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Resumen

Este Trabajo de Fin de Grado aborda el análisis de movimientos
oculares mediante técnicas de eye tracking, con el objetivo de ex-
plorar su utilidad como herramienta no invasiva en el estudio del
comportamiento visual humano. Se diseñó un protocolo experimental
compuesto por ocho tareas visuales que permitieron registrar la acti-
vidad oculomotora de 77 participantes. Tras un exhaustivo proceso
de preprocesado y calibración de las señales, se extrajeron múltiples
parámetros oculomotores, incluyendo medidas de sacadas, fijaciones,
seguimiento suave y métricas de entropía. Posteriormente, se em-
plearon modelos de regresión para estimar la edad de los sujetos a
partir de dichos parámetros. Aunque los resultados no mostraron
una capacidad predictiva destacable ni correlaciones sólidas con la
edad, el trabajo aporta una base metodológica sólida y destaca los
retos asociados al análisis de datos oculomotores en contextos clínicos
y computacionales. Se discuten las limitaciones encontradas y se
proponen líneas futuras de mejora.

Palabras Clave: Seguimiento ocular, Parametrización, Movimientos
oculares, Preprocesamiento de señales, Aprendizaje automático.



Abstract

This Bachelor’s Thesis explores the analysis of eye movements using
eye tracking technology, aiming to assess its potential as a non-
invasive tool for studying human visual behavior. An experimental
protocol consisting of eight visual tasks was designed to record ocu-
lomotor activity in 77 participants. After an extensive preprocessing
and calibration pipeline, a wide range of oculomotor parameters were
extracted, including measures of saccades, fixations, smooth pursuit,
and entropy-based metrics. Regression models were subsequently ap-
plied to estimate participants’ age based on these features. Although
the results did not show strong predictive performance or robust corre-
lations with age, the study provides a solid methodological framework
and highlights the challenges involved in oculomotor data analysis for
clinical and computational applications. Limitations are discussed,
and future directions are proposed.

Keywords: Eye tracking, Parameterization, Ocular movements, Sig-
nal preprocessing, Machine learning.
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CAPÍTULO1
Introducción

⇑

1.1 Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objetivos del Proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Estructura del Documento . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivación

El presente proyecto surge a partir de la necesidad de analizar datos obtenidos mediante
un eye tracker, un dispositivo de seguimiento ocular que permite registrar los movimientos
oculares de los participantes en un experimento. La motivación principal detrás de este
estudio radica en la posibilidad de utilizar estos datos en la identificación de patrones que
podrían ser relevantes en la detección de diversas patologías neurológicas o cognitivas.

El eye-tracking es una tecnología que permite detectar y registrar, de forma precisa y
objetiva, los movimientos oculares de una persona mientras realiza una tarea determinada.
Mediante el uso de cámaras y sensores especializados, es posible conocer en todo momento
hacia dónde dirige la mirada un individuo, cuánto tiempo fija la vista en un punto concreto,
o cómo explora visualmente una escena. Esta información resulta de gran valor para
comprender cómo las personas procesan la información visual y toman decisiones en
función de lo que ven.

Las aplicaciones del eye-tracking son muy diversas y abarcan múltiples campos. En el
ámbito de los videojuegos, se utiliza para mejorar la experiencia de usuario y desarrollar
nuevas formas de interacción basadas en la mirada. En marketing y diseño web, permite
analizar cómo los usuarios observan anuncios, páginas web o productos, optimizando así la
disposición de los elementos visuales para captar mejor la atención. Además, el eye-tracking
es fundamental en el desarrollo de sistemas de comunicación alternativa para personas con
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discapacidades motoras o del habla, permitiendo que puedan interactuar con ordenadores
y otros dispositivos únicamente con los ojos.

Desde una perspectiva científica, el eye-tracking es una herramienta esencial en psicología
y neurociencia, ya que el sistema visual constituye una ventana privilegiada para estudiar el
funcionamiento del cerebro. Analizando los patrones de movimiento ocular, es posible inferir
procesos cognitivos, emocionales y atencionales, así como detectar alteraciones asociadas
a diversas patologías neurológicas o psiquiátricas. El estudio de la mirada permite, por
ejemplo, investigar cómo se distribuye la atención, cómo se procesa la información visual o
cómo cambian estos procesos con la edad o en presencia de enfermedades.

En este contexto, el objetivo de este proyecto es extraer información relevante de los datos
de eye-tracking obtenidos de un conjunto de sujetos sanos mientras realizan experimentos
visuales sencillos. Se pretende analizar estos datos para identificar patrones y características
que describan el comportamiento visual de los participantes y, entre otras cosas, explorar
si esta información permite predecir variables de interés desde un punto de vista médico,
como puede ser la edad de los sujetos. La hipótesis es que ciertos parámetros derivados de
las señales de eye-tracking pueden reflejar cambios sutiles en el funcionamiento cerebral
asociados al envejecimiento, lo que podría abrir la puerta al desarrollo de biomarcadores
no invasivos para el estudio de la salud cerebral.

En definitiva, la motivación de este trabajo reside en explorar el potencial del eye-tracking
como herramienta para el análisis del comportamiento visual humano y su posible utilidad
en el ámbito médico, contribuyendo así al avance del conocimiento en la intersección entre
tecnología, neurociencia y salud.

1.2 Objetivos del Proyecto

Los objetivos principales de este trabajo se resumen en los siguientes puntos:

• Diseñar e implementar un flujo de preprocesado de los datos de eye-
tracking para solucionar problemas habituales como la sincronización temporal
imperfecta, la presencia de parpadeos y otros artefactos que puedan afectar a la
calidad de las señales registradas.

• Extraer parámetros de interés de las señales de eye-tracking que describan
características relevantes del procesamiento visual de los sujetos, tales como la duración
y frecuencia de las fijaciones, la amplitud y velocidad de los movimientos sacádicos, o
la exploración espacial de los estímulos.

• Explorar la posibilidad de predecir la edad de los sujetos a partir de los
parámetros extraídos de las señales de eye-tracking, evaluando el potencial de es-
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tos indicadores como biomarcadores no invasivos de procesos relacionados con el
envejecimiento cerebral.

Estos objetivos están orientados a sentar las bases para el uso del eye-tracking como
herramienta de análisis del comportamiento visual humano y su posible aplicación en
el ámbito médico, proporcionando metodologías y resultados que puedan ser útiles para
futuras investigaciones en neurociencia, psicología y diagnóstico clínico.

1.3 Estructura del Documento

Este documento se organiza en los siguientes capítulos, siguiendo una estructura lógica y
coherente con el desarrollo del trabajo:

• Capítulo 1: Introducción
Presenta la motivación, los objetivos y una visión general del proyecto.

• Capítulo 2: Estado del arte
Revisión de investigaciones previas, tecnologías y herramientas existentes relacionadas
con el eye-tracking y su aplicación en neurociencia y análisis del comportamiento
visual.

• Capítulo 3: Metodología
Descripción detallada de los métodos empleados para el preprocesado de datos, la
extracción de parámetros y los enfoques utilizados para el análisis y la predicción.

• Capítulo 4: Resultados y Discusión de los Resultados
Presentación de los resultados obtenidos a partir del análisis de los datos y la evaluación
de los modelos desarrollados. Interpretación y análisis crítico de los resultados, así
como comparación con trabajos previos y discusión de las limitaciones del estudio.

• Capítulo 5: Conclusiones
Resumen de los principales hallazgos, conclusiones del trabajo y propuestas para
líneas futuras de investigación.

Esta estructura facilita la comprensión global del proyecto, guiando al lector desde la
motivación inicial hasta las conclusiones y posibles desarrollos futuros.
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El eye tracking o seguimiento ocular ha experimentado una evolución significativa
desde sus primeras aplicaciones experimentales hasta convertirse en una herramienta
fundamental en diversas disciplinas científicas y aplicadas. Esta tecnología, que permite la
medición precisa de los movimientos oculares y la dirección de la mirada, ha demostrado
un potencial considerable en el ámbito biomédico, particularmente en la caracterización de
patrones oculomotores asociados con el envejecimiento y diversas condiciones neurológicas.

La relevancia del eye tracking en aplicaciones médicas se fundamenta en la estrecha
relación entre el sistema oculomotor y el funcionamiento del sistema nervioso central.
Los movimientos oculares constituyen una ventana única hacia los procesos neurológicos
subyacentes, proporcionando información valiosa sobre la integridad funcional de múl-
tiples estructuras cerebrales. Esta característica hace del eye tracking una herramienta
prometedora para el desarrollo de biomarcadores no invasivos que puedan contribuir
tanto a la estimación de la edad biológica como a la detección temprana de patologías
neurodegenerativas.

El presente capítulo tiene como objetivo proporcionar una revisión exhaustiva del estado
actual del conocimiento en el campo del eye tracking aplicado a la medicina, con especial
énfasis en su potencial para la estimación de edad y detección de patologías. Se abordará
la evolución histórica y tecnológica de los sistemas de eye tracking, desde los primeros
dispositivos mecánicos hasta las sofisticadas tecnologías actuales basadas en infrarrojos.
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Asimismo, se analizarán los fundamentos técnicos que sustentan el funcionamiento de estos
sistemas, incluyendo los principios físicos de detección y seguimiento ocular, los algoritmos
de procesamiento de datos y las principales fuentes de error que pueden afectar la precisión
de las mediciones.

Un componente esencial de este capítulo se centra en la revisión de las aplicaciones
médicas del eye tracking, examinando los antecedentes en la detección de patologías
neurológicas, los biomarcadores oculomotores establecidos y los desafíos actuales en la
validación clínica. Se prestará especial atención a los parámetros oculomotores que han
demostrado sensibilidad a los procesos de envejecimiento y a diversas condiciones patológicas,
proporcionando la base teórica para la metodología propuesta en este trabajo.

La parametrización y procesamiento de datos de eye tracking representan aspectos
técnicos críticos que determinan la calidad y utilidad de la información extraída. Por ello,
se abordarán las técnicas de preprocesamiento de señales oculomotoras, los métodos de
extracción de características y los enfoques de normalización y estandarización necesarios
para el análisis comparativo entre individuos y poblaciones.

Finalmente, se examinará el estado del arte en la aplicación de técnicas de machine
learning para la estimación de edad biológica y detección de patologías mediante eye tracking.
Esta revisión incluirá una evaluación crítica de los enfoques metodológicos actuales, sus
limitaciones y las oportunidades que presenta la integración de datos oculomotores con
algoritmos de aprendizaje automático avanzados.

El análisis conjunto de estos elementos proporcionará el marco teórico y metodológico
necesario para justificar y contextualizar la investigación desarrollada, estableciendo las
bases para una comprensión integral de las posibilidades y limitaciones del eye tracking
como herramienta de evaluación biomédica no invasiva.

2.1 Estado del Arte y Aplicaciones Médicas del
Eye Tracking

El eye tracking o seguimiento ocular ha evolucionado desde sus primeras aplicaciones
experimentales a finales del siglo XIX hasta convertirse en una herramienta fundamental
en neurociencia, psicología y medicina [11]. Esta tecnología permite registrar y analizar con
precisión los movimientos oculares, proporcionando información valiosa sobre los procesos
cognitivos y el funcionamiento del sistema nervioso central.
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2.1.1 Evolución histórica y fundamentos técnicos

Los primeros dispositivos de eye tracking, como el desarrollado por Huey en 1908, eran
mecánicos y rudimentarios [11]. El avance hacia sistemas basados en vídeo y, posteriormente,
en infrarrojos, permitió mejorar la precisión y reducir la invasividad, facilitando su uso en
investigación clínica y biomédica.

Actualmente, la mayoría de los sistemas emplean el método de reflexión corneal y centro
pupilar (Pupil Center Corneal Reflection, PCCR), que utiliza iluminación infrarroja y
algoritmos de procesamiento de imagen para localizar el centro de la pupila y el reflejo
corneal (glint) [11]. Los dispositivos pueden ser de sobremesa, portátiles o montados en
cabeza, y alcanzan frecuencias de muestreo de hasta 2000 Hz, con precisiones de 0.1-0.5
grados de ángulo visual.

Las tendencias actuales se centran en la miniaturización, la integración con técnicas
de machine learning y la aplicación en entornos clínicos y de salud digital [22, 43]. El
desarrollo de sistemas accesibles y robustos está impulsando la adopción del eye tracking
en la práctica clínica rutinaria.

2.1.2 Movimientos oculares: conceptos fundamentales

El análisis de los movimientos oculares se basa en la identificación de varios tipos de
eventos:

• Sacada (saccade): Movimiento ocular rápido y balístico que desplaza la mirada
de un punto a otro. Es el tipo de movimiento más frecuente durante la exploración
visual y la lectura [36].

• Antisacada (antisaccade): Sacada voluntaria en dirección opuesta a un estímulo
presentado, utilizada para evaluar el control inhibitorio y la función ejecutiva [31, 9].

• Seguimiento suave (smooth pursuit): Movimiento lento y continuo que permi-
te seguir objetos en movimiento, reflejando la integridad de los circuitos cortico-
subcorticales [4].

• Fijación (fixation): Periodo en el que la mirada permanece estable sobre un punto,
permitiendo la adquisición de información visual detallada. Durante la fijación pueden
producirse microsacadas, pequeños movimientos involuntarios que estabilizan la
imagen [28].

Otros conceptos relevantes incluyen la latencia de sacada (tiempo entre el estímulo y
el inicio del movimiento), la ganancia de sacada (relación entre la amplitud ejecutada y
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la requerida) y la precisión espacial (exactitud con la que se alcanza el objetivo visual)
[25, 12].

2.1.3 Aplicaciones médicas y biomarcadores oculomotores

El eye tracking se ha consolidado como una herramienta no invasiva para la detección
y caracterización de patologías neurológicas y psiquiátricas [1, 27]. Los movimientos
oculares constituyen biomarcadores sensibles de alteraciones en el sistema nervioso central,
permitiendo la identificación temprana de enfermedades como el Parkinson, el Alzheimer y
los trastornos del espectro autista (TEA).

En la enfermedad de Parkinson, se observan alteraciones en la velocidad y precisión
de las sacadas y el seguimiento suave, incluso en fases iniciales [27]. En el Alzheimer,
parámetros como el error absoluto de fijación y la tasa de errores en tareas de antisacadas
han demostrado ser indicadores tempranos de deterioro cognitivo [30, 9]. En el caso de los
TEA, el análisis de los scanpaths y el control inhibitorio mediante tareas de antisacadas
permite diferenciar a individuos con alta precisión [14, 7].

Los principales biomarcadores oculomotores incluyen:

• Latencia y ganancia de sacada: Sensibles a alteraciones neurológicas y al enveje-
cimiento [12, 21].

• Tasa de errores de antisacadas: Indicador de control inhibitorio y deterioro
cognitivo [9, 31].

• Suavidad del seguimiento: Refleja la integridad de los circuitos motores y cognitivos
[4].

• Patrones de fijación y microsacadas: Asociados a control motor fino y alteraciones
cognitivas [28].

La integración de técnicas de machine learning ha permitido mejorar la clasificación
automática de poblaciones clínicas a partir de parámetros oculomotores, abriendo nuevas
posibilidades para el desarrollo de biomarcadores objetivos y personalizados [43, 7].

2.1.4 Conclusión

El avance del eye tracking ha permitido no solo una mejor comprensión de los procesos
visuales y cognitivos, sino también el desarrollo de herramientas diagnósticas innovadoras
en medicina. La definición precisa de los movimientos oculares y la identificación de
biomarcadores robustos constituyen la base para su aplicación clínica y la integración con
tecnologías emergentes como el machine learning.

Universidad de Valladolid



9

2.2 Fundamentos físicos del eye tracking por
infrarrojos

Los sistemas modernos de eye tracking se basan en principios ópticos que permiten la
detección precisa y el seguimiento continuo de los movimientos oculares. El uso de luz
infrarroja cercana constituye el elemento central de estos sistemas, ya que proporciona
una fuente de iluminación estable y no visible para el usuario, evitando distracciones y
permitiendo la obtención de imágenes de alta calidad independientemente de las condiciones
de luz ambiental [11].

La luz infrarroja se dirige hacia los ojos, generando reflejos característicos tanto en la
pupila como en la córnea. La pupila, al ser una estructura no reflectante, aparece oscura en
las imágenes capturadas, mientras que el reflejo corneal (glint) se manifiesta como un punto
brillante y bien definido. Esta diferencia de contraste facilita la localización automática del
centro pupilar y del glint mediante algoritmos de procesamiento de imagen [11].

El método más extendido en la actualidad es la reflexión corneal y centro pupilar (Pupil
Center Corneal Reflection, PCCR), que utiliza la posición relativa entre el centro de la
pupila y el reflejo corneal para calcular la dirección de la mirada. Cuando el ojo rota, la
posición del centro pupilar cambia respecto al glint, permitiendo así estimar con precisión
el ángulo de la mirada [11].

La configuración típica de los sistemas de eye tracking incluye una o varias fuentes
de luz infrarroja dispuestas alrededor de la cámara, lo que garantiza una iluminación
uniforme y minimiza las sombras o artefactos que puedan interferir con la detección de
las estructuras oculares. Esta disposición mejora la robustez y la precisión del sistema,
permitiendo registrar movimientos oculares incluso en condiciones ambientales variables
[11].

En resumen, los fundamentos físicos del eye tracking por infrarrojos se apoyan en la
interacción diferencial de la luz infrarroja con las estructuras oculares y en la utilización de
algoritmos avanzados de procesamiento de imagen para identificar y seguir con precisión
los movimientos de

2.3 Parametrización, Procesamiento y Modelado
de Datos de Eye Tracking

El procesamiento y análisis de datos de eye tracking constituye una etapa esencial para la
extracción de información relevante en aplicaciones biomédicas. La calidad de los resultados
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depende en gran medida de la robustez de las técnicas de preprocesamiento, la selección
adecuada de características y la correcta normalización de los parámetros oculomotores.

2.3.1 Preprocesamiento de señales oculomotoras

El preprocesamiento de las señales de eye tracking es fundamental para garantizar la validez
de los análisis posteriores. Esta etapa incluye la limpieza de la señal, la eliminación de
ruido y la corrección de artefactos como parpadeos o pérdidas momentáneas de seguimiento.
Además, algoritmos adaptativos permiten ajustar dinámicamente los parámetros de filtrado
según las características de la señal, preservando eventos transitorios como las sacadas
[29]. La detección y corrección de artefactos, como los producidos por movimientos de
cabeza o cambios en la iluminación, se realiza mediante técnicas de interpolación y métodos
automáticos de identificación de períodos de fijación estable [18]. La gestión adecuada de
los parpadeos es especialmente relevante, ya que estos pueden generar interrupciones en
la señal que deben ser identificadas y tratadas para evitar errores en la segmentación de
eventos oculomotores [16].

