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Resumen

Muiiltiples organizaciones publican datos abiertos —especialmente de patrimonio cultu-
ral— que no estan listos para su uso directo en educacion. Trabajos previos del gru-
po GSIC/EMIC abordaron esta brecha con Casual Learn, una aplicacion distribuida
(servidor+-cliente Android) que, apoyandose en un almacén de triplas RDF y consul-
tas SPARQL, ofrece tareas educativas basadas en plantillas validadas por docentes para
aprendizaje ubicuo, con experiencias reales en mas de cien estudiantes de 4.2 ESO y 1.2
de Bachillerato. Aunque eficaz, este enfoque depende del refinamiento previo de plantillas
y de la disponibilidad de LOD, lo que limita la expresividad y la portabilidad a dominios
distintos del patrimonio.

Este Trabajo Fin de Grado propone una alternativa generativa para tareas de apren-
dizaje ubicuo: una herramienta para generar tareas de aprendizaje ubicuo con modelos
de lenguaje y Generacion Aumentada por Recuperacion (RAG) a partir de Wikipedia y
materiales aportados por el docente. La solucion se expone mediante API REST en un
backend monolitico que procesa localmente la informacién para proteger la privacidad,
integrando embeddings (SentenceTransformers), almacenamiento vectorial (ChromaDB)
y ejecucion local de LLM (Ollama). Las salidas se fuerzan en JSON estructurado, facili-
tando su consumo por clientes moéviles o flujos de autoria.

En la comparacion cualitativa frente a tareas tipo Casual Learn, el sistema genera items
maés ricos y contextualizados (distractores plausibles, preguntas abiertas interpretativas y
actividades situadas), sin depender de plantillas rigidas. En la evaluacion cuantitativa, las
latencias promedio para el hardware disponible en el grupo GSIC/EMIC fueron 42-43
s para generacion simple (con o sin RAG) y 365 s para generacion compleja, identifi-
cando la inferencia del LLM como principal cuello de botella y acotando la concurrencia
practica a 2-5 usuarios en el hardware evaluado. En conjunto, el trabajo complementa y
trasciende el enfoque basado en LOD al habilitar generacion bajo demanda y portabilidad
entre dominios, sentando bases para su integracion futura con metadatos LOD, técnicas
de caché y optimizaciéon de inferencia.

Palabras clave—aprendizaje ubicuo; inteligencia artificial generativa; RAG; Wikipedia;
LangChain; ChromaDB; Ollama; Linked Open Data.



Abstract

Open data—particularly in the cultural heritage domain—are abundant yet rarely ready
for direct educational use. Prior work by GSIC/EMIC addressed this gap with Casual
Learn, a distributed application (server + Android client) backed by an RDF triple store
and SPARQL that delivers teacher-validated, template-based ubiquitous learning tasks.
Deployed with over one hundred high-school students, this approach proved effective but
inherently relies on pre-authored templates and LOD availability, which constrains ex-
pressiveness and portability beyond heritage scenarios.

This Bachelor’s Thesis proposes a generative alternative for ubiquitous learning tasks:
a tool for ubiquitous learning task generation using Large Language Models with Retrieval-
Augmented Generation (RAG) from Wikipedia and teacher-provided materials. The sys-
tem is exposed via a REST API on a privacy-preserving monolithic backend, combining
SentenceTransformers embeddings, ChromaDB vector storage, and local LLM inference
(Ollama). Outputs are enforced as structured JSON to streamline integration with mobile
clients and authoring pipelines.

In a qualitative comparison against Casual Learn-style tasks, our system produces
richer, more contextualized items (plausible MCQ distractors, interpretive open ques-
tions, and situated activities) without rigid templates. The quantitative evaluation shows
average latencies for the hardware available in the GSIC/EMIC group were 42-43 s for
simple (with/without RAG) and 365 s for complex generations, identifying LLM infer-
ence as the main bottleneck and limiting practical concurrency to 2-5 users on the tested
hardware. Overall, this work complements and goes beyond LOD-based pipelines by
enabling on-demand generation and cross-domain portability, paving the way for future
integration with LOD metadata, caching strategies, and inference optimizations.

Keywords— ubiquitous learning; generative Al; RAG; Wikipedia; LangChain; ChromaDB;
Ollama; Linked Open Data.
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Capitulo 1

Introduccion

A lo largo de la historia, ciertos avances tecnologicos han supuesto verdaderos puntos
de inflexion que han transformado profundamente no solo la economia, sino también las
estructuras sociales y culturales. Un ejemplo es el de la mecanizaciéon de la agricultura
durante la primera mitad del siglo XX. Si bien esta innovacién permitié automatizar ta-
reas antes realizadas manualmente, aliviando en gran medida la carga fisica del trabajo
agricola, sus implicaciones trascendieron el &mbito laboral. La creciente eficiencia produc-
tiva redujo la necesidad de mano de obra en el campo, lo que provocd un éxodo masivo
hacia las ciudades en busca de nuevas oportunidades [Sierra, 2019|. Este proceso no solo
transformo6 la economia agraria, sino que modificé6 profundamente los modos de vida tra-
dicionales, aceler6 la urbanizacion y sent6 las bases para el surgimiento de una sociedad
industrial y predominantemente urbana.

En la actualidad, nos encontramos inmersos en una revoluciéon de naturaleza compara-
ble: la irrupcién de la inteligencia artificial (IA). De manera anéloga a como las maquinas
agricolas liberaron al ser humano del trabajo fisico més exigente, la [A esta comenzando
a asumir tareas cognitivas complejas, tales como la conduccién auténoma, la traduccion
automatica o la asistencia robotica, entre otros. Todo indica que, en las proximas décadas,
la automatizacion basada en IA transformard de forma significativa no solo el mercado
laboral [Hui et al., 2024; Moreno-Izquierdo, Torres Penalva et al., 2025|, sino también
los modos en que aprendemos [Fernandez, 2023|, nos comunicamos [Herrera-Ortiz et al.,
2024] y tomamos decisiones [Jiménez Cardona, 2023; Penalver-Higuera y Isea-Argitielles,
2024].

Esta transformacion esta siendo posible gracias a una serie de avances tecnologicos in-
terrelacionados. En primer lugar, la evolucion del hardware, destacando el uso de unidades
de procesamiento grafico ( Graphics Processing Units, GPUs) y, més recientemente, de uni-
dades de procesamiento tensorial (Tensor Processing Units, TPUs), diseniadas especifica-
mente para acelerar operaciones matriciales propias del aprendizaje profundo [Chellapilla
et al., 2006]. A ello se suma la expansion de la computacion en la nube (cloud computing),
que proporciona acceso flexible y escalable a infraestructuras de alto rendimiento, asi co-
mo la disponibilidad masiva de grandes voliimenes de datos tanto estructurados como no
estructurados, que son esenciales para el entrenamiento efectivo de modelos a gran escala.
Ademas, el desarrollo de marcos de programacion de codigo abierto, como TensorFlow o
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PyTorch, ha democratizado el acceso a herramientas avanzadas de modelado. Por ultimo,
la introduccion de nuevas arquitecturas, en particular los modelos basados en transforma-
dores [Vaswani et al., 2017], ha revolucionado el tratamiento de secuencias, permitiendo
capturar dependencias a largo plazo y mejorar significativamente el rendimiento en tareas
como el procesamiento del lenguaje natural, la vision por computador y la generacion
automatica de contenidos.

El d&mbito educativo no permanece ajeno a los cambios que esta propiciando la ac-
tual transformaciéon tecnologica impulsada por la IA. La capacidad de los modelos de A
generativa para producir contenidos de manera auténoma y contextualizada abre nuevas
posibilidades para el diseno de experiencias de aprendizaje mas flexibles, personalizadas y
adaptadas al entorno del estudiante [Eager y Brunton, 2023|. El presente Trabajo Fin de
Grado se enmarca precisamente en esta linea de innovacion y lleva por titulo «Genera-
cion de tareas de aprendizaje ubicuo con apoyo de herramientas de Inteligencia
Artificial Generativa». Para comprender el alcance del estudio, resulta pertinente des-
glosar los principales conceptos incluidos en su titulo.

Por aprendizaje ubicuo se entiende un enfoque educativo en el que el aprendizaje
puede ocurrir en cualquier momento y lugar, apoyado por tecnologias maéviles, sensores,
geolocalizacion y conectividad permanente. Este paradigma busca extender el aprendi-
zaje méas alla del aula, integrandolo en la vida diaria del estudiante de forma continua,
contextual y personalizada [Munoz-Cristobal et al., 2014]. Esta modalidad rompe con las
limitaciones espaciales y temporales de la educacion tradicional, facilitando experiencias
de aprendizaje més flexibles y adaptativas. La Organizacion de las Naciones Unidas para
la Educacion, la Ciencia y la Cultura (UNESCO) reconoce el potencial de la tecnologia
para transformar los entornos educativos, destacando que, segtin sus defensores, esta per-
mite ampliar las posibilidades del aprendizaje ubicuo y facilitar el desarrollo de nuevas
formas de aprendizaje y competencias [UNESCO, 2023b|.

Las tareas de aprendizaje son actividades disenadas con fines pedagogicos con-
cretos, que pueden incluir desde ejercicios tradicionales hasta experiencias interactivas,
investigaciones en el entorno o resolucion de problemas reales [Ruiz-Calleja et al., 2021].
En el marco del aprendizaje ubicuo, estas tareas se vinculan con el contexto fisico o digi-
tal inmediato del estudiante, haciéndolas mas significativas y motivadoras. Este enfoque
conecta con la idea de tareas de aprendizaje como actividades centradas en el aprendiz y
orientadas a la accidon, que promueven una participacion activa y situada, especialmente
valiosa cuando se vinculan con entornos reales o simulados mediante tecnologias inteli-
gentes.

Por dltimo, la inteligencia artificial generativa hace referencia a modelos capaces
de producir contenido nuevo a partir de datos existentes o instrucciones, como ocurre con
los grandes modelos de lenguaje [Banh y Strobel, 2023|. Estos modelos permiten generar
textos, imagenes, codigo o incluso actividades educativas, ajustandose a pardmetros como
el nivel del estudiante, su localizacion, sus intereses o sus interacciones previas. En este
contexto, la UNESCO [UNESCO, 2023a| ha senalado el notable incremento del uso de la
IA en el &mbito educativo, con especial énfasis en los modelos de lenguaje de gran escala
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(Large Language Models, LLM), que utilizan técnicas como la generacion aumentada por
recuperacion (Retrieval-Augmented Generation, RAG) para obtener informacion fiable y
generar respuestas actualizadas y contextualizadas. La UNESCO subraya tanto el poten-
cial transformador de estas tecnologias como los desafios que plantean, especialmente en
lo relativo a una gestion ética y responsable, asi como a la necesidad de formacion ade-
cuada para el profesorado y el estudiantado, con el fin de garantizar un uso beneficioso y
equitativo [UNESCO, 2023a).

La convergencia de estos tres elementos —aprendizaje ubicuo, tareas educativas y
modelos generativos— constituye el eje central de este proyecto. Para comprender la con-
tribucion especifica de este trabajo, es fundamental analizar primero el estado actual de
la generacion de tareas para el aprendizaje ubicuo. Uno de los enfoques usados en apren-
dizaje ubicuo se basa en la explotacion de Linked Open Data (LOD), una metodologia
que combina grandes bases de conocimiento con plantillas pedagdgicas.

Un ejemplo paradigmatico es el sistema Casual Learn |[Ruiz-Calleja et al., 2021, 2023,
que ha demostrado la viabilidad de esta aproximaciéon. Este enfoque basado en LOD y
plantillas ha probado ser notablemente eficaz para generar a gran escala tareas geolo-
calizadas y contextualizadas. Utilizando bases de conocimiento abiertas como DBpedia,
el sistema extrae informacion estructurada sobre puntos de interés (como monumentos
historicos) y aplica plantillas predefinidas para transformar esos datos en enunciados de
tareas. Este método permite una producciéon masiva —generando miles de actividades—
y garantiza, gracias a la colaboracion de expertos, una alta pertinencia pedagogica, ali-
neando las tareas con los curriculos escolares y distintos niveles cognitivos [Ruiz-Calleja
et al., 2022].

Sin embargo, y a pesar de sus evidentes fortalezas, este modelo presenta una limitacion
fundamental que motiva el presente estudio: su dependencia de plantillas predefinidas y
rigidas. Esta rigidez estructural impone serias restricciones a la escalabilidad pedagogica.
Por un lado, la variedad lingiiistica y estilistica de las tareas es muy escasa, ya que todas
las actividades generadas a partir de una misma plantilla siguen un patréon casi idéntico.
Por otro lado, la creatividad y la complejidad pedagogica quedan acotadas por el diseno
inicial de la plantilla, haciendo imposible generar dindmicamente nuevas tipologias de ta-
reas o adaptarlas a matices contextuales no previstos.

Es precisamente en la superacion de esta rigidez donde la inteligencia artificial gene-
rativa, y en particular los Large Language Models (LLM), emerge como una alternativa
disruptiva. A diferencia de los sistemas que se limitan a “rellenar” una estructura fija,
los LLM pueden generar texto original, variado y contextualmente coherente a partir de
instrucciones complejas, ofreciendo una flexibilidad inalcanzable para los sistemas ante-
riores. La principal motivacion de este proyecto es, por tanto, explorar la hipotesis de
que los LLM pueden superar las limitaciones de las plantillas, no solo para aumentar la
variedad y el atractivo de las tareas, sino también para introducir nuevas dimensiones de
personalizacién y sofisticacion pedagogica.

En consecuencia, este Trabajo de Fin de Grado, se centra en disenar y evaluar un

Universidad de Valladolid 3 Luis Francisco Sanchez Turrion
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sistema que utiliza LLM para trascender el paradigma de las plantillas. El objetivo es
demostrar que es posible avanzar hacia un modelo de creacién de contenido educativo
més dindmico, diverso y adaptativo, sentando asi las bases para una nueva generacion de
herramientas de aprendizaje ubicuo.

1.1 Objetivos

El objetivo principal de este Trabajo Fin de Grado es disenar y implementar una he-
rramienta multidominio capaz de generar tareas en contextos de aprendizaje ubicuo, asi
como de ofrecer retroalimentacion automatizada basada en A generativa a las respuestas
del estudiantado.

Objetivos especificos que se plantean:

e Seleccionar un modelo de lenguaje adecuado: Buscar informaciéon y hacer
pruebas para encontrar un LLM que sea adecuado para la generacion de las tareas.

e Disenar e implementar una API: Proporcionar un servicio de generaciéon de
tareas a través de herramientas de inteligencia artificial generativa de forma contex-
tualizada.

e Incorporar la generacion de distintos tipos de tareas relevantes desde el
punto de vista pedagogico: Con el fin de adaptarse a los requerimientos indivi-
duales, el sistema genera una variedad de tareas. Este enfoque busca la pertinencia
pedagogica de cada actividad.

e Evaluar la eficacia de la herramienta: Comprobamos que la herramienta real-
mente esta aumentando la calidad de las tareas generadas, se compararan las tareas
generadas por modelos comerciales de codigo cerrado y también una comparativa
del uso del modelo sin contexto, modelo con RAG y modelo con todos los datos en
el contexto.

1.2 Metodologia

El desarrollo del presente Trabajo Fin de Grado se ha estructurado siguiendo los princi-
pios de la metodologia 4gil Scrum [Schwaber y Sutherland, 2013], adaptada al contexto
de un proyecto individual. Scrum es un marco de trabajo agil para la gestion y desarrollo
de productos que se basa en ciclos iterativos e incrementales denominados sprints. Esta
metodologia permite organizar el trabajo de forma flexible, fomentando la planificacion
continua, la revision frecuente de avances y la mejora progresiva del producto.

Durante el proyecto se llevaron a cabo 14 sprints de dos semanas de duraciéon. En
cada uno de ellos se establecieron objetivos especificos relacionados con el desarrollo de
funcionalidades concretas de la herramienta. Al inicio de cada sprint se realizé una pla-
nificacion (Sprint Planning), donde se definieron las tareas a abordar y los entregables
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1. Introducciéon

correspondientes. Al final de cada ciclo se efectu6 una revision (Sprint Review) del traba-
jo realizado y una reflexion critica (Sprint Retrospective) sobre los aspectos que podian
mejorarse en la siguiente iteracion.

Los roles de Scrum se adaptaron a la estructura del proyecto de la siguiente manera:

e Los tutores académicos asumieron el rol de Propietarios del Producto (Pro-
duct Owners), orientando la direccion del desarrollo, priorizando funcionalidades y
validando los entregables parciales.

e Algunos companeros del departamento, con experiencia técnica, actuaron como
Maestros de Scrum (Scrum Masters), ofreciéndome apoyo puntual para resol-
ver dudas o superar dificultades técnicas.

e El rol de Equipo de Desarrollo fue desempenado por mi como autor del TFG,
encargdandome de implementar los requisitos funcionales establecidos en cada sprint.

Este enfoque me permiti6 avanzar de forma estructurada, recibir retroalimentacion
periddica y ajustar el desarrollo segiin las necesidades emergentes del proyecto.

1.3 Estructura del documento

A lo largo de este documento se proporciona una visiéon coherente y progresiva del proceso
completo, desde los antecedentes hasta las conclusiones y anexos, con el fin de facilitar al
lector una comprension integral y ordenada del proyecto.

En primer lugar, se explora el Estado del arte, abordando la generacion de tareas
de aprendizaje con datos abiertos y la inteligencia artificial generativa, con énfasis en los
Modelos de Lenguaje de Gran Tamano y en las técnicas clave que permiten aprovechar,
adaptar y perfeccionar sus capacidades, como la Generacion Aumentada por Recupera-
cion y el Ajuste Fino (Fine-Tuning). Este apartado establece las bases conceptuales y
metodologicas esenciales para entender la generaciéon dindamica y precisa de contenidos
educativos mediante TA.

Seguidamente, el capitulo de Andalisis expone las necesidades educativas actuales y
resalta las limitaciones de las soluciones tradicionales ante la creciente demanda de ma-
teriales didacticos personalizados. Aqui se justifica la relevancia del proyecto, definiendo
claramente los objetivos y requisitos del sistema propuesto para solucionar las carencias
identificadas.

A continuacion, en el capitulo de Diseno, se describe en detalle la arquitectura logica
del sistema, especificando como se coordinan sus distintos componentes. Se explica como
tecnologias como las bases de datos vectoriales se usan para hacer RAG para recuperar
informacion relevante, y generan salidas estructuradas en formato JSON que alimentan
el generador de tareas. Ademas, se detalla el diseno del motor de creacion de ejercicios, el
corrector automatico y la integraciéon en un flujo de trabajo unificado.
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Posteriormente, en el capitulo Implementaciéon, se abordan los aspectos practicos
del desarrollo del proyecto, incluyendo la organizacion del codigo, la seleccion de librerias
y frameworks, configuracion del entorno, instalaciéon de dependencias y ejemplos concretos
de ejecucion. Se destacan también las decisiones tecnologicas adoptadas y los protocolos
de prueba utilizados para garantizar la fiabilidad, reproducibilidad y escalabilidad del
sistema.

El capitulo Analisis de resultados evalia la eficacia de las tareas generadas mediante
una comparacion con métodos convencionales. Se presentan métricas relativas a la calidad
pedagogica y al rendimiento computacional, detallando tiempos de respuesta y estudios
de casos practicos, ademéas de discutir las principales limitaciones detectadas, sugiriendo
posibles vias de mejora.

En el capitulo de Conclusiones y lineas de trabajo futuro se resumen las con-
tribuciones maés significativas del proyecto, destacando el valor anadido que aporta al
ambito educativo, la originalidad en la integracion de RAG y Fine-Tuning, y la capaci-
dad para adaptar contenidos a diferentes perfiles de estudiantes. Asimismo, se proponen
lineas futuras de trabajo, tales como la incorporacién de retroalimentaciéon en tiempo
real, la expansion hacia otras areas del conocimiento o la integracion con nuevos modelos
multimodales.

Finalmente, los Anexos incluyen documentacion detallada de la API desarrollada y
el codigo empleado, permitiendo al lector disponer de los recursos necesarios para com-
prender profundamente cada componente y replicar el sistema en su propio entorno.
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Capitulo 2

Estado del arte

La IA ha avanzado rapidamente, transformando el campo de la A mediante mo-
delos como la serie Generative Pre-trained Transformer (GPT)[Brown et al., 2020|.
Gracias a redes neuronales de gran tamano, nuevos algoritmos de Aprendizaje Auto-
matico y extensos conjuntos de datos de entrenamiento, estos modelos destacan por
su capacidad para generar texto coherente con caracteristicas humanas. Su accesibi-
lidad y los marcos de codigo abierto han democratizado el uso de LLM, facilitando
su integracién en sectores como los chatbots, la salud y la educacién. En este estado
del arte se presentan los principios de funcionamiento y las metodologias actuales
empleadas en el ambito de la IA. Ademaés, se va a tratar la metodologia anterior en
la generaciéon de tareas usando LOD.

2.1 Introduccion

El presente Trabajo de Fin de Grado, se enmarca en un contexto donde converge el
aprendizaje ubicuo (u-learning) y los modelos de lenguaje basados en inteligencia artifi-
cial generativa (IA Generativa). El aprendizaje ubicuo se define como aquella modalidad
educativa que permite el acceso a conocimiento en cualquier lugar y momento, gracias al
uso de tecnologias moviles y ubicuas, promoviendo entornos de aprendizaje distribuidos
en tiempo y espacio |Gallego-Lema, 2016]. Este enfoque trasciende las aulas convenciona-
les, posibilitando la interaccion esponténea del estudiante con su entorno y favoreciendo
el aprendizaje sin que éste sea siempre consciente de estar ocurriendo.

