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INTRODUCTION

This PhD thesis can be framed in the Local Geometry of Real Analytic Dynamical Systems. We
deal with two different (but related) problems concerning this topic. The first problem deals
with the discrete dynamical systems generated by the iteration of the germ of a two dimensional
real analytic diffeomorphism that fixes a point. The second problem deals with the dynamics
generated by the flow of a germ of three dimensional real analytic singular vector field. Roughly,

the two main results that we present in this text are the following ones:

Problem I. Sectorial decomposition of germs F € Diff;(R?,0) of tangent to the identity
real analytic plane diffeomorphisms. Under the (necessary) hypothesis that F is of "non
center-focus type", we prove that there exists a partition of a neighborhood U of the fixed
point 0 € R? into a finite number of topological submanifolds, such that the orbits of F on
each submanifold have a uniform well-established asymptotic behavior. As a consequence,
we obtain that the set of periodic points of F in U coincides with the set of fixed points.
Under some non-degeneracy conditions (that hold in particular when 0 is an isolated fixed
point of F), U can be assumed to be a semi-analytic open set and that each stratum is a real

analytic submanifold.

Problem II. Description of the local cycle locus and Dulac’s problem for germs of real
analytic vector fields at (R%,0). Here we consider such germs & € X“(R3,0) with a Hopf
singularity at 0; i.e. whose linear part has two conjugated purely imaginary eigenvalues.
For these vector fields, we prove that the union of all the cycles (periodic trajectories) in a
sufficiently small neighborhood of 0 € R? is empty, or equal to a finite number of subana-
lytic surfaces, or a dense open set (in fact the complement of the singular locus Sing(&)). We
also give a characterization of the last situation in terms of the analytic linearization of the
foliation generated by & and in terms of complete integrability. As a consequence, we obtain
that there cannot exist infinitely many isolated cycles of & accumulating and collapsing to

0 (Dulac’s property).

The initial motivation of this PhD thesis was Problem II, that is, we were interested in gener-
alizing Dulac’s problem to a higher dimension, starting with the case of the Hopf singularities in
dimension three. We obtained first the stated results in II for isolated Hopf singularities, which
have already been published in [23]):

N. Corral, M. Martin-Vega, and F. Sanz Sanchez. Surfaces with Central Configuration and Dulac’s Prob-

lem for a Three Dimensional Isolated Hopf Singularity. Journal of Dynamics and Differential Equations,
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2024

One important argument in that reference concerned the study of some two dimensional analytic
diffeomorphisms, coming from the Poincaré map defined on cross sections of cycles obtained by a
process of reduction of singularities of a normal form of £. In particular, for such Poincaré maps,
we found that the set of periodic points coincides locally with the set of fixed points, a property
that permits to describe the cycle locus of £.

That study led us to pursue a more ambitious objective: to describe the asymptotic behavior of
all orbits of a planar analytic diffeomorphism, coming or not from a Poincaré map of an analytic
vector field. That is, we tackled the sectorial decomposition stated in Problem I.

We returned then to the study of vector fields with Hopf singularity. With the results of Prob-
lem I in hand, we obtained finally the description of the cycle-locus for all the cases, including
those vector fields with a non-isolated singularity (Problem II). As a final result, we gave a char-
acterization of three dimensional Hopf centers, namely, the case in which the cycle-locus is an open

dense set.

In the rest of the Introduction, we provide more details about Problems I and II, and how are
they are framed in the literature. In addition, we give precise statements of the results that we

have obtained and outline their proofs.

Problem I: Sectorial decomposition of diffeomorphisms

We have already anticipated that our interest to study this problem relied first on the study of
fixed and periodic points of the analytic diffeomorphisms given by Poincaré maps that we find in
Problem II. However, the decomposition of the dynamics of F € Diff; (R?,0) is a problem of great
independent interest.

The decomposition of real analytic two dimensional vector fields dates back to Poincaré [66]
and Bendixon [6] (see also a relatively modern proof by Andronov et al. [3]). It is valid for
those & € X¥(IR?,0) with an isolated singularity which are not of center-focus type. We say that
& is of center-focus type if there is no integral curve that accumulates at 0 € R? with a defined
tangent (also called a characteristic direction). For vector fields which are not of center-focus type,
Poincaré and Bendixon obtained that a neighborhood of the singularity can be decomposed into
finitely many curvilinear sectors invariant for £ and where the dynamics of the vector field are
uniformly described. Namely, for each sector, all trajectories accumulate at 0 € R? in one direction
and escape in the other direction (parabolic sector), or all trajectories accumulate at 0 in both
directions (elliptic sectors), or all trajectories escape the sector in both directions (hyperbolic sector).

The sectorial decomposition is not only useful for understanding the dynamics of & € X*“(R?,0)
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around 0 € R?, but also for understanding the topological properties of the oriented foliation
generated by & at the singularity. For instance, the Poincaré index I(&,0) can be computed from
the sectorial decomposition by Bendixon formula

e—h

1(5,0):1'1'7,

where e denotes the number of elliptic sectors and / denotes the number of hyperbolic ones. F.
Dumortier in [27] also gave a sectorial decomposition of C* vector fields fulfilling a Lojasiewicz
inequality (as well as the non center-focus condition) and proved that it is finitely determined
by some jet of the vector field. The Lojasiewicz inequality implies that the vector field has an
isolated singularity and that it has a jet truncation which is different from zero, so that we can

mirror in this case the proof for analytic vector fields.

The sectors are separated by characteristic curves, also invariant by &. Sectors, characteris-
tic curves separating them and the singularity 0 € R? form a stratification of a neighborhood
by invariant topological manifolds (in fact analytic or C* if £ is so) with a parabolic, elliptic or
hyperbolic behavior. In higher dimensions, very recently Alonso and Sanz in [1, 2] have general-
ized the sectorial decomposition for three dimensional vector fields under hypotheses that avoid

center-focus behavior.

Our objective is to find the discrete counterpart of the decomposition of the dynamics of two
dimensional vector fields, that is, a decomposition of the dynamics of analytic two dimensional
diffeomorphisms. It is more difficult since the orbits of a diffeomorphism are discrete sets in R?,
instead of continuous curves. This means that, in principle, wild behavior occurs, even for real
analytic diffeomorphisms. As a kind of motivation, we want to recall one of the main results in
holomorphic dynamics: Leau-Fatou’s Flower Theorem, which provides the description of the dy-
namics of a holomorphic one dimensional tangent to the identity diffeomorphism F € Diff;(C, 0).
This result was originally stated by L. Leau [52] and P. Fatou [31, 32, 33]. Assuming that F = Id,
if k is the multiplicity of the map F —Id, there exist k attracting directions v; and k repelling
directions v;. In addition, for each direction v}, there is a sectorial region V* (a "petal"), bisected
by v¥, invariant by F*! where all the positive orbits of F*! accumulate at 0. Moreover, the union
Vi"U---U VUV U---UV, is a punctured neighborhood of 0 € C. We can always interpret F as
a real analytic diffeomorphism at (R?,0). Hence, the intersections V" NV, and V; NV}, play
the role of elliptic sectors and the complements of these elliptic sectors in the petals play the role
of parabolic sectors so that we obtain a sectorial decomposition of this type of diffeomorphism F.
Concerning also Diff;(C,0), J. Ecalle [30] and S. Voronin [74] obtained in fact a stronger result,

the moduli of analytic classification.

On the other hand, if we take a holomorphic diffeomorphism F € Diff(C, 0) which is not tan-
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gent to the identity, we can have wild behavior for the orbits. Notably, R. Perez-Marco reveals
in [64] certain chaotic behavior if F/(0) € S! and it is not a root of unity. In particular, under some
conditions he shows the existence of a "hedgehog" K, which is a compact, connected, full subset
of a neighborhood U of 0, invariant for F and such that 0 ¢ K°. This subset contains periodic
points of every period n € Z, i.e. fixed points of F". It turns out that nothing that resembles a
sectorial decomposition can be found for this type of diffeomorphisms.

Even in the tangent to the identity case, a real analytic diffeomorphism may have infinitely
many periodic points of different periods accumulating to 0 € R? (see the example below).

Example. The time-1 flow of & = (x* + yz)(—ya% + xa%) is a center-focus diffeomorphism. This

diffeomorphisms has expression

F(x,y)=(x+ (x* + yz)(—y - %xy2 - %xs +h.o.t),y+ (x* + yz)(x - %xzy - %y3 + h.o.t.)).

We impose on the diffeomorphisms treated in this memory to be tangent to the identity and of
non center-focus type. A real analytic diffeomorphism F € Diff¥(R?,0) is non center-focus if there
is a formal invariant curve for F with defined tangent at 0. In the text, we see that this property is
given in terms of a reduction of singularities of its infinitesimal generator Log(F) = & € /X\(Rz, 0),
as it is the case for real analytic vector fields.

The main work aiming for a two dimensional sectorial decomposition has been done by F. Du-
mortier, P. Rodrigues and R. Roussarie in [29], nearly 40 years ago, and for C* diffeomorphisms
under the non center-focus condition and some extra hypotheses. They required a Lojasiewicz in-
equality for the diffeomorphisms, which means that the Taylor expansion of F —Id has non-zero
dominant terms (it is not flat) and it implies 0 € R? is an isolated fixed point of F.

For our purposes, we need to study diffeomorphisms that may have curves of fixed points,
then, not necessarily fulfilling the Lojasiewicz inequality. In the case of vector fields with a
non-isolated singularity, a sectorial decomposition is obtained directly from a sectorial decom-
position of the saturated foliation with isolated singularity. However, there is not an analogy of
the saturation of a vector field for diffeomorphisms and curves of fixed points are unavoidable
in our study. Introducing curves of fixed points leads to several new scenarios with respect to
Dumortier-Rodrigues-Roussarie’s work and entails new challenges (we humbly think that our
main contribution to Problem I lies in addressing, and somehow solving, some of these difficul-

ties):

* The condition of being C* is too weak to have a reasonable behavior around the curves
of fixed points. We assume analyticity of the diffeomorphism in order to overcome the

possible uncontrolled behavior coming from the existence of flat functions.

* Arguments in Dumortier et al. [29] for establishing a sectorial decomposition of F used



INTRODUCTION

some technical results that they prove, concerning the possibility of replacing F in some
cone around a characteristic invariant curve, by a conjugate diffeomorphism which is em-
bedded in a flow of a C* vector field. Such results seem to be quite difficult to generalize
in order to cover cones of curves of fixed points of F, even with the assumption of analyt-
icity. Without detracting from the conviction that pursuing this type of generalization has
a high interest in the theory of dynamical systems, we adopt here more elementary argu-
ments. Taking advantage of the total order of the field of real numbers, we analyze from
the expression of F in convenient coordinates zones where F can exhibit certain monotonic
behavior of the orbits. Although these arguments cannot be generalized to holomorphic
dynamics, several ideas behind our proof could be useful for real analytic diffeomorphisms

in higher dimension.

¢ Once the origin 0 € R? is not an isolated fixed point, other fixed points may be accumulation
points of nearby orbits. Thus, the three types of sectors, parabolic, elliptic and hyperbolic,
are not sufficient to describe the sectorial decomposition theorem. On the other hand, it is
conceivable that each point in a curve of fixed points is the center of a sectorial decomposi-
tion, and that these decompositions are not uniform while approaching 0, thus obstructing
the description of a finite stratification of the local dynamics. We prove in this memory that

such a wild behavior never happens.

We state now our main result concerning Problem I in more precise terms. Before stating it,
we define some usual concepts. In general, if F: W — W’ is a diffeomorphism between some
open sets of R” and A C W, we define the positive orbit Orby ,(p) issued from p in A to be the
subset of A that contains exactly p and every F"(p) € A with n € N such that F/(p) € A for I € N
with [ < n. We define the negative orbit Orby ,(p) issued from p in A to be Orb;_i,llA(p). Thus,
if some iterate F"(p) does not lie in A, we say that the orbit Orby 4(p) escapes A. We define
also wr 4(p) = MNyez., Orby 4(F"(p)), pointing out that it is empty if Orby. ,(p) escapes A, and we
Orbg 4(F"(p)). When the diffeomorphism F or the subset A is

clear from the context, we will drop the subindices F or A in the orbits and the a-and w-limit

define similarly ap a(p) = Nyez,

sets. Let gy € A. We say that A is an attracting (or repelling) parabolic set of F at g if for any

p € A, one has wx(p) = {go} and Orby ,(p) escapes A (or ar a(p) = {0} and Orb;,A(p) escapes A).

We say that A is an elliptic set of F at g if, for any p € A, one has w4(p) = {q0} and a4(p) = {40}

Finally, we say that A is hyperbolic if for any p € A, the sets Orby ,(p) and Orby. ,(p) are finite.
The following is the main result of the first part of the thesis.

Theorem A. Let F € Diff{(R?,0) be a germ of a real analytic diffeomorphism with F(0) = 0, F = Id,
tangent to the identity and of non center-focus type. Then, for any open neighborhood W of 0 where a
representative of F and F~\ is defined, there exist a neighborhood U C W of 0, and a finite partition S
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U:UA,

AeS

into invariant C° submanifolds of R? such that, for any A € S, we have
0. dimA =0 if and only if A = {0}.

1. Ifdim A = 1 then, 0 € A\ A and either A is a connected component of Fix(F)\ {0} or ANFix(F) = 0

and A is an attracting or repelling set (curve) at 0.

2. IfdimA =2, then 0 € A\ A, ANFix(F) = 0 and A is of one of the following six types.

» Ais an attracting or repelling parabolic set at 0.

» Ais an elliptic set at 0.

» Ais a hyperbolic set.

» A is dicritical-parabolic (or D-parabolic): there exists Iy € S with dimTy =1 and Iy C
Fix(F) such that for each p € A, either there is q, € Iy with as(p) = {q,} and Orb} (p)
escapes A, or there is g, € Iy with wa(p) = {q,} and Orby(p) escapes A.

* A is dicritical-elliptic (or D-elliptic): there exists Ty € S with dimIy =1 and Iy C Fix(F)
such that for each p € A, either there is q, € Iy with a(p) = {q,} and wa(p) = {0}, or there is
qp € Ty with wa(p) = {qp} and ax(p) = {0}.

* A is dicritical-dicritical (or D-D): there exist Ty,I'; € S with dimIy =dimI; =1, T4 =T,
and ToT; C Fix(F) such that for each p € A, there is q,, € Ty with a,(p) = {q,} and there is
q, € ) with wa(p) = {q,}.

The pair (U, S) fulfilling the properties of the previous theorem will be called a sectorial de-
composition. The two dimensional sets in S will be called the sectors of (U,S), and they are of
parabolic, elliptic, hyperbolic, D-parabolic, D-elliptic or D-D type, accordingly to the properties pre-
sented in the second item of the Theorem. See Figure 1 for a schematic picture of the sectors and
see Figure 2 for an example of a sectorial decomposition. It is worth highlighting the following

remarks, discussed in more detail in the text.

* The curves Iy in the "new" types of sectors (D-parabolic, D-elliptic, D-D) have a dicritical
behavior in both sides: each g € Iy sufficiently close to 0 € R? is not only a limit point of a
positive or negative orbit of F contained in A, but g is also a limit point of a positive or neg-
ative orbit of another sector A’ # A of type D-parabolic, D-elliptic, D-D. These components

Iy € S will be called bidicritical curves.

» Further to the point above, if Iy is a bidicritical curve on the boundary of the sector A,

the map ¢ : A — [, p — q, (defining g, as in the statement of Theorem A) is continuous
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Parabolic Elliptic Hyperbolic

D-parabolic D-elliptic D-D

Ficure 1: Types of sectors

FIGURrE 2: A example of a sectorial decomposition.

and its fibers {(j)‘l(q)}qerA are parabolic curves of F attached to the different points of I’y
(all attracting or repelling). The germ of ¢~!(g) is uniquely defined and coincides with the
germ at g of the set of points p in the side of T4 that intersects A and whose orbit Orb} (p)

or Orb} (p) accumulates at q.

If A is a D-D sector, one has two such maps ¢ : A — Iy and ¢’ : A — I;, one for each
bidicritical curve which is in the boundary of A. It is natural to ask whether the fibers of
¢ and ¢’ coincide. We do not know the answer. Of course, one can construct examples for
which the fibers of ¢ and ¢’ coincide: coming from the flow of an analytic vector field with
arbitrary curves of singularities which are generically transverse to the saturated foliation
(isolated singularity) that it generates. But we do not know if there are examples where the

fibers do not coincide. Or wilder behavior, as depicted in Figure 3 where the fibers ¢~1(g),
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which by definition accumulate into singletons of Iy, may accumulate into a whole interval
in the other bidicritical T} with non-empty interior. Such phenomenon, if it exists, would
be proper to diffeomorphisms (with non-isolated fixed points) and would be an obstruction

for embedding such diffeomorphisms into flows (even up to topological conjugation).

-,
«

\¢1(Q)

\@"@ o
A

FiGURE 3: A fiber of ¢ and a fiber of ¢’. The fiber ¢~1(g) accumulates in a compact subset L of I';, and the
fiber ¢~!(g’) accumulates in a compact subset L’ of I4.

* With regard to Theorem A, if there are no D-D sectors, then the statement can be improved
in the sense that a sectorial decomposition (U, S) can be taken so that U is an open neigh-
borhood and S§ is an analytic stratification of U (the boundary of A € S is a union of lower
dimensional elements of S and the strata are analytic submanifolds of R?). Finally, if there

are no bidicritical curves, then U can be chosen to be a semi-analytic subset of R2.
A basic consequence of the previous theorem is the following.

Corollary A. Let F € Diff,(R?,0) be non center-focus. Then, there is a neighborhood U of 0 where a
representative is taken, such that the only periodic points of F in U are fixed points. Hence, Per(F) =

Fix(F) as germs.

Outline of the proof of Theorem A As we mentioned before, our proof is independent of the
proof of the sectorial decomposition for C* vector fields by Dumortier, Rodrigues and Roussarie
in [29]. However, we follow some common steps, specially at the beginning of the proof. In
particular, we make use of results in the literature about reduction of singularities of vector fields.
To start, it is well known that any germ of a tangent to the identity diffeomorphism F € Diff, (R?,0)
has an infinitesimal generator, that is, a two dimensional formal vector field & € /f(Rz, 0). See for

instance [13, 58] for the proof of the existence and uniqueness of such vector field. The formal
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infinitesimal generator & of F has a singularity of order two or greater than two at 0. Its formal
singular locus Sing(&) coincides with the germ of fixed points Fix(F) of F and thus, this vector

field is not necessarily saturated or reduced.

A classical result by Seidenberg [70] states that a two dimensional vector field with an isolated
singularity admits a reduction of singularities: after a finite number of blowing-ups, the pull-
back of the vector field only has simple singularities (in particular with at least one non-zero
eigenvalue, see below). This result does not demand convergence of the vector field and it is
equally applicable to a formal vector field with an isolated singularity. For vector fields with non-
isolated singularity, we have not found a complete result on the reduction of singularities with the
properties that we need. We propose a version of such a result on the reduction of singularities,
specially adapted to the real formal setting in Chapter 1 (Section 1.4.3). Then, we apply this
result to the infinitesimal generator & obtaining a sequence of blowing-ups = : (M,E) — (R?,0)
such that E = 771(0) and g : M\ E — R?\ {0} is an analytic isomorphism. We highlight that
M 1is an analytic manifold with boundary and corners and E is its boundary. We use a result in
[12] that ensures that F can be lifted to a diffeomorphism F in (M, E) that fixes each point of E.
From this point, the object of work will be a diffeomorphism F:(M,E) — (M,E) with F|g = Id.
We look for a decomposition of F in some neighborhood U of E in (M, E) that will be projected to

R? in order to provide the desired sectorial decomposition (U,S).

Let & be the strict transform of & by 7 (locally defined by dividing the total transform &
by an equation of the divisor E of maximal multiplicity). This strict transform permits to write
E = E; U---UE,,, where each E; is either dicritical (transverse to the strict transform &’ of & by 7) or
non-dicritical (tangent to &’) for &. Of special interest is the set Sing(&’), composed of the corners
between two non-dicritical components of E and the non-corner singularities of &’. In any case,
being simple singular points, there are exactly two formal mutually transverse separatrices of &’
at each g € Sing(&’). By construction of 7, the components of E through g € Sing(&’) and also the
germ of the strict transform (Fix(F))" of Fix(F) at g (either empty or a simple non-singular analytic
curve through ¢ transverse to E) must coincide with the separatrices of & at q. Extending E to
EU(Fix(F))’, we have a new normal crossing divisor where the points of Sing(£’)N(Fix(F))’ play the
role of new corner points. We extend this normal crossing divisor EU(Fix(F))" at some non-corner
points g € Sing(g’). Concretely, at the points g € Sing(g’) \ (Fix(F))" where &’ is not a saddle-node
with the weak separatrix transverse to E and with a complete "node behavior" outside E (details
below). At any g among such points, we will construct a parabolic curve y, of F that is asymptotic
to the formal separatrix at g of E. We find these curves by using results in [5, 57, 56] concerning
existence of (holomorphic) parabolic curves associated to formal invariant curves. We call E the
extension of E by these parabolic curves and the strict transform of the fixed points. The set E

is a normal crossing divisor. The curves in E \ E will be part of the one dimensional strata of the
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sectorial decomposition.

We prove in Section 2.3 some results on the local dynamics of F. The results in this part of the
thesis are technical, but the type of arguments that we use are very natural, based mainly on the
use of monotonic functions. We start defining the set $ containing Sing(&’) and the corner points
between a dicritical and a non-dicritical component of E. Given any compact connected subset
of E\'S, we find a neighborhood of it where a monotonic function (on the orbits lying on this set)
can be defined. We call these neighborhoods monotonic domains and we distinguish the dicritical
and non-dicritical case. We also define the quadrants at each g € S, which are basically connected
components of the germ of M \ E at g. At each quadrant, we will find monotonic functions on
the orbits of the diffeomorphism and three types of behaviors: saddle, node or dicritical. We also
call these sets monotonic domains, because of the existence of monotonic functions on them. We

conclude that E has a neighborhood defined by the union of monotonic domains and the curves

of fixed points and parabolic curves in E.

To construct the sectors in Section 2.4, we will proceed in two ways. We define the paths of
quadrants as connected subsets of E that have two extreme points in S, and such that the interme-
diate points in S are of a specific saddle type. The idea of the construction of the sectors consists
in gluing the monotonic domains covering the path, and then, choosing a smaller open region,
we ensure that orbits have a specific behavior inside the sector, so that the projection of this open
set is of one of the types in Theorem A. We call path sectors to the sectors constructed from paths
of quadrants. On the other hand, the union of these sectors is not necessarily a neighborhood of
E. We complete this union with some parabolic sectors, obtaining finally a neighborhood U of E

whose projection U = 7t(U) is the required neighborhood of 0 € R? in Theorem A.

In the last sections of Chapter 2, we make a refinement of the sectorial decomposition. We
start the section by showing refinements on all the sectors. On the path sectors that are not
adjacent to bidicritical curves, we consider what we call a "fundamental domain", which is a set
that generates the sector by the saturation of it by F (the union of all the images by F and F~!) and
that contains a single element of each orbit in the sector. Taking a fundamental domain which
is itself semi-analytic will serve us to prove that the sector has semi-analytic boundary outside 0.
On the other hand, for a sector adjacent to a bidicritical curve (D-parabolic, D-elliptic or D-D),
we are able to define parabolic curves of F at each point of the bidicritical curve and use it as
the boundary of the sector. In the non-path sectors, we also make a refinement of the choice of
the boundary. Using the refinements on the construction of the sectors, we prove the two main
results of the section. In the absence of D-D sectors we can take U to be an open set in R2. In the
absence of bidicritical curves, we can take U to be semi-analytic. We also make some comments

on the reasons that lead us to think these restrictions are optimal.

10
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Problem II: The structure of the cycle-locus of vector fields with Hopf singularity

As we mentioned before, our main motivation in this thesis was Dulac’s problem in dimension
three. Before stating the problem, recall that a cycle of a vector field is a periodic trajectory,
thus homeomorphic to S!, and an isolated cycle is a cycle having a neighborhood where there
are not other cycles. In R? an isolated cycle is more frequently called a limit cycle because it
is the accumulation set of some non-closed trajectories. In higher dimension, it is more proper
to keep the name isolated cycles. One of the main tools in the study of cycles of vector fields
are the Poincaré first return maps, which map points in a cross-section of a cycle to the first
intersection of the trajectory again with the cross-section. Every cycle that intersects the cross-
section, generates a periodic point of the Poincaré map. Therefore, studying the cycles near a
given cycle is equivalent to studying the periodic points of its Poincaré map. The definition of
this type of maps is generalized also to polycycles (closed union of trajectories and singularities

of a vector field).

Dulac’s problem claims that an analytic vector field cannot possess an infinite number of
isolated cycles in a sufficiently small neighborhood of the singularity. The problem was origi-
nally stated in dimension two by H. Dulac [26] in 1923. It can be seen as a local version of (the
second part of) the famous Hilbert’s sixteenth problem, posed at [40] in 1902. Dulac himself
provided a proof of it, but it turned out to have a mistake, discovered by Y. Ilyashenko in 1982,
published in [44]. So far, there are two different and independent solutions to this problem, one
by Y. Ilyashenko [43] and the other by J. Ecalle [30]. Both are very intricate and not very well
understood by the mathematical community. Recently, there are attempts revising Ilyashenko’s
proof by Yeung [77], who found a gap in Ilyashenko’s proof, or approaching the problem with
different tools, for instance o-minimal geometry [71, 45, 25, 35]. We highlight that the less de-
generated case in dimension 2 is very easy to prove, and in fact it has been known since the work
of Lyapunov [53]: it is the case where the vector field has a couple of conjugated non-zero purely
imaginary eigenvalues (Hopf singularity). In this case, after a blowing-up of the origin we find
a cycle (with no singularities), so that the analyticity of the first return map, being a diffeomor-

phism in one variable, gives the result.

Dulac’s problem in higher dimension has not been very much treated so far, to our knowledge.
Since the theorem in dimension two is already very intricate, it seems too optimistic to solve the
problem in dimension three with full generality. It is very natural to attempt to generalize the
easier case in dimension two to dimension three. Accordingly, from now on, we work with the

family of vector fields with a Hopf singularity:
H3 = {& € X“(R>,0) : Spec(D&(0)) = {+bi,c}, where b,c e R and b = 0}.

11
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We remark that for any & € 13, there is a unique curve Q which is non-singular and tangent
to the eigendirection of the eigenvalue c. It is called the formal rotational axis. When & € H>
has a non-zero real eigenvalue ¢ = 0, we say that & has a semi-hyperbolic Hopf singularity. In this
case, the Reduction to the Center Manifold Theorem applies and has important consequences:
it implies that cycles sufficiently close to 0, if they exist, are contained in any center manifold,
which is a surface. For some bibliography on center manifolds, see for instance [20, 47]. Then,
the dimension of the problem is reduced to two, but the main difficulty is that the center mani-
folds may not be analytic, and then the restriction to the center manifold is not exactly the two
dimensional Dulac’s problem. Nevertheless, for Hopf-singularities, there are many authors that
faced this problem and solved it successfully. We highlight the result of Aulbach [4] for a vector
field with n — 2 real non-zero eigenvalues and 2 imaginary ones. The conclusion is that either the
center manifold is composed entirely of non-isolated cycles (and then, it is analytic) or it contains
finitely many cycles. Other proofs that make use of the existence of a first integral can be found
in [46, 48, 49, 68, 69, 76].

