

Universidades de Burgos, León y Valladolid

Máster universitario

Inteligencia de Negocio y Big Data

en Entornos Seguros

TFM del Máster en Inteligencia de Negocio y

Big Data en Entornos Seguros

Estudio de librerías de detección de posturas

sobre dispositivos móviles

Presentado por Francisco Javier Romero Carrillo

en Universidad de Valladolid

01 de septiembre de 2025

Tutor: Bruno Baruque Zanón

ii

iii

RESUMEN

Este trabajo presenta un estudio comparativo de diversos modelos de visión artificial

preentrenados en estimación de posturas humanas integrables en dispositivos móviles. Existen

numerosos modelos de estimación de posturas con características muy heterogéneas y

documentaciones dispares según sus desarrolladores, por lo que la aportación principal de este

trabajo radica en ofrecer una evaluación homogénea de su funcionamiento. El objetivo es

facilitar la elección del más adecuado de ellos para su posterior incorporación en el desarrollo

de una futura aplicación para la asistencia a ejercicios de tele-rehabilitación en domicilio que

permita guiar al usuario en estos ejercicios y registrar información relevante para el seguimiento

clínico, sin necesidad de sensores adicionales ni conexión a internet para el proceso de

realización de los ejercicios.

Para garantizar un análisis homogéneo, se eligió un subconjunto de imágenes filtrado

del conjunto de datos COCO, compuesto por 316 imágenes que contienen una única persona

con al menos 15 keypoints (puntos clave) anotados sobre el cual se han evaluado diferentes

versiones de tres familias de modelos: MoveNet, BlazePose y YOLOv8-Pose, desde dos

perspectivas:

- Precisión en la detección de puntos clave para identificación de posturas: exactitud

de los modelos al predecir las posturas, medida mediante la métrica AP (Average

Precision). Se ha utilizado con la finalidad de poder validar resultados del modelo

así como para evaluar la idoneidad de las imágenes seleccionadas.

- Rendimiento: tiempo medio de inferencia por imagen sobre un dispositivo móvil

Android en condiciones reales. Se ha utilizado para medir el rendimiento de cada

modelo (tiempo de ejecución de cada inferencia de cada imagen) en diferentes

dispositivos con el fin de poder evaluar la velocidad con la que cada modelo efectúa

la estimación.

Los resultados muestran diferencias significativas entre modelos en cuanto a la relación

precisión-tiempo, destacando las variantes de la subfamilia Thunder de MoveNet y la versión

Nano de YOLOv8-Pose por su equilibrio entre rendimiento y exactitud.

Este estudio aporta una visión clara y práctica sobre la aplicabilidad de distintos

enfoques de estimación de postura en entornos móviles, sirviendo como referencia para

desarrolladores e investigadores interesados en sistemas embebidos de visión por computador.

iv

ABSTRACT

This paper presents a comparative study of various pre-trained computer vision models

for human pose estimation that can be integrated into mobile devices. There are numerous pose

estimation models with highly heterogeneous characteristics and uneven documentation

provided by their developers, so the main contribution of this work lies in offering a

homogeneous evaluation of their performance. The aim is to facilitate the selection of the most

suitable model for subsequent incorporation into the development of a future application for

assisting with home telerehabilitation exercises that will guide the user through these exercises

and record relevant information for clinical follow-up, without the need for additional sensors

or an internet connection during the exercise process.

To ensure a homogeneous analysis, a filtered subset of images from the COCO dataset

was selected. This subset consists of 316 images containing a single person with at least 15

annotated keypoints. Different versions of three model families, MoveNet, BlazePose, and

YOLOv8-Pose, were evaluated from two perspectives:

- Keypoint detection accuracy for pose identification: the accuracy of the models in

predicting poses, measured using the Average Precision (AP) metric. It was used to

validate model results and to evaluate the suitability of the selected images.

- Performance: average inference time per image on an Android mobile device under

real-world conditions. It was used to measure the performance of each model

(inference execution time for each image) on different devices to evaluate the speed

with which each model performs the estimation.

The results show significant differences between models in terms of accuracy-time ratio,

with the Thunder subfamily of MoveNet and the Nano version of YOLOv8-Pose standing out

for their balance between performance and accuracy.

This study provides a clear and practical insight into the applicability of different pose

estimation approaches in mobile environments, serving as a reference for developers and

researchers interested in embedded computer vision systems.

v

Índice general

PARTE I: DESCRIPCIÓN DEL PROYECTO .. 1

1. INTRODUCCION ... 2

1.1. Contexto .. 2

1.2. Motivación del estudio en dispositivos móviles ... 2

1.3. Objetivos ... 3

1.4. Estructura del documento .. 4

2. MARCO TEORICO Y ESTADO DEL ARTE ... 5

2.1. Edge computing ... 5

2.2. Estimación de posturas humanas ... 6

2.3. Tecnologías para la estimación de posturas humanas en edge computing 8

2.4. Frameworks para estimación de posturas .. 18

2.5. Modelos de estimación de posturas ... 27

2.6. Datasets de estimación de posturas ... 36

2.7. Métricas de precisión .. 44

2.8. Utilización en dispositivos móviles y consideraciones técnicas 49

3. METODOLOGÍA .. 52

3.1. Selección de modelos .. 52

3.2. Selección de dataset de testeo ... 58

3.3. Selección de imágenes de testeo.. 60

3.4. Métricas de validación y evaluación ... 62

3.5. Herramientas y entorno de desarrollo ... 62

PARTE II: PLANIFICACION, IMPLEMENTACIÓN Y RESULTADOS 64

4. PLANIFICACIÓN ... 65

4.1. Workflow general del proyecto y fases del desarrollo .. 65

4.2. FASE 1: Preparación del dataset de testeo y obtención de modelos 68

4.3. FASE 2: Desarrollo de la aplicación para Android ... 69

4.4. FASE 3: Evaluación y análisis de resultados .. 72

4.5. Planificación temporal ... 74

4.6. Viabilidad técnica .. 76

5. FASE 1: PREPARACIÓN DEL DATASET DE TESTEO Y OBTENCIÓN DE

MODELOS ... 77

5.1. Selección del dataset de imágenes de testeo ... 77

vi

5.2. Obtención de modelos para el estudio ... 81

5.3. Dispositivos de prueba .. 84

6. FASE 2: DESARROLLO DE LA APLICACIÓN PARA ANDROID 87

6.1. Análisis, diseño y preparación ... 87

6.2. Implementación del núcleo de la aplicación ... 93

6.3. Generación y gestión de ficheros de salida ... 99

6.4. Desarrollo de la interfaz .. 100

6.5. Pruebas y correcciones .. 101

7. FASE 3: EVALUACION Y ANALISIS DE RESULTADOS .. 104

7.1. Resultados obtenidos de precisión .. 104

7.2. Resultados obtenidos de rendimiento .. 116

7.3. Comparativa de resultados .. 124

PARTE III: DISCUSION Y CONCLUSIONES .. 130

8. DISCUSIÓN ... 131

8.1. Interpretación de los resultados principales .. 131

8.2. Limitaciones del estudio .. 132

9. CONCLUSIONES Y TRABAJO FUTURO .. 134

9.1. Revisión objetivos principales del estudio .. 134

9.2. Propuestas de mejora y líneas futuras ... 135

10. REFERENCIAS BIBLIOGRÁFICAS ... 137

11. ANEXOS ... 140

Anexo A. Resultados numéricos del estudio .. 140

Anexo B. Ejemplos de visualización de keypoints estimados sobre imágenes 142

vii

Índice de figuras

Imagen 1. Arquitectura simple de edge computing (3) .. 5
Imagen 2. Ejemplo de detección single-person (4) .. 7
Imagen 3. Ejemplo de detección multi-person (4) ... 7
Imagen 4. Esquema operación básica de convolución (5) .. 9
Imagen 5. Esquema general de capas de las CNNs (11) .. 12

Imagen 6. Esquema de arquitectura de la red AlexNet (11) ... 13
Imagen 7. Representación arquitectura de red neuronal convolucional VGG-16 (14) 14
Imagen 8. Esquema del modelo TensorFlow Lite (18) .. 21

Imagen 9. Pasos de la inferencia del modelo MoveNet (30) ... 30
Imagen 10. Esquema de arquitectura modelo MoveNet (30) ... 31
Imagen 11. Representación de las anotaciones de dataset COCO por persona........................ 38
Imagen 12. Representación de las anotaciones de dataset MPII por persona 42

Imagen 13. Representación IoU (38) ... 46
Imagen 14. Workflow general del proyecto ... 65

Imagen 15. Diagrama de Gantt del proyecto .. 75
Imagen 16. Estructura carpetas descarga imágenes dataset de testeo 79

Imagen 17. Salida de ejecución de script de obtención de dataset de imágenes de testeo 81
Imagen 18. Diagrama de clases de la aplicación para Android. ... 91
Imagen 19. Dependencias TensorFlow Lite añadidas al fichero build.gradle 92

Imagen 20. Interfaz de la aplicación Android (Samsung Galaxy Tab A9) 101
Imagen 21. Imágenes de la interfaz con secuencia de inicio y avance del proceso 103

Imagen 22. Imágenes de la interfaz con finalización del proceso, compartir resultados y salida

de la aplicación ... 103

Imagen 23. AP por dataset del modelo MoveNet Lightning 8 ... 106
Imagen 24. AP por dataset del modelo MoveNet Lightning 16 ... 106
Imagen 25. AP por dataset del modelo MoveNet Lightning 32 ... 107

Imagen 26. AP por dataset del modelo MoveNet Thunder 8 ... 107
Imagen 27. AP por dataset del modelo MoveNet Thunder 16 ... 108

Imagen 28. AP por dataset del modelo MoveNet Thunder 32 ... 108
Imagen 29. AP por dataset del modelo BlazePose Lite .. 109

Imagen 30. AP por dataset del modelo BlazePose Full .. 109
Imagen 31. AP por dataset del modelo BlazePose Heavy .. 110
Imagen 32. AP por dataset del modelo Yolo8-pose Nano .. 110
Imagen 33. AP por dataset del modelo Yolo8-pose Small ... 111

Imagen 34. AP por dataset del modelo Yolo8-pose Medium ... 111
Imagen 35. Comparativa precisión/modelos por dispositivo con imágenes inadecuadas 112
Imagen 36. Comparativa precisión/modelos por dispositivo con dataset general 113

Imagen 37. Comparativa precisión/modelos por dispositivo con imágenes adecuadas 114
Imagen 38. Tiempo medio inferencia Samsung Galaxy Tab A7 Lite 117
Imagen 39. Tiempo medio inferencia Samsung Galaxy M32 .. 117
Imagen 40. Tiempo medio inferencia Samsung Galaxy Tab A9 .. 118
Imagen 41. Comparativa tiempos medio inferencia por modelo por dispositivo 119

Imagen 42. Tiempo total inferencia Samsung Galaxy Tab A7 Lite 120
Imagen 43. Tiempo total inferencia Samsung Galaxy M32 ... 121
Imagen 44. Tiempo total inferencia Samsung Galaxy Tab A9 ... 121

viii

Imagen 45. Comparativa tiempo total inferencia por modelo por dispositivo 122

Imagen 46. Comparativa AP vs. Tiempo de inferencia dataset general 125
Imagen 47. Comparativa AP vs. Tiempo de inferencia dataset de imágenes adecuadas........ 127
Imagen 48. Comparativa AP vs. Tiempo de inferencia dataset de imágenes inadecuadas 128

Imagen 49. Keypoints estimados por MoveNet Lightning para imagen 22705 143
Imagen 50. Keypoints estimados por MoveNet Thunder para imagen 22705 144
Imagen 51. Keypoints estimados por BlazePose para imagen 22705 145
Imagen 52. Keypoints estimados por Yolo8-pose para imagen 22705 146
Imagen 53. Keypoints estimados por MoveNet Lightning para imagen 65736 147

Imagen 54. Keypoints estimados por MoveNet Thunder para imagen 65736 147
Imagen 55. Keypoints estimados por BlazePose para imagen 65736 148
Imagen 56. Keypoints estimados por Yolo8-pose para imagen 65736 148
Imagen 57. Keypoints estimados por MoveNet Lightning para imagen 347265 149
Imagen 58. Keypoints estimados por MoveNet Thunder para imagen 347265 150

Imagen 59. Keypoints estimados por BlazePose para imagen 347265 151
Imagen 60. Keypoints estimados por Yolo8-pose para imagen 347265 152

Imagen 61. Keypoints estimados por MoveNet Lightning para imagen 161879 153
Imagen 62. Keypoints estimados por MoveNet Thunder para imagen 161879 153
Imagen 63. Keypoints estimados por BlazePose para imagen 161879 154
Imagen 64. Keypoints estimados por Yolo8-pose para imagen 161879 154

ix

Índice de tablas

Tabla 1. Arquitecturas clásicas de CNNs ... 13
Tabla 2. Arquitecturas optimizadas de CNNs .. 15
Tabla 3. Arquitecturas eficientes para edge computing .. 16
Tabla 4. Arquitecturas híbridas ... 17
Tabla 5. Frameworks para estimación de posturas humanas .. 19

Tabla 6. Versiones de modelos YOLO de estimación de posturas humanas 33
Tabla 7. Resumen características modelos preentrenados ... 34
Tabla 8. Resumen arquitecturas modelos preentrenados.. 35

Tabla 9. Listado de keypoints de dataset COCO .. 39
Tabla 10. Listado de keypoints de dataset MPII .. 42
Tabla 11. Resumen aplicación criterios selección de modelos ... 54
Tabla 12. Equivalencia puntos BlazePose .. 56

Tabla 13. Resumen de características modelos incluidos en el estudio 58
Tabla 14. Resultados criterios selección de dataset .. 59

Tabla 15. Fases generales del proyecto .. 67
Tabla 16. Sub-fases de la fase de preparación del dataset de testeo y obtención de modelos.. 69

Tabla 17. Sub-fases de la fase de desarrollo de la aplicación para Android 72
Tabla 18. Sub-fases de la fase de evaluación y análisis de resultados 74
Tabla 19. Resultados numéricos Samsung Galaxy Tab A7 Lite ... 140

Tabla 20. Resultados numéricos Samsung Galaxy M32 .. 140
Tabla 21. Resultados numéricos Samsung Galaxy Tab A9 .. 141

x

Índice de fórmulas

Ecuación 1. Cálculo de Recall (37) .. 46
Ecuación 2. Cálculo de IoU (Intersection Over Union) (38) ... 47
Ecuación 3. Cálculo de OKS de COCO (39) ... 47
Ecuación 4. Cálculo Average Precision en COCO (40) ... 48

1

PARTE I: DESCRIPCIÓN DEL PROYECTO

2

1. INTRODUCCION

1.1. Contexto

La estimación de posturas humanas (HPE, Human Pose Estimation) es una disciplina

dentro de la visión por computador que busca identificar la posición y orientación del cuerpo

humano en imágenes o vídeos mediante la localización de keypoints o puntos clave (como ojos,

manos, codos, rodillas, hombros, tobillos, etc.). El interés por la estimación de posturas

humanas ha crecido significativamente en los últimos años debido a su utilidad en ámbitos

como el deporte, la salud, la interacción hombre-máquina, la realidad aumentada o la vigilancia

automática. Esta tecnología permite identificar con precisión la posición de las articulaciones

del cuerpo humano a partir de imágenes o vídeo, dando lugar a aplicaciones inteligentes capaces

de interpretar el comportamiento físico de una persona en tiempo real. Este proceso se describe

detalladamente en la sección “2.2. Estimación de posturas humanas”.

Tradicionalmente, los sistemas de estimación de posturas requerían hardware de alto

rendimiento y ejecución en servidores remotos. Sin embargo, los avances recientes en modelos

ligeros y técnicas de optimización han permitido llevar estas capacidades a dispositivos

móviles, como smartphones y tablets, abriendo la puerta a soluciones descentralizadas,

eficientes y respetuosas con la privacidad del usuario.

 En los últimos años, los avances en arquitecturas de redes neuronales profundas, junto

con la disponibilidad de datasets anotados como COCO (1) o MPII (2) que vemos más adelante,

han permitido desarrollar modelos de estimación de posturas cada vez más precisos. Sin

embargo, muchos de estos modelos han sido diseñados para ejecutarse en entornos con alto

poder computacional, como servidores con GPU, lo que dificulta su despliegue directo en

dispositivos móviles con recursos limitados.

1.2. Motivación del estudio en dispositivos móviles

 Los teléfonos móviles y dispositivos embebidos han evolucionado significativamente y

cada día cuentan con capacidades de computación cada vez mayores. Esto hace que frente al

cloud computing (computación en la “nube”) donde los datos son procesados en centros de

datos remotos y centralizados, surja un nuevo paradigma llamado edge computing

(computación en el “borde”) en el cual a diferencia del cloud computing los datos se procesan

cerca de la fuente donde se generan en lugar de enviarse a centros remotos.

A pesar de ello, en estos dispositivos aún siguen existiendo restricciones importantes de

memoria, potencia de cálculo y consumo energético que requieren la elección cuidadosa de

modelos optimizados para estos entornos.

 Evaluar el comportamiento de distintos modelos de estimación de posturas directamente

sobre dispositivos móviles resulta interesante para determinar su viabilidad en aplicaciones del

mundo real, especialmente cuando se busca un equilibrio entre precisión y velocidad. Este tipo

de análisis cobra aún más importancia cuando los modelos deben integrarse en aplicaciones

3

móviles de salud, deporte o monitoreo, donde la fiabilidad y la latencia son factores

determinantes.

En este contexto, existe una amplia variedad de modelos preentrenados disponibles

públicamente, desarrollados por distintas organizaciones (Google o Ultralytics, entre otras). La

motivación de este estudio radica, por tanto, en la necesidad de analizar de forma objetiva y

reproducible qué modelos de estimación de posturas resultan más adecuados para su uso en

entornos móviles, evaluando tanto su precisión en tareas reales como su rendimiento en tiempo

de ejecución.

Este trabajo no solo permitirá identificar los modelos más equilibrados en términos de

eficiencia y calidad, sino que también servirá como referencia técnica para desarrolladores,

investigadores o empresas interesadas en implementar visión por computador avanzada en

entornos móviles.

1.3. Objetivos

Este Trabajo Fin de Máster tiene como objetivo principal estudiar y comparar el

comportamiento de distintas librerías y modelos de estimación de postura humana ejecutados

sobre dispositivos móviles con sistema operativo Android.

1.3.1 Objetivo general

El objetivo general de este Trabajo Fin de Máster es realizar un estudio del estado del

arte en estimación de posturas humanas, que incluye la selección de distintas familias de

modelos de referencia y su posterior evaluación en términos de rendimiento y precisión al

ejecutarse sobre dispositivos móviles.

1.3.2 Objetivos específicos

Los objetivos específicos de este Trabajo Fin de Master son:

- Búsqueda y selección de modelos existentes, revisión de documentación y

selección de los modelos para la realización del estudio.

- Implementar un sistema de pruebas para la ejecución de modelos con formato

TensorFlow Lite (TFLite) en un entorno Android.

- Medir y comparar la precisión de los modelos mediante métricas como Average

Precision (AP@[0.50:0.95]).

- Medir y comparar el tiempo medio de inferencia por imagen en cada modelo.

- Establecer una relación entre la calidad de las predicciones y los tiempos de

ejecución.

4

- Identificar los modelos más adecuados para su uso en aplicaciones móviles reales,

considerando el compromiso entre precisión y eficiencia.

1.4. Estructura del documento

El contenido de esta memoria se estructura de la siguiente manera:

- Apartado 2: Marco teórico y estado del arte, se explican los fundamentos de la

estimación de posturas, los diferentes modelos preentrenados existentes y los

entornos de ejecución en Android.

- Apartado 3: Metodología, se detallan los modelos seleccionados para el estudio, la

descripción del dataset de imágenes comunes que utilizaremos y las métricas,

herramientas y dispositivos utilizados para la realización de la evaluación.

- Apartado 4: Planificación, se definen las fases y subfases de la que consta el

proyecto y la planificación temporal prevista.

- Apartado 5: Fase 1: Preparación del dataset de testeo y obtención de modelos,

se describe el proceso de selección de las imágenes del dataset de testeo así como el

de la obtención de los modelos para el estudio.

- Apartado 6: Fase 2: Desarrollo de la aplicación, se describe el proceso de

desarrollo de la aplicación para Android donde se integraron y probaron tanto

modelos como imágenes de testeo, así como la obtención de los datos de salida para

su evaluación.

- Apartado 7: Fase 3: Evaluación y análisis de resultados, se presentan las métricas

obtenidas, tanto de precisión como de rendimiento de todos los modelos examinados

y las comparativas entre ambas variables.

- Apartado 8: Discusión, se interpreta los resultados, se discuten las fortalezas y

debilidades de los modelos y se plantean las implicaciones prácticas.

- Apartado 9: Conclusiones y trabajo futuro, se resumen los hallazgos más relevantes

y se proponen futuras líneas de investigación.

- Apartado 10: Referencias bibliográficas.

- Apartado 11: Anexos.

5

2. MARCO TEORICO Y ESTADO DEL ARTE

En este apartado se introducen los fundamentos necesarios para comprender el entorno

donde se desarrolla el estudio, el proceso de estimación de posturas humanas, se describen las

familias de modelos preentrenados existentes y cuales utilizaremos para ser evaluados y se

presentan los aspectos técnicos relacionados con su integración y ejecución en dispositivos

móviles. El objetivo es proporcionar un contexto conceptual y tecnológico que justifique la

elección de los modelos y la metodología empleada en este estudio.

2.1. Edge computing

El edge computing (o computación en el borde) es un paradigma de computación

distribuida que acerca la computación y el almacenamiento de datos a los dispositivos donde se

generan, esto es en el “borde” de la red cerca de la fuente de datos (Imagen 1). Esto contrasta

con la computación en la nube tradicional, donde los datos se procesan en centros de datos

centralizados y a menudo ubicados lejos de la fuente. Al procesar datos en el borde se puede

reducir la latencia, mejorar los tiempos de respuesta y minimizar el uso del ancho de banda pero

los dispositivos utilizados tienen generalmente capacidades de procesamiento y

almacenamiento muy limitadas en comparación con los servidores en la nube (3).

Imagen 1. Arquitectura simple de edge computing (3)

Este trabajo evalúa los resultados de llevar a dispositivos de borde (como pueden ser

teléfonos móviles) una tarea como la de estimación de posturas humanas, que hasta hace

relativamente poco tiempo requería mayores capacidades de procesamiento que hacían que no

pudieran ser ejecutadas de forma distribuida en dispositivos con menor capacidad de proceso

al alcance de cualquier persona.

6

2.2. Estimación de posturas humanas

2.2.1. Conceptos básicos

 La estimación de postura humana es una tarea de visión por computador que consiste

en predecir la ubicación espacial de puntos clave (keypoints) del cuerpo humano en

imágenes o secuencias de vídeo. Los keypoints suelen incluir articulaciones como codos,

rodillas, tobillos, caderas, hombros, entre otros, y se pueden conectar para formar un

esqueleto digital. Existen múltiples enfoques para abordar este problema, y su clasificación

puede realizarse atendiendo a diferentes criterios que reflejan tanto la estrategia de detección

como la forma de representar el cuerpo humano en los modelos computacionales (4).

2.2.2. Clasificación de los tipos de detección de posturas

Desde el punto de vista operativo, los métodos de detección pueden clasificarse desde

diferentes enfoques, dependiendo de si atendemos a su clasificación por tipo espacial (2D o

3D), por cantidad de objetivos (mono-persona o multi-persona), al método de detección (top-

down o bottom-up) o al tipo de modelado (modelos cinemáticos, planares o volumétricos). Estas

clasificaciones generales permiten entender la diversidad de enfoques existentes, valorar sus

ventajas y limitaciones en función del contexto, y facilitar la selección de la solución más

adecuada según el caso de uso y los recursos disponibles.

Clasificación por tipo de detección espacial

- Estimación de posturas 2D. Localiza coordenadas en dos dimensiones (x, y) de una

o varias personas sobre el plano de una imagen o video, tiene como ventajas mayor

velocidad y menor coste computacional sobre las estimaciones de posturas en 3D y

como limitaciones que no se obtiene percepción de profundidad.

- Estimación de posturas 3D. Añade la dimensión Z proporcionando información

sobre la profundidad y la orientación del cuerpo en el entorno físico. Ofrece un

mayor realismo y precisión en tareas biomecánicas, robótica o animación aunque

requiere un coste computacional mayor.

Clasificación por cantidad de objetivos

- Mono-persona (single-person). El modelo asume que la imagen contiene una única

persona (Imagen 2), generalmente centrada y completamente visible. Este supuesto

permite que la red se enfoque exclusivamente en detectar los keypoints corporales

sin necesidad de mecanismos adicionales de segmentación o agrupamiento. Por lo

general, estos modelos utilizan una única pasada de inferencia sobre toda la imagen.

7

Imagen 2. Ejemplo de detección single-person (4)

- Multi-persona (multi-person). El enfoque multi-person está diseñado para

identificar y estimar la postura de varias personas simultáneamente (Imagen 3) en

una misma imagen o secuencia. Este tipo de modelos requiere, además de detectar

los keypoints, asignarlos correctamente a cada instancia individual por lo que es más

costosa computacionalmente.

Imagen 3. Ejemplo de detección multi-person (4)

Clasificación por método de detección

- Top-down. Realizan primero una detección de personas (caja contenedora) y luego

aplican un modelo de estimación de postura a cada una de ellas por separado

estimando los keypoints dentro de ella.

- Bottom-up. Detectan primero todos los keypoints en la imagen y posteriormente los

agrupan en función de su pertenencia a cada individuo.

8

Clasificación por tipo de modelado del cuerpo

- Modelos cinemáticos. Representan el cuerpo humano como un sistema articulado

compuesto por un conjunto de puntos clave (keypoints) conectadas por segmentos

que representan el cuerpo como un esqueleto de articulaciones. Esta estructura

permite modelar los grados de libertad y el movimiento relativo entre las partes del

cuerpo. Son ampliamente utilizados en tareas de análisis de movimiento,

biomecánica y aplicaciones de realidad aumentada.

- Modelos planares. Se centran en la representación del contorno externo del cuerpo

o de sus partes visibles en una imagen 2D. Utilizan técnicas de segmentación para

extraer las siluetas y contornos, proporcionando una aproximación más visual y

basada en la forma.

- Modelos volumétricos. Los modelos volumétricos buscan reconstruir la forma

completa y tridimensional del cuerpo humano, incluyendo su volumen y superficies

internas.

2.3. Tecnologías para la estimación de posturas humanas en edge computing

La estimación de posturas humanas mediante visión por computador se apoya

principalmente en el uso de modelos de aprendizaje profundo, concretamente en redes

neuronales convolucionales (CNN por sus siglas en ingles de Convolutional Neural Networks),

por su capacidad para extraer representaciones espaciales jerárquicas a partir de imágenes. Este

apartado presenta los fundamentos arquitectónicos de las CNNs como base de la mayoría de

modelos utilizados en este estudio, así como las técnicas de optimización necesarias para su

ejecución eficiente en dispositivos móviles, entre las que destaca la cuantización. Estas

estrategias permiten reducir el tamaño y la latencia de los modelos sin comprometer

significativamente su precisión, facilitando su integración en entornos de computación

embebida o de recursos limitados como dispositivos móviles. La comprensión de estos

elementos es clave para contextualizar la selección, implementación y evaluación de los

modelos estudiados en este trabajo. La naturaleza de este estudio nos lleva a utilizar redes con

tipo de detección espacial en 2D, para la identificación de una única persona o single-person,

con un enfoque top-down (más adecuadas para escenarios single-person) y con tipo de

modelado cinemático (conjunto de puntos clave o keypoints).

2.3.1. Redes neuronales convolucionales (CNNs)

Una red neuronal artificial es un modelo computacional compuesto por capas de

nodos (neuronas) conectados entre sí mediante pesos ajustables. Cada nodo aplica una función

de activación a la suma ponderada de sus entradas, y la red aprende a realizar tareas (como

clasificación o regresión) ajustando estos pesos mediante un proceso iterativo de entrenamiento

con retropropagación.

Una convolución es una operación matemática que se aplica a una entrada (como una

imagen) utilizando un pequeño conjunto de pesos llamado filtro, con el objetivo de extraer

9

características locales relevantes como bordes, texturas o formas (Imagen 4). Durante esta

operación, el filtro se desliza (o convoluciona) sobre la entrada, multiplicando sus valores por

los de la región correspondiente de la imagen y sumando los resultados en cada posición. El

resultado es un mapa de activación o mapa de características, que conserva la información

espacial y refleja la presencia de patrones específicos aprendidos por el filtro. Esta operación

permite a las CNNs detectar características jerárquicas en las primeras capas, detectan

elementos simples (líneas, esquinas), mientras que en capas más profundas reconocen

estructuras más complejas (formas, objetos). La convolución reduce la dimensionalidad y

preserva la relación espacial, haciendo a las CNNs especialmente eficaces en tareas de visión

por computador.

Imagen 4. Esquema operación básica de convolución (5)

Las redes neuronales convolucionales son un tipo especializado de red neuronal

diseñada para procesar datos con estructura de rejilla (como imágenes) mediante el uso de capas

convolucionales que aprenden representaciones espaciales jerárquicas. Estas redes extraen

automáticamente características relevantes aplicando filtros locales y compartiendo pesos, lo

que las hace muy eficientes y efectivas para tareas de visión por computador (5) (6).

Una CNN se construye como una arquitectura jerárquica compuesta por una secuencia

organizada de capas, cada una con un propósito específico en el procesamiento y la abstracción

progresiva de los datos de entrada (generalmente imágenes). Estas capas se agrupan

funcionalmente en bloques, cuya disposición refleja el flujo de información desde los niveles

bajos de detección de patrones simples hasta los niveles superiores de interpretación semántica.

10

En el diseño de CNNs por tanto distinguimos entre bloques funcionales y capas

individuales, ya que ambos niveles estructurales cumplen roles diferenciados pero

interrelacionados en el flujo de procesamiento de la información. Mientras que los bloques

agrupan funciones específicas del modelo en etapas coherentes del pipeline de aprendizaje, las

capas son las unidades básicas de operación que materializan dichas funciones.

A nivel de bloques funcionales nos encontramos varios bloques diferenciados por su

función dentro de la arquitectura de la CNN:

- Capa de entrada. Recibe los datos en formato tensorial, por ejemplo, una imagen

RGB representada como un tensor tridimensional (altura × anchura × canales) y

normaliza sus valores si es necesario.

- Feature extraction (extracción de características) (7). Este bloque se corresponde

con las primeras capas de la red y está compuesto principalmente por capas

convolucionales, para detectar patrones espaciales locales como bordes, texturas y

formas, y capas de activación no lineales (como ReLU 1), que permiten a la red

modelar relaciones complejas y no lineales. Frecuentemente, se añaden capas de

pooling (como max pooling o average pooling2) que permiten la reducción de la

dimensionalidad espacial manteniendo información relevante, y capas de

normalización que estabilizan el proceso de entrenamiento diseñadas para

transformar una imagen cruda en un conjunto de representaciones útiles. Este bloque

es esencial porque extrae la información visual jerárquica que luego será

interpretada por las prediction heads.

- Prediction heads (bloques de predicción) (8), este bloque está compuesto por un

conjunto de capas cuya función principal es transformar las representaciones

intermedias extraídas por el modelo en predicciones específicas para una tarea

determinada. Estas prediction heads operan sobre los mapas de características

generados por el bloque de extracción de características (feature extraction) y

adaptan la salida del modelo a diferentes tipos de problemas, como clasificación,

regresión, detección de objetos, segmentación o estimación de posturas humanas.

Desde el punto de vista estructural, las prediction heads pueden estar integradas por

capas completamente conectadas (fully connected layers) también llamadas capas

densas, capas convolucionales adicionales, o incluso subredes específicas diseñadas

para tareas particulares. La elección de su arquitectura depende directamente del tipo

de información que se requiere predecir y del grado de detalle espacial que se debe

preservar.

- Capa de salida. Es la responsable de generar la predicción final del modelo, ya sea

en forma de probabilidades, coordenadas, etiquetas o mapas espaciales,

dependiendo de la tarea específica para la cual ha sido diseñada la red. La

1 ReLU (Rectified Linear Unit): función de activación que introduce no linealidad en la red, ReLU(x)=max(0,x)
2 Max pooling selecciona el valor máximo dentro de una ventana de agrupación, mientras que average pooling
calcula el promedio de todos los valores en la ventana.

11

configuración de la capa de salida varía según el tipo de problema (clasificación,

detección, segmentación, etc.), pero siempre está diseñada para ofrecer una

representación final interpretable y directamente utilizable.

En el diseño estructural de una red neuronal convolucional además de las capas

especializadas en el procesamiento espacial de datos, como las capas convolucionales y de

pooling, también se incorporan otros tipos de capas que desempeñan un papel crucial en la

integración y decisión final del modelo. Estas capas se dividen fundamentalmente en connected

layers y fully connected layers, y su inclusión varía según el tipo de tarea a resolver:

- Connected layers o capas conectadas (9). Hacen referencia a aquellas capas en las

que cada nodo de entrada está conectado a uno o varios nodos de la siguiente capa,

aunque no necesariamente a todos. Este tipo de conexión se utiliza a menudo en

arquitecturas que buscan una transición progresiva entre la representación espacial

y la salida vectorial o categórica, permitiendo una reducción gradual de la

dimensionalidad sin perder información estructural relevante.

- Fully connected layers o capas densas (10). Representan un caso particular de

connected layers, donde cada neurona de una capa está conectada a todas las

neuronas de la capa siguiente. Estas capas son especialmente útiles para tareas de

clasificación y regresión, ya que permiten combinar todas las características

aprendidas previamente en una representación densa que puede ser fácilmente

interpretada por una función de activación final (como softmax 3o sigmoid4).

Aunque son potentes en términos de capacidad de representación, también implican

un elevado coste computacional y una mayor cantidad de parámetros, lo que puede

conllevar un riesgo de sobreajuste si no se utilizan técnicas de regularización

adecuadas.

En conjunto, tanto las connected layers como las fully connected layers permiten a la

CNN realizar inferencias de alto nivel, integrando la información extraída por las capas

anteriores y generando salidas estructuradas que se ajustan a los requerimientos específicos de

la tarea de aprendizaje supervisado (Imagen 5).

3 La función de activación softmax transforma un vector entero de números en una distribución de
probabilidad
4 Función de activación que toma la suma ponderada de las entradas de la capa anterior y la transformar en un
valor de salida entre 0 y 1

12

Imagen 5. Esquema general de capas de las CNNs (11)

Arquitecturas de redes neuronales convolucionales

A lo largo de la evolución de esta disciplina, se han propuesto numerosas arquitecturas,

desde modelos clásicos hasta redes ligeras optimizadas para dispositivos móviles. Estas

arquitecturas responden a las crecientes demandas de precisión, eficiencia computacional y

adaptabilidad a diferentes entornos de ejecución. Algunas están específicamente diseñadas para

preservar la información espacial a lo largo de las distintas capas de la red, lo cual es esencial

para una localización precisa de los puntos clave del cuerpo humano, como en el caso de HRNet

o Lite-HRNet. Otras, como MobileNet o GhostNet, han sido optimizadas por grandes

compañías tecnológicas como Google (12) y Huawei, respectivamente, con el objetivo de

ofrecer inferencias rápidas en tiempo real, incluso en dispositivos con capacidades limitadas

(13). Estas optimizaciones suelen involucrar técnicas como la cuantización de pesos, la poda

de parámetros o el uso de bloques convolucionales eficientes. Además, la incorporación de

arquitecturas basadas en transformadores y modelos híbridos ha permitido una mejor

modelización contextual y mejoras en tareas más complejas como la estimación 3D o la multi-

persona. A continuación, se presenta una clasificación de algunas de las arquitecturas de CNNs

más representativas en el ámbito de la estimación de posturas humanas, destacando sus

principales características y cómo han evolucionado para adaptarse a las distintas necesidades

de esta área de investigación.

Arquitecturas clásicas (convencionales)

Estas arquitecturas constituyen la base histórica del aprendizaje profundo en visión por

computador. Se caracterizan por tener arquitecturas secuenciales y relativamente simples, en

las que las capas convolucionales se intercalan con capas de activación (ReLU), pooling y capas

densas finales (Tabla 1). Aunque hoy en día se consideran menos eficientes, fueron clave en el

avance inicial de la disciplina (11).

- LeNet (1998). Utilizado originalmente para reconocimiento de dígitos manuscritos.

Fue pionero en el uso de convoluciones y pooling en redes neuronales.

13

- AlexNet (2012). Revolucionó el campo al ganar el desafío ImageNet5 con una gran

mejora de precisión. Introdujo el uso de GPU para entrenamiento, activación ReLU

y regularización con dropout6 (Imagen 6).

- ZFNet (2013). Introdujo técnicas para visualizar filtros y comprender el

funcionamiento interno de las redes, mejorando la arquitectura de AlexNet.

Arquitectura Año Características

LeNet 1998 Primer uso práctico de CNN; reconocimiento de dígitos

AlexNet 2012 ReLU, dropout, GPU training; ganador ImageNet 2012

ZFNet 2013 Mejora de AlexNet, visualización de filtros

Tabla 1. Arquitecturas clásicas de CNNs

Aunque ya no son las más utilizadas, siguen empleándose como puntos de comparación,

en benchmarks estandarizados o como punto de partida para el aprendizaje transferido. Su papel

histórico como base del desarrollo de redes más modernas les otorga un valor de referencia,

especialmente útil para evaluar mejoras en precisión, eficiencia y capacidad generalizadora.

