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Resumen

Múltiples organizaciones publican datos abiertos —especialmente de patrimonio cultu-
ral— que no están listos para su uso directo en educación. Trabajos previos del gru-
po GSIC/EMIC abordaron esta brecha con Casual Learn, una aplicación distribuida
(servidor+cliente Android) que, apoyándose en un almacén de triplas RDF y consul-
tas SPARQL, ofrece tareas educativas basadas en plantillas validadas por docentes para
aprendizaje ubicuo, con experiencias reales en más de cien estudiantes de 4.º ESO y 1.º
de Bachillerato. Aunque eficaz, este enfoque depende del refinamiento previo de plantillas
y de la disponibilidad de LOD, lo que limita la expresividad y la portabilidad a dominios
distintos del patrimonio.

Este Trabajo Fin de Grado propone una alternativa generativa para tareas de apren-
dizaje ubicuo: una herramienta para generar tareas de aprendizaje ubicuo con modelos
de lenguaje y Generación Aumentada por Recuperación (RAG) a partir de Wikipedia y
materiales aportados por el docente. La solución se expone mediante API REST en un
backend monolítico que procesa localmente la información para proteger la privacidad,
integrando embeddings (SentenceTransformers), almacenamiento vectorial (ChromaDB)
y ejecución local de LLM (Ollama). Las salidas se fuerzan en JSON estructurado, facili-
tando su consumo por clientes móviles o flujos de autoría.

En la comparación cualitativa frente a tareas tipo Casual Learn, el sistema genera ítems
más ricos y contextualizados (distractores plausibles, preguntas abiertas interpretativas y
actividades situadas), sin depender de plantillas rígidas. En la evaluación cuantitativa, las
latencias promedio para el hardware disponible en el grupo GSIC/EMIC fueron 42–43
s para generación simple (con o sin RAG) y 365 s para generación compleja, identifi-
cando la inferencia del LLM como principal cuello de botella y acotando la concurrencia
práctica a 2–5 usuarios en el hardware evaluado. En conjunto, el trabajo complementa y
trasciende el enfoque basado en LOD al habilitar generación bajo demanda y portabilidad
entre dominios, sentando bases para su integración futura con metadatos LOD, técnicas
de caché y optimización de inferencia.

Palabras clave—aprendizaje ubicuo; inteligencia artificial generativa; RAG; Wikipedia;
LangChain; ChromaDB; Ollama; Linked Open Data.



Abstract

Open data—particularly in the cultural heritage domain—are abundant yet rarely ready
for direct educational use. Prior work by GSIC/EMIC addressed this gap with Casual
Learn, a distributed application (server + Android client) backed by an RDF triple store
and SPARQL that delivers teacher-validated, template-based ubiquitous learning tasks.
Deployed with over one hundred high-school students, this approach proved effective but
inherently relies on pre-authored templates and LOD availability, which constrains ex-
pressiveness and portability beyond heritage scenarios.

This Bachelor’s Thesis proposes a generative alternative for ubiquitous learning tasks:
a tool for ubiquitous learning task generation using Large Language Models with Retrieval-
Augmented Generation (RAG) from Wikipedia and teacher-provided materials. The sys-
tem is exposed via a REST API on a privacy-preserving monolithic backend, combining
SentenceTransformers embeddings, ChromaDB vector storage, and local LLM inference
(Ollama). Outputs are enforced as structured JSON to streamline integration with mobile
clients and authoring pipelines.

In a qualitative comparison against Casual Learn-style tasks, our system produces
richer, more contextualized items (plausible MCQ distractors, interpretive open ques-
tions, and situated activities) without rigid templates. The quantitative evaluation shows
average latencies for the hardware available in the GSIC/EMIC group were 42–43 s for
simple (with/without RAG) and 365 s for complex generations, identifying LLM infer-
ence as the main bottleneck and limiting practical concurrency to 2–5 users on the tested
hardware. Overall, this work complements and goes beyond LOD-based pipelines by
enabling on-demand generation and cross-domain portability, paving the way for future
integration with LOD metadata, caching strategies, and inference optimizations.

Keywords— ubiquitous learning; generative AI; RAG; Wikipedia; LangChain; ChromaDB;
Ollama; Linked Open Data.
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Capítulo 1

Introducción

A lo largo de la historia, ciertos avances tecnológicos han supuesto verdaderos puntos
de inflexión que han transformado profundamente no solo la economía, sino también las
estructuras sociales y culturales. Un ejemplo es el de la mecanización de la agricultura
durante la primera mitad del siglo XX. Si bien esta innovación permitió automatizar ta-
reas antes realizadas manualmente, aliviando en gran medida la carga física del trabajo
agrícola, sus implicaciones trascendieron el ámbito laboral. La creciente eficiencia produc-
tiva redujo la necesidad de mano de obra en el campo, lo que provocó un éxodo masivo
hacia las ciudades en busca de nuevas oportunidades [Sierra, 2019]. Este proceso no solo
transformó la economía agraria, sino que modificó profundamente los modos de vida tra-
dicionales, aceleró la urbanización y sentó las bases para el surgimiento de una sociedad
industrial y predominantemente urbana.

En la actualidad, nos encontramos inmersos en una revolución de naturaleza compara-
ble: la irrupción de la inteligencia artificial (IA). De manera análoga a como las máquinas
agrícolas liberaron al ser humano del trabajo físico más exigente, la IA está comenzando
a asumir tareas cognitivas complejas, tales como la conducción autónoma, la traducción
automática o la asistencia robótica, entre otros. Todo indica que, en las próximas décadas,
la automatización basada en IA transformará de forma significativa no solo el mercado
laboral [Hui et al., 2024; Moreno-Izquierdo, Torres Penalva et al., 2025], sino también
los modos en que aprendemos [Fernández, 2023], nos comunicamos [Herrera-Ortiz et al.,
2024] y tomamos decisiones [Jiménez Cardona, 2023; Peñalver-Higuera y Isea-Argüelles,
2024].

Esta transformación está siendo posible gracias a una serie de avances tecnológicos in-
terrelacionados. En primer lugar, la evolución del hardware, destacando el uso de unidades
de procesamiento gráfico (Graphics Processing Units, GPUs) y, más recientemente, de uni-
dades de procesamiento tensorial (Tensor Processing Units, TPUs), diseñadas específica-
mente para acelerar operaciones matriciales propias del aprendizaje profundo [Chellapilla
et al., 2006]. A ello se suma la expansión de la computación en la nube (cloud computing),
que proporciona acceso flexible y escalable a infraestructuras de alto rendimiento, así co-
mo la disponibilidad masiva de grandes volúmenes de datos tanto estructurados como no
estructurados, que son esenciales para el entrenamiento efectivo de modelos a gran escala.
Además, el desarrollo de marcos de programación de código abierto, como TensorFlow o

1



1. Introducción

PyTorch, ha democratizado el acceso a herramientas avanzadas de modelado. Por último,
la introducción de nuevas arquitecturas, en particular los modelos basados en transforma-
dores [Vaswani et al., 2017], ha revolucionado el tratamiento de secuencias, permitiendo
capturar dependencias a largo plazo y mejorar significativamente el rendimiento en tareas
como el procesamiento del lenguaje natural, la visión por computador y la generación
automática de contenidos.

El ámbito educativo no permanece ajeno a los cambios que está propiciando la ac-
tual transformación tecnológica impulsada por la IA. La capacidad de los modelos de IA
generativa para producir contenidos de manera autónoma y contextualizada abre nuevas
posibilidades para el diseño de experiencias de aprendizaje más flexibles, personalizadas y
adaptadas al entorno del estudiante [Eager y Brunton, 2023]. El presente Trabajo Fin de
Grado se enmarca precisamente en esta línea de innovación y lleva por título «Genera-
ción de tareas de aprendizaje ubicuo con apoyo de herramientas de Inteligencia
Artificial Generativa». Para comprender el alcance del estudio, resulta pertinente des-
glosar los principales conceptos incluidos en su título.

Por aprendizaje ubicuo se entiende un enfoque educativo en el que el aprendizaje
puede ocurrir en cualquier momento y lugar, apoyado por tecnologías móviles, sensores,
geolocalización y conectividad permanente. Este paradigma busca extender el aprendi-
zaje más allá del aula, integrándolo en la vida diaria del estudiante de forma continua,
contextual y personalizada [Muñoz-Cristóbal et al., 2014]. Esta modalidad rompe con las
limitaciones espaciales y temporales de la educación tradicional, facilitando experiencias
de aprendizaje más flexibles y adaptativas. La Organización de las Naciones Unidas para
la Educación, la Ciencia y la Cultura (UNESCO) reconoce el potencial de la tecnología
para transformar los entornos educativos, destacando que, según sus defensores, esta per-
mite ampliar las posibilidades del aprendizaje ubicuo y facilitar el desarrollo de nuevas
formas de aprendizaje y competencias [UNESCO, 2023b].

Las tareas de aprendizaje son actividades diseñadas con fines pedagógicos con-
cretos, que pueden incluir desde ejercicios tradicionales hasta experiencias interactivas,
investigaciones en el entorno o resolución de problemas reales [Ruiz-Calleja et al., 2021].
En el marco del aprendizaje ubicuo, estas tareas se vinculan con el contexto físico o digi-
tal inmediato del estudiante, haciéndolas más significativas y motivadoras. Este enfoque
conecta con la idea de tareas de aprendizaje como actividades centradas en el aprendiz y
orientadas a la acción, que promueven una participación activa y situada, especialmente
valiosa cuando se vinculan con entornos reales o simulados mediante tecnologías inteli-
gentes.

Por último, la inteligencia artificial generativa hace referencia a modelos capaces
de producir contenido nuevo a partir de datos existentes o instrucciones, como ocurre con
los grandes modelos de lenguaje [Banh y Strobel, 2023]. Estos modelos permiten generar
textos, imágenes, código o incluso actividades educativas, ajustándose a parámetros como
el nivel del estudiante, su localización, sus intereses o sus interacciones previas. En este
contexto, la UNESCO [UNESCO, 2023a] ha señalado el notable incremento del uso de la
IA en el ámbito educativo, con especial énfasis en los modelos de lenguaje de gran escala
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1. Introducción

(Large Language Models, LLM), que utilizan técnicas como la generación aumentada por
recuperación (Retrieval-Augmented Generation, RAG) para obtener información fiable y
generar respuestas actualizadas y contextualizadas. La UNESCO subraya tanto el poten-
cial transformador de estas tecnologías como los desafíos que plantean, especialmente en
lo relativo a una gestión ética y responsable, así como a la necesidad de formación ade-
cuada para el profesorado y el estudiantado, con el fin de garantizar un uso beneficioso y
equitativo [UNESCO, 2023a].

La convergencia de estos tres elementos —aprendizaje ubicuo, tareas educativas y
modelos generativos— constituye el eje central de este proyecto. Para comprender la con-
tribución específica de este trabajo, es fundamental analizar primero el estado actual de
la generación de tareas para el aprendizaje ubicuo. Uno de los enfoques usados en apren-
dizaje ubicuo se basa en la explotación de Linked Open Data (LOD), una metodología
que combina grandes bases de conocimiento con plantillas pedagógicas.

Un ejemplo paradigmático es el sistema Casual Learn [Ruiz-Calleja et al., 2021, 2023],
que ha demostrado la viabilidad de esta aproximación. Este enfoque basado en LOD y
plantillas ha probado ser notablemente eficaz para generar a gran escala tareas geolo-
calizadas y contextualizadas. Utilizando bases de conocimiento abiertas como DBpedia,
el sistema extrae información estructurada sobre puntos de interés (como monumentos
históricos) y aplica plantillas predefinidas para transformar esos datos en enunciados de
tareas. Este método permite una producción masiva —generando miles de actividades—
y garantiza, gracias a la colaboración de expertos, una alta pertinencia pedagógica, ali-
neando las tareas con los currículos escolares y distintos niveles cognitivos [Ruiz-Calleja
et al., 2022].

Sin embargo, y a pesar de sus evidentes fortalezas, este modelo presenta una limitación
fundamental que motiva el presente estudio: su dependencia de plantillas predefinidas y
rígidas. Esta rigidez estructural impone serias restricciones a la escalabilidad pedagógica.
Por un lado, la variedad lingüística y estilística de las tareas es muy escasa, ya que todas
las actividades generadas a partir de una misma plantilla siguen un patrón casi idéntico.
Por otro lado, la creatividad y la complejidad pedagógica quedan acotadas por el diseño
inicial de la plantilla, haciendo imposible generar dinámicamente nuevas tipologías de ta-
reas o adaptarlas a matices contextuales no previstos.

Es precisamente en la superación de esta rigidez donde la inteligencia artificial gene-
rativa, y en particular los Large Language Models (LLM), emerge como una alternativa
disruptiva. A diferencia de los sistemas que se limitan a “rellenar” una estructura fija,
los LLM pueden generar texto original, variado y contextualmente coherente a partir de
instrucciones complejas, ofreciendo una flexibilidad inalcanzable para los sistemas ante-
riores. La principal motivación de este proyecto es, por tanto, explorar la hipótesis de
que los LLM pueden superar las limitaciones de las plantillas, no solo para aumentar la
variedad y el atractivo de las tareas, sino también para introducir nuevas dimensiones de
personalización y sofisticación pedagógica.

En consecuencia, este Trabajo de Fin de Grado, se centra en diseñar y evaluar un
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1. Introducción

sistema que utiliza LLM para trascender el paradigma de las plantillas. El objetivo es
demostrar que es posible avanzar hacia un modelo de creación de contenido educativo
más dinámico, diverso y adaptativo, sentando así las bases para una nueva generación de
herramientas de aprendizaje ubicuo.

1.1 Objetivos

El objetivo principal de este Trabajo Fin de Grado es diseñar y implementar una he-
rramienta multidominio capaz de generar tareas en contextos de aprendizaje ubicuo, así
como de ofrecer retroalimentación automatizada basada en IA generativa a las respuestas
del estudiantado.

Objetivos específicos que se plantean:

• Seleccionar un modelo de lenguaje adecuado: Buscar información y hacer
pruebas para encontrar un LLM que sea adecuado para la generación de las tareas.

• Diseñar e implementar una API: Proporcionar un servicio de generación de
tareas a través de herramientas de inteligencia artificial generativa de forma contex-
tualizada.

• Incorporar la generación de distintos tipos de tareas relevantes desde el
punto de vista pedagógico: Con el fin de adaptarse a los requerimientos indivi-
duales, el sistema genera una variedad de tareas. Este enfoque busca la pertinencia
pedagógica de cada actividad.

• Evaluar la eficacia de la herramienta: Comprobamos que la herramienta real-
mente está aumentando la calidad de las tareas generadas, se compararán las tareas
generadas por modelos comerciales de código cerrado y también una comparativa
del uso del modelo sin contexto, modelo con RAG y modelo con todos los datos en
el contexto.

1.2 Metodología

El desarrollo del presente Trabajo Fin de Grado se ha estructurado siguiendo los princi-
pios de la metodología ágil Scrum [Schwaber y Sutherland, 2013], adaptada al contexto
de un proyecto individual. Scrum es un marco de trabajo ágil para la gestión y desarrollo
de productos que se basa en ciclos iterativos e incrementales denominados sprints. Esta
metodología permite organizar el trabajo de forma flexible, fomentando la planificación
continua, la revisión frecuente de avances y la mejora progresiva del producto.

Durante el proyecto se llevaron a cabo 14 sprints de dos semanas de duración. En
cada uno de ellos se establecieron objetivos específicos relacionados con el desarrollo de
funcionalidades concretas de la herramienta. Al inicio de cada sprint se realizó una pla-
nificación (Sprint Planning), donde se definieron las tareas a abordar y los entregables
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correspondientes. Al final de cada ciclo se efectuó una revisión (Sprint Review) del traba-
jo realizado y una reflexión crítica (Sprint Retrospective) sobre los aspectos que podían
mejorarse en la siguiente iteración.

Los roles de Scrum se adaptaron a la estructura del proyecto de la siguiente manera:

• Los tutores académicos asumieron el rol de Propietarios del Producto (Pro-
duct Owners), orientando la dirección del desarrollo, priorizando funcionalidades y
validando los entregables parciales.

• Algunos compañeros del departamento, con experiencia técnica, actuaron como
Maestros de Scrum (Scrum Masters), ofreciéndome apoyo puntual para resol-
ver dudas o superar dificultades técnicas.

• El rol de Equipo de Desarrollo fue desempeñado por mí como autor del TFG,
encargándome de implementar los requisitos funcionales establecidos en cada sprint.

Este enfoque me permitió avanzar de forma estructurada, recibir retroalimentación
periódica y ajustar el desarrollo según las necesidades emergentes del proyecto.

1.3 Estructura del documento

A lo largo de este documento se proporciona una visión coherente y progresiva del proceso
completo, desde los antecedentes hasta las conclusiones y anexos, con el fin de facilitar al
lector una comprensión integral y ordenada del proyecto.

En primer lugar, se explora el Estado del arte, abordando la generación de tareas
de aprendizaje con datos abiertos y la inteligencia artificial generativa, con énfasis en los
Modelos de Lenguaje de Gran Tamaño y en las técnicas clave que permiten aprovechar,
adaptar y perfeccionar sus capacidades, como la Generación Aumentada por Recupera-
ción y el Ajuste Fino (Fine-Tuning). Este apartado establece las bases conceptuales y
metodológicas esenciales para entender la generación dinámica y precisa de contenidos
educativos mediante IA.

Seguidamente, el capítulo de Análisis expone las necesidades educativas actuales y
resalta las limitaciones de las soluciones tradicionales ante la creciente demanda de ma-
teriales didácticos personalizados. Aquí se justifica la relevancia del proyecto, definiendo
claramente los objetivos y requisitos del sistema propuesto para solucionar las carencias
identificadas.

A continuación, en el capítulo de Diseño, se describe en detalle la arquitectura lógica
del sistema, especificando cómo se coordinan sus distintos componentes. Se explica cómo
tecnologías como las bases de datos vectoriales se usan para hacer RAG para recuperar
información relevante, y generan salidas estructuradas en formato JSON que alimentan
el generador de tareas. Además, se detalla el diseño del motor de creación de ejercicios, el
corrector automático y la integración en un flujo de trabajo unificado.

Universidad de Valladolid 5 Luis Francisco Sánchez Turrión



1. Introducción

Posteriormente, en el capítulo Implementación, se abordan los aspectos prácticos
del desarrollo del proyecto, incluyendo la organización del código, la selección de librerías
y frameworks, configuración del entorno, instalación de dependencias y ejemplos concretos
de ejecución. Se destacan también las decisiones tecnológicas adoptadas y los protocolos
de prueba utilizados para garantizar la fiabilidad, reproducibilidad y escalabilidad del
sistema.

El capítulo Análisis de resultados evalúa la eficacia de las tareas generadas mediante
una comparación con métodos convencionales. Se presentan métricas relativas a la calidad
pedagógica y al rendimiento computacional, detallando tiempos de respuesta y estudios
de casos prácticos, además de discutir las principales limitaciones detectadas, sugiriendo
posibles vías de mejora.

En el capítulo de Conclusiones y líneas de trabajo futuro se resumen las con-
tribuciones más significativas del proyecto, destacando el valor añadido que aporta al
ámbito educativo, la originalidad en la integración de RAG y Fine-Tuning, y la capaci-
dad para adaptar contenidos a diferentes perfiles de estudiantes. Asimismo, se proponen
líneas futuras de trabajo, tales como la incorporación de retroalimentación en tiempo
real, la expansión hacia otras áreas del conocimiento o la integración con nuevos modelos
multimodales.

Finalmente, los Anexos incluyen documentación detallada de la API desarrollada y
el código empleado, permitiendo al lector disponer de los recursos necesarios para com-
prender profundamente cada componente y replicar el sistema en su propio entorno.
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Capítulo 2

Estado del arte

La IA ha avanzado rápidamente, transformando el campo de la IA mediante mo-
delos como la serie Generative Pre-trained Transformer (GPT)[Brown et al., 2020].
Gracias a redes neuronales de gran tamaño, nuevos algoritmos de Aprendizaje Auto-
mático y extensos conjuntos de datos de entrenamiento, estos modelos destacan por
su capacidad para generar texto coherente con características humanas. Su accesibi-
lidad y los marcos de código abierto han democratizado el uso de LLM, facilitando
su integración en sectores como los chatbots, la salud y la educación. En este estado
del arte se presentan los principios de funcionamiento y las metodologías actuales
empleadas en el ámbito de la IA. Además, se va a tratar la metodología anterior en
la generación de tareas usando LOD.

2.1 Introducción
El presente Trabajo de Fin de Grado, se enmarca en un contexto donde converge el
aprendizaje ubicuo (u-learning) y los modelos de lenguaje basados en inteligencia artifi-
cial generativa (IA Generativa). El aprendizaje ubicuo se define como aquella modalidad
educativa que permite el acceso a conocimiento en cualquier lugar y momento, gracias al
uso de tecnologías móviles y ubicuas, promoviendo entornos de aprendizaje distribuidos
en tiempo y espacio [Gallego-Lema, 2016]. Este enfoque trasciende las aulas convenciona-
les, posibilitando la interacción espontánea del estudiante con su entorno y favoreciendo
el aprendizaje sin que éste sea siempre consciente de estar ocurriendo.

