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1. Introduction

Given a finite field Fqm (where q is a prime power) and a non-negative integer n, 
additive codes over Fqm are subsets of Fn

qm that are closed under addition but not nec
essarily under scalar multiplication by elements of Fqm . Delsarte first studied additive 
codes over a finite field in 1971 [10]. In particular, significant attention has been devoted 
to the class of additive codes that are closed under scalar multiplication by a subfield 
Fq ⊂ Fqm , namely, Fq-linear subspaces of Fn

qm . We will refer to them as Fqm |Fq linear 
codes and the main theory on such codes can be found in [13].

Now, if we consider a finite chain ring R, linear codes over R are simply R-submodules 
of Rn. For a given Galois extension S|R of finite chain rings, we can also define S|R
additive codes in the same fashion as in the finite field case. If a code is closed under the 
cyclic shift, we refer to it as cyclic. There are a few works on cyclic additive codes over 
finite fields and finite chain rings; see, for example, [16,20,21] and the references therein.

In the context of quantum error-correcting codes, this class of codes has attracted 
interest, especially when the alphabet is a quadratic extension Fq2 of Fq. For instance, 
Ashikhmin and Knill [1] constructed quantum codes using Fq2 |Fq linear codes. Later, 
in [15], the authors revealed a deep connection between the existence of quantum error
correcting codes and Fq2 |Fq linear codes endowed with a suitable inner product.

On the other hand, a pair of linear codes {𝒞,𝒟} of length n over a finite field Fq

is called a linear complementary pair (LCP) if 𝒞 ∩ 𝒟 = {0} and 𝒞 + 𝒟 = Fn
q , that 

is, 𝒞 ⊕ 𝒟 = Fn
q . When 𝒟 = 𝒞⊥, the dual code of 𝒞, the code 𝒞 is referred to as a 

linear complementary dual (LCD) code. LCD codes were first introduced by Massey in 
1992 [17], and the interest in both LCD and LCP codes has recently reemerged due to 
their applications in securing systems against side-channel and fault injection attacks 
[6,7]. In this context, the security parameter when one uses an LCP {𝒞,𝒟} is defined as 
min{d(𝒞),d(𝒟⊥)}, where d(𝒞) denotes the minimum Hamming distance of the code 𝒞. 
In the LCD case, since 𝒟⊥ = 𝒞, the security parameter simplifies to d(𝒞).

Carlet et al. [8] proved that if {𝒞,𝒟} is an LCP where both 𝒞 and 𝒟 are cyclic 
codes over Fq, then 𝒞 is permutation equivalent to 𝒟⊥. They further showed that this 
result extends to 2D cyclic codes, provided the code length is relatively prime to the 
characteristic of Fq (i.e., the semi-simple case). Extending this result, Güneri et al. [12] 
showed that for abelian codes and the semisimple case, the equivalence 𝒞 ≃ 𝒟⊥ also 
holds. This result is more general and can be viewed in the context of group codes; 
thus, the same result has been proven for an LCP of group codes without requiring any 
assumption on the characteristic of the field (i.e., without the need for semi-simplicity), 
see [5]. Finally, this result also holds for LCP codes over finite chain rings [11]. Recently, 
a similar result was proven for an LCP of algebraic geometry codes in [3]. There are a 
few works on additive complementary dual codes; see, for example, [9] and the references 
therein.

In the present work, additive complementary pairs of additive cyclic codes over a finite 
commutative chain ring of odd characteristic are investigated. The main results in the 
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paper are the following. We establish that every additive complementary pair of codes 
forms a pair of free modules, and a necessary and sufficient condition is derived for the 
existence of such pairs over a finite commutative chain ring (see Theorems 5.5 and 5.9). 
Furthermore, in the case of cyclic additive codes over a finite commutative chain ring, 
we show that one code of the constituent codes is permutation equivalent to the trace 
dual of the other (see Theorem 6.4).

The paper outline is as follows. Section 2 provides some preliminaries on additive codes 
and the trace duality. In Section 3, we study the structure and polynomial definition of 
additive cyclic codes over a Galois extension S|R of finite chain rings. Section 4 deals 
with the description of the trace dual of the additive codes defined in Section 3. Additive 
complementary pairs of codes (not necessarily cyclic ones) are studied in Section 5, 
while in Section 6, additive complementary pairs of cyclic codes are tackled, providing a 
generalization of the result in [8] for this type of codes.

2. Preliminaries

A chain ring is a ring whose ideal lattice forms a chain. In this paper, S and R will 
denote finite commutative chain rings. We will denote the maximal ideal of S as 𝔪S

and its nilpotency index as e. We say that S is a ring extension of R, denoted S|R, 
if R is a subring of S, 𝔪R = 𝔪S ∩ ℛ, and 1R = 1S . The extension S|R is a Galois 
extension of degree 2 if S is isomorphic to the quotient ring R[x]/⟨f(x)⟩, where f(x)
is a basic irreducible polynomial of degree 2 over R. The Galois group AutR(S) of this 
extension consists of those ring automorphisms of S such that, when restricted to R, 
are the identity map of R. From now on, and throughout the entire paper, and the ring 
extension S|R will be a Galois extension of degree 2 and, for technical reasons, R (thus 
also S) will be chain rings of odd characteristic.

We will denote by R/𝔪 = Fq and S/𝔪 = Fq2 the quotient of R (respectively S) by its 
maximal ideal. According to [18, Theorem XV.2], we have AutFq

(Fq2) ≃ AutR(S) and 
rankR(S) = [Fq2 : Fq] = |AutR(S)|. Thus, the ring S can be regarded as a free R-module 
of rank 2.

For the chain ring S, the Teichmüller set 𝒯 ⊂ S is the unique set of q2 elements 
in S such that the image of 𝒯 under the canonical projection S ↦→ S/𝔪 = Fq2 is the 
entire field, each element t ∈ 𝒯 satisfies tq2 = t, and 𝒯 contains the multiplicative 
representatives of Fq2 in S. If S|R is a Galois extension of finite chain rings of degree 
2, then there exists an element ξ ∈ S whose multiplicative order is q2 − 1 [22, Theorem 
14.27]. Then, given the following set is called the Teichmüller set of S

𝒯S := {0, 1, ξ, ξ2, . . . , ξq
2−2}.

One can define ζ = ξ
q2−1
q−1 , and hence ζ ∈ R has multiplicative order q − 1. Thus, it is 

easy to check that the set 𝒯R = {0, 1, ζ, ζ2, . . . , ζq−2} is the Teichmüller set of R.
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Let AutR(S) denote the group of all R-automorphisms of S. Since S is a Galois 
extension of R of degree 2, it follows, by an argument similar to that in [22, Corollary 
14.33], that AutR(S) is a cyclic group of order 2.

In fact, the map ϕ : S → S defined by

ϕ(α) = α0 + α1ξ
q, (1)

for α = α0 + α1ξ with (α0, α1) ∈ R2, is an automorphism of S that fixes R. Moreover, 
R is the largest subring of S fixed pointwise by ϕ. This automorphism ϕ is called the 
Frobenius automorphism of S over R, and it generates the cyclic group AutR(S).

