventaja se ve contrarrestada por tiempos de inferencia
considerablemente altos, que limitan su aplicabilidad a entornos con hardware de altas
prestaciones. Su uso en dispositivos generales resultaria poco viable debido al coste temporal
de la ejecucion.

BlazePose

A pesar de ofrecer tiempos de inferencia reducidos, los resultados de precision son
notablemente inferiores al resto de familias. Este desequilibrio los hace menos adecuados para
tareas en las que la calidad de la estimacion es prioritaria, ya que la rapidez en el calculo no
compensa la baja fiabilidad de los resultados obtenidos.

7.3.2. AP por tipo de imagen (mas adecuadas y menos adecuadas) vs. Tiempo medio

El analisis conjunto de precision (Average Precision, AP) y tiempo de inferencia para
los dos datasets (subconjuntos del dataset general de imagenes) que incluyen las imagenes
consideradas mas adecuadas (65 imégenes) y menos adecuadas para estimacion de posturas
humanas (61 imagenes) nos revela todavia mas diferencias claras en la eficiencia relativa de las
familias de modelos estudiados. En este apartado se muestran los resultados obtenidos con
ambos subconjuntos del dataset de testeo en el dispositivo con mas prestaciones utilizado
(Samsung Galaxy A9 Tab).

Analisis AP/Tiempo de inferencia en subconjunto de imagenes adecuadas

La evaluacion de los modelos de estimacion de posturas humanas sobre el subconjunto
de imagenes filtradas para su idoneidad (personas centradas y cercanas) permite observar
tendencias significativas que complementan y amplian los hallazgos obtenidos con el dataset
completo (Imagen 47). Este subconjunto, al ofrecer condiciones visuales Optimas para la
estimacion de posturas, permite medir el maximo potencial de precision de cada modelo, al
tiempo que se comparan sus tiempos de inferencia acumulados.

126

Tiempo medio inferencia por imagen (milisegundos)

Samsung Galaxy A9

1.400,00
1.200,00 Yolo8 Medium
[
1.000,00 Movenet Thunder 16
Movenet Thunder 8
800,00
Movenet Lightning 32 Yolo8 Small
Movenet Lightning 16 ®
600,00
Yolo8 Nano Movenet Thunder 32
400,00 Movenet Lightning 8
BlazePose Full
BlazePose Heavy
200,00 BlazePose Lite °
9 ° (N
["
0,00 LJ Y ®
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

AP (Average Precision) para el dataset imagenes ADECUADAS

Imagen 47. Comparativa AP vs. Tiempo de inferencia dataset de imdagenes adecuadas

En primer lugar, los modelos MoveNet Thunder destacan de manera sobresaliente.
Las versiones float32 y float 16, y en menor medida la version cuantizada int8, logran cifras de
precision espectaculares, cercanas al maximo tedrico que cada arquitectura puede ofrecer.
Ademas mantienen un rendimiento muy eficiente, igual al observado en el dataset completo, lo
que evidencia la capacidad de estas arquitecturas para combinar exactitud y velocidad sin
comprometer la inferencia. Esta combinacion los posiciona como la opciéon mas equilibrada
para aplicaciones moviles o en tiempo real donde la exactitud es prioritaria.

Por otro lado, los modelos YOLOvV8-Pose Small y Medium también alcanzan niveles
de precision igualmente elevados, reflejando su capacidad para detectar keypoints de manera
muy precisa en condiciones visuales 0ptimas. No obstante, esta mejora en precision mantiene
un coste considerable en términos de rendimiento al igual que para las imagenes del dataset
completo. La version Small registra un rendimiento bajo, mientras que Medium alcanza
tiempos de inferencia extremadamente altos, desaconsejando su uso en dispositivos con
recursos limitados. Sin embargo, en entornos con hardware de alta gama, estas versiones
pueden ser ttiles cuando la prioridad absoluta es la precision.

Los modelos MoveNet Lightning y YOLOv8-Pose Nano muestran un
comportamiento equilibrado en este subconjunto, su precisién es buena, aunque ligeramente
inferior a la de los modelos Thunder o las versiones mas pesadas de YOLO, pero sus tiempos
de inferencia son muy competitivos, posicionandolos como alternativas fiables para
aplicaciones que requieren velocidad y respuesta en tiempo real. Su desempefio refleja la
efectividad de estas arquitecturas ligeras para escenarios moviles sin comprometer

127

Tiempo medio inferencia por imagen (milisegundos)

excesivamente la exactitud.

En cuanto a los modelos BlazePose, se observa un aumento notable de la precision,
pero insuficiente en comparacion con el conjunto completo, lo que confirma que la idoneidad
de las imagenes tiene un impacto positivo en su desempeno. Sin embargo, incluso en este
subconjunto optimizado, BlazePose sigue siendo la familia que presenta mayor pérdida de
precision relativa respecto a las demas familias de modelos. Esta pérdida es mas acentuada en
la version Lite, seguida por Full, mientras que la version Heavy muestra una degradacion algo
menor, aunque no alcanza los niveles de precision de MoveNet Thunder o YOLOvS8-Pose
Medium. En términos de rendimiento, BlazePose mantiene tiempos de inferencia similares a
los observados en el dataset completo, reflejando una eficiencia estable que, no obstante, no
compensa su menor exactitud.

