UNIVERSIDAD DE VALLADOLID

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACION

TRABAJO FIN DE MASTER

MASTER EN INGENIERIA DE TELECOMUNICACION

DETECTOR AUTOMATICO DE ARTEFACTOS
EN SENALES NEURONALES BASADO EN
TECNICAS DE Al E INCORPORACION EN LA
HERRAMIENTA MEDUSA®

AUTORA:
DRA. AMALIA GiL CORREA
TUTORES:
Dr. D. JESUs Poza CRESPO

Dr.D. CARLOS GOMEZ PENA






TITULO: Detector automatico de artefactos en serales
neuronales basado en técnicas de Al e
incorporacion en la herramienta MEDUSA®

AUTOR: Dia. Amalia Gil Correa

TUTOR/ES: Dr. D. Jesus Poza Crespo

Dr. D. Carlos Gomez Peina

DEPARTAMENTO: Teoria de la Sefial y Comunicaciones e
Ingenieria Teleméatica

TRIBUNAL

PRESIDENTE: Dr. D. Roberto Hornero Sanchez
SECRETARIO: Dr. Dfia. Miriam Anton Rodriguez
VOCAL: Dr. Diia. Maria Garcia Gadafion

P. SUPLENTE: Dr. D. Ignacio de Miguel Jiménez

S. SUPLENTE: Dr. D. Juan Pablo Casaseca de la Higuera
V. SUPLENTE: Dr. D. Luis Miguel San José Revuelta
FECHA:

CALIFICACION:




A mi familia



Agradecimientos

Me gustaria agradecer a Jesus Poza Crespo y Carlos Gomez Pefia por volver a darme la
oportunidad de realizar este proyecto con el Grupo de Ingenieria Biomédica de la
Universidad de Valladolid, y por sus consejos y aportaciones, que han hecho posible que
este trabajo haya podido completarse con éxito. Agradecer también a los chicos del Grupo
de Ingenieria Biomédica por haberme resuelto las dudas que me han ido surgiendo.

Gracias a mi familia, pequefios y mayores, por haberme acompafiado y guiado siempre
durante mi etapa como estudiante.



Resumen

La informacidn proporcionada por las distintas sefiales bioldgicas que genera el cuerpo
humano puede ser muy valiosa para el diagnéstico precoz de enfermedades, asi como
para optimizar su tratamiento. En este sentido, las sefiales electromagnéticas generadas
por el cerebro permiten identificar patrones neurolégicos que reflejan ciertas
enfermedades neuronales o que caracterizan el estado cognitivo del paciente. Técnicas
como la electroencefalografia (EEG) y la magnetoencefalografia (MEG) han
revolucionado la investigacion en neurociencia al proporcionar informacion valiosa sobre
la actividad cerebral en tiempo real de manera no invasiva. No obstante, estas técnicas no
registran exclusivamente informacion neuronal, sino que también capturan informacion
no deseada debido a multiples fuentes de ruido del entorno, tanto ajenas a cada persona
(ruido ambiental, por ejemplo, de la red eléctrica) como internas o fisioldgicas (por
ejemplo, de la actividad cardiaca u ocular). Estas sefiales espurias se denominan artefactos
y alteran la sefial neuronal genuina, comprometiendo la validez de los andlisis posteriores
y dificultando la extraccion de informacion relevante. Para reducir el impacto de los
artefactos en los registros EEG y MEG se han desarrollado diferentes métodos de
preprocesamiento de sefiales, desde técnicas clasicas basadas en filtrado o transformadas
hasta enfoques mas modernos que emplean métodos estadisticos, como el andlisis de
componentes independientes (ICA). A pesar de la utilidad de estas técnicas, muchas de
ellas requieren intervencion manual o dependen de suposiciones sobre la naturaleza del
ruido, por lo que su aplicacién a conjuntos de datos masivos y la precision de los
resultados contintia viéndose comprometida. Por ello, surge la necesidad de desarrollar
herramientas automaticas que permitan detectar y mitigar dichos artefactos, reduciendo
la dependencia de procesos manuales y subjetivos.

En este Trabajo de Fin de Master se ha trabajado con sefiales MEG reales procedentes
de un conjunto de datos previamente etiquetado por expertos, asi como con sefiales
sintéticas generadas artificialmente a partir de componentes ICA neuronales combinadas
con artefactos. Estas Ultimas han permitido evaluar el funcionamiento del sistema
conociendo el contenido neuronal y el nivel de ruido afadido. La solucién propuesta ha
consistido en un detector automatico de artefactos en sefiales MEG basado en Deep
Learning (DL). Dicho detector se basa en el algoritmo ICA Extended Infomax, que
permite separar las sefiales MEG en componentes; estas componentes son la entrada a
una Red Neuronal Convolucional EEG-Inception. La red permite identificar componentes
dudosas que, si bien no son clasificadas directamente como artefactos, presentan un bajo
nivel de confianza para ser consideradas puramente neuronales. Ademas, como parte de
este trabajo, se ha implementado un sistema de eliminacion automatica de segmentos
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contaminados de la sefial a partir de la probabilidad de clasificacion ofrecida por la red.
Para poder disponer de una representacion visual de los resultados obtenidos, se ha
disefiado e implementado una interfaz gréafica que permite representar los segmentos
ruidosos de las sefiales neuronales y eliminarlos. Con esto, el usuario de la herramienta
puede decidir conservar la sefial bajo estudio en el conjunto de datos, descartarla o mitigar
el ruido detectado a partir del score de clasificacion calculado por la red y recuperar una
version limpia de la sefial. La interfaz también permite la generacion de sefiales sintéticas
contaminadas con artefactos de origen cardiaco, ocular, de red eléctrica o de otro tipo.
Todo el cédigo desarrollado, implementado en Python, se ha integrado en el ndcleo de
MEDUSA®, un entorno en Python orientado al analisis avanzado de sefiales neuronales.
Se ha dividido en 5 partes que se han integrado en diferentes ficheros de Github: (i) carga
de sefiales, (ii) estandarizacion de sefiales, (iii) CNN disefiada, (iv) modelo de inteligencia
artificial para identificar y eliminar automaticamente artefactos, y (v) interfaz gréafica.

En cuanto a los resultados obtenidos, la red neuronal disefiada alcanzo una sensibilidad
superior al 95 % en la deteccion de componentes artefactuadas sobre sefiales reales, asi
como una especificidad cercana al 99 % y una precision de casi un 97 %. Asimismo, se
aplicd un proceso de limpieza de artefactos sobre aquellas componentes clasificadas
inicialmente como no artefacto pero con una probabilidad inferior al 90 % (sefiales
denominadas dudosas). Tras esta limpieza, se consiguio reducir el conjunto dudoso hasta
un 35,41 % de las sefiales iniciales. Por otro lado, en el caso de las sefiales sintéticas se
analizé como influia el ajuste de potencia aplicado a los artefactos afiadidos a sefiales
neuronales limpias en la calidad de las detecciones. Los resultados muestran que el
porcentaje de sefial detectada como artefacto aumenta progresivamente a medida que se
incrementa el ajuste de potencia aplicado, llegando a superar el 90 % cuando la potencia
del artefacto alcanza el 200 % de la potencia de la sefial neuronal.

La herramienta desarrollada permite mejorar la calidad de las sefiales MEG, facilitando
el trabajo de los técnicos encargados de su preprocesado. Ademas, su incorporacién en
MEDUSA® permite a los investigadores acceder a herramientas de preprocesamiento
dentro de una plataforma unificada, mejorando significativamente la eficiencia en la
deteccion y eliminacion de artefactos en registros neuronales.
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Artefactos, deteccion automatica, EEG-Inception, Inteligencia  Artificial,
magnetoencefalografia, MEDUSA®, modelo Deep Learning, score, segmentacion.



Abstract

The information provided by the different biological signals generated by the human
body can be extremely valuable for the early diagnosis of diseases, as well as for
optimising their treatment. In this context, the electromagnetic signals produced by the
brain make it possible to identify neurological patterns that reflect certain disorders or
characterise a patient’s cognitive state. Techniques such as electroencephalography
(EEG) and magnetoencephalography (MEG) have transformed neuroscience research by
offering real-time, non-invasive insights into brain activity. However, these techniques
do not exclusively record neural information but also capture unwanted signals from
multiple noise sources, both external (such as environmental noise from power lines) and
internal or physiological (like heart or eye activity). These spurious signals, known as
artefacts, distort genuine neural activity, compromising the validity of subsequent
analyses and making it difficult to extract meaningful information. To reduce the impact
of artefacts in EEG and MEG recordings, a variety of pre-processing methods have been
developed, ranging from traditional approaches based on filtering or signal transforms to
more modern statistical techniques. While useful, many of these methods require manual
intervention or rely on assumptions about the nature of the noise, which limits their
scalability to large datasets and affects the reliability of their results. This has created a
growing need for automated tools capable of detecting and mitigating artefacts, reducing
the dependence on manual and subjective processes.

In this Master's thesis we worked with real MEG signals from a dataset previously
labelled by experts, and with synthetic signals artificially generated by combining
neuronal ICA components with artefacts. The latter made it possible to evaluate the
system performance with full knowledge of the neural content and the level of added
noise. The proposed solution is an automatic artefact detector for MEG signals based on
Deep Learning (DL). The detector relies on the ICA Extended Infomax algorithm, which
separates MEG signals into components; these components are then fed into an EEG-
Inception Convolutional Neural Network. The network identifies uncertain components
that, while not directly classified as artefacts, show low confidence for being considered
purely neuronal. In addition, as part of this work, we implemented an automatic system
for removing contaminated signal segments based on the classification probabilities
provided by the network. To provide a visual representation of the results, we designed
and implemented a graphical interface that displays noisy segments of neural signals and
removes them. This allows users to decide whether to keep the signal under study in the
dataset, discard it, or mitigate the detected noise based on the classification score



computed by the network, recovering a cleaner version of the signal. The interface also
supports generating synthetic signals contaminated with artefacts of cardiac, ocular,
electrical, or other origins. All the developed code, implemented in Python, has been
integrated into the core of MEDUSAZ®, a Python-based framework for advanced neural
signal analysis. The system is divided into five modules, organized into separate GitHub
files: (i) signal loading, (ii) signal standardization, (iii) the designed CNN, (iv) the Al
model for automatic artefact detection and removal, and (v) the graphical interface.

Regarding the results, the designed neural network achieved a sensitivity above 95 %
in detecting artefact components in real signals, as well as a specificity close to 99 % and
an accuracy of nearly 97 %. In addition, a reevaluation process was applied to components
initially classified as non-artefacts but with a probability below 90 % (the so-called
uncertain signals). After this cleaning step, the uncertain set was reduced to 35.41% of
the initial signals. For the synthetic signals, we analyzed how the power adjustment
applied to artefacts added to clean neural signals influenced detection quality. The results
show that the percentage of signal detected as artefact increases progressively as the
applied power adjustment grows, surpassing 90 % when the artefact power reaches 200
% of the neural signal power.

The developed tool enhances the quality of MEG signals, making the preprocessing
work of technicians easier. Furthermore, its integration into MEDUSA® provides
researchers with access to preprocessing tools within a unified platform, significantly
improving efficiency in the detection and removal of artefacts from neural recordings.

Keywords

Artificial Intelligence, artefacts, automatic detection, Deep Learning model, EEG-
Inception, magnetoencephalography, MEDUSAZ®, score, segmentation.
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1.1. Preprocesamiento de senales biologicas

Las sefiales biologicas son fluctuaciones generadas por los diferentes sistemas
fisiologicos del ser humano, y pueden tener origen eléctrico, magnético, quimico o
mecénico, entre otros (Kaplan, et al., 2005). Asi, la sefial bioldgica procedente de la
actividad eléctrica del corazon se llama electrocardiograma (ECG), mientras que la
generada a partir de la actividad muscular se denomina electromiograma (EMG). Las
sefiales procedentes de la actividad neuronal reciben el nombre de electroencefalograma
(EEG), si lo que se desea es registrar la actividad eléctrica del cerebro, o
magnetoencefalograma (MEG), si es la actividad magnética la que se quiere medir
(Kaplan, et al., 2005) (Reilly & Lee, 2010).

En la mayoria de los casos no basta con aplicar los sistemas de adquisicion necesarios
para obtener la sefial biologica deseada. Preprocesarlas adecuadamente es de vital
importancia en la investigacion médica (Islam, et al., 2021). Por ejemplo, uno de los
objetivos principales a la hora de limpiar estas sefiales puede ser aumentar la relacion
sefial a ruido (SNR, Signal to Noise Ratio) mediante filtrado (Semmlow, 2004), o detectar
la presencia de artefactos que contaminan la sefial y dificultan su correcta interpretacion
(Islam, et al., 2021). En este Trabajo Fin de Méster (TFM) toma especial relevancia el
segundo enfoque, aplicado especificamente a sefiales cerebrales. En concreto, el TFM se
centra en la deteccidn y posterior eliminacién de artefactos en sefiales MEG.

Los artefactos, también denominados interferencias o ruido de forma genérica,
provienen de factores externos al sistema de medicion, alterando la sefial adquirida e
imposibilitando una correcta interpretacion de la misma (Blum, et al., 2019). Esto tiene
una implicacién clinica directa, pues puede provocar que el diagnostico de enfermedades
neuroldgicas o la monitorizacion de funciones vitales se vean afectados por la imprecision
en las medidas (Hamal & Rehman, 2013). Los artefactos pueden ser: fisiologicos,
procedentes de la actividad corporal del ser humano, como la actividad cardiaca, la
respiratoria, la ocular o la muscular; o no fisioldgicos, ajenos a la actividad corporal, como
interferencias electromagnéticas, ruido instrumental o cambios en la posicion de los
sensores (Sweeney, 2013) (ICL, 2024). En ambos casos, su deteccion y eliminacién
toman especial relevancia para garantizar la calidad de los analisis posteriores, pues su
presencia altera la SNR y puede resultar en conclusiones médicas erréneas (Islam, et al.,
2012). En la practica, se emplean diferentes estrategias para mitigar el efecto de estas
interferencias, como el uso de cAmaras de Faraday para blindar la sala de adquisicion de
interferencias electromagnéticas, medidas para limitar el movimiento del sujeto, o el
procesado posterior efectuado sobre las sefiales, mediante filtros o técnicas de Inteligencia
Artificial (1A) (Singh, 2014) (Hamdan, et al., 2023). En este TFM se va a analizar una
metodologia basada en técnicas de IA, y como se puede emplear para detectar los
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artefactos presentes en sefiales MEG, asi como su utilidad para eliminar las partes
ruidosas de las sefiales neuronales.

1.2. Digitalizacion y analisis de senales mediante
Inteligencia Artificial

La digitalizacion es el proceso mediante el cual se transforman datos de un formato
fisico a un formato digital (Semmlow, 2004). Esta técnica, aplicada a datos bioldgicos,
ha conseguido transformar campos como la medicina o la neurociencia. La digitalizacion
surge a partir de la necesidad de adquirir, procesar y almacenar grandes cantidades de
datos en periodos cortos de tiempo (Garg, et al., 2021). Por ejemplo, las sefiales
neuronales adquiridas a partir de un EEG o de un MEG se benefician de la capacidad de
analizar grandes volimenes de datos con precision y rapidez.

Los métodos tradicionales de preprocesado y analisis de datos estan basados en modelos
matematicos y estadisticos que tienen en cuenta caracteristicas especificas de las sefiales,
como su estacionariedad, su comportamiento determinista o su linealidad. En este &mbito
se aplican técnicas como: la Transformada de Fourier, para obtener las componentes
frecuenciales de las sefiales; la Transformada Wavelet, para el andlisis de sefiales no
estacionarias; o el filtrado, para eliminar ruido o frecuencias fuera del rango de interés
(Shaker, 2006). Sin embargo, las sefiales neuronales estan compuestas por datos
complejos que no permiten hacer las suposiciones necesarias para poder aplicar algunos
de los métodos clasicos comentados. Por ejemplo, para eliminar los artefactos presentes
en sefiales EEG o MEG no basta con emplear un filtro de una determinada respuesta
frecuencial debido a la heterogeneidad de las componentes que forman los registros
neuronales (Besserve, et al., 2007).

Diversas técnicas de IA permiten identificar patrones y realizar tareas complejas como
la eliminacion de ruido imitando la inteligencia humana, algo que seria dificil de lograr
con los métodos clasicos (Rouhiainen, 2018). Estas tecnologias han ofrecido nuevas
posibilidades para comprender la actividad cerebral, identificar artefactos y mejorar la
calidad de los datos para investigaciones o aplicaciones clinicas (Hamet & Tremblay,
2017). Las técnicas de IA se dividen en diversos tipos; asi, el Aprendizaje Profundo o
Deep Learning (DL) pertenece al subconjunto del Aprendizaje Automatico o Machine
Learning (ML), que a su vez esta englobado en el ambito general de la IA. EI ML estudia
diferentes algoritmos computacionales que permiten automatizar tareas a partir de la
experiencia, mientras que el DL trata de imitar el comportamiento del cerebro humano
elaborando algoritmos que asemejan el funcionamiento de las neuronas cerebrales. Estos
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algoritmos consiguen adaptarse y aprender de forma auténoma a partir de grandes
conjuntos de datos (Janiesch, et al., 2021).

A pesar de la versatilidad y eficiencia de las diversas técnicas de IA, es conveniente
seguir considerando los meétodos clasicos de analisis de datos, pues estos siguen
ofreciendo soluciones versatiles para realizar un preprocesado inicial con el fin de mejorar
la calidad del conjunto de datos. En este sentido, y aplicado al &mbito de las sefiales
neuronales procedentes de registros EEG o MEG, se puede hacer uso del Analisis de
Componentes Independientes (ICA, Independent Component Analysis) o del Anélisis de
Componentes Principales (PCA, Principal Component Analysis). EIl primero se utiliza
para separar la mezcla de sefiales superpuestas que componen la sefial neuronal global en
sus fuentes independientes (Croce, et al., 2019). El segundo se emplea para reducir la
dimensionalidad de los datos conservando la mayor cantidad posible de informacion
relevante (Kaya, 2019). Ambas técnicas se pueden aplicar para eliminar componentes
ruidosas o irrelevantes. Sin embargo, esta tarea discriminatoria se realiza habitualmente
de forma manual por técnicos expertos en la materia, lo que consume mucho tiempo y
conlleva un elevado grado de subjetividad (Croce, et al., 2019). Por eso, es en estos casos
donde es razonable asumir que el uso de técnicas IA va a mejorar tanto la calidad de los
resultados ofrecidos como el trabajo efectivo realizado por los técnicos (Yang, et al.,
2018).

La implementacion de las técnicas de 1A se puede realizar en diferentes lenguajes de
programacion, como Matlab o Python. Estos son flexibles, intuitivos, y contienen una
serie de librerias adaptadas a la IA. Ademaés, facilitan el andlisis de las sefiales, optimizan
el flujo de trabajo y aumentan la reproducibilidad en los estudios (Mumtaz, et al., 2021).
Sin embargo, han surgido softwares disefiados especificamente para el anélisis de datos
en neurociencia, como MEDUSA® (Santamaria, et al., 2024); se trata de una plataforma
disefiada para el andlisis y procesamiento de sefiales biomédicas, como las registradas
mediante EEG o MEG, que consta de una interfaz preconfigurada que reduce la
complejidad de uso (Santamaria, et al., 2023). Una de sus utilidades consiste en la
integracién de algoritmos de IA para su aplicacion directa en el procesamiento de sefiales
cerebrales.

Con el fin de eliminar la subjetividad presente en el etiquetado manual de artefactos que
se encuentran en las sefiales neuronales y reducir el tiempo que se tarda en llevarlo a cabo,
en este TFM se ha empleado un método basado en técnicas de 1A capaz de detectar,
clasificar y etiquetar dichos artefactos de manera automatica. Ademas, permite eliminar
las partes ruidosas de las sefiales que estan completamente artefactuadas, sino que
contienen intervalos neuronales que no conviene eliminar, debido a la informacion que
puedan contener. Esto seria imposible de conseguir con herramientas convencionales o
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mediante la actuacion manual de un técnico especialista. La metodologia disefiada esta
basada en DL debido a su capacidad para modelar relaciones complejas y no lineales en
los datos, permitiendo identificar patrones ocultos que los métodos tradicionales no
lograrian detectar (O'Shea & Nash, 2015). Ademas, se ha implementado la herramienta
de deteccion y clasificacion de artefactos en sefiales neuronales disefiada en el software
MEDUSA® para favorecer el etiquetado de las componentes procedentes de registros
MEG y poder eliminar, de forma completamente objetiva y automatica, las partes
ruidosas de las sefiales. Por ultimo, para verificar que los resultados que ofrece la
herramienta de 1A son fiables y fundamentados, se ha adaptado el software disefiado para
poder generar sefiales neuronales artificiales, que surgen de la combinacion de segmentos
neuronales a los que se les han afiadido segmentos ruidosos procedentes de una fuente no
neuronal, es decir, artefactos. Dichas sefiales, denominadas sintéticas, se han introducido
en el modelo de identificacion y limpieza de artefactos creado para comprobar que su
funcionamiento es correcto partiendo del conocimiento que se tiene sobre la sefial
generada.