Let Tr : S → R the map given by s ↦→ s + ϕ(s), for all s ∈ S. Tr is called the 
generalized trace of S relative to R. It is well known that Tr is a surjective R-module 
homomorphism. The following lemma will be useful later.

Lemma 2.1. The kernel of Tr is equal to μR, for some μ ∈ S \ R such that Tr(μ) = 0, 
i.e.,

Ker(Tr) = μR = {μr | r ∈ R}. (2)

Moreover, μ2 ∈ R and Tr(μ2) = 2μ2.

Proof. It is well known that Tr is a surjective R-module homomorphism. Therefore, 
by the first isomorphism theorem for modules, we have S/Ker(Tr) ≃ R. Consequently, 
|Ker(Tr)| = |R|. Furthermore, we observe that for any r ∈ R, we have that Tr(r) =
r + ϕ(r) = 2r, since ϕ is the Frobenius automorphism of S over R (and ϕ(r) = r for 
r ∈ R). Thus, Tr(r) ̸= 0 for all r ∈ R \ {0} since the characteristic of R is an odd prime. 
Moreover, there exist μ ∈ S \ R such that Tr(μ) = 0. Let x ∈ μR, then x = μr, for 
some r ∈ R. It follows that Tr(x) = 0, for all x ∈ μR; hence, μR = ker(Tr). Finally, 
Tr(μ) = 0 ⇔ μ = −ϕ(μ). Thus, ϕ(μ2) = (ϕ(μ))2 = (−μ)2 = μ2. It follows that μ2 ∈ R

and Tr(μ2) = 2μ2. □
Furthermore, for an element μ ∈ S \ R such that Tr(μ) = 0, the set {1, μ} is a basis 

of S over R, as S is a free R-module. Note that μ is an invertible element in the ring S.

Definition 2.2. A linear code of length n over R is just an R-submodule of Rn. An S|R
additive code of length n is just an R-submodule of Sn.

Definition 2.3. For an S|R additive code of length n, the trace dual of 𝒞 is given by

𝒞⊥Tr = {a ∈ Sn | Tr(a · c) = 0 for all c ∈ 𝒞}. (3)

Note that 𝒞 =
(︁𝒞⊥Tr

)︁⊥Tr and |𝒞||𝒞⊥Tr | = |Sn| (see [23]).
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3. Structure of additive cyclic codes

Throughout the paper, we assume that the length of the codes n is a positive integer 
that is not divisible by the characteristic of the residue field R/𝔪 = Fq. Thus, the 
polynomial xn− 1 is square-free in Fq[x] and xn− 1 admits a unique factorization into a 
product of pairwise coprime, basic irreducible polynomials in R (resp. S). We will denote 
the following polynomial quotient rings as

ℛn = R[x]/⟨xn − 1⟩, 𝒮n = S[x]/⟨xn − 1⟩. (4)

Both rings ℛn and 𝒮n are principal, see [19]. If we set x = x + ⟨xn − 1⟩, the map

Ψ : Sn −→ 𝒮n

(a0, . . . , an−1) ↦→
n−1∑︁
j=0 

ajx
j

is an R-module isomorphism. Moreover, ℛn is a free R-module of rank n, and 𝒮n is a 
free R-module of rank 2n.

Definition 3.1. An S|R additive cyclic code of length n is an R-submodule 𝒞 of Sn that 
satisfies

(c0, c1, . . . , cn−1) ∈ 𝒞 =⇒ (cn−1, c0, . . . , cn−2) ∈ 𝒞.

It is easy to check that a (linear) cyclic code of length n over S can be seen as an 
R-submodule of ℛn, and an additive cyclic code of length n can be represented as an 
R-submodule of 𝒮n. We will follow this polynomial notation of (additive) cyclic codes in 
the rest of the paper. For more details on additive cyclic codes over chain rings, we refer 
to [16] and the references therein.

Lemma 3.2. A nonempty subset 𝒞 of Sn is an S|R additive cyclic code of length n if and 
only if Ψ(𝒞) is an ℛn-submodule of 𝒮n.

In the sequel, we identify any free S|R additive code of length n with an ℛn-submodule 
of 𝒮n. The quotient ring 𝒮n is a free ℛn-module of rank two. Therefore, any ℛn
submodule of 𝒮n is generated by at most two elements of 𝒮n. From now on, recall 
also that Ker(Tr) = μR (see 2.1).

Theorem 3.3. Let 𝒞 be a free S|R additive cyclic code of length n. Then there exist 
unique monic divisors f(x) and g(x) of xn − 1 in R[x] and a polynomial r(x) in R[x]
with deg(f(x)r(x)) < deg(g(x)) for which

𝒞 = ⟨f(x)(1 + μr(x))⟩ℛn
⊕ ⟨μg(x)⟩ℛn

.
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Moreover, S1 ∪ S2 is an R-basis of 𝒞, where

S1 := {xif(x)(1 + μr(x)) | 0 ≤ i < n− deg(f(x))};
S2 := {xjμg(x) : 0 ≤ j < n− deg(g(x))}.

Proof. To prove the result, we first define a map

ψ : 𝒞 → ℛn

a(x) + μb(x) ↦→ a(x).

Note that ψ is an ℛn-module homomorphism. Therefore, ψ(𝒞) is an ideal of ℛn. Since 𝒞
is free (as R-module), then there is a free submodule 𝒞1 of 𝒞 such that the restriction of 
ψ to 𝒞1 is an R-module isomorphism. Thus ψ(𝒞) is a free cyclic code over R. Then there 
exists a unique divisor f(x) of xn−1 in R[x] such that ψ(𝒞) = ⟨f(x)⟩ℛn

. Consequently, 𝒞1
is also cyclic. Thus, 𝒞1 = ⟨f(x) + μr0(x)⟩ℛn

where r0(x) ∈ R[x]. Besides, 𝒞 = 𝒞1⊕Ker(ψ)
and Ker(ψ) is free as an R-module. Now,

Ker(ψ) = {a(x) + μb(x) ∈ 𝒞 | a(x) = 0}.

If we define the set A = {b(x) ∈ ℛn | μb(x) ∈ Ker(ψ)}, then Ker(ψ) = μA. We have A
is an ideal of the principal ideal ring ℛn. Therefore, there exists a unique monic divisor 
g(x) of xn − 1 in R[x] such that A = ⟨g(x)⟩ℛn

. Thus,

𝒞 = ⟨f(x) + μr0(x), μg(x)⟩ℛn

for some polynomial r0(x) in R[x]. If deg(r0(x)) ≥ deg(g(x)). Then, by division al
gorithm, there exist s(x) and u(x) in R[x] such that r0(x) = u(x)g(x) + s(x) with 
deg(s(x)) < deg(g(x)). Thus,

𝒞 = ⟨f(x) + μr0(x), μg(x)⟩ℛn
= ⟨f(x) + μs(x), μg(x)⟩ℛn

.

