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Resumen

El suefio constituye un proceso biologico fundamental para el mantenimiento de la salud, al
desempefiar un papel clave en funciones cognitivas e inmunologicas. Un descanso adecuado resulta
especialmente importante durante la infancia, etapa en la que el cuerpo y el cerebro se encuentran en pleno
desarrollo. Alteraciones en el suefio, como los microdespertares o ciertos trastornos, pueden implicar
riesgos significativos para la salud. Entre ellos, destaca la apnea obstructiva del suefio, un problema
relevante especialmente en edades tempranas.

El diagnostico de la apnea obstructiva del suefio se realiza habitualmente mediante un estudio del
suefio nocturno en laboratorio a través de la polisomnografia, una prueba precisa pero costosa en términos
de tiempo y recursos. Por ello, la investigacion cientifica ha centrado esfuerzos en la busqueda de métodos
alternativos mas accesibles. Entre estas alternativas, cobran relevancia los enfoques basados en técnicas
de inteligencia artificial, en particular el aprendizaje profundo, que permiten estimar de forma precisa el
indice de apneas e hipopneas a partir de sefiales fisiologicas.

Este trabajo se centra en evaluar la viabilidad del uso conjunto de tres sefiales fisiologicas: saturacion
de oxigeno en sangre (SpQ.), flujo aéreo (FA) y variabilidad de la frecuencia cardiaca (HRV), extraidas
de la base de datos publica “Childhood Adenotonsillectomy Trial” (CHAT). Estas sefiales fueron
procesadas mediante un modelo de aprendizaje profundo basado en redes neuronales convolucionales
(CNN). Para ello, los registros se segmentaron en intervalos de 20 minutos, introduciendo las senales
individualmente, por pares y en conjunto, con el objetivo de estimar el nimero de eventos respiratorios
por registro. Posteriormente, se aplico una regresion Huber para estimar el indice de apneas e hipopneas
y clasificar a los pacientes segun la gravedad del trastorno.

Se desarrollé un modelo para cada combinacion posible de senales, siendo la combinacién de SpO»
y HRV la que ofrecio los mejores resultados. Las métricas obtenidas para esta combinacion fueron:
sensibilidad del 79.50%, especificidad del 83.58% y exactitud del 80.39% para un umbral de 1 e/h;
82.42%, 98.14% y 93.46% para 5 e/h, respectivamente; y 69.05%, 97.73% y 93.79% para 10 e/h,
respectivamente.

Nuestro modelo representa una contribucion adicional a los estudios previos sobre la sefial SpO, y
propone un enfoque novedoso para el resto de combinaciones de sefiales. En el caso de FA, el uso de una
CNN con la base de datos CHAT constituye una propuesta original. Para HRV, aunque existen trabajos
previos que han empleado CNN, estos se han centrado en la sefial ECG, a diferencia de nuestro enfoque
basado directamente en HRV. En la combinacién SpO,—FA se han utilizado variantes de CNN, pero no
una CNN unidimensional como en nuestro caso. En cuanto a la combinacion SpO,—-HRYV, los estudios
previos emplean variantes de HRV, y aquellos que si usan HRV no aplican metodologias basadas en
CNN, por lo que nuestra propuesta también supone una aportacion novedosa. Para la combinacion FA—
HRYV se encuentran investigaciones centradas en ECG, pero no directamente en HRV, lo que distingue
nuevamente nuestro trabajo. Finalmente, para la combinacion SpO,—FA-HRYV, Ia literatura existente se
basa en comparaciones directas y en el uso de ECG, sin aplicacién de CNN ni empleo directo de HRV.
Por tanto, puede concluirse que nuestro trabajo introduce, en la mayoria de los casos, un enfoque o
metodologia nueva que complementa significativamente la literatura cientifica existente.

Palabras clave:

Inteligencia Artificial, Apnea Obstructiva del Suefio, Pediatria, Aprendizaje profundo.
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Abstract

Sleep is a fundamental biological process for maintaining health, playing a key role in cognitive and
immunological functions. Adequate rest is especially important during childhood, a stage in which the
body and brain are in full development. Sleep disturbances, such as micro-awakenings or certain
disorders, can pose significant health risks. Among these, obstructive sleep apnoea stands out as a
particularly significant problem in early childhood.

Obstructive sleep apnoea is usually diagnosed by means of a nocturnal sleep study in a laboratory
using polysomnography, a test that is accurate but costly in terms of time and resources. For this reason,
scientific research has focused its efforts on finding more accessible alternative methods. Among these
alternatives, approaches based on artificial intelligence techniques, particularly deep learning, are gaining
prominence, as they allow for the accurate estimation of the apnoea-hypopnoea index from physiological
signals.

This work focuses on evaluating the feasibility of using three physiological signals together: blood
oxygen saturation (SpO2), airflow (FA) and heart rate variability (HRV), extracted from the public
database such as the Childhood Adenotonsillectomy Trial (CHAT). These signals were processed using
a deep learning model based on convolutional neural networks (CNN). To do this, the records were
segmented into 20-minute intervals, introducing the signals individually, in pairs and together, with the
aim of estimating the number of respiratory events per record. Subsequently, a Huber regression was
applied to estimate the apnoea-hypopnoea index and classify patients according to the severity of the
disorder.

A model was developed for each possible combination of signals, with the combination of SpO2 and
HRYV offering the best results. The metrics obtained for this combination were: sensitivity of 79.50%,
specificity of 83.58% and accuracy of 80.39% for a threshold of 1 e/h; 82.42%, 98.14% and 93.46% for
5 e/h respectively; and 69. 05%, 97.73% and 93.79% for 10 e/h respectively.

Our model represents an additional contribution to previous studies on the SpO- signal and proposes a
novel approach for the other signal combinations. In the case of AF, the use of a CNN with the CHAT
database is an original proposal. For HRV, although there are previous studies that have used CNN, these
have focused on the ECG signal, unlike our approach based directly on HRV. In the SpO.—-AF
combination, variants of CNN have been used, but not a one-dimensional CNN as in our case. As for the
SpO—HRV combination, previous studies use HRV variants, and those that do use HRV do not apply
CNN-based methodologies, so our proposal also represents a novel contribution. For the FA-HRV
combination, there is research focused on ECG, but not directly on HRV, which again distinguishes our
work. Finally, for the SpO.—AF-HRYV combination, the existing literature is based on direct comparisons
and the use of ECG, without the application of CNN or direct use of HRV. Therefore, it can be concluded
that our work introduces, in most cases, a new approach or methodology that significantly complements
the existing scientific literature.

Keywords:

Artificial Intelligence, Obstructive Sleep Apnoea, Paediatrics, Deep Learning.
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Capitulo 1 Introduccién

Capitulo 1: INTRODUCCION

La apnea obstructiva del suefio (AOS), conocida en la literatura anglosajona como Obstructive Sleep
Apnea (OSA), constituye una de las afecciones de mayor prevalencia dentro del dmbito de las
enfermedades respiratorias. Esta patologia se caracteriza por la presencia de una serie de episodios de
caracter recurrente durante la fase del suefio en los cuales tiene lugar una obstruccion total o parcial de
las vias respiratorias superiores. Durante el trascurso de dichos episodios, se generan una serie de
alteraciones respiratorias que causan eventos de respiracion anormales. Estas anomalias pueden derivar
en una serie de efectos adversos para la salud en los pacientes que los padecen (Bitners & Arens, 2020a;
Moffa et al., 2020). Entre los motivos principales causantes de estos episodios nocturnos destacan: fallos
en las funciones de ciertos componentes anatomicos del cuerpo humano, como son los tejidos blandos y
los musculos dilatadores presentes en la faringe; defectos andmalos en la estructura craneofacial, debidos
a problemas hereditarios o enfermedades degenerativas; obstruccion de las vias buconasales, causado por
un exceso de mucosa o tejido blando; o defectos en piezas dentales y la propia composicion 6sea de la
boca (Malhotra & White, 2002). No obstante, las alteraciones neuroldgicas también pueden desenvolver
un papel fundamental en la aparicion de estos episodios. Esto se debe a que la obstruccion de las vias
respiratorias puede derivar de la ausencia o insuficiencia de reflejos nerviosos encargados de regular el
flujo aéreo durante la etapa de suefio, es decir, la falta de estimulo suficiente impide que los musculos de
la garganta se mantengan en la posicion adecuada para permitir una respiracion normal (Bitners & Arens,
2020a).

Se estima que esta patologia tan solo en Espafia afecta a un 6-8% de la poblacion espafiolal, es decir,
en torno a 3-4 millones de personas (Alvarez-Sala et al., 2015) y en Estados Unidos afecta
aproximadamente al 12% de la poblacion?, es decir, mas de 40 millones de personas (Ling & Wu, 2024).
A nivel global, la AOS afecta a mil millones de personas, convirtiéndola en el trastorno organico del
suefio mas comun en todo el mundo (Acevedo et al., 2018). Estas cifras son excesivamente preocupantes
teniendo en cuenta que muchos de los casos permanecen sin ser diagnosticados y pueden suponer un
problema grave de salud para los pacientes que la padecen (Bitners & Arens, 2020a).

Aunque la aparicion de los primeros textos académicos con una definicion oficial del sindrome de la
apnea del suefio data de los afios 70 (Guilleminault et al., 1977), afios atrds ya se podian observar
documentos que mencionaban este trastorno de manera indirecta y sin percatarse de ello. Concretamente,
si nos remontamos a los afios 30 del siglo XIX, en torno a 1835-1837, se publicaria la obra del cientifico
escritor Charles Darwin, conocida como The Posthumous Papers of the Pickwick club (Dickens, 2008).
Esta novela describe con detalle a un sujeto obeso conocido como Joe pareciente de una patologia
denominada por el propio autor como Somnolencia Diurna Excesiva (SDE) (Dickens, 1837,
Guilleminault & Abad, 2004). En dicha novela se describe a Joe como: “un nifilo maravilloso, gordo [...]
esta de pie sobre la alfombra, con los ojos cerrados como si estuviera dormido”. Como se puede apreciar,
el escritor inglés acababa de relatar un caso de apnea del suefio en un sujeto con obesidad sin ser consciente
de ello. Posteriormente, surgirian los primeros articulos con un enfoque mas riguroso y cientifico que
tratarian de evaluar este fendmeno del SDE. Concretamente, un estudio publicado en 1956 narraria de
nuevo la historia de una persona con obesidad desde un enfoque mas analista y detallado. En dicho
informe se destaca la importancia de una correcta ventilacion alveolar, y se propone la posibilidad de
evaluar la hipoventilacion del paciente mediante el andlisis de la respuesta respiratoria a variaciones de
didxido de carbono (CO,), pudiendo realizar asi un diagnéstico adecuado (Burwell et al., 1994).

! La poblacion espafiola a fecha de Octubre de 2024 es de 48.797.875 personas, segun datos oficiales extraidos
directamente del Instituto Nacional de Estadistica o INE. Disponible publicamente a través del siguiente enlace:
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&id
p=1254735572981

2 La poblacién de Estados Unidos o EEUU a fecha de Octubre de 2024 es de 335.135.000 personas, segun datos
oficiales extraidos directamente de la base de datos Datosmacro. Disponible ptblicamente a través del siguiente
enlace: https://datosmacro.expansion.com/paises/usa



https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&idp=1254735572981
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&idp=1254735572981
https://datosmacro.expansion.com/paises/usa

Capitulo 1 Introduccién

FACTOR DE RIESGO GRADO MOTIVOS
Sexo masculino MEDIO Factores anatomicos
Menopausia BAJO Desconocido, posiblemente anatomicos
Edad MEDIO Factores anatomicos y reflejos
Obesidad ALTO Factores anatomicos
Alcohol MEDIO Afeccion a los reflejos musculares
Tabaco BAJO Inflamacion del tracto respiratorio

BAJO Desconocido, posiblemente anatomicos

Tabla I1-1. Factores de riesgo que favorecen la posibilidad de padecer AOS (Bitners & Arens, 2020a).

Debemos tener en cuenta la existencia de ciertos factores de riesgo como la obesidad, las enfermedades
degenerativas o incluso el género de los pacientes, que pueden inducir en una mayor probabilidad de
desarrollar AOS (Malhotra & White, 2002). En la Tabla 1-1 se recogen los factores de riesgo mas
relevantes junto al grado de peligrosidad que implica.

Es crucial destacar el significativo impacto que tiene la obesidad en la posibilidad de desarrollar AOS.
De hecho, se estima que el 70% de pacientes que padecen esta patologia presentan ademas sintomas de
obesidad (Malhotra & White, 2002). Empleando el indice de Masa Corporal (IMC) como pardmetro de
referencia, podemos clasificar la relacion peso/altura de una persona como: infra peso (IMC < 18.5
[Kg/m?]), peso normal (18.5 [Kg/m?] <IMC <24.9 [Kg/m?]), sobrepeso (25 [Kg/m?] <IMC <29.9
[K g/m?]), obesidad leve o tipo I (30 [Kg/m?] <IMC < 34.9 [Kg/m?]), obesidad moderada o tipo II (35
[Kg/m?]<IMC < 39.9 [Kg/m?]) u obesidad mérbida o tipo Il (IMC > 40 [K g/m?]) (Okunogbe et al.,
2022). Es importante tener en cuenta que en el caso de los nifios, la forma de calcular el grado de obesidad
o el nivel de peso es diferente a la utilizada con los adultos.

Otro de los factores determinantes, aunque no tan importantes como la obesidad, es el género o sexo
de los pacientes. Los hombres tienen un mayor riesgo de sufrir AOS que las mujeres, esto se debe a
diferencias en su condicion anatémica como: la estructura y tamafio de los musculos, una distribucion de
grasa distinta, diferencias hormonales y otros factores que difieren de un sexo a otro que podrian ser la
explicacion a este fendomeno (Malhotra & White, 2002). Sin embargo, ciertos estudios argumentan que
esta diferencia de posibilidades de padecer AOS viene sesgada por la desigualdad entre la cantidad de
investigaciones realizadas en hombres y en mujeres, y en las diferencias que presentan ambos sexos en
los sintomas, como por ejemplo los ronquidos (Malhotra & White, 2002). Es decir, parte de esa disparidad
en sufrir o no de este trastorno puede darse por el infradiagnéstico de la AOS en mujeres (Malhotra &
White, 2002). Aun asi, independientemente de esta teoria las estadisticas entre hombres y mujeres se
igualan en dos etapas de la vida: la primera, en las edades mas tempranas hasta alcanzar la pubertad; y la
segunda, durante la etapa menopausica, aumentando en las mujeres las posibilidades de sufrir AOS y
llegando a igualar la de los hombres (Ho & Brass, 2011). Ademas, resulta interesante destacar como la
raza puede afectar en la posibilidad de desarrollar este trastorno. A pesar de no tener una respuesta
concreta, la hipdtesis mas acertada indica que las diferencias en la composicion y distribucion de los
tejidos blandos y las estructuras dseas pueden presentar ciertas variaciones en las distintas razas ante este
trastorno (Malhotra & White, 2002). En un estudio realizado en 1997 se evalu6 a un total de 225
afroamericanos y 622 caucasicos de entre 2 y 86 afios. El estudio concluyé que los jovenes afroamericanos
tienen un mayor riesgo de padecer apnea del suefio que aquellos que no lo son (Redline et al., 1997). Otros
factores como la edad y el consumo de alcohol o tabaco también puede afectar significativamente, aunque
estos factores no tienen un impacto tan critico comparados con la obesidad y el sexo citados previamente
(Bitners & Arens, 2020a).
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1.1. Caracteristicas de la Apnea Obstructiva del Sueiio

Antes de comenzar a hablar de las principales caracteristicas, sintomas y formas de diagndstico de este
trastorno, debemos diferenciar los distintos tipos de apnea del suefio que existen. Para ello, podemos
separarlas en funcion del origen o motivo que las causa (Xia & Sawan, 2021):

e Apnea Obstructiva del Suefio (AOS): es el tipo de apnea del suefio mas frecuente,
relacionada con la obstruccion de la via aérea superior. Mediante procesos biomecanicos como
la relajacion de los musculos, ocurre una obstruccion parcial o total de la cavidad traqueal
dificultando el flujo de aire.

e Apnea Central del Sueiio (ACS): este tipo de apnea del suefio es originada por problemas
neuroldgicos. La interrupcion del flujo aéreo se origina por una alteracion en la actividad
neuronal responsable de mantenerlo, ya que no se generan adecuadamente los estimulos
necesarios para activar los musculos implicados.

e Apnea Mixta del Sueio (AMS): la menos frecuente de las 3 ya que combina ambas
mencionadas previamente, este tipo de apnea es la mas peligrosa y compleja al incluir
problemas otorrinolaringoldgicos y neuronales.

En este caso de estudio nos enfocaremos principalmente en la AOS. Este tipo de apnea viene
caracterizada por dos procesos fisioldgicos definidos en la American Academy of Sleep Medicine (AASM)
de la siguiente forma (Berry et al., 2012; Eguia et al., 2007; Malhotra et al., 2021):

e Apnea: se conoce como apnea al evento en el que ocurre una disminucion del flujo aéreo de
al menos el 90% durante mas de 10 segundos en adultos y de 2 ciclos respiratorios en nifios
(aproximadamente 6 segundos).

o Hipopnea: en este caso se define como hipopnea al evento en el que ocurre una disminucion
del flujo aéreo pero en este caso de entre el 30% y el 90% durante mas de 10 segundos en
adultos y de 2 ciclos respiratorios en nifios (6 segundos aproximadamente). Ademas, se
experimenta también una caida del nivel de saturacion de oxigeno en sangre (SpO-) del 3% o
un microdespertar.

La aparicion recurrente de episodios de apnea e hipopnea durante el suefio provoca un flujo de aire
irregular e insuficiente en el sistema respiratorio, lo que conlleva una disminucion de la concentracion de
oxigeno en la sangre arterial. Este fendmeno se conoce como hipoxemia o desaturacion de oxigeno en
sangre (Eguia et al., 2007). Debido a la necesidad de las células de nuestro organismo de disponer de
oxigeno con el que poder generar energia, la perdida porcentual de este en el torrente sanguineo puede
afectar y dafar células e incluso 6rganos, siendo los mas criticos el sistema neuronal con el cerebro y el
cardiovascular con el corazon (Teran Santos et al., 2006). Por esa razon este trastorno conlleva graves
problemas para la salud de quien lo padece, tanto a corto como a largo plazo.

Ante una disminucion de oxigeno en el torrente sanguineo, nuestro cuerpo trata de compensar esa
pérdida enviando estimulos al sistema respiratorio para que intente volver a un estado de respiracion
normal, lo que puede generar un esfuerzo respiratorio aumentado, obligando a ciertos musculos a trabajar
mas para compensar esta falta de oxigeno (National Heart, 2016; Teran Santos et al., 2006). Ademas, el
corazon también se ve perjudicado al verse forzado a aumentar su carga de trabajo con el fin de bombear
mas sangre para que a los organos vitales no les afecte dicha disminucion de oxigeno, provocando asi
incrementos en la frecuencia cardiaca y la presion arterial no deseados. En algunos casos, si no se logra
compensar la falta de oxigeno el cerebro puede activar el estado de alarma y generar un microdespertar,
para intentar asi restablecer el correcto flujo de aire en nuestro cuerpo y recuperar los niveles de oxigeno
en sangre normales (Teran Santos et al., 2006).
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Una vez el paciente se despierta, se recupera el control sobre las vias respiratorias y generalmente las
funciones corporales se restablecen a la normalidad. Pero estos eventos de apnea-hipopnea pueden darse
varias veces en una noche, generando desaturaciones y microdespertares continuos y evitando que el
organismo entre en la fase de suefio profundo. Esta fase es esencial para poder descansar correctamente y
asi poder funcionar adecuadamente durante el dia, por lo que no alcanzarla de forma recurrente puede
acabar desencadenando problemas de salud graves a largo plazo (Teran Santos et al., 2006).

El trastorno de la AOS presenta una serie de sintomas para los pacientes que lo sufren tanto diurnos
como nocturnos. Por la noche, el sujeto puede experimentar sintomas como: asfixias, ronquidos,
pesadillas, congestion nasal, insomnio o nocturia entre otros (Olivi, 2013). Por otro lado, sufrir eventos
de apnea obstructiva por la noche, también tiene repercusion en el dia a dia. Pudiendo presentar sintomas
como: cansancio, fatiga, irritabilidad, apatia, depresion, dificultad para memorizar y concentrarse,
problemas cardiovasculares e incluso una mayor probabilidad de sufrir accidentes de trafico (Olivi, 2013).
Segun la Sociedad Espafiola de Neumologia y Cirugia Toracica, se descubrié en 1998 que la AOS era la
segunda causa de muerte en accidentes de trafico en Espafia, siendo los pacientes con un grado elevado
de AOS hasta 7 veces mas propensos a verse involucrados en accidentes de trafico que aquellos que no
presentan este trastorno (Teran-Santos et al., 1999). Esta cifra, puede llegar a incrementarse hasta 11 si se
consume alcohol y drogas a mayores (Ana et al., 2006).

1.2. Diagnostico de la Apnea Obstructiva del Suefio

En el contexto del diagnodstico de la AOS, la polisomnografia (polysomnography, PSG) es considerada
el estdndar de referencia tanto en adultos como en nifios. Esta prueba debe realizarse en unidades del
suefio especializadas, adecuadamente equipadas y por un equipo de profesionales, garantizando asi unos
resultados precisos y confiables (Bitners & Arens, 2020a; Mazzotti et al., 2018). Realizar esta prueba,
especialmente en nifios, presenta una dificultad afiadida debido a la posibilidad de no poder conciliar el
suefio correctamente en un entorno extrafio durante la noche, lo que puede alterar los resultados. Durante
esta prueba el paciente debe dormir en la unidad del suefio con varios sensores y electrodos conectados a
su cuerpo con el objetivo de registrar las sefiales biomédicas de interés y asi poder diagnosticar el grado
de AOS (Becerra et al., 1991; Behera et al., 2021; Budhiraja et al., 2005; Leske, 2014; Mazzotti et al.,
2018; Mildenhall, 2008). Algunas de las sefiales tipicamente recogidas son:

o Electro-oculograma (EOG): permite registrar la actividad eléctrica relacionada con los
movimientos oculares lentos de la fase no REM y los rapidos de la fase REM ademas del
potencial eléctrico del ojo. Para poder registrar estas sefiales se colocan electrodos en varios
puntos cercanos a los musculos del ojo por la parte externa.

e Electrocardiograma (ECG): permite registrar la actividad eléctrica del corazon y calcular el
ritmo cardiaco, permitiendo detectar anomalias asignadas a los efectos de los trastornos
respiratorios producidos por patologias como la AOS. En este caso los electrodos se colocan
a lo largo de la piel del paciente, concretamente por los brazos, piernas y pecho.

e Electromiograma mentoniano (EMGm): permite registrar la actividad eléctrica de los
musculos del menton para ayudar a identificar la fase REM. De igual manera que en los casos
previos, se emplean electrodos colocados a lo largo del menton.

e Electroencefalograma (EEG): permite registrar la actividad eléctrica del cerebro de manera
no invasiva mediante una serie de electrodos colocados en el cuero cabelludo alrededor del
craneo. Estos electrodos se deben colocar en ciertas regiones de interés segun el sistema
internacional 10-20 y es recomendable registrar como minimo 6 canales en las zonas frontal,
central y occipital (F1, F2, C3, C4, O1 y O2) para poder realizar correctamente la prueba
(Figura 1-1).
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Figura 1-1. Zonas de colocacion de electrodos vistas lateral (izquierda) y superior (derecha): C-central, F-frontal, O-

Occipital, A-Auricular y P-Parietal (Departamento de fisiologia, facultad de medicina UNAM).

Flujo aéreo (FA) respiratorio: sensores como las canulas de presion®, permiten detectar el
flujo aéreo al registrar variaciones de temperatura entre el aire que el paciente inhala y exhala
durante la fase del suefio. Estos dispositivos se colocan alrededor de la boca y la nariz para
poder detectar los cambios de temperatura.

Movimiento/esfuerzo respiratorio: sensores capaces de registrar el movimiento toracico y
abdominal. Para ello, se emplean bandas toracoabdominales que permiten realizar un
seguimiento de los movimientos realizados al inspirar y expirar durante el suefio.

Pulsioximetria: empleando un pulsioximetro, se puede registrar la sefial SpO» y la frecuencia
del pulso. Generalmente, este dispositivo se presenta en forma de pinza que, al colocarse en el
dedo, utiliza diodos emisores de luz (LED) y fotodiodos para emitir y captar luz roja e
infrarroja, permitiendo asi medir la cantidad de luz absorbida por la sangre en dos longitudes
de onda diferentes.

Nivel de dioxido de carbono: la medicion se realiza a través de sensores que detectan la
concentracion de CO: en el aire espirado, ya sea mediante capnografia o monitorizacion
transcutanea. Estos dispositivos emplean tecnologias opticas que miden la absorcion de luz
por parte del COz, lo que permite estimar con precision sus niveles durante la respiracion.

Presion esofagica: permite medir el esfuerzo inspiratorio del paciente mediante cambios de
presion sobre un globo hinchado con aire. Este dispositivo consiste en un catéter pequefio con
un globo inflable en su extremo que se introduce por la nariz o boca hasta el esofago. Al ser
tan invasivo, su uso es limitado.

Material audiovisual: permite realizar un seguimiento del estado del paciente de forma
audible y visual. Consiste en realizar una grabacion en video del sujeto para poder controlar
sus movimientos y una grabacion de audio para poder registrar sonidos como ronquidos o
respiraciones forzosas.

3 Céanula de presion: compuesta por un tubo flexible colocado en las fosas nasales (conocido como tubo nasal) y un
transductor de presion que convierte las variaciones de presiones del aire en sefiales medibles (Wegener, 2017).
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La PSG presenta una elevada complejidad, un alto costo de realizacién y un posible sesgo en los
resultados (Leske, 2014). Este sesgo se debe principalmente a que el paciente se encuentra en un entorno
desconocido como es una unidad del suefio, y tiene gran cantidad de aparataje y sensores colocados por
todo su cuerpo, lo que puede ocasionar efectos no deseados como no poder conciliar el suefio
adecuadamente. Por ello a lo largo de los ultimos afios se han investigado una gran variedad de alternativas
para reducir costes y tiempo de diagnostico, facilitando la prueba tanto al médico como al paciente. La
opcion mas prometedora y elegida de forma frecuente por los especialistas médicos es la realizacion de
una prueba simplificada en el domicilio de la persona (Home Sleep Apnea Test, HSAT). Esta prueba
permite registrar algunas de las sefiales citadas anteriormente en el propio hogar del paciente, logrando
asi abaratar costes tanto en recursos como en tiempo, y permitiendo una mayor comodidad para el sujeto
gracias a la posibilidad de poder dormir y descansar correctamente en un entorno conocido como es su
propia habitacion. En el HSAT se registran generalmente sefiales como: la frecuencia cardiaca, la SpO»
mediante pulsioximetria, grabacion de audio para detectar ronquidos y el flujo aéreo, entre otros. No
obstante, las sefiales recogidas pueden variar entre pacientes, médicos e incluso dispositivos (Bitners &
Arens, 2020a; Caples et al., 2021).

