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Resumen

En el ambito de la agricultura, uno de los fundamentos se trata de planificar la trayectoria a realizar
por un vehiculo agrario en parcelas con formas irregulares. En muchos casos, los agricultores empiezan
a tratar la parcela empezando por una linde que sea recta y trazan el resto de la misma forma. El
problema surge cuando ninguna linde es recta, en este caso los agricultores realizan el trabajo mediante
trayectorias curvas. En este trabajo se ha de buscar partir de una trayectoria curva y mediante la
generacion de trayectorias paralelas a la original concluir en una trayectoria que tienda a una recta,
definiendo asi el camino a seguir de los tractores facilitando el trabajo a los agricultores.

Este trabajo presenta un algoritmo que permite generar trayectorias paralelas a una curva base,
controlando la distancia entre ellas y favoreciendo que cada nueva curva se enderece progresivamente.
Para ello, se parte de una trayectoria inicial y se van generando nuevas curvas desplazadas mediante
vectores normales. A cada paso, se reduce gradualmente el nimero de puntos de control utilizados
para construir la curva, lo que suaviza los detalles y hace que la trayectoria tienda a una recta.

El sistema se ha implementado completamente en Python, utilizando librerias como scipy y
matplotlib, y permite ajustar parametros como el nimero de pasadas, la distancia entre trayectorias y
la precision deseada. Los resultados muestran que, tras varias iteraciones, se generan curvas suaves,
precisas y cercanas a una linea recta, cumpliendo con los requisitos habituales para el guiado de
tractores en agricultura de precision.

PALABRAS CLAVE: Curvas paralelas, ctspides, enderezado, solape, sin tratar, splines, python,
reduccion de puntos.
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Capitulo 1: Introduccion y motivacion

La agricultura de precision ha experimentado un gran avance gracias a la incorporacion de sistemas
de guiado automatico basados en posicionamiento GNSS (Global Navigation Satellite System). Estos
sistemas permiten que la maquinaria agricola siga trayectorias predefinidas con gran exactitud,
reduciendo solapes innecesarios entre pasadas y evitando que queden zonas sin tratar.

1.1 Contexto

En este contexto, la generacion de trayectorias paralelas a partir de una linea base inicial es una
herramienta fundamental:
e Permite cubrir de manera ordenada y completar la superficie agricola.
e Optimiza el uso de los recursos (semillas, fertilizantes, pesticidas).
o Reduce costes y mejora la eficiencia de la explotacion agricola.

No obstante, la forma de las trayectorias tiene un impacto directo en la calidad del trabajo realizado:

o Los vehiculos agricolas (tractores, sembradoras, pulverizadores, arados,) funcionan de manera
mucho mas eficiente en tramos rectos, donde el avance es uniforme y las desviaciones son
minimas.

e En tramos curvos, el agricultor (o el sistema de guiado) debe realizar giros continuos que
aumentan la fatiga, provocan desgaste y reducen la velocidad de trabajo.

e Los solapes y las zonas sin tratar tienden a incrementarse en las curvas, ya que la anchura
efectiva de trabajo del vehiculo en activo se ve afectada por el radio de giro.

e En términos energéticos, las trayectorias curvas también suponen un mayor consumo de
combustible debido a las correcciones de direccion y al aumento de la resistencia al avance.

Por tanto, en agricultura mecanizada resulta de gran interés que, aunque la linea base inicial pueda

contener curvas o irregularidades (por ejemplo, en cabeceras o bordes de parcelas), el proceso de
generacion de paralelas tienda a producir trayectorias rectilineas en el interior del terreno cultivable.
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Esto garantiza pasadas largas, eficientes y mas faciles de ejecutar tanto para el agricultor como para el
sistema de guiado automatico.

1.2 Objetivos y problematica

En agricultura, el rendimiento del tractor, y de los vehiculos agricolas en general, es mayor cuando
trabajan en trayectorias rectilineas largas y paralelas, ya que permiten mantener un avance uniforme,
reducir consumos y evitar desviaciones, como hemos explicado anteriormente. Sin embargo, la
trayectoria base de referencia a partir de la cual se generan las pasadas paralelas no siempre es recta:
puede presentar curvas, irregularidades o contornos derivados de la forma de la parcela.

El objetivo inicial de este tipo de algoritmos es, por tanto, transformar progresivamente una
trayectoria curva en trayectorias cada vez mas rectas, de manera que las ultimas paralelas generadas
tiendan a una linea recta que optimice el trabajo agricola.

o

Figura 1.1. Ejemplo esquemdtico de como, a partir de una trayectoria curva
inicial, el proceso de generacion de paralelas y enderezado permite obtener
trayectorias rectas, mas adecuadas para el trabajo del tractor en campo. El paso
de curvas a rectas no es trivial. Si se desplaza directamente una trayectoria curva
mediante normales, aparecen problemas importantes.

e Solape maximo: en el interior de las curvas, las trayectorias se solapan demasiado, lo que
implica duplicar tratamientos y malgastar recursos.

e Zona sin tratar maxima: en el exterior de las curvas, las trayectorias se separan demasiado,
dejando franjas de terreno sin trabajar.

Los algoritmos basados en polilineas intentan corregir este efecto aplicando un enderezado
iterativo. Sin embargo, presentan limitaciones:

e Necesitan un elevado numero de puntos para mantener precision.

o No garantizan suavidad en las trayectorias, generando cambios bruscos de curvatura.

e El enderezado no siempre converge hacia una recta, por lo que las tltimas trayectorias
mantienen cierta curvatura residual.

15



e Trabajan con un nimero muy elevando de punto haciendo del algoritmo muy poco eficiente y
con mucha carga computacional que dificultad su posterior implementacion

Este trabajo tiene como objetivo desarrollar un algoritmo de generacion de trayectorias paralelas
basado en splines cubicos, con los siguientes objetivos:
e Reducir el nimero de puntos de control necesarios gracias a la flexibilidad del spline.
o (Garantizar suavidad y continuidad en la trayectoria generada.
e Aplicar un proceso de enderezado progresivo que transforme curvas en rectas de forma gradual.
e Mantener bajo control los criterios agrondémicos de solape maximo (SM) y zona sin tratar
maxima (STM).
e Implementar una reduccion adaptativa de puntos segun se va aplicando el enderezado

En definitiva, el objetivo es ofrecer un método mas eficiente y realista que los algoritmos anteriores,
logrando trayectorias rectilineas finales que optimicen el guiado automatico de tractores en agricultura
de precision.

1.3 Metodologia general

La estrategia adoptada en este trabajo parte de la idea fundamental de transformar trayectorias
curvas en trayectorias progresivamente mas rectas mediante el uso de splines cubicos y un proceso de
enderezado iterativo como se refleja en la Figura 3.2.

En términos generales, la metodologia propuesta se basa en los siguientes pasos:

1.Seleccion de puntos de control: a partir de la trayectoria base inicial P, se extrae un conjunto
reducido de puntos @, que describen su forma de manera representativa.

2. Generacion de paralelas: se calculan normales en cada punto y se desplazan los puntos de control
para construir trayectorias paralelas iniciales.

3. Enderezado local: mediante una funcion de coste que combina criterios geométricos (longitud,
curvatura, alineacion) y agrondmicos (solape maximo SM, zona sin tratar maxima STM), los
puntos de control se ajustan iterativamente buscando el menor valor de la funcion de coste.

4. Reduccién adaptativa del nimero de puntos de control: Tras enderezar cada pasada se mide la
suavidad lograda y, en funcion de ella, se decide automaticamente cuantos puntos de control
usar para el spline de esa misma pasada. La reduccidn es progresiva y estable: nunca aumenta
respecto a la pasada anterior y limita la caida por iteracion para evitar saltos bruscos. En zonas
con curvas cerradas se mantienen mas puntos (decision conservadora), mientras que en tramos
casi rectos se reduce el nimero para ganar eficiencia y evitar ondulaciones innecesarias.

5. Remallado equiespaciado: tras el enderezado, los puntos de control se redistribuyen para evitar
concentraciones locales y mantener homogeneidad a lo largo de la trayectoria.
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6. Construccion del spline cubico: con los puntos corregidos se genera un spline cubico
paramétrico que asegura continuidad en posicion, tangentes y curvatura, obteniendo asi
trayectorias suaves y evaluables con pocos puntos.

7. Iteracion progresiva: el proceso se repite para cada nueva paralela, de modo que las trayectorias
tienden a ser rectilineas de manera progresiva.

1.4 Estructura del documento

El presente Trabajo de Fin de Grado se organiza en 5 capitulos, siguiendo una secuencia logica
que va desde la contextualizacion inicial hasta las conclusiones:

Capitulo 1. Introducciéon y motivacion del trabajo: presenta el contexto de la agricultura de
precision, los problemas asociados a la generacion de trayectorias paralelas, los objetivos del trabajo

y la metodologia general propuesta

Capitulo 2. Antecedentes y trabajos previos: revisa el principal método existente para la generacion
de trayectorias en agricultura de precision.

Capitulo 3. Metodologia propuesta: escribe en detalle el nuevo algoritmo desarrollado y como se ha
implementado practicamente en Python.

Capitulo 4. Resultados y analisis: muestra los resultados obtenidos en diferentes escenarios de
prueba con trayectorias reales.

Capitulo 5. Conclusiones y lineas futuras: resumen de las aportaciones mas relevantes del trabajo y
planteamiento de posibles lineas de mejora y continuidad.
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Capitulo 2: Antecedentes y trabajos previos

La agricultura de precision ha impulsado el desarrollo de diferentes métodos para la generacion de
trayectorias que guien el trabajo de maquinas agricolas. Desde las primeras técnicas basadas en
polilineas simples hasta los algoritmos mas recientes, el objetivo ha sido siempre el mismo: cubrir de
manera uniforme y eficiente toda la parcela, evitando solapes excesivos y zonas sin tratar.

Este capitulo presenta una revision de los antecedentes y trabajos previos relacionados con el
problema de la generacion de trayectorias paralelas.

En primer lugar, se analiza la evolucion de los sistemas de guiado en agricultura de precision y la
necesidad de trayectorias rectilineas como referencia de trabajo. A continuacion, se revisan los
métodos tradicionales empleados para generar trayectorias paralelas y sus limitaciones. Finalmente, se
describe el Trabajo de Fin de Grado de Gabino, que constituye el punto de partida del presente estudio
y cuya metodologia serd ampliada y mejorada mediante el principal uso de splines clibicos.

2.1 Evolucion del guiado en agricultura

El proceso de mecanizacion agricola ha ido acompanado de un interés creciente por mejorar la
exactitud y la eficiencia del trabajo en el campo. En un primer momento, el guiado de los tractores
dependia exclusivamente del operario, que debia mantener la alineacion del vehiculo de manera visual,
tomando como referencia los surcos, limites del terreno o puntos visibles en la parcela. Este enfoque
manual resultaba limitado y generaba:

 Solapes innecesarios, debidos a correcciones excesivas de la trayectoria.

e Zonas sin tratar, como consecuencia de desviaciones acumuladas en pasadas largas.

 Pérdida de eficiencia en el uso de recursos, ya que los insumos (fertilizantes, semillas, pesticidas)
no se aplicaban de manera uniforme.

Con la introduccion de los sistemas GNSS y mas tarde del guiado asistido y automatico, se logrd
un avance significativo: ahora el tractor puede seguir con precision una trayectoria digital predefinida.
Sin embargo, este avance traslado el problema hacia otro &mbito: ya no se trata solo de que el tractor
siga una linea, sino de como generar un conjunto de trayectorias de referencia de alta calidad que
permitan cubrir de forma homogénea toda la superficie cultivada.

En este contexto surge la importancia de las trayectorias paralelas:

o Permiten dividir la parcela en pasadas equidistantes, adaptadas a la anchura de trabajo.
o Garantizan que el terreno quede totalmente cubierto, minimizando solapes (SM) y zonas sin
tratar (STM).



e Favorecen que el tractor realice la mayor parte de su labor en tramos rectos y largos, que son
mas eficientes desde el punto de vista mecénico, energético y agrondmico.

Por tanto, la evolucion del guiado en agricultura de precision ha puesto de manifiesto la necesidad
de disefiar algoritmos que no solo generen paralelas, sino que ademas tiendan de manera progresiva
hacia trayectorias rectilineas en el interior de la parcela, lo que constituye un elemento clave en la
mejora de la eficiencia agricola.

2.2 Métodos tradicionales de generacion de curvas paralelas

La necesidad de cubrir una parcela agricola mediante pasadas equidistantes ha motivado el
desarrollo de diferentes procedimientos geométricos para generar trayectorias paralelas a una curva
base. Entre los métodos mas empleados en la bibliografia destacan los siguientes:

2.2.1 Desplazamiento mediante normales

Consiste en calcular en cada punto de la curva base p(s) el vector normal unitario asociado a la
tangente de la trayectoria, y desplazar el punto una distancia fija d en esa direccion py(s) = p(s) £

d - 1(s) donde 7i(s) es el vector normal 71(s) = (—ty (s), ty (s)) y donde £(s) es el vector tangente

p'(s) [1]

unitario t(s) = i

Figura 2.1. Generacion de una paralela a través del método de desplazamiento
mediante normales [1].

2.2.2 Envolvente de circunferencias

Una curva paralela a una trayectoria plana p(t) = (x(t), y(t)) auna distancia fija d puede definirse
como la envolvente de una familia de circunferencia congruentes (todas de radio d) cuyos centros
recorren la curva original [1]. Formalmente si para cada pardmetro /£ situamos un circulo de radio d
centrado en (x(B),y(B)), la curva paralela es la envolvente de esa familia. Para una familia genérica
f(x,y,B) = 0, la envolvente satisface el sistema necesario

fGy,B) =0
7 fEy.p) =0 )

1. Familia de circulos
Definimos:
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fOoy,B) = (x—x(B)*+ (v —y(B))* —d* = 0. 2

Esta es la ecuacion implicita del circulo de radio d centrada en p(f). La envolvente de esta
familia cumple f = 0 y % =0
2. Condicion tangencial (% =0)

Si desarrollamos esta expresion

L = —2(x = x(BX'(B) — 20y ~ YR (B) = 0. 3)

Entonces obtenemos que:

(x —x(B),y —y(B)) - (x'(B),¥'(B)) = 0. “4)

Dando entonces que, el radio del circulo hacia el punto de contacto es ortogonal a la tangente
de la trayectoria . Por tanto, ese radio apunta en direccion normal a la curva

3. Ecuacion explicita de la envolvente
Si £(8) = (X' (B),y'(B)) y Il £ I=x"2(B) + ¥'2(B), una normal unitaria es 7(B) = "—;"

(=Y'(B), x'(B)).

