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Resumen

Este Trabajo de Fin de Grado aborda el andlisis de movimientos
oculares mediante técnicas de eye tracking, con el objetivo de ex-
plorar su utilidad como herramienta no invasiva en el estudio del
comportamiento visual humano. Se diseno un protocolo experimental
compuesto por ocho tareas visuales que permitieron registrar la acti-
vidad oculomotora de 77 participantes. Tras un exhaustivo proceso
de preprocesado y calibracion de las senales, se extrajeron maultiples
pardmetros oculomotores, incluyendo medidas de sacadas, fijaciones,
sequimiento suave y métricas de entropia. Posteriormente, se em-
plearon modelos de regresion para estimar la edad de los sujetos a
partir de dichos pardmetros. Aunque los resultados no mostraron
una capacidad predictiva destacable ni correlaciones solidas con la
edad, el trabajo aporta una base metodologica solida y destaca los
retos asociados al analisis de datos oculomotores en contextos clinicos
y computacionales. Se discuten las limitaciones encontradas y se

proponen lineas futuras de mejora.

Palabras Clave: Seguimiento ocular, Parametrizacién, Movimientos

oculares, Preprocesamiento de senales, Aprendizaje automatico.



Abstract

This Bachelor’s Thesis explores the analysis of eye movements using
eye tracking technology, aiming to assess its potential as a non-
invasive tool for studying human visual behavior. An experimental
protocol consisting of eight visual tasks was designed to record ocu-
lomotor activity in 77 participants. After an extensive preprocessing
and calibration pipeline, a wide range of oculomotor parameters were
extracted, including measures of saccades, fizrations, smooth pursuit,
and entropy-based metrics. Regression models were subsequently ap-
plied to estimate participants’ age based on these features. Although
the results did not show strong predictive performance or robust corre-
lations with age, the study provides a solid methodological framework
and highlights the challenges involved in oculomotor data analysis for
clinical and computational applications. Limitations are discussed,

and future directions are proposed.

Keywords: Eye tracking, Parameterization, Ocular movements, Sig-

nal preprocessing, Machine learning.
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CAPITULO

INTRODUCCION

1.1 Motivacidn . . . . . . oL e e
1.2 Objetivos del Proyecto . . . . . . . . . . ...

1.3 Estructura del Documento . . . . . . . . . . . .. .. ...

1.1 Motivacion

El presente proyecto surge a partir de la necesidad de analizar datos obtenidos mediante
un eye tracker, un dispositivo de seguimiento ocular que permite registrar los movimientos
oculares de los participantes en un experimento. La motivacién principal detras de este
estudio radica en la posibilidad de utilizar estos datos en la identificacion de patrones que

podrian ser relevantes en la deteccién de diversas patologias neurolégicas o cognitivas.

El eye-tracking es una tecnologia que permite detectar y registrar, de forma precisa y
objetiva, los movimientos oculares de una persona mientras realiza una tarea determinada.
Mediante el uso de caAmaras y sensores especializados, es posible conocer en todo momento
hacia donde dirige la mirada un individuo, cuanto tiempo fija la vista en un punto concreto,
o cémo explora visualmente una escena. Esta informacién resulta de gran valor para
comprender como las personas procesan la informacién visual y toman decisiones en

funcién de lo que ven.

Las aplicaciones del eye-tracking son muy diversas y abarcan multiples campos. En el
ambito de los videojuegos, se utiliza para mejorar la experiencia de usuario y desarrollar
nuevas formas de interacciéon basadas en la mirada. En marketing y disefio web, permite
analizar como los usuarios observan anuncios, paginas web o productos, optimizando asi la
disposicién de los elementos visuales para captar mejor la atencién. Ademas, el eye-tracking

es fundamental en el desarrollo de sistemas de comunicacién alternativa para personas con
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discapacidades motoras o del habla, permitiendo que puedan interactuar con ordenadores

y otros dispositivos tinicamente con los ojos.

Desde una perspectiva cientifica, el eye-tracking es una herramienta esencial en psicologia
y neurociencia, ya que el sistema visual constituye una ventana privilegiada para estudiar el
funcionamiento del cerebro. Analizando los patrones de movimiento ocular, es posible inferir
procesos cognitivos, emocionales y atencionales, asi como detectar alteraciones asociadas
a diversas patologias neuroldgicas o psiquiatricas. El estudio de la mirada permite, por
ejemplo, investigar cémo se distribuye la atencién, como se procesa la informacién visual o

cémo cambian estos procesos con la edad o en presencia de enfermedades.

En este contexto, el objetivo de este proyecto es extraer informacién relevante de los datos
de eye-tracking obtenidos de un conjunto de sujetos sanos mientras realizan experimentos
visuales sencillos. Se pretende analizar estos datos para identificar patrones y caracteristicas
que describan el comportamiento visual de los participantes y, entre otras cosas, explorar
si esta informacién permite predecir variables de interés desde un punto de vista médico,
como puede ser la edad de los sujetos. La hipdtesis es que ciertos parametros derivados de
las senales de eye-tracking pueden reflejar cambios sutiles en el funcionamiento cerebral
asociados al envejecimiento, lo que podria abrir la puerta al desarrollo de biomarcadores

no invasivos para el estudio de la salud cerebral.

En definitiva, la motivacién de este trabajo reside en explorar el potencial del eye-tracking
como herramienta para el analisis del comportamiento visual humano y su posible utilidad
en el &mbito médico, contribuyendo asi al avance del conocimiento en la interseccién entre

tecnologia, neurociencia y salud.

1.2 Objetivos del Proyecto

Los objetivos principales de este trabajo se resumen en los siguientes puntos:

e Disenar e implementar un flujo de preprocesado de los datos de eye-
tracking para solucionar problemas habituales como la sincronizacién temporal
imperfecta, la presencia de parpadeos y otros artefactos que puedan afectar a la

calidad de las senales registradas.

o Extraer parametros de interés de las senales de eye-tracking que describan
caracteristicas relevantes del procesamiento visual de los sujetos, tales como la duraciéon
y frecuencia de las fijaciones, la amplitud y velocidad de los movimientos sacadicos, o

la exploracién espacial de los estimulos.

o Explorar la posibilidad de predecir la edad de los sujetos a partir de los

parametros extraidos de las senales de eye-tracking, evaluando el potencial de es-
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tos indicadores como biomarcadores no invasivos de procesos relacionados con el

envejecimiento cerebral.

Estos objetivos estan orientados a sentar las bases para el uso del eye-tracking como
herramienta de andlisis del comportamiento visual humano y su posible aplicacién en
el &mbito médico, proporcionando metodologias y resultados que puedan ser utiles para

futuras investigaciones en neurociencia, psicologia y diagnéstico clinico.

1.3 Estructura del Documento

Este documento se organiza en los siguientes capitulos, siguiendo una estructura légica y

coherente con el desarrollo del trabajo:

e Capitulo 1: Introducciéon

Presenta la motivacion, los objetivos y una vision general del proyecto.

e Capitulo 2: Estado del arte
Revisién de investigaciones previas, tecnologias y herramientas existentes relacionadas
con el eye-tracking y su aplicacion en neurociencia y andalisis del comportamiento

visual.

e Capitulo 3: Metodologia
Descripcién detallada de los métodos empleados para el preprocesado de datos, la

extraccion de pardmetros y los enfoques utilizados para el andlisis y la prediccién.

e Capitulo 4: Resultados y Discusién de los Resultados
Presentacion de los resultados obtenidos a partir del andlisis de los datos y la evaluacion
de los modelos desarrollados. Interpretacién y analisis critico de los resultados, asi

como comparacién con trabajos previos y discusién de las limitaciones del estudio.

e Capitulo 5: Conclusiones
Resumen de los principales hallazgos, conclusiones del trabajo y propuestas para

lineas futuras de investigacién.

Esta estructura facilita la comprension global del proyecto, guiando al lector desde la

motivacion inicial hasta las conclusiones y posibles desarrollos futuros.
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El eye tracking o seguimiento ocular ha experimentado una evolucion significativa
desde sus primeras aplicaciones experimentales hasta convertirse en una herramienta
fundamental en diversas disciplinas cientificas y aplicadas. Esta tecnologia, que permite la
medicién precisa de los movimientos oculares y la direcciéon de la mirada, ha demostrado
un potencial considerable en el ambito biomédico, particularmente en la caracterizacién de

patrones oculomotores asociados con el envejecimiento y diversas condiciones neuroldgicas.

La relevancia del eye tracking en aplicaciones médicas se fundamenta en la estrecha
relacion entre el sistema oculomotor y el funcionamiento del sistema nervioso central.
Los movimientos oculares constituyen una ventana tnica hacia los procesos neurolégicos
subyacentes, proporcionando informacién valiosa sobre la integridad funcional de mul-
tiples estructuras cerebrales. Esta caracteristica hace del eye tracking una herramienta
prometedora para el desarrollo de biomarcadores no invasivos que puedan contribuir
tanto a la estimacion de la edad biolégica como a la detecciéon temprana de patologias

neurodegenerativas.

El presente capitulo tiene como objetivo proporcionar una revisién exhaustiva del estado
actual del conocimiento en el campo del eye tracking aplicado a la medicina, con especial
énfasis en su potencial para la estimacién de edad y deteccién de patologias. Se abordara
la evolucién histérica y tecnoldgica de los sistemas de eye tracking, desde los primeros

dispositivos mecanicos hasta las sofisticadas tecnologias actuales basadas en infrarrojos.
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Asimismo, se analizardn los fundamentos técnicos que sustentan el funcionamiento de estos
sistemas, incluyendo los principios fisicos de deteccién y seguimiento ocular, los algoritmos
de procesamiento de datos y las principales fuentes de error que pueden afectar la precisién

de las mediciones.

Un componente esencial de este capitulo se centra en la revisién de las aplicaciones
médicas del eye tracking, examinando los antecedentes en la deteccion de patologias
neuroldgicas, los biomarcadores oculomotores establecidos y los desafios actuales en la
validacién clinica. Se prestard especial atencién a los parametros oculomotores que han
demostrado sensibilidad a los procesos de envejecimiento y a diversas condiciones patolégicas,

proporcionando la base tedrica para la metodologia propuesta en este trabajo.

La parametrizacion y procesamiento de datos de eye tracking representan aspectos
técnicos criticos que determinan la calidad y utilidad de la informacion extraida. Por ello,
se abordaran las técnicas de preprocesamiento de senales oculomotoras, los métodos de
extraccién de caracteristicas y los enfoques de normalizacion y estandarizacion necesarios

para el analisis comparativo entre individuos y poblaciones.

Finalmente, se examinara el estado del arte en la aplicaciéon de técnicas de machine
learning para la estimacién de edad biolégica y deteccién de patologias mediante eye tracking.
Esta revision incluird una evaluacién critica de los enfoques metodolégicos actuales, sus
limitaciones y las oportunidades que presenta la integraciéon de datos oculomotores con

algoritmos de aprendizaje automatico avanzados.

El anélisis conjunto de estos elementos proporcionara el marco teérico y metodologico
necesario para justificar y contextualizar la investigacion desarrollada, estableciendo las
bases para una comprension integral de las posibilidades y limitaciones del eye tracking

como herramienta de evaluacién biomédica no invasiva.

2.1 Estado del Arte y Aplicaciones Médicas del
Eye Tracking

El eye tracking o seguimiento ocular ha evolucionado desde sus primeras aplicaciones
experimentales a finales del siglo XIX hasta convertirse en una herramienta fundamental
en neurociencia, psicologia y medicina [11]. Esta tecnologia permite registrar y analizar con
precisién los movimientos oculares, proporcionando informacién valiosa sobre los procesos

cognitivos y el funcionamiento del sistema nervioso central.
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2.1.1 Evolucién histérica y fundamentos técnicos

Los primeros dispositivos de eye tracking, como el desarrollado por Huey en 1908, eran
mecanicos y rudimentarios [11]. El avance hacia sistemas basados en video y, posteriormente,
en infrarrojos, permitié mejorar la precisién y reducir la invasividad, facilitando su uso en

investigacién clinica y biomédica.

Actualmente, la mayoria de los sistemas emplean el método de reflexién corneal y centro
pupilar (Pupil Center Corneal Reflection, PCCR), que utiliza iluminacién infrarroja y
algoritmos de procesamiento de imagen para localizar el centro de la pupila y el reflejo
corneal (glint) [11]. Los dispositivos pueden ser de sobremesa, portatiles o montados en
cabeza, y alcanzan frecuencias de muestreo de hasta 2000 Hz, con precisiones de 0.1-0.5

grados de dngulo visual.

Las tendencias actuales se centran en la miniaturizacion, la integracion con técnicas
de machine learning y la aplicacién en entornos clinicos y de salud digital [22, 43]. El
desarrollo de sistemas accesibles y robustos esta impulsando la adopcién del eye tracking

en la practica clinica rutinaria.

2.1.2 Movimientos oculares: conceptos fundamentales

El anélisis de los movimientos oculares se basa en la identificacién de varios tipos de

eventos:

e Sacada (saccade): Movimiento ocular réapido y balistico que desplaza la mirada
de un punto a otro. Es el tipo de movimiento mas frecuente durante la exploracién

visual y la lectura [36].

» Antisacada (antisaccade): Sacada voluntaria en direccién opuesta a un estimulo

presentado, utilizada para evaluar el control inhibitorio y la funcién ejecutiva [31, 9].

o Seguimiento suave (smooth pursuit): Movimiento lento y continuo que permi-
te seguir objetos en movimiento, reflejando la integridad de los circuitos cortico-

subcorticales [4].

o Fijacién (fization): Periodo en el que la mirada permanece estable sobre un punto,
permitiendo la adquisicién de informacién visual detallada. Durante la fijaciéon pueden
producirse microsacadas, pequenos movimientos involuntarios que estabilizan la

imagen [28].

Otros conceptos relevantes incluyen la latencia de sacada (tiempo entre el estimulo y

el inicio del movimiento), la ganancia de sacada (relacién entre la amplitud ejecutada y
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la requerida) y la precision espacial (exactitud con la que se alcanza el objetivo visual)
[25, 12].

2.1.3 Aplicaciones médicas y biomarcadores oculomotores

El eye tracking se ha consolidado como una herramienta no invasiva para la deteccion
y caracterizacién de patologias neurolégicas y psiquidtricas [1, 27]. Los movimientos
oculares constituyen biomarcadores sensibles de alteraciones en el sistema nervioso central,
permitiendo la identificacion temprana de enfermedades como el Parkinson, el Alzheimer y

los trastornos del espectro autista (TEA).

En la enfermedad de Parkinson, se observan alteraciones en la velocidad y precisién
de las sacadas y el seguimiento suave, incluso en fases iniciales [27]. En el Alzheimer,
pardmetros como el error absoluto de fijacion y la tasa de errores en tareas de antisacadas
han demostrado ser indicadores tempranos de deterioro cognitivo [30, 9]. En el caso de los
TEA, el anélisis de los scanpaths y el control inhibitorio mediante tareas de antisacadas

permite diferenciar a individuos con alta precisién [14, 7].

Los principales biomarcadores oculomotores incluyen:

« Latencia y ganancia de sacada: Sensibles a alteraciones neuroldgicas y al enveje-

cimiento [12, 21].

e Tasa de errores de antisacadas: Indicador de control inhibitorio y deterioro

cognitivo [9, 31].

e Suavidad del seguimiento: Refleja la integridad de los circuitos motores y cognitivos
[4].

o Patrones de fijacién y microsacadas: Asociados a control motor fino y alteraciones

cognitivas [28].

La integracién de técnicas de machine learning ha permitido mejorar la clasificaciéon
automatica de poblaciones clinicas a partir de pardmetros oculomotores, abriendo nuevas

posibilidades para el desarrollo de biomarcadores objetivos y personalizados [43, 7].

2.1.4 Conclusién

El avance del eye tracking ha permitido no solo una mejor comprensién de los procesos
visuales y cognitivos, sino también el desarrollo de herramientas diagnésticas innovadoras
en medicina. La definicién precisa de los movimientos oculares y la identificacion de
biomarcadores robustos constituyen la base para su aplicacién clinica y la integraciéon con

tecnologias emergentes como el machine learning.
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2.2 Fundamentos fisicos del eye tracking por

infrarrojos

Los sistemas modernos de eye tracking se basan en principios 6pticos que permiten la
deteccion precisa y el seguimiento continuo de los movimientos oculares. El uso de luz
infrarroja cercana constituye el elemento central de estos sistemas, ya que proporciona
una fuente de iluminacién estable y no visible para el usuario, evitando distracciones y
permitiendo la obtencién de imagenes de alta calidad independientemente de las condiciones
de luz ambiental [11].

La luz infrarroja se dirige hacia los ojos, generando reflejos caracteristicos tanto en la
pupila como en la cérnea. La pupila, al ser una estructura no reflectante, aparece oscura en
las imdgenes capturadas, mientras que el reflejo corneal (glint) se manifiesta como un punto
brillante y bien definido. Esta diferencia de contraste facilita la localizacién automatica del

centro pupilar y del glint mediante algoritmos de procesamiento de imagen [11].

El método més extendido en la actualidad es la reflexién corneal y centro pupilar (Pupil
Center Corneal Reflection, PCCR), que utiliza la posicién relativa entre el centro de la
pupila y el reflejo corneal para calcular la direccién de la mirada. Cuando el ojo rota, la
posicién del centro pupilar cambia respecto al glint, permitiendo asi estimar con precision

el dngulo de la mirada [11].

La configuracion tipica de los sistemas de eye tracking incluye una o varias fuentes
de luz infrarroja dispuestas alrededor de la camara, lo que garantiza una iluminacién
uniforme y minimiza las sombras o artefactos que puedan interferir con la deteccién de
las estructuras oculares. Esta disposicién mejora la robustez y la precision del sistema,
permitiendo registrar movimientos oculares incluso en condiciones ambientales variables
[11].

En resumen, los fundamentos fisicos del eye tracking por infrarrojos se apoyan en la
interaccion diferencial de la luz infrarroja con las estructuras oculares y en la utilizacion de
algoritmos avanzados de procesamiento de imagen para identificar y seguir con precision

los movimientos de

2.3 Parametrizaciéon, Procesamiento y Modelado

de Datos de Eye Tracking

El procesamiento y analisis de datos de eye tracking constituye una etapa esencial para la

extraccion de informacién relevante en aplicaciones biomédicas. La calidad de los resultados
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depende en gran medida de la robustez de las técnicas de preprocesamiento, la seleccion

adecuada de caracteristicas y la correcta normalizacién de los parametros oculomotores.

2.3.1 Preprocesamiento de senales oculomotoras

El preprocesamiento de las senales de eye tracking es fundamental para garantizar la validez
de los anélisis posteriores. Esta etapa incluye la limpieza de la senal, la eliminacién de
ruido y la correccion de artefactos como parpadeos o pérdidas momentaneas de seguimiento.
Ademéds, algoritmos adaptativos permiten ajustar dindmicamente los parametros de filtrado
segun las caracteristicas de la sefial, preservando eventos transitorios como las sacadas
[29]. La deteccién y correccién de artefactos, como los producidos por movimientos de
cabeza o cambios en la iluminacion, se realiza mediante técnicas de interpolacién y métodos
autométicos de identificacion de periodos de fijacién estable [18]. La gestién adecuada de
los parpadeos es especialmente relevante, ya que estos pueden generar interrupciones en
la sefial que deben ser identificadas y tratadas para evitar errores en la segmentacion de

eventos oculomotores [16].