Blumenthal y McGinnis afirmaron: “if something cannot be measured... it cannot be improved”
(Malhotra et al., 2021). Esta celebre cita hace referencia a la importancia de cuantificar todo aquello que
nos rodea con el fin de poder analizarlo y mejorarlo. Aplicandolo a nuestro caso de estudio, el objetivo
principal de tanto la PSG como el HSAT no es otro que diagnosticar a los pacientes de AOS cuantizando
el grado de severidad que presentan de dicho trastorno, pudiendo asi aplicar el mejor tratamiento a cada
uno de ellos en funcién del grado diagnosticado. Para ello, como en todo campo de la medicina se emplean
puntuaciones o métricas con las que poder clasificar y evaluar las diferentes enfermedades o patologias
que pueda presentar un paciente. Sin embargo, la métrica por excelencia y, por tanto, la que mas se emplea
para diagnosticar los distintos grados de AOS es el Indice de Apena-Hipopnea (IAH). La primera mencion
de esta métrica, se remonta a 1976, siendo Guilleminault el primero en emplear el término “apnea index”
en su publicacion “The Sleep Apnea Syndromes” (Guilleminault et al., 1977; Pevernagie et al., 2020).
Este indice representa la relacion entre la cantidad de eventos dados en un periodo de suefio y el tiempo
del dicho periodo, es decir, podemos darle forma con la siguiente expresion (Ecuacion 1.1):

numero de apneas e hipopneas [eventos]
IAH = - - (1.1)
tiempo de sueiio [h]

En funcion del IAH calculado en la prueba se pueden clasificar a los pacientes adultos que sufren de
este trastorno de 4 maneras distintas (Berry et al., 2012; Guilleminault, 2018; Malhotra et al., 2021;
Mediano et al., 2022; Pevernagie et al., 2020):

e Sin AOS: en el caso de que el IAH < 5 [eventos/hora], se considerara que el paciente no tiene
o tiene eventos de apnea-hipopnea dentro de lo normal, y por lo tanto no sufre de la patologia
de AOS, por lo que no hace falta ningun tratamiento.

e AOS leve: el grado de apnea menos peligroso, pero no por ello menos importante. En este
caso, el IAH ~{5 — 14} [eventos/hora], se caracteriza por pocos eventos de apnea durante la
etapa de suefo. A pesar de no ser peligroso, puede indicar una fase temprana de AOS mas
severa y debe ser vigilado regularmente y tratado.

e AOS moderada: en este caso, el [AH ~{15 — 30} [eventos/hora], lo que implica eventos de
caracter frecuente dificultando bastante el descanso adecuado, sobre todo si dichos eventos
van acompafiados de un microdespertar.

e AOS severa: este es el caso mas grave de todos, en este caso el IAH > 30 [eventos/hora], lo
que implica eventos de caracter muy frecuente durante la etapa de suefio, imposibilitando el
correcto descanso del paciente y desencadenando problemas de salud graves ademas de otras
patologias.
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A pesar de que el IAH es la métrica mas empleada, existen otras alternativas como son por ejemplo
(Malhotra et al., 2021; Torre-Bouscoulet et al., 2007): la carga hipdxica, haciendo referencia a la cantidad
de tiempo que el paciente se encuentra en niveles muy bajos de oxigeno en sangre durante un periodo de
tiempo; la intensidad del microdespertar, como su propio nombre indica, mide la fuerza con la que la
persona se despierta, clasificando como muy fuerte al microdespertar que logra despertar por completo al
sujeto, y como débil al microdespertar del cual el paciente no es consciente; el Odds Ratio Product (ORP),
empleado para cuantificar la profundidad y calidad de suefio del paciente, usando para ello el EEG; el
Indice de Desaturacion de Oxigeno al 3% (Oxigen Desaturation Index 3%, ODI3), indicador empleado
para medir cuantas veces por unidad de tiempo (generalmente 1 hora) el nivel de oxigeno en sangre cae
un cierto umbral (frecuentemente 3%); o la duracion del evento de apnea-hipopnea, similar al IAH, pero
midiendo los lapsos temporales de los eventos en lugar de la cantidad de ellos (Malhotra et al., 2021;
Torre-Bouscoulet et al., 2007). Estas son solo algunas de las métricas mas relevantes discutidas en los
estudios. No obstante, la eleccion de la métrica mas adecuada en cada caso y sujeto, quedara determinada
por el contexto de la situacidn, las caracteristicas de la persona y la experiencia o preferencias del
profesional de la salud encargado. Ya que, no en todos los casos estan presentes los mismo sintomas o se
tiene la misma estructura anatoémica.

1.3. Tratamientos de la Apnea Obstructiva del Suefio

Como la gran mayoria de los trastornos y enfermedades comunmente conocidas, existe uno o varios
tratamientos con los que poder eliminar o reducir los sintomas que presentan. En el caso de la AOS hay
una gran variedad de opciones disponibles, que dependiendo del paciente y del grado de AOS, pueden ser
mas o menos invasivos, complejos o efectivos. Al igual que ocurria con el IAH en la parte de diagnostico
con la existencia de una métrica estandar para clasificar los grados de AOS, ocurre con el tratamiento en
adultos. El tratamiento mas frecuente y efectivo empleado para abordar la AOS en adultos, es la presion
positiva continua en vias respiratorias, o CPAP por sus siglas en inglés Continuous Positive Airway
Pressure (Bitners & Arens, 2020Db).

La CPAP consiste en un tipo de tratamiento donde se intenta mantener un flujo de aire continuo gracias
a una presion positiva constante ofrecida mediante una mascarilla y un aparato regulador de presion
(Figura 1-2). Esta presion positiva constante logra mantener las vias respiratorias en un estado adecuado
para que haya un correcto flujo aéreo y el paciente pueda respirar con normalidad. Por lo general, la
maquina es ajustable en funcion de la presion u otras necesidades fisiologicas del sujeto y puede emplearse
una mascarilla nasal, oronasal u oral con distintas formas, tamafios y areas de cobertura en funcion de los
gustos de cada persona (H. Chang et al., 2020).

MASCARILLA

Figura 1-2. Dibujo esquematico de un tratamiento con CPAP (Autoria propia, generada con IA).
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Para conseguir que el tratamiento logre surtir efecto, la CPAP debe de usarse como minimo 4 horas
por dia (depende del grado de la AOS), 5 dias a la semana (Xia & Sawan, 2021). Aunque se ha notado
una mejoria considerable en la variabilidad de la frecuencia cardiaca de los pacientes durante la noche,
simplemente por comenzar a aplicar el tratamiento (Xia & Sawan, 2021). El seguimiento de estas
directrices permitira al paciente disminuir la posibilidad de sufrir enfermedades cardiovasculares, diabetes
o hipertension, entre otras. Ademas, mejorara la calidad de vida tanto fisica como psicologica y mental al
permitir al paciente tener un correcto suefio y por consiguiente un descanso adecuado, permitiendo al
cerebro y resto de 6rganos repararse y funcionar correctamente (Xia & Sawan, 2021). Tras 3 meses, se ha
comprobado que los pacientes experimentan mejoria en la presion sanguinea, capacidad pulmonar e
incluso mejoras a nivel ocular tanto en la retina como en la sensibilidad de la vista (Spannella et al., 2017).

Sin embargo, como cualquier otra intervencion o tratamiento, la terapia CPAP tiene una serie de
desventajas que a pesar de no estar presentes en todos los casos, deben ser consideradas. Alguno de los
problemas o efectos secundarios que puede presentar un sujeto tras el uso de la CPAP pueden ser:
sequedad, congestion, hemorragias y otras molestias nasales, distensién abdominal y otros problemas
gastrointestinales o problemas dentales y mandibulares (Buela-Casal G, 1999). Ademas, se pueden
originar otros problemas como incomodidad al llevar la mascarilla o despertares por el ruido generado
por la maquina, aunque estos ultimos pueden ser subsanados cambiando el equipo para que se ajuste a las
necesidades del usuario.

Aunque la CPAP es el tratamiento mas empleado en adultos, existen otros dependiendo de las
necesidades y condiciones médicas de la persona, pudiendo ser mas o menos invasivos, largos o agresivos.
Una de las alternativas menos invasivas consiste en dispositivos colocados en la boca para corregir la
forma de la mandibula o la colocacién de la lengua en el paciente. Pero se debe tener en cuenta que este
tipo de tratamientos solo funciona con aquellos sujetos que sufran de malformaciones o anomalias bucales
o mandibulares que afecten directa o indirectamente a la AOS (Konrad, 2006; Malhotra & White, 2002).
Por otro lado, un cambio de habitos en la vida del usuario puede ser también un tratamiento efectivo en
casos mas leves. Estos habitos incluyen el cese de consumo de sustancias nocivas tales como alcohol o
tabaco, establecer un horario de suefio constante y equilibrado a lo largo de la semana respetando los
ciclos adecuadamente, aumentar la cantidad de ejercicio y actividad fisica realizado diariamente, o realizar
un cambio a una dieta mas balanceada y adecuada con el objetivo de bajar un posible exceso de peso
presente en el paciente (B. Gil et al., 2005).

Otro tipo de tratamientos existentes son los quirtrgicos, aunque estos no se emplean frecuentemente
salvo que el beneficio sea considerable o no haya otras alternativas debido a que son los mas invasivos,
complejos y requieren de un mayor tiempo de recuperacion. Los tratamientos quirurgicos son muy
variados e incluyen operaciones bucales o maxilares; operaciones nasales como pueden ser la colocacion
de una tabique desviado o correccion de hipertrofia de cornetes; o incluso operaciones para reposicionar
o retirar parte de los tejidos como la ivula, el paladar o la faringe (uvulopalatofaringoplastia) (Konrad,
2006; Malhotra & White, 2002; Won et al., 2008). Finalmente, debemos mencionar la existencia de otras
alternativas como tratamientos con medicamentos y drogas o tratamientos mediante ultrasonidos. Aunque
estos ultimos no son empleados de manera frecuente debido a su bajo indice de éxito en comparacion con
el resto de tratamientos previamente mencionados (Konrad, 2006; Xia & Sawan, 2021).

En la Figura 1-3 se puede observar una herramienta empleada frecuentemente por profesionales de la
salud para evaluar las alternativas y posibilidades quirurgicas a la hora de preparar un tratamiento para
subsanar el trastorno de AOS presente en un paciente. En dicha figura, se puede ver un complejo diagrama
de flujo donde se recogen una serie de posibilidades tanto de operacion como de tratamientos no invasivos
disponibles en funcion de las variables de entrada como son la edad, los sintomas o las deformaciones
presentes en el sujeto (Xia & Sawan, 2021).
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Figura 1-3. Diagrama de flujo representativo de posibles procedimientos quirurgicos y tratamientos no invasivos para
pacientes con AOS (Xia & Sawan, 2021).
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1.4. Apnea Obstructiva del Sueiio Pediatrica

El sindrome de Ia AOS no es exclusivo de adultos, si bien son el grupo mas favorable a padecer dicho
trastorno debido al envejecimiento natural del cuerpo humano, los nifios también pueden sufrir este
sindrome con consecuencias mas graves (Bitners & Arens, 2020a). Consecuencias que afectan
negativamente a su desarrollo tanto fisico como mental, perjudicando por lo tanto su capacidad de
aprendizaje (Bitners & Arens, 2020a). Por lo tanto, destinaremos este subapartado a resaltar las
particularidades mas relevantes del sindrome de la AOS en nifios.

Debemos tener en cuenta que en la mayoria de los casos de AOS infantil, a diferencia de los adultos,
la principal causa del problema son las amigdalas y las vegetaciones adenoideas. Debido a un tamaiio o
crecimiento inusual de estos tejidos se produce un bloqueo de forma parcial o completa del paso del aire
a través del tracto respiratorio, produciendo los eventos conocidos como apnea o hipopnea durante la fase
del suefio. Para poder evaluar y clasificar el tamafio de las amigdalas se emplea frecuentemente la
puntuacion de Brodsky. Este sistema empleado tanto en nifios como en adultos, permite clasificar el grado
de obstruccion de las vias respiratorias en funcion de la presencia excesiva de las amigdalas (Brodsky,
1989). La escala incluye los siguientes niveles:

e Grado 0: paciente completamente sano. Las amigdalas se encuentran en su posicion y tienen
un tamafio correcto, sin causar ningun problema al tracto respiratorio ni al flujo de aire. Este
es el grado mas comun, presente en toda persona que no tenga ninguna patologia respiratoria
relacionada en la garganta.

e Grado 1: paciente con problema leve. Las amigdalas ocupan un 25% del espacio entre los
pilares amigdalinos, es decir, las paredes de la faringe, limitando ligeramente el flujo de aire.

e Grado 2: paciente con problema medio. Las amigdalas ocupan entre un 25% y un 50% del
espacio de la faringe, limitando mas el flujo aéreo que el caso previo.

e Grado 3: paciente con problema severo. Las amigdalas ocupan entre un 50% y un 75% del
espacio de la faringe, dificultando en gran medida el flujo aéreo.

e Grado 4: paciente critico. Las amigdalas ocupan mas del 75% del espacio de la faringe, siendo
el grado més severo y llegando a los casos més extremos donde las amigdalas pueden hacer
contacto entre si imposibilitando la respiracion del sujeto con normalidad.

La Figura 1-4 ilustra los diferentes grados definidos en la Escala de Brodsky mencionados
anteriormente:

GRADO 0O GRADO 1 GRADO 2

GRADO 3 GRADO 4
Figura 1-4. Puntuacion Brodsky Grados 0-4. (Adaptado de Clinica Otorrinolaringologica Santa Catharina, 2020).
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Al igual que ocurria con los adultos, no hay un unico factor de riesgo que conlleve la aparicion de este
trastorno. Existen otros factores clave como malformaciones, deformidades u obesidad excesiva (Moffa
et al., 2020). La Organizacion Mundial de la Salud (OMS) define el sobrepeso en nifios en dos rangos de
edad. El primer rango, en nifios menores de 5 afios se define como sobrepeso aquel peso dos veces superior
a dos desviaciones tipicas por encima de los patrones; y la obesidad aquel peso tres veces superior a dicha
desviacion tipica. Para nifios entre 5 y 19 afios se define el sobrepeso como un peso superior a una
desviacion tipica por encima de la mediana y la obesidad morbida como un peso dos veces superior a
dicha desviacion tipica (OMS, 2024). En las Figuras 1-5 y 1-6 se muestran las distintas graficas empleadas
por la OMS para medir el grado de obesidad a partir del indice de masa corporal (normalizado por edad
y sexo0) en nifios y nifias entre 5 y 19 afios, respectivamente:
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Figura 1-6. Tabla de calculo IMC/Edad para nifias entre 5 y 19 aiios, proporcionada por la OMS (OMS, 2007).
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Ademas, debemos destacar que los grados de AOS en nifios no son clasificados de la misma forma, ni
son diagnosticados de igual manera que en los adultos. Es cierto que se emplea el mismo indice, el IAH,
pero los valores para diagnosticar y clasificar los distintos grados de AOS y la propia definicion de la
métrica son distintos (Bitners & Arens, 2020a; Moffa et al., 2020):

e Sin AOS: en el caso de que el IAH < 1 [eventos/hora], al igual que los adultos, el paciente no
presenta sintomas de AOS.

e AOS leve: ¢l caso de apnea menos peligroso, en este caso, el IAH esta entre 1 y 5 e/h. Los
umbrales del IAH empleados en nifios son mas restrictivos que en el caso de los adultos ya
que se considera AOS leve un valor de IAH que para adultos seria un caso sin AOS (Rosen
et al., 1992).

e AOS moderada: en este caso, el IAH es superior a 5 e/h pero inferior a 10 e/h, es decir,
eventos mas frecuentes que en la AOS leve. En estos casos, es necesaria atencion inmediata
para evitar dafios mayores a largo plazo (Kaditis et al., 2016).

e AOS critica: este es el caso mas grave de todos, en este caso el [AH >= 10 e/h, lo que implica
eventos de manera muy frecuente, imposibilitando el descanso correctamente. Este grado al
igual que el caso moderado, requiere de tratamiento inmediato para no desencadenar secuelas
mas graves u otros problemas de salud (Kaditis et al., 2016).

Otra de las grandes diferencias entre adultos y nifios es la forma del diagnostico. A pesar de seguir
siendo la PSG el estandar mas empleado para diagnosticar la AOS tanto en adultos como en nifios, no se
obtiene el mismo resultado en ambos grupos. Esto se debe en parte a que las sefiales registradas en nifios
a lo largo de la noche en el laboratorio del suefio no logran alcanzar la precision deseada, lo cual es uno
de los principales motivos por el que se buscan alternativas a este método de diagnostico (Bitners & Arens,
2020a). Esto se debe a que es mucho mas dificil que un nifio en temprana edad, en un entorno no familiar
como es una unidad del suefio y lejos de sus padres, mantenga la quietud y tranquilidad necesarias para
conciliar el suefio. Por lo que las horas de suefio profundo se ven reducidas y los resultados pueden ser
insatisfactorios (Alonso Alvarez et al., 2008). Por ejemplo, al estar nervioso no podra dormir, aumentara
su ritmo cardiaco, variara su EEG y probablemente no alcance apenas la fase de suefio profundo. Estos
efectos pueden ser alin mayores cuanto mas pequefio sea el paciente, llevando a la comunidad cientifica
a investigar y desarrollar otra serie de sistemas alternativos a la PSG para diagnosticar clinicamente la
AOS en nifios (Bitners & Arens, 2020a).

Algunos de los métodos alternativos empleados para realizar un filtrado inicial de pacientes con
sospechas de AOS son (Bitners & Arens, 2020a; Leske, 2014): la exploracion fisica, realizada mediante
la observacion por parte de un especialista de la respiracion por nariz y boca, el tamafio de los tejidos de
la garganta (empleando la escala Brodsky mencionada anteriormente), calidad de la voz o ronquidos entre
otros; la realizacion de cuestionarios sobre su dia a dia tanto al usuario como a sus padres o tutores legales,
con el fin de identificar comportamientos que la propia persona no pueda notar al estar dormido, tales
como ronquidos; el uso de versiones adaptadas de HSAT para nifios, con el fin de que puedan realizar una
prueba similar a la PSG desde su propia casa; uso de radiografias o Imagen por Resonancia Magnética
(IRM) dinamicas para poder observar la estructura interna de la zona de la garganta; o endoscopias con o
sin sueflo inducido, observando directamente el estado de la garganta mediante pequefias camaras, siendo
este ultimo un método que no se utiliza apenas debido a que es muy invasivo (Bitners & Arens, 2020a;
Leske, 2014).

Los tratamientos en niflos también son diferentes con respecto a los tratamientos que se aplican a los
adultos. En el caso de pacientes pediatricos el principal problema que desencadena el trastorno de la AOS
es el crecimiento anormal de las amigdalas o del tejido adenoideo de la garganta. Por lo que, un
procedimiento quirdrgico como puede ser la adenoamigdalectomia soluciona o reduce en gran medida el
problema de obstruccion (Bitners & Arens, 2020a). Este procedimiento puede ser realizado mediante
electrocirugia, ablacion mediante técnicas de plasma o la mas frecuente, eliminacion del tejido o de la
capsula de las amigdalas entera, con técnicas basadas en frio (Bitners & Arens, 2020a).
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Debemos tener en cuenta que existen otros tratamientos diferentes como pueden ser (Bitners & Arens,
2020a; Konrad, 2006): alternativas quirtirgicas como la traqueotomia, destinadas a pacientes con
malformaciones o anomalias estructurales; cirugias para el paladar, los laterales de la faringe o la nariz,
destinadas a mejorar el flujo aéreo en el tracto respiratorio; otros procedimientos no invasivos como son
la pérdida de peso corporal o el cambio de habitos de vida; tratamientos bucodentales como colocacion
de aparatos para reestructurar ciertos componentes de la dentadura, la lengua o la mandibula; o el empleo
de medicamentos especiales (Bitners & Arens, 2020a; Konrad, 2006). Se demostrdé en un experimento
con 464 nifios de entre 5 a 9 afios con AOS, que aquellos que eran sometidos a la adenoamigdalectomia
presentaban una mejoria en la calidad de vida y respiracion, frente a aquellos que se sometian a otros
tratamientos. Concretamente el 79% de los nifios sometidos a adenoamigdalectomia mejoraron frente a
un 46% de pacientes que mejoraron al ser sometidos a otros tratamientos alternativos (Padilla et al., 2013).

1.5. Deep Learning

La humanidad ha experimentado cambios y evoluciones en las bases de la civilizacion desde sus
remotos inicios, algunos de estos eventos incluso han llevado a los historiadores a definir “cambios de
época” repartidos a lo largo de la historia. Estos cambios, generalmente estan marcados por grandes
descubrimientos o revoluciones, como por ejemplo las distintas revoluciones industriales que han ocurrido
a lo largo de la historia (Gonzalez-Hernandez et al., 2021). La primera revolucion industrial data de 1780
a 1840, época en la que surgieron nuevas herramientas como la maquina de vapor, nuevos combustibles
como el carbon y tuvo lugar la evolucion de ciertas industrias, como la textil. La segunda revolucion
industrial, también conocida como “La Revolucion Tecnologica”, data de 1870 a 1914, y se caracteriza
por la aparicion de nuevas fuentes de energia como la electricidad y el petroleo, la aparicion de nuevas
industrias como la quimica o la eléctrica, y la instauracion de la produccion en cadena de productos en
masa. La tercera revolucion industrial, también conocida como “La Revolucién Digital”, data de
mediados del siglo XX, y se caracteriza por la implementacién y mejora de ordenadores, roboética e
internet en todos los aspectos de la vida cotidiana y la industria. Finalmente, la cuarta revolucion industrial
es conocida como “Industria 4.0” o “La Revolucion de la Inteligencia Artificial (IA)”. Actualmente
estamos experimentando los inicios de esta cuarta revolucion; revolucion que promete innovar en los
campos de la IA, el Big Data y el Internet de las cosas (Internet of Things, 10T), permitiendo asi la creacion
de industrias y ciudades inteligentes (Ynzunza Cortés et al., 2017). En este apartado, nos centraremos en
esta ultima revolucion, concretamente en la parte de la IA, ya que nos servira como herramienta mas
adelante en el caso de estudio.

La IA puede definirse como la capacidad de los ordenadores para ejecutar, de la forma mas similar
posible, tareas que habitualmente son realizadas por seres humanos, asi como aprender a partir de la
experiencia. En este sentido, desarrollar IA implica crear algoritmos y sistemas capaces de emular con
precision el comportamiento o pensamiento humano (Rouhiainen, 2018). No obstante, el término 1A
engloba gran cantidad de técnicas y campos distintos. Entre los que podemos distinguir: Aprendizaje
Profundo o Deep Learning (DL) y Aprendizaje Maquina, Aprendizaje Automatico o Machine Learning
(ML). El término ML hace referencia a la capacidad de los ordenadores de realizar una cierta tarea y
adquirir experiencia resolviéndola sin ser programados explicitamente para ello; esto se consigue
empleando una serie de algoritmos que les brindan la posibilidad de aprender relaciones entre estructuras
de informacion. Por otro lado, el término DL es un subconjunto del ML que emplea estructuras con
multiples capas como son redes neuronales de distintos tipos con las que son capaces de extraer
caracteristicas mas complejas de los datos de entrada y aprender de ellas, pudiendo elaborar conceptos
mucho més complejos (Kelleher, 2019; Voulodimos et al., 2018a). En la Figura 1-7 podemos ver
representados estos conceptos mencionados previamente en un diagrama de Venn:
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Figura 1-7. Diagrama de Venn de los conceptos: Inteligencia Artificial, Machine Learning y Deep Learning (Adaptada de
Kelleher, 2019).

En el campo del andlisis y procesado automatico de sefiales existen una gran cantidad de estudios
enfocados al uso de técnicas de ML y DL para procesar estas sefiales, de hecho mas adelante en el capitulo
de la revision del estado de la técnica haremos hincapié en estudios que emplean este tipo de herramientas
aplicadas al diagnostico de la AOS. Conforme avanzan los estudios centrados en la comparativa entre el
uso de métodos de ML y DL, crece la popularidad del uso del DL, ya que cada vez se esta demostrando
mas su superioridad frente a los modelos de ML para este tipo de tareas (Gutiérrez-Tobal et al., 2022;
ISCAN, 2022; Shlezinger & Eldar, 2023). Por lo tanto y para el caso de estudio que nos concierne, nos
centraremos en los algoritmos y técnicas de DL, debido a que trataremos de crear un sistema capaz de
extraer las caracteristicas de los datos por si mismo de manera automdtica. Con dicho sistema,
intentaremos reconocer patrones a detectar para poder clasificar distintos sujetos en los distintos grados
de AOS a partir de una serie de sefiales biomédicas. Sin embargo, debemos de tener en cuenta que el nivel
de precision de los modelos de DL atin no ha alcanzado su punto 6ptimo y puede continuar mejorando en
gran medida. Finalmente, y teniendo en cuenta todo lo mencionado anteriormente, no profundizaremos
en los términos de IA y ML mas allé de lo estrictamente necesario.

Lo primero que debemos tener en cuenta es que los sistemas de DL estan basados generalmente en una
serie de estructuras denominadas redes neuronales. Estas redes neuronales consisten en modelos de
computacion que tratan de emular la estructura del cerebro humano y estan compuestas de una serie de
capas donde se procesa la informacion, que a su vez estdn compuestas por unidades basicas de
procesamiento conocidas como neuronas artificiales (Kelleher, 2019). Las neuronas del cerebro presentan
3 elementos diferentes: el cuerpo o nticleo celular, las dendritas y una fibra conocida como axén (Ostrosky,
2010). Tratando de recrear esa estructura en las redes neuronales artificiales, cada neurona artificial de la
red se compone de un elemento central de procesamiento, que tratara de emular el cuerpo celular. Si dicha
neurona, recibe un estimulo lo suficientemente fuerte a través de las dendritas (o en el caso de nuestra red
neuronal, los canales de entrada), transmitira un impulso a otras neuronas a través del axon (o canales de
salida a otras neuronas artificiales en el caso de nuestra red). Debemos de tener en cuenta que el cerebro
humano tiene alrededor de 86.000 millones de neuronas, por lo que haria falta una red neuronal de un
tamafio descomunal para emular completamente su comportamiento (Kelleher, 2019; Ostrosky, 2010).
Sin embargo, los avances tecnologicos actuales permiten realizar redes neuronales con una gran densidad
de neuronas, pudiendo realizar asi tareas realmente complejas. A continuacion en la Figura 1-8 podemos
ver un esquema de las similitudes entre una neurona real y una artificial:
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Figura 1-8. Similitudes entre una neurona del cerebro humano (superior) y una neurona artificial de una red neuronal

(inferior) (Autoria propia, basada en Kelleher, 2019).

Como ya hemos mencionado, las redes neuronales representan las bases de los sistemas DL. Pero
debemos tener en cuenta que existen varios tipos de redes neuronales que pueden ser mas o menos
efectivas en funcion de la tarea a la que son destinadas, algunos de estos ejemplos son (Kelleher, 2019):

Redes Neuronales Artificiales: también conocidas como ANN, son el tipo de red neuronal
mas basico de todas, destinadas a problemas de clasificacion o regresiones sencillas. Este tipo
de modelos son muy utiles para desarrollar sistemas pequefios debido a su simplicidad.

Redes Neuronales Convolucionales: también conocidas como CNN, destinadas a procesar
datos en formato matricial como imagenes o sefiales, permiten reconocer patrones en los datos,
generar conceptos complejos y clasificarlos gracias a aplicar la operaciéon matematica de
convolucion. Son frecuentemente utilizadas en deteccion de objetos o patrones y en el
reconocimiento y generacion de imagenes.

Redes Neuronales Recurrentes: también conocidas como RNN, destinadas a datos que tienen
una componente temporal como sonidos o lenguaje hablado, este tipo de redes contienen
conexiones de retroalimentacion que las permiten recordar informacion. Son ampliamente
utilizadas en Procesado de Lenguaje Natural (PLN), como traductores, generadores de texto a
partir de imagenes o creadores de contenido escrito.

Redes Neuronales de Memoria a Largo y Corto plazo: también LSTM (del inglés, Long
Short-Term Memory). Representan una variante o subconjunto de las RNN, pero con una
mayor capacidad gracias a su habilidad de poder recordar u olvidar conceptos, lo que las
permite, mantener una memoria, de ciertas ideas o palabras a lo largo del tiempo.

Debemos tener en cuenta que existen muchas mas variaciones y versiones de estas redes adaptadas a
las necesidades de cada proyecto o estudio (Perumal et al., 2024).
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1.6. Hipotesis y objetivos

En los apartados anteriores se ha mencionado que la PSG es una prueba costosa de realizar, por lo que
se han buscado otras alternativas como el uso de técnicas de procesado automatico de sefiales basadas en
DL para poder realizar una estimacion empleando una menor cantidad de recursos. Esto permitira reducir
el coste econémico, computacional y temporal de realizar un diagnostico de AOS.

La hipdtesis planteada en este caso de estudio se basa en determinar si es posible estimar el IAH con
la suficiente precision como para permitir realizar un diagnostico fiable de la AOS infantil, empleando
para ello distintas combinaciones de un conjunto reducido de sefiales (como pueden ser SpO., FAy HRV)
procesadas mediante modelos automaticos basados en DL.

Para ello, el objetivo general de este Trabajo Fin de Master es desarrollar un modelo de DL disefiado
especificamente para el procesamiento de cualquiera de las combinaciones de las sefiales SpO,, FAy HRV
extraidas de bases de datos especializadas en la AOS infantil. Posteriormente, se realizara un analisis
detallado del rendimiento del sistema y se optimizaran los puntos indicados en funcion de los resultados
del analisis. Finalmente, se evaluara la viabilidad clinica de cada una de las combinaciones en funcion de
las necesidades de cada paciente, los recursos disponibles y las decisiones y criterio del equipo médico
especializado. A continuacion listamos los objetivos especificos a conseguir:

e Obtener una base de datos de registros nocturnos apropiada con informacion sociodemografica
y clinica de pacientes pediatricos para poder desarrollar nuestro modelo.

e Desarrollar modelos de DL para el analisis de sefiales de SpO,, FA y HRV tanto de manera
individual como de manera conjunta.

e Comparar y valorar resultados obtenidos y extraer las conclusiones pertinentes.