Los dispositivos méviles, ordenadores y otros medios tecnolégicos no solo facilitan el
acceso a recursos modernos, sino que también integran medios tradicionales en formato
digital (por ejemplo, libros de Historia del Arte), ampliando asi los escenarios del apren-
dizaje |Gallego-Lema, 2016]. El modelo se caracteriza por la permanencia, accesibilidad,
inmediatez, interactividad y adaptabilidad del contenido educativo, lo que permite disenar
experiencias altamente personalizadas y ecoldgicamente pertinentes.

Gracias al empleo de Datos Enlazados (Linked Data) y de la Web Seméntica, la infor-
macion sobre tareas educativas puede estructurarse para ser accesible tanto para humanos

como para maquinas |Berners-Lee, 2006; Gallego-Lema, 2016]. El grupo GSIC/EMIC ya
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avanzo6 en esta direccion con la creacion de un repositorio de triplas sobre patrimonio cul-
tural, publicadas en formato abierto y enlazado, lo que permite su reutilizacion en sistemas
de aprendizaje ubicuo [Ruiz-Calleja et al., 2021] y facilita su integracion en plataformas
como Casual Learn mediante consultas SPARQL.

Por otra parte, el auge de la IA Generativa, especialmente los modelos de lenguaje
enormes (LLM), ofrece una nueva dimension para la generacién automatizada de tareas
de aprendizaje. Estos modelos, entrenados con enormes voltimenes de texto, son capaces
de generar contenido educativo adaptado, como explicaciones, preguntas y sugerencias
pedagogicas. Su uso en la educaciéon permite personalizar rutas de aprendizaje, generar
feedback en tiempo real y ampliar el alcance del aprendizaje ubicuo.

No obstante, su integracion requiere un disenio cuidadoso. Es fundamental garantizar
la precision, evitar sesgos y fomentar la alfabetizacion en IA entre estudiantes y docentes,
asi como asegurar que los modelos sirvan como herramientas de apoyo y no sustitutos del
docente. Ademas, la orientacion mediante gréaficos de conocimiento (como los repositorios
de triplas) y la tecnologia RAG (Retrieval-Augmented Generation) puede ayudar a que
la TA genere tareas mas fundamentadas y contextualizadas en patrimonio cultural.

El presente estado del arte tiene como objetivo establecer el marco teédrico y tecno-
logico en el que se inscribe este trabajo. Se comenzara analizando los enfoques previos
para la generacion de tareas de aprendizaje ubicuo, con especial atencion a los sistemas
basados en Datos Abiertos, que si bien son efectivos, dependen de plantillas predefinidas.
A continuacion, el capitulo se adentrara en el paradigma de la Inteligencia Artificial Ge-
nerativa, explorando los fundamentos de los LLM. Se describiran sus arquitecturas y, de
manera crucial, las técnicas clave para su adaptacion a contextos especificos. Este anélisis
permitird justificar la transicion desde los métodos tradicionales hacia un enfoque mas
dinamico y flexible, sentando las bases para el sistema desarrollado en este proyecto.

2.2 Generacion de tareas de aprendizaje con Datos Abier-
tos

La Web Clasica, o Web de documentos, esta disenada para ser interpretada por huma-
nos, quienes navegan a través de hipervinculos entre paginas. Este modelo presenta serias
dificultades para que las méquinas procesen la informaciéon de manera auténoma, ya que
carece de una estructura seméantica comprensible para ellas [Garcia Zarza, 2021|. Para
resolver esta limitacion, se propuso la Web Seméntica, una extension de la web donde la
informacion posee una estructura bien definida, permitiendo una cooperaciéon més eficien-
te entre personas y maquinas |Garcia Zarza, 2021].

El pilar de la Web Semantica son los Datos Abiertos Enlazados (Linked Open Data
— LOD), un conjunto de buenas practicas para publicar y conectar datos estructurados
en la Web |Garcia Zarza, 2021]. Estas préacticas se apoyan en tecnologias estdndar co-
mo RDF (Resource Description Framework) para modelar la informacion en tripletas
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(sujeto—predicado—objeto) y SPARQL como lenguaje de consulta, creando un grafo de
conocimiento global y legible por maquinas |Garcia Zarza, 2021|. Este ecosistema de da-
tos interconectados abre nuevas oportunidades para la creacién automaética de contenido,
incluyendo las tareas de aprendizaje.

La creacion manual de tareas de aprendizaje, especialmente aquellas contextualizadas
para escenarios informales, es un proceso tedioso, costoso y dificil de escalar [Ruiz-Calleja
et al., 2021]. Esto ha impulsado la investigacion en métodos de generacién automatica.
Las primeras aproximaciones se centraron en el uso de texto no estructurado u ontologias
de dominio. Sin embargo, el primero suele generar preguntas superficiales, mientras que el
segundo depende de la costosa creaciéon y mantenimiento de ontologias, restringiendo las
tareas a un dominio especifico y, a menudo, limitdndose a evaluar conocimiento factual
[Ruiz-Calleja et al., 2021].

El uso de LOD se presenta como una solucion para superar estas limitaciones, al explo-
tar la vasta cantidad de conocimiento ya disponible en la Web. Existen estudios pioneros
que utilizan DBpedia para generar automéaticamente preguntas o ejercicios para entornos
educativos Ruiz-Calleja et al., 2021.

A pesar de estos avances, el estado del arte presenta carencias significativas que el
trabajo de [Ruiz-Calleja et al., 2021] busca solventar:

e Dependencia de una tnica fuente de datos: La mayoria de los trabajos se
basan casi exclusivamente en una fuente, principalmente DBpedia, sin explotar el
potencial de integrar multiples fuentes para obtener descripciones mas ricas.

e Enfoque en conocimiento factual: Las tareas generadas suelen ser preguntas de
bajo nivel cognitivo (como preguntas de opcion miltiple) que evaltian la memori-
zacion. Rara vez promueven el pensamiento de orden superior como el anélisis, la
comparacion o la creacion.

e Falta de contextualizacién fisica: Las tareas generadas no se vinculan con el con-
texto fisico del estudiante, lo que dificulta su aplicacion en escenarios de aprendizaje
ubicuo o moévil.

El repositorio Casual Learn SPARQL es el resultado de un trabajo previo que aborda
directamente estas limitaciones |Garcia Zarza, 2021]. Se trata de un punto de acceso
SPARQL que contiene tareas educativas sobre el patrimonio cultural de Castilla y Leo6n,
generadas de forma semiautomética. Este enfoque representa un avance en el estado del
arte por varias razones:

e Integracion de miultiples fuentes: Para obtener una base de conocimiento rica,
el contenido fue generado combinando informaciéon de distintas fuentes de datos
abiertos, como DBpedia, Wikidata y datos del gobierno regional .

e Tareas de mayor nivel cognitivo: Utilizando plantillas disenadas por expertos
educadores, se generaron tareas que van més alla de la simple memorizacién, so-
licitando al usuario comparar edificios de estilos diferentes o reflexionar sobre la
concentracion de un estilo arquitecténico en una zona.
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e Contextualizaciéon explicita: La ontologia de Casual Learn estd disenada para
la contextualizacion. Cada tarea (clo:task) estd vinculada explicitamente a un es-
pacio fisico (clo:physicalSpace) a través de la propiedad clp:hasContext. Estos
espacios fisicos estan geoetiquetados con coordenadas de latitud y longitud, per-
mitiendo que una aplicaciéon recomiende tareas relevantes segiin la ubicacion del
usuario.

2.3 Fundamentos de los modelos LLM

A principios de la década de 2010, las Redes Neuronales Recurrentes (RNNs) demostraron
su eficacia en el procesamiento secuencial, al capturar dependencias contextuales y gene-
rar texto coherente [Banh y Strobel, 2023|. Sin embargo, presentaban dificultades para
manejar dependencias a largo plazo, asi como problemas de desvanecimiento o explosion
del gradiente y lentitud en el procesamiento. Los modelos basados en transformadores
revolucionaron la generacion de texto al introducir mecanismos de atencién capaces de
capturar el contexto a lo largo de secuencias completas de manera simultanea |Vaswani
et al., 2017]. Modelos como GPT superaron a las RNNs clésicas gracias a su paraleliza-
cion, mejor manejo de dependencias a largo plazo y una modelizacion lingiiistica mejorada
mediante atencion automatica multilateral que es una técnica utilizada para enfocar selec-
tivamente ciertas partes de la entrada al procesar datos. Las capacidades de los LLM han
crecido exponencialmente debido a los avances en arquitecturas basada en transformado-
res, el uso de conjuntos masivos de datos textuales y el aumento del poder computacional
[Devlin et al., 2018|. Estos desarrollos, junto con el incremento del nimero de parametros,
permiten a los LLM destacar en tareas complejas de procesamiento del lenguaje natural.

Los LLM han encontrado aplicacién en numerosos ambitos gracias a su versatilidad
para comprender y generar lenguaje natural. En el procesamiento del lenguaje, destacan
en tareas como generacion de texto coherente, traduccion automatica, resumen de do-
cumentos y anélisis de sentimientos. En entornos conversacionales, potencian chatbots y
asistentes virtuales capaces de mantener didlogos fluidos y contextualmente relevantes.

En educacion, permiten experiencias de aprendizaje personalizado mediante tutores
virtuales que responden a consultas en tiempo real y adaptan explicaciones a las necesi-
dades individuales de cada alumno |Garcia-Méndez et al., 2025; Giannakos et al., 2024].
Asimismo, en el desarrollo de software, herramientas como asistentes de codificaciéon su-
gieren fragmentos de codigo, detectan errores y optimizan flujos de trabajo [Moradi et al.,
2025].

2.3.1 Arquitecturas de Modelo y Objetivos de Preentrenamiento

Los LLM se preentrenan tipicamente mediante aprendizaje autosupervisado, sin necesidad
de etiquetas manuales, es decir, no se necesitan anotadores a diferencia del aprendizaje
supervisado. La seleccion de los objetivos de preentrenamiento define sus capacidades y
depende de la arquitectura disenada |[Gholami y Omar, 2023|. En los modelos basados
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en transformadores, la arquitectura puede incorporar un codificador, un decodificador o
ambos, cada uno con ventajas y limitaciones propias.

Modelos Codificador—Decodificador

También llamados secuencia-a-secuencia (del inglés sequence-to-sequence,seq2seq), combi-
nan un codificador que procesa la secuencia de entrada con un decodificador que genera
la salida. Su preentrenamiento suele alternar entre objetivos de prediccion de palabras
ocultas en medio de frases (masked language modeling, MLM)y la reconstruccion de frases
parciales o codificadas, favoreciendo tanto la comprension contextual como la generacion
precisa. Ejemplos destacados incluyen BART [M. Lewis et al., 2019] y T5 |Raffel et al.,
2020]. Aunque sobresalen en tareas como traduccion y resumen, escalar estas arquitecturas
a miles de millones de parametros plantea retos de eficiencia y memoria.
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Figura 2.1: Esquema de un modelo codificador—decodificador: atencién multicabeza, nor-
malizacion y generacion autorregresiva |[Vaswani et al., 2017].

Modelos Solo Codificador

Los modelos de solo codificador toman texto como entrada y a la salida un vector de
alta dimension del texto también conocido como embeddings del texto. Los casos de uso
de estos modelos son la clasificacion de texto, busqueda seméantica y el analisis de texto.
BERT [Devlin et al., 2018] y All-MiniLM son referentes en esta categoria.
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Modelos Solo Decodificador

Los modelos decodificadores se centran en generar un nuevo token para completar la
secuencia basdndose en los tokens anteriores, solo un token cada vez. Este conjunto de
tokens que pueden manejar prestandole atencion a todos es lo que se llama ventana de
contexto [Yang et al., 2019]. Son lideres en generacion de texto fluido y coherente, con
ejemplos como GPT |[Brown et al., 2020], Deepseek |et al., 2024], Gemma |Gemma Team,
2024] y Llama |Grattafiori et al., 2024| . Sin embargo, demandan grandes volimenes de
datos para entrenamiento y recursos computacionales, y pueden mostrar incoherencias o
repeticiones en secuencias extensas que superan el tamano de la ventana de contexto.

Las arquitecturas de codificador—decodificador, solo codificador y solo decodificador se
diferencian fundamentalmente en su enfoque y proposito: la primera esta concebida para
transformar una entrada en una salida distinta, procesando profundamente la informacién
entrante antes de reconstruirla; la solo codificador se centra exclusivamente en analizar y
extraer representaciones del contenido de entrada sin generar nueva informaciéon, mien-
tras que la solo decodificador esta disenada para generar secuencias de salida de forma
auténoma, basdndose tnicamente en estimulos previos, continuando asi la produccion de
texto de manera coherente y fluida. Por eso es que en la actualidad son los mas usados.

2.3.2 Técnica RAG: Retrieval-Augmented Generation

Aunque los LLM ofrecen un rendimiento excepcional en multitud de tareas, su depen-
dencia exclusiva de los datos de entrenamiento puede inducir alucinaciones, es decir,
respuestas incorrectas presentadas con elevada confianza. Para mitigar este problema y
mejorar la exactitud factual, se integran los LLM con motores de recuperaciéon de infor-
macion externa, dando lugar a la técnica de RAG [P. Lewis et al., 2020].

Ante una consulta, un sistema RAG realiza primero la busqueda de documentos rele-
vantes en fuentes como wikis, bases de datos o repositorios web. A continuacién, incorpora
los fragmentos recuperados como contexto adicional al prompt del LLM, lo que incremen-
ta la fiabilidad y actualidad de la respuesta generada. De este modo, RAG acttia como
puente entre el aprendizaje estadistico y la necesidad de acceder a hechos en tiempo real.

Funcion de las bases de datos vectoriales en RAG

Las bases de datos vectoriales son esenciales en RAG, pues permiten indexar y recuperar
documentos de forma eficiente [Han et al., 2023]. Cada fragmento de texto se representa
como un vector de alta dimension (embedding) que captura su significado seméntico. Al
transformar la consulta en un vector, el sistema identifica rapidamente los vectores més
afines y extrae los documentos mas relevantes. Este mecanismo optimiza la precision del
contexto proporcionado al LLM y reduce el coste computacional de la busqueda.

Ventajas

El enfoque RAG amplia las capacidades de los LLM [P. Lewis et al., 2020]:

Universidad de Valladolid 12 Luis Francisco Sanchez Turrion



2. Estado del arte
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Figura 2.2: Esquema general de un sistema RAG: recuperacion de documentos, fusiéon con
el prompt y generacion asistida por LLM [Gandhi, 2024]

e Mejorar la veracidad: incorpora informaciéon actualizada, esencial para consultas
sensibles al tiempo.

e Acceder a conocimientos especializados: va méas alla de los datos de entrena-
miento originales, 1til para especializados dominios.

e Reducir alucinaciones: disminuye la probabilidad de respuestas infundadas.

e Versatilidad: El mecanismo de RAG se puede implementar sin necesidad de un
entrenamiento previo del modelo.

Inconvenientes

e Calidad de recuperacion: la pertinencia de los documentos recuperados condi-
ciona directamente la validez de la respuesta.

e Latencia: la fase de busqueda puede introducir retrasos en el tiempo de respuesta.

e Complejidad de infraestructura: disenar y escalar un sistema RAG eficiente
requiere recursos y arquitecturas robustas.

2.3.3 Técnica Fine-tuning

El ajuste fino adapta modelos preentrenados a dominios o tareas concretas mediante en-
trenamiento supervisado sobre conjuntos de datos especificos. De este modo, el modelo
interioriza vocabulario, estilo y requisitos particulares de la tarea, optimizando su desem-
peno en aplicaciones como anélisis de sentimientos, generacion de resiimenes o interaccio-
nes especializadas [Mahabadi et al., 2021]. Un ajuste fino eficaz equilibra el conocimiento
general adquirido en el preentrenamiento con las demandas de la tarea objetivo.

El ajuste fino basado en instrucciones emplea ejemplos de pares prompt —respuesta que
guian el comportamiento del modelo hacia formatos y contenidos deseados |[Zhang et al.,
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2024]. Existen bases de datos especializadas para entrenar modelos en tareas especificas.
Entrenar un modelo exclusivamente en una tarea puede provocar un sobreentrenamiento
|[Kemker et al., 2018|, donde el conocimiento previo se sobrescribe y disminuye el ren-
dimiento en otras tareas. No obstante, resulta imprescindible evaluar la capacidad de
generalizacion mas alla del conjunto de entrenamiento proporcionado, ya que un sobreen-
trenamiento puede hacer que pierda su capacidad de generar texto coherente.

Para mitigar este efecto, el ajuste fino multitarea entrena simultdneamente en diversos
objetivos, compartiendo representaciones y preservando la versatilidad del modelo. Méto-
dos como FLAN-T5 [Longpre et al., 2023] y FLAN-PaLM [Chia et al., 2023| ejemplifican
este enfoque, aunque requieren grandes volimenes de datos y recursos computacionales.

Ajuste fino eficiente en parametros (PEFT)

Las técnicas de ajuste fino eficiente en parametros (PEFT) reducen el coste y el impacto
sobre los pesos preentrenados al modificar solo un subconjunto reducido de parametros o
anadir componentes ligeros [Fu et al., 2023|. De este modo, se conserva la mayoria de la
estructura original y se evitan efectos adversos sobre las capacidades generales del LLM.

Métodos selectivos Actualizan unicamente ciertos parametros, como capas o sesgos
concretos, lo que aporta eficiencia computacional, si bien su adaptabilidad a tareas muy
diferentes puede resultar limitada.

Una técnica selectiva es Bias-only Fine-Tuning (BitFit) que solo actualiza los tér-
minos del sesgo de las capas del modelo, dejando los pesos principales congelados en el
entrenamiento |Zaken et al., 2021].

Métodos aditivos Los métodos aditivos PEFT incorporan parametros o capas entre-
nables adicionales a un modelo preentrenado, sin modificar la estructura central ni los
parametros originales del modelo. Esta categoria incluye dos enfoques principales:

e Adaptadores: capas insertadas en la arquitectura que ajustan el modelo a tareas
especificas de forma modular.

e Prompts suaves: vectores de embedding entrenables anadidos al inicio del prompt,
permitiendo una adaptacion réapida mediante prompt tuning.

Aunque ofrecen gran flexibilidad, en escenarios complejos pueden requerir numerosos pa-
rametros adicionales, lo que impacta en almacenamiento y despliegue. La técnica mas
destacada es Low-Rank Adaptation (LoRA) que se basa en anadir una matriz extra a los
pesos del modelo y entrenar solo la nueva matriz [Hu et al., 2021, Dettmers et al., 2023|.

2.3.4 Generacion de tareas educativas con LLM

Los LLM se han propuesto recientemente como herramientas para generar automatica-
mente tareas educativas adaptadas al contexto del aprendiz (por ejemplo, [Cui y Sachan,

Universidad de Valladolid 14 Luis Francisco Sanchez Turrion



2. Estado del arte

2023]). Estos modelos, entrenados con enormes cantidades de datos textuales, poseen un
conocimiento amplio y la capacidad de seguir instrucciones para producir contenidos com-
plejos. En el ambito educativo, estas capacidades implican que un LLM con un prompt
adecuado puede generar enunciados de tareas, preguntas o actividades didacticas relevan-
tes para distintos contenidos y niveles, e incluso personalizarlas segiin las necesidades del
alumno o su entorno.

Ahora bien, para aprovechar plenamente los LLM en la generacion de tareas educati-
vas es necesario asegurar la relevancia y correccion de las actividades propuestas. Diversos
trabajos recientes exploran como mejorar estos modelos en dicho cometido. Por una par-
te, se ha propuesto integrar mecanismos de recuperaciéon de informacion externa durante
la generacion: |Li et al., 2025| plantean un modelo de RAG que consulta fuentes de co-
nocimiento abiertas para obtener datos actualizados o especificos del dominio educativo
antes de crear la tarea. Este enfoque ha mostrado mejoras en la precision factual y la
contextualizacion de las tareas generadas, ya que el modelo puede basar sus enunciados
en contenidos veridicos y pertinentes al curriculo en lugar de solo en su conocimiento
entrenado.

Por otra parte, se investigan técnicas de ajuste fino especializadas para dotar a los
LLM de mayores habilidades en la planificaciéon y elaboracion de tareas. En particular,
[Zeng et al., 2023] introducen AgentTuning, un método de ajuste fino orientado a que los
LLM acttien como agentes capaces de descomponer y resolver tareas complejas mediante
interacciones o herramientas externas. Al entrenar al modelo con trayectorias de solucion
de tareas paso a paso, este adquiere la capacidad de generar actividades educativas mas
estructuradas y multietapa sin perder sus habilidades generales de lenguaje.

Para evaluar que los LLM generen instrucciones y tareas adecuadas, se han desarro-
llado marcos de evaluacion exhaustivos de su atencion prestada al prompt. Trabajos como
InstructEval [Chia et al., 2023] y EvalVerse [Kim et al., 2024| proponen evaluar a
los modelos desde miltiples perspectivas — resoluciéon de problemas, calidad de la redac-
cion, alineamiento con valores humanos, etc. — verificando que el modelo siga fielmente
las instrucciones educativas y produzca enunciados conformes a los objetivos pedagogicos.

Las razones por las cuales se ha optado por desarrollar un sistema propio de genera-
cion de tareas educativas, en lugar de utilizar una solucién existente, son principalmente
dos. Primero, buscamos una herramienta que se adapte especificamente a las necesidades
pedagogicas identificadas. Segundo, queremos asegurar la privacidad y confidencialidad de
los datos, evitando depender de servidores de terceros para la obtencion y almacenamiento
de informacion.