2.3.2 Extraccion de caracteristicas

La extraccion de caracteristicas transforma las senales oculomotoras en parametros cuan-
titativos que describen el comportamiento visual. Entre las métricas méas relevantes se
encuentran las temporales, como la latencia de sacada, la duracién de fijaciones y la
frecuencia de parpadeo, que han demostrado sensibilidad a factores como la edad y el
estado cognitivo [21, 35]. La ganancia de sacada, definida como la relacién entre la amplitud
ejecutada y la requerida, es un indicador clave de la programacién motora oculomotora
[25]. Las métricas espaciales, como la precisién de fijacion y la variabilidad de las sacadas,
permiten evaluar la integridad del sistema oculomotor y detectar posibles alteraciones
neurolégicas [1]. Ademads, pardmetros estadisticos como la desviacién estdndar de la latencia
o la distribucién de amplitudes de sacada aportan informacién sobre la consistencia y
variabilidad del comportamiento visual [10, 3]. Caracteristicas de orden superior, como la
entropia o la complejidad temporal de las trayectorias oculares, se utilizan para capturar

patrones sutiles y complejos del control visual [12, 28].

2.3.3 Normalizacion y estandarizacion

La normalizacién de los parametros oculomotores es imprescindible para comparar resul-
tados entre individuos y poblaciones. Las diferencias inter-individuales pueden deberse a

factores fisiol6gicos, anatémicos o demograficos, por lo que es habitual emplear técnicas de
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estandarizacién como la transformacién z-score o la utilizacién de percentiles [37]. La edad
es uno de los factores que mas influye en los movimientos oculares, observandose tendencias
sisteméaticas en pardmetros como la latencia y la ganancia de sacada a lo largo del ciclo
vital [21, 35]. Por ello, es recomendable considerar la edad y otras variables relevantes en

la interpretacién de los resultados y en el desarrollo de modelos predictivos.

2.3.4 Modelado y estimaciéon de edad mediante machine

learning

El uso de técnicas de machine learning ha permitido avanzar en la estimacién de la
edad bioldgica a partir de parametros oculomotores, integrando multiples caracteristicas
y capturando relaciones complejas entre ellas [22, 29]. Los modelos actuales, basados en
algoritmos supervisados y no supervisados, han demostrado capacidad para predecir la
edad cronolégica con errores medios absolutos bajos en poblaciones sanas [21, 24]. La
combinacién de eye tracking y machine learning ofrece ventajas como la no invasividad, la

reproducibilidad y la sensibilidad a cambios sutiles en el sistema nervioso central.

2.3.5 Justificacion y desafios actuales

El enfoque basado en la parametrizacién avanzada y el modelado mediante machine learning
se justifica por la necesidad de biomarcadores objetivos, accesibles y sensibles para la
estimacion de la edad biolégica. Sin embargo, persisten desafios como la necesidad de bases
de datos amplias y representativas, la estandarizacién de protocolos y la consideracién de
la variabilidad individual [3, 10]. El desarrollo de metodologias robustas y la integracién de

nuevas fuentes de informacién contintian siendo areas activas de investigacién en el campo.
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3.1 Metodologia de adquisiciéon de datos

La calidad y validez de los estudios de eye tracking dependen en gran medida de una
metodologia de adquisicién de datos rigurosa y estandarizada [11, 37, 29]. En este trabajo,
se han seguido recomendaciones ampliamente aceptadas para asegurar la reproducibilidad y
la fiabilidad de los resultados.En este trabajo, la adquisicion de los datos fue llevada a cabo
por el tutor Rodrigo de Luis Garcia, siguiendo recomendaciones ampliamente aceptadas

para asegurar la reproducibilidad y la fiabilidad de los resultados.

3.1.1 Condiciones experimentales y equipamiento

Las sesiones se realizaron en un entorno controlado, con condiciones constantes de ilumina-
ci6on y minima distraccién visual o auditiva, siguiendo las directrices metodoldgicas para
minimizar fuentes de error y maximizar la precision de las mediciones [11, 37]. Se empled
un sistema de eye tracking de sobremesa con frecuencia de muestreo de 1000 Hz y precisién

espacial tipica de 0.3-0.5 grados de angulo visual, montado sobre un monitor. La distancia
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entre participante y pantalla ronda los 65 cm, pero no se ajusta con ningun procedimineto

extra.

El sistema utiliza iluminacién infrarroja de espectro cercano, no molesta para los
participantes, y permite la captura precisa de movimientos oculares rapidos como las
sacadas. La sincronizacién temporal entre la presentacién de estimulos y la adquisicién de
datos se realiza mediante marcadores temporales (timestamps) de alta precisién, lo que

facilita la alineacién exacta entre eventos experimentales y respuestas oculomotoras [29].

3.1.2 Procedimiento con voluntarios

El reclutamiento de participantes y la gestién de las sesiones experimentales se realizaron
conforme a los principios éticos de la Declaracién de Helsinki. Los participantes recibieron

informacién detallada sobre los objetivos y procedimientos del estudio.

Se aplicaron criterios de inclusién y exclusién para garantizar la calidad de los datos.
Antes de cada sesién, se realizé una fase de familiarizacién y una calibracién multipunto (9
puntos), repitiéndose si era necesario hasta alcanzar una precision aceptable. Se incluyeron
validaciones intermedias y pausas programadas para minimizar la fatiga y controlar posibles

derivas de calibracién (calibration drift) [11].

Durante la sesion, se registraron datos demograficos relevantes (edad, sexo, condiciones
visuales) y se monitorizé el bienestar del participante, con la posibilidad de suspender la
sesion en caso de incomodidad. La duracion total de cada sesién se mantuvo dentro de

limites razonables para evitar fatiga excesiva.

3.2 Descripcion del conjunto de datos

En esta secciéon se describen las caracteristicas del conjunto de datos utilizado para el
analisis de la conducta oculomotora de los participantes. Por un lado, se presenta la
informacién sociodemografica y de condiciones visuales de los voluntarios, recogida en un
fichero de tipo Excel. Por otro lado, se detalla la estructura de los datos generados por el

sistema de seguimiento ocular (eye tracker) durante las sesiones de adquisicion.

3.2.1 Datos de los participantes

El estudio se ha llevado a cabo con un total de 77 casos. La informacién recopilada para
cada sujeto incluye los siguientes campos: identificador del caso, fecha de adquisicién, sexo,

edad, uso de gafas, uso de lentillas y presencia de alguna patologia.
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Los valores del sexo se codifican como V para varones y M para mujeres. Las variables
gafas, lentillas y patologia son binarias, donde el valor 1 indica la presencia de la
condicién correspondiente, y 0 su ausencia. Las edades de los voluntarios abarcan un
amplio rango, desde los 19 hasta los 74 anos, lo que permite considerar cierta variabilidad

interindividual en el andlisis oculomotor.

Cabe destacar que no todos los registros estan completos; algunos casos recientes (por
ejemplo, caso040 a caso052) presentan informacién parcialmente ausente, lo que ha sido

tenido en cuenta en el preprocesamiento de los datos.

Informacion general del estudio

El conjunto de datos fue recopilado con el objetivo de analizar la conducta oculomotora
mediante la creaciéon de pardmetros descriptores de los movimientos oculares. La recoleccion
de datos se llevé a cabo utilizando tecnologia de seguimiento ocular durante un periodo

comprendido entre octubre de 2021 y enero de 2025.

Caracteristicas de la muestra

o Total de participantes: 77 voluntarios.

¢ Periodo de recoleccién: Octubre de 2021 a enero de 2025.

Distribucién por sexo:
o Mujeres (M): 38 participantes

o Hombres (V): 39 participantes

44.9%

55.1%

Figura 3.1: Distribucién del genero de los participantes

Distribucién por edad:
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Rango de edad: 19 - 74 anos

Media: 38.5 anos

Mediana: 39.5 anos

Distribuciéon: Predominantemente adultos jovenes y de mediana edad

12 A —

10

Frecuencia

1|

20 30 40 50 60 70
Edad

Figura 3.2: Histograma de las edades de los participantes

Caracteristicas visuales:
o Uso de gafas: 18 participantes (23.4 %)
o Uso de lentillas: 9 participantes (11.7 %)

o Patologias: 4 participantes (5.2 %)
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Estructura de los datos clinicos

Cada participante fue caracterizado mediante las siguientes variables, detalladas en la
Tabla 3.1:

Tabla 3.1: Descripcion de las variables clinicas recogidas por participante

Variable Tipo Descripcion

NOMBRES Categdrica Identificador tnico del participante (e.g., caso001)
FECHA ADQUISICION | Temporal Fecha en que se realizo6 la sesién de seguimiento ocular
SEX0 Categorica binaria | M (mujer) / V (varén)

EDAD Numérica discreta | Edad del participante en anos

GAFAS Binaria 1 si usa gafas / 0 si no

LENTILLAS Binaria 1 si usa lentillas / 0 si no

PATOLOGIA Binaria 1 si presenta alguna patologia ocular / 0 si no

3.2.2 Estructura de los datos de seguimiento ocular

Los datos de comportamiento oculomotor fueron obtenidos mediante un sistema de eye
tracking que registra la posicién de la mirada a lo largo del tiempo. Cada punto de muestra

incluye las siguientes variables:

+ pos_x: Coordenada horizontal de la posicién ocular, normalizada en el rango [0, 1],

donde 0 representa el borde izquierdo y 1 el borde derecho de la pantalla.

e pos_y: Coordenada vertical de la posicién ocular, también normalizada en el rango

[0,1], donde 0 corresponde a la parte superior y 1 a la inferior de la pantalla.

o time_t: Sello temporal (timestamp) en 10755, que indica el momento exacto en que

fue registrada la muestra.

Todos estos datos tienen una resolucién temporal con una frecuencia de muestreo de

1111-107°s, o 11,11ms, lo que permite un analisis detallado de la dindmica visual.

Calidad de los datos

o Consistencia: La estructura general de los datos es coherente, cada muestra incluye
las coordenadas normalizadas de la mirada y una marca temporal en milisegundos. Sin
embargo, se detectan variaciones no uniformes en la tasa de muestreo (con diferencias
de més de 100 ms entre muestras consecutivas), lo cual indica una tasa de adquisicién

variable o intermitente. Ademads, algunos valores presentan una resolucién decimal
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excesiva (hasta 10 digitos), lo que podria deberse al formato de exportacién del

sistema y no refleja necesariamente una mayor precision efectiva.

e Ruido y artefactos: Aunque la mayoria de las trayectorias muestran continuidad
espacial suave, se observan saltos abruptos ocasionales que podrian deberse a movi-
mientos sacadicos reales, pérdida temporal del seguimiento o artefactos del sistema,
ademas de parpadeos ocasionales. Estos deberan ser cuidadosamente considerados o

filtrados en el preprocesamiento antes de aplicar andlisis cuantitativos.

Este conjunto de datos proporciona una base sélida para el andlisis de patrones oculomo-
tores y la generacion de pardmetros descriptores de la conducta visual en una poblacion

diversa de adultos con distintas caracteristicas visuales.

3.3 Descripcion de los experimentos

El protocolo experimental utilizado en este estudio comprende una bateria de ocho tareas
diseniadas para evaluar distintos aspectos de la conducta oculomotora de los participantes.
Este conjunto de experimentos fue presentado de forma continua en formato audiovisual,
con instrucciones visuales integradas, y una duracion total de aproximadamente 16 minutos

y medio.

Cada experimento estd orientado al andlisis de parametros especificos como la fijacion, la
ganancia de sequimiento, la latencia de sacadas, la precision espacial o el control inhibitorio,
siguiendo las recomendaciones metodoldgicas establecidas por Duchowski en su obra Eye
Tracking Methodology: Theory and Practice [11] y las directrices de Raynowska y Orquin

[37]. A continuacién, se describe cada uno de ellos en detalle.

3.3.1 Experimento 1: Fijacion en puntos estaticos

Este primer experimento consistié en la presentacién de un punto negro que aparecia
secuencialmente en distintas posiciones de la pantalla (centro y ocho localizaciones periféri-
cas). Se instruy6 a los participantes para fijar la mirada en el punto, sin mover la cabeza,

incluso cuando este permaneciera quieto durante varios segundos.

Este diseno permite analizar la capacidad de mantener la fijacion y la estabilidad
oculomotora, asi como realizar tareas de calibracién o validacién del sistema de adquisicién.
Como senalan Rayner et al. [36], parametros como la desviacion estindar de la mirada
durante las fijaciones son especialmente relevantes para evaluar la estabilidad del control
oculomotor. Ademds, segin Martinez-Conde et al. [28], la frecuencia de microsacadas

constituye un indicador fundamental del control motor fino durante la fijacién.
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Figura 3.3: Visualizaciéon del primer experimento: fijaciéon en puntos estdticos. En la
imagen se observa la trayectoria de la mirada del participante durante la
primera ronda.

3.3.2 Experimento 2: Seguimiento horizontal de un estimulo

puntual

En esta tarea, el participante debia seguir un punto que se desplazaba de manera discreta
en la direccién horizontal. El experimento incluyo tres rondas de 12 trials cada una, donde

el estimulo se movia aleatoriamente a la izquierda o derecha del punto central.

Este paradigma, ampliamente documentado por Leigh y Zee en The Neurology of Eye
Movements [25], permite obtener parametros fundamentales como la latencia y ganancia
de las sacadas, la precision espacial del seguimiento y la capacidad atencional sostenida.
Anderson y MacAskill [1] destacan la utilidad de estas métricas para detectar alteraciones
motoras sutiles, mientras que Irving et al. [21] y Dowiasch et al. [10] han demostrado su

sensibilidad a déficits relacionados con el envejecimiento.

4
\ /\
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Figura 3.4: Visualizacién del segundo experimento: seguimiento horizontal de un estimulo
puntual. En la imagen se observa la trayectoria de la mirada del participante
durante la primera ronda.
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3.3.3 Experimento 3: Tarea de antisacadas

Este experimento evalia el control inhibitorio del sistema oculomotor siguiendo el paradigma
clasico descrito por Munoz y Everling en su trabajo Look away: The anti-saccade task
and the voluntary control of eye movement [31]. En cada trial, el participante debia mirar
inicialmente al centro; cuando aparecia una flecha en un lado de la pantalla, debia redirigir

su mirada hacia el lado opuesto, anticipando que el estimulo apareceria en esa ubicacién.

Se realizaron tres rondas con 10 t¢rials cada una, precedidas por un ejemplo explicativo.
Crawford et al. [9] han demostrado la relevancia de esta tarea en el estudio del deterioro
cognitivo asociado al Alzheimer, mientras que Benson et al. [5] han evidenciado su utilidad

diagnéstica en esquizofrenia.

» ®
® «

Figura 3.5: Visualizacion del tercer experimento: tarea de antisacadas. En las iméagenes
se muestran las dos alternativas: primero aparece la flecha a la que los
participantes no deben mirar; deben mirar al lado contrario para esperar a
que aparezca el punto.

Los pardametros derivados incluyen la tasa de errores de antisacadas, la latencia de
ejecucién y la precision espacial del desplazamiento visual. Como establecen Hutton [20] y
Falck-Ytter et al. [14], la capacidad de inhibir una respuesta refleja y ejecutar una alternativa

voluntaria constituye un biomarcador cognitivo robusto de las funciones ejecutivas.

3.3.4 Experimento 4: Repeticion del seguimiento horizontal

El cuarto experimento consistié en una repeticiéon del protocolo del Experimento 2, es decir,
una tarea de seguimiento de un estimulo puntual con desplazamientos horizontales. Se
realizaron tres rondas adicionales con 10 trials cada una. Esta repeticién permite evaluar
la consistencia intraindividual del rendimiento oculomotor y la posible aparicién de fatiga

o aprendizaje a lo largo del experimento.

Siguiendo los planteamientos de Antoniades et al. [2] sobre herramientas de evaluacién
clinica, este diseno es 1til para contrastar métricas como la latencia promedio de sacadas o
el ntimero de errores entre bloques sucesivos. Bargary et al. [3] han destacado la importancia
de estos analisis para caracterizar las diferencias individuales en los patrones oculomotores

v la estabilidad de la respuesta motora a estimulos repetidos.
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Figura 3.6: Visualizacion del cuarto experimento: seguimiento horizontal de un estimulo
puntual. En la imagen se observa la trayectoria de la mirada del participante
durante la primera ronda.

3.3.5 Experimento 5: Seguimiento de doble salto

Este experimento presenté una tarea més exigente desde el punto de vista temporal
y espacial. El estimulo visual saltaba rapidamente a dos ubicaciones consecutivas y el
participante debia seguir con la mirada ambas posiciones, manteniéndose en la segunda

una vez estabilizado.

Cada una de las tres rondas incluyé 12 trials. Como indican Eckstein et al. [12], esta
prueba es especialmente til para estudiar la planificacién de movimientos oculares multiples
y la coordinacién entre percepcion y accion. Molitor et al. [30] han demostrado la sensibilidad
de este paradigma para detectar alteraciones tempranas en pacientes con Alzheimer,
mientras que Peltsch et al. [35] han documentado su utilidad para evaluar la adaptacién a
trayectorias imprevistas. Las métricas extraibles incluyen el error espacial de cada sacada,

la ganancia sacidica acumulada y la precision del reposicionamiento ocular.

\
o o

Figura 3.7: Visualizacion del quinto experimento: seguimiento de doble salto. En la imagen
se observa la trayectoria que deberia hacer el participante en color gris, y las
lineas discontinuas proyectan el movimiento que realizan los puntos a una
velocidad mucho més alta durante la primera ronda. Los ntimeros indican el
orden en el que suceden los eventos.
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3.3.6 Experimento 6: Seguimiento de trayectoria continua

(Lissajous)

En este experimento se pidi6é al participante que siguiera un punto que se desplazaba
suavemente siguiendo una curva de Lissajous. Se registraron tres rondas: una lenta, una

con velocidad media y una en la que la velocidad aumentaba progresivamente.

Este paradigma, fundamentado en los trabajos de Barnes [4] sobre procesos cognitivos
en el seguimiento ocular, evalia el sistema de seguimiento continuo o sequimiento suave.
Las métricas principales incluyen la ganancia del sequimiento, la suavidad del movimiento
ocular (smoothness) y el retardo en el acoplamiento estimulo-respuesta. Segin Leigh y Zee
[25] y los hallazgos de Kasprowski y Harezlak [23], estas variables son particularmente

sensibles a deterioros neurolégicos tempranos.

Figura 3.8: Visualizacién del sexto experimento: seguimiento de trayectoria continua
(Lissajous). En la imagen se observa la trayectoria de la mirada del participante
durante las tres rondas. Cada ronda presenta una velocidad diferente del
movimiento del punto, aumentando progresivamente. De mas lenta a mas
rapida de izquierda a derecha.

3.3.7 Experimento 7: Exploracion libre de imagenes

En esta tarea se presentaron nueve imagenes consecutivas, cada una separada por un punto
de centralizacion breve. Se pidié al participante que simplemente observara las imagenes
“como quisiera”, sin instrucciones especificas sobre qué aspectos examinar o durante cuanto

tiempo.