Además, su simplicidad relativa permite entender conceptos fundamentales del diseño de redes

profundas y facilita su implementación en entornos educativos y de investigación.

Imagen 6. Esquema de arquitectura de la red AlexNet (11)

5 ImageNet, desafío anual de reconocimiento visual a gran escala (ILSVRC por sus siglas en inglés)
6 Técnica de regularización que se basa en la eliminación de neuronas en las capas de la red neuronal que es
aplicada en base a la probabilidad dada por la distribución de Bernoulli

14

Arquitecturas optimizadas con módulos o bloques avanzados

Introducen componentes estructurales innovadores que mejoran la capacidad de

aprendizaje y reducen los problemas de entrenamiento en redes profundas, como la

desaparición del gradiente (Tabla 2) (11).

- VGG16/VGG19 (2014). Modelos profundos con 16 o 19 capas, conocidos por

utilizar exclusivamente convoluciones 3×3 y pooling 2×2, lo que los hace

conceptualmente simples pero computacionalmente pesados (Imagen 7).

- GoogLeNet / Inception (2014-2016). Introducen módulos Inception, que combinan

convoluciones de distintos tamaños (1×1, 3×3, 5×5) en paralelo dentro de un mismo

bloque. Aportan eficiencia y profundidad sin un incremento excesivo en parámetros.

- ResNet (2015). Introduce conexiones residuales (skip connections7) que permiten

entrenar redes de más de 100 capas sin degradación del rendimiento. Se convirtió

en el nuevo estándar para tareas de clasificación y segmentación.

- DenseNet (2017). Cada capa recibe como entrada todas las salidas anteriores del

bloque. Mejora la reutilización de características y permite entrenar modelos muy

profundos con menos parámetros.

- ResNeXt. Variante de ResNet que introduce el concepto de cardinalidad (uso de

múltiples caminos en paralelo) para mejorar la expresividad sin aumentar demasiado

los parámetros.

Imagen 7. Representación arquitectura de red neuronal convolucional VGG-16 (14)

7 Técnica de diseño de redes neuronales que permite que los gradientes fluyan de manera más efectiva
durante la retropropagación, lo que ayuda a entrenar modelos más profundos.

15

Actualmente, estas arquitecturas son ampliamente utilizadas como backbones8 en

modelos más complejos dentro del campo de la visión por computador, desempeñando un papel

central en tareas avanzadas como la estimación de poses humanas, la segmentación semántica

y la detección de objetos. Su éxito radica en un diseño modular y altamente optimizado que

permite la extracción jerárquica de características, es decir, la progresiva representación de

patrones visuales desde descriptores de bajo nivel (bordes, texturas y colores locales) hasta

representaciones de alto nivel (formas, articulaciones o estructuras completas).

Gracias a esta capacidad, dichas arquitecturas se integran con facilidad en sistemas más

sofisticados, actuando como bloques fundamentales de procesamiento y sirviendo como base

para tareas que requieren una representación espacial rica y profunda.

Arquitectura Año Características

VGG16 2014 16 capas; solo convoluciones 3x3 + max pooling

VGG19 2014 Igual que VGG16 pero con 3 capas más (19 capas)

GoogLeNet 2014 Módulos Inception; uso de convoluciones 1x1

Inception-v3/v4 2015-16 Profundidad optimizada; batch norm, factorized convs

ResNet 2015 Residual connections (ResNet-18/34/50/101/152)

DenseNet 2017 Conexiones densas entre capas; mejora gradientes

ResNeXt 2017 Bloques en paralelo (cardinalidad)

Tabla 2. Arquitecturas optimizadas de CNNs

Arquitecturas eficientes para móviles y edge computing

Arquitecturas diseñadas para su uso en dispositivos con recursos limitados

(smartphones, IoT, drones). Priorizan el bajo consumo, la velocidad de inferencia y la

compacidad del modelo, a menudo mediante técnicas como cuantización, pruning9 o depthwise

separable convolutions10 (Tabla 3).

- MobileNet (v1, v2, v3, de 2017 a 2019). Utiliza convoluciones separables en

profundidad para reducir el número de parámetros y operaciones. MobileNetV2

introduce linear bottlenecks y conexiones residuales. La v3 combina AutoML para

una arquitectura más optimizada.

- ShuffleNet. Usa convoluciones agrupadas y un mecanismo de channel shuffle11 para

mezclar información entre canales y mantener precisión con menor coste

computacional.

8 Columna vertebral, en ocasiones referido al bloque de extracción de características (feature extraction) de la
arquitectura
9 Técnica que simplifica o reduce el tamaño de un modelo, generalmente eliminando componentes sin
importancia como pesos en redes neuronales o secciones de árboles de decisión.
10 Técnica que descompone la convolución estándar en dos pasos: convolución en profundidad y convolución
puntual lo que reduce el número de parámetros y cálculos.
11 Técnica para mejorar el flujo de información entre grupos de canales en redes neuronales convolucionales.

16

- EfficientNet. Utiliza una técnica de búsqueda automatizada de arquitectura (NAS) y

un enfoque de escalamiento compuesto para obtener redes más pequeñas y precisas.

- GhostNet. Es una arquitectura eficiente que genera mapas de características

utilizando pocas convoluciones estándar y múltiples operaciones lineales simples,

lo que reduce significativamente el coste computacional.

Actualmente son ideales como backbone en tareas en tiempo real, como estimación de

poses en móviles, detección en edge devices o visión en robots. Su arquitectura ligera y

eficiencia computacional permiten desplegar modelos con baja latencia y alto rendimiento en

entornos con recursos limitados.

Arquitectura Año Características

MobileNet v1 2017 Depthwise separable convolutions

MobileNet v2 2018 Linear bottlenecks + skip connections

MobileNet v3 2019 AutoML + eficiencia optimizada (por Google)

ShuffleNet 2018 Grouped convs + channel shuffle

EfficientNet 2019 Escalamiento compuesto (depth, width, resolution)

GhostNet 2020 Reducción de computación mediante convoluciones fantasma

Tabla 3. Arquitecturas eficientes para edge computing

Arquitecturas híbridas o de transición

Combinan la eficacia de las CNNs para captar patrones locales con la capacidad de

Transformers12 para modelar relaciones globales, introduciendo una nueva generación de

arquitecturas en visión artificial (Tabla 4).

- FBNet. Otro enfoque basado en NAS (Neural Architecture Search) optimizado para

dispositivos móviles.

- RegNet. Familia de arquitecturas generadas automáticamente mediante búsqueda en

espacios de diseño. Ofrece una buena relación entre precisión y eficiencia.

- ConvNeXt (2022). Arquitectura tipo CNN rediseñada desde cero siguiendo

principios de Transformers, como el uso de normalización LayerNorm y kernels

grandes. Mejora el rendimiento en benchmarks sin dejar de ser completamente

convolucional.

Actualmente son utilizadas en tareas complejas de visión por computador, como

clasificación avanzada, segmentación semántica y estimación de poses en entornos exigentes.

Estas arquitecturas combinan elementos tradicionales de las CNNs con mecanismos más

12 Un tipo de arquitectura de red neuronal diseñada para procesar secuencias de datos

17

recientes, como bloques de atención, conexiones residuales, o módulos de transformación

espacial, permitiendo una representación más rica y adaptativa de las características visuales.

Su diseño busca un equilibrio entre eficiencia computacional y capacidad expresiva, lo que las

hace especialmente adecuadas para aplicaciones que requieren alta precisión en tiempo real,

como vehículos autónomos, realidad aumentada o análisis biométrico en condiciones no

controladas.

Arquitectura Año Características

FBNet 2019 Optimizado por búsqueda de arquitectura (NAS)

RegNet 2020 Arquitecturas generadas automáticamente

ConvNeXt 2022 CNN moderna inspirada en Vision Transformers

Tabla 4. Arquitecturas híbridas

La mayoría de los modelos de estimación de posturas se basan en alguna de estas

arquitecturas de CNNs para extraer características espaciales de las imágenes ya que permiten

identificar patrones visuales complejos que facilitan la localización de los keypoints que

definen las posturas de las personas en cada imagen.

2.3.2. Cuantización de modelos

La cuantización de modelos es una técnica de optimización que convierte los valores de

precisión flotante (float32) usados en los modelos de redes neuronales a representaciones más

compactas como int8, uint8 o float16 (15). Esta transformación reduce el tamaño del modelo y

mejora su eficiencia computacional, especialmente en dispositivos con recursos limitados como

móviles o dispositivos de edge computing. Los principales objetivos de la cuantización son:

- Reducir el tamaño del modelo.

- Disminuir el tiempo de inferencia.

- Reducir el consumo energético.

- Facilitar el despliegue en hardware especializado.

Los modelos de estimación de poses generan coordenadas para los puntos clave

(keypoints) a partir de mapas de calor o regresiones directas. Estos modelos suelen tener

arquitecturas de CNNs pesadas o redes híbridas (CNNs + Transformer), lo que los hace

candidatos ideales para cuantización en escenarios móviles o en tiempo real ya que permite

ejecutar inferencias más rápidas mientras que mantiene una precisión aceptable en coordenadas

si se calibra correctamente.

Existen dos formas de realizar la cuantización de un modelo:

- Cuantización posterior al entrenamiento (PTQ, Post-training Quantization). Se

18

aplica a un modelo ya entrenado, convirtiendo sus parámetros a una representación

de menor precisión sin necesidad de volver a entrenarlo.

- Cuantización consciente del entrenamiento (QAT, Quantization-Aware Training).

Se incorpora la conversión de los parámetros durante el proceso de entrenamiento o

ajuste fino del modelo, lo que puede mejorar el rendimiento.

2.4. Frameworks para estimación de posturas

Un framework es un entorno de desarrollo que permite construir, entrenar y desplegar,

en nuestro caso, modelos de estimación de posturas humanas. Estos frameworks proporcionan

las herramientas necesarias para entrenar, evaluar y desplegar modelos de deep learning que

detectan posiciones articulares del cuerpo humano en imágenes o secuencias de video y ofrecen

bibliotecas optimizadas, interfaces modulares y soporte para múltiples formatos de despliegue,

facilitando tanto la investigación como la aplicación en tiempo real (Tabla 5) (16):

- TensorFlow / Keras, es un framework de código abierto desarrollado por Google

que permite implementar y entrenar modelos de aprendizaje profundo. Su

integración con TensorFlow Lite lo convierte en una opción ideal para el despliegue

en dispositivos móviles, como ocurre con modelos como MoveNet y BlazePose.

- PyTorch, desarrollado por Meta AI, este framework es ampliamente usado en

investigación debido a su ejecución dinámica (define-by-run) y facilidad de

depuración. Modelos de alta precisión como HRNet, AlphaPose y RTMPose se

entrenan habitualmente en PyTorch.

- MediaPipe, es una librería de Google que ofrece soluciones listas para usar en

visión por computadora en tiempo real. Integra modelos optimizados en flujos de

procesamiento altamente eficientes para tareas como estimación de pose corporal,

facial y de manos.

- OpenCV + DNN, biblioteca de visión por computadora que incluye un módulo de

redes neuronales profundas capaz de cargar modelos en formatos como ONNX y

Caffe. Es útil para la inferencia ligera en entornos con restricciones de hardware.

- MMPose (OpenMMLab), framework especializado en estimación de posturas

basado en PyTorch.

- Detectron2, plataforma de visión por computadora de Facebook AI Research,

centrada en tareas como segmentación y detección, incluyendo variantes de

estimación de postura como DensePose.

19

Framework Descripción Lenguaje

principal

Utilización Fecha

introducción

(aproximada)

TensorFlow /

Keras

Framework de código

abierto ampliamente

utilizado para deep learning.

Python PoseNet,

MoveNet,

BlazePose

2015

(TensorFlow Lite

2017)

PyTorch Framework muy popular en

investigación; permite

desarrollo dinámico.

Python HRNet, RTMPose,

AlphaPose

2017

MediaPipe Librería de Google para

visión por computadora en

tiempo real.

C++,

Python, JS

BlazePose,

Holistic

2019

OpenCV +

DNN

Librería con soporte para

modelos preentrenados.

C++,

Python

PoseNet,

OpenPose

(ONNX/Caffe)

OpenCV: 2000

DNN: 2017

MMDetection

/ MMPose

Frameworks modulares de

OpenMMLab para tareas de

visión, incluyendo pose.

Python RTMPose, HRNet,

ViTPose

2020

Detectron2 Plataforma de Facebook AI

Research (FAIR)

Python DensePose 2019

Tabla 5. Frameworks para estimación de posturas humanas

2.4.1. TensorFlow

TensorFlow es una plataforma de código abierto para aprendizaje automático,

desarrollada por Google, que permite crear y entrenar modelos de redes neuronales y otras

aplicaciones de aprendizaje automático. Es utilizado para una amplia variedad de tareas, desde

reconocimiento de imágenes y procesamiento de lenguaje natural hasta predicción y modelado

estadístico (17). Sus características principales son:

- Código abierto. TensorFlow es gratuito y de código abierto, lo que significa que

cualquier persona puede usarlo, modificarlo y distribuirlo.

- Aprendizaje automático. Se enfoca en el desarrollo y entrenamiento de modelos de

aprendizaje automático, incluyendo redes neuronales.

- Gráficos de flujo de datos. Utiliza gráficos de flujo de datos para representar las

operaciones computacionales, lo que permite una ejecución eficiente y escalable.

- Amplia gama de aplicaciones. Puede ser aplicado en diversos campos, como visión

por computadora, procesamiento de lenguaje natural, reconocimiento de voz, y

otros.

- Flexibilidad y escalabilidad. Ofrece flexibilidad para construir modelos complejos

20

y escalarlos para diferentes plataformas, desde dispositivos móviles hasta grandes

servidores en la nube.

- Comunidad activa. Cuenta con una gran comunidad de usuarios y desarrolladores

que contribuyen con recursos, herramientas y soporte.

Componentes de la plataforma TensorFlow

- TensorFlow Lite, una versión optimizada para dispositivos móviles y sistemas

embebidos.

- Keras, una API de alto nivel que facilita la construcción de modelos de redes

neuronales.

- TensorFlow.js, permite el desarrollo y despliegue de modelos en navegadores web y

entornos Node.js13.

- TensorFlow Hub, un repositorio de modelos de aprendizaje automático

preentrenados que pueden ser reutilizados para acelerar el desarrollo.

Ventajas de TensorFlow

Entre las ventajas de uso de TensorFlow se encuentran su facilidad de uso ya que ofrece

APIs intuitivas en diferentes lenguajes, como Python, C++, Java, y Go. También podemos

destacar la facilidad y flexibilidad de su despliegue ya que permite desplegar modelos

entrenados en diversas plataformas y dispositivos. Además cuenta con una amplia comunidad

que brinda soporte y recursos para el desarrollo que lo hace una herramienta poderosa y versátil

para el aprendizaje automático con una amplia gama de aplicaciones.

TensorFlow Lite (TFLite)

TensorFlow Lite (TFLite) es una versión optimizada de TensorFlow diseñada para

ejecutar modelos de aprendizaje automático en dispositivos con recursos limitados. Permite

realizar inferencias rápidas y eficientes mediante técnicas como la cuantización, reduciendo el

tamaño del modelo y el consumo de energía sin comprometer significativamente la precisión.

El formato de modelo TFLite se distingue por su diseño compacto, portabilidad y

compatibilidad con distintas arquitecturas de hardware.

En Imagen 8 podemos ver la arquitectura de un modelo TensorFlow Lite, con la capa de

entrada en amarillo, en azul las capas de los bloques Feature extraction y Prediction heads (con

tres Fully connected layers) y por último en verde la capa de salida.

13 Entorno en tiempo de ejecución multiplataforma, de código abierto, para crear aplicaciones web rápidas y
escalables basadas en el lenguaje JavaScript.

21

Imagen 8. Esquema del modelo TensorFlow Lite (18)

2.4.2. PyTorch

PyTorch es un marco de código abierto para aprendizaje automático, especialmente

enfocado en aprendizaje profundo, desarrollado originalmente por Meta (anteriormente

Facebook). Se basa en Python y se utiliza para construir modelos de redes neuronales y realizar

cálculos numéricos, incluyendo la ejecución en GPU para acelerar el proceso. PyTorch es

popular tanto en investigación como en aplicaciones de producción, incluyendo empresas como

Tesla, Microsoft y OpenAI (19). Sus principales características son:

- Framework de código abierto, PyTorch es gratuito y de código abierto, lo que

significa que cualquiera puede usarlo, modificarlo y distribuirlo.

- Lenguaje Python, se basa en el lenguaje Python, conocido por su facilidad de uso y

amplia adopción en ciencia de datos.

- Cálculo con tensores, PyTorch utiliza tensores para representar datos y realizar

cálculos matemáticos, lo que permite operaciones eficientes, especialmente en

GPUs.

- Aprendizaje profundo, es una herramienta fundamental en el desarrollo de redes

neuronales profundas (un tipo de algoritmo de aprendizaje automático).

- Flexibilidad y rapidez, PyTorch destaca por su flexibilidad para crear prototipos

rápidamente y su capacidad de adaptarse a diferentes necesidades de investigación

y desarrollo.

- Auto-diferenciación, PyTorch facilita la implementación de gráficos

computacionales y cálculos con gradientes, esencial para el entrenamiento de redes

22

neuronales.

- Desarrollo por Meta AI, aunque fue desarrollado originalmente por Meta, ahora es

administrado por la Fundación PyTorch, que asegura su desarrollo continuo y

colaboración en la comunidad, donde es una de las herramientas más populares para

investigación en aprendizaje profundo y se utiliza en muchos proyectos de IA de

producción.

PyTorch Mobile

PyTorch Mobile es la extensión del framework PyTorch diseñada para permitir la

ejecución de modelos de aprendizaje profundo en dispositivos móviles y sistemas embebidos.

Surge como una respuesta a la creciente necesidad de desplegar modelos de deep learning en

entornos con recursos limitados, tales como smartphones, tablets o dispositivos IoT, donde la

inferencia debe ser eficiente en cuanto a tiempo de ejecución, consumo energético y memoria.

A nivel arquitectónico, PyTorch Mobile se basa en el uso de TorchScript, un formato

intermedio que combina las ventajas de la representación estática de grafos con la flexibilidad

del entorno dinámico de PyTorch. TorchScript permite transformar un modelo entrenado en

PyTorch estándar a un formato optimizado (.pt) que puede ejecutarse de manera independiente,

reduciendo la dependencia de librerías pesadas y facilitando la portabilidad.

El proceso general de despliegue en PyTorch Mobile sigue tres fases técnicas:

1. Conversión del modelo. Se utiliza tracing o scripting para transformar el modelo

PyTorch original en un objeto TorchScript.

2. Optimización. El modelo puede someterse a técnicas de cuantización como PTQ

(cuantización posterior al entrenamiento) o QAT (cuantización consciente del

entrenamiento), lo que reduce su tamaño y acelera la inferencia, con pérdidas

controladas de precisión.

3. Ejecución en dispositivo. El modelo TorchScript se integra en una aplicación Android

(Java/Kotlin con JNI) o iOS (Swift/Objective-C) mediante las librerías de PyTorch

Mobile, posibilitando la ejecución en CPU, NNAPI (Android) o Metal (iOS).

2.4.3. MediaPipe

MediaPipe es un framework de código abierto y multiplataforma desarrollado por

Google para construir y desplegar pipelines de procesamiento multimedia, incluyendo la

estimación de la postura humana. Ofrece modelos preentrenados y soporte para múltiples

plataformas, lo que lo convierte en una herramienta versátil y potente para aplicaciones en

tiempo real (20). Sus principales características son:

- Detección de rostros, manos y poses, MediaPipe proporciona modelos

preentrenados para la detección de estos elementos en imágenes y videos.

- Aprendizaje automático en dispositivos de edge computing, permite ejecutar

23

modelos en dispositivos móviles, lo que reduce la latencia y la dependencia de la

nube.

- Seguimiento de objetos y reconocimiento de gestos, permite identificar y rastrear

objetos en tiempo real y detecta y reconoce diferentes gestos de manos.

- Personalización, permite a los desarrolladores ajustar los modelos predeterminados

con sus propios datos utilizando MediaPipe Model Maker.

- Integración con otras herramientas, se puede combinar con otras herramientas como

OpenCV para proyectos de visión artificial.

2.4.4. OpenCV + DNN

OpenCV (Open Source Computer Vision Library) es una librería de visión por

computadora ampliamente utilizada en aplicaciones en tiempo real. Su módulo DNN (Deep

Neural Network) permite la ejecución de redes neuronales preentrenadas sin necesidad de

frameworks externos como TensorFlow o PyTorch. Soporta modelos en formatos como ONNX,

Caffe, TensorFlow y Torch, permitiendo ejecutar tareas de estimación de posturas y gracias a

su bajo nivel de dependencia y eficiencia computacional, es una opción adecuada para

implementaciones ligeras en dispositivos embebidos o en aplicaciones donde se requiere

rapidez de inferencia sin entrenamiento (21).

OpenCV + DNN en sí no implementa una arquitectura propia de red neuronal, sino que

funciona como un motor de inferencia que carga y ejecuta modelos preentrenados desarrollados

en otros frameworks (como TensorFlow o PyTorch)

En estimación de postura, OpenCV + DNN se ha utilizado para desplegar modelos como

PoseNet y versiones convertidas de OpenPose, lo que permite detectar keypoints corporales a

partir de imágenes o video en tiempo real.

2.4.5. MMPose (OpenMMLab)

MMPose es un framework de código abierto desarrollado por el grupo OpenMMLab

para la estimación de posturas humanas 2D y 3D. Está basado en PyTorch y proporciona una

infraestructura modular y altamente extensible que facilita el entrenamiento, evaluación y

comparación de múltiples arquitecturas. Ofrece soporte a gran variedad de backbones como

HRNet, ViTPose, ResNet, MobileNet, etc., y cubre tareas single-person y multi-person.

2.4.6. Detectron2

Detectron2 es un framework de visión por computadora desarrollado por Facebook AI

Research (FAIR), diseñado para tareas avanzadas como detección de objetos, segmentación de

instancias, segmentación semántica, y estimación de poses humanas. Está implementado en

24

PyTorch y es la segunda generación del sistema original Detectron, basado en Caffe214.

2.4.7. Formatos de modelos de estimación de posturas

En el campo del aprendizaje profundo, la representación y almacenamiento de modelos

entrenados varía en función del framework utilizado y del objetivo final del modelo, ya sea

continuar el entrenamiento, realizar inferencia eficiente o garantizar interoperabilidad entre

plataformas. Esta diversidad ha dado lugar a múltiples formatos de fichero

(como .pth, .pt, .pb, .onnx o .tflite), cada uno con características técnicas que responden a

distintos requerimientos de uso, portabilidad y rendimiento.

Los formatos propietarios de frameworks, como .pth (PyTorch) son ideales para el

entrenamiento y reutilización dentro del mismo entorno, pero presentan limitaciones para el

despliegue multiplataforma mientras que los formatos interoperables como ONNX (.onnx)

permiten exportar modelos entrenados en distintos frameworks para su ejecución en múltiples

entornos de inferencia. ONNX es ampliamente utilizado en producción debido a su eficiencia

y portabilidad.

En el contexto de dispositivos móviles o embebidos, formatos como TensorFlow Lite

(.tflite) son comunes. Estos ficheros están optimizados para tamaños reducidos y bajo consumo

computacional, y suelen incorporar técnicas de cuantización (por ejemplo int8) para acelerar la

inferencia sin comprometer significativamente la precisión.

Los formatos más recientes como TorchScript (.pt) ofrecen un equilibrio entre

rendimiento y compatibilidad en el ecosistema PyTorch, facilitando tanto el despliegue como

la serialización eficiente.

TensorFlow SavedModel (.pb)

TensorFlow SavedModel es el formato estándar de serialización y exportación de

modelos en TensorFlow, diseñado para almacenar tanto la arquitectura del modelo como sus

pesos y metadatos de forma estructurada y portable. Su principal componente es el archivo .pb

(Protocol Buffer), que representa el grafo computacional del modelo, incluyendo las

operaciones, variables y conexiones necesarias para realizar inferencias.

Este formato permite guardar un modelo completo en un único directorio, facilitando su

reutilización, despliegue y compatibilidad entre diferentes entornos y versiones de TensorFlow.

Junto al archivo .pb, el directorio SavedModel puede contener subdirectorios como variables

(para los pesos del modelo) y assets (para recursos auxiliares), lo que garantiza una separación

clara entre los distintos elementos del modelo (22).

El formato SavedModel es ampliamente utilizado en aplicaciones de producción, ya que

admite inferencias eficientes en servidores, exportación a otras plataformas como TensorFlow

Lite (TFLite) o TensorFlow.js, y compatibilidad con APIs de TensorFlow Serving para entornos

de despliegue escalables. Gracias a su diseño modular y extensible, el formato .pb también

14 Caffe2 actualmente está deprecado habiendo sido integrado en PyTorch

25

facilita tareas como la congelación del grafo, la optimización para hardware específico (TPUs,

GPUs), y la integración en flujos de trabajo de machine learning end-to-end.

TensorFlow Lite (.tflite)

Los modelos de TensorFlow Lite se almacenan en un archivo binario con

extensión .tflite, el cual representa una versión serializada y optimizada de un modelo de

TensorFlow convencional. Esta serialización utiliza el formato FlatBuffers, una biblioteca de

serialización binaria de alto rendimiento que permite la lectura directa de datos sin necesidad

de descompresión o análisis complejo, lo que reduce significativamente la latencia en el inicio

de la inferencia (23). El archivo .tflite encapsula varios elementos clave:

- Metadatos del modelo. Incluye información básica como nombres de entrada y

salida, formas (shapes), tipos de datos (por ejemplo, float32, int8, etc.), y posibles

etiquetas semánticas para facilitar la integración con bibliotecas de procesamiento

de datos o interfaces de usuario.

- Red neuronal codificada. Contiene una representación compacta del grafo

computacional, incluyendo las operaciones (kernels) soportadas por TFLite. Estas

operaciones han sido previamente convertidas desde el grafo original de TensorFlow

mediante el TFLite Converter.

- Pesos y parámetros preentrenados. Los valores numéricos entrenados durante la fase

de aprendizaje son empaquetados en el modelo, con posibles técnicas de

cuantización para reducir el tamaño del archivo y acelerar su ejecución.

- Soporte para delegados: Aunque el modelo es independiente de la plataforma,

TFLite puede emplear "delegados" en tiempo de ejecución para redirigir la ejecución

a aceleradores de hardware específicos, como GPU, DSP o unidades de inferencia

(TPU).

Una característica fundamental del formato TFLite es su compatibilidad con técnicas de

optimización como la cuantización post-entrenamiento y la cuantización durante el

entrenamiento, que permiten reducir el tamaño del modelo y el uso de memoria, además de

incrementar la velocidad de inferencia. Estas optimizaciones transforman los parámetros y

activaciones del modelo de precisión flotante a tipos enteros, como int8 o uint8, manteniendo

un impacto mínimo en la precisión del modelo.

El formato .tflite es independiente de la plataforma y puede ejecutarse en diversos

entornos mediante el uso del TensorFlow Lite Interpreter. Este intérprete está disponible para

múltiples sistemas operativos y arquitecturas, incluidos Android, iOS, Linux embebido y

microcontroladores (a través de TFLite Micro).

ONNX (.omnx)

ONNX (Open Neural Network Exchange) es un formato de especificación abierta

diseñado para representar modelos de aprendizaje automático de manera interoperable entre

26

diferentes frameworks. Fue desarrollado inicialmente por Facebook y Microsoft, y actualmente

es mantenido por la comunidad en colaboración con la Linux Foundation y la iniciativa AI

Infra. Su propósito principal es facilitar el intercambio y despliegue de modelos en diversos

entornos, incluyendo servidores, dispositivos embebidos y plataformas en la nube. El formato

ONNX representa un estándar abierto, eficiente y extensible para la representación de modelos

de aprendizaje automático (24).

Los modelos ONNX se almacenan en archivos binarios con la extensión .onnx,

estructurados utilizando el formato de serialización Protocol Buffers (Protobuf), desarrollado

por Google. Este formato permite representar estructuras de datos complejas de manera

eficiente, lo cual es esencial para modelos de redes neuronales con múltiples capas, pesos y

configuraciones. Un archivo de modelo ONNX incluye los siguientes componentes principales:

- Grafo computacional. Representa el flujo de datos a través de la red neuronal. Este

grafo está compuesto por nodos, donde cada nodo corresponde a una operación (por

ejemplo, convolución, activación, normalización). Cada nodo incluye información

sobre sus entradas, salidas y atributos específicos.

- Operadores estándar. ONNX define un conjunto estandarizado de operadores que

son independientes del framework original. Esto garantiza que un modelo exportado

desde PyTorch, TensorFlow, MXNet u otro entorno, pueda ser interpretado

correctamente en cualquier motor de inferencia compatible con ONNX.

- Inicializadores. Contienen los parámetros entrenados del modelo, como pesos y

sesgos, empaquetados como tensores dentro del archivo. Estos datos están

almacenados directamente en el archivo .onnx, lo que garantiza que el modelo es

autosuficiente y portable.

- Metadatos. Incluyen información adicional como el nombre del modelo, la versión

del operador, la versión de la especificación ONNX utilizada, y los nombres y

formas de las entradas y salidas. Esta información es esencial para la integración en

sistemas de producción y para la depuración del modelo.

PyTorch (.pt/.pth)

El formato PyTorch (.pt o .pth) es el estándar utilizado por la biblioteca PyTorch para

almacenar modelos de aprendizaje profundo entrenados. Este formato permite guardar tanto los

pesos del modelo como, opcionalmente, la estructura del modelo (si se utiliza el enfoque de

serialización completa). Los archivos .pt y .pth no difieren funcionalmente; su elección suele

responder a convenciones del desarrollador (25).

Desde una perspectiva académica, este formato se basa en el módulo torch.save(), que

emplea el sistema de serialización de Python (pickle) para codificar los objetos del modelo.

Esto permite conservar de forma eficiente el estado interno de la red neuronal, que incluye los

tensores de pesos, sesgos y parámetros de entrenamiento.

Existen dos formas principales de guardar modelos en PyTorch:

- Solo el state_dict: es la forma recomendada y más robusta, ya que separa la definición

27

del modelo del almacenamiento de los pesos. Esto facilita portabilidad y

reutilización.

- Serialización completa del modelo: guarda tanto la arquitectura como los pesos, pero

puede generar problemas de compatibilidad entre versiones o entornos.

El formato .pt/.pth es ampliamente utilizado en investigación y producción debido a su

flexibilidad, compatibilidad con GPU/CPU, y facilidad de integración en flujos de trabajo de

inferencia o transferencia de aprendizaje.

2.5. Modelos de estimación de posturas

Este apartado presenta una revisión de los preentrenados más relevantes desarrollados

para la estimación de posturas humanas, abarcando tanto enfoques clásicos como modernos. Se

incluyen todos los modelos diseñados para estimación 2D y 3D, así como aquellos orientados

a dispositivos móviles y entornos de alta complejidad, como escenas con múltiples personas o

una única persona. La descripción de cada modelo contiene sus arquitecturas, características

técnicas, ventajas, limitaciones, número de keypoints que estiman, etc., con el objetivo de

ofrecer un panorama claro y actualizado sobre el estado del arte en esta área de investigación.

2.5.1. OpenPose (2017)

OpenPose es uno de los modelos pioneros y más influyentes en la estimación de posturas

humanas. Desarrollado por el Carnegie Mellon Perceptual Computing Lab, introduce una

arquitectura bottom-up que detecta de manera simultánea los keypoints de múltiples personas

en una imagen sin necesidad de una etapa previa de detección individual. Su innovación central

son los Part Affinity Fields (PAFs), campos vectoriales que permiten asociar puntos clave entre

sí para reconstruir estructuras corporales completas, incluso en entornos con múltiples

individuos y oclusiones (26).

OpenPose puede estimar diferentes configuraciones de puntos: 18 puntos (COCO), 25

(BODY-25) y configuraciones extendidas incluyendo manos (21 puntos por mano) y rostro (70

puntos), superando los 135 keypoints en total. Aunque es altamente preciso, OpenPose es

computacionalmente intensivo, lo que limita su uso en dispositivos móviles o en tiempo real

sin hardware especializado (GPU).

El sistema está implementado principalmente en C++ y es de código abierto, lo que ha

facilitado su adopción en investigación, salud, deportes, animación y robótica. Su estructura

modular también ha inspirado el desarrollo de variantes más ligeras y eficientes.

2.5.2. AlphaPose (2018)

AlphaPose es un modelo destacado en la estimación de posturas humanas, reconocido

por su enfoque top-down que primero detecta individuos en la imagen y luego estima sus poses

de manera independiente. Propuesto inicialmente en 2018, AlphaPose se caracteriza por su alta

precisión y capacidad para manejar múltiples personas en escenarios complejos. Su arquitectura

28

combina detectores de objetos eficientes con redes neuronales convolucionales para predecir

keypoints de manera precisa y robusta. AlphaPose utiliza postprocesamiento para refinar las

estimaciones y mejorar la coherencia espacial de las articulaciones (27).

El modelo típicamente estima 17 keypoints principales según el estándar COCO,

abarcando las articulaciones principales del cuerpo humano. Aunque su enfoque top-down

ofrece una precisión superior comparado con métodos bottom-up, su costo computacional es

mayor, lo que puede limitar su aplicación en tiempo real o dispositivos con recursos limitados.

AlphaPose ha sido ampliamente adoptado en aplicaciones de análisis de movimiento,

vigilancia, y realidad aumentada, y ha inspirado versiones optimizadas para entornos móviles

y de baja latencia.

2.5.3. PoseNet (2018)

PoseNet es un modelo ligero y eficiente para la estimación de posturas humanas en

imágenes, diseñado especialmente para su uso en dispositivos móviles y navegadores web.

Introducido en 2018 por Google, PoseNet utiliza arquitecturas basadas en MobileNet para

realizar la predicción de 17 keypoints en tiempo real con un consumo de recursos reducido. Su

enfoque está orientado a la estimación de poses individuales (single-person) o múltiples

personas (multi-person) mediante un diseño flexible y modular (28).

PoseNet destaca por su capacidad de funcionar en tiempo real con hardware limitado,

gracias a su compatibilidad con TensorFlow Lite, lo que facilita su integración en aplicaciones

móviles y web. Sin embargo, su precisión es inferior comparada con modelos más complejos y

pesados, lo que limita su uso en escenarios que requieren alta fidelidad. A pesar de estas

limitaciones, PoseNet ha sido fundamental para democratizar el acceso a tecnologías de

estimación de postura, facilitando su aplicación en ámbitos de fitness, juegos interactivos y

accesibilidad.

2.5.4. DensePose (2018)

DensePose es un modelo avanzado desarrollado por Facebook AI Research en 2018 que

va más allá de la estimación clásica de posturas humanas 2D, mapeando cada píxel del cuerpo

humano visible en una imagen a una superficie 3D paramétrica del cuerpo. A diferencia de otros

modelos que estiman únicamente un conjunto discreto de keypoints, DensePose realiza una

segmentación densa y una correspondencia directa con un modelo 3D anatómico, permitiendo

reconstrucciones detalladas de la forma y la postura humana (29).

Esta capacidad ofrece un nivel de detalle muy superior, ideal para aplicaciones en

realidad aumentada, animación digital y análisis biomédico. Sin embargo, DensePose requiere

una gran potencia computacional y no es adecuado para ejecución en dispositivos móviles o en

tiempo real. Además, su entrenamiento y despliegue son más complejos debido a la necesidad

de datos anotados en 3D. DensePose representa un importante avance en la representación

morfológica del cuerpo humano en visión por computador, ampliando las fronteras entre visión

2D y reconstrucción 3D.

29

2.5.5. HRNet (2019)

HRNet (High-Resolution Network) es un modelo diseñado para tareas de visión por

computadora que requieren una preservación precisa de detalles espaciales, como la estimación

de postura humana. A diferencia de muchas arquitecturas convencionales que reducen

progresivamente la resolución de las características a lo largo de la red, HRNet mantiene

representaciones de alta resolución durante todo el proceso de inferencia. Para lograr esto,

introduce un enfoque de procesamiento paralelo mediante múltiples ramas que operan a

diferentes resoluciones y se comunican continuamente entre sí mediante fusión de información,

permitiendo una integración efectiva de contextos locales y globales. Esta arquitectura mejora

significativamente la precisión en la localización de puntos clave del cuerpo humano, incluso

en condiciones de oclusión o poses complejas. HRNet ha demostrado resultados de vanguardia

en benchmarks como COCO y MPII, siendo ampliamente adoptado en aplicaciones de análisis

de movimiento, interfaces hombre-máquina y medicina deportiva. Su diseño innovador

establece un nuevo paradigma en el equilibrio entre precisión espacial y capacidad semántica

en redes profundas.

2.5.6. EfficientPose (2020)

Basado en la arquitectura EfficientNet, este modelo optimiza el balance entre velocidad

y rendimiento, permitiendo una detección robusta de las articulaciones humanas en tiempo real.

EfficientPose incorpora una técnica de aprendizaje multitarea que mejora la precisión en la

detección de múltiples personas y reduce errores en escenarios con oclusiones, lo que lo vuelve

más robusto frente a condiciones del mundo real comparado con modelos tradicionales. Su

diseño modular facilita la integración en sistemas de visión por computadora, aplicaciones de

realidad aumentada y análisis de movimientos deportivos. También destaca por su capacidad

para funcionar en dispositivos con recursos limitados, sin sacrificar la calidad de la estimación.

Este enfoque representa un avance significativo en el campo de la visión artificial aplicada a la

interacción humano-computadora y el análisis biomecánico.

