UNIVERSIDAD DE VALLADOLID
MASTER UNIVERSITARIO

Ingenieria Informatica

Ingenieria
Informatica

UVa

TRABAJO FIN DE MASTER

Desarrollo de un dispositivo IoT para la
trazabilidad de residuos

Realizado por Daniel Lopez Martinez

MLOTOK

Universidad de Valladolid
15 de julio de 2025
Tutor: Diego Rafael Llanos Ferraris

Agradecimientos

Quiero agradecer a mi tutor, Diego Rafael Llanos Ferraris, por su inmensa paciencia y
dedicaciéon a lo largo del desarrollo de este trabajo.

Y también, a mi familia y a mi pareja, Miriam, por el apoyo constante que me han
brindado a lo largo de todo el master, y a mis amigos por los dnimos y ayuda que me han
proporcionado en todo momento.

Resumen

La creciente generacién de residuos, especialmente en entornos urbanos y sectores
como la agricultura o la medicina, plantea retos importantes en cuanto a su gestion
y trazabilidad. En este trabajo se presenta el diseno e implementacién de un sistema
basado en tecnologias IoT (Internet of Things) para mejorar la trazabilidad de
residuos urbanos, permitiendo monitorizar en tiempo real parametros como la
posicion geografica, la temperatura y la humedad de los contenedores durante su
transporte. La solucién propuesta consiste en un dispositivo “suicida” con sensores de
bajo coste, facilmente replicable, que envia los datos recopilados a un servidor en un
formato de mensaje fiable y facil de analizar. El sistema se ha probado en un entorno
controlado, demostrando ser una opcién fiable, econémica y funcional, mostrando

también sus posibilidad de evoluciéon hacia soluciones atin mas compactas y baratas.

Todo el proceso de desarrollo ha sido exhaustivamente documentado, permitiendo su
reproduccién y mejora por parte de cualquier persona con los conocimientos técnicos
necesarios.

Descriptores

Generacion de residuos, IoT, Trazabilidad de residuos, Dispositivo “suicida”,
Sensores.

I1I

Abstract

The increasing generation of waste, especially in urban environments and sectors
such as agriculture or medicine, poses significant challenges in terms of waste
management and traceability. This work presents the design and implementation of
a system based on IoT (Internet of Things) technologies to improve the traceability
of urban waste, allowing real-time monitoring of parameters such as geographical
position, temperature and humidity of the containers during transport. The proposed
solution consists of a “suicidal” device with low-cost sensors, easy replicability, which
sends the collected data to a server in a reliable and easy-to-analyze message format.
The system has been tested in a controlled environment, proving to be a reliable,
economical and functional option, showing also its possibility of evolution towards
even more compact and cheaper solutions. The entire development process has been
thoroughly documented, allowing it to be reproduced and improved by anyone with
the necessary technical knowledge.

Keywords

Generation of waste, loT, Waste traceability, “Suicidal” device, Sensors.

Indice general

Indice general VII
Indice de figuras IX
Indice de tablas XI
1. Introduccién 1
2. Analisis de requisitos 3
2.1. Requisitos funcionales 3
2.2. Requisitos no funcionales L 4
2.3. Funcionamiento general del dispositivo 4
2.4. Estructura general del servidor 0oL 5
2.5. Resumen 6
3. Modelo de analisis 9
3.1. Planificacion del proyectoo 9
3.2. Andlisis de Tiesgoso 11
3.3. Desviacion de la planificacion inicialo 12
3.4. Presupuesto y costes 13
3.5. Resumen 14
4. Diseno del dispositivo IoT 15
4.1. Descripcion de la primera iteraciono 16
4.2. Descripcion de la segunda iteracion 0oL Lo 21
4.3. Descripcion de la tercera iteraciom Lo 24
4.4, Resumen e 28
5. Detalles de la implementacién software 29
5.1. Implementacion de la primera iteraciéon 30
5.2. Implementacion de la segunda iteracion 33

VII

Indice general

5.3. Implementacion de la tercera iteracion

5.4. Resumen

6. Pruebas realizadas

6.1. Verificacion de mensajes MQTT

6.2. Casos de prueba
6.3. Resultados obtenidos
6.4. Resumen

7. Conclusiones y Lineas de trabajo futuras

7.1. Trabajo futuro.

Apéndices

Apéndice A Documentacion del programador

A.1. Estructura del proyecto

A.2. Detalles del montaje del dispositivo

Apéndice B Documentacion del usuario
B.1. Instalacion del software y carga del programa

B.2. Dispositivo en funcionamiento

Bibliografia

VIII

36
38

39
39
40
41
44

45
46

47

49
49
30

53
23
95

57

Indice de figuras

2.1. Propuesta de arquitectura del servidor o000 6
3.2. Diagrama de Gantt de la planificacién inicial 10
3.3. Diagrama de Gantt de la planificacién final 13
4.4. Esquema del sistema 1 18
4.5. Imagen del prototipo 1 18
4.6. Estructura de ejemplo del mensaje JSON 19
4.7. Esquema del sistema 2o 22
4.8. Imagen del prototipo 2 23
4.9. Esquema del sistema 3 27
4.10. Imagen del prototipo 3 28
5.11. Diagrama de flujo de la iteracion 1 oo 32
A.1. Estructura de ficheros del repositorio 50

IX

Indice de tablas

2.1. Requisitos Funcionales 3
2.2. Requisitos No Funcionaleso 4
3.3. Riesgo de mala planificacién 11
3.4. Riesgo de retraso en envio de componentes L0 11
3.5. Riesgo de componente defectuosooroto 12
3.6. Riesgo de falta de conocimientos de electronica basica 12
3.7. Riesgo de cobertura y/o deteccion satélite 12
3.8. Coste estimado L 14
6.9. Tabla de consumo de datos para los casos de prueba 42
6.10. Tabla de consumo eléctrico para los casos de prueba y sus fases 43
6.11. Tabla de consumo eléctrico para los casos de prueba 43

XI

1: Introduccion

El aumento de la generacion de residuos se ha convertido en un reto importante en los
paises en desarrollo debido a un crecimiento demografico y una urbanizacién sin precedentes
[1]. De hecho, se calcula que la generacién mundial de residuos sélidos urbanos alcanzara
los 3.400 millones de toneladas en 2050, méas del doble del crecimiento demografico en el
mismo periodo, tal como se afirma en [2]. En lo que se refiere, por ejemplo, a la agricultura,
se intenta minimizar la generaciéon de residuos, optimizar las técnicas de eliminacién y
promover el reciclaje y la reutilizacion, véase [3].

Por otro lado, en lo que se refiere a los residuos médicos, resulté de vital importancia
durante la pandemia de COVID-19. En [4], se presenta una propuesta de gestién de
este tipo de residuos mediante un sistema inteligente de gestion de restos médicos con
monitorizaciéon en tiempo real de los datos de residuos médicos y una aplicacién para el
usuario final.

En Espana la gestion de residuos y el reciclaje de los mismos requiere de la coordinaciéon
de diversos grupos y empresas, que no siempre cumplen con los acuerdos establecidos. Sin
embargo, es dificil llevar un control exhaustivo de los distintos sistemas de transporte de
residuos. A pesar de que existen diversos contenedores para distintos tipos de residuos,
estos pueden no acabar en el destino adecuado, ya sea por descuidos o por una falta de
control sobre los medios de transporte de los mismos.

La falta de trazabilidad de los residuos puede llevar a vertidos ilegales, ineficiencias
logisticas y pérdida de materiales potencialmente reciclables. En este tltimo caso, es
bien sabido que el gobierno espafiol invierte una buena cantidad de recursos para el
tratamiento de residuos en plantas de reciclaje. Sin embargo, esta inversiéon tiene poca
relevancia si los residuos reciclables acaban en vertederos en vez de en las plantas de
reciclaje correspondientes, lo que actiia como incentivo para el desarrollo de sistemas de
trazabilidad més efectivos.

En este trabajo se describe el desarrollo de una soluciéon al problema de la trazabilidad
de residuos de distinto tipo, permitiendo controlar el camino y destino de las basuras
depositadas en los distintos contenedores. El dispositivo propuesto tiene como misién
obtener datos sobre su posicion geografica, temperatura y humedad en diversos momentos,

Introduccion 2

para enviar dicha informacién a un servidor seguro donde poder analizarlos. Al introducir
este dispositivo en un contenedor de basura se podréa observar como y a dénde se transportan
los residuos que se encontrasen en dicho contenedor.

Por lo tanto, podriamos resumir los objetivos de este proyecto en los siguientes puntos
clave:

» Disenar un dispositivo capaz de registrar y enviar datos de posicién geografica,
temperatura y humedad en tiempo real.

= [terar el disenio del dispositivo hacia implementaciones més sencillas y menores en
tamano para mejorar su manejabilidad.

= Implementar y construir el dispositivo para su puesta en marcha.
La implementacion de un sistema de estas caracteristicas podria mejorar la eficiencia en

la gestion de residuos urbanos, facilitar el control por parte de las autoridades, y contribuir
a una mayor transparencia en los procesos de reciclaje.

2: Analisis de requisitos

Para el correcto desarrollo del proyecto se ha realizado un anélisis de requisitos de
usuario que nos permita entender el alcance del proyecto y las caracteristicas indispensables
del dispositivo a desarrollar. Estos requisitos junto con la definicién de otros detalles clave
que se dan en este capitulo, serviran de base para el diseno, desarrollo y validaciéon del

dispositivo y su sistema asociado.

2.1.

Requisitos funcionales

En la Tabla 2.1 se presentan los requisitos funcionales que describen qué debe hacer el
sistema para cumplir con los objetivos del proyecto.

Tabla 2.1: Requisitos Funcionales

ID | Requisito Descripcién
RFO01 | Localizacion GPS pre- | El dispositivo debe ser capaz de registrar su posicién
cisa geografica mediante un sistema de posicionamiento
global (GPS) con una precisién minima de 20 metros.
RF02 | Mediciéon ambiental El sistema debe medir y registrar la temperatura y
humedad relativa del entorno.
RF03 | Almacenamiento en | El dispositivo debe almacenar temporalmente los da-
desconexién tos en caso de pérdida de conectividad, y enviarlos al
recuperar la conexion.
RF04 | Envio periédico de da- | Los datos registrados deben enviarse periédicamente a
tos un servidor remoto mediante un protocolo de comuni-
cacion fiable (como MQTT).
RFO05 | Frecuencia configura- | La frecuencia de envio de datos debe poder ser confi-
ble gurada manualmente.
RF06 | Seguridad en la trans- | El sistema debe garantizar la seguridad de los datos

mision

transmitidos mediante autenticacién.

Anélisis de requisitos 4

ID | Requisito Descripciéon
RFO07 | Identificador tinico El sistema debe registrar un identificador tinico que
permita asociar los datos a un dispositivo especifico.
RFO08 | Exportacion de datos | El sistema debe permitir exportar los datos registrados
en formatos estandar (como CSV o JSON) para su

analisis.
RF09 | Funcionamiento auto- | El dispositivo debe operar de manera completamente
nomo autonoma, sin requerir interacciéon manual durante su

funcionamiento habitual.
RF10 | Registro de movimien- | El dispositivo debe ser capaz de determinar si se en-
to cuentra en movimiento.

2.2. Requisitos no funcionales

En la Tabla 2.2 se presentan los requisitos no funcionales que describen cémo debe
comportase el sistema para cumplir con los objetivos del proyecto.

Tabla 2.2: Requisitos No Funcionales

ID Nombre Corto Descripcion
RNFO01 | Autonomia energética | El dispositivo debe contar con una autonomia energéti-
minima ca minima de 24 horas en funcionamiento normal sin
recarga.

RNFO02 | Resistencia ambiental | El dispositivo debe estar disenado para resistir golpes,
vibraciones y condiciones ambientales adversas (hume-
dad, polvo, variaciones térmicas).

RNF03 | Diseio compacto 7y | El diseno fisico del dispositivo debe permitir su insercion

compatible en el interior de distintos tipos de contenedores sin
modificar su funcionalidad ni el acceso a su contenido.
RNF04 | Consumo eficiente El dispositivo debe estar disenado con componentes de

bajo consumo para maximizar la eficiencia energética.

2.3. Funcionamiento general del dispositivo

El comportamiento fundamental del dispositivo se describe en el Algoritmo 1, en donde
se puede observar como la idea principal consiste en recopilar distinta informacion durante
varias iteraciones para enviarla tras un ntmero especifico de datos recopilados. Como
parte del intento de envio de datos se plantea la reconexion de servicios necesarios como la
conexion a internet y con el servidor de destino, ya que esta puede no mantenerse activa
entre envios. Este comportamiento se repite mientras el dispositivo se mantenga alimentado
por una corriente, teniendo en cuenta que antes se habran realizado las inicializaciones
necesarias. Una descripcion mas completa del funcionamiento del dispositivo y de los
mecanismos de comunicacién se detalla en el Capitulo 5.

Analisis de requisitos 5

Algorithm 1 Algoritmo General de Operacién del Dispositivo IoT

1: Inicio
2: inicializarDispositivo()
3: while dispositivoEncendido do

4: recolectarDatos()

5: procesarDatos()

6: if datosRecopilados > N then
7: if conexionEstablecida then
8: enviarDatosAlServidor()
9: else

10: conectarARed()

11: enviarDatosAlServidor()
12: end if

13: else

14: almacenarDatosLocalmente()
15: datosRecopilados++

16: end if

17: esperarXTiempo()
18: end while
19: Fin

2.4. Estructura general del servidor

Si bien el disefio e implementaciéon de un servidor no forma parte de los objetivos de
este proyecto es importante definir la estructura del mismo para contextualizar la solucion
completa, y que se describe con mas detalle en la contribucién para las Jornadas Sarteco
2025 [5].

La arquitectura propuesta, ilustrada en la Figura 2.1, integra de manera estratégica
[oT, blockchain y sistemas de almacenamiento escalables. El objetivo principal es asegurar
la trazabilidad y la seguridad de los datos que los dispositivos IoT transmiten mediante
el protocolo MQTT. Esta arquitectura se estructura en varios médulos interconectados,
cada uno con una funcién especifica en la recoleccién, procesamiento, almacenamiento y
validacion de los datos dentro de un entorno distribuido y seguro. Si bien este documento
se centra en el desarrollo del dispositivo IoT, se asume que este utiliza comunicaciones
MQTT para el envio de informacién. Los componentes clave del sistema son:

= API Gateway: Actia como el punto de entrada centralizado para todas las interac-
ciones. Se encarga de gestionar la autenticacién, la autorizacion y el enrutamiento
del trafico hacia los diferentes servicios de la arquitectura.

= Collector (MQTT): Compuesto por un bréker MQTT y un proceso worker, este
modulo es capaz de escalar segin la demanda. Su misiéon fundamental es recibir

Analisis de requisitos 6

los datos procedentes de los dispositivos IoT, validarlos y transformarlos antes de
enviarlos a las siguientes fases de procesamiento.

= Persistence Controller: Este médulo es el responsable de la gestion del alma-
cenamiento de datos en el Data Lake, asi como de su posterior procesamiento y
recuperaciéon. Para ello, se emplea Delta Lake, que ofrece una gran compatibilidad
con diversas soluciones de almacenamiento, tanto locales como en la nube.

= Blockchain Controller: Su funciéon es interactuar directamente con los contratos
inteligentes desplegados en la red blockchain. Este médulo garantiza la integridad
de los datos almacenados y facilita la obtencion del identificador de la transaccion
(hash) para su registro junto con los datos en el Data Lake.

Front service

Web browser —HTTPs— ‘ T ‘

Back service (API) |

AP| Gateway

Persistence
Controller

Collector (MQTT)

loT Device RG]

Smart
contracts

Blockchain Controller

Figura 2.1: Propuesta de arquitectura del servidor

En la propuesta de arquitectura se pueden ver otros médulos que estdn méas relacionados
con la visualizacién de los datos por parte del usuario. Sin embargo, dado que esta propuesta
de arquitectura se encuentra fuera del alcance de este proyecto no se detallarda mas ninguna
de sus partes.