1.7. Estructura del Trabajo Fin de Master

Durante el trascurso del proyecto, se ha recogido y registrado toda la informacion empleada y obtenida
en esta memoria. Para poder estructurar correctamente todos los datos, y asi facilitar el trabajo al lector,
hemos optado por dividir el proyecto en una serie de capitulos tematicos. Este documento, por lo tanto,
constara de 7 capitulos y una bibliografia, donde se ha ido narrando paso a paso todo el trabajo realizado,
entre ellos: la revision del estado de la técnica, obtencion y preparacion de los datos, desarrollo de un
modelo, evaluacion y comparativa de resultados, extraccion de conclusiones y lineas futuras.

e Capitulo 1. Introduccién: en este primer capitulo hemos realizado una breve introduccion
sobre el caso de estudio, mencionando las principales caracteristicas de la ASO, su
diagndstico, sintomas y tratamiento tanto para adultos como para nifios. Ademas, también
hemos visto informacion general acerca de las técnicas de DL, la formulacion de una hipotesis
y sus respectivos objetivos y por ultimo una detallada descripcion del documento y su division
en distintos apartados.

e Capitulo 2. Estado de la técnica: a lo largo de este capitulo, hemos analizado todo el trabajo
previo realizado por expertos en este campo en concreto. Hemos tratado de extraer todos los
objetivos y resultados logrados y a partir de ellos, desarrollamos nuestra hipotesis con la que
complementar dichos estudios.

e Capitulo 3. Seiiales y bases de datos: en este tercer capitulo, hemos revisado las componentes
de las 3 sefales, sus caracteristicas, las posibles herramientas con las que podemos obtenerlas
y su viabilidad dentro de nuestro proyecto. Ademas, hemos analizado varias bases de datos
como CHAT para elegir una candidata a ser empleada en nuestro sistema.
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Capitulo 4. Metodologia: una vez elegidas las sefales y la base de datos, hemos realizado
una breve explicacion de los conceptos referentes a la metodologia empleada y comentado
punto por punto el desarrollo del modelo, el generador empleado, el estimador y el analisis
estadistico de los resultados.

Capitulo 5. Resultados: con el modelo desarrollado, hemos analizado los resultados
obtenidos tanto en lo referente a la optimizacion de los hiperparametros como a los propios
resultados generados al realizar la estimacion del nimero de eventos por segmento y el grado
de severidad de la AOS.

Capitulo 6. Discusion: en este penultimo capitulo se realizo una discusion de los resultados
obtenidos con sus posibles aportaciones al campo de estudio y una comparativa con todos los
estudios anteriores comentados en la revision del estado de la técnica.

Capitulo 7. Conclusiones y lineas futuras: a modo de broche final, se han expuesto las
conclusiones finales extraidas del caso de estudio que ha supuesto este proyecto, junto a una
recopilacion de las limitaciones y lineas futuras de cara a mejorar o complementar este estudio
en futuras investigaciones.

Bibliografia: de manera adicional, se aporta la bibliografia consultada durante el desarrollo
del proyecto y la elaboracion de este documento.
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Capitulo 2: ESTADO DE LA TECNICA

En este segundo capitulo realizaremos una revision de los estudios existentes en este ambito de trabajo.
Para ello, citaremos los trabajos mas relevantes en el campo del diagnostico de la AOS pediatrica junto a
los resultados y conclusiones derivados de los mismos que puedan resultar de interés para elegir la
direccion en la que enfocar el desarrollo de nuestro propio proyecto. A lo largo del capitulo se incluiran
referencias de todos los documentos e investigaciones citados para poder realizar un mejor seguimiento
por parte del lector.

Comenzaremos con una breve contextualizacion, seguida de un andlisis de una serie de tablas
localizadas al final del capitulo donde se resumen todos los trabajos de investigacion analizados para
revisar el estado de la técnica en este campo de estudio. A continuacion, trataremos con un poco mas de
detalle algunos puntos de interés como pueden ser: la metodologia elegida, las sefiales empleadas o las
predicciones realizadas. Para finalmente poder extraer una conclusion sobre la que encaminaremos
nuestro propio trabajo.

2.1. Contexto del caso de estudio

Como ya se hemos podido observar la AOS es una patologia prevalente, de hecho una gran parte de la
poblacion la padece y solo una porcion reducida ha sido diagnosticada. Parte de este infradiagnéstico se
debe al elevado coste y complejidad de las pruebas basadas en PSG. Por ello, gran parte de la comunidad
cientifica se ha volcado en la busqueda de alternativas mas sencillas a este sistema de diagnosis (Mazzotti
etal., 2018).

Para poder simplificar el proceso de diagnostico, varios autores han optado por tratar de realizar una
estimacion del grado de AOS a partir de una cantidad de sefiales reducida; sefiales que pueden obtenerse
mediante una version de PSG mas sencilla, o mediante otras alternativas menos costosas. Gracias a esta
revision podremos disponer de una vision mas general del estado de gran parte de las investigaciones y
los avances conseguidos, y por lo tanto, podremos identificar zonas que aun no han sido exploradas donde
poder realizar nuestra aportacion.

En las Tablas 2-1, 2-2, 2-3, 2-4 y 2-5 se han agrupado diferentes estudios referentes a la aplicacion de
técnicas de ML/DL con las que poder realizar una estimacion de la presencia de la AOS en nifios. De esta
manera, hemos agrupado los datos de cada investigacion en funcion de: los detalles sobre las bases de
datos, las sefiales eclegidas, la metodologia empleada y los resultados de clasificacion obtenidos de
sensibilidad (sensitivity, Se), exactitud (accuracy, Acc)y especificidad (specificity, Sp) entre otras cosas.
Ademas, se ha agregado una indicacion sobre si el estudio tratd de estimar los grados de AOS mediante
el IAH o solamente la presencia o no de AOS (afiadiendo a mayores el umbral empleado en este caso).

Los estudios analizados datan de entre 2003 y 2024 y han sido agrupados en 7 grupos distintos en
funcidn de las sefiales empleadas para realizar la prediccion de la OSA. El grupo de estudios que emplean
solamente sefiales de SpO- (Alvarez et al., 2017; L. Chang et al., 2013; Hornero et al., 2017; Jiménez-
Garcia et al., 2020; Kirk et al., 2003; Mortazavi et al., 2024; Tsai et al., 2013; Vaquerizo-Villar et al.,
2018a, 2018b, 2021; Villa et al., 2015; Xu et al., 2019); los que emplean la sefial de FA unicamente
(Barroso-Garcia et al., 2017; Barroso-Garcia, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-Garcia,
Gutiérrez-Tobal, Kheirandish-Gozal, et al., 2021; Jiménez-Garcia et al., 2020); los que emplean solo el
HRYV, ECG o derivadas (Dehkordi et al., 2016; Garcia-Vicente et al., 2023; E. Gil et al., 2009, 2010;
Lazaro et al., 2014; Martin-Montero et al., 2021, 2022, 2023; Shouldice et al., 2004; Ye et al., 2023); los
grupos que emplean dos de las sefiales citadas previamente combinadas, como puede ser SpO.-FA
(Barroso-Garcia et al., 2020; Gutiérrez-Tobal et al., 2015; Jiménez-Garcia et al., 2020, 2022, 2024), SpO»-
HRYV (Garde et al., 2014, 2019; Ye et al., 2023), o HRV - FA (Sturludottir et al., 2023); y finalmente, los
estudios que emplean las 3 sefiales de manera simultanea (Tan et al., 2014).
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2.2. Senales elegidas

Hay una gran cantidad de estudios que emplean las sefales SpO,, SpO2-FA y HRV, pero no es tan
frecuente encontrar investigaciones basadas en el resto de combinaciones entre ellas. Como se puede
observar en las tablas (Tablas 2-1, 2-2, 2-3, 2-4 y 2-5), una gran cantidad de trabajos se enfocan en el uso
de la sefial SpO, de forma aislada o combinada con la sefial FA (Alvarez et al., 2017; Barroso-Garcia et
al., 2017, 2020; Barroso-Garcia, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-Garcia, Gutiérrez-Tobal,
Kheirandish-Gozal, et al., 2021; L. Chang et al., 2013; Gozal et al., 2018; Gutiérrez-Tobal et al., 2015;
Hornero et al., 2017; Jiménez-Garcia et al., 2020, 2022, 2024; Kirk et al., 2003; Mortazavi et al., 2024;
Tsai et al., 2013; Vaquerizo-Villar et al., 2018b, 2021; Villa et al., 2015; Xu et al., 2019). Esto se debe a
que el FA y la SpO; son las sefiales que se encuentran mas estrechamente ligadas a la descripcion de los
eventos de apnea e hipopnea, segtin los estdndares de la AASM (Marcus et al., 2012). La desaturacion de
oxigeno en sangre y la reduccion del flujo aéreo son dos de los hallazgos mas importantes en las PSG de
pacientes que padecen este trastorno y por lo tanto candidatos ideales para intentar detectar la presencia
o no de la AOS (Olivi, 2013). Por otro lado, sefales cardiacas como el HRV o el PRV son relativamente
faciles de obtener mediante dispositivos no invasivos, como el ECG o el pulsioximetro respectivamente
(Martin Montero, 2024). Estas sefales pueden aportar informacion relevante para caracterizar la respuesta
del sistema cardiovascular y del sistema nervioso frente a los eventos apneicos. En particular, diversos
estudios han demostrado que la PRV, extraida a partir de la sefial de fotopletismografia
(photoplethismograpgy, PPQG) registrada por pulsioximetros, refleja patrones similares a los observados
en la HRV (Martin Montero, 2024). Ademas, su analisis ha mostrado su utilidad como complemento a la
oximetria convencional para mejorar la deteccion de la apnea del suefio en entornos domiciliarios y su
facil extraccion a partir del ECG, una sefial sencilla de obtener e interpretar en comparacion con otras
seflales mas complicadas de registrar y analizar como puede ser el EEG (D’Rozario et al., 2017). Por otro
lado, el PRV también puede ser obtenido a partir del pulsioximetro de forma rapida y simple (Gutiérrez-
Tobal et al., 2019). Aunque estas sefiales por si solas pueden no ser suficiente para estimar el grado de
AOS con una precision suficiente, cabe la posibilidad de que permitan aportar mas informacion a la hora
de realizar la estimacion, a cambio de aumentar ligeramente la carga computacional necesaria. Es por esto
por lo que algunos autores han optado por investigar la viabilidad de emplear las sefiales HRV y PRV en
sus investigaciones (Garcia-Vicente et al., 2023; E. Gil et al., 2010; Martin-Montero et al., 2021, 2022,
2023; Shouldice et al., 2004; Sturludottir et al., 2023; Tan et al., 2014; Ye et al., 2023).

Por lo tanto, debido a que existen varios estudios que han evaluado la capacidad diagnostica de alguna
de estas tres sefiales, pero apenas existen estudios que empleen estas sefiales de manera combinada o
conjunta, resulta de interés centrar nuestra linea de investigacion en este ambito. Por ello, el enfoque
principal de este trabajo consistira en analizar los resultados obtenidos en la prediccion de la AOS,
empleando distintas combinaciones de sefiales, con el objetivo de valorar si supone una mejoria o no el
hecho de afiadir algunas senales a los estudios ya realizados o probar combinaciones de ellas que no hayan
sido previamente empleadas por otros autores.

2.3. Metodologia empleada

Podemos observar la gran diversidad de metodologias empleadas, desde la comparativa directa como
es el caso de Tan et al. (2014) hasta el uso de modelos como DL, ML u otro tipo de algoritmos. En los
trabajos de Jiménez-Garcia et al. (2020) o Martin Montero et al. (2023) entre otros, emplean alguna de
las versiones del algoritmo AdaBoost (Adaptive Boosting). En todos los casos, AdaBoost se utiliza como
clasificador supervisado, aprovechando su capacidad para combinar multiples clasificadores débiles,
como arboles de decision simples, y generar un modelo robusto que mejore progresivamente su
rendimiento con cada iteracion (Barroso-Garcia et al., 2020; Jiménez-Garcia et al., 2020; Martin-Montero
et al., 2023). Por otra parte, en otros estudios como los de Lazaro et al. (2014), Gil et al. (2009) y Garde
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et al. (2014), se destaca el uso de otro algoritmo como es el LDA (Linear Discriminant Analysis) para
generar una proyeccion lineal capaz de separar de la mejor manera las distintas clases involucradas. En
estos casos se puede ver como este modelo ha sido empleado para separar solamente aquellos casos de
pacientes con valores de IAH superior a 5 e/h de aquellos que tienen un valor inferior. Debemos tener en
cuenta que los datos deben ser linealmente separables para poder realizar la clasificacion (Garde et al.,
2014; E. Gil et al., 2009; Lazaro et al., 2014).

También se han empleado algunas aproximaciones basadas en ML como es el caso de los textos de
Gutiérrez-Tobal et al. (2015), Martin-Montero et al. (2022), Ye et al. (2023) o Barroso Garcia et al. (2017)
entre muchos otros. En ellos se opta por un enfoque clasico de ML que se divide en dos fases: extraccion
y seleccion de caracteristicas, y reconocimiento de patrones (clasificacion/regresion). Estos métodos de
ML pueden ser: la Regresion Logistica (Logistic Regression, LR), los Perceptrones Multicapa de poca
profundidad (Multilayer Perceptron, MLP) o variantes de estos modelos (Barroso-Garcia et al., 2017,
2020; Barroso-Garcia, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-Garcia, Gutiérrez-Tobal,
Kheirandish-Gozal, et al., 2021; L. Chang et al., 2013; Garde et al., 2019; Gutiérrez-Tobal et al., 2015;
Hornero et al., 2017; Martin-Montero et al., 2021, 2022; Vaquerizo-Villar et al., 2018b, 2018a; Villa et
al., 2015; Xu et al., 2019; Ye et al., 2023). Aunque este tipo de modelos, requieren de una menor cantidad
de datos y son mucho mas simples y econdmicos de implementar que modelos de DL mas complejos,
tienen una capacidad limitada a la hora de establecer relaciones profundas en imagenes o sefiales. Por
ende, las LR y MLP son empleadas en sistemas donde se requiera una clasificacion binaria sencilla,
siempre y cuando se dispongan de datos tabulados; y estructuras mas complejas como las CNN, en analisis
espacial como pueden ser en este caso imagenes para el diagndstico o sefales biomédicas (Assi et al.,
2018; Gutiérrez-Tobal et al., 2022; Kelleher, 2019).

En el ambito del DL pueden distinguirse dos enfoques principales en funcion de la arquitectura
neuronal empleada. Por un lado, algunos estudios han optado por utilizar redes neuronales del tipo MLP
profundas como modelo base, permitiendo asi disponer de una red neuronal completamente conectada
que permita emplear un menor numero de capas que otro tipo de redes (Barroso-Garcia et al., 2020;
Barroso-Garcia, Gutiérrez-Tobal, Kheirandish-Gozal, et al., 2021; Hornero et al., 2017; Martin-Montero
et al., 2022; Vaquerizo-Villar et al., 2018b). Por otro lado, una parte significativa de la literatura que
también aplica técnicas de DL ha preferido emplear arquitecturas basadas en redes neuronales
convolucionales (CNN) (Garcia-Vicente et al., 2023; Jiménez-Garcia et al., 2022, 2024; Mortazavi et al.,
2024; Sturludottir et al., 2023; Vaquerizo-Villar et al., 2021). En estos ultimos trabajos, las CNN
desarrolladas se han implementado tanto de forma aislada, como en combinacion con otras arquitecturas
o variantes derivadas. Entre estas combinaciones destacan enfoques como CNN + RNN, CNN-BiGRU,
redes tipo ResNet, o el uso de CNN en dos dimensiones (2D CNN), con el objetivo de aprovechar mejor
la estructura espacial y secuencial de los datos fisioldgicos procesados (Jiménez-Garcia et al., 2022, 2024;
Mortazavi et al., 2024).

La estructura de la CNN elegida es diferente en cada estudio, aunque generalmente la mayoria ha
optado por emplear una estructura de red multicapa de entre 16 y 64 filtros. Es importante destacar que el
nimero de capas no puede ser excesivamente grande para evitar que la red requiera mucho tiempo de
entrenamiento o se produzca sobreajuste; pero por otro lado, tampoco puede ser excesivamente pequefio
ya que la red podria no aprender las relaciones entre los datos y por lo tanto no ser capaz de realizar
estimaciones adecuadamente o generar resultados erroneos (Garcia-Vicente et al., 2023; Mortazavi et al.,
2024). La eleccion de los diferentes valores para los hiperparametros tales como: el nimero de capas o
bloques, el nimero de filtros por capa, las tasas de aprendizaje y dropout del modelo o el tamafio de cada
uno de los filtros entre otros, dependera del contexto del estudio y quedara a eleccion del propio autor; ya
que dichos valores pueden cambiar en funcioén de: la cantidad de datos disponibles, el objetivo del
proyecto, los recursos computacionales disponibles y la complejidad del problema a abordar durante el
trabajo.

21



Capitulo 2 Estado de la Técnica

Estos hiperparametros mencionados previamente pueden suponer una gran diferencia en el desempefio
del modelo. Sin embargo, no todos tienen el mismo impacto, ya que mientras que algunos pueden variar
los resultados enormemente, otros simplemente permiten incrementar unas décimas la precision del
modelo. Pero casi todos los trabajos evaluados emplean la estructura de bloques convolucionales y capas
para construir su modelo. Algunas de las capas empleadas para conformar los bloques convolucionales
son: capas de convolucion de 1 o 2 dimensiones, para poder extraer las relaciones entre los datos; capas
de batch normalization, con las que poder normalizar los datos y asi aumentar la estabilidad y rapidez del
entrenamiento del modelo; capas de reduccion de dimensiones como las capas max pooling, que permiten
condensar la informacidn contenida en los datos que se usan para alimentar el modelo pero sin afectar a
las caracteristicas; capas dropout, empleadas para desactivar ciertas neuronas aleatoriamente a lo largo de
la red durante la fase de entrenamiento para prevenir el sobreajuste u overfitting; y finalmente capas
flatenning y fully-connected situadas justo antes de la salida del modelo para generar la decision final a
partir de las relaciones establecidas a lo largo de toda la red (Kelleher, 2019; O’Shea & Nash, 2015). Si
bien la composicion y cantidad de estos mencionados bloques convolucionales depende de cada estudio,
por lo general existe una estrategia predominante en la mayoria de los trabajos a la hora de estructurar
cada bloque. Dicha estrategia consistente en la generacion de los bloques a partir de una o dos capas de
convolucion, seguidas de capas de normalizacion y finalmente capas de reduccion de dimensiones
(Garcia-Vicente et al., 2023; Jiménez-Garcia et al., 2022, 2024; Mortazavi et al., 2024; Sturludottir et al.,
2023; Vaquerizo-Villar et al., 2021).

Los estudios de Jiménez-Garcia et al. (2022) o Mortazavi et al. (2024) se enfocaron en maximizar la
eficiencia durante la fase de entrenamiento, empleando algoritmos que permitan optimizar la etapa de
descenso de gradiente, como es el caso del algoritmo “Adam’ (Adaptative Moment Estimation) (Jiménez-
Garcia et al., 2022; Mortazavi et al., 2024). Este algoritmo es una combinacion de otros mas sencillos,
como lo son el algoritmo “Momentum” y el algoritmo “RMSprop” (Kingma & Ba, 2014). Todos ellos son
ampliamente empleados para optimizar el descenso de gradiente, permitiendo un movimiento lo mas
reducido posible en el eje perpendicular al minimo de la funcion; a la vez, que maximiza el movimiento
en la direccion del minimo (Kingma & Ba, 2014). El algoritmo de optimizacion “Adam”, permite un
ajuste dindmico de ciertos hiperparametros con los que modificar la convergencia y asi situarse en una
zona cercana al minimo global de forma maés rapida y eficiente; permitiendo asi realizar los ciclos de
entrenamiento de forma mas rapida (Ruder, 2016).

En cuanto a las funciones de activacion empleadas, la funcion ReLU (o Rectified Linear Unit) es la
que mas frecuentemente es utilizada en los modelos basados en redes neuronales, debido a las ventajas
que aporta con el descenso de gradiente. No obstante, esta funcion no es tan empleada en las capas finales
de la red, en las cuales tal y como han elegido autores como Garcia-Vicente et al. (2023), Jiménez Garcia
et al. (2022) o Mortazavi et al. (2024) entre otros, se emplean funciones como softmax en clasificacion
multiclase o funciones sigmoide en caso de ser una clasificacion binaria (Garcia-Vicente et al., 2023;
Jiménez-Garcia et al., 2022, 2024; Mortazavi et al., 2024; Sturludéttir et al., 2023; Vaquerizo- Villar et al.,
2021).

Ademas, estudios como el de Mortazavi et al. (2024) o el de Vaquerizo-Villar et al. (2021) emplean
otras técnicas de prevencion del sobreajuste durante la etapa de entrenamiento como pueden ser el Early
Stopping, o el Batch Shuffling; evitando asi que la red se cifia en exceso a los datos proporcionados
(Mortazavi et al., 2024; Vaquerizo-Villar et al., 2021). Otra forma ampliamente empleada a lo largo de los
distintos estudios para evitar el sobreajuste, consiste en emplear las ya mencionadas capas de dropout;
estas capas permiten la desactivacion de cierto nimero de neuronas dentro de la red, evitando asi que la
red profundice demasiado en los datos durante las fases de entrenamiento (Garcia-Vicente et al., 2023;
Jiménez-Garcia et al., 2022).

Resulta de interés destacar las variantes de CNN empleadas y citadas previamente; por ejemplo,
Mortazavi et al. (2024), emplea variantes de CNN o RNN a lo largo de su investigacion. En este estudio,
se comparo el rendimiento de dos redes diferentes, una basada en ResNet y otra en BiGRU (Mortazavi et
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al., 2024). Las ResNet (Residual Networks), consisten en una tipo de CNN que permite crear redes
neuronales profundas, evitando o minimizando la posibilidad de que el gradiente se dispare o se
desvanezca (es decir, se haga demasiado grande o pequefio) durante la fase de entrenamiento. Para ello
emplea el concepto de bloques residuales, estructuras que permiten crear caminos adicionales alternativos
al camino principal denominados atajos. La red neuronal puede emplear dichos atajos para acceder
directamente a capas mucho mas profundas, permitiendo asi la posibilidad de crear redes mucho mas
complejas sin tener problemas con los gradientes (He et al., 2015a). Por otro lado, también emplea la
combinacion CNN-BiGRU (Bidirectional Gated Recurrent Unit Network). Este modelo de redes
denominadas BiGRU, son a su vez una variante de redes RNN que permite establecer relaciones entre
datos teniendo en cuenta la serie temporal. Para ello, se emplean compuertas (o gates) para controlar el
flujo de informacién, permitiendo asi seleccionar la informacién que se transmite hacia delante
(recordandola) y la que es descartada (olvidandola) (She & Jia, 2021). Esta combinacion permite al autor
emplear una CNN para la extraccion de las caracteristicas y la red BiGRU para establecer las relaciones
entre dichas caracteristicas. Podemos observar como el modelo combinado CNN + BiGRU super6 al
ResNet (Mortazavi et al., 2024). Otros autores como Jiménez Garcia et al. (2024), también emplean una
combinaciones de CNN+RNN vy afiade a mayores un modelo de IA explicativa (Explainable Artificial
Intelligence, XAl) como es Grad-CAM (Gradient-weighted Class Activation Map) (Jiménez-Garcia et
al., 2024). Este tipo de técnicas permiten mostrar y visualizar facilmente sobre los datos aquellas zonas o
caracteristicas en las que se ha centrado el algoritmo para realizar la prediccion y dar un resultado. En el
caso de imagenes para el diagnostico o senales, frecuentemente se resalta mediante un mapa de color, que
va variando de intensidad conforme el algoritmo le haya dado mayor o menor importancia (Selvaraju et
al., 2017).

Tras este estudio, queda clara la viabilidad de los modelos de DL basados en CNN o variantes del
mismo en sistemas de deteccion de objetos o patrones en imagenes y sefales. Es por ello, por lo que se
ha optado por elegir las redes CNN como base inicial para el desarrollo de nuestro propio sistema.
Ademas, la eleccion de este tipo de redes permitira realizar una comparaciéon mas precisa y directa con
los modelos desarrollados por otros autores que han optado por aportar nuevas investigaciones
centrandose en un enfoque de DL.

2.4. Estudios de estimacion de la severidad

Es importante destacar que no todos los sistemas desarrollados han tratado de estimar los mismos
parametros, pueden apreciarse dos grandes ramas que han seguido los diferentes autores de las
investigaciones. En primer lugar, tenemos aquellos que han tratado de determinar simplemente la
existencia o no de la AOS, sin importar el grado de dicha patologia dado por el IAH. En estos casos, se
ha dado un valor umbral para el cual se decide si hay o no presencia de AOS en el paciente, en funcion
del valor estimado por el propio modelo. Generalmente el valor umbral que ha sido elegido es de 5 e/h,
aunque algunos autores como Gutiérrez-Tobal et al. (2015) o Chang L et al. (2013) han optado por un
valor umbral de 3 e/h. El valor de dicho umbral es por tanto eleccion del autor que desarrolla el estudio
(Alvarez etal., 2017; L. Chang et al., 2013; Dehkordi et al., 2016; Garde et al., 2014; E. Gil et al., 2009,
2010; Gutiérrez-Tobal et al., 2015; Hornero et al., 2017; Kirk et al., 2003; Lazaro et al., 2014; Mortazavi
et al., 2024; Shouldice et al., 2004; Sturludottir et al., 2023; Tsai et al., 2013; Vaquerizo-Villar et al.,
2018b, 2018a; Villa et al., 2015).

Por otro lado, los estudios restantes han tratado de estimar el valor del IAH, clasificando por lo tanto
la AOS en leve, moderada o critica, fijando los umbrales en 1, 5 y 10 e/h. Para ello han obtenido 3
resultados, relacionados con cada uno de los grados de severidad de la AOS respectivamente (Barroso-
Garciaetal., 2017, 2020; Barroso-Garcia, Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-Garcia, Gutiérrez-
Tobal, Kheirandish-Gozal, et al., 2021; Garcia-Vicente et al., 2023; Jiménez-Garcia et al., 2020, 2022,
2024; Martin-Montero et al., 2021, 2022, 2023; Tan et al., 2014; Vaquerizo-Villar et al., 2021; Xu et al.,
2019; Ye et al., 2023).
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Podemos observar que pese a existir esta diferencia entre investigaciones, todos han optado por
representar los resultados principales en términos de sensibilidad, especificidad y exactitud (Se Sp y Acc),
independientemente de si se ha tratado de estimar el grado de severidad o solo la existencia o no de la
AOS.

En nuestro caso, y debido a que se considera que puede resultar de mayor utilidad, se tratard de seguir
el segundo camino; desarrollando un sistema enfocado en la prediccion del valor de la severidad de la
AOS en funcién del valor de IAH en los pacientes.

2.5. Aportaciones realizadas

Tras analizar los estudios previos en este campo de investigacion, resulta fundamental evaluar aquellos
aspectos en los que podamos aportar un enfoque novedoso. Para ello, trataremos de explorar nuevas
metodologias, combinaciones con las sefiales o emplear otro tipo de datos que permitan ampliar el
conocimiento en esta disciplina.

En primer lugar, nuestro enfoque se basa en el uso de una CNN como modelo principal junto a una
regresion lineal de Huber. Esto representa una innovacion significativa en algunas de las sefales, ya que,
hasta la fecha, en el caso del FA los estudios previos se han centrado en la aplicacion de otro tipo de
metodologias como AdaBoost, LR o0 MLP. Por ende, nuestro proyecto aportara una nueva perspectiva en
el estudio de las sefiales de FA empleando metodologias basadas en CNN. En el caso de la sefial HRV, el
concepto es practicamente idéntico, si bien las sefiales HRV han sido previamente analizadas con
enfoques como LR, MLP, LSBoost 0 QDA, aquellos estudios que han empleado CNN han optado por
usar la sefial ECG que es ligeramente distinta a la sefial HRV. Dado que la sefial ECG y la HRV son
distintas, nuestro enfoque basado en CNN y HRV representa una contribucién novedosa en el analisis de
esta sefial. Finalmente para el caso de la sefial SpO, si que existen estudios empleando la misma
metodologia, por lo que nuestro enfoque aportara un nuevo ejemplo de estructura de CNN y por lo tanto
se reforzaran los resultados con este tipo de sefial.

