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Benchmarking the technical efficiency of water utilities is essential for informing evidence-based regulatory
decisions. However, conventional performance assessment models often rely on the assumption of homogeneity
among utilities. This study addresses this limitation by applying Latent Class Stochastic Frontier Analysis to 22
Chilean water utilities over the period from 2010 to 2017. The average technical efficiency scores for companies
in Class 1 and Class 2 were 0.91 and 0.88, respectively. Companies in Class 1 exhibited stable performance over

time, with efficiency scores ranging from 0.88 to 0.92. In contrast, companies in Class 2 demonstrated greater
variability, with scores ranging between 0.85 and 0.93.

1. Introduction

Assessing the technical and economic performance, i.e., the technical
performance, of firms is essential for identifying strengths and weak-
nesses, benchmarking against industry standards, and adjusting strate-
gies to enhance long-term viability (Chai et al., 2022; Macedo et al.,
2023). In the context of monopolistic industries, such as the provision of
water and sanitation services, benchmarking technical performance
becomes even more critical, as utilities often lack endogenous incentives
to improve efficiency (Mocholi-Arce et al., 2025). Furthermore, in some
regulatory frameworks, the results of technical efficiency assessments
can serve as an input for tariff-setting processes, thereby linking per-
formance outcomes with financial incentives and regulatory decisions
(Carvalho et al., 2023; Walker et al., 2019).

Given the importance of benchmarking the performance of water
utilities, the past twenty-five years have seen a significant increase in
empirical studies assessing technical efficiency in the water sector (Goh
and See, 2021; Cetrulo et al., 2019). In the majority of these studies,
efficiency is estimated under the assumption that all water utilities
within the sample are homogeneous, implying that they operate under
the same production technology. However, this assumption may be
unrealistic, as utilities often differ in key aspects such as ownership
structure, scale of operations, and geographic location (De Witte and
Marques, 2009). These sources of heterogeneity can significantly

influence performance, and thus, efficiency estimates and the resulting
benchmarking conclusions are sensitive to this fundamental assumption
(Ananda and Oh, 2023).

To account for heterogeneity in the assessment of technical effi-
ciency of water utilities, several studies have employed the metafrontier
approach (Ananda and Oh, 2023; De Witte and Marques, 2009; Maziotis
and Molinos-Senante, 2024; Molinos-Senante and Maziotis, 2019, 2025;
Yin et al., 2024). This method involves partitioning the sample into
distinct groups based on a priori information regarding observable fac-
tors contributing to heterogeneity, such as utility size or ownership
structure (Delnava et al., 2023; Jin et al., 2024). Efficiency scores are
then estimated separately for each group using group-specific frontiers,
while a common technological frontier, i.e., the metafrontier, is esti-
mated for the entire sample to facilitate cross-group comparisons (Du
et al., 2023). However, a key limitation of this approach arises when the
analyst lacks sufficient information to accurately identify the sources of
heterogeneity, or when heterogeneity stems from unobservable factors,
such as organizational culture, managerial practices, or variations in
local regulatory environments. Additionally, water utilities are often
simultaneously influenced by multiple heterogeneous dimensions,
which further complicates their classification into mutually exclusive
groups. These challenges undermine the validity of direct comparisons
and underscore the need for advanced methodological approaches that
can capture complex and multifaceted heterogeneity.
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Addressing the challenge of unobservable heterogeneity is essential
for producing robust and meaningful technical efficiency assessments in
the water sector. However, as reviewed by Ben Amor and Mellah (2023),
econometric approaches to account for unobservable heterogeneity in
the water sector are scarce. This study aims to overcome this limitation
by incorporating unobservable sources of heterogeneity in the evalua-
tion of the technical efficiency of water utilities. To illustrate the im-
plications of ignoring utility heterogeneity, we compare the results of
the proposed approach with those obtained using a conventional model
that assumes all utilities are homogeneous. The case study focuses on the
Chilean water sector, which is characterized by significant geographic
diversity, varying ownership structures (including public, private, and
mixed utilities), and institutional complexity. These structural features
introduce meaningful heterogeneity across utilities, suggesting that a
differentiated benchmarking approach may be more appropriate than
uniform, ‘“one-size-fits-all” comparisons under certain conditions.
Applying latent class stochastic frontier analysis (LCSFA) in this context
provides not only methodological value but also practical insights for
regulators seeking to develop fair and credible performance evaluation
frameworks.

Previous studies have assessed the technical efficiency of Chilean
water utilities using both parametric and non-parametric approaches.
Among non-parametric methods, data envelopment analysis (DEA) has
been the most widely applied (Sala-Garrido et al., 2023a, 2023b;
Mocholi-Arce et al., 2022; Molinos-Senante et al., 2016), primarily for
comparing the performance of fully private versus concessionary com-
panies. However, these approaches require a priori classification of
utilities into predefined groups and, therefore, cannot capture unob-
served heterogeneity across firms. In terms of parametric approaches,
stochastic frontier analysis (SFA) is the most commonly used method for
evaluating the efficiency of Chilean water utilities (Maziotis et al., 202.3;
Molinos-Senante and Maziotis, 2019). Like DEA, these studies estimate
individual efficiency scores but assume a single frontier, thus over-
looking potential unobserved structural differences among utilities. In
contrast, the LCSFA applied in this study offers a novel contribution by
explicitly modeling unobserved heterogeneity through the identification
of latent groups, each with its own production frontier. This approach
enables a more flexible and context-sensitive assessment of efficiency,
better suited to the structural diversity of the Chilean water sector.

2. Methodology

To account for unobservable heterogeneity in the assessment of
technical efficiency of utilities, a wide range of approaches has been
developed. These include random parameters models (e.g., Greene,
2005a), which allow frontier parameters to vary continuously across
units; true random effects (TRE) and true fixed effects (TFE) models
(Greene, 2005b), which separate time-invariant heterogeneity from in-
efficiency; and latent class models, which capture unobserved hetero-
geneity by probabilistically grouping units into discrete segments with
distinct frontiers (Orea and Kumbhakar, 2004). Other approaches
include semi-parametric and non-parametric models, such as general-
ized additive models (GAMs) and local likelihood estimation, which
relax assumptions about the functional form.

