
Universidad de Valladolid
Máster universitario

Ingeniería Informática

Trabajo Fin de Máster

Evaluación de modelos generativos
on-premises para la mejora de la calidad

de datos tabulares

Realizado por Michelle Valeria Plúas Vásquez
✠✠✠

Universidad de Valladolid
18 de Julio de 2025

Tutor: Yania Crespo González-Carvajal

Universidad de Valladolid

Máster universitario en Ingeniería Informática

D. Yania Crespo González-Carvajal, profesora del departamento de Informática, área de
Lenguajes y Sistemas Informáticos.

Expone:

Que la estudiante D. Michelle Valeria Plúas Vásquez, ha realizado el Trabajo final de
Máster en Ingeniería Informática titulado “Evaluación de modelos generativos
on-premises para la mejora de la calidad de datos tabulares”.

Y que dicho trabajo ha sido realizado por la estudiante bajo la dirección de quien suscribe,
en virtud de lo cual se autoriza su presentación y defensa.

En Valladolid, 18 de Julio de 2025

Vº. Bº. del Tutor:

D. Yania Crespo González-Carvajal

Agradecimientos

Primero, gracias a Dios, por darme la fuerza para llegar hasta aquí.

A mi pareja, David, por estar presente durante todo el proceso. Por tu apoyo constante,
por creer en mí y por ayudarme incluso cuando las cosas se pusieron cuesta arriba.

A mi tutora, Yania, por su acompañamiento a lo largo del desarrollo de este trabajo.
Su disponibilidad, empatía y confianza en mí fueron clave para avanzar.

A Santiago, mi responsable directo, por su flexibilidad y comprensión durante esta
etapa. Gracias por facilitarme continuar con el máster sin hacerme elegir entre el trabajo
y el estudio.

A mis amigas Genesis y Thania, porque cuando todo me sobrepasaba, siempre encon-
traban la forma de distraerme. Me ayudaron más de lo que creen.

A mi familia, por estar. Incluso cuando no entendían bien qué estaba haciendo, me
apoyaron igual.

3

I

Resumen

La limpieza de datos estructurados sigue siendo un proceso costoso y difícil de au-
tomatizar cuando los valores presentan errores, ausencias o inconsistencias. Recientes
avances en modelos generativos han abierto la posibilidad de utilizar predicción de
lenguaje para asistir estas tareas sin depender de reglas fijas o validaciones manuales.

Este trabajo comienza con una revisión del estado del arte sobre la aplicación
de modelos generativos en calidad de datos. A partir de ese análisis, se adaptó un
sistema base y se introdujeron errores controlados sobre un dataset clínico. Se evaluó
el comportamiento de tres modelos locales ante datos con distintas alteraciones y se
compararon sus salidas con los valores originales utilizando métricas por celda.

Los resultados muestran que el rendimiento varía según la variable analizada
y que ciertos modelos ofrecen ventajas puntuales bajo condiciones específicas. Se
observaron diferencias en precisión, recuperación y coincidencia exacta entre modelos
y variables. Estas variaciones ayudan a entender cómo responde cada modelo ante
errores estructurados y pueden orientar decisiones en tareas de limpieza específicas.

Descriptores

Calidad de datos, limpieza de datos, datos estructurados, modelos generativos,
modelos de lenguaje, evaluación, recuperación de errores

II

Abstract

Structured data cleaning remains a costly process and difficult to automate
when values contain errors, missing entries or inconsistencies. Recent advances in
generative models have opened the possibility of using language prediction to assist
these tasks without relying on fixed rules or manual validations.

This work begins with a review of the state of the art on the application of
generative models to data quality. Based on this analysis, a base system was adapted
and controlled errors were introduced into a clinical dataset. The behavior of three
local models was evaluated against different alterations in the data, and their outputs
were compared with the original values using cell-level metrics.

The results show that performance varies depending on the variable analyzed
and that some models offer specific advantages under certain conditions. Differences
were observed in precision, recall, and exact match across models and variables.
These variations help to understand how each model responds to structured errors
and can guide decisions in specific cleaning tasks.

Keywords

Data quality, data cleaning, structured data, generative models, language models,
evaluation, error recovery

Índice general

Índice general III

Índice de figuras V

Índice de tablas VI

1 Introducción 1
1.1. Contexto y Motivación . 1
1.2. Objetivos . 3
1.3. Preguntas de investigación . 4
1.4. Estructura del documento . 4

2 Marco teórico 6
2.1. Calidad de datos . 6
2.2. Limpieza de datos . 10
2.3. Procesamiento automatizado de datos . 12
2.4. Modelos generativos y LLMs . 13
2.5. Interfaces de lenguaje natural . 16
2.6. Evaluación y métricas . 17
2.7. Seguridad y privacidad . 22

3 Estado del arte 26
3.1. Búsqueda en literatura académica . 26
3.2. Resultados de la SLR . 28

4 Caso de estudio 38
4.1. RetClean como herramienta base . 38
4.2. Análisis de riesgos . 40
4.3. Adaptaciones implementadas . 41
4.4. Dataset utilizado . 46

III

Índice general IV

4.5. Diseño experimental . 48

5 Resultados y Discusión 52
5.1. Resultados obtenido de las configuraciones ejecutadas 52
5.2. Análisis funcional . 54
5.3. Discusión técnica . 55

6 Conclusiones y trabajos futuros 57

Bibliografía 59

Estudios primarios 64

Apéndices 66

Apéndice A Plan de Proyecto y Ejecución 68
A.1. Planificación del trabajo . 68
A.2. Ejecución del trabajo . 69

Apéndice B Especificación de Requisitos de Hardware 70
B.1. Introducción . 70
B.2. Objetivos generales . 70
B.3. Catálogo de requisitos . 70

Apéndice C Guía técnica de instalación y uso 71
C.1. Introducción . 71
C.2. Requisitos de usuarios . 72
C.3. Instalación del sistema . 72
C.4. Uso de la herramienta RetClean . 77

Apéndice D Estructura del repositorio y organización de archivos 81

Índice de figuras

2.1. Fuentes de problemas de calidad de datos. Adaptado de Wand y Wang (1996) 9

3.1. Distribución de los estudios primarios en año de publicación y categoría 33

4.1. Interfaz de RetClean en el estudio original. 39
4.2. Versión actual del repositorio de RetClean. 39

5.1. Error relativo fila a fila en BMI con Mistral 55

A.1. Cronograma previsto al inicio del proyecto . 68
A.2. Planificación real tras la ejecución del proyecto 69

C.1. Resultado del contenedor hello-world . 73

D.1. Estructura de carpetas del repositorio adaptado 82

V

Índice de tablas

2.1. Dimensiones de la calidad de los datos según Carlo Batini y Monica Scannapieca 7
2.2. Descripción de problemas y causas por categoría 10
2.3. Tipos de modelos generativos basada en Advancements in Generative AI: A

Comprehensive Review of GANs, GPT, Autoencoders, Diffusion Model, and
Transformers . 14

2.4. Funciones de similitud basadas en q-gramas 21
2.5. Funciones de similitud para valores continuos y espaciales 22

3.1. Resultados iniciales por base de datos . 28
3.2. Resultados refinados por base de datos . 29
3.3. Estudios primarios seleccionados y su categorización 31
3.4. Estudios relevantes provenientes de literatura gris (arXiv) y su categorización . 32
3.5. Distribución de estudios primarios por categoría 33

4.1. Análisis de riesgos de privacidad en RetClean 41
4.2. Características de las variables de Gallstone 47
4.3. Variables objetivo seleccionadas y sus principales correlaciones 48
4.4. Configuraciones evaluadas por variable objetivo 50
4.5. Métricas utilizadas para la evaluación de las predicciones 51

5.1. Tiempos de ejecución por variable y memoria usada por modelo 52
5.2. Comparación del tiempo de ejecución del modelo Mistral en CPU y GPU . . . 53
5.3. Matriz de confusión por modelo y variable objetivo 53
5.4. Resultados de evaluación para cada modelo y variable objetivo 54

B.1. Especificaciones del sistema . 70

C.1. Paquetes y herramientas a instalar . 71

VI

Capítulo 1

Introducción

1.1. Contexto y Motivación
La calidad de los datos es un aspecto clave que impacta directamente en el funciona-

miento diario y en la eficiencia global de las organizaciones. En muchos casos, los fallos que
se atribuyen a procesos o servicios provienen en realidad de errores dentro del repositorio
de datos, como registros duplicados, formatos inconsistentes o valores inválidos. Estas
deficiencias generan costes innecesarios, dificultan la integración de información procedente
de distintas fuentes y limitan el análisis posterior.Por eso, mantener buenos niveles de
calidad se ha vuelto una prioridad. Normas técnicas como la ISO/IEC 8000 y la ISO/IEC
25012 reconocen que mantener altos niveles de calidad no solo evita pérdidas, sino que
permite gestionar los datos como un activo estratégico, mediante procesos estructurados
que garanticen su utilidad y fiabilidad a lo largo de todo su ciclo de vida.[22][14]

En entornos donde los datos circulan entre múltiples sistemas independientes, con
estructuras y reglas propias, el control de calidad se vuelve más complejo. La heterogeneidad
tecnológica y semántica, junto con la autonomía de cada componente, dificulta la aplicación
de procedimientos uniformes para validar, limpiar o integrar la información. Esta falta de
centralización y coordinación incrementa el riesgo de que errores iniciales se propaguen
sin ser detectados, afectando la confiabilidad y utilidad de los datos a lo largo de todo su
ciclo de vida. Por ello, es fundamental establecer mecanismos que permitan asegurar la
calidad desde la fase de adquisición, limpieza y transformación, evitando así que problemas
acumulativos generen consecuencias negativas para la toma de decisiones y la operativa
empresarial[5].

Esto ha impulsado la búsqueda de alternativas más flexibles. Una de ellas es el
uso de modelos generativos aplicados a tareas de mejora de calidad de datos. Estos
modelos han sido explorados recientemente en contextos donde se requiere detectar
errores, completar información o sugerir transformaciones, especialmente cuando los
datos presentan ambigüedades o patrones irregulares. Modelos generativos como GPT-4,
entrenados con grandes volúmenes de datos heterogéneos, han demostrado capacidad

1

Capítulo 1. Introducción 2

para identificar errores, sugerir correcciones, completar información faltante o reformular
contenido ambiguo, facilitando procesos de depuración de datos[3].

También se han propuesto enfoques que combinan procesamiento automatizado con
interfaces de lenguaje natural, lo que permite que usuarios sin conocimientos técnicos
puedan interactuar directamente con los sistemas de limpieza y transformación de datos.
Estos métodos facilitan la generación de consultas o comandos de manipulación de datos
mediante lenguaje cotidiano, simplificando tareas complejas como la depuración, trans-
formación o análisis. Por ejemplo, herramientas recientes basadas en diferentes modelos
de lenguaje de gran tamaño pueden interpretar consultas en lenguaje natural y generar
automáticamente código para ejecutar operaciones específicas sobre grandes volúmenes
de datos, incluso en entornos complejos como data lakes. Este tipo de solución reduce la
dependencia de conocimientos especializados en programación o SQL, abriendo la puerta
a un manejo más accesible y eficiente de los datos para un público más amplio[48].

Aunque estas líneas de trabajo aún están en desarrollo, ya existen estudios que apuntan
a que se podría reducir la carga manual al facilitar la trazabilidad en los procesos de limpieza
y transformación de datos. Además, estos enfoques basados en modelos generativos o
sistemas que utilizan prompts reutilizables ofrecen una ventaja importante: la capacidad de
adaptarse a distintos dominios sin requerir reglas predefinidas o configuraciones específicas
para cada caso. Esto representa un avance respecto a los métodos tradicionales, que
dependen en gran medida de un conocimiento experto para diseñar y mantener reglas de
validación y transformación[33].

Sin embargo, su aplicación en escenarios reales plantea desafíos que van más allá de
aspectos técnicos como la precisión o la reproducibilidad, involucrando también cuestiones
críticas relacionadas con la protección de los datos, la seguridad y la privacidad.

Estas preocupaciones no se limitan únicamente a los usuarios finales, sino que afectan
también a empresas, desarrolladores y organizaciones que integran estas plataformas en
procesos productivos o que manejan información sensible. La naturaleza conversacional
y humana de estas tecnologías puede incentivar la divulgación de datos personales o
corporativos que, si no se gestionan adecuadamente, pueden derivar en filtraciones, pérdidas
de propiedad intelectual o incumplimientos legales. Además, el uso de modelos alojados en
la nube y gestionados por terceros introduce riesgos asociados a la falta de control directo
sobre cómo se recopilan, almacenan y procesan los datos. Esto incluye la posibilidad de
que la información sensible sea accesible para personal externo durante etapas de revisión
o entrenamiento, o que se comparta con terceros sin el consentimiento explícito del usuario
o la empresa.

Estos riesgos se intensifican en sectores con altos requisitos regulatorios, como finanzas,
salud o servicios legales, donde la exposición o mal manejo de datos puede generar sanciones
severas y daños reputacionales significativos[1]. Por eso, se plantea como alternativa el
uso de modelos generativos locales, que puedan ejecutarse en infraestructuras controladas
y minimizar la exposición de datos. Este enfoque es especialmente útil en entornos que
priorizan la confidencialidad o trabajan bajo marcos normativos estrictos.

Capítulo 1. Introducción 3

Este trabajo se alinea con esa dirección. La lectura del artículo Can Generative AI
Transform Data Quality? [3], fue el punto de partida para realizar una revisión de literatura
centrada en el uso de modelos generativos para tareas de limpieza de datos. En ese proceso
se identificó RetClean, un sistema orientado a la depuración de datos tabulares que ya
incluye, de forma limitada, un modelo generativo (on-premises). Al estar publicado como
software de código abierto bajo licencia MIT 1, y contar con una arquitectura modular,
permite incorporar nuevos modelos sin partir de cero[39]. El interés es comprobar si los
modelos generativos, especialmente los ejecutados localmente, pueden complementar los
enfoques actuales de limpieza de forma práctica y sostenible.

1.2. Objetivos
Después de haber expuesto el planteamiento, el contexto y la motivación, se expone el

objetivo principal de este TFM:

Aplicar y evaluar modelos de lenguaje de gran tamaño en tareas de mejora de calidad
de datos estructurados.

Con el fin de desglosar el objetivo principal, se definen los siguientes objetivos secunda-
rios:

Revisar la literatura científica y técnica sobre el uso de modelos de lenguaje de gran
tamaño en tareas de limpieza y preparación de datos.

Analizar el comportamiento del sistema base elegido a partir de la revisión de
la literatura, en este caso RetClean, incluyendo su funcionamiento actual y las
limitaciones que presenta en tareas de limpieza.

Identificar posibles los riesgos de privacidad y protección de datos asociados al uso
de modelos generativos.

Integrar y adaptar modelos generativos dentro del flujo de trabajo de limpieza de
datos definido por el sistema base elegido, identificando los puntos del sistema que
requieren ajustes para su correcta incorporación.

Evaluar su capacidad para identificar, corregir o sugerir mejoras en datos tabulares.

Comparar los resultados obtenidos frente a los datos originales, considerando precisión,
esfuerzo requerido y tipo de errores tratados.

1https://github.com/qcri/RetClean/blob/main/LICENSE

https://github.com/qcri/RetClean/blob/main/LICENSE

Capítulo 1. Introducción 4

1.3. Preguntas de investigación
En este sentido, para esclarecer más sobre este tema se han identificado algunas

preguntas de investigación:

RQ1 : ¿Qué enfoques recientes han explorado el uso de modelos generativos en tareas de
limpieza y mejora de calidad de datos estructurados?

RQ2 : ¿Qué tareas de limpieza pueden ser asistidas eficazmente por modelos de lenguaje
generativos?

RQ3 : ¿Qué ventajas o limitaciones presentan los LLMs frente a técnicas tradicionales de
limpieza?

RQ4 : ¿En qué medida los modelos seleccionados permiten adaptaciones para distintos
contextos de calidad de datos?

RQ5: ¿Qué riesgos de privacidad y protección de datos pueden surgir al utilizar modelos
generativos en sistemas locales de limpieza de datos?

1.4. Estructura del documento
El presente documento se organiza de la siguiente manera:

Capítulo 1: Introducción. Presenta el contexto del trabajo, los objetivos y las
preguntas de investigación que guían el estudio.

Capítulo 2: Marco teórico. Revisa los conceptos clave sobre sobre calidad de
datos, técnicas de limpieza automatizada, modelos generativos, herramientas de
procesamiento de datos estructurados e interfaces de lenguaje natural y así como las
métricas empleadas para evaluar sus respuestas.

Capítulo 3: Estado del arte. Presenta el resultado de una revisión sistemática
de la literatura sobre el uso de modelos de lenguaje en tareas de mejora de calidad
de datos, distinguiendo entre propuestas metodológicas, herramientas y casos de
aplicación.

Capítulo 4: Caso de estudio. Expone cómo se utilizó la herramienta RetClean,
el conjunto de datos, la preparación del entorno, los pasos realizados y los criterios
de evaluación.

Capítulo 5: Resultados y Discusión. Presenta los resultados cuantitativos y
ejemplos obtenidos. Se analizan los comportamientos observados en los modelos y se
discuten sus ventajas, limitaciones y condiciones de uso.

Capítulo 1. Introducción 5

Capítulo 6: Conclusiones. Resume las principales conclusiones del estudio y
plantea posibles líneas futuras de trabajo.

Apéndice A: Plan de proyecto. Incluye las herramientas utilizadas, la metodología
de trabajo, el plan inicial y el seguimiento de la planificación.

Apéndice B: Requisitos de hardware. Recoge los componentes técnicos mínimos
necesarios para ejecutar el sistema, incluyendo CPU, GPU, memoria y almacena-
miento.

Apéndice C: Guía técnica de instalación y uso. Describe los pasos necesarios
para ejecutar el sistema y reproducir los experimentos.

Apéndice D: Estructura del repositorio. Presenta la organización de carpetas
del sistema base adaptado, con una breve descripción funcional de cada directorio y
su rol dentro del flujo de experimentación.

Capítulo 2

Marco teórico

Este capítulo recoge las bases teóricas del trabajo. Se define qué es calidad de datos y
cuáles son sus dimensiones. Se explican las técnicas de limpieza más usadas y los problemas
frecuentes en datos estructurados. Se introduce el funcionamiento general de los modelos
generativos y de lenguaje, y su aplicación en tareas de mejora de datos. Se describe
cómo se integran en pipelines automatizados y cómo se accede a ellos mediante lenguaje
natural. También se presentan las métricas de evaluación aplicables a tareas de generación,
restauración y comparación de datos.

2.1. Calidad de datos

Definición y dimensiones de la calidad de datos
Para definir la calidad de los datos, primero hay que establecer qué se entiende por dato.

La definición varía según el autor y el contexto; por ejemplo, Fu y Easton [23] lo definen
como el resultado de registrar hechos del mundo real mediante observación o medición.
Un dato puede almacenarse, contener información útil y ser interpretado por un usuario.
En teoría, debería representar un hecho verdadero, pero en la práctica esto no siempre
ocurre. Errores en la captura, el almacenamiento o el procesamiento pueden afectar su
fidelidad desde el origen.

Dado que los datos no siempre reflejan con precisión la realidad que intentan representar,
surge la necesidad de evaluar su calidad. La calidad de los datos se entiende como el
conjunto de características que determinan en qué medida los datos cumplen con los
requisitos específicos del usuario en un contexto determinado[8]. Estas características se
expresan en dimensiones. Una calidad deficiente puede comprometer la eficacia de los
sistemas que utilizan dichos datos. La evaluación de estas dimensiones depende del tipo
de tarea, del dominio de aplicación y de las expectativas del usuario final. Por tanto, la
calidad de los datos no puede evaluarse de forma aislada, sino en función de su uso[23].

6

Capítulo 2. Marco teórico 7

Dimensión Descripción Ejemplo
Precisión Mide qué tan cerca está el valor re-

gistrado del valor real.
Una dirección es precisa si correspon-
de a la ubicación física del cliente.

Completitud Indica si todos los datos requeridos
están presentes.

Si falta el número de teléfono en un
registro obligatorio, la completitud
es baja.

Consistencia Verifica que no existan contradiccio-
nes entre registros o fuentes.

Si la fecha de nacimiento de una per-
sona difiere entre sistemas, hay in-
consistencia.

Actualidad Evalúa si los datos reflejan el estado
más reciente del objeto que descri-
ben.

Un inventario debe mostrar la dispo-
nibilidad real del producto.

Validez Revisa si los datos cumplen con el
formato, tipo o rango esperado.

Un campo que solo acepta valores
entre 1 y 100 es inválido si contiene
un 105.

Unicidad Garantiza que no existan duplicados
de una misma entidad.

Dos registros idénticos para el mismo
cliente indican baja unicidad.

Relevancia Determina si los datos son útiles para
el propósito previsto.

Un dato es relevante si contribuye a
la toma de decisiones en un proceso
específico.

Accesibilidad Mide la facilidad con la que los usua-
rios autorizados acceden a los datos
cuando los necesitan.