Esta modalidad de exploracion libre, validada por Rayner et al. [36] y Tseng et al.
[43], permite analizar patrones naturales de visualizacién sin sesgos instruccionales. El
paradigma genera mapas de calor, trayectorias de exploracién y métricas como nimero
de fijaciones, duraciéon media y amplitud de sacadas. Como han demostrado Borji [6] en
sus estudios sobre prediccién de saliencia, estos indicadores pueden revelar diferencias

individuales significativas y establecer correlaciones con funciones cognitivas superiores.
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Tabla 3.2: Cada imagen se mostré durante aproximadamente 7 segundos, intercaladas
por puntos de transicién centrales de 1 segundo para recentrar la mirada entre
estimulos.

Imagen | Descripcién

1 Imagen con apariencia solar, caracterizada por una paleta de
colores rojizos que evocan una fuente de luz intensa y difusa.

2 Patron de ruido visual estructurado verticalmente, compuesto por
tonalidades turquesas y verdes que sugieren textura y profundidad
cromatica.

3 Representacién naturalista de un entorno fluvial, con rapidos que

atraviesan un bosque de arboles perennes con variaciones croméati-
cas estacionales.

4 Composicién fractal simétrica con estructura geométrica repetitiva,
evocando patrones complejos autorreferenciales.

5 Imagen de una playa tropical, con presencia de palmeras y un
entorno paradisiaco que sugiere tranquilidad y calidez.

6 Escena de montana nevada, caracterizada por una superficie blanca
ininterrumpida en la que se observan discretas huellas, en un
entorno minimalista.

7 Lago de aguas completamente quietas, con un reflejo especular
nitido de arboles en la superficie, generando un efecto visual de
simetria vertical.

8 Nueva imagen fractal, de mayor densidad visual y complejidad
estructural que la anterior, con detalles minuciosos distribuidos
simétricamente.

9 Patrén de ruido visual horizontal en la misma paleta turquesa que
la imagen 2, generando continuidad perceptiva con una orientacién
distinta.

Figura 3.9: Visualizacion del septimo experimento: exploracion libre de imégenes.
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3.3.8 Experimento 8: Tarea final de seguimiento horizontal

El dltimo experimento fue una nueva variante del seguimiento horizontal del estimulo
puntual, similar a los Experimentos 2 y 4. Se incluyeron dos rondas de 10 trials cada
una. La repeticion al final del protocolo permite analizar el posible efecto de la fatiga o
del entrenamiento prolongado sobre las métricas de seguimiento, asi como comparar el
rendimiento respecto a las rondas anteriores. Dado que el disefo fue practicamente idéntico

al del Experimento 4, se ha reutilizado la Figura 3.6 para ilustrar esta tarea.

Siguiendo los planteamientos de Dowiasch et al. [10] sobre efectos del envejecimiento en
movimientos oculares y los hallazgos de Cole y Franke [8] sobre biomarcadores neurolé-
gicos, este disenio contribuye a observar fenémenos como la habituacién, la variabilidad
intraindividual o la estabilidad del control oculomotor bajo condiciones de repeticion

prolongada.

3.4 Preprocesado y calibraciéon temporal de los

datos

En esta seccién se describe el flujo de trabajo completo de preprocesado y calibracion
temporal aplicado a los datos crudos del sistema de seguimiento ocular. El proceso se
divide en varias etapas consecutivas que incluyen la conversién de formatos, el filtrado de
artefactos, el remuestreo de la senal, la calibracion espacial y temporal, y la segmentacién

por experimentos.

3.4.1 Arquitectura del sistema de procesamiento

El sistema de procesamiento se estructura mediante una funcién principal denominada
preprocesado (), que coordina la ejecucién secuencial de las diferentes etapas del pipeline.
Esta funcién recibe como parametros el identificador numérico del caso a procesar y un

indicador booleano para la eliminacion opcional de archivos previamente procesados.

La arquitectura modular permite la reutilizacién de componentes individuales y facilita
la trazabilidad del proceso, generando archivos intermedios en diferentes etapas que pueden

ser utilizados para verificacién y depuracion.
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3.4.2 Conversion y validacion de formatos
3.4.2.1 Conversiéon JSON a formato MAT

Los datos crudos del eye tracker se almacenan inicialmente en formato JSON, que debe
ser convertido a formato MAT de MATLAB para su procesamiento posterior. La funcién
leer_json_videos_new() realiza esta conversién mediante un anélisis linea por linea del
archivo JSON, extrayendo las variables principales:

e posicion_x: Coordenadas horizontales de la mirada

e posicion_y: Coordenadas verticales de la mirada

e time_t: Sellos temporales en milisegundos

e frame: Numero de frame correspondiente

El proceso de conversion incluye validaciéon automatica de la existencia de archivos y

manejo de errores para casos donde los archivos de entrada no estdn disponibles.

3.4.2.2 Estructura de archivos

La organizacién de archivos sigue una estructura jerarquica que separa los datos por etapas
de procesamiento:

o datos/jsons/: Archivos originales en formato JSON

e datos/mats/: Archivos convertidos a formato MAT

o datos/preprocesado/: Archivos procesados y remuestreados

e datos/calibrado/: Archivos con calibracién temporal aplicada

e datos/expto_divididos/: Datos segmentados por experimento

3.4.3 Filtrado de artefactos y preprocesamiento
3.4.3.1 Eliminaciéon de parpadeos

El primer paso del preprocesamiento consiste en la eliminaciéon de artefactos produ-
cidos por los parpadeos del participante. Esta tarea se realiza mediante la funcién
filtrar_parpadeos(), que identifica y elimina las muestras correspondientes a perio-

dos de oclusién ocular.
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Los algoritmos de deteccién de parpadeos utilizan criterios basados en la continuidad
temporal y espacial de las trayectorias oculares, permitiendo la identificacién automética

de interrupciones en la senal causadas por el cierre de los parpados.

T
Posicion Y Original
Posicion Y Modificada [
X Picos Interpolados

Posicion Y

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00
Tiempo (s)

Figura 3.10: Visualizacién de la eliminacién de los parpadeos.

Los pardametros optimizados para la deteccién incluyen un umbral de diferencia de 0.020
unidades y un tamafio de ventana de 20 muestras. Estos valores fueron determinados
mediante andlisis iterativo de la senal, considerando las caracteristicas especificas del ruido

y la variabilidad natural de los movimientos oculares registrados.

El andlisis cuantitativo de los datos procesados, para el caso 34 mostrado en la 3.10, reveld
la deteccién de 272 eventos de parpadeo durante un periodo de registro de 16.57 minutos
como se puede ver el la figura 3.10, esta informacion permitié calcular una frecuencia media
de parpadeo de 16.42 eventos por minuto, valor que se encuentra dentro del rango fisioldgico
normal establecido entre 15 y 20 parpadeos por minuto para individuos en condiciones de

reposo.

3.4.3.2 Remuestreo de la senal

La funcién remuestreo_senal () realiza la normalizaciéon temporal de los datos mediante

las siguientes operaciones:
1. Recorte temporal: Eliminacién de muestras posteriores a 985.00290 segundos para
estandarizar la duracién de las sesiones.

2. Remuestreo uniforme: Aplicacion de interpolacién lineal para generar una senal

con muestreo regular de 1110 microsegundos.

3. Centrado de la senal: Sustraccién del valor medio de cada coordenada para eliminar
el offset DC.
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El proceso de remuestreo asegura la coherencia temporal entre diferentes sesiones y
facilita la aplicacion de algoritmos de procesamiento posteriores que requieren muestreo

uniforme.

3.4.4 Sistema de calibraciéon temporal adaptativo
3.4.4.1 Deteccién de fijaciones mediante clustering espacial

El sistema de calibracion temporal se basa en la identificacién automatica de
periodos de fijacién ocular mediante técnicas de clustering espacial. La funcién
visualizar_fijaciones_espaciales() implementa un algoritmo de clustering por
densidad que agrupa las muestras oculares segin criterios de proximidad espacial y

temporal.

Los parametros del algoritmo de clustering son:

o max_dist: Distancia méxima entre puntos para formar un cluster (0.004 unidades

normalizadas).

e max_time_gap: Intervalo temporal maximo entre muestras del mismo cluster (0.015

segundos).

e min_points: Nimero minimo de puntos requeridos para formar un cluster vélido (45

muestras).

3.4.4.2 Formacién de super-clusters

Para mejorar la robustez de la deteccion de fijaciones, se implementa un sistema de agrupa-
cién jerarquico que combina clusters espacialmente préximos en estructuras denominadas
super-clusters. La funciéon detectar_super_clusters() utiliza un criterio de distancia

entre centros de clusters para determinar la pertenencia a un super-cluster.

Esta aproximacién jerdrquica permite la identificacién de fijaciones complejas que pueden
manifestarse como miltiples clusters espaciales debido a micro-movimientos oculares o
variaciones en la precisién del sistema de seguimiento. Estos clusters sse pueden visualizar

en la figura 3.14.

3.4.4.3 Calibracion temporal basada en sacadas

El proceso de calibracién temporal se fundamenta en la sincronizacién de los tiempos
de las sacadas detectadas con un patron temporal de referencia predefinido. La funcién

calibrar_con_fijaciones() realiza las siguientes operaciones:
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1. Extracciéon de tiempos de sacada: Identificaciéon de los instantes temporales

correspondientes a las transiciones entre fijaciones.

2. Alineacién temporal: Calculo del desplazamiento temporal 6ptimo mediante mini-

mizacién del error cuadratico medio entre sacadas detectadas y tiempos objetivo.

3. Aplicacion de correccién: Ajuste de todos los sellos temporales mediante la adicion

del desplazamiento calculado.

1~
09 —
0.8 —
0.7 —
0.6 —
05—
04 —
03—
02—
01— E E
235 27.5 354 43.3 47.5 51.0 59.3 63.3
0 | i | 1 | | | | 1 1
20 25 30 35 40 45 50 55 60 65
Tiempo (s)
‘ Sacadas Objetivo (con correspondencia) = Sacadas Originales Sacadas Calibradas ‘

Figura 3.11: Visualizacién de la calibraciéon temporal. En este caso se retrasan todas las
muestras de este caso unos 2.5 segundos para que coincidan con los tiempos
objetivo de las sacadas.

Los tiempos objetivo de las sacadas estdn predefinidos en segundos: [21, 25, 33, 41, 45,
49, 57, 61], correspondientes a las transiciones esperadas en el protocolo experimental

utilizado.

3.4.5 Calibraciéon espacial
3.4.5.1 Calibracién en el eje X (horizontal)

La calibracién espacial en el eje horizontal se realiza mediante un proceso de tres etapas que

utiliza intervalos temporales especificos correspondientes a diferentes zonas de calibracién:

o Calibracién central: Intervalos [26-32] y [62-68] segundos para establecer el punto

de referencia central.

o Calibracién izquierda: Intervalo [34-44] segundos para la zona izquierda de la

pantalla.

o Calibracién derecha: Intervalo [46-56] segundos para la zona derecha de la pantalla.
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Figura 3.12: Zona de calibracién de la senal del eje X.

El proceso incluye la aplicacion de factores de escalado diferenciados para las zonas
izquierda y derecha (factor 0.4), seguido de limitacién de valores extremos al rango [-0.5,

0.5] y traslacién final al rango [0, 1].

3.4.5.2 Calibracién en el eje Y (vertical)

La calibracién vertical sigue un esquema similar al horizontal, utilizando los siguientes

intervalos temporales:

o Calibracién central: Intervalos [34-40] y [50-56] segundos.
« Calibracién inferior: Intervalo [22-32] segundos.

» Calibracién superior: Intervalo [58-68] segundos.

0 1000 Pl k] 40 Ll

Figura 3.13: Calibracion de la sefial del eje Y.

Los factores de escalado y las operaciones de limitacion y traslaciéon siguen el mismo

procedimiento que en el eje horizontal.
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3.4.6 Procesamiento final y segmentacion
3.4.6.1 Eliminacion de transitorios

Para minimizar los efectos de transitorios al inicio y final de cada sesién, se aplica una
ventana de eliminacién que establece a cero las primeras y tltimas 200 muestras de cada

senal procesada.

3.4.6.2 Segmentacién por experimentos

La funcién extraer_experimentos () realiza la segmentacion temporal de los datos proce-
sados segun la estructura del protocolo experimental. Los intervalos de segmentacién estan

predefinidos para ocho experimentos diferentes, cada uno con multiples rondas:

e Experimento 1: Una ronda de calibracidén entre 13.0 y 69.0 segundos
o Experimento 2: Tres rondas entre 80.0 y 208.767 segundos

o Experimento 3: Tres rondas entre 227.933 y 382.833 segundos

o Experimento 4: Tres rondas entre 393.8 y 513.3 segundos

e Experimento 5: Tres rondas entre 527.3 y 672.1 segundos

¢ Experimento 6: Tres rondas entre 680.0 y 803.0 segundos

o Experimento 7: Nueve rondas entre 812.0 y 887.0 segundos

e Experimento 8: Tres rondas entre 898.633 y 990.5 segundos

Cada segmento se almacena como un archivo independiente que contiene las coordenadas

oculares y los sellos temporales correspondientes al experimento y ronda especificos.

proyecto/
|-- datos/
|-- expto_divididos/
| -- expto_divididos_caso042/

|-- experimento_1_ronda_1.mat
| -- experimento_2_ronda_1.mat
| -- experimento_2_ronda_2.mat
| -- experimento_2_ronda_3.mat
| -- experimento_3_ronda_1.mat
| -- experimento_3_ronda_2.mat

| -- experimento_3_ronda_3.mat
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| -- experimento_8_ronda_1.mat
| -- experimento_8_ronda_2.mat
*—— experimento_8_ronda_3.mat

4 directories, 28 files

3.4.7 Validacién y control de calidad

El sistema incluye multiples mecanismos de validacién y control de calidad:

e Verificacion de longitud: Confirmacién de la coherencia dimensional entre vectores

de coordenadas y tiempo.

e Validacién temporal: Comprobacion de la alineaciéon correcta de las sacadas cali-

bradas con los tiempos objetivo.

« Reporte de estadisticas: Generacion automatica de informes con métricas de

calibracién y desplazamientos aplicados.

e Trazabilidad completa: Mantenimiento de registros detallados de todas las trans-

formaciones aplicadas.

3.4.8 Consideraciones técnicas
3.4.8.1 Robustez del algoritmo
El sistema de procesamiento incorpora mecanismos de robustez para manejar variaciones
en la calidad de los datos y diferencias interindividuales:
o Adaptacién automaética al niimero de clusters detectados

o Seleccién 6ptima de correspondencias entre sacadas detectadas y objetivos

e Manejo de casos con informacion parcial o degradada

3.4.8.2 Escalabilidad

La arquitectura modular del sistema permite el procesamiento eficiente de grandes vo-
lamenes de datos, con paralelizacion potencial en las etapas de conversion y filtrado de

artefactos.

El pipeline completo de preprocesado y calibraciéon proporciona datos normalizados tanto
espacial como temporalmente, facilitando los andlisis posteriores de patrones oculomotores

y la extraccion de parametros descriptores de la conducta visual.
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3.5 Deteccién de fijaciones y sacadas

La deteccion precisa de fijaciones y sacadas constituye un paso fundamental en el anéalisis de
movimientos oculares, ya que estos eventos representan las unidades basicas de comporta-
miento oculomotor [11]. Las fijaciones corresponden a periodos de relativa estabilidad ocular
durante los cuales se procesa la informacién visual, mientras que las sacadas representan

movimientos balisticos rdpidos entre puntos de fijacién [36].

3.5.1 Fundamentos teodricos

La identificacién de eventos oculomotores se basa en el andlisis de las caracteristicas
temporales y espaciales de los movimientos oculares registrados. Segin [37], los algoritmos
de deteccién pueden clasificarse en tres categorias principales: basados en velocidad, basados
en dispersion y basados en modelos probabilisticos. Para el presente trabajo se adopté
un enfoque hibrido que combina criterios de velocidad y dispersiéon espacial, siguiendo las

recomendaciones metodoldgicas establecidas en la literatura especializada [1, 12].

El algoritmo implementado se fundamenta en el principio de que las fijaciones se caracteri-
zan por velocidades angulares bajas y agrupacién espacial de puntos consecutivos, mientras
que las sacadas presentan velocidades elevadas y desplazamientos espaciales significativos
[41]. Esta aproximacién permite una identificacién robusta de eventos oculomotores incluso

en presencia de ruido en las senales [30].

3.5.2 Algoritmo de deteccion

3.5.2.1 Calculo de velocidades

El primer paso del algoritmo consiste en el cdlculo de velocidades instantdneas entre puntos
consecutivos de la trayectoria ocular. Para cada par de muestras consecutivas (z;, yi,t;) y

(Zit1, Yit1, tit+1), la velocidad se calcula mediante:

2 2
Tit1 — Zi)* + (Yir1 — Y
\ - e ) o
tiv1—1;

donde v; representa la velocidad instantdnea en el punto i, expresada en unidades de
posicion por unidad de tiempo. La conversién temporal se realiza multiplicando por un
factor de escala de 107 para convertir las unidades temporales del sistema de adquisicion

a segundos.
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Figura 3.14: Grafica de los cluster agrupados de cada fijacion. El ejemplo muestra el
experimento que se usa para calibrar temporalmente todos los casos, ademas
de para calibrar el propio eye tracker.

3.5.2.2 Clasificacion basada en umbral de velocidad

La identificacién inicial de fijaciones se realiza mediante la aplicacién de un umbral de
velocidad Vipreshola- Los puntos que satisfacen la condicién v; < Vipreshotd S€ clasifican como
candidatos a fijacién [27]. El valor del umbral se establece inicialmente en 0.0275 unidades
por segundo, basandose en los parametros reportados en estudios previos sobre analisis

oculomotor [9, 31].

.‘ Universidad de Valladolid



34

Velocidad

Frecuencia

25

0.5

Figura 3.15: Visulizacién de la velocidad entre muestras

1600

1400

1200

1000

Capitulo 3 Metodologia

Zoom: Primeros 10% de datos - Analisis de Velocidad

5 210

A W --&a A N AN s A b Lo V. | PN _/Lﬂ__

Velocidad
= = = =Umbral = 3300.0000 px/s

13

14 15 16 17 18
Tiempo (segundos)

Distribucién de Velocidades

con el umbral de velocidad.

I s g s ey

[ Hstograma
Umbral = 3300.0000 pi/s
Meda = 16008, 1270
== Mediana = 5031.9457

Desv Estandar: 57903.5956
Min: 56.7455

Méx: 1161411.8640

Puntos bajo umbral: 1402 (27.8%)|

I I el M = [
5 6 7

Velocidad

Figura 3.16: Visulizacién del histograma la velocidad.

Universidad de Valladolid

8

x10%



35

3.5.2.3 Agrupacién espacial y temporal

Los puntos candidatos a fijacién se someten a un proceso de agrupacion que considera
tanto la proximidad espacial como la continuidad temporal. Se implementa un algoritmo

de clustering que evalia:

o Distancia espacial: Los puntos se agrupan si la distancia euclidiana entre sus

centroides es inferior a un umbral espacial de 0.004 unidades

e Continuidad temporal: Se requiere que el intervalo temporal entre grupos consecu-

tivos sea inferior a 0.015 segundos para considerar su fusién

e Numero minimo de puntos: Cada cluster debe contener al menos 3 puntos para

ser considerado una fijacién valida

Esta aproximacion multicriterio permite identificar fijaciones coherentes desde el punto
de vista oculomotor, siguiendo los principios establecidos por [14] para la deteccién de
patrones oculares en poblaciones clinicas.