2.4 Conclusiones

La integraciéon del aprendizaje ubicuo con tecnologias avanzadas de IA generativa, es-
pecialmente mediante el uso de modelos de lenguaje y técnicas como RAG, representa
una oportunidad significativa para personalizar y enriquecer las experiencias educativas
relacionadas con el patrimonio cultural. Los LLM destacan por su capacidad de generar
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automaticamente tareas educativas adaptadas al contexto y las necesidades especificas del
estudiante, apoyandose en fuentes externas para garantizar precision factual y pertinencia
curricular.

El enfoque basado en Datos Abiertos Enlazados (LOD), probado en sistemas como
Casual Learn, ya ha demostrado su eficacia generando tareas geolocalizadas y contex-
tualizadas de forma masiva. Sin embargo, aunque este enfoque proporciona contenidos
educativos relevantes, su escalabilidad esté limitada por la dependencia de plantillas pre-
definidas y la necesidad de actualizaciones manuales o semiautomaéticas cuando cambian
los datos subyacentes.

En contraste, los LLM permiten una generaciéon dinamica y personalizada de tareas,
capaz de integrar nuevas fuentes de informacién y adaptarse en tiempo real a diversos con-
textos educativos. La combinacion de ambas tecnologias, utilizando técnicas como RAG
junto con bases de datos vectoriales y repositorios semanticos como Casual Learn, permi-
te solventar las limitaciones individuales de cada método. Sin embargo, esta integracion
plantea desafios técnicos significativos en términos de latencia, calidad de recuperacion
de informacién y la complejidad de la infraestructura necesaria.

Por ello, el desarrollo del sistema planteado en este trabajo debera contemplar no so-
lo la integracion efectiva de ambas tecnologias, sino también la necesidad de simplificar
el proceso subyacente de obtencién y generacion de tareas educativas. De este modo, se
asegurard una experiencia fluida y efectiva que permita a estudiantes y docentes benefi-
ciarse plenamente de las potencialidades de estas herramientas avanzadas sin enfrentarse
a barreras tecnologicas innecesarias.
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Capitulo 3
Analisis

En este capitulo se realiza el analisis de los requisitos del sistema propuesto, con el
objetivo de determinar las funcionalidades y caracteristicas que debe cumplir para
satisfacer las necesidades de los usuarios finales. En el contexto de este TFG, los
usuarios principales son estudiantes y docentes que utilizaran la herramienta para
generar y evaluar tareas de aprendizaje ubicuo. A partir de un ejemplo de uso,
se identifican los requisitos funcionales y no funcionales del sistema. Ademas, se
describen los casos de uso més representativos y se discute la arquitectura general
del sistema, justificando la eleccién del modelo que finalmente se implementaré.

3.1 Introducciéon

Siguiendo la metodologia 4gil Scrum presentada en la Seccion 1.2, que permite un desa-
rrollo iterativo y adaptativo del producto, en este capitulo se aborda la fase de analisis
del proyecto. Esta fase tiene como proposito identificar los requisitos que el sistema debe
cumplir para alcanzar los objetivos planteados. Dado que no existe un cliente tradicional,
los requisitos se han definido en colaboracion con los tutores del TFG y expertos del grupo
de investigacion GSIC/EMIC, basandose en su experiencia en tecnologias educativas y en
las necesidades de los usuarios finales: estudiantes de los tltimos cursos de Ensenanza
Secundaria Obligatoria y Bachillerato, asi como docentes interesados en integrar el apren-
dizaje ubicuo en sus clases.

El sistema propuesto busca aprovechar herramientas de inteligencia artificial gene-
rativa (como modelos de lenguaje de gran tamano) y datos de Wikipedia y informacion
proporcionada por los docentes para generar tareas contextualizadas y ofrecer retroalimen-
tacion automética. Ademas, en esta seccion se reflexiona sobre la arquitectura general del
sistema, influenciada por los requisitos identificados y las limitaciones técnicas del entorno
de desarrollo, como el uso de frameworks.
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3.2 Ejemplo de Uso del Sistema

Para contextualizar los requisitos, se describe un escenario representativo de céomo un
usuario interactuaria con el sistema. Supongamos que un docente de Historia del Ar-
te desea generar tareas personalizadas para sus estudiantes, aprovechando el patrimonio
cultural de Valladolid. El docente accede al sistema a través de una interfaz web o mo-
vil, selecciona el tema «Arquitectura Herreriana» y especifica que las tareas deben estar
vinculadas a monumentos locales, como la Catedral de Valladolid. El sistema, utilizan-
do Inteligencia Artificial Generativa y datos extraidos de Wikipedia o de la informacion
proporcionada, genera automaticamente un conjunto de tareas que indica el docente:

e 5 preguntas de opciéon multiple sobre las caracteristicas herrerianas de la catedral.

e Una actividad que requiere tomar una fotografia de un elemento arquitecténico
especifico.

Posteriormente, un estudiante accede a una de estas tareas desde su dispositivo mo-
vil mientras visita la catedral. Tras responder a una pregunta de texto libre, el sistema
evaliia automaticamente su respuesta utilizando un modelo de lenguaje y le proporciona
retroalimentacion inmediata, indicando si su anélisis es correcto y sugiriendo aspectos me-
jorables. Este ejemplo ilustra la necesidad de un sistema que integre generacion de tareas
contextualizadas y evaluacion automatizada, alineandose con los objetivos del proyecto
descritos en la Secciéon 1.1.

3.3 Identificacién de Requisitos

Estos requisitos se heredan de los descritos en trabajos anteriores de Casual Learn |Gar-
cla Zarza, 2021; Ruiz-Calleja et al., 2022|, de donde se han identificado los requisitos
funcionales y no funcionales que el sistema debe cumplir. Estos requisitos buscan asegu-
rar que la herramienta sea ttil tanto para docentes como para estudiantes en un entorno
de aprendizaje ubicuo.

3.3.1 Requisitos Funcionales

RFO01: El sistema debe permitir a los docentes generar tareas de aprendizaje persona-
lizadas, especificando parametros como tema, nivel de dificultad, tipo de tarea y
contexto geografico (p.ej., puntos de interés locales).

RF02: Elsistema debe integrar datos de Wikipedia y proporcionados por el docente para
enriquecer las tareas con informacién contextual relevante.

RF03: El sistema debe soportar la generacion de diversos tipos de tareas, incluyendo
preguntas de desarrollo, de opciéon miiltiple y actividades basadas en la ubicaciéon
(p. €j., tomar fotografias).

RFO04: El sistema debe evaluar autométicamente las respuestas de los estudiantes y pro-
porcionar retroalimentacion inmediata.
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3.3.2 Requisitos No Funcionales

RNFO1: El sistema debe generar tareas en el menor tiempo posible dado los recursos
computacionales disponibles.

RNFO02: Elsistema debe garantizar la privacidad y seguridad de los datos de los usuarios,
especialmente las respuestas de los estudiantes, cumpliendo con la Ley Orgénica
3/2018 de Proteccion de Datos y Garantia de los Derechos Digitales|Gobierno de
Espaiia, 2018|.

RNFO03: El sistema debe ser escalable en funcion del hardware disponible, de modo que
pueda gestionar simultdneamente tanto la generacion de tareas como la correccion
de las mismas sin comprometer el rendimiento. Con el hardware utilizado durante
las pruebas, y dependiendo del modelo empleado, es posible atender entre 2 y 5
usuarios simultéaneos.

3.4 Casos de Uso del Sistema

Los casos de uso describen las interacciones clave entre los usuarios y el sistema, basdéndose
en los requisitos identificados. A continuacion, se presentan los casos mas representativos:

3.4.1 CUO01: Generacion de Tareas

Actor: Docente.
Precondiciones: El docente estd autenticado en el sistema.

Postcondiciones: El sistema recibe los parametros de la tarea y genera un conjunto de
tareas personalizadas para el grupo de estudiantes.

Camino Bésico:

1. El docente accede a la interfaz y selecciona pardmetros para la generacion de las
tareas.

2. El sistema utiliza un modelo de TA generativa, datos externos (p.ej., Wikipedia) y
los ficheros subidos por el docente para generar las tareas teniendo en cuenta los
parametros seleccionados anteriormente.

3. Las tareas generadas se presentan al docente para su revisiéon y su uso posterior.

3.4.2 CUO02: Evaluaciéon de Respuestas

Actor: Estudiante.
Precondiciones: El estudiante ha completado una tarea generada por el sistema.

Postcondiciones: El sistema evalia la respuesta y proporciona retroalimentacion deta-
llada.
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Camino Basico:

1. El estudiante accede a la tarea a través de la interfaz y envia su respuesta.

2. El sistema procesa la respuesta utilizando un modelo de lenguaje y teniendo en
cuenta los parametros del estudiante (p.ej., Nivel educativo).

3. El sistema devuelve retroalimentacion al estudiante, indicando aciertos y areas de
mejora.

3.4.3 CUO03: Subir Documento

Actor: Docente.

Precondiciones: El docente esta autenticado en el sistema.

Postcondiciones: El sistema busca la base de datos vectorial asociada al docente.

Camino Basico:

1. El usuario selecciona la opcién de subir documento.

2. El sistema toma los ficheros o las URLs proporcionadas, si son validas las convierte
a texto que vectoriza y almacena.

3. El nombre del fichero o URL aparece como almacenado en la base de datos vectorial.

3.4.4 CUO04: Borrar Documento

Actor: Docente.

Precondiciones: El usuario esta autenticado en el sistema.

Postcondiciones: El sistema elimina la informacién del documento o URL almacenada.

Camino Basico:

1. El usuario indica el nombre del fichero o URL que quiere eliminar.
2. El sistema borra la informacion seleccionada.

3. El nombre del fichero deja de aparecer como almacenado en la interfaz.

3.4.5 CUO05: Consultar Documentos Almacenados
Actor: Docente.

Precondiciones: El usuario esta autenticado en el sistema.
Postcondiciones: El sistema muestra la informacién almacenada.

Camino Basico:

1. El usuario indica que quiere consultar la informacién almacenada.

2. El sistema devuelve los nombres de los ficheros almacenados al usuario.
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3.5 Discusiéon de la Arquitectura del Sistema

La seleccion de una arquitectura de sistema adecuada es un paso fundamental para ga-
rantizar el cumplimiento de los requisitos funcionales y no funcionales identificados. En el
contexto de este proyecto, la necesidad de integrar componentes tecnolégicamente avan-
zados, como modelos de Inteligencia Artificial generativa, bases de datos vectoriales y
fuentes de datos externas, exige una evaluacion metodica de las distintas alternativas ar-
quitectonicas disponibles.

Para este sistema, se consideraron tres paradigmas principales:

e Arquitectura Monolitica: Este enfoque tradicional integra todas las capas fun-
cionales (logica de negocio, acceso a datos y, en ocasiones, la presentacion) en un
tinico componente de software. Su principal ventaja reside en la simplicidad del de-
sarrollo y despliegue inicial, al no requerir la gestion de comunicacion entre servicios
distribuidos. Sin embargo, esta estructura presenta limitaciones significativas en tér-
minos de escalabilidad y flexibilidad, ya que cualquier modificaciéon o fallo en una
parte del sistema puede afectar al conjunto, y escalar componentes individuales de
forma eficiente resulta complejo.

e Arquitectura de Microservicios: En contraposicion, este modelo divide el siste-
ma en un conjunto de servicios pequenos, auténomos e independientes (por ejemplo,
un servicio para la generacion de tareas, otro para la evaluacion y un tercero para la
gestion de datos). Estos se comunican a través de APIs bien definidas, habitualmen-
te REST. Ofrece una escalabilidad y flexibilidad superiores, permitiendo desarrollar,
desplegar y escalar cada servicio de forma independiente. Su principal desventaja
es el notable incremento en la complejidad de gestion, que incluye la orquestacion
de servicios, la monitorizacion, la resiliencia y la consistencia de los datos en un
entorno distribuido.

e Arquitectura en Capas: Este paradigma, que puede considerarse un punto inter-
medio, organiza el sistema en capas logicas horizontales, pero generalmente dentro
de una misma aplicacion. Permite una clara separacion de responsabilidades y una
mayor modularidad que la arquitectura monolitica, facilitando su mantenimiento.
No obstante, su flexibilidad para el escalado sigue siendo menor que la de los mi-
croservicios, ya que las capas permanecen acopladas dentro de una tnica unidad de
despliegue.

Tras analizar las ventajas y desventajas de cada alternativa en el contexto de este Tra-
bajo de Fin de Grado, se opt6 por implementar una arquitectura monolitica. Esta decision
se fundamenta principalmente en la necesidad de agilizar el desarrollo inicial y simplifi-
car la gestion del sistema, priorizando la rapida construcciéon de un prototipo funcional.
Una arquitectura de este tipo permite consolidar todas las funcionalidades (generacion
de tareas, evaluacion, almacenamiento) en una sola aplicacién ejecutada en una tnica
maquina, lo que facilita considerablemente la gestion del ciclo de vida del software y el
mantenimiento.
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De esta manera, se evita la complejidad inherente a las infraestructuras distribuidas,
como la configuracién de redes, el descubrimiento de servicios y la gestion de la comuni-
cacion entre componentes. Ademés, la comunicacién interna entre los distintos médulos
del sistema se simplifica enormemente, ya que no es necesario implementar y mantener
protocolos externos como APIs REST para su interaccion, lo que agiliza el desarrollo ini-
cial y facilita la realizacion de pruebas integradas, rapidas y eficientes.

Si bien se reconoce que esta arquitectura no es la méas 6ptima en términos de escalabi-
lidad a largo plazo, se considera la més pragmética para los objetivos y el alcance de este
proyecto. Se plantea como una base sélida sobre la cual, en trabajos futuros, se podria
evolucionar hacia un modelo de microservicios a medida que las necesidades del sistema
crezcan y se requiera una mayor escalabilidad y desacoplamiento.

3.6 Adaptacion de plantillas LOD a la IA Generativa

Para satisfacer los nuevos requisitos, se reemplaza el sistema de plantillas LOD por un
prompt parametrizado que actie como instruccién dindmica para un LLM. A partir del
analisis de los parametros originales (tipo de entidad, propiedades como dbo:style, ubi-
cacion, skos:related) y de las necesidades de los educadores, se definen los siguientes
grupos de parametros:

Perfil del Estudiantado: Nivel educativo, dificultad y conocimientos previos.

Contexto del Contenido: Materia y tema, refinando la contextualizaciéon tematica que
antes se basaba tinicamente en etiquetas skos:related.

Fuente de Datos: Posibilidad de subir ficheros o cargar desde URL, rompiendo la de-
pendencia exclusiva del LOD mediante RAG.

Contexto de la Tarea: Espacio de la pregunta (fisico/virtual) y puntos de interés A /B,
heredando y mejorando la geolocalizacion y comparacion de entidades.

Especificaciéon Pedagédgica: Taxonomia de Bloom para indicar el nivel cognitivo de-

YO RN

seado (por ejemplo, “analizar”, “comparar”) y tipo de tarea (por ejemplo, “MCQ”,
“toma una foto”).
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El cambio de paradigma se resume en la siguiente comparativa:

Caracteristica

Plantillas LOD

Prompt IAGen

Logica

Fuente de Datos
Flexibilidad
Personalizacion

Control

Extractiva: filtra entidades e
inserta en texto fijo.
Acoplada a ontologias LOD
especificas.

Baja: requiere programar nue-
vas plantillas.

Limitada: perfil genérico.

Basado en propiedades de da-
tos (dbo:style).

Generativa: comprende con-
texto y crea texto nuevo.
Agnostica: cualquier texto (fi-
chero, URL) via RAG.

Alta: nuevos tipos de pregun-
tas via parametros.

Profunda: nivel, dificultad y
conocimientos detallados.
Basado en intenciones pedagdo-
gicas (Bloom, dificultad).

Tabla 3.1: Comparativa entre plantillas LOD y prompt parametrizado.

Para que las tareas generadas por el sistema de IA sean programéaticamente tutiles y
puedan ser integradas en una aplicacion de aprendizaje, es indispensable que su salida
no sea texto libre, sino un formato estructurado y predecible. La inspiracion para definir
estos formatos proviene directamente del anéalisis de las tareas propuestas por profesores
y expertos en la Tabla 2 del articulo Supporting contextualized learning with linked open
data|Ruiz-Calleja et al., 2021].

Type TEL Experts Teachers
Outcome

Text 36 (71 %) 15 (45 %)
Photo 18 (35%) 15 (45 %)
Audio 0 (0%) 4 (12%)
MCQ selection 1(2%) 2 (6%)

Map 1(2%) 0 (0%)

Video 1(2%) 1 (3%)

Tabla 3.2: Recreacion de la seccion de Outcome de la tabla 2 [Ruiz-Calleja et al., 2021].

Dicha tabla clasifica las tareas seguin diversas caracteristicas, siendo la mas relevante
para nuestro proposito la columna Outcome (Resultado esperado). En ella se observa que
las tareas manuales solicitaban resultados variados, como la redaccion de Text, la toma
de una Photo, o la seleccion en un MCQ selection. Estas categorias representan los tipos
de interaccion que los educadores consideran pedagoégicamente valiosos en un contexto de
aprendizaje ubicuo.

Nuestra aproximacion adapta estos resultados esperados al paradigma de la TA Gene-
rativa, traduciéndolos en tipos de preguntas concretas que el LLM puede generar. La forma
de materializar esta adaptacion es instruir al modelo para que su respuesta se adhiera a
un esquema de salida especifico para cada tipo de tarea. Esto garantiza la consistencia,
fiabilidad y facilidad de integracion de las tareas generadas.
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A partir de este analisis, hemos definido los siguientes tipos de tareas como objetivos
iniciales, cada uno con su correspondiente formato de salida estructurada:

e Desarrollo simple (Respuesta abierta): Corresponde al Qutcome: Text de la
Tabla 2. Es ideal para preguntas que requieren reflexion, descripciéon o argumenta-
cion. La estructura incluird un campo para el enunciado de la pregunta y la respuesta
correcta a esta pregunta.

e Opcion Multiple (Tipo test): Es la implementacion directa del Outcome: MCQ
selection. Este formato es perfecto para evaluar el conocimiento factual de manera
rapida y objetiva. La esctructura contendra el enunciado, una lista de opciones y la
indicaciéon de la respuesta correcta.

e Verdadero o Falso: Aunque no figura explicitamente como una categoria mayori-
taria en la tabla, es un tipo de pregunta fundamental para la verificacion rapida de
conceptos. Su estructura incluird una afirmaciéon y un valor booleano indicando la
respuesta correcta.

e Sacar Fotografia: Refleja el Outcome: Photo. Esta tarea no evaliia conocimiento
de forma tradicional, sino que promueve la observacion activa en un entorno fisico.

Al definir estos formatos de salidas estructuradas, no solo hacemos que las tareas sean
técnicamente manejables, sino que también ofrecemos a los educadores la capacidad de
solicitar tipos de interaccion especificos, replicando la riqueza pedagogica observada en las
tareas disenadas manualmente, pero con la flexibilidad y escalabilidad de la IA Generativa.
La especificacion detallada de cada esquema JSON se abordara en el capitulo de Diseno
e Implementacion.

3.7 Conclusiones

La fase de analisis ha permitido definir los requisitos funcionales y no funcionales del
sistema, asi como los casos de uso que guiaran su desarrollo. Se ha establecido que el
sistema debe generar tareas contextualizadas, evaluar respuestas automaticamente y ser
accesible en entornos ubicuos, todo ello soportado por una arquitectura monolitica que
asegura el desarrollo de un prototipo inicial. Estos resultados sientan las bases para la
siguiente etapa del proyecto, el Disefio del Sistema (Capitulo 4), donde se detallaran los
componentes especificos de la arquitectura, como la integracion de LangChain para la
gestion de contexto, el uso de Ollama para la generacion de contenido y la estructura de
la APT REST que conectaré los servicios. El diseno partira de las necesidades identificadas
aqui, especificando coémo se implementaran técnicamente las funcionalidades propuestas.
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Capitulo 4
Diseno

En este capitulo se detalla el proceso de diseno del sistema propuesto, que combina
el aprendizaje ubicuo con la generaciéon de tareas asistida por un modelo de lenguaje
siguiendo la técnica de Generacion Aumentada por Recuperacion (RAG). Se descri-
ben la arquitectura general del sistema, el diseno del servidor y de la API REST
desarrollada, la construcciéon de los prompts optimizados mediante la metodologia
C.R.A.F.T., asi como los componentes encargados de la generacién de tareas y la
correccion automéatica. También se define el formato de las tareas generadas (en for-
mato JSON estructurado mediante modelos Pydantic) y se presenta una vision de la
arquitectura completa integrando todos los elementos.

4.1 Introduccion

El presente capitulo tiene como finalidad detallar el diseno de la aplicaciéon desarrollada
en el marco de este TFG, sentando las bases necesarias para cumplir con los requisitos
identificados y documentados en la fase de analisis previa, tal como se expone en el Ca-
pitulo 3. La exposicion del diseno se inicia desde una perspectiva general, presentando la
arquitectura logica del sistema, para luego avanzar hacia una descripcion minuciosa de
los componentes principales que conforman la aplicacion distribuida. En este contexto, se
abordan las funciones especificas asignadas al servidor y al cliente, asi como las interac-
ciones entre estos elementos y, cuando sea pertinente, con servicios externos.