While all these approaches have positive features, LCSFA offers
selveral advantages that are particularly relevant in the context of this
study. First, interpretability: LCSFA assigns utilities to a small number of
latent groups, each with its own estimated frontier and inefficiency
structure, which regulators can interpret as representing distinct oper-
ational or structural regimes (e.g., by size, region, or ownership type).
Second, empirical feasibility: Compared to fully flexible random co-
efficients models, LCSFA is less demanding in terms of sample size and
computational complexity, which is critical when working with a rela-
tively small and regulated utility sector such as Chile’s. Third, and most
importantly, policy relevance: the ability to benchmark performance
within latent peer groups enhances the credibility and fairness of
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regulatory comparisons, thereby avoiding the pitfalls of applying a
single benchmark to structurally different entities. Because of these
positive features, the LCSFA approach was employed in this study (Orea
and Kumbhakar, 2004).

Unlike the metafrontier approach, the LCSFA method does not
require a predefined classification of utilities. Instead, group member-
ship is determined endogenously based on utility-specific data,
including inputs, outputs, and relevant environmental variables. In
other words, LCSFA eliminates the need to impose any ex-ante as-
sumptions regarding the classification of water utilities into homoge-
neous groups.

The latent class stochastic frontier production model is as follows
(Lin and Du, 2014):

Inye|, =f (%), + exl; @

where i denotes a water utility, t is time, and j captures the different
classes. The vertical bar means that there is a different model for each
class j (Ahimbisibwe et al., 2024).

It was assumed that each utility i belongs to one of the unobserved
classes, indexed by j. Each class has its own stochastic frontier param-

eters (/i]-,/lj,aj). The probability that unit i belongs to class j was modeled

using a multinomial logit function:

exp(zi 7;)

J
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where z; is a vector of observed covariates affecting class membership,
and the first class is used as a baseline with y; = 0 for identification. In
the current study, z; includes an intercept term only.

The likelihood function of each utility i at any time t, conditional on
belonging to class j, can be expressed as follows:

Q4 &l /05) 1 €il;
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@ and ¢ denote the cumulative distribution function and the probability
density function of the standard normal distribution, respectively
(Quiédeville et al., 2022). The overall likelihood function for each utility
is derived as a weighted average of its class-specific likelihood functions,
where the weights correspond to the prior probabilities of membership
in each classj. Specifically, the unconditional likelihood for company i is
given by:

J
LF;=) PjLF;,0<P;<1,> Py=1 6)
j=1 )
The overall log-likelihood function is obtained by summing the
logarithms of the individual likelihood functions across all observations,
as follows (Barros, 2011):

N N J T
logLF =) logLF; =Y logy Py || LFy )
i=1 i=1 Jj=1 i=1

The log-likelihood function can be maximized with respect to the
parameter vector (6= f;, 0}, 4;) using conventional maximum likelihood
estimation techniques (Greene, 2005a). Once the parameters of the
log-likelihood function are estimated, the posterior probabilities of class
membership for each observation can be derived using Bayes’ theorem
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(Alvarez et al., 2012; Lin and Du, 2014), as follows:
PULFU

Z PyLF;
j=1

P(jli) = ®

Following prior research (Bokusheva et al., 2023; Dolsak et al., 2022;
Yakath Ali and See, 2023), an input distance function is selected to
represent the underlying production technology. The input distance
function is particularly suitable for this context, as it assumes that firms
seek to minimize input use for a given level of output. Moreover, it ac-
commodates multiple inputs and outputs, making it appropriate for the
complex nature of water company operations. Moreover, the input dis-
tance function does not require information on input prices, which is
advantageous when price data are unavailable or unreliable (Liu et al.,
2024; Mellah and Ben Amor, 2016).

The input distance function is defined in the input set T(x), as fol-
lows:

di(x,y) =max{r: (x/7) e T(x)} (C)]

where d;(x,y) denotes the input distance function, which represents the
maximum feasible proportional contraction of the input vector x using a
scalar distance 7, while holding the output vector y constant.

If d;(x,y) = 1, it indicates that the water utility under evaluation is
operating on the frontier and therefore, is considered technically effi-
cient. In contrast, a value of d;(x,y) > 1 signifies inefficiency, implying
that the utility could proportionally reduce its input usage while still
producing the same level of output, thereby indicating room for
improvement relative to its peers (Goh and See, 2023).

A translog functional form is selected to approximate the input dis-
tance function, as it is widely employed in empirical applications due to
its flexibility and suitability for econometric estimation (Cullmann and
Zloczysti, 2014; Saal et al., 2007; Molinos-Senante et al., 2018). To
derive the frontier surface, also referred to as the transformation func-
tion, the input distance function is normalized such that d; = 1 which
corresponds to efficient production (Cullmann and Zloczysti, 2014).

By imposing the property of linear homogeneity in inputs (by
dividing the inputs by the optimal input and rearranging), the translog
input distance function for K inputs and M outputs can be expressed in
the following form under the latent class stochastic frontier framework:
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us to recover the original variances, which ensures both variance terms
are positive:

o
ey 13
Gy 0 (14)

V142

The LCSFA model used in this study allows both the production
frontier parameters and the distributional parameters (o,,0,) to vary
across classes. This specification captures heterogeneity not only in
technology but also in the stochastic structure of the composite error
term, reflecting the possibility that utilities in different classes face
distinct noise environments and inefficiency profiles. An alternative
approach would constrain (o, 0,) to be equal across classes, attributing
all heterogeneity to technological differences. However, this imposes a
strong homogeneity assumption on inefficiency and noise that may not
hold in practice, especially when comparing water utilities with diver-
gent regulatory, geographic, or operational characteristics. For this
reason, we opt for a fully flexible specification.