2.3.2 Extracción de características

La extracción de características transforma las señales oculomotoras en parámetros cuan-
titativos que describen el comportamiento visual. Entre las métricas más relevantes se
encuentran las temporales, como la latencia de sacada, la duración de fijaciones y la
frecuencia de parpadeo, que han demostrado sensibilidad a factores como la edad y el
estado cognitivo [21, 35]. La ganancia de sacada, definida como la relación entre la amplitud
ejecutada y la requerida, es un indicador clave de la programación motora oculomotora
[25]. Las métricas espaciales, como la precisión de fijación y la variabilidad de las sacadas,
permiten evaluar la integridad del sistema oculomotor y detectar posibles alteraciones
neurológicas [1]. Además, parámetros estadísticos como la desviación estándar de la latencia
o la distribución de amplitudes de sacada aportan información sobre la consistencia y
variabilidad del comportamiento visual [10, 3]. Características de orden superior, como la
entropía o la complejidad temporal de las trayectorias oculares, se utilizan para capturar
patrones sutiles y complejos del control visual [12, 28].

2.3.3 Normalización y estandarización

La normalización de los parámetros oculomotores es imprescindible para comparar resul-
tados entre individuos y poblaciones. Las diferencias inter-individuales pueden deberse a
factores fisiológicos, anatómicos o demográficos, por lo que es habitual emplear técnicas de
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estandarización como la transformación z-score o la utilización de percentiles [37]. La edad
es uno de los factores que más influye en los movimientos oculares, observándose tendencias
sistemáticas en parámetros como la latencia y la ganancia de sacada a lo largo del ciclo
vital [21, 35]. Por ello, es recomendable considerar la edad y otras variables relevantes en
la interpretación de los resultados y en el desarrollo de modelos predictivos.

2.3.4 Modelado y estimación de edad mediante machine
learning

El uso de técnicas de machine learning ha permitido avanzar en la estimación de la
edad biológica a partir de parámetros oculomotores, integrando múltiples características
y capturando relaciones complejas entre ellas [22, 29]. Los modelos actuales, basados en
algoritmos supervisados y no supervisados, han demostrado capacidad para predecir la
edad cronológica con errores medios absolutos bajos en poblaciones sanas [21, 24]. La
combinación de eye tracking y machine learning ofrece ventajas como la no invasividad, la
reproducibilidad y la sensibilidad a cambios sutiles en el sistema nervioso central.

2.3.5 Justificación y desafíos actuales

El enfoque basado en la parametrización avanzada y el modelado mediante machine learning
se justifica por la necesidad de biomarcadores objetivos, accesibles y sensibles para la
estimación de la edad biológica. Sin embargo, persisten desafíos como la necesidad de bases
de datos amplias y representativas, la estandarización de protocolos y la consideración de
la variabilidad individual [3, 10]. El desarrollo de metodologías robustas y la integración de
nuevas fuentes de información continúan siendo áreas activas de investigación en el campo.
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3.1 Metodología de adquisición de datos

La calidad y validez de los estudios de eye tracking dependen en gran medida de una
metodología de adquisición de datos rigurosa y estandarizada [11, 37, 29]. En este trabajo,
se han seguido recomendaciones ampliamente aceptadas para asegurar la reproducibilidad y
la fiabilidad de los resultados.En este trabajo, la adquisición de los datos fue llevada a cabo
por el tutor Rodrigo de Luis García, siguiendo recomendaciones ampliamente aceptadas
para asegurar la reproducibilidad y la fiabilidad de los resultados.

3.1.1 Condiciones experimentales y equipamiento

Las sesiones se realizaron en un entorno controlado, con condiciones constantes de ilumina-
ción y mínima distracción visual o auditiva, siguiendo las directrices metodológicas para
minimizar fuentes de error y maximizar la precisión de las mediciones [11, 37]. Se empleó
un sistema de eye tracking de sobremesa con frecuencia de muestreo de 1000 Hz y precisión
espacial típica de 0.3–0.5 grados de ángulo visual, montado sobre un monitor. La distancia
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entre participante y pantalla ronda los 65 cm, pero no se ajusta con ningun procedimineto
extra.

El sistema utiliza iluminación infrarroja de espectro cercano, no molesta para los
participantes, y permite la captura precisa de movimientos oculares rápidos como las
sacadas. La sincronización temporal entre la presentación de estímulos y la adquisición de
datos se realiza mediante marcadores temporales (timestamps) de alta precisión, lo que
facilita la alineación exacta entre eventos experimentales y respuestas oculomotoras [29].

3.1.2 Procedimiento con voluntarios

El reclutamiento de participantes y la gestión de las sesiones experimentales se realizaron
conforme a los principios éticos de la Declaración de Helsinki. Los participantes recibieron
información detallada sobre los objetivos y procedimientos del estudio.

Se aplicaron criterios de inclusión y exclusión para garantizar la calidad de los datos.
Antes de cada sesión, se realizó una fase de familiarización y una calibración multipunto (9
puntos), repitiéndose si era necesario hasta alcanzar una precisión aceptable. Se incluyeron
validaciones intermedias y pausas programadas para minimizar la fatiga y controlar posibles
derivas de calibración (calibration drift) [11].

Durante la sesión, se registraron datos demográficos relevantes (edad, sexo, condiciones
visuales) y se monitorizó el bienestar del participante, con la posibilidad de suspender la
sesión en caso de incomodidad. La duración total de cada sesión se mantuvo dentro de
límites razonables para evitar fatiga excesiva.

3.2 Descripción del conjunto de datos

En esta sección se describen las características del conjunto de datos utilizado para el
análisis de la conducta oculomotora de los participantes. Por un lado, se presenta la
información sociodemográfica y de condiciones visuales de los voluntarios, recogida en un
fichero de tipo Excel. Por otro lado, se detalla la estructura de los datos generados por el
sistema de seguimiento ocular (eye tracker) durante las sesiones de adquisición.

3.2.1 Datos de los participantes

El estudio se ha llevado a cabo con un total de 77 casos. La información recopilada para
cada sujeto incluye los siguientes campos: identificador del caso, fecha de adquisición, sexo,
edad, uso de gafas, uso de lentillas y presencia de alguna patología.
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Los valores del sexo se codifican como V para varones y M para mujeres. Las variables
gafas, lentillas y patología son binarias, donde el valor 1 indica la presencia de la
condición correspondiente, y 0 su ausencia. Las edades de los voluntarios abarcan un
amplio rango, desde los 19 hasta los 74 años, lo que permite considerar cierta variabilidad
interindividual en el análisis oculomotor.

Cabe destacar que no todos los registros están completos; algunos casos recientes (por
ejemplo, caso040 a caso052) presentan información parcialmente ausente, lo que ha sido
tenido en cuenta en el preprocesamiento de los datos.

Información general del estudio

El conjunto de datos fue recopilado con el objetivo de analizar la conducta oculomotora
mediante la creación de parámetros descriptores de los movimientos oculares. La recolección
de datos se llevó a cabo utilizando tecnología de seguimiento ocular durante un período
comprendido entre octubre de 2021 y enero de 2025.

Características de la muestra

• Total de participantes: 77 voluntarios.

• Período de recolección: Octubre de 2021 a enero de 2025.

Distribución por sexo:

• Mujeres (M): 38 participantes

• Hombres (V): 39 participantes

V
55.1%

M
44.9%

Figura 3.1: Distribución del genero de los participantes

Distribución por edad:

Universidad de Valladolid



16 Capítulo 3 Metodología

• Rango de edad: 19 - 74 años

• Media: 38.5 años

• Mediana: 39.5 años

• Distribución: Predominantemente adultos jóvenes y de mediana edad
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Figura 3.2: Histograma de las edades de los participantes

Características visuales:

• Uso de gafas: 18 participantes (23.4 %)

• Uso de lentillas: 9 participantes (11.7 %)

• Patologías: 4 participantes (5.2 %)
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Estructura de los datos clínicos

Cada participante fue caracterizado mediante las siguientes variables, detalladas en la
Tabla 3.1:

Tabla 3.1: Descripción de las variables clínicas recogidas por participante
Variable Tipo Descripción
NOMBRES Categórica Identificador único del participante (e.g., caso001)
FECHA ADQUISICIÓN Temporal Fecha en que se realizó la sesión de seguimiento ocular
SEXO Categórica binaria M (mujer) / V (varón)
EDAD Numérica discreta Edad del participante en años
GAFAS Binaria 1 si usa gafas / 0 si no
LENTILLAS Binaria 1 si usa lentillas / 0 si no
PATOLOGÍA Binaria 1 si presenta alguna patología ocular / 0 si no

3.2.2 Estructura de los datos de seguimiento ocular

Los datos de comportamiento oculomotor fueron obtenidos mediante un sistema de eye
tracking que registra la posición de la mirada a lo largo del tiempo. Cada punto de muestra
incluye las siguientes variables:

• pos_x: Coordenada horizontal de la posición ocular, normalizada en el rango [0, 1],
donde 0 representa el borde izquierdo y 1 el borde derecho de la pantalla.

• pos_y: Coordenada vertical de la posición ocular, también normalizada en el rango
[0, 1], donde 0 corresponde a la parte superior y 1 a la inferior de la pantalla.

• time_t: Sello temporal (timestamp) en 10−5s, que indica el momento exacto en que
fue registrada la muestra.

Todos estos datos tienen una resolución temporal con una frecuencia de muestreo de
1111 · 10−5s, o 11, 11ms, lo que permite un análisis detallado de la dinámica visual.

Calidad de los datos

• Consistencia: La estructura general de los datos es coherente, cada muestra incluye
las coordenadas normalizadas de la mirada y una marca temporal en milisegundos. Sin
embargo, se detectan variaciones no uniformes en la tasa de muestreo (con diferencias
de más de 100 ms entre muestras consecutivas), lo cual indica una tasa de adquisición
variable o intermitente. Además, algunos valores presentan una resolución decimal
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excesiva (hasta 10 dígitos), lo que podría deberse al formato de exportación del
sistema y no refleja necesariamente una mayor precisión efectiva.

• Ruido y artefactos: Aunque la mayoría de las trayectorias muestran continuidad
espacial suave, se observan saltos abruptos ocasionales que podrían deberse a movi-
mientos sacádicos reales, pérdida temporal del seguimiento o artefactos del sistema,
además de parpadeos ocasionales. Estos deberán ser cuidadosamente considerados o
filtrados en el preprocesamiento antes de aplicar análisis cuantitativos.

Este conjunto de datos proporciona una base sólida para el análisis de patrones oculomo-
tores y la generación de parámetros descriptores de la conducta visual en una población
diversa de adultos con distintas características visuales.

3.3 Descripción de los experimentos

El protocolo experimental utilizado en este estudio comprende una batería de ocho tareas
diseñadas para evaluar distintos aspectos de la conducta oculomotora de los participantes.
Este conjunto de experimentos fue presentado de forma continua en formato audiovisual,
con instrucciones visuales integradas, y una duración total de aproximadamente 16 minutos
y medio.

Cada experimento está orientado al análisis de parámetros específicos como la fijación, la
ganancia de seguimiento, la latencia de sacadas, la precisión espacial o el control inhibitorio,
siguiendo las recomendaciones metodológicas establecidas por Duchowski en su obra Eye
Tracking Methodology: Theory and Practice [11] y las directrices de Raynowska y Orquin
[37]. A continuación, se describe cada uno de ellos en detalle.

3.3.1 Experimento 1: Fijación en puntos estáticos

Este primer experimento consistió en la presentación de un punto negro que aparecía
secuencialmente en distintas posiciones de la pantalla (centro y ocho localizaciones periféri-
cas). Se instruyó a los participantes para fijar la mirada en el punto, sin mover la cabeza,
incluso cuando este permaneciera quieto durante varios segundos.

Este diseño permite analizar la capacidad de mantener la fijación y la estabilidad
oculomotora, así como realizar tareas de calibración o validación del sistema de adquisición.
Como señalan Rayner et al. [36], parámetros como la desviación estándar de la mirada
durante las fijaciones son especialmente relevantes para evaluar la estabilidad del control
oculomotor. Además, según Martinez-Conde et al. [28], la frecuencia de microsacadas
constituye un indicador fundamental del control motor fino durante la fijación.
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Figura 3.3: Visualización del primer experimento: fijación en puntos estáticos. En la
imagen se observa la trayectoria de la mirada del participante durante la
primera ronda.

3.3.2 Experimento 2: Seguimiento horizontal de un estímulo
puntual

En esta tarea, el participante debía seguir un punto que se desplazaba de manera discreta
en la dirección horizontal. El experimento incluyó tres rondas de 12 trials cada una, donde
el estímulo se movía aleatoriamente a la izquierda o derecha del punto central.

Este paradigma, ampliamente documentado por Leigh y Zee en The Neurology of Eye
Movements [25], permite obtener parámetros fundamentales como la latencia y ganancia
de las sacadas, la precisión espacial del seguimiento y la capacidad atencional sostenida.
Anderson y MacAskill [1] destacan la utilidad de estas métricas para detectar alteraciones
motoras sutiles, mientras que Irving et al. [21] y Dowiasch et al. [10] han demostrado su
sensibilidad a déficits relacionados con el envejecimiento.

1
4

3

2

Figura 3.4: Visualización del segundo experimento: seguimiento horizontal de un estímulo
puntual. En la imagen se observa la trayectoria de la mirada del participante
durante la primera ronda.
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3.3.3 Experimento 3: Tarea de antisacadas

Este experimento evalúa el control inhibitorio del sistema oculomotor siguiendo el paradigma
clásico descrito por Munoz y Everling en su trabajo Look away: The anti-saccade task
and the voluntary control of eye movement [31]. En cada trial, el participante debía mirar
inicialmente al centro; cuando aparecía una flecha en un lado de la pantalla, debía redirigir
su mirada hacia el lado opuesto, anticipando que el estímulo aparecería en esa ubicación.

Se realizaron tres rondas con 10 trials cada una, precedidas por un ejemplo explicativo.
Crawford et al. [9] han demostrado la relevancia de esta tarea en el estudio del deterioro
cognitivo asociado al Alzheimer, mientras que Benson et al. [5] han evidenciado su utilidad
diagnóstica en esquizofrenia.

Figura 3.5: Visualización del tercer experimento: tarea de antisacadas. En las imágenes
se muestran las dos alternativas: primero aparece la flecha a la que los
participantes no deben mirar; deben mirar al lado contrario para esperar a
que aparezca el punto.

Los parámetros derivados incluyen la tasa de errores de antisacadas, la latencia de
ejecución y la precisión espacial del desplazamiento visual. Como establecen Hutton [20] y
Falck-Ytter et al. [14], la capacidad de inhibir una respuesta refleja y ejecutar una alternativa
voluntaria constituye un biomarcador cognitivo robusto de las funciones ejecutivas.

3.3.4 Experimento 4: Repetición del seguimiento horizontal

El cuarto experimento consistió en una repetición del protocolo del Experimento 2, es decir,
una tarea de seguimiento de un estímulo puntual con desplazamientos horizontales. Se
realizaron tres rondas adicionales con 10 trials cada una. Esta repetición permite evaluar
la consistencia intraindividual del rendimiento oculomotor y la posible aparición de fatiga
o aprendizaje a lo largo del experimento.

Siguiendo los planteamientos de Antoniades et al. [2] sobre herramientas de evaluación
clínica, este diseño es útil para contrastar métricas como la latencia promedio de sacadas o
el número de errores entre bloques sucesivos. Bargary et al. [3] han destacado la importancia
de estos análisis para caracterizar las diferencias individuales en los patrones oculomotores
y la estabilidad de la respuesta motora a estímulos repetidos.
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Figura 3.6: Visualización del cuarto experimento: seguimiento horizontal de un estímulo
puntual. En la imagen se observa la trayectoria de la mirada del participante
durante la primera ronda.

3.3.5 Experimento 5: Seguimiento de doble salto

Este experimento presentó una tarea más exigente desde el punto de vista temporal
y espacial. El estímulo visual saltaba rápidamente a dos ubicaciones consecutivas y el
participante debía seguir con la mirada ambas posiciones, manteniéndose en la segunda
una vez estabilizado.

Cada una de las tres rondas incluyó 12 trials. Como indican Eckstein et al. [12], esta
prueba es especialmente útil para estudiar la planificación de movimientos oculares múltiples
y la coordinación entre percepción y acción. Molitor et al. [30] han demostrado la sensibilidad
de este paradigma para detectar alteraciones tempranas en pacientes con Alzheimer,
mientras que Peltsch et al. [35] han documentado su utilidad para evaluar la adaptación a
trayectorias imprevistas. Las métricas extraíbles incluyen el error espacial de cada sacada,
la ganancia sacádica acumulada y la precisión del reposicionamiento ocular.
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Figura 3.7: Visualización del quinto experimento: seguimiento de doble salto. En la imagen
se observa la trayectoria que debería hacer el participante en color gris, y las
líneas discontinuas proyectan el movimiento que realizan los puntos a una
velocidad mucho más alta durante la primera ronda. Los números indican el
orden en el que suceden los eventos.
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3.3.6 Experimento 6: Seguimiento de trayectoria continua
(Lissajous)

En este experimento se pidió al participante que siguiera un punto que se desplazaba
suavemente siguiendo una curva de Lissajous. Se registraron tres rondas: una lenta, una
con velocidad media y una en la que la velocidad aumentaba progresivamente.

Este paradigma, fundamentado en los trabajos de Barnes [4] sobre procesos cognitivos
en el seguimiento ocular, evalúa el sistema de seguimiento continuo o seguimiento suave.
Las métricas principales incluyen la ganancia del seguimiento, la suavidad del movimiento
ocular (smoothness) y el retardo en el acoplamiento estímulo-respuesta. Según Leigh y Zee
[25] y los hallazgos de Kasprowski y Harezlak [23], estas variables son particularmente
sensibles a deterioros neurológicos tempranos.

Figura 3.8: Visualización del sexto experimento: seguimiento de trayectoria continua
(Lissajous). En la imagen se observa la trayectoria de la mirada del participante
durante las tres rondas. Cada ronda presenta una velocidad diferente del
movimiento del punto, aumentando progresivamente. De más lenta a más
rápida de izquierda a derecha.