Combinando f = 0 con la ortogonalidad, el punto de la envolvente queda tal que:

pd(B) =p(B) £ dn(B) )

Esta es la misma expresion que se obtiene por el método del vector normal (apartado 2.2.1),
mostrando la equivalencia entre ambas definiciones.

En la Figura 2.1 se aprecia se aprecia la envolvente de una familia de circunferencia y como
tras
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Figura 2.2. Generacion de una paralela a traves del método de envolvente de
circunferencias [2]

2.3 Algoritmo del TFG de Gabino

Previo a nuestro proyecto, Gabino Martinez Garcia desarrollo su Trabajo Final de Grado el cual
partia de una trayectoria medida y cumplia los siguientes puntos

1. Paralelizacion por vector normal para generar las paralelas consecutivas. Como resultado de
esto se obtenia que, cuando se cerraban las curvas segun se iban creando las paralelas se
formaban clspides que deformaban la trayectoria para resolver esto desarrollo el apartado
siguiente.

2. Enderezado iterativo para ir reduciendo la curvatura hasta tender a una recta. El enderezado
se formaliza como un problema de optimizacidon con restricciones agrondmicas: Solape
Maximo (SM) y Sin Tratar Méximo (STM), que acotan cudnto puede desplazarse cada punto
respecto a su posicion original.

Para el apartado 1, Gabino aplico el método visto en el apartado 2.2.1 el cual trata de desplazar el
vector normal de cada punto para conseguir la paralela como resultado.

Para el apartado 2, se desarroll6 un algoritmo de enderezado plantado por el Dr. Cesar Palencia de
Lara y que el propio Gabino llevo a cabo [3].

T=2Mi+R (6)

2.4 Limitaciones detectadas en el método anterior

El enderezado se formula como la minimizacion de la ecuacion (6) y se resuelve probando, para
cada punto que forman la trayectoria, varios desplazamientos espaciados entre [STM, SM] a lo largo
de la bisectriz del angulo local eligiendo el que més reduzca T. Este procedimiento se repite mediante
multiples iteraciones por lo que el coste crece con el nimero de puntos el nimero de iteraciones), lo
que el propio Gabino describié como “solucion por fuerza bruta”
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Como objetivo general vamos a buscar en nuestro proyecto mantener la intuicion agrondmica y la

robustez geométrica, buscando reducir el coste drasticamente. Para ello buscaremos:

Reducir el coste manteniendo SM y STM. Para ello buscaremos reducir el nimero de puntos
con los que trabajaremos a través de splines cubicos.

Cambiar “fuerza bruta” por enderezado local eficiente. En vez de probar K candidatos por
punto, plantearemos actualizaciones locales que reduzcan la longitud local, la energia de
curvatura y la desalineacion de rumbo, manteniendo la penalizacion asintdtica M(t) para
SM/STM.

Evitar la acumulacion de error entre pasadas, para ello validaremos cada nueva paralela
contra la curva original desplazada y estabilizamos la convergencia hacia la recta
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Capitulo 3: Metodologia

Este capitulo describe, desde un punto de vista teérico, la estrategia que seguimos para
transformar trayectorias agricolas inicialmente curvas en pasadas progresivamente mas rectas y
suaves, respetando las restricciones agronémicas de solape maximo (SM) y zona sin tratar maxima
(STM). El eje matematico del método es los splines, y en particular los splines ctbicos, por su
continuidad en posicion, direccion y curvatura (C?), cualidades esenciales para un guiado estable.

3.1 Introduccion a los splines y justificacion de los splines ctibicos

Un spline es una funcién a trozos que interpola un conjunto de nodos (puntos), garantizando la
suavidad en las uniones. Para trayectorias en el plano trabajamos con un spline paramétrico:

S = (x(®),y®)) t € [to, tn] (7

Definido sobre un conjunto de nudos t, < -+ < ty. En cada intervalo [ty, t;,1] la curva es un
polinomio de grado fijo (el orden del spline) y en los nudos se imponen condiciones de continuidad
de derivadas.

3.1.1 Splines cubicos y su construccion

En un spline cubico [4] el grado por tramo es de tres. Sea h, = t;,q — t; y nodos de datos
{(tr, X))} (para x) y {(tx, Y)} (para y). En cada tramo:

x(t) = ap + b(t —t) + cr(t — )2+ dp(t — t)>  t € [t tisa] (8)

y analogamente para y(t). Los coeficientes del polinomio de grado tres que tenemos se fijan
exigiendo:

1. Interpolacion: x(t,) = Xy, x(tx+1) = Xi+1 (Igualmente para y)
2. Continuidad de derivadas en cada nudo interior ¢:

x,x’,x" continuas en t; (suavidad C?)
Estas condiciones generan un sistema tridiagonal para las segundas derivadas en los nudos

my, = x"(t;) (y andlogo para y). Resuelto my, los coeficientes ay, by, ¢, dj salen de formulas
cerradas. El resultado es una curva suave en posicion, tangente y curvatura.



3.1.2 Parametrizacion t

La calidad de un spline paramétrico depende de como asignamos t;, a los puntos de control.
Tenemos tres opciones comunes

e Uniforme: t;, = k. Simple, pero puede concentrar curvatura donde los puntos estén
desiguales.

e Longitud de cuerda: t;, = ) jsk”q i—q j_1||. Adecua el parametro a la geometria

e Arco (normalizado): es igual que el método anterior pero escalado a [0, 1].

Usamos arco normalizado porque reparte el pardmetro proporcionalmente a la longitud
geométrica: evita acumulaciones en nodos eficaces y estabiliza la curvatura

\‘/

Figura 3.1. Construccion de un spline cubico a partir de un mismo conjunto de puntos
(cuadrados azules). Las curvas de colores muestran soluciones suaves obtenidas con
distintas parametrizaciones/condiciones de contorno. Se aprecia la suavidad de la
trayectoria y la influencia local de cada punto de control. [5]

3.1.3 Propiedades de los splines cubicos

1. Suavidad. Continuidad de S, S’, S". En guiado esto significa movimientos mas estables al tener
curvatura sin sobresaltos.

2. Localidad. Cambiar un nodo solo afecta a tramos vecinos, lo que facilita ediciones como la
reduccion de puntos, y produce robustez.

3. Optimo de “rigidez”. El spline clibico minimiza la energia de flexion [lIS" (@) ||2 dt entre todas
las curvas que interpolan el nodo, esto se traduce que es la curva mas suave la que pasa por los puntos
evitando ondulaciones de més

4. Exactitud en los nodos. La curva que se produce pasa exactamente por los puntos de control.

5. Curvatura bien definida. Para S(t) = (x(t), y(t)), la curvatura continua es [4]:

k(t) = [x' ®©y" ®)-y' ©Oxr(t)] )

(x’(t)2+y’(t)2)%
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3.2 Herramientas software para trabajar con splines

En este apartado se van a exponen las herramientas que utilizamos para construir, evaluar y
analizar splines desde un punto de vista teorico.

3.2.1 Entorno Python

NumPy: proporciona el calculo vectorial necesario
e Distancias y longitudes de arco s; = Z”pj — pj_1||
e Tangentes t y normales 71 = (—fy, ty)
SciPy: para aplicar la interpolacion y splines
o CubicSplines: construye, para un conjunto de nodos t;, polinomios de grado 3 en cada
tramo con continuidad C? en los nudos. Mateméticamente resuelve un sistema tridiagonal
para las segundas derivadas S (t;)

e UnivariateSpline: realiza un spline suavizado, pero no obliga a pasar exactamente por los
datos, busca minimizar la funcién de coste (10)

Te(yie —st)* + A [(S"(t)* dt (10)

Donde A controla el compromiso ajuste-suavidad.

e Pchiplnterpolator: interpolante por tramos que evita sobrecorreciones “overshoot” y
respeta la monotonia, pero sacrifica la suavidad.
Matplotlib: Soporte de figura tales como curvas o graficos de métricas. Es esencial para
documentar visualmente el verdadero efecto del algoritmo una vez aplicado y ver su correcto
funcionamiento.

3.2.2 Herramientas equivalentes en MATLAB

e Spline: interpolacion cubica con continuidad C? (similar a CubicSpline).
e (Csape (complete spline): similar a spline pero con la posibilidad de eleccion explicita de
condiciones de contorno

e Spapi: ajuste de B-splines por minimos cuadrado

Todas estas funciones trabajan internamente con bases B-splines y secuencias de nudos; la
teoria de continuidad y compromisos ajuste/suavidad son los mismos que en SciPy.

3.3 Vision general del algoritmo desarrollado

El objetivo que buscamos es convertir una trayectoria medida P en una familia de pasadas

paralelas suaves C? y regulares, respetando el solape méximo (SM) y zona sin
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tratar maxima (STM). Trabajamos con una curva paramétrica s(t) = (x(t), y(t)) descritra
mediante splines ctbicos.

Notacion que usaremos:

P = {p;}}-3': curva original

Q =1{q; ?';01: puntos de control equispaciados por arco

QP = {q7**P}NL: puntos tras el desplazamiento normal

Qender = (g™ N1 puntos tras el enderezado

Q7% = {q/°“}N.!: puntos tras aplicar la reduccion de puntos adaptativas

R = {r;})-): malla remallada

t y : tangente y normal unitarias

e

A B desp lc ] ender D red E R m
Muestreo Q Paralelas Q Enderezado Q Reducdon Q Construccion S(t)

adaptativa Remallado del spline
por arco por normales local A
de puntos cubico

El sistema recibe como entrada la polilinea P (puntos originales) y devuelve como salida un

Figura 3.2. Vista de “caja negra”. El sistema recibe la polilinea de entrada P
(puntos muestreados) y entrega un spline cubico S(t). Internamente, los bloques A-
F realizan muestreo por arco, paralelas por normales, enderezado con SM/STM,
reduccion adaptativa de puntos, remallado y construccion del spline; la
realimentacion implementa el modo encadenado para generar las pasadas sucesivas
donde los puntos de entrada al Bloque B pueden venir de la trayectoria original o de
la paralela anterior.

spline ctbico S(t) con suavidad C2, apto para el guiado. Internamente, el proceso recorre los

bloques A-F de forma secuencial y, mediante la realimentacion que se observa en la Figura 3.2 se

produce el encadenado entre todas las paralelas.

Bloque A: Muestreo por arco (P — Q)

Compacta la trayectoria original seleccionando puntos de control equiespaciados por
longitud de arco. Mantiene los extremos como anclajes y deja una malla uniforme para

trabajar. Con esto conseguimos tener una base de puntos Q con la que trabajar mucho

mejor que la cantidad de puntos originales

Figura 3.3. Trayectoria original P (negro) y puntos de control q equispaciados
por longitud de arco (rojo). Los extremos se mantiene anclados y los puntos de
control resumen la forma y sera la malla base para las siguientes etapa.
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e Bloque B: Paralelas por normales (Q — Q%¢5P)
Calcula tangentes y normales en cada punto y desplaza la malla una distancia fija
(separacion entre pasadas) para construir la paralela inicial. Esto se realiza mediante el
desplazamiento por normales visto en el apartado 2.2.1

.

Figura 3.4. Puntos de control q (rojo) desplazados sobre su normal unitaria
(flechas verdes) una distancia fija d y como resultado temenos los puntos
desplazados (rosa).

e Bloque C: Enderezado local (Q4€sP — Qender)
Ajusta cada punto solo sobre su normal minimizando una funcion de coste que combina
longitud, suavidad/curvatura y restricciones agrondmicas (SM/STM). Produce una pasada
mas recta y regular. Este bloque es el que se encarga de ir realizando el enderezado para
obtener una trayectoria con tendencia a recta.

Figura 3.5. Cada punto de control q; (rojo) solo puede moverse sobre su normal
(trazos azules), acotado por los parametros [SM, STM]

Figura 3.6. Posiciones éptimas q¢"%" (azul) obtenidas tras la minimizacién sobre
la normal de cada q; (rojo) obteniendo asi una pasada mas recta.

e Bloque D: Reduccion adaptativa de puntos (Q€m4¢" — QTe4)
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Mide la suavidad alcanzada y decide automaticamente cuantos puntos de control hacen
falta. En zonas suaves reduce puntos (eficiencia); en curvas cerradas los mantiene
(seguridad). Con este bloque conseguimos reducir la carga computacional reduciendo la
cantidad de puntos con los que trabaja el sistema.

Figura 3.7. Reduccion adaptativa de puntos de Q™" tras medir su suavidad y
decidir cual es el tamario optimo de la nueva malla obteniendo un niimero menor
de puntos de control para realizar la pasada.

Bloque E: Remallado equiespaciado (Q°™®™ — R)

Este bloque redistribuye el nuimero de puntos de control en puntos por arco, con extremos
fijos, para evitar amontonamientos y dejar una malla homogénea que estabiliza el spline.
Realiza un trabajo similar al Bloque A, pero mantiene el nimero de puntos solo para
reorganizarlos de manera equidistante a la trayectoria.

Figura 3.8. Desde la pasada enderezada Q™" se reparametriza por longitud de
arco y se distribuyen exactamente N, puntos uniformes para obtener la malla R
(Morado), manteniendo los extremos fijos. El remallado elimina amontonamientos y
deja una malla equidistante preparada para la construccion del spline.

Bloque F: Construccion del spline ctibico (R = S(t))

Interpola la malla remallada con un spline ciibico paramétrico, garantizando continuidad
en posicion, rumbo y curvatura (€C?) como hemos visto en el apartado 3.1. Este es el
resultado final que usa el guiado.

Figura 3.9. A partir de la malla R (puntos morados) se interpola el spline cubico S(t)
(curva azul) con suavidad C?. Se muestra fiente a la trayectoria base P (negro)
formada por los puntos de control previos (rojo)
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En las secciones siguientes detallaremos la matematica y la propia implementacion del algoritmo
en Python para su posterior visualizacion.

