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1. Introduction

Given a finite field Fgm (where ¢ is a prime power) and a non-negative integer n,
additive codes over Fym are subsets of F/%. that are closed under addition but not nec-
essarily under scalar multiplication by elements of Fym. Delsarte first studied additive
codes over a finite field in 1971 [10]. In particular, significant attention has been devoted
to the class of additive codes that are closed under scalar multiplication by a subfield

F, C Fgm, namely, Fy-linear subspaces of Fg.. We will refer to them as Fym

F, linear
codes and the main theory on such codes can be found in [13].

Now, if we consider a finite chain ring R, linear codes over R are simply R-submodules
of R™. For a given Galois extension S|R of finite chain rings, we can also define S|R
additive codes in the same fashion as in the finite field case. If a code is closed under the
cyclic shift, we refer to it as cyclic. There are a few works on cyclic additive codes over
finite fields and finite chain rings; see, for example, [16,20,21] and the references therein.

In the context of quantum error-correcting codes, this class of codes has attracted
interest, especially when the alphabet is a quadratic extension Fg> of F,. For instance,
Ashikhmin and Knill [1] constructed quantum codes using F2|F, linear codes. Later,
n [15], the authors revealed a deep connection between the existence of quantum error-
correcting codes and F2|[F, linear codes endowed with a suitable inner product.

On the other hand, a pair of linear codes {C,D} of length n over a finite field F,
is called a linear complementary pair (LCP) if CN'D = {0} and C + D = F, that
is, C& D = F;'. When D = C*t, the dual code of C, the code C is referred to as a
linear complementary dual (LCD) code. LCD codes were first introduced by Massey in
1992 [17], and the interest in both LCD and LCP codes has recently reemerged due to
their applications in securing systems against side-channel and fault injection attacks
[6,7]. In this context, the security parameter when one uses an LCP {C, D} is defined as
min{d(C),d(D+)}, where d(C) denotes the minimum Hamming distance of the code C.
In the LCD case, since D+ = C, the security parameter simplifies to d(C).

Carlet et al. [8] proved that if {C,D} is an LCP where both C and D are cyclic
codes over Fy, then C is permutation equivalent to DL, They further showed that this
result extends to 2D cyclic codes, provided the code length is relatively prime to the
characteristic of I, (i.e., the semi-simple case). Extending this result, Giineri et al. [12]
showed that for abelian codes and the semisimple case, the equivalence C ~ D+ also
holds. This result is more general and can be viewed in the context of group codes;
thus, the same result has been proven for an LCP of group codes without requiring any
assumption on the characteristic of the field (i.e., without the need for semi-simplicity),
see [5]. Finally, this result also holds for LCP codes over finite chain rings [11]. Recently,
a similar result was proven for an LCP of algebraic geometry codes in [3]. There are a
few works on additive complementary dual codes; see, for example, [9] and the references
therein.

In the present work, additive complementary pairs of additive cyclic codes over a finite
commutative chain ring of odd characteristic are investigated. The main results in the
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paper are the following. We establish that every additive complementary pair of codes
forms a pair of free modules, and a necessary and sufficient condition is derived for the
existence of such pairs over a finite commutative chain ring (see Theorems 5.5 and 5.9).
Furthermore, in the case of cyclic additive codes over a finite commutative chain ring,
we show that one code of the constituent codes is permutation equivalent to the trace
dual of the other (see Theorem 6.4).

The paper outline is as follows. Section 2 provides some preliminaries on additive codes
and the trace duality. In Section 3, we study the structure and polynomial definition of
additive cyclic codes over a Galois extension S|R of finite chain rings. Section 4 deals
with the description of the trace dual of the additive codes defined in Section 3. Additive
complementary pairs of codes (not necessarily cyclic ones) are studied in Section 5,
while in Section 6, additive complementary pairs of cyclic codes are tackled, providing a
generalization of the result in [8] for this type of codes.

2. Preliminaries

A chain ring is a ring whose ideal lattice forms a chain. In this paper, S and R will
denote finite commutative chain rings. We will denote the maximal ideal of S as mg
and its nilpotency index as e. We say that S is a ring extension of R, denoted S|R,
if R is a subring of S, mgr = mgNR, and 1g = 1g. The extension S|R is a Galois
extension of degree 2 if S is isomorphic to the quotient ring R[z]/(f(x)), where f(x)
is a basic irreducible polynomial of degree 2 over R. The Galois group Autg(S) of this
extension consists of those ring automorphisms of S such that, when restricted to R,
are the identity map of R. From now on, and throughout the entire paper, and the ring
extension S|R will be a Galois extension of degree 2 and, for technical reasons, R (thus
also S) will be chain rings of odd characteristic.

We will denote by R/m = F, and S/m = Fg 2 the quotient of R (respectively S) by its
maximal ideal. According to [18, Theorem XV.2|, we have Autp, (Fg2) ~ Autr(S) and
rankp(S) = [Fg2 : Fy] = |Aut(S)|. Thus, the ring S can be regarded as a free R-module
of rank 2.

For the chain ring S, the Teichmiiller set T C S is the unique set of ¢? elements
in S such that the image of 7" under the canonical projection S — S/m = Fg2 is the
entire field, each element ¢ € 7T satisfies 1 = t, and T contains the multiplicative
representatives of Fy2 in S. If S|R is a Galois extension of finite chain rings of degree
2, then there exists an element ¢ € S whose multiplicative order is ¢ — 1 [22, Theorem
14.27]. Then, given the following set is called the Teichmiiller set of S

To = {0,1,6,€2,...,67 72},

P
One can define ¢ = 5711, and hence ¢ € R has multiplicative order ¢ — 1. Thus, it is
easy to check that the set T = {0,1,(,(?,...,(972} is the Teichmiiller set of R.
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Let Autr(S) denote the group of all R-automorphisms of S. Since S is a Galois
extension of R of degree 2, it follows, by an argument similar to that in [22, Corollary
14.33], that Autg(S) is a cyclic group of order 2.

In fact, the map ¢ : S — S defined by

#(a) = ap + a1&?, (1)

for a = ag + a1 € with (ag, 1) € R?, is an automorphism of S that fixes R. Moreover,
R is the largest subring of S fixed pointwise by ¢. This automorphism ¢ is called the
Frobenius automorphism of S over R, and it generates the cyclic group Autg(.S).

Let Tr : S — R the map given by s — s+ ¢(s), for all s € S. Tr is called the
generalized trace of S relative to R. It is well known that Tr is a surjective R-module
homomorphism. The following lemma will be useful later.

