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Resumen 

 
El sueño constituye un proceso biológico fundamental para el mantenimiento de la salud, al 

desempeñar un papel clave en funciones cognitivas e inmunológicas. Un descanso adecuado resulta 

especialmente importante durante la infancia, etapa en la que el cuerpo y el cerebro se encuentran en pleno 

desarrollo. Alteraciones en el sueño, como los microdespertares o ciertos trastornos, pueden implicar 

riesgos significativos para la salud. Entre ellos, destaca la apnea obstructiva del sueño, un problema 

relevante especialmente en edades tempranas. 

 

El diagnóstico de la apnea obstructiva del sueño se realiza habitualmente mediante un estudio del 

sueño nocturno en laboratorio a través de la polisomnografía, una prueba precisa pero costosa en términos 

de tiempo y recursos. Por ello, la investigación científica ha centrado esfuerzos en la búsqueda de métodos 

alternativos más accesibles. Entre estas alternativas, cobran relevancia los enfoques basados en técnicas 

de inteligencia artificial, en particular el aprendizaje profundo, que permiten estimar de forma precisa el 

índice de apneas e hipopneas a partir de señales fisiológicas. 

 

Este trabajo se centra en evaluar la viabilidad del uso conjunto de tres señales fisiológicas: saturación 

de oxígeno en sangre (SpO2), flujo aéreo (FA) y variabilidad de la frecuencia cardiaca (HRV), extraídas 

de la base de datos pública “Childhood Adenotonsillectomy Trial” (CHAT). Estas señales fueron 

procesadas mediante un modelo de aprendizaje profundo basado en redes neuronales convolucionales 

(CNN). Para ello, los registros se segmentaron en intervalos de 20 minutos, introduciendo las señales 

individualmente, por pares y en conjunto, con el objetivo de estimar el número de eventos respiratorios 

por registro. Posteriormente, se aplicó una regresión Huber para estimar el índice de apneas e hipopneas 

y clasificar a los pacientes según la gravedad del trastorno. 

 

Se desarrolló un modelo para cada combinación posible de señales, siendo la combinación de SpO2 

y HRV la que ofreció los mejores resultados. Las métricas obtenidas para esta combinación fueron: 

sensibilidad del 79.50%, especificidad del 83.58% y exactitud del 80.39% para un umbral de 1 e/h; 

82.42%, 98.14% y 93.46% para 5 e/h, respectivamente; y 69.05%, 97.73% y 93.79% para 10 e/h, 

respectivamente. 

 

 Nuestro modelo representa una contribución adicional a los estudios previos sobre la señal SpO2 y 

propone un enfoque novedoso para el resto de combinaciones de señales. En el caso de FA, el uso de una 

CNN con la base de datos CHAT constituye una propuesta original. Para HRV, aunque existen trabajos 

previos que han empleado CNN, estos se han centrado en la señal ECG, a diferencia de nuestro enfoque 

basado directamente en HRV. En la combinación SpO2–FA se han utilizado variantes de CNN, pero no 

una CNN unidimensional como en nuestro caso. En cuanto a la combinación SpO2–HRV, los estudios 

previos emplean variantes de HRV, y aquellos que sí usan HRV no aplican metodologías basadas en 

CNN, por lo que nuestra propuesta también supone una aportación novedosa. Para la combinación FA–

HRV se encuentran investigaciones centradas en ECG, pero no directamente en HRV, lo que distingue 

nuevamente nuestro trabajo. Finalmente, para la combinación SpO2–FA–HRV, la literatura existente se 

basa en comparaciones directas y en el uso de ECG, sin aplicación de CNN ni empleo directo de HRV. 

Por tanto, puede concluirse que nuestro trabajo introduce, en la mayoría de los casos, un enfoque o 

metodología nueva que complementa significativamente la literatura científica existente. 
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Abstract 

 
Sleep is a fundamental biological process for maintaining health, playing a key role in cognitive and 

immunological functions. Adequate rest is especially important during childhood, a stage in which the 

body and brain are in full development. Sleep disturbances, such as micro-awakenings or certain 

disorders, can pose significant health risks. Among these, obstructive sleep apnoea stands out as a 

particularly significant problem in early childhood. 

 

Obstructive sleep apnoea is usually diagnosed by means of a nocturnal sleep study in a laboratory 

using polysomnography, a test that is accurate but costly in terms of time and resources. For this reason, 

scientific research has focused its efforts on finding more accessible alternative methods. Among these 

alternatives, approaches based on artificial intelligence techniques, particularly deep learning, are gaining 

prominence, as they allow for the accurate estimation of the apnoea-hypopnoea index from physiological 

signals. 

 

This work focuses on evaluating the feasibility of using three physiological signals together: blood 

oxygen saturation (SpO2), airflow (FA) and heart rate variability (HRV), extracted from the public 

database such as the Childhood Adenotonsillectomy Trial (CHAT). These signals were processed using 

a deep learning model based on convolutional neural networks (CNN). To do this, the records were 

segmented into 20-minute intervals, introducing the signals individually, in pairs and together, with the 

aim of estimating the number of respiratory events per record. Subsequently, a Huber regression was 

applied to estimate the apnoea-hypopnoea index and classify patients according to the severity of the 

disorder. 

 

A model was developed for each possible combination of signals, with the combination of SpO2 and 

HRV offering the best results. The metrics obtained for this combination were: sensitivity of 79.50%, 

specificity of 83.58% and accuracy of 80.39% for a threshold of 1 e/h; 82.42%, 98.14% and 93.46% for 

5 e/h respectively; and 69. 05%, 97.73% and 93.79% for 10 e/h respectively. 

 

Our model represents an additional contribution to previous studies on the SpO₂ signal and proposes a 

novel approach for the other signal combinations. In the case of AF, the use of a CNN with the CHAT 

database is an original proposal. For HRV, although there are previous studies that have used CNN, these 

have focused on the ECG signal, unlike our approach based directly on HRV. In the SpO₂–AF 

combination, variants of CNN have been used, but not a one-dimensional CNN as in our case. As for the 

SpO₂–HRV combination, previous studies use HRV variants, and those that do use HRV do not apply 

CNN-based methodologies, so our proposal also represents a novel contribution. For the FA–HRV 

combination, there is research focused on ECG, but not directly on HRV, which again distinguishes our 

work. Finally, for the SpO₂–AF–HRV combination, the existing literature is based on direct comparisons 

and the use of ECG, without the application of CNN or direct use of HRV. Therefore, it can be concluded 

that our work introduces, in most cases, a new approach or methodology that significantly complements 

the existing scientific literature. 
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Capítulo 1: INTRODUCCIÓN 
 

La apnea obstructiva del sueño (AOS), conocida en la literatura anglosajona como Obstructive Sleep 

Apnea (OSA), constituye una de las afecciones de mayor prevalencia dentro del ámbito de las 

enfermedades respiratorias. Esta patología se caracteriza por la presencia de una serie de episodios de 

carácter recurrente durante la fase del sueño en los cuales tiene lugar una obstrucción total o parcial de 

las vías respiratorias superiores. Durante el trascurso de dichos episodios, se generan una serie de 

alteraciones respiratorias que causan eventos de respiración anormales. Estas anomalías pueden derivar 

en una serie de efectos adversos para la salud en los pacientes que los padecen (Bitners & Arens, 2020a; 

Moffa et al., 2020). Entre los motivos principales causantes de estos episodios nocturnos destacan: fallos 

en las funciones de ciertos componentes anatómicos del cuerpo humano, como son los tejidos blandos y 

los músculos dilatadores presentes en la faringe; defectos anómalos en la estructura craneofacial, debidos 

a problemas hereditarios o enfermedades degenerativas; obstrucción de las vías buconasales, causado por 

un exceso de mucosa o tejido blando; o defectos en piezas dentales y la propia composición ósea de la 

boca (Malhotra & White, 2002). No obstante, las alteraciones neurológicas también pueden desenvolver 

un papel fundamental en la aparición de estos episodios. Esto se debe a que la obstrucción de las vías 

respiratorias puede derivar de la ausencia o insuficiencia de reflejos nerviosos encargados de regular el 

flujo aéreo durante la etapa de sueño, es decir, la falta de estímulo suficiente impide que los músculos de 

la garganta se mantengan en la posición adecuada para permitir una respiración normal (Bitners & Arens, 

2020a). 

Se estima que esta patología tan solo en España afecta a un 6-8% de la población española1, es decir, 

en torno a 3-4 millones de personas (Álvarez-Sala et al., 2015) y en Estados Unidos afecta 

aproximadamente al 12% de la población2, es decir, más de 40 millones de personas (Ling & Wu, 2024). 

A nivel global, la AOS afecta a mil millones de personas, convirtiéndola en el trastorno orgánico del 

sueño más común en todo el mundo (Acevedo et al., 2018). Estas cifras son excesivamente preocupantes 

teniendo en cuenta que muchos de los casos permanecen sin ser diagnosticados y pueden suponer un 

problema grave de salud para los pacientes que la padecen (Bitners & Arens, 2020a). 

Aunque la aparición de los primeros textos académicos con una definición oficial del síndrome de la 

apnea del sueño data de los años 70 (Guilleminault et al., 1977), años atrás ya se podían observar 

documentos que mencionaban este trastorno de manera indirecta y sin percatarse de ello. Concretamente, 

si nos remontamos a los años 30 del siglo XIX, en torno a 1835-1837, se publicaría la obra del científico 

escritor Charles Darwin, conocida como The Posthumous Papers of the Pickwick club (Dickens, 2008). 

Esta novela describe con detalle a un sujeto obeso conocido como Joe pareciente de una patología 

denominada por el propio autor como Somnolencia Diurna Excesiva (SDE) (Dickens, 1837; 

Guilleminault & Abad, 2004). En dicha novela se describe a Joe como: “un niño maravilloso, gordo […] 

está de pie sobre la alfombra, con los ojos cerrados como si estuviera dormido”. Como se puede apreciar, 

el escritor inglés acababa de relatar un caso de apnea del sueño en un sujeto con obesidad sin ser consciente 

de ello. Posteriormente, surgirían los primeros artículos con un enfoque más riguroso y científico que 

tratarían de evaluar este fenómeno del SDE. Concretamente, un estudio publicado en 1956 narraría de 

nuevo la historia de una persona con obesidad desde un enfoque más analista y detallado. En dicho 

informe se destaca la importancia de una correcta ventilación alveolar, y se propone la posibilidad de 

evaluar la hipoventilación del paciente mediante el análisis de la respuesta respiratoria a variaciones de 

dióxido de carbono (𝐶𝑂2), pudiendo realizar así un diagnóstico adecuado (Burwell et al., 1994). 

 
1 La población española a fecha de Octubre de 2024 es de 48.797.875 personas, según datos oficiales extraídos 

directamente del Instituto Nacional de Estadística o INE. Disponible públicamente a través del siguiente enlace: 

https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&id

p=1254735572981 

2 La población de  Estados Unidos o EEUU a fecha de Octubre de 2024 es de 335.135.000 personas, según datos 

oficiales extraídos directamente de la base de datos Datosmacro. Disponible públicamente a través del siguiente 

enlace: https://datosmacro.expansion.com/paises/usa  

https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&idp=1254735572981
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&idp=1254735572981
https://datosmacro.expansion.com/paises/usa
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FACTOR DE RIESGO GRADO  MOTIVOS 

Sexo masculino  MEDIO Factores anatómicos 

Menopausia  BAJO Desconocido, posiblemente anatómicos 

Edad  MEDIO Factores anatómicos y reflejos 

Obesidad ALTO Factores anatómicos  

Alcohol MEDIO Afección a los reflejos musculares 

Tabaco BAJO Inflamación del tracto respiratorio 

Raza BAJO Desconocido, posiblemente anatómicos 

Tabla 1-1. Factores de riesgo que favorecen la posibilidad de padecer AOS (Bitners & Arens, 2020a). 

 

Debemos tener en cuenta la existencia de ciertos factores de riesgo como la obesidad, las enfermedades 

degenerativas o incluso el género de los pacientes, que pueden inducir en una mayor probabilidad de 

desarrollar AOS (Malhotra & White, 2002). En la Tabla 1-1 se recogen los factores de riesgo más 

relevantes junto al grado de peligrosidad que implica. 

Es crucial destacar el significativo impacto que tiene la obesidad en la posibilidad de desarrollar AOS. 

De hecho, se estima que el 70% de pacientes que padecen esta patología presentan además síntomas de 

obesidad (Malhotra & White, 2002). Empleando el Índice de Masa Corporal (IMC) como parámetro de 

referencia, podemos clasificar la relación peso/altura de una persona como: infra peso (IMC < 18.5 

[𝐾𝑔/𝑚2]), peso normal (18.5 [𝐾𝑔/𝑚2]  ≤ IMC < 24.9 [𝐾𝑔/𝑚2]), sobrepeso (25 [𝐾𝑔/𝑚2] ≤ IMC < 29.9 

[𝐾𝑔/𝑚2]), obesidad leve o tipo I (30 [𝐾𝑔/𝑚2] ≤ IMC < 34.9 [𝐾𝑔/𝑚2]), obesidad moderada o tipo II (35 

[𝐾𝑔/𝑚2] ≤ IMC < 39.9 [𝐾𝑔/𝑚2]) u obesidad mórbida o tipo III (IMC ≥ 40 [𝐾𝑔/𝑚2]) (Okunogbe et al., 

2022). Es importante tener en cuenta que en el caso de los niños, la forma de calcular el grado de obesidad 

o el nivel de peso es diferente a la utilizada con los adultos.  

Otro de los factores determinantes, aunque no tan importantes como la obesidad, es el género o sexo 

de los pacientes. Los hombres tienen un mayor riesgo de sufrir AOS que las mujeres, esto se debe a 

diferencias en su condición anatómica como: la estructura y tamaño de los músculos, una distribución de 

grasa distinta, diferencias hormonales y otros factores que difieren de un sexo a otro que podrían ser la 

explicación a este fenómeno (Malhotra & White, 2002). Sin embargo, ciertos estudios argumentan que 

esta diferencia de posibilidades de padecer AOS viene sesgada por la desigualdad entre la cantidad de 

investigaciones realizadas en hombres y en mujeres, y en las diferencias que presentan ambos sexos en 

los síntomas, como por ejemplo los ronquidos (Malhotra & White, 2002). Es decir, parte de esa disparidad 

en sufrir o no de este trastorno puede darse por el infradiagnóstico de la AOS en mujeres (Malhotra & 

White, 2002). Aun así, independientemente de esta teoría las estadísticas entre hombres y mujeres se 

igualan en dos etapas de la vida: la primera, en las edades más tempranas hasta alcanzar la pubertad; y la 

segunda, durante la etapa menopaúsica, aumentando en las mujeres las posibilidades de sufrir AOS y 

llegando a igualar la de los hombres (Ho & Brass, 2011). Además, resulta interesante destacar como la 

raza puede afectar en la posibilidad de desarrollar este trastorno. A pesar de no tener una respuesta 

concreta, la hipótesis más acertada indica que las diferencias en la composición y distribución de los 

tejidos blandos y las estructuras óseas pueden presentar ciertas variaciones en las distintas razas ante este 

trastorno (Malhotra & White, 2002). En un estudio realizado en 1997 se evaluó a un total de 225 

afroamericanos y 622 caucásicos de entre 2 y 86 años. El estudio concluyó que los jóvenes afroamericanos 

tienen un mayor riesgo de padecer apnea del sueño que aquellos que no lo son (Redline et al., 1997). Otros 

factores como la edad y el consumo de alcohol o tabaco también puede afectar significativamente, aunque 

estos factores no tienen un impacto tan crítico comparados con la obesidad y el sexo citados previamente 

(Bitners & Arens, 2020a). 
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1.1.  Características de la Apnea Obstructiva del Sueño 
 

Antes de comenzar a hablar de las principales características, síntomas y formas de diagnóstico de este 

trastorno, debemos diferenciar los distintos tipos de apnea del sueño que existen. Para ello, podemos 

separarlas en función del origen o motivo que las causa (Xia & Sawan, 2021):  

• Apnea Obstructiva del Sueño (AOS): es el tipo de apnea del sueño más frecuente, 

relacionada con la obstrucción de la vía aérea superior. Mediante procesos biomecánicos como 

la relajación de los músculos, ocurre una obstrucción parcial o total de la cavidad traqueal 

dificultando el flujo de aire. 

• Apnea Central del Sueño (ACS): este tipo de apnea del sueño es originada por problemas 

neurológicos. La interrupción del flujo aéreo se origina por una alteración en la actividad 

neuronal responsable de mantenerlo, ya que no se generan adecuadamente los estímulos 

necesarios para activar los músculos implicados.  

• Apnea Mixta del Sueño (AMS): la menos frecuente de las 3 ya que combina ambas 

mencionadas previamente, este tipo de apnea es la más peligrosa y compleja al incluir 

problemas otorrinolaringológicos y neuronales. 

En este caso de estudio nos enfocaremos principalmente en la AOS. Este tipo de apnea viene 

caracterizada por dos procesos fisiológicos definidos en la American Academy of Sleep Medicine (AASM) 

de la siguiente forma (Berry et al., 2012; Eguía et al., 2007; Malhotra et al., 2021): 

• Apnea: se conoce como apnea al evento en el que ocurre una disminución del flujo aéreo de 

al menos el 90% durante más de 10 segundos en adultos y de 2 ciclos respiratorios en niños 

(aproximadamente 6 segundos). 

• Hipopnea: en este caso se define como hipopnea al evento en el que ocurre una disminución 

del flujo aéreo pero en este caso de entre el 30% y el 90% durante más de 10 segundos en 

adultos y de 2 ciclos respiratorios en niños (6 segundos aproximadamente). Además, se 

experimenta también una caída del nivel de saturación de oxígeno en sangre (SpO2) del 3% o 

un microdespertar. 

La aparición recurrente de episodios de apnea e hipopnea durante el sueño provoca un flujo de aire 

irregular e insuficiente en el sistema respiratorio, lo que conlleva una disminución de la concentración de 

oxígeno en la sangre arterial. Este fenómeno se conoce como hipoxemia o desaturación de oxígeno en 

sangre (Eguía et al., 2007). Debido a la necesidad de las células de nuestro organismo de disponer de 

oxígeno con el que poder generar energía, la perdida porcentual de este en el torrente sanguíneo puede 

afectar y dañar células e incluso órganos, siendo los más críticos el sistema neuronal con el cerebro y el 

cardiovascular con el corazón (Terán Santos et al., 2006). Por esa razón este trastorno conlleva graves 

problemas para la salud de quien lo padece, tanto a corto como a largo plazo. 

Ante una disminución de oxígeno en el torrente sanguíneo, nuestro cuerpo trata de compensar esa 

pérdida enviando estímulos al sistema respiratorio para que intente volver a un estado de respiración 

normal, lo que puede generar un esfuerzo respiratorio aumentado, obligando a ciertos músculos a trabajar 

más para compensar esta falta de oxígeno (National Heart, 2016; Terán Santos et al., 2006). Además, el 

corazón también se ve perjudicado al verse forzado a aumentar su carga de trabajo con el fin de bombear 

más sangre para que a los órganos vitales no les afecte dicha disminución de oxígeno, provocando así 

incrementos en la frecuencia cardíaca y la presión arterial no deseados. En algunos casos, si no se logra 

compensar la falta de oxígeno el cerebro puede activar el estado de alarma y generar un microdespertar, 

para intentar así restablecer el correcto flujo de aire en nuestro cuerpo y recuperar los niveles de oxígeno 

en sangre normales (Terán Santos et al., 2006).  
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Una vez el paciente se despierta, se recupera el control sobre las vías respiratorias y generalmente las 

funciones corporales se restablecen a la normalidad. Pero estos eventos de apnea-hipopnea pueden darse 

varias veces en una noche, generando desaturaciones y microdespertares continuos y evitando que el 

organismo entre en la fase de sueño profundo. Esta fase es esencial para poder descansar correctamente y 

así poder funcionar adecuadamente durante el día, por lo que no alcanzarla de forma recurrente puede 

acabar desencadenando problemas de salud graves a largo plazo (Terán Santos et al., 2006). 

El trastorno de la AOS presenta una serie de síntomas para los pacientes que lo sufren tanto diurnos 

como nocturnos. Por la noche, el sujeto puede experimentar síntomas como: asfixias, ronquidos, 

pesadillas, congestión nasal, insomnio o nocturia entre otros (Olivi, 2013). Por otro lado, sufrir eventos 

de apnea obstructiva por la noche, también tiene repercusión en el día a día. Pudiendo presentar síntomas 

como: cansancio, fatiga, irritabilidad, apatía, depresión, dificultad para memorizar y concentrarse, 

problemas cardiovasculares e incluso una mayor probabilidad de sufrir accidentes de tráfico (Olivi, 2013). 

Según la Sociedad Española de Neumología y Cirugía Torácica, se descubrió en 1998 que la AOS era la 

segunda causa de muerte en accidentes de tráfico en España, siendo los pacientes con un grado elevado 

de AOS hasta 7 veces más propensos a verse involucrados en accidentes de tráfico que aquellos que no 

presentan este trastorno (Terán-Santos et al., 1999). Esta cifra, puede llegar a incrementarse hasta 11 si se 

consume alcohol y drogas a mayores (Ana et al., 2006).  

 

1.2.  Diagnóstico de la Apnea Obstructiva del Sueño 
 

En el contexto del diagnóstico de la AOS, la polisomnografía (polysomnography, PSG) es considerada 

el estándar de referencia tanto en adultos como en niños. Esta prueba debe realizarse en unidades del 

sueño especializadas, adecuadamente equipadas y por un equipo de profesionales, garantizando así unos 

resultados precisos y confiables (Bitners & Arens, 2020a; Mazzotti et al., 2018). Realizar esta prueba, 

especialmente en niños, presenta una dificultad añadida debido a la posibilidad de no poder conciliar el 

sueño correctamente en un entorno extraño durante la noche, lo que puede alterar los resultados. Durante 

esta prueba el paciente debe dormir en la unidad del sueño con varios sensores y electrodos conectados a 

su cuerpo con el objetivo de registrar las señales biomédicas de interés y así poder diagnosticar el grado 

de AOS (Becerra et al., 1991; Behera et al., 2021; Budhiraja et al., 2005; Leske, 2014; Mazzotti et al., 

2018; Mildenhall, 2008). Algunas de las señales típicamente recogidas son:  

 

• Electro-oculograma (EOG): permite registrar la actividad eléctrica relacionada con los 

movimientos oculares lentos de la fase no REM y los rápidos de la fase REM además del 

potencial eléctrico del ojo. Para poder registrar estas señales se colocan electrodos en varios 

puntos cercanos a los músculos del ojo por la parte externa. 

• Electrocardiograma (ECG): permite registrar la actividad eléctrica del corazón y calcular el 

ritmo cardíaco, permitiendo detectar anomalías asignadas a los efectos de los trastornos 

respiratorios producidos por patologías como la AOS. En este caso los electrodos se colocan 

a lo largo de la piel del paciente, concretamente por los brazos, piernas y pecho. 

• Electromiograma mentoniano (EMGm): permite registrar la actividad eléctrica de los 

músculos del mentón para ayudar a identificar la fase REM. De igual manera que en los casos 

previos, se emplean electrodos colocados a lo largo del mentón. 

• Electroencefalograma (EEG): permite registrar la actividad eléctrica del cerebro de manera 

no invasiva mediante una serie de electrodos colocados en el cuero cabelludo alrededor del 

cráneo. Estos electrodos se deben colocar en ciertas regiones de interés según el sistema 

internacional 10-20 y es recomendable registrar como mínimo 6 canales en las zonas frontal, 

central y occipital (F1, F2, C3, C4, O1 y O2) para poder realizar correctamente la prueba 

(Figura 1-1). 
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Figura 1-1. Zonas de colocación de electrodos vistas lateral (izquierda) y superior (derecha): C-central, F-frontal, O-

Occipital, A-Auricular y P-Parietal (Departamento de fisiología, facultad de medicina UNAM). 

• Flujo aéreo (FA) respiratorio: sensores como las cánulas de presión3, permiten detectar el 

flujo aéreo al registrar variaciones de temperatura entre el aire que el paciente inhala y exhala 

durante la fase del sueño. Estos dispositivos se colocan alrededor de la boca y la nariz para 

poder detectar los cambios de temperatura. 

• Movimiento/esfuerzo respiratorio: sensores capaces de registrar el movimiento torácico y 

abdominal. Para ello, se emplean bandas toracoabdominales que permiten realizar un 

seguimiento de los movimientos realizados al inspirar y expirar durante el sueño. 

• Pulsioximetría: empleando un pulsioxímetro, se puede registrar la señal SpO2 y la frecuencia 

del pulso. Generalmente, este dispositivo se presenta en forma de pinza que, al colocarse en el 

dedo, utiliza diodos emisores de luz (LED) y fotodiodos para emitir y captar luz roja e 

infrarroja, permitiendo así medir la cantidad de luz absorbida por la sangre en dos longitudes 

de onda diferentes. 

• Nivel de dióxido de carbono: la medición se realiza a través de sensores que detectan la 

concentración de CO₂ en el aire espirado, ya sea mediante capnografía o monitorización 

transcutánea. Estos dispositivos emplean tecnologías ópticas que miden la absorción de luz 

por parte del CO₂, lo que permite estimar con precisión sus niveles durante la respiración. 

• Presión esofágica: permite medir el esfuerzo inspiratorio del paciente mediante cambios de 

presión sobre un globo hinchado con aire. Este dispositivo consiste en un catéter pequeño con 

un globo inflable en su extremo que se introduce por la nariz o boca hasta el esófago. Al ser 

tan invasivo, su uso es limitado. 

• Material audiovisual: permite realizar un seguimiento del estado del paciente de forma 

audible y visual. Consiste en realizar una grabación en video del sujeto para poder controlar 

sus movimientos y una grabación de audio para poder registrar sonidos como ronquidos o 

respiraciones forzosas. 

 
3 Cánula de presión: compuesta por un tubo flexible colocado en las fosas nasales (conocido como tubo nasal) y un 

transductor de presión que convierte las variaciones de presiones del aire en señales medibles (Wegener, 2017). 
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La PSG presenta una elevada complejidad, un alto costo de realización y un posible sesgo en los 

resultados (Leske, 2014). Este sesgo se debe principalmente a que el paciente se encuentra en un entorno 

desconocido como es una unidad del sueño, y tiene gran cantidad de aparataje y sensores colocados por 

todo su cuerpo, lo que puede ocasionar efectos no deseados como no poder conciliar el sueño 

adecuadamente. Por ello a lo largo de los últimos años se han investigado una gran variedad de alternativas 

para reducir costes y tiempo de diagnóstico, facilitando la prueba tanto al médico como al paciente. La 

opción más prometedora y elegida de forma frecuente por los especialistas médicos es la realización de 

una prueba simplificada en el domicilio de la persona (Home Sleep Apnea Test, HSAT). Esta prueba 

permite registrar algunas de las señales citadas anteriormente en el propio hogar del paciente, logrando 

así abaratar costes tanto en recursos como en tiempo, y permitiendo una mayor comodidad para el sujeto 

gracias a la posibilidad de poder dormir y descansar correctamente en un entorno conocido como es su 

propia habitación. En el HSAT se registran generalmente señales como: la frecuencia cardíaca, la SpO2 

mediante pulsioximetría, grabación de audio para detectar ronquidos y el flujo aéreo, entre otros. No 

obstante, las señales recogidas pueden variar entre pacientes, médicos e incluso dispositivos (Bitners & 

Arens, 2020a; Caples et al., 2021). 

Blumenthal y McGinnis afirmaron: “if something cannot be measured… it cannot be improved” 

(Malhotra et al., 2021). Esta celebre cita hace referencia a la importancia de cuantificar todo aquello que 

nos rodea con el fin de poder analizarlo y mejorarlo. Aplicándolo a nuestro caso de estudio, el objetivo 

principal de tanto la PSG como el HSAT no es otro que diagnosticar a los pacientes de AOS cuantizando 

el grado de severidad que presentan de dicho trastorno, pudiendo así aplicar el mejor tratamiento a cada 

uno de ellos en función del grado diagnosticado. Para ello, como en todo campo de la medicina se emplean 

puntuaciones o métricas con las que poder clasificar y evaluar las diferentes enfermedades o patologías 

que pueda presentar un paciente. Sin embargo, la métrica por excelencia y, por tanto, la que más se emplea 

para diagnosticar los distintos grados de AOS es el Índice de Apena-Hipopnea (IAH). La primera mención 

de esta métrica, se remonta a 1976, siendo Guilleminault el primero en emplear el término “apnea index” 

en su publicación “The Sleep Apnea Syndromes” (Guilleminault et al., 1977; Pevernagie et al., 2020). 

