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Resumen 

En el ámbito de la agricultura, uno de los fundamentos se trata de planificar la trayectoria a realizar 

por un vehículo agrario en parcelas con formas irregulares. En muchos casos, los agricultores empiezan 

a tratar la parcela empezando por una linde que sea recta y trazan el resto de la misma forma. El 

problema surge cuando ninguna linde es recta, en este caso los agricultores realizan el trabajo mediante 

trayectorias curvas. En este trabajo se ha de buscar partir de una trayectoria curva y mediante la 

generación de trayectorias paralelas a la original concluir en una trayectoria que tienda a una recta, 

definiendo así el camino a seguir de los tractores facilitando el trabajo a los agricultores. 

 

Este trabajo presenta un algoritmo que permite generar trayectorias paralelas a una curva base, 

controlando la distancia entre ellas y favoreciendo que cada nueva curva se enderece progresivamente. 

Para ello, se parte de una trayectoria inicial y se van generando nuevas curvas desplazadas mediante 

vectores normales. A cada paso, se reduce gradualmente el número de puntos de control utilizados 

para construir la curva, lo que suaviza los detalles y hace que la trayectoria tienda a una recta.  

 

El sistema se ha implementado completamente en Python, utilizando librerías como scipy y 

matplotlib, y permite ajustar parámetros como el número de pasadas, la distancia entre trayectorias y 

la precisión deseada. Los resultados muestran que, tras varias iteraciones, se generan curvas suaves, 

precisas y cercanas a una línea recta, cumpliendo con los requisitos habituales para el guiado de 

tractores en agricultura de precisión. 

 

PALABRAS CLAVE: Curvas paralelas, cúspides, enderezado, solape, sin tratar, splines, python, 

reducción de puntos. 
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Capítulo 1: Introducción y motivación 

La agricultura de precisión ha experimentado un gran avance gracias a la incorporación de sistemas 

de guiado automático basados en posicionamiento GNSS (Global Navigation Satellite System). Estos 

sistemas permiten que la maquinaria agrícola siga trayectorias predefinidas con gran exactitud, 

reduciendo solapes innecesarios entre pasadas y evitando que queden zonas sin tratar. 

1.1 Contexto 

En este contexto, la generación de trayectorias paralelas a partir de una línea base inicial es una 

herramienta fundamental: 

• Permite cubrir de manera ordenada y completar la superficie agrícola. 

• Optimiza el uso de los recursos (semillas, fertilizantes, pesticidas). 

• Reduce costes y mejora la eficiencia de la explotación agrícola. 

 

No obstante, la forma de las trayectorias tiene un impacto directo en la calidad del trabajo realizado: 

• Los vehículos agrícolas (tractores, sembradoras, pulverizadores, arados,) funcionan de manera 

mucho más eficiente en tramos rectos, donde el avance es uniforme y las desviaciones son 

mínimas. 

• En tramos curvos, el agricultor (o el sistema de guiado) debe realizar giros continuos que 

aumentan la fatiga, provocan desgaste y reducen la velocidad de trabajo. 

• Los solapes y las zonas sin tratar tienden a incrementarse en las curvas, ya que la anchura 

efectiva de trabajo del vehículo en activo se ve afectada por el radio de giro. 

• En términos energéticos, las trayectorias curvas también suponen un mayor consumo de 

combustible debido a las correcciones de dirección y al aumento de la resistencia al avance. 

 

Por tanto, en agricultura mecanizada resulta de gran interés que, aunque la línea base inicial pueda 

contener curvas o irregularidades (por ejemplo, en cabeceras o bordes de parcelas), el proceso de 

generación de paralelas tienda a producir trayectorias rectilíneas en el interior del terreno cultivable.                                
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Esto garantiza pasadas largas, eficientes y más fáciles de ejecutar tanto para el agricultor como para el 

sistema de guiado automático. 

 

1.2  Objetivos y problemática 

     En agricultura, el rendimiento del tractor, y de los vehículos agrícolas en general, es mayor cuando 

trabajan en trayectorias rectilíneas largas y paralelas, ya que permiten mantener un avance uniforme, 

reducir consumos y evitar desviaciones, como hemos explicado anteriormente. Sin embargo, la 

trayectoria base de referencia a partir de la cual se generan las pasadas paralelas no siempre es recta: 

puede presentar curvas, irregularidades o contornos derivados de la forma de la parcela. 

    El objetivo inicial de este tipo de algoritmos es, por tanto, transformar progresivamente una 

trayectoria curva en trayectorias cada vez más rectas, de manera que las últimas paralelas generadas 

tiendan a una línea recta que optimice el trabajo agrícola. 

 
Figura 1.1. Ejemplo esquemático de cómo, a partir de una trayectoria curva 

inicial, el proceso de generación de paralelas y enderezado permite obtener 

trayectorias rectas, más adecuadas para el trabajo del tractor en campo. El paso 

de curvas a rectas no es trivial. Si se desplaza directamente una trayectoria curva 

mediante normales, aparecen problemas importantes. 

 

• Solape máximo: en el interior de las curvas, las trayectorias se solapan demasiado, lo que 

implica duplicar tratamientos y malgastar recursos. 

• Zona sin tratar máxima: en el exterior de las curvas, las trayectorias se separan demasiado, 

dejando franjas de terreno sin trabajar. 

 

Los algoritmos basados en polilíneas intentan corregir este efecto aplicando un enderezado 

iterativo. Sin embargo, presentan limitaciones: 

 

• Necesitan un elevado número de puntos para mantener precisión. 

• No garantizan suavidad en las trayectorias, generando cambios bruscos de curvatura. 

• El enderezado no siempre converge hacia una recta, por lo que las últimas trayectorias 

mantienen cierta curvatura residual. 
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• Trabajan con un número muy elevando de punto haciendo del algoritmo muy poco eficiente y 

con mucha carga computacional que dificultad su posterior implementación 

 

Este trabajo tiene como objetivo desarrollar un algoritmo de generación de trayectorias paralelas 

basado en splines cúbicos, con los siguientes objetivos: 

• Reducir el número de puntos de control necesarios gracias a la flexibilidad del spline. 

• Garantizar suavidad y continuidad en la trayectoria generada. 

• Aplicar un proceso de enderezado progresivo que transforme curvas en rectas de forma gradual. 

• Mantener bajo control los criterios agronómicos de solape máximo (SM) y zona sin tratar 

máxima (STM). 

• Implementar una reducción adaptativa de puntos según se va aplicando el enderezado  

 

En definitiva, el objetivo es ofrecer un método más eficiente y realista que los algoritmos anteriores, 

logrando trayectorias rectilíneas finales que optimicen el guiado automático de tractores en agricultura 

de precisión. 

1.3 Metodología general 

La estrategia adoptada en este trabajo parte de la idea fundamental de transformar trayectorias 

curvas en trayectorias progresivamente más rectas mediante el uso de splines cúbicos y un proceso de 

enderezado iterativo como se refleja en la Figura 3.2. 

En términos generales, la metodología propuesta se basa en los siguientes pasos:  

 

1. Selección de puntos de control: a partir de la trayectoria base inicial 𝑷, se extrae un conjunto 

reducido de puntos 𝑸, que describen su forma de manera representativa. 

 

2.  Generación de paralelas: se calculan normales en cada punto y se desplazan los puntos de control 

para construir trayectorias paralelas iniciales. 

 

3.  Enderezado local: mediante una función de coste que combina criterios geométricos (longitud, 

curvatura, alineación) y agronómicos (solape máximo SM, zona sin tratar máxima STM), los 

puntos de control se ajustan iterativamente buscando el menor valor de la función de coste. 

 

4.  Reducción adaptativa del número de puntos de control: Tras enderezar cada pasada se mide la 

suavidad lograda y, en función de ella, se decide automáticamente cuántos puntos de control 

usar para el spline de esa misma pasada. La reducción es progresiva y estable: nunca aumenta 

respecto a la pasada anterior y limita la caída por iteración para evitar saltos bruscos. En zonas 

con curvas cerradas se mantienen más puntos (decisión conservadora), mientras que en tramos 

casi rectos se reduce el número para ganar eficiencia y evitar ondulaciones innecesarias.  

 

5.  Remallado equiespaciado: tras el enderezado, los puntos de control se redistribuyen para evitar 

concentraciones locales y mantener homogeneidad a lo largo de la trayectoria. 
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6.  Construcción del spline cúbico: con los puntos corregidos se genera un spline cúbico 

paramétrico que asegura continuidad en posición, tangentes y curvatura, obteniendo así 

trayectorias suaves y evaluables con pocos puntos. 

 

7.  Iteración progresiva: el proceso se repite para cada nueva paralela, de modo que las trayectorias 

tienden a ser rectilíneas de manera progresiva. 

1.4 Estructura del documento 

      El presente Trabajo de Fin de Grado se organiza en 5 capítulos, siguiendo una secuencia lógica 

que va desde la contextualización inicial hasta las conclusiones: 

 

     Capítulo 1. Introducción y motivación del trabajo: presenta el contexto de la agricultura de 

precisión, los problemas asociados a la generación de trayectorias paralelas, los objetivos del trabajo 

y la metodología general propuesta 

 

    Capítulo 2. Antecedentes y trabajos previos: revisa el principal método existente para la generación 

de trayectorias en agricultura de precisión. 

 

    Capítulo 3. Metodología propuesta: escribe en detalle el nuevo algoritmo desarrollado y como se ha 

implementado prácticamente en Python. 

 

Capítulo 4. Resultados y análisis: muestra los resultados obtenidos en diferentes escenarios de 

prueba con trayectorias reales. 

 

Capítulo 5. Conclusiones y líneas futuras: resumen de las aportaciones más relevantes del trabajo y 

planteamiento de posibles líneas de mejora y continuidad. 
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Capítulo 2: Antecedentes y trabajos previos  

La agricultura de precisión ha impulsado el desarrollo de diferentes métodos para la generación de 

trayectorias que guíen el trabajo de máquinas agrícolas. Desde las primeras técnicas basadas en 

polilíneas simples hasta los algoritmos más recientes, el objetivo ha sido siempre el mismo: cubrir de 

manera uniforme y eficiente toda la parcela, evitando solapes excesivos y zonas sin tratar. 

Este capítulo presenta una revisión de los antecedentes y trabajos previos relacionados con el 

problema de la generación de trayectorias paralelas.  

En primer lugar, se analiza la evolución de los sistemas de guiado en agricultura de precisión y la 

necesidad de trayectorias rectilíneas como referencia de trabajo. A continuación, se revisan los 

métodos tradicionales empleados para generar trayectorias paralelas y sus limitaciones. Finalmente, se 

describe el Trabajo de Fin de Grado de Gabino, que constituye el punto de partida del presente estudio 

y cuya metodología será ampliada y mejorada mediante el principal uso de splines cúbicos.  

2.1 Evolución del guiado en agricultura 

El proceso de mecanización agrícola ha ido acompañado de un interés creciente por mejorar la 

exactitud y la eficiencia del trabajo en el campo. En un primer momento, el guiado de los tractores 

dependía exclusivamente del operario, que debía mantener la alineación del vehículo de manera visual, 

tomando como referencia los surcos, límites del terreno o puntos visibles en la parcela. Este enfoque 

manual resultaba limitado y generaba: 

 

• Solapes innecesarios, debidos a correcciones excesivas de la trayectoria. 

• Zonas sin tratar, como consecuencia de desviaciones acumuladas en pasadas largas. 

• Pérdida de eficiencia en el uso de recursos, ya que los insumos (fertilizantes, semillas, pesticidas) 

no se aplicaban de manera uniforme. 

 

Con la introducción de los sistemas GNSS y más tarde del guiado asistido y automático, se logró 

un avance significativo: ahora el tractor puede seguir con precisión una trayectoria digital predefinida. 

Sin embargo, este avance trasladó el problema hacia otro ámbito: ya no se trata solo de que el tractor 

siga una línea, sino de cómo generar un conjunto de trayectorias de referencia de alta calidad que 

permitan cubrir de forma homogénea toda la superficie cultivada. 

En este contexto surge la importancia de las trayectorias paralelas: 

• Permiten dividir la parcela en pasadas equidistantes, adaptadas a la anchura de trabajo. 

• Garantizan que el terreno quede totalmente cubierto, minimizando solapes (SM) y zonas sin 

tratar (STM). 
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• Favorecen que el tractor realice la mayor parte de su labor en tramos rectos y largos, que son 

más eficientes desde el punto de vista mecánico, energético y agronómico. 

 

Por tanto, la evolución del guiado en agricultura de precisión ha puesto de manifiesto la necesidad 

de diseñar algoritmos que no solo generen paralelas, sino que además tiendan de manera progresiva 

hacia trayectorias rectilíneas en el interior de la parcela, lo que constituye un elemento clave en la 

mejora de la eficiencia agrícola. 

2.2 Métodos tradicionales de generación de curvas paralelas 

La necesidad de cubrir una parcela agrícola mediante pasadas equidistantes ha motivado el 

desarrollo de diferentes procedimientos geométricos para generar trayectorias paralelas a una curva 

base. Entre los métodos más empleados en la bibliografía destacan los siguientes: 

2.2.1 Desplazamiento mediante normales 

Consiste en calcular en cada punto de la curva base 𝒑(𝑠) el vector normal unitario asociado a la 

tangente de la trayectoria, y desplazar el punto una distancia fija d en esa dirección 𝒑𝑑(𝑠) = 𝒑(𝑠) ±

𝑑 ⋅ 𝑛⃗ (𝑠) donde 𝑛⃗ (𝑠) es el vector normal 𝑛⃗ (𝑠) = (−𝑡𝑦(𝑠), 𝑡𝑥(𝑠)) y donde 𝑡 (𝑠) es el vector tangente 

unitario 𝑡 (𝑠) =
𝒑′(𝑠)

‖𝒑′(𝑠)‖
 [1].  

 
Figura 2.1. Generación de una paralela a través del método de desplazamiento 

mediante normales [1]. 

2.2.2 Envolvente de circunferencias 

Una curva paralela a una trayectoria plana 𝒑(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) a una distancia fija d puede definirse 

como la envolvente de una familia de circunferencia congruentes (todas de radio d) cuyos centros 

recorren la curva original [1]. Formalmente si para cada parámetro β situamos un círculo de radio d 

centrado en (𝑥(𝛽), 𝑦(𝛽)), la curva paralela es la envolvente de esa familia. Para una familia genérica 

𝑓(𝑥, 𝑦, 𝛽) = 0, la envolvente satisface el sistema necesario  

 

{
𝑓(𝑥, 𝑦, 𝛽) = 0

𝜕

𝜕𝛽
  ∙  𝑓(𝑥, 𝑦, 𝛽) = 0

  

 

 

(1) 

 

1. Familia de círculos 

Definimos: 
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𝑓(𝑥, 𝑦, 𝛽) = (𝑥 − 𝑥(𝛽))2 + (𝑦 − 𝑦(𝛽))2 − 𝑑2 = 0. 