Los usuarios deben poder acceder
a los datos sin barreras técnicas o
permisos innecesarios.

Interpretabilidad Evalúa si los datos pueden ser com-
prendidos con facilidad por los usua-
rios.

Un campo etiquetado claramente fa-
cilita la interpretación del contenido.

Tabla 2.1: Dimensiones de la calidad de los datos según Carlo Batini y Monica Scannapieca

Además de las dimensiones habitualmente mencionadas en la literatura, existen están-
dares internacionales que proporcionan un marco formal para evaluar la calidad de los
datos. Uno de los más reconocidos es la norma ISO/IEC 25012[27], que forma parte de la
familia de estándares SQuaRE (Software Product Quality Requirements and Evaluation).
Esta norma define un modelo de calidad de datos que distingue entre dos grandes tipos de
características: inherentes y dependientes del sistema.

Las características inherentes hacen referencia a propiedades propias del dato,
independientemente de su entorno tecnológico. Estas incluyen:

Exactitud (Accuracy): grado en que los datos representan correctamente los
valores del mundo real.

Completitud (Completeness): medida en que los datos están presentes en su
totalidad.

Consistencia: ausencia de contradicciones en los datos.

Capítulo 2. Marco teórico 8

Credibilidad (Credibility): grado de confianza que se puede depositar en los
datos.

Actualidad (Currentness): grado en que los datos están actualizados.

Por otro lado, las características dependientes del sistema dependen del contexto
tecnológico en el que los datos se gestionan, y comprenden:

Accesibilidad: grado en que los datos pueden ser recuperados por los usuarios
autorizados.

Portabilidad: facilidad con que los datos pueden ser transferidos entre entornos.

Seguridad: protección contra accesos no autorizados o modificaciones indebidas.

Trazabilidad: capacidad para identificar el origen y el historial de los datos.

Comprensibilidad (Understandability): facilidad con que los usuarios pueden
interpretar los datos.

Este modelo estandarizado[27] proporciona un marco más formal y aplicable a entornos
empresariales y tecnológicos, y permite alinear las evaluaciones de calidad con buenas
prácticas reconocidas internacionalmente.

Ciclo de vida del dato y sus puntos críticos
La calidad del dato no es un estado estático ni garantizado. A lo largo del ciclo que

va desde la observación del mundo real hasta el uso de los datos en sistemas, pueden
introducirse errores, ambigüedades y pérdidas que afectan su valor informativo. Como
muestra la Figura 2.1, el deterioro puede originarse en múltiples fases: desde la percepción
inicial hasta el diseño de las estructuras, el almacenamiento o el uso final [8].

Capítulo 2. Marco teórico 9

Figura 2.1: Fuentes de problemas de calidad de datos. Adaptado de Wand y Wang (1996)

Para entender y gestionar este deterioro, McGilvray propone el modelo POSMAD, un
marco que identifica seis etapas fundamentales. A continuación, se describe cada fase junto
con las actividades típicas y los principales puntos críticos que pueden comprometer la
calidad [38].

1. Planificar: consiste en definir los objetivos, estándares, modelos de datos y estruc-
turas necesarias antes de que los datos entren en producción. Aquí se diseña la
arquitectura y se establecen las definiciones que guiarán el uso posterior. Si esta fase
se omite o se ejecuta sin alinear diseño y uso real, los errores se trasladan al resto
del ciclo.

2. Obtener: implica la adquisición de datos desde fuentes internas o externas. Las
actividades incluyen la creación de registros, la carga de archivos o la compra de
datos. Los riesgos en esta etapa incluyen entradas incorrectas, falta de validaciones
o el uso de fuentes poco confiables.

3. Almacenar y compartir: en esta etapa los datos se guardan en sistemas y se
ponen a disposición de otros procesos o usuarios. Pueden almacenarse en bases de
datos o ficheros y compartirse a través de redes, pantallas o informes. Los puntos
críticos incluyen duplicados, obsolescencia, problemas de integridad o controles de
acceso mal definidos.

4. Mantener: esta fase abarca las operaciones de actualización, limpieza, transfor-
mación y consolidación de los datos. Aquí se aplican reglas de calidad, se corrigen

Capítulo 2. Marco teórico 10

errores y se eliminan redundancias. Un mal mantenimiento puede generar pérdida
de información válida o introducir errores adicionales.

5. Aplicar: los datos se utilizan para tomar decisiones, generar informes, entrenar
modelos o ejecutar procesos automáticos. Si los datos aplicados son incompletos,
incorrectos o mal interpretados, los errores se trasladan directamente a las decisiones
o resultados del sistema.

6. Disponer: cuando los datos dejan de ser útiles, deben archivarse o eliminarse
según las políticas definidas. Si se eliminan datos relevantes antes de tiempo, o si se
conservan registros innecesarios sin contexto, se afecta tanto la trazabilidad como el
cumplimiento normativo.

Estas fases se superponen con las causas clásicas de degradación de calidad. El deterioro
puede clasificarse en tres categorías: operacional, conceptual y organizacional. La Tabla 2.2
resume los síntomas y causas más comunes [8].

Categoría Problemas Causas
Operacional Los datos no existen, no son precisos

o no son válidos.
Fallos de captura o transmisión.

Conceptual Los datos están perdidos, no son pre-
cisos o no son válidos.

No están bien definidos o no son ap-
tos para el uso previsto.

Organizacional Hay problemas operacionales o con-
ceptuales que se repiten.

Desconexión entre quien recoge los
datos y quien los usa.

Tabla 2.2: Descripción de problemas y causas por categoría

Integrar una perspectiva de ciclo de vida, como la que ofrece POSMAD, permite
identificar en qué fase se generan los problemas y qué actores están implicados.

2.2. Limpieza de datos

Concepto y objetivos
La limpieza de datos [36], también llamada data cleaning, consiste en detectar y

corregir errores que distorsionan la representación del mundo real. Su objetivo es mejorar
la calidad de los datos mediante la eliminación de anomalías, es decir, valores que introducen
inconsistencias o imprecisiones en el conjunto. No hay una definición única sobre el alcance
de este proceso, ya que varía según el dominio y los requisitos específicos del sistema.

Todo enfoque de limpieza debe cumplir al menos tres condiciones. Primero, debe
permitir detectar y corregir errores tanto en fuentes aisladas como al integrar datos de
distintos orígenes. Segundo, debe apoyarse en herramientas que minimicen la inspección
manual y el desarrollo a medida, y que puedan adaptarse a nuevas fuentes. Tercero, debe
coordinarse con las transformaciones de datos basadas en esquemas y metadatos [45].

Capítulo 2. Marco teórico 11

Las anomalías que busca corregir este proceso pueden clasificarse, según Batini[4], en:

Sintácticas: errores de formato, dominios no válidos o datos sin estandarizar.

Semánticas: violaciones de integridad, duplicados o registros que contradicen otras
dependencias del conjunto.

De contexto: valores o tuplas que faltan, pero deberían existir según el modelo del
dominio.

Una de las anomalías más frecuentes definidas por Beatriz Lopez[36] en el libro Limpieza
de datos es la ausencia de valor. Puede deberse a errores humanos, fallos en sistemas de
adquisición o a situaciones donde el valor no aplica. Se distingue entre:

Dato ausente: existe en el mundo real, pero no fue registrado.

Dato nulo: no tiene un valor definido o aplicable dentro del dominio del atributo.

Técnicas tradicionales
Las técnicas tradicionales han constituido la base de la gestión de la calidad de los datos

durante décadas y siguen siendo esenciales para establecer entornos de datos fiables [5].
Se apoyan en enfoques manuales o en la aplicación de reglas definidas y procedimientos
estadísticos [26]:

La limpieza manual, implica la revisión directa de los datos por parte de un humano.
Aunque es costosa en términos de tiempo y recursos, resulta necesaria en situaciones
donde se requiere interpretación contextual o conocimiento experto. Este enfoque
suele incluir inspecciones visuales, corrección directa de valores y resolución de
duplicidades mediante revisión asistida.

La limpieza basada en reglas y scripts, ofrece un enfoque más escalable. Consiste en
definir condiciones lógicas o reglas de negocio que se implementan mediante scripts
de programación o herramientas de procesamiento de datos. Este método permite
verificar que los valores cumplen con el formato y dominio esperado, normalizar
entradas con distintas representaciones, detectar desviaciones estadísticas, rellenar
o eliminar valores faltantes según condiciones predefinidas, identificar duplicidades
mediante técnicas de coincidencia aproximada y validar relaciones entre atributos
dependientes.

Las técnicas estadísticas y algorítmicas, complementan los enfoques anteriores me-
diante métodos de análisis de patrones. A través del estudio de la distribución y
frecuencia de los valores, permiten detectar irregularidades que podrían indicar
errores. Además, utilizan modelos para predecir datos faltantes o corregir inconsis-
tencias que no siguen el comportamiento general del conjunto. Aunque estos métodos

Capítulo 2. Marco teórico 12

requieren mayor capacidad computacional y conocimiento técnico, son útiles cuando
se trabaja con grandes volúmenes de datos o cuando las inconsistencias no pueden
definirse con reglas simples.

Retos en datos estructurados
Los datos estructurados se almacenan en formatos predefinidos, como tablas con

filas y columnas. Aunque esta organización permite su procesamiento sistemático, no
elimina los riesgos de errores ni garantiza su calidad. Al contrario, los datos estructurados
presentan retos específicos que requieren atención continua y mecanismos adecuados para
su limpieza [5].

Uno de los principales problemas son las inconsistencias y duplicidades a gran escala.
Es común que una misma entidad esté representada de forma diferente en múltiples
registros. Esto se agrava en procesos de integración de fuentes diversas, como sistemas
de clientes o inventario. Detectar y fusionar estos casos requiere técnicas avanzadas de
desduplicación [10].

También es habitual encontrar valores faltantes o atípicos. Ausencias sistemáticas o
puntuales pueden tener origen en fallos de captura, errores de sistema o condiciones reales
no previstas. Por su parte, los valores extremos deben analizarse para determinar si son
errores o casos válidos, lo que exige conocimiento del dominio y métodos adecuados para
tratarlos [26].

Otro reto importante son los errores semánticos. Aunque los formatos sean correctos,
los datos pueden tener significados diferentes según la fuente. Esto ocurre, por ejemplo,
cuando se mezclan unidades de medida o se aplican definiciones distintas a un mismo
atributo. La integración heterogénea de sistemas como CRM o ERP suele acentuar estas
inconsistencias [5, 10].

2.3. Procesamiento automatizado de datos

Principios del procesamiento automatizado de datos
El procesamiento automatizado de datos consiste en ejecutar tareas de manipulación,

transformación, análisis y gestión de datos mediante sistemas informáticos sin intervención
humana o con una intervención mínima. Su finalidad es realizar estas operaciones de
manera eficiente, repetible y a gran escala, superando las limitaciones del trabajo manual
en términos de velocidad y precisión. Estos sistemas operan de forma autónoma una vez
configurados y abarcan desde la captura inicial y la limpieza de datos hasta la generación
de informes o el suministro de información a otros sistemas [55].

A diferencia del procesamiento manual, que es lento y propenso a errores, y del
procesamiento asistido, que todavía requiere supervisión, la automatización ofrece mayor
velocidad, una precisión constante y la capacidad de manejar volúmenes masivos con

Capítulo 2. Marco teórico 13

supervisión mínima. Su principal valor está en la capacidad de repetir procesos sin
desviaciones y liberar recursos humanos para tareas de mayor valor estratégico [26].

La automatización es un componente esencial del enfoque orientado por datos. Para que
una organización base sus decisiones en información actual y confiable, debe ser capaz de
procesar grandes cantidades de datos con rapidez. Este enfoque permite que la información
esté disponible para el análisis continuo sin depender de procesamiento manual, haciendo
posible operar en tiempo real [55].

Arquitectura de data lakes
Los data lakes [25] representan una arquitectura diseñada para almacenar grandes

volúmenes de datos sin importar su estructura. Su base teórica se apoya en la necesidad
de escalabilidad y flexibilidad. Al mantener los datos en su forma original, se retrasa la
definición del esquema hasta el momento en que se consultan o procesan. Este enfoque,
conocido como schema-on-read, permite reutilizar los datos en distintos contextos y aplicar
técnicas de análisis avanzadas sin restricciones previas. La diferencia principal entre un
data lake y un data warehouse es precisamente la forma en que se estructuran los datos. En
un data warehouse se sigue el enfoque schema-on-write, donde los datos deben ajustarse a
una estructura definida antes de su almacenamiento. Esta distinción convierte a los data
lakes en una solución adecuada para flujos de trabajo automatizados, donde se requiere
una ingesta continua de información desde múltiples fuentes. Funcionan como un punto
de entrada eficiente para procesos de limpieza, transformación y análisis, permitiendo una
gestión integral de los datos a cualquier escala.

2.4. Modelos generativos y LLMs

Introducción a los modelos generativos
La inteligencia artificial generativa es un campo que se desarrolla a partir del aprendizaje

automático. Su principio fundamental es la capacidad de un sistema para crear contenido
nuevo a partir de patrones aprendidos. Estos sistemas no requieren reglas programadas ni
datos etiquetados. En su lugar, analizan grandes volúmenes de información y construyen
representaciones internas que permiten generar texto, imágenes o audio con estructura
coherente. La generación se basa en procesos estadísticos y optimización de resultados
a través de retroalimentación. Este enfoque transforma la lógica tradicional de la IA,
al desplazar el foco desde la ejecución de instrucciones hacia la creación autónoma de
contenido [2].

Los modelos generativos implementan este principio al modelar directamente la dis-
tribución de los datos. Su objetivo no es clasificar ni seleccionar, sino construir nuevas
instancias que conserven la estructura del conjunto original. Aprenden a predecir secuencias
de elementos, ajustando sus parámetros para maximizar la coherencia. El entrenamiento
de estos modelos implica aprender correlaciones, dependencias y regularidades dentro de

Capítulo 2. Marco teórico 14

los datos. Su funcionamiento se diferencia del de los modelos discriminativos, que solo se
enfocan en asignar etiquetas a entradas. Mientras los discriminativos definen límites, los
generativos definen el espacio completo. Los modelos generativos se clasifican según su
estructura y la forma en que aprenden la distribución de los datos. La Tabla 2.3 resume
los principales tipos utilizados en sistemas actuales [6].

Tipo de modelo Propósito Base técnica Descripción
Autoencoder
(AE)

Reconstrucción de
la entrada

Codificación y de-
codificación deter-
minista

Modelo no generativo en sí.
Aprende a comprimir y des-
comprimir datos para recons-
truir la entrada original.

Variational Auto-
encoder (VAE)

Generación de
nuevas instancias
probabilísticas

Inferencia bayesia-
na con muestreo
estadístico

Variante generativa del auto-
encoder. Aprende distribucio-
nes latentes y genera datos si-
milares a los de entrenamiento.

Transformer Procesamiento de
secuencias comple-
jas

Mecanismo de
atención y codifi-
cación profunda

Modelo secuencial que aprende
relaciones a largo alcance. Ba-
se para tareas de traducción,
síntesis y resumen.

Generative Ad-
versarial Network
(GAN)

Síntesis de datos
realistas

Competencia en-
tre generador y
discriminador

Dos redes compiten para ge-
nerar datos indistinguibles del
original. Útil en imagen, video
y datos sintéticos.

Tabla 2.3: Tipos de modelos generativos basada en Advancements in Generative AI: A
Comprehensive Review of GANs, GPT, Autoencoders, Diffusion Model, and Transformers

Modelos de lenguaje de gran tamaño
Los modelos de lenguaje de gran tamaño (Large Language Models en inglés), también

llamados LLMs por sus siglas en inglés, son una aplicación directa de los modelos generativos
al procesamiento de texto. Están diseñados para predecir tokens, que son unidades mínimas
de texto como palabras o fragmentos, dentro de una secuencia, aprendiendo el contexto
y las relaciones internas del lenguaje. La escala y la arquitectura los distinguen. Estos
modelos operan con estructuras neuronales profundas, entrenadas sobre grandes corpus de
texto. Su objetivo es generar lenguaje natural de forma autónoma, manteniendo coherencia
gramatical, semántica y contextual. La técnica de aprendizaje autosupervisado les permite
ajustarse a múltiples tareas con un solo sistema base [37].

Entre los LLMs más utilizados se encuentran [2]:

BERT. Bidirectional Encoder Representations from Transformers. Utiliza arquitectu-
ra Transformer. Es un modelo preentrenado que aplica aprendizaje autosupervisado
mediante la predicción de palabras enmascaradas dentro de secuencias de texto. Su
funcionamiento bidireccional le permite captar el contexto desde ambos lados de

Capítulo 2. Marco teórico 15

una palabra. Aprende representaciones contextuales profundas y puede ajustarse a
tareas específicas como clasificación, pregunta-respuesta y traducción [16].

GPT-4. Generative Pretrained Transformer versión 4. Utiliza arquitectura Transfor-
mer multimodal. Acepta entradas de texto e imagen y genera salidas de texto. Está
preentrenado para predecir tokens y posteriormente alineado mediante técnicas de
aprendizaje por refuerzo con retroalimentación humana. Mejora la factualidad y el
comportamiento respecto a versiones anteriores [41].

LaMDA. Language Model for Dialogue Applications. Utiliza arquitectura Trans-
former. Está entrenado específicamente para el diálogo, con un corpus diseñado
para cubrir conversaciones abiertas. Su funcionamiento se centra en captar matices
conversacionales y mantener la coherencia a lo largo del intercambio [49].

LLaMA. Large Language Model Meta AI. Utiliza arquitectura Transformer au-
torregresiva. Está diseñado para ofrecer rendimiento competitivo con una menor
cantidad de parámetros. Se entrena con grandes volúmenes de texto y predice tokens
de manera secuencial. Mantiene eficiencia sin sacrificar calidad en la generación [50].

BLOOM. BigScience Large Open-science Open-access Multilingual Language Model.
Utiliza arquitectura Transformer. Se entrena con aprendizaje no supervisado para
generar texto coherente y fluido en múltiples lenguas. Su funcionamiento permite
capturar estructuras lingüísticas complejas y relaciones semánticas profundas [2].

Mistral. Modelo de lenguaje extenso desarrollado por Mistral AI. Utiliza arqui-
tectura Transformer. La versión Mistral 7B está compuesta por 7 mil millones de
parámetros. Incorpora mecanismos de atención agrupada y atención en ventana
deslizante que permiten mantener la eficiencia en el procesamiento secuencial. Está di-
señado para tareas de generación de texto, razonamiento estructurado y comprensión
multilingüe [28].

LLaVA. Modelo multimodal que combina un codificador visual con un modelo de
lenguaje. Basado en arquitectura Transformer. Está entrenado de forma conjunta
con datos textuales e instrucciones visuales. Permite interpretar imágenes junto con
texto y generar respuestas alineadas con ambos tipos de entrada. Está diseñado para
tareas de diálogo con entradas visuales [35].

RAG: Métodos de recuperación y generación
La técnica de Retrieval-Augmented Generation (RAG) combina la potencia de los

modelos de lenguaje con la precisión de fuentes de información externas, mejorando así la
calidad y fiabilidad de las respuestas generadas. En un sistema RAG, cuando un usuario
realiza una consulta, el modelo primero recupera información relevante de una base de
datos externa. Posteriormente, esta información se integra con la consulta original y se
envía a un modelo de lenguaje grande (LLM), que genera una respuesta coherente y precisa,
fundamentada en datos actualizados y específicos del contexto [15].

Capítulo 2. Marco teórico 16

Este enfoque es especialmente útil en dominios donde la precisión y la actualización
de la información son críticas, como en el ámbito legal, científico o administrativo. Al
incorporar datos externos en tiempo real, RAG permite que los modelos de lenguaje generen
respuestas más pertinentes y menos propensas a errores o “alucinaciones”, mejorando así
la confianza y utilidad de las aplicaciones de inteligencia artificial generativa [15].

2.5. Interfaces de lenguaje natural
Una interfaz de lenguaje natural [30] permite que el usuario se comunique con un sistema

utilizando expresiones propias del lenguaje humano. Sustituye las interfaces tradicionales
compuestas por botones, menús o sintaxis técnicas. En su lugar, el usuario introduce
instrucciones mediante texto, voz o signos, y el sistema responde utilizando el mismo canal.
En el caso de los sistemas que procesan datos automáticamente, estas interfaces reducen
la barrera técnica al eliminar la necesidad de conocer comandos estructurados como SQL
o expresiones lógicas complejas.

El funcionamiento se basa en una serie de componentes que procesan el lenguaje del
usuario. Entre ellos se encuentran el análisis léxico para identificar unidades del texto,
el análisis sintáctico para determinar la estructura gramatical, y el análisis semántico
para interpretar el significado. En muchos casos también se aplica análisis morfológico,
extracción de entidades o identificación de intención. Estos procesos permiten traducir
una consulta en lenguaje natural a una instrucción formal que puede ser ejecutada por el
sistema.