3.4 Bloque A — Muestreo por arco (P — Q)

3.4.1 Descripcion

Este bloque parte de una trayectoria discreta P = {p,, ..., Py_1} € R? formada con miles de
puntos desigualmente organizados y constituye una malla base Q = {qq, ..., qn_1} con un inferior
nimero de puntos equiespaciados por longitud de arco, conservando los extremos. En este paso
fijamos un niimero objetivo de puntos M, reducimos la cantidad de nodos. El proceso no cambia la
forma de la curva y mantiene anclados los extremos, dejando una base regular y estable para el
posterior uso por los siguientes bloques del algoritmo.

La Figura 3.10 muestra el diagrama de flujo que sigue este bloque para conseguir su objetivo.
Primero el bloque recibe los puntos de la curva y el nimero de nodos que queremos en la malla base.
Si la entrada contiene menos de dos puntos o una longitud nula se devuelve los puntos recibidos sin
cambios. En caso contrario se realiza el célculo de la longitud de arco y se normaliza. Sobre este eje
normalizado se construye una malla uniforme de n posiciones y se interpolan, generando una nueva
malla de punto Q = {q;} equiespaciados.
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Entrada P y n_puntos

V\IA

Calcular distancias
acumuladas entre puntos

!

Longitud total L~ 0

si No

Devolver P sin cambios Normalizar sa 0..1
Crear pos equiespaciado
0..1 con n_puntos
Interpolar X y ¥ en pos
Formar Q con puntos
cquiespaciados por arco
—+

Figura 3.10. Diagrama de flujo del Bloque A. A partir de la polilinea original Py un
tamario deseado n¢,se calcula el arco acumulado, se normaliza a [0,1] y se interpola
cada coordenada para obtener Q, una malla de puntos equiespaciados por longitud
de arco.

3.4.2 Matematica asociada

En este bloque se plantea un muestreo equiespaciado por longitud de arco [6]. La idea es asignar
un parametro de arco acumulado a la trayectoria original y reinterpolar la curva para obtener un
conjunto de puntos igualmente equiespaciados en términos de distancia recorrida. Con este
procedimiento se obtiene una malla homogénea Q, que estabiliza el spline cubico del bloque final y
permite que todos los céalculos intermedios se realicen sobre una base mas uniforme.

Dada la trayectoria original discreta P = {py, ..., Pn-1}, Pi = (x;,¥;) © R? donde cada p; esun
punto de posicion en el plano.

1. Longitud acumulada
Para cada tramo entre dos puntos consecutivos:

Ap; = pi— pict,  IADII=/( — x_)2 + (i — ¥i_1)? (11)

Se define:
So=0, ;=YL lIApell, i=1,..,N—1 (12)
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Donde s; es un escalar que representa la longitud de arco acumulada hasta el punto i. La
longitud total de la trayectoria es L = sy_4

2. Pardmetro normalizado
Para eliminar unidades y facilitar la interpolacion vamos a normalizar:

Si

w=2 w <[01] (13)

Aqui u; es un escalar adimensional

3. Malla uniforme de control
Se definen n valores equiespaciados en el intervalo normalizado [0,1]:

qo=_d i (14)
h=—— ] 01,..,n
Que representan fracciones iguales de longitud con lo que se realizara la posterior
interpolacion de los nuevos puntos.

4. Interpolacion por arco
Finalmente, los nuevos puntos se calculan como:

q; = (2(%).9(®)), j=01...n (15)

Donde f(ﬁ]) y 37(ﬁj) son interpolaciones lineales de los datos originales. Cada q; es un
vector de posicion de la nueva malla Q y estan distribuidos de forma equidistante en
nuestra trayectoria

3.4.3 Explicacion del codigo

La Figura 3.11 muestra la implementacion de la funcion que transforma la polilinea P = {p;} en
una malla Q = {q;} equiespaciada por longitud de arco.

El procedimiento comienza calculando la longitud acumulada de la curva original (11) (12). Esta
longitud acumulada se normaliza para obtener un parametro adimensional t c [0,1] (13). A
continuacion, se aplica una interpolacion lineal sobre las coordenadas x e y en funcion de dicho
parametro t (15), en base a una malla uniforme de tamafo n (14), generando un nuevo conjunto de
puntos distribuidos de manera uniforme

El cédigo utiliza librerias NumPy y SciPy para optimizar estas operaciones. En particular, la
funcion np.sqrt [7]se emplea para calcular las distancias euclideas entre pares consecutivos de
puntos, mientras que np.interp [8] permite reconstruir las coordenadas de los nuevos puntos a partir
de la parametrizacion.
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De esta forma el resultado es una curva remallada que mantiene los extremos de la trayectoria
original, pero con una densidad de puntos uniforme.

def muestrear_equiespaciado_arco(curva, n_puntos):
curva = np.array(curva, float)
if len{curva) < 2: return curva
dist = np.zeros(len({curva))
for i in range(l, len{curva)):
dist[i] = dist[i-1] + np.linalg.norm{curvali] - curva[i-1])
if dist[-1] == @: return curva
s = dist/dist[-1]
pos = np.linspace(@, 1, n_puntos)
¥_eq = np.interp(pos, s, curval:,8]); y_eq = np.interp(pos, s, curva[:,1])
return np.column_stack([x eq, y_eq])

Figura 3.11. Implementacion de la funcion muestrear equispaciado_arco. Esta funcion
corresponde al Bloque A del algoritmo.

3.4.4 Resultados del bloque

La Figura 3.12 muestra el resultado tras la aplicacion del bloque A, primero partimos de una
trayectoria discreta de puntos P (negro) que forman la trayectoria base, tras realizar el muestreo por
arco obtenemos un conjunto de puntos reducidos @ (rojo) equiespaciados, con los que trabajaremos
en los posteriores bloques consiguiendo una reduccion de puntos para trabajar posteriormente
reduciendo la carga computacional y que gracias a la posterior aplicaciones de los splines
obtendremos una trayectoria suave con menos puntos.

Bloque A: Muestreo por arco sobre trl_linde

# (original
®- O (equiespaciada por arco)

100
XIm)

Figura 3.12. Resultado de la implementacion del Bloque A. La curva original
P (negro) presenta una trayectoria formada por puntos no uniformes. Tras
aplicar la funcion muestrear_equispaciado_arco, se obtiene la curva Q (rojo),
cuyos puntos estan equispaciados por longitud de arco, proporcionando una
malla homogénea y formada por puntos equidistantes unos de otros.
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3.5 Bloque B — Paralelas por normales (Q — Q4¢5P)

3.5.1 Descripcion del algoritmo

A partir de la malla base Q del Bloque A, este bloque genera la paralela Q%¢5P . Para ello, cada
punto q; se desplaza una distancia fija d en la direccidon de la normal unitaria de la curva. El resultado

. d
es un nuevo conjunto de puntos Q4¢P = {q;“*’}, que representa la curva paralela.

En la Figura 3.13 vemos el diagrama de flujo que sigue este bloque donde recibimos una serie
de puntos equiespaciados que pueden venir de la trayectoria original si es la primera paralela o
pueden venir de la paralela anterior como vemos en la Figura 3.2. Tras recibir los puntos y
comprobando que se han recibido mas de dos puntos se calculan las tangentes normalizadas y las
normales unitarias rotando la tangente 90°. Tras esto se calcula el desplazamiento y con esto ya
podemos desplazar cada punto q; obteniendo en su conjunto una malla de puntos desplazados por
sunormal Q4¢P y con este conjunto ya obtendriamos la paralela, pero de momento solo nos interesa
quedarnos con los puntos para seguir trabajando con ellos posteriormente.

Entrada Q sep direccion

No

v

Calcular tangentes por
diferencias

Normalizar tangentes

Obtener normales unitarias

l

Calcular d = sep * direccion

l

Desplazar puntos g_i +d -
n_i

Devolver Q sin cambios

Salida Q*desp

)

Figura 3.13. Diagrama de flujo del Bloque B. A partir de la malla Q, la separacion y
el signo de direccion, se calculan tangente y normales unitarias y se desplaza cada
nodo una distancia para obtener QP
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3.5.2 Matematica asociada

Partimos de la secuencia de puntos muestreados en el bloque A:

Q = {qO' q1, ""qN}' q; = (xilyi) c ]Rz

Cada q; es un vector de posicion en el plano.

1.

Vector tangente [9]
Para conocer la direccion de la curva en q;, necesitamos su tangente. Como tenemos una
curva discreta, la aproximamos con diferencias entre puntos vecinos:

R qd1 — 9o i=0
ti =99i+1 — qi-1 0<i<n-1 (16)
dn-1 — q9n-2 i=n-—-1

- . .y . . . 4
Donde t; es un vector dirrecion de la curva en el punto #, es decir este paso nos dice “hacia
donde va la curva” en cada punto.

Vector normal unitario

Lanormal es un vector perpendicular a la tangente. Para obtenerla basta con rotar la tangente
90°:

(17)

n; = ﬂ (—tiy, tix)

l

Donde (—t;y, tix) es larotacion de t; = (tiy, tix) y al dividir por ||fi || asegura que la normal

tenga longitud uno, es decir este paso nos da “hacia que lado desplazamos”.

Desplazamiento por la normal
Finalmente construimos el punto desplazado [9]:

q!°? = q; + d7; (18)

Donde q%¢*?

;i esunvector posicion de la curva paralela, d es un escalar que fija la separacion

entre la curva original y la paralela. Si d > 0 la paralela queda hacia la izquierday sid < 0,
hacia la izquierda

Curva resultante
Repitiendo el proceso para todos los puntos:

QUesr = {qgesp’ qtliesp’ . q;ilislp} (19)

Obtenemos la trayectoria paralela.
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3.5.3 Explicacion del codigo

La Figura 3.14 es la funcion que recibe como entrada una curva discreta definida en un conjunto
de puntos p; = (x;,y;). Devuelve un array n con los vectores unitarios en cada uno de los puntos.
Si la trayectoria tiene menos de dos puntos, devuelve directamente n ya que no se puede calcular
direcciones en ese caso. A continuacion, se recorre la curva con un bucle.

Para cada indice i, se calcula un vector de diferencia d que representa la direccion local de la
curva (16): en el primer punto se usa la diferencia con el siguiente, en el ultimo con el anterior, y en
los intermedios con el punto anterior y el siguiente. Este vector d se normaliza dividiéndolo entre su
norma np.linalg.norm(d) [10], afiadiendo un pequefio valor 1e — 12 para evitar divisiones por cero
en casos degenerados. Una vez normalizado este, se construye el vector normal mediante la
operacion [-t[1], t[0]] (17), que corresponde a rotar el vector tangente 90 grados. Finalmente, la
funcién devuelve el array # con todas las normales unitarias de la curva.

Por ultimo, el desplazamiento se introduce en la funcién de la Figura 3.36 en la linea
puntos_desplazados=puntos _control _base+(sep*direccion)*normales donde estamos
introduciendo la ecuacion (18), y el conjunto de los puntos desplazados componen Q4¢P (19).

En resumen, el codigo implementa de manera practica el calculo de las normales: crea un array
vacio, recorre los puntos, calcula la direccion local con diferencias, normaliza, rota el vector y guarda

la normal.
def calcular_normales puntos(p):
M = len{p); n = np.zeros_like(p)
if N < 2: return n
for i in range(N):
if 1 ==8: d = p[1]-p[e]
lif 1 == N-1: d = p[-1]-p[-2]
else: d = p[i+1]-p[i-1]
t = d/(np.linalg.norm(d)+1e-12); n[i] = np.array([-t[1], t[B]])
return n

[j¢]

Figura 3.14. Implementacion en Python de la function calcular normales puntos.
Este procedimiento calcula el vector normal unitario en cada punto de una curva
discreto Q, utilizando direfencias entre puntos adyacentes para estimar la tangente y
una rotacion de 90° para obtener la normal.

3.5.4 Resultado del bloque

La Figura 3.15 muestra el resultado de aplicar el bloque B al conjunto de puntos muestreados
obtenidos del bloque A. A partir de la curva base Q, representada en color negro, se calculan
las normales unitarias en cada punto y se utiliza un desplazamiento fijo d sobre dichas

direcciones para generar la curva paralela Q4¢P representada en rojo.

Este resultado confirma que el algoritmo implementado en el bloque B es capaz de construir
correctamente las trayectorias paralelas a la curva original.
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Bloque B: normales en todos los puntos y paralela (tr1_linde}

0 2 50 3 100 15 150 s 200
X [m]

Figura 3.15. Representacion de la trayectoria base Q (negro) y de su paralela Q%P
(rojo), obtenida mediante el desplazamiento de cada punto en la direccion de la
normal unitaria a una distancia d.

3.6 Enderezado local — Bloque C (Q?¢P — Qe¢nder)

3.6.1 Descripcion del algoritmo

Este bloque toma la paralela del Bloque B Q4¢P y realiza un enderezado de forma iterativa.
Recorre solo los puntos interiores y. para cada uno. Prueba pequeiios desplazamientos sobre su
normal, siempre dentro de recorrido permitido [-STM, +SM] [3]. Si el cambio mejora la forma, se
acepta; si no, se deja como esta. Los extremos permanecen fijos para conservar la direccion general.
El proceso repite varias pasadas hasta que los cambios son apenas apreciables o se agota el maximo
de iteraciones. El resultado es Q°"%¢", una trayectoria mas suave y recta.

La Figura 3.16 muestra el diagrama de flujo del Bloque C, donde este bloque toma la paralela
del Bloque B y mediante iteraciones realiza un enderezado progresivo. Para cada punto interior mira
en su normal y prueba pequeiios desplazamientos permitidos por SM/STM. Elige el que mejor
suaviza la curva y pasa al siguiente punto. Cuando termina una pasada comprueba si ya casi no
cambia nada; si aun cambia, hace otra pasada. Los extremos se mantienen fijos para conservar el
rumbo. El resultado es la misma trayectoria, pero mas suave y alineada.
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Salida 07

Figura 3.16. Diagrama de flujo del Bloque C. A partir de la paralela obtenida
del Blogque B el algoritmo itera globalmente; en cada iteracion recorre los
puntos interiores y evalua la funcion de coste y acepta el mejor
desplazamiento y continua hasta converger.

