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Resumen 

   La información proporcionada por las distintas señales biológicas que genera el cuerpo 

humano puede ser muy valiosa para el diagnóstico precoz de enfermedades, así como 

para optimizar su tratamiento. En este sentido, las señales electromagnéticas generadas 

por el cerebro permiten identificar patrones neurológicos que reflejan ciertas 

enfermedades neuronales o que caracterizan el estado cognitivo del paciente. Técnicas 

como la electroencefalografía (EEG) y la magnetoencefalografía (MEG) han 

revolucionado la investigación en neurociencia al proporcionar información valiosa sobre 

la actividad cerebral en tiempo real de manera no invasiva. No obstante, estas técnicas no 

registran exclusivamente información neuronal, sino que también capturan información 

no deseada debido a múltiples fuentes de ruido del entorno, tanto ajenas a cada persona 

(ruido ambiental, por ejemplo, de la red eléctrica) como internas o fisiológicas (por 

ejemplo, de la actividad cardíaca u ocular). Estas señales espurias se denominan artefactos 

y alteran la señal neuronal genuina, comprometiendo la validez de los análisis posteriores 

y dificultando la extracción de información relevante. Para reducir el impacto de los 

artefactos en los registros EEG y MEG se han desarrollado diferentes métodos de 

preprocesamiento de señales, desde técnicas clásicas basadas en filtrado o transformadas 

hasta enfoques más modernos que emplean métodos estadísticos, como el análisis de 

componentes independientes (ICA). A pesar de la utilidad de estas técnicas, muchas de 

ellas requieren intervención manual o dependen de suposiciones sobre la naturaleza del 

ruido, por lo que su aplicación a conjuntos de datos masivos y la precisión de los 

resultados continúa viéndose comprometida. Por ello, surge la necesidad de desarrollar 

herramientas automáticas que permitan detectar y mitigar dichos artefactos, reduciendo 

la dependencia de procesos manuales y subjetivos. 

   En este Trabajo de Fin de Máster se ha trabajado con señales MEG reales procedentes 

de un conjunto de datos previamente etiquetado por expertos, así como con señales 

sintéticas generadas artificialmente a partir de componentes ICA neuronales combinadas 

con artefactos. Estas últimas han permitido evaluar el funcionamiento del sistema 

conociendo el contenido neuronal y el nivel de ruido añadido. La solución propuesta ha 

consistido en un detector automático de artefactos en señales MEG basado en Deep 

Learning (DL). Dicho detector se basa en el algoritmo ICA Extended Infomax, que 

permite separar las señales MEG en componentes; estas componentes son la entrada a 

una Red Neuronal Convolucional EEG-Inception. La red permite identificar componentes 

dudosas que, si bien no son clasificadas directamente como artefactos, presentan un bajo 

nivel de confianza para ser consideradas puramente neuronales. Además, como parte de 

este trabajo, se ha implementado un sistema de eliminación automática de segmentos 
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contaminados de la señal a partir de la probabilidad de clasificación ofrecida por la red. 

Para poder disponer de una representación visual de los resultados obtenidos, se ha 

diseñado e implementado una interfaz gráfica que permite representar los segmentos 

ruidosos de las señales neuronales y eliminarlos. Con esto, el usuario de la herramienta 

puede decidir conservar la señal bajo estudio en el conjunto de datos, descartarla o mitigar 

el ruido detectado a partir del score de clasificación calculado por la red y recuperar una 

versión limpia de la señal. La interfaz también permite la generación de señales sintéticas 

contaminadas con artefactos de origen cardíaco, ocular, de red eléctrica o de otro tipo. 

Todo el código desarrollado, implementado en Python, se ha integrado en el núcleo de 

MEDUSA©, un entorno en Python orientado al análisis avanzado de señales neuronales. 

Se ha dividido en 5 partes que se han integrado en diferentes ficheros de Github: (i) carga 

de señales, (ii) estandarización de señales, (iii) CNN diseñada, (iv) modelo de inteligencia 

artificial para identificar y eliminar automáticamente artefactos, y (v) interfaz gráfica.  

   En cuanto a los resultados obtenidos, la red neuronal diseñada alcanzó una sensibilidad 

superior al 95 % en la detección de componentes artefactuadas sobre señales reales, así 

como una especificidad cercana al 99 % y una precisión de casi un 97 %. Asimismo, se 

aplicó un proceso de limpieza de artefactos sobre aquellas componentes clasificadas 

inicialmente como no artefacto pero con una probabilidad inferior al 90 % (señales 

denominadas dudosas). Tras esta limpieza, se consiguió reducir el conjunto dudoso hasta 

un 35,41 % de las señales iniciales. Por otro lado, en el caso de las señales sintéticas se 

analizó cómo influía el ajuste de potencia aplicado a los artefactos añadidos a señales 

neuronales limpias en la calidad de las detecciones. Los resultados muestran que el 

porcentaje de señal detectada como artefacto aumenta progresivamente a medida que se 

incrementa el ajuste de potencia aplicado, llegando a superar el 90 % cuando la potencia 

del artefacto alcanza el 200 % de la potencia de la señal neuronal. 

   La herramienta desarrollada permite mejorar la calidad de las señales MEG, facilitando 

el trabajo de los técnicos encargados de su preprocesado. Además, su incorporación en 

MEDUSA© permite a los investigadores acceder a herramientas de preprocesamiento 

dentro de una plataforma unificada, mejorando significativamente la eficiencia en la 

detección y eliminación de artefactos en registros neuronales. 

 

Palabras clave 

   Artefactos, detección automática, EEG-Inception, Inteligencia Artificial, 

magnetoencefalografía, MEDUSA©, modelo Deep Learning, score, segmentación.  
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Abstract 

   The information provided by the different biological signals generated by the human 

body can be extremely valuable for the early diagnosis of diseases, as well as for 

optimising their treatment. In this context, the electromagnetic signals produced by the 

brain make it possible to identify neurological patterns that reflect certain disorders or 

characterise a patient’s cognitive state. Techniques such as electroencephalography 

(EEG) and magnetoencephalography (MEG) have transformed neuroscience research by 

offering real-time, non-invasive insights into brain activity. However, these techniques 

do not exclusively record neural information but also capture unwanted signals from 

multiple noise sources, both external (such as environmental noise from power lines) and 

internal or physiological (like heart or eye activity). These spurious signals, known as 

artefacts, distort genuine neural activity, compromising the validity of subsequent 

analyses and making it difficult to extract meaningful information. To reduce the impact 

of artefacts in EEG and MEG recordings, a variety of pre-processing methods have been 

developed, ranging from traditional approaches based on filtering or signal transforms to 

more modern statistical techniques. While useful, many of these methods require manual 

intervention or rely on assumptions about the nature of the noise, which limits their 

scalability to large datasets and affects the reliability of their results. This has created a 

growing need for automated tools capable of detecting and mitigating artefacts, reducing 

the dependence on manual and subjective processes. 

   In this Master's thesis we worked with real MEG signals from a dataset previously 

labelled by experts, and with synthetic signals artificially generated by combining 

neuronal ICA components with artefacts. The latter made it possible to evaluate the 

system performance with full knowledge of the neural content and the level of added 

noise. The proposed solution is an automatic artefact detector for MEG signals based on 

Deep Learning (DL). The detector relies on the ICA Extended Infomax algorithm, which 

separates MEG signals into components; these components are then fed into an EEG-

Inception Convolutional Neural Network. The network identifies uncertain components 

that, while not directly classified as artefacts, show low confidence for being considered 

purely neuronal. In addition, as part of this work, we implemented an automatic system 

for removing contaminated signal segments based on the classification probabilities 

provided by the network. To provide a visual representation of the results, we designed 

and implemented a graphical interface that displays noisy segments of neural signals and 

removes them. This allows users to decide whether to keep the signal under study in the 

dataset, discard it, or mitigate the detected noise based on the classification score 
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computed by the network, recovering a cleaner version of the signal. The interface also 

supports generating synthetic signals contaminated with artefacts of cardiac, ocular, 

electrical, or other origins. All the developed code, implemented in Python, has been 

integrated into the core of MEDUSA©, a Python-based framework for advanced neural 

signal analysis. The system is divided into five modules, organized into separate GitHub 

files: (i) signal loading, (ii) signal standardization, (iii) the designed CNN, (iv) the AI 

model for automatic artefact detection and removal, and (v) the graphical interface.  

   Regarding the results, the designed neural network achieved a sensitivity above 95 % 

in detecting artefact components in real signals, as well as a specificity close to 99 % and 

an accuracy of nearly 97 %. In addition, a reevaluation process was applied to components 

initially classified as non-artefacts but with a probability below 90 % (the so-called 

uncertain signals). After this cleaning step, the uncertain set was reduced to 35.41% of 

the initial signals. For the synthetic signals, we analyzed how the power adjustment 

applied to artefacts added to clean neural signals influenced detection quality. The results 

show that the percentage of signal detected as artefact increases progressively as the 

applied power adjustment grows, surpassing 90 % when the artefact power reaches 200 

% of the neural signal power. 

   The developed tool enhances the quality of MEG signals, making the preprocessing 

work of technicians easier. Furthermore, its integration into MEDUSA© provides 

researchers with access to preprocessing tools within a unified platform, significantly 

improving efficiency in the detection and removal of artefacts from neural recordings. 

 

Keywords 

   Artificial Intelligence, artefacts, automatic detection, Deep Learning model, EEG-

Inception, magnetoencephalography, MEDUSA©, score, segmentation.  
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1.1. Preprocesamiento de señales biológicas 

   Las señales biológicas son fluctuaciones generadas por los diferentes sistemas 

fisiológicos del ser humano, y pueden tener origen eléctrico, magnético, químico o 

mecánico, entre otros (Kaplan, et al., 2005). Así, la señal biológica procedente de la 

actividad eléctrica del corazón se llama electrocardiograma (ECG), mientras que la 

generada a partir de la actividad muscular se denomina electromiograma (EMG). Las 

señales procedentes de la actividad neuronal reciben el nombre de electroencefalograma 

(EEG), si lo que se desea es registrar la actividad eléctrica del cerebro, o 

magnetoencefalograma (MEG), si es la actividad magnética la que se quiere medir 

(Kaplan, et al., 2005) (Reilly & Lee, 2010).  

   En la mayoría de los casos no basta con aplicar los sistemas de adquisición necesarios 

para obtener la señal biológica deseada. Preprocesarlas adecuadamente es de vital 

importancia en la investigación médica (Islam, et al., 2021). Por ejemplo, uno de los 

objetivos principales a la hora de limpiar estas señales puede ser aumentar la relación 

señal a ruido (SNR, Signal to Noise Ratio) mediante filtrado (Semmlow, 2004), o detectar 

la presencia de artefactos que contaminan la señal y dificultan su correcta interpretación 

(Islam, et al., 2021). En este Trabajo Fin de Máster (TFM) toma especial relevancia el 

segundo enfoque, aplicado específicamente a señales cerebrales. En concreto, el TFM se 

centra en la detección y posterior eliminación de artefactos en señales MEG. 

   Los artefactos, también denominados interferencias o ruido de forma genérica, 

provienen de factores externos al sistema de medición, alterando la señal adquirida e 

imposibilitando una correcta interpretación de la misma (Blum, et al., 2019). Esto tiene 

una implicación clínica directa, pues puede provocar que el diagnóstico de enfermedades 

neurológicas o la monitorización de funciones vitales se vean afectados por la imprecisión 

en las medidas (Hamal & Rehman, 2013). Los artefactos pueden ser: fisiológicos, 

procedentes de la actividad corporal del ser humano, como la actividad cardíaca, la 

respiratoria, la ocular o la muscular; o no fisiológicos, ajenos a la actividad corporal, como 

interferencias electromagnéticas, ruido instrumental o cambios en la posición de los 

sensores (Sweeney, 2013) (ICL, 2024). En ambos casos, su detección y eliminación 

toman especial relevancia para garantizar la calidad de los análisis posteriores, pues su 

presencia altera la SNR y puede resultar en conclusiones médicas erróneas (Islam, et al., 

2012). En la práctica, se emplean diferentes estrategias para mitigar el efecto de estas 

interferencias, como el uso de cámaras de Faraday para blindar la sala de adquisición de 

interferencias electromagnéticas, medidas para limitar el movimiento del sujeto, o el 

procesado posterior efectuado sobre las señales, mediante filtros o técnicas de Inteligencia 

Artificial (IA) (Singh, 2014) (Hamdan, et al., 2023). En este TFM se va a analizar una 

metodología basada en técnicas de IA, y cómo se puede emplear para detectar los 
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artefactos presentes en señales MEG, así como su utilidad para eliminar las partes 

ruidosas de las señales neuronales. 

 

1.2. Digitalización y análisis de señales mediante 

Inteligencia Artificial 

   La digitalización es el proceso mediante el cual se transforman datos de un formato 

físico a un formato digital (Semmlow, 2004). Esta técnica, aplicada a datos biológicos, 

ha conseguido transformar campos como la medicina o la neurociencia. La digitalización 

surge a partir de la necesidad de adquirir, procesar y almacenar grandes cantidades de 

datos en períodos cortos de tiempo (Garg, et al., 2021). Por ejemplo, las señales 

neuronales adquiridas a partir de un EEG o de un MEG se benefician de la capacidad de 

analizar grandes volúmenes de datos con precisión y rapidez.  

   Los métodos tradicionales de preprocesado y análisis de datos están basados en modelos 

matemáticos y estadísticos que tienen en cuenta características específicas de las señales, 

como su estacionariedad, su comportamiento determinista o su linealidad. En este ámbito 

se aplican técnicas como: la Transformada de Fourier, para obtener las componentes 

frecuenciales de las señales; la Transformada Wavelet, para el análisis de señales no 

estacionarias; o el filtrado, para eliminar ruido o frecuencias fuera del rango de interés 

(Shaker, 2006). Sin embargo, las señales neuronales están compuestas por datos 

complejos que no permiten hacer las suposiciones necesarias para poder aplicar algunos 

de los métodos clásicos comentados. Por ejemplo, para eliminar los artefactos presentes 

en señales EEG o MEG no basta con emplear un filtro de una determinada respuesta 

frecuencial debido a la heterogeneidad de las componentes que forman los registros 

neuronales (Besserve, et al., 2007).  

   Diversas técnicas de IA permiten identificar patrones y realizar tareas complejas como 

la eliminación de ruido imitando la inteligencia humana, algo que sería difícil de lograr 

con los métodos clásicos (Rouhiainen, 2018). Estas tecnologías han ofrecido nuevas 

posibilidades para comprender la actividad cerebral, identificar artefactos y mejorar la 

calidad de los datos para investigaciones o aplicaciones clínicas (Hamet & Tremblay, 

2017). Las técnicas de IA se dividen en diversos tipos; así, el Aprendizaje Profundo o 

Deep Learning (DL) pertenece al subconjunto del Aprendizaje Automático o Machine 

Learning (ML), que a su vez está englobado en el ámbito general de la IA. El ML estudia 

diferentes algoritmos computacionales que permiten automatizar tareas a partir de la 

experiencia, mientras que el DL trata de imitar el comportamiento del cerebro humano 

elaborando algoritmos que asemejan el funcionamiento de las neuronas cerebrales. Estos 
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algoritmos consiguen adaptarse y aprender de forma autónoma a partir de grandes 

conjuntos de datos (Janiesch, et al., 2021).  

   A pesar de la versatilidad y eficiencia de las diversas técnicas de IA, es conveniente 

seguir considerando los métodos clásicos de análisis de datos, pues estos siguen 

ofreciendo soluciones versátiles para realizar un preprocesado inicial con el fin de mejorar 

la calidad del conjunto de datos. En este sentido, y aplicado al ámbito de las señales 

neuronales procedentes de registros EEG o MEG, se puede hacer uso del Análisis de 

Componentes Independientes (ICA, Independent Component Analysis) o del Análisis de 

Componentes Principales (PCA, Principal Component Analysis). El primero se utiliza 

para separar la mezcla de señales superpuestas que componen la señal neuronal global en 

sus fuentes independientes (Croce, et al., 2019). El segundo se emplea para reducir la 

dimensionalidad de los datos conservando la mayor cantidad posible de información 

relevante (Kaya, 2019). Ambas técnicas se pueden aplicar para eliminar componentes 

ruidosas o irrelevantes. Sin embargo, esta tarea discriminatoria se realiza habitualmente 

de forma manual por técnicos expertos en la materia, lo que consume mucho tiempo y 

conlleva un elevado grado de subjetividad (Croce, et al., 2019). Por eso, es en estos casos 

donde es razonable asumir que el uso de técnicas IA va a mejorar tanto la calidad de los 

resultados ofrecidos como el trabajo efectivo realizado por los técnicos (Yang, et al., 

2018). 

   La implementación de las técnicas de IA se puede realizar en diferentes lenguajes de 

programación, como Matlab o Python. Estos son flexibles, intuitivos, y contienen una 

serie de librerías adaptadas a la IA. Además, facilitan el análisis de las señales, optimizan 

el flujo de trabajo y aumentan la reproducibilidad en los estudios (Mumtaz, et al., 2021). 

Sin embargo, han surgido softwares diseñados específicamente para el análisis de datos 

en neurociencia, como MEDUSA© (Santamaría, et al., 2024); se trata de una plataforma 

diseñada para el análisis y procesamiento de señales biomédicas, como las registradas 

mediante EEG o MEG, que consta de una interfaz preconfigurada que reduce la 

complejidad de uso (Santamaría, et al., 2023). Una de sus utilidades consiste en la 

integración de algoritmos de IA para su aplicación directa en el procesamiento de señales 

cerebrales.  

   Con el fin de eliminar la subjetividad presente en el etiquetado manual de artefactos que 

se encuentran en las señales neuronales y reducir el tiempo que se tarda en llevarlo a cabo, 

en este TFM se ha empleado un método basado en técnicas de IA capaz de detectar, 

clasificar y etiquetar dichos artefactos de manera automática. Además, permite eliminar 

las partes ruidosas de las señales que están completamente artefactuadas, sino que 

contienen intervalos neuronales que no conviene eliminar, debido a la información que 

puedan contener. Esto sería imposible de conseguir con herramientas convencionales o 
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mediante la actuación manual de un técnico especialista. La metodología diseñada está 

basada en DL debido a su capacidad para modelar relaciones complejas y no lineales en 

los datos, permitiendo identificar patrones ocultos que los métodos tradicionales no 

lograrían detectar (O'Shea & Nash, 2015). Además, se ha implementado la herramienta 

de detección y clasificación de artefactos en señales neuronales diseñada en el software 

MEDUSA© para favorecer el etiquetado de las componentes procedentes de registros 

MEG y poder eliminar, de forma completamente objetiva y automática, las partes 

ruidosas de las señales. Por último, para verificar que los resultados que ofrece la 

herramienta de IA son fiables y fundamentados, se ha adaptado el software diseñado para 

poder generar señales neuronales artificiales, que surgen de la combinación de segmentos 

neuronales a los que se les han añadido segmentos ruidosos procedentes de una fuente no 

neuronal, es decir, artefactos. Dichas señales, denominadas sintéticas, se han introducido 

en el modelo de identificación y limpieza de artefactos creado para comprobar que su 

funcionamiento es correcto partiendo del conocimiento que se tiene sobre la señal 

generada. 

 

1.3. Motivación 

   Las técnicas empleadas para la detección y clasificación de artefactos en señales 

neuronales son técnicas rudimentarias basadas en la experiencia y conocimiento de los 

técnicos que se encargan de etiquetarlas y que, por lo tanto, no garantizan la correcta 

eliminación de los artefactos de forma objetiva y sin desechar gran parte de señal neuronal 

que puede ser relevante para el diagnóstico correspondiente. Además, la aplicación de 

otros métodos, como ICA o los filtros clásicos, no garantizan una precisión suficiente que 

cubra las necesidades para el diagnóstico médico. Así, las técnicas de DL, como las redes 

neuronales convolucionales (CNN, Convolutional Neural Networks) suponen un avance 

significativo en el análisis de las señales procedentes de registros MEG. Estas redes 

aprenden patrones complejos directamente de los datos sin necesidad de una extracción 

manual de características. La motivación de este trabajo radica en explorar el potencial 

de las CNN para resolver el problema de identificación y eliminación automática de los 

artefactos en señales neuronales, y poder generar una evidencia empírica mediante la 

generación de señales sintéticas que demuestren el correcto comportamiento de la 

herramienta desarrollada. Se espera que el enfoque planteado, junto con su integración en 

la plataforma MEDUSA©, mejore la calidad de los datos procesados y facilite la 

extracción de información relevante para estudios clínicos y neurocientíficos. 
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1.4. Hipótesis 

   Los artefactos presentes en las señales procedentes de registros MEG o EEG suponen 

un problema que, sumado a la complejidad de evaluar e interpretar señales neuronales, 

aumenta el tiempo necesario para llegar a un diagnóstico correcto y presenta un alto grado 

de subjetividad. Los métodos basados en CNN son capaces de identificar y eliminar 

artefactos en señales neuronales que no pueden ser detectados ni tratados con precisión 

por los métodos tradicionales que implican la intervención humana. La hipótesis de la 

que se parte en este TFM es que la herramienta desarrollada, basada en una CNN, es 

capaz de detectar componentes artefactuadas con mayor precisión y objetividad que la 

evaluación realizada por un técnico especialista. Esta capacidad se fundamenta en el 

hecho de que las CNN pueden aprender automáticamente características relevantes de los 

datos mediante un entrenamiento adecuado, reduciendo así el tiempo requerido para el 

etiquetado y eliminando la subjetividad inherente a la evaluación humana. Además, 

mediante la generación de señales sintéticas formadas por segmentos neuronales y 

artefactos se puede demostrar el correcto funcionamiento de la herramienta diseñada, y 

se pueden aprovechar las nuevas señales artificiales para entrenar otras redes al 

proporcionar un entorno controlado para simular diferentes condiciones y niveles de 

ruido. Todo esto implementado en el software MEDUSA© favorece la creación de 

aplicaciones en investigación y en entornos clínicos. 

 

1.5. Objetivos 

   El objetivo principal de este TFM es diseñar, implementar y evaluar una 

herramienta de detección, clasificación y eliminación automática de artefactos que 

contaminan las señales neuronales, e integrarla en el software MEDUSA©. Además, 

se pretende adaptar la herramienta para que permita la generación de señales sintéticas 

mediante la combinación de partes neuronales y artefactos disponibles en la base de datos, 

así como la creación de métodos de eliminación del ruido en segmentos concretos de las 

señales. Para poder realizar estas tareas, se han empleado técnicas de IA que permiten 

identificar patrones complejos y solapados de ruido, automatizando el proceso de 

detección y clasificación de artefactos y seleccionando los segmentos contaminados con 

ruido para su posterior eliminación. El objetivo principal, a su vez, se ha descompuesto 

en los siguientes objetivos complementarios: 

1. Estudiar los diferentes tipos de artefactos que afectan las señales 

electromagnéticas cerebrales y analizar las limitaciones de los métodos 

tradicionales para detectar y eliminar estos artefactos. 
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2. Familiarizarse con las principales técnicas utilizadas en el procesamiento de 

señales en neurociencia y destacar el papel de las herramientas modernas, como 

las basadas en IA, para automatizar y mejorar la precisión en el análisis de señales 

neuronales. 

3. Familiarizarse con el software MEDUSA© e investigar para qué estudios de 

investigación neurocientífica ha sido empleada. 

4. Diseñar e implementar una herramienta basada en CNN que detecte, clasifique y 

elimine artefactos en señales procedentes de registros MEG en estado de reposo, 

procedentes de sujetos del Hospital de Hokuto (Japón).  

5. Generar señales sintéticas y evaluar el funcionamiento de la herramienta de 

identificación y eliminación automática de artefactos, analizando su rendimiento 

empleando señales MEG reales y dichas señales sintéticas generadas. 

6. Diseñar e implementar métodos de eliminación de los segmentos contaminados 

por ruido detectados por la herramienta de IA.  

7. Crear una interfaz gráfica que integre la herramienta desarrollada. 

8. Integrar la herramienta en la plataforma MEDUSA©. 

9. Estudiar los resultados obtenidos a partir del software elaborado y comparar su 

rendimiento con el de otras investigaciones por parte de otros autores. 

10. Obtener las conclusiones pertinentes y destacar las limitaciones y líneas futuras. 

 

1.6. Estructura del documento 

El documento está formado por 8 capítulos, cuya estructura es la siguiente: 

▪ Capítulo 1. Introducción. En el primer capítulo se comienza introduciendo el 

preprocesamiento que se suele realizar a señales biológicas, en concreto a las de 

origen neural. Asimismo, se muestra el concepto de digitalización y su aportación 

en el campo de la neurociencia, y cómo su combinación con diferentes técnicas 

de IA puede mejorar el tiempo y calidad de los diagnósticos. Además, se expone 

la motivación para la realización de este trabajo, las hipótesis iniciales y los 

objetivos que se pretenden alcanzar. 

