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Resumen

La creciente generación de residuos, especialmente en entornos urbanos y sectores
como la agricultura o la medicina, plantea retos importantes en cuanto a su gestión
y trazabilidad. En este trabajo se presenta el diseño e implementación de un sistema
basado en tecnologías IoT (Internet of Things) para mejorar la trazabilidad de
residuos urbanos, permitiendo monitorizar en tiempo real parámetros como la
posición geográfica, la temperatura y la humedad de los contenedores durante su
transporte. La solución propuesta consiste en un dispositivo “suicida” con sensores de
bajo coste, fácilmente replicable, que envía los datos recopilados a un servidor en un
formato de mensaje fiable y fácil de analizar. El sistema se ha probado en un entorno
controlado, demostrando ser una opción fiable, económica y funcional, mostrando
también sus posibilidad de evolución hacia soluciones aún más compactas y baratas.
Todo el proceso de desarrollo ha sido exhaustivamente documentado, permitiendo su
reproducción y mejora por parte de cualquier persona con los conocimientos técnicos
necesarios.

Descriptores

Generación de residuos, IoT, Trazabilidad de residuos, Dispositivo “suicida”,
Sensores.
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Abstract

The increasing generation of waste, especially in urban environments and sectors
such as agriculture or medicine, poses significant challenges in terms of waste
management and traceability. This work presents the design and implementation of
a system based on IoT (Internet of Things) technologies to improve the traceability
of urban waste, allowing real-time monitoring of parameters such as geographical
position, temperature and humidity of the containers during transport. The proposed
solution consists of a “suicidal” device with low-cost sensors, easy replicability, which
sends the collected data to a server in a reliable and easy-to-analyze message format.
The system has been tested in a controlled environment, proving to be a reliable,
economical and functional option, showing also its possibility of evolution towards
even more compact and cheaper solutions. The entire development process has been
thoroughly documented, allowing it to be reproduced and improved by anyone with
the necessary technical knowledge.

Keywords

Generation of waste, IoT, Waste traceability, “Suicidal” device, Sensors.
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1: Introducción

El aumento de la generación de residuos se ha convertido en un reto importante en los
países en desarrollo debido a un crecimiento demográfico y una urbanización sin precedentes
[1]. De hecho, se calcula que la generación mundial de residuos sólidos urbanos alcanzará
los 3.400 millones de toneladas en 2050, más del doble del crecimiento demográfico en el
mismo periodo, tal como se afirma en [2]. En lo que se refiere, por ejemplo, a la agricultura,
se intenta minimizar la generación de residuos, optimizar las técnicas de eliminación y
promover el reciclaje y la reutilización, véase [3].

Por otro lado, en lo que se refiere a los residuos médicos, resultó de vital importancia
durante la pandemia de COVID-19. En [4], se presenta una propuesta de gestión de
este tipo de residuos mediante un sistema inteligente de gestión de restos médicos con
monitorización en tiempo real de los datos de residuos médicos y una aplicación para el
usuario final.

En España la gestión de residuos y el reciclaje de los mismos requiere de la coordinación
de diversos grupos y empresas, que no siempre cumplen con los acuerdos establecidos. Sin
embargo, es difícil llevar un control exhaustivo de los distintos sistemas de transporte de
residuos. A pesar de que existen diversos contenedores para distintos tipos de residuos,
estos pueden no acabar en el destino adecuado, ya sea por descuidos o por una falta de
control sobre los medios de transporte de los mismos.

La falta de trazabilidad de los residuos puede llevar a vertidos ilegales, ineficiencias
logísticas y pérdida de materiales potencialmente reciclables. En este último caso, es
bien sabido que el gobierno español invierte una buena cantidad de recursos para el
tratamiento de residuos en plantas de reciclaje. Sin embargo, esta inversión tiene poca
relevancia si los residuos reciclables acaban en vertederos en vez de en las plantas de
reciclaje correspondientes, lo que actúa como incentivo para el desarrollo de sistemas de
trazabilidad más efectivos.

En este trabajo se describe el desarrollo de una solución al problema de la trazabilidad
de residuos de distinto tipo, permitiendo controlar el camino y destino de las basuras
depositadas en los distintos contenedores. El dispositivo propuesto tiene como misión
obtener datos sobre su posición geográfica, temperatura y humedad en diversos momentos,
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Introducción 2

para enviar dicha información a un servidor seguro donde poder analizarlos. Al introducir
este dispositivo en un contenedor de basura se podrá observar cómo y a dónde se transportan
los residuos que se encontrasen en dicho contenedor.

Por lo tanto, podríamos resumir los objetivos de este proyecto en los siguientes puntos
clave:

Diseñar un dispositivo capaz de registrar y enviar datos de posición geográfica,
temperatura y humedad en tiempo real.

Iterar el diseño del dispositivo hacia implementaciones más sencillas y menores en
tamaño para mejorar su manejabilidad.

Implementar y construir el dispositivo para su puesta en marcha.

La implementación de un sistema de estas características podría mejorar la eficiencia en
la gestión de residuos urbanos, facilitar el control por parte de las autoridades, y contribuir
a una mayor transparencia en los procesos de reciclaje.



2: Análisis de requisitos

Para el correcto desarrollo del proyecto se ha realizado un análisis de requisitos de
usuario que nos permita entender el alcance del proyecto y las características indispensables
del dispositivo a desarrollar. Estos requisitos junto con la definición de otros detalles clave
que se dan en este capítulo, servirán de base para el diseño, desarrollo y validación del
dispositivo y su sistema asociado.

2.1. Requisitos funcionales
En la Tabla 2.1 se presentan los requisitos funcionales que describen qué debe hacer el

sistema para cumplir con los objetivos del proyecto.

Tabla 2.1: Requisitos Funcionales

ID Requisito Descripción
RF01 Localización GPS pre-

cisa
El dispositivo debe ser capaz de registrar su posición
geográfica mediante un sistema de posicionamiento
global (GPS) con una precisión mínima de 20 metros.

RF02 Medición ambiental El sistema debe medir y registrar la temperatura y
humedad relativa del entorno.

RF03 Almacenamiento en
desconexión

El dispositivo debe almacenar temporalmente los da-
tos en caso de pérdida de conectividad, y enviarlos al
recuperar la conexión.

RF04 Envío periódico de da-
tos

Los datos registrados deben enviarse periódicamente a
un servidor remoto mediante un protocolo de comuni-
cación fiable (como MQTT).

RF05 Frecuencia configura-
ble

La frecuencia de envío de datos debe poder ser confi-
gurada manualmente.

RF06 Seguridad en la trans-
misión

El sistema debe garantizar la seguridad de los datos
transmitidos mediante autenticación.

3
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ID Requisito Descripción
RF07 Identificador único El sistema debe registrar un identificador único que

permita asociar los datos a un dispositivo específico.
RF08 Exportación de datos El sistema debe permitir exportar los datos registrados

en formatos estándar (como CSV o JSON) para su
análisis.

RF09 Funcionamiento autó-
nomo

El dispositivo debe operar de manera completamente
autónoma, sin requerir interacción manual durante su
funcionamiento habitual.

RF10 Registro de movimien-
to

El dispositivo debe ser capaz de determinar si se en-
cuentra en movimiento.

2.2. Requisitos no funcionales
En la Tabla 2.2 se presentan los requisitos no funcionales que describen cómo debe

comportase el sistema para cumplir con los objetivos del proyecto.

Tabla 2.2: Requisitos No Funcionales

ID Nombre Corto Descripción
RNF01 Autonomía energética

mínima
El dispositivo debe contar con una autonomía energéti-
ca mínima de 24 horas en funcionamiento normal sin
recarga.

RNF02 Resistencia ambiental El dispositivo debe estar diseñado para resistir golpes,
vibraciones y condiciones ambientales adversas (hume-
dad, polvo, variaciones térmicas).

RNF03 Diseño compacto y
compatible

El diseño físico del dispositivo debe permitir su inserción
en el interior de distintos tipos de contenedores sin
modificar su funcionalidad ni el acceso a su contenido.

RNF04 Consumo eficiente El dispositivo debe estar diseñado con componentes de
bajo consumo para maximizar la eficiencia energética.

2.3. Funcionamiento general del dispositivo
El comportamiento fundamental del dispositivo se describe en el Algoritmo 1, en donde

se puede observar como la idea principal consiste en recopilar distinta información durante
varias iteraciones para enviarla tras un número específico de datos recopilados. Como
parte del intento de envío de datos se plantea la reconexión de servicios necesarios como la
conexión a internet y con el servidor de destino, ya que esta puede no mantenerse activa
entre envíos. Este comportamiento se repite mientras el dispositivo se mantenga alimentado
por una corriente, teniendo en cuenta que antes se habrán realizado las inicializaciones
necesarias. Una descripción más completa del funcionamiento del dispositivo y de los
mecanismos de comunicación se detalla en el Capítulo 5.
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Algorithm 1 Algoritmo General de Operación del Dispositivo IoT
1: Inicio
2: inicializarDispositivo()
3: while dispositivoEncendido do
4: recolectarDatos()
5: procesarDatos()
6: if datosRecopilados > N then
7: if conexiónEstablecida then
8: enviarDatosAlServidor()
9: else

10: conectarARed()
11: enviarDatosAlServidor()
12: end if
13: else
14: almacenarDatosLocalmente()
15: datosRecopilados++
16: end if
17: esperarXTiempo()
18: end while
19: Fin

2.4. Estructura general del servidor
Si bien el diseño e implementación de un servidor no forma parte de los objetivos de

este proyecto es importante definir la estructura del mismo para contextualizar la solución
completa, y que se describe con más detalle en la contribución para las Jornadas Sarteco
2025 [5].

La arquitectura propuesta, ilustrada en la Figura 2.1, integra de manera estratégica
IoT, blockchain y sistemas de almacenamiento escalables. El objetivo principal es asegurar
la trazabilidad y la seguridad de los datos que los dispositivos IoT transmiten mediante
el protocolo MQTT. Esta arquitectura se estructura en varios módulos interconectados,
cada uno con una función específica en la recolección, procesamiento, almacenamiento y
validación de los datos dentro de un entorno distribuido y seguro. Si bien este documento
se centra en el desarrollo del dispositivo IoT, se asume que este utiliza comunicaciones
MQTT para el envío de información. Los componentes clave del sistema son:

API Gateway: Actúa como el punto de entrada centralizado para todas las interac-
ciones. Se encarga de gestionar la autenticación, la autorización y el enrutamiento
del tráfico hacia los diferentes servicios de la arquitectura.

Collector (MQTT): Compuesto por un bróker MQTT y un proceso worker, este
módulo es capaz de escalar según la demanda. Su misión fundamental es recibir
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los datos procedentes de los dispositivos IoT, validarlos y transformarlos antes de
enviarlos a las siguientes fases de procesamiento.

Persistence Controller: Este módulo es el responsable de la gestión del alma-
cenamiento de datos en el Data Lake, así como de su posterior procesamiento y
recuperación. Para ello, se emplea Delta Lake, que ofrece una gran compatibilidad
con diversas soluciones de almacenamiento, tanto locales como en la nube.

Blockchain Controller: Su función es interactuar directamente con los contratos
inteligentes desplegados en la red blockchain. Este módulo garantiza la integridad
de los datos almacenados y facilita la obtención del identificador de la transacción
(hash) para su registro junto con los datos en el Data Lake.

Figura 2.1: Propuesta de arquitectura del servidor

En la propuesta de arquitectura se pueden ver otros módulos que están más relacionados
con la visualización de los datos por parte del usuario. Sin embargo, dado que esta propuesta
de arquitectura se encuentra fuera del alcance de este proyecto no se detallará más ninguna
de sus partes.

2.5. Resumen
En este capítulo se ha presentado el resultado del análisis de requisitos junto con

un resumen general del funcionamiento del dispositivo y una vista de la propuesta de
arquitectura del servidor, que está fuera de los objetivos del servidor. Todo esto permite
contextualizar y comprender las características y estructura de la solución propuesta en
este proyecto, y asentar una base necesaria para el diseño y posterior implementación del
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dispositivo que se presentan en capítulos posteriores. Sin embargo, como paso anterior al
desarrollo del dispositivo se debe plantear una planificación de las tareas a realizar, los
posibles riesgos a enfrentar y el presupuesto necesario para realizar el proyecto completo.
Todo este análisis y planificación se detalla en profundidad en el Capítulo 3.





3: Modelo de análisis

En este capítulo se detalla el modelo de análisis que ha sustentado el desarrollo de este
proyecto. En este se desglosa en primer lugar, la planificación inicial, describiendo las fases
y tareas fundamentales que guiaron el proyecto. Posteriormente, se presenta un análisis de
riesgos, donde se identifican posibles situaciones y problemas y las estrategias de mitigación
implementadas para asegurar la viabilidad y robustez del sistema. Posteriormente se
examinará la desviación de la planificación inicial, explicando los ajustes realizados y los
motivos de los mismos. Finalmente, se expondrá el presupuesto y los costes asociados al
proyecto, ofreciendo una visión clara de los recursos económicos gestionados durante su
ejecución.

3.1. Planificación del proyecto
Este proyecto se organizó para comenzar su desarrollo a finales de 2024, en paralelo a

las asignaturas del Máster en Ingeniería Informática, con la intención de documentar parte
del mismo en una contribución para las Jornadas Sarteco de 2025. Por lo tanto, parte de
la organización implicó tener una parte del trabajo terminado para las fechas de envío
de contribuciones, que originalmente estaban marcadas para finales de marzo de 2025.
Con este objetivo el proyecto se dividió en iteraciones de desarrollo como se explica en el
Capítulo 4, siendo aconsejable que las ultimas tareas de la segunda iteración coincidan
con la contribución para Sarteco.