Las tareas que se pueden realizar a través de interfaces de lenguaje natural incluyen la
recuperación de datos, la ejecución de operaciones, la navegación por estructuras complejas
y la generación automática de contenido. En el campo de la generación de lenguaje natural,
estas tareas se clasifican según el tipo de entrada en texto a texto, datos a texto, imagen
a texto y video a texto. Cada una de ellas requiere métodos distintos. Por ejemplo, la
generación de texto a partir de datos puede realizarse con plantillas predefinidas o mediante
modelos entrenados con grandes corpus. Las salidas pueden incluir resúmenes, traducciones,
respuestas o reformulaciones de información.

En el marco de las interfaces de lenguaje natural, un prompt [24] es una entrada
específica que se le proporciona a un modelo de inteligencia artificial para generar una
respuesta acorde al objetivo deseado. Actúa como punto de partida del proceso de gene-
ración. Su estructura define el tipo de salida que el sistema puede producir. Un prompt
puede adoptar la forma de una pregunta, una instrucción directa o una descripción de
contexto. La precisión del resultado depende directamente de la claridad del prompt. Por
ejemplo, una petición genérica genera una respuesta amplia, mientras que una instrucción
detallada permite obtener información más precisa y ajustada. En aplicaciones avanzadas,
un prompt puede incluir la simulación de un rol o estilo específico para guiar el tono y el
enfoque de la respuesta. El diseño de prompts efectivos se ha convertido en una práctica
clave para mejorar el rendimiento de los modelos generativos, y su elaboración, según
Vladimir Geroimenko[24], se conoce como ingeniería de prompts.

Capítulo 2. Marco teórico 17

2.6. Evaluación y métricas

Métricas de evaluación de la calidad en tareas de
emparejamiento de datos

La evaluación en tareas de emparejamiento de datos [12] consiste en medir cuán
correctamente un sistema identifica registros que se refieren a la misma entidad. Para
ello se comparan los resultados del sistema con un conjunto de referencia conocido como
ground-truth, que contiene el estado real de cada par. Este conjunto puede generarse a
partir de revisión manual, resultados previamente validados o datos sintéticos diseñados
específicamente para el dominio. Cada par de registros evaluados se asigna a una de cuatro
categorías:

Verdaderos positivos (TP): pares clasificados como coincidencia y que efectivamente
coinciden.

Falsos positivos (FP): pares clasificados como coincidencia pero que no coinciden.

Verdaderos negativos (TN): pares clasificados como no coincidencia y que no coinci-
den.

Falsos negativos (FN): pares clasificados como no coincidencia pero que sí coinciden.

A partir de esta clasificación se calculan métricas que permiten evaluar el rendimiento
del sistema. En tareas de emparejamiento, donde la mayoría de los pares posibles no
son coincidencias, las métricas que dependen de los verdaderos negativos pueden resultar
engañosas. Por este motivo se priorizan métricas que se centran en los positivos. En el
libro Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection[12], el autor Peter Christen define las siguientes métricas recomendadas
y métricas no recomendadas:

Métricas recomendadas

Precisión: Indica qué proporción de las coincidencias detectadas por el sistema son
efectivamente correctas. Es útil para medir la confiabilidad del sistema al declarar
que dos registros coinciden. Una precisión alta implica que los falsos positivos son
pocos.

Precisión = TP

TP + FP

Recall:Mide cuántas de las coincidencias reales fueron correctamente identificadas.
Es especialmente importante en escenarios donde no detectar una coincidencia
implica pérdida de información relevante. Un recall alto indica que el sistema tiene
buena cobertura.

Recall = TP

TP + FN

Capítulo 2. Marco teórico 18

F1-score:Combina precisión y recall en una sola métrica, destacando los sistemas
que logran un equilibrio entre ambos. Es útil cuando se quiere evitar tanto los errores
por omisión como por exceso. Estas métricas no dependen del número de verdaderos
negativos, lo que las hace adecuadas para contextos con clases desbalanceadas como
el emparejamiento de datos, donde las coincidencias reales son una fracción pequeña
del total.

F1 = 2 × Precisión × Recall
Precisión + Recall

Métricas no recomendadas

Métricas como: accuracy, especificidad y tasa de falsos positivos, no son adecuadas
en este contexto porque incluyen el número de verdaderos negativos en su cálculo. En
emparejamiento de datos, los verdaderos negativos tienden a ser muy numerosos, lo que
puede generar valores artificialmente altos incluso cuando el sistema comete muchos errores
en la detección de coincidencias. Por esta razón, no aportan información útil sobre el
rendimiento real y no se recomiendan como criterio principal de evaluación.

El mismo autor, Peter Christen[12], señala que, debido al fuerte desbalance entre clases
en este tipo de tareas, métricas como la accuracy, la especificidad y la tasa de falsos
positivos son ineficaces para reflejar el rendimiento real del sistema. Aunque menciona
otras opciones como la curva ROC y el área bajo la curva (AUC), advierte que su uso
puede resultar engañoso en contextos de emparejamiento, ya que la gran cantidad de
verdaderos negativos tiende a producir curvas artificialmente optimistas. El coeficiente de
correlación de Matthews (MCC), frecuentemente empleado en clasificación binaria con
clases desbalanceadas, no es abordado en este capítulo. En cambio, el enfoque del autor se
centra en métricas más robustas e interpretables para data matching, como la precisión, el
recall y el F1-score.

Métricas de evaluación para modelos de lenguaje
Las métricas de evaluación para modelos de lenguaje [29] se usan para medir si

un modelo ejecuta correctamente una tarea. Algunas requieren una referencia, otras
no. Algunas operan a nivel de caracteres, palabras o embeddings. Un embedding es una
representación numérica densa y de dimensión fija que captura características semánticas
y sintácticas de una unidad de texto (como una palabra, frase o documento), permitiendo
que modelos de aprendizaje automático procesen lenguaje natural de forma eficiente [29].

Hay métricas generales y otras específicas según el tipo de salida. Algunas utilizan un
segundo modelo para emitir una evaluación.

Una de las distinciones que se aplica a estas métricas es entre métricas tradicionales
y no tradicionales. Las no tradicionales usan representaciones vectoriales o un modelo
adicional. Las tradicionales comparan forma y orden. Evalúan coincidencias exactas. La
coincidencia exacta y la distancia de edición también forman parte de este grupo.

Capítulo 2. Marco teórico 19

Métricas no tradicionales

Las métricas no tradicionales utilizan las capacidades avanzadas de los modelos de
lenguaje para evaluar la calidad del texto generado más allá de la coincidencia superficial.
No se limitan a comparar tokens exactos. Incorporan conocimiento semántico, embeddings
contextualizados o modelos generativos para emitir juicios de calidad más completos. Estas
métricas permiten evaluar propiedades como coherencia, fidelidad o adecuación contextual,
incluso cuando el texto generado difiere léxicamente de la referencia. Las métricas más
comunes, según Kamath, Keenan, Somers y Sorenson en Large Language Model: A Deep
Dive into Bridging Theory and Practice[29], son:

BERTScore: compara el texto generado con la referencia utilizando representaciones
vectoriales extraídas de modelos preentrenados. Calcula la similitud semántica entre
tokens mediante embeddings contextualizados. No requiere coincidencia exacta y
permite detectar equivalencia de significado aunque se usen palabras distintas.

MoverScore: mejora la sensibilidad frente a paráfrasis y reordenamientos. Utiliza
embeddings y calcula la distancia mínima necesaria para transformar la distribución
semántica del texto generado en la de la referencia. Captura relaciones semánticas
globales, no solo similitudes locales.

G-Eval: delega la evaluación en un modelo generativo. Se formula un prompt con
instrucciones específicas y el modelo responde con un juicio estructurado sobre
propiedades como coherencia, fidelidad o completitud. Esta métrica no depende de
una referencia explícita y es adecuada para tareas abiertas.

Pass@k: se utiliza para evaluar tareas con soluciones múltiples válidas, como
generación de código. Mide la probabilidad de que al menos una de las k salidas
generadas por el modelo sea correcta. Refleja la utilidad práctica del modelo en
contextos donde se permiten varios intentos.

Métricas tradicionales

Las métricas tradicionales evalúan la salida generada por el modelo en función de su
precisión léxica y sintáctica. Comparan el texto generado con una referencia a partir de
coincidencias exactas de palabras, frases o estructuras. Estas métricas han sido ampliamente
utilizadas en tareas como traducción automática o resumen, donde el orden y la forma de
la salida son relevantes. Su principal limitación es que no capturan significado cuando la
redacción varía, incluso si el contenido es correcto. Estas son:

BLEU: calcula la precisión de n-gramas entre la salida y la referencia. Penaliza las
salidas más cortas mediante un factor de longitud. Es útil cuando se espera que el
modelo reproduzca fragmentos similares en forma y orden [29].

Capítulo 2. Marco teórico 20

ROUGE: mide el recall de n-gramas, secuencias o estructuras. Evalúa si la salida
cubre los elementos clave de la referencia. Se aplica en tareas donde la cobertura del
contenido es prioritaria [29].

Otras métricas utilizadas en este grupo, como la coincidencia exacta y la distancia de
edición, se vinculan con la detección de errores y serán abordadas en la siguiente sección.

Métricas de similitud estructural
Las métricas de similitud estructural [12] permiten evaluar la calidad de las transfor-

maciones realizadas sobre datos textuales, numéricos o espaciales, sin necesidad de utilizar
etiquetas de clase ni tareas de predicción. Se basan en funciones que comparan elementos
individuales o pares de registros, y devuelven un valor numérico normalizado entre 0 y 1
que indica el grado de coincidencia.

Son apropiadas para tareas de validación estructural, como la corrección de nombres, la
estandarización de direcciones o la reconstrucción de fechas a partir de entradas ruidosas.

Comparadores de texto

Los comparadores de cadenas permiten cuantificar la similitud entre valores textuales.
Existen varios enfoques, agrupables según la técnica empleada:

1. Coincidencia exacta y truncada. Las funciones de comparación exacta verifican
si dos valores textuales coinciden literalmente. Devuelven 1 si son iguales y 0 si
difieren. Hay tres variantes:

Exacta: compara la cadena completa.
Truncada por el inicio: evalúa coincidencia en los primeros caracteres, útil
para prefijos estructurados.
Truncada por el final: evalúa los últimos caracteres, aplicable cuando hay
sufijos comunes o esperados

2. Distancia de edición. Las funciones de distancia de edición miden cuántas modifi-
caciones se requieren para transformar una cadena en otra. Se usan para detectar
errores, variaciones o deformaciones en valores textuales ya que se basan en una
noción de similitud estructural aproximada, donde no se espera coincidencia exacta
entre los caracteres. El resultado se normaliza entre 0 y 1, donde 1 indica coincidencia
exacta.
Se distinguen tres funciones principales:

Levenshtein: cuenta el número mínimo de operaciones necesarias: inserciones,
eliminaciones y sustituciones. Es útil para detectar errores ortográficos simples
o cambios accidentales de un carácter.

Capítulo 2. Marco teórico 21

Damerau-Levenshtein: agrega la posibilidad de transposición entre caracteres
adyacentes. Se adapta mejor a errores comunes de escritura como invertir dos
letras consecutivas.
Smith-Waterman: realiza un alineamiento local entre dos cadenas. En lugar
de comparar todo el contenido, busca coincidencias parciales con penalización
por errores o vacíos. Es útil cuando el contenido compartido entre cadenas no
está alineado al inicio ni al final.

3. Q-gramas y n-gramas. Los q-gramas y n-gramas son fragmentos consecutivos de
longitud fija que se extraen de una cadena de texto. En el contexto de similitud
estructural, se utilizan para comparar la presencia y frecuencia de bloques comunes
entre dos valores. Según Peter Christen en Data Matching: Concepts and Techniques
for Record Linkage, Entity Resolution, and Duplicate Detection, se distinguen tres
funciones principales, resumidas en la Tabla 2.4.

Función Descripción Principio de compa-
ración

Uso

Overlap Mide el número de q-
gramas idénticos com-
partidos entre dos cade-
nas

Cuenta cuántos q-
gramas son iguales en
ambas cadenas

Textos similares con
errores menores o dife-
rencias mínimas

Jaccard Evalúa la proporción de
q-gramas comunes fren-
te al conjunto total úni-
co

Compara bloques comu-
nes frente al total de blo-
ques únicos

Cadenas con elementos
extra o estructuras par-
cialmente iguales

Dice Variante de Jaccard que
enfatiza la coincidencia
relativa

Intersección ponderada
respecto a la suma de
bloques

Textos breves con frag-
mentos similares pero no
exactos

Tabla 2.4: Funciones de similitud basadas en q-gramas

Comparadores numéricos, fechas y geográficos

Estas funciones evalúan la similitud entre valores continuos o espaciales. A diferencia
de los textos, su comparación se basa en la magnitud de la diferencia. Según Peter Christen
en Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection, se distinguen tres tipos, definidos en la Tabla 2.5.

Capítulo 2. Marco teórico 22

Tipo de compa-
ración

Descripción técnica Principio de compa-
ración

Aplicación reco-
nocida

Similitud abso-
luta

Evalúa si la diferencia
entre dos valores es me-
nor que un umbral cons-
tante

Comparación directa en-
tre valores reales

Atributos numéri-
cos con error de re-
dondeo

Similitud relati-
va

Calcula la diferencia pro-
porcional respecto al va-
lor de referencia

Normalización de la di-
ferencia respecto al dato

Datos continuos
con escalas diná-
micas

Similitud geo-
gráfica

Compara ubicaciones
por su distancia en el
espacio

Transformación de dis-
tancia en valor binario

Coordenadas geo-
gráficas y ubica-
ciones aproxima-
das

Tabla 2.5: Funciones de similitud para valores continuos y espaciales

2.7. Seguridad y privacidad
La protección de datos en sistemas que integran modelos de lenguaje de gran tamaño

forma parte del desarrollo responsable. Estos sistemas procesan grandes volúmenes de
datos en múltiples fases, lo que introduce riesgos de privacidad que deben ser gestionados
mediante estructuras normativas y técnicas específicas. Estos riesgos han sido documentados
por el European Data Protection Board en un informe centrado en el uso de LLMs, donde
se describen su origen, formas de manifestación, evaluación y medidas de mitigación
correspondientes [21].

Fases del ciclo de vida y su impacto en la privacidad
El análisis de riesgos en sistemas de IA debe considerar todo su ciclo de vida, conforme

a las normas ISO/IEC 22989 e ISO/IEC 5338. Este ciclo se compone de las siguientes
fases, cada una con riesgos de privacidad asociados:

Diseño: se definen las fuentes de datos y estrategias de tratamiento. La inclusión
de datos sensibles sin mecanismos de anonimización representa una vulnerabilidad
temprana.

Preparación de datos: se recopila, limpia y transforma la información. Aquí
pueden introducirse datos personales identificables, errores de anonimización o sesgos
estructurales que afecten la equidad del modelo.

Entrenamiento: el modelo aprende patrones a partir de los datos preparados.
En esta etapa puede memorizar fragmentos sensibles, lo que supone un riesgo de
reproducción involuntaria.

Capítulo 2. Marco teórico 23

Validación: se evalúa el comportamiento del modelo con conjuntos de prueba, que
pueden contener datos reales no anonimizados.

Despliegue: el sistema interactúa con usuarios y datos en tiempo real. Los prompts y
las respuestas generadas pueden contener o derivar información personal no prevista.

Operación y mantenimiento: se registran logs, interacciones y métricas. Si no se
anonimizan, estos registros pueden contener trazas identificables.

Actualización y retirada: se modifican, reentrenan o eliminan modelos. El trata-
miento incorrecto de datos históricos o residuales puede mantener riesgos persistentes.

Esta estructura permite identificar puntos críticos donde deben aplicarse medidas técnicas
y organizativas específicas para garantizar la seguridad del tratamiento.

Categorías de riesgos de privacidad en LLMs
Los riesgos de privacidad en sistemas con LLMs, según el European Data Protection

Board (EDPB)[21], pueden clasificarse en función del momento en que se materializan y
de la forma en que se manifiestan:

Riesgos en el entrenamiento: inclusión de datos personales en los conjuntos de
entrenamiento sin validación previa, o modelado sobre datos no anonimizados.

Riesgos en la inferencia: generación de salidas que revelan información sensible,
ya sea por memorias del modelo o por mal diseño de prompts.

Riesgos en el feedback loop: almacenamiento de interacciones sin anonimización,
uso de respuestas del usuario como datos para reajuste del modelo.

Riesgos en RAG: por sus siglas en inglés Retrieval-Augmented Generation, uso de
bases de conocimiento con datos identificables sin control de acceso ni trazabilidad.

Riesgos en logs y monitoreo: persistencia de datos sensibles en registros de
actividad si no se purgan ni cifran adecuadamente.

Esta clasificación permite delimitar el alcance de cada riesgo y definir medidas proporcio-
nales a su nivel de criticidad.

Evaluación del riesgo de privacidad
La evaluación de riesgos en estos sistemas se basa en dos variables fundamentales:

Probabilidad de ocurrencia: se refiere a la posibilidad de que el riesgo se mate-
rialice, considerando factores como el volumen de datos tratados, la naturaleza de
los datos, ya sean sensibles o no, y la presencia o ausencia de medidas de mitigación.

Capítulo 2. Marco teórico 24

Severidad del impacto: mide el daño potencial sobre los derechos y libertades
de los afectados, considerando el tipo de dato, el contexto de uso y la finalidad del
tratamiento.

Combinando ambas dimensiones, se puede clasificar cada riesgo en un nivel bajo, medio
o alto, lo que permite priorizar acciones de control. Esta evaluación no sustituye a una
evaluación de impacto relativa a la protección de datos según el artículo 35 del RGPD1.,
pero la complementa al centrarse en los riesgos específicos de los sistemas basados en
modelos de los LLMs.

Medidas técnicas y organizativas de mitigación
El tratamiento de los riesgos identificados requiere la aplicación de medidas concretas.

Estas medidas, según el EDPB[21] pueden ser clasificadas en:

Medidas técnicas:

• Cifrado de datos en tránsito y en reposo.
• Segmentación de red y aislamiento del sistema de IA.
• Eliminación segura de datos y políticas de retención.
• Control de acceso por roles y registro de actividad.
• Auditoría automatizada de logs e inferencias.

Medidas organizativas:

• Políticas de minimización de datos.
• Registro de finalidades y criterios de licitud del tratamiento.
• Prohibición de reutilización de datos sin consentimiento.
• Evaluación y revisión continua de los riesgos residuales.

Estas acciones deben integrarse desde la fase de diseño, conforme al principio de protección
de datos desde el diseño y por defecto según el artículo 25 del RGPD2, y alinearse con
la obligación de garantizar la seguridad del tratamiento establecida en el artículo 32 del
mismo reglamento3.

1El artículo 35 del Reglamento General de Protección de Datos regula la obligación de realizar una
evaluación de impacto cuando un tratamiento pueda suponer un alto riesgo para los derechos y libertades
de las personas, especialmente en casos de tecnologías nuevas, decisiones automatizadas o tratamiento a
gran escala [42, pp. 30]

2El artículo 25 del Reglamento General de Protección de Datos exige que se apliquen medidas técnicas
y organizativas apropiadas desde el diseño y por configuración predeterminada, de forma que solo se traten
los datos personales necesarios para cada finalidad [42, pp. 23].

3El artículo 32 del Reglamento General de Protección de Datos establece la obligación de aplicar
medidas adecuadas para garantizar la seguridad del tratamiento, considerando el riesgo y medidas como
el cifrado, control de accesos, resiliencia y evaluación periódica [42, pp. 28].

Capítulo 2. Marco teórico 25

Supervisión y revisión continua
El ciclo de gestión de riesgos en sistemas basados en LLMs requiere mecanismos de

revisión periódica y supervisión continua. Esto incluye:

Registro actualizado de riesgos y controles.

Seguimiento del comportamiento del modelo ante nuevos datos.

Evaluación de impacto ante cambios en la configuración o el flujo de datos.

Validación de la eficacia de las medidas aplicadas frente a vulnerabilidades emergentes.

La revisión constante permite mantener el riesgo residual dentro de umbrales acepta-
bles, evitando su acumulación y reduciendo la posibilidad de incidentes derivados del
envejecimiento del sistema o del cambio de contexto.

Capítulo 3

Estado del arte

3.1. Búsqueda en literatura académica
La revisión sistemática de literatura (SLR, por sus siglas en inglés) es un tipo de

estudio secundario que se basa en un proceso estructurado y replicable para identificar,
analizar y sintetizar la evidencia disponible sobre una pregunta de investigación concreta.
Fue introducida en ingeniería de software como parte del enfoque de ingeniería basada
en evidencia, el cual busca integrar los mejores resultados de investigación con la expe-
riencia práctica y los valores del contexto profesional para mejorar la toma de decisiones
técnicas [32].

Este tipo de revisión busca combinar resultados de estudios previos para responder
a una pregunta concreta. Para ello, aplica filtros sistemáticos, valora la calidad de la
información y sintetiza los datos de forma objetiva. Permite obtener respuestas más
precisas y firmes que las revisiones sin estructura metodológica. La revisión sistemática se
apoya en la evidencia, tanto cualitativa como cuantitativa, y su utilidad depende de la
claridad en cada fase: planteamiento de la pregunta, selección de fuentes, evaluación de
artículos y análisis de resultados [44].