In latent class models, several approaches exist to compute efficiency
scores. In this study, based on previous research (Sun et al., 2025),
technical efficiency was calculated as the
posterior-class-probability-weighted average of class-specific efficiency
estimates, as shown in Equations (15) and (16). From a regulatory
perspective, this approach is appropriate as it acknowledges classifica-
tion uncertainty and avoids potentially significant misclassifications
when posterior probabilities are diffuse (Johnes et al., 2022). Never-
theless, a class assignment, which assigns each unit to its most probable
class or conditional mode, derives the mode of the full conditional dis-
tribution of u; given data and estimated parameters rather than their
means (Renner et al., 2021).

The technical efficiency of utility i at time t, relative to production
technology associated with class j, can be estimated as:

TEq|; = E[exp (—u.) €] s)

Based on Equation (7), the technical efficiency of utility i at time ¢t
can be further estimated as (Lin and Du, 2014):

K-1 K-1 K-1 M M K-1 M
1 1
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-1
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m=1

where j denotes the latent class, &, represents a set of operating char-
acteristics that may influence the input requirements of utility i at time t
(Brea-Solis et al., 2017).

It should be noted that Eq. (10) assumes a composed error structure
& = V; — u;, where the noise term v; ~ ,/Z"”(O, 63) and the non-negative
inefficiency term u; ~ half ~./°(0,02) are independently distributed.
Following standard practice in stochastic frontier analysis, the model

was reparametrized in terms of:

=2

Oy

c=1/02+ 02 (12)

This reparameterization is computationally convenient and allowed

(€8]

J
TEy= Y P(jli) x TEq|; 16)
j=1
A critical step in applying the LCSFA approach is determining the
optimal number of latent classes into which the full sample of companies
should be partitioned (Greene, 2003; Orea and Kumbhakar, 2004). To
this end, and following the methodology proposed by Barros (2011),
model selection criteria are employed, specifically, the Akaike Infor-
mation Criterion (AIC) and the Schwarz Bayesian Information Criterion
(SBIC).

AIC = — 2logLF(j) + 2w 17

SBIC = — 2logLF(j) + log(w)*® 18)
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where logLF(j) denotes the value of the log-likelihood function for a
model with j latent classes, w represents the number of estimated pa-
rameters, and y is the number of observations (Barros, 2011). The model
with the lowest AIC or SBIC value is considered the most appropriate
specification, as it achieves the optimal balance between goodness of fit
and model parsimony (Cullmann and Zloczysti, 2014).

We selected the number of latent classes using standard information
criteria (AIC and BIC). Nevertheless, an alternative strategy would
involve hypothesis testing, for instance, testing whether specific co-
efficients or distributional parameters are equal across classes. However,
in latent class models, such tests often involve parameters on the
boundary of the parameter space, which complicates the use of standard
likelihood ratio or Wald tests (Gudicha et al., 2017). Moreover, joint
testing of class invariance across multiple parameters is computationally
intensive and can be sensitive to initial conditions. Recent methodo-
logical contributions have made advances in this area. In particular,
Stead et al. (2023) discuss the distribution of likelihood ratio statistics in
latent class and finite mixture stochastic frontier models and propose
procedures to address these challenges. While these developments are
highly relevant, in applied work, information criteria remain the most
widely used and practical tool for class determination, and therefore, we
followed this approach in the present study. Nevertheless, we
acknowledge the value of hypothesis testing as a complementary
approach for future research.

To assess the robustness of the class structure defined according to
the AIC and BIC criteria, we estimated the average posterior probability
for each class. After computing P, each utility i was assigned to the class
with the highest posterior probability. Subsequently, the average pos-
terior probability for class j was estimated as follows:

— 1
pj:ﬁZp,-j 19)

7 ieG;

where Nj is the number of utilities assigned to class j; C; is the set of
utilities assigned to class j and; Pj is the posterior probability of utility i
belonging to class j.

For comparative purposes, a standard stochastic frontier (SF) model
is also estimated under the assumption of a common production frontier
(i.e., homogeneous technology) for all observations (Cullmann, 2012).
Moreover, all continuous input and output variables were normalized
around their mean. Specifically, for each variable x, we computed:

- 1 &
=1 i T35 1 i 2
X =logxi — ?:1 08 X; (20)

This centring ensures that the first-order translog coefficients can be
interpreted at the geometric sample mean, which is essential for the
meaningful calculation of scale elasticities and marginal effects.

3. Data sample and selection

The empirical analysis focuses on a sample of water companies that
provide water and sanitation services across all administrative regions of
Chile. With a length of 4270 km and a width ranging from 445 km to just
90 km, Chile exhibits significant geographical diversity, leading to
considerable variations in water resource availability. In the north, the
Atacama Desert, recognized as the driest desert in the world, receives
annual precipitation of less than 250 mm, whereas in the south, annual
precipitation exceeds 4000 mm. These geographic disparities, combined
with socio-demographic factors, result in substantial differences in
water availability per capita, which range from 75 m3/year to
1,000,000 m®/year. Chile also displays significant socio-economic di-
versity, which influences drinking water consumption per capita, vary-
ing from 127.2 L per day to 611.5 L per day, with a national average of
170.7 L per day (SISS, 2017). Due to these divergences and other
contextual factors, water companies in Chile exhibit significant
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heterogeneity.

The heterogeneity of Chilean water companies is explicitly recog-
nized in the establishment of the regulatory model used to set maximum
water tariffs (D.F.L. MOP N. 70/88). Unlike other approaches that
compare the performance of different water companies, Chile’s regula-
tory framework is based on the concept of an efficient water operator
from both economic and technical perspectives (Maziotis et al., 2023).
This approach involves monitoring the actual costs incurred by each
water company and comparing them with those defined as efficient,
which vary among companies. Given the multitude of factors contrib-
uting to the heterogeneity of Chilean water companies, identifying and
isolating these factors remains a complex and challenging task. The
application of the LCSFA methodology enables the incorporation of
unobservable sources of heterogeneity in the efficiency assessment of
Chilean water companies.