La arquitectura general del sistema se plantea desde un enfoque légico, con el propoési-
to de esclarecer las responsabilidades de cada componente de la aplicacion. Este enfoque
permite establecer una vision integral del sistema antes de profundizar en los detalles de
su implementacion. A continuacién, se procede a disenar de manera especifica las par-
tes desarrolladas en este TFG que se encargan del servidor del sistema. En el caso del
servidor, se destacan sus caracteristicas principales, con especial énfasis en la exposicion
de recursos que facilitan la obtenciéon de informaciéon para la generacion de tareas edu-
cativas. Asimismo, se subraya su capacidad para gestionar usuarios, almacenar datos de
forma persistente y garantizar la privacidad mediante el procesamiento local de la infor-
macion, evitando la dependencia de servicios externos. Este diseno asegura la integridad
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y el aislamiento de los datos de cada usuario, al tiempo que incorpora un contexto ubicuo
que enriquece las tareas generadas.

4.2 Arquitectura del sistema

El sistema se ha disenado como una aplicacién monolitica capaz de satisfacer los requisitos
indicados en el Capitulo 3. A diferencia de arquitecturas distribuidas complejas, este
enfoque consolida toda la l6gica de negocio —incluida la gestion de datos, la interaccion
con los modelos de lenguaje y la exposicion de la API REST |Fielding, 2000]— en un
tnico servidor. Esta decision de diseno, como se justifico en la seccion 3.5, prioriza la
simplicidad, la facilidad de despliegue y un control total sobre el flujo de datos, aspectos
cruciales en un entorno académico y de investigacion.

La arquitectura del sistema busca disminuir al maximo la probabilidad de alucinacion
del modelo y maximizar las posibilidades de generar tareas relevantes en el contexto
educativo del alumno. Para lograrlo, se integra un potente pipeline de RAG directamente
en el servidor.

Cliente Servidor
Fichero
Subir | ,| Basede patos
Vectorial
Fichero Borrar — ..' L
Consulta — I
Listar ficheros — -—
— l—]
Ficheros
almacenados
RAG
Docente 4@,‘/
P
3y, & - .
a5 Generar | LLM Wikipedia
Tareas —| A Datos 7 ;?4\‘35%
g \
D O T T 5 & T we
Respuestas . @ Wikipedia s Q ()),/)(
Corregir - (o om
Tareas e—| X =
Resultados S ).
Alumno

Figura 4.1: Esquema de la arquitectura del sistema.

Como se muestra en la Figura 4.1, la arquitectura se compone de los siguientes ele-
mentos clave:

e Cliente: Es la interfaz con la que interactia el usuario (docente o alumno). Puede
ser una aplicaciéon web, una app movil o cualquier otro software capaz de consumir
una API REST. Su responsabilidad principal es presentar la informaciéon de manera
intuitiva y enviar las peticiones del usuario al servidor. En este TFG no se desarrolla
un cliente especifico, pero la API REST se disena para que cualquier cliente pueda
implementarse facilmente.

e Servidor (Backend): Es el corazén del sistema y el foco de este proyecto. Alberga
toda la logica y se encarga de:
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— API REST: Exponer los endpoints para que el cliente pueda interactuar con
el sistema (gestionar ficheros, generar tareas, corregir respuestas).

— Gestion de Usuarios y Sequridad: Autenticar las peticiones mediante claves de
API, garantizando que cada usuario acceda tinicamente a sus propios datos.

— RAG:

x Gestion de la Base de Conocimiento: Procesar los documentos y URLs
subidos por el usuario (docente). Incluye la fragmentacion del texto, la
generacion de embeddings y su almacenamiento en una base de datos vec-
torial persistente.

x Recuperacion de Contexto: Ante una solicitud de generacion de tareas,
buscar en la base de datos vectorial los fragmentos de texto més relevantes
para el tema solicitado.

x Integracion con Modelos de IA: Orquestar las llamadas a los modelos de
lenguaje locales. Construye los prompts inyectando el contexto RAG y
la informacién de fuentes externas, y fuerza la salida en formato JSON
estructurado.

e Componentes en la generacion de tareas:

— Base de datos vectorial: Es la que almacena los embeddings de los documentos
del usuario de forma persistente. Cada usuario tiene su propia coleccion aislada
del resto.

— Gestor de LLM: Plataforma para ejecutar localmente modelos de lenguaje de
gran tamano. Al no depender de servicios externos, se garantiza la privacidad
de los datos y se reducen los costes operativos.

e Servicios Externos (Opcionales):

— Fuentes de datos externos: Utilizada para enriquecer el contexto de las tareas
cuando se proporciona un Punto de Interés (POI), como un monumento o un
lugar histérico. El servidor consulta esta API para obtener descripciones y
datos relevantes (p.ej. Wikipedia).

Flujo de trabajo tipico

Para ilustrar como interactiian estos componentes, consideremos el siguiente ejemplo de
uso:

1. Fase de Preparaciéon (Docente):

a) El docente se autentica con su API Key mediante el cliente. Sube sus apuntes
o otra fuente de informacion sobre el “Arte Roméanico en Palencia’.

b) El servidor procesa el fichero con el RAG, genera los embeddings y los almacena
en la coleccion de vectores en la base de datos vectorial del docente.

2. Fase de Generacion de Tareas (Docente):
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a) El docente solicita 3 tareas de opcion miltiple sobre “Arte Roménico” en el
POI “Catedral de Palencia”. Que con sus apuntes hara RAG para dar contexto
al LLM

b) El servidor:

1) Consulta la Wikipedia API para obtener informacion sobre la “Catedral
de Palencia”.

2) Realiza una busqueda seméntica en ChromaDB para recuperar los frag-
mentos méas relevantes.

3) Construye un prompt que integra la informacion de Wikipedia y los frag-
mentos recuperados.

4) Llama al modelo de lenguaje local, exigiendo salida en formato JSON.

c) El cliente recibe el JSON con las 3 tareas con su solucién correspondiente y las
presenta al docente para su revision.

3. Fase de Realizacion y Evaluacion (Estudiante):

a) El estudiante responde a una de las tareas.

b) La respuesta y la solucion correcta proporcionada en el momento de generar
las tareas se envian al servidor.

c¢) El servidor utiliza un modelo de TA local para comparar la respuesta con la
soluciéon y devuelve retroalimentacion automatica.

Esta arquitectura monolitica y centrada en [A local ofrece una solucién potente, segura
y personalizable, alineada con las necesidades de un entorno educativo moderno.”

4.3 Diseno del servidor

El servidor del sistema tendra que exponer una serie de recursos para la obtencién de la
informacion para generar las tareas. El servidor integra la gestion de usuarios, el almace-
namiento de datos, la integracion de contexto ubicuo y la potencia de computo necesaria
para ejecutar los modelos de inteligencia artificial de forma local. Que la informacion se
almacene de forma local es necesario para no tener que dar informaciéon a servicios de
terceros. Asi se garantiza la privacidad de los documentos del docente o de la informaciéon
del alumnado.

4.3.1 Gestiéon de usuarios y seguridad

Dado que el sistema esté diseniado para ser utilizado por multiples usuarios (estudiantes o
profesores), el servidor implementa una gestion de usuarios basica mediante un mecanismo
de autenticacion con claves de API. En lugar de manejar sesiones complejas o datos perso-
nales extensos, se asigna a cada cliente registrado una clave tinica y secreta. Esta clave de
API debe incluirse en la cabecera de cada peticion HT'TP que el cliente realice al servidor.

El servidor verifica la validez de esta clave en cada solicitud, identificando asi al usuario
y autorizando el acceso a los recursos. Este esquema, aunque sencillo, cumple dos funciones
clave:
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e Seguridad: Impide accesos no autorizados a la API.

e Multiusuario: Permite asociar los datos a un usuario especifico, garantizando que
cada usuario solo pueda acceder a su propia informacion.

4.3.2 Almacenamiento de datos

El servidor gestiona el almacenamiento persistente de todos los datos del sistema.

e Informacién para la generacién de tareas: Utilizando la base de datos vectorial
en modo persistente, los embeddings y los fragmentos de texto se almacenan en el
disco del servidor. Cada usuario tiene su propia colecciéon en la base de datos, iden-
tificada de forma tnica, lo que garantiza el aislamiento de los datos. Esto significa
que las busquedas RAG de un usuario solo se realizaran sobre los documentos que
ese usuario ha subido.

e Ficheros de usuario: Los ficheros originales que los usuarios suben se guardan en
el sistema de ficheros del servidor, en una estructura de carpetas organizada por los
identificadores tinicos de cada usuario. Esto permite listar y eliminar de los ficheros
fuente.

e Tareas generadas: Las tareas generadas por el LLM, junto con sus soluciones, no
se almacenan de forma persistente en una base de datos. Se mantienen en la memoria
del servidor durante la sesién activa del usuario, lo que simplifica el diseno.

4.3.3 Integracion de contexto ubicuo

Un objetivo fundamental del sistema es soportar el aprendizaje ubicuo, lo que implica que
las tareas puedan adaptarse al contexto fisico o situacional del estudiante. El diseno del
servidor incorpora este contexto dindmico de dos maneras:

1. Informacion de Puntos de Interés (POI): El sistema puede recibir como entra-
da el nombre de un punto de interés (por ejemplo, Catedral de Valladolid). Utilizan-
do la API de Wikipedia, el servidor extrae automaticamente el articulo correspon-
diente a ese POI. Esta informacién se inyecta directamente en el prompt del LLM,
permitiéndole generar preguntas que hagan referencia a la historia, arquitectura o
detalles especificos del lugar donde se encuentra el estudiante.

2. Conocimiento del usuario (RAG): El sistema enriquece atin mas el contexto
utilizando la arquitectura RAG. Se buscan en la base de conocimiento del usuario
los fragmentos mas relevantes para el tema de la tarea y el POI. De este modo,
las preguntas no solo se basan en la informacion genérica de Wikipedia, sino que
también se conectan con los apuntes y materiales que el profesor o el propio alumno
han cargado previamente.

Esta doble fuente de contexto permite crear tareas altamente personalizadas y situadas,
aumentando la calidad y relevancia en un entorno de aprendizaje ubicuo.
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4.3.4 Arquitectura RAG: indexacién y recuperaciéon de informa-
cién

Una pieza central del sistema es el subsistema de RAG, encargado de incorporar informa-
cion contextual relevante en la generacion de las tareas. Este enfoque es fundamental para
mitigar las alucinaciones de los modelos de lenguaje y asegurar que las tareas generadas se
basen en conocimiento especifico y fiable. Este subsistema opera en dos fases principales:
la fase de indexacion (preparacion de la base de conocimiento) y la fase de recuperacion
semantica.

Fase de indexacién

En primer lugar, el sistema debe preparar y almacenar la informacién de referencia de
modo que pueda ser recuperada eficientemente més adelante. A tal efecto, el conteni-
do relevante proporcionado por el usuario, el sistema acepta tanto .pdf, .txt, .docx,
transcripciones de videos de YouTube y contenido de paginas web que se transforma en
representaciones vectoriales mediante un modelo de embeddings.

El proceso de indexacion se desglosa en los siguientes pasos:

1. Subida de datos: Cada fuente se convierte en un formato de texto y fuente del
contenido.

2. Fragmentacion: Cada documento o fuente de datos es dividido en fragmentos
manejables llamados chunks de un tamano fijo de caracteres con un cierto sola-
pamiento entre fragmentos. Esta division es crucial, ya que fragmentos demasiado
grandes pueden diluir la informacion relevante, mientras que fragmentos demasiado
pequenos pueden carecer de contexto. Se utiliza una estrategia de division de texto
recursiva que intenta mantener la cohesion semantica de los fragmentos.

3. Vectorizacion: A cada fragmento de texto se le calcula un vector en un espacio
de alta dimension que captura su contenido seméntico. Este proceso de codificacion
semantica se realiza con un modelo de embedding entrenado para captar similitudes
de significado entre textos. Dos fragmentos con significado similar tendran vectores
cercanos en este espacio vectorial.

4. Almacenamiento: Los vectores resultantes se almacenan en una base de datos
vectorial. Junto a cada vector, se guardan el texto del fragmento original y meta-
datos que identifican la fuente y el identificador tinico del usuario propietario de la
informacion.

De esta forma, la base de conocimiento queda indexada: es posible buscar informa-
cion relevante mediante comparaciones de similitud entre vectores (generalmente usando
la similitud del coseno), en lugar de por coincidencia de palabras clave exactas. La elec-
cion de una base de datos vectorial como ChromaDB permite almacenar eficientemente
cientos o miles de embeddings y recuperarlos en tiempo real usando estructuras de indice
optimizadas.
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Fase de Indexacion
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Figura 4.2: Esquema de la fase de indexacion.
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Fase de recuperacion seméantica

Una vez la base de conocimiento esta indexada, la fase de recuperacion se encarga de, dado
un requerimiento o contexto actual, extraer los fragmentos de informacion mas relevantes
para la generacion de las tareas. Cuando el sistema recibe una solicitud para generar
nuevas tareas (por ejemplo, sobre un tema especifico indicado por el usuario), el proceso
es el siguiente:

1. Creaciéon de la consulta: De la consulta del usuario se utiliza el tema de las
tareas, el tema se transforma en un vector utilizando el mismo modelo de embedding
empleado en la fase de indexacion.

2. Buisqueda por similitud: Con este vector de consulta, la base de datos vectorial
realiza una bisqueda por similitud. Devuelve los fragmentos de informacion almace-
nados cuyos vectores son mas cercanos al vector de consulta en el espacio vectorial;
es decir, los fragmentos més seménticamente relacionados con la solicitud.

3. Construccion del contexto: Esta buisqueda tipicamente retorna un conjunto de
los k fragmentos mas similares, donde k es un parametro configurable. Dichos frag-
mentos recuperados constituyen el contexto que luego se proporcionara al modelo
generativo de lenguaje. Junto a estos fragmentos se pasan los metadatos para poder
saber de donde proviene la informacién.

En esencia, el sistema esta recuperando las piezas de conocimiento mas pertinentes
desde su base de datos para que el modelo las use al crear las tareas. Al limitar la ge-
neracion de contenido a informacion respaldada por este contexto recuperado, se busca
que las tareas producidas sean pertinentes, correctas y estén alineadas con el material de
referencia disponible.

Fase de Recuperacion
Semantica

©-0-0

Vectorizacion Busqueda Recuperacion de
de la consulta por similitud los fragmentos
del usuario

Figura 4.3: Esquema de la fase de recuperaciéon seméntica.
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4.3.5 Diseno de la API REST
Diseno de la API REST

Para que una aplicacion cliente (como una app movil o una plataforma web) pueda inter-
actuar con las funcionalidades de generacion y evaluacion de tareas, es necesario definir
una interfaz de comunicacién robusta y estandarizada. El servidor expone sus capacidades
a través de un servicio web que sigue los principios de la arquitectura REST (Representa-
tional State Transfer) |Fielding, 2000]. Esta eleccion se fundamenta en varios principios
clave que son ideales para este proyecto:

e Arquitectura Cliente-Servidor: Se mantiene una separacion clara entre el cliente
(la interfaz de usuario) y el servidor (la logica de negocio y el acceso a la TA). Esta
modularidad permite que el backend desarrollado en este TFG pueda ser consumido
por diferentes tipos de clientes en el futuro sin necesidad de modificaciones.

e Comunicacion sin Estado (Stateless): Cada peticion del cliente al servidor con-
tiene toda la informacion necesaria para su procesamiento. El servidor no almacena
estado de sesiéon entre peticiones. Por ejemplo, la generaciéon de tareas se inicia
encolando una solicitud mediante POST /query_task (incluyendo tema, dificultad,
parametros, etc.) y su estado se consulta con GET /query_task/{id_query_task},
sin requerir contexto previo en el servidor.

e Interfaz Uniforme: Las interacciones se basan en la manipulaciéon de recursos
identificados por URIs tinicas y operados mediante un conjunto limitado de métodos
HTTP (GET, POST, DELETE, ...). En nuestro caso, los recursos principales son:
los recursos de conocimiento (/learning_recourses), las peticiones de generacion
(/query_task) y las tareas de aprendizaje con sus subrecursos de respuestas y
retroalimentacion (/learning_tasks/{id}/answers[/{id}] [/feedback]).

Para garantizar la seguridad y la personalizacion, la API implementa un sistema de
autenticacion basado en claves mediante la cabecera X-API-KEY. Cada usuario registrado
posee una API Key tnica. Esto permite al servidor validar la peticion y asociarla a los
documentos y tareas especificos de ese usuario, asegurando el aislamiento y la privacidad
de los datos. Asimismo, las autorizaciones se aplican por rol (profesor o estudiante) en
cada peticion.

Diseno de Endpoints La API se ha disenado en torno a tres funcionalidades principa-
les: la gestion del conocimiento del usuario (RAG), la generacion de tareas y la correccion
automatica de respuestas.

A continuacion se describen los endpoints, agrupados por rol de acceso.

1. Endpoints exclusivos para Profesor

POST /learning_recourses Crea un nuevo miembro (recurso) en la coleccion de
conocimiento (RAG) del profesor. El servidor procesa la entrada (fragmenta-
cion, vectorizacion) y la almacena en la coleccion asociada a su API Key.
Entrada: multipart/form-data con un fichero (.pdf, .txt, .docx) o un cam-
po de texto URL.
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Salida: Objeto JSON con el identificador del recurso creado y un mensaje de
éxito o error.

GET /learning_recourses o GET /learning_recourses/{id_learning_recourse}
Lista todos los miembros de la coleccién del profesor o recupera la representa-
cién de un miembro concreto.

Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.

Salida: (Listado) JSON con un array de recursos; (Detalle) JSON con los
metadatos del recurso solicitado.

DELETE /learning_recourses o DELETE /learning recourses/{id_learning_recourse}
Elimina la coleccién completa del profesor o, si se proporciona identificador,
lnicamente ese miembro. En ambos casos se borran también los chunks aso-
ciados en la base vectorial para mantener la consistencia del contexto RAG.

Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.
Salida: Objeto JSON con un mensaje de éxito.

POST /query_task Inicia una peticion de generacion de tareas con los pardmetros
proporcionados. La peticiéon se encola y se devuelve un identificador para su
seguimiento.

Entrada: Cuerpo JSON con parametros como tipo_pregunta, tema, cantidad,
dificultad, nivel, poi, etc.
Salida: Objeto JSON con id_query_task y estado inicial de la peticion.

GET /query_task/{id_query_task} Consulta el estado de una peticiéon de gene-
racion. Devuelve false si las tareas atin no estan listas, o las URIs de las tareas
cuando se han generado.

Entrada: Identificador de la peticion en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON, p.ej.:

{ "ready": false }
o bien

{ "ready": true, "tasks": ["urit", "uri2", "..."] }
2. Endpoints para Profesor y Estudiante

GET /learning_tasks o GET /learning_tasks/{id_learning_task} Devuelve
todas las tareas asociadas a un profesor (creadas por él) o asignadas a un es-
tudiante (segtin la API Key/rol), o bien, con identificador, la tarea concreta.
Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.

Salida: (Listado) Array JSON de tareas; (Detalle) Objeto JSON con la tarea
solicitada.

POST /learning_tasks/{id_learning_taskl}/answers Crea un subrecurso respues-
ta asociado a la tarea indicada (puede ser respuesta del profesor o del estu-
diante).

Entrada: Cuerpo JSON con la respuesta:
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"contenido_respuesta": "...",

}

Salida: Objeto JSON con el id_answer creado y un mensaje de éxito.

GET /learning_tasks/{id_learning_task}/answers Devuelve todas las respues-
tas asociadas a una tarea.
Entrada: Identificador de la tarea en la ruta; cabecera X-API-KEY.
Salida: Array JSON de respuestas.

GET /learning_tasks/{id_learning_task}/answers/{id_answer} Devuelve la
respuesta identificada.
Entrada: Identificadores de tarea y de respuesta en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON con el contenido y metadatos de la respuesta.

GET /learning_tasks/{id_learning_task}/answers/{id_answer}/feedback Devuelve
la retroalimentacion asociada a una respuesta concreta (p.ej., evaluacion au-
tomética, comentarios, ribrica).

Entrada: Identificadores de tarea y de respuesta en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON con el feedback:

"is_ok": true,
"comentarios": "...",

El intercambio de datos se realiza exclusivamente en formato JSON, dada su ligere-
za, legibilidad y facilidad de procesamiento por parte de cualquier cliente web o movil.
La estricta adhesion a los esquemas Pydantic en las respuestas garantiza la fiabilidad y
robustez de la comunicacion entre cliente y servidor.

4.4 Diseno de los prompts

Para lograr que el modelo de lenguaje genere exactamente el contenido deseado, es crucial
elaborar cuidadosamente los prompts. En este proyecto se ha adoptado la metodologia
C.R.A.F.T. como guia para la construccion de prompts efectivos. C.R.A.F.T. es un
acronimo que resume los elementos clave que debe incluir un buen prompt: Context
(Contexto), Role (Rol), Action (Accion), Format (Formato) y Tone (Tono).