Con el objetivo de responder a la pregunta de investigación RQ1, que plantea qué
enfoques recientes han explorado el uso de modelos generativos en tareas de limpieza y
mejora de calidad de datos estructurados, se usó un enfoque de revisión sistemático en
tres bases de datos académicas reconocidas: Scopus, IEEE Xplore y Web of Science.

La búsqueda incial se enfocó en publicaciones recientes, limitando los resultados a los
años 2023, 2024 y 2025, con el fin de identificar los trabajos más actuales sobre la aplicación
de inteligencia artificial generativa. Esto considerando que el uso de IA generativa recién
comenzó a popularizarse en publicaciones académicas a partir de 2023, tras el lanzamiento
público de ChatGPT en noviembre de 2022 [54].
En la primera exploración se usaron los siguientes filtros:

Años: 2023, 2024 y 2025

26

Capítulo 3. Estado del arte 27

Términos utilizados:

• data
• quality OR cleaning OR cleansing OR profiling OR preparation
• LLM OR AI OR GenAI OR “artificial intelligence” OR “generative artificial

intelligence”

Estrategia de búsqueda
El protocolo de la revisión sistemática define las bases metodológicas para garantizar

la transparencia, reproducibilidad y coherencia del proceso. Incluye la selección de fuentes,
las estrategias de búsqueda, los criterios de inclusión y exclusión, y la herramienta de
extracción y análisis de datos[9]. Su función principal es guiar la ejecución de la revisión
de forma controlada y sin introducir sesgos por decisiones no documentadas.

Criterios de inclusión definidos:

Idioma: estudios en inglés o español.

Tipo de documento: artículos científicos revisados por pares y actas de congresos.

Periodo: publicaciones entre 2022 y 2025.

Disponibilidad: acceso completo al texto del estudio.

Contenido: estudios que incluyan tareas de limpieza o preparación de datos estructu-
rados mediante modelos generativos o modelos de lenguaje.

Criterios de exclusión definidos:

Estudios duplicados entre múltiples fuentes.

Documentos sin acceso al texto completo.

Literatura gris, tesis, libros o informes no revisados por pares.

Publicaciones fuera del rango temporal definido.

Estudios que no incluyan ninguna mención a técnicas de procesamiento automático
con modelos generativos.

La búsqueda se planificó para ejecutarse en las bases de datos Scopus, IEEE Xplore y
Web of Science, seleccionadas por su cobertura en informática, ingeniería y tecnologías de
la información. Las cadenas de búsqueda se construyeron mediante operadores booleanos,
combinando términos relacionados con limpieza de datos, modelos de lenguaje y preparación
automatizada.

Capítulo 3. Estado del arte 28

3.2. Resultados de la SLR

Resultados iniciales
Los querys para cada base de datos y sus resultados fueron:

Base de datos Query aplicado Años Resultados
Scopus TITLE-ABS-KEY (data AND (quality OR

cleaning OR cleansing OR profiling OR pre-
paration) AND (llm OR ai OR genai OR
“artificial intelligence” OR “generative artifi-
cial intelligence”)) AND (PUBYEAR =
2023 OR PUBYEAR = 2024 OR PUBYEAR
= 2025)

2023-2025 20165

IEEE Xplore (((“All Metadata”:data) AND ((“All
Metadata”:quality) OR (“All Metada-
ta”:cleaning) OR (“All Metadata”:cleansing)
OR (“All Metadata”:profiling) OR (“All
Metadata”:preparation)) AND ((“All Me-
tadata”:LLM) OR (“All Metadata”:AI)
OR (“All Metadata”:GenAI) OR (“All
Metadata”:“artificial intelligence”) OR (“All
Metadata”:“generative artificial intelligen-
ce”))))

2023-2025 17038

Web of Science TS=(data AND (quality OR cleaning OR
cleansing OR profiling OR preparation) AND
(LLM OR AI OR GenAI OR “artificial inte-
lligence” OR “generative artificial intelligen-
ce”))

2023-2025 52283

Tabla 3.1: Resultados iniciales por base de datos

Se observó que los resultados obtenidos son muy generales y numerosos, lo que dificulta
su exploración. Muchos documentos están relacionados con áreas como medicina, biología,
energía, entre otras, sin un enfoque claro en calidad de datos. Por lo tanto, se procede a
refinar más las búsquedas.

Resultados usando refinamiento avanzado
La tabla 3.2 resume los resultados obtenidos en cada base de datos tras aplicar los

filtros avanzados definidos en la estrategia de búsqueda.

Capítulo 3. Estado del arte 29

Base de datos Query aplicado Años Resultados
Scopus ((TITLE-ABS-KEY (cleaning AND data

AND using AND large AND language AND
models) AND KEY (generative OR artificial
OR intelligence OR data OR cleaning OR da-
ta OR preparation))) AND PUBYEAR >
2022 AND PUBYEAR < 2026 AND (LIMIT-
TO (EXACTKEYWORD , “Metadata”)
OR LIMIT-TO (EXACTKEYWORD , “Da-
ta Preparation”) OR LIMIT-TO (EXACT-
KEYWORD , “Data Cleaning”) OR LIMIT-
TO (EXACTKEYWORD , “Data Accuracy”
))

2022-2025 36

IEEE Xplore (((“All Metadata”:“cleaning” AND “All
Metadata”:“data” AND “All Metada-
ta”:“using” AND “All Metadata”:“large”
AND “All Metadata”:“language” AND
“All Metadata”:“models”) AND ((“All
Metadata”:“generative”) OR (“All Me-
tadata”:“artificial”) OR (“All Metada-
ta”:“intelligence”) OR (“All Metada-
ta”:“data”) OR (“All Metadata”:“cleaning”)
OR (“All Metadata”:“preparation”))) AND
((“All Metadata”:“metadata”) OR (“All
Metadata”:“data preparation”) OR (“All
Metadata”:“data cleaning”) OR (“All Meta-
data”:“data accuracy”)))

2022-2025 15

Web of Science TS=((cleaning AND data AND using AND
large AND language AND models) AND (ge-
nerative OR artificial OR intelligence OR da-
ta OR cleaning OR data OR preparation))
AND TS=(“metadata” OR “data preparation”
OR “data cleaning” OR “data accuracy”)

2022-2025 31

Tabla 3.2: Resultados refinados por base de datos

El resultado fue de 36 estudios en Scopus, 15 en IEEE Xplore y 31 en Web of Science,
con un total de 82 publicaciones.

Tras aplicar los criterios de eliminación, se obtuvo lo siguiente:

Duplicados: se eliminaron 17 estudios repetidos, tomando como base principal Scopus.

Idioma: solo se consideraron estudios en inglés o español. Se eliminó 1 estudio.

Capítulo 3. Estado del arte 30

Disponibilidad: se eliminaron 13 estudios por no tener acceso al texto completo.

Tipo de documento: solo se incluyeron artículos y conferencias. Se eliminó 1 tesis.

El resultado final fue de 50 estudios.

Estudios primarios seleccionados
Se aplicaron criterios temáticos, y tras una revisión exploratoria de los textos completos,

se seleccionaron 16 estudios primarios que pueden responder a las preguntas de investigación.
La tabla 3.3 presenta su categorización según tipo de contribución; considerando si se trata
de una herramienta; una propuesta metodológica; un caso de aplicación generalizable,que
parte de un contexto concreto pero puede adaptarse a otros similares; o un caso generalizado,
validado en múltiples dominios.

Capítulo 3. Estado del arte 31

Código Título del estudio Año Tipo Categoría
[BLD+23] Ask Language Model to Clean Your

Noisy Translation Data
2023 Conferencia Caso que intenta genera-

lizar
[NAE+24] RetClean: Retrieval-Based Data

Cleaning Using LLMs and Data La-
kes

2024 Conferencia Herramienta

[MAD+24] Cleaning Semi-Structured Errors in
Open Data Using Large Language
Models

2024 Conferencia Caso generalizado

[HSL+24] Application of Large Language Mo-
dels in Chemistry Reaction Data Ex-
traction and Cleaning

2024 Conferencia Caso que intenta genera-
lizar

[GGBR24] Harnessing GPT for Data Transfor-
mation Tasks

2024 Conferencia Metodología

[PSA+24] Improving Understandability and
Control in Data Preparation: A
Human-Centered Approach

2024 Conferencia Metodología

[MR24] Leveraging Structured and Unstruc-
tured Data for Tabular Data Clea-
ning

2024 Conferencia Caso generalizado

[ZL24] Smartphone Usage Data Cleaning
Using LLM-Based Processing

2024 Conferencia Caso que intenta genera-
lizar

[BADG25] LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated
OFDs

2025 Conferencia Herramienta

[NdTB25] Improving Data Cleaning by Lear-
ning From Unstructured Textual Da-
ta

2025 Artículo Metodología

[BDVI24] Improving the Quality of Diabe-
tic Data with LLM-driven Cleaning
Techniques

2024 Conferencia Caso que intenta genera-
lizar

[NZM+24] IterClean: An Iterative Data Clea-
ning Framework with Large Langua-
ge Models

2024 Conferencia Herramienta & Metodo-
logía

[ZNS+24] Self-Repairing Data Scraping for
Websites

2024 Conferencia Herramienta

[CTFL23] Demystifying Artificial Intelligence
for Data Preparation

2023 Conferencia Metodología

[WLW23] Sudowoodo: Contrastive Self-
supervised Learning for Multi-
purpose Data Integration and
Preparation

2023 Conferencia Herramienta

[CLW+24] PreparedLLM: effective pre-
pretraining framework for domain-
specific large language models

2024 Artículo Metodología

Tabla 3.3: Estudios primarios seleccionados y su categorización

Capítulo 3. Estado del arte 32

Del total, 5 estudios fueron clasificados como herramientas, 5 como propuestas meto-
dológicas, 4 como casos que intentan generalizar y 2 como casos generalizados.

Literatura Gris
Se incluyeron artículos de arXiv al no estar presentes en bases como Scopus o IEEE. Al

no contar con revisión por pares ni DOI, se consideran literatura gris. Aun así, se valoraron
por su actualidad y por aportar enfoques significativos al tema de mejora de calidad de
datos con modelos de lenguaje.

Código Título del estudio Año Categoría
[BvdLN+23] OpusCleaner and OpusTrainer, open sour-

ce toolkits for training Machine Transla-
tion and Large language models

2023 Herramienta

[EY24] Organic Data-Driven Approach for Turkish
Grammatical Error Correction and LLMs

2024 Metodología

[ZHW24] Data Cleaning Using Large Language Mo-
dels

2024 Herramienta / Metodología

[LFT24] AutoDCWorkflow: LLM-based Data Clea-
ning Workflow Auto-Generation and
Benchmark

2024 Herramienta / Metodología

[LLT25] Too Noisy To Learn: Enhancing Data Qua-
lity for Code Review Comment Generation

2025 Caso generalizado

[SLW+25] DCAD-2000: A Multilingual Dataset
across 2000+ Languages with Data Clea-
ning as Anomaly Detection

2025 Metodología

[MPSD25] Are Large Language Models Good Data
Preprocessors?

2025 Metodología

[LQL+25] MathClean: A Benchmark for Synthetic
Mathematical Data Cleaning

2025 Metodología

Tabla 3.4: Estudios relevantes provenientes de literatura gris (arXiv) y su categorización

Se identificaron 8 estudios pre-publicados según la temática en arXiv. De ellos, 4 fueron
clasificados como Metodología, 2 como Herramienta & Metodología, 2 como Caso que
intenta generalizar y 1 como Herramienta.

No se aplicó la técnica complementaria de snowballing, que consiste en revisar ma-
nualmente las referencias citadas en los estudios incluidos para identificar publicaciones
adicionales que no aparecieron en las búsquedas iniciales [9]. Esta técnica puede ser útil pa-
ra ampliar el conjunto de estudios, pero requiere una evaluación posterior para determinar
su relevancia y evitar duplicidades.

Capítulo 3. Estado del arte 33

Análisis de estudios primarios
La Tabla 3.5 muestra que la categoría Metodología es la más frecuente, con un 37,5 % del

total de estudios. Según el gráfico de burbujas en la Figura 3.1, el 16,7 % de estos trabajos
se concentra en 2024 y otro 16,7 % en 2025, siendo los años con mayor representación en
esta categoría.

Categoría Cantidad Porcentaje
Metodología 9 37,5 %
Caso que intenta generalizar 5 20,8 %
Herramienta 4 16,7 %
Caso generalizado 3 12,5 %
Herramienta & Metodología 3 12,5 %

Tabla 3.5: Distribución de estudios primarios por categoría

Figura 3.1: Distribución de los estudios primarios en año de publicación y categoría

A continuación, se presentan los resúmenes de los estudios analizados:

Metodología

Ask Language Model to Clean Your Noisy Translation Data [BLD+23]:
Propone una metodología asistida por LLMs para limpiar valores erróneos, incon-
sistentes o atípicos en datos estructurados. Combina contexto semántico, reglas

Capítulo 3. Estado del arte 34

estadísticas y conocimiento externo para generar sugerencias de corrección. Evalúa
su eficacia en distintos dominios.

Harnessing GPT for Data Transformation Tasks [GGBR24]:
Presenta una metodología basada en GPT-4 para tareas de transformación de datos
estructurados. Propone una plantilla de prompts reutilizable y evalúa su desempeño
en tareas como limpieza, extracción y reformateo. La metodología se implementa en
una biblioteca Python (DTLM) y se compara contra herramientas clásicas en un
benchmark especializado.

Improving Understandability and Control in Data Preparation [PSA+24]:
Propone una metodología centrada en el usuario para diseñar entornos de preparación
de datos explicables y personalizables. Define requisitos mediante entrevistas, esce-
narios y sesiones think-aloud, y extiende una plataforma con explicaciones generadas
por LLMs, visualizaciones interactivas y control granular del proceso. La metodología
busca mejorar la comprensión y el control del usuario sobre las acciones de calidad
de datos.

Improving Data Cleaning by Learning From Unstructured Textual Data
[NdTB25]:
Propone una metodología basada en aprendizaje multitarea con LLMs para limpiar
datos estructurados utilizando descripciones textuales no estructuradas. El modelo
aprende patrones desde texto libre y mejora tanto la imputación como la detección
de errores.

Demystifying Artificial Intelligence for Data Preparation [CTFL23]:
Propone una metodología basada en una taxonomía funcional para integrar PLMs y
modelos generativos en tareas de preparación de datos. Aborda limpieza, vinculación
y transformación con modelos como GPT-3 o Retro, destacando aspectos como
explicabilidad y control humano.

Effective Pre-Pretraining Framework for Domain-Specific LLMs [CLW+24]:
Propone una metodología de pre-preentrenamiento que automatiza la limpieza,
selección y estructuración de datos para LLMs específicos de dominio. Mejora la
calidad del corpus antes del fine-tuning mediante recetas de datos, expansión de
vocabulario y técnicas de inicialización de embeddings.

Are Large Language Models Good Data Preprocessors? [MPSD25]:
Propone una metodología experimental para evaluar LLMs como preprocesadores
de texto. Compara GPT-4, LLaMA 3.1 y Sonnet 3.5 en la limpieza de captions
generados por modelos multimodales. Analiza su impacto en una tarea compleja de
clasificación de memes persuasivos, incorporando pruebas estadísticas para valorar
su efectividad.

MathClean: A Benchmark for Synthetic Mathematical Data Cleaning [LQL+25]:
Propone una metodología basada en aprendizaje multitarea con LLMs para limpiar

Capítulo 3. Estado del arte 35

datos estructurados utilizando texto libre como fuente adicional. Combina entradas
estructuradas y no estructuradas para mejorar la imputación y detección de errores.
Evalúa su eficacia en tareas de limpieza sobre datasets reales.

Caso que intenta generalizar

Application of Large Language Models in Chemistry Reaction Data Extraction
and Cleaning [HSL+24]:
Estudia el uso de LLMs para extraer y limpiar datos de reacciones químicas no
estructurados. Evalúa GPT-4 y LLaMA-2 con fine-tuning y prompt tuning. Propone
una metodología específica para este dominio, con un verificador factual que garantiza
la precisión de la información extraída.

Smartphone Usage Data Cleaning Using LLM-Based Processing [ZL24]:
Utiliza LLMs para limpiar y transformar datos recolectados por smartphones. Au-
tomatiza la inferencia de etiquetas, agrupación semántica y eliminación de ruido.
Centrado en datos sensibles de comportamiento humano.

Improving the Quality of Diabetic Data with LLM-driven Cleaning Techniques
[BDVI24]:
Aplica LLMs a la mejora de datasets médicos sobre diabetes. Automatiza la detección
de valores incoherentes y outliers. Evalúa el impacto en análisis de predicción médica
posterior.

Too Noisy To Learn: Enhancing Data Quality for Code Review Comment
Generation [LLT25]:
Analiza cómo el ruido en los datos de revisión de código afecta la generación
automática de comentarios. Propone estrategias de limpieza para reducir duplicados,
errores y alineaciones inconsistentes en los pares código -comentario. Evalúa el
impacto de estos filtros en modelos generativos y demuestra que la calidad de los
datos modifica directamente los resultados.

Caso generalizado

Cleaning Semi-Structured Errors in Open Data Using Large Language Models
[MAD+24]:
Aborda la limpieza de errores en datos semi-estructurados usando aprendizaje en
contexto con LLMs. Se centra en datos legales en formato XML. Evalúa el rendimiento
de diferentes prompts para corrección automática.

Leveraging Structured and Unstructured Data for Tabular Data Cleaning
[MR24]:
Usa tanto datos estructurados como no estructurados para limpiar datos tabulares.
Propone un framework que mejora imputación y detección de errores usando contexto
textual. Aumenta la calidad de la limpieza más allá de reglas fijas.

Capítulo 3. Estado del arte 36

DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data
Cleaning as Anomaly Detection [SLW+25]:
Propone una técnica de limpieza de datos que se basa en detección de anomalías sin
umbrales predefinidos. Aplica el enfoque a un corpus de más de 2,000 lenguas. Su
escala y metodología innovadora muestran cómo los LLMs pueden aplicarse en la
limpieza multilingüe a gran escala.

Herramienta

RetClean: Retrieval-Based Data Cleaning Using LLMs and Data Lakes [NAE+24]:
Presenta un sistema de limpieza de datos que combina RAG con LLMs, ideal para
datos empresariales privados. Muestra cómo aprovechar data lakes para mejorar
sugerencias de limpieza. Soporta tres escenarios según privacidad y tipo de modelo.

LLMClean: Context-Aware Tabular Data Cleaning via LLM-Generated OFDs
[BADG25]:
Introduce LLMClean, un sistema que genera dependencias funcionales a partir de
contexto textual usando LLMs. Automatiza tareas clásicas como detección de errores
y valores faltantes. Evalúa resultados en múltiples datasets.

Self-Repairing Data Scraping for Websites [ZNS+24]:
Desarrolla un sistema para corregir automáticamente errores en scraping web usando
LLMs. Detecta cuándo fallan las reglas de extracción y las adapta con contexto.
Aumenta robustez frente a cambios estructurales en sitios web.

OpusCleaner and OpusTrainer: open source toolkits for training Machine
Translation and Large Language Models [BvdLN+23]:
Presenta dos herramientas open source orientadas a facilitar la descarga, limpieza y
preprocesamiento de datos de traducción. Automatizan tareas como detección de
ruido, mezcla de corpus y aumento de datos durante el entrenamiento. Aplican filtros
y transformaciones para mejorar la robustez de los modelos.

Sudowoodo: Contrastive Self-supervised Learning for Multipurpose Data Inte-
gration and Preparation [WLW23]:
Presenta un modelo auto-supervisado que prepara datos para múltiples tareas co-
mo integración y limpieza. No depende de reglas fijas, sino de similitud semántica.
Entrenado con contraste de ejemplos limpios vs ruidosos.

Herramienta & Metodología

IterClean: An Iterative Data Cleaning Framework with Large Language Models
[NZM+24]:
Propuesta de un sistema iterativo donde el modelo mejora su limpieza con cada
ciclo de feedback. Usa LLMs para identificar errores y reescribir valores incorrectos.
Incluye evaluación humana y automática.

Capítulo 3. Estado del arte 37

AutoDCWorkflow: LLM-based Data Cleaning Workflow Auto-Generation and
Benchmark [LFT24]:
Este trabajo propone un pipeline automatizado donde agentes LLM generan, se-
leccionan y ejecutan flujos de limpieza de datos. Evalúa distintos enfoques sobre
un benchmark propio. Explora el uso de LLMs como planificadores automáticos en
tareas de calidad de datos.

Data Cleaning Using Large Language Models [ZHW24]:
Propone Cocoon, un sistema que combina detección estadística con razonamiento
semántico usando LLMs. Descompone tareas complejas de limpieza en subtareas
más manejables: duplicados, valores atípicos, errores de tipo, entre otros. Ejecuta la
limpieza vía SQL y permite interacción humana en el proceso.

Capítulo 4

Caso de estudio

4.1. RetClean como herramienta base
Después de revisar la literatura relacionada, se seleccionó RetClean como sistema base.