 

(2) 

 

 

Esta es la ecuación implícita del círculo de radio d centrada en 𝒑(𝛽). La envolvente de esta 

familia cumple 𝑓 = 0  y  
𝜕

𝜕𝛽
= 0 

2. Condición tangencial (
𝜕

𝜕𝛽
= 0) 

Si desarrollamos esta expresión 
𝜕𝑓

𝜕𝛽
= −2(𝑥 − 𝑥(𝛽))𝑥′(𝛽) − 2(𝑦 − 𝑦(𝛽))𝑦′(𝛽) = 0.  

 

(3) 

 

Entonces obtenemos que: 

(𝑥 − 𝑥(𝛽), 𝑦 − 𝑦(𝛽)) ⋅ (𝑥′(𝛽), 𝑦′(𝛽)) = 0.  

 

(4) 

Dando entonces que, el radio del círculo hacia el punto de contacto es ortogonal a la tangente 

de la trayectoria 𝛽. Por tanto, ese radio apunta en dirección normal a la curva 

 

3. Ecuación explicita de la envolvente 

Si 𝑡 (𝛽) = (𝑥′(𝛽), 𝑦′(𝛽))  y ∥ 𝑡 ∥= 𝑥′2(𝛽) + 𝑦′2(𝛽) , una normal unitaria es 𝑛⃗ (𝛽) =
1

∥𝑡 ∥

(−𝑦′(𝛽), 𝑥′(𝛽)). 

Combinando 𝑓 = 0 con la ortogonalidad, el punto de la envolvente queda tal que: 

𝑝𝑑(𝛽) = 𝑝(𝛽) ±  𝑑𝑛(𝛽)  

 

(5) 

 

Esta es la misma expresión que se obtiene por el método del vector normal (apartado 2.2.1), 

mostrando la equivalencia entre ambas definiciones. 

 

En la Figura 2.1 se aprecia se aprecia la envolvente de una familia de circunferencia y como 

tras  
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Figura 2.2. Generación de una paralela a traves del método de envolvente de 

circunferencias [2] 

2.3 Algoritmo del TFG de Gabino 

Previo a nuestro proyecto, Gabino Martínez García desarrollo su Trabajo Final de Grado el cual 

partía de una trayectoria medida y cumplía los siguientes puntos 

 

1. Paralelización por vector normal para generar las paralelas consecutivas. Como resultado de 

esto se obtenía que, cuando se cerraban las curvas según se iban creando las paralelas se 

formaban cúspides que deformaban la trayectoria para resolver esto desarrollo el apartado 

siguiente. 

2. Enderezado iterativo para ir reduciendo la curvatura hasta tender a una recta. El enderezado 

se formaliza como un problema de optimización con restricciones agronómicas: Solape 

Máximo (SM) y Sin Tratar Máximo (STM), que acotan cuánto puede desplazarse cada punto 

respecto a su posición original. 

Para el apartado 1, Gabino aplico el método visto en el apartado 2.2.1 el cual trata de desplazar el 

vector normal de cada punto para conseguir la paralela como resultado. 

 

Para el apartado 2, se desarrolló un algoritmo de enderezado plantado por el Dr. Cesar Palencia de 

Lara y que el propio Gabino llevó a cabo [3].  

 

𝑇 = ∑𝑀𝑖 + 𝑅 
(6) 

 

2.4 Limitaciones detectadas en el método anterior 

El enderezado se formula como la minimización de la ecuación (6) y se resuelve probando, para 

cada punto que forman la trayectoria, varios desplazamientos espaciados entre [STM, SM] a lo largo 

de la bisectriz del ángulo local eligiendo el que más reduzca T. Este procedimiento se repite mediante 

múltiples iteraciones por lo que el coste crece con el número de puntos el número de iteraciones), lo 

que el propio Gabino describió como “solución por fuerza bruta” 
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Como objetivo general vamos a buscar en nuestro proyecto mantener la intuición agronómica y la 

robustez geométrica, buscando reducir el coste drásticamente. Para ello buscaremos: 

 

• Reducir el coste manteniendo SM y STM. Para ello buscaremos reducir el número de puntos 

con los que trabajaremos a través de splines cúbicos. 

• Cambiar “fuerza bruta” por enderezado local eficiente. En vez de probar K candidatos por 

punto, plantearemos actualizaciones locales que reduzcan la longitud local, la energía de 

curvatura y la desalineación de rumbo, manteniendo la penalización asintótica M(t) para 

SM/STM. 

• Evitar la acumulación de error entre pasadas, para ello validaremos cada nueva paralela 

contra la curva original desplazada y estabilizamos la convergencia hacia la recta 
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Capítulo 3: Metodología 

 

Este capítulo describe, desde un punto de vista teórico, la estrategia que seguimos para 

transformar trayectorias agrícolas inicialmente curvas en pasadas progresivamente más rectas y 

suaves, respetando las restricciones agronómicas de solape máximo (SM) y zona sin tratar máxima 

(STM). El eje matemático del método es los splines, y en particular los splines cúbicos, por su 

continuidad en posición, dirección y curvatura (𝐶2), cualidades esenciales para un guiado estable.  

3.1 Introducción a los splines y justificación de los splines cúbicos 

Un spline es una función a trozos que interpola un conjunto de nodos (puntos), garantizando la 

suavidad en las uniones. Para trayectorias en el plano trabajamos con un spline paramétrico: 

 

𝑺(𝑡) = (𝑥(𝑡), 𝑦(𝑡))            𝑡 ∈ [𝑡0, 𝑡𝑁] (7) 

 

Definido sobre un conjunto de nudos 𝑡0 < ⋯ < 𝑡𝑁. En cada intervalo [𝑡𝑘, 𝑡𝑘+1] la curva es un 

polinomio de grado fijo (el orden del spline) y en los nudos se imponen condiciones de continuidad 

de derivadas. 

3.1.1 Splines cúbicos y su construcción 

En un spline cúbico [4] el grado por tramo es de tres. Sea ℎ𝑘 = 𝑡𝑘+1 − 𝑡𝑘  y nodos de datos 

{(𝑡𝑘, 𝑋𝑘)} (para 𝑥) y {(𝑡𝑘, 𝑌𝑘)} (para 𝑦). En cada tramo: 

 

𝑥(𝑡) = 𝑎𝑘 + 𝑏𝑘(𝑡 − 𝑡𝑘) + 𝑐𝑘(𝑡 − 𝑡𝑘)
2 + 𝑑𝑘(𝑡 − 𝑡𝑘)

3        𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1]  (8) 

 

y análogamente para 𝑦(𝑡). Los coeficientes del polinomio de grado tres que tenemos se fijan 

exigiendo: 

 

1. Interpolación: 𝑥(𝑡𝑘) = 𝑋𝑘, 𝑥(𝑡𝑘+1) = 𝑋𝑘+1 (Igualmente para 𝑦) 

2. Continuidad de derivadas en cada nudo interior 𝑡𝑘: 

 

𝑥, 𝑥′, 𝑥′′ continuas en 𝑡𝑘 (suavidad 𝐶2) 

 

Estas condiciones generan un sistema tridiagonal para las segundas derivadas en los nudos          

𝑚𝑘 = 𝑥′′(𝑡𝑘) (y análogo para 𝑦). Resuelto 𝑚𝑘 , los coeficientes 𝑎𝑘,  𝑏𝑘,  𝑐𝑘,  𝑑𝑘  salen de fórmulas 

cerradas. El resultado es una curva suave en posición, tangente y curvatura. 
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3.1.2 Parametrización 𝒕 

La calidad de un spline paramétrico depende de cómo asignamos 𝑡𝑘  a los puntos de control. 

Tenemos tres opciones comunes 

 

• Uniforme: 𝑡𝑘 = 𝑘 . Simple, pero puede concentrar curvatura donde los puntos estén 

desiguales. 

• Longitud de cuerda: 𝑡𝑘 = ∑ ‖𝒒𝑗 − 𝒒𝑗−1‖𝑗≤𝑘 . Adecúa el parámetro a la geometría 

• Arco (normalizado): es igual que el método anterior pero escalado a [0, 1]. 

 

Usamos arco normalizado porque reparte el parámetro proporcionalmente a la longitud 

geométrica: evita acumulaciones en nodos eficaces y estabiliza la curvatura 

 

 
Figura 3.1. Construcción de un spline cúbico a partir de un mismo conjunto de puntos 

(cuadrados azules). Las curvas de colores muestran soluciones suaves obtenidas con 

distintas parametrizaciones/condiciones de contorno. Se aprecia la suavidad de la 

trayectoria y la influencia local de cada punto de control. [5] 

3.1.3 Propiedades de los splines cúbicos 

 

1. Suavidad. Continuidad de 𝑆, 𝑆′, 𝑆′′. En guiado esto significa movimientos más estables al tener 

curvatura sin sobresaltos. 

2. Localidad. Cambiar un nodo solo afecta a tramos vecinos, lo que facilita ediciones como la 

reducción de puntos, y produce robustez. 

3. Óptimo de “rigidez”. El spline cúbico minimiza la energía de flexión ∫‖𝑆′′(𝑡)‖
2
𝑑𝑡 entre todas 

las curvas que interpolan el nodo, esto se traduce que es la curva más suave la que pasa por los puntos 

evitando ondulaciones de más 

4. Exactitud en los nodos. La curva que se produce pasa exactamente por los puntos de control. 

5. Curvatura bien definida. Para 𝑆(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), la curvatura continua es [4]: 

 

𝑘(𝑡) =
|𝑥′(𝑡)𝑦′′(𝑡)−𝑦′(𝑡)𝑥′′(𝑡)|

(𝑥′(𝑡)2+𝑦′(𝑡)2)
3
2

  

 

 (9) 
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3.2 Herramientas software para trabajar con splines 

En este apartado se van a exponen las herramientas que utilizamos para construir, evaluar y 

analizar splines desde un punto de vista teórico.  

3.2.1  Entorno Python 

NumPy: proporciona el cálculo vectorial necesario 

• Distancias y longitudes de arco 𝑠𝑗 = ∑‖𝒑𝑗 − 𝒑𝑗−1‖ 

• Tangentes 𝑡  y normales 𝑛⃗ = (−𝑡 𝑦, 𝑡 𝑥) 

SciPy: para aplicar la interpolación y splines 

• CubicSplines: construye, para un conjunto de nodos 𝑡𝑘, polinomios de grado 3 en cada 

tramo con continuidad 𝐶2 en los nudos. Matemáticamente resuelve un sistema tridiagonal 

para las segundas derivadas 𝑆′′(𝑡𝑘) 

• UnivariateSpline: realiza un spline suavizado, pero no obliga a pasar exactamente por los 

datos, busca minimizar la función de coste (10)  

∑ (𝑘 𝑦𝑘 − 𝑠(𝑡𝑘))
2 + 𝜆∫(𝑆′′(𝑡))2 𝑑𝑡  (10) 

 

Donde 𝜆 controla el compromiso ajuste-suavidad. 

 

• PchipInterpolator: interpolante por tramos que evita sobrecorreciones “overshoot” y 

respeta la monotonía, pero sacrifica la suavidad. 

Matplotlib: Soporte de figura tales como curvas o gráficos de métricas. Es esencial para 

documentar visualmente el verdadero efecto del algoritmo una vez aplicado y ver su correcto 

funcionamiento. 

3.2.2 Herramientas equivalentes en MATLAB 

• Spline: interpolación cúbica con continuidad 𝐶2 (similar a CubicSpline). 

• Csape (complete spline): similar a spline pero con la posibilidad de elección explicita de 

condiciones de contorno 

• Spapi: ajuste de B-splines por mínimos cuadrado 

 

Todas estas funciones trabajan internamente con bases B-splines y secuencias de nudos; la 

teoría de continuidad y compromisos ajuste/suavidad son los mismos que en SciPy. 

3.3 Visión general del algoritmo desarrollado 

El objetivo que buscamos es convertir una trayectoria medida 𝑃  en una familia de pasadas 

paralelas suaves 𝐶2 y regulares, respetando el solape máximo (SM) y zona sin  
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tratar máxima (STM). Trabajamos con una curva paramétrica 𝒔(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) descritra 

mediante splines cúbicos. 

 

Notacion que usaremos: 

• 𝑷 = {𝒑𝑖}𝑖=0
𝑁−1: curva original 

• 𝑸 = {𝒒𝑖}𝑖=0
𝑁−1: puntos de control equispaciados por arco 

• 𝑸𝑑𝑒𝑠𝑝 = {𝒒𝑖
𝑑𝑒𝑠𝑝}𝑖=0

𝑁−1: puntos tras el desplazamiento normal 

• 𝑸𝑒𝑛𝑑𝑒𝑟 = {𝒒𝑖
𝑒𝑛𝑑𝑒𝑟}𝑖=0

𝑁−1: puntos tras el enderezado 

• 𝑸𝑟𝑒𝑑 = {𝒒𝑖
𝑟𝑒𝑑}𝑖=0

𝑁−1: puntos tras aplicar la reducción de puntos adaptativas 

• 𝑹 = {𝒓𝑗}𝑗=0
𝑁−1: malla remallada 

• 𝑡  y 𝑛⃗ : tangente y normal unitarias 

 
Figura 3.2. Vista de “caja negra”. El sistema recibe la polilínea de entrada 𝑷 

(puntos muestreados) y entrega un spline cúbico 𝑺(𝑡). Internamente, los bloques A-

F realizan muestreo por arco, paralelas por normales, enderezado con SM/STM, 

reducción adaptativa de puntos, remallado y construcción del spline; la 

realimentación implementa el modo encadenado para generar las pasadas sucesivas 

donde los puntos de entrada al Bloque B pueden venir de la trayectoria original o de 

la paralela anterior. 

El sistema recibe como entrada la polilínea 𝑷 (puntos originales) y devuelve como salida un 

spline cúbico 𝑺(𝒕)  con suavidad 𝑪𝟐 , apto para el guiado. Internamente, el proceso recorre los 

bloques A–F de forma secuencial y, mediante la realimentación que se observa en la Figura 3.2 se 

produce el encadenado entre todas las paralelas. 