A continuacion, se detalla como se ha aplicado esta metodologia en los prompts del
sistema:

e Contexto (Context): Es la parte mas rica del prompt. Se le proporciona al modelo
toda la informacion necesaria para generar tareas relevantes.

e Rol (Role): Se le asigna al modelo una personalidad especifica. Por ejemplo:

“Eres un experto en materia. Estas desarrollando preguntas de aprendizaje
ubicuo...”
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Este rol guia al modelo para que su estilo y enfoque se ajusten a los de un tutor
inteligente.

e Accion (Action): Se le indica de forma explicita la tarea a realizar. Por ejemplo:

“Debes crear preguntas abiertas y sencillas basadas en la taxonomia de
Bloom (taxonomia) enfocadas en la observacion directa del monumento”.

e Formato (Format): Se le exige al modelo que devuelva la salida estrictamente en
formato JSON, con estructura definida por un esquema Pydantic. Por ejemplo:

“Proporciona la respuesta en formato JSON [...] con la estructura: {"question":
"...", "solucion": "..."}"

Esto asegura que la salida del modelo pueda ser procesada automaticamente por la
aplicacion.

e Tono (Tone): Se define el estilo de comunicacion deseado. Por ejemplo:

“Utiliza un tono educativo, claro y motivador. Escribe las preguntas como
un profesor guia que invita a la exploracion...”.
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Prompt del Generador de Tareas (Ejemplo para Preguntas Largas y Simples):

| system_message = {
2 "role": "system",
3 "content": f""" Eres un experto en {materia}. Estas desarrollando

preguntas de aprendizaje ubicuo sobre el tema {tema} para alumnos de
{nivel}. Estos estudiantes estan fisicamente en un espacio {ubicuo},
es decir, en el lugar del monumento relacionado. Cuentan con el
siguiente conocimiento previo de clase: {conocimiento_alumno}. {
frase_poi} Ademads, el contexto de los apuntes de clase es: {contexto

T

5 Debes crear preguntas abiertas y sencillas basadas en la taxonomia
de Bloom ({taxonomial}) enfocadas en la observacidén directa del
monumento. Cada pregunta debe formularse de tal manera que solo pueda

ser respondida por un alumno que se encuentre presencialmente alli,
interactuando con ese entormno.

7 Las preguntas van dirigidas a tus alumnos de {nivell}, por lo que
deben adecuarse a su nivel educativo y conectar con el conocimiento
que ya poseen. Ten en cuenta su conocimiento previo proporcionado y
el contexto del monumento para asegurarte de que las preguntas sean
relevantes y comprensibles para ellos.

9 Proporciona la respuesta en formato JSON, con cada pregunta y su

solucidén correspondiente. Si la cantidad es mayor que 1, devuelve una
lista de objetos JSON, donde cada objeto tenga la estructura:

10 "question": "pregunta de aprendizaje ubicuo",

11 "solucion": "respuesta esperada a la pregunta de aprendizaje ubicuo"

12 Asegurate de que el JSON sea valido y bien formado.

14 Utiliza un tono educativo, claro y motivador. Escribe las preguntas
como un profesor guia que invita a la exploracidn, asegurandote de
que el lenguaje sea apropiado para el nivel de los alumnos y fomente
la curiosidad sobre el monumento.

15 nn |I}

16

17| user_message = {

18 "role": "user",

19 "content": f"Genera {cantidad} preguntas abiertas de desarrollo

sobre {temal} de la materia {materia} para tus alumnos, formuladas de
manera sencilla. Aseguirate de que cada pregunta requiera que el
alumno esté fisicamente presente en el monumento para poder
responderla."

20| }

Codigo 4.1: Prompt para la generacion de tareas de desarrollo largo y simple. Donde se
pueden observar los diferentes apartados de la metodologia tomada para generar el prompt

Universidad de Valladolid 37 Luis Francisco Sanchez Turrion



4. Diseno

Prompt del Corrector Automéatico:

system_message= {

"role": "system",
3 "content": """
1 Eres un corrector educativo automatizado disefiado para proporcionar
retroalimentacidén personalizada y constructiva a los estudiantes de
manera directa, es decir, vas a estar hablando con el estudiante.
5 Tu tarea es analizar la respuesta de un estudiante a una pregunta
especifica, compararla con la respuesta correcta y ofrecer una
evaluacidén detallada que incluya tanto los aciertos como los errores.
6 Debes explicar los conceptos relevantes de manera clara y
relacionarlos con el objetivo de aprendizaje de la pregunta. Ademéas,
proporciona sugerencias practicas para que el estudiante pueda
mejorar su comprensidén y recomienda recursos adicionales si es
apropiado. Mantén un tono alentador y enfocado en el crecimiento del
estudiante.

N

00

Cuando recibas el nombre del estudiante, dirigete a él directamente
para hacer la retroalimentacién mas personal. Si no se proporciona el
nombre, omite cualquier referencia personal.

9 Devuelve exclusivamente un JSON valido con la siguiente estructura:

10 "is_ok": true, // true si la respuesta es correcta, false si es
incorrecta

11 "diferencias": "Explicacidén breve de las diferencias si existen"

12 Devuelve la salida en formato JSON valido.""" }

13

11|user_message = {

15 "role": "user",

16 "content": f"Vas a analizar la respuesta del alumno {usuariol} que

tiene un nivel de estudiante de {nivel} a la Pregunta: {preguntal}\
nRespuesta correcta: {respuesta_correctal}\nRespuesta de {usuariol}: {
respuesta_alumnol}"

Codigo 4.2: Prompt para la correcciéon automética de respuestas abiertas.

Gracias a este diseno meticuloso, el LLM recibe instrucciones claras y un marco de
trabajo bien definido, lo que aumenta drasticamente la calidad, fiabilidad y consistencia
de los resultados.

4.5 Diseno de las Tareas

El pilar de este diseno es el uso de salidas en formato JSON forzado. En lugar de permitir
que el LLM genere texto libre, que requeriria un complejo y fragil post-procesamiento
para su interpretacion, se le instruye explicitamente para que devuelva una respuesta que
se adhiere estrictamente a un esquema predefinido.

Este enfoque ofrece dos ventajas fundamentales:

¢ Fiabilidad del sistema: Se elimina la ambigiiedad y se busca que la aplicacion
cliente pueda interpretar y renderizar las tareas correctamente.
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¢ Riqueza pedagoégica: Permite disenar diversos tipos de tareas, cada una con un
objetivo pedagodgico distinto, que van desde la simple memorizacion hasta el analisis
y la observacién en el entorno fisico.

A continuacion, se detallan los tipos de tareas disenadas y su estructura JSON.

4.5.1 Tarea de Desarrollo Simple (Long Simple)

Propdsito pedagdgico: Evaluar la comprension de un tema, requiriendo que el estu-

diante elabore una respuesta abierta basada en el contexto proporcionado (ya sea de los

documentos del usuario a través de RAG o de la informacion del punto de interés).
Estructura JSON:

2 "question": "string",
"solucion": "string"

Donde question es la pregunta formulada por el LLM y solucion es una respuesta
ideal o esperada, generada también por el modelo. Esta solucion es crucial para la posterior
correcciéon automatica.

4.5.2 Tarea de Opciéon Multiple (MCQ)

Propésito pedagogico: Evaluar el conocimiento factual y la capacidad de discriminacion
entre opciones. Es una herramienta eficaz para la autoevaluacion rapida.
Estructura JSON:

i {

2 "question": "string",

3 "optionO": "string",
"optionl": "string",
"option2": "string",

6 "option3": "string",

7 "correct_option": integer

s}

El campo corect_option es un entero (0-3) que indica el indice de la respuesta
correcta, garantizando una evaluaciéon inequivoca. La capacidad del LLM para generar
“distractores” (opciones incorrectas pero plausibles) es una ventaja significativa sobre las
plantillas.

4.5.3 Tarea Fotografica

Propésito pedagogico: Fomentar la observacion activa, la bisqueda de elementos es-
pecificos en el entorno y la aplicaciéon practica del conocimiento.
Estructura JSON:

i {

"question": "string"

3|}
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La estructura es simple, ya que la “respuesta” no es un texto, sino un fichero de imagen
que el usuario debe capturar y subir a través de la aplicacion cliente.

4.5.4 Tarea de Si o No (Yes or No)

Propésito pedagoégico: Evaluar el conocimiento preciso sobre un hecho especifico. Su
simplicidad lo hace ideal para repasos rapidos o para iniciar una discusion més profunda.
Estructura JSON:

"question": "string",
"solucion": boolean

= w [N —

3

El uso de un tipo de dato booleano (true/false) para la solucién asegura una eva-
luacién automatica robusta y sin ambigiiedades.

4.6 Conclusiones

La fase de diseno ha sido fundamental para establecer una arquitectura robusta y cohe-
rente que dé soporte a los objetivos del proyecto. Siguiendo una metodologia agil, se ha
definido un plan de trabajo claro que ahora transita hacia la etapa de implementacion.
Los resultados de esta fase no solo han delineado la estructura logica del sistema, sino que
también han sentado las bases para su funcionalidad, escalabilidad y usabilidad.

El diseno se centra en un servidor monolitico que encapsula la logica de negocio, la
gestion del conocimiento mediante la técnica RAG y la orquestacion de modelos de len-
guaje locales a través de Ollama. Una pieza clave de este diseno es la API REST, que
actiia como interfaz estandarizada y desacoplada. Esta decision de diseno, inspirada en la
modularidad, asegura que el backend pueda ser consumido por una variedad de clientes fu-
turos (aplicaciones web, moviles, etc.) sin necesidad de que estos conozcan la complejidad
subyacente de los procesos de TA. Las interacciones mediante un formato estandarizado
como JSON;, validadas con modelos Pydantic, garantizan la fiabilidad y la correcta inter-
pretacion de los datos, eliminando la ambigiiedad y fragilidad asociadas a las salidas de
texto libre.

Asimismo, se ha puesto un especial énfasis en el disefio de las tareas educativas. A
diferencia de los métodos tradicionales basados en plantillas rigidas, este disenio aprovecha
la flexibilidad de la IA Generativa para crear actividades dindmicas y contextualizadas.
La especificacion de diferentes tipos de tareas (desarrollo, opcion miltiple, fotograficas,
etc.) con estructuras JSON bien definidas asegura que el sistema no solo sea potente, sino
también pedagogicamente versatil y fiable para su uso en un entorno de aprendizaje.

Con estas bases de diseno s6lidamente establecidas, se ha creado una hoja de ruta
precisa para la siguiente etapa. El Capitulo 5 Implementacion, se centrara en materiali-
zar estos conceptos en un sistema funcional, abordando la configuracion del entorno de
servidor, la integracion de los componentes del pipeline RAG y la conexién final con los
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modelos de lenguaje para dar vida a la generacion de tareas de aprendizaje ubicuo.
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Capitulo 5

Implementacion

En este capitulo se describe céomo se llevo a cabo la implementacién del sistema,
detallando las herramientas, bibliotecas y decisiones practicas tomadas para mate-
rializar el diseno planteado. Se abordan el entorno de desarrollo, la construccién de
la base de conocimiento con ChromaDB y SentenceTransformers, la integracion del
modelo de lenguaje local con Ollama, la creaciéon de la API REST con Flask y la
implementaciéon concreta de los médulos funcionales, ilustrando con fragmentos de
codigo relevantes.

5.1 Introducciéon

Definido el diseno de la aplicacién distribuida, se procede ahora a la fase de implemen-
tacion, la cual se abordara utilizando la metodologia agil Scrum. Esta eleccion facilita
un desarrollo iterativo e incremental del sistema, permitiendo ajustes rapidos y mejoras
continuas basadas en la retroalimentacion de mis tutores en las diferentes reuniones.

En esta fase, se estableceran las tecnologias especificas necesarias para la construccion
de cada modulo del sistema, disenado para generar tareas de aprendizaje ubicuo basado
en Modelos de Lenguaje de Gran Tamano (LLM). Ademas, se detallaran los servicios
externos esenciales para el correcto funcionamiento de la aplicacion, incluyendo aquellos
destinados a la identificacion y gestion de usuarios, persistencia de datos y personalizacion
de las tareas segun las preferencias individuales de cada usuario.

La seccion describira en profundidad cémo se ha llevado a cabo la implementacion del
servidor, explicando su organizacion estructural y justificando la eleccién de los servicios
externos integrados. También se detallard qué pruebas o informacion se usaron para la
decision del modelo de lenguaje usado.

Finalmente, se destacarédn claramente las interacciones entre los diferentes componen-

tes del sistema, mostrando como dichas interacciones garantizan el cumplimiento efectivo
de los requisitos establecidos en la etapa de analisis (Capitulo 3).
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5.2 Implementacién del servidor

Las dos funciones principales del servidor donde se ejecuta el sistema son: ser capaz de
ejecutar modelos de lenguaje de forma local y obtener la informacién relevante para la
generacion de tareas. El lenguaje escogido para llevar a cabo el desarrollo del servidor
ha sido Python en su versiéon 3.9.21, debido a la versatilidad y herramientas que ofrece
para el trabajo con modelos de lenguaje. El codigo ha sido desarrollado en el entorno de
VSCode (Visual Studio Code), un editor ligero, multiplataforma y altamente extensible.
VSCode ofrece resaltado de sintaxis para Python, depuracion integrada con puntos de
interrupcion y consola interactiva, terminal incorporada y soporte para ambientes virtua-
les. Ademas, cuenta con integracion nativa con control de versiones Git, un marketplace
de extensiones muy activo y gran capacidad de personalizacion. Para gestionar el entorno
de paquetes se us6 Conda, que es un gestor de entornos virtuales que permite aislar las
dependencias de las librerias y asi evitar conflictos entre los diferentes paquetes usados en
el desarrollo del codigo.

La implementacion de la API REST, aunque tendra diferencias con la diseniada en el
Capitulo 4 por falta de tiempo, se implementara usando el framework Flask en su version
més actualizada (3.1.1). Flask es un framework que proporciona una serie de funciones
para el despliegue de una API REST de forma rapida y sencilla; también permite el uso de
plantillas (templates) HTML para realizar pruebas mas visuales del intercambio de datos
entre el cliente y el servidor. El framework de Flask puede integrarse con otro framework
llamado Flasgger, que ofrece funciones para documentar la API.

La estructura del codigo usada para el servidor web estara condicionada a los recursos
que se van a exponer de la API REST. En el listado se puede observar la organizacion de
los ficheros que conforman el cdédigo del servidor del sistema. Las dependencias necesarias
para ejecutar el servidor estdn en un fichero llamado requirements.txt, donde en cada
linea aparece el nombre de un paquete y, de forma opcional, se puede anadir la version
del paquete.

Para el control de versiones se empled Git, con un repositorio alojado en GitHub. El
uso de Git sirve para llevar un registro de los cambios, experimentar en ramas separadas
sin afectar la version estable y colaborar de manera organizada.

src/

templates/
index.html

app . Py
corrector.py

6 eleccion.py

7 long_simple.py

8 MCQ . py

9 photograph.py

10 yes_or_mno.py

Codigo 5.1: Estructura del codigo fuente del sistema
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5.3 Implementaciéon de la Base de Conocimiento (RAG)

El nucleo de la funcionalidad RAG se implement6 utilizando ChromaDB [Hong et al.,
2025| para el almacenamiento vectorial y SentenceTransformers para la generacion de
embeddings.

5.3.1 Generaciéon de embeddings con SentenceTransformers

La conversion de texto a vectores semanticos (embeddings) es un paso crucial. Para ello,
se empled el modelo all-MinilM-L6-v2 de la libreria SentenceTransformers. Este
modelo fue seleccionado por su excepcional equilibrio entre la calidad de los embeddings
generados y su eficiencia computacional. Al ser un modelo ligero y rapido, resulta ideal
para aplicaciones interactivas donde los tiempos de respuesta son criticos, sin sacrificar
significativamente la precision en tareas de similitud seméantica, incluso con textos en
espanol.

5.3.2 Fragmentaciéon de Texto con LangChain

Para la etapa de fragmentacion de texto (chunking), se utilizo el componente Recursive-
CharacterTextSplitter de la libreria LangChain. Aunque no se empled la libreria para
orquestar todo el pipeline, esta herramienta es particularmente efectiva por su estrategia
de division jerarquica. Intenta preservar la cohesion semantica del texto al priorizar la di-
vision por separadores naturales (parrafos, saltos de linea) antes de recurrir a la division
por caracteres.

from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema import Document

i|def dividir_en_fragmentos (document, tamano_fragmento=500, solapamiento
=75) :

- wn

6 Divide el contenido de un documento en fragmentos mas pequefios

7 utilizando una estrategia recursiva para mantener la cohesidn sema
ntica.

nnn

9 # Se dinicializa el divisor con una lista de separadores priorizados.
10 # Intenta dividir primero por parrafos, luego por lineas, etc.

11 splitter = RecursiveCharacterTextSplitter (

12 separators=["\n\n", "\n", " ", ""],

13 keep_separator=False,

14 is_separator_regex=False,

15 chunk_size=tamano_fragmento,

16 chunk_overlap=solapamiento # Solapamiento para no perder
contexto entre fragmentos

17 )

18

19 # Se divide el contenido textual del documento

20 fragmentos_texto = splitter.split_text(document.page_content)

21

22 # Se crean nuevos objetos Document por cada fragmento, conservando

23 # los metadatos del documento original (ej. la fuente).

24 # Esto es vital para la posterior citacioén de fuentes.
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25 fragmentos_docs = [

26 Document (page_content=frag, metadata=document.metadata)
27 for frag in fragmentos_texto

28 ]

30 return fragmentos_docs

Codigo 5.2: Funciéon para dividir un documento en fragmentos cohesivos.

5.3.3 Almacenamiento y Consulta con ChromaDB

Como base de datos vectorial, se eligi6 ChromaDB por su simplicidad, su capacidad para
ejecutarse localmente y su modo de almacenamiento persistente. Esta eleccion permite in-
dexar los embeddings de los documentos y recuperarlos eficientemente mediante bisquedas
de similitud, garantizando que la informacién persista entre reinicios del servicio.

1| import chromadb

3|# Se inicializa un cliente persistente. Los datos se guardan en el
directorio

i|# especificado, sobreviviendo a los reinicios del proceso.

5| chroma_client = chromadb.PersistentClient (path="/path/to/your/chroma_db"
)

7|def get_user_collection(api_key):

mmnn

9 Crea o recupera una coleccidén especifica para cada usuario.

10 Esto implementa un aislamiento de datos, asegurando

11 que cada usuario solo acceda a sus propios documentos.

nnn

13 collection_name = f"user_{api_keyl}"

14 return chroma_client.get_or_create_collection(name=collection_name)

Codigo 5.3: Inicializacion del cliente persistente y gestion de colecciones en ChromaDB.

La funcion de bisqueda, pieza central del sistema RAG, se encarga de recibir la con-
sulta del usuario, convertirla en un embedding y utilizarlo para encontrar los fragmentos
de texto mas relevantes en la coleccion del usuario dentro de ChromaDB. Los resultados
se formatean como un contexto enriquecido para ser enviado al LLM.

1| def buscar_info_chromadb(api_key, query, embedding_model):
nnn
3 Busca en la coleccidén de un usuario los fragmentos mas relevantes
para una consulta.
nmn
5 # 1. Recuperar la coleccidn aislada del usuario
6 user_collection = get_user_collection(api_key)

8 # 2. Convertir la consulta del usuario en un vector (embedding)
9 # Se debe usar el MISMO modelo que se usd para indexar los
documentos.

10 query_embedding = embedding_model.encode ([query])

11

12 # 3. Realizar la busqueda por similitud en ChromaDB

13 # n_results determina cuantos fragmentos relevantes se recuperaran.
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14 results = user_collection.query(
15 query_embeddings=query_embedding,
16 n_results=3

19 if not results or not results["documents"]:
20 return "No se encontraron documentos relevantes."

22 # 4. Formatear los resultados para inyectarlos en el prompt del LLM
23 # Esta técnica de "prompt engineering" ayuda al LLM a entender el
contexto.

24 documentos = results["documents"][0]

25 metadatos = results["metadatas"][0]

26 contexto = []

27

28 for i, (doc, meta) in enumerate(zip(documentos, metadatos)):

29 # Se extrae la fuente de los metadatos guardados previamente
30 fuente = meta.get("source", "Fuente desconocida")

31 # Se envuelve cada fragmento en etiquetas para una mejor
delimitacién

32 contexto.append (f"<INI_CONTEXT{i}>Fuente: {fuente} - Contenido:
{doc}</END_CONTEXT{i}>\n")

34 return ".join(contexto)

Codigo 5.4: Funcion de bisqueda de informacion por similitud en ChromaDB.

5.4 Modelo de Lenguaje (LLM) y su Integraciéon con
Ollama

La seleccion de los modelos de lenguaje (LLM) constituye una decision critica que impacta
directamente en la calidad y fiabilidad del sistema. Durante la fase de implementacion, se
llevé a cabo un proceso de evaluacion empirica para determinar los modelos més adecua-
dos para las dos tareas principales del sistema: la generacion de preguntas y la correccion
automatica de respuestas. El analisis no solo consider6 la capacidad de los modelos, sino
también el equilibrio entre el rendimiento, la fiabilidad y los recursos computacionales
requeridos. Ademés, la decision estuvo respaldada por los resultados de los benchmarks
de razonamiento y facticidad presentados en la Tabla 5.1.

e Modelos Utilizados:

Inicialmente, las pruebas se centraron en modelos més ligeros, como 11lama3.1:8b.
La hipotesis de partida era que un modelo de menor tamafo ofreceria una velocidad
de inferencia superior y un menor consumo de recursos (RAM/VRAM), factores
deseables para un sistema que podria enfrentarse a miultiples peticiones simulta-
neas. Sin embargo, aunque estos modelos demostraron ser rapidos, exhibieron dos
limitaciones criticas que comprometian los objetivos del proyecto:

— Fiabilidad de la salida estructurada: La adherencia al formato de salida
JSON, forzado mediante esquemas Pydantic, no era consistente. Con frecuen-
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cia, el modelo no lograba generar una estructura JSON valida, lo que provocaba
errores e impedia el procesamiento automatico de las tareas generadas.

— Calidad del contenido y alucinaciones: Se observé una mayor propension
a generar alucinaciones. En una herramienta con fines educativos, la precision
y la veracidad del contenido son requisitos no prescindibles.