3.5.3 Refinamiento y optimizacién de parametros

3.5.3.1 Combinacién de clusters espacialmente préoximos

El algoritmo implementa un proceso iterativo de refinamiento que evaltia la posibilidad de

combinar clusters espacialmente préximos. Para cada par de clusters C; y C}, se calcula:

« Distancia entre centroides: d;; = \/(xcz —x¢c;)? + (Yo, — v, )?
« Area de solapamiento: Calculada geométricamente considerando los radios respec-
tivos r; y 1

e Diferencia temporal: Minima separacién temporal entre los intervalos de ambos

clusters

Los clusters se combinan si el porcentaje de solapamiento supera el 75 % del 4rea del
cluster menor y la diferencia temporal es inferior a 2 x 107° segundos. Esta estrategia
permite la identificacién de fijaciones complejas que pueden presentar micro-movimientos

internos [28].

3.5.3.2 Optimizacion automatica de parametros

Se implementé un sistema de optimizaciéon automaética que ajusta los pardmetros del
algoritmo basdndose en métricas de calidad de los clusters resultantes. La funcién objetivo

considera:
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Score = 0,4 - Sconesion + 0,2 - Sseparation +0,3- Scoverage + 0,1 Seusters (3-2)

Donde:

e Sconesion: Inversamente proporcional a la distancia promedio intra-cluster.

o Sseparation: Proporcional a la distancia promedio inter-cluster.

o Scoverage: Proporcién de puntos asignados a clusters validos.

o Siusters: Penalizacion por niimero excesivo o insuficiente de clusters.

Los parametros optimizados incluyen:

o Umbral de velocidad Vipreshola: Rango de exploracién £20 % del valor inicial.

« Radio de clusters radius: Rango de exploraciéon +20 % del valor inicial.

o Umbral temporal time eshola: Rango de exploraciéon +20 % del valor inicial.

e Umbral de solapamiento overlapinreshoid: Rango de exploracién 420 % del valor
inicial.

 Niumero minimo de puntos por cluster ming;; custer: Rango de exploracion

+2 del valor inicial.

Esta aproximacién adaptativa permite ajustar automaticamente los parametros de
deteccion a las caracteristicas especificas de cada registro, mejorando la robustez del

analisis [2].

3.5.4 Validacién y control de calidad

La validacién de los resultados de deteccion se realiza mediante inspeccién visual utilizando

una funcién de representacién grafica especializada que permite evaluar:
e Distribucién espacial de fijaciones y clusters

e Coherencia temporal de las agrupaciones

Proporciéon de puntos asignados correctamente
o Identificacién de posibles artefactos o errores de clasificacion

Esta aproximacién visual complementa las métricas automéaticas de calidad, proporcio-
nando una validacién cualitativa esencial para garantizar la fiabilidad de los resultados [43].
La representacion grafica incluye elementos distintivos para cada tipo de evento ocular,

facilitando la interpretacién por parte del investigador.
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3.5.5 Parametros de salida

El algoritmo genera una estructura de datos completa que incluye:

e Puntos de fijacion: Coordenadas espaciales, marcas temporales y asignacién a

clusters

e Caracteristicas de clusters: Centroides, radios, intervalos temporales y niimero de

puntos
o Parametros optimizados: Valores ajustados de todos los umbrales utilizados
e Métricas de calidad: Puntuaciones de cohesién, separaciéon y cobertura

Esta informacién constituye la base para la extraccién posterior de parametros oculomo-
tores especificos, siguiendo las metodologias establecidas en la literatura para el andlisis de

movimientos oculares en contextos clinicos y experimentales [4, 15].

La implementacion desarrollada proporciona una base sélida para el anélisis cuantitativo
de patrones oculomotores, permitiendo la extraccién de biomarcadores relacionados con el

envejecimiento y el funcionamiento neurolégico [10, 3].

3.6 Parametros oculomotores extraidos

La extraccion de parametros oculomotores representa una etapa fundamental en el analisis
cuantitativo de los movimientos oculares, ya que permite transformar las senales de segui-
miento ocular en métricas objetivas que reflejan aspectos especificos del comportamiento
visual y cognitivo. Los pardmetros oculomotores constituyen biomarcadores potenciales que
han demostrado su capacidad para caracterizar diferencias individuales, estados cognitivos

y procesos de envejecimiento [3].

El procesamiento de las senales de eye tracking para la obtencién de parametros cuanti-
tativos requiere de metodologias robustas que permitan extraer informacién relevante de
los patrones de movimientos oculares. Segiin Duchowski (2017) en su obra fundamental
“Eye Tracking Methodology: Theory and Practice” [11], la seleccién y cédlculo de estos
parametros debe fundamentarse en la comprensién de los mecanismos neurofisiol6gicos
subyacentes a cada tipo de movimiento ocular, asi como en su relevancia para la aplicacién

especifica del estudio.

En el contexto de la prediccién de la edad bioldgica, diversos estudios han identificado
que ciertos pardmetros oculomotores experimentan cambios sistematicos a lo largo del ciclo
vital. Irving et al. (2006) en su investigacion sobre la dindmica de sacadas horizontales a lo

largo de la vida humana [21] y Peltsch et al. (2011) en su andlisis de tendencias relacionadas
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con la edad en las caracteristicas de sacadas en adultos mayores [35] han documentado
que parametros como la latencia de sacadas, la precisién espacial y la ganancia sacadica
muestran tendencias especificas relacionadas con el envejecimiento, lo que fundamenta su

uso como predictores potenciales de la edad cronolégica.

La metodologia implementada para la extraccion de parametros se basa en el analisis
de las secuencias de fijaciones y sacadas previamente detectadas, aplicando algoritmos
especificos para cada tipo de pardmetro. A continuacién se describe el proceso de célculo

de cada parametro oculomotor utilizado en este trabajo.

3.6.1 Ganancia de sacadas (Saccadic Gain)

Definicién y relevancia clinica

La ganancia de sacadas se define como la relacién entre la amplitud del movimiento
ocular ejecutado y la amplitud del desplazamiento requerido para alcanzar el objetivo visual
[25]. Este pardmetro es una medida fundamental de la precisién del sistema oculomotor y

ha sido identificado como biomarcador sensible a procesos neurolégicos y de envejecimiento
1, 27].

Fundamentos tedricos

En individuos jovenes y sanos, la ganancia sacidica suele aproximarse a la unidad,
indicando que el movimiento ocular cubre la distancia necesaria para alcanzar el objetivo.
Factores como la edad, condiciones neuroldgicas y la complejidad de la tarea pueden alterar
este valor [27]. La literatura destaca la importancia de este pardmetro en la evaluacién de la

funcién oculomotora y su utilidad clinica en el diagnéstico de trastornos neurodegenerativos

[1].

Metodologia de calculo

El calculo de la ganancia de sacadas sigue estos pasos, adaptados de Terao et al. (2017)

[41]:

1. Identificaciéon de sacadas: Para cada estimulo, se identifican las fijaciones dentro
de una ventana temporal de 500 ms antes y después del estimulo, siguiendo a Molitor
et al. (2015) [30].

2. Selecciéon de fijaciones relevantes: Se requieren al menos dos fijaciones para
calcular la ganancia. Se identifican la primera y tltima fijaciéon asociadas al estimulo

como posiciones inicial y final del movimiento ocular.

3. Calculo de amplitudes:
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o Amplitud del estimulo: Distancia entre la posicién central de referencia (0.5 en

coordenadas normalizadas) y la posicién del estimulo.

o Amplitud del movimiento ocular: Distancia euclidiana entre las fijaciones inicial

y final.

4. Calculo de la ganancia:

Amplitud del movimiento ocular

(3.3)

Ganancia =
Amplitud del estimulo

donde el numerador es la distancia recorrida por la mirada y el denominador la

distancia requerida por el estimulo.

5. Filtrado de valores: Se excluyen valores fuera del intervalo [0.1, 2.0], segtin Eckstein
et al. (2017) [12].

Si solo se identifica una fijacién dentro del periodo del estimulo, se utiliza la fijacion

inmediatamente anterior como referencia, siguiendo a Fukushima y Fukushima (2013) [15].

Criterios de validacion

La validez del calculo se garantiza mediante:

e Aplicacion de ventanas temporales amplias para capturar respuestas rapidas y tardias
[9].
o Exclusiéon de valores fuera del rango [0.1, 2.0], que suelen corresponder a artefactos o

movimientos no relacionados [31].

e Validacién visual de las trayectorias y fijaciones.

Parametros extraidos

A partir del anélisis de la ganancia de sacadas se obtienen:
e Ganancia media: Valor promedio de todas las sacadas véalidas por participante.

e Distribuciéon de ganancias: Vector de valores individuales para andlisis intra- e

inter-sujeto.

Visualizacién

La visualizacién incluye la representaciéon de las posiciones de fijaciones, trayectorias de
sacadas y valores de ganancia calculados. Esta funcionalidad es esencial para la validacién
y analisis cualitativo de los resultados, siguiendo las recomendaciones de Antoniades et al.
(2013) [2].
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Figura 3.17: Ejemplo de visualizacion de las ganancias de las sacadas calculadas para un
participante.

Consideraciones técnicas

La implementacién computacional incorpora filtros de calidad, validaciéon visual
y criterios conservadores para asegurar la robustez de los resultados. La ganancia de
sacadas debe interpretarse en el contexto experimental y en conjunto con otros parametros

oculomotores para una caracterizacién integral del desempeno visual.

En sintesis, la ganancia de sacadas es un pardmetro esencial para la evaluacién cuantita-
tiva de la precisién oculomotora, aportando valor diagndstico y comparativo en estudios de

funcién

3.6.2 Sacadas correctivas (Corrective Saccades)

Definicién y relevancia clinica

Las sacadas correctivas constituyen un tipo especifico de movimiento ocular de pequena
amplitud, cuya funcion es compensar errores residuales tras una sacada primaria. Estas
sacadas desempenan un papel crucial en el mantenimiento de la precision visual y reflejan
la eficiencia del sistema de control oculomotor [28]. Su frecuencia y caracteristicas han
sido propuestas como biomarcadores sensibles a procesos de envejecimiento y disfunciéon

neurologica [10].

Fundamentos tedricos

La literatura destaca que las sacadas correctivas reflejan mecanismos de retroalimenta-
cién visual y la capacidad del sistema oculomotor para corregir errores de fijacion. Cambios
en la frecuencia o en las caracteristicas de estas sacadas pueden indicar alteraciones en
el control motor fino, siendo relevantes en el contexto del envejecimiento y los trastornos

neurodegenerativos [10, 41].
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Metodologia de calculo
La deteccion y cuantificacion de sacadas correctivas se basa en el andlisis de desvia-
ciones temporales de la mirada fuera de los limites de los clusters de fijacién previamente

identificados. El procedimiento sigue estos pasos:

1. Definicion del intervalo temporal: Para cada cluster de fijacién, se establece su

intervalo temporal mediante los tiempos de inicio (tsiar¢) v finalizacion (tenq).

2. Identificacién de puntos fuera del radio: Se calcula la distancia euclidiana de
cada punto de mirada al centro del cluster. Los puntos que exceden el radio establecido

se consideran candidatos a sacada correctiva.

3. Agrupacion de secuencias consecutivas: Los puntos fuera del radio se agrupan

en secuencias temporalmente consecutivas, siguiendo los criterios de Eckstein et al.

(2017) [12].
4. Calculo de parametros cuantitativos: Para cada secuencia identificada se calculan:
e Distancia mdxima: Maxima distancia alcanzada fuera del limite del cluster.
e Duracion: Tiempo entre el primer y tltimo punto de la secuencia.

e Coordenadas de trayectoria: Registro completo de posiciones z, y y tiempos de

cada punto de la sacada correctiva.

Criterios de validacion

La validacién sigue los estandares metodolégicos de Molitor et al. (2015) [30]:

e Se requiere un minimo de dos puntos consecutivos fuera del radio del cluster para

considerar valida una sacada correctiva.
o Control de calidad temporal y espacial de las secuencias detectadas.

e Verificacién de que los indices calculados estén dentro de los limites validos de los

datos registrados [3].

Parametros extraidos

A partir de las sacadas correctivas detectadas se obtienen:

e Frecuencia de sacadas correctivas: Numero total por cluster valido, normalizado

por la duracién total del experimento.

e Distancia maxima promedio: Media de las distancias maximas alcanzadas fuera

de los limites de los clusters.

e Duracion promedio: Media de las duraciones de todas las sacadas correctivas.
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e Proporcion de clusters afectados: Porcentaje de clusters de fijacion con al menos

una sacada correctiva.

Estas caracteristicas se fundamentan en la evidencia de Terao et al. (2017) [41].

Visualizacién
La visualizacién incluye la representacion de la trayectoria de cada sacada correctiva
sobre los clusters correspondientes, permitiendo la inspeccién manual y validaciéon visual

de los resultados [9].
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Figura 3.18: Ejemplo de visualizacién de las trayectorias de sacadas correctivas detectadas
sobre los clusters de fijacion.

Consideraciones técnicas

La implementacién computacional maneja de forma robusta casos extremos como la
presencia de un tnico punto fuera del cluster o secuencias no consecutivas, aplicando criterios
de agrupacién temporal para asegurar la identificacién correcta de eventos oculomotores
genuinos. La conversién temporal considera la frecuencia de muestreo especifica del sistema

de eye-tracking, garantizando precisién en las mediciones de duracién. Se recomienda
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interpretar las sacadas correctivas en conjunto con otros parametros oculomotores para

una caracterizaciéon integral del control visual.

En sintesis, las sacadas correctivas son un parametro esencial para la evaluaciéon cuanti-
tativa de la precisiéon y adaptabilidad del sistema oculomotor, aportando valor diagndstico

y comparativo en estudios de funcién visual y envejecimiento.

3.6.3 Coeficiente de anticipacion y retraso

Definicién y relevancia clinica

El coeficiente de anticipacion y retraso cuantifica la relacion temporal entre el inicio
de las fijaciones oculares y la aparicién de los estimulos visuales, proporcionando una
medida objetiva de la capacidad predictiva y de control temporal del sistema oculomotor.
Su relevancia clinica reside en su sensibilidad para detectar alteraciones en la sincronizacion
temporal de la atencién visual, lo que lo convierte en un biomarcador 1til en el estudio de

procesos de envejecimiento y trastornos neurodegenerativos [9, 21, 35].

Fundamentos tedricos

La conceptualizacion de este parametro se fundamenta en evidencia neurocientifica
que indica que el sistema oculomotor posee capacidades predictivas que permiten anticipar
la aparicién de estimulos en tareas de seguimiento visual. Barnes (2008) documenté que
el sistema visual puede generar movimientos anticipatorios basados en la prediccién de
trayectorias de estimulos méviles [4]. Ademads, Eckstein et al. (2017) demostraron que
las diferencias en la sincronizacién temporal entre la atencién visual y la aparicién de
estimulos reflejan variaciones en la eficiencia del procesamiento cognitivo y la capacidad de
control ejecutivo [12]. El envejecimiento y los procesos neurodegenerativos pueden afectar

significativamente estos mecanismos temporales [41].

Metodologia de calculo
El célculo del coeficiente de anticipacion y retraso se basa en la diferencia temporal entre
el inicio de la fijacion ocular mas proxima y la aparicién del estimulo visual correspondiente.

Matematicamente, se expresa como:

Cuniﬁcado - tﬁjacio’n — Lestimulo (34)

donde fjqcisn es el tiempo de inicio de la fijacién més proxima espacialmente al estimulo, y

testimulo €S €l tiempo de aparicion del estimulo visual. Valores negativos indican anticipacién

) 7 Universidad de Valladolid



44 Capitulo 3 Metodologia

(la fijacién comienza antes del estimulo), valores positivos sefialan retraso (la fijacién se
inicia después del estimulo) y valores cercanos a cero representan sincronizacién temporal
Optima.

El algoritmo implementado sigue estos pasos, adaptados de Raynowska y Orquin (2018)
[37]:

1. Ventana temporal de busqueda: Para cada estimulo, se establece una ventana de

4500 ms respecto a su aparicién para identificar fijaciones relevantes [30].

2. Seleccién de fijacién relevante: Se selecciona la fijacién con menor distancia
euclidiana respecto a la posicién del estimulo, aplicando el criterio de proximidad
espacial de Munoz y Everling (2004) [31].

3. Calculo de la diferencia temporal: Se computa la diferencia entre el inicio de la
fijacion seleccionada y el tiempo de aparicion del estimulo, obteniendo el valor del
coeficiente (3.4).

4. Clasificacion temporal: Se establecen umbrales de £200 ms para categorizar las
respuestas como anticipacién significativa (< —200 ms), retraso significativo (> +200

ms) o sincronizacién (entre —200 ms y 4200 ms).

Criterios de validaciéon
La validez de cada medicion se garantiza mediante criterios estrictos, siguiendo las
directrices de Antoniades et al. (2013) [2]:

« Existencia de fijaciones validas dentro de la ventana temporal.
o Proximidad espacial entre la fijacién y el estimulo (distancia maxima de tolerancia).

o Exclusién de valores extremos o artefactos de medicién.

Parametros extraidos

A partir del analisis del coeficiente de anticipacion y retraso se obtienen:

e Distribuciéon de coeficientes: Vector de diferencias temporales para todos los

ensayos.

« Porcentaje de anticipaciones, retrasos y sincronizaciones: Proporcién de

ensayos en cada categoria temporal.

o Estadisticos descriptivos: Media y desviaciéon estandar del coeficiente en cada

participante o grupo.

Visualizacién
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La visualizacion grafica del coeficiente de anticipacion y retraso a lo largo de las
secuencias experimentales permite identificar patrones individuales y grupales. En este
trabajo, las respuestas de anticipacién se representan en azul, los retrasos en rojo y las

sincronizaciones en gris, facilitando la interpretacién cualitativa de los resultados [3].

25
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@ Retraso significativo
25— 1 1 1 | |
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Figura 3.19: Ejemplo de visualizacion del coeficiente de anticipacion y retraso frente a
los estimulos visuales.

Consideraciones técnicas

La implementacién computacional asegura la sincronizacién precisa entre los datos de
fijaciones y los tiempos de estimulo, aplicando filtros de calidad y algoritmos robustos para
la identificacién de eventos relevantes. Esta aproximacion garantiza la reproducibilidad y
comparabilidad de los resultados, permitiendo su integraciéon en estudios longitudinales y

comparativos sobre envejecimiento y funcién cognitiva.

En conclusién, el coeficiente de anticipacion y retraso constituye un parametro integral
para la caracterizacién temporal de la respuesta oculomotora, aportando valor diagnostico

y metodoldgico en el andlisis de la atencion visual y el control temporal en diferentes

3.6.4 Coeficiente de antisacadas

Definicién y relevancia clinica

El coeficiente de antisacadas es una métrica fundamental para evaluar el control
cognitivo de los movimientos oculares, especificamente la capacidad de inhibir respuestas
automaéticas y ejecutar movimientos oculares voluntarios. Este pardmetro se deriva de la
tarea de antisacadas, un paradigma experimental ampliamente utilizado en neurociencia
cognitiva que requiere que los participantes supriman la tendencia natural de dirigir la
mirada hacia un estimulo visual periférico y, en su lugar, realicen una sacada hacia la

ubicacion diametralmente opuesta [31]. La relevancia clinica de este pardmetro radica en su
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sensibilidad para detectar alteraciones en el control inhibitorio asociadas a trastornos neu-
ropsiquiatricos y neurodegenerativos, como la esquizofrenia y la enfermedad de Alzheimer
[5, 9].