 

• Bloque A: Muestreo por arco (𝑷 → 𝑸) 

Compacta la trayectoria original seleccionando puntos de control equiespaciados por 

longitud de arco. Mantiene los extremos como anclajes y deja una malla uniforme para 

trabajar. Con esto conseguimos tener una base de puntos Q con la que trabajar mucho 

mejor que la cantidad de puntos originales 

 
Figura 3.3. Trayectoria original 𝑷 (negro) y puntos de control 𝒒 equispaciados 

por longitud de arco (rojo). Los extremos se mantiene anclados y los puntos de 

control resumen la forma y será la malla base para las siguientes etapa. 
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• Bloque B: Paralelas por normales (𝑸 → 𝑸𝒅𝒆𝒔𝒑) 

Calcula tangentes y normales en cada punto y desplaza la malla una distancia fija 

(separación entre pasadas) para construir la paralela inicial. Esto se realiza mediante el 

desplazamiento por normales visto en el apartado 2.2.1 

 

 

Figura 3.4. Puntos de control 𝒒  (rojo) desplazados sobre su normal unitaria 

(flechas verdes) una distancia fija 𝑑  y como resultado temenos los puntos 

desplazados (rosa). 

 

• Bloque C: Enderezado local (𝑸𝒅𝒆𝒔𝒑 → 𝑸𝒆𝒏𝒅𝒆𝒓) 

Ajusta cada punto solo sobre su normal minimizando una función de coste que combina 

longitud, suavidad/curvatura y restricciones agronómicas (SM/STM). Produce una pasada 

más recta y regular. Este bloque es el que se encarga de ir realizando el enderezado para 

obtener una trayectoria con tendencia a recta. 

 

 
Figura 3.5. Cada punto de control 𝒒𝑖 (rojo) solo puede moverse sobre su normal 

(trazos azules), acotado por los parámetros [SM, STM] 

 
Figura 3.6. Posiciones óptimas 𝒒𝑖

𝑒𝑛𝑑𝑒𝑟  (azul) obtenidas tras la minimización sobre 

la normal de cada 𝒒𝑖 (rojo) obteniendo así una pasada más recta. 

 

• Bloque D: Reducción adaptativa de puntos (𝑸𝒆𝒏𝒅𝒆𝒓 → 𝑸𝒓𝒆𝒅) 
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Mide la suavidad alcanzada y decide automáticamente cuántos puntos de control hacen 

falta. En zonas suaves reduce puntos (eficiencia); en curvas cerradas los mantiene 

(seguridad). Con este bloque conseguimos reducir la carga computacional reduciendo la 

cantidad de puntos con los que trabaja el sistema. 

 
Figura 3.7. Reducción adaptativa de puntos de 𝑸𝑒𝑛𝑑𝑒𝑟   tras medir su suavidad y 

decidir cual es el tamaño óptimo de la nueva malla obteniendo un número menor 

de puntos de control para realizar la pasada. 

 

• Bloque E: Remallado equiespaciado (𝑸𝒆𝒏𝒅𝒆𝒓 → 𝑹) 

Este bloque redistribuye el número de puntos de control en puntos por arco, con extremos 

fijos, para evitar amontonamientos y dejar una malla homogénea que estabiliza el spline. 

Realiza un trabajo similar al Bloque A, pero mantiene el número de puntos solo para 

reorganizarlos de manera equidistante a la trayectoria. 

 
Figura 3.8. Desde la pasada enderezada 𝑸𝑒𝑛𝑑𝑒𝑟  se reparametriza por longitud de 

arco y se distribuyen exactamente 𝑛𝑐𝑡𝑟𝑙 puntos uniformes para obtener la malla 𝑹 

(Morado), manteniendo los extremos fijos. El remallado elimina amontonamientos y 

deja una malla equidistante preparada para la construcción del spline. 

 

• Bloque F: Construcción del spline cúbico (𝑹 → 𝑺(𝒕)) 

Interpola la malla remallada con un spline cúbico paramétrico, garantizando continuidad 

en posición, rumbo y curvatura (𝑪𝟐) como hemos visto en el apartado 3.1. Este es el 

resultado final que usa el guiado. 

 
Figura 3.9. A partir de la malla 𝑹 (puntos morados) se interpola el spline cúbico 𝑺(𝑡) 

(curva azul) con suavidad 𝐶2 . Se muestra frente a la trayectoria base 𝑷 (negro) 

formada por los puntos de control previos (rojo) 
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En las secciones siguientes detallaremos la matemática y la propia implementación del algoritmo 

en Python para su posterior visualización. 

3.4 Bloque A – Muestreo por arco (P → Q) 

3.4.1 Descripción  

Este bloque parte de una trayectoria discreta 𝑷 = {𝒑0, … , 𝒑𝑁−1} ⊂ ℝ2  formada con miles de 

puntos desigualmente organizados y constituye una malla base 𝑸 = {𝒒0, … , 𝒒𝑁−1} con un inferior 

número de puntos equiespaciados por longitud de arco, conservando los extremos. En este paso 

fijamos un número objetivo de puntos 𝑀, reducimos la cantidad de nodos. El proceso no cambia la 

forma de la curva y mantiene anclados los extremos, dejando una base regular y estable para el 

posterior uso por los siguientes bloques del algoritmo. 

 

La Figura 3.10 muestra el diagrama de flujo que sigue este bloque para conseguir su objetivo. 

Primero el bloque recibe los puntos de la curva y el número de nodos que queremos en la malla base. 

Si la entrada contiene menos de dos puntos o una longitud nula se devuelve los puntos recibidos sin 

cambios. En caso contrario se realiza el cálculo de la longitud de arco y se normaliza. Sobre este eje 

normalizado se construye una malla uniforme de 𝑛 posiciones y se interpolan, generando una nueva 

malla de punto 𝑸 = {𝒒𝑖} equiespaciados. 
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Figura 3.10. Diagrama de flujo del Bloque A. A partir de la polilinea original P y un 

tamaño deseado 𝑛𝑐𝑡𝑟se calcula el arco acumulado, se normaliza a [0,1] y se interpola 

cada coordenada para obtener 𝑸, una malla de puntos equiespaciados por longitud 

de arco. 

3.4.2 Matemática asociada 

En este bloque se plantea un muestreo equiespaciado por longitud de arco [6]. La idea es asignar 

un parámetro de arco acumulado a la trayectoria original y reinterpolar la curva para obtener un 

conjunto de puntos igualmente equiespaciados en términos de distancia recorrida. Con este 

procedimiento se obtiene una malla homogénea 𝑸, que estabiliza el spline cúbico del bloque final y 

permite que todos los cálculos intermedios se realicen sobre una base más uniforme. 

 

Dada la trayectoria original discreta 𝑷 = {𝒑0, … , 𝒑𝑁−1},  𝒑𝑖 = (𝑥𝑖, 𝑦𝑖) ⊂ ℝ2 donde cada  𝒑𝑖 es un 

punto de posición en el plano. 

 

1. Longitud acumulada 

Para cada tramo entre dos puntos consecutivos: 

∆ 𝒑𝑖 =  𝒑𝑖 −  𝒑𝑖−1,      ‖∆ 𝒑𝑖‖=√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2    (11) 

Se define: 

𝑠0 = 0,   𝑠𝑖 = ∑  ‖∆ 𝒑𝑘‖
𝑖
𝑘=1 ,    𝑖 = 1,… ,𝑁 − 1    (12) 
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Donde 𝑠𝑖 es un escalar que representa la longitud de arco acumulada hasta el punto 𝑖. La 

longitud total de la trayectoria es 𝐿 = 𝑠𝑁−1 

 

2. Parámetro normalizado 

Para eliminar unidades y facilitar la interpolación vamos a normalizar: 

𝑢𝑖 =
𝑠𝑖

𝐿
,    𝑢𝑖  ⊂ [0,1]  (13) 

 

Aquí 𝑢𝑖 es un escalar adimensional 

 

3. Malla uniforme de control 

Se definen n valores equiespaciados en el intervalo normalizado [0,1]: 

𝑢̂𝑗 =
𝑗

𝑛−1
      𝑗 = 0,1, … , 𝑛  (14) 

 

Que representan fracciones iguales de longitud con lo que se realizara la posterior 

interpolación de los nuevos puntos. 

 

4. Interpolación por arco 

Finalmente, los nuevos puntos se calculan como: 

𝒒𝑗 = (𝑥̂(𝑢̂𝑗), 𝑦̂(𝑢̂𝑗)) ,        𝑗 = 0,1, … , 𝑛   (15) 

 

Donde 𝑥̂(𝑢̂𝑗) y 𝑦̂(𝑢̂𝑗) son interpolaciones lineales de los datos originales. Cada 𝒒𝑗 es un 

vector de posición de la nueva malla Q y están distribuidos de forma equidistante en 

nuestra trayectoria 

 

3.4.3 Explicación del código 

La Figura 3.11 muestra la implementación de la función que transforma la polilínea 𝑷 = {𝒑𝑖} en 

una malla 𝑸 = {𝒒𝑖} equiespaciada por longitud de arco.  

 

El procedimiento comienza calculando la longitud acumulada de la curva original (11) (12). Esta 

longitud acumulada se normaliza para obtener un parámetro adimensional 𝑡 ⊂ [0,1] (13). A 

continuación, se aplica una interpolación lineal sobre las coordenadas x e y en función de dicho 

parámetro 𝑡 (15), en base a una malla uniforme de tamaño 𝑛 (14), generando un nuevo conjunto de 

puntos distribuidos de manera uniforme 

 

El código utiliza librerías NumPy y SciPy para optimizar estas operaciones. En particular, la 

función np.sqrt [7]se emplea para calcular las distancias euclídeas entre pares consecutivos de 

puntos, mientras que np.interp [8] permite reconstruir las coordenadas de los nuevos puntos a partir 

de la parametrización. 
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De esta forma el resultado es una curva remallada que mantiene los extremos de la trayectoria 

original, pero con una densidad de puntos uniforme.  

 

 
Figura 3.11. Implementación de la función muestrear_equispaciado_arco. Esta función 

corresponde al Bloque A del algoritmo. 

 

3.4.4 Resultados del bloque 

La Figura 3.12 muestra el resultado tras la aplicación del bloque A, primero partimos de una 

trayectoria discreta de puntos P (negro) que forman la trayectoria base, tras realizar el muestreo por 

arco obtenemos un conjunto de puntos reducidos Q (rojo) equiespaciados, con los que trabajaremos 

en los posteriores bloques consiguiendo una reducción de puntos para trabajar posteriormente 

reduciendo la carga computacional y que gracias a la posterior aplicaciones de los splines 

obtendremos una trayectoria suave con menos puntos. 

 

 

Figura 3.12. Resultado de la implementación del Bloque A. La curva original 

P (negro) presenta una trayectoria formada por puntos no uniformes. Tras 

aplicar la función muestrear_equispaciado_arco, se obtiene la curva Q (rojo), 

cuyos puntos estan equispaciados por longitud de arco, proporcionando una 

malla homogénea y formada por puntos equidistantes unos de otros. 
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3.5 Bloque B – Paralelas por normales (𝑸 → 𝑸𝒅𝒆𝒔𝒑) 

3.5.1 Descripción del algoritmo 

A partir de la malla base Q del Bloque A, este bloque genera la paralela  𝑸𝑑𝑒𝑠𝑝 . Para ello, cada 

punto 𝒒𝑖 se desplaza una distancia fija d en la dirección de la normal unitaria de la curva. El resultado 

es un nuevo conjunto de puntos 𝑸𝑑𝑒𝑠𝑝 = {𝒒𝑖
𝑑𝑒𝑠𝑝}, que representa la curva paralela.  

 

En la Figura 3.13 vemos el diagrama de flujo que sigue este bloque donde recibimos una serie 

de puntos equiespaciados que pueden venir de la trayectoria original si es la primera paralela o 

pueden venir de la paralela anterior como vemos en la Figura 3.2. Tras recibir los puntos y 

comprobando que se han recibido más de dos puntos se calculan las tangentes normalizadas y las 

normales unitarias rotando la tangente 90º. Tras esto se calcula el desplazamiento y con esto ya 

podemos desplazar cada punto 𝒒𝑖 obteniendo en su conjunto una malla de puntos desplazados por 

su normal 𝑸𝑑𝑒𝑠𝑝 y con este conjunto ya obtendríamos la paralela, pero de momento solo nos interesa 

quedarnos con los puntos para seguir trabajando con ellos posteriormente. 

 
Figura 3.13. Diagrama de flujo del Bloque B. A partir de la malla 𝑸, la separación y 

el signo de dirección, se calculan tangente y normales unitarias y se desplaza cada 

nodo una distancia para obtener 𝑸𝑑𝑒𝑠𝑝. 
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3.5.2 Matemática asociada 

Partimos de la secuencia de puntos muestreados en el bloque A: 

𝑸 = {𝒒0, 𝒒1, … , 𝒒𝑁},    𝒒𝑖 = (𝑥𝑖, 𝑦𝑖) ⊂ ℝ2  

Cada 𝒒𝑖 es un vector de posición en el plano. 

 

1. Vector tangente [9] 

Para conocer la dirección de la curva en 𝒒𝑖, necesitamos su tangente. Como tenemos una 

curva discreta, la aproximamos con diferencias entre puntos vecinos: 

𝑡 𝑖 = {

𝒒1 − 𝒒0                         𝑖 = 0
𝒒𝑖+1 − 𝒒𝑖−1                  0 < 𝑖 < 𝑛 − 1

𝒒𝑛−1 − 𝒒𝑛−2            𝑖 = 𝑛 − 1
 

 

(16) 

 

Donde 𝑡 𝑖 es un vector dirreción de la curva en el punto i, es decir este paso nos dice “hacía 

donde va la curva” en cada punto. 

 

2. Vector normal unitario 

La normal es un vector perpendicular a la tangente. Para obtenerla basta con rotar la tangente 

90º: 

𝑛⃗ 𝑖 =
1

‖𝑡 𝑖‖
(−𝑡𝑖𝑦, 𝑡𝑖𝑥) 

(17) 

 

Donde (−𝑡𝑖𝑦, 𝑡𝑖𝑥) es la rotación de 𝑡 𝑖 = (𝑡𝑖𝑦, 𝑡𝑖𝑥) y al dividir por ‖𝑡 𝑖‖ asegura que la normal 

tenga longitud uno, es decir este paso nos da “hacía que lado desplazamos”. 