Los dispositivos móviles, ordenadores y otros medios tecnológicos no solo facilitan el
acceso a recursos modernos, sino que también integran medios tradicionales en formato
digital (por ejemplo, libros de Historia del Arte), ampliando así los escenarios del apren-
dizaje [Gallego-Lema, 2016]. El modelo se caracteriza por la permanencia, accesibilidad,
inmediatez, interactividad y adaptabilidad del contenido educativo, lo que permite diseñar
experiencias altamente personalizadas y ecológicamente pertinentes.

Gracias al empleo de Datos Enlazados (Linked Data) y de la Web Semántica, la infor-
mación sobre tareas educativas puede estructurarse para ser accesible tanto para humanos
como para máquinas [Berners-Lee, 2006; Gallego-Lema, 2016]. El grupo GSIC/EMIC ya
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avanzó en esta dirección con la creación de un repositorio de triplas sobre patrimonio cul-
tural, publicadas en formato abierto y enlazado, lo que permite su reutilización en sistemas
de aprendizaje ubicuo [Ruiz-Calleja et al., 2021] y facilita su integración en plataformas
como Casual Learn mediante consultas SPARQL.

Por otra parte, el auge de la IA Generativa, especialmente los modelos de lenguaje
enormes (LLM), ofrece una nueva dimensión para la generación automatizada de tareas
de aprendizaje. Estos modelos, entrenados con enormes volúmenes de texto, son capaces
de generar contenido educativo adaptado, como explicaciones, preguntas y sugerencias
pedagógicas. Su uso en la educación permite personalizar rutas de aprendizaje, generar
feedback en tiempo real y ampliar el alcance del aprendizaje ubicuo.

No obstante, su integración requiere un diseño cuidadoso. Es fundamental garantizar
la precisión, evitar sesgos y fomentar la alfabetización en IA entre estudiantes y docentes,
así como asegurar que los modelos sirvan como herramientas de apoyo y no sustitutos del
docente. Además, la orientación mediante gráficos de conocimiento (como los repositorios
de triplas) y la tecnología RAG (Retrieval-Augmented Generation) puede ayudar a que
la IA genere tareas más fundamentadas y contextualizadas en patrimonio cultural.

El presente estado del arte tiene como objetivo establecer el marco teórico y tecno-
lógico en el que se inscribe este trabajo. Se comenzará analizando los enfoques previos
para la generación de tareas de aprendizaje ubicuo, con especial atención a los sistemas
basados en Datos Abiertos, que si bien son efectivos, dependen de plantillas predefinidas.
A continuación, el capítulo se adentrará en el paradigma de la Inteligencia Artificial Ge-
nerativa, explorando los fundamentos de los LLM. Se describirán sus arquitecturas y, de
manera crucial, las técnicas clave para su adaptación a contextos específicos. Este análisis
permitirá justificar la transición desde los métodos tradicionales hacia un enfoque más
dinámico y flexible, sentando las bases para el sistema desarrollado en este proyecto.

2.2 Generación de tareas de aprendizaje con Datos Abier-
tos

La Web Clásica, o Web de documentos, está diseñada para ser interpretada por huma-
nos, quienes navegan a través de hipervínculos entre páginas. Este modelo presenta serias
dificultades para que las máquinas procesen la información de manera autónoma, ya que
carece de una estructura semántica comprensible para ellas [García Zarza, 2021]. Para
resolver esta limitación, se propuso la Web Semántica, una extensión de la web donde la
información posee una estructura bien definida, permitiendo una cooperación más eficien-
te entre personas y máquinas [García Zarza, 2021].

El pilar de la Web Semántica son los Datos Abiertos Enlazados (Linked Open Data
– LOD), un conjunto de buenas prácticas para publicar y conectar datos estructurados
en la Web [García Zarza, 2021]. Estas prácticas se apoyan en tecnologías estándar co-
mo RDF (Resource Description Framework) para modelar la información en tripletas
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(sujeto–predicado–objeto) y SPARQL como lenguaje de consulta, creando un grafo de
conocimiento global y legible por máquinas [García Zarza, 2021]. Este ecosistema de da-
tos interconectados abre nuevas oportunidades para la creación automática de contenido,
incluyendo las tareas de aprendizaje.

La creación manual de tareas de aprendizaje, especialmente aquellas contextualizadas
para escenarios informales, es un proceso tedioso, costoso y difícil de escalar [Ruiz-Calleja
et al., 2021]. Esto ha impulsado la investigación en métodos de generación automática.
Las primeras aproximaciones se centraron en el uso de texto no estructurado u ontologías
de dominio. Sin embargo, el primero suele generar preguntas superficiales, mientras que el
segundo depende de la costosa creación y mantenimiento de ontologías, restringiendo las
tareas a un dominio específico y, a menudo, limitándose a evaluar conocimiento factual
[Ruiz-Calleja et al., 2021].

El uso de LOD se presenta como una solución para superar estas limitaciones, al explo-
tar la vasta cantidad de conocimiento ya disponible en la Web. Existen estudios pioneros
que utilizan DBpedia para generar automáticamente preguntas o ejercicios para entornos
educativos Ruiz-Calleja et al., 2021.

A pesar de estos avances, el estado del arte presenta carencias significativas que el
trabajo de [Ruiz-Calleja et al., 2021] busca solventar:

• Dependencia de una única fuente de datos: La mayoría de los trabajos se
basan casi exclusivamente en una fuente, principalmente DBpedia, sin explotar el
potencial de integrar múltiples fuentes para obtener descripciones más ricas.

• Enfoque en conocimiento factual: Las tareas generadas suelen ser preguntas de
bajo nivel cognitivo (como preguntas de opción múltiple) que evalúan la memori-
zación. Rara vez promueven el pensamiento de orden superior como el análisis, la
comparación o la creación.

• Falta de contextualización física: Las tareas generadas no se vinculan con el con-
texto físico del estudiante, lo que dificulta su aplicación en escenarios de aprendizaje
ubicuo o móvil.

El repositorio Casual Learn SPARQL es el resultado de un trabajo previo que aborda
directamente estas limitaciones [García Zarza, 2021]. Se trata de un punto de acceso
SPARQL que contiene tareas educativas sobre el patrimonio cultural de Castilla y León,
generadas de forma semiautomática. Este enfoque representa un avance en el estado del
arte por varias razones:

• Integración de múltiples fuentes: Para obtener una base de conocimiento rica,
el contenido fue generado combinando información de distintas fuentes de datos
abiertos, como DBpedia, Wikidata y datos del gobierno regional .

• Tareas de mayor nivel cognitivo: Utilizando plantillas diseñadas por expertos
educadores, se generaron tareas que van más allá de la simple memorización, so-
licitando al usuario comparar edificios de estilos diferentes o reflexionar sobre la
concentración de un estilo arquitectónico en una zona.
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• Contextualización explícita: La ontología de Casual Learn está diseñada para
la contextualización. Cada tarea (clo:task) está vinculada explícitamente a un es-
pacio físico (clo:physicalSpace) a través de la propiedad clp:hasContext. Estos
espacios físicos están geoetiquetados con coordenadas de latitud y longitud, per-
mitiendo que una aplicación recomiende tareas relevantes según la ubicación del
usuario.

2.3 Fundamentos de los modelos LLM

A principios de la década de 2010, las Redes Neuronales Recurrentes (RNNs) demostraron
su eficacia en el procesamiento secuencial, al capturar dependencias contextuales y gene-
rar texto coherente [Banh y Strobel, 2023]. Sin embargo, presentaban dificultades para
manejar dependencias a largo plazo, así como problemas de desvanecimiento o explosión
del gradiente y lentitud en el procesamiento. Los modelos basados en transformadores
revolucionaron la generación de texto al introducir mecanismos de atención capaces de
capturar el contexto a lo largo de secuencias completas de manera simultánea [Vaswani
et al., 2017]. Modelos como GPT superaron a las RNNs clásicas gracias a su paraleliza-
ción, mejor manejo de dependencias a largo plazo y una modelización lingüística mejorada
mediante atención automática multilateral que es una técnica utilizada para enfocar selec-
tivamente ciertas partes de la entrada al procesar datos. Las capacidades de los LLM han
crecido exponencialmente debido a los avances en arquitecturas basada en transformado-
res, el uso de conjuntos masivos de datos textuales y el aumento del poder computacional
[Devlin et al., 2018]. Estos desarrollos, junto con el incremento del número de parámetros,
permiten a los LLM destacar en tareas complejas de procesamiento del lenguaje natural.

Los LLM han encontrado aplicación en numerosos ámbitos gracias a su versatilidad
para comprender y generar lenguaje natural. En el procesamiento del lenguaje, destacan
en tareas como generación de texto coherente, traducción automática, resumen de do-
cumentos y análisis de sentimientos. En entornos conversacionales, potencian chatbots y
asistentes virtuales capaces de mantener diálogos fluidos y contextualmente relevantes.

En educación, permiten experiencias de aprendizaje personalizado mediante tutores
virtuales que responden a consultas en tiempo real y adaptan explicaciones a las necesi-
dades individuales de cada alumno [García-Méndez et al., 2025; Giannakos et al., 2024].
Asimismo, en el desarrollo de software, herramientas como asistentes de codificación su-
gieren fragmentos de código, detectan errores y optimizan flujos de trabajo [Moradi et al.,
2025].

2.3.1 Arquitecturas de Modelo y Objetivos de Preentrenamiento

Los LLM se preentrenan típicamente mediante aprendizaje autosupervisado, sin necesidad
de etiquetas manuales, es decir, no se necesitan anotadores a diferencia del aprendizaje
supervisado. La selección de los objetivos de preentrenamiento define sus capacidades y
depende de la arquitectura diseñada [Gholami y Omar, 2023]. En los modelos basados

Universidad de Valladolid 10 Luis Francisco Sánchez Turrión



2. Estado del arte

en transformadores, la arquitectura puede incorporar un codificador, un decodificador o
ambos, cada uno con ventajas y limitaciones propias.

Modelos Codificador–Decodificador

También llamados secuencia-a-secuencia (del inglés sequence-to-sequence,seq2seq), combi-
nan un codificador que procesa la secuencia de entrada con un decodificador que genera
la salida. Su preentrenamiento suele alternar entre objetivos de predicción de palabras
ocultas en medio de frases (masked language modeling, MLM)y la reconstrucción de frases
parciales o codificadas, favoreciendo tanto la comprensión contextual como la generación
precisa. Ejemplos destacados incluyen BART [M. Lewis et al., 2019] y T5 [Raffel et al.,
2020]. Aunque sobresalen en tareas como traducción y resumen, escalar estas arquitecturas
a miles de millones de parámetros plantea retos de eficiencia y memoria.

Figura 2.1: Esquema de un modelo codificador–decodificador: atención multicabeza, nor-
malización y generación autorregresiva [Vaswani et al., 2017].

Modelos Solo Codificador

Los modelos de solo codificador toman texto como entrada y a la salida un vector de
alta dimensión del texto también conocido como embeddings del texto. Los casos de uso
de estos modelos son la clasificación de texto, búsqueda semántica y el análisis de texto.
BERT [Devlin et al., 2018] y All-MiniLM son referentes en esta categoría.
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Modelos Solo Decodificador

Los modelos decodificadores se centran en generar un nuevo token para completar la
secuencia basándose en los tokens anteriores, solo un token cada vez. Este conjunto de
tokens que pueden manejar prestándole atención a todos es lo que se llama ventana de
contexto [Yang et al., 2019]. Son líderes en generación de texto fluido y coherente, con
ejemplos como GPT [Brown et al., 2020], Deepseek [et al., 2024], Gemma [Gemma Team,
2024] y Llama [Grattafiori et al., 2024] . Sin embargo, demandan grandes volúmenes de
datos para entrenamiento y recursos computacionales, y pueden mostrar incoherencias o
repeticiones en secuencias extensas que superan el tamaño de la ventana de contexto.

Las arquitecturas de codificador–decodificador, solo codificador y solo decodificador se
diferencian fundamentalmente en su enfoque y propósito: la primera está concebida para
transformar una entrada en una salida distinta, procesando profundamente la información
entrante antes de reconstruirla; la solo codificador se centra exclusivamente en analizar y
extraer representaciones del contenido de entrada sin generar nueva información, mien-
tras que la solo decodificador está diseñada para generar secuencias de salida de forma
autónoma, basándose únicamente en estímulos previos, continuando así la producción de
texto de manera coherente y fluida. Por eso es que en la actualidad son los más usados.

2.3.2 Técnica RAG: Retrieval-Augmented Generation

Aunque los LLM ofrecen un rendimiento excepcional en multitud de tareas, su depen-
dencia exclusiva de los datos de entrenamiento puede inducir alucinaciones, es decir,
respuestas incorrectas presentadas con elevada confianza. Para mitigar este problema y
mejorar la exactitud factual, se integran los LLM con motores de recuperación de infor-
mación externa, dando lugar a la técnica de RAG [P. Lewis et al., 2020].

Ante una consulta, un sistema RAG realiza primero la búsqueda de documentos rele-
vantes en fuentes como wikis, bases de datos o repositorios web. A continuación, incorpora
los fragmentos recuperados como contexto adicional al prompt del LLM, lo que incremen-
ta la fiabilidad y actualidad de la respuesta generada. De este modo, RAG actúa como
puente entre el aprendizaje estadístico y la necesidad de acceder a hechos en tiempo real.

Función de las bases de datos vectoriales en RAG

Las bases de datos vectoriales son esenciales en RAG, pues permiten indexar y recuperar
documentos de forma eficiente [Han et al., 2023]. Cada fragmento de texto se representa
como un vector de alta dimensión (embedding) que captura su significado semántico. Al
transformar la consulta en un vector, el sistema identifica rápidamente los vectores más
afines y extrae los documentos más relevantes. Este mecanismo optimiza la precisión del
contexto proporcionado al LLM y reduce el coste computacional de la búsqueda.

Ventajas

El enfoque RAG amplía las capacidades de los LLM [P. Lewis et al., 2020]:
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Figura 2.2: Esquema general de un sistema RAG: recuperación de documentos, fusión con
el prompt y generación asistida por LLM [Gandhi, 2024]

• Mejorar la veracidad: incorpora información actualizada, esencial para consultas
sensibles al tiempo.

• Acceder a conocimientos especializados: va más allá de los datos de entrena-
miento originales, útil para especializados dominios.

• Reducir alucinaciones: disminuye la probabilidad de respuestas infundadas.

• Versatilidad: El mecanismo de RAG se puede implementar sin necesidad de un
entrenamiento previo del modelo.

Inconvenientes

• Calidad de recuperación: la pertinencia de los documentos recuperados condi-
ciona directamente la validez de la respuesta.

• Latencia: la fase de búsqueda puede introducir retrasos en el tiempo de respuesta.

• Complejidad de infraestructura: diseñar y escalar un sistema RAG eficiente
requiere recursos y arquitecturas robustas.

2.3.3 Técnica Fine-tuning

El ajuste fino adapta modelos preentrenados a dominios o tareas concretas mediante en-
trenamiento supervisado sobre conjuntos de datos específicos. De este modo, el modelo
interioriza vocabulario, estilo y requisitos particulares de la tarea, optimizando su desem-
peño en aplicaciones como análisis de sentimientos, generación de resúmenes o interaccio-
nes especializadas [Mahabadi et al., 2021]. Un ajuste fino eficaz equilibra el conocimiento
general adquirido en el preentrenamiento con las demandas de la tarea objetivo.

El ajuste fino basado en instrucciones emplea ejemplos de pares prompt –respuesta que
guían el comportamiento del modelo hacia formatos y contenidos deseados [Zhang et al.,
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2024]. Existen bases de datos especializadas para entrenar modelos en tareas específicas.
Entrenar un modelo exclusivamente en una tarea puede provocar un sobreentrenamiento
[Kemker et al., 2018], donde el conocimiento previo se sobrescribe y disminuye el ren-
dimiento en otras tareas. No obstante, resulta imprescindible evaluar la capacidad de
generalización más allá del conjunto de entrenamiento proporcionado, ya que un sobreen-
trenamiento puede hacer que pierda su capacidad de generar texto coherente.

Para mitigar este efecto, el ajuste fino multitarea entrena simultáneamente en diversos
objetivos, compartiendo representaciones y preservando la versatilidad del modelo. Méto-
dos como FLAN–T5 [Longpre et al., 2023] y FLAN–PaLM [Chia et al., 2023] ejemplifican
este enfoque, aunque requieren grandes volúmenes de datos y recursos computacionales.

Ajuste fino eficiente en parámetros (PEFT)

Las técnicas de ajuste fino eficiente en parámetros (PEFT) reducen el coste y el impacto
sobre los pesos preentrenados al modificar solo un subconjunto reducido de parámetros o
añadir componentes ligeros [Fu et al., 2023]. De este modo, se conserva la mayoría de la
estructura original y se evitan efectos adversos sobre las capacidades generales del LLM.

Métodos selectivos Actualizan únicamente ciertos parámetros, como capas o sesgos
concretos, lo que aporta eficiencia computacional, si bien su adaptabilidad a tareas muy
diferentes puede resultar limitada.

Una técnica selectiva es Bias-only Fine-Tuning (BitFit) que solo actualiza los tér-
minos del sesgo de las capas del modelo, dejando los pesos principales congelados en el
entrenamiento [Zaken et al., 2021].

Métodos aditivos Los métodos aditivos PEFT incorporan parámetros o capas entre-
nables adicionales a un modelo preentrenado, sin modificar la estructura central ni los
parámetros originales del modelo. Esta categoría incluye dos enfoques principales:

• Adaptadores : capas insertadas en la arquitectura que ajustan el modelo a tareas
específicas de forma modular.

• Prompts suaves : vectores de embedding entrenables añadidos al inicio del prompt,
permitiendo una adaptación rápida mediante prompt tuning.

Aunque ofrecen gran flexibilidad, en escenarios complejos pueden requerir numerosos pa-
rámetros adicionales, lo que impacta en almacenamiento y despliegue. La técnica más
destacada es Low-Rank Adaptation (LoRA) que se basa en añadir una matriz extra a los
pesos del modelo y entrenar solo la nueva matriz [Hu et al., 2021, Dettmers et al., 2023].

2.3.4 Generación de tareas educativas con LLM

Los LLM se han propuesto recientemente como herramientas para generar automática-
mente tareas educativas adaptadas al contexto del aprendiz (por ejemplo, [Cui y Sachan,
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2023]). Estos modelos, entrenados con enormes cantidades de datos textuales, poseen un
conocimiento amplio y la capacidad de seguir instrucciones para producir contenidos com-
plejos. En el ámbito educativo, estas capacidades implican que un LLM con un prompt
adecuado puede generar enunciados de tareas, preguntas o actividades didácticas relevan-
tes para distintos contenidos y niveles, e incluso personalizarlas según las necesidades del
alumno o su entorno.

Ahora bien, para aprovechar plenamente los LLM en la generación de tareas educati-
vas es necesario asegurar la relevancia y corrección de las actividades propuestas. Diversos
trabajos recientes exploran cómo mejorar estos modelos en dicho cometido. Por una par-
te, se ha propuesto integrar mecanismos de recuperación de información externa durante
la generación: [Li et al., 2025] plantean un modelo de RAG que consulta fuentes de co-
nocimiento abiertas para obtener datos actualizados o específicos del dominio educativo
antes de crear la tarea. Este enfoque ha mostrado mejoras en la precisión factual y la
contextualización de las tareas generadas, ya que el modelo puede basar sus enunciados
en contenidos verídicos y pertinentes al currículo en lugar de solo en su conocimiento
entrenado.

Por otra parte, se investigan técnicas de ajuste fino especializadas para dotar a los
LLM de mayores habilidades en la planificación y elaboración de tareas. En particular,
[Zeng et al., 2023] introducen AgentTuning, un método de ajuste fino orientado a que los
LLM actúen como agentes capaces de descomponer y resolver tareas complejas mediante
interacciones o herramientas externas. Al entrenar al modelo con trayectorias de solución
de tareas paso a paso, este adquiere la capacidad de generar actividades educativas más
estructuradas y multietapa sin perder sus habilidades generales de lenguaje.

Para evaluar que los LLM generen instrucciones y tareas adecuadas, se han desarro-
llado marcos de evaluación exhaustivos de su atención prestada al prompt. Trabajos como
InstructEval [Chia et al., 2023] y EvalVerse [Kim et al., 2024] proponen evaluar a
los modelos desde múltiples perspectivas – resolución de problemas, calidad de la redac-
ción, alineamiento con valores humanos, etc. – verificando que el modelo siga fielmente
las instrucciones educativas y produzca enunciados conformes a los objetivos pedagógicos.

Las razones por las cuales se ha optado por desarrollar un sistema propio de genera-
ción de tareas educativas, en lugar de utilizar una solución existente, son principalmente
dos. Primero, buscamos una herramienta que se adapte específicamente a las necesidades
pedagógicas identificadas. Segundo, queremos asegurar la privacidad y confidencialidad de
los datos, evitando depender de servidores de terceros para la obtención y almacenamiento
de información.

2.4 Conclusiones
La integración del aprendizaje ubicuo con tecnologías avanzadas de IA generativa, es-
pecialmente mediante el uso de modelos de lenguaje y técnicas como RAG, representa
una oportunidad significativa para personalizar y enriquecer las experiencias educativas
relacionadas con el patrimonio cultural. Los LLM destacan por su capacidad de generar
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automáticamente tareas educativas adaptadas al contexto y las necesidades específicas del
estudiante, apoyándose en fuentes externas para garantizar precisión factual y pertinencia
curricular.