3.3.7 Experimento 7: Exploración libre de imágenes

En esta tarea se presentaron nueve imágenes consecutivas, cada una separada por un punto
de centralización breve. Se pidió al participante que simplemente observara las imágenes
“como quisiera”, sin instrucciones específicas sobre qué aspectos examinar o durante cuánto
tiempo.

Esta modalidad de exploración libre, validada por Rayner et al. [36] y Tseng et al.
[43], permite analizar patrones naturales de visualización sin sesgos instruccionales. El
paradigma genera mapas de calor, trayectorias de exploración y métricas como número
de fijaciones, duración media y amplitud de sacadas. Como han demostrado Borji [6] en
sus estudios sobre predicción de saliencia, estos indicadores pueden revelar diferencias
individuales significativas y establecer correlaciones con funciones cognitivas superiores.
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Tabla 3.2: Cada imagen se mostró durante aproximadamente 7 segundos, intercaladas
por puntos de transición centrales de 1 segundo para recentrar la mirada entre
estímulos.

Imagen Descripción
1 Imagen con apariencia solar, caracterizada por una paleta de

colores rojizos que evocan una fuente de luz intensa y difusa.
2 Patrón de ruido visual estructurado verticalmente, compuesto por

tonalidades turquesas y verdes que sugieren textura y profundidad
cromática.

3 Representación naturalista de un entorno fluvial, con rápidos que
atraviesan un bosque de árboles perennes con variaciones cromáti-
cas estacionales.

4 Composición fractal simétrica con estructura geométrica repetitiva,
evocando patrones complejos autorreferenciales.

5 Imagen de una playa tropical, con presencia de palmeras y un
entorno paradisíaco que sugiere tranquilidad y calidez.

6 Escena de montaña nevada, caracterizada por una superficie blanca
ininterrumpida en la que se observan discretas huellas, en un
entorno minimalista.

7 Lago de aguas completamente quietas, con un reflejo especular
nítido de árboles en la superficie, generando un efecto visual de
simetría vertical.

8 Nueva imagen fractal, de mayor densidad visual y complejidad
estructural que la anterior, con detalles minuciosos distribuidos
simétricamente.

9 Patrón de ruido visual horizontal en la misma paleta turquesa que
la imagen 2, generando continuidad perceptiva con una orientación
distinta.

Figura 3.9: Visualizacion del septimo experimento: exploración libre de imágenes.
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3.3.8 Experimento 8: Tarea final de seguimiento horizontal

El último experimento fue una nueva variante del seguimiento horizontal del estímulo
puntual, similar a los Experimentos 2 y 4. Se incluyeron dos rondas de 10 trials cada
una. La repetición al final del protocolo permite analizar el posible efecto de la fatiga o
del entrenamiento prolongado sobre las métricas de seguimiento, así como comparar el
rendimiento respecto a las rondas anteriores. Dado que el diseño fue prácticamente idéntico
al del Experimento 4, se ha reutilizado la Figura 3.6 para ilustrar esta tarea.

Siguiendo los planteamientos de Dowiasch et al. [10] sobre efectos del envejecimiento en
movimientos oculares y los hallazgos de Cole y Franke [8] sobre biomarcadores neuroló-
gicos, este diseño contribuye a observar fenómenos como la habituación, la variabilidad
intraindividual o la estabilidad del control oculomotor bajo condiciones de repetición
prolongada.

3.4 Preprocesado y calibración temporal de los
datos

En esta sección se describe el flujo de trabajo completo de preprocesado y calibración
temporal aplicado a los datos crudos del sistema de seguimiento ocular. El proceso se
divide en varias etapas consecutivas que incluyen la conversión de formatos, el filtrado de
artefactos, el remuestreo de la señal, la calibración espacial y temporal, y la segmentación
por experimentos.

3.4.1 Arquitectura del sistema de procesamiento

El sistema de procesamiento se estructura mediante una función principal denominada
preprocesado(), que coordina la ejecución secuencial de las diferentes etapas del pipeline.
Esta función recibe como parámetros el identificador numérico del caso a procesar y un
indicador booleano para la eliminación opcional de archivos previamente procesados.

La arquitectura modular permite la reutilización de componentes individuales y facilita
la trazabilidad del proceso, generando archivos intermedios en diferentes etapas que pueden
ser utilizados para verificación y depuración.
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3.4.2 Conversión y validación de formatos

3.4.2.1 Conversión JSON a formato MAT

Los datos crudos del eye tracker se almacenan inicialmente en formato JSON, que debe
ser convertido a formato MAT de MATLAB para su procesamiento posterior. La función
leer_json_videos_new() realiza esta conversión mediante un análisis línea por línea del
archivo JSON, extrayendo las variables principales:

• posicion_x: Coordenadas horizontales de la mirada

• posicion_y: Coordenadas verticales de la mirada

• time_t: Sellos temporales en milisegundos

• frame: Número de frame correspondiente

El proceso de conversión incluye validación automática de la existencia de archivos y
manejo de errores para casos donde los archivos de entrada no están disponibles.

3.4.2.2 Estructura de archivos

La organización de archivos sigue una estructura jerárquica que separa los datos por etapas
de procesamiento:

• datos/jsons/: Archivos originales en formato JSON

• datos/mats/: Archivos convertidos a formato MAT

• datos/preprocesado/: Archivos procesados y remuestreados

• datos/calibrado/: Archivos con calibración temporal aplicada

• datos/expto_divididos/: Datos segmentados por experimento

3.4.3 Filtrado de artefactos y preprocesamiento

3.4.3.1 Eliminación de parpadeos

El primer paso del preprocesamiento consiste en la eliminación de artefactos produ-
cidos por los parpadeos del participante. Esta tarea se realiza mediante la función
filtrar_parpadeos(), que identifica y elimina las muestras correspondientes a perío-
dos de oclusión ocular.
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Los algoritmos de detección de parpadeos utilizan criterios basados en la continuidad
temporal y espacial de las trayectorias oculares, permitiendo la identificación automática
de interrupciones en la señal causadas por el cierre de los párpados.
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Figura 3.10: Visualización de la eliminación de los parpadeos.

Los parámetros optimizados para la detección incluyen un umbral de diferencia de 0.020
unidades y un tamaño de ventana de 20 muestras. Estos valores fueron determinados
mediante análisis iterativo de la señal, considerando las características específicas del ruido
y la variabilidad natural de los movimientos oculares registrados.

El análisis cuantitativo de los datos procesados, para el caso 34 mostrado en la 3.10, reveló
la detección de 272 eventos de parpadeo durante un período de registro de 16.57 minutos
como se puede ver el la figura 3.10, esta información permitió calcular una frecuencia media
de parpadeo de 16.42 eventos por minuto, valor que se encuentra dentro del rango fisiológico
normal establecido entre 15 y 20 parpadeos por minuto para individuos en condiciones de
reposo.

3.4.3.2 Remuestreo de la señal

La función remuestreo_senal() realiza la normalización temporal de los datos mediante
las siguientes operaciones:

1. Recorte temporal: Eliminación de muestras posteriores a 985.00290 segundos para
estandarizar la duración de las sesiones.

2. Remuestreo uniforme: Aplicación de interpolación lineal para generar una señal
con muestreo regular de 1110 microsegundos.

3. Centrado de la señal: Sustracción del valor medio de cada coordenada para eliminar
el offset DC.
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El proceso de remuestreo asegura la coherencia temporal entre diferentes sesiones y
facilita la aplicación de algoritmos de procesamiento posteriores que requieren muestreo
uniforme.

3.4.4 Sistema de calibración temporal adaptativo

3.4.4.1 Detección de fijaciones mediante clustering espacial

El sistema de calibración temporal se basa en la identificación automática de
períodos de fijación ocular mediante técnicas de clustering espacial. La función
visualizar_fijaciones_espaciales() implementa un algoritmo de clustering por
densidad que agrupa las muestras oculares según criterios de proximidad espacial y
temporal.

Los parámetros del algoritmo de clustering son:

• max_dist: Distancia máxima entre puntos para formar un cluster (0.004 unidades
normalizadas).

• max_time_gap: Intervalo temporal máximo entre muestras del mismo cluster (0.015
segundos).

• min_points: Número mínimo de puntos requeridos para formar un cluster válido (45
muestras).

3.4.4.2 Formación de super-clusters

Para mejorar la robustez de la detección de fijaciones, se implementa un sistema de agrupa-
ción jerárquico que combina clusters espacialmente próximos en estructuras denominadas
super-clusters. La función detectar_super_clusters() utiliza un criterio de distancia
entre centros de clusters para determinar la pertenencia a un super-cluster.

Esta aproximación jerárquica permite la identificación de fijaciones complejas que pueden
manifestarse como múltiples clusters espaciales debido a micro-movimientos oculares o
variaciones en la precisión del sistema de seguimiento. Estos clusters sse pueden visualizar
en la figura 3.14.

3.4.4.3 Calibración temporal basada en sacadas

El proceso de calibración temporal se fundamenta en la sincronización de los tiempos
de las sacadas detectadas con un patrón temporal de referencia predefinido. La función
calibrar_con_fijaciones() realiza las siguientes operaciones:
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1. Extracción de tiempos de sacada: Identificación de los instantes temporales
correspondientes a las transiciones entre fijaciones.

2. Alineación temporal: Cálculo del desplazamiento temporal óptimo mediante mini-
mización del error cuadrático medio entre sacadas detectadas y tiempos objetivo.

3. Aplicación de corrección: Ajuste de todos los sellos temporales mediante la adición
del desplazamiento calculado.
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Figura 3.11: Visualización de la calibración temporal. En este caso se retrasan todas las
muestras de este caso unos 2.5 segundos para que coincidan con los tiempos
objetivo de las sacadas.

Los tiempos objetivo de las sacadas están predefinidos en segundos: [21, 25, 33, 41, 45,
49, 57, 61], correspondientes a las transiciones esperadas en el protocolo experimental
utilizado.

3.4.5 Calibración espacial

3.4.5.1 Calibración en el eje X (horizontal)

La calibración espacial en el eje horizontal se realiza mediante un proceso de tres etapas que
utiliza intervalos temporales específicos correspondientes a diferentes zonas de calibración:

• Calibración central: Intervalos [26-32] y [62-68] segundos para establecer el punto
de referencia central.

• Calibración izquierda: Intervalo [34-44] segundos para la zona izquierda de la
pantalla.

• Calibración derecha: Intervalo [46-56] segundos para la zona derecha de la pantalla.
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Figura 3.12: Zona de calibración de la señal del eje X.

El proceso incluye la aplicación de factores de escalado diferenciados para las zonas
izquierda y derecha (factor 0.4), seguido de limitación de valores extremos al rango [-0.5,
0.5] y traslación final al rango [0, 1].

3.4.5.2 Calibración en el eje Y (vertical)

La calibración vertical sigue un esquema similar al horizontal, utilizando los siguientes
intervalos temporales:

• Calibración central: Intervalos [34-40] y [50-56] segundos.

• Calibración inferior: Intervalo [22-32] segundos.

• Calibración superior: Intervalo [58-68] segundos.
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Figura 3.13: Calibración de la señal del eje Y.

Los factores de escalado y las operaciones de limitación y traslación siguen el mismo
procedimiento que en el eje horizontal.
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3.4.6 Procesamiento final y segmentación

3.4.6.1 Eliminación de transitorios

Para minimizar los efectos de transitorios al inicio y final de cada sesión, se aplica una
ventana de eliminación que establece a cero las primeras y últimas 200 muestras de cada
señal procesada.

3.4.6.2 Segmentación por experimentos

La función extraer_experimentos() realiza la segmentación temporal de los datos proce-
sados según la estructura del protocolo experimental. Los intervalos de segmentación están
predefinidos para ocho experimentos diferentes, cada uno con múltiples rondas:

• Experimento 1: Una ronda de calibración entre 13.0 y 69.0 segundos

• Experimento 2: Tres rondas entre 80.0 y 208.767 segundos

• Experimento 3: Tres rondas entre 227.933 y 382.833 segundos

• Experimento 4: Tres rondas entre 393.8 y 513.3 segundos

• Experimento 5: Tres rondas entre 527.3 y 672.1 segundos

• Experimento 6: Tres rondas entre 680.0 y 803.0 segundos

• Experimento 7: Nueve rondas entre 812.0 y 887.0 segundos

• Experimento 8: Tres rondas entre 898.633 y 990.5 segundos

Cada segmento se almacena como un archivo independiente que contiene las coordenadas
oculares y los sellos temporales correspondientes al experimento y ronda específicos.

proyecto/
|-- datos/

|-- expto_divididos/
|-- expto_divididos_caso042/

|-- experimento_1_ronda_1.mat
|-- experimento_2_ronda_1.mat
|-- experimento_2_ronda_2.mat
|-- experimento_2_ronda_3.mat
|-- experimento_3_ronda_1.mat
|-- experimento_3_ronda_2.mat
|-- experimento_3_ronda_3.mat
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...
|-- experimento_8_ronda_1.mat
|-- experimento_8_ronda_2.mat
`-- experimento_8_ronda_3.mat

4 directories, 28 files

3.4.7 Validación y control de calidad

El sistema incluye múltiples mecanismos de validación y control de calidad:

• Verificación de longitud: Confirmación de la coherencia dimensional entre vectores
de coordenadas y tiempo.

• Validación temporal: Comprobación de la alineación correcta de las sacadas cali-
bradas con los tiempos objetivo.

• Reporte de estadísticas: Generación automática de informes con métricas de
calibración y desplazamientos aplicados.

• Trazabilidad completa: Mantenimiento de registros detallados de todas las trans-
formaciones aplicadas.

3.4.8 Consideraciones técnicas

3.4.8.1 Robustez del algoritmo

El sistema de procesamiento incorpora mecanismos de robustez para manejar variaciones
en la calidad de los datos y diferencias interindividuales:

• Adaptación automática al número de clusters detectados

• Selección óptima de correspondencias entre sacadas detectadas y objetivos

• Manejo de casos con información parcial o degradada

3.4.8.2 Escalabilidad

La arquitectura modular del sistema permite el procesamiento eficiente de grandes vo-
lúmenes de datos, con paralelización potencial en las etapas de conversión y filtrado de
artefactos.

El pipeline completo de preprocesado y calibración proporciona datos normalizados tanto
espacial como temporalmente, facilitando los análisis posteriores de patrones oculomotores
y la extracción de parámetros descriptores de la conducta visual.
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3.5 Detección de fijaciones y sacadas

La detección precisa de fijaciones y sacadas constituye un paso fundamental en el análisis de
movimientos oculares, ya que estos eventos representan las unidades básicas de comporta-
miento oculomotor [11]. Las fijaciones corresponden a períodos de relativa estabilidad ocular
durante los cuales se procesa la información visual, mientras que las sacadas representan
movimientos balísticos rápidos entre puntos de fijación [36].

3.5.1 Fundamentos teóricos

La identificación de eventos oculomotores se basa en el análisis de las características
temporales y espaciales de los movimientos oculares registrados. Según [37], los algoritmos
de detección pueden clasificarse en tres categorías principales: basados en velocidad, basados
en dispersión y basados en modelos probabilísticos. Para el presente trabajo se adoptó
un enfoque híbrido que combina criterios de velocidad y dispersión espacial, siguiendo las
recomendaciones metodológicas establecidas en la literatura especializada [1, 12].

El algoritmo implementado se fundamenta en el principio de que las fijaciones se caracteri-
zan por velocidades angulares bajas y agrupación espacial de puntos consecutivos, mientras
que las sacadas presentan velocidades elevadas y desplazamientos espaciales significativos
[41]. Esta aproximación permite una identificación robusta de eventos oculomotores incluso
en presencia de ruido en las señales [30].

3.5.2 Algoritmo de detección

3.5.2.1 Cálculo de velocidades

El primer paso del algoritmo consiste en el cálculo de velocidades instantáneas entre puntos
consecutivos de la trayectoria ocular. Para cada par de muestras consecutivas (xi, yi, ti) y
(xi+1, yi+1, ti+1), la velocidad se calcula mediante:

vi =

√
(xi+1 − xi)2 + (yi+1 − yi)2

ti+1 − ti
(3.1)

donde vi representa la velocidad instantánea en el punto i, expresada en unidades de
posición por unidad de tiempo. La conversión temporal se realiza multiplicando por un
factor de escala de 10−5 para convertir las unidades temporales del sistema de adquisición
a segundos.
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Figura 3.14: Gráfica de los cluster agrupados de cada fijación. El ejemplo muestra el
experimento que se usa para calibrar temporalmente todos los casos, ademas
de para calibrar el propio eye tracker.

3.5.2.2 Clasificación basada en umbral de velocidad

La identificación inicial de fijaciones se realiza mediante la aplicación de un umbral de
velocidad Vthreshold. Los puntos que satisfacen la condición vi < Vthreshold se clasifican como
candidatos a fijación [27]. El valor del umbral se establece inicialmente en 0.0275 unidades
por segundo, basándose en los parámetros reportados en estudios previos sobre análisis
oculomotor [9, 31].
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3.5.2.3 Agrupación espacial y temporal

Los puntos candidatos a fijación se someten a un proceso de agrupación que considera
tanto la proximidad espacial como la continuidad temporal. Se implementa un algoritmo
de clustering que evalúa:

• Distancia espacial: Los puntos se agrupan si la distancia euclidiana entre sus
centroides es inferior a un umbral espacial de 0.004 unidades

• Continuidad temporal: Se requiere que el intervalo temporal entre grupos consecu-
tivos sea inferior a 0.015 segundos para considerar su fusión

• Número mínimo de puntos: Cada cluster debe contener al menos 3 puntos para
ser considerado una fijación válida

Esta aproximación multicriterio permite identificar fijaciones coherentes desde el punto
de vista oculomotor, siguiendo los principios establecidos por [14] para la detección de
patrones oculares en poblaciones clínicas.

3.5.3 Refinamiento y optimización de parámetros

3.5.3.1 Combinación de clusters espacialmente próximos

El algoritmo implementa un proceso iterativo de refinamiento que evalúa la posibilidad de
combinar clusters espacialmente próximos. Para cada par de clusters Ci y Cj , se calcula:

• Distancia entre centroides: dij =
√
(xCi − xCj )

2 + (yCi − yCj )
2

• Área de solapamiento: Calculada geométricamente considerando los radios respec-
tivos ri y rj

• Diferencia temporal: Mínima separación temporal entre los intervalos de ambos
clusters

Los clusters se combinan si el porcentaje de solapamiento supera el 75 % del área del
cluster menor y la diferencia temporal es inferior a 2 × 10−5 segundos. Esta estrategia
permite la identificación de fijaciones complejas que pueden presentar micro-movimientos
internos [28].