2.5. Resumen

En este capitulo se ha presentado el resultado del analisis de requisitos junto con
un resumen general del funcionamiento del dispositivo y una vista de la propuesta de
arquitectura del servidor, que esta fuera de los objetivos del servidor. Todo esto permite
contextualizar y comprender las caracteristicas y estructura de la solucion propuesta en
este proyecto, y asentar una base necesaria para el diseno y posterior implementacion del

Analisis de requisitos 7

dispositivo que se presentan en capitulos posteriores. Sin embargo, como paso anterior al
desarrollo del dispositivo se debe plantear una planificacién de las tareas a realizar, los
posibles riesgos a enfrentar y el presupuesto necesario para realizar el proyecto completo.
Todo este analisis y planificacion se detalla en profundidad en el Capitulo 3.

3: Modelo de analisis

En este capitulo se detalla el modelo de andlisis que ha sustentado el desarrollo de este
proyecto. En este se desglosa en primer lugar, la planificacién inicial, describiendo las fases
y tareas fundamentales que guiaron el proyecto. Posteriormente, se presenta un andlisis de
riesgos, donde se identifican posibles situaciones y problemas y las estrategias de mitigacioén
implementadas para asegurar la viabilidad y robustez del sistema. Posteriormente se
examinard la desviacion de la planificacién inicial, explicando los ajustes realizados y los
motivos de los mismos. Finalmente, se expondra el presupuesto y los costes asociados al
proyecto, ofreciendo una vision clara de los recursos econémicos gestionados durante su
ejecucion.

3.1. Planificaciéon del proyecto

Este proyecto se organiz6 para comenzar su desarrollo a finales de 2024, en paralelo a
las asignaturas del Méster en Ingenieria Informatica, con la intencién de documentar parte
del mismo en una contribucién para las Jornadas Sarteco de 2025. Por lo tanto, parte de
la organizacion implicoé tener una parte del trabajo terminado para las fechas de envio
de contribuciones, que originalmente estaban marcadas para finales de marzo de 2025.
Con este objetivo el proyecto se dividié en iteraciones de desarrollo como se explica en el
Capitulo 4, siendo aconsejable que las ultimas tareas de la segunda iteracion coincidan
con la contribucién para Sarteco.

Cada iteracion ha implicado un desglose del trabajo en tareas caracteristicas de
un desarrollo IoT, las cuales, en gran medida, se corresponden con los capitulos de esta
memoria. Esto facilita la consulta del esfuerzo dedicado a cada una de ellas. Concretamente,
las tareas son:

» Diseno del dispositivo: Este es el primer paso a realizar para cada iteracion, ya
que consiste en elegir los componentes hardware a utilizar para cumplir con las
funcionalidades de dicha iteracion y disenar el circuito eléctrico del sistema. Esta fase
requiere revisar los distintos componentes que existen actualmente en el mercado y

Modelo de anélisis 10

consultar los distintos requisitos de alimentacion de cada uno de ellos para poder
disenar un circuito eléctrico funcional.

» Implementacion del sistema: Esta tarea estda mas relacionado con el software que
se ejecutard en el dispositivo disenado y que deberd cumplir con los requisitos de
cada iteracion. Esta fase también requiere de analizar y consultar la documentacion
de distintas librerias a utilizar para saber su compatibilidad con los componentes
elegidos, sus limitaciones y ejemplos que pueden ayudar al desarrollo del propio
codigo.

» Pruebas y mediciones del sistema: Como parte del desarrollo del sistema se
debera verificar que todas las funcionalidades implementadas son correctas y dan los
resultados esperados. Ademas, como parte de un desarrollo IoT, se deben comprobar
los distintos niveles de consumo tanto eléctrico como de ancho de banda.

= Documentacién del desarrollo: En paralelo a las anteriores tareas se realiza
una documentacién de todos los procesos y actividades realizadas como parte de la
memoria de trabajo fin de méster. Ademas, parte de la documentacion se hara en la
contribucién para las Jornadas Sarteco, por lo que se tendra en cuenta también su
desarrollo en la planificacion.

> < B 2025
et _:. I T T T I I
Marnbre Fecha.. Fechadef diciembre enere febrero marze sl LEZes S

teracion 1 Mzze 270z P o]

Disefio 224 2312028 l:l-l

Implmentacion 4MZZ4 145 :ﬁ

Pruebas 1611026 2711026 :I

Documeritacidn 212624 27125 |
teracidn 2 2811125 34125 aJ

Disefio 20Mi25 2002025 [:I-l

Implementacion 2102025 183725 :I]

Pruebas 1913725 34125 :I

Documentacidn 2801428 34125
Iteracion 3 414125 BIEI2S \

Disefio 414125 115125 [:h

Implementacicn 25125 2105025 I’:I-l

Fruebas 2205025 615125 :I

Documentacidn 414725 BIBI25 1

Figura 3.2: Diagrama de Gantt de la planificacion inicial

Como ya se ha comentado este proyecto se empez6 en diciembre de 2024, con la
intencion de poder tener resultados para una contribucién en las Jornadas Sarteco. Sin
embargo, la carga de horas semanales aplicadas al proyecto no se planificaron igual para
esos primeros meses de desarrollo, ya que ademas de este trabajo se realizaban a tiempo
completo asignaturas y un contrato de empleo de 37 horas y medias semanales. Por lo
tanto, los meses de diciembre, mitad de enero, mitad de febrero, marzo y primera mitad
de abril se planific6) una dedicacién semanal de 4 horas. Mientras que el resto del tiempo,

Modelo de anélisis 11

es decir, segunda mitad de enero, primera mitad de febrero, segunda mitad de abril, mayo
y primera mitad de junio, se planific6 una dedicaciéon semanal de 8 horas, ya que en
esas etapas no habra carga de asignaturas. Teniendo en cuenta la dedicacién en horas
anteriormente mencionada, y que la fecha de deposito de trabajos en convocatoria ordinaria
empieza el 23 de junio, se plantea en total una dedicacién de aproximadamente 170 horas
de trabajo, tratando de ajustar las horas a los seis créditos de dedicacion asignados por la
Escuela de Ingenieria Informatica. En la Figura 3.2 se puede observar una imagen de la
planificacién inicial realizada mediante GanttProject, teniendo en cuenta la dedicacion de
horas anteriormente explicada.

3.2. Analisis de riesgos

En todo proyecto de desarrollo hay que tener en cuenta que pueden surgir situaciones
inesperadas o fallos no contemplados, por ello es importante realizar un anélisis de los
posibles riesgos que se pueden producir. Si bien gran parte de los problemas que pueden
darse tienen relacion con la elaboracion de este proyecto en paralelo a asignaturas y a
un empleo a tiempo completo, hay otros riesgos mas relacionados con los conocimientos
que se poseen de este campo y los problemas més tipicos de desarrollo de sistema [oT.
A continuacion desde la Tabla 3.3 hasta la Tabla 3.7 se detallan los riesgos analizados y
contemplados durante la planificacion inicial, junto con un posible plan de contingencia:

Identificador RO1 - Mala planificaciéon del proyecto
La duracion real de las tareas no se ajusta correctamente

DEEE Rl al tiempo originalmente planificado para su realizacion
Impacto Alto
Probabilidad Media

Plan de contingencia | Replanificacion del proyecto

Tabla 3.3: Riesgo de mala planificacién

Identificador RO2 - Retraso en el envio de componentes
Un componente llega més tarde de lo esperado

Descrineid ‘ '
eseripeion segun las tareas relacionadas con este

Impacto Medio

Probabilidad Alta

Plan de contingencia | Replanificacion del proyecto y avanzar con otras tareas

Tabla 3.4: Riesgo de retraso en envio de componentes

Modelo de anélisis 12

Identificador R03 - Componente defectuoso o roto
., Un componente ha llegado defectuoso o se ha roto
Descripcion
durante su uso
Impacto Alto
Probabilidad Media

Plan de contingencia | Pedir mas de un componente del mismo tipo a la vez

Tabla 3.5: Riesgo de componente defectuoso o roto

Identificador RO0O4 - Falta de conocimientos de electronica
L, La falta de conocimientos béasicos de electronica
Descripcion , . . o
esta retrasando el diseno y montaje de los circuitos
Impacto Medio
Probabilidad Alta

Pedir ayuda a personas con conocimiento en electrénica y

Pl i i . . .
2 CIEDNGEET dedicar tiempo del proyecto a aprender lo necesario

Tabla 3.6: Riesgo de falta de conocimientos de electronica basica

Identificador RO5 - Fallos de cobertura y/o deteccién satélite
Las antenas GPS y/o de red mévil fallan mucho o pierden

Descripcion iy .
la conexién con frecuencia

Impacto Medio

Probabilidad Baja

Comprar nuevas antenas si se consideran rotas o

Plan de contingencia |
& implementar un sistema adecuado de reintentos de conexiéon

Tabla 3.7: Riesgo de cobertura y/o deteccion satélite

3.3. Desviacion de la planificacién inicial

Sobre la planificacion inicial planteada se han tenido que realizar cambios y ajustes
debido a la sucesion de algunos riesgos esperados e inesperados. Algunos de los riesgos
esperados que han ocurrido se han podido contener correctamente gracias a los planes de
contingencia planteados. Sin embargo, otros riesgos como el riesgo R04 no se ha podido
contener tan facilmente, debido a que el problema se centraba en la mala soldadura de
componentes a lo largo de varias iteraciones, y dado que no se encontré una solucién
rapida a este problema, se tuvo que hacer una replanificacién mas drastica.

Otros riesgos no contemplados también han causado problemas, especificamente el ana-
lisis incorrecto de la documentacién de una libreria causd que una primera implementacion
funcionase de manera inestable y no se encontrase el problema hasta pasado un tiempo
del planificado. También como consecuencia de estos problemas no se pudo proporcionar

Modelo de anélisis 13

mediciones de consumo eléctrico para la contribucién en las Jornadas Sarteco, aunque si
se pudo dar resultados aceptables para esta contribucion.

La paralelizacién de este proyecto con el resto de las actividades lectivas del master y
el contrato laboral también causé algin retraso, aunque lo esperado dentro del riesgo RO1.
Por 1ltimo, el recorrido de la tercera iteracion se vié afectado por miltiples situaciones
fuera de lo esperado que se describen en mas detalle a lo largo de la memoria. Todo esto
forzé la modificacién de la planificacion inicial, hasta el punto de trasladar la fecha de final
del proyecto al periodo extraordinario de deposito de trabajos fin de master de julio. Como
consecuencia en la Figura 3.3 se puede observar la modificacién del diagrama de Gantt
que representa la planificacion final realizada. En esta planificacion final se ve como la
mayoria de fases se han alargado en el tiempo, sobretodo las correspondientes a la tercera
iteracién, y la fase de documentacion final se alargd més para poder documentar y revisar
el trabajo realizado correctamente.

S b ‘2525

Nombre Fecha . Fechadefi

I T T I
diciembre enero febrero marzo abril mayo Junia julio

Iteracion 1 22024 225 W Al

Disefio MM 228 l:h

Implmentacidn G 2BHIIE f:h
Pruebas 2001025 5i2/25 b

Documentacidn 2112024 F2/25

Iteracion 2 Br226 1474126 Al

Disefio BI225 101325 [:ll

Irnplementacidn 10328 a2 I’:I]
Pruebas 2436 144125 I':I

Documentacidn BI225 1474125

Iteracion 3 1504125 BI725 al

Disefio 1604425 2146125 e

Implementacidn 2205025 1BI6I25 :I]
Prugbas 1TIE2S 2406025 I‘:I

Documentacidn 1604125 BITIZ2E [|

Figura 3.3: Diagrama de Gantt de la planificacion final

3.4. Presupuesto y costes

En esta seccion se muestra un presupuesto estimado del proyecto, teniendo en cuenta
el gasto en componentes hardware, el gasto en maquinas y otros tipos de hardware, y
el nimero de horas de trabajo realizadas. Dado que no se ha estimado necesario ningin
software con licencia de pago se excluye del presupuesto la parte relativas a licencias.

Como parte del plan de contingencia del riesgo R03, se determiné comprar mas de
un componente del mismo tipo para los componentes mas susceptibles a roturas. Cabe
destacar que entre las maquinas y otros hardware solo se tiene en cuenta el uso de una
fuente de alimentacion. Por tltimo, el nimero de horas de trabajo se ha calculado, como
se ha explicado en las anteriores secciones, teniendo en cuenta que la jornada de trabajo
ha sido variable y flexible a lo largo de los distintos meses de trabajo. Por lo tanto, se ha
calculado el coste por horas a partir del sueldo anual bruto de un ingeniero informéatico

Modelo de anélisis 14

junior que actualmente ronda los 28.000€, que se traduciria a 14€ la hora. Todo ello
suponiendo una jornada completa de 40 horas semanales y 250 dias laborables al ano. En
la Tabla 3.8 se puede observar un resumen del presupuesto completo estimado.

Concepto Cantidad | Coste por unidad | Coste total
NodeMCU V1.0 1 9,00€ 9,00€
Médulo GPS GY NEO 6MV2 3 3,00€ 9,00€
DHT11 de tres pines 1 2,00€ 2,00€
Médulo GRPS SIMS00OL 3 3,00€ 9,00€
Arduino Nano Every 1 14,50€ 14,50€
Arduino Nano 1 27,10€ 27,10€
Kit de cables y resistencias 1 3,00€ 3,00€
Fuente de alimentacion regulable 1 15,00€ 15,00€

Trabajo en horas del alumno 180 14,00€ 2.520,00€

2.608,60€

Tabla 3.8: Coste estimado

3.5. Resumen

Este capitulo ha detallado el modelo de andlisis que fundamenta el desarrollo del
proyecto. Se ha detallado la planificacién inicial, explicando las distintas fases y tareas
que guiaron el trabajo como son: el diseno, la implementacion, las pruebas y la documen-
tacion. Ademas, se ha realizado un exhaustivo andlisis de riesgos, identificando posibles
contratiempos y las estrategias de mitigaciéon necesarias para asegurar la viabilidad del
proyecto. Se ha mostrado también la desviacién de la planificacién original, justificando
los ajustes realizados, y se ha presentado un presupuesto detallado junto con los costes
asociados al proyecto. Con esta base de andlisis y planificaciéon, se describe en el Capitulo
4 el primer paso del desarrollo del sistema, el Diseno del Dispositivo IoT, especificando los
componentes y la estructura que materializan los requisitos definidos.

4: Diseno del dispositivo loT

En este capitulo se describe el modelo de disefio seguido para el desarrollo del dispositivo,
y las distintas fases por las que se ha transcurrido, dando mas detalles sobre los distintos
componentes IoT utilizados y su funcionamiento.

El desarrollo del dispositivo IoT propuesto en este proyecto se ha llevado a cabo
siguiendo un modelo de diseno iterativo. Este enfoque permite construir el sistema de
forma incremental mediante una serie de versiones sucesivas, cada una de las cuales mejora
o amplia la anterior de alguna forma. A diferencia de modelos lineales como el modelo
en cascada, el modelo iterativo permite validar parcialmente el sistema en cada fase y
detectar errores tempranos.

Se ha optado por este modelo de disefio con el objetivo de realizar un proceso de
desarrollo flexible, permitiendo centrar los esfuerzo en una funcionalidad del sistema en
cada iteracion. De esta manera se reducen los riesgos asociados al diseno de sistemas [oT
compuesto por miltiples componentes que dependen entre si.

El diseno del sistema se ha organizado en tres iteraciones con los siguientes resultados
finales en cada una:

= Primera iteracion: creacién de un sistema IoT que permita la captura de datos
de posicionamiento global (GPS), ademés de temperatura y humedad, y que envie
dicha informacién mediante una red Wi-Fi externa utilizando protocolo MQTT para
el envio.

» Segunda iteracion: creacién de un sistema IoT que permita la captura de datos
de posicionamiento global (GPS), ademés de temperatura y humedad, y que envie
dicha informacién mediante una conexién a internet que no dependa de redes Wi-Fi
locales, utilizando protocolo MQTT para el envio.

= Tercera iteracion: cambio en el diseno del dispositivo de la segunda iteraciéon a un
dispositivo méas sencillo, compacto y més barato en términos generales, para ello se
decidira primero qué partes del dispositivo merece la pena cambiar.