Analisis AP/Tiempo de inferencia en subconjunto de imagenes inadecuadas

La evaluacion de los modelos de estimacion de posturas humanas sobre el subconjunto
de imagenes filtradas menos adecuadas (con personas no centradas o lejanas) también permite
sacar algunas conclusiones significativas complementarias a los hallazgos obtenidos con el
dataset completo (Imagen 48). Este subconjunto con condiciones visuales negativas para la
estimaciéon de posturas nos permite observar como se defienden los modelos en estas
condiciones mientras que se observa si sus tiempos de inferencia se ven influidos por las
caracteristicas de las imagenes inferidas.

Samsung Galaxy A9

1.400,00
0
1.200,00 Yolo8 Medium
1.000,00 | BlazePose Heavy
BlazePose Full
800,00
BlazePose Lite
Movenet Lightning 8 Yolo8 Small
600,00 Movenet Lightning 16 pe
Movenet Lightning 32
400,00 Movenet Thunder 8
Movenet Thunder 32
200,00 o Movenet Thunder 16
¢e Yolo8 Nano
/ @
0,00 ¢ ¢ ¢o
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80

AP (Average Precision) para el dataset imagenes INADECUADAS

Imagen 48. Comparativa AP vs. Tiempo de inferencia dataset de imagenes inadecuadas

128

0,90

La evaluacion de los modelos de estimacion de posturas humanas sobre el subconjunto
de imagenes clasificadas como inadecuadas (aquellas en las que la persona no se encuentra
centrada o aparece lejana) aporta una perspectiva complementaria respecto al comportamiento
de estas arquitecturas bajo condiciones adversas. Este andlisis permite caracterizar las
limitaciones de cada familia de modelos y comprobar su capacidad de generalizacion fuera de
escenarios Optimos.

Un primer resultado destacable es el comportamiento de los modelos més pesados, en
particular YOLOvV8-Pose Small y Medium. A pesar de la dificultad inherente de este
subconjunto, estas versiones logran mantener una precision media (aunque no elevada), lo
que refleja la robustez de estas arquitecturas. En especial, la version Medium demuestra una
cierta resiliencia, probablemente atribuida a su mayor nimero de pardmetros y profundidad de
red, que le permiten manejar mejor escenarios con oclusiones o poses poco definidas. No
obstante, esta ganancia relativa en precision se produce manteniendo los altos tiempos de
inferencia que caracterizan a estas versiones, lo que limita su aplicabilidad en dispositivos con
restricciones de hardware.

Los modelos MoveNet Thunder y YOLO Nano, que en el subconjunto de imagenes
adecuadas mostraban un desempefio notable en cuanto a la relacion precision/rendimiento,
experimentan aqui una penalizacion significativa en la precisién. Aunque sus tiempos de
inferencia se mantienen estables, la pérdida de exactitud en la localizacion de keypoints
evidencia que en condiciones adversas, la eficiencia de estas arquitecturas no basta para
compensar las dificultades en la deteccion. Este resultado indica que los modelos de tamafio
intermedio o ligero (efectivos en entornos favorables) presentan mayor vulnerabilidad en la
generalizacion.

Los modelos MoveNet Lightning resultan ser los mas afectados en este subconjunto.
Su precision cae de manera drastica, incluso mas que la de Thunder o Nano, lo que pone de
manifiesto que el disefio ultraligero de esta familia, pensado para priorizar la velocidad en
dispositivos moviles, conlleva un coste elevado en términos de robustez. La capacidad reducida
de representacion no permite a estas arquitecturas mantener un desempefio aceptable cuando
las condiciones de la imagen no favorecen la tarea de estimacion de poses.

Por ultimo, los resultados de los modelos BlazePose son concluyentes: su precision en
este subconjunto es practicamente nula, situdindose en valores equivalentes a cero. En otras
palabras, BlazePose se muestra inadecuado para la estimacion de posturas humanas en
contextos adversos, sin importar la variante (Lite, Full o Heavy). Esto refuerza lo observado en
el dataset completo y en las imagenes adecuadas, donde BlazePose ya mostraba un rendimiento
inferior respecto a otras familias.

En cuanto a los tiempos de inferencia, el analisis confirma un aspecto importante, estos
no se ven afectados por el tipo de imagen. Al igual que en el dataset completo y en el
subconjunto de imagenes adecuadas, los tiempos de ejecucion se mantienen practicamente
idénticos. Esto implica que la carga computacional de los modelos depende tnicamente de la
arquitectura y del hardware disponible, no de la idoneidad de las imagenes procesadas. Por
tanto, el tipo de imagen influye de manera directa en la precision pero no en el rendimiento
computacional.

129

PARTE III: DISCUSION Y CONCLUSIONES

130

8. DISCUSION

En primer lugar se aborda la interpretacion de los resultados principales, destacando los
comportamientos diferenciales de los modelos estudiados en términos de precision y
rendimiento, asi como el impacto que el tipo de dataset ha tenido en sus estimaciones. Este
analisis permitira evidenciar qué modelos ofrecen un equilibrio mas adecuado entre exactitud
y eficiencia y cudles presentan limitaciones intrinsecas.

A continuacion, se incluiran las limitaciones del estudio, entendidas como los factores
metodoldgicos, técnicos o contextuales que han podido condicionar los resultados. Estas
limitaciones abarcan desde la heterogeneidad en las estructuras de salida de los modelos hasta
las restricciones impuestas por el dataset empleado y el hardware utilizado. Reconocer estos
aspectos no solo aporta transparencia, sino que ademads abre la posibilidad de plantear futuras
mejoras y ampliaciones del trabajo.