Lemma 2.1. The kernel of Tr is equal to uR, for some p € S\ R such that Tr(u) = 0,

i.e.,
Ker(Tr) = uR = {ur | r € R}. (2)
Moreover, u? € R and Tr(p?) = 2u2.

Proof. It is well known that Tr is a surjective R-module homomorphism. Therefore,
by the first isomorphism theorem for modules, we have S/Ker(Tr) ~ R. Consequently,
|[Ker(Tr)| = |R|. Furthermore, we observe that for any r € R, we have that Tr(r) =
r + ¢(r) = 2r, since ¢ is the Frobenius automorphism of S over R (and ¢(r) = r for
r € R). Thus, Tr(r) # 0 for all » € R\ {0} since the characteristic of R is an odd prime.
Moreover, there exist p € S\ R such that Tr(u) = 0. Let € uR, then x = ur, for
some r € R. It follows that Tr(x) = 0, for all z € uR; hence, uR = ker(Tr). Finally,
Tr(p) = 0 & p = —¢(p). Thus, ¢(u?) = (¢(n))? = (—p)? = p?. It follows that u? € R
and Tr(p?) =2p2. O

Furthermore, for an element p € S\ R such that Tr(u) = 0, the set {1, u} is a basis
of S over R, as S is a free R-module. Note that u is an invertible element in the ring S.

Definition 2.2. A linear code of length n over R is just an R-submodule of R™. An S|R
additive code of length n is just an R-submodule of S™.

Definition 2.3. For an S|R additive code of length n, the trace dual of C is given by

Ctm ={acS"|Tr(a-c)=0 for all c € C}. (3)

Note that C = (€)™ and |C[|CL™| = |S7| (see [23]).
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3. Structure of additive cyclic codes

Throughout the paper, we assume that the length of the codes n is a positive integer
that is not divisible by the characteristic of the residue field R/m = F,. Thus, the
polynomial 2™ — 1 is square-free in Fy[z] and 2™ — 1 admits a unique factorization into a
product of pairwise coprime, basic irreducible polynomials in R (resp. S). We will denote
the following polynomial quotient rings as

Rn = Rlz]/(z" = 1), S = Sla]/(z" = 1). (4)

Both rings R, and S, are principal, see [19]. If we set T = x + (2™ — 1), the map

v S — S,
n—1 .
(ag,...,an-1) +— > a;@
§=0

is an R-module isomorphism. Moreover, R,, is a free R-module of rank n, and S, is a
free R-module of rank 2n.

Definition 3.1. An S|R additive cyclic code of length n is an R-submodule C of S™ that
satisfies

(COacla---aCn—l) €eC — (Cn—hCOv-”aCn—Z) eC.

It is easy to check that a (linear) cyclic code of length n over S can be seen as an
R-submodule of R,,, and an additive cyclic code of length n can be represented as an
R-submodule of S,,. We will follow this polynomial notation of (additive) cyclic codes in
the rest of the paper. For more details on additive cyclic codes over chain rings, we refer
to [16] and the references therein.

Lemma 3.2. A nonempty subset C of S™ is an S|R additive cyclic code of length n if and
only if U(C) is an Rp-submodule of Sy,.

In the sequel, we identify any free S| R additive code of length n with an R,,-submodule
of §,,. The quotient ring S,, is a free R,-module of rank two. Therefore, any R,,-
submodule of §,, is generated by at most two elements of S,. From now on, recall
also that Ker(Tr) = pR (see 2.1).

Theorem 3.3. Let C be a free S|R additive cyclic code of length n. Then there exist

unique monic divisors f(x) and g(z) of 2™ — 1 in R[z] and a polynomial r(x) in R|x]
with deg(f(x)r(x)) < deg(g(x)) for which

C= (@) +pr(®))r, ©(1g(T))x, -
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Moreover, S1 U Sy is an R-basis of C, where
S1 1= {7 F@)(1 + pr(@) | 0 < i < 0 — deg(f(x))};
Sy = {Tpg(T) : 0<j <n—deg(g(x))}

Proof. To prove the result, we first define a map

Rn

a(T).

(R C —
a(Z) + pb(xT)

Note that 1 is an R,-module homomorphism. Therefore, ¥(C) is an ideal of R,,. Since C
is free (as R-module), then there is a free submodule C; of C such that the restriction of
¥ to Cy is an R-module isomorphism. Thus ¢(C) is a free cyclic code over R. Then there
exists a unique divisor f(z) of ™ —1 in R[] such that ¢/(C) = (f(T)), - Consequently, C;
is also cyclic. Thus, C; = (f(Z) + pro(T)) g, where ro(z) € R[z]. Besides, C = C;®Ker ()
and Ker () is free as an R-module. Now,

Ker(¢) = {a(@) + pb(T) € C | a(z) = 0}.

If we define the set A = {b(%) € R,, | pb(T) € Ker())}, then Ker(¢) = pA. We have A
is an ideal of the principal ideal ring R,,. Therefore, there exists a unique monic divisor
g(x) of 2™ — 1 in R[x] such that A = (g(7))., . Thus,

R

C = (f(T)+ pro(T), ng(T))

for some polynomial ro(z) in Rlz]. If deg(ro(z)) > deg(g(x)). Then, by division al-
gorithm, there exist s(x) and u(x) in R[z] such that ro(z) = u(z)g(x) + s(z) with
deg(s(z)) < deg(g(z)). Thus,

C = {f(@) + pro(@), p9(T)) ,, = (f(T) + ps(T), ng(7)) ,, -

Hence, we may consider deg(ro(z)) < deg(g(x)). Note that h(Z)(f(T) + wuro(T)) =
ph(z)ro(Z) € C; N Ker(yp) = {0}, where f(z)h(x) = ™ — 1. Tt follows that z™ — 1
divides h(x)ro(z). Thus, f(x) divides ro(x), since f(z) and h(z) are coprime. Hence, we
have that ro(x) = r(x) f(x) since f(x) divides ro(x) and

C= (@) +pro@)r, ®ug(@)r, = F@)(1+pr(@))s, ©(1g(@))x,
where deg(r(z)) < deg(g(z)) — deg(f(x)). Moreover, the sets
{Tf @)+ pro(@) |0 < i < n—deg(f)}

and {7/ ug(T) : 0 < j < n—deg(g)} are the R-bases of (f(Z) + uro(Z))x, and (ug(T))z
respectively. Therefore, S; U S5 is an R-basis of C. O
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4. Trace duality

Recall that S, is a free R-module of rank 2n. The *-inner and ®-inner product on
Sy, defined by

n—1 n—1 n—1
=0 =0 =0

and

(i aiT) ® (i bﬁ) =Tr (Ti aibi> , (6)

are non-degenerate symmetric bilinear forms over S and R, respectively. The bilinear
form on §,, with values in R given by ® is called the trace over S,. Note that

ou(T) ® fv(T) = Tr(af) (u(T) x v(T)),
for all (u(Z),v(z)) in (R,)? and (a, B) € S2.
Remark 4.1. Let a(%), b(%), o' (%), b (T) € Ry, Then
(a(@) + pb(7)) @ (a' () + pb' (7)) = 2(a(®) * d(T) + 4 (b(T) * V'(T))).