1.3. Motivacion

Las técnicas empleadas para la deteccion y clasificacion de artefactos en sefales
neuronales son técnicas rudimentarias basadas en la experiencia y conocimiento de los
técnicos que se encargan de etiquetarlas y que, por lo tanto, no garantizan la correcta
eliminacion de los artefactos de forma objetiva y sin desechar gran parte de sefial neuronal
que puede ser relevante para el diagnéstico correspondiente. Ademas, la aplicacion de
otros métodos, como ICA o los filtros clasicos, no garantizan una precision suficiente que
cubra las necesidades para el diagndstico médico. Asi, las técnicas de DL, como las redes
neuronales convolucionales (CNN, Convolutional Neural Networks) suponen un avance
significativo en el analisis de las sefiales procedentes de registros MEG. Estas redes
aprenden patrones complejos directamente de los datos sin necesidad de una extraccion
manual de caracteristicas. La motivacién de este trabajo radica en explorar el potencial
de las CNN para resolver el problema de identificacion y eliminacion automatica de los
artefactos en sefiales neuronales, y poder generar una evidencia empirica mediante la
generacion de sefiales sintéticas que demuestren el correcto comportamiento de la
herramienta desarrollada. Se espera que el enfoque planteado, junto con su integracién en
la plataforma MEDUSA®, mejore la calidad de los datos procesados y facilite la
extraccion de informacion relevante para estudios clinicos y neurocientificos.
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1.4. Hipotesis

Los artefactos presentes en las sefiales procedentes de registros MEG o EEG suponen
un problema que, sumado a la complejidad de evaluar e interpretar sefiales neuronales,
aumenta el tiempo necesario para llegar a un diagndstico correcto y presenta un alto grado
de subjetividad. Los métodos basados en CNN son capaces de identificar y eliminar
artefactos en sefiales neuronales que no pueden ser detectados ni tratados con precision
por los métodos tradicionales que implican la intervencion humana. La hipétesis de la
que se parte en este TFM es que la herramienta desarrollada, basada en una CNN, es
capaz de detectar componentes artefactuadas con mayor precision y objetividad que la
evaluacion realizada por un técnico especialista. Esta capacidad se fundamenta en el
hecho de que las CNN pueden aprender automaticamente caracteristicas relevantes de los
datos mediante un entrenamiento adecuado, reduciendo asi el tiempo requerido para el
etiquetado y eliminando la subjetividad inherente a la evaluacién humana. Ademas,
mediante la generacion de sefales sintéticas formadas por segmentos neuronales y
artefactos se puede demostrar el correcto funcionamiento de la herramienta disefiada, y
se pueden aprovechar las nuevas sefiales artificiales para entrenar otras redes al
proporcionar un entorno controlado para simular diferentes condiciones y niveles de
ruido. Todo esto implementado en el software MEDUSA® favorece la creacion de
aplicaciones en investigacion y en entornos clinicos.

1.5. Objetivos

El objetivo principal de este TFM es diseiiar, implementar y evaluar una
herramienta de deteccion, clasificacion y eliminacién automatica de artefactos que
contaminan las sefiales neuronales, e integrarla en el software MEDUSA®. Ademas,
se pretende adaptar la herramienta para que permita la generacion de sefiales sintéticas
mediante la combinacion de partes neuronales y artefactos disponibles en la base de datos,
asi como la creacién de métodos de eliminacion del ruido en segmentos concretos de las
sefiales. Para poder realizar estas tareas, se han empleado técnicas de IA que permiten
identificar patrones complejos y solapados de ruido, automatizando el proceso de
deteccion y clasificacion de artefactos y seleccionando los segmentos contaminados con
ruido para su posterior eliminacion. El objetivo principal, a su vez, se ha descompuesto
en los siguientes objetivos complementarios:

1. Estudiar los diferentes tipos de artefactos que afectan las sefiales
electromagnéticas cerebrales y analizar las limitaciones de los métodos

tradicionales para detectar y eliminar estos artefactos.
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10.

1.6.

Familiarizarse con las principales técnicas utilizadas en el procesamiento de
sefales en neurociencia y destacar el papel de las herramientas modernas, como
las basadas en IA, para automatizar y mejorar la precision en el andlisis de sefiales

neuronales.

Familiarizarse con el software MEDUSA® e investigar para qué estudios de

investigacion neurocientifica ha sido empleada.

Disefiar e implementar una herramienta basada en CNN que detecte, clasifique y
elimine artefactos en sefales procedentes de registros MEG en estado de reposo,

procedentes de sujetos del Hospital de Hokuto (Japon).

Generar senales sintéticas y evaluar el funcionamiento de la herramienta de
identificacion y eliminacion automatica de artefactos, analizando su rendimiento

empleando sefiales MEG reales y dichas senales sintéticas generadas.

Disefar e implementar métodos de eliminacion de los segmentos contaminados

por ruido detectados por la herramienta de IA.
Crear una interfaz grafica que integre la herramienta desarrollada.
Integrar la herramienta en la plataforma MEDUSA®.

Estudiar los resultados obtenidos a partir del software elaborado y comparar su

rendimiento con el de otras investigaciones por parte de otros autores.

Obtener las conclusiones pertinentes y destacar las limitaciones y lineas futuras.

Estructura del documento

El documento esta formado por 8 capitulos, cuya estructura es la siguiente:

Capitulo 1. Introduccion. En el primer capitulo se comienza introduciendo el
preprocesamiento que se suele realizar a sefiales biologicas, en concreto a las de
origen neural. Asimismo, se muestra el concepto de digitalizacion y su aportacion
en el campo de la neurociencia, y como su combinacion con diferentes técnicas
de IA puede mejorar el tiempo y calidad de los diagndsticos. Ademas, se expone
la motivacion para la realizacion de este trabajo, las hipotesis iniciales y los

objetivos que se pretenden alcanzar.

Capitulo 2. Artefactos en sefiales electromagnéticas cerebrales y técnicas de
preprocesado. En este capitulo se describen los principales tipos de artefactos

que suelen aparecer en los registros de sefiales MEG y se analiza coémo su
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presencia afecta al proceso de estudio de las sefiales cerebrales. También se
muestra la relevancia del tratamiento de datos en disciplinas biomédicas, desde la
captura hasta la extraccion de informacién significativa, y como esto se aplica a
la neurociencia. También se introducen algunas de las técnicas tradicionales de
reduccion de ruido y se comparan con las mas modernas, como las basadas en
nuevos modelos de IA o la generacion de sefales sintéticas, y como estas pueden

favorecer la eliminacidn de los artefactos en las sefiales neuronales.

Capitulo 3. La herramienta MEDUSA®. En este capitulo se detalla el
funcionamiento de la herramienta MEDUSA®, sus principales médulos y las
funcionalidades que ofrece para el procesamiento y analisis de sefiales

biomédicas. Se hace especial énfasis en su capacidad para integrar algoritmos de
IA, como las CNN.

Capitulo 4. Materiales. En el quinto capitulo se detallan las caracteristicas de la
base de datos empleada y el perfil de los sujetos involucrados en el estudio. A
continuacion, se describen en detalle las caracteristicas y particularidades tanto de

las sefales reales como de las sefiales sintéticas generadas.

Capitulo S. Desarrollo de la herramienta de deteccion y eliminacion
automatica de artefactos en sefiales neuronales e integracion en la
herramienta MEDUSAZ®. En este capitulo se expone la herramienta desarrollada
y la metodologia implementada para la deteccion y clasificacion de artefactos en
sefiales neuronales. Se muestra el proceso de generacion de sefiales sintéticas y la

adaptacion de todo el software para que sea compatible con MEDUSA®.

Capitulo 6. Resultados. El sexto capitulo se centra en describir los resultados
obtenidos tras introducir varias sefales neuronales a la herramienta generada, el
proceso de eliminacion de ruido en estas y su recomposicion como sefiales
limpias. Se evalan distintos pardmetros que determinan la calidad de la
herramienta, incluyendo métricas de rendimiento y validacion, con el objetivo de
medir la efectividad de los métodos propuestos y su impacto en el

preprocesamiento de sefiales neuronales.

Capitulo 7. Discusion y limitaciones. En este capitulo se analizan los resultados
obtenidos y el funcionamiento de la herramienta de identificacion y eliminacion
automatica de artefactos. También se comparan con los estudios realizados por
otros investigadores en este campo. A su vez, se exponen las limitaciones que
pueden suponer una barrera en el futuro desarrollo de este trabajo, y otros

enfoques que contribuyan en el &mbito de la investigacion neurocientifica.
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= Capitulo 8. Conclusiones y lineas futuras. En el ultimo capitulo se detallan las
conclusiones obtenidas tras la ejecucion de este TFM vy las posibles lineas futuras

en las que este proyecto pueda servir de apoyo.
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2.1. Introduccion

El estudio del cerebro humano ha ido evolucionando a lo largo de los afios. Gracias al
psiquiatra aleman Hans Berger se pudo realizar en el afio 1929 la primera medicion de las
sefiales emitidas por el cerebro de manera no invasiva. Asi, Berger destaco principalmente
por su contribucién al desarrollo del EEG, que supuso un método revolucionario para
registrar las sefiales eléctricas del cerebro (Berger, 1969). Ademas, identifico las ondas
alfa, un patrén ritmico en el rango de 8-13 Hz que se asocia con estados de relajacion, y
las ondas beta, méas rapidas, relacionadas con estados de alerta (Stevens, 1974). Gracias
a estos descubrimientos, Berger pudo demostrar que el cerebro genera actividad eléctrica
medible que esta relacionada con los estados mentales.

Unos afios mas tarde, el fisico y neurocientifico David Cohen realiz6 el primer registro
exitoso de los campos magnéticos generados por el cerebro mediante el uso de un
magnetometro de bobina (Cohen, 1968). Posteriormente, en la década de los afios 70
incorporo el uso del SQUID (Superconducting Quantum Interference Device), un sensor
altamente sensible que se basa en el fendmeno cuantico de la superconduccion (Vrba &
Robinson, 2001). Su trabajo revoluciond el estudio del cerebro al demostrar que los
campos magnéticos generados por la actividad neuronal se podian medir de manera fiable
y complementaria a las mediciones proporcionadas por el EEG (Cohen, 1968). Asi es
como surge el MEG, que permite medir la actividad magnética cerebral mediante el uso
de sensores extracraneales (Hamaldinen, et al., 1993).

Ambas técnicas facilitaron la comprension de los procesos neuronales y asentaron las
bases para el estudio moderno de la actividad neuronal. Sin embargo, a pesar de estos
avances, tanto el EEG como el MEG se enfrentan a un mismo problema: las sefiales
adquiridas estan inevitablemente contaminadas por ruido y artefactos procedentes de
diversas fuentes (Mahmud, et al., 2012). La interpretacién de las sefiales cerebrales se ve
comprometida por la presencia de estas interferencias, dificultando el diagndstico de
posibles enfermedades cerebrales (Urigien & Garcia-Zapirain, 2015). En este sentido, el
preprocesamiento de sefiales se ha desarrollado a lo largo de los afios segun han ido
avanzando las diferentes tecnologias en las que dicho preprocesado era necesario. Ya
durante la era analdgica las sefiales se manipulaban mediante circuitos eléctricos, filtros
pasivos y técnicas como la transformada de Fourier analogica (Kwakernaak, et al., 1991).
Con la llegada de la computacion en la segunda mitad del siglo XX, el preprocesamiento
digital de sefiales marcé un punto de inflexion. La transformacion de sefiales continuas
en datos discretos permitié la aplicacion de algoritmos matematicos mas avanzados, como
la transformada rapida de Fourier (FFT, Fast Fourier Transform) o el filtrado digital
(Ambardar, 1995). En el ambito del analisis de sefiales cerebrales, el preprocesamiento
de sefiales ha sido fundamental para mejorar la calidad de los datos obtenidos mediante
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EEG y MEG (Chawla, 2011). Desde métodos tradicionales como el filtrado e ICA hasta
enfoques mas modernos basados en técnicas de 1A, el desarrollo de diferentes estrategias
para el tratamiento de sefiales neurofisioldgicas es necesario para garantizar la fiabilidad
de los estudios en neurociencia, ademas de llegar a diagnosticos precisos de la forma mas
rapida posible.

En este capitulo se va a definir el concepto de artefacto referido al &mbito de las sefiales
electromagnéticas cerebrales, y los tipos de artefactos que se pueden encontrar. Se va a
explicar el impacto que tiene su presencia en el andlisis de sefiales neuronales y lo
importante que son su identificacion y su eliminacion, asi como su repercusion directa en
la calidad y fiabilidad de los estudios y diagndsticos médicos. También se comentaran
algunos de los distintos métodos de preprocesado empleados hasta la fecha y cuéles son
las tendencias futuras en esta area de investigacion.

2.2. Artefactos y su clasificacion

El ruido en cualquier sistema de comunicacidn es un fendmeno inevitable, ya que forma
parte intrinseca de cualquier sistema de adquisicion y transmision de sefiales. En este
sentido, cuando nos referimos al campo de la neurociencia, el ruido que esta presente en
las sefiales medidas en el cerebro se denomina artefacto (Burgess, 2020). Se trata de
componentes no deseados, dado que no corresponden a la actividad neuronal genuina,
que interfieren y corrompen la sefial adquirida, dificultando su analisis e interpretacion
(Team, 2023). Estas fuentes de ruido surgen, en gran medida, debido a la alta sensibilidad
de los sistemas de adquisicion, como el EEG o el MEG. Los dispositivos empleados estan
disefiados para captar las débiles sefiales eléctricas y magnéticas, respectivamente, que
son generadas por el cerebro (Colomer, et al., 2016). La amplitud de estas sefiales es tan
baja que los sensores de medicion son susceptibles a captar otras fuentes de sefial que no
son neuronales. Particularmente, los campos magnéticos cerebrales propios de las sefiales
MEG son extremadamente débiles en comparacion con las interferencias del entorno
(Muthukumaraswamy, 2013). Ademas, el hecho de que estos sensores estén proximos a
otras estructuras del cuerpo humano, como los ojos, los musculos faciales o algunas
arterias, facilita la captacion de actividad propia de sistemas fisiologicos diferentes al
cerebral (MEG, 2019).

Los artefactos pueden ser fisiologicos o no fisioldgicos. Los primeros derivan de
actividades biologicas propias del ser humano, como parpadeos, ritmos cardiacos,
actividad muscular o movimientos oculares. Los segundos provienen de fuentes externas
ajenas al cuerpo humano, como interferencias electromagnéticas, movimientos de los
sensores de medida o ruido ambiental (Fabietti, et al., 2020). En la Tabla 1 se recoge la
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informacidn mas relevante de cada tipo de artefacto mas comun (Team, 2023). Ademas
de los artefactos mostrados, cabe destacar que existen otros que son mas dificiles de
identificar o que se pueden clasificar como alguno de los ya mencionados, como el debido
a la actividad respiratoria, que se puede englobar dentro de los artefactos musculares,
dado que se debe al movimiento del térax y de la cabeza al respirar (ICL, 2024).

Seguidamente, se muestran diferentes registros MEG que ilustran algunos de los
artefactos comentados (Papadelis, et al., 2018). En primer lugar, en la Figura 1 puede
verse un artefacto de tipo cardiaco, que refleja el comportamiento magnético del complejo
QRS, es decir, la pulsacion propia del ECG. Este se caracteriza por pulsaciones

Tipo de . o . . . L
P Origen Localizacion | Frecuencia | Amplitud | Manifestacién
artefacto
Fisiologicos
Pulsos
Actividad Sensores ~1Hz Moderada periodicos en
Cardiaco eléctrica del cercanos al (ritmo It forma de
] ) . a alta
corazon. torax cardiaco) ondas
ritmicas.
- Ondas de gran
Movimientos Sensores <5Hz .
. amplitud,
Ocular oculares o frontales y (baja Alta lentas. con
parpadeos. temporales | frecuencia) i o
picos ritmicos.
Movimientos Ruido de alta
Sensores > 20 Hz .
musculares (cara, frecuencia,
Muscular temporales y (alta Alta i
cuello, - . continuo o
. occipitales | frecuencia) . )
mandibula). intermitente.
No fisioldgicos
L Picos erraticos
Movimiento de .
. Electrodo . i 0 cambios
Movimiento electrodos o Variable Variable
afectado abruptos en la
cables. .
sefial.
. Sefiales no
Interferencias .
. " . . Bajaa correladas con
Magnético | electromagnética | Generalizado | Variable .
moderada | la actividad
S externas.
neuronal.
i Serfiales
Interferencias de i .
L 50/60 Hz sinusoidales
L la red eléctrica o . . . ..
Eléctrico . . Generalizado | (frecuencia | Variable | repetitivas que
de dispositivos )
, . de red) contaminan
electronicos. .
los registros.

Tabla 1. Tipos de artefactos y sus caracteristicas principales (Team, 2023).
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relativamente breves que se producen al mismo tiempo que la frecuencia cardiaca del
paciente. Sin embargo, no sélo el corazén es capaz de generar artefactos de origen
cardiaco. Por ejemplo, si el paciente cuenta con prétesis coronarias, que son implantes
colocados en el corazén para reemplazar las valvulas dafiadas y corregir la insuficiencia
que pueda presentar, también se pueden producir artefactos, pues estas protesis estan
fabricadas con materiales paramagnéticos o ferromagnéticos (Papadelis, et al., 2018). La
medicién simultanea de las sefiales generadas tanto por el cerebro como por el corazén
mediante MEG/EEG y ECG, respectivamente, permite identificar las componentes
asociadas a cada uno de los 6rganos mencionados. Las sefiales neuronales mostradas se
han adquirido mediante el uso de magnetémetros y gradiometros. Los primeros miden la
intensidad absoluta de los campos magnéticos en un punto del espacio, mientras que los
segundos registran la diferencia de campo magnético entre dos puntos cercanos (Puce &
Héamalainen, 2017).

Por otro lado, en la Figura 2 se muestra un artefacto de tipo ocular debido a parpadeos,
que contaminan las frecuencias mas bajas (Papadelis, et al., 2018). También existen
artefactos debidos a movimientos sacadicos de los 0jos, es decir, desplazamientos rapidos
oculares entre dos puntos, que suelen ser involuntarios cuando el paciente se encuentra
con los ojos cerrados. Este tipo de artefactos pueden ser tratados como miogénicos debido
a su comportamiento tipico, pues suelen interferir con los rangos de frecuencia mas altos.
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Figura 1. Artefacto cardiaco en sefiales MEG y EEG obtenidas en un nifio con epilepsia. Primer conjunto
de sefiales (en rojo): registros de magnetémetros. Segundo conjunto de sefiales (en salmén): registros de
gradiometros. Tercer conjunto de sefiales (en azul): registros de EEG. Cuarta sefial (en negro): registro
de ECG. Esquina superior derecha: localizacién del pico de artefacto de ECG en una topografia MEG.
Esquina inferior derecha: localizacion del pico de artefacto de ECG en una topografia EEG (Papadelis,
etal., 2018).
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Figura 2. Artefacto ocular debido a parpadeos en sefial MEG obtenida en un adulto de 24 afios sano.
Primer conjunto de sefiales (en rojo): registros de gradiémetros. Segundo conjunto de sefiales (en azul):
registro vertical (VEOG) y horizontal (HEOG) de electrooculograma (EOG). A la derecha: localizacion
del pico de artefacto de EOG en una topografia MEG (Papadelis, et al., 2018).

Finalmente, en la Figura 3 se puede ver un artefacto de tipo muscular generado por el
masculo frontal al fruncir el cefio (Papadelis, et al., 2018). También generan artefactos
que tienen un gran impacto en la sefial neuronal los misculos maseteros, empleados al
masticar o al imitar dicho movimiento. Tal y como se ha comentado previamente en la
Tabla 1, la actividad muscular produce artefactos situados en alta frecuencia, entre 20 y
300 Hz. Asi, puede solaparse por completo con el ancho de banda espectral de las
oscilaciones de alta frecuencia generadas por la actividad neuronal, como las ondas
gamma, lo que hace casi imposible distinguirlas de los artefactos.

MEG WWM,MWMMWWM MEG Topography

EMG M—W

Figura 3. Artefacto muscular debido al masculo frontal en sefial MEG obtenida en un nifio con epilepsia.
Primer conjunto de sefiales (en rojo): registros de gradiometros. Segundo conjunto de sefiales (en
salmén): registros de magnetometros. Tercera sefial (en azul): registro de EMG. A la derecha:
localizacion del pico de artefacto de EMG en una topografia MEG (Papadelis, et al., 2018).
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En cuanto a los artefactos no fisiologicos, no sélo pueden estar generados por elementos
externos al cuerpo humano, sino que también pueden proceder de dispositivos médicos
implantados en algunas partes del cuerpo del paciente (Papadelis, et al., 2018). Estos
elementos pueden generar artefactos que provocan que la sefial neuronal sea ininteligible.
La Figura 4 ilustra un artefacto durante un registro de MEG en un paciente adulto con un
implante coclear. Aqui puede verse que la mayoria de los magnetémetros se saturan por
la perturbacion del implante coclear, volviéndose incapaces de registrar cualquier
actividad cerebral del paciente.

2.3. Técnicas tradicionales de reduccion de ruido

Una vez adquirida la sefial neuronal, antes de analizarla se debe llevar a cabo un
acondicionamiento de la misma para mejorar su calidad y que su interpretacion se pueda
realizar de la forma mas sencilla y répida posible. A lo largo de la historia, se han
desarrollado diferentes métodos para mejorar la calidad de las sefiales, desde sistemas
mecanicos y analdgicos hasta técnicas digitales basadas en modelos de IA. A finales del
siglo XIX y a partir de la invencion del telégrafo y el teléfono, surgié la necesidad de
reducir el ruido en las sefiales eléctricas generadas en la comunicacién (Van Bosse, 1998).
En esta época, la atenuacion del ruido dependia principalmente de filtros pasivos hechos
con resistencias, inductancias y condensadores. Mas adelante, a principios del siglo XX,
con el avance de la radio y las telecomunicaciones, se popularizaron los filtros eléctricos
analdgicos, como los filtros paso-bajo para eliminar altas frecuencias no deseadas (Van
Bosse, 1998).

Time (s)

Figura 4. Artefacto no fisiol6gico debido a un implante coclear en un paciente adulto (Papadelis, et al.,
2018).
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Entre las técnicas mas comunes de preprocesamiento se encuentra el filtrado digital,
que se desarroll6 en la década de 1960 (Proakis, 2001). Estos filtros son capaces de aplicar
transformaciones matematicas sobre la sefial en tiempo real, e implican trabajar en el
dominio de la frecuencia, por lo que se debe aplicar algin método basado en
transformadas. Las transformadas descomponen las sefiales en sus componentes
frecuenciales (Nitschke, et al., 1998). Esto puede ser beneficioso a la hora de detectar
ruido en sefiales neuronales, pues muchos artefactos presentan caracteristicas espectrales
concretas y es mas sencillo diferenciar patrones de ruido o cerebrales, pudiendo separar
unos de otros. Para obtener el comportamiento frecuencial de una sefial que originalmente
estd caracterizada de forma temporal se han desarrollado métodos basados en
transformadas matemaéticas, como la Transformada Répida de Fourier (FFT, Fast Fourier
Transform) o la Transformada Wavelet. La primera permite descomponer una sefial en
sus componentes espectrales, proporcionando informacién sobre qué frecuencias estan
presentes, pero no sobre cuando ocurren (Ambardar, 1995). Esta limitacion afecta
especialmente a las sefiales de origen neuronal, donde los patrones de actividad varian
con el tiempo. Para abordar este problema, la Transformada Wavelet introduce una
representacion en tiempo-frecuencia, ofreciendo una mejor resolucion temporal para las
componentes situadas en frecuencias altas y una mejor resolucion frecuencial para las
ubicadas en frecuencias bajas, permitiendo detectar cambios espectrales de manera
dindmica (Azzerboni, et al., 2004). Esta flexibilidad hace que la Transformada Wavelet
sea de gran utilidad para analizar eventos transitorios en EEG y MEG, como picos de
actividad o respuestas ante estimulos, mientras que la FFT se emplea para examinar el
contenido espectral global y eliminar artefactos de frecuencia fija, como el ruido eléctrico.