Este índice representa la relación entre la cantidad de eventos dados en un periodo de sueño y el tiempo 

del dicho periodo, es decir, podemos darle forma con la siguiente expresión (Ecuación 1.1): 

𝑰𝑨𝑯 =  
𝒏ú𝒎𝒆𝒓𝒐 𝒅𝒆 𝒂𝒑𝒏𝒆𝒂𝒔 𝒆 𝒉𝒊𝒑𝒐𝒑𝒏𝒆𝒂𝒔 [𝒆𝒗𝒆𝒏𝒕𝒐𝒔]

𝒕𝒊𝒆𝒎𝒑𝒐 𝒅𝒆 𝒔𝒖𝒆ñ𝒐 [𝒉]
                                         (𝟏. 𝟏) 

En función del IAH calculado en la prueba se pueden clasificar a los pacientes adultos que sufren de 

este trastorno de 4 maneras distintas (Berry et al., 2012; Guilleminault, 2018; Malhotra et al., 2021; 

Mediano et al., 2022; Pevernagie et al., 2020): 

• Sin AOS: en el caso de que el IAH < 5 [eventos/hora], se considerará que el paciente no tiene 

o tiene eventos de apnea-hipopnea dentro de lo normal, y por lo tanto no sufre de la patología 

de AOS, por lo que no hace falta ningún tratamiento. 

• AOS leve: el grado de apnea menos peligroso, pero no por ello menos importante. En este 

caso, el IAH ~{5 – 14} [eventos/hora], se caracteriza por pocos eventos de apnea durante la 

etapa de sueño. A pesar de no ser peligroso, puede indicar una fase temprana de AOS más 

severa y debe ser vigilado regularmente y tratado. 

• AOS moderada: en este caso, el IAH ~{15 – 30} [eventos/hora], lo que implica eventos de 

carácter frecuente dificultando bastante el descanso adecuado, sobre todo si dichos eventos 

van acompañados de un microdespertar. 

• AOS severa: este es el caso más grave de todos, en este caso el IAH > 30 [eventos/hora], lo 

que implica eventos de carácter muy frecuente durante la etapa de sueño, imposibilitando el 

correcto descanso del paciente y desencadenando problemas de salud graves además de otras 

patologías. 
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A pesar de que el IAH es la métrica más empleada, existen otras alternativas como son por ejemplo 

(Malhotra et al., 2021; Torre-Bouscoulet et al., 2007): la carga hipóxica, haciendo referencia a la cantidad 

de tiempo que el paciente se encuentra en niveles muy bajos de oxígeno en sangre durante un periodo de 

tiempo; la intensidad del microdespertar, como su propio nombre indica, mide la fuerza con la que la 

persona se despierta, clasificando como muy fuerte al microdespertar que logra despertar por completo al 

sujeto, y como débil al microdespertar del cual el paciente no es consciente; el Odds Ratio Product (ORP), 

empleado para cuantificar la profundidad y calidad de sueño del paciente, usando para ello el EEG; el 

Índice de Desaturación de Oxígeno al 3% (Oxigen Desaturation Index 3%, ODI3), indicador empleado 

para medir cuantas veces por unidad de tiempo (generalmente 1 hora) el nivel de oxígeno en sangre cae 

un cierto umbral (frecuentemente 3%); o la duración del evento de apnea-hipopnea, similar al IAH, pero 

midiendo los lapsos temporales de los eventos en lugar de la cantidad de ellos (Malhotra et al., 2021; 

Torre-Bouscoulet et al., 2007). Estas son solo algunas de las métricas más relevantes discutidas en los 

estudios. No obstante, la elección de la métrica más adecuada en cada caso y sujeto, quedará determinada 

por el contexto de la situación, las características de la persona y la experiencia o preferencias del 

profesional de la salud encargado. Ya que, no en todos los casos están presentes los mismo síntomas o se 

tiene la misma estructura anatómica. 

 

1.3.  Tratamientos de la Apnea Obstructiva del Sueño 
 

Como la gran mayoría de los trastornos y enfermedades comúnmente conocidas, existe uno o varios 

tratamientos con los que poder eliminar o reducir los síntomas que presentan. En el caso de la AOS hay 

una gran variedad de opciones disponibles, que dependiendo del paciente y del grado de AOS, pueden ser 

más o menos invasivos, complejos o efectivos. Al igual que ocurría con el IAH en la parte de diagnóstico 

con la existencia de una métrica estándar para clasificar los grados de AOS, ocurre con el tratamiento en 

adultos. El tratamiento más frecuente y efectivo empleado para abordar la AOS en adultos, es la presión 

positiva continua en vías respiratorias, o CPAP por sus siglas en inglés Continuous Positive Airway 

Pressure (Bitners & Arens, 2020b).  

La CPAP consiste en un tipo de tratamiento donde se intenta mantener un flujo de aire continuo gracias 

a una presión positiva constante ofrecida mediante una mascarilla y un aparato regulador de presión 

(Figura 1-2). Esta presión positiva constante logra mantener las vías respiratorias en un estado adecuado 

para que haya un correcto flujo aéreo y el paciente pueda respirar con normalidad. Por lo general, la 

máquina es ajustable en función de la presión u otras necesidades fisiológicas del sujeto y puede emplearse 

una mascarilla nasal, oronasal u oral con distintas formas, tamaños y áreas de cobertura en función de los 

gustos de cada persona (H. Chang et al., 2020).  

 

 

Figura 1-2. Dibujo esquemático de un tratamiento con CPAP (Autoría propia, generada con IA). 
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Para conseguir que el tratamiento logre surtir efecto, la CPAP debe de usarse como mínimo 4 horas 

por día (depende del grado de la AOS), 5 días a la semana (Xia & Sawan, 2021). Aunque se ha notado 

una mejoría considerable en la variabilidad de la frecuencia cardíaca de los pacientes durante la noche, 

simplemente por comenzar a aplicar el tratamiento (Xia & Sawan, 2021). El seguimiento de estas 

directrices permitirá al paciente disminuir la posibilidad de sufrir enfermedades cardiovasculares, diabetes 

o hipertensión, entre otras. Además, mejorará la calidad de vida tanto física como psicológica y mental al 

permitir al paciente tener un correcto sueño y por consiguiente un descanso adecuado, permitiendo al 

cerebro y resto de órganos repararse y funcionar correctamente (Xia & Sawan, 2021). Tras 3 meses, se ha 

comprobado que los pacientes experimentan mejoría en la presión sanguínea, capacidad pulmonar e 

incluso mejoras a nivel ocular tanto en la retina como en la sensibilidad de la vista (Spannella et al., 2017). 

Sin embargo, como cualquier otra intervención o tratamiento, la terapia CPAP tiene una serie de 

desventajas que a pesar de no estar presentes en todos los casos, deben ser consideradas. Alguno de los 

problemas o efectos secundarios que puede presentar un sujeto tras el uso de la CPAP pueden ser: 

sequedad, congestión, hemorragias y otras molestias nasales, distensión abdominal y otros problemas 

gastrointestinales o problemas dentales y mandibulares (Buela-Casal G, 1999). Además, se pueden 

originar otros problemas como incomodidad al llevar la mascarilla o despertares por el ruido generado 

por la máquina, aunque estos últimos pueden ser subsanados cambiando el equipo para que se ajuste a las 

necesidades del usuario.  

Aunque la CPAP es el tratamiento más empleado en adultos, existen otros dependiendo de las 

necesidades y condiciones médicas de la persona, pudiendo ser más o menos invasivos, largos o agresivos. 

Una de las alternativas menos invasivas consiste en dispositivos colocados en la boca para corregir la 

forma de la mandíbula o la colocación de la lengua en el paciente. Pero se debe tener en cuenta que este 

tipo de tratamientos solo funciona con aquellos sujetos que sufran de malformaciones o anomalías bucales 

o mandibulares que afecten directa o indirectamente a la AOS (Konrad, 2006; Malhotra & White, 2002). 

Por otro lado, un cambio de hábitos en la vida del usuario puede ser también un tratamiento efectivo en 

casos más leves. Estos hábitos incluyen el cese de consumo de sustancias nocivas tales como alcohol o 

tabaco, establecer un horario de sueño constante y equilibrado a lo largo de la semana respetando los 

ciclos adecuadamente, aumentar la cantidad de ejercicio y actividad física realizado diariamente, o realizar 

un cambio a una dieta más balanceada y adecuada con el objetivo de bajar un posible exceso de peso 

presente en el paciente (B. Gil et al., 2005).  

Otro tipo de tratamientos existentes son los quirúrgicos, aunque estos no se emplean frecuentemente 

salvo que el beneficio sea considerable o no haya otras alternativas debido a que son los más invasivos, 

complejos y requieren de un mayor tiempo de recuperación. Los tratamientos quirúrgicos son muy 

variados e incluyen operaciones bucales o maxilares; operaciones nasales como pueden ser la colocación 

de una tabique desviado o corrección de hipertrofia de cornetes; o incluso operaciones para reposicionar 

o retirar parte de los tejidos como la úvula, el paladar o la faringe (uvulopalatofaringoplastia) (Konrad, 

2006; Malhotra & White, 2002; Won et al., 2008). Finalmente, debemos mencionar la existencia de otras 

alternativas como tratamientos con medicamentos y drogas o tratamientos mediante ultrasonidos. Aunque 

estos últimos no son empleados de manera frecuente debido a su bajo índice de éxito en comparación con 

el resto de tratamientos previamente mencionados (Konrad, 2006; Xia & Sawan, 2021). 

En la Figura 1-3 se puede observar una herramienta empleada frecuentemente por profesionales de la 

salud para evaluar las alternativas y posibilidades quirúrgicas a la hora de preparar un tratamiento para 

subsanar el trastorno de AOS presente en un paciente. En dicha figura, se puede ver un complejo diagrama 

de flujo donde se recogen una serie de posibilidades tanto de operación como de tratamientos no invasivos 

disponibles en función de las variables de entrada como son la edad, los síntomas o las deformaciones 

presentes en el sujeto (Xia & Sawan, 2021). 
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Figura 1-3. Diagrama de flujo representativo de posibles procedimientos quirúrgicos y tratamientos no invasivos para 

pacientes con AOS (Xia & Sawan, 2021). 



Capítulo 1                                                                                                                                   Introducción 

10 
 

 

1.4.  Apnea Obstructiva del Sueño Pediátrica  
 

El síndrome de la AOS no es exclusivo de adultos, si bien son el grupo más favorable a padecer dicho 

trastorno debido al envejecimiento natural del cuerpo humano, los niños también pueden sufrir este 

síndrome con consecuencias más graves (Bitners & Arens, 2020a). Consecuencias que afectan 

negativamente a su desarrollo tanto físico como mental, perjudicando por lo tanto su capacidad de 

aprendizaje (Bitners & Arens, 2020a). Por lo tanto, destinaremos este subapartado a resaltar las 

particularidades más relevantes del síndrome de la AOS en niños.  

Debemos tener en cuenta que en la mayoría de los casos de AOS infantil, a diferencia de los adultos, 

la principal causa del problema son las amígdalas y las vegetaciones adenoideas. Debido a un tamaño o 

crecimiento inusual de estos tejidos se produce un bloqueo de forma parcial o completa del paso del aire 

a través del tracto respiratorio, produciendo los eventos conocidos como apnea o hipopnea durante la fase 

del sueño. Para poder evaluar y clasificar el tamaño de las amígdalas se emplea frecuentemente la 

puntuación de Brodsky. Este sistema empleado tanto en niños como en adultos, permite clasificar el grado 

de obstrucción de las vías respiratorias en función de la presencia excesiva de las amígdalas (Brodsky, 

1989). La escala incluye los siguientes niveles: 

• Grado 0: paciente completamente sano. Las amígdalas se encuentran en su posición y tienen 

un tamaño correcto, sin causar ningún problema al tracto respiratorio ni al flujo de aire. Este 

es el grado más común, presente en toda persona que no tenga ninguna patología respiratoria 

relacionada en la garganta. 

• Grado 1: paciente con problema leve. Las amígdalas ocupan un 25% del espacio entre los 

pilares amigdalinos, es decir, las paredes de la faringe, limitando ligeramente el flujo de aire. 

• Grado 2: paciente con problema medio. Las amígdalas ocupan entre un 25% y un 50% del 

espacio de la faringe, limitando más el flujo aéreo que el caso previo. 

• Grado 3: paciente con problema severo. Las amígdalas ocupan entre un 50% y un 75% del 

espacio de la faringe, dificultando en gran medida el flujo aéreo. 

• Grado 4: paciente crítico. Las amígdalas ocupan más del 75% del espacio de la faringe, siendo 

el grado más severo y llegando a los casos más extremos donde las amígdalas pueden hacer 

contacto entre sí imposibilitando la respiración del sujeto con normalidad. 

La Figura 1-4 ilustra los diferentes grados definidos en la Escala de Brodsky mencionados 

anteriormente: 

 

Figura 1-4. Puntuación Brodsky Grados 0-4. (Adaptado de Clínica Otorrinolaringológica Santa Catharina, 2020). 
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Al igual que ocurría con los adultos, no hay un único factor de riesgo que conlleve la aparición de este 

trastorno. Existen otros factores clave como malformaciones, deformidades u obesidad excesiva (Moffa 

et al., 2020). La Organización Mundial de la Salud (OMS) define el sobrepeso en niños en dos rangos de 

edad. El primer rango, en niños menores de 5 años se define como sobrepeso aquel peso dos veces superior 

a dos desviaciones típicas por encima de los patrones; y la obesidad aquel peso tres veces superior a dicha 

desviación típica. Para niños entre 5 y 19 años se define el sobrepeso como un peso superior a una 

desviación típica por encima de la mediana y la obesidad mórbida como un peso dos veces superior a 

dicha desviación típica (OMS, 2024). En las Figuras 1-5 y 1-6 se muestran las distintas gráficas empleadas 

por la OMS para medir el grado de obesidad a partir del índice de masa corporal (normalizado por edad 

y sexo) en niños y niñas entre 5 y 19 años, respectivamente: 

 

 
Figura 1-5. Tabla de cálculo IMC/Edad para niños entre 5 y 19 años, proporcionada por la OMS (OMS, 2007). 

 

 

Figura 1-6. Tabla de cálculo IMC/Edad para niñas entre 5 y 19 años, proporcionada por la OMS (OMS, 2007). 
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Además, debemos destacar que los grados de AOS en niños no son clasificados de la misma forma, ni 

son diagnosticados de igual manera que en los adultos. Es cierto que se emplea el mismo índice, el IAH, 

pero los valores para diagnosticar y clasificar los distintos grados de AOS y la propia definición de la 

métrica son distintos (Bitners & Arens, 2020a; Moffa et al., 2020):  

• Sin AOS: en el caso de que el IAH < 1 [eventos/hora], al igual que los adultos, el paciente no 

presenta síntomas de AOS. 

• AOS leve: el caso de apnea menos peligroso, en este caso, el IAH está entre 1 y 5 e/h. Los 

umbrales del IAH empleados en niños son más restrictivos que en el caso de los adultos ya 

que se considera AOS leve un valor de IAH que para adultos sería un caso sin AOS (Rosen 

et al., 1992).  

• AOS moderada: en este caso, el IAH es superior a 5 e/h pero inferior a 10 e/h, es decir, 

eventos más frecuentes que en la AOS leve. En estos casos, es necesaria atención inmediata 

para evitar daños mayores a largo plazo (Kaditis et al., 2016).  

• AOS crítica: este es el caso más grave de todos, en este caso el IAH >= 10 e/h, lo que implica 

eventos de manera muy frecuente, imposibilitando el descanso correctamente. Este grado al 

igual que el caso moderado, requiere de tratamiento inmediato para no desencadenar secuelas 

más graves u otros problemas de salud (Kaditis et al., 2016). 

Otra de las grandes diferencias entre adultos y niños es la forma del diagnóstico. A pesar de seguir 

siendo la PSG el estándar más empleado para diagnosticar la AOS tanto en adultos como en niños, no se 

obtiene el mismo resultado en ambos grupos. Esto se debe en parte a que las señales registradas en niños 

a lo largo de la noche en el laboratorio del sueño no logran alcanzar la precisión deseada, lo cual es uno 

de los principales motivos por el que se buscan alternativas a este método de diagnóstico (Bitners & Arens, 

2020a). Esto se debe a que es mucho más difícil que un niño en temprana edad, en un entorno no familiar 

como es una unidad del sueño y lejos de sus padres, mantenga la quietud y tranquilidad necesarias para 

conciliar el sueño. Por lo que las horas de sueño profundo se ven reducidas y los resultados pueden ser 

insatisfactorios (Alonso Álvarez et al., 2008). Por ejemplo, al estar nervioso no podrá dormir, aumentará 

su ritmo cardíaco, variará su EEG y probablemente no alcance apenas la fase de sueño profundo. Estos 

efectos pueden ser aún mayores cuanto más pequeño sea el paciente, llevando a la comunidad científica 

a investigar y desarrollar otra serie de sistemas alternativos a la PSG para diagnosticar clínicamente la 

AOS en niños (Bitners & Arens, 2020a).  

Algunos de los métodos alternativos empleados para realizar un filtrado inicial de pacientes con 

sospechas de AOS son (Bitners & Arens, 2020a; Leske, 2014): la exploración física, realizada mediante 

la observación por parte de un especialista de la respiración por nariz y boca, el tamaño de los tejidos de 

la garganta (empleando la escala Brodsky mencionada anteriormente), calidad de la voz o ronquidos entre 

otros; la realización de cuestionarios sobre su día a día tanto al usuario como a sus padres o tutores legales, 

con el fin de identificar comportamientos que la propia persona no pueda notar al estar dormido, tales 

como ronquidos; el uso de versiones adaptadas de HSAT para niños, con el fin de que puedan realizar una 

prueba similar a la PSG desde su propia casa; uso de radiografías o Imagen por Resonancia Magnética 

(IRM) dinámicas para poder observar la estructura interna de la zona de la garganta; o endoscopias con o 

sin sueño inducido, observando directamente el estado de la garganta mediante pequeñas cámaras, siendo 

este último un método que no se utiliza apenas debido a que es muy invasivo (Bitners & Arens, 2020a; 

Leske, 2014). 

Los tratamientos en niños también son diferentes con respecto a los tratamientos que se aplican a los 

adultos. En el caso de pacientes pediátricos el principal problema que desencadena el trastorno de la AOS 

es el crecimiento anormal de las amígdalas o del tejido adenoideo de la garganta. Por lo que, un 

procedimiento quirúrgico como puede ser la adenoamigdalectomía soluciona o reduce en gran medida el 

problema de obstrucción (Bitners & Arens, 2020a). Este procedimiento puede ser realizado mediante 

electrocirugía, ablación mediante técnicas de plasma o la más frecuente, eliminación del tejido o de la 

capsula de las amígdalas entera, con técnicas basadas en frío (Bitners & Arens, 2020a).  
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Debemos tener en cuenta que existen otros tratamientos diferentes como pueden ser (Bitners & Arens, 

2020a; Konrad, 2006): alternativas quirúrgicas como la traqueotomía, destinadas a pacientes con 

malformaciones o anomalías estructurales; cirugías para el paladar, los laterales de la faringe o la nariz, 

destinadas a mejorar el flujo aéreo en el tracto respiratorio; otros procedimientos no invasivos como son 

la pérdida de peso corporal o el cambio de hábitos de vida; tratamientos bucodentales como colocación 

de aparatos para reestructurar ciertos componentes de la dentadura, la lengua o la mandíbula; o el empleo 

de medicamentos especiales (Bitners & Arens, 2020a; Konrad, 2006). Se demostró en un experimento 

con 464 niños de entre 5 a 9 años con AOS, que aquellos que eran sometidos a la adenoamigdalectomía 

presentaban una mejoría en la calidad de vida y respiración, frente a aquellos que se sometían a otros 

tratamientos. Concretamente el 79% de los niños sometidos a adenoamigdalectomía mejoraron frente a 

un 46% de pacientes que mejoraron al ser sometidos a otros tratamientos alternativos (Padilla et al., 2013).  

 

 

1.5.  Deep Learning 
 

La humanidad ha experimentado cambios y evoluciones en las bases de la civilización desde sus 

remotos inicios, algunos de estos eventos incluso han llevado a los historiadores a definir “cambios de 

época” repartidos a lo largo de la historia. Estos cambios, generalmente están marcados por grandes 

descubrimientos o revoluciones, como por ejemplo las distintas revoluciones industriales que han ocurrido 

a lo largo de la historia (Gonzalez-Hernandez et al., 2021). La primera revolución industrial data de 1780 

a 1840, época en la que surgieron nuevas herramientas como la máquina de vapor, nuevos combustibles 

como el carbón y tuvo lugar la evolución de ciertas industrias, como la textil. La segunda revolución 

industrial, también conocida como “La Revolución Tecnológica”, data de 1870 a 1914, y se caracteriza 

por la aparición de nuevas fuentes de energía como la electricidad y el petróleo, la aparición de nuevas 

industrias como la química o la eléctrica, y la instauración de la producción en cadena de productos en 

masa. La tercera revolución industrial, también conocida como “La Revolución Digital”, data de 

mediados del siglo XX, y se caracteriza por la implementación y mejora de ordenadores, robótica e 

internet en todos los aspectos de la vida cotidiana y la industria. Finalmente, la cuarta revolución industrial 

es conocida como “Industria 4.0” o “La Revolución de la Inteligencia Artificial (IA)”. Actualmente 

estamos experimentando los inicios de esta cuarta revolución; revolución que promete innovar en los 

campos de la IA, el Big Data y el Internet de las cosas (Internet of Things, IoT), permitiendo así la creación 

de industrias y ciudades inteligentes (Ynzunza Cortés et al., 2017). En este apartado, nos centraremos en 

esta última revolución, concretamente en la parte de la IA, ya que nos servirá como herramienta más 

adelante en el caso de estudio. 

La IA puede definirse como la capacidad de los ordenadores para ejecutar, de la forma más similar 

posible, tareas que habitualmente son realizadas por seres humanos, así como aprender a partir de la 

experiencia. En este sentido, desarrollar IA implica crear algoritmos y sistemas capaces de emular con 

precisión el comportamiento o pensamiento humano (Rouhiainen, 2018). No obstante, el término IA 

engloba gran cantidad de técnicas y campos distintos. Entre los que podemos distinguir: Aprendizaje 

Profundo o Deep Learning (DL) y Aprendizaje Máquina, Aprendizaje Automático o Machine Learning 

(ML). El término ML hace referencia a la capacidad de los ordenadores de realizar una cierta tarea y 

adquirir experiencia resolviéndola sin ser programados explícitamente para ello; esto se consigue 

empleando una serie de algoritmos que les brindan la posibilidad de aprender relaciones entre estructuras 

de información. Por otro lado, el término DL es un subconjunto del ML que emplea estructuras con 

múltiples capas como son redes neuronales de distintos tipos con las que son capaces de extraer 

características más complejas de los datos de entrada y aprender de ellas, pudiendo elaborar conceptos 

mucho más complejos (Kelleher, 2019; Voulodimos et al., 2018a). En la Figura 1-7 podemos ver 

representados estos conceptos mencionados previamente en un diagrama de Venn: 
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Figura 1-7. Diagrama de Venn de los conceptos: Inteligencia Artificial, Machine Learning y Deep Learning (Adaptada de 

Kelleher, 2019). 

 

En el campo del análisis y procesado automático de señales existen una gran cantidad de estudios 

enfocados al uso de técnicas de ML y DL para procesar estas señales, de hecho más adelante en el capítulo 

de la revisión del estado de la técnica haremos hincapié en estudios que emplean este tipo de herramientas 

aplicadas al diagnóstico de la AOS. Conforme avanzan los estudios centrados en la comparativa entre el 

uso de métodos de ML y DL, crece la popularidad del uso del DL, ya que cada vez se está demostrando 

más su superioridad frente a los modelos de ML para este tipo de tareas (Gutiérrez‐Tobal et al., 2022; 

İŞCAN, 2022; Shlezinger & Eldar, 2023). Por lo tanto y para el caso de estudio que nos concierne, nos 

centraremos en los algoritmos y técnicas de DL, debido a que trataremos de crear un sistema capaz de 

extraer las características de los datos por sí mismo de manera automática. Con dicho sistema, 

intentaremos reconocer patrones a detectar para poder clasificar distintos sujetos en los distintos grados 

de AOS a partir de una serie de señales biomédicas. Sin embargo, debemos de tener en cuenta que el nivel 

de precisión de los modelos de DL aún no ha alcanzado su punto óptimo y puede continuar mejorando en 

gran medida. Finalmente, y teniendo en cuenta todo lo mencionado anteriormente, no profundizaremos 

en los términos de IA y ML más allá de lo estrictamente necesario. 

Lo primero que debemos tener en cuenta es que los sistemas de DL están basados generalmente en una 

serie de estructuras denominadas redes neuronales. Estas redes neuronales consisten en modelos de 

computación que tratan de emular la estructura del cerebro humano y están compuestas de una serie de 

capas donde se procesa la información, que a su vez están compuestas por unidades básicas de 

procesamiento conocidas como neuronas artificiales (Kelleher, 2019). Las neuronas del cerebro presentan 

3 elementos diferentes: el cuerpo o núcleo celular, las dendritas y una fibra conocida como axón (Ostrosky, 

2010). Tratando de recrear esa estructura en las redes neuronales artificiales, cada neurona artificial de la 

red se compone de un elemento central de procesamiento, que tratará de emular el cuerpo celular. Si dicha 

neurona, recibe un estímulo lo suficientemente fuerte a través de las dendritas (o en el caso de nuestra red 

neuronal, los canales de entrada), transmitirá un impulso a otras neuronas a través del axón (o canales de 

salida a otras neuronas artificiales en el caso de nuestra red). Debemos de tener en cuenta que el cerebro 

humano tiene alrededor de 86.000 millones de neuronas, por lo que haría falta una red neuronal de un 

tamaño descomunal para emular completamente su comportamiento (Kelleher, 2019; Ostrosky, 2010). 

Sin embargo, los avances tecnológicos actuales permiten realizar redes neuronales con una gran densidad 

de neuronas, pudiendo realizar así tareas realmente complejas. A continuación en la Figura 1-8 podemos 

ver un esquema de las similitudes entre una neurona real y una artificial:  
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Figura 1-8. Similitudes entre una neurona del cerebro humano (superior) y una neurona artificial de una red neuronal 

(inferior) (Autoría propia, basada en Kelleher, 2019). 

 

Como ya hemos mencionado, las redes neuronales representan las bases de los sistemas DL. Pero 

debemos tener en cuenta que existen varios tipos de redes neuronales que pueden ser más o menos 

efectivas en función de la tarea a la que son destinadas, algunos de estos ejemplos son (Kelleher, 2019): 

• Redes Neuronales Artificiales: también conocidas como ANN, son el tipo de red neuronal 

más básico de todas, destinadas a problemas de clasificación o regresiones sencillas. Este tipo 

de modelos son muy útiles para desarrollar sistemas pequeños debido a su simplicidad. 

• Redes Neuronales Convolucionales: también conocidas como CNN, destinadas a procesar 

datos en formato matricial como imágenes o señales, permiten reconocer patrones en los datos, 

generar conceptos complejos y clasificarlos gracias a aplicar la operación matemática de 

convolución. Son frecuentemente utilizadas en detección de objetos o patrones y en el 

reconocimiento y generación de imágenes. 

• Redes Neuronales Recurrentes: también conocidas como RNN, destinadas a datos que tienen 

una componente temporal como sonidos o lenguaje hablado, este tipo de redes contienen 

conexiones de retroalimentación que las permiten recordar información. Son ampliamente 

utilizadas en Procesado de Lenguaje Natural (PLN), como traductores, generadores de texto a 

partir de imágenes o creadores de contenido escrito. 

• Redes Neuronales de Memoria a Largo y Corto plazo: también LSTM (del inglés, Long 

Short-Term Memory). Representan una variante o subconjunto de las RNN, pero con una 

mayor capacidad gracias a su habilidad de poder recordar u olvidar conceptos, lo que las 

permite, mantener una memoria, de ciertas ideas o palabras a lo largo del tiempo. 

Debemos tener en cuenta que existen muchas más variaciones y versiones de estas redes adaptadas a 

las necesidades de cada proyecto o estudio (Perumal et al., 2024). 
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1.6.  Hipótesis y objetivos   
 

En los apartados anteriores se ha mencionado que la PSG es una prueba costosa de realizar, por lo que 

se han buscado otras alternativas como el uso de técnicas de procesado automático de señales basadas en 

DL para poder realizar una estimación empleando una menor cantidad de recursos. Esto permitirá reducir 

el coste económico, computacional y temporal de realizar un diagnóstico de AOS.  

La hipótesis planteada en este caso de estudio se basa en determinar si es posible estimar el IAH con 

la suficiente precisión como para permitir realizar un diagnóstico fiable de la AOS infantil, empleando 

para ello distintas combinaciones de un conjunto reducido de señales (como pueden ser SpO2, FA y HRV) 

procesadas mediante modelos automáticos basados en DL. 