In the case where the eigenvalue c is zero, we say that & has a Hopf-zero singularity. We found
fewer attempts to show Dulac’s problem in this case. However, some authors have investigated
the dynamics in generic families of Hopf-zero singularities. To mention the ones more related
with this text:

* Dumortier and Bonckaert proved in [8] the existence of C* realizations of the formal rota-

tional axis Q.

* Dumortier in [28] considered Hopf-zero vector fields in the C* class fulfilling two Lo-
jasiewicz inequalities. One of them implies that the singularity is isolated. The other
(stated for the infinitesimal generator of a Poincaré map of the central cycle obtained af-
ter blowing-up a realization of the rotational axis) implies that there are no local cycles.
With these hypotheses, he obtains a complete description of the asymptotic behavior of the

trajectories in a neighborhood of the origin.

* L. Garcia has studied in [37] generic families of Hopf-zero vector fields, and he found that
the number of isolated cycles generated in that family and making a finite number v of turns
is uniformly bounded in terms of v. However, he does not give an answer on finiteness of

limit cycles of individual fields making any number of turns.

We state now our main results. First, we introduce the following notation. Let £ € X“(R", 0) be
a germ of a real analytic vector field, and let U be an open neighborhood of 0 where £ is defined.
We denote by Cyy(€) the union of all the cycles of |y entirely contained in U. This set depends
strongly on the neighborhood U and it is not ensured that it behaves as representatives of a germ
of a set that we can associate to £. When the germs Cyy (&), Cy/(&)g of Cy(&) and Cy/ (&) at 0 € R”

12
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coincide for every pair of sufficiently small neighborhoods U, U’ of 0, we say that & has a local

cycle-locus equal to C(&) :=Cy(&)o.

Theorem B. Let & € H3. Then there is a neighborhood U of 0 € R3, where a representative of & is
defined, for which exactly one of the following possibilities holds:

(i) Cy(&)=0.

(ii) There is a finite non-empty family S = {Sy, ..., S,} of connected mutually disjoint smooth analytic

two dimensional submanifolds of U \ {0}, invariant for & and subanalytic as sets satisfying S_] =

S; U{0} for any j, and there is a neighborhood basis V of the origin in U such that every V €V
satisfies

Cy(&)=(S7USU---US, )NV, (1)

(ii1) The singular locus Sing(&|yy) of & in U is a smooth analytic curve in U and there is a neighborhood

basis V of the origin in U such that every V € V satisfies
Cy(&) = VA (V NSing(ly)). (2)

Consequently, the local cycle locus C(&) of & exists and it is equal to the empty germ, to the germ of
S1U---US, or to the complement of the germ of Sing(&) in cases (i), (ii) or (iii), respectively.

As an immediate consequence, Dulac’s problem has a positive answer for three dimensional

Hopf singularities.

Corollary B (Dulac). If & € H3, then there is a neighborhood of 0 € R3 where there are no isolated
cycles of &.

The surfaces in item (ii) are called the central limit surfaces. Each of them is filled with a
one-parameter family of cycles or £. In the semi-hyperbolic singularity case, there is at most one
limit central surface (either (i) or (ii) with » = 1), and if there is one, then it is a center manifold,
non-singular and analytic at 0.

In the last result, we provide a characterization of the third situation of Theorem B in terms

of linearizability and integrability of the vector field.
Theorem C. Let & € H> be a Hopf-zero singularity, the following statements are equivalent.

(1) & is formally orbitally linearizable (i.e. formally equivalent to G(x,y,z) (—ya% + xa%), where G is

a unit in R[[x,v,z]]).

(2) & is analytically orbitally linearizable.

13
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(3) There is a neighborhood U of 0 such that Cyy = U \ Sing(&).

(4) & is analytically completely integrable (i.e. there exist two analytic first integrals f, g at 0 which
are independent, i.e. df ANdg Z0).

We want to remark that some of the implications in Theorem C are not completely original:

* On the one hand, once we obtain that (1) implies that a formal normal form (discussed
along this text) of £ is proportional to the linear part —y% +xa%, the implication (1) = (2) is
a particular case of Brjuno’s results on analytic normalization of analytic vector fields [10]
(see also [59]).

* The implication (1) = (4) can also be seen as a consequence of a result by Zhang [78] (see
also [54]).

* The implication (3) = (4) deserves a separate comment. It can be interpreted as a three
dimensional version of the classical Poincaré-Lyapunov Center Theorem [66, 53], asserting
that an analytic center at (R?,0) has an analytic first integral. It is already stated by I.
Garcia [36], but tacitly assuming an a priori stronger hypothesis than (3); namely, that
all cycles in U \ Sing(&) perform a single turn around the curve Sing(&) before closing.
In our proof, we surpass this difficulty, since we do not assume this extra condition: the
scheme is more precisely the sequence of implications (3) = (1) = (2) = (4), the first being
a consequence of (a part of) the proof of Theorem B. As a consequence of (2), we affirm the

condition on the number of turns of all cycles near 0.

On the whole, we believe that our main contribution with Theorem C, apart from gathering
several separate results about Hopf-zero singularities in a single statement, is the completion of

the proof of the generalization of Poincaré-Lyapunov result commented above.

Outline of the proof of Theorem B We recall first that a proof of Theorem B for & € H> with
an isolated singularity (and hence only (i) or (ii) can occur) has already been established in [23].
In this thesis, with the use of Theorem A, we have generalized Theorem B for any & € H> and we
have also shortened the proof in [23] for the isolated singularity case. All in all, several steps on
that proof remain the same. Let us summarize the main ideas. Fix any Hopf vector field & € H°.

We distinguish several cases.

1. The semi-hyperbolic case. This case is developed in Section 3.2. In this case, there is a one-
dimensional invariant stable or unstable manifold W (tangent to the eigendirection of ¢ =
0) and a two dimensional invariant center manifold W¢ (tangent to the eigendirections of

+bi). The manifold W is unique and analytic, but W€ can only be chosen of class CK. One

14
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of the essential properties of the center manifolds is that they contain the cycles existing in
a neighborhood of the singularity. In other words, Cy;(£) € W€ for U sufficiently small. We
perform a blowing-up 7 : (M,E) — (R? W) centered at W and we find that the fiber 771(0)
is a cycle of the strict transform of £. We end using the Poincaré map on a cross-section A of
this cycle (see for instance[61] for a definition of the Poincaré map): this map is analytic and
its set of periodic points is contained in the curve AN W¢. We conclude that either there is
a single curve of fixed points, or that there are not periodic points except for A N7~1(0). We
obtain Theorem B with a single limit central surface equal to W€ (item (ii) with r = 1) in the

first case, and item (i) in the second case.

2. & is a Hopf-zero vector field with an isolated singularity Sing(&) = {0}. This case is developed
in Sections 3.3-3.5. We use the theory of normal forms in this case (see [10, 59, 72]). We fix a
(formal) normal form & for &; it is a formal vector field formally conjugated to £ and written

as
. d d d d d

— A2 2 2.2 2.2
E=A(x"+y ,z)( y8x+x8y)+B(x + ,z)(xax+yay)+C(x +7v ,z)az,

where A, B,C € R[[u,v]]. We consider also a collection of analytic vector fields {&/}sen, all
analytically conjugated to &, so that the Taylor expansion of £, approximates the normal form
& up to some order that grows with £. From the rotational symmetry of the formal normal
form &, we guess that its cycles (if the surface were convergent) turn once around the z—axis
and cut the transverse section {y = 0,x > 0} at the singular points of the auxiliary vector
field 7} defined as 7} = B(xz,z)x% +C(x?, z)%. Its singular set being at most a curve, we "get"
Theorem B (i) or (ii) for the formal vector field. It is quite natural to investigate to what extent
this formal description is reflected on an analytic approximation &, for some ¢ sufficiently

large (notice that it is enough to prove Theorem B for &;, being analytically conjugated to &).

We proceed as follows. First, since 7|,_,is # 0 (by the isolated singularity hypothesis), there
is a cone of finite order around the z—axis where there are no "cycles" of &. We show that
the same happens for &, that is, there is a cone around the z—axis free of cycles when ¢ is
sufficiently large. In terms of blowing-ups, there is a sequence of blowing-ups 7 : (M,E) —
(R3,0) along the first k infinitely near points of the z—axis Z!, and a neighborhood Vi, of
WOE (the k+1-th infinitely near point) in M such that 7*&, has no cycles in Vi, \ E.
In fact, for our problem, we use real oriented blowing-ups along infinitely near points of both
half-axes. Now, again £ serves as a guiding vector field that points where to look for the cycles:

the map 7t determines a finite family of compact curves in E, what we call characteristic cycles.

I The infinitely near points of Z are the intersection points of the strict transform of Z and the exceptional divisor of
the blowing-up centered at 0 € R3 (the first infinitely near point), or the blowing-up centered at the previous infinitely
near point (in the rest of the cases)
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They are given by a family of actual cycles of the restriction of the strict transform & of &
to E (a true analytic vector field). These cycles are obtained also as the curves generated by
rotation of the set of singularities of the strict transform 7’ of 7 along the one dimensional

divisor ' ({y = 0,x > 0}) N E.

If £ is sufficiently large, the characteristic cycles are also cycles of the strict transform &; of &
by 1. Moreover, using flow-boxes along some compact subsets of different components of E,
we show that cycles of £ 2, outside but sufficiently near to E, are localized on neighborhoods
of the characteristic cycles. If y is such a characteristic cycle, the nearby cycles of &, are
given by the periodic points of the Poincaré first return map F,, : A, — A,, of &, defined in
a local cross-section A, at some point of y. The diffeomorphism P, is not of type center-
focus since ENA,, is an invariant curve. Once we show F, is not the identity, Corollary A
of Theorem A permits to conclude Theorem B (i) or (ii), where the family of limit central
surfaces corresponds to the family of connected components of Fix(P, ) \ E for the different

characteristic cycles .2

3. Suppose that & is a Hopf-zero vector field with a non-isolated singularity. Then, in a suffi-
ciently small neighborhood of 0 € R3, the singular set Sing(&) is a non-singular analytic curve
tangent to the eigenvalue ¢ = 0 and coincides with the rotational axis. We distinguish two
cases in terms of a normal form &: either £ is not proportional to the linear part L&(0) (that
is, the auxiliary two dimensional vector field 7 is not identically 0) or it is proportional, that
is, 1 = 0. It can be shown that this distinction does not depend on the chosen normal form
&. They are called respectively the formally non-degenerated case and the formally degenerated

case.

The first case is developed in Section 3.6. As in the isolated singularity case, only possibil-
ities (i) or (ii) of Theorem B may occur. But the proof of the isolated singularity case does
not necessarily apply in this case. Concretely, since & vanishes along the rotational axis, the
arguments above for obtaining a cone around the axis free of cycles do not work. Instead of
making point blowing-ups, we perform the blowing-up 7 : (M, E) — (R?,Sing(&)) centered at
the analytic curve Sing(&). It turns out that 7771(0) is a cycle of the transform &= 1*(&). The
Poincaré map of £ in a transverse section of a point in this cycle satisfies the conditions of

Theorem A and we finish by Corollary A as above.

Finally, the formally degenerated case is developed in Section 3.7. We are in the situation (1)

of Theorem C. By virtue of this result, this is equivalent to (3), which proves Theorem B (iii).

2In our article [23], we continue the sequence of blowing-ups centered at the different characteristic cyles (following
a reduction of singularities of #j), obtaining more simple local situations around each characteristic cycle. Then, we
prove Corollary A without having Theorem A for the corresponding Poincaré maps obtained after this reduction of
singularities.
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In this chapter, we give a common context to the two problems treated in this thesis. We start

studying germs of real analytic singular vector fields. We present a very powerful tool in the topo-
logical study of vector fields: blowing-ups. We give general definitions of the blowing-ups and
then study more deeply the two-dimensional case. We state results on reduction of singularities
of two-dimensional real vector fields in dimension 2 by the iteration of blowing-ups. We present
some known results, adapting their statements so that we have a common language in this thesis,
and we give only some of the proofs. Then, we introduce a graph obtained from the reduction of
singularities, which does not have to be mistaken for the classical dual graph. We end the chap-
ter by studying germs of tangent to the identity diffeomorphisms, their relation with germs of vector

fields and the adaptation of the results presented in the previous section to diffeomorphisms.
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

1.1 Germs of real analytic vector fields with a singularity at 0

As we anticipated, in this section we work with germs of analytic vector fields and formal vector
fields at a point of an analytic manifold. Without loss of generality, we can consider this point
to be the origin of R". That is, we study elements in X“(R",0) and in ¥(R",0). We will denote
X?(R",0) simply by X(R",0). We start studying the analytic vector fields. Fixing coordinates

X = (x1,...,x,), a germ of a vector field £ € X(R",0) is written as

d d
E=am(R) g et a )7 ai(x) = ) aiax® €Rfx), (1.1)
aeN"
where each a; is a germ of analytic function in O, ; expressed as a convergent series. Another way

to express a vector field is the following
X = &(x),

by the differential equation that it defines. We define the vector field

% d
Lé = Zal'axaa_xl+'”+ Zﬂn,axax. (12)

lal=1 lal=1

Notice that the linear part DE(0) = DLE(0) is an n x n matrix A. We can also write x = Ax + F(x),
where F is of order equal to or greater than 2. We denote the order or multiplicity of & at 0
as min;_y,__,{v(a;)}, where v(a;) is the order or multiplicity of a; at 0, i.e. v(a;) = minjen{j:j =

Now, a formal vector field & € ¥(R",0) is a derivation in 5,1,0 ~ R[[x]]. Taking coordinates

x =(x1,...,x,) centered at 0 we can write £ as

d d
E=amg ) g ai)= ) aiex! €R{[x]) (13)

aeN?

where each g; is a formal series. As in the analytic case, we can define L& by (1.2) and its linear
part D&(0). Notice that X(R",0) C ?.(]R”, 0), therefore, many of the definitions that we give in the
rest of the section apply to both analytic and formal vector fields.

Concerning the eigenvalues of the linear part D&(0) of &, there are two types of singularities:

elementary and nilpotent ones.

—

Definition 1.1. Let & € X(R",0) be a vector field with a singularity at 0 € R". We say that 0 is an
elementary singularity if its linear part D&(0) has, at least, one non-zero eigenvalue. Otherwise, we

say that 0 is a nilpotent singularity.
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1.1. GERMS OF REAL ANALYTIC VECTOR FIELDS WITH A SINGULARITY AT 0

In the study of real vector fields, as we will see, the real part of the eigenvalues of the linear
part reveals useful information. We distinguish the following types of singularities concerning

the number of eigenvalues whose real part is different from zero.

—

Definition 1.2. Let & € X(R",0) be a vector field with a singularity at 0 € R" and Aq,---,A,, € C the
eigenvalues of DE(0). We say that 0 is a hyperbolic singularity if Re(A;) # 0 for 1 <i < n. We say
that 0 is a semi-hyperbolic singularity if there is at least one A; with Re(A;) = 0. We say that 0 is a
completely non-hyperbolic singularity if Re(1;) =0 for 1 <i <n.

From this point to the end of the section, we introduce some useful concepts for two-dimensional
real analytic and formal vector fields. Fix a two-dimensional vector field & € %(R2,0) and coordi-

nates (x,) centered at (0,0), then

0 0
&= a(x,y)g + b(x,y)a—y.

We suppose first that 4(0,0) = b(0,0) = 0 and that a(x,y) and b(x,y) have no common (non-unit)

factors. Such singularities are called algebraically isolated or, simply, isolated.

Definition 1.3. Let & be a vector field with a singularity at 0 € R? and A, u the eigenvalues of DE(0).
We say that & has a (real) simple singularity at 0 if A, u € R, one of the eigenvalues, for example p, is
different from 0 and the ratio % ¢ Q.

Remark 1.4. We want to remark that the concept of simple singularity exists for complex two-
dimensional vector fields and the definition is the same allowing that A, u € C. For instance the
linear vector field # = —y% + xa% € X(R?,0) C X(C?,0) has eigenvalues i,—i. The point 0 is not
a real simple singularity. However, if we consider # as a complex vector field, it is a simple
singularity. Along this text, as we will work with real vector fields, we will reserve the name

simple singularity for the real ones.

We will highlight the importance of simple singularities in the following sections. In partic-
ular, as we will see, they are stable under blowing-ups and thus they will be considered final
situations in the process of reduction of singularities, which will be discussed later. Another re-
markable feature is that at simple singularities there always exist two unique formal invariant
curves for . Before stating the result, we give the definition of a separatrix and refer the reader

to Appendix A.2.1 to recall the definition of formal curves.

Definition 1.5. An analytic, C* or formal curve T at (R?,0) is a separatrix of & if it is invariant for &

and it has a defined tangent at 0.

Theorem 1.6 (Existence of separatrices at simple singularities [9]). Let & € ¥(R2,0) be a formal

vector field with a simple singularity at 0 having eigenvalues A, u, suppose, for instance, that p = 0.
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

Then there exist two unique formal separatrices Iy and I, the first tangent to the eigendirection of A

and the second to the one of p. In addition, if & € X(IR?,0), the curve L, is an analytic separatrix.

In the light of the previous theorem, we say that the eigendirection v, € Py associated to an

eigenvalue A of ¢ is a strong direction when A # 0 and a weak direction when A = 0.

The above theorem can be refined in the analytic case. In particular, a simple singularity of
an analytic vector field has C* or analytic separatrices associated to a formal one. That is, either
a formal separatrix I of the previous theorem is convergent, or there is a C¥ separatrix ¥ whose

Taylor development is given by that of I'.

The separatrices we have presented are real curves, and they have two real half-branches (see
Appendix A.2.1). Sometimes, we will make an abuse of notation and name a real half-branch of a
separatrix, directly a separatrix. Each half-branch is a different trajectory of the vector field, and
in the literature, the trajectories accumulating to 0 in a concrete direction are called characteristic

trajectories.

When a(0,0) = b(0,0) = 0 and the coefficients a(x,y) and b(x,y) have common factors, the
singularity is said to be algebraically non-isolated. Suppose that fi(x,v),..., f,(x,v) are the irre-
ducible common factors such that f; # f; for i = j. We define the singular locus of & to be the
ideal Sing(&) = (fi--- f;). In the analytic case, this ideal provides a germ of analytic set and we
will name this set as well the singular locus of &. Recall, however, that in real analytic geometry
there is no one-to-one correspondence between prime ideals and real analytic sets. If any of these
common factors provides a (formal) curve I', we have that I is invariant for £ (the vector field

restricted to the curve is 0), and hence we say that the curve is a degenerate separatrix.

1.2 Blowing-ups

In this section, we will present two types of blowings-ups: the classical blowing-ups and the real
or oriented blowing-ups. We will work only with the second type of blowing-ups, but we present
the first type for the sake of completeness and in order to understand better the second. The
ambient space where we will work is K" with K = C or K = R, but the generalization to open
subsets of K" and to open sets of any analytic manifold M works well using the restriction in the
first case and local charts in the second. We end this introduction indicating that we will present
blowing-ups as transformations of the ambient space, and then see how manifolds, varieties and
vector fields transform. In the rest of our work, we will mainly use the blowing-ups centered
at points in R? and R3. However, only in this section, we will define the concepts with more

generality.
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1.2. BLowING-UPS

1.2.1 The classical blowing-up

Consider K = C or R. We define the blowing-up of K" centered at 0 as the projection 7 : M — R"
with

* M is the blown-up manifold and it is given by
M ={(x1,.... % [V, 9a]) €K X P i xy; = xj3;, i # j} C K" x PR

o (X1 X (V1w Da]) = (X1 ).

We define the exceptional divisor E of @ by E = t=1(0) = {0} x Pﬁgl. Notice that for a point p = 0 of
K", the set 7"} (p) is a single point. In the contrary, E = 7~1(0) = {0}xP% ! contains infinite points.

In particular, the map 7|y : M\ E — K"\ {0} is an isomorphism.

M

E

Ficure 1.1: Classical blowing-up centered at 0 € R?

We want to hightlight that M, which is defined as an algebraic variety, is indeed an n—dimensional
analytic manifold. We provide an altas and prove that the changes of coordinates are analytic.
Let U; C M be the open set defined by M N (K" x (Pﬁ“{l N{y; # 0})). We define the homeomorphism
¢j:Uj—>K"forj=1,...,n as follows

Yi-1 Yi+1 "
LSS I ¢ Lo LA}

(X1, X (V15 V])) = (&=, X, p
Pillx n (Y1 n v; vj j

vi

We remark that if p € E, then p = (0,v) with v € IP’H”{1 N{y; # 0} and @;(p) € {z; = 0}. Hence, the
divisor is mapped to the hyperplane given by {z; = 0}. The expression of 7 in this chart is given

by 1t o (p].‘l : K" — 71t(U;) as follows
-1 _
o ; (z1,...,2,) = (z]'zl,...,z]'zj_l,zj,zjzjﬂ,...,zjzn)
For the sake of simplicity, we will identify U; and K", and many times we will simply write that
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

the expression of the blowing-up 7 in the chart U; is given by 7(zy,...,2,) := 7'(|Uj(zl,...,zn) =
o (p]-_l (21,--,20) = (2j20,- -+, 2Zj1, 2, 2jZj4 15+ -, ZjZ0)-

To end this section, we prove that the change of chart is an analytic morphism. Let ¢; : U; —
K" and ¢@; : U; — K" be two charts with i # j and, for instance, i < j. Notice that U; N U; =
MnN(K"x (]P’]’fgl N{y; = 0,y; # 0})). Notice that U; N U; is mapped by ¢; to ¢;(U; N U;) = K"\ {z; = 0}
and that U; N U; is mapped by ¢; to ¢;(U; N U;) = K"\ {z; = 0}. Let zy,..., z, be the coordinates of
the image of @;. Then, the morphism ¢; o (p]-‘1 c@i(UjNU;) — ¢;(U;jNUj) is given by

1

-1 _
PioQ; (z1,.,2y) = (zl,...,zi_l,z]-zi,zi+1,...,z]-_l,;, it1re-+rZn)-
]

1.2.2 The real blowing-up

In this subsection, we will explain another type of blowing-ups, which will suit nicely our work.
Some of the main references to study this type of blowing-up are [42, 24], the latter providing
a more general construction of weighted blowing-ups. Another reference is [27] in the two-
dimensional case, in which the author develops real blowing-ups from different perspectives.
The main difference with the blowing-ups in the previous section is that the blown-up manifold
has boundary (and maybe corners) but it is orientable. We explain the blowing-up centered at a
point and then extend the construction to blowing-ups of smooth analytic submanifolds.

Suppose that R” is equipped with the Euclidean norm || —|. We define the real or oriented
blowing-up of R" with center at 0 as the projection 7w : M — R" with

* M is the blown-up manifold of 7 and it is defined as the closure of {(p,q) € R" xS" 1 : p =

0,57 =4} in R" xS"~". That s,

MZ{(P,q)ERnxS”‘l :piO,ﬁ:q}u({O}xSn‘l).

* (X1, X V100, V) = (X1,...,X,), where ylz +oety2 =1,

We define the exceptional divisor E of 1t as E = 7~1(0) = {0} x S""! and we will often denote 7 :
(M, E) — (R",0). Notice that for a point p # 0 in R”, the set 7~!(p) is a single point. On the other
hand, E = 771(0) contains infinitely many points. In particular, mtlyng : M\ E — R"\ {0} is an
isomorphism.

The real blown up manifold M of 7 centered at 0 is not anymore an analytic manifold in the
classical sense: it is an analytic manifold with boundary. In particular, M ~ R (xS"~!. We provide
the bijection 1 : M — Ry x S"~!. First, take a point in M. If p = (0,...,0,91,...,9,) € M, its image
by ¢ is ¥(p) = (0,v1,...,v,)- If p = (x1,..., % 91,...,¥,) € M, its image is (||(x1,..., x )|, V1,---»Vn)
(notice that (yy,...,v,) = ”(Xl—x")) On the other hand, if g = (0,7y,...,7,), we have ¥~1(q) =

(xlr"'rxn )”
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1.2. BLowING-UPS

R‘Z

FiGure 1.2: Real blowing-up centered at 0 € R?.

0,...,0,91,...,9,)- If g = (r,91,...,9,), we have »=1(q) = (ry1,..., "V, V1,---, V) We will consider M
to be M = R, x S"71, by the previous identification.
We take the usual coordinates r in R and (xy,...,x,) in S"~!, with x% + x% -4 x2=1. We

can see how 7t is expressed in the given coordinates of R x ™!,
(1, X1, Xp) = (FXY, .0, TXy).

Now, as we announced, we prove that M is an analytic manifold with boundary, by defining an
atlas that contains 2#n charts through which we can identify open sets U]? of M(1<j<n, e=+,-)
with open sets of Ry x R"~! (with the usual subspace topology). Let U]-e C M be the open set
defined by R x (S"' n {xj > 0}) if € = + and Ry x (S"™1n {xj <0}) if € = —. In other words, the
open set U]-+ covers the positive direction of x; and Ok the negative one. We define (p]? : Uj€ —
RI~1 xRy x R" as

P51, x1,0 %) =, ﬁ,...,E,erxj, xj”,...,%

Xj Xj Xj j

The blowing-up 7o ((p]‘?)‘1 ‘RITT xRy xR — n(U].e) is given by
nIU],(zl,...,zn) =To ((p]?)_l(zl,...,z,,) =(zj21,--+,2j2j_1, €2}, 2jZj4 1. -, Zj2Zn)

Notice that this expression is similar to the one obtained for the classical blowing-ups, but remark
the presence of the sign € and that neither the domain of definition of the map nor the image are
the same. Thus, we can omit showing the change of chart expression, because it is similar to the

change of chart in the classical blowing-up.

It is also possible to define blowing-ups with higher dimensional smooth centers. Let N C R"

be an analytic manifold of codimension m. We can take locally analytic coordinates (zy,...,z,) so
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

that N ={z,,_,,,1 =0,---,z, = 0}. Therefore, we only give the idea of the blowing-ups with centers
at (n —m)—planes, since deriving the coordinate expression is as in the blowing-up centered at a
single point. The blowing-up of R" centered at {z,,_,, =0,---,z, = 0} is the projection 7 : M — R"
where the blown-up manifold M is R"™" xR, xS™~1. The exceptional divisor is E = 7"!(N). The
expression of the blowing up 7t : R"™ x Ry x S"~! — R" in coordinates (v1,..., Yy, X1, , Xp)
with (xq,...,x,) € sm-1 s given by m(v1,.., Vw1 X1 Xm) = Vs s Vs X1, ., TXy,).  The
blown-up manifold can be provided with an atlas that contains 2m charts given at open sets
U].e withn—m+1<j<nande=+,-,in the positive and negative directions of x;, as before.

The last generalization we want to introduce, in order to be able to iterate the process of
blowing-up, are the blowing-ups on (Rs)* x R"*. We will only put the example of the blowing-
up of the origin, but it can also be generalized to any other smooth center. The blowing-up of
(Rs0)* xR with center at 0 is the projection 7w : M — (Rs)X xR" ¥ of the analytic manifold with
boundary and corners M = Rs x (S"7! N ((Rsg)* x R"F)) given by m(r,x1,...,%,) = (rxq,...,7x,).
Notice that it is simply the restriction of the blowing-up morphism of R"” with center at 0. In this
case, since there are not negative directions for k variables, we can cover the blowing-up manifold
with k + 2(n — k) charts.