3.5.3.2 Optimización automática de parámetros

Se implementó un sistema de optimización automática que ajusta los parámetros del
algoritmo basándose en métricas de calidad de los clusters resultantes. La función objetivo
considera:
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Score = 0,4 · Scohesion + 0,2 · Sseparation + 0,3 · Scoverage + 0,1 · Sclusters (3.2)

Donde:

• Scohesion: Inversamente proporcional a la distancia promedio intra-cluster.

• Sseparation: Proporcional a la distancia promedio inter-cluster.

• Scoverage: Proporción de puntos asignados a clusters válidos.

• Sclusters: Penalización por número excesivo o insuficiente de clusters.

Los parámetros optimizados incluyen:

• Umbral de velocidad Vthreshold: Rango de exploración ±20 % del valor inicial.

• Radio de clusters radius: Rango de exploración ±20 % del valor inicial.

• Umbral temporal timethreshold: Rango de exploración ±20 % del valor inicial.

• Umbral de solapamiento overlapthreshold: Rango de exploración ±20 % del valor
inicial.

• Número mínimo de puntos por cluster minfij_cluster: Rango de exploración
±2 del valor inicial.

Esta aproximación adaptativa permite ajustar automáticamente los parámetros de
detección a las características específicas de cada registro, mejorando la robustez del
análisis [2].

3.5.4 Validación y control de calidad

La validación de los resultados de detección se realiza mediante inspección visual utilizando
una función de representación gráfica especializada que permite evaluar:

• Distribución espacial de fijaciones y clusters

• Coherencia temporal de las agrupaciones

• Proporción de puntos asignados correctamente

• Identificación de posibles artefactos o errores de clasificación

Esta aproximación visual complementa las métricas automáticas de calidad, proporcio-
nando una validación cualitativa esencial para garantizar la fiabilidad de los resultados [43].
La representación gráfica incluye elementos distintivos para cada tipo de evento ocular,
facilitando la interpretación por parte del investigador.
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3.5.5 Parámetros de salida

El algoritmo genera una estructura de datos completa que incluye:

• Puntos de fijación: Coordenadas espaciales, marcas temporales y asignación a
clusters

• Características de clusters: Centroides, radios, intervalos temporales y número de
puntos

• Parámetros optimizados: Valores ajustados de todos los umbrales utilizados

• Métricas de calidad: Puntuaciones de cohesión, separación y cobertura

Esta información constituye la base para la extracción posterior de parámetros oculomo-
tores específicos, siguiendo las metodologías establecidas en la literatura para el análisis de
movimientos oculares en contextos clínicos y experimentales [4, 15].

La implementación desarrollada proporciona una base sólida para el análisis cuantitativo
de patrones oculomotores, permitiendo la extracción de biomarcadores relacionados con el
envejecimiento y el funcionamiento neurológico [10, 3].

3.6 Parámetros oculomotores extraídos

La extracción de parámetros oculomotores representa una etapa fundamental en el análisis
cuantitativo de los movimientos oculares, ya que permite transformar las señales de segui-
miento ocular en métricas objetivas que reflejan aspectos específicos del comportamiento
visual y cognitivo. Los parámetros oculomotores constituyen biomarcadores potenciales que
han demostrado su capacidad para caracterizar diferencias individuales, estados cognitivos
y procesos de envejecimiento [3].

El procesamiento de las señales de eye tracking para la obtención de parámetros cuanti-
tativos requiere de metodologías robustas que permitan extraer información relevante de
los patrones de movimientos oculares. Según Duchowski (2017) en su obra fundamental
“Eye Tracking Methodology: Theory and Practice” [11], la selección y cálculo de estos
parámetros debe fundamentarse en la comprensión de los mecanismos neurofisiológicos
subyacentes a cada tipo de movimiento ocular, así como en su relevancia para la aplicación
específica del estudio.

En el contexto de la predicción de la edad biológica, diversos estudios han identificado
que ciertos parámetros oculomotores experimentan cambios sistemáticos a lo largo del ciclo
vital. Irving et al. (2006) en su investigación sobre la dinámica de sacadas horizontales a lo
largo de la vida humana [21] y Peltsch et al. (2011) en su análisis de tendencias relacionadas
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con la edad en las características de sacadas en adultos mayores [35] han documentado
que parámetros como la latencia de sacadas, la precisión espacial y la ganancia sacádica
muestran tendencias específicas relacionadas con el envejecimiento, lo que fundamenta su
uso como predictores potenciales de la edad cronológica.

La metodología implementada para la extracción de parámetros se basa en el análisis
de las secuencias de fijaciones y sacadas previamente detectadas, aplicando algoritmos
específicos para cada tipo de parámetro. A continuación se describe el proceso de cálculo
de cada parámetro oculomotor utilizado en este trabajo.

3.6.1 Ganancia de sacadas (Saccadic Gain)

Definición y relevancia clínica
La ganancia de sacadas se define como la relación entre la amplitud del movimiento

ocular ejecutado y la amplitud del desplazamiento requerido para alcanzar el objetivo visual
[25]. Este parámetro es una medida fundamental de la precisión del sistema oculomotor y
ha sido identificado como biomarcador sensible a procesos neurológicos y de envejecimiento
[1, 27].

Fundamentos teóricos
En individuos jóvenes y sanos, la ganancia sacádica suele aproximarse a la unidad,

indicando que el movimiento ocular cubre la distancia necesaria para alcanzar el objetivo.
Factores como la edad, condiciones neurológicas y la complejidad de la tarea pueden alterar
este valor [27]. La literatura destaca la importancia de este parámetro en la evaluación de la
función oculomotora y su utilidad clínica en el diagnóstico de trastornos neurodegenerativos
[1].

Metodología de cálculo
El cálculo de la ganancia de sacadas sigue estos pasos, adaptados de Terao et al. (2017)

[41]:

1. Identificación de sacadas: Para cada estímulo, se identifican las fijaciones dentro
de una ventana temporal de 500 ms antes y después del estímulo, siguiendo a Molitor
et al. (2015) [30].

2. Selección de fijaciones relevantes: Se requieren al menos dos fijaciones para
calcular la ganancia. Se identifican la primera y última fijación asociadas al estímulo
como posiciones inicial y final del movimiento ocular.

3. Cálculo de amplitudes:
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• Amplitud del estímulo: Distancia entre la posición central de referencia (0.5 en
coordenadas normalizadas) y la posición del estímulo.

• Amplitud del movimiento ocular : Distancia euclidiana entre las fijaciones inicial
y final.

4. Cálculo de la ganancia:

Ganancia =
Amplitud del movimiento ocular

Amplitud del estímulo (3.3)

donde el numerador es la distancia recorrida por la mirada y el denominador la
distancia requerida por el estímulo.

5. Filtrado de valores: Se excluyen valores fuera del intervalo [0.1, 2.0], según Eckstein
et al. (2017) [12].

Si solo se identifica una fijación dentro del periodo del estímulo, se utiliza la fijación
inmediatamente anterior como referencia, siguiendo a Fukushima y Fukushima (2013) [15].

Criterios de validación
La validez del cálculo se garantiza mediante:

• Aplicación de ventanas temporales amplias para capturar respuestas rápidas y tardías
[9].

• Exclusión de valores fuera del rango [0.1, 2.0], que suelen corresponder a artefactos o
movimientos no relacionados [31].

• Validación visual de las trayectorias y fijaciones.

Parámetros extraídos
A partir del análisis de la ganancia de sacadas se obtienen:

• Ganancia media: Valor promedio de todas las sacadas válidas por participante.

• Distribución de ganancias: Vector de valores individuales para análisis intra- e
inter-sujeto.

Visualización
La visualización incluye la representación de las posiciones de fijaciones, trayectorias de

sacadas y valores de ganancia calculados. Esta funcionalidad es esencial para la validación
y análisis cualitativo de los resultados, siguiendo las recomendaciones de Antoniades et al.
(2013) [2].
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Figura 3.17: Ejemplo de visualización de las ganancias de las sacadas calculadas para un
participante.

Consideraciones técnicas
La implementación computacional incorpora filtros de calidad, validación visual

y criterios conservadores para asegurar la robustez de los resultados. La ganancia de
sacadas debe interpretarse en el contexto experimental y en conjunto con otros parámetros
oculomotores para una caracterización integral del desempeño visual.

En síntesis, la ganancia de sacadas es un parámetro esencial para la evaluación cuantita-
tiva de la precisión oculomotora, aportando valor diagnóstico y comparativo en estudios de
función

3.6.2 Sacadas correctivas (Corrective Saccades)

Definición y relevancia clínica
Las sacadas correctivas constituyen un tipo específico de movimiento ocular de pequeña

amplitud, cuya función es compensar errores residuales tras una sacada primaria. Estas
sacadas desempeñan un papel crucial en el mantenimiento de la precisión visual y reflejan
la eficiencia del sistema de control oculomotor [28]. Su frecuencia y características han
sido propuestas como biomarcadores sensibles a procesos de envejecimiento y disfunción
neurológica [10].

Fundamentos teóricos
La literatura destaca que las sacadas correctivas reflejan mecanismos de retroalimenta-

ción visual y la capacidad del sistema oculomotor para corregir errores de fijación. Cambios
en la frecuencia o en las características de estas sacadas pueden indicar alteraciones en
el control motor fino, siendo relevantes en el contexto del envejecimiento y los trastornos
neurodegenerativos [10, 41].
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Metodología de cálculo
La detección y cuantificación de sacadas correctivas se basa en el análisis de desvia-

ciones temporales de la mirada fuera de los límites de los clusters de fijación previamente
identificados. El procedimiento sigue estos pasos:

1. Definición del intervalo temporal: Para cada cluster de fijación, se establece su
intervalo temporal mediante los tiempos de inicio (tstart) y finalización (tend).

2. Identificación de puntos fuera del radio: Se calcula la distancia euclidiana de
cada punto de mirada al centro del cluster. Los puntos que exceden el radio establecido
se consideran candidatos a sacada correctiva.

3. Agrupación de secuencias consecutivas: Los puntos fuera del radio se agrupan
en secuencias temporalmente consecutivas, siguiendo los criterios de Eckstein et al.
(2017) [12].

4. Cálculo de parámetros cuantitativos: Para cada secuencia identificada se calculan:

• Distancia máxima: Máxima distancia alcanzada fuera del límite del cluster.

• Duración: Tiempo entre el primer y último punto de la secuencia.

• Coordenadas de trayectoria: Registro completo de posiciones x, y y tiempos de
cada punto de la sacada correctiva.

Criterios de validación
La validación sigue los estándares metodológicos de Molitor et al. (2015) [30]:

• Se requiere un mínimo de dos puntos consecutivos fuera del radio del cluster para
considerar válida una sacada correctiva.

• Control de calidad temporal y espacial de las secuencias detectadas.

• Verificación de que los índices calculados estén dentro de los límites válidos de los
datos registrados [3].

Parámetros extraídos
A partir de las sacadas correctivas detectadas se obtienen:

• Frecuencia de sacadas correctivas: Número total por cluster válido, normalizado
por la duración total del experimento.

• Distancia máxima promedio: Media de las distancias máximas alcanzadas fuera
de los límites de los clusters.

• Duración promedio: Media de las duraciones de todas las sacadas correctivas.
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• Proporción de clusters afectados: Porcentaje de clusters de fijación con al menos
una sacada correctiva.

Estas características se fundamentan en la evidencia de Terao et al. (2017) [41].

Visualización
La visualización incluye la representación de la trayectoria de cada sacada correctiva

sobre los clusters correspondientes, permitiendo la inspección manual y validación visual
de los resultados [9].
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Figura 3.18: Ejemplo de visualización de las trayectorias de sacadas correctivas detectadas
sobre los clusters de fijación.

Consideraciones técnicas
La implementación computacional maneja de forma robusta casos extremos como la

presencia de un único punto fuera del cluster o secuencias no consecutivas, aplicando criterios
de agrupación temporal para asegurar la identificación correcta de eventos oculomotores
genuinos. La conversión temporal considera la frecuencia de muestreo específica del sistema
de eye-tracking, garantizando precisión en las mediciones de duración. Se recomienda
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interpretar las sacadas correctivas en conjunto con otros parámetros oculomotores para
una caracterización integral del control visual.

En síntesis, las sacadas correctivas son un parámetro esencial para la evaluación cuanti-
tativa de la precisión y adaptabilidad del sistema oculomotor, aportando valor diagnóstico
y comparativo en estudios de función visual y envejecimiento.

3.6.3 Coeficiente de anticipación y retraso

Definición y relevancia clínica
El coeficiente de anticipación y retraso cuantifica la relación temporal entre el inicio

de las fijaciones oculares y la aparición de los estímulos visuales, proporcionando una
medida objetiva de la capacidad predictiva y de control temporal del sistema oculomotor.
Su relevancia clínica reside en su sensibilidad para detectar alteraciones en la sincronización
temporal de la atención visual, lo que lo convierte en un biomarcador útil en el estudio de
procesos de envejecimiento y trastornos neurodegenerativos [9, 21, 35].

Fundamentos teóricos
La conceptualización de este parámetro se fundamenta en evidencia neurocientífica

que indica que el sistema oculomotor posee capacidades predictivas que permiten anticipar
la aparición de estímulos en tareas de seguimiento visual. Barnes (2008) documentó que
el sistema visual puede generar movimientos anticipatorios basados en la predicción de
trayectorias de estímulos móviles [4]. Además, Eckstein et al. (2017) demostraron que
las diferencias en la sincronización temporal entre la atención visual y la aparición de
estímulos reflejan variaciones en la eficiencia del procesamiento cognitivo y la capacidad de
control ejecutivo [12]. El envejecimiento y los procesos neurodegenerativos pueden afectar
significativamente estos mecanismos temporales [41].

Metodología de cálculo
El cálculo del coeficiente de anticipación y retraso se basa en la diferencia temporal entre

el inicio de la fijación ocular más próxima y la aparición del estímulo visual correspondiente.
Matemáticamente, se expresa como:

Cunificado = tfijación − testímulo (3.4)

donde tfijación es el tiempo de inicio de la fijación más próxima espacialmente al estímulo, y
testímulo es el tiempo de aparición del estímulo visual. Valores negativos indican anticipación
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(la fijación comienza antes del estímulo), valores positivos señalan retraso (la fijación se
inicia después del estímulo) y valores cercanos a cero representan sincronización temporal
óptima.

El algoritmo implementado sigue estos pasos, adaptados de Raynowska y Orquin (2018)
[37]:

1. Ventana temporal de búsqueda: Para cada estímulo, se establece una ventana de
±500 ms respecto a su aparición para identificar fijaciones relevantes [30].

2. Selección de fijación relevante: Se selecciona la fijación con menor distancia
euclidiana respecto a la posición del estímulo, aplicando el criterio de proximidad
espacial de Munoz y Everling (2004) [31].

3. Cálculo de la diferencia temporal: Se computa la diferencia entre el inicio de la
fijación seleccionada y el tiempo de aparición del estímulo, obteniendo el valor del
coeficiente (3.4).

4. Clasificación temporal: Se establecen umbrales de ±200 ms para categorizar las
respuestas como anticipación significativa (< −200 ms), retraso significativo (> +200
ms) o sincronización (entre −200 ms y +200 ms).

Criterios de validación
La validez de cada medición se garantiza mediante criterios estrictos, siguiendo las

directrices de Antoniades et al. (2013) [2]:

• Existencia de fijaciones válidas dentro de la ventana temporal.

• Proximidad espacial entre la fijación y el estímulo (distancia máxima de tolerancia).

• Exclusión de valores extremos o artefactos de medición.

Parámetros extraídos
A partir del análisis del coeficiente de anticipación y retraso se obtienen:

• Distribución de coeficientes: Vector de diferencias temporales para todos los
ensayos.

• Porcentaje de anticipaciones, retrasos y sincronizaciones: Proporción de
ensayos en cada categoría temporal.

• Estadísticos descriptivos: Media y desviación estándar del coeficiente en cada
participante o grupo.

Visualización
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La visualización gráfica del coeficiente de anticipación y retraso a lo largo de las
secuencias experimentales permite identificar patrones individuales y grupales. En este
trabajo, las respuestas de anticipación se representan en azul, los retrasos en rojo y las
sincronizaciones en gris, facilitando la interpretación cualitativa de los resultados [3].
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Figura 3.19: Ejemplo de visualización del coeficiente de anticipación y retraso frente a
los estímulos visuales.

Consideraciones técnicas
La implementación computacional asegura la sincronización precisa entre los datos de

fijaciones y los tiempos de estímulo, aplicando filtros de calidad y algoritmos robustos para
la identificación de eventos relevantes. Esta aproximación garantiza la reproducibilidad y
comparabilidad de los resultados, permitiendo su integración en estudios longitudinales y
comparativos sobre envejecimiento y función cognitiva.

En conclusión, el coeficiente de anticipación y retraso constituye un parámetro integral
para la caracterización temporal de la respuesta oculomotora, aportando valor diagnóstico
y metodológico en el análisis de la atención visual y el control temporal en diferentes

3.6.4 Coeficiente de antisacadas

Definición y relevancia clínica
El coeficiente de antisacadas es una métrica fundamental para evaluar el control

cognitivo de los movimientos oculares, específicamente la capacidad de inhibir respuestas
automáticas y ejecutar movimientos oculares voluntarios. Este parámetro se deriva de la
tarea de antisacadas, un paradigma experimental ampliamente utilizado en neurociencia
cognitiva que requiere que los participantes supriman la tendencia natural de dirigir la
mirada hacia un estímulo visual periférico y, en su lugar, realicen una sacada hacia la
ubicación diametralmente opuesta [31]. La relevancia clínica de este parámetro radica en su

Universidad de Valladolid



46 Capítulo 3 Metodología

sensibilidad para detectar alteraciones en el control inhibitorio asociadas a trastornos neu-
ropsiquiátricos y neurodegenerativos, como la esquizofrenia y la enfermedad de Alzheimer
[5, 9].

Fundamentos teóricos
La tarea de antisacadas fue desarrollada como herramienta para evaluar el control

ejecutivo y la función del córtex prefrontal [31]. Estudios como los de Benson et al. (2012)
y Crawford et al. (2013) han demostrado que la tasa de errores en esta tarea constituye un
biomarcador sensible de disfunción ejecutiva, relevante en el envejecimiento y los trastornos
neurodegenerativos.