 

3. Desplazamiento por la normal 

Finalmente construimos el punto desplazado [9]: 

𝒒𝑖
𝑑𝑒𝑠𝑝 = 𝒒𝑖 + 𝑑𝑛⃗ 𝑖  (18) 

 

Donde 𝒒𝑖
𝑑𝑒𝑠𝑝

 es un vector posición de la curva paralela, 𝑑 es un escalar que fija la separación 

entre la curva original y la paralela. Si 𝑑 > 0 la paralela queda hacia la izquierda y si 𝑑 < 0, 

hacia la izquierda 

 

4. Curva resultante 

Repitiendo el proceso para todos los puntos: 

𝑸𝑑𝑒𝑠𝑝 = {𝒒0
𝑑𝑒𝑠𝑝, 𝒒1

𝑑𝑒𝑠𝑝 , … , 𝒒𝑛−1
𝑑𝑒𝑠𝑝}  (19) 

 

Obtenemos la trayectoria paralela. 
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3.5.3 Explicación del código 

La Figura 3.14 es la función que recibe como entrada una curva discreta definida en un conjunto 

de puntos  𝒑𝑖 = (𝑥𝑖, 𝑦𝑖). Devuelve un array n con los vectores unitarios en cada uno de los puntos. 

Si la trayectoria tiene menos de dos puntos, devuelve directamente n ya que no se puede calcular 

direcciones en ese caso. A continuación, se recorre la curva con un bucle. 

 

Para cada índice i, se calcula un vector de diferencia d que representa la dirección local de la 

curva (16): en el primer punto se usa la diferencia con el siguiente, en el último con el anterior, y en 

los intermedios con el punto anterior y el siguiente. Este vector d se normaliza dividiéndolo entre su 

norma np.linalg.norm(d) [10], añadiendo un pequeño valor 1𝑒 − 12 para evitar divisiones por cero 

en casos degenerados. Una vez normalizado este, se construye el vector normal mediante la 

operación [-t[1], t[0]] (17), que corresponde a rotar el vector tangente 90 grados. Finalmente, la 

función devuelve el array n con todas las normales unitarias de la curva. 

 

Por último, el desplazamiento se introduce en la función de la Figura 3.36 en la línea 

puntos_desplazados=puntos_control_base+(sep*direccion)*normales donde estamos 

introduciendo la ecuación (18), y el conjunto de los puntos desplazados componen 𝑸𝑑𝑒𝑠𝑝 (19). 

 

En resumen, el código implementa de manera práctica el cálculo de las normales: crea un array 

vacío, recorre los puntos, calcula la dirección local con diferencias, normaliza, rota el vector y guarda 

la normal. 

 
Figura 3.14. Implementación en Python de la function calcular_normales_puntos. 

Este procedimiento calcula el vector normal unitario en cada punto de una curva 

discreto Q, utilizando direfencias entre puntos adyacentes para estimar la tangente y 

una rotación de 90º para obtener la normal. 

3.5.4 Resultado del bloque 

La Figura 3.15 muestra el resultado de aplicar el bloque B al conjunto de puntos muestreados 

obtenidos del bloque A. A partir de la curva base Q, representada en color negro, se calculan 

las normales unitarias en cada punto y se utiliza un desplazamiento fijo d sobre dichas 

direcciones para generar la curva paralela 𝑸𝑑𝑒𝑠𝑝 representada en rojo. 

 

Este resultado confirma que el algoritmo implementado en el bloque B es capaz de construir 

correctamente las trayectorias paralelas a la curva original.  
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Figura 3.15. Representación de la trayectoria base Q (negro) y de su paralela 𝑸𝑑𝑒𝑠𝑝 

(rojo), obtenida mediante el desplazamiento de cada punto en la dirección de la 

normal unitaria a una distancia d. 

3.6 Enderezado local – Bloque C (𝑸𝒅𝒆𝒔𝒑 → 𝑸𝒆𝒏𝒅𝒆𝒓) 

3.6.1 Descripción del algoritmo 

Este bloque toma la paralela del Bloque B 𝑸𝑑𝑒𝑠𝑝  y realiza un enderezado de forma iterativa. 

Recorre solo los puntos interiores y. para cada uno. Prueba pequeños desplazamientos sobre su 

normal, siempre dentro de recorrido permitido [-STM, +SM] [3]. Si el cambio mejora la forma, se 

acepta; si no, se deja como está. Los extremos permanecen fijos para conservar la dirección general. 

El proceso repite varias pasadas hasta que los cambios son apenas apreciables o se agota el máximo 

de iteraciones. El resultado es  𝑸𝑒𝑛𝑑𝑒𝑟, una trayectoria más suave y recta. 

 

La Figura 3.16 muestra el diagrama de flujo del Bloque C, donde este bloque toma la paralela 

del Bloque B y mediante iteraciones realiza un enderezado progresivo. Para cada punto interior mira 

en su normal y prueba pequeños desplazamientos permitidos por SM/STM. Elige el que mejor 

suaviza la curva y pasa al siguiente punto. Cuando termina una pasada comprueba si ya casi no 

cambia nada; si aún cambia, hace otra pasada. Los extremos se mantienen fijos para conservar el 

rumbo. El resultado es la misma trayectoria, pero más suave y alineada. 
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Figura 3.16. Diagrama de flujo del Bloque C. A partir de la paralela obtenida 

del Bloque B el algoritmo itera globalmente; en cada iteración recorre los 

puntos interiores y evalúa la función de coste y acepta el mejor 

desplazamiento y continua hasta converger. 

3.6.2 Matemática asociada 

Tras el bloque B, para la curva paralela obtenida 𝑸𝑑𝑒𝑠𝑝 = {𝒒𝑖
𝑑𝑒𝑠𝑝}𝑖=0

𝑛−1 es necesario aplicar un 

proceso de enderezado que reduzca la curvatura, suavice irregularidades y acerque progresivamente 

la trayectoria a una línea recta. El enderezado no puede realizarse de manera arbitraria, debe respetar 

condiciones agronómicas, como el solape máximo (SM) y de zona sin tratar máximo (STM), que 

fijan un rango de desplazamientos laterales admisibles 

 

Para formalizar este proceso, se define una función de coste global 𝐽 (20) 

 

El enderezado se plantea, por tanto, como un problema de optimización discreta, encontrar la 

nueva secuencia de puntos 𝒒𝑖
𝑒𝑛𝑑𝑒𝑟que mínima 𝐽 y obtener 𝑸𝑒𝑛𝑑𝑒𝑟 = {𝒒𝑖

𝑒𝑛𝑑𝑒𝑟}𝑖=0
𝑛−1. De esta forma, se 

logra que, tras varias paralelas, el trazado tienda a ser recto. 

 

El enderezado se formula como la minimización de: 

𝐽𝑖(𝑡) = 𝑤𝐿𝛥𝐿𝑖 + 𝑤𝐵𝛥𝐾𝑖 +
𝑤𝐴

𝑀−2
𝛥𝐴𝑖 +

𝑤𝑅

𝑀−2
𝛥𝑅𝑖 + 𝑀(𝑡)  (20) 
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La función de coste propuesta en este trabajo ha sido desarrollada específicamente en el marco 

del presente TFG, combinando criterios geométricos y agronómicos. Por tanto, la función de coste 

procede una combinación original diseñada para este trabajo. 

 

Donde 𝑀 es el número de puntos de control, los términos Δ (⋅) son cambios locales (antes/después 

de mover el punto en evaluación 𝒒𝑖) y 𝑡 un parámetro acotado tal que 𝑡 ∈ (−𝑆𝑇𝑀, 𝑆𝑀):  

Los parámetros que componen la función de coste son: 

• ΔL (longitud local): evita encogimientos o estiramientos bruscos de la trayectoria. 

• ΔK (curvatura local): suaviza posibles oscilaciones. 

• ΔA (alineación con la recta global): alinea tangentes locales con la dirección de los 

extremos para que las paralelas no se desvíen. 

• ΔR (rectitud global): fuerza a que la curva tienda a la recta “tirando” de cada punto hacia 

una recta imaginaria que une los extremos.  

• M (t): garantiza que el desplazamiento no rompa las condiciones de solape o sin tratar 

(SM, STM 

Ahora se va a explicar al detalle la función de coste y todos los parámetros que la engloban: 

1. Longitud local 𝛥𝐿𝑖(𝑡) 

Este parámetro se encarga de medir como cambia la longitud de los segmentos que 

inciden en 𝐪𝑖 al desplazarlo, con el objetivo de mantener la longitud local razonable 

evita “serruchos” y estabiliza el ajuste [11]. 

 

𝐿𝑖(𝒒) = ||𝒒𝑖 − 𝒒𝑖−1|| + ||𝒒𝑖+1 − 𝒒𝑖||    (21) 

 

𝛥𝐿𝑖(𝑡) =  𝐿𝑖(𝒒
(𝑡)) −  𝐿𝑖(𝒒) (22) 

El termino 𝛥𝐿𝑖 corresponde a la variación de longitud local de los segmentos 

incidentes en 𝒒𝑖 . 

 

 

2. Curvatura discreta 𝛥𝐾𝑖(𝑡) 

Se basa en la segunda diferencial discreta para evaluar el cambio en la suma de 

curvaturas de los vecinos de 𝑖 para suavizar las posibles oscilaciones y evitar picos de 

curvatura: 

𝐾(𝒒) = ∑ ||𝛥2𝑀−3
𝑗=0 𝒒𝑗||

2  (23) 

𝛥2𝒒𝑗 = 𝒒𝑗 − 2𝒒𝑗+1 + 𝒒𝑗+2 (24) 

𝛥𝐾(𝒒) = ∑ (||𝛥2𝒒𝑗(𝑡)||
2 − ||𝛥2𝒒𝑗||

2 )𝑀−3
𝑗∈{𝑖−2,𝑖−1,𝑖}   (25) 

La medida de curvatura discreta se construye a partir de la segunda diferencia 

finita 𝛥2𝒒𝑗 que actúa como aproximación discreta de la segunda derivada de la 

curva [11].  
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3. Alineación con el rumbo 𝛥𝐴𝑖(𝑡) 

Calcula cómo varía la alineación de la tangente local con la dirección general de la 

curva. Con esto evitamos que la trayectoria se tuerza respecto a la dirección de trabajo. 

En la función de coste normalizamos por 𝑀 − 2 para que la magnitud no dependa del 

número de puntos [12] 

Definimos el rumbo global como un vector unitario entre los extremos de la curva, este 

vector marcara la dirección “objetivo”: 

𝑢⃗ =
𝒒𝑀−1−𝒒0

||𝒒𝑀−1−𝒒0||
  (26) 

 

Medimos la orientación local de la curva mediante tangentes de dos saltos para que sea 

mejor la estimación d: 

 

𝜏 𝑘 = 𝒒𝑘+2 − 𝒒𝑘  (27) 

𝜏𝑘̂ =
𝜏⃗ 𝑘

||𝜏⃗ 𝑘||
  (28) 

 

Ahora penalizamos la diferencia entre 1 y el producto escalar de 𝜏𝑘y 𝑢. Esto nos dirá si 

están alineados o no: 

𝐴(𝑄; 𝑢) = ∑ (1 − (𝑘 𝜏̂𝑘 ⋅  𝑢⃗ )   (29) 

 

Si 𝜏𝑘 está alineada con 𝑢, el producto escalar ≈ 1 ⇒ penalización ≈ 0. 

Si está perpendicular, el producto escalar ≈ 0 ⇒ penalización ≈ 1 (máxima). 

 

4. Rectitud (Distancia a 𝒒0𝒒𝑀−1) 𝛥𝑅𝑖(𝑡) 

Este parámetro evalúa el cambio en la distancia del punto 𝒒𝑖 a una recta imaginaria que 

une los extremos de la curva (𝒒0 y 𝒒𝑁−1). Igual que el parámetro anterior también se 

normaliza por 𝑀 − 2. 

Con 𝐴 = 𝒒0, 𝐵 = 𝒒𝑁−1  y 𝑛𝐴𝐵 = ||𝐵 − 𝐴||, la distancia cuadrática de 𝒒𝑖 a la recta 𝐴𝐵̅̅ ̅̅  

𝑅𝑖(𝒒) =
((𝐵−𝐴)∗(𝒒𝑖−𝐴))2

||𝐵−𝐴||2,
  (30) 

 

𝛥𝑅𝑖(𝑡) = 𝑅𝑖(𝒒
(𝑡)) − 𝑅𝑖(𝒒)  (31) 

 

5. Penalización agronómica 𝑀(𝑡) 

Con esta función nos aseguramos de que el desplazamiento lateral 𝑡 no supere el SM ni 

la STM [3]:  
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𝑀(𝑡) = {

𝑐
𝑡2

1−
𝑡

𝑆𝑀

      𝑡 > 0

𝑑
𝑡2

1+
𝑡

𝑆𝑇𝑀

    𝑡 ≤ 0 
  

 

(32) 

 

 

c y d son constantes de ajuste de exactitud que determinan la dureza de la barrera. Con 

valores como 𝑐 = 𝑑 = 1 penaliza mucho si nos acercamos al límite, por el otro lado si 

𝑐 = 𝑑 = 10−4 permite que los puntos se acerquen más al límite antes de penalizar. 

3.6.3 Explicación del código 

La Figura 3.17 muestra la función principal que realiza el enderezado. La función toma la curva 

desplazada por normales del Bloque B y la endereza iterativamente. Lo primero que hace es copiar 

los puntos a P y fijar los extremos A y B como fijos, porque la recta que une ambos define el rumbo 

global frente al que se mide la alineación. También inicializa un desplazamiento acumulado por 

punto t_acum y establece, para cada punto, el recorrido de movimiento permitido por los criterios 

agronómicos: de STM y SM.  

 

A continuación, recorre un número finito de iteraciones. En cada iteración calcula un parámetro 

α entre 0 y 1 con el que interpola linealmente los pesos del coste: hace crecer el peso de la longitud 

local (para estabilizar al final), decrecer el de la curvatura discreta de segunda diferencia (para 

aplanar dientes al principio sin sobre–suavizar al final) y aumentar el de la alineación de rumbo, de 

manera que, cuando la curva ya está suave, se priorice orientar sus tangentes hacia la dirección 

global. El peso hacia la recta de extremos (wR) puede venir elevado desde fuera cuando generamos 

pasadas tardías, porque en ese momento el objetivo práctico es “tirar” de la trayectoria hacia la 

rectitud.  