Estas limitaciones evidenciaron que, para este caso de uso, la fiabilidad y la calidad
del contenido debian priorizarse sobre la velocidad de inferencia. En consecuencia, la
evaluacion se orient6é hacia modelos de mayor tamano y especializacion, lo que con-
dujo a la adopcion de la siguiente estrategia, confirmada también por los resultados
comparativos obtenidos en los benchmarks:

— Generacidon de tareas: Se seleccioné el modelo gemma3:27b. Este modelo de
Google demostré un rendimiento superior en la comprension de instrucciones
complejas, alcanzando una tasa de éxito cercana al 100 % en la generacion de
salidas JSON validas y conformes al esquema. Ademas, redujo significativa-
mente la propension a las alucinaciones, produciendo preguntas coherentes y
relevantes.

— Correccion automéatica: Se optd por el modelo deepseek-r1:32b, especiali-
zado en razonamiento. La correccidon de respuestas abiertas requiere comparar
semanticamente la respuesta del estudiante con una soluciéon de referencia, iden-
tificar discrepancias y articular retroalimentacion constructiva. En las pruebas,
deepseek-r1:32b ofreci6 evaluaciones mas precisas y justificaciones mas de-
talladas que los modelos de proposito general.

Tabla 5.1: Benchmark de razonamiento (GSM8K) y facticidad (TruthfulQA).

Modelo GSMS8K TruthfulQA
Llama 3.1 8B Instruct 82.0 54.5
Gemma 3 27B Instruct 92.1 62.2
DeepSeek-R1 Distill Qwen 32B 82.7 58.4

En conclusién, la implementacién finaliza con una arquitectura de modelos es-
pecializada. A pesar del mayor coste computacional que suponen gemma3:27b y
deepseek-r1:32b, su adopcién se justifica plenamente por la drastica mejora en la
fiabilidad, precision y calidad general del sistema, tal como reflejan los resultados
de los benchmarks, asegurando asi el cumplimiento de los requisitos pedagogicos y
funcionales del proyecto.

Integracién: La libreria ollama para Python permite interactuar con los modelos
como si se tratara de una llamada a una funcién. Una caracteristica clave utilizada
fue la capacidad de forzar la salida en formato JSON, pasando el esquema de un mo-
delo Pydantic a la funcion de chat. Esto garantiza que la salida del LLM sea siempre
estructurada y valida, eliminando la necesidad de un complejo post-procesamiento.
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-

from ollama import chat
from pydantic import BaseModel

N

\|# Se define la estructura de la respuesta esperada con Pydantic
5 class Quest (BaseModel):

6 question: str

7 solucion: str

9] class Test (BaseModel):
10 quests: list[Quest]

12| # En la funcidn generadora...

135/ def generar_long_simple(...):

14 # ... (construccidén de system_message y user_message)
15

16 response = chat(

17 messages=[system_message, user_messagel],

18 model="gemmald:27b",

19 # Se pasa el esquema JSON del modelo Pydantic
0 format=Test.model_json_schema (),

21 )
23 # Se valida y parsea la respuesta JSON directamente en un objeto
Pydantic

24 quests = Test.model_validate_json(response.message.content)
25 return quests

Codigo 5.5: Llamada al LLM con formato JSON forzado mediante Pydantic.

Esta técnica de salida estructura en JSON es una de las implementaciones mas elegantes
del proyecto, asegurando robustez y fiabilidad en la comunicacion con el LLM.

5.5 Analisis Detallado de la API y el Flujo de Datos

El fichero app.py constituye el cerebro de la aplicacion, orquestando todas las interaccio-
nes entre el usuario, la base de conocimiento, y los modelos de lenguaje. En esta seccion,
se desglosa su funcionamiento interno, desde la configuracion inicial hasta la logica de
cada uno de sus endpoints principales.

5.5.1 Configuraciéon Inicial y Dependencias

El arranque de la aplicacion define el entorno y carga los componentes esenciales.

e Inicializacion de Flask y Swagger: Se crea la instancia de la aplicacion Flask y
se integra con Flasgger para la generacion automética de documentacion interactiva
(Swagger Ul), facilitando las pruebas y la comprension de la API.

e Configuraciéon de Rutas: Se establecen las rutas para el almacenamiento de fi-
cheros subidos por los usuarios (UPLOAD_FOLDER) y para las imagenes generadas
(IMG_FOLDER). Es crucial que cada usuario tenga su propio directorio, garantizando
la privacidad y el aislamiento de los datos.
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e Carga de Modelos y Base de Datos: Se inicializan los dos componentes clave
del pipeline RAG:

— chromadb.PersistentClient: Se conecta a la base de datos vectorial persis-
tente. Al especificar una ruta en el disco, se asegura que todos los vectores y
metadatos almacenados no se pierdan entre reinicios del servidor.

— SentenceTransformer(all-MinilLM-L6-v2): Se carga en memoria el modelo
de embeddings. Aunque esto consume recursos de RAM/VRAM, permite una
vectorizacion extremadamente rapida de los textos sin necesidad de llamadas
a una API externa.

e Gestion de API Keys: Se utiliza un diccionario simple de Python (API_KEYS)
para la autenticacion. Cada peticion a un endpoint protegido debe incluir una clave
valida en la cabecera X-API-KEY.

5.5.2 El Proceso RAG: De la Ingesta a la Recuperacion

El sistema implementa un ciclo RAG completo. La logica para manejar este ciclo esta
distribuida en varias funciones de utilidad y un endpoint dedicado.

Ingesta y Procesamiento de Fuentes de Datos

El sistema es agnostico a la fuente de datos, pudiendo procesar multiples formatos. Para
cada formato, existe una funcién de ingesta especializada:

e ingest_text_file, ingest_pdf_file, ingest_docx_file: Estas funciones se en-
cargan de abrir y extraer el contenido textual de ficheros .txt, .pdf y .docx,
respectivamente. Utilizan librerias como PyPDF2 y docx2txt para la extraccion.

e ingest_web_page: Recibe una URL, realiza una peticion HTTP con requests para
obtener el HTML y utiliza BeautifulSoup para limpiar el contenido, extrayendo
tinicamente el texto visible y eliminando etiquetas, scripts y estilos.

e ingest_youtube_transcript: Para URLs de YouTube, extrae el ID del video y uti-
liza la libreria youtube-transcript-api para obtener la transcripcién automaética
(en espanol o inglés). Esto permite procesar como texto el contenido de un video.

Todas estas funciones devuelven el texto extraido encapsulado en un objeto Document de
LangChain, que convenientemente asocia el contenido con sus metadatos (como la ruta
del fichero o la URL de origen).

Endpoint de Carga: /api/cargar_info

Este es el punto de entrada para anadir nuevo conocimiento a la base de datos de un
usuario. Su flujo de trabajo es el siguiente:

1. Autenticacion: Verifica la X-API-KEY del usuario.

2. Recepcion de Datos: Acepta datos a través de un formulario multipart/form-data,
que puede contener un fichero (file) o una URL (URL).
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3. Seleccion de Ingestor: Basado en si se proporcioné un fichero o una URL (y
el tipo de cada uno), llama a la funcion de ingesta apropiada (ingest_pdf_file,
ingest_web_page, etc.).

4. Fragmentacion (Chunking): El texto completo obtenido es pasado a la fun-
cion dividir_en_fragmentos, que utiliza el RecursiveCharacterTextSplitter
de LangChain para dividirlo en trozos mas pequenios y manejables (por defecto, de
500 caracteres con 75 de solapamiento). Esto es fundamental para que la busqueda
semantica sea precisa.

5. Vectorizacion y Almacenamiento: Itera sobre cada fragmento de texto:

o Genera su embedding vectorial usando el modelo embedding_model.encode().
e Crea un ID tnico para el fragmento.

e Prepara los metadatos, que incluyen la clave del usuario y la fuente original
del documento.

e Llama a user_collection.add() para guardar en lote los fragmentos, sus
vectores, IDs y metadatos en la coleccion de ChromaDB especifica del usuario.

6. Respuesta: Devuelve un mensaje de éxito o un error detallado si alguna de las
fases falla.

Recuperacion de Contexto: buscar_info_chromadb

Esta funcion es el corazon de la fase de recuperacion seméantica del RAG. Se invoca cada
vez que se necesita contexto para responder una pregunta.

1|{def buscar_info_chromadb (api_key, query):
2 # 1. Obtener la coleccion especifica del usuario
3 user_collection = get_user_collection(api_key)

5 if not isinstance(query, str):
6 return "Error: La consulta debe ser una cadena (de texto)."

8 # Validacion para no buscar si el usuario no tiene documentos

9 user_files_path = f"/home/lfsanchez/tfg-2024-1luisfran/files/{api_key
}ll

10 if not directory_has_files(user_files_path):

11 return "No se encontraron documentos en ChromaDB."

13 # 2. Convertir la consulta del usuario en un vector
14 embedding_response = embedding_model.encode ([query])

16 # 3. Realizar la busqueda de similitud en ChromaDB
17 # Se buscan los 3 fragmentos mas parecidos (top-k=3)
18 results = user_collection.query(

19 query_embeddings=embedding_response,

20 n_results=3

23 if not results or not results["documents"] or not results["documents

"1[0]:
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24 return "No se encontraron documentos relevantes en ChromaDB."

26 # 4. Formatear los resultados para el prompt del LLM

27 documentos = results["documents"][0]

28 metadatos = results["metadatas"][0]

29 contexto = []

30 for i, (doc, meta) in enumerate(zip(documentos, metadatos)):

31 fuente = meta.get("source", "Fuente desconocida")

32 # Se envuelven en etiquetas para que el LLM los identifique

mejor
33 contexto.append (£"<\INI_CONTEXT{i}>Fuente: {fuentel} - Contenido:
{doc}<\END_CONTEXT{i}>\n")

35 return ".join(contexto)

Codigo 5.6: Funcion para la bisqueda de contexto relevante en ChromaDB.

El proceso es claro: vectoriza la pregunta del usuario y la usa para encontrar en Chro-
maDB los fragmentos de texto previamente almacenados cuyo contenido semantico sea
mas similar. El resultado es una cadena de texto formateada que servird como "memoria
a corto plazo'"para el LLM.

5.5.3 Endpoints de la API

Ademés de la carga de informacion, la API expone otros recursos para gestionar el ciclo
de vida de los datos y generar las tareas.

Endpoint de Generaciéon: /api/generar_tarea

Este es el endpoint més complejo y el que materializa el objetivo final de la aplicacion.

1. Validacion y Parametros: Recibe una peticion POST con un cuerpo JSON que
contiene todos los parametros del test: tipo de pregunta, tema, cantidad, dificultad,
puntos de interés (POIs), etc.

2. Recuperacion de Contexto (RAG): Si se proporcionan poil o poi2, llama a
buscar_info_chromadb para cada uno. El contexto recuperado se concatena y se
pasaré al LLM. Si el usuario no ha subido ficheros, esta biisqueda no se realiza y el
contexto estaré basado tnicamente en la informacion de Wikipedia que se obtiene
dentro de los modulos de generacion.

3. Despacho Dinamico: Llama a la funciéon eleccion(), que actiia como un en-
rutador. Basandose en el pardmetro tipo_preguntas, importa dindmicamente el
modulo Python correspondiente (ej: Long_simple.py) y ejecuta su funciéon genera-
dora, pasandole todos los parametros necesarios.

4. Generacion de Material Visual: Si se solicita material con imégenes (material="texto
y imagenes"), invoca a la funcién descargar_imagenes. Esta funcion utiliza la API
de Wikipedia y Wikimedia Commons para buscar y descargar imagenes relacionadas
con el poil, guardandolas en la carpeta del usuario.
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5. Composicion de la Respuesta: El resultado del médulo de generacion (un objeto
Pydantic) se convierte en un diccionario. Se le anade la lista de imégenes descargadas
y se devuelve todo como una respuesta JSON.

Endpoints de Gestion de ficheros

Para que el usuario pueda administrar su base de conocimiento, se implementaron dos
utilidades:

e /api/subir_fichero: Un endpoint POST que permite al usuario identificado subir
diferentes tipos de fuentes de informacion ya sean ficheros de texto(.txt,.pdf,.doc,...)
o una URL a una pagina web o video de youtube.

e /api/listar_ficheros: Un endpoint GET simple que devuelve una lista con los
nombres de todos los ficheros que el usuario ha subido.

e /api/eliminar_fichero: Este endpoint GET es crucial para la consistencia de
los datos. No solo elimina el fichero fisico del servidor, sino que también realiza
una operacion de borrado en ChromaDB. Para ello, consulta en la coleccion del
usuario todos los fragmentos cuyos metadatos apunten al fichero que se va a eliminar,
recopila sus IDs y los pasa al método user_collection.delete (). Esto asegura que
el contexto obsoleto no contamine futuras busquedas.

Endpoint de Correccidén: /api/corregir

Este recurso permite cerrar el ciclo de evaluacion. Recibe la pregunta original, la respuesta
correcta generada por el sistema, y la respuesta proporcionada por un alumno. Delega
toda la logica a la funcién corregir_respuesta del modulo corrector.py, que utiliza
un LLM para comparar seménticamente ambas respuestas y determinar si la del alumno
es correcta, ofreciendo ademas una justificacion.

5.6 Consideraciones sobre la Implementaciéon de la Apli-
cacion Cliente

Si bien el alcance de este Trabajo de Fin de Grado se ha centrado en el diseno e imple-
mentacién de la arquitectura del servidor y su API REST, resulta pertinente postular
cémo deberia ser una aplicacion cliente que consuma dichos servicios. La robustez y flexi-
bilidad de la API desarrollada permiten desacoplar completamente la logica del backend
de su presentacion, haciendo que el sistema sea agnostico a la tecnologia del cliente. A
continuacion, se describen las funcionalidades clave y las tecnologias recomendadas para
su desarrollo.

5.6.1 Funcionalidades Clave del Cliente

Una aplicacion cliente funcional deberia estructurarse en torno a dos perfiles de usuario
principales: el docente y el estudiante, ofreciendo interfaces diferenciadas para cada uno.
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Perfil de Docente

e Autenticacion: La aplicacion debe proporcionar una interfaz segura para que el
docente introduzca y almacene su X-API-KEY.

e Gestion de la Base de Conocimiento:
— Un formulario para subir ficheros (.pdf, .txt, .docx) o introducir URLs, que
interactuaria con el endpoint /api/cargar_info.
— Una vista para listar los ficheros ya procesados (obtenidos de /api/listar_ficheros)
con la opcién de eliminarlos (/api/eliminar_fichero).

e Generacion de Tareas:

— Un formulario de generacion de tareas que permita al usuario configurar to-
dos los pardmetros soportados por la API: tipo de pregunta, tema, cantidad,
dificultad, nivel educativo, puntos de interés (POI), etc.

— Una vista para mostrar de forma clara y ordenada las tareas generadas por
el sistema tras una llamada a /api/generar_tarea, permitiendo al docente
revisarlas antes de su uso.

Perfil de Estudiante

e Visualizaciéon de Tareas: Una interfaz limpia para presentar el enunciado de la
tarea, ya sea una pregunta de desarrollo, una de opciéon miltiple, una de verdade-
ro/falso o una tarea fotografica.

e Interaccién y Respuesta:

— Un campo de texto para respuestas abiertas.

Botones de opcion (radio buttons) para las preguntas de opcion multiple.

Un interruptor (toggle) para las preguntas de verdadero/falso.

— Integracion con la camara del dispositivo para capturar y subir imégenes en
las tareas fotograficas.

e Retroalimentacion: Una vez enviada la respuesta (mediante una llamada a /api/corregir),
la interfaz debe ser capaz de mostrar la retroalimentacion recibida del servidor,
diferenciando visualmente si la respuesta fue correcta o no y mostrando el texto
explicativo proporcionado por el LLM.

5.6.2 Pila Tecnol6gica Recomendada

Dada la naturaleza del sistema, se postulan dos posibles paradigmas de implementacion
para el cliente:

e Aplicacion Web Progresiva (PWA): Seria la opcién maéas versatil y de mas
rapida distribucion.
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— Frameworks: Se recomienda el uso de un framework de JavaScript moderno
como React, Vue o Angular. React, con su ecosistema de librerias como Axios
para las llamadas a la API y React Router para la navegacion, seria una eleccién
especialmente solida.

— Fstilos: Para agilizar el desarrollo de la interfaz, se podria utilizar una libreria
de componentes como Material-UI o un framework de CSS como Tailwind CSS.

— Ventagjas: Multiplataforma por defecto (accesible desde cualquier navegador en
escritorio o movil) y facilidad de despliegue.

e Aplicacion Mévil Nativa (i0S/Android): Esta opcion ofrecerfa una mejor inte-
gracion con el hardware del dispositivo (GPS para una geolocalizacion més precisa,
camara nativa) y la posibilidad de un funcionamiento offline mas avanzado.

— Frameworks Multiplataforma: Para optimizar los recursos de desarrollo, se re-
comienda un framework como React Native o Flutter. Ambos permiten desa-
rrollar para iOS y Android desde una tnica base de c6digo, interactuando con
la API REST del sistema de la misma manera que lo haria una aplicacién web.

— Ventajas: Mejor rendimiento y experiencia de usuario en dispositivos moéviles,
acceso completo a las capacidades del hardware y visibilidad en las tiendas de
aplicaciones.

5.7 Conclusiones

La fase de implementacion ha servido para materializar con éxito el disefio arquitecténico
planteado, resultando en un sistema funcional y robusto. La elecciéon de un ecosistema de
herramientas de codigo abierto, centrado en Python, ha sido un factor clave para acelerar
el desarrollo y garantizar la modularidad del proyecto.

El uso de frameworks y bibliotecas especializadas como Flask, LangChain, ChromaDB
y Ollama permiti6 centrar los esfuerzos en la logica principal de la aplicacion —la orques-
tacion del pipeline RAG y la generacion de tareas— en lugar de tener que desarrollar desde
cero soluciones para la gestion del servidor, el almacenamiento vectorial o la inferencia
de modelos. De manera analoga a como servicios externos pueden acelerar el desarrollo,
este enfoque basado en un ecosistema maduro permitié construir una solucién potente y
segura en un tiempo reducido, aprovechando la fiabilidad de componentes probados por
la comunidad. La decisién de ejecutar los LLM localmente con Ollama y gestionar los
embeddings con SentenceTransformers y ChromaDB fue una elecciéon estratégica delibe-
rada, priorizando la privacidad de los datos y el control total sobre el entorno, una ventaja
fundamental frente a las soluciones propietarias basadas en la nube.

La eleccion de Python como lenguaje principal, junto con Flask para el servidor web,
se ha demostrado especialmente acertada. Dado que el sistema se comunica constante-
mente mediante objetos JSON, la integraciéon con bibliotecas como Pydantic para forzar
y validar esquemas de salida directamente desde el LLM ha sido una de las decisiones de
implementacion més importantes. Esto no solo simplificé el procesamiento de las respues-
tas del modelo, sino que también garantizé una comunicacioén sin errores entre el servidor
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y cualquier cliente potencial, eliminando la fragilidad inherente al parseo de texto libre.

Como contrapartida, esta arquitectura no esti exenta de desafios. La principal des-
ventaja radica en la gestion de los recursos computacionales, ya que la ejecucion local
de grandes modelos de lenguaje es intensiva en memoria (RAM/VRAM) y capacidad de
procesamiento. Ademés, la dependencia de miltiples bibliotecas de codigo abierto exige
una cuidadosa gestion de versiones para evitar conflictos de compatibilidad a largo plazo.

En definitiva, aunque se han identificado areas de mejora, la implementacion actual
valida de manera efectiva el diseno propuesto y constituye una base solida y funcional.
El sistema esté ahora listo para ser evaluado en la siguiente fase, donde se analizara su
rendimiento y la calidad de las tareas generadas en el Capitulo 6, “Analisis de Resultados”.
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Capitulo 6

Analisis de Resultados

En este capitulo se presentan los resultados obtenidos tras la implementacién y las
pruebas del sistema. A diferencia de un sistema en produccién con usuarios reales, los
datos presentados provienen de una serie de pruebas controladas y ejecutadas sobre
el hardware especifico del proyecto para garantizar la reproducibilidad de las medi-
ciones. De los registros generados, se han extraido los tiempos de respuesta promedio
v los picos de consumo energético para los escenarios de uso mas representativos: la
generacion simple de tareas, la generacion utilizando RAG y la generaciéon compleja
sin modificar el contexto. Primeramente, este capitulo presenta un anélisis cualitativo
que compara las tareas generadas con las de sistemas anteriores como Casual Learn,
evaluando asi la mejora en la calidad y complejidad pedagogica. Posteriormente se
ejemplifican con las tareas usadas en la seccién anterior como funcionaria el sistema
de correccién con casos de respuestas verdaderas y falsas. Y por ultimo se presentan
los resultados cuantitativos, que, aunque validan la funcionalidad del sistema, des-
tacan la inferencia del LLM como el principal cuello de botella, con altas latencias
en los casos més complejos, lo que lo hace més adecuado para un uso asincrono.

6.1 Introducciéon

Una vez completada la fase de implementacion descrita en el capitulo anterior, este ca-
pitulo se dedica a la presentaciéon y anélisis sistematico de los resultados obtenidos. El
proposito es llevar a cabo una evaluacion integral del sistema desarrollado desde una doble
perspectiva: por un lado, validar su viabilidad técnica y su rendimiento computacional y,
por otro, medir la calidad y el valor pedagogico de las tareas generadas en comparacion
con el estado del arte previo Ademas del valor anadido de la realimentacion automatica.