8.1. Interpretacion de los resultados principales

Los resultados obtenidos permiten establecer varias conclusiones relevantes acerca del
comportamiento de los modelos de estimacion de posturas humanas bajo distintas condiciones.
En primer lugar y como era de esperar se confirma que la precisiéon de los modelos muestra
una alta sensibilidad a las condiciones visuales de las imagenes de entrada. En este sentido, los
modelos de mayor complejidad (YOLOvV8-Pose en sus versiones Small y Medium) exhiben una
mayor capacidad de generalizacion, mientras que los modelos de menor tamafio sufren pérdidas
significativas de exactitud en escenarios adversos. Esta degradacion resulta particularmente
acusada en la familia BlazePose, mientras que los modelos MoveNet mantienen un
comportamiento relativamente mas robusto.

En cuanto al rendimiento computacional, el analisis de los tiempos de inferencia revela
diferencias sustanciales entre familias. Los modelos MoveNet Lightning se consolidan como
los mas rapidos y estables, apenas afectados por el dispositivo de ejecucion, lo que los convierte
en candidatos idoneos para aplicaciones moviles en tiempo real. Los MoveNet Thunder ofrecen
un rendimiento intermedio: la version cuantizada a int8 se aproxima a los tiempos de Lightning,
mientras que las versiones en float16 y float32 sacrifican velocidad en favor de precision. Por
su parte, BlazePose Lite y Full mantienen tiempos razonables, mientras que la version Heavy
resulta computacionalmente inviable. En la familia YOLO-Pose, tinicamente la variante Nano
alcanza tiempos aceptables, frente a Small y, especialmente, Medium, que presentan inferencias
lentas pero que escalan favorablemente en hardware de mayores prestaciones.

El analisis conjunto de precision y tiempos de inferencia permite identificar aquellos
modelos que presentan una mejor relacion entre exactitud y eficiencia computacional, lo que
resulta clave para su posible integracion en aplicaciones practicas de estimacion de posturas
humanas. Los modelos de la familia MoveNet Thunder, especialmente en sus variantes 16
y 32, se posicionan como la opcion mas equilibrada. Estos alcanzan niveles de precision muy
altos, comparables a los de arquitecturas de mayor tamafo, sin comprometer en exceso el
tiempo de inferencia. Su rendimiento los hace especialmente adecuados para aplicaciones que
requieran un compromiso solido entre calidad de prediccion y velocidad de procesamiento,
incluso en dispositivos con recursos limitados. En un escalon préximo se situa el modelo
YOLOvVS8-Pose Nano, que logra una precision buena con tiempos de inferencia muy
competitivos. Esta combinacion también lo convierte en un candidato interesante para

131

aplicaciones moviles o embebidas, donde las restricciones de hardware son criticas. Los
modelos YOLOV8-Pose Small y Medium destacan por su elevada precision, pero sus elevados
tiempos de inferencia limitan su aplicabilidad a escenarios en los que se disponga de hardware
de alto rendimiento o donde la inferencia en tiempo real no sea un requisito estricto. Finalmente,
los modelos BlazePose, pese a sus tiempos de ejecucion reducidos, presentan deficiencias
importantes en términos de precision, lo que los situa en una muy clara desventaja frente a
las demas familias para estimacion de posturas humanas.

En sintesis, los MoveNet Thunder y YOLO Nano representan las opciones mas
adecuadas para su incorporacion en aplicaciones orientadas a la estimacion de posturas
humanas en tiempo real, equilibrando correctamente precision y rendimiento.

Por ultimo, los tiempos de inferencia permanecen invariables ante el tipo de imagen
procesada. Tanto en el dataset general como en los subconjuntos de imagenes adecuadas e
inadecuadas, la duracién del proceso de inferencia se mantiene en tiempos practicamente
constantes. Esto confirma que la carga computacional estd determinada por la arquitectura del
modelo y la capacidad del hardware, sin influencia de la idoneidad del contenido visual. En
consecuencia, el tipo de imagen afecta de manera directa a la precision de las estimaciones,
pero no al rendimiento computacional.

8.2. Limitaciones del estudio

El estudio presenta una serie de limitaciones relacionadas principalmente con el alcance
de la experimentacion y la representatividad de los escenarios analizados:

- Una primera limitacion es la lista de modelos evaluados. Si bien se han considerado
arquitecturas representativas de las familias mas relevantes (MoveNet, BlazePose y
YOLO-Pose), el panorama actual de la estimacion de posturas humanas es dindmico
y en constante evolucion. Existen otros modelos recientes, tanto ligeros como de
mayor complejidad, que no fueron incluidos y cuya incorporacion permitiria una
visién mas completa del estado del arte, asi como una comparacion mas rica entre
diferentes enfoques arquitectonicos.

- El nimero reducido de imagenes disponibles en el dataset utilizado, que asciende
unicamente a 316. Si bien estas imagenes han permitido llevar a cabo una primera
evaluacion del comportamiento de los modelos, dicho volumen resulta limitado para
extraer conclusiones con mayor robustez estadistica y capacidad de generalizacion.
Seria recomendable disponer de imagenes que reflejen ejercicios de rehabilitacion
de forma especifica, ya que constituyen el contexto real en el que se prevé aplicar
los modelos de estimacion de posturas humanas. La inclusiéon de personas de
diferentes edades, condiciones fisicas y contextos demogréaficos (incluyendo
diversidad racial y corporal) permitiria evaluar con mayor fidelidad la capacidad de
generalizacion de las arquitecturas bajo estudio.