2.5.7. MoveNet (2020)

MoveNet es un modelo de estimación de posturas bottom-up que utiliza mapas de calor

(heatmaps) para localizar con precisión los puntos clave del cuerpo humano. Su arquitectura se

compone de dos partes principales: un feature extractor (un componente de una red neuronal

que extrae características de la imagen) y un conjunto de prediction heads (un componente de

una red neuronal que transforma características aprendidas en predicciones específicas

normalmente situado al final de la red). Todos los modelos se entrenan utilizando la API de

detección de objetos de TensorFlow (30).

La arquitectura de la CNN que utiliza MoveNet es MobileNetV2 junto con una red de

pirámide de características (FPN), lo que permite generar mapas de características de alta

resolución con gran riqueza semántica. El extractor se conecta con cuatro prediction heads, cada

una encargada de estimar lo siguiente (Imagen 9):

- Mapa de calor del centro de la persona, predice el centro geométrico de cada

instancia de persona.

30

- Campo de regresión de puntos clave, predice el conjunto completo de puntos clave

por persona, útil para agruparlos en instancias individuales.

- Mapa de calor de puntos clave, predice la ubicación de todos los puntos clave,

independientemente de a qué persona pertenecen.

- Campo de desplazamiento 2D por punto clave, predice el desplazamiento local

desde cada píxel del mapa de características hasta la ubicación precisa (subpíxel) de

cada punto clave.

Imagen 9. Pasos de la inferencia del modelo MoveNet (30)

MoveNet tiene dos variantes: MoveNet Lightning y MoveNet Thunder.

MoveNet Lightning es un modelo de estimación de posturas humanas desarrollado por

Google en 2020, diseñado para ofrecer una solución extremadamente rápida y eficiente en

dispositivos con recursos limitados, como teléfonos móviles y sistemas embebidos. Forma parte

de la familia MoveNet y está optimizado para lograr baja latencia manteniendo una precisión

competitiva en la predicción de 17 keypoints principales, siguiendo el estándar COCO.

MoveNet Lightning emplea una arquitectura ligera basada en convoluciones eficientes

y técnicas de optimización (Imagen 10) que permiten su ejecución en tiempo real incluso en

CPUs de gama baja. Aunque sacrifica algo de precisión en comparación con su contraparte más

robusta, MoveNet Thunder, su velocidad y tamaño reducido lo hacen ideal para aplicaciones en

tiempo real que requieren un balance entre rendimiento y eficiencia, como fitness, juegos

interactivos y realidad aumentada. Además, su compatibilidad con TensorFlow Lite facilita su

integración en aplicaciones móviles y de edge computing.

31

Imagen 10. Esquema de arquitectura modelo MoveNet (30)

MoveNet Thunder es la otra variante del modelo MoveNet lanzada por Google en

2020, diseñada para ofrecer una mayor precisión en la estimación de posturas humanas a costa

de un mayor consumo computacional en comparación con MoveNet Lightning. Este modelo

predice 17 keypoints clave siguiendo el estándar COCO, y está optimizado para ejecutarse en

tiempo real en dispositivos con mayor capacidad de procesamiento, como GPUs móviles o

CPUs de alto rendimiento.

MoveNet Thunder emplea una arquitectura más profunda y compleja que incorpora

convoluciones eficientes y técnicas avanzadas de aprendizaje profundo para mejorar la

exactitud y robustez frente a variaciones de pose, oclusiones y condiciones de iluminación

adversas. Su diseño equilibra la necesidad de precisión con la latencia, siendo adecuado para

aplicaciones que requieren un análisis detallado del movimiento humano, como rehabilitación,

deportes y análisis biomecánico. Asimismo, es compatible con TensorFlow Lite, facilitando su

despliegue en entornos móviles y edge computing con hardware más potente.

2.5.8. BlazePose (2021)

BlazePose es un modelo de estimación de posturas humanas desarrollado por Google

(31), diseñado para ofrecer un seguimiento preciso y en tiempo real de la postura corporal en

dispositivos móviles. Su arquitectura ligera permite la inferencia en dispositivos con recursos

limitados, alcanzando más de 30 fotogramas por segundo en un Google Pixel 2.

BlazePose estima 33 puntos clave del cuerpo humano, incluyendo cabeza, tronco,

extremidades y manos, proporcionando una representación detallada de la postura humana. Su

diseño modular consta de dos componentes principales: un detector que identifica la región del

cuerpo en la imagen y un estimador que predice las coordenadas de los puntos clave. El

estimador utiliza una combinación de mapas de calor y regresión directa para mejorar la

32

precisión y eficiencia.

Este modelo ha sido ampliamente utilizado en aplicaciones de seguimiento de actividad

física, control gestual y realidad aumentada, gracias a su capacidad para operar en tiempo real

sin la necesidad de hardware especializado. Además, su implementación en MediaPipe facilita

su integración en diversas plataformas y dispositivos.

2.5.9. PoseWarper (2021)

PoseWarper es un modelo avanzado de estimación de postura humana en video que

introduce un enfoque novedoso para explotar la información temporal mediante el alineamiento

espacial entre fotogramas consecutivos. A diferencia de métodos tradicionales que procesan

cada frame de manera independiente, PoseWarper utiliza una arquitectura basada en "warping"

o deformación de características, lo que permite transferir información clave desde frames

anteriores al frame actual. Esta técnica mejora la coherencia temporal y la precisión en la

detección de articulaciones, especialmente en casos de oclusiones, movimientos rápidos o poses

poco convencionales. El modelo emplea una red de extracción de características que aprende a

alinear mapas de calor de keypoints a través del tiempo, reduciendo errores comunes en

secuencias de video. PoseWarper se basa en una arquitectura eficiente y modular, lo que facilita

su integración en sistemas de análisis de movimiento en tiempo real. Su enfoque temporal

representa un avance significativo frente a modelos estáticos, logrando mejoras sustanciales en

benchmarks como PoseTrack y subrayando la importancia de la dinámica del movimiento en

la estimación de postura humana.

2.5.10. YOLO-Pose (2021)

YOLO-Pose es un modelo de estimación de posturas humanas basado en la arquitectura

YOLO (You Only Look Once), conocido por su capacidad para realizar detección de objetos

en tiempo real con alta precisión. Adaptado para la tarea de estimación de posturas, YOLO-

Pose integra una prediction head especializada para predecir keypoints corporales directamente

junto con la detección de personas en una sola pasada, optimizando la eficiencia y velocidad de

procesamiento (32).

Este enfoque single-shot permite la estimación simultánea de múltiples poses en escenas

con varias personas, generalmente prediciendo 17 keypoints conforme al estándar COCO.

YOLO-Pose destaca por su equilibrio entre precisión y rendimiento, haciéndolo adecuado para

aplicaciones en tiempo real como vigilancia, análisis deportivo y realidad aumentada. Además,

su diseño modular facilita la implementación en dispositivos con recursos limitados y su

compatibilidad con frameworks como PyTorch y TensorFlow amplía su aplicabilidad en

entornos móviles y edge computing.

YOLO-pose tiene diferentes versiones publicadas hasta la fecha como se puede ver en

la Tabla 6.

33

Versión YOLO Variantes Tamaño aprox. Características

YOLOv5-Pose YOLOv5s-Pose ~14 MB Versión pequeña, rápida

 YOLOv5m-Pose ~41 MB Balance entre tamaño y

precisión

 YOLOv5l-Pose ~88 MB Mayor precisión

 YOLOv5x-Pose ~168 MB Versión extra grande

YOLOv7-Pose YOLOv7-tiny-Pose ~14 MB Versión ligera para edge

 YOLOv7-Pose (full) ~70-90 MB Versión completa

YOLOv8-Pose YOLOv8n-Pose (nano) ~6 MB Muy ligero

 YOLOv8s-Pose (small) ~22 MB Ligero

 YOLOv8m-Pose (medium) ~50 MB Balance

 YOLOv8l-Pose (large) ~87 MB Alta precisión

 YOLOv8x-Pose (x-large) ~136 MB Muy alta precisión

YOLOv11-Pose YOLOv11n-Pose (nano) ~6 MB Muy ligero

 YOLOv11s-Pose (small) ~19 MB Ligero

 YOLOv11m-Pose (medium) ~40 MB Balance

 YOLOv11l-Pose (large) ~60 MB Alta precisión

 YOLOv11x-Pose (x-large) ~120 MB Muy alta precisión

Tabla 6. Versiones de modelos YOLO de estimación de posturas humanas

2.5.11. RTMPose (2023)

RTMPose (Real-Time Multi-Person Pose Estimation) es un modelo de estimación de

postura humana diseñado específicamente para lograr alto rendimiento en tareas en tiempo real,

sin comprometer la precisión. Desarrollado con un enfoque modular y eficiente, RTMPose

utiliza técnicas modernas como el backbone RTMDet basado en la arquitectura ConvNeXt y

estrategias de optimización ligeras para acelerar la inferencia, siendo especialmente adecuado

para aplicaciones en dispositivos con recursos limitados. A diferencia de modelos tradicionales,

RTMPose emplea una representación directa de keypoints y una arquitectura centrada en la

eficiencia computacional, eliminando componentes costosos como el procesamiento de mapas

de calor. Además, introduce un esquema de entrenamiento robusto, basado en técnicas como

SimDR (Simple Disentangled Representation), que mejora la estabilidad y la precisión de la

predicción de coordenadas. Este modelo es altamente competitivo en benchmarks como COCO

y CrowdPose, destacando por su capacidad para manejar múltiples personas, oclusiones y

variabilidad en las poses. Su diseño versátil lo hace ideal para aplicaciones en visión artificial,

realidad aumentada, deportes y vigilancia inteligente.

2.5.12. Resumen

 Además de las características descritas existen otros parámetros importantes a la hora

de seleccionar un modelo muy dependiente el entorno donde se vaya a utilizar y son su tamaño

y su formato (ver Tabla 7 para tamaños aproximados y formatos).

El tamaño de los modelos es tan variable como versiones y/o familias del modelo se

hayan desarrollado, como ya vimos en el apartado “2.3.2 Cuantización de modelos” existen

técnicas para reducir el tamaño de un modelo sin que la precisión del mismo se vea

34

excesivamente comprometida. Las versiones sin “cuantizar” suelen usar precisión de 32 bits en

punto flotante (float32), lo cual produce modelos grandes pero precisos. La cuantización a

menor precisión (como int8 o float16), utilizada en modelos como MoveNet o BlazePose,

reduce significativamente el tamaño del modelo, además de mejorar la velocidad de inferencia

y disminuir el consumo de memoria.

La arquitectura base (backbone) empleada en un modelo tiene un impacto sustancial en

su tamaño. Modelos como HRNet, OpenPose o AlphaPose (basados en la arquitectura ResNet)

utilizan backbones pesados y profundos (por ejemplo, ResNet-101 o HRNet-W48), diseñados

para preservar información espacial a lo largo de toda la red, lo cual incrementa tanto el número

de parámetros como el tamaño total del modelo. En cambio, arquitecturas ligeras como

MobileNet, utilizadas por modelos como PoseNet o MoveNet Lightning, están específicamente

optimizadas para reducir la complejidad computacional, lo que resulta en tamaños

significativamente menores.

Además de la arquitectura, los modelos suelen ofrecer múltiples variantes (por ejemplo

versiones tiny, small, medium, large, nano, etc.), cada una con diferentes profundidades y

anchos de red. Estas variantes permiten al usuario seleccionar un punto de equilibrio entre

precisión, latencia y tamaño de almacenamiento, lo cual es crucial en aplicaciones para

dispositivos de edge computing (Tabla 8).

Modelo Fecha Formato de Fichero Tamaño aproximado

OpenPose 2017 .caffemodel / .onnx ~100 MB

AlphaPose 2018 .pth (PyTorch) ~92 MB

PoseNet 2018 .tflite / .json / .pb ~5 MB

DensePose 2018 .pkl / .pth ~13.8 MB

HRNet 2019 .pth ~112 MB

EfficientPose 2020 .h5 / .onnx <10 MB

MoveNet 2020 .tflite 5-20 MB

BlazePose 2021 .tflite / .pb 3-26 MB

PoseWarper 2021 .pth N/D

YOLO-Pose 2021 .pt (→.onnx, →.tflite) 6-200 MB

RTMPose 2023 .onnx / .pth 18-65 MB

Tabla 7. Resumen características modelos preentrenados

35

Modelo Entrada Feature Extraction Prediction Heads Salida (estimación poses)

OpenPose Imagen RGB VGG-19 o variantes

personalizadas

Heatmaps de keypoints +

mapas de afinidad (PAFs)

18-135 keypoints

(cuerpo/rostro/manos)

AlphaPose Imagen RGB ResNet (usualmente ResNet-50

o ResNet-101)

Heatmaps de keypoints +

regresión de offsets

17-136 keypoints

PoseNet Imagen RGB MobileNet o ResNet Heatmaps de keypoints 17 keypoints

DensePose Imagen RGB ResNet-101 Mapas de UV (superficie

corporal) + segmentación

Cuerpo completo en malla UV

(no keypoints estándar)

HRNet Imagen RGB High-Resolution Network

(múltiples ramas paralelas)

Heatmaps de keypoints 17 (COCO) / 16 (MPII)

keypoints

EfficientPose Imagen RGB EfficientNet (B0-B4) Heatmaps de keypoints +

offsets (opcional)

17 keypoints

MoveNet Imagen RGB CNN propietaria optimizada

para móvil

Regresión directa de

coordenadas keypoints

17 keypoints

BlazePose Imagen RGB (ROI del cuerpo) MobileNetV2 ligera o CNN

personalizada

Regresión directa de

keypoints 3D

33 keypoints

PoseWarper Secuencia de imágenes Hourglass o ResNet Heatmaps de keypoints +

módulo de warping

17 keypoints

YOLO-Pose Imagen RGB CSPDarknet (YOLO

backbone)

Regresión directa de

bounding boxes + keypoints

17 keypoints

RTMPose Imagen RGB MobileNetV3 o HRNet-lite Regresión directa o

heatmaps simplificados

17 keypoints

Tabla 8. Resumen arquitecturas modelos preentrenados

36

2.6. Datasets de estimación de posturas

El desarrollo de algoritmos robustos de estimación de posturas ha dependido

críticamente de la disponibilidad de datasets públicos bien anotados, que sirven como base

tanto para el entrenamiento como para la evaluación de modelos supervisados.

Los datasets de estimación de postura pueden clasificarse según varias dimensiones

técnicas: tipo de anotación (2D o 3D), número de personas por imagen (single-person o multi-

person), tipo de sensor (RGB, RGB-D, multivista), y contexto (interior, exterior, sintético o

realista). Entre los más influyentes se encuentran COCO Keypoints y MPII Human Pose, cada

uno con diferentes coberturas de poses, diversidad de sujetos, condiciones de iluminación, y

esquemas de anotación.

Técnicamente, un dataset de postura humana incluye no solo las imágenes, sino también

las coordenadas (en píxeles o en 3D) de los puntos anatómicos relevantes (como hombros,

codos, rodillas, tobillos, etc.), frecuentemente junto con etiquetas de visibilidad o confiabilidad.

La calidad, cantidad y diversidad de estos datos tienen un impacto directo sobre la capacidad

de generalización de los modelos entrenados, especialmente en escenarios desafiantes como la

oclusión, las poses poco frecuentes o las variaciones culturales.

Para la realización de este estudio se han analizado los dos datasets más utilizados y

relevantes en el ámbito de la visión por computador, COCO (1) y MPII (2).

2.6.1. Dataset COCO (Common Objects in COntext)

El dataset COCO (Common Objects in COntext) es un conjunto de datos ampliamente

utilizado en la investigación y desarrollo de modelos de visión por computador. Fue introducido

por Microsoft en 2014 con el objetivo de proporcionar un recurso estandarizado para el

entrenamiento y la evaluación de algoritmos en tareas complejas como detección de objetos,

segmentación semántica, segmentación de instancias, detección de poses humanas y captioning

de imágenes. Su diseño se centra en ofrecer imágenes realistas con objetos en contextos

naturales, lo que lo diferencia de conjuntos anteriores con escenarios más simplificados o

sintéticos.

Es uno de los datasets más reconocidos desde su aparición, y, desde 2015, la COCO

Challenge15 ha sido un catalizador permanente de nuevos state-of-the-art en tareas clave como

detección, segmentación y estimación de posturas. La primera edición se celebró en 2015 y el

ganador fue el modelo Faster R-CNN (33) que es considerado un avance crucial en detección

de objetos porque introduce el Region Proposal Network (RPN), un sub-módulo entrenable

dentro de la red que aprende a generar propuestas de regiones directamente desde los feature

maps16 de la CNN que hace que el tiempo de inferencia pase de segundos por imagen a solo 0.2

segundos aproximadamente, haciendo posible la detección casi en tiempo real.

15 COCO Challenge es una competencia anual que mide los algoritmos más avanzados en detección,
segmentación, poses y captioning, usando el dataset COCO como referencia.
16 Son las estructuras de datos específicas dentro de las capas de extracción de características (Feature
extraction) que contienen estas características aprendidas de una manera espacialmente organizada

37

También ha sido designado como un estándar para la comunidad de detección de objetos

en papers como “Recent Advances in Object Detection in the Age of Deep Convolutional Neural

Networks” (34) donde se cita textualmente:

“Like ImageNet in its time, MS-COCO has become the de facto standard for the object

detection community and any method winning the state-of-the-art on it is assured to gain

much traction and visibility.”

COCO está compuesto por más de 330.000 imágenes, de las cuales más de 200.000

cuentan con anotaciones detalladas que abarcan más de 1,5 millones de instancias de objetos.

Estos objetos pertenecen a 80 categorías comunes que incluyen personas, animales, vehículos,

muebles, utensilios cotidianos, entre otros, lo que permite abordar tareas de detección y

segmentación de objetos en contextos muy variados y realistas.

En el ámbito de la estimación de poses humanas, COCO ofrece anotaciones precisas de

keypoints corporales para más de 250.000 personas. Estas anotaciones incluyen posiciones de

articulaciones clave como hombros, codos, muñecas, caderas, rodillas y tobillos,

proporcionando una base sólida para entrenar y evaluar modelos de estimación de postura en

2D bajo condiciones complejas, con variaciones de iluminación, oclusión, perspectiva y

diversidad de posturas.

El dataset se organiza en varias particiones para facilitar el desarrollo y la evaluación de

modelos:

- train2017: conjunto de entrenamiento con aproximadamente 123.000 imágenes

anotadas, utilizadas para ajustar los parámetros de los modelos.

- val2017: conjunto de validación con unas 5.000 imágenes, destinado a ajustar

hiperparámetros y realizar pruebas preliminares de desempeño.

- test-dev2017 y test-challenge2017: conjuntos de prueba sin etiquetas visibles

públicamente, diseñados para evaluaciones de benchmark oficiales, donde los

resultados se comparan de manera objetiva entre diferentes algoritmos.

Puntos clave o keypoints

Son coordenadas específicas que en estimación de poses humanas se corresponden con

una articulación o región anatómica relevante como hombros, codos, rodillas o tobillos (Imagen

11) y su detección precisa permite reconstruir la estructura y postura del cuerpo. Estos puntos

se utilizan como entidades de referencia para tareas de análisis de movimiento, biometría,

interacción hombre-máquina y seguimiento visual, y suelen ir acompañados de indicadores de

visibilidad o confianza que cuantifican la certeza del modelo en su localización.

38

Imagen 11. Representación de las anotaciones de dataset COCO por persona

El dataset COCO incluye un subconjunto específicamente diseñado para la tarea de

estimación de posturas humanas en 2D, que constituye uno de los estándares de referencia más

utilizados en visión por computador. En este subconjunto, cada instancia de persona está

anotada mediante un conjunto fijo de 17 keypoints corporales (Tabla 9), definidos para

capturar la estructura esquelética humana de manera coherente, reproducible y adecuada para

diferentes escenarios de aplicación.

Estos keypoints corresponden a las principales articulaciones y regiones anatómicas del

cuerpo humano: nariz, ojos, orejas, hombros, codos, muñecas, caderas, rodillas y tobillos. La

disposición de estas anotaciones permite representar de forma aproximada la cinemática del

cuerpo y posibilita la construcción de esqueletos simplificados que pueden ser empleados en

tareas de análisis de movimiento, interacción humano-computadora, biometría o deportes.

Un aspecto clave de COCO es que estas anotaciones están recogidas en condiciones

no controladas, es decir, en escenas naturales y cotidianas con variaciones significativas en

iluminación, poses, oclusiones parciales, ángulos de visión y escalas de representación. Esta

diversidad dota al dataset de un alto nivel de complejidad y realismo, lo que lo convierte en un

recurso fundamental para evaluar la robustez de los modelos de estimación de postura en

contextos desafiantes.

Cada uno de los keypoints se anotan con coordenadas (x, y) y con una etiqueta de

visibilidad con los valores 0 (no visible), 1 (marcado pero no visible), 2 (visible).

Estas anotaciones permiten no solo la localización precisa de cada keypoint, sino

también la evaluación estructurada de modelos bajo métricas ampliamente adoptadas que

veremos más adelante como Average Precision (AP), Object Keypoint Similarity (OKS) y

Average Recall (AR) por lo que además de su uso como benchmark, COCO se ha consolidado

como estándar de facto para la comparación entre arquitecturas de visión.

39

Nº de keypoint Nombre del keypoint Descripción anatómica

1 Nose Punta de la nariz

2 Left Eye Centro del ojo izquierdo

3 Right Eye Centro del ojo derecho

4 Left Ear Parte visible de la oreja izquierda

5 Right Ear Parte visible de la oreja derecha

6 Left Shoulder Articulación del hombro izquierdo

7 Right Shoulder Articulación del hombro derecho

8 Left Elbow Articulación del codo izquierdo

9 Right Elbow Articulación del codo derecho

10 Left Wrist Articulación de la muñeca izquierda

11 Right Wrist Articulación de la muñeca derecha

12 Left Hip Articulación de la cadera izquierda

13 Right Hip Articulación de la cadera derecha

14 Left Knee Articulación de la rodilla izquierda

15 Right Knee Articulación de la rodilla derecha

16 Left Ankle Articulación del tobillo izquierdo

17 Right Ankle Articulación del tobillo derecho

Tabla 9. Listado de keypoints de dataset COCO

Anotaciones de COCO para la estimación de posturas humanas

Para las anotaciones el dataset utiliza un esquema jerárquico en formato JSON siguiendo

una especificación propia conocida como COCO JSON Format que permite no solo entrenar

modelos supervisados de estimación de pose 2D sino también evaluar modelos bajo métricas

como AP, OKS y AR, generar esqueletos y visualizar poses humanas en entornos reales y

complejos, etc.. Cada anotación de persona contiene los siguientes campos:

- image_id: ID de la imagen donde se encuentra la persona.

- category_id: Siempre 1 para personas.

- keypoints: Lista de 51 valores (17 keypoints × 3 valores por keypoint).

Cada keypoint contiene: (x, y, v):

o x, y: coordenadas del punto en píxeles.

o v: visibilidad (0=no etiquetado, 1=etiquetado pero no visible, 2=etiquetado

y visible).

- num_keypoints: número de puntos anotados con v > 0.

- bbox: coordenadas [x, y, width, height] de la caja que rodea a la persona.

- area: área de la caja (útil para normalizar el error en métricas como OKS).

- iscrowd: si la anotación pertenece a un grupo denso de personas (0 o 1).

40

- segmentation: polígonos que segmentan la silueta del cuerpo (opcional).

Validación de resultados con COCO

El cálculo de resultados en la API de COCO para estimación de poses humanas se basa

en una evaluación que mide la precisión y exhaustividad de la localización de puntos clave

(keypoints) en imágenes. Técnicamente, el proceso sigue estas etapas fundamentales:

1. Entrada de predicciones. El modelo genera un conjunto de predicciones para cada

persona detectada en la imagen, donde cada predicción contiene coordenadas (x, y) para

17 keypoints predefinidos (hombros, codos, etc.) y una puntuación de confianza.

2. Correspondencia con anotaciones (ground truth). Cada predicción se asocia con una

anotación real mediante la métrica de similitud de puntos clave (OKS). El OKS evalúa

la proximidad espacial entre los keypoints predichos y anotados, normalizada por la

escala del objeto y ponderada por la visibilidad de cada punto.

3. Asignación de verdaderos positivos y falsos positivos:

o Para distintos umbrales de OKS (desde 0.50 a 0.95 en incrementos de 0.05),

la API asigna cada predicción a una anotación única si el OKS excede el

umbral, clasificándola como verdadero positivo (TP).

o Predicciones sin correspondencia o con OKS bajo el umbral se consideran

falsos positivos (FP).

o Las anotaciones no detectadas cuentan como falsos negativos (FN).

4. Construcción de la curva Precision-Recall. Para cada umbral, se calcula la precisión y

el recall acumulados ordenando las predicciones según su puntuación de confianza. Esto

permite trazar la curva de precisión en función del recall.

5. Cálculo del Average Precision (AP). La métrica AP se obtiene integrando el área bajo la

curva Precision-Recall interpolada en 101 puntos de recall, proporcionando una medida

robusta y estable del rendimiento del modelo.

6. Agregación multi-umbral y global. Finalmente, la API calcula el mean Average

Precision (mAP) promediando los AP obtenidos en los diferentes umbrales de OKS,

reflejando la capacidad del modelo para localizar con precisión keypoints en diversos

grados de tolerancia espacial. En los resultados de la API COCO se considera como

la métrica principal (mAP) al valor de AP [IoU=0.50:0.95].

Este método garantiza una evaluación precisa, que tiene en cuenta la variabilidad en la

visibilidad y escala de las personas, y promueve la comparación justa y estandarizada entre

diferentes modelos de estimación de poses humanas.

41

2.6.2. MPII (Max Planck Institute for Informatics)

El dataset MPII Human Pose es otra referencia fundamental en el campo de la

estimación de poses humanas en imágenes. Desarrollado por el Max Planck Institute for

Informatics (MPII) en Alemania (centro de investigación líder en visión por computador y

aprendizaje automático) para capturar la diversidad y complejidad de posturas humanas en

contextos cotidianos. MPII contiene aproximadamente 25.000 imágenes extraídas de videos

reales, abarcando una amplia variedad de actividades y situaciones. Cada persona en estas

imágenes está anotada con 16 puntos clave (keypoints) que representan las principales

articulaciones y partes del cuerpo, como cabeza, hombros, codos y rodillas, proporcionando

una representación detallada de la configuración corporal en 2D (2).

Además de las coordenadas anatómicas, MPII incluye información contextual sobre la

actividad realizada por la persona, lo que enriquece su utilidad para tareas que combinan

estimación de pose y reconocimiento de acciones. Este dataset se ha convertido en un estándar

para la evaluación de algoritmos de estimación de pose gracias a la calidad y precisión de sus

anotaciones, así como a la diversidad de su contenido.

Utilizado en numerosos estudios y trabajos importantes como por ejemplo

“Compositional Human Pose Regression” (35) que introduce un enfoque de regresión

estructurada para estimación de postura que permite modelar dependencias espaciales entre

articulaciones, base para muchos métodos posteriores, o “P-CNN: Pose-based CNN Features

for Action Recognition” (36) que introduce la combinación de pose + CNN para reconocimiento

de acciones y donde MPII se usa como benchmark para evaluar la precisión de keypoints

humanos contribuyendo a popularizar el uso de poses humanas como característica para tareas

adicionales de visión.

Puntos clave o keypoints

Los 16 keypoints de MPII (Imagen 12) incluyen posiciones en 2D correspondientes a

cabeza, cuello, hombros, codos, muñecas, caderas, rodillas y tobillos, proporcionando una

cobertura detallada de las principales articulaciones para la reconstrucción precisa de la postura

humana. Las anotaciones son realizadas manualmente sobre imágenes provenientes de videos

cotidianos con gran diversidad de posturas, actividades y condiciones visuales, lo que permite

modelar un amplio rango de configuraciones corporales.

A diferencia de otros datasets como COCO, MPII pone énfasis en posturas complejas

y dinámicas en actividades específicas, ofreciendo además metadatos con información

contextual sobre la actividad realizada, lo que posibilita un análisis más rico y aplicaciones

avanzadas en reconocimiento de acciones.

42

Imagen 12. Representación de las anotaciones de dataset MPII por persona

MPII al igual que COCO incluye información especializada para la tarea de estimación

de posturas humanas en 2D, donde cada instancia de persona está anotada con un conjunto fijo

en este caso de 16 keypoints corporales por los 17 que tiene COCO. Estas anotaciones son

similares a las de COCO, aunque no iguales, pero también están diseñadas para capturar la

estructura esquelética humana y se encuentran distribuidas en las principales articulaciones y

regiones del cuerpo humano: cabeza, cuello, pelvis, torso, hombros, codos, muñecas, caderas,

rodillas y tobillos.

Nº de keypoint Nombre del keypoint Descripción anatómica

0 Right Ankle Articulación del tobillo derecho

1 Right Knee Articulación de la rodilla derecha

2 Right Hip Articulación de la cadera derecha

3 Left Hip Articulación de la cadera izquierda

4 Left Knee Articulación de la rodilla izquierda

5 Left Ankle Articulación del tobillo izquierdo

6 Pelvis Centro de la pelvis / región lumbar

7 Thorax Centro superior del torso

8 Neck Base del cuello

9 Head Parte superior de la cabeza

10 Right Wrist Articulación de la muñeca derecha

11 Right Elbow Articulación del codo derecho

12 Right Shoulder Articulación del hombro derecho

13 Left Shoulder Articulación del hombro izquierdo

14 Left Elbow Articulación del codo izquierdo

15 Left Wrist Articulación de la muñeca izquierda

Tabla 10. Listado de keypoints de dataset MPII

43

Anotaciones de MPII para la estimación de posturas humanas

Las anotaciones de keypoints en el dataset MPII Human Pose se almacenan

principalmente en archivos MATLAB, que contienen estructuras de datos detalladas para cada

imagen y persona anotada. Cada entrada incluye coordenadas 2D (x, y) de 16 keypoints

anatómicos específicos, numerados y definidos dentro de cada anotación de cada persona, que

contiene los siguientes campos:

- .annolist(imgidx): anotaciones para la imagen imgidx

o .image.name: nombre del fichero de la imagen

o .annorect(ridx): anotaciones corporales de la persona ridx

 .x1, .y1, .x2, .y2: coordenadas del rectángulo de la cabeza

 .scale: escale de la persona

 .objpos: posición humana en la imagen

 .annopoints.point: anotaciones de los keypoint

 .x, .y: coordenadas del punto

 id: identificador del punto (Tabla 10)

 is_visible: visibilidad del punto

o .vidx: índice en el video video_list

o .frame_sec: posición de la imagen en el video en segundos

- img_train(imgidx): asignación de la imagen a training/testing

- single_person(imgidx): rectángulo con identificador ridx

- act(imgidx): etiqueta de actividad/categoría para la imagen imgidx

o act_name: nombre de actividad

o cat_name: nombre de categoría

o act_id: identificador de la actividad

- video_list(videoidx): identificador del video de YouTube. Para visualizarlo ir a

https://www.youtube.com/watch?v=video_list(videoidx)

Medidas de precisión de dataset MPII

Las medidas de precisión empleadas en el dataset MPII Human Pose para la evaluación

de modelos de estimación de postura humana están diseñadas para cuantificar la exactitud en

la localización de los keypoints en imágenes 2D. La métrica principal es el PCKh (Percentage

of Correct Keypoints, head-normalized), que calcula el porcentaje de keypoints correctamente

detectados dentro de un umbral de distancia relativo al tamaño de la cabeza del sujeto.

Matemáticamente, un keypoint se considera correctamente estimado si la distancia

euclidiana entre la predicción y la anotación ground truth es menor que un umbral

𝛼��× head size, donde el parámetro 𝛼��suele establecerse en 0.5. Este criterio de normalización

mediante el tamaño de la cabeza permite adaptar la evaluación a diferentes escalas y tamaños

corporales, ofreciendo una comparación justa y robusta entre individuos y escenarios variados.

44

Además del PCKh, se utiliza el PCK (Percentage of Correct Keypoints) en otras

variantes, que emplea umbrales absolutos o relativos a otras dimensiones corporales para casos

específicos o comparaciones con otros datasets. La métrica PCKh se reporta tanto para cada

articulación individual como en forma agregada, proporcionando un análisis detallado de las

fortalezas y limitaciones del modelo en distintas regiones corporales.

El dataset MPII también incluye evaluaciones con curvas PCK, que representan la

precisión en función del umbral de distancia, y métricas complementarias como el error medio

euclidiano, para una comprensión más fina del desempeño.

Validación de resultados con MPII

El proceso de validación de resultados con el dataset MPII Human Pose se realiza

mediante la evaluación cuantitativa de las predicciones del modelo sobre un conjunto de

imágenes de prueba etiquetadas con anotaciones ground truth de keypoints. Este procedimiento

sigue los siguientes pasos técnicos y académicos:

1. Preparación de datos. Se utilizan las imágenes de test con sus correspondientes

anotaciones de 16 keypoints y sus estados de visibilidad. Estas anotaciones actúan como

referencia para comparar las predicciones del modelo.

2. Predicción de keypoints. El modelo genera estimaciones de las posiciones 2D de los

keypoints para cada persona en las imágenes de test. Las predicciones deben estar en el

mismo sistema de coordenadas y escala que las anotaciones ground truth.

3. Normalización y umbral. Para evaluar la precisión, se normalizan las distancias entre

los keypoints predichos y los anotados usando la dimensión de la cabeza (head size),

que es un indicador del tamaño relativo del sujeto. Se define un umbral, comúnmente el

50% del tamaño de la cabeza (PCKh@0.5), para determinar si un keypoint está

correctamente localizado.

4. Cálculo de métricas. Se calcula el porcentaje de keypoints detectados correctamente

(PCKh) y se reporta para cada articulación y globalmente. También se pueden analizar

curvas PCK que muestran la precisión en función de distintos umbrales, así como

errores promedio.

5. Tratamiento de visibilidad. Los keypoints marcados como no visibles o fuera de imagen

en las anotaciones ground truth se excluyen de la evaluación para evitar penalizar al

modelo por detectar puntos imposibles de observar.

2.7. Métricas de precisión

Las métricas de precisión constituyen herramientas cuantitativas diseñadas para evaluar

de manera objetiva el rendimiento de modelos en tareas como detección de objetos,

clasificación y estimación de poses. Su función es medir, bajo diferentes perspectivas, el grado

45

de concordancia entre las predicciones del modelo y el ground truth17, permitiendo

comparaciones entre arquitecturas, configuraciones y datasets.

Técnicamente, estas métricas se apoyan en la teoría de detección de señales y en el

análisis de TP (True Positives), FP (False Positives), TN (True Negatives) y FN (False

Negatives), adaptando su formulación a la naturaleza de cada tarea:

- En clasificación, la métrica base es la precisión (accuracy), que mide la proporción

de predicciones correctas sobre el total, complementada con métricas como recall y

matrices de confusión para abordar problemas de clases desbalanceadas.

- En detección de objetos, se utilizan métricas basadas en el solapamiento geométrico,

como el IoU (Intersection over Union), y medidas agregadas como el AP (Average

Precision) y mAP (mean Average Precision), evaluando el rendimiento bajo

múltiples umbrales de coincidencia para capturar tanto la capacidad de localizar

como de clasificar correctamente.

- En estimación de poses, las métricas deben adaptarse a datos estructurados de puntos

clave. Aquí, el OKS (Object Keypoint Similarity) sustituye al IoU, ya que considera

distancias euclidianas normalizadas, escala del objeto y visibilidad de keypoints.

Sobre esta base se calculan métricas como AP/AR de COCO keypoints, que miden

simultáneamente exhaustividad y precisión a distintos niveles de tolerancia.

La selección y análisis de estas métricas no solo determina la interpretación del

rendimiento de un modelo, sino que también condiciona el desarrollo de arquitecturas y técnicas

de entrenamiento, ya que optimizar para una métrica específica puede producir sesgos hacia

ciertos aspectos de la tarea (por ejemplo alta precisión pero bajo recall, o viceversa).

2.7.1. Recall

Recall (exhaustividad o sensibilidad) es la métrica que mide la capacidad de un modelo

para encontrar todas las instancias relevantes de la clase objetivo dentro de un conjunto de

datos. Un recall alto indica que el modelo detecta la mayoría de los objetos reales (o keypoints),

aunque no necesariamente con alta precisión (37).

Desde un punto de vista matemático, recall se define como vemos en la Ecuación 1

cantidad de casos correctamente acertados dividido entre casos correctamente acertados + casos

relevantes no acertados.

17 Conjunto de datos o anotaciones de referencia verificadas manualmente contra la cual se comparan y
evalúan las predicciones de un modelo.

46

Ecuación 1. Cálculo de Recall (37)

2.7.2. Intersection over Union (IoU)

La IoU es una métrica ampliamente utilizada en visión por computador para cuantificar

la superposición entre dos regiones, una región predicha y su correspondiente ground truth

(valores de referencia) (Imagen 13). Es un indicador clave en tareas de detección de objetos,

segmentación semántica, instancia y estimación de poses (cuando se evalúan bounding boxes18)

(38).

El cálculo de IoU produce un valor normalizado entre 0 y 1. Un valor cercano a 1 indica

una predicción con una alta coincidencia espacial respecto a la anotación de referencia, mientras

que valores bajos reflejan discrepancias significativas en localización, escala o forma. En la

práctica, la IoU se utiliza con umbrales definidos (por ejemplo, IoU ≥ 0.5) para determinar si

una predicción se considera un acierto o un fallo. La variación de dichos umbrales da lugar a

métricas más expresivas, como la AP en intervalos múltiples (AP@[0.5:0.95]), ampliamente

adoptada en benchmarks como COCO.