Para ello, la evaluacion se aborda desde tres ejes fundamentales. En primer lugar, se
presenta una comparacion cualitativa con metodologias anteriores, contrastando las tareas
generadas por nuestro enfoque basado en IA Generativa con las producidas por sistemas
basados en plantillas y LOD, como Casual Learn. A través de ejemplos concretos, este
analisis busca mostar al lector las difrencias entre ambas metodologias.

En segundo lugar, se muestra un ejemplo de los resultados obtenidos en los ejemplos

de tareas anteriores con casos de respuestas correctas y incorrectas poniendo a prueba la
capacidad del modelo con los datos proporcionados de corregir errores o dar retroalimen-
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tacién adecuada.

En ultimo lugar, se realiza un analisis cuantitativo del rendimiento del sistema pro-
puesto en el servidor utilizado para las pruebas, donde se examinan métricas clave como
el tiempo de respuesta y el consumo de recursos bajo cargas de trabajo representativas.
Este analisis es fundamental para identificar los cuellos de botella inherentes a la ejecucion
local de los modelos de lenguaje y para determinar los escenarios de uso mas adecuados
para el sistema.

Conjuntamente, estos analisis permitiran no solo validar el cumplimiento de los ob-
jetivos planteados en este Trabajo de Fin de Grado, sino también contextualizar sus
contribuciones, identificar sus limitaciones y sentar una base empirica sélida para las con-
clusiones y las futuras lineas de trabajo que se expondran posteriormente.

6.2 Comparacién con las tareas de Casual Learn

Para evaluar la contribucion de este proyecto, es fundamental compararlo no con un LLM
de proposito general, sino con el estado del arte previo en la generacion de tareas de
aprendizaje ubicuo, representado por sistemas como Casual Learn [Ruiz-Calleja et al.,
2022]. Como presentamos en el Capitulo 2 los sistemas se basan en la explotacion de LOD
mediante un paradigma de plantillas predefinidas.

Nuestro sistema, en cambio, adopta un paradigma generativo. Utiliza la informacion
factica obtenida de RAG y Wikipedia no para rellenar huecos, sino como contexto para
un LLM que genera la tarea completa desde cero. Esta diferencia fundamental en el en-
foque da lugar a resultados cualitativamente distintos, como se ilustra en las Tablas 6.1,
6.2, 6.3, 6.4. Para los ejemplos, se utiliza como contexto la Catedral de Valladolid y la
Catedral de Palencia

Ademis, este enfoque ofrece ventajas adicionales frente a las preguntas generadas con
Casual Learn. Por un lado, la actualizacion de la informaciéon en la web de datos se re-
fleja automaticamente en las preguntas gracias al uso de RAG, mientras que en Casual
Learn seria necesaria la intervenciéon manual de un desarrollador o administrador para
regenerar los items. Por otro lado, las preguntas de Casual Learn presentan una menor
riqueza expresiva, ya que se generan a partir de plantillas que reproducen siempre un
mismo formato para cada tipo de cuestion; en cambio, en la propuesta aqui presentada
las preguntas de un mismo tipo pueden adoptar formulaciones diversas, més cercanas al
lenguaje natural. El precio a pagar por estas ventajas es la posible aparicion de alucinacio-
nes, asi como ciertas limitaciones de rendimiento inherentes al uso de modelos generativos.

Universidad de Valladolid 57 Luis Francisco Sanchez Turrion



6. Analisis de Resultados

Tabla 6.1: Comparativa Identificacion (Foto): Casual Learn (Plantilla LOD) vs. Sistema
Propuesto (IA Generativa)

Casual Learn Sistema Propuesto

Contexto Catedral de Valladolid. Catedral de Valladolid.

Enunciado Haz una foto de algtin elemento de Mirad con atencion la fachada. ;Po-
estilo Renacentista que encuentres déis fotografiar algin detalle que os
en la Catedral de Valladolid. recuerde que esta Catedral empezo

a construirse hace méas de 400 anos?
jBuscad algo que os hable del pasa-
do y de la historia de Valladolid!

Detalle Instruccion genérica sin foco pedago- Ejercicio de “caza del tesoro” con
gico. clave interpretativa.

Tabla 6.2: Comparativa Texto Abierto: Casual Learn (Plantilla LOD) vs. Sistema Pro-
puesto (IA Generativa)

Casual Learn Sistema Propuesto

Contexto Catedral de Valladolid. Catedral de Valladolid.

Enunciado ;Qué parte de Catedral de Vallado- Fijate en las diferentes partes de la
lid crees que es la mas antigua? ;Por fachada de la Catedral: jobservas
qué? elementos decorativos? Describe al

menos dos de ellos y piensa en qué
estilo arquitecténico crees que enca-
jan. ;Qué te sugieren estos detalles
sobre las ideas o creencias de la épo-
ca en la que se construy6?

Detalle Pregunta genérica, respuesta factual Observacion dirigida y andlisis esté-
tico.

En Casual Learn no existen tareas previamente elaboradas con plantillas sobre la
Catedral de Palencia ni sobre la Catedral de Valladolid, ni en formato verdadero o falso ni
en formato de opcion multiple. Por ello, con el fin de ejemplificar como son las actividades
que genera el nuevo sistema, a continuacion se presentan dos ejemplos de cada tipo.
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Tabla 6.3: Ejemplo de preguntas de Verdadero o falso (IA Generativa)

Sistema Propuesto

Sistema Propuesto

Contexto

Enunciado

Solucion

Catedral de Palencia.

Verdadero o Falso: Si caminas alre-
dedor del edificio, ; podras identificar
claramente un estilo arquitecténico
uniforme en todas sus partes?

Respuesta esperada: falso.

(Razon: La catedral combina ele-
mentos de diferentes estilos (visigo-
do, romdnico, gotico, renacentista,
barroco, neocldsico). Observando con
atencion, los alumnos podrdn identi-
ficar diferentes estilos arquitectoni-
cos en diferentes partes del edificio.)

Catedral de Valladolid.

Verdadero o Falso: ;Se puede obser-
var, a simple vista, alguna construc-
cion o vestigio de una iglesia anterior
que haya sido parcialmente destrui-
da para dar paso a la Catedral?

Respuesta esperada: verdadero.
(Razon: La informacion proporcio-
nada menciona que la Catedral se
construyd junto a una colegiata an-
terior, y que algunos de sus espacios
fueron destruidos para continuar con
las nuevas obras. Si observas aten-
tamente, podrds identificar restos o
vestigios de la antigua iglesia, espe-
cialmente en las cercanias de la Ca-
tedral.

Tabla 6.4: Ejemplo de preguntas de opcion miltiple (IA Generativa)

Sistema Propuesto

Sistema Propuesto

Contexto

Enunciado

Opciones

Catedral de Palencia.

Fijate en la planta de la catedral (si
es visible en el suelo o en algiin plano
informativo). ;Cuantos cruceros di-
ferentes puedes distinguir? ; Qué for-
ma particular le da esto a la planta
de la catedral?

a) Un solo crucero, lo que da a la
planta una forma de cruz simple.

b) Dos cruceros, lo que hace que la
planta sea mas compleja y parezca
una cruz patriarcal.

¢) Tres cruceros, formando una plan-
ta muy elaborada.

d) No puedo ver la planta de la ca-
tedral.

Opcion Correcta b.

Catedral de Valladolid.

Presta atencion a los elementos de-
corativos que hay en la portada
principal (esculturas, relieves, etc.).
., Qué temas o personajes parecen re-
presentarse en ellos?

a) Escenas de la vida cotidiana de la
época medieval.

b) Animales fantasticos y criaturas
mitologicas.

c) Figuras religiosas, como santos,
angeles o escenas biblicas.

d) Escudos de armas y simbolos de
la nobleza local.

Opcion correcta c.
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La comparacién pone de manifiesto que el sistema propuesto supera las limitaciones
de los enfoques basados en plantillas predefinidas, como Casual Learn. Mientras que es-
tos se restringen a la insercion de datos facticos en estructuras rigidas, nuestro enfoque
generativo permite elaborar enunciados mas ricos, contextualizados e interpretativos.

Las actividades resultantes no se limitan a constatar hechos, sino que fomentan la
observacion, la reflexion y la conexiéon con el trasfondo histérico y cultural, lo que amplia
su potencial pedagogico. Asimismo, la integracién de técnicas de RAG con un LLM ofrece
flexibilidad para generar distintos formatos de tarea (verdadero/falso, opcion multiple,
desarrollo abierto, actividades de identificacion), incluso en contextos para los que no
existian plantillas previas.

En conjunto, el cambio de paradigma abre nuevas posibilidades para el diseno de ex-
periencias de aprendizaje ubicuo, mas cercanas a las necesidades del alumnado y a los
objetivos educativos, sin embargo, las tareas de la nueva propuesta aiin no han sido eva-
luadas por profesores a diferencia de las preguntas de plantillas de LOD.

6.3 Ejemplificaciéon del uso del corrector

Tras comparar el desempeno del nuevo sistema con el sistema anterior, a continuacion
ejemplificamos como seria la correccion automatica de distintos tipos de tareas por
parte del modelo de lenguaje. Para cada tipo presentamos dos casos: una respuesta bien
resuelta y otra con errores, con el fin de verificar si el modelo identifica adecuadamente
cada situacion y analizar la retroalimentacion que proporciona.

6.3.1 Correccidon de tareas de texto abierto

Caso 1 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (desarrollo). Fijate en las diferentes partes de la fachada de la Catedral:
sobservas elementos decorativos? Describe al menos dos de ellos y piensa en qué estilo
arquitectonico crees que encajan. ;Qué te sugieren estos detalles sobre las ideas o creencias
de la época en la que se construyo?

Respuesta del alumno. Veo pilastras y frontones en la portada principal; encajan
con un estilo clasicista/herreriano. Sugieren sobriedad y la autoridad de la Iglesia propia
de la Contrarreforma.

Evaluacién del modelo. v Correcta.

Retroalimentacién generada.

iHola Luis! Tu respuesta es excelente y demuestra una buena comprension de
los elementos arquitectonicos y su contexto historico. Has identificado correc-
tamente las pilastras y los frontones en la portada de la Catedral de Valladolid,
y has acertado al relacionarlos con el estilo clasicista/herreriano. Ademaés, has
conectado estos elementos decorativos con ideas de autoridad y la sobriedad
caracteristica de la Contrarreforma. Tu capacidad para observar los detalles
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arquitectonicos y relacionarlos con el contexto histérico es impresionante. |Si-
gue asi!

Comentario. El modelo reconoce con precision la correccion de la respuesta y jus-
tifica por qué es adecuada, reforzando los aciertos con referencias al estilo y al contexto
(Contrarreforma).

Caso 2 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.

Pregunta (desarrollo). (Misma que el caso anterior).

Respuesta del alumno. Veo gargolas y tracerias flamigeras; dirfa que es gotico
tardio. Me sugiere fantasia medieval y supersticion.

Evaluacion del modelo. X Incorrecta.

Retroalimentacion generada.

Hola Luis, jmuy bien por intentar identificar elementos decorativos en la fa-
chada de la Catedral de Valladolid! Observaste correctamente las gargolas y
las tracerias flamigeras, que son caracteristicas del estilo gético. Sin embargo,
la Catedral de Valladolid, aunque iniciada en el gotico, presenta una fachada
principal de estilo clasicista/herreriano. Los elementos clave que debias haber
identificado son las pilastras y los frontones clésicos en la portada, asi como
la sobriedad que caracteriza este estilo. La diferencia principal es que tu res-
puesta se centra en elementos goticos presentes en otras partes de la catedral,
mientras que la pregunta se refiere especificamente a la fachada principal. El
estilo clasicista/herreriano, presente en la portada, se caracteriza por la bius-
queda de la armonia, la proporcion y la sobriedad, lo que refleja las ideas de
autoridad y racionalidad de la época de la Contrarreforma. Aunque la ’fan-
tasia medieval y supersticion’ que mencionas pueden asociarse al gotico, la
fachada clasicista/herreriana buscaba transmitir una imagen de solidez y po-
der, acorde con los valores de la Contrarreforma. Te recomiendo que revises
imégenes de la fachada principal de la Catedral de Valladolid y compares los
elementos decorativos con ejemplos del estilo clasicista y herreriano. Puedes
buscar informacién sobre estos estilos en paginas web de historia del arte o en
libros de texto.

Comentario. El modelo detecta correctamente el error de foco (confundir la facha-
da principal con otros elementos del conjunto) y ofrece una explicacién contrastiva til,
ademas de sugerir recursos para revisar.

6.3.2 Correccion de verdadero /falso

Caso 3 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (V/F). ;Se puede observar, a simple vista, alguna construccion o vestigio
de una iglesia anterior que haya sido parcialmente destruida para dar paso a la Catedral?

Respuesta esperada. Verdadero.

Respuesta del alumno. Verdadero.
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Evaluacién del modelo. v Correcta.
Retroalimentacién generada.

iExcelente, Luis! Tu respuesta es correcta. Efectivamente, al observar la Cate-
dral de Valladolid, es posible identificar restos de la antigua iglesia de San Pe-
dro el Real integrada en la estructura de la nueva catedral. Se pueden apreciar
vestigios de muros y arcos romanicos que formaban parte de la iglesia origi-
nal, incorporados al edificio gético. Esto es un ejemplo interesante de como las
construcciones religiosas a menudo se levantan sobre estructuras preexistentes,
reflejando la historia y evolucion de la ciudad. jSigue asi!

Comentario. Ademas de validar el acierto, el modelo anade contexto historico que
enriquece el aprendizaje (integracion de estructuras previas).

Caso 4 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.

Pregunta (V/F). (Misma que el caso anterior).

Respuesta esperada. Verdadero.

Respuesta del alumno. Falso.

Evaluacion del modelo. X Incorrecta.

Retroalimentaciéon generada.

Hola Luis, jbuen intento! La respuesta correcta es verdadero. En la Catedral
de Valladolid, si observas con atencion, especialmente en el lado del Evangelio
(el lado derecho si estas mirando hacia la fachada principal), puedes ver restos
de la iglesia roménica de San Pedro, que fue integrada parcialmente en la cons-
truccion de la catedral. No se demolié por completo, sino que se incorporaron
partes de sus muros y elementos arquitectonicos. Esto es bastante comin en
la construccion de catedrales goticas, que a menudo se construian sobre ci-
mientos de iglesias anteriores. Te sugiero que busques imagenes de la Catedral
de Valladolid que muestren este detalle para que puedas visualizarlo. Puedes
buscar en internet ‘Catedral de Valladolid vestigios iglesia San Pedro‘ o con-
sultar alguna guia turistica o pagina web sobre la catedral. jSigue practicando
y explorando la arquitectural

Comentario. La correccion es clara y especifica (localiza el vestigio en el lado del
Evangelio) y propone una estrategia de verificacion visual, lo que favorece la autonomia
del alumno.

6.3.3 Correcciéon de opcién multiple

Caso 5 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (opcién mailtiple). Presta atencion a los elementos decorativos que hay
en la portada principal (esculturas, relieves, etc.). ;Qué temas o personajes parecen re-
presentarse en ellos?

a) Escenas de la vida cotidiana de la época medieval.
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b) Animales fantdsticos y criaturas mitoldgicas.

c¢) Figuras religiosas, como santos, dngeles o escenas biblicas.

d) Escudos de armas y simbolos de la nobleza local.
Respuesta esperada. c) Figuras religiosas, como santos, angeles o escenas biblicas.
Respuesta del alumno. ¢) Figuras religiosas, como santos, angeles o escenas biblicas.
Evaluacion del modelo. v Correcta.
Retroalimentacién generada.

iHola Luis, excelente trabajo! Tu respuesta es completamente correcta. La
portada principal de la Catedral de Valladolid esté ricamente decorada con
figuras religiosas, representando santos, angeles y escenas biblicas. Esto es
tipico en la arquitectura gotica, que buscaba transmitir ensenanzas religiosas a
través del arte. Al identificar correctamente estos temas, demuestras una buena
comprension del propoésito y simbolismo de la decoracion en las catedrales
medievales. jSigue asi!

Comentario. El modelo valida y explica el porqué de la opciéon correcta, conectando
forma y funcion (didactica religiosa del arte).

Caso 6 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.
Pregunta (opcion miltiple). (Misma que el caso anterior).
Respuesta esperada. c) Figuras religiosas, como santos, angeles o escenas biblicas.
Respuesta del alumno. a) Escenas de la vida cotidiana de la época medieval.
Evaluaciéon del modelo. X Incorrecta).
Retroalimentacién generada.

Hola Luis, he revisado tu respuesta y veo que has elegido ‘Escenas de la vida
cotidiana de la época medieval‘. Aunque la vida medieval es un tema interesan-
te, la decoracion de la portada principal de la Catedral de Valladolid se centra
principalmente en figuras religiosas. Los relieves y esculturas de la portada no
representan escenas del dia a dia, sino personajes biblicos, santos y angeles.
Esto es muy comun en las catedrales goticas, que buscaban ensenar la fe cris-
tiana a través del arte. Piensa que en la Edad Media, la mayoria de la gente
no sabia leer, asi que las imégenes eran una forma importante de comunicar
las historias de la Biblia. Te recomiendo que revises imagenes de la portada
de la Catedral de Valladolid y prestes atenciéon a las figuras representadas.
Busca imégenes de santos, angeles o escenas de la Biblia. Esto te ayudara a
comprender mejor el objetivo de la decoraciéon de la portada. Puedes buscar
en sitios web de historia del arte o en guias turisticas de Valladolid. jSigue
practicando y no te desanimes! El arte y la historia pueden ser complejos,
pero con esfuerzo y dedicacion, podras comprenderlo mejor.

Comentario. El modelo corrige de forma explicativa (no sélo dicotémica), y anade
una breve justificacion pedagogica (funciéon narrativa de la iconografia).
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6.4 FEvaluacion del rendimiento del servidor

Para validar la viabilidad técnica del sistema, se llevd a cabo una evaluaciéon cuantitativa
del rendimiento. El objetivo fue medir la eficiencia y capacidad de respuesta de la arqui-
tectura bajo cargas de trabajo representativas, asi como identificar los posibles cuellos de
botella inherentes a la ejecucion local de los modelos de lenguaje.

Las pruebas se ejecutaron en un servidor del grupo de investigacion GSIC/EMIC con
capacidad para este proyecto, cuyas especificaciones técnicas son las mostradas en la tabla
6.5:

Componente Detalle

Servidor: HPE ProLiant DL380 Genl0

CPU: Intel Xeon-S 4210 (10 nucleos @ 2.20 GHz)

RAM: 64 GB DDR4 RDIMM

GPU: 2 x NVIDIA Quadro P5000 (32 GB VRAM en total)
Almacenamiento: HPE 1.8 TB SAS 10K RPM HDD

Software: Python 3.9, Flask, Ollama 0.1.32, ChromaDB 0.4.24

Tabla 6.5: Especificaciones del servidor

Se definieron dos métricas clave:

Tiempo de Respuesta (Latencia): Tiempo total en segundos desde que el servidor
recibe una peticion HTTP hasta que envia la respuesta completa. Esta métrica
es necesaria para determinar si el sistema puede actuar de forma sincrona con los
estudiantes.

Consumo de Recursos: Se monitorizo el pico de uso de las GPUs en Watios que nos
servird para calcular el coste econdémico en kWh del servidor en una peticion al
sistema.

Se disenaron tres escenarios de prueba para simular los casos de uso principales. Cada
prueba se ejecut6 10 veces, registrando el valor promedio para asegurar la consistencia de
los resultados.

e Escenario A (Generacion Simple): Solicitud de generacion de 5 tareas de opcion
multiple (MCQ) sobre el “Arte Herreriano” sin contexto de RAG de la Catedral de
Valladolid.

e Escenario B (Generacion con RAG): Solicitud de generacion de 5 tareas de
opcion multiple (MCQ) sobre el “Arte Herreriano” de la Catedral de Valladolid
utilizando el sistema RAG para recuperar contexto relevante de un documento de 5
péaginas previamente indexado.

e Escenario C (Generacion Compleja): Solicitud de generacion de 5 tareas de
opcion multiple (MCQ) sobre el “Arte Herreriano” de la Catedral de Valladolid
recuperando y anadiendo todo el contexto recuperado en el prompt.
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Escenario de Prueba Tiempo de Respuesta (s) Consumo (kWh)

A: Generacion Simple 43 0.00175
B: Generacion con RAG 42 0.0017
C: Generacion Compleja 365 0.00577

Tabla 6.6: Resultados promedio de tiempo de respuesta y consumo de recursos por esce-
nario de prueba.
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Figura 6.1: Grafica de consumo frente al tiempo de respuesta del caso A

Cuello de Botella en la Inferencia del LLM. Los resultados mostrados en la tabla
6.6 confirman que el principal factor limitante del sistema es el tiempo de inferencia de
los modelos de lenguaje. Con tiempos de respuesta que van desde los 42 s hasta los 3655,
el sistema no es apto para interacciones en tiempo real, pero si es perfectamente valido
para casos de uso asincronos, como la preparaciéon de material educativo por parte de un
docente o de forma autodidacta por parte de un alumno.

Impacto del contexto RAG y la Complejidad. El Escenario C es, con diferencia,
el mas lento. Este incremento se debe a la combinaciéon de dos factores: la sobrecarga del
sistema RAG (vectorizacion de la consulta y busqueda en ChromaDB) y, sobre todo, el
mayor tiempo que necesita el modelo gemma3:27b para procesar un prompt enriquecido
con mas contexto y generar tres respuestas extensas en lugar de una sola.