3.6.2 Matematica asociada

. d — . .
Tras el bloque B, para la curva paralela obtenida Q%°P = {q;“*P}]- es necesario aplicar un

proceso de enderezado que reduzca la curvatura, suavice irregularidades y acerque progresivamente
la trayectoria a una linea recta. El enderezado no puede realizarse de manera arbitraria, debe respetar
condiciones agrondmicas, como el solape maximo (SM) y de zona sin tratar maximo (STM), que
fijan un rango de desplazamientos laterales admisibles

Para formalizar este proceso, se define una funcion de coste global J (20)

El enderezado se plantea, por tanto, como un problema de optimizacion discreta, encontrar la

ender

nueva secuencia de puntos q; que minima J y obtener Q°™4e” = {q¢"4e -,

. De esta forma, se
logra que, tras varias paralelas, el trazado tienda a ser recto.

El enderezado se formula como la minimizacion de:
J:(t) = w,AL; + wpAK; + A;V_AZ AA; + A;’fZARi + M(t) (20)
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La funcién de coste propuesta en este trabajo ha sido desarrollada especificamente en el marco
del presente TFG, combinando criterios geométricos y agronémicos. Por tanto, la funcién de coste
procede una combinacion original disefiada para este trabajo.

Donde M es el nimero de puntos de control, los términos A () son cambios locales (antes/después
de mover el punto en evaluacion q;) y t un parametro acotado tal que t € (—STM, SM):
Los parametros que componen la funcién de coste son:

e AL (longitud local): evita encogimientos o estiramientos bruscos de la trayectoria.

e AK (curvatura local): suaviza posibles oscilaciones.

e AA (alineacion con la recta global): alinea tangentes locales con la direccion de los
extremos para que las paralelas no se desvien.

e AR (rectitud global): fuerza a que la curva tienda a la recta “tirando” de cada punto hacia
una recta imaginaria que une los extremos.

e M (t): garantiza que el desplazamiento no rompa las condiciones de solape o sin tratar
(SM, STM

Ahora se va a explicar al detalle la funcion de coste y todos los pardmetros que la engloban:

1. Longitud local AL;(t)
Este parametro se encarga de medir como cambia la longitud de los segmentos que
inciden en q; al desplazarlo, con el objetivo de mantener la longitud local razonable
evita “serruchos” y estabiliza el ajuste [11].

Li(@) = |lq: — qi—1l| + |19:41 — q:l| (21)

AL;(6) = Li(q®) - Li(q) (22)

El termino AL; corresponde a la variacion de longitud local de los segmentos
incidentes en q; .

2. Curvatura discreta 4K;(t)
Se basa en la segunda diferencial discreta para evaluar el cambio en la suma de
curvaturas de los vecinos de i para suavizar las posibles oscilaciones y evitar picos de

curvatura:
K(q) = X755 14% q;|2 (23)
A%q; = q; — 2qj41 + qj4; (24)
AK(q) = Xjeit2i-1,5(14%q;O11% — 114%q;11*) (25)

La medida de curvatura discreta se construye a partir de la segunda diferencia
finita A%q; que actiia como aproximacion discreta de la segunda derivada de la
curva [11].
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3. Alineacion con el rumbo 4A4;(t)
Calcula como varia la alineacion de la tangente local con la direccion general de la
curva. Con esto evitamos que la trayectoria se tuerza respecto a la direccion de trabajo.
En la funcién de coste normalizamos por M — 2 para que la magnitud no dependa del
numero de puntos [12]

Definimos el rumbo global como un vector unitario entre los extremos de la curva, este
vector marcara la direccion “objetivo”:

’ZZ — qdM-1—90 (26)
lgm-1—9oll

Medimos la orientacion local de la curva mediante tangentes de dos saltos para que sea

mejor la estimacion d:

Tk = Q42 — Qi (27)
= Tk (28)
LT

Ahora penalizamos la diferencia entre 1 y el producto escalar de 7,y u. Esto nos dira si

estan alineados o no:

AQw) = Xe(1 = (fie - W) (29)

Si 7}, esta alineada con u, el producto escalar = 1 = penalizacion = 0.

Si est4 perpendicular, el producto escalar = 0 = penalizacién = 1 (maxima).

4. Rectitud (Distancia a qoqp—1) AR;(t)
Este parametro evalua el cambio en la distancia del punto q; a una recta imaginaria que
une los extremos de la curva (qy y qy—1)- Igual que el parametro anterior también se
normaliza por M — 2.

ConA = qo,B = qy_1 yup = ||B — A||, 1a distancia cuadratica de q; a la recta AB

_ (B=A)+(qi-A))? (30)
Ri@) ==
AR;(t) = Ri(q”) — Ry(q) (1)

5. Penalizacion agronomica M (t)

Con esta funcion nos aseguramos de que el desplazamiento lateral ¢ no supere el SM ni
la STM [3]:
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Cl_L t>0 (32)
MO =4 3
— t<0

c y d son constantes de ajuste de exactitud que determinan la dureza de la barrera. Con
valores como ¢ = d = 1 penaliza mucho si nos acercamos al limite, por el otro lado si

¢ = d = 107* permite que los puntos se acerquen mads al limite antes de penalizar.

3.6.3 Explicacion del codigo

La Figura 3.17 muestra la funcion principal que realiza el enderezado. La funciéon toma la curva
desplazada por normales del Bloque B y la endereza iterativamente. Lo primero que hace es copiar
los puntos a P y fijar los extremos A y B como fijos, porque la recta que une ambos define el rumbo
global frente al que se mide la alineacion. También inicializa un desplazamiento acumulado por
punto ¢ acum y establece, para cada punto, el recorrido de movimiento permitido por los criterios
agronémicos: de STM y SM.

A continuacion, recorre un numero finito de iteraciones. En cada iteracion calcula un parametro
a entre 0 y 1 con el que interpola linealmente los pesos del coste: hace crecer el peso de la longitud
local (para estabilizar al final), decrecer el de la curvatura discreta de segunda diferencia (para
aplanar dientes al principio sin sobre—suavizar al final) y aumentar el de la alineacion de rumbo, de
manera que, cuando la curva ya esta suave, se priorice orientar sus tangentes hacia la direccion
global. El peso hacia la recta de extremos (wR) puede venir elevado desde fuera cuando generamos
pasadas tardias, porque en ese momento el objetivo practico es “tirar” de la trayectoria hacia la
rectitud.

Con los pesos fijados para la iteracion, vuelve a calcular el rumbo global como el vector unitario
u dirigido de A a B. Para cada punto interior q; comprueba primero si ya esta practicamente alineado
con curvatura local despreciable; si se cumple, no lo toca en esta vuelta, lo que ahorra computo. Si
el punto merece tratamiento, estima su direccion local con la bisectriz de las tangentes a izquierda y
derecha y construye la normal unitaria f1; girando noventa grados esa bisectriz. El enderezado se
hace precisamente moviendo el punto sobre esa normal (Figura 3.5), porque desplazar en normal
reduce el angulo entre segmentos adyacentes sin introducir artificialmente avances o retrocesos a lo
largo de la curva, lo que se traduce en una caida natural de curvatura.

Antes de probar movimientos, la funcion evalua las magnitudes “de partida” en la vecindad de i:
la longitud local como suma de los dos tramos incidentes (22), la curvatura discreta mediante la
segunda diferencia (25), la desalineacion con el rumbo (29), y la distancia perpendicular del punto a
la recta AB (31). Con esos valores base define el coste local J;(t) como la suma ponderada de los

incrementos de esas magnitudes al mover q; a qgt) =q; + (t — t,)7;, mas la penalizacion
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agronomica M (t) (32). Esta ultima es la barrera asintdotica que hemos descrito previamente: crece
con rapidez al aproximarse a +SM o a —STM, de modo que el algoritmo “sienta” los limites de solape
y sin tratar sin necesidad de imponer cortes duros; con constantes pequefias la barrera permite
acercarse algo al limite y acelerar la convergencia, y con constantes mayores endurece el borde para
escenarios mas conservadores.

La minimizacion de J;(t) se resuelve como una busqueda: primero muestrea siete candidatos
uniformes en el recorrido permitido del punto, elige el mejor y, alrededor de ese minimo provisional,
vuelve a muestrear siete valores en un intervalo mas estrecho. Con el minimo refinado actualiza el
punto y anota el desplazamiento efectivo. Cuando la media de desplazamientos de una iteracion cae
por debajo de la tolerancia, el proceso se detiene; en caso contrario, continua hasta agotar el maximo
de iteraciones. Al terminar, reafirma los anclajes en los extremos para garantizar que el resultado
preserve el punto de partida y el de llegada.

ados, SM, STM, num_iter=68, wl_ini=2.8, wl_fin=12.8,wB_ini=0.6, wB_fin-0.03, wh_ini=1.2, wA fin=16.8, wR=0.9, exact_c=le-8, exact_d=le-§, tol mean=le-4)

- p.1inalg.norm(u_dir)+le-12)
0.8: rn ng_mex - rag_ini
se: rng_min, rng_max - rng_inif@]*shrink, rng_ini[1]*shrink

mejoras = []

for 1 in range(
tau_i = P[L

¢ 1e-12: tng = P[i+1]-P[i-1]
orm(tng)+le-12)

3_lecal at = make_3_local at( P, i, 1@, nrm, u_dir, A, B, nAB, L@, K2, A@, R, WL, wB, WA, wR, N,SM, ST, exact_c, exsct_d)

pace(tmin, tmax, 7)

Figura 3.17. Funcion aplicar_enderezado local gs, nucleo del Bloque C que recibe
Q%P 3 devuelve Q€T
La Figura 3.18 muestra todo el contexto local necesario para evaluar, para un punto interior q;,
el coste incremental de moverlo una cantidad escalar t sobre su direccion de enderezado (20).

La funcion make J local at prepara y devuelve una funcion evaluadora de coste para un punto
interior concreto. Su cometido es muy preciso: dado el estado actual de la trayectoria, el indice del
punto que estamos tratando, la direccion de enderezado y los valores de referencia antes de mover
el punto, construye una funcion J local at que responde a la pregunta: si desplazo este punto una
cantidad escalar t sobre su normal, ;mejora o empeora la calidad geométrica de la curva dentro de
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los limites agronomicos? Para poder contestar sin tener que pasar decenas de parametros en cada
llamada, make J local at captura por cierre todo el contexto necesario: el array de puntos, el indice,
la normal, el rumbo global de la pasada, los extremos anclados, las medidas locales “antes” de mover
(longitud, curvatura, alineacion y rectitud), los pesos de cada término, el tamafo de la curva para las
normalizaciones y los limites SM/STM junto con la dureza de su penalizacion.

La funcioén resultante, J local at, no altera el estado global cuando se usa: hace una copia del
punto, lo mueve temporalmente en la direccion indicada la cantidad pedida, vuelve a medir solo en
la vecindad de ese punto las cuatro magnitudes que nos interesan (longitud en los dos tramos
adyacentes, curvatura discreta por segunda diferencia, alineacion de las tangentes locales con el
rumbo y distancia perpendicular del punto a la recta definida por los extremos), y a continuacion
restaura el punto a su posicion original. Con esas cuatro diferencias “después—antes” calcula un
balance ponderado con los pesos vigentes en esa iteracion, aplica las normalizaciones por niimero
de puntos donde corresponde para que el valor no dependa del tamafio de la curva, y le suma la
penalizacion agrondmica asociada al propio t, que estd disefiada para crecer al acercarse a los limites
de solape y de zona sin tratar. El resultado es un inico nimero real: cuanto menor es, mejor es ese
desplazamiento desde el punto de vista del enderezado y del respeto a SM/STM.

def make 1 local at(
P, i, t@, nrm, u_dir,
&, B, nAB,
Le, Ko, A8, RO,
wlh, wB, whA, wR, N,
SM, STM,
exact_c=1e-8, exact_d=1e-8

def J_local at(t
old = P[i].copy()
[i] = old + (t - t8) * nrm

L1 = _len_local(P, i)

K1 = _curv_local(P, i)

A1, = _alig local(P, i, u_dir)

R1 = _line_local(P, i, A, B, niB)
P[i] = old

dJ_geo =

- Ka) +
* (AL - ee) / max(1, (N - 2)
* ((RL - R&) / max(1l, (N - 2)

5EBE~
-
=
&

barr = penalizacion_M(t, SM, STM, c=exact c, d=exact_d)
return float(dJ_geo + barr)
return J_local_at

Figura 3.18 Funcion make_J local_at que hace de evaluador de la function de coste
para comprobar si el punto desplazado mejora o empeora el enderezado. Para ello
de apoya en la subfuncion J local _at

La Figura 3.19 muesta la funcion /en local. Esta funcion calcula la longitud “que ve” el punto
en su vecindad inmediata: suma las longitudes de los dos tramos que comparten ese punto, el que lo
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une con su vecino anterior y el que lo une con el siguiente (22). En los extremos solo habria un
tramo, aunque en el enderezado no se tocan los extremos y, por tanto, la funcidon se emplea
efectivamente en puntos interiores. Su papel en el coste es muy claro: cuando se prueba un
desplazamiento provisional del punto, se vuelve a medir esa longitud local y se compara con la de
partida; si el movimiento provoca un acortamiento o un estiramiento brusco en esa pequefia ventana,
el término de longitud crece y desincentiva ese cambio. Con ello se evita el “serrucho” tipico de los
ajustes punto a punto y se estabiliza la geometria a escala local cuando ya se ha reducido la curvatura
y conviene consolidar el trazado sin introducir micro—oscilaciones.

def len local(P, i):
L =8.8

if i-1 »= 8: L += np.linalg.norm(P[1]-P[i-1])
if i+1 < len(P): L += np.linalg.norm(P[1+1]-P[i])
return L

Figura 3.19. Funcion len_local la cual devuelve la lonfitus de los dos segmentos que
inciden en el punto q;.