The sample of water companies evaluated consists of 22 entities that
provide both water and sewerage services during the period 2010-2017.
Hence, it embraces 176 observations. The 22 water companies under
evaluation provide service to around 95 % of the urban Chilean popu-
lation across all administrative regions of the country (SISS, 2017). The
data used in this study is publicly available and was obtained from the
website of the national water regulator, the “Superintendencia de Ser-
vicios Sanitarios” (SISS).

The selection of variables is guided by the study’s aim, i.e., to assess
the technical efficiency of water companies, the availability of statistical
data, and the fact that the evaluated Chilean water companies provide
both water supply and sanitation services. Consequently, two input and
two output variables are incorporated into the assessment. The output
variables represent the two primary functions of water companies: i) the
volume of drinking water supplied, measured in thousands of cubic
meters per year, and ii) the number of customers receiving wastewater
treatment services. Regarding the input variables, the first input is the
operating expenditure (OPEX) for water and sewerage services,
expressed in Chilean pesos per year.! The second input is capital
expenditure (CAPEX), which is proxied by financial investments made to
maintain and upgrade the network, also expressed in Chilean pesos per
year.

CAPEX was used as a proxy for capital stock due to the inherent
difficulties in obtaining reliable, direct data on capital stock. For water
utilities, which involve long-lived assets like pipes, treatment plants, and
pumping stations, CAPEX represents the ongoing effort to maintain,
replace, and expand this critical infrastructure. While CAPEX does not
fully capture aspects such as asset depreciation, technological obsoles-
cence, or the cumulative nature of capital accumulation, its use as a
proxy is well established in the literature (Lin and Du, 2014; Moli-
nos-Senante et al., 2017).

To enhance the assessment, two additional contextual variables are
included in the model: i) Customer density, defined as the number of
customers divided by the network length, and ii) non-revenue water,
expressed as the percentage of water abstracted but not billed. NRW is
calculated as the difference between abstracted water and the sum of
unbilled authorized consumption, apparent losses, and real losses (IWA,
2000).

The descriptive statistics for the variables used in this study are
presented in Table 1.

4. Results and discussion
4.1. Classes of water companies
According to the methodological approach employed in this study,

the optimal number of classes was determined using the AIC and BIC.
The results indicate that the two-class model provides the best fit. Spe-

1 On 27th March 2025, the exchange rate was 1 US$ ~ 924 CLP
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Table 1

Descriptive statistics of the variables used in this study.
Variables Notation Unit of measurement Mean Std. Dev. Minimum Maximum
Volume of water delivered ¥, 10° m®/year 49,460 91,878 635 458,025
Customers receiving wastewater treatment y; nr 720,253 1,301,650 5835 6,451,025
Capital cost” x; 10° CLP/year 17,817,750 27,023,346 23,568 103,470,352
Operating cost” X, 10° CLP/year 31,481,820 41,966,256 799,873 201,122,273
Customer density a nr/km 58.20 15.59 19.41 104.69
Non-revenue water 4’; % 30.40 11.68 1.00 51.20
2 Costs are expressed in 2017 prices.

Table 2

Sample statistics of the two classes of water companies.

Class of water Volume of water Customers receiving Operating expenditure Capital expenditure Customer Non-revenue

company delivered (10 m3/ wastewater treatment (nr)  (10° CLP/year) (10° CLP/year) density (nr/km) water (%)
year)
Average Class 1 32,161 431,140 19,871,933 8,536,048 53.84 27.10
Class 2 61,435 920,408 39,519,435 24,243,543 61.21 32.68
Std. Class 1 43,856 730,032 30,517,235 16,414,118 17.45 10.82
Dev. Class 2 111,903 1,544,047 46,484,785 30,681,396 13.27 11.62

cifically, the AIC and BIC values for the single-class model were —198.4
and —193.5, respectively. For the two-class model, they were —269.7
and —259.6, respectively. In exploratory estimation of a three-class
model, we encountered convergence issues, including instability in the
inefficiency variance. This finding is consistent with known challenges

Table 3
Estimation of the parameters for the LCSFA model.

in finite mixture stochastic frontier models, where one class may exhibit
near-zero inefficiency variance, often due to skewness that is inconsis-
tent with the assumed inefficiency distribution. One alternative is to
restrict distributional parameters (o, 0,.) to be constant across classes.
This approach may improve model identifiability and aid convergence

Variable Notation  Class 1 Class 2 Standard single class
Coeff S. Error T-stat p- Coeff S. T-stat p- Coeff S. T-stat p-
value Error value Error value
Constant [ —7.001  0.425 —16.465  0.000 1.041 0.970 1.073 0.283 -1.759  0.992 -1.773  0.076
Volume of water delivered R -0.667  0.334 —1.995 0.013 -0.363  0.156 —2.331 0.021 -0.501  0.165 —3.032  0.002
Customers wastewater Y2 —0.200 0.113 —-1.774 0.078 —0.545 0.240 —2.272 0.023 —0.360 0.177 —2.038 0.043
treatment
CAPEX X1 0.310  0.054 5.781 0.000 0.194  0.049 3.987 0.000 0.330 0.066 4.971 0.000
Time t —0.021 0.016 —-1.272 0.203 —0.108 0.013 —8.069 0.000 —0.081 0.020 —4.116 0.000
CAPEX? X1% X1 —0.014  0.045 —0.303 0.762 —0.188  0.049 —3.860  0.000 0.048 0.071 0.671 0.502
Volume of water Y1¥%; —0.009 0.106 —0.086 0.932 0.135 0.114 1.183 0.237 —-0.027 0.083 —0.325 0.745
delivered*CAPEX
Customers wastewater Yo% 0.077  0.114 0.680 0.496 0.163  0.143 1.135 0.256 0.003  0.078 0.040 0.968
treatment*CAPEX
Volume of water delivered? Y1i*n 0.369 0.202 1.828 0.069 —0.418 0.233 -1.797 0.075 —0.440 0.286 —1.541 0.123
Customers wastewater Y2* Yo 0.507  0.247 2.058 0.041 -0.480 0.272 —1.768 0.078 -0.852  0.243 —3.502  0.001
treatment?
Volume of water Y1*Y2 —0.494  0.252 —1.959 0.051 0.410 0.202 2.036 0.043 0.682  0.264 2.580 0.010
delivered*customers with
service of wastewater
treatment
CAPEX*Time Xx1*%t 0.017  0.005 3.645 0.000 —0.035  0.007 —4.849  0.000 —0.002  0.006 —0.270 0.787
Volumes of water yi¥t —0.026  0.012 —2.228 0.026 0.083  0.015 5.708 0.000 0.026  0.012 2.190 0.029
delivered*Time
Customers wastewater Y2t 0.035  0.012 2.892 0.004 -0.055 0.011 —4.859  0.000 -0.023  0.010 —2.264  0.024
treatment*Time
Time? trt 0.003  0.003 1.003 0.316 0.020  0.003 7.607 0.000 0.011  0.004 2.602  0.009
Non-revenue water [ 0.040 0.013 3.009 0.003 0.550  0.066 8.355 0.000 0.028  0.021 1.353 0.176
Customer Density Z 2983  0.162 18.362 0.000 -0.325 5310 -0.061  0.951 0.957  0.396 2.417  0.016
Customer Density? Ot —0.281  0.015 —19.346  0.000 —0.084  0.640 -0.131 0.896 —0.125  0.037 —3.386  0.001
Lambda 2 0.872  0.063 13.832 0.000 0.602  0.033 18.182 0.000 1.538  0.287 5.366  0.000
Sigma o 0.023 0.011 1.987 0.049 0.034 0.013 2.575 0.011 0.162 0.001 194.451 0.000
Class 1 Lambda  Sigma Sigma Sigma
() )
Class 2 0.87 0.023 0.015 0.017
Log-likelihood 0.60 0.034 0.017 0.029