 

Con los pesos fijados para la iteración, vuelve a calcular el rumbo global como el vector unitario 

𝑢 dirigido de A a B. Para cada punto interior 𝒒𝑖 comprueba primero si ya está prácticamente alineado 

con curvatura local despreciable; si se cumple, no lo toca en esta vuelta, lo que ahorra cómputo. Si 

el punto merece tratamiento, estima su dirección local con la bisectriz de las tangentes a izquierda y 

derecha y construye la normal unitaria 𝑛̂𝑖 girando noventa grados esa bisectriz. El enderezado se 

hace precisamente moviendo el punto sobre esa normal (Figura 3.5), porque desplazar en normal 

reduce el ángulo entre segmentos adyacentes sin introducir artificialmente avances o retrocesos a lo 

largo de la curva, lo que se traduce en una caída natural de curvatura. 

 

Antes de probar movimientos, la función evalúa las magnitudes “de partida” en la vecindad de 𝑖: 

la longitud local como suma de los dos tramos incidentes (22), la curvatura discreta mediante la 

segunda diferencia (25), la desalineación con el rumbo (29), y la distancia perpendicular del punto a 

la recta 𝐴𝐵̅̅ ̅̅  (31). Con esos valores base define el coste local 𝐽𝑖(𝑡) como la suma ponderada de los 

incrementos de esas magnitudes al mover 𝒒𝑖 a 𝒒𝑖
(𝑡)

= 𝒒𝑖 + (𝑡 − 𝑡𝑜)𝑛⃗ 𝑖, más la penalización 
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agronómica 𝑀(𝑡) (32). Esta última es la barrera asintótica que hemos descrito previamente: crece 

con rapidez al aproximarse a +SM o a −STM, de modo que el algoritmo “sienta” los límites de solape 

y sin tratar sin necesidad de imponer cortes duros; con constantes pequeñas la barrera permite 

acercarse algo al límite y acelerar la convergencia, y con constantes mayores endurece el borde para 

escenarios más conservadores. 

 

La minimización de 𝐽𝑖(𝑡) se resuelve como una búsqueda: primero muestrea siete candidatos 

uniformes en el recorrido permitido del punto, elige el mejor y, alrededor de ese mínimo provisional, 

vuelve a muestrear siete valores en un intervalo más estrecho. Con el mínimo refinado actualiza el 

punto y anota el desplazamiento efectivo. Cuando la media de desplazamientos de una iteración cae 

por debajo de la tolerancia, el proceso se detiene; en caso contrario, continúa hasta agotar el máximo 

de iteraciones. Al terminar, reafirma los anclajes en los extremos para garantizar que el resultado 

preserve el punto de partida y el de llegada. 

 

 

 
Figura 3.17. Función aplicar_enderezado_local_gs, núcleo del Bloque C que recibe 

𝑸𝑑𝑒𝑠𝑝 y devuelve 𝑸𝑒𝑛𝑑𝑒𝑟 . 

La Figura 3.18 muestra todo el contexto local necesario para evaluar, para un punto interior 𝒒𝑖, 

el coste incremental de moverlo una cantidad escalar 𝑡 sobre su dirección de enderezado (20). 

 

La función make_J_local_at prepara y devuelve una función evaluadora de coste para un punto 

interior concreto. Su cometido es muy preciso: dado el estado actual de la trayectoria, el índice del 

punto que estamos tratando, la dirección de enderezado y los valores de referencia antes de mover 

el punto, construye una función J_local_at que responde a la pregunta: si desplazo este punto una 

cantidad escalar t sobre su normal, ¿mejora o empeora la calidad geométrica de la curva dentro de 
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los límites agronómicos? Para poder contestar sin tener que pasar decenas de parámetros en cada 

llamada, make_J_local_at captura por cierre todo el contexto necesario: el array de puntos, el índice, 

la normal, el rumbo global de la pasada, los extremos anclados, las medidas locales “antes” de mover 

(longitud, curvatura, alineación y rectitud), los pesos de cada término, el tamaño de la curva para las 

normalizaciones y los límites SM/STM junto con la dureza de su penalización. 

 

La función resultante, J_local_at, no altera el estado global cuando se usa: hace una copia del 

punto, lo mueve temporalmente en la dirección indicada la cantidad pedida, vuelve a medir solo en 

la vecindad de ese punto las cuatro magnitudes que nos interesan (longitud en los dos tramos 

adyacentes, curvatura discreta por segunda diferencia, alineación de las tangentes locales con el 

rumbo y distancia perpendicular del punto a la recta definida por los extremos), y a continuación 

restaura el punto a su posición original. Con esas cuatro diferencias “después–antes” calcula un 

balance ponderado con los pesos vigentes en esa iteración, aplica las normalizaciones por número 

de puntos donde corresponde para que el valor no dependa del tamaño de la curva, y le suma la 

penalización agronómica asociada al propio t, que está diseñada para crecer al acercarse a los límites 

de solape y de zona sin tratar. El resultado es un único número real: cuanto menor es, mejor es ese 

desplazamiento desde el punto de vista del enderezado y del respeto a SM/STM. 

 

 
Figura 3.18 Función make_J_local_at que hace de evaluador de la function de coste 

para comprobar si el punto desplazado mejora o empeora el enderezado. Para ello 

de apoya en la subfunción J_local_at 

La Figura 3.19 muesta la función _len_local. Esta función calcula la longitud “que ve” el punto 

en su vecindad inmediata: suma las longitudes de los dos tramos que comparten ese punto, el que lo 
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une con su vecino anterior y el que lo une con el siguiente (22). En los extremos solo habría un 

tramo, aunque en el enderezado no se tocan los extremos y, por tanto, la función se emplea 

efectivamente en puntos interiores. Su papel en el coste es muy claro: cuando se prueba un 

desplazamiento provisional del punto, se vuelve a medir esa longitud local y se compara con la de 

partida; si el movimiento provoca un acortamiento o un estiramiento brusco en esa pequeña ventana, 

el término de longitud crece y desincentiva ese cambio. Con ello se evita el “serrucho” típico de los 

ajustes punto a punto y se estabiliza la geometría a escala local cuando ya se ha reducido la curvatura 

y conviene consolidar el trazado sin introducir micro–oscilaciones. 

 

Figura 3.19. Función _len_local la cual devuelve la lonfitus de los dos segmentos que 

inciden en el punto 𝒒𝑖. 

La función _curv_local de la Figura 3.20 mide cuánta “curvatura” hay alrededor del punto de 

forma puramente local y muy barata de calcular (25). Lo hace evaluando en tres ventanas que son 

las únicas que se ven afectadas cuando movemos el punto, las que empiezan en  𝑖 − 2, 𝑖 − 1 e 𝑖. En 

cada ventna se observa cómo cambia la dirección de la curva entre tres puntos consecutivos; si la 

trayectoria hace un “quiebro” o un “diente”, el valor crece, y si la zona es suave o casi recta, el valor 

es pequeño. 

 

Figura 3.20. Función _curv_local la cual devuelve un valor que refleja la curvatura 

entre tres puntos vecinos. 

La función _alig_local de la Figura 3.21 cuantifica cuánto se desvía la orientación local de la 

curva respecto al rumbo global 𝑢 (26) que marca la recta entre los extremos. Para evitar medidas 

ruidosas basadas en un solo segmento, no mira las aristas inmediatas sino tangentes de dos saltos: 

compara la dirección que une 𝑃𝑘 con 𝑃𝑘+2. Con eso obtiene una estimación más estable de “hacia 

dónde va” la curva en esa zona (29). En la práctica evalúa dos pequeñas ventanas que rodean al 

punto, las que empiezan en 𝑖 − 2 y en 𝑖 (si existen), y en cada una calcula cuánto se aparta esa 

tangente local del rumbo 𝑢 . Usa siempre el valor absoluto del coseno para que la métrica sea 

independiente del sentido (avanzar o retroceder no cambia el grado de alineación) y eleva la 

desviación al cuadrado para que la penalización sea suave cuando ya se está muy alineado y crezca 

si la dirección se tuerce. Si en alguna ventana la longitud es prácticamente nula, la función la descarta 

para evitar divisiones peligrosas. 
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Figura 3.21. Función _alig_local mide cuanto se orientan las tangente locales en la 

dirección objetivo 𝑢 definida por los extremos.  

La función _line_local de la Figura 3.22 mide, para el punto interior 𝒒𝑖, cuánto se separa en 

perpendicular respecto a la recta de extremos definida por 𝐴 =  𝑃[0] y 𝐵 =  𝑃[−1]. Este término 

empuja a que, a medida que se avanaza el enderezado y disminuye la curvatura, el trazo se acerque 

a la recta base (31). No actúa en los extremos 

 

Figura 3.22. Función _line_local calcula la distancia de un punto interno a una recta 

que une los extremos de la trayectoria, empujando este punto hacia esa recta según 

disminuye la curvatura. 

La función penalización_M de la Figura 3.23 actúa como un guardarraíl agronómico durante el 

enderezado. Su cometido es encarecer los desplazamientos laterales que se acercan a los límites 

operativos del equipo: SM (solape máximo, lado positivo) y STM (zona sin tratar máxima, lado 

negativo). En lugar de cortar en seco cuando se rebasa el límite, la penalización crece suavemente al 

principio y muy rápido al aproximarse al borde, de modo que el algoritmo “sienta” el límite y evite 

escoger movimientos que lo rocen. 

La función es asimétrica a propósito: trata de forma distinta el desplazamiento hacia el solape 

(valores positivos de t, controlado por SM y el coeficiente c) y el desplazamiento hacia la zona sin 

tratar (valores negativos de t, controlado por STM y el coeficiente d). Esto encaja con la práctica 

agrícola, donde no siempre es igual de tolerable solapar que dejar sin cubrir; por eso se puede ajustar 

c y d de forma independiente (32). Con c y d muy pequeños la barrera es blanda: permite acercarse 

bastante al límite antes de penalizar con fuerza, lo que da más libertad al algoritmo para enderezar 

rápido en las primeras iteraciones. Con c y d más grandes la barrera se vuelve dura: desaconseja 

enseguida cualquier movimiento que intente aproximarse a los márgenes, útil cuando priorizas 

seguridad o cuando el enderezado ya está hecho y solo quieres retoques finos. 
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Figura 3.23. Función penalización_M devuelve una penalización suave pero 

creciente según se llega a los límites SM/STM. Los coeficientes c y d controlan cuanto 

penaliza esta función. 

 

3.6.4 Resultado del bloque 

La Figura 3.24 ilustra el efecto aislado del Bloque C. Partimos de la paralela “cruda” (naranja), 

que reproduce fielmente la geometría de la original (Bloque B). El enderezado local (puntos azules) 

desplaza cada nodo únicamente en su normal, dentro del corredor permitido por SM/STM, buscando 

reducir a la vez los dientes de curvatura, estabilizar la longitud de los tramos adyacentes y orientar 

las tangentes hacia el rumbo global que marcan los extremos. El resultado es una pasada más suave 

y con trazado más estable, sin invadir los márgenes agronómicos. La línea azul clara corresponde al 

spline reconstruido tras el enderezado: aporta continuidad y consolida la suavidad alcanzada, 

preparándola para ser base de la siguiente pasada en el encadenado. Se aprecia que, especialmente 

en la zona de mayor curvatura, el azul se aproxima a un perfil más regular que el naranja, y que el 

spline sigue esa tendencia sin picos ni sobre oscilaciones; dicho de otro modo. Se construyo el spline 

para la visualización ya que esto es un paso que se implementa posteriormente en el Bloque F y que 

no se implementa en este bloque 

 
Figura 3.24. Resultado del Bloque C (enderezado local) sobre la pasada generada a 

partir de tr1_linde.txt. En negro se muestra la curva original; en naranja, los puntos 

de la paralela obtenida tras el desplazamiento por normales (Bloque B); en azul, los 

puntos después del enderezado local (Bloque C); y en azul claro, el spline cúbico que 

se reconstruye tras C. Parámetros de la demo: separación 4,0 m, límites SM=1,0 m y 

STM=1,0 m, 40 puntos de control y peso de recta wR=5,0. 
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3.7 Reducción adaptativa – Bloque D (𝑸𝒆𝒏𝒅𝒆𝒓 → 𝑸𝒓𝒆𝒅) 

3.7.1 Descripción del algoritmo. 

Tras el enderezado del Bloque C, este bloque decide cuántos puntos de control son realmente 

necesarios y eliminan los redundantes. Para ello mide la curvatura de la pasada y según el nivel de 

“giro”, fija un tamaño de malla entre unos límites [𝑛𝑚𝑖𝑛,  𝑛𝑚𝑎𝑥]. Más puntos si aún hay curvas, 

menos puntos si la trayectoria ya está lista. La reducción se hace de tal que nunca se sube el número 

de puntos y limita la caída por iteración. Como resultado obtenemos 𝑸𝑟𝑒𝑑, una malla más ligera de 

puntos, pero fiel a la forma. 

 

El diagrama de la Figura 3.35 resume el Boque D donde recibe la trayectoria del Bloque C 𝑸𝒆𝑛𝑑𝑒𝑟 

y calcula la curvatura media y máxima. Con esto calcula un indicador unidimensional 𝑠  y lo 

transforma en un tamaño de malla 𝑛𝑐𝑡𝑟𝑙 dentro de [𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥 ]. La salida es 𝑛𝑐𝑡𝑟𝑙 que se usará en 

el remallado (Bloque E) y el spline (Bloque F) 

 

Figura 3.25. Diagrama de flujo del Bloque D, a partir de la pasada 

enderezada obtenemos un nuevo número de puntos de control. 

3.7.2 Matemática asociada 

Para cada punto interior, sea 𝑣 𝑖− =  𝒒𝑖
𝑒𝑛𝑑𝑒𝑟 −  𝒒𝑖−1

𝑒𝑛𝑑𝑒𝑟          𝑣 𝑖+ =  𝒒𝑖+1
𝑒𝑛𝑑𝑒𝑟 −  𝒒𝑖

𝑒𝑛𝑑𝑒𝑟  los vectores 

de los tramos que “entran” y “salen” y que tratan de capturar la dirección y longitud de la curva 

justo antes y después de 𝑖. 
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Definimos el ángulo de giro: 

𝜃𝑖 = tan−1 2 ((𝑣 𝑖− × 𝑣 𝑖+), 𝑑𝑜𝑡(𝑣 𝑖− ⋅ 𝑣 𝑖+)) (33) 

 

Que es el ángulo en radianes que hay que girar para pasar de 𝑣 𝑖− a 𝑣 𝑖+ [13].  