Para ello, el objetivo general de este Trabajo Fin de Máster es desarrollar un modelo de DL diseñado 

específicamente para el procesamiento de cualquiera de las combinaciones de las señales SpO2, FA y HRV 

extraídas de bases de datos especializadas en la AOS infantil. Posteriormente, se realizará un análisis 

detallado del rendimiento del sistema y se optimizarán los puntos indicados en función de los resultados 

del análisis. Finalmente, se evaluará la viabilidad clínica de cada una de las combinaciones en función de 

las necesidades de cada paciente, los recursos disponibles y las decisiones y criterio del equipo médico 

especializado. A continuación listamos los objetivos específicos a conseguir: 

• Obtener una base de datos de registros nocturnos apropiada con información sociodemográfica 

y clínica de pacientes pediátricos para poder desarrollar nuestro modelo. 

• Desarrollar modelos de DL para el análisis de señales de SpO2, FA y HRV tanto de manera 

individual como de manera conjunta. 

• Comparar y valorar resultados obtenidos y extraer las conclusiones pertinentes. 

 

1.7.  Estructura del Trabajo Fin de Máster   
 

Durante el trascurso del proyecto, se ha recogido y registrado toda la información empleada y obtenida 

en esta memoria. Para poder estructurar correctamente todos los datos, y así facilitar el trabajo al lector, 

hemos optado por dividir el proyecto en una serie de capítulos temáticos. Este documento, por lo tanto, 

constará de 7 capítulos y una bibliografía, donde se ha ido narrando paso a paso todo el trabajo realizado, 

entre ellos: la revisión del estado de la técnica, obtención y preparación de los datos, desarrollo de un 

modelo, evaluación y comparativa de resultados, extracción de conclusiones y líneas futuras. 

• Capítulo 1. Introducción: en este primer capítulo hemos realizado una breve introducción 

sobre el caso de estudio, mencionando las principales características de la ASO, su 

diagnóstico, síntomas y tratamiento tanto para adultos como para niños. Además, también 

hemos visto información general acerca de las técnicas de DL, la formulación de una hipótesis 

y sus respectivos objetivos y por último una detallada descripción del documento y su división 

en distintos apartados.  

• Capítulo 2. Estado de la técnica: a lo largo de este capítulo, hemos analizado todo el trabajo 

previo realizado por expertos en este campo en concreto. Hemos tratado de extraer todos los 

objetivos y resultados logrados y a partir de ellos, desarrollamos nuestra hipótesis con la que 

complementar dichos estudios. 

• Capítulo 3. Señales y bases de datos: en este tercer capítulo, hemos revisado las componentes 

de las 3 señales, sus características, las posibles herramientas con las que podemos obtenerlas 

y su viabilidad dentro de nuestro proyecto. Además, hemos analizado varias bases de datos 

como CHAT para elegir una candidata a ser empleada en nuestro sistema. 
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• Capítulo 4. Metodología: una vez elegidas las señales y la base de datos, hemos realizado 

una breve explicación de los conceptos referentes a la metodología empleada y comentado 

punto por punto el desarrollo del modelo, el generador empleado, el estimador y el análisis 

estadístico de los resultados. 

• Capítulo 5. Resultados: con el modelo desarrollado, hemos analizado los resultados 

obtenidos tanto en lo referente a la optimización de los hiperparámetros como a los propios 

resultados generados al realizar la estimación del número de eventos por segmento y el grado 

de severidad de la AOS. 

• Capítulo 6. Discusión: en este penúltimo capítulo se realizó una discusión de los resultados 

obtenidos con sus posibles aportaciones al campo de estudio y una comparativa con todos los 

estudios anteriores comentados en la revisión del estado de la técnica. 

• Capítulo 7. Conclusiones y líneas futuras: a modo de broche final, se han expuesto las 

conclusiones finales extraídas del caso de estudio que ha supuesto este proyecto, junto a una 

recopilación de las limitaciones y líneas futuras de cara a mejorar o complementar este estudio 

en futuras investigaciones. 

• Bibliografía: de manera adicional, se aporta la bibliografía consultada durante el desarrollo 

del proyecto y la elaboración de este documento. 
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Capítulo 2: ESTADO DE LA TÉCNICA 
 

En este segundo capítulo realizaremos una revisión de los estudios existentes en este ámbito de trabajo. 

Para ello, citaremos los trabajos más relevantes en el campo del diagnóstico de la AOS pediátrica junto a 

los resultados y conclusiones derivados de los mismos que puedan resultar de interés para elegir la 

dirección en la que enfocar el desarrollo de nuestro propio proyecto. A lo largo del capítulo se incluirán 

referencias de todos los documentos e investigaciones citados para poder realizar un mejor seguimiento 

por parte del lector. 

Comenzaremos con una breve contextualización, seguida de un análisis de una serie de tablas 

localizadas al final del capítulo donde se resumen todos los trabajos de investigación analizados para 

revisar el estado de la técnica en este campo de estudio. A continuación, trataremos con un poco más de 

detalle algunos puntos de interés como pueden ser: la metodología elegida, las señales empleadas o las 

predicciones realizadas. Para finalmente poder extraer una conclusión sobre la que encaminaremos 

nuestro propio trabajo. 

 

2.1.  Contexto del caso de estudio 
 

Como ya se hemos podido observar la AOS es una patología prevalente, de hecho una gran parte de la 

población la padece y solo una porción reducida ha sido diagnosticada. Parte de este infradiagnóstico se 

debe al elevado coste y complejidad de las pruebas basadas en PSG. Por ello, gran parte de la comunidad 

científica se ha volcado en la búsqueda de alternativas más sencillas a este sistema de diagnosis (Mazzotti 

et al., 2018).  

Para poder simplificar el proceso de diagnóstico, varios autores han optado por tratar de realizar una 

estimación del grado de AOS a partir de una cantidad de señales reducida; señales que pueden obtenerse 

mediante una versión de PSG más sencilla, o mediante otras alternativas menos costosas. Gracias a esta 

revisión podremos disponer de una visión más general del estado de gran parte de las investigaciones y 

los avances conseguidos, y por lo tanto, podremos identificar zonas que aún no han sido exploradas donde 

poder realizar nuestra aportación. 

En las Tablas 2-1, 2-2, 2-3, 2-4 y 2-5 se han agrupado diferentes estudios referentes a la aplicación de 

técnicas de ML/DL con las que poder realizar una estimación de la presencia de la AOS en niños. De esta 

manera, hemos agrupado los datos de cada investigación en función de: los detalles sobre las bases de 

datos, las señales elegidas, la metodología empleada y los resultados de clasificación obtenidos de 

sensibilidad (sensitivity, Se), exactitud (accuracy, Acc) y especificidad (specificity, Sp) entre otras cosas. 

Además, se ha agregado una indicación sobre si el estudio trató de estimar los grados de AOS mediante 

el IAH o solamente la presencia o no de AOS (añadiendo a mayores el umbral empleado en este caso). 

Los estudios analizados datan de entre 2003 y 2024 y han sido agrupados en 7 grupos distintos en 

función de las señales empleadas para realizar la predicción de la OSA. El grupo de estudios que emplean 

solamente señales de SpO2 (Álvarez et al., 2017; L. Chang et al., 2013; Hornero et al., 2017; Jiménez-

García et al., 2020; Kirk et al., 2003; Mortazavi et al., 2024; Tsai et al., 2013; Vaquerizo-Villar et al., 

2018a, 2018b, 2021; Villa et al., 2015; Xu et al., 2019); los que emplean la señal de FA únicamente 

(Barroso-García et al., 2017; Barroso-García, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-García, 

Gutiérrez-Tobal, Kheirandish-Gozal, et al., 2021; Jiménez-García et al., 2020); los que emplean solo el 

HRV, ECG o derivadas (Dehkordi et al., 2016; García-Vicente et al., 2023; E. Gil et al., 2009, 2010; 

Lazaro et al., 2014; Martín-Montero et al., 2021, 2022, 2023; Shouldice et al., 2004; Ye et al., 2023); los 

grupos que emplean dos de las señales citadas previamente combinadas, como puede ser SpO2-FA 

(Barroso-García et al., 2020; Gutiérrez-Tobal et al., 2015; Jiménez-García et al., 2020, 2022, 2024), SpO2- 

HRV (Garde et al., 2014, 2019; Ye et al., 2023), o HRV - FA (Sturludóttir et al., 2023); y finalmente, los 

estudios que emplean las 3 señales de manera simultánea (Tan et al., 2014). 
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2.2.  Señales elegidas 
 

Hay una gran cantidad de estudios que emplean las señales SpO2, SpO2-FA y HRV, pero no es tan 

frecuente encontrar investigaciones basadas en el resto de combinaciones entre ellas. Como se puede 

observar en las tablas (Tablas 2-1, 2-2, 2-3, 2-4 y 2-5), una gran cantidad de trabajos se enfocan en el uso 

de la señal SpO2 de forma aislada o combinada con la señal FA (Álvarez et al., 2017; Barroso-García et 

al., 2017, 2020; Barroso-García, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-García, Gutiérrez-Tobal, 

Kheirandish-Gozal, et al., 2021; L. Chang et al., 2013; Gozal et al., 2018; Gutiérrez-Tobal et al., 2015; 

Hornero et al., 2017; Jiménez-García et al., 2020, 2022, 2024; Kirk et al., 2003; Mortazavi et al., 2024; 

Tsai et al., 2013; Vaquerizo-Villar et al., 2018b, 2021; Villa et al., 2015; Xu et al., 2019). Esto se debe a 

que el FA y la SpO2 son las señales que se encuentran más estrechamente ligadas a la descripción de los 

eventos de apnea e hipopnea, según los estándares de la AASM (Marcus et al., 2012). La desaturación de 

oxígeno en sangre y la reducción del flujo aéreo son dos de los hallazgos más importantes en las PSG de 

pacientes que padecen este trastorno y por lo tanto candidatos ideales para intentar detectar la presencia 

o no de la AOS (Olivi, 2013). Por otro lado, señales cardíacas como el HRV o el PRV son relativamente 

fáciles de obtener mediante dispositivos no invasivos, como el ECG o el pulsioxímetro respectivamente 

(Martín Montero, 2024). Estas señales pueden aportar información relevante para caracterizar la respuesta 

del sistema cardiovascular y del sistema nervioso frente a los eventos apneicos. En particular, diversos 

estudios han demostrado que la PRV, extraída a partir de la señal de fotopletismografía 

(photoplethismograpgy, PPG) registrada por pulsioxímetros, refleja patrones similares a los observados 

en la HRV (Martín Montero, 2024). Además, su análisis ha mostrado su utilidad como complemento a la 

oximetría convencional para mejorar la detección de la apnea del sueño en entornos domiciliarios y su 

fácil extracción a partir del ECG, una señal sencilla de obtener e interpretar en comparación con otras 

señales más complicadas de registrar y analizar cómo puede ser el EEG (D’Rozario et al., 2017). Por otro 

lado, el PRV también puede ser obtenido a partir del pulsioxímetro de forma rápida y simple (Gutiérrez-

Tobal et al., 2019). Aunque estas señales por sí solas pueden no ser suficiente para estimar el grado de 

AOS con una precisión suficiente, cabe la posibilidad de que permitan aportar más información a la hora 

de realizar la estimación, a cambio de aumentar ligeramente la carga computacional necesaria. Es por esto 

por lo que algunos autores han optado por investigar la viabilidad de emplear las señales HRV y PRV en 

sus investigaciones (García-Vicente et al., 2023; E. Gil et al., 2010; Martín-Montero et al., 2021, 2022, 

2023; Shouldice et al., 2004; Sturludóttir et al., 2023; Tan et al., 2014; Ye et al., 2023). 

Por lo tanto, debido a que existen varios estudios que han evaluado la capacidad diagnóstica de alguna 

de estas tres señales, pero apenas existen estudios que empleen estas señales de manera combinada o 

conjunta, resulta de interés centrar nuestra línea de investigación en este ámbito. Por ello, el enfoque 

principal de este trabajo consistirá en analizar los resultados obtenidos en la predicción de la AOS, 

empleando distintas combinaciones de señales, con el objetivo de valorar si supone una mejoría o no el 

hecho de añadir algunas señales a los estudios ya realizados o probar combinaciones de ellas que no hayan 

sido previamente empleadas por otros autores. 

 

 

2.3.  Metodología empleada 
 

Podemos observar la gran diversidad de metodologías empleadas, desde la comparativa directa como 

es el caso de Tan et al. (2014) hasta el uso de modelos como DL, ML u otro tipo de algoritmos. En los 

trabajos de Jiménez-García et al. (2020) o Martín Montero et al. (2023) entre otros, emplean alguna de 

las versiones del algoritmo AdaBoost (Adaptive Boosting). En todos los casos, AdaBoost se utiliza como 

clasificador supervisado, aprovechando su capacidad para combinar múltiples clasificadores débiles, 

como árboles de decisión simples, y generar un modelo robusto que mejore progresivamente su 

rendimiento con cada iteración (Barroso-García et al., 2020; Jiménez-García et al., 2020; Martín-Montero 

et al., 2023). Por otra parte, en otros estudios como los de Lázaro et al. (2014), Gil et al. (2009) y Garde 
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et al. (2014), se destaca el uso de otro algoritmo como es el LDA (Linear Discriminant Analysis) para 

generar una proyección lineal capaz de separar de la mejor manera las distintas clases involucradas. En 

estos casos se puede ver cómo este modelo ha sido empleado para separar solamente aquellos casos de 

pacientes con valores de IAH superior a 5 e/h de aquellos que tienen un valor inferior. Debemos tener en 

cuenta que los datos deben ser linealmente separables para poder realizar la clasificación (Garde et al., 

2014; E. Gil et al., 2009; Lazaro et al., 2014).  

También se han empleado algunas aproximaciones basadas en ML como es el caso de los textos de 

Gutiérrez-Tobal et al. (2015), Martín-Montero et al. (2022), Ye et al. (2023) o Barroso García et al. (2017) 

entre muchos otros. En ellos se opta por un enfoque clásico de ML que se divide en dos fases: extracción 

y selección de características, y reconocimiento de patrones (clasificación/regresión). Estos métodos de 

ML pueden ser: la Regresión Logística (Logistic Regression, LR), los Perceptrones Multicapa de poca 

profundidad (Multilayer Perceptron, MLP) o variantes de estos modelos (Barroso-García et al., 2017, 

2020; Barroso-García, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-García, Gutiérrez-Tobal, 

Kheirandish-Gozal, et al., 2021; L. Chang et al., 2013; Garde et al., 2019; Gutiérrez-Tobal et al., 2015; 

Hornero et al., 2017; Martín-Montero et al., 2021, 2022; Vaquerizo-Villar et al., 2018b, 2018a; Villa et 

al., 2015; Xu et al., 2019; Ye et al., 2023). Aunque este tipo de modelos, requieren de una menor cantidad 

de datos y son mucho más simples y económicos de implementar que modelos de DL más complejos, 

tienen una capacidad limitada a la hora de establecer relaciones profundas en imágenes o señales. Por 

ende, las LR y MLP son empleadas en sistemas donde se requiera una clasificación binaria sencilla, 

siempre y cuando se dispongan de datos tabulados; y estructuras más complejas como las CNN, en análisis 

espacial como pueden ser en este caso imágenes para el diagnóstico o señales biomédicas (Assi et al., 

2018; Gutiérrez‐Tobal et al., 2022; Kelleher, 2019).  

En el ámbito del DL pueden distinguirse dos enfoques principales en función de la arquitectura 

neuronal empleada. Por un lado, algunos estudios han optado por utilizar redes neuronales del tipo MLP 

profundas como modelo base, permitiendo así disponer de una red neuronal completamente conectada 

que permita emplear un menor número de capas que otro tipo de redes (Barroso-García et al., 2020; 

Barroso-García, Gutiérrez-Tobal, Kheirandish-Gozal, et al., 2021; Hornero et al., 2017; Martín-Montero 

et al., 2022; Vaquerizo-Villar et al., 2018b). Por otro lado, una parte significativa de la literatura que 

también aplica técnicas de DL ha preferido emplear arquitecturas basadas en redes neuronales 

convolucionales (CNN) (García-Vicente et al., 2023; Jiménez-García et al., 2022, 2024; Mortazavi et al., 

2024; Sturludóttir et al., 2023; Vaquerizo-Villar et al., 2021). En estos últimos trabajos, las CNN 

desarrolladas se han implementado tanto de forma aislada, como en combinación con otras arquitecturas 

o variantes derivadas. Entre estas combinaciones destacan enfoques como CNN + RNN, CNN-BiGRU, 

redes tipo ResNet, o el uso de CNN en dos dimensiones (2D CNN), con el objetivo de aprovechar mejor 

la estructura espacial y secuencial de los datos fisiológicos procesados (Jiménez-García et al., 2022, 2024; 

Mortazavi et al., 2024).  

La estructura de la CNN elegida es diferente en cada estudio, aunque generalmente la mayoría ha 

optado por emplear una estructura de red multicapa de entre 16 y 64 filtros. Es importante destacar que el 

número de capas no puede ser excesivamente grande para evitar que la red requiera mucho tiempo de 

entrenamiento o se produzca sobreajuste; pero por otro lado, tampoco puede ser excesivamente pequeño 

ya que la red podría no aprender las relaciones entre los datos y por lo tanto no ser capaz de realizar 

estimaciones adecuadamente o generar resultados erróneos (García-Vicente et al., 2023; Mortazavi et al., 

2024). La elección de los diferentes valores para los hiperparámetros tales como: el número de capas o 

bloques, el número de filtros por capa, las tasas de aprendizaje y dropout del modelo o el tamaño de cada 

uno de los filtros entre otros, dependerá del contexto del estudio y quedará a elección del propio autor; ya 

que dichos valores pueden cambiar en función de: la cantidad de datos disponibles, el objetivo del 

proyecto, los recursos computacionales disponibles y la complejidad del problema a abordar durante el 

trabajo.  
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Estos hiperparámetros mencionados previamente pueden suponer una gran diferencia en el desempeño 

del modelo. Sin embargo, no todos tienen el mismo impacto, ya que mientras que algunos pueden variar 

los resultados enormemente, otros simplemente permiten incrementar unas décimas la precisión del 

modelo. Pero casi todos los trabajos evaluados emplean la estructura de bloques convolucionales y capas 

para construir su modelo. Algunas de las capas empleadas para conformar los bloques convolucionales 

son: capas de convolución de 1 o 2 dimensiones, para poder extraer las relaciones entre los datos; capas 

de batch normalization, con las que poder normalizar los datos y así aumentar la estabilidad y rapidez del 

entrenamiento del modelo; capas de reducción de dimensiones como las capas max pooling, que permiten 

condensar la información contenida en los datos que se usan para alimentar el modelo pero sin afectar a 

las características; capas dropout, empleadas para desactivar ciertas neuronas aleatoriamente a lo largo de 

la red durante la fase de entrenamiento para prevenir el sobreajuste u overfitting; y finalmente capas 

flatenning y fully-connected situadas justo antes de la salida del modelo para generar la decisión final a 

partir de las relaciones establecidas a lo largo de toda la red (Kelleher, 2019; O’Shea & Nash, 2015). Si 

bien la composición y cantidad de estos mencionados bloques convolucionales depende de cada estudio, 

por lo general existe una estrategia predominante en la mayoría de los trabajos a la hora de estructurar 

cada bloque. Dicha estrategia consistente en la generación de los bloques a partir de una o dos capas de 

convolución, seguidas de capas de normalización y finalmente capas de reducción de dimensiones 

(García-Vicente et al., 2023; Jiménez-García et al., 2022, 2024; Mortazavi et al., 2024; Sturludóttir et al., 

2023; Vaquerizo-Villar et al., 2021).  

Los estudios de Jiménez-García et al. (2022) o Mortazavi et al. (2024) se enfocaron en maximizar la 

eficiencia durante la fase de entrenamiento, empleando algoritmos que permitan optimizar la etapa de 

descenso de gradiente, como es el caso del algoritmo “Adam” (Adaptative Moment Estimation) (Jiménez-

García et al., 2022; Mortazavi et al., 2024). Este algoritmo es una combinación de otros más sencillos, 

como lo son el algoritmo “Momentum” y el algoritmo “RMSprop” (Kingma & Ba, 2014). Todos ellos son 

ampliamente empleados para optimizar el descenso de gradiente, permitiendo un movimiento lo más 

reducido posible en el eje perpendicular al mínimo de la función; a la vez, que maximiza el movimiento 

en la dirección del mínimo (Kingma & Ba, 2014). El algoritmo de optimización “Adam”, permite un 

ajuste dinámico de ciertos hiperparámetros con los que modificar la convergencia y así situarse en una 

zona cercana al mínimo global de forma más rápida y eficiente; permitiendo así realizar los ciclos de 

entrenamiento de forma más rápida (Ruder, 2016).   

En cuanto a las funciones de activación empleadas, la función ReLU (o Rectified Linear Unit) es la 

que más frecuentemente es utilizada en los modelos basados en redes neuronales, debido a las ventajas 

que aporta con el descenso de gradiente. No obstante, esta función no es tan empleada en las capas finales 

de la red, en las cuales tal y como han elegido autores como García-Vicente et al. (2023), Jiménez García 

et al. (2022) o Mortazavi et al. (2024) entre otros, se emplean funciones como softmax en clasificación 

multiclase o funciones sigmoide en caso de ser una clasificación binaria (García-Vicente et al., 2023; 

Jiménez-García et al., 2022, 2024; Mortazavi et al., 2024; Sturludóttir et al., 2023; Vaquerizo-Villar et al., 

2021). 

Además, estudios como el de Mortazavi et al. (2024) o el de Vaquerizo-Villar et al. (2021) emplean 

otras técnicas de prevención del sobreajuste durante la etapa de entrenamiento como pueden ser el Early 

Stopping, o el Batch Shuffling; evitando así que la red se ciña en exceso a los datos proporcionados 

(Mortazavi et al., 2024; Vaquerizo-Villar et al., 2021). Otra forma ampliamente empleada a lo largo de los 

distintos estudios para evitar el sobreajuste, consiste en emplear las ya mencionadas capas de dropout; 

estas capas permiten la desactivación de cierto número de neuronas dentro de la red, evitando así que la 

red profundice demasiado en los datos durante las fases de entrenamiento (García-Vicente et al., 2023; 

Jiménez-García et al., 2022). 

Resulta de interés destacar las variantes de CNN empleadas y citadas previamente; por ejemplo, 

Mortazavi et al. (2024), emplea variantes de CNN o RNN a lo largo de su investigación. En este estudio, 

se comparó el rendimiento de dos redes diferentes, una basada en ResNet y otra en BiGRU (Mortazavi et 
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al., 2024). Las ResNet (Residual Networks), consisten en una tipo de CNN que permite crear redes 

neuronales profundas, evitando o minimizando la posibilidad de que el gradiente se dispare o se 

desvanezca (es decir, se haga demasiado grande o pequeño) durante la fase de entrenamiento. Para ello 

emplea el concepto de bloques residuales, estructuras que permiten crear caminos adicionales alternativos 

al camino principal denominados atajos. La red neuronal puede emplear dichos atajos para acceder 

directamente a capas mucho más profundas, permitiendo así la posibilidad de crear redes mucho más 

complejas sin tener problemas con los gradientes (He et al., 2015a). Por otro lado, también emplea la 

combinación CNN-BiGRU (Bidirectional Gated Recurrent Unit Network). Este modelo de redes 

denominadas BiGRU, son a su vez una variante de redes RNN que permite establecer relaciones entre 

datos teniendo en cuenta la serie temporal. Para ello, se emplean compuertas (o gates) para controlar el 

flujo de información, permitiendo así seleccionar la información que se transmite hacía delante 

(recordándola) y la que es descartada (olvidándola) (She & Jia, 2021). Esta combinación permite al autor 

emplear una CNN para la extracción de las características y la red BiGRU para establecer las relaciones 

entre dichas características. Podemos observar como el modelo combinado CNN + BiGRU superó al 

ResNet (Mortazavi et al., 2024). Otros autores como Jiménez García et al. (2024), también emplean una 

combinaciones de CNN+RNN y añade a mayores un modelo de IA explicativa (Explainable Artificial 

Intelligence, XAI) como es Grad-CAM (Gradient-weighted Class Activation Map) (Jiménez-García et 

al., 2024). Este tipo de técnicas permiten mostrar y visualizar fácilmente sobre los datos aquellas zonas o 

características en las que se ha centrado el algoritmo para realizar la predicción y dar un resultado. En el 

caso de imágenes para el diagnóstico o señales, frecuentemente se resalta mediante un mapa de color, que 

va variando de intensidad conforme el algoritmo le haya dado mayor o menor importancia (Selvaraju et 

al., 2017). 

Tras este estudio, queda clara la viabilidad de los modelos de DL basados en CNN o variantes del 

mismo en sistemas de detección de objetos o patrones en imágenes y señales. Es por ello, por lo que se 

ha optado por elegir las redes CNN como base inicial para el desarrollo de nuestro propio sistema. 

Además, la elección de este tipo de redes permitirá realizar una comparación más precisa y directa con 

los modelos desarrollados por otros autores que han optado por aportar nuevas investigaciones 

centrándose en un enfoque de DL. 

 

 

2.4.  Estudios de estimación de la severidad 
 

Es importante destacar que no todos los sistemas desarrollados han tratado de estimar los mismos 

parámetros, pueden apreciarse dos grandes ramas que han seguido los diferentes autores de las 

investigaciones. En primer lugar, tenemos aquellos que han tratado de determinar simplemente la 

existencia o no de la AOS, sin importar el grado de dicha patología dado por el IAH. En estos casos, se 

ha dado un valor umbral para el cual se decide si hay o no presencia de AOS en el paciente, en función 

del valor estimado por el propio modelo. Generalmente el valor umbral que ha sido elegido es de 5 e/h, 

aunque algunos autores como Gutiérrez-Tobal et al. (2015) o Chang L et al. (2013) han optado por un 

valor umbral de 3 e/h. El valor de dicho umbral es por tanto elección del autor que desarrolla el estudio  

(Álvarez et al., 2017; L. Chang et al., 2013; Dehkordi et al., 2016; Garde et al., 2014; E. Gil et al., 2009, 

2010; Gutiérrez-Tobal et al., 2015; Hornero et al., 2017; Kirk et al., 2003; Lazaro et al., 2014; Mortazavi 

et al., 2024; Shouldice et al., 2004; Sturludóttir et al., 2023; Tsai et al., 2013; Vaquerizo-Villar et al., 

2018b, 2018a; Villa et al., 2015).  

Por otro lado, los estudios restantes han tratado de estimar el valor del IAH, clasificando por lo tanto 

la AOS en leve, moderada o crítica, fijando los umbrales en 1, 5 y 10 e/h. Para ello han obtenido 3 

resultados, relacionados con cada uno de los grados de severidad de la AOS respectivamente (Barroso-

García et al., 2017, 2020; Barroso-García, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-García, Gutiérrez-

Tobal, Kheirandish-Gozal, et al., 2021; García-Vicente et al., 2023; Jiménez-García et al., 2020, 2022, 

2024; Martín-Montero et al., 2021, 2022, 2023; Tan et al., 2014; Vaquerizo-Villar et al., 2021; Xu et al., 

2019; Ye et al., 2023).   
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Podemos observar que pese a existir esta diferencia entre investigaciones, todos han optado por 

representar los resultados principales en términos de sensibilidad, especificidad y exactitud (Se Sp y Acc), 

independientemente de si se ha tratado de estimar el grado de severidad o solo la existencia o no de la 

AOS.  

En nuestro caso, y debido a que se considera que puede resultar de mayor utilidad, se tratará de seguir 

el segundo camino; desarrollando un sistema enfocado en la predicción del valor de la severidad de la 

AOS en función del valor de IAH en los pacientes. 

 

2.5.  Aportaciones realizadas  
 

Tras analizar los estudios previos en este campo de investigación, resulta fundamental evaluar aquellos 

aspectos en los que podamos aportar un enfoque novedoso. Para ello, trataremos de explorar nuevas 

metodologías, combinaciones con las señales o emplear otro tipo de datos que permitan ampliar el 

conocimiento en esta disciplina.  

En primer lugar, nuestro enfoque se basa en el uso de una CNN como modelo principal junto a una 

regresión lineal de Huber. Esto representa una innovación significativa en algunas de las señales, ya que, 

hasta la fecha, en el caso del FA los estudios previos se han centrado en la aplicación de otro tipo de 

metodologías como AdaBoost, LR o MLP. Por ende, nuestro proyecto aportará una nueva perspectiva en 

el estudio de las señales de FA empleando metodologías basadas en CNN. En el caso de la señal HRV, el 

concepto es prácticamente idéntico, si bien las señales HRV han sido previamente analizadas con 

enfoques como LR, MLP, LSBoost o QDA, aquellos estudios que han empleado CNN han optado por 

usar la señal ECG que es ligeramente distinta a la señal HRV. Dado que la señal ECG y la HRV son 

distintas, nuestro enfoque basado en CNN y HRV representa una contribución novedosa en el análisis de 

esta señal. Finalmente para el caso de la señal SpO2 sí que existen estudios empleando la misma 

metodología, por lo que nuestro enfoque aportará un nuevo ejemplo de estructura de CNN y por lo tanto 

se reforzarán los resultados con este tipo de señal. 