Por otro lado, en el caso de la combinacion de las sefiales por parejas el hecho de realizar la
combinacion de FA con HRV, ya representa un avance claro nunca antes realizado en ningin estudio, ya
que los unicos estudios referentes a este tema han empleado PRV o ECG en lugar de HRV. Es por ello,
que emplear CNN con esas combinaciones de seflales representa una nueva aportacion en materia al
campo de estudio. Por otro lado con el caso de SpO; con HRV, se ha realizado un estudio pero no se ha
empleado CNN como metodologia, por lo que nuestro estudio supondria también un avance novedoso.

Finalmente debemos destacar que en el caso del analisis conjunto de las 3 sefiales, ocurre algo similar,
los estudios previos realizados emplean ECG en lugar de HRV, ademas de emplear como metodologia la
comparacion directa. Debido a este elemento diferenciador, en nuestro caso, también estariamos
afiadiendo una interpretacion completamente diferente, al combinar las 3 sefiales sustituyendo el ECG por
el HRV y emplear una CNN como sistema de andlisis en lugar de la comparacion directa.

En conclusion, la comparacion de las senales SpO», FA y HRV tanto de manera individual como en
combinaciones por parejas o en conjunto, representa un enfoque completamente innovador en la literatura
cientifica. Al aplicar CNN para comparar directamente los resultados de analizar todas las sefiales y sus
combinaciones aportamos un nuevo sistema con el que mejorar la deteccion y el diagnostico de la AOS
infantil.
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Acc: 83.744.9% (LR), 84.0£5.2%(SVM), 83.2+5.2% (MLP)

Vaquerizo Villar et SpO; Chicago University Pl it 25 WD BCBLE =Sl e g (Umbral 5 e/h) | Se: 72.6:4.7% (LR), 71.944.4%(SVM), 73.3£6.6% (MLP)
al. (2018) afios MLP & LR Sp: 90.26.2% (LR), 91.1+7.2%(SVM), 89.0+6.9% (MLP)
. , Acc: 64.0%
Kirk et al. (2003) SpO; Alberta Chlidren’s | 58 entre 4y 18 SnoreSat TAH (Umbral 5 o/h) | Se: 67.0%
Hospital (Priv.) afios )
Sp: 60.0%
Chang Gung 148 entre 3 v 12 Correlacion Acc: 85.1%
Tsai et al. (2013) SpO> Hospital Taiwan afios y Pearson y Analisis | IAH (Umbral 1 e/h) | Se: 83.8%
(Priv.) curvas ROC Sp: 86.5%
141 nifios entre Acc: 72.0%
Chang et al. (2013) SpO» Base privada ~ Binary LR IAH (Umbral 3 e/h) | Se: 60.0%
2 y 13 afios .
Sp: 86.0%
University of Rome | 268 nifios entre O (0
Villa et al. (2015) SpO» (Pr}i/ ) 09 v 172 afios Univariate LR IAH (Umbral 5 e/h) | Se (£5e/h |>5 e/h): 96.9% | 36.0%
Ve Ty Sp (<5 e/h|> 5 e/h): 39.2% | 97.4%
. 0 ) 0
Jiménez Garcia et University of 974 nifios entre FCBF + IAH (e/h) y grado AC.C' 78'21/) / 77'4404 / 85'9004
1. (2020) Sp0: Chi 0y 13 afios AdaBoost.M2 de AOS Se: 91.43%1/66.44%/ 40.96%
al cago M ' Sp: 22.67% / 84.02% / 98.05%
Acc: CHAT: 77.6% /97.4% / 97.8% ||
CHAT + UofC&B: 80.1% / 83.9% / 92.3%
Vaquerizo et al. Sp0 University of 3196 nifios entre CNN IAH (e/h) y grado | Se: CHAT: 71.2% / 83.7% / 83.9% ||
(2021) P2 Chicago + Hospital 0y 18 afios de AOS UofC&B: 90.8% / 76.0% / 79.5%

of Burgos (Priv.)

Sp: CHAT: 81.8% / 100.0% / 99.3%|
UofC&B: 36.4% / 88.6% / 95.8%

Tabla 2-1. Tabla resumen revision bibliografica con la seiial SpO: (primera parte) en color azul oscuro.
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University of 432 nifios TATEL (/i) sy il Acc: 79.6% /79.4% / 88.2%
Xu et al. (2019) SpO; Beijing, China entre 2y 15 MLP de 3 capas de Agsg Se:  95.3%/77.8%/73.5%
(Priv.) afios Sp: 19.1%/80.5% / 92.7%
. 4191 nifios Acc (1/5/10 e/h): 75.2% / 81.7% / 90.2%
H“;‘;gf;‘ al. SpO; Base privada entre 2y 18 MLP IATL(E) ¥ 91200 e (1/5/10 e/hy: - 84.0% / 68.2% / 68.7%
4 anos Sp (1/5/10 e/h):  53.2%/87.2% / 94.1%
Acc: ResNet: 72.80% /91.67% / 95.90% ||
” CNN-BiGRU: 86.53% / 91.54% / 96.17%
Mortazavi et al. S0 CHAT 334 R Cﬁf\?ﬁgﬁ%&i‘ , | IAH(Umbralde1, | Se: ResNet: 96.80% / 77.13% / 73.25% |
(2024) P2 © iﬁo’s’ : RNN) 5y 10) CNN-BiGRU: 96.27% / 77.79% / 74.58%
Sp: ResNet: 48.75% /1 97.58% / 98.65% ||
CNN-BiGRU: 61.27% / 97.23% / 99.81%
b . 0 ) o
Jiménez Garcia et University of 974 nifos FCBF + IAH (e/h) y grado AC_C' 80.5 104 / 62'8204 / 78'9704
L (2020 FA b entre 0y 13 AdaBoost M2 do AOS Se: 99.37% / 62.33% / 39.77%
Al (LA 1cago afios aboost. Sp: 1.33%/63.11% / 89.58%
Acc: AdaBoost: 73.61% /57.46% / 76.07% ||
046 misos MLP: 80.85% /57.14% / 70.47%
Barroso Garcia et FA University of enire 0 v 13 FCBF + AdaBoost & | IAH (e/h) y grado | Se: AdaBoost: 79.89% / 74.43% / 41.06% ||
al. (2021a) Chicago ﬁoz Bayesian MLP de AOS MLP: 100.00% / 77.25% / 50.00%
a Sp: AdaBoost:  47.24% / 47.18% / 89.58% ||
MLP:  0.00% / 45.05% / 75.96%
, o 946 nifios Acc: 78.14% / 61.20% / 77.35%
Bar;’s("zo(}zalrlf)‘a e FA Unéﬁzlti of entre 0y 13 FCBF + MLP IAH Efe/ }2 (-‘)/Sgrado Se: 94.07% / 78.66% / 55.85%
. & afios Sp: 11.16% / 50.61% / 83.16%
] . 501 nifios Acc: 60.00% / 76.00% / 80.00%
Ba”;s‘zz(;’i‘;;‘a et FA Unéﬁrzlty at entre 3y 9 FSLR + LR TAH ffe/ 12 gsgrado Se: 60.50% / 65.00% / 83.80%
: cago afios Sp: 58.60% / 80.60% / 79.00%

Tabla 2-2. Tabla resumen revision bibliografica con la sefial SpO: en color azul oscuro (segunda parte) y la sefial FA en color naranja.
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British Columbia :
. . s . 160 nifos Acc: 71.00%
Dehkordi et al. PPG Ch1'1dren s Hospital ey LASSO IAH (Umbral de 5 Se: 76.00%
(2016) in Vancouver ~ e/h) ) o
. anos Sp:  68.00%
(Priv.)
. . . o
Shouldice et al HRV a partir Sleep Med1c1n§ 25 nifios entre QD (Quadratic IAH (Umbral 12.5 Acc: 84‘004
(2004) delBCG | Centerof Kosair, |75 o asios Discriminant) e/h) Ser 83.7%
Louisville Sp: 81.8%
Miguel Servet 21 nifios entre QDA (Quadratic Acc: 80.00%
Gil et al. (2010) HRV Hospital in 2y 6 afios Discriminant IAH (Umbral 5 e/h) | Se:  87.50%
Zaragoza Y Analysis) Sp:  71.40%
Miguel Servet s LDA (Linear Acc: 86.70%
Lazaro et al. 2014) | PPG Y ECG Hospital in 21211“‘60;;’35“6 Discriminant IAH (g/rﬁ;’ral 18| se: 100.00%
Zaragoza Y Analysis) Sp:  71.40%
. . 1738 nifios Acc: 63.40% / 81.00% / 89.30%
Ma”;‘ ?g(‘)’;‘gm et HRV CHACThz’an;V' O | cntre 57.9.9 FCBF + MLP TAH E{Z }ggsgrado Se:  76.30% / 62.50% / 66.70%
’ & anos Sp:  38.30% / 84.20% / 91.60%
. . 1738 nifios Acc: 74.58% / 84.95% / 91.64%
Ma”;‘ ?gg;‘;;’”’ et HRV CHACThinE“;V' of | entre5y9.9 MLP IAH Elz/ ?gsgmdo Se:  85.47% / 64.44% / 53.66%
' & afios Sp:  35.38% /93.78% / 97.67%
z 1610 nifios Acc: 80.07% / 63.18% / 84.12%
Ma”;‘ 1(‘;‘)’;‘;;”’ et HRV CHAT i Sy 00 | Lot @ Adrtes | Lo Elee/ }nggrado Se: 90.76% / 66.67% / 40.00%
: anos Sp:  23.40% /61.17% / 92.03%
HRYV (del
. . Acc: 80.00%
Gil et al. (2009) ECG) y PRV Hospital dg 21 niflos erltre LDA IAH (Umbral de 5 Se: 87.50%
a partir de la Zaragoza (Priv.) 2.5y 5.4 afios e/h) ] o
PPG Sp:  71.40%

Tabla 2-3. Tabla resumen revision bibliografica con la seiial HRV (primera parte) y derivados en color morado.
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A 1610 nifios Acc: 75.92% / 86.96% / 91.97%
Gar;‘la é’:%‘;te et ECG CHAT entre 5y 9.9 CNN IAH E‘Z}nggrad" Se:  84.19% / 76.67% / 53.66%
. afios Sp:  46.15% /91.39% / 98.06%
~ . o 0 )
Jiménez Garcia et University of 974 nidos FCBF + IAH (e/h) y grado AC‘C' 78'2104 / 77'950A) / 85'90(,%)
2L, (2020) SpO, y FA Chicuon entre 0y 13 AdaBoost M2 b AOS Se:  90.79% / 72.60% / 44.58%
' & afios ' Sp:  25.33%/81.15% / 97.07%
&= . ) L) 0
Barroso Garcia et University of 2 miES FCBF + Bayesian IAH (e/h) y grado AC_C' ol ol (U0 S
al. (2020) SpO, y FA Chicuso entre 0y 13 MLP g Se:  99.3%/80.9% / 63.8%
: & afios Sp:  4.2%/48.9% / 85.1%
Acc: CHAT: 87.3% / 93.5% / 93.5% ||
- UofC: 84.1% / 84.6% / 90.5%
Jiménez Garciaet | o oo CHAT+ University eznsti 62 oS | CNN+RNNy Grad- | IAH (e/h)y grado | Se: CHAT: 87.0%/80.2% / 71.4% |
al. (2024) P2y of Chicago aﬁoz CAM de AOS UofC: 96.8% / 82.9% / 78.3%
Sp: CHAT: 88.1%/99.1% / 97.0% |
UofC: 30.7% / 85.7% / 93.8%
Acc: CHAT: 84.6% / 93.5% / 94.4% |
~ UofC: 84.1% / 84.1% / 90.3%
Jiménez Garciaet | o o .. | CHAT+ University jnstg (;““‘1’2 D CNN IAH (e/h) y grado | Se: CHAT: 82.4% /80.2% / 71.4% ||
al. (2022) P2y of Chicago aﬁoz de AOS UofC: 95.2% / 82.2% / 78.3%
Sp: CHAT: 92.5%/99.1% / 98.1% |
UofC: 37.3%/85.3% / 93.5%
.s . . . . Acc: 86.30%
Gutiérrez-Tobal et Sp0, y FA University Hospltal 50 nifios cintre FSLR y LR IAH (Umbral de 3 Se: 85.90%
al. (2015) of Burgos (Priv.) 3y 13 afios e/h) Sp:  87.40%
. . 0

Tabla 2-4. Tabla resumen revision bibliogrdfica con la seiial HRV (segunda parte) y derivados en color morado y las sefiales SpOx-FA en color verde.

28




AUTORES SENALES BASE DE DATOS SUJETOS METODOLOGIA ESTIMACION RESULTADOS
British Columbia .
. s : 146 ninos Acc: 84.90%
Garde et al. (2014) |RCRUEERER C"drov's Hospital | o ooy 13 AROC +L1DA | WAH(UmbraldeS | o ™ ag 100
in Vancouver ~ e/h) ) o
(Priv.) anos Sp:  83.60%
Acc: XGBoost: 90.45% / 85.67% / 89.81% ||
] LR: 79.30% / 83.92% / 87.44%
University o 3139 nifios
. IAH (e/h) y grado | Se: XGBoost: 90.26% / 82.07% / 84.77% ||
Ye et al. (2023) SpO,y HR Beljzr;%i,vc)hma entr;ﬁZOSy 18 XGBoost & LR de AOS LR: 78.90% /80.00% / 85.79%
Sp: XGBoost: 100.0% /93.78% /92.11% ||
LR: 100.0% /92.75% / 89.10%
British Columbia . x ; o o o
il s lspil 235 nifos IAH (e/h) y grado Acc: 71.0%/ 78.0%/ 88.0%
Garde et al. (2019) SpO,y HRV i Vancouver entre 6y 10 LR de AOS Se: 68.0%/ 58.0%/ 90.0%
(Priv.) afos Sp: 86.0%/ 89.0%/ 87.0%
. 0,
Sturludéttir et al. FAy ECG Children’s Hospital | 20 nifios entre CNN IAH (Umbral de 5 gsc' 79 _5"5 fss(;)
. . . . ~ . . 0
(2023) in Reykjavik (Priv.) | 10y 13 afios e/h) Sp: 96.20%
1 . o 0 0
Tan et al. (2014) SpO,, ECG y University of eil?r(c)e I;H;OIS 6 Comparacion directa | IAH (e/h) y grado é;;c. 326 go//o // 225 20//0 // 69§ (())‘VA)
. o 5 . . (] . (] . 0
FA Chicago (Priv.) afios PSG vs Resp. PG de AOS Sp: 90.0% / 100.0% / 100.00%

Tabla 2-5. Tabla resumen revision bibliogrdfica con las sefiales SpO2-HRV (v derivadas) en rojo, las sefiales FA-HRV (ECG) en azul claro y las sefiales SpO2-HRV(ECG)-FA en amarillo.
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Capitulo 3: SENALES Y BASES DE
DATOS

Para la realizacion de este proyecto se ha requerido de una gran cantidad de datos y sefiales, con los
que poder entrenar, validar y evaluar un modelo de IA enfocado en la deteccion de AOS pediatrica.
Actualmente, existen varias opciones con las que poder obtener la informacion requerida como son la
recogida de datos en centros especializados como hospitales universitarios o el uso de bases de datos
publicas disponibles a través de internet. Para poder disponer de esa gran cantidad de datos requerida, se
ha optado por recurrir a bases de datos publicas especializadas en AOS infantil como es el caso de CHAT
(Childhood Adenotonsillectomy Trial) (Marcus et al., 2013).

3.1. Base de datos CHAT

Con el proposito de analizar los efectos y la evolucion de diversos enfoques terapéuticos en pacientes
pediatricos con diagnostico de AOS, en 2007 un grupo de expertos en medicina del suefo y
otorrinolaringologia iniciaron un estudio en multiples centros de Estados Unidos (Marcus et al., 2013).
Este ensayo clinico centrado en la investigacion de la AOS infantil compar6 en pacientes de entre 5y 9
afios de edad la eficacia de la adenotonsilectomia temprana contra aquellos que en su lugar se sometian a
la observacion vigilante con atencion de apoyo (Watchful Waiting with Supportive Care, WWSC). La
principal diferencia entre estos métodos radicaba en el periodo de realizacion de la cirugia como
tratamiento: mientras que algunos nifios, se sometian a la cirugia de forma temprana, en otros casos
(WWSC) se opto por someter al paciente a un monitoreo prolongado para comprobar si los sintomas se
agravaban, mejoraban o remitian con la aplicacion de otros tratamientos alternativos. El objetivo de este
estudio por tanto, era comprobar si la realizacion del tratamiento quirGirgico de forma temprana era
siempre necesario, o por el contrario, existia la posibilidad de no realizar dicho tratamiento y aplicar en
su lugar otro tipo de métodos como son: mejores habitos de vida, medicamentos o la pérdida de peso;
permitiendo asi que algunos pacientes pudieran experimentar mejoria o incluso una completa
recuperacion sin la necesidad de realizar la cirugia (Marcus et al., 2013).

La aparicion de este estudio nace de la creciente preocupacion por las repercusiones neurocognitivas
causadas por la presencia de AOS en nifios y sus posibles limitaciones de cara a su futuro desarrollo.
Siendo la cirugia de amigdalas el tratamiento mas comun en nifios, se planted la hipotesis de tomar
alternativas menos invasivas en funcion del paciente para tratar este trastorno. Por ende, se eligieron 464
nifios de manera aleatoria de entre 5 y 9 afios con presencia de AOS. Algunos de los sujetos fueron
sometidos a la cirugia, mientras que otros solo fueron sometidos a un proceso de vigilancia sin cirugia. A
ambos grupos se les realizo un control exhaustivo mediante pruebas cognitivas, tests y polisomnografias
a lo largo de un periodo de 7 meses. Los resultados indicaban una clara mejoria tanto en sintomas como
en calidad de vida de aquellos que fueron sometidos al procedimiento quirtirgico de forma temprana (79%
de los pacientes mejoraron). No obstante, aquellos que no fueron sometidos al tratamiento sino a una
vigilancia activa, mejoraron en un 46% de los casos gracias a los tratamientos alternativos. En conclusion,
el estudio demostré que si bien la cirugia temprana ayuda a reducir los efectos y subsanar el trastorno en
una gran mayoria de los casos, existen también un gran porcentaje de sujetos con AOS moderada o leve
que pueden presentar mejoria o incluso recuperacion sin recurrir a la opcion quirargica. Los resultados
fueron publicados en The New England Journal of Medicine en 2013 (Marcus et al., 2013).

Del resultado de este estudio, no solo surgié informacion crucial sobre la AOS infantil, sino que
también dio lugar a la creacion de una base de datos con gran cantidad de informacion sobre este trastorno
que ha sido frecuentemente empleada en investigaciones actuales tales como Jiménez Garcia et al. (2022,
2024), Martin-Montero et al. (2021, 2022, 2023), Mortazavi et al. (2024), Vaquerizo-Villar et al. (2021),
Garcia Vicente et al. (2023) o Calderdn et al. (2020) entre muchos otros.
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1006 (61.42%) 326 (19.90%) 306 (18.68%)
716; 8] 716 8] 6.9 [6; 8]
520 (51.7%) 168 (51.5%) 168 (54.9%)

471 (46.8%)

17.4 [15.6; 21.7]

156 (47.9%)

17.1[15.4; 21.8]

134 (43.8%)

17.6 [15.7; 21.7]

219 69 67
496 168 148
160 44 49
131 45 42

Tabla 3-1. Tabla resumen de los datos contenidos en la base de datos CHAT (Jiménez-Garcia, 2022).

Como ya se ha mencionado previamente, esta base de datos comprende registros de 464 pacientes
pediatricos, con edades comprendidas entre los 5 los 9 afos de edad de los cuales 49.06% eran nifios y
50.94% eran nifias. Ademas, existe una diversidad étnica en su composicion, siendo un 52.85% de la base
de datos nifios de ascendencia afroamericana, un 36.80% de origen caucasico y un 10.35% de otras etnias,
permitiendo asi cubrir cualquier posible sesgo de los resultados causado por el factor étnico. Aparte de
los datos caracteristicos de los pacientes, también se anaden datos sobre las evaluaciones neurocognitivas,
parametros polisomnograficos, resultados de calidad de vida o incluso las estadisticas de los efectos
adversos en ambos grupos. Entre estos efectos adversos registrados podemos observar algunos como:
hemorragias en las amigdalas, dolor postoperatorio (solo presente en los sujetos sometidos a la cirugia),
asma, catarro, deshidratacion, hipersomnolencia o infecciones variadas entre otros (Marcus et al., 2013).
Podemos observar el resumen de los datos de la base CHAT en la Tabla 3-1.

La eleccion de esta base de datos para el desarrollo de nuestro proyecto viene incentivada por la gran
cantidad de informacion contenida gracias al elevado nimero de sujetos participantes y la gran variedad
de datos recogidos de todos ellos. Ademas al ser publica puede ser solicitada mediante una serie de
formularios, lo que permite comparar los resultados obtenidos con otros estudios realizados sobre la
misma base de una manera mucho mas directa y equitativa.

3.2. Senales empleadas
Para el caso de estudio que nos concierne, se han obtenido las senales de SpO-, FA y HRV registradas

durante las PSG realizadas a los pacientes. A continuacion, realizaremos una breve descripcion sobre cada
una de las 3 sefiales, los procedimientos para poder obtenerlas y la interpretacion de sus valores.
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e Saturacion de oxigeno en sangre (SpO»):

La saturacién de oxigeno en sangre es una métrica empleada para medir la cantidad de oxigeno
transportado a los diferentes tejidos del cuerpo humano a través de moléculas de hemoglobina presentes
en la sangre arterial. La hemoglobina es la encargada de combinarse con hasta 4 moléculas de oxigeno en
los pulmones para repartirlas al resto del cuerpo. Ademas, también transporta diéxido de carbono desde
los tejidos de regreso a los pulmones para su eliminacién. Aunque existen tanto sangre arterial como
venosa, la medicion de la saturacion de oxigeno se realiza preferentemente en la sangre arterial. Esto se
debe a que la sangre venosa presenta niveles de oxigeno mas estables y menos sensibles a cambios
inmediatos, lo que limita su utilidad para evaluar la oxigenacién en tiempo real. De hecho, en muchos
casos, las variaciones en la saturacion de oxigeno venosa son tan bajas que pueden resultar minimas o
incluso practicamente nulas. En cambio, la sangre arterial refleja con mayor precision y rapidez las
variaciones en la oxigenacion, ya que recibe directamente el oxigeno de los pulmones. Estos cambios
pueden detectarse mediante la absorcion de luz, principio en el que se basa la técnica de la pulsioximetria
(Nitzan & Taitelbaum, 2008).

Para medir la saturacion de oxigeno en sangre disponemos de dos métodos principalmente: la
pulsioximetria y el analisis gaseoso de la sangre arterial (Rauniyar et al., 2020). La pulsioximetria consiste
en la colocacion de un dispositivo conocido como pulsioximetro en zonas como los dedos, el 16bulo de la
oreja o la frente. Este aparato permite medir la frecuencia cardiaca y la SpO, utilizando luz roja e infrarroja
para detectar la cantidad de oxigeno unido a la hemoglobina en la sangre. Emplea dos longitudes de onda
especificas: luz roja (660 nm) y luz infrarroja (940 nm). Parte de la luz es absorbida por la oxihemoglobina
y otra parte por la desoxihemoglobina. Gracias a este fendmeno, y mediante un fotodetector ubicado en
el extremo opuesto del emisor, es posible registrar las diferencias en la intensidad de la sefial continua y
alterna en ambas longitudes de onda, lo que permite calcular los valores deseados (Mildenhall, 2008).
Podemos ver un fragmento de la sefial SpO; en la Figura 3-1.

Los factores de SpO- dentro de la normalidad son del: 95-100%, valores inferiores a estos pueden
suponer una indicacion de que existe algiin tipo de anomalia o problema en nuestro cuerpo. Concretamente
valores de 90-94% supone hipoxemia leve, 85-89% hipoxemia moderada y valores inferiores al 85%
hipoxemia grave, lo que supone un problema de salud muy grave (Jubran, 2015). Debemos tener en cuenta
que existen factores que pueden afectar al SpO; como pueden ser: la altitud, la presencia de enfermedades
respiratorias como la neumonia, la AOS o el COVID-19, problemas cardiovasculares como anemia o
insuficiencia cardiaca o la calidad del aire presente en el ambiente entre otros (Alvarez et al., 2010).

Seiial 1
I I
100 N— —]
ES
= 95 =
Q
1S
< 90 ]
g5 | | | | | | | | | | | _
400 420 440 460 480 500 520 540 560 580 600
Tiempo (s)

Figura 3-1. Ejemplo de fragmento de serial SpO: filtrada (Generada con Matlab).

e Flujo Aéreo (FA):

El flujo aéreo, o también conocido como flujo de respiracion, consiste en una métrica con la que poder
medir la cantidad de aire que entra y sale de los pulmones. La respiracion permite un intercambio de gases
con los que poder obtener energia para todos los tejidos del cuerpo a partir de moléculas de oxigeno y
deshacerse de los componentes residuales como son el dioxido de carbono. Ambas métricas estan
estrechamente ligadas, ya que si el FA se interrumpe o reduce afecta al SpO» debido a que la hemoglobina
no puede transportar oxigeno a lo largo del cuerpo si no entra suficiente del exterior (Figura 3-2).
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Figura 3-2. Ejemplo de fragmento de senal FA filtrada (Generada con Matlab).

El FA puede medirse de distintas maneras: mediante el volumen del aire inhalado y exhalado, a través
de la velocidad del flujo de aire en las vias respiratorias o evaluando la capacidad pulmonar del sujeto. La
neumotacografia es una de las técnicas de medicion del flujo aéreo existentes, no obstante al ser tan
invasiva se opta por emplear alternativas como la estimacion directa a partir de sensores de presion o
temperatura o la pletismografia pulmonar, que permite medir el volumen de aire dentro de los pulmones
gracias a una cabina que mide los cambios de presion del térax (Grimaldi et al., 2011; Miquel-gomara
Perell6 et al., 2002; Pellegrino et al., 2005). Para el caso que nos concierne, nos centraremos en los
métodos de medida empleados en la PSG: las canulas nasales o termistores y de manera indirecta las
bandas toracicas y abdominales. Las canulas nasales consisten en una serie de tubos que permiten
monitorear los cambios de presion en el flujo que entra o sale del cuerpo. Por otro lado, los termistores
son pequefios dispositivos que permiten medir la cantidad de aire que se inhala o exhala gracias a la
diferencia de temperatura entre estos dos (Wegener, 2017). Las bandas abdominales o toracicas no
representan una medida directa del flujo aéreo, pero permiten obtener parametros relacionados al aportar
informacién sobre cuanto se expande el torax al inspirar e espirar.

En circunstancias normales el valor del FA debe tener una amplitud aproximadamente regular sin
caidas muy notables, en el caso de que se pierda esa continuidad por un lapso de tiempo prolongado, se
puede considerar como un evento anomalo. Concretamente, si la reduccion del flujo es de al menos el
90% durante 10 segundos estamos ante un caso de apnea y si la reduccion es de al menos el 30% un
evento de hipopnea (Caples et al., 2021).

e Heart Rate Variability (HRV):

La variabilidad del ritmo cardiaco consiste en una métrica que permite evaluar las fluctuaciones en los
intervalos consecutivos de los latidos del corazon, es decir, la variacion en la distancia entre picos R-R en
un ECG. Debemos tener en cuenta que una sefial de ECG esta compuesta por repeticiones de un patron
concreto, determinado como “complejo PQRST”. Este complejo representa la actividad eléctrica del
corazon y esta compuesto de 5 elementos que se pueden ver en la Figura 3-3 (Wagner & Strauss, 2014) :

- Intervalo PR: etapa comprendida entre la onda P y el complejo QRS. En este lapso de tiempo, se
mide el retardo entre el inicio de la activacion del miocardio ventricular y auricular hasta la
respuesta del miocardio.

- Intervalo QRS: etapa comprendida entre el inicio y fin del complejo QRS. En este periodo, se
mide el tiempo desde que se inicia la activacion ventricular hasta su final. Dado que la activacion
de la pared ventricular izquierda y el tabique intraventricular requiere de un mayor tiempo de
activacion que el lado derecho, se requiere de una fuerza de compensacion adecuada con la que
poder equilibrar esto, dicha fuerza queda representada en el complejo QRS.