Dependent variable is OPEX; Bold indicates that coefficients are statistically significant at 5 % significance level; Bold italic indicates that coefficients are statistically

significant at 10 % significance level.

All variables were normalized around their mean (Eq. (19)). The specification is a standard translog distance function. Coefficients on first-order terms represent

marginal elasticities at the sample mean.
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when estimating more than two classes. While not pursued in this study,
this approach represents a helpful direction for future work in contexts
with strong noise but weak inefficiency signals.

Based on prior probabilities, Class 1 and Class 2 account for 49.7 %
and 50.3 % of the observations, respectively, whose main characteristics
are summarized in Table 2.

Beyond the information criteria (AIC and BIC), an additional
robustness check was performed to ensure the validity of the latent class
specification. As is proposed in the methodology section, the average
posterior probability of class membership was estimated. It provides a
measure of how clearly each utility is classified into a given class. Values
above 0.7 are typically interpreted as evidence of reliable class assign-
ment (Alvarez et al., 2012). The estimated results, presented as sup-
plemental material, provide consistent results with those from AIC and
BIC, reinforcing the categorization of the utilities evaluated into two
classes. Finally, we acknowledge the relevance of hypothesis testing
procedures for class determination, as recently discussed by Stead et al.
(2023), although the practical challenges of boundary parameters and
small sample sizes constrained their application in this study.

Class 1 comprises smaller water companies in terms of both the
volume of drinking water supplied and the number of customers
receiving wastewater treatment. This class is also characterized by lower
customer density and a lower percentage of non-revenue water. In terms
of OPEX and CAPEX at the annual level, and considering their smaller
operational scale, the average values for companies in Class 1 are lower
than those observed in Class 2. This pattern persists even when OPEX
and CAPEX are normalized per cubic meter of drinking water supplied,
with Class 1 exhibiting lower unit costs than the companies in Class 2.
Conversely, Class 2 includes larger water companies that serve a greater
number of customers receiving wastewater treatment and distribute
higher volumes of drinking water. These companies typically operate in
areas with higher customer density and are associated with a greater
percentage of non-revenue water.

4.2. Estimated parameters of the latent class stochastic frontier analysis

To assess the technical efficiency of each water company, the pa-
rameters of the input distance function were estimated, as presented in
Table 3.

The first-order coefficients of the input and output elasticities are
statistically significant, yet they differ markedly between the two clas-
ses. In Class 1, the elasticity of the volume of water delivered is higher
than that of customers receiving wastewater treatment, whereas the
opposite is observed in Class 2. This pattern indicates that, for Class 1
companies, higher input requirements are needed to deliver water
compared to Class 2 companies. Conversely, treating wastewater is more
cost-intensive for Class 2 than for Class 1. Specifically, holding other
factors constant, a 1 % average increase in the delivery of water and in
treating wastewater is associated with increases in input requirements of
0.667 % and 0.200 %, respectively, for Class 1 companies, and 0.363 %
and 0.545 %, respectively, for Class 2 companies.

The estimated coefficient for CAPEX is 0.310 in Class 1 and 0.194 in
Class 2, while that for OPEX is 0.690 in Class 1 and 0.805 in Class 2,
values derived using the homogeneity property (Stead et al., 2023).
These results suggest that Class 2 companies, which deliver more water
and serve a higher number of wastewater customers, incur higher
operating costs in their day-to-day operations compared to Class 1
companies. Moreover, the inverse of the sum of output elasticities pro-
vides an indication of the returns to scale at which a company operates
(Dakpo et al., 2024; Saal et al., 2007). At the sample mean, both classes
operate under increasing economies of scale; however, the magnitude of
this effect differs between the two classes. A 1 % increase in outputs is
estimated to result in a 0.867 % increase in total costs for Class 1 and a
0.908 % increase for Class 2, suggesting that scaling operations in Class
1 companies may yield lower cost increments, thereby making them
more efficient than those in Class 2 companies.
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Regarding performance changes over time, the negative coefficient
of the time trend indicates a technical regression for the average com-
pany, although this effect is statistically significant only for Class 2
companies. The second-order output coefficients provide further evi-
dence of technological differences across companies. For Class 2 com-
panies, the squared terms for both water and sewerage outputs are
statistically significant and negative, indicating that these outputs in-
crease at a decreasing rate. Additionally, the positive and statistically
significant interaction term suggests the presence of cost complemen-
tarities between water and sewerage services. In contrast, for Class 1
companies, the negative interaction term between the volume of water
delivered and the number of wastewater-treated customers implies cost
discomplementarities between these two services.