15

Disenio del dispositivo IoT 16

En las tres iteraciones el funcionamiento general del dispositivo obtenido es el mismo,
salvo por ligeras diferencias en como es capaz de realizar sus tareas. El dispositivo debera
obtener informacion de la posicion geogréfica, la temperatura y humedad ambiente en
distintos momentos temporales, y guardara dicha informacién de manera que pueda
consultarse el momento temporal en el cual se tomaron dichas instancias. Tras un niimero
de instancias de datos guardadas se enviara toda la informacién a un servidor MQTT
mediante algin método de conexién a internet. Este nimero de instancias por conjunto de
datos y el tiempo entre instancias o mediciones dependera del modo de funcionamiento
deseado para el dispositivo, por ejemplo, un niimero bajo de instancias y un tiempo
entre mediciones bajo servird mejor para poder localizar el dispositivo cuando esta en
movimiento. Por el contrario, un niimero alto de instancias con un tiempo entre mediciones
alto seria mas adecuado para los casos en los que el dispositivo no esté en movimiento.
En el Capitulo 6 se definen tres modos de funcionamiento especificando el nimero de
instancias y el tiempo entre mediciones, para realizar pruebas y comparar el rendimiento
del dispositivo en cada caso.

4.1. Descripcion de la primera iteracion

En esta primera iteracion se partira desde cero para disenar un sistema que recoja datos
GPS, de temperatura y de humedad, permitiendo enviar dicha informacién mediante una
red Wi-Fi ajena al sistema. Por lo tanto, se eligieron los componentes que a continuacion
se exponen para el desarrollo de la primera version.

Placa de desarrollo NodeMCU 1.0 [6], es un kit de desarrollo que contiene un
microcontrolador ESP8266 de 32 bits y cuenta también con un transceptor Wi-Fi, para
conexiones a internet. Este kit tiene conexién micro-USB para poder cargar el programa
que se quiere ejecutar facilmente desde un ordenador, y estabilizacion de corriente de 5
voltios a 3.3 voltios, lo cual nos permite conectar componentes que trabajen con ambas
medidas de voltaje. Contiene una memoria de 4MB de los cuales aproximadamente 1MB
se puede utilizar para almacenar el programa que se desea ejecutar.

Cabe destacar que el NodeMCU tiene 11 pines digitales y un pin analégico, y que también
consta de dos interfaces UART (Universal Asynchronous Receiver/Transmitter). UART es
un protocolo de comunicacion serie asincrono muy utilizado en dispositivos 0T, ya que
permite el intercambio de datos entre dispositivos sin necesidad de compartir un reloj
comun. El NodeMCU puede ser alimentado por medio de la conexiéon USB o de manera
externa con una bateria conectada al pin de alimentacién VIN, aunque en el primer caso
la corriente méxima que se le puede suministrar no suele pasar de los 250mA.

Médulo GPS GY NEO 6MV2 [7], es un médulo GPS que permite consultar
informacion precisa sobre la geolocalizacion del mismo. Este médulo viene con un conector
para antenas y una antena pequena ideal para sistemas compactos. Funciona en voltajes
entre 3.3V y 5V y con un consumo tipico de 45mA, por lo que se puede alimentar
sin problema con la conexién de 3.3V del NodeMCU. Utiliza el protocolo UART para

Disenio del dispositivo IoT 17

comunicacion de los datos de posicién que recoge con una precision de aproximadamente
2.5 metros, lo que nos permite cumplir con el requisito RFO1.

Ademés de los pines de recepcién y trasmision de datos, cuenta con un pin PPS (Pulse Per
Second) que proporciona una senal de pulso de 1 Hz, altamente precisa, que se sincroniza
con el tiempo GPS. Sin embargo, no se utilizara este pin, ya que no requerimos una
sincronizaciéon temporal tan precisa. El médulo GPS viene con un led interno que nos
indicard si esta recibiendo corriente y si esta recibiendo datos de la posicion. Si el led
esta encendido sin parpadear, significa que esta tratando de fijar la seial GPS, mientras
que si el led parpadea, significa que ha encontrado al menos 4 satélites y esta recibiendo
informacion de su posicion actual que enviara a través de su pin de trasmision TX. Este
led es muy importante, ya que nos puede indicar fallos en el propio componente y fallos en
nuestro propio circuito, en particular a lo largo del desarrollo sirvié para detectar multiples
fallos en la soldadura del componente, que retraso la consecucion de los objetivos del
proyecto.

Sensor DHT11 [8], es un sensor digital que permite medir la temperatura y la
humedad relativa del entorno. Este sensor funciona en voltajes entre 3V y 5.5V y con
un consumo que rara vez supera 0.3mA, por lo que se puede alimentar sin problema
con la conexion de 3.3V del NodeMCU. El DHT11 utiliza una interfaz de comunicacion
digital de un solo hilo, lo que simplifica su conexién con microcontroladores. La precision
de sus mediciones es de £2°C de temperatura y 5 % de humedad. Gracias a su disefio
compacto y bajo consumo energético, este sensor es ideal para cualquier sistema IoT que
se desee disenar, ademas de permitirnos cumplir con el requisito RF02 al incorporarlo al
dispositivo.

Para poder trabajar con este prototipo se dispusieron los componentes y los cables
necesarios en una placa de prototipado. En la Figura 4.4 se puede observar un esquema del
cableado creado con la aplicacion Fritzing [9], para que sea mas facil entender el circuito,
y el prototipo real se puede observar en la Figura 4.5. Como se puede ver en el esquema, el
cable amarillo va conectado al pin de trasmisién (TX) del componente GPS y el verde al
pin de recepcion (RX). Este detalle es importante a la hora de establecer la comunicacion
entre el NodeMCU y el componente, ya que el pin de trasmision deber ir conectado a un
pin de recepcion y al contrario. Cabe destacar también que todas las conexiones a tierra
acaban en el NodeMCU, de esta manera se asegura que todas las tomas de tierra estén
conectadas al mismo lugar, ya que sino el dispositivo no funcionaria correctamente.

Como ya se ha comentado, el dispositivo se podria alimentar tanto con una bateria
externa conectando el cable de voltaje a la entrada VIN del NodeMCU, como con la
conexion micro-USB conectada a un ordenador. De esa manera la salida de 3V3 da
alimentacion tanto al componente GPS como al sensor de temperatura y humedad.

El dispositivo disenado en esta iteracion es capaz de almacenar informacion GPS, de
humedad y temperatura ambiental correctamente y enviarla a un servidor MQTT siempre
y cuando se disponga de una conexion Wi-Fi adecuada, y la antena de componente GPS
sea capaz de obtener sefial satélite. Con la intencién de mejorar el rendimiento y autonomia
del dispositivo actual se plantea para la siguiente iteracion eliminar la necesidad de una

Diseno del dispositivo IoT 18

EA NMOLPON 3=ore. x|

¥O
Qon9ezeds3 1adon

Sd9 W9-03N
x01q=-n

fritzing

Figura 4.4: Esquema del sistema 1

Figura 4.5: Imagen del prototipo 1

© 0 N O U W N

NN N NN NN BB R e s s e e
N O Ot s W NN E O © 000Ut s W NNy = O

Diseno del dispositivo IoT 19

conexion Wi-Fi mediante el uso de un componente capaz de conectar el dispositivo a
internet en cualquier momento, gracias a la red mévil. De esta manera el dispositivo solo
requerird de una cobertura maévil estable para el envio de datos, en lugar de un punto de
conexion Wi-Fi, cumpliendo asi con el requisito RF09.

Formato de mensajes MQTT

En el diseno propuesto para la primera iteracién se transmiten datos de posicion
geografica, temperatura y humedad mediante el protocolo MQTT, un estandar ampliamente
utilizado en sistemas [oT por su eficiencia y bajo consumo de ancho de banda. Como parte
de esta iteracion, también se define la estructura de los mensajes MQTT, con el objetivo
de garantizar la trazabilidad, integridad y utilidad de los datos transmitidos. Para ello,
se ha optado por el envio de mensajes en formato JSON, siguiendo la estructura que se
muestra en la Figura 4.6, y que a continuacion se detalla.

Figura 4.6: Estructura de ejemplo del mensaje JSON

Disenio del dispositivo IoT 20

= sha256: Hash criptografico que permite validar la integridad del mensaje en el lado
del servidor.

= mac: Direcciéon MAC de la red Wi-Fi a la que se conecte el dispositivo IoT que
genero el mensaje, pudiendo asi identificar el origen de los datos.

s IMEI: Direccion IMEI del médulo GPRS que se utiliza en la segunda iteraciéon como
sustitutivo para la conexion Wi-Fi, de tal manera que se pueda identificar el origen
de los datos cuando no se dispone de una direccion MAC.

» support: Lista de tipos de datos que puede proporcionar el dispositivo de origen.
En este caso incluye GPS y TEMP (temperatura y humedad).

» data: Array de datos recolectados cuya cantidad de elementos dependera de la
frecuencia de recogida y envio de datos. Por cada elemento se registran siempre los
siguientes datos:

e timestamp: Marca de tiempo UNIX que indica el momento exacto de la
recolecciéon de los datos, obtenida del componente GPS.

« lat y long: Coordenada geograficas (latitud y longitud) que representan la
posicion del dispositivo al recoger los datos.

e humid: Nivel de humedad relativa del ambiente, en porcentaje, del lugar donde
se encuentra el dispositvo al recoger los datos.

o temp: Temperatura ambiente, registrada en grados centigrados, del lugar donde
se encuentra el dispositivo al recoger los datos.

« altitude: Altitud, en metros, a la que se encuentra el dispositivo al recoger los
datos.

» speed: Velocidad, en kilometros por hora, a la que va el dispositivo al recoger
los datos.

El formato JSON ofrece multiples ventajas para la transmision de datos en sistemas
[oT. Su compatibilidad lo convierte en un estandar ampliamente reconocido y facilmente
interpretable por distintos lenguajes de programacion y plataformas. La incorporacion
de un campo de verificaciéon como el sha256 garantiza la integridad del mensaje a lo
largo de todo el proceso de transmision, lo que nos permite cumplir con los requisitos
RF06 y RF07. Ademas, su estructura es escalable, lo que permite incorporar facilmente
nuevos tipos de datos o sensores si el dispositivo lo requiere. Por tltimo, su eficiencia se ve
reforzada por el uso de arrays, que permiten agrupar varios puntos de recoleccién en un
unico mensaje, reduciendo el uso del ancho de banda y pudiendo ajustar la frecuencia de
envios sin mayor problema.

Disenio del dispositivo IoT 21

4.2. Descripcion de la segunda iteracion

Para la segunda iteracion se partira del sistema disefiado en la primera iteracion,
anadiendo un componente que permita al dispositivo conectarse a internet sin necesidad
de una red Wi-Fi local. Por ello, se ha decidido utilizar el médulo GSM/GPRS SIM800L
junto con una tarjeta de telefonia movil que permita la conexiéon a internet a través de un
proveedor.

El médulo GSM/GPRS SIMS80O0L [10], es un componente de comunicacién que
puede dotar a nuestro sistema IoT de conectividad moévil mediante redes GSM y GPRS.
GSM (Globas System for Mobile Communications) es un estdndar para redes moviles
desarrollado en Europa en los anos 80 y 90, cominmente conocido como segunda generacion
o 2G, y que se enfocaba en proporcionar comunicaciones de voz digital y otros servicios
bésicos como SMS [11]. GPRS (General Packet Radio Service) es una extensiéon del sistema
GSM que introduce el uso de datos por paquetes, lo que lo convierte en una tecnologia
mas eficiente para el acceso a internet y transmision de datos, para mas informacién véase
[12], a veces se la referencia como la 2.5G ya que es una evolucion entre la 2G y la 3G.

De la misma manera que el médulo GPS GY NEO 6MV2, el SIMS0OOL se comunica a
través de una interfaz UART, utilizando sus pines de trasmisién y recepcién de datos,
mediante lo que se denomina comandos AT que permiten enviar y recibir SMS, enviar
paquetes de datos via GPRS, o incluso realizar una llamada de voz. Existen distintos
comandos AT que sirven a diversos propésitos, realizando los comandos adecuados en el
orden indicado se puede llevar a cabo las distintas funcionalidades de este tipo de médulo,
véase [13] para més informacién sobre los comandos AT. Si bien este médulo tiene muchas
funcionalidades, para este dispositivo solo se utilizara el envio de datos por conexiéon GPRS,
especificamente utilizando el protocolo MQTT, por lo que hay una fila entera de pines que
no se soldaran. Esta fila de pines aporta funcionalidades como la posibilidad de conectar
un altavoz o micréfono para llamadas telefénicas.

El SIM800L funciona con voltajes de entre 3.4V y 4.4V, mandando por su pin de trasmision
mensajes de advertencia cuando se sobrepasa este tltimo. Si bien su consumo en reposo
es de aproximadamente 20mA, este consumo puede tener picos de hasta 2A durante las
trasmision de datos, por lo que necesitaremos una fuente de alimentacién externa para
alimentar este componente. Este médulo viene con una antena helicoidal externa que
se debe soldar al pin NET, para que el componente funcione correctamente. Dispone
también de una entrada para tarjetas de telefonia moévil, que se deberan colocar en una
posicion especifica para su correcto funcionamiento, y un led interno que nos indicara
en que estado se encuentra el componente. Hay distintas frecuencias de parpadeo del led
con sus correspondientes significados plasmados en el datasheet del componente [10], a
continuacién se explican en detalle:

= Tiempo entre parpadeos de 800 milisegundos, significa que el SIM800L esta recibiendo
corriente y esta intentando conectarse a la red mévil, aunque atin no esté conectado.

Diseno del dispositivo IoT 22

= Tiempo entre parpadeos de 3 segundos, significa que ha logrado conectares a la red
moévil (GSM) y puede realizar llamadas y enviar o recibir SMS.

» Tiempo entre parpadeos de 300 milisegundos, significa que se ha establecido la
comunicacion GPRS, y por lo tanto tiene conexién a internet.

= 7 parpadeos en intervalos de 800 milisegundos seguidos de 5 segundos sin parpadeos,
significa que el SIM80OL se esta reseteando cada 7 segundos, probablemente porque
no esta recibiendo la corriente adecuada, ya sea por voltaje o amperaje inadecuados.

SIM800L

fritzing

Figura 4.7: Esquema del sistema 2

A la hora de integrar el nuevo componente en el sistema desarrollado en la primera
iteracion se deben hacer algunos ajustes, ya que se necesita manejar dos interfaces UART
distintas, una para el médulo GPS y otro para el SIM80OL. Dado que el médulo GPS
trasmite informaciéon de manera automatica sin necesidad de realizar peticiones, se ha
optado por mantener solo la conexion al pin de trasmision que ird conectado al pin
de recepcion hardware del NodeMCU, de esta manera se pueden leer los datos que va
trasmitiendo el GPS sin problema. Por otro lado, el SIM800L se debe conectar al NodeMCU
con ambos pines, trasmision y recepcion, para poder darle instrucciones de qué tipo de
conexion llevar a cabo y qué datos enviar. Todo esto se puede observar en el esquema del
cableado representado en la Figura 4.7 y en la imagen del prototipo ya montado de la
Figura 4.8.

Diseno del dispositivo IoT 23

Figura 4.8: Imagen del prototipo 2

Como ya se ha explicado, el médulo SIM80OL necesita obligatoriamente recibir corriente
mediante una fuente de alimentacién externa, ya que la corriente que puede extraer de la
conexion micro-USB del NodeMCU no es suficiente en amperaje para su funcionamiento.
Ademas, el datasheet del componente recomienda anadir un condensador de desacoplo
cerca del médulo y un diodo de proteccion en el circuito para filtrar el rizado de la tension
y suprimir los picos de corriente, lo que ayuda a estabilizar el voltaje de alimentacién
y a prevenir la desestabilizacién del circuito. Sin embargo, se ha podido comprobar en
diversas pruebas con la fuente de alimentacién, que el sistema funciona sin estos elementos
anadidos al circuito, aunque estos serian muy recomendables como medida de seguridad
en el dispositivo final.