- Segmento ST: intervalo que mide el tiempo entre la activacidn ventricular y su posterior
recuperacion.

- Intervalo QT: etapa que mide el tiempo desde la activacion ventricular hasta el final de su
recuperacion.
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Figura 3-3. Segmento ECG con complejo PORST. (Autoria propia, inspirado de Wagner & Strauss, 2014).

El HRV puede ser obtenido a partir del propio ECG, simplemente debemos analizar las variaciones o
fluctuaciones de los intervalos RR entre latidos consecutivos. Para ello, debemos obtener un ECG e
identificar los picos R del complejo QRS; una vez localizados, se debe medir la variabilidad respecto al
siguiente punto y al anterior y repetir a lo largo de todo el ECG; finalmente, se analiza dicha variabilidad
y se obtiene una medida del HRV (Malik et al., 1996). No obstante, existen otras maneras de obtener una
medida similar al HRV sin tener que recurrir al ECG, empleando herramientas como el pulsioximetro
podemos medir el valor del Pulse Rate Variability (PRV) y emplearlo como una estimacién del HRV para
extraer la informacion deseada.

Los valores normales entre intervalo RR para un ser humano de entre 20 y 40 afios sin ninguna
patologia cardiaca y en reposo oscilan los 600-1000 milisegundos. No obstante, existen factores naturales
que modifican estos valores como pueden ser la edad (el valor va decreciendo conforme somos mas
mayores), la condicion fisica, el nivel de estrés (a mayor cantidad de estrés mas se reduce el valor) o la
cantidad de suefio acumulada por el sujeto (Zahn et al., 2016). Durante el suefio, el HRV tiende a aumentar
en personas sanas en comparacion con los niveles registrados durante el dia cuando el sujeto esta
despierto. Sin embargo, en individuos con AOS ocurre lo contrario, el HRV se reduce de forma
significativa debido a las alteraciones respiratorias ocasionadas por el trastorno (Qin et al., 2021).
Podemos ver un ejemplo en la Figura 3-4.
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Figura 3-4. Ejemplo de fragmento de sefial HRYV filtrada (Generada con Matlab).
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Capitulo 4: METODOLOGIA

En este capitulo, se detallaremos la metodologia empleada a lo largo del desarrollo del proyecto para
su correcta ejecucion. En cada punto, explicaremos la forma de implementar nuestro modelo por pasos.
En primer lugar, se explicara el proceso de preprocesado realizado seguido del segmentado de las sefiales.
A continuacion, se explorara la rede CNN desarrollada, describiendo su funcionamiento, estructura,
optimizacion y aplicaciones en este campo. Posteriormente, se presentard la fase de optimizaciéon y
pruebas realizadas. Finalmente, se comentara el proceso de obtencion de resultados y la extraccion de
conclusiones de todo el trabajo realizado.

4.1. Preprocesado

Cualquier sefial existente en un medio real se ve afectada por efectos no deseados como puede ser: el
ruido, las interferencias, informacién redundante no deseada o artefactos aleatorios dafiinos para la parte
importante de la sefial (Jaime & Elizondo, 2002; Najarian & Splinter, 2012). Por ello, en todo aquel campo
que implique trabajar con sefales, desde la bioingenieria hasta las telecomunicaciones, se requiere la
aplicacion de una serie de pasos de limpieza y preprocesado con los que poder eliminar la mayor cantidad
de elementos no deseados posible, y asi poder trabajar mas facil y eficientemente con toda la informacion
util (Akdemir Akar et al., 2013). Estas técnicas de limpieza y preprocesado, no solo aumentan y mejoran
la calidad de la sefial, sino que también eliminan componentes no deseadas que pueden suponer un mayor
gasto computacional y temporal si estuvieran presentes a la hora de ser procesadas. Para ello, existen
diversas técnicas como pueden ser: el filtrado, la interpolacion y el remuestreo, el enventanado, la
normalizacion y el escalado o la transformacion de dominio entre otras (Najarian & Splinter, 2012).

Para poder trabajar adecuadamente con las sefiales se deben tener en cuenta una serie de puntos. En
primer lugar, dado que se ha realizado un remuestreo, se aplicéd un filtro antialiasing con el fin de eliminar
o atenuar las componentes de alta frecuencia que podrian inducir aliasing durante el proceso de
remuestreo. Es importante tener en cuenta que estos filtros no eliminan completamente las componentes
no deseadas sino que solo las atenfian en gran medida; ademas, la frecuencia de corte elegida para el filtro
tiene una cierta tolerancia que impide que sea un corte exacto a la frecuencia deseada (Najarian & Splinter,
2012; Semeria, 2015). Estos fenémenos deben ser tenidos en cuenta a la hora de preprocesar
correctamente una sefial. Una vez las sefiales estan limpias, nos encontramos con que cada una de ellas
tiene una frecuencia de muestreo distinta por lo que trabajar con todas de forma simultanea en un modelo
puede ser mas complicado. Para solucionar esto, se ha realizado un remuestreo de todas las sefiales a una
frecuencia de 4 Hz, permitiendo asi disponer de un dominio comun y poder trabajar mejor con el modelo.

Teniendo la sefial limpia y remuestreada, el siguiente paso consiste en realizar la normalizacion y el
escalado. Esta etapa es fundamental en casos donde se trabaja con mas de una sefial distinta, ya que cada
una puede estar en un rango completamente distinto al del resto. Esta etapa, permite que todas las sefiales
empleadas se encuentren dentro de un mismo rango absoluto, facilitando asi el procesamiento y
manipulacion de las mismas. Para poder realizar dicha normalizacion y escalado, emplearemos métricas
como la media (i) y la desviacion estandar (o) permitiendo ajustar la sefial a una distribucion con p=0y
o=1 mediante la normalizacién Z-score. La normalizacion Z-score es ampliamente empleada para
normalizar sefiales gracias a su sencillez y a la utilidad que supone eliminar sesgos debido a la diferencia
entre los rangos de valores de las sefiales (Al-Faiz et al., 2019). Para aplicar esta transformacion basta con
emplear la Ecuacion 4.1, donde X es el valor original de la sefial, y |, o se obtienen a partir de los datos
de entrenamiento:

X—p
c

X = (4.1)
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4.2. Segmentacion de sefiales

Una vez las sefales de la base de datos CHAT han sido correctamente preprocesadas, disponemos de
1638 registros nocturnos de sujetos pediatricos diagnosticados con distintos grados de AOS. Estos
registros contienen: las sefiales SpO,, FA y HRV, entre otras, y las marcas de los eventos de
apnea/hipopnea etiquetadas por expertos. Los registros nocturnos duran en torno a 8-10 horas y como
fueron remuestreados a 4 Hz, se ha optado por segmentar cada uno de los registros en fragmentos de 20
minutos de duracion, eliminando la parte residual del registro en caso de no llegar a formar un fragmento
completo. Cada fragmento contendra por lo tanto las 3 sefiales mencionadas y las marcas que localizan
los eventos de apnea/hipopnea en esos periodos de 20 min. El resultado de realizar el segmentado son
47.951 nuevos registros de 20 min de duracidn, separados entre entrenamiento (train), validacion (val) y
testeo (test) siguiendo la regla del 60-20-20 (60% de los datos a train, 20% a val y 20% a test).

Todos estos fragmentos extraidos de los registros originales se han empleado como dataset para el
modelo de DL a desarrollar. Cada ejemplo del dataset tendra 2 componentes:

- Una primera matriz de 4.800 x 3, compuesta por el nimero total de muestras del fragmento (20
min * 60 s/min * 4 muestras/s = 4.800 muestras) y las 3 sefiales registradas (SpO», FA y HRV) de
forma que se pueda extraer los datos de la sefial deseada simplemente eligiendo una de las 3
componentes de la matriz.

- Una segunda variable escalar que representa la cantidad de eventos de apnea/hipopnea presentes
en ese fragmento etiquetados por el experto médico. Esta variable es un nimero entero.

En las Figuras 4-1, 4-2 y 4-3 podemos observar el resultado de segmentar los registros para cada una
de las 3 sefiales. En primer lugar el primer registro de la sefial SpO> frente al primer fragmento de ese
propio registro. Ademas, se han afiadido una serie de lineas verticales punteadas que indican cada uno de
los fragmentos. Como podemos apreciar, hay una serie de muestras (en especial al comienzo) donde la
sefal de SpO- se reduce a amplitud 0, esto se debe a fallos en el sensor o falsos contactos puntuales con
el paciente al colocarle los sensores. No obstante, se puede observar como esos puntos no han sido
etiquetados por los expertos ya que no son considerados eventos de apnea/hipopnea.
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Figura 4-1. Seiial SpO: completa (superior) vs sefial SpO: fragmentada (inferior) (Autoria propia, elaborada con Matlab).
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Figura 4-2. Seiial FA completa (superior) vs sefial FA fragmentada (inferior) (Autoria propia, elaborada con Matlab).
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Figura 4-3. Sefial HRV completa (superior) vs sefial HRV fragmentada (inferior) (Autoria propia, elaborada con Matlab).

En las marcas de las sefales registradas se pueden apreciar los intervalos correspondientes a los
eventos de apnea/hipopnea, que se extienden durante varios segundos. Por ende, debemos contabilizar
cada intervalo como un Unico evento, es decir, fusionar todas esas marcas como si fuesen una inica marca.
Esto permitira a la red aprender correctamente, ya que podra comparar las estimaciones realizadas con el

numero de eventos presentes en cada segmento (Figura 4-4).
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Figura 4-4. Esquema del proceso de umbralizacion de los eventos (Autoria propia).

4.3. Generador de datos

Lo primero que debemos tener en cuenta a la hora de desarrollar cualquier algoritmo de IA es la
estructura que se dard a los datos de entrada. Generalmente, se emplea una division de todos los datos
disponibles en distintos grupos: un primer grupo de entrenamiento (¢rain), un grupo de validacion (val) y
un grupo de testeo/evaluacion (fes?). Para realizar esta division existen distintas estrategias que se pueden
seguir. Aunque la metodologia puede variar segtn el caso, la técnica mas empleada es 60-20-20, haciendo
referencia al porcentaje de datos que se introducen en train, val y test respectivamente (Aggarwal, 2018a;
Kelleher, 2019).

e Datos de entrenamiento (train): el grupo de datos de entrenamiento se emplea para
desarrollar el modelo y optimizar los pesos o parametros y que asi aprenda las caracteristicas
y patrones presentes en los datos.

e Datos de validacion (val): el grupo de validacion se emplea para evaluar el rendimiento del
modelo durante el entrenamiento pero sin ajustar de forma directa sus parametros. Su funcién
principal es controlar que no haya una gran diferencia entre los resultados obtenidos durante
el entrenamiento y la validacion, para evitar asi posibles sobreajustes con los datos.

e Datos de testeo (zes?): el grupo de test, se emplea para realizar una tltima verificacion del
modelo después de entrenarlo y validarlo, empleando datos que nunca haya visto para observar
si el comportamiento es el deseado y el modelo consigue generalizar y aprender de la forma
adecuada.

Con la informacion preparada, disponemos de un gran volumen de sefiales con los que poder entrenar
el modelo. Sin embargo, emplear simultaneamente todas las muestras disponibles podria suponer una
cantidad de datos excesiva para los recursos computacionales del equipo de procesamiento desbordando
su memoria y comprometiendo el rendimiento y la funcionalidad del algoritmo. Para evitar este problema,
es necesario implementar un mecanismo que permita gestionar la carga de datos de manera eficiente,
introduciendo los datos en fracciones de manera controlada y escalonada.

Para poder introducir los datos en el sistema y no saturarlo, se ha establecido una division en los datos
en funcion del valor de batch_size, permitiendo asi que los datos no se introduzcan en el modelo todos a
la vez. Para poder ir introduciendo estos lotes, una de las soluciones ampliamente empleada son los
generadores de datos. Estos sistemas permiten ir alimentando a los modelos con datos de forma continua
y progresiva, de forma que el modelo disponga a la larga de todos los datos posibles pero sin saturarse al
tener que almacenar y procesar toda la informacion a la vez. Este generador extrae los datos en lotes del
tamafo que fije el hiperparametro batch_size y los introduce en el modelo secuencialmente durante la
fase de entrenamiento. Una vez el modelo termine de procesar ese lote de datos, el generador le introducira
mas lotes de forma continua hasta terminar con todos los datos disponibles. Cuando se hayan terminado
todos los lotes al final de la época, se reorganizan aleatoriamente los datos y se volveran a introducir por
lotes a lo largo de la siguiente época. El ciclo se repetira hasta llegar al nimero maximo del niimero de
épocas o el procedimiento de Early Stopping pare el entrenamiento. En la Figura 4-5 podemos ver un
esquema de su funcionamiento.
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Figura 4-5. Esquema de funcionamiento del generador de datos (Autoria propia).

Debemos tener en cuenta que cuando se emplea mas de una sefial, es recomendable normalizar dichas
sefales mediante su media y desviacion estaindar como se ha visto en la parte de preprocesado. Es decir,
en nuestro caso al emplear las sefiales de 1 en 1, no las hemos transformado; pero, al emplear 2 o incluso
las 3, debemos de normalizarlas, ya que si no la diferencia entre las escalas de cada una de las senales
puede introducir un sesgo considerable dentro del sistema. Cabe destacar que si se normalizan las sefiales
para entrenar el modelo, se debe de normalizar de la misma manera cuando se emplee el modelo para
realizar las estimaciones.

4.4. Modelo desarrollado

Las redes neuronales constituyen un pilar basico de los sistemas DL, esto se debe principalmente a su
eficiencia y utilidad en el reconocimiento e identificacion de caracteristicas en distintos tipos de datos.
Existen una gran cantidad de tipos de redes diferentes, lo que permite disponer de un amplio abanico de
posibilidades a la hora de realizar una eleccion, dependiendo de la tarea que se pretenda desempefiar. En
este trabajo nos hemos centrado en las redes CNN, ya que son especialmente utiles a la hora de reconocer
caracteristicas en datos espaciales como imagenes o sefiales lo que las hace ideales para la busqueda de
patrones, anomalias o artefactos.

4.4.1. Estructura basica

Las CNN son modelos de DL especializados en la extraccion de caracteristicas a partir de datos con
estructura espacial, como imagenes o sefiales. Como ya se ha explicado previamente, este tipo de modelos
tratan de recrear de la manera mas precisa posible el comportamiento del cerebro humano a la hora de
analizar patrones, mediante la agrupacion de neuronas artificiales en estructuras concretas. Originalmente,
estas redes fueron disefiadas para el reconocimiento de digitos escritos de manera manual. La idea
principal de dicho proyecto consistia en desarrollar una red en la cual las neuronas de las capas iniciales
pudieran extraer patrones visuales sencillos, que pudieran ser combinados en capas mas profundas para
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permitir crear conceptos mas complejos con los que poder generar una respuesta final (Aggarwal, 2018a;
Kelleher, 2019; Szeliski, 2011; Voulodimos et al., 2018b). Este principio sigue vigente en la actualidad:
las redes extraen caracteristicas basicas de los datos en las primeras capas, como puede ser el color de los
pixeles en una imagen; combinan dichas caracteristicas en representaciones mas complejas, como puede
ser la creacion de texturas o contornos; y finalmente, elaboran una respuesta final como puede ser el
reconocimiento de objetos en las imagenes introducidos como datos de entrada a la red (O’Shea & Nash,
2015).

Para lograr esto las CNN emplean un sistema de bloques secuenciales, que a su vez, estin compuestos
por una serie de capas encargadas de realizar las funciones de extraccion de caracteristicas, adaptacion de
las dimensiones o normalizacidon de resultados entre otras funciones (He et al., 2015b; Kelleher, 2019).
La realizacion de estos pasos sobre los datos de entrada depende de la eleccion, colocacion y orden de las
distintas capas que conforman los bloques de la red. Generalmente, los bloques de estas CNN son
denominados como “Conv Blocks”, ya que suelen estar compuestos por un nimero variable de capas de
convolucidn, capas de activacion y capas de normalizacidon, aunque, también pueden aplicarse bloques de
reduccion de dimensionalidad. Tras estos bloques se suelen afadir bloques densos (también conocidos
como fully connected) empleados para terminar de establecer las dimensiones red (O’Shea & Nash, 2015).
No obstante, la eleccion de la composicion de los bloques depende en gran medida del objetivo de la CNN
y la estructura de los datos que se someten al analisis. En la Figura 4-6 se puede observar un esquema de
una red neuronal sencilla a modo ilustrativo.

Capa de
salida

Capa de

Capal
entrada P Capa 2 Capa3

Figura 4-6. Esquema de una red neuronal multicapa con capas etiquetadas (Adaptada de Kelleher, 2019).

Para lograr crear conceptos eclaborados, dentro de cada capa convolucional se encuentran unas
estructuras encargadas de realizar una serie de convoluciones sobre los datos. Estas estructuras se llaman
filtros o kermels, y consisten en pequefias matrices compuestas por una serie de pesos que son
multiplicados por los datos de entrada, generando una nueva matriz denominada feature map, que
representa la informacion extraida de los datos originales. Basandonos en la revision del estado de la
técnica previamente realizada, se ha desarrollado un modelo CNN basado en 5 bloques idénticos
conformados por una serie de capas. La estructura de dichos bloques esta conformada por las siguientes
capas en este orden:

e Capa convolucional: en primer lugar, una capa de convolucion 1D con 64 filtros de tamafio
6 y una inicializacion de coeficientes del filtro “he_normal”. Este método asigna valores
aleatorios a los pesos de las capas siguiendo una distribucion gaussiana con media 0 y
desviacion estandar 1 basandose en la cantidad de neuronas de la capa (He et al., 2015b). La
tarea de cada capa consiste generar los mapas de caracteristicas que se procesaran en las
siguientes capas de forma que se puedan ir estableciendo relaciones entre las caracteristicas.
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e Capa batch normalization: esta capa trata de normalizar las activaciones de la capa anterior
con cada lote (batch) durante el entrenamiento calculando la media y reescalando los valores.
Se ha afiadido una capa batch normalization después de cada capa convolucional.

e Capa de activacion: en esta capa se aplica la funciéon de activacion ReLU para todas las
neuronas (Ecuacion 4.2). La eleccion de esta funcion frente a otras alternativas como ELU o
Leaky ReLU se debe a su simplicidad computacional, su buen rendimiento empirico y su
efectividad a la hora de evitar el problema del gradiente desvanecido en valores positivos.
Aunque funciones como ELU o Leaky ReL U pueden resolver limitaciones especificas de ReLU
como el caso de neuronas “muertas”, ReLU sigue siendo la opcion mas comtn debido a que
permite un entrenamiento mas rapido y ha demostrado funcionar correctamente en una amplia
gama de tareas (Clevert et al., 2015; Glorot et al., 2011; Maas et al., 2013).

ReLU(x) = max(0, x) (4.2)

e Capa MaxPoolinglD: finalmente, aqui se reduce la dimensionalidad de los datos para
eliminar informacion redundante reteniendo la activacion maxima entre muestras adyacentes,
en nuestro caso aplicaremos una ventana de tamafio K = 2.

Esta estructura se repite tantas veces como quede fijado en el hiperpardmetro num_blocks de forma
secuencial hasta llegar a un ltimo conjunto de capas finales que se encargaran de tomar la decision final
(Kelleher, 2019). Dichas capas son:

e Capa Flatten: convierte el array multidimensional con los mapas de caracteristicas generados
en las capas convolucionales en un vector unidimensional apto para analizar los patrones
extraidos en las capas finales del modelo.

e Capa fully connected: en esta capa hemos definido una Unica neurona a la que se conectan
todas las de la capa anterior, hemos fijado la activacion a tipo “linear” y de nuevo como en las
capas convolucionales la inicializacion es “he-normal”.

Por lo que el resultado de la composicion inicial del modelo seria (Figura 4-7):

x 1 Block 2 Block 3 Block 4 Block 5 Block K—» 9

Fully
connected

Flatten

Convolutional1D 7 ¥ \
BatchNormalization Activation MaxPooling1D
Figura 4-7. Esquema genérico del modelo CNN inicial (Autoria propia).
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Durante el proceso de entrenamiento del modelo, los parametros de las capas (convolucionales, fully
connected, etc.) deben ajustarse. Estos parametros incluyen los pesos y el sesgo, parametros presentes en
cada neurona, pudiendo coincidir los valores de estos entre ellas. Para poder ajustar estos valores
adecuadamente, en primer lugar se realiza el proceso de inicializacion, proceso en el cual se inicializa los
valores de sesgo a 0 y los valores de los pesos a nlimeros aleatorios (Kelleher, 2019; O’Shea & Nash,
2015). Con los parametros ya inicializados, se introducen los datos en la red neuronal, se analizan y
procesan y se genera una salida. Esta etapa se denomina como feedforward o forward propagation y
consiste en el proceso de introducir datos por la entrada hasta generar una respuesta (O’Shea & Nash,
2015).

Una vez el modelo genera una prediccion, se evalta la diferencia entre el valor estimado y el valor real
mediante una funciéon de pérdida. Esta evaluacion permite determinar si el error supera un umbral
aceptable y, en caso afirmativo, se inicia una nueva etapa de ajuste del modelo para mejorar su precision.
En esta segunda etapa, se realiza el mismo camino que en la etapa anterior pero en sentido opuesto: se
inicia en las capas finales y se van realizando las derivadas hacia atras en cada neurona hasta llegar a las
capas iniciales con el objetivo de tratar de minimizar los gradientes con respecto a los parametros de la
red. Esta etapa es conocida como back propagation y su objetivo principal consiste en realizar un proceso
de optimizacion con el objetivo principal de minimizar una funcion de error generada a partir de los datos
reales y las estimaciones del modelo. Para ello, la fase de optimizacion tratara de indicar los pesos a ajustar
y la direccion en la que hacerlo acorde a una funciéon matematica que establece cuanto debe afectar el
nuevo valor calculado. Esta funcion se conoce como funcion de aprendizaje y va determinado por la tasa
de aprendizaje (learning rate), elemento que fija el nivel de atencion que se debe dar a la correccion de
los parametros de una neurona frente a los anteriores. Actualmente, existen algoritmos capaces de ajustar
dindmicamente la tasa de aprendizaje para que la red funcione de una mejor manera, adaptandose a cada
momento del entrenamiento. En la Figura 4-8 se representa un esquema de este proceso.

El objetivo de realizar estos pasos es poder alcanzar el minimo global de la funciéon de error a
optimizar. Para ello, al calcular las derivadas se procura determinar la direccion en la que debemos ajustar
los parametros de la red para reducir el valor de la funcion de perdidas. Es decir, intentar que los resultados
de nuestro modelo se asemejen cada vez mas a los resultados reales esperados.

I e e S p—
Forward propagation
) N
s Los?
Functio

Backpropagation

Figura 4-8. Esquema de una etapa de entrenamiento de un modelo, indicando las funciones feedforward o forward
propagation, loss function y back propagation (Autoria propia).
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El modelo debe ser compilado antes de poder emplearse en el sistema. A la hora de realizar la
compilacion es necesario afadir una serie de parametros con los que poder configurar adecuadamente
dicho proceso. En primer lugar, debemos fijar el algoritmo de optimizacion; en vez de emplear el
predeterminado hemos optado por seleccionar el algoritmo “Adam”. Este algoritmo, es ampliamente
utilizado dada su capacidad de poder ajustar de manera adaptativa la tasa de aprendizaje inicial
proporcionada. Por otro lado, también debemos de fijar una funcién de pérdidas; en nuestro caso,
emplearemos la funcion de pérdida Huber que permite combinar caracteristicas del MSE (Mean Square
Error) y del MAE (Mean Absolute Error). La funcién Huber funciona de forma que si el error entre la
prediccion y el valor real es pequefio, se emplea una funcion cuadratica como el MSE y en caso opuesto,
una funcion lineal como el MAE (Huber, 1963).

Una vez desarrollado el modelo, se han aplicado una serie de mejoras para aumentar su eficiencia y
mejorar los resultados durante la etapa de entrenamiento mediante una serie de callbacks que permitan
implementar estas mejoras. Se han afiadido los siguientes callbacks al modelo (TensorFlow Team, 2024):

e  Model Checkpoint: este callback permite crear puntos de progreso para guardar el modelo en
un punto determinado. En nuestro caso, guarda el modelo cada vez que se obtengan mejores
resultados en la variable de monitoreo que se le indique (en nuestro caso el error de
validacion), junto a la época en la que se obtuvo.

o Early Stopping: este callback reduce el tiempo de entrenamiento a la vez que previene el
sobreajuste, ya que permite monitorizar el error del modelo a lo largo de las épocas de
entrenamiento. En nuestro caso, permite que si no se mejora dicho valor en 30 épocas el
modelo termine la etapa de entrenamiento y restaure los pesos a los obtenidos en la época en
la que el error de validacion fue el minimo.

e Reduce LR On Plateau: este callback permite reducir de forma dinamica el valor de la tasa
de aprendizaje cuando el modelo se estanca, favoreciendo asi una mejor convergencia. Al
igual que con FEarlyStopping, es necesario establecer un valor para la variable
patience_reduce_learn rate, que define cuantas épocas deben transcurrir sin mejora en el
error antes de aplicar la reduccion. En nuestro caso, se ha asignado un valor de 0.5 a la variable
factor, lo que implica que la tasa de aprendizaje se reducira a la mitad cada vez que se active
este callback.

Dado que trabajamos con 3 sefiales distintas (SpO», FA y HRV), y nuestro objetivo es compararlas
entre si, ya sea de forma individual, en grupos de 2 o en conjunto; puede resultar de interés desarrollar
algiin mecanismo que permita elegir las sefiales que se quieren introducir en el modelo. Para ello, se ha
disefiado un selector de sefiales que organiza los datos de los registros en matrices tridimensionales. En
esta estructura, cada fila representa un fragmento, cada columna corresponde a las muestras de los
fragmentos y cada capa de la matriz (dimensiéon de profundidad) alberga cada una de las sefales
seleccionadas. Este enfoque permite, mediante la modificacion de un unico parametro (signals _selected
en nuestro caso), elegir cualquier combinacion de sefiales, generando asi matrices de 1, 2 o 3 columnas
en funcion de lo requerido. Cabe destacar que las marcas de los eventos siempre se cargan, dado que su
valor permanece invariable independientemente del numero y combinacion de las sefiales seleccionadas.
Ademas, el modelo se ha disefiado con variables dindmicas para permitir una mejor adaptacion en funcion
de las sefiales cargadas.

4.4.2. Optimizacion de los hiperparametros

Aunque lograr un ajuste 6ptimo de los parametros o pesos de una red neuronal es fundamental, esto
por si solo no garantiza un rendimiento satisfactorio del modelo. Es igualmente importante ajustar los
hiperpardmetros, que son configuraciones establecidas antes del proceso de entrenamiento y que no se
actualizan durante el mismo. Estos hiperparametros determinan aspectos clave de la arquitectura,
dimensiones y el proceso de aprendizaje del modelo. En nuestro caso, los hiperparametros optimizados
han sido (Goodfellow et al., 2016; Kelleher, 2019):
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e Numero de bloques (num_blocks): este valor establece el nimero de bloques o capas
convolucionales que empleara el modelo, a mayor valor mas complejos seran los conceptos
creados por lared y por lo tanto mas aprendera la red. Como ya se ha mencionado previamente,
debemos tener en cuenta que si este valor es elevado la red puede volverse demasiado
profunda, por lo que el modelo podria memorizar en lugar de aprender de los datos o en caso
contrario no aprender correctamente.

o Numero de filtros por capa (num_filters): este valor fija el nimero de filtros o kernels por
capa convolucional, debemos tener en cuenta que emplear un valor alto tiene consecuencias
similares al hiperpardmetro num_blocks. Fijar un valor alto supone un mayor tiempo de
computacion y aumentar la posibilidad de causar sobreajuste, mientras que un valor bajo
causaria subajuste.

e Tamaiio de los filtros (filter_size): con este valor, se fija el numero de coeficientes
(parametros) de los filtros. Debemos tener en cuenta que en nuestro caso se han usado filtros
unidimensionales al ser sefales y no imagenes, es decir, los filtros se aplican sobre la
dimension temporal. Debemos tener en cuenta que los filtros pueden reducir las dimensiones
de los datos (dependiendo de la configuracion del padding o del paso del filtro), puede darse
el caso de que al fijar un valor demasiado grande las dimensiones se reduzcan tanto que el
modelo no pueda trabajar con ellos y acabe fallando.

e Tamaiio de lote (batch_size): en los modelos de DL se requieren gran cantidad de datos, por
lo que en algunos casos meter todos a la vez no supone una buena idea. Por lo tanto se suelen
dividir en lotes o batches, y asi poder introducirlos por partes dentro del modelo, permitiendo
focalizar los datos y que el algoritmo pueda trabajar de forma maés eficiente. Es importante
optimizar este hiperparametro ya que pueden existir relaciones entre los datos que no sean
visible en caso de que estén en lotes distintos, por lo que, debemos elegir un valor que permita
al algoritmo procesar los datos eficientemente pero sin excedernos o perderemos parte de la
informacion referente a patrones entre los datos.

o Tasa de aprendizaje inicial (/learning rate): en un algoritmo de optimizacion de descenso
de gradiente, la tasa de aprendizaje permite al modelo prestar mas o menos atencion a las
correcciones de los parametros en cada época regulando asi la variacion de estos entre épocas.
Sibien se suele ajustar de manera dindmica, el valor inicial sobre el que se comenzara a realizar
dicho ajuste también puede ser optimizado como un hiperparametro. Debemos tener en cuenta
que un valor inicial elevado puede impedir la obtencidon de un minimo error y un valor reducido
puede incrementar el ntimero de épocas necesarias de manera no deseada ademas de obtener
un modelo entrenado de manera subdptima debido a la convergencia hacia minimos locales
de la funcion de error.

o Tasa de Dropout (dropout_rate): el dropout consiste en una estrategia de prevencion del
sobreajuste que implica desactivar un porcentaje de neuronas para que asi el modelo no
memorice los datos. Esta tasa también puede suponer un hiperpardmetro a optimizar.