Hence, we may consider deg(r0(x)) < deg(g(x)). Note that h(x)(f(x) + μr0(x)) =
μh(x)r0(x) ∈ 𝒞1 ∩ Ker(ψ) = {0}, where f(x)h(x) = xn − 1. It follows that xn − 1
divides h(x)r0(x). Thus, f(x) divides r0(x), since f(x) and h(x) are coprime. Hence, we 
have that r0(x) = r(x)f(x) since f(x) divides r0(x) and

𝒞 = ⟨f(x) + μr0(x)⟩ℛn
⊕ ⟨μg(x)⟩ℛn

= ⟨f(x)(1 + μr(x))⟩ℛn
⊕ ⟨μg(x)⟩ℛn

,

where deg(r(x)) < deg(g(x)) − deg(f(x)). Moreover, the sets

{xif(x)(1 + μr0(x)) | 0 ≤ i < n− deg(f)}

and {xjμg(x) : 0 ≤ j < n−deg(g)} are the R-bases of ⟨f(x) + μr0(x)⟩ℛn
and ⟨μg(x)⟩ℛn

, 
respectively. Therefore, S1 ∪ S2 is an R-basis of 𝒞. □
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4. Trace duality

Recall that 𝒮n is a free R-module of rank 2n. The ⋆-inner and ⊛-inner product on 
𝒮n, defined by

(︄
n−1∑︂
i=0 

aix
i

)︄
⋆

(︄
n−1∑︂
i=0 

bix
i

)︄
=

n−1∑︂
i=0 

aibi, (5)

and
(︄

n−1∑︂
i=0 

aix
i

)︄
⊛

(︄
n−1∑︂
i=0 

bix
i

)︄
= Tr

(︄
n−1∑︂
i=0 

aibi

)︄
, (6)

are non-degenerate symmetric bilinear forms over S and R, respectively. The bilinear 
form on 𝒮n with values in R given by ⊛ is called the trace over 𝒮n. Note that

αu(x) ⊛ βv(x) = Tr(αβ)(u(x) ⋆ v(x)),

for all (u(x), v(x)) in (ℛn)2 and (α, β) ∈ S2.

Remark 4.1. Let a(x), b(x), a′(x), b′(x) ∈ ℛn. Then

(a(x) + μb(x)) ⊛ (a′(x) + μb′(x)) = 2(a(x) ⋆ a′(x) + μ2(b(x) ⋆ b′(x))).

Definition 4.1. Let 𝒞 be an S|R additive code of length n. The trace dual of 𝒞, denoted 
𝒞⊥Tr , is defined as

𝒞⊥Tr :=
{︃

u(x) ∈ 𝒮n | (∀c(x) ∈ 𝒞)(u(x) ⊛ c(x) = 0)
}︃
. (7)

Let 𝒞 be an S|R additive code of length n. If u(x) ∈ 𝒞⊥Tr , c(x) ⊛ u(x) = 0 for all 
c(x) ∈ 𝒞. Since c(x) ∈ 𝒞, we know that xn−1c(x) is also a codeword. Thus,

0 = x
n−1

c(x) ⊛ u(x) = c(x) ⊛ xu(x)

for all c(x) from 𝒞. Therefore xu(x) ∈ 𝒞⊥Tr and 𝒞⊥Tr is also an S|R additive code of 
length n. Henceforth, we obtain the following proposition.

Proposition 4.2. Let 𝒞 be an S|R additive cyclic code of length n. Then 𝒞⊥Tr is also an 
S|R additive cyclic code of length n.

The ⊛-inner product is an R-bilinear form. On the other hand, 𝒞 and 𝒞⊥Tr are ℛn
submodules of the ℛn-module. Thus, we have the following remark.
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Lemma 4.2. Let f(x), f ′(x), g(x) and g′(x) be monic divisors of xn − 1 over R and 
(r(x), r′(x)) ∈ (R[x])2 with deg(f(x)r(x)) < deg(g(x)) and deg(f ′(x)r′(x)) < deg(g′(x))
such that 𝒞 = ⟨f(x)(1 + μr(x)), μg(x)⟩ℛn

. Then

𝒞⊥Tr = ⟨f ′(x)(1 + μr′(x)), μg′(x)⟩ℛn

if and only if for all 0 ≤ i, j < n,

xif(x) ⋆ xjf ′(x) = − μ2(xif(x)r(x) ⋆ xjf ′(x)r′(x)); (E1)

xig(x) ⋆ xjf ′(x)r′(x) =0; (E2)

xif(x)r(x) ⋆ xjg′(x) =0; (E3)

xig(x) ⋆ xjg′(x) =0. (E4)

Moreover, deg(f(x)) + deg(f ′(x)) + deg(g(x)) + deg(g′(x)) = 2n.

Proof. Set

A(x) = f(x)
(︁
1+μr(x)

)︁
, B(x) = μg(x), A′(x) = f ′(x)

(︁
1+μr′(x)

)︁
, B′(x) = μg′(x).

Every element of 𝒞 (resp. 𝒞⊥Tr) is an ℛn-linear combination of shifts xiA, xiB (resp. 
xjA′, xjB′). Hence 𝒞⊥Tr = ⟨A′, B′⟩ℛn

if, and only if for all 0 ≤ i, j < n the four pairings

xiA⊛ xjA′ = xiB ⊛ xjA′ = xiA⊛ xjB′ = xiB ⊛ xjB′ = 0

vanish. Now, Tr(μ) = 0 and Tr(μ2) = 2μ2, by bilinearity we have

xiA⊛ xjA′ = 2
(︁
xif(x) ⋆ xjf ′(x) + μ2(︁xif(x)r(x) ⋆ xjf ′(x)r′(x)

)︁)︁
;

xiB ⊛ xjA′ = 2μ2 (︁xig(x) ⋆ xjf ′(x)r′(x)
)︁
;

xiA⊛ xjB′ = 2μ2 (︁xif(x)r(x) ⋆ xjg′(x)
)︁
;

xiB ⊛ xjB′ = 2μ2 (︁xig(x) ⋆ xjg′(x)
)︁
.

Since μ2 and 2 is invertible in R, we have

xif(x) ⋆ xjf ′(x) = −μ2(xif(x)r(x) ⋆ xjf ′(x)r′(x)),

xig(x) ⋆ xjf ′(x)r′(x) = 0,

xif(x)r(x) ⋆ xjg′(x) = 0,

xig(x) ⋆ xjg′(x) = 0,

which are precisely (E1)-- (E4). This proves the equivalence.
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Finally, the degree relation follows from the size/count identity for a code and its 
dual:

|𝒞| · |𝒞⊥Tr | = | ℛn |2,

and the standard formula expressing the size of a cyclic code generated by polynomials 
of degrees deg(f),deg(g) (and similarly for f ′, g′). Comparing exponents yields

deg(f) + deg(f ′) + deg(g) + deg(g′) = 2n,

as required. □
Example 4.3. Let R = Z9 and define S = R[α], where α2 = −1. Consider the additive 
cyclic code 𝒞 := ⟨1 + αx⟩ℛn

, where n is a positive integer coprime to 3. The trace dual 
of 𝒞 is given by

𝒞⊥Tr =
⟨︁
f ′(x)

(︁
1 + αr′(x)

)︁
, μg′(x)

⟩︁
ℛn

,

where f ′(x) and g′(x) are monic divisors of xn − 1 over R, and r′(x) ∈ R[x] with 
deg(r′(x)) < deg(g′(x)) − deg(f ′(x)) (since Tr(α) = 0). We have rkR(𝒞) = rkR(𝒞⊥Tr) =
n = deg(f ′(x)g′(x)), and the following condition holds: For all 0 ≤ i, j < n

xi ⋆ xjf ′(x) = xi+1 ⋆ xjf ′(x)r′(x), and xi ⋆ xjg′(x) = 0. (8)

From this, it follows that g′(x) = xn − 1 and f ′(x) = 1, so that deg(r′(x)) < n. Then, 
equation (8) becomes: for all 0 ≤ i, j < n, δi,j = xi ⋆ xj = xi+1 ⋆ xjr′(x). This implies 
r′(x) = x, and therefore 𝒞 is a trace self-dual additive cyclic code.