Imagen 13. Representación IoU (38)

18 Una caja delimitadora (bounding box en inglés) es un rectángulo que se utiliza para delimitar la posición y el
tamaño de un objeto dentro de una imagen o un fotograma de vídeo.

47

Desde un punto de vista matemático, el IoU se define como el cociente entre el área de

la intersección de las dos regiones y el área de su unión como se puede ver en la Ecuación 2.

Ecuación 2. Cálculo de IoU (Intersection Over Union) (38)

2.7.3. Estimación de puntos clave: Object Keypoint Similarity (OKS)

IoU es la métrica de referencia para medir la precisión de la detección de objetos pero

al calcularse utilizando las áreas de las regiones predichas y real no puede ser aplicada cuanto

estamos trabajando con detección de puntos. En la estimación de puntos clave la métrica

homóloga a IoU es el OKS (Object Keypoint Similarity) (39), que es una métrica de evaluación

utilizada para cuantificar la similitud entre los keypoints predichos por un modelo de estimación

de pose humana y los keypoints de referencia (ground truth) en un contexto de objetos con

estructura articulada como personas. Esta métrica fue introducida por el equipo de COCO como

una generalización del IoU, adaptada a la naturaleza puntual y estructural de los esqueletos

humanos.

OKS se define como una función de penalización basada en la distancia euclidiana entre

cada par de keypoints (el predicho y el real), normalizada por la escala del objeto y ponderada

por un factor de visibilidad anatómica. Su expresión matemática se puede ver en la Ecuación 3.

Ecuación 3. Cálculo de OKS de COCO (39)

48

El OKS toma valores en el rango [0,1], donde 1 indica una coincidencia perfecta entre

la predicción y la anotación. A diferencia del IoU, el OKS es robusto a errores de localización

relativa gracias a la normalización por escala y sensibilidad. Es la métrica oficial para los

benchmarks de COCO Keypoints y se utiliza para calcular métricas como:

- mAP (media de AP en múltiplos de OKS de 0.50 a 0.95).

- AP@OKS=0.75 (estricto).

- AP@OKS=0.50 (tolerante).

2.7.4. Medidas de precisión de dataset COCO

Para evaluar la precisión de los modelos de estimación de postura humana en el dataset

COCO se utilizan las métricas definidas por el COCO Keypoint Evaluation API, que siguen los

criterios de detección de objetos adaptados al contexto de keypoints. Las métricas principales

son:

- AP. Average Precision (precisión promedio). Es una métrica integral que

cuantifica el rendimiento de un modelo promediando la precisión a lo largo de

distintos niveles de exhaustividad (recall) (40). En lugar de evaluar la precisión en

un único punto, COCO integra el área bajo la curva Precision-Recall, lo que

proporciona una medida más estable y representativa del comportamiento global del

sistema (Ecuación 4).

COCO define AP como la media de la precisión calculada para un conjunto discreto

de niveles de recall, típicamente 101 puntos equidistantes en el intervalo [0,1]. En

la tarea de detección de objetos y estimación de poses, la API no calcula AP para un

único umbral de coincidencia, sino que la promedia sobre múltiples umbrales de IoU

(en detección) u OKS (en pose), con pasos de 0.05, cubriendo desde 0.50 hasta 0.95.

Ecuación 4. Cálculo Average Precision en COCO (40)

- AR. Average Recall (recuperación media). La recuperación media AR evalúa la

capacidad del modelo para detectar todas las personas y sus keypoints relevantes, es

decir, cuántos casos relevantes logra capturar correctamente, sin importar tanto la

confianza del score. En contextos de estimación de postura, es importante para medir

49

si un modelo no deja sin detectar personas o keypoints, especialmente en escenas

complejas o con múltiples sujetos. Una AR elevado indica que el modelo es capaz

de recuperar la mayoría de las poses humanas relevantes, aunque algunas

estimaciones no sean perfectas en todos los puntos.

2.8. Utilización en dispositivos móviles y consideraciones técnicas

La integración de modelos de estimación de posturas humanas en dispositivos móviles

constituye un área de investigación y desarrollo de creciente relevancia debido a la necesidad

de soluciones portables, en tiempo real y con bajo consumo de recursos computacionales. Estos

modelos permiten identificar y localizar puntos clave en el cuerpo humano directamente desde

la cámara del dispositivo, habilitando aplicaciones en ámbitos como la salud digital, el deporte,

la rehabilitación, la interacción hombre-máquina, el entretenimiento y la realidad aumentada.

2.8.1. Hardware

La ejecución de modelos de estimación de posturas en dispositivos móviles puede

abordarse desde diferentes estrategias teóricas, las cuales dependen de la disponibilidad de

recursos de hardware, del ecosistema de software del dispositivo y de los requisitos de precisión

y latencia de la aplicación. Estas estrategias pueden implementarse mediante frameworks

optimizados para entornos móviles como TensorFlow Lite, PyTorch Mobile, CoreML, NNAPI

(Android Neural Networks API) o OpenVINO para dispositivos edge, que proporcionan las

abstracciones necesarias para ejecutar el mismo modelo en diferentes backends (CPU, GPU,

NPU). La selección del método depende de los criterios de diseño del sistema, el tipo de

aplicación y las limitaciones impuestas por el hardware del dispositivo. De manera general, se

pueden distinguir cuatro enfoques principales.

Ejecución directa en CPU

Los modelos pueden ejecutarse en la unidad central de procesamiento (CPU) del

dispositivo, sin requerir hardware especializado. Este enfoque maximiza la portabilidad y

compatibilidad, ya que prácticamente todos los dispositivos móviles disponen de CPU. Sin

embargo, su principal limitación radica en la baja velocidad de inferencia en comparación con

otros métodos, lo que restringe su uso a modelos altamente optimizados o aplicaciones con

requisitos de latencia poco estrictos.

Aceleración mediante GPU móvil

La unidad de procesamiento gráfico (GPU) integrada en los dispositivos móviles puede

aprovecharse para la ejecución de estos modelos, especialmente aquellos basados en

operaciones de convolución intensiva. Frameworks como TensorFlow Lite GPU Delegate o

Metal Performance Shaders (en iOS) permiten explotar el paralelismo masivo de la GPU,

incrementando la velocidad de inferencia de manera significativa.

En la práctica, este enfoque es posible gracias a las GPUs integradas en los SoCs

modernos que equipan a la mayoría de teléfonos y tablets actuales. Entre ellas se incluyen

50

arquitecturas Mali (ARM), Adreno (Qualcomm), PowerVR (Imagination Technologies) y las

GPUs diseñadas por Apple, todas con soporte para APIs gráficas como OpenGL ES 3.x, Vulkan

o Metal, según la plataforma. Estas capacidades permiten ejecutar cargas de trabajo de

inferencia en paralelo, aunque con diferencias en rendimiento y eficiencia energética según la

generación y el nivel del hardware. No obstante, el consumo energético y la variabilidad de

soporte entre diferentes dispositivos constituyen limitaciones importantes.

Uso de aceleradores especializados (NPUs, DSPs, TPUs móviles)

Una tendencia creciente en la computación móvil es la incorporación de unidades de

procesamiento neuronal (NPUs) o Digital Signal Processors (DSPs) especializados en la

ejecución de cargas de trabajo de inteligencia artificial. Fabricantes como Qualcomm (Hexagon

DSP), Huawei (Ascend NPU) o Google (Edge TPU en dispositivos Pixel) integran este tipo de

hardware. El uso de estas unidades permite una ejecución altamente eficiente en términos

energéticos, con latencias muy bajas y optimización para inferencia en tiempo real, lo que los

convierte en la opción más adecuada para aplicaciones de estimación de posturas en entornos

móviles.

Ejecución híbrida con soporte en la nube

Una alternativa teórica consiste en combinar la inferencia en el dispositivo con el

procesamiento en la nube. En este escenario, el dispositivo móvil ejecuta una primera etapa de

procesamiento (ej. detección de personas en la escena) y delega la parte más costosa del modelo

a servidores remotos. Esto reduce los requisitos de hardware en el móvil y posibilita el uso de

modelos de gran escala, aunque introduce problemas de latencia, dependencia de conectividad

y privacidad de los datos.

2.8.2. Android

La ejecución de modelos de estimación de posturas humanas en dispositivos móviles

depende en gran medida del framework de inferencia utilizado (TensorFlow Lite, PyTorch

Mobile, entre otros), así como del soporte de hardware (CPU, GPU, NPU/TPU) disponible en

el dispositivo. No obstante es posible establecer un rango de requisitos mínimos en cuanto a

versiones de Android que aseguren la compatibilidad.

- TensorFlow Lite (TFLite) requiere como mínimo Android 4.1 (API 16, Jelly Bean),

ya que está implementado sobre el Android NDK y puede ejecutarse en arquitecturas

ARMv7 y superiores. Sin embargo, a partir de Android 8.0 (API 26, Oreo) se

introdujeron mejoras en la API de aceleración de hardware (NNAPI, Neural

Networks API), lo que permite una ejecución mucho más eficiente en procesadores

modernos.

- PyTorch Mobile requiere Android 5.0 (API 21, Lollipop) como versión mínima para

la ejecución básica en CPU. Sin embargo, el soporte para aceleración mediante GPU

(Vulkan, OpenGL) y optimizaciones recientes está pensado para dispositivos con

Android 8.1 (API 27) o superior.

51

- ONNX Runtime Mobile en su configuración estándar admite dispositivos con

Android 5.0 (API 21) en adelante, aunque al igual que PyTorch y TensorFlow Lite,

el rendimiento real depende del acceso a bibliotecas de cómputo optimizado como

NNAPI o Core ML (en iOS).

Por tanto aunque la ejecución básica de estos frameworks es posible en Android 5.0

(API 21) en adelante, se considera que la versión mínima recomendada para la ejecución de

modelos de estimación de posturas humanas en condiciones prácticas y eficientes es Android

8.0 (API 26). A partir de esta versión, los dispositivos incluyen soporte maduro para NNAPI,

drivers más optimizados para GPU y librerías de aceleración de hardware que resultan

esenciales en modelos de visión por computadora de alta carga computacional, como los de

estimación de posturas.

Según el análisis de Wikipedia de datos de Statcounter Global Stats19 la cuota de

mercado de las versiones de Android más utilizadas hasta abril del 2025 son:

1. Android 14.0 - 33.44 %

2. Android 13.0 - 16.94 %

3. Android 12.0 - 12.11 %

4. Android 11.0 - 10.41 %

5. Android 15.0 - 10.06 %

6. Android 10.0 - 5.57 %

7. Android 9.0 Pie - 3.18 %

8. Android 8.0 Oreo - 2.18 %

9. Android 5.0 Lollipop - 1.74 %

10. Otros - 4.37 %

 Por lo que sumando los porcentajes se estima que a hasta abril de 2025 un 93,89% de

los dispositivos Android en el mercado tienen una versión igual o superior a la 8.0 y podrían

ejecutar este estudio.

19 https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide

52

3. METODOLOGÍA

El objetivo general de este apartado es definir una metodología que permita seleccionar

un conjunto de modelos y un dataset de testeo para evaluar y comparar su precisión y

rendimiento computacional en la detección de posturas humanas utilizando varios dispositivos

móviles, proporcionando criterios objetivos para la selección de los modelos adecuados para el

estudio.

En este contexto se ha elegido Android como plataforma base para la implementación

y validación por criterios tanto técnicos como de aplicabilidad práctica, Android constituye el

sistema operativo móvil más ampliamente utilizado a nivel global, con una cuota de mercado

superior al 70 %, lo que garantiza la relevancia y transferibilidad de los resultados a un gran

espectro de dispositivos y escenarios de uso.

Por otro lado entre los diversos frameworks disponibles, TensorFlow Lite se presenta

como una opción preferente para implementaciones en dispositivos Android, por varias razones,

primero porque mantiene la compatibilidad con modelos previamente entrenados en

TensorFlow permitiendo la conversión a un formato optimizado para móviles sin perder la

arquitectura ni la precisión del modelo original, y también porque la infraestructura de

TensorFlow Lite incluye soporte nativo para Android mediante APIs estables y documentadas,

lo que simplifica la integración de modelos de visión por computadora en aplicaciones móviles.

Esto reduce la complejidad del desarrollo y permite focalizar los recursos en el diseño

experimental y la evaluación de métricas

3.1. Selección de modelos

 Como hemos visto en el apartado “2.5. Modelos de estimación de posturas” se dispone

de un amplio espectro de familias de modelos desarrolladas por la comunidad académica e

industrial, muchas de las cuales presentan similitudes estructurales (por ejemplo, en la

arquitectura de red empleada, el número y disposición de keypoints que predicen o la naturaleza

del backbone de extracción de características), mientras que otras difieren sustancialmente en

su enfoque metodológico, el tipo de inferencia (top-down, bottom-up, híbrido), o el formato de

salida.

Un aspecto común a la mayoría de estas familias es la existencia de múltiples versiones

derivadas del modelo base, diseñadas para satisfacer diferentes compromisos entre precisión,

latencia y uso de recursos. Dichas variantes suelen generarse mediante técnicas de optimización

y compresión de modelos, como la cuantización (descrita en el apartado “2.3.2. Cuantización

de modelos”),

 Debido a la gran cantidad de modelos existentes, las diferencias entre ellos y a las

versiones o familias derivadas de cada uno resultaría inviable incluirlos todos en un mismo

estudio por lo que para este estudio comparativo se pretende seleccionar únicamente 2 o 3

modelos principales e incluir todas las familias o variantes de los mismos que sean posibles

para poder analizar cómo se comportan los diferentes modelos seleccionados no solo en

comparación de otros modelos sino también en comparación con otras versiones de su propia

familia, lo que puede constituir un estudio bastante extenso.

53

3.1.1. Criterios de selección y modelos seleccionados

En este apartado trataremos de justificar los criterios en base a los cuales

seleccionaremos los modelos para el estudio. Se valoraran diferentes aspectos que

consideramos fundamentales:

- Disponibilidad y accesibilidad como modelo preentrenado. Este factor resulta

determinante para garantizar la reproducibilidad del estudio y la viabilidad técnica

de su implementación en la plataforma objetivo. Deberá existir un modelo accesible

para su descarga y posterior integración en la plataforma de estudio, en cualquier

formato que pueda ser integrado en un framework para dispositivos móviles con

sistema operativo Android.

- Estimación de posturas humanas, single-person, 2D y keypoints consistentes y

comunes20. Otro criterio clave en la selección de modelos será la capacidad del

modelo para predecir una única persona en dos dimensiones y con un conjunto de

keypoints consistente y común entre las diferentes arquitecturas evaluadas. Este

aspecto es fundamental para garantizar la comparabilidad directa de los resultados,

ya que la precisión y las métricas de evaluación solo son válidas si se calculan sobre

puntos anatómicos equivalentes en todas las predicciones.

- Madurez/obsolescencia del modelo. La madurez temporal de un modelo constituye

un indicador clave para valorar su estabilidad tecnológica, grado de adopción y nivel

de validación por parte de la comunidad científica e industrial. En el presente

estudio, se establece como criterio que los modelos seleccionados tengan al menos

un año de disponibilidad pública y no superen los cinco años desde su

lanzamiento oficial. El requisito de un mínimo de un año responde a la necesidad

de garantizar que el modelo ha pasado por un ciclo razonable de uso, validación y

retroalimentación por parte de desarrolladores e investigadores y el límite de cinco

años desde su lanzamiento busca evitar la selección de modelos que, si bien pudieron

ser punteros en su momento, pueden estar tecnológicamente superados por nuevas

arquitecturas o por versiones más eficientes y precisas.

- Tamaño del modelo. Cuando el despliegue se orienta a dispositivos con recursos

limitados como teléfonos móviles, tabletas o sistemas embebidos (edge devices) el

tamaño del modelo tiene que ser adecuado a este entorno. En este estudio, se

establece un umbral recomendado de aproximadamente 50 MB para el fichero

de pesos del modelo dejando fuera del estudio modelos que aunque presuponen

mejor precisión podrían no ser adecuados para dispositivos con pocos recursos por

su gran tamaño (tamaño de almacenamiento de la APP en la que se integrara, tamaño

en memoria RAM, etc.,).

- Facilidad de integración (existencia de APIs, documentación, demos). Si bien este

último punto no es determinante es un criterio a tener en cuenta en la selección, ya

que determina el esfuerzo técnico y los recursos necesarios para integrar el modelo

en un entorno funcional.

20 Recordemos que el objetivo del estudio descrito en el Abstract es la recomendación de modelos para una

futura APP de tele rehabilitación, lo que reduce el ámbito del estudio a estimación single-person y 2D.

54

Los resultados obtenidos tras aplicar los criterios establecidos en esta investigación

indican que, en una primera instancia, los modelos que se perfilan como más adecuados para

ser incluidos en el estudio comparativo como se puede ver en la Tabla 11 son MoveNet,

BlazePose y YOLO-Pose. Estos tres modelos representan una muestra representativa y

diversificada de arquitecturas contemporáneas y robustas, específicamente diseñadas o

adaptadas para la estimación de posturas humanas en entornos móviles.

Modelo Seleccionable

según criterios

Razones

OpenPose No - Año 2017

- Tamaño < 100MB

- Número de keypoints no estandarizado (18-135)

AlphaPose No - Año 2018

- Tamaño < 92MB

PoseNet No - Año 2018

- Superado por MoveNet21

DensePose No - Año 2018

- No enfocado en keypoints 2d estándar

HRNet No - Año 2019

- Tamaño < 112MB

EfficientPose No - Facilidad de integración (dificultad para

encontrar documentación técnica)

MoveNet Sí - Año2020

- Disponibilidad y accesibilidad

- Estimación single-person, 2D y 17 keypoints

- Tamaño 3-25 MB

BlazePose Sí - Año2021

- Disponibilidad y accesibilidad

- Estimación single-person, 2D y 33 keypoints (17

comunes)

- Tamaño 3-26 MB

PoseWarper No - Disponibilidad y accesibilidad (dificultad para

encontrar modelo preentrenado)

- Facilidad de integración (dificultad para

encontrar documentación técnica)

YOLO-Pose Sí - Año2021-2024 (según versión)

- Disponibilidad y accesibilidad

- Estimación single-person, 2D y 17 keypoints

- Tamaño 5-50 MB

RTMPose No - Disponibilidad y accesibilidad

- Facilidad de integración (dificultad para

encontrar documentación técnica)

- Basado en arquitectura YOLO

Tabla 11. Resumen aplicación criterios selección de modelos

21 Ambos modelos desarrollados por Google (aunque por diferentes equipos)

55

Los tres modelos seleccionados (MoveNet, BlazePose y YOLO-Pose) son

representativos y están consolidados para la estimación de posturas humanas. Cada uno ofrece

un enfoque arquitectónico distinto y características técnicas que permiten abordar la tarea con

diferentes balances entre precisión, velocidad y eficiencia computacional.

3.1.2. MoveNet (Google)

MoveNet se basa en una arquitectura ligera y eficiente de red neuronal convolucional

propia diseñada para inferencias rápidas en dispositivos con recursos limitados. Su diseño

utiliza convoluciones profundas optimizadas para mantener un alto rendimiento en tiempo real.

MoveNet prioriza un procesamiento rápido y un tamaño reducido del modelo, lo que lo hace

ideal para aplicaciones móviles y en tiempo real.

Está orientado a la detección de 17 puntos clave estándar del cuerpo humano siguiendo

la convención del dataset COCO (nariz, ojos, orejas, hombros, codos, muñecas, caderas,

rodillas y tobillos), donde cada keypoint estimado incluye:

- Coordenadas (x, y) normalizadas al tamaño de entrada.

- Score de confianza asociado.

Como ya vimos en la descripción previa en el apartado “2.5.7. MoveNet” cuenta con

dos variantes principales cada una de ellas a su vez con varias versiones cuantizadas:

MoveNet Lightning

- Tamaño de la imagen de entrada: 192×192 píxeles.

- Optimizado para latencia mínima y procesamiento en tiempo real en dispositivos

móviles.

- Arquitectura reducida y más agresivamente cuantizada.

- Menor precisión que Thunder, pero tiempos de inferencia muy bajos.

MoveNet Thunder

- Tamaño de la imagen de entrada: 256×256 píxeles.

- Optimizado para máxima precisión manteniendo latencia aceptable.

- Arquitectura más profunda con mayor capacidad de extracción de características.

- Mayor tamaño de entrada y mayor coste computacional.

56

Tanto la variante Lightning como la variante Thunder tienen 3 versiones, la estándar con

representación en 32 bits, una versión reducida mediante cuantización a 16 bits y otra aún más

reducida de 8 bits. Con el objetivo no solo de comparar precisiones y rendimientos de modelos

entre si sino de poder observar los efectos de técnicas como la cuantización sobre los mismos

modelos en este estudio se incluirán todas las versiones de ambas variantes de la familia

MoveNet, con un total de 6 modelos: MoveNet Lightning 8, 16 y 32 y MoveNet Thunder 8, 16

y 32.

3.1.3. BlazePose (Google MediaPipe)

BlazePose, desarrollado por Google MediaPipe, emplea una arquitectura de red

convolucional compacta (MobileNetV2). A diferencia de otros modelos, BlazePose estima un

conjunto más amplio de 33 keypoints, (incluyendo articulaciones detalladas y puntos faciales)

pero a su vez manteniendo la compatibilidad con los puntos más estandarizados para la

estimación de posturas humanas (17 de los 33 son comunes) coincidiendo con el resto de

modelos seleccionados. Esta capacidad lo hace especialmente adecuado para aplicaciones de

fitness, realidad aumentada y entornos donde se requiera un seguimiento detallado y preciso.

 Aunque los modelos de la familia BlazePose trabajan con salidas de 33 keypoints

estimados mantienen una compatibilidad con los 17 puntos estándar que suelen estimar la

mayoría de los modelos al coincidir 17 de los 33 puntos estimados por BlazePose con estos 17

puntos como vemos en la Tabla 12. BlazePose hace una estimación de keypoints extendida

(estima más puntos) pero compatible con el resto de modelos a nivel de estudio comparativo.

Nº keypoint estándar Nº keypoint BlazePose Descripción anatómica

0 0 Nariz

1 2 Ojo izquierdo

2 5 Ojo derecho

3 7 Oreja izquierda

4 8 Oreja derecha

5 11 Hombro izquierdo

6 12 Hombro derecho

7 13 Codo izquierdo

8 14 Codo derecho

9 15 Muñeca izquierda

10 16 Muñeca derecha

11 23 Cadera izquierda

12 24 Cadera derecha

13 25 Rodilla izquierda

14 26 Rodilla derecha

15 27 Tobillo izquierdo

16 28 Tobillo derecho

Tabla 12. Equivalencia puntos BlazePose

57

BlazePose presenta tres versiones con distinto grado de cuantización: Lite, Full y Heavy

todas ellas con el mismo tamaño de la imagen de entrada (256×256 píxeles). En este estudio

se incluirán las tres versiones de familia BlazePose.

3.1.4. YOLOv8-Pose (Ultralytics)

Ultralytics es la compañía que desarrolla y mantiene el ecosistema de software del

mismo nombre especializado en visión por computadora y aprendizaje profundo, ampliamente

reconocida por ser la responsable del desarrollo y mantenimiento de los modelos YOLO (You

Only Look Once).

YOLO-Pose adapta la reconocida arquitectura de detección rápida YOLO para la

estimación de poses, integrando prediction heads especializadas para la regresión de keypoints

después de la detección de personas. Esta aproximación de una sola etapa permite realizar

detecciones y estimaciones simultáneas, logrando un equilibrio eficiente entre rapidez y

precisión. YOLO-Pose destaca por su capacidad para manejar múltiples personas en imágenes

con alta velocidad, manteniendo una precisión competitiva, ideal para entornos móviles y

aplicaciones en tiempo real.

Como hemos visto en el apartado “2.5.10. YOLO-Pose” este modelo ha ido

evolucionando en el tiempo con la aparición de diferentes versiones, habiendo para la

estimación de posturas humanas varias versiones disponibles: YOLOv5-Pose, YOLOv7-Pose,

YOLOv8-Pose y YOLOv11-Pose. Atendiendo a los criterios fijados para la selección de

modelos y tratándose la última versión (YOLOv11-Pose) de una versión relativamente reciente

(menos de un año) durante el desarrollo de este estudio, se opta por incorporar la versión

YOLOv8-Pose en lugar de la última para intentar realizar la comparativa con los otros modelos

con versiones similares en el tiempo.

El modelo YOLOv8-Pose al igual que los anteriores tiene diferentes versiones

publicadas, siendo algunas de ellas susceptibles de ser aptas para su utilización en dispositivos

edge (apartado “2.5.10. YOLO-Pose”) según los criterios de tamaño de selección de modelos

que hemos definido:

- YOLOv8n-Pose. Versión “nano”.

- YOLOv8s-Pose. Versión “small”.

- YOLOv8m-Pose. Versión “medium”.

En el estudio se incluirán estas tres versiones que cumplen los criterios de selección

mientras que no se consideran adecuadas las versiones YOLOv8l-Pose (“large”) y YOLOv8x-

Pose (“extra large”) por exceder su tamaño el criterio que hemos establecido como máximo

para su utilización en dispositivos móviles.

 Como vimos anteriormente (Tabla 7, “Resumen características modelos preentrenados”)

los modelos YOLO se encuentran en un formato PyTorch (.pt) ya que es el formato nativo de

58

entrenamiento e inferencia usado por Ultralytics para sus modelos por lo que es seguro que para

homogeneizar todos los modelos que vamos a incluir en el estudio con un mismo formato haya

que realizar una conversión de formatos durante el proceso de implementación.

Nombre del modelo Puntos clave

estimados

Formato Tamaño (KBytes)

MoveNet Lightining 8 17 TFLite 2.895

MoveNet Lightining 16 17 TFLite 4.759

MoveNet Lightining 32 17 TFLite 9.373

MoveNet Thunder 8 17 TFLite 7.127

MoveNet Thunder 16 17 TFLite 12.584

MoveNet Thunder 32 17 TFLite 25.026

BlazePose Lite 33 MediaPipe / TFLite 2.818

BlazePose Full 33 MediaPipe / TFLite 6.441

BlazePose Heavy 33 MediaPipe / TFLite 27.709

Yolo8-pose Nano 17 ONNX / TFLite 6.771

Yolo8-pose Small 17 ONNX / TFLite 23.422

Yolo8-pose Medium 17 ONNX / TFLite 50.120

Tabla 13. Resumen de características modelos incluidos en el estudio

3.2. Selección de dataset de testeo

La elección del dataset de testeo es un paso fundamental en la evaluación rigurosa y

objetiva de modelos de estimación de posturas humanas. Un dataset representativo y bien

anotado permite no solo medir con precisión la capacidad del modelo para detectar y localizar

puntos clave del cuerpo, sino también evaluar su robustez frente a variaciones en pose,

iluminación, entorno y sujetos. La calidad y diversidad de las anotaciones, junto con un

protocolo de evaluación estandarizado, facilitan la comparación directa entre diferentes

arquitecturas y versiones de modelos. Además, la accesibilidad y documentación del dataset

son cruciales para reproducibilidad y validación externa. Por último la compatibilidad con los

modelos seleccionados previamente tiene una importancia casi definitiva a la hora de escoger

un dataset sobre los que vimos en el apartado “2.6. Datasets de estimación de posturas”.

3.2.1. Criterios de selección

En este apartado trataremos de justificar los criterios en base a los cuales

seleccionaremos al dataset que utilizaremos para el estudio de los modelos. Se valoraran

diferentes aspectos que consideramos fundamentales, si bien como hemos ido viendo durante

el análisis del marco teórico y estado del arte en el apartado 2 y durante la selección de los

modelos a estudiar, estos criterios van a tener una menor influencia en la detección del datset

en tanto en cuanto la mayoría de modelos observados (incluidos los seleccionados en el punto

anterior para el estudio) no solo adoptan el estándar de keypoints del dataset COCO sino que

además están entrenados o mejorados en cierta manera con datos de este dataset y como vimos

en “Tabla 8. Resumen arquitecturas modelos preentrenados” están diseñados para una

59

estimación de 17 keypoints coincidentes con el número de anotaciones por persona existente

en el dataset COCO. Aun así definiremos los siguientes criterios de selección:

- Cobertura y diversidad de poses. El dataset debe incluir una amplia variedad de

posturas, movimientos y actividades para reflejar escenarios reales. Esto asegura que

el modelo evaluado sea robusto a diferentes posiciones y articulaciones.

- Cantidad y calidad de anotaciones (keypoints). Número de keypoints anotados

por persona, compatibilidad con los modelos seleccionados para facilitar

comparativas. Precisión y consistencia en las anotaciones (manuales o automáticas)

que minimicen ruido y errores.

- Diversidad de sujetos y variedad en condiciones de captura. Incluir diferentes

edades, géneros, tipos corporales y condiciones para evitar sesgos y asegurar

generalización. Inclusión de diversos fondos, iluminación, ángulos de cámara, y

resolución de imagen. Entornos controlados y no controlados (interiores y

exteriores).

- Disponibilidad y accesibilidad. Dataset público, con documentación clara,

formatos estándar y licencia compatible con investigación y desarrollo.

Criterio COCO MPII

Cobertura y diversidad de

poses

Alta diversidad con

escenas cotidianas y

actividades variadas;

incluye poses complejas y

contextos con múltiples

personas.

Enfocado principalmente

en actividades humanas

diarias, especialmente

deportes, con buena

variedad pero menos

contexto complejo.

Cantidad y calidad de

anotaciones (keypoints)

17 keypoints bien

definidos; anotaciones

extensas y precisas, con

estándares para métricas

como OKS.

16 keypoints con

anotaciones detalladas en

articulaciones principales;

calidad alta pero menos

cantidad total.

Diversidad de sujetos y

condiciones de captura

Gran variedad de sujetos,

etnias y entornos;

imágenes tomadas en

condiciones muy variadas

(interior, exterior,

iluminación, fondo).

Menor diversidad en

sujetos y escenarios;

principalmente imágenes

enfocadas en personas

individuales y deportes,

con condiciones más

controladas.

Disponibilidad y

accesibilidad

Publicado ampliamente

con fácil acceso,

documentación completa

y soporte para evaluación

automatizada; estándar de

facto en la comunidad.

También público y

accesible, con

documentación clara, pero

menos extendido como

benchmark comparativo

global.

Tabla 14. Resultados criterios selección de dataset

60

La Tabla 14 sintetiza las principales razones que hacen de COCO un dataset preferido

para evaluación general, mientras que MPII puede ser más específico para ciertos dominios

como análisis de movimientos deportivos. Por tanto el resultado de la selección de dataset de

testeo indica como mejor opción utilizar el dataset COCO para el estudio.

Para llevar a cabo una mejor evaluación de los modelos, se seleccionan además dentro

del dataset de testeo dos subconjuntos específicos de imágenes. Esta segmentación busca

analizar el desempeño del modelo bajo condiciones variadas y realistas, diferenciando entre

situaciones óptimas de inferencia y situaciones desafiantes.

3.3. Selección de imágenes de testeo

Debido a la naturaleza heterogénea de COCO, se establecerá un proceso de filtrado

sistemático con el fin de generar un subconjunto controlado de imágenes específicamente

diseñado para pruebas comparativas bajo condiciones constantes. Dicho filtrado se realizará a

partir de dos criterios principales:

- Una única persona visible en la imagen. Este criterio responde al objetivo inicial

del proyecto (estudio de modelos para la realización de una aplicación de tele-

rehabilitación) el cual iría dirigido a la utilización por parte de un único usuario. Este

criterio además elimina la complejidad derivada de la presencia de múltiples

individuos en el mismo cuadro, lo que puede introducir ambigüedad en la asignación

de keypoints y en la interpretación de los resultados. Al garantizar un único sujeto,

se reduce la variabilidad no deseada y se asegura que los errores de inferencia estén

asociados únicamente al modelo, y no a interferencias en la segmentación de

múltiples instancias.

- Al menos 15 de los 17 keypoints correctamente anotados. Al igual que con el

anterior criterio, en el marco del proyecto es razonable asumir que el sujeto que está

realizando los ejercicios de tele-rehabilitación tendrá una visibilidad máxima dentro

de la aplicación, por lo que, incluyendo una pequeña tolerancia, estableceremos que

de los 17 keypoints anotados al menos 15 estén presentes en las imágenes de

pruebas. Este requisito asegura la calidad de las anotaciones de referencia (ground

truth) y permite contar con una representación anatómica casi completa de la

persona en la imagen. La disponibilidad de la mayoría de los puntos clave evita que

la evaluación se vea afectada por anotaciones incompletas, incrementando la

confiabilidad de las métricas de desempeño.

La aplicación de estos criterios generará un subconjunto controlado de imágenes, con

condiciones homogéneas de anotación y representación corporal, que constituirá la base

experimental para la comparación de los diferentes modelos. Este enfoque metodológico

permite minimizar fuentes externas de variabilidad, garantizando que las diferencias observadas

en las métricas de precisión puedan atribuirse de manera directa a las capacidades de los

modelos, y no a inconsistencias del dataset de testeo.

61

3.3.1. Subconjuntos del dataset de testeo

La elección de los dos subconjuntos diferenciados dentro del dataset general de testeo

se fundamenta en la necesidad de evaluar de manera completa y representativa la precisión de

los modelos ya que cada subconjunto cumple una función específica que contribuye a la

caracterización del rendimiento del modelo bajo distintas condiciones de captura y que nos

permitirá comparar los resultados obtenidos en cuanto a precisión se refiere de cada uno de los

modelos en condiciones muy diferentes.

Imágenes con características adecuadas para la estimación de posturas

El primer subconjunto agrupa imágenes clasificadas como adecuadas para la estimación

de posturas humanas y estaría compuesto por instancias seleccionadas para representar

condiciones óptimas de captura visual. Cada imagen contiene una única persona situada de

manera centrada en el encuadre, con una proximidad suficiente a la cámara que permite la

observación clara de las articulaciones principales, incluyendo hombros, codos, muñecas,

caderas, rodillas y tobillos. Además el tamaño relativo de la persona respecto al tamaño de la

imagen asegura que las proporciones de las articulaciones se representen consistentemente,

reduciendo la variabilidad introducida por escalas extremas Esta disposición garantiza que los

modelos puedan realizar inferencias precisas sobre la geometría corporal y la posición de cada

articulación.

Este subconjunto cumple un rol fundamental en la evaluación de modelos ya que

permite medir una precisión “máxima” alcanzable en condiciones controladas, sirviendo como

referencia para comparar el rendimiento del modelo frente a escenarios más complejos o

adversos. Al centrarse en imágenes donde la persona es claramente observable y la postura es

discernible, se garantiza que los errores de estimación se deban principalmente a las

limitaciones del modelo y no a deficiencias en la calidad de los datos de entrada.

Imágenes con características inadecuadas para la estimación de posturas

El subconjunto de imágenes clasificadas como no adecuadas para la estimación de

posturas humanas incluiría instancias que representan condiciones adversas o desafiantes para

la inferencia de posturas. Estas imágenes contienen personas que se encuentran descentradas o

lejanas a la cámara, lo que dificulta la observación clara de hombros, codos, muñecas, caderas,

rodillas y tobillos. La disposición de la persona en el encuadre, así como la variabilidad en el

tamaño relativo y la orientación, introduce complejidades que simulan escenarios del mundo

real donde la calidad de la captura puede ser subóptima.

El análisis de este subconjunto proporcionará información valiosa sobre las limitaciones

del modelo, identificando casos en los que la precisión se ve comprometida debido a factores

externos a la arquitectura del algoritmo. De esta manera, se logra una evaluación más completa

y realista del desempeño del modelo, complementando los resultados obtenidos con el

subconjunto de imágenes adecuadas y permitiendo derivar conclusiones sobre su aplicabilidad

en entornos no controlados.

62

3.4. Métricas de validación y evaluación

La evaluación de modelos de estimación de posturas humanas requiere la adopción de

métricas que permitan cuantificar tanto la calidad de las predicciones como la eficiencia en su

ejecución. En este contexto, las dos dimensiones fundamentales consideradas son precisión y

rendimiento, las cuales ofrecen una visión complementaria del desempeño del modelo en

condiciones prácticas.

Ambas métricas deben analizarse de manera conjunta, ya que un modelo

extremadamente preciso puede resultar inviable si su latencia es demasiado alta, mientras que

un modelo muy rápido pero con baja precisión carece de utilidad práctica. La evaluación

equilibrada de precisión y rendimiento permite establecer compromisos óptimos, adaptados a

los requerimientos específicos de la aplicación.

3.4.1. Precisión

La precisión se refiere al grado de correspondencia entre los puntos clave (keypoints)

predichos por el modelo y las anotaciones de referencia (ground truth). En estudios de posturas

como ya hemos visto en el apartado “2.7. Métricas de precisión”, esta métrica suele calcularse

mediante indicadores como OKS (Object Keypoint Similarity) o Mean Average Precision

(mAP), que permiten evaluar qué tan cercanos están los keypoints estimados a sus posiciones

reales en la imagen.

Una alta precisión implica que el modelo es capaz de identificar correctamente las

articulaciones incluso en posturas complejas o bajo condiciones variables de iluminación,

escala y perspectiva. Esta métrica es esencial para determinar la validez técnica del modelo y

su aplicabilidad en contextos donde la exactitud en la identificación de posturas es crítica, como

en rehabilitación médica, análisis deportivo o interacción en entornos de realidad aumentada.

3.4.2. Rendimiento

El rendimiento se relaciona con la eficiencia computacional del modelo, es decir, con la

velocidad y los recursos necesarios para realizar inferencias en tiempo real. En entornos móviles

o embebidos, como dispositivos Android, el rendimiento se mide a través de métricas como la

latencia de inferencia (tiempo necesario para procesar una imagen), el número de frames por

segundo (FPS) alcanzado y el consumo de memoria y energía durante la ejecución. En nuestro

estudio tomaremos los tiempos de ejecución de cada inferencia para cada imagen del dataset de

testeo.