Cada iteración ha implicado un desglose del trabajo en tareas características de
un desarrollo IoT, las cuales, en gran medida, se corresponden con los capítulos de esta
memoria. Esto facilita la consulta del esfuerzo dedicado a cada una de ellas. Concretamente,
las tareas son:

Diseño del dispositivo: Este es el primer paso a realizar para cada iteración, ya
que consiste en elegir los componentes hardware a utilizar para cumplir con las
funcionalidades de dicha iteración y diseñar el circuito eléctrico del sistema. Esta fase
requiere revisar los distintos componentes que existen actualmente en el mercado y

9
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consultar los distintos requisitos de alimentación de cada uno de ellos para poder
diseñar un circuito eléctrico funcional.

Implementación del sistema: Esta tarea está más relacionado con el software que
se ejecutará en el dispositivo diseñado y que deberá cumplir con los requisitos de
cada iteración. Esta fase también requiere de analizar y consultar la documentación
de distintas librerías a utilizar para saber su compatibilidad con los componentes
elegidos, sus limitaciones y ejemplos que pueden ayudar al desarrollo del propio
código.

Pruebas y mediciones del sistema: Como parte del desarrollo del sistema se
deberá verificar que todas las funcionalidades implementadas son correctas y dan los
resultados esperados. Además, como parte de un desarrollo IoT, se deben comprobar
los distintos niveles de consumo tanto eléctrico como de ancho de banda.

Documentación del desarrollo: En paralelo a las anteriores tareas se realiza
una documentación de todos los procesos y actividades realizadas como parte de la
memoria de trabajo fin de máster. Además, parte de la documentación se hará en la
contribución para las Jornadas Sarteco, por lo que se tendrá en cuenta también su
desarrollo en la planificación.

Figura 3.2: Diagrama de Gantt de la planificación inicial

Como ya se ha comentado este proyecto se empezó en diciembre de 2024, con la
intención de poder tener resultados para una contribución en las Jornadas Sarteco. Sin
embargo, la carga de horas semanales aplicadas al proyecto no se planificaron igual para
esos primeros meses de desarrollo, ya que además de este trabajo se realizaban a tiempo
completo asignaturas y un contrato de empleo de 37 horas y medias semanales. Por lo
tanto, los meses de diciembre, mitad de enero, mitad de febrero, marzo y primera mitad
de abril se planificó una dedicación semanal de 4 horas. Mientras que el resto del tiempo,
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es decir, segunda mitad de enero, primera mitad de febrero, segunda mitad de abril, mayo
y primera mitad de junio, se planificó una dedicación semanal de 8 horas, ya que en
esas etapas no habrá carga de asignaturas. Teniendo en cuenta la dedicación en horas
anteriormente mencionada, y que la fecha de deposito de trabajos en convocatoria ordinaria
empieza el 23 de junio, se plantea en total una dedicación de aproximadamente 170 horas
de trabajo, tratando de ajustar las horas a los seis créditos de dedicación asignados por la
Escuela de Ingeniería Informática. En la Figura 3.2 se puede observar una imagen de la
planificación inicial realizada mediante GanttProject, teniendo en cuenta la dedicación de
horas anteriormente explicada.

3.2. Análisis de riesgos
En todo proyecto de desarrollo hay que tener en cuenta que pueden surgir situaciones

inesperadas o fallos no contemplados, por ello es importante realizar un análisis de los
posibles riesgos que se pueden producir. Si bien gran parte de los problemas que pueden
darse tienen relación con la elaboración de este proyecto en paralelo a asignaturas y a
un empleo a tiempo completo, hay otros riesgos más relacionados con los conocimientos
que se poseen de este campo y los problemas más típicos de desarrollo de sistema IoT.
A continuación desde la Tabla 3.3 hasta la Tabla 3.7 se detallan los riesgos analizados y
contemplados durante la planificación inicial, junto con un posible plan de contingencia:

Identificador R01 - Mala planificación del proyecto

Descripción La duración real de las tareas no se ajusta correctamente
al tiempo originalmente planificado para su realización

Impacto Alto
Probabilidad Media
Plan de contingencia Replanificación del proyecto

Tabla 3.3: Riesgo de mala planificación

Identificador R02 - Retraso en el envío de componentes

Descripción Un componente llega más tarde de lo esperado
según las tareas relacionadas con este

Impacto Medio
Probabilidad Alta
Plan de contingencia Replanificación del proyecto y avanzar con otras tareas

Tabla 3.4: Riesgo de retraso en envío de componentes
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Identificador R03 - Componente defectuoso o roto

Descripción Un componente ha llegado defectuoso o se ha roto
durante su uso

Impacto Alto
Probabilidad Media
Plan de contingencia Pedir más de un componente del mismo tipo a la vez

Tabla 3.5: Riesgo de componente defectuoso o roto

Identificador R04 - Falta de conocimientos de electrónica

Descripción La falta de conocimientos básicos de electrónica
está retrasando el diseño y montaje de los circuitos

Impacto Medio
Probabilidad Alta

Plan de contingencia Pedir ayuda a personas con conocimiento en electrónica y
dedicar tiempo del proyecto a aprender lo necesario

Tabla 3.6: Riesgo de falta de conocimientos de electrónica básica

Identificador R05 - Fallos de cobertura y/o detección satélite

Descripción Las antenas GPS y/o de red móvil fallan mucho o pierden
la conexión con frecuencia

Impacto Medio
Probabilidad Baja

Plan de contingencia Comprar nuevas antenas si se consideran rotas o
implementar un sistema adecuado de reintentos de conexión

Tabla 3.7: Riesgo de cobertura y/o detección satélite

3.3. Desviación de la planificación inicial
Sobre la planificación inicial planteada se han tenido que realizar cambios y ajustes

debido a la sucesión de algunos riesgos esperados e inesperados. Algunos de los riesgos
esperados que han ocurrido se han podido contener correctamente gracias a los planes de
contingencia planteados. Sin embargo, otros riesgos como el riesgo R04 no se ha podido
contener tan fácilmente, debido a que el problema se centraba en la mala soldadura de
componentes a lo largo de varias iteraciones, y dado que no se encontró una solución
rápida a este problema, se tuvo que hacer una replanificación más drástica.

Otros riesgos no contemplados también han causado problemas, específicamente el aná-
lisis incorrecto de la documentación de una librería causó que una primera implementación
funcionase de manera inestable y no se encontrase el problema hasta pasado un tiempo
del planificado. También como consecuencia de estos problemas no se pudo proporcionar
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mediciones de consumo eléctrico para la contribución en las Jornadas Sarteco, aunque sí
se pudo dar resultados aceptables para esta contribución.

La paralelización de este proyecto con el resto de las actividades lectivas del máster y
el contrato laboral también causó algún retraso, aunque lo esperado dentro del riesgo R01.
Por último, el recorrido de la tercera iteración se vió afectado por múltiples situaciones
fuera de lo esperado que se describen en más detalle a lo largo de la memoria. Todo esto
forzó la modificación de la planificación inicial, hasta el punto de trasladar la fecha de final
del proyecto al periodo extraordinario de deposito de trabajos fin de máster de julio. Como
consecuencia en la Figura 3.3 se puede observar la modificación del diagrama de Gantt
que representa la planificación final realizada. En esta planificación final se ve cómo la
mayoría de fases se han alargado en el tiempo, sobretodo las correspondientes a la tercera
iteración, y la fase de documentación final se alargó más para poder documentar y revisar
el trabajo realizado correctamente.

Figura 3.3: Diagrama de Gantt de la planificación final

3.4. Presupuesto y costes
En esta sección se muestra un presupuesto estimado del proyecto, teniendo en cuenta

el gasto en componentes hardware, el gasto en maquinas y otros tipos de hardware, y
el número de horas de trabajo realizadas. Dado que no se ha estimado necesario ningún
software con licencia de pago se excluye del presupuesto la parte relativas a licencias.

Como parte del plan de contingencia del riesgo R03, se determinó comprar más de
un componente del mismo tipo para los componentes más susceptibles a roturas. Cabe
destacar que entre las máquinas y otros hardware solo se tiene en cuenta el uso de una
fuente de alimentación. Por último, el número de horas de trabajo se ha calculado, como
se ha explicado en las anteriores secciones, teniendo en cuenta que la jornada de trabajo
ha sido variable y flexible a lo largo de los distintos meses de trabajo. Por lo tanto, se ha
calculado el coste por horas a partir del sueldo anual bruto de un ingeniero informático
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junior que actualmente ronda los 28.000€, que se traduciría a 14€ la hora. Todo ello
suponiendo una jornada completa de 40 horas semanales y 250 días laborables al año. En
la Tabla 3.8 se puede observar un resumen del presupuesto completo estimado.

Concepto Cantidad Coste por unidad Coste total
NodeMCU V1.0 1 9,00€ 9,00€

Módulo GPS GY NEO 6MV2 3 3,00€ 9,00€
DHT11 de tres pines 1 2,00€ 2,00€

Módulo GRPS SIM800L 3 3,00€ 9,00€
Arduino Nano Every 1 14,50€ 14,50€

Arduino Nano 1 27,10€ 27,10€
Kit de cables y resistencias 1 3,00€ 3,00€

Fuente de alimentación regulable 1 15,00€ 15,00€
Trabajo en horas del alumno 180 14,00€ 2.520,00€

2.608,60€

Tabla 3.8: Coste estimado

3.5. Resumen
Este capítulo ha detallado el modelo de análisis que fundamenta el desarrollo del

proyecto. Se ha detallado la planificación inicial, explicando las distintas fases y tareas
que guiaron el trabajo como son: el diseño, la implementación, las pruebas y la documen-
tación. Además, se ha realizado un exhaustivo análisis de riesgos, identificando posibles
contratiempos y las estrategias de mitigación necesarias para asegurar la viabilidad del
proyecto. Se ha mostrado también la desviación de la planificación original, justificando
los ajustes realizados, y se ha presentado un presupuesto detallado junto con los costes
asociados al proyecto. Con esta base de análisis y planificación, se describe en el Capítulo
4 el primer paso del desarrollo del sistema, el Diseño del Dispositivo IoT, especificando los
componentes y la estructura que materializan los requisitos definidos.



4: Diseño del dispositivo IoT

En este capítulo se describe el modelo de diseño seguido para el desarrollo del dispositivo,
y las distintas fases por las que se ha transcurrido, dando más detalles sobre los distintos
componentes IoT utilizados y su funcionamiento.

El desarrollo del dispositivo IoT propuesto en este proyecto se ha llevado a cabo
siguiendo un modelo de diseño iterativo. Este enfoque permite construir el sistema de
forma incremental mediante una serie de versiones sucesivas, cada una de las cuales mejora
o amplía la anterior de alguna forma. A diferencia de modelos lineales como el modelo
en cascada, el modelo iterativo permite validar parcialmente el sistema en cada fase y
detectar errores tempranos.

Se ha optado por este modelo de diseño con el objetivo de realizar un proceso de
desarrollo flexible, permitiendo centrar los esfuerzo en una funcionalidad del sistema en
cada iteración. De esta manera se reducen los riesgos asociados al diseño de sistemas IoT
compuesto por múltiples componentes que dependen entre si.

El diseño del sistema se ha organizado en tres iteraciones con los siguientes resultados
finales en cada una:

Primera iteración: creación de un sistema IoT que permita la captura de datos
de posicionamiento global (GPS), además de temperatura y humedad, y que envíe
dicha información mediante una red Wi-Fi externa utilizando protocolo MQTT para
el envío.

Segunda iteración: creación de un sistema IoT que permita la captura de datos
de posicionamiento global (GPS), además de temperatura y humedad, y que envíe
dicha información mediante una conexión a internet que no dependa de redes Wi-Fi
locales, utilizando protocolo MQTT para el envío.

Tercera iteración: cambio en el diseño del dispositivo de la segunda iteración a un
dispositivo más sencillo, compacto y más barato en términos generales, para ello se
decidirá primero qué partes del dispositivo merece la pena cambiar.

15
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En las tres iteraciones el funcionamiento general del dispositivo obtenido es el mismo,
salvo por ligeras diferencias en cómo es capaz de realizar sus tareas. El dispositivo deberá
obtener información de la posición geográfica, la temperatura y humedad ambiente en
distintos momentos temporales, y guardará dicha información de manera que pueda
consultarse el momento temporal en el cual se tomaron dichas instancias. Tras un número
de instancias de datos guardadas se enviará toda la información a un servidor MQTT
mediante algún método de conexión a internet. Este número de instancias por conjunto de
datos y el tiempo entre instancias o mediciones dependerá del modo de funcionamiento
deseado para el dispositivo, por ejemplo, un número bajo de instancias y un tiempo
entre mediciones bajo servirá mejor para poder localizar el dispositivo cuando está en
movimiento. Por el contrario, un número alto de instancias con un tiempo entre mediciones
alto sería más adecuado para los casos en los que el dispositivo no esté en movimiento.
En el Capítulo 6 se definen tres modos de funcionamiento especificando el número de
instancias y el tiempo entre mediciones, para realizar pruebas y comparar el rendimiento
del dispositivo en cada caso.

4.1. Descripción de la primera iteración
En esta primera iteración se partirá desde cero para diseñar un sistema que recoja datos

GPS, de temperatura y de humedad, permitiendo enviar dicha información mediante una
red Wi-Fi ajena al sistema. Por lo tanto, se eligieron los componentes que a continuación
se exponen para el desarrollo de la primera versión.

Placa de desarrollo NodeMCU 1.0 [6], es un kit de desarrollo que contiene un
microcontrolador ESP8266 de 32 bits y cuenta también con un transceptor Wi-Fi, para
conexiones a internet. Este kit tiene conexión micro-USB para poder cargar el programa
que se quiere ejecutar fácilmente desde un ordenador, y estabilización de corriente de 5
voltios a 3.3 voltios, lo cual nos permite conectar componentes que trabajen con ambas
medidas de voltaje. Contiene una memoria de 4MB de los cuales aproximadamente 1MB
se puede utilizar para almacenar el programa que se desea ejecutar.