En cuanto a los filtros, se trata de dispositivos que permiten aislar un rango determinado
de frecuencias dentro de una sefial eléctrica, ajustando su amplitud y fase, si se desea
(Semmlow, 2004). Su objetivo principal es diferenciar la informacion relevante de
posibles interferencias, ruido o distorsiones no deseadas, mejorando asi la calidad de la
sefial procesada. Existen diferentes tipos de filtros, y cada uno se aplica segun las
necesidades requeridas, pero los que mas sentido tiene aplicar durante el procesamiento
de sefiales neuronales son los filtros paso-bajo, paso-alto y de ranura. Por un lado, los
filtros paso-bajo permiten el paso de las sefiales que los atraviesan desde la frecuencia
cero hasta una frecuencia de interés, denominada frecuencia de corte, a partir de la cual
la atenuacion aplicada a la sefial va siendo cada vez mayor (Sen, et al., 2023). Este tipo
de filtros puede emplearse para reducir el ruido de alta frecuencia en las sefiales EEG o
MEG, como artefactos musculares, interferencias electromagnéticas de alta frecuencia o
ruido de los equipos de adquisicion, que suelen estar en un rango de frecuencias superior
al de las oscilaciones cerebrales relevantes. Asi, es mas facil identificar las componentes
de interés, como las ondas delta (0.5 — 4 Hz), zeta (4 — 8 Hz), alfa (8 — 13 Hz) y beta (13
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— 30 Hz), que tienen frecuencias mas bajas (Sanei & Chambers, 2013). Por otro lado, los
filtros paso-alto permiten el paso de las frecuencias altas de las sefiales desde una
frecuencia de corte superior a cero (Sen, et al., 2023). Artefactos como movimientos
oculares o variaciones en la impedancia de los electrodos, que generan componentes de
muy baja frecuencia, pueden eliminarse con este tipo de filtros y conservar componentes
cerebrales de frecuencias altas, como las ondas gamma, cuyas oscilaciones son superiores
a los 30 Hz (Sanei & Chambers, 2013). Finalmente, los filtros de ranura y los filtros
elimina-banda permiten el paso de toda la sefial salvo la parte comprendida entre dos
frecuencias concretas (Sen, et al., 2023) (Hirano, et al., 1974). Con esto se pueden
eliminar las interferencias debidas a la red eléctrica, es decir, las oscilaciones situadas en
50 0 60 Hz y sus armdnicos, u otro tipo de ruido que corrompa la sefial cerebral en bandas
intermedias (Puce & Hamal&inen, 2017). La ventaja de este tipo de filtros respecto de los
otros dos comentados es que eliminan frecuencias especificas de interferencia sin afectar
a otras bandas. El principal problema de los filtros paso-bajo y paso-alto es que no son
tan selectivos como para eliminar Unicamente las componentes contaminadas con
artefactos, sino que también rechazan componentes neuronales (Puce & Hamaldinen,
2017). Esto supone un grave problema para el diagnostico de enfermedades, como la
epilepsia o el Alzhéimer, dado que se prescinde de informacion importante de la actividad
cerebral del paciente. En la Figura 5 puede verse una sefial EEG y su posterior filtrado
tras haberse aplicado un filtro paso-banda de 0.1 a 60 Hz para reducir la presencia de
artefactos y un filtro de media movil de 0 a 55 Hz para eliminar variaciones rapidas no
deseadas y hacer que la sefial sea mas estable (Arslan, et al., 2015).

A pesar de que el filtrado en el dominio frecuencial puede ser una herramienta de gran
utilidad para reducir el ruido en sefiales neuronales, su aplicacion puede conllevar ciertas
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Figura 5. Filtrado de una sefial EEG. Gréfica superior: sefial EEG original. Grafica intermedia: sefial
EEG original tras haber aplicado un filtro de 0.1 a 60 Hz. Gréfica inferior: sefial EEG filtrada tras
haber suavizado la sefial (Arslan, et al., 2015).
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desventajas, como la posible distorsion de la sefial original o la eliminacion de
informacién neuronal relevante. Ademas, los filtros convencionales no siempre son
eficaces para separar componentes solapadas en el dominio del tiempo o en las que su
banda de frecuencias caracteristica coincide con la del ruido, tal y como ya se ha
comentado previamente. Por este motivo, surge la necesidad de aplicar otro tipo de
técnicas que preserven la informacién neuronal eliminando la mayor parte posible de los
artefactos que la contaminan.

2.4. Reduccion de artefactos en senales neuronales

Reducir el impacto de los artefactos o eliminar su presencia en las sefales
electromagnéticas cerebrales es necesario para poder llevar a cabo una interpretacion
precisa de los eventos que codifican; ademas, garantiza una localizacion de fuentes exacta
(Islam, 2015). Las fuentes se refieren a las regiones especificas del cerebro donde se
origina la actividad neuronal que genera las sefiales registradas mediante técnicas como
EEG o MEG (Hari, et al., 2000). Estos métodos no miden directamente la actividad
cerebral en su origen, sino que capturan una representacion externa de los campos
eléctricos 0 magnéticos producidos por la suma de miles 0 millones de neuronas activas
en una zona concreta. Para realizar una localizacion de fuentes, los algoritmos deben
procesar estas sefiales registradas y estimar las ubicaciones cerebrales exactas de las
fuentes a partir de los datos medidos en los sensores. Sin embargo, la presencia de
artefactos, ya sean fisioldgicos o no fisioldgicos, introduce ruido que puede distorsionar
los calculos y generar resultados erréneos o imprecisos (Islam, 2015). La localizacion de
fuentes se emplea para identificar qué areas del cerebro estan involucradas en funciones
bioldgicas especificas, para localizar la region del cerebro donde se originan las crisis en
pacientes con epilepsia o para determinar qué regiones deben evitarse para minimizar el
impacto sobre funciones criticas en una cirugia (Michel & He, 2019). Por eso, la correcta
identificacion y eliminacion de los artefactos es indispensable para que la sefial residual
refleje con mayor fidelidad la actividad cerebral de interés.

Algunos de los métodos que se emplean para mitigar la presencia de artefactos son en
los siguientes momentos (Burgess, 2020):

1. Durante la configuracion y conexion al sistema de medida.
ii. Durante la adquisicion de la sefal.
1il. En el preprocesado de la sefial ya adquirida, empleando un software de

reduccion de artefactos.
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Para el primer caso y, por ejemplo, para MEG, se pueden emplear gradidometros en lugar
de magnetometros, dado que son menos sensibles a las interferencias de fuentes de
artefactos ambientales, ya que este ruido suele ser homogéneo en el espacio cercano y se
cancela al calcular el gradiente (Vrba & Robinson, 2001). También se pueden incorporar
al realizar la medicion unos sensores de referencia situados a mayor distancia de la
cabeza, que se utilizan para restar los artefactos externos (Puce & Hamaéléinen, 2017).
Ademas, se debe evitar cualquier material magnético en la ropa del paciente y, en el caso
de que este tenga implantes, se pueden emplear equipos especiales que reduzcan las
sefiales magnéticas producidas por los metales (Mosher & Funke, 2020).

Para el segundo método, el hecho de registrar sefiales libres de artefactos depende, en
gran medida, del comportamiento del paciente. Factores como permanecer inmovil,
minimizar movimientos musculares (especialmente en la cabeza, ojos y mandibula) y
evitar actividades que puedan generar interferencias pueden reducir la probabilidad de
que aparezcan componentes indeseados en las sefiales neuronales (Larson & Taulu,
2017). Por ejemplo, para minimizar los artefactos oculares se le puede pedir al paciente
que fije la vista en un punto para restringir el movimiento ocular. Sin embargo, este
método no es (til en nifios de corta edad o pacientes con algun tipo de discapacidad
neuroldgica (Puce & Hamalédinen, 2017). En ese caso, seria adecuado medir
simultaneamente sefiales de EOG o ECG para poder identificar correctamente los
artefactos (Muthukumaraswamy, 2013).

En la etapa del preprocesado de la sefial se lleva a cabo un filtrado en el rango de
frecuencias de interés como primera aproximacion (Bashashati, et al., 2007). Sin
embargo, el filtrado no es apropiado cuando el rango de frecuencias de los artefactos se
solapa con el espectro de la actividad cerebral, tal y como se ha comentado previamente
(Jiang, et al., 2019). Existen algunas técnicas que permiten excluir los sensores que estan
contaminados con artefactos, como técnicas basadas en métodos estadisticos, correlacion
0 modelos de IA. Las dos primeras se basan en identificar sensores que muestran
caracteristicas anémalas en comparacién con el resto (Larson & Taulu, 2017). La tercera
emplea algoritmos que implementan procedimientos automaticos de clasificacion para
identificar y excluir sensores, ya sea mediante técnicas de ML o DL (Mumtaz, et al.,
2021). Estos algoritmos se pueden complementar con algunos de los métodos estadisticos
basados en la Separacion Ciega de Fuentes (Blind Source Separation, BSS) o el Analisis
de Componentes Independientes (Independent Component Analysis, ICA). Estas técnicas
permiten identificar y aislar patrones especificos de artefactos en las sefiales neuronales,
basandose en la idea de que las fuentes subyacentes (actividad cerebral y artefactos) son
estadisticamente independientes (Yang, et al.,, 2021). EI combinar ambos métodos
permite que las componentes que sean altamente ruidosas sean descartadas
automaticamente, mientras que las sefiales de los sensores restantes se puedan limpiar
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eficazmente eliminando patrones especificos de artefactos (Vigario & Oja, 2008). A
continuacion, se exponen con mas detalle estas y otras técnicas de preprocesado
encargadas de detectar y eliminar la presencia de artefactos en sefiales neuronales.

2.4.1. Descomposicion de sefiales y clasificacion manual

La tecnologia y la investigacion en neurociencia avanzan a un ritmo acelerado, y con
ellas los métodos méas empleados hasta la fecha van quedando obsoletos. Asi, surgen
nuevas técnicas mas precisas y fiables que mejoran la comprension del funcionamiento
del cerebro humano y consiguen acelerar el proceso de deteccion y diagnéstico de
enfermedades neuronales. Respetando el objetivo principal del preprocesado de sefiales
neuronales, esto es, la eliminacion de informacion que no es de origen cerebral, han
surgido dos técnicas estadisticas fundamentales que permiten separar los artefactos de las
sefiales neuronales para, posteriormente, poder realizar una clasificacion de las
componentes generadas: PCA e ICA.

PCA se trata de una técnica de reduccion de la dimensionalidad del conjunto de datos
disponible, dado que permite disminuir el tamafio del vector de caracteristicas sin perder
informacion importante de la sefial y, a su vez, revelar patrones que en la sefial original
podrian estar ocultos (Tibaduiza, et al., 2013). Su funcionamiento se basa en la aplicacion
de una transformacién ortogonal que convierte un conjunto de observaciones de variables
correlacionadas en un conjunto de variables linealmente no correlacionadas, denominadas
componentes principales (Kaya, 2019). Esto se consigue a partir de la premisa de que la
sefial limpia tiende a concentrarse en las primeras componentes principales (las de mayor
varianza), mientras que el ruido se localiza principalmente en las Gltimas componentes.

Por otro lado, ICA realiza una separacion de las sefiales adquiridas en componentes
independientes, que se corresponden con la estimacion de las diferentes fuentes que han
originado dichas sefiales (Croce, et al., 2019). Por este motivo se dice que ICA esta basado
en la Separacion Ciega de Fuentes (BSS, Blind Source Separation), que es el proceso de
separar sefiales que originalmente se encuentran mezcladas entre si, aunque se disponga
de muy poca informacion sobre las mismas (Pal, et al., 2013). Ademas, supone
independencia estadistica entre esas fuentes, y asume que no existe correlacion temporal,
frecuencial o espacial entre las distintas sefiales sobre las que se aplica (Urigien &
Garcia-Zapirain, 2015). En cuanto a la primera condicion, considerando dos variables
escalares aleatorias, por ejemplo y: e y», se dice que son independientes si la informacion
en yi1 no aporta nada de informacion en y», y viceversa. Por otro lado, dos variables
aleatorias estan incorreladas si su covarianza es igual a cero. A partir de estas premisas,
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se puede asumir que, si las variables son independientes, estan incorreladas. Sin embargo,
en el caso contrario esta suposicion no se cumple.

En la Figura 6 se muestran dos conjuntos de sefiales tras haber aplicado ICA y PCA
sobre una base de datos procedente de un registro MEG realizado en una sala
magnéticamente aislada empleando 122 canales (Jafarabadi, et al., 2015). Los datos
incluyen sefiales procedentes del cerebro, artefactos fisioldgicos y ruido externo. En la
gréfica correspondiente a ICA se pueden distinguir nueve componentes independientes
obtenidas. En ellas, es sencillo diferenciar los distintos artefactos: la primera (IC1),
segunda (IC2) y cuarta (IC4) componente contienen artefactos musculares; la tercera
(IC3) y la quinta (IC5) representan artefactos oculares debidos a movimientos de los ojos
y parpadeos, respectivamente; la sexta (IC6) y la séptima (IC7) se deben al movimiento
del cuerpo al respirar; la octava (IC8) es el artefacto cardiaco y, finalmente, la novena
(IC9) se corresponde con el ruido procedente de los equipos de adquisicién. En la gréfica
obtenida tras aplicar PCA puede verse que las componentes de ruido no se han separado
correctamente: la primera y segunda componentes (C1 y C2) son una mezcla de artefactos
musculares y oculares, que equivalen a una combinacién de las componentes
independientes IC2 e IC3 obtenidas con ICA. Algo similar sucede con la tercera
componente, que se trata de la combinacion de IC2, IC3 e IC5. Como puede verse, para
este caso ha funcionado mejor ICA que PCA vy, generalmente, aplicado en el ambito de
sefiales neuronales, ese va a ser el comportamiento habitual. Esto se debe a que los
artefactos fisioldgicos suelen ser independientes de la actividad neuronal y, por lo tanto,
las caracteristicas del conjunto de datos se ajustan mas a las condiciones necesarias para
poder aplicar ICA (Jafarabadi, et al., 2015).

Sin embargo, ni PCA ni ICA llevan a cabo una clasificacion de componentes, por lo
que es necesario disponer de algin método adicional que permita clasificar las
componentes generadas tras haber aplicado ICA o PCA, segln sean de origen neuronal o
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Figura 6. Conjunto de sefiales estimadas mediante ICA (izquierda) y mediante PCA (derecha) (Jafarabadi,
et al., 2015).
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artefactos. La forma habitual de realizar dicha clasificacion es manualmente, y el proceso
se conoce comunmente como etiquetado (Croce, et al., 2019). Uno o varios técnicos
especialistas tratan de buscar caracteristicas distintivas de las sefiales y patrones que las
caractericen. Tal y como se ha visto previamente, las formas de onda de los artefactos
mMAas comunes presentan rasgos caracteristicos que hacen posible su identificacion. Este
proceso requiere experiencia y criterio de la persona encargada del etiquetado y, en
muchas ocasiones, se complementa su analisis con el realizado por el de més expertos
para contrastar la informacion y disminuir los sesgos individuales.

A pesar de su utilidad, la clasificacion manual es una tarea ardua que requiere mucho
tiempo para poder llevarla a cabo e implica un alto grado de subjetividad. Esto hace que
los estudios se prolonguen durante periodos largos de tiempo y la fiabilidad de los
diagndsticos sea baja, afectando directamente a los pacientes implicados y, en casos
extremos, disminuyendo su tiempo de vida (Croce, et al., 2019). Ademas, las técnicas de
descomposicion de sefiales en componentes vistas presentan ciertas desventajas. Por un
lado, PCA no es capaz de separar las componentes contaminadas con artefactos de las
componentes neuronales cuando sus amplitudes son del mismo orden de magnitud (Jiang,
etal., 2019). Asi, PCA Gnicamente es util cuando los niveles de ruido son bajos y, ademas,
los subespacios de sefial y de ruido son ortogonales entre si. Esto implica que las
direcciones principales de variabilidad de la sefial no se mezclen con las del ruido, sino
que estén en dimensiones separadas dentro del espacio de representacion de los datos
(Jafarabadi, et al., 2015). Dada la naturaleza dinamica y estocastica de las sefiales
procedentes del cuerpo humano, suponer ortogonalidad en dichas sefiales seria la primera
causa de fallo. Por otro lado, ICA no garantiza que las componentes independientes
generadas contengan exclusivamente ruido y no informacion neuronal importante del
paciente, dado que no siempre se puede suponer que existe independencia estadistica
entre las fuentes (Chawla, 2011). Con todo y con eso, con ICA se obtiene un mejor
rendimiento que con PCA, tal y como se ha demostrado en el estudio mostrado
previamente.

2.4.2. Tendencia actual: técnicas de IA

La contaminacion de las sefiales neuronales con artefactos supone un problema critico
en el diagndstico de enfermedades cerebrales, ya que existe la posibilidad de que esas
sefiales contaminadas sean tratadas erroneamente como actividad neuronal genuina
(Muthukumaraswamy, 2013). Este error puede llevar a interpretaciones incorrectas sobre
el comportamiento cerebral subyacente, lo que compromete tanto los estudios clinicos
como los experimentos cientificos. También puede darse la situacion contraria, es decir,
que una sefial de origen cerebral sea errbneamente descartada al ser interpretada como
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ruido (Jiang, et al., 2019). Este y otros problemas, junto con la necesidad de los seres
humanos por realizar tareas de manera automatica y de la forma mas rapida posible, ha
llevado al desarrollo de herramientas que imiten el comportamiento humano y mejoren
su rendimiento conforme vayan recopilando mas informacién. La capacidad de estas
herramientas que les permite realizar dichas tareas se denomina “inteligencia artificial”
(Rouhiainen, 2018). Concretamente, su uso ha revolucionado el tratamiento de sefiales
biomédicas y ha mejorado la calidad de los diagnosticos, ya que ha permitido prescindir
parcialmente de la intervencion humana, disminuyendo la variabilidad en los resultados
(AlHinai, 2020).

Las diferencias entre los modelos tradicionales de procesado y el uso de modelos
basados en IA se ven reflejadas en términos de automatizacion, precision y escalabilidad
(Jiang, et al., 2022). Las técnicas clasicas vistas anteriormente, como el filtrado o la
clasificacion basada en la descomposicion de sefiales, han demostrado su eficacia en la
eliminacién de artefactos en sefiales neuronales. Sin embargo, en muchas ocasiones se
hace inviable combinarlas todas debido al coste computacional y temporal que ello
implica (Barbati, et al., 2004). Ademas, requieren un ajuste manual y dependen en gran
medida de la experiencia del usuario, mientras que los algoritmos de IA pueden aprender
de grandes volumenes de datos y realizar tareas de forma autbnoma, pues cuenta con la
capacidad de encontrar patrones y correlaciones en los datos mucho mas rapido que un
humano (Callier & Sandel, 2021). A mayores, la escalabilidad de estos sistemas permite
su aplicacion en grandes volumenes de datos, necesarios en estudios a gran escala y
aplicaciones en tiempo real, como el monitoreo de pacientes en entornos clinicos (Hamet
& Tremblay, 2017). Sin embargo, puede resultar conveniente en algunos casos no
desechar por completo alguna de las técnicas convencionales y combinarla con los
algoritmos de IA. En este sentido, tanto PCA como ICA pueden emplearse como un paso
previo a la clasificacion de sefiales neuronales con el fin de simplificar el conjunto de
datos y extraer sus caracteristicas mas relevantes en el caso de PCA, o separarlos en
componentes independientes segln sus fuentes en el caso de ICA, tal y como se ha
comentado previamente (Lakshmi, et al., 2017) (Urigiien & Garcia-Zapirain, 2015). Con
esto se consigue optimizar la base de datos y, por lo tanto, mejorar la calidad de las
detecciones por parte de la herramienta de 1A empleada.

Dentro de la 1A existen diversas técnicas que permiten realizar diferentes tareas y que,
por lo tanto, estdn disefiados para aplicaciones especificas. En el ambito de la
neurociencia, los mas empleados son las basadas en ML y, mas recientemente, en DL.
Por un lado, el ML permite a los sistemas aprender automaticamente a partir de los datos,
sin necesidad de ser programados explicitamente (Vu, et al., 2018). Por otro lado, el DL
es una rama avanzada del ML que emplea redes neuronales profundas para realizar
analisis mas complejos, siendo especialmente eficaz en el procesamiento de sefiales
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biomédicas (Marblestone, et al., 2016). Los algoritmos de ML permiten clasificar
segmentos de sefiales contaminadas con artefactos y mejorar la calidad de los datos. Sin
embargo, el éxito del ML depende de caracteristicas extraidas manualmente por los
expertos, lo que puede introducir sesgos y limitar el rendimiento del modelo (Zheng &
Casari, 2018). En contraposicion, el DL elimina la necesidad de extraer caracteristicas
manualmente, ya que las redes neuronales son capaces de aprender representaciones
directamente a partir de los datos originales. Ademas, el empleo de DL permite abordar
la naturaleza no lineal de las sefiales cerebrales, lo que supone una complicacion afiadida
para su analisis (Bitbrain, 2020).

Una vez elegido el modelo de IA que se va a emplear se debe configurar su arquitectura,
que definira el comportamiento del modelo en cuestion. Una de las mas empleadas para
el andlisis de sefiales cerebrales son las Redes Neuronales Artificiales (ANN, Atrtificial
Neural Networks). Estas se basan en el comportamiento de las neuronas y sus
interconexiones construyendo arquitecturas de redes neuronales, lo que les permite
aprender y tomar decisiones identificando patrones y clasificando datos (Walczak, 2019).
Las ANN estan formadas por muchas neuronas, Ilamadas perceptrones, cuya funcion es
modificar las entradas que se les introducen multiplicAndolas por unos pesos aleatorios y
sumandolas entre si con un valor de sesgo (Jain, et al., 1996). Tanto los pesos como el
sesgo aplicado se pueden ajustar segin se desee y determinan el resultado concreto que
va a proporcionar el perceptron. A este resultado se le aplica una funcién de activacion,
que decide si el dato proporcionado se debe introducir por un nuevo perceptrén o no
(Antona-Cortés, 2017).