Technological differences between the two classes are also evident
when examining operating characteristics. For Class 1 companies, in-
creases in customer density are associated with rising costs, as indicated
by the first-order coefficient for customer density; however, this impact
diminishes at higher levels of customer density. Similar findings
regarding customer density in the Chilean water industry have been
reported in previous studies (Maziotis et al., 2021). Notably, this effect is
not statistically significant for Class 2 companies. Furthermore, non-
revenue water affects the input requirements of water companies,
with the magnitude of this impact differing between the two classes,
posing a critical issue for companies in Class 2.

For comparative purposes, a standard stochastic frontier (SF) model,
assuming a common technology across all observations, was also esti-
mated. The results of this model are also shown in Table 3. Several
notable differences emerge when comparing the standard SF model with
the LCSFA model. At the aggregate level, the standard SF model in-
dicates that delivering water to end users is more cost-intensive than
treating wastewater; in the LCSFA model, this result was observed only
for Class 1 companies. Furthermore, the standard SF model reports
stronger economies of scale for the overall sample compared to those
observed separately for Class 1 and Class 2. The interaction term be-
tween the volume of water delivered and the number of customers
receiving wastewater treatment is positive and statistically significant in
the standard SF model, suggesting the existence of cost complementar-
ities between water and sewerage services. However, this effect was
evident only for Class 2 companies in the LCSFA model. Finally, the
standard SF model also reveals statistically significant economies of
customer density for the entire sample. In contrast, within the LCSFA
framework, this effect is present only for Class 1 companies. These
comparisons highlight the importance of accounting for technological
heterogeneity in technical efficiency assessments.

4.3. Technical efficiency assessment

The evolution of average technical efficiency scores for water
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Fig. 1. Evolution of average technical efficiency of water companies.
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companies classified into Class 1 and Class 2 using the LCSFA approach,
along with those estimated for the entire sample using the standard SF
model, is presented in Fig. 1. Although the average technical efficiency
scores for the whole period (2010-2017) are relatively similar across the
three groups, 0.91 for Class 1, 0.88 for Class 2, and 0.90 for the full
sample based on the SF model, distinct trends emerge when examining
their year-by-year evolution. For Class 1, technical efficiency scores
remained relatively stable, ranging from 0.88 to 0.92. In contrast, Class
2 exhibited greater variability, with efficiency scores ranging from 0.85
to 0.93. Both classes experienced a notable increase in technical effi-
ciency between 2010 and 2011. For Class 1, this upward trend
continued, peaking in 2012, but was followed by a decline in 2013. From
2014 onwards, efficiency levels recovered and remained relatively sta-
ble throughout the study period. Conversely, Class 2 experienced a
consistent decline in technical efficiency from 2012 onwards, with a
brief recovery observed in 2016, approaching the levels of 2013. A po-
tential explanation for the higher technical efficiency observed among
Class 1 companies, compared to those in Class 2, lies in their greater
returns to scale. This result suggests that Class 1 companies are better
positioned to benefit from economies of scale. Consequently, mergers or
consolidations among Class 1 companies may yield greater cost savings
than similar strategies implemented among Class 2 companies. The
trend observed for the full sample, as estimated using the standard SF
model, diverges significantly from those of both Class 1 and Class 2. This
finding suggests that ignoring heterogeneity among water companies
and relying on a single average frontier may obscure important differ-
ences in efficiency dynamics.

Figs. 2 and 3 present the annual technical efficiency scores for each
water company included in the analysis. Focusing on the companies
classified within Class 1 (Fig. 2), WC7 stands out as the best-performing
utility, with an average technical efficiency score of 0.964 over the
period from 2010 to 2017. This finding implies that, on average, the
potential for efficiency improvement was only 3.6 %. Notably, WC7
achieved a peak efficiency score of 0.996 in both 2012 and 2017,
approaching the theoretical maximum of 1.000. WC7 is a relatively
small utility, serving approximately 75,000 customers, but operates in a
high-density area with 70 customers per kilometer of network,
compared to the Class 1 average of 53 customers per kilometer. This
finding suggests that the company’s high level of technical efficiency
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may be attributed, in part, to economies of density. Conversely, WC15
recorded the lowest average technical efficiency score within Class 1, at
0.849. Unlike other companies such as WC11 and WC21, which
exhibited considerable variability in their efficiency scores over time,
WC15 consistently recorded relatively low scores, below 0.90,
throughout the study period. WC15 is a moderately large utility, serving
approximately 740,000 customers. A key factor contributing to its low
efficiency performance is its persistently high level of non-revenue
water, which ranged from 36.1 % to 45.4 % during the period under
analysis. These substantial and sustained losses are likely a significant
driver of the company’s low technical efficiency.

Within the technical efficiency scores reported in Fig. 2, a significant
decline is observed for WC11 in 2014, with its technical efficiency score
dropping from 0.935 in 2013 to 0.623. Notably, the company recovered
in the subsequent year, reaching a score of 0.907 in 2015. This tempo-
rary decline in performance was primarily due to a substantial increase
in CAPEX during 2014, which coincided with a sharp rise in non-
revenue water, from 13.3 % in 2013 to 34.7 % in 2014. In response,
the utility undertook considerable investment aimed at reducing non-
revenue water. While this investment temporarily reduced technical
efficiency, it contributed to performance recovery in the following year.
A similar pattern is evident for WC21 in 2017, when its technical effi-
ciency score declined markedly from 0.995 in 2016 to 0.640. As with
WC11, this regression in efficiency was driven by a significant increase
in CAPEX. However, in this case, the additional investment was directed
towards expanding wastewater treatment services, resulting in a 5.6 %
increase in the population served compared to the previous year. These
cases illustrate how short-term efficiency losses may result from stra-
tegic capital investments intended to improve service coverage or
reduce operational inefficiencies, with potential long-term gains not
immediately reflected in annual efficiency scores.