Fundamentos tedricos

La tarea de antisacadas fue desarrollada como herramienta para evaluar el control
ejecutivo y la funcién del cortex prefrontal [31]. Estudios como los de Benson et al. (2012)
y Crawford et al. (2013) han demostrado que la tasa de errores en esta tarea constituye un
biomarcador sensible de disfuncién ejecutiva, relevante en el envejecimiento y los trastornos

neurodegenerativos.

Metodologia de calculo

El calculo del coeficiente de antisacadas se basa en el andlisis de las respuestas
oculomotoras durante los ensayos donde el estimulo target corresponde a una antisacada
(identificados en los datos experimentales con el valor estimulo = 0). La metodologia sigue
los principios de Falck-Ytter et al. (2013) [14], adaptando los criterios de clasificaciéon para

el contexto de prediccién de edad.
El algoritmo implementado sigue estos pasos principales:

1. Identificacién de ensayos de antisacadas: Seleccion de estimulos con estimulo =
0.

2. Determinacién de coordenadas objetivo: Para cada ensayo en la posicién (z,y),

la posicién correcta es (z,1 —y), siguiendo a Fukushima y Fukushima (2013) [15].

3. Analisis temporal de fijaciones: Se consideran fijaciones desde 50 ms antes del
inicio del estimulo hasta 50 ms después de su finalizacién, segin Eckstein et al. (2017)
[12].

4. Clasificacién de respuestas: Se calculan las distancias euclidianas a la posicion
prohibida y a la correcta. Se utiliza un umbral de 0,5 unidades normalizadas para

determinar si una fijaciéon corresponde a alguna de estas ubicaciones.

5. Determinacién de errores y aciertos: Un ensayo es error si la mirada se dirige a
la posicion prohibida sin posteriormente mirar a la correcta; es acierto si se detecta
al menos una fijaciéon hacia la posicion correcta, independientemente de fijaciones

previas hacia la prohibida.

La tasa de error (error rate) se calcula como:

N,
Tasa de error = ——> (3.5)
total
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donde Neprores €8 €l niimero de ensayos clasificados como error y Niota) €l niimero total de

ensayos de antisacadas.

Criterios de validacién

El criterio de validacion espacial de 0,5 unidades normalizadas se fundamenta en
Anderson y MacAskill (2013) [1], permitiendo una deteccién robusta de respuestas sacadicas.
Para casos ambiguos, se aplica un umbral ampliado de 0,25 unidades normalizadas, siguiendo
a Kasprowski y Harezlak (2018) [23].

Parametros extraidos

El andlisis de antisacadas proporciona las siguientes métricas:
o Tasa de error: Proporcion de ensayos con respuesta incorrecta (3.5).

e Precision espacial: Vector de distancias euclidianas minimas entre fijaciones co-

rrectas y la posicion objetivo.

e Tiempo de prediccion: Vector con los tiempos de reaccién desde el inicio del

estimulo hasta la primera fijacion correcta.

048—

P:0.488

Posicion Y

T083s

042(—

| 1 1 1 | | | 1 1 |
0 0.1 02 03 04 05 06 07 08 09 1
Posicién X

Figura 3.20: Ejemplo representativo de trayectorias oculares en la tarea de antisacadas.

Visualizacion

Consideraciones técnicas

La implementacién considera respuestas correctivas, priorizando la clasificacién como

acierto si la fijacién correcta ocurre dentro del periodo analizado, incluso si hubo fijaciones
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previas hacia la posicién prohibida [30]. El coeficiente de antisacadas resultante es una
medida objetiva y cuantitativa del control inhibitorio oculomotor, correlacionada con
marcadores de envejecimiento cognitivo [24] y constituye un pardmetro esencial para la

prediccién de edad biolégica en este trabajo.

3.6.5 Sacadas dobles (Double Saccades)

Definicién y relevancia clinica

Las sacadas dobles constituyen un paradigma experimental especializado que evalda la
capacidad del sistema oculomotor para ejecutar secuencias rapidas y precisas de movimientos
sacddicos en respuesta a estimulos visuales consecutivos [25]. Este tipo de movimientos
representa un desafio particular para el control neuromotor, ya que requiere la coordinacién
temporal precisa de multiples componentes del sistema de control sacddico, incluyendo la
programacién, ejecucién y terminaciéon de sacadas individuales dentro de una secuencia
compleja. Su relevancia clinica radica en su sensibilidad para detectar alteraciones en
el control temporal y la reprogramacién motora, siendo tutiles como biomarcadores en

trastornos neuroldgicos y del desarrollo [27].

Fundamentos tedricos

El analisis de sacadas dobles permite evaluar aspectos del funcionamiento oculomotor no
accesibles mediante paradigmas de sacadas simples. Este paradigma es sensible a alteraciones
en el control temporal, la capacidad de reprogramacién saciddica y los mecanismos de
inhibicién que previenen la interferencia entre sacadas consecutivas [1, 31]. La evaluacion de
secuencias sacadicas complejas proporciona informacién sobre la integridad de los circuitos

cortico-subcorticales responsables del control voluntario de los movimientos oculares.

Metodologia de calculo

La deteccion y caracterizacion de sacadas dobles se basa en el andlisis de secuencias
temporales de fijaciones oculares en respuesta a la presentacién de dos estimulos visuales
consecutivos separados por un intervalo temporal minimo. El algoritmo implementado

sigue estos pasos:

1. Identificacién de fijacion previa: Deteccién de la fijacion inmediatamente anterior

al primer estimulo.

2. Primera sacada: Deteccion de la sacada desde la fijaciéon previa hacia la posiciéon

del primer estimulo.

3. Segunda sacada: Deteccién de la sacada desde la posicién del primer estimulo hacia

la posicién del segundo estimulo.
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Fijacién final: Identificacion de la fijacién resultante en la posicion objetivo final.

Para cada secuencia, se extraen los siguientes parametros cuantitativos:

Latencia de la primera sacada (L;): Tiempo desde la aparicién del primer estimulo

hasta el inicio de la primera sacada.

Latencia de la segunda sacada (Lg): Tiempo desde la aparicién del segundo

estimulo hasta el inicio de la segunda sacada.

Intervalo intersacadico (I): Tiempo entre el final de la primera sacada y el inicio

de la segunda.
Duracién de fijacién previa (Dy): Duracién de la fijacién que precede a la secuencia.

Error de localizacién (FE): Distancia euclidiana entre la posicion final de fijacién y

la posicion objetivo del segundo estimulo.

Criterios de validacion

La validacion de las secuencias detectadas se realiza mediante criterios estrictos:
Umbrales minimos de distancia espacial entre fijaciones consecutivas.

Rangos de latencias fisiolégicamente plausibles (50-800 ms).

Intervalos intersacddicos dentro de limites normales (0-500 ms).

Exclusion de secuencias con fijaciones previas demasiado breves para ser detectadas

(por ejemplo, < 25 ms).

Estos criterios se basan en las recomendaciones de Terao et al. (2017) [41].

Parametros extraidos

A partir del anélisis de sacadas dobles se obtienen:
Latencia de la primera sacada (L)
Latencia de la segunda sacada (Lo)
Intervalo intersacédico (1)

Duracién de fijacién previa (Dy)

Error de localizacién (F)

Estos parametros permiten evaluar la eficiencia temporal y espacial del sistema oculomotor

en tareas complejas.

Visualizacién

Universidad de Valladolid



50 Capitulo 3 Metodologia

La visualizacion incluye la representacion espacial de las trayectorias oculares, la
codificacién cromatica de diferentes tipos de fijaciones (previa, primera posicién, segunda
posicién) y la superposicion de pardmetros temporales sobre las representaciones graficas.
Esta aproximacién facilita la identificacién de patrones anémalos y la validacién manual

de las detecciones automaticas.

%  Estimulo (Doble)
09— @ Fijacion Previa
Primera Posicién
08— @ segunda Posicion
_* Sacada No Valida
o7 * *
> 06
f=3
b=l
Sosi * & *
8 #y
04—
03— 3 i

02

04—

| | | | | | J

02 03 04 05 06 0.7 08
Posicion X

Figura 3.21: Ejemplo de visualizacion de una secuencia de sacadas dobles. En este caso,
no se ha conseguido detectar la fijaciéon previa por su brevedad (25 ms).

Consideraciones técnicas

La implementacion algoritmica permite la visualizacién interactiva de las secuencias
de sacadas dobles, incorpora filtros para la deteccién de fijaciones breves y aplica criterios
de exclusién para evitar artefactos. Se recomienda interpretar los resultados en conjunto
con otros parametros oculomotores para una caracterizacién integral del control visual,

especialmente en el contexto de alteraciones neurologicas.

En sintesis, las sacadas dobles son un parametro avanzado para la evaluacién de la
coordinacién temporal y espacial del sistema oculomotor, aportando valor diagnoéstico y

comparativo en estudios de funcién visual y

3.6.6 Seguimiento ocular suave (Smooth Pursuit)

Definicién y relevancia clinica

El seguimiento ocular suave, o smooth pursuit, es un tipo especializado de movimiento
ocular que permite al sistema visual mantener la fijacién sobre objetos en movimiento
continuo, diferencidndose de los movimientos sacddicos por su naturaleza gradual y sostenida.
Su relevancia clinica radica en que las alteraciones en el smooth pursuit pueden reflejar
disfunciones en multiples regiones cerebrales, incluyendo la corteza visual, el cerebelo y
los ganglios basales [25]. Por ello, se considera un pardmetro valioso para la evaluacién de

procesos de envejecimiento y trastornos neurodegenerativos [1, 10].
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Fundamentos tedricos

El smooth pursuit requiere la integracién continua de informacién visual y procesos
de control motor de alto nivel, involucrando circuitos cortico-subcorticales complejos [4].
Alteraciones en este sistema pueden manifestarse tempranamente en diversas condiciones
neurolégicas, precediendo incluso a sintomas clinicos evidentes [1]. El envejecimiento normal
afecta sistematicamente la calidad del seguimiento suave, deteriorando tanto la ganancia

como la suavidad de las trayectorias [10].

Metodologia de calculo
El analisis cuantitativo del smooth pursuit se basa en el procesamiento de las sefiales
de seguimiento ocular durante la estimulacién con objetivos en movimiento continuo. El

proceso se estructura en las siguientes etapas:

1. Deteccién automatica de intervalos de seguimiento: Identificacién de periodos
de actividad de seguimiento mediante el andlisis de la velocidad ocular y la aplicacién

de umbrales adaptativos.

2. Calculo de latencia de pursuit: Tiempo desde el inicio del estimulo en movimiento
hasta el inicio del movimiento de seguimiento, identificado mediante un umbral de

velocidad minima [41].

3. Analisis de velocidad de seguimiento: Célculo de la velocidad media durante los

periodos de pursuit activo, aplicando técnicas de suavizado para reducir el ruido.

4. Evaluacién del error de seguimiento: Calculo de la desviacién entre la trayectoria

ocular observada y una trayectoria ideal estimada, utilizando ajuste polinomial [30].

5. Célculo de duracién del seguimiento: Tiempo durante el cual se mantiene un

seguimiento activo y coherente del estimulo.

Criterios de validacion

Para garantizar la validez de los parametros extraidos, se aplican los siguientes criterios:

e Exclusién de periodos de seguimiento con duracién insuficiente o incoherencia tempo-

ral.
e Verificaciéon de la plausibilidad fisiologica de los valores de latencia, velocidad y error.

o Validacién visual de las trayectorias y parametros calculados [2].

Parametros extraidos

A partir del analisis del smooth pursuit se obtienen:

e Latencia de inicio: Tiempo de reaccién ante el inicio del movimiento del estimulo.

Universidad de Valladolid




52 Capitulo 3 Metodologia

¢ Velocidad de seguimiento: Velocidad media mantenida durante los periodos de

pursuit activo.

e Error de seguimiento: Desviacién media entre la posicién ocular y la trayectoria

ideal.

e Duracion del seguimiento: Tiempo total de seguimiento activo y coherente.

Consideraciones técnicas

La implementacién computacional incorpora mecanismos de validacién de calidad,
analisis estadistico descriptivo y visualizacién interactiva para la inspeccién manual de
los resultados. Se recomienda interpretar los pardmetros de smooth pursuit en conjunto
con otras métricas oculomotoras para una caracterizacién integral del desempefio visual,

considerando la variabilidad interindividual y el contexto experimental [3].

En sintesis, el smooth pursuit es un parametro esencial para la evaluacion cuantitativa
de la funcién oculomotora continua, aportando valor diagnoéstico y comparativo en estudios

de envejecimiento y

3.6.7 Area envolvente convexa (Convex Hull)

Definicién y relevancia clinica

El area envolvente convexa, conocida como convex hull, es una métrica geométrica que
cuantifica la dispersién maxima de los movimientos oculares durante tareas de seguimiento
visual. Representa el area minima que engloba todos los puntos de fijacién registrados,
proporcionando una medida objetiva de la extensién espacial de la exploracion visual [42].
Su relevancia clinica radica en su capacidad para detectar alteraciones en los patrones de

exploracion visual asociadas a condiciones neuroldgicas y neurodegenerativas [27, 3].

Fundamentos tedricos

El parametro convezr hull se fundamenta en la geometria computacional y en el analisis
de la dispersion espacial de las fijaciones oculares. Toker et al. [42] demostraron que esta
métrica refleja estrategias cognitivas de exploracién visual, mientras que Duchowski [11]
recomienda su uso para el procesamiento robusto de datos de eye-tracking. El area del
conver hull complementa otras métricas como la BCEA y la entropia espacial, aportando

informacion sobre la extensién méxima de la exploracién [44].

Metodologia de calculo
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El célculo del drea envolvente convexa se realiza aplicando algoritmos como Graham o
QuickHull a las coordenadas normalizadas de las posiciones oculares. El drea se obtiene

mediante la siguiente ecuacion:

n

Z(xiyi+1 — Ti11Yi) (3.6)
i=1

Aconvez hull =

DN |

donde (z;,y;) son las coordenadas de los vértices del poligono convexo ordenados
secuencialmente y n es el nimero de vértices. Esta férmula corresponde al calculo del area

de un poligono simple mediante la regla del shoelace.

Criterios de validacién

Para garantizar la validez del calculo, se aplican los siguientes criterios:

e Filtrado de valores anémalos: eliminacién de coordenadas con valores Nal, infinitos

o fuera del rango normalizado [0,1].

e Verificaciéon de un minimo de tres puntos validos para la construccion del poligono

convexo.
o Validacién visual de la envolvente convexa para descartar artefactos.

Estos procedimientos siguen las recomendaciones metodolégicas de Duchowski [11] y

aseguran la robustez del andlisis.

Parametros extraidos

A partir del analisis del convex hull se obtienen:
o Area del convex hull: Medida de la extensién méxima de la exploracién visual.
e Numero de vértices: Cantidad de puntos que definen el perimetro convexo.

¢ Relacién con otras métricas: Comparacién con BCEA y entropia espacial para

caracterizacion integral.

Visualizacién

La visualizacién incluye la representacion grafica de los puntos de fijacion y el perimetro
convexo calculado. Esta funcionalidad es esencial para la validacién visual y la identificacién
de posibles artefactos. En este trabajo, se emplean figuras donde se muestran todos los
puntos validos, el trazado del convezx hull y el drea correspondiente, siguiendo un formato

homogéneo para todas las métricas espaciales.
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Caso 035
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Figura 3.22: Ejemplo de visualizacién del area envolvente convexa (convex hull) super-
puesta a los puntos de fijacion ocular.
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Consideraciones técnicas

La implementacién computacional utiliza algoritmos eficientes para el calculo del
convex hull y aplica filtros de calidad para asegurar la validez de los datos. El analisis debe
interpretarse en el contexto experimental especifico: valores elevados pueden indicar una
exploracién visual amplia o mayor variabilidad oculomotora, mientras que valores bajos
pueden reflejar una exploracién mas concentrada o restricciones funcionales. Se recomienda
analizar esta métrica junto con otras medidas oculomotoras para una caracterizaciéon

completa del comportamiento visual.

En sintesis, el rea envolvente convexa (convezr hull) es un pardmetro esencial para la
evaluaciéon cuantitativa de la dispersién espacial en el andlisis de movimientos oculares,

aportando valor diagnéstico y comparativo en estudios de funcién oculomotora.

3.6.8 Area Eliptica Bivariada de Contorno (BCEA)

Definicién y relevancia clinica

El Bivariate Contour Ellipse Area (BCEA) es una métrica estadistica que cuantifica la
dispersién espacial de las posiciones oculares durante periodos de fijacién, proporcionando
una medida objetiva de la precisién de fijacién ocular [44]. Su relevancia clinica radica en
su sensibilidad para detectar alteraciones en la estabilidad de la fijacién, lo que la convierte
en un biomarcador ttil en el estudio de patologias neurodegenerativas y trastornos del
desarrollo [30, 1].

Fundamentos tedricos

El parametro BCEA se fundamenta en el analisis de la distribucién bivariada de las
posiciones oculares, asumiendo una distribucién normal multivariante. Esta aproximacion
permite caracterizar tanto la magnitud como la orientacion de la dispersién ocular, cap-
turando la inestabilidad de la fijacién [44]. E1 BCEA representa el drea de la elipse que

contiene aproximadamente el 68 % de las muestras de posicién ocular.

Metodologia de calculo

El calculo del BCEA se realiza mediante la siguiente ecuacién:

BCEA = 2ntoz0y\/1 — p? (3.7)

donde o, y o, son las desviaciones estdndar de las coordenadas horizontales y verticales,

respectivamente, y p es el coeficiente de correlaciéon entre ambas dimensiones espaciales.
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Esta férmula estima el drea de la elipse de dispersién para un nivel de confianza del 68 %.
Para otros niveles de confianza, el factor multiplicativo puede ajustarse (por ejemplo,
k = 2,291 para el 95% de los datos).

Criterios de validaciéon

La validez del calculo del BCEA depende de una adecuada identificacion de periodos
de fijacién y de la calidad de los datos. Se aplican algoritmos de filtrado para eliminar
artefactos, valores atipicos y muestras no fisiolégicas, siguiendo las recomendaciones de
Hessels et al. [18]. Ademas, la robustez del BCEA frente a outliers moderados y su invarianza

ante transformaciones de coordenadas han sido documentadas por Bargary et al. [3].

Parametros extraidos
A partir del andlisis de BCEA se obtienen:

e BCEA: Area de la elipse de dispersién para cada perfodo de fijacion.

e Orientacién y dimensiones de la elipse: Calculadas a partir de la matriz de

covarianza, eigenvalores y eigenvectores.

« Estadisticos descriptivos: Media y desviacién estandar de BCFA en diferentes

condiciones o grupos.

Visualizacién

La visualizacion de la elipse de dispersion sobre los datos de posicién ocular facilita
la interpretacién cualitativa de la estabilidad de la fijacién. En este trabajo, se emplean
representaciones graficas donde la elipse caracteristica se superpone a las muestras de

fijacion, permitiendo identificar patrones anémalos o diferencias entre grupos.

Consideraciones técnicas

La implementacién computacional del BCEA en este trabajo asegura la reproduci-
bilidad y precisién de los cdlculos mediante la aplicacion de criterios estrictos de calidad
de datos y el uso de algoritmos numéricamente estables para el cdlculo de la matriz de
covarianza. La metodologia empleada permite la comparacién directa con estudios previos
y la interpretacion clinica de los resultados, especialmente en el contexto del envejecimiento

y los trastornos neurodegenerativos [21, 35].