Definition 4.1. Let C be an S|R additive code of length n. The trace dual of C, denoted
CLTZ is defined as

o= {u(f) €S, | (Ve(@) € C)(u(@) ® ¢(T) = 0)}. (7)

Let C be an S|R additive code of length n. If u(z) € CLT", c(Z) ® u(T) = 0 for all
¢(Z) € C. Since ¢(Z) € C, we know that Z'  ¢(Z) is also a codeword. Thus,

-1

0=7 ¢(T)®u(T)=c(T)®Tu(T)

for all ¢(Z) from C. Therefore Tu(z) € C™ and €™ is also an S |R additive code of

length n. Henceforth, we obtain the following proposition.

Proposition 4.2. Let C be an S|R additive cyclic code of length n. Then C™ is also an
S|R additive cyclic code of length n.

The ®-inner product is an R-bilinear form. On the other hand, C and C™ are Rn-
submodules of the R,-module. Thus, we have the following remark.
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Lemma 4.2. Let f(z), f'(z),g9(x) and ¢'(x) be monic divisors of ™ — 1 over R and
2

(r(z),r'(z)) € (R[z])* with deg(f(z)r(x)) < deg(g(x)) and deg(f’(x)r'(z)) < deg(g'(x))
such that C = (f(Z)(1 + pr(T)), ng(T)) ., - Then

1

CT ={f@A+p' (@), 19 ())r,

if and only if for all0 <14,j <mn,

(@) T (@) = — @ f@)r(@) + T f' @) (@)); (E1)
fig( ) <7 f'(@)r' (@) =0; (E2)
f(@)r(@) « 7 g (@) =0; (E3)
T'9(z) x 7 g’ (T) =0. (E4)

Moreover, deg(f(x)) + deg(f'(x)) 4 deg(g(z)) + deg(g'(x)) = 2n.
Proof. Set
A@) = f@) (1+pr(@), B@) =pg(T), A'@) =f@)(1+0' @), B'(T) =g (@)

Every element of C (resp. C*7) is an R,-linear combination of shifts Z'A, 7B (resp.
7/ A", 7 B'). Hence C+m = (A, B') . if, and only if for all 0 <4, j < n the four pairings

TA®7 A =7Ber/A =7TA®7 B =7'B®7’ B =0
vanish. Now, Tr(u) = 0 and Tr(u?) = 2u2, by bilinearity we have

TAeT A =2 @ (@) +7 f'@) + 4 (T f@)r@) + 7 f' @) (@) 1

T)
TBew A =2p” (T'g(T) « T f'(T)r' (T)) ;
TA®z B =2 (T f(@)r(@) « 2 ¢/ (T)) ;
TBoT B =2u° (2'g(x)*7¢ (7)) .

Since p? and 2 is invertible in R, we have
7' f (@)« 7 f' (@) = — (@ f@)r(T) « T f (@) (7)),
z'g() x T f'(@)r'(T) = 0,
7 f(Z)r(T)* 2 ¢/ (T) = 0,
T'9(z) * 7' g'(7) = 0,

which are precisely (E1)— (E4). This proves the equivalence.
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Finally, the degree relation follows from the size/count identity for a code and its
dual:

Cl-lcm ] = | R 2,

and the standard formula expressing the size of a cyclic code generated by polynomials
of degrees deg(f),deg(g) (and similarly for f/,¢’). Comparing exponents yields

deg(f) + deg(f') + deg(g) + deg(g') = 2n,

as required. O

Example 4.3. Let R = Zg and define S = R[a], where a? = —1. Consider the additive
cyclic code C := (1 + aZ)x,, , where n is a positive integer coprime to 3. The trace dual
of C is given by

ctr = ('@ (1 +ar' @), p (T)) .

where f/(z) and ¢'(z) are monic divisors of z™ — 1 over R, and 7'(x) € R[z] with
deg(r'(z)) < deg(g'(z)) — deg(f'(z)) (since Tr(a) = 0). We have rkp(C) = rkg(Ct™) =
)9

n = deg(f’(x)g'(x)), and the following condition holds: For all 0 < i,j <n
T T f(Z) =7 %7 f(T)r' (T), and T« T ¢/ (T) = 0. (8)
From this, it follows that ¢'(z) = 2™ — 1 and f'(z ) = 1, so that deg(r'(z)) < n. Then,
—i+1

equation (8) becomes: for all 0 < i,j < n, &;; = T @ = T «Z/9/(F). This implies

r'(T) = T, and therefore C is a trace self-dual additive cyclic code.

To determine the trace dual of an additive cyclic R|S code of length n, we will define
the following polynomial operator:

o SlN\{0o} — S[z]\{0} (9)
a(:):) — a*(x):xdeg(a(m))a(x—l),

Note that if a(0) # 0 then deg(a) = deg(a*).

Lemma 4.4. Let a(x) and b(x) be two polynomials over R of degree at most n — 1. Then
™ — 1 divides a(x)b(z) if and only if

W(T)a(T) * v(@)b* (T) = 0

for any (u(z),v(x)) € (R[x])%.
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Proof. Let us prove z™ — 1 divides a(z)b(z) if and only if w(Z)a(Z) x v(Z)b*(Z) = 0, for
any (u(z), v(x)) € (Rlz])?.

) Suppose z" — 1 divides a(x)b(x). Then in the quotient ring R,, we have
a(z)b(z) = 0. Multiplying on the left by any «(Z) and on the right by any v(Z), we
get w(T)a(Z)b(T)v(T) = 0. That is,

u(@)a(z)b(z)o(r) = (z" = 1)q(x),
for some q(z) € R[z]. Now consider
(u(Z)a(T)) * (v(Z)b*(T)) = [constant term of] u(z)a(x) - (v(z)b*(z™1)).
But since b*(z71) = 2~ 9°8%(x), it follows that

w(z)a(z) - v(z)b*(z) = 2~ 8Oy (z)a(x)b(z)v(z) = 2~ 80 (2" — 1)q(z).
Since (™ — 1)g(x) has no degree zero term, neither does x~4¢%(z™ — 1)g(z). Thus, the

constant coefficient is zero: (u(T)a(T)) x (v(Z)b*(T)) = 0.
<) Conversely, assume that for all u(z),v(x) € R[z],

(u(@)a(7)) * (v(@)b" (7)) = 0.