Cabe destacar que el NodeMCU tiene 11 pines digitales y un pin analógico, y que también
consta de dos interfaces UART (Universal Asynchronous Receiver/Transmitter). UART es
un protocolo de comunicación serie asíncrono muy utilizado en dispositivos IoT, ya que
permite el intercambio de datos entre dispositivos sin necesidad de compartir un reloj
común. El NodeMCU puede ser alimentado por medio de la conexión USB o de manera
externa con una batería conectada al pin de alimentación VIN, aunque en el primer caso
la corriente máxima que se le puede suministrar no suele pasar de los 250mA.

Módulo GPS GY NEO 6MV2 [7], es un módulo GPS que permite consultar
información precisa sobre la geolocalización del mismo. Este módulo viene con un conector
para antenas y una antena pequeña ideal para sistemas compactos. Funciona en voltajes
entre 3.3V y 5V y con un consumo típico de 45mA, por lo que se puede alimentar
sin problema con la conexión de 3.3V del NodeMCU. Utiliza el protocolo UART para
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comunicación de los datos de posición que recoge con una precisión de aproximadamente
2.5 metros, lo que nos permite cumplir con el requisito RF01.
Además de los pines de recepción y trasmisión de datos, cuenta con un pin PPS (Pulse Per
Second) que proporciona una señal de pulso de 1 Hz, altamente precisa, que se sincroniza
con el tiempo GPS. Sin embargo, no se utilizará este pin, ya que no requerimos una
sincronización temporal tan precisa. El módulo GPS viene con un led interno que nos
indicará si está recibiendo corriente y si está recibiendo datos de la posición. Si el led
esta encendido sin parpadear, significa que está tratando de fijar la señal GPS, mientras
que si el led parpadea, significa que ha encontrado al menos 4 satélites y está recibiendo
información de su posición actual que enviará a través de su pin de trasmisión TX. Este
led es muy importante, ya que nos puede indicar fallos en el propio componente y fallos en
nuestro propio circuito, en particular a lo largo del desarrollo sirvió para detectar múltiples
fallos en la soldadura del componente, que retraso la consecución de los objetivos del
proyecto.

Sensor DHT11 [8], es un sensor digital que permite medir la temperatura y la
humedad relativa del entorno. Este sensor funciona en voltajes entre 3V y 5.5V y con
un consumo que rara vez supera 0.3mA, por lo que se puede alimentar sin problema
con la conexión de 3.3V del NodeMCU. El DHT11 utiliza una interfaz de comunicación
digital de un solo hilo, lo que simplifica su conexión con microcontroladores. La precisión
de sus mediciones es de ±2ºC de temperatura y ±5 % de humedad. Gracias a su diseño
compacto y bajo consumo energético, este sensor es ideal para cualquier sistema IoT que
se desee diseñar, además de permitirnos cumplir con el requisito RF02 al incorporarlo al
dispositivo.

Para poder trabajar con este prototipo se dispusieron los componentes y los cables
necesarios en una placa de prototipado. En la Figura 4.4 se puede observar un esquema del
cableado creado con la aplicación Fritzing [9], para que sea más fácil entender el circuito,
y el prototipo real se puede observar en la Figura 4.5. Como se puede ver en el esquema, el
cable amarillo va conectado al pin de trasmisión (TX) del componente GPS y el verde al
pin de recepción (RX). Este detalle es importante a la hora de establecer la comunicación
entre el NodeMCU y el componente, ya que el pin de trasmisión deber ir conectado a un
pin de recepción y al contrario. Cabe destacar también que todas las conexiones a tierra
acaban en el NodeMCU, de esta manera se asegura que todas las tomas de tierra estén
conectadas al mismo lugar, ya que sino el dispositivo no funcionaría correctamente.

Como ya se ha comentado, el dispositivo se podría alimentar tanto con una batería
externa conectando el cable de voltaje a la entrada VIN del NodeMCU, como con la
conexión micro-USB conectada a un ordenador. De esa manera la salida de 3V3 da
alimentación tanto al componente GPS como al sensor de temperatura y humedad.

El dispositivo diseñado en esta iteración es capaz de almacenar información GPS, de
humedad y temperatura ambiental correctamente y enviarla a un servidor MQTT siempre
y cuando se disponga de una conexión Wi-Fi adecuada, y la antena de componente GPS
sea capaz de obtener señal satélite. Con la intención de mejorar el rendimiento y autonomía
del dispositivo actual se plantea para la siguiente iteración eliminar la necesidad de una
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Figura 4.4: Esquema del sistema 1

Figura 4.5: Imagen del prototipo 1
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conexión Wi-Fi mediante el uso de un componente capaz de conectar el dispositivo a
internet en cualquier momento, gracias a la red móvil. De esta manera el dispositivo solo
requerirá de una cobertura móvil estable para el envío de datos, en lugar de un punto de
conexión Wi-Fi, cumpliendo así con el requisito RF09.

Formato de mensajes MQTT
En el diseño propuesto para la primera iteración se transmiten datos de posición

geográfica, temperatura y humedad mediante el protocolo MQTT, un estándar ampliamente
utilizado en sistemas IoT por su eficiencia y bajo consumo de ancho de banda. Como parte
de esta iteración, también se define la estructura de los mensajes MQTT, con el objetivo
de garantizar la trazabilidad, integridad y utilidad de los datos transmitidos. Para ello,
se ha optado por el envío de mensajes en formato JSON, siguiendo la estructura que se
muestra en la Figura 4.6, y que a continuación se detalla.

1 {
2 "sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
3 "mac": "1E:E5:89:44:FE:19",
4 "IMEI": "123456789012345",
5 "support": [
6 "GPS",
7 "TEMP"
8 ],
9 "data": [{

10 "timestamp": "1736875157",
11 "lat": "41.662739",
12 "long": "-4.705044",
13 "humid": "34.00",
14 "temp": "18",
15 "altitude": "680.00",
16 "speed": "0.00"
17 },
18 {
19 "timestamp": "1736876157",
20 "lat": "41.662749",
21 "long": "-4.705044",
22 "humid": "34.00",
23 "temp": "18",
24 "altitude": "680.00",
25 "speed": "0.00"
26 }]
27 }

Figura 4.6: Estructura de ejemplo del mensaje JSON
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sha256: Hash criptográfico que permite validar la integridad del mensaje en el lado
del servidor.

mac: Dirección MAC de la red Wi-Fi a la que se conecte el dispositivo IoT que
generó el mensaje, pudiendo así identificar el origen de los datos.

IMEI: Dirección IMEI del módulo GPRS que se utiliza en la segunda iteración como
sustitutivo para la conexión Wi-Fi, de tal manera que se pueda identificar el origen
de los datos cuando no se dispone de una dirección MAC.

support: Lista de tipos de datos que puede proporcionar el dispositivo de origen.
En este caso incluye GPS y TEMP (temperatura y humedad).

data: Array de datos recolectados cuya cantidad de elementos dependerá de la
frecuencia de recogida y envío de datos. Por cada elemento se registran siempre los
siguientes datos:

• timestamp: Marca de tiempo UNIX que indica el momento exacto de la
recolección de los datos, obtenida del componente GPS.

• lat y long: Coordenada geográficas (latitud y longitud) que representan la
posición del dispositivo al recoger los datos.

• humid: Nivel de humedad relativa del ambiente, en porcentaje, del lugar donde
se encuentra el dispositvo al recoger los datos.

• temp: Temperatura ambiente, registrada en grados centigrados, del lugar donde
se encuentra el dispositivo al recoger los datos.

• altitude: Altitud, en metros, a la que se encuentra el dispositivo al recoger los
datos.

• speed: Velocidad, en kilometros por hora, a la que va el dispositivo al recoger
los datos.

El formato JSON ofrece múltiples ventajas para la transmisión de datos en sistemas
IoT. Su compatibilidad lo convierte en un estándar ampliamente reconocido y fácilmente
interpretable por distintos lenguajes de programación y plataformas. La incorporación
de un campo de verificación como el sha256 garantiza la integridad del mensaje a lo
largo de todo el proceso de transmisión, lo que nos permite cumplir con los requisitos
RF06 y RF07. Además, su estructura es escalable, lo que permite incorporar fácilmente
nuevos tipos de datos o sensores si el dispositivo lo requiere. Por último, su eficiencia se ve
reforzada por el uso de arrays, que permiten agrupar varios puntos de recolección en un
único mensaje, reduciendo el uso del ancho de banda y pudiendo ajustar la frecuencia de
envíos sin mayor problema.
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4.2. Descripción de la segunda iteración
Para la segunda iteración se partirá del sistema diseñado en la primera iteración,

añadiendo un componente que permita al dispositivo conectarse a internet sin necesidad
de una red Wi-Fi local. Por ello, se ha decidido utilizar el módulo GSM/GPRS SIM800L
junto con una tarjeta de telefonía móvil que permita la conexión a internet a través de un
proveedor.

El módulo GSM/GPRS SIM800L [10], es un componente de comunicación que
puede dotar a nuestro sistema IoT de conectividad móvil mediante redes GSM y GPRS.
GSM (Globas System for Mobile Communications) es un estándar para redes móviles
desarrollado en Europa en los años 80 y 90, comúnmente conocido como segunda generación
o 2G, y que se enfocaba en proporcionar comunicaciones de voz digital y otros servicios
básicos como SMS [11]. GPRS (General Packet Radio Service) es una extensión del sistema
GSM que introduce el uso de datos por paquetes, lo que lo convierte en una tecnología
más eficiente para el acceso a internet y transmisión de datos, para más información véase
[12], a veces se la referencia como la 2.5G ya que es una evolución entre la 2G y la 3G.

De la misma manera que el módulo GPS GY NEO 6MV2, el SIM800L se comunica a
través de una interfaz UART, utilizando sus pines de trasmisión y recepción de datos,
mediante lo que se denomina comandos AT que permiten enviar y recibir SMS, enviar
paquetes de datos vía GPRS, o incluso realizar una llamada de voz. Existen distintos
comandos AT que sirven a diversos propósitos, realizando los comandos adecuados en el
orden indicado se puede llevar a cabo las distintas funcionalidades de este tipo de módulo,
véase [13] para más información sobre los comandos AT. Si bien este módulo tiene muchas
funcionalidades, para este dispositivo solo se utilizará el envío de datos por conexión GPRS,
específicamente utilizando el protocolo MQTT, por lo que hay una fila entera de pines que
no se soldarán. Esta fila de pines aporta funcionalidades como la posibilidad de conectar
un altavoz o micrófono para llamadas telefónicas.

El SIM800L funciona con voltajes de entre 3.4V y 4.4V, mandando por su pin de trasmisión
mensajes de advertencia cuando se sobrepasa este último. Si bien su consumo en reposo
es de aproximadamente 20mA, este consumo puede tener picos de hasta 2A durante las
trasmisión de datos, por lo que necesitaremos una fuente de alimentación externa para
alimentar este componente. Este módulo viene con una antena helicoidal externa que
se debe soldar al pin NET, para que el componente funcione correctamente. Dispone
también de una entrada para tarjetas de telefonía móvil, que se deberán colocar en una
posición específica para su correcto funcionamiento, y un led interno que nos indicará
en que estado se encuentra el componente. Hay distintas frecuencias de parpadeo del led
con sus correspondientes significados plasmados en el datasheet del componente [10], a
continuación se explican en detalle:

Tiempo entre parpadeos de 800 milisegundos, significa que el SIM800L está recibiendo
corriente y está intentando conectarse a la red móvil, aunque aún no esté conectado.



Diseño del dispositivo IoT 22

Tiempo entre parpadeos de 3 segundos, significa que ha logrado conectares a la red
móvil (GSM) y puede realizar llamadas y enviar o recibir SMS.

Tiempo entre parpadeos de 300 milisegundos, significa que se ha establecido la
comunicación GPRS, y por lo tanto tiene conexión a internet.

7 parpadeos en intervalos de 800 milisegundos seguidos de 5 segundos sin parpadeos,
significa que el SIM800L se esta reseteando cada 7 segundos, probablemente porque
no está recibiendo la corriente adecuada, ya sea por voltaje o amperaje inadecuados.

Figura 4.7: Esquema del sistema 2

A la hora de integrar el nuevo componente en el sistema desarrollado en la primera
iteración se deben hacer algunos ajustes, ya que se necesita manejar dos interfaces UART
distintas, una para el módulo GPS y otro para el SIM800L. Dado que el módulo GPS
trasmite información de manera automática sin necesidad de realizar peticiones, se ha
optado por mantener solo la conexión al pin de trasmisión que irá conectado al pin
de recepción hardware del NodeMCU, de esta manera se pueden leer los datos que va
trasmitiendo el GPS sin problema. Por otro lado, el SIM800L se debe conectar al NodeMCU
con ambos pines, trasmisión y recepción, para poder darle instrucciones de qué tipo de
conexión llevar a cabo y qué datos enviar. Todo esto se puede observar en el esquema del
cableado representado en la Figura 4.7 y en la imagen del prototipo ya montado de la
Figura 4.8.
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Figura 4.8: Imagen del prototipo 2

Como ya se ha explicado, el módulo SIM800L necesita obligatoriamente recibir corriente
mediante una fuente de alimentación externa, ya que la corriente que puede extraer de la
conexión micro-USB del NodeMCU no es suficiente en amperaje para su funcionamiento.
Además, el datasheet del componente recomienda añadir un condensador de desacoplo
cerca del módulo y un diodo de protección en el circuito para filtrar el rizado de la tensión
y suprimir los picos de corriente, lo que ayuda a estabilizar el voltaje de alimentación
y a prevenir la desestabilización del circuito. Sin embargo, se ha podido comprobar en
diversas pruebas con la fuente de alimentación, que el sistema funciona sin estos elementos
añadidos al circuito, aunque estos serían muy recomendables como medida de seguridad
en el dispositivo final.