- Otra limitacion importante se refiere al soporte multiplataforma, ya que los
experimentos se han llevado a cabo exclusivamente en dispositivos Android. La
ausencia de una evaluacion en entornos 10S restringe la generalizacion de los
resultados. Las diferencias entre las librerias de soporte, las optimizaciones
especificas del sistema operativo y la gestion de hardware podrian alterar de manera

132

sustancial tanto la precision como los tiempos de inferencia, por lo que este aspecto
queda pendiente de ser explorado.

- Asimismo, el estudio se ve limitado por el nimero y variedad de dispositivos
empleados en la experimentacion. Aunque se han contemplado varias
configuraciones con prestaciones diferenciadas, la muestra es insuficiente para
reflejar la gran heterogeneidad existente en el ecosistema de hardware. No se
incluyen, por ejemplo, dispositivos de gama muy baja, que representarian un
escenario especialmente critico para el despliegue de modelos en entornos con
recursos limitados. Tampoco se han evaluado dispositivos de gama muy alta que
podrian ofrecer un rendimiento significativamente superior, lo cual restringe la
validez externa de las conclusiones en contextos mas extremos.

Estas limitaciones condicionan la amplitud de las conclusiones y ponen de manifiesto
la necesidad de extender el andlisis en futuras investigaciones, tanto mediante la incorporacion
de mas arquitecturas como ampliando la diversidad de plataformas y dispositivos evaluados.

133

9. CONCLUSIONES Y TRABAJO FUTURO

El trabajo permite evaluar de manera sistematica la precision y el rendimiento de
diversas arquitecturas de estimacion de posturas humanas en dispositivos méviles, cumpliendo
con el objetivo de identificar modelos adecuados para su implementacion practica en
aplicaciones en tiempo real.

Ademas, este estudio ha puesto de manifiesto areas de mejora y posibles lineas de
trabajo futuro, tales como la ampliacion de la lista de modelos evaluados, la incorporacion de
soporte para entornos iOS y la extension de las pruebas a dispositivos con prestaciones mas
variadas. Estas propuestas buscan aumentar la robustez, generalizacion y aplicabilidad de los
resultados, ofreciendo una base solida para investigaciones posteriores y para la optimizacion
de aplicaciones de estimacion de posturas humanas en contextos reales.

9.1. Revision objetivos principales del estudio

Seglin se describié en los apartados “1.3.1 Objetivo general” y “1.3.2 Objetivos
especificos” el proyecto ha logrado cumplir de manera satisfactoria con los objetivos
planteados, tanto en su dimension general como en los objetivos especificos.

En cuanto al objetivo general, se ha llevado a cabo una busqueda y seleccion de modelos
de estimacion de posturas humanas aptos para poder ser utilizados en dispositivos de edge
computing, y la evaluacion del rendimiento y la precision de tres familias de ellos (MoveNet,
BlazePose y YOLOvVS-Pose) en dispositivos moéviles. Esto ha permitido caracterizar el
comportamiento de cada arquitectura estudiada bajo condiciones controladas y representativas,
ofreciendo una visiéon comparativa de su aplicabilidad en entornos moviles.

Respecto a los objetivos especificos, el proyecto ha alcanzado los siguientes logros:

- Busqueda y seleccion de modelos aptos para el estudio en base a las especificaciones
definidas en la metodologia.

- Implementacion de un sistema de pruebas en Android capaz de ejecutar modelos en
formato TensorFlow Lite (TFLite) y gestionar la inferencia sobre un conjunto
filtrado de imégenes del dataset COCO.

- Medicion y comparacion de la precision de los modelos, utilizando métricas
estandar como Average Precision (AP@][0.50:0.95]), tanto sobre el dataset completo
como en subconjuntos diferenciados por idoneidad de las imagenes para estimacion
de posturas.

- Medicion y comparacion de los tiempos de inferencia por imagen, evaluando el
rendimiento de cada modelo en distintos dispositivos moviles.

- Establecimiento de la relacion entre precision y rendimiento, identificando qué
modelos ofrecen el equilibrio mas adecuado entre exactitud de predicciones y
eficiencia computacional, y cudles presentan limitaciones para su integracion en
aplicaciones moviles en tiempo real.

134

En conjunto, los resultados obtenidos confirman que los objetivos del proyecto se han
cumplido, proporcionando una base sélida para seleccionar modelos Optimos segin los
requisitos de precision y rendimiento, y ofreciendo directrices claras para futuras
implementaciones en aplicaciones moéviles de estimacion de posturas humanas.

9.2. Propuestas de mejora y lineas futuras

El proyecto abre diversas lineas de mejora y expansion que permitirian aumentar su
alcance y aplicabilidad en el d&mbito de la estimacion de posturas humanas en dispositivos
moviles.

Ampliacion para estudio de nuevos modelos emergentes

En primer lugar, se propone la ampliacion del estudio a nuevos modelos ya existentes
(como los evaluados en el punto “2.5. Modelos de estimacion de posturas™) y otros posibles
emergentes, incorporando arquitecturas recientes que puedan ofrecer mejoras en precision,
eficiencia o robustez frente a condiciones adversas. Esto permitiria mantener el analisis
actualizado y comparativo frente al estado del arte.

Ampliacion para soporte multi-dispositivo (Apple iOS)

Otra linea relevante es la compatibilidad multiplataforma, extendiendo el soporte a
dispositivos Apple i0S, lo que facilitaria la implementacion de aplicaciones moviles de
estimacion de posturas humanas en un ecosistema mds amplio y heterogéneo.
Complementariamente, se plantea la evaluacién en nuevos dispositivos, tanto de gama baja
como alta, para validar la generalizacion de los resultados y conocer la influencia del hardware
sobre la precision y el rendimiento de los modelos.