To determine the trace dual of an additive cyclic R|S code of length n, we will define 
the following polynomial operator:

∗ : S[x]\{0} → S[x]\{0}
a(x) ↦→ a∗(x) = xdeg(a(x))a(x−1).

(9)

Note that if a(0) ̸= 0 then deg(a) = deg(a∗).

Lemma 4.4. Let a(x) and b(x) be two polynomials over R of degree at most n− 1. Then 
xn − 1 divides a(x)b(x) if and only if

u(x)a(x) ⋆ v(x)b∗(x) = 0

for any (u(x), v(x)) ∈ (R[x])2.
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Proof. Let us prove xn − 1 divides a(x)b(x) if and only if u(x)a(x) ⋆ v(x)b∗(x) = 0, for 
any (u(x), v(x)) ∈ (R[x])2.

⇒) Suppose xn − 1 divides a(x)b(x). Then in the quotient ring ℛn, we have 
a(x)b(x) = 0. Multiplying on the left by any u(x) and on the right by any v(x), we 
get u(x)a(x)b(x)v(x) = 0. That is,

u(x)a(x)b(x)v(x) = (xn − 1)q(x),

for some q(x) ∈ R[x]. Now consider

(u(x)a(x)) ⋆ (v(x)b∗(x)) = [constant term of] u(x)a(x) · (v(x)b∗(x−1)).

But since b∗(x−1) = x− deg bb(x), it follows that

u(x)a(x) · v(x)b∗(x−1) = x− deg(b)u(x)a(x)b(x)v(x) = x− deg b(xn − 1)q(x).

Since (xn − 1)q(x) has no degree zero term, neither does x−deg b(xn − 1)q(x). Thus, the 
constant coefficient is zero: (u(x)a(x)) ⋆ (v(x)b∗(x)) = 0.

⇐) Conversely, assume that for all u(x), v(x) ∈ R[x],

(u(x)a(x)) ⋆ (v(x)b∗(x)) = 0.

We argue by contradiction. Suppose that a(x)b(x) = 0. Then a(x)b(x) is nonzero in ℛn, 
which is a free R-module of rank n. The bilinear form

(f, g) ↦→ (f(x) ⋆ g(x))

is non-degenerate on the free R-module ℛn. Hence, there exists some w(x) such 
that (w(x) ⋆ a(x)b(x)) ̸= 0. Define u(x) = 1 and v(x) = w(x)a(x)x− deg b, so that 
v(x)b∗(x−1) = w(x)a(x)b(x), and thus

(u(x)a(x)) ⋆ (v(x)b∗(x)) = (a(x)) ⋆ (w(x)a(x)b(x)) ̸= 0.

This contradicts the hypothesis, so it must be that a(x)b(x) = 0, i.e., xn − 1 divides 
a(x)b(x). □

The following result characterizes the trace dual of an S|R additive cyclic code of 
length n.

Theorem 4.5. Let the polynomials f(x), f ′(x), g(x), g′(x) ∈ R[x] be monic divisors of 
xn − 1. Suppose there exist monic polynomials f1(x), g1(x), ℓ(x) ∈ R[x] such that

xn − 1 = f(x)g1(x)ℓ(x) = f1(x)g(x)ℓ(x),
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and there are monic polynomials f ′
1(x), g′1(x), ℓ′(x) ∈ R[x] such that

xn − 1 = f ′(x)g′1(x)ℓ′(x) = f ′
1(x)g′(x)ℓ′(x).

Let r(x), r′(x) ∈ R[x] be two polynomials such that deg(f(x)r(x)) < deg(g(x)) and 
deg(f ′(x)r′(x)) < deg(g′(x)) and 𝒞 = ⟨f(x)(1 + μr(x)), μg(x)⟩ℛn

. Then

𝒞⊥Tr = ⟨f ′(x)(1 + μr′(x)), μg′(x)⟩ℛn

if and only if in R[x],

f∗
1 (x)ℓ∗(x) | f ′(x)r′(x) and g′1(x)ℓ′(x) | g∗(x)r′(x); (R1)

g∗1(x)ℓ∗(x) | g′(x)r∗(x) and f ′
1(x)ℓ′(x) | f∗(x)r∗(x); (R2)

f∗
1 (x)ℓ∗(x) | g′(x) and f ′

1(x)ℓ′(x) | g∗(x), (R3)

and for all 0 ≤ i < n,

xif(x) ⋆ f ′(x) = −μ2 (︁xif(x)r(x) ⋆ f ′(x)r′(x)
)︁
,

in ℛn. Moreover, ℓ∗(x) | f ′(x).

Proof. Let 𝒞 = ⟨f(x)(1 + μr(x)), μg(x)⟩ℛn
and its trace dual 𝒞⊥Tr = ⟨f ′(x)(1 +

μr′(x)), μg′(x)⟩ℛn
. By Lemma 4.2, this is equivalent to the following conditions holding 

for all the indexes 0 ≤ i, j < n.

(E1) xif(x) ⋆ xjf ′(x) = −μ2 (︁xif(x)r(x) ⋆ xjf ′(x)r′(x)
)︁

(E2) xig(x) ⋆ xjf ′(x)r′(x) = 0

(E3) xif(x)r(x) ⋆ xjg′(x) = 0

(E4) xig(x) ⋆ xjg′(x) = 0

Using Lemma 4.4, conditions (E2)--(E4) can be translated into

• Condition (E2) is equivalent to

xn − 1 | g∗(x)f ′(x)r′(x)

Using the given factorizations xn − 1 = f(x)g1(x)ℓ(x) = f1(x)g(x)ℓ(x) and xn − 1 =
f ′(x)g′1(x)ℓ′(x) = f ′

1(x)g′(x)ℓ′(x), we obtain:

f∗
1 (x)ℓ∗(x) | f ′(x)r′(x) and g′1(x)ℓ′(x) | g∗(x)r′(x)

which is condition (R1).
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• Condition (E3) is equivalent to xn − 1 | g′(x)f∗(x)r∗(x), which gives

g∗1(x)ℓ∗(x) | g′(x)r∗(x) and f ′
1(x)ℓ′(x) | f∗(x)r∗(x)

which is condition (R2).
• Condition (E4) is equivalent to xn − 1 | g∗(x)g′(x), which gives

f∗
1 (x)ℓ∗(x) | g′(x) and f ′

1(x)ℓ′(x) | g∗(x)

which is condition (R3).