Dentro de las ANN existen diferentes modelos de redes neuronales, como las CNN o
las Recurrentes (RNN, Recurrent Neural Networks). Las primeras constan de varias capas
de perceptrones y filtros convolucionales de diferentes dimensiones. Estos filtros se
denominan kernel y, segun la matematica convolucional implicada, la CNN realiza un
producto escalar entre un filtro kernel y los datos de entrada con el fin de conseguir las
singularidades mas significativas de dichos datos. Ademas, contienen las capas de
pooling, que reducen el tamafio de los datos a su entrada conservando las caracteristicas
mas relevantes, las completamente conectadas, donde se refleja que cada entrada aplicada
a cada neurona afecta a cada una de las salidas proporcionadas dado que tienen en cuenta
toda la informacion extraida para llevar a cabo una clasificacion, y las de salida (O'Shea
& Nash, 2015). A su vez, las RNN estdn formadas por varias capas que toman la
informacidn de entradas anteriores que influyen en la entrada y salida actuales, es decir,
se trata de un sistema que tiene memoria. Esto permite captar la evolucion de los datos
que se quieran analizar a lo largo del tiempo (Grossberg, 2013). Sin embargo, las CNN
son més adecuadas para clasificar datos, como por ejemplo componentes ICA neuronales
con artefactos, debido a su alta capacidad para reconocer patrones, clasificar datos y
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detectar componentes dentro de un conjunto de valores (Junliang, 2022). Las RNN se
emplean para tareas en las que el contexto y la secuencia de los datos son de vital
importancia, como la generacion de texto o la traduccién automatica (Guan, et al., 2017).
Por estos motivos, en el presente TFM se ha optado por emplear una arquitectura de red
convolucional. En la Figura 7 pueden verse las diferencias entre las distintas capas que
forman las redes CNN y RNN. En las primeras puede verse como las neuronas se
conectan exclusivamente con algunas de las neuronas adyacentes, mientras que en las
segundas se ve que las neuronas pueden recibir informacion de todas las neuronas de la
capa anterior (Zhang, et al., 2021).

Entre las herramientas mas modernas destacan plataformas como EEGNet, una
arquitectura de CNN disefiada especificamente para trabajar con sefiales
electrofisioldgicas, empleada para la identificacion de artefactos oculares y musculares
en sefiales provenientes de registros de EEG (Lawhern, et al., 2018). A su vez, existen
otras herramientas adaptadas especificamente a sefiales adquiridas mediante MEG, como
por ejemplo MEGnet (Garg, et al., 2021). En este caso, la tarea principal consiste en la
identificacion de artefactos cardiacos y oculares mediante la aplicacion de una CNN tras
haber aplicado ICA. Asimismo, se cuenta con softwares mas generalistas, como
TensorFlow o PyTorch, que permiten implementar modelos de eliminacion de artefactos,
pudiendo ajustar los hiperparametros que caracterizan la red neuronal programada, como
el nimero de neuronas o las capas ocultas que la forman (Novac, et al., 2022).

La eleccion del modelo y de la arquitectura de este que mas se ajuste al problema que
se desee resolver es sélo el paso inicial en todo el proceso de la aplicacién de los modelos
de IA. El entrenamiento de la red seria la siguiente etapa. Aqui se realiza un proceso
iterativo de ajuste de pesos. Inicialmente, la red recibe un conjunto de datos etiquetados
divididos en fragmentos que atraviesan multiples capas convolucionales y de activacion,
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Figura 7. Estructura general de una CNN (@) y de una RNN (b) (Zhang, et al., 2021).

43



extrayendo caracteristicas cada vez mas abstractas. A cada uno de esos fragmentos se le
aplica un peso (Ros-Garcia, 2019). Por ejemplo, si el peso aplicado al primer fragmento
es 1y el peso aplicado al segundo fragmento es 10, entonces el segundo fragmento tendra
un efecto 10 veces superior al del primer fragmento. Luego, la salida se compara con la
etiqueta real para calcular el error mediante una funcién de pérdidas (Janocha &
Czarnecki, 2017). Este error se propaga hacia atras (backpropagation) a través de la red
utilizando algoritmos de optimizacion, como Adam (Adaptive moment estimation), para
ajustar los pesos y mejorar la precisién del modelo (Taqi, et al., 2018). A lo largo de
varias épocas, la CNN aprende patrones relevantes, reduciendo el error y mejorando su
capacidad de generalizacion sobre datos no vistos. Sin embargo, no todo el conjunto de
los datos se emplea para entrenar la red, sino que se reserva una parte para la etapa de
validacion y otra para la etapa de test (Lee, et al., 2019). La primera se emplea durante el
entrenamiento y tiene como objetivo evaluar el desempefio del modelo y evitar el
sobreajuste u overfitting, situacion que se da cuando el modelo se ha ajustado demasiado
a los datos de entrenamiento y no es capaz de generalizar a datos nuevos (O'Shea & Nash,
2015). El conjunto de validacion permite ajustar los hiperparametros de la red, como el
namero de neuronas y sus capas (Andonie, 2019). Una vez finalizado el entrenamiento,
se evalua el modelo con el conjunto de test, que contiene datos completamente nuevos
para la red. Esta fase permite medir la capacidad real del modelo para generalizar a datos
no vistos y evaluar su comportamiento global (Ma, et al., 2021).

Existen multiples algoritmos de optimizacion, pero el que se ha empleado en este TFM
es Adam, mencionado previamente. Esta basado en el descenso del gradiente estocastico,
y combina las técnicas AdaGrad (Adaptive Gradient algorithm) y RMSProp (Root Mean
Square Propagation) (Kingma & Ba, 2014). En la primera se ajusta la tasa de aprendizaje
de manera adaptativa, de modo que aquellos pardmetros con gradientes grandes reciben
actualizaciones mas pequefias, mientras que los que tienen gradientes mas pequefios se
ajustan en mayor medida. En la segunda se ajusta la tasa de aprendizaje de manera
individual para cada peso evitando que se reduzca demasiado con el tiempo. Para lograrlo,
en lugar de acumular todos los gradientes anteriores, calcula una media mavil del
cuadrado de los gradientes usando un decaimiento exponencial y adapta el factor de
entrenamiento dividiéndolo entre la media del declive exponencial del cuadrado de los
gradientes (Taqi, et al., 2018).

Finalmente, para determinar el grado de activacion que alcanza cada neurona de la red,
es decir, si los datos que contienen son significativos, se aplica una funcion de activacion
especifica. Las mas comunes son la sigmoide, la tangente hiperbolica, ReLu y SoftMax
(Sharma, et al., 2017):
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Por un lado, la funcion sigmoide se emplea en problemas de clasificacion binaria dado
que transforma la entrada real a un valor entre 0 y 1, es decir, asigna una probabilidad
a cada dato, lo que hace que se pueda asignar a una clase especifica. La grafica que la
caracteriza se muestra en la Figura 8 (a), que equivale a la siguiente expresion

matematica:

1

f(x)=m

)]

Por otro lado, la funcion tangente hiperbdlica (tanh) genera valores en un rango de -
1 a I, por lo que amplia el conjunto de valores que puede tomar la entrada en
comparacion con la funcién sigmoide. Ademas, esta centrada en cero, lo que favorece
que los pesos se actualicen de forma mas eficiente durante el entrenamiento y el
aprendizaje sea mas rapido. Su grafica se muestra en la Figura 8 (b) y su expresion

matematica es la siguiente:

X X
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fx) = 2

A su vez, ReLu devuelve 0 cuando la entrada es negativa y el propio valor de la
entrada cuando esta es positiva, es decir, para valores positivos presenta un
comportamiento lineal con un gradiente igual a 1, por lo que mejora la convergencia
del entrenamiento. Esta funcion es menos costosa computacionalmente que la funcion
sigmoide o la tanh debido a su sencillez matematica. Su grafica puede verse en la

Figura 8 (c), que se corresponde con la siguiente expresion:

f(x) = max (0, x) 3)

Finalmente, SoftMax se emplea para resolver problemas de clasificacion multiclase,
dado que la salida que ofrece representa la probabilidad de que la entrada pertenezca
a una determinada clase. La grafica correspondiente se muestra en la Figura 8 (d), que
equivale a la siguiente expresion matematica:

Xi

flx) = Y e%i (4)

]
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(a) Funcion sigmoide. (b) Funcion tangente hiperbolica.
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Figura 8. Representacion grafica de las funciones de activacion mas comunes.

2.5. Senales sintéticas

Contar con la técnica mas idonea de entrenamiento y optimizacion no sélo depende del
problema especifico que se quiera abordar, sino también del volumen de datos disponibles
para el entrenamiento del modelo. En muchas ocasiones, disponer de la base de datos
adecuada para un correcto entrenamiento de los algoritmos supone una dificultad afiadida,
no solo por la calidad necesaria para obtener los resultados deseados, sino porque obtener
grandes volumenes de datos es muy costoso temporal y computacionalmente (Kaplan, et
al., 2005) (Colomer, et al., 2016). Aqui es donde toma un papel importante la generacién
de sefiales sintéticas. Se entiende por sefiales sintéticas a datos generados de forma
artificial que imitan las caracteristicas de las sefiales neuronales reales, incluyendo tanto
la actividad cerebral como los artefactos (Carrle, et al., 2023). Como se trata de sefiales
creadas para un fin y que no son generadas directamente por el cuerpo humano, se las
puede configurar como se desee, dando mayor relevancia a la parte neuronal o haciendo
que sea la parte contaminada por artefactos la que predomine. El proposito de la
generacion de sefiales sintéticas radica en proporcionar un entorno controlado y conocido
a priori, en el que se puedan desarrollar y evaluar de forma sistematica los métodos de
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deteccion y eliminacion de artefactos sin depender exclusivamente de datos reales
(Laguna, et al., 2024). Ademas, permite llevar a cabo un analisis comparativo entre
diferentes modelos de eliminacion de artefactos para evaluar su comportamiento, ya que
la proporcion de ruido y sefial introducida es conocida (Carrle, et al., 2023).

Las sefiales sintéticas se pueden generar de diferentes maneras, pero todas se basan en
la combinacién de sefiales neuronales simuladas con sefiales de artefactos, bien adquiridas
con los sensores especificos o creadas con modelos matematicos de artefactos (Betzel &
Bassett, 2017). Para reproducir diferentes condiciones de contaminacién se pueden
modificar algunos de los pardmetros que caracterizan a las sefiales, como la amplitud, la
frecuencia o la SNR (Laguna, et al., 2024). Existen diversas herramientas que, aplicando
distintos métodos, permiten generar sefiales sintéticas. EI médulo SourceSimulator de
MNE-Python es una de ellas. Este genera datos sintéticos simulando la actividad cerebral
en las fuentes de la corteza y proyectdndola hacia los sensores MEG/EEG, con la
posibilidad de agregar ruido (MNE, 2024). En la Figura 9 puede verse el resultado de
simular el médulo mencionado con unas condiciones de actividad cerebral y de ruido
especificas. En primer lugar, se generaron sefiales simuladas desde fuentes corticales; a
continuacidn, se proyectaron a los sensores MEG a través de un modelo de cabeza vy,
finalmente, se afiadieron artefactos para simular unas condiciones realistas. Por otro lado,
en la Figura 10 se muestran los potenciales evocados generados a partir de las sefiales
sintéticas generadas con MNE-Python. Los potenciales evocados son el resultado del
promedio de sefiales de EEG o MEG en mdltiples repeticiones de un estimulo. La primera
gréfica representa las sefiales adquiridas mediante 59 canales EEG, sensibles a la
actividad eléctrica de la corteza cerebral, mientras que la segunda y la tercera se
corresponden con registros MEG, de 203 y 102 canales, respectivamente. Las sefiales
mostradas se calcularon promediando 49 ensayos del estimulo.
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Figura 9. Sefiales MEG simuladas obtenidas con el médulo SourceSimulator de MNE-Python. Se trata de
sefiales provenientes de diferentes sensores, con una duracion de 10 segundos (MNE, 2024).
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Figura 10. Potenciales evocados generados a partir de sefiales EEG (primera grafica) y MEG, con

gradiémetros (segunda grafica) y magnetometros (tercera grafica), haciendo uso del médulo
SourceSimulator de MNE-Python (MNE, 2024).
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3.1. Introduccion

En las Gltimas décadas, el progreso cientifico ha sido notable en numerosos campos de
la medicina, como el diagnostico por imagen o la oncologia. Sin embargo, existen otras
areas médicas, como el estudio del cerebro humano, que se encuentran en los primeros
estadios de investigacion, pues existen multiples aspectos que aun no se han explorado
(Garcia-Albea, 2017). Por ello, se necesita seguir investigando para poder comprender el
porqué de ciertos comportamientos humanos, la evolucion de determinadas
enfermedades, como las neuronales, o los tratamientos necesarios para tratarlas o evitar
su avance.

En el campo de la neurociencia, muchos investigadores se encargan no solo de estudiar
la anatomia y la actividad cerebral, sino que ademas ofrecen sus conocimientos y
permiten que otros neurocientificos aporten valor a sus estudios. En este sentido, uno de
los aspectos mas criticos que supone una barrera en el avance cientifico es la realizacion
de los experimentos pertinentes que, en muchas ocasiones, requieren de software
especifico para poder llevarse a cabo, como las interfaces cerebro-maquina (BCI, Brain-
Computer Interfaces) (Wolpaw, 2013). Esta tecnologia permite capturar en tiempo real
informacion del cerebro en un dispositivo externo sin que sea necesaria la intervencion
de otras partes del cuerpo humano. Los sistemas BCI emplean técnicas de adquisicion de
sefiales como el EEG o el MEG que, posteriormente, son procesadas y analizadas por un
software para extraer la informacion relevante (Wolpaw, et al., 2020). Hoy en dia, existen
multiples plataformas que integran todas estas capas para proporcionar, en una Unica
interfaz, un servicio de calidad, fiable y estable, como BCI2000 u OpenVIiBE (Schalk, et
al., 2004) (Renard, et al., 2010). A pesar de que han sido las herramientas méas usadas por
los neurocientificos para tratar problemas de BCI, cuentan con una serie de desventajas
que limitan su funcionamiento: por un lado, no estan preparadas para su aplicacion en
entornos cooperativos puesto que sélo son capaces de procesar unas pocas sefiales de
entrada y no disponen de las herramientas necesarias para que los investigadores
compartan sus experimentos o avances. Por otro lado, el lenguaje de programacion que
integra sus funcionalidades es C++ que, debido a su complejidad, no es apto para
implementar los avances en BCI que van surgiendo, como los nuevos estudios basados
en DL (Martinez, et al., 2021). Por este motivo, surge la necesidad de desarrollar nuevas
herramientas que solucionen este tipo de problemas y mejoren la calidad de los estudios
realizados. Desde el Grupo de Ingenieria Biomédica (GIB) de la Universidad de
Valladolid se ha propuesto una alternativa a las plataformas BCI existentes, denominada
MEDUSA® (MEDUSA, 2022). Se trata de un software basado en Python en el que
conviven diferentes herramientas de procesado, analisis y modelado de sefiales
cerebrales. Cuenta con una arquitectura modular y adaptable, facil de usar y con una gran
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potencia computacional que permite a los investigadores implementar sus propios
algoritmos o utilizar herramientas avanzadas de IA y procesamiento de sefiales. En
concreto, al estar basada en Python facilita la integracion con librerias ampliamente
utilizadas en el ambito de la neurociencia, como NumPy, SciPy, TensorFlow o PyTorch
(Santamaria, et al., 2023). A lo largo de este capitulo se describen sus caracteristicas y
funcionalidades principales.

3.2. Estructura de MEDUSA®

MEDUSA® se caracteriza por tener un disefio modular dividido en diversos submodulos
independientes que pueden ser modificados o incluidos en el sistema sin afectar al resto
de la plataforma dado que estan conectados por protocolos de comunicacion sencillos
(Santamaria, et al., 2023). Esta implementada en Python, un lenguaje de alto nivel que
simplifica el uso de la herramienta a los investigadores y es compatible con diversos
sistemas operativos, como Windows, macOS o Linux (Santamaria, et al., 2018).
MEDUSA® esta dividida en dos partes bien diferenciadas: el niicleo MEDUSA® vy la
plataforma MEDUSA® (Santamaria, et al., 2023).

Por un lado, el niicleo MEDUSA® contiene las herramientas necesarias para analizar
las sefiales cerebrales obtenidas mediante distintos métodos de adquisicién, como EEG o
MEG, y dispone de herramientas basadas en ML y DL para procesar las sefiales bioldgicas
(Santamaria, et al., 2023). A su vez, puede dividirse en diferentes submddulos segun el
nivel de abstraccion de las funcionalidades que estos implementan. Los modulos de mas
bajo nivel contienen los métodos de procesamiento comunes a las distintas sefiales que se
pueden analizar, como filtros temporales y espaciales o métricas de activaciéon y de
conectividad. En un nivel de abstraccion superior se encuentran las funciones especificas
para extraer y analizar las caracteristicas concretas de las sefiales de entrada (Santamaria,
et al., 2023). Los algoritmos de procesamiento empleados en estos casos se basan en los
potenciales evocados P300, imagineria motora, potenciales evocados visuales modulados
(c-VEPs, modulated Visual Evoked Potentials) y neurorretroalimentacién. EI primero se
trata de la respuesta cerebral generada aproximadamente 300 milisegundos después de la
aparicion de un estimulo inesperado, y se emplea para la deteccion de intencién (Fazel-
Rezai, et al., 2012). A su vez, la imaginacion motora consiste en la activacion de areas
motoras del cerebro al imaginar movimientos, Util en casos en los que el paciente tiene
alguna parte del cuerpo inmovilizada debido a una condicion fisioldgica (Wierzgata, et
al., 2018). c-VEPs son las sefiales cerebrales inducidas por estimulos visuales repetitivos
y modulados, empleadas para detectar patrones de actividad especificos (Wang, et al.,
2008). Finalmente, en la neurorretroalimentacion los usuarios reciben informacion en
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tiempo real sobre su actividad cerebral para aprender a autorregularla, aplicado en terapias
y optimizacion cognitiva (Neuper & Pfurtscheller, 2010). El niicleo MEDUSA® permite
combinar los estudios con otros lenguajes de programacién o paquetes de Python, analizar
sefiales almacenadas previamente en bases de datos o recién adquiridas en tiempo real y
personalizar las condiciones de analisis segun sea necesario.

Por otro lado, la plataforma MEDUSA® depende directamente del niicleo MEDUSA®,
y es la interfaz grafica ofrecida a los usuarios del software que dispone de graficos en
tiempo real y herramientas con funciones de adquisicion de sefiales (Santamaria, et al.,
2023). Ademas, permite la creacion e instalacion de nuevas aplicaciones relacionadas con
los sistemas BCI. Para garantizar un correcto funcionamiento, esta dividida en tres partes:
la encargada de adquirir las sefiales bioldgicas, las graficas en tiempo real y las
aplicaciones (Santamaria, et al., 2023). La primera hace uso de un protocolo de
transmision en tiempo real de datos biomédicos denominado LSL (Lab Streaming Layer
protocol), que simplifica la sincronizacién y el intercambio de sefiales entre distintos
dispositivos y programas asegurando una baja latencia. Ademas, este protocolo permite
integrar diversas fuentes de datos en un flujo comun de forma simultanea (LSL, 2019).
En cuanto a las gréaficas en tiempo real, LSL permite visualizar las sefiales capturadas de
forma instantanea en graficas temporales y frecuenciales que se actualizan en milésimas
de segundo. Las temporales disponen de herramientas para modificar la representacién
de las sefales, como escalados o factores de diezmado, mientras que las frecuenciales
representan la densidad espectral de potencia (PSD, Power Spectral Density) haciendo
uso del método Welch (Santamaria, et al., 2023). Este se basa en la Transformada de
Fourier para obtener la representacion frecuencial de las sefiales mejorando la precision
de la estimacion al reducir la varianza en comparacion con el método clasico de Fourier
(Jwo, et al., 2021). Por ultimo, la parte de mayor peso y que implica la participacion
directa de los usuarios es la que contiene las aplicaciones. Estas permiten llevar un control
en tiempo real del estado cognitivo del paciente mientras este realiza diferentes
actividades, organizadas en varias aplicaciones independientes ofrecidas como juegos
interactivos. Algunas de ellas son RCP Speller o c-VEP Speller, que se emplean para que
una persona con una discapacidad motora severa pueda comunicarse gracias a las sefiales
emitidas por el cerebro al fijar la vista en unas imagenes (Santamaria, et al., 2023). La
primera se basa en la deteccion de potenciales evocados P300 que se generan cuando el
usuario fija su atencién en un caracter deseado dentro de una matriz de caracteres que se
van iluminando secuencialmente (Santamaria, et al., 2023). La respuesta puede ser
detectada y procesada mediante algoritmos de DL integrados en MEDUSA®. Otras
aplicaciones se emplean para desarrollar plasticidad neuronal, como Motor imagery, que
se basa en la imaginacion de movimientos sin necesidad de ejecutarlos fisicamente
(Santamaria, et al., 2023). Cuando una persona imagina que esta moviendo una parte de
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Su cuerpo se activan patrones especificos en la corteza motora que pueden ser detectados
con algoritmos de IA en sefiales EEG o0 MEG. De esta manera es posible interpretar la
intencion del usuario y traducirla en comandos, por ejemplo, para controlar un cursor o
una protesis (Ono, et al., 2014). También existen aplicaciones para informar al usuario de
su estado neuronal concreto, como Neurofeedback. Esta permite entrenar a los usuarios
en el control consciente de su propia actividad cerebral en tiempo real (Santamaria, et al.,
2023). La informacidn obtenida a partir de las sefiales neuronales adquiridas se devuelve
a los usuarios en forma de estimulos visuales o auditivos, permitiéndoles ajustar su
actividad neuronal voluntariamente. En la Figura 11 se muestra un esquema general de la
herramienta MEDUSAZ® con los distintos componentes que se han mencionado.

MEDUSA® Platform MEDUSA® Kernel
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Figura 11. Vista general de MEDUSA®. Se muestran tres tipos de registros, de EEG, ECG y EMG, cuyas
sefiales adquiridas se introducen en la herramienta MEDUSA® mediante el protocolo LSL. Las sefiales
pueden verse en las graficas de tiempo real y pueden ser empleadas en las distintas aplicaciones dentro de
la plataforma. En el ejemplo mostrado puede verse la aplicacién RCP Speller. También pueden aplicarse
distintos procesamientos a las sefiales dentro del nicleo de MEDUSA®. En este caso se muestra la
deteccion de potenciales ERP en sefiales procedentes de registros EEG (Santamaria, et al., 2023).
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4.1. Introduccion

Este capitulo se centra en detallar los materiales empleados para la ejecucion de este
TFM, en concreto la base de datos con la que se ha contado. Se comentan las
caracteristicas de las sefiales reales utilizadas para el desarrollo de la herramienta, asi
como de las sefiales sintéticas generadas.