Utilizacion de aceleradores de hardware especificos (GPU)

Se sugiere la inclusion en la aplicacion Android de la utilizacién de aceleradores de
hardware especificos, como GPUs o NPUs (descritos en el apartado “2.8.1. Hardware™), con el
objetivo de mejorar los tiempos de inferencia y permitir la ejecucion en tiempo real de modelos
mas complejos, ampliando las posibilidades de aplicacion practica en &mbitos mas exigentes
en términos de capacidad de computacion.

Ampliacion para estimacion de posturas sobre entradas de video
En términos de entrada de datos, se considera la ampliacién para la estimacién de
posturas sobre secuencias de video, lo que permitiria evaluar la estabilidad temporal de los

modelos y su desempefio en aplicaciones dindmicas, como seguimiento en tiempo real o analisis
de movimiento continuo.

135

Ampliacion para reentrenamiento de modelos existentes

Por ultimo, se contempla la posibilidad de reentrenamiento o fine-tuning de modelos
existentes con datasets especificos, lo que permitiria adaptar los modelos a contextos
particulares, mejorar su precision y robustez frente a escenarios concretos, y optimizar su
desempefio en aplicaciones moviles especificas.

136

10. REFERENCIAS BIBLIOGRAFICAS

Nota: Todos los enlaces de las referencias bibliograficas han sido consultados a modo de
comprobacion por ultima vez a fecha 29 de agosto de 2025.

1. COCO Dataset. [Online]. Available from: https://cocodataset.org/#home.

2. MPII Human Pose Dataset. [Online]. Available from: https://www.mpi-
inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-
human-pose-dataset/download.

3. Holian N. EDGE COMPUTING UNDERSTANDING THE USER EXPERIENCE. [Online].;
marzo 2023. Available from: https://www.wipro.com/infrastructure/edge-computing-
understanding-the-user-experience/.

4. Boesch G. Human Pose Estimation - Everything You Need to Know. [Online].; octubre 2023.
Available from: https://viso.ai/deep-learning/pose-estimation-ultimate-overview/.

5. Lopez OGT. Redes Neuronales Convolucionales para el reconocimiento de imagenes. [Online].;
30 agosto 2021. Available from: https://www.tecnoblog.org/desarrollo/cnn-para-el-
reconocimiento-de-imagenes/.

6. Zewen Li WYSPFL. A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects. [Online].; abril 2020. Available from: https://arxiv.org/abs/2004.02806.

7. Omar Elharrouss YANASAM. Backbones-Review: Feature Extraction Networks for Deep
Learning and Deep Reinforcement Learning Approaches. [Online].; junio 2022. Available from:
https://arxiv.org/abs/2206.08016.

8. Carr T. Multi-Headed Networks. [Online].; febrero 2025. Available from:
https://www.baeldung.com/cs/multi-headed-neural-nets.

9. Pendhari S. Connected Layer vs Fully Connected Layer. [Online].; enero 2022. Available from:
https://medium.com/@sarahpendhari/connected-layer-vs-fully-connected-layer-32b4cbb29824.

10. What is Fully Connected Layer in Deep Learning? [Online].; junio 2025. Available from:
https://www.geeksforgeeks.org/deep-learning/what-is-fully-connected-layer-in-deep-learning/.

11. Shuang Cong YZ. A review of convolutional neural network architectures and their
optimizations. [Online].; junio 2022. Available from:
https://www.researchgate.net/publication/361477855_A_review_of convolutional neural netwo
rk_architectures_and_their optimizations.

12. Andrew G. Howard MZ. MobileNets: Open-Source Models for Efficient On-Device Vision.
[Online].; 14 junio 2017. Available from: https://research.google/blog/mobilenets-open-source-
models-for-efficient-on-device-vision/?hl=es-mx.

13. Kai Han YWQTJGCXCX. GhostNet: More Features from Cheap Operations. [Online].; 27
noviembre 2019, revisado 13 marzo 2020. Available from: https://arxiv.org/abs/1911.11907.

137

https://cocodataset.org/#home
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.wipro.com/infrastructure/edge-computing-understanding-the-user-experience/
https://www.wipro.com/infrastructure/edge-computing-understanding-the-user-experience/
https://viso.ai/deep-learning/pose-estimation-ultimate-overview/
https://www.tecnoblog.org/desarrollo/cnn-para-el-reconocimiento-de-imagenes/
https://www.tecnoblog.org/desarrollo/cnn-para-el-reconocimiento-de-imagenes/
https://arxiv.org/abs/2004.02806
https://arxiv.org/abs/2206.08016
https://www.baeldung.com/cs/multi-headed-neural-nets
https://medium.com/@sarahpendhari/connected-layer-vs-fully-connected-layer-32b4cbb29824
https://www.geeksforgeeks.org/deep-learning/what-is-fully-connected-layer-in-deep-learning/
https://www.researchgate.net/publication/361477855_A_review_of_convolutional_neural_network_architectures_and_their_optimizations
https://www.researchgate.net/publication/361477855_A_review_of_convolutional_neural_network_architectures_and_their_optimizations
https://research.google/blog/mobilenets-open-source-models-for-efficient-on-device-vision/?hl=es-mx
https://research.google/blog/mobilenets-open-source-models-for-efficient-on-device-vision/?hl=es-mx
https://arxiv.org/abs/1911.11907

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Kromydas B. Convolutional Neural Network (CNN): A Complete Guide. [Online].; enero 2023.
Available from: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/.