▪ Capítulo 2. Artefactos en señales electromagnéticas cerebrales y técnicas de 

preprocesado. En este capítulo se describen los principales tipos de artefactos 

que suelen aparecer en los registros de señales MEG y se analiza cómo su 
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presencia afecta al proceso de estudio de las señales cerebrales. También se 

muestra la relevancia del tratamiento de datos en disciplinas biomédicas, desde la 

captura hasta la extracción de información significativa, y cómo esto se aplica a 

la neurociencia. También se introducen algunas de las técnicas tradicionales de 

reducción de ruido y se comparan con las más modernas, como las basadas en 

nuevos modelos de IA o la generación de señales sintéticas, y cómo estas pueden 

favorecer la eliminación de los artefactos en las señales neuronales. 

▪ Capítulo 3. La herramienta MEDUSA©. En este capítulo se detalla el 

funcionamiento de la herramienta MEDUSA©, sus principales módulos y las 

funcionalidades que ofrece para el procesamiento y análisis de señales 

biomédicas. Se hace especial énfasis en su capacidad para integrar algoritmos de 

IA, como las CNN. 

▪ Capítulo 4. Materiales. En el quinto capítulo se detallan las características de la 

base de datos empleada y el perfil de los sujetos involucrados en el estudio. A 

continuación, se describen en detalle las características y particularidades tanto de 

las señales reales como de las señales sintéticas generadas. 

▪ Capítulo 5. Desarrollo de la herramienta de detección y eliminación 

automática de artefactos en señales neuronales e integración en la 

herramienta MEDUSA©. En este capítulo se expone la herramienta desarrollada 

y la metodología implementada para la detección y clasificación de artefactos en 

señales neuronales. Se muestra el proceso de generación de señales sintéticas y la 

adaptación de todo el software para que sea compatible con MEDUSA©. 

▪ Capítulo 6. Resultados. El sexto capítulo se centra en describir los resultados 

obtenidos tras introducir varias señales neuronales a la herramienta generada, el 

proceso de eliminación de ruido en estas y su recomposición como señales 

limpias. Se evalúan distintos parámetros que determinan la calidad de la 

herramienta, incluyendo métricas de rendimiento y validación, con el objetivo de 

medir la efectividad de los métodos propuestos y su impacto en el 

preprocesamiento de señales neuronales. 

▪ Capítulo 7. Discusión y limitaciones. En este capítulo se analizan los resultados 

obtenidos y el funcionamiento de la herramienta de identificación y eliminación 

automática de artefactos. También se comparan con los estudios realizados por 

otros investigadores en este campo. A su vez, se exponen las limitaciones que 

pueden suponer una barrera en el futuro desarrollo de este trabajo, y otros 

enfoques que contribuyan en el ámbito de la investigación neurocientífica. 
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▪ Capítulo 8. Conclusiones y líneas futuras. En el último capítulo se detallan las 

conclusiones obtenidas tras la ejecución de este TFM y las posibles líneas futuras 

en las que este proyecto pueda servir de apoyo. 
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2.1. Introducción  

   El estudio del cerebro humano ha ido evolucionando a lo largo de los años. Gracias al 

psiquiatra alemán Hans Berger se pudo realizar en el año 1929 la primera medición de las 

señales emitidas por el cerebro de manera no invasiva. Así, Berger destacó principalmente 

por su contribución al desarrollo del EEG, que supuso un método revolucionario para 

registrar las señales eléctricas del cerebro (Berger, 1969). Además, identificó las ondas 

alfa, un patrón rítmico en el rango de 8-13 Hz que se asocia con estados de relajación, y 

las ondas beta, más rápidas, relacionadas con estados de alerta (Stevens, 1974). Gracias 

a estos descubrimientos, Berger pudo demostrar que el cerebro genera actividad eléctrica 

medible que está relacionada con los estados mentales.  

   Unos años más tarde, el físico y neurocientífico David Cohen realizó el primer registro 

exitoso de los campos magnéticos generados por el cerebro mediante el uso de un 

magnetómetro de bobina (Cohen, 1968). Posteriormente, en la década de los años 70 

incorporó el uso del SQUID (Superconducting Quantum Interference Device), un sensor 

altamente sensible que se basa en el fenómeno cuántico de la superconducción (Vrba & 

Robinson, 2001). Su trabajo revolucionó el estudio del cerebro al demostrar que los 

campos magnéticos generados por la actividad neuronal se podían medir de manera fiable 

y complementaria a las mediciones proporcionadas por el EEG (Cohen, 1968). Así es 

como surge el MEG, que permite medir la actividad magnética cerebral mediante el uso 

de sensores extracraneales (Hämäläinen, et al., 1993).  

  Ambas técnicas facilitaron la comprensión de los procesos neuronales y asentaron las 

bases para el estudio moderno de la actividad neuronal. Sin embargo, a pesar de estos 

avances, tanto el EEG como el MEG se enfrentan a un mismo problema: las señales 

adquiridas están inevitablemente contaminadas por ruido y artefactos procedentes de 

diversas fuentes (Mahmud, et al., 2012). La interpretación de las señales cerebrales se ve 

comprometida por la presencia de estas interferencias, dificultando el diagnóstico de 

posibles enfermedades cerebrales (Urigüen & Garcia-Zapirain, 2015). En este sentido, el 

preprocesamiento de señales se ha desarrollado a lo largo de los años según han ido 

avanzando las diferentes tecnologías en las que dicho preprocesado era necesario. Ya 

durante la era analógica las señales se manipulaban mediante circuitos eléctricos, filtros 

pasivos y técnicas como la transformada de Fourier analógica (Kwakernaak, et al., 1991). 

Con la llegada de la computación en la segunda mitad del siglo XX, el preprocesamiento 

digital de señales marcó un punto de inflexión. La transformación de señales continuas 

en datos discretos permitió la aplicación de algoritmos matemáticos más avanzados, como 

la transformada rápida de Fourier (FFT, Fast Fourier Transform) o el filtrado digital 

(Ambardar, 1995). En el ámbito del análisis de señales cerebrales, el preprocesamiento 

de señales ha sido fundamental para mejorar la calidad de los datos obtenidos mediante 
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EEG y MEG (Chawla, 2011). Desde métodos tradicionales como el filtrado e ICA hasta 

enfoques más modernos basados en técnicas de IA, el desarrollo de diferentes estrategias 

para el tratamiento de señales neurofisiológicas es necesario para garantizar la fiabilidad 

de los estudios en neurociencia, además de llegar a diagnósticos precisos de la forma más 

rápida posible. 

   En este capítulo se va a definir el concepto de artefacto referido al ámbito de las señales 

electromagnéticas cerebrales, y los tipos de artefactos que se pueden encontrar. Se va a 

explicar el impacto que tiene su presencia en el análisis de señales neuronales y lo 

importante que son su identificación y su eliminación, así como su repercusión directa en 

la calidad y fiabilidad de los estudios y diagnósticos médicos. También se comentarán 

algunos de los distintos métodos de preprocesado empleados hasta la fecha y cuáles son 

las tendencias futuras en esta área de investigación. 

 

2.2. Artefactos y su clasificación 

   El ruido en cualquier sistema de comunicación es un fenómeno inevitable, ya que forma 

parte intrínseca de cualquier sistema de adquisición y transmisión de señales. En este 

sentido, cuando nos referimos al campo de la neurociencia, el ruido que está presente en 

las señales medidas en el cerebro se denomina artefacto (Burgess, 2020). Se trata de 

componentes no deseados, dado que no corresponden a la actividad neuronal genuina, 

que interfieren y corrompen la señal adquirida, dificultando su análisis e interpretación 

(Team, 2023). Estas fuentes de ruido surgen, en gran medida, debido a la alta sensibilidad 

de los sistemas de adquisición, como el EEG o el MEG. Los dispositivos empleados están 

diseñados para captar las débiles señales eléctricas y magnéticas, respectivamente, que 

son generadas por el cerebro (Colomer, et al., 2016). La amplitud de estas señales es tan 

baja que los sensores de medición son susceptibles a captar otras fuentes de señal que no 

son neuronales. Particularmente, los campos magnéticos cerebrales propios de las señales 

MEG son extremadamente débiles en comparación con las interferencias del entorno 

(Muthukumaraswamy, 2013). Además, el hecho de que estos sensores estén próximos a 

otras estructuras del cuerpo humano, como los ojos, los músculos faciales o algunas 

arterias, facilita la captación de actividad propia de sistemas fisiológicos diferentes al 

cerebral (MEG, 2019).  

   Los artefactos pueden ser fisiológicos o no fisiológicos. Los primeros derivan de 

actividades biológicas propias del ser humano, como parpadeos, ritmos cardíacos, 

actividad muscular o movimientos oculares. Los segundos provienen de fuentes externas 

ajenas al cuerpo humano, como interferencias electromagnéticas, movimientos de los 

sensores de medida o ruido ambiental (Fabietti, et al., 2020). En la Tabla 1 se recoge la 
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información más relevante de cada tipo de artefacto más común (Team, 2023). Además 

de los artefactos mostrados, cabe destacar que existen otros que son más difíciles de 

identificar o que se pueden clasificar como alguno de los ya mencionados, como el debido 

a la actividad respiratoria, que se puede englobar dentro de los artefactos musculares, 

dado que se debe al movimiento del tórax y de la cabeza al respirar (ICL, 2024).  

   Seguidamente, se muestran diferentes registros MEG que ilustran algunos de los 

artefactos comentados (Papadelis, et al., 2018). En primer lugar, en la Figura 1 puede 

verse un artefacto de tipo cardíaco, que refleja el comportamiento magnético del complejo 

QRS, es decir, la pulsación propia del ECG. Este se caracteriza por pulsaciones 

Tipo de 

artefacto 
Origen Localización Frecuencia Amplitud Manifestación 

Fisiológicos 

Cardíaco 

Actividad 

eléctrica del 

corazón. 

Sensores 

cercanos al 

tórax 

⁓ 1 Hz 

(ritmo 

cardíaco) 

Moderada 

a alta 

Pulsos 

periódicos en 

forma de 

ondas 

rítmicas. 

Ocular 

Movimientos 

oculares o 

parpadeos. 

Sensores 

frontales y 

temporales 

< 5 Hz 

(baja 

frecuencia) 

Alta 

Ondas de gran 

amplitud, 

lentas, con 

picos rítmicos. 

Muscular 

Movimientos 

musculares (cara, 

cuello, 

mandíbula). 

Sensores 

temporales y 

occipitales 

> 20 Hz 

(alta 

frecuencia) 

Alta 

Ruido de alta 

frecuencia, 

continuo o 

intermitente. 

No fisiológicos 

Movimiento 

Movimiento de 

electrodos o 

cables. 

Electrodo 

afectado 
Variable Variable 

Picos erráticos 

o cambios 

abruptos en la 

señal. 

Magnético 

Interferencias 

electromagnética

s externas. 

Generalizado Variable 
Baja a 

moderada 

Señales no 

correladas con 

la actividad 

neuronal. 

Eléctrico 

Interferencias de 

la red eléctrica o 

de dispositivos 

electrónicos. 

Generalizado 

50/60 Hz 

(frecuencia 

de red) 

Variable 

Señales 

sinusoidales 

repetitivas que 

contaminan 

los registros. 

Tabla 1. Tipos de artefactos y sus características principales (Team, 2023). 
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relativamente breves que se producen al mismo tiempo que la frecuencia cardiaca del 

paciente. Sin embargo, no sólo el corazón es capaz de generar artefactos de origen 

cardíaco. Por ejemplo, si el paciente cuenta con prótesis coronarias, que son implantes 

colocados en el corazón para reemplazar las válvulas dañadas y corregir la insuficiencia 

que pueda presentar, también se pueden producir artefactos, pues estas prótesis están 

fabricadas con materiales paramagnéticos o ferromagnéticos (Papadelis, et al., 2018). La 

medición simultánea de las señales generadas tanto por el cerebro como por el corazón 

mediante MEG/EEG y ECG, respectivamente, permite identificar las componentes 

asociadas a cada uno de los órganos mencionados. Las señales neuronales mostradas se 

han adquirido mediante el uso de magnetómetros y gradiómetros. Los primeros miden la 

intensidad absoluta de los campos magnéticos en un punto del espacio, mientras que los 

segundos registran la diferencia de campo magnético entre dos puntos cercanos (Puce & 

Hämäläinen, 2017). 

   Por otro lado, en la Figura 2 se muestra un artefacto de tipo ocular debido a parpadeos, 

que contaminan las frecuencias más bajas (Papadelis, et al., 2018). También existen 

artefactos debidos a movimientos sacádicos de los ojos, es decir, desplazamientos rápidos 

oculares entre dos puntos, que suelen ser involuntarios cuando el paciente se encuentra 

con los ojos cerrados. Este tipo de artefactos pueden ser tratados como miogénicos debido 

a su comportamiento típico, pues suelen interferir con los rangos de frecuencia más altos.  

 

Figura 1. Artefacto cardíaco en señales MEG y EEG obtenidas en un niño con epilepsia. Primer conjunto 

de señales (en rojo): registros de magnetómetros. Segundo conjunto de señales (en salmón): registros de 

gradiómetros. Tercer conjunto de señales (en azul): registros de EEG. Cuarta señal (en negro): registro 

de ECG. Esquina superior derecha: localización del pico de artefacto de ECG en una topografía MEG. 

Esquina inferior derecha: localización del pico de artefacto de ECG en una topografía EEG (Papadelis, 

et al., 2018). 
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   Finalmente, en la Figura 3 se puede ver un artefacto de tipo muscular generado por el 

músculo frontal al fruncir el ceño (Papadelis, et al., 2018). También generan artefactos 

que tienen un gran impacto en la señal neuronal los músculos maseteros, empleados al 

masticar o al imitar dicho movimiento. Tal y como se ha comentado previamente en la 
Tabla 1, la actividad muscular produce artefactos situados en alta frecuencia, entre 20 y 

300 Hz. Así, puede solaparse por completo con el ancho de banda espectral de las 

oscilaciones de alta frecuencia generadas por la actividad neuronal, como las ondas 

gamma, lo que hace casi imposible distinguirlas de los artefactos. 

 

 

Figura 2. Artefacto ocular debido a parpadeos en señal MEG obtenida en un adulto de 24 años sano. 

Primer conjunto de señales (en rojo): registros de gradiómetros. Segundo conjunto de señales (en azul): 

registro vertical (VEOG) y horizontal (HEOG) de electrooculograma (EOG). A la derecha: localización 

del pico de artefacto de EOG en una topografía MEG (Papadelis, et al., 2018). 

 

Figura 3. Artefacto muscular debido al músculo frontal en señal MEG obtenida en un niño con epilepsia. 

Primer conjunto de señales (en rojo): registros de gradiómetros. Segundo conjunto de señales (en 

salmón): registros de magnetómetros. Tercera señal (en azul): registro de EMG. A la derecha: 

localización del pico de artefacto de EMG en una topografía MEG (Papadelis, et al., 2018). 
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   En cuanto a los artefactos no fisiológicos, no sólo pueden estar generados por elementos 

externos al cuerpo humano, sino que también pueden proceder de dispositivos médicos 

implantados en algunas partes del cuerpo del paciente (Papadelis, et al., 2018). Estos 

elementos pueden generar artefactos que provocan que la señal neuronal sea ininteligible. 

La Figura 4 ilustra un artefacto durante un registro de MEG en un paciente adulto con un 

implante coclear. Aquí puede verse que la mayoría de los magnetómetros se saturan por 

la perturbación del implante coclear, volviéndose incapaces de registrar cualquier 

actividad cerebral del paciente. 

 

2.3. Técnicas tradicionales de reducción de ruido 

   Una vez adquirida la señal neuronal, antes de analizarla se debe llevar a cabo un 

acondicionamiento de la misma para mejorar su calidad y que su interpretación se pueda 

realizar de la forma más sencilla y rápida posible. A lo largo de la historia, se han 

desarrollado diferentes métodos para mejorar la calidad de las señales, desde sistemas 

mecánicos y analógicos hasta técnicas digitales basadas en modelos de IA. A finales del 

siglo XIX y a partir de la invención del telégrafo y el teléfono, surgió la necesidad de 

reducir el ruido en las señales eléctricas generadas en la comunicación (Van Bosse, 1998). 

En esta época, la atenuación del ruido dependía principalmente de filtros pasivos hechos 

con resistencias, inductancias y condensadores. Más adelante, a principios del siglo XX, 

con el avance de la radio y las telecomunicaciones, se popularizaron los filtros eléctricos 

analógicos, como los filtros paso-bajo para eliminar altas frecuencias no deseadas (Van 

Bosse, 1998).  

 

 

Figura 4. Artefacto no fisiológico debido a un implante coclear en un paciente adulto (Papadelis, et al., 

2018). 
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   Entre las técnicas más comunes de preprocesamiento se encuentra el filtrado digital, 

que se desarrolló en la década de 1960 (Proakis, 2001). Estos filtros son capaces de aplicar 

transformaciones matemáticas sobre la señal en tiempo real, e implican trabajar en el 

dominio de la frecuencia, por lo que se debe aplicar algún método basado en 

transformadas. Las transformadas descomponen las señales en sus componentes 

frecuenciales (Nitschke, et al., 1998). Esto puede ser beneficioso a la hora de detectar 

ruido en señales neuronales, pues muchos artefactos presentan características espectrales 

concretas y es más sencillo diferenciar patrones de ruido o cerebrales, pudiendo separar 

unos de otros. Para obtener el comportamiento frecuencial de una señal que originalmente 

está caracterizada de forma temporal se han desarrollado métodos basados en 

transformadas matemáticas, como la Transformada Rápida de Fourier (FFT, Fast Fourier 

Transform) o la Transformada Wavelet. La primera permite descomponer una señal en 

sus componentes espectrales, proporcionando información sobre qué frecuencias están 

presentes, pero no sobre cuándo ocurren (Ambardar, 1995). Esta limitación afecta 

especialmente a las señales de origen neuronal, donde los patrones de actividad varían 

con el tiempo. Para abordar este problema, la Transformada Wavelet introduce una 

representación en tiempo-frecuencia, ofreciendo una mejor resolución temporal para las 

componentes situadas en frecuencias altas y una mejor resolución frecuencial para las 

ubicadas en frecuencias bajas, permitiendo detectar cambios espectrales de manera 

dinámica (Azzerboni, et al., 2004). Esta flexibilidad hace que la Transformada Wavelet 

sea de gran utilidad para analizar eventos transitorios en EEG y MEG, como picos de 

actividad o respuestas ante estímulos, mientras que la FFT se emplea para examinar el 

contenido espectral global y eliminar artefactos de frecuencia fija, como el ruido eléctrico. 

   En cuanto a los filtros, se trata de dispositivos que permiten aislar un rango determinado 

de frecuencias dentro de una señal eléctrica, ajustando su amplitud y fase, si se desea 

(Semmlow, 2004). Su objetivo principal es diferenciar la información relevante de 

posibles interferencias, ruido o distorsiones no deseadas, mejorando así la calidad de la 

señal procesada. Existen diferentes tipos de filtros, y cada uno se aplica según las 

necesidades requeridas, pero los que más sentido tiene aplicar durante el procesamiento 

de señales neuronales son los filtros paso-bajo, paso-alto y de ranura. Por un lado, los 

filtros paso-bajo permiten el paso de las señales que los atraviesan desde la frecuencia 

cero hasta una frecuencia de interés, denominada frecuencia de corte, a partir de la cual 

la atenuación aplicada a la señal va siendo cada vez mayor (Sen, et al., 2023). Este tipo 

de filtros puede emplearse para reducir el ruido de alta frecuencia en las señales EEG o 

MEG, como artefactos musculares, interferencias electromagnéticas de alta frecuencia o 

ruido de los equipos de adquisición, que suelen estar en un rango de frecuencias superior 

al de las oscilaciones cerebrales relevantes. Así, es más fácil identificar las componentes 

de interés, como las ondas delta (0.5 – 4 Hz), zeta (4 – 8 Hz), alfa (8 – 13 Hz) y beta (13 
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– 30 Hz), que tienen frecuencias más bajas (Sanei & Chambers, 2013). Por otro lado, los 

filtros paso-alto permiten el paso de las frecuencias altas de las señales desde una 

frecuencia de corte superior a cero (Sen, et al., 2023). Artefactos como movimientos 

oculares o variaciones en la impedancia de los electrodos, que generan componentes de 

muy baja frecuencia, pueden eliminarse con este tipo de filtros y conservar componentes 

cerebrales de frecuencias altas, como las ondas gamma, cuyas oscilaciones son superiores 

a los 30 Hz (Sanei & Chambers, 2013). Finalmente, los filtros de ranura y los filtros 

elimina-banda permiten el paso de toda la señal salvo la parte comprendida entre dos 

frecuencias concretas (Sen, et al., 2023) (Hirano, et al., 1974). Con esto se pueden 

eliminar las interferencias debidas a la red eléctrica, es decir, las oscilaciones situadas en 

50 o 60 Hz y sus armónicos, u otro tipo de ruido que corrompa la señal cerebral en bandas 

intermedias (Puce & Hämäläinen, 2017). La ventaja de este tipo de filtros respecto de los 

otros dos comentados es que eliminan frecuencias específicas de interferencia sin afectar 

a otras bandas. El principal problema de los filtros paso-bajo y paso-alto es que no son 

tan selectivos como para eliminar únicamente las componentes contaminadas con 

artefactos, sino que también rechazan componentes neuronales (Puce & Hämäläinen, 

2017). Esto supone un grave problema para el diagnóstico de enfermedades, como la 

epilepsia o el Alzhéimer, dado que se prescinde de información importante de la actividad 

cerebral del paciente. En la Figura 5 puede verse una señal EEG y su posterior filtrado 

tras haberse aplicado un filtro paso-banda de 0.1 a 60 Hz para reducir la presencia de 

artefactos y un filtro de media móvil de 0 a 55 Hz para eliminar variaciones rápidas no 

deseadas y hacer que la señal sea más estable (Arslan, et al., 2015). 

   A pesar de que el filtrado en el dominio frecuencial puede ser una herramienta de gran 

utilidad para reducir el ruido en señales neuronales, su aplicación puede conllevar ciertas 

 

Figura 5. Filtrado de una señal EEG. Gráfica superior: señal EEG original. Gráfica intermedia: señal 

EEG original tras haber aplicado un filtro de 0.1 a 60 Hz. Gráfica inferior: señal EEG filtrada tras 

haber suavizado la señal (Arslan, et al., 2015). 
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desventajas, como la posible distorsión de la señal original o la eliminación de 

información neuronal relevante. Además, los filtros convencionales no siempre son 

eficaces para separar componentes solapadas en el dominio del tiempo o en las que su 

banda de frecuencias característica coincide con la del ruido, tal y como ya se ha 

comentado previamente. Por este motivo, surge la necesidad de aplicar otro tipo de 

técnicas que preserven la información neuronal eliminando la mayor parte posible de los 

artefactos que la contaminan. 

 

2.4. Reducción de artefactos en señales neuronales 

   Reducir el impacto de los artefactos o eliminar su presencia en las señales 

electromagnéticas cerebrales es necesario para poder llevar a cabo una interpretación 

precisa de los eventos que codifican; además, garantiza una localización de fuentes exacta 

(Islam, 2015). Las fuentes se refieren a las regiones específicas del cerebro donde se 

origina la actividad neuronal que genera las señales registradas mediante técnicas como 

EEG o MEG (Hari, et al., 2000). Estos métodos no miden directamente la actividad 

cerebral en su origen, sino que capturan una representación externa de los campos 

eléctricos o magnéticos producidos por la suma de miles o millones de neuronas activas 

en una zona concreta. Para realizar una localización de fuentes, los algoritmos deben 

procesar estas señales registradas y estimar las ubicaciones cerebrales exactas de las 

fuentes a partir de los datos medidos en los sensores. Sin embargo, la presencia de 

artefactos, ya sean fisiológicos o no fisiológicos, introduce ruido que puede distorsionar 

los cálculos y generar resultados erróneos o imprecisos (Islam, 2015). La localización de 

fuentes se emplea para identificar qué áreas del cerebro están involucradas en funciones 

biológicas específicas, para localizar la región del cerebro donde se originan las crisis en 

pacientes con epilepsia o para determinar qué regiones deben evitarse para minimizar el 

impacto sobre funciones críticas en una cirugía (Michel & He, 2019). Por eso, la correcta 

identificación y eliminación de los artefactos es indispensable para que la señal residual 

refleje con mayor fidelidad la actividad cerebral de interés. 