Consumo de recursos y requisitos de hardware. El consumo de VRAM es el factor
mas critico. El sistema utiliza casi la totalidad de los 32 GB disponibles, lo que demues-
tra que la eleccion de modelos de 27B y 32B parametros lleva el hardware a su limite.
Este alto consumo es un “coste fijo”, ya que los modelos se cargan en memoria una sola
vez y permanecen alli para atender peticiones sucesivas. El consumo de RAM, aunque
significativo, se mantiene en niveles manejables gracias a la eficiencia de ChromaDB y
Flask.

Implicaciones para la escalabilidad. Las pruebas, realizadas de forma secuencial,
indican que el servidor puede gestionar las peticiones de un tnico usuario de manera fun-
cional. Sin embargo, como establece el requisito no funcional RNF03, la concurrencia es
una limitacion. Dado el alto consumo de recursos y los tiempos de latencia, el sistema en
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Figura 6.2: Gréfica de consumo frente al tiempo de respuesta del caso B
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Figura 6.3: Grafica de consumo frente al tiempo de respuesta del caso C

su estado actual podria atender a un nimero muy limitado de usuarios simultaneos (2-5)
antes de que las colas de peticiones degradasen la experiencia de forma inaceptable. Una
escalabilidad real requeriria una infraestructura de despliegue mas robusta (p. ej., con
balanceo de carga) y, potencialmente, la optimizacion de los modelos mediante técnicas
de cuantizacion més agresivas o destilacion.

La evaluacion de rendimiento demuestra que el sistema es funcional sobre el hardware
especificado y valida las decisiones de diseno. Sin embargo, también subraya que la latencia
y el consumo de VRAM son los principales desafios técnicos, definiendo el sistema como
una potente herramienta de autor para uso individual o en grupos pequenos, y sentando las
bases para futuras optimizaciones. Como posibles soluciones, se podria recurrir a APIs de
terceros que disponen de una infraestructura optimizada para LLMs de mayor capacidad,
aunque con un coste por token, o bien invertir en GPUs més potentes que permitan reducir
tanto la latencia como los problemas asociados al consumo de memoria.
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6.5 Conclusiones

Del analisis presentado en este capitulo se pueden extraer varias conclusiones fundamen-
tales sobre la viabilidad, el rendimiento y el valor pedagogico del sistema desarrollado.
La evaluaciéon de rendimiento demuestra que el sistema es funcional sobre el hardware
especificado y valida la viabilidad técnica de la arquitectura monolitica escogida. Sin em-
bargo, también subraya que la latencia de la inferencia y el alto consumo de VRAM son
los principales desafios técnicos, confirmando que el cuello de botella del sistema reside
en la ejecucion de los modelos de lenguaje.

Desde una perspectiva cualitativa, la comparativa con sistemas basados en plantillas
LOD como Casual Learn revela la contribucién mas significativa de este proyecto. Mien-
tras que los sistemas de plantillas se limitan a la recuperacion y presentacion de datos
facticos, nuestro enfoque generativo transforma esos datos en un contexto para crear ta-
reas pedagogicamente mas ricas y complejas. Esto se manifiesta en la capacidad de generar
distractores plausibles en preguntas de opcion multiple, formular preguntas abiertas que
fomentan la observacion y el analisis critico, y, en general, promover habilidades cognitivas
de orden superior en lugar de la mera memorizacion.

Ademas el sistema presenta un valor anadido de poder corregir o dar una retroalimen-
tacion de forma automética al estudiante de su respuesta y con los motivos por los cuales
esta bien o mal la respuesta para que le resulte mas facil el aprendizaje.

Estas conclusiones definen claramente el nicho de aplicacion del sistema en su estado
actual. No se trata de una herramienta de interacciéon en tiempo real para estudiantes,
aunque pudieran existir casos donde si se pueda usar de forma sincrona, sino de una poten-
te herramienta de autor para docentes o disenadores instruccionales que pueden generar
material de alta calidad de forma asincrona. Las pruebas de rendimiento, realizadas de
forma secuencial, indican que la escalabilidad para usuarios concurrentes es una limita-
cion importante, en linea con el requisito no funcional RNF03. El sistema, por tanto, esta
optimizado para un uso individual o en grupos muy pequenos.

En definitiva, el conjunto de los analisis realizados permite afirmar que se ha cumplido
el objetivo principal de este Trabajo de Fin de Grado: demostrar que es posible superar
las limitaciones pedagogicas de los sistemas basados en plantillas y datos abiertos enla-
zados mediante el uso de Inteligencia Artificial Generativa, el siguiente paso seria hacer
validacion de la calidad de las tareas con docentes. Aunque la sensacién que transmite
el sistema es que a cambio de un mayor coste computacional y una latencia superior, se
obtiene un salto cualitativo en la riqueza, variedad y eficacia pedagbgica de las tareas de
aprendizaje ubicuo generadas.
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Capitulo 7

Conclusiones y lineas futuras de trabajo

En este capitulo final del Trabajo Fin de Grado (TFG) se relacionan los objetivos que
motivaron su desarrollo con los resultados obtenidos, destacando el uso innovador de
Modelos de Lenguaje de Gran Escala (LLM) para la generacion y correccion de tareas
de aprendizaje ubicuo. Este trabajo ha permitido explorar cémo estas tecnologias
pueden generar contenido educativo contextualizado y personalizado, integrando el
aprendizaje en el entorno cotidiano del usuario. Sin embargo, durante el desarrollo
se han identificado limitaciones que no se habfan considerado inicialmente. Estas
limitaciones, junto con los logros alcanzados, sirven como base para proponer lineas
de trabajo futuro que amplien y optimicen el sistema.

7.1 Conclusiones del trabajo realizado

El objetivo principal de este TFG fue explorar el potencial de los LLM para generar tareas
educativas en el marco del aprendizaje ubicuo, utilizando texto de alta calidad y Datos
Abiertos Enlazados como fuentes de informaciéon. Los resultados de la generaciéon de ta-
reas y la retroalimentacion de las mismas muestran que los LLM son altamente efectivos
cuando se les proporciona texto rico y estructurado, produciendo tareas diversas y adap-
tadas al contexto del usuario. Este hallazgo es especialmente relevante en el aprendizaje
ubicuo, donde la personalizacion y la relacion con el entorno son fundamentales para una
experiencia educativa inmersiva. Por ejemplo, las tareas generadas a partir de textos des-
criptivos sobre monumentos han demostrado ser mas ricas y variadas que las producidas
por métodos tradicionales basados en plantillas.

Otro aspecto critico identificado es la escalabilidad del sistema. Aunque los experimen-
tos realizados demostraron la viabilidad del enfoque en entornos controlados, el hardware
actual no es suficiente para procesar grandes volimenes de datos o responder a consul-
tas complejas en tiempo real. Esta limitacion sugiere la necesidad de optimizar tanto los
recursos computacionales como los algoritmos utilizados para garantizar un rendimiento
adecuado en escenarios de mayor escala.

En cuanto a las contribuciones, este TFG mejora significativamente los métodos ba-
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sados en plantillas, que suelen generar tareas repetitivas y poco adaptadas. El enfoque
propuesto introduce una mayor diversidad y contextualizacion, enriqueciendo la experien-
cia de aprendizaje, aunque seria necesaria la validacion por parte de docentes y estudiantes
para reforzar esta afirmacion. Ademas, representa una novedad al ser, hasta donde sabe-
mos, el primer intento de emplear LLM para generar contenido educativo ubicuo y el
poder obtener retroalimentacion de forma automética.

7.2 Limitaciones y lineas de trabajo futuro

A pesar de los avances logrados, el sistema presenta limitaciones que abren oportunidades
para futuras mejoras. Una de las principales restricciones es su dependencia de texto de
alta calidad. Para superar esto, una linea de trabajo futuro podria consistir en desarrollar
técnicas de enriquecimiento de datos, integrando fuentes externas o generando descripcio-
nes textuales a partir de los datos seméanticos disponibles.

Otra limitacion es la especificidad del sistema, que actualmente se centra en temas
relacionados con monumentos. Esto restringe su uso en otros contextos educativos. Una
propuesta de mejora serfa generalizar la aplicacién para abarcar una gama mas amplia de
temas, transformandola en una herramienta educativa mas versatil y adaptable a diferen-
tes disciplinas.

En términos de infraestructura, la escalabilidad sigue siendo un desafio. Para abordar
esta limitacion, se podrian explorar mejoras en el hardware, como el uso de servidores
mas potentes, y optimizaciones algoritmicas que reduzcan los tiempos de procesamiento.
Ademas, la integracion con plataformas existentes, como CHEST, que también utiliza
Datos Abiertos Enlazados, podria enriquecer el sistema al combinar multiples fuentes de
datos y mejorar la relevancia de las tareas generadas.

La implementacion del diseno de la API REST del capitulo 4 seria otro trabajo para
el futuro, que nos permita el almacenamiento persistente de las tareas completadas por
los usuarios. Implementar esta funcionalidad permitiria a los estudiantes hacer un segui-
miento de su progreso y retomar actividades previas, lo que contribuiria a una experiencia
de aprendizaje més estructurada y continua.

Finalmente, la seguridad del sistema es un aspecto critico que requiere atencion. La
version actual no cuenta con medidas robustas para proteger los datos de los usuarios,
lo que podria comprometer su privacidad. Una linea de trabajo futuro seria implementar
protocolos de cifrado y autenticacion més solidos, garantizando la confidencialidad y la
confianza en la plataforma, especialmente en entornos educativos.

En conclusion, este TFG ha establecido una base prometedora para el uso de LLM
en el aprendizaje ubicuo, demostrando su capacidad para generar contenido educativo
innovador y el feedback al estudiante sobre las respuestas al contenido. Las limitaciones
identificadas no s6lo destacan los retos pendientes, sino que también ofrecen una hoja de
ruta clara para futuras investigaciones y desarrollos en este campo emergente.
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Apéndice A
Documentacion API

En las paginas siguientes se adjunta el codigo fuente de la API del sistema, desarrollado
siguiendo los principios REST [Fielding, 2000]. La documentacion interactiva de esta API
fue generada automaticamente mediante la biblioteca Flasgger, que se integra con Flask
para producir una especificacion compatible con OpenAPI.

openapi: 3.0.0

info:
title: ’API de Generacidén y Correccidén de Tests - L.F. System’
version: ’1.0.0°
contact:
name: ’Luis Francisco Sanchez’
email: ’luisfrancisco.sanchez@estudiantes.uva.es’
tags:
- name: ’Ficheros’
description: ’Operaciones para gestionar los ficheros de
conocimiento del usuario.’
- name: ’Carga de Informacién’
description: ’Endpoints para ingestar informacidén desde ficheros o
URLs en la base de datos vectorial.’
- name: ’Generacién de Tests’
description: ’Endpoints para la creacidén dindmica de preguntas y
tests .’
- name: ’Correccidn’
description: ’Endpoints para evaluar las respuestas de los alumnos.’

components:
securitySchemes:
ApiKeyAuth:
type: apiKey
in: header
name: X-API-KEY
description: ’Clave API dnica para la autenticacién del usuario.’

schemas:

TestGenerationRequest:
type: object
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33 description: ’Pardmetros para generar un nuevo test.’

34 required:

- tipo_preguntas

36 - cantidad

- tema

38 - dificultad

39 - materia

10 - nivel

11 properties:

12 tipo_preguntas:

13 type: string

44 description: ’Tipo de pregunta a generar (ej: MCQ, long_simple
, yes_or_mno) .’

15 example: ’MCQ°

16 cantidad:

17 type: integer

48 description: ’Numero de preguntas a generar.’

19 example: 5

50 tema:

51 type: string

52 description: ’El tema principal sobre el que trataran las
preguntas.’

53 example: ’Catedrales’

54 dificultad:

55 type: string

56 description: ’Nivel de dificultad de las preguntas (ej: facil,
media, dificil) .’

57 example: ’media’

58 materia:

59 type: string

60 description: ’La asignatura o campo de estudio.’

61 example: ’Historia del arte’

62 nivel:

63 type: string

64 description: ’El nivel educativo al que se dirige las tareas (
ej: primaria (edad del estudiante), secundaria (edad del estudiante),

universidad (edad del estudiante), ...).°
65 example: ’secundaria’
66 poil:
67 type: string
68 description: ’Punto de interés principal a buscar en la base

de conocimiento para generar contexto.’

69 example: ’Catedral de Valladolid’

70 poi2:

71 type: string

72 description: ’Punto de interés secundario.’
73 example: ’Catedral de Palencia’

74 material:

75 type: string

76 description: ’Indica si se deben incluir imadgenes en el test
("texto y imagenes") .’

77 example: ’texto y imagenes’

79 TestGenerationResponse:
80 type: object
81 properties:
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126

QuestionMCQ:

test:
type: array
description: ’Lista de preguntas generadas.’
items:
one0f :
- $ref: ’#/components/schemas/QuestionMCQ’
- $ref: ’#/components/schemas/QuestionlLongSimple’
- $ref: ’#/components/schemas/QuestionYesNo’
- $ref: ’#/components/schemas/QuestionPhotograph’
imagenes:
type: array
description: ’Lista de imAgenes descargadas relacionadas con
el test.’
items:
type: object
properties:
nombre:
type: string
example: ’catedral_de_valladolid_1.jpg’
ruta_local:
type: string
example: ’/home/lfsanchez/tfg-2024-1luisfran/files/userl/
catedral_de_valladolid_1. jpg’
url_original:
type: string
example: ’https://commons.wikimedia.org/...’

type: object
required: [tipo, question, optionO, optionl, option2, option3,
correct_option]
properties:
tipo: { type: string, example: ’MCQ’ }
question: { type: string, example: ’;Qué estilo arquitectdnico
predomina en la Catedral de Ledén, conocida como la "Pulchra Leonina
u?7 }
option0: { type: string, example: ’Roménico’ }
optionl: { type: string, example: ’Barroco’ }
option2: { type: string, example: ’Goético’ }
option3: { type: string, example: ’Herreriano’ }
correct_option: { type: integer, example: 2 1}

QuestionLongSimple:
type: object
required: [tipo, question, solucion]
properties:
tipo: { type: string, example: ’long_simple’ }
question: { type: string, example: ’Describe las caracteristicas
principales de la fachada de Santa Maria de la Catedral de Burgos,
mencionando sus elementos mas significativos.’ }
solucion: { type: string, example: ’La fachada de Santa Maria es
un ejemplo del gdético francés. Estd flanqueada por dos torres
coronadas con agujas caladas del siglo XV. Sobre el arco de entrada
se encuentra una galeria con estatuas de los reyes de Castilla y un
gran rosetdén con una estrella de David en su traceria.’ }
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163

164

165

166

167

168

169

CorrectionRequest:

CorrectionResponse:

QuestionYesNo:
type: object
required: [tipo, question, solucion]
properties:
tipo: { type: string, example: ’yes_or_no’ }
question: { type: string, example: ’;Se considera que la
Catedral de Valladolid fue completada segun los planos originales de
Juan de Herrera?’ }
solucion: { type: boolean, example: false }

QuestionPhotograph:
type: object
required: [tipo, question]
properties:
tipo: { type: string, example: ’photograph’ }
question: { type: string, example: ’Visita la Catedral Nueva de
Salamanca y saca una foto del famoso astronauta esculpido en la
Puerta de Ramos.’ }

\begin{lstlisting}[language=yaml]

type: object
required: [pregunta, respuesta_correcta, respuesta_alumno, nivell]
properties:
pregunta:
type: string
example: ’;En qué siglo se comenzd a construir la Catedral de
Burgos?’
respuesta_correcta:
type: string
example: ’La construccidén de la Catedral de Burgos se inicid en el
siglo XIII, en el afio 1221.°
respuesta_alumno:
type: string
example: ’Empezd a construirse en el siglo XII.’
nivel:
type: string
description: ’Nivel educativo para ajustar la rigurosidad de la
correccién.’
example: ’secundaria’

type: object
properties:
is_ok:
type: boolean
description: ’True si la respuesta del alumno es correcta, False
en caso contrario.’
diferencias:
type: string
description: ’Explicacién de por qué la respuesta es correcta o
incorrecta, destacando las diferencias.’

# ---- Modelos para Gestidén de ficheros ----
FileDeletionRequest:
type: object

Universidad de Valladolid 74 Luis Francisco Sanchez Turrion



A. Documentacion API

174 required: [fichero]

175 properties:

176 fichero:

177 type: string

178 description: ’Nombre del fichero a eliminar.’

179 example: ’historia_siglo_xx.pdf’

181 # ---- Modelo de Error Genérico ----
182 ErrorResponse:

183 type: object

184 properties:

185 error:

186 type: string

187 description: ’Mensaje de error descriptivo.’
188

189| paths:

190 /api/cargar_info:

191 post:

192 tags: [Carga de Informacidn]

193 summary: ’Sube un fichero o carga desde una URL para procesar y
almacenar.’

194 description: >

195 Permite ingestar informacidén desde un fichero (txt, pdf, docx) o
una URL (pagina web, video de YouTube).

196 El contenido se divide en fragmentos, se vectoriza y se almacena
en la base de datos ChromaDB del usuario.

197 security:

108 - ApiKeyAuth: []

199 requestBody:

200 required: true

201 content:

202 multipart/form-data:

203 schema:

204 type: object

205 properties:

206 file:

207 type: string

208 format: binary

209 description: ’El fichero a subir (txt, pdf, docx).’

210 url:

211 type: string

212 description: ’URL de una pagina web o video de YouTube

213 example: ’https://es.wikipedia.org/wiki/
Inteligencia_artificial’

214 encoding:

215 file:

216 contentType: application/pdf, text/plain, application/
vnd.openxmlformats -officedocument .wordprocessingml .document

217 responses:

218 22007 :

219 description: ’Informacidén procesada y almacenada exitosamente
en ChromaDB.’

220 content:

221 application/json:

222 schema:
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N
¥

type: object

224 properties:

225 message: { type: string, example: ’Informacidn
almacenada en ChromaDB’ }

226 74007 :

227 description: ’Error en la peticidén, como no proporcionar
fichero ni URL, o un formato no soportado.’

228 content:

229 application/json: { schema: { $ref: ’#/components/schemas/
ErrorResponse’ } }

230 74037 :

231 description: ’La clave API proporcionada es invalida o no
tiene permisos.’

232 content:

233 application/json: { schema: { $ref: ’#/components/schemas/
ErrorResponse’ } }

234 5007 :

235 description: ’Error interno del servidor durante el
procesamiento o almacenamiento.’

236 content:

237 application/json: { schema: { $ref: ’#/components/schemas/
ErrorResponse’ } }

239 /api/listar_ficheros:

240 get:

241 tags: [ficheros]

242 summary: ’Lista todos los ficheros de conocimiento de un usuario.’
243 security:

244 - ApiKeyAuth: []

245 responses:

246 7200 :

247 description: ’Una lista con los nombres de los ficheros del
usuario.’

248 content:

249 application/json:

250 schema:

251 type: object

252 properties:

253 ficheros:

254 type: array

255 items: { type: string 1}

256 example: ["documentol.pdf", "apuntes_clase.txt"]
257 74037 :

258 description: ’Clave API invalida.’

259 content:

260 application/json: { schema: { $ref: ’#/components/schemas/
ErrorResponse’ } }

262 /api/eliminar_fichero:

263 post:

264 tags: [ficheros]

265 summary: ’Elimina un fichero y sus fragmentos asociados de la base
de datos.’

266 security:

267 - ApiKeyAuth: []

268 requestBody:
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269 required: true

270 content:

271 application/json:

272 schema:

273 $ref: ’#/components/schemas/FileDeletionRequest’
274 responses:

275 72007 :

276 description: ’fichero y sus datos asociados eliminados
correctamente.’

277 content:

278 application/json:

279 schema:

280 type: object

281 properties:

282 message: { type: string, example: ’fichero documento.
pdf eliminado correctamente’ }

283 74037 :

284 description: ’Clave API invalida.’

285 7404

286 description: ’El fichero especificado no existe.’

287 ’500:

288 description: ’Error interno al intentar eliminar el fichero o

sus fragmentos.’

290 /api/generar_test:

291 post:

202 tags: [Generacidén de Tests]

293 summary: ’Genera un conjunto de preguntas de test basadas en para
metros especificos.’

294 description: >

295 Crea un test utilizando el modelo de lenguaje para generar
preguntas. Puede usar el contexto

296 extraido de la base de conocimientos del usuario si se
proporcionan "poil" o "poi2".

297 security:

208 - ApiKeyAuth: []

299 requestBody:

300 required: true

301 content:

302 application/json:

303 schema:

304 $ref: ’#/components/schemas/TestGenerationRequest’
305 responses:

306 72007 :

307 description: ’Test generado exitosamente.’

308 content:

309 application/json:

310 schema:

311 $ref: ’#/components/schemas/TestGenerationResponse’

312 74007 :

313 description: ’Pardmetros invéalidos, como una cantidad no numé
rica.’

314 74037 :

315 description: ’Clave API invalida.’

317 /corregir:
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post:
tags: [Correccidn]
summary: ’Corrige la respuesta de un alumno comparandola con la
solucidén correcta.’
description: >
Utiliza un modelo de lenguaje para realizar una correccidn sema
ntica de la respuesta
de un alumno, proporcionando feedback sobre si es correcta y por
qué.
security:
- ApiKeyAuth: []
requestBody:
required: true
content:
application/json:
schema:
$ref: ’#/components/schemas/CorrectionRequest’
responses:

7200 :

description: ’Resultado de la correccidn.’

content:

application/json:
schema:
$ref: ’#/components/schemas/CorrectionResponse’

7400 :

description: ’Faltan parametros en la peticiédn.’
74037 :

description: ’Clave API invalida.’

Codigo A.1: Documentacion de la API REST del servidor en formato YAML
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