Markus Nagel MFRAAYBMVBTB. A White Paper on Neural Network Quantization. [Online].;
junio 2021. Available from: https://arxiv.org/abs/2106.08295.

Pérez S. Deteccion de poses humanas mediante Deep Learning. [Online].; febrero 2022.
Available from: https://blog.damavis.com/deteccion-de-poses-humanas-mediante-deep-learning/.

An end-to-end platform for machine learning. [Online]. Available from:
https://www.tensorflow.org/.

Khanh LeViet YhC. Pose estimation and classification on edge devices with MoveNet and
TensorFlow Lite. [Online].; agosto 2021. Available from:
https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-
MoveNet-and-TensorFlow-Lite.html.

Dave Bergmann CS. ;Qué es PyTorch? [Online].; octubre 2023. Available from:
https://www.ibm.com/es-es/think/topics/pytorch.

MediaPipe Vs. TensorFlow: Human Pose Estimation Giants. [Online].; enero 2024. Available
from: https://medium.com/@codetrade/mediapipe-vs-cla57a2fac7e.

Rath S. Deep Learning with OpenCV DNN Module: A Definitive Guide. [Online].; abril 2021.
Available from: https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-

guide/.

Using the SavedModel format. [Online]. Available from:
https://www.tensorflow.org/guide/saved _model.

TensorFlow Lite. [Online].; septiembre 2021. Available from:
https://www.tensorflow.org/lite/guide?hl=es-419.

Open Neural Network Exchange. [Online]. Available from: https://onnx.ai/.

Inkawhich M. Saving and Loading Models. [Online].; agosto 2018, ultima actializacion junio
2025. Available from: https://docs.pytorch.org/tutorials/beginner/saving_loading_models.html.

Hua Q. [CVPR 2017] OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity
Fields. [Online].; junio 2019. Available from: https://medium.com/data-science/cvpr-2017-
openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8.

Hao-Shu Fang JLHTCXHZYXYLLCL. AlphaPose: Whole-Body Regional Multi-Person Pose
Estimation and Tracking in Real-Time. [Online].; noviembre 2022. Available from:
https://arxiv.org/abs/2211.03375.

Brown J. Real-Time Human Pose Estimation with PoseNet and Deep Learning. [Online].;
septiembre 2024. Available from: https://33rdsquare.com/tech/ai/posture-detection-using-
posenet-with-real-time-deep-learning-project/.

138

https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://arxiv.org/abs/2106.08295
https://blog.damavis.com/deteccion-de-poses-humanas-mediante-deep-learning/
https://www.tensorflow.org/
https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-MoveNet-and-TensorFlow-Lite.html
https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-MoveNet-and-TensorFlow-Lite.html
https://www.ibm.com/es-es/think/topics/pytorch
https://medium.com/@codetrade/mediapipe-vs-c1a57a2fac7e
https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide/
https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide/
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/lite/guide?hl=es-419
https://onnx.ai/
https://docs.pytorch.org/tutorials/beginner/saving_loading_models.html
https://medium.com/data-science/cvpr-2017-openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8
https://medium.com/data-science/cvpr-2017-openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8
https://arxiv.org/abs/2211.03375
https://33rdsquare.com/tech/ai/posture-detection-using-posenet-with-real-time-deep-learning-project/
https://33rdsquare.com/tech/ai/posture-detection-using-posenet-with-real-time-deep-learning-project/

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Boesch G. DensePose: Facebook’s Breakthrough in Human Pose Estimation. [Online].; agosto
2024. Available from: https://viso.ai/deep-learning/densepose/.

Ronny Votel NL. Next-Generation Pose Detection with MoveNet and TensorFlow.js. [Online].;
mayo 2021. Available from: https://blog.tensorflow.org/2021/05/next-generation-pose-detection-
with-movenet-and-tensorflowjs.html.

Valentin Bazarevsky IGKRTZFZMG. BlazePose: On-device Real-time Body Pose tracking.
[Online].; junio 2020. Available from: https://arxiv.org/abs/2006.10204.

Documentacion de Ultralytics YOLO. [Online]. Available from: https://docs.ultralytics.com/es/.

Shaoqing Ren KHRGIJS. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. [Online].; 4 junio 2015. Available from: https://arxiv.org/abs/1506.01497.

Shivang Agarwal JODTFJ. Recent Advances in Object Detection in the Age of Deep
Convolutional Neural Networks. [Online].; 10 septiembre 2018. Available from:
https://arxiv.org/abs/1809.03193v2.

Xiao Sun JSSLYW. Compositional Human Pose Regression. [Online].; 1 abril 2017. Available
from: https://arxiv.org/abs/1704.00159.

Guilhem Chéron ILCS. P-CNN: Pose-based CNN Features for Action Recognition. [Online].; 11
junio 2015. Available from: https://arxiv.org/abs/1506.03607.

Classification: Accuracy, recall, precision, and related metrics. [Online]. Available from:
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-
recall.

IoU and variants overview. [Online].; agosto 2024. Available from:
https://medium.com/@cshyo1004/iou-and-variants-overview-a328acf177cd.

COCO Keypoint Evaluation. [Online]. Available from: https://cocodataset.org/#keypoints-eval.

Sharma A. Mean Average Precision (mAP) Using the COCO Evaluator. [Online].; mayo 2022.
Available from: https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-
coco-evaluator/.

MoveNet.SinglePose. [Online]. Available from:
https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf.

A Guide on YOLO11 Model Export to TFLite for Deployment. [Online]. Available from:
https://docs.ultralytics.com/integrations/tflite/#export-arguments.