   Algunos de los métodos que se emplean para mitigar la presencia de artefactos son en 

los siguientes momentos (Burgess, 2020):  

i. Durante la configuración y conexión al sistema de medida. 

ii. Durante la adquisición de la señal. 

iii. En el preprocesado de la señal ya adquirida, empleando un software de 

reducción de artefactos. 
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   Para el primer caso y, por ejemplo, para MEG, se pueden emplear gradiómetros en lugar 

de magnetómetros, dado que son menos sensibles a las interferencias de fuentes de 

artefactos ambientales, ya que este ruido suele ser homogéneo en el espacio cercano y se 

cancela al calcular el gradiente (Vrba & Robinson, 2001). También se pueden incorporar 

al realizar la medición unos sensores de referencia situados a mayor distancia de la 

cabeza, que se utilizan para restar los artefactos externos (Puce & Hämäläinen, 2017). 

Además, se debe evitar cualquier material magnético en la ropa del paciente y, en el caso 

de que este tenga implantes, se pueden emplear equipos especiales que reduzcan las 

señales magnéticas producidas por los metales (Mosher & Funke, 2020).  

   Para el segundo método, el hecho de registrar señales libres de artefactos depende, en 

gran medida, del comportamiento del paciente. Factores como permanecer inmóvil, 

minimizar movimientos musculares (especialmente en la cabeza, ojos y mandíbula) y 

evitar actividades que puedan generar interferencias pueden reducir la probabilidad de 

que aparezcan componentes indeseados en las señales neuronales (Larson & Taulu, 

2017). Por ejemplo, para minimizar los artefactos oculares se le puede pedir al paciente 

que fije la vista en un punto para restringir el movimiento ocular. Sin embargo, este 

método no es útil en niños de corta edad o pacientes con algún tipo de discapacidad 

neurológica (Puce & Hämäläinen, 2017). En ese caso, sería adecuado medir 

simultáneamente señales de EOG o ECG para poder identificar correctamente los 

artefactos (Muthukumaraswamy, 2013). 

   En la etapa del preprocesado de la señal se lleva a cabo un filtrado en el rango de 

frecuencias de interés como primera aproximación (Bashashati, et al., 2007). Sin 

embargo, el filtrado no es apropiado cuando el rango de frecuencias de los artefactos se 

solapa con el espectro de la actividad cerebral, tal y como se ha comentado previamente 

(Jiang, et al., 2019). Existen algunas técnicas que permiten excluir los sensores que están 

contaminados con artefactos, como técnicas basadas en métodos estadísticos, correlación 

o modelos de IA. Las dos primeras se basan en identificar sensores que muestran 

características anómalas en comparación con el resto (Larson & Taulu, 2017). La tercera 

emplea algoritmos que implementan procedimientos automáticos de clasificación para 

identificar y excluir sensores, ya sea mediante técnicas de ML o DL (Mumtaz, et al., 

2021). Estos algoritmos se pueden complementar con algunos de los métodos estadísticos 

basados en la Separación Ciega de Fuentes (Blind Source Separation, BSS) o el Análisis 

de Componentes Independientes (Independent Component Analysis, ICA). Estas técnicas 

permiten identificar y aislar patrones específicos de artefactos en las señales neuronales, 

basándose en la idea de que las fuentes subyacentes (actividad cerebral y artefactos) son 

estadísticamente independientes (Yang, et al., 2021). El combinar ambos métodos 

permite que las componentes que sean altamente ruidosas sean descartadas 

automáticamente, mientras que las señales de los sensores restantes se puedan limpiar 
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eficazmente eliminando patrones específicos de artefactos (Vigario & Oja, 2008). A 

continuación, se exponen con más detalle estas y otras técnicas de preprocesado 

encargadas de detectar y eliminar la presencia de artefactos en señales neuronales. 

 

2.4.1. Descomposición de señales y clasificación manual 

   La tecnología y la investigación en neurociencia avanzan a un ritmo acelerado, y con 

ellas los métodos más empleados hasta la fecha van quedando obsoletos. Así, surgen 

nuevas técnicas más precisas y fiables que mejoran la comprensión del funcionamiento 

del cerebro humano y consiguen acelerar el proceso de detección y diagnóstico de 

enfermedades neuronales. Respetando el objetivo principal del preprocesado de señales 

neuronales, esto es, la eliminación de información que no es de origen cerebral, han 

surgido dos técnicas estadísticas fundamentales que permiten separar los artefactos de las 

señales neuronales para, posteriormente, poder realizar una clasificación de las 

componentes generadas: PCA e ICA.  

   PCA se trata de una técnica de reducción de la dimensionalidad del conjunto de datos 

disponible, dado que permite disminuir el tamaño del vector de características sin perder 

información importante de la señal y, a su vez, revelar patrones que en la señal original 

podrían estar ocultos (Tibaduiza, et al., 2013). Su funcionamiento se basa en la aplicación 

de una transformación ortogonal que convierte un conjunto de observaciones de variables 

correlacionadas en un conjunto de variables linealmente no correlacionadas, denominadas 

componentes principales (Kaya, 2019). Esto se consigue a partir de la premisa de que la 

señal limpia tiende a concentrarse en las primeras componentes principales (las de mayor 

varianza), mientras que el ruido se localiza principalmente en las últimas componentes.  

   Por otro lado, ICA realiza una separación de las señales adquiridas en componentes 

independientes, que se corresponden con la estimación de las diferentes fuentes que han 

originado dichas señales (Croce, et al., 2019). Por este motivo se dice que ICA está basado 

en la Separación Ciega de Fuentes (BSS, Blind Source Separation), que es el proceso de 

separar señales que originalmente se encuentran mezcladas entre sí, aunque se disponga 

de muy poca información sobre las mismas (Pal, et al., 2013). Además, supone 

independencia estadística entre esas fuentes, y asume que no existe correlación temporal, 

frecuencial o espacial entre las distintas señales sobre las que se aplica (Urigüen & 

Garcia-Zapirain, 2015). En cuanto a la primera condición, considerando dos variables 

escalares aleatorias, por ejemplo y1 e y2, se dice que son independientes si la información 

en y1 no aporta nada de información en y2, y viceversa. Por otro lado, dos variables 

aleatorias están incorreladas si su covarianza es igual a cero. A partir de estas premisas, 
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se puede asumir que, si las variables son independientes, están incorreladas. Sin embargo, 

en el caso contrario esta suposición no se cumple. 

   En la Figura 6 se muestran dos conjuntos de señales tras haber aplicado ICA y PCA 

sobre una base de datos procedente de un registro MEG realizado en una sala 

magnéticamente aislada empleando 122 canales (Jafarabadi, et al., 2015). Los datos 

incluyen señales procedentes del cerebro, artefactos fisiológicos y ruido externo. En la 

gráfica correspondiente a ICA se pueden distinguir nueve componentes independientes 

obtenidas. En ellas, es sencillo diferenciar los distintos artefactos: la primera (IC1), 

segunda (IC2) y cuarta (IC4) componente contienen artefactos musculares; la tercera 

(IC3) y la quinta (IC5) representan artefactos oculares debidos a movimientos de los ojos 

y parpadeos, respectivamente; la sexta (IC6) y la séptima (IC7) se deben al movimiento 

del cuerpo al respirar; la octava (IC8) es el artefacto cardíaco y, finalmente, la novena 

(IC9) se corresponde con el ruido procedente de los equipos de adquisición. En la gráfica 

obtenida tras aplicar PCA puede verse que las componentes de ruido no se han separado 

correctamente: la primera y segunda componentes (C1 y C2) son una mezcla de artefactos 

musculares y oculares, que equivalen a una combinación de las componentes 

independientes IC2 e IC3 obtenidas con ICA. Algo similar sucede con la tercera 

componente, que se trata de la combinación de IC2, IC3 e IC5. Como puede verse, para 

este caso ha funcionado mejor ICA que PCA y, generalmente, aplicado en el ámbito de 

señales neuronales, ese va a ser el comportamiento habitual. Esto se debe a que los 

artefactos fisiológicos suelen ser independientes de la actividad neuronal y, por lo tanto, 

las características del conjunto de datos se ajustan más a las condiciones necesarias para 

poder aplicar ICA (Jafarabadi, et al., 2015). 

   Sin embargo, ni PCA ni ICA llevan a cabo una clasificación de componentes, por lo 

que es necesario disponer de algún método adicional que permita clasificar las 

componentes generadas tras haber aplicado ICA o PCA, según sean de origen neuronal o 

 

Figura 6. Conjunto de señales estimadas mediante ICA (izquierda) y mediante PCA (derecha) (Jafarabadi, 

et al., 2015). 
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artefactos. La forma habitual de realizar dicha clasificación es manualmente, y el proceso 

se conoce comúnmente como etiquetado (Croce, et al., 2019). Uno o varios técnicos 

especialistas tratan de buscar características distintivas de las señales y patrones que las 

caractericen. Tal y como se ha visto previamente, las formas de onda de los artefactos 

más comunes presentan rasgos característicos que hacen posible su identificación. Este 

proceso requiere experiencia y criterio de la persona encargada del etiquetado y, en 

muchas ocasiones, se complementa su análisis con el realizado por el de más expertos 

para contrastar la información y disminuir los sesgos individuales.  

   A pesar de su utilidad, la clasificación manual es una tarea ardua que requiere mucho 

tiempo para poder llevarla a cabo e implica un alto grado de subjetividad. Esto hace que 

los estudios se prolonguen durante períodos largos de tiempo y la fiabilidad de los 

diagnósticos sea baja, afectando directamente a los pacientes implicados y, en casos 

extremos, disminuyendo su tiempo de vida (Croce, et al., 2019). Además, las técnicas de 

descomposición de señales en componentes vistas presentan ciertas desventajas. Por un 

lado, PCA no es capaz de separar las componentes contaminadas con artefactos de las 

componentes neuronales cuando sus amplitudes son del mismo orden de magnitud (Jiang, 

et al., 2019). Así, PCA únicamente es útil cuando los niveles de ruido son bajos y, además, 

los subespacios de señal y de ruido son ortogonales entre sí. Esto implica que las 

direcciones principales de variabilidad de la señal no se mezclen con las del ruido, sino 

que estén en dimensiones separadas dentro del espacio de representación de los datos 

(Jafarabadi, et al., 2015). Dada la naturaleza dinámica y estocástica de las señales 

procedentes del cuerpo humano, suponer ortogonalidad en dichas señales sería la primera 

causa de fallo. Por otro lado, ICA no garantiza que las componentes independientes 

generadas contengan exclusivamente ruido y no información neuronal importante del 

paciente, dado que no siempre se puede suponer que existe independencia estadística 

entre las fuentes (Chawla, 2011). Con todo y con eso, con ICA se obtiene un mejor 

rendimiento que con PCA, tal y como se ha demostrado en el estudio mostrado 

previamente. 

 

2.4.2. Tendencia actual: técnicas de IA 

   La contaminación de las señales neuronales con artefactos supone un problema crítico 

en el diagnóstico de enfermedades cerebrales, ya que existe la posibilidad de que esas 

señales contaminadas sean tratadas erróneamente como actividad neuronal genuina 

(Muthukumaraswamy, 2013). Este error puede llevar a interpretaciones incorrectas sobre 

el comportamiento cerebral subyacente, lo que compromete tanto los estudios clínicos 

como los experimentos científicos. También puede darse la situación contraria, es decir, 

que una señal de origen cerebral sea erróneamente descartada al ser interpretada como 
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ruido (Jiang, et al., 2019). Este y otros problemas, junto con la necesidad de los seres 

humanos por realizar tareas de manera automática y de la forma más rápida posible, ha 

llevado al desarrollo de herramientas que imiten el comportamiento humano y mejoren 

su rendimiento conforme vayan recopilando más información. La capacidad de estas 

herramientas que les permite realizar dichas tareas se denomina “inteligencia artificial” 

(Rouhiainen, 2018). Concretamente, su uso ha revolucionado el tratamiento de señales 

biomédicas y ha mejorado la calidad de los diagnósticos, ya que ha permitido prescindir 

parcialmente de la intervención humana, disminuyendo la variabilidad en los resultados  

(AlHinai, 2020). 

   Las diferencias entre los modelos tradicionales de procesado y el uso de modelos 

basados en IA se ven reflejadas en términos de automatización, precisión y escalabilidad 

(Jiang, et al., 2022). Las técnicas clásicas vistas anteriormente, como el filtrado o la 

clasificación basada en la descomposición de señales, han demostrado su eficacia en la 

eliminación de artefactos en señales neuronales. Sin embargo, en muchas ocasiones se 

hace inviable combinarlas todas debido al coste computacional y temporal que ello 

implica (Barbati, et al., 2004). Además, requieren un ajuste manual y dependen en gran 

medida de la experiencia del usuario, mientras que los algoritmos de IA pueden aprender 

de grandes volúmenes de datos y realizar tareas de forma autónoma, pues cuenta con la 

capacidad de encontrar patrones y correlaciones en los datos mucho más rápido que un 

humano (Callier & Sandel, 2021). A mayores, la escalabilidad de estos sistemas permite 

su aplicación en grandes volúmenes de datos, necesarios en estudios a gran escala y 

aplicaciones en tiempo real, como el monitoreo de pacientes en entornos clínicos (Hamet 

& Tremblay, 2017). Sin embargo, puede resultar conveniente en algunos casos no 

desechar por completo alguna de las técnicas convencionales y combinarla con los 

algoritmos de IA. En este sentido, tanto PCA como ICA pueden emplearse como un paso 

previo a la clasificación de señales neuronales con el fin de simplificar el conjunto de 

datos y extraer sus características más relevantes en el caso de PCA, o separarlos en 

componentes independientes según sus fuentes en el caso de ICA, tal y como se ha 

comentado previamente (Lakshmi, et al., 2017) (Urigüen & Garcia-Zapirain, 2015). Con 

esto se consigue optimizar la base de datos y, por lo tanto, mejorar la calidad de las 

detecciones por parte de la herramienta de IA empleada.  

   Dentro de la IA existen diversas técnicas que permiten realizar diferentes tareas y que, 

por lo tanto, están diseñados para aplicaciones específicas. En el ámbito de la 

neurociencia, los más empleados son las basadas en ML y, más recientemente, en DL. 

Por un lado, el ML permite a los sistemas aprender automáticamente a partir de los datos, 

sin necesidad de ser programados explícitamente (Vu, et al., 2018). Por otro lado, el DL 

es una rama avanzada del ML que emplea redes neuronales profundas para realizar 

análisis más complejos, siendo especialmente eficaz en el procesamiento de señales 
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biomédicas (Marblestone, et al., 2016). Los algoritmos de ML permiten clasificar 

segmentos de señales contaminadas con artefactos y mejorar la calidad de los datos. Sin 

embargo, el éxito del ML depende de características extraídas manualmente por los 

expertos, lo que puede introducir sesgos y limitar el rendimiento del modelo (Zheng & 

Casari, 2018). En contraposición, el DL elimina la necesidad de extraer características 

manualmente, ya que las redes neuronales son capaces de aprender representaciones 

directamente a partir de los datos originales. Además, el empleo de DL permite abordar 

la naturaleza no lineal de las señales cerebrales, lo que supone una complicación añadida 

para su análisis (Bitbrain, 2020).  

   Una vez elegido el modelo de IA que se va a emplear se debe configurar su arquitectura, 

que definirá el comportamiento del modelo en cuestión. Una de las más empleadas para 

el análisis de señales cerebrales son las Redes Neuronales Artificiales (ANN, Artificial 

Neural Networks). Estas se basan en el comportamiento de las neuronas y sus 

interconexiones construyendo arquitecturas de redes neuronales, lo que les permite 

aprender y tomar decisiones identificando patrones y clasificando datos (Walczak, 2019). 

Las ANN están formadas por muchas neuronas, llamadas perceptrones, cuya función es 

modificar las entradas que se les introducen multiplicándolas por unos pesos aleatorios y 

sumándolas entre sí con un valor de sesgo (Jain, et al., 1996). Tanto los pesos como el 

sesgo aplicado se pueden ajustar según se desee y determinan el resultado concreto que 

va a proporcionar el perceptrón. A este resultado se le aplica una función de activación, 

que decide si el dato proporcionado se debe introducir por un nuevo perceptrón o no 

(Antona-Cortés, 2017).  

   Dentro de las ANN existen diferentes modelos de redes neuronales, como las CNN o 

las Recurrentes (RNN, Recurrent Neural Networks). Las primeras constan de varias capas 

de perceptrones y filtros convolucionales de diferentes dimensiones. Estos filtros se 

denominan kernel y, según la matemática convolucional implicada, la CNN realiza un 

producto escalar entre un filtro kernel y los datos de entrada con el fin de conseguir las 

singularidades más significativas de dichos datos. Además, contienen las capas de 

pooling, que reducen el tamaño de los datos a su entrada conservando las características 

más relevantes, las completamente conectadas, donde se refleja que cada entrada aplicada 

a cada neurona afecta a cada una de las salidas proporcionadas dado que tienen en cuenta 

toda la información extraída para llevar a cabo una clasificación, y las de salida (O'Shea 

& Nash, 2015). A su vez, las RNN están formadas por varias capas que toman la 

información de entradas anteriores que influyen en la entrada y salida actuales, es decir, 

se trata de un sistema que tiene memoria. Esto permite captar la evolución de los datos 

que se quieran analizar a lo largo del tiempo (Grossberg, 2013). Sin embargo, las CNN 

son más adecuadas para clasificar datos, como por ejemplo componentes ICA neuronales 

con artefactos, debido a su alta capacidad para reconocer patrones, clasificar datos y 
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detectar componentes dentro de un conjunto de valores (Junliang, 2022). Las RNN se 

emplean para tareas en las que el contexto y la secuencia de los datos son de vital 

importancia, como la generación de texto o la traducción automática (Guan, et al., 2017). 

Por estos motivos, en el presente TFM se ha optado por emplear una arquitectura de red 

convolucional. En la Figura 7 pueden verse las diferencias entre las distintas capas que 

forman las redes CNN y RNN. En las primeras puede verse cómo las neuronas se 

conectan exclusivamente con algunas de las neuronas adyacentes, mientras que en las 

segundas se ve que las neuronas pueden recibir información de todas las neuronas de la 

capa anterior (Zhang, et al., 2021). 

   Entre las herramientas más modernas destacan plataformas como EEGNet, una 

arquitectura de CNN diseñada específicamente para trabajar con señales 

electrofisiológicas, empleada para la identificación de artefactos oculares y musculares 

en señales provenientes de registros de EEG (Lawhern, et al., 2018). A su vez, existen 

otras herramientas adaptadas específicamente a señales adquiridas mediante MEG, como 

por ejemplo MEGnet (Garg, et al., 2021). En este caso, la tarea principal consiste en la 

identificación de artefactos cardíacos y oculares mediante la aplicación de una CNN tras 

haber aplicado ICA. Asimismo, se cuenta con softwares más generalistas, como 

TensorFlow o PyTorch, que permiten implementar modelos de eliminación de artefactos, 

pudiendo ajustar los hiperparámetros que caracterizan la red neuronal programada, como 

el número de neuronas o las capas ocultas que la forman (Novac, et al., 2022).  

   La elección del modelo y de la arquitectura de este que más se ajuste al problema que 

se desee resolver es sólo el paso inicial en todo el proceso de la aplicación de los modelos 

de IA. El entrenamiento de la red sería la siguiente etapa. Aquí se realiza un proceso 

iterativo de ajuste de pesos. Inicialmente, la red recibe un conjunto de datos etiquetados 

divididos en fragmentos que atraviesan múltiples capas convolucionales y de activación, 

 

Figura 7. Estructura general de una CNN (a) y de una RNN (b) (Zhang, et al., 2021). 
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extrayendo características cada vez más abstractas. A cada uno de esos fragmentos se le 

aplica un peso (Ros-García, 2019). Por ejemplo, si el peso aplicado al primer fragmento 

es 1 y el peso aplicado al segundo fragmento es 10, entonces el segundo fragmento tendrá 

un efecto 10 veces superior al del primer fragmento. Luego, la salida se compara con la 

etiqueta real para calcular el error mediante una función de pérdidas (Janocha & 

Czarnecki, 2017). Este error se propaga hacia atrás (backpropagation) a través de la red 

utilizando algoritmos de optimización, como Adam (Adaptive moment estimation), para 

ajustar los pesos y mejorar la precisión del modelo (Taqi, et al., 2018). A lo largo de 

varias épocas, la CNN aprende patrones relevantes, reduciendo el error y mejorando su 

capacidad de generalización sobre datos no vistos. Sin embargo, no todo el conjunto de 

los datos se emplea para entrenar la red, sino que se reserva una parte para la etapa de 

validación y otra para la etapa de test (Lee, et al., 2019). La primera se emplea durante el 

entrenamiento y tiene como objetivo evaluar el desempeño del modelo y evitar el 

sobreajuste u overfitting, situación que se da cuando el modelo se ha ajustado demasiado 

a los datos de entrenamiento y no es capaz de generalizar a datos nuevos (O'Shea & Nash, 

2015). El conjunto de validación permite ajustar los hiperparámetros de la red, como el 

número de neuronas y sus capas (Andonie, 2019). Una vez finalizado el entrenamiento, 

se evalúa el modelo con el conjunto de test, que contiene datos completamente nuevos 

para la red. Esta fase permite medir la capacidad real del modelo para generalizar a datos 

no vistos y evaluar su comportamiento global (Ma, et al., 2021). 

   Existen múltiples algoritmos de optimización, pero el que se ha empleado en este TFM 

es Adam, mencionado previamente. Está basado en el descenso del gradiente estocástico, 

y combina las técnicas AdaGrad (Adaptive Gradient algorithm) y RMSProp (Root Mean 

Square Propagation) (Kingma & Ba, 2014). En la primera se ajusta la tasa de aprendizaje 

de manera adaptativa, de modo que aquellos parámetros con gradientes grandes reciben 

actualizaciones más pequeñas, mientras que los que tienen gradientes más pequeños se 

ajustan en mayor medida. En la segunda se ajusta la tasa de aprendizaje de manera 

individual para cada peso evitando que se reduzca demasiado con el tiempo. Para lograrlo, 

en lugar de acumular todos los gradientes anteriores, calcula una media móvil del 

cuadrado de los gradientes usando un decaimiento exponencial y adapta el factor de 

entrenamiento dividiéndolo entre la media del declive exponencial del cuadrado de los 

gradientes (Taqi, et al., 2018). 

   Finalmente, para determinar el grado de activación que alcanza cada neurona de la red, 

es decir, si los datos que contienen son significativos, se aplica una función de activación 

específica. Las más comunes son la sigmoide, la tangente hiperbólica, ReLu y SoftMax 

(Sharma, et al., 2017): 
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- Por un lado, la función sigmoide se emplea en problemas de clasificación binaria dado 

que transforma la entrada real a un valor entre 0 y 1, es decir, asigna una probabilidad 

a cada dato, lo que hace que se pueda asignar a una clase específica. La gráfica que la 

caracteriza se muestra en la Figura 8 (a), que equivale a la siguiente expresión 

matemática: 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (1) 

 

- Por otro lado, la función tangente hiperbólica (tanh) genera valores en un rango de -

1 a 1, por lo que amplía el conjunto de valores que puede tomar la entrada en 

comparación con la función sigmoide. Además, está centrada en cero, lo que favorece 

que los pesos se actualicen de forma más eficiente durante el entrenamiento y el 

aprendizaje sea más rápido. Su gráfica se muestra en la Figura 8 (b) y su expresión 

matemática es la siguiente: 

 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2) 

 

- A su vez, ReLu devuelve 0 cuando la entrada es negativa y el propio valor de la 

entrada cuando esta es positiva, es decir, para valores positivos presenta un 

comportamiento lineal con un gradiente igual a 1, por lo que mejora la convergencia 

del entrenamiento. Esta función es menos costosa computacionalmente que la función 

sigmoide o la tanh debido a su sencillez matemática. Su gráfica puede verse en la 

Figura 8 (c), que se corresponde con la siguiente expresión: 

 𝑓(𝑥) = max⁡(0, 𝑥) (3) 

 

- Finalmente, SoftMax se emplea para resolver problemas de clasificación multiclase, 

dado que la salida que ofrece representa la probabilidad de que la entrada pertenezca 

a una determinada clase. La gráfica correspondiente se muestra en la Figura 8 (d), que 

equivale a la siguiente expresión matemática: 

 𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑗
 (4) 
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2.5. Señales sintéticas 

   Contar con la técnica más idónea de entrenamiento y optimización no sólo depende del 

problema específico que se quiera abordar, sino también del volumen de datos disponibles 

para el entrenamiento del modelo. En muchas ocasiones, disponer de la base de datos 

adecuada para un correcto entrenamiento de los algoritmos supone una dificultad añadida, 

no sólo por la calidad necesaria para obtener los resultados deseados, sino porque obtener 

grandes volúmenes de datos es muy costoso temporal y computacionalmente (Kaplan, et 

al., 2005) (Colomer, et al., 2016). Aquí es donde toma un papel importante la generación 

de señales sintéticas. Se entiende por señales sintéticas a datos generados de forma 

artificial que imitan las características de las señales neuronales reales, incluyendo tanto 

la actividad cerebral como los artefactos (Carrle, et al., 2023). Como se trata de señales 

creadas para un fin y que no son generadas directamente por el cuerpo humano, se las 

puede configurar como se desee, dando mayor relevancia a la parte neuronal o haciendo 

que sea la parte contaminada por artefactos la que predomine. El propósito de la 

generación de señales sintéticas radica en proporcionar un entorno controlado y conocido 

a priori, en el que se puedan desarrollar y evaluar de forma sistemática los métodos de 

 

 

Figura 8. Representación gráfica de las funciones de activación más comunes. 
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detección y eliminación de artefactos sin depender exclusivamente de datos reales 

(Laguna, et al., 2024). Además, permite llevar a cabo un análisis comparativo entre 

diferentes modelos de eliminación de artefactos para evaluar su comportamiento, ya que 

la proporción de ruido y señal introducida es conocida (Carrle, et al., 2023).  