Metodología de cálculo
El cálculo del coeficiente de antisacadas se basa en el análisis de las respuestas

oculomotoras durante los ensayos donde el estímulo target corresponde a una antisacada
(identificados en los datos experimentales con el valor estimulo = 0). La metodología sigue
los principios de Falck-Ytter et al. (2013) [14], adaptando los criterios de clasificación para
el contexto de predicción de edad.

El algoritmo implementado sigue estos pasos principales:

1. Identificación de ensayos de antisacadas: Selección de estímulos con estimulo =
0.

2. Determinación de coordenadas objetivo: Para cada ensayo en la posición (x, y),
la posición correcta es (x, 1 − y), siguiendo a Fukushima y Fukushima (2013) [15].

3. Análisis temporal de fijaciones: Se consideran fijaciones desde 50 ms antes del
inicio del estímulo hasta 50 ms después de su finalización, según Eckstein et al. (2017)
[12].

4. Clasificación de respuestas: Se calculan las distancias euclidianas a la posición
prohibida y a la correcta. Se utiliza un umbral de 0,5 unidades normalizadas para
determinar si una fijación corresponde a alguna de estas ubicaciones.

5. Determinación de errores y aciertos: Un ensayo es error si la mirada se dirige a
la posición prohibida sin posteriormente mirar a la correcta; es acierto si se detecta
al menos una fijación hacia la posición correcta, independientemente de fijaciones
previas hacia la prohibida.

La tasa de error (error rate) se calcula como:

Tasa de error = Nerrores
Ntotal

(3.5)
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donde Nerrores es el número de ensayos clasificados como error y Ntotal el número total de
ensayos de antisacadas.

Criterios de validación
El criterio de validación espacial de 0,5 unidades normalizadas se fundamenta en

Anderson y MacAskill (2013) [1], permitiendo una detección robusta de respuestas sacádicas.
Para casos ambiguos, se aplica un umbral ampliado de 0,25 unidades normalizadas, siguiendo
a Kasprowski y Harezlak (2018) [23].

Parámetros extraídos
El análisis de antisacadas proporciona las siguientes métricas:

• Tasa de error : Proporción de ensayos con respuesta incorrecta (3.5).

• Precisión espacial: Vector de distancias euclidianas mínimas entre fijaciones co-
rrectas y la posición objetivo.

• Tiempo de predicción: Vector con los tiempos de reacción desde el inicio del
estímulo hasta la primera fijación correcta.

Figura 3.20: Ejemplo representativo de trayectorias oculares en la tarea de antisacadas.

Visualización

Consideraciones técnicas
La implementación considera respuestas correctivas, priorizando la clasificación como

acierto si la fijación correcta ocurre dentro del periodo analizado, incluso si hubo fijaciones
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previas hacia la posición prohibida [30]. El coeficiente de antisacadas resultante es una
medida objetiva y cuantitativa del control inhibitorio oculomotor, correlacionada con
marcadores de envejecimiento cognitivo [24] y constituye un parámetro esencial para la
predicción de edad biológica en este trabajo.

3.6.5 Sacadas dobles (Double Saccades)

Definición y relevancia clínica
Las sacadas dobles constituyen un paradigma experimental especializado que evalúa la

capacidad del sistema oculomotor para ejecutar secuencias rápidas y precisas de movimientos
sacádicos en respuesta a estímulos visuales consecutivos [25]. Este tipo de movimientos
representa un desafío particular para el control neuromotor, ya que requiere la coordinación
temporal precisa de múltiples componentes del sistema de control sacádico, incluyendo la
programación, ejecución y terminación de sacadas individuales dentro de una secuencia
compleja. Su relevancia clínica radica en su sensibilidad para detectar alteraciones en
el control temporal y la reprogramación motora, siendo útiles como biomarcadores en
trastornos neurológicos y del desarrollo [27].

Fundamentos teóricos
El análisis de sacadas dobles permite evaluar aspectos del funcionamiento oculomotor no

accesibles mediante paradigmas de sacadas simples. Este paradigma es sensible a alteraciones
en el control temporal, la capacidad de reprogramación sacádica y los mecanismos de
inhibición que previenen la interferencia entre sacadas consecutivas [1, 31]. La evaluación de
secuencias sacádicas complejas proporciona información sobre la integridad de los circuitos
cortico-subcorticales responsables del control voluntario de los movimientos oculares.

Metodología de cálculo
La detección y caracterización de sacadas dobles se basa en el análisis de secuencias

temporales de fijaciones oculares en respuesta a la presentación de dos estímulos visuales
consecutivos separados por un intervalo temporal mínimo. El algoritmo implementado
sigue estos pasos:

1. Identificación de fijación previa: Detección de la fijación inmediatamente anterior
al primer estímulo.

2. Primera sacada: Detección de la sacada desde la fijación previa hacia la posición
del primer estímulo.

3. Segunda sacada: Detección de la sacada desde la posición del primer estímulo hacia
la posición del segundo estímulo.
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4. Fijación final: Identificación de la fijación resultante en la posición objetivo final.

Para cada secuencia, se extraen los siguientes parámetros cuantitativos:

• Latencia de la primera sacada (L1): Tiempo desde la aparición del primer estímulo
hasta el inicio de la primera sacada.

• Latencia de la segunda sacada (L2): Tiempo desde la aparición del segundo
estímulo hasta el inicio de la segunda sacada.

• Intervalo intersacádico (I): Tiempo entre el final de la primera sacada y el inicio
de la segunda.

• Duración de fijación previa (Df ): Duración de la fijación que precede a la secuencia.

• Error de localización (E): Distancia euclidiana entre la posición final de fijación y
la posición objetivo del segundo estímulo.

Criterios de validación
La validación de las secuencias detectadas se realiza mediante criterios estrictos:

• Umbrales mínimos de distancia espacial entre fijaciones consecutivas.

• Rangos de latencias fisiológicamente plausibles (50–800 ms).

• Intervalos intersacádicos dentro de límites normales (0–500 ms).

• Exclusión de secuencias con fijaciones previas demasiado breves para ser detectadas
(por ejemplo, < 25 ms).

Estos criterios se basan en las recomendaciones de Terao et al. (2017) [41].

Parámetros extraídos
A partir del análisis de sacadas dobles se obtienen:

• Latencia de la primera sacada (L1)

• Latencia de la segunda sacada (L2)

• Intervalo intersacádico (I)

• Duración de fijación previa (Df )

• Error de localización (E)

Estos parámetros permiten evaluar la eficiencia temporal y espacial del sistema oculomotor
en tareas complejas.

Visualización
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La visualización incluye la representación espacial de las trayectorias oculares, la
codificación cromática de diferentes tipos de fijaciones (previa, primera posición, segunda
posición) y la superposición de parámetros temporales sobre las representaciones gráficas.
Esta aproximación facilita la identificación de patrones anómalos y la validación manual
de las detecciones automáticas.
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Figura 3.21: Ejemplo de visualización de una secuencia de sacadas dobles. En este caso,
no se ha conseguido detectar la fijación previa por su brevedad (25 ms).

Consideraciones técnicas
La implementación algorítmica permite la visualización interactiva de las secuencias

de sacadas dobles, incorpora filtros para la detección de fijaciones breves y aplica criterios
de exclusión para evitar artefactos. Se recomienda interpretar los resultados en conjunto
con otros parámetros oculomotores para una caracterización integral del control visual,
especialmente en el contexto de alteraciones neurológicas.

En síntesis, las sacadas dobles son un parámetro avanzado para la evaluación de la
coordinación temporal y espacial del sistema oculomotor, aportando valor diagnóstico y
comparativo en estudios de función visual y

3.6.6 Seguimiento ocular suave (Smooth Pursuit)

Definición y relevancia clínica
El seguimiento ocular suave, o smooth pursuit, es un tipo especializado de movimiento

ocular que permite al sistema visual mantener la fijación sobre objetos en movimiento
continuo, diferenciándose de los movimientos sacádicos por su naturaleza gradual y sostenida.
Su relevancia clínica radica en que las alteraciones en el smooth pursuit pueden reflejar
disfunciones en múltiples regiones cerebrales, incluyendo la corteza visual, el cerebelo y
los ganglios basales [25]. Por ello, se considera un parámetro valioso para la evaluación de
procesos de envejecimiento y trastornos neurodegenerativos [1, 10].
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Fundamentos teóricos
El smooth pursuit requiere la integración continua de información visual y procesos

de control motor de alto nivel, involucrando circuitos cortico-subcorticales complejos [4].
Alteraciones en este sistema pueden manifestarse tempranamente en diversas condiciones
neurológicas, precediendo incluso a síntomas clínicos evidentes [1]. El envejecimiento normal
afecta sistemáticamente la calidad del seguimiento suave, deteriorando tanto la ganancia
como la suavidad de las trayectorias [10].

Metodología de cálculo
El análisis cuantitativo del smooth pursuit se basa en el procesamiento de las señales

de seguimiento ocular durante la estimulación con objetivos en movimiento continuo. El
proceso se estructura en las siguientes etapas:

1. Detección automática de intervalos de seguimiento: Identificación de períodos
de actividad de seguimiento mediante el análisis de la velocidad ocular y la aplicación
de umbrales adaptativos.

2. Cálculo de latencia de pursuit: Tiempo desde el inicio del estímulo en movimiento
hasta el inicio del movimiento de seguimiento, identificado mediante un umbral de
velocidad mínima [41].

3. Análisis de velocidad de seguimiento: Cálculo de la velocidad media durante los
períodos de pursuit activo, aplicando técnicas de suavizado para reducir el ruido.

4. Evaluación del error de seguimiento: Cálculo de la desviación entre la trayectoria
ocular observada y una trayectoria ideal estimada, utilizando ajuste polinomial [30].

5. Cálculo de duración del seguimiento: Tiempo durante el cual se mantiene un
seguimiento activo y coherente del estímulo.

Criterios de validación
Para garantizar la validez de los parámetros extraídos, se aplican los siguientes criterios:

• Exclusión de períodos de seguimiento con duración insuficiente o incoherencia tempo-
ral.

• Verificación de la plausibilidad fisiológica de los valores de latencia, velocidad y error.

• Validación visual de las trayectorias y parámetros calculados [2].

Parámetros extraídos
A partir del análisis del smooth pursuit se obtienen:

• Latencia de inicio: Tiempo de reacción ante el inicio del movimiento del estímulo.
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• Velocidad de seguimiento: Velocidad media mantenida durante los períodos de
pursuit activo.

• Error de seguimiento: Desviación media entre la posición ocular y la trayectoria
ideal.

• Duración del seguimiento: Tiempo total de seguimiento activo y coherente.

Consideraciones técnicas
La implementación computacional incorpora mecanismos de validación de calidad,

análisis estadístico descriptivo y visualización interactiva para la inspección manual de
los resultados. Se recomienda interpretar los parámetros de smooth pursuit en conjunto
con otras métricas oculomotoras para una caracterización integral del desempeño visual,
considerando la variabilidad interindividual y el contexto experimental [3].

En síntesis, el smooth pursuit es un parámetro esencial para la evaluación cuantitativa
de la función oculomotora continua, aportando valor diagnóstico y comparativo en estudios
de envejecimiento y

3.6.7 Área envolvente convexa (Convex Hull)

Definición y relevancia clínica
El área envolvente convexa, conocida como convex hull, es una métrica geométrica que

cuantifica la dispersión máxima de los movimientos oculares durante tareas de seguimiento
visual. Representa el área mínima que engloba todos los puntos de fijación registrados,
proporcionando una medida objetiva de la extensión espacial de la exploración visual [42].
Su relevancia clínica radica en su capacidad para detectar alteraciones en los patrones de
exploración visual asociadas a condiciones neurológicas y neurodegenerativas [27, 3].

Fundamentos teóricos
El parámetro convex hull se fundamenta en la geometría computacional y en el análisis

de la dispersión espacial de las fijaciones oculares. Toker et al. [42] demostraron que esta
métrica refleja estrategias cognitivas de exploración visual, mientras que Duchowski [11]
recomienda su uso para el procesamiento robusto de datos de eye-tracking. El área del
convex hull complementa otras métricas como la BCEA y la entropía espacial, aportando
información sobre la extensión máxima de la exploración [44].

Metodología de cálculo
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El cálculo del área envolvente convexa se realiza aplicando algoritmos como Graham o
QuickHull a las coordenadas normalizadas de las posiciones oculares. El área se obtiene
mediante la siguiente ecuación:

Aconvex hull =
1
2

∣∣∣∣∣
n∑

i=1
(xiyi+1 − xi+1yi)

∣∣∣∣∣ (3.6)

donde (xi, yi) son las coordenadas de los vértices del polígono convexo ordenados
secuencialmente y n es el número de vértices. Esta fórmula corresponde al cálculo del área
de un polígono simple mediante la regla del shoelace.

Criterios de validación
Para garantizar la validez del cálculo, se aplican los siguientes criterios:

• Filtrado de valores anómalos: eliminación de coordenadas con valores NaN, infinitos
o fuera del rango normalizado [0,1].

• Verificación de un mínimo de tres puntos válidos para la construcción del polígono
convexo.

• Validación visual de la envolvente convexa para descartar artefactos.

Estos procedimientos siguen las recomendaciones metodológicas de Duchowski [11] y
aseguran la robustez del análisis.

Parámetros extraídos
A partir del análisis del convex hull se obtienen:

• Área del convex hull: Medida de la extensión máxima de la exploración visual.

• Número de vértices: Cantidad de puntos que definen el perímetro convexo.

• Relación con otras métricas: Comparación con BCEA y entropía espacial para
caracterización integral.

Visualización
La visualización incluye la representación gráfica de los puntos de fijación y el perímetro

convexo calculado. Esta funcionalidad es esencial para la validación visual y la identificación
de posibles artefactos. En este trabajo, se emplean figuras donde se muestran todos los
puntos válidos, el trazado del convex hull y el área correspondiente, siguiendo un formato
homogéneo para todas las métricas espaciales.
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Figura 3.22: Ejemplo de visualización del área envolvente convexa (convex hull) super-
puesta a los puntos de fijación ocular.
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Consideraciones técnicas
La implementación computacional utiliza algoritmos eficientes para el cálculo del

convex hull y aplica filtros de calidad para asegurar la validez de los datos. El análisis debe
interpretarse en el contexto experimental específico: valores elevados pueden indicar una
exploración visual amplia o mayor variabilidad oculomotora, mientras que valores bajos
pueden reflejar una exploración más concentrada o restricciones funcionales. Se recomienda
analizar esta métrica junto con otras medidas oculomotoras para una caracterización
completa del comportamiento visual.

En síntesis, el área envolvente convexa (convex hull) es un parámetro esencial para la
evaluación cuantitativa de la dispersión espacial en el análisis de movimientos oculares,
aportando valor diagnóstico y comparativo en estudios de función oculomotora.

3.6.8 Área Elíptica Bivariada de Contorno (BCEA)

Definición y relevancia clínica
El Bivariate Contour Ellipse Area (BCEA) es una métrica estadística que cuantifica la

dispersión espacial de las posiciones oculares durante períodos de fijación, proporcionando
una medida objetiva de la precisión de fijación ocular [44]. Su relevancia clínica radica en
su sensibilidad para detectar alteraciones en la estabilidad de la fijación, lo que la convierte
en un biomarcador útil en el estudio de patologías neurodegenerativas y trastornos del
desarrollo [30, 1].

Fundamentos teóricos
El parámetro BCEA se fundamenta en el análisis de la distribución bivariada de las

posiciones oculares, asumiendo una distribución normal multivariante. Esta aproximación
permite caracterizar tanto la magnitud como la orientación de la dispersión ocular, cap-
turando la inestabilidad de la fijación [44]. El BCEA representa el área de la elipse que
contiene aproximadamente el 68 % de las muestras de posición ocular.

Metodología de cálculo
El cálculo del BCEA se realiza mediante la siguiente ecuación:

BCEA = 2πσxσy

√
1 − ρ2 (3.7)

donde σx y σy son las desviaciones estándar de las coordenadas horizontales y verticales,
respectivamente, y ρ es el coeficiente de correlación entre ambas dimensiones espaciales.
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Esta fórmula estima el área de la elipse de dispersión para un nivel de confianza del 68 %.
Para otros niveles de confianza, el factor multiplicativo puede ajustarse (por ejemplo,
k = 2,291 para el 95 % de los datos).

Criterios de validación
La validez del cálculo del BCEA depende de una adecuada identificación de períodos

de fijación y de la calidad de los datos. Se aplican algoritmos de filtrado para eliminar
artefactos, valores atípicos y muestras no fisiológicas, siguiendo las recomendaciones de
Hessels et al. [18]. Además, la robustez del BCEA frente a outliers moderados y su invarianza
ante transformaciones de coordenadas han sido documentadas por Bargary et al. [3].

Parámetros extraídos
A partir del análisis de BCEA se obtienen:

• BCEA: Área de la elipse de dispersión para cada período de fijación.

• Orientación y dimensiones de la elipse: Calculadas a partir de la matriz de
covarianza, eigenvalores y eigenvectores.

• Estadísticos descriptivos: Media y desviación estándar de BCEA en diferentes
condiciones o grupos.

Visualización
La visualización de la elipse de dispersión sobre los datos de posición ocular facilita

la interpretación cualitativa de la estabilidad de la fijación. En este trabajo, se emplean
representaciones gráficas donde la elipse característica se superpone a las muestras de
fijación, permitiendo identificar patrones anómalos o diferencias entre grupos.

Consideraciones técnicas
La implementación computacional del BCEA en este trabajo asegura la reproduci-

bilidad y precisión de los cálculos mediante la aplicación de criterios estrictos de calidad
de datos y el uso de algoritmos numéricamente estables para el cálculo de la matriz de
covarianza. La metodología empleada permite la comparación directa con estudios previos
y la interpretación clínica de los resultados, especialmente en el contexto del envejecimiento
y los trastornos neurodegenerativos [21, 35].