A pesar de que el nimero de épocas del modelo también puede ser un hiperparametro a ajustar, no
suele aplicarse, ya que se suelen usar otros como el EarlyStopping. Esta técnica permite fijar un valor de
paciencia para el cual el algoritmo debe seguir probando épocas, de forma que si el modelo mejora en ese
periodo se vuelve a reiniciar la paciencia, y en caso contrario, se termine el entrenamiento evitando asi
gastar recursos innecesarios (O’Shea & Nash, 2015; Prechelt, 1998).

Debemos tener en cuenta que al tener varias combinaciones de sefiales posibles, los hiperparametros
que son Optimos para una combinacion pueden no serlo para las demas. Debido a esto, tendremos que
ajustar los hiperparametros de cada posible combinacion de sefiales por separado, y para ello, realizaremos
la etapa de entrenamiento con cada una de las sefiales dando un rango de valores a cada hiperparametro
para observar cual es el que mejor se comporta. El procedimiento a seguir sera el siguiente: en primer
lugar, emplearemos los hiperparametros definidos inicialmente para todas las sefiales. Después, se ajustara
uno de ellos, entrenando el modelo con distintos valores dentro de un rango especifico durante 4
iteraciones, mientras que los demas permaneceran constantes. Cada uno de estos valores se probara en la
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fase de entrenamiento cada una de las iteraciones, con el objetivo de descartar posibles resultados atipicos.
Una vez evaluadas todas las posibilidades, se analizaran las pérdidas de validacion obtenidas. A partir de
este analisis, se seleccionard el valor que haya mostrado el mejor desempefio en términos de pérdidas de
validacion, y se fijard para esa sefial antes de pasar a ajustar el siguiente hiperpardmetro. Se repetira el
procedimiento con el resto de hiperparametros hasta tener el valor optimo de todos ellos para la sefial
elegida. En el apartado de resultados se mostraran los valores dptimos para todos los hiperparametros de
cada sefal y combinacion de sefiales.

Una vez que se disponen de los hiperparametros 6ptimos para cada una de las posibles combinaciones,
debemos elegir el mejor modelo posible para cada una de ellas. Para poder elegirlo adecuadamente,
crearemos una variable de monitoreo de las pérdidas de validacion que fijaremos a infinito; y someteremos
al modelo, ya con los hiperparametros optimizados, a una gran cantidad de ciclos de entrenamiento. En
cada uno de estos ciclos, compararemos el valor de las pérdidas de validacion con el de la variable de
monitoreo, en caso de ser mejor el valor obtenido, se actualiza el valor de la variable de monitoreo a ese
nuevo valor y se guarda el modelo como el mejor modelo. Tras una serie de ciclos, obtendremos el mejor
modelo posible de todos ellos para cada una de las senales.

Una vez tengamos el mejor modelo de cada una de las sefiales, podemos guardarlo y emplearlo cuando
se necesite. Ademas, cargar un fragmento en un modelo ya entrenado es mucho mas rapido y consume
muchos menos recursos que la etapa de entrenamiento realizada con anterioridad.

Con el modelo inicial y el generador de datos, la siguiente etapa consiste en implementar un sistema
con el que recoger los resultados y analizarlos para comprobar la evolucion del modelo. Para ello, se han
utilizado graficas scatter plot, Bland-Altman y de la curva de aprendizaje del modelo (Bland & Altman,
1986; Hicks et al., 2022). Ademas, las librerias empleadas para el desarrollo del propio modelo permiten
la obtencidn de resultados de la fase de entrenamiento mediante un historial de monitoreo de las variables.
Las distintas graficas permitiran comprobar de forma directa si el modelo estd comportindose de la
manera esperada o por el contrario esta cayendo en el subajuste o sobreajuste. Por otro lado, los historiales
permitiran analizar mas en profundidad los resultados del entrenamiento y buscar posibles fallos o puntos
de mejora en el modelo.

En primer lugar, las curvas de aprendizaje son graficas que permiten realizar un seguimiento del
rendimiento del modelo durante el entrenamiento (Aggarwal, 2018b; Kelleher, 2019). Para ello, se
representan las curvas de pérdidas en entrenamiento (frain_loss) y en validacion (val_loss) de manera
simultanea. Estas graficas por lo general tienen una tendencia decreciente ya que salvo que el modelo esté
mal disefiado, conforme avanzan las épocas del entrenamiento el modelo debe disminuir el valor de las
pérdidas (Aggarwal, 2018b; Goodfellow et al., 2016; Kelleher, 2019).

No obstante, debemos tener en cuenta que la relacion entre ambas curvas también nos puede dar mucha
informacion, la separacion entre ellas nos puede indicar si el modelo esta comportandose adecuadamente
o no. En caso de que las curvas estén muy separadas, hay claros indicios de que el modelo esta cometiendo
sobreajuste ya que los errores cometidos con los datos de entrenamiento son significativamente inferiores
a los cometidos en los datos de validacion (Goodfellow et al., 2016; Kelleher, 2019). Por otro lado, en
caso de que las curvas sean similares pero los errores cometidos sean muy elevados (es decir, muy
separadas del eje de origen), es indicador de que existe un problema de subajuste, es decir, el modelo no
es capaz de aprender a partir de los datos proporcionados (Goodfellow et al., 2016; Kelleher, 2019). En
un caso ideal, ambas curvas son proximas, disminuyen de igual manera y estan proximas al eje de origen.
Ademas, también nos pueden indicar si el modelo se ha entrenado durante un numero suficiente de épocas.
Para ello, debemos de observar la tendencia de las curvas: si vemos que decrecen pero no llegan a
estabilizarse el modelo requiere de un mayor nimero de épocas, ya que el hecho de no terminar de
alcanzar una etapa mas plana indica que atn puede haber margen de mejora; en el caso contrario, si se
mantiene plano mucho tiempo, la cantidad de épocas es excesiva, consumiendo recursos innecesariamente
(Aggarwal, 2018b; Kelleher, 2019). En la Figura 4-9 vemos un ejemplo de estas curvas.
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Curva de aprendizaje del modelo CNN
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Figura 4-9. Ejemplo de una curva de aprendizaje del modelo CNN (Autoria propia).

Por otra parte, también resulta interesante emplear las graficas scatter plot y Bland-Altman para
observar el comportamiento del modelo desde otra perspectiva distinta. En el caso de las gréaficas scatter
plot, simplemente hemos enfrentado los puntos reales (y) y estimados (x) en color rojo frente a una recta
x = y en color azul, siendo las zonas donde mayor superposicion entre estos indicadores de buen
comportamiento del modelo. Si bien la idea es similar, en los graficos de Bland-Altman existen una serie
de diferencias. En primer lugar, en lugar de situar los valores reales y estimados en los ejes X e Y, se fija
el promedio de las mediciones entre los puntos en el eje X'y la diferencia en el eje Y. A continuacion, se
calcula la media y los limites de acuerdo (media + 1.96 = std) y se afiaden al grafico de forma
horizontal. Si las diferencias estan cercanas a 0 significa que el modelo tiene una elevada exactitud en las
predicciones, si por el contrario existe una tendencia de crecimiento o decrecimiento, puede existir la
posibilidad de un sesgo y por lo tanto podemos detectar si el modelo infraestima o sobreestima el niimero
de eventos o el IAH (Altman & Bland, 1983; Bland & Altman, 1986). En la Figura 4-10 podemos ver un
ejemplo de este tipo de graficas.
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Figura 4-10. Ejemplo de grdfica Bland-Altman (izquierda) y grafica Scatter (derecha) del modelo CNN (Autoria propia).
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Ademas, se ha empleado coeficiente de determinacion R2_score (Ecuacion 4.3) para poder evaluar la
concordancia de los resultados obtenidos con las medidas reales. Debemos tener en cuenta que cuanto
mas proximo sea el valor del R2 score a 1, mejor sera la exactitud del modelo. Esta métrica se ha afiadido
a todas las gréficas con el fin de aumentar la cantidad de informacion que proporcionan. La razén por la
que se utiliza el R2 score en lugar de otras métricas como el Intraclass Correlation Coefficient (ICC) se
debe, en parte, a la mayor simplicidad en el calculo e interpretacion del R2 score. Ademas, el ICC esta
disefiado para evaluar la fiabilidad entre observadores o entre multiples mediciones de un mismo sujeto,
por lo que no resulta tan adecuado en contextos de regresion supervisada estandar. En este caso, el uso
del R2 score es mas apropiado y relevante (Chicco & Jurman, 2020; Koo & Li, 2016).

Residual
stcore =1- Sl 4.3)
TOtalsquare

Finalmente, hemos configurado el historial del modelo para que nos permita obtener informacion de
las variables: época del modelo, MAE, MSE, pérdidas de entrenamiento y pérdidas de validacion. Gracias
a la informacion proporcionada por dicho fichero, podemos observar con mas precision lo que ocurre en
el modelo, identificar si hay fallos en la estructura general, si se han dado comportamientos anormales en
alguna época o comparar si el desempefio durante el entrenamiento y la validacion funciona acorde a lo
esperado.

4.4.3. Estimacion del IAH

Con el sistema previamente desarrollado y habiendo elegido el mejor modelo para cada senal, es
posible estimar la cantidad de eventos de apnea/hipopnea presentes en cada fragmento. No obstante,
nuestro objetivo es poder estimar el valor del IAH en cada sujeto a través del nimero total de eventos en
el registro nocturno. Para ello, a partir de la estimacion del ntimero de eventos por cada segmento de 20
min y la duracion del registro nocturno del paciente debemos trabajar en calcular el valor del IAH. Lo
primero que debemos tener en cuenta, es que el valor del IAH sera asignado a un tinico sujeto, por lo que
se han analizado con el modelo todos los fragmentos de 20 min de un mismo sujeto y se han sumado los
valores de niimero de eventos estimados obtenidos en cada uno de los fragmentos. De esta manera,
obtendremos el nimero de eventos totales estimado para un Unico usuario y a partir de ahi podremos
obtener el IAH correspondiente a ese sujeto.

Otro de los factores que debemos tener en cuenta es la diferencia entre el tiempo de grabacion y el
tiempo de suefio del paciente. El tiempo de suefio corresponde al periodo en el que la persona estd dormida
y es calculado durante la PSG mediante la contabilizacion de los ciclos de suefio a través del EEG,
mientras que el tiempo de grabacion por otro lado, abarca desde la colocacion de los sensores en el
paciente durante la PSG hasta su retirada al final de la noche. Sin embargo, el marcaje de las fases del
suefio y el posterior computo del tiempo total de suefio no esta disponible empleando las sefiales y el
modelo de este trabajo. Deberemos utilizar el tiempo total de grabacion, teniendo en cuenta que la
duracion del registro es mayor que el tiempo total de suefio (al abarcar periodos en los que el sujeto esta
despierto y periodos en los que esta durmiendo). En la Figura 4-11, podemos observar como varian los
valores de las sefales en los primeros momentos correspondiente a la colocacion de los sensores, en los
que el paciente presumiblemente contintia despierto.
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Figura 4-11. Primer fragmento de un sujeto, seiial SpO: (Autoria propia, elaborado con Matlab).
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Regresion de Huber
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Figura 4-12. Ejemplo de regresion Huber con la seiial SpO:.

Por lo tanto, debemos estimar el IAH teniendo en cuenta esta limitacion. En primer lugar, se ha
calculado el tiempo de grabacion por sujeto simplemente empleando el nimero de fragmentos de 20 min
convertidos a eventos por hora, pero como ya se ha mencionado, este valor incluye tiempo en el que el
sujeto permanece despierto. Asi que se ha calculado la tasa de eventos detectados durante el tiempo de
grabacion, para luego poder aplicar un sistema de regresion del IAH basado en Huber destinado a obtener
una estimacion precisa del IAH teniendo en cuenta las limitaciones mencionadas anteriormente (Figura
4-12). De esta manera, podemos tratar de corregir la infraestimacion del IAH originado al emplear el
tiempo de grabacion en lugar del tiempo de suefio del paciente. Esto permite obtener una estimacion mas
precisa del valor de IAH y por lo tanto, permite realizar una mejor umbralizacion para clasificar a los
sujetos en los distintos grados de AOS infantil.

4.5. Analisis estadistico

Para evaluar el rendimiento del modelo de prediccion, es fundamental llevar a cabo un analisis
estadistico que permita evaluar el desempefio de nuestro sistema. Para ello, se han empleado matrices de
confusion. La matriz de confusion es una tabla que permite evaluar el rendimiento de modelos de
clasificacion, separando aquellas predicciones que se hayan realizado correctamente de aquellas que son
erroneas. Para realizar esta separacion, la matriz de confusion se fundamenta en el uso de la estructura de
la Tabla 4-1 empleando los valores reales y estimados.

En nuestro caso obtendremos 6 matrices de confusion para cada una de las posibles combinaciones
de senales: dos matrices para el conjunto de datos de entrenamiento, dos para el de validacion y dos para
el de test, podemos ver un ejemplo de una de ellas en la Figura 4-13. Para cada uno de los conjuntos de
sefales, hemos calculado la matriz de confusion de los 4 niveles de severidad obtenidos a partir del IAH
final estimado. Generar estas matrices permite realizar un mejor seguimiento del comportamiento del
algoritmo, ya que podemos observar los resultados en los 3 subconjuntos de datos (entrenamiento,
validacion y test) para controlar que no exista subajuste ni sobreajuste en el modelo. No obstante, los
resultados que mayor importancia tienen son aquellos referentes al conjunto de test, ya que son aquellos
que determinan como de bien se comporta el modelo con datos nuevos en una prueba final.

ESTIMADO POSITIVO ESTIMADO NEGATIVO

REAL POSITIVO TRUE POSITIVE (TP) FALSE NEGATIVE (FN)

REAL NEGATIVO FALSE POSITIVE (FP) TRUE NEGATIVE(TN)

Tabla 4-1. Estructura general de una matriz de confusion.
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Adjusted confusion matrix_test - pediatric AHI severity (Sp02)
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Figura 4-13. Ejemplo de matriz de confusion de valores de IAH de la sefial SpO: en test tras someterla a la regresion Huber.

Debemos tener en cuenta que cada sujeto puede estar clasificado en 1 de las 4 clases existentes: Sin
AOS, AOS Leve, Moderada y Grave. Las matrices de confusion, ademas de aportar una vision directa del
funcionamiento del modelo, permiten generar y obtener métricas de gran utilidad a la hora de realizar el
andlisis estadistico. Por lo que, aprovechando las matrices de confusion obtenidas, vamos a calcular las
siguientes métricas a partir de los datos proporcionados:

Exactitud (4cc): también conocida como Accuracy, esta métrica permite calcular la relacion

entre los sujetos adecuadamente clasificados y el total, comparando los dos casos

correctamente clasificados con todas las clases clasificadas de la matriz (Ecuacion 4.2):
TP+ TN

~ TP+TN+FP+FN

Acc (4.2)

Sensibilidad (Se): también conocida como Recall, esta métrica permite medir la capacidad
del modelo para detectar correctamente los casos positivos. Para ello, compara las
estimaciones clasificadas correctamente frente a todos los casos positivos (Ecuacion 4.3):

TP

Se= TP FN

(4.3)

Especificidad (Sp): de manera opuesta a la sensibilidad, esta métrica permite medir la
capacidad del modelo para detectar correctamente los casos negativos (Ecuacion 4.4):

TN

TN+ FP (4.4)

Sp

51



Capitulo 4

Metodologia

Valor predictivo positivo (PPV): indica la probabilidad de que un caso detectado como
positivo sea realmente positivo (en textos en inglés también se conoce como precision)
(Ecuacion 4.5):

TP

Valor predictivo negativo (NPV): de manera similar al caso anterior, indica la probabilidad
de que un caso detectado como negativo sea realmente negativo (Ecuacion 4.6):

TN

Likelihood Ratio Positivo (LR+): consiste en un ratio entre las probabilidades de que un

caso detectado como positivo sea realmente positivo, frente a que un caso detectado como
negativo sea en realidad un caso positivo (Ecuacion 4.7):

LR+=

1-Sp 4-7)

Likelihood Ratio Negativo (LR-): consiste en un ratio entre las probabilidades de que un
caso detectado como negativo sea realmente negativo, frente a que un caso detectado como
positivo sea en realidad un caso negativo (Ecuacion 4.8):

1-—Se

LR—=
Sp

(4.8)

Puntuacion F1 (F1_score): esta métrica es ampliamente utilizada ya que permite considerar
tanto el PPV como la Se, se calcula mediante la media armoénica de ambas (Ecuacion 4.9):

VPP * Se

Flscore =2 4 pp + 5e

(4.9)

Cohen’s Kappa (Kappa): evaltia la concordancia entre las distintas clasificaciones y ajusta
la probabilidad de coincidencia aleatoria, es realmente util en problemas con varias clases ya
que tiene en cuenta el factor de coincidencia al azar (McHugh, 2012) (Nota: a;;implica el
numero de veces que la clase real i fue estimada por la clase j) (Ecuacion 4.10):

PO - Pe
K=—— 4.10
1= P, ( )

n_casos

,: a..
Pp=—21 4.11
0™ Total de casos ( )
i n casos @ Z}t ciasos @i (4 12)
Total de casos Total de casos '

i=1

Estas métricas permiten evaluar el comportamiento del modelo. Aplicandolas a los resultados
obtenidos con cada una de las sefiales (individuales o combinadas), podemos realizar una comparacion
directa del desempefio de cada una y clasificarlas por lo tanto en funcion de su rendimiento; permitiendo
asi elegir la mejor combinacion de cara a realizar una prediccion lo mas precisa posible de la AOS infantil.

En este estudio, el objetivo consiste en catalogar a los sujetos pediatricos en funcidn de la presencia o
no del trastorno de AOS y en caso de padecerla, clasificarla seglin sus distintos grados de severidad. Por
lo que redefiniremos los valores de la matriz (TN, TP, FP y FN) segun los 3 umbrales establecidos para
la AOS (leve, moderada y severa).
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Figura 4-14. Esquema umbralizacion progresiva de la matriz de confusion (Autoria propia).

Este proceso se conoce como umbralizado progresivo, y su proposito es reducir la matriz de confusion
de 4x4 para convertir un problema de clasificacion multiclase en un problema de clasificacion binaria con
una matriz de confusion 2x2. Para poder realizar esta clasificacion, agruparemos todos los casos en los
que el IAH real y estimado es menor o mayor que cierto umbral, es decir, trataremos de trabajar con 3
versiones de una misma matriz en funcion del umbral que se desea evaluar. En la Figura 4-14, se puede
ver un esquema del procedimiento.

4.6. Especificaciones técnicas

A lo largo de este apartado, resumiremos todas las especificaciones de los recursos computacionales
empleados tanto a nivel de hardware como software. En primer lugar, debemos resaltar que el sistema ha
sido desarrollado por completo en el lenguaje Python. Este lenguaje de programacion de alto nivel permite
el uso de una sintaxis sencilla y gran versatilidad. Python es ampliamente utilizado en el desarrollo de
sistemas de IA debido a la gran cantidad de librerias que existen relacionadas con ese campo. En nuestro
caso, hemos empleado el entorno de desarrollo integrado PyCharm (JetBrains, s.r.0) para la elaboracion
de nuestro sistema, ya que ofrece una gran cantidad de herramientas tanto para el desarrollo como la
depuracion. Ademas, hemos optado por elegir el gestor de entornos y paquetes de Anaconda (Anaconda
Inc.). El sistema operativo del ordenador es Microsoft Windows 11 (Tabla 4-2).

Programa/Libreria Version

PyCharm 2024.3.2
Anaconda Navigator 2.5.1
keras 2.10.0
matplotlib 3.8.2

numpy 1.26.4

pandas 2.2.1
plotly 5.24.1
scikit-learn 1.4.2
scipy 1.13.0

tensorflow 2.10.1

Tabla 4-2. Librerias empleadas y sus versiones.
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En cuanto a los recursos de computacion del ordenador, en la Tabla 4-3 se resumen las caracteristicas
del equipo:

Componente Caracteristicas

CPU 13th Gen Intel® Core™ 19-13900KF
GPU NVIDIA GeForce RTX 4090 (24 GB)
RAM 64 GB DDR4

SSD 4 TB SSD Kingston

Sistema Operativo Microsoft Windows 11 Pro (x64)

Tabla 4-3. Caracteristicas del hardware empleado.
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Capitulo 5: RESULTADOS

En este quinto capitulo, revisaremos y analizaremos los resultados obtenidos a lo largo del desarrollo
del sistema descrito en el capitulo previo. Para ello, presentaremos los resultados del proceso de
optimizacion de los hiperparametros del modelo para cada una de las combinaciones de sefiales, de las
estimaciones del IAH realizadas por el propio modelo, de las predicciones de los 4 niveles de severidad de
la AOS y finalmente de la capacidad de diagndstico de la AOS en cada uno de los umbrales (1, 5y 10 e/h).

5.1. Optimizacion del modelo

En primer lugar, revisaremos los resultados del proceso de optimizacion de los hiperparametros del
modelo para cada una de las senales. Debemos recordar que para cada sefial y sus posibles combinaciones,
se ha realizado un proceso de optimizacion para todos los hiperparametros existentes. Para cada uno de
estos hiperparametros, recogeremos los valores de Val loss y R2 score y elegiremos aquel que tenga los
mejores resultados. A continuacion, mostramos una de las tablas empleadas para elegir el mejor resultado
de un hiperparametro (resaltado en negrita) a modo de ejemplo, debemos tener en cuenta que por cada sefial
e hiperparametro se ha realizado una tabla similar y en algunos casos 2 para poder obtener un valor de
hiperparametro mas preciso (Tablas 5-1 y 5-2):

R2 score 8 16 24 32 64 128

1. Iteracion 0.7412 0.7538 0.7770 0.7681 0.7953 0.7936
2. Iteracion 0.7557 0.7651 0.7853 0.7934 0.7833 0.7945

3. Iteracion 0.7629 0.7827 0.7544 0.7778 0.7935 0.7904

4. Iteracion 0.7365 0.7788 0.7822 0.7761 0.7923 0.7807

Tabla 5-1. Tabla de resultados de optimizacion del hiperparametro num_filters para la sefial SpO2 (R2_score).

Val loss 16 24 RY 64 128

0.5175 0.4963 0.4839 0.4783 0.4618 0.4645
0.5044 0.4896 0.4715 0.4669 0.4717 0.4724
0.4809 0.4744 0.4985 0.4784 0.4692 0.4769
0.4966 0.4781 0.4728 0.4844 0.4700 0.4709

Tabla 5-2. Tabla de resultados de optimizacion del hiperparametro num_filters para la sefial SpO2 (Val loss).
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num_filters 8 16 24 32 64 128
num_blocks 3 4 5 6 7 8
size_filters 5 7 9 17 21 27
batch_size 64 128 256 512 1024 2048
batch_size (iter. 2) 18 24 32 48 64 80
learning_rate 0.00001 0.0005 0.0001 0.005 0.001 0.01
learning rate (iter. 2) [ESIKI0)I 0.002 0.004 0.006 0.008 0.01

Tabla 5-3. Rango de valores empleados para la optimizacion de los distintos hiperparametros para cada una de las
combinaciones de sefiales.

Como se puede apreciar, de toda la tabla se ha elegido el mejor valor (resaltado en negrita). En el caso
de la tabla de ejemplo se opto por elegir el valor de 64 para el hiperparametro num_filters en la senal SpO»
debido a que es el valor que ha obtenido en mayor nimero de ocasiones el mejor valor de toda la iteracion.
Para todos los hiperpardametros, analizaremos el siguiente rango de valores con todas las sefales. En algunos
casos, los rangos iniciales de los hiperparametros learning rate 'y batch_size no cubrian el valor deseado y
se realiz6 una segunda etapa de optimizacion (iter. 2 en tablas) con otro rango distinto para encontrar un
valor mucho mas preciso para ambos hiperparametros (Tabla 5-3).

Para las sefales elegidas de manera individual (SpO,, FA y HRV), el resultado de la optimizacion de
los hiperparametros es el siguiente (Tabla 5-4):

SpO; FA HRV

num_filters 64 32 32
num_blocks 7 8 8
size_filters 17 9 9
batch_size 512 24 256
learning rate 0.008 0.004 0.008

Tabla 5-4. Valores de hiperparametros optimos para las seiiales individuales SpOs, FAy HRV.

Por otro lado, en el caso de las sefiales emparejadas 2 a 2 (SpO»-FA, SpO»-HRV y FA-HRV), el resultado
de la optimizacion de los valores de los hiperparametros es el siguiente (Tabla 5-5):
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SpO»-FA SpO,-HRV FA-HRV

num_filters 32 64 128

num_blocks 8 7 7
size_filters 17 13 15
batch_size 18 128 28

learning rate 0.001 0.002 0.006

Tabla 5-5. Valores de hiperparametros optimos para las sefiales emparejadas 2 a 2 SpOz-FA, SpO2-HRV y FA-HRV.

Finalmente, para las 3 sefiales combinadas (SpO,-FA-HRYV), el resultado de la optimizacion de los
valores de los hiperparametros es la siguiente (Tabla 5-6):

SpO,-FA-HRV

num_filters 32
num_blocks 6
size_filters 17
batch_size 64

learning rate 0.004

Tabla 5-6. Valores de hiperparametros optimos para todas seriales emparejadas SpOz2-FA-HRV.

El resultado de la etapa de optimizacion permitié obtener mejorias significativas en el entrenamiento
del modelo CNN tanto en las pérdidas de validacion como en el valor de R2_score. A continuacion, en la
Tabla 5-7 se recoge el valor medio de las 4 iteraciones realizadas previas a la etapa de optimizacion y tras
dicho proceso, teniendo en cuenta que se han elegido los valores de los hiperparametros previamente
mostrados en las Tablas 5-4, 5-5 y 5-6:

Inicio optimizacién Final optimizacion Final optimizacion
(valor medio) (valor medio) (mejor resultado)

Val loss R2 score Val loss R2 score Val loss R2 score

0.4670 0.7939 0.4539 0.7912 0.4513 0.7928
1.0298 0.0371 0.7731 0.4466 0.7668 0.4795

H 0.8553 0.4536 0.7647 0.5509 0.7909 0.5578

RV
0.6428 0.5356 0.5397 0.6747 0.5278 0.6925
0.4356 0.8256 0.4214 0.8328 0.4196 0.8410
0.8232 0.4542 0.7376 0.5466 0.7287 0.5573
0.4587 0.7713 0.4285 0.8156 0.4219 0.8239

Tabla 5-7. Resultados del proceso de optimizacion en las variables Val loss y R2 score.
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Una vez realizado el proceso de optimizacion, iteraremos una gran cantidad de veces (entre 20 y 40) el

entrenamiento del modelo e iremos guardando aquellos que consigan mejorar el valor Val loss. Para todos
los modelos se ha realizado el procedimiento con el valor de 0.1 para la tasa de Dropout, aunque también
se ha probado con un valor de 0.2 en algunos casos, buscando asi un ajuste mas fino (Tabla 5-8).