   Las señales sintéticas se pueden generar de diferentes maneras, pero todas se basan en 

la combinación de señales neuronales simuladas con señales de artefactos, bien adquiridas 

con los sensores específicos o creadas con modelos matemáticos de artefactos (Betzel & 

Bassett, 2017). Para reproducir diferentes condiciones de contaminación se pueden 

modificar algunos de los parámetros que caracterizan a las señales, como la amplitud, la 

frecuencia o la SNR (Laguna, et al., 2024).  Existen diversas herramientas que, aplicando 

distintos métodos, permiten generar señales sintéticas. El módulo SourceSimulator de 

MNE-Python es una de ellas. Este genera datos sintéticos simulando la actividad cerebral 

en las fuentes de la corteza y proyectándola hacia los sensores MEG/EEG, con la 

posibilidad de agregar ruido (MNE, 2024). En la Figura 9 puede verse el resultado de 

simular el módulo mencionado con unas condiciones de actividad cerebral y de ruido 

específicas. En primer lugar, se generaron señales simuladas desde fuentes corticales; a 

continuación, se proyectaron a los sensores MEG a través de un modelo de cabeza y, 

finalmente, se añadieron artefactos para simular unas condiciones realistas. Por otro lado, 

en la Figura 10 se muestran los potenciales evocados generados a partir de las señales 

sintéticas generadas con MNE-Python. Los potenciales evocados son el resultado del 

promedio de señales de EEG o MEG en múltiples repeticiones de un estímulo. La primera 

gráfica representa las señales adquiridas mediante 59 canales EEG, sensibles a la 

actividad eléctrica de la corteza cerebral, mientras que la segunda y la tercera se 

corresponden con registros MEG, de 203 y 102 canales, respectivamente. Las señales 

mostradas se calcularon promediando 49 ensayos del estímulo. 
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Figura 9. Señales MEG simuladas obtenidas con el módulo SourceSimulator de MNE-Python. Se trata de 

señales provenientes de diferentes sensores, con una duración de 10 segundos (MNE, 2024). 

 

 

Figura 10. Potenciales evocados generados a partir de señales EEG (primera gráfica) y MEG, con 

gradiómetros (segunda gráfica) y magnetómetros (tercera gráfica), haciendo uso del módulo 

SourceSimulator de MNE-Python (MNE, 2024). 
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3.1. Introducción 

   En las últimas décadas, el progreso científico ha sido notable en numerosos campos de 

la medicina, como el diagnóstico por imagen o la oncología. Sin embargo, existen otras 

áreas médicas, como el estudio del cerebro humano, que se encuentran en los primeros 

estadios de investigación, pues existen múltiples aspectos que aún no se han explorado 

(García-Albea, 2017). Por ello, se necesita seguir investigando para poder comprender el 

porqué de ciertos comportamientos humanos, la evolución de determinadas 

enfermedades, como las neuronales, o los tratamientos necesarios para tratarlas o evitar 

su avance.  

   En el campo de la neurociencia, muchos investigadores se encargan no sólo de estudiar 

la anatomía y la actividad cerebral, sino que además ofrecen sus conocimientos y 

permiten que otros neurocientíficos aporten valor a sus estudios. En este sentido, uno de 

los aspectos más críticos que supone una barrera en el avance científico es la realización 

de los experimentos pertinentes que, en muchas ocasiones, requieren de software 

específico para poder llevarse a cabo, como las interfaces cerebro-máquina (BCI, Brain-

Computer Interfaces) (Wolpaw, 2013). Esta tecnología permite capturar en tiempo real 

información del cerebro en un dispositivo externo sin que sea necesaria la intervención 

de otras partes del cuerpo humano. Los sistemas BCI emplean técnicas de adquisición de 

señales como el EEG o el MEG que, posteriormente, son procesadas y analizadas por un 

software para extraer la información relevante (Wolpaw, et al., 2020). Hoy en día, existen 

múltiples plataformas que integran todas estas capas para proporcionar, en una única 

interfaz, un servicio de calidad, fiable y estable, como BCI2000 u OpenViBE (Schalk, et 

al., 2004) (Renard, et al., 2010). A pesar de que han sido las herramientas más usadas por 

los neurocientíficos para tratar problemas de BCI, cuentan con una serie de desventajas 

que limitan su funcionamiento: por un lado, no están preparadas para su aplicación en 

entornos cooperativos puesto que sólo son capaces de procesar unas pocas señales de 

entrada y no disponen de las herramientas necesarias para que los investigadores 

compartan sus experimentos o avances. Por otro lado, el lenguaje de programación que 

integra sus funcionalidades es C++ que, debido a su complejidad, no es apto para 

implementar los avances en BCI que van surgiendo, como los nuevos estudios basados 

en DL (Martínez, et al., 2021). Por este motivo, surge la necesidad de desarrollar nuevas 

herramientas que solucionen este tipo de problemas y mejoren la calidad de los estudios 

realizados. Desde el Grupo de Ingeniería Biomédica (GIB) de la Universidad de 

Valladolid se ha propuesto una alternativa a las plataformas BCI existentes, denominada 

MEDUSA© (MEDUSA, 2022). Se trata de un software basado en Python en el que 

conviven diferentes herramientas de procesado, análisis y modelado de señales 

cerebrales. Cuenta con una arquitectura modular y adaptable, fácil de usar y con una gran 
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potencia computacional que permite a los investigadores implementar sus propios 

algoritmos o utilizar herramientas avanzadas de IA y procesamiento de señales. En 

concreto, al estar basada en Python facilita la integración con librerías ampliamente 

utilizadas en el ámbito de la neurociencia, como NumPy, SciPy, TensorFlow o PyTorch 

(Santamaría, et al., 2023). A lo largo de este capítulo se describen sus características y 

funcionalidades principales. 

 

3.2. Estructura de MEDUSA© 

   MEDUSA© se caracteriza por tener un diseño modular dividido en diversos submódulos 

independientes que pueden ser modificados o incluidos en el sistema sin afectar al resto 

de la plataforma dado que están conectados por protocolos de comunicación sencillos 

(Santamaría, et al., 2023). Está implementada en Python, un lenguaje de alto nivel que 

simplifica el uso de la herramienta a los investigadores y es compatible con diversos 

sistemas operativos, como Windows, macOS o Linux (Santamaría, et al., 2018). 

MEDUSA© está dividida en dos partes bien diferenciadas: el núcleo MEDUSA© y la 

plataforma MEDUSA© (Santamaría, et al., 2023).  

   Por un lado, el núcleo MEDUSA© contiene las herramientas necesarias para analizar 

las señales cerebrales obtenidas mediante distintos métodos de adquisición, como EEG o 

MEG, y dispone de herramientas basadas en ML y DL para procesar las señales biológicas 

(Santamaría, et al., 2023). A su vez, puede dividirse en diferentes submódulos según el 

nivel de abstracción de las funcionalidades que estos implementan. Los módulos de más 

bajo nivel contienen los métodos de procesamiento comunes a las distintas señales que se 

pueden analizar, como filtros temporales y espaciales o métricas de activación y de 

conectividad. En un nivel de abstracción superior se encuentran las funciones específicas 

para extraer y analizar las características concretas de las señales de entrada (Santamaría, 

et al., 2023). Los algoritmos de procesamiento empleados en estos casos se basan en los 

potenciales evocados P300, imaginería motora, potenciales evocados visuales modulados 

(c-VEPs, modulated Visual Evoked Potentials) y neurorretroalimentación. El primero se 

trata de la respuesta cerebral generada aproximadamente 300 milisegundos después de la 

aparición de un estímulo inesperado, y se emplea para la detección de intención (Fazel-

Rezai, et al., 2012). A su vez, la imaginación motora consiste en la activación de áreas 

motoras del cerebro al imaginar movimientos, útil en casos en los que el paciente tiene 

alguna parte del cuerpo inmovilizada debido a una condición fisiológica (Wierzgała, et 

al., 2018). c-VEPs son las señales cerebrales inducidas por estímulos visuales repetitivos 

y modulados, empleadas para detectar patrones de actividad específicos (Wang, et al., 

2008). Finalmente, en la neurorretroalimentación los usuarios reciben información en 
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tiempo real sobre su actividad cerebral para aprender a autorregularla, aplicado en terapias 

y optimización cognitiva (Neuper & Pfurtscheller, 2010). El núcleo MEDUSA© permite 

combinar los estudios con otros lenguajes de programación o paquetes de Python, analizar 

señales almacenadas previamente en bases de datos o recién adquiridas en tiempo real y 

personalizar las condiciones de análisis según sea necesario. 

   Por otro lado, la plataforma MEDUSA© depende directamente del núcleo MEDUSA©, 

y es la interfaz gráfica ofrecida a los usuarios del software que dispone de gráficos en 

tiempo real y herramientas con funciones de adquisición de señales (Santamaría, et al., 

2023). Además, permite la creación e instalación de nuevas aplicaciones relacionadas con 

los sistemas BCI. Para garantizar un correcto funcionamiento, está dividida en tres partes: 

la encargada de adquirir las señales biológicas, las gráficas en tiempo real y las 

aplicaciones (Santamaría, et al., 2023). La primera hace uso de un protocolo de 

transmisión en tiempo real de datos biomédicos denominado LSL (Lab Streaming Layer 

protocol), que simplifica la sincronización y el intercambio de señales entre distintos 

dispositivos y programas asegurando una baja latencia. Además, este protocolo permite 

integrar diversas fuentes de datos en un flujo común de forma simultánea (LSL, 2019). 

En cuanto a las gráficas en tiempo real, LSL permite visualizar las señales capturadas de 

forma instantánea en gráficas temporales y frecuenciales que se actualizan en milésimas 

de segundo. Las temporales disponen de herramientas para modificar la representación 

de las señales, como escalados o factores de diezmado, mientras que las frecuenciales 

representan la densidad espectral de potencia (PSD, Power Spectral Density) haciendo 

uso del método Welch (Santamaría, et al., 2023). Este se basa en la Transformada de 

Fourier para obtener la representación frecuencial de las señales mejorando la precisión 

de la estimación al reducir la varianza en comparación con el método clásico de Fourier 

(Jwo, et al., 2021). Por último, la parte de mayor peso y que implica la participación 

directa de los usuarios es la que contiene las aplicaciones. Estas permiten llevar un control 

en tiempo real del estado cognitivo del paciente mientras este realiza diferentes 

actividades, organizadas en varias aplicaciones independientes ofrecidas como juegos 

interactivos. Algunas de ellas son RCP Speller o c-VEP Speller, que se emplean para que 

una persona con una discapacidad motora severa pueda comunicarse gracias a las señales 

emitidas por el cerebro al fijar la vista en unas imágenes (Santamaría, et al., 2023). La 

primera se basa en la detección de potenciales evocados P300 que se generan cuando el 

usuario fija su atención en un carácter deseado dentro de una matriz de caracteres que se 

van iluminando secuencialmente (Santamaría, et al., 2023). La respuesta puede ser 

detectada y procesada mediante algoritmos de DL integrados en MEDUSA©. Otras 

aplicaciones se emplean para desarrollar plasticidad neuronal, como Motor imagery, que 

se basa en la imaginación de movimientos sin necesidad de ejecutarlos físicamente 

(Santamaría, et al., 2023). Cuando una persona imagina que está moviendo una parte de 
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su cuerpo se activan patrones específicos en la corteza motora que pueden ser detectados 

con algoritmos de IA en señales EEG o MEG. De esta manera es posible interpretar la 

intención del usuario y traducirla en comandos, por ejemplo, para controlar un cursor o 

una prótesis (Ono, et al., 2014). También existen aplicaciones para informar al usuario de 

su estado neuronal concreto, como Neurofeedback. Esta permite entrenar a los usuarios 

en el control consciente de su propia actividad cerebral en tiempo real (Santamaría, et al., 

2023). La información obtenida a partir de las señales neuronales adquiridas se devuelve 

a los usuarios en forma de estímulos visuales o auditivos, permitiéndoles ajustar su 

actividad neuronal voluntariamente. En la Figura 11 se muestra un esquema general de la 

herramienta MEDUSA© con los distintos componentes que se han mencionado. 

 

 

 

Figura 11. Vista general de MEDUSA©. Se muestran tres tipos de registros, de EEG, ECG y EMG, cuyas 

señales adquiridas se introducen en la herramienta MEDUSA© mediante el protocolo LSL. Las señales 

pueden verse en las gráficas de tiempo real y pueden ser empleadas en las distintas aplicaciones dentro de 

la plataforma. En el ejemplo mostrado puede verse la aplicación RCP Speller. También pueden aplicarse 

distintos procesamientos a las señales dentro del núcleo de MEDUSA©. En este caso se muestra la 

detección de potenciales ERP en señales procedentes de registros EEG (Santamaría, et al., 2023). 
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4.1. Introducción 

   Este capítulo se centra en detallar los materiales empleados para la ejecución de este 

TFM, en concreto la base de datos con la que se ha contado. Se comentan las 

características de las señales reales utilizadas para el desarrollo de la herramienta, así 

como de las señales sintéticas generadas. 

 

4.2. Base de datos 

   En este TFM se ha hecho uso de señales procedentes de registros MEG, 

correspondientes a 473 individuos que autorizaron la grabación de sus datos. Estos fueron 

tomados en el Hospital Hokuto, en la ciudad de Obihiro (Japón). Durante la adquisición 

de los datos los pacientes se encontraban tumbados y con los ojos cerrados pero 

despiertos, evitando cualquier movimiento que pudiera distorsionar la medida. Con el 

objetivo de garantizar la seguridad de los participantes y minimizar la aparición de 

somnolencia, los registros MEG fueron realizados bajo supervisión. 

   Se emplearon gradiómetros axiales para realizar las mediciones, y se hizo uso del 

sistema MEG Vision PQ1160C (Yokogawa Electric) con 160 canales. La frecuencia de 

muestreo utilizada fue de 1000 Hz y se aplicó un filtro paso-bajo con una frecuencia de 

corte de 200 Hz. El tiempo de registro por cada individuo tuvo una duración de cinco 

minutos. Con el fin de delimitar la posición de la cabeza de cada participante se utilizaron 

tres marcadores colocados de forma no arbitraria: uno a 5 mm por encima del nasión y 

los otros dos situados a 10 mm por delante del trago, a ambos lados de la cabeza. A 

continuación, las señales adquiridas fueron sometidas a un filtrado paso-banda entre 1 y 

70 Hz mediante un filtro FIR (Finite Impulse Response) de orden 3000, lo que permitió 

restringir el espectro de frecuencias y reducir la presencia de ruido no deseado. 

Adicionalmente, se aplicó un filtro de ranura centrado en 50 Hz con el fin de eliminar la 

interferencia asociada al suministro eléctrico (Rodríguez-González, et al., 2021). 

 

4.3. Conjunto de señales 

   Una vez descrita la base de datos empleada en este trabajo se debe analizar el conjunto 

de señales utilizadas para el entrenamiento, validación y evaluación del sistema 

desarrollado. Este apartado se divide en dos bloques principales: por un lado, las señales 

reales, obtenidas a partir de registros MEG adquiridos en condiciones controladas; y por 
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otro, las señales sintéticas, generadas artificialmente con el objetivo de disponer de un 

conjunto adicional de datos con características de ruido conocidas. 

 

4.3.1. Señales reales  

   Tal y como se ha comentado previamente, una vez obtenidas las señales MEG 

procedentes de 160 canales por cada participante se debe realizar un preprocesado de las 

mismas. Para el caso bajo estudio, se hizo uso del algoritmo Extended Infomax ICA con 

el fin de obtener 160 componentes ICA por señal, una por cada canal. Este algoritmo se 

encarga de descomponer las señales adquiridas (mezclas de actividad neuronal y ruido) 

en un conjunto de componentes estadísticamente independientes. Cada componente 

puede interpretarse como una fuente que contribuye a la señal original (Lee, et al., 1999). 

Al aplicar esta técnica, es posible identificar y separar la actividad cerebral genuina de 

otros patrones no neuronales, como artefactos cardíacos, oculares o ruido ambiental. 

Además, ICA proporciona una matriz que determina cómo las fuentes independientes se 

combinan linealmente para dar lugar a las señales registradas en los sensores. Esta se 

conoce como la matriz de recomposición, y se emplea cuando se desea recomponer la 

señal limpia (por ejemplo, tras eliminar componentes artefactuadas), multiplicando la 

matriz de mezcla por las componentes que se quieren conservar (Hyvärinen, 2011). Así, 

se obtiene una versión filtrada de la señal original, donde la mayor parte del ruido ha sido 

eliminado, pero se preserva la actividad neuronal de interés. 

   Tras haber aplicado ICA, varios técnicos expertos se encargaron de etiquetar cada una 

de las componentes generadas en varios grupos en función de si correspondían a actividad 

neuronal o a diferentes tipos de artefactos. El etiquetado asignado fue el siguiente: se 

empleó el valor 0 para las componentes que reflejaban actividad cerebral, el valor 1 para 

aquellas asociadas a señales cardíacas, el 2 para las interferencias procedentes de la red 

eléctrica, el 3 para las relacionadas con movimientos oculares y el valor 4 para otros tipos 

de artefactos. 

   Finalmente, se llevó a cabo un proceso de estandarización antes de introducir las señales 

en el algoritmo de detección y eliminación de artefactos diseñado. Este proceso consistió 

en normalizar cada componente, restando su media y dividiendo el resultado por su 

desviación estándar. Con esto se consigue que todas las señales tengan una media de cero 

y una varianza unitaria, lo que reduce diferencias numéricas entre componentes que 

podrían deberse únicamente a escalas distintas. Al normalizar las señales, se facilita que 

la red neuronal aprenda patrones relevantes en lugar de verse influida por diferencias 

arbitrarias en la magnitud de las señales, reduciendo así posibles sesgos durante la 

clasificación (Rodríguez-González, et al., 2021). 
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   Las Figuras 12, 13, 14 y 15 muestran varios fragmentos de componentes neuronales, 

cardíacas, de la red eléctrica y oculares, respectivamente. 

 

Figura 12. Cuatro fragmentos de señales etiquetadas como cerebrales (“Label: 0”). 

 

 

 

Figura 13. Cuatro fragmentos de señales etiquetadas como cardíacas ("Label: 1"). 
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Figura 14. Cuatro fragmentos de señales etiquetadas como red eléctrica ("Label: 2"). 

 

 

 

Figura 15. Cuatro fragmentos de señales etiquetadas como oculares ("Label: 3"). 

 

4.3.2. Señales sintéticas 

   Para complementar el conjunto de datos reales y disponer de señales con un ground 

truth controlado, se han generado señales sintéticas mediante la combinación de actividad 

neuronal y segmentos de ruido representativos de los artefactos disponibles. Este 

procedimiento permite crear ejemplos donde se conoce exactamente qué parte de la señal 

corresponde a actividad cerebral genuina y cuál ha sido añadida artificialmente como 
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contaminación, lo que resulta especialmente útil para evaluar el comportamiento de la 

herramienta de IA diseñada. El proceso de creación de estas señales sintéticas se llevó a 

cabo siguiendo los pasos que se describen a continuación: 

1. Selección del artefacto. En primer lugar, se identificaron manualmente segmentos de 

componentes ICA que representaban artefactos de interés, como actividad cardíaca, 

de red eléctrica, ocular o de otro tipo. A modo ilustrativo, para generar una señal 

sintética con artefacto cardíaco se seleccionó un tramo comprendido entre las 

muestras 22.000 y 24.000 de la componente ICA número 11, correspondiente a una 

clara manifestación de este tipo de ruido. Una vez identificado, el fragmento fue 

replicado de manera consecutiva hasta alcanzar una duración total de 5 minutos 

(equivalente a la duración de las señales reales del conjunto de datos). Esto puede 

verse en la Figura 16. 

2. Aplicación de una máscara. A la señal artefactuada replicada se le aplicó una 

máscara temporal diseñada específicamente para controlar la distribución del ruido a 

lo largo del tiempo. Esta máscara es una señal binaria de 5 minutos de duración que 

determina en qué momentos se introduce el artefacto en la señal sintética final: 

• Durante el primer minuto, la máscara toma el valor 0 en todos los puntos, por lo 

que no se añade artefacto. 

• En el segundo minuto, la máscara toma el valor 1 en intervalos de 2 segundos de 

duración, separados periódicamente. 

 

Figura 16. Selección y replicación del artefacto para la generación de señales sintéticas. 
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• Durante el tercer minuto, el patrón se repite con menor frecuencia: la máscara 

toma el valor 1 cada 5 segundos. 

• A partir del cuarto minuto y hasta el final, la máscara toma el valor constante de 

1, introduciendo de forma continua el artefacto. 

La máscara puede verse representada en la Figura 17, y la aplicación de esta sobre la 

señal artefacto obtenida previamente se muestra en la Figura 18. 

3. Ajuste del artefacto. El segmento aislado fue posteriormente modificado en su escala 

mediante un ajuste de potencia, lo que permitió simular diferentes intensidades de 

contaminación. Este paso permite ajustar el nivel de interferencia que se desea 

inyectar sobre la señal limpia al variar la potencia del artefacto respecto a la señal 

neuronal original. Para ello, se ha calculado la potencia de la señal neuronal y de la 

señal artefacto con la máscara. A continuación, se ha multiplicado la potencia de la 

señal neuronal obtenida por el porcentaje deseado y se ha dividido entre la potencia 

de la señal artefacto con la máscara. El valor obtenido es el que se ha multiplicado a 

la señal con la máscara para ajustar su potencia respecto a la de la señal neuronal. En 

la Figura 19 se puede ver la señal creada con diferentes ajustes de potencia.  

 
Figura 17. Máscara binaria de 5 minutos de duración. 

 

 
Figura 18. Señal artefacto obtenida tras aplicar la máscara a la señal replicada. 
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4. Composición con la señal neuronal. Finalmente, el artefacto procesado fue sumado 

a una señal neuronal limpia seleccionada previamente, generando así una nueva señal 

sintética con artefacto inyectado en condiciones conocidas. Este procedimiento puede 

repetirse con diferentes combinaciones de señales y tipos de artefacto. En la Figura 

20 se puede ver la señal neuronal empleada en el ejemplo elaborado, y en la Figura 

21 se muestra el resultado final con los distintos ajustes que se han aplicado 

previamente. Por último, en la Figura 22 pueden verse varias señales sintéticas 

generadas a partir de diferentes artefactos y señales neuronales seleccionadas. 

 

 

Figura 20. Componente ICA número 24 etiquetada como neuronal empleada en la creación de una señal 

sintética con artefacto cardíaco. 

 

Figura 19. Señal artefacto con diferentes ajustes de potencia respecto de la señal neuronal 

seleccionada. 
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Figura 21. Señales sintéticas generadas al añadir un artefacto con distintas proporciones de potencia 

respecto a la señal neuronal original. 

 

Figura 22. Señales sintéticas generadas tras haber empleado diferentes artefactos y señales neuronales. 
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5.1. Introducción 

   En el presente capítulo se introduce la herramienta basada en DL empleada, junto con 

las mejoras incorporadas para visualizar y analizar las componentes cerebrales afectadas 

por artefactos, y cómo se ha llevado a cabo su integración en la herramienta MEDUSA©. 