1.2.3 Sequences of blowing-ups

The process of blowing-up can be iterated. We will inductively define sequences of blowing-ups
of length i € N. We start by blowing up R" with center at Nj, obtaining a blown-up manifold
M, with exceptional divisor E; = nII(NO) and blowing-up morphism 7ty : (My,E{) — (R", Np).
We say that 7ty is a sequence of blowing-ups of length 1. Then, we choose a new smooth center in
N; C E; and repeat the process of blowing-up, obtaining a new manifold M, and exceptional
divisor E, = ngl(Nl). That is, 70, : (My, E;) = (M;,N;). We define the exceptional divisor of the
sequence 111 o Tty as Ey = 7151(]51) = (111 0 705) " (Ng) = (E; \ N1) U E,.

Let ty0o---om_1 : (M;_1,E;_1) = (R",Ny) be a sequence of blowing-ups of length i —1. A
sequence 1ty o---o1t; : (M;, E;) = (R", Ny) of blowing-ups of length i is defined as the composition of
a sequence of blowing-ups 7t o---7;_1 : (M;_1,E;_1) — (R",Njy) of length i — 1 and a blowing-up
7 : (M;, E;) = (M;j_1,Ni_1) with smooth center N;_; inside the divisor E;_; of the sequence of
blowing-ups m; o---7;_;. The exceptional divisor of the sequence is E; = ni‘l(Ei_l) =(myo--o0
1) (No) = (Ei1 \Ni_1) UE;.

Notice that the blown-up manifolds M; at each step of a sequence of blowing-ups are ana-
lytic manifolds with boundary and corners. Its boundary E; is a subanalytic manifold of codi-
mension 1. The names of the usual charts after a single blowing-up are fixed and well defined:
Uy, Uy,..., Ut U;. We also know well how to cover M;,; with charts once we have fixed coor-

dinates on Nj, since we can take the previous charts and add the usual charts of the blowing-up
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7;,1. However, giving a good name to the usual charts from the second blowing-up can be more
tricky, because we need to fix coordinates centered at N; and this highly depends on N;. In gen-
eral, we will just assume that the atlas of M;, is given by {U;};c7, where 7 is a set of indices and
each of the charts U; are the ones obtained after blowing-up. When we need to give names to the
charts that cover M;, we will explain how we take them in the context. We show an example of a

sequence of blowing-ups and a systematic way to choose the names of the charts.

Example 1.7. Suppose that we start blowing up 0 € R?. The blown-up manifold M is covered
by 4 charts U;,U;,U;,U;. Then, n, : (M,,E;) — (My,p4) is the blowing-up centered at the
iterated tangent p;, of the positive x—axis, i.e. the intersection of the positive half branch of
the x—axis with the exceptional divisor. The blown-up manifold is then covered by the previous
charts 70,1 (Uy), 7051 (U5), 71,1 (U5 ), where 7t is an isomorphism, and we identify them simply with
U;,U;,U;. Itis also covered by the new charts U}}", U5, U5 . Then, we define 75 : (M3,E3) —
(M3, p>-). The blown-up manifold M3 is covered by the previous charts U, Uy, U{;", U, ,U{; and
new charts U,,,U,;,U,;". Finally, we perform a blowing-up 714 : (My, Ey) — (M3, pa_14) centered
at p,_1,. Proceeding as in the previous steps, we have the sequence of blowing-ups 7w = 1t; o 775 ©
nzomy : (My, E4) — (R?,0) and the covering of My is UL, Uy, U U, UL Usy, Usy, Uy Us

1.2.4 Other coordinates to express blowing-ups

In the previous section, we gave a general definition of blowing-ups. Now, we will show other

choices of coordinates in two particular examples, as we will find them useful in this text.

Polar coordinates for the blowing-up at the origin of R2. Let 7 : (M,E) — (R?,0) be blowing-
up centered at the origin of R2. As we have seen, the blown-up manifold M is identified with
Ry x S, where E = 71(0) = {0} x S'. Hence, we will take polar coordinates as usually (r,0) at
R?, except that we do not identify the points having r = 0. That is, r € Ry and 0 € S!. The
advantage of taking polar coordinates is that the blown-up manifold is covered by a single chart.
The disadvantage is that the blowing-ups are not given by polynomial functions, they require the

use of sines and cosines. The expression of 7 in this chart is 7t(r,0) = (rcos 0,rsin ).

Polar coordinates can also be used in higher dimensional ambient spaces. Consider a blowing-
up of R” with center at a (n—2)—plane. With polar coordinates it is possible to cover the blown-up
manifold by a single chart. A particularly useful example is the blowing-up centered at the z-axis
of R? with coordinates (x,7,z). The blown-up manifold is given by Ry x S' x R with coordinates
(p,0,2’) and the expression of the blowing-up is 7(p,0,z) = (pcos6,psin6,z’). The exceptional
divisor of this blowing-up is E = =1 ({x = 0,y = 0}) = {0} x S! x R.
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

Cylindrical coordinates at the blowing-up at the origin of R3. Now, we show a choice of co-
ordinates for the real blowing-up of R3 centered at the origin. This time we will not cover the
full blown-up manifold by a single chart, we will use three instead. Recall that M is identified
with Ry x S? and take coordinates (r, X}, x,, x3) with (x1,x,,x3) € S* and take coordinates (x,,z)
at 0 € R3.

The first chart of M is one of the usual ones: U, = M N {x3 > 0}, but tagged with a dif-
ferent subindex. It is identified by ¢, with the half-space R? x Ry, provided with coordi-
nates (x(‘x’),y(‘x’), z(®)). The homeomorphism ¢, is given by @ (r,x1,X;,X3) = (%,%,TX?,). We
denote 7|y = 1o @, which is given by 7'(|Um(x(°°),y(°°),z(°°)) = (2(®)x() z(®)y() 7)) " The
second chart U_,, = M N {x3 < 0} is defined in a similar manner. The third chart is given by
Up = M N ({x; # 0} U {x, = 0}). It is identified with Ry x S! x R with coordinates (p,0,z’). The

homeomorphism ¢y is given by @(r, x1, x5, x3) = (7, arctan(;ﬁ), % ). We denote 7|y, = mog,’,
L \/xlz+x§ 0

which is given by 7|y, (p,0,2") = (pcos0,psin 0, pz’). See Figure 1.3 for an illustration of the cov-

ering of M.
2(0)
Do 2(o°)
e Yy
z
T L/7—T\ i T foN A 0
y & ’

P—oo
Y

Ficure 1.3: Blowing-up 7 : (M, E) — (R3,0) and covering of M.

1.3 The total and strict transform of varieties and vector fields under
blowing-ups
1.3.1 The transform of an analytic variety under a blowing-up

Let X C R" be an analytic variety given by equations f; = 0,...,f; = 0 at 0. Suppose that 7 :
(M,E) — (R",N) is a blowing-up of R"” with center at N and that N C X is smooth. We define the

following.
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1.3. TOTAL TRANSFORMS

Definition 1.8. Let X C R" be an analytic variety given by equations fy =0,..., f; = 0 at 0. Consider
a blowing-up 7 : (M,E) — (R",N) of R" centered at a smooth subvariety N C X at 0.
* The total transform of X by 7t is X = 7t~ (X). Its defining ideal at each p € 7w=1(0) is generated
by fi = fiom,..., 1 f; = f, o at each p € ~1(0).

* The strict transform X’ of X by 7 is 77=\(X \ N). In a point p in 7w 1(0), the strict transform X’
is given by the ideal generated by én*fi fori=1,...,s, with hy---h, = 0 a reduced equation of E
atp,and g; = }111{"’1 ---hlr(i’r where k; ; = max{k € N: h;‘ divides 7" f} for j=1---r.

Note that X = EU X". If X has positive dimension and N # X, there is always some chart of
the blown-up manifold where the strict transform is non-empty. This follows since 7 outside the
exceptional divisor E is an isomorphism.

It is also possible to extend this definition to formal varieties, given by formal ideals at 0.

Definition 1.9. Let X C R" be a formal variety given by by equations f; =0,..., f, = 0 at 0. Consider
a blowing-up 7 : (M,E) — (R",N) of R" with center at N C X.
* The total transform of X by 7 is the collection of ideals generated by 7" f; = fiom,..., W' fs = fyom
at each p € ©=1(0).

* The strict transform X' of X by 1t is the collection of ideals generated by én*fi fori=1,...,s
at the points w=1(0), with hy---h, = 0 a reduced equation of E at p, and g; = hlf’” B where
ki j = max{k € N: 1 divides 1* f;} for j =1---r.

Now, we provide two related definitions dealing with the tangents of curves. The first one
concerns parameterized curves and the second one concerns analytic and formal curves (see Ap-
pendix A.2.1). We take from [51] the following definitions. Recall that the w-limit of a parame-
terized curve y : I C R — R" is defined by w(y) = ﬂtoelm.

Definition 1.10. Let y be a parameterized curve with w(y) = {0} and let 7t : (My,E;) — (R",0) be
the blowing-up centered at 0 and set py = 0. We say that y has a (first) tangent at 0 if there exists a
unique point py € Ey such that strict transform y{ =y’ of y by 1y fulfills w(y{) = {p1}. The point p;
is named the tangent of y. We define recursively the n—iterated tangents. We say that the curve y has
the property of iterated tangents if the process can be continued indefinitely and the family of points

IT(y) = {pi}ien obtained in the process is the sequence of iterated tangents.

The half-branches of analytic curves always have the property of iterated tangents in the above

sense. In this sense, we can generalize the above definition to formal curves.

Definition 1.11. Let I be an irreducible analytic or formal curve at 0 and recall that each irreducible
formal curve has two half-branches T+ and I'". Let 7 : (My,E;) — (R",0) be the blowing-up centered

at 0. We define the tangent of I' at 0 as the only point p; € Ey where the ideal (I}) = (I'®)’ # O,, is not
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CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

the total ideal. This process can be continued indefinitely and the sequence of iterated tangents of I'

is the family of points IT(I') = {p;};en obtained in the process.

The previous definition applies for each irreducible component of an analytic or formal curve
at 0. Suppose that I' =T} U--- UT, is an analytic or formal curve such that each I; is irreducible
and I; # [ for i # j. We will denote IT(I;) = IT*([;) UIT(I}) and IT(T') = U;_, IT(I})

1.3.2 The transform of a vector field by a blowing-up

Let & € Sﬁ\(R”,O) be a formal vector field and 7t : (M,E) — (R",N) be a blowing-up centered at an
analytic manifold N. The following result is well known, see for instance [17]. It proves that is is

possible to define a vector field at 7~!(0) C E compatible with &.

Proposition 1.12. Let p € 7 (0) be a point in E. If N is invariant for &, then there exists a formal
vector field §~p in p such that

Ep(fom) = (&(f)) om. (1.4)
for anyfe50

The vector field obtained in the previous proposition is called the local transform of & at p by

the blowing-up .

Definition 1.13. We define the total transform & = 10*& of & by 7 as the collection of local transforms
(SNP under 1, that is, & := {%}pen—l(o).

Remark 1.14. When the center of the blowing-up is not invariant for the vector field, it is still pos-
sible to obtain a vector field on the blowing-up manifold defined as in Proposition 1.12, however
this vector field lies in the meromorphic class. Even though this vector field is meromoprhic, it is

equivalent to a formal/analytic one up to multiplication by the equation of the divisor.

It often happens that the local transform at p € ©~!(0) can be divided by some equation of

E. We remark that given an analytic vector field #, the trajectories of # and f# are the same at

any point outside f = 0, however the parameterization is different. Let g, = g1,,---& be a local

reduced equation of the divisor E at p such that at M \ E the sign of each g; , is positive. We define
1

the real strict transform ES;', of & at p by 1 as Z{I; = ﬁ’ép, where k; is the maximum k such that

1,p &P
gff ) divides &,. As this definition depends on the choice of the equation g, of the divisor, we will

consider the real strict transform modulo its product with any positive unit.

Definition 1.15. We define the (real) strict transform £~’ of & by m as the collection of local (real)

strict transforms El’, under 1, that is, & := {E;;}pen—l(()).
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1.3. TOTAL TRANSFORMS

It is possible, and it will be more convenient, to work with vector fields on each of the usual
charts of the blowing-up, transversely formal to E N 7c~!(0), which coincide with §~p ateach p €
7-1(0) in the corresponding chart. We will show the expression of these vector fields showing
only a single blowing-up and a single chart, but it works in the same manner iterating the process
of blowing-up.

Take coordinates (xq,...,x,) at 0 such that the analytic manifold N is a codimension m plane

given by x,,_,,.1 =0,...,x, = 0. The vector field has expression

with a; € R[[xy,...,x,]]. Given the chart U].e of M, we define a formal vector field 7[};c(£) = gle
]
along the divisor EN Uj€ N7 1(0), as the only vector field such that

U9(f omlye) = £(f) o mlu.

For the sake of simplicity, we give the expression of 7*& only for the chart U, with coordinates

x" =(x{,...,x;,), but the expression is similar on any other chart.

n—-m n—1

1 ) P P
) (07 o) =@ o g )) 5 + o) g (1)

n

jemlus)3
]:1 j=n-m+1

)

where a; o mt|ye(x],..., xp) = @ (X}, X5 XX, -, X,x)_1,x;). The vector field £ can be

n—-m+1’*

rewritten as

with coefficients, reordering variables, ai.wr) € R[Xpmirtr s Xnot X1, » X Xu]]- We will prove
this last fact with more detail in Lemma 1.50.
Since ag-%)

dinates of U;" N w~1(0), the vector field &™) is well defined at each point of U;" N 7c~1(0). It can

are polynomial in the variables x,,_,,,1,...,%,_1, which can be considered as coor-

also be seen that the vector fields £U€) coincide at the intersection of two charts.

It is also possible that £U€) can be divided by some equation of the divisor. Consider U]?': and
let (g = (x]'-)kf = 0) be an equation of the divisor with k; maximum such that (x '-)kf divides £U€). We
define the strict transform of & at Ue to be the vector field (cf ) = 15 j€). Notice that we have
made a choice for the equation of E assoc1ated to the chart and that the coordinate function x; is

positive in U].e \E.

Remark 1.16. The germ of the strict transform (£U€))’ at a point p € E on the chart U]-e coincides
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with the germ of Zg';,, taking into account that the strict transform at p is determined up to a

multiplication by a positive unit.

The construction of the total and strict transform in the chart Uj€ can be generalized to other
usual charts after further blowing-ups. Given a sequence of blowing-ups 7 = 7y o... o 77, Te-
call that there is an atlas of usual charts {U;};c7. We can inductively define the total and strict
transform of £ inside each chart U; from the total transform of & at w,,,(Uj) € M,,,_1. We will give

details for the concrete blowing-ups that we will use in this work.

1.3.3 Normal crossing divisors

We introduced before the exceptional divisor of a blowing-up as the counter image of the center

of the blowing-up. We introduce now the concept of normal crossing divisor.

Definition 1.17 ([18]). A normal crossing divisor E is a finite union of hyperplanes that fulfill the
following property. At any point of p € E there exists analytic coordinates (xy,...,x,) such that the
equation of E at p is UL {x; = 0} for some m < n. We say that the set of coordinates (x,...,%,)
fulfilling this property is adapted to E. The components of E are called the irreducible components
of the divisor. We also define e,(E) € N as the number of irreducible components of E that contain p.

A formal normal crossing divisor I at p is an ideal in 5p given in formal coordinates (xy,...,x,) by
the ideal generated by [, x;. An irreducible component of E is the ideal given by a single x; with

i=1,...,m.

Notation 1.18. Given a formal normal crossing divisor I at p, we will often denote it by E, as it
were a geometric object. This abuse of notation relies on the fact that we will often consider that
E is the germ of an analytic normal crossing divisor in the sense of the first definition. In that

case I = I(E) and E = V(Ig)!. It will be clear in the context.

Consider a normal crossing divisor E at 0 € R?. We say that a formal curve T has normal

crossings with E at 0 if EUT is a formal normal crossing divisor at 0.

1.3.4 Saturated and non saturated vector fields

We start by defining the concept of a saturated vector field.

Definition 1.19. Let & € ¥(R",0) be a formal vector field. We say that & is saturated or reduced if
there is no other formal vector field 1 such that & = fn with f a non-unit element in O,. Otherwise,
we say that & is non-saturated. We say that 1 is a saturation of & if 1 is saturated and there is some
non-unit f such that & = fr. We denote S(&) = 1.

1For an analytic set in R”, we denote I(X) as the vanishing ideal of O, o of the subset X. For an ideal I in Oy, g, we
denote V(I) the zero locus of the ideal.
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Remark 1.20. The definition given for the saturation of a vector field is not uniquely determined.
With this, we mean that it highly depends on the non-unit f that divides £. Suppose that we
choose f so that & = f1 and 7 is saturated. We can take any unit u in Oy and define f = uf. Now,
the vector field 77 = u~17 is another saturation of &, since ffj=ufu=ln=fn=_¢.

Now, we introduce some local vector fields.

Definition 1.21. Let & GIX\(R”,O) be a formal vector field, S(&) a saturation of & with & = hS(&), and

E a normal crossing divisor. Let Ig be the formal ideal defining the divisor E. We define &’ := éé where

g €Ipisaproduct g = gfl ---gsks of the irreducible components g; of E with maximal multiplicity k; so
ki .

that g;* divides &.

Remark 1.22. Notice that S(&) is equal to S(&’) up to multiplication by a unit. As in Remark 1.20,
the definition of £” and S(£) is not canonically given. When adapted coordinates are given, that
is, a system of coordinates x = (xy,...,x,) in which the normal crossing divisor E is a union of

coordinate hyperplanes, say x; = 0,...,x; = 0, we will take g = xll<1 ---xfs.

Notice that the definition of &’ coincides with the definition of the strict transform of a vector
field at a point of E when the normal crossing divisor E has been obtained as an exceptional

divisor of a sequence of blowing-ups.

1.4 Reduction of singularities in dimension 2

In this section, we will work with vector fields in R2. We summarize the results concerning reduc-
tion of singularities in dimension 2 for reduced or saturated vector fields and non-saturated vec-
tor fields. We will basically present the results in the references [18, 27] without proof, adapted
to real formal vector fields.

Consider a vector field & € ’X\(RZ,O) and a sequence of blowing-ups 7 : (M, E) — (R?,0). Let
&= {E;;}peE and &' = {E;’j}peE be the total transform and strict transform defined in section 1.3.2.
We make the abuse of notation &,&” € X(M, E) to indicate that it makes sense to consider them on
all the points of the divisor. The objective of reduction of singularities is to obtain more simple
singularities and normal crossings of the vector field with the exceptional divisor. Then, studying
the total and strict transforms on (M, E) we are able to describe better the original vector field at
(R2,0).

We define first the dicritical and non-dicritical components of the divisor for the vector field

g.

Definition 1.23. Let & € ¥(R2,0) be a formal vector field, 7 : (M,E) — (R?,0) be a sequence of
blowing-ups and E = E{ U---U E the exceptional divisor where each E; is an irreducible component for
i=1,...,s. Wesay that E; is non-dicritical for & if E; is invariant for every Ep. Otherwise, we say that
E; is dicritical for &.
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We define the singular locus Sing(E,E) of & relatively to E as the set of points p € E such that
either p € Sing(gl’,) orp ¢ Sing(g;,) and the (formal) integral curve I' of 57’, at p does not have

normal crossings with E at p.
Notation 1.24. We can also denote Sing(c'§~, E) by Sing(&, E) or by Sing(g’,E).

Notice that the above set contains all the singularities of &’ in the divisor E, as well as all the
points in which the formal integral curve of 57’, is tangent to E but different from E. One of the
objectives of the reduction of singularities of a formal vector field is to remove points of Sing(&, E)

that are not the admissible final situations: adapted simple singularities.

Definition 1.25. Let & € ¥(R2,0) be a formal vector field and E a normal crossing divisor at 0. We say
that 0 € E is an adapted simple singularity of £ relatively to E if

Type I - The origin 0 is a simple singularity of E= S(&) and the irreducible components of E that con-
tain 0 are invariant for &. In particular, the irreducible components of E at 0 are separatrices
of €.

Typk 11 - The origin 0 belongs to a curve of singularities I that has normal crossings with E and one of

the following holds.

a) The origin 0 is a simple singularity of S(&) and the curves I and E are invariant for

S(&).

b) The origin 0 is a regular point of S(&) and the divisor E is invariant for S(&).

: 3 3 3 3
[ | =
1 ! Formal invariant curve
| Curve of singularities
| s© | s© s S | @ Smsuarit
| | |
| | |
————t———— | e —
Simple singularity of type I Simple singularity of type Il a)  Simple singularity of type II b)
of ¢ adapted to E of £ adapted to E of ¢ adapted to E

Ficure 1.4: Adapted simple singularities.

We show possible types of adapted simple singularities of & relatively to a normal crossing
divisor E in Figure 1.4. In the case of adapted simple singularities relatively to E of type I, the
origin is a corner when ¢y(E) = 2 or non-corner when ey(E) = 1. In the case of simple singularities
relatively to E of type II it is only possible that ¢y(E) = 1. The second type of adapted simple

singularities only appear when we work with non-saturated vector fields.
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Notation 1.26. When it is clear from the context which is the normal crossing divisor E, we will
simply use the name adapted simple singularity. For example, in the process of reduction of sin-

gularities, the normal crossing divisor E will be assumed to be the exceptional divisor.

Definition 1.27. Consider a formal vector field & E/X\(Rz, 0), E a normal crossing divisor at 0 and S(&)
the saturation of £&. Suppose that 0 is an adapted simple singularity of & relatively to E.
* When the origin 0 is a singularity of type II b), the curve of singularities T is transverse to E at 0

and T is called a bidicritical curve.

* When 0 is of type I or II a) and A, y are the eigenvalues of the linear part of S(&), we say that 0
is an adapted simple singularity of saddle type if A < 0, an adapted simple singularity of
node type if uA > 0 and an adapted simple singularity of saddle-node type if pA = 0. For
shortening the notation, we can simply name them: adapted simple saddle, adapted simple

node or adapted simple saddle-node.

In the case of the bidicritical curve, we find that the curve of singularities is transverse to
the saturation S(&). In the case of the node singularities, we have that the restriction of S(&)
to any formal (half) separatrix I' induces a one dimensional vector field that is either formally
attracting or repelling to 0. In the case of the saddle singularities, the restriction into two of
the half separatrices (associated to the same eigenvalue) is attracting and the other two repelling
(associated to the other eigenvalue). In the case of the saddle-node singularities, it is possible that
& resembles a node, a saddle, or a node in one half space and a saddle in the other. Consequently,
in the saddle-node singularity case, three of the separatrices are formally attracting and one is

formally repelling or viceversa.

Example 1.28. We show an example of each type of adapted simple singularity in Definition 1.27.
In all the examples, we suppose that E = {x = 0}.
* At the singularity at 0 of the vector field & = ya%, the curve {y = 0} is a bidicritical curve of

singularities. This curve is transverse to E and S(§) = a% is regular and transverse to it.

* The singularity at 0 of the vector field & = xa% + \/Ey% is an adapted simple node. The
restriction of £ = S(&) to {x =0,y > 0} C E is given by \/Eya%, which is a repelling vector

field. The same occurs in the rest of the separatrices.

* The singularity at 0 of the vector field & = —x% + \/Ey% is an adapted simple saddle. The
restriction of £ = S(&) to {x =0,y > 0} C E is given by \/Ey% (repelling), and the restriction
of £ to {y = 0,x > 0} is given by —xa% (attracting).

* The singularity at 0 of the vector field & = xZ% + \/Eya% is a saddle-node. The restriction of
& =S(&) to {x = 0} = E is given by \/Eya% (repelling), the restriction of £ to {y = 0,x > 0} is
given by xZ% (repelling) and the restriction of £ to {y = 0,x < 0} is given by xZ% (attracting).
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1.4.1 Stability of simple singularities adapted to a normal crossing divisor

Adapted simple singularities will be our final situations in after the reduction of singularities. It
is well known that the blowing-up centered at a classical simple singularity, namely an adapted
simple singularity of type I, provides simple singularities at each iterated tangent of the half
separatrices of the vector field of the original singularity. This result is very classical and requires
a simple computation. In this subsection, we prove the corresponding result for adapted simple

singularities.

Lemma 1.29. Let & € X(R2,0) be a formal vector field, E a normal crossing divisor and suppose that
0 is a simple singularity adapted to E. Let o : (M,E,F) — (R?,Ey,0) be a blowing-up centered at 0
where the exceptional divisor is F = 0~1(0), the divisor E{ is the strict transform of Eo, the divisor E =
o Y(Ey) = EjUF and &=0*(&) EY(M,F). Let & the strict transform & of &, then p € %(?,E) NF
is an adapted simple singularity of &

Proof. In this section, we suppose that Ej is a normal crossing divisor that has a single irreducible
component at 0 and 0 € Si"n_é(é,Eo). The case in which Ej has two irreducible components is left
aside, because it is similar. We will only make some comments at the end of the proof. We work
in formal coordinates in this proof.

* Suppose first that & = S(&) has a type I simple singularity adapted to the divisor Ej at 0. Take
coordinates (x,v) so that E is given by x = 0. Notice that Ey must coincide with one of the
separatrices of £ by definition of adapted simple singularity. Then, the other formal separatrix
I is transverse to E( and given by an equation y —h(x). Making a formal change of coordinates
X =x and 9 = vy — h(x), we have that the equation of the other separatrix is exactly 9 = 0, and,
up to renaming again the coordinates (x,y) = (x,?) the two separatrices are x =0 and y = 0 and

the vector field is written as

9 L2
E=x(A+ Z aix'y) = +y(p+ Z bijx }’])a—y-

i+7>0 i+j>0

Now, after a blowing-up o : (M, E) — (R?, E,) of 0, we can study the total and strict transforms
of this vector field. We find that F = =~!(0) is a new component of the divisor and E = Ej UF.

Using the usual charts, we find that & = ¢*& is written in the chart U as

9 A
g0 =x(A+ Zﬂijxlﬂy])g +y(p-A+ Z(sz —ﬂij)xlﬂzﬂ)a—y,
ij ]

where we have renamed the coordinates (x,y) = (x(“),y(“)) to simplify the notation. The strict

transform in this chart coincides with the total transform, since the equation of the divisor
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o w

|

 § - ———

|

E

1 I 0

I
| F

g g

| ] -

I M M I Formal invariant curve
I Curve of singularities
® Singularity

Ficure 1.5: Effect of the blowing-up of the origin on the separatrices and curves of singularities of &.

cannot be factorized. This vector field has an isolated simple singularity at the origin of this
chart. The two invariant curves at this simple singularity are F and the strict transform T’ of
I'. The rest of the points of F N U;" are regular.

At the chart U, the expression of Eis

EPY =x(A-p+ ) (@ —bij)x yf“ M+Zb x zﬂ“
ij

where we have renamed the coordinates (x,y) = (x(2+),y(2+)) to simplify the notation. The
origin is an adapted simple singularity of type I and the divisors E, and F are the separatrices
of & and have normal crossings at the origin of U;. The rest of the points of F N U are
regular. Finally, the study of the vector field & at the chart Uj is parallel to the one on U and
the study at U; is parallel to the one of UJ. To clarify more the effect of the blowing-up on

the half-separatrices, see the left diagram in Figure 1.5.