MediaPipe BlazePose GHUM 3D. [Online]. Available from:
https://developers.google.com/static/ml-kit/images/vision/pose-detection/pose_model card.pdf.

139

https://viso.ai/deep-learning/densepose/
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://arxiv.org/abs/2006.10204
https://docs.ultralytics.com/es/
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1809.03193v2
https://arxiv.org/abs/1704.00159
https://arxiv.org/abs/1506.03607
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://medium.com/@cshyo1004/iou-and-variants-overview-a328acf177cd
https://cocodataset.org/#keypoints-eval
https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf
https://docs.ultralytics.com/integrations/tflite/#export-arguments
https://developers.google.com/static/ml-kit/images/vision/pose-detection/pose_model_card.pdf

11. ANEXOS

Anexo A. Resultados numéricos del estudio

En este anexo se incluyen los resultados obtenidos de todos los modelos en los distintos

dispositivos de prueba en formato tabla.

Samsung Galaxy Tab A7 Lite (Tablet)

Modelo Precision obtenida Precision obtenida Precision obtenida Tiempo medio
AP [10U=0.50:0.95] AP [1oU=0.50:0.95] AP [1oU=0.50:0.95] inferencia por
(dataset 316 imagenes) | (dataset 65 imagenes | (dataset 61 imAagenes | imagen (ms) (dataset
adecuadas) inadecuadas) 316 imagenes)
MoveNet Lightining 8 0,296 0,656 0,055 66,24
MoveNet Lightining 16 0,348 0,719 0,084 100,45
MoveNet Lightining 32 0,346 0,721 0,095 101,88
MoveNet Thunder 8 0,456 0,788 0,140 253,68
MoveNet Thunder 16 0,509 0,824 0,200 479,73
MoveNet Thunder 32 0,498 0,842 0,199 478,59
BlazePose Lite 0,101 0,349 0,000 138,86
BlazePose Full 0,136 0,441 0,000 249,60
BlazePose Heavy 0,176 0,487 0,000 905, 98
Yolo8-pose Nano 0,473 0,696 0,218 352,46
Yolo8-pose Small 0,628 0,822 0,392 1.251, 36
Yolo8-pose Medium 0,686 0,839 0,495 3.697,21

Tabla 19. Resultados numéricos Samsung Galaxy Tab A7 Lite

Samsung Galaxy M32 (Movil)

Modelo Precisién obtenida Precision obtenida Precisién obtenida Tiempo medio
AP [10U=0.50:0.95] AP [1oU=0.50:0.95] AP [1oU=0.50:0.95] inferencia por
(dataset 316 imagenes) | (dataset 65 imagenes | (dataset 61 imagenes | imagen (ms) (dataset
adecuadas) inadecuadas) 316 imagenes)
MoveNet Lightining 8 0,293 0,656 0,055 36,39
MoveNet Lightining 16 0,348 0,719 0,084 58,75
MoveNet Lightining 32 0,346 0,721 0,095 62,15
MoveNet Thunder 8 0,456 0,788 0,140 130,91
MoveNet Thunder 16 0,510 0,824 0,200 260,55
MoveNet Thunder 32 0,498 0,842 0,199 286,69
BlazePose Lite 0,101 0,349 0,000 189,67
BlazePose Full 0,136 0,441 0,000 277,86
BlazePose Heavy 0,176 0,487 0,000 876,97
Yolo8-pose Nano 0,472 0,696 0,218 337,10
Yolo8-pose Small 0,628 0,822 0,392 852, 96
Yolo8-pose Medium 0,686 0,839 0,495 2.599, 96

Tabla 20. Resultados numéricos Samsung Galaxy M32

140

Samsung Galaxy Tab A9 (Tablet)

Modelo Precision obtenida Precision obtenida Precision obtenida Tiempo medio
AP [1oU=0.50:0.95] AP [1oU=0.50:0.95] AP [1oU=0.50:0.95] inferencia por
(dataset 316 imagenes) | (dataset 65 imagenes | (dataset 61 imagenes | imagen (ms) (dataset
adecuadas) inadecuadas) 316 imagenes)
MoveNet Lightining 8 0,296 0,659 0,053 14,90
MoveNet Lightining 16 0,348 0,719 0,084 22,72
MoveNet Lightining 32 0,346 0,721 0,095 22,57
MoveNet Thunder 8 0,451 0,789 0,138 44,64
MoveNet Thunder 16 0,509 0,824 0,200 94,80
MoveNet Thunder 32 0,498 0,842 0,199 95,37
BlazePose Lite 0,101 0,349 0,000 26,54
BlazePose Full 0,136 0,441 0,000 42,06
BlazePose Heavy 0,176 0,485 0,000 166,97
Yolo8-pose Nano 0,473 0,696 0,218 96,25
Yolo8-pose Small 0,628 0,822 0,392 581,62
Yolo8-pose Medium 0,686 0,839 0,495 1.170,97

Tabla 21. Resultados numéricos Samsung Galaxy Tab A9

141

Anexo B. Ejemplos de visualizacion de keypoints estimados sobre imagenes

En las imagenes de este apartado se muestran ejemplos de imagenes procedentes del
conjunto de validacion del dataset de datos COCO sobre las cuales se representan los keypoints
estimados por distintos modelos de redes convolucionales evaluados en este estudio,
superpuestos a las anotaciones de referencia (ground truth) proporcionadas por el dataset.