Analyzing the evolution of technical efficiency scores for water
companies classified under Class 2 (Fig. 3), the average efficiency scores
for the period 2010-2017 range from 0.746 to 0.967. This finding im-
plies that the company with the lowest performance, WC16, has an
average improvement potential of 25.4 %, whereas the best-performing
company, WC13, shows an average improvement potential of only 3.3
%. WC16 consistently exhibited low efficiency scores throughout the
assessment period, with a maximum value of 0.867 recorded in 2012.

2014 2015 2016 2017

WC6 wcC7 ==@==\NC8

Year
=@ \\/C21

Fig. 2. Evolution of the technical efficiency of water companies embracing Class 1.
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Fig. 3. Evolution of the technical efficiency of water companies embracing Class 2.

This company serves approximately 575,000 customers and is charac-
terized by low water consumption per customer, averaging around five
cubic meters per month. Water consumption is considered an output
variable in the efficiency assessment and is inversely related to the
company’s performance. This issue is particularly relevant given the
high fixed costs inherent in water utility operations (Marques et al.,
2011).

In contrast, WC13 demonstrated consistently high technical effi-
ciency scores over the study period, with a maximum value of 0.996 and
a minimum of 0.931. A key driver of this strong performance is the
company’s low level of non-revenue water, which ranged between 24.1
% and 25.3 %, compared to the Class 2 average of 32.68 %. This result
underscores the importance of incorporating operational variables,
beyond conventional inputs and outputs, into efficiency assessments.

In terms of year-to-year variability in technical efficiency, WC18
presents a particularly notable case. Its efficiency score increased from a
minimum of 0.584 in 2015 to a maximum of 0.952 in 2016, representing
a remarkable 38.6 % improvement within a single year. This improve-
ment was driven by favorable changes in both input and output vari-
ables. Specifically, the volume of drinking water supplied and the
number of customers receiving wastewater treatment, both output
variables, increased by 7.1 % and 3.6 %, respectively. Simultaneously,
input variables experienced reductions, with OPEX and CAPEX
decreasing by 9.1 % and 10.4 %, respectively.

In contrast, WC1 demonstrated a stable efficiency trajectory across
the entire study period, with scores ranging from a minimum of 0.907 to
a maximum of 0.996. This finding illustrates that while some water
companies maintain consistently high performance, others experience
significant fluctuations in efficiency. Such volatility can undermine
economic sustainability and potentially affect the quality and reliability
of service provision over time.

From a regulatory and policy perspective, the LCSFA model offers
several key advantages over standard single-class approaches. Tradi-
tional models assume a common production frontier and a homogeneous
distribution of inefficiencies across all utilities, which may not hold in
settings where utilities differ in terms of scale, geography, regulatory
environment, or infrastructure constraints. As a result, single-frontier
models may produce biased or unfair efficiency benchmarks, penal-
izing some utilities simply because they operate under fundamentally

different conditions. By contrast, the latent class approach identifies and
estimates class-specific frontiers, grouping utilities into more compara-
ble subsets. This approach enables regulators to benchmark perfor-
mance within peer groups, thereby enhancing the credibility, fairness,
and interpretability of efficiency assessments. In practice, this could
inform the development of differentiated regulatory targets, tailored
incentives, or context-specific support mechanisms. Furthermore, the
model’s probabilistic classification allows regulators to identify cases
with uncertain group membership, flagging them for further review or
sensitivity analysis. This built-in nuance enhances the transparency of
performance evaluation and supports more evidence-based, equitable
regulation, particularly in sectors marked by structural diversity.

The study further highlights the relevance of incorporating opera-
tional variables, such as non-revenue water, into the assessment of
technical efficiency. Accordingly, performance benchmarking should be
contextualized to reflect the specific operating environments in which
individual water companies deliver water and sewerage services. A
uniform evaluation framework that overlooks these contextual factors
may produce misleading conclusions regarding efficiency. Moreover,
the observed year-to-year variability in technical efficiency emphasizes
the dynamic nature of company performance and the influence of cap-
ital investment cycles. Regulatory frameworks that rely exclusively on
static efficiency indicators may misinterpret temporary declines in
performance that are, in fact, linked to long-term strategic investments,
such as network upgrades or expansions in wastewater treatment ca-
pacity. To address this, regulators are encouraged to adopt multi-year
performance evaluation mechanisms that distinguish between short-
term inefficiencies and forward-looking investments. Such an
approach would help avoid disincentivizing necessary CAPEX that are
critical to achieving long-term sustainability and service improvements.

Focusing on the specific results for Chilean water companies, the
presence of increasing returns to scale across both latent classes suggests
that technical efficiency gains may be achieved through scaling opera-
tions. Notably, the more pronounced scale economies observed in Class
1 indicate a greater potential for improving technical efficiency through
strategic consolidation, the establishment of joint ventures, or the
implementation of shared service arrangements among smaller utilities.
In this context, policymakers should consider promoting incentives for
voluntary mergers or the formation of regional consortia, particularly
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among Class 1 companies, to enhance cost-effectiveness while main-
taining service quality. These collaborative strategies may also support
infrastructure modernization and facilitate knowledge-sharing, without
undermining local governance and accountability. Customer density has
also emerged as a critical factor influencing cost structures, especially
within Class 1 companies, where increasing density initially raises costs
until a threshold is reached, beyond which economies of density begin to
manifest. Consequently, regulatory benchmarking frameworks should
incorporate customer density as a normalizing variable when evaluating
efficiency performance. This adjustment would prevent the unintended
penalization of utilities operating in sparsely populated or geographi-
cally complex areas, thereby enabling more accurate, equitable, and
context-sensitive assessments of efficiency.