4.2. Base de datos

En este TFM se ha hecho uso de sefiales procedentes de registros MEG,
correspondientes a 473 individuos que autorizaron la grabacion de sus datos. Estos fueron
tomados en el Hospital Hokuto, en la ciudad de Obihiro (Jap6n). Durante la adquisicion
de los datos los pacientes se encontraban tumbados y con los ojos cerrados pero
despiertos, evitando cualquier movimiento que pudiera distorsionar la medida. Con el
objetivo de garantizar la seguridad de los participantes y minimizar la aparicion de
somnolencia, los registros MEG fueron realizados bajo supervision.

Se emplearon gradiémetros axiales para realizar las mediciones, y se hizo uso del
sistema MEG Vision PQ1160C (Yokogawa Electric) con 160 canales. La frecuencia de
muestreo utilizada fue de 1000 Hz y se aplicé un filtro paso-bajo con una frecuencia de
corte de 200 Hz. El tiempo de registro por cada individuo tuvo una duracion de cinco
minutos. Con el fin de delimitar la posicién de la cabeza de cada participante se utilizaron
tres marcadores colocados de forma no arbitraria: uno a 5 mm por encima del nasion y
los otros dos situados a 10 mm por delante del trago, a ambos lados de la cabeza. A
continuacion, las sefiales adquiridas fueron sometidas a un filtrado paso-banda entre 1y
70 Hz mediante un filtro FIR (Finite Impulse Response) de orden 3000, lo que permitio
restringir el espectro de frecuencias y reducir la presencia de ruido no deseado.
Adicionalmente, se aplicé un filtro de ranura centrado en 50 Hz con el fin de eliminar la
interferencia asociada al suministro eléctrico (Rodriguez-Gonzalez, et al., 2021).

4.3. Conjunto de senales

Una vez descrita la base de datos empleada en este trabajo se debe analizar el conjunto
de sefales utilizadas para el entrenamiento, validacion y evaluacion del sistema
desarrollado. Este apartado se divide en dos blogues principales: por un lado, las sefiales
reales, obtenidas a partir de registros MEG adquiridos en condiciones controladas; y por
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otro, las sefiales sintéticas, generadas artificialmente con el objetivo de disponer de un
conjunto adicional de datos con caracteristicas de ruido conocidas.

4.3.1. Seiales reales

Tal y como se ha comentado previamente, una vez obtenidas las sefiales MEG
procedentes de 160 canales por cada participante se debe realizar un preprocesado de las
mismas. Para el caso bajo estudio, se hizo uso del algoritmo Extended Infomax ICA con
el fin de obtener 160 componentes ICA por sefial, una por cada canal. Este algoritmo se
encarga de descomponer las sefiales adquiridas (mezclas de actividad neuronal y ruido)
en un conjunto de componentes estadisticamente independientes. Cada componente
puede interpretarse como una fuente que contribuye a la sefial original (Lee, et al., 1999).
Al aplicar esta técnica, es posible identificar y separar la actividad cerebral genuina de
otros patrones no neuronales, como artefactos cardiacos, oculares o ruido ambiental.
Ademas, ICA proporciona una matriz que determina cémo las fuentes independientes se
combinan linealmente para dar lugar a las sefiales registradas en los sensores. Esta se
conoce como la matriz de recomposicion, y se emplea cuando se desea recomponer la
sefial limpia (por ejemplo, tras eliminar componentes artefactuadas), multiplicando la
matriz de mezcla por las componentes que se quieren conservar (Hyvérinen, 2011). Asi,
se obtiene una version filtrada de la sefial original, donde la mayor parte del ruido ha sido
eliminado, pero se preserva la actividad neuronal de interés.

Tras haber aplicado ICA, varios técnicos expertos se encargaron de etiquetar cada una
de las componentes generadas en varios grupos en funcién de si correspondian a actividad
neuronal o a diferentes tipos de artefactos. El etiquetado asignado fue el siguiente: se
empleo el valor 0 para las componentes que reflejaban actividad cerebral, el valor 1 para
aquellas asociadas a sefales cardiacas, el 2 para las interferencias procedentes de la red
eléctrica, el 3 para las relacionadas con movimientos oculares y el valor 4 para otros tipos
de artefactos.

Finalmente, se llevo a cabo un proceso de estandarizacion antes de introducir las sefiales
en el algoritmo de deteccion y eliminacion de artefactos disefiado. Este proceso consistio
en normalizar cada componente, restando su media y dividiendo el resultado por su
desviacidn estandar. Con esto se consigue que todas las sefiales tengan una media de cero
y una varianza unitaria, lo que reduce diferencias numéricas entre componentes que
podrian deberse Unicamente a escalas distintas. Al normalizar las sefiales, se facilita que
la red neuronal aprenda patrones relevantes en lugar de verse influida por diferencias
arbitrarias en la magnitud de las sefiales, reduciendo asi posibles sesgos durante la
clasificacion (Rodriguez-Gonzélez, et al., 2021).

56



Las Figuras 12, 13, 14 y 15 muestran varios fragmentos de componentes neuronales,
cardiacas, de la red eléctrica y oculares, respectivamente.

Signal 6 - Label: 0, ICA Index: 13 Signal 10 - Label: 0, ICA index: 17
—— Sefal 6 de 17934

3, E
H H
(a) Componente ICA nimero 13. (b) Componente ICA niimero 17.
Signal 17 - Label: 0, ICA Index: 24 Signal 27 - Label: 0, ICA Index: 34
2, |2 ’
H £’
—— Seflal 17 de 17934 | "J{ —— Sefial 27 de 17934
(¢) Componente ICA niimero 24. (d) Componente ICA nimero 34.

Figura 12. Cuatro fragmentos de sefiales etiquetadas como cerebrales (“Label: 0”).

Signal 0 - Label: 1, ICA index: 0 Signal 2 - Label: 1, ICA Index: 4
H
(a) Componente ICA numero 0. (b) Componente ICA niimero 4.
Signal 4 - Label: 1, ICA Index: 11 Signal 8 - Label: 1. ICA Index: 104
é 2
g o
(¢) Componente ICA ntimero 11. (d) Componente ICA numero 104.

Figura 13. Cuatro fragmentos de sefiales etiquetadas como cardiacas (“'Label: 1").
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(¢) Componente ICA numero 73. (d) Componente ICA nimero 137.

Figura 14. Cuatro fragmentos de sefiales etiquetadas como red eléctrica ("Label: 2").

Signal 2 - Label: 3, ICA index: 7 Signal 0 - Label: 3, ICA Index: 9
£,
(a) Componente ICA numero 7. (b) Componente ICA nimero 9.
Signal 6 - Label: 3, ICA Index: 35 Signal 3 - Label: 3, ICA Index: 93
£ °] £° 4
(¢) Componente ICA ntimero 35. (d) Componente ICA niimero 93.

Figura 15. Cuatro fragmentos de sefiales etiquetadas como oculares (“"Label: 3").

4.3.2. Senales sintéticas

Para complementar el conjunto de datos reales y disponer de sefiales con un ground
truth controlado, se han generado sefiales sintéticas mediante la combinacion de actividad
neuronal y segmentos de ruido representativos de los artefactos disponibles. Este
procedimiento permite crear ejemplos donde se conoce exactamente qué parte de la sefial
corresponde a actividad cerebral genuina y cudl ha sido afiadida artificialmente como
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contaminacion, lo que resulta especialmente til para evaluar el comportamiento de la
herramienta de 1A disefiada. El proceso de creacion de estas sefiales sintéticas se llevo a
cabo siguiendo los pasos que se describen a continuacion:

1. Seleccion del artefacto. En primer lugar, se identificaron manualmente segmentos de
componentes ICA que representaban artefactos de interés, como actividad cardiaca,
de red eléctrica, ocular o de otro tipo. A modo ilustrativo, para generar una sefial
sintética con artefacto cardiaco se selecciond un tramo comprendido entre las
muestras 22.000 y 24.000 de la componente ICA nimero 11, correspondiente a una
clara manifestacion de este tipo de ruido. Una vez identificado, el fragmento fue
replicado de manera consecutiva hasta alcanzar una duracion total de 5 minutos
(equivalente a la duracion de las sefales reales del conjunto de datos). Esto puede
verse en la Figura 16.

2. Aplicacion de una mascara. A la sefial artefactuada replicada se le aplico una
mascara temporal disefiada especificamente para controlar la distribucion del ruido a
lo largo del tiempo. Esta méscara es una sefial binaria de 5 minutos de duracion que

determina en qué momentos se introduce el artefacto en la sefal sintética final:

e Durante el primer minuto, la mascara toma el valor 0 en todos los puntos, por lo

que no se afade artefacto.

¢ En el segundo minuto, la méscara toma el valor 1 en intervalos de 2 segundos de

duracion, separados periodicamente.

Signal 4 - Label: 1, ICA Index: 11 Signal 4 - Label: 1, ICA Index: 11

— Sefial4 de 727

o 10000 20000 30000 40000 SO00D. 60000 21000 22000 jooo 24000 25000
Tiemoo (ountos! 1] . Tiem; intos)
a) Componente ICA numero 11 (sefial etiquetada como cardiaca) y fragmento :%;f
/
/

Sefial sintética KR Y
20 —— Sefial sintética

Amplitud

o 10000 20000 30000 40000 50000 60000
Tiempo (puntos)

b) Seiial sintética formada por los segmentos obtenidos tras replicar el
fragmento cardiaco.

Figura 16. Seleccion y replicacion del artefacto para la generacion de sefiales sintéticas.
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e Durante el tercer minuto, el patrén se repite con menor frecuencia: la méscara

toma el valor 1 cada 5 segundos.

e A partir del cuarto minuto y hasta el final, la méascara toma el valor constante de
1, introduciendo de forma continua el artefacto.

La méscara puede verse representada en la Figura 17, y la aplicacion de esta sobre la
sefal artefacto obtenida previamente se muestra en la Figura 18.

3. Ajuste del artefacto. El segmento aislado fue posteriormente modificado en su escala
mediante un ajuste de potencia, lo que permitid simular diferentes intensidades de
contaminacion. Este paso permite ajustar el nivel de interferencia que se desea
inyectar sobre la sefial limpia al variar la potencia del artefacto respecto a la sefial
neuronal original. Para ello, se ha calculado la potencia de la sefial neuronal y de la
sefial artefacto con la méscara. A continuacion, se ha multiplicado la potencia de la
sefnal neuronal obtenida por el porcentaje deseado y se ha dividido entre la potencia
de la sefial artefacto con la mascara. El valor obtenido es el que se ha multiplicado a
la sefial con la mascara para ajustar su potencia respecto a la de la sefial neuronal. En

la Figura 19 se puede ver la sefal creada con diferentes ajustes de potencia.

Sefial generada (5 minutos de duracién)
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Figura 17. Mé&scara binaria de 5 minutos de duracion.
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Figura 18. Sefial artefacto obtenida tras aplicar la mascara a la sefial replicada.
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Figura 19. Sefial artefacto con diferentes ajustes de potencia respecto de la sefial neuronal

seleccionada.

4. Composicion con la sefial neuronal. Finalmente, el artefacto procesado fue sumado

a una sefial neuronal limpia seleccionada previamente, generando asi una nueva sefial

sintética con artefacto inyectado en condiciones conocidas. Este procedimiento puede

repetirse con diferentes combinaciones de sefiales y tipos de artefacto. En la Figura

20 se puede ver la sefal neuronal empleada en el ejemplo elaborado, y en la Figura

21 se muestra el resultado final con los distintos ajustes que se han aplicado

previamente. Por ultimo, en la Figura 22 pueden verse varias sefales sintéticas

generadas a partir de diferentes artefactos y sefiales neuronales seleccionadas.
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Figura 20. Componente ICA nimero 24 etiquetada como neuronal empleada en la creacion de una sefial

sintética con artefacto cardiaco.
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Figura 21. Sefiales sintéticas generadas al afiadir un artefacto con distintas proporciones de potencia

respecto a la sefial neuronal original.
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b) Senal sintética generada a partir de un artefacto ocular.
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¢) Senal sintética generada a partir de otro tipo de artefacto.

Figura 22. Sefiales sintéticas generadas tras haber empleado diferentes artefactos y sefiales neuronales.
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Capitulo 5. Desarrollo de la herramienta de
deteccion y eliminacion automatica de
artefactos en sefiales neuronales e integracion
en la herramienta MEDUSA®
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5.1. Introduccion

En el presente capitulo se introduce la herramienta basada en DL empleada, junto con
las mejoras incorporadas para visualizar y analizar las componentes cerebrales afectadas
por artefactos, y como se ha llevado a cabo su integracion en la herramienta MEDUSAZ®.

5.2. Creacion de un sistema automatico de deteccion y
eliminacion de artefactos basado en técnicas de TA

Para la elaboracion del detector automatico se ha partido de la herramienta realizada en
el TFG del Grado en Tecnologias de Telecomunicacion de la Universidad de Valladolid,
un modelo de DL basado en la CNN EEG-Inception (Gil Correa, 2023). Esta CNN se
disefio especificamente para procesar sefiales EEG en interfaces cerebro-computador
basadas en potenciales evocados (ERP, Event-Related Potentials). Presenta una
arquitectura modular donde se analizan las sefiales a multiples escalas temporales de
forma simultanea y se extraen las caracteristicas mas relevantes a distintas resoluciones
temporales (Santamaria, et al., 2020).

5.2.1. Etapa 1: Deteccion de artefactos

Tal y como se realiz6 en el TFG, en este TFM la red se modificd respecto a la CCN
EEG-Inception original con el fin de adaptarla a los datos de los que se disponia, ya que
la arquitectura inicial esta pensada para el tratamiento de sefiales EEG. EI modelo final
puede verse en la Figura 23. Este cuenta con dos entradas: las caracteristicas o features
extraidas de la base de datos y una matriz que asigna un canal del registro a cada
componente. A la primera entrada se le aplican dos convoluciones de tamafio 25x1 que,
a una frecuencia de muestreo de 200 Hz, permiten obtener dos ventanas temporales de
125 milisegundos. Las salidas se concatenan y se reducen las dimensiones tras aplicar un
Average Pooling. Esta capa calcula el valor medio de los valores de una ventana de su
matriz de entrada, y la salida que ofrece es una nueva matriz formada por dichos valores
medios calculados (Ertam & Aydin, 2017). A continuacién, se vuelven a realizar dos
convoluciones de tamafio 6x1 donde las caracteristicas extraidas presentan un nivel de
abstraccién mayor. De nuevo, las salidas vuelven a concatenarse y se aplica otro Average
Pooling. Tras esto, se realiza una convolucion de 8x1 y otra de 4x1, junto con sus Average
Pooling. Por altimo, se aplica un Global Average Pooling, que devuelve la media de los
valores de una ventana de la matriz sobre la que se aplica, y se concatena con el Global
Max Pooling efectuado sobre la segunda entrada de la red, que devuelve el valor maximo
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de la misma. La salida final se obtiene tras aplicar la capa Dense. Cada convolucion, tal
y como se detalla en la parte inferior derecha de la Figura 23, estd formada por una
normalizacion Batch Normalization, una activacion y el Dropout. Cabe destacar que en
el TFG se implement6 la arquitectura EEG-Inception utilizando la libreria TensorFlow
de Python, mientras que en el TFM se ha optado por una implementacion en PyTorch.
Esto se ha debido a que las versiones mas modernas de MEDUSA® han dejado de dar
soporte a TensorFlow, considerandolo obsoleto dentro de su ecosistema.

En cuanto al conjunto de datos empleado en el modelo disefiado, este se ha dividido en
dos, uno para entrenar la red y otro para testearla. Para ello, y tal y como se realiz6
también en el TFG, se ha hecho uso de los métodos k-fold y earlystopping. El primero
toma el conjunto de datos disponible y lo divide en k partes iguales. A continuacion,
entrena el modelo k veces, y emplea k — 1 partes para entrenar y la parte restante para
validar. Al final, calcula el promedio de las métricas obtenidas en cada una de las k
validaciones (Colomer, et al., 2016). En este caso se ha tomado un valor de k igual a 5
para conseguir un buen equilibrio entre coste computacional y variedad en la evaluacion.
Ademas, se reduce el riesgo de que el rendimiento del modelo esté sesgado a una sola
particion de datos. Por otro lado, earlystopping detiene el entrenamiento automaticamente
cuando el modelo deja de mejorar en el conjunto de validacion, evitando que se produzca
sobreajuste u overfitting. Para ello, se debe indicar el valor del pardmetro patience, que
define cuantas épocas consecutivas se permiten sin mejora antes de detener el
entrenamiento (Hussein & Shareef, 2024). En este caso se ha escogido un valor de 10
para evitar parar el entrenamiento demasiado pronto y tolerar posibles oscilaciones
durante el ajuste.

Para la etapa de entrenamiento se deben escoger los hiperparametros que permitan una
buena capacidad de generalizacién. En primer lugar, se ha escogido el nimero de épocas
de la red, que se corresponde con el nimero de veces que el modelo recorre
completamente el conjunto de datos de entrenamiento durante el proceso de aprendizaje.
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mm Input I Average pooling mm Dense * 2D convolution
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Figura 23. Red EEG-Inception adaptada al detector automatico de artefactos de este TFM.
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Este parametro influye directamente en la capacidad del modelo para ajustar sus pesos,
ya que un nimero bajo de épocas puede provocar que el modelo no aprenda lo suficiente,
mientras que un namero excesivo puede llevar al sobreajuste. En este trabajo se ha
decidido establecer el nimero de épocas en 100, un valor que, combinado con
earlystopping, permite al modelo aprender de forma adecuada sin prolongar
innecesariamente el proceso de entrenamiento ni comprometer su rendimiento. Por otro
lado, se debe escoger la funcion de pérdidas, que cuantifica la diferencia entre las
predicciones del modelo y las etiquetas reales. Cuanto mayor sea la diferencia, mayor
sera la correccion que se aplica a los pesos de la red en la siguiente iteracion (O'Shea &
Nash, 2015). En este TFM se ha utilizado la funcién Categorical Crossentropy, Gtil tanto
para clasificacion binaria como multiclase, ya que mide la distancia entre la distribucion
de probabilidades predicha por la red y la distribucién real de las clases, penalizando
mayoritariamente aquellas predicciones alejadas de la clase correcta. También debe
escogerse el batch size, que se corresponde con el nimero de muestras que se procesan
simultaneamente antes de actualizar los pesos del modelo durante el entrenamiento. En
lugar de ajustar los pesos tras cada muestra individual o después de todo el conjunto de
entrenamiento se hace en pequefios bloques denominados batches. En este caso, la
eleccion del batch size ha sido condicionada por el tipo de entrada seleccionada: si se
hace uso de la entrada correspondiente a la matriz que codifica la posicion del canal dentro
del registro el batch size toma un valor de 4, mientras que si no se usa dicha entrada su
valor es de 128. Esto se debe a que, al incluir la matriz, el modelo requiere mas memoria
para procesar cada lote por lo que un valor mayor sobrecargaria los recursos
computacionales disponibles.

Ademas, para evaluar la herramienta de clasificacion se ha hecho uso de diferentes
métricas que permiten valorar su rendimiento (Khanna, 2025):

e La sensibilidad mide la proporcion de verdaderos positivos detectados
correctamente, es decir, la capacidad del modelo para identificar correctamente

los casos positivos.

e La especificidad evaltia la proporcion de verdaderos negativos correctamente

clasificados, lo que indica cdbmo de bien el modelo evita falsos positivos.

e Laprecision representa el porcentaje de predicciones que realmente son correctas,

reflejando la fiabilidad del modelo al etiquetar un caso como positivo o negativo.

e La matriz de confusion ofrece una representacion que compara las clases reales
con las predichas, permitiendo observar detalladamente los aciertos y errores de
clasificacion. En las filas de la matriz se representa el etiquetado real, mientras

que en las columnas se muestra el etiquetado predicho por la red.
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e El coeficiente kappa cuantifica el grado de acuerdo entre las predicciones del
modelo y las etiquetas reales; toma valores entre -1 y 1, donde un valor cercano a

1 indica un alto nivel de concordancia.

En este trabajo se han seleccionado las 40 primeras componentes ICA de cada sujeto
para entrenar la red, ya que, debido al funcionamiento del algoritmo ICA, las primeras
componentes son las que mayor amplitud presentan y, por tanto, las que mas contribuyen
a la reconstruccion de la sefial original. Sin embargo, para equilibrar la representacion de
las clases, especialmente la de los artefactos que aparece con menor frecuencia en todo el
conjunto de datos, se han afiadido ademéas aquellas componentes etiquetadas como
artefacto dentro del rango de las componentes 41 a 160, es decir, se han afiadido todas las
componentes etiquetadas como artefacto del conjunto de datos. Esta decision se justifica
por el hecho de que la base de datos original presenta un desbalanceo de clases, con una
mayoria de componentes cerebrales respecto a las ruidosas, o que podria afectar
negativamente al rendimiento del modelo si no se lleva a cabo un ajuste. Ademas, el
entrenamiento se realiza en maltiples iteraciones donde en la primera se entrena con todas
las componentes seleccionadas, mientras que en el resto se van eliminando las
componentes clasificadas por la red como “dudosas”. El criterio seguido para clasificar
una sefial como “dudosa” es el siguiente: se identifican aquellas componentes que han
sido etiquetadas como no artefacto (es decir, con clase real igual a 0), pero que el modelo
clasifica con una probabilidad inferior a 0.9 de pertenecer a dicha clase. Estas
componentes, al no ser clasificadas como limpias por la red, se consideran potencialmente
contaminadas o ambiguas. Por tanto, en la siguiente iteracion de entrenamiento, se
eliminan del conjunto de datos. El bucle se detiene cuando se cumple alguna de las
siguientes condiciones: en primer lugar, si la sensibilidad acumulada supera el 95 %, lo
que indica que el modelo ha alcanzado un rendimiento suficientemente alto en la
deteccion de componentes ruidosas; y, en segundo lugar, si se detecta un empeoramiento
de la sensibilidad durante dos iteraciones consecutivas, 10 que sugiere que continuar
eliminando componentes podria perjudicar la capacidad del modelo para generalizar
correctamente. Cabe destacar que todo el sistema de deteccion y clasificacion de
artefactos en sefiales neuronales ha sido disefiado para funcionar de forma modular,
permitiendo su uso tanto en sefiales reales como sintéticas.

