

UNIVERSIDAD DE VALLADOLID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Grado en Tecnologías Específicas de Telecomunicación

Mención en Telemática

Aplicación Multiplataforma En Flutter Con

Capacidad De Chatbot Para Proyecto De

Telerehabilitación

Autor:

Dña. Alejandra Cecilia East Garijo

Tutores:

Dra. Míriam Antón Rodríguez

Dr. Mario Martínez Zarzuela

1

TÍTULO:

Aplicación Multiplataforma En Flutter
Con Capacidad De Chatbot Para
Proyecto De Telerehabilitación

AUTOR: Dña. Alejandra Cecilia East Garijo

TUTORES: Dra. Míriam Antón Rodríguez

Dr. Mario Martínez Zarzuela

DEPARTAMENTO:
Teoría de la Señal y Comunicaciones
e Ingeniería Telemática

TRIBUNAL

PRESIDENTE: Míriam Antón Rodríguez

VOCAL: David González Ortega

SECRETARIO: Mario Martínez Zarzuela

SUPLENTE 1: Carlos Gómez Peña

SUPLENTE 2:
Jesús Poza Crespo

FECHA:

Septiembre 2025

CALIFICACIÓN:

2

RESUMEN DEL TRABAJO FIN DE GRADO

En el presente Trabajo de Fin de Grado se ha desarrollado RehaBot, una aplicación
multiplataforma basada en Flutter. Se ha diseñado para apoyar a la rehabilitación
de personas con parálisis cerebral mediante sesiones de ejercicios dirigidos por
terapeutas. La aplicación integra un sistema de Chatbot interactivo que guía a los
pacientes en la realización de los ejercicios a través de vídeos e instrucciones
simples. También permite la recopilación de realimentación en tiempo real con
aspectos como claridad, dificultad, dolor percibido, utilidad, repetición y
comentarios dando la posibilidad de añadir videos de los usuarios. También se ha
implementado una línea de tiempo que organiza los videos realizados por los
pacientes y facilita el seguimiento permitiendo a los usuarios ver su progreso de una
forma clara. Además, se han incorporado funcionalidades de recompensa con el
fin de fomentar la motivación y adherencia al programa. Este proyecto ofrece una
solución complementaria a la rehabilitación presencial, dando acceso a programas
personalizados y apoyando la continuidad del tratamiento a largo plazo.

PALABRAS CLAVE

Flutter, rehabilitación, chatbot, parálisis cerebral, aplicación móvil,
multiplataforma.

3

ABSTRACT

This Bachelor’s Thesis presents RehaBot a cross-platform mobile application
developed with Flutter. It was designed to support the rehabilitation of children with
cerebral palsy through therapist-directed exercise programs. The application
integrates an interactive an interactive chatbot system which guides patients
through their exercises with videos and simple instructions. It also allows for
feedback collection in real time on aspects such as clarity, difficulty, perceived pain,
usefulness, exercise repetition and comments with the possibility of adding a video
of the user performing them. In addition, a timeline feature has been implemented
which organises the user videos, with feedback, so as to easily track progress.
Rewards elements have also been incorporated to enhance motivation and
adherence to the program. This project serves as a supplementary solution to
traditional rehabilitation, enabling access to tailored programs and supporting
consistent long-term treatment.

KEYWORDS

Flutter, rehabilitation, chatbot, cerebral palsy, mobile application, multi-platform.

4

AGRADECIMIENTOS

Quiero expresar mi agradecimiento a mis tutores por su orientación y apoyo durante
el desarrollo de este proyecto, así como al resto del equipo de RehaBot: Hichem y
Daniel.

También quiero agradecer a todas las personas que han contribuido con sus
conocimientos y apoyo haciendo posible la realización de este Trabajo de Fin de
Grado.

5

Contents
1. Introduction .. 10

1.1. Motivation .. 10

1.2. Objectives ... 11

2. Background and State of the Art .. 13

2.1. Current State of Cerebral Palsy (CP) and Rehabilitation 13

2.2. Home-Based Rehabilitation for CP .. 14

2.3. Cloud-based Messenger APIs .. 15

2.4. Overview of Cross-Platform Development and Comparison 18

2.5. Flutter ... 27

2.5.1. Layered Architecture.. 27

2.5.2. Reactive User Interfaces .. 30

2.5.3. Widgets: Flutters Building Blocks .. 30

3. Materials and Methods ... 35

3.1. Transition from Telegram to a Dedicated App 35

3.2. Prototypes and Chatbot Choice ... 39

3.2.1. “Homemade” Chatbot ... 39

3.2.2. ikChatBot (Flutter Plugin) ... 41

3.2.3. Kommunicate .. 43

3.2.4. LLMChat (Self-hosted LLM Chatbot in Flutter) 45

3.2.5. LangChain.dart (LLM Platform SDK for Dart Flutter) 46

3.2.6. Comparison and Final Choice .. 47

3.3. Development ... 48

3.3.1. Requirements Engineering ... 49

3.3.2. Modular Project Structure .. 52

3.3.3. Use of Dependencies ... 53

3.3.4. Iterative Flow ... 54

3.4. Features .. 54

3.5. User Experience and Interface Design .. 60

3.5.1. Introduction .. 60

3.5.2. Accessibility .. 61

6

3.5.3. UI Components ... 64

3.5.4. Visual Style ... 66

3.5.5. User Flows .. 67

4. Testing and Evaluation .. 73

5. Conclusion and Future Work .. 75

References ... 77

Appendix 1: User Manual .. 79

User Manual .. 80

1. Getting Started .. 81

2. Using RehaBot ... 83

2.1. Sessions and Feedback .. 83

2.2. Prizes .. 86

2.3. Timeline ... 86

2.4. Settings ... 87

3. Troubleshooting & FAQs ... 88

4. Legal Information ... 89

7

Index of Figures
Figure 1: Global prevalence of cerebral palsy by region. Adapted from McIntyre et
al.[4] ___ 13
Figure 2: Summary of factors perceived to influence adherence to home exercise
programs (adapted from Lillo-Navarro et al., [8]. ______________________________ 15
Figure 3: Market share of mobile operating systems worldwide from 2009 to 2024.
Adapted from Statista[15]. ___ 19
Figure 4: Cross-platform mobile frameworks used by software developers in 2022
and 2023. Adapted from Statista [16] based on data from JetBrains. ____________ 20
Figure 5: React Native/interpreted approach architecture. Adapted from Bridging
the gap: Investigating device-feature exposure in cross-platform development by A.
Biørn-Hansen and G. Ghinea, [18] ___ 21
Figure 6: Plugin architecture. JavaScript. Adapted from The development of hybrid
mobile applications with Apache Cordova [20]. ______________________________ 22
Figure 7: Figure X. Unity architecture components. Adapted from What are the
components of Unity Architecture?, by The Knowledge Academy, [21]. _________ 23
Figure 8: How Xamarin works: Architecture overview for cross-platform
development. Adapted from What is Xamarin?, by Microsoft, [25] ______________ 24
Figure 9: Flutter architectural overview. Adapted from Flutter [27] ______________ 28
Figure 10: Flutter App Anatomy. Adapted from Flutter [27] _____________________ 29
Figure 11: Code snippet from RehaBot declaring the root widget._______________ 31
Figure 12: Example of Widget within the RehaBot App _________________________ 32
Figure 13: State inheritance in RehaBot .Rendering ___________________________ 33
Figure 14: Flutter’s rendering pipeline. Adapted from Flutter architectural overview
[27]. __ 34
Figure 15: Perceived benefits of using RehaBot from users and therapists. ______ 36
Figure 16: Perceived difficulties and their effects when using RehaBot. _________ 36
Figure 17: Proposed improvements to implementation of using RehaBot through
Telegram. ___ 37
Figure 18: Elements participants would like to incorporate to RehaBot. _________ 38
Figure 19: Protype of handmade chatbot. ____________________________________ 40
Figure 20: IkChatBot prototype __ 42
Figure 21: Kommunicate RehaBot prototype. _________________________________ 44
Figure 22: User Authentication Data ___ 51
Figure 23: User Information. __ 51
Figure 24: Sessions Data. ___ 51
Figure 25: Exercise Data. ___ 52
Figure 26: Feedback Data __ 52
Figure 27: Example of Chatbot interaction. ___________________________________ 55

8

Figure 28: Example of instructional video. ____________________________________ 56
Figure 29: Example of a structured session. __________________________________ 56
Figure 30: Example of a feedback question. __________________________________ 57
Figure 31: Example of language support. _____________________________________ 57
Figure 32: Example of timeline. ___ 58
Figure 33: Example of video recording. _______________________________________ 58
Figure 34: Example of prize view. __ 59
Figure 35: Example of adding a session to the phone calendar. _________________ 60
Figure 36: Adaptation of RehaBot's widgets with a large font size. ______________ 61
Figure 37: Code snippet from RehaBot illustrating the Semantics widget. _______ 62
Figure 38: Examples of contrast rating obtained using the WebAIM Contrast
Checker[35]. __ 62
Figure 39: Code snippet from RehaBot showing fuzzy matching. _______________ 63
Figure 40: Code snippet from RehaBot with method to scroll to the bottom of the
screen. ___ 64
Figure 41: AppBar with code snippet showing its theme. _______________________ 64
Figure 42: BottomNavigationBar and code snippet with its theme. ______________ 65
Figure 43: Standard button, special buttons and code snippet show standard
button theme. ___ 65
Figure 44: Chat messages and code snippet with their theme. _________________ 66
Figure 45: RehaBot's GIFs. __ 66
Figure 46: Example of some RehaBot icons. __________________________________ 66
Figure 47: Colour palette applied to application. ______________________________ 67
Figure 48: Examples of Roboto, typography chosen for RehaBot. _______________ 67
Figure 49: Authentication flow. __ 68
Figure 50: Navigation flow. __ 69
Figure 51: Chatbot flow. __ 69
Figure 52: Feedback flow. __ 70
Figure 53: Timeline flow. __ 71
Figure 54: Rewards flow. ___ 71
Figure 55: Settings flow. __ 72

9

Index of Tables
Table 1: Comparison of cross-platform development frameworks. _____________ 26
Table 2: Evaluation of homemade chatbot. ___________________________________ 41
Table 3: Evaluation of ikChatBot. __ 43
Table 4: Evaluation of Kommunicate's chatbot. _______________________________ 45
Table 5: Evaluation of LLMChat. ___ 46
Table 6: Evaluation of LangChain.dart. _______________________________________ 47
Table 7: Project file with requirement and description of functionality. __________ 53
Table 8: Project dependencies, requirement mapping and justification. _________ 54
Table 9: Testing environment used. __ 73

10

1. Introduction

1.1. Motivation
Cerebral Palsy (CP) is a neurological disorder affecting movement, posture, and
balance, occurring in approximately two to three out of every 1,000 live births. It
results from brain injury due to multiple aetiologies and manifests in different
movement disorders, primarily spasticity, which affects 80% of children with CP.
These movement impairments can lead to secondary complications such as hip
pain, balance difficulties and hand dysfunction [1].

Considering the challenges mentioned above, effective rehabilitation approaches
are crucial to improving motor function and quality of life for these individuals. Over
the years, home-based therapy programs have gained recognition as a valuable
complement or alternative to centre-based rehabilitation. These programs allow
children to engage in continuous training within a familiar environment, enabling
parents to integrate therapy into daily routines. Furthermore, this approach
enhances motor learning, increases training intensity and fosters greater parental
involvement, ultimately strengthening the relationship of the caregivers with the
health professionals [2].

Despite the possible advantages of home-based therapy, challenges may arise such
as parental stress, compliance and a change in parenting roles: these issues must
be carefully addressed to ensure successful implementation. To support this, the
present project aims to develop a cross-platform application that facilitates
therapist-directed, home-based rehabilitation.

This project is developed in the context of the project “RehaBot: Smart Assistant to
Complement and Assess the Physical Rehabilitation of Children with Cerebral Palsy
in their Natural Environment”, financed by the Spanish Ministry of Science and
Innovation (PID2021-124515OA-I00) between 2023 and 2025. The project’s
objective is to complement traditional neurorehabilitation treatment for paediatric
patients with cerebral palsy with different tools such as chatbots, wearables,
computer vision, artificial intelligence and virtual reality technologies. While the
primary focus is on children, this solution has potential to be applied to adults with
cerebral palsy or who have suffered a stroke. This approach provides a cost-
effective, patient-centred solution while also enabling research into the
effectiveness of both conventional and technology-based treatments in promoting
motor learning transfer to daily living activities [3].