Val loss R2 score
Dropout 0.1 Dropout 0.2 Dropout 0.1 Dropout 0.2
0.4527 0.4542 0.7915 0.7879
0.7547 0.7791 0.4901 0.4236
0.7603 0.7622 0.5288 0.5447
0.5143 0.5266 0.7003 0.6952

SpO:-HRV 0.4123 0.4091 0.8331 0.8373
FA-HRV 0.7236 0.7249 0.5503 0.5602
SpO:-FA-HRV 0.4182 0.4256 0.8094 0.8054

Tabla 5-8. Resultados de Val loss y R2 score obtenidos en el mejor modelo de cada una de las sefiales para los valores de

Dropout 0.1y 0.2.

5.2. Rendimiento diagndstico del modelo

En este apartado, presentaremos los resultados obtenidos de emplear el modelo desarrollado para estimar

el nimero de eventos y con ello, el valor del IAH y su respectiva severidad en la AOS infantil. En primer
lugar, se presentan los resultados de realizar la regresion del [AH a partir del nimero de eventos en cada
segmento. A continuacion, se muestran los resultados de la clasificacion de los IAH obtenidos en cada una
de las 4 clases de severidad de la AOS mediante matrices de confusion. Finalmente, mostraremos la
capacidad diagnoéstica de nuestros algoritmos de DL para detectar la AOS infantil en cada umbral.

5.2.1. Regresion del IAH

Tras obtener el modelo entrenado, validado y testeado con los datos de los registros, se extrajeron 2

graficas por cada combinacion de sefiales: una grafica scatter plot y una grafica Bland-Altman. En las
Figuras 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 y 5-7 podemos ver todas las graficas extraidas de estimar el nimero de

eventos.
Valores reales vs Valores estimados (NUM_EVENTS) Valores reales vs Valores estimados (NUM_EVENTS)
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Figura 5-1. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para la sefal

SpO: en el conjunto de test.
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Valores realkes vs Valores estimados (NUM_EVENTS) Valores reales vs Valores estimados (NUM_EVENTS)
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Figura 5-2. Graficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para la sefial FA
en el conjunto de test.
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Figura 5-3. Graficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del niimero de eventos para la seiial
HRYV en el conjunto de test.
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Figura 5-4. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para las sefales
SpO:-FA en el conjunto de test.
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Valores reales vs Valores eshimadas (NUM_EVENTS Valores reales vs Valores estimados {NUM_EVENTS)
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Figura 5-5. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para las seriales
SpO2-HRV en el conjunto de test.
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Figura 5-6. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para las sefniales
FA-HRYV en el conjunto de test.
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Figura 5-7. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del numero de eventos para las sefales
SpO:-FA-HRV en el conjunto de test.
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Estas graficas permiten observar el resultado de las predicciones realizadas por el modelo. A
continuacion, mostraremos las graficas de scatter plot y Bland-Altman para las predicciones del IAH en el
conjunto de test, es decir, la regresion del IAH a partir del nimero de eventos detectados y el tiempo total
de registro, realizada mediante el método de Huber (Figuras 5-8, 5-9, 5-10, 5-11, 5-12, 5-13 y 5-14).

Valores reales vs Valores estimados (AHI_value) Valores reales vs Valores estimados (AHI value)
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Figura 5-8. Graficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del [AH para la sefial SpO: en el
conjunto de test.

Valores reales vs Valores estimados (AH|_value) Valores reales vs Valores estimados (AHI_value)
. & [ ] .ﬁhl_namti reales [ ] AHl_VIlIf! reales L ]
L] === mean =077 W1 s AHI_value estmados
15 . . mean + 1.96std = B.42
. === mean - 1965 = 608
. 60
L ] . .
10 " -
N N — . | & - =gy |
e ‘ *
L]
5 6‘1 et
* A
®
L » & wEan = 0,77
- .'_T _______ T T ST T se s essssssssssssmEmEsEEEsssEEEEm T
0 . . [} -
.,
'Y
-5 i ® 20
s ®
L] 10
10 °
L
® R 07214 a R 0,7214
1% . . . . . . -
o 1% P n 4 50 640 m o 1o w0 Ly L 50 &0
valores estimados alores estimados
Figura 5-9. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para la seiial FA en el conjunto
de test.
Valores reales vs Valores estimados (AHI_value) ‘Vialores reales vs Valores estimados (AHI_valua)
. &AM values reales @  AHI_value reales -
20 % === fean = 066 7 ®  AHI_value estimades
=== mean + ] 96sid = 6,19
. == mean - 1.96std = -6.87
15 ™ &0
®
.
0 * et 50
...... Y Y RN /SRS RRPRORPRR. . . | 5 30 ... 1 Rl 0 - S
TR
(1]
L] - 40
5 ]
™ -
" " [ ]
L-- LS. L — meanzOfh ________ »
0 s o ® L
%o 1)
°
=5 [ ® .
e T R LI 36T, 0
®
10 " .
o _R*: 0.7326 o R*: 07326
b 1 o 3 a0 P ) 7 [ 10 20 » ) P 0
Valdres estimadod Valores estimados

Figura 5-10. Graficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para la sefial HRV en el
conjunto de test.
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Figura 5-11. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para las sefiales SpO2-FA en
el conjunto de test.
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Figura 5-12. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para las sefiales SpO>-HRV en
el conjunto de test.
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Figura 5-13. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para las seiiales FA-HRV en el
conjunto de test.
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Figura 5-14. Grdficas Bland-Altman (izquierda) y scatter plot (derecha) de la estimacion del IAH para las sefiales SpO2-FA-
HRYV en el conjunto de test.

5.2.2. Resultados de clasificacion de 4 clases

Tras obtener la estimacion del IAH final de todos los sujetos, podemos realizar una etapa de clasificacion
de cada uno de ellos en los distintos grados de severidad de la AOS: sin AOS, leve, moderado y grave. Para
ello, estableceremos los umbrales (o puntos de corte) del [AH de 1, 5y 10 e/h y etiquetaremos cada paciente
acorde al valor obtenido. A continuacion, mostramos las matrices de confusion resultantes de realizar dicha

clasificacion en el subconjunto de test con el sesgo corregido para cada una de las combinaciones (Figuras
5-15, 5-16, 5-17, 5-18, 5-19, 5-20 y 5-21):

Adjusted confusion matrix_test - pediatric AHI severity (Sp02)

Mone o o
Precision: 0.6847
Recall: 0.6591
F1_score: 0.6577
Kappa: 0.5057
B 11}
= Mild 5 v]
o
n
‘m
1]
=
- 40
Moderate 3 17 24 5
- 20
Severe 4 1] 4 9 29
T T T v —L o
None Mild Moderate Severe

Predicted Label

Figura 5-15. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de la serial SpO:.
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Adjusted confusion matrix_test - pediatric AHI severity (AF)

None 27 40 0 0
100 —
Precision: 0.6005
Recall: 0.471
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Figura 5-16. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de la sefial FA.

Adjusted confusion matrix_test - pediatric AHI severity (HRV)

None - 39 27 1 0
Precision: 0.5286
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Figura 5-17. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de la serial HRV.
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Adjusted confusion matrix_test - pediatric AHI severity (SpO2 & AF)

None 0 0
Precision: 0.6837
Recall: 0.6422
F1_score: 0.6493
Kappa: 0.4987
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: T T T —L0
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Figura 5-18. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de las sefiales SpO:-FA.

Adjusted confusion matrix_test - pediatric AHI severity (SpO2 & HRV)

None 0 0
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Figura 5-19. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de las seiiales SpO2-HRV.
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Adjusted confusion matrix_test - pediatric AHI severity (AF & HRV)

100
None 33 34 0 0
Precision: 0.5607
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Figura 5-20. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de las seriales FA-HRV.

Adjusted confusion matrix_test - pediatric AHI severity (SpO2 & AF & HRV)

None 0 0
Precision: 0.6904
Recall: 0.6762
F1_score: 0.6687
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Figura 5-21. Matriz de confusion del valor de IAH posterior a la regresion en el conjunto de test de las seiiales SpO2-FA-HRYV.
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En todas las matrices se han empleado las herramientas proporcionadas por scikit-learn para calcular
los parametros: precision, recall, F1_score y Kappa. En la siguiente tabla, hemos recopilado todos los
valores extraidos de las matrices de confusion tras la regresion (Tabla 5-9):

Precision Recall F1 score Kappa

0.6847 0.6591 0.6577 0.5057

FA 0.6005 0.4710 0.5038 0.3094
HRV 0.5286 0.4701 0.4832 0.2943
SpO:-FA 0.6837 0.6422 0.6493 0.4987
SpO;-HRV 0.6906 0.6815 0.6740 0.5381
FA-HRV 0.5607 0.4647 0.4871 0.2877
SpO:-FA-HRV 0.6904 0.6762 0.6687 0.5336

Tabla 5-9. Comparativa de los resultados estadisticos (precision, recall, F'l-score y Kappa) de las matrices de confusion tras la
regresion de todas las combinaciones de serniales para el conjunto de test.

En aquellos casos en los que el valor de Kappa sea superior al 0.4 implica que el modelo presenta un
rendimiento superior al mero azar (Abraira, 2001; McHugh, 2012). En los casos en que Kappa sea superior
a 0.5, el modelo puede considerarse util para la asignacion de clases. Cuando Kappa supera el valor de 0.6,
el desempetio del modelo es significativamente mejor que el azar (x = 0), aunque aun presenta margen de
mejora. Como se puede apreciar, en algunos casos el valor de Kappa es superior a 0.5 como es el caso de
las sefiales SpO,, SpO,-HRV y SpO,-FA-HRYV. Sin embargo, en otros casos como FA, HRV y FA-HRV
no alcanza el 0.4, por lo que el desempefio no es todo lo preciso que se desearia. Por otro lado, el valor de
Fl-score nos indica el balance entre precision y recall, es decir, la capacidad del modelo de detectar
correctamente cada clase minimizando los falsos positivos. Para valores elevados como SpO,-HRV o SpO»-
FA-HRYV, el modelo tiene un buen equilibrio entre la deteccién de casos positivos (Se) y la fiabilidad de
dichas detecciones (PPV).

5.2.3. Resultados de clasificacion binaria

Una vez realizado el analisis de la clasificacion multiclase en las distintas severidades de la AOS,
procederemos con la etapa de umbralizacion previamente descrita. Este paso es fundamental para poder
transformar el problema de clasificacion multiclase en un problema de clasificacion binaria, permitiendo
asi un mejor analisis. A partir de cada una de las matrices de confusion obtenidas, extraeremos diversas
métricas en distintos formatos. En particular, se calcularan en formato porcentual las métricas: Se, Sp, Acc,
PPV'y NPV.Y de forma no porcentual: LR+ y LR-. Todas estas métricas se calcularan para cada uno de los
3 umbrales de la severidad de la AOS para los conjuntos de entrenamiento, validacion y test de todas las
combinaciones de sefales.

A continuacion, en las Tablas 5-10, 5-11, 5-12, 5-13, 5-14, 5-15 y 5-16 mostramos agrupados todos los
resultados de las distintas combinaciones de sefiales posibles para todos los conjuntos de datos. En dichas
tablas podemos ver como en todos los casos tanto la Sp como la Acc tienden a aumentar conforme sube el
valor del umbral, siendo el valor mas alto correspondiente a 10 e/h. Por otro lado, la Se decrece al pasar de
1 e/h a 5 e/h pero vuelve a aumentar con 10 e/h. Finalmente, mientras el NPV tiende a aumentar conforme
incrementa el umbral el PPV tiene un comportamiento menos predecible.
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SpO; Se (%) Sp(%) Acc(%) PPV (%) NPV(%) LR+ LR-

Train 82.97 83.11 83.00 94.64 57.59 49111 0.2049

1e/h Val 81.32 86.96 82.52 95.87 55.56 6.2348 0.2148
Test 78.24 82.09 79.08 93.97 51.40 4.3685 0.2650

Train 66.67 98.60 89.36 95.10 87.91 47.6667  0.3381

Se/h Val 71.91 98.73 91.41 95.52 90.35 56.8090  0.2845
Test 73.63 97.67 90.52 93.06 89.74 31.6593  0.2700

Train 72.52 99.31 95.83 94.06 96.02 105.7570  0.2767

10 e/h Val 64.44 98.58 93.87 87.88 94.54 45.2722  0.3607
Test 69.05 98.11 94.12 85.29 95.22 36.4571  0.3155

Tabla 5-10. Resultados umbralizacion binaria matriz de confusion de la sefial SpO:para los conjuntos de entrenamiento, validacion y test.

A Se (%) Sp(%) Acc(%) PPV (%) NPV (%) LR+ LR-

I

Train 85.51 44.75 76.64 84.76 46.23 1.5477 0.3237
Val 72.76 57.97 69.63 86.57 36.36 1.7312 0.4698
Test 88.28 40.30 77.78 84.06 49.09 1.4788 0.2907

1 e/h

Train 55.33 98.46 85.98 93.60 84.41 35.9622  0.4537
Se/h Val 64.04 94.94 86.50 82.61 87.55 12.6489  0.3787
Test 46.15 97.67 82.35 89.36 81.08 19.8462  0.5513
Train 58.02 98.86 93.54 88.37 94.02 50.7634  0.4247
Val 48.89 98.22 91.41 81.48 92.31 27.4756  0.5204

Test 45.24 99.24 91.83 90.48 91.93 59.7143 0.5518

10 e/h

Tabla 5-11. Resultados umbralizacion binaria matriz de confusion de la sefial FA para los conjuntos de entrenamiento, validacion y test.
HRV Se (%) Sp(%) Acc(%) PPV (%) NPV (%) LR+ LR-

Train  81.07 69.41 78.53 90.50 50.50 2.6498  0.2728

) Val 77.04 62.32 73.93 88.39 42.16 2.0446  0.3684

Test 79.50 58.21 74.84 87.16 44.32 1.9023 0.3522

Train 62.20 99.58 88.77 98.37 86.62 148.2417  0.3796
Val 51.69 94.94 83.13 79.31 83.96 10.2079 0.5089
Test 56.04 95.81 83.99 85.00 83.74 13.3883 0.4588

5 e/h

Train 70.23 99.66 95.83 96.84 95.72 204.8346  0.2987
10 e/h Val 40.00 99.29 91.10 90.00 91.18 56.2000  0.6043

Test 40.48 97.73 89.87 73.91 91.17 17.8095 0.6091

Tabla 5-12. Resultados umbralizacion binaria matriz de confusion de la sefial HRV para los conjuntos de entrenamiento, validacion y test.
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SpO,-FA Se (%) Sp(%) Acc(%) PPV (%) NPV(%) LR+ LR-

Train 85.51 79.45 84.19 93.73 60.42 4.1617 0.1823
1e/h Val 82.88 81.16 82.52 94.25 56.00 4.3990 0.2110

Test 80.33 79.10 80.07 93.20 53.00 3.8446 0.2486

Train 61.86 99.16 88.37 96.77 86.46 73.7113 0.3847
Se/h Val 69.66 98.73 90.80 95.38 89.66 55.0337 0.3073
Test 72.53 98.60 90.85 95.65 89.45 51.9780  0.2786

Train 71.76 99.43 95.83 94.95 95.92 125.5725  0.2841
10 e/h Val 60.00 98.93 93.56 90.00 93.92 56.2000  0.4043

Test 61.90 98.48 93.46 86.67 94.20 40.8571 0.3868

Tabla 5-13. Resultados umbralizacion binaria matriz de confusion de la sefial SpO»-FA para los conjuntos de entrenamiento, validacion y test.

SpO,-HRV Se (%) Sp(%) Acc(%) PPV (%) NPV (%) LR+ LR-

Train 82.85 91.32 84.69 97.17 59.70 9.5491 0.1878
1e/h Val 80.54 92.75 83.13 97.64 56.14 11.1152 0.2098

Test 79.50 83.58 80.39 94.53 53.33 4.8421 0.2453

Train 74.57 99.44 92.25 98.19 90.57 133.2947  0.2557
Se/h Val 74.16 99.16 92.33 97.06 91.09 87.8764  0.2606

Test 82.42 98.14 93.46 94.94 92.95 442995  0.1792
Train 83.21 99.43 97.32 95.61 97.53 145.6107  0.1689
Val 71.11 98.22 94.48 86.49 95.50 39.9644  0.2941
Test 69.05 97.73 93.79 82.86 95.20 30.381 0.3167

10 e/h

Tabla 5-14. Resultados umbralizacion binaria matriz de confusion de la sefial SpO,-HRV para los conjuntos de entrenamiento, validacion y test.

FA-HRV Se (%) Sp(%) Acc(%) PPV (%) NPV (%) LR+ LR-

Train 81.07 81.28 81.11 93.96 54.43 4.3302 0.2329
1e/h Val 75.49 73.91 75.15 91.51 44.74 2.8936 0.3317

Test 82.01 49.25 74.84 85.22 43.42 1.6160 0.3653

Train 66.32 98.88 89.46 96.02 87.83 59.2762 0.3406
Se/h Val 62.92 96.20 87.12 86.15 87.36 16.5693 0.3854

Test 58.24 96.74 85.29 88.33 84.55 17.8885 0.4316

Train 73.28 99.43 96.02 95.05 96.13 128.2443  0.2687
10 e/h Val 44.44 98.93 91.41 86.96 91.75 41.6296 0.5616

Test 35.71 98.86 90.20 83.33 90.62 31.4286 0.6502

Tabla 5-15. Resultados umbralizacion binaria matriz de confusion de la sefial FA-HRV para los conjuntos de entrenamiento, validacion y test.
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SpO,-FA-HRV | Se(%) Sp(%) Acc(%) PPV(%) NPV (%) LR+ LR-

Train 83.10 88.58 84.29 96.32 59.33 7.2796 0.1908
Val 81.32 91.30 83.44 97.21 56.76 9.3521 0.2046
Test 79.08 86.57 80.72 95.45 53.70 5.8870 0.2417

Train 71.82 99.02 91.15 96.76 89.62 73.3603 0.2846
Val 73.03 98.73 91.72 95.59 90.70 57.6966  0.2731
Test 79.12 97.67 92.16 93.51 91.70 34.0220  0.2138

Train 79.39 99.43 96.82 95.41 96.99 138.9313  0.2073
Val 68.89 98.22 94.17 86.11 95.17 38.7156 0.3167
Test 66.67 98.11 93.79 84.85 94.87 35.2000  0.3398

10 e/h

Tabla 5-16. Resultados umbralizacion binaria matriz de confusién de la seiial SpO,-FA-HRV para los conjuntos de entrenamiento, validacién y
test.
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Capitulo 6: DISCUSION

En este penultimo capitulo, realizaremos una discusion final analizando todo el proceso de desarrollo
realizado y los resultados obtenidos al trabajar con las distintas sefiales y el modelo de DL. Ademas,
compararemos los resultados obtenidos en nuestro proyecto con los obtenidos por otros estudios.

6.1. Introduccion

En este proyecto se propone una metodologia de DL basada en CNN que busca avanzar en el
diagndstico del AOS en poblacion pediatrica utilizando un conjunto reducido de sefiales. A diferencia de
trabajos previos que han abordado esta problematica mediante alternativas a la PSG o técnicas de ML
(Alonso Alvarez et al., 2008; L. Chang et al., 2013; Gutiérrez-Tobal et al., 2015; Villa et al., 2015), nuestro
enfoque se sitiia dentro de una linea més reciente que explora el uso de DL con sefiales reducidas. Aunque
algunos estudios han considerado emplear tanto individualmente como en ciertas combinaciones las
sefiales SpO,, FA y HRV en contextos pediatricos, no se ha investigado sistematicamente el potencial
diagndstico de otras combinaciones especificas entre ellas. En este sentido, la propuesta metodoldgica de
este trabajo ofrece un enfoque novedoso que no solo amplia el uso de DL en este &mbito, sino que también
contribuye a identificar qué configuraciones de sefiales podrian ser mas informativas y practicas en
comparacion con las estrategias utilizadas anteriormente.

Esta capacidad de comparar de forma controlada distintas combinaciones de sefales permite, ademas,
establecer cual de ellas ofrece el mejor rendimiento diagndstico dentro del conjunto evaluado. Asi, el
presente estudio no solo aporta valor en términos metodologicos, sino que también sienta una base solida
para futuras investigaciones, al sefialar de forma objetiva la combinacion de sefiales 6ptima. De este modo,
se facilita el disefio de modelos més eficientes y se favorece el desarrollo de herramientas de diagnostico
mas accesibles, precisas y adaptadas a las necesidades clinicas reales.

Gracias a los resultados obtenidos en el capitulo anterior, podemos analizar en profundidad el
comportamiento del modelo con las distintas sefiales. Como podemos observar, en la amplia mayoria de
los casos los valores de especificidad son muy elevados, llegando a alcanzar valores como 99.66% en
algunos casos. Sin embargo, los valores de sensibilidad son bastante més bajos en comparacion de los de
especificidad, indicando que el modelo tiene mas problemas clasificando a los pacientes enfermos que a
los sanos. En otras palabras, en términos generales hay una gran cantidad de falsos negativos o sujetos
que son clasificados como pacientes sanos cuando en realidad sufren AOS. Finalmente, podemos observar
como los valores de accuracy son elevados, lo que implica que hay una gran cantidad de casos
correctamente clasificados como positivos y una gran cantidad de controles clasificados como negativos.
Ademas, podemos notar que esta tltima métrica tiende a crecer conforme aumenta el umbral. Por lo tanto,
la conclusion que podemos extraer es que: el modelo clasifica correctamente la gran mayoria de los
sujetos, pero aquellos que no son correctamente clasificados tienden a ser infraestimados, es decir,
clasificados como sanos o como un grado de severidad menor al correspondiente.

6.2. Comparativa de sefales

Gracias a todas las tablas de resultados extraidas previamente, podemos realizar una comparativa
directa entre todas las posibles combinaciones de sefiales para poder decantarse por aquella o aquellas
combinaciones que presenten una estimacion mas fiable y precisa de la AOS pediatrica. Para poder
realizar esta comparativa, extracremos los valores estadisticos calculados previamente y los
compararemos entre si de la siguiente manera: en primer lugar, compararemos cada una de las sefales
agrupadas de 2 en 2 con las sefiales que la componen de manera individual; a continuacion, emplearemos
las 3 sefiales individuales frente a la agrupacion de las 3 de forma simultanea; y finalmente, evaluaremos
las diferencias entre las sefiales agrupadas de 2 en 2 y las sefiales agrupadas de 3 en 3. Las Tablas 6-1, 6-
2 y 6-3 recogen todos los casos previamente descritos para los conjuntos de test.
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SpO SpO,-FA FA

PRECISION 0.6944 0.6837 0.6005
RECALL 0.6722 0.6422 0.4710
F1_SCORE 0.6688 0.6493 0.5038
KAPPA 0.5166 0.4987 0.3094

R2 SCORE 0.8710 0.8566 0.7214

Tabla 6-1. Comparativa entre las seiiales SpOz, FA'y SpO2-FA en el conjunto de test.

SpO SpO:-HRV HRV

PRECISION 0.6944 0.6906 0.5286
RECALL 0.6722 0.6815 0.4701
F1_SCORE 0.6688 0.6740 0.4832

KAPPA 0.5166 0.5381 0.2943

R2 SCORE 0.8710 0.8932 0.7326

Tabla 6-2.Comparativa entre las sefiales SpOs, HRV y SpO>-HRV en el conjunto de test.

FA FA-HRV HRV

PRECISION 0.6005 0.5607 0.5286
RECALL 0.4710 0.4647 0.4701
F1_SCORE 0.5038 0.4871 0.4832
KAPPA 0.3094 0.2877 0.2943

R2 SCORE 0.7214 0.7499 0.7326

Tabla 6-3. Comparativa entre las seiiales FA, HRV y FA-HRV en el conjunto de test.

Hemos resaltado en negrita los mejores resultados de la sefial o combinacion de sefiales de la
comparativa realizada en cada caso. Ahora, compraremos las 3 sefiales individuales con la agrupacion de
las 3 sefiales simultaneamente. En la siguiente tabla (Tabla 6-4) se muestran los resultados.
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SpO; FA HRV SpO,-FA-HRV

PRECISION 0.6944 0.6005 0.5286 0.6904
RECALL 0.6722 0.4710 0.4701 0.6762
F1 SCORE 0.6688 0.5038 0.4832 0.6687
KAPPA 0.5166 0.3094 0.2943 0.5336

R2 SCORE 0.8710 0.7214 0.7326 0.8765

Tabla 6-4. Comparativa entre las sefiales SpO>, FA, HRV y SpOx-FA-HRV en el conjunto de test.

En este caso, como podemos observar la combinacion de las 3 sefiales tiene un Kappa superior
ligeramente a la sefial SpO, y muy superior a las sefiales FA y HRV. Ahora, compararemos las sefiales 2
a 2 con las 3 sefales combinadas y analizaremos los resultados (Tabla 6-5).

SpO:-FA SpO:-HRV FA-HRV SpO:-FA-HRV
PRECISION 0.6837 0.6906 0.5607 0.6904
RECALL 0.6422 0.6815 0.4647 0.6762
F1 SCORE 0.6493 0.6740 0.4871 0.6687
KAPPA 0.4987 0.5381 0.2877 0.5336
R2 SCORE 0.8566 0.8932 0.7499 0.8765

Tabla 6-5. Comparativa entre las seiiales SpO2-FA, SpO2-HRV, FA-HRV y SpO2-FA-HRV en el conjunto de test.

A partir de los resultados obtenidos, se observa que, de las 3 sefiales, SpO, es la mas eficaz para
detectar la AOS de manera individual. Esta sefial alcanzé un valor de Kappa de 0.4357, superando
claramente a los valores obtenidos con FA (Kappa=0.2304) y HRV (Kappa=0.2943). Asimismo, los
valores de precision (0.6244) y recall (0.6161) de SpO. también se sitlian por encima de los alcanzados
por FA (precision: 0.5617; recall: 0.4457) y HRV (precision: 0.5286; recall: 0.4701). Esta superioridad
se refleja igualmente en el F'/_score, donde SpO; obtuvo 0.6196 frente a 0.4624 y 0.4832 para FA y HRV
respectivamente. Finalmente, el R2 score refuerza esta tendencia, con un valor de 0.8702 para SpO., en
comparacion con 0.7214 y 0.7326 para FA y HRV. Estos resultados confirman que la sefial SpO»
proporciona un rendimiento notablemente superior en la deteccion del AOS respecto a las otras sefiales
evaluadas.

Por otro lado, los hallazgos realizados demuestran que algunas combinaciones obtienen unos
resultados mejores que otras. Concretamente, empleando el mismo modelo en todas ellas las sefiales FA,
HRV y FA-HRYV obtienen un valor de Kappa de alrededor de 0.3, indicando que el estimador es una
clasificacion débil pero que apenas supera a la clasificacion por azar (porque al azar es k = 0) (Abraira,
2001; McHugh, 2012). La combinacion SpO,-FA tienen un valor de Kappa mas elevado, alcanzando casi
el valor 0.5, indicando que en este caso, las estimaciones son considerablemente mejores que con las otras
combinaciones. Finalmente, los mejores resultados se obtienen de las combinaciones de sefiales SpO--
HRYV y SpO,-FA-HRYV, que sobrepasan el valor de Kappa de 0.5, aunque podrian ser mejores. Estos
resultados estan en linea con los logrados en estudios similares como el de Jiménez-Garcia et al. (2022,
2024) que obtiene 0.6011 y 0.6231 respectivamente, el de Vaquerizo-Villar et al. (2021) que obtiene
0.515, el de Mortazavi et al. (2024) que obtiene 0.57 para ResNet y 0.63 para CNN-BiGRU o el de Xu Z
et al. (2019) que obtiene 0.339 (Jiménez-Garcia et al., 2022, 2024; Mortazavi et al., 2024; Vaquerizo-
Villar et al., 2021; Xu et al., 2019).
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En el caso del resto de métricas, los valores de precision son mas elevados en la combinacion SpO--
HRYV (0.6906) que en el resto de combinaciones de dos sefiales como son SpO»,-FA (0.6837) y FA-HRV
(0.5607). Los valores de recall, F1_scorey R2_score tienen el mismo comportamiento, siendo los valores
de SpO,-HRV (0.6815, 0.6740 y 0.8932 respectivamente) superiores a los valores obtenidos con SpO»-
FA (0.6422, 0.6493 y 0.8566 respectivamente) y FA-HRV (0.6762, 0.6687 y 0.8765 respectivamente).