5.2.2. Etapa 2: Eliminacion de artefactos

Una vez completado el proceso de clasificacion iterativa, el siguiente paso, y una de las
principales aportaciones del presente TFM, consiste en analizar por qué el modelo
clasifica ciertas componentes como dudosas. Para ello, se ha desarrollado un sistema que
resalta visualmente las regiones que la red considera ruidosas, proporcionando al usuario
una primera explicacion de los motivos por los que una componente, inicialmente
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etiquetada como limpia, podria estar contaminada. Ademas, el objetivo principal de este
TFM es disponer de una herramienta que permita limpiar una base de datos de sefiales
neuronales contaminadas con artefactos. La primera opcion que cabria plantearse para
limpiar la base de datos de la que se dispone es eliminar por completo las sefiales
“dudosas”. Sin embargo, la pérdida de informacion relevante en dichas sefales
conllevaria graves problemas de identificacion de posibles enfermedades o condiciones
neuronales en los pacientes bajo estudio. La opcion que se ha planteado y estudiado en
este trabajo consiste en detectar el tramo especifico de sefial neuronal contaminado con
ruido procedente de otras fuentes que no son neuronales y disminuir su efecto o eliminarlo
por completo sin que afecte a las partes que son exclusivamente neuronales. La
reconstruccion posterior de la sefial cerebral estard limpia de artefactos, que son ajenos a
las sefiales generadas en el cerebro. La idea de la que se parte es la siguiente:
aprovechando la herramienta de IA disefiada explicada en el anterior subapartado, es
posible calcular el score de probabilidad de artefacto de cada uno de los fragmentos que
componen cada sefial; esta probabilidad permite aplicar un proceso de limpieza
automatica, eliminando Unicamente aquellos tramos cuya probabilidad de ser ruido
supera un determinado umbral. Este enfoque permite conservar la mayor parte de la
informacidn neuronal Util, evitando la necesidad de descartar componentes completas.

Con el fin de detectar esas partes ruidosas se han dividido las sefiales en segmentos. La
duracién de dichos segmentos queda a eleccion del usuario, obteniendo una clasificacion
mas precisa pero méas lenta cuanto menor es esta. Posteriormente, cada segmento se
replica hasta volver a obtener una sefial de 5 minutos de duracion y poder introducir las
nuevas sefiales generadas (réplicas de segmentos) por el algoritmo de DL. Se ha probado
a generar segmentos de 1, 5, 10 y 20 segundos de duracion y, sabiendo que la frecuencia
de muestreo empleada es de 200 Hz, se tiene que:

e Para segmentar la sefial en épocas de 1 segundo, la sefial tendra 200 muestras.
Como la sefial completa tiene una duracion de 5 minutos, o 300 segundos (lo que
equivale a 60000 muestras), habra un total de 300 épocas de 1 segundo de

duracion, lo que equivale a la introduccion de 300 sefiales en el algoritmo de TA.

e Para segmentar la sefial en trozos de 5 segundos, la sefial tendrd 1000 muestras.
Esto resulta en 60 épocas de 5 segundos de duracion, o 60 sefiales generadas.

e Para segmentar la sefial en épocas de 10 segundos, la sefial tendra 2000 muestras,
con lo que se obtienen 30 épocas de 10 segundos de duracion (30 senales).

e Para segmentar la sefial en épocas de 20 segundos, la sefial tendra 4000 muestras,
y habra 15 épocas de 20 segundos de duracion (15 sefiales).
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En las graficas de clasificacion, el parametro “Label” corresponde al ectiquetado
realizado previamente por un experto, antes de cargar las sefiales MEG en la herramienta
de clasificacion. Por otro lado, el parametro “Predicted” hace referencia a la prediccion
hecha por el algoritmo de clasificacion. Finalmente, el parametro “Score” se corresponde
con el valor numérico que especifica la probabilidad con la que el algoritmo obtiene la
prediccidn realizada. Asi, en la tarea previa de deteccion de artefactos se clasificaron
como “dudosas” aquellas componentes etiquetadas como no artefacto; es decir, su
parametro “Label” era igual a cero, cuyo score para dicha categoria era menor que 0.9, o
lo que es lo mismo, su probabilidad estaba por debajo del 90 % para la categoria de no
artefacto. Con el objetivo de proporcionar los resultados obtenidos de forma visual, la
clasificacion indica qué partes de la sefial ha considerado ruidosas, y el score
correspondiente para la clase artefacto: en rojo marca aquellos segmentos cuyo score
supera el 90 %, en naranja destaca aquellos cuyo score se encuentra entre el 75 y el 90
%, y en amarillo aquellos cuyo score esta entre el 50 y el 75 %. Ademas, se ha obtenido
una grafica con los scores obtenidos a lo largo de la sefial completa. Dicha gréafica adopta
una forma de pulsos rectangulares, cuyo ancho es acorde a la duracion de los segmentos
generados. En la Figura 24 se muestra la misma sefial en la que se han aplicado diferentes
niveles de segmentacion, junto con la clasificacion obtenida y el score correspondiente.

Para tratar de eliminar el ruido detectado en la sefial original se ha decidido multiplicar
esta Ultima por el complemento del score obtenido, es decir, el 100 % menos el score,
dado que el objetivo es eliminar o amortiguar la influencia de las partes ruidosas, y el
score es mayor cuanto mas ruidoso considere el algoritmo el segmento correspondiente.
Sin embargo, multiplicar directamente por una forma de onda rectangular implicaria
transiciones muy abruptas en la sefial resultante en las zonas de cambio de amplitudes.
Por eso, se ha decidido aplicar un suavizado a la gréfica del score. Se han propuesto dos
alternativas diferentes, a eleccion del usuario: (i) suavizado mediante la aplicacion de un
filtro gaussiano o (ii) mediante la aplicacion de un filtro de media movil. El primero aplica
una suavizacion basada en una distribucion normal, lo que implica que los valores
centrales del score tienen mas peso y los extremos menos, generando una transicion suave
entre las zonas ruidosas y las no ruidosas. Este tipo de suavizado es util para evitar cortes
bruscos en la sefial y proporciona una delimitacion progresiva de los artefactos,
respetando mejor la continuidad temporal. En términos generales, la funcién gaussiana se
expresa de la siguiente manera (Nixon & Aguado, 2019):

2

G(x) = ﬁ e 202 ®)
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Figura 24. Sefial neuronal con artefactos a la que se han aplicado las 4 segmentaciones posibles. Se
muestran los artefactos marcados con colores tras la clasificacion y los scores correspondientes:
probabilidad de ser artefacto superior al 90 % en rojo, probabilidad de ser artefacto entre un 75y un 90 %
en naranja, y probabilidad de ser artefacto entre un 50 y un 75 % en amarillo.

El valor del parametro sigma, o, en un filtro gaussiano define el ancho de la campana
de la funcidn gaussiana, y afecta directamente a la cantidad de suavizado aplicado a los
datos. Asi, si sigma es pequefio la campana es mas estrecha, lo que hace que los valores
mas proximos al valor central tengan un peso significativo. En este caso, el suavizado
aplicado a los datos es menor, y permite conservar mas los detalles de la sefial. Por otro
lado, para un valor mayor de sigma la campana es mas ancha, haciendo que valores mas
alejados del centro tengan influencia en el suavizado de los datos. Este Gltimo es mayor
en este caso, lo que provoca que se pierdan ciertos detalles de la sefial. La funcion
gaussiana viene caracterizada por la propiedad de decaimiento, que establece que la
mayor parte de la energia se concentra en una zona alrededor del centro. Asi, se tiene que:
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- lo: contiene aproximadamente el 68% del area.
- 2o: contiene aproximadamente el 95% del area.
- 3o: contiene mas del 99% del area.

Por esta razon, en aplicaciones practicas, se considera que un radio de 3¢ desde el centro
es suficiente para capturar casi toda la informacion relevante de la funcion gaussiana. Asi,
en este TFM se ha considerado que con un valor de sigma igual a 500 se aplica un
suavizado donde cada punto del score no depende solo de su valor puntual, sino también
de la influencia de los valores vecinos contenidos dentro de un rango de aproximadamente
+1500 muestras. De este modo, el suavizado resultante es lo suficientemente amplio como
para eliminar picos aislados en el score, generando una transicion progresiva entre las
zonas clasificadas como ruidosas y las que no lo son.

Por otro lado, el filtro de media mévil es muy similar al filtro gaussiano ya que ambos
reemplazan cada punto por un promedio ponderado de sus valores vecinos. Sin embargo,
la diferencia fundamental radica en la forma en que asignan los pesos a los puntos dentro
de la ventana. En el filtro de media movil, todos los puntos dentro de la ventana tienen el
mismo peso, es decir, la contribucidon de cada uno es constante e independiente de su
distancia al punto central. Esto puede provocar que los bordes de la ventana tengan tanta
influencia como el propio centro, lo que puede dar lugar a transiciones algo mas abruptas.
La expresion que caracteriza al filtro de media movil es la siguiente (Smith, 1999):

ylnl = &+ Zi-_p x[n +kl, (6)

donde D es el nimero de muestras que coge por detras de la muestra n, A es el nimero de
muestras que coge por delante de la muestra n, y W, que es el tamafio de la ventana del
filtro, es el sumatorio de A y D méas 1. Esta ventana deslizante, que es de tamafio fijo,
define el nimero de puntos que se tienen en cuenta en cada célculo y, dentro de ella, todos
los valores reciben el mismo peso. Es decir, la ventana funciona como una caja de tamafio
constante que se desplaza a lo largo de la sefial, y para cada posicion el valor resultante
es la media aritmética de los puntos contenidos en esa ventana. Al igual que sucedia con
el filtro gaussiano, cuanto mayor es la ventana mayor es el suavizado, pero también se
pierde mas detalle y se pueden suavizar excesivamente las transiciones, mientras que si
la ventana es pequefia el efecto de suavizado es mas ligero, conservando mas las
fluctuaciones rapidas de la sefial. Para que su efecto sea similar al causado por el filtro
gaussiano se ha escogido un valor de ventana igual a 1201 muestras dado que permite
alcanzar un compromiso adecuado entre el nivel de suavizado y la preservacion de la
estructura de la sefial. En la Figura 25 puede verse el resultado de suavizar el score de
una sefial con los dos filtros mencionados.
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Figura 25. Suavizacion del score de una sefial neuronal con artefactos calculado por la red (en azul)
mediante la aplicacion de un filtro gaussiano y un filtro de media mévil. El score suavizado se muestra
en naranja.

5.3. Integracion del detector automatico en la
herramienta MEDUSA®

El codigo desarrollado se ha adaptado para integrarse dentro de MEDUSA®. Esta
integracién ha requerido reorganizar y modularizar dicho cédigo, asi como ajustar su
estructura para hacerlo compatible con las herramientas y convenciones internas de
MEDUSA®. Gracias a ello, se ha podido implementar una interfaz visual usando Python
que permite al usuario cargar sefiales, aplicar la deteccion de artefactos y visualizar los
tramos ruidosos resaltados con colores, facilitando asi tanto la inspeccién manual como
la limpieza automatica asistida.

El flujo de trabajo empleado se resume en la Figura 26, donde se muestran las primeras
etapas de adquisicion de sefiales MEG, su paso por el algoritmo de ICA y el etiquetado
de las componentes obtenidas por parte de los técnicos especialistas, hasta la aplicacion
del algoritmo de IA. Este Gltimo ha seguido una estructura modular en Python, organizada
en blogues funcionales que reflejan cada una de las etapas del flujo de trabajo. Cabe
destacar que los ficheros de cddigo ejecutable se encuentran integrados en el nucleo
MEDUSA®, lo que implica que para ejecutarlos es necesario clonar el repositorio y
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trabajar directamente sobre el codigo. A continuacion, se detalla la estructura de
funciones y donde se pueden encontrar dentro de MEDUSAZ®.

1. Carga de seiales. Las sefales neuronales se encuentran en formato .mat y son

cargadas mediante un script que las convierte a formato .A5.

Clase: Recording

Ubicacion: medusabci / medusa-kernel / medusa / components.py

Estructura: la funcion empleada es la siguiente:

- load and save mat files ( ): carga todos los archivos .mat de una carpeta, aplica

normalizacidon Z-Score a las matrices de caracteristicas e ICA (funcion definida

en otro archivo) y guarda el resultado en formato HDFS5. Las entradas que se deben

especificar y las salidas que devuelve se recogen en la Tabla 2.

Adquisicion de
sefales MEG

Figura 26. Flujo de trabajo seguido en la ejecucién del TFM.

Entrad input_path Ruta a la carpeta que contiene los archivos .mat.
ntradas
output_path Ruta a la carpeta donde se guardara el archivo .h5.
Salidas No retorna valores. Guarda un archivo HDF5 con los datos preprocesados.

Tabla 2. Entradas y salidas de la funcion de carga de sefiales load_and_save_mat_files ().
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2. Estandarizacion de sefiales. Las senales extraidas son estandarizadas para
mejorar el rendimiento del modelo. Se aplica una transformacion Z-Score,

normalizando cada componente respecto a su media y desviacion tipica.
Ubicacion: medusabci / medusa-kernel / medusa / transforms.py
Estructura: la funcion que se ha creado es la siguiente:

- zscore normalization ( ): aplica normalizacion Z-Score por canal a las
matrices de caracteristicas y de ICA. Las entradas y salidas de esta funcion

son las que se muestran en la Tabla 3.

3. Modelo CNN EEG-Inception. Aqui se detalla el modelo CNN implementado, la

variante modificada de la arquitectura EEG-Inception.
Clase: EEGInceptionV1ICA
Ubicaciéon: medusabci / medusa-kernel / medusa / deep learning models.py

Estructura: El modelo cuenta con la clase PtModel, cuya estructura de funciones

principales es la siguiente:

- En primer lugar, se definen las capas con las que va a contar el modelo,
divididas en 4 bloques (analisis de un solo canal, filtrado espacial, analisis de

multiples canales y bloque de salida).

- forward ( ): se hace uso de los bloques definidos anteriormente, especificando

las entradas y salidas de cada uno de ellos.

- transform data ( ): comprueba que los datos estdn en formato NumPy y los
convierte a un tensor de PyTorch para poder entrenar el modelo de DL con esa
libreria.

- fit (): entrena el modelo.

- predict_proba ( ): predice las probabilidades de cada clase para los datos de
entrada.

4. Clasificacion y deteccion de componentes ICA. En esta seccion se hace uso del
modelo de CNN comentado con anterioridad, pudiendo asi entrenarlo con los

datos previamente cargados y llevar a cabo la etapa de test.

temp_features Matriz de caracteristicas.
Entradas ; _
temp_ica Matriz de componentes ICA.
Salid temp_features_norm Matriz de caracteristicas normalizada.
alidas
temp_ica_norm Matriz ICA normalizada.

Tabla 3. Entradas y salidas de la funcion de normalizacion de sefiales zscore_normalization ().
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Ubicacion: medusabci / medusa-kernel / medusa / artifact removal.py

Estructura: la funcién empleada se detalla a continuacion:

train_meg _model ( ): ejecuta el train y el test del modelo EEG-Inception

modificado para clasificar sefiales MEG de forma binaria o discriminando

entre clases. Las entradas que se deben indicar y las salidas que devuelve la

funcién se recogen en la Tabla 4.

5. Interfaz grafica. La interfaz grafica permite visualizar las sefiales clasificadas

como dudosas, junto con sus predicciones y scores. El usuario puede eliminar las

partes contaminadas y descartar o recuperar la sefial correspondiente. También

desde la interfaz se permite generar sefiales sintéticas aplicando artefactos sobre

sefiales neuronales limpias.

Ubicacion: medusabci / medusa-kernel / medusa / artifact_removal.py

Estructura: esta es la funcion que se ha utilizado:

MEG artifact recovery GUI ( ): muestra las sefiales clasificadas como

dudosas tras haber ejecutado el anterior bloque de codigo y la eliminacion de

los artefactos presentes en estas. También permite la generacion de senales

sintéticas y su limpieza para evaluar el rendimiento del modelo. Las entradas

que necesita la funcion y la salida que devuelve se muestran en la Tabla 5.

ica_power

Determina si se utilizan las componentes ICA como
entrada adicional al modelo.

ica_chosen_components

Numero de componentes ICA a utilizar por sujeto.

Determina si se realiza clasificacion binaria o

multi .
multiclase.
input_path Ruta del archivo .h5 con los datos de entrada.
0 filas Caracteristicas totales (nimero de sujetos x niumero de
Entradas - canales).
n_columnas Numero de muestras de cada sefial.
n_columnas_ica Numero de componentes IC totales.
) Umbral de probabilidad por debajo del cual se
confianza -
eliminan componentes dudosas.
model_path Ruta donde se guardara el modelo entrenado.
Carpeta donde se guardaran los resultados del
output_path i
experimento.
. Modelo entrenado.
Salidas

Archivo de resultados en formato .h5

Tabla 4. Entradas y salidas de la funcion de entrenamiento y test del modelo EEG-Inception modificado
train_meg_model ().
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input_path

Ruta al archivo .h5 gue contiene las sefiales.

Tamafio de los blogues que se cargan en memoria de

block_size . ) .
- forma incremental para evitar problemas de memoria.
Caracteristicas totales (nimero de sujetos X nimero de
total_rows
canales).
Entradas total_cols Numero de muestras de cada sefial.
Ruta al archivo .h5 con los resultados generados por el
results_path .
proceso anterior.
. Umbral de probabilidad por debajo del cual se
confidence
detectan artefactos.
ica_chosen_components Numero de componentes ICA a utilizar por sujeto.
Salida Interfaz gréfica.

Tabla 5. Entradas y salidas de la funcién de interfaz grafica MEG_artifact_recovery GUI ().
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6.1. Introduccion

En este capitulo se exponen los resultados obtenidos tras aplicar los métodos
desarrollados para la deteccion automaética de artefactos en sefiales neuronales, haciendo
uso tanto de sefiales reales como sintéticas. Se describen las pruebas realizadas con los
modelos de clasificacion disefiados y se analizan los resultados finales obtenidos tras el
entrenamiento del sistema. Finalmente, se presentan los resultados obtenidos tras la
integracion del sistema en la herramienta MEDUSA®, evaluando su funcionamiento
sobre datos preprocesados y simulados.

6.2. Desempeiio del modelo de clasificacion

En este apartado se presentan los resultados obtenidos durante la evaluacion del modelo
de clasificacion disefiado para la deteccion y eliminacion automatica de artefactos en
componentes ICA de registros MEG. ElI modelo ha sido evaluado en dos versiones: (i)
clasificacion binaria, destinada a diferenciar entre componentes cerebrales vy
componentes artefactuadas, y (ii) clasificacion multiclase, que permite identificar el
origen especifico del artefacto (cardiaco, red eléctrica, ocular u otros), tal y como se
realiz6 en el TFG. Sin embargo, el modelo integrado en la herramienta MEDUSA®, que
permite resaltar y eliminar las partes ruidosas de las sefiales, ha sido el binario debido a
su mejor funcionamiento. Esto se detalla a continuacion.

Los resultados obtenidos en la clasificacion binaria consiguen una precision del
96.92%, una sensibilidad del 67.14% y una especificidad del 98.56%. En el caso de la
clasificacion multiclase, el modelo ha logrado una precision global del 86.90%, con una
especificidad promedio del 88.13%. La sensibilidad, sin embargo, varia en funcion de la
clase, siendo mas elevada en componentes oculares (81.39%) y cardiacas (74.41%), y
mas baja en la deteccidn de artefactos asociados a la red eléctrica (42.85%) y otros tipos
menos frecuentes (25.00%). Ademas de las meétricas clasicas, se ha calculado el
coeficiente kappa, obteniendo un valor de 0.6824 en clasificacion binaria, lo que indica
un nivel de concordancia moderado con respecto al etiquetado manual, mientras que en
la clasificacion multiclase el valor es de 0.3450, lo que indica que existe mayor dificultad
a la hora de distinguir entre tipos especificos de artefacto.

Durante el proceso de entrenamiento para el caso binario, el modelo también ha
identificado un conjunto de componentes que, pese a estar etiquetadas como limpias por
el técnico especialista, presentan caracteristicas que el sistema considera dudosas, tal y
como se ha comentado previamente. En la Figura 27 se muestran algunos ejemplos de
estas componentes etiquetadas como dudosas. Este tipo de resultados pone de manifiesto
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uno de los principales problemas del etiquetado manual: su dependencia de la
interpretacion subjetiva del experto y la posibilidad de que ciertos artefactos,
especialmente los de baja intensidad o duracidn, pasen desapercibidos. Estas
componentes dudosas han sido eliminadas progresivamente en un proceso iterativo,
aplicando el criterio basado en la probabilidad asignada por el modelo (considerando
dudosas aquellas componentes con probabilidad de ser de origen neuronal inferior a 0,9).
Como consecuencia, se ha observado una mejora progresiva en las métricas,
especialmente en la sensibilidad, llegando a obtener valores de esta del 93.68 %, 94.53 %
y 95.47 % en algunas iteraciones, lo que confirma que la eliminacién de muestras
ambiguas favorece el rendimiento general del sistema.

6.3. Evaluacion tras la eliminacion de segmentos
ruidosos

A continuacion, se presentan los resultados obtenidos tras aplicar el proceso de
eliminacién de artefactos sobre una componente etiquetada como dudosa por la red. En

Label:0 Predicted:1 Score:53% DB_idx:197 ICA_pos:38

10 — Sefal 11

Amplitud

/] 10000 20000 30000 40000 50000 60000
Tiemoo (puntos)

a) Componente nimero 11 etiquetada como dudosa eliminada.

Label:0 Predicted:0 Score:56% DB_idx:347 ICA_pos:28

10 1

Amplitud
o

— Sefial 15

/] 10000 20000 30000 40000 50000 60000
Tiemoo (puntos)

b) Componente nimero 15 etiquetada como dudosa eliminada.