Initially, this was implemented through Telegram, offering a basic platform for
interaction. However, this method presented limitations such as privacy and

11

security concerns, exposure to inappropriate content and lack of parental controls
which we will explore in more detail later. Additionally, some parents voiced
concerns over their children using Telegram, preferring a more secure and dedicated
environment for therapy-related interactions. To address these concerns, this
cross-platform approach ensures accessibility and usability across various devices,
allowing families to seamlessly integrate therapy in their daily lives.

The app will offer structured sessions, video demonstration and real-time feedback,
helping to improve engagement, adherence and overall effectiveness of therapy for
children with CP. By transitioning from Telegram to a specialised application, the
system will provide a more efficient, scalable and personalised experience to better
meet the needs of both parents and children while ensuring a secure and dedicated
space for therapy.

1.2. Objectives
The primary objectives of RehaBot, the cross-platform application for rehabilitation
for children with cerebral palsy are:

1) Support therapist-directed, home-based rehabilitation: To facilitate
structured, rehabilitation programs personalised by a qualified therapist that are
tailored to each patient’s needs, including video demonstrations and real-time
feedback.

2) Enhance accessibility: To provide a multi-platform, user-friendly application
that ensures accessibility on various devices, enabling seamless integration of
therapy into their daily lives.

3) Improve engagement and adherence: To increase user engagement by offering
interactive features that promote adherence to therapy routines such as
progress tracking, reminders, motivational prizes as well as an intuitive interface
that encourages participation.

4) Provide a secure and dedicated environment: To create a secure, dedicated
platform for therapy, addressing privacy concerns and offering a space free from
any inappropriate content or distractions found in messaging platforms.

5) Allow for scalability and future integration: To ensure the scalability of the
platform, including the possibility of integrating modern technologies such as AI
for advanced features such as video analysis to assess performance, identify
patterns and provide further insights into the process. This allows for continuous
innovation and improvement to meet the evolving needs of patients with CP.

6) Foster parental involvement and empowerment: To encourage parental
participation in the process by providing tools and resources that empower
caregivers to support the healthcare professionals. Features such as a progress

12

timeline and user feedback on sessions will allow for development monitoring
and higher motivation.

7) Improve the quality of therapy: To deliver high-quality, personalised
rehabilitation that is adapted to each child’s progress, allowing therapists to
monitor outcomes remotely and make necessary adjustments in real time.

8) Promote long-term success: To guarantee the sustainability and long-term
success of programs and patients by enabling continuous updates, tracking
progress over time and ensuring that the therapy remains relevant and effective.

In this document, Chapter 1 introduces the motivation and objectives behind the
development of RehaBot, highlighting the need for effective home-based
rehabilitation for children with CP and the goals of the dedicated, cross-platform
application. Chapter 2 provides the background and the state of the art with an
overview of CP rehabilitation, home-based rehabilitation, cloud-based messaging
APIs, cross-platform development frameworks and a detailed discussion about
Flutter. Chapter 3 presents the materials and methods used in this project, covering
the transition from Telegram to a dedicated application, prototypes and chatbot
selection, project development, features and user experience and interface design.
Chapter 4 describe the testing and evaluation process. Finally, Chapter 5 concludes
the document with a summary of finding and potential future work.

13

2. Background and State of the Art

2.1. Current State of Cerebral Palsy (CP) and Rehabilitation
Cerebral Palsy (CP) defined as “an umbrella term for a group of disorders of
movement and posture, caused by a non‐progressive interference in the developing
brain.” [4, p. 1495], is the most common cause of physical disability in childhood,
affecting approximately 2.1 per 1000 live births globally. It involves not only motor
impairments but also associated challenges including sensory, cognitive,
communication and behavioural difficulties.

Recent studies have shown a slight but consistent decline in CP in many high-
income countries due to improvements in neonatal and perinatal care. However, in
low and middle-income countries, where access to such care is limited, the
prevalence remains stable. This is supported by population-based studies in low-
income regions such as Uganda, Bangladesh and India among others [4]. In
contrast, Figure 1 illustrates the temporal trends for high-income regions where a
downward trend is observed in most.

Figure 1: Global prevalence of cerebral palsy by region. Adapted from McIntyre et al.[4]

14

It is known that early diagnosis, facilitated by neuroimaging and standardised
assessment tools, is increasingly prioritised. These methods enable timely
intervention during periods of increased neuroplasticity. Physiotherapy plays a
crucial role in the management of CP, aiming to enhance movement, increase
strength and prevent muscles from weakening or becoming shortened [5]. Evidence
also suggests that functional, goal-oriented approaches, are effective in improving
motor functions in children with CP [6].

Despite these advances, significant barriers remain, particularly for children in
remote or underserved areas. Delays in accessing physiotherapy can lead to
irreversible harm and long-term consequences [7]. To address these problems,
there is a growing interest in home-based rehabilitation technologies, which offer
higher accessibility, continuity of care and increased patient engagement. The
development of tools like the RehaBot app align with this need, providing both a
flexible and scalable solution for these children and their caregivers.

2.2. Home-Based Rehabilitation for CP
Home-based rehabilitation programs are becoming increasingly vital in the
management of Cerebral Palsy (CP), particularly in conjunction with traditional
centre-based therapies. This rehabilitation from home provides a practical solution
for families by offering continuous training, personalised care and it also
encourages greater involvement from parents or caregivers.

Therapy at home offers several advantages: One of the key benefits is the continuity
of care, allowing the patients to maintain progress between clinical sessions [8].
These programs, especially when therapist led, can be tailored to a child’s daily
routine and environment giving a more personalised and flexible approach
compared to strictly institutional settings [5].

Additionally, these types of programs strengthen active parental involvement, which
has been proven to enhance outcomes. An example of this can be seen during the
COVID-19 pandemic where parents had to take on the role of informal therapists.
Although challenging, this provided insight into how routine involvement improves
family bonding as well as engagement in therapy [9].

Another clear benefit of home-based therapy is increased access to rehabilitation
services. Access, defined as the availability, coverage and use of services is often
constrained by many factors. Bright et al. [10] identified key barriers which limited
this access including geographic distance to centres, affordability of services,
transportation issues and the time required to travel and attend therapy sessions.
These challenges significantly reduce the likelihood of adherence to physical

15

therapy; home-based solutions help mitigate these risks and promote equitable
service distribution.

In spite of these benefits, families can also face barriers to implementing home-
based rehabilitation effectively, one of these barriers is parental stress. Many
caregivers feel unprepared to conduct sessions and worry whether they are
delivering the exercises correctly [9]. Unfortunately, stress can lead to inconsistent
practice and reduced adherence to therapy.

As noted by Lillo-Navarro et al. [8], “Participants reported that regular adherence
monitoring by health professionals allowed them to voice the problems that they
had complying with the exercise program.” This emphasises the importance of
ongoing support and monitoring to maintain engagement.

As we can see in Figure 2 there are multiple factors that influence adherence to
home exercise programs such as parental confidence, exercise preference and
routine integration. The RehaBot app developed in this project incorporates features
designed to tackle these issues. These features include calendar reminders, a
structured timeline to track the patient’s progress, feedback mechanisms and
progress milestones. These elements not only guide families through each session
but enhance accountability, motivation and the sense of progress thus increasing
long-term engagement and better therapeutic results.

Figure 2: Summary of factors perceived to influence adherence to home exercise programs (adapted from
Lillo-Navarro et al., [8].

2.3. Cloud-based Messenger APIs
Cloud-based messenger APIs allow real-time, asynchronous communication
between users and systems. Typically, these systems have a cloud-based server

16

and an API, with the API serving as the bridge between the server and the user
application.

The cloud-hosted server handles the core messaging service such as storage,
routing and delivery, security and scalability whereas the API (Application
Programming Interface) exposes endpoints that allow developers to perform
operations like sending and receiving messages, using push or pull models,
managing groups or channels, uploading media and Bot actions. Client applications
primarily interact with the API through HTTPS requests.

Bots, short for robots, are software built to carry out automated, unsupervised,
repetitive tasks. Some cloud-based messenger APIs support their integration,
extending their capabilities to include automation, personalised responses and
data collection. Chatbots are a subclass of bot that automate tasks by interacting
with users through conversation. Some of the most notable platforms which
integrate these chatbots are Telegram, WhatsApp, Facebook Messenger and
Discord.

Telegram

Telegram is a cloud-based messenger which is a globally accessible and free
service. Telegram has cross-platform support and, as of March 2025 according to
Telegram, has 1 billion active [11]. This demonstrates its widespread adoption and
role as a major communication tool in addition to its scalability and ease of access.
Telegram offers features such as large file sharing, bot integration as well as other
functionalities which make it suitable for various uses such as educational and
therapeutic applications.

Telegram bots are a particular type of account in Telegram created by third-party
developers which can take user inputs, process them and display results. In
addition, they can deliver updates and notifications. These bots operate using the
Telegram Bot API, which allows developers to interact with Telegram servers using
HTTPS requests. It supports a range of operations such as sending and receiving
text, videos and documents as well as interactive elements. These bots can be used
in direct conversations with users or by broadcasting information.

Telegram is a popular choice for developers when creating chatbot applications as
it is a well-documented, scalable and a simple API to use. However, it may be less
suitable depending on the region and the use of Telegram and the lack of end-to-end
encryption for cloud chats. It is only encrypted during transit which could raise
concerns when handling health related information.

17

WhatsApp

WhatsApp is a free cloud-based messaging service owned by Meta, it is renowned
for its end-to-end encryption and integration with mobile devices. According to
Statista [12], as of 2025, WhatsApp has over 2.9 billion monthly users, making it the
most used messaging platform worldwide (Instant Messaging | Definition, History, &
Facts | Britannica, 2025).

WhatsApp included chatbot integration with the WhatsApp Business API. Meta [13]
states that using this cloud API, hosted by Meta, allows businesses to connect
thousands of customers with both programmatic and manual communication.

The API can also be integrated with various backend systems like CRM and
marketing platforms. It allows requests using HTTP endpoints abstracting
complexities from developers. It includes features like automated message flows,
session-based messaging, template broadcasts and interactive elements.
WhatsApp does have stricter access controls making businesses register and
undergo verification while complying with WhatsApp’s policies.

With this Applications global reach and strong security features it could serve as an
effective platform for a chatbot like RehaBot, in particular for sending reminders,
updates and automated support in a familiar environment. On the other hand, it may
be limited by the need to verify businesses, potential usage cost and, as of recently,
the announcement of plans to introduce advertising; all this could reduce flexibility
and expose users to unwanted content.

Facebook Messenger

Facebook Messenger is a highly used cloud-based messaging platform which forms
part of larger Facebook ecosystem. In January 2025 this platform had roughly 947
million active monthly users [14] making it widespread and generally accepted.

In 2016, the Messenger Platform API allowed for bot integration via a webhook-
based architecture. Its three main capabilities are a send/receive API, generic
message template and a welcome screen with Null state CTAs (Call to Action). It
also includes natural language assistance through wit.ai [13].

This ecosystem of a messenger app with bot capabilities along with the social media
aspect of Facebook facilitates customer service automation, reminders and
informational bots making them an effective marketing tool.

Given Messenger’s large user base and extensive features, it could be a viable
chatbot channel for a health-based application. On the contrary, Facebook has
declining popularity among younger generations, ongoing privacy concerns due to

18

Meta’s data handling policies as well as a minimum age requirement of 13 years to
create an account.

In conclusion, Cloud-based messenger APIs provide powerful, scalable and flexible
infrastructures for building chatbot applications, each with their own strengths and
limitations. Telegram stands out for its openness, simplicity as well as its end-to-
end encryption in cloud chats create restrictions for more sensitive contexts.
WhatsApp offers incredible reach and robust security, however, stricter business
verification and costs limit flexibility. Facebook Messenger, which combines bot
capabilities with social media integration is very effective for engagement and
customer services but faces challenges with declining popularity and continuing
privacy concerns. While they all demonstrate potential as chatbots their constraints
highlight the value of a dedicated solution to ensure greater control over cost,
functionality, user experience and data management while maintaining flexibility to
incorporate features without being bound by the restrictions of external platforms.