Finalmente, a la hora de elegir una opcion u otra para la version final del sistema la decision queda
entre las sefiales SpO,-HRV y SpO,-FA-HRV. No obstante, debido a que SpO,-HRV logr6 unos valores
de precision (0.69006), recall (0.6815), FI score (0.6740), R2 score (0.8932) y Kappa (0.5381)
superiores a los valores de precision (0.6904), recall (0.6762), F1_score (0.6687), R2 score (0.8765) y
Kappa (0.5336) de SpO,-FA-HRV; y que ademas esta compuesta de dos sefiales en lugar de tres, por lo
que su extraccion es mucho mas sencilla tanto en recursos como en tiempo, se ha optado por elegirla como
la mejor candidata para el sistema. Ademas, estas dos sefiales pueden obtenerse mediante el uso de un
pulsioximetro, por lo que, el proceso de extraccion de las sefiales es mucho mas sencillo.

Por lo tanto, eligiendo la sefial SpO,-HRV, tendremos un sistema capaz de obtener valores de precision
cercanos al 0.7. Concretamente, los resultados obtenidos promediando las 4 clases muestran una precision
de 0.6906, lo que indica que un 69.06% de las predicciones positivas realizadas por el modelo son
correctas. Por otro lado, el valor obtenido para el recall de 0.6815, lo cual indica que un 68.15% de los
casos reales positivos fueron correctamente identificados. Estos dos valores indican que el modelo acierta
en mas de la mitad de las predicciones realizadas, pero aun tiene margen de mejora de entorno al 30-35%.
Finalmente, el valor de F'/-score de 0.6740, representa un buen balance del modelo pero indica una mayor
predisposicion a comprometer la sensibilidad en favor de mayor precision (Cifci et al., 2023; Hicks et al.,
2022).

La combinacion de las sefiales SpO, con HRV es ligeramente superior a la misma combinacién
afadiendo la sefial FA. Sin embargo, esta combinacion es considerablemente superior en términos de
Kappa a las senales SpO, con FA y HRV con FA (Abraira, 2001; McHugh, 2012). Esto parece indicar,
que la sefial de FA no termina de aportar la informacion necesaria para realizar la prediccion de forma
correcta. Por el contrario, la sefial SpO; parece aportar un gran valor al modelo. Como hemos podido
observar, las sefiales SpO, y FA son de las 3 sefiales las que estan mas estrechamente relacionadas con la
AOS, por lo que tiene sentido que sea la que mas informacion aporte a nuestro modelo para realizar la
estimacion correcta (Jubran, 2015; Mildenhall, 2008). Aunque debemos tener en cuenta que es mas
complicado extraer y analizar informacion de la sefial FA para detectar la AOS (Jiménez-Garcia et al.,
2020, 2022). Finalmente, y observando los resultados obtenidos, podemos concluir que en nuestro modelo
y de la forma en la que se han preprocesado los datos, la sefial SpO: es la sefial que mayor informacion
nos proporciona, la sefial de HRV aporta mas informacion complementaria al SpO2 y finalmente el FA
no ayudo a mejorar los resultados al combinarla con las otras dos.. A pesar de que como ya se ha
mencionado la FA es una de las sefiales mas estrechamente ligadas a la AOS, debemos tener en cuenta
que factores como el preprocesado o la forma de extraer la informacion pueden afectar en la calidad de la
aportacion de la propia sefal al modelo.

6.3. Comparativa con estudios previos

Una vez habiendo discutido todos los resultados obtenidos por nuestro modelo, realizaremos una
comparativa de dichos resultados frente a aquellos aportados por otros autores. Debemos considerar que
solo lo compararemos con los estudios donde se ha estimado la AOS infantil para los umbrales de 1, 5y
10 e/h. De esta manera podremos realizar una comparacion directa, ya que carece de sentido comparar
nuestro estudio con aquellos que tratan de estimar la AOS para otros umbrales distintos (p.ej., 3 e/h)
(Alvarez et al., 2017); y tiene un valor afiadido al emplear 3 umbrales distintos frente a aquellos que solo
emplean uno (p.ej., 5 e/h) (Sturludéttir J et al. 2023). Para ello, dividiremos los resultados en distintas
tablas agrupadas en funcion de las senales empleadas (Tablas 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12 y 6-13).
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Estudios Resultados

Umbral Sujetos | Metodologia

80.1%  90.8%  36.4%
Civersityjol Segmentation  83.9%  76.0%  88.6%
Chicago (20min)
Vaquerizo 10 e/h ! 923%  79.5%  95.8%
Villar et al. 981 CNN
(2021) l 77.6%  712%  81.8%
Bayesian
10 e/h 97.8%  83.9%  99.3%
Time and . . .
1 e/h frec. domain  78:21% 91.43% 22.67%
Jiménez . . analysis
Garcia et al. Uné‘l’l‘zzsa“-‘{)"f 974 | 77.44%  66.44% 84.02%
(2020) & FCBF
10 e/t 1 85.90% 40.96% 98.05%
AdaBoost.M2 ° ’ °
79.60% 95.30% 19.10%
2L 2ol University of 4, MLPde3 .0 1000 77.80% 80.50%
(2019) Beijing capas
10 e/h 88.20% 73.50% 92.70%
SPSS 75.20% 84.00% 53.20%
Hornero R et Statistics
T Base privada 4191 (v20) 81.07% 68.20% 87.20%
: !
10 e/h MLP 90.20% 68.70% 94.10%
Segmentation 72-80% 96.80% 48.75%
(201’““) 91.67% 77.13% 97.58%
10 e/h ID ResNet 95 900, 73.25% 98.65%
Mortazavi et ’ ’ ’
1 (2024) CHAT 844
Segmentation 86-33% 96.27% 61.27%
(2(’1’““) 91.54% 77.79% 97.23%
10 e/h CNN-BiGru 96 1704 74.58% 99.81%
Segmentation 9-08% 7824% 82.09%
ljs“t‘;s(;lr: CHAT 1639 (2011““) 90.52% 73.63% 97.67%
10 e/h CNN 95.83% 69.05% 98.11%

Tabla 6-6. Tabla comparativa de estudios previos con nuestro estudio para la seiial SpO2y umbrales de 1, 5y 10e/h.
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Resultados

Sujetos | Metodologia

Estudios Base de

. Wavelet 3 cl00 70.89%  47.24%
ecomposition
FClBF 57.46% T443% 47.18%
l () 0 0
ot 10 e/h o AdaBeostMp  76:07%  41.06%  89.58%
o University of
Garecia et al. Chicaco 946 Wavelet o o o
(20212) 1 e/h g decomposition  50-85%  100.0%  0.00%
!
FCBF 57.14%  77.25% 45.05%
!
10 e/h Bﬁis;an 70.47%  50.00% 75.96%
Time and frec.
1 e/h domain 80.51% 99.37%  1.33%
Jiménez . . analysis
Garcia et al. Uné‘l’fi’zsa“-‘{)"f 974 ! 62.82% 62.33% 63.11%
(2020) & FCBF
10 e/h ! 78.97% 39.77% 89.58%
AdaBoost.M2
Bispectrum
1 e/h estimation  78.14% 94.07% 11.16%
!
Barroso University of Bispectral
Garciaetal. | Se/h “é;‘l’gti" 946 band 61.20% 78.66% 50.61%
(2021b) & !
FCBF
10 e/h ! 77.35% 55.85% 83.16%
MLP
Welchmethod ¢4 600, 60.50%  58.60%
(FFT)
Barroso University of !
Garcia et al. 5 e/h . 501 76.00% 65.00% 80.60%
2017) Chicago FSLR
10 e/h LlR 80.00% 83.80% 79.00%
77.78%  88.28%  40.30%
Segmentation
UG 5 e/h CHAT 1639 (20min) o5 3500 46.15% 97.67%
estudio !
CNN
10 e/h 91.83% 45.24% 99.24%

Tabla 6-7. Tabla comparativa de estudios previos con nuestro estudio para la sefial FA'y umbrales de 1, 5 y 10e/h.

78



Capitulo 6 Discusion

Resultados

Estudios

(HRV) Metodologia

Bispectrum
1 e/h Estimation 63.40% 76.30% 38.30%
J
Martin CHAT y Bispectral
Montero et si ol University of 1738 features* 81.00% 62.50% 84.20%
al. (2021) Chicago !
FCBF
10 e/h ! 89.30% 66.70% 91.60%
MLP
74.58%  85.47% 35.38%
Martin
Montero et University of 1738 MLP 84.95% 64.44% 93.78%
al. (2022)
10 e/h 91.64% 53.66% 97.67%
Segmentation
1 e/h (10min) 80.07% 90.76% 23.40%
1
5¢/h Timeand o5 100, 66.67% 61.17%
frec. domain
analysis
. 10 e/h ! 84.12%  40.00% 92.03%
B - LSBoost
Montero et 1610 S ati
egmentation
al. (2023) (101‘11111) _ 66.94%, _
!
5 ¢/h Time and - T2.08% -
frec. domain
analysis
10 e/h ! - 77.13% -
AdaBoost
. 75.92% 84.19% 46.15%
. Segmentation
Garcia (10min)
Vicente et 1610 | 86.96% 76.67% 91.39%
al. (2023)° CNN
10 e/h 91.97%  53.66% 98.06%
S . 74.84%  79.50% 58.21%
egmentation
Auestro 1630 P0MIM e3900,  56.04% 95.81%
estudio i}
- CNN 89.87% 40.48% 97.73%

Tabla 6-8. Tabla comparativa de estudios previos con nuestro estudio para la seiial HRV y umbrales de 1, 5 y 10e/h.

4 Bispectral region amplitude, bispectral region entropy, bispectral region momento and weighted center of

bispectrum.

5 El trabajo de Garcia Vicente et al. (2023), no emplea HRV sino ECG.
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Estudios

(SpO:-FA)

Metodologia

Resultados

estudio
10 e/h

cur
Jiménez 10 e/h
Garecia et al.
University of
Chicago
10 e/h
Jiménez . '
Garcia et al. Uné‘l’gzszt}; of
(2020) g
10 e/h
Barroso - . .
Garcia et al. n(lj\lflﬁifglt}(f) 0
(2020) g
10 e/h
cur
Jiménez 10 e/h
Garecia et al.
University of
Chicago
10 e/h
Nuestro CHAT

Segmentation
(30min)
!
2612 CNN + RNN

!
GradCAM

Time and frec.
domain
analysis

974 i}
FCBF

!
AdaBoost.M2

Recurrence
plot analysis

!
FCBF

l

Bayesian
MLP

946

Segmentation
(5min)
J
2D CNN

2612

Segmentation
(20min)
J
CNN

1639

87.30% 87.00% 88.10%

93.50% 80.20% 99.10%

93.50% 71.40% 97.00%

84.10% 96.80% 30.70%

84.60% 82.90% 85.70%

90.50% 78.30% 93.80%

78.21% 90.79% 25.33%

77.95% 72.60% 81.15%

85.90% 44.58% 97.07%

81.10% 99.30%  4.20%

60.90% 80.90% 48.90%

80.60% 63.80% 85.10%

84.60% 82.40% 92.50%

93.50% 80.20% 99.10%

94.40% 71.40% 98.10%

84.10% 95.20% 37.30%

84.10% 82.20% 85.30%

90.30% 78.30% 93.50%

80.07% 80.33% 79.10%

90.85% 72.53% 98.60%

93.46% 61.90% 98.48%

Tabla 6-9. Tabla comparativa de estudios previos con nuestro estudio para la seiial SpO2-FA y umbrales de 1, 5 y 10e/h.
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Resultados

Estudios Umbral Base de Sujetos

(Sp0-HRY) Datos Metodologia

90.45% 90.26% 100.0%
XGBoost  85.67% 82.07% 93.78%
o, 0 0,
vepetal, | 10h |ERUNE - 89.81% 84.77% 92.11%
(2023) Beijing
1 e/h 79.30% 78.90% 100.0%
LR 83.92% 80.00% 92.75%
10 e/h 87.44% 85.79% 89.10%
British
. AROC
Gardeetal. | o, [ PP | 84.90% 88.40% 83.60%
(2014) Children’s LDA
Hospital
Segmentation
1 e/h Qmin)  71.00% 68.00% 86.00%
British i}
Garde et al. Columbia Time and frec.
e Childoss 235 e T 78.00%  58.00% 89.00%
Hospital analysis
10 e/h LlR 88.00% 90.00% 87.00%
S . 80.39% 79.50% 83.58%
egmentation
e CHAT 1639 (ZOTm) 03.46% 82.42% 98.14%
10 e/h G 93.79% 69.05% 97.73%

Tabla 6-10. Tabla comparativa de estudios previos con nuestro estudio para la seiial SpO2>-HRV y umbrales de 1, 5 y 10e/h.
Debido a que no existen por el momento estudios que traten de estimar el grado de AOS con los

umbrales de 1, 5 y 10 e/h para la combinacion de sefiales FA-HRV; compararemos nuestro estudio con
los trabajos existentes aunque no se hayan basado en la misma metodologia (Tabla 6-11).

Resultados

Sujetos | Metodologia

Estudios Base de

Segmentation
Sturludéttir Hospital in (10seg) o . .
Jetal 2023) | > " RV i 95.85% 75.15%  96.20%
CNN
Scgmentation T484% 82.01% 49.25%
f:t‘:f;ff CHAT 1639 (ZOIlnm) 85.29% 58.24% 96.74%
CNN

90.20% 35.71% 98.86%
Tabla 6-11. Tabla comparativa de estudios previos con nuestro estudio para la seiial FA-HRV y umbrales de 1, 5 y 10e/h.
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Estudios Base de Resultados

(SpO:-FA- | Umbral Dat Sujetos | Metodologia

1 e/h 86.0% 82.5%  90.0%
Tan H et al. University of Direct o o o
(2014) 5e/h Citenrs 100 e 85.0% 62.5%  100.0%
10 e/h 93.0% 65.0% 100.0%
1 e/h : 80.72% 79.08%  86.57%
Segmentation
Nuestro (20min)
. 5e/h CHAT 1639 92.16% 79.12% 97.67%
estudio !
CNN

10 e/h
Tabla 6-12. Tabla comparativa de estudios previos con nuestro estudio para la sefial SpO2>-FA-HRV y umbrales de 1, 5y 10e/h.

93.79% 66.67% 98.11%

Si analizamos la comparativa de las sefiales individuales, en el caso de la sefial SpO, nuestro proyecto
contrastado con los autores que emplean CNN como Vaquerizo et al. (2021) o variantes de CNN como
Mortazavi et al. (2024) presenta unos resultados similares o ligeramente inferiores. Sin embargo, los
resultados de accuracy y especificidad obtenidos son superiores a todos los otros estudios realizados
previamente que no emplean CNN o variantes; y los valores de sensibilidad, son superiores a una gran
mayoria de estos. Por otro lado, para la sefial FA no existe ningtn trabajo que emplee la metodologia
CNN, por lo que nuestro enfoque ya presenta una proposicion novedosa a este campo de estudio. Ademas,
los valores de accuracy y especificidad obtenidos son superior a todas las investigaciones anteriores en
un promedio de un 20%, mientras que para el caso de la sensibilidad es completamente opuesto.
Finalmente, en el caso de la sefial HRV, podemos observar que nuestro modelo logra unos valores
superiores 0 cercanos a la mayoria de los estudios previos realizados. No obstante, si comparamos
nuestros resultados con los de Garcia Vicente et al. (2023) que emplea la misma metodologia y base de
datos aunque no exactamente la misma sefial (dicho estudio emplea la sefial ECG), nuestro resultados son
inferiores, lo cual puede deberse a las técnicas de preprocesado realizadas (a pesar de que se ha empleado
la misma base de datos, el nimero de sujetos descartados es mayor), una estructura de CNN mucho mas
compleja o al uso de una sefial mas compleja como es el ECG en lugar del HRV. De nuevo, conseguimos
demostrar la utilidad de las redes CNN para el andlisis de esta sefial en comparacion con el resto de
trabajos que emplean otro tipo de metodologias. Sin embargo, debemos destacar que el valor de 56.0%
obtenido en la sensibilidad es el valor mas bajo de todos los estudios. Y sin embargo, el valor de
especificidad de 95.8% es el mas alto de todos ellos, por lo que significa que el modelo infraestima la
gravedad del trastorno y tiene a clasificar los casos de AOS como un grado inferior al real.

Por otra parte, en el caso de las sefiales SpO,-FA, aquellas publicaciones que emplean una metodologia
de 2D CNN o CNN + RNN, han demostrado un rendimiento superior en todos los aspectos que nuestro
estudio empleando 1D CNN. Comparando ambas metodologias para la base de datos CHAT para hacerlo
mas equitativo, podemos observar como en los estudios previamente mencionados el valor de accuracy
es superior en un 2.6%, el valor de sensibilidad es superior en un 7.7% y el valor de especificidad es
superior en un 0.5% respecto a nuestro estudio. Por otro lado, el resto de autores que emplean
metodologias distintas a los modelos basados en CNN, obtienen resultados inferiores en comparacion con
nuestro estudio para las métricas de accuracy y especificidad, llegando a ser casi el doble que otros
estudios (Barroso Garcia, 2020). Sin embargo, de nuevo la sensibilidad obtenida es menor en nuestro caso
que en los valores obtenidos por el resto. Por lo tanto, nuestro proyecto demuestra que emplear CNN o
sus variantes logra una mejoria en los resultados en comparacion con otras metodologias. Con la sefial
FA-HRYV, se ha empleado la misma metodologia en nuestro caso que en el resto, un modelo CNN. Sin
embargo, los resultados son inferiores al estudio de (Sturludottir, 2023), esto se puede deber al uso de
otras bases de datos, un preprocesado de los datos distinto o incluso una estructura diferente para el
modelo.
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Las combinaciones de sefiales como SpO,-HRV y SpO,-FA-HRV representan una contribucion
completamente novedosa dentro del campo de estudio, ya que, hasta la fecha, no se han encontrado
investigaciones previas que utilicen estas configuraciones aplicando metodologias basadas en DL. En
ambos casos, los resultados obtenidos en cuanto a accuracy han sido elevados en comparacion con los
reportados por estudios anteriores. En el caso especifico de la combinacion SpO,-FA-HRV, nuestros
resultados muestran una mejora considerable en la sensibilidad respecto a los valores reportados por Tan
H et al. (2014) para los umbrales de 5 y 10 e/h (79.12% y 66.67% frente a 62.5% y 65.0%,
respectivamente). No obstante, la especificidad en nuestro proyecto resulta ligeramente inferior, ya que
Tan H et al. reporta valores entre 90% y 100%, mientras que los nuestros oscilan entre 86% y 98%. A
pesar de ello, la accuracy obtenida supera también la de Tan H et al. para los umbrales de 5y 10 e/h, al
igual que ocurre con la sensibilidad. Por otro lado, en la combinacién SpO,-HRV, los resultados de
accuracy de nuestro modelo son superiores a los reportados por Ye P et al. (2023) y Garde et al. (2019)
en todos los umbrales, salvo en el caso de 1 e/h, donde el modelo XGBoost de Ye P et al. supera al nuestro
por un 10%. En cuanto a la sensibilidad, nuestros valores para 1 y 5 e/h son comparables a los obtenidos
por Ye P et al. utilizando LR, y muestran una clara mejoria frente a los de Garde et al. (2019). Por el
contrario, la especificidad presenta una tendencia inversa: nuestros resultados son superiores para 5y 10
e/h, con mejoras de hasta un 10% sobre Garde et al. y Ye P et al. (XGBoost), y un 5% sobre Ye P et al.
(LR) en 10 e/h. El valor mas alto de especificidad, sin embargo, lo obtiene Ye P et al. (2023) con XGBoost
en el umbral de 1 e/h, alcanzando un 100%, aunque el numero de sujetos de control era muy reducido en
la base de datos empleada en dicho estudio.

Por lo tanto, debemos destacar que en el caso de las otras senales, el uso de metodologias basadas en
CNN o variantes obtienen mejores resultados en todas las métricas que aquellos estudios que emplean
otro tipo de sistemas o modelos. Destacando asi la superioridad de metodologias basadas en DL frente a
aquellas basadas en ML (Gutiérrez-Tobal et al., 2022). A mayores, nuestro estudio permite realizar una
comparativa entre todas las combinaciones de sefales previamente mencionadas, por lo que permite
afiadir un enfoque complementario a los ya aportados por las tablas previas al no solamente evaluar las
seflales y sus combinaciones de manera aislada si no permitir una comparativa directa entre ellas
empleando una misma metodologia comun para todas.

Para el caso del FA y tal y como se ha mencionado previamente, obtenemos unos valores ligeramente
menores que en el resto de casos empleando la misma base de datos. Por lo tanto, si los datos empleados
son iguales pero los resultados son mas bajos puede deberse principalmente a dos motivos: el modelo
empleado o el preprocesado de las sefales de FA. Si los resultados no son tan buenos como en el resto de
los proyectos, puede implicar que la metodologia empleada no estd tan optimizada como aquellas
metodologias y modelos empleados por otros autores. En este caso, deberiamos valorar el uso de este
modelo u otros para trabajar con la sefial FA. Por otro lado, también debemos tener en cuenta el factor del
preprocesado, ya que factores como el filtrado realizado o la frecuencia de muestreo elegida podrian estar
afectando negativamente a la calidad de los datos. En cualquiera de los casos, los resultados obtenidos
indicarian que es necesario mejorar el procesado de la sefial de FA para incrementar su utilidad diagnostica
junto con otras sefiales.
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Capitulo 7: CONCLUSIONES Y LINEAS

FUTURAS

En este ultimo capitulo, se resumiran todos los conceptos y puntos desarrollados y analizados a lo
largo de todo el documento. Para ello, se presentaran las conclusiones derivadas de este estudio,
recapitularemos los mejores hallazgos y sus implicaciones a la hora de realizar el diagnodstico de la AOS
infantil. A mayores, comentaremos las limitaciones de este estudio y las posibles lineas futuras que podran
ser exploradas para mejorar y aumentar las posibilidades de nuestro proyecto.

7.1. Contribuciones realizadas

A lo largo de todo el documento se han ido presentando los resultados del proceso de optimizacion de
hiperparametros, los resultados del modelo encargado de realizar las predicciones del niimero de eventos
y los resultados del sistema final encargado de predecir el valor final del IAH y obtener el grado de
severidad de la AOS pediatrica. Por lo tanto, el analisis de estos resultados permiten sintetizar una serie
de contribuciones aportadas por este estudio, dichos puntos se describen a continuacion.

En primer lugar, este trabajo ha permitido realizar una comparativa entre todas las combinaciones
posibles de las sefiales SpO,, FA y HRV. Gracias a nuestro estudio, hemos podido extraer una
serie de métricas estadisticas con las que comparar de manera directa cada una de las
combinaciones. Gracias a esta comparativa, hemos podido elegir la combinacion SpO,-HRV como
la agrupacion de sefiales con mejores resultados a la hora de realizar la prediccion.

En segundo lugar, hemos podido desarrollar un sistema basado en una CNN capaz de realizar
estimaciones de la severidad de la AOS infantil en base a una, dos o tres sefiales y sus
combinaciones. Este estudio permite disponer de una herramienta mas con la que los equipos
médicos especializados puedan complementar sus decisiones a la hora de realizar el diagnostico.

Hemos podido realizar una aportacion a la literatura completamente novedosa para combinaciones
de sefiales SpO2-FA-HRV y SpO,-HRYV afadiendo un nuevo enfoque y nuevas posibilidades. Para
las sefiales SpO2 y HRV y la combinacion SpO»-FA, hemos aportado otro estudio mas empleando
distintas técnicas de preprocesado y distintas bases de datos para comparar sus resultados.

Finalmente, para la sefal FA, hemos aportado una nueva metodologia basada en CNN con la que
complementar los estudios ya existentes basados en otro tipo de técnicas.

7.2. Conclusiones

Las conclusiones extraidas a partir del estudio y sistema desarrollados se presentan enumeradas a
continuacion.

Los sistemas basados en CNN, concretamente DL, son realmente utiles a la hora de realizar
estimaciones a partir de datos sin etiquetar como las sefiales SpO,, FA y HRV. Este tipo de técnicas
permiten poder emplear datos con un minimo de preprocesado sin etapas especificas de extraccion.

De todas las combinaciones de sefiales empleadas, la combinaciéon de SpO.-HRV presenta los
mejores resultados como son: 69.06% de precision, 68.15% de recall, 67.40% de F1 _score, 0.5381
de Kappa y 0.8932 de R2_Score para el conjunto de test para fragmentos de 20 min.

Los modelos CNN o6ptimos difieren para cada una de las sefales y sus combinaciones debido al
ajuste de sus hiperparametros y las particularidades de cada una de estas senales.
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Podemos observar que las sefiales SpO, y HRV mejoran sus resultados cuando se combinan juntas,
mientras que las sefiales SpO, y FA empeoran en comparacion con SpO, y mejoran en
comparacion con FA. Finalmente, las seniales HRV y FA empeoran al combinarse en comparacion
a FA y mejoran en comparacion a HRV.

Observando los valores de sensibilidad, exactitud y especificidad obtenidos podemos asegurar que
nuestro modelo infraestima ligeramente el IAH en cualquiera de las sefiales y por tanto puede
clasificar incorrectamente su nivel de severidad en algunos casos.

Debido a que los valores de sensibilidad, exactitud y especificidad obtenidos para FA son
ligeramente menores que otros casos empleando la misma base de datos, podemos observar que
existen factores como el preprocesado realizado en la sefal que puede ser un claro condicionante
a la hora de obtener mejores resultados.

7.3. Limitaciones y lineas futuras

Finalmente, se exponen a continuacion las limitaciones observadas al finalizar el proyecto y las
posibles lineas futuras que podrian implementarse a partir de nuestro modelo. A continuacion,
comentaremos las limitaciones experimentadas y las posibles lineas futuras de nuestro proyecto:

Hemos desarrollado un sistema solo aplicable a los pacientes pediatricos, de manera que no podra
emplearse con pacientes adultos.

Nos hemos centrado exclusivamente en las 3 sefiales SpO,, FA y HRV y sus combinaciones sin
explorar otras posibles sefiales o combinaciones.

Nos hemos centrado exclusivamente en redes CNN como metodologia, sin explorar otros modelos
0 sus combinaciones.

Al no haber realizado ningun tipo de preprocesado las sefiales han sido empleadas en crudo, lo que
implica presencia de artefactos no deseados que pueden afectar negativamente a los resultados.

El uso de la base de datos CHAT nos ha permitido disponer de una de las mayores bases de datos
de AOS pediatrica disponibles. No obstante, no se ha explorado la posibilidad de combinarlas con
otras bases de datos para aumentar asi la cantidad de datos disponibles.

Se ha empleado solamente el algoritmo de optimizacion “Adam” sin evaluar el desempefio y
rendimiento de otras alternativas.

Se la utilizado solamente la regresion Huber como algoritmo de regresion sin evaluar la posibilidad
de usar otras alternativas.

No se han aplicado algoritmos de interpretabilidad por parte de los profesionales de la salud, al no
haber implementado ninguna técnica de XAl.

Una vez comentadas las limitaciones, ahora mostraremos las posibles lineas futuras que pueden ser
abordadas:

Extrapolar nuestro sistema a los adultos, bien de forma equivalente empleando solo sujetos adultos
o bien de manera conjunta empleando ambos grupos.

Probar el modelo con otro tipo de senales como puede ser un ECG, un EEG o sefales acusticas
referentes a la respiracion o ronquidos del paciente. Ademas de combinar estas nuevas sefiales con
las sefiales ya analizadas.

Explorar la posibilidad de utilizar otro tipo de modelos de DL, como pueden ser: una RNN, una
red ResNet 0 una combinacion de nuestra CNN con otro tipo de red o algoritmo.
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- Realizar un preprocesado y limpieza de los datos de los sujetos, eliminando artefactos no deseados.

- Aumentar la cantidad de datos disponible, ya sea combinandola con otras bases de datos u
obteniendo otras nuevas a partir de estudios del suefio en sujetos pediatricos.

- Buscar nuevos algoritmos de optimizacion alternativos al algoritmo “Adam”, nuevas variables de
monitoreo de pérdidas y otros métodos de regresion para lograr una estimacion del IAH mas
precisa, tratando de estimar con mayor exactitud el tiempo de suefio.

- Anadir alguna herramienta de XAl con la que poder permitir a los especialistas en la salud que
empleen nuestro sistema comprender como ha decidido nuestro sistema.

Con estas lineas futuras se coloca el broche final a este TFM elaborado de forma conjunta con el Grupo
de Ingenieria Biomédica (GIB) durante el transcurso del Master de Ingeniero de Telecomunicaciones en
la Universidad de Valladolid.
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