 

Calculamos la longitud efectiva local 𝐿𝑖 =
1

2
(‖𝑣 𝑖−‖ + ‖𝑣 𝑖+‖) , que es la medida de “cuanta 

distancia” hay alrededor de 𝑖. Es la media de las longitudes de los dos tramos que confluyen en 𝑖. 

 

Tenemos la curvatura discreta  𝑘𝑖 =
|𝜃𝑖|

𝐿𝑖
  que es “cuanta distancia” hay alrededor de 𝒒𝑖  [14]. 

Teniendo que: 

• Si la curva es casi recta |𝜃𝑖| ≈ 0, entonces 𝑘𝑖 pequeña 

• Si hay un “codo” fuerte y corto |𝜃𝑖| grande, 𝐿𝑖 pequeña y entonces 𝑘𝑖 grande 

 

Ahora con estos cálculos, para decidir el número de puntos de control 𝑛𝑐𝑡𝑟𝑙  seguimos una 

puntuación que llamamos 𝑠.  

Tal que 𝑛𝑐𝑡𝑟𝑙 = 𝑛𝑚𝑖𝑛 + (𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛) ∗ s𝛽. Donde 𝑠, es un número adimensional entre 0 y 1 

que resume “cuanta curvatura queda” en la pasada i comparada con la curvatura de referencia del 

inicio. Si 𝑠 ≈ 1 la pasada está tan rizada como al principio (no conviene recortar puntos), pero si 

𝑠 ≈ 0 la pasada está mucho más suave (sí conviene recortar puntos). 

r = (
w∗kmed+(1−w)kmax

kref
, 0, 1),   w∈[0,1] (31) 

 

s(r)={
0,                  𝑟 < 0
𝑟,        0 ≤ 𝑟 ≤ 1
1,                  𝑟 > 1

 
 

(32) 

 

Donde: 

• 𝑘𝑚𝑒𝑑: curvatura media de la polilínea enderezada  𝑸𝑖
𝑒𝑛𝑑𝑒𝑟 

• 𝑘𝑚𝑎𝑥: curvatura máxima de la misma 

• 𝑘𝑟𝑒𝑓: valor de referencia que compara la curvatura de la pasada frente al inicio. 

𝑘𝑟𝑒𝑓 =
1

2
(𝑘𝑚𝑒𝑑

(0)
+ 𝑘𝑚𝑎𝑥

(0)
) 

(33) 

 

• w: pondera la importancia de “lo global” frente a “los picos” 

Explicación de la formula: 

1. Adimensional 
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Dividir por 𝑘𝑟𝑒𝑓  normaliza las curvaturas, trabajamos con curvatura actual / curvatura 

inicial.  

Así mismo da igual si trabajamos en metros o en kilómetros s no depende de unidades ni 

del tamaño del campo 

 

2. Equilibrio entre global y picos 

𝑘𝑚𝑒𝑑 capta el estado global de la curva mientras que 𝑘𝑚𝑎𝑥 nos indica los puntos “críticos” 

con radios muy pequeños y cerrados. 

La combinación lineal 𝑤 ∗ 𝑘𝑚𝑒𝑑 + (1 − 𝑤)𝑘𝑚𝑎𝑥 es la forma más simple de mezclarlos. 

Si nos quedamos solo con la media no estamos teniendo en cuenta los picos críticos que 

puedan tener las trayectorias y si solo nos quedamos con la máxima tenemos mayor efecto 

en los picos, pero una reacción tardía en los tramos suaves. 

 

Con 𝑤 alto damos prioridad a las curvas generales despreocupándonos más de los picos y 

con 𝑤 bajo tenemos un resultado más sensible a los picos y más conservador. 

 

3. Casos límites 

o Si las curvaturas coinciden con las de referencia 𝑠 = 1 

o Si la pasada es recta 𝑠 ≈ 0. 

 

4. Estabilidad 

En la fórmula anterior 𝑛𝑐𝑡𝑟𝑙 = 𝑛𝑚𝑖𝑛 + (𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛) ∗ s𝛽 [15]: 

o Con el parámetro s aseguramos que 𝑛𝑐𝑡𝑟𝑙 se mueva entre el mínimo y el máximo 

permitido 

o Con 𝛽 > 1 se hace el recorte prudente: hasta que 𝑠 no es pequeño, el descenso 

de puntos es moderado 

 

3.7.3 Explicación del código 

La función de la Figura 3.26 recibe la curva como un array P y, si tiene menos de tres puntos, 

devuelve ceros porque no hay giro que medir. A continuación, construye para cada punto interior, 

los dos vectores que llegan y salen de él, sus longitudes sirven para detectar casos degenerados 

(segmentos prácticamente nulos). Con una máscara se ignoran esos casos y se normalizan solo los 

vectores válidos, evitando inestabilidades numéricas. Sobre cada pareja de vectores unitarios se 

calcula el giro local mediante el seno y el coseno implícitos (producto cruzado y producto escalar) y 

se obtiene el ángulo con arctan2 (33). Ese ángulo se pone en escala dividiéndolo por la longitud 

efectiva de los dos tramos adyacentes, lo que hace comparable la medida, aunque los puntos estén 

más o menos espaciados. El resultado por punto es una curvatura discreta sin signo: vale más cuanto 

más brusco es el cambio de dirección y tiende a cero cuando la trayectoria es recta. Finalmente, la 

rutina toma la media y el máximo de esa serie y los devuelve. Estas dos magnitudes resumen el 
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“tono” general de la pasada y la presencia de picos locales, y son las que el Bloque D usa justo 

después para decidir cuántos puntos de control conservar y cómo remallar por arco. 

 

 

Figura 3.26. Función metricas_curvatura. Calcula, para una polilínea, la curvatura 

discreta basada en el ángulo de giro entre segmentos consecutivos y devuelve dos 

indicadores globales de la pasada: curvatura media y curvatura máxima. 

La función de la Figura 3.27 recibe la curvatura media y la máxima de la pasada junto con 

una referencia 𝑘𝑟𝑒𝑓. Si la referencia es prácticamente nula, devuelve directamente el mínimo de 

puntos para evitar divisiones inestables. En el caso general, primero calcula un indicador 

adimensional s (32) comparando la curvatura actual con la de referencia: combina media y 

máximo con un peso w (por defecto 0’6 que favorece el comportamiento global frente a picos) y 

divide por k_ref. Ese s se recorta a [0,1]: valores cercanos a 0 representan curvas casi rectas y 

valores cercanos a 1 curvas exigentes. Después interpola entre n_min y n_max usando s**beta; 

con beta>1 el mapeo es más agresivo cuando la curvatura ya es baja, empujando antes hacia 

n_min y evitando mantener puntos de control innecesarios.  

Por último, redondea a entero y vuelve a acotar el resultado en [n_min, n_max]. Esta propuesta 

se estabiliza justo después con la histéresis: no permitir aumentos de puntos y limitar la caída por 

pasada, de modo que el tamaño de la malla descienda de forma suave y predecible. 

 

 

Figura 3.27. Función nctrl_por_curvatura. Mapea la curvatura medida en la pasada 

a un número de puntos de control dentro de los límites [n_min,n_max], una referencia 

k_ref, una mezcla entre curvatura media y máxima, y un sesgo controlado por β. 
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3.7.4  Resultados del código 

La imagen de la Figura 3.28 muestra, para cada pasada, los puntos de control resultantes 

después del enderezado local y de la reducción adaptativa con remallado por arco. El degradado de 

color indica el orden de generación: a medida que avanzan las pasadas, se observa cómo el 

algoritmo reduce el número de puntos y los redistribuye de forma uniforme a lo largo de la 

trayectoria, manteniendo siempre los extremos anclados. La mayor densidad relativa se concentra 

de manera natural en la zona con más giro de la finca; en los tramos suaves, la malla se hace más 

escasa sin perder forma. 

La imagen de la Figura 3.29 recoge los splines finales de todas las paralelas. Este spline se ha 

construido solo para la visualización del resultado tras reducir los puntos, pero el spline final se 

construye en el último bloque tras reorganizar lo puntos en el bloque anterior y que vamos a ver 

más adelante 

 

 

Figura 3.28. Distribución de los puntos de 

control tras los bloques C–D–E, coloreados 

por índice de pasada, sobre la curva original 

en negro.  

 
Figura 3.29. Splines finales de todas las 

paralelas (bloques C–D–E–F) con el mismo 

gradiente de color. Parámetros: sep = 4,0 m, 

SM = 1,0 m, STM = 1,0 m. 

 

El gráfico de la Figura 3.30 muestra cómo el sistema mantiene constante el número de puntos de 

control mientras la pasada sigue teniendo curvatura apreciable, y solo cuando la geometría se vuelve 

suficientemente dócil comienza una caída escalonada. Ese primer escalón corresponde a pasadas en 

las que la curvatura media y, sobre todo, la máxima sigue indicando que hacen falta muchos grados 

de libertad. A partir de cierta pasada, el enderezado ya ha eliminado gran parte de las ondulaciones 

y la métrica de curvatura desciende por debajo de la referencia; entonces nctrl_por_curvatura 

propone tamaños menores y la histéresis (32) impone dos reglas: no crecer nunca y reducir como 

mucho un salto limitado por porcentaje y por un mínimo absoluto. Por eso la gráfica baja en 

escalones regulares, sin rebotes, hasta alcanzar la cota mínima operativa. En términos prácticos, esta 

figura confirma que el Bloque D no recorta a ciegas: espera a que la pasada esté limpia, reduce de 
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forma controlada y entrega una malla de puntos cada vez más simple pero suficiente para conservar 

la forma. 

  

Figura 3.30. Reducción adaptativa de puntos por pasada. Evolución del número de 

puntos de control n_ctrl a lo largo de todas las paralelas (eje X). La curva en 

escalones refleja la combinación de la política curvatura/tamaño. 

3.8 Remallado equiespaciado – Bloque E (𝑸𝒓𝒆𝒅 → 𝑹) 

3.8.1 Descripción del algoritmo 

Al terminar los bloques C (enderezado) y D (reducción adaptativa), con la malla reducida  𝑸𝑟𝑒𝑑 

la distribución de puntos puede quedar descompensada: muchos puntos apretados en zonas con 

curvatura cerrada y otros muy separados en tramos suaves. Esa distribución irregular es mala para el 

spline porque puede producir solape o incluso cruces entre puntos. El Bloque E corrige esto sin 

cambiar la forma global. 

Vuelve a muestrear por longitud de arco para obtener una malla de N puntos equiespaciados a lo 

largo de la trayectoria, fijando los extremos prácticamente igual que en el Bloque A, pero sin reducir 

el número de puntos. El resultado es una base homogénea y estable para la construcción del spline 

del Bloque F. 

 

En la Figura 3.31 muestra el diagrama de flujo del Bloque E. El proceso comienza recibiendo la 

polilínea y, si no se especifica tamaño, adopta el número actual de nodos. Se comprueban dos casos 

límite para devolver la curva sin cambios: que haya menos de tres puntos (no hay interior que 

redistribuir) o que la longitud total sea prácticamente nula (evita normalizar sobre cero). En el caso 

general se calcula la longitud de arco acumulada y con ella se crea un nuevo eje de distancias 

equiespaciadas desde 0 hasta la longitud total. Las coordenadas 𝑥  e 𝑦  se reconstruyen por 

interpolación lineal a lo largo de ese eje, y finalmente se reafirman los anclajes copiando exactamente 

los extremos originales.  

El resultado conserva la misma forma, pero con nodos homogéneos por arco, lo que estabiliza el 

spline del Bloque F al evitar sobre-muestreos locales y mejorar la regularidad de tangentes y 

curvaturas. El coste es lineal en el número de puntos y la implementación es robusta al basarse 

únicamente en distancias euclídeas e interpolación por tramos. 



 

54 

 

 

 
Figura 3.31. Diagrama de flujo del remallado por arco. A partir de la curva 

enderezada 𝑄𝑟𝑒𝑑  y del tamaño deseado, el algoritmo reparametriza por longitud de 

arco, genera un eje equiespaciado, interpola las coordenadas sobre ese eje y fija los 

extremos, devolviendo una curva con los puntos uniformemente distribuidos. 

 

 

3.8.2 Matemática asociada 

Tras el enderezado y la reducción, partimos de la polilínea tras el Bloque D tal que: 

𝑸𝑟𝑒𝑑 = {𝒒𝑖
𝑟𝑒𝑑}𝑖=0

𝑁−1   𝑁 = 𝑛𝑐𝑡𝑟𝑙    (34) 

 

Construimos la longitud de arco acumula tal como hacemos en el Bloque A (11): 

𝑠0 = 0,   𝑠𝑖 = ∑  ‖𝒒𝑘 − 𝒒𝑘−1‖
𝑖
𝑘=1 ,    𝑖 = 1,… ,𝑁 − 1    (35) 

 

Donde 𝑠𝑖  mide cuanta distancia real llevamos recorrida sobre la polilínea al llegar a 𝒒𝑖  y 

obtenemos la longitud total 𝐿 = 𝑠𝑁−1  
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Tras esto normalizamos la distancia recorrida a [0, 1]: 

𝑡𝑖 =
𝑠𝑖

𝐿
, 𝑖 = 0,… ,𝑁 − 1   (𝑡0 = 0, 𝑡𝑁−1 = 1)   (36) 

 

Ahora elegimos N parámetros equiespaciados en el intervalo para que cada nuevo nodo este a la 

misma distancia que el anterior: 

𝑠𝑗
𝑛𝑒𝑤 =

𝑗

𝑁−1
,    𝑗 = 0,… ,𝑁 − 1  (37) 

 

Por último, solo nos queda definir la nueva malla 𝑹 = {𝒓𝑗}𝑗=0
𝑁−1 evaluando la polilínea 𝑸𝑟𝑒𝑑 en 

𝑠𝑗
𝑛𝑒𝑤 mediante la interpolación lineal a trozos sobre: 

𝒓𝑗 = (𝑖𝑛𝑡𝑒𝑟𝑝(𝑡,  𝒒𝑥,  𝑠𝑗
𝑛𝑒𝑤),  𝑖𝑛𝑡𝑒𝑟𝑝(𝑡,  𝒒𝑦,  𝑠𝑗

𝑛𝑒𝑤))  𝑹0 = 𝒒0
𝑟𝑒𝑑,   𝑅𝑁−1 = 𝒒𝑁−1

𝑟𝑒𝑑  (38) 

 

Como resultado obtenemos 𝑹 que tiene la misma cantidad de puntos que 𝑸𝑟𝑒𝑑, pero distribuidos 

homogéneamente por arco, estabilizando el spline que vamos a construir a continuación 

3.8.3 Explicación del código 

En la Figura 3.32 muestra la función principal remallar_equispaciado aplica el remallado 

propiamente dicho. Lo primero que hace es copiar la polilínea y tratar los casos degenerados: si hay 

menos de tres puntos, devuelve una copia sin tocar porque no hay interior que redistribuir; si 

n_puntos no se especifica, conserva el tamaño actual para “solo reordenar” por arco; y si la longitud 

total 𝐿 que devuelve _acum_arco es prácticamente nula, también devuelve la curva sin cambios para 

evitar una normalización sobre cero. Con la curva válida, toma el 𝑠 acumulado, extrae la longitud 

total y construye un nuevo eje de arco equiespaciado s_new (37) con tantos nodos como n_puntos. 