2.4. Overview of Cross-Platform Development and Comparison
Cross-platform mobile development refers to an approach used in software
development where a single mobile application is created with the capability to be
compiled or exported to multiple operating systems. This system has the advantage
of reducing redundancy by allowing the creation of a single codebase which is run
on various platforms. This approach is becoming more important in the context of
mobile health applications where efficiency, broad accessibility and consistent
user experiences are critical. It avoids the need to develop separate apps for
Android and iOS reducing development time and cost while enabling rapid updates
and better scalability [15].

According to recent data, the combined market share of iOS and Android amounts
to approximately 99.2% as depicted in Figure 3. Therefore, to effectively access
most of the mobile device market it is necessary to be present on both platforms.

19

Figure 3: Market share of mobile operating systems worldwide from 2009 to 2024. Adapted from Statista[15].

These types of applications have many notable benefits:

• Higher target audience exposure: By building a single application,
suitable for different platforms developers can target a much broader
range of people.

• Reduced development cost: Cross-platform apps follow the principle
“write once, run everywhere”. This idea of reusable code and agile
development can significantly reduce costs.

• Easier maintenance: As there is only one application it increases the
ease of updating and fixing any issues that may arise.

• Faster development: Due to the single source code development times
are substantially reduced.

• Reusable code: Code can be utilised for the different targeted platforms
saving time and resources.

There are multiple frameworks available to develop cross-platform applications the
most notable, as of 2023, being Flutter, React Native, Cordova, Unity, Ionic and
Xamarin as we can see in Figure 4.

20

Figure 4: Cross-platform mobile frameworks used by software developers in 2022 and 2023. Adapted from
Statista [16] based on data from JetBrains.

Flutter

Flutter is a cross-platform development framework created by Google which allows
developers to create applications in various operating systems using a single
codebase. Flutter is developed using Dart an object-oriented, class-based, garbage
collected language with a C-style syntax; it also supports interfaces, abstract
classes and type inference among other things [16]. A more detailed exploration of
Flutter’s capabilities and architecture will be presented in upcoming sections.

Some well-known apps created with Flutter include Google Ads, Google Pay and
New York Times.

React Native

React Native is an open-source UI software framework developed by Meta Platforms
first released in 2015. It allows developers to create applications with JavaScript and
React. According to Adam Boduch, the goal of React Native is “React components
everywhere, not write once run everywhere”.

React Native is different from other cross-platform frameworks as it is able to render
real native components which gives it an improved performance compared to a
more traditional hybrid framework such as Cordova. This framework uses a bridge
translating JavaScript into native API calls allowing for up to 90% of code being
reused.

21

Figure 5: React Native/interpreted approach architecture. Adapted from Bridging the gap: Investigating device-
feature exposure in cross-platform development by A. Biørn-Hansen and G. Ghinea, [18]

React Native has gained widespread adoption in e-commerce to healthcare
because of its active community, its large ecosystem of plugins and hot reloading
which make development much faster. Some of its limitations include performance
bottlenecks for graphically intensive applications and the need for native
development knowledge when creating a custom module. It is a compelling choice
for apps that need both speed and versatility.

The most important applications created with React Native are Instagram,
Facebook, Walmart and Airbnb.

Apache Cordova

Apache Cordova, previously known as PhoneGap is a mobile application framework
created by Nitobi at an Apple software development camp in 2008 and then
acquired by Adobe. Currently, it is an open-source framework as it was donated to
the Apache Software Foundation. Cordova allows developers to convert HTML,
JavaScript and Cascading Style Sheets into a native application that you can run on
iOS, Android, Windows and Electron [17].

 It uses a native wrapper around a WebView allowing access to many native device
APIs through a series of plugins. The plugin architecture, as seen in Figure 6,
consists of JavaScript code, a native bridge interface and the corresponding native
implementation which allows interaction with features such as the battery status,
camera, contacts, geo-localisation, Media and Network Information among others
[18].

22

Figure 6: Plugin architecture. JavaScript. Adapted from The development of hybrid mobile applications with
Apache Cordova [20].

Cordova is most suitable for building simple to moderately complex applications
that do not require high-performance graphics or complex animations. Examples
include administrative tools, content-driven apps or applications with functions
similar to a website. It is particularly advantageous if you need to develop an
application quickly at a low cost. However, as Cordova uses a WebView to render
content rather than a native UI component it may have performance issues with
more demanding application or those that need a highly responsive interface.

Some well-known apps built using Apache Cordova are Khan Academy, Duolingo,
Robinhood and MyFitnessPal.

Unity

Unity is a multi-platform game engine created by Unity Technologies, first released
in 2005. It uses C# as its primary programming language allowing developers to
build 2D and 3D applications. It was initially created with a focus towards games,
however, due to its flexibility and rendering capabilities it is now used in multiple
industries such as education, architecture, automotive design and healthcare [19].

Unity lets developers create immersive and interactive applications across multiple
platforms including Android, iOS and Windows. Using the Unity Editor developers
are able to manage assets, script interactions, animations and simulate physics.
One of its main strengths is the component-based architecture allowing for
reusable scripts and behaviours that can be attached to game objects, simplifying
complex developments [20].

23

Figure 7: Figure X. Unity architecture components. Adapted from What are the components of Unity
Architecture?, by The Knowledge Academy, [21].

Another key feature is Unity’s real-time 3D rendering capabilities, making it suitable
for augmented reality and virtual reality. This has led to its use in rehabilitation and
patient engagement. Unity has extensive documentation, a large developer
community and access to assets through the Unity Asset Store which help with
efficient development and rapid prototyping.

Despite its many advantages Unity is not suited to standard user interface-based
apps due to its large build size and performance overhead.

Some of the most important apps developed in Unity are Pokémon Go, Among Us
and NASA’s Virtual Mars Rover Experience.

Ionic

Ionic is an open-source UI toolkit used to build multi-platform applications and was
founded in 2012 by Max Lynch and Ben Sperry. Ionic is written using web
technologies such as HTML, CSS and JavaScript and are primarily built using
Angular although it also supports React and Vue [21].

Ionic is a hybrid development model rendering the app’s UI within a WebView and
enabling access to native device feature through Capacitor. Capacitor acts as a
bridge that allows developers to write native code and call it from JavaScript
improving performance and flexibility [22].

One of the main advantages of Ionic is its pre-designed UI components that follow
modern design standards such as Material Design and Cupertino. These allow
developers to create visually appealing and responsive interfaces with less effort.

24

Ionic’s integration with Angular and its support for progressive web apps make it a
good choice for those familiar with web development.

As a hybrid framework, Ionic can encounter performance issues in graphically
demanding applications or if there is high-frequency sensor input. Ionic’s use of
WebView means that although application will look and behave similarly across
platforms, their performance against apps built with native UI components will be
poorer.

Popular applications built with Ionic include Sworkit, Shipt and McDonald’s Turkiye.

Xamarin

Xamarin is an open-source platform developed by Xamarin Inc., later acquire by
Microsoft in 2016. With Xamarin, developers can create native mobile applications
for Android, iOS and Windows using .NET and C# [23]. Xamarin lets developers
share a large portion of code across all platforms, on average about 90%, meaning
that they can write all their business logic in a single language but achieve native
performance, look and feel, following the principle of “write once, run everywhere”.

Xamarin uses native compilation attributing to its high performance and native user
experience. As shown in Figure 8, Xamarin uses a common .NET codebase which
communicates with native SDKs through bindings for Xamarin.iOS and through
the Managed Callable Wrapper and Android Callable Wrapper for
Xamarin.Android. This architecture allows access to most device features such
as sensors, GPS, cameras and file systems.

Figure 8: How Xamarin works: Architecture overview for cross-platform development. Adapted from What is
Xamarin?, by Microsoft, [25]

25

Despite its many advantages, Xamarin also has some limitations. The initial learning
curve can be difficult for those not familiar with .NET or C#. Additionally, Xamarin
apps can also be larger in size compared to those developed using native SDKs.

Another key issue is Xamarin’s declining support with the introduction of .NET
MAUI (Multi-platform App UI) as it’s official successor. This means that Xamarin has
not received updates beyond May 2024 making it less future proof for new projects
[24].

Some of Xamarin’s most notable applications are UPS, BBC Good Food and Alaska
Airlines.

Comparison

 Flutter React Native Cordova Unity Ionic Xamarin

Language

Dart
JavaScript +

React
HTML/CSS/
JavaScript

C#

HTML/CSS/
JavaScript
(Angular/

React/ Vue)

C# + .NET

Rendering
Native

compiled
widgets

Native
components

via bridge
WebView

Game
engine
3D/2D

WebView +
capacitor

Native UI
rendering

Performance
High High High Medium High Medium

Multiplatform

Ease of Use
Medium High High Medium High Medium

Speed of
Development Fast Fast Fast

Slow –
Large
builds

Fast Medium

App Size
Large Medium Small Very Large Medium Medium-Large

Open Source

(free

version)

Resources Good +
growing

Extensive Limited – Legacy Strong Good Good

Access to
Native

Features

(via plugins)

(via Capacitor)

26

Limitations
Larger app

size.
Newer

ecosystem

Occasional
need for native

code

Poor
performance.

Outdated
plugins.

Heavy
build

Not ideal for
intensive tasks.

Difficult to
learn.

Shrinking
support.

Best use
cases

Complex UI.
Animations.
Mobile-first

apps.

Standard apps

Simple apps.
Rapid

prototyping.
Like web page.
Limited budget.

Games.
AV/VR.

UI-rich apps.
Prototyping.

Business
apps.

Backend
Integration.

Table 1: Comparison of cross-platform development frameworks.

As seen in the table above, each cross-platform framework presents its individual
advantages and disadvantages depending on the use case, amount of development
experience and performance requirements. When selecting a framework for a
mobile rehabilitation application like RehaBot it is essential to consider factors such
as consistent performance, native-like UI, ease of development, scalability and
community support.

Taking all pros and cons into account Flutter emerged as the most suitable choice
for RehaBot for several reasons:

1. Native performance: Flutter compiles directly to native ARM code using
Dart, allowing for a smooth and consistent experience. This is essential for
an application like RehaBot which relies on video streaming, smooth UI
transitions and real-time user feedback.

2. Rich UI capabilities: Flutter offers a wide range of customisable widgets and
supports complex UI designs making it idea for engaging and accessible user
interfaces. The “everything is a widget” idea gives precise control over UI and
layout.

3. Single codebase across platforms: Using Flutter RehaBot will be able to
maintain a single codebase for both Android and iOS reducing development
and maintenance overhead. This supports one of the goals which is broad
accessibility, in particular for those users who may already face barriers
when accessing physical therapy.

4. Growing ecosystem and community support: Flutter has a rapidly growing
community, extensive documentation and an increasing number of
packages and plugins. This accelerates development and troubleshooting
allowing for evolution and scalability.

27

5. Integration with video and multimedia: RehaBot relies heavily on video
interactions between therapist and patient. Flutter provides robust support
for multimedia which are essential for the development of this application.

6. Developer productivity: Features like hot reload, integrated development
tools and support for modern development paradigms enhance productivity.
This allows faster iterations and rollouts.

In contrast, frameworks like React Native and Xamarin require more platform
specific adjustments for a truly native experience. Cordova and Ionic, while easier
to use depend heavily on WebView rendering which, as we have seen, can cause
performance issue particularly problematic for apps with real-time feedback or
animation like RehaBot. Unity, though extremely powerful, is more suited to game
development and heavy graphical applications.

In conclusion, Flutter was believed to offer the best balance of performance
developer efficiency, visual fidelity and community support for the development of
RehaBot: A multi-platform rehabilitation assistant application intended to be
scalable, responsive and user-friendly in both clinical and home environments.

2.5. Flutter
Flutter is an open source, user interface, cross-platform development framework
created by Google and initially released in 2017. Its versatility lies in its capacity to
create applications for multiple operating systems including Web, Android, iOS,
Linux, macOS and windows from a unified codebase. It combines a high-
performance rendering engine with a declarative user interface language (Dart) to
create smooth and expressive applications.