El enfoque basado en Datos Abiertos Enlazados (LOD), probado en sistemas como
Casual Learn, ya ha demostrado su eficacia generando tareas geolocalizadas y contex-
tualizadas de forma masiva. Sin embargo, aunque este enfoque proporciona contenidos
educativos relevantes, su escalabilidad está limitada por la dependencia de plantillas pre-
definidas y la necesidad de actualizaciones manuales o semiautomáticas cuando cambian
los datos subyacentes.

En contraste, los LLM permiten una generación dinámica y personalizada de tareas,
capaz de integrar nuevas fuentes de información y adaptarse en tiempo real a diversos con-
textos educativos. La combinación de ambas tecnologías, utilizando técnicas como RAG
junto con bases de datos vectoriales y repositorios semánticos como Casual Learn, permi-
te solventar las limitaciones individuales de cada método. Sin embargo, esta integración
plantea desafíos técnicos significativos en términos de latencia, calidad de recuperación
de información y la complejidad de la infraestructura necesaria.

Por ello, el desarrollo del sistema planteado en este trabajo deberá contemplar no so-
lo la integración efectiva de ambas tecnologías, sino también la necesidad de simplificar
el proceso subyacente de obtención y generación de tareas educativas. De este modo, se
asegurará una experiencia fluida y efectiva que permita a estudiantes y docentes benefi-
ciarse plenamente de las potencialidades de estas herramientas avanzadas sin enfrentarse
a barreras tecnológicas innecesarias.
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Capítulo 3

Análisis

En este capítulo se realiza el análisis de los requisitos del sistema propuesto, con el
objetivo de determinar las funcionalidades y características que debe cumplir para
satisfacer las necesidades de los usuarios finales. En el contexto de este TFG, los
usuarios principales son estudiantes y docentes que utilizarán la herramienta para
generar y evaluar tareas de aprendizaje ubicuo. A partir de un ejemplo de uso,
se identifican los requisitos funcionales y no funcionales del sistema. Además, se
describen los casos de uso más representativos y se discute la arquitectura general
del sistema, justificando la elección del modelo que finalmente se implementará.

3.1 Introducción

Siguiendo la metodología ágil Scrum presentada en la Sección 1.2, que permite un desa-
rrollo iterativo y adaptativo del producto, en este capítulo se aborda la fase de análisis
del proyecto. Esta fase tiene como propósito identificar los requisitos que el sistema debe
cumplir para alcanzar los objetivos planteados. Dado que no existe un cliente tradicional,
los requisitos se han definido en colaboración con los tutores del TFG y expertos del grupo
de investigación GSIC/EMIC, basándose en su experiencia en tecnologías educativas y en
las necesidades de los usuarios finales: estudiantes de los últimos cursos de Enseñanza
Secundaria Obligatoria y Bachillerato, así como docentes interesados en integrar el apren-
dizaje ubicuo en sus clases.

El sistema propuesto busca aprovechar herramientas de inteligencia artificial gene-
rativa (como modelos de lenguaje de gran tamaño) y datos de Wikipedia y información
proporcionada por los docentes para generar tareas contextualizadas y ofrecer retroalimen-
tación automática. Además, en esta sección se reflexiona sobre la arquitectura general del
sistema, influenciada por los requisitos identificados y las limitaciones técnicas del entorno
de desarrollo, como el uso de frameworks.

17



3. Análisis

3.2 Ejemplo de Uso del Sistema
Para contextualizar los requisitos, se describe un escenario representativo de cómo un
usuario interactuaría con el sistema. Supongamos que un docente de Historia del Ar-
te desea generar tareas personalizadas para sus estudiantes, aprovechando el patrimonio
cultural de Valladolid. El docente accede al sistema a través de una interfaz web o mó-
vil, selecciona el tema «Arquitectura Herreriana» y especifica que las tareas deben estar
vinculadas a monumentos locales, como la Catedral de Valladolid. El sistema, utilizan-
do Inteligencia Artificial Generativa y datos extraídos de Wikipedia o de la información
proporcionada, genera automáticamente un conjunto de tareas que indica el docente:

• 5 preguntas de opción múltiple sobre las características herrerianas de la catedral.

• Una actividad que requiere tomar una fotografía de un elemento arquitectónico
específico.

Posteriormente, un estudiante accede a una de estas tareas desde su dispositivo mó-
vil mientras visita la catedral. Tras responder a una pregunta de texto libre, el sistema
evalúa automáticamente su respuesta utilizando un modelo de lenguaje y le proporciona
retroalimentación inmediata, indicando si su análisis es correcto y sugiriendo aspectos me-
jorables. Este ejemplo ilustra la necesidad de un sistema que integre generación de tareas
contextualizadas y evaluación automatizada, alineándose con los objetivos del proyecto
descritos en la Sección 1.1.

3.3 Identificación de Requisitos
Estos requisitos se heredan de los descritos en trabajos anteriores de Casual Learn [Gar-
cía Zarza, 2021; Ruiz-Calleja et al., 2022], de donde se han identificado los requisitos
funcionales y no funcionales que el sistema debe cumplir. Estos requisitos buscan asegu-
rar que la herramienta sea útil tanto para docentes como para estudiantes en un entorno
de aprendizaje ubicuo.

3.3.1 Requisitos Funcionales

RF01: El sistema debe permitir a los docentes generar tareas de aprendizaje persona-
lizadas, especificando parámetros como tema, nivel de dificultad, tipo de tarea y
contexto geográfico (p. ej., puntos de interés locales).

RF02: El sistema debe integrar datos de Wikipedia y proporcionados por el docente para
enriquecer las tareas con información contextual relevante.

RF03: El sistema debe soportar la generación de diversos tipos de tareas, incluyendo
preguntas de desarrollo, de opción múltiple y actividades basadas en la ubicación
(p. ej., tomar fotografías).

RF04: El sistema debe evaluar automáticamente las respuestas de los estudiantes y pro-
porcionar retroalimentación inmediata.
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3.3.2 Requisitos No Funcionales

RNF01: El sistema debe generar tareas en el menor tiempo posible dado los recursos
computacionales disponibles.

RNF02: El sistema debe garantizar la privacidad y seguridad de los datos de los usuarios,
especialmente las respuestas de los estudiantes, cumpliendo con la Ley Orgánica
3/2018 de Protección de Datos y Garantía de los Derechos Digitales[Gobierno de
España, 2018].

RNF03: El sistema debe ser escalable en función del hardware disponible, de modo que
pueda gestionar simultáneamente tanto la generación de tareas como la corrección
de las mismas sin comprometer el rendimiento. Con el hardware utilizado durante
las pruebas, y dependiendo del modelo empleado, es posible atender entre 2 y 5
usuarios simultáneos.

3.4 Casos de Uso del Sistema
Los casos de uso describen las interacciones clave entre los usuarios y el sistema, basándose
en los requisitos identificados. A continuación, se presentan los casos más representativos:

3.4.1 CU01: Generación de Tareas

Actor: Docente.

Precondiciones: El docente está autenticado en el sistema.

Postcondiciones: El sistema recibe los parámetros de la tarea y genera un conjunto de
tareas personalizadas para el grupo de estudiantes.

Camino Básico:

1. El docente accede a la interfaz y selecciona parámetros para la generación de las
tareas.

2. El sistema utiliza un modelo de IA generativa, datos externos (p. ej., Wikipedia) y
los ficheros subidos por el docente para generar las tareas teniendo en cuenta los
parámetros seleccionados anteriormente.

3. Las tareas generadas se presentan al docente para su revisión y su uso posterior.

3.4.2 CU02: Evaluación de Respuestas

Actor: Estudiante.

Precondiciones: El estudiante ha completado una tarea generada por el sistema.

Postcondiciones: El sistema evalúa la respuesta y proporciona retroalimentación deta-
llada.
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Camino Básico:

1. El estudiante accede a la tarea a través de la interfaz y envía su respuesta.

2. El sistema procesa la respuesta utilizando un modelo de lenguaje y teniendo en
cuenta los parámetros del estudiante (p. ej., Nivel educativo).

3. El sistema devuelve retroalimentación al estudiante, indicando aciertos y áreas de
mejora.

3.4.3 CU03: Subir Documento

Actor: Docente.

Precondiciones: El docente está autenticado en el sistema.

Postcondiciones: El sistema busca la base de datos vectorial asociada al docente.

Camino Básico:

1. El usuario selecciona la opción de subir documento.

2. El sistema toma los ficheros o las URLs proporcionadas, si son válidas las convierte
a texto que vectoriza y almacena.

3. El nombre del fichero o URL aparece como almacenado en la base de datos vectorial.

3.4.4 CU04: Borrar Documento

Actor: Docente.

Precondiciones: El usuario está autenticado en el sistema.

Postcondiciones: El sistema elimina la información del documento o URL almacenada.

Camino Básico:

1. El usuario indica el nombre del fichero o URL que quiere eliminar.

2. El sistema borra la información seleccionada.

3. El nombre del fichero deja de aparecer como almacenado en la interfaz.

3.4.5 CU05: Consultar Documentos Almacenados

Actor: Docente.

Precondiciones: El usuario está autenticado en el sistema.

Postcondiciones: El sistema muestra la información almacenada.

Camino Básico:

1. El usuario indica que quiere consultar la información almacenada.

2. El sistema devuelve los nombres de los ficheros almacenados al usuario.
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3.5 Discusión de la Arquitectura del Sistema

La selección de una arquitectura de sistema adecuada es un paso fundamental para ga-
rantizar el cumplimiento de los requisitos funcionales y no funcionales identificados. En el
contexto de este proyecto, la necesidad de integrar componentes tecnológicamente avan-
zados, como modelos de Inteligencia Artificial generativa, bases de datos vectoriales y
fuentes de datos externas, exige una evaluación metódica de las distintas alternativas ar-
quitectónicas disponibles.

Para este sistema, se consideraron tres paradigmas principales:

• Arquitectura Monolítica: Este enfoque tradicional integra todas las capas fun-
cionales (lógica de negocio, acceso a datos y, en ocasiones, la presentación) en un
único componente de software. Su principal ventaja reside en la simplicidad del de-
sarrollo y despliegue inicial, al no requerir la gestión de comunicación entre servicios
distribuidos. Sin embargo, esta estructura presenta limitaciones significativas en tér-
minos de escalabilidad y flexibilidad, ya que cualquier modificación o fallo en una
parte del sistema puede afectar al conjunto, y escalar componentes individuales de
forma eficiente resulta complejo.

• Arquitectura de Microservicios: En contraposición, este modelo divide el siste-
ma en un conjunto de servicios pequeños, autónomos e independientes (por ejemplo,
un servicio para la generación de tareas, otro para la evaluación y un tercero para la
gestión de datos). Estos se comunican a través de APIs bien definidas, habitualmen-
te REST. Ofrece una escalabilidad y flexibilidad superiores, permitiendo desarrollar,
desplegar y escalar cada servicio de forma independiente. Su principal desventaja
es el notable incremento en la complejidad de gestión, que incluye la orquestación
de servicios, la monitorización, la resiliencia y la consistencia de los datos en un
entorno distribuido.

• Arquitectura en Capas: Este paradigma, que puede considerarse un punto inter-
medio, organiza el sistema en capas lógicas horizontales, pero generalmente dentro
de una misma aplicación. Permite una clara separación de responsabilidades y una
mayor modularidad que la arquitectura monolítica, facilitando su mantenimiento.
No obstante, su flexibilidad para el escalado sigue siendo menor que la de los mi-
croservicios, ya que las capas permanecen acopladas dentro de una única unidad de
despliegue.

Tras analizar las ventajas y desventajas de cada alternativa en el contexto de este Tra-
bajo de Fin de Grado, se optó por implementar una arquitectura monolítica. Esta decisión
se fundamenta principalmente en la necesidad de agilizar el desarrollo inicial y simplifi-
car la gestión del sistema, priorizando la rápida construcción de un prototipo funcional.
Una arquitectura de este tipo permite consolidar todas las funcionalidades (generación
de tareas, evaluación, almacenamiento) en una sola aplicación ejecutada en una única
máquina, lo que facilita considerablemente la gestión del ciclo de vida del software y el
mantenimiento.
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De esta manera, se evita la complejidad inherente a las infraestructuras distribuidas,
como la configuración de redes, el descubrimiento de servicios y la gestión de la comuni-
cación entre componentes. Además, la comunicación interna entre los distintos módulos
del sistema se simplifica enormemente, ya que no es necesario implementar y mantener
protocolos externos como APIs REST para su interacción, lo que agiliza el desarrollo ini-
cial y facilita la realización de pruebas integradas, rápidas y eficientes.

Si bien se reconoce que esta arquitectura no es la más óptima en términos de escalabi-
lidad a largo plazo, se considera la más pragmática para los objetivos y el alcance de este
proyecto. Se plantea como una base sólida sobre la cual, en trabajos futuros, se podría
evolucionar hacia un modelo de microservicios a medida que las necesidades del sistema
crezcan y se requiera una mayor escalabilidad y desacoplamiento.

3.6 Adaptación de plantillas LOD a la IA Generativa
Para satisfacer los nuevos requisitos, se reemplaza el sistema de plantillas LOD por un
prompt parametrizado que actúe como instrucción dinámica para un LLM. A partir del
análisis de los parámetros originales (tipo de entidad, propiedades como dbo:style, ubi-
cación, skos:related) y de las necesidades de los educadores, se definen los siguientes
grupos de parámetros:

Perfil del Estudiantado: Nivel educativo, dificultad y conocimientos previos.

Contexto del Contenido: Materia y tema, refinando la contextualización temática que
antes se basaba únicamente en etiquetas skos:related.

Fuente de Datos: Posibilidad de subir ficheros o cargar desde URL, rompiendo la de-
pendencia exclusiva del LOD mediante RAG.

Contexto de la Tarea: Espacio de la pregunta (físico/virtual) y puntos de interés A/B,
heredando y mejorando la geolocalización y comparación de entidades.

Especificación Pedagógica: Taxonomía de Bloom para indicar el nivel cognitivo de-
seado (por ejemplo, “analizar”, “comparar”) y tipo de tarea (por ejemplo, “MCQ”,
“toma una foto”).
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El cambio de paradigma se resume en la siguiente comparativa:

Característica Plantillas LOD Prompt IAGen

Lógica Extractiva: filtra entidades e
inserta en texto fijo.

Generativa: comprende con-
texto y crea texto nuevo.

Fuente de Datos Acoplada a ontologías LOD
específicas.

Agnóstica: cualquier texto (fi-
chero, URL) vía RAG.

Flexibilidad Baja: requiere programar nue-
vas plantillas.

Alta: nuevos tipos de pregun-
tas vía parámetros.

Personalización Limitada: perfil genérico. Profunda: nivel, dificultad y
conocimientos detallados.

Control Basado en propiedades de da-
tos (dbo:style).

Basado en intenciones pedagó-
gicas (Bloom, dificultad).

Tabla 3.1: Comparativa entre plantillas LOD y prompt parametrizado.

Para que las tareas generadas por el sistema de IA sean programáticamente útiles y
puedan ser integradas en una aplicación de aprendizaje, es indispensable que su salida
no sea texto libre, sino un formato estructurado y predecible. La inspiración para definir
estos formatos proviene directamente del análisis de las tareas propuestas por profesores
y expertos en la Tabla 2 del artículo Supporting contextualized learning with linked open
data[Ruiz-Calleja et al., 2021].

Type TEL Experts Teachers

Outcome
Text 36 (71 %) 15 (45 %)
Photo 18 (35 %) 15 (45 %)
Audio 0 (0 %) 4 (12 %)
MCQ selection 1 (2 %) 2 (6 %)
Map 1 (2 %) 0 (0 %)
Video 1 (2 %) 1 (3 %)

Tabla 3.2: Recreación de la sección de Outcome de la tabla 2 [Ruiz-Calleja et al., 2021].

Dicha tabla clasifica las tareas según diversas características, siendo la más relevante
para nuestro propósito la columna Outcome (Resultado esperado). En ella se observa que
las tareas manuales solicitaban resultados variados, como la redacción de Text, la toma
de una Photo, o la selección en un MCQ selection. Estas categorías representan los tipos
de interacción que los educadores consideran pedagógicamente valiosos en un contexto de
aprendizaje ubicuo.

Nuestra aproximación adapta estos resultados esperados al paradigma de la IA Gene-
rativa, traduciéndolos en tipos de preguntas concretas que el LLM puede generar. La forma
de materializar esta adaptación es instruir al modelo para que su respuesta se adhiera a
un esquema de salida específico para cada tipo de tarea. Esto garantiza la consistencia,
fiabilidad y facilidad de integración de las tareas generadas.
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A partir de este análisis, hemos definido los siguientes tipos de tareas como objetivos
iniciales, cada uno con su correspondiente formato de salida estructurada:

• Desarrollo simple (Respuesta abierta): Corresponde al Outcome: Text de la
Tabla 2. Es ideal para preguntas que requieren reflexión, descripción o argumenta-
ción. La estructura incluirá un campo para el enunciado de la pregunta y la respuesta
correcta a esta pregunta.

• Opción Múltiple (Tipo test): Es la implementación directa del Outcome: MCQ
selection. Este formato es perfecto para evaluar el conocimiento factual de manera
rápida y objetiva. La esctructura contendrá el enunciado, una lista de opciones y la
indicación de la respuesta correcta.

• Verdadero o Falso: Aunque no figura explícitamente como una categoría mayori-
taria en la tabla, es un tipo de pregunta fundamental para la verificación rápida de
conceptos. Su estructura incluirá una afirmación y un valor booleano indicando la
respuesta correcta.

• Sacar Fotografía: Refleja el Outcome: Photo. Esta tarea no evalúa conocimiento
de forma tradicional, sino que promueve la observación activa en un entorno físico.

Al definir estos formatos de salidas estructuradas, no solo hacemos que las tareas sean
técnicamente manejables, sino que también ofrecemos a los educadores la capacidad de
solicitar tipos de interacción específicos, replicando la riqueza pedagógica observada en las
tareas diseñadas manualmente, pero con la flexibilidad y escalabilidad de la IA Generativa.
La especificación detallada de cada esquema JSON se abordará en el capítulo de Diseño
e Implementación.

3.7 Conclusiones
La fase de análisis ha permitido definir los requisitos funcionales y no funcionales del
sistema, así como los casos de uso que guiarán su desarrollo. Se ha establecido que el
sistema debe generar tareas contextualizadas, evaluar respuestas automáticamente y ser
accesible en entornos ubicuos, todo ello soportado por una arquitectura monolítica que
asegura el desarrollo de un prototipo inicial. Estos resultados sientan las bases para la
siguiente etapa del proyecto, el Diseño del Sistema (Capítulo 4), donde se detallarán los
componentes específicos de la arquitectura, como la integración de LangChain para la
gestión de contexto, el uso de Ollama para la generación de contenido y la estructura de
la API REST que conectará los servicios. El diseño partirá de las necesidades identificadas
aquí, especificando cómo se implementarán técnicamente las funcionalidades propuestas.
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Capítulo 4

Diseño

En este capítulo se detalla el proceso de diseño del sistema propuesto, que combina
el aprendizaje ubicuo con la generación de tareas asistida por un modelo de lenguaje
siguiendo la técnica de Generación Aumentada por Recuperación (RAG). Se descri-
ben la arquitectura general del sistema, el diseño del servidor y de la API REST
desarrollada, la construcción de los prompts optimizados mediante la metodología
C.R.A.F.T., así como los componentes encargados de la generación de tareas y la
corrección automática. También se define el formato de las tareas generadas (en for-
mato JSON estructurado mediante modelos Pydantic) y se presenta una visión de la
arquitectura completa integrando todos los elementos.

4.1 Introducción

El presente capítulo tiene como finalidad detallar el diseño de la aplicación desarrollada
en el marco de este TFG, sentando las bases necesarias para cumplir con los requisitos
identificados y documentados en la fase de análisis previa, tal como se expone en el Ca-
pítulo 3. La exposición del diseño se inicia desde una perspectiva general, presentando la
arquitectura lógica del sistema, para luego avanzar hacia una descripción minuciosa de
los componentes principales que conforman la aplicación distribuida. En este contexto, se
abordan las funciones específicas asignadas al servidor y al cliente, así como las interac-
ciones entre estos elementos y, cuando sea pertinente, con servicios externos.

La arquitectura general del sistema se plantea desde un enfoque lógico, con el propósi-
to de esclarecer las responsabilidades de cada componente de la aplicación. Este enfoque
permite establecer una visión integral del sistema antes de profundizar en los detalles de
su implementación. A continuación, se procede a diseñar de manera específica las par-
tes desarrolladas en este TFG que se encargan del servidor del sistema. En el caso del
servidor, se destacan sus características principales, con especial énfasis en la exposición
de recursos que facilitan la obtención de información para la generación de tareas edu-
cativas. Asimismo, se subraya su capacidad para gestionar usuarios, almacenar datos de
forma persistente y garantizar la privacidad mediante el procesamiento local de la infor-
mación, evitando la dependencia de servicios externos. Este diseño asegura la integridad
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4. Diseño

y el aislamiento de los datos de cada usuario, al tiempo que incorpora un contexto ubicuo
que enriquece las tareas generadas.