Figura 27. Dos componentes etiquetadas por el técnico especialista como no artefacto pero que la red
ha eliminado por considerarlas dudosas. (a) Componente etiquetada como no artefacto (0), y la red
ha predicho artefacto (1); score del 53 %. (b) Componente etiquetada como no artefacto (0), y la red
ha predicho no artefacto (0); score del 56 %.
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la Figura 28(a) se muestra una de esas sefiales en el dominio temporal, donde puede
observarse como la sefial original (en azul) presenta una serie de picos y oscilaciones de
gran amplitud, distribuidos en distintos momentos, los cuales indican la presencia de
artefactos. Tras aplicar la eliminacion de los segmentos considerados contaminados segln
el score calculado por el modelo, se obtiene la sefial recuperada (en rojo), que presenta
una forma mucho mas estable, con una reduccion de las oscilaciones anémalas y
manteniendo la estructura subyacente de la sefial neuronal. Para analizar como este
proceso afecta a la sefial en el dominio frecuencial, en la Figura 28(b) y Figura 28(c) se
representan los espectrogramas de la sefial original y de la recuperada, respectivamente.
En el primero se observa una mayor concentracion de potencia en los puntos donde hay
mayor contenido de ruido, lo que refleja la presencia de componentes de alta intensidad
asociadas a artefactos. En cambio, en la sefial recuperada la potencia disminuye de forma
significativa, lo que sugiere que el proceso aplicado ha sido eficaz en la reduccion de
ruido y en la preservacion de la actividad neuronal relevante. En la Figura 29 se muestra
otra sefial dudosa y su correspondiente sefial recuperada, tanto en el dominio temporal
como en el frecuencial. En la grafica correspondiente al espectrograma puede verse que
se reduce significativamente la potencia asociada a artefactos. No obstante, el contenido
espectral subyacente se mantiene, lo que sugiere que la informacion neuronal no se ha
visto comprometida tras la eliminacion de los artefactos.

Por otro lado, en la Figura 30 se muestra este proceso de eliminacion de artefactos tras
aplicar diferentes niveles de segmentacion a la misma sefial. Se ha observado que, cuanto
menor es la longitud de las segmentaciones para la clasificacion, mayor es la capacidad
del sistema para eliminar el ruido. Con segmentaciones de 1 segundo, la deteccion es
mucho mas localizada, permitiendo identificar y suprimir fragmentos concretos de la
sefial contaminados por artefactos, lo que se traduce en una sefial recuperada con menos
ruido. Por el contrario, al utilizar segmentaciones mas largas, la deteccidn es mas general,
lo que provoca que el modelo tenga menos capacidad para identificar picos puntuales de
ruido, conservando parte de la potencia no deseada en la sefial final.

A su vez, en la Figura 31 se muestran los resultados obtenidos tras aplicar los distintos
métodos de suavizado sobre el score. En primer lugar, se observa que el suavizado
mediante un filtro gaussiano permite una reduccion mayor de la potencia. Por otro lado,
el filtro de media mdvil, aunque también logra reducir la presencia de artefactos, presenta
algunas limitaciones derivadas de su propia naturaleza. Al aplicar una ventana con pesos
uniformes y bordes abruptos, este filtro genera cortes sobre el score, 1o que provoca que
en ocasiones se eliminen pequefios fragmentos de la sefial, que podrian corresponder a
actividad neuronal genuina. Sin embargo, el comportamiento de ambos filtros es muy
similar y las diferencias se aprecian generalmente en fragmentos concretos observados en
detalle.
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Figura 28. Sefial dudosa etiquetada por un técnico como "neuronal”, clasificada por la red CNN como
"neuronal”, con un score en la clasificacion del 87 %.

Adicionalmente, se ha llevado a cabo una reevaluacién de componentes dudosas tras
haber eliminado el ruido que contenian con la herramienta desarrollada. Para ello, se ha
obtenido el numero de componentes clasificadas originalmente como dudosas y el
numero de componentes que detecta el algoritmo clasificadas como dudosas nuevamente
tras la limpieza de artefactos en todas ellas. Esto se ha evaluado aplicando las distintas
segmentaciones posibles. En la Tabla 6 se recogen los resultados obtenidos. Puede verse
que, de las 14469 sefales inicialmente clasificadas como dudosas, Unicamente el
35.41 % se mantuvo como dudoso con segmentaciones de 1 segundo, mientras que con
segmentaciones de 20 segundos este porcentaje aumento al 43.46 %. Estos resultados dan
una idea del funcionamiento de la herramienta: aplicando segmentaciones de corta
duracién se obtienen mejores resultados al capturar detalles concretos de las sefiales que
con segmentaciones mas largas pasarian desapercibidos. Sin embargo, cabe destacar que
con segmentaciones mas pequefias se tiene un nimero superior de sefiales. Por ello, existe
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Figura 29. Sefal dudosa etiquetada por un técnico como "neuronal”, clasificada por la red CNN como
"neuronal”, con un score en la clasificacion del 80 %.

un compromiso entre el tamafio de los segmentos y el tiempo de procesamiento:
segmentaciones mas cortas permiten una clasificacion mas precisa al ofrecer mayor
resolucion temporal en la deteccion de artefactos, pero incrementan de forma significativa
el tiempo necesario para procesar todo el conjunto de sefiales.

Seflales en el dominke temporsl

Saiialis n ol deminie tomgord

i i
H
a) Recuperacion de la sefial con segmentos de | segundo. b) Recuperacion de la sefial con segmentos de 5 segundos.
Seiadis on ol dominio o Sealis i o dosviri lerporal
i . i
i
¢) Recuperacion de la sefial con segmentos de 10 segundos. d) Recuperacion de la sefial con segmentos de 20 segundos.

Figura 30. Representacion en el dominio del tiempo de la sefial original (en azul) tras aplicarle
diferentes niveles de segmentacion y recuperarla (en rojo).
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a) Recuperacion de la sefial tras aplicar un filtro gaussiano al score. b) Recuperacion de la senal tras aplicar un filtro de media movil al score.

Figura 31. Representacion del score obtenido tras clasificar la sefial y aplicarle diferentes métodos de
suavizado y representacion en el dominio del tiempo de la sefial original (en azul) tras aplicarle esos
suavizados y recuperarla (en rojo).

Segmentos de | Segmentosde | Segmentos de Segmentos de
1 segundo 5 segundos 10 segundos 20 segundos

Numero original de

14469 senales
componentes dudosas

Numero de componentes
dudosas tras eliminar los
artefactos

5123 sefiales | 5492 sefiales 5788 sefiales 6289 sefiales
(35.41 %) (37.96 %) (40 %) (43.46 %)

Tabla 6. Nimero de sefiales clasificadas como dudosas de nuevo tras eliminar los artefactos en las sefiales
clasificadas originalmente como dudosas.

6.4. Evaluacion sobre senales sintéticas

Con el objetivo de evaluar la eficacia del sistema desarrollado, se ha llevado a cabo una
serie de pruebas utilizando las sefiales sintéticas generadas. Estas sefiales han sido creadas
combinando componentes neuronales limpias con segmentos especificos de artefacto a
los que se ha aplicado una mascara temporal; esta controla la aparicion intermitente de
los artefactos a lo largo de los cinco minutos de duracion de cada sefial, tal y como se
comento previamente. Gracias a este proceso es posible disponer de un ground truth, ya
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que se conoce con exactitud qué partes de la sefial corresponden a actividad cerebral y
cuéles han sido contaminadas de forma artificial. Para ello, se ha aplicado el mismo
detector de artefactos que en las sefiales reales. EI modelo ha generado un score de
probabilidad sobre cada fragmento temporal, a partir del cual se ha aplicado un proceso
de suavizado y eliminacion de los tramos identificados como ruidosos.

Los resultados obtenidos muestran que la herramienta es capaz de detectar con alta
precision los segmentos contaminados, y es capaz de eliminar los artefactos sintéticos
introducidos. Esto se observa, por ejemplo, en la Figura 32 para sefiales contaminadas
con artefactos cardiacos, en la Figura 33 para artefactos de red eléctrica, en la Figura 34
para oculares y en la Figura 35 para otro tipo de artefactos, todos ellos habiendo elegido
un tamario de segmento de 5 segundos de duracion. En estos ejemplos se ve que, para los
segmentos no contaminados, es decir, los correspondientes al primer minuto de sefial, la
herramienta no elimina nada y la sefial neuronal permanece intacta. Por otro lado, para
los dos altimos minutos, donde la sefial esta completamente contaminada con artefactos,
la herramienta elimina la mayor parte del tramo al quedar inservible tras la
contaminacion. Ademas, en las gréaficas con zoom se aprecia mejor la reduccion del
artefacto en cuestion. Por ejemplo, para el caso en el que se afiade sefial cardiaca a la
componente neuronal, el complejo QRS se ve reducido en gran medida. Lo mismo sucede
para los picos propios de la componente de red eléctrica y los oculares. En estos ultimos
es posible ver cémo la potencia del artefacto propio de pestafieos se reduce
significativamente tras aplicar el proceso de eliminacion de artefactos sobre las sefiales
neuronales contaminadas de forma artificial.

Adicionalmente, se ha analizado la influencia del ajuste en la capacidad de deteccion
de la herramienta, es decir, cdbmo varia el nUmero de detecciones correctas para cada uno
de los minutos de sefial sintética segin la SNR aplicada. Para ello, se ha escogido
aleatoriamente un conjunto elevado de sefiales neuronales y artefactos de los distintos
tipos disponibles (cardiacas, de red eléctrica, oculares y de otro tipo) con el fin de capturar
la mayor variabilidad posible de sefiales. A continuacion, en lugar de seleccionar
manualmente el tramo de artefacto deseado para sumarselo a la sefial neuronal, se ha
segmentado la sefial artefacto en segmentos de 5 segundos, los cuales se han introducido
en la herramienta de IA desarrollada. Seguidamente, se ha obtenido el score de
clasificacion de cada uno de los segmentos, y se ha escogido el tramo de sefial artefacto
cuyo score era superior a 0.9 durante el mayor intervalo de tiempo continuo. Asi se
garantiza que se selecciona el artefacto mas relevante y de mayor duracion de forma
automatica de cada una de las sefiales. Posteriormente, se ha replicado el tramo
seleccionado hasta obtener una sefial de 5 minutos de duracién, y se ha aplicado la
mascara creada. El siguiente paso ha consistido en modificar la potencia de la sefial
artefacto creada respecto de la sefial neuronal. Para ello, los porcentajes de variacion de

84



Signal 5 - Label: 0, ICA Index: 10 Signal 5 - Label: 0, ICA Index: 10

— semaisde 17934
4 3
2
2
'
E 1
2o °
H -1
-2
-2
- -
—— Sefial 5 de 17934 2%
: e == s = ey = Sa500 %0 30300 wemke T wio 300 %0 w0000
Tiemao (ountos) N o s
a) Senal neuronal original.
Sefial suma Sefal suma
" senatsuma . — senalsuma
100
6
7
.
3 2 3
g 25 -)sg 2
0.0 o
-25 e
-50 4
3 preomy 200 pesomy s preomy w000 350 38300 w750 39000 0i%0 300 w750 w000
Tiemoo (ountos)

Tiemoo (ountos)

b) Senal sintética con artefactos.

sefial recuperada

Sefial recuperada

81 — senal original
— Sefial recuperada

— Sefial original
10.0 1 — senal recuperada

8250 38500 38750 39000 39250 39500 39750 40000
° 10000 20000 30000 40000 50000 60000 Tiemoo fountos)
Tiemoo (ountos)

¢) Senal recuperada.

Figura 32. Componente neuronal nimero 5 (fila izquierda) y zoom de la muestra 38000 a la 40000 (fila
derecha), sobre la que se ha sumado un artefacto de tipo cardiaco para generar una sefial sintética artefactuada,
que se ha introducido en el método desarrollado para obtener la sefial recuperada equivalente.
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Figura 33. Componente neuronal nimero 14 (fila izquierda) y zoom de la muestra 14000 a la 16000 (fila
derecha), sobre la que se ha sumado un artefacto de red eléctrica para generar una sefial sintética artefactuada,
que se ha introducido en el método desarrollado para obtener la sefial recuperada equivalente.
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Figura 34. Componente neuronal nimero 19 (fila izquierda) y zoom de la muestra 15000 a la 17000 (fila
derecha), sobre la que se ha sumado un artefacto de tipo ocular para generar una sefial sintética artefactuada,
que se ha introducido en el método desarrollado para obtener la sefial recuperada equivalente.
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Figura 35. Componente neuronal ndmero 30 (fila izquierda) y zoom de la muestra 46000 a la 48000 (fila
derecha), sobre la que se ha sumado un artefacto de otro tipo para generar una sefial sintética artefactuada,
gue se ha introducido en el método desarrollado para obtener la sefial recuperada equivalente.
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sefial escogidos han variado del 10 % al 400 %. Los Gltimos pasos han sido los explicados
en capitulos anteriores: suma del artefacto con ajuste a la sefial neuronal, paso de la sefial
resultante por el algoritmo de IA con diferentes segmentaciones y obtencion del score de
clasificacion para cada segmento. A partir de los resultados obtenidos, se ha analizado el
porcentaje de detecciones correctas para cada minuto de sefial. Esto se ha hecho asi
porque el porcentaje de ruido afiadido en cada minuto es distinto. Por ejemplo, el primer
minuto de sefal, al cual no se le afiade ruido al valer la méscara cero, no depende del
ajuste aplicado en ninguno de los casos.

En la Figura 36 se muestra la gréfica obtenida para el primer minuto, habiendo realizado
segmentaciones de 1, 5, 10 y 20 segundos. Puede verse que como este primer tramo es
independiente del ajuste aplicado al no afadirle ruido, las graficas obtenidas son muy
similares. El score obtenido en este caso se refiere al porcentaje de sefial detectado como
no artefacto que, como puede observarse, es bastante elevado, superior en todos los casos
al 90 %.

En la Figura 37 se muestra la grafica correspondiente al segundo minuto y en la Figura
38 la correspondiente al tercer minuto. La primera corresponde a intervalos de ruido de 2
segundos de duracion y luego 2 segundos sin ruido, mientras que a la segunda se le afiade
ruido cada 10 segundos, con una duracion del tramo ruidoso de 5 segundos. Por eso, en
este caso el score obtenido se refiere al porcentaje de sefial detectado como artefacto. En
ambas situaciones el 50 % del tiempo la sefial esta libre de artefactos. Sin embargo, en el
primer caso, con segmentaciones de 1 segundo la herramienta es capaz de discernir bien
qué es artefacto y qué no lo es al haber introducido tramos de ruido de 2 segundos (es
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Figura 36. Porcentaje de sefial detectado como no artefacto durante el primer minuto en funcién del ajuste
aplicado a la sefial habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y
20 segundos (en azul claro).

87



decir, los segmentos son de menor tamafio que los tramos de ruido), y asi alcanzar la
maxima precision, que en este caso es del 50 %. A partir de segmentaciones de 5 segundos
el porcentaje de deteccién aumenta porque detecta todo el tramo como ruidoso al estar
mayoritariamente contaminado. Lo mismo sucede en la segunda situacion, solo que la
maxima precision se puede alcanzar también con segmentaciones de 5 segundos al durar
los tramos ruidosos dicho tiempo.

Finalmente, en la Figura 39 puede verse la grafica para los dos ultimos minutos, a los
cuales se les afiade el ruido generado de forma continua. En este caso el porcentaje de
sefial detectado como artefacto aumenta a medida que se incrementa el ajuste de potencia
aplicado a la sefal, llegando a alcanzar porcentajes superiores al 90 % a partir de un ajuste
de potencia del artefacto del 200 % de la potencia de la sefial neuronal.
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Figura 37. Porcentaje de sefial detectado como artefacto durante el segundo minuto en funcion del ajuste
aplicado a la sefial habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y
20 segundos (en azul claro).
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Figura 38. Porcentaje de sefial detectado como artefacto durante el tercer minuto en funcién del ajuste
aplicado a la sefial habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y
20 segundos (en azul claro).
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Figura 39. Porcentaje de sefial detectado como artefacto durante los dos Gltimos minutos en funcién del

ajuste aplicado a la sefial habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en
naranja) y 20 segundos (en azul claro).
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6.5. Interfaz grafica en MEDUSA®

En este apartado se presenta la interfaz grafica desarrollada como parte de la
herramienta de andlisis de artefactos. Esta interfaz ha sido disefiada con el objetivo de
facilitar la interaccion con los resultados obtenidos por la red neuronal, asi como permitir
un control para los usuarios sobre el proceso de eliminacion de artefactos. La interfaz
cuenta con dos ventanas principales: la primera estd dedicada a la visualizacion de las
sefiales clasificadas como dudosas, donde se pueden observar los tramos contaminados
identificados automaticamente y llevar a cabo su eliminacion; la segunda estd enfocada
en la generacién de sefiales sintéticas, y permite comprobar cdmo actla el sistema ante
diferentes niveles de ruido. A continuacion, se describen ambas ventanas y las
funcionalidades que ofrecen.

6.5.1. Ventana 1: Senales MEG reales

La primera ventana se muestra en la Figura 40 y se denomina Doubt Signals ya que en
ella se representan las sefiales clasificadas como dudosas por el algoritmo de IA. Cuenta
con dos graficas donde se pueden ver las distintas sefiales generadas, desde las dudosas
hasta las recuperadas limpias de artefactos, asi como el resaltado de los segmentos
ruidosos o la grafica del score correspondiente. Junto a ellas hay dos paneles de
informacidn que describen las caracteristicas mas relevantes de las sefiales que se estén
representando en ese momento; estos son la media, la desviacion estandar, los valores
maximo y minimo, la mediana, la potencia, el valor cuadratico medio, el numero de
cruces por cero y la frecuencia dominante.
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Figura 40. Primera ventana de la interfaz grafica.
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Para segmentar las sefiales se dispone de un desplegable que permite seleccionar la
duracion de los segmentos. Esto es lo que se muestra en la Figura 41 junto con la ventana
emergente que aparece al seleccionar una de las opciones. Se obtienen los segmentos
clasificados pulsando sobre el boton de CLASIFICAR, para a continuacién poder ver los
segmentos considerados ruidosos en la primera grafica y el score correspondiente en la
segunda. A continuacion, este ultimo se puede suavizar seleccionando una de las dos
opciones del segundo desplegable, tal y como se puede ver en la Figura 42. De nuevo, al
seleccionar una de ellas aparece un cuadro informativo. Para limpiar la sefial empleando
el score suavizado no hay mas que clicar sobre el boton de RECUPERAR, y para obtener
su potencia original se debe pulsar sobre el boton de Z-SCORE inv. Finalmente, se puede
guardar la sefial recuperada seleccionando el botén de GUARDAR si se considera que la
eliminacion de los artefactos ha sido eficaz y la sefial puede contribuir a la reconstruccion
de la sefial original, en este caso, libre de artefactos.

§ Segmentos dudosos X 200

Segmentar en [s]: 3)
5
1 CLASIFICAR i 0 Segmentos de: 5 s
b |
Aceptar

a) Desplegable para elegir la duracion de ] ) ) ! .,
X : b) Ventana mmformativa de confirmacion.
los segmentos y botén de clasificar.

Figura 41. Botones empleados para clasificar los segmentos de las sefiales.
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Figura 42. Botones empleados para suavizar el score y recuperar la sefial neuronal.
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6.5.2. Ventana 2: Seiales MEG sintéticas

La segunda ventana se muestra en la Figura 43 y se denomina Synthetic Signals ya que
en ella se representan las sefiales sintéticas generadas a partir de la suma de una sefial
neuronal y un artefacto. De nuevo, cuenta con dos graficas donde se pueden ver las
sefiales que contienen exclusivamente componente neuronal y aquellas correspondientes
a artefactos. Para estas ultimas, es posible elegir el tipo de artefacto gracias al desplegable
que se muestra en la Figura 44. También dispone de dos paneles de informacién que
describen las caracteristicas mas relevantes de las sefiales que se estén mostrando.

Una vez elegidas las sefiales con las que se desea trabajar, tanto la neuronal como el
artefacto, se debe especificar el segmento concreto de artefacto que se desea afiadir a la
sefial neuronal. Para ello, se debe indicar la muestra de inicio y de fin de dicho segmento,
y clicar sobre el boton de IR. A continuacion, se clicara sobre el boton de MASCARA para
aplicar el filtro creado al artefacto, y se variard su potencia respecto a la de la sefial
neuronal segun se desee. Para ello, la interfaz cuenta con otro desplegable que permite
seleccionar el porcentaje de ajuste, tal y como se puede ver en la Figura 45. Para afadir
el ruido creado a partir de un artefacto a la sefial neuronal no hay mas que clicar sobre el
botén de SUMAR. Tras esto es posible ver la sefial sintética generada en la primera
gréafica. Finalmente, se puede limpiar dicha sefial siguiendo los mismos pasos que los
explicados en la primera ventana: elegir la duracion de los segmentos y su posterior
clasificacion, y suavizado del score y recuperacion de la sefial limpia.
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Figura 43. Segunda ventana de la interfaz gréfica.
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Figura 44. Botones empleados para seleccionar el tipo de artefacto.
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7.1. Introduccion

En este TFM se ha implementado un detector automatico de artefactos en sefiales
provenientes de registros MEG que permite reducir la presencia de dichos artefactos
gracias al score calculado por la propia red. Asimismo, se han realizado diversas pruebas
a partir de sefales sintéticas, generadas mediante la combinacion de sefiales neuronales y
componentes artefactuadas, para evaluar la capacidad del método desarrollado para llevar
a cabo una eliminacién de los artefactos. Todo esto ha sido integrado en el software
MEDUSA®. En este capitulo se analizan los resultados obtenidos, se contrastan con
investigaciones previas en el mismo ambito y se exponen las principales limitaciones
detectadas a lo largo del proceso de disefio y desarrollo de la herramienta.