Como en el caso de la primera iteración el sistema diseñado podría ser alimentado
externamente conectando la fuente al pin VIN del NodeMCU. De nuevo es importante
destacar que la todas las tomas de tierra deben estar conectadas, por lo que al añadir una
fuente de alimentación externa se deberá conectar su respectiva toma de tierra a uno de
los pines GND del NodeMCU.

El dispositivo diseñado en esta iteración es capaz de almacenar información GPS, de
humedad y temperatura ambiental correctamente, y realizar el envío de esta mediante
un componente GPRS capaz de conectarse a internet por red móvil, siempre y cuando
exista cobertura y señal satélite adecuadas. Con esto se ha logrado una mayor autonomía y
rendimiento del dispositivo, con respecto a la iteración anterior, siendo un buen candidato
de producto final para este proyecto. Sin embargo, la solución obtenida es más compleja,
más cara y de mayor tamaño con respecto a la anterior iteración, por lo que se puede



Diseño del dispositivo IoT 24

buscar soluciones que permitan reducir estas tres características del dispositivo final en
la siguiente iteración, ya sea mediante sustitución del hardware como simplifcación del
software.

4.3. Descripción de la tercera iteración
Para esta última iteración se ha tratado de analizar el dispositivo obtenido hasta el

momento para reducir tres factores clave para el sistema final:

Reducción de complejidad: en términos de funcionalidad tanto en el software
como en el hardware, prescindiendo de utilidades innecesarias como es el caso de la
conexión a redes Wi-Fi. En este factor también entraría la sustitución de componentes
por otros más sencillos.

Reducción de costes: realizar cambios en el hardware que abarate el sistema
final. Hay que tener en cuenta que el sistema deberá seguir realizando las mismas
funcionalidades, por lo que es importante elegir qué partes sustituir.

Reducción de tamaño físico: de cara a cumplir el requisito RNF03 sería de-
seable reducir el tamaño final del sistema para su posterior fabricación, de nuevo
sustituyendo componentes por otros más pequeños.

Como se puede observar, los tres factores descritos implican en gran parte la sustitución
de componentes del sistema actual, por lo que es imprescindible detectar sustituciones
que no aumenten innecesariamente el tiempo de desarrollo, pero que cumplan con las
reducciones estipuladas y las funciones hasta ahora logradas.

Analizando el sistema desarrollado en la segunda iteración se pudo observar que el
componente que más espacio general ocupa es la propia placa NodeMCU, y dado que
algunas de sus funcionalidades adicionales no se utilizan en este sistema, como es el caso
de la conexión a redes Wi-Fi, es un componente que merece la pena sustituir. Por otro
lado, existen módulos GSM que tienen también capacidad de geolocalización, con lo cual
sustiuiríamos dos componentes, SIM800L y GPS GY NEO 6MV2, por uno solo reduciendo
así el tamaño general del sistema. Sin embargo, estos componentes a menudo se encuentran
a precios bastante altos para un componente IoT, cerca de 30 euros, mientras que el
SIM800L se puede encontrar fácilmente por 2 o 3 euros y el módulo GPS utilizado por un
precio similar. Por lo que esta sustitución encarecería bastante el sistema final, y dado que
los dispositivos pretenden ser desechables, será más importante reducir costes que tamaño.

Con el análisis realizados se decidió plantear un cambio de placa del sistema, sustitu-
yendo el NodeMCU por otra placa más sencilla y barata. Sin embargo, NodeMCU es una
placa bastante barata de por si, principalmente porque utiliza el chip ESP8266, que es un
microcontrolador de muy bajo coste con conectividad Wi-Fi integrada, además de ser una
plataforma de código abierto que se beneficia de la producción masiva. Se puede encontrar
por aproximadamente 9 euros en tiendas oficiales y alrededor de 3 euros en tiendas no
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oficiales, aunque su precio varía bastante. Con esto en mente lo ideal sería buscar una
placa cuyo microcontrolador sea más barato en términos generales que el ESP8266, lo cual
implica buscar un microcontrolador más sencillo. Para evitar que el desarrollo se puede
alargar demasiado, se trató de buscar opciones que en principio mantengan compatibilidad
con el resto de componentes y también con las librerías utilizadas hasta el momento, si es
posible.

Sustitución de placa: Arduino Nano Every
Dado que la mayoría de librerías son compatibles con todas las placas de Arduino

según su documentación, se revisaron las distintas opciones y se eligió inicialmente la
placa Arduino Nano Every. Esta placa utiliza el microcontrolador ATmega4809, el
cual presenta características más limitadas en comparación con el ESP8266. Por ejemplo,
el ATmega4809 dispone de una memoria flash de 48KB, frente a los 4MB del ESP8266.
En cuanto a la velocidad, el ATmega4809 opera a una frecuencia máxima de 20 MHz,
mientras que el ESP8266 alcanza los 160 MHz. Además, la SRAM del ATmega4809 es de
6KB, muy inferior a los 64KB de RAM del ESP8266. Un punto clave es que el Arduino
Nano Every carece de conectividad Wi-Fi, algo que el ESP8266 sí incorpora. Sin embargo,
el precio del Arduino Nano Every tanto en tiendas oficiales como no oficiales supera
al del NodeMCU, siendo este de unos 7 euros en tiendas no oficiales, aunque sea poco
común. Esto se debe principalmente a su margen de beneficio, investigación y desarrollo,
y el soporte técnico asociado a la marca Arduino. Aún así, cuando se compara con el
NodeMCU, el Arduino Nano Every no oficial es más económico por sus componentes más
simples. Si bien el espacio de memoria de programa es más reducido que el del ESP8266,
se pudo comprobar que la compilación del programa desarrollado en la anterior iteración,
con el toolkit específico para la placa Arduino Nano Every, ocupaba un 80 % del espacio
disponible.

Una de las características distintas al NodeMCU que hacen del Arduino Nano Every
una opción más interesante es que tiene varias interfaces UART disponibles. Esto simplifica
la implementación de la solución, ya que permitiría utilizar estas interfaces UART en lugar
de utilizar la librería SoftwareSerial. Además, utilizar comunicación serial hardware es
siempre más fiable que emularla mediante software. Por otro lado, este módulo trabaja
con 5V en sus distintos pines y requiere de un voltaje de alimentación de entre 7V y 21V,
por lo que para componentes como el SIM800L se debe reducir el voltaje de la señal de
trasmisión para evitar dañar el componente.

Inicialmente se asumió que el voltaje de trasmisión del resto de componentes sería
suficientemente alto como para que el Arduino Nano Every sea capaz de interpretar
correctamente la señal. Sin embargo, tras varias pruebas con el SIM800L se pudo observar
que las respuestas que este daba a distintos comandos AT contenían caracteres corruptos.
En las especificaciones del SIM800L se puede comprobar que el voltaje máximo del pin
de trasmisión es de 2.8V [10], mientras que según las especificaciones del ATmega4809
[14], para poder detectar correctamente la señal, requiere un voltaje mínimo de entrada
de 0.7 · V CC ≈ 3.5V , siendo VCC el voltaje con el que trabajan los pines, es decir,
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5V. La opción más fiable para resolver este problema es utilizar un “logic level shifter”
el cual permite la comunicación entre componentes que operan con diferentes voltajes
lógicos, adaptando las señales para que sean compatibles. Sin embargo, esto encarecería y
complicaría la nueva solución, por lo que finalmente se decidió descartar esta placa.

Sustitución de placa: Arduino Nano
Como segunda opción para reemplazar el NodeMCU, se consideró el Arduino Nano,

que utiliza el microcontrolador ATmega328p. Este es muy similar al Arduino Nano Every
(basado en el ATmega4809), con algunas diferencias clave: el ATmega328p cuenta con una
memoria flash de 32KB y una SRAM de 2KB. Además, el Arduino Nano suele encontrarse
por, aproximadamente, 1 euro en tiendas no oficiales. Los requisitos de alimentación y
voltaje de trabajo de los pines son los mismos que en el Arduino Nano Every, por lo que
tendremos que tenerlo en cuenta de la misma manera en el circuito nuevo del dispositivo.
En este caso las especificaciones del microcontrolador nos indican que el voltaje de entrada
mínimo requerido se encuentra en 0.6 · V CC ≈ 3V , siendo de nuevo VCC 5V, [15], por lo
que se asumió que esta vez no debería ser necesario un “logic level shifter” para hacerlo
funcionar. Esto es algo que se confirmó posteriormente al ver que la comunicación con el
SIM800L no devolvía respuestas con caracteres corruptos.

Como se puede ver, el Arduino Nano cuenta con mucho menos espacio de memoria
para el programa lo cual es un problema al utilizar varias librerías distintas para el
funcionamiento de la anterior iteración. Esto se puede comprobar compilando el programa
desarrollado en la anterior iteración con el toolkit para Arduino Nano. Esto indica el
porcentaje de espacio de memoria de programa ocupado por la compilación realizada, que
en primera instancia mostraba un valor del 124 %, lo que implica que se esta ocupando un
24 % extra del espacio disponible. Esto requeriría una reducción significativa del programa,
lo cual representa un desafío considerable dado que la mayoría de las librerías empleadas
son esenciales. Otra característica distinta con respecto al Arduino Nano Every es que
solo tiene una interfaz de comunicación UART, igual que en el caso del NodeMCU, lo cual
implica que se tendrá que seguir utilizando la librería de SoftwareSerial.

Si bien la trasmisión de datos hacia el Arduino Nano no debería ser un problema, como
ya se ha explicado, la trasmisión en el sentido contrario si podría dañar el componente
SIM800L, ya que en sus especificaciones se menciona que está pensado para voltajes de
entrada de datos de entre 2.5V y 2.8V. Esto requiere de una bajada de tensión del pin
que se utilizará como trasmisión en el Arduino Nano, mediante un puente de resistencias.
Este puente consiste en conectar dos resistencias: una resistencia R1 a la salida del pin
de trasmisión del Arduino de 5V y otra resistencia R2 a tierra, con la salida de 2.8V
tomada entre ambas. La relación para el divisor de voltaje se obtiene mediante la siguiente
ecuación:

Vout = Vin · R2

R1 + R2
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Utilizando una resistencia R1 de 10kΩ con la intención de obtener un voltaje de salida
Vout = 2.8V y con un voltaje de entrada de Vin = 5V , se puede despejar la segunda
resistencia, R2 ≈ 12.7kΩ. Siguiendo los valores de resistencia comerciales más comunes
lo más sencillo sería utilizar dos resistencias en serie para llegar a los 12.2kΩ, mediante
una resistencia de 10kΩ y otra de 2.2kΩ. Esto debería dar un valor de voltaje de salida
entre los 2.5V y 2.8V. Se puede revisar el esquema del circuito para el Arduino Nano en la
Figura 4.9 y el sistema montado sobre el que se realizaron pruebas en la Figura 4.10.

Figura 4.9: Esquema del sistema 3

Como vemos en el esquema de la Figura 4.9 se deben colocar las resistencias mencionadas
para evitar daños en el componente SIM800L. Hay que tener en cuenta que el Arduino
Nano, igual que el Arduino Nano Every, requiere de un voltaje mínimo de entrada de 7V
para su correcto funcionamiento, aunque este puede ser sustituido por la alimentación
dada por el puerto mini-usb. Sin embargo, para el sistema final independiente se requeriría
de algún método de bajada de tensión, ya que el SIM800L trabaja con voltajes entre 3.4V y
4.4V, siendo lo ideal 4V. Esto revela un factor en contra para la sustitución del NodeMCU
por un Arduino Nano, ya que el NodeMCU es capaz de trabajar independientemente con 5V
según sus especificaciones, lo cual hace más sencillo una bajada de tensión para el SIM800L.
Además, se llegó a comprobar que el NodeMCU es capaz de funcionar correctamente con
un voltaje de 4.2V al mantenerlo conectado a la fuente de alimentación regulable. Igual
que en el circuito de la iteración anterior, se recomienda el uso de un condensador y diodos
específicos para alimentar al SIM800L según su propia especificación.
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Figura 4.10: Imagen del prototipo 3

4.4. Resumen
Este capítulo ha profundizado en el diseño del dispositivo IoT, detallando el modelo

de diseño iterativo adoptado para su desarrollo, el cual permitió construir el sistema de
forma incremental mediante versiones sucesivas. Se han descrito las distintas fases de esta
evolución, comenzando con una primera iteración centrada en componentes esenciales
como la placa de desarrollo NodeMCU, un componente GPS y un sensor DHT11, que
permitirán el funcionamiento general del dispositivo bajo la premisa de una conexión a
red Wi-Fi. Además se define el formato de lo mensajes MQTT que se enviarán al servidor.
Posteriormente, se define la segunda iteración en la que se incorporó un módulo GPRS
(SIM800L) para asegurar la autonomía del dispositivo, eliminando así la necesidad de una
red Wi-Fi para su funcionamiento. En esta iteración se abordaron los distintos requisitos
de alimentación que añade el uso del nuevo componente presentado. Finalmente, la tercera
iteración exploró la sustitución de los distintos componentes para reducir la complejidad,
tamaño y coste de la solución anterior, proponiendo un diseño nuevo en el que se sustituye
la placa NodeMCU por la placa Arduino Nano. En conjunto, el capítulo ha cubierto los
detalles de diseño necesarios para llevar a cabo la siguiente fase de implementación, que
se define en el Capítulo 5, y que describe el código desarrollado para cada una de las
iteraciones ya presentadas.