2.5.1. Layered Architecture

One of the most important features of Flutter is its architectural model as seen in
Figure 9. It is designed to be flexible, extensible with high performance. The
architecture consists of 3 main layers:

• Framework Layer: Built in Dart, this is the layer most developers interact
directly with. It provides the foundation for building applications with
essential libraries, gesture handling, animation as well as rendering. The
framework also includes two sets of design widgets: Material Design, for
Android Apps and Cupertino for iOS apps. This allows developers to create
UIs that align with both ecosystems while sharing a codebase.

• Engine Layer: Written primarily in C++, the engine layer provides low-level
core functionality. It includes the Skia 2D graphics engine for rendering, the
Dart runtime for JIT (Just-in-Time) and AOT (Ahead-of-Time) compilation, text

28

layout engines and accessibility support. This layer is crucial for Flutter to
render every pixel directly, bypassing platform native UI elements and giving
the developer full control over the app’s appearance.

• Embedder Layer: This platform specific integration layer allows the Flutter
engine to connect with the underlying operating system. It is responsible for
input event handling, setting up the rendering surface and managing events
and lifecycle changes such as launching, backgrounding and closing. There
are different embedders available for Android, iOS, desktop systems and
even for some embedded devices making Flutter extremely versatile.

Figure 9: Flutter architectural overview. Adapted from Flutter [27]

Flutter App Composition

As seen in Figure 10, a Flutter App generated with flutter create involves
several constructs:

• Dart App: Composes widgets into the UI, implements business logic and is
built by the developer.

29

• Framework: It provides a higher-level API to manipulate widgets, handle
gestures, accessibility and manage text input. It also composes the widget
tree into a scene.

• Flutter engine: The engine is responsible for rasterising composited scenes,
low-level implementation of Flutter’s core APIs, exposes functionality to the
framework using dart:ui and integrates into the underlying platform using
the Embedder API.

• Embedder: The embedder interfaces with the underlying OS so as to access
services like rendering, accessibility and input, it manages the event loops
while exposing platform-specific API to integrate the Embedder into
applications.

• Runner: This element composes the parts exposed by the platform-specific
API of the Embedder into an app package which can then be run on the target
platform. This part is also owned by the app developer.

Testing, modularity and code reuse are improved with this type of layered
separation.

Figure 10: Flutter App Anatomy. Adapted from Flutter [27]

30

2.5.2. Reactive User Interfaces

Flutter has a reactive, declarative approach to user interface development whereby
the interface is expressed directly as a function of the application state. When the
state changes, the framework will automatically update the interface, this feature
was influenced by Facebook’s React framework.

 Traditionally developers have had to manually update elements in response to
events, which creates complex error-prone applications because of interdependent
parts. A key example of this is shown in Flutter Docs [25] when a change in a colour
picker’s hue slider should also update previews, swatches and selection controls
creating a cascade of updates which can introduce bugs or inconsistencies. In
contrast, reactive frameworks like Flutter abstract this idea by decoupling interface
description from the application logic. A developer only declares what the UI should
like for any given state, while the framework ensures consistency during updates.

Flutter uses widgets, similar to components in React, which are represented by
immutable classes used to configure a tree of objects. These widgets then manages
another tree of objects for layout which, in turn, is used to manage a tree of objects
for compositions. In its essence, Flutter can be seen as a series of mechanisms
which convert trees of objects into lower-level trees of objects and then propagating
the changes from one to another. Each widget effectively overrides the build()
method to declare its user interface.

2.5.3. Widgets: Flutters Building Blocks

The concept of Widgets is fundamental to understanding Flutter and how user
interfaces are constructed. Widgets are the smallest unit of composition within a
Flutter app, giving immutable declarations of discrete parts of the interface. Every
element of this interface, from structural elements like rows and columns to visual
controls, including buttons and sliders, is represented as a widget.

Widgets in Flutter are composed in a hierarchical manner forming a widget tree.
Each widget is nested within its parent gaining access to its parent’s contextual
information. Every widget tree originates from a root widget, which hosts the Flutter
application, commonly MaterialApp, as shown in Figure 11, or CupertinoApp
and extends downward to the smallest leaf nodes [26].

31

Figure 11: Code snippet from RehaBot declaring the root widget.

Whenever an event occurs, for example a user interaction, the application updates
the interface by replacing widgets in the tree. Its framework can compare old and
new widgets, only changing what is necessary in an optimised and efficient manner.
This allows for intuitive development as it is only necessary to describe the interface
in function of the current state.

A notable distinction in Flutter is that each user interface control has an
implementation in Dart, rather than relying on native controls. This has several
benefits:

• Extensibility: Developer can freely create or modify controls without
constraints of the underlying UI.

• Performance: Performance is improved as Flutter composites the entire
scene in one go without transitions between Flutter and native platform
code.

• Decoupling: The separation of application behaviour and OS dependencies
ensure the app has the same look and feel independently of the underlying
OS version.

Widgets in Flutter are typically built by composing many smaller, single-purpose
widgets. The philosophy is that, where possible, the number of design concepts is
as reduced as possible while allowing the total vocabulary to be large. We can
illustrate this idea with the Container widget, which is composed of multiple widgets
itself for example ConstrainedBox, Align and Padding among others. This

32

approach enables highly customised UI elements by combining existing widgets or
by building new ones based on source code of those already established [25].

A widget’s visual representation is determined by overriding the build() method
which returns a new element tree. This function should be free of side effects,
regardless of previous calls, it must return a fresh tree each time the framework
requests a rebuild supporting swift, interactive applications.

To illustrate how widgets are composed in practice, consider Figure 12 from the
RehaBot app. In this snippet, a Scaffold provides the structural layout, while
ListTile widgets manage user interaction such a picking a time and adding an
event to a calendar. The widgets work together declaratively with their visual state
reflecting the underlying application state.

Figure 12: Example of Widget within the RehaBot App

There are two main categories of widgets in Flutter:

• Stateless widgets: These are widgets with properties that do not change
over time such as an icon or a label. They do not hold mutable state and are
a subclass of StatelessWidget.

• Stateful widgets: These are widgets whose properties change based on user
interaction or other factors. A simple example would be a counter which
increases every time a user taps a button, the value of the counter would be
the state. They widgets subclass StatefulWidget, separating the
immutable widget from a mutable State object. When the state changes,
setState() is called triggering a rebuild.

33

This separation of widget and state lets Flutter treat both categories in the same way,
parent widgets can recreate children at any time without losing their internal state
as the framework manages the reuse of state object where necessary.

As Flutter and its applications have grown, state management has become
increasingly important. In Flutter we can consider two state categories:

• Local state: State that belongs to a single widget and does not need to be
shared like the current text in form field. This is usually managed via
setState() directly.

• Shared state: Here the state may need to be accessible by multiple widgets
across the app like authentication or user preferences.

To address this shared state, Flutter introduced the InheritedWidget, allowing
states to be shared among descendants. This can be done by calling the
.of(context) method, which returns the nearest ancestor of the specified type.
While it is powerful, its implementation can be very verbose in large applications.

This led to higher-level state management with packages like provider which provide
a wrapper around InheritedWidget.

An example of state management can be seen in Figure 13 when handling user
authentication in RehaBot. Here persistent login information is retrieved from
SharedPreferences. If the user chose to remain logged in, the stored
authentication token is retrieved and injected into an AuthState object provided
higher up the widget tree. This then makes the authentication state available
anywhere in the app without passing manual data [25], [26].

Figure 13: State inheritance in RehaBot .Rendering

Flutter’s architecture lets it control the rendering pipeline independently of the
underlying operating system. Instead of relying on platform UI components, it paints

34

every pixel using the Flutter Engine. This give unmatched flexibility ensuring visual
consistency across all platforms.

As we can see in Figure 14, the rendering pipeline starts when the widget tree, the
declarative description of the UI, is transformed into an element tree and then into
a render tree. This render tree is subsequently passed to the engine which uses the
graphics library to rasterise the content onto the screen.

Figure 14: Flutter’s rendering pipeline. Adapted from Flutter architectural overview [27].

This process has several stages:

1 Widget tree construction: The developer defines the interface using widgets
to express the UI and behaviour in terms of the application state.

2 Element tree: Flutter creates an element tree that represents active instance
of widgets. It manages the lifecycle and relationships between widget
instances and their children

3 Render tree: The framework produces a render tree made of render object
instances. They encapsulate layout, painting and compositing logic,
translating into concrete instructions for the engine.

Finally, the rendering process continues with layout, painting, compositing and
finally rasterization. Flutter’s custom rendering pipeline has substantial
performance benefits. As the framework handles its own layout, painting and
compositing, it can optimise re-rendering by rebuilding only the parts affected by
state changes. The build methods are designed to be side effect free and fast often
at a speed of 60 frames per second or higher depending on hardware.

This control minimises overhead and avoids performance bottlenecks, as a result,
applications achieve visual precision and interactivity regardless of the underlying
system [25], [27].

35

3. Materials and Methods

3.1. Transition from Telegram to a Dedicated App
Initially, Telegram was selected as the platform for RehaBot due to its accessibility,
ease of use and familiarity among users. This decision was also influenced by the
availability of the chatbot integration. This integration allowed for the creation of a
simple and effective communication platform between therapists and families. This
initial version of RehaBot functioned as a lightweight, automated interface, enabling
asynchronous communication, structured data collection and direct access to
content, such as instructional videos. Since many families are accustomed to
messaging apps for everyday communication this approach was meant to minimise
barriers and avoid the need to learn or install new software.

User Feedback and Emerging Challenges

Following the initial deployment, questionnaires were distributed to gather
anonymous user and therapist feedback (see Appendix x). As illustrated in Figure
15, users and therapists reported a range of perceived benefits, including:

• Creativity.

• Family support.

• Adaptability.

• Usefulness.

• Positive experience.

• Ease of use .

Additionally, 80% of final users and 50 % of therapists who answered reported that
they would recommend using RehaBot in its current form. When asked about future
versions, 50% of users and 78.57% of therapists showed interest in trying the next
version. These results show that the idea was well-received overall while enforcing
the need for improvement in both user satisfaction and therapist engagement.

36

Figure 15: Perceived benefits of using RehaBot from users and therapists.

However, despite the many positive aspects, some difficulties which affected
adherence and motivation rose as we can see in Figure 16. These included:

• Increased caregiver workload.

• Limited personalisation.

• Technical issues.

• Lack of consistent adherence.

• Insufficient family involvement.

While it may not be possible to fully resolve all these challenges in this next version
of the application, the proposed improvements aim to mitigate their effects and
enhance overall engagement.

Figure 16: Perceived difficulties and their effects when using RehaBot.

37

Rethinking the Platform: User-Led Recommendations

Based on this feedback, several practical areas for improvement were proposed.
Families asked for more positive reinforcement, a simpler registration process and
the ability to upload videos of exercises.

Therapists recommended creating a dedicated app to allow them and families to
monitor progress more easily.

Figure 17: Proposed improvements to implementation of using RehaBot through Telegram.

Some of these key requests to be incorporated were:

1. Sending videos of users performing exercises at home.
2. Unlocking rewards through gamified progress tracking.
3. A timeline displaying user’s videos and their feedback allowing for progress-

monitoring.

38

Figure 18: Elements participants would like to incorporate to RehaBot.

Some participants also expressed worries with using a general-purpose messaging
app. Families concerns included the potential for children to access unrelated or
harmful content through Telegram. Therapists also highlighted in feedback
meetings that a dedicated app could make the program easier to use and more
tailored to specific therapeutic needs:

Feedback questionnaire 03-04-2024:

“Como mejora, pensamos que creando una aplicación propia de RehaBot en vez de
utilizarse por Telegram igual sería más fácil de manejar para las familias. Y con el fin
de que a la vez que se hagan los ejercicios existiera la posibilidad de grabar un vídeo
mientras se realiza el ejercicio y se enviase a la aplicación y poder ver así si se realiza
de manera correcta dicho ejercicio.”

Feedback questionnaire 17-04-2024:

“Pensamos que algunos de los aspectos a mejorar son la forma de darse de alta en
el programa sin necesidad de que intervenga la familia o los usuarios, que RehaBot
sea una aplicación directa, que se pudiera ver la manera de cómo el usuario lleva a
cabo el ejercicio, la aplicación tenga refuerzos positivos, motivaciones para
fomentar la adherencia al uso del programa.”