Como en el caso de la primera iteracion el sistema disefiado podria ser alimentado
externamente conectando la fuente al pin VIN del NodeMCU. De nuevo es importante
destacar que la todas las tomas de tierra deben estar conectadas, por lo que al anadir una
fuente de alimentacién externa se debera conectar su respectiva toma de tierra a uno de
los pines GND del NodeMCU.

El dispositivo diseiado en esta iteracion es capaz de almacenar informacion GPS, de
humedad y temperatura ambiental correctamente, y realizar el envio de esta mediante
un componente GPRS capaz de conectarse a internet por red mévil, siempre y cuando
exista cobertura y sefial satélite adecuadas. Con esto se ha logrado una mayor autonomia y
rendimiento del dispositivo, con respecto a la iteracién anterior, siendo un buen candidato
de producto final para este proyecto. Sin embargo, la solucién obtenida es mas compleja,
mas cara y de mayor tamaio con respecto a la anterior iteracion, por lo que se puede

Disenio del dispositivo IoT 24

buscar soluciones que permitan reducir estas tres caracteristicas del dispositivo final en
la siguiente iteracion, ya sea mediante sustitucién del hardware como simplifcacion del
software.

4.3. Descripcion de la tercera iteracion

Para esta tltima iteracion se ha tratado de analizar el dispositivo obtenido hasta el
momento para reducir tres factores clave para el sistema final:

= Reduccién de complejidad: en términos de funcionalidad tanto en el software
como en el hardware, prescindiendo de utilidades innecesarias como es el caso de la
conexion a redes Wi-Fi. En este factor también entraria la sustitucion de componentes
por otros mas sencillos.

= Reduccién de costes: realizar cambios en el hardware que abarate el sistema
final. Hay que tener en cuenta que el sistema debera seguir realizando las mismas
funcionalidades, por lo que es importante elegir qué partes sustituir.

= Reduccién de tamaio fisico: de cara a cumplir el requisito RINF03 seria de-
seable reducir el tamano final del sistema para su posterior fabricacién, de nuevo
sustituyendo componentes por otros mas pequenos.

Como se puede observar, los tres factores descritos implican en gran parte la sustitucién
de componentes del sistema actual, por lo que es imprescindible detectar sustituciones
que no aumenten innecesariamente el tiempo de desarrollo, pero que cumplan con las
reducciones estipuladas y las funciones hasta ahora logradas.

Analizando el sistema desarrollado en la segunda iteraciéon se pudo observar que el
componente que mas espacio general ocupa es la propia placa NodeMCU, y dado que
algunas de sus funcionalidades adicionales no se utilizan en este sistema, como es el caso
de la conexion a redes Wi-Fi, es un componente que merece la pena sustituir. Por otro
lado, existen médulos GSM que tienen también capacidad de geolocalizacién, con lo cual
sustiuiriamos dos componentes, SIM800L y GPS GY NEO 6MV2, por uno solo reduciendo
asi el tamano general del sistema. Sin embargo, estos componentes a menudo se encuentran
a precios bastante altos para un componente IoT, cerca de 30 euros, mientras que el
SIMS80OL se puede encontrar facilmente por 2 o 3 euros y el médulo GPS utilizado por un
precio similar. Por lo que esta sustitucion encareceria bastante el sistema final, y dado que
los dispositivos pretenden ser desechables, sera mas importante reducir costes que tamano.

Con el analisis realizados se decidié plantear un cambio de placa del sistema, sustitu-
yendo el NodeMCU por otra placa mas sencilla y barata. Sin embargo, NodeMCU es una
placa bastante barata de por si, principalmente porque utiliza el chip ESP8266, que es un
microcontrolador de muy bajo coste con conectividad Wi-Fi integrada, ademés de ser una
plataforma de cédigo abierto que se beneficia de la produccién masiva. Se puede encontrar
por aproximadamente 9 euros en tiendas oficiales y alrededor de 3 euros en tiendas no

Disenio del dispositivo IoT 25

oficiales, aunque su precio varia bastante. Con esto en mente lo ideal seria buscar una
placa cuyo microcontrolador sea mas barato en términos generales que el ESP8266, lo cual
implica buscar un microcontrolador mas sencillo. Para evitar que el desarrollo se puede
alargar demasiado, se tratd de buscar opciones que en principio mantengan compatibilidad
con el resto de componentes y también con las librerias utilizadas hasta el momento, si es
posible.

Sustitucion de placa: Arduino Nano Every

Dado que la mayoria de librerias son compatibles con todas las placas de Arduino
segin su documentacion, se revisaron las distintas opciones y se eligié inicialmente la
placa Arduino Nano Every. Esta placa utiliza el microcontrolador ATmega4809, el
cual presenta caracteristicas mas limitadas en comparacién con el ESP8266. Por ejemplo,
el ATmega4809 dispone de una memoria flash de 48KB, frente a los 4MB del ESP8266.
En cuanto a la velocidad, el ATmegad4809 opera a una frecuencia maxima de 20 MHz,
mientras que el ESP8266 alcanza los 160 MHz. Ademas, la SRAM del ATmega4809 es de
6KB, muy inferior a los 64KB de RAM del ESP8266. Un punto clave es que el Arduino
Nano Every carece de conectividad Wi-Fi, algo que el ESP8266 si incorpora. Sin embargo,
el precio del Arduino Nano Every tanto en tiendas oficiales como no oficiales supera
al del NodeMCU, siendo este de unos 7 euros en tiendas no oficiales, aunque sea poco
comun. Esto se debe principalmente a su margen de beneficio, investigacion y desarrollo,
y el soporte técnico asociado a la marca Arduino. Aun asi, cuando se compara con el
NodeMCU, el Arduino Nano Every no oficial es mas econémico por sus componentes mas
simples. Si bien el espacio de memoria de programa es mas reducido que el del ESP8266,
se pudo comprobar que la compilacion del programa desarrollado en la anterior iteracién,
con el toolkit especifico para la placa Arduino Nano Every, ocupaba un 80 % del espacio
disponible.

Una de las caracteristicas distintas al NodeMCU que hacen del Arduino Nano Every
una opcién mas interesante es que tiene varias interfaces UART disponibles. Esto simplifica
la implementacién de la solucion, ya que permitiria utilizar estas interfaces UART en lugar
de utilizar la libreria SoftwareSerial. Ademaés, utilizar comunicacién serial hardware es
siempre mas fiable que emularla mediante software. Por otro lado, este médulo trabaja
con 5V en sus distintos pines y requiere de un voltaje de alimentacién de entre 7V y 21V,
por lo que para componentes como el SIM800L se debe reducir el voltaje de la senal de
trasmision para evitar danar el componente.

Inicialmente se asumié que el voltaje de trasmision del resto de componentes seria
suficientemente alto como para que el Arduino Nano Every sea capaz de interpretar
correctamente la sefial. Sin embargo, tras varias pruebas con el SIM80OL se pudo observar
que las respuestas que este daba a distintos comandos AT contenian caracteres corruptos.
En las especificaciones del SIM80OL se puede comprobar que el voltaje maximo del pin
de trasmision es de 2.8V [10], mientras que segin las especificaciones del ATmega4809
[14], para poder detectar correctamente la senal, requiere un voltaje minimo de entrada
de 0.7 - VCC = 3.5V, siendo VCC el voltaje con el que trabajan los pines, es decir,

Disenio del dispositivo IoT 26

Y

5V. La opcién mas fiable para resolver este problema es utilizar un “logic level shifter’
el cual permite la comunicaciéon entre componentes que operan con diferentes voltajes
logicos, adaptando las senales para que sean compatibles. Sin embargo, esto encareceria y
complicaria la nueva solucion, por lo que finalmente se decidié descartar esta placa.

Sustituciéon de placa: Arduino Nano

Como segunda opcién para reemplazar el NodeMCU, se consider6 el Arduino Nano,
que utiliza el microcontrolador ATmega328p. Este es muy similar al Arduino Nano Every
(basado en el ATmega4809), con algunas diferencias clave: el ATmega328p cuenta con una
memoria flash de 32KB y una SRAM de 2KB. Ademas, el Arduino Nano suele encontrarse
por, aproximadamente, 1 euro en tiendas no oficiales. Los requisitos de alimentacién y
voltaje de trabajo de los pines son los mismos que en el Arduino Nano Every, por lo que
tendremos que tenerlo en cuenta de la misma manera en el circuito nuevo del dispositivo.
En este caso las especificaciones del microcontrolador nos indican que el voltaje de entrada
minimo requerido se encuentra en 0.6 - VCC = 3V, siendo de nuevo VCC 5V, [15], por lo
que se asumio que esta vez no deberia ser necesario un “logic level shifter” para hacerlo
funcionar. Esto es algo que se confirmé posteriormente al ver que la comunicacion con el
SIMS8OOL no devolvia respuestas con caracteres corruptos.

Como se puede ver, el Arduino Nano cuenta con mucho menos espacio de memoria
para el programa lo cual es un problema al utilizar varias librerias distintas para el
funcionamiento de la anterior iteracion. Esto se puede comprobar compilando el programa
desarrollado en la anterior iteracion con el toolkit para Arduino Nano. Esto indica el
porcentaje de espacio de memoria de programa ocupado por la compilacion realizada, que
en primera instancia mostraba un valor del 124 %, lo que implica que se esta ocupando un
24 % extra del espacio disponible. Esto requeriria una reduccion significativa del programa,
lo cual representa un desafio considerable dado que la mayoria de las librerias empleadas
son esenciales. Otra caracteristica distinta con respecto al Arduino Nano Every es que
solo tiene una interfaz de comunicaciéon UART, igual que en el caso del NodeMCU, lo cual
implica que se tendra que seguir utilizando la libreria de SoftwareSerial.

Si bien la trasmision de datos hacia el Arduino Nano no deberia ser un problema, como
yva se ha explicado, la trasmision en el sentido contrario si podria danar el componente
SIMS0OL, ya que en sus especificaciones se menciona que esta pensado para voltajes de
entrada de datos de entre 2.5V y 2.8V. Esto requiere de una bajada de tension del pin
que se utilizard como trasmisién en el Arduino Nano, mediante un puente de resistencias.
Este puente consiste en conectar dos resistencias: una resistencia R, a la salida del pin
de trasmision del Arduino de 5V y otra resistencia Ry a tierra, con la salida de 2.8V
tomada entre ambas. La relacion para el divisor de voltaje se obtiene mediante la siguiente
ecuacion:

Ry

Vour = Vin - -
¢ Ry + Ry

Diseno del dispositivo IoT 27

Utilizando una resistencia Ry de 10k{) con la intencién de obtener un voltaje de salida
Vo = 2.8V y con un voltaje de entrada de Vj,, = 5V, se puede despejar la segunda
resistencia, Ry ~ 12.7k€). Siguiendo los valores de resistencia comerciales mas comunes
lo mas sencillo seria utilizar dos resistencias en serie para llegar a los 12.2k€), mediante
una resistencia de 10k€2 y otra de 2.2k€). Esto deberia dar un valor de voltaje de salida
entre los 2.5V y 2.8V. Se puede revisar el esquema del circuito para el Arduino Nano en la
Figura 4.9 y el sistema montado sobre el que se realizaron pruebas en la Figura 4.10.

SIM800L

fritzing

Figura 4.9: Esquema del sistema 3

Como vemos en el esquema de la Figura 4.9 se deben colocar las resistencias mencionadas
para evitar danos en el componente SIM80OL. Hay que tener en cuenta que el Arduino
Nano, igual que el Arduino Nano Every, requiere de un voltaje minimo de entrada de 7V
para su correcto funcionamiento, aunque este puede ser sustituido por la alimentacién
dada por el puerto mini-usb. Sin embargo, para el sistema final independiente se requeriria
de algiin método de bajada de tension, ya que el SIM80OL trabaja con voltajes entre 3.4V y
4.4V, siendo lo ideal 4V. Esto revela un factor en contra para la sustitucién del NodeMCU
por un Arduino Nano, ya que el NodeMCU es capaz de trabajar independientemente con 5V
seglin sus especificaciones, lo cual hace mas sencillo una bajada de tension para el SIMS80OL.
Ademas, se llegd a comprobar que el NodeMCU es capaz de funcionar correctamente con
un voltaje de 4.2V al mantenerlo conectado a la fuente de alimentacion regulable. Igual
que en el circuito de la iteracion anterior, se recomienda el uso de un condensador y diodos
especificos para alimentar al SIM800L segtin su propia especificacion.

Diseno del dispositivo IoT 28

Figura 4.10: Imagen del prototipo 3

4.4. Resumen

Este capitulo ha profundizado en el disenio del dispositivo IoT, detallando el modelo
de diseno iterativo adoptado para su desarrollo, el cual permitié construir el sistema de
forma incremental mediante versiones sucesivas. Se han descrito las distintas fases de esta
evolucién, comenzando con una primera iteracién centrada en componentes esenciales
como la placa de desarrollo NodeMCU, un componente GPS y un sensor DHT11, que
permitiran el funcionamiento general del dispositivo bajo la premisa de una conexién a
red Wi-Fi. Ademaés se define el formato de lo mensajes MQTT que se enviaran al servidor.
Posteriormente, se define la segunda iteracién en la que se incorporé un médulo GPRS
(SIM80OL) para asegurar la autonomia del dispositivo, eliminando asi la necesidad de una
red Wi-Fi para su funcionamiento. En esta iteracién se abordaron los distintos requisitos
de alimentacién que anade el uso del nuevo componente presentado. Finalmente, la tercera
iteracion exploro la sustitucion de los distintos componentes para reducir la complejidad,
tamano y coste de la solucién anterior, proponiendo un diseno nuevo en el que se sustituye
la placa NodeMCU por la placa Arduino Nano. En conjunto, el capitulo ha cubierto los
detalles de disefio necesarios para llevar a cabo la siguiente fase de implementaciéon, que
se define en el Capitulo 5, y que describe el codigo desarrollado para cada una de las
iteraciones ya presentadas.

5: Detalles de la implementacion
software

En este capitulo se procede a describir detalles mas especificos sobre la implementacion
y el desarrollo del software para el dispostivo IoT. Igual que en el Capitulo 4, aqui
se explicaran las modificaciones realizadas a nivel de software en cada iteracion del
desarrollo, junto con los detalles técnicos que se han tenido que considerar al anadir nuevos
componentes.

Para el desarrollo del software de este proyecto se ha utilizado a lo largo de todas
las iteraciones el entorno Arduino IDE [16], a pesar de que el principal microcontrolador
empleado, NodeMCU, no forme parte de la gama oficial de productos Arduino. Esta
decision se debe a la amplia compatibilidad del IDE con diferentes placas de desarrollo,
asi como a su entorno intuitivo, la facilidad para gestionar bibliotecas de terceros y la
extensa comunidad de soporte que ofrece. Ademas, su simplicidad para cargar programas
directamente a las placas y su integraciéon con herramientas de depuracion basicas como
el “Serial monitor” lo convierten en una opcioén practica y eficiente para el desarrollo de
sistemas [oT.

El c6digo se ha desarrollado en archivos con extension .ino, cominmente conocidos
como sketches. Estos archivos estdan escritos en un subconjunto simplificado de los lenguajes
de programacion C y C++4, adaptado especificamente para facilitar la programacion
de microcontroladores en placas Arduino. Este tipo de archivos tienen una estructura
particular que consta de dos funciones principales en su ejecucion: setup() y loop(). La
funcién setup() se ejecuta al iniciar el programa una sola vez y se utiliza para realizar la
configuracién inicial del dispositivo, inicializacién de variables y de comunicaciones seriales
y otros aspectos propios del inicio de una ejecucién. Por otro lado, la funcién loop()
contiene la parte del cédigo que se ejecutara repetidamente mientras el dispositivo este
encendido, funciona similar a un bucle while, aunque en este caso la condicion es que el
dispositivo reciba corriente.

29

Detalles de la implementacion software 30

El codigo desarrollado a lo largo del proyecto se puede encontrar en un repositorio de
GitHub que también se ha proporcionado en la contribucién para las Jornadas Sarteco
[17].

5.1. Implementacién de la primera iteracién

En esta iteracion se desarrollard desde cero el codigo, utilizando distintos ejemplos y
librerias. Por lo tanto en esta fase se incluyeron las siguientes funcionalidades:

Comunicacién con el componente GPS y extraccién de datos del mismo.