Un alto rendimiento implica que el modelo es capaz de operar en condiciones de baja

capacidad de cómputo, lo cual es fundamental para garantizar una experiencia de usuario fluida

y sostenible en aplicaciones en dispositivos edge.

3.5. Herramientas y entorno de desarrollo

El presente estudio se desarrolla utilizando como entorno base el sistema operativo

Windows 10 versión 10.0.

63

Para la obtención de datos de testeo, conversión de modelos y comprobación de

resultados se utiliza Jupyter Notebook 6.4.5, un entorno basado en Python que facilita la

exploración de datasets y el trabajo con los resultados obtenidos a través de la integración de

bibliotecas científicas y de visión por computadora para la evaluación de precisión de los

modelos.

La construcción de aplicaciones móviles para la plataforma Android se lleva a cabo

mediante Android Studio Electric Eel | 2022.1.1 Patch 2 (Build #AI-

221.6008.13.2211.9619390), que proporciona un entorno completo de desarrollo integrado con

soporte nativo para el lenguaje Kotlin, Java y herramientas de depuración específicas de

Android. Este IDE permite la integración de modelos mediante TensorFlow Lite, así como la

generación de ficheros de aplicación (apk) para Android para la realización de pruebas directa

de inferencia en dispositivos móviles.

Adicionalmente, se incorpora el plugin PlantUML integration (6.0.0-IJ2020.3) para la

creación de diagramas UML directamente dentro de Android Studio, que facilita la

documentación de la arquitectura del sistema.

64

PARTE II: PLANIFICACION, IMPLEMENTACIÓN Y

RESULTADOS

65

4. PLANIFICACIÓN

4.1. Workflow general del proyecto y fases del desarrollo

En este apartado se describe el workflow general adoptado en este estudio, organizado

en tres fases principales: preparación, desarrollo y evaluación/análisis de resultados. En cada

fase se utilizan herramientas diferentes para su ejecución, mientras que las fases de obtención

de datos de testeo y análisis de resultados se realizan utilizando Jupyter Notebook, Excel y

Word, la fase desarrollo se utiliza Android Studio para implementar la aplicación que ejecuta el

proyecto (Imagen 14).

Imagen 14. Workflow general del proyecto

4.1.1. Fase 1: preparación del dataset de testeo y obtención de modelos

En esta primera etapa se lleva a cabo la recopilación y configuración de los recursos

fundamentales para el proyecto: modelos de estimación e imágenes de testeo. El ella se utiliza

Jupyter Notebook para implementar una serie de scripts en lenguaje Python que permitan

obtener tanto el dataset de las imágenes que cumplan los requisitos descritos previamente como

los modelos seleccionados en formato TensorFlow Lite (TFLite).

Obtención del dataset de imágenes seleccionado

Se realiza la definición y filtrado del conjunto de datos de referencia (del dataset

COCO), aplicando los criterios definidos previamente de calidad y representatividad (imágenes

Jupyter
notebook
(Python)

• Obtención de dataset de imagenes seleccionado

• Obtención de modelos en formato TFLite

Android

(Java)
• Obtención fichero ZIP con resultados

Jupyter
notebook
(Python)

• Obtención de métricas de resultados

Word/Excel • Análisis de resultados

66

con una única persona y keypoints correctamente anotados) con el fin de garantizar un

subconjunto adecuado para las pruebas comparativas bajo condiciones constantes. La salida es

un subconjunto de imágenes de testeo (dataset filtrado).

Obtención de modelos en formato TFLite.

Incluye la descarga directa (en caso de existir los modelos seleccionados en formato

TFLite) y la conversión (de los modelos que lo requieran) a formato TFLite, formato

optimizado para dispositivos móviles. Como resultado obtenemos los modelos en un formato

homogéneo que constituyen la base para la implementación de la aplicación de pruebas de

modelos en Android.

4.1.2. Fase 2: desarrollo de la aplicación

En esta fase de desarrollo se lleva a cabo la implementación de la aplicación Android,

utilizando como lenguaje de programación Java, debido a su compatibilidad nativa con el

ecosistema Android y a la disponibilidad de librerías optimizadas para la gestión de recursos y

la ejecución de modelos de aprendizaje automático en dispositivos móviles. La aplicación

integra los modelos previamente seleccionados en formato TFLite, los cuales han sido

seleccionados por su ligereza y eficiencia en entornos con recursos limitados, como

smartphones y tablets.

El flujo de trabajo de la aplicación contempla la carga e integración de los modelos

TFLite, seguidos de la procesamiento de las imágenes de testeo extraídas del dataset de

validación. Cada imagen es sometida a un proceso de inferencia a través del modelo

correspondiente, y los resultados son gestionados de forma sistemática. Para garantizar un

análisis exhaustivo, la aplicación genera dos tipos de ficheros de salida independientes por cada

modelo:

- Un fichero destinado a almacenar las métricas de precisión, donde se registran los

valores de exactitud obtenidos en cada predicción de cada imagen, permitiendo así

evaluar la capacidad del modelo para reconocer correctamente las instancias del

dataset.

- Un fichero orientado a almacenar las métricas de rendimiento computacional, en el

que se registra el tiempo de ejecución requerido por cada estimación, con el fin de

valorar la eficiencia del modelo en dispositivos móviles.

Posteriormente, todos los ficheros generados se compilan y organizan en un archivo

comprimido (ZIP), lo que no solo asegura una gestión más estructurada y compacta de los

resultados, sino que también facilita su transferencia, almacenamiento y análisis posterior. Esta

estrategia permite disponer de un repositorio unificado de resultados, optimizando tanto la

trazabilidad de los resultados como la comparación entre diferentes modelos bajo condiciones

homogéneas de evaluación.

67

4.1.3. Fase 3: evaluación, análisis de resultados y documentación

La etapa final del proceso se centra en la interpretación y análisis del desempeño de los

modelos, constituyendo un componente esencial para la validación de la investigación. En este

punto no solo se recopilan las métricas obtenidas en fases anteriores, sino que además se

someten a un proceso comparativo lo que permite establecer relaciones entre los diferentes

modelos bajo condiciones experimentales homogéneas.

La evaluación contempla tanto métricas de precisión como métricas de eficiencia

computacional (rendimiento del modelo). Este enfoque posibilita una caracterización más

completa de cada modelo, superando las limitaciones de un análisis basado únicamente en la

precisión. Para la automatización de este proceso, se desarrollan scripts específicos en Python,

ejecutados en el entorno Jupyter Notebook que permiten procesar los resultados generados

por los modelos y calcular métricas de desempeño clave tales como AP (Average Precision).

Este enfoque garantiza que la comparación se realice bajo condiciones homogéneas y

reproducibles, eliminando posibles sesgos derivados de procedimientos manuales o

inconsistentes.

Durante la interpretación se identifican fortalezas y limitaciones de cada modelo. Por

ejemplo, un modelo puede presentar un alto nivel de exactitud pero requerir un tiempo de

inferencia excesivo, lo que lo haría menos viable en dispositivos con recursos restringidos. En

contraste, otro modelo podría mostrar un rendimiento computacional óptimo, aunque con

ligeras pérdidas en precisión. La comparación permite establecer un balance entre la calidad de

las predicciones y la eficiencia en la ejecución. Los hallazgos de esta fase constituyen la base

para la formulación de conclusiones y la propuesta de líneas de investigación futura.

Fase Nombre Duración

estimada

Objetivo

FASE 1 Preparación del

dataset de testeo

y obtención de

modelos

2-3

semanas

Obtención de un dataset homogéneo de imágenes de

testeo con el que poder validar los modelos.

Obtención de los ficheros de los modelos a testear.

FASE 2 Desarrollo de la

aplicación

8-10

semanas

Desarrollar una aplicación para Android en la que

poder integrar los modelos y las imágenes de testeo

para obtener resultados de precisión de estimación

de posturas de los modelos así como de rendimiento

(tiempo que tarda cada modelo en realizar la

inferencia).

FASE 3 Evaluación,

análisis de

resultados y

documentación

3-4

semanas

Ejecución en distintos dispositivos, recopilación y

análisis de los resultados. Generación de

documentación con la descripción del desarrollo del

proyecto, documentación técnica asociada,

realización de gráficos, tablas e ilustraciones para la

descripción de los resultados obtenidos, discusión

de posibles aplicaciones y futuras ampliaciones y

conclusiones.

Tabla 15. Fases generales del proyecto

68

4.2. FASE 1: Preparación del dataset de testeo y obtención de modelos

4.2.1. Análisis del dataset COCO

Como ya vimos en el apartado “2.6.1. Dataset COCO (Common Objects in COntext)”

el dataset COCO se caracteriza por su diseño jerárquico, en el cual las imágenes se encuentran

vinculadas a metadatos en formato JSON que describen instancias de objetos, anotaciones de

keypoints, segmentaciones y categorías.

En la primera etapa del proyecto se lleva a cabo un análisis detallado de la estructura

del dataset COCO con el propósito de comprender la organización de los datos, las categorías

disponibles, todas las anotaciones asociadas a las imágenes y las herramientas disponibles para

la evaluación de los modelos.

4.2.2. Selección del dataset de imágenes de testeo

Una vez comprendida la estructura del dataset COCO y los recursos asociados, la

siguiente etapa consiste en el diseño y ejecución de scripts automatizados para la selección de

imágenes de testeo que utilizaremos en la aplicación Android. Esta fase es clave para la

preparación del conjunto de datos de prueba, ya que permite garantizar la reproducibilidad del

proceso, la trazabilidad de las imágenes seleccionadas y la consistencia de los criterios

aplicados para todos los modelos de forma homogénea.

El propósito de los scripts es seleccionar y posteriormente automatizar la extracción de

un subconjunto controlado de imágenes del dataset COCO, en concordancia con los criterios

definidos previamente, inclusión de imágenes con una única persona visible y elección de

imágenes con al menos 15 de los 17 keypoints anotados visibles, e incluir un fichero auxiliar

para el registro y control de las imágenes utilizadas y que sirva además para facilitar la ejecución

dentro la aplicación Android.

Los scripts se desarrollan en Python, haciendo uso de la API oficial de COCO para la

gestión de anotaciones y metadatos, así como de un conjunto de librerías complementarias

orientadas al manejo de datos y operaciones científicas como pycocotools, fundamental para la

interacción estructurada con las anotaciones del dataset. La instalación y verificación de estas

dependencias constituye un paso previo indispensable para la configuración del entorno de

trabajo.

La ejecución de estos scripts realiza la descarga física de los archivos de las imágenes a

disco, los cuales se almacenan en formatos estándar como JPEG o PNG para su posterior

incorporación en la aplicación Android. Además de la descarga se genera un fichero de texto

que contiene una lista con los nombres de las imágenes descargadas y que facilita el control de

estos así como un acceso más eficiente a las imágenes en etapas posteriores, particularmente

durante la ejecución de la aplicación Android para la evaluación de los modelos.

4.2.3. Obtención de modelos para el estudio

Posteriormente se realiza la obtención de los modelos ya preentrenados mediante la

69

descarga directa de los sitios oficiales cuando están disponibles y mediante descarga directa de

los sitios oficiales y conversión de formato en caso de que sea necesario al formato homogéneo

para todos los modelos que utilizamos en el estudio (TensorFlow Lite). Los ficheros de los

modelos preentrenados obtenidos junto con el dataset seleccionado en el punto anterior

constituyen los elementos principales para este estudio de estimación de posturas humanas.

Fase Nombre Duración

estimada

Objetivo

Fase 1.1 Análisis del dataset

COCO.

0,5 semanas Estudio de la estructura del dataset

COCO, categorías, número de imágenes

de personas, anotaciones disponibles y

API de testeo de resultados.

Fase 1.2 Selección del dataset

de imágenes de testeo.

1-2 semanas Realización de un script para descarga

de las imágenes filtradas válidas para la

estimación de posturas humanas.

Ejecución del script de descarga y

verificación del contenido del dataset,

ajustes y correcciones del proceso.

Fase 1.3 Obtención de modelos

para el estudio.

0,5 semanas Descarga y conversión de los ficheros

de los modelos seleccionados.

Tabla 16. Sub-fases de la fase de preparación del dataset de testeo y obtención de modelos

4.3. FASE 2: Desarrollo de la aplicación para Android

4.3.1. Análisis, diseño y preparación

Esta subfase constituye el punto de partida del ciclo de desarrollo del proyecto de

estimación de posturas humanas. En esta etapa se integran diversas actividades fundamentales

que permiten establecer las bases para la implementación de las fases posteriores:

- Análisis de requisitos funcionales y no funcionales de la aplicación.

- Diseño de la arquitectura del código. Separación de componentes para facilitar la

reutilización y escalabilidad.

- Diseño de la salida. Especificación de estructura para el almacenamiento de

predicciones y tiempos de inferencia en ficheros estructurados (JSON /CSV)

integrados en un fichero ZIP de salida, asegurando que contenga métricas de

predicciones y rendimiento en un formato reproducible.

70

- Diseño de la interfaz de usuario.

- Análisis de las estructuras de entrada y salida de los modelos TFLite. Identificación

de los tensores de entrada (necesidades de preprocesamiento y normalización de

imágenes específicas) y salida (vectores de keypoints y scores de confianza).

- Configuración del entorno de trabajo. Instalación y verificación de dependencias

necesarias (TensorFlow Lite), integración con Android Studio como entorno de

despliegue.

- Implementación de un sistema de versionado (GIT) para garantizar la seguridad y

seguimiento del desarrollo.

4.3.2. Implementación del núcleo de la aplicación

Esta subfase consiste en la construcción de una aplicación móvil en Java utilizando

Android Studio, cuyo propósito es ejecutar el pipeline de inferencia en dispositivos Android.

Se aborda en tres dimensiones principales:

- Implementación de arquitectura de clases Java de la aplicación, clase de control,

clases para soporte de la inferencia de los modelos seleccionados y clases base para

la optimización de la arquitectura. Esta implementación gestiona el ciclo de

inferencia, desde la carga de tensores hasta la recuperación de los vectores de salida

de keypoints.

- Integración de los modelos con formato TFLite en la aplicación Android. Se utiliza

la API de TensorFlow Lite Java (integrando TensorFlow Lite Interpreter) para cargar

y ejecutar los modelos previamente seleccionados.

- Integración de las imágenes del dataset seleccionado dentro de la aplicación para su

carga desde el almacenamiento interno del dispositivo. Implementación de las

acciones de preprocesamiento necesarias sobre las imágenes de entrada

(redimensionamiento, normalización de valores de píxeles y conversión a

ByteBuffer compatible con TFLite).

Como vimos en el apartado “2.8.1. Hardware” existe una gran heterogeneidad en cuanto

a hardware disponible para la ejecución de aplicaciones dentro del ecosistema Android en cada

dispositivo (CPU, GPU, NPU,…). Dicha variabilidad puede generar diferencias significativas

en el rendimiento y la precisión de los modelos, dificultando la comparación entre dispositivos

por lo que con el fin de realizar una implementación lo más homogénea posible y que pueda

ser ejecutada en el mayor número de dispositivos posible en la implementación de este estudio

se ha decidido emplear exclusivamente la Unidad Central de Procesamiento (CPU) como

recurso de ejecución. Al emplear únicamente la CPU, se garantiza un entorno de ejecución

uniforme y controlado, independiente de las configuraciones específicas de cada dispositivo de

prueba.

71

4.3.3. Generación y gestión de ficheros de salida

Se generan ficheros de salida por cada modelo evaluado, un fichero de predicciones para

el posterior cálculo de precisión en formato JSON y un fichero de tiempos de inferencia por

cada imagen en formato CSV para el posterior análisis de rendimiento. Todos los ficheros de

salida de todos los modelos se integran al final del proceso en un único fichero ZIP para su

mejor exportación y manejo.

Ficheros de predicciones.

Para cada modelo se generan archivos JSON que contienen las predicciones de los

keypoints de las posturas humanas sobre cada imagen del conjunto de prueba. Estos ficheros

constituyen la base para el cálculo posterior de métricas de precisión, permitiendo evaluar de

manera cuantitativa la exactitud del modelo en la estimación de posiciones articulares. La

generación de estos ficheros se realiza de manera estandarizada, asegurando que cada entrada

corresponda de forma inequívoca a la imagen original y manteniendo la trazabilidad de los

datos.

Ficheros de tiempos de inferencia.

Paralelamente, se registra el tiempo de inferencia por imagen de cada modelo en ficheros

con formato CSV, documentando la duración de la ejecución en el dispositivo móvil donde se

realiza la ejecución. Esta información es esencial para el análisis de rendimiento, permitiendo

comparar la eficiencia de los distintos modelos y su viabilidad para aplicaciones en tiempo real.

4.3.4. Desarrollo de la interfaz

En esta subfase se desarrolla una interfaz de usuario especializada con el objetivo de

facilitar la ejecución sistemática del proceso de inferencia sobre el conjunto completo de datos

de prueba para cada modelo. Esta interfaz cumple el doble propósito de automatizar el

procesamiento de grandes volúmenes de imágenes y de proporcionar información en tiempo

real sobre el progreso de la ejecución.

La interfaz permite ejecutar de manera consecutiva la inferencia sobre todas las

imágenes del dataset en cada uno de los modelos. Este enfoque garantiza que cada modelo se

evalúe bajo condiciones homogéneas, eliminando la necesidad de intervención manual

repetitiva y minimizando errores operativos.

Durante el proceso de inferencia, la interfaz muestra visualmente una lista de los

modelos en ejecución de forma que cada uno de ellos va evolucionando a través de un código

de colores según va finalizando su ejecución para monitorizar el estado global de la ejecución.

Una vez finalizado el proceso de inferencia, la interfaz ofrece la posibilidad de exportar

(compartir) de manera directa el fichero ZIP que integra todos los resultados generados,

incluyendo las predicciones de keypoints y los tiempos de inferencia por imagen.

72

4.3.5. Pruebas y correcciones

Pruebas funcionales, de estabilidad y de portabilidad. Comprobación de que las

imágenes procesadas generan predicciones válidas con keypoints consistentes, medición de la

latencia por inferencia (ms/imagen) y ejecución continúa de la aplicación durante intervalos

prolongados para detectar posibles fugas de memoria, caídas de la aplicación o degradación de

rendimiento. Validación en distintos dispositivos Android para evaluar variaciones de

rendimiento debidas a las características del hardware.

Fase Nombre Duración

estimada

Objetivo

Fase 2.1 Análisis, diseño y

preparación.

1 semana Definición de la arquitectura de la

aplicación, estructuras de datos, workflows

y ficheros de salida. Preparación del

entorno de desarrollo.

Fase 2.2 Implementación. 4-5 semanas Implementación de la estructura de clases

Java de la aplicación, integración de

modelos TFLite y dataset de imágenes de

testeo, ejecución de inferencias de los

modelos sobre el dataset de testeo,

obtención de datos de precisiones por

modelo y recopilación de tiempos de

inferencia por modelo.

Fase 2.3 Generación y gestión

de ficheros de salida.

1 semana Creación de ficheros de salida con los

datos obtenidos.

Fase 2.4 Desarrollo de la

interfaz.

1 semana Creación de una interfaz con las

operaciones disponibles en la aplicación.

Fase 2.5 Pruebas y

correcciones.

1-2 semanas Pruebas de ejecución en diferentes

dispositivos y corrección de bugs

observados.

Tabla 17. Sub-fases de la fase de desarrollo de la aplicación para Android

4.4. FASE 3: Evaluación y análisis de resultados

4.4.1. Evaluación de precisión obtenida

Núcleo del análisis orientado a la evaluación de la precisión de los modelos de

estimación de posturas humanas. En esta etapa se examina la capacidad de los modelos

incluidos en este estudio para predecir la localización de los puntos clave del cuerpo humano,

comparando los resultados obtenidos frente a los valores esperados de referencia.

73

La precisión es evaluada mediante métricas estandarizadas en el campo de la visión por

computadora como AP (Average Precision), ampliamente utilizada en benchmarks como

COCO, que evalúa la precisión media considerando diferentes umbrales de tolerancia,

ofreciendo una medida global del desempeño del modelo (ver apartado “2.6.1. Dataset COCO

(Common Objects in COntext)”).

Con el objetivo de obtener una visión estructurada y comparativa de los resultados se

generan tablas de precisión por modelo, en las que se reflejan los valores de AP a nivel global

y se elaboran gráficos de barras comparativos, permitiendo identificar de forma visual las

diferencias de precisión entre modelos evaluados. Adicionalmente se analizan las diferencias

entre la precisión en escenarios óptimos (subconjunto de imágenes adecuadas para estimación

de posturas humanas) y los resultados en escenarios de condiciones adversas o desafiantes

(subconjunto de imágenes menos adecuadas para estimación de posturas humanas).

4.4.2. Evaluación del rendimiento obtenido

Análisis del rendimiento computacional de los modelos de estimación de posturas en

distintos dispositivos Android. El objetivo principal es caracterizar la eficiencia de los modelos

en condiciones reales de ejecución móvil considerando métricas de velocidad de inferencia.

Este análisis complementa la evaluación de precisión realizada en la fase anterior, permitiendo

determinar el balance entre exactitud y eficiencia alcanzado por cada modelo.

El rendimiento se mide en base a indicadores clave ampliamente utilizados en entornos

de computación móvil como el tiempo de inferencia (ms/img) que es el tiempo promedio

requerido por el modelo para procesar una única imagen de entrada.

Con el fin de asegurar la validez de los resultados, se realizan las pruebas ejecutando la

aplicación en varios dispositivos Android con características de hardware diferenciadas. Esta

variación permite estudiar cómo factores como el tipo de CPU, la memoria o la versión de

Android impactan en el rendimiento de los modelos.

Para documentar y comparar de manera clara los resultados obtenidos, se elaboran

gráficos de barras agrupadas comparativas de rendimiento organizadas por dispositivo y

modelo, incluyendo valores de tiempo de inferencia promedio.

Por último se generan gráficos de dispersión mostrando la relación entre tiempo de

inferencia y precisión comparativamente entre todos los modelos estudiados para tener de una

forma visual directa una imagen comparativa del desempeño de los modelos estudiados.

4.4.3. Realización de la memoria del proyecto

Constituye el cierre formal del proceso metodológico y tiene como objetivo la

recopilación, sistematización y publicación de la memoria técnica del proyecto. Esta etapa es

fundamental desde una perspectiva académica y científica, ya que transforma los resultados

experimentales y de implementación en un documento estructurado, verificable y transferible,

garantizando tanto la reproducibilidad del estudio como la difusión del conocimiento generado.

Incluye la descripción detallada del marco teórico en el que se desarrolla este estudio,

74

la metodología aplicada para la selección y preparación de los modelos a estudiar y del dataset

empleado (incluyendo el filtrado de imágenes y las condiciones de control experimental), el

detalle del workflow de desarrollo, desde la fase de preparación de datos y modelos hasta la

implementación en Android y la evaluación de resultados y por último la recopilación de

métricas de precisión y rendimiento, en forma de tablas y gráficos, organizadas para permitir

un análisis comparativo entre modelos y dispositivos.

Fase Nombre Duración

estimada

Objetivo

Fase 3.1 Evaluación de precisión

obtenida.

0,5 semanas Generación de gráficos y tablas con la

precisión obtenida por cada modelo y

comparativas con la precisión esperada.

Fase 3.2 Evaluación del

rendimiento obtenido.

0,5 semanas Generación de gráficos y tablas con los

datos de rendimiento obtenidos por cada

modelo en cada dispositivo.

Fase 3.3 Realización de

comparativas, extracción

de conclusiones y

realización de la

memoria del proyecto.

1-2 semanas Recopilación y publicación de la

memoria relativa al desarrollo del

proyecto.

Tabla 18. Sub-fases de la fase de evaluación y análisis de resultados

4.5. Planificación temporal

La planificación temporal representa un componente esencial dentro de la gestión de

proyectos de investigación aplicada en informática, al proporcionar un marco estructurado que

posibilita una distribución eficiente de los recursos disponibles, el cumplimiento de plazos

establecidos y la organización de las actividades. Su importancia radica no solo en la asignación

temporal de tareas, sino también en la capacidad de establecer dependencias entre fases y

garantizar la coherencia metodológica durante todo el ciclo de vida del proyecto.

En el presente estudio se adopta una metodología secuencial organizada en fases y

subfases, pensada para proporcionar un desarrollo progresivo, desde la preparación inicial de

los datos y modelos hasta la obtención, análisis e interpretación de los resultados finales. Cada

fase responde a un objetivo específico claramente delimitado, lo cual facilita el seguimiento del

avance, la identificación de hitos críticos y la evaluación continua del grado de cumplimiento

de los objetivos planteados.

En Imagen 15 podemos ver un diagrama de Gantt con la planificación temporal de la

evolución del proyecto basado en las estimaciones temporales definidas durante la planificación

y reflejadas en Tabla 15 (fases generales) y Tabla 16, Tabla 17 y Tabla 18 (subfases) con los

códigos de color utilizados para cada una de ellas.

75

Imagen 15. Diagrama de Gantt del proyecto

76

4.6. Viabilidad técnica

La viabilidad técnica de un proyecto orientado a la estimación de posturas humanas

depende de la disponibilidad, estabilidad y licenciamiento de los modelos de inteligencia

artificial que se empleen, así como de los conjuntos de datos utilizados para su entrenamiento

y validación. En este sentido, resulta fundamental evaluar también las condiciones legales y

técnicas bajo las cuales pueden integrarse en una solución final.

 Modelos de Estimación de Posturas Humanas

- MoveNet (Lightning y Thunder). El modelo MoveNet en sus variantes Lightning y

Thunder está licenciado bajo Apache 2.0, tal como está especificado en su ficha

técnica ("Model Card") de Google (41).

- BlazePose (Lite, Full, Heavy). El modelo GHUM-3D (Lite, Full, Heavy) de

BlazePose está licenciado bajo Apache License, Version 2.0. En la documentación

oficial de MediaPipe/BlazePose, se indica que el contenido general y ejemplos de

código están bajo Creative Commons Attribution 4.0 y Apache 2.0 para los ejemplos

(42).

- YOLOv8-pose (Nano, Small, Medium). La licencia del código de YOLOv8, que

incluye modelos como los especializados para pose, es AGPL-3.0. Es una licencia

de código abierto aprobada por la OSI “ideal para estudiantes ya que promueve la

colaboración abierta y el intercambio de conocimientos” (32).

Conjuntos de Datos de Pose Estimation

- COCO (Common Objects in COntext). El dataset COCO utiliza varias licencias de

Creative Commons (1).

- MPII Human Pose Dataset- Está licenciado bajo una Simplified BSD License,

versión 2 cláusulas (BSD-2-Clause) pero aclaran que el uso es libre solo con fines

de investigación, y no se permite el uso comercial, debido a que el instituto no posee

los derechos de las imágenes (2).

77

5. FASE 1: PREPARACIÓN DEL DATASET DE TESTEO Y

OBTENCIÓN DE MODELOS

5.1. Selección del dataset de imágenes de testeo

Como hemos visto (apartado “2.6.1. Dataset COCO (Common Objects in COntext)”) el

dataset COCO está compuesto por cientos de miles de imágenes distribuidas en distintas

categorías, entre las cuales destaca el conjunto de anotaciones para keypoints humanos lo que

lo convierte en una base idónea para el entrenamiento, y, en nuestro caso de estudio, evaluación

de modelos de estimación de posturas humanas.

Como vimos también COCO se organiza en diferentes subconjuntos:

- Entrenamiento (train2017, imágenes con anotaciones, utilizadas para el

entrenamiento y ajuste de parámetros de los modelos)

- Validación (val2017, aproximadamente 5.000 imágenes, utilizadas para ajustar

hiperparámetros y realizar comprobaciones preliminares del desempeño).

- Testeo (test-dev y test-challenge): sin anotaciones visibles, se emplea en

competiciones y evaluaciones finales mediante envío a los servidores oficiales de

COCO.

En este estudio el foco se encuentra en la fase de evaluación, por lo que adoptamos el

conjunto val2017 como referencia principal. Su tamaño intermedio y diversidad de contextos

lo hacen ideal para pruebas controladas, garantizando una validación robusta de la capacidad

de los modelos sin incurrir en sobreajuste.

Librerías necesarias

El proceso de selección y descarga del subconjunto de imágenes se apoya en un conjunto

de librerías especializadas de Python:

- pycocotools.coco.COCO. La clase COCO, incluida en el paquete pycocotools,

constituye la API oficial del dataset COCO. Su finalidad es entre otras gestionar y

manipular las anotaciones del dataset, permitiendo cargar y explorar los ficheros de

anotaciones en formato JSON, acceder a categorías, imágenes y anotaciones de

keypoints humanos, filtrar subconjuntos de datos en función de criterios definidos

(por ejemplo, número de personas en una imagen o cantidad de keypoints visibles)

y obtener las rutas de descarga de las imágenes asociadas a cada anotación.

Sintetizando, pycocotools.coco.COCO proporciona la infraestructura básica para

interactuar con el dataset COCO, automatizando el acceso a metadatos y facilitando

la preparación de subconjuntos para pruebas.

- pathlib.Path. El módulo Path de la librería estándar pathlib en Python ofrece una

interfaz para el manejo de rutas de archivos y directorios que permite entre otras

operaciones construir rutas de forma segura e independiente del sistema operativo

(Windows, Linux, macOS), crear y verificar la existencia de directorios para

78

almacenar imágenes descargadas y resultados de inferencia, gestionar operaciones

como concatenar rutas y listar ficheros o mover elementos dentro de la estructura

del proyecto.

En este contexto, Path se utiliza principalmente para organizar de manera

estructurada y reproducible el almacenamiento local de los subconjuntos de

imágenes y ficheros derivados del proceso experimental.

Descarga del fichero de anotaciones

El dataset COCO está organizado en diferentes componentes: imágenes, anotaciones y

utilidades asociadas. Dentro de las anotaciones, los archivos JSON contienen información

estructurada que describe categorías, instancias, bounding boxes y keypoints. El fichero

person_keypoints_val2017.json constituye la base de referencia para evaluar modelos de

estimación de poses en el subconjunto de validación del dataset COCO. Su descarga se realiza

a través del paquete oficial annotations_trainval2017.zip, ya sea manualmente desde la web

de COCO o de forma automatizada mediante código Python.

La ubicación oficial de los ficheros de anotaciones de COCO se distribuyen desde la

página oficial del dataset22 y los ficheros de anotaciones están en el ZIP

annotations_trainval2017.zip. Este archivo contiene varios ficheros JSON, entre ellos el de las

anotaciones relativas a keypoints que necesitamos (person_keypoints_val2017.json) y que

encontramos en la carpeta “annotations” al descomprimir annotations_trainval2017.zip.

Por tanto para el caso del estudio de estimación de posturas humanas el fichero que

contiene la información de validación de las imágenes del conjunto de validación se encuentra

dentro del ZIP annotations_trainval2017.zip descargado de la página oficial del dataset COCO

en la siguiente ruta:

annotations/person_keypoints_val2017.json

Estructura de carpetas del dataset

El dataset de testeo se descarga mediante un script realizado en Python generando una

estructura sencilla de carpetas y archivos, formada por una carpeta principal “Dataset” que

contendrá una carpeta “Images” en la cual se incluyen las imágenes seleccionadas para testeo

(con el mismo nombre que tienen en las anotaciones COCO) y un fichero de texto

(imageFileNames.txt) con los nombres de la imágenes descargadas para labores de control y

para facilitar la localización e identificación de las imágenes que componen el dataset de testeo

(Imagen 16).

En el dataset COCO, el campo file_name dentro de las anotaciones hace referencia al

nombre de cada archivo de imagen tal y como está almacenado en el conjunto de datos

(val2017). El formato de los nombres de archivo sigue esta convención:

[identificador_de_imagen_12_digitos].jpg

22 http://cocodataset.org/#download

http://cocodataset.org/#download

79

Cada nombre de archivo está compuesto por un identificador numérico único de 12

dígitos. Este identificador se corresponde con el campo id de la anotación de imagen dentro del

fichero JSON y la extensión utilizada es siempre JPG (por ejemplo 000000000785.jpg).

Imagen 16. Estructura carpetas descarga imágenes dataset de testeo

Script de descarga de imágenes del dataset

El algoritmo del script Python tiene como propósito seleccionar, filtrar y descargar un

subconjunto de imágenes del dataset COCO que cumpla unos criterios de validez para el estudio

anteriormente definido. Su funcionamiento puede dividirse en varias etapas:

- Definición de criterios de filtrado. Se establece como condición inicial que una

imagen será considerada válida únicamente si contiene al menos un número mínimo

de keypoints visibles en las anotaciones de la persona. Este umbral actúa como filtro

de calidad, descartando imágenes en las que la anotación carezca de información

suficiente para un análisis fiable.

- Carga de anotaciones y metadatos. Se cargan las anotaciones asociadas a la

categoría "persona", incluyendo los keypoints de las distintas instancias. Para ello:

o Se obtiene el identificador único de la categoría de personas.

o Se recupera la lista de identificadores de imágenes que pertenecen a dicha

categoría.

o Se accede a las anotaciones específicas de cada imagen, que contienen los

vectores de keypoints y metadatos adicionales (por ejemplo, bounding

boxes).

Dataset/Images

000000000785.jpg

000000001490.jpg

.....

000000575081.jpg

imageFileNames.txt

80

- Identificación de imágenes candidatas. Se implementa una estrategia de selección

que evita el uso de imágenes con múltiples personas.

o Se mantiene un array temporal donde se almacenan los IDs de todas las

imágenes procesadas.

o En paralelo, se registra en una lista separada el conjunto de imágenes con

más de una anotación, lo que indica que contienen más de una persona.

o Filtramos el primer array temporal con los IDs de todas las imágenes

procesadas con la lista del conjunto de imágenes con más de una anotación

para obtener únicamente los IDs de las imágenes que no tienen más de una

anotación (lo que supone que solo hay una persona en la imagen).

De este modo, es posible aislar un subconjunto de imágenes con

únicamente una persona visible, condición definida previamente.

- Filtrado por keypoints y selección final. Entre las imágenes con una sola persona,

se realiza un filtrado adicional:

o Se descartan aquellas en las que la anotación tenga menos del número

mínimo de keypoints visibles definido previamente.

o Se conserva una lista definitiva con los identificadores de imágenes válidas

para descarga.

- Preparación del entorno local. Antes de iniciar la descarga, el algoritmo prepara

la estructura de directorios en el sistema local creando una carpeta principal con una

subcarpeta destinada a albergar el dataset filtrado.

- Descarga y registro de imágenes. Se procede a la descarga de las imágenes filtradas

desde el repositorio oficial de COCO:

o Cada imagen seleccionada se descarga y se almacena en la carpeta

previamente creada.

o Se mantiene una lista de control con los nombres de las imágenes

descargadas, lo que permite verificar la integridad del proceso y garantizar

la reproducibilidad.

o Finalmente, se genera un fichero de control, en el que se documentan los

nombres de todas las imágenes descargadas.

- Seguimiento del proceso. Durante la ejecución, el algoritmo incluye mecanismos

de impresión de datos en consola, que sirven como traza de seguimiento. Esto

permite monitorizar el progreso de la descarga y detectar posibles incidencias, tales

como la ausencia de imágenes o fallos en la conexión.

En Imagen 17 se puede observar que el conjunto de imágenes de validación val2017 de

COCO tiene 2.693 imágenes pertenecientes a la categoría person (personas) las cuales están

anotadas con 11.004 anotaciones y de las cuales 1.045 imágenes tienen una sola persona y 316

tienen además el número mínimo de keypoints que hemos definido que necesitamos para el

estudio.

81

Imagen 17. Salida de ejecución de script de obtención de dataset de imágenes de testeo

5.2. Obtención de modelos para el estudio

Se utilizan dos procedimientos principales para la obtención de los ficheros de los

modelos preentrenados que utilizamos en este estudio, la descarga directa de modelos

publicados en formato TFLite y la descarga con posterior conversión a este formato.

5.2.1. Modelos con opción de descarga directa en formato TFLite

Los modelos diseñados y publicados oficialmente por equipos de investigación o

plataformas reconocidas (por ejemplo, TensorFlow Hub, Google Research o el propio

repositorio de TensorFlow Lite) representan una fuente fiable y estandarizada. Estas versiones

suelen estar optimizadas específicamente para ejecución en entornos móviles y embebidos, y

se publican en formatos ya adaptados, como TFLite. Estos modelos están preentrenados y

optimizados, son distribuidos en formatos listos para su ejecución en entornos móviles y están

disponibles en repositorios oficiales. Los modelos incluidos en este estudio que ofrecen la

posibilidad de una descarga directa desde un repositorio oficial son los siguientes:

- MoveNet. Los seis modelos (las tres versiones cuantizadas de la versión Lightning

más las tres versiones cuantizadas de la familia Thunder) de la familia MoveNet

incluidos en el estudio están disponibles para su descarga directa en formato TFLite

desde la plataforma Kaggle, plataforma en la que TensorFlow Hub integró sus

82

modelos. Se pueden descargar de forma directa en este enlace23
, al que a su vez se

puede acceder desde el siguiente enlace24 de TensorFlow Hub (opción “See TF Hub

models”).

- BlazePose. Los tres modelos (Lite, Full y Heavy) de la familia BlazePose incluidos

en el estudio están disponibles para su descarga directa en formato TFLite desde el

repositorio de github del framework MediaPipe25, desde donde podemos acceder a

la descarga de los modelos concretamente en el apartado “Pose landmark model”

de la página “MediaPipe Models and Model Cards” siguiendo este enlace26.