A Custom Mobile App

Based on this feedback, the project transitioned to a dedicated cross-platform app.
This new version preserves the key functionalities of the Telegram-based prototype

39

such as instructional video delivery, session tracking, and user feedback collection,
while introducing enhanced features including:

• Transit encryption.

• User authentication.

• Customisable, age-appropriate interfaces.

• In-app parental monitoring tools.

• Reward systems and gamification elements.

• Timeline-based video comparisons.

This shift represents a natural progression moving from early proof of concept to a
production ready solution which better fits the need of families and therapists. It
also aligns RehaBot with clinical, ethical, and security standards in digital health
[28]. By giving families, a secure, tailored environment, this dedicated app forms
greater trust, engagement and long-term participation. It also paves the way for
future expansion such as therapist dashboards, AI-generated progress insights,
further gamification and personalised therapy pathways.

3.2. Prototypes and Chatbot Choice
In the early design phase, different approaches to the implementation of a chatbot
were evaluated in order to balance ease of development, scalability, user
experience and security requirements. Several options were considered, ranging
from “homemade” solutions to more advanced integrations using Large Language
Models (LLMs).

3.2.1. “Homemade” Chatbot

The first approach was to develop a custom chatbot protype coded from scratch in
Flutter. This was implemented as a simple mobile app where the bot could greet the
user, present a main menu and allow navigation into sessions and sub options as
we can see in Figure 19.

40

Figure 19: Protype of handmade chatbot.

The code defined a ChatScreen with a conversation history, input field and state
management for:

• Greeting the user dynamically.

• Displaying a main menu with options like Sessions, Configuration and Exit.

• Navigation to return to the main menu.

• A basic interface with alternate user and bot message bubbles.

To assess the effectiveness of this protype the solution has been evaluated across
a range of categories. Each category considers a specific aspect of the future
system. The aim was to easily highlight the strengths and weaknesses in order to
provide a balanced view of its potential and pitfalls.

Category Evaluation Description

Implementation Easy
Simple prototype with menus and session flow.
As it is built in Flutter it enables rapid
development of a functional chatbot.

Scalability Medium
Protype with hard-coded logic but Flutter’s
modular widget structure allows for future
refactoring and expansion.

Design Medium
Basic UI with alternating chat bubbles
implemented with Flutter layouts. Functional and
structured although visually basic.

Functionality Medium
Supports greeting, main menu navigation,
sessions and state management however
responses are rigid and rule based.

41

Integration High
Easily integrated with other Flutter app features
such as APIs, databases or device-native
functionality.

Personalisation Medium Currently limited but widget customisation would
allow visual and functional personalisation.

Security &
Privacy Medium

No built-in security in the prototype but
authentication, encryption and secure API
communication could be added.

Analytics &
Reporting Low

None – no tracking or logging of interactions
implemented. Would require additional
development.

Support &
Maintenance

High
The simplicity of Flutter and modular design
ensures maintainability and smoother transitions
in the future.

Cost & Licensing Low

Development costs are minimal, mainly
developer time. Flutter and Dart are both open
source so there are no associated licencing
costs.

User Experience Medium
Provides a simple, functional chat flow with clear
menus. It does lack natural, flexible
conversation. UX may be rigid, but it is intuitive.

Table 2: Evaluation of homemade chatbot.

A we can see a homemade chatbot serves as a minimal but functional prototype,
successfully demonstrating the feasibility of chatbot interaction flows with a mobile
application. It excels in integration ease, thanks to Flutter’s ecosystem,
maintainability and its low cost while offering a clear structure that can be expanded
upon. Although, it is limited in functionality, user experience, analytics and
scalability at this early stage, its simplicity and modular Flutter architecture makes
for an excellent foundation for further development.

3.2.2. ikChatBot (Flutter Plugin)

The second option taken into account was based on integrating the ikChatBot
package into the Flutter project. This solution leveraged a pre-built and configurable
widget that enabled quick addition of a functional chatbot to the app with minimal
development effort.

42

Figure 20: IkChatBot prototype

This plugin offers:

• A ready-to-use IkChatBot widget for Flutter.

• Customisation options for colours, icons, backgrounds and initial greetings.

• Background image support.

• Support for user interaction rating with feedback sent via email using SMTP.

• Basic configuration controls for inactivity, default responses and closing
messages.

The source code is open and available on GitHub, allowing further extension if
needed (ikChatBot, 2025).

Category Evaluation Description

Implementation Easy
Integration through pubsec.yaml and embedding
IkChatBot widget with configuration. Minimal
learning curve.

Scalability Medium
Handles basic chat flows, however, for high user
load or more dynamic responses the source code
would need to be modified.

Design Medium
Allows customisation of appearance (colours,
icons, background) but the widget structure
limits full flexibility.

Functionality Medium
Provides chat with predefined keyword response
sets and a rating system but lacks multi-option
navigation.

Integration Easy Easily integrates into existing Flutter apps.

43

Personalisation Low
Customisable in appearance and some
conversation content but limited by the
predefined keywords and responses.

Security &
Privacy Low

No built-in encryption or authentication. Use of
SMTP for email feedback without robust security
measures is risky.

Analytics &
Reporting Low Only basic interaction are captured and sent via

mail. No advanced analytics or dashboards.

Support &
Maintenance Medium

Being open source, support depends on
community and maintainers. Last update 23
months ago (as of August 2025).

Cost & Licensing Low Free and open source. Licensed under the terms
on pub.dev (Iksoft Technologies, 2023).

User Experience Medium Intuitive user interactions but restricted to fixed
inputs.

Table 3: Evaluation of ikChatBot.

The ikChatBot plugin simplifies the deployment of a chatbot in a Flutter app
enabling rapid integration with its readymade widget and customisation options. Its
main strengths are ease of use and low development overhead. However, this
solution is functionally limited, constrained to keyword based replies, lacks
advanced security features with minimal analytics.

3.2.3. Kommunicate

This option used the Kommunicate SDK and cloud platform to add advanced
chatbot capabilities to a Flutter application. Kommunicate simplifies the creation,
deployment and management of chatbots and offers integration with popular AI
models like ChatGPT and NLP (Natural language processing) engines.

44

Figure 21: Kommunicate RehaBot prototype.

Kommunicate’s AI agent and Bot provides [29]:

• No-code AI Agent Builder.

• Multi-source knowledge integration.

• AI recommendations and brand guardrails.

• Context-aware responses.

• Live agent routing and escalation.

• Customisable appearance.

• File and data capture.

• Language support.

• Analytics and reporting.
Category Evaluation Description

Implementation Easy
Simple integration via SDK and detailed
documentation, user-friendly setup through a
dashboard and APIs.

Scalability Medium
Scales well with higher user numbers and chat
volume, however, higher usage increases costs
significantly.

Design Easy Allows easy interface personalisation, with
straightforward modifications.

45

Functionality High
Advanced chatbot features available, including
AI-powered responses, intent handling and
integrations.

Integration Easy Integrates smoothly due to clear libraries and
documentation, supporting third-party systems.

Personalisation Medium
User experience and appearance are
customisable; however, the depth is limited by
platform constraints.

Security &
Privacy Medium

Basic security features such as permissions and
role management among others. Robust
compliance but not suitable for highly sensitive
data without additional controls.

Analytics &
Reporting High

Real-time dashboard, recommendations,
conversation summaries and expert support
included.

Support &
Maintenance High

Dedicated technical support, onboarding
assistance and regular optimisation.

Cost & Licensing High Requires use of advanced paid plans on a
monthly basis.

User Experience High Smooth, intuitive and intelligent chat experience.
Table 4: Evaluation of Kommunicate's chatbot.

Kommunicate delivers a feature-rich and scalable chatbot solution that excels in
rapid deployment, advanced AI orchestration, flexibility of integration, user
experience and business support. However, it comes with high costs more adapted
to a large business model.

3.2.4. LLMChat (Self-hosted LLM Chatbot in Flutter)

LLMChat is an open-source project available on GitHub combining a Flutter
frontend with a Python FastAPI backend to deliver intelligent, customisable chatbot
experiences using advanced LLMs.

Key features:

• Architecture: Flutter front end for UI and Python backend handling chat and
LLM interaction via a FastAPI.

• Model Integration: Supports powerful LLMs like ChatGPT and local models,
enabling rich conversations.

• Real-time communication: Uses WebSockets for bidirectional chat.

• Conversation history and summaries: Automatically tracks chat history and
can generate summaries for analytics and review.

• Security: Built-in authentication, token validation and caching for privacy
and scalability.

• Customisation: Open-source codebase allows full control.

46

Category Evaluation Description

Implementation Medium Requires backend setup and API integration, in
depth documentation.

Scalability High Modern infrastructure and scalable models.

Design High Enables full customisation of UI/UX and backend
workflows in Flutter.

Functionality High Supports advanced LLM capabilities, context and
multiturn conversations.

Integration Medium More technical setup.
Personalisation High Open codebase and fully extensible.

Security &
Privacy

Medium Token validation and authentication.

Analytics &
Reporting Medium Extensible for chat analytics, data storge and

reporting
Support &

Maintenance Low Relies on community and internal resources.
Supported and updated by and individual.

Cost & Licensing Low Open source only infrastructure costs.

User Experience High Natural, robust conversation flow, UX can be
optimised as needed.

Table 5: Evaluation of LLMChat.

LLMChat could be an ideal option for a team with technical expertise seeking
maximum flexibility, privacy and sophistication however, it demands far more
resources and maintenance than a simpler solution.

3.2.5. LangChain.dart (LLM Platform SDK for Dart Flutter)

LangChain is an open-source SDK offering a unified interface for interaction with
multiple LLM providers in Dart and Flutter projects allowing developers to create
powerful apps with NLP integration [30].

Key Capabilities:

• Multi-provider Integration (OpenAI, Google, local LLMs).

• Real-time data handling with WebSockets

• Data storage and retrieval of chat history for analysis and review.

• Authentication, authorisation and caching for robust and scalable
deployments.

• Full customisation via its open-source codebase.
Category Evaluation Description

Implementation Medium Requires SDK integration, backend modifications
and model provider configuration.

Scalability High Scales efficiently across providers, backend and
data volumes.

Design High Enables full customisation of UI/UX and backend
workflows in Flutter.

47

Functionality High
Supports advanced NLP tasks, multi-provider AI
and data management.

Integration Medium Flexible API interface but technical integration
required.

Personalisation High Open codebase and fully extensible.
Security &

Privacy
Medium Token validation and authentication.

Analytics &
Reporting Medium Extensible for chat analytics, data storage and

reporting
Support &

Maintenance Low Relies on community and internal resources.
Supported and updated by an individual.

Cost & Licensing Low Open source only infrastructure costs.

User Experience High Powerful, customisable and natural user
interactions.

Table 6: Evaluation of LangChain.dart.

LangChain.dart offers a complete and highly personalised solution to work with a
Flutter project using an LLM model. Its modular architecture and advanced
functionality make it an attractive option but too complex for rapid development or
small-scale deployment.

3.2.6. Comparison and Final Choice

After evaluating and discussing the different options of chatbot implementation it
was decided that the homemade Flutter chatbot was the best solution to integrate
with the existing backend. This choice was based on multiple factors:

• Minimal Cost: By using open-source technology such as Flutter and Dart for
the front end and using the existing backend infrastructure with minimal
changes, the project avoids added licensing, hosting and third-party usage
fees. This is essential for projects with strict budget constraints.

• Rapid Prototyping and Development: This version allowed for full control
over the application and code enabling quick iterations, testing and
deployment without waiting on external dependencies or schedules.
Flutter’s hot reload further accelerated UI development.

• Seamless Integration: Being native Flutter code allows direct and straight
forward integration with existing backend APIs, databases, storage and
device-specific functionality. Making reuse of resources simple and efficient.

• Maintainability and Customisation: The application’s modular and clean
architecture facilitates easy updates and targeted enhancements like
improving conversational logic, adding analytics or hardening security
measures like authentication and encryption.

• Risk and Vendor Lock-in Control: The solution does not rely on external
services or commercial platforms therefore eliminating any concerns about

48

pricing changes, discontinuation or restrictive terms crucial for long term
sustainability.