En resumen, el BCEA constituye un parámetro esencial para la caracterización cuantita-
tiva de la estabilidad de la fijación ocular, aportando valor diagnóstico y comparativo en
estudios de función oculomotora.
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Figura 3.23: Ejemplo de visualización de la elipse de dispersión (BCEA) superpuesta a
las posiciones oculares durante la fijación.
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3.6.9 Distancia cuadrática media al centro (Root Mean
Square Distance, RMS-dist)

Definición y relevancia clínica
La distancia cuadrática media al centro (Root Mean Square distance, RMS-dist) es un

parámetro fundamental para la caracterización de la dispersión espacial de las fijaciones
oculares durante tareas de visualización libre. Este índice cuantifica la variabilidad posicional
de las muestras de seguimiento ocular respecto al baricentro o centro de masa de la
distribución espacial de las fijaciones [45]. Su relevancia clínica radica en su capacidad para
discriminar entre patrones de exploración visual concentrados y dispersos, proporcionando
información sobre el control oculomotor y la eficiencia del procesamiento visual [42].

Fundamentos teóricos
El cálculo de la RMS-dist se fundamenta en la teoría de momentos estadísticos

aplicada a la distribución espacial de las fijaciones oculares. Xu et al. [45] demostraron la
utilidad de este parámetro como biomarcador en trastornos neurológicos que afectan el
control oculomotor. Valores bajos de RMS-dist indican una mirada concentrada en regiones
específicas del campo visual, mientras que valores elevados sugieren una exploración más
dispersa o errática.

Metodología de cálculo
El cálculo de la RMS-dist sigue estos pasos:

1. Filtrado de datos válidos: Eliminación de muestras con valores no numéricos
(NaN ), infinitos (Inf ) o fuera del rango normalizado [0, 1].

2. Cálculo del baricentro: Determinación del centro de masa de la distribución
espacial mediante:

x̄ =
1
n

n∑
i=1

xi, ȳ =
1
n

n∑
i=1

yi (3.8)

donde n es el número de muestras válidas.

3. Cálculo de distancias euclidianas: Para cada muestra válida, se calcula la distancia
euclidiana al baricentro:

di =
√
(xi − x̄)2 + (yi − ȳ)2 (3.9)
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4. Cálculo de la RMS-dist: La distancia cuadrática media se obtiene mediante:

RMS-dist =

√√√√ 1
n

n∑
i=1

d2
i (3.10)

En las ecuaciones anteriores, xi y yi son las coordenadas de cada fijación, x̄ y ȳ el baricentro,
di la distancia de cada punto al centro y n el número de muestras válidas.

Criterios de validación
Para garantizar la validez del cálculo, se aplican los siguientes criterios:

• Presencia de al menos dos puntos válidos para el cálculo.

• Filtrado de datos atípicos y verificación de integridad de las coordenadas.

• Restricción a coordenadas normalizadas en el rango [0, 1].

Estos procedimientos siguen las recomendaciones metodológicas de Toker et al. [42].

Parámetros extraídos
A partir del análisis de la RMS-dist se obtienen:

• Valor de RMS-dist: Medida global de la dispersión espacial de las fijaciones.

• Distribución de distancias: Vector de distancias individuales para análisis intra- e
inter-sujeto.

Visualización
La visualización incluye la representación gráfica de la distribución espacial de las

fijaciones, la ubicación del baricentro y un círculo representativo del valor de RMS-dist.
Esta visualización facilita la interpretación clínica al permitir la evaluación visual inmediata
de la concentración o dispersión de los patrones de fijación.

Consideraciones técnicas
La implementación computacional incorpora mecanismos robustos de validación de

datos y manejo de errores, así como categorización automática de los patrones de concen-
tración visual. Se recomienda interpretar la RMS-dist en conjunto con otros parámetros
oculomotores para una caracterización integral del comportamiento visual, especialmente
en el contexto del envejecimiento y los trastornos neurodegenerativos [10, 35].
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Figura 3.24: Ejemplo de visualización de la distribución de fijaciones, baricentro y círculo
de radio RMS-dist.
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En síntesis, la distancia cuadrática media al centro es un parámetro esencial para la
evaluación cuantitativa de la dispersión espacial en el análisis de movimientos oculares,
aportando valor diagnóstico y comparativo en estudios de

3.6.10 Entropía de Shannon espacial (Shannon Entropy)

Definición y relevancia clínica
La entropía de Shannon espacial es una métrica fundamental para cuantificar la impre-

decibilidad y dispersión de los patrones de exploración visual, midiendo la incertidumbre
asociada a la localización de las fijaciones oculares en el espacio visual [34]. Su relevancia
clínica reside en su capacidad para detectar alteraciones en la distribución espacial de
la mirada, lo que la convierte en un biomarcador potencial en el estudio de trastornos
neurodegenerativos y diferencias individuales en estrategias de exploración visual [24, 3].

Fundamentos teóricos
Este parámetro se deriva de la teoría de la información de Shannon, que permite

evaluar la distribución espacial de las posiciones oculares mediante la cuantificación de la
incertidumbre o aleatoriedad en la localización de la siguiente fijación. Valores elevados de
entropía indican patrones de exploración visual impredecibles y dispersos, mientras que
valores bajos reflejan comportamientos más focalizados o estereotipados.

Metodología de cálculo
El cálculo de la entropía de Shannon espacial se basa en la discretización del plano

visual en una cuadrícula regular de n × n celdas. El número de bins se determina mediante
una regla de Sturges modificada, adaptando la resolución espacial al número de muestras
disponibles:

nbins = máx(5, mı́n(50, ⌊√
npuntos⌋)) (3.11)

donde npuntos es el número total de muestras válidas.

La probabilidad de ocupación de cada celda (i, j) se calcula como:

P(i,j) =
ni,j

Ntotal
(3.12)

donde ni,j es el número de muestras en la celda (i, j) y Ntotal el total de muestras válidas.
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La entropía de Shannon espacial se define como:

Hspatial = −
M∑

k=1
pk log2(pk) (3.13)

donde pk es la probabilidad de ocupación de la celda k (considerando solo celdas con pk > 0
para evitar la indefinición de log2(0)) y M es el número total de celdas ocupadas.

Criterios de validación
Para garantizar la validez del cálculo, se aplican los siguientes criterios:

• Filtrado de valores no válidos (NaN, Inf ) y restricción a coordenadas normalizadas
en el rango [0, 1].

• Selección adaptativa del número de bins para asegurar robustez estadística.

• Exclusión de celdas vacías en el cálculo de la entropía.

Estos procedimientos siguen las recomendaciones metodológicas de Duchowski [11] y Mathôt
[29].

Parámetros extraídos
A partir del análisis de la entropía de Shannon espacial se obtienen:

• Valor de entropía: Medida global de la dispersión espacial de las fijaciones.

• Mapa de densidad: Distribución espacial de la probabilidad de ocupación de cada
celda.

Visualización
La visualización de los resultados se realiza mediante mapas de calor (heatmaps)

que representan la densidad de muestras en cada celda de la cuadrícula, facilitando la
interpretación intuitiva de los patrones espaciales identificados. Esta representación gráfica
permite la identificación visual de regiones de interés preferencial y la evaluación cualitativa
de la heterogeneidad en la distribución espacial de las fijaciones oculares.

Consideraciones técnicas
La selección adecuada del número de bins es crítica para evitar tanto la sobresegmen-

tación como la pérdida de resolución espacial. La implementación computacional incorpora
filtros de calidad y validación visual para asegurar la robustez y reproducibilidad de los
resultados. Se recomienda interpretar la entropía de Shannon espacial en conjunto con otras
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Figura 3.25: Ejemplo de visualización del mapa de calor y valor de entropía de Shannon
espacial para un conjunto de fijaciones oculares.
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métricas oculomotoras para una caracterización integral de los patrones de exploración
visual.

En síntesis, la entropía de Shannon espacial es un parámetro esencial para la evaluación
cuantitativa de la dispersión y predictibilidad en el análisis de movimientos oculares,
aportando valor diagnóstico y comparativo en estudios

3.6.11 Entropía de Muestra (Sample Entropy) del radio
temporal

Definición y relevancia clínica
La Sample Entropy del radio temporal es un parámetro avanzado que cuantifica la

complejidad temporal de los patrones oculomotores durante tareas de fijación. Evalúa
la irregularidad en la serie temporal de la distancia al centroide de las fijaciones, pro-
porcionando una medida objetiva de la variabilidad temporal del control oculomotor. Su
relevancia clínica radica en su capacidad para detectar alteraciones en la regularidad de los
movimientos oculares, lo que la convierte en un biomarcador potencial en el estudio de
trastornos neurológicos y del desarrollo [39].

Fundamentos teóricos
El concepto de Sample Entropy fue introducido por Richman y Moorman [39] como

una medida robusta de la regularidad de series temporales fisiológicas. A diferencia de otras
métricas de entropía, la SampEn es menos sensible a la longitud de la serie y al ruido. En
el contexto oculomotor, su aplicación al radio temporal permite evaluar la estabilidad del
control postural ocular: valores altos indican mayor irregularidad y potencial ineficiencia,
mientras que valores bajos sugieren patrones regulares y predecibles.

Metodología de cálculo
El cálculo de la SampEn del radio temporal sigue estos pasos:

1. Cálculo del centroide: Se obtiene el centroide de las posiciones de fijación como
xc =

1
N

∑N
i=1 xi y yc =

1
N

∑N
i=1 yi, donde N es el número de muestras válidas.

2. Serie temporal del radio: Se calcula r(t) =
√
(x(t) − xc)2 + (y(t) − yc)2, que

representa la distancia euclidiana instantánea de cada posición ocular al centroide.

3. Cálculo de la Sample Entropy: Se utiliza la ecuación

SampEn(m, r) = − ln
(

A

B

)
(3.14)
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donde A es el número de pares de patrones de longitud m+ 1 que cumplen la condición
de similitud, y B es el número de pares de patrones de longitud m similares, con
tolerancia r. Los parámetros estándar recomendados son m = 2 y r = 0,2 × σ, siendo
σ la desviación estándar de la serie r(t).

Cada variable de la ecuación (3.14) se explica así: m es la dimensión embebida, r la
tolerancia, A y B los conteos de patrones similares.

Criterios de validación
Para garantizar la validez del cálculo, se aplican los siguientes criterios:

• Eliminación de muestras no válidas (NaN, infinitos o fuera del rango normalizado
[0, 1]).

• Requiere al menos 10 muestras válidas por período de fijación para asegurar estabilidad
estadística.

• Verificación de la estacionariedad de la serie temporal y detección de outliers.

Estos procedimientos siguen las recomendaciones metodológicas de Richman y Moorman
[39] y garantizan la robustez del análisis.

Parámetros extraídos
A partir del análisis de la SampEn del radio temporal se obtienen:

• Sample Entropy: Valor de irregularidad temporal para cada período de fijación.

• Estadísticos descriptivos: Media y desviación estándar de la SampEn en diferentes
condiciones o grupos.

Visualización
La visualización incluye la representación gráfica de la serie temporal del radio y

el valor de SampEn calculado. Esta funcionalidad facilita la identificación de patrones
anómalos y la validación visual de los resultados computacionales. En este trabajo, se
emplean figuras donde se muestra la evolución temporal del radio y el valor de entropía
asociado, siguiendo un formato homogéneo para todas las métricas temporales.

Consideraciones técnicas
La selección de los parámetros m y r debe balancear sensibilidad y robustez ante el

ruido inherente en los datos de eye-tracking. Se recomienda m = 2 y r = 0,2 × σ para
la mayoría de aplicaciones fisiológicas. La duración mínima de los períodos de fijación es
crítica para la confiabilidad estadística, y la validación debe incluir la verificación de la
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Figura 3.26: Ejemplo de visualización de la serie temporal del radio y el valor de Sample
Entropy calculado para un período de fijación.

estacionariedad de la serie. La implementación computacional incorpora filtros adaptativos
y métodos de detección de outliers para minimizar el impacto de artefactos experimentales.

En síntesis, la Sample Entropy del radio temporal es un parámetro esencial para la
evaluación cuantitativa de la complejidad temporal en el análisis de movimientos oculares,
aportando valor diagnóstico y comparativo en estudios de función oculomotora.

3.7 Regression Learner: Plataforma de
Entrenamiento y Optimización de Modelos

La selección y optimización de algoritmos de aprendizaje automático constituye una etapa
crítica en el desarrollo de modelos predictivos. Para esta tarea, se empleó Regression
Learner de MATLAB, una plataforma integrada que facilita la comparación sistemática
de múltiples algoritmos de regresión y la optimización de sus hiperparámetros de forma
automatizada.
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3.7.1 Arquitectura y Funcionalidades de Regression Learner

Regression Learner representa una interfaz unificada que permite el entrenamiento, eva-
luación y comparación de diferentes familias de algoritmos de regresión sin requerir im-
plementación manual de cada método [22]. Esta plataforma integra las funcionalidades
de las principales toolboxes de machine learning de MATLAB, proporcionando acceso a
algoritmos que van desde modelos lineales simples hasta métodos de ensemble avanzados.

La arquitectura de la plataforma se estructura en módulos especializados que gestionan
diferentes aspectos del proceso de modelado: preprocesamiento automático de datos,
selección de algoritmos, optimización de hiperparámetros, validación cruzada, y evaluación
de rendimiento. Esta estructura modular permite una exploración sistemática del espacio
de modelos disponibles mientras mantiene la consistencia metodológica entre diferentes
aproximaciones.

3.7.1.1 Algoritmos Disponibles y Clasificación

La plataforma ofrece acceso a más de 20 algoritmos de regresión organizados en cinco
familias principales:

Modelos Lineales: Incluyen regresión lineal múltiple, regresión con regularización
(Ridge, Lasso, Elastic Net), y regresión robusta. Estos métodos son particularmente
apropiados cuando se asume una relación aproximadamente lineal entre predictores y
variable respuesta, y ofrecen alta interpretabilidad [43].

Procesos Gaussianos: Proporcionan predicciones probabilísticas con estimaciones de
incertidumbre, siendo particularmente valiosos cuando se requiere cuantificar la confianza
en las predicciones individuales [8].

3.7.2 Procedimientos de Entrenamiento y Validación

El proceso de entrenamiento en Regression Learner sigue una metodología estandarizada
que garantiza la comparabilidad entre diferentes algoritmos y la robustez de las evaluaciones
de rendimiento.

3.7.2.1 Partición de Datos y Validación Cruzada

La plataforma implementa automáticamente esquemas de validación cruzada para pro-
porcionar estimaciones no sesgadas del rendimiento del modelo. Por defecto, se utiliza
validación cruzada k-fold con k=5, aunque este parámetro puede ajustarse según las
características del dataset y los requerimientos específicos del problema.
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La validación cruzada estratificada garantiza que cada fold mantenga una distribución
representativa de la variable respuesta, aspecto crítico cuando se trabaja con datos de
envejecimiento donde la distribución de edades puede presentar características específicas
[24]. Este enfoque minimiza la varianza en las estimaciones de rendimiento y proporciona
una evaluación más confiable de la capacidad de generalización del modelo.

3.7.2.2 Métricas de Evaluación

La evaluación del rendimiento se basa en múltiples métricas que capturan diferentes
aspectos de la calidad predictiva:

Error Cuadrático Medio (RMSE): Proporciona una medida del error de predicción
penalizando más fuertemente los errores grandes. Su interpretabilidad directa en las
unidades de la variable respuesta (años en este caso) facilita la evaluación práctica del
rendimiento.

Error Absoluto Medio (MAE): Menos sensible a outliers que RMSE, proporciona
una medida más robusta del error típico de predicción. Particularmente relevante en
aplicaciones biomédicas donde se requiere estabilidad predictiva.

Coeficiente de Determinación (R2): Cuantifica la proporción de varianza expli-
cada por el modelo, proporcionando una medida normalizada de la calidad del ajuste
independiente de la escala de la variable respuesta.

3.7.3 Optimización de Hiperparámetros

Una de las funcionalidades más valiosas de Regression Learner es su capacidad para realizar
optimización automática de hiperparámetros mediante algoritmos bayesianos avanzados.

3.7.3.1 Búsqueda Bayesiana de Hiperparámetros

La plataforma implementa optimización bayesiana que modela la función objetivo (ren-
dimiento del modelo) como un proceso gaussiano y utiliza funciones de adquisición para
dirigir la búsqueda hacia regiones prometedoras del espacio de hiperparámetros [6]. Esta
aproximación es significativamente más eficiente que búsquedas exhaustivas o aleatorias,
especialmente relevante cuando el espacio de hiperparámetros es de alta dimensionalidad.

El proceso iterativo de optimización bayesiana balancea exploración (evaluación de
regiones no exploradas) y explotación (refinamiento cerca de configuraciones prometedoras),
maximizando la probabilidad de encontrar configuraciones óptimas con un número limitado
de evaluaciones.
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3.7.3.2 Hiperparámetros Críticos por Familia de Algoritmos

Cada familia de algoritmos presenta hiperparámetros específicos cuya optimización es
crítica para el rendimiento:

Para modelos de ensemble como Random Forest, los parámetros más influyentes incluyen
el número de árboles, profundidad máxima, y número mínimo de muestras por hoja.
La optimización de estos parámetros permite balancear capacidad predictiva y tiempo
computacional mientras previene sobreajuste [28].

En SVM, la selección del kernel y sus parámetros asociados (como el parámetro de ancho
de banda en kernels gaussianos) determina la complejidad de las fronteras de decisión que
el modelo puede aprender. La optimización conjunta de estos parámetros con el parámetro
de regularización es fundamental para lograr buenos resultados.

3.7.4 Estrategias de Optimización de Resultados

La maximización del rendimiento predictivo requiere considerar múltiples aspectos metodo-
lógicos que van más allá de la simple selección de algoritmos.

3.7.4.1 Preprocesamiento y Transformación de Características

Regression Learner proporciona opciones automatizadas de preprocesamiento que pueden
impactar significativamente el rendimiento:

Normalización de Características: La estandarización z-score o normalización min-
max garantiza que todas las características contribuyan equitativamente al proceso de
aprendizaje, especialmente crítico para algoritmos sensibles a escala como SVM o k-NN.

Transformación de Variables: La aplicación de transformaciones logarítmicas o de
potencia puede mejorar la linealidad de las relaciones y la normalidad de los residuos,
beneficiando especialmente a modelos lineales.

Selección de Características: Aunque no implementada automáticamente, la plata-
forma permite evaluar el impacto de diferentes subconjuntos de características, facilitando
la identificación de variables más informativas [29].

3.7.4.2 Ensemble de Modelos

Una estrategia avanzada para maximizar el rendimiento consiste en combinar predicciones
de múltiples modelos. Regression Learner facilita la exportación de modelos entrenados,
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permitiendo implementar estrategias de ensemble que pueden superar el rendimiento de
modelos individuales.