5: Detalles de la implementación
software

En este capítulo se procede a describir detalles más específicos sobre la implementación
y el desarrollo del software para el dispostivo IoT. Igual que en el Capítulo 4, aquí
se explicarán las modificaciones realizadas a nivel de software en cada iteración del
desarrollo, junto con los detalles técnicos que se han tenido que considerar al añadir nuevos
componentes.

Para el desarrollo del software de este proyecto se ha utilizado a lo largo de todas
las iteraciones el entorno Arduino IDE [16], a pesar de que el principal microcontrolador
empleado, NodeMCU, no forme parte de la gama oficial de productos Arduino. Esta
decisión se debe a la amplia compatibilidad del IDE con diferentes placas de desarrollo,
así como a su entorno intuitivo, la facilidad para gestionar bibliotecas de terceros y la
extensa comunidad de soporte que ofrece. Además, su simplicidad para cargar programas
directamente a las placas y su integración con herramientas de depuración básicas como
el “Serial monitor” lo convierten en una opción práctica y eficiente para el desarrollo de
sistemas IoT.

El código se ha desarrollado en archivos con extensión .ino, comúnmente conocidos
como sketches. Estos archivos están escritos en un subconjunto simplificado de los lenguajes
de programación C y C++, adaptado específicamente para facilitar la programación
de microcontroladores en placas Arduino. Este tipo de archivos tienen una estructura
particular que consta de dos funciones principales en su ejecución: setup() y loop(). La
función setup() se ejecuta al iniciar el programa una sola vez y se utiliza para realizar la
configuración inicial del dispositivo, inicialización de variables y de comunicaciones seriales
y otros aspectos propios del inicio de una ejecución. Por otro lado, la función loop()
contiene la parte del código que se ejecutará repetidamente mientras el dispositivo este
encendido, funciona similar a un bucle while, aunque en este caso la condición es que el
dispositivo reciba corriente.

29
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El código desarrollado a lo largo del proyecto se puede encontrar en un repositorio de
GitHub que también se ha proporcionado en la contribución para las Jornadas Sarteco
[17].

5.1. Implementación de la primera iteración
En esta iteración se desarrollará desde cero el código, utilizando distintos ejemplos y

librerías. Por lo tanto en esta fase se incluyeron las siguientes funcionalidades:

Comunicación con el componente GPS y extracción de datos del mismo.

Comunicación con el sensor de temperatura y humedad, y extracción de datos del
mismo.

Encapsulado de los datos obtenidos en un formato JSON específico.

Conexión a internet vía Wi-Fi y envío de los datos mediante protocolo MQTT.

Para el desarrollo de esta iteración se han utilizado diversas librerías, algunas de
las cuales no están incluidas por defecto en el entorno de desarrollo Arduino IDE. No
obstante, pueden ser instaladas fácilmente mediante el Library Manager del propio IDE.
En ciertos casos, ha sido necesario obtener las librerías directamente desde sus repositorios
oficiales, e incluso modificar algunos de sus archivos internos para garantizar el correcto
funcionamiento del programa. A continuación, se detallan dichas librerías y los ajustes
realizados:

TinyGPSPlus en [18]: proporciona una interpretación comprensible y orientada a
objetos de las sentencias GPS (NMEA). NMEA es el formato estándar que utilizan
los dispositivos GPS para informar de la ubicación, la hora, la altitud, etc. Esta
librería nos permite acceder a distintos datos adicionales de posición como la altitud
o la velocidad, lo que nos permite cumplir con el requisito RF10.

SoftwareSerial en [19]: permite la comunicación serial en otros pines digitales,
replicando dicha funcionalidad mediante software. Cabe destacar que, aunque es
posible tener dos SoftwareSerials activos, solo uno de los dos podrá recibir datos
al mismo tiempo, esto se observó durante el desarrollo de la segunda iteración,
cuando tras varios problemas durante la implementación se volvió a consultar la
documentación en profundidad.

ArduinoJson en [20]: permite la serialización y deserialización de datos JSON en
proyectos Arduino de manera eficiente.

Crypto en [21]: librería genérica con múltiples funcionalidades de criptografía para
proyectos Arduino. En este proyecto nos centraremos en la parte correspondiente al
algoritmo SHA256. Si bien esta librería aparece en el Library Manager del IDE de
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Arduino, este método de instalación ha dado problemas varias veces y se ha tenido
que instalar manualmente a partir de su repositorio oficial.

ESP8266Wi-Fi en [22]: permite acceder y utilizar la funcionalidad de conexión
Wi-Fi que posee el chip ESP8266. Para instalarlo se debe primero instalar el core de
ESP8266, las instrucciones de instalación se pueden encontrar en [22].

Adafruit MQTT Library en [23]: proporciona soporte para la conexión y envío
de datos mediante protocolo MQTT a los servidores de Adafruit. Los mensajes
enviados se pueden comprobar en la propia página de Adafruit, siempre y cuando
se disponga de una cuenta. Esta librería tiene una limitación en el envío de datos
MQTT, permitiendo paquetes de no más de 256 bytes. Sin embargo, los mensajes
que se envían en nuestro caso sobrepasan fácilmente este límite, por lo que se ha
optado por cambiar el tamaño máximo de paquetes de envío, modificando el código
interno de la librería. A mayores se han modificado algunas funciones de la misma
para poder consultar el tamaño de los paquetes justo antes del envío, permitiendo
así tomar mediciones durante las pruebas.

DHT sensor library en [24]: permite leer fácilmente la temperatura y humedad
de los sensores DHT11, DHT21 y DHT22. En nuestro caso el sensor utilizado es un
DHT11, por lo que se debe especificar en el código el typo de sensor mediante la
directiva de preprocesador #define DHTTYPE DHT11.

En la Figura 5.11 se puede apreciar un diagrama de flujo del código desarrollado para
esta iteración. En el se describe el flujo habitual de un sketch de Arduino, distinguiendo
entra la función setup() y la función loop(). Como se puede observar al encender el
dispositivo se procede a inicializar la comunicación con el componente GPS mediante
SoftwareSerial, la conexión con la red Wi-Fi previamente especificada y el sensor de
temperatura y humedad. A partir de este punto el dispositivo irá comprobando si hay
datos GPS que decodificar y guardarlos, de esta manera se va creando el mensaje que
se enviará al servidor MQTT. Entre guardados de datos se introduce una espera de una
cantidad de tiempo ajustable, para así recopilar datos en distintos momentos. Finalmente,
cuando el mensaje está completado se realiza la conexión al servidor MQTT de Adafruit,
se serializa el mensaje en formato JSON y se publica.

Dificultades encontradas
Durante el desarrollo de esta primera iteración se trató por primera vez con muchos

de los componentes ya descritos. Esto significa que durante esta iteración se tuvo que
soldar por primera vez muchos de estos componentes, ya que no todos los componentes se
venden con sus respectivos pines ya soldados. Si bien soldar parece una tarea trivial, es
importante realizar una buena soldadura de los pines, ya que sino no recibirán corriente o
mandarán y recibirán información adecuadamente. Específicamente el módulo GPS GY
NEO 6MV2 tuvo que ser soldado y revisado en repetidas ocasiones, ya que debido a malas
soldaduras, no recibía corriente e incluso no era capaz de recibir y trasmitir información.
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Figura 5.11: Diagrama de flujo de la iteración 1

Como ya se explicó, el led interno puede indicarnos si está recibiendo corriente y si está
recibiendo señal y trasmitiendo información por su pin de trasmisión, TX.

Si no se está seguro de si el componente GPS está enviando información por su pin
de trasmisión, se puede prescindir de la librería anteriormente mencionada e imprimir
directamente la información que reciba el NodeMCU. Sin embargo, en este caso se mostrarán
datos en formato NMEA, mensajes que por si mismos pueden ser difíciles de interpretar,
pero que puede indicarnos qué está ocurriendo con nuestros componente [25]. Este detalle
ayudó a comprender a lo largo del desarrollo que el componente GPS tiene una sensibilidad
un tanto alta, con lo que en ocasiones puede tardar hasta 15 minutos empezar a trasmitir
datos, aunque pueda parecer que no está funcionando correctamente.

Como ya se ha comentado, la librería MQTT de Adafruit tiene una limitación en el
tamaño de los paquetes que se pueden enviar mediante dicho protocolo. Esto es algo que
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no se menciona en la documentación de la librería y que también dió problemas a lo
largo del desarrollo, ya que comprobando los mensajes enviados al servidor de Adafruit
se pudo comprobar que los JSONs llegaban incompletos. Sin embargo, se pudo descubrir
revisando el código interno de la librería, el cual, no solo se modificó para poder enviar
mensajes MQTT más grandes, sino también para consultar el número de bytes reales que
se enviaban.

5.2. Implementación de la segunda iteración
Continuando con el desarrollo obtenido en la primera iteración se plantea la implemen-

tación del uso de un tipo de conexión a internet distinto, de tal manera que el dispositivo
sea independiente de la existencia o no de una red Wi-Fi disponible, cumpliendo así con
el requisito RF09. Para ello se ha dispuesto de un componente que permite la conexión
a internet mediante la red móvil, de tal manera que el dispositivo solo requiera de una
tarjeta de telefonía móvil habilitada por un proveedor y cobertura.

Si bien la intención en esta iteración es reutilizar la mayor cantidad de código desarro-
llada en la anterior iteración, por compatibilidad con el componente SIM800L se ha tenido
que desarrollar de nuevo el código correspondiente a la conexión a internet y envío de los
datos mediante protocolo MQTT. Con ello se ha prescindido de las librerías: Adafruit
MQTT Library ya que no se pudo compatibilizar con el SIM800L, y ESP8266Wi-Fi
Library ya que solo era necesaria para la conexión a redes Wi-Fi. Por otro lado, para
implementar la funcionalidad comentada se ha utilizado las siguientes librerías:

TinyGSM en [26]: proporciona una manera comprensible y orientada a objetos
de acceder a las distintas funcionalidades de los módulos GSM/GPRS, a las que
normalmente se acceden mediante comandos AT. Principalmente, se ha utilizado
para realizar la conexión a la red móvil y con ello a internet, pudiendo comprobar
cómodamente y en cualquier momento el estado de dicha conexión.

PubSubClient en [27]: proporciona soporte para realizar conexiones a distintos
servidores MQTT y enviar datos mediante dicho protocolo. Se utilizó como sustituto
de la librería Adafruit MQTT Library, ya que si bien funcionan de manera
similar, esta última fue creada para conexión a internet vía Wi-Fi o Ethernet, por
lo que no se consiguió hacer funciona con la red GPRS. Esta librería también tiene
una limitación de envío de datos MQTT de 256 bytes, por lo que de nuevo se ha
modificado el código interno de la librería para aumentar este limite. También se
han modificado funciones internas de la librería para poder obtener el tamaño de
paquete que se envía como resultado de la función publish(), lo que permite tomar
mediciones de consumos de datos durante las pruebas. Los archivos modificados de
esta librería se pueden encontrar en una carpeta del repositorio del proyecto en [17].

Estas modificaciones en la librerías utilizadas no solo implicó cambiar las funciones
de comunicación con el servidor MQTT, sino que se tuvo que optar por un nuevo broker
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MQTT, ya que la librería PubSubClient no es la más adecuada para conectar con los
servidores Adafruit. Por ello, se optó por broker MQTT de Mosquitto [28], el cual dispone
de un servidor de pruebas disponible de manera gratuita [29], aunque se podrían plantear
otras opciones tanto gratuitas como de pago distintas a Mosquitto.

Como mejora adicional de esta iteración se planteó una modificación del código que
en principio podría disminuir el consumo eléctrico general del dispositivo, aumentando
así la autonomía del mismo. Para ello se exploraron las distintas opciones de puesta en
reposo o sleep modes de los componentes del sistema. En muchos casos los componentes
se desarrollan con una opción que les permite ponerse en un estado de espera en el que
su actividad de reduce permitiendo así disminuir el consumo eléctrico. En el caso de
nuestro sistema los únicos componentes que tiene un consumo eléctrico suficientemente
alto como para considerar su puesta en reposo son tres: el módulo GPS, el módulo GPRS
y el NodeMCU (placa de desarrollo del dispositivo). Analizando estos tres componentes y
su contribución en el funcionamiento del sistema se pudo concluir que tanto el módulo
GPS como el módulo GPRS no se pueden poner en estado de reposo en ningún momento
de su funcionamiento.

Por un lado, el módulo GPS tiene el defecto de tardar entre 5 y 15 minutos en captar
inicialmente la señal de suficientes satélites para poder empezar a enviar datos de posición.
Por lo tanto, si se privase de corriente en cualquier momento a este componente o se
activase algún modo de ahorro de energía podría perder su señal, lo que podría causar un
retraso en la recolección de datos del dispositivo e incluso en el envío de los mismos. Por
otro lado, el módulo GPRS tiene un consumo de energía típico más bajo (por debajo de
los 20mA), aunque en los momentos de reconexión y envío de datos su consumo se puede
disparar durante unos pocos segundos. El puerto serial del SIM800L se desactiva mientras
cualquiera de los dos modos de bajo consumo del módulo estén activados, por lo que no se
puede realizar reconexiones o envíos de datos de ningún tipo con estos modos de reposo
activados. Se puede consultar más información sobre estos modos en el DataSheet del
SIM800L que se aporta en [10]. Tampoco interesa activar este modo en los momentos de
recolección de datos, ya que si se pierde la conexión, en la fase de envío se deberá reconectar
a la red GPRS y al servidor MQTT. Esta tarea en condiciones normales puede tardar
unos pocos segundos, pero en algunos casos puede llevar más tiempo debido a repetidos
intentos fallidos de conexión, lo que implicaría unos picos de consumo que durarían más
tiempo de lo habitual.