4.2 Arquitectura del sistema
El sistema se ha diseñado como una aplicación monolítica capaz de satisfacer los requisitos
indicados en el Capítulo 3. A diferencia de arquitecturas distribuidas complejas, este
enfoque consolida toda la lógica de negocio —incluida la gestión de datos, la interacción
con los modelos de lenguaje y la exposición de la API REST [Fielding, 2000]— en un
único servidor. Esta decisión de diseño, como se justificó en la sección 3.5, prioriza la
simplicidad, la facilidad de despliegue y un control total sobre el flujo de datos, aspectos
cruciales en un entorno académico y de investigación.

La arquitectura del sistema busca disminuir al máximo la probabilidad de alucinación
del modelo y maximizar las posibilidades de generar tareas relevantes en el contexto
educativo del alumno. Para lograrlo, se integra un potente pipeline de RAG directamente
en el servidor.

Figura 4.1: Esquema de la arquitectura del sistema.

Como se muestra en la Figura 4.1, la arquitectura se compone de los siguientes ele-
mentos clave:

• Cliente: Es la interfaz con la que interactúa el usuario (docente o alumno). Puede
ser una aplicación web, una app móvil o cualquier otro software capaz de consumir
una API REST. Su responsabilidad principal es presentar la información de manera
intuitiva y enviar las peticiones del usuario al servidor. En este TFG no se desarrolla
un cliente específico, pero la API REST se diseña para que cualquier cliente pueda
implementarse fácilmente.

• Servidor (Backend): Es el corazón del sistema y el foco de este proyecto. Alberga
toda la lógica y se encarga de:
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– API REST: Exponer los endpoints para que el cliente pueda interactuar con
el sistema (gestionar ficheros, generar tareas, corregir respuestas).

– Gestión de Usuarios y Seguridad: Autenticar las peticiones mediante claves de
API, garantizando que cada usuario acceda únicamente a sus propios datos.

– RAG :

∗ Gestión de la Base de Conocimiento: Procesar los documentos y URLs
subidos por el usuario (docente). Incluye la fragmentación del texto, la
generación de embeddings y su almacenamiento en una base de datos vec-
torial persistente.

∗ Recuperación de Contexto: Ante una solicitud de generación de tareas,
buscar en la base de datos vectorial los fragmentos de texto más relevantes
para el tema solicitado.

∗ Integración con Modelos de IA: Orquestar las llamadas a los modelos de
lenguaje locales. Construye los prompts inyectando el contexto RAG y
la información de fuentes externas, y fuerza la salida en formato JSON
estructurado.

• Componentes en la generación de tareas:

– Base de datos vectorial: Es la que almacena los embeddings de los documentos
del usuario de forma persistente. Cada usuario tiene su propia colección aislada
del resto.

– Gestor de LLM: Plataforma para ejecutar localmente modelos de lenguaje de
gran tamaño. Al no depender de servicios externos, se garantiza la privacidad
de los datos y se reducen los costes operativos.

• Servicios Externos (Opcionales):

– Fuentes de datos externos: Utilizada para enriquecer el contexto de las tareas
cuando se proporciona un Punto de Interés (POI), como un monumento o un
lugar histórico. El servidor consulta esta API para obtener descripciones y
datos relevantes (p.ej. Wikipedia).

Flujo de trabajo típico

Para ilustrar cómo interactúan estos componentes, consideremos el siguiente ejemplo de
uso:

1. Fase de Preparación (Docente):

a) El docente se autentica con su API Key mediante el cliente. Sube sus apuntes
o otra fuente de información sobre el “Arte Románico en Palencia”.

b) El servidor procesa el fichero con el RAG, genera los embeddings y los almacena
en la colección de vectores en la base de datos vectorial del docente.

2. Fase de Generación de Tareas (Docente):
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a) El docente solicita 3 tareas de opción múltiple sobre “Arte Románico” en el
POI “Catedral de Palencia”. Que con sus apuntes hara RAG para dar contexto
al LLM

b) El servidor:
1) Consulta la Wikipedia API para obtener información sobre la “Catedral

de Palencia”.
2) Realiza una búsqueda semántica en ChromaDB para recuperar los frag-

mentos más relevantes.
3) Construye un prompt que integra la información de Wikipedia y los frag-

mentos recuperados.
4) Llama al modelo de lenguaje local, exigiendo salida en formato JSON.

c) El cliente recibe el JSON con las 3 tareas con su solución correspondiente y las
presenta al docente para su revisión.

3. Fase de Realización y Evaluación (Estudiante):

a) El estudiante responde a una de las tareas.
b) La respuesta y la solución correcta proporcionada en el momento de generar

las tareas se envían al servidor.
c) El servidor utiliza un modelo de IA local para comparar la respuesta con la

solución y devuelve retroalimentación automática.

Esta arquitectura monolítica y centrada en IA local ofrece una solución potente, segura
y personalizable, alineada con las necesidades de un entorno educativo moderno.“ ‘

4.3 Diseño del servidor
El servidor del sistema tendrá que exponer una serie de recursos para la obtención de la
información para generar las tareas. El servidor integra la gestión de usuarios, el almace-
namiento de datos, la integración de contexto ubicuo y la potencia de cómputo necesaria
para ejecutar los modelos de inteligencia artificial de forma local. Que la información se
almacene de forma local es necesario para no tener que dar información a servicios de
terceros. Así se garantiza la privacidad de los documentos del docente o de la información
del alumnado.

4.3.1 Gestión de usuarios y seguridad

Dado que el sistema está diseñado para ser utilizado por múltiples usuarios (estudiantes o
profesores), el servidor implementa una gestión de usuarios básica mediante un mecanismo
de autenticación con claves de API. En lugar de manejar sesiones complejas o datos perso-
nales extensos, se asigna a cada cliente registrado una clave única y secreta. Esta clave de
API debe incluirse en la cabecera de cada petición HTTP que el cliente realice al servidor.

El servidor verifica la validez de esta clave en cada solicitud, identificando así al usuario
y autorizando el acceso a los recursos. Este esquema, aunque sencillo, cumple dos funciones
clave:
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• Seguridad: Impide accesos no autorizados a la API.

• Multiusuario: Permite asociar los datos a un usuario específico, garantizando que
cada usuario solo pueda acceder a su propia información.

4.3.2 Almacenamiento de datos

El servidor gestiona el almacenamiento persistente de todos los datos del sistema.

• Información para la generación de tareas: Utilizando la base de datos vectorial
en modo persistente, los embeddings y los fragmentos de texto se almacenan en el
disco del servidor. Cada usuario tiene su propia colección en la base de datos, iden-
tificada de forma única, lo que garantiza el aislamiento de los datos. Esto significa
que las búsquedas RAG de un usuario solo se realizarán sobre los documentos que
ese usuario ha subido.

• Ficheros de usuario: Los ficheros originales que los usuarios suben se guardan en
el sistema de ficheros del servidor, en una estructura de carpetas organizada por los
identificadores únicos de cada usuario. Esto permite listar y eliminar de los ficheros
fuente.

• Tareas generadas: Las tareas generadas por el LLM, junto con sus soluciones, no
se almacenan de forma persistente en una base de datos. Se mantienen en la memoria
del servidor durante la sesión activa del usuario, lo que simplifica el diseño.

4.3.3 Integración de contexto ubicuo

Un objetivo fundamental del sistema es soportar el aprendizaje ubicuo, lo que implica que
las tareas puedan adaptarse al contexto físico o situacional del estudiante. El diseño del
servidor incorpora este contexto dinámico de dos maneras:

1. Información de Puntos de Interés (POI): El sistema puede recibir como entra-
da el nombre de un punto de interés (por ejemplo, Catedral de Valladolid). Utilizan-
do la API de Wikipedia, el servidor extrae automáticamente el artículo correspon-
diente a ese POI. Esta información se inyecta directamente en el prompt del LLM,
permitiéndole generar preguntas que hagan referencia a la historia, arquitectura o
detalles específicos del lugar donde se encuentra el estudiante.

2. Conocimiento del usuario (RAG): El sistema enriquece aún más el contexto
utilizando la arquitectura RAG. Se buscan en la base de conocimiento del usuario
los fragmentos más relevantes para el tema de la tarea y el POI. De este modo,
las preguntas no solo se basan en la información genérica de Wikipedia, sino que
también se conectan con los apuntes y materiales que el profesor o el propio alumno
han cargado previamente.

Esta doble fuente de contexto permite crear tareas altamente personalizadas y situadas,
aumentando la calidad y relevancia en un entorno de aprendizaje ubicuo.
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4.3.4 Arquitectura RAG: indexación y recuperación de informa-
ción

Una pieza central del sistema es el subsistema de RAG, encargado de incorporar informa-
ción contextual relevante en la generación de las tareas. Este enfoque es fundamental para
mitigar las alucinaciones de los modelos de lenguaje y asegurar que las tareas generadas se
basen en conocimiento específico y fiable. Este subsistema opera en dos fases principales:
la fase de indexación (preparación de la base de conocimiento) y la fase de recuperación
semántica.

Fase de indexación

En primer lugar, el sistema debe preparar y almacenar la información de referencia de
modo que pueda ser recuperada eficientemente más adelante. A tal efecto, el conteni-
do relevante proporcionado por el usuario, el sistema acepta tanto .pdf, .txt, .docx,
transcripciones de vídeos de YouTube y contenido de páginas web que se transforma en
representaciones vectoriales mediante un modelo de embeddings.

El proceso de indexación se desglosa en los siguientes pasos:

1. Subida de datos: Cada fuente se convierte en un formato de texto y fuente del
contenido.

2. Fragmentación: Cada documento o fuente de datos es dividido en fragmentos
manejables llamados chunks de un tamaño fijo de caracteres con un cierto sola-
pamiento entre fragmentos. Esta división es crucial, ya que fragmentos demasiado
grandes pueden diluir la información relevante, mientras que fragmentos demasiado
pequeños pueden carecer de contexto. Se utiliza una estrategia de división de texto
recursiva que intenta mantener la cohesión semántica de los fragmentos.

3. Vectorización: A cada fragmento de texto se le calcula un vector en un espacio
de alta dimensión que captura su contenido semántico. Este proceso de codificación
semántica se realiza con un modelo de embedding entrenado para captar similitudes
de significado entre textos. Dos fragmentos con significado similar tendrán vectores
cercanos en este espacio vectorial.

4. Almacenamiento: Los vectores resultantes se almacenan en una base de datos
vectorial. Junto a cada vector, se guardan el texto del fragmento original y meta-
datos que identifican la fuente y el identificador único del usuario propietario de la
información.

De esta forma, la base de conocimiento queda indexada: es posible buscar informa-
ción relevante mediante comparaciones de similitud entre vectores (generalmente usando
la similitud del coseno), en lugar de por coincidencia de palabras clave exactas. La elec-
ción de una base de datos vectorial como ChromaDB permite almacenar eficientemente
cientos o miles de embeddings y recuperarlos en tiempo real usando estructuras de índice
optimizadas.
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Figura 4.2: Esquema de la fase de indexación.
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Fase de recuperación semántica

Una vez la base de conocimiento está indexada, la fase de recuperación se encarga de, dado
un requerimiento o contexto actual, extraer los fragmentos de información más relevantes
para la generación de las tareas. Cuando el sistema recibe una solicitud para generar
nuevas tareas (por ejemplo, sobre un tema específico indicado por el usuario), el proceso
es el siguiente:

1. Creación de la consulta: De la consulta del usuario se utiliza el tema de las
tareas, el tema se transforma en un vector utilizando el mismo modelo de embedding
empleado en la fase de indexación.

2. Búsqueda por similitud: Con este vector de consulta, la base de datos vectorial
realiza una búsqueda por similitud. Devuelve los fragmentos de información almace-
nados cuyos vectores son más cercanos al vector de consulta en el espacio vectorial;
es decir, los fragmentos más semánticamente relacionados con la solicitud.

3. Construcción del contexto: Esta búsqueda típicamente retorna un conjunto de
los k fragmentos más similares, donde k es un parámetro configurable. Dichos frag-
mentos recuperados constituyen el contexto que luego se proporcionará al modelo
generativo de lenguaje. Junto a estos fragmentos se pasan los metadatos para poder
saber de donde proviene la información.

En esencia, el sistema está recuperando las piezas de conocimiento más pertinentes
desde su base de datos para que el modelo las use al crear las tareas. Al limitar la ge-
neración de contenido a información respaldada por este contexto recuperado, se busca
que las tareas producidas sean pertinentes, correctas y estén alineadas con el material de
referencia disponible.

Figura 4.3: Esquema de la fase de recuperación semántica.
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4.3.5 Diseño de la API REST

Diseño de la API REST

Para que una aplicación cliente (como una app móvil o una plataforma web) pueda inter-
actuar con las funcionalidades de generación y evaluación de tareas, es necesario definir
una interfaz de comunicación robusta y estandarizada. El servidor expone sus capacidades
a través de un servicio web que sigue los principios de la arquitectura REST (Representa-
tional State Transfer) [Fielding, 2000]. Esta elección se fundamenta en varios principios
clave que son ideales para este proyecto:

• Arquitectura Cliente-Servidor: Se mantiene una separación clara entre el cliente
(la interfaz de usuario) y el servidor (la lógica de negocio y el acceso a la IA). Esta
modularidad permite que el backend desarrollado en este TFG pueda ser consumido
por diferentes tipos de clientes en el futuro sin necesidad de modificaciones.

• Comunicación sin Estado (Stateless): Cada petición del cliente al servidor con-
tiene toda la información necesaria para su procesamiento. El servidor no almacena
estado de sesión entre peticiones. Por ejemplo, la generación de tareas se inicia
encolando una solicitud mediante POST /query_task (incluyendo tema, dificultad,
parámetros, etc.) y su estado se consulta con GET /query_task/{id_query_task},
sin requerir contexto previo en el servidor.

• Interfaz Uniforme: Las interacciones se basan en la manipulación de recursos
identificados por URIs únicas y operados mediante un conjunto limitado de métodos
HTTP (GET, POST, DELETE, . . . ). En nuestro caso, los recursos principales son:
los recursos de conocimiento (/learning_recourses), las peticiones de generación
(/query_task) y las tareas de aprendizaje con sus subrecursos de respuestas y
retroalimentación (/learning_tasks/{id}/answers[/{id}][/feedback]).

Para garantizar la seguridad y la personalización, la API implementa un sistema de
autenticación basado en claves mediante la cabecera X-API-KEY. Cada usuario registrado
posee una API Key única. Esto permite al servidor validar la petición y asociarla a los
documentos y tareas específicos de ese usuario, asegurando el aislamiento y la privacidad
de los datos. Asimismo, las autorizaciones se aplican por rol (profesor o estudiante) en
cada petición.

Diseño de Endpoints La API se ha diseñado en torno a tres funcionalidades principa-
les: la gestión del conocimiento del usuario (RAG), la generación de tareas y la corrección
automática de respuestas.

A continuación se describen los endpoints, agrupados por rol de acceso.

1. Endpoints exclusivos para Profesor

POST /learning_recourses Crea un nuevo miembro (recurso) en la colección de
conocimiento (RAG) del profesor. El servidor procesa la entrada (fragmenta-
ción, vectorización) y la almacena en la colección asociada a su API Key.
Entrada: multipart/form-data con un fichero (.pdf, .txt, .docx) o un cam-
po de texto URL.

Universidad de Valladolid 33 Luis Francisco Sánchez Turrión



4. Diseño

Salida: Objeto JSON con el identificador del recurso creado y un mensaje de
éxito o error.

GET /learning_recourses o GET /learning_recourses/{id_learning_recourse}
Lista todos los miembros de la colección del profesor o recupera la representa-
ción de un miembro concreto.
Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.
Salida: (Listado) JSON con un array de recursos; (Detalle) JSON con los
metadatos del recurso solicitado.

DELETE /learning_recourses o DELETE /learning_recourses/{id_learning_recourse}
Elimina la colección completa del profesor o, si se proporciona identificador,
únicamente ese miembro. En ambos casos se borran también los chunks aso-
ciados en la base vectorial para mantener la consistencia del contexto RAG.
Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.
Salida: Objeto JSON con un mensaje de éxito.

POST /query_task Inicia una petición de generación de tareas con los parámetros
proporcionados. La petición se encola y se devuelve un identificador para su
seguimiento.
Entrada: Cuerpo JSON con parámetros como tipo_pregunta, tema, cantidad,
dificultad, nivel, poi, etc.
Salida: Objeto JSON con id_query_task y estado inicial de la petición.

GET /query_task/{id_query_task} Consulta el estado de una petición de gene-
ración. Devuelve false si las tareas aún no están listas, o las URIs de las tareas
cuando se han generado.
Entrada: Identificador de la petición en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON, p. ej.:

{ "ready": false }

o bien

{ "ready": true, "tasks": ["uri1", "uri2", "..."] }

2. Endpoints para Profesor y Estudiante

GET /learning_tasks o GET /learning_tasks/{id_learning_task} Devuelve
todas las tareas asociadas a un profesor (creadas por él) o asignadas a un es-
tudiante (según la API Key/rol), o bien, con identificador, la tarea concreta.
Entrada: Ninguna (solo la cabecera X-API-KEY); en la variante con identifi-
cador, este viaja en la ruta.
Salida: (Listado) Array JSON de tareas; (Detalle) Objeto JSON con la tarea
solicitada.

POST /learning_tasks/{id_learning_task}/answers Crea un subrecurso respues-
ta asociado a la tarea indicada (puede ser respuesta del profesor o del estu-
diante).
Entrada: Cuerpo JSON con la respuesta:
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{
"contenido_respuesta": "...",

}

Salida: Objeto JSON con el id_answer creado y un mensaje de éxito.

GET /learning_tasks/{id_learning_task}/answers Devuelve todas las respues-
tas asociadas a una tarea.
Entrada: Identificador de la tarea en la ruta; cabecera X-API-KEY.
Salida: Array JSON de respuestas.

GET /learning_tasks/{id_learning_task}/answers/{id_answer} Devuelve la
respuesta identificada.
Entrada: Identificadores de tarea y de respuesta en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON con el contenido y metadatos de la respuesta.

GET /learning_tasks/{id_learning_task}/answers/{id_answer}/feedback Devuelve
la retroalimentación asociada a una respuesta concreta (p. ej., evaluación au-
tomática, comentarios, rúbrica).
Entrada: Identificadores de tarea y de respuesta en la ruta; cabecera X-API-KEY.
Salida: Objeto JSON con el feedback :

{
"is_ok": true,
"comentarios": "...",

}

El intercambio de datos se realiza exclusivamente en formato JSON, dada su ligere-
za, legibilidad y facilidad de procesamiento por parte de cualquier cliente web o móvil.
La estricta adhesión a los esquemas Pydantic en las respuestas garantiza la fiabilidad y
robustez de la comunicación entre cliente y servidor.

4.4 Diseño de los prompts
Para lograr que el modelo de lenguaje genere exactamente el contenido deseado, es crucial
elaborar cuidadosamente los prompts. En este proyecto se ha adoptado la metodología
C.R.A.F.T. como guía para la construcción de prompts efectivos. C.R.A.F.T. es un
acrónimo que resume los elementos clave que debe incluir un buen prompt : Context
(Contexto), Role (Rol), Action (Acción), Format (Formato) y Tone (Tono).

A continuación, se detalla cómo se ha aplicado esta metodología en los prompts del
sistema:

• Contexto (Context): Es la parte más rica del prompt. Se le proporciona al modelo
toda la información necesaria para generar tareas relevantes.

• Rol (Role): Se le asigna al modelo una personalidad específica. Por ejemplo:

“Eres un experto en materia. Estás desarrollando preguntas de aprendizaje
ubicuo...”
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Este rol guía al modelo para que su estilo y enfoque se ajusten a los de un tutor
inteligente.

• Acción (Action): Se le indica de forma explícita la tarea a realizar. Por ejemplo:

“Debes crear preguntas abiertas y sencillas basadas en la taxonomía de
Bloom (taxonomia) enfocadas en la observación directa del monumento”.

• Formato (Format): Se le exige al modelo que devuelva la salida estrictamente en
formato JSON, con estructura definida por un esquema Pydantic. Por ejemplo:

“Proporciona la respuesta en formato JSON [...] con la estructura: {"question":
"...", "solucion": "..."}”.

Esto asegura que la salida del modelo pueda ser procesada automáticamente por la
aplicación.

• Tono (Tone): Se define el estilo de comunicación deseado. Por ejemplo:

“Utiliza un tono educativo, claro y motivador. Escribe las preguntas como
un profesor guía que invita a la exploración...”.
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Prompt del Generador de Tareas (Ejemplo para Preguntas Largas y Simples):

1 system_message = {
2 "role": "system",
3 "content ": f""" Eres un experto en {materia }. Estás desarrollando

preguntas de aprendizaje ubicuo sobre el tema {tema} para alumnos de
{nivel}. Estos estudiantes están físicamente en un espacio {ubicuo},
es decir , en el lugar del monumento relacionado. Cuentan con el
siguiente conocimiento previo de clase: {conocimiento_alumno }. {
frase_poi} Además, el contexto de los apuntes de clase es: {contexto
}.