We argue by contradiction. Suppose that a(Z)b(Z) = 0. Then a(z)b(x) is nonzero in R,
which is a free R-module of rank n. The bilinear form

(f,9) = (f(T) x g(T))
is non-degenerate on the free R-module R,. Hence, there exists some w(z) such

that (w(Z) * a(T)b(Z)) # 0. Define u(z) = 1 and v(z) = w(z)a(z)z~ 9t so that
v(z)b*(z71) = w(x)a(x)b(z), and thus

(u(T)a(T)) * (v(@)b" (7)) = (a(T)) x (w(T)a(T)b(T)) # 0.

This contradicts the hypothesis, so it must be that a(Z)b(z) = 0, i.e., 2™ — 1 divides
a(x)b(z). O

The following result characterizes the trace dual of an S|R additive cyclic code of
length n.

Theorem 4.5. Let the polynomials f(x), f'(x),g(x), ¢ (x) € R[z] be monic divisors of
™ — 1. Suppose there exist monic polynomials f1(x), g1(x),£(x) € R[x] such that

e — 1= f(x)gi(x)l(z) = fr(z)g(x)l(z),
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and there are monic polynomials f1(x), g} (x), ' (x) € R[x] such that

2" — 1= fl(x)g (@) (x) = fi(x)g (2)l'(x).

Let r(z),r'(z) € R[z] be two polynomials such that deg(f(z)r(z)) < deg(g(x)) and
deg(f'(x)r'(x)) < deg(¢'(z)) and C = (f(Z)(1 + pr (7)), pg(T)) =, Then

Chr = (F @)1+ pr' (@), 19 (@),

if and only if in R[z],

fr(@)e (@) | f1(@)r' () and gy (2)l' (z) | g™ (2)r(2); (R1)
g1 (@) () | g'(x)r*(x) and fi(x)l'(z) | f*(x)r" (); (R2)
fi(@)e(z) | g'(x) and fi(x)l'(z) | g"(x), (R3)

and for all 0 <1i < n,
T f(@)* f'(x) = —p2 (T f(@)r(T) * f (@) (2))
in Ry. Moreover, £*(x) | f'(z).

Proof. Let C = (f(Z)(1 + wur(%)), ug(T))w, and its trace dual C*™ = (f'(Z)(1 +
ur'(T)), pg’ (Z))wr,, - By Lemma 4.2, this is equivalent to the following conditions holding
for all the indexes 0 < i,j < n.

(E1) 7'f(@)+7 f' (@) = —p* (@' f(@)r(@) » 7 (@) (7))
(B2) @'g(@)*7 f'(@)'(T) =0

(E3) @' f@)r (T )*zj "(T) =0

(B4) z'g(@)*7’g'(T) =0

Using Lemma 4.4, conditions (E2)—(E4) can be translated into
o Condition (E2) is equivalent to

z" = 1| g"(x) f(x)r'(x)

Using the given factorizations 2™ — 1 = f(x)g1(z)¢(z) = f1(z)g(x)l(x) and 2™ —1 =
f(@)g1(x)l (z) = fi(z)g'(x)¢'(x), we obtain:

f(@)e (@) | f/(2)r'(x) and gy (2)'(2) | g™ (2)r' (2)

which is condition (R1).
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o Condition (E3) is equivalent to 2™ — 1 | ¢'(z) f*(x)r*(z), which gives

g1 (@) () | ' ()r*(x) and fi(z)¢'(x) | f*(2)r"(x)

which is condition (R2).
o Condition (E4) is equivalent to 2™ — 1| ¢*(z)g’(z), which gives

fi(@)t*(z) | ¢'(x) and f{(2)¢'(z) | g"(x)
which is condition (R3).
Condition (E1) must hold for all 0 < i < n, thus
7' f(@) x f'(T) = —p* (T f(@)r (@) * f'(@)r' (7))

This is a bilinear condition that ensures the consistency of the trace dual’s structure and
must be verified directly. From condition (E1) and (R1), we deduce that:

Tl ff@)gi@)f () = @) | (@)

This completes the set of necessary and sufficient conditions. Hence, the trace dual has
the desired form if and only if conditions (R1)—(R3) hold, condition (E1) holds for all
0<i<mn,and £*(z) | f'(z). O

Example 4.6. Let n = 8, p = 3 and S = Zg[a] with o = —1 and p = «. The factorization
of 28 — 1 into monic irreducible polynomial is given by

2% —1=(z+2)(z+1)(2* + 1)(2® + = + 2)(z? + 22 + 2) in Fa[z],

and the factorization of 28 — 1 into monic basic irreducible polynomial over Zg is given
by:

28— 1= (z+8)(x+1)(z*+ 1)(2* + 4a + 8)(2* + 5z + 8).

Suppose w(z) = z+8, fi(z) = 2+1, g1(z) = (22 +4x+8) (22 +1), £(z) = (22 +5x+8),
and 7(x) = 2% + x + 3. Let C be an Zg[a]|Zg additive cyclic code of length 8 defined by

C = (w@fi(@)(1+ pr(), pw(@)g:(T))
:<(x+8)(x+1)(1+2a(33 +T+3)), 20(T +8)(T° + 4T+ 8)(z° + 1))
={((@*+8)(1 +2a(z* +T+3)), 20(T° + 37" + 57° + 47° + 47 + 1)).

The trace dual of C is given by C e

()f1()1()()=f()1()()_

(R2) and (R3) translate into

@)1+ (@), 1 (7)), where 28 — 1 =
= fi(x)g'(z)¢'(x). In this case, relations (R1),
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o (@+1)(a? +4z+8) | f'(x)r'(z) and gi (2)0'(z) | (z — 1)(2? + 5z + 8)(2? + L)' (2);
o (22452+8)(2?+1)(2?+42+8) | (3z%+x+1)¢(x) and f{(x)l'(z) | (z*—1)(3x3+z+1);
o (z+ 1) (22 +4x+38) | ¢ (z) and f{(x)l'(z) | (x — 1)(z% + 5z + 8) (2% + 1).