Los puntos en rojo corresponden a las posiciones exactas de articulaciones definidas en
las anotaciones de COCO, que incluyen 17 localizaciones corporales como hombros, codos,
muiflecas, caderas, rodillas y tobillos. En contraste, los keypoints predichos por los modelos
aparecen en colores verde, azul y cian, permitiendo una comparacion visual entre la prediccion
automatica y la verdad de referencia.

Para la representacion de los keypoints sobre las imagenes se ha utilizado Jupyter
Notebook y, ademés de las librerias ya descritas en el apartado “7.1. Resultados obtenidos de
precision” (pycocotools.coco, json), se han utilizado las siguientes librerias de Python:

skimage.io. Permite leer y mostrar imagenes en distintos formatos directamente
desde archivos o URLSs. Es util para cargar imagenes del dataset COCO.

- matplotlib.pyplot. Herramienta de visualizaciéon que permite mostrar imagenes y
superponer elementos graficos, como los keypoints predichos o anotaciones de
referencia.

- PIL.Image. Parte de la libreria Pillow, utilizada para abrir, procesar y manipular
imagenes de manera flexible.

- numpy. Biblioteca fundamental para el calculo numérico en Python. Se utiliza para
manejar arreglos multidimensionales, coordenadas y operaciones matematicas
asociadas a imagenes y keypoints.

- pylab. Entorno de visualizacion que combina funcionalidades de matplotlib y

numpy, util para configurar pardmetros graficos y mostrar imagenes con
anotaciones.

Ejemplos de estimaciones para imagenes adecuadas (personas centradas y cercanas):

142

Keypaints estimados para les modelos Movenet lighining B (verde), Movenet lightning 16 {azul) y Movenet lightning 32 (cian) - Imagen ID: 22705

Imagen 49. Keypoints estimados por MoveNet Lightning para imagen 22705

143

Keypaints estimados para les modelos Movenet thunder B {verde}, Movenet thunder 16 [azul) y Movenet thunder 32 [cian} - Imagen 10: 22705

Imagen 50. Keypoints estimados por MoveNet Thunder para imagen 22705

144

Keypaints estimadaos para los modelos Blazepose lite [verde), Blazepose full {azul) y Blazepose heavy {gan] - Imagen ID: 22705

Imagen 51. Keypoints estimados por BlazePose para imagen 22705

145

Keypaints estimadaos para los modelos Yolo8-pose nano [verde), Yolo8-pose small (azul] ¥ YoloB-pose medium {cian} - Imagen ID: 22705

Imagen 52. Keypoints estimados por Yolo§-pose para imagen 22705

146

Keypaints estimadas para los modelos Movenet lightning B (verde], Movenet lighitning 16 {azul) ¥y Movenet lightning 32 {cian) - Imagen ID: 65736

Imagen 53. Keypoints estimados por MoveNet Lightning para imagen 65736

Keypainits estimadas para los modelos Movenet thunder B {verde}, Movenet thunder 16 (azul) y Movenet thunder 32 [cian} - Imagen 10: 65736

Imagen 54. Keypoints estimados por MoveNet Thunder para imagen 65736

147

Keypuaints estimadaos para los modelps Blazepose lite (verde], Blazepose full {azul)] y Blazepose heavy {dan) - Imagen ID: 65736

Imagen 55. Keypoints estimados por BlazePose para imagen 65736

Keypaints estimadaos para los modelps Yolo2-pose nano (verde], Yolo&-pose small (azul) ¥ YoloB-pose medium {cian} - Imagen 1D: 65736

Imagen 56. Keypoints estimados por Yolo§8-pose para imagen 65736

148

Ejemplos de estimaciones para imagenes inadecuadas (personas no centradas o lejanas):

-

Keypaints estimados para los modelos Mavenet lightning B (verde), Movenet lightning 16 {azul) y Movenet lightning 32 (cian) - Imagen I1D: 347265

Imagen 57. Keypoints estimados por MoveNet Lightning para imagen 347265

149

Keypaoints estimados para les modelos Movenet thunder B {verde}, Movenet thunder 16 [azul) y Movenet thunder 32 [cian) - Imagen ID: 347265

Imagen 58. Keypoints estimados por MoveNet Thunder para imagen 347265

150

Keypaints estimados para los modelos Blazepose lite [verde), Blazepose full {azul)] y Blazepose heavy {gan)] - Imagen ID: 347265

il o

T

Imagen 59. Keypoints estimados por BlazePose para imagen 347265

151

n8-pase nano [verde), Yolo&-pose small {azul) ¥ YoloB-pose medium {cian} - Imagen ID: 347265

b i .

Keypaints estimados para les modelos Yol

Imagen 60. Keypoints estimados por Yolo§-pose para imagen 347265

152

Keypaints estimadaos para los modelos Maovenet lightning 8 (verde], Movenet lightning 16 {(azul) y Movenet lightning 32 (cian) - Imagen ID: 161879

Imagen 61. Keypoints estimados por MoveNet Lightning para imagen 161879

Keypaints estimadaos para les modelos Movenet thunder B {verde}. Movenet thunder 16 (azul) ¥ Movenet thunder 32 [cian} - Imagen ID: 161879

Imagen 62. Keypoints estimados por MoveNet Thunder para imagen 161879

153

Keypaints estimadas para los modelos Blazepose lite (verde), Blazepose full (azul) y Blazepose heavy {dan] - Imagen ID: 161879

Imagen 63. Keypoints estimados por BlazePose para imagen 161879

para los Yolo8-pose nano (verde), Yolo8-pose small (azul) y YoloB-pose medium (cian} - Imagen 1D: 161879

Imagen 64. Keypoints estimados por Yolo8-pose para imagen 161879

154