Por otro lado, en el caso de la combinación de las señales por parejas el hecho de realizar la 

combinación de FA con HRV, ya representa un avance claro nunca antes realizado en ningún estudio, ya 

que los únicos estudios referentes a este tema han empleado PRV o ECG en lugar de HRV. Es por ello, 

que emplear CNN con esas combinaciones de señales representa una nueva aportación en materia al 

campo de estudio. Por otro lado con el caso de SpO2 con HRV, se ha realizado un estudio pero no se ha 

empleado CNN como metodología, por lo que nuestro estudio supondría también un avance novedoso. 

Finalmente debemos destacar que en el caso del análisis conjunto de las 3 señales, ocurre algo similar, 

los estudios previos realizados emplean ECG en lugar de HRV, además de emplear como metodología la 

comparación directa. Debido a este elemento diferenciador, en nuestro caso, también estaríamos 

añadiendo una interpretación completamente diferente, al combinar las 3 señales sustituyendo el ECG por 

el HRV y emplear una CNN como sistema de análisis en lugar de la comparación directa.  

En conclusión, la comparación de las señales SpO2, FA y HRV tanto de manera individual como en 

combinaciones por parejas o en conjunto, representa un enfoque completamente innovador en la literatura 

científica. Al aplicar CNN para comparar directamente los resultados de analizar todas las señales y sus 

combinaciones aportamos un nuevo sistema con el que mejorar la detección y el diagnóstico de la AOS 

infantil.  

 

 



 

25 
 

 

AUTORES SEÑALES  BASE DE DATOS SUJETOS METODOLOGÍA  ESTIMACIÓN  RESULTADOS  

Vaquerizo Villar et 

al. (2018) 
SpO2 Chicago University 

981 entre 2 y 10 

años 

FCBF + SVM & 

MLP & LR 
IAH (Umbral 5 e/h) 

Acc: 83.7±4.9% (LR), 84.0±5.2%(SVM), 83.2±5.2% (MLP) 

Se:   72.6±4.7% (LR), 71.9±4.4%(SVM), 73.3±6.6% (MLP) 

Sp:    90.2±6.2% (LR), 91.1±7.2%(SVM), 89.0±6.9% (MLP) 

Kirk et al. (2003) SpO2 
Alberta Chlidren’s 

Hospital (Priv.) 

58 entre 4 y 18 

años 
SnoreSat IAH (Umbral 5 e/h) 

Acc: 64.0% 

Se:   67.0% 

Sp:   60.0% 

Tsai et al. (2013) SpO2 

Chang Gung 

Hospital Taiwan 

(Priv.) 

148 entre 3 y 12 

años  

Correlación 

Pearson y Análisis 

curvas ROC 

IAH (Umbral 1 e/h) 

Acc: 85.1% 

Se:   83.8% 

Sp:   86.5% 

Chang et al. (2013) SpO2 Base privada  
141 niños entre 

2 y 13 años 
Binary LR IAH (Umbral 3 e/h) 

Acc: 72.0% 

Se:   60.0% 

Sp:   86.0% 

Villa et al. (2015) SpO2 
University of Rome 

(Priv.) 

268 niños entre 

0.9 y 17.2 años 
Univariate LR IAH (Umbral 5 e/h) 

Acc: 69.4% 

Se (≤ 5 e/h | > 5 e/h):  96.9% | 36.0% 

Sp (≤ 5 e/h | > 5 e/h):  39.2% | 97.4% 

Jiménez García et 

al. (2020) 
SpO2 

University of 

Chicago 

974 niños entre 

0 y 13 años 

FCBF + 

AdaBoost.M2 

IAH (e/h) y grado 

de AOS 

Acc:  78.21% / 77.44% / 85.90% 

Se:    91.43% / 66.44% / 40.96% 

Sp:    22.67% / 84.02% / 98.05% 

Vaquerizo et al. 

(2021) 
SpO2 

CHAT + 

University of 

Chicago + Hospital 

of Burgos (Priv.) 

3196 niños entre 

0 y 18 años  
CNN  

IAH (e/h) y grado 

de AOS  

Acc: CHAT: 77.6% / 97.4% / 97.8% ||  

         UofC&B: 80.1% / 83.9% / 92.3% 

Se: CHAT: 71.2% / 83.7% / 83.9% ||  

         UofC&B: 90.8% / 76.0% / 79.5% 

Sp: CHAT: 81.8% / 100.0% / 99.3%||  

         UofC&B: 36.4% / 88.6% / 95.8% 
Tabla 2-1. Tabla resumen revisión bibliográfica con la señal SpO2 (primera parte) en color azul oscuro. 
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AUTORES SEÑALES  BASE DE DATOS SUJETOS METODOLOGÍA ESTIMACIÓN  RESULTADOS  

Xu et al. (2019) SpO2 

University of 

Beijing, China 

(Priv.) 

432 niños 

entre 2 y 15 

años 

MLP de 3 capas  
IAH (e/h) y grado 

de AOS 

Acc:   79.6% / 79.4% / 88.2% 

Se:     95.3% / 77.8% / 73.5% 

Sp:     19.1% / 80.5% / 92.7% 

Hornero et al. 

(2017) 
SpO2 

Base privada 

multicéntrica 

4191 niños 

entre 2 y 18 

años 

MLP 
IAH (e/h) y Grado 

de AOS 

Acc (1/5/10 e/h):  75.2% / 81.7% / 90.2% 

Se (1/5/10 e/h):    84.0% / 68.2% / 68.7% 

Sp (1/5/10 e/h):    53.2% / 87.2% / 94.1% 

Mortazavi et al. 

(2024) 
SpO2 CHAT 

844 niños 

entre 5 y 9.9 

años 

ResNet (CNN) & 

CNN-BiGru (CNN + 

RNN) 

IAH (Umbral de 1, 

5 y 10) 

Acc: ResNet:           72.80% / 91.67% / 95.90% ||  

        CNN-BiGRU: 86.53% / 91.54% / 96.17% 

Se:   ResNet:           96.80% / 77.13% / 73.25% ||  

        CNN-BiGRU: 96.27% / 77.79% / 74.58% 

Sp:   ResNet:           48.75% / 97.58% / 98.65% ||  

        CNN-BiGRU: 61.27% / 97.23% / 99.81% 

Jiménez García et 

al. (2020) 
FA 

University of 

Chicago 

974 niños 

entre 0 y 13 

años 

FCBF + 

AdaBoost.M2 

IAH (e/h) y grado 

de AOS 

Acc: 80.51% / 62.82% / 78.97% 

Se:   99.37% / 62.33% / 39.77% 

Sp:     1.33% / 63.11% / 89.58% 

Barroso García et 

al. (2021a) 
FA 

University of 

Chicago 

946 niños 

entre 0 y 13 

años 

FCBF + AdaBoost & 

Bayesian MLP 

IAH (e/h) y grado 

de AOS 

Acc: AdaBoost:  73.61% / 57.46% / 76.07% ||  

                MLP:  80.85% / 57.14% / 70.47% 

Se: AdaBoost:    79.89% / 74.43% / 41.06% ||  

              MLP:  100.00% / 77.25% / 50.00% 

Sp: AdaBoost:    47.24% / 47.18% / 89.58% ||  

              MLP:      0.00% / 45.05% / 75.96% 

Barroso García et 

al. (2021b) 
FA 

University of 

Chicago 

946 niños 

entre 0 y 13 

años 

FCBF + MLP 
IAH (e/h) y grado 

de AOS 

Acc: 78.14% / 61.20% / 77.35% 

Se:   94.07% / 78.66% / 55.85% 

Sp:   11.16% / 50.61% / 83.16% 

Barroso García et 

al. (2017) 
FA 

University of 

Chicago 

501 niños 

entre 3 y 9 

años 

FSLR + LR 
IAH (e/h) y grado 

de AOS 

Acc: 60.00% / 76.00% / 80.00% 

Se:   60.50% / 65.00% / 83.80% 

Sp:   58.60% / 80.60% / 79.00% 

Tabla 2-2. Tabla resumen revisión bibliográfica con la señal SpO2 en color azul oscuro (segunda parte) y la señal FA en color naranja. 
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AUTORES SEÑALES  BASE DE DATOS SUJETOS METODOLOGÍA ESTIMACIÓN  RESULTADOS  

Dehkordi et al. 

(2016) 
PPG 

British Columbia 

Children’s Hospital 

in Vancouver 

(Priv.) 

160 niños 

entre 4 y 13 

años 

LASSO 
IAH (Umbral de 5 

e/h) 

Acc:  71.00% 

Se:    76.00% 

Sp:    68.00% 

Shouldice et al 

(2004) 

HRV a partir 

del ECG 

Sleep Medicine 

Center of Kosair, 

Louisville 

25 niños entre 

7 y 18 años 

QD (Quadratic 

Discriminant) 

IAH (Umbral 12.5 

e/h) 

Acc:   84.0% 

Se:     85.7% 

Sp:     81.8% 

Gil et al. (2010) HRV 

Miguel Servet 

Hospital in 

Zaragoza 

21 niños entre 

2 y 6 años 

QDA (Quadratic 

Discriminant 

Analysis) 

IAH (Umbral 5 e/h) 

Acc:   80.00% 

Se:     87.50% 

Sp:     71.40% 

Lázaro et al. (2014) PPG Y ECG 

Miguel Servet 

Hospital in 

Zaragoza 

21 niños entre 

2 y 6 años 

LDA (Linear 

Discriminant 

Analysis) 

IAH (Umbral 18 

e/h) 

Acc:   86.70% 

Se:   100.00% 

Sp:     71.40% 

Martín Montero et 

al. (2021) 
HRV 

CHAT y Univ. of 

Chicago 

1738 niños 

entre 5 y 9.9 

años 

FCBF + MLP 
IAH (e/h) y grado 

de AOS 

Acc:  63.40% / 81.00% / 89.30% 

Se:    76.30% / 62.50% / 66.70% 

Sp:    38.30% / 84.20% / 91.60% 

Martín Montero et 

al. (2022) 
HRV 

CHAT y Univ. of 

Chicago 

1738 niños 

entre 5 y 9.9 

años 

MLP 
IAH (e/h) y grado 

de AOS 

Acc:  74.58% / 84.95% / 91.64% 

Se:    85.47% / 64.44% / 53.66% 

Sp:    35.38% / 93.78% / 97.67% 

Martín Montero et 

al. (2023) 
HRV CHAT 

1610 niños 

entre 5 y 9.9 

años 

LSBoost & AdaBoost 
IAH (e/h) y grado 

de AOS 

Acc:  80.07% / 63.18% / 84.12% 

Se:    90.76% / 66.67% / 40.00% 

Sp:    23.40% / 61.17% / 92.03% 

Gil et al. (2009) 

HRV (del 

ECG) y PRV 

a partir de la 

PPG 

Hospital de 

Zaragoza (Priv.) 

21 niños entre 

2.5 y 5.4 años 
LDA 

IAH (Umbral de 5 

e/h) 

Acc:  80.00% 

Se:    87.50% 

Sp:    71.40% 

Tabla 2-3. Tabla resumen revisión bibliográfica con la señal HRV (primera parte) y derivados en color morado. 
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AUTORES SEÑALES  BASE DE DATOS SUJETOS METODOLOGÍA ESTIMACIÓN  RESULTADOS  

García Vicente et 

al. (2023) 
ECG CHAT 

1610 niños 

entre 5 y 9.9 

años 

CNN 
IAH (e/h) y grado 

de AOS 

Acc:  75.92% / 86.96% / 91.97% 

Se:    84.19% / 76.67% / 53.66% 

Sp:    46.15% / 91.39% / 98.06% 

Jiménez García et 

al. (2020) 
SpO2 y FA 

University of 

Chicago 

974 niños 

entre 0 y 13 

años 

FCBF + 

AdaBoost.M2 

IAH (e/h) y grado 

de AOS 

Acc:  78.21% / 77.95% / 85.90% 

Se:    90.79% / 72.60% / 44.58% 

Sp:    25.33% / 81.15% / 97.07% 

Barroso García et 

al. (2020) 
SpO2 y FA 

University of 

Chicago 

946 niños 

entre 0 y 13 

años 

FCBF + Bayesian 

MLP 

IAH (e/h) y grado 

de AOS 

Acc:   81.1% / 60.9% / 80.6% 

Se:     99.3% / 80.9% / 63.8% 

Sp:       4.2% / 48.9% / 85.1% 

Jiménez García et 

al. (2024)  
SpO2 y FA 

CHAT + University 

of Chicago 

2512 niños 

entre 0 y 13 

años  

CNN + RNN y Grad-

CAM 

IAH (e/h) y grado 

de AOS 

Acc: CHAT: 87.3% / 93.5% / 93.5% ||  

         UofC:   84.1% / 84.6% / 90.5% 

Se: CHAT:   87.0% / 80.2% / 71.4% ||  

         UofC:   96.8% / 82.9% / 78.3% 

Sp: CHAT:   88.1% / 99.1% / 97.0% ||  

         UofC:   30.7% / 85.7% / 93.8% 

Jiménez García et 

al. (2022) 
SpO2 y FA 

CHAT + University 

of Chicago 

2512 niños 

entre 0 y 13 

años 

2D CNN 
IAH (e/h) y grado 

de AOS 

Acc: CHAT: 84.6% / 93.5% / 94.4% ||  

         UofC:   84.1% / 84.1% / 90.3% 

Se: CHAT:   82.4% / 80.2% / 71.4% ||  

         UofC:   95.2% / 82.2% / 78.3% 

Sp: CHAT:   92.5% / 99.1% / 98.1% ||  

          UofC:  37.3% / 85.3% / 93.5% 

Gutiérrez-Tobal et 

al. (2015) 
SpO2 y FA 

University Hospital 

of Burgos (Priv.) 

50 niños entre 

3 y 13 años 
FSLR y LR 

IAH (Umbral de 3 

e/h) 

Acc:  86.30% 

Se:    85.90% 

Sp:    87.40% 

Tabla 2-4. Tabla resumen revisión bibliográfica con la señal HRV (segunda parte) y derivados en color morado y las señales SpO2-FA en color verde. 
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AUTORES SEÑALES  BASE DE DATOS SUJETOS METODOLOGÍA  ESTIMACIÓN  RESULTADOS  

Garde et al. (2014) SpO2 y PRV 

British Columbia 

Children’s Hospital 

in Vancouver 

(Priv.) 

146 niños 

entre 4 y 13 

años 

AROC + LDA  
IAH (Umbral de 5 

e/h) 

Acc:  84.90% 

Se:    88.40% 

Sp:    83.60% 

Ye et al. (2023) SpO2 y HR 

University of 

Beijing, China 

(Priv.) 

3139 niños 

entre 2 y 18 

años 

XGBoost & LR 
IAH (e/h) y grado 

de AOS 

Acc: XGBoost:   90.45% / 85.67% / 89.81% ||  

                   LR:  79.30% / 83.92% / 87.44% 

Se:   XGBoost:   90.26% / 82.07% / 84.77% ||  

                  LR:   78.90% / 80.00% / 85.79% 

Sp:   XGBoost:  100.0% / 93.78% / 92.11%  ||  

                  LR:   100.0% / 92.75% / 89.10% 

Garde et al. (2019) SpO2 y HRV 

British Columbia 

Children’s Hospital 

in Vancouver 

(Priv.) 

235 niños 

entre 6 y 10 

años 

LR 
IAH (e/h) y grado 

de AOS 

Acc:  71.0% /   78.0% /     88.0% 

Se:    68.0% /   58.0% /     90.0% 

Sp:    86.0% /   89.0% /     87.0% 

Sturludóttir et al. 

(2023) 
FA y ECG 

Children’s Hospital 

in Reykjavik (Priv.) 

20 niños entre 

10 y 13 años 
CNN  

IAH (Umbral de 5 

e/h) 

Acc:  95.85% 

Se:    75.15% 

Sp:    96.20% 

Tan et al. (2014) 
SpO2, ECG y 

FA 

University of 

Chicago (Priv.) 

100 niños 

entre 2 y 16 

años 

Comparación directa 

PSG vs Resp. PG  

IAH (e/h) y grado 

de AOS 

Acc:  86.0% /   85.0% /     93.0% 

Se:    82.5% /   62.5% /     65.0% 

Sp:    90.0% / 100.0% / 100.00% 

Tabla 2-5. Tabla resumen revisión bibliográfica con las señales SpO2-HRV (y derivadas) en rojo, las señales FA-HRV (ECG) en azul claro y las señales SpO2-HRV(ECG)-FA en amarillo. 
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Capítulo 3: SEÑALES Y BASES DE 

DATOS 
 

Para la realización de este proyecto se ha requerido de una gran cantidad de datos y señales, con los 

que poder entrenar, validar y evaluar un modelo de IA enfocado en la detección de AOS pediátrica. 

Actualmente, existen varias opciones con las que poder obtener la información requerida como son la 

recogida de datos en centros especializados como hospitales universitarios o el uso de bases de datos 

públicas disponibles a través de internet. Para poder disponer de esa gran cantidad de datos requerida, se 

ha optado por recurrir a bases de datos públicas especializadas en AOS infantil como es el caso de CHAT 

(Childhood Adenotonsillectomy Trial) (Marcus et al., 2013). 

 

 

3.1.  Base de datos CHAT 
 

Con el propósito de analizar los efectos y la evolución de diversos enfoques terapéuticos en pacientes 

pediátricos con diagnóstico de AOS, en 2007 un grupo de expertos en medicina del sueño y 

otorrinolaringología iniciaron un estudio en múltiples centros de Estados Unidos (Marcus et al., 2013). 

Este ensayo clínico centrado en la investigación de la AOS infantil comparó en pacientes de entre 5 y 9 

años de edad la eficacia de la adenotonsilectomía temprana contra aquellos que en su lugar se sometían a 

la observación vigilante con atención de apoyo (Watchful Waiting with Supportive Care, WWSC). La 

principal diferencia entre estos métodos radicaba en el periodo de realización de la cirugía como 

tratamiento: mientras que algunos niños, se sometían a la cirugía de forma temprana, en otros casos 

(WWSC) se optó por someter al paciente a un monitoreo prolongado para comprobar si los síntomas se 

agravaban, mejoraban o remitían con la aplicación de otros tratamientos alternativos. El objetivo de este 

estudio por tanto, era comprobar si la realización del tratamiento quirúrgico de forma temprana era 

siempre necesario, o por el contrario, existía la posibilidad de no realizar dicho tratamiento y aplicar en 

su lugar otro tipo de métodos como son: mejores hábitos de vida, medicamentos o la pérdida de peso; 

permitiendo así que algunos pacientes pudieran experimentar mejoría o incluso una completa 

recuperación sin la necesidad de realizar la cirugía (Marcus et al., 2013). 

La aparición de este estudio nace de la creciente preocupación por las repercusiones neurocognitivas 

causadas por la presencia de AOS en niños y sus posibles limitaciones de cara a su futuro desarrollo. 

Siendo la cirugía de amígdalas el tratamiento más común en niños, se planteó la hipótesis de tomar 

alternativas menos invasivas en función del paciente para tratar este trastorno. Por ende, se eligieron 464 

niños de manera aleatoria de entre 5 y 9 años con presencia de AOS. Algunos de los sujetos fueron 

sometidos a la cirugía, mientras que otros solo fueron sometidos a un proceso de vigilancia sin cirugía. A 

ambos grupos se les realizó un control exhaustivo mediante pruebas cognitivas, tests y polisomnografías 

a lo largo de un periodo de 7 meses. Los resultados indicaban una clara mejoría tanto en síntomas como 

en calidad de vida de aquellos que fueron sometidos al procedimiento quirúrgico de forma temprana (79% 

de los pacientes mejoraron). No obstante, aquellos que no fueron sometidos al tratamiento sino a una 

vigilancia activa, mejoraron en un 46% de los casos gracias a los tratamientos alternativos. En conclusión, 

el estudio demostró que si bien la cirugía temprana ayuda a reducir los efectos y subsanar el trastorno en 

una gran mayoría de los casos, existen también un gran porcentaje de sujetos con AOS moderada o leve 

que pueden presentar mejoría o incluso recuperación sin recurrir a la opción quirúrgica. Los resultados 

fueron publicados en The New England Journal of Medicine en 2013 (Marcus et al., 2013). 

Del resultado de este estudio, no solo surgió información crucial sobre la AOS infantil, sino que 

también dio lugar a la creación de una base de datos con gran cantidad de información sobre este trastorno 

que ha sido frecuentemente empleada en investigaciones actuales tales como Jiménez García et al. (2022, 

2024), Martín-Montero et al. (2021, 2022, 2023), Mortazavi et al. (2024), Vaquerizo-Villar et al. (2021), 

García Vicente et al. (2023)  o Calderón et al. (2020) entre muchos otros.  
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 CHAT-Entrenamiento CHAT-Validación CHAT-Testeo 

Sujetos (n) 1006 (61.42%) 326 (19.90%) 306 (18.68%) 

Edad (años) 7 [6; 8] 7 [6; 8] 6.9 [6; 8] 

Niñas (n) 520 (51.7%) 168 (51.5%) 168 (54.9%) 

Niños (n) 471 (46.8%) 156 (47.9%) 134 (43.8%) 

IMC (kg/m2) 17.4 [15.6; 21.7] 17.1 [15.4; 21.8] 17.6 [15.7; 21.7] 

Sin AOS (n) 219 69 67 

AOS Leve (n) 496 168 148 

AOS Moderada (n) 160 44 49 

AOS Severa (n) 131 45 42 

Tabla 3-1. Tabla resumen de los datos contenidos en la base de datos CHAT (Jiménez-García, 2022). 

Como ya se ha mencionado previamente, esta base de datos comprende registros de 464 pacientes 

pediátricos, con edades comprendidas entre los 5 los 9 años de edad de los cuales 49.06% eran niños y 

50.94% eran niñas. Además, existe una diversidad étnica en su composición, siendo un 52.85% de la base 

de datos niños de ascendencia afroamericana, un 36.80% de origen caucásico y un 10.35% de otras etnias, 

permitiendo así cubrir cualquier posible sesgo de los resultados causado por el factor étnico. Aparte de 

los datos característicos de los pacientes, también se añaden datos sobre las evaluaciones neurocognitivas, 

parámetros polisomnográfícos, resultados de calidad de vida o incluso las estadísticas de los efectos 

adversos en ambos grupos. Entre estos efectos adversos registrados podemos observar algunos como: 

hemorragias en las amígdalas, dolor postoperatorio (solo presente en los sujetos sometidos a la cirugía), 

asma, catarro, deshidratación, hipersomnolencia o infecciones variadas entre otros (Marcus et al., 2013). 

Podemos observar el resumen de los datos de la base CHAT en la Tabla 3-1. 

La elección de esta base de datos para el desarrollo de nuestro proyecto viene incentivada por la gran 

cantidad de información contenida gracias al elevado número de sujetos participantes y la gran variedad 

de datos recogidos de todos ellos. Además al ser pública puede ser solicitada mediante una serie de 

formularios, lo que permite comparar los resultados obtenidos con otros estudios realizados sobre la 

misma base de una manera mucho más directa y equitativa. 

 

 

3.2.  Señales empleadas 
 

Para el caso de estudio que nos concierne, se han obtenido las señales de SpO2 , FA y HRV registradas 

durante las PSG realizadas a los pacientes. A continuación, realizaremos una breve descripción sobre cada 

una de las 3 señales, los procedimientos para poder obtenerlas y la interpretación de sus valores. 
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• Saturación de oxígeno en sangre (SpO2): 

 

La saturación de oxígeno en sangre es una métrica empleada para medir la cantidad de oxígeno 

transportado a los diferentes tejidos del cuerpo humano a través de moléculas de hemoglobina presentes 

en la sangre arterial. La hemoglobina es la encargada de combinarse con hasta 4 moléculas de oxígeno en 

los pulmones para repartirlas al resto del cuerpo. Además, también transporta dióxido de carbono desde 

los tejidos de regreso a los pulmones para su eliminación. Aunque existen tanto sangre arterial como 

venosa, la medición de la saturación de oxígeno se realiza preferentemente en la sangre arterial. Esto se 

debe a que la sangre venosa presenta niveles de oxígeno más estables y menos sensibles a cambios 

inmediatos, lo que limita su utilidad para evaluar la oxigenación en tiempo real. De hecho, en muchos 

casos, las variaciones en la saturación de oxígeno venosa son tan bajas que pueden resultar mínimas o 

incluso prácticamente nulas. En cambio, la sangre arterial refleja con mayor precisión y rapidez las 

variaciones en la oxigenación, ya que recibe directamente el oxígeno de los pulmones. Estos cambios 

pueden detectarse mediante la absorción de luz, principio en el que se basa la técnica de la pulsioximetría 

(Nitzan & Taitelbaum, 2008). 

Para medir la saturación de oxígeno en sangre disponemos de dos métodos principalmente: la 

pulsioximetría y el análisis gaseoso de la sangre arterial (Rauniyar et al., 2020). La pulsioximetría consiste 

en la colocación de un dispositivo conocido como pulsioxímetro en zonas como los dedos, el lóbulo de la 

oreja o la frente. Este aparato permite medir la frecuencia cardíaca y la SpO2 utilizando luz roja e infrarroja 

para detectar la cantidad de oxígeno unido a la hemoglobina en la sangre. Emplea dos longitudes de onda 

específicas: luz roja (660 nm) y luz infrarroja (940 nm). Parte de la luz es absorbida por la oxihemoglobina 

y otra parte por la desoxihemoglobina. Gracias a este fenómeno, y mediante un fotodetector ubicado en 

el extremo opuesto del emisor, es posible registrar las diferencias en la intensidad de la señal continua y 

alterna en ambas longitudes de onda, lo que permite calcular los valores deseados (Mildenhall, 2008). 

Podemos ver un fragmento de la señal SpO2 en la Figura 3-1. 

 

Los factores de SpO2 dentro de la normalidad son del: 95-100%, valores inferiores a estos pueden 

suponer una indicación de que existe algún tipo de anomalía o problema en nuestro cuerpo. Concretamente 

valores de 90-94% supone hipoxemia leve, 85-89% hipoxemia moderada y valores inferiores al 85% 

hipoxemia grave, lo que supone un problema de salud muy grave (Jubran, 2015). Debemos tener en cuenta 

que existen factores que pueden afectar al SpO2 como pueden ser: la altitud, la presencia de enfermedades 

respiratorias como la neumonía, la AOS o el COVID-19, problemas cardiovasculares como anemia o 

insuficiencia cardíaca o la calidad del aire presente en el ambiente entre otros (Álvarez et al., 2010). 

 
Figura 3-1. Ejemplo de fragmento de señal SpO2 filtrada (Generada con Matlab). 

 

 

• Flujo Aéreo (FA): 

 

El flujo aéreo, o también conocido como flujo de respiración, consiste en una métrica con la que poder 

medir la cantidad de aire que entra y sale de los pulmones. La respiración permite un intercambio de gases 

con los que poder obtener energía para todos los tejidos del cuerpo a partir de moléculas de oxígeno y 

deshacerse de los componentes residuales como son el dióxido de carbono. Ambas métricas están 

estrechamente ligadas, ya que si el FA se interrumpe o reduce afecta al SpO2 debido a que la hemoglobina 

no puede transportar oxígeno a lo largo del cuerpo si no entra suficiente del exterior (Figura 3-2). 
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Figura 3-2. Ejemplo de fragmento de señal FA filtrada (Generada con Matlab). 

 

El FA puede medirse de distintas maneras: mediante el volumen del aire inhalado y exhalado, a través 

de la velocidad del flujo de aire en las vías respiratorias o evaluando la capacidad pulmonar del sujeto. La 

neumotacografía es una de las técnicas de medición del flujo aéreo existentes, no obstante al ser tan 

invasiva se opta por emplear alternativas como la estimación directa a partir de sensores de presión o 

temperatura o la pletismografía pulmonar, que permite medir el volumen de aire dentro de los pulmones 

gracias a una cabina que mide los cambios de presión del tórax (Grimaldi et al., 2011; Miquel-gomara 

Perelló et al., 2002; Pellegrino et al., 2005). Para el caso que nos concierne, nos centraremos en los 

métodos de medida empleados en la PSG: las cánulas nasales o termistores y de manera indirecta las 

bandas torácicas y abdominales. Las cánulas nasales consisten en una serie de tubos que permiten 

monitorear los cambios de presión en el flujo que entra o sale del cuerpo. Por otro lado, los termistores 

son pequeños dispositivos que permiten medir la cantidad de aire que se inhala o exhala gracias a la 

diferencia de temperatura entre estos dos (Wegener, 2017). Las bandas abdominales o torácicas no 

representan una medida directa del flujo aéreo, pero permiten obtener parámetros relacionados al aportar 

información sobre cuánto se expande el tórax al inspirar e espirar.  

 

En circunstancias normales el valor del FA debe tener una amplitud aproximadamente regular sin 

caídas muy notables, en el caso de que se pierda esa continuidad por un lapso de tiempo prolongado, se 

puede considerar como un evento anómalo. Concretamente, si la reducción del flujo es de al menos el 

90% durante 10 segundos estamos ante un caso de apnea y si la reducción es de al menos el 30% un 

evento de hipopnea (Caples et al., 2021).  