Como se puede observar en el aviso de la front page para más información acerca

del framework MediaPipe debemos redirigirnos a la nueva URL donde ha migrado

la documentación:

“Attention: We have moved to https://developers.google.com/mediapipe as the

primary developer documentation site for MediaPipe as of April 3, 2023.”

5.2.2. Modelos que requieren conversión de formato

La segunda opción de obtención de modelos se utiliza en la obtención de los modelos

YOLO de Ultralytics que como vimos en el apartado “3.1.4. YOLOv8-Pose (Ultralytics)”

originalmente se distribuyen en formato PyTorch (.pt) por lo que para su inclusión en nuestro

estudio después de la obtención de los modelos es necesario realizar un proceso de conversión

de formato (para mantener la homogeneidad con el resto de modelos), generalmente hacia

ONNX y posteriormente hacia TensorFlow Lite (TFLite).

Estructura de carpetas de descarga y conversión

Se genera una sencilla estructura formada por una carpeta “Modelos_YOLO8” donde

se descargan los modelos en su formato original (PyTorch) y desde la cual se realiza la

conversión al formato necesario para su integración en la aplicación de Android desarrollada

para el estudio.

Descarga directa de modelos originales en formato PyTorch (.pt)

Los tres modelos que utilizamos de la familia YOLO (Lite, Full y Heavy) están

disponibles para su descarga directa en formato PyTorch (.pt) desde este enlace27 oficial

proporcionado por la compañía que los desarrolla y mantiene actualmente (Ultralytics) lo que

garantiza la utilización de versiones fiables, verificadas y actualizadas. Pinchando en cada uno

de los tres modelos que incluimos en el estudio realizamos la descarga en la carpeta de descarga

descrita anteriormente.

23 https://www.kaggle.com/models/google/movenet
24 https://www.tensorflow.org/hub/tutorials/movenet

25 https://github.com/google-ai-edge/mediapipe

26 https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose

27 https://docs.ultralytics.com/es/models/yolov8/#performance-metrics

https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose
https://docs.ultralytics.com/es/models/yolov8/#performance-metrics
https://www.kaggle.com/models/google/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/models.md#pose

83

Librerías necesarias para la conversión de formato

El proceso de conversión de los modelos de la familia YOLO descargados implica la

utilización de las librerías del framework de Ultralytics:

- ultralytics.YOLO. Se utiliza como entorno integral para trabajar con modelos

YOLO, proporcionando herramientas de entrenamiento, inferencia, evaluación y

exportación. Permite convertir modelos a otros formatos como ONNX o TensorFlow

Lite.

Conversión de modelos YOLO a formato TensorFlow Lite

Los modelos del framework YOLO pueden exportarse a múltiples formatos

(TorchScript, ONNX, TensorRT, CoreML, TensorFlow Lite,…). Durante este proceso de

exportación se pueden aplicar ciertos parámetros de configuración que ajustan el

comportamiento del modelo y que resultan especialmente importantes para nuestro caso de

estudio al exportar modelos para entornos móviles.

La librería Ultralytics provee un método directo para esta conversión mediante la

función export, que permite ajustar parámetros clave que influyen tanto en la compatibilidad

como en el rendimiento de los modelos (42). Para este estudio el script de Python que utiliza la

librería ultralytics.YOLO para la descarga de los modelos YOLO realiza varias acciones

adicionales sobre el modelo:

- Especificación del formato de exportación (format="tflite"). Indica que el modelo debe

exportarse en formato TensorFlow Lite. Como ya hemos visto este formato está

diseñado para ejecutar inferencias de forma eficiente en dispositivos móviles,

reduciendo el tamaño del modelo y optimizando la velocidad de cálculo sin

comprometer de manera significativa la precisión.

- Especificación del tamaño de las imágenes (imgsz=320). Define el tamaño de entrada

de la imagen en 320×320 píxeles (por defecto 640×640 píxeles). Este valor implica

un equilibrio entre velocidad y precisión al tener dimensiones menores permiten una

inferencia más rápida, lo que resulta ventajoso en dispositivos con recursos

limitados mientras asegura un nivel de detalle suficiente para detectar personas y

keypoints sin degradar drásticamente la exactitud del modelo. Como vimos en los

apartados “3.1.2. MoveNet (Google)” y “3.1.3. BlazePose (Google MediaPipe)” el

resto de modelos del estudio utiliza tamaños de entrada de imágenes de 192×192

píxeles y 256×256 píxeles las familias de MoveNet Lightning y Thunder

respectivamente y de 256×256 píxeles la familia BlazePose por lo que el tamaño de

imagen de entrada seleccionado para los modelos YOLO es el más aproximado al

resto de entre los disponibles.

- Especificación número máximo de detecciones por imagen (max_det=1). Limita el

número máximo de detecciones por imagen a una sola instancia. Dado que el

objetivo es trabajar con imágenes de una única persona este valor elimina falsos

positivos derivados de múltiples detecciones y simplifica el análisis posterior de

precisión y rendimiento.

84

- Activación del uso de Non-Maximum Suppression (nms=True). Elimina

predicciones redundantes que se solapan, manteniendo únicamente la detección más

confiable lo que contribuye a asegurar que únicamente se retenga la predicción más

relevante para cada imagen, evitando duplicidades en la salida.

Como entrada al proceso de exportación utilizamos la ruta de cada uno de los tres

modelos descargados en la carpeta de descarga en formato .pt y como resultado de la

exportación obtenemos en la misma carpeta de descarga, además de ficheros temporales en

formato .omnx de cada modelo, tres subcarpetas, una para cada modelo, que contienen entre

otros ficheros dos versiones cuantizadas de cada uno de los modelos, una float32 y otra float16.

Como el objetivo de este estudio es analizar el rendimiento en dispositivos edge utilizaremos

únicamente las versiones cuantizadas float16 de cada uno de ellos ya que son las que se adaptan

a las condiciones que habíamos descrito en el apartado “3.1.1. Criterios de selección y modelos

seleccionados” ocupando bastante menos espacio que sus homólogas float32.

5.3. Dispositivos de prueba

Para evaluar el rendimiento de los modelos de estimación de poses implementados en

dispositivos Android, se ha seleccionado una muestra representativa de terminales con

diferentes configuraciones de hardware. La selección incluye tanto teléfonos móviles como

tabletas, cubriendo distintas gamas de rendimiento y versiones del sistema operativo, con el fin

de analizar la escalabilidad de los modelos y su aplicabilidad en contextos reales.

5.3.1. Listado de dispositivos de prueba

En este apartado se describen las características técnicas de cada uno de los tres

dispositivos utilizados en las pruebas de medición de precisión y rendimiento: una Tablet

Samsung Galaxy Tab A7 Lite, un móvil Samsung Galaxy M32 y una Tablet Samsung Galaxy

Tab A9.

Samsung Galaxy Tab A7 Lite (Tablet)

- Procesador (SoC): MediaTek MT8768T Helio P22T, Octa-core (4x2.3 GHz & 4x1.8

GHz Cortex-A53)

- GPU: PowerVR GE8320

- Memoria RAM: 3 GB

- Almacenamiento: 32 GB

- Sistema operativo: Android 14

- Pantalla: 8.7" TFT, resolución 800 × 1340 píxeles

Esta tablet representa la gama de entrada, con recursos limitados en CPU, GPU y RAM.

85

Se incluye para evaluar el comportamiento de los modelos en dispositivos con restricciones de

capacidad, comunes en entornos educativos, sanitarios o de bajo coste.

Samsung Galaxy M32 (Móvil)

- Procesador (SoC): MediaTek Helio G80, Octa-core (2x2.0 GHz Cortex-A75 &

6x1.8 GHz Cortex-A55)

- GPU: Mali-G52 MC2

- Memoria RAM: 6 GB

- Almacenamiento: 128 GB

- Sistema operativo: Android 13

- Pantalla: 6.4" Súper AMOLED, resolución 1080 × 2400 píxeles

- Otros: Batería de 6000 mAh

El Galaxy M32 representa un dispositivo de gama media con buen rendimiento gráfico

y capacidad suficiente para ejecutar modelos ligeros y medios. Es adecuado para evaluar la

eficiencia de inferencia en terminales móviles convencionales.

Samsung Galaxy Tab A9 (Tablet)

- Procesador (SoC): Unisoc T618, Octa-core (2x2.0 GHz Cortex-A75 & 6x1.8 GHz

Cortex-A55)

- GPU: Mali-G52 MP2

- Memoria RAM: 4 GB

- Almacenamiento: 64 GB

- Sistema operativo: Android 15

- Pantalla: 8.7" TFT LCD, resolución 800 × 1340 píxeles

La tablet Galaxy Tab A9 se sitúa en una gama media actualizada, con mejor capacidad

de procesamiento que la Tab A7 Lite, aunque sin alcanzar el nivel de un smartphone moderno.

Este dispositivo permite medir la eficiencia de los modelos en un entorno más equilibrado, ideal

para aplicaciones industriales, educativas o comerciales.

86

5.3.2. Justificación de la selección

La elección de estos dispositivos responde a los siguientes criterios:

- Diversidad de capacidades de hardware (procesadores ARM heterogéneos, distintas

GPUs).

- Representatividad de escenarios reales de uso (móviles, tablets, gama baja/media).

- Compatibilidad con Android 12 o superior, necesaria para ejecutar modelos con

soporte NNAPI y TFLite.

Esta variedad permite analizar el rendimiento cruzado de los modelos y determinar qué

configuraciones de hardware resultan más adecuadas para cada tipo de modelo de estimación

de posturas, desde los más ligeros hasta los más complejos.

87

6. FASE 2: DESARROLLO DE LA APLICACIÓN PARA ANDROID

Este apartado describe el proceso de implementación técnica de la aplicación Android

donde se cargan los modelos seleccionados junto a las imágenes del dataset seleccionadas para

extraer resultados de predicciones y tiempos de inferencia de los modelos sobre el dataset. Esta

sección por lo tanto constituye el núcleo técnico del proyecto y conecta directamente la

investigación y análisis previos con la validación práctica del desempeño de los modelos en un

entorno real de ejecución.

La arquitectura implementada en la aplicación garantiza la ejecución secuencial y

automatizada de todos los modelos sobre el conjunto de imágenes definido, lo que facilita la

recolección sistemática de datos para su posterior análisis comparativo.

6.1. Análisis, diseño y preparación

6.1.1. Análisis y diseño

Esta fase se concibe con varios objetivos, definir los requisitos funcionales y no

funcionales de la aplicación, diseñar una arquitectura que garantice eficiencia, mantenibilidad

y escalabilidad, definir las estructuras de datos que se utilizan en la exportación de resultados,

diseñar la interfaz que interactuará con el usuario y por último analizar las estructuras de datos

tanto de entrada como de salida de cada modelo del estudio.

Análisis de requisitos

Los requisitos funcionales se centran en las capacidades que debe ofrecer la aplicación

para cumplir los objetivos del proyecto:

- Carga y gestión de modelos. La aplicación debe poder integrar diferentes modelos

de estimación de posturas en formato TFLite.

- Ejecución de inferencias sobre un dataset de imágenes. Debe permitir cargar

imágenes desde una carpeta, procesarlas y obtener y registrar los keypoints

correspondientes.

- Medición del tiempo de inferencia. El sistema debe registrar el tiempo de

procesamiento por imagen y por modelo.

- Almacenamiento y exportación de resultados. Los resultados de inferencia

registrados (keypoints y tiempos) deben guardarse en ficheros estructurados y

exportarse en un contenedor ZIP.

- Interfaz de usuario básica. Debe proveer un mecanismo simple para iniciar el

proceso de inferencia, mostrar el progreso y confirmar la correcta finalización de la

tarea.

88

Además de las funcionalidades principales, la aplicación debe cumplir con una serie de

restricciones técnicas o requisitos no funcionales:

- Compatibilidad. el nivel mínimo de SDK debe asegurar ejecución en un amplio

rango de dispositivos Android contemporáneos.

- Mantenibilidad, el código debe estar modularizado y documentado para facilitar

futuras mejoras o integración de nuevos modelos.

- Escalabilidad, la arquitectura debe permitir incorporar nuevas métricas o datasets

sin necesidad de rediseñar el núcleo de la aplicación.

Diseño de la arquitectura

La arquitectura planteada guarda similitudes con el patrón MVC (Modelo-Vista-

Controlador), ampliamente utilizado en el desarrollo de aplicaciones por su capacidad de

separar responsabilidades y promover la escalabilidad. En este contexto, se ha diseñado sobre

los principios de herencia y polimorfismo, características intrínsecas de los lenguajes orientados

a objetos, lo que permite reutilizar código común y, al mismo tiempo, adaptar el

comportamiento específico a cada modelo de estimación de posturas humanas que estamos

estudiando.

El Modelo representa la capa encargada de la gestión de datos y lógica de negocio, lo

que incluye el manejo de las imágenes de entrada, la carga y ejecución de los modelos de

inferencia en formato TensorFlow Lite, y la organización y persistencia de los ficheros de salida

generados (predicciones y tiempos de inferencia). Esta capa abstrae la complejidad del

preprocesamiento, inferencia y postprocesamiento, de modo que la lógica asociada a cada

modelo concreto queda contenida en subclases especializadas que heredan de una clase base

común.

La Vista constituye la capa de interacción con el usuario y es responsable de visualizar

las operaciones y resultados. En el caso de una aplicación Android, esto se materializa mediante

actividades o interfaces gráficas que muestran el estado de ejecución e indicadores de progreso.

La Vista es deliberadamente independiente de la lógica del modelo, de manera que su papel se

centra en presentar información y recibir interacciones del usuario sin conocer en detalle cómo

se ejecutan las operaciones subyacentes.

El Controlador actúa como capa intermedia que coordina la comunicación entre la Vista

y el Modelo. Su función es recibir las acciones iniciadas desde la interfaz de usuario (ejecución

de las pruebas o exportación de resultados), traducirlas en operaciones sobre el Modelo y

devolver a la Vista los resultados o el estado actualizado. En este sentido, el Controlador

encapsula la sincronización entre procesos, asegurando que las respuestas se gestionan de

manera coherente y en tiempo oportuno.

Este esquema facilita el mantenimiento y la extensión del sistema (nuevos modelos de

estimación pueden integrarse mediante la adición de subclases que respeten la interfaz definida

en el modelo base) mientras que permite una modularización del código que mejora la

legibilidad.

89

Diseño de estructuras de datos

Se definen las estructuras de datos necesarias para almacenar los datos de salida de la

ejecución del test. Esta salida está compuesta por dos ficheros por cada modelo incluido:

- Fichero de predicciones. Este fichero en formato JSON está formado por un array

con las predicciones del modelo para cada imagen del dataset de testeo. El formato

de cada una de las predicciones viene determinado por el formato utilizado por el

dataset COCO para evaluar los resultados de predicciones de modelos, que es muy

similar al descrito en el apartado “2.6.1. Dataset COCO (Common Objects in

COntext)” para las anotaciones del dataset y se compone de los siguientes campos

para cada imagen:

o image_id: ID de la imagen donde se encuentra la persona.

o category_id: Siempre 1 para personas.

o keypoints: Lista de 51 valores (17 keypoints × 3 valores por keypoint).

Cada keypoint contiene: (x, y, v) donde x e y son las coordenadas 2D del

keypoint en píxeles y v es un código de visibilidad del keypoint (0=no

etiquetado, 1=etiquetado pero no visible, 2=etiquetado y visible).

o score: valor numérico (normalmente entre 0 y 1) que indica el nivel de

confianza del modelo en la predicción de la posición de ese keypoint.

- Fichero de tiempos de inferencia. Fichero de texto en formato CSV donde cada línea

del fichero incluye información con el nombre de la imagen a modo de identificador

y los valores de los tiempos de inferencia del modelo para esa imagen separados por

comas.

Diseño de la Interfaz de Usuario

Aunque la aplicación no requiere una interfaz compleja, se definen ciertos elementos

que deben estar presentes en la pantalla principal:

- Información de modelos de estimación de posturas incluidos en el test. Listado con

todos los modelos que ejecutarán inferencias sobre el dataset de imágenes de prueba.

- Botón de inicio del test en el dispositivo. Botón para iniciar el test en el dispositivo.

- Indicador visual de progreso de la ejecución del test. Avance de la ejecución por

modelo.

- Botón de exportación de resultados. Botón para exportar los ficheros con los

resultados de inferencia y rendimiento de todos los modelos testados.

- Botón de salir de la aplicación.

90

Análisis de entradas y salidas de los modelos

La estimación de posturas humanas mediante redes neuronales requiere comprender las

estructuras de entrada y salida de los modelos empleados. Estas estructuras determinan tanto la

forma en que las imágenes deben preprocesarse como la interpretación de los resultados

generados por cada modelo. En términos de entrada, todos los modelos reciben tensores que

representan imágenes RGB redimensionadas a unas resoluciones fijas y normalizadas en

rango de valores. El tamaño de estos tensores difiere según el modelo y la versión:

- MoveNet utiliza entradas compactas de 192×192 píxeles (Lightning) o 256×256

píxeles (Thunder) para sus dos variantes que representan imágenes RGB

normalizadas, redimensionadas al tamaño requerido por cada versión.

- BlazePose requiere imágenes de resolución 256×256 píxeles igualmente

representando imágenes RGB normalizadas y redimensionadas.

- YOLOv8-Pose emplea entradas por defecto con tensores de 640×640 píxeles,

aunque en este estudio y como hemos comentado anteriormente los modelos

exportados a formato TFLite para su integración en la aplicación han sido adaptados

para soportar una entrada de 320×320 píxeles de un tamaño más parecido al resto

de modelos.

Respecto a la salida, cada modelo proporciona tensores estructurados con distinta

granularidad de información:

- MoveNet devuelve un tensor de tamaño [1, 1, 17, 3]. Cada uno de los 17 keypoints

del estándar COCO está representado por con las coordenadas (x, y) normalizadas

y el nivel de confianza para los 17 keypoints definidos por el estándar COCO (41).

- BlazePose, más detallado, devuelve un tensor de tamaño [1, 195] ya que estima

hasta 33 keypoints, incluyendo las coordenadas (x, y) normalizadas más una

componente z que representa la profundidad relativa del punto respecto al cuerpo,

además de otros dos valores, confianza de visibilidad (0 a 1) y presencia del keypoint

(0 a 1) (43).

- YOLOv8-Pose integra detección de personas y estimación de posturas en un único

proceso, generando bounding boxes, scores globales y los 17 keypoints de COCO

para cada persona detectada en la imagen. Devuelve un tensor de tamaño [N, 57]

donde N es el número máximo de detecciones que durante la exportación del modelo

hemos establecido a 1 con el parámetro max_det=1 (ver apartado “5.2.2. Modelos

que requieren conversión de formato”) por lo que en nuestro caso el tensor devuelto

por los modelos YOLO es de tamaño [1, 57] y está compuesto por varios valores de

bounding box (x, y, w, h), confianza (score), clase, y 17×3 valores correspondientes

a los keypoints (x, y, score).

6.1.2. Diagrama de clases

El diagrama de clases es una representación fundamental dentro de la documentación

91

técnica del proyecto, ya que permite visualizar la estructura estática de la aplicación y las

relaciones entre sus componentes principales. En este caso, el diagrama refleja la arquitectura

orientada a objetos definida, mostrando la jerarquía de herencia, la interacción entre las

diferentes clases que conforman el sistema y los componentes públicos, protegidos y privados

de cada clase con sus parámetros en el caso de los métodos (Imagen 18).

Imagen 18. Diagrama de clases de la aplicación para Android.

6.1.3. Preparación

Preparación entorno de desarrollo

El proceso se inicia mediante la generación de un nuevo proyecto de tipo "Empty

Activity", que se selecciona por su carácter básico y altamente personalizable. Esta plantilla

ofrece una estructura mínima sobre la cual es posible construir la aplicación de manera

progresiva, integrando los componentes específicos requeridos para la ejecución de modelos de

estimación de posturas humanas.

- Creación del proyecto. El asistente de creación de proyectos de Android Studio

permite definir la configuración inicial del proyecto en varios pasos:

o Asignación del nombre del proyecto y del paquete de aplicación

92

(Application ID), que servirán como identificadores únicos en el ecosistema

Android.

o Definición de la ubicación de almacenamiento del proyecto en el sistema

local.

o Selección del lenguaje de programación (en este caso, Java).

o Configuración del nivel mínimo de SDK (API Level mínimo).

Como resultado de este proceso tenemos una aplicación inicial funcional que

contiene un único archivo de actividad principal (MainActivity) y los recursos

básicos asociados, como el layout en XML. Sobre esta base mínima se construye la

lógica necesaria para la gestión del dataset, la carga y ejecución de los modelos

TFLite.

- Incorporación de las dependencias de las librerías TensorFlow. En el fichero

build.gradle (Module:app) se añaden las dependencias necesarias para el

funcionamiento del framework TensorFlow (Imagen 19):

o tensorflow-lite:2.12.0. Es la librería principal de TensorFlow Lite,

encargada de la ejecución de modelos de aprendizaje automático

optimizados en dispositivos móviles y embebidos. Proporciona el motor de

inferencia que permite cargar un modelo en formato TFLite y ejecutar

predicciones de manera eficiente en la CPU (o en otros delegados cuando se

configuran). Se utiliza por tanto para ejecutar los modelos de estimación de

posturas en Android con bajo consumo de recursos y alta eficiencia.

o tensorflow-lite-metadata:0.1.0. Librería orientada al manejo de la

información descriptiva (metadatos) incluida dentro de algunos modelos

TFLite. Estos metadatos contiene detalles como nombres de entradas y

salidas, dimensiones de tensores, escalas de normalización o categorías de

salida. Permite interpretar de manera más sencilla los resultados de la

inferencia.

o tensorflow-lite-support:0.4.3. Conjunto de utilidades complementarias que

extiende TensorFlow Lite, proporcionando funciones de preprocesamiento y

postprocesamiento de datos (como manipulación de imágenes, conversión

de tensores, normalización y transformación de formatos).

dependencies {

 ……

 implementation 'org.tensorflow:tensorflow-lite:2.12.0'

 implementation 'org.tensorflow:tensorflow-lite-metadata:0.1.0'

 implementation 'org.tensorflow:tensorflow-lite-support:0.4.3'

}

Imagen 19. Dependencias TensorFlow Lite añadidas al fichero build.gradle

93

- Creación de carpeta de recursos para almacenamiento de las imágenes del dataset.

En esta carpeta se introducen las imágenes descargadas en el apartado “5.1.

Selección del dataset de imágenes de testeo” junto con el fichero de control generado

en esa misma fase, imageFileNames.txt.

- Importación uno por uno de todos los modelos en formato TFLite obtenidos en el

apartado “5.2. Obtención de modelos para el estudio” a la aplicación mediante la

opción "New -> Other -> TensorFlow Lite Model" del menú contextual de la carpeta

de recursos del proyecto.

Repositorio GIT

La utilización de un sistema de control de versiones es una práctica fundamental en

proyectos de investigación aplicada e ingeniería de software. En este caso, la elección de GIT

como herramienta central permite garantizar la seguridad, trazabilidad, organización y

replicabilidad de todas las fases de desarrollo.

Teniendo en cuenta las fases del proyecto el repositorio está dividido en dos partes:

- APP. Contiene todo el proyecto de la aplicación Android (Fase 2), incluidos:

o Dataset de imágenes utilizado (APP/TFM/app/src/main/resources).

o Modelos estudiados (APP/TFM/app/src/main/ml).

o Código fuente de la aplicación (APP/TFM/app/src/main/java).

o Ficheros de configuración del proyecto Android Studio (build.graddle,

AndroidManifest.xml, etc,..).

- Notebook. Contiene un notebook de Jupyter Notebook (TFM.ipynb) con los scripts

de preparación del dataset de testeo (Fase 1) y los scripts de evaluación de resultados

(Fase 3).

La localización del repositorio está disponible en este enlace28.

6.2. Implementación del núcleo de la aplicación

La fase de implementación constituye el punto en el que se materializa el diseño

previamente definido, trasladando los modelos y el dataset a una aplicación funcional para

dispositivos Android.

La implementación incluye la programación de las clases Java que definen la

arquitectura de la aplicación, la incorporación de los modelos en formato TensorFlow Lite y la

adopción de los mecanismos necesarios para la carga, preprocesamiento y ejecución del dataset

28 https://github.com/jr-gh/TFM

https://github.com/jr-gh/TFM

94

de imágenes. Asimismo, se desarrollan las rutinas específicas para la obtención de predicciones

de keypoints y la medición precisa de los tiempos de inferencia por imagen.

6.2.1. Arquitectura de la aplicación

La arquitectura de la aplicación Android se organiza en torno a un diseño orientado a

objetos que sigue un esquema inspirado en el patrón Modelo-Vista-Controlador (MVC Model

View Controler). En este caso, las diferentes clases cumplen roles claramente diferenciados y

colaboran entre sí para ejecutar el flujo completo de inferencia de modelos de estimación de

posturas humanas.

6.2.2. Librerías TensorFlow Lite.

Para la implementación de las clases se utilizan diferentes clases proporcionadas por la

API y las librerías de TensorFlow Lite. Estas clases permiten gestionar de manera eficiente

tanto el preprocesamiento de datos como la ejecución de inferencias y el manejo de resultados.

Las funciones principales de cada una de ellas son:

- org.tensorflow.lite.DataType. Define los tipos de datos soportados por los tensores

de TensorFlow Lite (por ejemplo, FLOAT32, UINT8). Se utiliza para garantizar que

las estructuras de entrada y salida del modelo se correspondan con los formatos

esperados evitando incompatibilidades.

- org.tensorflow.lite.InterpreterApi. Representa la interfaz de alto nivel que permite

cargar un modelo TFLite y ejecutar inferencias sobre él. A través de esta clase se

inicializa el intérprete con un modelo previamente cargado y se proporcionan los

tensores de entrada y salida necesarios para la ejecución del modelo.

- org.tensorflow.lite.support.common.FileUtil. Proporciona utilidades para gestionar

la lectura de ficheros como el propio archivo .tflite del modelo y preparar su

integración en el intérprete.

- org.tensorflow.lite.support.common.ops.CastOp. Permite realizar conversiones de

tipo de dato en tensores, por ejemplo de UINT8 a FLOAT32. Se utiliza en las fases

de preprocesamiento y postprocesamiento para garantizar la compatibilidad entre

los datos de entrada/salida y el modelo de TensorFlow Lite.

- org.tensorflow.lite.support.common.ops.NormalizeOp. Encapsula operaciones de

normalización de datos, generalmente aplicadas sobre imágenes antes de ser

procesadas por el modelo. Por ejemplo, permite escalar valores de píxeles a rangos

específicos como [0,1].

- org.tensorflow.lite.support.image.ImageProcessor. Componente fundamental para

el preprocesamiento de imágenes. Permite construir pipelines de transformación

(como redimensionado, normalización o rotación), asegurando que las imágenes de

entrada se ajusten a los requisitos de cada modelo.

- org.tensorflow.lite.support.image.TensorImage Representa imágenes en forma de

95

tensores compatibles con los modelos TFLite. Facilita la conversión desde formatos

comunes (Bitmap, JPEG, etc.) a tensores que pueden ser interpretados directamente

por el modelo durante la inferencia.

- org.tensorflow.lite.support.image.ops.ResizeOp. Permite redimensionar imágenes a

un tamaño específico generalmente requerido como paso previo al procesamiento

por el modelo. Se integra dentro de ImageProcessor y es esencial para ajustar

imágenes a resoluciones como 192x192 o 256x256, dependiendo del modelo.

- org.tensorflow.lite.support.tensorbuffer.TensorBuffer. Utilizada para gestionar los

tensores de salida generados por el modelo. Permite almacenar, acceder y manipular

los resultados de la inferencia en diferentes formatos, facilitando la posterior

interpretación de keypoints, coordenadas o métricas derivadas del procesamiento

realizado.

6.2.3. Implementación de las clases de la aplicación

Clase MainActivity (controlador principal)

La clase MainActivity actúa como punto de entrada y controlador principal de la

aplicación. Su función es coordinar las interacciones entre la vista (interfaz de usuario) y el

modelo (clases que gestionan los modelos TensorFlow Lite).

Su implementación incluye acciones como gestionar el ciclo de vida de la aplicación en

Android, inicializar y configurar los modelos que se ejecutan en el test, ejecutar la inferencia

de cada modelo sobre el conjunto de imágenes del dataset de testeo, mostrar el progreso de la

ejecución en la interfaz gráfica y habilitar la exportación de resultados (ficheros de predicciones

y tiempos de inferencia).

De esta forma, MainActivity actúa como organizador sin concentrar lógica de

procesamiento que queda delegada en las clases de modelos.

Clase TensorFlowLiteModel (clase base abstracta)

La clase TensorFlowLiteModel constituye la superclase abstracta que encapsula las

operaciones comunes a todos los modelos.

Entre sus acciones implementadas se incluyen la lectura de la lista de imágenes del

dataset para su procesamiento por el modelo, la gestión de las estructuras de almacenamiento

de los datos de salida (estimaciones de keypoints y tiempos de inferencia) y el almacenamiento

de estos resultados en ficheros.

Esta clase es abstracta y no se instancia directamente, su propósito es proveer una base

sólida para la implementación de los modelos concretos.

96

Clase Movenet (subclase de TensorFlowLiteModel)

Especialización de la clase base para los modelos Movenet (Lightning y Thunder). Su

constructor admite todos los parámetros necesarios para definir el tipo de modelo que ejecuta y

sus tipos de datos para los seis modelos MoveNet (los tres de la familia Lightning y los tres de

la familia Thunder). La ejecución del test del modelo sobre el dataset de imágenes se compone

de las siguientes acciones para la inferencia:

1. Inicialización del modelo. Se instancia el modelo MoveNet en memoria mediante el

intérprete oficial (InterpreterApi).

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, configurado en el

tipo de dato requerido por el modelo (UINT8, FLOAT16 o FLOAT32).

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 17, 3),

que representa una imagen procesada, 17 puntos clave, y tres valores por keypoint (x, y

y score).

4. Se recorre la lista de imágenes a procesar y para cada una:

a. Se obtiene un bitmap de la imagen en formato estándar.

b. La imagen se carga en el objeto TensorImage.

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño)

para adaptarla a la estructura de entrada del modelo (imágenes de 192×192 o

256×256 píxeles según si el modelo es de tipo Lightning o Thunder).

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de

TensorFlow Lite.

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete.

f. Se recuperan las dimensiones originales de la imagen, con el fin de normalizar

las coordenadas estimadas y adaptarlas al tamaño real de la imagen.

g. Se accede al array de salida del modelo, recorriendo los 17 keypoints estimados

y almacenando sus coordenadas normalizadas al tamaño real de la imagen.

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos

que contienen las predicciones de keypoints y los tiempos de inferencia.

5. Se procede al cierre del modelo y liberación de los recursos asociados.

6. Se escribe en disco la información de las estructuras de datos con las predicciones de

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y

rendimiento.

97

Clase BlazePose (subclase de TensorFlowLiteModel)

Subclase encargada de gestionar los modelos BlazePose (Lite, Full y Heavy). A

diferencia de las otras clases wrapper de los otros modelos esta clase realiza un mapeo de los

17 puntos que queremos estudiar, coincidentes con el resto de modelos y con el estándar del

dataset COCO, sobre los 33 que estima el modelo para extraer únicamente estos 17 puntos del

resultado de la inferencia (Tabla 12 “Equivalencia puntos BlazePose”). Sus funciones son

análogas a las de la clase Movenet:

1. Inicialización del modelo. Se instancia el modelo BlazePose en memoria mediante el

intérprete oficial (InterpreterApi).

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, de tipo común para

los modelos de la familia (FLOAT32).

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 195), cuyos

primeros 165 valores (33×5) representan los keypoints inferidos en la imagen con 5

atributos (x, y, z, visibility, presence).

4. Se recorre la lista de imágenes a procesar y para cada una:

a. Se obtiene un bitmap de la imagen en formato estándar.

b. La imagen se carga en el objeto TensorImage.

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño)

para adaptarla a la estructura de entrada del modelo (imágenes de 256×256

píxeles), una normalización y una conversión del tipo de datos a FLOAT32.

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de

TensorFlow Lite.

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete.

f. Se calcula los ratios de ancho y alto con respecto a la imagen original para la

normalización de las coordenadas de los keypoints.

g. Se accede al array de salida de landmarks del modelo que contiene las

predicciones de los 33 keypoints estimados y utilizando la estructura de mapeo

de la clase (ver apartado “3.1.3. BlazePose (Google MediaPipe)”) se extraen

únicamente las correspondientes a los 17 keypoints que estamos estudiando,

almacenando sus coordenadas normalizadas al tamaño real de la imagen.

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos

que contienen las predicciones de keypoints y los tiempos de inferencia.

5. Se procede al cierre del modelo y liberación de los recursos asociados.

6. Se escribe en disco la información de las estructuras de datos con las predicciones de

98

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y

rendimiento.

Clase Yolo (subclase de TensorFlowLiteModel)

Subclase orientada a gestión de los modelos YOLOv8-Pose (Nano, Small, Medium)

exportados a TensorFlow Lite. Sus funciones son análogas a las del resto de wrappers de

modelos adaptadas a las características del modelo YOLO:

1. Inicialización del modelo. Se instancia el modelo Yolo en memoria mediante el

intérprete oficial (InterpreterApi).

2. Se crea un objeto TensorImage, contenedor de la imagen de entrada, de tipo común para

los modelos de la familia (FLOAT32).

3. Se instancia un TensorBuffer con la forma de salida esperada del modelo (1, 1, 57), que

representa una imagen procesada, con máximo una detección de personas (como

habíamos especificado en la exportación del modelo a formato TFLite, ver apartado

“5.2.2. Modelos que requieren conversión de formato”) y 57 puntos clave que definen

cuatro puntos de bounding boxes, objectness (confianza), clase y los keypoints inferidos

en formato (x, y, score).

4. Se recorre la lista de imágenes a procesar y para cada una:

a. Se obtiene un bitmap de la imagen en formato estándar.

b. La imagen se carga en el objeto TensorImage.

c. Se aplica un proceso de preprocesamiento a la imagen (cambio de tamaño)

para adaptarla a la estructura de entrada del modelo (imágenes de 320×320

píxeles) y una normalización.

d. Se ejecuta la inferencia del modelo con la imagen utilizando el intérprete de

TensorFlow Lite.

e. Se registra el tiempo de inferencia nativo de la imagen (métrica de rendimiento)

mediante el método getLastNativeInferenceDurationNanoseconds() del interprete.

f. Se recuperan las dimensiones originales de la imagen, con el fin de normalizar

las coordenadas estimadas y adaptarlas al tamaño real de la imagen.

g. Se accede al array de salida del modelo, recorriendo en el array de salida los 17

keypoints estimados y almacenando sus coordenadas normalizadas al tamaño

real de la imagen.

h. Se almacenan los resultados de la inferencia de la imagen en estructuras de datos

que contienen las predicciones de keypoints y los tiempos de inferencia.

99

5. Se procede al cierre del modelo y liberación de los recursos asociados.

6. Se escribe en disco la información de las estructuras de datos con las predicciones de

keypoints y los tiempos de inferencia en los ficheros JSON/CSV definidos previamente

(apartado “6.1.1. Análisis y diseño”) para el posterior análisis de precisión y

rendimiento.

Relación entre las clases

MainActivity instancia y gestiona objetos de tipo Movenet, BlazePose y Yolo, los cuales

heredan de TensorFlowLiteModel. Utilizando polimorfismo, MainActivity invoca métodos

comunes (run()) definidos en la clase base TensorFlowLiteModel.

De esta manera, la arquitectura resulta modular, extensible y mantenible, permitiendo

incorporar nuevos modelos en el futuro simplemente creando nuevas subclases de

TensorFlowLiteModel e implementando las características propias de preprocesamiento y

postprocesamiento de cada modelo.

Consideración sobre scoring/visibility/presence

Las predicciones que estima cada modelo se componen básicamente de coordenadas (x,

y) más valores de confianza del modelo en la predicción que son heterogéneos por cada modelo

como vimos en el apartado “6.1.1. Análisis y diseño” en “Análisis de entradas y salidas de los

modelos”, unos modelos calculan un score mientras que otros calculan visibility y presence.

Como estos valores no tienen influencia posterior en el cálculo de la precisión, durante la

implementación se ha incluido un valor fijo para todos ellos.

6.3. Generación y gestión de ficheros de salida

 En la fase de análisis (apartado “6.1.1. Análisis y diseño” dentro de “Diseño de

estructuras de datos”) se definen los formatos de los ficheros de salida con las predicciones y

tiempos de inferencia de la aplicación.

La implementación de la gestión de estos ficheros de salida está integrada en la

superclase abstracta que encapsula las operaciones comunes a todos los modelos, siendo ésta la

que ofrece las labores de almacenamiento temporal de los datos de inferencia y tiempos en

estructuras de datos durante la ejecución del test para posteriormente al finalizar la inferencia

de todo el dataset por parte del modelo realizar el volcado de todos los datos en los ficheros de

salida del modelo. Estas estructuras temporales son:

- imagePredictionsMap. Estructura para almacenar las predicciones de keypoints, es

un HashMap con una cadena como clave (nombre de la imagen de inferencia) y un

array de valores float como valor que almacena secuencialmente los keypoints

estimados por el modelo para esa imagen.

- modelPerformanceMap. Estructura para almacenar los tiempos de inferencia del

modelo por cada imagen. Es otro HashMap con una cadena como clave (nombre de

100

la imagen de inferencia) y otra cadena como valor donde se almacena en formato

texto los tiempos de inferencia del modelo para la imagen.