Suppose that 0 is a simple singularity of type II a). There is a smooth curve of singularities T’
transverse to the divisor, 0 is a simple singularity of S(&), the divisor Ej, given by x =0, is a
separatrix of S(&) and the curve I' is the other separatrix of S(£) at 0. Making formal changes

of coordinates as before, we have that

&=vF|x(A+ Zal]xy y(p+ Z bijx' y]

i+j>0 i+j>0

Now we make the blowing-up o centered at the origin . Using the usual charts, we find in the
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chart U; that

9 9
ST =y (U ) a2yt e A ) (b))
ij 1]

where we have renamed the coordinates (x,y) = (x(“),y(“)) to simplify the notation. The
exceptional divisor at this chart is F = {x = 0}. Dividing by x*, it can be noticed that the strict
transform (£(!*))" has an adapted simple singularity of type II a) at the origin of U;". The
exceptional divisor F is invariant for (E(H))’, and hence F is non-dicritical.

In the chart U;, we find that

£ =i -+ ;aﬁ - bi]->xfyf+i>a% +y " (et ;bﬁxizﬂ*i%,
where we have renamed the coordinates (x,y) = (x(2+>,y(2+)) to simplify the notation. The
equation of F is y = 0 and the equation of E; is x = 0, at this chart. Hence, the origin of U
is a corner point. Dividing &£>*) by y¥, we obtain the strict transform (£(2*))’ that has a type I
simple singularity adapted to E at the origin. Studying the remaining two charts, we conclude
that after this blowing-up there is a new non-dicritical component of the divisor, two type II
a) adapted simple singularities and two type I adapted simple singularities. To clarify more

the effect of the blowing-up on the curve of singularities, see the right diagram in Figure 1.5.

Suppose that 0 is a simple singularity of type II b). There is a smooth curve of singularities I
transverse to the divisor, 0 is regular for S(&) and the divisor Ej is invariant for £. In particular,
we can write £ = fS(&). Using Theorem A.14, there is a change of coordinates such that S() is
%. Since the divisor E is invariant for S(&) at 0 by definition, E is given by x = 0. The curve
of singularities is transverse to E, and hence, up to a formal change of coordinates, we can

suppose that the curve of singularities I' has equation y = 0 and that the vector field is written

Now we make the blowing-up ¢ centered at the origin. Using the usual charts, we find in the

chart U that

)
(14) _ ,k=1_k
'3 Xy —ay,

where we have renamed the coordinates (x,y) = (x!*),p(1*)) to simplify the notation. The

exceptional divisor at this chart is F = {x = 0}, which is invariant for (£(1+))" = yka%, and hence

F is non-dicritical. The origin of this chart is hence an adapted simple singularity of type II
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b).

In the chart U, we find that
N )

The strict transform (£(2)) = —x% + ya% has a simple singularity at the origin of this chart.
The origin is an adapted simple singularity of type I and the divisors Ej and F are the separa-
trices of & and have normal crossings at the origin of UJ. The situation in the charts Uy, U; is
parallel. Hence, Sing(&’, E) contains 4 points, and all of them are simple singularities adapted
to E, two of type I and two of type II b). To clarify more the effect of the blowing-up on the
curve of singularities, see the right diagram in Figure 1.5.

In case that E( has two irreducible components at 0, there is only one case to study, the singular-

ities of type I. We proceed in the same manner considering that the two irreducible components

of E are the two separatrices of & at 0. O

We finally point out that we have worked in R?, but this procedure applies to Rso x R and
(Rx0)?.

1.4.2 Reduction of singularities of saturated vector fields

In this section, we will only state the result of reduction of singularities for saturated vector fields.
Saturated vector fields have an isolated singularity. Reduction of singularities of holomorphic
saturated vector fields dates back to [70]. We adapt the statement of the Theorem as it appears

in [18] to the real formal case.

Theorem 1.30. Let & € X(R2,0) be a formal vector field with isolated singularity at 0 and Ey a normal
crossing divisor at 0. Then, there is a sequence of blowing-ups 7 : (M,E) — (R?,Eg) such that each
point p € Sing(&, E)n1c1(0) is a simple singularity of &’ adapted to E of type L. In particular two

different dicritical components of E do not intersect.

We highlight some references of the reduction of singularities in the real case and say some
words about the main differences with the complex case. F. Dumortier treats the real C* case
in [27] and J.-J. Risler the real analytic case in [67]. We remark that the proof in the real case
follows from the reduction of singularities in the complexification of the real plane, following the
singularities in the real trace. We remark also the following fact. Any complex simple singularity
in the real plane with complex ratio of eigenvalues is considered a final situation in C. A blowing-
up centered at such point provides two other complex simple singularities which do not belong
to the real trace. That is, it is possible that in the real case we need to do one extra blowing-up to

finish the process of reduction of singularities.
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We want to recall another important result due to C. Camacho and P. Sad [16] that concerns
existence of analytic separatrices for analytic vector fields. The idea of the proof consists in
using the above result of reduction of singularities for holomorphic vector fields, and showing
that there is necessarily a simple singularity at the exceptional divisor whose strong direction
is transverse to the divisor. Hence, there exists an analytic curve transverse to the exceptional

divisor on the blowing-up manifold which is projected to an analytic curve at 0 € C2.

Theorem 1.31 (Camacho-Sad). Let & € X(C?,0) be a holomorphic vector field with isolated singularity

at 0. Then, it has an analytic separatrix at 0.

Unfortunately, the above result is not always true in the real analytic case. The complexifi-
cation of a real analytic vector field will always have analytic separatrix, but it may not intersect
the real plane. There are authors that have studied the existence of real analytic separatrices. See
for instance [15, 67].

We end this section by showing some situations in the real case. In some cases, there are
not separatrices of any type at 0, in other occasions, these curves are only of class C* for some
k € NU{co}. Let & € X(R?0) be a real analytic vector field with isolated singularity and let
nn:(M,E)— (Rz, 0) be a reduction of singularities.

1. Suppose that E has a dicritical component. Then & necessarily has a family of invariant

curves transverse to E and, thus £ has a family of invariant curves with defined tangent.

2. Suppose that £ has at least one non-corner simple singularity p € Sing(Z,E) at E. When
a strong direction of &, is transverse to the divisor, there is an analytic invariant curve I
at p by Briot-Bouquet’s Theorem 1.6, which is projected to (R2,0). When there is only a
strong direction tangent to the divisor and a weak direction transverse to it, there is not an
analytic curve at this point, but there is a formal one I'. In addition, by the center manifold
theorem, this formal curve I has a C¥ realization T, i.e. a C¥ curve whose Taylor development

coincides with the one of I that is as well invariant for the vector field .

3. Suppose that all the singularities of & at E are saddles (or saddle-nodes that behave as
saddles in the sense showed after Definition 1.27) placed at corner points of E. Suppose
also that there are not dicritical components on E. Hence, every p € Sing(&, E) is a corner
saddle singularity of &). Then, there are not invariant curves transverse to the divisor,
because at the rest of the points g € Sing(&, E), the vector field &/ is regular and tangent to
E.

The vector fields & € X(R?,0) that have a reduction of singularities 7 : (M, E) — (R?,0) such that
every p € Sing(&’, E) is a corner saddle singularity of &, and such that E does not contain dicritical
components are named center-focus vector fields (situation 3 above). The definition extends to

formal vector fields since it depends only on the type of singularities after blowing-up. Being
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center-focus is equivalent to not having any C¥ or even formal invariant curve with a defined

tangent at 0.

1.4.3 Reduction of singularities of non-saturated vector fields

In this section, we make a reduction of singularities of vector fields that are non-saturated. This
reduction is, roughly speaking, a combination of a reduction of singularities of a saturated vector
field and a reduction of singularities of formal curves, with some extra normal crossings condi-
tions. Notice that the notion of simple singularity adapted to a divisor concerns not only simple
singularities in the classical sense, but also normal crossings of the strict transform of the curve
of singularities Sing(&) with the divisor. We start by recalling the classical result of reduction of

singularities of formal curves, adapted to the real case.

Theorem 1.32 ([22]). Let T be a formal curve at 0 € R?. Then there exists a sequence of blowing-ups
7 : (M, E) — (R%,0) centered at points such that the strict transform T’ is non-singular on M and has
normal crossings with E. Moreover, there is a minimal sequence with the previous property which is

composed only by blowing-ups centered at iterated tangents of the half-branches of T

Now we state the general theorem of reduction of singularities for non-saturated vector fields.
We show an extended version of the proof that we gave in [23], in order to understand better the
final situations after the reduction of singularities. We also remark that this result is a joint reduc-
tion of singularities of the saturation of a non-saturated vector field and its curve of singularities,

requiring additional normal crossings conditions.

Theorem 1.33. Let & € ¥(R2,0) be a formal vector field and Ey an analytic normal crossing divisor at

0 with 0 € S—i?ljg(E,Eo). Then there is a sequence of blowing-ups 1 : (M, E) — (R?, Eq) with F = 7t=(0)
and E = E) UF = " 1(Ey) fulfilling the following conditions:

a) For any point q € F, let &; be the strict transform of & by w at g, that is, &, = #éq where uv® =0

is a local reduced equation of E at p, with € = 0,1. Then q € Sing(&’, E) if and only if q € Sing(&;).

b) If q € F is a singular point of &, then q is an adapted simple singularity of &g relatively to E.

In particular, two dicritical components of E do not intersect.

In order to shorten the proof, we will prove first a local result that will be useful for the proof

of this theorem.

Lemma 1.34. Let & € ¥(R2,0) be a formal non-saturated vector field such that I = Sing(&) is the formal
curve of singularities. Consider a formal normal crossing divisor E at 0 such that 0 € Sing(&, Ey), and
one of the following situations holds:

(1) S(&)is regular at 0 and Ey = Eé is a single irreducible invariant curve for S(&).
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(i1) S(&) is regular, Ey has two irreducible components E(l) and ES such that E(l) is invariant for S(&)
and Eé ¢T.

(iii) The origin is an adapted simple singularity of S(&) relatively to Ey and E is composed by the two
formal separatrices E} and E3 of S(&) at 0.
Consider 1 : (M,F) — (R?,0) the minimal reduction of singularities of the formal curve T U Ey with
F=m"1(0)and E = (Ey) = E, UF. For every t € F we have one of the following situations:
a) If t e IT(T), then t € Sing(ENt’) and either S(EZ’) is regular, or 5(5;) has a simple singularity at t

such that F; and T are the two separatrices.

b) If (i) or (iii) hold and t is a corner point of E, it is an adapted simple singularity of type I of &’
relatively to E. If (ii) holds and t is a corner between (E3) and F, the vector field S(&;) is regular.
If t is any other corner point of E, it is an adapted simple singularity of type I of & relatively to
E.

¢) The point t is a regular point for &'.

Proof. Since Ej is a normal crossing divisor, the blowing-ups in the sequence 7 are centered at
the iterated tangents of I', and I' = Sing(&), all the blowing-ups are admissible for the vector field
&. It is enough to study the final situations after this sequence for the situations (i), (ii) and (iii)
and verify the statements in the thesis of the Lemma.

We start studying the iterated tangents of I, recalling that I is a smooth curve at any of these

points. Consider p € IT(I'). There are two possibilities:

* The point p ¢ E. In the three cases, we have that S(:Svp) is regular and F is the only invariant

curve at p.
* The point p € Ey, that is, necessarily (Eg), = I.

— In the cases (i) and (ii), we have (Ey), = (Eé);, =I,. Since S(¢) is regular and Eé is
invariant for it, we have that the saturation S (:SVI’,) of the transform E;, has a simple

singularity whose separatrices coincide with (EO);, and F,.

— In the case (iii), from Lemma 1.29, we have that p is a simple singularity of (&) and

F, and (Eg), = I are the two separatrices.

In both cases, we get a).
Now we study the corner points (Ej N F) which are either regular or adapted simple singular-

ities of & of type I relatively to E. Consider a point p € (EgNF)\T".

* Suppose (E), is invariant for S(;EVI’]). Notice that (EO)‘;7 = (Eé),’] is the strict transform of Eé

in the cases (i) and (ii), and either (Eg), = (E§ ), or (Eq), = (ES)I’D in the case (iii). In the three
cases, p is an adapted simple singularity of ;E;’, = S(Z{;}).
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* Suppose that (E), is not invariant for S(gl’)). Notice that this situation occurs when (EO)I’, =
(Eg)l’o in the case (ii). As the original vector field S(&) is regular, the point p is a regular point

of Zf,; = S(E;’,) and F is an invariant curve of EEVI;.
As before, in both cases we get b). The rest of the points are regular and we finish the proof. [

Proof of Theorem 1.33 . If the vector field & is saturated, the result follows from Theorem 1.30.
Then, we suppose that & is non-saturated. We denote by I' = Sing(&) the singular locus of &
which is a finite union of m real formal irreducible curves T1),..., T(") We will denote the two
half-branches of each T/) as T/:¢) for € = +,—. The vector field can be rewritten as & = fn, where

n = S(&) is the saturation of £ and f = 0 is an equation of I'.

1. The vector field 7 is a saturated one, and it admits a reduction of singularities 7y : (M1, Eq, F;) —
(R?,E,,0) as in Theorem 1.30, where E; = 7' (E,) and F; = 7 1(0). In order to avoid confusion
when we make more blowing-ups, we change slightly the notations in section 1.3.2. We will
denote the total transforms 7; and &; and the strict transforms #; and &{, corresponding to the
transforms of 17 and &, respectively. Another simplification of the notation is the following: at
each point p € F;, we will denote 17}’, and 51’7 instead of q{,p and E1ps respectively, when it is

clear that p € F;.

After the reduction of singularities 7y, the vector field 7, only has an adapted simple singu-
larity of type I or it is regular at p € F;. Furthermore, the dicritical components of E; for 7]
are isolated from others. Thus, at the points p € E; where &, is equivalent to 77, up to the mul-
tiplication by a unit, we directly have that &) is regular or has an adapted simple singularity

of type L.

Let I} and I} denote the strict and total transforms of the curve I’ (again, changing the notations
with respect to section 1.3.1). We also simplify the notation I}; for I‘l”p when it is clear that
p € Ey. The strict transform I} of I' by 71y is non-trivial only in a finite number of points
P1,..-,Ps, the iterated tangents of I at E;. Notice that we can write 51’,1, = fpi”;’;' fori=1,...,s
since the germ f, of I}, is not a unit in O, at these points. In particular, the strict transform
&p, has a singularity at each p;, that is, p; € Sing(¢},) and then p; € Sing(&y, Ey).

In this step we conclude the result for all points of E; except py,---,ps. We have that g
Sing(&,, E,) if and only if g is an adapted simple singularity of type I in Definition 1.25 for any
g € E\{p1,...,ps}. Then, a) follows at the points in E \ {py,...,ps} and b) follows at Sing(&;) \
{p1,...,psh

2. Now, we study the points py,...,ps. Take some p € {py,...,p,} and consider the strict transform
[, of I'. Recall also from the previous point that p is a simple singularity of S(&,) = 1, adapted

to Eq or it is a regular point for this vector field. We consider three cases:
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The point p € E; is in a non-dicritical component D! C E; and p is a regular point for

S(&p) = 1p- We consider the normal crossing divisor D = D! at p.

The point p € E; is in a dicritical component D? C E;. We consider the invariant curve D'
for §(&,) =11, and define the normal crossing divisor D = D' UD? at p. Notice that we do
not exclude the case that D! C E;.

The point p € E; is an adapted simple singularity of S(¢,) = 7, relatively to E;. The
component D! C E; is a non-dicritical component of the divisor. We define D? as the
separatrix of S(&,) = 17, transverse to D'. When p is a corner, notice that D?> C E; is
another non-dicritical component of E;. We consider the normal crossing divisor D =
D'uD? at p.

three previous cases are in the hypothesis of Lemma 1.34 with respect to the normal

crossing divisor D. We apply this Lemma to every p € {py,...,p;}, obtaining a new sequence of

blowing-ups 7, : (M», E;) — (M, E;) where E, = 7! (E;). See Figure 1.6 for an illustration of

intermediate blowing-ups in the construction of ;.

X AT -
Y

i

Formal invariant curve

| =
I
:

| Curve of singularities

& Singularity

Ficure 1.6: Illustration of intermediate steps in the sequence 7, : (M, Ey) — (M1, Eq).

The final situations of each of the points are the ones given in the thesis of the Lemma. We

end by analyzing the final situations a), b) and c) with respect to the normal crossing divisor

E;. Let t be any point obtained above some p € {py,...,ps}.

Suppose t is in situation a), that is, it is an iterated tangent of I'. If the point ¢ is regular
for the saturation S(&/) of the strict transform &/ by 7,, we have that &/ has an adapted
simple singularity of type II b) at ¢ relatively to the divisor E,. If the point ¢ is a simple
singularity of S(&;), we have that I} is necessarily one of the separatrices and t is an

adapted simple singularity of &, of type II a) relatively to E,.
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* Suppose that t is in situation b), that is, it is a corner point of the extended divisor E,UD’,
where D’ is the strict transform of the normal crossing divisor D defined at p. If one of the
components D! or D? is not contained in E;, then E, U D’ strictly contains E,. Recall also
that as these points are not iterated tangents of T, the strict transform &; is saturated, that
is, & = S(&/). Suppose first that (E;); = (E;); U(D’);, we have that ¢ is an adapted simple
singularity of &/ of type I, placed at a corner of E;. Suppose now that (E,); C (E;); U(D’);,
we also have that  is an adapted simple singularity of & of type I, but in this case ¢ is a

non-corner point of E; and D’ is the separatrix of &; transverse to E,.

* The rest of the points t are regular for &;.

After the two steps, we conclude a) in the Theorem and that all the singularities are indeed

adapted simple singularities (b) of the Theorem), as we wanted to prove. O]

1.4.4 Adapted coordinates after reduction of singularities

Let é“e E(M,E) be the total transform of the formal vector field . After a reduction of singular-
ities of &, all the points of the divisor are associated either to regular points of & or to adapted
simple singularities of &’. In this section, possibly performing more blowing-ups, we provide
expressions of &. The content of this section will be specially useful in Chapter 2. We follow [29]
where the authors provide expressions of formal vector field after blowing-ups of a saturated
vector field and we add the expressions in the presence of curves of singularities.

Before introducing these expressions, we remind the reader that after a reduction of singular-
ities, at any adapted simple singularity there are exactly two formal transverse invariant curves,
among which we necessarily find the components of the divisor. Suppose that p is an adapted
simple singularity with e(p) = 1, that (x,y) are coordinates such that y = 0 is an equation of the
divisor E and that the other formal invariant curve has equation x = h(y). We can make a formal
change of coordinates so that it becomes a coordinate hyperplane. However, in this section we
will not be interested in making formal changes of coordinates, even if we work with formal vec-
tor fields, because when they are related to analytic objects, we want to preserve their analytic
features. We use the adapted coordinates that are constructed working in the natural charts of

the blowing-ups we explained in section 1.2.

* Non-dicritical regular point. At a non-dicritical regular point p € E; C E, we can choose
adapted coordinates (x,y) so that E = {y = 0}. Recalling that E; is a non-dicritical component,
E; is invariant for the strict transform & ie. g’((y)) C (). Recall also that p is not singular for

&’, then we can write

= d d
&=y" a(x,y)a—wa(x,y)@ , (1.6)
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with n > 1, a,b € R[x][[y]] and a(x,p) = Z]ﬁo aj(x)yj having ay(0) # 0, since the point p is not a

singularity for &’.

Dicritical regular point. At a dicritical regular point p € E; C E, we can again choose adapted
coordinates (x,y) so that E = {y = 0}. Recalling that E; is a dicritical component, E; is not
invariant for the strict transform &’. Recalling also that p is not a singular point for &, we can

write

— 0 0
& :y”(a(x,y)$+b(x,y)a—y), (1.7)

with n>1, a,b € R[x][[y]] and b(x,p) = Z;(:)o b]-(x)yj having by(0) = 0, since &’ is transverse to E;

at p.

Corner point between a dicritical curve and non-dicritical component of the divisor. This
situation applies to two cases: a normal crossing between a curve of singularities and the divisor
(a singularity of type II-b) in Definition 1.25), when the first is of bidicritical type, and the

normal crossing of a dicritical and a non-dicritical component of the divisor.

First, let p € E be the intersection point of E; and E;, a dicritical and a non-dicritical compo-
nents of E at p. Take adapted coordinates (x,v) at p so that E; = {x = 0} and E, = {y = 0}. Recall
that p is a regular point for the strict transform, then, we can write

d d
E=x"y" g(x,y)a-kyb(x,y)a—y , (1.8)

with n,m > 1, a,b € R[x][[y]|"R[y][[x]] and writing a(x,y) = 72, aj(x)yj as a series in R[x][[y]],
we have a¢(0) = 0.

Now, suppose that p is the intersection point of E; a non-dicritical component of the divisor
and a formal invariant curve of bidicritical type. Then, we can take adapted coordinates (x, ) so
that E; = {y = 0} and the formal curve of singularities is given by an ideal generated by x —h(y).
In the analytic case, we can take the change of coordinates defined in the introduction of this
section so that the vector field in adapted coordinates is reduced to equation (1.8). Otherwise,

the vector field can be written

J P
E=(x- h(y))”y’”(a(x,wg +yb(x,y)8—y), (1.9)

with n,m > 1, a,b € R[x][[y]] and writing a(x,y) = Z]?io aj(x)yj as a series in R[x][[y]], we have
ao(O) = 0.

Adapted simple singularity of type I a). An adapted simple singularity p € E of type I is a

point that lies in a non-dicritical component E; C E of the divisor. We distinguish two cases
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based on whether p lies in the intersection of two components E; and E; of the divisor (e, = 2)
or not (e, = 1). We have that &’ at p has only two formal invariant curves. Since the divisor
is invariant in both cases, we obtain that the two components of the divisor are the formal
invariant curves in the first case, and that the only component of the divisor at p is one of the
formal invariant curves. Then, in the first case, we can take adapted coordinates (x,y) at p so
that E; = {y = 0} and E, = {x = 0}. Suppose that the eigenvalues of & at p are A, y, then, we can

write 5 5
E=x"y xa(x,y)gwb(x,y)@ ,

withn,m > 1, a,b € R[x][[y]]NR[y][[x]] and writing a(x,y) = 7, aj(x)yj and b(x,y) =232 bj(x)yj
as a series in R[x][[y]], we have a3(0) = A and by(0) = p. Furthermore, suppose that A = 0.
Then, performing a finite number of blowing-ups following the direction of x, we can ensure

that there exists some r € N such that we can write

n_.m r a a
E=x"p"|x a(x,y)a +yb(x,y)a—y , (1.10)

with 4(0,0) = 0. This number is r = v(S(g)phy:O}). The intermediate points generated on this
blowing-ups are regular ones and corner saddle points such that DS(&),(q) has eigenvalues
u,—p = 0 (observe the proof of Lemma 1.29). We enlarge the sequence of blowing-ups so that
this situation is got.

In the non-corner case, we can take adapted coordinates (x, ) at p so that E; = {y = 0}. Suppose

that the eigenvalues of :Sv’ at p are A, p, then, we can write
—_ 0 0
_ m
E=v (a(x,y)—awa(x,y)—ay), (1.11)

with m > 1, a,b € R[x][[y]] and writing a(x,y) = Z]?“’:O a]'(x)yj and b(x,y) = Z;io b]'(x)yj as a
series in R[x][[y]], we have ap(x) = Ax+--- and by(0) = pu. Notice that in this case, a(x,p) is
not necessarily divided by x. We remark again that there is a formal invariant curve I' with
equation x — h(y) = 0 that is transverse to the divisor. The restriction &’|r is a one dimensional
vector field different from the 0 vector field, in particular, it has a non-vanishing r—jet. Suppose
that y = 0. Proceeding similarly to the previous item, we can ensure that performing r blowing-

ups following the iterated tangents of I', we can write

— 0 0
¢=y"(alxy)5- +y’b(x,y)$)- (1.12)

* Normal crossing of a smooth curve of singularities and the divisor at a simple singularity of
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&. Notice that this point is an adapted simple singularity of type Il —a: p is a simple singularity
for &', the smooth curve of singularities I’ coincides with one of the two formal invariant curves
of & at p, and the component of the divisor E; at p is the other formal invariant curve. Then,
choosing adapted coordinates (x,y) at p so that E; = {y = 0}, the curve I' has equations x — h(p)

with v(h) > 1. We can write,

= (s H)" " 915+ pbLx )50 (113
with n,m > 1, a,b € R[x][[y]] and writing a(x,y) = Z]f”:(, aj(x)yj and b(x,y) = Z}";O j(x)yj as a
series in R[x][[y]], we have ap(x) = Ax+--- and by(0) = p. As in the previous case, recall that
there is a formal invariant curve I transverse to E. We have that the vector fields S(&)|r and
S(&)|g are non-zero and each of them has a non-vanishing k—jet. Supposing that y = 0 and that
r is the order of S(&)|r, we can proceed as before, and perform r extra blowing-ups, so that we
can write

_ 0 d
E=(x- h(y))”y’”(a(x,y)a +y’b(x,y)@), (1.14)

for some r > 1.

1.4.5 The graph associated to the reduction of singularities in dimension 2

In this section, we present a combinatorial object constructed from the reduction of singularities
of a formal vector field. It will be useful especially in Chapter 2. Vector fields in this section will
be assumed to be different from 0. Let & € ’X\(Rz,O) be a formal (non-saturated) vector field and

7: (M,E) — (R?,0) an oriented reduction of singularities.

Remark 1.35. Notice that 7 is by hypothesis an oriented reduction of singularities, then the divisor
is homeomorphic to S' and the number of components is finite. The number of adapted simple
singularities is as well finite. At the non-corner adapted simple singularities there is a unique
formal invariant curve. Finally, notice that the dicritical components of E are isolated as dicritical

components, that is, two of them do not intersect.

There is a simple graph G = G(&, ) associated to & and 7 that fulfills some properties. First,
let us present the set of vertices V = V(G) and edges £ = £(G) of the graph. We divide the vertices
in two groups: V = Vy;, UV, 450

1. Every adapted simple singularity of & and every corner provide a vertex to the set of ver-

tices V;;, of the graph, that is, for a point p (adapted simple singularity or, non-exclusively,

corner point), there is v, € Vyj,.

2. For each formal invariant curve T of & transverse to the divisor at some adapted simple
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singularity, we add a vertex vr to V,4;,, in such a way that vr # vp if I' 2 I'” and such that
the set of vertices vr is disjoint to the set of vertices defined in point 1 above.
The edges € = 45, U E,,45, are given by:
3. Let p, be the point from which v € V;;,, has been obtained. Each connected component y of

E\Uyey,, {pv} provides a different edge e, that belongs to the set of edges &y,

4. For each formal invariant curve I' of &’ transverse to the divisor, there is also an edge er in
6ndiv-

5. Adjacency is defined as follows. If e € £;;,, then e joins the two vertices v,v’ € V;;, that
satisfy Y, \ ye = {py, p»}, where y, is the connected component of E\ ¢, {p,} associated
to e and p,,p, are the points associated to v,v’, respectively. We denote e = {v,v’}. On the
other hand, if ' is a formal curve at a non corner adapted simple singularity p, the edge er

associated to I' joins v, € V;;, and vr € V,9;,. We denote er = {v), vr}.