RetClean [39] es una herramienta desarrollada por investigadores del Qatar Computing
Research Institute (QCRI) y la Hong Kong University of Science and Technology (HKUST)
para la reparación de datos tabulares. Combina modelos generativos con recuperación de
ejemplos desde data lakes. Permite cargar archivos CSV, seleccionar una columna objetivo,
definir valores a corregir, usar columnas pivote como contexto y configurar modelos LLM
con o sin recuperación aumentada.

Esta herramienta fue presentada en un estudio publicado en diciembre de 2024 en
Proceedings of the VLDB Endowment1. Desde entonces, ha sido citado en investigaciones
que aplican RAG para imputación de valores en tablas con datos faltantes [46], y en
trabajos sobre construcción de data lakes a escala masiva con soporte para limpieza
automática [31].

No fue posible replicar directamente el caso presentado en el estudio original [39],
ya que la versión actual del repositorio no incluye el modelo afinado por fine-tuning
ni las funciones de filtrado aplicadas durante la recuperación, ambas utilizadas en ese
experimento. En su lugar, se empleó el ejemplo funcional disponible en el repositorio
oficial, que utiliza un mini dataset de fútbol para pruebas básicas. Este ejemplo permitió
validar el funcionamiento general del sistema y comprobar sus capacidades con distintas
configuraciones.

La Figura 4.1 muestra la interfaz descrita en el artículo original, donde se observa la
presencia de un modelo fine-tuned y filtros configurables para el proceso de recuperación.
En contraste, la Figura 4.2 corresponde a la versión actual disponible en GitHub, en la
que estas opciones ya no están presentes.

1https://dl.acm.org/toc/pvldb/2024/17/12

38

https://dl.acm.org/toc/pvldb/2024/17/12

Capítulo 4. Caso de estudio 39

Figura 4.1: Interfaz de RetClean en el estudio original.

Figura 4.2: Versión actual del repositorio de RetClean.

En este contexto, se encontró que RetClean soporta tres configuraciones principales.
La primera utiliza únicamente un modelo generativo sin contexto externo. La segunda
añade recuperación de ejemplos desde un índice, combinando el modelo con registros
relevantes obtenidos de un data lake. La tercera ejecuta el mismo flujo usando modelos
locales, manteniendo los datos en entornos controlados.

Este sistema fue elegido por cuatro motivos:

Capítulo 4. Caso de estudio 40

Su código es abierto y bajo licencia MIT, disponible en: https://github.com/qcri/
RetClean.

Su diseño modular permite incorporar modelos propios y fuentes de datos sin alterar
el flujo general.

Su alcance cubre desde completar valores vacíos hasta reparar datos usando ejemplos
recuperados y con trazabilidad.

Permite usar modelos locales, lo que hace posible trabajar incluso con datos sensibles,
ya que no se derivan a servicios externos.

4.2. Análisis de riesgos
Este análisis se basa en el marco de riesgos descrito en el documento AI Privacy Risks

and Mitigations in Large Language Models, respaldado por el European Data Protection
Board [21]. Se identificaron los riesgos aplicables a un sistema local como RetClean, que
opera sin conexión a internet, sin usuarios externos y sin datos personales reales. Se
consideraron aspectos como la inferencia, la interfaz local, el almacenamiento temporal y
el entorno de ejecución en contenedores.

En la Tabla 4.2 se muestran los riesgos identificados junto con la medida correspondiente
en cada caso. Se distinguen tres situaciones: medidas ya implementadas, medidas no
implementadas hasta el momento, y riesgos que no requieren cambios porque ya están
cubiertos por el diseño actual del sistema.

https://github.com/qcri/RetClean
https://github.com/qcri/RetClean

Capítulo 4. Caso de estudio 41

ID Riesgo Fuente del riesgo Impacto potencial Nivel Medidas aplicadas
R1 Contenido

sensible en
salidas

Memoria del modelo El modelo puede ge-
nerar nombres, co-
rreos o identificado-
res ficticios no presen-
tes en el CSV

Alto No se ha implemen-
tado validación post-
inferencia.

R2 Persistencia
de archivos
temporales

Almacenamiento en
disco

Riesgo de reutiliza-
ción o acceso poste-
rior a los archivos car-
gados

Medio Se eliminan automá-
ticamente cada 60 mi-
nutos. Script de lim-
pieza creado.

R3 Captura en
logs

Registro en contene-
dor

El contenido proce-
sado podría quedar
registrado fuera del
control del usuario

Bajo Ninguna. Solo exis-
ten logs en tiempo
real que se eliminan
al apagar el contene-
dor.

R4 Volúmenes
persistentes
en Docker

Configuración del
contenedor

Datos podrían que-
dar almacenados en
disco a través de vo-
lúmenes no deseados

Medio Se desactivaron volú-
menes comentando lí-
neas en Docker Com-
pose.

R5 Accesos
simultá-
neos no
gestionados

Concurrencia en in-
terfaz web

Dos peticiones parale-
las podrían interferir
entre sí

Bajo Ninguna. El diseño
solo permite procesar
una petición a la vez.

R6 Visualización
directa de
datos carga-
dos

Interfaz gráfica local Los datos cargados se
visualizan sin restric-
ciones desde el nave-
gador

Medio Ninguna. Uso limita-
do al entorno local.

R7 Inferencias
incohe-
rentes sin
contexto

Prompt del modelo El modelo puede de-
volver datos inexis-
tentes en el CSV car-
gado

Medio No hay validación se-
mántica para verifi-
car coherencia entre
salida y CSV.

R8 Acceso del
modelo a ru-
tas del siste-
ma

Arquitectura general Riesgo de fuga o ac-
ceso a archivos fuera
del entorno previsto

Bajo Los modelos se ejecu-
tan en contenedores
aislados.

Tabla 4.1: Análisis de riesgos de privacidad en RetClean

4.3. Adaptaciones implementadas
Con el fin de adaptar la herramienta original al entorno experimental, se realizaron

modificaciones tanto en la configuración del entorno de ejecución como en el código fuente.
Todas las adaptaciones están disponibles en el repositorio: https://gitlab.inf.uva.es/
micplua/retclean-analisis-tfm.git.

https://gitlab.inf.uva.es/micplua/retclean-analisis-tfm.git
https://gitlab.inf.uva.es/micplua/retclean-analisis-tfm.git

Capítulo 4. Caso de estudio 42

Actualización del archivo de licencia
El archivo LICENSE fue modificado para incluir los términos de la licencia Creative

Commons Attribution-NonCommercial 4.0 International, además de la licencia MIT
original. Esta nueva cláusula define que las modificaciones realizadas pueden ser reutilizadas
con fines no comerciales, siempre que se mantenga la atribución correspondiente [13]. El
texto completo de la licencia fue incorporado directamente en el archivo y corresponde al
contenido oficial disponible2.

Configuración del entorno y contenedores Docker
Para evitar la descarga repetida de modelos tras cada reinicio, se configuró un volumen

persistente en el contenedor ollama. El cambio se realizó en el archivo docker-compose.yml:
ollama :

build: ./ ollama
volumes :

- ./ ollama :/ app
- ./ models :/ root /. ollama /

Se habilitó soporte para GPU con el objetivo de acelerar el cómputo durante la ejecución
de modelos:
ollama :

deploy :
resources :

reservations :
devices :

- driver : nvidia
count: 1
capabilities : [gpu]

Para mantener el entorno limpio y facilitar pruebas reproducibles, se deshabilitaron
los volúmenes persistentes en los contenedores elasticsearch y qdrant comentando las
siguientes líneas:
volumes :
- es_storage :/ usr/share/ elasticsearch /data

volumes :
- qdrant_storage :/ qdrant / storage

Se desarrolló el script entrypoint.sh para automatizar la descarga de modelos al
iniciar el contenedor. Este script se integra mediante el archivo ollama/dockerfile:
FROM ollama / ollama

COPY ./ entrypoint .sh / entrypoint .sh
RUN chmod +x / entrypoint .sh
ENTRYPOINT ["/ entrypoint .sh"]

2https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt

https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt

Capítulo 4. Caso de estudio 43

Contenido del script entrypoint.sh:
#!/ bin/bash

./ bin/ ollama serve &
pid=$!
sleep 5

models =(" llama3 .1:8b" " mistral :7b" "llava :7b")

for model in "${ models [@]}"; do
echo " Pulling model ’$model ’"
ollama pull " $model "

done

wait $pid

Se añadió la variable de entorno OLLAMA_KEEP_ALIVE con valor 10 para controlar la
persistencia de los modelos descargados:
ollama :

...
environment :

OLLAMA_KEEP_ALIVE : "10m"
...

Integración de modelos personalizados y externos
El script entrypoint.sh permite descargar automáticamente tres modelos al iniciar el

contenedor:
models =(" llama3 .1:8b" " mistral :7b" "llava :7b")

Para facilitar la integración de modelos personalizados, se creó el archivo custom_model.py,
que define la clase CustomModel como clase base reutilizable:
import os
import re
from ollama import Client
from language_models .base import LanguageModel

class CustomModel (LanguageModel):
def __init__ (self , model):

super (). __init__ (type="local")
self.model = model
self. client = Client (host=os. getenv (" OLLAMA_URL "))

def prompt_wrapper (self , text: str) -> str:
messages = [

{
"role": " system ",
" content ": """ You are a data expert ... """ ,

Capítulo 4. Caso de estudio 44

},
{"role": "user", " content ": text},

]
return messages

def generate (self , text: str , retrieved : list) -> str:
try:

print(" PROMPT ", text , flush=True)
response = self. client .chat(

model=self.model ,
messages =text ,
keep_alive ="10m",

)
response_clean = re.sub(

r"(? <=:\s)([^ ’\" ,\s][^ ,\}]+)",
r"’\1’",
response [" message "][" content "]

)
return self. extract_value_citation (response_clean , retrieved

)
except Exception as e:

return {" status ": "fail", " message ": str(e)}

Esta clase se reutiliza en scripts específicos para cada modelo. Ejemplo para llama3.1:
from . custom_model import CustomModel

class Llama3_1 (CustomModel):
def __init__ (self):

super (). __init__ (’llama3 .1’)

Cambios en el backend
Se ha corregido y optimizado la función extract_value_citation. Esta función se

encuentra en language_models/base.py. De esta manera mejora el análisis de la salida
generada por los modelos.

Adicionalmente, se actualizó la librería elasticsearch a la versión 8.7.0 por in-
compatibilidad con versiones anteriores. El archivo requirements.txt quedó de esta
manera:
python - dotenv
fastapi
pydantic
uvicorn
python - multipart
pandas
sentence - transformers
elasticsearch ==8.7.0
qdrant - client
python - multipart
openai ==0.28.1

Capítulo 4. Caso de estudio 45

ollama
anthropic
rerankers

Adaptaciones implementadas en análisis de riesgo
Se documentan a continuación las medidas aplicadas en relación con algunos de los

riesgos identificados en la sección 4.2. Estas adaptaciones están orientadas al manejo de
archivos temporales, control de sesiones, configuración de volúmenes y aislamiento de los
modelos utilizados en el sistema.

Control de sesión

Tras evaluar la necesidad de incluir un mecanismo de bloqueo, se determinó que el flujo
de ejecución de RetClean ya impide, por diseño, ejecuciones simultáneas sobre el mismo
recurso. Esto elimina la necesidad de mecanismos adicionales para evitar concurrencia.

Manejo de logs y archivos temporales

a) Logs de interacción. No se identificó ningún sistema de registro de logs persistentes.
La única salida existente es la de los contenedores Docker, que se elimina automáticamente
al detenerlos. Esto reduce el riesgo de almacenamiento innecesario de datos sensibles.

b) Eliminación periódica de archivos temporales. Se desarrolló un script para
eliminar los archivos temporales generados por el sistema, incluyendo datos cargados por
usuarios y resultados. Este script se ejecuta cada 60 minutos, eliminando todo el contenido
de los data lakes internos.
sudo crontab -e

0 * * * * bash /app/ clear_data / clear_temp .sh

El script y las instrucciones de uso están organizados en la carpeta clear_data, que
incluye también un archivo README.md.

c) No persistencia de resultados. Para evitar la acumulación de datos entre
sesiones, se eliminaron los volúmenes persistentes del archivo docker-compose.yml. Las
líneas comentadas deshabilitan el almacenamiento:
volumes :
- es_storage :/ usr/share/ elasticsearch /data

volumes :
- qdrant_storage :/ qdrant / storage

Toda la información generada se mantiene únicamente en memoria durante la sesión
activa.

Capítulo 4. Caso de estudio 46

Aislamiento de los modelos

Todos los modelos utilizados por RetClean se agrupan en un único contenedor Docker
destinado exclusivamente a la inferencia. Este contenedor no monta volúmenes externos
y no tiene acceso directo a archivos ni a la interfaz de la aplicación, lo que refuerza el
aislamiento del entorno de ejecución.

4.4. Dataset utilizado

Resumen ejecutivo del conjunto de datos
El conjunto de datos empleado en este trabajo fue recopilado por investigadores del

Ankara VM Medical Park Hospital, Turquía, como parte de un estudio clínico prospectivo
desarrollado entre junio de 2022 y junio de 2023. Está disponible públicamente desde abril
de 2025 en el UCI Machine Learning Repository bajo el nombre Gallstone[19], disponible
en: https://archive.ics.uci.edu/dataset/1150/gallstone. Su publicación original3
se encuentra en el artículo Early prediction of gallstone disease with a machine learning-
based method from bioimpedance and laboratory data[20]. Desde su publicación, ha sido
citada en estudios centrados en la detección de enfermedades biliares mediante sistemas
CBIR [7], marcos híbridos bayesianos para predicción de riesgo [11] y en investigaciones
sobre el papel de la microbiota intestinal en la formación de cálculos [47].

Este conjunto fue creado con el objetivo de predecir la enfermedad de cálculos biliares
a partir de datos no invasivos, combinando bioimpedancia, resultados de laboratorio
y características demográficas. Se compone de 319 registros de pacientes, 161 de ellos
diagnosticados con la enfermedad, lo que garantiza un equilibrio entre clases.

El conjunto está completo, sin valores nulos, y no requiere pasos adicionales de prepro-
cesamiento. Incluye 38 atributos. Entre las variables demográficas figuran la edad, sexo,
altura, peso, índice de masa corporal y comorbilidades. Las mediciones de bioimpedancia
abarcan agua total, agua extracelular e intracelular, masa magra, masa grasa, masa ósea,
grasa visceral, masa muscular visceral, proteína corporal, índice de adiposidad visceral y
grado de obesidad. Los datos de laboratorio incluyen niveles de glucosa, colesterol total,
HDL, LDL, triglicéridos, AST, ALT, fosfatasa alcalina, creatinina, tasa de filtrado glomeru-
lar, proteína C-reactiva, hemoglobina y vitamina D. También incluye una variable binaria
denominada Gallstone Status, que señala si el individuo presenta o no la enfermedad.

A continuación, en la tabla 4.2, se presenta la descripción de las variables de este
conjunto de datos.

3https://doi.org/10.1097/md.0000000000037258

https://archive.ics.uci.edu/dataset/1150/gallstone
https://doi.org/10.1097/md.0000000000037258

Capítulo 4. Caso de estudio 47

Variable Tipo Descripción
Gallstone Status Binaria Presencia de cálculos biliares. 0 = No, 1 =

Sí
Age Entera Edad de la persona. Rango: 20-96 años
Gender Categórica Género del paciente. 0 = Hombre, 1 =

Mujer
Comorbidity Categórica Número de comorbilidades. 0 = Ninguna,

1 = Una, 2 = Dos, 3 = Tres o más
Coronary Artery Disease (CAD) Binaria Enfermedad cardiovascular. 0 = No, 1 =

Sí
Hypothyroidism Binaria Hipotiroidismo. 0 = No, 1 = Sí
Hyperlipidemia Binaria Hiperlipidemia. 0 = No, 1 = Sí
Diabetes Mellitus (DM) Binaria Diabetes mellitus. 0 = No, 1 = Sí
Weight Entera Talla en centímetros
Total Body Water (TBW) Continua Agua corporal total (kg)
Extracellular Water (ECW) Continua Agua extracelular (kg)
Intracellular Water (ICW) Continua Agua intracelular (kg)
Extracellular Fluid/
Total Body Water (ECF/TBW) Continua Proporción ECF/TBW (adimensional)

Total Body Fat Ratio (TBFR) Continua Porcentaje de grasa corporal total (%)
Lean Mass (LM) Continua Masa magra (kg)
Body Protein Content (Protein) Continua Contenido proteico corporal (%)
Visceral Fat Rating (VFR) Entera Nivel de grasa visceral
Bone Mass (BM) Continua Masa ósea (kg)
Muscle Mass (MM) Continua Masa muscular (kg)
Obesity Continua Grado de obesidad (%)
Total Fat Content (TFC) Continua Contenido graso total (kg)
Visceral Fat Area (VFA) Continua Área de grasa visceral (cm2)
Visceral Muscle Area (VMA) Continua Área muscular visceral (kg)

Hepatic Fat
Accumulation (HFA) Categórica

Acumulación de grasa
hepática. 0 = No, 1-4 = Grados
de severidad

Glucose Continua Glucosa en sangre (mg/dL)
Total Cholesterol (TC) Continua Colesterol total (mg/dL)
Low Density Lipoprotein (LDL) Continua Colesterol LDL (mg/dL)
High Density Lipoprotein (HDL) Continua Colesterol HDL (mg/dL)
Triglyceride Continua Triglicéridos (mg/dL)
Aspartat Aminotransferase (AST) Continua Enzima hepática AST (U/L)
Alanin Aminotransferase (ALT) Continua Enzima hepática ALT (U/L)
Alkaline Phosphatase (ALP) Continua Fosfatasa alcalina (U/L)
Creatinine Continua Creatinina (mg/dL)
Glomerular
Filtration Rate (GFR) Continua Tasa de filtración glomerular (ml/min)

C-Reactive Protein (CRP) Continua Proteína C reactiva (mg/L)
Hemoglobin (HGB) Continua Hemoglobina (g/dL)
Vitamin D Continua Vitamina D (ng/mL)

Tabla 4.2: Características de las variables de Gallstone

Capítulo 4. Caso de estudio 48

4.5. Diseño experimental

Selección de variables de variables objetivos y pivotes
RetClean ejecuta las tareas de limpieza de forma individual para cada variable objetivo,

utilizando el resto de atributos como contexto, que actúan como columnas pivote. En cada
caso, se introdujeron errores artificiales y se evaluó la capacidad del sistema para restaurar
el valor correcto a partir del resto de atributos del paciente.

Para evaluar su capacidad en tareas de imputación y corrección semántica, se seleccio-
naron variables objetivo que cumplen con los siguientes criterios:

Presentan valores continuos o categóricos discretos con significado clínico claro

Están correlacionadas de forma significativa con al menos dos variables adicionales,
lo que permite que un sistema basado en recuperación contextual pueda inferir su
valor esperado a partir del resto de la instancia

No son derivables directamente de otras variables, evitando así que la corrección se
base únicamente en reglas matemáticas

La selección se realizó tras analizar la matriz de correlación del conjunto de datos original.
En la Tabla 4.3 se presentan las variables objetivo seleccionadas junto con aquellas variables
cuya correlación supera el valor de 0.50, lo que justifica su elección. Las variables con
mayor correlación se utilizaron como pivotes contextuales durante la recuperación.

Variable objetivo Tipo Correlaciones más altas
Visceral Fat Area (VFA) Continua TFC (0.87), BMI (0.86), Obesity (0.77),

Weight (0.77), TBFR (0.65)
Body Mass Index (BMI) Continua TFC (0.89), VFA (0.86), Obesity (0.74),

TBFR (0.74), Weight (0.79)
Hepatic Fat Accumulation
(HFA)

Categórica ordinal ALT (0.55), AST (0.51), BMI (0.57), VFA
(0.53)

Tabla 4.3: Variables objetivo seleccionadas y sus principales correlaciones

División del conjunto de datos
Se extrajo un 30 por ciento del conjunto original para construir el data lake, utilizado

como base de recuperación en el sistema. El 70 por ciento restante se empleó para las
evaluaciones experimentales. La partición se realizó de forma estratificada con una semilla
fija igual a 123, preservando la proporción original de las variables Gallstone Status y
Gender para mantener la representatividad en ambas fracciones.

Capítulo 4. Caso de estudio 49

Simulación de errores y generación de datos corruptos
Para comparar el comportamiento del sistema en condiciones controladas, se utiliza una

versión limpia del dataset como punto de partida. A partir de este conjunto, se generan
variantes degradadas mediante la introducción de errores simulados. Esta estrategia permite
evaluar con precisión la capacidad del sistema para detectar y corregir inconsistencias,
midiendo su efectividad frente a datos corruptos de forma reproducible. Este enfoque ha
sido adoptado en trabajos anteriores centrados en evaluación de calidad y restauración de
datos [34].

La simulación se realiza mediante un script interactivo desarrollado específicamente
para este propósito, el cual está disponible en el repositorio de Git, puede ver la estructura
de este repositorio en el Apéndice D. A través de este script, es posible seleccionar una
columna del dataset original y aplicar transformaciones que emulan errores frecuentes. El
sistema identifica el tipo de dato y aplica modificaciones según corresponda.