 

• Heart Rate Variability (HRV): 

 

La variabilidad del ritmo cardíaco consiste en una métrica que permite evaluar las fluctuaciones en los 

intervalos consecutivos de los latidos del corazón, es decir, la variación en la distancia entre picos R-R en 

un ECG. Debemos tener en cuenta que una señal de ECG está compuesta por repeticiones de un patrón 

concreto, determinado como “complejo PQRST”. Este complejo representa la actividad eléctrica del 

corazón y está compuesto de 5 elementos que se pueden ver en la Figura 3-3 (Wagner & Strauss, 2014) : 

- Intervalo PR: etapa comprendida entre la onda P y el complejo QRS. En este lapso de tiempo, se 

mide el retardo entre el inicio de la activación del miocardio ventricular y auricular hasta la 

respuesta del miocardio. 

- Intervalo QRS: etapa comprendida entre el inicio y fin del complejo QRS. En este periodo, se 

mide el tiempo desde que se inicia la activación ventricular hasta su final. Dado que la activación 

de la pared ventricular izquierda y el tabique intraventricular requiere de un mayor tiempo de 

activación que el lado derecho, se requiere de una fuerza de compensación adecuada con la que 

poder equilibrar esto, dicha fuerza queda representada en el complejo QRS.  

- Segmento ST: intervalo que mide el tiempo entre la activación ventricular y su posterior 

recuperación.  

- Intervalo QT: etapa que mide el tiempo desde la activación ventricular hasta el final de su 

recuperación. 
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Figura 3-3. Segmento ECG con complejo PQRST. (Autoría propia, inspirado de Wagner & Strauss, 2014). 

El HRV puede ser obtenido a partir del propio ECG, simplemente debemos analizar las variaciones o 

fluctuaciones de los intervalos RR entre latidos consecutivos. Para ello, debemos obtener un ECG e 

identificar los picos R del complejo QRS; una vez localizados, se debe medir la variabilidad respecto al 

siguiente punto y al anterior y repetir a lo largo de todo el ECG; finalmente, se analiza dicha variabilidad 

y se obtiene una medida del HRV (Malik et al., 1996). No obstante, existen otras maneras de obtener una 

medida similar al HRV sin tener que recurrir al ECG, empleando herramientas como el pulsioxímetro 

podemos medir el valor del Pulse Rate Variability (PRV) y emplearlo como una estimación del HRV para 

extraer la información deseada.  

Los valores normales entre intervalo RR para un ser humano de entre 20 y 40 años sin ninguna 

patología cardíaca y en reposo oscilan los 600-1000 milisegundos. No obstante, existen factores naturales 

que modifican estos valores como pueden ser la edad (el valor va decreciendo conforme somos más 

mayores), la condición física, el nivel de estrés (a mayor cantidad de estrés más se reduce el valor) o la 

cantidad de sueño acumulada por el sujeto (Zahn et al., 2016). Durante el sueño, el HRV tiende a aumentar 

en personas sanas en comparación con los niveles registrados durante el día cuando el sujeto está 

despierto. Sin embargo, en individuos con AOS ocurre lo contrario, el HRV se reduce de forma 

significativa debido a las alteraciones respiratorias ocasionadas por el trastorno (Qin et al., 2021). 

Podemos ver un ejemplo en la Figura 3-4. 

 

 
Figura 3-4. Ejemplo de fragmento de señal HRV filtrada (Generada con Matlab). 
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Capítulo 4: METODOLOGÍA 
 

En este capítulo, se detallaremos la metodología empleada a lo largo del desarrollo del proyecto para 

su correcta ejecución. En cada punto, explicaremos la forma de implementar nuestro modelo por pasos. 

En primer lugar, se explicará el proceso de preprocesado realizado seguido del segmentado de las señales. 

A continuación, se explorará la rede CNN desarrollada, describiendo su funcionamiento, estructura, 

optimización y aplicaciones en este campo. Posteriormente, se presentará la fase de optimización y 

pruebas realizadas. Finalmente, se comentará el proceso de obtención de resultados y la extracción de 

conclusiones de todo el trabajo realizado. 

 

4.1.  Preprocesado  
 

Cualquier señal existente en un medio real se ve afectada por efectos no deseados como puede ser: el 

ruido, las interferencias, información redundante no deseada o artefactos aleatorios dañinos para la parte 

importante de la señal (Jaime & Elizondo, 2002; Najarian & Splinter, 2012). Por ello, en todo aquel campo 

que implique trabajar con señales, desde la bioingeniería hasta las telecomunicaciones, se requiere la 

aplicación de una serie de pasos de limpieza y preprocesado con los que poder eliminar la mayor cantidad 

de elementos no deseados posible, y así poder trabajar más fácil y eficientemente con toda la información 

útil (Akdemir Akar et al., 2013). Estas técnicas de limpieza y preprocesado, no solo aumentan y mejoran 

la calidad de la señal, sino que también eliminan componentes no deseadas que pueden suponer un mayor 

gasto computacional y temporal si estuvieran presentes a la hora de ser procesadas. Para ello, existen 

diversas técnicas como pueden ser: el filtrado, la interpolación y el remuestreo, el enventanado, la 

normalización y el escalado o la transformación de dominio entre otras (Najarian & Splinter, 2012).  

Para poder trabajar adecuadamente con las señales se deben tener en cuenta una serie de puntos. En 

primer lugar, dado que se ha realizado un remuestreo, se aplicó un filtro antialiasing con el fin de eliminar 

o atenuar las componentes de alta frecuencia que podrían inducir aliasing durante el proceso de 

remuestreo. Es importante tener en cuenta que estos filtros no eliminan completamente las componentes 

no deseadas sino que solo las atenúan en gran medida; además, la frecuencia de corte elegida para el filtro 

tiene una cierta tolerancia que impide que sea un corte exacto a la frecuencia deseada (Najarian & Splinter, 

2012; Semeria, 2015). Estos fenómenos deben ser tenidos en cuenta a la hora de preprocesar 

correctamente una señal. Una vez las señales están limpias, nos encontramos con que cada una de ellas 

tiene una frecuencia de muestreo distinta por lo que trabajar con todas de forma simultánea en un modelo 

puede ser más complicado. Para solucionar esto, se ha realizado un remuestreo de todas las señales a una 

frecuencia de 4 Hz, permitiendo así disponer de un dominio común y poder trabajar mejor con el modelo. 

Teniendo la señal limpia y remuestreada, el siguiente paso consiste en realizar la normalización y el 

escalado. Esta etapa es fundamental en casos donde se trabaja con más de una señal distinta, ya que cada 

una puede estar en un rango completamente distinto al del resto. Esta etapa, permite que todas las señales 

empleadas se encuentren dentro de un mismo rango absoluto, facilitando así el procesamiento y 

manipulación de las mismas. Para poder realizar dicha normalización y escalado, emplearemos métricas 

como la media (μ) y la desviación estándar (σ) permitiendo ajustar la señal a una distribución con μ=0 y  

σ=1 mediante la normalización Z-score. La normalización Z-score es ampliamente empleada para 

normalizar señales gracias a su sencillez y a la utilidad que supone eliminar sesgos debido a la diferencia 

entre los rangos de valores de las señales (Al-Faiz et al., 2019). Para aplicar esta transformación basta con 

emplear la Ecuación 4.1, donde X es el valor original de la señal, y μ, σ se obtienen a partir de los datos 

de entrenamiento:  

𝑿′ =  
𝑿 −  𝛍

𝛔
                                                                         (𝟒. 𝟏) 
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4.2.  Segmentación de señales 
 

Una vez las señales de la base de datos CHAT han sido correctamente preprocesadas, disponemos de 

1638 registros nocturnos de sujetos pediátricos diagnosticados con distintos grados de AOS. Estos 

registros contienen: las señales SpO2, FA y HRV, entre otras, y las marcas de los eventos de 

apnea/hipopnea etiquetadas por expertos. Los registros nocturnos duran en torno a 8-10 horas y como 

fueron remuestreados a 4 Hz, se ha optado por segmentar cada uno de los registros en fragmentos de 20 

minutos de duración, eliminando la parte residual del registro en caso de no llegar a formar un fragmento 

completo. Cada fragmento contendrá por lo tanto las 3 señales mencionadas y las marcas que localizan 

los eventos de apnea/hipopnea en esos periodos de 20 min. El resultado de realizar el segmentado son 

47.951 nuevos registros de 20 min de duración, separados entre entrenamiento (train), validación (val) y 

testeo (test) siguiendo la regla del 60-20-20 (60% de los datos a train, 20% a val y 20% a test).  

Todos estos fragmentos extraídos de los registros originales se han empleado como dataset para el 

modelo de DL a desarrollar. Cada ejemplo del dataset tendrá 2 componentes:  

- Una primera matriz de 4.800 x 3, compuesta por el número total de muestras del fragmento (20 

min * 60 s/min * 4 muestras/s = 4.800 muestras) y las 3 señales registradas (SpO2, FA y HRV) de 

forma que se pueda extraer los datos de la señal deseada simplemente eligiendo una de las 3 

componentes de la matriz. 

- Una segunda variable escalar que representa la cantidad de eventos de apnea/hipopnea presentes 

en ese fragmento etiquetados por el experto médico. Esta variable es un número entero. 

En las Figuras 4-1, 4-2 y 4-3 podemos observar el resultado de segmentar los registros para cada una 

de las 3 señales. En primer lugar el primer registro de la señal SpO2 frente al primer fragmento de ese 

propio registro. Además, se han añadido una serie de líneas verticales punteadas que indican cada uno de 

los fragmentos. Como podemos apreciar, hay una serie de muestras (en especial al comienzo) donde la 

señal de SpO2 se reduce a amplitud 0, esto se debe a fallos en el sensor o falsos contactos puntuales con 

el paciente al colocarle los sensores. No obstante, se puede observar cómo esos puntos no han sido 

etiquetados por los expertos ya que no son considerados eventos de apnea/hipopnea. 

 

 

Figura 4-1. Señal SpO2 completa (superior) vs señal SpO2 fragmentada (inferior) (Autoría propia, elaborada con Matlab). 
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Figura 4-2. Señal FA completa (superior) vs señal FA fragmentada (inferior) (Autoría propia, elaborada con Matlab). 

 
Figura 4-3. Señal HRV completa (superior) vs señal HRV fragmentada (inferior) (Autoría propia, elaborada con Matlab). 

 

En las marcas de las señales registradas se pueden apreciar los intervalos correspondientes a los 

eventos de apnea/hipopnea, que se extienden durante varios segundos. Por ende, debemos contabilizar 

cada intervalo como un único evento, es decir, fusionar todas esas marcas como si fuesen una única marca. 

Esto permitirá a la red aprender correctamente, ya que podrá comparar las estimaciones realizadas con el 

número de eventos presentes en cada segmento (Figura 4-4). 
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Figura 4-4. Esquema del proceso de umbralización de los eventos (Autoría propia). 

 

 

4.3.  Generador de datos 
 

Lo primero que debemos tener en cuenta a la hora de desarrollar cualquier algoritmo de IA es la 

estructura que se dará a los datos de entrada. Generalmente, se emplea una división de todos los datos 

disponibles en distintos grupos: un primer grupo de entrenamiento (train), un grupo de validación (val) y 

un grupo de testeo/evaluación (test). Para realizar esta división existen distintas estrategias que se pueden 

seguir. Aunque la metodología puede variar según el caso, la técnica más empleada es 60-20-20, haciendo 

referencia al porcentaje de datos que se introducen en train, val y test respectivamente (Aggarwal, 2018a; 

Kelleher, 2019).  

• Datos de entrenamiento (train): el grupo de datos de entrenamiento se emplea para 

desarrollar el modelo y optimizar los pesos o parámetros y que así aprenda las características 

y patrones presentes en los datos.  

• Datos de validación (val): el grupo de validación se emplea para evaluar el rendimiento del 

modelo durante el entrenamiento pero sin ajustar de forma directa sus parámetros. Su función 

principal es controlar que no haya una gran diferencia entre los resultados obtenidos durante 

el entrenamiento y la validación, para evitar así posibles sobreajustes con los datos.  

• Datos de testeo (test): el grupo de test, se emplea para realizar una última verificación del 

modelo después de entrenarlo y validarlo, empleando datos que nunca haya visto para observar 

si el comportamiento es el deseado y el modelo consigue generalizar y aprender de la forma 

adecuada. 

Con la información preparada, disponemos de un gran volumen de señales con los que poder entrenar 

el modelo. Sin embargo, emplear simultáneamente todas las muestras disponibles podría suponer una 

cantidad de datos excesiva para los recursos computacionales del equipo de procesamiento desbordando 

su memoria y comprometiendo el rendimiento y la funcionalidad del algoritmo. Para evitar este problema, 

es necesario implementar un mecanismo que permita gestionar la carga de datos de manera eficiente, 

introduciendo los datos en fracciones de manera controlada y escalonada. 

Para poder introducir los datos en el sistema y no saturarlo, se ha establecido una división en los datos 

en función del valor de batch_size, permitiendo así que los datos no se introduzcan en el modelo todos a 

la vez. Para poder ir introduciendo estos lotes, una de las soluciones ampliamente empleada son los 

generadores de datos. Estos sistemas permiten ir alimentando a los modelos con datos de forma continua 

y progresiva, de forma que el modelo disponga a la larga de todos los datos posibles pero sin saturarse al 

tener que almacenar y procesar toda la información a la vez. Este generador extrae los datos en lotes del 

tamaño que fije el hiperparámetro batch_size y los introduce en el modelo secuencialmente durante la 

fase de entrenamiento. Una vez el modelo termine de procesar ese lote de datos, el generador le introducirá 

más lotes de forma continua hasta terminar con todos los datos disponibles. Cuando se hayan terminado 

todos los lotes al final de la época, se reorganizan aleatoriamente los datos y se volverán a introducir por 

lotes a lo largo de la siguiente época. El ciclo se repetirá hasta llegar al número máximo del número de 

épocas o el procedimiento de Early Stopping pare el entrenamiento. En la Figura 4-5 podemos ver un 

esquema de su funcionamiento. 
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Figura 4-5. Esquema de funcionamiento del generador de datos (Autoría propia). 

Debemos tener en cuenta que cuando se emplea más de una señal, es recomendable normalizar dichas 

señales mediante su media y desviación estándar como se ha visto en la parte de preprocesado. Es decir, 

en nuestro caso al emplear las señales de 1 en 1, no las hemos transformado; pero, al emplear 2 o incluso 

las 3, debemos de normalizarlas, ya que si no la diferencia entre las escalas de cada una de las señales 

puede introducir un sesgo considerable dentro del sistema. Cabe destacar que si se normalizan las señales 

para entrenar el modelo, se debe de normalizar de la misma manera cuando se emplee el modelo para 

realizar las estimaciones. 

 

 

4.4.  Modelo desarrollado 
 

Las redes neuronales constituyen un pilar básico de los sistemas DL, esto se debe principalmente a su 

eficiencia y utilidad en el reconocimiento e identificación de características en distintos tipos de datos. 

Existen una gran cantidad de tipos de redes diferentes, lo que permite disponer de un amplio abanico de 

posibilidades a la hora de realizar una elección, dependiendo de la tarea que se pretenda desempeñar. En 

este trabajo nos hemos centrado en las redes CNN, ya que son especialmente útiles a la hora de reconocer 

características en datos espaciales como imágenes o señales lo que las hace ideales para la búsqueda de 

patrones, anomalías o artefactos. 

 

4.4.1. Estructura básica 
 

Las CNN son modelos de DL especializados en la extracción de características a partir de datos con 

estructura espacial, como imágenes o señales. Como ya se ha explicado previamente, este tipo de modelos 

tratan de recrear de la manera más precisa posible el comportamiento del cerebro humano a la hora de 

analizar patrones, mediante la agrupación de neuronas artificiales en estructuras concretas. Originalmente, 

estas redes fueron diseñadas para el reconocimiento de dígitos escritos de manera manual. La idea 

principal de dicho proyecto consistía en desarrollar una red en la cual las neuronas de las capas iniciales 

pudieran extraer patrones visuales sencillos, que pudieran ser combinados en capas más profundas para 



Capítulo 4                                                                                                                                  Metodología 

42 
 

 

permitir crear conceptos más complejos con los que poder generar una respuesta final (Aggarwal, 2018a; 

Kelleher, 2019; Szeliski, 2011; Voulodimos et al., 2018b). Este principio sigue vigente en la actualidad: 

las redes extraen características básicas de los datos en las primeras capas, como puede ser el color de los 

píxeles en una imagen; combinan dichas características en representaciones más complejas, como puede 

ser la creación de texturas o contornos; y finalmente, elaboran una respuesta final como puede ser el 

reconocimiento de objetos en las imágenes introducidos como datos de entrada a la red (O’Shea & Nash, 

2015). 

Para lograr esto las CNN emplean un sistema de bloques secuenciales, que a su vez, están compuestos 

por una serie de capas encargadas de realizar las funciones de extracción de características, adaptación de 

las dimensiones o normalización de resultados entre otras funciones (He et al., 2015b; Kelleher, 2019). 

La realización de estos pasos sobre los datos de entrada depende de la elección, colocación y orden de las 

distintas capas que conforman los bloques de la red. Generalmente, los bloques de estas CNN son 

denominados como “Conv Blocks”, ya que suelen estar compuestos por un número variable de capas de 

convolución, capas de activación y capas de normalización, aunque, también pueden aplicarse bloques de 

reducción de dimensionalidad. Tras estos bloques se suelen añadir bloques densos (también conocidos 

como fully connected) empleados para terminar de establecer las dimensiones red (O’Shea & Nash, 2015). 

No obstante, la elección de la composición de los bloques depende en gran medida del objetivo de la CNN 

y la estructura de los datos que se someten al análisis. En la Figura 4-6 se puede observar un esquema de 

una red neuronal sencilla a modo ilustrativo. 

 

Figura 4-6. Esquema de una red neuronal multicapa con capas etiquetadas (Adaptada de Kelleher, 2019). 

 

Para lograr crear conceptos elaborados, dentro de cada capa convolucional se encuentran unas 

estructuras encargadas de realizar una serie de convoluciones sobre los datos. Estas estructuras se llaman 

filtros o kernels, y consisten en pequeñas matrices compuestas por una serie de pesos que son 

multiplicados por los datos de entrada, generando una nueva matriz denominada feature map, que 

representa la información extraída de los datos originales. Basándonos en la revisión del estado de la 

técnica previamente realizada, se ha desarrollado un modelo CNN basado en 5 bloques idénticos 

conformados por una serie de capas. La estructura de dichos bloques está conformada por las siguientes 

capas en este orden: 

• Capa convolucional: en primer lugar, una capa de convolución 1D con 64 filtros de tamaño 

6 y una inicialización de coeficientes del filtro “he_normal”. Este método asigna valores 

aleatorios a los pesos de las capas siguiendo una distribución gaussiana con media 0 y 

desviación estándar 1 basándose en la cantidad de neuronas de la capa (He et al., 2015b). La 

tarea de cada capa consiste generar los mapas de características que se procesaran en las 

siguientes capas de forma que se puedan ir estableciendo relaciones entre las características. 
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• Capa batch normalization: esta capa trata de normalizar las activaciones de la capa anterior 

con cada lote (batch) durante el entrenamiento calculando la media y reescalando los valores. 

Se ha añadido una capa batch normalization después de cada capa convolucional. 

• Capa de activación: en esta capa se aplica la función de activación ReLU para todas las 

neuronas (Ecuación 4.2). La elección de esta función frente a otras alternativas como ELU o 

Leaky ReLU se debe a su simplicidad computacional, su buen rendimiento empírico y su 

efectividad a la hora de evitar el problema del gradiente desvanecido en valores positivos. 

Aunque funciones como ELU o Leaky ReLU pueden resolver limitaciones específicas de ReLU 

como el caso de neuronas “muertas”, ReLU sigue siendo la opción más común debido a que 

permite un entrenamiento más rápido y ha demostrado funcionar correctamente en una amplia 

gama de tareas (Clevert et al., 2015; Glorot et al., 2011; Maas et al., 2013).   

 

𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙)                                                              (𝟒. 𝟐) 

• Capa MaxPooling1D: finalmente, aquí se reduce la dimensionalidad de los datos para 

eliminar información redundante reteniendo la activación máxima entre muestras adyacentes, 

en nuestro caso aplicaremos una ventana de tamaño K = 2. 

Esta estructura se repite tantas veces como quede fijado en el hiperparámetro num_blocks de forma 

secuencial hasta llegar a un último conjunto de capas finales que se encargaran de tomar la decisión final 

(Kelleher, 2019).  Dichas capas son: 

• Capa Flatten: convierte el array multidimensional con los mapas de características generados 

en las capas convolucionales en un vector unidimensional apto para analizar los patrones 

extraídos en las capas finales del modelo. 

• Capa fully connected: en esta capa hemos definido una única neurona a la que se conectan 

todas las de la capa anterior, hemos fijado la activación a tipo “linear” y de nuevo como en las 

capas convolucionales la inicialización es “he-normal”. 

Por lo que el resultado de la composición inicial del modelo sería (Figura 4-7):  

 
Figura 4-7. Esquema genérico del modelo CNN inicial (Autoría propia). 
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Durante el proceso de entrenamiento del modelo, los parámetros de las capas (convolucionales, fully 

connected, etc.) deben ajustarse. Estos parámetros incluyen los pesos y el sesgo, parámetros presentes en 

cada neurona, pudiendo coincidir los valores de estos entre ellas. Para poder ajustar estos valores 

adecuadamente, en primer lugar se realiza el proceso de inicialización, proceso en el cual se inicializa los 

valores de sesgo a 0 y los valores de los pesos a números aleatorios (Kelleher, 2019; O’Shea & Nash, 

2015). Con los parámetros ya inicializados, se introducen los datos en la red neuronal, se analizan y 

procesan y se genera una salida. Esta etapa se denomina como feedforward o forward propagation y 

consiste en el proceso de introducir datos por la entrada hasta generar una respuesta (O’Shea & Nash, 

2015).  

Una vez el modelo genera una predicción, se evalúa la diferencia entre el valor estimado y el valor real 

mediante una función de pérdida. Esta evaluación permite determinar si el error supera un umbral 

aceptable y, en caso afirmativo, se inicia una nueva etapa de ajuste del modelo para mejorar su precisión. 

En esta segunda etapa, se realiza el mismo camino que en la etapa anterior pero en sentido opuesto: se 

inicia en las capas finales y se van realizando las derivadas hacía atrás en cada neurona hasta llegar a las 

capas iniciales con el objetivo de tratar de minimizar los gradientes con respecto a los parámetros de la 

red. Esta etapa es conocida como back propagation y su objetivo principal consiste en realizar un proceso 

de optimización con el objetivo principal de minimizar una función de error generada a partir de los datos 

reales y las estimaciones del modelo. Para ello, la fase de optimización tratará de indicar los pesos a ajustar 

y la dirección en la que hacerlo acorde a una función matemática que establece cuanto debe afectar el 

nuevo valor calculado. Esta función se conoce como función de aprendizaje y va determinado por la tasa 

de aprendizaje (learning rate), elemento que fija el nivel de atención que se debe dar a la corrección de 

los parámetros de una neurona frente a los anteriores. Actualmente, existen algoritmos capaces de ajustar 

dinámicamente la tasa de aprendizaje para que la red funcione de una mejor manera, adaptándose a cada 

momento del entrenamiento. En la Figura 4-8 se representa un esquema de este proceso. 

El objetivo de realizar estos pasos es poder alcanzar el mínimo global de la función de error a 

optimizar. Para ello, al calcular las derivadas se procura determinar la dirección en la que debemos ajustar 

los parámetros de la red para reducir el valor de la función de perdidas. Es decir, intentar que los resultados 

de nuestro modelo se asemejen cada vez más a los resultados reales esperados. 

 

 

Figura 4-8. Esquema de una etapa de entrenamiento de un modelo, indicando las funciones feedforward o forward 

propagation, loss function y back propagation (Autoría propia). 
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El modelo debe ser compilado antes de poder emplearse en el sistema. A la hora de realizar la 

compilación es necesario añadir una serie de parámetros con los que poder configurar adecuadamente 

dicho proceso. En primer lugar, debemos fijar el algoritmo de optimización; en vez de emplear el 

predeterminado hemos optado por seleccionar el algoritmo “Adam”. Este algoritmo, es ampliamente 

utilizado dada su capacidad de poder ajustar de manera adaptativa la tasa de aprendizaje inicial 

proporcionada. Por otro lado, también debemos de fijar una función de pérdidas; en nuestro caso, 

emplearemos la función de pérdida Huber que permite combinar características del MSE (Mean Square 

Error) y del MAE (Mean Absolute Error). La función Huber funciona de forma que si el error entre la 

predicción y el valor real es pequeño, se emplea una función cuadrática como el MSE y en caso opuesto, 

una función lineal como el MAE (Huber, 1963).  

Una vez desarrollado el modelo, se han aplicado una serie de mejoras para aumentar su eficiencia y 

mejorar los resultados durante la etapa de entrenamiento mediante una serie de callbacks que permitan 

implementar estas mejoras. Se han  añadido los siguientes callbacks al modelo (TensorFlow Team, 2024): 

• Model Checkpoint: este callback permite crear puntos de progreso para guardar el modelo en 

un punto determinado. En nuestro caso, guarda el modelo cada vez que se obtengan mejores 

resultados en la variable de monitoreo que se le indique (en nuestro caso el error de 

validación), junto a la época en la que se obtuvo. 

• Early Stopping: este callback reduce el tiempo de entrenamiento a la vez que previene el 

sobreajuste, ya que permite monitorizar el error del modelo a lo largo de las épocas de 

entrenamiento. En nuestro caso, permite que si no se mejora dicho valor en 30 épocas el 

modelo termine la etapa de entrenamiento y restaure los pesos a los obtenidos en la época en 

la que el error de validación fue el mínimo. 

• Reduce LR On Plateau: este callback permite reducir de forma dinámica el valor de la tasa 

de aprendizaje cuando el modelo se estanca, favoreciendo así una mejor convergencia. Al 

igual que con EarlyStopping, es necesario establecer un valor para la variable 

patience_reduce_learn_rate, que define cuántas épocas deben transcurrir sin mejora en el 

error antes de aplicar la reducción. En nuestro caso, se ha asignado un valor de 0.5 a la variable 

factor, lo que implica que la tasa de aprendizaje se reducirá a la mitad cada vez que se active 

este callback. 

Dado que trabajamos con 3 señales distintas (SpO2, FA y HRV), y nuestro objetivo es compararlas 

entre sí, ya sea de forma individual, en grupos de 2 o en conjunto; puede resultar de interés desarrollar 

algún mecanismo que permita elegir las señales que se quieren introducir en el modelo. Para ello, se ha 

diseñado un selector de señales que organiza los datos de los registros en matrices tridimensionales. En 

esta estructura, cada fila representa un fragmento, cada columna corresponde a las muestras de los 

fragmentos y cada capa de la matriz (dimensión de profundidad) alberga cada una de las señales 

seleccionadas. Este enfoque permite, mediante la modificación de un único parámetro (signals_selected 

en nuestro caso), elegir cualquier combinación de señales, generando así matrices de 1, 2 o 3 columnas 

en función de lo requerido. Cabe destacar que las marcas de los eventos siempre se cargan, dado que su 

valor permanece invariable independientemente del número y combinación de las señales seleccionadas. 

Además, el modelo se ha diseñado con variables dinámicas para permitir una mejor adaptación en función 

de las señales cargadas. 

 

 

4.4.2. Optimización de los hiperparámetros  
 

Aunque lograr un ajuste óptimo de los parámetros o pesos de una red neuronal es fundamental, esto 

por sí solo no garantiza un rendimiento satisfactorio del modelo. Es igualmente importante ajustar los 

hiperparámetros, que son configuraciones establecidas antes del proceso de entrenamiento y que no se 

actualizan durante el mismo. Estos hiperparámetros determinan aspectos clave de la arquitectura, 

dimensiones y el proceso de aprendizaje del modelo. En nuestro caso, los hiperparámetros optimizados 

han sido (Goodfellow et al., 2016; Kelleher, 2019): 
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• Número de bloques (num_blocks): este valor establece el número de bloques o capas 

convolucionales que empleará el modelo, a mayor valor más complejos serán los conceptos 

creados por la red y por lo tanto más aprenderá la red. Como ya se ha mencionado previamente, 

debemos tener en cuenta que si este valor es elevado la red puede volverse demasiado 

profunda, por lo que el modelo podría memorizar en lugar de aprender de los datos o en caso 

contrario no aprender correctamente. 

• Número de filtros por capa (num_filters): este valor fija el número de filtros o kernels por 

capa convolucional, debemos tener en cuenta que emplear un valor alto tiene consecuencias 

similares al hiperparámetro num_blocks. Fijar un valor alto supone un mayor tiempo de 

computación y aumentar la posibilidad de causar sobreajuste, mientras que un valor bajo 

causaría subajuste. 