See Figure 1.7 for an example of the construction of the graph. In the figure and to shorten the
notation, we denote D component for a dicritical component of the divisor and N-D component

for a non-dicritical one. The edges in £;;, and vertices V;;, form a subgraph Gy;,. In particular,

o
o
X X i Formal invariant curve
® Corner singularity of type I. HE ) .
® Non-corner singularity of type 1. i Bidicritical curve of singularities o, Vertices in U .
Singularity of type II-a). Curve of singularities oo Vertices in Viiy ” Edges in gy
® Singularity of type II-b). | Non-dicritical component Vertices in V
o Corner between D and N-D components £ Dicritical component % ertices In Vndiv ” Edges in Engiv

Ficure 1.7: Manifold (M, E) and adapted simple singularities of 7t*(&) (left). Graph G(&, i) (right).

without considering orientation, the graph Gy;, is a cycle (see remark 1.35). Now, we provide a

partial orientation on the graph.

* Suppose e = {v,v} € £;;,. If e represents a connected component of E \ V contained in a
dicritial component of E, then e is not oriented. Otherwise, we endow e with the orientation

from v to v’ or viceversa, depending on the orientation of restriction £’ between p, and p, .
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* Suppose e = {v,v’} € £,4;, is associated to I' where v € Vy;, and v" € V, 4;,,. There is a well
defined orientation if I' is not a curve of singularities, given by the restriction of £ to I'.
Otherwise, if I' C Sing(&), we have two possibilities. If S() is regular at p, with v € V;,,
there is not orientation on e. Recall that in this case I' is a bidicritical curve and it behaves
as a dicritical component. If S(&) has a simple singularity at v, we will provide later other

type of orientation.

Definition 1.36. The partially oriented graph G = G(&, 1) = (V,E) constructed above is the graph of

& associated to the reduction of singularities 7.

We will define finer combinatorial objects associated to & and to the graph G(&, ). They are the
quadrants of the graph. The graph together with the collection of quadrants will provide the

combinatorial information we will need in further sections.

Definition 1.37. Let G = G(&,m) be the graph of & associated to m. A quadrant of G is a triplet
Q = (v,e,e’) such that

* ¢, ¢’ are adjacent to v.

* If v is a vertex of degree 3 whose adjacent edges are ey, e, € 4, and e3 € E,4;,, then, the triplet
(v,e1,ey) is not a quadrant.

We denote Q the collection of quadrants of G.

It will be convenient to work with quadrants because orientation of the non-divisor edges is
well defined on them. We explain the orientation of the quadrants now. Let Q = (v,e,¢’) be a
quadrant. We define an orientation of e and e’ inside the quadrant as follows.

e If e or ¢’ are oriented in G, we take the same orientation inside Q.

* If e is not oriented in G and it does not correspond to a bidicritical curve or to a dicritical

component of the divisor, we keep e without orientation.

* Suppose e = er € £,4;, is not oriented in G and it corresponds to a non-bidicritical curve
I'c Sing(g). Notice that ¢’ must be oriented since it must correspond to a non-dicritical
component y of E. We define an orientation in the quadrant as follows. Since E and I have
normal crossings, take formal coordinates (x;,x,) such that Q corresponds to (Rs()?, the
curve y C E (associated to e’) corresponds to x; =0, x, > 0and I' = {x, =0, x; > 0}. Then,
take a saturation y = xl_sx;gpv of &, . The orientation of e inside the quadrant is given by
the orientation of #|p (attracting or repelling to v).

We present some few remarks on the orientation of the quadrants. First, the orientation of the
edges in £;;, is determined by the orientation of the graph G. Secondly, notice that at least one

of the edges is always oriented, since on the one hand two dicritical components do not intersect
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(see Remark 1.35) and on the other hand there are not singular points in a dicritical component.
Finally, we want to remark that the same edge e can belong to two different quadrants Q,Q’.
When it is a divisor edge, the orientation is the same in both of them. When e is not a divisor
edge, this property does not longer hold. If e = e with I a curve of singularities transverse to the
divisor, the equation of I' can have different sign at each side of I', and this implies that it may not
be possible to endow e with a meaningful orientation in G.

We can already define the types of quadrants appearing in the graph, concerning their orien-

tations.

Definition 1.38. Let Q = (v,¢,¢’) be an oriented quadrant of G.
* We say that Q is a dicritical quadrant if one edge is oriented inside Q and the other is not.
Furthermore, we say that Q is an attracting dicritical quadrant if the oriented edge is oriented

towards v and a repelling dicritical quadrant otherwise.

* We say that Q is a node quadrant if both edges are oriented inside Q, either towards v or out-
wards v. In the first case, we say that it is an attracting node quadrant and in the second that it

is a repelling node quadrant.

* We say that Q is a saddle quadrant if both edges are oriented inside Q, one towards v and the

other one outwards v.

We show an example of the orientation of the graph and its quadrants in Figure 1.8.

o

H

o

o

FiGure 1.8: Orientation of the graph G(&, 1) given by the strict transform &’ (left). Some example of quad-
rants of the graph where S denotes a saddle quadrant, N a node quadrant and D a dicritical
quadrant (right).

We end the section by defining paths of quadrants.

Definition 1.39. We say that a chain (Qy,...,Qs) with s > 2 is a path of quadrants if, for every

1 <i<s-1, putting Q; = (vi,e;,¢;), and Qi1 = (viy1, €41, €)1 ), we have {e;, e;}N{ej 1, ef, } = {e} C Eyiy
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and e is oriented from v; to v;,1. A path of quadrants (Qy,...,Qs) is maximal if there is not other path

of quadrants (Qj,,...,Q; ) that contains (Q1,..., Qs) as a subchain.

Let (Qq,...,Qs) be a path of quadrants, then the quadrants Q,,...,Q,_; are necessarily saddle
quadrants. Notice that a path of quadrants defines a path of edges of the subgraph G,;, between
the vertex v; and vg of length s — 1 in the classical sense. When Q; or Q; are saddle quadrants

(v,e,e’) with e, e’ € £;;,, the path of quadrants can be extended.

1.5 Tangent to the identity diffeomorphisms

In this section, we will present the relation concerning tangent to the identity analytic diffeo-
morphisms and formal vector fields. Reduction of singularities of an associated vector field will
help to study the dynamics of the former diffeomorphisms. We will also show how to lift tangent
to the identity diffeomorphisms by the blowing-ups in the process of reduction of singularities.

This section is based on [12], and it will be used in Chapter 2.

1.5.1 Infinitesimal generator of tangent to the identity diffeomorphisms

Let Diff; (R",0) denote the group of germs of analytic diffeomorphisms tangent to the identity.
Recall that tangent to the identity diffeomorphisms fulfill that DF(0) = Id. Recall also that the
order ord(F) of a diffeomorphism F is the minimum k such that ji(F —Id) = 0. In this section, we
associate a vector field to each element of Diff; (R",0). We denote by /X\Q(Rn, 0) C/X\(]R”, 0) the sub-
module of formal vector fields at 0 € R” of order greater or equal to 2 and ﬁfl (R",0) the germs
of formal diffeomorphisms tangent to the identity. We establish a bijection between X, (R",0)
and Diff; (R",0) via the exponential map. We recall that the exponential operator exp(t¢) :
R[[x1,...,x,]] = R[[x1,...,x,,t]] of £ is defined by

(o)

exp(tE)(f)=)

i=1

ti
it

ED(f). (1.15)

where £O(f) = f and £¥)(f) = £(EF-V(f)) for i > 1. Notice that as v(&) > 2, then v(E(f)) = v(&E) +
v(f)=1>1+v(f), and hence v(ED(f)) > i + v(f). This implies that Im(exp t&) C R[¢][[x1,- -+, xu]],
and substitution of any t € R is well-defined. Hence, we will define the exponential map between

formal vector fields of order 2 and tangent to the identity diffeomorphisms.

Definition 1.40. The Exponential map Exp . %,(R™,0) — 559‘1 (R™,0) is defined, by

EXP(E) : (xlr' o ’xn) = (exp(é)(xl ),...,exp(é)(xn)).

This map is bijective. The fact that Exp(&) is indeed tangent to the identity is deduced form the
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fact that v(é(i)(xj)) > i+1 forevery 1 <j<mandi> 0. Now, we prove that this map admits a global
inverse, which implies that it is bijective. Let F € Diff, (R", 0) be a tangent to the identity diffeo-
morphism given by F = (Fy,...,F,) and F;(xq,...,x,) = x; + Z;’izfi,j(xl,...,xn) fori=1,...,n where
fij(x1,...,x,) is an homogeneous polynomial of degree j. We write x; o F = x; + Z]?’izﬂ,j(xl,...,xn).

We will see that there is a formal vector field & = Z;iz iz, n@ij(X1,.0 xn)%, where a; j(x1,...,x,)

.....

is an homogeneous polynomial of degree j, such that F = Exp(&). It suffices to solve the triangular

]Z]H ]

=2

system given by

_al]+H

where H;(g) denotes the homogeneous term of order j of ¢ and ji(&) is the k—jet of &, as it can be
seen in [12]. We denote by Log : ﬁfl (R",0) — ’}?Q(R”, 0) to the inverse of Exp.

Definition 1.41 (Infinitesimal generator). Given a formal diffeomorphism F € 51'}‘1 (R",0), we say

that & = Log(F) is the infinitesimal generator of F.

Notice that this bijection exists on the formal level due to formal convergence of Exp and
Log. It is possible that the infinitesimal generator of an analytic diffeomorphism is only a formal
vector field (there are results that prove that they belong to some Gevrey class that depends on
the order of the diffeomorphism, see [13]). The other direction behaves better, in the sense that
the exponential map of an analytic vector field is its time one flow, and hence, it is a germ of

analytic diffeomorphism.

1.5.2 Reduction of singularities applied to tangent to the identity two-dimensional
diffeomorphisms

In this section, we will restrict ourselves to the two-dimensional case, that is, F € Diff; (]Rz,O)

because we want to apply the reduction of singularities result. Let Fix(F) be defined by the ideal

generated by x o F —x and y o F —p and let Sing(&) be the ideal generated by &(x) and &(y). The

following result is also very classical, we found it in [12].

Proposition 1.42. Given a formal diffeomorphism F and its infinitesimal generator &, we have Fix(F) =
Sing(£).

As a consequence of the previous result, we have the following one, which means that even if

the infinitesimal generator is only formal, at least its set of singularities is analytic.

Corollary 1.43. Let F be an analytic diffeomorphism tangent to the identity and & its infinitesimal
generator. Then Fix(F) is analytic and so is Sing(<&).

51



CHAPTER 1. BLOWING-UPS AND REDUCTION OF SINGULARITIES

Before in this chapter, we proved in Theorem 1.33 that formal non-saturated vector fields
admit reduction of singularities. Applying that result, we obtain a sequence of blowing-ups
7T =11 0 -+ 0 T(g such that each blowing-up 7; : (M}, E;) — (M;_1,E;_1) is centered at a single point
in the divisor E;_; of the chain 7 o---o7;_; of length i — 1, and such that there is a finite number
of simple singularities of the strict transform &’ of & under 7 in E,. The diffeomorphism can be

lifted to (M, E) = (M, E;), using repeatedly the following proposition from [12].

Proposition 1.44. Let F € Diff;(R?,0) be a germ of diffeomorphism tangent to the identity and & its
infinitesimal generator. Let 1) : (M, E) — (R?,0) be the blowing-up centered at 0. Then,

1. There exists a unique germ F of diffeomorphism along E so that to F = Fo 1.
2. The infinitesimal generator of F at E is the total transform & at E.

3. For each p € E, we have ordp(?) = v,,(E) and if p € Sing(g, E), then ordp(l?) > ordy(F)

The total transform & in this proposition must be understood as the collection of germs of
local transforms at each point of the divisor E. It is instructive presenting the proof from [12] in

order to see the expression of the lifted diffeomorphism by the blowing-ups.

Proof. We prove this result using concrete charts. We start with the first statement. Suppose
7, : (M, Eq) — (R?,0) is the real blowing-up centered at 0 and let (x,) be coordinates centered at

0. Suppose that F is given in these coordinates by

F(x,y) = (x+a(x,), + b(x,)),

where a,b are series that written as a sum of homogeneous polynomials are given by a(x,y) =
Z]?":’k aj(x,y) and b(x,y) = Z]?":’k bj(x,y) and k > 2 is the order of F.

We define the diffeomorphism F in each of the charts in the positive and negative directions
of x and p as follows. Let U be the chart in the positive direction of x, where the blowing-up is
given by n(x’,y’) = (x’,x’y’) and let U, U;, U, be the other charts defined as in section 1.2. We
show the lifting only in U] and the rest is done similarly. Notice that F must fulfill to F=For,
that is

(x"oF,(x"oF)(y’oF)) =(xoF(x’,x'y’),y o F(x/,x'y).

Then, we find concrete expressions of F(x’,y’) = (x"+ d(x’,v’),v" + b(x’,y")) as follows.
x'+a(x,y") = x"+a(x',x'y’),
)T ) / 1 VA 1 7 2. —1
y'+ b, y) = (' + Sy (1 Sal, x'y)
Notice that F fixes all the points of the divisor, which in this chart is given by x” = 0.
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Now, we prove the second, that is, the infinitesimal generator of F at any p € E is the formal
vector field £~p. We again work only at Uy, since the procedure is the same in the four charts. By

making a linear change of coordinates, we can assume that p = (0,0). Then,

R —

NoxoF (v expgp(x’y’) NoxoF (' expgp(x’)expz;,(y’)
) ”_[e Per ) e ) ]‘[ Sy )
=(exp &p(x),exp &, (),

and thus §~p is the infinitesimal generator of l?p‘

The first part of the third item, ordp(f) = vp(g), is a consequence of the previous work. For
the second part consider that p € Sing(£’,E) is in the chart U and, under a linear change of
coordinates, suppose p = (0,0), as before. Suppose that & = c(x,y)% + d(x,y)a%, with vy(&) =k

then

z ) ) a 1 ) ) ) VA a
5:c(x,xy)$+;(d(x,xy)—yC(X;xV))ay,

We have in general that (x)¢ divides both c(x’,x’y’) and d(x’,x'y’), therefore (x’)*~! divides &.
Then, if p is a singularity of &’, we have that vp(g’) > 1 since some power of x’ or y’ divide & As
a result, ordp(?) = vp(g) =k-1+ vp(E’) >k—-1+4+1=k=ordy(F). O

A key consequence of the previous result is that, at any p € Sing(&’, E), the infinitesimal gen-
erator & has order equal to or greater than 2 and the diffeomorphism is tangent to the identity.
The blowing-ups can be iterated by choosing points in Sing(&’, E) as centers. The obtainment of a
infinitesimal generator after a sequence of blowing-ups and the corresponding lifted diffeomor-

phism is hence well-defined.

1.5.3 Strict and regular fixed points. Center-focus diffeomorphisms

As we have seen, after a reduction of singularities all the points in the divisor are fixed. We will

distinguish two types of fixed points: regular and strict.

Definition 1.45. Let & be the total transform of the infinitesimal generator of F and let F be the lifting
of F by t. We say that p € E is a strict fixed point of F if it is an adapted simple singularity ofgp ora
corner between a dicritical and a non dicritical component of E. We denote S(F, 1) the set of strict fixed

points. Otherwise, we say that p is a regular point.

We want to remark that the set of strict fixed points is exactly provided by V;;, € V(G(&, ).

Among the strict fixed points we can make further distinctions.

Definition 1.46. Let £ € /X\(M,E), E=E{U---UE; and p € S(F, rt) a strict fixed point. If p € E;NE;

forsome 1 <i <s, we say that p is a corner strict fixed point. Otherwise we say that p is a non-corner
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strict fixed point.
Among the regular points, we also make a further distinction.

Definition 1.47. Let & be the total transform of the infinitesimal generator & of F, E = E; U--- U E;
and p ¢ S(F, 7). Suppose p € E; for some 1 <i <s. If E; is dicritical for £, we say that p is a dicritical

regular fixed point. Otherwise we say that p is a non-dicritical regular fixed point.

Definition of non center-focus diffeomorphisms

We give the definition of a center-focus diffeomorphism in terms of its reduction of singularities.

Definition 1.48. Let F € Diff,(R?,0) be a germ of analytic diffeomorphism, & its infinitesimal genera-
tor and 1 : (M, E) — (R?,0) a reduction of singularities of &. We say that F is center-focus if

* E does not have dicritical components for &.

« All the singularities of & = 7*(&) are corners of E of saddle type.

We say that F is non center-focus if it is not center-focus.

Notice that this definition is parallel to the definition of center-focus vector fields (presented
at the end of Section 1.4.2). We will see also that a non center-focus diffeomorphism has at least

one invariant curve transverse to the divisor.
1.6 Technical results

1.6.1 Jet equalities

In this section, we will provide technical results in order to understand better the total transforms
of vector fields in the usual sets of coordinates. Even if it is quite standard to work with jets of

vector fields, we did not find explicitly these results in the literature.

Proposition 1.49. Let 7t = 111 0---07tg be a sequence of admissible blowing-ups for & € Y(R”, 0) centered

at points. Then, the coefficients of the vector fields E1) and (1)) are transversely formal to 7(0)

(formal in the variables transverse to 7w 1(0) and polynomial in the rest) for any of the usual charts
(I) (I)

(U (xy . xn )

Before proving it, we show the following lemma.

Lemma 1.50. Let 7 : R" — R" be a quadratic morphism given by mt(xy,---,x;,) = (x{,.. .,x;l_m,x]fx;l_nl+1,
...x]’-,...,x]’-

70*(a) = a o 1t such that

xy,). It induces an R—algebra homomorphism 10 : R[[xy,..., x,]] = R[[x{,..., x,]] defined by

X, ’

Im(r") C R[x RPN (A |

7
n—-m+1’°°
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Even more, we have

(Rt X X1 Xpome X0]]) €

RE s XG0 X X ][0 o X X OR[G g 2g HX 0 X X3 ]

Proof. It suffices to take an element a € R[[xy,...,x,]] and study its image 7*(a) = a o t. Given

a(xy,...,x,) = Z a,x%,

n
aeNy,

we obtain

T(*(a) = Z aa (xi )al e (xllfl—ﬂ’l)am (xl,/l—m+1 )an—m-f-l cee (x]",l )(1]',1 (x}+1 )aj+1 (x;/l)a” (x;)an—m+1+‘“+lln.

n
aeNg,

We can reorder the terms in the above expression so that

(@)=Y b e X X X ()P (] P

PeNZ"™!

where bg is a polynomial defined by

bﬁ = Z aa(x;q—mﬁ—l)a;FMH "'(x]/'—l)aFl (x]/'+1)aj71 "'(x;)an'
A1+ =Py i1
ag :ﬁl ''''' an—m:ﬁn—m

7 ’

which has degree equal or lower than f,_,.1, and hence 7*(a) € R[xn_m+1,...x]-_l,x;ﬂ,...x;z]

([x... ,x,;_m,x]f]], as we wanted to prove.

Now, we prove the second part. Suppose that j # n. In that case, we can proceed as in the first
part, finding 70" (R[x,_yy415- - X1 [ %15 -0 Xy X ]]) CRIX g0 X0, XY X X)) Leta e
Rlxp—met1s---r Xn_1 [[%15--+» Xp_m» X, ]] and consider, for shortening the notation, y = (x,_,41,--+,X,_1)

and z = (xq,..., X, X,,)- The series a is written as

a(xy,...,x,) = Z a,(y)z®.

Applying 1", we obtain

7 (a) = Z aa(x;_m+1x},...,x},...,x;_l)(xi)“l ...(x;_m)anfm(x;l)an(x})an'
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Reordering the terms, we can check that

7 (a) = Z bﬁ(x;q_m+1,...,x]’-_l,x]’»+1’x1’/l)(xi)ﬁ1--.(x;l_m)ﬁrlﬂn(x]’_)ﬁn—m+l

IgeN;?)m-H

where by is a polynomial defined as follows. Writing the polynomials a, in homogeneous terms

g = Li, ok (Xnmi1s- o Xp1) We have 10(ag) = L ok, (X ppgrr X1 L e 20 ) (x)) e
Then,

_ ] ’ 7 ’ I\
bﬁ = > Ao k(X pi1re s j_l,l,xj+1,...,xn_l)(xn) ",
ka+0(n:/3]‘
al:ﬁl’"van—m:ﬁn—m

With a similar reordering, we can write as well

@ = ) 6o o X X () )

n—m+1
y€eNL,

_ ’ ’ ’ 7 Vn : * ’ ’ ’ ’
where ¢, = aa(xn_mﬂx]-,...,xj,...,x]-xn_l)x]- . In conclusion, 7t*(a) € R[xn_m+1,...x]._l,x].+1,...xn]

[[xi,...,x;_m,x]f]] ﬁR[x;_m+1,...x]’.71,x]’.+l,...x;l][[xi,...,x;l_m,x;]], as we wanted to prove. O

Suppose that 7y is a blowing-up centered at N, and take coordinates (xi,...,x,) so that N
is given by the ideal (x,_;;41,---,%,). Suppose that we study the chart of the blowing-up with
coordinates (x7,...,x;) such that E is given by x;, = 0 (the procedure is similar in other charts).
The expression of the vector field before the blowing-up is & = ) 1" ; ui(xl,...,xn)% with a; €
R[[x1,...,x,]]. We recall the expression of the vector field after the blowing-up (1.5) iln the chart
U,

d
n) _ 4 / 7 7 ’
g = E ai(xl,...,xn_m,xnxn_m+1,...,xnxn_l,xn)WJr

ie{fn-m+1,..,n—1},i=j

’ 7 ) 7 ’ a

’ 7 ’
—xl-an(xl,...,xn_m,xnxn_nﬁl,...,xnxn_l,xn))—a -

(1.16)

=

~ ) ’ a

= ai(xl,...,xn)ﬁ,
4 1

with@; eR[x,_,..1,... %, 1[[x},..., %, x;,]] by Lemma 1.50.

Notice that indeed the blowing-ups in Proposition 1.49 are centered at a single point. We can

consider the expression & for the codimension of the center of the being m = n.

Proof of Proposition 1.49. The proof for sequences of length 1 follows from the computation in (1.16).
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Suppose by induction that p € E;_; is the center of the blowing-up 7; with adapted coordinates
(x1,-+-,x,) such that the divisor is given by equation x,---x,, = 0 for 1 < r < n. Suppose also
that the total transform of & after the first i — 1 blowing-ups at p in the chart (U, (xy, -+, x,))
with coefficients in (;_, R[xy,...xk_1, Xgs1,--- X, ][[x]]- Let (U},
blowing-up. By (1.16) and Lemma 1.50, we have that the coefficients of 7*(¢) in U; belong to

mk:r,...,n, k=j R[xll e X1 Xkt 1 - xn][[xk]]'

(x{,-++,x;,)) be some chart of the

O]

We also prove a result that shows the jet dependence of a blown up vector field in terms of its

jet before the blowing-up.

Proposition 1.51. Let & € X(R",0) be a formal vector field and 1t : (M,E) — (R",N) be a blowing-up
centered at N C R". Suppose N is given by x,,_,, = 0,...,x,, = 0. Consider one of the usual charts
C; = (Uj,(x},...,x;,)) and recall that the exceptional divisor of 1 in the chart C; is given by x]’. = 0.
Then, the following jet equalities hold:

i (€)= ) (el G (©)))

i (€)= i (e, G (). fori=j
In the proof of Proposition 1.51 we use the following two lemmas.
Lemma 1.52. Let 7t : R" — R" be a quadratic morphism given by 1t(x], -+, X;,) = (X1, ..., X}_, X X,

s In=m it n—m+17

xy). It induces an R—algebra homomorphism 10 : R[[xy,...,x,]] = R[[x],...,x,]] defined by

’ ’
..x].,...,xj

Proof. For the proof of this proposition, we write 4 in homogeneous components in R[[xy,...,x,_,]]

[[Xp—ms1s---» X, ]], that is,

— Z.n—m+1 in
ai(Xl,..-,Xn) - : ain—mﬂl"'rin(xl""’xn_M)xn—WH—l Xy

i=0 i=i,_,0q1++i,

e

Il
(=]

1

where each a; € R[[xy,..., Xy ]l[Xy—ms1,---, Xp]i and each a; . (x1,..., Xu_m) € R[[x1,..., X p]]-

Renaming (xy,...,x,) = (x{,...,x;), we find the following expression,

-~ . .
* _ E 2 . . Inomel e Lol dpggr ety Ll . Iy
T (a) - aln—m+1r"'rln(xl'“ ' ‘an—m)xn—m+1 xj_lxj xj+1 x” ’

i=0 1=l Feetly

. . . . . . .. i i 1 1 i
which implies the searched jet equality. In particular, the coefficient of x," !, ---x j’_llx ]-] X ]];11 xy)
is a polynomial in R[[x1,..., X, ]][*4—ms1,---» Xj-1,Xj11,- .., X, ] of degree equal or lower than i;. [
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Remark 1.53. When 7t is the expression of a point blowing-up in the chart U}, we have the follow-
ing.

i (@) = 7 (ji (@)

7 ’

Lemma 1.54. Let 7t : R" — R" be a quadratic morphism given by 1t(x},---,x;,) = (x{,.. .,xn_m,x]’.x;_mﬂ,
..x]f,...,x]fx;). It induces an R—algebra homomorphism 1" : R[[x1,...,x,]] = R[[x{,...,x;]] defined by

70*(a) = a o 7 such that j]f;(n*(a)) = n*(j]fi(a)),for any i # j.

Proof. We write a as an element of R[[x1,...,x,]][[x]],

[ee]
a= Zui(xl,...,xn)xﬁ.

i=0

First suppose that i > n—m+1. Renaming (xy,...,x,) = (x{,...,x;), we find the following expression

(o)
7*(a) = Zui(xl,...,xn,m,xn,mﬂxj,...,xnxj)xjx;.
i=0
The jet equality then follows from this expression.

Now, suppose that i < n—m, then

(o]
7*(a) = Zui(xl,...,xn_m,xn_m+1xj,...,xnxj)xﬁ,
i=0

and the searched jet equality also follows from this expression. O]

Proof of Proposition 1.51. It is enough to consider the expression of the coefficients a; of the vector
field (1.16) after a blowing-up and the previous Lemma 1.52. Notice that studying a (k + 1)—jet
in xq,...,X,_,, X, is necessary since some coefficients 4; are obtained from the coefficients a; of £

after dividing by x;,. Observing (1.16), this means that the terms of degree r of &) in x], depend

’

T —ms1s---»Xn, and hence the first jet equality follows.

on terms of degree r and r+ 1 in x
For the second jet equality, it is enough to consider the expression of the vector field £/) and

use Lemma 1.54. O
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This chapter is devoted to the first problem of the thesis: the sectorial decomposition of germs

of real analytic tangent to the identity plane diffeomorphisms. The aim of this chapter is to prove
Theorem 2.6 (Theorem A in the Introduction). We start the chapter by giving the main defini-
tions and statements of the results. Then, we fix a germ F : (R?,0) — (R?,0) of diffeomorphism
and consider its infinitesimal generator & (cf. Definition 1.41). We apply Theorem 1.33 to the
infinitesimal generator, obtaining a sequence of blowing-ups, and we study the lifting of the dif-
feomorphism by this sequence of blowing-ups. Then, we construct the sectors, concluding the
existence of the sectorial decomposition. We finally refine this construction in order to obtain a

sectorial decomposition having better topological and geometrical properties.
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CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

2.1 Formulation of the main results

In this section, we provide the main definitions and we state the main results.

2.1.1 Orbits and saturation

In this section, we introduce some technical definitions of sets that we need throughout this
chapter, and we will also indicate some inclusions among these sets. In the whole section, denote
by the same letter F : W — W’ a representative of F, so that W is an open neighborhood of 0,
Flw injective and F(W) = W’ (so W’ is also an open neighborhood of 0). If n € N, denote by
F" the composition of F with itself n times defined on a maximal subdomain of W, denote also
F" = (F )" when -ne Z<y,and FO = 1d.