Por su parte el NodeMCU también dispone de varios modos de reposo o “soluciones de
bajo consumo” [30]. En este caso las más utilizadas son tres y algunas engloban a otras:

Modem-sleep: esta configuración lo único que hace es desactivar la funcionalidad
de conexión a redes Wi-Fi con la que cuenta el NodeMCU. Si bien esta configuración
no afecta al resto de funciones del microcontrolador, si que reduce levemente el
consumo típico de la placa.

Light-sleep: en este caso no solo se desactiva la funcionalidad de conexión a redes
Wi-Fi, sino que también se desactiva el reloj interno del sistema del NodeMCU y
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el procesador interno se queda en un estado de suspensión. Esto resulta en una
reducción del consumo mucho mayor que en el Modem-sleep mode.

Deep-sleep: este último modo es más brusco, ya que en vez de desactivar funciona-
lidades, desactiva el procesador interno por completo, con lo que el programa y la
memoria guardada se resetean. Como consecuencia este modo es el que más reduce
el consumo del NodeMCU.

Estos modos de reposo se pueden activar durante un periodo de tiempo a partir del cual
el NodeMCU vuelve a su modo habitual de trabajo, por lo que se podría considerar un
sustitutivo de la instrucción delay(). Sin embargo, en el caso del modo Deep-sleep, el
NodeMCU resetea su estado, comenzando de nuevo el programa y borrando los datos
guardados en memoria, lo cual hace que los datos de posición recolectados se pierda. Esto
hace que el modo Deep-sleep no sea adecuado para el sistema que se está desarrollando.

La implementación del modo Light-sleep habitualmente se realiza utilizando un pin
como entrada para la señal externa que despertará al dispositivo, ya que en este modo
el procesador se encuentra en suspensión. Si bien se encontraron ejemplos de código no
oficiales que supuestamente despertaban al dispositivo tras un tiempo utilizando la función
delay(), al probarlos se observó que el NodeMCU hacía la espera de tiempo programada,
pero el consumo energético no disminuía. Por lo tanto, se descartó el modo Light-sleep, ya
que no parece funcionar sin utilizar un método externo al dispositivo para salir de dicho
modo.

Por último, para activar el modo Modem-sleep solo se necesita llamar a una función
interna del ESP8266, y dado que en esta iteración no se utiliza la conexión a redes Wi-Fi,
no tiene sentido utilizar este modo, ya que por defecto el módem ya parece estar apagado.
Es por esto que finalmente no se vió adecuado utilizar ninguno de los modos de reposo
disponibles.

El flujo de código final de esta iteración es muy similar al representado en la anterior
iteración en la Figura 5.11, aunque hay algunas diferencias que destacar. En primer lugar
durante la función de setup() ya no se conecta a una red Wi-Fi, ya que ahora se utiliza
el módulo GPRS para conectarse a internet. Además, al estar utilizando un módulo
GPRS, ya no se puede obtener la dirección MAC, ya que esta dirección es exclusiva de
dispositivos red, pero un módulo GPRS es una tecnología de red móvil. En su lugar se
puede obtener una dirección IMEI, código numérico de 15 dígitos normalmente único
que sirve para identificar un dispositivo móvil. Otro cambio con respecto a la anterior
iteración se encuentra en el momento del envío de datos, el cual ahora se realiza mediante
el componente GPRS. Para poder asegurar el envío se debe comprobar que el componente
SIM800L está conectado a la red, para ello se debe comprobar por orden: si se ha registrado
en la red móvil y ha encontrado un operador válido (isNetworkConnected()), si se ha
conectado al servicio GPRS (isGprsConnected()), y por último si la conexión al servidor
MQTT está operativa. Si alguna de dichas conexiones no está habilitada, se realizará una
reconexión de los servicios necesarios antes del envío de los datos. Esto permite mantener
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los datos almacenados hasta tener una conexión estable para el envío de los mismos,
cumpliendo así con el requisito RF03.

Dificultades encontradas
En esta iteración se añadió un nuevo componente, que como en la iteración anterior,

se tuvo que soldar. Durante el desarrollo de esta iteración se tuvo que utilizar distintos
componentes SIM800L, por problemas con la soldadura y porque uno de ellos resultó
defectuoso e incapaz de conectarse a la red móvil, a pesar de que todo parecía correctamente
soldado. Todo esto se puede comprobar en gran parte atendiendo al led acoplado al
componente, el cual debería parpadear cada segundo si recibe corriente, y tras un par de
minutos, si tiene correctamente insertada una tarjeta SIM y la antena está bien soldada
empezará a parpadear cada 3 segundos. Sin embargo, la posición en la que debe introducirse
la tarjeta SIM no es intuitiva, aunque venga indicada de manera muy sutil en la carcasa
del módulo, por lo que es fácil introducirla erróneamente.

Para la comunicación con los componentes GPS y GPRS se utiliza el protocolo UART de
comunicación serial. En la primera iteración se utilizó la librería SoftwareSerial para emular
una interfaz UART y en esta iteración originalmente se pensó utilizar la misma librería para
emular dos interfaces de comunicación serial distintas. Sin embargo, esta opción resultó
funcionar de manera inestable, ya que cuando se se habilitan dos SoftwareSerial distintos,
solo uno de ellos puede recibir datos al mismo tiempo. Por ello se optó por mantener un
SoftwareSerial para el componente GPRS y utilizar la interfaz UART hardware del propio
NodeMCU para recibir los datos del componente GPS.

5.3. Implementación de la tercera iteración
Si bien se realizaron diversas pruebas sobre el Arduino Nano Every, no se pudo hacer

funcionar este sin un “logic level shifter”, por lo que su uso se descartó en la fase de diseño
de la tercera iteración. Continuando con la sustitución del NodeMCU por el Arduino
Nano, se realizaron distintas pruebas que mostraron buena compatibilidad del dispositivo
con los componentes GPS y DHT11 y las librerías que estos requieren. Sin embargo, se
hallaron dificultades para realizar la comunicación entre el Arduino Nano y el componente
SIM800L, que se detallan a continuación.

Mediante el uso de la librería SoftwareSerial se pudo realizar la comunicación por
prtocolo UART entre SIM800L y Arudino Nano, observando cómo los comandos AT se
enviaban correctamente al componente GPRS y este enviaban respuestas sin caracteres
corruptos. Esto indicaba que los voltajes de trasmisión y recepción eran correctos en ambos
sentidos, ya que de otra manera se obtendría los mismos resultados que para el Arduino
Nano Every. Sin embargo, utilizando las librerías TinyGSM y PubSubClient de la misma
manera que en la iteración anterior, se pudo observar que los mensajes MQTT nunca
llegaban al servidor.



Detalles de la implementación software 37

La librería TinyGSM cuenta con una opción de debug, que mediante el uso de la
librería StreamDebugger [31], permite obtener retroalimentación por el monitor serial
sobre los distintos comandos AT que se envían y las respuestas obtenidas. Con ello se
pudo observar que los comandos se enviaban correctamente, aunque en algunos casos
eran respondidos con mensajes de error o con una tardanza notable, siendo la mayoría de
respuestas de error remediadas mediante el reenvío del mismo comando sucesivas veces.
Sin embargo, el mayor punto de fallo se encontraba en el envío del comando AT+CIPSEND,
comando que se utiliza para enviar un paquete de datos mediante TCP o UDP según el
manual de comandos AT [13]. Las librerías utilizadas esperan como respuesta el carácter
“>”, que indica que se puede enviar el contenido del paquete o mensaje. Sin embargo, la
respuesta esperada no parecía llegar a tiempo y el programa cerraba la conexión TCP y
volvía a intentar todos los comandos continuamente.

Se realizaron múltiples pruebas con un código en el que se trataba de enviar mensajes
por TCP a un servidor que escuchaba en un puerto específico, para lo cual se tuvo que
abrir dicho puerto a la red externa. Estas pruebas se realizaron prescindiendo de la librería
PubSubClient, dado que utilizarla para este propósito era inviable. Con ello, se pudo
comprobar que efectivamente el carácter “>” de respuesta era enviado por el SIM800L,
aunque a menudo con un retraso en el tiempo bastante grande, lo que en muchos casos
hacía que el programa diese por fallido el envío y volviera a intentarlo una y otra vez.
Esto forzó a prescindir completamente de la librería PubSubClient para la implementación
de esta iteración. Sin embargo, no se encontraron otras librerías de mensajería MQTT
que fueran compatibles con Arduino Nano, el SIM800L y la librería TinyGSM, ya que en
principio PubSubClient es la única que mantiene compatibilidad con esta última.

Solución obtenida
Tomando como punto de partida el código desarrollado en la segunda iteración, se

realizaron modificaciones para enviar los datos recolectados por el componente GPS a un
servidor TCP en lugar de al broker MQTT utilizado hasta ahora. Como ya se comentó,
la compilación del código de la segunda iteración, con el toolkit específico de Arduino
Nano, ocupa un 24 % por encima del espacio de memoria de programa. Sin embargo, al
prescindir de la librería PubSubClient este pasó de ocupar un 24 % por encima a ocupar
un 8 % por encima del espacio de memoria de programa, por lo tanto, se requirió de
más optimizaciones para reducir aún más el espacio de memoria de programa ocupado.
Analizando las librerías utilizadas, se pudo concluir que la librería ArduinoJson podía
ser sustituida por una implementación manual que se encargase de crear únicamente la
estructura del JSON específica para esta solución, en lugar de permitir la serialización y
deserialización de cualquier estructura JSON. Esta implementación se realizó mediante la
función snprintf() que permite formatear y guardar texto en un array de caracteres de
forma segura, controlando su tamaño máximo para evitar desbordamientos, de tal manera
que se evite el uso de la clase String.

Como resultado tras prescindir de las librerías ArduinoJson y PubSubClient, y
otras optimizaciones realizadas sobre el código, se pudo reducir el espacio de memoria de
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programa ocupado de 124 % a 96 %, siendo posible una reducción aún mayor al prescindir de
los mensajes de retroalimentación. Además, se desarrollo un script de python que permitiese
recibir los mensajes TCP enviados por el dispositivo, encapsulando y redirigiendo el mensaje
al broker MQTT deseado. Este script utiliza la librería paho-mqtt para reenviar el mensaje
por MQTT al broker de Mosquitto, abriendo primero un puerto de escucha TCP, para así
poder recibir los mensajes. El código desarrollado en esta iteración se puede encontrar en
el repositorio del proyecto [17].

Si bien con la solución planteada se pudieron recibir mensajes al servidor MQTT, se
pudo observar que los retrasos afectaban bastante al buen funcionamiento del sistema.
Finalmente, debido a los retrasos en los envíos, la complejidad añadida a la nueva solución
que ahora requería de un servidor adicional para el reenvío de mensajes, y otros factores
negativos detallados en el diseño de la implementación, se decidió descartar la sustitución
del NodeMCU por el Arduino Nano como mejora del dispositivo. Esto nos lleva a considerar
el dispositivo obtenido en la segunda iteración como la mejor opción que cumple con los
requisitos propuestos inicialmente.

5.4. Resumen
Este capítulo ha descrito en detalle la implementación software del dispositivo IoT,

explicando su desarrollo a través de las sucesivas iteraciones del proyecto. Se ha abordado la
programación de la primera iteración, centrada en el esqueleto principal del funcionamiento
del dispositivo, incluyendo el uso de librerías clave como TinyGPS++ y Adafruit MQTT
necesarias para la interpretación de los datos GPS y la conexión a un servidor MQTT
de Adafruit, respectivamente. Posteriormente, se detallaron los ajustes necesarios en el
software para la segunda iteración, que incorporó la conectividad GPRS mediante el módulo
SIM800L, lo que obligó a utilizar distintas librerías para manejar el nuevo componente y
realizar una conexión a un nuevo servidor MQTT, esta vez de Mosquitto. Finalmente, se
explicaron las múltiples adaptaciones de software necesarias para la tercera iteración, que
involucró el cambio de placa por la de Arduino Nano, lo que concluyó con la elección del
dispositivo desarrollado en la segunda iteración como solución final de este proyecto. Con
esto todo la parte relativa al desarrollo del dispositivo queda cubierta, siendo necesaria
una última fase de pruebas descritas en el Capítulo 6, en dónde se exponen distintas
conclusiones sobre los casos probados sobre las distintas iteraciones.



6: Pruebas realizadas

Como parte del desarrollo del dispositivo se han diseñado una serie de validaciones,
casos de prueba y métodos de comprobación, para observar el correcto funcionamiento del
sistema creado. Para estas pruebas se han utilizado dos brokers MQTT distintos: para
la primera iteración se ha utilizado el servicio MQTT gratuito de Adafruit, el cual te
permite consultar los mensajes MQTT recibidos en tiempo real a través de su web [32]; y
para las siguientes iteraciones Eclipse Mosquitto, que tiene varios feed o flujos de datos
para realizar pruebas y se puede instalar fácilmente con Docker [28]. Estas dos opciones
permiten consultar los mensajes MQTT que se envíen con el dispositivo de manera sencilla
y rápida.

Estas pruebas no solo tienen el objetivo de comprobar el buen funcionamiento del
dispositivo, sino también poder analizar los requisitos de consumo eléctrico y de ancho
de banda necesarios. De esta manera se podría decidir que tipo de baterías y contrato de
telefonía móvil serían más adecuados para su puesta en producción.

6.1. Verificación de mensajes MQTT
Con la intención de comprobar y validar que los mensajes MQTT enviados por el

dispositivo son accesibles y su contenido correcto, se ha diseñado un código en python que
se suscribe al feed correspondiente para recibir nuevos datos en tiempo real. Dependiendo
de la iteración se conectará a un broker u otro como ya se ha explicado, aunque en el caso
de Adafruit se pueden comprobar los mensajes en su propia web, y en el caso de Mosquitto
se puede comprobar instalando la propia api y ejecutando un comando para consultar el
feed de pruebas disponible de manera gratuita [29].