7.2. Discusion

En el presente TFM se ha desarrollado un sistema basado en técnicas de IA,
concretamente una CNN, para la deteccion y eliminacion automatica de artefactos en
sefiales MEG a partir de componentes ICA. La CNN empleada se basa en una arquitectura
similar a EEG-Inception y ha sido reimplementada en PyTorch, para optimizar y ampliar
con nuevas funcionalidades la version desarrollada previamente en el TFG. En este nuevo
sistema destaca su capacidad de actuar directamente sobre el ruido de las sefiales
contaminadas. La herramienta desarrollada ha puesto de manifiesto que la clasificacion
realizada manualmente por técnicos especialistas, al basarse en criterios subjetivos, puede
conllevar errores significativos. En varios casos, se identificaron componentes que, pese
a haber sido etiquetadas como de origen neuronal, presentaban fragmentos contaminados
por artefactos. Del mismo modo, algunas componentes marcadas como ruidosas
correspondian mayoritariamente a actividad cerebral vélida. Ademas, el sistema
posteriormente justifica visualmente su decision, resaltando en la sefial los tramos que
considera artefactuados, lo que facilita la interpretacion del resultado y refuerza la utilidad
de la herramienta como apoyo al técnico. Con esto lo que se consigue es que la
herramienta informe al usuario por qué una sefial dice que es artefacto mediante el
resaltado de las partes que considera ruidosas, asemejandose al comportamiento tipico de
una IA explicativa (XAl, eXplanaible Artificial Intelligence). Otro aspecto destacable ha
sido la utilizacion de sefiales sintéticas, generadas a partir de la combinacion de
componentes cerebrales con segmentos replicados de artefactos reales, modulados
mediante una méascara temporal. Esto ha permitido disponer de un conjunto de datos con
un ground truth conocido, que se ha empleado para validar el comportamiento del
modelo. Otra novedad que cabe mencionar respecto al TFG previo ha sido el uso del score
de salida del modelo, posteriormente suavizado mediante técnicas como el enventanado
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o el filtrado gaussiano, para determinar los tramos concretos de las sefiales contaminados
por artefactos. Esto ha permitido evolucionar la herramienta de clasificacién, aplicando
una eliminacién parcial y localizada del ruido, sin necesidad de descartar la componente
completa. Finalmente, el sistema ha sido integrado en la plataforma MEDUSAZ®, lo que
permite su uso en diversos analisis del a&mbito de la neurociencia y de las
neurotecnologias. Su funcionalidad permite la carga de sefiales, la aplicacion del modelo
y la visualizacion de los tramos ruidosos, asi como la generacion de sefiales sintéticas.

Otros estudios realizados previamente emplean también métodos de IA para detectar
artefactos en sefiales provenientes de registros EEG. Asi, en ICLabel se emplea una red
neuronal para etiquetar automaticamente componentes ICA en EEG, consiguiendo altas
tasas de precision en los resultados (Pion-Tonachini, et al., 2019). EIl clasificador
automatico que emplean clasifica las sefiales en diferentes categorias o clases, y cuenta
con mas de 200.000 componentes independientes, provenientes de mas de 6.000 registros
de EEG. Al disponer de tantos datos, el clasificador consigue generalizar muy bien en
diferentes condiciones de registro. Ademas, en ICLabel se realiza un etiquetado
colaborativo o crowdsourcing; en este, multiples expertos se encargan de etiquetar las
componentes para, posteriormente, combinar todas las etiquetas disponibles y solventar
los desacuerdos asignando mas peso a aquellos expertos cuyas decisiones tienden a
coincidir con las de los demas, es decir, que muestran una mayor consistencia con el
grupo. Asi, se obtiene una etiqueta final mas representativa y fiable. También hacen uso
de una CNN, aplicando el optimizador Adam, y emplean diferentes técnicas para mejorar
el entrenamiento: como el balanceo de clases, para abordar el desequilibrio que pueda
existir entre las distintas clases que forman la base de datos, o earlystopping, para mitigar
el sobreajuste. A su vez, Garg et al. (2017, 2021) propusieron dos estudios empleando
una CNN con distinta estructura para identificar artefactos en MEG. En el primero,
realizado en el afio 2017, la CNN era de una Unica dimension, y los datos provenian de
registros MEG realizados a 49 sujetos en estado de reposo, cuyo etiquetado fue realizado
por un unico experto. En este caso el modelo identificaba artefactos oculares, y la
precision alcanzada fue de 95.86 % (Garg, et al., 2017). En el segundo estudio, realizado
en el afio 2021 y donde se desarrollé la herramienta MEGnet, comentada previamente, se
ampli6 la base de datos hasta contar con un total de 217 sujetos para realizar los registros,
y la CNN integraba tanto datos temporales como espaciales. En este estudio se
identificaron artefactos oculares, cardiacos y de otro tipo mientras los pacientes se
encontraban realizando tareas y en estado de reposo con los ojos cerrados. El etiquetado
lo realizaron 4 expertos mediante una inspeccion visual independiente, y se alcanzé hasta
un 98.95 % de precision, un 96.74 % de sensibilidad y un 99.34 % de especificidad (Garg,
et al., 2021). Estos resultados son comparables a los obtenidos en este TFM, donde se ha
contado con mas del doble de sujetos que se encontraban en estado de reposo con los 0jos
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cerrados, y donde se aplico ICA junto con una inspeccion visual. A pesar de que los
resultados ofrecidos por la CNN para una clasificacion binaria son peores que los que
obtuvieron con MEGnet (precision del 96.92 %, sensibilidad del 67.14 % y especificidad
del 98.56 %), se ha podido demostrar que el proceso de reevaluacién de componentes
mejora los resultados, alcanzando una sensibilidad de hasta el 95.47 %.

En cuanto a la arquitectura empleada en este TFM, esta podria compararse con la que
se desarroll6 en EEGNet, una red basada en un modelo CNN aplicable a tareas de
clasificacion e identificacion de artefactos en sefiales EEG (Lawhern, et al., 2018). La
adaptacion de la red EEG-Inception es mas compleja que EEGNet, dado que esta utiliza
una unica entrada con una estructura secuencial de convoluciones temporales y
espaciales, mientras que la arquitectura propuesta en este TFM cuenta con dos entradas
distintas: una que contiene las caracteristicas temporales de cada componente y otra que
asocia cada una con su canal correspondiente. Aunque el disefio resultante es mas
complejo que el de EEGNet y, por tanto, méas exigente a nivel computacional, ofrece una
mayor flexibilidad y capacidad para abordar el problema especifico de deteccion de
artefactos en MEG, donde los patrones pueden ser sutiles, variables y dificiles de
distinguir con arquitecturas mas simples.

A diferencia de métodos que solo clasifican componentes, en este TFM se aplica un
preprocesamiento mediante score, con capacidad de eliminacion de los artefactos en
MEG. Esta aproximacion local de eliminacion de ruido coincidiria con estrategias
similares que evitan eliminar canales enteros o sefiales completas, tal y como se plante6
con Autoreject (Jas, et al., 2017). Aqui, se emplea una técnica que elimina
automaticamente segmentos ruidosos de EEG y MEG combinando regresion y
heuristicas. Hace uso de la técnica de estimacion de umbral 6ptimo de pico a pico, donde
se estima un umbral para cada sensor por separado. Los sensores se consideran
defectuosos si la amplitud de pico a pico de su sefial excede dicho umbral y, si el nUmero
de sensores defectuosos en un ensayo es bajo, los datos corruptos de esos sensores se
reemplazan mediante interpolacion a partir de las sefiales de los sensores cercanos. Por
otro lado, si la mayoria de los sensores en un ensayo estan defectuosos, este se considera
irreparable por interpolacién y se excluye del analisis posterior (Jas, et al., 2017). Esto
imita como un experto humano marcaria un ensayo como defectuoso durante la
inspeccion visual. Aunque Autoreject no usa DL, ha demostrado reducir la presencia de
artefactos sin la necesidad de descartar canales completos. Sin embargo, no distingue el
tipo de artefacto presente ni ofrece una clasificacion especifica sobre su origen. Ademas,
el método de eliminacion de artefactos que emplea mediante la exclusion de sensores
puede provocar la pérdida de informacion neuronal importante si dichos sensores
contienen, ademas de ruido, componentes neuronales.
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Finalmente, la generacion de sefiales sintéticas ha permitido evaluar el comportamiento
de la herramienta disefiada al conocer la cantidad de ruido que se introducia a las sefiales
neuronales limpias. Otros autores han desarrollado técnicas para la generacion de sefiales
cerebrales de forma artificial con el fin de ampliar la base de datos de la que disponian y
poder evaluar sus herramientas de analisis. Esto es lo que realizaron, por ejemplo, Vaziri
etal. (2023) con la herramienta EEGg (EEG generator) (Vaziri, et al., 2023). Esta permite
generar sefiales EEG sintéticas permitiendo al usuario, entre otras cosas, elegir el nimero
de fuentes, afiadir ruido blanco a las sefiales, o seleccionar el nimero de electrodos para
simular el registro. Para ello, hicieron uso de la plataforma Matlab, y emplearon imagenes
de resonancia magnética para obtener una matriz que simula la propagacion de las sefiales
desde las fuentes neuronales hasta los sensores. Con esto, se ofrece a los usuarios una
herramienta que permite simular escenarios realistas y probar algoritmos de localizacion
de fuentes u otros analisis con la ventaja de conocer el ground truth subyacente.

7.3. Limitaciones

En este TFM se ha tratado de subsanar las limitaciones encontradas en el TFG en cuanto
a usabilidad de la herramienta de deteccion de artefactos se refiere, de forma que se
facilite el acceso a sus funciones, aumentando la transparencia del software implementado
mediante la creacion de la interfaz grafica y su implementacion en MEDUSA®. Aun asi,
existen algunas limitaciones que se deben tener en cuenta.

Por un lado, la cantidad y la calidad de los datos de los que se dispone para entrenar la
herramienta de identificacion y eliminacion de artefactos influyen directamente en los
resultados obtenidos. Como el nimero de sujetos que ha participado para formar la base
de datos ha sido escaso, debido a la complejidad y alto coste caracteristicos de MEG, el
modelo puede aprender patrones especificos de ese grupo limitado, pero puede fallar al
enfrentarse a nuevos sujetos con caracteristicas fisiologicas distintas. Esto es lo que se
conoce como limitada capacidad de generalizacion. Ademas, al haber pocos sujetos,
algunas clases, como por ejemplo los artefactos cardiacos u oculares, estan
infrarrepresentadas o no tienen suficiente variabilidad. Esto puede provocar un
desbalanceo que afecta al rendimiento del modelo, reduciendo su sensibilidad frente a
esas clases menos frecuentes. En cuanto a la calidad de los datos, como estos han sido
etiquetados por un Unico técnico especialista existe cierto grado de error o subjetividad
que hace que la clasificacién efectuada por la red pueda ser incorrecta. Asimismo, un solo
experto no tiene mecanismos de correccion ni contraste, por lo que, si comete un error,
ese error se traslada al modelo, lo que puede afectar negativamente al entrenamiento y
generar modelos con aprendizaje equivocado. Con esto se destaca la importancia de
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contar con la mayor cantidad posible de sujetos, tanto para construir la base de datos como
para etiquetar las sefiales que la componen.

Por otro lado, las sefiales sintéticas generadas para evaluar el comportamiento de la
herramienta y proporcionar un ground truth fiable no reproducen toda la complejidad de
una sefial neuronal real. El proceso de replicar artefactos puede introducir patrones
demasiado regulares al construirse mediante la combinacion de fragmentos reales de
artefactos replicados y sumados a sefiales neuronales limpias, lo que facilita la tarea del
modelo y no representa la variabilidad real. En condiciones naturales, los artefactos
pueden superponerse, variar en intensidad, duracion y morfologia de forma no predecible,
mientras que las sefiales generadas artificialmente tienden a presentar patrones mas
regulares. Ademas, el método de generacion estd limitado a artefactos simples o
conocidos obtenidos Unicamente a partir de sefiales MEG, y no incluye interacciones ni
artefactos compuestos. Seria interesante incorporar sefiales complementarias como ECG
0 EOG en los analisis, ya que permitirian identificar de forma maés precisa el origen de
ciertos artefactos fisioldgicos, como los de tipo cardiaco u ocular, respectivamente.

En cuanto al proceso de eliminacion de artefactos mediante el score calculado por el
modelo, se debe destacar que su aplicacion requiere de ajustes minuciosos para garantizar
que se eliminen Unicamente los segmentos realmente contaminados sin afectar a la
actividad neuronal vélida. El uso de técnicas de suavizado, como el filtrado gaussiano o
el enventanado, si bien ayuda a evitar cortes abruptos en la sefial, puede provocar la
difuminacion de los limites reales entre segmentos ruidosos y limpios, dificultando la
identificacion del inicio y fin de los artefactos. Esto puede conllevar a la eliminacién
parcial de actividad neuronal valida o, por el contrario, a la preservacion de fragmentos
contaminados con bajo score. Ademas, la eleccidn del umbral a partir del cual se elimina
la sefial no es trivial y puede afectar significativamente al resultado, especialmente en
sefiales con niveles intermedios de contaminacion.

Otra limitacion a considerar es la integracion con MEDUSA® y la carga computacional
que supone el uso de modelos de DL como EEG-Inception, especialmente durante la fase
de entrenamiento. Aunque la herramienta funciona correctamente, la falta de aceleracién
por GPU en algunos entornos o equipos limita su rendimiento, lo que puede traducirse en
tiempos de procesamiento elevados. Esta restriccion puede dificultar su uso en tiempo
real o en sistemas con recursos limitados, por lo que seria recomendable optimizar el
modelo o implementar versiones mas ligeras para entornos con menor capacidad de
computo. Esto podria conseguirse mediante la aplicacion de técnicas que permitieran
reducir la base de datos, como PCA o Autoencoders, que reducen la dimensionalidad y
aceleran el procesamiento del modelo.
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Por ultimo, cabe destacar que la funcionalidad desarrollada se encuentra integrada en el
nicleo MEDUSA®, lo que implica que para ejecutarla es necesario clonar el repositorio
y trabajar directamente sobre el cddigo, generalmente desde entornos como PyCharm.
Esta dependencia técnica limita su accesibilidad a usuarios sin conocimientos de
programacion. Lo ideal seria empaquetar la herramienta como una aplicacién descargable
dentro de la interfaz de la plataforma MEDUSA®, permitiendo que cualquier usuario,
incluso sin experiencia en desarrollo, pueda utilizarla de forma intuitiva y autdnoma. Esta
limitacion podria solventarse en futuras versiones para asi mejorar la usabilidad del
sistema.
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8.1. Introduccion

En este Gltimo capitulo se reflexiona sobre el trabajo realizado, evaluando en qué
medida se han alcanzado los objetivos planteados al inicio del proyecto. A partir de los
resultados obtenidos y tras la ejecucién del TFM, se extraen una serie de conclusiones y
se destacan las principales contribuciones aportadas. Ademas, se plantean futuras lineas
de desarrollo que podrian ampliar el alcance de esta investigacion, asi como los posibles
escenarios de aplicacion de la herramienta desarrollada en contextos clinicos o
experimentales.

8.2. Grado de consecucion de los objetivos propuestos

En base a los objetivos propuestos en el primer capitulo de este TFM, en este apartado
se revisa el grado de consecucion de cada uno de ellos y su contribucion para la
elaboracion de la herramienta de deteccion y eliminacion de artefactos en sefiales
neuronales disefiada:

1. A partir de diversos libros, articulos de revista y otros estudios se ha entendido el
comportamiento de los diferentes tipos de artefactos que afectan las sefales
electromagnéticas cerebrales y se han analizado las limitaciones de los métodos

tradicionales para detectar y eliminar estos artefactos.

2. Mediante una bisqueda de diferentes fuentes en Internet, se han podido estudiar
las principales técnicas utilizadas en el procesamiento de sefiales en neurociencia.
Se ha ahondado especificamente en el papel de las herramientas modernas, como
las basadas en [A, para automatizar y mejorar la precision en el analisis de sefiales

neuronales.

3. Se ha llevado a cabo un analisis exhaustivo del software MEDUSA®© y se ha

examinado para qué estudios de investigacion neurocientifica ha sido empleada.

4. Se ha disefiado una herramienta basada en CNN que permite detectar, clasificar y

eliminar artefactos en sefiales procedentes de registros MEG en estado de reposo.

5. A partir de la técnica generada, se han creado sefiales sintéticas y se ha podido
demostrar que el funcionamiento de la herramienta de IA es correcto. También se
ha podido analizar su rendimiento al comparar los resultados empleando sefiales

MEG reales y las senales sintéticas generadas.

6. Sehan implementado métodos de eliminacion de los segmentos contaminados por

ruido detectados por la herramienta de IA disefiada.
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7. Con el fin de ofrecer al usuario una herramienta visual e intuitiva se ha creado una

interfaz grafica que integra las funcionalidades mencionadas.

8. Se hallevado a cabo la integracion del software en la herramienta MEDUSA®.

9. Se han estudiado los resultados obtenidos a partir del software elaborado y se ha

comparado su rendimiento con el de otras investigaciones.

10. Por ultimo, se han sintetizado las conclusiones principales y se han identificado

8.3.

las posibles limitaciones del trabajo realizado, junto con una propuesta de futuras

mejoras que podrian ampliar su utilidad y rendimiento en contextos reales.

Conclusiones y aportaciones originales

Tras la ejecucion de este TFM y el estudio de cada uno de sus apartados se han extraido
las siguientes conclusiones:

1.

Las senales neuronales registradas mediante MEG estan expuestas a la presencia
de artefactos de origen no cerebral, como los de tipo cardiaco, ocular o debidos a
la red eléctrica, los cuales pueden interferir en el analisis e interpretacion de la
actividad cerebral real. Esta contaminacion limita la calidad de los datos y puede
condicionar negativamente cualquier estudio clinico o investigacion

neurocientifica que se base en dichas senales.

La aplicacion de modelos de DL, concretamente una CNN como EEGInception,
ha demostrado su utilidad para clasificar componentes ICA contaminadas por
artefactos, superando las limitaciones de las técnicas manuales o tradicionales. El
método desarrollado no sélo alcanza altos niveles de precision, sino que ademas
permite detectar errores de etiquetado humano que en condiciones habituales se

pasarian por alto.

El rendimiento del sistema de clasificacion depende en gran medida de varios
aspectos técnicos, como la estandarizacion previa de las sefiales, el disefio de la
arquitectura especifica de la CNN y una correcta seleccion de hiperpardmetros

durante el entrenamiento.

La generacion de sefiales sintéticas ha permitido evaluar la herramienta de forma
controlada y ha facilitado la incorporacion de artefactos en distintas condiciones
y niveles de intensidad sobre actividad neuronal real. Este proceso ha facilitado
disponer de un ground truth del modelo de A, posibilitando una evaluacion mas
rigurosa del mismo. Ademas, estas sefiales permiten simular diferentes escenarios

clinicos o experimentales sin necesidad de nuevas adquisiciones.
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5. El software desarrollado ha sido implementado dentro del entorno de analisis

neuronal MEDUSA®, ofreciendo una nueva interfaz para procesar sefiales MEG
contaminadas. Esta permite visualizar tanto las componentes clasificadas como
las regiones sefialadas como ruidosas, asi como recuperar la sefial limpia a partir

del score calculado por el modelo.

Ademas, en este trabajo se han generado una serie de aportaciones personales que
afiaden valor al proyecto desarrollado. A continuacidn, se describen las mas relevantes:

1.

8.4.

Se ha desarrollado un sistema basado en IA capaz de detectar, clasificar y eliminar
artefactos en registros MEG a partir de componentes ICA, adaptado
especificamente a la arquitectura EEG-Inception y ajustado a las necesidades de
este trabajo. El modelo alcanzo6 una sensibilidad superior al 95 % en la deteccion
de componentes artefactuadas en sefales reales, lo que permitié mejorar la calidad

de la base de datos.

Ademés de la deteccion, se ha integrado un mecanismo que permite eliminar los
tramos ruidosos detectados, aportando una mejora practica respecto a otros
trabajos que se centran solo en la clasificacion. Tras aplicar este procedimiento,
se consiguid que una parte relevante de las sefiales inicialmente clasificadas como

dudosas pasaran a ser consideradas limpias.

Se ha implementado un procedimiento para generar sefiales sintéticas que
permiten simular artefactos de distinta naturaleza y potencia, lo que ha facilitado

la evaluacidn objetiva y controlada del rendimiento del modelo.

Se ha disefiado una interfaz visual, intuitiva y funcional que permite tanto la
visualizacion y limpieza de sefiales dudosas como la generacion de sefales

sintéticas.

La herramienta disefiada no queda como un proyecto aislado, sino que se ha
incorporado en MEDUSA®, contribuyendo a la ampliacion de esta plataforma de
analisis de sefiales cerebrales e incrementando su accesibilidad para

investigadores neurocientificos.

Lineas futuras

A continuacion, se presentan varias lineas de trabajo futuro de este TFM que podrian
servir como base para ampliar y mejorar su utilidad en el futuro, en base a las limitaciones
encontradas tras su ejecucion.
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Por un lado, la mejora en la calidad de la base de datos utilizada se ve influenciada por
la diversidad de sujetos y las condiciones de la adquisicion de datos. Para mejorar la
generalizacion del modelo y su robustez, seria conveniente incorporar nuevos registros
MEG procedentes de distintos entornos clinicos y con mayor variabilidad. Asimismo,
aumentar la representacion de clases poco frecuentes, como ciertos tipos de artefactos,
permitiria un entrenamiento mas equilibrado.

Por otro lado, para disminuir la subjetividad y los posibles errores que surgen durante
el proceso de etiquetado de las sefiales neuronales, se podria integrar un sistema de
consenso entre varios expertos o emplearse técnicas de etiquetado asistido por IA para
mejorar la consistencia. Ademas, una revision automatizada del etiquetado permitiria
detectar incongruencias y mejorar la calidad del conjunto de datos.

Para poder extender la herramienta disefiada a pacientes con distintas patologias
neuroldgicas, se podria aplicar a otras modalidades de neuroimagen, como EEG o
electrocorticografia. Asimismo, seria interesante integrar modulos de diagnostico asistido
o0 prediccion temprana de alteraciones cognitivas para ampliar su utilidad.

En cuanto al modelo de IA empleado, seria interesante comparar su rendimiento con
otras arquitecturas avanzadas, como las redes hibridas CNN-RNN. También podrian
explorarse métodos no supervisados para detectar artefactos sin necesidad de un
etiquetado previo y, a pesar de haber incorporado al sistema ciertos elementos de
explicabilidad al mostrar los tramos considerados como artefacto, la transparencia del
sistema mejoraria si se empleara alguna técnica formal de explicabilidad de modelos
(XAI) (Jiang, et al., 2022).

Ademas, la generacidn de sefiales sintéticas abre un abanico de posibilidades para
validar y robustecer modelos de IA en condiciones controladas. En este sentido, se
podrian crear diferentes tipos de sefiales con niveles variables de ruido, o incluso simular
patologias especificas. También se podria desarrollar un generador de datos basado en
GANs (Generative Adversarial Networks) para crear sefiales mas realistas, lo que
aumentaria la calidad del entrenamiento y validacion (Carrle, et al., 2023).

Por Gltimo, seria Gtil implementar en MEDUSA® una interfaz grafica mas completa
que permita al usuario visualizar los resultados en tiempo real, editar etiquetas o ajustar
algunos parametros del modelo. Asimismo, resultaria de interés integrar los modulos de
preprocesamiento y analisis de la plataforma para conseguir un flujo de trabajo continuo
desde la adquisicion de datos hasta la interpretacion final.
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