A continuación, interpola independientemente las coordenadas x e y sobre ese eje: np.interp [16] se 

usa aquí como interpolación lineal a trozos sobre la polilínea, que equivale a “caminar” por la curva 

y colocar un punto cada Δs constante.  

Finalmente, ancla los extremos asignando Q[0]=P[0] y Q[-1]=P[-1]: esto asegura que el inicio 

y el final, que actúan como referencias geométricas y de rumbo, se conserven exactamente. El 

resultado R (38) tiene el mismo número de puntos que se pidió, pero ahora equiespaciados por arco, 

lo que estabiliza la construcción del spline del Bloque F  
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Figura 3.32. Implementación de remallar_equiespaciado. La rutina reparametriza la 

polilínea por longitud de arco: calcula el arco acumulado (_acum_arco), genera un 

eje equiespaciado s_new, interpola por tramos las coordenadas x e y sobre ese eje y 

fija los extremos para conservar los anclajes. Si la curva es demasiado corta o tiene 

menos de tres puntos, devuelve una copia sin cambios. 

La función auxiliar _acum_arco en la Figura 3.33 calcula la longitud de arco acumulada de la 

polilínea P. Recorre la lista de puntos y, para cada índice, suma la distancia euclídea al punto anterior. 

El resultado es un vector 𝑠 que empieza en cero y termina en la longitud total; esto es la base para 

volver a parametrizar por arco sin cambiar la forma.  

 

 

Figura 3.33. Función auxiliar _acum_arco. Recorre la polilínea sumando la distancia 

entre puntos consecutivos para construir el vector de longitud de arco acumulada, 

base del remallado por arco del Bloque E. 

 

3.8.4 Resultado del bloque 

La Figura 3.34 ilustra que el Bloque E no cambia la forma, solo reparametriza la pasada. Tras el 

enderezado y la reducción, los puntos pueden estar concentrados en algunas zonas y escasos en otras. 

El remallado vuelve a distribuir el mismo número de puntos a lo largo de la trayectoria. Por eso las 

dos curvas se superponen casi por completo, mientras que los marcadores azules aparecen 
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regularmente espaciados a lo largo de toda la trayectoria. Este reparto estabiliza el spline del Bloque 

F, evita que haya tramos donde se solapen o se crucen puntos vecinos tras varias paralelas. 

 

 
Figura 3.34. Efecto del remallado por arco. En naranja se muestran los puntos y la 

polilínea antes del remallado; en azul, después. La geometría es la misma, pero los 

nodos quedan equiespaciados por longitud de arco y se mantienen los extremos 

anclados. 

3.9 Construcción del spline cúbico – Bloque F (𝑹 → 𝑺(𝒕)) 

3.9.1 Descripción del algoritmo 

A partir de la malla 𝑹 obtenida en el Bloque E, este bloque construye la trayectoria suave de 

guiado como un spline cúbico paramétrico que interpola exactamente por esos puntos. El resultado 

es una curva paramétrica suave 𝐶2 estable y fácil de muestrear, que respeta los puntos de control 

dejando una ruta suave y continua lista para el guiado. 

 

El diagrama de flujo Figura 3.35 muestra como el proceso parte de los puntos remallados R. Si 

hay menos de dos, no puede construirse un spline y se devuelve una copia sin cambios. En caso 

contrario, se calcula la longitud de arco acumulada y se normaliza a un parámetro 𝑡 ∈ [0,1]. Con ese 

parámetro se interpolan por separado 𝑥  e 𝑦  mediante splines cúbicos obteniendo la curva 

paramétrica 𝑺(𝑡) = (𝑆𝑥(𝑡), 𝑆𝑦(𝑡)). Finalmente se crea una malla uniforme de evaluación  y se 

evalúa 𝑺 en esos nodos para producir la trayectoria densa, que es la que se entrega al guiado. 
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Figura 3.35. Diagrama de flujo de la construcción del spline cúbico. A partir de los 

puntos remallados 𝑹  y del tamaño de evaluación, se parametriza por arco, se 

construyen los splines y se obtiene la trayectoria densa 𝐶. 

3.9.2 Matemática asociada 

Primero antes de construir el spline debemos calcular la longitud de arco como hicimos 

anteriormente para los puntos nuevos 𝒓𝑖 = (𝑥𝑖 , 𝑦𝑖): 

𝑠0 = 0,   𝑠𝑖 = ∑  ‖𝒓𝑘 − 𝒓𝑘−1‖
𝑖
𝑘=1 ,    𝑖 = 1, … ,𝑁 − 1    (39) 

 

 

Y como antes calculamos la longitud total 𝐿 = 𝑠𝑁−1 y normalizamos: 

𝑡𝑖 =
𝑠𝑖

𝐿
, 𝑖 = 0,… ,𝑁 − 1   (𝑡0 = 0, 𝑡𝑁−1 = 1)   (40) 

 

Ahora ya podemos construir los splines cúbicos que necesitamos para obtener la trayectoria: 

𝑥(𝑡) = 𝑆𝑥(𝑡), 𝑦(𝑡) = 𝑆𝑥(𝑡)  (41) 

 

Ya con los splines podemos definir la curva paramétrica: 
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𝑺(𝑡) = (𝑆𝑥(𝑡), 𝑆𝑦(𝑡))   𝑡 ∈ [0,1]   (42) 

 

Por último, solo nos queda representar la nueva trayectoria. Para ello primero vamos a definir los 

puntos en los que evaluaremos el spline según un número de puntos de evaluación: 

𝑡𝑗 =
𝑗

𝑛𝑒𝑣𝑎𝑙−1
,       𝑗 = 0,… , 𝑛𝑒𝑣𝑎𝑙 − 1  (43) 

 

Con esto obtenemos la trayectoria final: 

𝐶 = {𝑺(𝑡)}𝑗=0
𝑛𝑒𝑣𝑎𝑙−1

 (44) 

 

3.9.3 Explicación del código 

La función de la Figura 3.36 recibe la malla remallada 𝑹 y devuelve una trayectoria densa y 

suave lista para el guiado. Lo primero que hace es proteger casos degenerados: si entran menos de 

dos puntos, no hay nada que interpolar y devuelve una copia. A continuación, construye el parámetro 

por arco. Recorre los puntos acumulando distancias entre consecutivos y normaliza por la longitud 

total; el resultado es un vector 𝑡 monótono en [0,1], lo que evita concentraciones de curvatura por 

una parametrización mala. 

Con ese 𝑡  crea dos splines cúbicos interpolantes, uno para 𝑥  y otro para 𝑦  (41), usando 

scipy.interpolate.CubicSpline [17]. El spline es 𝐶2en los nudos interiores y ajusta suavemente las 

dos primeras celdas en los extremos, lo que en la práctica reduce oscilaciones spurious sin obligarnos 

a estimar tangentes. 

Por último, fija una malla de evaluación (43) uniforme y evalúa ambos splines ahí. Esa cuadrícula 

uniforme en [0,1], al estar el parámetro ligado al arco, produce una nube de puntos regular a lo largo 

de la curva. La función devuelve la matriz 𝐶 = {(𝑆𝑥(𝑡𝑗), 𝑆𝑦(𝑡𝑗)} (42) (44) que es la trayectoria final. 

 

 

 

 
Figura 3.36. Implementación de spline_desde_puntos. La función calcula el 

parámetro por longitud de arco normalizada, construye dos CubicSpline (en 𝑥 e 𝑦) y 
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evalúa el spline en una malla uniforme de 𝑡 para devolver la trayectoria densa de 

guiado. 

 

La función de la Figura 3.37 es la función principal del proceso completo y, en particular, 

es donde se ejecuta el Bloque D dentro del bucle de pasadas. Comienza creando una base de 

control equiespaciada por arco con n_ctrl_max de puntos y calculando sus normales; sobre 

esa base fija una referencia de curvatura (33) (K_REF) que se usará para comparar la 

complejidad de cada pasada. A continuación, itera tantas veces como paralelas se quieran 

generar. En cada iteración desplaza la base por sus normales la distancia fijada (Bloque B) 

y, salvo que se desactive para la primera, endereza localmente con 

aplicar_enderezado_local_gs (Bloque C); el número de iteraciones del enderezado y el peso 

hacia la recta (wR) se hacen crecer con el progreso de pasadas para ir forzando la rectitud 

cuando la geometría ya está limpia.  

Con la polilínea enderezada de esa iteración, calcula curvatura media y máxima y, con 

ellas, decide el número objetivo de puntos de control mediante nctrl_por_curvatura: si la 

curva aún gira, conserva más puntos; si ya es dócil, reduce. Acto seguido aplica la histéresis: 

impide que el número crezca respecto a la pasada anterior y limita la caída máxima permitida 

(por porcentaje y por mínimo absoluto), de modo que el tamaño de la malla descienda de 

forma estable y predecible. Con el tamaño final, remalla por arco a exactamente esos puntos 

(Bloque E), anclando extremos para estabilidad, y luego reconstruye un spline cúbico de 

evaluación para visualizar y registrar la pasada (Bloque F). nodos de control de cada pasada 

y las métricas registradas, dejando listo el informe y las figuras del capítulo.  

 

 

Figura 3.37. Función generar_paralelas_adaptativas. Orquesta el flujo de los 

Bloques B→C→D→E→F: desplazamiento por normales, enderezado local, 

medición de curvatura y asignación adaptativa de puntos con histéresis, remallado 
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por arco y reconstrucción spline; todo ello repetido pasada a pasada y con opción de 

encadenado. 

 

3.9.4 Resultados del bloque 

La imagen de la Figura 3.38 compara la linde original con la primera pasada paralela. Los 

marcadores morados son los nodos obtenidos tras el enderezado (C), la reducción adaptativa (D) y 

el remallado por arco (E). El trazo azul es el resultado del Bloque F: el spline cúbico paramétrico 

construido sobre parámetro de arco normalizado. Se aprecia que el spline pasa exactamente por cada 

punto de control y “planchan”. En los tramos casi rectos ambas trayectorias prácticamente coinciden; 

en las zonas de mayor giro, el spline suaviza la transición manteniendo el rumbo y la separación 

respecto a la original, dejando una trayectoria apta para el guiado. 

 
Figura 3.38. Curva original (negro) frente a la primera paralela generada tras C–

D–E: se muestran los puntos de control (morado) y el spline cúbico que los interpola 

(azul). 

3.10 Funciones auxiliares 

En este apartado reunimos las funciones auxiliares que sostienen el flujo de trabajo, pero no 

constituyen, por sí mismas, un bloque del algoritmo (A-B-C–D–E–F).  

3.10.1 Pedir parametros 

Esta función de la Figura 3.39 crea una pequeña interfaz modal con Tkinter. Primero oculta la 

ventana raíz (root.withdraw), y a continuación abre seis cuadros de diálogo con simpledialog para 

leer, con validación mínima, los parámetros que alimentan al pipeline: 

• cantidad (entero ≥ 1): cuántas paralelas generar. 

• dirección (entero, típico +1 derecha, −1 izquierda): signo del desplazamiento. 

• SM y STM (reales ≥ 0.1): solape y zona máximos sin tratar, que acotan los desplazamientos 

en el enderezado. 

• sep (real ≥ 0.1): separación entre pasadas  

• n_ctrl (entero ≥ 5): tamaño inicial de la malla de control. 

Cada cuadro fija un valor inicial (initialvalue) cómodo para pruebas y un mínimo (minvalue) para 

evitar entradas vacías o no físicas. Al terminar, destruye la ventana (root.destroy) y devuelve una 
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tupla con los seis valores. Es una utilidad de entrada/salida: no altera la geometría ni la lógica del 

algoritmo. 

 

 
Figura 3.39. Función pedir_parametros_usuario. Diálogo ligero en Tkinter para 

recoger los parámetros de ejecución: nº de paralelas, dirección, límites agronómicos 

(SM/STM), separación entre pasadas y nº inicial de puntos de control. 

3.10.2 Cargar trayectoria 

En la Figura 3.40 se muestra como la rutina abre el archivo con codificación UTF-8 y 

errors="ignore" para tolerar caracteres ajenos a ASCII. Descarta la primera línea ya que es una 

cabecera y recorre el resto; para cada línea elimina espacios (strip()), separa por el punto y coma 

(split(';')) y convierte cada campo a float tras sustituir la coma decimal por punto (replace(',', '.')).  

Con esa comprensión se construye una lista de pares (𝑥, 𝑦) que finalmente se convierte a numpy 

con tipo float. El resultado es una polilínea tal cual viene del fichero, lista para pasar al muestreo por 

arco y al resto de bloques.  

 

 
Figura 3.40. Función cargar_curva. Lectura robusta de un fichero .txt con 

coordenadas en formato x;y (cabecera en la primera línea). Normaliza comas 

decimales a punto y devuelve un np.array de tamaño N×2N en coma flotante. 

3.10.3 Plot de los resultados 

La Figura 3.41 es la función que va a graficar los resultados obtenidos de nuestro algoritmo. 

Dibuja la linde original en negro y superpone los puntos de control iniciales en rojo. Para cada 

pasada, toma de resultados los puntos desplazados por la normal y los enderezados y, según los flags, 

los pinta como nubes (naranja y azul, respectivamente). Además, traza la trayectoria final de esa 

pasada (el spline) como una línea azul clara. Fija la misma escala en ambos ejes, añade cuadrícula 

suave y ajusta márgenes. Con una sola figura se ve, de un vistazo, el antes (original), el proceso 

(desplazamiento y enderezado) y el resultado (spline) de todas las pasadas. 
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Figura 3.41. Función plot_resultados: visualización comparada de la curva original, 

los puntos de control, los puntos desplazados y enderezados de cada passada y los 

splines finales que construyen las paralelas. 