La funcion curv_local de la Figura 3.20 mide cudnta “curvatura” hay alrededor del punto de
forma puramente local y muy barata de calcular (25). Lo hace evaluando en tres ventanas que son
las unicas que se ven afectadas cuando movemos el punto, las que empiezanen i —2,i — 1 ei. En
cada ventna se observa como cambia la direccion de la curva entre tres puntos consecutivos; si la
trayectoria hace un “quiebro” o un “diente”, el valor crece, y si la zona es suave o casi recta, el valor
es pequeno.

def curv local(P, i):
N = len(P); J = 8.8
for j in (i-2, 1-1, i):
if 8 <= j <= N-3:
seg = P[J] - 2"P[j+1] + P[J+2]
J += float(np.dot(seg, seg))
return 1

Figura 3.20. Funcion _curv_local la cual devuelve un valor que refleja la curvatura
entre tres puntos vecinos.

La funcion _alig local de la Figura 3.21 cuantifica cuanto se desvia la orientacion local de la
curva respecto al rumbo global u (26) que marca la recta entre los extremos. Para evitar medidas
ruidosas basadas en un solo segmento, no mira las aristas inmediatas sino tangentes de dos saltos:
compara la direccion que une Pj, con Py ,,. Con eso obtiene una estimacion mas estable de “hacia
donde va” la curva en esa zona (29). En la practica evaltia dos pequefias ventanas que rodean al
punto, las que empiezan en i — 2y en i (si existen), y en cada una calcula cuanto se aparta esa
tangente local del rumbo u. Usa siempre el valor absoluto del coseno para que la métrica sea
independiente del sentido (avanzar o retroceder no cambia el grado de alineacioén) y eleva la
desviacion al cuadrado para que la penalizacion sea suave cuando ya se estd muy alineado y crezca
si la direccion se tuerce. Si en alguna ventana la longitud es practicamente nula, la funcion la descarta
para evitar divisiones peligrosas.
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def alig local(P, i, u):
N = len(P); S =8.8; cnt = 8
tor k in (i-2, i):
if @ <= k <= N-3:
tau = P[k+2] - P[k]
n = np.linalg.norm{tau)
if n » le-12:
€ = abs{np.dot(tau/n, u))
S += (1.8 - c*c); cnt += 1
return 5, cnt

Figura 3.21. Funcion _alig_local mide cuanto se orientan las tangente locales en la
direccion objetivo u definida por los extremos.

La funcidon line local de la Figura 3.22 mide, para el punto interior q;, cuanto se separa en
perpendicular respecto a la recta de extremos definida por A = P[0] y B = P[—1]. Este término
empuja a que, a medida que se avanaza el enderezado y disminuye la curvatura, el trazo se acerque
a la recta base (31). No acttia en los extremos

def line local(P, i, A, B, nAB):
if 1 == @8 or 1 == len(P)-1: return 8.8
AP = P[i] - A
cross = (B[@]-A[@])*AP[1] - (B[1]-A[1])*AP[&]

return (cross*cross)/(nAB*nAB + le-12)

Figura 3.22. Funcion line_local calcula la distancia de un punto interno a una recta
que une los extremos de la trayectoria, empujando este punto hacia esa recta segun
disminuye la curvatura.

La funcién penalizacion M de la Figura 3.23 actia como un guardarrail agrondmico durante el
enderezado. Su cometido es encarecer los desplazamientos laterales que se acercan a los limites
operativos del equipo: SM (solape maximo, lado positivo) y STM (zona sin tratar maxima, lado
negativo). En lugar de cortar en seco cuando se rebasa el limite, la penalizacion crece suavemente al
principio y muy rapido al aproximarse al borde, de modo que el algoritmo “sienta” el limite y evite
escoger movimientos que lo rocen.

La funcion es asimétrica a proposito: trata de forma distinta el desplazamiento hacia el solape
(valores positivos de t, controlado por SM y el coeficiente c) y el desplazamiento hacia la zona sin
tratar (valores negativos de t, controlado por STM vy el coeficiente d). Esto encaja con la practica
agricola, donde no siempre es igual de tolerable solapar que dejar sin cubrir; por eso se puede ajustar
¢y d de forma independiente (32). Con ¢ y d muy pequeiios la barrera es blanda: permite acercarse
bastante al limite antes de penalizar con fuerza, lo que da mas libertad al algoritmo para enderezar
rapido en las primeras iteraciones. Con ¢ y d més grandes la barrera se vuelve dura: desaconseja
enseguida cualquier movimiento que intente aproximarse a los margenes, Util cuando priorizas
seguridad o cuando el enderezado ya estd hecho y solo quieres retoques finos.
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def penalizacion M{t, SM, 5TM, c=1e-8, d=1e-8):

if t » @:

return c*(t*t)/(1 - t/(S5M+le-12) + le-12)
else:

return d*(t*t)/(1 + t/(5TM+le-12) + 1le-12)

Figura 3.23. Funcion penalizacion M devuelve una penalizacion suave pero
creciente segun se llega a los limites SM/STM. Los coeficientes ¢ y d controlan cuanto
penaliza esta funcion.

3.6.4 Resultado del bloque

La Figura 3.24 ilustra el efecto aislado del Bloque C. Partimos de la paralela “cruda” (naranja),

que reproduce fielmente la geometria de la original (Bloque B). El enderezado local (puntos azules)

desplaza cada nodo inicamente en su normal, dentro del corredor permitido por SM/STM, buscando
reducir a la vez los dientes de curvatura, estabilizar la longitud de los tramos adyacentes y orientar

las tangentes hacia el rumbo global que marcan los extremos. El resultado es una pasada mas suave

y con trazado mads estable, sin invadir los margenes agrondmicos. La linea azul clara corresponde al

spline reconstruido tras el enderezado: aporta continuidad y consolida la suavidad alcanzada,

preparandola para ser base de la siguiente pasada en el encadenado. Se aprecia que, especialmente

en la zona de mayor curvatura, el azul se aproxima a un perfil mas regular que el naranja, y que el

spline sigue esa tendencia sin picos ni sobre oscilaciones; dicho de otro modo. Se construyo el spline
para la visualizacion ya que esto es un paso que se implementa posteriormente en el Bloque F y que

no se implementa en este bloque

Blogue C — Enderezado local sobre 'trl_linde.txt' | sep=4.0 m, SM=1.0, STM=1.0, n_ctrl=40, wR=5.0

25 50 ™ 100 125 150 178

Figura 3.24. Resultado del Bloque C (enderezado local) sobre la pasada generada a
partir de trl_linde.txt. En negro se muestra la curva original; en naranja, los puntos
de la paralela obtenida tras el desplazamiento por normales (Bloque B); en azul, los
puntos después del enderezado local (Bloque C); y en azul claro, el spline cubico que
se reconstruye tras C. Parametros de la demo: separacion 4,0 m, limites SM=1,0 m y
STM=1,0 m, 40 puntos de control y peso de recta wR=35,0.
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3.7 Reduccion adaptativa — Bloque D (Q¢"%¢" — Q¢%)

3.7.1 Descripcion del algoritmo.

Tras el enderezado del Bloque C, este bloque decide cuantos puntos de control son realmente
necesarios y eliminan los redundantes. Para ello mide la curvatura de la pasada y segun el nivel de
“giro”, fija un tamano de malla entre unos limites [1,,in, Mmax]- Mas puntos si aun hay curvas,
menos puntos si la trayectoria ya esta lista. La reduccion se hace de tal que nunca se sube el nimero
de puntos y limita la caida por iteracién. Como resultado obtenemos Q"®%, una malla mas ligera de
puntos, pero fiel a la forma.

El diagrama de la Figura 3.35 resume el Boque D donde recibe la trayectoria del Bloque C Qé™4¢”
y calcula la curvatura media y méaxima. Con esto calcula un indicador unidimensional s y lo
transforma en un tamano de malla n.,; dentro de [N, Mmax |- La salida es n 4 que se usara en
el remallado (Bloque E) y el spline (Bloque F)

Inicio

Entrada: Q*ender

'

Medir curvatura: mediay
maxima

!

Calcular indicador s

'

Obtener n_ctrl provisional

!

Aplicar histeresis: no subir
y caida limitada

Salida: n_ctrl

Figura 3.25. Diagrama de flujo del Bloque D, a partir de la pasada

enderezada obtenemos un nuevo numero de puntos de control.

3.7.2 Matematica asociada

Para cada punto interior, sea ¥;_ = q¢"4¢" — q¢nder Diy = qEP9eT — q™€7 Jos vectores

de los tramos que “entran” y “salen” y que tratan de capturar la direccion y longitud de la curva
justo antes y después de i.
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Definimos el angulo de giro:
6; = tan™" 2 ((V;— X V1), dot(Vi— - Uyy)) (33)

Que es el angulo en radianes que hay que girar para pasar de v;_ a U;, [13].

Calculamos la longitud efectiva local L; = %(llﬁi_ll + |71, que es la medida de “cuanta

distancia” hay alrededor de i. Es la media de las longitudes de los dos tramos que confluyen en .

. 6; . .
Tenemos la curvatura discreta k; = lL—‘I que es “cuanta distancia” hay alrededor de q; [14].
i

Teniendo que:

e Silacurva es casi recta |6;| = 0, entonces k; pequeiia
e Sihay un “codo” fuerte y corto |6;| grande, L; pequefia y entonces k; grande

Ahora con estos célculos, para decidir el nimero de puntos de control n..,; seguimos una
puntuacion que llamamos s.

Tal que Neery = Nmin + Mingx — Mimin) * 5. Donde s, es un niimero adimensional entre 0 y 1
que resume “cuanta curvatura queda” en la pasada i comparada con la curvatura de referencia del
inicio. Sis = 1 la pasada esta tan rizada como al principio (no conviene recortar puntos), pero si

s = 0 la pasada estd mucho mas suave (si conviene recortar puntos).

= (W*kmed‘i‘(if—W)kmax |0, 1)’ WE [0,1] (3 1)
0, r<0
s(r)={ r, 0<sr<1

1, r>1 (32)

Donde:

o Kkpmeq: curvatura media de la polilinea enderezada Q¢"4¢”

®  kax: curvatura maxima de la misma
e ks valor de referencia que compara la curvatura de la pasada frente al inicio.

1 33
kref = E(k(()) + kr(r?c)lx 33)

med

e w: pondera la importancia de “lo global” frente a “los picos”

Explicacion de la formula:

1. Adimensional
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Dividir por k,.r normaliza las curvaturas, trabajamos con curvatura actual / curvatura
inicial.

Asi mismo da igual si trabajamos en metros o en kildmetros s no depende de unidades ni
del tamafio del campo

2. Equilibrio entre global y picos
kmea capta el estado global de la curva mientras que k4, nos indica los puntos “criticos”
con radios muy pequefios y cerrados.

La combinacion lineal w * k04 + (1 — W)k, 4, s la forma mas simple de mezclarlos.
Si nos quedamos solo con la media no estamos teniendo en cuenta los picos criticos que
puedan tener las trayectorias y si solo nos quedamos con la méxima tenemos mayor efecto
en los picos, pero una reaccion tardia en los tramos suaves.

Con w alto damos prioridad a las curvas generales despreocupandonos mas de los picos y
con w bajo tenemos un resultado mas sensible a los picos y mas conservador.

3. Casos limites
o Si las curvaturas coinciden con las de referencia s = 1
o Silapasadaesrectas = 0.

4. Estabilidad
En la formula anterior Ny = Nnin + Minax — Mmin) * S° [15]:
o Con el parametro s aseguramos que 1.4, S€ mueva entre el minimo y el maximo
permitido
o Con f > 1 se hace el recorte prudente: hasta que s no es pequefo, el descenso
de puntos es moderado

3.7.3 Explicacion del codigo

La funcion de la Figura 3.26 recibe la curva como un array P y, si tiene menos de tres puntos,
devuelve ceros porque no hay giro que medir. A continuacion, construye para cada punto interior,
los dos vectores que llegan y salen de ¢él, sus longitudes sirven para detectar casos degenerados
(segmentos practicamente nulos). Con una mascara se ignoran €sos casos y se normalizan solo los
vectores validos, evitando inestabilidades numéricas. Sobre cada pareja de vectores unitarios se
calcula el giro local mediante el seno y el coseno implicitos (producto cruzado y producto escalar) y
se obtiene el angulo con arctan2 (33). Ese angulo se pone en escala dividiéndolo por la longitud
efectiva de los dos tramos adyacentes, lo que hace comparable la medida, aunque los puntos estén
mas o menos espaciados. El resultado por punto es una curvatura discreta sin signo: vale mas cuanto
mas brusco es el cambio de direccion y tiende a cero cuando la trayectoria es recta. Finalmente, la
rutina toma la media y el maximo de esa serie y los devuelve. Estas dos magnitudes resumen el
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“tono” general de la pasada y la presencia de picos locales, y son las que el Bloque D usa justo
después para decidir cuantos puntos de control conservar y como remallar por arco.

def metricas curvatura(P):
P = np.asarray(P, float)
N = len(P)
if N o< 3:
return 8.8, 8.8

v_prev = P[1:-1] - P[:-2]
v_next = P[2:] - P[1:-1]
n_prev = np.linalg.norm{v_prev, axis=1)
n_next = np.linalg.norm(v_next, axis=1)

mask = (n_prev » 1e-12) & (n_next > 1e-12)
if not np.any(mask)
return 8.9, 0.8

v_prev_u = np.zeros_like(v_prev); v_prev_u[mask] = v_prev[mask] / n_prev[mask, nNone]
v_next_u = np.zeros_like(v_next); v_next_u[mask] = v_next[mask] / n_next[mask, None]
cross = v_prev_u[:,8]*v_next_u[:,1] - v_prev_u[:,1]*v_next_u[:,8]

dot = np.einsum('ij,ij-»>i", v_prev_u, v_next_u)

theta = np.arctan2(cross, dot)

Leff = B8.5%(n_prev + n_next)

kappa = np.zeros_like(Leff)

m2 = mask.copy()

kappa[m2] = np.abs(theta[m2]) / (Leff[m2] + le-12)

k_mean = float(np.mean{kappa[m2])) if np.any(m2) else 8.8
k_max = float(np.max(kappa[m2])) if np.any(m2) else 8.8
return k_mean, k_max

Figura 3.26. Funcion metricas_curvatura. Calcula, para una polilinea, la curvatura
discreta basada en el angulo de giro entre segmentos consecutivos y devuelve dos
indicadores globales de la pasada: curvatura media y curvatura maxima.