Thus

~

"(@)r' (2);
(z —1)(x+1);
(z —1)(z* + 5z + 8) (2% + 1)7/(2);

But

In addition (22 + 4z + 8) | f’(z). Therefore deg(f’(z)) > 2 and ¢'(z) = w(x)
deg(f'(z)g'(z)) = 9 and 0 < deg(r’'(x)) < deg(g'(z)) —deg(f'(z)). Thus f'(z) = 2° +4z+
8,0 (x) = x—1and 0 < deg(r'(x)) < 4. Therefore r'(x) = (z+1)(azx®+az2® + a7 +ap),
where (ag, a1, az,a3) € (Zg)* and

7T — 1) % (T + 47 + 8) =7 (T* + 7> + 27° 4 8T + 6)
* (T3 + 572 4 3T + 8)(asT> + axT> + a1 T + ap),

for all 0 <4 < 7. Thus, we get (ag, a1, a2,as) = (6,4,3,5).

The following result states that for the trace dual code to be stated in terms of the
reciprocal polynomials the remainder r(z) should be 0.

Corollary 4.7. Let f(z), f'(z),g(z) and ¢'(z) be monic divisors of ™ — 1 in R[z] and

(r(@),r'(z)) € (Rlz])* with deg(f(z)r(z)) < deg(g(x)) and deg(f'(x)r'(z)) < deg(y’ (x))
such that C = (f(Z)(1 + pr(T)), pg(T)) 5, and

L

CT = {f@0A+p' (@) 1y (@))e,

Then f'(x) = (ﬁ:};ﬁ) and ¢'(z) = (%) , if and only if r(x) = r'(x) = 0.

Proof. Let f(z) = w(x)fi(x) and g(x) = w(x)gi(x) where fi(z) and gi(z) are
coprime* with 2" — 1 = f(z)q1(z)l(x = fi(@)g(z)l(z). Assume that f'(z) =
(%) = g7 (x)0*(z) and ¢'( En*l) = f{(x)¢*(x). By Theorem 4.5, we have
[t (@) ()| f*(@)r*(z) and w*(z)gi (x)|g7 (2)€* (x)r'(x). Thus f7(x) divides r'(x) and
g1(x) divides r(z). Hence r(z) = r'(x) = 0, since deg(r(z)) < deg(g1(z))—deg(f1(z)) and
deg(r'(x)) < deg(g](z))—deg(fi(x)). The converse is a direct consequence of Lemma 4.4,
and the fact that deg(f(x)) + deg(f'(x)) + deg(g(z)) + deg(¢'(x)) =2n. O
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5. Additive complementary pairs of codes

In this section, we study additive complementary pairs of codes (ACPs) over finite
commutative chain rings.

Definition 5.1. Let C and D be two S|R additive codes. If C+zrD = S™ and CND = {0},
then the pair {C, D} is called an ACP of codes.

Remark 5.1. As usual, we will denote the conditions in Definition 5.1 as C &g D = S™.
Note that for cyclic codes, we can use the identification of S™ with S,, and we can say
that (taking into account now that the codes are ideals in S,,) then they are an ACP if
COrD=S,.

Lemma 5.2. [1/, Theorem 2] Any projective module over a local ring is free module.

Lemma 5.3. Let C and D be two additive codes over S|R. If the pair {C,D} is an ACP
of codes, then both C and D are free R-modules of S™.

Proof. Since the pair {C, D} forms an ACP of codes, then by Remark 5.1, we get COrD =
S™ it follows that C @ D is free R-module. This implies that C and D both are projective
R-submodule of S™. Since R and S are local rings, then by Lemma 5.2, C and D both
are free R-submodule of S™. O

Now, the result [2, Lemma 3.1] easily adapts to the case of additive codes.
Lemma 5.4. Let C and D be two S|R additive codes. Then we have the following theorem.

1. (C + D)lTr = CLm N DL ;
9. ¢m 4 DLr — (€A D)L,

Proof.

1. Let x € (C + D)*™. Then Tr(x,a) = 0 for all a € C + D, that is Tr(x,c +d) = 0
for all c € C,d € D. If d = 0 then Tr(x,c) = 0 for all ¢ € C, then x € Ct™.
Similarly, if ¢ = 0 then Tr(x,d) = 0 for all d € D, which implies x € D7, Hence,
x € Ctm™ N DL,

On the other hand, let y € C+™ N DL, Then Tr(y,c) = 0 for all ¢ € C and
Tr(y,d) = 0 for all d € D. That implies Tr(y,c+d) = Tr(y, c) + Tr(y,d) = 0 for all
c€C, deD. Hence, y € (C+ D)+,

2. As Ctm 4 DA = ((Ctm + DJ‘Tr)J‘Tr)J'Tr, hence

ctr 4+ pir = (CcnD)t™. o
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Taking into account the previous lemma, we have

Theorem 5.5. Let C and D be two additive codes over S|R. Then the following statements
are equivalent.

1. the pair (C,D) is an ACP of codes;
2. the pair (Ctr=, D) is an ACP of codes.

The following result was shown for the linear codes in [4]. Here, we state it for an
additive code and will allow us to characterize the ACP of additive S|R-codes in terms
of their ranks.

Lemma 5.6. Let C and D be two free S|R additive codes. Denote C+rD = (CUD),, that
is the smallest R-submodule of S™ containing C UD. Then

rankg(C +r D) = rankr(C) + rankz (D) — rankg(C N D).
Proof. To prove the result, consider the map

p: CxD — C+rD
(z,y) = x+y.

Obviously this map ¢ is an R-module homomorphism. Then by Remark 5.1, C +5 D is
also R-module. It is clear that the map ¢ is surjective. Therefore, according to the First
Isomorphism Theorem, C x D/Ker(¢) ~ C +r D (as R-modules). Since C N D ~ Ker(¢)
(as R-modules), it follows that ‘I(Cjzgl‘ = |C +g D|. Thus, rankr(C +g D) = rankg(C) +
rankr (D) —rankgp(CND). O

Since ®-inner product is non-degenerate, by Lemma 5.6, we have the following result.

Proposition 5.2. Let C be a free S|R additive code of length n. Then c™ s free (as
R-module),

and rankg(C) + rankR(CLTr) = 2n.

Corollary 5.7. Let C and D be two S|R additive codes of length n. Then {C,D} is an
ACP of codes if and only if rankg(C +r D) = rankg(C) + rankr(D) = 2n.

Proof. By Lemma 5.3 C,D are free R-modules since they form an ACP of codes. Thus,
applying the Lemma 5.6, we easily deduce that {C, D} is an ACP of codes if and only if
rankr(C +g D) = rankg(C) + rankg(D) =2n. O



16 S. Bhowmick et al. / Finite Fields and Their Applications 110 (2026) 102732

Let 7 the natural surjective ring homomorphism 7 : § — S/mg = F2 which naturally
extends to a homomorphism from S™ to ]F(;L2

Lemma 5.8. Let C and D be two S|R additive codes. Then C N'D = {0} if and only if
m(C)N=w(D) = {0}.