3.10.4 Plot de las métricas 

La Figura 3.42 es la función que va a graficar el número de puntos usado en cada pasada y lo 

dibuja frente al índice de paralela. Los ejes se rotulan con la paralela 𝑖 y 𝑛𝑐𝑡𝑟𝑙, se activa cuadrícula 

suave y tight_layout ajusta márgenes. El resultado permite ver de un vistazo la reducción escalonada 

de puntos a medida que la trayectoria se va enderezando. 

 

 

Figura 3.42. Función plot_metricas: evolución del número de puntos de control por 

pasada. 

3.10.5 Main 

La Figura 3.43 es la función main. Este main actúa como “lanzador” de la demostración. Primero 

carga la linde desde el archivo introducido y pide por GUI los parámetros operativos (número de 

pasadas, dirección, SM, STM, separación y tamaño inicial de malla).  

A continuación, fija la configuración de la reducción adaptativa por curvatura: cotas de puntos 

(N_CTRL_MAX, N_CTRL_MIN), los parámetros del planificador (W_CURV=0.6, 

BETA_CURV=1.6) y la histéresis de caída para límitar la reducción máxima por pasda 

(FRAC_DROP_MAX, DROP_MIN_ABS). Con todo ello llama a generar_paralelas_adaptativas, 

que orquesta los bloques A-B–C–D–E–F sobre cada pasada; después imprime el tiempo total y 

dibuja, con plot_resultados y plot_metricas, la geometría final y la evolución de 𝑛𝑐𝑡𝑟𝑙. En suma, este 
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punto concentra la ejecución de extremo a extremo y deja listos los gráficos que documentan el 

comportamiento del algoritmo con los parámetros seleccionados. 

 

 
Figura 3.43. Función main(): lectura de la trayectoria, captura de parámetros, 

configuración de la reducción por curvatura y ejecución del flujo de trabajo 

completo, con generación de gráficos e informe de tiempos.
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Capítulo 4: Resultados obtenidos tras la aplicación del 

algoritmo 

 
Dentro de este capítulo se van a mostrar los resultados obtenidos tras la aplicación del algoritmo 

presentado y desarrollado en el capítulo anterior. Estos resultados son los obtenidos tras aplicar el 

código que se ha explicado a cuatro trayectorias reales recogidas de una finca. 

 

Para estas simulaciones hemos configurado unos parámetros por defecto: 

• N.º paralelas: 30 

• Distancia entre paralelas: 4 

• Zona sin tratar máximo: 1 

• Solape máximo: 1 

• Iteraciones: 60 

• Puntos de control: 30 

 

4.1 Curva 1 

Como podemos observar en la figura 4.1 disponemos de una trayectoria simple con una única curva 

suave. 

Aplicando el algoritmo a esta trayectoria con los parámetros por defecto obtenemos la Figura 4.2 

donde podemos observar que primero pasamos de una trayectoria que se define por miles de puntos a 

únicamente 30 puntos con los que el algoritmo trabaja. Se puede apreciar como poco a poco la 

curvatura va desapareciendo y cuando llegamos al último tercio de la trayectoria vemos como se realiza 

la reducción de puntos y esto consigue que consigamos el enderezado total en la paralela nº 23. En la 

Figura 4.3 se puede observar una gráfica que indica como se van reduciendo los puntos en cada 

trayectoria y se aprecia al principio un pequeño escalón para la primera paralela y luego tenemos una 

zona plana donde principalmente se está aplicando el enderezado, a partir de la paralela nº 20 vemos 

como se vuelve a reducir el número de puntos hasta alcanzar el número mínimo cuando ya hemos 

alcanzado la recta por completo. 

También podemos ver el resultado de aplicar el mismo algoritmo, pero en la dirección contraria en 

la Figura 4.4 donde tenemos un resultado casi idéntico donde se aprecia poco a poco como va 

desapareciendo la curvatura y en el mismo caso que anteriormente obtenemos el enderezado total en 

la paralela nº 23. 
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En la Figura 4.4 se han modificado los parámetros para la curva indicando un solape y una zona 

sin tratar de 0.25. Se puede observar cómo tenemos una pequeña desviación que produce un solape 

total entre las paralelas nº32 y nº33, debido a la reducción de puntos debido a que el algoritmo está 

detectando una curva muy suave en la que es posible eliminar algún punto y al ser un punto crítico tras 

solo quedar cinco únicos puntos siendo dos de ellos los extremos. Al eliminar este punto crítico 

obtenemos un desvío y como solución vamos a limitar a cinco el número mínimo de puntos que puede 

reducir el bloque de reducción de puntos. Podemos ver en la Figura 4.5 como ya tenemos un buen 

resultado y aunque hemos necesitado más paralelas hemos resuelto este problema. 

 

 
Figura 4.1. Representación gráfica de la curva 1. 

 

 
Figura 4.2. Resultado de la curva 1 en dirección positva tras aplcar el algoritmo con 

los parámetros por defecto. 
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Figura 4.3. Gráfica que muestra la reducción de puntos que se va realizando a lo 

largo de las paralelas en la curva 1. 

 

 

Figura 4.4. Resultado de la curva 1 en dirección negativa tras aplicar el algoritmo 

con los parámetros por defecto. 

 

 

Figura 4.5. Representación de la Curva 1 con SM=0.50, STM=0.50 y 50 paralelas. 

Se puede observar un solape total. 
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Figura 4.6. Representación de la Curva 1 con SM=0.50, STM=0.50 y 50 paralelas y 

con 5 puntos mínimo tras la reducción de puntos.  

4.2 Curva 2 

En la Figura 4.7 se aprecia la forma de esta curva donde ya vemos una trayectoria con más 

curvaturas y cambios de sentido. En la Figura 4.8 vemos el resultado con los parámetros por defecto 

donde se pueden apreciar varias zonas donde se produce mucho solape o zonas sin tratar. Esto es efecto 

se produce por dos motivos, el primero es que al ser una trayectoria con tantas curvas y pronunciadas 

necesitamos un número mayor de puntos para representarla, el segundo punto que afecto a este 

resultado es el de la reducción de puntos por el mismo caso que hemos visto en la curva anterior. Para 

solucionar este problema en esta trayectoria con tantas curvas hemos necesitado un número mínimo 

de ocho puntos para la reducción de puntos y un número de puntos de control inicial de cuarenta para 

representar la trayectoria. En la Figura 4.9 vemos el resultado tras modifica el número mínimo de 

puntos para el enderezado y vemos que conseguimos el enderezado total en la paralela nº17. La Figura 

4.10 indica como se van reduciendo los puntos en esta trayectoria teniendo una zona plana y luego tras 

tener un buen enderezado se produce la reducción de puntos. 

 En la Figura 4.11 tenemos el resultado de la curva en la otra dirección donde obtenemos el 

enderezado total en la paralela nº17 

 

 
Figura 4.7. Representación gráfica de la curva 2. 
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Figura 4.8. Resultado de la curva 2 en dirección positiva tras aplcar el algoritmo con 

los parámetros por defecto. 

 

 

Figura 4.9. Resultado de la curva 2 en dirección positva con un número mínimo de 

ocho puntos para la reducción de puntos y un número puntos de control de cuarenta. 

 

 

Figura 4.10. Gráfica que muestra la reducción de puntos que se va realizando a lo 

largo de las paralelas en la curva 2. 
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Figura 4.11. Resultado de la curva 2 en dirección negativa con un número mínimo de 

ocho puntos para la reducción de puntos y un número puntos de control de cuarenta. 

 

4.3 Curva 3 

En la Figura 4.12 vemos la forma de la curva donde aquí tenemos una curva bastante cerrada 

seguida deuna curva bastante pronunciada. En la Figura 4.13 vemos el resultado con los parámetros 

por defecto donde se pueden apreciar que a partir de cierta paralela se produce un descontrol debido, 

como hemos visto anteriormente, al número mínimo de puntos tras la reducción de puntos. En la 

Figura 4.14 vemos el resultado donde hemos tenido que limitar el número mínimo de puntos de la 

reducción a diez puntos, hemos tenido que aumentar el número de paralelas a generar ya que se aprecia 

que se consigue el enderezado en la paralela nº46. En la Figura 4.15 indica como se van reduciendo 

los puntos en esta trayectoria teniendo una zona plana y luego tras tener un buen enderezado se produce 

la reducción de puntos siendo esta como se aprecia en los escalones bastante brusca. 

En la Figura 4.16 vemos el resultado en la otra dirección donde podemos percibir en las primeras 

paralelas donde se encuentra la curva más cerrada se sobrepasa el solape máximo introducido, esto se 

produce debido a que estamos en una zona con un tramo de radio muy reducido, esto es una 

consecuencia geométrica de desplazar una curva muy cerrada ya que, aunque el algoritmo no permite 

desplazar el punto más del límite la propia geometría de las paralelas favorece el solape, con este 

detalle conseguimos el enderezado total en la paralela nº39. 
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Figura 4.12 Representación gráfica de la curva 3. 

 

 

Figura 4.13. Resultado de la curva 3 en dirección positva tras aplcar el algoritmo 

con los parámetros por defecto. 

 

Figura 4.14. Resultado de la curva 3 en dirección positiva con un número mínimo de 

diez puntos para la reducción de puntos. 
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Figura 4.15 Gráfica que muestra la reducción de puntos que se va realizando a lo 

largo de las paralelas para la curva 3. 

 

 

Figura 4.16 Resultado de la curva 3 en dirección negativa con un número mínimo de 

diez puntos para la reducción de puntos. 

4.4 Curva 4 

En la Figura 4.17 vemos la última trayectoria que vamos a ver, dónde se aprecia que está compuesta 

por dos curvas pronunciadas. La Figura 4.18 muestra el resultado con los parámetros por defecto 

cambiando a cincuenta el número de paralelas generadas ya que conseguimos el enderezado total en 

la parelala nº47, al tener curvas bastante abiertas esta trayectoria no produce problemas igual que la 

curva 1. La Figura 4.19 muestra el resultado del proceso de reducción de puntos, donde se puede 

apreciar que la reducción de puntos se produce tarde ya que el proceso de enderezado dura bastantes 

paralelas. 

En la Figura 4.20 tenemos el resultado en la otra dirección donde obtenemos el enderezado total 

en la paralela nº47 
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Figura 4.17. Representación gráfica de la curva 4 

 
Figura 4.18. Resultado de la curva 3 en dirección positva tras aplcar el algoritmo con 

los parámetros por defecto. 

 

 

Figura 4.19 Gráfica que muestra la reducción de puntos que se va realizando a lo 

largo de las paralelas en la curva 4 

  



 

75 

 

 

Figura 4.20 Resultado de la curva 4 en dirección negativa con un número mínimo de 

diez puntos para la reducción de puntos. 
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Capítulo 5: Conclusiones y líneas futuras 

 

Este trabajo ha presentado un flujo de trabajo completo y coherente para transformar una trayectoria 

agrícola medida en campo en una familia de pasadas paralelas que tienden a la recta, respetando de 

forma explícita los límites agronómicos de solape máximo (SM) y zona sin tratar máxima (STM).  

El proceso se articula en seis bloques (A–F): muestreo por arco, paralelas por normales, enderezado 

local, reducción adaptativa de puntos, remallado equiespaciado y construcción del spline cúbico para 

guiado. La elección de splines cúbicos paramétricos con parámetro de arco ha sido clave para 

garantizar suavidad, robustez y evaluaciones densas con un coste moderado.  

En los resultados experimentales sobre trayectorias reales, el algoritmo genera pasadas con 

separación constante, suaviza ondulaciones locales y converge progresivamente hacia trayectorias 

rectas. Además, la combinación C–D–E–F (enderezado → reducción adaptativa → remallado → 

spline) conseguimos el objetivo de obtener trayectorias rectas de forma rápida y eficiente. 

 

Aportaciones principales del trabajo: 

 

1. Enderezado local eficiente (Bloque C): 

Se reemplaza la “fuerza bruta” por un ajuste local en la normal de cada punto, que minimiza 

una función de coste con términos de longitud, curvatura, alineación y rectitud, acotada por 

una barrera agronómica para SM/STM. Este diseño mantiene la intuición agronómica, pero 

reduce claramente el coste computacional y mejora la estabilidad de la convergencia.  

 

2. Reducción adaptativa del número de puntos (Bloque D): 

Tras medir curvatura media y máxima, el sistema decide automáticamente cuántos puntos de 

control son necesarios en cada pasada. Con ello se simplifica la malla sin perder forma, lo 

que favorece el objetivo de tender a la recta.  

 

3. Remallado equiespaciado por arco (Bloque E): 

Redistribuye los puntos supervivientes sin alterar la forma, mejora la condición del spline y 

previene ondulaciones espurias por sobre-muestreo local. Los extremos se mantienen 

anclados para fijar referencias geométricas y de rumbo.  

 

4. Spline cúbico paramétrico (Bloque F): 

Con parámetro de arco normalizado, el spline interpola exactamente los nodos y garantiza 
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suavidad. El número de puntos de evaluación controla solo la densidad de muestreo, no la 

forma, lo que simplifica la explotación posterior para guiado.  

 

La metodología propuesta reduce el número de puntos necesarios, mantiene los criterios 

agronómicos dentro de límites realistas y produce trayectorias suaves y evaluables con bajo coste. 

Estas propiedades la hacen apta para su integración en sistemas GNSS de guiado de tractores, donde 

se necesita calcular, almacenar y seguir pasadas largas y estables con recursos limitados.  

 

Líneas futuras: 

 

1. Ajuste automático de parámetros 

o Sintonía automática de SM/STM en función de radio local estimado. 

o Aprendizaje del peso 𝑤 y de 𝑛_𝑚𝑖𝑛 a partir de métricas históricas (auto–calibración 

por parcela).  

 

2. Control de calidad geométrica en línea 

Detección temprana de ondulaciones residuales o “dientes” mediante filtros de curvatura y 

reajuste local antes del spline final.  

 

3. Robustez a datos GNSS reales: 

Inyección de ruido y outliers (GNSS) 

 

 

En resumen, el trabajo consolida una versión mejorada y más práctica del método de generación de 

paralelas: mantiene el control agronómico, reduce la complejidad y entrega trayectorias sólidas para 

guiado. La experiencia acumulada sugiere que una sintonía adaptativa plenamente automática y la 

robustez a datos reales son las dos direcciones más prometedoras para cerrar el ciclo y llevar el 

algoritmo a una explotación operativa en campo. 
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