Definition 2.1. Let V C W be any set and letpe V.
* The positive orbit of pin V is

Orb{,(p)=1{qeV: 3¢, € Z such that F'(p) eV for ne{0, 1L...,0}  and F&l(p) =q}.

If there exists m € N such that Fi(p) € V for j < m but F™(p) & V, we say that the positive orbit
of pin V escapes V.

* The negative orbit of pin V is
Orby(p) ={q €V :3 ¢, € Zcg such that F"(p) € V for n€{0,~1,...,-(,} and P_gq(p) =q}.

If there exists m € N such that F7/(p) € V for j < m but F~™(p) ¢ V, we say that the negative
orbit of p in V escapes V.
* The orbitof pin V is
Orby (p) = Orby, (p) U Orby (p).

* The w-limit of the point p with respect to V is

wy(p) = [ ) Orby(F"(p))

n>0
where the closure is taken inside W.

* The a-limit set of the point p with respect to V is

ay(p) = () Orby (F'(p)),

n<0
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2.1. FORMULATION OF THE MAIN RESULTS

where the closure is taken inside W.
* A point p € V is V—periodic if Orby (p) is finite and wy (p) = ay(p) = Orby (p).

Definition 2.2. Let A, B be subsets of W with ACBCW.

* The positive saturation of A in B is

Sath(A) = U Orbi(p).
peA

* The negative saturation of A in B is

Satz(A) = U Orbj(p).
peA

e The saturation of A in B is

Satp(A) = U Orbg(p).
pEA

We say that A is saturated in B if Satg(A) = A.

Definition 2.3. Let A, B be subsets of W with A C BC W. We say that A is a fundamental domain
in B if Orbg(p) N A = {p} for every p € A.

We obtain directly from the definitions:
* Suppose that B C Band A C B’ C B. We have

Satp/(A) C Satg(A).

* Suppose A’ C A C B. Then
SatB(A') C SatB(A).

* If A’,A C B satisfy that for every p € A’ there is some ¢, € Z such that F%(p) € A, then
A’ C Satg(A).

» If A’ C Satg(A), we have Satg(A’) C Satg(A) and equality holds if and only if for every p € A
we have Orbg(p) N A" = 0.

We end presenting three types of behaviors of subsets.

Definition 2.4. Let A be a subset of W.
* A is positively invariant if F(A) C A. In other words, the positive iterates of every p remain

forever in A.
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CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

e A is negatively invariant if F"1(A) C A . In other words, the negative iterates of every p remain

forever in A.

e A is an attracting parabolic set at g4 € A if A is positively invariant and for every p € A,
as(p) =1{qa} and w4(p) = 0. A is a repelling parabolic set at g4 € A if A is negatively invariant
and for every p € A, wa(p) = {qa} and a4(p) = 0. The point q4 is named the attractor or repeller
of the parabolic set.

o Aisan elliptic set at g4 € A if for every p € A, ax(p) = {qa) and wa(p) = {qa). The point q, is
the attractor and repellor of the elliptic set.

» Ais a hyperbolic set, if for every p € A, Orb,(p) is finite and p is not A—periodic, in particular,
wa(p) =0 and a,(p) =0.

Now we define parabolic curves of diffeomorphisms.

Definition 2.5. An attracting analytic parabolic curve y of F at 0 is an injective analytic embedding
y:(0,€) — R? such that

* vy can be continuously extended to y(0) = 0.

* v((0,€)) is a parabolic set for F whose attractor is 0.

A repelling analytic parabolic curve y of F at 0 is an attracting analytic parabolic curve y of F~! at
0.

We have defined the analytic parabolic curve as a parameterized curve, but we will sometimes
denote by parabolic curve its image. Notice that an analytic parabolic curve at 0 is a parabolic set
at 0 with the additional property that it is an analytic submanifold.

We say that an analytic parabolic curve y is asymptotic to a formal curve I at 0 if there is an
irreducible formal parameterization § € R[[s]]? of T such that the asymptotic expansion of y at 0

coincides with g, this means, for every k € N, there exists constants ¢, € such that

ly(s) = k(BN < cxs™™, s<ey,

where ji(B) denotes the k-jet truncation of each component of , which is a polynomial, and

hence can be evaluated at s.

2.1.2 Main results

In this section, we will state the main results. We choose a first representative F : W — W’ in
which (Fix(F)\{0})Ndr2 W has the same number of points as the number of connected components
of (Fix(F)\{0}) in W, where Fix(F) = {p € W : F(p) = p} (without further mention of the domain W
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unless there is the risk of confusion). These connected components of the curve of fixed points
will be called the half-branches of the curve of fixed points (compare with section A.2.1 in the
appendix). Among the curves of fixed points, we will distinguish two types. Recall that, by
Proposition 1.42, the germs of Fix(F) and Sing(&) at 0 coincide. We say that a half-branch I' of
Fix(F) is bidicritical when its germ at 0 is not invariant for S(£), where S(&) is any saturation of &.

Let us state the main result in this chapter.

Theorem 2.6. Let F € Diff,(R?,0) be a germ of real analytic diffeomorphism with F(0) = 0, F = Id,
tangent to the identity and of non center-focus type. For any open neighborhood W of 0 where a
representative of F and F~! are defined, there exists a neighborhood U C W of 0, and a finite partition

S of
U:UA,

AeS

into C° submanifolds of R?, such that, for any A € S, we have that A is saturated in U and
0. dimA =0 if and only if A = {0}.

1. Ifdim A = 1 then, 0 € A\ A and either A is a connected component of Fix(F)\{0} or ANFix(F) = 0.

In the second case, A is an attracting or repelling parabolic set (curve) at 0.
2. IfdimA =2, then 0 € A\ A, ANFix(F) = 0 and A is of one of the following six types.

* A s an attracting or repelling parabolic set at 0.
* Ais an elliptic set at 0.
* Ais a hyperbolic set.

* A is dicritical-parabolic (or D-parabolic): there exists Iy € S with dimIy =1 and Iy C
Fix(F) such that either, for each p € A, there is q, € Iy NA with a,(p) = {9p} and Orb’ (p)
escapes A, or, for each p € A, there is q,, € [y with w4(p) = {q,} and Orb(p) escapes A.

* A is dicritical-elliptic (or D-elliptic): there exists Ty € S with dimIy = 1 and Iy C Fix(F)
such that either, for each p € A, there is q, € I NA with a(p) = {ap} and w4(p) = {0}, or, for
each p € A, there is q, € Ty NA with ws(p) = {qp} and a4 (p) = {0}.

* Ais dicritical-dicritical (or D-D): there exists Ty,I'; € S with dimIy = dimI} =1, T4 =T}
and Iy, T, C Fix(F) such that for each p € A, there is qp €4 NA with ay(p) = {qp} and there
is q, €Ty NA with wu(p) = {qp}-

The pair (U, S) fulfilling the properties of the previous theorem will be called a sectorial de-
composition. Elements in the partition will be called strata, although it is not necessarily a strati-

fication in the usual sense. The two-dimensional sets in S will be called the sectors of (U, S), and
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CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

they are of parabolic, elliptic, hyperbolic, D-parabolic, D-elliptic or D-D type, correspondingly to
the properties presented in the second item of the Theorem, which we call the weak topological
properties of the sector, according to the terminology in [29]. Notice that each stratum, except the
hyperbolic sectors, is either positively or negatively invariant.

See Figure 2.1 and Table 2.1 for a schematic explanation of the sectors, and Figure 2.2 for an
example of a sectorial decomposition. In the example, Fix(F) = {0} U} UL, UI5 UTI, and all the

half-branches of Fix(F) are bidicritical curves.

’ Sector A ‘ a-limitof pe A ‘ w-limitof pe A ‘ Bidicritical curves (in the boundary) ‘

Parabolic {0} 0 None
Parabolic 0 {0} None
Elliptic {0} {0} None
Hyperbolic 0 0 None
D-parabolic qp €Ty 0 Ty
D-parabolic 0 qp €14 [y
D-elliptic {0} qp €4 |
D-elliptic qp €4 {0} I
D-D gp €T g, €T, Iy I

TaBLE 2.1: Summary of the type of sectors depending on the asymptotic dynamics.

Parabolic Elliptic Hyperbolic

D-D

D-parabolic D-elliptic

Ficure 2.1: Types of sectors

As a direct consequence of Theorem 2.6, we find the following.

Corollary 2.7. Given a non center-focus diffeomorphism F € Diff,(R?,0), there is a neighborhood U of
0, such that the only periodic points of F in U are fixed points, that is, Per(F) = Fix(F) as germs.
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2.2. REALIZATION OF THE GRAPH G(&, ) FOR F

FiGure 2.2: A sectorial decomposition.

The set U where the sectorial decomposition is defined is not necessarily open. In fact, in our
construction, the set U \ U° is a union of segments non containing 0 of the bidicritical curves.
We are interested in studying when the sectorial decompositions (U,S) can be taken so that U
is open. We also study when the set U can be chosen in the semi-analytic class. We prove the

following results.

Proposition 2.8. Let F € Diff,(R?,0), F = Id be non center-focus and (U, S) a sectorial decomposition.
If there are no D — D sectors in S, then, there is a sectorial decomposition (U’,S’) in which U’ is an

open set and S’ is a stratification.

Proposition 2.9. Let F € Diff;(R?,0), F = Id be non center-focus. If there are no bidicritical curves,
then there is a sectorial decomposition (U,S) in which U is a semi-analyitic subset of R?> and S is a

stratification.

2.2 Realization of the graph G(&, nr) for F

Fix an element F € Diff;(R?,0) and take the infinitesimal generator & = Log(F) of F. Let 7 :
(M, E) — (R?,0) be a reduction of singularities of & as in Section 1.4.3. In this section, we will de-
fine a geometric object: the realization Suppp(G(&, 7)) of the graph G(&, i) of & for the reduction
of singularities 7 (cf. Section 1.4.5) and the diffeomorphism F, or for short, simply Supp(G(¢, rr)).
This object will be useful to construct a sectorial decomposition (U, S) of F and will provide some

of the one dimensional strata of S.
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2.2.1 Dynamical types of the strict fixed points

Consider the vertices in Vy;,, each of them is associated to a strict fixed point, by definition. We
classify the strict fixed points S(F, ) of F on (M, E) by using the graph G(&, i) of its infinitesimal
generator. The types of fixed points are summarized in Figure 2.3.
* When p, is a corner point, it can be of one of the following types.
* d when it is a corner between a dicritical and a non-dicritical component of the divisor.
* s when it is a corner between two non-dicritical components of the divisor and the
only quadrant at v is a saddle quadrant.
%

n when it is a corner between two non-dicritical components of the divisor and the

only quadrant at v is a node quadrant.

* When p, is a non-corner point and it corresponds to a simple singularity of type I, that is,
simple and isolated, it can be of one of the following types.
* s-s when the two quadrants at v are saddle quadrants.

* n-s when there is a node and a saddle quadrant at v.

* n-n when the two quadrants at v are node quadrants.

* When p, is a non-corner point and it corresponds to a simple singularity of type II, that is,
it is a normal crossing between a curve of fixed points and the divisor, it can be of one of
the following types.

* f-s-s when the two quadrants at v are saddle quadrants.
* f-n-s when there is a node and a saddle quadrant at v.
* f-n-n when the two quadrants at v are node quadrants.

* f-d-d when the two quadrants at v are dicritical quadrants.
We make a further distinction. Recall that the underlying singularity of a strict fixed point p

of types s-s, n-s or n-n is a non-corner adapted simple singularity of type I. Let A and yu be the
eigenvalues of the strict transform of the infinitesimal generator of F at p, tangent, respectively
to the eigendirection transverse to E and to the direction of E. Recall that the adapted simple sin-
gularity p can be a node, a saddle or a saddle-node, depending on the product Ay being smaller,
bigger or equal to 0. Recall also that when p is an adapted simple saddle singularity of the in-
finitesimal generator &, it is of type s-s as a strict fixed point of F. When p is an adapted simple
node, we have that it is of type n-n as a strict fixed point. However, when it is an adapted simple
saddle-node, it can be of type s-s, n-s or n-n as a strict fixed point. For technical reasons, we say
that a strict fixed point of type n-n is of subtype n-n-1, when |A| > 0, and that it is of subtype
n-n-2 when A = 0.

We summarize in the following diagram (Figure 2.4) the types of fixed points in terms of: its
position (corner or non-corner), underlying singularity (regular point, type of adapted simple

singularity) and quadrant or quadrants of G(&, 7t) at the vertex v),.
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Fix(F) Fix(F) Fix(F) Fix(F)
Sl e o
f-n-n fog-s s f-d-d
b syl s
[ TR
S n d

Strict fixed points

Non corner

Ficure 2.4: Diagram summarizing the strict fixed points in terms of the type of the underlying singularity

or regular point.
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2.2.2 Existence of parabolic curves and parabolic domains

Before explaining the realization of the graph, we recall a result that exists in the literature and
which ensures the existence of parabolic curves at some type of strict fixed points. We also recall
a result on existence of attracting domains that are finitely tangent to a formal invariant curve.
The results given in this section apply only to strict fixed points of type s-s, n-s, n-n-1 and n-n-2.

The first result concerns existence of parabolic curves. We adapt the statement of the theorem

in [56, Theorem 5.1] to our setting.

Theorem 2.10 (Existence of parabolic curves (5, 57, 56]). Let p € S(F, 1) be a non-corner strict fixed
point of type s-s, n-s or n-n-1. Let I be the formal invariant curve of F that is transverse to the divisor.

Then, there exists a unique analytic parabolic curve y of F at p asymptotic to T.

We emphasize that the curve y obtained in the theorem may not be analytically extended to 0,
recall Definition 2.5 of analytic parabolic curves. This result and similar ones have been proved
by several authors. To mention some, Baldoma et al. in [5] proved the existence of parabolic
curves for real analytic diffeomorphisms at fixed points in the cases in the hypotheses of the The-
orem. On the other hand, Lopez et al. [57, 56] proved the existence of parabolic curves asymptotic
to formal invariant curve for holomorphic diffeomorphisms. The hypothesis that they require is
that the eigendirection of the invariant curve I' belongs to the "saddle domain". In our setting
in the real case, this assumption is satisfied if p is of type s-s, n-s or n-n-1. Let us remark that
Dumortier et al. in [29] proved it in the context of C* diffeomorphisms obtaining C* parabolic
curves.

As Theorem 2.10 does not provide existence of parabolic curves in all the cases, we will look
for two dimensional parabolic sets at these points, as they are obtained in the work [56, Theorem
6.1]. Before stating the theorem, let us introduce a new concept, the reduced form of F with

respect to a formal invariant curve. It is explained in [56, Section 4].

Definition 2.11. Consider that the order of contact of the diffeomorphism and the identity is n, and
the order of contact of the restriction F|r and the identity is n+s. We say that F is in reduced form
with respect to I if there exist some coordinates (x,v), called reduced, for which T is tangent to {x = 0}

and such that we can write
F(X,y) — (X-i-ynA(y)X-l— O(xyn+5+l) +}’kb(}));y _yn+s+l + O(y2n+25+1)), (21)

where y = 0 is a line of fixed points, k > 2n+2s+1 and A(y) is a polynomial of degree at most s. Notice
that {y = 0} C Fix(F).

In [56], it is shown that if F € Diff;(C?,0) and T is an invariant curve such that F|T # Id, then

after a finite number of blowing-ups centered at the iterated tangents of I and after changes of
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coordinates, the transformed diffeomorphism can be expressed in reduced form with respect to
the strict transform of I'. In our case, starting with a n-n-2 strict fixed point associated to an
adapted simple singularity of type I, the real blowing-up provides two corner strict fixed points
of type s and a non-corner strict fixed point of type n-n-2 (cf. Section 1.4.1). Recall also that the
formal invariant curve I' intersects the new component of the divisor at this last point. Then, we
will suppose that 7 also encloses the sequence of blowing-ups centered at the strict fixed points

of type n-n-2, so that at the n-n-2 points of S(F, r), reduced coordinates can be taken.

Theorem 2.12 (Existence of parabolic domains [56]). Let p € S(F,n) be a non-corner strict fixed
point at the divisor E whose underlying singularity is isolated, simple and of type n-n-2. Let T be the
formal invariant curve of F that is transverse to the divisor. Suppose also that F is in reduced form
with respect to T with reduced coordinates (x,v) such that E is given by vy = 0 and T has a formal
parameterization given by (y(t),t) with jo,.2s427(5) = 0. Then, there exists a parabolic set Q) of F at p
of the form

Q={(xy):y<6, IxI<p} (2.2)

where 6 > 0. In addition, if for instance () is attracting parabolic, for every point p € Q, the positive

orbit Orb* (p) is asymptotic to T.

The Theorem 2.12 on the existence of the set () is a direct consequence of [56, Theorem
6.1] for holomorphic diffeomorphisms, and its proof can be found therein. The proof adapts
almost word by word to the real analytic diffeomorphism as stated. We do not enter into details
but we want to make a comment on the last sentence of Theorem 2.12, based on the proofs
presented in the article [56]. In short, the property that the orbits are asymptotic to the curve T’
means by definition that for every p € Q) and for every N, there is some k, y such that FK(p) €
{1x = jursen—1(y @) < ¥V} for k > k,,n- That is, the orbits reach cones of arbitrarily large order of
contact with the invariant curve. Alternatively, Orb*(p) has iterated tangents' and the sequence
of iterated tangents coincides with that of T

We make a second refinement on the reduction of singularities that is valid after performing
one additional blowing-up o centered at a n-n-2 point. This blowing-up, as we mentioned before,
generates two strict fixed points of type s and one new strict fixed point of type n-n-2. Moreover,
after performing this blowing-up, we have that o=!(Q) is an open parabolic set at the new strict
fixed point of type n-n-2, that forms, adding the divisor, a neighborhood of the n-n-2 point. The
expression of the transform of F is obtained as in Proposition 1.44, and it has the same form

s (2.1). Summarizing, we will make the following assumption on the reduction of singularities

TT.

IWe say that an orbit has a tangent if its & or w limit is a single point in the exceptional divisor and iterated tangents
are defined recursively by blowing up the subsequent tangents of the orbit. Compare with Definition 1.10 of iterated
tangents of parameterized curves.
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Assertion +. Let p € S(F, ) be of type n-n-2. Then, there is a positively invariant neighborhood U, of
p such that for every g € U, \ E, w(q) = {p}.

2.2.3 Support of the graph G(&, ) for F in M and realization of quadrants

In this section, we need to recall the construction of graph G = G(&, ) = (V(G),E(G)) and the
quadrants Q(G), together with the orientations (cf. section 1.4.5). We will also consider the
reduction of singularities is refined so that we have Assertion . We need also to recall that Fis
defined on a neighborhood 7=} (W) of E = 7t=1(0). In short, we will provide a geometric support
to this graph that will be a C* normal crossing divisor, so that the dynamics of F will be reflected

by the orientations given by G. More precisely:

» For any v € V;;,,, we define Supp(v) = p,, where p, is the strict fixed point associated to v. Then,

Supp(Vyiy) is the union of the strict fixed points of F.

* The edges in &;;, are associated to the components of E \ Supp(V,;,), by definition (recall the
definition of £;;, in section 1.4.5). In particular, if e = {v,v’}, we define Supp(e) as the connected
component y, of E \ Supp(V;;,) with extremities p, and p,.. Then, Supp(&;;,) is the union of

these connected components.

* Each edge in &,4;, is associated either to curve of singularities of 7*(£) or to a formal invariant
curve I' of v*(&), transverse to E. Fix some e € £,;, that is adjacent to v € V;;,, associated to a
strict fixed point p,. Recall that when the strict fixed point is of type f-n-n, f-n-s, f-s-s or {-d-d,
the edge e is associated to a curve of fixed points. In this case, we directly consider the curve
I' (which indeed is analytic) and we define Supp(e) = I', where this curve must be understood
as a representative defined in some open set U, C 77~'(W). On the other hand, when T is not of
fixed points, the strict fixed point p, can be of type n-n-2, n-n-1, n-s or s-s. In the first case, we
will not define a geometric support to e, that is, we will consider Supp(e) = 0. In the remaining
cases, we use Theorem 2.10 in order to find a parabolic curve y C 7~1(W) of F transverse to the
divisor at p,,. We define Supp(e) = y. Finally, Supp(&,,4i,) is by definition the union of Fix(F)\E

and parabolic curves transverse to E.
* We do not define a geometric support to the vertices v € V, 4.

Definition 2.13. The support Supp(G(&,m)) of the graph G(&, ) for F is the union Supp(Vi,) U
Supp(E4iv) YU Supp(E,4iv) in a neighborhood of E C M.

In order to lighten the notation, name E= Supp(G(&,m)). Notice that E is a C*® normal crossing
divisor that extends the analytic one E U Fix(F). We show an example of the construction of the

support of the graph G(&, i) for the diffeomorphism F in Figure 2.5
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G, m) Suppp(G(&, )

Ficure 2.5: Graph G(&, ) of the infinitesimal generator £ of F and its realization for F.

Now, we define the realization of the quadrants of the graph as (half) neighborhoods of strict
fixed points. This is an intermediate step in order to define suitable sets of coordinates in the
following section.

Let p € E be a strict fixed point of F such that {p} = Supp(v) and such that p is not of type n-
n-2. Recall that either there is a single quadrant Q; = (v, ey, e;) of G(&, 1) that contains v, or there
are two quadrants Q; = (v,e1,e;),Q, = (v,e1,e3) of G(&, ) that contain v. Take y; = Supp(e;).
Consider now the germ W, of 71 (W) at p and the germ Ep of E at p. Then, W, \Ep has at most
two connected components. That is, W, \Ep =Uppor W, \Ep = U pUU,,,. We consider Uy, to be
the connected component that fulfills m = Up U{ptUy1p Uz, and Uy, to be the connected
component that fulfills W,p = U, U{ptUy1,p U3, Arealization of Q;, i = 1,2, is a couple(Q;, U;),
where Uj is a representative of U; , such that U,;NSupp(e;)and UN Supp(ej,) are connected with
j1 =2and j, = 3. By an abuse of notation, we also call quadrants the realizations of the quadrants.

Now, let p € E be a strict fixed point of F such that {p} = Supp(v) and such that p is of type
n-n-2. Notice that there are necessarily two quadrants of the graph, say Q; = (v,e;,e;) and Q, =
(v,e1,e3), which contain v. However, as we have already pointed out, there is not a realization of
the edge e;. For this reason, a single quadrant cannot be realized in the above sense. We define a
joint realization of Qq and Q, a triple (Qy,Q,,U), where U is a convex representative of the germ

Wp such that U N Supp(e,) and U N Supp(e3) are connected.

2.2.4 Monotonic (coordinate) domains

In this section, we provide convenient expressions of F at regular and at strict fixed points of E.

This section is based on [29], allowing also curve of fixed points. At the strict fixed points, we
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work in a realization of a single quadrant, or in a joint realization of the two quadrants adjacent
to a point n-n-2. We also provide changes of coordinates valid on a small enough realization of

the quadrant(s).

Before studying each case, as a reminder from Section 1.5.1, we recall that, if p € E, then
the germ of F at p is given by fp = Exp(gp) where Ep is the total transform of & by m at p. We
will simply denote F at p again as F, because throughout the text we will always indicate in
which point we work, and we will also denote £~p by £. The expression of each F; in F(x,y) =
(F1(x,v), F2(x,v)) in terms of the expression of £ = C(x,y)a% + d(x,y)a% is given by the exponential

map as follows.

— dc(x, de(x,
Fl(X;V)ZQXP(ép)(X):x+c(x,y)+%(c(x,y) CS;y)+d(x,y) Cg;y))Jr...

dd(x,y) 8d(x,y))+

(2.3)
Fz(x,y)=e><p(3,))(y)=y+d(x,y)+%(c(x,y) Ep +d(x,) 7

We also recall that (x,y) are analytic coordinates at p. Even if the vector field is only formal and
its coefficients lie in R[[x,p]] (or sometimes in some other subalgebra), the diffeomorphism is
analytic, and the components lie in R{x, p}.
Now, we present the monotonic domains, namely, chart domains in which it is possible to
define monotonic functions on the orbits of the diffeomorphism.
* Non-dicritical regular point. Let p € £\ S(F, ) and assume that p is a non-dicritical compo-
nent of E. As in (1.6), there are analytic coordinates (x,y) centered at p with E = {y = 0} such
that

" d d
t=y'\alny)o- +yb(x,y)—ay )
with n € N*, a,b € R[[x,v]] and 4(0,0) = 0.

Then, the expression of F at p is
Fxy) = (x+3"A(x ),y + 3" Blx, ), (2.4)

where A, B € R{x,y}, n,k € N*, y > 0 and A(0,0) = 0. By considering a small enough domain U,
we can suppose that A(x,y) < 0 or that A(x,y) > 0. In this case, we say that (U, (x,v)) is a regular

monotonic domain.

We have that this expression is valid in a greater domain. Recall, as we are assuming that we
use the usual charts of the blowing-up (cf. Section 1.2), that the vector field pr is (qu)jéq,
where Zs'q := £ is defined at the origin of the chart U; and T,p is the affine translation of q to
the point p.
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Remark 2.14. In terms of exponential maps, since T, is an affine map (a diffeomorphism), we
have formally exp((T;,).&4)(f) = exp(Eg)(f o Typ) 0 (qu)_l.

We deduce the following from this remark.

Claim. We can consider a local expression of F, as the one in (2.4) that is valid on a neighbor-
hood of a connected compact subset of E \ S(F, 7r) inside a non-dicritical component of E and

in the domain of a single usual chart Uj.

Dicritical regular point. Let p € £\ S(F, ) and assume that p is a dicritical component of E.
We use (2.3) and the expression (1.7) given in analytic coordinates (x,y) at p where E = {y = 0}
by
d d
— Z e
£ =" (aluy) T+ b)),

with n e N*, a,b € R[[x,v]] and b(0,0) # 0. Then,

F(x,p) = (x+y"A(x, ),y +y"B(x,)), (2.5)

with A, B e R{x,y}, n,k e N*, y > 0 and B(0,0) = 0.

As before, there is a small enough domain U such that B(x,y) > 0 or that B(x,y) < 0 at every
point in U, we say that (U,(x,v)) is a regular monotonic domain. This expression can also
be extended to a greater domain, a neighborhood of a connected compact smooth subset of
E\ S(F,p) and the Claim applies.

Strict fixed points of type d and f-d-d: Let p € S(F, i) be an adapted simple singularity of type
II b) (strict fixed point of type f-d-d) with E; a non-dicritical component and E; a bidicritical
curve, or an intersection point of a non-dicritical component E; and a dicritical component
E, of the divisor (strict fixed point of type d). The infinitesimal generator has expression as

in (1.8) or (1.9) in analytic coordinates (x, ) such that E; = {y = 0} and E, = {x — h(y) = 0}

J P
&= (x—h(y)"y" a(x,y) = +yb(x,y)a—y

with a,b € R[x][[y]], n,m € N* and a(0,0) # 0. As in (1.8), when E, is a dicritical component of
the divisor, we consider & = 0 and the germ of the space M at p is identified with {x > 0,y > 0}.
When it is a bidicritical curve, h is a convergent series since Fix(F) is analytic, and the germ of

the space is identified with {y > 0}. The expression of the diffeomorphism is

F(x,9) = (x+ (x = h(»))"y"A(x, 1),y + (x— h(»))"y"*' B(x,)),

with A,B € R{x,p}, n,m € N*, y > 0 and A(0,0) # 0. In a small enough domain U, we can
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suppose that A(x,y) < 0 or A(x,y) > 0 for all points of U. Up to performing an analytic change
of coordinates z = x — h(y), w = y, we can always suppose that the diffeomorphism has the
following expression

F(x,p) = (x +x"y"A(x,9), + """ B(x, 7)), (2.6)

with A, B € R{x,y}, n,m e N*, p > 0 and A(0,0) # 0, and again that A(x,y) <0 or A(x,y)>0ona

small enough domain U.