Proof. Assume that 7(C) N7(D) = {0}. Let v € CND. Then n(v) € n(C) N7(D) and,
by hypothesis, m(v) = 0. Therefore, v € mg(C N D), which implies C N D = mz(C N D).
Since CND is a finitely generated right R-module, Nakayama’s Lemma [18] implies that
cnND={0}.

Conversely, assume that C N D = {0} and let v € 7(C) N w(D). Then there exist
c € C and d € D such that w(c) = w(d) = v. Hence, m(c — d) = 0, which implies that
¢ —d € mpS™. Hence, there is a power 4% of v (the generator of mg) with 1 <i < e
such that 4*(c —d) = 0, then v'c = v'd € C N D. By assumption, C N D = {0},
so vic = v'd = 0. Suppose ¢ ¢ mpS™. Then vic # 0 which contradicts the previous
statement. Thus, ¢ € mrS™, implying m(c) = 0, and hence v = 7(c) = 0. This shows
that #(C) N7(D) ={0}. O

Theorem 5.9. Let C and D be two S|R additive codes of length n. The pair {C, D} forms
an ACP of codes if and only if the pair {m(C),m(D)} also forms an ACP of Fy2|F-linear
codes.

Proof.

=) Since {C, D} is an ACP, we have CND = {0}, thus by Lemma 5.8, it follows that
m(C)Nm(D) = {0}. Let v € F ;. Since 7 is a subjective map, there exists a € 5"
such that 7(a) = v. Since C +r D = S, there are ¢ € C, d € D such that a = c+d.
Henceforth, v = 7(a) = m(c) +7(d) € 7(C) +m(D). Therefore, 7(C) +7, 7(D) = F,
and we conclude that (7(C),n(D)) is ACP.

<) Suppose now that (7(C), (D)) is ACP of Fg|F,-linear codes. Then 7(C) ©r,
7(D) = [}, which implies 7(C) N 7(D) = {0}. Thus, by Lemma 5.8, it follows that
CND={0}.

Let {m(x1),...,7m(xx)} be a basis of 7(C), and {7 (Xg+1),...,7(x,)} a basis of
(D). Then, it is straightforward that {xi,...,xx} and {Xg4+1,...,X,} are mini-
mal generating sets for C and D, respectively. Since C and D are both free, we have
|C||D| = |S™|. Therefore, C +r D = S™, and the pair {C,D} is an ACP of additive
codes of length n. O

Let n be a positive integer. An n x n matrix A over § is said to be invertible over § if
the matrix 7(A) = (7(as;)) is invertible over F 2. For a free code C, consider a generator
matrix G and parity-check matrix H of C. Then, under the projection 7, the matrices
m(G) and w(H) serve as a generator matrix and a parity-check matrix of the projected
code 7(C), respectively.
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Proposition 5.3. [2, Theorem 3.7] Let C and D be two free S|R additive codes of length n
with generator matrices G1, Go and parity-check matrices Hy, Ho, respectively. Suppose
that |C||D| = |S™|. Then, the following statements are equivalent:

a) The pair {n(C),n(D)} forms ACP,
b) The matriz Tr (x(Hg)m(G1) ") or Tr (m(Hy)m(G2) ") is invertible over Fe.

Theorem 5.10. Let C and D be two free additive codes of length n over S|R with generator
matrices G, Go and parity-check matrices Hy, Ho, respectively. Then the pair {C,D} is
ACP if and only if Tr (HQG]—) or Tr (HlG;) 1s invertible.

Proof. Suppose {C, D} is ACP of free additive codes over S|R. Assume, for contradiction,
that Tr (HQGI) is not invertible. Then its image under the ring homomorphism 7

7 (Tr (HQGI)) =Tr (ﬂ'(Hg)ﬂ(Gl)T) ,

is also not invertible over Fg2.

By Proposition 5.3, this implies {7 (C), 7 (D)} is not ACP. Then, by applying Theo-
rem 5.9, (C, D) cannot be an ACP, contradicting our assumption. Hence, Tr (HQGD or
Tr (H;G; ) must be invertible.

Conversely, assume Tr (H2G{ ) or Tr (H;G; ) is invertible. Then the matrix Tr(w(Hz)
7T(G1)T) is invertible, implying {7(C),7(D)} is an ACP by Proposition 5.3. Therefore,
by Theorem 5.9, {C,D} is ACP. O

6. Additive complementary pairs of cyclic codes

In this Section, we study pairs {C, D} that are ACP of additive S|R cyclic codes. Note
that by Lemma 5.3, both codes C and D are free S|R additive codes with a representation
as in Theorem 3.3.

Theorem 6.1. Let fi(x), fa(z),g1(x) and g2(x) be monic divisors of ™ — 1 over R
and (r1(x),ra2(x)) € (R[2])* with deg(fi(x)r1(z)) < deg(g1(x)) and deg(f2(z)r2(x)) <
deg(g2(x)) such that

C={i@)(1+ pri(T)), pg1(T))x, and D = (fo(T)(1 + pur2(T)), ng2(T))x,,

are two S|R additive cyclic codes of length n. Then, the pair (C,D) is ACP if and only
if f1(z)f2(z) = g1(2)ga(z) = 2™ — 1.

Proof. Assume that {C,D} is ACP. By Theorem 5.9 we know that {7 (C),m(D)} is an
ACP of Fy-linear Fg2-codes. Then (7(fy (x))>Fq + (m(f2(z)))

— n
r, = Fg2 and

(pm(91)()) g, N (pm(92) (@), € 7(C) N (D) = {0}.
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Thus ged(w(f1(2)), 7(f2(2))) =1, and lem(7(g1(z)), 7(g2(x)))) 1. Tt follows that

m(fi(@)7(fo(z)) = 7(g1(2))7(g2(x)) = 2" — 1, since fi(z), fa(x ) 1(z) and g(x) are
monic divisors of ™ — 1 and deg(f1(x) f2(z)) + deg(g1(x)g2(z)) = 2n. Hence, by Hensel

lift, we have fi(z)f2(z) = g1(x)g2(x) = 2™ — 1.
Conversely, suppose that fi(x)fa(x) = g1(x)g2(x) = 2™ — 1. To prove the result, let
us define a map

P cCND
a(T) + pb(T)

Clearly, C N D is R|S additive cyclic code of length n. Obviously, Im(¢)) = (f1(x)f2(z))
and Ker () = (g1(z)g2(z)). By Theorem 3.3, we have

Rn

N
—  a(T).