4

5 Debes crear preguntas abiertas y sencillas basadas en la taxonomía
de Bloom ({ taxonomia }) enfocadas en la observación directa del
monumento. Cada pregunta debe formularse de tal manera que solo pueda
ser respondida por un alumno que se encuentre presencialmente allí,

interactuando con ese entorno.
6

7 Las preguntas van dirigidas a tus alumnos de {nivel}, por lo que
deben adecuarse a su nivel educativo y conectar con el conocimiento
que ya poseen. Ten en cuenta su conocimiento previo proporcionado y
el contexto del monumento para asegurarte de que las preguntas sean
relevantes y comprensibles para ellos.

8

9 Proporciona la respuesta en formato JSON , con cada pregunta y su
solución correspondiente. Si la cantidad es mayor que 1, devuelve una
lista de objetos JSON , donde cada objeto tenga la estructura:

10 "question ": "pregunta de aprendizaje ubicuo",
11 "solucion ": "respuesta esperada a la pregunta de aprendizaje ubicuo"
12 Asegúrate de que el JSON sea válido y bien formado.
13

14 Utiliza un tono educativo , claro y motivador. Escribe las preguntas
como un profesor guía que invita a la exploración, asegurándote de
que el lenguaje sea apropiado para el nivel de los alumnos y fomente
la curiosidad sobre el monumento.

15 """}
16

17 user_message = {
18 "role": "user",
19 "content ": f"Genera {cantidad} preguntas abiertas de desarrollo

sobre {tema} de la materia {materia} para tus alumnos , formuladas de
manera sencilla. Asegúrate de que cada pregunta requiera que el
alumno esté físicamente presente en el monumento para poder
responderla ."

20 }

Código 4.1: Prompt para la generación de tareas de desarrollo largo y simple. Donde se
pueden observar los diferentes apartados de la metodología tomada para generar el prompt
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Prompt del Corrector Automático:

1 system_message= {
2 "role": "system",
3 "content ": """
4 Eres un corrector educativo automatizado diseñado para proporcionar

retroalimentación personalizada y constructiva a los estudiantes de
manera directa , es decir , vas a estar hablando con el estudiante.

5 Tu tarea es analizar la respuesta de un estudiante a una pregunta
específica , compararla con la respuesta correcta y ofrecer una
evaluación detallada que incluya tanto los aciertos como los errores.

6 Debes explicar los conceptos relevantes de manera clara y
relacionarlos con el objetivo de aprendizaje de la pregunta. Además,
proporciona sugerencias prácticas para que el estudiante pueda
mejorar su comprensión y recomienda recursos adicionales si es
apropiado. Mantén un tono alentador y enfocado en el crecimiento del
estudiante.

7

8 Cuando recibas el nombre del estudiante , dirígete a él directamente
para hacer la retroalimentación más personal. Si no se proporciona el
nombre , omite cualquier referencia personal.

9 Devuelve exclusivamente un JSON válido con la siguiente estructura:
10 "is_ok": true , // true si la respuesta es correcta , false si es

incorrecta
11 "diferencias ": "Explicación breve de las diferencias si existen"
12 Devuelve la salida en formato JSON válido .""" }
13

14 user_message = {
15 "role": "user",
16 "content ": f"Vas a analizar la respuesta del alumno {usuario} que

tiene un nivel de estudiante de {nivel} a la Pregunta: {pregunta }\
nRespuesta correcta: {respuesta_correcta }\ nRespuesta de {usuario }: {
respuesta_alumno }"

17 }

Código 4.2: Prompt para la corrección automática de respuestas abiertas.

Gracias a este diseño meticuloso, el LLM recibe instrucciones claras y un marco de
trabajo bien definido, lo que aumenta drásticamente la calidad, fiabilidad y consistencia
de los resultados.

4.5 Diseño de las Tareas

El pilar de este diseño es el uso de salidas en formato JSON forzado. En lugar de permitir
que el LLM genere texto libre, que requeriría un complejo y frágil post-procesamiento
para su interpretación, se le instruye explícitamente para que devuelva una respuesta que
se adhiere estrictamente a un esquema predefinido.

Este enfoque ofrece dos ventajas fundamentales:

• Fiabilidad del sistema: Se elimina la ambigüedad y se busca que la aplicación
cliente pueda interpretar y renderizar las tareas correctamente.
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• Riqueza pedagógica: Permite diseñar diversos tipos de tareas, cada una con un
objetivo pedagógico distinto, que van desde la simple memorización hasta el análisis
y la observación en el entorno físico.

A continuación, se detallan los tipos de tareas diseñadas y su estructura JSON.

4.5.1 Tarea de Desarrollo Simple (Long Simple)

Propósito pedagógico: Evaluar la comprensión de un tema, requiriendo que el estu-
diante elabore una respuesta abierta basada en el contexto proporcionado (ya sea de los
documentos del usuario a través de RAG o de la información del punto de interés).

Estructura JSON:

1 {
2 "question ": "string",
3 "solucion ": "string"
4 }

Donde question es la pregunta formulada por el LLM y solucion es una respuesta
ideal o esperada, generada también por el modelo. Esta solución es crucial para la posterior
corrección automática.

4.5.2 Tarea de Opción Múltiple (MCQ)

Propósito pedagógico: Evaluar el conocimiento factual y la capacidad de discriminación
entre opciones. Es una herramienta eficaz para la autoevaluación rápida.

Estructura JSON:

1 {
2 "question ": "string",
3 "option0 ": "string",
4 "option1 ": "string",
5 "option2 ": "string",
6 "option3 ": "string",
7 "correct_option ": integer
8 }

El campo corect_option es un entero (0–3) que indica el índice de la respuesta
correcta, garantizando una evaluación inequívoca. La capacidad del LLM para generar
“distractores” (opciones incorrectas pero plausibles) es una ventaja significativa sobre las
plantillas.

4.5.3 Tarea Fotográfica

Propósito pedagógico: Fomentar la observación activa, la búsqueda de elementos es-
pecíficos en el entorno y la aplicación práctica del conocimiento.

Estructura JSON:

1 {
2 "question ": "string"
3 }
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La estructura es simple, ya que la “respuesta” no es un texto, sino un fichero de imagen
que el usuario debe capturar y subir a través de la aplicación cliente.

4.5.4 Tarea de Sí o No (Yes or No)

Propósito pedagógico: Evaluar el conocimiento preciso sobre un hecho específico. Su
simplicidad lo hace ideal para repasos rápidos o para iniciar una discusión más profunda.

Estructura JSON:

1 {
2 "question ": "string",
3 "solucion ": boolean
4 }

El uso de un tipo de dato booleano (true/false) para la solución asegura una eva-
luación automática robusta y sin ambigüedades.

4.6 Conclusiones

La fase de diseño ha sido fundamental para establecer una arquitectura robusta y cohe-
rente que dé soporte a los objetivos del proyecto. Siguiendo una metodología ágil, se ha
definido un plan de trabajo claro que ahora transita hacia la etapa de implementación.
Los resultados de esta fase no solo han delineado la estructura lógica del sistema, sino que
también han sentado las bases para su funcionalidad, escalabilidad y usabilidad.

El diseño se centra en un servidor monolítico que encapsula la lógica de negocio, la
gestión del conocimiento mediante la técnica RAG y la orquestación de modelos de len-
guaje locales a través de Ollama. Una pieza clave de este diseño es la API REST, que
actúa como interfaz estandarizada y desacoplada. Esta decisión de diseño, inspirada en la
modularidad, asegura que el backend pueda ser consumido por una variedad de clientes fu-
turos (aplicaciones web, móviles, etc.) sin necesidad de que estos conozcan la complejidad
subyacente de los procesos de IA. Las interacciones mediante un formato estandarizado
como JSON, validadas con modelos Pydantic, garantizan la fiabilidad y la correcta inter-
pretación de los datos, eliminando la ambigüedad y fragilidad asociadas a las salidas de
texto libre.

Asimismo, se ha puesto un especial énfasis en el diseño de las tareas educativas. A
diferencia de los métodos tradicionales basados en plantillas rígidas, este diseño aprovecha
la flexibilidad de la IA Generativa para crear actividades dinámicas y contextualizadas.
La especificación de diferentes tipos de tareas (desarrollo, opción múltiple, fotográficas,
etc.) con estructuras JSON bien definidas asegura que el sistema no solo sea potente, sino
también pedagógicamente versátil y fiable para su uso en un entorno de aprendizaje.

Con estas bases de diseño sólidamente establecidas, se ha creado una hoja de ruta
precisa para la siguiente etapa. El Capítulo 5 Implementación, se centrará en materiali-
zar estos conceptos en un sistema funcional, abordando la configuración del entorno de
servidor, la integración de los componentes del pipeline RAG y la conexión final con los
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modelos de lenguaje para dar vida a la generación de tareas de aprendizaje ubicuo.
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Capítulo 5

Implementación

En este capítulo se describe cómo se llevó a cabo la implementación del sistema,
detallando las herramientas, bibliotecas y decisiones prácticas tomadas para mate-
rializar el diseño planteado. Se abordan el entorno de desarrollo, la construcción de
la base de conocimiento con ChromaDB y SentenceTransformers, la integración del
modelo de lenguaje local con Ollama, la creación de la API REST con Flask y la
implementación concreta de los módulos funcionales, ilustrando con fragmentos de
código relevantes.

5.1 Introducción

Definido el diseño de la aplicación distribuida, se procede ahora a la fase de implemen-
tación, la cual se abordará utilizando la metodología ágil Scrum. Esta elección facilita
un desarrollo iterativo e incremental del sistema, permitiendo ajustes rápidos y mejoras
continuas basadas en la retroalimentación de mis tutores en las diferentes reuniones.

En esta fase, se establecerán las tecnologías específicas necesarias para la construcción
de cada módulo del sistema, diseñado para generar tareas de aprendizaje ubicuo basado
en Modelos de Lenguaje de Gran Tamaño (LLM). Además, se detallarán los servicios
externos esenciales para el correcto funcionamiento de la aplicación, incluyendo aquellos
destinados a la identificación y gestión de usuarios, persistencia de datos y personalización
de las tareas según las preferencias individuales de cada usuario.

La sección describirá en profundidad cómo se ha llevado a cabo la implementación del
servidor, explicando su organización estructural y justificando la elección de los servicios
externos integrados. También se detallará qué pruebas o información se usaron para la
decisión del modelo de lenguaje usado.

Finalmente, se destacarán claramente las interacciones entre los diferentes componen-
tes del sistema, mostrando cómo dichas interacciones garantizan el cumplimiento efectivo
de los requisitos establecidos en la etapa de análisis (Capítulo 3).
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5.2 Implementación del servidor

Las dos funciones principales del servidor donde se ejecuta el sistema son: ser capaz de
ejecutar modelos de lenguaje de forma local y obtener la información relevante para la
generación de tareas. El lenguaje escogido para llevar a cabo el desarrollo del servidor
ha sido Python en su versión 3.9.21, debido a la versatilidad y herramientas que ofrece
para el trabajo con modelos de lenguaje. El código ha sido desarrollado en el entorno de
VSCode (Visual Studio Code), un editor ligero, multiplataforma y altamente extensible.
VSCode ofrece resaltado de sintaxis para Python, depuración integrada con puntos de
interrupción y consola interactiva, terminal incorporada y soporte para ambientes virtua-
les. Además, cuenta con integración nativa con control de versiones Git, un marketplace
de extensiones muy activo y gran capacidad de personalización. Para gestionar el entorno
de paquetes se usó Conda, que es un gestor de entornos virtuales que permite aislar las
dependencias de las librerías y así evitar conflictos entre los diferentes paquetes usados en
el desarrollo del código.

La implementación de la API REST, aunque tendrá diferencias con la diseñada en el
Capítulo 4 por falta de tiempo, se implementará usando el framework Flask en su versión
más actualizada (3.1.1). Flask es un framework que proporciona una serie de funciones
para el despliegue de una API REST de forma rápida y sencilla; también permite el uso de
plantillas (templates) HTML para realizar pruebas más visuales del intercambio de datos
entre el cliente y el servidor. El framework de Flask puede integrarse con otro framework
llamado Flasgger, que ofrece funciones para documentar la API.

La estructura del código usada para el servidor web estará condicionada a los recursos
que se van a exponer de la API REST. En el listado se puede observar la organización de
los ficheros que conforman el código del servidor del sistema. Las dependencias necesarias
para ejecutar el servidor están en un fichero llamado requirements.txt, donde en cada
línea aparece el nombre de un paquete y, de forma opcional, se puede añadir la versión
del paquete.

Para el control de versiones se empleó Git, con un repositorio alojado en GitHub. El
uso de Git sirve para llevar un registro de los cambios, experimentar en ramas separadas
sin afectar la versión estable y colaborar de manera organizada.

1 src/
2 templates/
3 index.html
4 app.py
5 corrector.py
6 eleccion.py
7 long_simple.py
8 MCQ.py
9 photograph.py

10 yes_or_no.py

Código 5.1: Estructura del código fuente del sistema
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5.3 Implementación de la Base de Conocimiento (RAG)
El núcleo de la funcionalidad RAG se implementó utilizando ChromaDB [Hong et al.,
2025] para el almacenamiento vectorial y SentenceTransformers para la generación de
embeddings.

5.3.1 Generación de embeddings con SentenceTransformers

La conversión de texto a vectores semánticos (embeddings) es un paso crucial. Para ello,
se empleó el modelo all-MiniLM-L6-v2 de la librería SentenceTransformers. Este
modelo fue seleccionado por su excepcional equilibrio entre la calidad de los embeddings
generados y su eficiencia computacional. Al ser un modelo ligero y rápido, resulta ideal
para aplicaciones interactivas donde los tiempos de respuesta son críticos, sin sacrificar
significativamente la precisión en tareas de similitud semántica, incluso con textos en
español.

5.3.2 Fragmentación de Texto con LangChain

Para la etapa de fragmentación de texto (chunking), se utilizó el componente Recursive-
CharacterTextSplitter de la librería LangChain. Aunque no se empleó la librería para
orquestar todo el pipeline, esta herramienta es particularmente efectiva por su estrategia
de división jerárquica. Intenta preservar la cohesión semántica del texto al priorizar la di-
visión por separadores naturales (párrafos, saltos de línea) antes de recurrir a la división
por caracteres.

1 from langchain_text_splitters import RecursiveCharacterTextSplitter
2 from langchain.schema import Document
3

4 def dividir_en_fragmentos(document , tamano_fragmento =500, solapamiento
=75):

5 """
6 Divide el contenido de un documento en fragmentos más pequeños
7 utilizando una estrategia recursiva para mantener la cohesión semá

ntica.
8 """
9 # Se inicializa el divisor con una lista de separadores priorizados.

10 # Intenta dividir primero por párrafos , luego por líneas , etc.
11 splitter = RecursiveCharacterTextSplitter(
12 separators =["\n\n", "\n", " ", ""],
13 keep_separator=False ,
14 is_separator_regex=False ,
15 chunk_size=tamano_fragmento ,
16 chunk_overlap=solapamiento # Solapamiento para no perder

contexto entre fragmentos
17 )
18

19 # Se divide el contenido textual del documento
20 fragmentos_texto = splitter.split_text(document.page_content)
21

22 # Se crean nuevos objetos Document por cada fragmento , conservando
23 # los metadatos del documento original (ej. la fuente).
24 # Esto es vital para la posterior citación de fuentes.
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25 fragmentos_docs = [
26 Document(page_content=frag , metadata=document.metadata)
27 for frag in fragmentos_texto
28 ]
29

30 return fragmentos_docs

Código 5.2: Función para dividir un documento en fragmentos cohesivos.

5.3.3 Almacenamiento y Consulta con ChromaDB

Como base de datos vectorial, se eligió ChromaDB por su simplicidad, su capacidad para
ejecutarse localmente y su modo de almacenamiento persistente. Esta elección permite in-
dexar los embeddings de los documentos y recuperarlos eficientemente mediante búsquedas
de similitud, garantizando que la información persista entre reinicios del servicio.

1 import chromadb
2

3 # Se inicializa un cliente persistente. Los datos se guardan en el
directorio

4 # especificado , sobreviviendo a los reinicios del proceso.
5 chroma_client = chromadb.PersistentClient(path="/path/to/your/chroma_db"

)
6

7 def get_user_collection(api_key):
8 """
9 Crea o recupera una colección específica para cada usuario.

10 Esto implementa un aislamiento de datos , asegurando
11 que cada usuario solo acceda a sus propios documentos.
12 """
13 collection_name = f"user_{api_key}"
14 return chroma_client.get_or_create_collection(name=collection_name)

Código 5.3: Inicialización del cliente persistente y gestión de colecciones en ChromaDB.

La función de búsqueda, pieza central del sistema RAG, se encarga de recibir la con-
sulta del usuario, convertirla en un embedding y utilizarlo para encontrar los fragmentos
de texto más relevantes en la colección del usuario dentro de ChromaDB. Los resultados
se formatean como un contexto enriquecido para ser enviado al LLM.

1 def buscar_info_chromadb(api_key , query , embedding_model):
2 """
3 Busca en la colección de un usuario los fragmentos más relevantes

para una consulta.
4 """
5 # 1. Recuperar la colección aislada del usuario
6 user_collection = get_user_collection(api_key)
7

8 # 2. Convertir la consulta del usuario en un vector (embedding)
9 # Se debe usar el MISMO modelo que se usó para indexar los

documentos.
10 query_embedding = embedding_model.encode ([ query])
11

12 # 3. Realizar la búsqueda por similitud en ChromaDB
13 # n_results determina cuántos fragmentos relevantes se recuperarán.
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14 results = user_collection.query(
15 query_embeddings=query_embedding ,
16 n_results =3
17 )
18

19 if not results or not results["documents"]:
20 return "No se encontraron documentos relevantes."
21

22 # 4. Formatear los resultados para inyectarlos en el prompt del LLM
23 # Esta técnica de "prompt engineering" ayuda al LLM a entender el

contexto.
24 documentos = results["documents"][0]
25 metadatos = results["metadatas"][0]
26 contexto = []
27

28 for i, (doc , meta) in enumerate(zip(documentos , metadatos)):
29 # Se extrae la fuente de los metadatos guardados previamente
30 fuente = meta.get("source", "Fuente desconocida")
31 # Se envuelve cada fragmento en etiquetas para una mejor

delimitación
32 contexto.append(f"<INI_CONTEXT{i}>Fuente: {fuente} - Contenido:

{doc}</ END_CONTEXT{i}>\n")
33

34 return " ".join(contexto)

Código 5.4: Función de búsqueda de información por similitud en ChromaDB.

5.4 Modelo de Lenguaje (LLM) y su Integración con
Ollama

La selección de los modelos de lenguaje (LLM) constituye una decisión crítica que impacta
directamente en la calidad y fiabilidad del sistema. Durante la fase de implementación, se
llevó a cabo un proceso de evaluación empírica para determinar los modelos más adecua-
dos para las dos tareas principales del sistema: la generación de preguntas y la corrección
automática de respuestas. El análisis no solo consideró la capacidad de los modelos, sino
también el equilibrio entre el rendimiento, la fiabilidad y los recursos computacionales
requeridos. Además, la decisión estuvo respaldada por los resultados de los benchmarks
de razonamiento y facticidad presentados en la Tabla 5.1.

• Modelos Utilizados:

Inicialmente, las pruebas se centraron en modelos más ligeros, como llama3.1:8b.
La hipótesis de partida era que un modelo de menor tamaño ofrecería una velocidad
de inferencia superior y un menor consumo de recursos (RAM/VRAM), factores
deseables para un sistema que podría enfrentarse a múltiples peticiones simultá-
neas. Sin embargo, aunque estos modelos demostraron ser rápidos, exhibieron dos
limitaciones críticas que comprometían los objetivos del proyecto:

– Fiabilidad de la salida estructurada: La adherencia al formato de salida
JSON, forzado mediante esquemas Pydantic, no era consistente. Con frecuen-
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cia, el modelo no lograba generar una estructura JSON válida, lo que provocaba
errores e impedía el procesamiento automático de las tareas generadas.

– Calidad del contenido y alucinaciones: Se observó una mayor propensión
a generar alucinaciones. En una herramienta con fines educativos, la precisión
y la veracidad del contenido son requisitos no prescindibles.

Estas limitaciones evidenciaron que, para este caso de uso, la fiabilidad y la calidad
del contenido debían priorizarse sobre la velocidad de inferencia. En consecuencia, la
evaluación se orientó hacia modelos de mayor tamaño y especialización, lo que con-
dujo a la adopción de la siguiente estrategia, confirmada también por los resultados
comparativos obtenidos en los benchmarks :

– Generación de tareas: Se seleccionó el modelo gemma3:27b. Este modelo de
Google demostró un rendimiento superior en la comprensión de instrucciones
complejas, alcanzando una tasa de éxito cercana al 100 % en la generación de
salidas JSON válidas y conformes al esquema. Además, redujo significativa-
mente la propensión a las alucinaciones, produciendo preguntas coherentes y
relevantes.

– Corrección automática: Se optó por el modelo deepseek-r1:32b, especiali-
zado en razonamiento. La corrección de respuestas abiertas requiere comparar
semánticamente la respuesta del estudiante con una solución de referencia, iden-
tificar discrepancias y articular retroalimentación constructiva. En las pruebas,
deepseek-r1:32b ofreció evaluaciones más precisas y justificaciones más de-
talladas que los modelos de propósito general.