 

5.2. Creación de un sistema automático de detección y 

eliminación de artefactos basado en técnicas de IA 

   Para la elaboración del detector automático se ha partido de la herramienta realizada en 

el TFG del Grado en Tecnologías de Telecomunicación de la Universidad de Valladolid, 

un modelo de DL basado en la CNN EEG-Inception (Gil Correa, 2023). Esta CNN se 

diseñó específicamente para procesar señales EEG en interfaces cerebro-computador 

basadas en potenciales evocados (ERP, Event-Related Potentials). Presenta una 

arquitectura modular donde se analizan las señales a múltiples escalas temporales de 

forma simultánea y se extraen las características más relevantes a distintas resoluciones 

temporales (Santamaría, et al., 2020).  

 

5.2.1. Etapa 1: Detección de artefactos  

   Tal y como se realizó en el TFG, en este TFM la red se modificó respecto a la CCN 

EEG-Inception original con el fin de adaptarla a los datos de los que se disponía, ya que 

la arquitectura inicial está pensada para el tratamiento de señales EEG. El modelo final 

puede verse en la Figura 23. Este cuenta con dos entradas: las características o features 

extraídas de la base de datos y una matriz que asigna un canal del registro a cada 

componente. A la primera entrada se le aplican dos convoluciones de tamaño 25x1 que, 

a una frecuencia de muestreo de 200 Hz, permiten obtener dos ventanas temporales de 

125 milisegundos. Las salidas se concatenan y se reducen las dimensiones tras aplicar un 

Average Pooling. Esta capa calcula el valor medio de los valores de una ventana de su 

matriz de entrada, y la salida que ofrece es una nueva matriz formada por dichos valores 

medios calculados (Ertam & Aydin, 2017). A continuación, se vuelven a realizar dos 

convoluciones de tamaño 6x1 donde las características extraídas presentan un nivel de 

abstracción mayor. De nuevo, las salidas vuelven a concatenarse y se aplica otro Average 

Pooling. Tras esto, se realiza una convolución de 8x1 y otra de 4x1, junto con sus Average 

Pooling. Por último, se aplica un Global Average Pooling, que devuelve la media de los 

valores de una ventana de la matriz sobre la que se aplica, y se concatena con el Global 

Max Pooling efectuado sobre la segunda entrada de la red, que devuelve el valor máximo 
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de la misma. La salida final se obtiene tras aplicar la capa Dense. Cada convolución, tal 

y como se detalla en la parte inferior derecha de la Figura 23, está formada por una 

normalización Batch Normalization, una activación y el Dropout. Cabe destacar que en 

el TFG se implementó la arquitectura EEG-Inception utilizando la librería TensorFlow 

de Python, mientras que en el TFM se ha optado por una implementación en PyTorch. 

Esto se ha debido a que las versiones más modernas de MEDUSA© han dejado de dar 

soporte a TensorFlow, considerándolo obsoleto dentro de su ecosistema. 

   En cuanto al conjunto de datos empleado en el modelo diseñado, este se ha dividido en 

dos, uno para entrenar la red y otro para testearla. Para ello, y tal y como se realizó 

también en el TFG, se ha hecho uso de los métodos k-fold y earlystopping. El primero 

toma el conjunto de datos disponible y lo divide en k partes iguales. A continuación, 

entrena el modelo k veces, y emplea k – 1 partes para entrenar y la parte restante para 

validar. Al final, calcula el promedio de las métricas obtenidas en cada una de las k 

validaciones (Colomer, et al., 2016). En este caso se ha tomado un valor de k igual a 5 

para conseguir un buen equilibrio entre coste computacional y variedad en la evaluación. 

Además, se reduce el riesgo de que el rendimiento del modelo esté sesgado a una sola 

partición de datos. Por otro lado, earlystopping detiene el entrenamiento automáticamente 

cuando el modelo deja de mejorar en el conjunto de validación, evitando que se produzca 

sobreajuste u overfitting. Para ello, se debe indicar el valor del parámetro patience, que 

define cuántas épocas consecutivas se permiten sin mejora antes de detener el 

entrenamiento (Hussein & Shareef, 2024). En este caso se ha escogido un valor de 10 

para evitar parar el entrenamiento demasiado pronto y tolerar posibles oscilaciones 

durante el ajuste. 

   Para la etapa de entrenamiento se deben escoger los hiperparámetros que permitan una 

buena capacidad de generalización. En primer lugar, se ha escogido el número de épocas 

de la red, que se corresponde con el número de veces que el modelo recorre 

completamente el conjunto de datos de entrenamiento durante el proceso de aprendizaje. 

 

Figura 23. Red EEG-Inception adaptada al detector automático de artefactos de este TFM. 
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Este parámetro influye directamente en la capacidad del modelo para ajustar sus pesos, 

ya que un número bajo de épocas puede provocar que el modelo no aprenda lo suficiente, 

mientras que un número excesivo puede llevar al sobreajuste. En este trabajo se ha 

decidido establecer el número de épocas en 100, un valor que, combinado con 

earlystopping, permite al modelo aprender de forma adecuada sin prolongar 

innecesariamente el proceso de entrenamiento ni comprometer su rendimiento. Por otro 

lado, se debe escoger la función de pérdidas, que cuantifica la diferencia entre las 

predicciones del modelo y las etiquetas reales. Cuanto mayor sea la diferencia, mayor 

será la corrección que se aplica a los pesos de la red en la siguiente iteración (O'Shea & 

Nash, 2015). En este TFM se ha utilizado la función Categorical Crossentropy, útil tanto 

para clasificación binaria como multiclase, ya que mide la distancia entre la distribución 

de probabilidades predicha por la red y la distribución real de las clases, penalizando 

mayoritariamente aquellas predicciones alejadas de la clase correcta. También debe 

escogerse el batch size, que se corresponde con el número de muestras que se procesan 

simultáneamente antes de actualizar los pesos del modelo durante el entrenamiento. En 

lugar de ajustar los pesos tras cada muestra individual o después de todo el conjunto de 

entrenamiento se hace en pequeños bloques denominados batches. En este caso, la 

elección del batch size ha sido condicionada por el tipo de entrada seleccionada: si se 

hace uso de la entrada correspondiente a la matriz que codifica la posición del canal dentro 

del registro el batch size toma un valor de 4, mientras que si no se usa dicha entrada su 

valor es de 128. Esto se debe a que, al incluir la matriz, el modelo requiere más memoria 

para procesar cada lote por lo que un valor mayor sobrecargaría los recursos 

computacionales disponibles. 

   Además, para evaluar la herramienta de clasificación se ha hecho uso de diferentes 

métricas que permiten valorar su rendimiento (Khanna, 2025):  

• La sensibilidad mide la proporción de verdaderos positivos detectados 

correctamente, es decir, la capacidad del modelo para identificar correctamente 

los casos positivos. 

• La especificidad evalúa la proporción de verdaderos negativos correctamente 

clasificados, lo que indica cómo de bien el modelo evita falsos positivos. 

• La precisión representa el porcentaje de predicciones que realmente son correctas, 

reflejando la fiabilidad del modelo al etiquetar un caso como positivo o negativo. 

• La matriz de confusión ofrece una representación que compara las clases reales 

con las predichas, permitiendo observar detalladamente los aciertos y errores de 

clasificación. En las filas de la matriz se representa el etiquetado real, mientras 

que en las columnas se muestra el etiquetado predicho por la red. 
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• El coeficiente kappa cuantifica el grado de acuerdo entre las predicciones del 

modelo y las etiquetas reales; toma valores entre -1 y 1, donde un valor cercano a 

1 indica un alto nivel de concordancia. 

   En este trabajo se han seleccionado las 40 primeras componentes ICA de cada sujeto 

para entrenar la red, ya que, debido al funcionamiento del algoritmo ICA, las primeras 

componentes son las que mayor amplitud presentan y, por tanto, las que más contribuyen 

a la reconstrucción de la señal original. Sin embargo, para equilibrar la representación de 

las clases, especialmente la de los artefactos que aparece con menor frecuencia en todo el 

conjunto de datos, se han añadido además aquellas componentes etiquetadas como 

artefacto dentro del rango de las componentes 41 a 160, es decir, se han añadido todas las 

componentes etiquetadas como artefacto del conjunto de datos. Esta decisión se justifica 

por el hecho de que la base de datos original presenta un desbalanceo de clases, con una 

mayoría de componentes cerebrales respecto a las ruidosas, lo que podría afectar 

negativamente al rendimiento del modelo si no se lleva a cabo un ajuste. Además, el 

entrenamiento se realiza en múltiples iteraciones donde en la primera se entrena con todas 

las componentes seleccionadas, mientras que en el resto se van eliminando las 

componentes clasificadas por la red como “dudosas”. El criterio seguido para clasificar 

una señal como “dudosa” es el siguiente: se identifican aquellas componentes que han 

sido etiquetadas como no artefacto (es decir, con clase real igual a 0), pero que el modelo 

clasifica con una probabilidad inferior a 0.9 de pertenecer a dicha clase. Estas 

componentes, al no ser clasificadas como limpias por la red, se consideran potencialmente 

contaminadas o ambiguas. Por tanto, en la siguiente iteración de entrenamiento, se 

eliminan del conjunto de datos. El bucle se detiene cuando se cumple alguna de las 

siguientes condiciones: en primer lugar, si la sensibilidad acumulada supera el 95 %, lo 

que indica que el modelo ha alcanzado un rendimiento suficientemente alto en la 

detección de componentes ruidosas; y, en segundo lugar, si se detecta un empeoramiento 

de la sensibilidad durante dos iteraciones consecutivas, lo que sugiere que continuar 

eliminando componentes podría perjudicar la capacidad del modelo para generalizar 

correctamente. Cabe destacar que todo el sistema de detección y clasificación de 

artefactos en señales neuronales ha sido diseñado para funcionar de forma modular, 

permitiendo su uso tanto en señales reales como sintéticas. 

5.2.2. Etapa 2: Eliminación de artefactos  

   Una vez completado el proceso de clasificación iterativa, el siguiente paso, y una de las 

principales aportaciones del presente TFM, consiste en analizar por qué el modelo 

clasifica ciertas componentes como dudosas. Para ello, se ha desarrollado un sistema que 

resalta visualmente las regiones que la red considera ruidosas, proporcionando al usuario 

una primera explicación de los motivos por los que una componente, inicialmente 
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etiquetada como limpia, podría estar contaminada. Además, el objetivo principal de este 

TFM es disponer de una herramienta que permita limpiar una base de datos de señales 

neuronales contaminadas con artefactos. La primera opción que cabría plantearse para 

limpiar la base de datos de la que se dispone es eliminar por completo las señales 

“dudosas”. Sin embargo, la pérdida de información relevante en dichas señales 

conllevaría graves problemas de identificación de posibles enfermedades o condiciones 

neuronales en los pacientes bajo estudio. La opción que se ha planteado y estudiado en 

este trabajo consiste en detectar el tramo específico de señal neuronal contaminado con 

ruido procedente de otras fuentes que no son neuronales y disminuir su efecto o eliminarlo 

por completo sin que afecte a las partes que son exclusivamente neuronales. La 

reconstrucción posterior de la señal cerebral estará limpia de artefactos, que son ajenos a 

las señales generadas en el cerebro. La idea de la que se parte es la siguiente: 

aprovechando la herramienta de IA diseñada explicada en el anterior subapartado, es 

posible calcular el score de probabilidad de artefacto de cada uno de los fragmentos que 

componen cada señal; esta probabilidad permite aplicar un proceso de limpieza 

automática, eliminando únicamente aquellos tramos cuya probabilidad de ser ruido 

supera un determinado umbral. Este enfoque permite conservar la mayor parte de la 

información neuronal útil, evitando la necesidad de descartar componentes completas. 

   Con el fin de detectar esas partes ruidosas se han dividido las señales en segmentos. La 

duración de dichos segmentos queda a elección del usuario, obteniendo una clasificación 

más precisa pero más lenta cuanto menor es esta. Posteriormente, cada segmento se 

replica hasta volver a obtener una señal de 5 minutos de duración y poder introducir las 

nuevas señales generadas (réplicas de segmentos) por el algoritmo de DL. Se ha probado 

a generar segmentos de 1, 5, 10 y 20 segundos de duración y, sabiendo que la frecuencia 

de muestreo empleada es de 200 Hz, se tiene que: 

• Para segmentar la señal en épocas de 1 segundo, la señal tendrá 200 muestras. 

Como la señal completa tiene una duración de 5 minutos, o 300 segundos (lo que 

equivale a 60000 muestras), habrá un total de 300 épocas de 1 segundo de 

duración, lo que equivale a la introducción de 300 señales en el algoritmo de IA. 

• Para segmentar la señal en trozos de 5 segundos, la señal tendrá 1000 muestras. 

Esto resulta en 60 épocas de 5 segundos de duración, o 60 señales generadas. 

• Para segmentar la señal en épocas de 10 segundos, la señal tendrá 2000 muestras, 

con lo que se obtienen 30 épocas de 10 segundos de duración (30 señales). 

• Para segmentar la señal en épocas de 20 segundos, la señal tendrá 4000 muestras, 

y habrá 15 épocas de 20 segundos de duración (15 señales). 
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   En las gráficas de clasificación, el parámetro “Label” corresponde al etiquetado 

realizado previamente por un experto, antes de cargar las señales MEG en la herramienta 

de clasificación. Por otro lado, el parámetro “Predicted” hace referencia a la predicción 

hecha por el algoritmo de clasificación. Finalmente, el parámetro “Score” se corresponde 

con el valor numérico que especifica la probabilidad con la que el algoritmo obtiene la 

predicción realizada. Así, en la tarea previa de detección de artefactos se clasificaron 

como “dudosas” aquellas componentes etiquetadas como no artefacto; es decir, su 

parámetro “Label” era igual a cero, cuyo score para dicha categoría era menor que 0.9, o 

lo que es lo mismo, su probabilidad estaba por debajo del 90 % para la categoría de no 

artefacto. Con el objetivo de proporcionar los resultados obtenidos de forma visual, la 

clasificación indica qué partes de la señal ha considerado ruidosas, y el score 

correspondiente para la clase artefacto: en rojo marca aquellos segmentos cuyo score 

supera el 90 %, en naranja destaca aquellos cuyo score se encuentra entre el 75 y el 90 

%, y en amarillo aquellos cuyo score está entre el 50 y el 75 %. Además, se ha obtenido 

una gráfica con los scores obtenidos a lo largo de la señal completa. Dicha gráfica adopta 

una forma de pulsos rectangulares, cuyo ancho es acorde a la duración de los segmentos 

generados. En la Figura 24 se muestra la misma señal en la que se han aplicado diferentes 

niveles de segmentación, junto con la clasificación obtenida y el score correspondiente.  

   Para tratar de eliminar el ruido detectado en la señal original se ha decidido multiplicar 

esta última por el complemento del score obtenido, es decir, el 100 % menos el score, 

dado que el objetivo es eliminar o amortiguar la influencia de las partes ruidosas, y el 

score es mayor cuanto más ruidoso considere el algoritmo el segmento correspondiente. 

Sin embargo, multiplicar directamente por una forma de onda rectangular implicaría 

transiciones muy abruptas en la señal resultante en las zonas de cambio de amplitudes. 

Por eso, se ha decidido aplicar un suavizado a la gráfica del score. Se han propuesto dos 

alternativas diferentes, a elección del usuario: (i) suavizado mediante la aplicación de un 

filtro gaussiano o (ii) mediante la aplicación de un filtro de media móvil. El primero aplica 

una suavización basada en una distribución normal, lo que implica que los valores 

centrales del score tienen más peso y los extremos menos, generando una transición suave 

entre las zonas ruidosas y las no ruidosas. Este tipo de suavizado es útil para evitar cortes 

bruscos en la señal y proporciona una delimitación progresiva de los artefactos, 

respetando mejor la continuidad temporal. En términos generales, la función gaussiana se 

expresa de la siguiente manera (Nixon & Aguado, 2019): 

𝐺(𝑥) =
1

√2𝜋σ
𝑒
−

𝑥2

2σ2  (5) 
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   El valor del parámetro sigma, σ, en un filtro gaussiano define el ancho de la campana 

de la función gaussiana, y afecta directamente a la cantidad de suavizado aplicado a los 

datos. Así, si sigma es pequeño la campana es más estrecha, lo que hace que los valores 

más próximos al valor central tengan un peso significativo. En este caso, el suavizado 

aplicado a los datos es menor, y permite conservar más los detalles de la señal. Por otro 

lado, para un valor mayor de sigma la campana es más ancha, haciendo que valores más 

alejados del centro tengan influencia en el suavizado de los datos. Este último es mayor 

en este caso, lo que provoca que se pierdan ciertos detalles de la señal. La función 

gaussiana viene caracterizada por la propiedad de decaimiento, que establece que la 

mayor parte de la energía se concentra en una zona alrededor del centro. Así, se tiene que: 

 

Figura 24. Señal neuronal con artefactos a la que se han aplicado las 4 segmentaciones posibles. Se 

muestran los artefactos marcados con colores tras la clasificación y los scores correspondientes: 

probabilidad de ser artefacto superior al 90 % en rojo, probabilidad de ser artefacto entre un 75 y un 90 % 

en naranja, y probabilidad de ser artefacto entre un 50 y un 75 % en amarillo. 
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- 1σ: contiene aproximadamente el 68% del área. 

- 2σ: contiene aproximadamente el 95% del área. 

- 3σ: contiene más del 99% del área. 

   Por esta razón, en aplicaciones prácticas, se considera que un radio de 3σ desde el centro 

es suficiente para capturar casi toda la información relevante de la función gaussiana. Así, 

en este TFM se ha considerado que con un valor de sigma igual a 500 se aplica un 

suavizado donde cada punto del score no depende solo de su valor puntual, sino también 

de la influencia de los valores vecinos contenidos dentro de un rango de aproximadamente 

±1500 muestras. De este modo, el suavizado resultante es lo suficientemente amplio como 

para eliminar picos aislados en el score, generando una transición progresiva entre las 

zonas clasificadas como ruidosas y las que no lo son. 

   Por otro lado, el filtro de media móvil es muy similar al filtro gaussiano ya que ambos 

reemplazan cada punto por un promedio ponderado de sus valores vecinos. Sin embargo, 

la diferencia fundamental radica en la forma en que asignan los pesos a los puntos dentro 

de la ventana. En el filtro de media móvil, todos los puntos dentro de la ventana tienen el 

mismo peso, es decir, la contribución de cada uno es constante e independiente de su 

distancia al punto central. Esto puede provocar que los bordes de la ventana tengan tanta 

influencia como el propio centro, lo que puede dar lugar a transiciones algo más abruptas. 

La expresión que caracteriza al filtro de media móvil es la siguiente (Smith, 1999): 

𝑦[𝑛] =
1

𝑊
∗ ∑ 𝑥[𝑛 + 𝑘]𝐴

𝑘=−𝐷 ,  (6) 

donde D es el número de muestras que coge por detrás de la muestra n, A es el número de 

muestras que coge por delante de la muestra n, y W, que es el tamaño de la ventana del 

filtro, es el sumatorio de A y D más 1. Esta ventana deslizante, que es de tamaño fijo, 

define el número de puntos que se tienen en cuenta en cada cálculo y, dentro de ella, todos 

los valores reciben el mismo peso. Es decir, la ventana funciona como una caja de tamaño 

constante que se desplaza a lo largo de la señal, y para cada posición el valor resultante 

es la media aritmética de los puntos contenidos en esa ventana. Al igual que sucedía con 

el filtro gaussiano, cuanto mayor es la ventana mayor es el suavizado, pero también se 

pierde más detalle y se pueden suavizar excesivamente las transiciones, mientras que si 

la ventana es pequeña el efecto de suavizado es más ligero, conservando más las 

fluctuaciones rápidas de la señal. Para que su efecto sea similar al causado por el filtro 

gaussiano se ha escogido un valor de ventana igual a 1201 muestras dado que permite 

alcanzar un compromiso adecuado entre el nivel de suavizado y la preservación de la 

estructura de la señal. En la Figura 25 puede verse el resultado de suavizar el score de 

una señal con los dos filtros mencionados. 
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5.3. Integración del detector automático en la 

herramienta MEDUSA© 

   El código desarrollado se ha adaptado para integrarse dentro de MEDUSA©. Esta 

integración ha requerido reorganizar y modularizar dicho código, así como ajustar su 

estructura para hacerlo compatible con las herramientas y convenciones internas de 

MEDUSA©. Gracias a ello, se ha podido implementar una interfaz visual usando Python 

que permite al usuario cargar señales, aplicar la detección de artefactos y visualizar los 

tramos ruidosos resaltados con colores, facilitando así tanto la inspección manual como 

la limpieza automática asistida.  

   El flujo de trabajo empleado se resume en la Figura 26, donde se muestran las primeras 

etapas de adquisición de señales MEG, su paso por el algoritmo de ICA y el etiquetado 

de las componentes obtenidas por parte de los técnicos especialistas, hasta la aplicación 

del algoritmo de IA. Este último ha seguido una estructura modular en Python, organizada 

en bloques funcionales que reflejan cada una de las etapas del flujo de trabajo. Cabe 

destacar que los ficheros de código ejecutable se encuentran integrados en el núcleo 

MEDUSA©, lo que implica que para ejecutarlos es necesario clonar el repositorio y 

 

Figura 25. Suavización del score de una señal neuronal con artefactos calculado por la red (en azul) 

mediante la aplicación de un filtro gaussiano y un filtro de media móvil. El score suavizado se muestra 

en naranja. 
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trabajar directamente sobre el código. A continuación, se detalla la estructura de 

funciones y dónde se pueden encontrar dentro de MEDUSA©.  

1. Carga de señales. Las señales neuronales se encuentran en formato .mat y son 

cargadas mediante un script que las convierte a formato .h5. 

Clase: Recording 

Ubicación: medusabci / medusa-kernel / medusa / components.py 

Estructura: la función empleada es la siguiente: 

- load_and_save_mat_files ( ): carga todos los archivos .mat de una carpeta, aplica 

normalización Z-Score a las matrices de características e ICA (función definida 

en otro archivo) y guarda el resultado en formato HDF5. Las entradas que se deben 

especificar y las salidas que devuelve se recogen en la Tabla 2. 

 

 

Entradas 
input_path Ruta a la carpeta que contiene los archivos .mat. 

output_path Ruta a la carpeta donde se guardará el archivo .h5. 

Salidas No retorna valores. Guarda un archivo HDF5 con los datos preprocesados. 

Tabla 2. Entradas y salidas de la función de carga de señales load_and_save_mat_files ( ). 

 

Figura 26. Flujo de trabajo seguido en la ejecución del TFM. 
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2. Estandarización de señales. Las señales extraídas son estandarizadas para 

mejorar el rendimiento del modelo. Se aplica una transformación Z-Score, 

normalizando cada componente respecto a su media y desviación típica. 

Ubicación: medusabci / medusa-kernel / medusa / transforms.py 

Estructura: la función que se ha creado es la siguiente: 

- zscore_normalization ( ): aplica normalización Z-Score por canal a las 

matrices de características y de ICA. Las entradas y salidas de esta función 

son las que se muestran en la Tabla 3. 

3. Modelo CNN EEG-Inception. Aquí se detalla el modelo CNN implementado, la 

variante modificada de la arquitectura EEG-Inception.  

Clase: EEGInceptionV1ICA 

Ubicación: medusabci / medusa-kernel / medusa / deep_learning_models.py 

Estructura: El modelo cuenta con la clase PtModel, cuya estructura de funciones 

principales es la siguiente: 

- En primer lugar, se definen las capas con las que va a contar el modelo, 

divididas en 4 bloques (análisis de un solo canal, filtrado espacial, análisis de 

múltiples canales y bloque de salida). 

- forward ( ): se hace uso de los bloques definidos anteriormente, especificando 

las entradas y salidas de cada uno de ellos. 

- transform_data ( ): comprueba que los datos están en formato NumPy y los 

convierte a un tensor de PyTorch para poder entrenar el modelo de DL con esa 

librería. 

- fit ( ): entrena el modelo. 

- predict_proba ( ): predice las probabilidades de cada clase para los datos de 

entrada. 

4. Clasificación y detección de componentes ICA. En esta sección se hace uso del 

modelo de CNN comentado con anterioridad, pudiendo así entrenarlo con los 

datos previamente cargados y llevar a cabo la etapa de test. 

Entradas 
temp_features Matriz de características. 

temp_ica Matriz de componentes ICA. 

Salidas 
temp_features_norm Matriz de características normalizada. 

temp_ica_norm Matriz ICA normalizada. 