CND = (A(2)fa(@) (1 + pr(T)), 191 (T)92(T)) ,,

where r(z) € R[z]. By hypothesis f1(Z)f2(Z) = ¢1(T)92(T) = T — 1 = 0. Thus, we
obtain C N D = {0}. Since ™ — 1 is square-free, we get (f1(Z)) + (f2(T)) = Rn (f1 and
f2 are coprime) and (g1(%)) + (92(%)) = Ry (91(z) and ga(z) are coprime polynomials)
which results rank, (C) + rank, (D) = 2n. Therefore, applying Theorem 5.7, the result
follows. O

Corollary 6.2. Let fi(x), fa(x),91(x) and g2(x) be monic divisors of =™ — 1 over R

and (r1(x),re(z)) € (R[x])? with deg(fi(z)r1(z)) < deg(g1(z)) and deg(fz(z)r2(z)) <
deg(g2(x)) such that

= (L@ (1 + pri(2)), 4p91(T)) ,, and D = (f2(T)(1 + pr2(T)), 192(T))
If {C,D} is ACP, then r1(z) = ra(z) = 0.

Proof. According to Theorem 6.1, it follows that fifo = g1go = ™ — 1. Consider this
map

Y S, — R
a(T) + pb(@) — b(T)

that is an epimorphism of R,,-modules. We have

¢(C) = ([1(@)r1(T)), 91(T)) =, and 9(D) = (f2(T)r2(T)), 92(T)) =,

Note that R, is a principal ideal ring, thus there exist polynomials d;(z) and ds(x)
monic divisors of 2™ — 1 such that o(C) = (di(Z)),, and ¢(D) = (d2(T)),, . Since
C+D =S, and y is an epimorphism of R,-modules, it follows that ¢(C) + ¢(D) = R,.
Thus d; (z) and da(z) are coprime polynomials and d (z)dz(z) divides 2™ — 1. According
to Lemma 5.6, we have
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rankp(R,) = rankg(¢(C)) + rankr(p(D)) — rankr(¢(C) N p(D)).

Thus deg(di(x)) + deg(d2(z)) = n. Hence dyi(z)da(z) = 2™ — 1 and di(z) = ¢1(x) and
dy(x) = ga(x). Since deg(f1( Jri(z)) < deg(gi(x)) and deg(f2(z)ra(x)) < deg(ga(2)),
we have fi(x)rz(z) = fa(x)re(z) = 0. It follows that r1(z) = ra(x) = 0, since f1(z) and
fg(fE) O

Corollary 6.3. Let fi(x), f2(z), g1(z) and g2(x) be monic divisors of ™ — 1 over R such
that C = Cl &) /1462 and D = Dl ) ,uDQ, where Cl = <f1(f)>,62 = <gl(f)>7D1 = <f2(f)>,
and Dy = (ga2(T)). Let o be the permutation of {0,1,--- ,n—1} defined by o (i) = n—i—1.
Then the following assertions are equivalent.

The pair {C,D} is ACP.

The pairs {C1, D1} and {Co, D2} are LCP of codes.
C1l =0(D1) and C; = 0(Ds).

c™ =o(D).

=W

Proof.

1) = 2): Assume {C,D} is an ACP. By Theorem 6.1, we have fi(z)f2(z) =

g1(x)g2(x) = ™ — 1. Since ged(fi(z), f2(x)) = 1 (and respectively
ged(gi(x), g2(x)) = 1), the cyclic codes C1 = (f1(Z)), and Dy = (f2(Z)) sat-
isfy

Cl n Dl = (lcm(f1, f2)> = {0}, Cl + Dl = <ng<f1, f2)> = Rn

Thus {C1,D;} is an LCP. Similarly {Cs, D>} is an LCP.

2) = 3): If {C;,D;} is LCP, then C; + D; = R"™, and C; N D; = {0}, and for cyclic codes
this is equivalent to f;(x)g;(x) = 2™ — 1. But by standard duality for cyclic
codes, the Euclidean dual of (f;(Z)) is

(fi@) " = (" =1/ f (@),
and coefficient-reversal via o(i) = n—1—i satisfies (f;(z))* = o({g;(z))). Hence
Ct=0a(D;), fori=1,2.
3) = 4): Assuming C;* = o(D;) for i = 1,2. Then
Ctm =t @ puCl =o(D1) @ po(Dy) = o(Dy ® uDy) = o(D).
4) = 1): According to Corollary 4.7, we have

¢ :<<xfi@>l>*’“(i@>l>*>n |

n
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On the other hand, o(D) = (f3(z), ugs(x)),, . Since c = o(D), by identifica-
tion, it follows that fi(z)fa(z) = g1(x)g2(x) = 2™ — 1. Hence, by Theorem 6.1,
the pair {C,D} is ACP. O

Finally, from the discussion above, we get a similar result to [8, Theorem 2.4] in the
setting of additive S|R cyclic codes.

Theorem 6.4. Let the pair {C,D} be an ACP of S|R additive cyclic codes of length n and
o be the permutation of {0,1,...,n — 1} defined by o(i) =n—i—1. Then

Proof. Let {C,D} be an ACP of S|R additive cyclic codes of length n. By Corollary 6.2,
we have r1(z) = ro(z) = 0. Therefore, the codes can be written as:

C = (f1(T)) ® (g1 (7)) = C1 @ pCo,
D = (f2(7)) ® (1g2(T)) = D1 ® Do,

where C1 = (f1(T)), C2 = (1(T)), D1 = (f2(T)), and Dy = (g2(T)). Since {C, D} is an
ACP, then by Corollary 6.3. Thus, from the equivalence (1) < (4) we have

Ctm =o(D). DO
Data availability
No data was used for the research described in the article.

References

[1] Alexei Ashikhmin, Emanuel Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inf. Theory
47 (7) (2001) 3065-3072.

[2] Sanjit Bhowmick, Deepak K. Dalai, Additive complementary pairs of codes, Adv. Math. Commun.
(2025).

[3] Sanjit Bhowmick, Deepak K. Dalai, Sihem Mesnager, On linear complementary pairs of algebraic
geometry codes over finite fields, Discrete Math. 347 (12) (2024) 114193.

[4] Sanjit Bhowmick, Alexandre Fotue Tabue, Joydeb Pal, On the ¢-DLIPs of codes over finite commu-
tative rings, Discrete Math. 347 (4) (2024) 113853.

[5] Martino Borello, Javier de la Cruz, Wolfgang Willems, A note on linear complementary pairs of
group codes, Discrete Math. 343 (8) (2020) 111905.