• Scalability for Future Needs: Although the initial implementation has basic
hard-coded logic, Flutter0s flexible widget system allows refactoring and
expansion to support more complex flows, AI integration or additional
channels as resources allow.

In contrast, ikChatBot offered faster setup but lacked scalability and depth of
customisation. Kommunicate deliver business-level capabilities but at a prohibitive
cost. LLMChat and LangChain.dart provide unmatched flexibility and conversation
sophistication however required significant infrastructure and technical expertise.

Therefore, the project continued based on the homemade prototype giving the best
balance between cost, flexibility, maintenance and functionality for the project’s
current and foreseeable requirements.

3.3. Development
RehaBot was made with the aim of delivering an accessible and effective
rehabilitation aid through a mobile application compatible with both Android and
iOS platforms with the possibility of later expansion. This allowed for a single
codebase reducing development and maintenance overhead in comparison to a
native platform-specific development. The use of Flutter aligns with 2025 cross-
platform development best practices, emphasising rapid iteration, consistent user
experience and efficient resource management as well as its motto “Write once, run
everywhere”.

Project Objectives

The core objectives of RehaBot were:

• Deliver a dedicated mobile chatbot rehabilitation system for children with
cerebral palsy.

• To support therapy at home through structured exercise sessions,
instructional videos and some form of gamification.

• To enable families to engage in therapy outside the clinic while giving
therapists tools to track their progress.

• Establish a secure, scalable foundation allowing for future expansion.

The main deliverables of this project include:

• A functional mobile app with chatbot interaction.

• Integration of multimedia for exercises.

49

• Session tracking and reminders through notifications and calendar
integration.

• Multi-language support.

• Feedback collection and gamification.

Resource Planning

This project was carried out under limited resources with a low financial budget and
a small development team. The main resources included:

• Technological Stack: Flutter and Dart for cross-platform development
integrated with a backend via secure HTTPS/JSON communication.

• Development Environment: Android Studio served as the primary IDE,
providing a robust tool for building, testing and debugging the application.

• Libraries and Packages: Open-source Flutter dependencies listed in
pubsec.yaml (e.g. provider, video_player, flutter_local_notifications etc.)
were used to add functionality without additional licensing costs.

• Human Resources: A small team composed of two main roles:
o Frontend: Flutter app development, UI design and integration of

chatbot flow.
o Backend: API management, session handling and server-side

support.

• Budget: Minimal, dependant on open-source technology.

• Timeframe: Development iteration to be short and incremental without long
delays or bottlenecks.

Now we will provide a comprehensive overview of the development process of
RehaBot focusing on multiple aspects critical to delivering a cross-platform
rehabilitation application tailored to individuals with CP. The development was
guided by the principles of requirements engineering, modular design and
incremental iteration. While the ultimate implementation was tested with Android,
the use of Flutter and Dart has ensured compatibility with iOS.

3.3.1. Requirements Engineering

This project began by defining requirements in line with IEEE Standard 29148-2011,
which defines a requirement as “A condition or capability need by a user to solve a
problem or achieve and objective, or as something demanded of system”. This
definition is particularly important within RehaBot because of the dual nature of
participants: Rehabilitation specialist and patients with cerebral palsy.

Functional Requirements

50

These are the requirements which define what the system must do. They directly
shaped the coding tasks and were implemented through different Dart files and
Flutter widgets. The main FRs were:

• Chatbot Flow (FR-001): The system must provide a conversational interface
where users can select sessions, be guided and submit feedback.

• Session Management (FR-002): The system must display rehabilitation
sessions with associated multimedia.

• Authentication (FR-003): The system must allow users to log in securely.

• Feedback (FR-004): The system must record and send feedback.

• Gamification (FR-005): The system must provide motivational rewards.

• Calendar Integration (FR-006): The system must allow users to schedule
therapy sessions.

• Overview (FR-008): The system must allow users to track their progress.

These FRs and others were implemented in the project tree and supported by
different packages as we will see later on.

Non-Functional Requirements

These requirements define the constraints and qualities under which RehaBot must
operate. They are influenced by design and architecture, key NFRs include:

• Portability (NFR-001): The app must compile and run on both Android and
iOS.

• Performance (NFR-002): The app must remain responsive on low-cost
Android devices and have a minimal delay when loading information.

• Security (NFR-003): All communication must occur over HTTPS.

• Usability (NFR-004): The app must provide a clear and accessible interface
suitable for users with cognitive impairments.

• Internationalisation (NFR-005): The app must support multiple languages,
initially English, French, German and Spanish.

• Maintainability (NFR-006): The app must be structured in a modular way.

These NFRs helped make the architectural and design decisions.

Information Requirements

During the design the API was provided to define exactly what data must be
exchanged between the mobile app and the backend:

• User Authentication Data (IRQ-001): The system must authenticate users via
email, password and language preference in JSON format.

51

Figure 22: User Authentication Data

• User Information (IRQ-002): The system will retrieve and store personal data
from the API.

Figure 23: User Information.

• Sessions Data (IRQ-003): The system shall request active sessions and their
metadata.

Figure 24: Sessions Data.

• Exercise Data (IRQ-004): Each exercise will be included in its corresponding
session.

52

Figure 25: Exercise Data.

• Feedback Data (IRQ-005): After each exercise, when required by the
therapist, the system shall store feedback values.

Figure 26: Feedback Data

3.3.2. Modular Project Structure

RehaBot has been organised into a modular project tree to ensure clarity and
maintainability, each module is dedicated to a distinct responsibility in line with
best practices and project requirements.

Location Name Requiremen
t

Functionality

/assets gifs/ FR-005 Motivational animations
lang/ NFR-005 Localisation files (en/es/fr/de)

/lib auth_gate.dart NFR-002/FR-
003

Together these files manage entry points
and authentication ensuring all sessions
are secure and state changes are isolated.
This simplifies future updates to
authentication logic or integration with
third party providers.

auth_state.dart

53

calendar.dart FR-006 Handles the integration with session
scheduling.

chatbot.dart FR-001 Core chatbot logic and UI. By isolating the
chatbot, the conversation features,
language models or UI can be extended
without affecting unrelated modules.

fetch_session.dart FR-002/NFR-
003

Centralises backend calls with
HTTPS/JSON, offering a single source of
information making it easier to test and
maintain when changes occur.

helper.dart Utility functions.
login.dart FR-003 Login screen.
main.dart NFR-004 App entry point.
model.dart Defines shared data models (User,

session, feedback). This prevents
redundancy and ensures consistency
throughout the project.

prizes.dart FR-005 Reward logic and UI.
scroll_timeline.dart FR-008 Timeline component.
setting.dart NFR-005 User preferences and localisation.

Table 7: Project file with requirement and description of functionality.

3.3.3. Use of Dependencies

In a Flutter project dependencies are defined in the pubsec.yaml file, the
dependencies were chosen to support specific requirements.

Dependency Requirement Justification
flutter Core Fundamental SDK for all functionalities.

add_2_calendar FR-006 Integration with device calendar to
schedule therapy sessions.

easy_count_timer FR-005 Simple countdowns/asynchronous
gamification timers.

flutter_localizations,
intl NFR-005 Full internationalisation/localisation,

supports multiple languages.

video_player,
get_thumbnail_video,

video_uploader,
camera

FR-004, FR-
008

Media capture, playback for engagement
and reporting.

http FR-001, FR-
002, NFR-003

API calls for backend user/session data
integration.

local_auth FR-003 Enables biometric authentication for
security compliance.

path_provider FR-001 Handles device storage paths for caching
media/data securely.

54

permission_handler NFR-002
Manages runtime permissions for camera,

notifications, etc..

provider NFR-002 Robust state management throughout
app (recommended for complex UX).

settings_ui NFR-005, UX User customization, preferences, and
settings interface.

shared_preferences NFR-002 Local storage for user preferences and
persistent settings.

string_similarity NFR-004 Intelligent chatbot input matching and
fuzzy logic in responses.

timelines FR-008 Visual representation of session progress
and history.

url_launcher FR-001 Playing videos.

Table 8: Project dependencies, requirement mapping and justification.

3.3.4. Iterative Flow

The development process followed and Agile, iterative flow ensuring flexibility and
incremental delivery. Each cycle aimed to validate early and progressively refine the
system. The main stages included:

1- Requirement definition: Functional and non-functional
requirements were revised and clarified. This step involved
collaboration with the rest of the RehaBot team.

2- Proof of concept: Prototypes were developed to explore the
feasibility of proposed features or workflows.

3- Integration: Once a feature was deemed usable, it was integrated
into the application. Doing this continuously helped maintain
stability.

4- Testing and feedback: Each iteration included testing by manual
evaluation.

5- Refinement: After testing and integrating different features, they were
adjusted to improve usability, performance or maintainability. Here
some requirements were redefined or modified feeding into the next
iteration.

3.4. Features
The dedicated version of RehaBot has been designed to maintain the essential
functions of the initial Telegram Bot while expanding its functionality to address the

55

needs and recommendations expressed by both users and therapists. The resulting
application includes a set of features that combine user engagement, therapeutic
guidance and clinical oversight while improving digital health security standards.

Core Functionalities

In its essence RehaBot continues to provide the same core functionalities that
made the initial version so effective. These include:

• Chatbot-based Interaction: Designed to maintain a familiar conversation
style like the Telegram Bot. The chatbot guides the user through exercises,
reminders and integrates child-friendly GIFs to make the experience more
engaging and motivating for younger users.

Figure 27: Example of Chatbot interaction.

• Instructional Videos: These allow the user to access therapist-directed
demonstrations of exercises.

56

Figure 28: Example of instructional video.

• Structured Sessions: These allow families to follow therapy routines in an
organised and consistent manner.

 Figure 29: Example of a structured session.

57

• Feedback Collection: Users can report on different aspects of the exercises
such as clarity, difficulty, pain experienced, usefulness, whether they want
to repeat the activity and optional comments for the therapists.

Figure 30: Example of a feedback question.

• Multilingual Support: The interface and chatbot are available in English,
Spanish, German and French ensure accessibility for a wider population with
the possibility to easily expand this range in the future.

 Figure 31: Example of language support.

New Functionalities

Building on the core functionalities, the dedicated application introduces several
enhancements aimed at addressing improvements suggested by users and
therapists to increase motivation, adherence and therapist-family collaboration:

• Timeline View: It displays a chronological record of videos and feedback
enabling a more transparent view of progress over time.

58

Figure 32: Example of timeline.

• Video Recording and Uploading: This allows families to capture the user’s
performance and share it with therapists for monitoring and feedback.

Figure 33: Example of video recording.

• Prize View: Rewards users through progress badges depending on how
much time they have spent completing their exercises.

59

Figure 34: Example of prize view.

• Calendar Integration: Gives users the ability to add therapy sessions to their
phone calendar, facilitating reminders and improving adherence to planned
routines within daily family life.

60

Figure 35: Example of adding a session to the phone calendar.

• Safe, Dedicated Environment: Providing families with greater control over
how children interact with the app and safeguarding them from exposure to
unrelated or unwanted contact as well as distractions.

3.5. User Experience and Interface Design

3.5.1. Introduction

The User Experience (UX) and User Interface (UI) design are central to the success
of any digital heath solution, unlike a commercial app that may prioritise aesthetics
or entertainment, a rehabilitation app must balance clinical effectiveness, usability
and accessibility to have a meaningful impact. A poorly designed interface can
create barriers for therapy adherence, directly affecting health outcomes. On the
other hand, a well created UX/UI can transform rehabilitation into an engaging
experience.

As we have seen, RehaBot’s target audience are individuals with cerebral palsy, this
means that the app must serve users who may rely on assistive technologies,
require large text or high-contrast visuals. These users may also benefit from a
straightforward interaction flow. Designing for this diversity means adopting a user-
centred and inclusive design making sure that the application is not only functional
but also accessible and motivating.

Another important design point is focus on motivation and engagement as
adherence is a well-documented challenge in telerehabilitation contexts. A user is
more like to maintain their sessions when the interface is intuitive, the content is
simple and it gives the users a sense of progress and reward.

In summary, the UX/UI design was guided by three main ideas:

61

• Inclusivity

• Motivation

• Clinical Utility

3.5.2. Accessibility

Many of RehaBot’s users may have varying degrees of motor impairment, visual
difficulties or cognitive challenges. Therefore, this app was designed to go beyond
minimum accessibility requirements, aligning with standards like Web Content
Accessibility Guidelines [31] and platform-specific accessibility frameworks from
Apple [32] and Google [33].