Tabla 3. Entradas y salidas de la función de normalización de señales zscore_normalization ( ). 
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Ubicación: medusabci / medusa-kernel / medusa / artifact_removal.py 

Estructura: la función empleada se detalla a continuación: 

- train_meg_model ( ): ejecuta el train y el test del modelo EEG-Inception 

modificado para clasificar señales MEG de forma binaria o discriminando 

entre clases. Las entradas que se deben indicar y las salidas que devuelve la 

función se recogen en la Tabla 4. 

5. Interfaz gráfica. La interfaz gráfica permite visualizar las señales clasificadas 

como dudosas, junto con sus predicciones y scores. El usuario puede eliminar las 

partes contaminadas y descartar o recuperar la señal correspondiente. También 

desde la interfaz se permite generar señales sintéticas aplicando artefactos sobre 

señales neuronales limpias. 

Ubicación: medusabci / medusa-kernel / medusa / artifact_removal.py 

Estructura: esta es la función que se ha utilizado: 

- MEG_artifact_recovery_GUI ( ): muestra las señales clasificadas como 

dudosas tras haber ejecutado el anterior bloque de código y la eliminación de 

los artefactos presentes en estas. También permite la generación de señales 

sintéticas y su limpieza para evaluar el rendimiento del modelo. Las entradas 

que necesita la función y la salida que devuelve se muestran en la Tabla 5. 

Tabla 4. Entradas y salidas de la función de entrenamiento y test del modelo EEG-Inception modificado 

train_meg_model ( ). 

Entradas 

ica_power 
Determina si se utilizan las componentes ICA como 

entrada adicional al modelo. 

ica_chosen_components Número de componentes ICA a utilizar por sujeto. 

multi 
Determina si se realiza clasificación binaria o 

multiclase. 

input_path Ruta del archivo .h5 con los datos de entrada. 

n_filas 
Características totales (número de sujetos x número de 

canales). 

n_columnas Número de muestras de cada señal. 

n_columnas_ica Número de componentes IC totales. 

confianza 
Umbral de probabilidad por debajo del cual se 

eliminan componentes dudosas. 

model_path Ruta donde se guardará el modelo entrenado. 

output_path 
Carpeta donde se guardarán los resultados del 

experimento. 

Salidas 
Modelo entrenado. 

Archivo de resultados en formato .h5 
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Entradas 

input_path Ruta al archivo .h5 que contiene las señales. 

block_size 
Tamaño de los bloques que se cargan en memoria de 

forma incremental para evitar problemas de memoria. 

total_rows 
Características totales (número de sujetos x número de 

canales). 

total_cols Número de muestras de cada señal. 

results_path 
Ruta al archivo .h5 con los resultados generados por el 

proceso anterior. 

confidence 
Umbral de probabilidad por debajo del cual se 

detectan artefactos. 

ica_chosen_components Número de componentes ICA a utilizar por sujeto. 

Salida Interfaz gráfica. 

Tabla 5. Entradas y salidas de la función de interfaz gráfica MEG_artifact_recovery_GUI ( ). 
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6.1. Introducción 

   En este capítulo se exponen los resultados obtenidos tras aplicar los métodos 

desarrollados para la detección automática de artefactos en señales neuronales, haciendo 

uso tanto de señales reales como sintéticas. Se describen las pruebas realizadas con los 

modelos de clasificación diseñados y se analizan los resultados finales obtenidos tras el 

entrenamiento del sistema. Finalmente, se presentan los resultados obtenidos tras la 

integración del sistema en la herramienta MEDUSA©, evaluando su funcionamiento 

sobre datos preprocesados y simulados. 

 

6.2. Desempeño del modelo de clasificación 

   En este apartado se presentan los resultados obtenidos durante la evaluación del modelo 

de clasificación diseñado para la detección y eliminación automática de artefactos en 

componentes ICA de registros MEG. El modelo ha sido evaluado en dos versiones: (i) 

clasificación binaria, destinada a diferenciar entre componentes cerebrales y 

componentes artefactuadas, y (ii) clasificación multiclase, que permite identificar el 

origen específico del artefacto (cardíaco, red eléctrica, ocular u otros), tal y como se 

realizó en el TFG. Sin embargo, el modelo integrado en la herramienta MEDUSA©, que 

permite resaltar y eliminar las partes ruidosas de las señales, ha sido el binario debido a 

su mejor funcionamiento. Esto se detalla a continuación. 

   Los resultados obtenidos en la clasificación binaria consiguen una precisión del 

96.92%, una sensibilidad del 67.14% y una especificidad del 98.56%. En el caso de la 

clasificación multiclase, el modelo ha logrado una precisión global del 86.90%, con una 

especificidad promedio del 88.13%. La sensibilidad, sin embargo, varía en función de la 

clase, siendo más elevada en componentes oculares (81.39%) y cardíacas (74.41%), y 

más baja en la detección de artefactos asociados a la red eléctrica (42.85%) y otros tipos 

menos frecuentes (25.00%). Además de las métricas clásicas, se ha calculado el 

coeficiente kappa, obteniendo un valor de 0.6824 en clasificación binaria, lo que indica 

un nivel de concordancia moderado con respecto al etiquetado manual, mientras que en 

la clasificación multiclase el valor es de 0.3450, lo que indica que existe mayor dificultad 

a la hora de distinguir entre tipos específicos de artefacto. 

   Durante el proceso de entrenamiento para el caso binario, el modelo también ha 

identificado un conjunto de componentes que, pese a estar etiquetadas como limpias por 

el técnico especialista, presentan características que el sistema considera dudosas, tal y 

como se ha comentado previamente. En la Figura 27 se muestran algunos ejemplos de 

estas componentes etiquetadas como dudosas. Este tipo de resultados pone de manifiesto 
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uno de los principales problemas del etiquetado manual: su dependencia de la 

interpretación subjetiva del experto y la posibilidad de que ciertos artefactos, 

especialmente los de baja intensidad o duración, pasen desapercibidos. Estas 

componentes dudosas han sido eliminadas progresivamente en un proceso iterativo, 

aplicando el criterio basado en la probabilidad asignada por el modelo (considerando 

dudosas aquellas componentes con probabilidad de ser de origen neuronal inferior a 0,9). 

Como consecuencia, se ha observado una mejora progresiva en las métricas, 

especialmente en la sensibilidad, llegando a obtener valores de esta del 93.68 %, 94.53 % 

y 95.47 % en algunas iteraciones, lo que confirma que la eliminación de muestras 

ambiguas favorece el rendimiento general del sistema. 

 

6.3. Evaluación tras la eliminación de segmentos 

ruidosos 

   A continuación, se presentan los resultados obtenidos tras aplicar el proceso de 

eliminación de artefactos sobre una componente etiquetada como dudosa por la red. En 

 

Figura 27. Dos componentes etiquetadas por el técnico especialista como no artefacto pero que la red 

ha eliminado por considerarlas dudosas. (a) Componente etiquetada como no artefacto (0), y la red 

ha predicho artefacto (1); score del 53 %. (b) Componente etiquetada como no artefacto (0), y la red 

ha predicho no artefacto (0); score del 56 %. 
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la Figura 28(a) se muestra una de esas señales en el dominio temporal, donde puede 

observarse cómo la señal original (en azul) presenta una serie de picos y oscilaciones de 

gran amplitud, distribuidos en distintos momentos, los cuales indican la presencia de 

artefactos. Tras aplicar la eliminación de los segmentos considerados contaminados según 

el score calculado por el modelo, se obtiene la señal recuperada (en rojo), que presenta 

una forma mucho más estable, con una reducción de las oscilaciones anómalas y 

manteniendo la estructura subyacente de la señal neuronal. Para analizar cómo este 

proceso afecta a la señal en el dominio frecuencial, en la Figura 28(b) y Figura 28(c) se 

representan los espectrogramas de la señal original y de la recuperada, respectivamente. 

En el primero se observa una mayor concentración de potencia en los puntos donde hay 

mayor contenido de ruido, lo que refleja la presencia de componentes de alta intensidad 

asociadas a artefactos. En cambio, en la señal recuperada la potencia disminuye de forma 

significativa, lo que sugiere que el proceso aplicado ha sido eficaz en la reducción de 

ruido y en la preservación de la actividad neuronal relevante. En la Figura 29 se muestra 

otra señal dudosa y su correspondiente señal recuperada, tanto en el dominio temporal 

como en el frecuencial. En la gráfica correspondiente al espectrograma puede verse que 

se reduce significativamente la potencia asociada a artefactos. No obstante, el contenido 

espectral subyacente se mantiene, lo que sugiere que la información neuronal no se ha 

visto comprometida tras la eliminación de los artefactos. 

   Por otro lado, en la Figura 30 se muestra este proceso de eliminación de artefactos tras 

aplicar diferentes niveles de segmentación a la misma señal. Se ha observado que, cuanto 

menor es la longitud de las segmentaciones para la clasificación, mayor es la capacidad 

del sistema para eliminar el ruido. Con segmentaciones de 1 segundo, la detección es 

mucho más localizada, permitiendo identificar y suprimir fragmentos concretos de la 

señal contaminados por artefactos, lo que se traduce en una señal recuperada con menos 

ruido. Por el contrario, al utilizar segmentaciones más largas, la detección es más general, 

lo que provoca que el modelo tenga menos capacidad para identificar picos puntuales de 

ruido, conservando parte de la potencia no deseada en la señal final.  

   A su vez, en la Figura 31 se muestran los resultados obtenidos tras aplicar los distintos 

métodos de suavizado sobre el score. En primer lugar, se observa que el suavizado 

mediante un filtro gaussiano permite una reducción mayor de la potencia. Por otro lado, 

el filtro de media móvil, aunque también logra reducir la presencia de artefactos, presenta 

algunas limitaciones derivadas de su propia naturaleza. Al aplicar una ventana con pesos 

uniformes y bordes abruptos, este filtro genera cortes sobre el score, lo que provoca que 

en ocasiones se eliminen pequeños fragmentos de la señal, que podrían corresponder a 

actividad neuronal genuina. Sin embargo, el comportamiento de ambos filtros es muy 

similar y las diferencias se aprecian generalmente en fragmentos concretos observados en 

detalle. 



 

81 
 

   Adicionalmente, se ha llevado a cabo una reevaluación de componentes dudosas tras 

haber eliminado el ruido que contenían con la herramienta desarrollada. Para ello, se ha 

obtenido el número de componentes clasificadas originalmente como dudosas y el 

número de componentes que detecta el algoritmo clasificadas como dudosas nuevamente 

tras la limpieza de artefactos en todas ellas. Esto se ha evaluado aplicando las distintas 

segmentaciones posibles. En la Tabla 6 se recogen los resultados obtenidos. Puede verse 

que, de las 14469 señales inicialmente clasificadas como dudosas, únicamente el  

35.41 % se mantuvo como dudoso con segmentaciones de 1 segundo, mientras que con 

segmentaciones de 20 segundos este porcentaje aumentó al 43.46 %. Estos resultados dan 

una idea del funcionamiento de la herramienta: aplicando segmentaciones de corta 

duración se obtienen mejores resultados al capturar detalles concretos de las señales que 

con segmentaciones más largas pasarían desapercibidos. Sin embargo, cabe destacar que 

con segmentaciones más pequeñas se tiene un número superior de señales. Por ello, existe  

 

Figura 28. Señal dudosa etiquetada por un técnico como "neuronal", clasificada por la red CNN como 

"neuronal", con un score en la clasificación del 87 %. 
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un compromiso entre el tamaño de los segmentos y el tiempo de procesamiento: 

segmentaciones más cortas permiten una clasificación más precisa al ofrecer mayor 

resolución temporal en la detección de artefactos, pero incrementan de forma significativa 

el tiempo necesario para procesar todo el conjunto de señales. 

 
Figura 30. Representación en el dominio del tiempo de la señal original (en azul) tras aplicarle 

diferentes niveles de segmentación y recuperarla (en rojo). 

 

Figura 29. Señal dudosa etiquetada por un técnico como "neuronal", clasificada por la red CNN como 

"neuronal", con un score en la clasificación del 80 %. 
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Segmentos de 

1 segundo 

Segmentos de 

5 segundos 

Segmentos de 

10 segundos 

Segmentos de 

20 segundos 

Número original de 

componentes dudosas 
14469 señales 

Número de componentes 

dudosas tras eliminar los 

artefactos 

5123 señales 

(35.41 %) 

5492 señales 

(37.96 %) 

5788 señales 

(40 %) 

6289 señales 

(43.46 %) 

Tabla 6. Número de señales clasificadas como dudosas de nuevo tras eliminar los artefactos en las señales 

clasificadas originalmente como dudosas. 

 

6.4. Evaluación sobre señales sintéticas 

   Con el objetivo de evaluar la eficacia del sistema desarrollado, se ha llevado a cabo una 

serie de pruebas utilizando las señales sintéticas generadas. Estas señales han sido creadas 

combinando componentes neuronales limpias con segmentos específicos de artefacto a 

los que se ha aplicado una máscara temporal; esta controla la aparición intermitente de 

los artefactos a lo largo de los cinco minutos de duración de cada señal, tal y como se 

comentó previamente. Gracias a este proceso es posible disponer de un ground truth, ya 

 

Figura 31. Representación del score obtenido tras clasificar la señal y aplicarle diferentes métodos de 

suavizado y representación en el dominio del tiempo de la señal original (en azul) tras aplicarle esos 

suavizados y recuperarla (en rojo). 
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que se conoce con exactitud qué partes de la señal corresponden a actividad cerebral y 

cuáles han sido contaminadas de forma artificial. Para ello, se ha aplicado el mismo 

detector de artefactos que en las señales reales. El modelo ha generado un score de 

probabilidad sobre cada fragmento temporal, a partir del cual se ha aplicado un proceso 

de suavizado y eliminación de los tramos identificados como ruidosos. 

   Los resultados obtenidos muestran que la herramienta es capaz de detectar con alta 

precisión los segmentos contaminados, y es capaz de eliminar los artefactos sintéticos 

introducidos. Esto se observa, por ejemplo, en la Figura 32 para señales contaminadas 

con artefactos cardíacos, en la Figura 33 para artefactos de red eléctrica, en la Figura 34 

para oculares y en la Figura 35 para otro tipo de artefactos, todos ellos habiendo elegido 

un tamaño de segmento de 5 segundos de duración. En estos ejemplos se ve que, para los 

segmentos no contaminados, es decir, los correspondientes al primer minuto de señal, la 

herramienta no elimina nada y la señal neuronal permanece intacta. Por otro lado, para 

los dos últimos minutos, donde la señal está completamente contaminada con artefactos, 

la herramienta elimina la mayor parte del tramo al quedar inservible tras la 

contaminación. Además, en las gráficas con zoom se aprecia mejor la reducción del 

artefacto en cuestión. Por ejemplo, para el caso en el que se añade señal cardíaca a la 

componente neuronal, el complejo QRS se ve reducido en gran medida. Lo mismo sucede 

para los picos propios de la componente de red eléctrica y los oculares. En estos últimos 

es posible ver cómo la potencia del artefacto propio de pestañeos se reduce 

significativamente tras aplicar el proceso de eliminación de artefactos sobre las señales 

neuronales contaminadas de forma artificial.  

   Adicionalmente, se ha analizado la influencia del ajuste en la capacidad de detección 

de la herramienta, es decir, cómo varía el número de detecciones correctas para cada uno 

de los minutos de señal sintética según la SNR aplicada. Para ello, se ha escogido 

aleatoriamente un conjunto elevado de señales neuronales y artefactos de los distintos 

tipos disponibles (cardíacas, de red eléctrica, oculares y de otro tipo) con el fin de capturar 

la mayor variabilidad posible de señales. A continuación, en lugar de seleccionar 

manualmente el tramo de artefacto deseado para sumárselo a la señal neuronal, se ha 

segmentado la señal artefacto en segmentos de 5 segundos, los cuales se han introducido 

en la herramienta de IA desarrollada. Seguidamente, se ha obtenido el score de 

clasificación de cada uno de los segmentos, y se ha escogido el tramo de señal artefacto 

cuyo score era superior a 0.9 durante el mayor intervalo de tiempo continuo. Así se 

garantiza que se selecciona el artefacto más relevante y de mayor duración de forma 

automática de cada una de las señales. Posteriormente, se ha replicado el tramo 

seleccionado hasta obtener una señal de 5 minutos de duración, y se ha aplicado la 

máscara creada. El siguiente paso ha consistido en modificar la potencia de la señal 

artefacto creada respecto de la señal neuronal. Para ello, los porcentajes de variación de 
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Figura 33. Componente neuronal número 14 (fila izquierda) y zoom de la muestra 14000 a la 16000 (fila 

derecha), sobre la que se ha sumado un artefacto de red eléctrica para generar una señal sintética artefactuada, 

que se ha introducido en el método desarrollado para obtener la señal recuperada equivalente. 

 

 

 
Figura 32. Componente neuronal número 5 (fila izquierda) y zoom de la muestra 38000 a la 40000 (fila 

derecha), sobre la que se ha sumado un artefacto de tipo cardíaco para generar una señal sintética artefactuada, 

que se ha introducido en el método desarrollado para obtener la señal recuperada equivalente. 
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Figura 34. Componente neuronal número 19 (fila izquierda) y zoom de la muestra 15000 a la 17000 (fila 

derecha), sobre la que se ha sumado un artefacto de tipo ocular para generar una señal sintética artefactuada, 

que se ha introducido en el método desarrollado para obtener la señal recuperada equivalente. 

 

 
Figura 35. Componente neuronal número 30 (fila izquierda) y zoom de la muestra 46000 a la 48000 (fila 

derecha), sobre la que se ha sumado un artefacto de otro tipo para generar una señal sintética artefactuada, 

que se ha introducido en el método desarrollado para obtener la señal recuperada equivalente. 
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señal escogidos han variado del 10 % al 400 %. Los últimos pasos han sido los explicados 

en capítulos anteriores: suma del artefacto con ajuste a la señal neuronal, paso de la señal 

resultante por el algoritmo de IA con diferentes segmentaciones y obtención del score de 

clasificación para cada segmento. A partir de los resultados obtenidos, se ha analizado el 

porcentaje de detecciones correctas para cada minuto de señal. Esto se ha hecho así 

porque el porcentaje de ruido añadido en cada minuto es distinto. Por ejemplo, el primer 

minuto de señal, al cual no se le añade ruido al valer la máscara cero, no depende del 

ajuste aplicado en ninguno de los casos. 

   En la Figura 36 se muestra la gráfica obtenida para el primer minuto, habiendo realizado 

segmentaciones de 1, 5, 10 y 20 segundos. Puede verse que como este primer tramo es 

independiente del ajuste aplicado al no añadirle ruido, las gráficas obtenidas son muy 

similares. El score obtenido en este caso se refiere al porcentaje de señal detectado como 

no artefacto que, como puede observarse, es bastante elevado, superior en todos los casos 

al 90 %. 

   En la Figura 37 se muestra la gráfica correspondiente al segundo minuto y en la Figura 

38 la correspondiente al tercer minuto. La primera corresponde a intervalos de ruido de 2 

segundos de duración y luego 2 segundos sin ruido, mientras que a la segunda se le añade 

ruido cada 10 segundos, con una duración del tramo ruidoso de 5 segundos. Por eso, en 

este caso el score obtenido se refiere al porcentaje de señal detectado como artefacto. En 

ambas situaciones el 50 % del tiempo la señal está libre de artefactos. Sin embargo, en el 

primer caso, con segmentaciones de 1 segundo la herramienta es capaz de discernir bien 

qué es artefacto y qué no lo es al haber introducido tramos de ruido de 2 segundos (es 

 
Figura 36. Porcentaje de señal detectado como no artefacto durante el primer minuto en función del ajuste 

aplicado a la señal habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y 

20 segundos (en azul claro). 
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decir, los segmentos son de menor tamaño que los tramos de ruido), y así alcanzar la 

máxima precisión, que en este caso es del 50 %. A partir de segmentaciones de 5 segundos 

el porcentaje de detección aumenta porque detecta todo el tramo como ruidoso al estar 

mayoritariamente contaminado. Lo mismo sucede en la segunda situación, solo que la 

máxima precisión se puede alcanzar también con segmentaciones de 5 segundos al durar 

los tramos ruidosos dicho tiempo. 

   Finalmente, en la Figura 39 puede verse la gráfica para los dos últimos minutos, a los 

cuales se les añade el ruido generado de forma continua. En este caso el porcentaje de 

señal detectado como artefacto aumenta a medida que se incrementa el ajuste de potencia 

aplicado a la señal, llegando a alcanzar porcentajes superiores al 90 % a partir de un ajuste 

de potencia del artefacto del 200 % de la potencia de la señal neuronal. 

 

 
Figura 37. Porcentaje de señal detectado como artefacto durante el segundo minuto en función del ajuste 

aplicado a la señal habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y 

20 segundos (en azul claro). 
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Figura 38. Porcentaje de señal detectado como artefacto durante el tercer minuto en función del ajuste 

aplicado a la señal habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en naranja) y 

20 segundos (en azul claro). 

 

 
Figura 39. Porcentaje de señal detectado como artefacto durante los dos últimos minutos en función del 

ajuste aplicado a la señal habiendo realizado segmentaciones de 1 (en verde), 5 (en azul oscuro), 10 (en 

naranja) y 20 segundos (en azul claro). 
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6.5. Interfaz gráfica en MEDUSA© 

   En este apartado se presenta la interfaz gráfica desarrollada como parte de la 

herramienta de análisis de artefactos. Esta interfaz ha sido diseñada con el objetivo de 

facilitar la interacción con los resultados obtenidos por la red neuronal, así como permitir 

un control para los usuarios sobre el proceso de eliminación de artefactos. La interfaz 

cuenta con dos ventanas principales: la primera está dedicada a la visualización de las 

señales clasificadas como dudosas, donde se pueden observar los tramos contaminados 

identificados automáticamente y llevar a cabo su eliminación; la segunda está enfocada 

en la generación de señales sintéticas, y permite comprobar cómo actúa el sistema ante 

diferentes niveles de ruido. A continuación, se describen ambas ventanas y las 

funcionalidades que ofrecen. 

 

6.5.1. Ventana 1: Señales MEG reales  

   La primera ventana se muestra en la Figura 40 y se denomina Doubt Signals ya que en 

ella se representan las señales clasificadas como dudosas por el algoritmo de IA. Cuenta 

con dos gráficas donde se pueden ver las distintas señales generadas, desde las dudosas 

hasta las recuperadas limpias de artefactos, así como el resaltado de los segmentos 

ruidosos o la gráfica del score correspondiente. Junto a ellas hay dos paneles de 

información que describen las características más relevantes de las señales que se estén 

representando en ese momento; estos son la media, la desviación estándar, los valores 

máximo y mínimo, la mediana, la potencia, el valor cuadrático medio, el número de 

cruces por cero y la frecuencia dominante. 

 

Figura 40. Primera ventana de la interfaz gráfica. 
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   Para segmentar las señales se dispone de un desplegable que permite seleccionar la 

duración de los segmentos. Esto es lo que se muestra en la Figura 41 junto con la ventana 

emergente que aparece al seleccionar una de las opciones. Se obtienen los segmentos 

clasificados pulsando sobre el botón de CLASIFICAR, para a continuación poder ver los 

segmentos considerados ruidosos en la primera gráfica y el score correspondiente en la 

segunda. A continuación, este último se puede suavizar seleccionando una de las dos 

opciones del segundo desplegable, tal y como se puede ver en la Figura 42. De nuevo, al 

seleccionar una de ellas aparece un cuadro informativo. Para limpiar la señal empleando 

el score suavizado no hay más que clicar sobre el botón de RECUPERAR, y para obtener 

su potencia original se debe pulsar sobre el botón de Z-SCORE inv. Finalmente, se puede 

guardar la señal recuperada seleccionando el botón de GUARDAR si se considera que la 

eliminación de los artefactos ha sido eficaz y la señal puede contribuir a la reconstrucción 

de la señal original, en este caso, libre de artefactos. 

 

 

 

Figura 41. Botones empleados para clasificar los segmentos de las señales. 

 

 

Figura 42. Botones empleados para suavizar el score y recuperar la señal neuronal. 
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6.5.2. Ventana 2: Señales MEG sintéticas  

   La segunda ventana se muestra en la Figura 43 y se denomina Synthetic Signals ya que 

en ella se representan las señales sintéticas generadas a partir de la suma de una señal 

neuronal y un artefacto. De nuevo, cuenta con dos gráficas donde se pueden ver las 

señales que contienen exclusivamente componente neuronal y aquellas correspondientes 

a artefactos. Para estas últimas, es posible elegir el tipo de artefacto gracias al desplegable 

que se muestra en la Figura 44. También dispone de dos paneles de información que 

describen las características más relevantes de las señales que se estén mostrando.  