In the rest of the chapter we will work in some realization of the quadrants at p (one in the
dicritical component case, or two in the bidicritical curve case). We will take as realizations
of the quadrants at p the domains U; = U N{x > 0} and U, = U N {x < 0} (this last case only if
there is a bidicritical curve). We call the charts (U, (x,v)) dicirtical domains, since for any point
p € U; either x(F(p)) > x(p) or x(F(p)) < x(p) (monotony) and the boundary curve {x = 0} is
dicritical. For simplicity, we will always suppose that we work in the positive quadrant of R?,
that is, in {x > 0,y > 0}, this assumption can be made by performing the change of coordinates

Z=-X, W=1.

Strict fixed point of types f-s-s, f-n-s, f-n-n, n and s. Let p € S(F, ) be a strict fixed point
placed at an adapted simple singularity of type II a) (f-s-s, f-n-s and f-n-n) or at a corner
adapted simple singularity (n and s). Recall the expressions of the infinitesimal generators in
adapted coordinates (x,y) in (1.10) and (1.14) such that E; = {y = 0} is a component of E and
E, is another component of the divisor (p of type n,s) or a curve of fixed points (f-s-s, f-n-s and
f-n-n). That is,

d d
&= (x—h)"y" a(x,9)5-+ b(x,y)g (2.7)

with a,b € R[x][[y]], h € R{p}, n,m € N* and the germ of M at p is identified with y > 0 when p is
of type f-s-s, f-n-s, f-n-n, or with x > 0,y > 0 (having # = 0) when it is a corner. In addition, since
the singularity is simple adapted to E, we assume that the vector field S(&) = a(x,y)%+b(x,y)a%
is saturated and has a simple singularity (in the classical sense) such that y = 0 is one of the
separatrices and that the other is given by the analytic equation x — h(y) = 0. Performing the
analytic change of coordinates z = x — h(y), w = y as in the previous item, we obtain, rewriting
again (x,y) = (z,w), that the vector field is now

d - d
_ am_on S ~ T
E=x"y"|x a(x,y)—ax +v b(x,y)—ay (2.8)

with a,b € R[x][[v]], n,m,r,s € N, 1 € {s,r}, @0,0) # 0, b(0,0) # 0. Notice that the fact that

@(0,0) = 0, b(0,0) = 0 follows from the properties of the refined reduction of singularities 7,

highlighted in section 1.4.4. After the change of coordinates, notice that the two separatrices
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of the simple singularity of S(&) = xsd(x,y)a% +v"b(x, ) are the two coordinate axis. One of
the numbers r,s must necessarily be equal to 1, since at least one of the eigenvalues of S(&) is

different from 0. In these coordinates, the diffeomorphism F has expression

n+s

F(x,v) = (x+x"y"A(x,v), v + x"yp"""B(x, 1)), (2.9)

with A,B € R{x,p}, n,m,r,s € N*, 1 € {s,r} and A(0,0) = 0, B(0,0) # 0. The domain is y >0
or y > 0,x > 0 when p is of type f-s-s, f-n-s, f-n-n, or of type n, s, respectively. Choosing a
small enough domain U, we have A(x,p) # 0, B(x,y) = 0 at every point in U. As in the previous
case, we will work separately on the realizations of the quadrants containing p. When p is
of type f-s-s, f-n-s, f-n-n, there are two quadrants and when it is of type s,n there is only
one. The realization of the quadrants are U; = U N{x > 0} and U, = U N{x < 0} (only for
the f-s-s, f-n-s and f-n-n cases). For simplicity and after applying the change of coordinates
z=-x, w =y, we will always suppose that we work on the positive quadrant of R?. If A and B
have the same sign on the domain U;, we say that (Uj,(x,v)) is a node monotonic domain since
both coordinate functions x,y are monotonically increasing or decreasing on the orbits outside
the fixed points. Otherwise, if A, B have opposite sign in U;, we say that (U}, (x,v)) is a saddle
monotonic domain, since in this case, one of the functions x,y is monotonically increasing and

the other is monotonically decreasing.

Strict fixed point of type s-s, n-n-1 and n-s. Let p € S(F, r)be a strict fixed point placed at a
non-corner adapted simple singularity of type I. We suppose that the infinitesimal generator

has expression in analytic coordinates (x,y) for which E = {y = 0}

0 P
_ n
&=y a(x,y)—ax +yb(x,y)—ay

with a,b € R[x][[y]], n,m € N*, and the germ of M at p is identified with y > 0. In addition, since
the singularity is simple adapted to E, the vector field S(&) = a(x,y)a% + b(x,y)a% is saturated
and has a simple singularity (in the classical sense) such that y = 0 is one of the separatrices and
that the other formal separatrix T is given by the formal equation x — fi(y) = 0. The expression

of the diffeomorphism is then

F(x,v) = (x+y"A(x,v), v +v"""B(x,v)),

with A, B € R{x,p}, n,r € N*. Recall also that from Theorem 2.10, there exists a germ of parabolic
curve of F transverse to y = 0 and asymptotic to the formal invariant curve I'. The graph of this

curve fulfills a C* equation x—h(y) = 0, so that the Taylor expansion at y = 0 is /i(y). Performing
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the C* change of coordinates z = x — h(y), w = , and renaming (x,y) = (z,w), we get from the
above equation

E(x,p) = (x+9"x°A(x,9),v + """ B(x,9)), (2.10)

with n,s,r € N*, 1 € {s,r} and A, B € C;° with A(0,0) # 0, B(0,0) # 0. We remark that y is analytic
in any case, although x is C*. Notice that both curves x = 0 and y = 0 are invariant curves, and
that s,r are taken to be maximal so that we have A(0,0) = 0, B(0,0) = 0 (they exist since both
components of F —Id are not flat in (x,y) components). The fact that 1 € {r,s} follows since the
saturation of the infinitesimal generator has at least one non-zero eigenvalue. We take a small

enough neighborhood U such that A(x,y) = 0, B(x,y) # 0 for any (x,y) € U.

Then, we consider realizations of the two quadrants at p by taking U; = UN{x <0} and U, =
U N{x > 0}. In a realization of a node quadrant Q;, the functions A and B have the same sign
on U;, and we say that (Uj;,(x,v)) is a node monotonic domain. In the realization of a saddle
quadrant Q;, the functions A and B have different sign, and we say that (U, (x,v)) is a saddle
monotonic domain. Notice that both coordinate functions x,y are monotonic on the orbits on

the domain.

Strict fixed point of type n-n-2. Let p € S(&, ) be a strict fixed point placed at a non-corner
adapted simple singularity of type I. We will treat this case in a different manner, since we
do not have a parabolic curve (although we use results from Section 2.2.2). We recall that the
diffeomorphism is expressed as (2.1) and recall the assumption =, which follows after Theo-
rem 2.12. That is, there is a positively invariant neighborhood of p in which the orbits con-
verge to p. We will call a chart (U, (x,y)) in which (2.1) and the assumption (*) applies a node

monotonic domain. For the sake of completeness of the section, we write again this expression.

n+s+1) 2n+2s+1 b( n+s+1 O(y2n+25+1 ))
’

F(x+y"A(p)x+ O(xy V), y+€ey +

Ty

where A € R[y]<; is a polynomial of degree lower than s and € = +,—. Notice that the coordinate
v is monotonically increasing (e = +) or decreasing (e = —) in the orbits and convergence to p is

ensured by (¥).

2.3 Local dynamics after reduction of singularities

In this section, we study the blown-up diffeomorphism F of F after the reduction of singularities
7 : (M, E) — (R?,0) of its infinitesimal generator &. Suppose that we are given any representative
F: R — R/, then, we will study Fina neighborhood Wy € ©71(R) of E as in Definition 2.13. We

will study F locally at small compact subsets of the divisor E: strict fixed points and smooth

connected compact subsets of E \ S(F, ), called regular arcs. Throughout this section, we will
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work in (M, E) and we will simplify the notation simply using F,& instead of F,&.

2.3.1 Dynamics over regular non-dicritical arcs

We define a regular non-dicritical arc as follows.

Definition 2.15. Let S(F, ) be the set of strict fixed points of F after the sequence of blowing-ups
7. A regular non-dicritial arc I' (for F) is a connected compact subset of E \ S(F, 1) contained in a

non-dicritical component of the divisor.

Let I be a regular non-dicritical arc contained in a non-dicritical component of E. There
is a chart of (M, E) where &’|r is a polynomial vector field that does not have singularities, cf.
section 2.2.4. The constant sign &'|r induces an orientation in T, from one of the endpoints to
the other one. We will consider the total ordering on I' on the points p € I' induced by this
orientation. Choose a monotonic domain (U, (x,y)) centered at some point of I with E = {y = 0}.
From section2.2.4, we may assume that U contains a neighborhood Vr of I' in which there are

constants Cg,c4,Cp > 0 such that, for (x,y) € Vr,
F(x,p) = (x+3"A(x,9), v+ y"*B(x,p)), 0<ca<A(x,p)<Cqand —Cp<B(x,y) <Cp, (2.11)

with n,k > 1. The integer n coincides with that of equation

J P
&= y”(a(x,y)g + b(x,y)a—y)

of the infinitesimal generator. On the other hand, the integer k can be chosen differently after a
change of coordinates that is valid in a neighborhood of the dicritical arc, as the following result

shows.

Lemma 2.16. Let I be a regular non-dicritical arc and let (U, (x,v)) be a monotonic domain at some
p el withT C U so that F has the expression (2.11) with k = 1. Then, there exist another monotonic
domain (U’(z, w)) with (z,w) centered at the same p € T such that the expression of F (renaming (x,y) =
(z,w)in (2.11)) has k > 2.

Proof. First suppose that I' = (wy,w;) x {0} in coordinates (x,y). Notice that the infinitesimal
generator of F can be written as & = y”(a(x,y)% + yb(x,y)c%), where a,b € R[x][[y]] and thus
the coefficients a(x,y) = ag(x) + a;(x)y + --- with a¢(x) > 0 at any point of I' and b(x,y) = by(x) +
by(x)y+---. Let f be an analytic function that fulfills the ordinary differential equation ag(x)f”’(x)—
bi(x)f(x) = 0, which has solution defined in (wy,w,) since ay # 0 at any point. Now, we define

the change of coordinates x = z, y = wf(z), obtaining that the infinitesimal generator in these
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coordinates is

E= W' (F(2)"alz wf () o + 0" () by (2Df (2) - ap(hf (2) )

Recalling the definition of f, we get ag(z)f’(z) — b1(z)f(z) = 0, and hence after the change of
coordinates there is not a term of degree k + 1 in w in the coefficient aiw and neither will be at the

second component of F. O]

We name a neighborhood (Vr,(x,v)) of I' in which F is as (2.11) a monotonic domain along I

We prove the following result.

Proposition 2.17. Let F be a diffeomorphism, I' a non-dicritical regular arc and Vi a monotonic do-
main along I'. Denote by p; < p, the endpoints of I. For every neighborhood U, C Vr of p, there is
some neighborhood Vr of T such that for every p € Vi we have Orb{r,r (p)NU, =0.

Proof. We assume that k > 1 thanks to Lemma 2.16. Put p; = (w,0) and p, = (w5, 0). Assume also
that Vr contains an open box V(¢,0) = (w1 — €, w, + €) X [0,0), for some € > 0,1 > 6 > 0 are small

enough. We choose the constants 0, € such that they satisfy several hypotheses, namely:

(1-0) The open set U, contains a box (w, — &, w; + €) x [0, ).

(2-8) 6 fulfills

We require an additional condition, that we explain now. First, we bound the growth of the

monomials y” on the orbits inside a box V(¢,0) as follows: if p = (x¢,v9) € Vr and F(p) = (x1,v1),

from

1 1 1 1

g prv— ‘1)'

Y1 % Yo \(1+yy™  B(xo,y0))"
we have
1 1 1 1 1y B+ O®yith)) — . S
h T Tun T Tn n+1 75 _1]:7 Yo n+l | N n+1 :yonB'i_O(yOH))' B:yl(; ’B.
Y1 Yo Yo \(1+y5" B(xp,v0))" Yo 1+y5" (nB+O(yy™))

Then, there is a constant K, > 0 such that if both p = (xo,¢), F(p) = (x1,¥1) € V(¢,9), then

1
T T SK()})()SKoézKé, (212)
1 Yo

where K := Ky0. Now we give the third condition of o in terms of the previous equation.
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(3-0) o fulfills
1< exp(&(ug —wl)) <2.
CA

We take another constant § satisfying the following hypotheses.

(1-6) & fulfills
2 —eXP(&(wz - wl))
CA

o <
Ks

(2-6) o fulfills

6”(2—exp(?(u}2 —wl)))
o" < A .

= 1+0"Ks

Finally we define the following function on y.

K.
exp(c—:(wz —U/l)) -1

L(y) = & +1 (2.13)

We prove the following claim.

Claim. For every p = (xq,30) € V(¢,0) there is some £, € N such that
¢ é} SL(}’O)
* (x;,v;) = F(p) € V(¢,0) for every 0 < i < 2
*wy—e<xy, <wyte and Ye, < 0, that is, (Xgp,ygp) e U,.

Setting Vr = V(e,g) and reminding that V(g,6) C Vi, we have the thesis of this result, that is,
for any point p € Vy there is an iterate £ = ¢, with F’%(p) € U, and Fi(p) € Vy for every 0 <i < Oy
Proof of the claim. From the bound in (2.12) and using the triangular inequality, we find the
following bound for the coordinate y on the orbits on V(¢,9) of points p = (xg, yo) with yy > 0:

(2.14)

valid as long as (x;,v;) € V(¢,0) for every 0 <i <€ and 1 -{¢Ksy; > 0. On the other hand, we find

a lower bound for the coordinate x on the orbits on V (¢, o) with y, > 0.

(-1 -1 n
Yo CA n
Xp > X0+ Chp ">x0+ca ) —=—— >x0+ — log(l +€Ksv}), (2.15)
;:O,yf ijo 1+ jKsy! K, Yo
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valid as long as (x;,y;) € V(¢,0) for every 0 <i < j. We have used the lower bound of A(x,y) in Vr
in the first inequality, the lower inequality (2.14) in the second, and the classical integral criteria
for finding a lower bound of sums with decreasing terms in the third.
We fix a point (xg,v) € V(€,0 3\ {v = 0}. Taking any ¢ > L(y,) — 1, if the points (xo, vo), (x1,1),
o (Xe—1,v0-1), (x¢,v¢) € V(g,0), we have xy > w, —¢. To see this it is enough to notice that the lower
bound of x, in (2.15) increases with ¢. Then, consider ¢ > L(yy) — 1 and plug L(yy) — 1 in the right
member of (2.15). This substitution leads to

exp(f—:(wQ _wl)) -1

Ksyg

c
Xg2x0+%log 1+ Ksvg [=x0+wr—wy 2wy —¢,
5

where the last inequality follows from xy > w; —¢. On the other hand, we also have that y, <,
again under the condition that it is possible to define the ¢ iterate. To see this, it is enough to use

that o < 6 and proceed as follows.

* Notice first that the upper bound in (2.14) stands since 1 — {Ksyj > 1 — L(vo)K;sp{ > 0, which
can be seen by plugging the value of L(y,) in the former expression and using the bound of &

given in the hypothesis (1-5). More precisely:

exp (22 (wy —wy)) -1

Ks
1-lKsyg =1 - +1|Ksyy =2- exp( (wz—wl))—Kéygz
Ksvg CA
K, K, 2—exp( 2wy —wy)
22—exp(—6(w2—w1)) Kso" >2 - exp( (wz—wl)) K; ( ) =0.
cA A Ks
* Now, we use (2.14), which is valid from the previous item. We have y, < 1—€yI§,—y” < 1—L(;1)}00)K5y” <
070 0/ 0

0", which can be seen again by plugging the value of L(y) and using now the bound of ¢ given
in the hypothesis (2-5). We have

o< Yo Yo <
N exp( =2 (wy—w;))-1 2 e K twy —wi)) = Kev?
N R P U
_ 5" (2-exp( T2 (wp—wy)))
o" T+0"K, "
< < =5

2 - exp( 2 (wy — wl)) — Kgo"

o"(2—exp ?(w —wy)
2- exp(c_b(WZ_wl)) ( ( 1_{_5131[(62 - )) Ké

Since p = (xg,v9) € V(&,0 )\{y 0}, either xg > w,—¢ or xg < wp—¢. In the first case, we already have

that p € U,, and the claim is proved in this case. Now, we end the proof in the latter. From the fact
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that y; < 6 for j < L(yo) and that x; > w, — ¢ for any i > L(yy), there exists some 1 < £, < L(y) such
that x, <w; —¢ and y, < 6 for £ <, and Xg, > Wy — &, that is, a first iteration in which x, > w, —¢.
On the other hand, from the hypothesis (2-6) and the fact that X1 Swp— €, we have also that
Xg, < Xg,-1+ CAygp_1 <xp,1+Cp0" <xg_1+26Swy—e+2e=wyr e [ |

O

As a consequence of the above result and using the definition of the saturation of a set, notice
that Vi C Saty, (U,) UT.

Corollary 2.18. Let F be a diffeomorphism, I a non-dicritical regular arc and Vi a monotonic domain.

Then for any p € T and any neighborhood U of p, the set Saty, (U) UT is a neighborhood of T.

Proof. Let p; and p, be the extreme points of I'. We define two regular arcs: I; from p; to p and I,
from p to p,. We apply Proposition 2.17 to I3, the neighborhood U of p and the diffeomorphism
F, obtaining a neighborhood Vrl of I} for which Vrl \ I} C Saty, (U). On the other hand, we ap-
ply Proposition 2.17 to T, and F~!, obtaining a neighborhood Vrz of I for which Vl] \I; C Saty, (U).
Hence Vrl U Vrz CSaty, (U)UT is a neighborhood of T O

2.3.2 Dynamics over regular dicritical arcs

We start defining the regular dicritical arcs.

Definition 2.19. A regular dicritial arc I' (for F) is a connected compact subset of E\S(F, 1t) contained

in a dicritical component of the divisor for &.

Let E; C E be the dicritical component of E containing a regular dicritical arc I'. Recall that
there is a neighborhood Vi in which F has expression (2.5) in coordinates (x,y) centered at some

point of the dicritical arc. We prove the following result.

Proposition 2.20. Let F be a diffeomorphism, T a regular dicritical arc and Vi a monotonic domain
for F. There is some neighborhood Vi of T such that

(a) Foranyp e Vi \ E we have that Orby, (p) is an infinite set.
(b) Forany p € Vi \ E the set w(p) is a single point of E.

Proof. We start recalling the expression of F in Vr

F(x,9) = (x+y"A(x, ),y +"B(x,)),

with A,B € R{x,y}, n,k > 1, y > 0 and B(0,0) = 0. Consider the extreme points of I' with coor-

dinates p; = (w,0) and p; = (w,,0) with w; < w,. Assume also that V- contains a box V(¢,0) =
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[0,0) for small enough 1 > 6 >0, ¢ > 0. Assume as in the previous paragraph that

(w1 —&,wy+)X
if Po = (X0, %0 F(p), ..., Fi(p) € V(&,5), we denote Fi(p) = (x;, ).
We start finding a lower bound for - — y_ for some 7 satisfying n— 3>t >n-1, 7t >0 and
1 0
inside V (¢, 0) with ¢ sufficiently small. Using the bound B(x, yy) < —cp inside V in (2.5), we find

—-1)>cpryy” 1= T+O(y§”_2_r) 5328 T

that
111 ! - )>i( L
Vi Yo Yo \(1+y57 Blxo,y0)™ | %o \(1-y5 'cp)"

(2.16)

for some C > 0 (considering again that 6 is small enough). Notice that n—1-7 <0
Now, we fix 7, y and K satisfying

. n—%>12n—1,r>0.

« K>%4
C
From those constants, we define 6 fulfilling the following condition
’5‘;41—11+1 < i
2K

We prove the following claim
Claim. For every p = (x9,7) € V(%,~) we have
) E{(p) e V(e,6) for every £ € N.

a
b) There is some g € {y = 0} N V (¢, ) such that g = w(p)
Vr = V(%,5) which fulfills the thesis of this

As a consequence of this claim, we can choose V| =

Proof of the Claim. We start proving a). We bound |x; — x| inside V. We consider that x, — xo =

Proposition.
Z] éy]”A( x;,¥;) and also that y" < y™# since TH<n-1i n_%):n.
2
(-1 yw ¢ v
Ixe=xol < ) Capi'< ) Ca(yi)<Cy +SCAJ —2 s
Z J Z J =5 (1+jCyg Hyu 0 (1+sCyg 1)
. Joo })(;y dS:CA(})W[—rHl +});4 ) Ky;rf n+1
0 (1+sCyp) o Cp-n T '

for K defined as above and where we have used the bounds for A given in (2.5) on the first
inequality, the above consideration on the second, the inequality (2.16) on the third, the integral
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criteria of series with decreasing terms on the fourth inequality. The fifth inequality stands since
the function is strictly positive and the last inequality stands for ¢ small enough. Consider also
that ytr—n+1>0.

Taking any point, the existence of its first iterate in V is granted since y is decreasing on the
orbits and |x; — xo| < KoFT—1 < 5. The existence of further iterates is also granted by induction,
since given the existence of (x1,91),...,(x¢-1,V¢-1), we have 0 <y, <yp and xp - 5 < x, < xp + 5.

We prove now b). Notice that the positive orbit of any p € V(5,0) is confined in V (¢, 6) and

hence has accumulation points in V(g,0). In particular, the accumulation points of Orb;r,(&é)(p)
must lie in the set of fixed points, namely {y = 0}. To see that it is a unique point, we prove
that given pg = (x¢,¢), the sequence {x/},cn converges to some x,,, by proving that it is a Cauchy
sequence. To prove this, it is enough to use that the sequence {y/},cn converges to zero and that
I, — xp_1] < Ky,ﬁn_nﬂ. Then, w(p) = (X, 0). [ |

O

2.3.3 Dynamics on saddle quadrants

In this section, we deduce the dynamics on realizations of saddle quadrants in saddle monotonic
domains. The main result resembles Proposition 2.17, in the sense that, given a point in the
divisor and a neighborhood of it, we can find a whole open set that has the property in the
statement of 2.17. Before stating the result, let (Q, W) be a realization of Q and (x,y) be adapted
coordinates at the saddle point p, defined on W. Suppose that the curve I’ is oriented towards
the vertex and T oriented outwards. We denote this by I <T. Then, the diffeomorphism can be

written as in (2.10) or (2.9). Both cases can be summarized as

n+s

EF(x,v) = (x+ X"y A(x,v),v + x"v" " B(x,p)), x>0, v>0, (2.17)

withm>1, n>0,sr>1,1¢€ {s,r} and A(x,v),B(x,y) € C°(W) or A(x,v),B(x,v) € R{x,y}. In
addition, I = {y = 0}, I'" = {x = 0} and there exist bounds 0 < cy < A(x,y) < C4, —Cp < B(x,p) <
—cg < 0inside W.

Proposition 2.21. Let (Q, W) be a realization of a saddle quadrant on a saddle monotonic domain W.
Then, for every p, € T and every neighborhood U, of p, there is another saddle monotonic domain W
of p., such that, for every p € W \ (T UT’) we have Orbfvv(p) NU, = 0. In addition, Orbfvv(p) is a finite
set and there is a non-empty subset W, C W in which Orby,(q) = {q} for g € W, with the property
that W\ W, is a neighborhood of EN'W.

The set W,,, is called the negative escaping region of F in W and it contains the points whose
inverse image cannot be defined in W. Similar, we call positive escaping region W, of F in W as

the negative escaping region of F~1.
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Proof. For the proof, we can assume that F is written as (2.17) with p, = (w,,0) and that U,
contains a box neighborhood (w,—¢, w,+¢€)%[0,9) of p, for some ¢, > 0. The coordinate functions
v and x are monotonic in the orbits inside W \ (I' U {p,} UI"), being v decreasing and x increasing.
That is, denoting (x;,;) = F((xj-1,¥;-1)) for some (xg,y9) € W\(TU{p,}UI") such that Fi(xg,90) € W
for every i such that 0 <i < j, we have that x; > x;_; and y; <y;_;. We look for a neighborhood

W =[0,wy +€) x[0,8) U (wy —&,wy +€) x [0,8) of p, = (0,0), for some & with § > & > 0.

First, we find a bound for the amount x; —x( for any point (xy,y9) € W N {x < w, — ¢}, using the

upper bound of the function A.

x1—x0 S x5 Y0 Ca < (wp — €)' Cy. (2.18)

Imposing v < 6, with 6™ < W, we find that x; —xy < 2¢. Together with the fact that
the coordinate y is decreasing on the orbits on W, this proves that for any point (x¢,vg) € ([0, w, +
€)x[0,8)) N {x < w, — ¢} such that (x;,v;) € ([0, w, + &) X [0,8)) N {x < w, — ¢}, we necessarily have
(x1,v1) € W= [0, wy+¢€)X [0,3). In other words, any orbit starting at W cannot "jump horizontally"

the set U,.

Now, we check that indeed every point p in W \ (I' U{p,}UT”) fulfills that there is some Cy € Ly
such that F%(p) € U,. Suppose that x(p) < w, — ¢, since otherwise the point p belongs already
to U,. Suppose by contradiction that there is not such an iterate. Then, since y is decreasing

and the upper bound x; — xg < 2¢ we found above, the positive orbit Orbj, (p) of p must have

accumulation points in the closure WN{x<w,—e¢). By the increasing x condition, we find that
no point in I'" U {p,} can be an accumulation point for Orby,(p), since 0 < x, < x; for every j > 0.
On the other hand, we find that no point g in I' can be an accumulation point since either I' is
part of a non dicritical component of the divisor, a curve of fixed points or it is part of a parabolic
curve. In the first two cases there is some regular non-dicritical arc inside I' that contains g and
this regular arc fulfills Proposition 2.17, which implies that g is not an accumulation point. In
the second case, g is not a fixed point, and hence it can neither be an accumulation point. The
rest of the points can neither be accumulation points since they are not fixed. Hence, we find
a contradiction and conclude that the orbit OerVLV'm{xSwz—e}(p) is finite. Then, let (x;_1,v7_1) be
the last iterate of p = (x(,yp) in the region W N {x < w, —¢}. Its image in W lies in the region
Wni{x>w,- &,¥ <y¢_1} because of the bound in (2.18) and the fact that y decreases on the orbits
in W. Finally, since this region belongs to (w, — &, w; + €) X [0,0) C U,, we conclude that p has an

iterate in U,, as we wanted to prove.