La funcion de la Figura 3.27 recibe la curvatura media y la maxima de la pasada junto con
una referencia k,..¢. Si la referencia es practicamente nula, devuelve directamente el minimo de
puntos para evitar divisiones inestables. En el caso general, primero calcula un indicador
adimensional s (32) comparando la curvatura actual con la de referencia: combina media y
maximo con un peso w (por defecto 0°6 que favorece el comportamiento global frente a picos) y
divide por k_ref. Ese s se recorta a [0,1]: valores cercanos a 0 representan curvas casi rectas y
valores cercanos a 1 curvas exigentes. Después interpola entre n_min y n_max usando s **beta;
con beta>1 el mapeo es mas agresivo cuando la curvatura ya es baja, empujando antes hacia
n_min y evitando mantener puntos de control innecesarios.

Por tltimo, redondea a entero y vuelve a acotar el resultado en [n_min, n_max]. Esta propuesta
se estabiliza justo después con la histéresis: no permitir aumentos de puntos y limitar la caida por
pasada, de modo que el tamafo de la malla descienda de forma suave y predecible.

def nctrl por _curvatura(k_mean, k_max, k_ref, n_min, n_max, w=€.6, beta=1.6):
if k_ref < 1le-12:
return n_min
s (w*k_mean + (1.8 - w)*k_max) / (k_ref + 1le-12)
s = max(e.8, min(1.8, s))
val = n_min + (n_max - n_min)*(s**beta)
return int(max(n_min, min(n_max, round(wval))))

Figura 3.27. Funcion nctrl_por_curvatura. Mapea la curvatura medida en la pasada
a un numero de puntos de control dentro de los limites [n_min,n_max], una referencia
k_ref, una mezcla entre curvatura media y mdxima, y un sesgo controlado por p.
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3.7.4 Resultados del codigo

La imagen de la Figura 3.28 muestra, para cada pasada, los puntos de control resultantes
después del enderezado local y de la reduccion adaptativa con remallado por arco. El degradado de
color indica el orden de generacion: a medida que avanzan las pasadas, se observa como el
algoritmo reduce el nimero de puntos y los redistribuye de forma uniforme a lo largo de la
trayectoria, manteniendo siempre los extremos anclados. La mayor densidad relativa se concentra
de manera natural en la zona con mas giro de la finca; en los tramos suaves, la malla se hace mas
escasa sin perder forma.

La imagen de la Figura 3.29 recoge los splines finales de todas las paralelas. Este spline se ha
construido solo para la visualizacion del resultado tras reducir los puntos, pero el spline final se
construye en el tltimo bloque tras reorganizar lo puntos en el bloque anterior y que vamos a ver
mas adelante

Distribucién de puntos de control en todas las pasadas Todas las paralelas (splines) — sep=4.0 m, SM=1.0, STM=1.0

75

1

Figura 3.28. Distribucion de los puntos de Figura 3.29. Splines finales de todas las

control tras los bloques C—-D—-E, coloreados par al.elas (bloques C—Q—E—F) con el mismo
por indice de pasada, sobre la curva original gradiente de color. Parametros: sep = 4,0 m,

en negro. SM = 1,0 m, STM = 1,0 m.

El grafico de la Figura 3.30 muestra como el sistema mantiene constante el nimero de puntos de
control mientras la pasada sigue teniendo curvatura apreciable, y solo cuando la geometria se vuelve
suficientemente docil comienza una caida escalonada. Ese primer escalon corresponde a pasadas en
las que la curvatura media y, sobre todo, la maxima sigue indicando que hacen falta muchos grados
de libertad. A partir de cierta pasada, el enderezado ya ha eliminado gran parte de las ondulaciones
y la métrica de curvatura desciende por debajo de la referencia; entonces nctrl por curvatura
propone tamafos menores y la histéresis (32) impone dos reglas: no crecer nunca y reducir como
mucho un salto limitado por porcentaje y por un minimo absoluto. Por eso la grafica baja en
escalones regulares, sin rebotes, hasta alcanzar la cota minima operativa. En términos practicos, esta
figura confirma que el Bloque D no recorta a ciegas: espera a que la pasada esté limpia, reduce de
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forma controlada y entrega una malla de puntos cada vez méas simple pero suficiente para conservar
la forma.

Reduccion adaptativa de puntes por pasada

Figura 3.30. Reduccion adaptativa de puntos por pasada. Evolucion del numero de
puntos de control n_ctrl a lo largo de todas las paralelas (eje X). La curva en
escalones refleja la combinacion de la politica curvatura/tamario.

3.8 Remallado equiespaciado — Bloque E (Q"? — R)

3.8.1 Descripcion del algoritmo

Al terminar los bloques C (enderezado) y D (reduccion adaptativa), con la malla reducida Q"¢%
la distribucion de puntos puede quedar descompensada: muchos puntos apretados en zonas con
curvatura cerrada y otros muy separados en tramos suaves. Esa distribucion irregular es mala para el
spline porque puede producir solape o incluso cruces entre puntos. El Bloque E corrige esto sin
cambiar la forma global.

Vuelve a muestrear por longitud de arco para obtener una malla de N puntos equiespaciados a lo
largo de la trayectoria, fijando los extremos practicamente igual que en el Bloque A, pero sin reducir
el nimero de puntos. El resultado es una base homogénea y estable para la construccion del spline
del Bloque F.

En la Figura 3.31 muestra el diagrama de flujo del Bloque E. El proceso comienza recibiendo la
polilinea y, si no se especifica tamafio, adopta el numero actual de nodos. Se comprueban dos casos
limite para devolver la curva sin cambios: que haya menos de tres puntos (no hay interior que
redistribuir) o que la longitud total sea practicamente nula (evita normalizar sobre cero). En el caso
general se calcula la longitud de arco acumulada y con ella se crea un nuevo eje de distancias
equiespaciadas desde O hasta la longitud total. Las coordenadas x e y se reconstruyen por
interpolacion lineal a lo largo de ese eje, y finalmente se reafirman los anclajes copiando exactamente
los extremos originales.

El resultado conserva la misma forma, pero con nodos homogéneos por arco, lo que estabiliza el
spline del Bloque F al evitar sobre-muestreos locales y mejorar la regularidad de tangentes y
curvaturas. El coste es lineal en el nimero de puntos y la implementacion es robusta al basarse
unicamente en distancias euclideas e interpolacion por tramos.
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Entrada curva Qred y

n_puntos

T

Si n_puntos no existe
definir n_puntos = N

N

Mo

si Caleular arco acumulado 5

O

— '

salida copia sin cambios Construir eje s_new
equiespaciado de Da L

Interpolar X sobre s_new

Interpolar ¥ sobre s_new

Formar ReconX e ¥

T

Fijar extremos iguales a los

ariginales

Salida curva remallada R

J

Figura 3.31. Diagrama de flujo del remallado por arco. A partir de la curva
enderezada QT® y del tamariio deseado, el algoritmo reparametriza por longitud de
arco, genera un eje equiespaciado, interpola las coordenadas sobre ese eje y fija los
extremos, devolviendo una curva con los puntos uniformemente distribuidos.

3.8.2 Matematica asociada

Tras el enderezado y la reduccion, partimos de la polilinea tras el Bloque D tal que:
Q" = {q*}5" N = neen (34)

Construimos la longitud de arco acumula tal como hacemos en el Bloque A (11):
so=0, s;=Xk=1 llgx —qiall, i=1,..,N—-1 (35)

Donde s; mide cuanta distancia real llevamos recorrida sobre la polilinea al llegar a q; y
obtenemos la longitud total L = sy_;
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Tras esto normalizamos la distancia recorrida a [0, 1]:
Si

ti:;, i=0,.,N—1 (t,=0,ty_1=1) (36)

Ahora elegimos N parametros equiespaciados en el intervalo para que cada nuevo nodo este a la
misma distancia que el anterior:

J = - 37
s =-—, j=0,.,N-1 (37)

Por ultimo, solo nos queda definir la nueva malla R = {rj}jyz_ol evaluando la polilinea Q"¢ en

new
S

;" mediante la interpolacion lineal a trozos sobre:

rj = (interp(t, A SI), interp(t, qy, s ) Ry, = q5°%, Ry_1 = q%4 (38)

Como resultado obtenemos R que tiene la misma cantidad de puntos que Q"¢%, pero distribuidos
homogéneamente por arco, estabilizando el spline que vamos a construir a continuacioén

3.8.3 Explicacion del codigo

En la Figura 3.32 muestra la funcion principal remallar equispaciado aplica el remallado
propiamente dicho. Lo primero que hace es copiar la polilinea y tratar los casos degenerados: si hay
menos de tres puntos, devuelve una copia sin tocar porque no hay interior que redistribuir; si
n_puntos no se especifica, conserva el tamafio actual para “solo reordenar” por arco; y si la longitud
total L que devuelve acum_arco es practicamente nula, también devuelve la curva sin cambios para
evitar una normalizacidon sobre cero. Con la curva valida, toma el s acumulado, extrae la longitud
total y construye un nuevo eje de arco equiespaciado s_new (37) con tantos nodos como n_puntos.
A continuacion, interpola independientemente las coordenadas x e y sobre ese eje: np.interp [16] se
usa aqui como interpolacidn lineal a trozos sobre la polilinea, que equivale a “caminar” por la curva
y colocar un punto cada As constante.

Finalmente, ancla los extremos asignando Q/0/=P/0] y Q[-1]=P[-1]: esto asegura que el inicio
y el final, que actlian como referencias geométricas y de rumbo, se conserven exactamente. El
resultado R (38) tiene el mismo nimero de puntos que se pidio, pero ahora equiespaciados por arco,
lo que estabiliza la construccion del spline del Bloque F
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P = np.asarray(P, float)
if len{P) < 3:
return P.copy()
if n_puntos is Mone:
n_puntos = len(P)

s = _acum_arco(P)

L = s[-1]

if L <« 1e-12:
return P.copy()

n_puntos)
= np.interp(s_new, s, F[:,8
np.interp(s_new, s, P[:,1

np.column_stack([x, y1)

_new = np.linspace(8.@, L, p
[:,8])
[:,1])

5

&= M
1

Q[e]
QL-1]

return Q

]
—

s ]
—

P
PL-1]

Figura 3.32. Implementacion de remallar _equiespaciado. La rutina reparametriza la
polilinea por longitud de arco: calcula el arco acumulado (_acum_arco), genera un
eje equiespaciado s_new, interpola por tramos las coordenadas x e y sobre ese eje y
fija los extremos para conservar los anclajes. Si la curva es demasiado corta o tiene
menos de tres puntos, devuelve una copia sin cambios.

La funcion auxiliar _acum_arco en la Figura 3.33 calcula la longitud de arco acumulada de la
polilinea P. Recorre la lista de puntos y, para cada indice, suma la distancia euclidea al punto anterior.
El resultado es un vector s que empieza en cero y termina en la longitud total; esto es la base para
volver a parametrizar por arco sin cambiar la forma.

def _acum_arco(P):
s = np.zeros(len(P))
for 1 in range(l, len(P)):
s[i] = s[i-1] + np.linalg.norm{P[i]-P[i-1])
return s

Figura 3.33. Funcion auxiliar _acum_arco. Recorre la polilinea sumando la distancia
entre puntos consecutivos para construir el vector de longitud de arco acumulada,
base del remallado por arco del Blogque E.

3.8.4 Resultado del bloque

La Figura 3.34 ilustra que el Bloque E no cambia la forma, solo reparametriza la pasada. Tras el
enderezado y la reduccion, los puntos pueden estar concentrados en algunas zonas y escasos en otras.
El remallado vuelve a distribuir el mismo nimero de puntos a lo largo de la trayectoria. Por eso las
dos curvas se superponen casi por completo, mientras que los marcadores azules aparecen
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regularmente espaciados a lo largo de toda la trayectoria. Este reparto estabiliza el spline del Bloque
F, evita que haya tramos donde se solapen o se crucen puntos vecinos tras varias paralelas.

Blogue E — Remallado por arco (misma forma, puntos equiespaciados)

Figura 3.34. Efecto del remallado por arco. En naranja se muestran los puntos y la
polilinea antes del remallado; en azul, después. La geometria es la misma, pero los
nodos quedan equiespaciados por longitud de arco y se mantienen los extremos
anclados.

3.9 Construccion del spline cibico — Bloque F (R = S(t))

3.9.1 Descripcion del algoritmo

A partir de la malla R obtenida en el Bloque E, este bloque construye la trayectoria suave de
guiado como un spline cubico paramétrico que interpola exactamente por esos puntos. El resultado
es una curva paramétrica suave C? estable y facil de muestrear, que respeta los puntos de control
dejando una ruta suave y continua lista para el guiado.

El diagrama de flujo Figura 3.35 muestra como el proceso parte de los puntos remallados R. Si
hay menos de dos, no puede construirse un spline y se devuelve una copia sin cambios. En caso
contrario, se calcula la longitud de arco acumulada y se normaliza a un parametro t € [0,1]. Con ese
parametro se interpolan por separado x e y mediante splines cubicos obteniendo la curva
paramétrica S(t) = (Sx(t),Sy(t)). Finalmente se crea una malla uniforme de evaluacion y se
evaltia § en esos nodos para producir la trayectoria densa, que es la que se entrega al guiado.
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Entrada puntos remallados
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Figura 3.35. Diagrama de flujo de la construccion del spline ciibico. A partir de los
puntos remallados R y del tamaiio de evaluacion, se parametriza por arco, se
construyen los splines y se obtiene la trayectoria densa C.

3.9.2 Matematica asociada

Primero antes de construir el spline debemos calcular la longitud de arco como hicimos
anteriormente para los puntos nuevos r; = (x;, y;):
S0=0, 5=kt Ir—mall, i=1..,N=-1 (39)

Y como antes calculamos la longitud total L = sy_; y normalizamos:
Si

ti:f’ i=0,.,N=1 (t, =0,ty_1 =1) (40)

Ahora ya podemos construir los splines ciibicos que necesitamos para obtener la trayectoria:
x(t) = Sx (1), y(t) = S (t) (41)

Ya con los splines podemos definir la curva paramétrica:
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S(t) = (S:(6),5,(t)) te[01] (42)

Por tltimo, solo nos queda representar la nueva trayectoria. Para ello primero vamos a definir los
puntos en los que evaluaremos el spline segiin un nimero de puntos de evaluacion:

4= nem]u—l’ J=0, i nepg — 1 (43)
Con esto obtenemos la trayectoria final:
¢ ={s@ye (44)

3.9.3 Explicacion del codigo

La funcién de la Figura 3.36 recibe la malla remallada R y devuelve una trayectoria densa y
suave lista para el guiado. Lo primero que hace es proteger casos degenerados: si entran menos de
dos puntos, no hay nada que interpolar y devuelve una copia. A continuacion, construye el parametro
por arco. Recorre los puntos acumulando distancias entre consecutivos y normaliza por la longitud
total; el resultado es un vector t monétono en [0,1], lo que evita concentraciones de curvatura por
una parametrizacion mala.