Al finalizar la inferencia por parte del modelo de todo el dataset se realiza el proceso de

almacenamiento en disco de los resultados almacenados temporalmente en estas estructuras en

los ficheros descritos en el apartado “6.1.1. Análisis y diseño”, manteniendo una nomenclatura

que permite identificar a que modelo pertenece cada fichero de resultados. En total se generan

dos ficheros por modelo en el estudio (el fichero JSON de predicciones y el fichero de texto

con formato CSV con los tiempos de inferencia) lo que al tratarse de 12 modelos hace un total

de 24 ficheros de salida que al finalizar el proceso global son incluidos en un ZIP para su

exportación y posterior análisis.

6.4. Desarrollo de la interfaz

 La estructura principal de la interfaz está definida en el archivo activity_main.xml,

generado y editado desde Android Studio, empleando el editor de diseño integrado. Este archivo

XML constituye la descripción declarativa de los elementos gráficos que conforman la pantalla

principal de la aplicación, así como de su disposición, estilos y comportamiento básico.

En primer lugar, incorpora una lista estática en la que aparecen todos los modelos

incluidos en el estudio, es decir, los distintos algoritmos de estimación de posturas previamente

integrados en la aplicación (todas las versiones de MoveNet, BlazePose y YOLO-Pose). Esta

lista constituye el núcleo visual de la interfaz (Imagen 20), ya que sobre ella el usuario identifica

qué modelos van a ser evaluados y, además, recibe información dinámica sobre el estado de

cada uno durante la ejecución del test.

La interacción se organiza en torno a tres botones principales:

- Botón "EJECUTAR TEST". Inicia el proceso de inferencia de cada modelo sobre el

conjunto de imágenes seleccionado como dataset de testeo. Durante este proceso, la

lista de modelos se actualiza dinámicamente para reflejar el progreso, los modelos

en ejecución cambian de color a amarillo, lo que comunica al usuario que el

algoritmo está siendo evaluado y una vez completada la ejecución

satisfactoriamente, el nombre del modelo pasa a verde, indicando la finalización

correcta. En caso de error o fallo durante la inferencia, el modelo se marca en rojo,

proporcionando una señal inmediata del problema ocurrido.

- Botón "COMPARTIR RESULTADOS". Permanece inicialmente inactivo

(deshabilitado), activándose únicamente al concluir la ejecución completa del test

sobre todos los modelos. Su función es facilitar la exportación de resultados de

manera intuitiva, generando un fichero comprimido ZIP que contiene tanto los

archivos de predicciones (keypoints estimados) como los registros de tiempos de

inferencia por imagen. A través de la integración con los mecanismos estándar de

Android (Intents), este botón permite enviar el fichero ZIP al usuario mediante

diversos canales disponibles en el dispositivo, como correo electrónico, aplicaciones

de mensajería o almacenamiento en la nube.

- Botón "SALIR": proporciona un mecanismo directo para cerrar la aplicación,

101

finalizando la sesión de uso de manera controlada y limpia.

La lógica de actualización dinámica de la lista de modelos y el cambio de colores

durante la ejecución hace que la interfaz no solo cumpla una función estética, sino también de

monitorización en tiempo real de la evaluación de los modelos.

Imagen 20. Interfaz de la aplicación Android (Samsung Galaxy Tab A9)

6.5. Pruebas y correcciones

Se realizan pruebas unitarias centradas en la correcta implementación de cada clase de

modelo integrada en la aplicación. Cada modelo, ya sea MoveNet, BlazePose o YOLO-Pose,

fue evaluado de manera independiente para verificar que la lectura de imágenes desde el dataset

seleccionado se realizaba correctamente, el preprocesamiento de las imágenes se ajustaba a los

requisitos de entrada del modelo, incluyendo la normalización y el dimensionamiento de los

tensores de entrada, la ejecución de la inferencia generaba salidas consistentes con la estructura

esperada de keypoints y probabilidades de visibilidad y los tiempos de inferencia por imagen

se recogían de manera precisa y se almacenaban correctamente en los ficheros de salida.

102

Posteriormente, se llevan a cabo pruebas de integración, centradas en la interacción

entre los distintos componentes de la aplicación, la clase principal de control (MainActivity),

las clases de los modelos y los mecanismos de almacenamiento de resultados. Durante estas

pruebas se evalúa que la ejecución secuencial de los modelos sobre el dataset completo se

realiza sin interrupciones, la interfaz gráfica refleja correctamente el estado de cada modelo

mediante los cambios de color en la lista (amarillo, verde y rojo) durante la ejecución y los

botones de la interfaz funcionaran según lo esperado, habilitando la opción de compartir

resultados únicamente al finalizar todas las inferencias y permitiendo la salida de la aplicación

sin bloqueos o pérdidas de datos.

Durante la fase de pruebas se identificaron diversos errores relacionados con la

interpretación de los datos de salida de los modelos, un aspecto crítico y complejo debido a la

heterogeneidad de las salidas de cada modelo. Cada familia de modelos, ya sea MoveNet,

BlazePose o YOLO-Pose, genera resultados en formatos distintos, con estructuras de tensores,

dimensiones y significados de cada valor específicos, lo que dificultó la correcta normalización

y almacenamiento de los keypoints y sus probabilidades de visibilidad.

Los errores detectados incluyen:

- Confusión en los índices de los keypoints, especialmente en BlazePose, donde la

correspondencia entre la posición del tensor y la articulación real requiere un mapeo

explícito.

- Interpretación errónea de los valores de visibilidad o confianza, lo que generaba

la inclusión de keypoints poco fiables en los ficheros de salida.

La corrección de estos errores implicó una labor cuidadosa de análisis de la

documentación oficial de cada modelo, pruebas unitarias de cada salida. Durante el proceso de

prueba además se detectaron y corrigieron los siguientes problemas menores:

- Errores de compatibilidad de tipos de datos en la carga de imágenes y en la ejecución

de modelos, solucionados mediante ajustes en las clases de TensorFlow Lite,

incluyendo el uso adecuado de TensorImage y TensorBuffer.

- Fallos de sincronización en la interfaz, que impedían la actualización inmediata de

los colores de la lista de modelos, solucionadas mediante la ejecución de la acción

especificada en el subproceso de la interfaz de usuario que garantiza la actualización

en el hilo principal de la interfaz.

- Problemas en la generación de los ficheros de resultados y del fichero ZIP de

general, que fueron corregidos configurando la carpeta Documents como

“external_documents” en fichero file_paths.xml.

Finalmente se realizan pruebas de aceptación, ejecutando la aplicación completa que

permiten validar la aplicación, procesar todo el dataset correctamente, ejecutar todos los

modelos de manera fiable, generar y almacenar los resultados de forma estructurada y accesible,

proporcionar al usuario retroalimentación visual clara sobre el estado de cada modelo y

compartir los resultados a través de los canales de Android sin pérdida de información.

103

Imagen 21. Imágenes de la interfaz con secuencia de inicio y avance del proceso

Imagen 22. Imágenes de la interfaz con finalización del proceso, compartir resultados y salida de la aplicación

104

7. FASE 3: EVALUACION Y ANALISIS DE RESULTADOS

La evaluación de los resultados se realiza de forma dual, primero enfocada en la

precisión obtenida por las predicciones de los modelos estudiados con el dataset seleccionado

y después analizando los tiempos de inferencia de esas mismas predicciones.

7.1. Resultados obtenidos de precisión

La obtención de las medidas de precisión se realiza mediante el uso de la API oficial de

COCO y de scripts desarrollados en Python ejecutados en un entorno Jupyter Notebook. La API

de COCO permite evaluar los keypoints estimados por cada modelo comparándolos con las

anotaciones de referencia (ground truth) disponibles en los ficheros de anotaciones del dataset.

Para ello, se utilizan métricas consolidadas en la comunidad de visión por computador, tales

como el Average Precision (AP) y el Average Recall (AR) bajo distintos umbrales de

coincidencia. Estos cálculos requieren la generación previa de ficheros de predicciones por cada

modelo como los obtenidos en este estudio, los cuales incluyen las coordenadas estimadas de

los keypoints y sus valores de confianza, que posteriormente son procesados por la API para

determinar el grado de concordancia con las anotaciones reales del dataset.

En este apartado se presentan los resultados obtenidos en la evaluación de precisión de

los modelos de estimación de poses humanas estudiados, utilizando como métrica principal la

Average Precision definida en el protocolo de evaluación de COCO. Para realizar esta

evaluación se han tomado de los ficheros ZIP de resultados exportados de la ejecución de los

tres dispositivos de prueba los ficheros relativos a precisiones de cada modelo (formato

JSON).

Como ya hemos visto, se han evaluado un total de 12 modelos ya descritos, MoveNet

(Lightning y Thunder, en resoluciones 8, 16 y 32), BlazePose (Lite, Full y Heavy) y YOLOv8-

Pose (Nano, Small y Medium), y se ha utilizado un dataset general de 316 imágenes extraídas

del dataset COCO (filtradas con las condiciones ya descritas). Sobre este dataset, como se

describió en al apartado “3.3.1. Subconjuntos del dataset de testeo” de la metodología,

trabajamos con tres subconjuntos de imágenes para poder evaluar la influencia de las

características de las imágenes en las precisiones obtenidas de los modelos:

- Dataset general. Contiene la totalidad de las 316 imágenes seleccionadas con las

que se ha ejecutado el test a los modelos.

- Dataset de imágenes adecuadas: formado por un subconjunto de 65 imágenes del

dataset general (316 imágenes) donde la persona aparece centrada y a distancia

cercana (condiciones óptimas para estimación de posturas).

- Dataset de imágenes no adecuadas: formado por un subconjunto de 61 imágenes

del dataset general (316 imágenes) donde la persona aparece descentrada de la

imagen o de un tamaño reducido, lo que implica lejanía (condiciones adversas para

estimación de posturas).

Los procesos de filtrado de imágenes adecuadas/no adecuadas, obtención de las medidas

105

de precisión, la evaluación de los resultados se apoyan en librerías especializadas de Python.

Librerías necesarias

- pycocotools.coco.COCO. La clase COCO constituye la API oficial del dataset

COCO. Su finalidad es entre otras validar resultados de inferencia mediante la

comparación con las anotaciones de referencia, calculando métricas estándar como

AP (Average Precision) y AR (Average Recall).

- pycocotools.cocoeval.COCOeval. Es la clase principal de evaluación de COCO

API. Permite comparar las predicciones generadas por un modelo (detección,

segmentación o keypoints) contra las anotaciones reales del dataset COCO,

obteniendo métricas como AP (Average Precision) o AR (Average Recall) bajo

distintos umbrales de coincidencia.

- json. Sirve para leer y escribir ficheros en formato JSON, que es el estándar utilizado

por COCO para almacenar anotaciones y también el formato en que suelen

exportarse las predicciones de los modelos.

Dataset de imágenes adecuadas

Los criterios seleccionados e implementados en el script de selección de este

subconjunto son que las imágenes más adecuadas para estimación de posturas son las que tienen

una persona cuya caja (bounding box) ocupa un mínimo del 25% del ancho de la imagen o un

75% del alto de la imagen (implica que la persona puede estar cerca en el plano) y además

el centro de la caja de la persona no está más alejado de un 15% del centro de la imagen (implica

que la persona está centrada en la imagen).

Dataset de imágenes no adecuadas

A su vez los criterios seleccionados e implementados en el script de selección de este

subconjunto son que las imágenes no adecuadas para estimación de posturas son las que tienen

una persona cuya caja (bounding box) ocupa menos del 25% del ancho o del alto de la imagen

(implica que la persona puede no estar cerca en el plano) o el centro de la caja de la persona

está más alejado de un 25% del centro de la imagen (implica que la persona no está centrada

en la imagen).

7.1.1. Resultados obtenidos de precisión AP (Average Precision)

A continuación se presentan los resultados obtenidos de AP para cada modelo en el

dispositivo Samsung Galaxy M32 con los tres subconjuntos de datos mediante gráficas de

barras comparativas que permiten visualizar la precisión relativa de cada variante y familia con

cada dataset, ordenadas por dataset de menor a mayor precisión obtenida.

106

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 8.

Imagen 23. AP por dataset del modelo MoveNet Lightning 8

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 16.

Imagen 24. AP por dataset del modelo MoveNet Lightning 16

0,055

0,293

0,656

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
A

P
 [

Io
U

=0
.5

0
:0

.9
5

]

Dataset de imágenes

No adecuadas General Adecuadas

0,084

0,348

0,719

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

107

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Lightning 32.

Imagen 25. AP por dataset del modelo MoveNet Lightning 32

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 8.

Imagen 26. AP por dataset del modelo MoveNet Thunder 8

0,095

0,346

0,721

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
A

P
 [

Io
U

=0
.5

0
:0

.9
5

]

Dataset de imágenes

No adecuadas General Adecuadas

0,14

0,456

0,788

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

108

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 16.

Imagen 27. AP por dataset del modelo MoveNet Thunder 16

Gráfica con los resultados de precisión (AP) para el modelo MoveNet Thunder 32.

Imagen 28. AP por dataset del modelo MoveNet Thunder 32

0,2

0,51

0,824

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
A

P
 [

Io
U

=0
.5

0
:0

.9
5

]

Dataset de imágenes

No adecuadas General Adecuadas

0,199

0,498

0,842

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

109

Gráfica con los resultados de precisión (AP) para el modelo BlazePose Lite.

Imagen 29. AP por dataset del modelo BlazePose Lite

Gráfica con los resultados de precisión (AP) para el modelo BlazePose Full.

Imagen 30. AP por dataset del modelo BlazePose Full

0

0,101

0,349

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

0

0,136

0,441

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

110

Gráfica con los resultados de precisión (AP) para el modelo BlazePose Heavy.

Imagen 31. AP por dataset del modelo BlazePose Heavy

Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Nano.

Imagen 32. AP por dataset del modelo Yolo8-pose Nano

0

0,176

0,487

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

0,218

0,472

0,696

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

111

Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Small.

Imagen 33. AP por dataset del modelo Yolo8-pose Small

Gráfica con los resultados de precisión (AP) para el modelo Yolo8-pose Medium.

Imagen 34. AP por dataset del modelo Yolo8-pose Medium

0,392

0,628

0,822

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

0,495

0,686

0,839

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Dataset de imágenes

No adecuadas General Adecuadas

112

Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imágenes inadecuadas.

Imagen 35. Comparativa precisión/modelos por dispositivo con imágenes inadecuadas

A9

M32

A7Lite

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 0,053 0,084 0,095 0,138 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

M32 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

A7Lite 0,055 0,084 0,095 0,140 0,200 0,199 0,000 0,000 0,000 0,218 0,392 0,495

D
is

p
o

si
ti

voA
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Modelo

113

Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset general de imágenes.

Imagen 36. Comparativa precisión/modelos por dispositivo con dataset general

A9

M32

A7Lite

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 0,296 0,348 0,346 0,451 0,509 0,498 0,101 0,136 0,176 0,473 0,628 0,686

M32 0,293 0,348 0,346 0,456 0,510 0,498 0,101 0,136 0,176 0,472 0,628 0,686

A7Lite 0,296 0,348 0,346 0,456 0,509 0,498 0,101 0,136 0,176 0,473 0,628 0,686

D
is

p
o

si
ti

voA
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Modelo

114

Gráfica comparativa de precisión (AP [IoU=0.50:0.95]) por modelo en diferentes dispositivos para el dataset de imágenes adecuadas.

Imagen 37. Comparativa precisión/modelos por dispositivo con imágenes adecuadas

A9

M32

A7Lite

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 0,659 0,719 0,721 0,789 0,824 0,842 0,349 0,441 0,485 0,696 0,822 0,839

M32 0,656 0,719 0,721 0,788 0,824 0,842 0,349 0,441 0,487 0,696 0,822 0,839

A7Lite 0,656 0,719 0,721 0,788 0,824 0,842 0,349 0,441 0,487 0,696 0,822 0,839

D
is

p
o

si
ti

voA
P

 [
Io

U
=0

.5
0

:0
.9

5
]

Modelo

115

7.1.2. Análisis resultados precisión

En cuanto al desempeño comparativo entre familias de modelos, se observa que los

modelos de la familia YOLO son los que alcanzan una mejor precisión. Estos modelos

destacan por su robustez frente a variaciones en la posición de la persona y por la capacidad de

mantener niveles de desempeño relativamente altos incluso cuando las condiciones de las

imágenes no son óptimas (Imagen 35). En el extremo opuesto, los modelos de la familia

BlazePose presentan el peor comportamiento, evidenciando mayores dificultades en la

identificación de keypoints en escenarios desfavorables y ofreciendo resultados inferiores de

manera consistente en todos los subconjuntos evaluados.

El pobre desempeño de los modelos de la familia BlazePose sobre todo con imágenes

menos adecuadas (obtienen un 0 de precisión) (Imagen 35) puede ser debido a que estos estén

diseñados para ser utilizados junto con otras herramientas de preprocesado previo de las

imágenes (identificación de la persona en la imagen, crop de área y centrado, etc,..) ya que

como su propia documentación indica quedan fuera de su alcance “Personas demasiado alejadas

de la cámara (p. ej., a más de 4 metros)” o imágenes donde “La cabeza no es visible”.

Un hallazgo especialmente interesante se observa en los modelos de la familia

MoveNet. Si bien su desempeño general puede considerarse intermedio, son los modelos que

muestran una mayor sensibilidad a la idoneidad de las imágenes empleadas. Esto se traduce

en una marcada diferencia de precisión entre los subconjuntos adecuados e inadecuados, los

modelos MoveNet mejoran significativamente cuando se trabaja con imágenes donde la

persona está centrada y correctamente representada, pero degradan su precisión de forma

acusada en presencia de condiciones adversas. Este comportamiento pone de manifiesto que,

aunque la arquitectura MoveNet está optimizada para dispositivos móviles y entornos de

inferencia en tiempo real, su desempeño se ve afectado por la calidad de entrada de los datos

visuales.

En relación con el entorno de ejecución, los experimentos confirman algo lógico y

esperado, que la precisión obtenida por los modelos no varía en función del dispositivo

(Imagen 35, Imagen 36 e Imagen 37) en el que se lleva a cabo la inferencia. Este resultado era

previsible, dado que la precisión está determinada por la arquitectura del modelo y el algoritmo

de inferencia, y no por las características del hardware en el que se ejecuta. El dispositivo podría

afectar de forma clara al rendimiento temporal (tiempo de inferencia por imagen), pero no a la

exactitud de los keypoints detectados.

Resumen

En las gráficas de resultados se observa a simple vista que si bien como era de esperar

la precisión es independiente del dispositivo en que se ejecute, ésta si está altamente

influenciada por las condiciones visuales de las imágenes de entrada.

Los modelos de mayor complejidad (YOLOv8-Pose versiones small y medium) ofrecen

una mejor generalización, mientras que los modelos ligeros sufren caídas significativas de

precisión en escenarios adversos, más acentuadas en los modelos de la familia BlazePose que

en los de la familia MoveNet.

116

7.2. Resultados obtenidos de rendimiento

En este apartado se presentan los resultados de rendimiento (en tiempos de

inferencia) de cada modelo medido en tres dispositivos representativos de gamas medias y

bajas del mercado, todos con sistema operativo Android y arquitectura ARM y con las

características que vimos en el apartado “5.3.1. Listado de dispositivos de prueba”:

- Samsung Galaxy Tab A7 Lite (Tablet)

Procesador: MediaTek Helio P22T, Memoria: 3GB, Versión de android: 14

- Samsung Galaxy M32 (Móvil)

Procesador: MediaTek Helio G80, Memoria: 6GB, Versión de android: 13

- Samsung Galaxy Tab A9 (Tablet)

Procesador: MediaTek Helio G99, Memoria: 4GB, Versión de android: 15

Para realizar esta evaluación se han tomado de los ficheros ZIP de resultados exportados

de la ejecución de los tres dispositivos de prueba los ficheros relativos a tiempos de inferencia

de cada modelo (ficheros de texto con formato CSV) por lo que se ha utilizado los tiempos de

inferencia de cada modelo para el dataset general de 316 imágenes extraídas del dataset

COCO (filtradas con las condiciones ya descritas). Sobre los tiempos obtenidos por cada

modelo para cada imagen se calculan los tiempos medios de inferencia por cada modelo y los

tiempos totales del proceso completo por modelo y en base a ellos se elaboran las gráficas de

este apartado.

El objetivo es determinar la viabilidad real de cada modelo para ser utilizado en

dispositivos móviles Android, teniendo en cuenta las limitaciones de CPU, GPU y memoria de

cada terminal.

7.2.1. Gráficas comparativas de tiempos de estimación

En este apartado se presentan las gráficas del rendimiento en tiempo de ejecución,

centrado en la latencia de inferencia o tiempo medio de procesamiento por imagen

(expresado en milisegundos). Para obtener estos datos se utiliza la medición de la operación de

inferencia que hace el propio interprete de la API de TensorFlow Lite mediante el método

getLastNativeInferenceDurationNanoseconds() (como vimos en el apartado “6.2.3. Implementación

de las clases de la aplicación”) y que hemos recopilado en los ficheros de salida relativos a

tiempos de inferencia.

En las siguientes gráficas comparativas para una mejor visualización se han querido

agrupar por colores las familias a las que pertenece cada modelo:

- MoveNet en azul.

- BlazePose en verde.

- Yolo8-pose en gris.

117

Gráfica con resultados de rendimiento para la tablet Samsung Galaxy Tab A7 Lite.

Imagen 38. Tiempo medio inferencia Samsung Galaxy Tab A7 Lite

Gráfica con resultados de rendimiento para el teléfono móvil Samsung Galaxy M32.

Imagen 39. Tiempo medio inferencia Samsung Galaxy M32

66,24 100,45 101,88
253,68

479,73 478,59

138,86
249,60

905,98

352,46

1.251,36

3.697,21

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

M
ili

se
gu

n
d

o
s

Modelo

Tiempo medio de inferencia por imagen por modelo (milisegundos)

36,39 58,75 62,15 130,91
260,55 286,69

189,67 277,86

876,97

337,10

852,96

2.599,96

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

M
ili

se
gu

n
d

o
s

Modelo

Tiempo medio de inferencia por imagen por modelo (milisegundos)

118

Gráfica con resultados de rendimiento para la tablet Samsung Galaxy Tab A9.

Imagen 40. Tiempo medio inferencia Samsung Galaxy Tab A9

14,90 22,72 22,57 44,64 94,80 95,37 26,54 42,06
166,97 96,25

581,62

1.170,97

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

M
ili

se
gu

n
d

o
s

Modelo

Tiempo medio de inferencia por imagen por modelo (milisegundos)

119

Comparativa de tiempo MEDIO de inferencia (en milisegundos) por imagen del dataset general por modelo en diferentes dispositivos.

Imagen 41. Comparativa tiempos medio inferencia por modelo por dispositivo

A9

M32

A7Lite

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 14,90 22,72 22,57 44,64 94,80 95,37 26,54 42,06 166,97 96,25 581,62 1.170,97

M32 36,39 58,75 62,15 130,91 260,55 286,69 189,67 277,86 876,97 337,10 852,96 2.599,96

A7Lite 66,24 100,45 101,88 253,68 479,73 478,59 138,86 249,60 905,98 352,46 1.251,36 3.697,21

D
is

p
o

si
ti

vo

M
ili

se
gu

n
d

o
s

Modelo

120

Aunque las siguientes gráficas pudieran considerarse en cierto modo redundantes

respecto a los análisis anteriores centrados en los tiempos medios de inferencia por imagen, se

ha considerado oportuno incluir también la representación de los tiempos totales de ejecución

que requirió cada modelo al procesar el conjunto completo de imágenes del dataset general (316

imágenes filtradas del dataset COCO, correspondientes a escenarios de una sola persona y con

al menos 15 keypoints visibles).

Esta inclusión permite complementar la perspectiva de los tiempos promedio por

imagen con una visión global del coste temporal agregado, lo que resulta especialmente

relevante en aplicaciones reales donde no se procesan imágenes de manera aislada, sino lotes

completos de datos. Por otro lado, facilita la comparación directa entre dispositivos de prueba,

ya que los tiempos totales reflejan con claridad las diferencias de rendimiento cuando la carga

de trabajo se mantiene constante para todos los modelos.

En estas gráficas se presentan los tiempos totales consumidos por cada modelo al

ejecutar la inferencia sobre el dataset completo de testeo. A diferencia de las gráficas anteriores

(donde la métrica principal eran los milisegundos por imagen) en esta ocasión los valores se

expresan en segundos, dado que se trata de intervalos de tiempo considerablemente más

elevados. Este cambio de escala responde a la necesidad de presentar resultados más legibles y

comprensibles, evitando una precisión excesiva que no aporta valor analítico en este contexto.

Gráfica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A7 Lite.

Imagen 42. Tiempo total inferencia Samsung Galaxy Tab A7 Lite

20,931 31,742 32,193
80,162

151,595 151,235

43,879
78,875

286,291

111,378

395,43

1168,318

0

200

400

600

800

1000

1200

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

Se
gu

n
d

o
s

Modelo

Tiempo total de inferencia dataset completo por modelo (segundos)

121

Gráfica con tiempo total de inferencia en el móvil Samsung Galaxy M32.

Imagen 43. Tiempo total inferencia Samsung Galaxy M32

Gráfica con tiempo total de inferencia en la tablet Samsung Galaxy Tab A9.

Imagen 44. Tiempo total inferencia Samsung Galaxy Tab A9

11,5 18,564 19,638 41,366
82,333 90,594

59,935 87,805

277,123

106,524

269,534

821,587

0

200

400

600

800

1000

1200

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

Se
gu

n
d

o
s

Modelo

Tiempo total de inferencia dataset completo por modelo (segundos)

4,708 7,178 7,132 14,105 29,958 30,137 8,387 13,291
52,764 30,414

183,791

370,026

0

200

400

600

800

1000

1200

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

Se
gu

n
d

o
s

Modelo

Tiempo total de inferencia dataset completo por modelo (segundos)

122

Gráfica comparativa de tiempo TOTAL de inferencia (en segundos) del dataset general por modelo en diferentes dispositivos.

Imagen 45. Comparativa tiempo total inferencia por modelo por dispositivo

A9

M32

A7Lite

0,00

200,00

400,00

600,00

800,00

1.000,00

1.200,00

Movenet
Lightning

8

Movenet
Lightning

16

Movenet
Lightning

32

Movenet
Thunder 8

Movenet
Thunder

16

Movenet
Thunder

32

BlazePose
Lite

BlazePose
Full

BlazePose
Heavy

Yolo8
Nano

Yolo8
Small

Yolo8
Medium

A9 4,71 7,18 7,13 14,11 29,96 30,14 8,39 13,29 52,76 30,41 183,79 370,03

M32 11,50 18,56 19,64 41,37 82,33 90,59 59,94 87,81 277,12 106,52 269,53 821,59

A7Lite 20,93 31,74 32,19 80,16 151,60 151,24 43,88 78,88 286,29 111,38 395,43 1.168,32

D
is

p
o

si
ti

vo

Se
gu

n
d

o
s

Modelo

Comparativa de tiempos totales de inferencia del dataset completo por modelo (segundos) en diferentes dispositivos

123

7.2.2. Análisis resultados rendimiento

 La comparación de los rendimientos obtenidos por los modelos en los distintos

dispositivos de prueba permite extraer varias conclusiones acerca de su comportamiento y

eficiencia. En términos generales, los resultados muestran que, aunque todos los modelos tienen

una tendencia esperada (el rendimiento de todos los modelos mejora de forma clara cuando se

ejecutan en dispositivos con mayor capacidad de procesamiento), las diferencias entre ellos son

notables y permiten establecer tres grupos en función de su rendimiento relativo:

- Modelos con bajo rendimiento. Se identifican algunos modelos que,

independientemente del dispositivo utilizado, presentan tiempos de inferencia

significativamente superiores al resto (Imagen 41 e Imagen 45). Dentro de este

grupo se encuentran YOLOv8-Pose Small, YOLOv8-Pose Medium y BlazePose

Heavy, cuya complejidad estructural los convierte en opciones poco adecuadas para

dispositivos móviles o de recursos limitados.

- Modelos con rendimiento intermedio. Un segundo grupo lo conforman aquellos

que ofrecen un rendimiento aceptable, aunque no sobresaliente. Entre ellos se

encuentran las tres versiones de la familia MoveNet Thunder, junto con BlazePose

Full y YOLOv8-Pose Nano. Estos modelos representan una solución equilibrada,

con tiempos de inferencia moderados y una viabilidad de uso razonable en la

mayoría de escenarios, aunque sin alcanzar la agilidad de los más eficientes.

- Modelos con alto rendimiento. Finalmente, destacan los modelos con los mejores

tiempos de inferencia y mayor consistencia en todos los dispositivos. Este grupo está

formado por las tres versiones de MoveNet Lightning y por BlazePose Lite, que

se posicionan como las alternativas más ligeras y rápidas, adecuadas para

aplicaciones en tiempo real y entornos de hardware limitado.

Familia MoveNet Lightning

Los modelos MoveNet Lightning se posicionan como los más eficientes en cuanto a

velocidad de ejecución. En todos los dispositivos utilizados para las pruebas,

independientemente de su capacidad de procesamiento, esta variante se mantuvo como la más

rápida, confirmando su idoneidad para aplicaciones en tiempo real. Además, cabe resaltar que

el rendimiento de Lightning es consistente: el cambio de dispositivo apenas afecta a los tiempos

de inferencia, lo que indica una arquitectura altamente optimizada y con un coste computacional

estable. Esto los convierte en candidatos idóneos para integraciones móviles donde los recursos

de hardware son limitados.

Familia MoveNet Thunder

Los modelos MoveNet Thunder presentan un rendimiento intermedio. En particular,

la versión cuantizada a int8 logra unos tiempos de inferencia competitivos, siendo la que

muestra los mejores resultados dentro de esta familia. En contraste, las versiones en float16 y

float32 empeoran ligeramente en rendimiento, probablemente debido al mayor coste

computacional asociado al manejo de mayor precisión numérica. Aunque siguen siendo

relativamente rápidas, muestran una sensibilidad más marcada a las limitaciones de hardware

124

que Lightning.

Familia BlazePose

Los modelos de la familia BlazePose obtienen un rendimiento medio aceptable en las

versiones Lite y Full. Sin embargo, la versión Heavy dispara sus tiempos de ejecución de

manera notable, situándose como la tercera peor opción por detrás de los modelos Small y

Medium de Yolo. Esta diferencia refleja el alto coste computacional de las arquitecturas

pesadas, que si bien pueden aportar mejoras de precisión en determinados escenarios, resultan

menos prácticas para su uso en dispositivos con recursos limitados.

Familia YOLO-Pose (v8)

La familia YOLO muestra una marcada disparidad en su rendimiento según la variante,

la versión Nano es la única que obtiene tiempos de inferencia medio aceptables, permitiendo

pensar en posibles aplicaciones móviles con ciertas restricciones. La versión Small experimenta

tiempos de inferencia muy elevados, alejándose de los valores prácticos requeridos para

aplicaciones en tiempo real. La versión Medium presenta tiempos de inferencia

desproporcionados en la mayoría de los dispositivos con respecto al resto de modelos. No

obstante, se observa una mejora significativa en su rendimiento cuando se ejecuta en

dispositivos con hardware más potente, lo que evidencia que este modelo está pensado para

entornos de mayor capacidad de cómputo y no para hardware móvil estándar.

Resumen

El análisis de los tiempos de inferencia evidencia diferencias claras entre las familias de

modelos evaluadas. Los modelos de la familia MoveNet Lightning destacan como los más

rápidos y estables, siendo apenas sensibles al cambio de dispositivo, lo que los convierte en la

opción más adecuada para aplicaciones móviles en tiempo real. Los modelos de la familia

MoveNet Thunder alcanzan un rendimiento intermedio aceptable (en especial su versión

cuantizada a int8), aunque las versiones de mayor precisión numérica se ven penalizadas en

velocidad. Los modelos BlazePose Lite y Full mantienen tiempos de ejecución razonables,

mientras que la versión Heavy resulta inviable por sus elevadas necesidades de cómputo. En la

familia YOLO-Pose, solo la variante Nano ofrece tiempos aceptables, en cambio, Small y

sobre todo Medium presentan inferencias muy lentas, aunque su rendimiento se ve más

beneficiado con la utilización de dispositivos con mejor hardware.

7.3. Comparativa de resultados

 La intención de esta comparativa no es únicamente señalar qué modelos son más

precisos o más rápidos, sino identificar el equilibrio entre ambas dimensiones, lo que resulta

fundamental en aplicaciones prácticas. En entornos de uso real, como dispositivos móviles, no

basta con contar con una alta exactitud en las estimaciones sino que también es necesario que

los tiempos de inferencia sean compatibles con un uso en tiempo real.

125

7.3.1. AP general vs. Tiempo medio

El análisis conjunto de precisión (Average Precision, AP) y tiempo de inferencia para el

dataset general de imágenes que incluye el total de las imágenes de testeo seleccionadas para el

estudio (316 imágenes), revela diferencias claras en la eficiencia relativa de las familias de

modelos estudiados. En este apartado se muestra dicha comparativa para el resultado obtenido

en el dispositivo con más prestaciones utilizado (Samsung Galaxy A9 Tab).

Se ha elaborado una gráfica de dispersión (Imagen 46) en la que cada punto representa

a uno de los modelos evaluados. En este caso, el eje horizontal muestra la precisión obtenida

(AP), mientras que el eje vertical refleja los tiempos medios de inferencia por imagen. Esta

gráfica permite observar cómo aumenta el coste computacional conforme se avanza hacia

modelos más precisos. Los modelos situados en la parte inferior derecha de la gráfica pueden

considerarse los más ventajosos, al combinar altos niveles de precisión con tiempos de

ejecución reducidos. En contraste, aquellos que se ubican en la zona superior derecha ofrecen

buena precisión, pero a costa de tiempos de inferencia elevados. Por último, los modelos en la

parte inferior izquierda muestran tiempos de inferencia bajos pero una precisión insuficiente.

Imagen 46. Comparativa AP vs. Tiempo de inferencia dataset general

MoveNet Thunder (float16 y float32)

Estas versiones destacan como las más equilibradas en el conjunto de pruebas. Aunque

no alcanzan las cifras absolutas de precisión de algunos modelos más complejos, logran una

relación muy favorable entre la calidad de las predicciones y el coste computacional. En

Movenet Lightning 8

Movenet Lightning 16

Movenet Lightning 32

Movenet Thunder 8

Movenet Thunder 16

Movenet Thunder 32
BlazePose Lite

BlazePose Full

BlazePose Heavy

Yolo8 Nano

Yolo8 Small

Yolo8 Medium

0,00

200,00

400,00

600,00

800,00

1.000,00

1.200,00

1.400,00

0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800 0,900

Ti
em

p
o

 m
ed

io
 in

fe
re

n
ci

a
p

o
r

im
ág

en
 (

m
ili

se
gu

n
d

o
s)

AP (Average Precision) para el dataset GENERAL

Samsung Galaxy A9

126

consecuencia, ofrecen un compromiso idóneo para aplicaciones en dispositivos móviles donde

la velocidad es importante pero no puede sacrificarse demasiado la exactitud.

YOLOv8-Pose Nano

También presenta una relación adecuada entre precisión y rendimiento. Su capacidad

de mantener un nivel de exactitud aceptable con tiempos de inferencia moderados lo convierte

en una opción práctica, aunque se sitúa por debajo de MoveNet Thunder en términos de

equilibrio global.

YOLOv8-Pose Small y Medium

Estos modelos alcanzan los mejores valores de precisión del estudio, lo que los

posiciona como referentes desde el punto de vista de la exactitud en la estimación de

keypoints. Sin embargo, esta ventaja se ve contrarrestada por tiempos de inferencia

considerablemente altos, que limitan su aplicabilidad a entornos con hardware de altas

prestaciones. Su uso en dispositivos generales resultaría poco viable debido al coste temporal

de la ejecución.

BlazePose

A pesar de ofrecer tiempos de inferencia reducidos, los resultados de precisión son

notablemente inferiores al resto de familias. Este desequilibrio los hace menos adecuados para

tareas en las que la calidad de la estimación es prioritaria, ya que la rapidez en el cálculo no

compensa la baja fiabilidad de los resultados obtenidos.

7.3.2. AP por tipo de imagen (más adecuadas y menos adecuadas) vs. Tiempo medio

El análisis conjunto de precisión (Average Precision, AP) y tiempo de inferencia para

los dos datasets (subconjuntos del dataset general de imágenes) que incluyen las imágenes

consideradas más adecuadas (65 imágenes) y menos adecuadas para estimación de posturas

humanas (61 imágenes) nos revela todavía más diferencias claras en la eficiencia relativa de las

familias de modelos estudiados. En este apartado se muestran los resultados obtenidos con

ambos subconjuntos del dataset de testeo en el dispositivo con más prestaciones utilizado

(Samsung Galaxy A9 Tab).

Análisis AP/Tiempo de inferencia en subconjunto de imágenes adecuadas

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto

de imágenes filtradas para su idoneidad (personas centradas y cercanas) permite observar

tendencias significativas que complementan y amplían los hallazgos obtenidos con el dataset

completo (Imagen 47). Este subconjunto, al ofrecer condiciones visuales óptimas para la

estimación de posturas, permite medir el máximo potencial de precisión de cada modelo, al

tiempo que se comparan sus tiempos de inferencia acumulados.

127

Imagen 47. Comparativa AP vs. Tiempo de inferencia dataset de imágenes adecuadas

En primer lugar, los modelos MoveNet Thunder destacan de manera sobresaliente.