En resumen, el BCEA constituye un parametro esencial para la caracterizaciéon cuantita-
tiva de la estabilidad de la fijacién ocular, aportando valor diagnodstico y comparativo en

estudios de funcién oculomotora.
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Caso 035
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Figura 3.23: Ejemplo de visualizacién de la elipse de dispersién (BCEA) superpuesta a
las posiciones oculares durante la fijacién.

@ | Universidad de Valladolid



58 Capitulo 3 Metodologia

3.6.9 Distancia cuadratica media al centro (Root Mean
Square Distance, RMS-dist)

Definicién y relevancia clinica

La distancia cuadrdtica media al centro (Root Mean Square distance, RMS-dist) es un
parametro fundamental para la caracterizacion de la dispersién espacial de las fijaciones
oculares durante tareas de visualizacién libre. Este indice cuantifica la variabilidad posicional
de las muestras de seguimiento ocular respecto al baricentro o centro de masa de la
distribucion espacial de las fijaciones [45]. Su relevancia clinica radica en su capacidad para
discriminar entre patrones de exploraciéon visual concentrados y dispersos, proporcionando

informacién sobre el control oculomotor y la eficiencia del procesamiento visual [42].

Fundamentos tedricos

El célculo de la RMS-dist se fundamenta en la teoria de momentos estadisticos
aplicada a la distribucién espacial de las fijaciones oculares. Xu et al. [45] demostraron la
utilidad de este pardmetro como biomarcador en trastornos neurolégicos que afectan el
control oculomotor. Valores bajos de RMS-dist indican una mirada concentrada en regiones
especificas del campo visual, mientras que valores elevados sugieren una exploracion mas

dispersa o erratica.

Metodologia de calculo

El calculo de la RMS-dist sigue estos pasos:

1. Filtrado de datos validos: Eliminacién de muestras con valores no numeéricos

(NaN), infinitos (Inf) o fuera del rango normalizado [0, 1].

2. Calculo del baricentro: Determinaciéon del centro de masa de la distribucion

espacial mediante:

i:$i, Y= —Zyi (3.8)

donde n es el nimero de muestras validas.

3. Calculo de distancias euclidianas: Para cada muestra valida, se calcula la distancia

euclidiana al baricentro:

(3.9)
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4. Calculo de la RMS-dist: La distancia cuadritica media se obtiene mediante:

RMS-dist = (3.10)

En las ecuaciones anteriores, x; v ; son las coordenadas de cada fijacién, T y y el baricentro,

d; la distancia de cada punto al centro y n el niimero de muestras validas.

Criterios de validacion

Para garantizar la validez del calculo, se aplican los siguientes criterios:
e Presencia de al menos dos puntos validos para el calculo.
o Filtrado de datos atipicos y verificacion de integridad de las coordenadas.
o Restriccién a coordenadas normalizadas en el rango [0, 1].

Estos procedimientos siguen las recomendaciones metodoldgicas de Toker et al. [42].

Parametros extraidos
A partir del andlisis de la RMS-dist se obtienen:

e Valor de RMS-dist: Medida global de la dispersion espacial de las fijaciones.

e Distribucién de distancias: Vector de distancias individuales para analisis intra- e

inter-sujeto.

Visualizacién

La visualizacién incluye la representaciéon grafica de la distribucion espacial de las
fijaciones, la ubicacién del baricentro y un circulo representativo del valor de RMS-dist.
Esta visualizacién facilita la interpretacion clinica al permitir la evaluacion visual inmediata

de la concentracion o dispersién de los patrones de fijacion.

Consideraciones técnicas

La implementaciéon computacional incorpora mecanismos robustos de validacién de
datos y manejo de errores, asi como categorizacién automatica de los patrones de concen-
tracion visual. Se recomienda interpretar la RMS-dist en conjunto con otros parametros
oculomotores para una caracterizacién integral del comportamiento visual, especialmente

en el contexto del envejecimiento y los trastornos neurodegenerativos [10, 35].
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Caso 035

RMS Distance: 0.206460
[~ |Centro: (0.578, 0.425)
®  Posiciones (631 puntos)
¥ Centro (0.578, 0.425)
----- RMS Distance (0.206460)