El ensemble promedio simple combina predicciones de diferentes algoritmos asignando
pesos iguales, mientras que el ensemble ponderado asigna pesos basados en el rendimiento
individual de validación cruzada. Estrategias más sofisticadas como stacking utilizan un
meta-modelo para aprender la combinación óptima de predicciones base.

3.7.4.3 Validación y Diagnóstico de Modelos

La plataforma proporciona herramientas de diagnóstico que permiten identificar problemas
potenciales y oportunidades de mejora:

Análisis de Residuos: La inspección de patrones en los residuos puede revelar viola-
ciones de supuestos del modelo, heterocedasticidad, o relaciones no-lineales no capturadas.

Análisis de Importancia de Características: Para algoritmos que lo soportan, la
cuantificación de la importancia relativa de cada característica proporciona insights sobre
los mecanismos predictivos y puede guiar refinamientos del modelo.

Detección de Sobreajuste: La comparación sistemática entre rendimiento de entre-
namiento y validación permite identificar casos de sobreajuste y ajustar estrategias de
regularización acordemente.

3.7.5 Consideraciones Computacionales y Escalabilidad

La selección de algoritmos debe considerar no solo la precisión predictiva sino también los
requerimientos computacionales, especialmente relevante cuando se trabaja con datasets
grandes o se requieren predicciones en tiempo real.

Algoritmos como regresión lineal y k-NN tienen costos computacionales predecibles y
escalables, mientras que métodos como SVM con kernels no-lineales o Procesos Gaussianos
pueden presentar limitaciones de escalabilidad. La plataforma proporciona estimaciones de
tiempo de entrenamiento que facilitan estas decisiones.

La funcionalidad de Regression Learner de MATLAB constituye así una herramienta
integral que democratiza el acceso a técnicas avanzadas de machine learning mientras
mantiene rigor metodológico. Su capacidad para automatizar aspectos técnicos complejos
permite concentrarse en decisiones científicas fundamentales, optimizando el proceso de
desarrollo de modelos predictivos robustos y confiables.
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4.1 Resultados

4.1.1 Correlaciones de los parámetros con la edad

A continuación se muestra en las tablas 4.3, 4.1 y 4.2 las correlaciones de los parámetros
oculomotores con la edad, expresadas en términos de coeficiente de correlación de Pearson
(r) y su significancia estadística (p). Además, en las figuras 4.2 y 4.1 se ilustra visualmente
la relación entre algunos de estos parámetros y la edad, mostrando ejemplos representativos
de la tendencia observada en los datos.

Edad
20 40 60 80
0

0.5

1

1.5

2

2.5

3

fij
ac
io
ne
s_
ve
lo
ci
ty

#104 ronda_1

r=0.258,	p=0.031

Edad
20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

fij
ac
io
ne
s_
ve
lo
ci
ty

#104 ronda_2

r=0.268,	p=0.025

Edad
20 40 60 80
0

0.5

1

1.5

2

2.5

3

fij
ac
io
ne
s_
ve
lo
ci
ty

#104 ronda_3

r=0.286,	p=0.016

Experimento	2	-	Parámetro:	 Velocidad de las Fijaciones

Figura 4.1: Relación entre la Velocidad de Fijaciones (Exp. 2) y la edad.



72 Capítulo 4 Resultados y Discusión

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ronda_1

r=0.264,	p=0.027

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3
ronda_2

r=0.137,	p=0.258

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3
ronda_3

r=0.229,	p=0.056

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25
ronda_4

r=0.132,	p=0.275

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25
ronda_5

r=0.205,	p=0.088

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3
ronda_6

r=0.258,	p=0.031

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ronda_7

r=0.194,	p=0.108

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25
ronda_8

r=0.303,	p=0.011

Edad
20 40 60 80

sa
m
pl
e_
en

0

0.05

0.1

0.15

0.2

0.25

0.3
ronda_9

r=0.295,	p=0.013

Experimento	7	-	Parámetro:	 Entropia de Muestra

Figura 4.2: Relación entre la Entropía de Muestra (Exp. 7) y la edad.
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Tabla 4.1: Correlaciones de los parámetros Ganancia de Sacadas, Sacadas Correctivas,
Coeficiente de Anticipación, Coeficiente de Retraso y Antisacadas. Valores de
r y p para cada ronda R y tamaño de muestra N.

Parámetro Exp. R N Correlación

r p

Ganancia de Sacadas

2
1 70 0.049 0.687
2 68 -0.046 0.708
3 70 -0.049 0.687

3
1 68 0.112 0.361
2 66 0.182 0.143
3 65 0.061 0.631

4
1 65 -0.290 0.019
2 68 0.102 0.409
3 68 -0.054 0.662

5
1 69 0.150 0.217
2 67 0.112 0.367
3 65 -0.016 0.902

8
1 62 -0.138 0.284
2 65 -0.173 0.169
3 61 0.010 0.940

Parámetro Exp. R N Correlación

r p

Sacadas Correctivas:
Distancias Máximas

2
1 35 0.188 0.280
2 39 0.049 0.768
3 31 0.183 0.325

3
1 4 -0.773 0.227
2 10 0.290 0.416
3 7 -0.069 0.883

4
1 42 -0.073 0.648
2 30 -0.201 0.288
3 36 -0.064 0.712

8
1 33 -0.412 0.017
2 35 -0.125 0.474
3 15 -0.156 0.580

Parámetro Exp. R N Correlación

r p

Sacadas Correctivas:
Duraciones

2
1 35 0.203 0.241
2 39 0.138 0.402
3 31 0.203 0.273

3
1 4 -0.462 0.538
2 10 0.421 0.226
3 7 -0.228 0.624

4
1 42 -0.210 0.181
2 30 -0.183 0.332
3 36 -0.025 0.884

8
1 33 -0.408 0.018
2 35 -0.216 0.213
3 15 -0.212 0.448

Parámetro Exp. R N Correlación

r p

Coeficiente de
Anticipación

2
1 19 -0.199 0.414
2 16 -0.483 0.058
3 18 -0.070 0.782

3
1 51 0.151 0.291
2 56 0.200 0.139
3 47 -0.193 0.193

4
1 26 0.199 0.329
2 20 -0.371 0.107
3 24 0.053 0.808

8
1 11 -0.443 0.172
2 10 0.383 0.275
3 9 -0.318 0.404

Parámetro Exp. R N Correlación

r p

Coeficiente de Retraso

2
1 70 -0.040 0.740
2 69 -0.108 0.377
3 70 -0.145 0.231

3
1 69 -0.070 0.565
2 70 0.208 0.084
3 69 -0.025 0.837

4
1 68 -0.067 0.590
2 69 -0.021 0.865
3 68 -0.106 0.391

8
1 66 -0.103 0.410
2 70 -0.031 0.802
3 69 0.127 0.300

Parámetro Exp. R N Correlación

r p

Antisacadas: Precisión
Espacial 3

1 68 -0.183 0.135
2 68 0.093 0.452
3 68 0.084 0.494

Antisacadas: Tiempo
de Predicción 3

1 68 -0.049 0.691
2 68 0.123 0.318
3 68 -0.081 0.513
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Tabla 4.2: Correlaciones de los parámetros Envolvente Convexa, Distancia RMS, Área
Elíptica Bivariada 68 % y del 95 %, Entropía de Shannon y de Muestra.
Valores de r y p para cada ronda R y tamaño de muestra N.

Parámetro Exp. R N Correlación

r p

Envolvente Convexa
(Convex Hull) 7

1 70 0.007 0.957
2 70 -0.152 0.208
3 70 0.113 0.351
4 70 -0.015 0.900
5 70 -0.001 0.993
6 70 0.141 0.245
7 70 0.028 0.816
8 70 0.024 0.845
9 70 -0.166 0.169

Parámetro Exp. R N Correlación

r p

Distancia RMS (Root
Mean Square) 7

1 70 -0.146 0.227
2 70 -0.112 0.358
3 70 0.037 0.760
4 70 -0.052 0.670
5 70 -0.081 0.503
6 70 0.065 0.595
7 70 -0.077 0.527
8 70 0.016 0.897
9 70 -0.122 0.313

Parámetro Exp. R N Correlación

r p

Área Elíptica
Bivariada 68 % 7

1 70 -0.142 0.242
2 70 -0.162 0.180
3 70 0.042 0.733
4 70 -0.050 0.679
5 70 -0.022 0.854
6 70 0.032 0.794
7 70 -0.081 0.508
8 70 -0.009 0.941
9 70 -0.123 0.309

Parámetro Exp. R N Correlación

r p

Área Elíptica
Bivariada 95 % 7

1 70 -0.142 0.242
2 70 -0.162 0.180
3 70 0.042 0.733
4 70 -0.050 0.679
5 70 -0.022 0.854
6 70 0.032 0.794
7 70 -0.081 0.508
8 70 -0.009 0.941
9 70 -0.123 0.309

Parámetro Exp. R N Correlación

r p

Entropía de Shannon 7

1 70 0.044 0.717
2 70 0.073 0.547
3 70 0.219 0.069
4 70 0.039 0.749
5 70 0.024 0.842
6 70 0.272 0.023
7 70 0.001 0.994
8 70 0.170 0.159
9 70 0.023 0.849

Parámetro Exp. R N Correlación

r p

Entropía de Muestra 7

1 70 0.264 0.027
2 70 0.137 0.258
3 70 0.229 0.056
4 70 0.132 0.275
5 70 0.205 0.088
6 70 0.258 0.031
7 70 0.194 0.108
8 70 0.303 0.011
9 70 0.295 0.013
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Tabla 4.3: Correlaciones de los parámetros Smooth Pursuit: Velocidades, Errores de
Seguimiento y Duraciones de Pursuit; Velocidades y número de fijaciones.
Valores de r y p para cada ronda R y tamaño de muestra N.

Parámetro Exp. R N Correlación

r p

Velocidad de
Fijaciones

1 1 70 0.152 0.208

2
1 70 0.258 0.031
2 70 0.268 0.025
3 70 0.286 0.016

3
1 70 0.286 0.017
2 70 0.308 0.010
3 70 0.298 0.012

4
1 70 0.222 0.064
2 70 0.189 0.117
3 70 0.224 0.063

5
1 70 0.336 0.004
2 70 0.265 0.027
3 70 0.204 0.090

8
1 70 0.265 0.027
2 70 0.269 0.024
3 70 0.284 0.017

Parámetro Exp. R N Correlación

r p

Número de Fijaciones

1 1 70 -0.175 0.147

2
1 70 -0.194 0.107
2 70 -0.261 0.029
3 70 -0.279 0.019

3
1 70 -0.259 0.030
2 70 -0.224 0.063
3 70 -0.221 0.066

4
1 70 -0.264 0.027
2 70 -0.124 0.305
3 70 -0.265 0.027

5
1 70 -0.275 0.021
2 70 -0.283 0.018
3 70 -0.242 0.043

8
1 70 -0.274 0.022
2 70 -0.325 0.006
3 70 -0.332 0.005

Parámetro Exp. R N Correlación

r p

Smooth Pursuit:
Velocidades 6

1 70 0.185 0.125
2 70 0.219 0.068
3 70 -0.059 0.626

Smooth Pursuit:
Errores de
Seguimiento

6
1 70 0.118 0.332
2 70 0.098 0.421
3 70 -0.034 0.780

Smooth Pursuit:
Duraciones de Pursuit 6

1 70 -0.030 0.806
2 70 0.062 0.609
3 70 0.050 0.683

Universidad de Valladolid



76 Capítulo 4 Resultados y Discusión

4.1.2 Matriz de correlación entre parámetros oculomotores

Para explorar las relaciones entre los distintos parámetros extraídos, se presenta a conti-
nuación la matriz de correlación de Pearson entre todos los parámetros calculados, dividida
en cuatro cuadrantes para facilitar su visualización. Esta matriz permite identificar grupos
de variables altamente relacionadas y posibles redundancias en los datos.

En la siguiente tabla se resumen las correlaciones más altas observadas entre pares
de parámetros. Se observa que muchas de las correlaciones más elevadas corresponden a
parámetros derivados de una misma métrica o de métricas muy relacionadas, lo que indica
una fuerte redundancia entre ellos.

Tabla 4.4: Principales correlaciones entre parámetros (|r| > 0,9).

Parámetro 1 Parámetro 2 Experimento r n

Exp7_bcea_68_R1 Exp7_bcea_95_R1 7 1.000 70
Exp7_bcea_68_R3 Exp7_rms_distance_R3 7 0.985 70
Exp4_sacadas_correctivas_max_distances_R3 Exp4_sacadas_correctivas_durations_R3 4 0.957 36
Exp2_fijaciones_velocity_R1 Exp2_fijaciones_velocity_R2 2 0.954 70
Exp8_sacadas_correctivas_max_distances_R1 Exp8_sacadas_correctivas_durations_R1 8 0.942 33
Exp1_fijaciones_velocity_R1 Exp1_fijaciones_numero_R1 1 -0.918 70
Exp3_fijaciones_velocity_R2 Exp4_fijaciones_velocity_R1 3-4 0.906 70

Como puede observarse, las correlaciones perfectas (r = 1,000) se dan entre los paráme-
tros bcea_68 y bcea_95 del mismo experimento y ronda, lo que indica que ambos miden
esencialmente la misma característica con diferente umbral. También destacan correla-
ciones muy altas entre métricas de dispersión espacial (bcea, rms_distance, convex_hull)
y entre repeticiones de un mismo parámetro, así como entre parámetros derivados de la
misma señal (por ejemplo, velocidad y número de fijaciones, con correlación negativa).
Esto sugiere que existe redundancia entre algunos parámetros y que, para futuros análisis,
podría considerarse una reducción de la dimensionalidad o la selección de un subconjunto
representativo de variables.
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Figura 4.3: Visualización de la correlación de Pearson entre todos los parámetros, primer
cuadrante.
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Cuadrante	2:	Parámetros	1-74	v s	75-147	(PEARSON)
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Figura 4.4: Visualización de la correlación de Pearson entre todos los parámetros, segundo
cuadrante.

Universidad de Valladolid



78 Capítulo 4 Resultados y Discusión
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Cuadrante	3:	Parámetros	75-147	vs	1-74	(PEARSON)
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Figura 4.5: Visualización de la correlación de Pearson entre todos los parámetros, tercer
cuadrante.

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
Parámetro	(número)

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Pa
rá
m
et
ro
	(n
úm
er
o)
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Figura 4.6: Visualización de la correlación de Pearson entre todos los parámetros, cuarto
cuadrante.
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Tabla 4.5: Número asociado a cada parámetro en el mapa de correlación.

Número Parámetro

1 Exp1_fijaciones velocity R1
2 Exp1_fijaciones numero R1
3 Exp2_ganancia sacadas R1
4 Exp2_ganancia sacadas R2
5 Exp2_ganancia sacadas R3
6 Exp2_sacadas correctivas max distances R1
7 Exp2_sacadas correctivas max distances R2
8 Exp2_sacadas correctivas max distances R3
9 Exp2_sacadas correctivas durations R1
10 Exp2_sacadas correctivas durations R2
11 Exp2_sacadas correctivas durations R3
12 Exp2_coef unificado retraso R1
13 Exp2_coef unificado retraso R2
14 Exp2_coef unificado retraso R3
15 Exp2_fijaciones velocity R1
16 Exp2_fijaciones velocity R2
17 Exp2_fijaciones velocity R3
18 Exp2_fijaciones numero R1
19 Exp2_fijaciones numero R2
20 Exp2_fijaciones numero R3
21 Exp3_ganancia sacadas R1
22 Exp3_ganancia sacadas R2
23 Exp3_ganancia sacadas R3
24 Exp3_coef unificado anticipacion R1
25 Exp3_coef unificado anticipacion R2
26 Exp3_coef unificado anticipacion R3
27 Exp3_coef unificado retraso R1
28 Exp3_coef unificado retraso R2
29 Exp3_coef unificado retraso R3
30 Exp3_antisacadas precision espacial R1
31 Exp3_antisacadas precision espacial R2
32 Exp3_antisacadas precision espacial R3
33 Exp3_antisacadas tiempo prediccion R1
34 Exp3_antisacadas tiempo prediccion R2
35 Exp3_antisacadas tiempo prediccion R3
36 Exp3_fijaciones velocity R1
37 Exp3_fijaciones velocity R2
38 Exp3_fijaciones velocity R3
39 Exp3_fijaciones numero R1
40 Exp3_fijaciones numero R2

Número Parámetro

41 Exp3_fijaciones numero R3
42 Exp4_ganancia sacadas R1
43 Exp4_ganancia sacadas R2
44 Exp4_ganancia sacadas R3
45 Exp4_sacadas correctivas max distances R1
46 Exp4_sacadas correctivas max distances R2
47 Exp4_sacadas correctivas max distances R3
48 Exp4_sacadas correctivas durations R1
49 Exp4_sacadas correctivas durations R2
50 Exp4_sacadas correctivas durations R3
51 Exp4_coef unificado retraso R1
52 Exp4_coef unificado retraso R2
53 Exp4_coef unificado retraso R3
54 Exp4_fijaciones velocity R1
55 Exp4_fijaciones velocity R2
56 Exp4_fijaciones velocity R3
57 Exp4_fijaciones numero R1
58 Exp4_fijaciones numero R2
59 Exp4_fijaciones numero R3
60 Exp5_ganancia sacadas R1
61 Exp5_ganancia sacadas R2
62 Exp5_ganancia sacadas R3
63 Exp5_fijaciones velocity R1
64 Exp5_fijaciones velocity R2
65 Exp5_fijaciones velocity R3
66 Exp5_fijaciones numero R1
67 Exp5_fijaciones numero R2
68 Exp5_fijaciones numero R3
69 Exp6_smooth pursuit velocidades R1
70 Exp6_smooth pursuit velocidades R2
71 Exp6_smooth pursuit velocidades R3
72 Exp6_smooth pursuit errores seguimiento R1
73 Exp6_smooth pursuit errores seguimiento R2
74 Exp6_smooth pursuit errores seguimiento R3
75 Exp6_smooth pursuit duraciones pursuit R1
76 Exp6_smooth pursuit duraciones pursuit R2
77 Exp6_smooth pursuit duraciones pursuit R3
78 Exp7_convex hull R1
79 Exp7_convex hull R2
80 Exp7_convex hull R3
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Tabla 4.6: Número asociado a cada parámetro en el mapa de correlación.