• Tamaño de los filtros (filter_size): con este valor, se fija el número de coeficientes 

(parámetros) de los filtros. Debemos tener en cuenta que en nuestro caso se han usado filtros 

unidimensionales al ser señales y no imágenes, es decir, los filtros se aplican sobre la 

dimensión temporal. Debemos tener en cuenta que los filtros pueden reducir las dimensiones 

de los datos (dependiendo de la configuración del padding o del paso del filtro), puede darse 

el caso de que al fijar un valor demasiado grande las dimensiones se reduzcan tanto que el 

modelo no pueda trabajar con ellos y acabe fallando. 

• Tamaño de lote (batch_size): en los modelos de DL se requieren gran cantidad de datos, por 

lo que en algunos casos meter todos a la vez no supone una buena idea. Por lo tanto se suelen 

dividir en lotes o batches, y así poder introducirlos por partes dentro del modelo, permitiendo 

focalizar los datos y que el algoritmo pueda trabajar de forma más eficiente. Es importante 

optimizar este hiperparámetro ya que pueden existir relaciones entre los datos que no sean 

visible en caso de que estén en lotes distintos, por lo que, debemos elegir un valor que permita 

al algoritmo procesar los datos eficientemente pero sin excedernos o perderemos parte de la 

información referente a patrones entre los datos. 

• Tasa de aprendizaje inicial (learning_rate): en un algoritmo de optimización de descenso 

de gradiente, la tasa de aprendizaje permite al modelo prestar más o menos atención a las 

correcciones de los parámetros en cada época regulando así la variación de estos entre épocas. 

Si bien se suele ajustar de manera dinámica, el valor inicial sobre el que se comenzará a realizar 

dicho ajuste también puede ser optimizado como un hiperparámetro. Debemos tener en cuenta 

que un valor inicial elevado puede impedir la obtención de un mínimo error y un valor reducido 

puede incrementar el número de épocas necesarias de manera no deseada además de obtener 

un modelo entrenado de manera subóptima debido a la convergencia hacia mínimos locales 

de la función de error. 

• Tasa de Dropout (dropout_rate): el dropout consiste en una estrategia de prevención del 

sobreajuste que implica desactivar un porcentaje de neuronas para que así el modelo no 

memorice los datos. Esta tasa también puede suponer un hiperparámetro a optimizar. 

A pesar de que el número de épocas del modelo también puede ser un hiperparámetro a ajustar, no 

suele aplicarse, ya que se suelen usar otros como el EarlyStopping. Esta técnica permite fijar un valor de 

paciencia para el cual el algoritmo debe seguir probando épocas, de forma que si el modelo mejora en ese 

periodo se vuelve a reiniciar la paciencia, y en caso contrario, se termine el entrenamiento evitando así 

gastar recursos innecesarios (O’Shea & Nash, 2015; Prechelt, 1998). 

Debemos tener en cuenta que al tener varias combinaciones de señales posibles, los hiperparámetros 

que son óptimos para una combinación pueden no serlo para las demás. Debido a esto, tendremos que 

ajustar los hiperparámetros de cada posible combinación de señales por separado, y para ello, realizaremos 

la etapa de entrenamiento con cada una de las señales dando un rango de valores a cada hiperparámetro 

para observar cual es el que mejor se comporta. El procedimiento a seguir será el siguiente: en primer 

lugar, emplearemos los hiperparámetros definidos inicialmente para todas las señales. Después, se ajustará 

uno de ellos, entrenando el modelo con distintos valores dentro de un rango específico durante 4 

iteraciones, mientras que los demás permanecerán constantes. Cada uno de estos valores se probará en la 



Capítulo 4                                                                                                                                  Metodología 

47 
 

 

fase de entrenamiento cada una de las iteraciones, con el objetivo de descartar posibles resultados atípicos. 

Una vez evaluadas todas las posibilidades, se analizarán las pérdidas de validación obtenidas. A partir de 

este análisis, se seleccionará el valor que haya mostrado el mejor desempeño en términos de pérdidas de 

validación, y se fijará para esa señal antes de pasar a ajustar el siguiente hiperparámetro. Se repetirá el 

procedimiento con el resto de hiperparámetros hasta tener el valor óptimo de todos ellos para la señal 

elegida. En el apartado de resultados se mostrarán los valores óptimos para todos los hiperparámetros de 

cada señal y combinación de señales. 

Una vez que se disponen de los hiperparámetros óptimos para cada una de las posibles combinaciones, 

debemos elegir el mejor modelo posible para cada una de ellas. Para poder elegirlo adecuadamente, 

crearemos una variable de monitoreo de las pérdidas de validación que fijaremos a infinito; y someteremos 

al modelo, ya con los hiperparámetros optimizados, a una gran cantidad de ciclos de entrenamiento. En 

cada uno de estos ciclos, compararemos el valor de las pérdidas de validación con el de la variable de 

monitoreo, en caso de ser mejor el valor obtenido, se actualiza el valor de la variable de monitoreo a ese 

nuevo valor y se guarda el modelo como el mejor modelo. Tras una serie de ciclos, obtendremos el mejor 

modelo posible de todos ellos para cada una de las señales. 

Una vez tengamos el mejor modelo de cada una de las señales, podemos guardarlo y emplearlo cuando 

se necesite. Además, cargar un fragmento en un modelo ya entrenado es mucho más rápido y consume 

muchos menos recursos que la etapa de entrenamiento realizada con anterioridad. 

 Con el modelo inicial y el generador de datos, la siguiente etapa consiste en implementar un sistema 

con el que recoger los resultados y analizarlos para comprobar la evolución del modelo. Para ello, se han 

utilizado gráficas scatter plot, Bland-Altman y de la curva de aprendizaje del modelo (Bland & Altman, 

1986; Hicks et al., 2022). Además, las librerías empleadas para el desarrollo del propio modelo permiten 

la obtención de resultados de la fase de entrenamiento mediante un historial de monitoreo de las variables. 

Las distintas gráficas permitirán comprobar de forma directa si el modelo está comportándose de la 

manera esperada o por el contrario está cayendo en el subajuste o sobreajuste. Por otro lado, los historiales 

permitirán analizar más en profundidad los resultados del entrenamiento y buscar posibles fallos o puntos 

de mejora en el modelo. 

En primer lugar, las curvas de aprendizaje son gráficas que permiten realizar un seguimiento del 

rendimiento del modelo durante el entrenamiento (Aggarwal, 2018b; Kelleher, 2019). Para ello, se 

representan las curvas de pérdidas en entrenamiento (train_loss) y en validación (val_loss) de manera 

simultánea. Estas gráficas por lo general tienen una tendencia decreciente ya que salvo que el modelo esté 

mal diseñado, conforme avanzan las épocas del entrenamiento el modelo debe disminuir el valor de las 

pérdidas (Aggarwal, 2018b; Goodfellow et al., 2016; Kelleher, 2019).  

No obstante, debemos tener en cuenta que la relación entre ambas curvas también nos puede dar mucha 

información, la separación entre ellas nos puede indicar si el modelo está comportándose adecuadamente 

o no. En caso de que las curvas estén muy separadas, hay claros indicios de que el modelo está cometiendo 

sobreajuste ya que los errores cometidos con los datos de entrenamiento son significativamente inferiores 

a los cometidos en los datos de validación (Goodfellow et al., 2016; Kelleher, 2019). Por otro lado, en 

caso de que las curvas sean similares pero los errores cometidos sean muy elevados (es decir, muy 

separadas del eje de origen), es indicador de que existe un problema de subajuste, es decir, el modelo no 

es capaz de aprender a partir de los datos proporcionados (Goodfellow et al., 2016; Kelleher, 2019). En 

un caso ideal, ambas curvas son próximas, disminuyen de igual manera y están próximas al eje de origen. 

Además, también nos pueden indicar si el modelo se ha entrenado durante un número suficiente de épocas. 

Para ello, debemos de observar la tendencia de las curvas: si vemos que decrecen pero no llegan a 

estabilizarse el modelo requiere de un mayor número de épocas, ya que el hecho de no terminar de 

alcanzar una etapa más plana indica que aún puede haber margen de mejora; en el caso contrario, si se 

mantiene plano mucho tiempo, la cantidad de épocas es excesiva, consumiendo recursos innecesariamente 

(Aggarwal, 2018b; Kelleher, 2019). En la Figura 4-9 vemos un ejemplo de estas curvas.  
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Figura 4-9. Ejemplo de una curva de aprendizaje del modelo CNN (Autoría propia). 

Por otra parte, también resulta interesante emplear las gráficas scatter plot y Bland-Altman para 

observar el comportamiento del modelo desde otra perspectiva distinta. En el caso de las gráficas scatter 

plot, simplemente hemos enfrentado los puntos reales (y) y estimados (x) en color rojo frente a una recta 

x = y en color azul, siendo las zonas donde mayor superposición entre estos indicadores de buen 

comportamiento del modelo. Si bien la idea es similar, en los gráficos de Bland-Altman existen una serie 

de diferencias. En primer lugar, en lugar de situar los valores reales y estimados en los ejes X e Y, se fija 

el promedio de las mediciones entre los puntos en el eje X y la diferencia en el eje Y. A continuación, se 

calcula la media y los límites de acuerdo (𝑚𝑒𝑑𝑖𝑎 ± 1.96 ∗ 𝑠𝑡𝑑) y se añaden al gráfico de forma 

horizontal. Si las diferencias están cercanas a 0 significa que el modelo tiene una elevada exactitud en las 

predicciones, si por el contrario existe una tendencia de crecimiento o decrecimiento, puede existir la 

posibilidad de un sesgo y por lo tanto podemos detectar si el modelo infraestima o sobreestima el número 

de eventos o el IAH (Altman & Bland, 1983; Bland & Altman, 1986). En la Figura 4-10 podemos ver un 

ejemplo de este tipo de gráficas. 

 

 
Figura 4-10. Ejemplo de gráfica Bland-Altman (izquierda) y gráfica Scatter (derecha) del modelo CNN (Autoría propia). 
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Además, se ha empleado coeficiente de determinación R2_score (Ecuación 4.3) para poder evaluar la 

concordancia de los resultados obtenidos con las medidas reales. Debemos tener en cuenta que cuanto 

más próximo sea el valor del R2_score a 1, mejor será la exactitud del modelo. Esta métrica se ha añadido 

a todas las gráficas con el fin de aumentar la cantidad de información que proporcionan. La razón por la 

que se utiliza el R2_score en lugar de otras métricas como el Intraclass Correlation Coefficient (ICC) se 

debe, en parte, a la mayor simplicidad en el cálculo e interpretación del R2_score. Además, el ICC está 

diseñado para evaluar la fiabilidad entre observadores o entre múltiples mediciones de un mismo sujeto, 

por lo que no resulta tan adecuado en contextos de regresión supervisada estándar. En este caso, el uso 

del R2_score es más apropiado y relevante (Chicco & Jurman, 2020; Koo & Li, 2016). 

𝑹𝟐
𝒔𝒄𝒐𝒓𝒆 = 𝟏 −  

𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔𝒒𝒖𝒂𝒓𝒆

𝑻𝒐𝒕𝒂𝒍𝒔𝒒𝒖𝒂𝒓𝒆
                                                       (𝟒. 𝟑) 

Finalmente, hemos configurado el historial del modelo para que nos permita obtener información de 

las variables: época del modelo, MAE, MSE, pérdidas de entrenamiento y pérdidas de validación. Gracias 

a la información proporcionada por dicho fichero, podemos observar con más precisión lo que ocurre en 

el modelo, identificar si hay fallos en la estructura general, si se han dado comportamientos anormales en 

alguna época o comparar si el desempeño durante el entrenamiento y la validación funciona acorde a lo 

esperado. 

 

 

4.4.3. Estimación del IAH 
 

Con el sistema previamente desarrollado y habiendo elegido el mejor modelo para cada señal, es 

posible estimar la cantidad de eventos de apnea/hipopnea presentes en cada fragmento. No obstante, 

nuestro objetivo es poder estimar el valor del IAH en cada sujeto a través del número total de eventos en 

el registro nocturno. Para ello, a partir de la estimación del número de eventos por cada segmento de 20 

min y la duración del registro nocturno del paciente debemos trabajar en calcular el valor del IAH. Lo 

primero que debemos tener en cuenta, es que el valor del IAH será asignado a un único sujeto, por lo que 

se han analizado con el modelo todos los fragmentos de 20 min de un mismo sujeto y se han sumado los 

valores de número de eventos estimados obtenidos en cada uno de los fragmentos. De esta manera, 

obtendremos el número de eventos totales estimado para un único usuario y a partir de ahí podremos 

obtener el IAH correspondiente a ese sujeto. 

Otro de los factores que debemos tener en cuenta es la diferencia entre el tiempo de grabación y el 

tiempo de sueño del paciente. El tiempo de sueño corresponde al período en el que la persona está dormida 

y es calculado durante la PSG mediante la contabilización de los ciclos de sueño a través del EEG, 

mientras que el tiempo de grabación por otro lado, abarca desde la colocación de los sensores en el 

paciente durante la PSG hasta su retirada al final de la noche. Sin embargo, el marcaje de las fases del 

sueño y el posterior cómputo del tiempo total de sueño no está disponible empleando las señales y el 

modelo de este trabajo. Deberemos utilizar el tiempo total de grabación, teniendo en cuenta que la 

duración del registro es mayor que el tiempo total de sueño (al abarcar periodos en los que el sujeto está 

despierto y periodos en los que está durmiendo). En la Figura 4-11, podemos observar cómo varían los 

valores de las señales en los primeros momentos correspondiente a la colocación de los sensores, en los 

que el paciente presumiblemente continúa despierto.  

 

Figura 4-11. Primer fragmento de un sujeto, señal SpO2 (Autoría propia, elaborado con Matlab). 
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Figura 4-12. Ejemplo de regresión Huber con la señal SpO2. 

Por lo tanto, debemos estimar el IAH teniendo en cuenta esta limitación. En primer lugar, se ha 

calculado el tiempo de grabación por sujeto simplemente empleando el número de fragmentos de 20 min 

convertidos a eventos por hora, pero como ya se ha mencionado, este valor incluye tiempo en el que el 

sujeto permanece despierto. Así que se ha calculado la tasa de eventos detectados durante el tiempo de 

grabación, para luego poder aplicar un sistema de regresión del IAH basado en Huber  destinado a  obtener 

una estimación precisa del IAH teniendo en cuenta las limitaciones mencionadas anteriormente (Figura 

4-12). De esta manera, podemos tratar de corregir la infraestimación del IAH originado al emplear el 

tiempo de grabación en lugar del tiempo de sueño del paciente. Esto permite obtener una estimación más 

precisa del valor de IAH y por lo tanto, permite realizar una mejor umbralización para clasificar a los 

sujetos en los distintos grados de AOS infantil. 

 

4.5.  Análisis estadístico  
 

Para evaluar el rendimiento del modelo de predicción, es fundamental llevar a cabo un análisis 

estadístico que permita evaluar el desempeño de nuestro sistema. Para ello, se han empleado matrices de 

confusión. La matriz de confusión es una tabla que permite evaluar el rendimiento de modelos de 

clasificación, separando aquellas predicciones que se hayan realizado correctamente de aquellas que son 

erróneas. Para realizar esta separación, la matriz de confusión se fundamenta en el uso de la estructura de 

la Tabla 4-1 empleando los valores reales y estimados. 

En nuestro caso obtendremos 6 matrices de confusión para cada una de las posibles combinaciones 

de señales: dos matrices para el conjunto de datos de entrenamiento, dos para el de validación y dos para 

el de test, podemos ver un ejemplo de una de ellas en la Figura 4-13. Para cada uno de los conjuntos de 

señales, hemos calculado la matriz de confusión de los 4 niveles de severidad obtenidos a partir del IAH 

final estimado. Generar estas matrices permite realizar un mejor seguimiento del comportamiento del 

algoritmo, ya que podemos observar los resultados en los 3 subconjuntos de datos (entrenamiento, 

validación y test) para controlar que no exista subajuste ni sobreajuste en el modelo. No obstante, los 

resultados que mayor importancia tienen son aquellos referentes al conjunto de test, ya que son aquellos 

que determinan cómo de bien se comporta el modelo con datos nuevos en una prueba final. 

 ESTIMADO POSITIVO ESTIMADO NEGATIVO 

REAL POSITIVO TRUE POSITIVE (TP) FALSE NEGATIVE (FN) 

REAL NEGATIVO FALSE POSITIVE (FP) TRUE NEGATIVE(TN) 

Tabla 4-1. Estructura general de una matriz de confusión. 
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Figura 4-13. Ejemplo de matriz de confusión de valores de IAH de la señal SpO2 en test tras someterla a la  regresión Huber. 

 

 Debemos tener en cuenta que cada sujeto puede estar clasificado en 1 de las 4 clases existentes: Sin 

AOS, AOS Leve, Moderada y Grave. Las matrices de confusión, además de aportar una visión directa del 

funcionamiento del modelo, permiten generar y obtener métricas de gran utilidad a la hora de realizar el 

análisis estadístico. Por lo que, aprovechando las matrices de confusión obtenidas, vamos a calcular las 

siguientes métricas a partir de los datos proporcionados: 

• Exactitud (Acc): también conocida como Accuracy, esta métrica permite calcular la relación 

entre los sujetos adecuadamente clasificados y el total, comparando los dos casos 

correctamente clasificados con todas las clases clasificadas de la matriz (Ecuación 4.2): 

𝑨𝒄𝒄 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
                                                     (𝟒. 𝟐) 

• Sensibilidad (Se): también conocida como Recall, esta métrica permite medir la capacidad 

del modelo para detectar correctamente los casos positivos. Para ello, compara las 

estimaciones clasificadas correctamente frente a todos los casos positivos (Ecuación 4.3): 

𝑺𝒆 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                                                                   (𝟒. 𝟑) 

• Especificidad (Sp): de manera opuesta a la sensibilidad, esta métrica permite medir la 

capacidad del modelo para detectar correctamente los casos negativos (Ecuación 4.4): 

𝑺𝒑 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
                                                                   (𝟒. 𝟒) 
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• Valor predictivo positivo (PPV): indica la probabilidad de que un caso detectado como 

positivo sea realmente positivo (en textos en inglés también se conoce como precision) 

(Ecuación 4.5): 

𝑷𝑷𝑽(%) =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
∗ 𝟏𝟎𝟎                                                      (𝟒. 𝟓) 

• Valor predictivo negativo (NPV): de manera similar al caso anterior, indica la probabilidad 

de que un caso detectado como negativo sea realmente negativo (Ecuación 4.6): 

𝑵𝑷𝑽(%) =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑵
∗ 𝟏𝟎𝟎                                                      (𝟒. 𝟔) 

• Likelihood Ratio Positivo (LR+): consiste en un ratio entre las probabilidades de que un 

caso detectado como positivo sea realmente positivo, frente a que un caso detectado como 

negativo sea en realidad un caso positivo (Ecuación 4.7): 

𝑳𝑹+=  
𝑺𝒆

𝟏 − 𝑺𝒑
                                                                  (𝟒. 𝟕) 

• Likelihood Ratio Negativo (LR-): consiste en un ratio entre las probabilidades de que un 

caso detectado como negativo sea realmente negativo, frente a que un caso detectado como 

positivo sea en realidad un caso negativo (Ecuación 4.8): 

𝑳𝑹−=  
𝟏 − 𝑺𝒆

𝑺𝒑
                                                                  (𝟒. 𝟖) 

• Puntuación F1 (F1_score): esta métrica es ampliamente utilizada ya que permite considerar 

tanto el PPV como la Se, se calcula mediante la media armónica de ambas (Ecuación 4.9): 

𝑭𝟏𝒔𝒄𝒐𝒓𝒆 = 𝟐 ∗  
𝑽𝑷𝑷 ∗ 𝑺𝒆

𝑽𝑷𝑷 + 𝑺𝒆
                                                                (𝟒. 𝟗) 

• Cohen’s Kappa (Kappa): evalúa la concordancia entre las distintas clasificaciones y ajusta 

la probabilidad de coincidencia aleatoria, es realmente útil en problemas con varias clases ya 

que tiene en cuenta el factor de coincidencia al azar (McHugh, 2012) (Nota: 𝛼𝑖𝑗implica el 

número de veces que la clase real i fue estimada por la clase j) (Ecuación 4.10): 

𝜿 =
𝑷𝟎 − 𝑷𝒆

𝟏 −  𝑷𝒆
                                                                (𝟒. 𝟏𝟎) 

𝑷𝟎 =
∑ 𝜶𝒊𝒊

𝒏_𝒄𝒂𝒔𝒐𝒔
𝒊=𝟏

𝑻𝒐𝒕𝒂𝒍 𝒅𝒆 𝒄𝒂𝒔𝒐𝒔 
                                                      (𝟒. 𝟏𝟏) 

𝑷𝒆 = ∑ (
∑ 𝜶𝒊𝒋

𝒏_𝒄𝒂𝒔𝒐𝒔
𝒋=𝟏

𝑻𝒐𝒕𝒂𝒍 𝒅𝒆 𝒄𝒂𝒔𝒐𝒔
∗

∑ 𝜶𝒋𝒊
𝒏_𝒄𝒂𝒔𝒐𝒔
𝒋=𝟏

𝑻𝒐𝒕𝒂𝒍 𝒅𝒆 𝒄𝒂𝒔𝒐𝒔
)

𝟒

𝒊=𝟏

                              (𝟒. 𝟏𝟐) 

Estas métricas permiten evaluar el comportamiento del modelo. Aplicándolas a los resultados 

obtenidos con cada una de las señales (individuales o combinadas), podemos realizar una comparación 

directa del desempeño de cada una y clasificarlas por lo tanto en función de su rendimiento; permitiendo 

así elegir la mejor combinación de cara a realizar una predicción lo más precisa posible de la AOS infantil.  

En este estudio, el objetivo consiste en catalogar a los sujetos pediátricos en función de la presencia o 

no del trastorno de AOS y en caso de padecerla, clasificarla según sus distintos grados de severidad. Por 

lo que redefiniremos los valores de la matriz (TN, TP, FP y FN) según los 3 umbrales establecidos para 

la AOS (leve, moderada y severa).  
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Figura 4-14. Esquema umbralización progresiva de la matriz de confusión (Autoría propia). 

Este proceso se conoce como umbralizado progresivo, y su propósito es reducir la matriz de confusión 

de 4x4 para convertir un problema de clasificación multiclase en un problema de clasificación binaria con 

una matriz de confusión 2x2. Para poder realizar esta clasificación, agruparemos todos los casos en los 

que el IAH real y estimado es menor o mayor que cierto umbral, es decir, trataremos de trabajar con 3 

versiones de una misma matriz en función del umbral que se desea evaluar. En la Figura 4-14, se puede 

ver un esquema del procedimiento. 

 

 

4.6.  Especificaciones técnicas 
 

A lo largo de este apartado, resumiremos todas las especificaciones de los recursos computacionales 

empleados tanto a nivel de hardware como software. En primer lugar, debemos resaltar que el sistema ha 

sido desarrollado por completo en el lenguaje Python. Este lenguaje de programación de alto nivel permite 

el uso de una sintaxis sencilla y gran versatilidad. Python es ampliamente utilizado en el desarrollo de 

sistemas de IA debido a la gran cantidad de librerías que existen relacionadas con ese campo. En nuestro 

caso, hemos empleado el entorno de desarrollo integrado PyCharm (JetBrains, s.r.o) para la elaboración 

de nuestro sistema, ya que ofrece una gran cantidad de herramientas tanto para el desarrollo como la 

depuración. Además, hemos optado por elegir el gestor de entornos y paquetes de Anaconda (Anaconda 

Inc.). El sistema operativo del ordenador es Microsoft Windows 11 (Tabla 4-2). 

Programa/Librería Versión 

PyCharm 2024.3.2 

Anaconda Navigator 2.5.1 

keras 2.10.0 

matplotlib 3.8.2 

numpy 1.26.4 

pandas 2.2.1 

plotly 5.24.1 

scikit-learn 1.4.2 

scipy 1.13.0 

tensorflow 2.10.1 

Tabla 4-2. Librerías empleadas y sus versiones. 



Capítulo 4                                                                                                                                  Metodología 

54 
 

 

En cuanto a los recursos de computación del ordenador, en la Tabla 4-3 se resumen las características 

del equipo:  

 

Componente Características 

CPU 13th Gen Intel® Core™ i9-13900KF 

GPU NVIDIA GeForce RTX 4090 (24 GB) 

RAM 64 GB DDR4 

SSD 4 TB SSD Kingston 

Sistema Operativo Microsoft Windows 11 Pro (x64) 

Tabla 4-3. Características del hardware empleado. 
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Capítulo 5: RESULTADOS 
 

En este quinto capítulo, revisaremos y analizaremos los resultados obtenidos a lo largo del desarrollo 

del sistema descrito en el capítulo previo. Para ello, presentaremos los resultados del proceso de 

optimización de los hiperparámetros del modelo para cada una de las combinaciones de señales, de las 

estimaciones del IAH realizadas por el propio modelo, de las predicciones de los 4 niveles de severidad de 

la AOS y finalmente de la capacidad de diagnóstico de la AOS en cada uno de los umbrales (1, 5 y 10 e/h).  

 

 

5.1.  Optimización del modelo 
 

En primer lugar, revisaremos los resultados del proceso de optimización de los hiperparámetros del 

modelo para cada una de las señales. Debemos recordar que para cada señal y sus posibles combinaciones, 

se ha realizado un proceso de optimización para todos los hiperparámetros existentes. Para cada uno de 

estos hiperparámetros, recogeremos los valores de Val_loss y R2_score y elegiremos aquel que tenga los 

mejores resultados. A continuación, mostramos una de las tablas empleadas para elegir el mejor resultado 

de un hiperparámetro (resaltado en negrita) a modo de ejemplo, debemos tener en cuenta que por cada señal 

e hiperparámetro se ha realizado una tabla similar y en algunos casos 2 para poder obtener un valor de 

hiperparámetro más preciso (Tablas 5-1 y 5-2): 

R2_score 8 16 24 32 64 128 

1. Iteración 0.7412 0.7538 0.7770 0.7681 0.7953 0.7936 

2. Iteración 0.7557 0.7651 0.7853 0.7934 0.7833 0.7945 

3. Iteración 0.7629 0.7827 0.7544 0.7778 0.7935 0.7904 

4. Iteración 0.7365 0.7788 0.7822 0.7761 0.7923 0.7807 

Tabla 5-1. Tabla de resultados de optimización del hiperparámetro num_filters  para la señal SpO2 (R2_score). 

 

Val_loss 8 16 24 32 64 128 

1. Iteración 0.5175 0.4963 0.4839 0.4783 0.4618 0.4645 

2. Iteración 0.5044 0.4896 0.4715 0.4669 0.4717 0.4724 

3. Iteración 0.4809 0.4744 0.4985 0.4784 0.4692 0.4769 

4. Iteración 0.4966 0.4781 0.4728 0.4844 0.4700 0.4709 

Tabla 5-2. Tabla de resultados de optimización del hiperparámetro num_filters  para la señal SpO2 (Val_loss). 
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 RANGO DE VALORES 

num_filters 8 16 24 32 64 128 

num_blocks 3 4 5 6 7 8 

size_filters 5 7 9 17 21 27 

batch_size 64 128 256 512 1024 2048 

batch_size (iter. 2) 18 24 32 48 64 80 

learning_rate 0.00001 0.0005 0.0001 0.005 0.001 0.01 

learning_rate (iter. 2) 0.001 0.002 0.004 0.006 0.008 0.01 

Tabla 5-3. Rango de valores empleados para la optimización de los distintos hiperparámetros para cada una de las 

combinaciones de señales. 

Como se puede apreciar, de toda la tabla se ha elegido el mejor valor (resaltado en negrita). En el caso 

de la tabla de ejemplo se optó por elegir el valor de 64 para el hiperparámetro num_filters en la señal SpO2 

debido a que es el valor que ha obtenido en mayor número de ocasiones el mejor valor de toda la iteración. 

Para todos los hiperparámetros, analizaremos el siguiente rango de valores con todas las señales. En algunos 

casos, los rangos iniciales de los hiperparámetros learning_rate y batch_size no cubrían el valor deseado y 

se realizó una segunda etapa de optimización (iter. 2 en tablas) con otro rango distinto para encontrar un 

valor mucho más preciso para ambos hiperparámetros (Tabla 5-3). 

Para las señales elegidas de manera individual (SpO2, FA y HRV), el resultado de la optimización de 

los hiperparámetros es el siguiente (Tabla 5-4): 

 

 SpO2 FA HRV 

num_filters 64 32 32 

num_blocks 7 8 8 

size_filters 17 9 9 

batch_size 512 24 256 

learning_rate 0.008 0.004 0.008 

Tabla 5-4. Valores de hiperparámetros óptimos para las señales individuales SpO2, FA y HRV. 