Condition (E1) must hold for all 0 ≤ i < n, thus

xif(x) ⋆ f ′(x) = −μ2 (︁xif(x)r(x) ⋆ f ′(x)r′(x)
)︁

This is a bilinear condition that ensures the consistency of the trace dual’s structure and 
must be verified directly. From condition (E1) and (R1), we deduce that:

xn − 1 | f∗(x)g∗1(x)f ′(x) ⇒ ℓ∗(x) | f ′(x)

This completes the set of necessary and sufficient conditions. Hence, the trace dual has 
the desired form if and only if conditions (R1)--(R3) hold, condition (E1) holds for all 
0 ≤ i < n, and ℓ∗(x) | f ′(x). □
Example 4.6. Let n = 8, p = 3 and S = Z9[α] with α2 = −1 and μ = α. The factorization 
of x8 − 1 into monic irreducible polynomial is given by

x8 − 1 = (x + 2)(x + 1)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2) in F3[x],

and the factorization of x8 − 1 into monic basic irreducible polynomial over Z9 is given 
by:

x8 − 1 = (x + 8)(x + 1)(x2 + 1)(x2 + 4x + 8)(x2 + 5x + 8).

Suppose w(x) = x+8, f1(x) = x+1, g1(x) = (x2+4x+8)(x2+1), ℓ(x) = (x2+5x+8), 
and r(x) = x2 + x + 3. Let 𝒞 be an Z9[α]|Z9 additive cyclic code of length 8 defined by

𝒞 =
⟨︁
w(x)f1(x)(1 + μr(x)), μw(x)g1(x)

⟩︁
=

⟨︁
(x + 8)(x + 1)(1 + 2α(x2 + x + 3)), 2α(x + 8)(x2 + 4x + 8)(x2 + 1)

⟩︁
=

⟨︁
(x2 + 8)(1 + 2α(x2 + x + 3)), 2α(x5 + 3x4 + 5x3 + 4x2 + 4x + 1)

⟩︁
.

The trace dual of 𝒞 is given by 𝒞⊥Tr = ⟨f ′(x)(1 + μr′(x)), μg′(x)⟩ℛn
, where x8 − 1 =

w′(x)f ′
1(x)g′1(x)ℓ′(x) = f ′(x)g′1(x)ℓ′(x) = f ′

1(x)g′(x)ℓ′(x). In this case, relations (R1), 
(R2) and (R3) translate into
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• (x + 1)(x2 + 4x + 8) | f ′(x)r′(x) and g′1(x)ℓ′(x) | (x− 1)(x2 + 5x + 8)(x2 + 1)r′(x);
• (x2+5x+8)(x2+1)(x2+4x+8) | (3x2+x+1)g′(x) and f ′

1(x)ℓ′(x) | (x2−1)(3x3+x+1);
• (x + 1)(x2 + 4x + 8) | g′(x) and f ′

1(x)ℓ′(x) | (x− 1)(x2 + 5x + 8)(x2 + 1).

Thus

(x + 1)(x2 + 4x + 8) | f ′(x)r′(x);

f ′
1(x)ℓ′(x) | (x− 1)(x + 1);

g′1(x)ℓ′(x) | (x− 1)(x2 + 5x + 8)(x2 + 1)r′(x);(︃
x8 − 1
w(x) 

)︃
| g′(x).

In addition (x2 + 4x + 8) | f ′(x). Therefore deg(f ′(x)) ≥ 2 and g′(x) = x8−1
w(x) . But 

deg(f ′(x)g′(x)) = 9 and 0 ≤ deg(r′(x)) < deg(g′(x))−deg(f ′(x)). Thus f ′(x) = x2+4x+
8, ℓ′(x) = x−1 and 0 ≤ deg(r′(x)) ≤ 4. Therefore r′(x) = (x+1)(a3x

3+a2x
2+a1x+a0), 

where (a0, a1, a2, a3) ∈ (Z9)4 and

xi(x2 − 1) ⋆ (x2 + 4x + 8) =xi(x4 + x3 + 2x2 + 8x + 6)

⋆ (x3 + 5x2 + 3x + 8)(a3x
3 + a2x

2 + a1x + a0),

for all 0 ≤ i ≤ 7. Thus, we get (a0, a1, a2, a3) = (6, 4, 3, 5).

The following result states that for the trace dual code to be stated in terms of the 
reciprocal polynomials the remainder r(x) should be 0.

Corollary 4.7. Let f(x), f ′(x), g(x) and g′(x) be monic divisors of xn − 1 in R[x] and 
(r(x), r′(x)) ∈ (R[x])2 with deg(f(x)r(x)) < deg(g(x)) and deg(f ′(x)r′(x)) < deg(g′(x))
such that 𝒞 = ⟨f(x)(1 + μr(x)), μg(x)⟩ℛn

and

𝒞⊥Tr = ⟨f ′(x)(1 + μr′(x)), μg′(x)⟩ℛn

Then f ′(x) =
(︂

xn−1
f(x) 

)︂∗
and g′(x) =

(︂
xn−1
g(x) 

)︂∗
, if and only if r(x) = r′(x) = 0.

Proof. Let f(x) = w(x)f1(x) and g(x) = w(x)g1(x) where f1(x) and g1(x) are 
coprime with xn − 1 = f(x)g1(x)ℓ(x) = f1(x)g(x)ℓ(x). Assume that f ′(x) =(︂

xn−1
f(x) 

)︂∗
= g∗1(x)ℓ∗(x) and g′(x) =

(︂
xn−1
g(x) 

)︂∗
= f∗

1 (x)ℓ∗(x). By Theorem 4.5, we have 

f∗
1 (x)ℓ∗(x)|f∗(x)r∗(x) and w∗(x)g∗1(x)|g∗1(x)ℓ∗(x)r′(x). Thus f∗

1 (x) divides r′(x) and 
g1(x) divides r(x). Hence r(x) = r′(x) = 0, since deg(r(x)) < deg(g1(x))−deg(f1(x)) and 
deg(r′(x)) < deg(g′1(x))−deg(f ′

1(x)). The converse is a direct consequence of Lemma 4.4, 
and the fact that deg(f(x)) + deg(f ′(x)) + deg(g(x)) + deg(g′(x)) = 2n. □
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5. Additive complementary pairs of codes

In this section, we study additive complementary pairs of codes (ACPs) over finite 
commutative chain rings.

Definition 5.1. Let 𝒞 and 𝒟 be two S|R additive codes. If 𝒞+R𝒟 = Sn and 𝒞 ∩𝒟 = {0}, 
then the pair {𝒞,𝒟} is called an ACP of codes.

Remark 5.1. As usual, we will denote the conditions in Definition 5.1 as 𝒞 ⊕R 𝒟 = Sn. 
Note that for cyclic codes, we can use the identification of Sn with 𝒮n and we can say 
that (taking into account now that the codes are ideals in 𝒮n) then they are an ACP if 
𝒞 ⊕R 𝒟 = 𝒮n.

Lemma 5.2. [14, Theorem 2] Any projective module over a local ring is free module.

Lemma 5.3. Let 𝒞 and 𝒟 be two additive codes over S|R. If the pair {𝒞,𝒟} is an ACP 
of codes, then both 𝒞 and 𝒟 are free R-modules of Sn.