En columnas categóricas, se reemplazan aleatoriamente ciertos valores por otros válidos
de la misma categoría. Esto simula errores de codificación sin introducir categorías nuevas.
En columnas numéricas, se generan errores leves mediante alteraciones aritméticas, errores
graves mediante outliers, además de vaciado de celdas o sustitución por valores nulos y
cadenas vacías.

La proporción y el tipo de error aplicado a cada fila se determinan de forma pro-
babilística, con pesos configurables para representar diferentes niveles de ruido. Esto
permite generar datasets sucios reproducibles y ajustables, manteniendo el control sobre
las condiciones del experimento.

El archivo resultante se guarda incluyendo el nombre de la columna modificada, lo que
facilita su trazabilidad en las fases de evaluación y comparación.

Preparación del entorno de prueba
Las pruebas se ejecutaron sobre una máquina virtual proporcionada por la Escuela

de Ingeniería Informática, accesible mediante el host virtual.lab.inf.uva.es y puerto 20201.
Las especificaciones completas del sistema, tanto a nivel de hardware como de software, se
describen en el Apéndice A.

La herramienta base fue instalada utilizando Docker. Se integró con modelos descargados
mediante Ollama y se habilitó el uso de GPU.

Los modelos descargados para este trabajo son: LLaMA 3.1 de 8B, Mistral de 7B
y LLaVA de 7B. Se eligieron estos modelos por su disponibilidad abierta, eficiencia en
entornos con recursos limitados y capacidad demostrada para tareas de razonamiento
estructurado a excepción de LLaMA 3.1 de 8B que se utilizó como modelo por defecto al
estar ya integrado en la distribución original de RetClean.

Capítulo 4. Caso de estudio 50

La instalación y uso del entorno se documentan en el Apéndice C que corresponde al
manual de usuario. Las modificaciones realizadas al sistema original, incluyendo soporte
gráfico y simplificaciones funcionales, se describen en la sección 4.3.

Como parte del flujo de recuperación de RetClean, se construyó un data lake indexado
utilizando el 30 por ciento del conjunto de datos. Esta funcionalidad está integrada en
el sistema y permite realizar búsquedas semánticas sobre el repositorio para asistir en la
imputación de valores [39].

Configuraciones a evaluar
A partir de las variables objetivo y los pivotes contextuales seleccionados y definidos

en la sección 4.5, se aplicó recuperación semántica en cada caso para mejorar la precisión
de las respuestas generadas. Esta funcionalidad, integrada como una opción en RetClean,
permite reforzar el contexto con relaciones estructuradas previamente definidas, sin requerir
que el conjunto de datos provenga del sistema. El uso de recuperación semántica está res-
paldado por resultados recientes en entornos médicos, donde la integración de conocimiento
semántico mostró mejoras significativas en tareas de razonamiento clínico [18].

Las configuraciones resultantes se resumen en la Tabla 4.4. Estas configuraciones se
ejecutaron con los tres modelos (on-premises) disponibles.

Target Tipo Pivotes contextuales Recuperación
VFA Continua TFC, BMI, Obesity, Weight,

TBFR
Semántica

BMI Continua TFC, VFA, Obesity, TBFR,
Weight

Semántica

HFA Categórica ordinal ALT, AST, BMI, VFA Semántica

Tabla 4.4: Configuraciones evaluadas por variable objetivo

Aunque las tres variables objetivo fueron evaluadas bajo el mismo marco, cada una
corresponde a una tarea diferente. En BMI y VFA se predicen valores continuos, mientras
que en HFA se realiza una clasificación ordinal. El análisis es descriptivo y no se aplicaron
comparaciones estadísticas entre ellas, ya que presentan escalas distintas y estructuras
clínicas no equivalentes.

Métricas de evaluación
La evaluación del rendimiento se realizó considerando cada predicción generada por

el sistema sobre las celdas sucias simuladas. Se definieron cuatro posibles casos para
determinar verdaderos positivos, falsos positivos, falsos negativos y verdaderos negativos:

TP: El modelo corrigió el valor sucio y la predicción coincide con el valor limpio.

Capítulo 4. Caso de estudio 51

FP: El modelo modificó el valor sucio, pero la predicción no coincide con el valor
limpio.

FN: El valor sucio era incorrecto, pero el modelo no realizó ninguna corrección.

TN: El valor era correcto y el modelo lo dejó sin cambios.

Estas categorías se aplican a las celdas modificadas por el sistema, a excepción del TN,
y se comparan con las versiones limpias correspondientes. Para evaluar la calidad de las
predicciones, se utilizaron las métricas resumidas en la Tabla 4.5.

En el caso de variables continuas, se consideró que una predicción constituye un
verdadero positivo si el error relativo respecto al valor limpio es menor al 5 %. Este criterio
se aplicó solo para la asignación de verdaderos positivos.

Métrica Aplicación Fórmula

Precisión Categórica y numérica T P
T P +F P

Recall Categórica y numérica T P
T P +F N

F1-score Categórica y numérica F1 = 2 · P ·R
P +R

Exact match Categórica y numérica aciertos exactos
total de filas

Error absoluto Numérica |ypred − yreal|

Error relativo Numérica |ypred−yreal|
|yreal|

Tabla 4.5: Métricas utilizadas para la evaluación de las predicciones

Para calcular estas métricas se desarrolló un script que procesa las salidas generadas
por RetClean y las compara con los datos sucios y los valores originales. A partir de esta
comparación, se realizan los cálculos necesarios y se genera un reporte con los resultados
obtenidos. El script se encuentra disponible en el repositorio de Git.

Capítulo 5

Resultados y Discusión

5.1. Resultados obtenido de las configuraciones
ejecutadas

Comparación de rendimiento computacional entre modelos
Se evaluaron los tres modelos disponibles ejecutados con GPU para comparar su

eficiencia relativa al limpiar cada variable objetivo. RetClean ejecuta una tarea de limpieza
independiente por cada columna seleccionada como target, utilizando el resto de atributos
como contexto. La selección de las variables objetivo HFA, BMI y VFA se detalló en la
Sección 4.5. Los tiempos registrados corresponden a cada una de esas ejecuciones.

Los resultados se presentan en la tabla 5.1 como análisis descriptivo. No se aplicaron
pruebas estadísticas formales para determinar diferencias significativas entre modelos.

Modelo Tiempo de ejecución (ms) Memoria usada (MB)
HFA BMI VFA

Llama3.1 652.721 1106.539 1099.197 6395
Mistral 529.374 871.697 868.427 5825
Llava 639.896 948.937 914.180 6476

Tabla 5.1: Tiempos de ejecución por variable y memoria usada por modelo

El modelo Mistral aplicado a la variable HFA fue el que presentó el menor tiempo de
ejecución en entorno GPU. A partir de este caso se realizó una comparación directa entre
su comportamiento en GPU y CPU para evaluar el impacto de la aceleración por hardware
gráfico. En CPU, el modelo tardó 9764 segundos, equivalente a 162 minutos, mientras
que en GPU el tiempo se redujo a 529 segundos, es decir, 8,8 minutos. La aceleración
representa una mejora del 94,6 % en tiempo de procesamiento.

52

Capítulo 5. Resultados y Discusión 53

Métrica CPU GPU
Tiempo de ejecución (s) 9764.54 529.37

Tabla 5.2: Comparación del tiempo de ejecución del modelo Mistral en CPU y GPU

Evaluación de resultados por variable objetivo
Como primer paso en la evaluación, se presenta una tabla resumen de la matriz de

confusión para cada combinación de modelo y variable objetivo. Esta matriz permite
observar el comportamiento detallado del sistema en términos de verdaderos positivos
(TP), falsos positivos (FP), falsos negativos (FN) y verdaderos negativos (TN).

Las definiciones empleadas corresponden a las descritas en la sección4.5, donde:

TP (verdaderos positivos): el modelo corrigió correctamente un valor alterado.

FP (falsos positivos): el modelo modificó un valor que era correcto.

FN (falsos negativos): el modelo no corrigió un valor alterado.

TN (verdaderos negativos): el modelo dejó sin cambios un valor que era correcto.

La tabla 5.3 presenta los resultados obtenidos en cada caso.

Modelo Variable TP FP FN TN Total
LLaVA HFA 69 89 40 26 224
LLaVA BMI 16 54 152 2 224
LLaVA VFA 5 60 158 1 224
Mistral HFA 66 92 37 29 224
Mistral BMI 18 52 153 1 224
Mistral VFA 6 59 159 0 224
LLaMA 3.1 HFA 60 98 43 23 224
LLaMA 3.1 BMI 17 53 153 1 224
LLaMA 3.1 VFA 8 57 157 2 224

Tabla 5.3: Matriz de confusión por modelo y variable objetivo

En función de estos valores, se calcularon posteriormente las métricas agregadas:
precisión, recall, F1-score, exact match, error absoluto y error relativo. Los resultados
obtenidos se presentan en la tabla 5.4, que resume el rendimiento de los tres modelos
evaluados sobre las variables objetivo definidas: Visceral Fat Area (VFA), Body Mass
Index (BMI) y Hepatic Fat Accumulation (HFA). Cada configuración utilizó recuperación
semántica y un conjunto de pivotes contextuales, tal como se describió en la sección 4.5.

Capítulo 5. Resultados y Discusión 54

Métrica VFA BMI HFA
LLaMA Mistral LLaVA LLaMA Mistral LLaVA LLaMA Mistral LLaVA

Precisión 0.1231 0.0923 0.0769 0.2429 0.2571 0.2286 0.3797 0.4177 0.4367
Recall 0.0485 0.0364 0.0307 0.1000 0.1053 0.0952 0.5825 0.6408 0.6330
F1-score 0.0696 0.0522 0.0439 0.1417 0.1494 0.1345 0.4598 0.5057 0.5169
Exact match 0.0134 0.0000 0.0089 0.0134 0.0045 0.0089 0.3705 0.4241 0.4241
Error absoluto 3.4582 3.0583 5.4455 3.7670 3.9318 4.4019 - - -
Error relativo 0.3019 0.3361 0.4972 0.1332 0.1283 0.1595 - - -

Tabla 5.4: Resultados de evaluación para cada modelo y variable objetivo

Los resultados muestran diferencias notables según el tipo de variable. En las variables
continuas (VFA y BMI), los valores de precisión, recall y F1-score son bajos en todos los
modelos, con un rendimiento máximo de F1 igual a 0.1494 en el caso de BMI usando
Mistral. El error relativo promedio se mantiene entre 0.1283 y 0.4972, siendo LLaVA el
modelo con mayor desviación respecto al valor real en ambos targets continuos.

En cambio, la variable categórica ordinal HFA presentó valores significativamente más
altos en todas las métricas. El modelo LLaVA obtuvo la mejor F1 (0.5169), seguido por
Mistral (0.5057) y LLaMA (0.4598). Los valores de exact match alcanzan 0.4241 en los
dos mejores modelos, lo que indica una mayor capacidad para predecir correctamente el
valor exacto de esta variable cuando se trata de categorías discretas.

5.2. Análisis funcional
Se seleccionó la variable BMI procesada con el modelo Mistral, dado que obtuvo el

menor error relativo medio entre las variables continuas. El análisis se realiza fila a fila,
contrastando el valor original, el dato sucio y la predicción generada.

En total se procesaron 224 observaciones. Según la matriz de confusión mostrada en la
tabla 5.3, se identificaron 18 verdaderos positivos (TP), 52 falsos positivos (FP), 153 falsos
negativos (FN) y 1 verdadero negativo (TN). La mayoría de los errores corresponden a
falsos negativos, lo que refleja una baja sensibilidad en la detección de valores alterados
para esta variable. Aun así, el modelo corrigió correctamente 18 valores.

Al examinar casos específicos, se observa que el modelo suele repetir el valor sucio
sin aplicar correcciones, incluso cuando el error es leve. Por ejemplo, si el valor original
era 25.4 y el dato sucio 40.9, la predicción también fue 40.9, sin modificar el valor. Un
comportamiento similar se repitió con el valor original 27.49, donde tampoco se detectó el
error. En contraste, también se identificaron predicciones correctas. En una observación
con dato sucio 32.2 y valor original 30.2, el modelo generó correctamente 30.2. En otro
caso, el valor sucio era 28.2 y la predicción restauró el original 25.4. Estos ejemplos reflejan

Capítulo 5. Resultados y Discusión 55

Figura 5.1: Error relativo fila a fila en BMI con Mistral

que, aunque la detección de errores es limitada, el modelo puede recuperar valores exactos
en contextos particulares.

Sin embargo, no se detectan patrones consistentes. Muchos errores leves no se corrigen,
mientras que algunas distorsiones moderadas sí lo son. Esto sugiere que la capacidad de
restauración depende del contexto específico de cada observación más que de la magnitud
del error. Para observar la magnitud y distribución de los errores, la figura 5.1 muestra
el error relativo fila a fila. La línea azul representa el valor de error relativo para cada
predicción y la línea roja indica el promedio general. Aunque no se registran picos extremos,
los errores se mantienen dispersos y varios casos superan el 20 por ciento.

5.3. Discusión técnica
Los resultados deben interpretarse considerando las limitaciones descritas en la sec-

ción 4.1. Como se expone allí, la versión actual de RetClean no incluye el modelo fine-tuned
ni los filtros de recuperación utilizados en el estudio original [39], lo que impidió replicar ese
experimento. En su lugar, se empleó la configuración funcional disponible en el repositorio
oficial, validada con un dataset reducido.

La evaluación se realizó sobre el conjunto de datos descrito en la sección 4.4, completo y
sin valores faltantes [19]. Este conjunto actúa como ground-truth, lo que permite comparar
directamente los valores restaurados con los valores reales [12]. En este contexto, se observa
que el rendimiento de los modelos evaluados para corregir o restaurar valores corruptos
depende significativamente del tipo de variable y de la estructura semántica utilizada

Capítulo 5. Resultados y Discusión 56

Variables continuas

En las tareas sobre variables continuas, los tres modelos muestran un rendimiento
limitado. Los valores bajos de F1-score y exact match indican que, aunque algunos valores
pueden acercarse al real, la predicción rara vez coincide con el valor limpio original. El error
absoluto promedio para VFA se mantiene por encima de 3 unidades, y para BMI cerca
de 4. Esto limita la utilidad de las predicciones para tareas donde se requiere precisión
cuantitativa. La inclusión de recuperación semántica no fue suficiente para compensar la
variabilidad en estas variables.

El modelo Mistral obtuvo ligeramente mejores resultados que LLaMA y LLaVA en
BMI, tanto en F1 como en error relativo. No obstante, la diferencia no es sustancial.
LLaVA mostró el peor rendimiento global en variables continuas, especialmente en VFA,
con el mayor error relativo (0.4972), lo que indica una sensibilidad alta a valores atípicos
o distorsiones en los datos de entrada.

Variable categórica ordinal

En contraste, la predicción de la variable HFA muestra una mejora clara. La clasificación
ordinal favorece la tarea de inferencia contextual, ya que la recuperación semántica permite
al modelo identificar patrones clínicos más estables entre atributos como ALT, AST, VFA y
BMI. Aquí, los modelos generativos sí logran restaurar el valor original con mayor eficacia,
alcanzando niveles de F1 comparables a los obtenidos en sistemas supervisados básicos.

El uso de recuperación semántica parece tener mayor impacto cuando se trabaja con
variables categóricas, especialmente si están respaldadas por pivotes contextuales bien
definidos. Esto coincide con los planteamientos previos en la literatura revisada, donde
se sugiere que el razonamiento estructurado es más eficaz cuando las relaciones entre
variables son discretas y coherentes.

Comparación entre modelos

LLaVA mostró el mejor comportamiento en la predicción de HFA, mientras que Mistral
se posicionó como el más balanceado en tareas continuas. LLaMA, aunque funcional
como modelo por defecto, presentó rendimiento inferior en la mayoría de los escenarios.
Las diferencias de rendimiento no justifican un modelo como dominante, pero permiten
identificar el tipo de tarea donde cada uno ofrece mejor comportamiento.

El uso de GPU fue necesario para mantener los tiempos de ejecución dentro de márgenes
operativos razonables. Las diferencias de consumo y latencia se detallan en la sección 5.1.
Aunque LLaVA tuvo un mayor consumo de memoria, su desempeño en tareas categóricas
puede justificar su uso en contextos donde se prioriza exactitud sobre eficiencia.

Capítulo 6

Conclusiones y trabajos futuros

En este trabajo se aplicaron y evaluaron modelos generativos de lenguaje de gran
tamaño (LLMs) en tareas de mejora de la calidad de datos estructurados mediante la
adaptación y extensión del sistema RetClean. Los resultados obtenidos proporcionan
conclusiones relevantes tanto desde el punto de vista teórico como práctico. A partir
de la revisión realizada, se identificaron múltiples enfoques recientes desarrollados entre
2023 y 2025 que integran modelos generativos con técnicas de recuperación aumentada,
también conocida como RAG, para optimizar tareas de limpieza en datos tabulares,
semiestructurados y en dominios como el clínico, legal y administrativo. Esto evidencia
un creciente interés en automatizar la calidad de datos mediante inteligencia artificial
generativa.

Los experimentos realizados muestran que los LLMs pueden asistir eficazmente en
tareas como detección y corrección de errores sintácticos y semánticos, imputación de
valores faltantes y sugerencias de transformación, especialmente en variables categóricas u
ordinales. Sin embargo, el desempeño sobre variables continuas fue limitado en términos de
precisión exacta, lo que representa un desafío adicional en este tipo de datos. Comparados
con técnicas tradicionales, los modelos generativos ofrecen mayor flexibilidad y capacidad
contextual, facilitando el tratamiento de datos heterogéneos y no estructurados. No
obstante, presentan restricciones importantes como el elevado consumo computacional y
la necesidad de una ingeniería de prompts adecuada para garantizar su efectividad.

En cuanto a su adaptabilidad, la arquitectura modular de RetClean permitió integrar
modelos genéricos y personalizados ejecutados localmente, lo que facilitó la configuración
contextual a través de recuperación semántica con variables relevantes. Esta flexibilidad
es una ventaja clara, aunque la adaptación en variables continuas y tipos de datos
diversos requiere mejoras adicionales, sobre todo en mecanismos de evaluación semántica
y validación automatizada. En lo relativo a la privacidad, el uso de modelos locales en
entornos controlados contribuyó a minimizar los riesgos derivados de la transferencia y
almacenamiento de datos externos. A pesar de ello, se identificaron vulnerabilidades como

57

Capítulo 6. Conclusiones y trabajos futuros 58

la persistencia temporal de archivos, la carencia de validación posterior a la inferencia y la
ausencia de mecanismos de anonimización en registros de sistema.

Respecto al cumplimiento de objetivos, se alcanzó el propósito principal del trabajo
mediante la aplicación y evaluación de modelos generativos para mejorar la calidad
de datos estructurados, logrando avances en varios objetivos específicos. Se realizó una
revisión sistemática de literatura científica y técnica para identificar metodologías y
herramientas emergentes basadas en LLMs. Además, se analizó a fondo la plataforma
RetClean, evaluando sus capacidades y limitaciones. Se documentaron riesgos concretos de
privacidad y seguridad, orientando medidas mitigadoras. Se integraron modelos generativos
locales en el flujo de trabajo, mejorando su configuración, persistencia y uso combinado con
recuperación semántica. Finalmente, se evaluó la capacidad del sistema para identificar,
corregir y sugerir mejoras en datos tabulares, utilizando un dataset clínico con errores
simulados, y se compararon los resultados empleando métricas cuantitativas como precisión,
recall, F1-score, exactitud y errores absolutos y relativos.

En términos de resultados, se observó que los modelos generativos generan valores
plausibles, pero con baja coincidencia exacta respecto al dato original. Las tasas de exact
match fueron inferiores al 20 % en la mayoría de variables. En particular, el modelo Mistral
logró los errores relativos más bajos en la variable BMI, aunque con un número elevado
de falsos positivos. El análisis fila a fila reveló errores frecuentes, aunque no extremos, y
evidenció que los modelos tienden a modificar también registros originalmente correctos,
lo cual afecta negativamente a la precisión global del sistema. El uso de métricas como
el error absoluto y relativo permitió una evaluación más detallada del comportamiento
de los modelos sobre variables continuas, donde la coincidencia literal no siempre es un
indicador útil de calidad. Asimismo, el uso de modelos locales, desplegados en contenedores
y sin transmisión de datos externos, constituye una solución viable para entornos donde la
privacidad resulta prioritaria.

A partir de los hallazgos obtenidos, se proponen diversas líneas de trabajo futuro.
Entre ellas, se plantea ajustar y optimizar los prompts para mejorar la instrucción de
restauración y evitar modificaciones indebidas; evaluar modelos generativos con mayor
número de parámetros y capacidad contextual; probar el sistema con datasets más amplios
y complejos que permitan validar su escalabilidad; e incorporar variables textuales con el
objetivo de analizar el potencial de los LLMs en la restauración semántica más allá de los
datos numéricos.