Número Parámetro

81 Exp7_convex hull R4
82 Exp7_convex hull R5
83 Exp7_convex hull R6
84 Exp7_convex hull R7
85 Exp7_convex hull R8
86 Exp7_convex hull R9
87 Exp7_bcea 68 R1
88 Exp7_bcea 68 R2
89 Exp7_bcea 68 R3
90 Exp7_bcea 68 R4
91 Exp7_bcea 68 R5
92 Exp7_bcea 68 R6
93 Exp7_bcea 68 R7
94 Exp7_bcea 68 R8
95 Exp7_bcea 68 R9
96 Exp7_bcea 95 R1
97 Exp7_bcea 95 R2
98 Exp7_bcea 95 R3
99 Exp7_bcea 95 R4
100 Exp7_bcea 95 R5
101 Exp7_bcea 95 R6
102 Exp7_bcea 95 R7
103 Exp7_bcea 95 R8
104 Exp7_bcea 95 R9
105 Exp7_rms distance R1
106 Exp7_rms distance R2
107 Exp7_rms distance R3
108 Exp7_rms distance R4
109 Exp7_rms distance R5
110 Exp7_rms distance R6
111 Exp7_rms distance R7
112 Exp7_rms distance R8
113 Exp7_rms distance R9
114 Exp7_shannon en R1
115 Exp7_shannon en R2
116 Exp7_shannon en R3
117 Exp7_shannon en R4
118 Exp7_shannon en R5
119 Exp7_shannon en R6
120 Exp7_shannon en R7

Número Parámetro

121 Exp7_shannon en R8
122 Exp7_shannon en R9
123 Exp7_sample en R1
124 Exp7_sample en R2
125 Exp7_sample en R3
126 Exp7_sample en R4
127 Exp7_sample en R5
128 Exp7_sample en R6
129 Exp7_sample en R7
130 Exp7_sample en R8
131 Exp7_sample en R9
132 Exp8_ganancia sacadas R1
133 Exp8_ganancia sacadas R2
134 Exp8_ganancia sacadas R3
135 Exp8_sacadas correctivas max distances R1
136 Exp8_sacadas correctivas max distances R2
137 Exp8_sacadas correctivas durations R1
138 Exp8_sacadas correctivas durations R2
139 Exp8_coef unificado retraso R1
140 Exp8_coef unificado retraso R2
141 Exp8_coef unificado retraso R3
142 Exp8_fijaciones velocity R1
143 Exp8_fijaciones velocity R2
144 Exp8_fijaciones velocity R3
145 Exp8_fijaciones numero R1
146 Exp8_fijaciones numero R2
147 Exp8_fijaciones numero R3
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
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4.1.3 Variabilidad Intra sujeto e Inter sujeto

Para evaluar la robustez y estabilidad de los parámetros oculomotores, se analizó la va-
riabilidad intra sujeto (diferencias entre repeticiones de un mismo sujeto) e inter sujeto
(diferencias entre sujetos) en aquellos parámetros que disponen de varias rondas o re-
peticiones. El análisis se realizó mediante el cálculo del coeficiente de variación (CV),
definido como la razón entre la desviación estándar y la media de los valores, tanto para las
repeticiones de cada sujeto (intra) como para el conjunto de sujetos en cada ronda (inter).

El procedimiento consistió en identificar los parámetros con múltiples rondas, extraer
los valores correspondientes de cada repetición y calcular el CV intra sujeto para cada
individuo y el CV inter sujeto para cada ronda. Posteriormente, se calcularon la media y
la mediana de estos coeficientes para cada parámetro y experimento.

A continuación, en las figuras 4.7 y 4.8, se muestran dos ejemplos representativos de las
figuras generadas en el análisis de variabilidad. Estas ilustran la distribución de los valores
y la dispersión intra e inter sujeto para parámetros concretos en distintos experimentos.
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Figura 4.7: Ejemplo de variabilidad intra e inter sujeto para el parámetro fijacio-
nes_numero en el Experimento 2.
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Figura 4.8: Ejemplo de variabilidad intra e inter sujeto para el parámetro
coef_unificado_retraso en el Experimento 8.

Observaciones destacadas:

A partir de los resultados presentados en la Tabla 4.7, se pueden extraer las siguientes
conclusiones principales sobre la confiabilidad de los parámetros evaluados:

• Experimento 6 (smooth pursuit): Se observan ratios intra/inter muy elevados
(4.00 y 2.75), lo que sugiere problemas de confiabilidad en estos parámetros para este
experimento.

• Fijaciones (velocity y número): Estos parámetros muestran generalmente ratios
bajos (0.20–0.40), lo que indica una buena confiabilidad y estabilidad en las medidas
repetidas.

• Parámetros más confiables: Aquellos con ratios consistentemente bajos (<0.5),
como fijaciones_velocity, pueden considerarse los más robustos para la evaluación
intra e inter sujeto.

El ratio intra/inter sujeto permite identificar de forma rápida qué parámetros presentan
mayor estabilidad y son más adecuados para medidas repetidas en experimentos ocu-
lomotores. Un menor valor de coeficiente de variación (CV) indica mayor estabilidad del
parámetro, mientras que valores elevados reflejan una mayor dispersión relativa.

En resumen, la Tabla 4.7 sintetiza estos resultados y facilita la comparación de la
confiabilidad de los distintos parámetros analizados.
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Tabla 4.7: Coeficiente de variación (CV) intra sujeto e inter sujeto para los principales
parámetros y experimentos.

Exp Parámetro CV Intra
(Media)

CV Inter
(Media)

Ratio
Intra/Inter

2 ganancia_sacadas 0.12 0.15 0.80
2 sacadas_correctivas_max_distances 0.53 0.45 1.18
2 sacadas_correctivas_durations 0.31 0.37 0.84
2 coef_unificado_anticipacion 0.14 0.20 0.70
2 coef_unificado_retraso 0.16 0.36 0.44
2 fijaciones_velocity 0.12 0.52 0.23
2 fijaciones_numero 0.18 0.39 0.46
3 ganancia_sacadas 0.18 0.24 0.75
3 sacadas_correctivas_max_distances 0.51 0.94 0.54
3 sacadas_correctivas_durations 0.30 0.85 0.35
3 coef_unificado_anticipacion 0.17 0.19 0.89
3 coef_unificado_retraso 0.14 0.23 0.61
3 antisacadas_precision_espacial 0.13 0.35 0.37
3 antisacadas_tiempo_prediccion 0.16 0.25 0.64
3 fijaciones_velocity 0.11 0.50 0.22
3 fijaciones_numero 0.17 0.47 0.36
4 ganancia_sacadas 0.10 0.22 0.45
4 sacadas_correctivas_max_distances 0.47 0.66 0.71
4 sacadas_correctivas_durations 0.51 0.69 0.74
4 coef_unificado_anticipacion 0.22 0.22 1.00
4 coef_unificado_retraso 0.12 0.30 0.40
4 fijaciones_velocity 0.13 0.53 0.25
4 fijaciones_numero 0.16 0.46 0.35
5 ganancia_sacadas 0.38 0.70 0.54
5 fijaciones_velocity 0.13 0.43 0.30
5 fijaciones_numero 0.19 0.43 0.44
6 smooth_pursuit_velocidades 0.40 0.10 4.00
6 smooth_pursuit_errores_seguimiento 0.11 0.04 2.75
6 smooth_pursuit_duraciones_pursuit 0.02 ∼0 –
7 convex_hull 0.48 0.51 0.94
7 bcea_68 0.50 0.53 0.94
7 bcea_95 0.50 0.53 0.94
7 rms_distance 0.24 0.27 0.89
7 shannon_en 0.11 0.14 0.79
7 sample_en 0.36 0.43 0.84
8 ganancia_sacadas 0.21 0.29 0.72
8 sacadas_correctivas_max_distances 0.83 1.07 0.78
8 sacadas_correctivas_durations 0.80 1.11 0.72
8 coef_unificado_anticipacion 0.18 0.20 0.90
8 coef_unificado_retraso 0.30 0.39 0.77
8 fijaciones_velocity 0.20 0.56 0.36
8 fijaciones_numero 0.25 0.44 0.57
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4.1.4 Modelos de regresión para la predicción de la edad

El objetivo principal de este trabajo ha sido predecir la edad de los participantes a partir de
parámetros extraídos de registros de movimientos oculares, empleando el entorno Regression
Learner de MATLAB. Para ello, se han utilizado múltiples modelos de regresión, reservando
el 10 % de los datos para test y empleando validación cruzada con k = 5. Debido a la
naturaleza de los datos, algunos modelos no han podido entrenarse correctamente, ya que
ciertos parámetros no se han obtenido en todos los participantes, lo que ha reducido el
tamaño efectivo de la muestra para algunos algoritmos.

En la Tabla 4.8 se resumen las métricas principales de los modelos que han podido ser
entrenados y evaluados. Se presentan el error cuadrático medio (RMSE) y el coeficiente
de determinación (R2) tanto en validación como en test, así como el error absoluto medio
(MAE). Además, en la Figura 4.9 y Figura 4.10 se muestran comparativamente los valores
de RMSE y R2 para todos los modelos evaluados. Por último, se incluyen gráficos de
dispersión de valores predichos frente a valores reales para cada modelo (ver Figuras 4.13
a 4.12), que permiten visualizar la capacidad predictiva de cada aproximación.

Tabla 4.8: Resultados de los modelos de regresión entrenados.

Modelo RMSE (Val) R2 (Val) MAE (Test) RMSE (Test) R2 (Test)

Coarse Tree (2.7) 13.58 ≈ 0 8.78 9.80 -0.29
Boosted Trees (2.16) 13.62 -0.01 11.65 13.23 -1.34
Bagged Trees (2.17) 13.50 0.01 12.52 13.97 -1.61
Medium Tree (2.6) 15.36 -0.28 13.04 16.58 -2.68
Fine Tree (2.5) 17.60 -0.68 17.27 23.65 -6.49
Stepwise Linear Regresion (2.4) 66.06 -23.13 27.43 35.08 -15.29
Linear Regresion (2.1) 33 -28.45 NaN NaN NaN
Interactions Linear (2.2) 33 -28.45 NaN NaN NaN
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Figura 4.9: Comparativa de RMSE en validación y test para los diferentes modelos.
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Figura 4.10: Comparativa de R2 en validación y test para los diferentes modelos.
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Figura 4.11: Gráficos de valores predichos frente a reales para los modelos seleccionados
del modelo Stepwise Linear Regresion.
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Figura 4.12: Gráficos de valores predichos frente a reales para los modelos seleccionados
del modelo Medium Tree.
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Figura 4.13: Gráficos de valores predichos frente a reales para los modelos seleccionados
del modelo Boosted Tree.
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4.1.5 Análisis de agrupamiento mediante t-SNE

Con el objetivo de explorar si los parámetros extraídos permiten distinguir entre grupos de
edad, se ha realizado un análisis de agrupamiento utilizando la técnica t-distributed Sto-
chastic Neighbor Embedding (t-SNE). Para este análisis, se seleccionaron las diez variables
con mayor correlación absoluta con la edad, entre las que se incluyen fijaciones_velocity,
coef_unificado_anticipacion, fijaciones_numero, sacadas_correctivas_durations, sam-
ple_en, sacadas_correctivas_max_distances, smooth_pursuit_velocidades, antisaca-
das_precision_espacial, ganancia_sacadas y shannon_en. El número de casos disponibles
para cada variable varía considerablemente, por lo que la matriz final utilizada para
el análisis incluyó únicamente los 204 casos con datos completos en todas las variables
seleccionadas.

Los participantes se dividieron en dos grupos de edad según la mediana (40 años):
jóvenes (≤ 40 años, 106 casos) y mayores (>40 años, 98 casos). El algoritmo t-SNE se
ejecutó con una perplexity de 30, tras estandarizar las variables y eliminar valores no válidos
(NaN/Inf ).

Figura 4.14: Análisis de agrupamiento mediante t-SNE. Cada punto representa un parti-
cipante, coloreado según el grupo de edad (jóvenes y mayores).

La Figura 4.14 muestra el resultado del análisis de agrupamiento mediante t-SNE. En el
espacio bidimensional generado, ambos grupos de edad aparecen muy dispersos y no se
observa una separación clara entre jóvenes y mayores. Este resultado sugiere que, incluso
combinando las variables más prometedoras, no se logra una agrupación natural de los
participantes en función de la edad a partir de los parámetros extraídos. La dispersión
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observada refuerza la conclusión de que los parámetros disponibles no contienen suficiente
información discriminativa para la edad.

4.2 Discusión de los resultados

A lo largo de este trabajo se ha conseguido desarrollar un flujo de procesado completo que
parte de los datos en crudo de los participantes y permite alcanzar los diferentes objetivos
planteados. El preprocesado implementado ha resultado exitoso, incluyendo una calibración
temporal y espacial precisa, así como un filtrado eficaz de artefactos y parpadeos. Además,
se ha realizado la separación de las señales para facilitar su uso en los análisis posteriores.
Cabe destacar especialmente la importancia de la calibración temporal, ya que ha permitido
alinear correctamente los registros de todos los participantes y asegurar la comparabilidad
entre experimentos (3.4).

En una segunda etapa, se han extraído métricas relevantes a partir de la detección de
fijaciones y sacadas, calculadas mediante la velocidad euclídea entre muestras consecutivas.
A partir de estos eventos oculomotores se han obtenido numerosos parámetros descriptores,
aunque también se han calculado otros parámetros independientes de las fijaciones y
sacadas. Posteriormente, se ha explorado la correlación de estos parámetros con la edad de
los participantes, obteniendo resultados poco satisfactorios, como se observa en la sección
de correlaciones (4.1.1). La mayoría de los parámetros presentan correlaciones bajas con
la edad, y muchos de ellos dependen en gran medida de la segmentación en fijaciones y
sacadas, lo que puede limitar su utilidad.

Un aspecto relevante es que la calibración temporal, aunque necesaria para la alineación
de los datos, podría haber afectado a los parámetros temporales extraídos. Si el retardo
inicial de cada participante se mantiene constante a lo largo de todos los experimentos,
la corrección aplicada podría haber eliminado información relevante sobre diferencias
individuales en el tiempo de reacción o anticipación. Esto podría explicar en parte la
baja correlación observada entre los parámetros temporales y la edad, a pesar de que la
literatura reporta ejemplos de éxito en este tipo de análisis (3.4), (4.1.1).

Por otro lado, se ha comprobado que varios parámetros presentan una buena estabilidad
intra sujeto e inter sujeto, como se muestra en el análisis de variabilidad (4.1.3). Sin
embargo, esta estabilidad no se ha traducido en una mayor capacidad predictiva respecto a
la edad. Además, el análisis de la matriz de correlación entre parámetros (4.1.2) ha puesto
de manifiesto la existencia de redundancias importantes, especialmente entre métricas
derivadas de la dispersión espacial y entre el número y la velocidad de fijaciones. Esto
sugiere que una reducción de la dimensionalidad o una selección más cuidadosa de los
parámetros podría ser necesaria en futuros trabajos.
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En cuanto a la predicción de la edad mediante modelos de regresión, los resultados han
sido claramente insatisfactorios. Como se observa en las tablas y figuras de resultados
(4.1.4), las métricas obtenidas son muy bajas, con valores negativos de R2 en test, lo que
indica que los modelos no son capaces de explicar la variabilidad de la edad a partir de
los parámetros extraídos. El error cuadrático medio y el error absoluto medio también
resultan elevados en comparación con el rango de edades de la muestra.

El análisis de agrupamiento mediante t-SNE (4.1.5) refuerza estas conclusiones, ya que
no se observa una separación clara entre los grupos de edad definidos (menores y mayores
de 40 años). Los puntos correspondientes a ambos grupos aparecen mezclados en el espacio
bidimensional, lo que indica que ni siquiera combinando los parámetros más prometedores
se logra una agrupación natural de los participantes en función de la edad.

Por último, cabe señalar que la variabilidad inter sujeto observada en parámetros como
el número y la velocidad de fijaciones es considerablemente alta (4.1.3). Esto sugiere que
existe una gran heterogeneidad en el comportamiento oculomotor entre individuos, incluso
bajo las mismas condiciones experimentales. Esta variabilidad puede dificultar la obtención
de parámetros robustos y generalizables, y refuerza la idea de que el desarrollo de algoritmos
universales para la extracción de métricas oculomotoras es un reto complejo.

En resumen, aunque se ha logrado establecer un pipeline sólido de procesado y extracción
de parámetros, los resultados obtenidos muestran las dificultades inherentes a la predicción
de la edad a partir de movimientos oculares. Las limitaciones identificadas en la correlación
y la capacidad predictiva de los parámetros sugieren la necesidad de explorar nuevas
aproximaciones y de considerar la alta variabilidad interindividual en futuros estudios.
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CAPÍTULO5
Conclusiones y Lineas Futuro

En este trabajo se ha desarrollado un flujo de procesado completo para el análisis de
movimientos oculares, desde los datos en crudo hasta la extracción de parámetros y la
aplicación de modelos de predicción. El preprocesado, incluyendo la calibración temporal y
espacial, así como el filtrado de artefactos y la segmentación de señales, ha demostrado ser
robusto y funcional. Sin embargo, los resultados obtenidos muestran que los parámetros
extraídos presentan una baja correlación con la edad y que los modelos de regresión no
han logrado predecir la edad de los participantes con precisión aceptable. Además, la alta
variabilidad intersujeto y la redundancia entre algunos parámetros limitan la capacidad
predictiva y la generalización de los modelos.

De cara a líneas futuras, es fundamental ampliar el tamaño y la diversidad de la muestra
de participantes, especialmente en los extremos del rango de edad, para mejorar la potencia
estadística y la representatividad de los resultados. También sería recomendable explorar
nuevos parámetros menos dependientes del tiempo y de la segmentación en fijaciones y
sacadas, así como revisar en profundidad el proceso de calibración temporal para asegurar
que no elimina información relevante de los parámetros temporales.

Otra línea interesante sería aplicar este flujo de procesado a otros problemas, como la
identificación de sujetos, la predicción de patologías o el análisis de diferencias individuales
en tareas cognitivas, siempre que se disponga de información adicional sobre los participantes.
Además, podría ser útil investigar técnicas de reducción de dimensionalidad y selección de
variables para minimizar la redundancia y mejorar la interpretabilidad de los modelos.

Por último, sería conveniente comparar el pipeline desarrollado con otros enfoques y
algoritmos de la literatura, así como evaluar su aplicabilidad en contextos clínicos o en
estudios longitudinales para analizar la evolución de los patrones oculomotores a lo largo
del tiempo. Todo ello contribuiría a avanzar en la búsqueda de biomarcadores oculares
robustos
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