Comunicacion con el sensor de temperatura y humedad, y extraccion de datos del
mismo.

Encapsulado de los datos obtenidos en un formato JSON especifico.

= Conexion a internet via Wi-Fi y envio de los datos mediante protocolo MQTT.

Para el desarrollo de esta iteracién se han utilizado diversas librerias, algunas de
las cuales no estan incluidas por defecto en el entorno de desarrollo Arduino IDE. No
obstante, pueden ser instaladas facilmente mediante el Library Manager del propio IDE.
En ciertos casos, ha sido necesario obtener las librerias directamente desde sus repositorios
oficiales, e incluso modificar algunos de sus archivos internos para garantizar el correcto
funcionamiento del programa. A continuacién, se detallan dichas librerias y los ajustes
realizados:

» TinyGPSPlus en [18]: proporciona una interpretaciéon comprensible y orientada a
objetos de las sentencias GPS (NMEA). NMEA es el formato estdndar que utilizan
los dispositivos GPS para informar de la ubicacion, la hora, la altitud, etc. Esta
libreria nos permite acceder a distintos datos adicionales de posicién como la altitud
o la velocidad, lo que nos permite cumplir con el requisito RF10.

» SoftwareSerial en [19]: permite la comunicacion serial en otros pines digitales,
replicando dicha funcionalidad mediante software. Cabe destacar que, aunque es
posible tener dos SoftwareSerials activos, solo uno de los dos podréa recibir datos
al mismo tiempo, esto se observé durante el desarrollo de la segunda iteracién,
cuando tras varios problemas durante la implementacion se volvié a consultar la
documentacién en profundidad.

» ArduinoJson en [20]: permite la serializacion y deserializacion de datos JSON en
proyectos Arduino de manera eficiente.

» Crypto en [21]: libreria genérica con multiples funcionalidades de criptografia para
proyectos Arduino. En este proyecto nos centraremos en la parte correspondiente al
algoritmo SHA256. Si bien esta libreria aparece en el Library Manager del IDE de

Detalles de la implementacion software 31

Arduino, este método de instalacién ha dado problemas varias veces y se ha tenido
que instalar manualmente a partir de su repositorio oficial.

» ESP8266Wi-Fi en [22]: permite acceder y utilizar la funcionalidad de conexién
Wi-Fi que posee el chip ESP8266. Para instalarlo se debe primero instalar el core de
ESP8266, las instrucciones de instalacién se pueden encontrar en [22].

» Adafruit MQTT Library en [23]: proporciona soporte para la conexién y envio
de datos mediante protocolo MQTT a los servidores de Adafruit. Los mensajes
enviados se pueden comprobar en la propia pagina de Adafruit, siempre y cuando
se disponga de una cuenta. Esta libreria tiene una limitacion en el envio de datos
MQTT, permitiendo paquetes de no méas de 256 bytes. Sin embargo, los mensajes
que se envian en nuestro caso sobrepasan facilmente este limite, por lo que se ha
optado por cambiar el tamano maximo de paquetes de envio, modificando el codigo
interno de la libreria. A mayores se han modificado algunas funciones de la misma
para poder consultar el tamano de los paquetes justo antes del envio, permitiendo
asi tomar mediciones durante las pruebas.

» DHT sensor library en [24]: permite leer facilmente la temperatura y humedad
de los sensores DHT11, DHT21 y DHT22. En nuestro caso el sensor utilizado es un
DHT11, por lo que se debe especificar en el cédigo el typo de sensor mediante la
directiva de preprocesador #define DHTTYPE DHT11.

En la Figura 5.11 se puede apreciar un diagrama de flujo del cédigo desarrollado para
esta iteracion. En el se describe el flujo habitual de un sketch de Arduino, distinguiendo
entra la funcién setup() y la funciéon loop(). Como se puede observar al encender el
dispositivo se procede a inicializar la comunicacién con el componente GPS mediante
SoftwareSerial, la conexion con la red Wi-Fi previamente especificada y el sensor de
temperatura y humedad. A partir de este punto el dispositivo ir4 comprobando si hay
datos GPS que decodificar y guardarlos, de esta manera se va creando el mensaje que
se enviard al servidor MQTT. Entre guardados de datos se introduce una espera de una
cantidad de tiempo ajustable, para asi recopilar datos en distintos momentos. Finalmente,
cuando el mensaje esta completado se realiza la conexion al servidor MQTT de Adafruit,
se serializa el mensaje en formato JSON y se publica.

Dificultades encontradas

Durante el desarrollo de esta primera iteracién se tratdé por primera vez con muchos
de los componentes ya descritos. Esto significa que durante esta iteracién se tuvo que
soldar por primera vez muchos de estos componentes, ya que no todos los componentes se
venden con sus respectivos pines ya soldados. Si bien soldar parece una tarea trivial, es
importante realizar una buena soldadura de los pines, ya que sino no recibiran corriente o
mandaran y recibiran informacién adecuadamente. Especificamente el médulo GPS GY
NEO 6MV2 tuvo que ser soldado y revisado en repetidas ocasiones, ya que debido a malas
soldaduras, no recibia corriente e incluso no era capaz de recibir y trasmitir informacion.

Detalles de la implementacion software 32

Setup Loop
Setup ('Ir"c‘aglza’ Sf\f\’f‘?‘F' Decodificar todos los
onectara Wiri datos del GPS
Obtener direccion mac
l Inicializar dht

a localizaciéon GPS ha
cambiado?

Se recogen los datos

NO
Los datos son validos?

Se guardan los datos
en el mensaje MQTT

!

Se esperan X
segundos

El mensaje MQTT esta
completo?

Realiza conexién al
servidor MQTT
Serializar mensaje
Publicar mensaje

Figura 5.11: Diagrama de flujo de la iteracion 1

Como ya se explico, el led interno puede indicarnos si esté recibiendo corriente y si esta
recibiendo senal y trasmitiendo informacién por su pin de trasmisién, TX.

Si no se esta seguro de si el componente GPS esta enviando informacién por su pin
de trasmision, se puede prescindir de la libreria anteriormente mencionada e imprimir
directamente la informacion que reciba el NodeMCU. Sin embargo, en este caso se mostraran
datos en formato NMEA, mensajes que por si mismos pueden ser dificiles de interpretar,
pero que puede indicarnos qué estd ocurriendo con nuestros componente [25]. Este detalle
ayudo a comprender a lo largo del desarrollo que el componente GPS tiene una sensibilidad
un tanto alta, con lo que en ocasiones puede tardar hasta 15 minutos empezar a trasmitir
datos, aunque pueda parecer que no esta funcionando correctamente.

Como ya se ha comentado, la libreria MQTT de Adafruit tiene una limitacion en el
tamano de los paquetes que se pueden enviar mediante dicho protocolo. Esto es algo que

Detalles de la implementacion software 33

no se menciona en la documentaciéon de la libreria y que también dié problemas a lo
largo del desarrollo, ya que comprobando los mensajes enviados al servidor de Adafruit
se pudo comprobar que los JSONs llegaban incompletos. Sin embargo, se pudo descubrir
revisando el codigo interno de la libreria, el cual, no solo se modificé para poder enviar
mensajes MQTT mas grandes, sino también para consultar el niimero de bytes reales que
se enviaban.

5.2. Implementacion de la segunda iteracion

Continuando con el desarrollo obtenido en la primera iteracion se plantea la implemen-
tacion del uso de un tipo de conexién a internet distinto, de tal manera que el dispositivo
sea independiente de la existencia o no de una red Wi-Fi disponible, cumpliendo asi con
el requisito RF09. Para ello se ha dispuesto de un componente que permite la conexion
a internet mediante la red maévil, de tal manera que el dispositivo solo requiera de una
tarjeta de telefonia moévil habilitada por un proveedor y cobertura.

Si bien la intencion en esta iteracion es reutilizar la mayor cantidad de cédigo desarro-
llada en la anterior iteracion, por compatibilidad con el componente SIM800L se ha tenido
que desarrollar de nuevo el cédigo correspondiente a la conexiéon a internet y envio de los
datos mediante protocolo MQTT. Con ello se ha prescindido de las librerias: Adafruit
MQTT Library ya que no se pudo compatibilizar con el SIM800OL, y ESP8266Wi-F'i
Library ya que solo era necesaria para la conexion a redes Wi-Fi. Por otro lado, para
implementar la funcionalidad comentada se ha utilizado las siguientes librerias:

» TinyGSM en [26]: proporciona una manera comprensible y orientada a objetos
de acceder a las distintas funcionalidades de los médulos GSM/GPRS, a las que
normalmente se acceden mediante comandos AT. Principalmente, se ha utilizado
para realizar la conexion a la red mévil y con ello a internet, pudiendo comprobar
comodamente y en cualquier momento el estado de dicha conexion.

= PubSubClient en [27]: proporciona soporte para realizar conexiones a distintos
servidores MQTT y enviar datos mediante dicho protocolo. Se utilizé como sustituto
de la libreria Adafruit MQTT Library, ya que si bien funcionan de manera
similar, esta ultima fue creada para conexién a internet via Wi-Fi o Ethernet, por
lo que no se consiguié hacer funciona con la red GPRS. Esta libreria también tiene
una limitacién de envio de datos MQTT de 256 bytes, por lo que de nuevo se ha
modificado el codigo interno de la libreria para aumentar este limite. También se
han modificado funciones internas de la libreria para poder obtener el tamafio de
paquete que se envia como resultado de la funcién publish(), lo que permite tomar
mediciones de consumos de datos durante las pruebas. Los archivos modificados de
esta librerfa se pueden encontrar en una carpeta del repositorio del proyecto en [17].

Estas modificaciones en la librerias utilizadas no solo implicé cambiar las funciones
de comunicacién con el servidor MQTT, sino que se tuvo que optar por un nuevo broker

Detalles de la implementacion software 34

MQTT, ya que la libreria PubSubClient no es la mas adecuada para conectar con los
servidores Adafruit. Por ello, se opté por broker MQTT de Mosquitto [28], el cual dispone
de un servidor de pruebas disponible de manera gratuita [29], aunque se podrian plantear
otras opciones tanto gratuitas como de pago distintas a Mosquitto.

Como mejora adicional de esta iteracién se planted una modificacién del cdédigo que
en principio podria disminuir el consumo eléctrico general del dispositivo, aumentando
asi la autonomia del mismo. Para ello se exploraron las distintas opciones de puesta en
reposo o sleep modes de los componentes del sistema. En muchos casos los componentes
se desarrollan con una opcion que les permite ponerse en un estado de espera en el que
su actividad de reduce permitiendo asi disminuir el consumo eléctrico. En el caso de
nuestro sistema los tinicos componentes que tiene un consumo eléctrico suficientemente
alto como para considerar su puesta en reposo son tres: el médulo GPS, el médulo GPRS
y el NodeMCU (placa de desarrollo del dispositivo). Analizando estos tres componentes y
su contribucién en el funcionamiento del sistema se pudo concluir que tanto el médulo
GPS como el modulo GPRS no se pueden poner en estado de reposo en ningiin momento
de su funcionamiento.

Por un lado, el médulo GPS tiene el defecto de tardar entre 5 y 15 minutos en captar
inicialmente la senial de suficientes satélites para poder empezar a enviar datos de posicion.
Por lo tanto, si se privase de corriente en cualquier momento a este componente o se
activase algiin modo de ahorro de energia podria perder su senal, lo que podria causar un
retraso en la recoleccion de datos del dispositivo e incluso en el envio de los mismos. Por
otro lado, el médulo GPRS tiene un consumo de energia tipico mas bajo (por debajo de
los 20mA), aunque en los momentos de reconexién y envio de datos su consumo se puede
disparar durante unos pocos segundos. El puerto serial del SIM80OOL se desactiva mientras
cualquiera de los dos modos de bajo consumo del médulo estén activados, por lo que no se
puede realizar reconexiones o envios de datos de ningun tipo con estos modos de reposo
activados. Se puede consultar mas informacion sobre estos modos en el DataSheet del
SIM8O0OL que se aporta en [10]. Tampoco interesa activar este modo en los momentos de
recoleccién de datos, ya que si se pierde la conexion, en la fase de envio se debera reconectar
a la red GPRS y al servidor MQTT. Esta tarea en condiciones normales puede tardar
unos pocos segundos, pero en algunos casos puede llevar mas tiempo debido a repetidos
intentos fallidos de conexion, lo que implicaria unos picos de consumo que durarian mas
tiempo de lo habitual.

Por su parte el NodeMCU también dispone de varios modos de reposo o “soluciones de
bajo consumo” [30]. En este caso las mas utilizadas son tres y algunas engloban a otras:

= Modem-sleep: esta configuracién lo tinico que hace es desactivar la funcionalidad
de conexion a redes Wi-Fi con la que cuenta el NodeMCU. Si bien esta configuracion
no afecta al resto de funciones del microcontrolador, si que reduce levemente el
consumo tipico de la placa.

= Light-sleep: en este caso no solo se desactiva la funcionalidad de conexién a redes
Wi-Fi, sino que también se desactiva el reloj interno del sistema del NodeMCU y

Detalles de la implementacion software 35

el procesador interno se queda en un estado de suspensién. Esto resulta en una
reducciéon del consumo mucho mayor que en el Modem-sleep mode.

= Deep-sleep: este ultimo modo es mas brusco, ya que en vez de desactivar funciona-
lidades, desactiva el procesador interno por completo, con lo que el programa y la
memoria guardada se resetean. Como consecuencia este modo es el que mas reduce
el consumo del NodeMCU.

Estos modos de reposo se pueden activar durante un periodo de tiempo a partir del cual
el NodeMCU vuelve a su modo habitual de trabajo, por lo que se podria considerar un
sustitutivo de la instruccién delay(). Sin embargo, en el caso del modo Deep-sleep, el
NodeMCU resetea su estado, comenzando de nuevo el programa y borrando los datos
guardados en memoria, lo cual hace que los datos de posicion recolectados se pierda. Esto
hace que el modo Deep-sleep no sea adecuado para el sistema que se esta desarrollando.

La implementacién del modo Light-sleep habitualmente se realiza utilizando un pin
como entrada para la senal externa que despertard al dispositivo, ya que en este modo
el procesador se encuentra en suspension. Si bien se encontraron ejemplos de cdédigo no
oficiales que supuestamente despertaban al dispositivo tras un tiempo utilizando la funcién
delay(), al probarlos se observd que el NodeMCU hacia la espera de tiempo programada,
pero el consumo energético no disminuia. Por lo tanto, se descarté el modo Light-sleep, ya
que no parece funcionar sin utilizar un método externo al dispositivo para salir de dicho
modo.

Por dltimo, para activar el modo Modem-sleep solo se necesita llamar a una funcién
interna del ESP8266, y dado que en esta iteracion no se utiliza la conexiéon a redes Wi-Fi,
no tiene sentido utilizar este modo, ya que por defecto el médem ya parece estar apagado.
Es por esto que finalmente no se vié adecuado utilizar ninguno de los modos de reposo
disponibles.

El flujo de cédigo final de esta iteracion es muy similar al representado en la anterior
iteracion en la Figura 5.11, aunque hay algunas diferencias que destacar. En primer lugar
durante la funcion de setup() ya no se conecta a una red Wi-Fi, ya que ahora se utiliza
el médulo GPRS para conectarse a internet. Ademads, al estar utilizando un moédulo
GPRS, ya no se puede obtener la direccion MAC, ya que esta direccion es exclusiva de
dispositivos red, pero un modulo GPRS es una tecnologia de red mévil. En su lugar se
puede obtener una direcciéon IMEI, c6digo numérico de 15 digitos normalmente tnico
que sirve para identificar un dispositivo mévil. Otro cambio con respecto a la anterior
iteracion se encuentra en el momento del envio de datos, el cual ahora se realiza mediante
el componente GPRS. Para poder asegurar el envio se debe comprobar que el componente
SIMS8O00L esta conectado a la red, para ello se debe comprobar por orden: si se ha registrado
en la red mévil y ha encontrado un operador vélido (isNetworkConnected()), si se ha
conectado al servicio GPRS (isGprsConnected()), y por tltimo si la conexién al servidor
MQTT esta operativa. Si alguna de dichas conexiones no estd habilitada, se realizard una
reconexion de los servicios necesarios antes del envio de los datos. Esto permite mantener

Detalles de la implementacion software 36

los datos almacenados hasta tener una conexion estable para el envio de los mismos,
cumpliendo asi con el requisito RF03.