   Una vez elegidas las señales con las que se desea trabajar, tanto la neuronal como el 

artefacto, se debe especificar el segmento concreto de artefacto que se desea añadir a la 

señal neuronal. Para ello, se debe indicar la muestra de inicio y de fin de dicho segmento, 

y clicar sobre el botón de IR. A continuación, se clicará sobre el botón de MÁSCARA para 

aplicar el filtro creado al artefacto, y se variará su potencia respecto a la de la señal 

neuronal según se desee. Para ello, la interfaz cuenta con otro desplegable que permite 

seleccionar el porcentaje de ajuste, tal y como se puede ver en la Figura 45. Para añadir 

el ruido creado a partir de un artefacto a la señal neuronal no hay más que clicar sobre el 

botón de SUMAR. Tras esto es posible ver la señal sintética generada en la primera 

gráfica. Finalmente, se puede limpiar dicha señal siguiendo los mismos pasos que los 

explicados en la primera ventana: elegir la duración de los segmentos y su posterior 

clasificación, y suavizado del score y recuperación de la señal limpia. 

 

 

Figura 43. Segunda ventana de la interfaz gráfica. 
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Figura 44. Botones empleados para seleccionar el tipo de artefacto. 

 

 

 

      

    

 

 

 

 

 

 

 

 

 

 

Figura 45. Botones empleados para ajustar la potencia del artefacto respecto de la potencia de la 

señal neuronal. 
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7.1. Introducción 

   En este TFM se ha implementado un detector automático de artefactos en señales 

provenientes de registros MEG que permite reducir la presencia de dichos artefactos 

gracias al score calculado por la propia red. Asimismo, se han realizado diversas pruebas 

a partir de señales sintéticas, generadas mediante la combinación de señales neuronales y 

componentes artefactuadas, para evaluar la capacidad del método desarrollado para llevar 

a cabo una eliminación de los artefactos. Todo esto ha sido integrado en el software 

MEDUSA©. En este capítulo se analizan los resultados obtenidos, se contrastan con 

investigaciones previas en el mismo ámbito y se exponen las principales limitaciones 

detectadas a lo largo del proceso de diseño y desarrollo de la herramienta. 

 

7.2. Discusión 

   En el presente TFM se ha desarrollado un sistema basado en técnicas de IA, 

concretamente una CNN, para la detección y eliminación automática de artefactos en 

señales MEG a partir de componentes ICA. La CNN empleada se basa en una arquitectura 

similar a EEG-Inception y ha sido reimplementada en PyTorch, para optimizar y ampliar 

con nuevas funcionalidades la versión desarrollada previamente en el TFG. En este nuevo 

sistema destaca su capacidad de actuar directamente sobre el ruido de las señales 

contaminadas. La herramienta desarrollada ha puesto de manifiesto que la clasificación 

realizada manualmente por técnicos especialistas, al basarse en criterios subjetivos, puede 

conllevar errores significativos. En varios casos, se identificaron componentes que, pese 

a haber sido etiquetadas como de origen neuronal, presentaban fragmentos contaminados 

por artefactos. Del mismo modo, algunas componentes marcadas como ruidosas 

correspondían mayoritariamente a actividad cerebral válida. Además, el sistema 

posteriormente justifica visualmente su decisión, resaltando en la señal los tramos que 

considera artefactuados, lo que facilita la interpretación del resultado y refuerza la utilidad 

de la herramienta como apoyo al técnico. Con esto lo que se consigue es que la 

herramienta informe al usuario por qué una señal dice que es artefacto mediante el 

resaltado de las partes que considera ruidosas, asemejándose al comportamiento típico de 

una IA explicativa (XAI, eXplanaible Artificial Intelligence). Otro aspecto destacable ha 

sido la utilización de señales sintéticas, generadas a partir de la combinación de 

componentes cerebrales con segmentos replicados de artefactos reales, modulados 

mediante una máscara temporal. Esto ha permitido disponer de un conjunto de datos con 

un ground truth conocido, que se ha empleado para validar el comportamiento del 

modelo. Otra novedad que cabe mencionar respecto al TFG previo ha sido el uso del score 

de salida del modelo, posteriormente suavizado mediante técnicas como el enventanado 
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o el filtrado gaussiano, para determinar los tramos concretos de las señales contaminados 

por artefactos. Esto ha permitido evolucionar la herramienta de clasificación, aplicando 

una eliminación parcial y localizada del ruido, sin necesidad de descartar la componente 

completa. Finalmente, el sistema ha sido integrado en la plataforma MEDUSA©, lo que 

permite su uso en diversos análisis del ámbito de la neurociencia y de las 

neurotecnologías. Su funcionalidad permite la carga de señales, la aplicación del modelo 

y la visualización de los tramos ruidosos, así como la generación de señales sintéticas. 

   Otros estudios realizados previamente emplean también métodos de IA para detectar 

artefactos en señales provenientes de registros EEG. Así, en ICLabel se emplea una red 

neuronal para etiquetar automáticamente componentes ICA en EEG, consiguiendo altas 

tasas de precisión en los resultados (Pion-Tonachini, et al., 2019). El clasificador 

automático que emplean clasifica las señales en diferentes categorías o clases, y cuenta 

con más de 200.000 componentes independientes, provenientes de más de 6.000 registros 

de EEG. Al disponer de tantos datos, el clasificador consigue generalizar muy bien en 

diferentes condiciones de registro. Además, en ICLabel se realiza un etiquetado 

colaborativo o crowdsourcing; en este, múltiples expertos se encargan de etiquetar las 

componentes para, posteriormente, combinar todas las etiquetas disponibles y solventar 

los desacuerdos asignando más peso a aquellos expertos cuyas decisiones tienden a 

coincidir con las de los demás, es decir, que muestran una mayor consistencia con el 

grupo. Así, se obtiene una etiqueta final más representativa y fiable.  También hacen uso 

de una CNN, aplicando el optimizador Adam, y emplean diferentes técnicas para mejorar 

el entrenamiento: como el balanceo de clases, para abordar el desequilibrio que pueda 

existir entre las distintas clases que forman la base de datos, o earlystopping, para mitigar 

el sobreajuste. A su vez, Garg et al. (2017, 2021) propusieron dos estudios empleando 

una CNN con distinta estructura para identificar artefactos en MEG. En el primero, 

realizado en el año 2017, la CNN era de una única dimensión, y los datos provenían de 

registros MEG realizados a 49 sujetos en estado de reposo, cuyo etiquetado fue realizado 

por un único experto. En este caso el modelo identificaba artefactos oculares, y la 

precisión alcanzada fue de 95.86 % (Garg, et al., 2017). En el segundo estudio, realizado 

en el año 2021 y donde se desarrolló la herramienta MEGnet, comentada previamente, se 

amplió la base de datos hasta contar con un total de 217 sujetos para realizar los registros, 

y la CNN integraba tanto datos temporales como espaciales. En este estudio se 

identificaron artefactos oculares, cardíacos y de otro tipo mientras los pacientes se 

encontraban realizando tareas y en estado de reposo con los ojos cerrados. El etiquetado 

lo realizaron 4 expertos mediante una inspección visual independiente, y se alcanzó hasta 

un 98.95 % de precisión, un 96.74 % de sensibilidad y un 99.34 % de especificidad (Garg, 

et al., 2021). Estos resultados son comparables a los obtenidos en este TFM, donde se ha 

contado con más del doble de sujetos que se encontraban en estado de reposo con los ojos 



 

97 
 

cerrados, y donde se aplicó ICA junto con una inspección visual. A pesar de que los 

resultados ofrecidos por la CNN para una clasificación binaria son peores que los que 

obtuvieron con MEGnet (precisión del 96.92 %, sensibilidad del 67.14 % y especificidad 

del 98.56 %), se ha podido demostrar que el proceso de reevaluación de componentes 

mejora los resultados, alcanzando una sensibilidad de hasta el 95.47 %.  

   En cuanto a la arquitectura empleada en este TFM, esta podría compararse con la que 

se desarrolló en EEGNet, una red basada en un modelo CNN aplicable a tareas de 

clasificación e identificación de artefactos en señales EEG (Lawhern, et al., 2018). La 

adaptación de la red EEG-Inception es más compleja que EEGNet, dado que esta utiliza 

una única entrada con una estructura secuencial de convoluciones temporales y 

espaciales, mientras que la arquitectura propuesta en este TFM cuenta con dos entradas 

distintas: una que contiene las características temporales de cada componente y otra que 

asocia cada una con su canal correspondiente. Aunque el diseño resultante es más 

complejo que el de EEGNet y, por tanto, más exigente a nivel computacional, ofrece una 

mayor flexibilidad y capacidad para abordar el problema específico de detección de 

artefactos en MEG, donde los patrones pueden ser sutiles, variables y difíciles de 

distinguir con arquitecturas más simples. 

   A diferencia de métodos que sólo clasifican componentes, en este TFM se aplica un 

preprocesamiento mediante score, con capacidad de eliminación de los artefactos en 

MEG. Esta aproximación local de eliminación de ruido coincidiría con estrategias 

similares que evitan eliminar canales enteros o señales completas, tal y como se planteó 

con Autoreject (Jas, et al., 2017). Aquí, se emplea una técnica que elimina 

automáticamente segmentos ruidosos de EEG y MEG combinando regresión y 

heurísticas. Hace uso de la técnica de estimación de umbral óptimo de pico a pico, donde 

se estima un umbral para cada sensor por separado. Los sensores se consideran 

defectuosos si la amplitud de pico a pico de su señal excede dicho umbral y, si el número 

de sensores defectuosos en un ensayo es bajo, los datos corruptos de esos sensores se 

reemplazan mediante interpolación a partir de las señales de los sensores cercanos. Por 

otro lado, si la mayoría de los sensores en un ensayo están defectuosos, este se considera 

irreparable por interpolación y se excluye del análisis posterior (Jas, et al., 2017). Esto 

imita cómo un experto humano marcaría un ensayo como defectuoso durante la 

inspección visual. Aunque Autoreject no usa DL, ha demostrado reducir la presencia de 

artefactos sin la necesidad de descartar canales completos. Sin embargo, no distingue el 

tipo de artefacto presente ni ofrece una clasificación específica sobre su origen. Además, 

el método de eliminación de artefactos que emplea mediante la exclusión de sensores 

puede provocar la pérdida de información neuronal importante si dichos sensores 

contienen, además de ruido, componentes neuronales. 
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   Finalmente, la generación de señales sintéticas ha permitido evaluar el comportamiento 

de la herramienta diseñada al conocer la cantidad de ruido que se introducía a las señales 

neuronales limpias. Otros autores han desarrollado técnicas para la generación de señales 

cerebrales de forma artificial con el fin de ampliar la base de datos de la que disponían y 

poder evaluar sus herramientas de análisis. Esto es lo que realizaron, por ejemplo, Vaziri 

et al. (2023) con la herramienta EEGg (EEG generator) (Vaziri, et al., 2023). Esta permite 

generar señales EEG sintéticas permitiendo al usuario, entre otras cosas, elegir el número 

de fuentes, añadir ruido blanco a las señales, o seleccionar el número de electrodos para 

simular el registro. Para ello, hicieron uso de la plataforma Matlab, y emplearon imágenes 

de resonancia magnética para obtener una matriz que simula la propagación de las señales 

desde las fuentes neuronales hasta los sensores. Con esto, se ofrece a los usuarios una 

herramienta que permite simular escenarios realistas y probar algoritmos de localización 

de fuentes u otros análisis con la ventaja de conocer el ground truth subyacente. 

 

7.3. Limitaciones 

   En este TFM se ha tratado de subsanar las limitaciones encontradas en el TFG en cuanto 

a usabilidad de la herramienta de detección de artefactos se refiere, de forma que se 

facilite el acceso a sus funciones, aumentando la transparencia del software implementado 

mediante la creación de la interfaz gráfica y su implementación en MEDUSA©. Aun así, 

existen algunas limitaciones que se deben tener en cuenta. 

   Por un lado, la cantidad y la calidad de los datos de los que se dispone para entrenar la 

herramienta de identificación y eliminación de artefactos influyen directamente en los 

resultados obtenidos. Como el número de sujetos que ha participado para formar la base 

de datos ha sido escaso, debido a la complejidad y alto coste característicos de MEG, el 

modelo puede aprender patrones específicos de ese grupo limitado, pero puede fallar al 

enfrentarse a nuevos sujetos con características fisiológicas distintas. Esto es lo que se 

conoce como limitada capacidad de generalización. Además, al haber pocos sujetos, 

algunas clases, como por ejemplo los artefactos cardíacos u oculares, están 

infrarrepresentadas o no tienen suficiente variabilidad. Esto puede provocar un 

desbalanceo que afecta al rendimiento del modelo, reduciendo su sensibilidad frente a 

esas clases menos frecuentes. En cuanto a la calidad de los datos, como estos han sido 

etiquetados por un único técnico especialista existe cierto grado de error o subjetividad 

que hace que la clasificación efectuada por la red pueda ser incorrecta. Asimismo, un solo 

experto no tiene mecanismos de corrección ni contraste, por lo que, si comete un error, 

ese error se traslada al modelo, lo que puede afectar negativamente al entrenamiento y 

generar modelos con aprendizaje equivocado. Con esto se destaca la importancia de 
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contar con la mayor cantidad posible de sujetos, tanto para construir la base de datos como 

para etiquetar las señales que la componen. 

   Por otro lado, las señales sintéticas generadas para evaluar el comportamiento de la 

herramienta y proporcionar un ground truth fiable no reproducen toda la complejidad de 

una señal neuronal real. El proceso de replicar artefactos puede introducir patrones 

demasiado regulares al construirse mediante la combinación de fragmentos reales de 

artefactos replicados y sumados a señales neuronales limpias, lo que facilita la tarea del 

modelo y no representa la variabilidad real. En condiciones naturales, los artefactos 

pueden superponerse, variar en intensidad, duración y morfología de forma no predecible, 

mientras que las señales generadas artificialmente tienden a presentar patrones más 

regulares. Además, el método de generación está limitado a artefactos simples o 

conocidos obtenidos únicamente a partir de señales MEG, y no incluye interacciones ni 

artefactos compuestos. Sería interesante incorporar señales complementarias como ECG 

o EOG en los análisis, ya que permitirían identificar de forma más precisa el origen de 

ciertos artefactos fisiológicos, como los de tipo cardíaco u ocular, respectivamente.  

   En cuanto al proceso de eliminación de artefactos mediante el score calculado por el 

modelo, se debe destacar que su aplicación requiere de ajustes minuciosos para garantizar 

que se eliminen únicamente los segmentos realmente contaminados sin afectar a la 

actividad neuronal válida. El uso de técnicas de suavizado, como el filtrado gaussiano o 

el enventanado, si bien ayuda a evitar cortes abruptos en la señal, puede provocar la 

difuminación de los límites reales entre segmentos ruidosos y limpios, dificultando la 

identificación del inicio y fin de los artefactos. Esto puede conllevar a la eliminación 

parcial de actividad neuronal válida o, por el contrario, a la preservación de fragmentos 

contaminados con bajo score. Además, la elección del umbral a partir del cual se elimina 

la señal no es trivial y puede afectar significativamente al resultado, especialmente en 

señales con niveles intermedios de contaminación.  

   Otra limitación a considerar es la integración con MEDUSA© y la carga computacional 

que supone el uso de modelos de DL como EEG-Inception, especialmente durante la fase 

de entrenamiento. Aunque la herramienta funciona correctamente, la falta de aceleración 

por GPU en algunos entornos o equipos limita su rendimiento, lo que puede traducirse en 

tiempos de procesamiento elevados. Esta restricción puede dificultar su uso en tiempo 

real o en sistemas con recursos limitados, por lo que sería recomendable optimizar el 

modelo o implementar versiones más ligeras para entornos con menor capacidad de 

cómputo. Esto podría conseguirse mediante la aplicación de técnicas que permitieran 

reducir la base de datos, como PCA o Autoencoders, que reducen la dimensionalidad y 

aceleran el procesamiento del modelo. 
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   Por último, cabe destacar que la funcionalidad desarrollada se encuentra integrada en el 

núcleo MEDUSA©, lo que implica que para ejecutarla es necesario clonar el repositorio 

y trabajar directamente sobre el código, generalmente desde entornos como PyCharm. 

Esta dependencia técnica limita su accesibilidad a usuarios sin conocimientos de 

programación. Lo ideal sería empaquetar la herramienta como una aplicación descargable 

dentro de la interfaz de la plataforma MEDUSA©, permitiendo que cualquier usuario, 

incluso sin experiencia en desarrollo, pueda utilizarla de forma intuitiva y autónoma. Esta 

limitación podría solventarse en futuras versiones para así mejorar la usabilidad del 

sistema. 
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8.1. Introducción 

   En este último capítulo se reflexiona sobre el trabajo realizado, evaluando en qué 

medida se han alcanzado los objetivos planteados al inicio del proyecto. A partir de los 

resultados obtenidos y tras la ejecución del TFM, se extraen una serie de conclusiones y 

se destacan las principales contribuciones aportadas. Además, se plantean futuras líneas 

de desarrollo que podrían ampliar el alcance de esta investigación, así como los posibles 

escenarios de aplicación de la herramienta desarrollada en contextos clínicos o 

experimentales. 

 

8.2. Grado de consecución de los objetivos propuestos 

   En base a los objetivos propuestos en el primer capítulo de este TFM, en este apartado 

se revisa el grado de consecución de cada uno de ellos y su contribución para la 

elaboración de la herramienta de detección y eliminación de artefactos en señales 

neuronales diseñada: 

1. A partir de diversos libros, artículos de revista y otros estudios se ha entendido el 

comportamiento de los diferentes tipos de artefactos que afectan las señales 

electromagnéticas cerebrales y se han analizado las limitaciones de los métodos 

tradicionales para detectar y eliminar estos artefactos. 

2. Mediante una búsqueda de diferentes fuentes en Internet, se han podido estudiar 

las principales técnicas utilizadas en el procesamiento de señales en neurociencia. 

Se ha ahondado específicamente en el papel de las herramientas modernas, como 

las basadas en IA, para automatizar y mejorar la precisión en el análisis de señales 

neuronales. 

3. Se ha llevado a cabo un análisis exhaustivo del software MEDUSA© y se ha 

examinado para qué estudios de investigación neurocientífica ha sido empleada. 

4. Se ha diseñado una herramienta basada en CNN que permite detectar, clasificar y 

eliminar artefactos en señales procedentes de registros MEG en estado de reposo. 

5. A partir de la técnica generada, se han creado señales sintéticas y se ha podido 

demostrar que el funcionamiento de la herramienta de IA es correcto. También se 

ha podido analizar su rendimiento al comparar los resultados empleando señales 

MEG reales y las señales sintéticas generadas. 

6. Se han implementado métodos de eliminación de los segmentos contaminados por 

ruido detectados por la herramienta de IA diseñada. 
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7. Con el fin de ofrecer al usuario una herramienta visual e intuitiva se ha creado una 

interfaz gráfica que integra las funcionalidades mencionadas. 

8. Se ha llevado a cabo la integración del software en la herramienta MEDUSA©. 

9. Se han estudiado los resultados obtenidos a partir del software elaborado y se ha 

comparado su rendimiento con el de otras investigaciones. 

10. Por último, se han sintetizado las conclusiones principales y se han identificado 

las posibles limitaciones del trabajo realizado, junto con una propuesta de futuras 

mejoras que podrían ampliar su utilidad y rendimiento en contextos reales. 

 

8.3. Conclusiones y aportaciones originales 

   Tras la ejecución de este TFM y el estudio de cada uno de sus apartados se han extraído 

las siguientes conclusiones: 

1. Las señales neuronales registradas mediante MEG están expuestas a la presencia 

de artefactos de origen no cerebral, como los de tipo cardíaco, ocular o debidos a 

la red eléctrica, los cuales pueden interferir en el análisis e interpretación de la 

actividad cerebral real. Esta contaminación limita la calidad de los datos y puede 

condicionar negativamente cualquier estudio clínico o investigación 

neurocientífica que se base en dichas señales. 

2. La aplicación de modelos de DL, concretamente una CNN como EEGInception, 

ha demostrado su utilidad para clasificar componentes ICA contaminadas por 

artefactos, superando las limitaciones de las técnicas manuales o tradicionales. El 

método desarrollado no sólo alcanza altos niveles de precisión, sino que además 

permite detectar errores de etiquetado humano que en condiciones habituales se 

pasarían por alto. 

3. El rendimiento del sistema de clasificación depende en gran medida de varios 

aspectos técnicos, como la estandarización previa de las señales, el diseño de la 

arquitectura específica de la CNN y una correcta selección de hiperparámetros 

durante el entrenamiento.  

4. La generación de señales sintéticas ha permitido evaluar la herramienta de forma 

controlada y ha facilitado la incorporación de artefactos en distintas condiciones 

y niveles de intensidad sobre actividad neuronal real. Este proceso ha facilitado 

disponer de un ground truth del modelo de IA, posibilitando una evaluación más 

rigurosa del mismo. Además, estas señales permiten simular diferentes escenarios 

clínicos o experimentales sin necesidad de nuevas adquisiciones. 
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5. El software desarrollado ha sido implementado dentro del entorno de análisis 

neuronal MEDUSA©, ofreciendo una nueva interfaz para procesar señales MEG 

contaminadas. Esta permite visualizar tanto las componentes clasificadas como 

las regiones señaladas como ruidosas, así como recuperar la señal limpia a partir 

del score calculado por el modelo.  

   Además, en este trabajo se han generado una serie de aportaciones personales que 

añaden valor al proyecto desarrollado. A continuación, se describen las más relevantes: 

1. Se ha desarrollado un sistema basado en IA capaz de detectar, clasificar y eliminar 

artefactos en registros MEG a partir de componentes ICA, adaptado 

específicamente a la arquitectura EEG-Inception y ajustado a las necesidades de 

este trabajo. El modelo alcanzó una sensibilidad superior al 95 % en la detección 

de componentes artefactuadas en señales reales, lo que permitió mejorar la calidad 

de la base de datos. 

2. Además de la detección, se ha integrado un mecanismo que permite eliminar los 

tramos ruidosos detectados, aportando una mejora práctica respecto a otros 

trabajos que se centran solo en la clasificación. Tras aplicar este procedimiento, 

se consiguió que una parte relevante de las señales inicialmente clasificadas como 

dudosas pasaran a ser consideradas limpias. 

3. Se ha implementado un procedimiento para generar señales sintéticas que 

permiten simular artefactos de distinta naturaleza y potencia, lo que ha facilitado 

la evaluación objetiva y controlada del rendimiento del modelo.  

4. Se ha diseñado una interfaz visual, intuitiva y funcional que permite tanto la 

visualización y limpieza de señales dudosas como la generación de señales 

sintéticas.  

5. La herramienta diseñada no queda como un proyecto aislado, sino que se ha 

incorporado en MEDUSA©, contribuyendo a la ampliación de esta plataforma de 

análisis de señales cerebrales e incrementando su accesibilidad para 

investigadores neurocientíficos. 

 

8.4. Líneas futuras 

   A continuación, se presentan varias líneas de trabajo futuro de este TFM que podrían 

servir como base para ampliar y mejorar su utilidad en el futuro, en base a las limitaciones 

encontradas tras su ejecución. 
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   Por un lado, la mejora en la calidad de la base de datos utilizada se ve influenciada por 

la diversidad de sujetos y las condiciones de la adquisición de datos. Para mejorar la 

generalización del modelo y su robustez, sería conveniente incorporar nuevos registros 

MEG procedentes de distintos entornos clínicos y con mayor variabilidad. Asimismo, 

aumentar la representación de clases poco frecuentes, como ciertos tipos de artefactos, 

permitiría un entrenamiento más equilibrado. 

   Por otro lado, para disminuir la subjetividad y los posibles errores que surgen durante 

el proceso de etiquetado de las señales neuronales, se podría integrar un sistema de 

consenso entre varios expertos o emplearse técnicas de etiquetado asistido por IA para 

mejorar la consistencia. Además, una revisión automatizada del etiquetado permitiría 

detectar incongruencias y mejorar la calidad del conjunto de datos. 

   Para poder extender la herramienta diseñada a pacientes con distintas patologías 

neurológicas, se podría aplicar a otras modalidades de neuroimagen, como EEG o 

electrocorticografía. Asimismo, sería interesante integrar módulos de diagnóstico asistido 

o predicción temprana de alteraciones cognitivas para ampliar su utilidad. 

   En cuanto al modelo de IA empleado, sería interesante comparar su rendimiento con 

otras arquitecturas avanzadas, como las redes híbridas CNN-RNN. También podrían 

explorarse métodos no supervisados para detectar artefactos sin necesidad de un 

etiquetado previo y, a pesar de haber incorporado al sistema ciertos elementos de 

explicabilidad al mostrar los tramos considerados como artefacto, la transparencia del 

sistema mejoraría si se empleara alguna técnica formal de explicabilidad de modelos 

(XAI) (Jiang, et al., 2022). 