The findings of this study are consistent with a growing international
literature emphasizing the critical role of heterogeneity in evaluating
water utility performance. For instance, Ben Amor and Mellah (2023)
employed a latent class approach to evaluate the cost efficiency of
Tunisian water utilities, demonstrating that models assuming homoge-
neity underestimated inefficiency for firms operating in resource-scarce
or complex environments. In the European context, Molinos-Senante
and Maziotis (2019) also found that incorporating latent class or met-
afrontier structures significantly improved the reliability of bench-
marking in heterogeneous systems such as the English and Welsh water
industry. Notably, our finding that smaller Chilean utilities (Class 1)
exhibit relatively stable and higher efficiency levels is consistent with
those of Marques et al. (2011), who reported that decentralized utilities
can outperform larger ones when economies of density and focused
operational strategies are present. From a developing country perspec-
tive, Cetrulo et al. (2019) reviewed over 80 studies and emphasized that
water utility performance in Latin America, Africa, and Asia is highly
context-dependent,  highlighting the importance of using
heterogeneity-adjusted models, such as LCSFA or metafrontier frame-
works, to inform policy. Moreover, recent studies from China (Yin et al.,
2024), Malaysia (Goh and See, 2023), and Slovenia (Dolsak et al., 2022)
have also highlighted the importance of incorporating environmental
and institutional diversity into efficiency assessments.

The results of this study have direct relevance for the design and
implementation of regulatory benchmarking frameworks. Traditional
approaches to efficiency assessment often assume technological homo-
geneity, which can obscure structural differences among utilities and
lead to biased benchmarks. By applying LCSFA, regulators can classify
utilities into more comparable groups based on both observable and
unobservable characteristics, enabling the development of class-specific
performance frontiers. This refinement offers several practical advan-
tages: it improves accuracy in tariff setting by ensuring that efficiency
scores reflect the actual operating environment of each utility, allowing
cost allowances in price reviews to be based on fair and achievable
performance targets; it supports differentiated incentive schemes
tailored to the technological and operational realities of each class, thus
avoiding the penalization of utilities for factors beyond their control; it
facilitates targeted performance improvement programs by guiding
regulators toward interventions, such as leakage reduction or density-
related infrastructure investments, where they are most likely to yield
substantial efficiency gains; and it enables dynamic monitoring, with
year-by-year class-specific efficiency trends helping to detect persistent
inefficiencies and assess the impacts of regulatory changes over time. In
the Chilean context, where the tariff-setting model already recognizes
heterogeneity to some extent, the integration of LCSFA could enhance
this process by replacing ex-ante classifications with empirically derived
groupings, thereby strengthening the evidence base for regulatory de-
cisions and ensuring that performance targets are both ambitious and
realistic.

5. Conclusions

Assessing the technical efficiency of water utilities is essential for
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enhancing their overall performance. However, the presence of unob-
servable heterogeneity among utilities poses a significant challenge to
the application of traditional benchmarking methodologies, which
typically rely on the assumption of homogeneity across decision-making
units. This study makes a novel contribution to the literature by
explicitly accounting for unobservable heterogeneity through the
application of LCSFA. Using data from the Chilean water industry, the
findings reveal the existence of latent heterogeneity among the assessed
utilities. Importantly, failure to account for such unobserved differences
leads to biased estimates of technical efficiency, with potential impli-
cations for both regulatory and managerial decision-making.

The comparison between the results of the LCSFA and those of a
conventional SF model, which assumes homogeneity among utilities,
reveals significant discrepancies. The SF model tends to obscure class-
specific dynamics, such as variations in output elasticities and the het-
erogeneous effects of contextual variables like customer density and
non-revenue water on efficiency. Furthermore, while the SF model
produces a smoothed temporal trend in average technical efficiency, the
LCSFA identifies divergent efficiency trajectories across different latent
classes of water utilities.

The analysis identified two latent classes of water utilities. Class 1
comprises smaller utilities characterized by lower customer density and
reduced levels of non-revenue water, whereas Class 2 includes larger
utilities operating in more densely populated areas and exhibiting
higher leakage rates. The results reveal significant differences between
these classes in terms of input-output elasticities, economies of scale,
cost structures, and their responses to contextual variables. The average
technical efficiency scores for utilities in Class 1 and Class 2 were 0.91
and 0.88, respectively. Regarding the temporal evolution of efficiency,
companies in Class 1 exhibited relatively stable performance over time,
with efficiency scores ranging from 0.88 to 0.92. In contrast, Class 2
exhibited greater variability, with scores ranging from 0.85 to 0.93.
These findings highlight the importance of accounting for heterogeneity
when evaluating efficiency dynamics and designing context-specific
regulatory or managerial interventions.

From a policy perspective, the findings support the adoption of
differentiated regulatory strategies that explicitly account for the het-
erogeneity among water utilities. Class-specific benchmarking and per-
formance targets should be developed to ensure fair, accurate, and
context-sensitive assessments. This approach would prevent the misin-
terpretation of technical efficiency outcomes and promote more equi-
table regulatory practices. Furthermore, incorporating key operational
variables, such as non-revenue water and customer density, into
benchmarking frameworks can significantly enhance the contextual
relevance of performance evaluations, ultimately leading to more
effective and targeted policy interventions.

This study has several limitations that should be acknowledged.
First, the sample comprises only 22 Chilean water utilities over an eight-
year period, which, although comprehensive within its national context,
limits statistical power and generalizability to other settings. Second,
although we explored a three-class model to test robustness, conver-
gence issues arose, likely due to inconsistencies in skewness or vanishing
inefficiency in one class, highlighting the known challenges in esti-
mating finite mixture models with small samples. Third, the use of an
input distance function enables multi-output modeling without
requiring input price data; however, it precludes the analysis of allo-
cative efficiency or cost minimization in an economic sense. Addition-
ally, the use of annual CAPEX as a proxy for capital input represents a
methodological limitation. While CAPEX captures investment flows in
infrastructure, it does not fully reflect the accumulated stock of physical
assets. As such, efficiency estimates may be influenced by short-term
investment cycles rather than underlying changes in productivity.
Future research should therefore explore the construction of capital
stock series or alternative proxies to improve robustness. Finally, while
the robustness checks included in this study are limited, the proposed
LCSFA framework provides valuable insights. By capturing unobserved
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heterogeneity among Chilean water utilities, the approach yields
informative and policy-relevant evidence to guide regulatory bench-
marking and sectoral decision-making in Chile.
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