Tabla 5.1: Benchmark de razonamiento (GSM8K) y facticidad (TruthfulQA).
Modelo GSM8K TruthfulQA

Llama 3.1 8B Instruct 82.0 54.5
Gemma 3 27B Instruct 92.1 62.2
DeepSeek-R1 Distill Qwen 32B 82.7 58.4

En conclusión, la implementación finaliza con una arquitectura de modelos es-
pecializada. A pesar del mayor coste computacional que suponen gemma3:27b y
deepseek-r1:32b, su adopción se justifica plenamente por la drástica mejora en la
fiabilidad, precisión y calidad general del sistema, tal como reflejan los resultados
de los benchmarks, asegurando así el cumplimiento de los requisitos pedagógicos y
funcionales del proyecto.

• Integración: La librería ollama para Python permite interactuar con los modelos
como si se tratara de una llamada a una función. Una característica clave utilizada
fue la capacidad de forzar la salida en formato JSON, pasando el esquema de un mo-
delo Pydantic a la función de chat. Esto garantiza que la salida del LLM sea siempre
estructurada y válida, eliminando la necesidad de un complejo post-procesamiento.
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1 from ollama import chat
2 from pydantic import BaseModel
3

4 # Se define la estructura de la respuesta esperada con Pydantic
5 class Quest(BaseModel):
6 question: str
7 solucion: str
8

9 class Test(BaseModel):
10 quests: list[Quest]
11

12 # En la función generadora ...
13 def generar_long_simple (...):
14 # ... (construcción de system_message y user_message) ...
15

16 response = chat(
17 messages =[ system_message , user_message],
18 model="gemma3 :27b",
19 # Se pasa el esquema JSON del modelo Pydantic
20 format=Test.model_json_schema (),
21 )
22

23 # Se valida y parsea la respuesta JSON directamente en un objeto
Pydantic

24 quests = Test.model_validate_json(response.message.content)
25 return quests

Código 5.5: Llamada al LLM con formato JSON forzado mediante Pydantic.

Esta técnica de salida estructura en JSON es una de las implementaciones más elegantes
del proyecto, asegurando robustez y fiabilidad en la comunicación con el LLM.

5.5 Análisis Detallado de la API y el Flujo de Datos

El fichero app.py constituye el cerebro de la aplicación, orquestando todas las interaccio-
nes entre el usuario, la base de conocimiento, y los modelos de lenguaje. En esta sección,
se desglosa su funcionamiento interno, desde la configuración inicial hasta la lógica de
cada uno de sus endpoints principales.

5.5.1 Configuración Inicial y Dependencias

El arranque de la aplicación define el entorno y carga los componentes esenciales.

• Inicialización de Flask y Swagger: Se crea la instancia de la aplicación Flask y
se integra con Flasgger para la generación automática de documentación interactiva
(Swagger UI), facilitando las pruebas y la comprensión de la API.

• Configuración de Rutas: Se establecen las rutas para el almacenamiento de fi-
cheros subidos por los usuarios (UPLOAD_FOLDER) y para las imágenes generadas
(IMG_FOLDER). Es crucial que cada usuario tenga su propio directorio, garantizando
la privacidad y el aislamiento de los datos.
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• Carga de Modelos y Base de Datos: Se inicializan los dos componentes clave
del pipeline RAG:

– chromadb.PersistentClient: Se conecta a la base de datos vectorial persis-
tente. Al especificar una ruta en el disco, se asegura que todos los vectores y
metadatos almacenados no se pierdan entre reinicios del servidor.

– SentenceTransformer(all-MiniLM-L6-v2): Se carga en memoria el modelo
de embeddings. Aunque esto consume recursos de RAM/VRAM, permite una
vectorización extremadamente rápida de los textos sin necesidad de llamadas
a una API externa.

• Gestión de API Keys: Se utiliza un diccionario simple de Python (API_KEYS)
para la autenticación. Cada petición a un endpoint protegido debe incluir una clave
válida en la cabecera X-API-KEY.

5.5.2 El Proceso RAG: De la Ingesta a la Recuperación

El sistema implementa un ciclo RAG completo. La lógica para manejar este ciclo está
distribuida en varias funciones de utilidad y un endpoint dedicado.

Ingesta y Procesamiento de Fuentes de Datos

El sistema es agnóstico a la fuente de datos, pudiendo procesar múltiples formatos. Para
cada formato, existe una función de ingesta especializada:

• ingest_text_file, ingest_pdf_file, ingest_docx_file: Estas funciones se en-
cargan de abrir y extraer el contenido textual de ficheros .txt, .pdf y .docx,
respectivamente. Utilizan librerías como PyPDF2 y docx2txt para la extracción.

• ingest_web_page: Recibe una URL, realiza una petición HTTP con requests para
obtener el HTML y utiliza BeautifulSoup para limpiar el contenido, extrayendo
únicamente el texto visible y eliminando etiquetas, scripts y estilos.

• ingest_youtube_transcript: Para URLs de YouTube, extrae el ID del vídeo y uti-
liza la librería youtube-transcript-api para obtener la transcripción automática
(en español o inglés). Esto permite procesar como texto el contenido de un vídeo.

Todas estas funciones devuelven el texto extraído encapsulado en un objeto Document de
LangChain, que convenientemente asocia el contenido con sus metadatos (como la ruta
del fichero o la URL de origen).

Endpoint de Carga: /api/cargar_info

Este es el punto de entrada para añadir nuevo conocimiento a la base de datos de un
usuario. Su flujo de trabajo es el siguiente:

1. Autenticación: Verifica la X-API-KEY del usuario.

2. Recepción de Datos: Acepta datos a través de un formulario multipart/form-data,
que puede contener un fichero (file) o una URL (URL).
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3. Selección de Ingestor: Basado en si se proporcionó un fichero o una URL (y
el tipo de cada uno), llama a la función de ingesta apropiada (ingest_pdf_file,
ingest_web_page, etc.).

4. Fragmentación (Chunking): El texto completo obtenido es pasado a la fun-
ción dividir_en_fragmentos, que utiliza el RecursiveCharacterTextSplitter
de LangChain para dividirlo en trozos más pequeños y manejables (por defecto, de
500 caracteres con 75 de solapamiento). Esto es fundamental para que la búsqueda
semántica sea precisa.

5. Vectorización y Almacenamiento: Itera sobre cada fragmento de texto:

• Genera su embedding vectorial usando el modelo embedding_model.encode().

• Crea un ID único para el fragmento.

• Prepara los metadatos, que incluyen la clave del usuario y la fuente original
del documento.

• Llama a user_collection.add() para guardar en lote los fragmentos, sus
vectores, IDs y metadatos en la colección de ChromaDB específica del usuario.

6. Respuesta: Devuelve un mensaje de éxito o un error detallado si alguna de las
fases falla.

Recuperación de Contexto: buscar_info_chromadb

Esta función es el corazón de la fase de recuperación semántica del RAG. Se invoca cada
vez que se necesita contexto para responder una pregunta.

1 def buscar_info_chromadb(api_key , query):
2 # 1. Obtener la coleccion especifica del usuario
3 user_collection = get_user_collection(api_key)
4

5 if not isinstance(query , str):
6 return "Error: La consulta debe ser una cadena (de texto)."
7

8 # Validacion para no buscar si el usuario no tiene documentos
9 user_files_path = f"/home/lfsanchez/tfg -2024 - luisfran/files /{ api_key

}"
10 if not directory_has_files(user_files_path):
11 return "No se encontraron documentos en ChromaDB."
12

13 # 2. Convertir la consulta del usuario en un vector
14 embedding_response = embedding_model.encode ([ query])
15

16 # 3. Realizar la busqueda de similitud en ChromaDB
17 # Se buscan los 3 fragmentos mas parecidos (top -k=3)
18 results = user_collection.query(
19 query_embeddings=embedding_response ,
20 n_results =3
21 )
22

23 if not results or not results["documents"] or not results["documents
"][0]:
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24 return "No se encontraron documentos relevantes en ChromaDB."
25

26 # 4. Formatear los resultados para el prompt del LLM
27 documentos = results["documents"][0]
28 metadatos = results["metadatas"][0]
29 contexto = []
30 for i, (doc , meta) in enumerate(zip(documentos , metadatos)):
31 fuente = meta.get("source", "Fuente desconocida")
32 # Se envuelven en etiquetas para que el LLM los identifique

mejor
33 contexto.append(f" <\INI_CONTEXT{i}>Fuente: {fuente} - Contenido:

{doc}<\ END_CONTEXT{i}>\n")
34

35 return " ".join(contexto)

Código 5.6: Función para la búsqueda de contexto relevante en ChromaDB.

El proceso es claro: vectoriza la pregunta del usuario y la usa para encontrar en Chro-
maDB los fragmentos de texto previamente almacenados cuyo contenido semántico sea
más similar. El resultado es una cadena de texto formateada que servirá como "memoria
a corto plazo"para el LLM.

5.5.3 Endpoints de la API

Además de la carga de información, la API expone otros recursos para gestionar el ciclo
de vida de los datos y generar las tareas.

Endpoint de Generación: /api/generar_tarea

Este es el endpoint más complejo y el que materializa el objetivo final de la aplicación.

1. Validación y Parámetros: Recibe una petición POST con un cuerpo JSON que
contiene todos los parámetros del test: tipo de pregunta, tema, cantidad, dificultad,
puntos de interés (POIs), etc.

2. Recuperación de Contexto (RAG): Si se proporcionan poi1 o poi2, llama a
buscar_info_chromadb para cada uno. El contexto recuperado se concatena y se
pasará al LLM. Si el usuario no ha subido ficheros, esta búsqueda no se realiza y el
contexto estará basado únicamente en la información de Wikipedia que se obtiene
dentro de los módulos de generación.

3. Despacho Dinámico: Llama a la función eleccion(), que actúa como un en-
rutador. Basándose en el parámetro tipo_preguntas, importa dinámicamente el
módulo Python correspondiente (ej: long_simple.py) y ejecuta su función genera-
dora, pasándole todos los parámetros necesarios.

4. Generación de Material Visual: Si se solicita material con imágenes (material="texto
y imagenes"), invoca a la función descargar_imagenes. Esta función utiliza la API
de Wikipedia y Wikimedia Commons para buscar y descargar imágenes relacionadas
con el poi1, guardándolas en la carpeta del usuario.
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5. Composición de la Respuesta: El resultado del módulo de generación (un objeto
Pydantic) se convierte en un diccionario. Se le añade la lista de imágenes descargadas
y se devuelve todo como una respuesta JSON.

Endpoints de Gestión de ficheros

Para que el usuario pueda administrar su base de conocimiento, se implementaron dos
utilidades:

• /api/subir_fichero: Un endpoint POST que permite al usuario identificado subir
diferentes tipos de fuentes de informacion ya sean ficheros de texto(.txt,.pdf,.doc,...)
o una URL a una pagina web o video de youtube.

• /api/listar_ficheros: Un endpoint GET simple que devuelve una lista con los
nombres de todos los ficheros que el usuario ha subido.

• /api/eliminar_fichero: Este endpoint GET es crucial para la consistencia de
los datos. No solo elimina el fichero físico del servidor, sino que también realiza
una operación de borrado en ChromaDB. Para ello, consulta en la colección del
usuario todos los fragmentos cuyos metadatos apunten al fichero que se va a eliminar,
recopila sus IDs y los pasa al método user_collection.delete(). Esto asegura que
el contexto obsoleto no contamine futuras búsquedas.

Endpoint de Corrección: /api/corregir

Este recurso permite cerrar el ciclo de evaluación. Recibe la pregunta original, la respuesta
correcta generada por el sistema, y la respuesta proporcionada por un alumno. Delega
toda la lógica a la función corregir_respuesta del módulo corrector.py, que utiliza
un LLM para comparar semánticamente ambas respuestas y determinar si la del alumno
es correcta, ofreciendo además una justificación.

5.6 Consideraciones sobre la Implementación de la Apli-
cación Cliente

Si bien el alcance de este Trabajo de Fin de Grado se ha centrado en el diseño e imple-
mentación de la arquitectura del servidor y su API REST, resulta pertinente postular
cómo debería ser una aplicación cliente que consuma dichos servicios. La robustez y flexi-
bilidad de la API desarrollada permiten desacoplar completamente la lógica del backend
de su presentación, haciendo que el sistema sea agnóstico a la tecnología del cliente. A
continuación, se describen las funcionalidades clave y las tecnologías recomendadas para
su desarrollo.

5.6.1 Funcionalidades Clave del Cliente

Una aplicación cliente funcional debería estructurarse en torno a dos perfiles de usuario
principales: el docente y el estudiante, ofreciendo interfaces diferenciadas para cada uno.
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Perfil de Docente

• Autenticación: La aplicación debe proporcionar una interfaz segura para que el
docente introduzca y almacene su X-API-KEY.

• Gestión de la Base de Conocimiento:

– Un formulario para subir ficheros (.pdf, .txt, .docx) o introducir URLs, que
interactuaría con el endpoint /api/cargar_info.

– Una vista para listar los ficheros ya procesados (obtenidos de /api/listar_ficheros)
con la opción de eliminarlos (/api/eliminar_fichero).

• Generación de Tareas:

– Un formulario de generación de tareas que permita al usuario configurar to-
dos los parámetros soportados por la API: tipo de pregunta, tema, cantidad,
dificultad, nivel educativo, puntos de interés (POI), etc.

– Una vista para mostrar de forma clara y ordenada las tareas generadas por
el sistema tras una llamada a /api/generar_tarea, permitiendo al docente
revisarlas antes de su uso.

Perfil de Estudiante

• Visualización de Tareas: Una interfaz limpia para presentar el enunciado de la
tarea, ya sea una pregunta de desarrollo, una de opción múltiple, una de verdade-
ro/falso o una tarea fotográfica.

• Interacción y Respuesta:

– Un campo de texto para respuestas abiertas.

– Botones de opción (radio buttons) para las preguntas de opción múltiple.

– Un interruptor (toggle) para las preguntas de verdadero/falso.

– Integración con la cámara del dispositivo para capturar y subir imágenes en
las tareas fotográficas.

• Retroalimentación: Una vez enviada la respuesta (mediante una llamada a /api/corregir),
la interfaz debe ser capaz de mostrar la retroalimentación recibida del servidor,
diferenciando visualmente si la respuesta fue correcta o no y mostrando el texto
explicativo proporcionado por el LLM.

5.6.2 Pila Tecnológica Recomendada

Dada la naturaleza del sistema, se postulan dos posibles paradigmas de implementación
para el cliente:

• Aplicación Web Progresiva (PWA): Sería la opción más versátil y de más
rápida distribución.
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– Frameworks: Se recomienda el uso de un framework de JavaScript moderno
como React, Vue o Angular. React, con su ecosistema de librerías como Axios
para las llamadas a la API y React Router para la navegación, sería una elección
especialmente sólida.

– Estilos: Para agilizar el desarrollo de la interfaz, se podría utilizar una librería
de componentes como Material-UI o un framework de CSS como Tailwind CSS.

– Ventajas: Multiplataforma por defecto (accesible desde cualquier navegador en
escritorio o móvil) y facilidad de despliegue.

• Aplicación Móvil Nativa (iOS/Android): Esta opción ofrecería una mejor inte-
gración con el hardware del dispositivo (GPS para una geolocalización más precisa,
cámara nativa) y la posibilidad de un funcionamiento offline más avanzado.

– Frameworks Multiplataforma: Para optimizar los recursos de desarrollo, se re-
comienda un framework como React Native o Flutter. Ambos permiten desa-
rrollar para iOS y Android desde una única base de código, interactuando con
la API REST del sistema de la misma manera que lo haría una aplicación web.

– Ventajas: Mejor rendimiento y experiencia de usuario en dispositivos móviles,
acceso completo a las capacidades del hardware y visibilidad en las tiendas de
aplicaciones.

5.7 Conclusiones
La fase de implementación ha servido para materializar con éxito el diseño arquitectónico
planteado, resultando en un sistema funcional y robusto. La elección de un ecosistema de
herramientas de código abierto, centrado en Python, ha sido un factor clave para acelerar
el desarrollo y garantizar la modularidad del proyecto.

El uso de frameworks y bibliotecas especializadas como Flask, LangChain, ChromaDB
y Ollama permitió centrar los esfuerzos en la lógica principal de la aplicación —la orques-
tación del pipeline RAG y la generación de tareas— en lugar de tener que desarrollar desde
cero soluciones para la gestión del servidor, el almacenamiento vectorial o la inferencia
de modelos. De manera análoga a cómo servicios externos pueden acelerar el desarrollo,
este enfoque basado en un ecosistema maduro permitió construir una solución potente y
segura en un tiempo reducido, aprovechando la fiabilidad de componentes probados por
la comunidad. La decisión de ejecutar los LLM localmente con Ollama y gestionar los
embeddings con SentenceTransformers y ChromaDB fue una elección estratégica delibe-
rada, priorizando la privacidad de los datos y el control total sobre el entorno, una ventaja
fundamental frente a las soluciones propietarias basadas en la nube.

La elección de Python como lenguaje principal, junto con Flask para el servidor web,
se ha demostrado especialmente acertada. Dado que el sistema se comunica constante-
mente mediante objetos JSON, la integración con bibliotecas como Pydantic para forzar
y validar esquemas de salida directamente desde el LLM ha sido una de las decisiones de
implementación más importantes. Esto no solo simplificó el procesamiento de las respues-
tas del modelo, sino que también garantizó una comunicación sin errores entre el servidor
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y cualquier cliente potencial, eliminando la fragilidad inherente al parseo de texto libre.

Como contrapartida, esta arquitectura no está exenta de desafíos. La principal des-
ventaja radica en la gestión de los recursos computacionales, ya que la ejecución local
de grandes modelos de lenguaje es intensiva en memoria (RAM/VRAM) y capacidad de
procesamiento. Además, la dependencia de múltiples bibliotecas de código abierto exige
una cuidadosa gestión de versiones para evitar conflictos de compatibilidad a largo plazo.

En definitiva, aunque se han identificado áreas de mejora, la implementación actual
valida de manera efectiva el diseño propuesto y constituye una base sólida y funcional.
El sistema está ahora listo para ser evaluado en la siguiente fase, donde se analizará su
rendimiento y la calidad de las tareas generadas en el Capítulo 6, “Análisis de Resultados”.
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Capítulo 6

Análisis de Resultados

En este capítulo se presentan los resultados obtenidos tras la implementación y las
pruebas del sistema. A diferencia de un sistema en producción con usuarios reales, los
datos presentados provienen de una serie de pruebas controladas y ejecutadas sobre
el hardware específico del proyecto para garantizar la reproducibilidad de las medi-
ciones. De los registros generados, se han extraído los tiempos de respuesta promedio
y los picos de consumo energético para los escenarios de uso más representativos: la
generación simple de tareas, la generación utilizando RAG y la generación compleja
sin modificar el contexto. Primeramente, este capítulo presenta un análisis cualitativo
que compara las tareas generadas con las de sistemas anteriores como Casual Learn,
evaluando así la mejora en la calidad y complejidad pedagógica. Posteriormente se
ejemplifican con las tareas usadas en la sección anterior como funcionaria el sistema
de corrección con casos de respuestas verdaderas y falsas. Y por ultimo se presentan
los resultados cuantitativos, que, aunque validan la funcionalidad del sistema, des-
tacan la inferencia del LLM como el principal cuello de botella, con altas latencias
en los casos más complejos, lo que lo hace más adecuado para un uso asíncrono.

6.1 Introducción
Una vez completada la fase de implementación descrita en el capítulo anterior, este ca-
pítulo se dedica a la presentación y análisis sistemático de los resultados obtenidos. El
propósito es llevar a cabo una evaluación integral del sistema desarrollado desde una doble
perspectiva: por un lado, validar su viabilidad técnica y su rendimiento computacional y,
por otro, medir la calidad y el valor pedagógico de las tareas generadas en comparación
con el estado del arte previo Además del valor añadido de la realimentacion automática.

Para ello, la evaluación se aborda desde tres ejes fundamentales. En primer lugar, se
presenta una comparación cualitativa con metodologías anteriores, contrastando las tareas
generadas por nuestro enfoque basado en IA Generativa con las producidas por sistemas
basados en plantillas y LOD, como Casual Learn. A través de ejemplos concretos, este
análisis busca mostar al lector las difrencias entre ambas metodologías.

En segundo lugar, se muestra un ejemplo de los resultados obtenidos en los ejemplos
de tareas anteriores con casos de respuestas correctas y incorrectas poniendo a prueba la
capacidad del modelo con los datos proporcionados de corregir errores o dar retroalimen-
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tación adecuada.

En ultimo lugar, se realiza un análisis cuantitativo del rendimiento del sistema pro-
puesto en el servidor utilizado para las pruebas, donde se examinan métricas clave como
el tiempo de respuesta y el consumo de recursos bajo cargas de trabajo representativas.
Este análisis es fundamental para identificar los cuellos de botella inherentes a la ejecución
local de los modelos de lenguaje y para determinar los escenarios de uso más adecuados
para el sistema.

Conjuntamente, estos análisis permitirán no solo validar el cumplimiento de los ob-
jetivos planteados en este Trabajo de Fin de Grado, sino también contextualizar sus
contribuciones, identificar sus limitaciones y sentar una base empírica sólida para las con-
clusiones y las futuras líneas de trabajo que se expondrán posteriormente.