Proof. Since the pair {𝒞,𝒟} forms an ACP of codes, then by Remark 5.1, we get 𝒞⊕R𝒟 =
Sn it follows that C⊕D is free R-module. This implies that 𝒞 and 𝒟 both are projective 
R-submodule of Sn. Since R and S are local rings, then by Lemma 5.2, 𝒞 and 𝒟 both 
are free R-submodule of Sn. □

Now, the result [2, Lemma 3.1] easily adapts to the case of additive codes.

Lemma 5.4. Let 𝒞 and 𝒟 be two S|R additive codes. Then we have the following theorem.

1. (𝒞 + 𝒟)⊥Tr = 𝒞⊥Tr ∩ 𝒟⊥Tr ;
2. 𝒞⊥Tr + 𝒟⊥Tr = (𝒞 ∩ 𝒟)⊥Tr .

Proof.

1. Let x ∈ (𝒞 + 𝒟)⊥Tr . Then Tr(x,a) = 0 for all a ∈ 𝒞 + 𝒟, that is Tr(x, c + d) = 0
for all c ∈ 𝒞,d ∈ 𝒟. If d = 0 then Tr(x, c) = 0 for all c ∈ 𝒞, then x ∈ 𝒞⊥Tr . 
Similarly, if c = 0 then Tr(x,d) = 0 for all d ∈ 𝒟, which implies x ∈ 𝒟⊥Tr . Hence, 
x ∈ 𝒞⊥Tr ∩ 𝒟⊥Tr .
On the other hand, let y ∈ 𝒞⊥Tr ∩ 𝒟⊥Tr . Then Tr(y, c) = 0 for all c ∈ 𝒞 and 
Tr(y,d) = 0 for all d ∈ 𝒟. That implies Tr(y, c+d) = Tr(y, c)+Tr(y,d) = 0 for all 
c ∈ 𝒞, d ∈ 𝒟. Hence, y ∈ (𝒞 + 𝒟)⊥Tr .

2. As 𝒞⊥Tr + 𝒟⊥Tr =
(︁
(𝒞⊥Tr + 𝒟⊥Tr)⊥Tr

)︁⊥Tr , hence

𝒞⊥Tr + 𝒟⊥Tr = (𝒞 ∩ 𝒟)⊥Tr . □



S. Bhowmick et al. / Finite Fields and Their Applications 110 (2026) 102732 15

Taking into account the previous lemma, we have

Theorem 5.5. Let 𝒞 and 𝒟 be two additive codes over S|R. Then the following statements 
are equivalent.

1. the pair (𝒞,𝒟) is an ACP of codes;
2. the pair (𝒞⊥Tr ,𝒟⊥Tr) is an ACP of codes.

The following result was shown for the linear codes in [4]. Here, we state it for an 
additive code and will allow us to characterize the ACP of additive S|R-codes in terms 
of their ranks.

Lemma 5.6. Let 𝒞 and 𝒟 be two free S|R additive codes. Denote 𝒞+R𝒟 = ⟨𝒞 ∪𝒟⟩
R

that 
is the smallest R-submodule of Sn containing 𝒞 ∪ 𝒟. Then

rankR(𝒞 +R 𝒟) = rankR(C) + rankR(𝒟) − rankR(𝒞 ∩ 𝒟).

Proof. To prove the result, consider the map

φ : 𝒞 × 𝒟 ↦→ 𝒞 +ℛ 𝒟
(x, y) ↦→ x + y.

Obviously this map φ is an R-module homomorphism. Then by Remark 5.1, 𝒞 +R 𝒟 is 
also R-module. It is clear that the map φ is surjective. Therefore, according to the First 
Isomorphism Theorem, 𝒞 × 𝒟/Ker(ϕ) ≃ 𝒞 +R 𝒟 (as R-modules). Since 𝒞 ∩ 𝒟 ≃ Ker(ϕ)
(as R-modules), it follows that |𝒞×𝒟|

|𝒞∩𝒟| = |𝒞 +R 𝒟|. Thus, rankR(𝒞 +R 𝒟) = rankR(C) +
rankR(𝒟) − rankR(𝒞 ∩ 𝒟). □

Since ⊛-inner product is non-degenerate, by Lemma 5.6, we have the following result.

Proposition 5.2. Let 𝒞 be a free S|R additive code of length n. Then 𝒞⊥Tr is free (as 
R-module),

(︂
𝒞⊥Tr

)︂⊥Tr

= 𝒞,

and rankR(𝒞) + rankR(𝒞⊥Tr ) = 2n.

Corollary 5.7. Let 𝒞 and 𝒟 be two S|R additive codes of length n. Then {𝒞,𝒟} is an 
ACP of codes if and only if rankR(𝒞 +R 𝒟) = rankR(𝒞) + rankR(𝒟) = 2n.

Proof. By Lemma 5.3 𝒞,𝒟 are free R-modules since they form an ACP of codes. Thus, 
applying the Lemma 5.6, we easily deduce that {𝒞,𝒟} is an ACP of codes if and only if 
rankR(𝒞 +R 𝒟) = rankR(𝒞) + rankR(𝒟) = 2n. □
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Let π the natural surjective ring homomorphism π : S → S/𝔪S = Fq2 which naturally 
extends to a homomorphism from Sn to Fn

q2 .

Lemma 5.8. Let 𝒞 and 𝒟 be two S|R additive codes. Then 𝒞 ∩ 𝒟 = {0} if and only if 
π(C) ∩ π(D) = {0}.

Proof. Assume that π(𝒞) ∩ π(𝒟) = {0}. Let v ∈ 𝒞 ∩ 𝒟. Then π(v) ∈ π(𝒞) ∩ π(𝒟) and, 
by hypothesis, π(v) = 0. Therefore, v ∈ 𝔪R(𝒞 ∩ 𝒟), which implies 𝒞 ∩ 𝒟 = 𝔪R(𝒞 ∩ 𝒟). 
Since 𝒞 ∩𝒟 is a finitely generated right R-module, Nakayama’s Lemma [18] implies that 
𝒞 ∩ 𝒟 = {0}.

Conversely, assume that 𝒞 ∩ 𝒟 = {0} and let v ∈ π(𝒞) ∩ π(𝒟). Then there exist 
c ∈ 𝒞 and d ∈ 𝒟 such that π(c) = π(d) = v. Hence, π(c − d) = 0, which implies that 
c − d ∈ 𝔪RS

n. Hence, there is a power γi of γ (the generator of 𝔪R) with 1 ≤ i < e

such that γi(c − d) = 0, then γic = γid ∈ C ∩ D. By assumption, 𝒞 ∩ 𝒟 = {0}, 
so γic = γid = 0. Suppose c / ∈ 𝔪RS

n. Then γic ̸= 0 which contradicts the previous 
statement. Thus, c ∈ 𝔪RS

n, implying π(c) = 0, and hence v = π(c) = 0. This shows 
that π(𝒞) ∩ π(𝒟) = {0}. □
Theorem 5.9. Let 𝒞 and 𝒟 be two S|R additive codes of length n. The pair {𝒞,𝒟} forms 
an ACP of codes if and only if the pair {π(𝒞), π(𝒟)} also forms an ACP of Fq2 |Fq-linear 
codes.

Proof.