Dado que se utilizan dos brokers distintos, se han creado dos scripts de python distintos
con ligeras diferencias, ya que las comprobaciones de los mensajes son las mismas en ambos
casos. En ambos scripts se utiliza la misma librería para conectar a servidores MQTT,
paho-mqtt, el cual además de proporcionar una implementación del protocolo MQTT
para python, también nos permite conectarnos a prácticamente cualquier broker MQTT
mediante un cliente MQTT. La única diferencia es que en un script se debe proporcionar

39
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el usuario y clave de Adafruit y en el caso de Mosquitto no es necesario, ya que se utiliza
un feed para pruebas público. Para comprobar la veracidad del hash SHA-256 se utiliza la
librería hashlib de python, que contiene diversos algoritmos de hash. Ambos scripts se
pueden encontrar en una de las carpetas del repositorio del proyecto [17].

Este script de python se conecta en tiempo real al broker correspondiente y comprueba
que el contenido del mensaje cumpla lo siguiente:

El JSON está completo y tiene una estructura de JSON correcta.

El hash SHA-256 se ha generado correctamente a partir del contenido del JSON con
el parámetro de hash vacío.

Las instancias de datos guardadas tienen timestamps consecutivos y correctos con
respecto a la fecha actual.

Las mediciones de cada instancia de datos no están vacías.

Esta verificación de los mensajes MQTT es fundamental para asegurar la validez de los
mensajes MQTT, y a lo largo del desarrollo fue especialmente útil para detectar algunos
fallos y problemas.

6.2. Casos de prueba
Dado que los tiempos entre envíos y recogidas de datos son configurables, cumpliendo

con el requisito RF05, y tienen un gran impacto en el consumo eléctrico y de datos del
dispositivo, se han diseñado tres casos de prueba distintos cuyo interés depende de la
situación del dispositivo.

Caso 1: se recogen datos del componente GPS cada 10 segundos y se envía el
conjunto de datos cada minuto, con lo que se envían mensajes que contienen 6
instancias distintas de datos. Este caso tiene unos tiempos muy cortos de recogidas,
con lo que puede ser especialmente interesante para los casos en los que el dispositivo
esté en movimiento.

Caso 2: se recogen datos del componente GPS cada minuto y se envía el conjunto
de datos cada 10 minutos, con lo que se envían mensajes que contienen 10 instancias
distintas de datos. En este caso se plantea unos tiempos más normales entre recogidas,
lo que lo hace ideal para un control habitual de los residuos.

Caso 3: se recogen datos del componente GPS cada 10 minutos y se envía el conjunto
de datos cada hora, con lo que se envían mensajes que contienen 6 instancias distintas
de datos. Los tiempos de entre recogidas en este caso son mucho más largos, con lo
que está más pensada para los casos en los que el dispositivo se encuentre parado
por varias horas.
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Como se ha explicado cada uno de estos casos presenta una variabilidad que se
ajusta mejor a distintos supuestos de la trazabilidad de residuos, permitiendo elegir
así la configuración más adecuada. Cabe destacar que a nivel de implementación estas
configuraciones solo requieren cambiar el valor de dos variables que marcan el tiempo
entre recogidas de datos y el número de instancias necesarias para poder enviar el mensaje
MQTT, por lo que se podría cambiar entre casos en tiempo de ejecución.

6.3. Resultados obtenidos
Para cada uno de los casos anteriormente planteados se han realizado una serie de

pruebas en un ambiente controlado y con una fuente de alimentación en la que se muestra
el voltaje del circuito y los amperios de consumo instantáneo. De la misma manera, gracias
a las modificaciones en las librerías de conexión MQTT utilizadas, se puede consultar el
tamaño de los paquetes enviados, de tal manera que se pueda abstraer de ello el consumo
de datos del dispositivo.

Para las mediciones de consumo de corriente se han tomado distintas mediciones en el
tiempo de recogida de datos, que en cada caso difiere en longitud, y por otro lado en el
tiempo de envío de datos, que por motivos de posibles reconexiones se ha calculado que en
todos los casos ronda entre los 5 y 15 segundos. Esto se ha decidido realizar así, porque
el consumo en tiempo de recogida de datos es mucho menor a los picos de consumo que
se obtienen en los momentos de envío de datos. Por lo tanto, se ha decidido dividir los
resultados primero por caso y fase (recogida y envío), y posteriormente dar un resumen de
mediciones para cada caso, con la intención de poder elegir un caso de uso dependiendo
de la situación.

Durante la fase de recogida se tomaron distintas medidas cada poco tiempo, observando
un consumo relativamente estable casi todo el tiempo, por lo que se realizó una media de
las mediciones tomadas para obtener el consumo promedio. Sin embargo, en el caso del
envío de datos es un poco más complicado, ya que se observó que al principio de esta fase
se mantenía estable en una medida durante unos 7 segundos y después tenía un pico de
consumo instantáneo mucho mayor durante 3 segundos. Con ello se decidió calcular una
media ponderada en función del tiempo que duraban los distintos rangos de medidas, para
poder obtener una medida fiable del consumo promedio. La fórmula utilizada se muestra a
continuación:

Cpromedio =
(

∑n

i=0 C1,i

n
· t1) + (

∑n

i=0 C2,i

n
· t2)

(t1 + t2)
,

donde C1,i son las mediciones tomadas en el primer tramo de tiempo t1 y, los C2,i son las
mediciones tomadas en el segundo tramo de tiempo t2. De la misma manera se utilizó una
media ponderada para calcular el consumo promedio en el resumen por caso, utilizando
los consumos promedios de la fase de envío y recogida:
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Cpromedio = (Crecogida · tr) + (Cenvio · te)
(tr + te)

.

En este caso tenemos que Crecogida es el consumo promedio de la fase de recogida que
tiene una duración tr, y Cenvio es el consumo promedio de la fase de envío que tiene una
duración te.

Pruebas Segunda iteración
En la Tabla 6.9 se puede observar un resumen del consumo de datos, teniendo en

cuenta un promedio de tamaño de paquete para cada caso. Como es obvio el tercer caso
es el que menor consumo de datos tendría a lo largo del tiempo, ya que es el que realiza
menos envíos a lo largo del tiempo. Se puede observar que siendo el Caso 1 el más extremo,
y manteniendo el dispositivo activo las 24 horas del día, un contrato con el proveedor de
50MB al mes sería más que suficiente para cubrir las necesidades de este, lo cual es mucho
menos que las ofertas que se suelen publicitar hoy en día. Con esto se podría concluir que
el consumo de datos no parece ser un problema.

Caso de prueba Tamaño por envío Bytes/hora
Caso 1 910 54600
Caso 2 1404 8424
Caso 3 909 909

Tabla 6.9: Tabla de consumo de datos para los casos de prueba

En la Tabla 6.10 se muestra el consumo eléctrico para cada caso y fase de un ciclo,
calculado según las explicaciones anteriores. Nótese que para el promedio de consumo en
fases de recogida se revisó el consumo instantáneo a lo largo de varios ciclos en cada caso
tomando del orden de 5 mediciones por ciclo, aunque se revisó de manera constante la
fuente de alimentación para anotar cómo de estable era el consumo instantáneo. Si bien
en los Casos 1 y 2, sí se llegó a tomar anotaciones de por lo menos 5 ciclos, en el Caso
3 solo se anotaron medidas de 3 ciclos consecutivos, ya que más ciclos implicaría probar
durante muchas horas el sistema. Se pudo observar en los Casos 2 y 3 una estabilidad
mucho mayor en el consumo instantáneo de la fase de recogida de datos que en el Caso 1.
Esto puede tener sentido, ya que en el Caso 1 las esperas duraban 10 segundos, por lo que
el procesador estaba mucho más tiempo trabajando que en el resto de casos probados. Por
otro lado, las mediciones en las fases de envío fueron muy inestables dando en ocasiones
picos de 350mA y en otros ciclos llegando solo a los 150mA de pico, lo cual explica las
diferencias entre los casos de prueba, cuando deberían tener mediciones similares para las
fases de envío. Cabe destacar que este suceso es algo normal, ya que el consumo por parte
del SIM800L en momento de envío de datos depende mucho del tráfico de red de dicho
momento, por lo que es un tanto impredecible.
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Caso Fase Duración (seg) Corriente Pico (mA) Consumo medio del ciclo (mA)
1 Recogida 60 100 78,60
2 Recogida 600 90 76,00
3 Recogida 3600 80 73,33
1 Envío 10 350 146,38
2 Envío 10 330 154,50
3 Envío 10 350 160,99

Tabla 6.10: Tabla de consumo eléctrico para los casos de prueba y sus fases

En la Tabla 6.11 se recogen los datos para cada caso, de donde se pueden sacar
conclusiones más interesantes sobre el consumo eléctrico general. Como era de esperar, al
realizar menos envío, el consumo promedio del Caso 3 es el menor de todos, aunque no
mucho menor al valor del consumo del Caso 2. También cabe destacar que en todos los
casos el consumo al día entra dentro de lo que podría soportar una pila alcalina AA, si no
tenemos en cuenta las necesidad de Voltaje, aunque teniendo en cuenta las necesidad de
voltaje necesitaríamos tres pilas alcalinas AA colocadas en serie. Pero la cifra de consumo
nos indica que cumplir con el requisito RNF01 sería factible con la fuente de alimentación
adecuada. La configuración del dispositivo para el Caso 3 junto con la elección de los
componentes ya mencionados nos permite satisfacer también el requisito RNF04.

Caso Duración del ciclo (seg) Consumo medio del ciclo (mA) Consumo al día (mA/h)
1 70 88,28 2.118,72
2 610 77,29 1.854,96
3 3610 73,57 1.765,68

Tabla 6.11: Tabla de consumo eléctrico para los casos de prueba

Pruebas Tercera iteración
Durante el desarrollo de la tercera iteración se realizaron múltiples pruebas para

determinar el grado de fiabilidad del sistema, ya que como se ha comentado previamente
este fallaba a menudo a la hora de realizar el envío de los datos. Esto no fue necesario en
iteraciones anteriores, ya que en las pruebas realizadas se pudo observar envíos exitosos en
la gran mayoría de los intentos de envío. La estructura del código de la solución permite
repetir los intentos de envío hasta que alguno de ellos resulte exitoso. Se fijó el Caso 1
como prueba para observar la fiabilidad del sistema, ya que en los tres casos el tiempo
entre intentos de envío es el mismo. Con ello se puso en marcha el sistema durante un
tiempo prolongado con lo que se pudo comprobar que de media, 1 de cada 15 intentos de
envío era exitoso.

No se realizaron mediciones de consumo eléctrico exhaustivas para esta iteración, ya
que el Arduino Nano requiere de 7V de corriente mínima para su correcto funcionamiento
y esto requirió de un conversor de corriente DC-DC para bajarla a 4V para el SIM800L,
y el uso de este aumentó el consumo de corriente general. No se realizaron más pruebas
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para obtener las métricas anteriormente expuestas, ya que el dispositivo desarrollado en
esta iteración se consideró peor que el obtenido en la segunda iteración.

6.4. Resumen
En este capítulo se ha documentado las pruebas realizadas para validar el funciona-

miento integral del dispositivo IoT desarrollado. En primer lugar se han detallado los
métodos de verificación implementados, que han permitido comprobar la integridad de los
mensajes MQTT enviados por el dispositivo. Se han presentado los casos de prueba, sobre
los que se han tomado métricas específicas que nos permiten analizar el rendimiento de los
distintos componentes utilizados, como medidas de consumo de datos enviados por la red y
el consumo eléctrico general del dispositivo. Esto permitió analizar aspectos cruciales como
la autonomía energética del dispositivo. También se detalla las comprobaciones realizadas
sobre la frecuencia de fallo en los envíos de mensajes, que en el caso del dispositivo
desarrollado en la tercera iteración fue bastante alta. Los resultados de estas pruebas han
permitido verificar la correcta integración de los componentes y la fiabilidad del sistema
en su conjunto, lo que nos lleva a las conclusiones y posibles líneas futuras de desarrollo
detalladas en el Capítulo 7.



7: Conclusiones y Líneas de trabajo
futuras

En este trabajo se ha desarrollado un sistema adecuado para la trazabilidad de residuos
mediante el uso de tecnologías IoT y se ha documentado todo el proceso e información
necesaria para la fabricación del mismo. Además, como parte del trabajo realizado se ha
aportado esta solución para una contribución en las Jornadas Sarteco del año 2025 [5], en
el que se presenta un sistema para la trazabilidad de residuos basado en la solución IoT
propuesta en este trabajo y un servidor blockchain para la recepción de los datos.

El trabajo desarrollado en el marco de este proyecto ha sido el siguiente:

Se ha desarrollado una solución fiable y de bajo coste que cumple con los requisitos
propuestos para la trazabilidad de residuos. Esta propuesta garantiza la capacidad
de monitorizar la ubicación y las condiciones ambientales de los residuos en tiempo
real.

Se ha logrado reducir notoriamente el precio general de la propuesta mediante el uso
de componentes electrónicos de bajo coste. Aunque la solución se basa en el concepto
de dispositivos “suicida” o desechables, la minimización de los costes de hardware
hace que esta aproximación sea viable y sostenible para despliegues a gran escala en
el contexto de la trazabilidad.

Se han explorado diversas opciones alternativas a lo largo de las iteraciones de diseño
con el objetivo de reducir aún más el tamaño y el precio final del dispositivo. Esta
investigación de distintas configuraciones de hardware y microcontroladores sienta las
bases para futuras investigaciones, permitiendo una exploración mucho más acotada
hacia una simplificación aún mayor del dispositivo.