6.2 Comparación con las tareas de Casual Learn
Para evaluar la contribución de este proyecto, es fundamental compararlo no con un LLM
de propósito general, sino con el estado del arte previo en la generación de tareas de
aprendizaje ubicuo, representado por sistemas como Casual Learn [Ruiz-Calleja et al.,
2022]. Como presentamos en el Capítulo 2 los sistemas se basan en la explotación de LOD
mediante un paradigma de plantillas predefinidas.

Nuestro sistema, en cambio, adopta un paradigma generativo. Utiliza la información
fáctica obtenida de RAG y Wikipedia no para rellenar huecos, sino como contexto para
un LLM que genera la tarea completa desde cero. Esta diferencia fundamental en el en-
foque da lugar a resultados cualitativamente distintos, como se ilustra en las Tablas 6.1,
6.2, 6.3, 6.4. Para los ejemplos, se utiliza como contexto la Catedral de Valladolid y la
Catedral de Palencia

Además, este enfoque ofrece ventajas adicionales frente a las preguntas generadas con
Casual Learn. Por un lado, la actualización de la información en la web de datos se re-
fleja automáticamente en las preguntas gracias al uso de RAG, mientras que en Casual
Learn sería necesaria la intervención manual de un desarrollador o administrador para
regenerar los ítems. Por otro lado, las preguntas de Casual Learn presentan una menor
riqueza expresiva, ya que se generan a partir de plantillas que reproducen siempre un
mismo formato para cada tipo de cuestión; en cambio, en la propuesta aquí presentada
las preguntas de un mismo tipo pueden adoptar formulaciones diversas, más cercanas al
lenguaje natural. El precio a pagar por estas ventajas es la posible aparición de alucinacio-
nes, así como ciertas limitaciones de rendimiento inherentes al uso de modelos generativos.
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Tabla 6.1: Comparativa Identificación (Foto): Casual Learn (Plantilla LOD) vs. Sistema
Propuesto (IA Generativa)

Casual Learn Sistema Propuesto

Contexto Catedral de Valladolid. Catedral de Valladolid.

Enunciado Haz una foto de algún elemento de
estilo Renacentista que encuentres
en la Catedral de Valladolid.

Mirad con atención la fachada. ¿Po-
déis fotografiar algún detalle que os
recuerde que esta Catedral empezó
a construirse hace más de 400 años?
¡Buscad algo que os hable del pasa-
do y de la historia de Valladolid!

Detalle Instrucción genérica sin foco pedagó-
gico.

Ejercicio de “caza del tesoro” con
clave interpretativa.

Tabla 6.2: Comparativa Texto Abierto: Casual Learn (Plantilla LOD) vs. Sistema Pro-
puesto (IA Generativa)

Casual Learn Sistema Propuesto

Contexto Catedral de Valladolid. Catedral de Valladolid.

Enunciado ¿Qué parte de Catedral de Vallado-
lid crees que es la más antigua? ¿Por
qué?

Fíjate en las diferentes partes de la
fachada de la Catedral: ¿observas
elementos decorativos? Describe al
menos dos de ellos y piensa en qué
estilo arquitectónico crees que enca-
jan. ¿Qué te sugieren estos detalles
sobre las ideas o creencias de la épo-
ca en la que se construyó?

Detalle Pregunta genérica, respuesta factual Observación dirigida y análisis esté-
tico.

En Casual Learn no existen tareas previamente elaboradas con plantillas sobre la
Catedral de Palencia ni sobre la Catedral de Valladolid, ni en formato verdadero o falso ni
en formato de opción múltiple. Por ello, con el fin de ejemplificar cómo son las actividades
que genera el nuevo sistema, a continuación se presentan dos ejemplos de cada tipo.
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Tabla 6.3: Ejemplo de preguntas de Verdadero o falso (IA Generativa)
Sistema Propuesto Sistema Propuesto

Contexto Catedral de Palencia. Catedral de Valladolid.

Enunciado Verdadero o Falso: Si caminas alre-
dedor del edificio, ¿podrás identificar
claramente un estilo arquitectónico
uniforme en todas sus partes?

Verdadero o Falso: ¿Se puede obser-
var, a simple vista, alguna construc-
ción o vestigio de una iglesia anterior
que haya sido parcialmente destrui-
da para dar paso a la Catedral?

Solución Respuesta esperada: falso.
(Razón: La catedral combina ele-
mentos de diferentes estilos (visigo-
do, románico, gótico, renacentista,
barroco, neoclásico). Observando con
atención, los alumnos podrán identi-
ficar diferentes estilos arquitectóni-
cos en diferentes partes del edificio.)

Respuesta esperada: verdadero.
(Razón: La información proporcio-
nada menciona que la Catedral se
construyó junto a una colegiata an-
terior, y que algunos de sus espacios
fueron destruidos para continuar con
las nuevas obras. Si observas aten-
tamente, podrás identificar restos o
vestigios de la antigua iglesia, espe-
cialmente en las cercanías de la Ca-
tedral.

Tabla 6.4: Ejemplo de preguntas de opción múltiple (IA Generativa)
Sistema Propuesto Sistema Propuesto

Contexto Catedral de Palencia. Catedral de Valladolid.

Enunciado Fíjate en la planta de la catedral (si
es visible en el suelo o en algún plano
informativo). ¿Cuántos cruceros di-
ferentes puedes distinguir? ¿Qué for-
ma particular le da esto a la planta
de la catedral?

Presta atención a los elementos de-
corativos que hay en la portada
principal (esculturas, relieves, etc.).
¿Qué temas o personajes parecen re-
presentarse en ellos?

Opciones a) Un solo crucero, lo que da a la
planta una forma de cruz simple.
b) Dos cruceros, lo que hace que la
planta sea más compleja y parezca
una cruz patriarcal.
c) Tres cruceros, formando una plan-
ta muy elaborada.
d) No puedo ver la planta de la ca-
tedral.
Opción Correcta b.

a) Escenas de la vida cotidiana de la
época medieval.
b) Animales fantásticos y criaturas
mitológicas.
c) Figuras religiosas, como santos,
ángeles o escenas bíblicas.
d) Escudos de armas y símbolos de
la nobleza local.
Opción correcta c.
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La comparación pone de manifiesto que el sistema propuesto supera las limitaciones
de los enfoques basados en plantillas predefinidas, como Casual Learn. Mientras que es-
tos se restringen a la inserción de datos fácticos en estructuras rígidas, nuestro enfoque
generativo permite elaborar enunciados más ricos, contextualizados e interpretativos.

Las actividades resultantes no se limitan a constatar hechos, sino que fomentan la
observación, la reflexión y la conexión con el trasfondo histórico y cultural, lo que amplía
su potencial pedagógico. Asimismo, la integración de técnicas de RAG con un LLM ofrece
flexibilidad para generar distintos formatos de tarea (verdadero/falso, opción múltiple,
desarrollo abierto, actividades de identificación), incluso en contextos para los que no
existían plantillas previas.

En conjunto, el cambio de paradigma abre nuevas posibilidades para el diseño de ex-
periencias de aprendizaje ubicuo, más cercanas a las necesidades del alumnado y a los
objetivos educativos, sin embargo, las tareas de la nueva propuesta aún no han sido eva-
luadas por profesores a diferencia de las preguntas de plantillas de LOD.

6.3 Ejemplificación del uso del corrector

Tras comparar el desempeño del nuevo sistema con el sistema anterior, a continuación
ejemplificamos cómo sería la corrección automática de distintos tipos de tareas por
parte del modelo de lenguaje. Para cada tipo presentamos dos casos : una respuesta bien
resuelta y otra con errores, con el fin de verificar si el modelo identifica adecuadamente
cada situación y analizar la retroalimentación que proporciona.

6.3.1 Corrección de tareas de texto abierto

Caso 1 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (desarrollo). Fíjate en las diferentes partes de la fachada de la Catedral:
¿observas elementos decorativos? Describe al menos dos de ellos y piensa en qué estilo
arquitectónico crees que encajan. ¿Qué te sugieren estos detalles sobre las ideas o creencias
de la época en la que se construyó?

Respuesta del alumno. Veo pilastras y frontones en la portada principal; encajan
con un estilo clasicista/herreriano. Sugieren sobriedad y la autoridad de la Iglesia propia
de la Contrarreforma.

Evaluación del modelo. ✓ Correcta.
Retroalimentación generada.

¡Hola Luis! Tu respuesta es excelente y demuestra una buena comprensión de
los elementos arquitectónicos y su contexto histórico. Has identificado correc-
tamente las pilastras y los frontones en la portada de la Catedral de Valladolid,
y has acertado al relacionarlos con el estilo clasicista/herreriano. Además, has
conectado estos elementos decorativos con ideas de autoridad y la sobriedad
característica de la Contrarreforma. Tu capacidad para observar los detalles

Universidad de Valladolid 60 Luis Francisco Sánchez Turrión



6. Análisis de Resultados

arquitectónicos y relacionarlos con el contexto histórico es impresionante. ¡Si-
gue así!

Comentario. El modelo reconoce con precisión la corrección de la respuesta y jus-
tifica por qué es adecuada, reforzando los aciertos con referencias al estilo y al contexto
(Contrarreforma).

Caso 2 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.

Pregunta (desarrollo). (Misma que el caso anterior).
Respuesta del alumno. Veo gárgolas y tracerías flamígeras; diría que es gótico

tardío. Me sugiere fantasía medieval y superstición.
Evaluación del modelo. ✗ Incorrecta.
Retroalimentación generada.

Hola Luis, ¡muy bien por intentar identificar elementos decorativos en la fa-
chada de la Catedral de Valladolid! Observaste correctamente las gárgolas y
las tracerías flamígeras, que son características del estilo gótico. Sin embargo,
la Catedral de Valladolid, aunque iniciada en el gótico, presenta una fachada
principal de estilo clasicista/herreriano. Los elementos clave que debías haber
identificado son las pilastras y los frontones clásicos en la portada, así como
la sobriedad que caracteriza este estilo. La diferencia principal es que tu res-
puesta se centra en elementos góticos presentes en otras partes de la catedral,
mientras que la pregunta se refiere específicamente a la fachada principal. El
estilo clasicista/herreriano, presente en la portada, se caracteriza por la bús-
queda de la armonía, la proporción y la sobriedad, lo que refleja las ideas de
autoridad y racionalidad de la época de la Contrarreforma. Aunque la ’fan-
tasía medieval y superstición’ que mencionas pueden asociarse al gótico, la
fachada clasicista/herreriana buscaba transmitir una imagen de solidez y po-
der, acorde con los valores de la Contrarreforma. Te recomiendo que revises
imágenes de la fachada principal de la Catedral de Valladolid y compares los
elementos decorativos con ejemplos del estilo clasicista y herreriano. Puedes
buscar información sobre estos estilos en páginas web de historia del arte o en
libros de texto.

Comentario. El modelo detecta correctamente el error de foco (confundir la facha-
da principal con otros elementos del conjunto) y ofrece una explicación contrastiva útil,
además de sugerir recursos para revisar.

6.3.2 Corrección de verdadero/falso

Caso 3 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (V/F). ¿Se puede observar, a simple vista, alguna construcción o vestigio
de una iglesia anterior que haya sido parcialmente destruida para dar paso a la Catedral?

Respuesta esperada. Verdadero.
Respuesta del alumno. Verdadero.
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Evaluación del modelo. ✓ Correcta.
Retroalimentación generada.

¡Excelente, Luis! Tu respuesta es correcta. Efectivamente, al observar la Cate-
dral de Valladolid, es posible identificar restos de la antigua iglesia de San Pe-
dro el Real integrada en la estructura de la nueva catedral. Se pueden apreciar
vestigios de muros y arcos románicos que formaban parte de la iglesia origi-
nal, incorporados al edificio gótico. Esto es un ejemplo interesante de cómo las
construcciones religiosas a menudo se levantan sobre estructuras preexistentes,
reflejando la historia y evolución de la ciudad. ¡Sigue así!

Comentario. Además de validar el acierto, el modelo añade contexto histórico que
enriquece el aprendizaje (integración de estructuras previas).

Caso 4 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.

Pregunta (V/F). (Misma que el caso anterior).
Respuesta esperada. Verdadero.
Respuesta del alumno. Falso.
Evaluación del modelo. ✗ Incorrecta.
Retroalimentación generada.

Hola Luis, ¡buen intento! La respuesta correcta es verdadero. En la Catedral
de Valladolid, si observas con atención, especialmente en el lado del Evangelio
(el lado derecho si estás mirando hacia la fachada principal), puedes ver restos
de la iglesia románica de San Pedro, que fue integrada parcialmente en la cons-
trucción de la catedral. No se demolió por completo, sino que se incorporaron
partes de sus muros y elementos arquitectónicos. Esto es bastante común en
la construcción de catedrales góticas, que a menudo se construían sobre ci-
mientos de iglesias anteriores. Te sugiero que busques imágenes de la Catedral
de Valladolid que muestren este detalle para que puedas visualizarlo. Puedes
buscar en internet ‘Catedral de Valladolid vestigios iglesia San Pedro‘ o con-
sultar alguna guía turística o página web sobre la catedral. ¡Sigue practicando
y explorando la arquitectura!

Comentario. La corrección es clara y específica (localiza el vestigio en el lado del
Evangelio) y propone una estrategia de verificación visual, lo que favorece la autonomía
del alumno.

6.3.3 Corrección de opción múltiple

Caso 5 (respuesta correcta). Usuario: Luis (Secundaria). Punto de interés: Catedral
de Valladolid.

Pregunta (opción múltiple). Presta atención a los elementos decorativos que hay
en la portada principal (esculturas, relieves, etc.). ¿Qué temas o personajes parecen re-
presentarse en ellos?
a) Escenas de la vida cotidiana de la época medieval.
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b) Animales fantásticos y criaturas mitológicas.
c) Figuras religiosas, como santos, ángeles o escenas bíblicas.
d) Escudos de armas y símbolos de la nobleza local.

Respuesta esperada. c) Figuras religiosas, como santos, ángeles o escenas bíblicas.
Respuesta del alumno. c) Figuras religiosas, como santos, ángeles o escenas bíblicas.
Evaluación del modelo. ✓ Correcta.
Retroalimentación generada.

¡Hola Luis, excelente trabajo! Tu respuesta es completamente correcta. La
portada principal de la Catedral de Valladolid está ricamente decorada con
figuras religiosas, representando santos, ángeles y escenas bíblicas. Esto es
típico en la arquitectura gótica, que buscaba transmitir enseñanzas religiosas a
través del arte. Al identificar correctamente estos temas, demuestras una buena
comprensión del propósito y simbolismo de la decoración en las catedrales
medievales. ¡Sigue así!

Comentario. El modelo valida y explica el porqué de la opción correcta, conectando
forma y función (didáctica religiosa del arte).

Caso 6 (respuesta incorrecta). Usuario: Luis (Secundaria). Punto de interés: Cate-
dral de Valladolid.

Pregunta (opción múltiple). (Misma que el caso anterior).
Respuesta esperada. c) Figuras religiosas, como santos, ángeles o escenas bíblicas.
Respuesta del alumno. a) Escenas de la vida cotidiana de la época medieval.
Evaluación del modelo. ✗ Incorrecta).
Retroalimentación generada.

Hola Luis, he revisado tu respuesta y veo que has elegido ‘Escenas de la vida
cotidiana de la época medieval‘. Aunque la vida medieval es un tema interesan-
te, la decoración de la portada principal de la Catedral de Valladolid se centra
principalmente en figuras religiosas. Los relieves y esculturas de la portada no
representan escenas del día a día, sino personajes bíblicos, santos y ángeles.
Esto es muy común en las catedrales góticas, que buscaban enseñar la fe cris-
tiana a través del arte. Piensa que en la Edad Media, la mayoría de la gente
no sabía leer, así que las imágenes eran una forma importante de comunicar
las historias de la Biblia. Te recomiendo que revises imágenes de la portada
de la Catedral de Valladolid y prestes atención a las figuras representadas.
Busca imágenes de santos, ángeles o escenas de la Biblia. Esto te ayudará a
comprender mejor el objetivo de la decoración de la portada. Puedes buscar
en sitios web de historia del arte o en guías turísticas de Valladolid. ¡Sigue
practicando y no te desanimes! El arte y la historia pueden ser complejos,
pero con esfuerzo y dedicación, podrás comprenderlo mejor.

Comentario. El modelo corrige de forma explicativa (no sólo dicotómica), y añade
una breve justificación pedagógica (función narrativa de la iconografía).
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6.4 Evaluación del rendimiento del servidor
Para validar la viabilidad técnica del sistema, se llevó a cabo una evaluación cuantitativa
del rendimiento. El objetivo fue medir la eficiencia y capacidad de respuesta de la arqui-
tectura bajo cargas de trabajo representativas, así como identificar los posibles cuellos de
botella inherentes a la ejecución local de los modelos de lenguaje.

Las pruebas se ejecutaron en un servidor del grupo de investigacion GSIC/EMIC con
capacidad para este proyecto, cuyas especificaciones técnicas son las mostradas en la tabla
6.5:

Componente Detalle

Servidor: HPE ProLiant DL380 Gen10
CPU: Intel Xeon-S 4210 (10 núcleos @ 2.20GHz)
RAM: 64 GB DDR4 RDIMM
GPU: 2×NVIDIA Quadro P5000 (32GB VRAM en total)
Almacenamiento: HPE 1.8TB SAS 10K RPM HDD
Software: Python 3.9, Flask, Ollama 0.1.32, ChromaDB 0.4.24

Tabla 6.5: Especificaciones del servidor

Se definieron dos métricas clave:

Tiempo de Respuesta (Latencia): Tiempo total en segundos desde que el servidor
recibe una petición HTTP hasta que envía la respuesta completa. Esta métrica
es necesaria para determinar si el sistema puede actuar de forma síncrona con los
estudiantes.

Consumo de Recursos: Se monitorizó el pico de uso de las GPUs en Watios que nos
servirá para calcular el coste económico en kWh del servidor en una petición al
sistema.

Se diseñaron tres escenarios de prueba para simular los casos de uso principales. Cada
prueba se ejecutó 10 veces, registrando el valor promedio para asegurar la consistencia de
los resultados.

• Escenario A (Generación Simple): Solicitud de generación de 5 tareas de opción
múltiple (MCQ) sobre el “Arte Herreriano” sin contexto de RAG de la Catedral de
Valladolid.

• Escenario B (Generación con RAG): Solicitud de generación de 5 tareas de
opción múltiple (MCQ) sobre el “Arte Herreriano” de la Catedral de Valladolid ,
utilizando el sistema RAG para recuperar contexto relevante de un documento de 5
páginas previamente indexado.

• Escenario C (Generación Compleja): Solicitud de generación de 5 tareas de
opción múltiple (MCQ) sobre el “Arte Herreriano” de la Catedral de Valladolid
recuperando y añadiendo todo el contexto recuperado en el prompt.
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Escenario de Prueba Tiempo de Respuesta (s) Consumo (kWh)

A: Generación Simple 43 0.00175
B: Generación con RAG 42 0.0017
C: Generación Compleja 365 0.00577

Tabla 6.6: Resultados promedio de tiempo de respuesta y consumo de recursos por esce-
nario de prueba.

Figura 6.1: Gráfica de consumo frente al tiempo de respuesta del caso A

Cuello de Botella en la Inferencia del LLM. Los resultados mostrados en la tabla
6.6 confirman que el principal factor limitante del sistema es el tiempo de inferencia de
los modelos de lenguaje. Con tiempos de respuesta que van desde los 42 s hasta los 365 s,
el sistema no es apto para interacciones en tiempo real, pero sí es perfectamente válido
para casos de uso asíncronos, como la preparación de material educativo por parte de un
docente o de forma autodidacta por parte de un alumno.

Impacto del contexto RAG y la Complejidad. El Escenario C es, con diferencia,
el más lento. Este incremento se debe a la combinación de dos factores: la sobrecarga del
sistema RAG (vectorización de la consulta y búsqueda en ChromaDB) y, sobre todo, el
mayor tiempo que necesita el modelo gemma3:27b para procesar un prompt enriquecido
con más contexto y generar tres respuestas extensas en lugar de una sola.

Consumo de recursos y requisitos de hardware. El consumo de VRAM es el factor
más crítico. El sistema utiliza casi la totalidad de los 32GB disponibles, lo que demues-
tra que la elección de modelos de 27B y 32B parámetros lleva el hardware a su límite.
Este alto consumo es un “coste fijo”, ya que los modelos se cargan en memoria una sola
vez y permanecen allí para atender peticiones sucesivas. El consumo de RAM, aunque
significativo, se mantiene en niveles manejables gracias a la eficiencia de ChromaDB y
Flask.

Implicaciones para la escalabilidad. Las pruebas, realizadas de forma secuencial,
indican que el servidor puede gestionar las peticiones de un único usuario de manera fun-
cional. Sin embargo, como establece el requisito no funcional RNF03, la concurrencia es
una limitación. Dado el alto consumo de recursos y los tiempos de latencia, el sistema en
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Figura 6.2: Gráfica de consumo frente al tiempo de respuesta del caso B

Figura 6.3: Gráfica de consumo frente al tiempo de respuesta del caso C

su estado actual podría atender a un número muy limitado de usuarios simultáneos (2–5)
antes de que las colas de peticiones degradasen la experiencia de forma inaceptable. Una
escalabilidad real requeriría una infraestructura de despliegue más robusta (p. ej., con
balanceo de carga) y, potencialmente, la optimización de los modelos mediante técnicas
de cuantización más agresivas o destilación.