0.9

0.8 —

0.7 = ‘ImerpretaciOn: Mirada moderadamente dispersa‘

05— ce o,

el DN R

PosiciénY

s
“‘ e,
4
03 - ‘» 0'
~~~ v"
02
0.1
0 L 1 L | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Posicion X

Figura 3.24: Ejemplo de visualizacion de la distribucién de fijaciones, baricentro y circulo
de radio RMS-dist.
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En sintesis, la distancia cuadrdtica media al centro es un parametro esencial para la
evaluacion cuantitativa de la dispersién espacial en el andlisis de movimientos oculares,

aportando valor diagnéstico y comparativo en estudios de

3.6.10 Entropia de Shannon espacial (Shannon Entropy)

Definicién y relevancia clinica

La entropia de Shannon espacial es una métrica fundamental para cuantificar la impre-
decibilidad y dispersiéon de los patrones de exploracién visual, midiendo la incertidumbre
asociada a la localizacion de las fijaciones oculares en el espacio visual [34]. Su relevancia
clinica reside en su capacidad para detectar alteraciones en la distribucién espacial de
la mirada, lo que la convierte en un biomarcador potencial en el estudio de trastornos

neurodegenerativos y diferencias individuales en estrategias de exploracién visual [24, 3].

Fundamentos tedricos

Este parametro se deriva de la teoria de la informacién de Shannon, que permite
evaluar la distribucién espacial de las posiciones oculares mediante la cuantificacion de la
incertidumbre o aleatoriedad en la localizacién de la siguiente fijacion. Valores elevados de
entropia indican patrones de exploracién visual impredecibles y dispersos, mientras que

valores bajos reflejan comportamientos mas focalizados o estereotipados.

Metodologia de calculo

El célculo de la entropia de Shannon espacial se basa en la discretizaciéon del plano
visual en una cuadricula regular de n x n celdas. El nimero de bins se determina mediante
una regla de Sturges modificada, adaptando la resoluciéon espacial al nimero de muestras

disponibles:

Npins = MAx (5, min(50, [/ Mpuntos) )) (3.11)

donde npyntos €s el nimero total de muestras validas.

La probabilidad de ocupacién de cada celda (i, 7) se calcula como:

(3.12)
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La entropia de Shannon espacial se define como:

M
Hspatial = - Z Pk lOgQ (pk) (313)
k=1
donde py, es la probabilidad de ocupacion de la celda k (considerando solo celdas con py > 0

para evitar la indefinicién de log,(0)) y M es el ntimero total de celdas ocupadas.

Criterios de validacion

Para garantizar la validez del calculo, se aplican los siguientes criterios:

 Filtrado de valores no validos (NaN, Inf) y restriccién a coordenadas normalizadas

en el rango [0, 1].
e Seleccién adaptativa del nimero de bins para asegurar robustez estadistica.
e Exclusién de celdas vacias en el calculo de la entropia.

Estos procedimientos siguen las recomendaciones metodolégicas de Duchowski [11] y Mathot
[29].

Parametros extraidos

A partir del andlisis de la entropia de Shannon espacial se obtienen:
e Valor de entropia: Medida global de la dispersion espacial de las fijaciones.

e Mapa de densidad: Distribucién espacial de la probabilidad de ocupacién de cada

celda.

Visualizacién

La visualizacién de los resultados se realiza mediante mapas de calor (heatmaps)
que representan la densidad de muestras en cada celda de la cuadricula, facilitando la
interpretacién intuitiva de los patrones espaciales identificados. Esta representacion gréfica
permite la identificacién visual de regiones de interés preferencial y la evaluacién cualitativa

de la heterogeneidad en la distribucién espacial de las fijaciones oculares.

Consideraciones técnicas

La selecciéon adecuada del ntimero de bins es critica para evitar tanto la sobresegmen-
tacion como la pérdida de resolucién espacial. La implementacién computacional incorpora
filtros de calidad y validacién visual para asegurar la robustez y reproducibilidad de los

resultados. Se recomienda interpretar la entropia de Shannon espacial en conjunto con otras

Universidad de Valladolid



63

Caso 035
! S I S — —
‘ o Posiciones oculares (631 puntos)
‘ @ Densidad (ntimeros = muestras por celda)
09 jEntropia Shannon: 5.487 bit§|
’ I I I I
—{Entropia Normalizada: 0.591
0.8
Grid: 25x25 celdas
)
[}
T 071
(,ESI Total muestras: 631
T
e 1 1 1
5 osH IENTE predecib)
S | | | 10 360055 2
% 1 R °?hx%7% 1 1 3, R e
0, T
S o5 5°° b2 3°°z°‘q OM
[} iy
° 18 %o%o% IR 4 %,c&
8 —{gPuedo adivinar dénde vas a miran’.’} C A
£ 04 3 . 3 g |
> _,—l—l—l—‘ %o P V’e
5 Py Jowof 4
©
‘» 03 15
I} 3
o 33
0.2
0.1
0 ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Posicion X (coordenadas normalizadas)

Figura 3.25: Ejemplo de visualizacion del mapa de calor y valor de entropia de Shannon
espacial para un conjunto de fijaciones oculares.
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métricas oculomotoras para una caracterizacion integral de los patrones de exploracion

visual.

En sintesis, la entropia de Shannon espacial es un pardmetro esencial para la evaluacién
cuantitativa de la dispersién y predictibilidad en el andlisis de movimientos oculares,

aportando valor diagnéstico y comparativo en estudios

3.6.11 Entropia de Muestra (Sample Entropy) del radio

temporal

Definicién y relevancia clinica

La Sample Entropy del radio temporal es un parametro avanzado que cuantifica la
complejidad temporal de los patrones oculomotores durante tareas de fijacién. Evalaa
la irregularidad en la serie temporal de la distancia al centroide de las fijaciones, pro-
porcionando una medida objetiva de la variabilidad temporal del control oculomotor. Su
relevancia clinica radica en su capacidad para detectar alteraciones en la regularidad de los
movimientos oculares, lo que la convierte en un biomarcador potencial en el estudio de

trastornos neuroldgicos y del desarrollo [39].

Fundamentos tedricos

El concepto de Sample Entropy fue introducido por Richman y Moorman [39] como
una medida robusta de la regularidad de series temporales fisiolégicas. A diferencia de otras
métricas de entropia, la SampEn es menos sensible a la longitud de la serie y al ruido. En
el contexto oculomotor, su aplicacién al radio temporal permite evaluar la estabilidad del
control postural ocular: valores altos indican mayor irregularidad y potencial ineficiencia,

mientras que valores bajos sugieren patrones regulares y predecibles.

Metodologia de calculo

El calculo de la SampFEn del radio temporal sigue estos pasos:

1. Calculo del centroide: Se obtiene el centroide de las posiciones de fijacién como

Te = % Zf\il Ty Yo = % Zf\il yi, donde N es el nimero de muestras validas.

2. Serie temporal del radio: Se calcula r(t) = \/(x(t) — )2+ (y(t) —ye)?, que

representa la distancia euclidiana instantanea de cada posicién ocular al centroide.
3. Calculo de la Sample Entropy: Se utiliza la ecuacion

SampEn(m,r) = —1In <g) (3.14)
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donde A es el nimero de pares de patrones de longitud m + 1 que cumplen la condicién
de similitud, y B es el ntimero de pares de patrones de longitud m similares, con
tolerancia r. Los pardmetros estdndar recomendados son m = 2y r = 0,2 X o, siendo

o la desviacion estandar de la serie r(t).

Cada variable de la ecuacién (3.14) se explica asi: m es la dimensién embebida, r la

tolerancia, A y B los conteos de patrones similares.

Criterios de validacién

Para garantizar la validez del calculo, se aplican los siguientes criterios:

o Eliminacién de muestras no validas (NaN, infinitos o fuera del rango normalizado
[0, 1]).

e Requiere al menos 10 muestras validas por periodo de fijacién para asegurar estabilidad

estadistica.
e Verificacion de la estacionariedad de la serie temporal y deteccion de outliers.

Estos procedimientos siguen las recomendaciones metodolégicas de Richman y Moorman

[39] y garantizan la robustez del andlisis.

Parametros extraidos

A partir del anélisis de la SampEn del radio temporal se obtienen:
o Sample Entropy: Valor de irregularidad temporal para cada periodo de fijacién.

o Estadisticos descriptivos: Media y desviacién estandar de la SampEn en diferentes

condiciones o grupos.

Visualizacién

La visualizacién incluye la representacién grafica de la serie temporal del radio y
el valor de SampEn calculado. Esta funcionalidad facilita la identificacién de patrones
anémalos y la validaciéon visual de los resultados computacionales. En este trabajo, se
emplean figuras donde se muestra la evolucién temporal del radio y el valor de entropia

asociado, siguiendo un formato homogéneo para todas las métricas temporales.

Consideraciones técnicas

La seleccion de los pardmetros m y r debe balancear sensibilidad y robustez ante el
ruido inherente en los datos de eye-tracking. Se recomienda m = 2 y r = 0,2 X ¢ para
la mayoria de aplicaciones fisiolégicas. La duracién minima de los periodos de fijacién es

critica para la confiabilidad estadistica, y la validaciéon debe incluir la verificacién de la

Universidad de Valladolid



66 Capitulo 3 Metodologia
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Figura 3.26: Ejemplo de visualizacion de la serie temporal del radio y el valor de Sample
Entropy calculado para un periodo de fijacion.

estacionariedad de la serie. La implementacién computacional incorpora filtros adaptativos

y métodos de deteccién de outliers para minimizar el impacto de artefactos experimentales.

En sintesis, la Sample Entropy del radio temporal es un parametro esencial para la
evaluacion cuantitativa de la complejidad temporal en el analisis de movimientos oculares,

aportando valor diagnéstico y comparativo en estudios de funcién oculomotora.

3.7 Regression Learner: Plataforma de

Entrenamiento y Optimizacién de Modelos

La seleccién y optimizacién de algoritmos de aprendizaje automético constituye una etapa
critica en el desarrollo de modelos predictivos. Para esta tarea, se empleé Regression
Learner de MATLAB, una plataforma integrada que facilita la comparacion sistematica
de multiples algoritmos de regresiéon y la optimizacién de sus hiperpardmetros de forma

automatizada.
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3.7.1 Arquitectura y Funcionalidades de Regression Learner

Regression Learner representa una interfaz unificada que permite el entrenamiento, eva-
luaciéon y comparacién de diferentes familias de algoritmos de regresiéon sin requerir im-
plementacién manual de cada método [22]. Esta plataforma integra las funcionalidades
de las principales toolboxes de machine learning de MATLAB, proporcionando acceso a

algoritmos que van desde modelos lineales simples hasta métodos de ensemble avanzados.

La arquitectura de la plataforma se estructura en médulos especializados que gestionan
diferentes aspectos del proceso de modelado: preprocesamiento automéatico de datos,
seleccién de algoritmos, optimizacion de hiperparametros, validacién cruzada, y evaluacion
de rendimiento. Esta estructura modular permite una exploracién sistematica del espacio
de modelos disponibles mientras mantiene la consistencia metodolégica entre diferentes

aproximaciones.

3.7.1.1 Algoritmos Disponibles y Clasificaciéon

La plataforma ofrece acceso a mas de 20 algoritmos de regresién organizados en cinco

familias principales:

Modelos Lineales: Incluyen regresion lineal multiple, regresiéon con regularizacion
(Ridge, Lasso, Elastic Net), y regresion robusta. Estos métodos son particularmente
apropiados cuando se asume una relacién aproximadamente lineal entre predictores y

variable respuesta, y ofrecen alta interpretabilidad [43].

Procesos (Gaussianos: Proporcionan predicciones probabilisticas con estimaciones de
incertidumbre, siendo particularmente valiosos cuando se requiere cuantificar la confianza

en las predicciones individuales [8].

3.7.2 Procedimientos de Entrenamiento y Validacién

El proceso de entrenamiento en Regression Learner sigue una metodologia estandarizada
que garantiza la comparabilidad entre diferentes algoritmos y la robustez de las evaluaciones

de rendimiento.

3.7.2.1 Particién de Datos y Validacién Cruzada

La plataforma implementa automaticamente esquemas de validacién cruzada para pro-
porcionar estimaciones no sesgadas del rendimiento del modelo. Por defecto, se utiliza
validacién cruzada k-fold con k=5, aunque este pardmetro puede ajustarse seguin las

caracteristicas del dataset y los requerimientos especificos del problema.
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La validacién cruzada estratificada garantiza que cada fold mantenga una distribucién
representativa de la variable respuesta, aspecto critico cuando se trabaja con datos de
envejecimiento donde la distribucién de edades puede presentar caracteristicas especificas
[24]. Este enfoque minimiza la varianza en las estimaciones de rendimiento y proporciona

una evaluaciéon més confiable de la capacidad de generalizacién del modelo.

3.7.2.2 Métricas de Evaluacion

La evaluacién del rendimiento se basa en multiples métricas que capturan diferentes

aspectos de la calidad predictiva:

Error Cuadratico Medio (RMSE): Proporciona una medida del error de prediccion
penalizando mas fuertemente los errores grandes. Su interpretabilidad directa en las
unidades de la variable respuesta (afos en este caso) facilita la evaluacién practica del

rendimiento.

Error Absoluto Medio (MAE): Menos sensible a outliers que RMSE, proporciona
una medida mas robusta del error tipico de predicciéon. Particularmente relevante en

aplicaciones biomédicas donde se requiere estabilidad predictiva.

Coeficiente de Determinacién (R?): Cuantifica la proporcién de varianza expli-
cada por el modelo, proporcionando una medida normalizada de la calidad del ajuste

independiente de la escala de la variable respuesta.

3.7.3 Optimizaciéon de Hiperparametros

Una de las funcionalidades mas valiosas de Regression Learner es su capacidad para realizar

optimizacion automatica de hiperparametros mediante algoritmos bayesianos avanzados.

3.7.3.1 Busqueda Bayesiana de Hiperparametros

La plataforma implementa optimizacién bayesiana que modela la funcién objetivo (ren-
dimiento del modelo) como un proceso gaussiano y utiliza funciones de adquisicién para
dirigir la bisqueda hacia regiones prometedoras del espacio de hiperpardmetros [6]. Esta
aproximaciéon es significativamente mas eficiente que biisquedas exhaustivas o aleatorias,

especialmente relevante cuando el espacio de hiperparametros es de alta dimensionalidad.

El proceso iterativo de optimizacién bayesiana balancea exploracién (evaluacion de
regiones no exploradas) y explotacién (refinamiento cerca de configuraciones prometedoras),
maximizando la probabilidad de encontrar configuraciones 6ptimas con un nimero limitado

de evaluaciones.
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3.7.3.2 Hiperparametros Criticos por Familia de Algoritmos

Cada familia de algoritmos presenta hiperparametros especificos cuya optimizacion es

critica para el rendimiento:

Para modelos de ensemble como Random Forest, los pardmetros més influyentes incluyen
el ntmero de arboles, profundidad méxima, y nimero minimo de muestras por hoja.
La optimizacion de estos parametros permite balancear capacidad predictiva y tiempo

computacional mientras previene sobreajuste [28].

En SVM, la seleccién del kernel y sus pardmetros asociados (como el pardmetro de ancho
de banda en kernels gaussianos) determina la complejidad de las fronteras de decision que
el modelo puede aprender. La optimizacién conjunta de estos pardmetros con el parametro

de regularizacién es fundamental para lograr buenos resultados.

3.7.4 Estrategias de Optimizacion de Resultados

La maximizacion del rendimiento predictivo requiere considerar multiples aspectos metodo-

légicos que van mas alla de la simple seleccion de algoritmos.

3.7.4.1 Preprocesamiento y Transformacién de Caracteristicas

Regression Learner proporciona opciones automatizadas de preprocesamiento que pueden

impactar significativamente el rendimiento:

Normalizacién de Caracteristicas: La estandarizacién z-score o normalizaciéon min-
max garantiza que todas las caracteristicas contribuyan equitativamente al proceso de

aprendizaje, especialmente critico para algoritmos sensibles a escala como SVM o k-NN.

Transformacién de Variables: La aplicacién de transformaciones logaritmicas o de
potencia puede mejorar la linealidad de las relaciones y la normalidad de los residuos,

beneficiando especialmente a modelos lineales.

Seleccién de Caracteristicas: Aunque no implementada automaticamente, la plata-
forma permite evaluar el impacto de diferentes subconjuntos de caracteristicas, facilitando

la identificacion de variables més informativas [29)].

3.7.4.2 Ensemble de Modelos

Una estrategia avanzada para maximizar el rendimiento consiste en combinar predicciones

de multiples modelos. Regression Learner facilita la exportacién de modelos entrenados,
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permitiendo implementar estrategias de ensemble que pueden superar el rendimiento de

modelos individuales.

El ensemble promedio simple combina predicciones de diferentes algoritmos asignando
pesos iguales, mientras que el ensemble ponderado asigna pesos basados en el rendimiento
individual de validacién cruzada. Estrategias mas sofisticadas como stacking utilizan un

meta-modelo para aprender la combinacion éptima de predicciones base.

3.7.4.3 Validacién y Diagndstico de Modelos

La plataforma proporciona herramientas de diagnostico que permiten identificar problemas

potenciales y oportunidades de mejora:

Analisis de Residuos: La inspeccion de patrones en los residuos puede revelar viola-

ciones de supuestos del modelo, heterocedasticidad, o relaciones no-lineales no capturadas.

Analisis de Importancia de Caracteristicas: Para algoritmos que lo soportan, la
cuantificacion de la importancia relativa de cada caracteristica proporciona insights sobre

los mecanismos predictivos y puede guiar refinamientos del modelo.

Deteccion de Sobreajuste: La comparacion sistematica entre rendimiento de entre-
namiento y validaciéon permite identificar casos de sobreajuste y ajustar estrategias de

regularizacién acordemente.

3.7.5 Consideraciones Computacionales y Escalabilidad

La seleccion de algoritmos debe considerar no solo la precision predictiva sino también los
requerimientos computacionales, especialmente relevante cuando se trabaja con datasets

grandes o se requieren predicciones en tiempo real.

Algoritmos como regresién lineal y k-NN tienen costos computacionales predecibles y
escalables, mientras que métodos como SVM con kernels no-lineales o Procesos Gaussianos
pueden presentar limitaciones de escalabilidad. La plataforma proporciona estimaciones de

tiempo de entrenamiento que facilitan estas decisiones.

La funcionalidad de Regression Learner de MATLAB constituye asi una herramienta
integral que democratiza el acceso a técnicas avanzadas de machine learning mientras
mantiene rigor metodologico. Su capacidad para automatizar aspectos técnicos complejos
permite concentrarse en decisiones cientificas fundamentales, optimizando el proceso de

desarrollo de modelos predictivos robustos y confiables.
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4.1 Resultados

4.1.1 Correlaciones de los parametros con la edad

A continuacién se muestra en las tablas 4.3, 4.1 y 4.2 las correlaciones de los parametros

oculomotores con la edad, expresadas en términos de coeficiente de correlacion de Pearson

(r) y su significancia estadistica (p). Ademas, en las figuras 4.2 y 4.1 se ilustra visualmente

la relacion entre algunos de estos parametros y la edad, mostrando ejemplos representativos

de la tendencia observada en los datos.

Figura 4.1:
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Relacion entre la Velocidad de Fijaciones (Exp. 2) y la edad.
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Tabla 4.1: Correlaciones de los parametros Ganancia de Sacadas, Sacadas Correctivas,
Coeficiente de Anticipacion, Coeficiente de Retraso y Antisacadas. Valores de
r y p para cada ronda R y tamafio de muestra N.

Parametro Exp. N Correlacién
r P lacié
Parametro Exp. N Correlacién
70 0.049 0.687 r p
2 68 -0.046 0.708
70 -0.049  0.687 35 0.188 0.280
2 39 0.049 0.768
68 0.112  0.361 31 0.183  0.325
3 66 0.182 0.143
65  0.061 0.631 4 -0.773  0.227
Ganancia de Sacadas 65 0.290 0.019 Sacadas Correctivas: 3 10 0.290 0.416
- : Distancias Maximas 7 -0.069 0.883
4 68 0.102 0.409
68 -0.054 0.662 42 -0.073 0.648
4 30 -0.201 0.288
69 0.150 0.217 36 ~0.064 0.712
5 67 0.112 0.367
65 -0.016  0.902 33 -0.412  0.017
8 35 -0.125 0.474
62 -0.138 0.284 15 _0.156 0.580
8 65 -0.173 0.169
61 0.010 0.940
Parametro Exp. N Correlacién Parametro Exp. N Correlacién
r P r P
35 0.203 0.241 19 -0.199 0.414
2 39 0.138 0.402 2 16 -0.483 0.058
31 0.203 0.273 18 -0.070 0.782
4 -0.462 0.538 51 0.151 0.291
Sacadas Correctivas: 3 10 0.421 0.226 Coeficiente de 3 56 0.200 0.139
Duraciones 7 -0.228  0.624 Anticipacion 47 -0.193  0.193
42 -0.210 0.181 26 0.199 0.329
4 30 -0.183 0.332 4 20 -0.371 0.107
36 -0.025 0.884 24 0.053 0.808
33 -0.408 0.018 11 -0.443 0.172
8 35 -0.216 0.213 8 10 0.383 0.275
15 -0.212 0.448 9 -0.318 0.404
Parametro Exp. N Correlacién
r P
70 -0.040 0.740 P
C 1
2 69 -0.108 0.377 Parametro Exp. N orreacion
70 -0.145 0.231 r P
69 -0.070 0.565 Anti d Precisié 68 -0.183 0.135
3 70 0.208  0.084 puisacadas: Frecision 3 68  0.093  0.452
. Espacial
Coeficiente de Retraso 69 -0.025  0.837 68  0.084  0.494
68 -0.067 0.590 Anti d Ti 68 -0.049 0.691
4 69 -0.021  0.865 nylsacadas: Liempo 3 68  0.123  0.318
de Prediccién
68 -0.106 0.391 68 -0.081 0.513
66 -0.103 0.410
8 70 -0.031 0.802
69 0.127 0.300
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Tabla 4.2: Correlaciones de los parametros Envolvente Convexa, Distancia RMS, Area
Eliptica Bivariada 68 % y del 95 %, Entropia de Shannon y de Muestra.

Valores de r y p para cada ronda R y tamafio de muestra N.

Parametro Exp. R N Correlacién Parametro Exp. R N Correlacién
r P r P
1 70 0.007 0.957 1 70 -0.146 0.227
2 70 -0.152 0.208 2 70 -0.112 0.358
3 70 0.113 0.351 3 70 0.037 0.760
4 70 -0.015 0.900 i . 4 70 -0.052 0.670
(]%“(;’r‘:‘c’i“gug)"“vcxa 7 5 70 -0.001 0.993 ﬁ‘f;znsc;igs (Root 7 5 70 -0.081  0.503
6 70 0.141 0.245 6 70 0.065 0.595
7 70 0.028 0.816 7 70 -0.077 0.527
8 70 0.024 0.845 8 70 0.016 0.897
9 70 -0.166 0.169 9 70 -0.122 0.313
Parametro Exp. R N Correlacién Parametro Exp. R N Correlacién
r P r P
1 70 -0.142 0.242 1 70 -0.142 0.242
2 70 -0.162 0.180 2 70 -0.162 0.180
3 70 0.042 0.733 3 70 0.042 0.733
. L. 4 70 -0.050 0.679 . L. 4 70 -0.050 0.679
g;j:rggzté?% 7 5 70 -0.022 0.854 gffjrggzté?% 7 5 70 -0.022 0.854
6 70 0.032 0.794 6 70 0.032 0.794
7 70 -0.081 0.508 7 70 -0.081 0.508
8 70 -0.009 0.941 8 70 -0.009 0.941
9 70 -0.123 0.309 9 70 -0.123 0.309
Parametro Exp. R N Correlacién Parametro Exp. R N Correlacién
r P r p
1 70 0.044 0.717 1 70 0.264 0.027
2 70 0.073 0.547 2 70 0.137 0.258
3 70 0.219 0.069 3 70 0.229 0.056
4 70 0.039 0.749 4 70 0.132 0.275
Entropia de Shannon 7 5 70 0.024 0.842 Entropia de Muestra 7 5 70 0.205 0.088
6 70 0.272 0.023 6 70 0.258 0.031
7 70 0.001 0.994 7 70 0.194 0.108
8 70 0.170 0.159 8 70 0.303 0.011
9 70 0.023 0.849 9 70 0.295 0.013
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Tabla 4.3: Correlaciones de los parametros Smooth Pursuit: Velocidades, Errores de

Seguimiento y Duraciones de Pursuit; Velocidades y niimero de fijaciones.
Valores de r y p para cada ronda R y tamano de muestra N.

5

c lacié c lacié
Parametro Exp. R N orrefacion Parametro Exp. N orre’acion
r P r P
1 1 70 0.152 0.208 1 70 -0.175 0.147
70 0.258 0.031 70 -0.194 0.107
2 2 70 0.268 0.025 2 70 -0.261 0.029
3 70 0.286 0.016 70 -0.279 0.019
70 0.286 0.017 70 -0.259 0.030
3 2 70 0.308 0.010 3 70 -0.224 0.063
Velocidad de 3 70 0.208 0.012 Niimero de Fijaciones 70 -0.221  0.066
Fijaciones -
70 0.222  0.064 70 -0.264  0.027
4 2 70 0.189 0.117 4 70 -0.124 0.305
3 70 0.224 0.063 70 -0.265 0.027
70 0.336 0.004 70 -0.275 0.021
5 2 70 0.265 0.027 5 70 -0.283 0.018
3 70 0.204 0.090 70 -0.242 0.043
70 0.265 0.027 70 -0.274 0.022
8 2 70 0.269 0.024 8 70 -0.325 0.006
3 70 0.284 0.017 70 -0.332 0.005
c lacié
Parametro Exp. N orrelacion
r P
s h P i 70 0.185 0.125
Moo ursuit:
Velocidades 6 70 0.219 0.068
70 -0.059 0.626
Smooth Pursuit: 70 0.118 0.332
Errores de 6 70 0.098 0.421
Seguimiento 70 _0.034 0.780
g th P i 70 -0.030 0.806
Moo ursuit:
Duraciones de Pursuit 6 70 0.062 0.609
70 0.050 0.683
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4.1.2 Matriz de correlaciéon entre parametros oculomotores

Para explorar las relaciones entre los distintos parametros extraidos, se presenta a conti-
nuacion la matriz de correlacién de Pearson entre todos los parametros calculados, dividida
en cuatro cuadrantes para facilitar su visualizacion. Esta matriz permite identificar grupos