Se ha comprobado que el uso de componentes GPRS es la mejor opción para un
problema de trazabilidad de estas características, ya que la conexión a redes Wi-Fi
limitaría significativamente el proceso de envío de datos.
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Se ha implementado la obtención de datos adicionales, como la temperatura y la
humedad ambiental, junto con otros datos de posición GPS, como la velocidad y
la altitud. Estos parámetros nos ofrecen una visión más completa de la situación
del dispositivo y el entorno del residuo, lo que abre la posibilidad de implementar
funcionalidades avanzadas para cambiar su funcionamiento antes cambios en su
entorno.

Se ha hecho una documentación completa y detallada, abarcando tanto el diseño
de hardware como la implementación de software. Esta exhaustiva documentación
permite que personas con los conocimientos tecnológicos adecuados puedan replicar
la propuesta, comprender su funcionamiento en profundidad, y mejorar y adaptar la
solución actual.

En resumen, los resultados obtenidos en este Trabajo Fin de Máster no solo confirman
la viabilidad de la propuesta para la trazabilidad de residuos, sino que también demuestran
su potencial como solución fiable y económicamente eficiente. La combinación de un diseño
iterativo, la selección adecuada de componentes y una implementación software bien
estudiada ha permitido desarrollar un prototipo funcional que cumple con los requisitos
planteados, sentando una base para futuros desarrollos y para la aplicación de esta
tecnología en contextos reales de gestión de residuos.

7.1. Trabajo futuro
Si bien la solución propuesta se ha podido poner en marcha en un ambiente controlado,

se propone como trabajo futuro la fabricación de este dispositivo y su puesta en marcha en
la situaciones de la problemática expuesta. De esta manera se podría realizar iteraciones
de desarrollo adicionales en base a las conclusiones que se puedan obtener de pruebas
más realistas, ya que una parte muy importante del desarrollo de los sistemas IoT es
la puesta en marcha de los mismos en ambientes realistas. Y, aunque en este trabajo
se hayan explorado ya varias sustituciones de componentes del dispositivo, se podría
explorar nuevas opciones a partir de los resultados obtenidos con pruebas más realistas
del dispositivo. Existen muchas opciones de placas de desarrollo que no se han podido
explorar en profundidad durante este proyecto y que podrían ser adecuadas, incluso si ello
implicase la modificación del software también desarrollado. También, uno de los puntos
débiles del dispositivo es la precisión y sensibilidad del componente GPS, que podría tratar
de mejorarse con antenas más potentes, siempre y cuando esto no afecta demasiado el
tamaño y precio de la solución.

Finalmente, se propone como trabajo futuro la continuidad del desarrollo aquí realizado,
junto con la solución de servidor aportada en [5]. La mejora de ambas partes de la misma
solución podría llevar a un sistema de trazabilidad aún más robusto y fiable, que incluso
podría ponerse en marcha de manera oficial si se consiguiera despertar el interés de las
empresas encargadas de la logística de residuos.
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Apéndice A

Documentación del programador

En este apéndice se detallan algunos conceptos técnicos sobre la estructura y montaje
del proyecto para que una persona con nociones de programación y un mínimo de electrónica
pueda modificar y probar el dispositivo presentado en este trabajo. En este sentido se
asume que el usuario promedio puede no estar cualificado o interesado en modificar el
proyecto presentado, pero sí utilizarlo y probarlo, por ello se plantea una segunda guía en el
Apéndice B, en la que se detalla cómo instalar el software necesario y utilizar el dispositivo.
Cabe destacar que en esta guía se asume el uso de ArduinoIDE para la programación.

A.1. Estructura del proyecto
Como ya se ha comentado, el proyecto está alojado en una repositorio de GitHub [17],

en el que se pueden encontrar el código para el dispositivo, modificaciones de librerías
necesarias y código de prueba. En la Figura A.1 se puede observar la estructura de las
distintas carpetas y ficheros del repositorio.

Como se puede observar tenemos en primer lugar los códigos o sketches del disposi-
tivo en las direcciones IoT_System_Src/iot_trace/iot_trace.ino y IoT_System_Src/
iot_trace_TCP_Nano/iot_trace_TCP_Nano.ino, el primero correspondiente a la segun-
da iteración y el siguiente a la tercera iteración. Si bien la redundancia en el nombre
de la carpeta y el archivo parece tediosa, es necesaria para poder acceder a este desde
ArduinoIDE. Estos sketches contienen individualmente todo el código necesario para el
funcionamiento del dispositivo, y por lo tanto, es la parte más importante si se quiere
modificar el mismo. Además, estos dos sketches tienen un buen número de dependencias
con librerías que pueden ser instaladas de manera sencilla desde el propio IDE, ya que
tiene su propio sistema de manejo de librerías. Sin embargo, hay que destacar que una
de las librerías utilizadas ha sido modificada para el correcto envío de los mensajes por
protocolo MQTT. Los archivos modificados de dicha librería se pueden encontrar en
la carpeta Libraries, dependiendo de si se esta trabajando con la implementación de
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iot-trace-system
IoT_System_Src

iot_trace
iot_trace.ino

iot_trace_TCP_Nano
iot_trace_TCP_Nano.ino

Libraries
PubSubClient_ModifiedFiles

PubSubClient.cpp
PubSubClient.h

Adafruit_MQTT_ModifiedFiles
Adafruit_MQTT.cpp
Adafruit_MQTT.h

PythonScripts
subscriberAdafruit.py
subscriberMosquitto.py
tcp_to_mqtt_server.py

README.md

Figura A.1: Estructura de ficheros del repositorio

Adafruit o la de PubSubClient, se aportan los distintos archivos a reemplazar en la librería
correspondiente.

Para poder comprobar el correcto funcionamiento del dispositivo se aportan unos
scripts de python en la carpeta PythonScripts, que permiten suscribirse al feed de un
servidor MQTT y validar los mensajes que se publican en este. De nuevo se distingue entre
dos implementaciones, una utilizando Adafruit como broker MQTT y otra utilizando un
feed gratuito de pruebas del broker Mosquitto. Estos scripts son especialmente interesante
en el caso de usar Mosquitto como broker, ya que la instalación y puesta en marcha
del propio cliente de Mosquitto es algo más complicada que el uso del script de python
proporcionado en este trabajo.

A.2. Detalles del montaje del dispositivo
Si se quiere realizar el montaje actual del dispositivo o modificar el mismo se recomienda

primero revisar los esquemas creados con Fritzing [9] que se han ido mostrando a lo largo
de este documento, siendo el último realizado el observable en la Figura 4.7. A mayores,
sería recomendable realizar cualquier modificación primero sobre un esquema y revisar
correctamente los voltajes y amperajes necesarios en cada caso, ya que un error de
conexiones podría dañar los componentes utilizados.

A la hora de realizar el montaje en si mismo se debe prescindir de cualquier corriente
eléctrica hasta el último momento para evitar daños en el dispositivo. Es aconsejable que
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los cables sigan un código de colores acorde a su función, por ejemplo: cables rojos para
corriente, cables negros para toma de tierra, cable verdes para recepción de datos serial,
cable amarillo para trasmisión de datos serial y cable azul para trasmisión de datos digital.
Esto ayudará a identificar mejor los puntos críticos del sistema, como por ejemplo: la
conexión de todas las tomas de tierra al mismo punto, la conexión de todos los pines de
trasmisión con pines de recepción y viceversa, o la simple conexión de cables de trasmisión
digital al pin incorrecto según el código.

Si durante el montaje o modificación del dispositivo se encuentra cualquier dificultad se
deben revisar los consejos anteriores o los distintos apartados de dificultades encontradas
expuestos en el Capítulo 5.





Apéndice B

Documentación del usuario

En este apéndice se explica una puesta en marcha del dispositivo, asumiendo el previo
montaje del circuito requerido y la alimentación correcta del mismo, por lo que esta guía
esta destinada a usuarios con conocimiento informáticos mínimos. Esta documentación
pretende detallar la instalación de software necesario y como comprobar si el dispositivo
funciona correctamente, junto con algunos de los fallos más comunes.

B.1. Instalación del software y carga del programa
Para poder cargar el programa en el dispositivo se necesita el programa ArduinoIDE,

que no solo sirve como editor de código, sino que es la opción más sencilla para gestionar las
librerías necesarias y cargar el programa. En la página oficial de Arduino se proporcionan
los enlaces de descarga del programa para distintos sistema operativos [16]. Una vez
instalado se deberá descargar el programa desarrollado directamente del repositorio, y
dado que necesitaremos otros archivos del mismo repositorio es mejor descargar todo el
proyecto. Para ello se puede clonar el proyecto con git o descargar directamente el zip
completo del proyecto en la propia página del repositorio [17], aunque en este caso habrá
que descomprimir el proyecto para poder realizar el resto de pasos.

Con ArduinoIDE y el repositorio descargados, se deberán realizar los siguientes pasos
en orden para cargar el programa en el dispositivo ya montado:

1. Descargar la librerías necesarias: se deberán instalar las dependencias necesarias
para el funcionamiento del dispositivo. Para ello deberemos abrir ArduinoIDE y
acceder a la pestaña de gestión de librerías situada en la columna de funcionalidades
de la izquierda, representada con un dibujo de libros apilados. En esta pestaña
deberemos ir buscando las distintas librerías necesarias e instalar la versión específica
de las mismas, que son: TinyGPSPlus versión 1.0.3, ArduinoJson versión 7.4.2,
Crypto versión 0.4.0, DHT sensor library versión 1.4.6, TinyGSM versión 0.12.0 y
PubSubClient versión 2.8.0.
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2. Modificar los archivos de PubSubClient: dado que la librería PubSubClient fue
modificada, se deberán sustituir sus archivos internos por los aportados en el resposito-
rio. Para ello se debe acceder a los archivos internos de la librería, estos normalmente
están ubicados en C:/Users/nombredeusuario/Documents/Arduino/libraries/
PubSubClient. En este carpeta deberemos reemplazar los archivos PubSubClient.cpp
y PubSubClient.h por los archivos con el mismo nombre ubicados en el repositorio
descargado en la ruta iot-trace-system/Libraries/PubSubClient_ModifiedFiles.

3. Instalar los drivers de la placa: en este caso ArduinoIDE no viene por defecto
con el toolkit de la placa NodeMCU, por lo que tendremos que instalar esta. Existen
dos formas de hacerlo, pero la más sencilla consiste en acceder al menú Preferences
dentro de la pestaña File. En ese menú se debe copiar dentro de la caja que dice
“Additional Boards Manager URLs” el siguiente texto:
http://arduino.esp8266.com/stable/package_esp8266com_index.json
Una vez hecho eso se debe guardar las modificaciones de preferencias y reiniciar la
aplicación para asegurarse de que funcione.

4. Abrir el programa y comprobar que compila: como paso anterior al envío
del programa al dispositivo se puede comprobar si todos los pasos anteriores se
han realizado correctamente compilando el programa. Para ello primero deberemos
elegir la placa a utilizar en el desplegable situado en la parte de arriba de la
interfaz, en este caso se debe buscar NodeMCU 1.0. Para compilar el programa
se debe abrir el sketch en ArduinoIDE ubicado en el repositorio descargado en la
ruta iot-trace-system/IoT_System_Src/iot_trace/iot_trace.ino y clicar en
el botón con un “check” para empezar la compilación. Si todo está bien ArduinoIDE
debería mostrar un mensaje de compilación realizada sin errores.

5. Cargar el programa: para cargar el programa en el dispositivo se debe conectar el
dispositivo al ordenador con un cabe USB a micro-USB que permita la transferencia
de datos. Se debe comprobar que ArduinoIDE reconoce el dispositivo, para ello
se puede revisar el desplegable de la placa a utilizar, en el que debería aparecer
la conexión por USB realizada. Para cargar el programa compruebe primero que
ningún cable esté conectado a los pines TX o RX del NodeMCU y pulse el botón
con el dibujo de una flecha señalando hacia la izquierda que se encuentra en la barra
superior. De nuevo si el programa se ha cargado correctamente ArduinoIDE mostrará
un mensajes de carga realizada correctamente.

Con el programa cargado al dispositivo se puede poner este en funcionamiento, pe-
ro para poder comprobar los mensajes enviados necesitaremos ejecutar el script de
python proporcionado en el repositorio. Este requiere de la instalación de python3 y
la librería paho-mqtt versión 2.1.0 o superior, fácilmente instalable con el comando
pip install paho-mqtt. Para utilizar el script ubicado en el repositorio en la ruta
iot-trace-system/PythonScripts/subscriberMosquitto.py, se puede ejecutar el co-
mando python3 subscriberMosquitto.py desde la ubicación del archivo. Esto abrirá
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una conexión al servidor de Mosquitto y una suscripción al feed utilizado en el programa
del dispositivo, para poder consultar los mensajes enviados por el mismo.

B.2. Dispositivo en funcionamiento
A la hora de comprobar el correcto funcionamiento del dispositivo se debe tener en

cuenta que esté correctamente alimentado como se indica en la fase de diseño de esta
memoria, y que puede requerir de iniciar su funcionamiento al aire libre para poder captar
señal satélite más eficientemente. Normalmente con colocar la antena del componente GPS
en la repisa de una venta debería ser suficiente para que este empiece a parpadear pasados
unos minutos, señal de que el componente GPS está recibiendo datos. Si el componente
GPS no parpadea puede ser recomendable situarlo en una zona despejada y esperar entre
5 y 15 minutos, ya que al principio puede tardar más en recibir señal.

Si el dispositivo está correctamente alimentado el componente SIM800L debería par-
padear cada 3 segundos aproximadamente tras un minuto recibiendo corriente. En los
momentos de envío se podrá percibir como el componente SIM800L parpadea en intervalos
de medio segundo aproximadamente, y tras pocos segundos debería aparecer el mensaje
enviado en la terminal donde se esté ejecutando el script de python mencionado.
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