[6] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, Houssem Maghrebi, Orthogonal
direct sum masking, in: David Naccache, Damien Sauveron (Eds.), Information Security Theory
and Practice. Securing the Internet of Things, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014,
pp. 40-56.

[7] Claude Carlet, Sylvain Guilley, Complementary dual codes for counter-measures to side-channel
attacks, Adv. Math. Commun. 10 (1) (2016) 131-150.

[8] Claude Carlet, Cem Giineri, Ferruh Ozbudak, Buket Ozkaya, Patrick Solé, On linear complementary
pairs of codes, IEEE Trans. Inf. Theory 64 (10) (2018) 6583-6589.


http://refhub.elsevier.com/S1071-5797(25)00162-5/bibEC7E0DC58958AD2516B9A32BE42A7A78s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibEC7E0DC58958AD2516B9A32BE42A7A78s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib781595D335844CC4F7B3FFA9522AEF94s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib781595D335844CC4F7B3FFA9522AEF94s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibA2C7C5D1AD0D2A6DE56C583373057F06s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibA2C7C5D1AD0D2A6DE56C583373057F06s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib3790169F4739262039E9515AFD8B6FB5s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib3790169F4739262039E9515AFD8B6FB5s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib09C73FD506A46D068ABDCA80A005A518s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib09C73FD506A46D068ABDCA80A005A518s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB13B6E3DF76DD120D7DED2DD0DBAA9C8s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB13B6E3DF76DD120D7DED2DD0DBAA9C8s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB13B6E3DF76DD120D7DED2DD0DBAA9C8s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB13B6E3DF76DD120D7DED2DD0DBAA9C8s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib4B2EABB2F3C21D63F90A44EDEF7DA93Bs1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib4B2EABB2F3C21D63F90A44EDEF7DA93Bs1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB8109E07D9E9A82C85A98A7422C5929Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibB8109E07D9E9A82C85A98A7422C5929Ds1

S. Bhowmick et al. / Finite Fields and Their Applications 110 (2026) 102732 21

[9] Whan-Hyuk Choi, Cem Giineri, Jon-Lark Kim, Ferruh Ozbudak, Theory of additive complementary

dual codes, constructions and computations, Finite Fields Appl. 92 (2023) 102303.

[10] Philippe Delsarte, Majority logic decodable codes derived from finite inversive planes, Inf. Control
18 (1971) 319-325.

[11] Cem Giineri, Edgar Martinez-Moro, Selcen Sayici, Linear complementary pair of group codes over
finite chain rings, Des. Codes Cryptogr. 88 (11) (2020) 2397-2405.

[12] Cem Giineri, Buket Ozkaya, Selcen Sayici, On linear complementary pair of nD cyclic codes, IEEE
Commun. Lett. 22 (12) (2018) 2404-2406.

[13] W. Cary Huffman, On the theory of Fy-linear IF:-codes, Adv. Math. Commun. 7 (3) (2013) 349-378.

[14] Irving Kaplansky, Projective modules, Ann. Math. (2) 68 (1958) 372-377.

[15] Avanti Ketkar, Andreas Klappenecker, Santosh Kumar, Pradeep Kiran Sarvepalli, Nonbinary sta-
bilizer codes over finite fields, IEEE Trans. Inf. Theory 52 (11) (2006) 4892-4914.

[16] Edgar Martinez-Moro, Kamil Otal, Ferruh Ozbudak, Additive cyclic codes over finite commutative
chain rings, Discrete Math. 341 (7) (2018) 1873-1884.

[17] James L. Massey, Linear codes with complementary duals 106/107 (1992) 337-342. A collection of
contributions in honour of Jack van Lint.

[18] Bernard R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics, vol. 28, Marcel
Dekker, Inc., New York, 1974.

[19] Graham H. Norton, Ana Sildgean, On the structure of linear and cyclic codes over finite chain
rings, Appl. Algebra Eng. Commun. Comput. 10 (6) (2000) 489-506.

[20] Minjia Shi, Na Liu, Ferruh Ozbudak, Patrick Solé, Additive cyclic complementary dual codes over
F4, Finite Fields Appl. 83 (2022) 102087.

[21] Gyanendra K. Verma, Rajendra K. Sharma, Trace dual of additive cyclic codes over finite fields,
Cryptogr. Commun. 16 (6) (2024) 1593-1608.

[22] Zhe-Xian Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte. Ltd., Hacken-
sack, NJ, 2012.

[23] Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math.
121 (3) (1999) 555-575.


http://refhub.elsevier.com/S1071-5797(25)00162-5/bib01F991D55D99669C3562EA41B7515C6Fs1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib01F991D55D99669C3562EA41B7515C6Fs1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib8E06CA19DC2E51258330E5BAACEB886Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib8E06CA19DC2E51258330E5BAACEB886Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibADF63338931140F94FF235FC7880B98Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibADF63338931140F94FF235FC7880B98Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibFCE25CE189040D263EA9C552E6EED5A6s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibFCE25CE189040D263EA9C552E6EED5A6s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibD559C270A72CD487A12FBF850C7D94A1s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib9DDA75BB6085E04E04585DED17C41E4As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib9D5A5922F07D4D8DCFB18BAA56B45281s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib9D5A5922F07D4D8DCFB18BAA56B45281s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib1CE128A390FC6A4BC1DEBC9FA026A259s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib1CE128A390FC6A4BC1DEBC9FA026A259s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibF35DAFD9F4E4BD46BF7D0C50471F70F5s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibF35DAFD9F4E4BD46BF7D0C50471F70F5s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib3FF29EB61297D81CEB29DCB1252F753Es1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib3FF29EB61297D81CEB29DCB1252F753Es1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib745611638EFCBC4FDEF3F19B1904B21As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib745611638EFCBC4FDEF3F19B1904B21As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib4B41DA8014F08C2053B8E081A12AE50Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib4B41DA8014F08C2053B8E081A12AE50Ds1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib7B01BB998DE50CA54EDB0404C6396706s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib7B01BB998DE50CA54EDB0404C6396706s1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibEFEC03918F66837D456B2F486F43DA3As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bibEFEC03918F66837D456B2F486F43DA3As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib94FED07FD203CA894F97DFD65BB7D52As1
http://refhub.elsevier.com/S1071-5797(25)00162-5/bib94FED07FD203CA894F97DFD65BB7D52As1

	Trace duality and additive complementary pairs of additive cyclic codes over finite chain rings
	1 Introduction
	2 Preliminaries
	3 Structure of additive cyclic codes
	4 Trace duality
	5 Additive complementary pairs of codes
	6 Additive complementary pairs of cyclic codes
	Data availability
	References