Bibliografía

[1] Ali, M., Arunasalam, A., and Farrukh, H. Understanding users’ security and
privacy concerns and attitudes towards conversational AI platforms. In 2025 IEEE
Symposium on Security and Privacy (SP) (2025), pp. 298–316.

[2] Atkinson-Abutridy, J. Grandes Modelos de Lenguaje: Conceptos, Técnicas y
Aplicaciones., 1st ed. ed. Marcombo, S.A., Barcelona, 2023.

[3] Azeroual, O. Can Generative AI transform Data Quality? a critical discussion of
ChatGPT’s capabilities. Academia Engineering 1, 4 (2024).

[4] Batini, C., Ceri, S., and Navathe, S. B. Conceptual Database Design: An
Entity-Relationship Approach. Benjamin/Cummings, 1992.

[5] Batini, C., and Scannapieca, M. Data quality : concepts, methodologies and
techniques, 1st ed. 2006. ed. Data-centric systems and applications. Springer, Berlin ;,
2006.

[6] Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., and
Oladunni, T. Advancements in Generative AI: A comprehensive review of GANs,
GPT, Autoencoders, Diffusion Model, and Transformers. IEEE Access 12 (2024),
69812–69837.

[7] Bozdağ, A., Yıldırım, M., Karaduman, M., Mutlu, H. B., Karaduman, G.,
and Aksoy, A. Detection of Gallbladder Disease Types using a Feature Engineering-
based developed CBIR System. Diagnostics 15 (2025).

[8] Caballero Munoz-Reja, I. Calidad de datos. Informatica. Ediciones de la U,
Bogota, 2019.

[9] Carrera-Rivera, A., Ochoa, W., Larrinaga, F., and Lasa, G. How-to
conduct a systematic literature review: A quick guide for computer science research.
MethodsX 9 (2022), 101895.

59

Bibliografía 60

[10] Cervo, D., and Allen, M. Master data management in practice: achieving true
customer MDM, 1st ed. ed., vol. 559 of Wiley Corporate F and A. Wiley, Newark,
2011.

[11] Chakraborty, C., and Mukherjee, N. Bayesian Hybrid Machine Learning of
Gallstone Risk, 2025.

[12] Christen, P. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection, 1st ed. 2012. ed. Data-centric systems and
applications. Springer-Verlag, Berlin ;, 2012.

[13] Creative Commons. Attribution-NonCommercial 4.0 International (CC BY-NC
4.0). https://creativecommons.org/licenses/by-nc/4.0/, 2013. Fecha de acceso:
2025-07-10.

[14] DAMA España. Código de calidad de la información. https://www.dama-nl.org/
wp-content/uploads/2020/09/C%C3%B3digo-de-calidad-de-la-informaci%C3%
B3n-2019-DAMA-ES.pdf, 2019. Fecha de acceso: 2025-07-17.

[15] Datos.gob.es. Rag (retrieval-augmented generation), la llave que abre la puer-
ta de la precisión en los modelos del futuro. https://datos.gob.es/es/blog/
rag-retrieval-augmented-generation-la-llave-que-abre-la-puerta, 2023. Fe-
cha de acceso: 2025-07-17.

[16] Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/
abs/1810.04805, 2018. Fecha de acceso: 2025-07-17.

[17] Docker, Inc. Install Docker Engine on Ubuntu. https://docs.docker.com/
engine/install/ubuntu/, may 2025. Fecha de acceso: 2025-07-01.

[18] Elkin, P. L., Mehta, G., LeHouillier, F., Resnick, M., Mullin, S., Tomlin,
C., Resendez, S., Liu, J., Nebeker, J. R., and Brown, S. H. Semantic clinical
Artificial Intelligence vs native Large Language Model performance on the USMLE.
JAMA Network Open 8, 4 (Apr 2025), e256359.

[19] Esen, I., Arslan, H., Aktürk, S., Gülşen, M., Kültekin, N., and
Özdemir, O. Gallstone. UCI Machine Learning Repository, 2024. DOI:
https://doi.org/10.1097/md.0000000000037258.

[20] Esen, I., Arslan, H., Esen, S. A., Gülşen, M., Kültekin, N., and Özdemir,
O. Early prediction of Gallstone Disease with a Machine Learning-based method from
Bioimpedance and laboratory data. Medicine 103, 8 (2024).

[21] European Data Protection Board. AI privacy risks & mitigations – Large
Language Models (LLMs). https://www.edpb.europa.eu/system/files/2025-04/
ai-privacy-risks-and-mitigations-in-llms.pdf, Mar. 2025. Fecha de acceso:
2025-07-07.

https://creativecommons.org/licenses/by-nc/4.0/
https://www.dama-nl.org/wp-content/uploads/2020/09/C%C3%B3digo-de-calidad-de-la-informaci%C3%B3n-2019-DAMA-ES.pdf
https://www.dama-nl.org/wp-content/uploads/2020/09/C%C3%B3digo-de-calidad-de-la-informaci%C3%B3n-2019-DAMA-ES.pdf
https://www.dama-nl.org/wp-content/uploads/2020/09/C%C3%B3digo-de-calidad-de-la-informaci%C3%B3n-2019-DAMA-ES.pdf
https://datos.gob.es/es/blog/rag-retrieval-augmented-generation-la-llave-que-abre-la-puerta
https://datos.gob.es/es/blog/rag-retrieval-augmented-generation-la-llave-que-abre-la-puerta
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://www.edpb.europa.eu/system/files/2025-04/ai-privacy-risks-and-mitigations-in-llms.pdf
https://www.edpb.europa.eu/system/files/2025-04/ai-privacy-risks-and-mitigations-in-llms.pdf

Bibliografía 61

[22] Frees, E. Loss data analytics, 2018.

[23] Fu, Q., and Easton, J. M. Understanding Data Quality: Ensuring Data Quality
by design in the rail industry. In 2017 IEEE International Conference on Big Data
(Big Data) (2017), pp. 3792–3799.

[24] Geroimenko, V. The Essential Guide to Prompt Engineering : Key Principles,
Techniques, Challenges, and Security Risks, 1st ed. 2025. ed. SpringerBriefs in Computer
Science. Springer Nature Switzerland, Cham, 2025.

[25] Gorelik, A. Architecting the Data Lake. In The Enterprise Big Data Lake. O’Reilly
Media, Incorporated, United States, 2019.

[26] Han, J., Kamber, M., and Pei, J. Data mining : concepts and techniques, 3rd
ed. ed. The Morgan Kaufmann series in data management systems. Elsevier, Burlington,
Mass, 2012.

[27] ISO/IEC. ISO/IEC 25012:2008 - Software Engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Data quality model. https://www.iso.
org/standard/35746.html, 2008. Fecha de acceso: 2025-07-17.

[28] Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S.,
de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L.,
Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T., Wang, T.,
Lacroix, T., and Sayed, W. E. Mistral 7b. https://arxiv.org/abs/2310.06825,
2023. Fecha de acceso: 2025-07-07.

[29] Kamath, U., Keenan, K., Somers, G., and Sorenson, S. Large Language
Models: A Deep Dive — Bridging Theory and Practice, 1st ed. 2024. ed. Springer
Nature Switzerland, Cham, 2024.

[30] Karimi, S., Rasel, A. A., and Abdullah, M. S. Non-English Natural Language
Interface to Databases: A systematic review. In 2022 IEEE 13th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON) (2022),
pp. 0391–0397.

[31] Kim, D., Won, H., Gil, M.-S., and Moon, Y.-S. Panacea: An automatic Data
Migration Framework for constructing Internet-Scale Open Data Lakes. Software:
Practice and Experience 55, 6 (2025), 1106–1126.

[32] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey,
J., and Linkman, S. Systematic literature reviews in software engineering – A
systematic literature review. Information and Software Technology 51, 1 (2009), 7–15.
Special Section - Most Cited Articles in 2002 and Regular Research Papers.

[33] Lakatos, R., Urbán, E. K., Szabó, Z. J., Pozsga, J., Csernai, E., and
Hajdu, A. Designing Prompts and creating Cleaned Scientific Text for Retrieval
Augmented Generation for more precise responses from Generative Large Language

https://www.iso.org/standard/35746.html
https://www.iso.org/standard/35746.html
https://arxiv.org/abs/2310.06825

Bibliografía 62

Models. In 2024 IEEE 3rd Conference on Information Technology and Data Science
(CITDS) (2024), pp. 1–6.

[34] Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., and Zhang, C. Cleanml: A
study for evaluating the impact of data cleaning on ml classification tasks. In 2021
IEEE 37th International Conference on Data Engineering (ICDE) (2021), pp. 13–24.

[35] Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual Instruction Tuning. https:
//arxiv.org/abs/2304.08485, 2023. Fecha de acceso: 2025-07-10.

[36] Lopez Porrero, B. E., e libro, C., and Perez Vazquez, R. A. Limpieza de
datos. Editorial Feijóo, Santa Clara, 2009.

[37] Marcel, R. V. P., Fernando, B. E. M., and Roberto, Y. V. J. A brief
history of the artificial intelligence: ChatGPT : The evolution of GPT. In 2023 18th
Iberian Conference on Information Systems and Technologies (CISTI) (2023), pp. 1–5.

[38] McGilvray, D. Executing Data Quality projects : ten steps to quality data and
trusted information, 2nd ed. ed. Academic Press, London, England, 2021.

[39] Naeem, Z. A., Ahmad, M. S., Eltabakh, M., Ouzzani, M., and Tang, N.
Retclean: Retrieval-based data cleaning using LLMs and Data Lake. Proc. VLDB
Endow. 17, 12 (Aug. 2024), 4421–4424.

[40] NVIDIA Corporation. Installing the NVIDIA container toolkit.
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/
latest/install-guide.html#ubuntu, 2025. Fecha de acceso: 2025-07-01.

[41] OpenAI, Achiam, J., Adler, S., Agarwal, S., . . . , and Zoph, B. GPT-4
Technical Report. https://arxiv.org/abs/2303.08774, 2023. Fecha de acceso:
2025-07-17.

[42] Parlamento Europeo y Consejo de la Unión Europea. Reglamento (UE)
2016/679 del Parlamento Europeo y del Consejo de 27 de abril de 2016 relativo a la pro-
tección de las personas físicas en lo que respecta al tratamiento de datos personales y a la
libre circulación de estos datos y por el que se deroga la Directiva 95/46/CE (Reglamen-
to General de Protección de Datos). https://eur-lex.europa.eu/legal-content/
ES/TXT/?uri=CELEX:02016R0679-20160504, 2016. Fecha de acceso: 2025-07-07.

[43] Project Management Institute (Upper Darby, P. Guía de los fundamentos
para la dirección de proyectos : (Guía del PMBOK), 6ª ed. ed. Project Management
Institute, Pennsylvania, 2017.

[44] Pérez-Fuentes, M. d. C. Manual práctico para la realización de una revisión
sistemática. UNIVERSIDAD DE ALMERÍA, 2023.

https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#ubuntu
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#ubuntu
https://arxiv.org/abs/2303.08774
https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:02016R0679-20160504

Bibliografía 63

[45] Rahm, E., and Do, H. H. Data cleaning: Problems and current
approaches. https://dbs.uni-leipzig.de/research/publications/
data-cleaning-problems-and-current-approaches, 2000. Fecha de acceso:
2025-07-17.

[46] Shi, X., Wang, J., Chung, G. J., Julian, D., and Qiao, L. Data imputation
based on Retrieval-Augmented Generation. Applied Sciences 15, 13 (2025).

[47] Tan, L., Jia, F., and Liu, Y. Advances in research on the role of Gut Microbiota
in the pathogenesis and precision management of Gallstone Disease. Frontiers in
Medicine 12 (2025).

[48] Tang, X., Liu, W., Wu, S., Yao, C., Yuan, G., Ying, S., and Chen, G.
Queryartisan: Generating data manipulation codes for Ad-hoc analysis in Data Lake.
Proc. VLDB Endow. 18, 2 (Oct. 2024), 108–116.

[49] Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A.,
Cheng, H., Jin, A., Bos, T., Baker, L., Du, Y., Li, Y., Lee, H., Zheng, and
et al. LaMDA: Language Models for Dialog Applications. https://arxiv.org/abs/
2201.08239, 2022. Fecha de acceso: 2025-07-17.

[50] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix,
T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin,
A., Grave, E., and Lample, G. LLaMA: Open and Efficient Foundation Language
Models. https://arxiv.org/abs/2302.13971, 2023. Fecha de acceso: 2025-07-17.

[51] Ubuntu Community. Installation on low memory systems. https://help.ubuntu.
com/community/Installation/LowMemorySystems. Fecha de acceso: 2025-07-01.

[52] Ubuntu Manuals. links - lynx-like alternative character mode WWW browser.
https://manpages.ubuntu.com/manpages/jammy/man1/links2.1.html. Fecha de
acceso: 2025-07-01.

[53] Ubuntu Packages. Links2 2.25-1build1 amd64.deb for Ubuntu 22.04
lts. https://ubuntu.pkgs.org/22.04/ubuntu-universe-amd64/links2_2.
25-1build1_amd64.deb.html. Fecha de acceso: 2025-07-01.

[54] Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., and Tang, Y. A
brief overview of ChatGPT: The history, status quo and potential future development.
IEEE/CAA Journal of Automatica Sinica 10, 5 (2023), 1122–1136.

[55] Yen, A. R., Kapustin, C. V., Burga-Durango, D., Tello-Saenz, C. A.,
Guarda, T., Portela, F., and Gatica, G. Automated system for improving audit
data processing through DAMA-DMBOK best practices and Low-Code. In Advanced
Research in Technologies, Information, Innovation and Sustainability, Communications
in Computer and Information Science. Springer Nature Switzerland, Cham, 2025,
pp. 434–444.

https://dbs.uni-leipzig.de/research/publications/data-cleaning-problems-and-current-approaches
https://dbs.uni-leipzig.de/research/publications/data-cleaning-problems-and-current-approaches
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2302.13971
https://help.ubuntu.com/community/Installation/LowMemorySystems
https://help.ubuntu.com/community/Installation/LowMemorySystems
https://manpages.ubuntu.com/manpages/jammy/man1/links2.1.html
https://ubuntu.pkgs.org/22.04/ubuntu-universe-amd64/links2_2.25-1build1_amd64.deb.html
https://ubuntu.pkgs.org/22.04/ubuntu-universe-amd64/links2_2.25-1build1_amd64.deb.html

Estudios primarios

[BADG25] Fabian Biester, Mohamed Abdelaal, and Daniel Del Gaudio. Llmclean:
Context-aware tabular data cleaning via llm-generated ofds. In Joe Tekli,
Johann Gamper, Richard Chbeir, Yannis Manolopoulos, Salma Sassi, Mirjana
Ivanovic, Genoveva Vargas-Solar, and Ester Zumpano, editors, New Trends
in Database and Information Systems, pages 68–78, Cham, 2025. Springer
Nature Switzerland.

[BDVI24] Divya Biradar, Rahul Dattangire, Ruchika Vaidya, and NagaSuryaShivani
Inti. Improving the quality of diabetic data with large language model-driven
cleaning techniques. In 2024 International Conference on Intelligent Systems
and Advanced Applications, ICISAA 2024, 2024.

[BLD+23] Quinten Bolding, Baohao Liao, Brandon Denis, Jun Luo, and Christof Monz.
Ask language model to clean your noisy translation data. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 3215–3236, Singapore, December
2023. Association for Computational Linguistics.

[BvdLN+23] Nikolay Bogoychev, Jelmer van der Linde, Graeme Nail, Barry Haddow,
Jaume Zaragoza-Bernabeu, Gema Ramírez-Sánchez, Lukas Weymann, Tu-
dor Nicolae Mateiu, Jindřich Helcl, and Mikko Aulamo. Opuscleaner and
opustrainer, open source toolkits for training machine translation and large
language models, 2023.

[CLW+24] Zhou Chen, Ming Lin, Zimeng Wang, Mingrun Zang, and Yuqi Bai and.
Preparedllm: effective pre-pretraining framework for domain-specific large
language models. Big Earth Data, 8(4):649–672, 2024.

[CTFL23] Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. Demystifying artificial
intelligence for data preparation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, page 13 – 20, 2023.

64

Estudios primarios 65

[EY24] Asım Ersoy and Olcay Taner Yıldız. Organic data-driven approach for turkish
grammatical error correction and llms, 2024.

[GGBR24] Skander Ghazzai, Daniela Grigori, Boualem Benatallah, and Raja Rebai.
Harnessing gpt for data transformation tasks. In 2024 IEEE International
Conference on Web Services (ICWS), pages 1329–1334, 2024.

[HSL+24] Xiaobao Huang, Mihir Surve, Yuhan Liu, Tengfei Luo, Olaf Wiest, Xiangliang
Zhang, and Nitesh V. Chawla. Application of large language models in
chemistry reaction data extraction and cleaning. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management,
CIKM ’24, page 3797–3801, New York, NY, USA, 2024. Association for
Computing Machinery.

[LFT24] Lan Li, Liri Fang, and Vetle I. Torvik. Autodcworkflow: Llm-based data
cleaning workflow auto-generation and benchmark, 2024.

[LLT25] Chunhua Liu, Hong Yi Lin, and Patanamon Thongtanunam. Too noisy to
learn: Enhancing data quality for code review comment generation, 2025.

[LQL+25] Hao Liang, Meiyi Qiang, Yuying Li, Zefeng He, Yongzhen Guo, Zhengzhou
Zhu, Wentao Zhang, and Bin Cui. Mathclean: A benchmark for synthetic
mathematical data cleaning, 2025.

[MAD+24] Manuel Mondal, Julien Audiffren, Ljiljana Dolamic, Gérôme Bovet, and
Philippe Cudré-Mauroux. Cleaning semi-structured errors in open data using
large language models. In 2024 11th IEEE Swiss Conference on Data Science
(SDS), pages 258–261, 2024.

[MPSD25] Elyas Meguellati, Nardiena Pratama, Shazia Sadiq, and Gianluca Demartini.
Are large language models good data preprocessors?, 2025.

[MR24] Pavitra Mehra and El Kindi Rezig. Leveraging structured and unstructured
data for tabular data cleaning. In 2024 IEEE International Conference on
Big Data (BigData), pages 5765–5768, 2024.

[NAE+24] Zan Ahmad Naeem, Mohammad Shahmeer Ahmad, Mohamed Eltabakh,
Mourad Ouzzani, and Nan Tang. Retclean: Retrieval-based data cleaning
using llms and data lakes. Proc. VLDB Endow., 17(12):4421–4424, August
2024.

[NdTB25] Rihem Nasfi, Guy de Tré, and Antoon Bronselaer. Improving data cleaning
by learning from unstructured textual data. IEEE Access, 13:36470 – 36491,
2025.

[NZM+24] Wei Ni, Kaihang Zhang, Xiaoye Miao, Xiangyu Zhao, Yangyang Wu, and
Jianwei Yin. Iterclean: An iterative data cleaning framework with large

Estudios primarios 66

language models. In ACM International Conference Proceeding Series, page
100 – 105, 2024.

[PSA+24] Emanuele Pucci, Camilla Sancricca, Salvatore Andolina, Cinzia Cappiello,
Maristella Matera, and Anna Barberio. Improving understandability and con-
trol indata preparation: A human-centered approach. In Giancarlo Guizzardi,
Flavia Santoro, Haralambos Mouratidis, and Pnina Soffer, editors, Advanced
Information Systems Engineering, pages 284–299, Cham, 2024. Springer
Nature Switzerland.

[SLW+25] Yingli Shen, Wen Lai, Shuo Wang, Xueren Zhang, Kangyang Luo, Alexander
Fraser, and Maosong Sun. Dcad-2000: A multilingual dataset across 2000+
languages with data cleaning as anomaly detection, 2025.

[WLW23] Runhui Wang, Yuliang Li, and Jin Wang. Sudowoodo: Contrastive self-
supervised learning for multi-purpose data integration and preparation. In
2023 IEEE 39th International Conference on Data Engineering (ICDE),
pages 1502–1515, 2023.

[ZHW24] Shuo Zhang, Zezhou Huang, and Eugene Wu. Data cleaning using large
language models, 2024.

[ZL24] Mehdi Zaeifi and Beiyu Lin. Smartphone usage data cleaning using llm-based
processing. In 2024 IEEE International Conference on Big Data (BigData),
pages 8871–8873, 2024.

[ZNS+24] Samuel Zuehlke, Joel Nitu, Simone Sandler, Oliver Krauss, and Andreas
Stockl. Self-repairing data scraping for websites. In International Conference
on Electrical, Computer, Communications and Mechatronics Engineering,
ICECCME 2024, 2024.

Apéndices

67

Apéndice A

Plan de Proyecto y Ejecución

Este apéndice presenta el plan de trabajo definido al inicio del proyecto y cómo se
desarrolló en la práctica. La planificación se elaboró antes del 27 de febrero de 2025, fecha
oficial de inicio. Las actividades se dividieron por fases, con fechas de inicio y duración
estimada para cada una. Se utilizó un diagrama de Gantt para organizar y hacer seguimiento
del proyecto. La herramienta muestra de forma visual las tareas previstas, su duración y la
distribución temporal. Es una herramienta común en gestión de cronogramas, recomendada
por el Project Management Institute como parte de los procesos de planificación [43].