Dificultades encontradas

En esta iteracién se anadié un nuevo componente, que como en la iteraciéon anterior,
se tuvo que soldar. Durante el desarrollo de esta iteracion se tuvo que utilizar distintos
componentes SIM80OL, por problemas con la soldadura y porque uno de ellos resulto
defectuoso e incapaz de conectarse a la red moévil, a pesar de que todo parecia correctamente
soldado. Todo esto se puede comprobar en gran parte atendiendo al led acoplado al
componente, el cual deberia parpadear cada segundo si recibe corriente, y tras un par de
minutos, si tiene correctamente insertada una tarjeta SIM y la antena esta bien soldada
empezara a parpadear cada 3 segundos. Sin embargo, la posicién en la que debe introducirse
la tarjeta SIM no es intuitiva, aunque venga indicada de manera muy sutil en la carcasa
del médulo, por lo que es facil introducirla erréneamente.

Para la comunicacién con los componentes GPS y GPRS se utiliza el protocolo UART de
comunicacién serial. En la primera iteracion se utilizo la libreria SoftwareSerial para emular
una interfaz UART y en esta iteracion originalmente se pensé utilizar la misma libreria para
emular dos interfaces de comunicacion serial distintas. Sin embargo, esta opcion resulto
funcionar de manera inestable, ya que cuando se se habilitan dos SoftwareSerial distintos,
solo uno de ellos puede recibir datos al mismo tiempo. Por ello se opté por mantener un
SoftwareSerial para el componente GPRS y utilizar la interfaz UART hardware del propio
NodeMCU para recibir los datos del componente GPS.

5.3. Implementacién de la tercera iteracion

Si bien se realizaron diversas pruebas sobre el Arduino Nano Every, no se pudo hacer
funcionar este sin un “logic level shifter”, por lo que su uso se descarté en la fase de diseno
de la tercera iteracion. Continuando con la sustitucion del NodeMCU por el Arduino
Nano, se realizaron distintas pruebas que mostraron buena compatibilidad del dispositivo
con los componentes GPS y DHT11 y las librerias que estos requieren. Sin embargo, se
hallaron dificultades para realizar la comunicacién entre el Arduino Nano y el componente
SIMS8OOL, que se detallan a continuacion.

Mediante el uso de la libreria SoftwareSerial se pudo realizar la comunicaciéon por
prtocolo UART entre SIM800OL y Arudino Nano, observando cémo los comandos AT se
enviaban correctamente al componente GPRS y este enviaban respuestas sin caracteres
corruptos. Esto indicaba que los voltajes de trasmision y recepcion eran correctos en ambos
sentidos, ya que de otra manera se obtendria los mismos resultados que para el Arduino
Nano Every. Sin embargo, utilizando las librerias TinyGSM y PubSubClient de la misma
manera que en la iteracién anterior, se pudo observar que los mensajes MQTT nunca
llegaban al servidor.

Detalles de la implementacion software 37

La libreria TinyGSM cuenta con una opcién de debug, que mediante el uso de la
libreria StreamDebugger [31], permite obtener retroalimentacion por el monitor serial
sobre los distintos comandos AT que se envian y las respuestas obtenidas. Con ello se
pudo observar que los comandos se enviaban correctamente, aunque en algunos casos
eran respondidos con mensajes de error o con una tardanza notable, siendo la mayoria de
respuestas de error remediadas mediante el reenvio del mismo comando sucesivas veces.
Sin embargo, el mayor punto de fallo se encontraba en el envio del comando AT+CIPSEND,
comando que se utiliza para enviar un paquete de datos mediante TCP o UDP segun el
manual de comandos AT [13]. Las librerias utilizadas esperan como respuesta el caracter
“>7_que indica que se puede enviar el contenido del paquete o mensaje. Sin embargo, la
respuesta esperada no parecia llegar a tiempo y el programa cerraba la conexién TCP y
volvia a intentar todos los comandos continuamente.

Se realizaron multiples pruebas con un coédigo en el que se trataba de enviar mensajes
por TCP a un servidor que escuchaba en un puerto especifico, para lo cual se tuvo que
abrir dicho puerto a la red externa. Estas pruebas se realizaron prescindiendo de la libreria
PubSubClient, dado que utilizarla para este propdsito era inviable. Con ello, se pudo
comprobar que efectivamente el caracter “>” de respuesta era enviado por el SIMS0OOL,
aunque a menudo con un retraso en el tiempo bastante grande, lo que en muchos casos
hacia que el programa diese por fallido el envio y volviera a intentarlo una y otra vez.
Esto forzo a prescindir completamente de la libreria PubSubClient para la implementacion
de esta iteraciéon. Sin embargo, no se encontraron otras librerias de mensajeria MQTT
que fueran compatibles con Arduino Nano, el SIM80OL y la libreria TinyGSM, ya que en
principio PubSubClient es la tnica que mantiene compatibilidad con esta ultima.

Solucion obtenida

Tomando como punto de partida el codigo desarrollado en la segunda iteracion, se
realizaron modificaciones para enviar los datos recolectados por el componente GPS a un
servidor TCP en lugar de al broker MQTT utilizado hasta ahora. Como ya se comento,
la compilacion del cédigo de la segunda iteracion, con el toolkit especifico de Arduino
Nano, ocupa un 24 % por encima del espacio de memoria de programa. Sin embargo, al
prescindir de la libreria PubSubClient este pasé de ocupar un 24 % por encima a ocupar
un 8% por encima del espacio de memoria de programa, por lo tanto, se requirié de
mas optimizaciones para reducir atin mas el espacio de memoria de programa ocupado.
Analizando las librerias utilizadas, se pudo concluir que la libreria ArduinoJson podia
ser sustituida por una implementacién manual que se encargase de crear tinicamente la
estructura del JSON especifica para esta solucién, en lugar de permitir la serializaciéon y
deserializacién de cualquier estructura JSON. Esta implementacion se realizdé mediante la
funcion snprintf () que permite formatear y guardar texto en un array de caracteres de
forma segura, controlando su tamano maximo para evitar desbordamientos, de tal manera
que se evite el uso de la clase String.

Como resultado tras prescindir de las librerias ArduinoJson y PubSubClient, y
otras optimizaciones realizadas sobre el codigo, se pudo reducir el espacio de memoria de

Detalles de la implementacion software 38

programa ocupado de 124 % a 96 %, siendo posible una reduccién atin mayor al prescindir de
los mensajes de retroalimentacién. Ademas, se desarrollo un script de python que permitiese
recibir los mensajes TCP enviados por el dispositivo, encapsulando y redirigiendo el mensaje
al broker MQTT deseado. Este script utiliza la libreria paho-mqtt para reenviar el mensaje
por MQTT al broker de Mosquitto, abriendo primero un puerto de escucha TCP, para asi
poder recibir los mensajes. El codigo desarrollado en esta iteracion se puede encontrar en
el repositorio del proyecto [17].

Si bien con la solucién planteada se pudieron recibir mensajes al servidor MQTT, se
pudo observar que los retrasos afectaban bastante al buen funcionamiento del sistema.
Finalmente, debido a los retrasos en los envios, la complejidad anadida a la nueva solucién
que ahora requeria de un servidor adicional para el reenvio de mensajes, y otros factores
negativos detallados en el diseno de la implementacion, se decidié descartar la sustitucion
del NodeMCU por el Arduino Nano como mejora del dispositivo. Esto nos lleva a considerar
el dispositivo obtenido en la segunda iteracion como la mejor opciéon que cumple con los
requisitos propuestos inicialmente.

5.4. Resumen

Este capitulo ha descrito en detalle la implementacién software del dispositivo IoT,
explicando su desarrollo a través de las sucesivas iteraciones del proyecto. Se ha abordado la
programacién de la primera iteracion, centrada en el esqueleto principal del funcionamiento
del dispositivo, incluyendo el uso de librerias clave como TinyGPS++ y Adafruit MQTT
necesarias para la interpretacion de los datos GPS y la conexion a un servidor MQTT
de Adafruit, respectivamente. Posteriormente, se detallaron los ajustes necesarios en el
software para la segunda iteracion, que incorporo la conectividad GPRS mediante el médulo
SIMS800L, lo que obligd a utilizar distintas librerias para manejar el nuevo componente y
realizar una conexién a un nuevo servidor MQTT, esta vez de Mosquitto. Finalmente, se
explicaron las multiples adaptaciones de software necesarias para la tercera iteracion, que
involucré el cambio de placa por la de Arduino Nano, lo que concluyé con la eleccién del
dispositivo desarrollado en la segunda iteracion como solucién final de este proyecto. Con
esto todo la parte relativa al desarrollo del dispositivo queda cubierta, siendo necesaria
una ultima fase de pruebas descritas en el Capitulo 6, en dénde se exponen distintas
conclusiones sobre los casos probados sobre las distintas iteraciones.

6: Pruebas realizadas

Como parte del desarrollo del dispositivo se han disefiado una serie de validaciones,
casos de prueba y métodos de comprobacion, para observar el correcto funcionamiento del
sistema creado. Para estas pruebas se han utilizado dos brokers MQTT distintos: para
la primera iteracién se ha utilizado el servicio MQTT gratuito de Adafruit, el cual te
permite consultar los mensajes MQTT recibidos en tiempo real a través de su web [32]; ¥
para las siguientes iteraciones Eclipse Mosquitto, que tiene varios feed o flujos de datos
para realizar pruebas y se puede instalar facilmente con Docker [28]. Estas dos opciones
permiten consultar los mensajes MQTT que se envien con el dispositivo de manera sencilla
y rapida.

Estas pruebas no solo tienen el objetivo de comprobar el buen funcionamiento del
dispositivo, sino también poder analizar los requisitos de consumo eléctrico y de ancho
de banda necesarios. De esta manera se podria decidir que tipo de baterias y contrato de
telefonia maévil serian mas adecuados para su puesta en produccién.

6.1. Verificacion de mensajes MQTT

Con la intencion de comprobar y validar que los mensajes MQTT enviados por el
dispositivo son accesibles y su contenido correcto, se ha disenado un c6digo en python que
se suscribe al feed correspondiente para recibir nuevos datos en tiempo real. Dependiendo
de la iteracién se conectara a un broker u otro como ya se ha explicado, aunque en el caso
de Adafruit se pueden comprobar los mensajes en su propia web, y en el caso de Mosquitto
se puede comprobar instalando la propia api y ejecutando un comando para consultar el
feed de pruebas disponible de manera gratuita [29].

Dado que se utilizan dos brokers distintos, se han creado dos scripts de python distintos
con ligeras diferencias, ya que las comprobaciones de los mensajes son las mismas en ambos
casos. En ambos scripts se utiliza la misma libreria para conectar a servidores MQTT,
paho-mqgtt, el cual ademés de proporcionar una implementacién del protocolo MQTT
para python, también nos permite conectarnos a practicamente cualquier broker MQTT
mediante un cliente MQTT. La tnica diferencia es que en un script se debe proporcionar

39

Pruebas realizadas 40

el usuario y clave de Adafruit y en el caso de Mosquitto no es necesario, ya que se utiliza
un feed para pruebas publico. Para comprobar la veracidad del hash SHA-256 se utiliza la
libreria hashlib de python, que contiene diversos algoritmos de hash. Ambos scripts se
pueden encontrar en una de las carpetas del repositorio del proyecto [17].

Este script de python se conecta en tiempo real al broker correspondiente y comprueba
que el contenido del mensaje cumpla lo siguiente:

= El JSON esta completo y tiene una estructura de JSON correcta.

= El hash SHA-256 se ha generado correctamente a partir del contenido del JSON con
el parametro de hash vacio.

= Las instancias de datos guardadas tienen timestamps consecutivos y correctos con
respecto a la fecha actual.

s Las mediciones de cada instancia de datos no estan vacias.

Esta verificacién de los mensajes MQTT es fundamental para asegurar la validez de los
mensajes MQTT, y a lo largo del desarrollo fue especialmente ttil para detectar algunos
fallos y problemas.

6.2. Casos de prueba

Dado que los tiempos entre envios y recogidas de datos son configurables, cumpliendo
con el requisito RF05, y tienen un gran impacto en el consumo eléctrico y de datos del
dispositivo, se han disenado tres casos de prueba distintos cuyo interés depende de la
situacion del dispositivo.

= Caso 1: se recogen datos del componente GPS cada 10 segundos y se envia el
conjunto de datos cada minuto, con lo que se envian mensajes que contienen 6
instancias distintas de datos. Este caso tiene unos tiempos muy cortos de recogidas,
con lo que puede ser especialmente interesante para los casos en los que el dispositivo
esté en movimiento.

= Caso 2: se recogen datos del componente GPS cada minuto y se envia el conjunto
de datos cada 10 minutos, con lo que se envian mensajes que contienen 10 instancias
distintas de datos. En este caso se plantea unos tiempos mas normales entre recogidas,
lo que lo hace ideal para un control habitual de los residuos.

= Caso 3: se recogen datos del componente GPS cada 10 minutos y se envia el conjunto
de datos cada hora, con lo que se envian mensajes que contienen 6 instancias distintas
de datos. Los tiempos de entre recogidas en este caso son mucho mas largos, con lo
que esta mas pensada para los casos en los que el dispositivo se encuentre parado
por varias horas.

Pruebas realizadas 41

Como se ha explicado cada uno de estos casos presenta una variabilidad que se
ajusta mejor a distintos supuestos de la trazabilidad de residuos, permitiendo elegir
asi la configuracion més adecuada. Cabe destacar que a nivel de implementacion estas
configuraciones solo requieren cambiar el valor de dos variables que marcan el tiempo
entre recogidas de datos y el nimero de instancias necesarias para poder enviar el mensaje
MQTT, por lo que se podria cambiar entre casos en tiempo de ejecucién.

6.3. Resultados obtenidos

Para cada uno de los casos anteriormente planteados se han realizado una serie de
pruebas en un ambiente controlado y con una fuente de alimentacién en la que se muestra
el voltaje del circuito y los amperios de consumo instantaneo. De la misma manera, gracias
a las modificaciones en las librerias de conexion MQTT utilizadas, se puede consultar el
tamano de los paquetes enviados, de tal manera que se pueda abstraer de ello el consumo
de datos del dispositivo.

Para las mediciones de consumo de corriente se han tomado distintas mediciones en el
tiempo de recogida de datos, que en cada caso difiere en longitud, y por otro lado en el
tiempo de envio de datos, que por motivos de posibles reconexiones se ha calculado que en
todos los casos ronda entre los 5 y 15 segundos. Esto se ha decidido realizar asi, porque
el consumo en tiempo de recogida de datos es mucho menor a los picos de consumo que
se obtienen en los momentos de envio de datos. Por lo tanto, se ha decidido dividir los
resultados primero por caso y fase (recogida y envio), y posteriormente dar un resumen de
mediciones para cada caso, con la intencion de poder elegir un caso de uso dependiendo
de la situacion.

Durante la fase de recogida se tomaron distintas medidas cada poco tiempo, observando
un consumo relativamente estable casi todo el tiempo, por lo que se realiz6 una media de
las mediciones tomadas para obtener el consumo promedio. Sin embargo, en el caso del
envio de datos es un poco mas complicado, ya que se observo que al principio de esta fase
se mantenia estable en una medida durante unos 7 segundos y después tenia un pico de
consumo instantaneo mucho mayor durante 3 segundos. Con ello se decidié calcular una
media ponderada en funcién del tiempo que duraban los distintos rangos de medidas, para
poder obtener una medida fiable del consumo promedio. La férmula utilizada se muestra a
continuacion:

(Bt) + (et)

n n

(t1 + t2) ’

Cpromedio -

donde (' ; son las mediciones tomadas en el primer tramo de tiempo ¢; y, los Cy; son las
mediciones tomadas en el segundo tramo de tiempo t5. De la misma manera se utilizo una
media ponderada para calcular el consumo promedio en el resumen por caso, utilizando
los consumos promedios de la fase de envio y recogida:

Pruebas realizadas 42

C (Crecogida : tr) + (Cenvio . te)
promedio — .