   Además, la generación de señales sintéticas abre un abanico de posibilidades para 

validar y robustecer modelos de IA en condiciones controladas.  En este sentido, se 

podrían crear diferentes tipos de señales con niveles variables de ruido, o incluso simular 

patologías específicas. También se podría desarrollar un generador de datos basado en 

GANs (Generative Adversarial Networks) para crear señales más realistas, lo que 

aumentaría la calidad del entrenamiento y validación (Carrle, et al., 2023). 

   Por último, sería útil implementar en MEDUSA© una interfaz gráfica más completa 

que permita al usuario visualizar los resultados en tiempo real, editar etiquetas o ajustar 

algunos parámetros del modelo. Asimismo, resultaría de interés integrar los módulos de 

preprocesamiento y análisis de la plataforma para conseguir un flujo de trabajo continuo 

desde la adquisición de datos hasta la interpretación final.  



 

106 
 

Bibliografía 
AlHinai, N. (2020). Introduction to biomedical signal processing and artificial 

intelligence. In W. Zgallai (Ed.), Biomedical signal processing and artificial 

intelligence in healthcare (pp. 1-28). Academic Press. 

Ambardar, A. (1995). Analog and digital signal processing (2nd ed.). Boston, MA, USA: 

PWS Publishing. 

Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of 

Membrane Computing, 1(4), 279-291. 

Antona-Cortés, C. (2017). Herramientas modernas en redes neuronales: la librería 

Keras. Trabajo de Fin de Grado, Universidad Autónoma de Madrid, Madrid. 

Arslan, A., Şen, B., Çelebi, F. V., Peker, M., & But, A. (2015). A comparison of different 

classification algorithms for determining the depth of anesthesia level on a new 

set of attributes. In 2015 International Symposium on Innovations in Intelligent 

SysTems and Applications (INISTA) (pp. 1-7). IEEE. 

Azzerboni, B., Carpentieri, M., La-Foresta, F., & Morabito, F. C. (2004). Neural-ICA and 

wavelet transform for artifacts removal in surface EMG. Proceedings of the 2004 

IEEE International Joint Conference on Neural Networks, 4, 3223-3228. 

Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P. M., & Tecchio, F. (2004). 

Optimization of an independent component analysis approach for artifact 

identification and removal in magnetoencephalographic signals. Clinical 

Neurophysiology, 115 (5), 1220-1232. 

Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal 

processing algorithms in brain-computer interfaces based on electrical brain 

signals. Journal of Neural Engineering, 4(2), R32–R57. 

Berger, H. (1969). On the electroencephalogram of man. In The fourteen original reports 

on the human electroencephalogram (Journal of the Neurological, 13 ed., Vol. 

13). Electroencephalography and Clinical Neurophysiology. 

Besserve, M., Jerbi, K., Laurent, F., Baillet, S., Martinerie, J., & Garnero, L. (2007). 

Classification methods for ongoing EEG and MEG signals. Biological research. 

Betzel, R. F., & Bassett, D. S. (2017). Generative models for network neuroscience: 

prospects and promise. Journal of The Royal Society Interface, 14(136), 

20170623. doi:10.1098/rsif.2017.0623 

Bitbrain. (2020). How Deep Learning is changing machine learning AI in EEG data 

processing. Retrieved Enero 22, 2025, from https://www.bitbrain.com/blog/ai-

eeg-data-processing 

Blum, S., Jacobsen, N. S., Bleichner, M. G., & Debener, S. (2019). A Riemannian 

Modification of Artifact Subspace Reconstruction for EEG Artifact Handling. 

Frontiers in Human Neuroscience, 13, 141. 



 

107 
 

Burgess, R. C. (2020). Recognizing and Correcting MEG Artifacts. Journal of Clinical 

Neurophysiology, 37 (6), 508-517. 

Callier, P., & Sandel, O. (2021). Introduction to artificial intelligence. Actualites 

Pharmaceutiques, 60, 18-20. 

Carrle, F. P., Hollenbenders, Y., & Reichenbach, A. (2023). Generation of synthetic EEG 

data for training algorithms supporting the diagnosis of major depressive disorder. 

Frontiers in Neuroscience, 17, 1219133. 

Chawla, M. P. (2011). PCA and ICA processing methods for removal of artifacts and 

noise in electrocardiograms: A survey and comparison. Applied Soft Computing, 

11 (2), 2216-2226. 

Cohen, D. (1968). Magnetoencephalography: evidence of magnetic fields produced by 

alpharhythm currents. Science, 161(3843), 784-786. 

Colomer, A., Fuentes, F., Naranjo, V., Guixeres, J. A., & Alcañiz, M. (2016). A 

Comparison of Physiological Signal Analysis Techniques and Classifiers for 

Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in 

Computational Neuroscience, 10, 74. 

Croce, P., Zappasodi, F., Marzetti, L., Merla, A., Pizzella, V., & Chiarelli, A. M. (2019). 

Deep convolutional neural networks for feature-less automatic classification of 

independent components in multi-channel electrophysiological brain recordings. 

IEEE Transactions on Biomedical Engineering, 66(8), 2372-2380. 

Ertam, F., & Aydin, G. (2017). Data classification with deep learning using TensorFlow. 

In 2017 International Conference on Computer Science and Engineering (UBMK) 

(pp. 755-758). IEEE. 

Fabietti, M., Mahmud, M., Lotfi, A., Averna, A., Gugganmos, D., Nudo, R., & 

Chiappalone, M. (2020). Neural network-based artifact detection in local field 

potentials recorded from chronically implanted neural probes. In International 

Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. 

Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kübler, A. 

(2012). P300 brain computer interface: current challenges and emerging trends. 

Frontiers in Neuroengineering, 5, 14. 

García-Albea, E. (2017). Su majestad el cerebro. Madrid: La Esfera de los Libros. 

Garg, A., Popli, R., & Sarao, B. S. (2021). Growth of digitization and its impact on big 

data analytics. IOP Conference Series: Materials Science and Engineering, 1022, 

012083. 

Garg, P., Davenport, E., Murugesan, G., Wagner, B., Whitlow, C., Maldjian, J., & 

Montillo, A. (2017). Automatic 1D convolutional neural network-based detection 

of artifacts in MEG acquired without electrooculography or electrocardiography. 

In 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI) 

(pp. 1-4). IEEE. 



 

108 
 

Garg, P., Treacher, A. H., Davenport, E., Godwin, R., Proskovec, A., Bezerra, L. G., & 

Montillo, A. A. (2021). MEGnet: Automatic ICA-based artifact removal for MEG 

using spatiotemporal convolutional neural networks. NeuroImage, 241, 118402. 

Gil Correa, A. (2023). Detector Automático de Artefactos en Señales Neuronales basado 

en Técnicas de Inteligencia Artificial. Trabajo de Fin de Grado, Universidad de 

Valladolid, Valladolid. 

Grossberg, S. (2013). Recurrent neural networks. Scholarpedia, 8(2), 1888. 

Guan, Y., Yuan, Z., Sun, G., & Cong, J. (2017). FPGA-based accelerator for long short-

term memory recurrent neural networks. In 22nd Asia and South Pacific Design 

Automation Conference (ASP-DAC) (pp. 629-634). IEEE. 

Hamal, A. Q., & Rehman, A. W. (2013). Artifact Processing of Epileptic EEG Signals: 

An Overview of Different Types of Artifacts. In International Conference on 

Advanced Computer Science Applications and Technologies (pp. 358-361). IEEE. 

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). 

Magnetoencephalography-theory, instrumentation, and applications to 

noninvasive studies of the working human brain. Reviews of Modern Physics, 

65(2), 413. 

Hamdan, S., DuBray, K., Treutel, J., Paudyal, R., & Poudel, K. (2023). Reducing MEG 

interference using machine learning. Machine Learning with Applications, 12, 

100462. 

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, 

36-40. 

Hari, R., Levänen, S., & Raij, T. (2000). Timing of human cortical functions during 

cognition: role of MEG. Trends in Cognitive Sciences, 4(12), 455-462. 

Hirano, K., Nishimura, S., & Mitra, S. (1974). Design of Digital Notch Filters. IEEE 

Transactions on Communications, 22, 964-970. 

Hussein, B. M., & Shareef, S. M. (2024). An empirical study on the correlation between 

early stopping patience and epochs in deep learning. (E. Sciences, Ed.) ITM Web 

of Conferences, 64, 01003. 

Hyvärinen, A. (2011). Testing the ICA mixing matrix based on inter-subject or inter-

session consistency. NeuroImage, 58 (1), 122-136. 

ICL. (2024). Iclabel Tutorial: EEG Independent Component Labeling. Retrieved Octubre 

26, 2024, from https://labeling.ucsd.edu/tutorial/labels 

Islam, M. (2015). Artifact characterization, detection and removal from neural signals. 

National University of Singapore. 

Islam, M. K., Nguyen, A. T., Zhou, Y., & Yang, Z. (2012). Analysis and Processing of 

In-Vivo Neural Signal for Artifact Detection and Removal. In 2012 5th 

International Conference on BioMedical Engineering and Informatics (pp. 437-

442). IEEE. 



 

109 
 

Islam, M., Rastegarnia, A., & Sanei, S. (2021). Signal Artifacts and Techniques for 

Artifacts and Noise Removal. In M. Ahad, & M. Ahmed, Signal Processing 

Techniques for Computational Health Informatics (pp. 23-80). Cham: Springer 

International Publishing. 

Jafarabadi, M. A., Hajizadeh, E., & Anoshiravan, K. (2015). ICA or PCA? Which One is 

More Efficient Method for Artifact Identification in MEG Recordings. 

ResearchGate. 

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. 

Computer, 29(3), 31-44. 

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. 

Electronic markets, 31(3), 685-695. 

Janocha, K., & Czarnecki, W. M. (2017). On loss functions for deep neural networks in 

classification. Faculty of Mathematics and Computer Science. Jagiellonian 

University, Krakow, Poland: arXiv:1702.05659. 

Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F., & Gramfort, A. (2017). Autoreject: 

Automated artifact rejection for MEG and EEG data. NeuroImage, 159, 417-429. 

Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of Artifacts from EEG Signals: A 

Review. Sensors, 19, 987. 

Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? 

Discover Artificial Intelligence, 2(1), 4. 

Junliang, C. (2022). CNN or RNN: Review and experimental comparison on image 

classification. In Proceedings of the IEEE 8th International Conference on 

Computer and Communications (ICCC) (pp. 1939-1944). IEEE. 

Jwo, D. J., Chang, W. Y., & Wu, I. H. (2021). Windowing Techniques, the welch method 

for improvement of Power Spectrum Estimation. Computers, materials & 

continua, 67, 3. 

Kaplan, A. Y., Fingelkurts, A. A., Fingelkurts, A. A., Borisov, S. V., & Darkhovsky, B. 

S. (2005). Nonstationary nature of the brain activity as revealed by EEG/MEG: 

Methodological, practical and conceptual challenges. Signal Processing, 85(11), 

2190-2212. 

Kaya, I. (2019). A brief summary of EEG artifact handling. Brain-computer interface, 9. 

Khanna, M. (2025). Classification Problem: Relation between Sensitivity, Specificity and 

Accuracy. Retrieved Junio 5, 2025, from 

https://www.analyticsvidhya.com/blog/2021/06/classification-problem-relation-

between-sensitivity-specificity-and-accuracy/ 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv, 1412, 

6. 

Kwakernaak, H., Sivan, R., & Strijbos, R. C. (1991). Modern signals and systems. NASA 

STI/Recon Technical Report A, 91, 11586. 



 

110 
 

Laguna, S., Gopinath, K., Hoopes, A., Alexander, D. C., Arnold, S. E., Balbastre, Y., & 

Edlow, B. L. (2024). Synthetic data in generalizable, learning-based 

neuroimaging. Imaging Neuroscience, 2, 1-22. 

Lakshmi, K. A., Surling, S. N., & Sheeba, O. (2017). A novel approach for the removal 

of artifacts in EEG signals. In International Conference on Wireless 

Communications, Signal Processing and Networking (WiSPNET) (pp. 2595-

2599). IEEE. 

Larson, E., & Taulu, S. (2017). Reducing sensor noise in MEG and EEG recordings using 

oversampled temporal projection. IEEE Transactions on Biomedical Engineering, 

65 (5), 1002-1013. 

Larson, E., & Taulu, S. (2017). The Importance of Properly Compensating for Head 

Movements During MEG Acquisition Across Different Age Groups. Brain 

topography, 30(2), 172–181. 

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. 

J. (2018). EEGNet: a compact convolutional neural network for EEG-based 

brain–computer interfaces. Journal of Neural Engineering, 15(5), 056013. 

Lee, S. B., Gui, X., Manquen, M., & Hamilton, E. R. (2019). Use of training, validation, 

and test sets for developing automated classifiers in quantitative ethnography. In 

International Conference on Quantitative Ethnography (Vol. Proceedings 1, pp. 

117-127). Cham: Springer International Publishing. 

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis 

using an extended infomax algorithm for mixed subgaussian and supergaussian 

sources. Neural computation, 11 (2), 417-441. 

LSL. (2019). Lab Streaming Layer. Retrieved Febrero 4, 2025, from 

https://labstreaminglayer.org/#/ 

Ma, W., Papadakis, M., Tsakmalis, A., Cordy, M., & Traon, Y. L. (2021). Test selection 

for deep learning systems. ACM Transactions on Software Engineering and 

Methodology (TOSEM), 30 (2), 1-22. 

Mahmud, M., Travalin, D., Bertoldo, A., Girardi, S., Maschietto, M., & Vassanelli, S. 

(2012). An automated classification method for single sweep local field potentials 

recorded from rat barrel cortex under mechanical whisker stimulation. Journal of 

Medical and Biological Engineering, 32(6), 397-404. 

Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an Integration of Deep 

Learning and Neuroscience. Frontiers in Computational Neuroscience, 10, 

215943. 

Martínez, V., Thielen, J., Santamaria, E., Pérez, S., Desain, P., & Hornero, R. (2021). 

Brain–computer interfaces based on code-modulated visual evoked potentials (c-

VEP): A literature review. Journal of Neural Engineering, 18(6), 061002. 

MEDUSA. (2022). This is MEDUSA©. Retrieved Febrero 2, 2025, from 

https://www.medusabci.com/home/ 



 

111 
 

MEG, W. (2019). Artifacts in MEG data. Retrieved Enero 17, 2025, from 

https://www.neuro.mcw.edu/meg/index.php/Artifacts_in_MEG_data#:~:text=Ar

tifact%20Handling-

,What%20is%20an%20artifact%3F,help%20you%20remove%20the%20artifact

s. 

Michel, C. M., & He, B. (2019). EEG source localization. Handbook of Clinical 

Neurology, 160, 85-101. 

MNE. (2024). Generate simulated source data. Retrieved 01 28, 2025, from 

https://mne.tools/1.8/auto_examples/simulation/source_simulator.html 

Mosher, J. C., & Funke, M. E. (2020). Towards best practices in clinical 

magnetoencephalography: patient preparation and data acquisition. Journal of 

Clinical Neurophysiology, 37 (6), 498-507. 

Mumtaz, W., Rasheed, S., & Irfan, A. (2021). Review of challenges associated with the 

EEG artifact removal methods. Biomedical Signal Processing and Control, 68, 

102741. 

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in 

MEG/EEG: a review and recommendations. Frontiers in Human Neuroscience, 

7, 138. 

Neuper, C., & Pfurtscheller, G. (2010). Neurofeedback training for BCI control. In Brain-

Computer Interfaces: Revolutionizing Human-Computer Interaction (pp. 65-78). 

Springer. 

Nitschke, J. B., Miller, G. A., & Cook, E. W. (1998). Digital filtering in EEG/ERP 

analysis: Some technical and empirical comparisons. Behavior Research 

Methods, Instruments, & Computers, 30, 54-67. 

Nixon, M., & Aguado, A. (2019). Feature extraction and image processing for computer 

vision (4th ed.). Academic press. 

Novac, O. C., Chirodea, M. C., Novac, C. M., Bizon, N., Oproescu, M., Stan, O. P., & 

Gordan, C. E. (2022). Analysis of the application efficiency of TensorFlow and 

PyTorch in convolutional neural network. Sensors, 22(22), 8872. 

Ono, T., Shindo, K., Kawashima, K., Ota, N., Ito, M., Ota, T., . . . Ushiba, J. (2014). 

Brain-computer interface with somatosensory feedback improves functional 

recovery from severe hemiplegia due to chronic stroke. Frontiers in 

Neuroengineering, 7, 19. 

O'Shea, K., & Nash, R. (2015). An introduction to Convolutional Neural Networks. 

arXiv:1511.08458. 

Pal, M., Roy, R., Basu, J., & Bepari, M. S. (2013). Blind source separation: A review and 

analysis. In International Conference Oriental COCOSDA held jointly with 2013 

Conference on Asian Spoken Language Research and Evaluation (O-

COCOSDA/CASLRE) (pp. 1-5). IEEE. 



 

112 
 

Papadelis, C., AlHilani, M., & Pearl, P. L. (2018). Artifacts in Pediatric and Adult 

Magnetoencephalography. In W. O. Tatum (Ed.), Atlas of Artifacts in Clinical 

Neurophysiology (pp. 183-204). Springer Publishing Company. 

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated 

electroencephalographic independent component classifier, dataset, and website. 

NeuroImage, 198, 181-197. 

Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications 

(4th ed.). Pearson Prentice Hall. 

Puce, A., & Hämäläinen, M. (2017). A Review of Issues Related to Data Acquisition and 

Analysis in EEG/MEG Studies. Brain Sciences, 7(6), 58. 

Reilly, R. B., & Lee, T. C. (2010). Electrograms (ECG, EEG, EMG, EOG). Technology 

and Health Care, IOS Press, 18(6), 443–458. 

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., & Lécuyer, A. 

(2010). Openvibe: An open-source software platform to design, test, and use 

brain–computer interfaces in real and virtual environments. Presence, 19 (1), 35-

53. 

Rodríguez-González, V., Gómez, C., Hoshi, H., Shigihara, Y., Hornero, R., & Poza, J. 

(2021). Exploring the interactions between neurophysiology and cognitive and 

behavioral changes induced by a non-pharmacological treatment: A network 

approach. Frontiers in Aging Neuroscience, 13, 696174. 

Ros-García, A. (2019). Sistema de percepción de elementos viarios usando técnicas de 

visión por computador para aplicación en conducción autónoma. Trabajo de Fin 

de Máster, Universidad Politécnica de Cartagena, Murcia. 

Rouhiainen, L. (2018). Inteligencia artificial. Alienta Editorial. 

Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons. 

Santamaría, E., Martínez, V., & Hornero, R. (2018). MEDUSA: una nueva herramienta 

para el desarrollo de sistemas Brain-Computer Interface basada en Python. In 10º 

Simposio CEA de Bioingeniería, Interfaces Cerebro-Máquina. UVaDOC. 

Santamaría, E., Martínez, V., Marcos, D., Rodríguez, V., Pérez, S., Moreno, S., & 

Hornero, R. (2023). MEDUSA©: A novel Python-based software ecosystem to 

accelerate brain-computer interface and cognitive neuroscience research. 

Computer Methods and Programs in Biomedicine, 230, 107357. 

Santamaría, E., Martínez, V., Marcos, D., Rodríguez, V., Pérez, S., Moreno, S., & 

Hornero, R. (2024). MEDUSA©. Retrieved Noviembre 1, 2024, from 

https://www.medusabci.com/ 

Santamaría, E., Martínez, V., Vaquerizo, F., & Hornero, R. (2020). EEG-Inception: A 

novel deep convolutional neural network for assistive erp-based brain-computer 

interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 

28 (12), 2773-2782. 



 

113 
 

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). 

BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE 

Transactions on Biomedical Engineering, 51 (6), 1034-1043. 

Semmlow, J. (2004). Biosignal and Medical Image Processing (2nd ed.). CRC Press. 

Sen, D., Mishra, B. B., & Pattnaik, P. K. (2023). A review of the filtering techniques used 

in EEG signal processing. In 2023 7th International Conference on Trends in 

Electronics and Informatics (ICOEI) (pp. 270-277). IEEE. 

Shaker, M. M. (2006). EEG waves classifier using wavelet transform and Fourier 

transform. Brain, 2(3), 169-174. 

Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. 

Towards Data Science, 6(12), 310-316. 

Singh, S. P. (2014). Magnetoencephalography: Basic principles. Annals of Indian 

Academy of Neurology, 17(1), S107-S112. 

Smith, S. W. (1999). The scientist and engineer's guide to digital signal processing (2nd 

ed.). California Technical Publishing. 

Stevens, L. A. (1974). Exploradores del cerebro. Barral. 

Sweeney, K. (2013). Motion artifact processing techniques for physiological signals. Ph. 

D. Thesis, National University of Ireland Maynooth, Ireland. 

Taqi, A. M., Awad, A., Al-Azzo, F., & Milanova, M. (2018). The impact of multi-

optimizers and data augmentation on TensorFlow convolutional neural network 

performance. In IEEE Conference on Multimedia Information Processing and 

Retrieval (MIPR) (pp. 140-145). IEEE. 

Team, T. B. (2023). All about eeg artifacts and filtering tools. Retrieved Enero 17, 2025, 

from https://www.bitbrain.com/blog/eeg-artifacts 

Tibaduiza, D. A., Mujica, L. E., Anaya, M., Rodellar, J., & Güemes, A. (2013). Principal 

component analysis vs. independent component analysis for damage detection. In 

Proceedings 6th European Workshop on Structural Health Monitoring & 1st 

European Conference On Prognostics and Health Management (Vol. 2, pp. 3-6). 

Urigüen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal-state-of-the-art and 

guidelines. Journal of Neural Engineering, 12(3), 031001. 

Van Bosse, J. G. (1998). Signaling in telecommunication networks (36 ed.). John Wiley 

& Sons. 

Vaziri, A. Y., Makkiabadi, B., & Samadzadehaghdam, N. (2023). EEGg: generating 

synthetic EEG signals in Matlab environment. Frontiers in Biomedical 

Technologies, 10(3), 370-381. 

Vigario, R., & Oja, E. (2008). BSS and ICA in neuroinformatics: from current practices 

to open challenges. IEEE reviews in biomedical engineering, 1, 50-61. 



 

114 
 

Vrba, J., & Robinson, S. (2001). The effect of environmental noise on magnetometer-and 

gradiometer-based MEG systems. Signal, 1, 0-5. 

Vrba, J., & Robinson, S. E. (2001). Signal processing in magnetoencephalography. 

Methods, 25(2), 249-271. 

Vu, M. A., Adali, T., Ba, D., Buzsáki, G., Carlson, D., Heller, K., & Dzirasa, K. (2018). 

A shared vision for machine learning in neuroscience. Journal of Neuroscience, 

38 (7), 1601-1607. 

Walczak, S. (2019). Artificial neural networks. In Advanced methodologies and 

technologies in artificial intelligence, computer simulation, and human-computer 

interaction (pp. 40-53). IGI Global Scientific Publishing. 

Wang, Y., Gao, X., Hong, B., Jia, C., & Gao, S. (2008). Brain-computer interfaces based 

on visual evoked potentials. IEEE Engineering in medicine and biology magazine, 

27 (5), 64-71. 

Wierzgała, P., Zapała, D., Wojcik, G. M., & Masiak, J. (2018). Most popular signal 

processing methods in motor-imagery BCI: a review and meta-analysis. Frontiers 

in neuroinformatics, 12, 78. 

Wolpaw, J. R. (2013). Brain–computer interfaces. Handbook of clinical neurology, 110, 

67-74. 

Wolpaw, J. R., Millan, J. D., & Ramsey, N. F. (2020). Brain-computer interfaces: 

definitions and principles. Handbook of clinical neurology, 168, 15-23. 

Yang, B., Duan, K., Fan, C., Hu, C., & Wang, J. (2018). Automatic ocular artifacts 

removal in EEG using deep learning. Biomedical Signal Processing and Control, 

43, 148-158. 

Yang, W., Pilozzi, A., & Huang, X. (2021). An Overview of ICA/BSS-Based Application 

to Alzheimer’s Brain Signal Processing. Biomedicines, 9, 386. 

Zhang, K., Ying, H., Dai, H. N., Li, L., Peng, Y., Guo, K., & Yu, H. (2021). Compacting 

deep neural networks for Internet of Things: Methods and applications. IEEE 

Internet of Things Journal, 8 (15), 11935-11959. 

Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: principles 

and techniques for data scientists (1st ed.). O'Reilly Media, Inc. 

 

 

 