Large Fonts and Flexible Layouts

RehaBot, as we can see in Figure 36, respects system-level font sizes available in
Android and iOS. Flutter’s text widgets dynamically adapt to these preferences,
ensuring that a user who may rely on large text can still navigate the app without
losing functionality or visibility. To support this, RehaBot’s layouts are constructed
with flexible containers and responsive design principles.

Figure 36: Adaptation of RehaBot's widgets with a large font size.

Screen Readers and Semantic Support

For those users who may have visual impairments, RehaBot integrates with
TalkBack (Android) and VoiceOver (iOS), which allow users to receive spoken
feedback about the contents of the screen and interact using gestures on mobile.

This is implemented through Semantic Roles, which define the purpose of a UI
element. Flutter’s standard widgets provide these semantics automatically,
however, for a custom component, it is important to use explicit semantic
annotations using Flutter’s Semantics widget [34].

62

In Figure 37, we can see that in the _inputField() widget a semantic label ,
“Email input field”, is assigned to a text field. This ensures that screen readers
announce the purpose of the field to the user, without this, it would be presented as
a generic input element.

Figure 37: Code snippet from RehaBot illustrating the Semantics widget.

Visual Accessibility

RehaBot follows WCAG guidelines for contrast ensuring that critical text and icons
remain legible against their backgrounds. To make sure the UI had sufficient
contrast ratios the WebAIM Contrast Checker tool [35] was used.

Figure 38: Examples of contrast rating obtained using the WebAIM Contrast Checker[35].

63

Interaction Accessibility

It is important to note that some users may experience cognitive difficulties or
problems with attention and memory, the interaction flows in RehaBot have
therefore been kept simple. There is clear labelling and consistent placement of
important functions. Instructions are written in concise language and more complex
processes, such as feedback submission were broken down into small,
manageable steps.

Fuzzy text input matching has also been implemented to account for spelling errors,
incomplete input or variation in phrasing. Fuzzy matching is a technique used to
compare an input with a set of predefined options, the system calculates a similarity
score, if the score is above the defined threshold, the input is interpreted as the
closest valid command [36].

 This is useful to those users with motor difficulties who may have trouble typing or
those who might not remember precise commands . An example of this can be seen
in Figure 39. where we can see the options for an input to be matched against
predefined session commands. If the user types something similar, even with
errors, it is interpreted correctly.

Figure 39: Code snippet from RehaBot showing fuzzy matching.

Care was also taken to avoid sensory overload. Animations, transitions and
message were created to be smooth. Chatbot responses or exercise confirmations
were designed to give clarity without overwhelming users.

In addition, techniques to increase focus were introduced, when an activity is
completed, the associated messages are automatically removed from the visible
history. This avoids the screen from becoming cluttered with irrelevant information

64

reducing the risk of confusion directing the user’s attention to the next actionable
step.

To improve navigation, automatic scrolling to the bottom has been implemented as
we can see in Figure 40. Thus, making sure that users have the most relevant content
without having to manually scroll so they do not lose track of the conversation flow

.

Figure 40: Code snippet from RehaBot with method to scroll to the bottom of the screen.

3.5.3. UI Components

UI Components

1. AppBar: The app bar is used across all main screens to provide titles and
navigation consistency. It uses the AppBarTheme, with a bold Roboto font at
size 40 with teal shades to emphasise clarity.

Figure 41: AppBar with code snippet showing its theme.

2. BottomNavigationBar: Navigation is implemented with the
BottomNavigationBar which has three fixed tabs visible on the main chatbot
screen. Labels are always visible to support usability and clarity.

65

Figure 42: BottomNavigationBar and code snippet with its theme.

3. Buttons: Most buttons follow a standard design with
ElevatedButtonThemeData as we can see in the code snippet. These buttons
are used for core actions like choosing an option from the menu and logging in.
For other functionalities different colours were used to allow for context-
specific actions.

Figure 43: Standard button, special buttons and code snippet show standard button theme.

4. Dialogs: These are the chat bubbles for the conservational flow, they use styled
containers to display messages exchanged between the user and the bot. Bot
messages are aligned to the let with a teal border whereas user messages are
to the right with a grey border.

66

Figure 44: Chat messages and code snippet with their theme.

5. Gifs: Animated GIFs are used throughout the application to guide users in real
time, help with transitions in the flow and improve engagement.

Figure 45: RehaBot's GIFs.

6. Icons: Icons are provided with Flutter’s IconThemeData. The navigation
icons are sized at 30px while the rest use 24px. The style used is minimalist in
black and teal, consistent with the appearance of the application.

Figure 46: Example of some RehaBot icons.

3.5.4. Visual Style

Colour Palette

The user interface uses the colour palette in Figure 47 with teal as the primary
accent colour. These colours were chosen to create a neutral and calm environment
reflecting the therapeutic nature of the application.

67

Figure 47: Colour palette applied to application.

Typography

RehaBot uses Roboto as its primary text style across all interface elements, a sans-
serif typeface, for visual consistency and readability. This aligns with the WebAIM
recommendation to use a simple and familiar font to help with faster and more
intuitive reading by minimising character ambiguity [31].

Figure 48: Examples of Roboto, typography chosen for RehaBot.

3.5.5. User Flows

A user flow is a visual or textual representation of the steps a user takes to complete
a task within the application. By mapping user interactions, it helps to clarify the way
the application should work and that we ensure navigation is intuitive. We will now
describe the basic user flows withing the application: Authentication, navigation
bar, sessions, feedback, prizes, timeline and settings.

68

Authentication Flow

This flow allows a user to access their personalised therapy content securely. As we
can see in Figure 49 the user opens the app, the login screen opens, they enter their
credentials and they submit them. If they are successful, they will go to the home
screen, otherwise they will receive an error message and remain on the login screen.

Figure 49: Authentication flow.

Navigation Bar Flow

The navigation bar provides quick access to the three main sections of the
application, the chatbot interface is within the home screen. The user taps on a
navigation icon and the app switches to the corresponding screen with prizes and
the timeline; with legal information a popup is displayed informing the user of their
rights.

69

Figure 50: Navigation flow.

Chatbot Flow

The basic chatbot flow guides users through their sessions. The sessions are
displayed and the user may tap on one of them. When the user taps on the session
the corresponding exercises are displayed, here the user has the option to display
the video of the exercise or to take a video of themselves. The user will then start the
timer, from here they can cancel and return to the exercise list or tap finish and
continue to the feedback flow.

Figure 51: Chatbot flow.

70

Feedback Flow

The feedback flow captures users feedback if the therapist has requested it, after
completing exercises. The user will answer questions about clarity, difficulty, pain,
usefulness, repeating the exercise and any comments. If the user has taken a video
of themselves, it is attached. The feedback is then submitted and the user returns
to the beginning of the chatbot flow.

Figure 52: Feedback flow.

Timeline Flow

The timeline flow shows a chronological view of the exercises a user has completed.
The user accesses the timeline screen through the navigation bar, timeline items are
displayed and the user may scroll through the timeline.

Timeline items have a date on the left, a video or name on the right, and a grey or
blue dot indicator. If the user applies filters such as if there is feedback, if there is a
video or a date range, the timeline updates dynamically. If the user taps on the grey
indicator, there is no feedback, so no action occurs. If the user taps on the blue dot
indicator the feedback dialog corresponding to the exercise is displayed.

71

Figure 53: Timeline flow.

Rewards Flow

The rewards flow displays achievements earned by users depending on the total
time they have exercised.

The user navigates to the prizes screen through the navigation bar and
achievements are loaded. Depending on the time spent, achievements will appear
as blocked or unblocked.

Figure 54: Rewards flow.

Settings Flow

The settings flow allows users to modify their language preference or to logout of the
application. The user navigates to settings through the home screen, if the user

72

changes the language, the chatbot screen is updated; if the user taps log out, they
are navigated to the login screen.

Figure 55: Settings flow.

73

4. Testing and Evaluation
The testing phase of RehaBot was mainly focused on ensuring that the application
not only functioned as intended from a technical point of view, but also aligned with
the other objectives of usability, accessibility and therapeutic suitability. While
development and prototyping were focused on achieving a stable and scalable
design, the testing allowed for closer inspection of how the application would
behave under real-world conditions.

Testing Environment

Due to limited resources at the time of testing, it was carried out exclusively on a
physical device. As we can see in Table x. the device uses was a Samsung Galaxy
A14 5G running Android 15. This model is a mid-range Android phone comparable
to devices likely to be used many of the families within the target audience.

Using a physical device testing was able to capture practical aspects of
performance like touch responsiveness and system resource management.
However, this also introduces limitation, the evaluation was unable to include other
devices, screen sizes or operating systems narrowing the amount of insight gained
at this stage.

At the same time, development relied on hot reload and integrated debugging tools
within Android Studio, this allowed for rapid iterations and easy troubleshooting.
These tools supported efficient refinement of individual components as they were
added.

Environment Version
Development IDE Android Studio Build #AI-

243.25659.59.2432.13423653
Runtime version 21.0.6+-13368085-b895.109 amd64
Physical Device Samsung Galaxy A14 5G (Model: SM-

A146P/DSN)
Device Software One UI 7.0, Android version 15

Table 9: Testing environment used.

Methodology

Testing was incremental and modular, rather that waiting to integrate components
at later stages, individual features were tested separately: chatbot interactions,
feedback collection, video upload and playback. Flutter’s reactive architecture
supported this by keeping components and state management self-contained, this
made it easier to detect and resolve issues at the widget or logical level before
combining together in the overall application. This separation helps to prevent
cascading errors and makes debugging far more effective.

74

Development and testing were helped by Android Studio’s debugging tolls and hot
reload. Testing through Android Studio enabled fast iteration, updates were
deployed almost immediately, reviewed in real time and adjusted as needed.

The evaluation focused on four key point: Functionality, appearance, backend
integration and accessibility:

• Functionality: Core features like the chatbot flow, multimedia loading and
feedback submission were examined for stability and responsiveness.

• Appearance: UI elements were checked to confirm that they aligned with
visual and branding requirements.

• Backend Integration: Secure and reliable communication with the API
endpoints was tested to make sure that data was correctly received,
transmitted and stored.

• Accessibility: Tests were carried out to ensure WCAG standards were
followed with focus on readability, font scaling, colour contrast and ease of
navigation.

Results

Testing confirmed that RehaBot was stable and reliable under controlled
conditions. The app launched consistently, responded rapidly to user input and had
smooth interactions with the backend.

In terms of usability, the interface was judged to be intuitive with some adjustments
needed. During iterations, changes were introduced to some elements and flow like
the feedback widget as well as introducing different spacing, padding and colour
contrast. This was done to improve readability and accessibility, these adjustments
although small, were important in making the application more functional and
inclusive.

Limitations and Future Testing

The results from testing were encouraging, however, the scope of the testing
extremely limited. This means that older Android versions, iOS devices or tablets
with different display ratios have not been assessed. As a result, there may be
compatibility issues which remain untested.

Another important point is that formal studies with families and therapists of this
version of RehaBot remain essential for assessing the application’s effectiveness in
a real-world context with its intended users.

Therefore, future testing should include:

75

• Multiple device validation: Making sure that the application is compatible
with a range of devices from budget Android models to a large screen tablet.

• Cross-platform validation: Ensuring that the application is tested in iOS
devices as it is one of the objectives of this project.

• User evaluation: Engaging families and therapist in testing.

Conclusion

In general, the testing confirmed that RehaBot has a solid, technical foundation for
its intended use. The absence of any major technical errors, together with the
successful integration of backend services means that the project is in a good
position for expansion.

At the same time, it is important to highlight the need for additional testing as
mentioned above because the success on one model does not guarantee universal
compatibility, nor the ways families may interact with their different systems at
home.

5. Conclusion and Future Work
This end of degree project has presented RehaBot, a cross-platform mobile
application created to support home-based rehabilitation for children with cerebral
palsy under the guidance of a therapist. From its beginning, the projected was
guided by the objective of creating a tool which would extend the reach of physical
therapy beyond the traditional clinic, making it accessible, secure and engaging.