(tr + te)

En este caso tenemos que Crecogida €5 €l consumo promedio de la fase de recogida que
tiene una duracion t,, v Cepvio €S €l consumo promedio de la fase de envio que tiene una
duracion t..

Pruebas Segunda iteracion

En la Tabla 6.9 se puede observar un resumen del consumo de datos, teniendo en
cuenta un promedio de tamafio de paquete para cada caso. Como es obvio el tercer caso
es el que menor consumo de datos tendria a lo largo del tiempo, ya que es el que realiza
menos envios a lo largo del tiempo. Se puede observar que siendo el Caso 1 el mas extremo,
y manteniendo el dispositivo activo las 24 horas del dia, un contrato con el proveedor de
50MB al mes seria mas que suficiente para cubrir las necesidades de este, lo cual es mucho
menos que las ofertas que se suelen publicitar hoy en dia. Con esto se podria concluir que
el consumo de datos no parece ser un problema.

Caso de prueba | Tamafio por envio | Bytes/hora
Caso 1 910 54600
Caso 2 1404 8424
Caso 3 909 909

Tabla 6.9: Tabla de consumo de datos para los casos de prueba

En la Tabla 6.10 se muestra el consumo eléctrico para cada caso y fase de un ciclo,
calculado segiin las explicaciones anteriores. Notese que para el promedio de consumo en
fases de recogida se reviso el consumo instantaneo a lo largo de varios ciclos en cada caso
tomando del orden de 5 mediciones por ciclo, aunque se revisé de manera constante la
fuente de alimentacion para anotar como de estable era el consumo instantaneo. Si bien
en los Casos 1 y 2, si se llegd a tomar anotaciones de por lo menos 5 ciclos, en el Caso
3 solo se anotaron medidas de 3 ciclos consecutivos, ya que mas ciclos implicaria probar
durante muchas horas el sistema. Se pudo observar en los Casos 2 y 3 una estabilidad
mucho mayor en el consumo instantaneo de la fase de recogida de datos que en el Caso 1.
Esto puede tener sentido, ya que en el Caso 1 las esperas duraban 10 segundos, por lo que
el procesador estaba mucho mas tiempo trabajando que en el resto de casos probados. Por
otro lado, las mediciones en las fases de envio fueron muy inestables dando en ocasiones
picos de 350mA y en otros ciclos llegando solo a los 150mA de pico, lo cual explica las
diferencias entre los casos de prueba, cuando deberian tener mediciones similares para las
fases de envio. Cabe destacar que este suceso es algo normal, ya que el consumo por parte
del SIM8S0OOL en momento de envio de datos depende mucho del trafico de red de dicho
momento, por lo que es un tanto impredecible.

Pruebas realizadas 43

Caso Fase Duracién (seg) | Corriente Pico (mA) | Consumo medio del ciclo (mA)
1 Recogida 60 100 78,60
2 Recogida 600 90 76,00
3 Recogida 3600 80 73,33
1 Envio 10 350 146,38
2 Envio 10 330 154,50
3 Envio 10 350 160,99

Tabla 6.10: Tabla de consumo eléctrico para los casos de prueba y sus fases

En la Tabla 6.11 se recogen los datos para cada caso, de donde se pueden sacar
conclusiones mas interesantes sobre el consumo eléctrico general. Como era de esperar, al
realizar menos envio, el consumo promedio del Caso 3 es el menor de todos, aunque no
mucho menor al valor del consumo del Caso 2. También cabe destacar que en todos los
casos el consumo al dia entra dentro de lo que podria soportar una pila alcalina AA, si no
tenemos en cuenta las necesidad de Voltaje, aunque teniendo en cuenta las necesidad de
voltaje necesitariamos tres pilas alcalinas AA colocadas en serie. Pero la cifra de consumo
nos indica que cumplir con el requisito RNFO1 seria factible con la fuente de alimentacién
adecuada. La configuracion del dispositivo para el Caso 3 junto con la eleccién de los
componentes ya mencionados nos permite satisfacer también el requisito RNF04.

Caso | Duracién del ciclo (seg) | Consumo medio del ciclo (mA) | Consumo al dia (mA/h)
1 70 88,28 2.118.72
2 610 77,29 1.854,96
3 3610 73,57 1.765,68

Tabla 6.11: Tabla de consumo eléctrico para los casos de prueba

Pruebas Tercera iteracion

Durante el desarrollo de la tercera iteracion se realizaron miltiples pruebas para
determinar el grado de fiabilidad del sistema, ya que como se ha comentado previamente
este fallaba a menudo a la hora de realizar el envio de los datos. Esto no fue necesario en
iteraciones anteriores, ya que en las pruebas realizadas se pudo observar envios exitosos en
la gran mayoria de los intentos de envio. La estructura del cédigo de la soluciéon permite
repetir los intentos de envio hasta que alguno de ellos resulte exitoso. Se fij6 el Caso 1
como prueba para observar la fiabilidad del sistema, ya que en los tres casos el tiempo
entre intentos de envio es el mismo. Con ello se puso en marcha el sistema durante un
tiempo prolongado con lo que se pudo comprobar que de media, 1 de cada 15 intentos de
envio era exitoso.

No se realizaron mediciones de consumo eléctrico exhaustivas para esta iteracion, ya
que el Arduino Nano requiere de 7V de corriente minima para su correcto funcionamiento
y esto requirié de un conversor de corriente DC-DC para bajarla a 4V para el SIM8800L,
y el uso de este aumento el consumo de corriente general. No se realizaron mas pruebas

Pruebas realizadas 44

para obtener las métricas anteriormente expuestas, ya que el dispositivo desarrollado en
esta iteracion se considerd peor que el obtenido en la segunda iteracion.

6.4. Resumen

En este capitulo se ha documentado las pruebas realizadas para validar el funciona-
miento integral del dispositivo [oT desarrollado. En primer lugar se han detallado los
métodos de verificacion implementados, que han permitido comprobar la integridad de los
mensajes MQTT enviados por el dispositivo. Se han presentado los casos de prueba, sobre
los que se han tomado métricas especificas que nos permiten analizar el rendimiento de los
distintos componentes utilizados, como medidas de consumo de datos enviados por la red y
el consumo eléctrico general del dispositivo. Esto permitié analizar aspectos cruciales como
la autonomia energética del dispositivo. También se detalla las comprobaciones realizadas
sobre la frecuencia de fallo en los envios de mensajes, que en el caso del dispositivo
desarrollado en la tercera iteracion fue bastante alta. Los resultados de estas pruebas han
permitido verificar la correcta integracién de los componentes y la fiabilidad del sistema
en su conjunto, lo que nos lleva a las conclusiones y posibles lineas futuras de desarrollo
detalladas en el Capitulo 7.

7: Conclusiones y Lineas de trabajo
futuras

En este trabajo se ha desarrollado un sistema adecuado para la trazabilidad de residuos
mediante el uso de tecnologias [oT y se ha documentado todo el proceso e informaciéon
necesaria para la fabricacion del mismo. Ademaés, como parte del trabajo realizado se ha
aportado esta solucion para una contribucién en las Jornadas Sarteco del ano 2025 [5], en
el que se presenta un sistema para la trazabilidad de residuos basado en la solucién IoT
propuesta en este trabajo y un servidor blockchain para la recepcion de los datos.

El trabajo desarrollado en el marco de este proyecto ha sido el siguiente:

= Se ha desarrollado una solucién fiable y de bajo coste que cumple con los requisitos
propuestos para la trazabilidad de residuos. Esta propuesta garantiza la capacidad
de monitorizar la ubicacion y las condiciones ambientales de los residuos en tiempo
real.

= Se ha logrado reducir notoriamente el precio general de la propuesta mediante el uso
de componentes electronicos de bajo coste. Aunque la solucién se basa en el concepto
de dispositivos “suicida” o desechables, la minimizacion de los costes de hardware
hace que esta aproximacion sea viable y sostenible para despliegues a gran escala en
el contexto de la trazabilidad.

= Se han explorado diversas opciones alternativas a lo largo de las iteraciones de diseno
con el objetivo de reducir atin mas el tamano y el precio final del dispositivo. Esta
investigacion de distintas configuraciones de hardware y microcontroladores sienta las
bases para futuras investigaciones, permitiendo una exploracion mucho mas acotada
hacia una simplificacién atin mayor del dispositivo.

= Se ha comprobado que el uso de componentes GPRS es la mejor opcién para un
problema de trazabilidad de estas caracteristicas, ya que la conexion a redes Wi-Fi
limitaria significativamente el proceso de envio de datos.

45

Conclusiones y Lineas de trabajo futuras 46

= Se ha implementado la obtenciéon de datos adicionales, como la temperatura y la
humedad ambiental, junto con otros datos de posicién GPS, como la velocidad y
la altitud. Estos parametros nos ofrecen una vision mas completa de la situacion
del dispositivo y el entorno del residuo, lo que abre la posibilidad de implementar
funcionalidades avanzadas para cambiar su funcionamiento antes cambios en su
entorno.

= Se ha hecho una documentacion completa y detallada, abarcando tanto el disefio
de hardware como la implementaciéon de software. Esta exhaustiva documentacion
permite que personas con los conocimientos tecnolégicos adecuados puedan replicar
la propuesta, comprender su funcionamiento en profundidad, y mejorar y adaptar la
solucion actual.

En resumen, los resultados obtenidos en este Trabajo Fin de Master no solo confirman
la viabilidad de la propuesta para la trazabilidad de residuos, sino que también demuestran
su potencial como solucion fiable y econémicamente eficiente. La combinacién de un diseno
iterativo, la seleccién adecuada de componentes y una implementacién software bien
estudiada ha permitido desarrollar un prototipo funcional que cumple con los requisitos
planteados, sentando una base para futuros desarrollos y para la aplicacion de esta
tecnologia en contextos reales de gestién de residuos.

7.1. Trabajo futuro

Si bien la solucién propuesta se ha podido poner en marcha en un ambiente controlado,
se propone como trabajo futuro la fabricacion de este dispositivo y su puesta en marcha en
la situaciones de la problematica expuesta. De esta manera se podria realizar iteraciones
de desarrollo adicionales en base a las conclusiones que se puedan obtener de pruebas
mas realistas, ya que una parte muy importante del desarrollo de los sistemas [oT es
la puesta en marcha de los mismos en ambientes realistas. Y, aunque en este trabajo
se hayan explorado ya varias sustituciones de componentes del dispositivo, se podria
explorar nuevas opciones a partir de los resultados obtenidos con pruebas mas realistas
del dispositivo. Existen muchas opciones de placas de desarrollo que no se han podido
explorar en profundidad durante este proyecto y que podrian ser adecuadas, incluso si ello
implicase la modificacion del software también desarrollado. También, uno de los puntos
débiles del dispositivo es la precisién y sensibilidad del componente GPS, que podria tratar
de mejorarse con antenas mas potentes, siempre y cuando esto no afecta demasiado el
tamano y precio de la solucién.

Finalmente, se propone como trabajo futuro la continuidad del desarrollo aqui realizado,
junto con la solucién de servidor aportada en [5]. La mejora de ambas partes de la misma
solucion podria llevar a un sistema de trazabilidad atin més robusto y fiable, que incluso
podria ponerse en marcha de manera oficial si se consiguiera despertar el interés de las
empresas encargadas de la logistica de residuos.

Apéndices

47

Apéndice A

Documentacion del programador

En este apéndice se detallan algunos conceptos técnicos sobre la estructura y montaje
del proyecto para que una persona con nociones de programacion y un minimo de electrénica
pueda modificar y probar el dispositivo presentado en este trabajo. En este sentido se
asume que el usuario promedio puede no estar cualificado o interesado en modificar el
proyecto presentado, pero si utilizarlo y probarlo, por ello se plantea una segunda guia en el
Apéndice B, en la que se detalla cémo instalar el software necesario y utilizar el dispositivo.
Cabe destacar que en esta guia se asume el uso de ArduinolDE para la programacion.

A.1. Estructura del proyecto

Como ya se ha comentado, el proyecto estd alojado en una repositorio de GitHub [17],
en el que se pueden encontrar el codigo para el dispositivo, modificaciones de librerias
necesarias y codigo de prueba. En la Figura A.1 se puede observar la estructura de las
distintas carpetas y ficheros del repositorio.

Como se puede observar tenemos en primer lugar los codigos o sketches del disposi-
tivo en las direcciones IoT_System_Src/iot_trace/iot_trace.ino y IoT_System_Src/
iot_trace_TCP_Nano/iot_trace TCP_Nano.ino, el primero correspondiente a la segun-
da iteracion y el siguiente a la tercera iteraciéon. Si bien la redundancia en el nombre
de la carpeta y el archivo parece tediosa, es necesaria para poder acceder a este desde
ArduinoIDE. Estos sketches contienen individualmente todo el c6digo necesario para el
funcionamiento del dispositivo, y por lo tanto, es la parte mas importante si se quiere
modificar el mismo. Ademas, estos dos sketches tienen un buen niimero de dependencias
con librerias que pueden ser instaladas de manera sencilla desde el propio IDE, ya que
tiene su propio sistema de manejo de librerias. Sin embargo, hay que destacar que una
de las librerias utilizadas ha sido modificada para el correcto envio de los mensajes por
protocolo MQTT. Los archivos modificados de dicha libreria se pueden encontrar en
la carpeta Libraries, dependiendo de si se esta trabajando con la implementacion de

49

Apéndice A. Documentacion del programador 50

iot-trace-system
| IoT_System_Src
iot_trace
Lfiot_trace.ino
iot_trace TCP_ Nano
L,iot_trace_TCP_Nano.ino
| Libraries
PubSubClient ModifiedFiles
kPubSubClient.cpp
PubSubClient.h
Adafruit MQTT ModifiedFiles
Adafruit_MQTT.cpp
Adafruit_MQTT.h
| PythonScripts
subscriberAdafruit.py
subscriberMosquitto.py
tcp_to_mqgtt_server.py
| README.md

Figura A.1: Estructura de ficheros del repositorio

Adafruit o la de PubSubClient, se aportan los distintos archivos a reemplazar en la libreria
correspondiente.

Para poder comprobar el correcto funcionamiento del dispositivo se aportan unos
scripts de python en la carpeta PythonScripts, que permiten suscribirse al feed de un
servidor MQTT y validar los mensajes que se publican en este. De nuevo se distingue entre
dos implementaciones, una utilizando Adafruit como broker MQTT y otra utilizando un
feed gratuito de pruebas del broker Mosquitto. Estos scripts son especialmente interesante
en el caso de usar Mosquitto como broker, ya que la instalaciéon y puesta en marcha
del propio cliente de Mosquitto es algo mas complicada que el uso del script de python
proporcionado en este trabajo.

A.2. Detalles del montaje del dispositivo

Si se quiere realizar el montaje actual del dispositivo o modificar el mismo se recomienda
primero revisar los esquemas creados con Fritzing [9] que se han ido mostrando a lo largo
de este documento, siendo el ltimo realizado el observable en la Figura 4.7. A mayores,
seria recomendable realizar cualquier modificacion primero sobre un esquema y revisar
correctamente los voltajes y amperajes necesarios en cada caso, ya que un error de
conexiones podria dafiar los componentes utilizados.

A la hora de realizar el montaje en si mismo se debe prescindir de cualquier corriente
eléctrica hasta el ultimo momento para evitar dafios en el dispositivo. Es aconsejable que

Apéndice A. Documentacion del programador 51

los cables sigan un codigo de colores acorde a su funcién, por ejemplo: cables rojos para
corriente, cables negros para toma de tierra, cable verdes para recepcion de datos serial,
cable amarillo para trasmision de datos serial y cable azul para trasmisién de datos digital.
Esto ayudara a identificar mejor los puntos criticos del sistema, como por ejemplo: la
conexion de todas las tomas de tierra al mismo punto, la conexién de todos los pines de
trasmision con pines de recepciéon y viceversa, o la simple conexién de cables de trasmision
digital al pin incorrecto segin el codigo.