de variables altamente relacionadas y posibles redundancias en los datos.

En la siguiente tabla se resumen las correlaciones mas altas observadas entre pares
de parametros. Se observa que muchas de las correlaciones mas elevadas corresponden a
pardmetros derivados de una misma métrica o de métricas muy relacionadas, lo que indica

una fuerte redundancia entre ellos.

Tabla 4.4: Principales correlaciones entre pardmetros (|r| > 0,9).

Pardametro 1 Parametro 2 Experimento n
Exp7_bcea_68_RI1 Exp7_bcea_95_ RI1 7 1.000 70
Exp7_bcea_68_R3 Exp7_rms_ distance_ R3 7 0.985 70
Exp4_sacadas_ correctivas_max_ distances. R3  Exp4_sacadas_ correctivas_ durations. R3 4 0.957 36
Exp2_ fijaciones__velocity R1 Exp2_ fijaciones__velocity R2 2 0.954 70
Exp8_sacadas_ correctivas_ max_ distances_ R1  Exp8 sacadas_ correctivas_ durations_ R1 8 0.942 33
Expl_ fijaciones_ velocity R1 Expl_ fijaciones_ numero_R1 1 -0.918 70
Exp3_ fijaciones_ velocity R2 Exp4_fijaciones_ velocity_ R1 3-4 0.906 70

Como puede observarse, las correlaciones perfectas (r = 1,000) se dan entre los pardme-
tros becea_ 68 y beea_ 95 del mismo experimento y ronda, lo que indica que ambos miden
esencialmente la misma caracteristica con diferente umbral. También destacan correla-
ciones muy altas entre métricas de dispersion espacial (bcea, rms__distance, convex__hull)
y entre repeticiones de un mismo parametro, asi como entre parametros derivados de la
misma senial (por ejemplo, velocidad y nimero de fijaciones, con correlacién negativa).
Esto sugiere que existe redundancia entre algunos parametros y que, para futuros analisis,
podria considerarse una reduccién de la dimensionalidad o la seleccién de un subconjunto

representativo de variables.
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Figura 4.3: Visualizacién de la correlaciéon de Pearson entre todos los parametros, primer
cuadrante.

Cuadrants 2: Parmetros 174 v 75147 PEARSON)

Figura 4.4: Visualizacién de la correlacién de Pearson entre todos los parametros, segundo
cuadrante.
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Guadrante 3: Pardmetros 75-147 vs 174 (PEARSON)

Figura 4.5: Visualizacién de la correlacién de Pearson entre todos los parametros, tercer
cuadrante.

Cuacrants 4: Parémetros 75147 vs 75-147 (PEARSON)

Figura 4.6: Visualizacién de la correlacion de Pearson entre todos los parametros, cuarto

cuadrante.
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Tabla 4.5: Numero asociado a cada parametro en el mapa de correlacién.

Ntmero Parametro Numero Parametro
1 Expl_fijaciones velocity R1 41 Exp3_ fijaciones numero R3
2 Expl fijaciones numero R1 42 Exp4 ganancia sacadas R1
3 Exp2_ganancia sacadas R1 43 Exp4__ganancia sacadas R2
4 Exp2_ganancia sacadas R2 44 Exp4_ganancia sacadas R3
5 Exp2_ ganancia sacadas R3 45 Exp4_ sacadas correctivas max distances R1
6 Exp2_ sacadas correctivas max distances R1 46 Exp4_ sacadas correctivas max distances R2
7 Exp2_ sacadas correctivas max distances R2 47 Exp4_ sacadas correctivas max distances R3
8 Exp2_sacadas correctivas max distances R3 48 Exp4_sacadas correctivas durations R1
9 Exp2 sacadas correctivas durations R1 49 Exp4_sacadas correctivas durations R2
10 Exp2_ sacadas correctivas durations R2 50 Exp4_ sacadas correctivas durations R3
11 Exp2_ sacadas correctivas durations R3 51 Exp4_ coef unificado retraso R1
12 Exp2_ coef unificado retraso R1 52 Exp4_ coef unificado retraso R2
13 Exp2_ coef unificado retraso R2 53 Exp4_ coef unificado retraso R3
14 Exp2_ coef unificado retraso R3 54 Exp4_ fijaciones velocity R1
15 Exp2_fijaciones velocity R1 55 Exp4_fijaciones velocity R2
16 Exp2 fijaciones velocity R2 56 Exp4_fijaciones velocity R3
17 Exp2_fijaciones velocity R3 57 Exp4_ fijaciones numero R1
18 Exp2_fijaciones numero R1 58 Exp4_ fijaciones numero R2
19 Exp2 fijaciones numero R2 59 Exp4 _fijaciones numero R3
20 Exp2_fijaciones numero R3 60 Expb5__ganancia sacadas R1
21 Exp3_ ganancia sacadas R1 61 Expb_ ganancia sacadas R2
22 Exp3_ganancia sacadas R2 62 Expb5_ganancia sacadas R3
23 Exp3_ ganancia sacadas R3 63 Exp5_ fijaciones velocity R1
24 Exp3_ coef unificado anticipacion R1 64 Exp5_ fijaciones velocity R2
25 Exp3__coef unificado anticipacion R2 65 Expb_ fijaciones velocity R3
26 Exp3_ coef unificado anticipacion R3 66 Exp5_ fijaciones numero R1
27 Exp3_ coef unificado retraso R1 67 Exp5_ fijaciones numero R2
28 Exp3_ coef unificado retraso R2 68 Exp5_ fijaciones numero R3
29 Exp3__coef unificado retraso R3 69 Exp6__smooth pursuit velocidades R1
30 Exp3__antisacadas precision espacial R1 70 Exp6__smooth pursuit velocidades R2
31 Exp3_ antisacadas precision espacial R2 71 Exp6_ smooth pursuit velocidades R3
32 Exp3_ antisacadas precision espacial R3 72 Exp6__smooth pursuit errores seguimiento R1
33 Exp3_antisacadas tiempo prediccion R1 73 Exp6__smooth pursuit errores seguimiento R2
34 Exp3__antisacadas tiempo prediccion R2 74 Exp6__smooth pursuit errores seguimiento R3
35 Exp3_ antisacadas tiempo prediccion R3 75 Exp6_ smooth pursuit duraciones pursuit R1
36 Exp3_ fijaciones velocity R1 76 Exp6_smooth pursuit duraciones pursuit R2
37 Exp3_ fijaciones velocity R2 77 Exp6__smooth pursuit duraciones pursuit R3
38 Exp3_ fijaciones velocity R3 78 Exp7_convex hull R1
39 Exp3_ fijaciones numero R1 79 Exp7__convex hull R2
40 Exp3_ fijaciones numero R2 80 Exp7__convex hull R3
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Tabla 4.6: Numero asociado a cada pardmetro en el mapa de correlacién.

Numero

Parametro

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Exp7__convex hull R4
Exp7_convex hull R5
Exp7__convex hull R6
Exp7__convex hull R7
Exp7_ convex hull R8
Exp7_convex hull R9
Exp7_bcea 68 R1
Exp7_bcea 68 R2
Exp7_bcea 68 R3
Exp7_bcea 68 R4
Exp7_bcea 68 R5
Exp7_bcea 68 R6
Exp7_bcea 68 R7
Exp7_ bcea 68 R8
Exp7_bcea 68 R9
Exp7_bcea 95 R1
Exp7_bcea 95 R2
Exp7_bcea 95 R3
Exp7_bcea 95 R4
Exp7_bcea 95 R5
Exp7_bcea 95 R6
Exp7_bcea 95 R7
Exp7_bcea 95 R8
Exp7_bcea 95 R9
Exp7_rms distance R1
Exp7_rms distance R2
Exp7_rms distance R3
Exp7_rms distance R4
Exp7_rms distance R5
Exp7__rms distance R6
Exp7_ rms distance R7
Exp7_rms distance R8
Exp7_rms distance R9
Exp7_shannon en R1
Exp7_shannon en R2
Exp7_shannon en R3
Exp7_shannon en R4
Exp7_shannon en R5
Exp7_shannon en R6
Exp7_shannon en R7

Niumero Parametro
121 Exp7_shannon en R8
122 Exp7_shannon en R9
123 Exp7_sample en R1
124 Exp7_sample en R2
125 Exp7_sample en R3
126 Exp7_sample en R4
127 Exp7_sample en R5
128 Exp7_sample en R6
129 Exp7_sample en R7
130 Exp7_sample en RS
131 Exp7_sample en R9
132 Exp8_ ganancia sacadas R1
133 Exp8_ ganancia sacadas R2
134 Exp8_ ganancia sacadas R3
135 Exp8_sacadas correctivas max distances R1
136 Exp8 sacadas correctivas max distances R2
137 Exp8_sacadas correctivas durations R1
138 Exp8_sacadas correctivas durations R2
139 Exp8_ coef unificado retraso R1
140 Exp8_ coef unificado retraso R2
141 Exp8 coef unificado retraso R3
142 Exp8_ fijaciones velocity R1
143 Exp8_ fijaciones velocity R2
144 Exp8_fijaciones velocity R3
145 Exp8_ fijaciones numero R1
146 Exp8_ fijaciones numero R2
147 Exp8_fijaciones numero R3
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4.1.3 Variabilidad Intra sujeto e Inter sujeto

Para evaluar la robustez y estabilidad de los parametros oculomotores, se analizé la va-
riabilidad intra sujeto (diferencias entre repeticiones de un mismo sujeto) e inter sujeto
(diferencias entre sujetos) en aquellos pardmetros que disponen de varias rondas o re-
peticiones. El andlisis se realizé mediante el calculo del coeficiente de variacién (CV),
definido como la razén entre la desviacién estandar y la media de los valores, tanto para las

repeticiones de cada sujeto (intra) como para el conjunto de sujetos en cada ronda (inter).

El procedimiento consistié en identificar los parametros con miltiples rondas, extraer
los valores correspondientes de cada repeticién y calcular el CV intra sujeto para cada
individuo y el CV inter sujeto para cada ronda. Posteriormente, se calcularon la media y

la mediana de estos coeficientes para cada pardametro y experimento.

A continuacién, en las figuras 4.7 y 4.8, se muestran dos ejemplos representativos de las
figuras generadas en el andlisis de variabilidad. Estas ilustran la distribucién de los valores

v la dispersioén intra e inter sujeto para parametros concretos en distintos experimentos.

_numero: Distri i6n por Ronda

2000

1500

1000

Valores

500

0.4

0.35
0.3
0.25

0.15
0.1
0.05

Figura 4.7: Ejemplo de variabilidad intra e inter sujeto para el pardmetro fijacio-
nes_numero en el Experimento 2.
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coef_unifit _retraso: Distril i6n por Ronda
T

1.5 $

e

1 — it
—— — ‘
0.5 | 4

2
Ronda

de Variacion

0.4

0.35
0.3
0.25

0.15
0.1

0.05

Figura 4.8: Ejemplo de variabilidad intra e inter sujeto para el parametro
coef unificado__retraso en el Experimento 8.

Observaciones destacadas:

A partir de los resultados presentados en la Tabla 4.7, se pueden extraer las siguientes

conclusiones principales sobre la confiabilidad de los pardmetros evaluados:

+ Experimento 6 (smooth pursuit): Se observan ratios intra/inter muy elevados
(4.00 y 2.75), lo que sugiere problemas de confiabilidad en estos pardmetros para este

experimento.

o Fijaciones (velocity y niimero): Estos pardmetros muestran generalmente ratios
bajos (0.20-0.40), lo que indica una buena confiabilidad y estabilidad en las medidas

repetidas.

o Parametros mas confiables: Aquellos con ratios consistentemente bajos (<0.5),
como fijaciones_velocity, pueden considerarse los mas robustos para la evaluacién

intra e inter sujeto.

El ratio intra/inter sujeto permite identificar de forma répida qué pardmetros presentan
mayor estabilidad y son mas adecuados para medidas repetidas en experimentos ocu-
lomotores. Un menor valor de coeficiente de variacién (CV) indica mayor estabilidad del

parametro, mientras que valores elevados reflejan una mayor dispersién relativa.

En resumen, la Tabla 4.7 sintetiza estos resultados y facilita la comparacién de la

confiabilidad de los distintos parametros analizados.
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Tabla 4.7: Coeficiente de variacién (CV) intra sujeto e inter sujeto para los principales

pardmetros y experimentos.

Exp Pardmetro CV In.tra CVvV In‘ter Ratio
(Media) (Media) Intra/Inter

2 ganancia_ sacadas 0.12 0.15 0.80
2 sacadas correctivas max_distances 0.53 0.45 1.18
2 sacadas__correctivas_ durations 0.31 0.37 0.84
2 coef unificado__ anticipacion 0.14 0.20 0.70
2 coef unificado retraso 0.16 0.36 0.44
2 fijaciones_ velocity 0.12 0.52 0.23
2 fijaciones__ numero 0.18 0.39 0.46
3 ganancia_ sacadas 0.18 0.24 0.75
3 sacadas__correctivas_ max_ distances 0.51 0.94 0.54
3 sacadas__correctivas_ durations 0.30 0.85 0.35
3 coef unificado_ anticipacion 0.17 0.19 0.89
3 coef unificado retraso 0.14 0.23 0.61
3 antisacadas__precision__espacial 0.13 0.35 0.37
3 antisacadas_ tiempo_ prediccion 0.16 0.25 0.64
3 fijaciones_ velocity 0.11 0.50 0.22
3 fijaciones_ numero 0.17 0.47 0.36
4 ganancia_ sacadas 0.10 0.22 0.45
4 sacadas correctivas max _distances 0.47 0.66 0.71
4 sacadas_correctivas_durations 0.51 0.69 0.74
4 coef _unificado__anticipacion 0.22 0.22 1.00
4 coef _unificado__retraso 0.12 0.30 0.40
4 fijaciones_ velocity 0.13 0.53 0.25
4 fijaciones_ numero 0.16 0.46 0.35
5 ganancia__sacadas 0.38 0.70 0.54
5 fijaciones_ velocity 0.13 0.43 0.30
5 fijaciones_ numero 0.19 0.43 0.44
6 smooth__pursuit_ velocidades 0.40 0.10 4.00
6 smooth__pursuit__errores_ seguimiento 0.11 0.04 2.75
6 smooth_ pursuit_ duraciones_ pursuit 0.02 ~0 —

7 convex__hull 0.48 0.51 0.94
7 bcea_ 68 0.50 0.53 0.94
7 bcea_ 95 0.50 0.53 0.94
7 rms__distance 0.24 0.27 0.89
7 shannon_en 0.11 0.14 0.79
7 sample__en 0.36 0.43 0.84
8 ganancia__sacadas 0.21 0.29 0.72
8 sacadas__correctivas_ max_ distances 0.83 1.07 0.78
8 sacadas correctivas_durations 0.80 1.11 0.72
8 coef unificado__anticipacion 0.18 0.20 0.90
8 coef unificado_ retraso 0.30 0.39 0.77
8 fijaciones_ velocity 0.20 0.56 0.36
8 fijaciones_ numero 0.25 0.44 0.57
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4.1.4 Modelos de regresién para la prediccion de la edad

El objetivo principal de este trabajo ha sido predecir la edad de los participantes a partir de
pardmetros extraidos de registros de movimientos oculares, empleando el entorno Regression
Learner de MATLAB. Para ello, se han utilizado multiples modelos de regresion, reservando
el 10% de los datos para test y empleando validacién cruzada con k& = 5. Debido a la
naturaleza de los datos, algunos modelos no han podido entrenarse correctamente, ya que
ciertos parametros no se han obtenido en todos los participantes, lo que ha reducido el

tamano efectivo de la muestra para algunos algoritmos.

En la Tabla 4.8 se resumen las métricas principales de los modelos que han podido ser
entrenados y evaluados. Se presentan el error cuadratico medio (RMSE) y el coeficiente
de determinacién (R?) tanto en validaciéon como en test, asf como el error absoluto medio
(MAE). Ademaés, en la Figura 4.9 y Figura 4.10 se muestran comparativamente los valores
de RMSE y R? para todos los modelos evaluados. Por tltimo, se incluyen graficos de
dispersién de valores predichos frente a valores reales para cada modelo (ver Figuras 4.13

a 4.12), que permiten visualizar la capacidad predictiva de cada aproximacion.

Tabla 4.8: Resultados de los modelos de regresion entrenados.

Modelo RMSE (Val) R? (Val) MAE (Test) RMSE (Test) R? (Test)
Coarse Tree (2.7) 13.58 ~ 0 8.78 9.80 -0.29
Boosted Trees (2.16) 13.62 -0.01 11.65 13.23 -1.34
Bagged Trees (2.17) 13.50 0.01 12.52 13.97 -1.61
Medium Tree (2.6) 15.36 -0.28 13.04 16.58 -2.68
Fine Tree (2.5) 17.60 -0.68 17.27 23.65 -6.49
Stepwise Linear Regresion (2.4) 66.06 -23.13 27.43 35.08 -15.29
Linear Regresion (2.1) 33 -28.45 NaN NaN NaN
Interactions Linear (2.2) 33 -28.45 NaN NaN NaN
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Compare Results
T T

= Linear Regression
2.1 = Tree m
= Ensemble

Model Number

0 10 20 30 40 50 60 70
RMSE (Validation)
Compare Results
T

T
= Linear Regression

2.1 NaN = Tree b
= Ensemble

Model Number

20 25 30 35 40
RMSE (Test)

Figura 4.9: Comparativa de RMSFE en validacion y test para los diferentes modelos.
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Compare Results
T T

® Linear Regression
2.1 = Tree i
= Ensemble

2.7

Model Number

I I I I I
-30 -25 -20 -15 -10 -5 0 5
RSquared (Validation)
Compare Results

T T

= Linear Regression
2.1 = Tree
= Ensemble
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27—

Model Number

-8
RSquared (Test)

Figura 4.10: Comparativa de R? en validacién y test para los diferentes modelos.

Validation Predicted vs. Actual Plot for Predictions: model 2.4 (Stepwise Linear
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Figura 4.11: Graficos de valores predichos frente a reales para los modelos seleccionados
del modelo Stepwise Linear Regresion.
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Validation Predicted vs. Actual Plot for Predictions: model 2.6 (Medium Tree
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Figura 4.12: Graficos de valores predichos frente a reales para los modelos seleccionados
del modelo Medium Tree.

Validation Predicted vs. Actual Plot for Predictions: model 2.16 (Boosted Trees)
T T ®  Observations

T T T T
Perfect prediction
70 - b
60 - N
@
2 [ ]
o
=3 50 ° [ ] 4
<]
kel L4 ° [ Y °
2 o °
S ° %o °
o
ol o ® ° 1
& e ® o o/ % o ®
o0 o ® P [
4 [ ] ° ° [ ] (]
° ° ®
[ ] e ® 0 [ ]
30 o o i
[ ] [ ] PY
[ ] ¢ ®
® °
20 b
1 1 1 1 Il Il
20 30 40 50 60 70

True response

Figura 4.13: Graficos de valores predichos frente a reales para los modelos seleccionados
del modelo Boosted Tree.
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4.1.5 Analisis de agrupamiento mediante t-SNNE

Con el objetivo de explorar si los parametros extraidos permiten distinguir entre grupos de
edad, se ha realizado un analisis de agrupamiento utilizando la técnica t-distributed Sto-
chastic Neighbor Embedding (t-SNFE). Para este anélisis, se seleccionaron las diez variables
con mayor correlacién absoluta con la edad, entre las que se incluyen fijaciones velocity,
coef _unificado__anticipacion, fijaciones numero, sacadas_correctivas durations, sam-
ple_en, sacadas correctivas _mazx__distances, smooth__pursuit_velocidades, antisaca-
das__precision__espacial, ganancia__sacadas y shannon__en. El nimero de casos disponibles
para cada variable varia considerablemente, por lo que la matriz final utilizada para
el andlisis incluyé tinicamente los 204 casos con datos completos en todas las variables

seleccionadas.

Los participantes se dividieron en dos grupos de edad segin la mediana (40 afios):
jévenes (< 40 afios, 106 casos) y mayores (>40 afos, 98 casos). El algoritmo t-SNE se
ejecuté con una perplexity de 30, tras estandarizar las variables y eliminar valores no validos
(NaN /Inf).

Analisis t-SNE con Variables Prometedoras

15 t-SNE: Coloreado por Edad o 15 t-SNE: Grupos de Edad
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Figura 4.14: Analisis de agrupamiento mediante t-SNE. Cada punto representa un parti-
cipante, coloreado segun el grupo de edad (jévenes y mayores).

La Figura 4.14 muestra el resultado del andlisis de agrupamiento mediante t-SNE. En el
espacio bidimensional generado, ambos grupos de edad aparecen muy dispersos y no se
observa una separacién clara entre jovenes y mayores. Este resultado sugiere que, incluso
combinando las variables mas prometedoras, no se logra una agrupaciéon natural de los

participantes en funcion de la edad a partir de los pardmetros extraidos. La dispersion

? Universidad de Valladolid




89

observada refuerza la conclusién de que los parametros disponibles no contienen suficiente

informacién discriminativa para la edad.

4.2 Discusion de los resultados

A lo largo de este trabajo se ha conseguido desarrollar un flujo de procesado completo que
parte de los datos en crudo de los participantes y permite alcanzar los diferentes objetivos
planteados. El preprocesado implementado ha resultado exitoso, incluyendo una calibracién
temporal y espacial precisa, asi como un filtrado eficaz de artefactos y parpadeos. Ademaés,
se ha realizado la separacion de las seniales para facilitar su uso en los analisis posteriores.
Cabe destacar especialmente la importancia de la calibraciéon temporal, ya que ha permitido
alinear correctamente los registros de todos los participantes y asegurar la comparabilidad

entre experimentos (3.4).

En una segunda etapa, se han extraido métricas relevantes a partir de la detecciéon de
fijaciones y sacadas, calculadas mediante la velocidad euclidea entre muestras consecutivas.
A partir de estos eventos oculomotores se han obtenido numerosos pardmetros descriptores,
aunque también se han calculado otros pardmetros independientes de las fijaciones y
sacadas. Posteriormente, se ha explorado la correlacién de estos pardametros con la edad de
los participantes, obteniendo resultados poco satisfactorios, como se observa en la secciéon
de correlaciones (4.1.1). La mayoria de los pardmetros presentan correlaciones bajas con
la edad, y muchos de ellos dependen en gran medida de la segmentacion en fijaciones y

sacadas, lo que puede limitar su utilidad.

Un aspecto relevante es que la calibraciéon temporal, aunque necesaria para la alineacién
de los datos, podria haber afectado a los pardmetros temporales extraidos. Si el retardo
inicial de cada participante se mantiene constante a lo largo de todos los experimentos,
la correccién aplicada podria haber eliminado informacién relevante sobre diferencias
individuales en el tiempo de reacciéon o anticipacién. Esto podria explicar en parte la
baja correlacién observada entre los pardmetros temporales y la edad, a pesar de que la

literatura reporta ejemplos de éxito en este tipo de analisis (3.4), (4.1.1).

Por otro lado, se ha comprobado que varios parametros presentan una buena estabilidad
intra sujeto e inter sujeto, como se muestra en el andlisis de variabilidad (4.1.3). Sin
embargo, esta estabilidad no se ha traducido en una mayor capacidad predictiva respecto a
la edad. Ademas, el andlisis de la matriz de correlacién entre pardmetros (4.1.2) ha puesto
de manifiesto la existencia de redundancias importantes, especialmente entre métricas
derivadas de la dispersién espacial y entre el ntimero y la velocidad de fijaciones. Esto
sugiere que una reducciéon de la dimensionalidad o una seleccién mas cuidadosa de los

pardmetros podria ser necesaria en futuros trabajos.
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90 Capitulo 4 Resultados y Discusion

En cuanto a la prediccién de la edad mediante modelos de regresion, los resultados han
sido claramente insatisfactorios. Como se observa en las tablas y figuras de resultados
(4.1.4), las métricas obtenidas son muy bajas, con valores negativos de R? en test, lo que
indica que los modelos no son capaces de explicar la variabilidad de la edad a partir de
los pardmetros extraidos. El error cuadritico medio y el error absoluto medio también

resultan elevados en comparacién con el rango de edades de la muestra.

El andlisis de agrupamiento mediante t-SNE (4.1.5) refuerza estas conclusiones, ya que
no se observa una separacion clara entre los grupos de edad definidos (menores y mayores
de 40 afios). Los puntos correspondientes a ambos grupos aparecen mezclados en el espacio
bidimensional, lo que indica que ni siquiera combinando los pardmetros mas prometedores

se logra una agrupacién natural de los participantes en funcién de la edad.

Por ultimo, cabe sefialar que la variabilidad inter sujeto observada en pardmetros como
el nimero y la velocidad de fijaciones es considerablemente alta (4.1.3). Esto sugiere que
existe una gran heterogeneidad en el comportamiento oculomotor entre individuos, incluso
bajo las mismas condiciones experimentales. Esta variabilidad puede dificultar la obtencién
de parametros robustos y generalizables, y refuerza la idea de que el desarrollo de algoritmos

universales para la extraccion de métricas oculomotoras es un reto complejo.

En resumen, aunque se ha logrado establecer un pipeline s6lido de procesado y extraccién
de pardmetros, los resultados obtenidos muestran las dificultades inherentes a la prediccién
de la edad a partir de movimientos oculares. Las limitaciones identificadas en la correlacién
y la capacidad predictiva de los pardmetros sugieren la necesidad de explorar nuevas

aproximaciones y de considerar la alta variabilidad interindividual en futuros estudios.
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CAPITULO

CONCLUSIONES Y LINEAS FUTURO

En este trabajo se ha desarrollado un flujo de procesado completo para el andlisis de
movimientos oculares, desde los datos en crudo hasta la extraccién de parametros y la
aplicacién de modelos de prediccion. El preprocesado, incluyendo la calibracién temporal y
espacial, asi como el filtrado de artefactos y la segmentacién de senales, ha demostrado ser
robusto y funcional. Sin embargo, los resultados obtenidos muestran que los pardmetros
extraidos presentan una baja correlacién con la edad y que los modelos de regresion no
han logrado predecir la edad de los participantes con precisién aceptable. Ademads, la alta
variabilidad intersujeto y la redundancia entre algunos parametros limitan la capacidad

predictiva y la generalizacion de los modelos.

De cara a lineas futuras, es fundamental ampliar el tamafio y la diversidad de la muestra
de participantes, especialmente en los extremos del rango de edad, para mejorar la potencia
estadistica y la representatividad de los resultados. También seria recomendable explorar
nuevos parametros menos dependientes del tiempo y de la segmentacién en fijaciones y
sacadas, asi como revisar en profundidad el proceso de calibracién temporal para asegurar

que no elimina informacién relevante de los parametros temporales.

Otra linea interesante seria aplicar este flujo de procesado a otros problemas, como la
identificacion de sujetos, la prediccién de patologias o el andlisis de diferencias individuales
en tareas cognitivas, siempre que se disponga de informacién adicional sobre los participantes.
Ademas, podria ser util investigar técnicas de reducciéon de dimensionalidad y seleccién de

variables para minimizar la redundancia y mejorar la interpretabilidad de los modelos.

Por 1ltimo, seria conveniente comparar el pipeline desarrollado con otros enfoques y
algoritmos de la literatura, asi como evaluar su aplicabilidad en contextos clinicos o en
estudios longitudinales para analizar la evolucién de los patrones oculomotores a lo largo
del tiempo. Todo ello contribuiria a avanzar en la bisqueda de biomarcadores oculares

robustos
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