⇒) Since {𝒞,𝒟} is an ACP, we have 𝒞∩𝒟 = {0}, thus by Lemma 5.8, it follows that 
π(C) ∩ π(D) = {0}. Let v ∈ Fn

q2 . Since π is a subjective map, there exists a ∈ Sn

such that π(a) = v. Since 𝒞 +R 𝒟 = Sn, there are c ∈ 𝒞, d ∈ 𝒟 such that a = c+d. 
Henceforth, v = π(a) = π(c)+π(d) ∈ π(𝒞)+π(𝒟). Therefore, π(𝒞)+Fq

π(𝒟) = Fn
q2 , 

and we conclude that (π(C), π(D)) is ACP.
⇐) Suppose now that (π(C), π(D)) is ACP of Fq2 |Fq-linear codes. Then π(𝒞) ⊕Fq

π(𝒟) = Fn
q , which implies π(𝒞) ∩ π(𝒟) = {0}. Thus, by Lemma 5.8, it follows that 

𝒞 ∩ 𝒟 = {0}.
Let {π(x1), . . . , π(xk)} be a basis of π(𝒞), and {π(xk+1), . . . , π(xn)} a basis of 
π(𝒟). Then, it is straightforward that {x1, . . . ,xk} and {xk+1, . . . ,xn} are mini
mal generating sets for 𝒞 and 𝒟, respectively. Since 𝒞 and 𝒟 are both free, we have 
|𝒞||𝒟| = |Sn|. Therefore, 𝒞 +R 𝒟 = Sn, and the pair {𝒞,𝒟} is an ACP of additive 
codes of length n. □

Let n be a positive integer. An n×n matrix A over 𝒮 is said to be invertible over 𝒮 if 
the matrix π(A) = (π(aij)) is invertible over Fq2 . For a free code C, consider a generator 
matrix G and parity-check matrix H of 𝒞. Then, under the projection π, the matrices 
π(G) and π(H) serve as a generator matrix and a parity-check matrix of the projected 
code π(𝒞), respectively.
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Proposition 5.3. [2, Theorem 3.7] Let 𝒞 and 𝒟 be two free S|R additive codes of length n
with generator matrices G1, G2 and parity-check matrices H1, H2, respectively. Suppose 
that |𝒞||𝒟| = |Sn|. Then, the following statements are equivalent:

a) The pair {π(𝒞), π(𝒟)} forms ACP,
b) The matrix Tr

(︁
π(H2)π(G1)⊤

)︁
or Tr

(︁
π(H1)π(G2)⊤

)︁
is invertible over Fq2 .

Theorem 5.10. Let 𝒞 and 𝒟 be two free additive codes of length n over S|R with generator 
matrices G1, G2 and parity-check matrices H1, H2, respectively. Then the pair {𝒞,𝒟} is 
ACP if and only if Tr

(︁
H2G⊤

1
)︁

or Tr
(︁
H1G⊤

2
)︁

is invertible.

Proof. Suppose {𝒞,𝒟} is ACP of free additive codes over S|R. Assume, for contradiction, 
that Tr

(︁
H2G⊤

1
)︁

is not invertible. Then its image under the ring homomorphism π

π(Tr
(︁
H2G⊤

1
)︁
) = Tr

(︁
π(H2)π(G1)⊤

)︁
,

is also not invertible over Fq2 .
By Proposition 5.3, this implies {π(𝒞), π(𝒟)} is not ACP. Then, by applying Theo

rem 5.9, (C,D) cannot be an ACP, contradicting our assumption. Hence, Tr
(︁
H2G⊤

1
)︁

or 
Tr

(︁
H1G⊤

2
)︁

must be invertible.
Conversely, assume Tr

(︁
H2G⊤

1
)︁

or Tr
(︁
H1G⊤

2
)︁

is invertible. Then the matrix Tr
(︁
π(H2) 

π(G1)⊤
)︁

is invertible, implying {π(𝒞), π(𝒟)} is an ACP by Proposition 5.3. Therefore, 
by Theorem 5.9, {𝒞,𝒟} is ACP. □
6. Additive complementary pairs of cyclic codes

In this Section, we study pairs {𝒞,𝒟} that are ACP of additive S|R cyclic codes. Note 
that by Lemma 5.3, both codes 𝒞 and 𝒟 are free S|R additive codes with a representation 
as in Theorem 3.3.

Theorem 6.1. Let f1(x), f2(x), g1(x) and g2(x) be monic divisors of xn − 1 over R
and (r1(x), r2(x)) ∈ (R[x])2 with deg(f1(x)r1(x)) < deg(g1(x)) and deg(f2(x)r2(x)) <

deg(g2(x)) such that

𝒞 = ⟨f1(x)(1 + μr1(x)), μg1(x)⟩ℛn
and 𝒟 = ⟨f2(x)(1 + μr2(x)), μg2(x)⟩ℛn

are two S|R additive cyclic codes of length n. Then, the pair (𝒞,𝒟) is ACP if and only 
if f1(x)f2(x) = g1(x)g2(x) = xn − 1.

Proof. Assume that {𝒞,𝒟} is ACP. By Theorem 5.9 we know that {π(𝒞), π(𝒟)} is an 
ACP of Fq-linear Fq2-codes. Then ⟨π(f1(x))⟩

Fq
+ ⟨π(f2(x))⟩

Fq
= Fn

q2 and

⟨μπ(g1)(x)⟩
Fq

∩ ⟨μπ(g2)(x)⟩
Fq

⊆ π(𝒞) ∩ π(𝒟) = {0}.
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Thus gcd(π(f1(x)), π(f2(x))) = 1, and lcm(π(g1(x)), π(g2(x)))) = xn − 1. It follows that 
π(f1(x))π(f2(x)) = π(g1(x))π(g2(x)) = xn − 1, since f1(x), f2(x), g1(x) and g2(x) are 
monic divisors of xn − 1 and deg(f1(x)f2(x)) + deg(g1(x)g2(x)) = 2n. Hence, by Hensel 
lift, we have f1(x)f2(x) = g1(x)g2(x) = xn − 1.

Conversely, suppose that f1(x)f2(x) = g1(x)g2(x) = xn − 1. To prove the result, let 
us define a map

ψ : 𝒞 ∩ 𝒟 → ℛn

a(x) + μb(x) ↦→ a(x).

Clearly, 𝒞 ∩ 𝒟 is R|S additive cyclic code of length n. Obviously, Im(ψ) = ⟨f1(x)f2(x)⟩
and Ker(ψ) = ⟨g1(x)g2(x)⟩. By Theorem 3.3, we have

𝒞 ∩ 𝒟 = ⟨f1(x)f2(x)(1 + μr(x)), μg1(x)g2(x)⟩ℛn
,

where r(x) ∈ R[x]. By hypothesis f1(x)f2(x) = g1(x)g2(x) = xn − 1 = 0. Thus, we 
obtain 𝒞 ∩ 𝒟 = {0}. Since xn − 1 is square-free, we get ⟨f1(x)⟩ + ⟨f2(x)⟩ = ℛn (f1 and 
f2 are coprime) and ⟨g1(x)⟩ + ⟨g2(x)⟩ = ℛn (g1(x) and g2(x) are coprime polynomials) 
which results rank

R
(𝒞) + rank

R
(𝒟) = 2n. Therefore, applying Theorem 5.7, the result 

follows. □
Corollary 6.2. Let f1(x), f2(x), g1(x) and g2(x) be monic divisors of xn − 1 over R
and (r1(x), r2(x)) ∈ (R[x])2 with deg(f1(x)r1(x)) < deg(g1(x)) and deg(f2(x)r2(x)) <

deg(g2(x)) such that

𝒞 = ⟨f1(x)(1 + μr1(x)), μg1(x)⟩ℛn
and 𝒟 = ⟨f2(x)(1 + μr2(x)), μg2(x)⟩ℛn

.