Por otro lado, en el caso de las señales emparejadas 2 a 2 (SpO2-FA, SpO2-HRV y FA-HRV), el resultado 

de la optimización de los valores de los hiperparámetros es el siguiente (Tabla 5-5): 
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 SpO2-FA SpO2-HRV FA-HRV 

num_filters 32 64 128 

num_blocks 8 7 7 

size_filters 17 13 15 

batch_size 18 128 28 

learning_rate 0.001 0.002 0.006 

Tabla 5-5. Valores de hiperparámetros óptimos para las señales emparejadas 2 a 2 SpO2-FA, SpO2-HRV y FA-HRV. 

Finalmente, para las 3 señales combinadas (SpO2-FA-HRV), el resultado de la optimización de los 

valores de los hiperparámetros es la siguiente (Tabla 5-6): 

 SpO2-FA-HRV 

num_filters 32 

num_blocks 6 

size_filters 17 

batch_size 64 

learning_rate 0.004 

Tabla 5-6. Valores de hiperparámetros óptimos para todas señales emparejadas SpO2-FA-HRV. 

El resultado de la etapa de optimización permitió obtener mejorías significativas en el entrenamiento 

del modelo CNN tanto en las pérdidas de validación como en el valor de R2_score. A continuación, en la 

Tabla 5-7 se recoge el valor medio de las 4 iteraciones realizadas previas a la etapa de optimización y tras 

dicho proceso, teniendo en cuenta que se han elegido los valores de los hiperparámetros previamente 

mostrados en las Tablas 5-4, 5-5 y 5-6: 

 

Inicio optimización 

(valor medio) 

Final optimización 

(valor medio) 

Final optimización   

(mejor resultado) 

Val_loss R2_score Val_loss R2_score Val_loss R2_score 

SpO2 0.4670 0.7939 0.4539 0.7912 0.4513 0.7928 

FA 1.0298 0.0371 0.7731 0.4466 0.7668 0.4795 

HRV 0.8553 0.4536 0.7647 0.5509 0.7909 0.5578 

SpO2-FA 0.6428 0.5356 0.5397 0.6747 0.5278 0.6925 

SpO2-HRV 0.4356 0.8256 0.4214 0.8328 0.4196 0.8410 

FA-HRV 0.8232 0.4542 0.7376 0.5466 0.7287 0.5573 

SpO2-FA-HRV 0.4587 0.7713 0.4285 0.8156 0.4219 0.8239 

Tabla 5-7. Resultados del proceso de optimización en las variables Val_loss y R2_score. 
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Una vez realizado el proceso de optimización, iteraremos una gran cantidad de veces (entre 20 y 40) el 

entrenamiento del modelo e iremos guardando aquellos que consigan mejorar el valor Val_loss. Para todos 

los modelos se ha realizado el procedimiento con el valor de 0.1 para la tasa de Dropout, aunque también 

se ha probado con un valor de 0.2 en algunos casos, buscando así un ajuste más fino (Tabla 5-8).  

 
Val_loss R2_score 

Dropout 0.1 Dropout 0.2 Dropout 0.1 Dropout 0.2 

SpO2 0.4527 0.4542 0.7915 0.7879 

FA 0.7547 0.7791 0.4901 0.4236 

HRV 0.7603 0.7622 0.5288 0.5447 

SpO2-FA 0.5143 0.5266 0.7003 0.6952 

SpO2-HRV 0.4123 0.4091 0.8331 0.8373 

FA-HRV 0.7236 0.7249 0.5503 0.5602 

SpO2-FA-HRV 0.4182 0.4256 0.8094 0.8054 

Tabla 5-8. Resultados de Val_loss y R2_score obtenidos en el mejor modelo de cada una de las señales para los valores de 

Dropout 0.1 y 0.2. 

 

 

5.2.  Rendimiento diagnóstico del modelo 
 

En este apartado, presentaremos los resultados obtenidos de emplear el modelo desarrollado para estimar 

el número de eventos y con ello, el valor del IAH y su respectiva severidad en la AOS infantil. En primer 

lugar, se presentan los resultados de realizar la regresión del IAH a partir del número de eventos en cada 

segmento. A continuación, se muestran los resultados de la clasificación de los IAH obtenidos en cada una 

de las 4 clases de severidad de la AOS mediante matrices de confusión. Finalmente, mostraremos la 

capacidad diagnóstica de nuestros algoritmos de DL para detectar la AOS infantil en cada umbral. 

 

5.2.1. Regresión del IAH 
 

Tras obtener el modelo entrenado, validado y testeado con los datos de los registros, se extrajeron 2 

gráficas por cada combinación de señales: una gráfica scatter plot y una gráfica Bland-Altman. En las 

Figuras 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 y 5-7 podemos ver todas las gráficas extraídas de estimar el número de 

eventos. 

 
Figura 5-1. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para la señal 

SpO2 en el conjunto de test. 
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Figura 5-2. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para la señal FA 

en el conjunto de test. 

 
Figura 5-3. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para la señal 

HRV en el conjunto de test. 

 
Figura 5-4. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para las señales 

SpO2-FA en el conjunto de test. 
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Figura 5-5. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para las señales 

SpO2-HRV  en el conjunto de test. 

 
Figura 5-6. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para las señales 

FA-HRV en el conjunto de test. 

 
Figura 5-7. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del número de eventos para las señales 

SpO2-FA-HRV en el conjunto de test. 
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Estas gráficas permiten observar el resultado de las predicciones realizadas por el modelo. A 

continuación, mostraremos las gráficas de scatter plot y Bland-Altman para las predicciones del IAH en el 

conjunto de test, es decir, la regresión del IAH a partir del número de eventos detectados y el tiempo total 

de registro, realizada mediante el método de Huber (Figuras 5-8, 5-9, 5-10, 5-11, 5-12, 5-13 y 5-14). 

 
Figura 5-8. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para la señal SpO2 en el 

conjunto de test. 

 
Figura 5-9. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para la señal FA  en el conjunto 

de test. 

 
Figura 5-10. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para la señal HRV en el 

conjunto de test. 
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Figura 5-11. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para las señales SpO2-FA en 

el conjunto de test. 

 
Figura 5-12. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para las señales SpO2-HRV en 

el conjunto de test. 

 
Figura 5-13. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para las señales FA-HRV en el 

conjunto de test. 
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Figura 5-14. Gráficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimación del IAH para las señales SpO2-FA-

HRV en el conjunto de test. 

  

5.2.2. Resultados de clasificación de 4 clases 
 

Tras obtener la estimación del IAH final de todos los sujetos, podemos realizar una etapa de clasificación 

de cada uno de ellos en los distintos grados de severidad de la AOS: sin AOS, leve, moderado y grave. Para 

ello, estableceremos los umbrales (o puntos de corte) del IAH de 1, 5 y 10 e/h y etiquetaremos cada paciente 

acorde al valor obtenido. A continuación, mostramos las matrices de confusión resultantes de realizar dicha 

clasificación en el subconjunto de test con el sesgo corregido para cada una de las combinaciones (Figuras 

5-15, 5-16, 5-17, 5-18, 5-19, 5-20 y 5-21): 

 

 

Figura 5-15. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de la señal SpO2. 
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Figura 5-16. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de la señal FA. 

 

 

 

Figura 5-17. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de la señal HRV. 

 



Capítulo 5                                                                                                                                     Resultados 

 

66 
 

 

 

Figura 5-18. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de las señales SpO2-FA. 

 

 

 

Figura 5-19. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de las señales SpO2-HRV. 
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Figura 5-20. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de las señales FA-HRV. 

 

 

 

Figura 5-21. Matriz de confusión del valor de IAH posterior a la regresión en el conjunto de test de las señales SpO2-FA-HRV. 



Capítulo 5                                                                                                                                     Resultados 

 

68 
 

 

En todas las matrices se han empleado las herramientas proporcionadas por scikit-learn para calcular 

los parámetros: precision, recall, F1_score y Kappa. En la siguiente tabla, hemos recopilado todos los 

valores extraídos de las matrices de confusión tras la regresión (Tabla 5-9): 

 Precision Recall F1_score Kappa 

SpO2 0.6847 0.6591 0.6577 0.5057 

FA 0.6005 0.4710 0.5038 0.3094 

HRV 0.5286 0.4701 0.4832 0.2943 

SpO2-FA 0.6837 0.6422 0.6493 0.4987 

SpO2-HRV 0.6906 0.6815 0.6740 0.5381 

FA-HRV 0.5607 0.4647 0.4871 0.2877 

SpO2-FA-HRV 0.6904 0.6762 0.6687 0.5336 

Tabla 5-9. Comparativa de los resultados estadísticos (precision, recall, F1-score y Kappa) de las matrices de confusión tras la 

regresión de todas las combinaciones de señales para el conjunto de test. 

 En aquellos casos en los que el valor de Kappa sea superior al 0.4 implica que el modelo presenta un 

rendimiento superior al mero azar (Abraira, 2001; McHugh, 2012). En los casos en que Kappa sea superior 

a 0.5, el modelo puede considerarse útil para la asignación de clases. Cuando Kappa supera el valor de 0.6, 

el desempeño del modelo es significativamente mejor que el azar (κ ≈ 0), aunque aún presenta margen de 

mejora. Como se puede apreciar, en algunos casos el valor de Kappa es superior a 0.5 como es el caso de 

las señales SpO2, SpO2-HRV y SpO2-FA-HRV. Sin embargo, en otros casos como FA, HRV y FA-HRV 

no alcanza el 0.4, por lo que el desempeño no es todo lo preciso que se desearía. Por otro lado, el valor de 

F1-score nos indica el balance entre precision y recall, es decir, la capacidad del modelo de detectar 

correctamente cada clase minimizando los falsos positivos. Para valores elevados como SpO2-HRV o SpO2-

FA-HRV, el modelo tiene un buen equilibrio entre la detección de casos positivos (Se) y la fiabilidad de 

dichas detecciones (PPV). 

 

 

5.2.3. Resultados de clasificación binaria  
 

Una vez realizado el análisis de la clasificación multiclase en las distintas severidades de la AOS, 

procederemos con la etapa de umbralización previamente descrita. Este paso es fundamental para poder 

transformar el problema de clasificación multiclase en un problema de clasificación binaria, permitiendo 

así un mejor análisis. A partir de cada una de las matrices de confusión obtenidas, extraeremos diversas 

métricas en distintos formatos. En particular, se calcularán en formato porcentual las métricas: Se, Sp, Acc, 

PPV y NPV. Y de forma no porcentual: LR+ y LR-. Todas estas métricas se calcularán para cada uno de los 

3 umbrales de la severidad de la AOS para los conjuntos de entrenamiento, validación y test de todas las 

combinaciones de señales.  

A continuación, en las Tablas 5-10, 5-11, 5-12, 5-13, 5-14, 5-15 y 5-16 mostramos agrupados todos los 

resultados de las distintas combinaciones de señales posibles para todos los conjuntos de datos. En dichas 

tablas podemos ver como en todos los casos tanto la Sp como la Acc tienden a aumentar conforme sube el 

valor del umbral, siendo el valor más alto correspondiente a 10 e/h. Por otro lado, la Se decrece al pasar de 

1 e/h a 5 e/h pero vuelve a aumentar con 10 e/h. Finalmente, mientras el NPV tiende a aumentar conforme 

incrementa el umbral el PPV tiene un comportamiento menos predecible. 
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SpO2 Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 82.97 83.11 83.00 94.64 57.59 4.9111 0.2049 

Val 81.32 86.96 82.52 95.87 55.56 6.2348 0.2148 

Test 78.24 82.09 79.08 93.97 51.40 4.3685 0.2650 

5 e/h 

Train 66.67 98.60 89.36 95.10 87.91 47.6667 0.3381 

Val 71.91 98.73 91.41 95.52 90.35 56.8090 0.2845 

Test 73.63 97.67 90.52 93.06 89.74 31.6593 0.2700 

10 e/h 

Train 72.52 99.31 95.83 94.06 96.02 105.7570 0.2767 

Val 64.44 98.58 93.87 87.88 94.54 45.2722 0.3607 

Test 69.05 98.11 94.12 85.29 95.22 36.4571 0.3155 

Tabla 5-10. Resultados umbralización binaria matriz de confusión de la señal SpO2 para los conjuntos de entrenamiento, validación y test. 

FA Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 85.51 44.75 76.64 84.76 46.23 1.5477 0.3237 

Val 72.76 57.97 69.63 86.57 36.36 1.7312 0.4698 

Test 88.28 40.30 77.78 84.06 49.09 1.4788 0.2907 

5 e/h 

Train 55.33 98.46 85.98 93.60 84.41 35.9622 0.4537 

Val 64.04 94.94 86.50 82.61 87.55 12.6489 0.3787 

Test 46.15 97.67 82.35 89.36 81.08 19.8462 0.5513 

10 e/h 

Train 58.02 98.86 93.54 88.37 94.02 50.7634 0.4247 

Val 48.89 98.22 91.41 81.48 92.31 27.4756 0.5204 

Test 45.24 99.24 91.83 90.48 91.93 59.7143 0.5518 

Tabla 5-11. Resultados umbralización binaria matriz de confusión de la señal FA para los conjuntos de entrenamiento, validación y test. 

HRV Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 81.07 69.41 78.53 90.50 50.50 2.6498 0.2728 

Val 77.04 62.32 73.93 88.39 42.16 2.0446 0.3684 

Test 79.50 58.21 74.84 87.16 44.32 1.9023 0.3522 

5 e/h 

Train 62.20 99.58 88.77 98.37 86.62 148.2417 0.3796 

Val 51.69 94.94 83.13 79.31 83.96 10.2079 0.5089 

Test 56.04 95.81 83.99 85.00 83.74 13.3883 0.4588 

10 e/h 

Train 70.23 99.66 95.83 96.84 95.72 204.8346 0.2987 

Val 40.00 99.29 91.10 90.00 91.18 56.2000 0.6043 

Test 40.48 97.73 89.87 73.91 91.17 17.8095 0.6091 

Tabla 5-12. Resultados umbralización binaria matriz de confusión de la señal HRV para los conjuntos de entrenamiento, validación y test. 
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SpO2-FA Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 85.51 79.45 84.19 93.73 60.42 4.1617 0.1823 

Val 82.88 81.16 82.52 94.25 56.00 4.3990 0.2110 

Test 80.33 79.10 80.07 93.20 53.00 3.8446 0.2486 

5 e/h 

Train 61.86 99.16 88.37 96.77 86.46 73.7113 0.3847 

Val 69.66 98.73 90.80 95.38 89.66 55.0337 0.3073 

Test 72.53 98.60 90.85 95.65 89.45 51.9780 0.2786 

10 e/h 

Train 71.76 99.43 95.83 94.95 95.92 125.5725 0.2841 

Val 60.00 98.93 93.56 90.00 93.92 56.2000 0.4043 

Test 61.90 98.48 93.46 86.67 94.20 40.8571 0.3868 

Tabla 5-13. Resultados umbralización binaria matriz de confusión de la señal SpO2-FA para los conjuntos de entrenamiento, validación y test. 

SpO2-HRV Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 82.85 91.32 84.69 97.17 59.70 9.5491 0.1878 

Val 80.54 92.75 83.13 97.64 56.14 11.1152 0.2098 

Test 79.50 83.58 80.39 94.53 53.33 4.8421 0.2453 

5 e/h 

Train 74.57 99.44 92.25 98.19 90.57 133.2947 0.2557 

Val 74.16 99.16 92.33 97.06 91.09 87.8764 0.2606 

Test 82.42 98.14 93.46 94.94 92.95 44.2995 0.1792 

10 e/h 

Train 83.21 99.43 97.32 95.61 97.53 145.6107 0.1689 

Val 71.11 98.22 94.48 86.49 95.50 39.9644 0.2941 

Test 69.05 97.73 93.79 82.86 95.20 30.381 0.3167 

Tabla 5-14. Resultados umbralización binaria matriz de confusión de la señal SpO2-HRV para los conjuntos de entrenamiento, validación y test. 

FA-HRV Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 81.07 81.28 81.11 93.96 54.43 4.3302 0.2329 

Val 75.49 73.91 75.15 91.51 44.74 2.8936 0.3317 

Test 82.01 49.25 74.84 85.22 43.42 1.6160 0.3653 

5 e/h 

Train 66.32 98.88 89.46 96.02 87.83 59.2762 0.3406 

Val 62.92 96.20 87.12 86.15 87.36 16.5693 0.3854 

Test 58.24 96.74 85.29 88.33 84.55 17.8885 0.4316 

10 e/h 

Train 73.28 99.43 96.02 95.05 96.13 128.2443 0.2687 

Val 44.44 98.93 91.41 86.96 91.75 41.6296 0.5616 

Test 35.71 98.86 90.20 83.33 90.62 31.4286 0.6502 

Tabla 5-15. Resultados umbralización binaria matriz de confusión de la señal FA-HRV para los conjuntos de entrenamiento, validación y test. 
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SpO2-FA-HRV Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR+ LR- 

1 e/h 

Train 83.10 88.58 84.29 96.32 59.33 7.2796 0.1908 

Val 81.32 91.30 83.44 97.21 56.76 9.3521 0.2046 

Test 79.08 86.57 80.72 95.45 53.70 5.8870 0.2417 

5 e/h 

Train 71.82 99.02 91.15 96.76 89.62 73.3603 0.2846 

Val 73.03 98.73 91.72 95.59 90.70 57.6966 0.2731 

Test 79.12 97.67 92.16 93.51 91.70 34.0220 0.2138 

10 e/h 

Train 79.39 99.43 96.82 95.41 96.99 138.9313 0.2073 

Val 68.89 98.22 94.17 86.11 95.17 38.7156 0.3167 

Test 66.67 98.11 93.79 84.85 94.87 35.2000 0.3398 

Tabla 5-16. Resultados umbralización binaria matriz de confusión de la señal SpO2-FA-HRV para los conjuntos de entrenamiento, validación y 

test. 
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Capítulo 6: DISCUSIÓN 
 

En este penúltimo capítulo, realizaremos una discusión final analizando todo el proceso de desarrollo 

realizado y los resultados obtenidos al trabajar con las distintas señales y el modelo de DL. Además, 

compararemos los resultados obtenidos en nuestro proyecto con los obtenidos por otros estudios.  

 

 

6.1.  Introducción 
 

En este proyecto se propone una metodología de DL basada en CNN que busca avanzar en el 

diagnóstico del AOS en población pediátrica utilizando un conjunto reducido de señales. A diferencia de 

trabajos previos que han abordado esta problemática mediante alternativas a la PSG o técnicas de ML 

(Alonso Álvarez et al., 2008; L. Chang et al., 2013; Gutiérrez-Tobal et al., 2015; Villa et al., 2015), nuestro 

enfoque se sitúa dentro de una línea más reciente que explora el uso de DL con señales reducidas. Aunque 

algunos estudios han considerado emplear tanto individualmente como en ciertas combinaciones las 

señales SpO2, FA y HRV en contextos pediátricos, no se ha investigado sistemáticamente el potencial 

diagnóstico de otras combinaciones específicas entre ellas. En este sentido, la propuesta metodológica de 

este trabajo ofrece un enfoque novedoso que no solo amplía el uso de DL en este ámbito, sino que también 

contribuye a identificar qué configuraciones de señales podrían ser más informativas y prácticas en 

comparación con las estrategias utilizadas anteriormente. 

Esta capacidad de comparar de forma controlada distintas combinaciones de señales permite, además, 

establecer cuál de ellas ofrece el mejor rendimiento diagnóstico dentro del conjunto evaluado. Así, el 

presente estudio no solo aporta valor en términos metodológicos, sino que también sienta una base sólida 

para futuras investigaciones, al señalar de forma objetiva la combinación de señales óptima. De este modo, 

se facilita el diseño de modelos más eficientes y se favorece el desarrollo de herramientas de diagnóstico 

más accesibles, precisas y adaptadas a las necesidades clínicas reales. 

Gracias a los resultados obtenidos en el capítulo anterior, podemos analizar en profundidad el 

comportamiento del modelo con las distintas señales. Como podemos observar, en la amplia mayoría de 

los casos los valores de especificidad son muy elevados, llegando a alcanzar valores como 99.66% en 

algunos casos. Sin embargo, los valores de sensibilidad son bastante más bajos en comparación de los de 

especificidad, indicando que el modelo tiene más problemas clasificando a los pacientes enfermos que a 

los sanos. En otras palabras, en términos generales hay una gran cantidad de falsos negativos o sujetos 

que son clasificados como pacientes sanos cuando en realidad sufren AOS. Finalmente, podemos observar 

cómo los valores de accuracy son elevados, lo que implica que hay una gran cantidad de casos 

correctamente clasificados como positivos y una gran cantidad de controles clasificados como negativos. 

Además, podemos notar que esta última métrica tiende a crecer conforme aumenta el umbral. Por lo tanto, 

la conclusión que podemos extraer es que: el modelo clasifica correctamente la gran mayoría de los 

sujetos, pero aquellos que no son correctamente clasificados tienden a ser infraestimados, es decir, 

clasificados como sanos o como un grado de severidad menor al correspondiente. 

 

 

6.2.  Comparativa de señales 
 

Gracias a todas las tablas de resultados extraídas previamente, podemos realizar una comparativa 

directa entre todas las posibles combinaciones de señales para poder decantarse por aquella o aquellas 

combinaciones que presenten una estimación más fiable y precisa de la AOS pediátrica. Para poder 

realizar esta comparativa, extraeremos los valores estadísticos calculados previamente y los 

compararemos entre sí de la siguiente manera: en primer lugar, compararemos cada una de las señales 

agrupadas de 2 en 2 con las señales que la componen de manera individual; a continuación, emplearemos 

las 3 señales individuales frente a la agrupación de las 3 de forma simultánea; y finalmente, evaluaremos 

las diferencias entre las señales agrupadas de 2 en 2 y las señales agrupadas de 3 en 3. Las Tablas 6-1, 6-

2 y 6-3 recogen todos los casos previamente descritos para los conjuntos de test. 
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 SpO2 SpO2-FA FA 

PRECISION 0.6944 0.6837 0.6005 

RECALL 0.6722 0.6422 0.4710 

F1_SCORE 0.6688 0.6493 0.5038 

KAPPA 0.5166 0.4987 0.3094 

R2_SCORE 0.8710 0.8566 0.7214 

Tabla 6-1. Comparativa entre las señales SpO2, FA y SpO2-FA en el conjunto de test. 

 

 SpO2 SpO2-HRV HRV 

PRECISION 0.6944 0.6906 0.5286 

RECALL 0.6722 0.6815 0.4701 

F1_SCORE 0.6688 0.6740 0.4832 

KAPPA 0.5166 0.5381 0.2943 

R2_SCORE 0.8710 0.8932 0.7326 

Tabla 6-2.Comparativa entre las señales SpO2, HRV y SpO2-HRV en el conjunto de test. 

 

 FA FA-HRV HRV 

PRECISION 0.6005 0.5607 0.5286 

RECALL 0.4710 0.4647 0.4701 

F1_SCORE 0.5038 0.4871 0.4832 

KAPPA 0.3094 0.2877 0.2943 

R2_SCORE 0.7214 0.7499 0.7326 

Tabla 6-3. Comparativa entre las señales FA, HRV y FA-HRV en el conjunto de test. 

 

Hemos resaltado en negrita los mejores resultados de la señal o combinación de señales de la 

comparativa realizada en cada caso. Ahora, compraremos las 3 señales individuales con la agrupación de 

las 3 señales simultáneamente. En la siguiente tabla (Tabla 6-4) se muestran los resultados. 
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 SpO2 FA HRV SpO2-FA-HRV 

PRECISION 0.6944 0.6005 0.5286 0.6904 

RECALL 0.6722 0.4710 0.4701 0.6762 

F1_SCORE 0.6688 0.5038 0.4832 0.6687 

KAPPA 0.5166 0.3094 0.2943 0.5336 

R2_SCORE 0.8710 0.7214 0.7326 0.8765 

Tabla 6-4. Comparativa entre las señales SpO2, FA, HRV y SpO2-FA-HRV en el conjunto de test. 

En este caso, como podemos observar la combinación de las 3 señales tiene un Kappa superior 

ligeramente a la señal SpO2 y muy superior a las señales FA y HRV. Ahora, compararemos las señales 2 

a 2 con las 3 señales combinadas y analizaremos los resultados (Tabla 6-5). 

 

 SpO2-FA SpO2-HRV FA-HRV SpO2 -FA-HRV 

PRECISION 0.6837 0.6906 0.5607 0.6904 

RECALL 0.6422 0.6815 0.4647 0.6762 

F1_SCORE 0.6493 0.6740 0.4871 0.6687 

KAPPA 0.4987 0.5381 0.2877 0.5336 

R2_SCORE 0.8566 0.8932 0.7499 0.8765 

Tabla 6-5. Comparativa entre las señales SpO2-FA, SpO2-HRV, FA-HRV y SpO2-FA-HRV en el conjunto de test. 

 

A partir de los resultados obtenidos, se observa que, de las 3 señales, SpO2 es la más eficaz para 

detectar la AOS de manera individual. Esta señal alcanzó un valor de Kappa de 0.4357, superando 

claramente a los valores obtenidos con FA (Kappa=0.2304) y HRV (Kappa=0.2943). Asimismo, los 

valores de precision (0.6244) y recall (0.6161) de SpO2 también se sitúan por encima de los alcanzados 

por FA (precision: 0.5617; recall: 0.4457) y HRV (precision: 0.5286; recall: 0.4701). Esta superioridad 

se refleja igualmente en el F1_score, donde SpO2 obtuvo 0.6196 frente a 0.4624 y 0.4832 para FA y HRV 

respectivamente. Finalmente, el R2_score refuerza esta tendencia, con un valor de 0.8702 para SpO2, en 

comparación con 0.7214 y 0.7326 para FA y HRV. Estos resultados confirman que la señal SpO2 

proporciona un rendimiento notablemente superior en la detección del AOS respecto a las otras señales 

evaluadas. 

Por otro lado, los hallazgos realizados demuestran que algunas combinaciones obtienen unos 

resultados mejores que otras. Concretamente, empleando el mismo modelo en todas ellas las señales FA, 

HRV y FA-HRV obtienen un valor de Kappa de alrededor de 0.3, indicando que el estimador es una 

clasificación débil pero que apenas supera a la clasificación por azar (porque al azar es κ ≈ 0) (Abraira, 

2001; McHugh, 2012). La combinación SpO2-FA tienen un valor de Kappa más elevado, alcanzando casi 

el valor 0.5, indicando que en este caso, las estimaciones son considerablemente mejores que con las otras 

combinaciones. Finalmente, los mejores resultados se obtienen de las combinaciones de señales SpO2-

HRV y SpO2-FA-HRV, que sobrepasan el valor de Kappa de 0.5, aunque podrían ser mejores. Estos 

resultados están en línea con los logrados en estudios similares como el de Jiménez-García et al. (2022, 

2024) que obtiene 0.6011 y 0.6231 respectivamente, el de Vaquerizo-Villar et al. (2021) que obtiene 

0.515, el de Mortazavi et al. (2024) que obtiene 0.57 para ResNet y 0.63 para CNN-BiGRU o el de Xu Z 

et al. (2019) que obtiene 0.339 (Jiménez-García et al., 2022, 2024; Mortazavi et al., 2024; Vaquerizo-

Villar et al., 2021; Xu et al., 2019). 
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En el caso del resto de métricas, los valores de precision son más elevados en la combinación SpO2-

HRV (0.6906) que en el resto de combinaciones de dos señales como son SpO2-FA (0.6837) y FA-HRV 

(0.5607). Los valores de recall, F1_score y R2_score tienen el mismo comportamiento, siendo los valores 

de  SpO2-HRV (0.6815, 0.6740 y 0.8932 respectivamente) superiores a los valores obtenidos con SpO2-

FA (0.6422, 0.6493 y 0.8566 respectivamente) y FA-HRV (0.6762, 0.6687 y 0.8765 respectivamente). 

Finalmente, a la hora de elegir una opción u otra para la versión final del sistema la decisión queda 

entre las señales SpO2-HRV y SpO2-FA-HRV. No obstante, debido a que SpO2-HRV logró unos valores 

de precision (0.6906), recall (0.6815), F1_score (0.6740), R2_score (0.8932) y Kappa (0.5381) 

superiores a los valores de precision (0.6904), recall (0.6762), F1_score (0.6687), R2_score (0.8765) y 

Kappa (0.5336) de SpO2-FA-HRV; y que además está compuesta de dos señales en lugar de tres, por lo 

que su extracción es mucho más sencilla tanto en recursos como en tiempo, se ha optado por elegirla como 

la mejor candidata para el sistema. Además, estas dos señales pueden obtenerse mediante el uso de un 

pulsioxímetro, por lo que, el proceso de extracción de las señales es mucho más sencillo. 