A.1. Planificación del trabajo
Se estimó una dedicación de 10 horas por semana. La fecha prevista de finalización

fue el 19 de junio de 2025. En esta etapa no se contemplaron modificaciones técnicas ni
ajustes en el entorno, ya que aún no se había definido el caso de estudio ni estaba previsto
si se trabajaría con una herramienta o con una metodología. La Figura A.1 muestra la
planificación prevista.

Figura A.1: Cronograma previsto al inicio del proyecto

68

Apéndice A. Plan de Proyecto y Ejecución 69

A.2. Ejecución del trabajo
Durante la ejecución real se produjeron desviaciones respecto al plan. Se eligió una

herramienta ya existente como caso práctico. No se preveía intervenir sobre ella, pero fue
necesario adaptarla. Una parte del tiempo se destinó a la instalación, donde surgieron
problemas con los drivers de GPU. El programa no usaba aceleración por hardware, por
lo que se modificó para ejecutar modelos locales con soporte GPU. También se integraron
nuevos modelos en la herramienta. Se aplicaron medidas adicionales para cumplir
con el reglamento europeo de protección de datos. Esto afectó la forma en que
se gestionaban entradas, salidas y archivos temporales. Estas tareas no estaban
contempladas en la planificación original y ampliaron el tiempo total del proyecto. La
Figura A.2 muestra el calendario ajustado con base en la ejecución real.

Figura A.2: Planificación real tras la ejecución del proyecto

Apéndice B

Especificación de Requisitos de
Hardware

B.1. Introducción
Este apéndice recoge los requisitos de hardware necesarios para ejecutar los experimentos

del TFM. Incluye las especificaciones del sistema base utilizado como entorno de pruebas.

B.2. Objetivos generales
Describir los recursos de hardware mínimos necesarios para disponer de un entorno

reproducible, con capacidad de cómputo suficiente para ejecutar modelos generativos y
tareas de procesamiento de datos a gran escala.

B.3. Catálogo de requisitos
En la tabla B.1 se detallan los componentes de la máquina virtual usada en los análisis

y pruebas.

Componente Descripción
Sistema operativo Ubuntu 22.04
CPU Intel(R) Xeon(R) Gold 5318Y @ 2.10GHz (2 cores, 2 sockets)
Memoria RAM 24.00 GiB
GPU NVIDIA Quadro P4000 (8 GB VRAM)
Disco duro 100 GB

Tabla B.1: Especificaciones del sistema

70

Apéndice C

Guía técnica de instalación y uso

C.1. Introducción
Este apéndice documenta la instalación y uso de RetClean en un entorno local. El

sistema se ejecuta mediante contenedores Docker que encapsulan los distintos componentes:
modelo de lenguaje, backend, interfaz web y motor de búsqueda. Además, se habilita un
entorno gráfico en la máquina virtual para acceder a la aplicación desde un navegador.

Los componentes que se van a instalar en esta sección se encuentran listados en la
tabla C.1.

Paquete / Componente Descripción
docker-ce Motor de contenedores usado por el sistema.
docker-compose-plugin Gestiona el arranque de contenedores definidos en archi-

vos de configuración de docker compose.
build-essential Requisito previo para instalar nvidia-container-toolkit.
nvidia-container-toolkit Soporte para usar GPU dentro de Docker.
nvidia-driver-550 Driver para GPU A2.
xfce4 Entorno de escritorio ligero y rápido, usado para ejecutar

la interfaz gráfica.
links2 Navegador usado para mostrar la interfaz web de la

aplicación.
git Herramienta de control de versiones usada para clonar

el repositorio del proyecto.
retclean-analisis-tfm Repositorio principal del sistema.

Tabla C.1: Paquetes y herramientas a instalar

71

Apéndice C. Guía técnica de instalación y uso 72

C.2. Requisitos de usuarios

Tener los requisitos de hardware que se detallan en el apéndice B.

Disponer de los drivers adecuados de la GPU a utilizar. En caso de no disponer
de estos drivers, contar con el ejecutable del driver de NVIDIA (nvidia-driver-550)
antes de iniciar la instalación. En este caso fue proporcionado por el Departamento
de Informática de la Universidad de Valladolid.

C.3. Instalación del sistema
Todos los componentes que se van a instalar en esta sección fueron obtenidos mediante

APT desde repositorios oficiales, salvo el driver de GPU, que fue ejecutado manualmente.
A continuación se describen los pasos realizados para la instalación de cada uno.

Actualizar la información del repositorio
sudo apt -get update

Configurar el repositorio de Docker
Se procede con la instalación de Docker[17]:

1. Agregar la clave GPG de Docker

Se añade la clave oficial de Docker para permitir la verificación de los paquetes
descargados:
sudo apt -get install ca - certificates curl
sudo install -m 0755 -d /etc/apt/ keyrings
sudo curl -fsSL https :// download . docker .com/linux/ ubuntu /gpg -o /

etc/apt/ keyrings / docker .asc
sudo chmod a+r /etc/apt/ keyrings / docker .asc

2. Añadir el repositorio de Docker

Este paso deja preparado el entorno para esta instalación y futuras actualizaciones.
echo \
"deb [arch=$(dpkg --print - architecture) signed -by=/ etc/apt/ keyrings

/ docker .asc] https :// download . docker .com/linux/ ubuntu \
$(. /etc/os - release && echo "${ UBUNTU_CODENAME :- $VERSION_CODENAME }"

) stable " | \
sudo tee /etc/apt/ sources .list.d/ docker .list > /dev/null
sudo apt -get update

Apéndice C. Guía técnica de instalación y uso 73

3. Instalar la última versión de Docker y sus componentes

sudo apt -get install docker -ce docker -ce -cli containerd .io docker -
buildx - plugin docker -compose - plugin

4. Reiniciar el servicio de Docker

sudo service docker restart

5. Verificar que Docker se instaló correctamente

Para comprobar que Docker funciona como se espera, se ejecuta una imagen de
prueba.
sudo docker run hello -world

Este comando descarga una imagen de test, la ejecuta en un contenedor y muestra
un mensaje de confirmación. Se puede ver en la imagen C.1 un ejemplo de resultado
exitoso.

Figura C.1: Resultado del contenedor hello-world

Instalación del NVIDIA Container Toolkit

1. Instalar herramientas de compilación

Se instala el paquete build-essential, requerido para compilar dependencias en
caso de que no haya versiones precompiladas disponibles.
sudo apt -get install build - essential

Apéndice C. Guía técnica de instalación y uso 74

2. Instalar los drivers de la GPU

El controlador fue proporcionado por la Escuela de Ingeniería Informática y se
encuentra en el directorio raíz del usuario root. Para instalarlo:
sudo su -
/root/NVIDIA -Linux -x86_64 -550.54.14 - grid.run

Esto instala los drivers específicos para la GPU A2. Una vez instalado el driver de
la GPU, se configura el repositorio de NVIDIA[40] desde donde se obtendrán los
paquetes necesarios para habilitar el uso de la GPU dentro de contenedores Docker.

3. Configurar el repositorio de NVIDIA
curl -fsSL https :// nvidia . github .io/libnvidia - container / gpgkey |

sudo gpg --dearmor -o /usr/share/ keyrings /nvidia -container -
toolkit - keyring .gpg \

&& curl -s -L https :// nvidia . github .io/libnvidia - container / stable
/deb/nvidia -container - toolkit .list | \

sed ’s#deb https ://# deb [signed -by=/ usr/share/ keyrings /nvidia -
container -toolkit - keyring .gpg] https ://#g’ | \

sudo tee /etc/apt/ sources .list.d/nvidia -container - toolkit .list

4. Actualizar la información de los repositorios
sudo apt -get update

5. Instalar los paquetes del toolkit
export NVIDIA_CONTAINER_TOOLKIT_VERSION =1.17.8 -1

sudo apt -get install -y \
nvidia -container - toolkit =${ NVIDIA_CONTAINER_TOOLKIT_VERSION }

\
nvidia -container -toolkit -base=${

NVIDIA_CONTAINER_TOOLKIT_VERSION } \
libnvidia -container -tools=${ NVIDIA_CONTAINER_TOOLKIT_VERSION }

\
libnvidia - container1 =${ NVIDIA_CONTAINER_TOOLKIT_VERSION }

6. Configurar Docker para utilizar el driver de NVIDIA

Una vez instalado el toolkit, se configura Docker para que utilice el runtime de
NVIDIA. Luego se reinicia el servicio para aplicar los cambios.
nvidia -ctk runtime configure --runtime = docker
sudo systemctl restart docker

Instalación del entorno de escritorio
Para interactuar con RetClean se habilita un entorno de escritorio. El elegido para

este proyecto es XFCE[51], ya que proporciona una interfaz gráfica completa y ligera, y
además facilita el control remoto del entorno gráfico mediante herramientas como X2Go.

Apéndice C. Guía técnica de instalación y uso 75

1. Instalar entorno de escritorio

sudo apt -get install xfce4

2. Verificar instalación

Para comprobar si XFCE se ha instalado correctamente, se puede verificar la presencia
del ejecutable:
which startxfce4

Si está instalado correctamente, este comando mostrará la ruta al ejecutable.

Instalación del navegador

1. Instalar el navegador

Una vez instalado XFCE, se requiere un navegador ligero para acceder a la interfaz
web de RetClean. Para este propósito se utiliza Links2[53], que permite abrir páginas
desde terminal con soporte básico para modo gráfico.
sudo apt -get install links2

2. Verificar instalación

Para confirmar que el navegador se instaló correctamente[52], se ejecuta:
links2 -version

Debe mostrarse la versión instalada del navegador Links2.

Descarga de la aplicación RetClean

1. Instalar Git

Se instala la herramienta git, necesaria para clonar el repositorio del proyecto.
sudo apt -get install git

2. Cambio al directorio principal del usuario:

cd /home/ usuario

3. Clonación del repositorio modificado del proyecto RetClean utilizado para
este TFM::

git clone https :// gitlab .inf.uva.es/ micplua /retclean -analisis -tfm.
git

Apéndice C. Guía técnica de instalación y uso 76

Este comando crea una carpeta llamada retclean-analisis-tfm en el directorio actual.

Nota

El repositorio retclean-analisis-tfm parte del original https://github.com/qcri/
RetClean y fue adaptado para incluir modelos personalizados y nuevos flujos de
limpieza.

Construir e iniciar la aplicación RetClean

1. Entrar al directorio del proyecto

Una vez clonado el repositorio, se accede a la carpeta del proyecto.
cd retclean -analisis -tfm

2. Construir la aplicación con Docker Compose

Se construyen los servicios y sus dependencias.
sudo docker compose build

Este comando instala los servicios definidos en el archivo docker-compose.yml,
incluyendo las dependencias necesarias para el cliente y el servidor.

3. Iniciar la aplicación

Se ejecuta el entorno definido en Docker Compose.
sudo docker compose up -d

Verificar el estado del entorno

Verificar que los contenedores estén activos

Se lista el estado de los contenedores en ejecución.
sudo docker container ls

Consultar los LLMs locales disponibles

Para ver los LLMs locales disponibles en el contenedor de Ollama se ejecuta:
sudo docker exec b3c81cefe452 ollama list

Donde b3c81cefe452 es el identificador del contenedor. Este valor cambia en cada
ejecución. Para obtener el identificador actual, se utiliza docker container ls.

https://github.com/qcri/RetClean
https://github.com/qcri/RetClean

Apéndice C. Guía técnica de instalación y uso 77

Verificar la disponibilidad de la GPU

Para comprobar que la GPU está disponible en el host:
nvidia -smi

Para verificar su disponibilidad dentro del contenedor:
sudo docker exec retclean -ollama -1 nvidia -smi

Nota

La aplicación queda disponible en la dirección local http://localhost:3000.

C.4. Uso de la herramienta RetClean
La interfaz de RetClean se divide en dos módulos principales: Data Repair y Datalake

Index. El primero permite trabajar con columnas específicas en un archivo CSV usando
modelos generativos. El segundo permite construir un índice a partir de múltiples archivos
CSV para utilizar como referencia contextual durante la reparación.

Módulo Data Repair
Este módulo permite cargar un archivo para luego configurar su proceso de repara-

ción basado en modelos LLM y recuperación de contexto desde un índice. Las opciones
disponibles en este módulo son :

Archivo corrupto (Corrupt Data): permite cargar el archivo CSV con los datos
que se desean reparar. El archivo debe tener cabecera en la primera fila. El botón
Browse abre el explorador de archivos para seleccionar el archivo. Una vez cargado,
la tabla aparece en la parte derecha de la pantalla.

Entity Description: campo de texto opcional para describir el tipo de entidad
presente en los datos. Esta descripción puede usarse para mejorar la comprensión
contextual del modelo, pero no es obligatoria para ejecutar una reparación.

Target Column: permite seleccionar una columna del archivo cargado que se desea
reparar. Solo se puede seleccionar una columna por ejecución. Es obligatorio definirla
antes de iniciar el proceso.

Repair Values: define el tipo de valores que serán considerados como erróneos o
incompletos. Hay tres opciones:

• Any: se intentará reparar cualquier celda con valores inconsistentes o incorrectos,
aunque no esté vacía.

http://localhost:3000

Apéndice C. Guía técnica de instalación y uso 78

• Null: solo se repararán las celdas vacías o con valores nulos.
• Custom: permite definir una lista personalizada de valores que deben ser

tratados como errores. Esta opción activa un campo adicional para ingresarlos.

Pivot Columns: permite seleccionar una o más columnas que se usarán como
contexto para ayudar al modelo a inferir el valor correcto en la columna objetivo. Se
recomienda seleccionar atributos relacionados con la identidad o características del
registro. El campo se despliega como una lista seleccionable.

Reasoner: define el modelo generativo que se utilizará para proponer las reparaciones.
Por defecto aparece GPT-4, pero en esta investigación no se encuentra en uso, ya
que solo están activos modelos locales como Deepseek-R1, LLaMA 3.1, Mistral y
Qwen-3.

Search Index Name: permite seleccionar el índice previamente creado en el módulo
Datalake Index. El índice contiene ejemplos tabulares que el modelo puede consultar
para encontrar registros similares durante la reparación. Este campo es obligatorio
si se desea usar recuperación semántica.

Index Type: permite seleccionar el tipo de recuperación que se aplicará al buscar
ejemplos en el índice. Hay dos opciones:

• Semantic: realiza búsqueda vectorial basada en el significado del contenido.
• Syntactic: realiza búsqueda textual más literal basada en coincidencias de

tokens.

Reranker Type: permite seleccionar el modelo encargado de reordenar los resultados
obtenidos por el motor de búsqueda. Hay dos opciones:

• ColBERT: utiliza codificadores de tipo BERT distribuidos y eficientes.
• Cross Encoder: realiza comparación directa entre pares de ejemplos y el query.

START: botón que inicia el proceso de reparación con las configuraciones definidas.
Una vez pulsado, el sistema consulta el índice, aplica el modelo y presenta los
resultados.

RetClean Results: columna generada al finalizar la inferencia. Muestra la trans-
formación realizada por el modelo para cada celda detectada como reparable. El
usuario puede revisar y decidir si acepta o rechaza cada sugerencia.

APPLY REPAIRS: botón que aplica todas las reparaciones seleccionadas. El
resultado se refleja en la tabla principal.

EXPORT: botón que permite descargar el archivo corregido en formato CSV. Se
conserva la estructura original y se actualiza únicamente la columna objetivo con los
valores aprobados.

Apéndice C. Guía técnica de instalación y uso 79

Módulo Datalake Index
El módulo Datalake Index permite crear, actualizar o eliminar índices de referencia

a partir de archivos CSV. Estos índices son usados por el módulo Data Repair para
realizar recuperación contextual durante el proceso de reparación. Los datos cargados son
estructurados como una base de conocimiento auxiliar y permiten mejorar la precisión de
los modelos generativos al ofrecer ejemplos similares. Sus opciones son :

Create

Permite crear un nuevo índice a partir de una carpeta de archivos CSV. El proceso se
detalla a continuación:

1. Pulsar la pestaña Datalake Index y seleccionar la opción CREATE en la parte
superior izquierda.

2. Cargar una carpeta que contenga archivos CSV. Todos los archivos deben tener
estructura tabular y cabeceras consistentes.

3. Asignar un nombre único al índice. Debe estar escrito en minúsculas. Este nombre
será visible en el campo Search Index Name del módulo Data Repair.

4. Iniciar el proceso de indexación. El sistema analiza el contenido, extrae información
relevante y construye un índice que combina motores de búsqueda sintáctica y
semántica.

Los índices se almacenan localmente y pueden reutilizarse mientras el contenedor siga
activo y no transcurran más de 60 minutos sin ejecución. Después de ese tiempo, los data
lakes y sus índices se eliminan automáticamente.

Update

Permite actualizar un índice existente. Es útil cuando se agregan nuevos archivos CSV
a una carpeta ya indexada o se desea refrescar el contenido del índice.

1. Seleccionar la opción UPDATE.

2. Escoger el índice a actualizar.

3. Cargar los nuevos archivos o seleccionar nuevamente la carpeta completa.

4. Confirmar la actualización. El sistema reemplaza el índice anterior por una nueva
versión.

Esta opción garantiza que los modelos trabajen siempre con datos actualizados como
referencia.

Apéndice C. Guía técnica de instalación y uso 80

Delete

Permite eliminar un índice existente. Es útil para liberar espacio o mantener solo los
índices necesarios.

1. Seleccionar la opción DELETE.

2. Elegir el índice que se desea eliminar.

3. Confirmar la eliminación. Esta acción es irreversible.

Una vez eliminado, el índice desaparecerá de la lista de selección en el módulo Data Repair.

Flujo de uso
Para ejecutar una reparación en los datos con RetClean se siguen los siguientes pasos.

Cada acción se configura de forma secuencial en la interfaz:

1. Subir el archivo CSV dañado desde el campo Corrupt Data

2. (Opcional)Ingresar una descripción en Entity Description

3. Seleccionar la columna objetivo en Target Column

4. Definir el tipo de valores a reparar en Repair Values

5. Elegir las columnas de contexto en Pivot Columns

6. Seleccionar el modelo a usar en Reasoner

7. (Opcional) Configurar recuperación desde índice si se incluye contexto externo:

Seleccionar un índice creado en el módulo Datalake Index
Definir el tipo de recuperación asociado al índice: semántica o sintáctica
Seleccionar el modelo de reranqueo

8. Pulsar START para iniciar la reparación

9. Revisar los resultados generados en RetClean Results

10. Confirmar o ajustar los valores propuestos

11. Aplicar las correcciones con APPLY REPAIRS

12. Exportar el archivo corregido con EXPORT

Apéndice D

Estructura del repositorio y organización
de archivos

La estructura del proyecto se organiza sobre las carpetas base de RetClean: backend,
ollama, assets y frontend. Estas definen la arquitectura funcional del sistema. El directorio
backend contiene la lógica del servidor, las API REST y los módulos de procesamiento
central.

La carpeta datasets incluye el conjunto de datos original de cálculos biliares, una
versión modificada con errores introducidos de forma controlada y una versión adaptada
para pruebas en entornos tipo data lake. La carpeta clear_data contiene un script que
ejecuta la limpieza periódica de datos. La carpeta models se monta directamente en el
contenedor de Ollama para mantener los modelos cargados localmente y reducir el tiempo
de inicio.

La carpeta resultados agrupa los scripts de análisis y los resultados generados. Contiene
un script que combina columnas originales, columnas con errores y las predicciones
realizadas. También incluye un script de evaluación y un repositorio organizado con los
resultados de cada modelo según la variable analizada: BMI, HFA y VFA.

81

Apéndice D. Estructura del repositorio y organización de archivos 82

Figura D.1: Estructura de carpetas del repositorio adaptado

	Índice general
	Índice de figuras
	Índice de tablas
	Introducción
	Contexto y Motivación
	Objetivos
	Preguntas de investigación
	Estructura del documento

	Marco teórico
	Calidad de datos
	Limpieza de datos
	Procesamiento automatizado de datos
	Modelos generativos y LLMs
	Interfaces de lenguaje natural
	Evaluación y métricas
	Seguridad y privacidad

	Estado del arte
	Búsqueda en literatura académica
	Resultados de la SLR

	Caso de estudio
	RetClean como herramienta base
	Análisis de riesgos
	Adaptaciones implementadas
	Dataset utilizado
	Diseño experimental

	Resultados y Discusión
	Resultados obtenido de las configuraciones ejecutadas
	Análisis funcional
	Discusión técnica

	Conclusiones y trabajos futuros
	Bibliografía
	Estudios primarios
	Apéndices
	Plan de Proyecto y Ejecución
	Planificación del trabajo
	Ejecución del trabajo

	Especificación de Requisitos de Hardware
	Introducción
	Objetivos generales
	Catálogo de requisitos

	Guía técnica de instalación y uso
	Introducción
	Requisitos de usuarios
	Instalación del sistema
	Uso de la herramienta RetClean

	Estructura del repositorio y organización de archivos