Con ese t crea dos splines cubicos interpolantes, uno para x y otro para y (41), usando
scipy.interpolate. CubicSpline [17]. El spline es C?en los nudos interiores y ajusta suavemente las
dos primeras celdas en los extremos, lo que en la practica reduce oscilaciones spurious sin obligarnos
a estimar tangentes.

Por ultimo, fija una malla de evaluacion (43) uniforme y evaltia ambos splines ahi. Esa cuadricula
uniforme en /0, 1]/, al estar el pardmetro ligado al arco, produce una nube de puntos regular a lo largo
de la curva. La funcion devuelve la matriz C = {(Sx(tj), Sy(tj)} (42) (44) que es la trayectoria final.

def spline_desde_puntos(puntos, n_eval=288):

p = np.asarray(puntos, float)
if len(p) < 2: return p.copy()
t = np.zeros(len(p))
for i in range(l, len(p)):
t[i] = t[i-1] + np.linalg.norm(p[i]-p[i-1])
t = t/(t[-1]+1le-12)
csx = CubicSpline(t, p[:,8]); csy = CubicSpline(t, p[:,1])
te = np.linspace(®, 1, n_esval)
return np.column_stack({[csx(te}, csy(te)])

Figura 3.36. Implementacion de spline desde puntos. La funcion calcula el
parametro por longitud de arco normalizada, construye dos CubicSpline (en x e y) y
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evalua el spline en una malla uniforme de t para devolver la trayectoria densa de
guiado.

La funcion de la Figura 3.37 es la funcion principal del proceso completo y, en particular,
es donde se ejecuta el Bloque D dentro del bucle de pasadas. Comienza creando una base de
control equiespaciada por arco con n_ctrl max de puntos y calculando sus normales; sobre
esa base fija una referencia de curvatura (33) (K _REF) que se usara para comparar la
complejidad de cada pasada. A continuacion, itera tantas veces como paralelas se quieran
generar. En cada iteracion desplaza la base por sus normales la distancia fijada (Bloque B)
y, salvo que se desactive para la primera, endereza localmente con
aplicar_enderezado local gs (Bloque C); el nimero de iteraciones del enderezado y el peso
hacia la recta (wR) se hacen crecer con el progreso de pasadas para ir forzando la rectitud
cuando la geometria ya esta limpia.

Con la polilinea enderezada de esa iteracion, calcula curvatura media y maxima y, con
ellas, decide el nimero objetivo de puntos de control mediante nctrl por curvatura: si la
curva aun gira, conserva mas puntos; si ya es docil, reduce. Acto seguido aplica la histéresis:
impide que el nimero crezca respecto a la pasada anterior y limita la caida maxima permitida
(por porcentaje y por minimo absoluto), de modo que el tamafio de la malla descienda de
forma estable y predecible. Con el tamafio final, remalla por arco a exactamente esos puntos
(Bloque E), anclando extremos para estabilidad, y luego reconstruye un spline cubico de
evaluacion para visualizar y registrar la pasada (Bloque F). nodos de control de cada pasada
y las métricas registradas, dejando listo el informe y las figuras del capitulo.

Figura 3.37. Funcion generar paralelas_adaptativas. Orquesta el flujo de los
Blogues B—C—D—E—F: desplazamiento por normales, enderezado local,
medicion de curvatura y asignacion adaptativa de puntos con histéresis, remallado
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por arco y reconstruccion spline; todo ello repetido pasada a pasada y con opcion de
encadenado.

3.9.4 Resultados del bloque

La imagen de la Figura 3.38 compara la linde original con la primera pasada paralela. Los
marcadores morados son los nodos obtenidos tras el enderezado (C), la reduccion adaptativa (D) y
el remallado por arco (E). El trazo azul es el resultado del Bloque F: el spline ctibico paramétrico
construido sobre parametro de arco normalizado. Se aprecia que el spline pasa exactamente por cada
punto de control y “planchan”. En los tramos casi rectos ambas trayectorias practicamente coinciden;
en las zonas de mayor giro, el spline suaviza la transicion manteniendo el rumbo y la separacion
respecto a la original, dejando una trayectoria apta para el guiado.

Original vs PRIMERA paralela — polilinea de control vs spline cibica

Figura 3.38. Curva original (negro) frente a la primera paralela generada tras C—
D-E: se muestran los puntos de control (morado) y el spline ciibico que los interpola
(azul).

3.10 Funciones auxiliares

En este apartado reunimos las funciones auxiliares que sostienen el flujo de trabajo, pero no
constituyen, por si mismas, un bloque del algoritmo (A-B-C—-D-E-F).

3.10.1 Pedir parametros

Esta funcion de la Figura 3.39 crea una pequeia interfaz modal con Tkinter. Primero oculta la
ventana raiz (root.withdraw), y a continuacion abre seis cuadros de didlogo con simpledialog para
leer, con validacion minima, los parametros que alimentan al pipeline:

o cantidad (entero > 1): cuantas paralelas generar.

e direccion (entero, tipico +1 derecha, —1 izquierda): signo del desplazamiento.

e SM y STM (reales > 0.1): solape y zona maximos sin tratar, que acotan los desplazamientos
en el enderezado.

e sep (real > 0.1): separacion entre pasadas

e n_ctrl (entero > 5): tamano inicial de la malla de control.

Cada cuadro fija un valor inicial (initialvalue) comodo para pruebas y un minimo (minvalue) para
evitar entradas vacias o no fisicas. Al terminar, destruye la ventana (root.destroy) y devuelve una
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tupla con los seis valores. Es una utilidad de entrada/salida: no altera la geometria ni la logica del
algoritmo.

def pedir_parametros_usuario():
root = tk.Tk(); root.withdraw()
cantidad = simpledialog.askinteger(“Parametro”, "Numero de paralelas a generar:”, minvalue=1, initialvalue=3@)
direccion = simpledialog.askinteger("Parametro”, "Direccion (+1 = derecha, -1 = izquierda):", initialvalue=1)
SM = simpledialog.askfloat("Parametro”, "Solape maximo (metros):", minvalue=8.1, initialvalue=1.8@)
STM = simpledialog.askfloat("Parametro”, "Zona maxima sin tratar (metros):”, minvalue-8.1, initialvalue=1.8)
sep = simpledialog.askfloat("Parametro”, "Distancia entre paralelas (metros):", minvalue=8.1, initialvalue=4.8)
n_ctrl = simpledialog.askinteger("Parametro”, "Puntos de control del spline:", minvalue=5, initialvalue=38)
root.destroy()
return cantidad, direccion, SM, STM, sep, n_ctrl

Figura 3.39. Funcion pedir_parametros_usuario. Didlogo ligero en Tkinter para
recoger los pardmetros de ejecucion: n°de paralelas, direccion, limites agronomicos
(SM/STM), separacion entre pasadas y n° inicial de puntos de control.

3.10.2 Cargar trayectoria

En la Figura 3.40 se muestra como la rutina abre el archivo con codificacion UTF-8 y
errors="ignore" para tolerar caracteres ajenos a ASCIIL. Descarta la primera linea ya que es una
cabecera y recorre el resto; para cada linea elimina espacios (strip()), separa por el punto y coma
(split(';')) y convierte cada campo a float tras sustituir la coma decimal por punto (replace(’,’, ")).

Con esa comprension se construye una lista de pares (x,y) que finalmente se convierte a numpy
con tipo float. El resultado es una polilinea tal cual viene del fichero, lista para pasar al muestreo por
arco y al resto de bloques.

def cargar_curva(path_txt
with open(path_txt, "r", enceding="utf-8", errors="ignore") as f:
L = f.readlines()[1:]
puntos = [(float(a.replace(’,’, "."))}, float(b.replace(’',’, "."}))
for a, b in (l.strip().split(';") for 1 in L)]
return np.array(puntos, float)

Figura 3.40. Funcion cargar _curva. Lectura robusta de un fichero .txt con
coordenadas en formato x;y (cabecera en la primera linea). Normaliza comas
decimales a punto y devuelve un np.array de tamaiio NX2N en coma flotante.

3.10.3 Plot de los resultados

La Figura 3.41 es la funcion que va a graficar los resultados obtenidos de nuestro algoritmo.
Dibuja la linde original en negro y superpone los puntos de control iniciales en rojo. Para cada
pasada, toma de resultados los puntos desplazados por la normal y los enderezados y, segun los flags,
los pinta como nubes (naranja y azul, respectivamente). Ademas, traza la trayectoria final de esa
pasada (el spline) como una linea azul clara. Fija la misma escala en ambos ejes, afade cuadricula
suave y ajusta margenes. Con una sola figura se ve, de un vistazo, el antes (original), el proceso
(desplazamiento y enderezado) y el resultado (spline) de todas las pasadas.
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def plot_resultados(curva_original, resultados, titulo_base
pintar_despl=True, pintar_ender=True, s_pts=12)

plt.figure(figsize=(
plt.plot(curva_original[:,8], curva_original[:,1], 'k-', Llw=2, Label="Curva original™)
pco = resultados["puntos_control_original™]
plt.scatter(pco[:,e], pco[:,1], c="red’, s=45, lagbel="Puntos control orig.”, zorder=5)
paralelas = resultados["paralelas”]
PDL = resultados["puntos_desplazados_lista”]
PEL = resultados["puntos_enderezados_lista"]
for i, par in enumerate(paralelas)

if pintar_ender:

plt.scatter(PEL[1][:,8], PEL[i][:,1], color="blue’, s=s_pts, alpha=@.75,
Label="Puntos enderezados"” if i == & else "")
plt.plot(par[:,8], par[:,1], color="royalblue’, alpha=8.25, Lw=1.8,
Label="Paralelas" if 1 == 8 else "")

plt.title(titulo_base)
plt.axis( equal’); plt.grid(True, alpha=06.3); plt.legend(); plt.tight layout(); plt.show()

Figura 3.41. Funcion plot_resultados: visualizacion comparada de la curva original,
los puntos de control, los puntos desplazados y enderezados de cada passada y los
splines finales que construyen las paralelas.

3.10.4 Plot de las métricas

La Figura 3.42 es la funcidon que va a graficar el nimero de puntos usado en cada pasada y lo
dibuja frente al indice de paralela. Los ejes se rotulan con la paralela i y n.:,;, se activa cuadricula
suavey tight layout ajusta margenes. El resultado permite ver de un vistazo la reduccion escalonada
de puntos a medida que la trayectoria se va enderezando.

def plot_metricas(resultados):
tiempos = resultados["tiempos_por_paralela”]
nctrl = resultados["n_ctrl_hist"]
idx = np.arange(l, len(nctrl)+1)

plt.figure(figsize=(12, 4.5))

plt.step(idx, nctrl, where="mid', Lw=2.8)

plt.scatter(idx, nctrl, s=35, zorder=3)

plt.xlabel("Paralela (i)")

plt.ylabel("n puntos de control (n_ctrl)")

plt.title("Reduccion adaptativa de puntos de control por paralela™)
plt.grid(True, alpha=0.3); plt.tight layout(); plt.show()

Figura 3.42. Funcion plot_metricas: evolucion del numero de puntos de control por
pasada.

3.10.5 Main

La Figura 3.43 es la funcion main. Este main acttia como “lanzador” de la demostracion. Primero
carga la linde desde el archivo introducido y pide por GUI los parametros operativos (nimero de
pasadas, direccion, SM, STM, separacion y tamafio inicial de malla).

A continuacion, fija la configuracion de la reduccion adaptativa por curvatura: cotas de puntos
(N_CTRL MAX, N CTRL MIN), los parametros del planificador (W_CURV=0.6,
BETA CURV=I1.6) y la histéresis de caida para limitar la reducciéon méxima por pasda
(FRAC_DROP MAX, DROP MIN ABS). Con todo ello llama a generar paralelas adaptativas,
que orquesta los bloques A-B—C—D-E—F sobre cada pasada; después imprime el tiempo total y
dibuja, con plot resultados y plot_metricas, la geometria final y la evolucion de n..,;. En suma, este
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punto concentra la ejecucion de extremo a extremo y deja listos los graficos que documentan el
comportamiento del algoritmo con los pardmetros seleccionados.

def main()
curva_original = cargar_curva(“tri_linde.txt")
print(f"Cargados {len(curva_original)} puntos de la curva original.”)

cantidad, direccion, SM, STM, sep, n_ctrl_gui - pedir_parametros_usuario()
print(f"Cantidad={cantidad} | sep={sep} | dir={direccion} | SM={SM} | STM={STM} | n_ctrl={n_ctrl_gui}”)

N_CTRL_MAX = n_ctrl_gui
N_CTRL_MIN = 2

W_CURV = 0.6
BETA_CURV = 1.