 

Por lo tanto, eligiendo la señal SpO2-HRV, tendremos un sistema capaz de obtener valores de precision 

cercanos al 0.7. Concretamente, los resultados obtenidos promediando las 4 clases muestran una precision 

de 0.6906, lo que indica que un 69.06% de las predicciones positivas realizadas por el modelo son 

correctas. Por otro lado, el valor obtenido para el recall de 0.6815, lo cual indica que un 68.15% de los 

casos reales positivos fueron correctamente identificados. Estos dos valores indican que el modelo acierta 

en más de la mitad de las predicciones realizadas, pero aún tiene margen de mejora de entorno al 30-35%. 

Finalmente, el valor de F1-score de 0.6740, representa un buen balance del modelo pero indica una mayor 

predisposición a comprometer la sensibilidad en favor de mayor precision (Cifci et al., 2023; Hicks et al., 

2022).  

 

La combinación de las señales SpO2 con HRV es ligeramente superior a la misma combinación 

añadiendo la señal FA. Sin embargo, esta combinación es considerablemente superior en términos de 

Kappa a las señales SpO2 con FA y HRV con FA (Abraira, 2001; McHugh, 2012). Esto parece indicar, 

que la señal de FA no termina de aportar la información necesaria para realizar la predicción de forma 

correcta. Por el contrario, la señal SpO2 parece aportar un gran valor al modelo. Como hemos podido 

observar, las señales SpO2 y FA son de las 3 señales las que están más estrechamente relacionadas con la 

AOS, por lo que tiene sentido que sea la que más información aporte a nuestro modelo para realizar la 

estimación correcta (Jubran, 2015; Mildenhall, 2008). Aunque debemos tener en cuenta que es más 

complicado extraer y analizar información de la señal FA para detectar la AOS (Jiménez-García et al., 

2020, 2022). Finalmente, y observando los resultados obtenidos, podemos concluir que en nuestro modelo 

y de la forma en la que se han preprocesado los datos, la señal SpO2 es la señal que mayor información 

nos proporciona, la señal de HRV aporta más información complementaria al SpO2 y finalmente el FA 

no ayudó a mejorar los resultados al combinarla con las otras dos.. A pesar de que como ya se ha 

mencionado la FA es una de las señales más estrechamente ligadas a la AOS, debemos tener en cuenta 

que factores como el preprocesado o la forma de extraer la información pueden afectar en la calidad de la 

aportación de la propia señal al modelo. 

 

 

 

6.3.  Comparativa con estudios previos 
 

Una vez habiendo discutido todos los resultados obtenidos por nuestro modelo, realizaremos una 

comparativa de dichos resultados frente a aquellos aportados por otros autores. Debemos considerar que 

solo lo compararemos con los estudios donde se ha estimado la AOS infantil para los umbrales de 1, 5 y 

10 e/h. De esta manera podremos realizar una comparación directa, ya que carece de sentido comparar 

nuestro estudio con aquellos que tratan de estimar la AOS para otros umbrales distintos (p.ej., 3 e/h) 

(Álvarez et al., 2017); y tiene un valor añadido al emplear 3 umbrales distintos frente a aquellos que solo 

emplean uno (p.ej., 5 e/h) (Sturludóttir J et al. 2023). Para ello, dividiremos los resultados en distintas 

tablas agrupadas en función de las señales empleadas (Tablas 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12 y 6-13). 
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Estudios 

(SpO2) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Vaquerizo 

Villar et al. 

(2021) 

1 e/h 

University of 

Chicago 

981 

Segmentation 

(20min) 

↓ 

CNN 

↓ 

Bayesian 

Optimization 

80.1% 90.8% 36.4% 

5 e/h 83.9% 76.0% 88.6% 

10 e/h 92.3% 79.5% 95.8% 

1 e/h 

CHAT 

77.6% 71.2% 81.8% 

5 e/h 97.4% 83.7% 100.0% 

10 e/h 97.8% 83.9% 99.3% 

Jiménez 

García et al. 

(2020) 

1 e/h 

University of 

Chicago 
974 

Time and 

frec. domain 

analysis 

↓ 

 FCBF  

↓ 

AdaBoost.M2 

78.21% 91.43% 22.67% 

5 e/h 77.44% 66.44% 84.02% 

10 e/h 85.90% 40.96% 98.05% 

Xu Z et al. 

(2019) 

1 e/h 

University of 

Beijing 
432 

MLP de 3 

capas 

79.60% 95.30% 19.10% 

5 e/h 79.40% 77.80% 80.50% 

10 e/h 88.20% 73.50% 92.70% 

Hornero R et 

al. (2017) 

1 e/h 

Base privada 4191 

SPSS 

Statistics 

(v20) 

↓ 

MLP 

75.20% 84.00% 53.20% 

5 e/h 81.07% 68.20% 87.20% 

10 e/h 90.20% 68.70% 94.10% 

Mortazavi et 

al. (2024) 

1 e/h 

CHAT 844 

Segmentation 

(20min) 

↓ 

1D ResNet 

72.80% 96.80% 48.75% 

5 e/h 91.67% 77.13% 97.58% 

10 e/h 95.90% 73.25% 98.65% 

1 e/h Segmentation 

(20min) 

↓ 

CNN-BiGru 

86.53% 96.27% 61.27% 

5 e/h 91.54% 77.79% 97.23% 

10 e/h 96.17% 74.58% 99.81% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

79.08% 78.24% 82.09% 

5 e/h 90.52% 73.63% 97.67% 

10 e/h 95.83% 69.05% 98.11% 

Tabla 6-6. Tabla comparativa de estudios previos con nuestro estudio para la señal SpO2 y umbrales de 1, 5 y 10e/h. 
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Estudios 

(FA) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Barroso 

García et al. 

(2021a) 

1 e/h 

University of 

Chicago 
946 

Wavelet 

decomposition  

↓ 

FCBF 

↓ 

 AdaBoost.M2 

73.61% 79.89% 47.24% 

5 e/h 57.46% 74.43% 47.18% 

10 e/h 76.07% 41.06% 89.58% 

1 e/h 
Wavelet 

decomposition  

↓ 

FCBF  

↓ 

Bayesian 

MLP 

80.85% 100.0% 0.00% 

5 e/h 57.14% 77.25% 45.05% 

10 e/h 70.47% 50.00% 75.96% 

Jiménez 

García et al. 

(2020) 

1 e/h 

University of 

Chicago 
974 

Time and frec. 

domain 

analysis 

↓ 

 FCBF  

↓ 

 AdaBoost.M2 

80.51% 99.37% 1.33% 

5 e/h 62.82% 62.33% 63.11% 

10 e/h 78.97% 39.77% 89.58% 

Barroso 

García et al. 

(2021b) 

1 e/h 

University of 

Chicago 
946 

Bispectrum 

estimation 

↓ 

Bispectral 

band 

↓ 

FCBF 

↓ 

MLP 

78.14% 94.07% 11.16% 

5 e/h 61.20% 78.66% 50.61% 

10 e/h 77.35% 55.85% 83.16% 

Barroso 

García et al. 

(2017) 

1 e/h 

University of 

Chicago 
501 

Welch method 

(FFT) 

↓ 

FSLR  

↓ 

 LR 

60.00% 60.50% 58.60% 

5 e/h 76.00% 65.00% 80.60% 

10 e/h 80.00% 83.80% 79.00% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

77.78% 88.28% 40.30% 

5 e/h 82.35% 46.15% 97.67% 

10 e/h 91.83% 45.24% 99.24% 

Tabla 6-7. Tabla comparativa de estudios previos con nuestro estudio para la señal FA y umbrales de 1, 5 y 10e/h. 
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Estudios 

(HRV) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Martín 

Montero et 

al. (2021) 

1 e/h 

CHAT y 

University of 

Chicago 

1738 

Bispectrum 

Estimation 

↓ 

Bispectral 

features4 

↓ 

FCBF 

↓ 

 MLP 

63.40% 76.30% 38.30% 

5 e/h 81.00% 62.50% 84.20% 

10 e/h 89.30% 66.70% 91.60% 

Martín 

Montero et 

al. (2022) 

1 e/h 
CHAT y 

University of 

Chicago 

1738 MLP 

74.58% 85.47% 35.38% 

5 e/h 84.95% 64.44% 93.78% 

10 e/h 91.64% 53.66% 97.67% 

Martín 

Montero et 

al. (2023) 

1 e/h 

CHAT  1610 

Segmentation 

(10min)  

↓ 

Time and 

frec. domain 

analysis 

↓ 

LSBoost 

80.07% 90.76% 23.40% 

5 e/h 63.18% 66.67% 61.17% 

10 e/h 84.12% 40.00% 92.03% 

1 e/h 
Segmentation 

(10min)  

↓ 

Time and 

frec. domain 

analysis 

↓ 

AdaBoost 

- 66.94% - 

5 e/h - 72.08% - 

10 e/h - 77.13% - 

García 

Vicente et 

al. (2023)5 

1 e/h 

CHAT 1610 

Segmentation 

(10min) 

↓ 

CNN 

75.92% 84.19% 46.15% 

5 e/h 86.96% 76.67% 91.39% 

10 e/h 91.97% 53.66% 98.06% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

74.84% 79.50% 58.21% 

5 e/h 83.99% 56.04% 95.81% 

10 e/h 89.87% 40.48% 97.73% 

Tabla 6-8. Tabla comparativa de estudios previos con nuestro estudio para la señal HRV y umbrales de 1, 5 y 10e/h. 

 
4 Bispectral region amplitude, bispectral region entropy, bispectral region momento and weighted center of 

bispectrum. 
5 El trabajo de García Vicente et al. (2023), no emplea HRV sino ECG. 
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Estudios 

(SpO2-FA) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Jiménez 

García et al. 

(2024) 

1 e/h 

CHAT  

2612 

Segmentation 

(30min) 

↓ 

CNN + RNN  

↓ 

GradCAM 

87.30% 87.00% 88.10% 

5 e/h 93.50% 80.20% 99.10% 

10 e/h 93.50% 71.40% 97.00% 

1 e/h 

University of 

Chicago 

84.10% 96.80% 30.70% 

5 e/h 84.60% 82.90% 85.70% 

10 e/h 90.50% 78.30% 93.80% 

Jiménez 

García et al. 

(2020) 

1 e/h 

University of 

Chicago 
974 

Time and frec. 

domain 

analysis 

↓ 

FCBF 

↓ 

 AdaBoost.M2 

78.21% 90.79% 25.33% 

5 e/h 77.95% 72.60% 81.15% 

10 e/h 85.90% 44.58% 97.07% 

Barroso 

García et al. 

(2020) 

1 e/h 

University of 

Chicago 
946 

Recurrence 

plot analysis  

↓ 

FCBF 

↓ 

 Bayesian 

MLP 

81.10% 99.30% 4.20% 

5 e/h 60.90% 80.90% 48.90% 

10 e/h 80.60% 63.80% 85.10% 

Jiménez 

García et al. 

(2022) 

1 e/h 

CHAT  

2612 

Segmentation 

(5min)  

↓ 

2D CNN 

84.60% 82.40% 92.50% 

5 e/h 93.50% 80.20% 99.10% 

10 e/h 94.40% 71.40% 98.10% 

1 e/h 

University of 

Chicago 

84.10% 95.20% 37.30% 

5 e/h 84.10% 82.20% 85.30% 

10 e/h 90.30% 78.30% 93.50% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

80.07% 80.33% 79.10% 

5 e/h 90.85% 72.53% 98.60% 

10 e/h 93.46% 61.90% 98.48% 

Tabla 6-9. Tabla comparativa de estudios previos con nuestro estudio para la señal SpO2-FA y umbrales de 1, 5 y 10e/h. 
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Estudios 

(SpO2-HRV) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Ye P et al. 

(2023) 

1 e/h 

University of 

Beijing 
3139 

XGBoost 

90.45% 90.26% 100.0% 

5 e/h 85.67% 82.07% 93.78% 

10 e/h 89.81% 84.77% 92.11% 

1 e/h 

LR 

79.30% 78.90% 100.0% 

5 e/h 83.92% 80.00% 92.75% 

10 e/h 87.44% 85.79% 89.10% 

Garde et al. 

(2014) 
5 e/h 

British 

Columbia 

Children’s 

Hospital 

146 

AROC 

↓ 

LDA 

84.90% 88.40% 83.60% 

Garde et al. 

(2019) 

1 e/h 

British 

Columbia 

Children’s 

Hospital 

235 

Segmentation 

(2min) 

↓ 

Time and frec. 

domain 

analysis 

↓ 

LR 

71.00% 68.00% 86.00% 

5 e/h 78.00% 58.00% 89.00% 

10 e/h 88.00% 90.00% 87.00% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

80.39% 79.50% 83.58% 

5 e/h 93.46% 82.42% 98.14% 

10 e/h 93.79% 69.05% 97.73% 

Tabla 6-10. Tabla comparativa de estudios previos con nuestro estudio para la señal SpO2-HRV y umbrales de 1, 5 y 10e/h. 

 

Debido a que no existen por el momento estudios que traten de estimar el grado de AOS con los 

umbrales de 1, 5 y 10 e/h para la combinación de señales FA-HRV; compararemos nuestro estudio con 

los trabajos existentes aunque no se hayan basado en la misma metodología (Tabla 6-11). 

 

Estudios 

(FA-HRV) 
Umbral 

Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Sturludóttir 

J et al. (2023) 
5 e/h 

Hospital in 

Reykjavik 
20 

Segmentation 

(10seg) 

↓ 

CNN 

95.85% 75.15% 96.20% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

74.84% 82.01% 49.25% 

5 e/h 85.29% 58.24% 96.74% 

10 e/h 90.20% 35.71% 98.86% 

Tabla 6-11. Tabla comparativa de estudios previos con nuestro estudio para la señal FA-HRV y umbrales de 1, 5 y 10e/h. 
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Estudios 

(SpO2-FA-

HRV) 

Umbral 
Base de 

Datos  
Sujetos Metodología  

Resultados  

Acc. Se. Sp. 

Tan H et al. 

(2014) 

1 e/h 

University of 

Chicago 
100 

Direct 

comparison 

86.0% 82.5% 90.0% 

5 e/h 85.0% 62.5% 100.0% 

10 e/h 93.0% 65.0% 100.0% 

Nuestro 

estudio 

1 e/h 

CHAT 1639 

Segmentation 

(20min) 

↓ 

CNN 

80.72% 79.08% 86.57% 

5 e/h 92.16% 79.12% 97.67% 

10 e/h 93.79% 66.67% 98.11% 

Tabla 6-12. Tabla comparativa de estudios previos con nuestro estudio para la señal SpO2-FA-HRV y umbrales de 1, 5 y 10e/h. 

 

Si analizamos la comparativa de las señales individuales, en el caso de la señal SpO2 nuestro proyecto 

contrastado con los autores que emplean CNN como Vaquerizo et al. (2021) o variantes de CNN como 

Mortazavi et al. (2024) presenta unos resultados similares o ligeramente inferiores. Sin embargo, los 

resultados de accuracy y especificidad obtenidos son superiores a todos los otros estudios realizados 

previamente que no emplean CNN o variantes; y los valores de sensibilidad, son superiores a una gran 

mayoría de estos. Por otro lado, para la señal FA no existe ningún trabajo que emplee la metodología 

CNN, por lo que nuestro enfoque ya presenta una proposición novedosa a este campo de estudio. Además, 

los valores de accuracy y especificidad obtenidos son superior a todas las investigaciones anteriores en 

un promedio de un 20%, mientras que para el caso de la sensibilidad es completamente opuesto. 

Finalmente, en el caso de la señal HRV, podemos observar que nuestro modelo logra unos valores 

superiores o cercanos a la mayoría de los estudios previos realizados. No obstante, si comparamos 

nuestros resultados con los de García Vicente et al. (2023) que emplea la misma metodología y base de 

datos aunque no exactamente la misma señal (dicho estudio emplea la señal ECG), nuestro resultados son 

inferiores, lo cual puede deberse a las técnicas de preprocesado realizadas (a pesar de que se ha empleado 

la misma base de datos, el número de sujetos descartados es mayor), una estructura de CNN mucho más 

compleja o al uso de una señal más compleja como es el ECG en lugar del HRV. De nuevo, conseguimos 

demostrar la utilidad de las redes CNN para el análisis de esta señal en comparación con el resto de 

trabajos que emplean otro tipo de metodologías. Sin embargo, debemos destacar que el valor de 56.0% 

obtenido en la sensibilidad es el valor más bajo de todos los estudios. Y sin embargo, el valor de 

especificidad de 95.8% es el más alto de todos ellos, por lo que significa que el modelo infraestima la 

gravedad del trastorno y tiene a clasificar los casos de AOS como un grado inferior al real. 

Por otra parte, en el caso de las señales SpO2-FA, aquellas publicaciones que emplean una metodología 

de 2D CNN o CNN + RNN, han demostrado un rendimiento superior en todos los aspectos que nuestro 

estudio empleando 1D CNN. Comparando ambas metodologías para la base de datos CHAT para hacerlo 

más equitativo, podemos observar como en los estudios previamente mencionados el valor de accuracy 

es superior en un 2.6%, el valor de sensibilidad es superior en un 7.7% y el valor de especificidad es 

superior en un 0.5% respecto a nuestro estudio. Por otro lado, el resto de autores que emplean 

metodologías distintas a los modelos basados en CNN, obtienen resultados inferiores en comparación con 

nuestro estudio para las métricas de accuracy y especificidad, llegando a ser casi el doble que otros 

estudios (Barroso García, 2020). Sin embargo, de nuevo la sensibilidad obtenida es menor en nuestro caso 

que en los valores obtenidos por el resto. Por lo tanto, nuestro proyecto demuestra que emplear CNN o 

sus variantes logra una mejoría en los resultados en comparación con otras metodologías. Con la señal 

FA-HRV, se ha empleado la misma metodología en nuestro caso que en el resto, un modelo CNN. Sin 

embargo, los resultados son inferiores al estudio de (Sturludóttir, 2023), esto se puede deber al uso de 

otras bases de datos, un preprocesado de los datos distinto o incluso una estructura diferente para el 

modelo. 
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Las combinaciones de señales como SpO2-HRV y SpO2-FA-HRV representan una contribución 

completamente novedosa dentro del campo de estudio, ya que, hasta la fecha, no se han encontrado 

investigaciones previas que utilicen estas configuraciones aplicando metodologías basadas en DL. En 

ambos casos, los resultados obtenidos en cuanto a accuracy han sido elevados en comparación con los 

reportados por estudios anteriores. En el caso específico de la combinación SpO2-FA-HRV, nuestros 

resultados muestran una mejora considerable en la sensibilidad respecto a los valores reportados por Tan 

H et al. (2014) para los umbrales de 5 y 10 e/h (79.12% y 66.67% frente a 62.5% y 65.0%, 

respectivamente). No obstante, la especificidad en nuestro proyecto resulta ligeramente inferior, ya que 

Tan H et al. reporta valores entre 90% y 100%, mientras que los nuestros oscilan entre 86% y 98%. A 

pesar de ello, la accuracy obtenida supera también la de Tan H et al. para los umbrales de 5 y 10 e/h, al 

igual que ocurre con la sensibilidad. Por otro lado, en la combinación SpO2-HRV, los resultados de 

accuracy de nuestro modelo son superiores a los reportados por Ye P et al. (2023) y Garde et al. (2019) 

en todos los umbrales, salvo en el caso de 1 e/h, donde el modelo XGBoost de Ye P et al. supera al nuestro 

por un 10%. En cuanto a la sensibilidad, nuestros valores para 1 y 5 e/h son comparables a los obtenidos 

por Ye P et al. utilizando LR, y muestran una clara mejoría frente a los de Garde et al. (2019). Por el 

contrario, la especificidad presenta una tendencia inversa: nuestros resultados son superiores para 5 y 10 

e/h, con mejoras de hasta un 10% sobre Garde et al. y Ye P et al. (XGBoost), y un 5% sobre Ye P et al. 

(LR) en 10 e/h. El valor más alto de especificidad, sin embargo, lo obtiene Ye P et al. (2023) con XGBoost 

en el umbral de 1 e/h, alcanzando un 100%, aunque el número de sujetos de control era muy reducido en 

la base de datos empleada en dicho estudio.  

Por lo tanto, debemos destacar que en el caso de las otras señales, el uso de metodologías basadas en 

CNN o variantes obtienen mejores resultados en todas las métricas que aquellos estudios que emplean 

otro tipo de sistemas o modelos. Destacando así la superioridad de metodologías basadas en DL frente a 

aquellas basadas en ML (Gutiérrez‐Tobal et al., 2022). A mayores, nuestro estudio permite realizar una 

comparativa entre todas las combinaciones de señales previamente mencionadas, por lo que permite 

añadir un enfoque complementario a los ya aportados por las tablas previas al no solamente evaluar las 

señales y sus combinaciones de manera aislada si no permitir una comparativa directa entre ellas 

empleando una misma metodología común para todas.  

Para el caso del FA y tal y como se ha mencionado previamente, obtenemos unos valores ligeramente 

menores que en el resto de casos empleando la misma base de datos. Por lo tanto, si los datos empleados 

son iguales pero los resultados son más bajos puede deberse principalmente a dos motivos: el modelo 

empleado o el preprocesado de las señales de FA. Si los resultados no son tan buenos como en el resto de 

los proyectos, puede implicar que la metodología empleada no está tan optimizada como aquellas 

metodologías y modelos empleados por otros autores. En este caso, deberíamos valorar el uso de este 

modelo u otros para trabajar con la señal FA. Por otro lado, también debemos tener en cuenta el factor del 

preprocesado, ya que factores como el filtrado realizado o la frecuencia de muestreo elegida podrían estar 

afectando negativamente a la calidad de los datos. En cualquiera de los casos, los resultados obtenidos 

indicarían que es necesario mejorar el procesado de la señal de FA para incrementar su utilidad diagnóstica 

junto con otras señales. 
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Capítulo 7: CONCLUSIONES Y LÍNEAS 

FUTURAS 
 

En este último capítulo, se resumirán todos los conceptos y puntos desarrollados y analizados a lo 

largo de todo el documento. Para ello, se presentarán las conclusiones derivadas de este estudio, 

recapitularemos los mejores hallazgos y sus implicaciones a la hora de realizar el diagnóstico de la AOS 

infantil. A mayores, comentaremos las limitaciones de este estudio y las posibles líneas futuras que podrán 

ser exploradas para mejorar y aumentar las posibilidades de nuestro proyecto. 

 

 

7.1.  Contribuciones realizadas 
 

A lo largo de todo el documento se han ido presentando los resultados del proceso de optimización de 

hiperparámetros, los resultados del modelo encargado de realizar las predicciones del número de eventos 

y los resultados del sistema final encargado de predecir el valor final del IAH y obtener el grado de 

severidad de la AOS pediátrica. Por lo tanto, el análisis de estos resultados permiten sintetizar una serie 

de contribuciones aportadas por este estudio, dichos puntos se describen a continuación. 

- En primer lugar, este trabajo ha permitido realizar una comparativa entre todas las combinaciones 

posibles de las señales SpO2, FA y HRV. Gracias a nuestro estudio, hemos podido extraer una 

serie de métricas estadísticas con las que comparar de manera directa cada una de las 

combinaciones. Gracias a esta comparativa, hemos podido elegir la combinación SpO2-HRV como 

la agrupación de señales con mejores resultados a la hora de realizar la predicción. 

- En segundo lugar, hemos podido desarrollar un sistema basado en una CNN capaz de realizar 

estimaciones de la severidad de la AOS infantil en base a una, dos o tres señales y sus 

combinaciones. Este estudio permite disponer de una herramienta más con la que los equipos 

médicos especializados puedan complementar sus decisiones a la hora de realizar el diagnóstico. 

- Hemos podido realizar una aportación a la literatura completamente novedosa para combinaciones 

de señales SpO2-FA-HRV y SpO2-HRV añadiendo un nuevo enfoque y nuevas posibilidades. Para 

las señales SpO2 y HRV y la combinación SpO2-FA, hemos aportado otro estudio más empleando 

distintas técnicas de preprocesado y distintas bases de datos para comparar sus resultados. 

- Finalmente, para la señal FA, hemos aportado una nueva metodología basada en CNN con la que 

complementar los estudios ya existentes basados en otro tipo de técnicas.  

 

7.2.  Conclusiones  
 

Las conclusiones extraídas a partir del estudio y sistema desarrollados se presentan enumeradas a 

continuación. 

- Los sistemas basados en CNN, concretamente DL, son realmente útiles a la hora de realizar 

estimaciones a partir de datos sin etiquetar como las señales SpO2, FA y HRV. Este tipo de técnicas 

permiten poder emplear datos con un mínimo de preprocesado sin etapas específicas de extracción. 

- De todas las combinaciones de señales empleadas, la combinación de SpO2-HRV presenta los 

mejores resultados como son: 69.06% de precision, 68.15% de recall, 67.40% de F1_score, 0.5381 

de Kappa y 0.8932 de R2_Score para el conjunto de test para fragmentos de 20 min. 

- Los modelos CNN óptimos difieren para cada una de las señales y sus combinaciones debido al 

ajuste de sus hiperparámetros y las particularidades de cada una de estas señales.  
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- Podemos observar que las señales SpO2 y HRV mejoran sus resultados cuando se combinan juntas, 

mientras que las señales SpO2 y FA empeoran en comparación con SpO2 y mejoran en 

comparación con FA. Finalmente, las señales HRV y FA empeoran al combinarse en comparación 

a FA y mejoran en comparación a HRV. 

- Observando los valores de sensibilidad, exactitud y especificidad obtenidos podemos asegurar que 

nuestro modelo infraestima ligeramente el IAH en cualquiera de las señales y por tanto puede 

clasificar incorrectamente su nivel de severidad en algunos casos. 

- Debido a que los valores de sensibilidad, exactitud y especificidad obtenidos para FA son 

ligeramente menores que otros casos empleando la misma base de datos, podemos observar que 

existen factores como el preprocesado realizado en la señal que puede ser un claro condicionante 

a la hora de obtener mejores resultados. 

 

7.3.  Limitaciones y líneas futuras 
 

Finalmente, se exponen a continuación las limitaciones observadas al finalizar el proyecto y las 

posibles líneas futuras que podrían implementarse a partir de nuestro modelo. A continuación, 

comentaremos las limitaciones experimentadas y las posibles líneas futuras de nuestro proyecto: 

- Hemos desarrollado un sistema solo aplicable a los pacientes pediátricos, de manera que no podrá 

emplearse con pacientes adultos. 

- Nos hemos centrado exclusivamente en las 3 señales SpO2, FA y HRV y sus combinaciones sin 

explorar otras posibles señales o combinaciones. 

- Nos hemos centrado exclusivamente en redes CNN como metodología, sin explorar otros modelos 

o sus combinaciones. 

- Al no haber realizado ningún tipo de preprocesado las señales han sido empleadas en crudo, lo que 

implica presencia de artefactos no deseados que pueden afectar negativamente a los resultados. 

- El uso de la base de datos CHAT nos ha permitido disponer de una de las mayores bases de datos 

de AOS pediátrica disponibles. No obstante, no se ha explorado la posibilidad de combinarlas con 

otras bases de datos para aumentar así la cantidad de datos disponibles. 

- Se ha empleado solamente el algoritmo de optimización “Adam” sin evaluar el desempeño y 

rendimiento de otras alternativas. 

- Se la utilizado solamente la regresión Huber como algoritmo de regresión sin evaluar la posibilidad 

de usar otras alternativas. 

- No se han aplicado algoritmos de interpretabilidad por parte de los profesionales de la salud, al no 

haber implementado ninguna técnica de XAI. 

Una vez comentadas las limitaciones, ahora mostraremos las posibles líneas futuras que pueden ser 

abordadas: 

- Extrapolar nuestro sistema a los adultos, bien de forma equivalente empleando solo sujetos adultos 

o bien de manera conjunta empleando ambos grupos. 

- Probar el modelo con otro tipo de señales como puede ser un ECG, un EEG o señales acústicas 

referentes a la respiración o ronquidos del paciente. Además de combinar estas nuevas señales con 

las señales ya analizadas. 

- Explorar la posibilidad de utilizar otro tipo de modelos de DL, como pueden ser: una RNN, una 

red ResNet o una combinación de nuestra CNN con otro tipo de red o algoritmo. 
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- Realizar un preprocesado y limpieza de los datos de los sujetos, eliminando artefactos no deseados.  

- Aumentar la cantidad de datos disponible, ya sea combinándola con otras bases de datos u 

obteniendo otras nuevas a partir de estudios del sueño en sujetos pediátricos. 

- Buscar nuevos algoritmos de optimización alternativos al algoritmo “Adam”, nuevas variables de 

monitoreo de pérdidas y otros métodos de regresión para lograr una estimación del IAH más 

precisa, tratando de estimar con mayor exactitud el tiempo de sueño. 

- Añadir alguna herramienta de XAI con la que poder permitir a los especialistas en la salud que 

empleen nuestro sistema comprender como ha decidido nuestro sistema. 

Con estas líneas futuras se coloca el broche final a este TFM elaborado de forma conjunta con el Grupo 

de Ingeniería Biomédica (GIB) durante el transcurso del Máster de Ingeniero de Telecomunicaciones en 

la Universidad de Valladolid. 
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