Las versiones float32 y float 16, y en menor medida la versión cuantizada int8, logran cifras de

precisión espectaculares, cercanas al máximo teórico que cada arquitectura puede ofrecer.

Además mantienen un rendimiento muy eficiente, igual al observado en el dataset completo, lo

que evidencia la capacidad de estas arquitecturas para combinar exactitud y velocidad sin

comprometer la inferencia. Esta combinación los posiciona como la opción más equilibrada

para aplicaciones móviles o en tiempo real donde la exactitud es prioritaria.

Por otro lado, los modelos YOLOv8-Pose Small y Medium también alcanzan niveles

de precisión igualmente elevados, reflejando su capacidad para detectar keypoints de manera

muy precisa en condiciones visuales óptimas. No obstante, esta mejora en precisión mantiene

un coste considerable en términos de rendimiento al igual que para las imágenes del dataset

completo. La versión Small registra un rendimiento bajo, mientras que Medium alcanza

tiempos de inferencia extremadamente altos, desaconsejando su uso en dispositivos con

recursos limitados. Sin embargo, en entornos con hardware de alta gama, estas versiones

pueden ser útiles cuando la prioridad absoluta es la precisión.

Los modelos MoveNet Lightning y YOLOv8-Pose Nano muestran un

comportamiento equilibrado en este subconjunto, su precisión es buena, aunque ligeramente

inferior a la de los modelos Thunder o las versiones más pesadas de YOLO, pero sus tiempos

de inferencia son muy competitivos, posicionándolos como alternativas fiables para

aplicaciones que requieren velocidad y respuesta en tiempo real. Su desempeño refleja la

efectividad de estas arquitecturas ligeras para escenarios móviles sin comprometer

Movenet Lightning 8

Movenet Lightning 16

Movenet Lightning 32

Movenet Thunder 8

Movenet Thunder 16

Movenet Thunder 32

BlazePose Lite

BlazePose Full

BlazePose Heavy

Yolo8 Nano

Yolo8 Small

Yolo8 Medium

0,00

200,00

400,00

600,00

800,00

1.000,00

1.200,00

1.400,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

Ti
em

p
o

 m
ed

io
 in

fe
re

n
ci

a
p

o
r

im
ág

en
 (

m
ili

se
gu

n
d

o
s)

AP (Average Precision) para el dataset imágenes ADECUADAS

Samsung Galaxy A9

128

excesivamente la exactitud.

En cuanto a los modelos BlazePose, se observa un aumento notable de la precisión,

pero insuficiente en comparación con el conjunto completo, lo que confirma que la idoneidad

de las imágenes tiene un impacto positivo en su desempeño. Sin embargo, incluso en este

subconjunto optimizado, BlazePose sigue siendo la familia que presenta mayor pérdida de

precisión relativa respecto a las demás familias de modelos. Esta pérdida es más acentuada en

la versión Lite, seguida por Full, mientras que la versión Heavy muestra una degradación algo

menor, aunque no alcanza los niveles de precisión de MoveNet Thunder o YOLOv8-Pose

Medium. En términos de rendimiento, BlazePose mantiene tiempos de inferencia similares a

los observados en el dataset completo, reflejando una eficiencia estable que, no obstante, no

compensa su menor exactitud.

Análisis AP/Tiempo de inferencia en subconjunto de imágenes inadecuadas

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto

de imágenes filtradas menos adecuadas (con personas no centradas o lejanas) también permite

sacar algunas conclusiones significativas complementarias a los hallazgos obtenidos con el

dataset completo (Imagen 48). Este subconjunto con condiciones visuales negativas para la

estimación de posturas nos permite observar cómo se defienden los modelos en estas

condiciones mientras que se observa si sus tiempos de inferencia se ven influidos por las

características de las imágenes inferidas.

Imagen 48. Comparativa AP vs. Tiempo de inferencia dataset de imágenes inadecuadas

Movenet Lightning 8

Movenet Lightning 16

Movenet Lightning 32

Movenet Thunder 8

Movenet Thunder 16

Movenet Thunder 32

BlazePose Lite

BlazePose Full

BlazePose Heavy

Yolo8 Nano

Yolo8 Small

Yolo8 Medium

0,00

200,00

400,00

600,00

800,00

1.000,00

1.200,00

1.400,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

Ti
em

p
o

 m
ed

io
 in

fe
re

n
ci

a
p

o
r

im
ág

en
 (

m
ili

se
gu

n
d

o
s)

AP (Average Precision) para el dataset imágenes INADECUADAS

Samsung Galaxy A9

129

La evaluación de los modelos de estimación de posturas humanas sobre el subconjunto

de imágenes clasificadas como inadecuadas (aquellas en las que la persona no se encuentra

centrada o aparece lejana) aporta una perspectiva complementaria respecto al comportamiento

de estas arquitecturas bajo condiciones adversas. Este análisis permite caracterizar las

limitaciones de cada familia de modelos y comprobar su capacidad de generalización fuera de

escenarios óptimos.

Un primer resultado destacable es el comportamiento de los modelos más pesados, en

particular YOLOv8-Pose Small y Medium. A pesar de la dificultad inherente de este

subconjunto, estas versiones logran mantener una precisión media (aunque no elevada), lo

que refleja la robustez de estas arquitecturas. En especial, la versión Medium demuestra una

cierta resiliencia, probablemente atribuida a su mayor número de parámetros y profundidad de

red, que le permiten manejar mejor escenarios con oclusiones o poses poco definidas. No

obstante, esta ganancia relativa en precisión se produce manteniendo los altos tiempos de

inferencia que caracterizan a estas versiones, lo que limita su aplicabilidad en dispositivos con

restricciones de hardware.

Los modelos MoveNet Thunder y YOLO Nano, que en el subconjunto de imágenes

adecuadas mostraban un desempeño notable en cuanto a la relación precisión/rendimiento,

experimentan aquí una penalización significativa en la precisión. Aunque sus tiempos de

inferencia se mantienen estables, la pérdida de exactitud en la localización de keypoints

evidencia que en condiciones adversas, la eficiencia de estas arquitecturas no basta para

compensar las dificultades en la detección. Este resultado indica que los modelos de tamaño

intermedio o ligero (efectivos en entornos favorables) presentan mayor vulnerabilidad en la

generalización.

Los modelos MoveNet Lightning resultan ser los más afectados en este subconjunto.

Su precisión cae de manera drástica, incluso más que la de Thunder o Nano, lo que pone de

manifiesto que el diseño ultraligero de esta familia, pensado para priorizar la velocidad en

dispositivos móviles, conlleva un coste elevado en términos de robustez. La capacidad reducida

de representación no permite a estas arquitecturas mantener un desempeño aceptable cuando

las condiciones de la imagen no favorecen la tarea de estimación de poses.

Por último, los resultados de los modelos BlazePose son concluyentes: su precisión en

este subconjunto es prácticamente nula, situándose en valores equivalentes a cero. En otras

palabras, BlazePose se muestra inadecuado para la estimación de posturas humanas en

contextos adversos, sin importar la variante (Lite, Full o Heavy). Esto refuerza lo observado en

el dataset completo y en las imágenes adecuadas, donde BlazePose ya mostraba un rendimiento

inferior respecto a otras familias.

En cuanto a los tiempos de inferencia, el análisis confirma un aspecto importante, estos

no se ven afectados por el tipo de imagen. Al igual que en el dataset completo y en el

subconjunto de imágenes adecuadas, los tiempos de ejecución se mantienen prácticamente

idénticos. Esto implica que la carga computacional de los modelos depende únicamente de la

arquitectura y del hardware disponible, no de la idoneidad de las imágenes procesadas. Por

tanto, el tipo de imagen influye de manera directa en la precisión pero no en el rendimiento

computacional.

130

PARTE III: DISCUSION Y CONCLUSIONES

131

8. DISCUSIÓN

En primer lugar se aborda la interpretación de los resultados principales, destacando los

comportamientos diferenciales de los modelos estudiados en términos de precisión y

rendimiento, así como el impacto que el tipo de dataset ha tenido en sus estimaciones. Este

análisis permitirá evidenciar qué modelos ofrecen un equilibrio más adecuado entre exactitud

y eficiencia y cuáles presentan limitaciones intrínsecas.

A continuación, se incluirán las limitaciones del estudio, entendidas como los factores

metodológicos, técnicos o contextuales que han podido condicionar los resultados. Estas

limitaciones abarcan desde la heterogeneidad en las estructuras de salida de los modelos hasta

las restricciones impuestas por el dataset empleado y el hardware utilizado. Reconocer estos

aspectos no solo aporta transparencia, sino que además abre la posibilidad de plantear futuras

mejoras y ampliaciones del trabajo.

8.1. Interpretación de los resultados principales

Los resultados obtenidos permiten establecer varias conclusiones relevantes acerca del

comportamiento de los modelos de estimación de posturas humanas bajo distintas condiciones.

En primer lugar y como era de esperar se confirma que la precisión de los modelos muestra

una alta sensibilidad a las condiciones visuales de las imágenes de entrada. En este sentido, los

modelos de mayor complejidad (YOLOv8-Pose en sus versiones Small y Medium) exhiben una

mayor capacidad de generalización, mientras que los modelos de menor tamaño sufren pérdidas

significativas de exactitud en escenarios adversos. Esta degradación resulta particularmente

acusada en la familia BlazePose, mientras que los modelos MoveNet mantienen un

comportamiento relativamente más robusto.

En cuanto al rendimiento computacional, el análisis de los tiempos de inferencia revela

diferencias sustanciales entre familias. Los modelos MoveNet Lightning se consolidan como

los más rápidos y estables, apenas afectados por el dispositivo de ejecución, lo que los convierte

en candidatos idóneos para aplicaciones móviles en tiempo real. Los MoveNet Thunder ofrecen

un rendimiento intermedio: la versión cuantizada a int8 se aproxima a los tiempos de Lightning,

mientras que las versiones en float16 y float32 sacrifican velocidad en favor de precisión. Por

su parte, BlazePose Lite y Full mantienen tiempos razonables, mientras que la versión Heavy

resulta computacionalmente inviable. En la familia YOLO-Pose, únicamente la variante Nano

alcanza tiempos aceptables, frente a Small y, especialmente, Medium, que presentan inferencias

lentas pero que escalan favorablemente en hardware de mayores prestaciones.

El análisis conjunto de precisión y tiempos de inferencia permite identificar aquellos

modelos que presentan una mejor relación entre exactitud y eficiencia computacional, lo que

resulta clave para su posible integración en aplicaciones prácticas de estimación de posturas

humanas. Los modelos de la familia MoveNet Thunder, especialmente en sus variantes 16

y 32, se posicionan como la opción más equilibrada. Estos alcanzan niveles de precisión muy

altos, comparables a los de arquitecturas de mayor tamaño, sin comprometer en exceso el

tiempo de inferencia. Su rendimiento los hace especialmente adecuados para aplicaciones que

requieran un compromiso sólido entre calidad de predicción y velocidad de procesamiento,

incluso en dispositivos con recursos limitados. En un escalón próximo se sitúa el modelo

YOLOv8-Pose Nano, que logra una precisión buena con tiempos de inferencia muy

competitivos. Esta combinación también lo convierte en un candidato interesante para

132

aplicaciones móviles o embebidas, donde las restricciones de hardware son críticas. Los

modelos YOLOv8-Pose Small y Medium destacan por su elevada precisión, pero sus elevados

tiempos de inferencia limitan su aplicabilidad a escenarios en los que se disponga de hardware

de alto rendimiento o donde la inferencia en tiempo real no sea un requisito estricto. Finalmente,

los modelos BlazePose, pese a sus tiempos de ejecución reducidos, presentan deficiencias

importantes en términos de precisión, lo que los sitúa en una muy clara desventaja frente a

las demás familias para estimación de posturas humanas.

En síntesis, los MoveNet Thunder y YOLO Nano representan las opciones más

adecuadas para su incorporación en aplicaciones orientadas a la estimación de posturas

humanas en tiempo real, equilibrando correctamente precisión y rendimiento.

Por último, los tiempos de inferencia permanecen invariables ante el tipo de imagen

procesada. Tanto en el dataset general como en los subconjuntos de imágenes adecuadas e

inadecuadas, la duración del proceso de inferencia se mantiene en tiempos prácticamente

constantes. Esto confirma que la carga computacional está determinada por la arquitectura del

modelo y la capacidad del hardware, sin influencia de la idoneidad del contenido visual. En

consecuencia, el tipo de imagen afecta de manera directa a la precisión de las estimaciones,

pero no al rendimiento computacional.

8.2. Limitaciones del estudio

El estudio presenta una serie de limitaciones relacionadas principalmente con el alcance

de la experimentación y la representatividad de los escenarios analizados:

- Una primera limitación es la lista de modelos evaluados. Si bien se han considerado

arquitecturas representativas de las familias más relevantes (MoveNet, BlazePose y

YOLO-Pose), el panorama actual de la estimación de posturas humanas es dinámico

y en constante evolución. Existen otros modelos recientes, tanto ligeros como de

mayor complejidad, que no fueron incluidos y cuya incorporación permitiría una

visión más completa del estado del arte, así como una comparación más rica entre

diferentes enfoques arquitectónicos.

- El número reducido de imágenes disponibles en el dataset utilizado, que asciende

únicamente a 316. Si bien estas imágenes han permitido llevar a cabo una primera

evaluación del comportamiento de los modelos, dicho volumen resulta limitado para

extraer conclusiones con mayor robustez estadística y capacidad de generalización.

Sería recomendable disponer de imágenes que reflejen ejercicios de rehabilitación

de forma específica, ya que constituyen el contexto real en el que se prevé aplicar

los modelos de estimación de posturas humanas. La inclusión de personas de

diferentes edades, condiciones físicas y contextos demográficos (incluyendo

diversidad racial y corporal) permitiría evaluar con mayor fidelidad la capacidad de

generalización de las arquitecturas bajo estudio.

- Otra limitación importante se refiere al soporte multiplataforma, ya que los

experimentos se han llevado a cabo exclusivamente en dispositivos Android. La

ausencia de una evaluación en entornos iOS restringe la generalización de los

resultados. Las diferencias entre las librerías de soporte, las optimizaciones

específicas del sistema operativo y la gestión de hardware podrían alterar de manera

133

sustancial tanto la precisión como los tiempos de inferencia, por lo que este aspecto

queda pendiente de ser explorado.

- Asimismo, el estudio se ve limitado por el número y variedad de dispositivos

empleados en la experimentación. Aunque se han contemplado varias

configuraciones con prestaciones diferenciadas, la muestra es insuficiente para

reflejar la gran heterogeneidad existente en el ecosistema de hardware. No se

incluyen, por ejemplo, dispositivos de gama muy baja, que representarían un

escenario especialmente crítico para el despliegue de modelos en entornos con

recursos limitados. Tampoco se han evaluado dispositivos de gama muy alta que

podrían ofrecer un rendimiento significativamente superior, lo cual restringe la

validez externa de las conclusiones en contextos más extremos.

Estas limitaciones condicionan la amplitud de las conclusiones y ponen de manifiesto

la necesidad de extender el análisis en futuras investigaciones, tanto mediante la incorporación

de más arquitecturas como ampliando la diversidad de plataformas y dispositivos evaluados.

134

9. CONCLUSIONES Y TRABAJO FUTURO

El trabajo permite evaluar de manera sistemática la precisión y el rendimiento de

diversas arquitecturas de estimación de posturas humanas en dispositivos móviles, cumpliendo

con el objetivo de identificar modelos adecuados para su implementación práctica en

aplicaciones en tiempo real.

Además, este estudio ha puesto de manifiesto áreas de mejora y posibles líneas de

trabajo futuro, tales como la ampliación de la lista de modelos evaluados, la incorporación de

soporte para entornos iOS y la extensión de las pruebas a dispositivos con prestaciones más

variadas. Estas propuestas buscan aumentar la robustez, generalización y aplicabilidad de los

resultados, ofreciendo una base sólida para investigaciones posteriores y para la optimización

de aplicaciones de estimación de posturas humanas en contextos reales.

9.1. Revisión objetivos principales del estudio

Según se describió en los apartados “1.3.1 Objetivo general” y “1.3.2 Objetivos

específicos” el proyecto ha logrado cumplir de manera satisfactoria con los objetivos

planteados, tanto en su dimensión general como en los objetivos específicos.

En cuanto al objetivo general, se ha llevado a cabo una búsqueda y selección de modelos

de estimación de posturas humanas aptos para poder ser utilizados en dispositivos de edge

computing, y la evaluación del rendimiento y la precisión de tres familias de ellos (MoveNet,

BlazePose y YOLOv8-Pose) en dispositivos móviles. Esto ha permitido caracterizar el

comportamiento de cada arquitectura estudiada bajo condiciones controladas y representativas,

ofreciendo una visión comparativa de su aplicabilidad en entornos móviles.

Respecto a los objetivos específicos, el proyecto ha alcanzado los siguientes logros:

- Búsqueda y selección de modelos aptos para el estudio en base a las especificaciones

definidas en la metodología.

- Implementación de un sistema de pruebas en Android capaz de ejecutar modelos en

formato TensorFlow Lite (TFLite) y gestionar la inferencia sobre un conjunto

filtrado de imágenes del dataset COCO.

- Medición y comparación de la precisión de los modelos, utilizando métricas

estándar como Average Precision (AP@[0.50:0.95]), tanto sobre el dataset completo

como en subconjuntos diferenciados por idoneidad de las imágenes para estimación

de posturas.

- Medición y comparación de los tiempos de inferencia por imagen, evaluando el

rendimiento de cada modelo en distintos dispositivos móviles.

- Establecimiento de la relación entre precisión y rendimiento, identificando qué

modelos ofrecen el equilibrio más adecuado entre exactitud de predicciones y

eficiencia computacional, y cuáles presentan limitaciones para su integración en

aplicaciones móviles en tiempo real.

135

En conjunto, los resultados obtenidos confirman que los objetivos del proyecto se han

cumplido, proporcionando una base sólida para seleccionar modelos óptimos según los

requisitos de precisión y rendimiento, y ofreciendo directrices claras para futuras

implementaciones en aplicaciones móviles de estimación de posturas humanas.

9.2. Propuestas de mejora y líneas futuras

El proyecto abre diversas líneas de mejora y expansión que permitirían aumentar su

alcance y aplicabilidad en el ámbito de la estimación de posturas humanas en dispositivos

móviles.

Ampliación para estudio de nuevos modelos emergentes

En primer lugar, se propone la ampliación del estudio a nuevos modelos ya existentes

(como los evaluados en el punto “2.5. Modelos de estimación de posturas”) y otros posibles

emergentes, incorporando arquitecturas recientes que puedan ofrecer mejoras en precisión,

eficiencia o robustez frente a condiciones adversas. Esto permitiría mantener el análisis

actualizado y comparativo frente al estado del arte.

Ampliación para soporte multi-dispositivo (Apple iOS)

Otra línea relevante es la compatibilidad multiplataforma, extendiendo el soporte a

dispositivos Apple iOS, lo que facilitaría la implementación de aplicaciones móviles de

estimación de posturas humanas en un ecosistema más amplio y heterogéneo.

Complementariamente, se plantea la evaluación en nuevos dispositivos, tanto de gama baja

como alta, para validar la generalización de los resultados y conocer la influencia del hardware

sobre la precisión y el rendimiento de los modelos.

Utilización de aceleradores de hardware específicos (GPU)

Se sugiere la inclusión en la aplicación Android de la utilización de aceleradores de

hardware específicos, como GPUs o NPUs (descritos en el apartado “2.8.1. Hardware”), con el

objetivo de mejorar los tiempos de inferencia y permitir la ejecución en tiempo real de modelos

más complejos, ampliando las posibilidades de aplicación práctica en ámbitos más exigentes

en términos de capacidad de computación.

Ampliación para estimación de posturas sobre entradas de vídeo

En términos de entrada de datos, se considera la ampliación para la estimación de

posturas sobre secuencias de vídeo, lo que permitiría evaluar la estabilidad temporal de los

modelos y su desempeño en aplicaciones dinámicas, como seguimiento en tiempo real o análisis

de movimiento continuo.

136

Ampliación para reentrenamiento de modelos existentes

Por último, se contempla la posibilidad de reentrenamiento o fine-tuning de modelos

existentes con datasets específicos, lo que permitiría adaptar los modelos a contextos

particulares, mejorar su precisión y robustez frente a escenarios concretos, y optimizar su

desempeño en aplicaciones móviles específicas.

137

10. REFERENCIAS BIBLIOGRÁFICAS

Nota: Todos los enlaces de las referencias bibliográficas han sido consultados a modo de

comprobación por última vez a fecha 29 de agosto de 2025.

1. COCO Dataset. [Online]. Available from: https://cocodataset.org/#home.

2. MPII Human Pose Dataset. [Online]. Available from: https://www.mpi-

inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-

human-pose-dataset/download.

3. Holian N. EDGE COMPUTING UNDERSTANDING THE USER EXPERIENCE. [Online].;

marzo 2023. Available from: https://www.wipro.com/infrastructure/edge-computing-

understanding-the-user-experience/.

4. Boesch G. Human Pose Estimation - Everything You Need to Know. [Online].; octubre 2023.

Available from: https://viso.ai/deep-learning/pose-estimation-ultimate-overview/.

5. López OGT. Redes Neuronales Convolucionales para el reconocimiento de imágenes. [Online].;

30 agosto 2021. Available from: https://www.tecnoblog.org/desarrollo/cnn-para-el-

reconocimiento-de-imagenes/.

6. Zewen Li WYSPFL. A Survey of Convolutional Neural Networks: Analysis, Applications, and

Prospects. [Online].; abril 2020. Available from: https://arxiv.org/abs/2004.02806.

7. Omar Elharrouss YANASAM. Backbones-Review: Feature Extraction Networks for Deep

Learning and Deep Reinforcement Learning Approaches. [Online].; junio 2022. Available from:

https://arxiv.org/abs/2206.08016.

8. Carr T. Multi-Headed Networks. [Online].; febrero 2025. Available from:

https://www.baeldung.com/cs/multi-headed-neural-nets.

9. Pendhari S. Connected Layer vs Fully Connected Layer. [Online].; enero 2022. Available from:

https://medium.com/@sarahpendhari/connected-layer-vs-fully-connected-layer-32b4cbb29824.

10. What is Fully Connected Layer in Deep Learning? [Online].; junio 2025. Available from:

https://www.geeksforgeeks.org/deep-learning/what-is-fully-connected-layer-in-deep-learning/.

11. Shuang Cong YZ. A review of convolutional neural network architectures and their

optimizations. [Online].; junio 2022. Available from:

https://www.researchgate.net/publication/361477855_A_review_of_convolutional_neural_netwo

rk_architectures_and_their_optimizations.

12. Andrew G. Howard MZ. MobileNets: Open-Source Models for Efficient On-Device Vision.

[Online].; 14 junio 2017. Available from: https://research.google/blog/mobilenets-open-source-

models-for-efficient-on-device-vision/?hl=es-mx.

13. Kai Han YWQTJGCXCX. GhostNet: More Features from Cheap Operations. [Online].; 27

noviembre 2019, revisado 13 marzo 2020. Available from: https://arxiv.org/abs/1911.11907.

https://cocodataset.org/#home
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset/download
https://www.wipro.com/infrastructure/edge-computing-understanding-the-user-experience/
https://www.wipro.com/infrastructure/edge-computing-understanding-the-user-experience/
https://viso.ai/deep-learning/pose-estimation-ultimate-overview/
https://www.tecnoblog.org/desarrollo/cnn-para-el-reconocimiento-de-imagenes/
https://www.tecnoblog.org/desarrollo/cnn-para-el-reconocimiento-de-imagenes/
https://arxiv.org/abs/2004.02806
https://arxiv.org/abs/2206.08016
https://www.baeldung.com/cs/multi-headed-neural-nets
https://medium.com/@sarahpendhari/connected-layer-vs-fully-connected-layer-32b4cbb29824
https://www.geeksforgeeks.org/deep-learning/what-is-fully-connected-layer-in-deep-learning/
https://www.researchgate.net/publication/361477855_A_review_of_convolutional_neural_network_architectures_and_their_optimizations
https://www.researchgate.net/publication/361477855_A_review_of_convolutional_neural_network_architectures_and_their_optimizations
https://research.google/blog/mobilenets-open-source-models-for-efficient-on-device-vision/?hl=es-mx
https://research.google/blog/mobilenets-open-source-models-for-efficient-on-device-vision/?hl=es-mx
https://arxiv.org/abs/1911.11907

138

14. Kromydas B. Convolutional Neural Network (CNN): A Complete Guide. [Online].; enero 2023.

Available from: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/.

15. Markus Nagel MFRAAYBMvBTB. A White Paper on Neural Network Quantization. [Online].;

junio 2021. Available from: https://arxiv.org/abs/2106.08295.

16. Pérez S. Detección de poses humanas mediante Deep Learning. [Online].; febrero 2022.

Available from: https://blog.damavis.com/deteccion-de-poses-humanas-mediante-deep-learning/.

17. An end-to-end platform for machine learning. [Online]. Available from:

https://www.tensorflow.org/.

18. Khanh LeViet YhC. Pose estimation and classification on edge devices with MoveNet and

TensorFlow Lite. [Online].; agosto 2021. Available from:

https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-

MoveNet-and-TensorFlow-Lite.html.

19. Dave Bergmann CS. ¿Qué es PyTorch? [Online].; octubre 2023. Available from:

https://www.ibm.com/es-es/think/topics/pytorch.

20. MediaPipe Vs. TensorFlow: Human Pose Estimation Giants. [Online].; enero 2024. Available

from: https://medium.com/@codetrade/mediapipe-vs-c1a57a2fac7e.

21. Rath S. Deep Learning with OpenCV DNN Module: A Definitive Guide. [Online].; abril 2021.

Available from: https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-

guide/.

22. Using the SavedModel format. [Online]. Available from:

https://www.tensorflow.org/guide/saved_model.

23. TensorFlow Lite. [Online].; septiembre 2021. Available from:

https://www.tensorflow.org/lite/guide?hl=es-419.

24. Open Neural Network Exchange. [Online]. Available from: https://onnx.ai/.

25. Inkawhich M. Saving and Loading Models. [Online].; agosto 2018, última actialización junio

2025. Available from: https://docs.pytorch.org/tutorials/beginner/saving_loading_models.html.

26. Hua Q. [CVPR 2017] OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity

Fields. [Online].; junio 2019. Available from: https://medium.com/data-science/cvpr-2017-

openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8.

27. Hao-Shu Fang JLHTCXHZYXYLLCL. AlphaPose: Whole-Body Regional Multi-Person Pose

Estimation and Tracking in Real-Time. [Online].; noviembre 2022. Available from:

https://arxiv.org/abs/2211.03375.

28. Brown J. Real-Time Human Pose Estimation with PoseNet and Deep Learning. [Online].;

septiembre 2024. Available from: https://33rdsquare.com/tech/ai/posture-detection-using-

posenet-with-real-time-deep-learning-project/.

https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://arxiv.org/abs/2106.08295
https://blog.damavis.com/deteccion-de-poses-humanas-mediante-deep-learning/
https://www.tensorflow.org/
https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-MoveNet-and-TensorFlow-Lite.html
https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-MoveNet-and-TensorFlow-Lite.html
https://www.ibm.com/es-es/think/topics/pytorch
https://medium.com/@codetrade/mediapipe-vs-c1a57a2fac7e
https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide/
https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide/
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/lite/guide?hl=es-419
https://onnx.ai/
https://docs.pytorch.org/tutorials/beginner/saving_loading_models.html
https://medium.com/data-science/cvpr-2017-openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8
https://medium.com/data-science/cvpr-2017-openpose-realtime-multi-person-2d-pose-estimation-using-part-affinity-fields-f2ce18d720e8
https://arxiv.org/abs/2211.03375
https://33rdsquare.com/tech/ai/posture-detection-using-posenet-with-real-time-deep-learning-project/
https://33rdsquare.com/tech/ai/posture-detection-using-posenet-with-real-time-deep-learning-project/

139

29. Boesch G. DensePose: Facebook’s Breakthrough in Human Pose Estimation. [Online].; agosto

2024. Available from: https://viso.ai/deep-learning/densepose/.

30. Ronny Votel NL. Next-Generation Pose Detection with MoveNet and TensorFlow.js. [Online].;

mayo 2021. Available from: https://blog.tensorflow.org/2021/05/next-generation-pose-detection-

with-movenet-and-tensorflowjs.html.

31. Valentin Bazarevsky IGKRTZFZMG. BlazePose: On-device Real-time Body Pose tracking.

[Online].; junio 2020. Available from: https://arxiv.org/abs/2006.10204.

32. Documentación de Ultralytics YOLO. [Online]. Available from: https://docs.ultralytics.com/es/.

33. Shaoqing Ren KHRGJS. Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. [Online].; 4 junio 2015. Available from: https://arxiv.org/abs/1506.01497.

34. Shivang Agarwal JODTFJ. Recent Advances in Object Detection in the Age of Deep

Convolutional Neural Networks. [Online].; 10 septiembre 2018. Available from:

https://arxiv.org/abs/1809.03193v2.

35. Xiao Sun JSSLYW. Compositional Human Pose Regression. [Online].; 1 abril 2017. Available

from: https://arxiv.org/abs/1704.00159.

36. Guilhem Chéron ILCS. P-CNN: Pose-based CNN Features for Action Recognition. [Online].; 11

junio 2015. Available from: https://arxiv.org/abs/1506.03607.

37. Classification: Accuracy, recall, precision, and related metrics. [Online]. Available from:

https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-

recall.

38. IoU and variants overview. [Online].; agosto 2024. Available from:

https://medium.com/@cshyo1004/iou-and-variants-overview-a328acf177cd.

39. COCO Keypoint Evaluation. [Online]. Available from: https://cocodataset.org/#keypoints-eval.

40. Sharma A. Mean Average Precision (mAP) Using the COCO Evaluator. [Online].; mayo 2022.

Available from: https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-

coco-evaluator/.

41. MoveNet.SinglePose. [Online]. Available from:

https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf.

42. A Guide on YOLO11 Model Export to TFLite for Deployment. [Online]. Available from:

https://docs.ultralytics.com/integrations/tflite/#export-arguments.

43. MediaPipe BlazePose GHUM 3D. [Online]. Available from:

https://developers.google.com/static/ml-kit/images/vision/pose-detection/pose_model_card.pdf.

https://viso.ai/deep-learning/densepose/
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://arxiv.org/abs/2006.10204
https://docs.ultralytics.com/es/
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1809.03193v2
https://arxiv.org/abs/1704.00159
https://arxiv.org/abs/1506.03607
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://medium.com/@cshyo1004/iou-and-variants-overview-a328acf177cd
https://cocodataset.org/#keypoints-eval
https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf
https://docs.ultralytics.com/integrations/tflite/#export-arguments
https://developers.google.com/static/ml-kit/images/vision/pose-detection/pose_model_card.pdf

140

11. ANEXOS

Anexo A. Resultados numéricos del estudio

 En este anexo se incluyen los resultados obtenidos de todos los modelos en los distintos

dispositivos de prueba en formato tabla.

Samsung Galaxy Tab A7 Lite (Tablet)

Modelo Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 316 imágenes)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 65 imágenes

adecuadas)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 61 imágenes

inadecuadas)

Tiempo medio

inferencia por

imagen (ms) (dataset

316 imágenes)

MoveNet Lightining 8 0,296 0,656 0,055 66,24

MoveNet Lightining 16 0,348 0,719 0,084 100,45

MoveNet Lightining 32 0,346 0,721 0,095 101,88

MoveNet Thunder 8 0,456 0,788 0,140 253,68

MoveNet Thunder 16 0,509 0,824 0,200 479,73

MoveNet Thunder 32 0,498 0,842 0,199 478,59

BlazePose Lite 0,101 0,349 0,000 138,86

BlazePose Full 0,136 0,441 0,000 249,60

BlazePose Heavy 0,176 0,487 0,000 905,98

Yolo8-pose Nano 0,473 0,696 0,218 352,46

Yolo8-pose Small 0,628 0,822 0,392 1.251,36

Yolo8-pose Medium 0,686 0,839 0,495 3.697,21

Tabla 19. Resultados numéricos Samsung Galaxy Tab A7 Lite

Samsung Galaxy M32 (Móvil)

Modelo Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 316 imágenes)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 65 imágenes

adecuadas)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 61 imágenes

inadecuadas)

Tiempo medio

inferencia por

imagen (ms) (dataset

316 imágenes)

MoveNet Lightining 8 0,293 0,656 0,055 36,39

MoveNet Lightining 16 0,348 0,719 0,084 58,75

MoveNet Lightining 32 0,346 0,721 0,095 62,15

MoveNet Thunder 8 0,456 0,788 0,140 130,91

MoveNet Thunder 16 0,510 0,824 0,200 260,55

MoveNet Thunder 32 0,498 0,842 0,199 286,69

BlazePose Lite 0,101 0,349 0,000 189,67

BlazePose Full 0,136 0,441 0,000 277,86

BlazePose Heavy 0,176 0,487 0,000 876,97

Yolo8-pose Nano 0,472 0,696 0,218 337,10

Yolo8-pose Small 0,628 0,822 0,392 852,96

Yolo8-pose Medium 0,686 0,839 0,495 2.599,96

Tabla 20. Resultados numéricos Samsung Galaxy M32

141

Samsung Galaxy Tab A9 (Tablet)

Modelo Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 316 imágenes)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 65 imágenes

adecuadas)

Precisión obtenida

AP [IoU=0.50:0.95]

(dataset 61 imágenes

inadecuadas)

Tiempo medio

inferencia por

imagen (ms) (dataset

316 imágenes)

MoveNet Lightining 8 0,296 0,659 0,053 14,90

MoveNet Lightining 16 0,348 0,719 0,084 22,72

MoveNet Lightining 32 0,346 0,721 0,095 22,57

MoveNet Thunder 8 0,451 0,789 0,138 44,64

MoveNet Thunder 16 0,509 0,824 0,200 94,80

MoveNet Thunder 32 0,498 0,842 0,199 95,37

BlazePose Lite 0,101 0,349 0,000 26,54

BlazePose Full 0,136 0,441 0,000 42,06

BlazePose Heavy 0,176 0,485 0,000 166,97

Yolo8-pose Nano 0,473 0,696 0,218 96,25

Yolo8-pose Small 0,628 0,822 0,392 581,62

Yolo8-pose Medium 0,686 0,839 0,495 1.170,97

Tabla 21. Resultados numéricos Samsung Galaxy Tab A9

142

Anexo B. Ejemplos de visualización de keypoints estimados sobre imágenes

En las imágenes de este apartado se muestran ejemplos de imágenes procedentes del

conjunto de validación del dataset de datos COCO sobre las cuales se representan los keypoints

estimados por distintos modelos de redes convolucionales evaluados en este estudio,

superpuestos a las anotaciones de referencia (ground truth) proporcionadas por el dataset.

Los puntos en rojo corresponden a las posiciones exactas de articulaciones definidas en

las anotaciones de COCO, que incluyen 17 localizaciones corporales como hombros, codos,

muñecas, caderas, rodillas y tobillos. En contraste, los keypoints predichos por los modelos

aparecen en colores verde, azul y cian, permitiendo una comparación visual entre la predicción

automática y la verdad de referencia.

Para la representación de los keypoints sobre las imágenes se ha utilizado Jupyter

Notebook y, además de las librerías ya descritas en el apartado “7.1. Resultados obtenidos de

precisión” (pycocotools.coco, json), se han utilizado las siguientes librerías de Python:

- skimage.io. Permite leer y mostrar imágenes en distintos formatos directamente

desde archivos o URLs. Es útil para cargar imágenes del dataset COCO.

- matplotlib.pyplot. Herramienta de visualización que permite mostrar imágenes y

superponer elementos gráficos, como los keypoints predichos o anotaciones de

referencia.

- PIL.Image. Parte de la librería Pillow, utilizada para abrir, procesar y manipular

imágenes de manera flexible.

- numpy. Biblioteca fundamental para el cálculo numérico en Python. Se utiliza para

manejar arreglos multidimensionales, coordenadas y operaciones matemáticas

asociadas a imágenes y keypoints.

- pylab. Entorno de visualización que combina funcionalidades de matplotlib y

numpy, útil para configurar parámetros gráficos y mostrar imágenes con

anotaciones.

Ejemplos de estimaciones para imágenes adecuadas (personas centradas y cercanas):

143

Imagen 49. Keypoints estimados por MoveNet Lightning para imagen 22705

144

Imagen 50. Keypoints estimados por MoveNet Thunder para imagen 22705

145

Imagen 51. Keypoints estimados por BlazePose para imagen 22705

146

Imagen 52. Keypoints estimados por Yolo8-pose para imagen 22705

147

Imagen 53. Keypoints estimados por MoveNet Lightning para imagen 65736

Imagen 54. Keypoints estimados por MoveNet Thunder para imagen 65736

148

Imagen 55. Keypoints estimados por BlazePose para imagen 65736

Imagen 56. Keypoints estimados por Yolo8-pose para imagen 65736

149

Ejemplos de estimaciones para imágenes inadecuadas (personas no centradas o lejanas):

Imagen 57. Keypoints estimados por MoveNet Lightning para imagen 347265

150

Imagen 58. Keypoints estimados por MoveNet Thunder para imagen 347265

151

Imagen 59. Keypoints estimados por BlazePose para imagen 347265

152

Imagen 60. Keypoints estimados por Yolo8-pose para imagen 347265

153

Imagen 61. Keypoints estimados por MoveNet Lightning para imagen 161879

Imagen 62. Keypoints estimados por MoveNet Thunder para imagen 161879

154

Imagen 63. Keypoints estimados por BlazePose para imagen 161879

Imagen 64. Keypoints estimados por Yolo8-pose para imagen 161879