FRAC_DROP_MAX - ©.15
DROP_MIN_ABS - 2
ENCADENADO = True
ENDEREZA_PRIMERA = True

resultados = generar_paralelas_adaptativas(curva_original=curva_original,cantidad=cantidad, direccion=direccion, SM=SM, STM=STM, sep=sep,
n_ctrl_max=N_CTRL_MAX,n_ctrl_min=N_CTRL_MIN,w_curv=W_CURV, beta_curv=BETA_CURV,
frac_drop_max=FRAC_DROP_MAX, drop_min_abs=DROP_MIN_ABS, encadenado-ENCADENADO, endereza primera=-ENDEREZA_PRIMERA

)

print(f"\nTiempo total: {resultados[’tiempo_total’]:.2f} s")

titulo = (f"Paralelas con enderezado encadenado (GS local + remallado adaptativo por CURVATURA, sin EMA)
[cantidad} paralelas | sep={sep} m | SM={SM} m | STM={STM} m | "

Mmin={N_CTRL_MIN}, Nmax-{N_CTRL_MAX}, "
w={W_CURV}, beta={BETA_CURV}, dropldnax({DROP_MIN_ABS}, {FRAC_DROP_MAX:.e%}[Jn_prev)")
plot_resultados(curva_original, resultados, titulo_base-=titule)

plot_metricas(resultados)

Figura 3.43. Funcion main(): lectura de la trayectoria, captura de parametros,
configuracion de la reduccion por curvatura y ejecucion del flujo de trabajo
completo, con generacion de grdficos e informe de tiempos.
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Capitulo 4: Resultados obtenidos tras la aplicacion del
algoritmo

Dentro de este capitulo se van a mostrar los resultados obtenidos tras la aplicacion del algoritmo
presentado y desarrollado en el capitulo anterior. Estos resultados son los obtenidos tras aplicar el
codigo que se ha explicado a cuatro trayectorias reales recogidas de una finca.

Para estas simulaciones hemos configurado unos parametros por defecto:
e N.°paralelas: 30
e Distancia entre paralelas: 4
e Zona sin tratar maximo: 1
e Solape maximo: 1
e [teraciones: 60
e Puntos de control: 30

4.1 Curval

Como podemos observar en la figura 4.1 disponemos de una trayectoria simple con una Uinica curva
suave.

Aplicando el algoritmo a esta trayectoria con los parametros por defecto obtenemos la Figura 4.2
donde podemos observar que primero pasamos de una trayectoria que se define por miles de puntos a
unicamente 30 puntos con los que el algoritmo trabaja. Se puede apreciar como poco a poco la
curvatura va desapareciendo y cuando llegamos al tltimo tercio de la trayectoria vemos como se realiza
la reduccidn de puntos y esto consigue que consigamos el enderezado total en la paralela n® 23. En la
Figura 4.3 se puede observar una grafica que indica como se van reduciendo los puntos en cada
trayectoria y se aprecia al principio un pequefio escalon para la primera paralela y luego tenemos una
zona plana donde principalmente se esta aplicando el enderezado, a partir de la paralela n° 20 vemos
como se vuelve a reducir el nimero de puntos hasta alcanzar el nimero minimo cuando ya hemos
alcanzado la recta por completo.

También podemos ver el resultado de aplicar el mismo algoritmo, pero en la direccion contraria en
la Figura 4.4 donde tenemos un resultado casi idéntico donde se aprecia poco a poco como va
desapareciendo la curvatura y en el mismo caso que anteriormente obtenemos el enderezado total en
la paralela n° 23.
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En la Figura 4.4 se han modificado los parametros para la curva indicando un solape y una zona
sin tratar de 0.25. Se puede observar como tenemos una pequefia desviacion que produce un solape
total entre las paralelas n°32 y n°33, debido a la reduccion de puntos debido a que el algoritmo esta
detectando una curva muy suave en la que es posible eliminar algin punto y al ser un punto critico tras
solo quedar cinco unicos puntos siendo dos de ellos los extremos. Al eliminar este punto critico
obtenemos un desvio y como solucion vamos a limitar a cinco el nimero minimo de puntos que puede
reducir el bloque de reduccion de puntos. Podemos ver en la Figura 4.5 como ya tenemos un buen
resultado y aunque hemos necesitado mas paralelas hemos resuelto este problema.

— curva ariginal

o 25 ) 7 100 125 150 175 200

Figura 4.1. Representacion grdfica de la curva 1.

-100 50 [ 50 100 150 200 230

Figura 4.2. Resultado de la curva 1 en direccion positva tras aplcar el algoritmo con
los parametros por defecto.
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Reduccion adaptativa de puntos de control par paralela

® puntos de control in_ctrih

1
Pacalela (i)

Figura 4.3. Grafica que muestra la reduccion de puntos que se va realizando a lo
largo de las paralelas en la curva 1.

— Curva origmal

@ Puntos control ong.

«  Puntos enderezados.
Paraielas

-100

Figura 4.4. Resultado de la curva 1 en direccion negativa tras aplicar el algoritmo
con los parametros por defecto.

— Curva original

" ®  Puntos control onig,

- . « Puntos enderezados
. Paraletas.

200 100 o 100 200 %0

Figura 4.5. Representacion de la Curva I con SM=0.50, STM=0.50 y 50 paralelas.
Se puede observar un solape total.



Figura 4.6. Representacion de la Curva 1 con SM=0.50, STM=0.50 y 50 paralelas y
con 5 puntos minimo tras la reduccion de puntos.

4.2 Curva 2

En la Figura 4.7 se aprecia la forma de esta curva donde ya vemos una trayectoria con mas
curvaturas y cambios de sentido. En la Figura 4.8 vemos el resultado con los parametros por defecto
donde se pueden apreciar varias zonas donde se produce mucho solape o zonas sin tratar. Esto es efecto
se produce por dos motivos, el primero es que al ser una trayectoria con tantas curvas y pronunciadas
necesitamos un numero mayor de puntos para representarla, el segundo punto que afecto a este
resultado es el de la reduccion de puntos por el mismo caso que hemos visto en la curva anterior. Para
solucionar este problema en esta trayectoria con tantas curvas hemos necesitado un nimero minimo
de ocho puntos para la reduccion de puntos y un nimero de puntos de control inicial de cuarenta para
representar la trayectoria. En la Figura 4.9 vemos el resultado tras modifica el nimero minimo de
puntos para el enderezado y vemos que conseguimos el enderezado total en la paralela n®17. La Figura
4.10 indica como se van reduciendo los puntos en esta trayectoria teniendo una zona plana y luego tras
tener un buen enderezado se produce la reduccion de puntos.

En la Figura 4.11 tenemos el resultado de la curva en la otra direccion donde obtenemos el
enderezado total en la paralela n°17

Figura 4.7. Representacion grdfica de la curva 2.
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— Curva cngmal

@ Puntos control orig

« Puntos enderezados
Foralelas

200 100 13 1% 200 0 0 500

Figura 4.8. Resultado de la curva 2 en direccion positiva tras aplcar el algoritmo con
los parametros por defecto.

— curva original

@ Puntos control arig.

+ Puntos enderezados
Puraletas

200 100 o 100 200 ) e 500

Figura 4.9. Resultado de la curva 2 en direccion positva con un numero minimo de
ocho puntos para la reduccion de puntos y un numero puntos de control de cuarenta.

H

)
Faraiela (i}

Figura 4.10. Grdfica que muestra la reduccion de puntos que se va realizando a lo
largo de las paralelas en la curva 2.
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100 ° 1% 200 %0

Figura 4.11. Resultado de la curva 2 en direccion negativa con un niimero minimo de
ocho puntos para la reduccion de puntos y un numero puntos de control de cuarenta.

4.3 Curva 3

En la Figura 4.12 vemos la forma de la curva donde aqui tenemos una curva bastante cerrada
seguida deuna curva bastante pronunciada. En la Figura 4.13 vemos el resultado con los pardmetros
por defecto donde se pueden apreciar que a partir de cierta paralela se produce un descontrol debido,
como hemos visto anteriormente, al nimero minimo de puntos tras la reducciéon de puntos. En la
Figura 4.14 vemos el resultado donde hemos tenido que limitar el nimero minimo de puntos de la
reduccion a diez puntos, hemos tenido que aumentar el nimero de paralelas a generar ya que se aprecia
que se consigue el enderezado en la paralela n°46. En la Figura 4.15 indica como se van reduciendo
los puntos en esta trayectoria teniendo una zona plana y luego tras tener un buen enderezado se produce
la reduccion de puntos siendo esta como se aprecia en los escalones bastante brusca.

En la Figura 4.16 vemos el resultado en la otra direccion donde podemos percibir en las primeras
paralelas donde se encuentra la curva mas cerrada se sobrepasa el solape maximo introducido, esto se
produce debido a que estamos en una zona con un tramo de radio muy reducido, esto es una
consecuencia geométrica de desplazar una curva muy cerrada ya que, aunque el algoritmo no permite
desplazar el punto mas del limite la propia geometria de las paralelas favorece el solape, con este
detalle conseguimos el enderezado total en la paralela n°39.
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— Curva original

200

—200 —100 o 100 200

Figura 4.12 Representacion grdfica de la curva 3.

— curva arignal
@ Puntos control ong.
«  Puatos enderezados

paralelas

150

Figura 4.13. Resultado de la curva 3 en direccion positva tras aplcar el algoritmo
con los parametros por defecto.

— Curva orignal
., @ Puntos control orig.
o, « Puntos enderezados
1350 Puraletas.
100
0
o
50
-100
130
200
400 300 200 100 o 100 200 300 400

Figura 4.14. Resultado de la curva 3 en direccion positiva con un numero minimo de
diez puntos para la reduccion de puntos.
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Reduccion adaptativa de puntos de control por paralela

[ 0 ) ) W 0

Figura 4.15 Grdfica que muestra la reduccion de puntos que se va realizando a lo
largo de las paralelas para la curva 3.

Figura 4.16 Resultado de la curva 3 en direccion negativa con un nimero minimo de
diez puntos para la reduccion de puntos.

4.4 Curva 4

En la Figura 4.17 vemos la tultima trayectoria que vamos a ver, donde se aprecia que esta compuesta
por dos curvas pronunciadas. La Figura 4.18 muestra el resultado con los parametros por defecto
cambiando a cincuenta el nimero de paralelas generadas ya que conseguimos el enderezado total en
la parelala n°47, al tener curvas bastante abiertas esta trayectoria no produce problemas igual que la
curva 1. La Figura 4.19 muestra el resultado del proceso de reduccién de puntos, donde se puede
apreciar que la reduccion de puntos se produce tarde ya que el proceso de enderezado dura bastantes
paralelas.

En la Figura 4.20 tenemos el resultado en la otra direccion donde obtenemos el enderezado total
en la paralela n°47
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Figura 4.17. Representacion grdfica de la curva 4

-200

-300

— curva original

@ Puntos control ong

 Puntos enderezados
Paralelas

200

o 200 00 600

Figura 4.18. Resultado de la curva 3 en direccion positva tras aplcar el algoritmo con

los parametros por defecto.

e puntes de cantrol (n_etrl)
B

Reduccién adaptativa de puntos de cantrol por paralela

Paraleta i)

Figura 4.19 Grdfica que muestra la reduccion de puntos que se va realizando a lo
largo de las paralelas en la curva 4
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@ Puntos contral orig
+ Puntos enderezados

Poralelas

Figura 4.20 Resultado de la curva 4 en direccion negativa con un numero minimo de

diez puntos para la reduccion de puntos.
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Capitulo 5: Conclusiones y lineas futuras

Este trabajo ha presentado un flujo de trabajo completo y coherente para transformar una trayectoria
agricola medida en campo en una familia de pasadas paralelas que tienden a la recta, respetando de
forma explicita los limites agrondomicos de solape maximo (SM) y zona sin tratar maxima (STM).

El proceso se articula en seis bloques (A—F): muestreo por arco, paralelas por normales, enderezado
local, reduccion adaptativa de puntos, remallado equiespaciado y construccion del spline cubico para
guiado. La eleccion de splines cubicos paramétricos con parametro de arco ha sido clave para
garantizar suavidad, robustez y evaluaciones densas con un coste moderado.

En los resultados experimentales sobre trayectorias reales, el algoritmo genera pasadas con
separacion constante, suaviza ondulaciones locales y converge progresivamente hacia trayectorias
rectas. Ademas, la combinacion C—-D-E-F (enderezado — reduccion adaptativa — remallado —
spline) conseguimos el objetivo de obtener trayectorias rectas de forma rapida y eficiente.

Aportaciones principales del trabajo:

1. Enderezado local eficiente (Bloque C):
Se reemplaza la “fuerza bruta” por un ajuste local en la normal de cada punto, que minimiza
una funcidn de coste con términos de longitud, curvatura, alineacion y rectitud, acotada por
una barrera agronomica para SM/STM. Este disefio mantiene la intuiciéon agrondmica, pero
reduce claramente el coste computacional y mejora la estabilidad de la convergencia.

2. Reduccion adaptativa del nimero de puntos (Bloque D):
Tras medir curvatura media y maxima, el sistema decide automdaticamente cuantos puntos de
control son necesarios en cada pasada. Con ello se simplifica la malla sin perder forma, lo
que favorece el objetivo de tender a la recta.

3. Remallado equiespaciado por arco (Bloque E):
Redistribuye los puntos supervivientes sin alterar la forma, mejora la condicion del spline y
previene ondulaciones espurias por sobre-muestreo local. Los extremos se mantienen
anclados para fijar referencias geométricas y de rumbo.

4. Spline ctibico paramétrico (Bloque F):
Con parametro de arco normalizado, el spline interpola exactamente los nodos y garantiza
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suavidad. El numero de puntos de evaluacion controla solo la densidad de muestreo, no la
forma, lo que simplifica la explotacion posterior para guiado.

La metodologia propuesta reduce el nimero de puntos necesarios, mantiene los criterios
agronoémicos dentro de limites realistas y produce trayectorias suaves y evaluables con bajo coste.
Estas propiedades la hacen apta para su integracion en sistemas GNSS de guiado de tractores, donde
se necesita calcular, almacenar y seguir pasadas largas y estables con recursos limitados.

Lineas futuras:

1. Ajuste automatico de parametros
o Sintonia automatica de SM/STM en funcion de radio local estimado.

o Aprendizaje del peso wy de n_min a partir de métricas histdricas (auto—calibracion
por parcela).

2. Control de calidad geométrica en linea

Deteccion temprana de ondulaciones residuales o “dientes” mediante filtros de curvatura y
reajuste local antes del spline final.

3. Robustez a datos GNSS reales:
Inyeccion de ruido y outliers (GNSS)

En resumen, el trabajo consolida una versiéon mejorada y mas practica del método de generacion de
paralelas: mantiene el control agrondmico, reduce la complejidad y entrega trayectorias solidas para
guiado. La experiencia acumulada sugiere que una sintonia adaptativa plenamente automatica y la
robustez a datos reales son las dos direcciones més prometedoras para cerrar el ciclo y llevar el
algoritmo a una explotacion operativa en campo.
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