If {𝒞,𝒟} is ACP, then r1(x) = r2(x) = 0.

Proof. According to Theorem 6.1, it follows that f1f2 = g1g2 = xn − 1. Consider this 
map

φ : 𝒮n → ℛn

a(x) + μb(x) ↦→ b(x)

that is an epimorphism of ℛn-modules. We have

φ(𝒞) = ⟨f1(x)r1(x)), g1(x)⟩ℛn
and φ(𝒟) = ⟨f2(x)r2(x)), g2(x)⟩ℛn

.

Note that ℛn is a principal ideal ring, thus there exist polynomials d1(x) and d2(x)
monic divisors of xn − 1 such that φ(𝒞) = ⟨d1(x)⟩ℛn

and φ(𝒟) = ⟨d2(x)⟩ℛn
. Since 

𝒞 +𝒟 = 𝒮n and φ is an epimorphism of ℛn-modules, it follows that φ(𝒞) +φ(𝒟) = ℛn. 
Thus d1(x) and d2(x) are coprime polynomials and d1(x)d2(x) divides xn−1. According 
to Lemma 5.6, we have
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rankR(ℛn) = rankR(φ(𝒞)) + rankR(φ(𝒟)) − rankR(φ(𝒞) ∩ φ(𝒟)).

Thus deg(d1(x)) + deg(d2(x)) = n. Hence d1(x)d2(x) = xn − 1 and d1(x) = g1(x) and 
d2(x) = g2(x). Since deg(f1(x)r1(x)) < deg(g1(x)) and deg(f2(x)r2(x)) < deg(g2(x)), 
we have f1(x)r2(x) = f2(x)r2(x) = 0. It follows that r1(x) = r2(x) = 0, since f1(x) and 
f2(x). □
Corollary 6.3. Let f1(x), f2(x), g1(x) and g2(x) be monic divisors of xn − 1 over R such 
that 𝒞 = 𝒞1 ⊕ μ𝒞2 and 𝒟 = 𝒟1 ⊕ μ𝒟2, where 𝒞1 = ⟨f1(x)⟩, 𝒞2 = ⟨g1(x)⟩,𝒟1 = ⟨f2(x)⟩, 
and 𝒟2 = ⟨g2(x)⟩. Let σ be the permutation of {0, 1, · · · , n−1} defined by σ(i) = n−i−1. 
Then the following assertions are equivalent.

1. The pair {𝒞,𝒟} is ACP.
2. The pairs {𝒞1,𝒟1} and {𝒞2,𝒟2} are LCP of codes.
3. 𝒞⊥

1 = σ(𝒟1) and 𝒞⊥
2 = σ(𝒟2).

4. 𝒞⊥Tr = σ(𝒟).

Proof.

1) ⇒ 2): Assume {𝒞,𝒟} is an ACP. By Theorem 6.1, we have f1(x)f2(x) =
g1(x)g2(x) = xn − 1. Since gcd(f1(x), f2(x)) = 1 (and respectively 
gcd(g1(x), g2(x)) = 1), the cyclic codes 𝒞1 = ⟨f1(x̄)⟩, and 𝒟1 = ⟨f2(x̄)⟩ sat
isfy

𝒞1 ∩ 𝒟1 = ⟨lcm(f1, f2)⟩ = {0}, 𝒞1 + 𝒟1 = ⟨gcd(f1, f2)⟩ = Rn.

Thus {𝒞1,𝒟1} is an LCP. Similarly {𝒞2,𝒟2} is an LCP.
2) ⇒ 3): If {𝒞i,𝒟i} is LCP, then 𝒞i + 𝒟i = Rn, and 𝒞i ∩𝒟i = {0}, and for cyclic codes 

this is equivalent to fi(x) gi(x) = xn − 1. But by standard duality for cyclic 
codes, the Euclidean dual of ⟨fi(x̄)⟩ is

⟨fi(x̄)⟩⊥ =
⟨︁
(xn − 1)/f∗

i (x̄)
⟩︁
,

and coe�icient-reversal via σ(i) = n−1−i satisfies ⟨fi(x̄)⟩⊥ = σ
(︁⟨gi(x̄)⟩)︁. Hence 

𝒞⊥
i = σ(𝒟i), for i = 1, 2.

3) ⇒ 4): Assuming 𝒞⊥
i = σ(𝒟i) for i = 1, 2. Then

𝒞⊥Tr = 𝒞⊥
1 ⊕ μ 𝒞⊥

2 = σ(𝒟1) ⊕ μ σ(𝒟2) = σ(𝒟1 ⊕ μ 𝒟2) = σ(𝒟).

4) ⇒ 1): According to Corollary 4.7, we have

𝒞⊥Tr =
⟨︃(︃

xn − 1
f1(x) 

)︃∗
, μ

(︃
xn − 1
g1(x) 

)︃∗⟩︃
ℛn

.
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On the other hand, σ(𝒟) = ⟨f∗
2 (x), μg∗2(x)⟩ℛn

. Since 𝒞⊥Tr = σ(𝒟), by identifica
tion, it follows that f1(x)f2(x) = g1(x)g2(x) = xn − 1. Hence, by Theorem 6.1, 
the pair {𝒞,𝒟} is ACP. □

Finally, from the discussion above, we get a similar result to [8, Theorem 2.4] in the 
setting of additive S|R cyclic codes.

Theorem 6.4. Let the pair {𝒞,𝒟} be an ACP of S|R additive cyclic codes of length n and 
σ be the permutation of {0, 1, . . . , n− 1} defined by σ(i) = n− i− 1. Then

𝒞⊥Tr = σ(𝒟).

Proof. Let {𝒞,𝒟} be an ACP of S|R additive cyclic codes of length n. By Corollary 6.2, 
we have r1(x) = r2(x) = 0. Therefore, the codes can be written as:

𝒞 = ⟨f1(x)⟩ ⊕ ⟨μg1(x)⟩ = 𝒞1 ⊕ μ𝒞2,

𝒟 = ⟨f2(x)⟩ ⊕ ⟨μg2(x)⟩ = 𝒟1 ⊕ μ𝒟2,

where 𝒞1 = ⟨f1(x)⟩, 𝒞2 = ⟨g1(x)⟩, 𝒟1 = ⟨f2(x)⟩, and 𝒟2 = ⟨g2(x)⟩. Since {𝒞,𝒟} is an 
ACP, then by Corollary 6.3. Thus, from the equivalence (1) ⇔ (4) we have

𝒞⊥Tr = σ(𝒟). □
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