The creation of this application has shown that RehaBot is able to facilitate
therapist-directed, personalised rehabilitation programs through video-based
sessions and a structured chatbot interface which guides patients step by step. By
using Flutter and Dart, the application ensures accessibility and usability across
devices, giving users an intuitive, user-friendly environment. Features like
gamification, scheduling and progress tracking have helped to promote
engagement and adherence, helping families to integrate physical therapy into their
routines.

Equally as important, is the application’s ability to provide a secure and dedicated
environment, where privacy and safety are prioritised while reducing distractions
from general messaging platforms. RehaBot’s modular architecture has created the
foundation for scaling the application allowing for the integration of more advanced
technologies. This project empowers caregivers by giving them tools to monitor
progress and provide meaningful support while allowing therapists to deliver high
quality and adapted care remotely.

76

In summary, Rehabot has demonstrated that a dedicated, thoughtfully designed
system can lessen the gap between clinical rehabilitation and the home
environment. It enhances continuity of care and improves collaboration between all
involved contributing to more personalised, engaging and effective treatment
experiences.

Future Work

While most of the initial objectives have been achieved, the process has shown
many ways for further improvement and innovation of RehaBot. One of the most
interesting options to follow is the advancement of gamification within the app.
Expanding beyond the current reward system, which is quite basic, to include
interactive challenges and games could greatly increase engagement and
motivation in particular with younger audiences.

Another important point is the integration of artificial intelligence, particularly in the
analysis of exercise videos. This gives the potential to provide real-time evaluation
of performance, improvement over time and even deliver feedback directly to the
patient. This would make it a stronger tool for remotely monitoring patients while
giving therapists more insight into the user’s progress.

Expanded testing is of utmost importance, although the system has shown
functional reliability, it is necessary to confirm how effective it is in a real-world
situation. In the future it would be of use to enhance the accessibility features such
as speech recognition ensuring the platform is even more inclusive for children with
diverse needs.

Finally, RehaBot’s impact in the long term will depend on a commitment to being
sustainable and innovating continuously. This means including new exercises,
adaptive therapy plans and the integration of new rehabilitation technologies that
may appear.

In conclusion, while RehaBot has achieved its objective of providing a digital,
rehabilitation tool for children with cerebral palsy, its biggest potential is its capacity
to grow and evolve.

77

References
[1] K. Vitrikas, H. Dalton, and D. Breish, ‘Cerebral Palsy: An Overview’, Am. Fam. Physician,

vol. 101, no. 4, pp. 213–220, Feb. 2020.
[2] L. W. M. E. Beckers et al., ‘Feasibility and effectiveness of home-based therapy

programmes for children with cerebral palsy: a systematic review’, BMJ Open, vol. 10, no.
10, p. e035454, Oct. 2020, doi: 10.1136/bmjopen-2019-035454.

[3] ‘RehaBOT’. Accessed: Aug. 31, 2025. [Online]. Available: https://rehabot.eu/
[4] S. McIntyre et al., ‘Global prevalence of cerebral palsy: A systematic analysis’, Dev. Med.

Child Neurol., vol. 64, no. 12, p. 1495, Dec. 2022, doi: 10.1111/dmcn.15346.
[5] NHS, ‘Cerebral palsy – Treatment - NHS’. Accessed: Aug. 30, 2025. [Online]. Available:

https://www.nhs.uk/conditions/cerebral-palsy/treatment/
[6] S. P. Das and G. S. Ganesh, ‘Evidence-based Approach to Physical Therapy in Cerebral

Palsy’, Indian J. Orthop., vol. 53, no. 1, pp. 20–34, Feb. 2019, doi:
10.4103/ortho.IJOrtho_241_17.

[7] A. Gregory and A. G. H. editor, ‘Children in UK suffering “irreversible harm” due to
physiotherapy delays’, The Guardian, Jan. 31, 2025. Accessed: Aug. 30, 2025. [Online].
Available: https://www.theguardian.com/society/2025/jan/31/children-in-uk-suffering-
irreversible-harm-due-to-physiotherapy-delays

[8] C. Lillo-Navarro, F. Medina-Mirapeix, P. Escolar-Reina, J. Montilla-Herrador, F. Gomez-
Arnaldos, and S. L. Oliveira-Sousa, ‘Parents of children with physical disabilities perceive
that characteristics of home exercise programs and physiotherapists’ teaching styles
influence adherence: a qualitative study’, J. Physiother., vol. 61, no. 2, pp. 81–86, Apr. 2015,
doi: 10.1016/j.jphys.2015.02.014.

[9] K. S. Bıyık, C. Özal, M. Tunçdemir, S. Üneş, K. Delioğlu, and M. K. Günel, ‘The functional
health status of children with cerebral palsy during the COVID-19 pandemic stay-at-home
period: a parental perspective’, Turk. J. Pediatr., vol. 63, no. 2, pp. 223–236, Apr. 2021, doi:
10.24953/turkjped.2021.02.006.

[10] T. Bright, S. Wallace, and H. Kuper, ‘A Systematic Review of Access to Rehabilitation for
People with Disabilities in Low- and Middle-Income Countries’, Int. J. Environ. Res. Public.
Health, vol. 15, no. 10, p. 2165, Oct. 2018, doi: 10.3390/ijerph15102165.

[11] L. Thomas and S. Bhat, ‘A Comprehensive Overview of Telegram Services - A Case Study’,
May 2022, doi: 10.5281/ZENODO.6513296.

[12] ‘WhatsApp: number of monthly active users 2025’, Statista. Accessed: Aug. 30, 2025.
[Online]. Available: https://www.statista.com/statistics/260819/number-of-monthly-active-
whatsapp-users/

[13] ‘How To Build Bots for Messenger’, Meta for Developers. Accessed: Aug. 30, 2025. [Online].
Available: https://developers.facebook.com/blog/post/2016/04/12/bots-for-messenger/

[14] Statista, ‘Facebook Messenger global audience 2025’, Statista. Accessed: Aug. 30, 2025.
[Online]. Available: https://www.statista.com/statistics/1498791/messenger-potential-
audience/

[15] Segun-Falade et al., ‘Developing crossplatform software applications to enhance
compatibility across devices and systems’, pp. 2040–2061, Aug. 2024, doi:
10.51594/csitrj.v5i8.1491.

[16] ‘Introduction to Dart’. Accessed: Aug. 30, 2025. [Online]. Available:
https://dart.dev/language/

[17] R. Camden, Apache Cordova in action. Shelter Island, NY: Manning Publications, 2016.
[18] S. Bosnic, I. Papp, and S. Novak, ‘The development of hybrid mobile applications with

Apache Cordova’, in 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia:
IEEE, Nov. 2016, pp. 1–4. doi: 10.1109/TELFOR.2016.7818919.

[19] TheKnowledgeAcademy, ‘Unity Architecture: The Building Block of a Game Engine’.
Accessed: Aug. 30, 2025. [Online]. Available:
https://www.theknowledgeacademy.com/blog/unity-architecture/

[20] ‘What is Unity?’, PubNub. Accessed: Aug. 30, 2025. [Online]. Available:
https://www.pubnub.com/guides/unity/

[21] ‘Build Cross-Platform Mobile Apps with JavaScript | About Ionic’, Ionic. Accessed: Aug. 30,
2025. [Online]. Available: https://ionic.io/about

[22] ‘Capacitor by Ionic - Cross-platform apps with web technology’, Capacitor. Accessed: Aug.
30, 2025. [Online]. Available: https://capacitorjs.com/

78

[23] Microsoft, ‘What is Xamarin? - Xamarin’. Accessed: Aug. 30, 2025. [Online]. Available:
https://learn.microsoft.com/en-us/previous-versions/xamarin/get-started/what-is-xamarin

[24] Microsoft, ‘The official Xamarin support policy | .NET’, Microsoft. Accessed: Aug. 30, 2025.
[Online]. Available: https://dotnet.microsoft.com/en-us/platform/support/policy/xamarin

[25] ‘Flutter architectural overview’. Accessed: Aug. 30, 2025. [Online]. Available:
https://docs.flutter.dev/resources/architectural-overview

[26] B. Vijayan, ‘Flutter SDK Architecture’, DEV Community. Accessed: Aug. 30, 2025. [Online].
Available: https://dev.to/binoy123/flutter-sdk-architecture-2gog

[27] ‘Improving rendering performance’. Accessed: Aug. 30, 2025. [Online]. Available:
https://docs.flutter.dev/perf/rendering-performance

[28] E. Palm, ‘Rehabilitation at Home of Patients with Neglect Using a Telemedical Intervention:
a Security Perspective’, Master’s Thesis, Umeå University, Department of Computing
Science, 2016.

[29] Kommunicate, ‘AI Agent for 24/7 Customer Service | Kommunicate’. Accessed: Aug. 30,
2025. [Online]. Available: https://www.kommunicate.io/

[30] ‘LangChain’. Accessed: Aug. 30, 2025. [Online]. Available: https://www.langchain.com
[31] W. W. A. Initiative (WAI), ‘W3C Accessibility Standards Overview’, Web Accessibility

Initiative (WAI). Accessed: Aug. 30, 2025. [Online]. Available:
https://www.w3.org/WAI/standards-guidelines/

[32] ‘Human Interface Guidelines’, Apple Developer Documentation. Accessed: Aug. 30, 2025.
[Online]. Available: https://developer.apple.com/design/human-interface-guidelines

[33] ‘Accessibility’. Accessed: Aug. 30, 2025. [Online]. Available:
https://docs.flutter.dev/ui/accessibility-and-internationalization/accessibility

[34] ‘Semantics class - widgets library - Dart API’. Accessed: Aug. 30, 2025. [Online]. Available:
https://api.flutter.dev/flutter/widgets/Semantics-class.html

[35] ‘WebAIM: Contrast Checker’. Accessed: Aug. 30, 2025. [Online]. Available:
https://webaim.org/resources/contrastchecker/

[36] ‘BestMatch class - string_similarity library - Dart API’. Accessed: Aug. 30, 2025. [Online].
Available:
https://pub.dev/documentation/string_similarity/latest/string_similarity/BestMatch-
class.html

79

Appendix 1: User Manual

80

User Manual
Aplicación Multiplataforma En
Flutter Con Capacidad De
Chatbot Para Proyecto De
Telerehabilitación

RehaBot is a mobile application

designed to support the rehabilitation

of individuals with cerebral palsy

through therapist directed programs.

It provides video-guided exercises,

real-time feedback collection, progress

tracking and rewards elements to

increase motivation and adherence.

81

1. Getting Started
Open the app and log in with your email and password.

Choose if you want to use biometric authentication or not.

82

Timeline: Your progress tracking

with videos and feedback.

Prizes: Unlock rewards.

Information: See information

about the app.

Settings: Language options and

log out of the app.

Chatbot: Talk to the chatbot and

follow the instructions.

You have now accessed your personalised rehabilitation program. The main screen
includes:

83

2. Using RehaBot

2.1. Sessions and Feedback
To see your sessions tap the sessions button or type it in the message box.

Choose your session and the exercise. You can also add it to your calendar.

84

Once you choose the exercise, read the instructions and watch the video.

When you’re ready, press start timer and decide if you want to take a video of
yourself or not.

85

When you are done, press finish and then continue.

If your therapist wants you to give feedback on the exercise, answer the questions.

If you took a video, decide if you want to send it!

86

2.2. Prizes
Completing exercises can earn you badges. The more time you spend, the more you
will unblock!

2.3. Timeline
It displays the sequence of exercises you have completed. You can filter by date,
feedback or if you took a video or not.

87

2.4. Settings
To change the language of the app or to log out, go to settings and select your desired
language.

88

3. Troubleshooting & FAQs
• Videos not loading → Check your internet connection.
• Feedback not successful → Make sure you are connected to the internet and

restart the app.
• Camera not working → Make sure you have given RehaBot permission to

access your camera.
• Cannot log in → Contact RehaBot team.

89

4. Legal Information
This app manages your personal data in a secure way, according to the GDPR and
FAIR principles (Findable, accessible, interoperable and reusable). The information
collected is only used in relation to the project PID2021-124515OA-I00, financed by
MICIU/AEI/10.13039/501100011033 and by FEDER, UE. It is not used for other
purposes and is not shared without consent.

For more information: www.rehabot.eu

http://www.rehabot.eu/