La evaluación de rendimiento demuestra que el sistema es funcional sobre el hardware
especificado y valida las decisiones de diseño. Sin embargo, también subraya que la latencia
y el consumo de VRAM son los principales desafíos técnicos, definiendo el sistema como
una potente herramienta de autor para uso individual o en grupos pequeños, y sentando las
bases para futuras optimizaciones. Como posibles soluciones, se podría recurrir a APIs de
terceros que disponen de una infraestructura optimizada para LLMs de mayor capacidad,
aunque con un coste por token, o bien invertir en GPUs más potentes que permitan reducir
tanto la latencia como los problemas asociados al consumo de memoria.
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6.5 Conclusiones
Del análisis presentado en este capítulo se pueden extraer varias conclusiones fundamen-
tales sobre la viabilidad, el rendimiento y el valor pedagógico del sistema desarrollado.
La evaluación de rendimiento demuestra que el sistema es funcional sobre el hardware
especificado y valida la viabilidad técnica de la arquitectura monolítica escogida. Sin em-
bargo, también subraya que la latencia de la inferencia y el alto consumo de VRAM son
los principales desafíos técnicos, confirmando que el cuello de botella del sistema reside
en la ejecución de los modelos de lenguaje.

Desde una perspectiva cualitativa, la comparativa con sistemas basados en plantillas
LOD como Casual Learn revela la contribución más significativa de este proyecto. Mien-
tras que los sistemas de plantillas se limitan a la recuperación y presentación de datos
fácticos, nuestro enfoque generativo transforma esos datos en un contexto para crear ta-
reas pedagógicamente más ricas y complejas. Esto se manifiesta en la capacidad de generar
distractores plausibles en preguntas de opción múltiple, formular preguntas abiertas que
fomentan la observación y el análisis crítico, y, en general, promover habilidades cognitivas
de orden superior en lugar de la mera memorización.

Además el sistema presenta un valor añadido de poder corregir o dar una retroalimen-
tación de forma automática al estudiante de su respuesta y con los motivos por los cuales
está bien o mal la respuesta para que le resulte más fácil el aprendizaje.

Estas conclusiones definen claramente el nicho de aplicación del sistema en su estado
actual. No se trata de una herramienta de interacción en tiempo real para estudiantes,
aunque pudieran existir casos donde si se pueda usar de forma síncrona, sino de una poten-
te herramienta de autor para docentes o diseñadores instruccionales que pueden generar
material de alta calidad de forma asíncrona. Las pruebas de rendimiento, realizadas de
forma secuencial, indican que la escalabilidad para usuarios concurrentes es una limita-
ción importante, en línea con el requisito no funcional RNF03. El sistema, por tanto, está
optimizado para un uso individual o en grupos muy pequeños.

En definitiva, el conjunto de los análisis realizados permite afirmar que se ha cumplido
el objetivo principal de este Trabajo de Fin de Grado: demostrar que es posible superar
las limitaciones pedagógicas de los sistemas basados en plantillas y datos abiertos enla-
zados mediante el uso de Inteligencia Artificial Generativa, el siguiente paso sería hacer
validación de la calidad de las tareas con docentes. Aunque la sensación que transmite
el sistema es que a cambio de un mayor coste computacional y una latencia superior, se
obtiene un salto cualitativo en la riqueza, variedad y eficacia pedagógica de las tareas de
aprendizaje ubicuo generadas.
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Capítulo 7

Conclusiones y líneas futuras de trabajo

En este capítulo final del Trabajo Fin de Grado (TFG) se relacionan los objetivos que
motivaron su desarrollo con los resultados obtenidos, destacando el uso innovador de
Modelos de Lenguaje de Gran Escala (LLM) para la generación y corrección de tareas
de aprendizaje ubicuo. Este trabajo ha permitido explorar cómo estas tecnologías
pueden generar contenido educativo contextualizado y personalizado, integrando el
aprendizaje en el entorno cotidiano del usuario. Sin embargo, durante el desarrollo
se han identificado limitaciones que no se habían considerado inicialmente. Estas
limitaciones, junto con los logros alcanzados, sirven como base para proponer líneas
de trabajo futuro que amplíen y optimicen el sistema.

7.1 Conclusiones del trabajo realizado

El objetivo principal de este TFG fue explorar el potencial de los LLM para generar tareas
educativas en el marco del aprendizaje ubicuo, utilizando texto de alta calidad y Datos
Abiertos Enlazados como fuentes de información. Los resultados de la generación de ta-
reas y la retroalimentación de las mismas muestran que los LLM son altamente efectivos
cuando se les proporciona texto rico y estructurado, produciendo tareas diversas y adap-
tadas al contexto del usuario. Este hallazgo es especialmente relevante en el aprendizaje
ubicuo, donde la personalización y la relación con el entorno son fundamentales para una
experiencia educativa inmersiva. Por ejemplo, las tareas generadas a partir de textos des-
criptivos sobre monumentos han demostrado ser más ricas y variadas que las producidas
por métodos tradicionales basados en plantillas.

Otro aspecto crítico identificado es la escalabilidad del sistema. Aunque los experimen-
tos realizados demostraron la viabilidad del enfoque en entornos controlados, el hardware
actual no es suficiente para procesar grandes volúmenes de datos o responder a consul-
tas complejas en tiempo real. Esta limitación sugiere la necesidad de optimizar tanto los
recursos computacionales como los algoritmos utilizados para garantizar un rendimiento
adecuado en escenarios de mayor escala.

En cuanto a las contribuciones, este TFG mejora significativamente los métodos ba-
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sados en plantillas, que suelen generar tareas repetitivas y poco adaptadas. El enfoque
propuesto introduce una mayor diversidad y contextualización, enriqueciendo la experien-
cia de aprendizaje, aunque sería necesaria la validación por parte de docentes y estudiantes
para reforzar esta afirmación. Además, representa una novedad al ser, hasta donde sabe-
mos, el primer intento de emplear LLM para generar contenido educativo ubicuo y el
poder obtener retroalimentación de forma automática.

7.2 Limitaciones y líneas de trabajo futuro
A pesar de los avances logrados, el sistema presenta limitaciones que abren oportunidades
para futuras mejoras. Una de las principales restricciones es su dependencia de texto de
alta calidad. Para superar esto, una línea de trabajo futuro podría consistir en desarrollar
técnicas de enriquecimiento de datos, integrando fuentes externas o generando descripcio-
nes textuales a partir de los datos semánticos disponibles.

Otra limitación es la especificidad del sistema, que actualmente se centra en temas
relacionados con monumentos. Esto restringe su uso en otros contextos educativos. Una
propuesta de mejora sería generalizar la aplicación para abarcar una gama más amplia de
temas, transformándola en una herramienta educativa más versátil y adaptable a diferen-
tes disciplinas.

En términos de infraestructura, la escalabilidad sigue siendo un desafío. Para abordar
esta limitación, se podrían explorar mejoras en el hardware, como el uso de servidores
más potentes, y optimizaciones algorítmicas que reduzcan los tiempos de procesamiento.
Además, la integración con plataformas existentes, como CHEST, que también utiliza
Datos Abiertos Enlazados, podría enriquecer el sistema al combinar múltiples fuentes de
datos y mejorar la relevancia de las tareas generadas.

La implementación del diseño de la API REST del capítulo 4 sería otro trabajo para
el futuro, que nos permita el almacenamiento persistente de las tareas completadas por
los usuarios. Implementar esta funcionalidad permitiría a los estudiantes hacer un segui-
miento de su progreso y retomar actividades previas, lo que contribuiría a una experiencia
de aprendizaje más estructurada y continua.

Finalmente, la seguridad del sistema es un aspecto crítico que requiere atención. La
versión actual no cuenta con medidas robustas para proteger los datos de los usuarios,
lo que podría comprometer su privacidad. Una línea de trabajo futuro sería implementar
protocolos de cifrado y autenticación más sólidos, garantizando la confidencialidad y la
confianza en la plataforma, especialmente en entornos educativos.

En conclusión, este TFG ha establecido una base prometedora para el uso de LLM
en el aprendizaje ubicuo, demostrando su capacidad para generar contenido educativo
innovador y el feedback al estudiante sobre las respuestas al contenido. Las limitaciones
identificadas no sólo destacan los retos pendientes, sino que también ofrecen una hoja de
ruta clara para futuras investigaciones y desarrollos en este campo emergente.
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Apéndice A

Documentación API

En las páginas siguientes se adjunta el código fuente de la API del sistema, desarrollado
siguiendo los principios REST [Fielding, 2000]. La documentación interactiva de esta API
fue generada automáticamente mediante la biblioteca Flasgger, que se integra con Flask
para producir una especificación compatible con OpenAPI.

1 openapi: 3.0.0
2

3 info:
4 title: ’API de Generación y Corrección de Tests - L.F. System ’
5 version: ’1.0.0’
6 contact:
7 name: ’Luis Francisco Sánchez ’
8 email: ’luisfrancisco.sanchez@estudiantes.uva.es ’
9

10

11 tags:
12 - name: ’Ficheros ’
13 description: ’Operaciones para gestionar los ficheros de

conocimiento del usuario.’
14 - name: ’Carga de Información’
15 description: ’Endpoints para ingestar información desde ficheros o

URLs en la base de datos vectorial.’
16 - name: ’Generación de Tests ’
17 description: ’Endpoints para la creación dinámica de preguntas y

tests.’
18 - name: ’Corrección’
19 description: ’Endpoints para evaluar las respuestas de los alumnos.’
20

21 components:
22 securitySchemes:
23 ApiKeyAuth:
24 type: apiKey
25 in: header
26 name: X-API -KEY
27 description: ’Clave API única para la autenticación del usuario.’
28

29 schemas:
30

31 TestGenerationRequest:
32 type: object
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33 description: ’Parámetros para generar un nuevo test.’
34 required:
35 - tipo_preguntas
36 - cantidad
37 - tema
38 - dificultad
39 - materia
40 - nivel
41 properties:
42 tipo_preguntas:
43 type: string
44 description: ’Tipo de pregunta a generar (ej: MCQ , long_simple

, yes_or_no).’
45 example: ’MCQ ’
46 cantidad:
47 type: integer
48 description: ’Número de preguntas a generar.’
49 example: 5
50 tema:
51 type: string
52 description: ’El tema principal sobre el que tratarán las

preguntas.’
53 example: ’Catedrales ’
54 dificultad:
55 type: string
56 description: ’Nivel de dificultad de las preguntas (ej: fácil ,

media , difícil).’
57 example: ’media ’
58 materia:
59 type: string
60 description: ’La asignatura o campo de estudio.’
61 example: ’Historia del arte ’
62 nivel:
63 type: string
64 description: ’El nivel educativo al que se dirige las tareas (

ej: primaria (edad del estudiante), secundaria (edad del estudiante),
universidad (edad del estudiante), ...).’

65 example: ’secundaria ’
66 poi1:
67 type: string
68 description: ’Punto de interés principal a buscar en la base

de conocimiento para generar contexto.’
69 example: ’Catedral de Valladolid ’
70 poi2:
71 type: string
72 description: ’Punto de interés secundario.’
73 example: ’Catedral de Palencia ’
74 material:
75 type: string
76 description: ’Indica si se deben incluir imágenes en el test

("texto y imagenes ").’
77 example: ’texto y imagenes ’
78

79 TestGenerationResponse:
80 type: object
81 properties:
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82 test:
83 type: array
84 description: ’Lista de preguntas generadas.’
85 items:
86 oneOf:
87 - $ref: ’#/ components/schemas/QuestionMCQ ’
88 - $ref: ’#/ components/schemas/QuestionLongSimple ’
89 - $ref: ’#/ components/schemas/QuestionYesNo ’
90 - $ref: ’#/ components/schemas/QuestionPhotograph ’
91 imagenes:
92 type: array
93 description: ’Lista de imágenes descargadas relacionadas con

el test.’
94 items:
95 type: object
96 properties:
97 nombre:
98 type: string
99 example: ’catedral_de_valladolid_1.jpg ’

100 ruta_local:
101 type: string
102 example: ’/home/lfsanchez/tfg -2024 - luisfran/files/user1/

catedral_de_valladolid_1.jpg ’
103 url_original:
104 type: string
105 example: ’https :// commons.wikimedia.org/...’
106

107 QuestionMCQ:
108 type: object
109 required: [tipo , question , option0 , option1 , option2 , option3 ,

correct_option]
110 properties:
111 tipo: { type: string , example: ’MCQ ’ }
112 question: { type: string , example: ’¿Qué estilo arquitectónico

predomina en la Catedral de León, conocida como la "Pulchra Leonina
"?’ }

113 option0: { type: string , example: ’Románico ’ }
114 option1: { type: string , example: ’Barroco ’ }
115 option2: { type: string , example: ’Gótico ’ }
116 option3: { type: string , example: ’Herreriano ’ }
117 correct_option: { type: integer , example: 2 }
118

119 QuestionLongSimple:
120 type: object
121 required: [tipo , question , solucion]
122 properties:
123 tipo: { type: string , example: ’long_simple ’ }
124 question: { type: string , example: ’Describe las características

principales de la fachada de Santa María de la Catedral de Burgos ,
mencionando sus elementos más significativos.’ }

125 solucion: { type: string , example: ’La fachada de Santa María es
un ejemplo del gótico francés. Está flanqueada por dos torres

coronadas con agujas caladas del siglo XV. Sobre el arco de entrada
se encuentra una galería con estatuas de los reyes de Castilla y un
gran rosetón con una estrella de David en su tracería.’ }

126
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127 QuestionYesNo:
128 type: object
129 required: [tipo , question , solucion]
130 properties:
131 tipo: { type: string , example: ’yes_or_no ’ }
132 question: { type: string , example: ’¿Se considera que la

Catedral de Valladolid fue completada según los planos originales de
Juan de Herrera?’ }

133 solucion: { type: boolean , example: false }
134

135 QuestionPhotograph:
136 type: object
137 required: [tipo , question]
138 properties:
139 tipo: { type: string , example: ’photograph ’ }
140 question: { type: string , example: ’Visita la Catedral Nueva de

Salamanca y saca una foto del famoso astronauta esculpido en la
Puerta de Ramos.’ }

141

142 \begin{lstlisting }[ language=yaml]
143 CorrectionRequest:
144 type: object
145 required: [pregunta , respuesta_correcta , respuesta_alumno , nivel]
146 properties:
147 pregunta:
148 type: string
149 example: ’¿En qué siglo se comenzó a construir la Catedral de

Burgos?’
150 respuesta_correcta:
151 type: string
152 example: ’La construcción de la Catedral de Burgos se inició en el

siglo XIII , en el año 1221.’
153 respuesta_alumno:
154 type: string
155 example: ’Empezó a construirse en el siglo XII.’
156 nivel:
157 type: string
158 description: ’Nivel educativo para ajustar la rigurosidad de la

corrección.’
159 example: ’secundaria ’
160

161 CorrectionResponse:
162 type: object
163 properties:
164 is_ok:
165 type: boolean
166 description: ’True si la respuesta del alumno es correcta , False

en caso contrario.’
167 diferencias:
168 type: string
169 description: ’Explicación de por qué la respuesta es correcta o

incorrecta , destacando las diferencias.’
170

171 # ---- Modelos para Gestión de ficheros ----
172 FileDeletionRequest:
173 type: object
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174 required: [fichero]
175 properties:
176 fichero:
177 type: string
178 description: ’Nombre del fichero a eliminar.’
179 example: ’historia_siglo_xx.pdf ’
180

181 # ---- Modelo de Error Genérico ----
182 ErrorResponse:
183 type: object
184 properties:
185 error:
186 type: string
187 description: ’Mensaje de error descriptivo.’
188

189 paths:
190 /api/cargar_info:
191 post:
192 tags: [Carga de Información]
193 summary: ’Sube un fichero o carga desde una URL para procesar y

almacenar.’
194 description: >
195 Permite ingestar información desde un fichero (txt , pdf , docx) o

una URL (página web , vídeo de YouTube).
196 El contenido se divide en fragmentos , se vectoriza y se almacena

en la base de datos ChromaDB del usuario.
197 security:
198 - ApiKeyAuth: []
199 requestBody:
200 required: true
201 content:
202 multipart/form -data:
203 schema:
204 type: object
205 properties:
206 file:
207 type: string
208 format: binary
209 description: ’El fichero a subir (txt , pdf , docx).’
210 url:
211 type: string
212 description: ’URL de una página web o vídeo de YouTube

.’
213 example: ’https ://es.wikipedia.org/wiki/

Inteligencia_artificial ’
214 encoding:
215 file:
216 contentType: application/pdf , text/plain , application/

vnd.openxmlformats -officedocument.wordprocessingml.document
217 responses:
218 ’200’:
219 description: ’Información procesada y almacenada exitosamente

en ChromaDB.’
220 content:
221 application/json:
222 schema:
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223 type: object
224 properties:
225 message: { type: string , example: ’Información

almacenada en ChromaDB ’ }
226 ’400’:
227 description: ’Error en la petición, como no proporcionar

fichero ni URL , o un formato no soportado.’
228 content:
229 application/json: { schema: { $ref: ’#/ components/schemas/

ErrorResponse ’ } }
230 ’403’:
231 description: ’La clave API proporcionada es inválida o no

tiene permisos.’
232 content:
233 application/json: { schema: { $ref: ’#/ components/schemas/

ErrorResponse ’ } }
234 ’500’:
235 description: ’Error interno del servidor durante el

procesamiento o almacenamiento.’
236 content:
237 application/json: { schema: { $ref: ’#/ components/schemas/

ErrorResponse ’ } }
238

239 /api/listar_ficheros:
240 get:
241 tags: [ficheros]
242 summary: ’Lista todos los ficheros de conocimiento de un usuario.’
243 security:
244 - ApiKeyAuth: []
245 responses:
246 ’200’:
247 description: ’Una lista con los nombres de los ficheros del

usuario.’
248 content:
249 application/json:
250 schema:
251 type: object
252 properties:
253 ficheros:
254 type: array
255 items: { type: string }
256 example: [" documento1.pdf", "apuntes_clase.txt"]
257 ’403’:
258 description: ’Clave API inválida.’
259 content:
260 application/json: { schema: { $ref: ’#/ components/schemas/

ErrorResponse ’ } }
261

262 /api/eliminar_fichero:
263 post:
264 tags: [ficheros]
265 summary: ’Elimina un fichero y sus fragmentos asociados de la base

de datos.’
266 security:
267 - ApiKeyAuth: []
268 requestBody:
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269 required: true
270 content:
271 application/json:
272 schema:
273 $ref: ’#/ components/schemas/FileDeletionRequest ’
274 responses:
275 ’200’:
276 description: ’fichero y sus datos asociados eliminados

correctamente.’
277 content:
278 application/json:
279 schema:
280 type: object
281 properties:
282 message: { type: string , example: ’fichero documento.

pdf eliminado correctamente ’ }
283 ’403’:
284 description: ’Clave API inválida.’
285 ’404’:
286 description: ’El fichero especificado no existe.’
287 ’500’:
288 description: ’Error interno al intentar eliminar el fichero o

sus fragmentos.’
289

290 /api/generar_test:
291 post:
292 tags: [Generación de Tests]
293 summary: ’Genera un conjunto de preguntas de test basadas en pará

metros específicos.’
294 description: >
295 Crea un test utilizando el modelo de lenguaje para generar

preguntas. Puede usar el contexto
296 extraído de la base de conocimientos del usuario si se

proporcionan "poi1" o "poi2".
297 security:
298 - ApiKeyAuth: []
299 requestBody:
300 required: true
301 content:
302 application/json:
303 schema:
304 $ref: ’#/ components/schemas/TestGenerationRequest ’
305 responses:
306 ’200’:
307 description: ’Test generado exitosamente.’
308 content:
309 application/json:
310 schema:
311 $ref: ’#/ components/schemas/TestGenerationResponse ’
312 ’400’:
313 description: ’Parámetros inválidos , como una cantidad no numé

rica.’
314 ’403’:
315 description: ’Clave API inválida.’
316

317 /corregir:
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318 post:
319 tags: [Corrección]
320 summary: ’Corrige la respuesta de un alumno comparándola con la

solución correcta.’
321 description: >
322 Utiliza un modelo de lenguaje para realizar una corrección semá

ntica de la respuesta
323 de un alumno , proporcionando feedback sobre si es correcta y por

qué.
324 security:
325 - ApiKeyAuth: []
326 requestBody:
327 required: true
328 content:
329 application/json:
330 schema:
331 $ref: ’#/ components/schemas/CorrectionRequest ’
332 responses:
333 ’200’:
334 description: ’Resultado de la corrección.’
335 content:
336 application/json:
337 schema:
338 $ref: ’#/ components/schemas/CorrectionResponse ’
339 ’400’:
340 description: ’Faltan parámetros en la petición.’
341 ’403’:
342 description: ’Clave API inválida.’

Código A.1: Documentación de la API REST del servidor en formato YAML
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