Si durante el montaje o modificacién del dispositivo se encuentra cualquier dificultad se
deben revisar los consejos anteriores o los distintos apartados de dificultades encontradas
expuestos en el Capitulo 5.

Apéndice B

Documentacion del usuario

En este apéndice se explica una puesta en marcha del dispositivo, asumiendo el previo
montaje del circuito requerido y la alimentacion correcta del mismo, por lo que esta guia
esta destinada a usuarios con conocimiento informéaticos minimos. Esta documentacion
pretende detallar la instalacion de software necesario y como comprobar si el dispositivo
funciona correctamente, junto con algunos de los fallos mas comunes.

B.1. Instalacién del software y carga del programa

Para poder cargar el programa en el dispositivo se necesita el programa ArduinolDE,
que no solo sirve como editor de codigo, sino que es la opcién mas sencilla para gestionar las
librerias necesarias y cargar el programa. En la pagina oficial de Arduino se proporcionan
los enlaces de descarga del programa para distintos sistema operativos [16]. Una vez
instalado se deberd descargar el programa desarrollado directamente del repositorio, y
dado que necesitaremos otros archivos del mismo repositorio es mejor descargar todo el
proyecto. Para ello se puede clonar el proyecto con git o descargar directamente el zip
completo del proyecto en la propia pagina del repositorio [17], aunque en este caso habra
que descomprimir el proyecto para poder realizar el resto de pasos.

Con ArduinoIDE y el repositorio descargados, se deberan realizar los siguientes pasos
en orden para cargar el programa en el dispositivo ya montado:

1. Descargar la librerias necesarias: se deberan instalar las dependencias necesarias
para el funcionamiento del dispositivo. Para ello deberemos abrir ArduinolDE y
acceder a la pestafnia de gestion de librerias situada en la columna de funcionalidades
de la izquierda, representada con un dibujo de libros apilados. En esta pestana
deberemos ir buscando las distintas librerias necesarias e instalar la versién especifica
de las mismas, que son: TinyGPSPlus version 1.0.3, ArduinoJson version 7.4.2,
Crypto version 0.4.0, DHT sensor library versién 1.4.6, TinyGSM version 0.12.0 y
PubSubClient version 2.8.0.

23

Apéndice B. Documentacion del usuario 54

2. Modificar los archivos de PubSubClient: dado que la libreria PubSubClient fue
modificada, se deberan sustituir sus archivos internos por los aportados en el resposito-
rio. Para ello se debe acceder a los archivos internos de la libreria, estos normalmente
estan ubicados en C:/Users/nombredeusuario/Documents/Arduino/libraries/
PubSubClient. En este carpeta deberemos reemplazar los archivos PubSubClient . cpp
y PubSubClient.h por los archivos con el mismo nombre ubicados en el repositorio
descargado en la ruta iot-trace-system/Libraries/PubSubClient ModifiedFiles.

3. Instalar los drivers de la placa: en este caso ArduinolDE no viene por defecto
con el toolkit de la placa NodeMCU, por lo que tendremos que instalar esta. Existen
dos formas de hacerlo, pero la mas sencilla consiste en acceder al meni Preferences
dentro de la pestana Flile. En ese menu se debe copiar dentro de la caja que dice
“Additional Boards Manager URLs” el siguiente texto:
http://arduino.esp8266.com/stable/package_esp8266com_index. json
Una vez hecho eso se debe guardar las modificaciones de preferencias y reiniciar la
aplicacion para asegurarse de que funcione.

4. Abrir el programa y comprobar que compila: como paso anterior al envio
del programa al dispositivo se puede comprobar si todos los pasos anteriores se
han realizado correctamente compilando el programa. Para ello primero deberemos
elegir la placa a utilizar en el desplegable situado en la parte de arriba de la
interfaz, en este caso se debe buscar NodeMCU 1.0. Para compilar el programa
se debe abrir el sketch en ArduinolDE ubicado en el repositorio descargado en la
ruta iot-trace-system/IoT_System_Src/iot_trace/iot_trace.ino y clicar en
el botén con un “check” para empezar la compilacion. Si todo esta bien ArduinolDE
deberia mostrar un mensaje de compilacion realizada sin errores.

5. Cargar el programa: para cargar el programa en el dispositivo se debe conectar el
dispositivo al ordenador con un cabe USB a micro-USB que permita la transferencia
de datos. Se debe comprobar que ArduinolDE reconoce el dispositivo, para ello
se puede revisar el desplegable de la placa a utilizar, en el que deberia aparecer
la conexion por USB realizada. Para cargar el programa compruebe primero que
ningun cable esté conectado a los pines TX o RX del NodeMCU y pulse el botén
con el dibujo de una flecha sefialando hacia la izquierda que se encuentra en la barra
superior. De nuevo si el programa se ha cargado correctamente ArduinolDE mostrara
un mensajes de carga realizada correctamente.

Con el programa cargado al dispositivo se puede poner este en funcionamiento, pe-
ro para poder comprobar los mensajes enviados necesitaremos ejecutar el script de
python proporcionado en el repositorio. Este requiere de la instalaciéon de python3 y
la libreria paho-mqtt versiéon 2.1.0 o superior, facilmente instalable con el comando
pip install paho-mqtt. Para utilizar el script ubicado en el repositorio en la ruta
iot-trace-system/PythonScripts/subscriberMosquitto.py, se puede ejecutar el co-
mando python3 subscriberMosquitto.py desde la ubicacion del archivo. Esto abrira

Apéndice B. Documentacion del usuario 55

una conexiéon al servidor de Mosquitto y una suscripcion al feed utilizado en el programa
del dispositivo, para poder consultar los mensajes enviados por el mismo.

B.2. Dispositivo en funcionamiento

A la hora de comprobar el correcto funcionamiento del dispositivo se debe tener en
cuenta que esté correctamente alimentado como se indica en la fase de disefio de esta
memoria, y que puede requerir de iniciar su funcionamiento al aire libre para poder captar
senal satélite mas eficientemente. Normalmente con colocar la antena del componente GPS
en la repisa de una venta deberia ser suficiente para que este empiece a parpadear pasados
unos minutos, senial de que el componente GPS esta recibiendo datos. Si el componente
GPS no parpadea puede ser recomendable situarlo en una zona despejada y esperar entre
5 y 15 minutos, ya que al principio puede tardar mas en recibir senal.

Si el dispositivo esta correctamente alimentado el componente SIMS8OOL deberia par-
padear cada 3 segundos aproximadamente tras un minuto recibiendo corriente. En los
momentos de envio se podra percibir como el componente SIM800L parpadea en intervalos
de medio segundo aproximadamente, y tras pocos segundos deberia aparecer el mensaje
enviado en la terminal donde se esté ejecutando el script de python mencionado.

Bibliografia

Tariq Ali, Muhammad Irfan, Abdullah Saeced Alwadie, and Adam Glowacz. lot-based
smart waste bin monitoring and municipal solid waste management system for smart
cities. Arabian Journal for Science and Engineering, 45:10185-10198, 2020.

Amira Henaien, Hadda Ben Elhadj, and Lamia Chaari Fourati. A sustainable smart
iot-based solid waste management system. Future Generation Computer Systems,
157:587-602, 2024.

Said Gulyamov. Intelligent waste management using iot, blockchain technology and
data analytics. In E3S Web of Conferences, volume 501, page 01010. EDP Sciences,
2024.

Supriya Pulparambil, Adil Al-Busaidi, Yasmine Al-Hatimy, and Ahmed Al-Farsi.
Internet of things-based smart medical waste management system. Telematics and
Informatics Reports, 15:100161, 2024.

Javier Alonso-Ntunez, Daniel Lopez-Martinez, and Diego R. Llanos. Arquitectura
segura para la trazabilidad basada en iot y blockchain. In XXXV Jornadas de
Paralelismo (JP2025), Sevilla, Spain, 2025. Grupo Trasgo.

Make-It.ca. Nodemcu esp8266 specifications, overview and setting up. https://wuw.

make-it.ca/nodemcu-details-specifications/, 2021. Consultado el 9 de julio
de 2025.

Cirkit Designer. How to use gy-neo6mv2: Examples, pinouts, and specs. https:
//docs.cirkitdesigner.com/component/gy-neo6mv2ww. Consultado el 9 de julio
de 2025.

AOSONG. Dht11 temperature and humidity sensor data sheet. https://www.mouser.
com/datasheet/2/758/DHT11.pdf. Consultado el 9 de julio de 2025.

Fritzing Team. Fritzing. https://fritzing.org/. Consultado el 9 de julio de 2025.

o7

https://www.make-it.ca/nodemcu-details-specifications/
https://www.make-it.ca/nodemcu-details-specifications/
https://docs.cirkitdesigner.com/component/6a6af647-d8ab-4375-818d-8982bdd4f6ae/gy-neo6mv2ww
https://docs.cirkitdesigner.com/component/6a6af647-d8ab-4375-818d-8982bdd4f6ae/gy-neo6mv2ww
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://fritzing.org/

Bibliografia 58

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

SIMCom. Sim800l hardware design. https://www.makerhero.com/img/files/
download/Datasheet_SIM8OOL.pdf. Consultado el 9 de julio de 2025.

Michel Mouly and Marie-Bernadette Pautet. The GSM system for mobile communi-
cations. Telecom publishing, 1992.

Bernhard Walke, Wolf Mende, and Georgios Hatziliadis. Cellpac: A packet radio
protocol applied to the cellular gsm mobile radio network. In /1991 Proceedings] 41st
IEEE Vehicular Technology Conference, pages 408-413. IEEE, 1991.

SIMCom. Sim800 series at command manual. https://www.elecrow.com/download/
SIM800%20Series AT%20Command%20Manual V1.09.pdf, 2015. Consultado el 9 de
julio de 2025.

Microchip Technology Inc. Atmega4809 data sheet. https://wwl.microchip.com/
downloads/en/DeviceDoc/ATmegad809-40-Pin-40002104B.pdf. Consultado el 9
de julio de 2025.

Microchip Technology Inc. Atmega328p automotive microcontrollers
data sheet. https://wwl.microchip.com/downloads/en/DeviceDoc/
Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf. Con-
sultado el 9 de julio de 2025.

Arduino. Arduino ide versién 2.x. https://www.arduino.cc/en/software, 2025.
Consultado el 9 de julio de 2025.

danipequelangos. IoT Trace System | GitHub del TFM. https://github.com/

danipequelangos/iot-trace-system, 2025. GitHub repository, Consultado el 9 de
julio de 2025.

Mikal Hart. Tinygpsplus | arduino documentation. https://docs.arduino.cc/
libraries/tinygpsplus/, 2022. Consultado el 9 de julio de 2025.

Arduino. Softwareserial library | arduino documentation. https://docs.arduino.
cc/learn/built-in-libraries/software-serial/, 2022. Consultado el 9 de julio
de 2025.

Benoit Blanchon. Arduinojson | arduino documentation. https://docs.arduino.
cc/libraries/arduinojson/, 2025. Consultado el 9 de julio de 2025.

Rhys Weatherley. Crypto | arduino documentation. https://docs.arduino.cc/
libraries/crypto/, 2022. Consultado el 9 de julio de 2025.

Ivan Grokhotkov. Esp8266wifi library documentation. https://arduino-esp8266.
readthedocs.io/en/latest/esp8266wifi/readme.html. Consultado el 9 de julio
de 2025.

Adafruit. Adafruit mqtt library | arduino documentation. https://docs.arduino.
cc/libraries/adafruit-mgtt-library/, 2025. Consultado el 9 de julio de 2025.

https://www.makerhero.com/img/files/download/Datasheet_SIM800L.pdf
https://www.makerhero.com/img/files/download/Datasheet_SIM800L.pdf
https://www.elecrow.com/download/SIM800%20Series_AT%20Command%20Manual_V1.09.pdf
https://www.elecrow.com/download/SIM800%20Series_AT%20Command%20Manual_V1.09.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4809-40-Pin-40002104B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4809-40-Pin-40002104B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://www.arduino.cc/en/software
https://github.com/danipequelangos/iot-trace-system
https://github.com/danipequelangos/iot-trace-system
https://docs.arduino.cc/libraries/tinygpsplus/
https://docs.arduino.cc/libraries/tinygpsplus/
https://docs.arduino.cc/learn/built-in-libraries/software-serial/
https://docs.arduino.cc/learn/built-in-libraries/software-serial/
https://docs.arduino.cc/libraries/arduinojson/
https://docs.arduino.cc/libraries/arduinojson/
https://docs.arduino.cc/libraries/crypto/
https://docs.arduino.cc/libraries/crypto/
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://docs.arduino.cc/libraries/adafruit-mqtt-library/
https://docs.arduino.cc/libraries/adafruit-mqtt-library/

Bibliografia 59

[24]

[25]

[26]

[27]

28]

[31]

[32]

Adafruit. Dht sensor library | arduino documentation. https://docs.arduino.cc/
libraries/dht-sensor-library/, 2023. Consultado el 9 de julio de 2025.

Trimble. Nmea-0183 messages - message overview. https://receiverhelp.trimble.
com/alloy-gnss/en-us/NMEA-0183messages_MessageOverview.html. Consultado
el 9 de julio de 2025.

Volodymyr Shymanskyy. Tinygsm | arduino documentation. https://docs.arduino.
cc/libraries/tinygsm/, 2024. Consultado el 9 de julio de 2025.

Nick O’Leary. Pubsubclient | arduino documentation. https://docs.arduino.cc/
libraries/pubsubclient/, 2020. Consultado el 9 de julio de 2025.

Eclipse Foundation. Eclipse Mosquitto. https://mosquitto.org/. Consultado el 9
de julio de 2025.

Eclipse Foundation. test.mosquitto.org - Eclipse Mosquitto. https://test.
mosquitto.org/. Consultado el 9 de julio de 2025.

Espressif Systems. Esp8266 low power solutions. https://www.espressif.com/
sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf, 2016. Con-
sultado el 9 de julio de 2025.

Volodymyr Shymanskyy. Streamdebugger | arduino documentation. https://docs.
arduino.cc/libraries/streamdebugger/, 2016. Consultado el 9 de julio de 2025.

Adafruit Industries. Adafruit [O. https://io.adafruit.com/. Consultado el 9 de
julio de 2025.

https://docs.arduino.cc/libraries/dht-sensor-library/
https://docs.arduino.cc/libraries/dht-sensor-library/
https://receiverhelp.trimble.com/alloy-gnss/en-us/NMEA-0183messages_MessageOverview.html
https://receiverhelp.trimble.com/alloy-gnss/en-us/NMEA-0183messages_MessageOverview.html
https://docs.arduino.cc/libraries/tinygsm/
https://docs.arduino.cc/libraries/tinygsm/
https://docs.arduino.cc/libraries/pubsubclient/
https://docs.arduino.cc/libraries/pubsubclient/
https://mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
https://docs.arduino.cc/libraries/streamdebugger/
https://docs.arduino.cc/libraries/streamdebugger/
https://io.adafruit.com/

	Índice general
	Índice de figuras
	Índice de tablas
	1. Introducción
	2. Análisis de requisitos
	Requisitos funcionales
	Requisitos no funcionales
	Funcionamiento general del dispositivo
	Estructura general del servidor
	Resumen

	3. Modelo de análisis
	Planificación del proyecto
	Análisis de riesgos
	Desviación de la planificación inicial
	Presupuesto y costes
	Resumen

	4. Diseño del dispositivo IoT
	Descripción de la primera iteración
	Descripción de la segunda iteración
	Descripción de la tercera iteración
	Resumen

	5. Detalles de la implementación software
	Implementación de la primera iteración
	Implementación de la segunda iteración
	Implementación de la tercera iteración
	Resumen

	6. Pruebas realizadas
	Verificación de mensajes MQTT
	Casos de prueba
	Resultados obtenidos
	Resumen

	7. Conclusiones y Líneas de trabajo futuras
	Trabajo futuro
	Apéndices
	Documentación del programador
	Estructura del proyecto
	Detalles del montaje del dispositivo

	Documentación del usuario
	Instalación del software y carga del programa
	Dispositivo en funcionamiento

	Bibliografía