With the same arguments, we can also prove that Orby,(p) is finite, since W is relatively
compact in M and there cannot be accumulation points of OrbfW(p) in the closure of W. This

implies that for every point p € W, there exists —m,, € Z<q such that F"(p) € W,;. defined in the

84



2.3. LoCAL DYNAMICS AFTER REDUCTION OF SINGULARITIES

statement, which implies that W, is non-empty. Finally, to see that W \ W, is a neighborhood
of EN W, it is enough to consider that EN W C Fix(F). By continuity, there is a neighborhood of

E N W whose image is contained in the open set W. O

Notice that the above result implies that W C Saty (U,), and hence Satyy (U,) is a neighbor-
hood of p..

Corollary 2.22. For any p; € W N E and any neighborhood Uy C W of py, the set Saty (Uy) U (I'U
{p.} UT") is a neighborhood of WNE in W.

Proof. It is enough to apply Proposition 2.21 to the point p; and U; either for F if p; € I' or
F~'if p; € I”. Hence, we obtain a neighborhood W, of p. that is contained in Saty (U;) and
that it is a neighborhood of W; N E. To see that the saturation Satyy (U;) is a neighborhood of
the rest of the points of E, we take any point g € EN W, C Saty (U;) U (T U {p.} UT’) and any
neighborhood U, C W,. Suppose that T C E and that g € T C E. Then for any other point, ¢’ € E,
we define the regular non-dicritical arc I} > and apply Corollary 2.18. We find Saty, (U,) UT C
Saty (Uy) U (T U{p,}UT") is a neighborhood of q’. We do the same process when I’ C E, choosing
g € I” so that Satyy (U;) U(I' U {p.} UT") is also a neighborhood of any other point in I"".

O

2.3.4 Dynamics over paths of divisor saddle quadrants

Now, we prove another result on transition. Let (Q,,...,Qs_1) be a path of quadrants (cf. Defini-
tion 1.39) with Q, = (vy,e1,e2) and Q; = (v;,e;_1,¢;) for i = 2,...,s. Let py,...,ps_1 be strict fixed
points corresponding to the vertices v,,...,v;_;. We say that Q = (Q,,...,Q,_1) is a path of divisor

saddle quadrants if the following are fulfilled
* Each Q; is a saddle quadrant.
* The edges ¢; € £, foreveryi=1,...s—-1.

We denote y, = Supp(e) as in Section 2.2.3. In particular for the path of divisor saddle quad-
rants, we have y, C E for each i = 1,...,s — 1. Notice that the path of divisor saddle quadrants
can always be extended to other path of quadrants. This is because the edges ¢; and e;_; are

divisor edges adjacent to some other vertex in V;;, say v for e; and v, for e;_;. We take the path

(Qll QZ""’QS—]" Qs) with Ql = (01,60,61) and Qs = (vlres—lres)f where €y, €5 € {eli"-!es—l}-

Proposition 2.23. Let (Qy,...,Qs_1) be a path of divisor saddle quadrants, Eq = y, U{p2}U...U{p,_1}U
Ve., C E the corresponding components of the divisor associated to this path. For any neighborhood V
of Eq, there is other neighborhood Uq of Eq with the following properties. Take any point t,_y € y,_,
and other point t| € y,, and any neighborhood U,_; of t,_,, we have
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1. (Transition) There is a neighborhood U, of t; such that for every p € U \E there is some q,, € U,_,
such that q, = F%(p) and F'(p) € Ugfor0<i<{,.

2. For any neighborhood U, of t;, the set SatVQ(Ul) U Eq is a neighborhood of Eq.

Proof.

S—

Ug = Vi nv

()

i=1

1
V.
1

1=

..., Wy are mutually disjoint and defined by

(Q2, Wy),...,(Qs_1, W,_1) are realizations of saddle quadrants on mutually disjoint con-
vex saddle monotonic domains W,,..., W,_; with the property that they are contained

in V. We also impose that they are mutually disjoint

When p;, or respectively p;, are not of type n-n-2, we will as well take a realization
(Ql,m) of the quadrant Q; (resp. a realization (QS,FW;) of Q,) in the corresponding
saddle, node or dicritical monotonic domain. We will also suppose that each W; is
convex. In case the strict fixed points p; (resp. ps) is of type n-n, we take a joint
realization (Qq, Q, m) of Q; and the other quadrant Q having the vertex v; (resp. a
joint realization (Qs, Q, W,) of Q; and the other quadrant Q having v,), but in order to
unify the notation on the collection of cases, we will simply denote these by (Q;, W;)
(resp. (Qs, W,)). Then, we intersect them with the domain of work, that is, W; = W,V

fori=1,s.

* Letl; =y, NW;and T/ =y, NW;,, foreachi=1,...,5—1. We select points q; €I}, q; €17, ...,

q9._, €T;_1. As we can take q; as close to p; as desired, we will take g so that q; lies between

p1 and t;. Symmetrically, we take q,_; so that g,_, lies between p; and t,_;. Notice that

every couple of points g;,4; lie on the same component ,, of the divisor, fori =1,...,5-1,

but

q; € W; and gq; € W;,;. We define the non-dicritical arcs y; C y,, limited by g; < g/, and

consider mutually disjoint monotonic domains V), C V, defined as in section 2.3.1.

The construction of Ug is sketched in Figure 2.6 for an example in which the path of divisor

saddles is given by (Q,, Q3) and an extension is given by (Qy,Q,, Q3,Q4), where Q; is a saddle

quadrant, Q; is a node quadrant and p; is a n-n-2 point.

We prove the first part of this result by recursively applying Propositions 2.17 and 2.21. First,

take the dicritical arc f;_; between q;_, and t/_; and a monotonic domain Vy , CV,, . We apply

Proposition 2.17 to this arc, obtaining \75571. We choose U;_; € W,_1 N \713571. Now, we apply the

following steps.
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FI1GURE 2.6: An example of the construction of the set Ug for a path of quadrants Q

Step i.b Consider the saddle monotonic domain W; and take from the previous step U; C
W;n ‘7%- a neighborhood of g;, or U;_; obtained as before it this is the first step. We apply
Corollary 2.22 to these elements, obtaining W; = Satw, (U;) with the property that every
point in W has an iterate in U; and W, is a neighborhood of I | U {p,} UT; C E. We take a
neighborhood U/ ; CV,, N W; of the point q;_y-

Step i.a Consider the non-dicritical arc y; and the neighborhood U] C V\EH nv,, of q; de-
fined on the previous step. We apply Proposition 2.17 to these elements, obtaining \7%,
fulfilling the property that every point in \77,1_ has an iterate in U/. In particular, VV:‘ C
Satvyi (U))u V). We take a neighborhood U; C Vyi NW; of g;.

We apply steps (s-1).b, (s-2).a, (s-2).b ..., 2.b. We obtain a neighborhood U] of q]. Defining the
regular non-dicritical arc $; between t; and q; and a monotonic domain Vg C V,,, we apply
Proposition 2.17 to U N Vg, obtaining Vj C Vg with the property that Vs C Saty, (U{). Then,
we claim that any neighborhood U; C Vj of t; fulfills the first statement. Let p € U; \ E. Since
U C \7/31 and 17/51 is obtained from Proposition 2.17, there is {; , such that Fglrﬂ(p) € U] and the

intermediate iterates remain in V3 C V), C Ugq. Then, by Proposition 2.21, there is some {3, such
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that F%i(Ffua(p)) € U, and the intermediate iterates lie in W, C Uq. Following this reasoning,
we find that £, € N such that Fé(p) e U/_, and the intermediate iterates lie in Ug. It is given by
Oy =010+ + 0+ + {1, Applying Proposition 2.17, we have that the orbit of ng(p) either
abandons V), or reaches W;.

We end proving that SatUQ(Ul) U (Eq) is a neighborhood of Eq for any neighborhood U, of t;
(notice that the points p;, p; are excluded from Eg). It is enough to apply Corollaries 2.18 and 2.22
at each step. First, take any point g;" in y,, and define the dicritical arc )" between t; and g7’
Corollary 2.18 implies that Saty, (U;) U y, is a neighborhood of 1. Now take the neighborhood
Saty, (Up) N Uy, its saturation Saty, (Saty, (U;) N Uj) C Saty,(U;) when adjoining I7 UL, it is
a neighborhood of p, and the segments I} and I, by Corollary 2.22, hence so is SatUQ(Ul). We
apply Corollaries 2.18 and 2.22 to each SatUQ(Ul )N U; and SatUQ(Ul)ﬂ U/, concluding finally that
SatUQ(Ul) is a neighborhood of y, U---Uy,  UI,_;Uy,_;. We end by proving that SatUQ(U1 )UVe,,
is a neighborhood of y,_,. It is enough to use, as before, Corollary 2.18 in the non-dicritical arc
defined between f,_; and any other point 9., to prove that Saty,(U;)Uy,_, is a neighborhood of
q;", and conclude that Saty, (Uy) is a neighborhood of Eq.

O

2.3.5 Dynamics on node quadrants

In this section, we will introduce results on the dynamics on node monotonic domains. The node
monotonic domains can be realization of a single quadrant or a joint realization of two node
quadrants adjacent to the same vertex, depending on the type of point that p is. We will also prove
that in general we cannot obtain a full neighborhood of p, by saturating arbitrary neighborhoods
of arbitrary points of the divisor, as we did before for saddles. We will distinguish two cases:
strict fixed points of type f-n-n, f-n-s, n-s, n-n-1 and n, which have a node quadrant and for
which realizations of the node quadrants can be defined (as quadrants in the geometric sense),
and strict fixed points of type n-n-2, which have two node quadrants but only joint realizations

exist (as half spaces in the geometric sense).

Quadrants

Suppose that p, is a strict fixed point Let (Q, W) be a realization of Q with (W,(x,y)) a node
monotonic domain at p,. Let I = {x = 0,y > 0},I' = {y = 0,x > 0}. Then, the diffeomorphism
is expressed as in (2.9) or as in (2.10) in a node monotonic domain, in which both coordinate
functions are decreasing on the orbits inside W \ (I' U {p,} UT"”). Both expressions are summarized
in

n+s

F(x,p) = (x +x"" " A(x,9), + x"y""" B(x,7)), (2.19)

88



2.3. LoCAL DYNAMICS AFTER REDUCTION OF SINGULARITIES

with A,B € R{x,y} or A,B € C®(W), m,r,s >1,n>0, 1 € {s,r} and A(0,0) <0, B(0,0) < 0. Notice
also that Supp(G(&, m))NW =T U {p.} UT".

Proposition 2.24. Suppose for instance that I C E. For every p € I and any neighborhood U of p, the
set Satyy (U) U (T \ {p.}) is a neighborhood of (' \ {p.}).

Proof. Recall that the expression of F is given by (2.19), that I' = {y = 0} and I'" = {x = 0} and that
we can assume there exist bounds —-C4 < A(x,y) < —c4 <0, -Cp < B(x,y) < —cp < 0 inside W.
Take any p €I, and any neighborhood U of p. To see that Saty, (U) U (I') is a neighborhood
of any g € I, we directly apply Corollary 2.18 for the regular non-dicritical arc B between p,q.
Noticing that W N {x > u} with u < x(p),x(q) is a monotonic domain for B, we apply the result
for either F or F~!, depending on g < p or p > p and the neighborhood U of p, obtaining V C
Saty (U)U (I'\ {p.}), which is a neighborhood of 4. O

Using only arguments of monotony, we prove that any box type neighborhood of a point

inside one component I' or I'” cannot fill in a full neighborhood of the corner p,.

Proposition 2.25. With the same notations as above, let p = (w,0) eI ={y =0}and let U = (w—¢,w+
€) x[0,0) for some 0 < e <w and some & > 0. Then, Saty (U)UT U {p,} UT" is not a full neighborhood

of ps.

Proof. Take any point p’ = (0,w’) € I” with w” > 6 and a box neighborhood U’ = [0,¢’) x (w —
O, w+9")with 0 < ¢’ <w' -0 and ¢’ < w—¢e. Using Proposition 2.24, we get that Saty (U’) is a
neighborhood of I"". Suppose by contradiction that Saty, (U) U U{p,} UI" is a neighborhood of p..
Hence, there is a point g € Satyy (U’)NSaty (U). Then, there is some ¢ > 0 such that F‘g(q) € U and
there is some ¢’ > 0 such that F~¢'(q) € U’. Hence, x(F~¢(q)) >w—¢ > ¢" and p(F(q)) <6 <w - &’
and x(F~¢(q)) < ¢’ <w—e and p(F ¥ (q)) > w'~9" > 6. Supposing that £’ > ¢, we find a contradiction
with the fact that x is decreasing on the orbits of F. Supposing that £ > ¢’, we find a contradiction

with the fact that y is decreasing in the orbits of F. O

In the following remark, we give some comments on the form that the saturations of box

neighborhoods can take.

Remark 2.26 (On estimations on the saturation of box neighborhoods). Here, we just want to
remark in which regions the saturation of box neighborhoods of points of the divisor lie. That
is, sets of the form U = (w—¢,w + €) x[0,0) as in the previous result. We can assume that F is
written as in (2.9) or as in (2.10) with I' = {y = 0}, I’ = {x = 0} and that -C4 < A(x,y) < —c4 <0,
—Cp < B(x,v) < —cp < 0 inside W. We suppose first that r =1 and s > 1. Let p = (x¢,99) € W and
denote (x;,y;) the coordinates of F/(p). We estimate the growth of yj/x;-‘ for some k € NU (1/N).
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Using the bounds for the functions A and B, we find the following

Y1 Yo _Yo 1- CBxgy(r)n Yo _n.m s—1 n..m
< -1)]<Zx —Cp+kcpx™ +O(xyy;'))-
kX T Ak ((1 —cpx(tsTlyink 5 0% (=Ca+kes o3

Since s > 1, we can choose k € NU (1/N) for which p/x* is decreasing along the orbits. Take

K =SUp,cy {i}((pp)l} and any k € NU (1/N*) so that the function y/x* is decreasing on the orbits. We
find that for every p € U we have Orbyy (p) C {(x,v) € W\ T": v/x* < «}. This gives another proof
of Proposition 2.25, that is , Saty (U)UT U {p,} UT’ cannot be a full neighborhood of p., since
every neighborhood of p, has non-empty intersection with the set {(x,9) € W \T”: yp/x > «}. For
a more careful analysis, we distinguish two cases. When s > 1, the function p/x* is decreasing on
the orbits for any choice of k. In short words, this means that the coordinate y of the orbits in
the saturation of U decreases exponentially with x (the neighborhood where monotonicity holds
depends on k). On the other hand, when s = 1, we can just assume that there is a choice of
k e NU (1/N*) such that y/xk is decreasing on the orbits.

When r > 1 and s = 1, we find a new estimation

X, Xg X -
—}( - —2 < —gxgy(r)"(—CA +cgkyy "+ O(xg95")),
1" % %o

which implies that for every k € NU(1/N) the function x/y* is decreasing in the orbits if y, is small
enough depending on k. Using this estimation, we find that the saturation of U may approach

exponentially the curve I'".

Half-spaces

Now, the diffeomorphism on a realization (Qy, Q,, W) of two adjacent node quadrants at p € E in

a node monotonic domain W is expressed as in (2.1). We summarize that expression.

F(x,9) = (x+p"xA(x,9) + 9> > b(y),y + "' B(x, 7)), (2.20)

with A,BeR{x,p}, n,s >1 and B(x,y)<0. Let = EN{x>0}NW and I" = EN{x <0} N W. Notice
that now, the curves I' and I'” are not transverse. Recall also, that there is a formal invariant curve

y transverse to E at p,, in which the diffeomorphism is formally attracting.

Proposition 2.27. Let (Q1,Q,, W) be a realization of two adjacent node quadrants at p, on a node
monotonic domain W. Then, for every p € I (respectively p’ € I'’) and neighborhood U of p (U’ of p’)
the set Saty (U) UT is a neighborhood of T (Satw (U’)UT"’ is a neighborhood of T”).

Proof. The proof of this result follows from the application of Corollary 2.18. We apply this result
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to every non-dicritical arc defined between each g €I (or g € I, correspondingly) with g # p and
p. O

2.3.6 Dynamics on dicritical quadrants

In this section, we will introduce the results concerning the dynamics on realizations of dicritical
quadrants. We will prove that there are dicritical monotonic domains which are positively or
negatively invariant for F. We will prove that the orbits inside such dicritical monotonic domains
accumulate either for positive or negative iterates into the dicritical curve, and that no orbit
accumulates into the corner point. We will also prove existence of parabolic curves on every
point of the dicritical curve. We will assume that Q is an attracting dicritical quadrant, but the
results can be applied also for F~! in the case of repelling dicritical quadrants.

Let (Q, W) be a realization of Q and (x,y) the coordinates at p, defined on the dicritical mono-
tonic domain W. Suppose that I is a non-dicritical component of the divisor given by {y = 0} and
that I'” is a dicritical curve given by {x = 0}, which can be a component of the divisor or not. The

diffeomorphism is thus given by (2.6).

Proposition 2.28. Let (Q, W) be a realization of a dicritical quadrant such that W is a dicritical
monotonic domain, T is a non-dicritical component of the divisor and I'" is an (attracting) diciritcal
component of the divisor or a bidicritical curve. There exists two other dicritical monotonic domains
W, € W, € W such that

1. Foreveryp € Wi\ (TU {p.}UT"), the orbit OrbfW (p) is infinite.

2
2. For every p € Wy \ (T U {p,} UT’), there exists a single g = w(p) with q € T".
3. Foreverype W\ (I'U{p,} UT"), the orbit Orby,(p) is finite.

4. For every point p € I and every open neighborhood U of p, Saty (U) U (I' U {p.} UI") is a neigh-
borhood of T U {p.}.

5. The function ¢ : Wy \ (T U {p,} UT’) — I defined by ¢(p) = w(p) is continuous.

Proof. We recall the expression of the diffeomorphism given in (2.6) on a dicritical monotonic
domain

F(x,v) = (x + x"y"A(x,9),9 + X"y ' B(x,)), x>0, y>0,

with A(0,0) <0, I ={y =0} and I'" = {x = 0}. Notice that the coordinate x decreases on the orbits
of the points in W\ (I' U {p,} UT’), in particular there exist bounds -C4 < A(x,y) < —c4 <0, —Cp <
B(x,y) < Cg. We will show that the orbits of the diffeomorhism fulfill some bounds, which will

91



CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

be used along the proof. We will suppose first that W is sufficiently small so that the following
bound stands for every point p = (x(, ) out of T U {p,J UT".
1 1 1

_ > 1> n=1-T L O(x"7) (2.21
o e T Ty Al o) (L s iy (g oy )= Tea%o + O ) (2:21)

T,,m
1%

That is, up to taking a dicritical monotonic domain at p, smaller than W, we can suppose that

1 1 ~
- >C, 2.22
ST T (222
for some C > 0. If the iterates (x;,vi) = F(x0, ) exist and belong to W up to some j > 0, we have

T,,m
X0¥o

iy < —————,
1+]Cx0y0

1Y) (2.23)

which follows from the bound in (2.22). We want to bound |y, — | for some ¢ such that (x;,y;) =

F(x,7,) exist and are contained in W for i with 0 < i < ¢. Following the same idea as in the proof

of Proposition 2.20, we can bound x"y™*! < (xTy™)¥ for any 1 < y = min{—r, il
2
(-1 -1 ¢ T..m
(x50 )" (x990 )"
7 yo|<CB§ xy“<CB§ (xjy")r<C > —0 SCBJ —— 00 __gr<
= 1 =0 ] 1+]Cx0y0 (1+tCxyyy)H

00 T m (,u 1) m (14 1)
<Cp J (xgv0 ¥ dt < Cg xg”y(’)”y+x0 _ Yo ]sCOxS(” 1)3’0 (n- 1)’
(1+tCxCymH C(p-1)

(2.24)

for some Cy. We have used first the bound of the function B, secondly the aforementioned bound
of the monomials Xj ym later (2.23) and then the integral criteria for series with decreasing terms.
Integrating on a larger domain, we have found a uniform bound, that is, a bound which does not
depend on ¢. Finally, up to reducing more the domain W, the last bound is valid.

We have the following claim, which we prove in the end of the proof of Proposition 2.28.
Claim (1). For every point p = (0,w) € I”, let D,, = (3%,2%)x[0,¢) and D,, = (¥,3%) x[0,¢). Then,
there is some ¢ = ¢(w) such that for each g € D, \ T’ the orbit Orb+Dw(p) is infinite and there is

some p, € I'N D, such that w(q) = pg- In addition, ¢ can be taken ¢ = wk for some k € N with

1-m(p-1)
=i

* Proof of the first statement. We prove that there are two dicritical monotonic domains such
that W, c W, such that for every p € Wy \(Tu {p.} UT"), the orbit Oer“W2 (p) is infinite. It is
enough to select a box D,, obtained by using Claim (1), and define W, = [0,¢€) x [0,%w) and
W, = [0,¢€) x [0, 2w) On the one hand, given any point p = (x(,v) in W, its positive orbits lies
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in {x < x¢} and x( < ¢, which means that if the orbit is finite, there is an iterate with y, > %w.

However, the bound in (2.24) implies that y, -y, < %Lw.

Proof of the second statement. We need to prove that no orbit accumulates at p, = (0,0). Using
the previous claim, we find that D = |5 D,, is a region that fulfills the following: the orbit
of any point g € D,, converges to I\ {p,}. Considering also that ¢ of D,, can be chosen to be
e(w) = w* for some k € N, we notice that the boundary curve of this region is y = {x = C3p*} for

some Cjs.

Now, we will make k new blowing-ups in order to separate the curves I'" and y = {x = C3v*},
which intersect at p,. We start blowing up p.. We obtain a new non-dicritical component E;
of the divisor free of inner strict fixed points and two points: a saddle point p; at the inter-
section of E; and the strict transform of I, and a dicritical corner p;, at the intersection of E;
and the strict transform of I'". In the usual chart of the blowing-up in the direction of y, we
take coordinates (x’,p’) and we find that the strict transform of y has equation x” = C,(y’)<1.
We recursively blow up the point p;, obtaining a new component of the divisor E;,; and two
points: a saddle point p;,; at the intersection of E; and E; | and a dicritical corner p;,. at the
intersection of E; ; and the strict transform of I'". After k blowing-ups, we find that the strict

transform of ¥ has equation x) = C; (in the usual coordinates (xX),y)) at p;, after blowing-

up). We make an example with k = 2 on Figure 2.7

F/

P2x
Eo

b2
E,

r p1

Px

FiGurke 2.7: Example of sets D and D with boundary y.

If any orbit accumulated into p,, it should accumulate into E; U--- U Ey after performing these
blowing-ups. However, we find that every point at E; is regular for every i such that 1 <i <k,
except its corners, and the points py,...,py are saddle points. We have already proved in the
previous sections that any of these points cannot be an accumulation point of an orbit. The only
point left to study is p.. Nevertheless, we have that py, is in the interior of the strict transform

of D, where all the points accumulate to I\ {p,}. We conclude then the second statement.

93



CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

« Proof of the third statement,. We suppose that the negative orbit of some p € W; \ (T' U {p,} UT”)
is not finite. This implies that there exists an accumulation point of Orbiwz(p) in WQ Since
x(p) > 0 and x is increasing for F~!, the points in I’ U {p,} cannot be accumulation points of
Orbfwz(p). On the other hand the points on I are regular fixed points, and each of them belongs
to a non-dicritical arc. Hence, they are neither accumulation points. Finally, the rest of the
points of Wz are regular, and they can neither be accumulation points.

* Proof the fourth statement. We see first the following claim, which is a weaker version of the
statement. Before stating the claim, and for technical reasons, notice that the inverse FlofF

has the expression
Fl(x, ) = (x+x"9"A(x,v),v + x"v" " B(x,v)), x>0, >0,

with A(0,0) > 0, and in F(W)NW it has bounds 0 < ¢, < A(x,y) < 5A and —53 <B(x,y) < 53. For
technical reasons as well, we will suppose that we work on some dicritical monotonic domain

W, C W, that is relatively compact in W;.

Claim (2). For any U = (ay,ay) x [0,b) € F(W;) where 0 < a; < a, are chosen freely and b > 0
fulfills a, —a; > (~?Aa§1bm, we have Saty (U) is a neighborhood of p,.

It is enough to prove this claim since given any neighborhood U of p €I, and given any other
point r € I' N F(W)), there is a box neighborhood as U of the statement contained in Sat(U).
This is achieved by selecting a, > x(r) and a; < x(r) and then defining the non-dicritical arc
between (a;,0) and p. There is a small enough b that fulfills simultaneously the hypothesis
of the claim and that U is contained in the neighborhood of the non-dicritical arc obtained in
Proposition 2.17.

* Proof of the last statement. Let p € W;, from the second statement, we have that {g} = w(p).
Then ¢(p) = q. Take any neighborhood I, of g € I'” and take any U, of q such that (U, NI") C L.
Necessarily the set U, is a neighborhood of a small dicritical arc y, that contains 4. By Proposi-
tion 2.20, we have that this neighborhood contains one with the properties of Proposition 2.20,
that is, all the points in the small V, converge to a single point in U, NT’. On the other hand,
by the definition of the w-limit w(p), there exists some ny, such that F"i(p) e V,. We have that
F ™ (V,) is an open neighborhood of p. Choosing any neighborhood B, of p with B, C F ™ (Vy)
we have that w(p’) = {q’} for some ¢’ € U,NI" C I, thatis p" € q')_l(Iq). Then, we conclude then

that ¢ is continuous.

Proof of Claim (1). In a given box D,, of the statement, we have

3 \mp-1)
) , (2.25)

[ve — vol < CosT(”‘” (Ew
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since xg < € and y, < %w. We point out that this bound is also valid on the box [0, €) x[0, %w). Now,
we choose ¢ so that we ensure that any iterate of a point p = (xg, 7o) € D,, lies in D,,. It is enough

-1
to impose Cpe™(F1) (%w)m(y )< Lw, and take

=1
1-m(p-1)
e < Cyw D, (2.26)
(e Lomie-1)
Then, we take k so that &(w) = w* with k > %, since w* < C;w ™1 . We conclude that for

any (xg,vo) € D, its iterate (x1,v1) = F(xq,v0) exists in D,, since the coordinate x is decreasing and
X0 — %}w <y <Xxp+ %Lw. By induction, we prove that any iterate F¢(x,,7,) exists again since x is
decreasing and since |y, — yo| < Jw.

It remains to prove that w(p) is a single point in D, NI for every p = (x(,v,) € D,,. We already
know that the sequence {(x;,v¢)}¢eny exists. The only fixed points in D, N T’ belong to {x = 0},
hence the limit of the sequence of coordinates x, that is, {x/}sery is 0. On the other hand, from
the bound (2.24), we have that |y, —v,| < Cox;(”_l) (%w)m(”_1
get that {y,}, is a Cauchy sequence, and hence it has a limit y,,. Then, w(p) = q, = (0,9.,), as we

)
and the convergence to 0 of x;, we
wanted to prove. [ |

Proof of Claim (2). We proceed by contradiction. Suppose that the statement is not true. Then, for
every neighborhood of p,, there exists a point t with Orb™(t)N U = 0. Because of the third item an
iterate escaping the region [0,a;) x [0, D) exists. In particular, the first negative iterate, say F~"(t),
to abandon the region [0,a;) x [0,b) C F(W;) must do it with coordinate y greater than b. This is
because by hypothesis this point is not intersecting U and because of the bound a, —a; > Cpayjb™.
More precisely, because we have x(F*1)(t) — x(F(t)) < Cpaib™ < ap —ay. Then, we have that
the point ¢ fulfills that there exists some F~"t(t) € Wy N {y > b}, the iterate cannot scape the band
{a; <x<ay).

Now, consider a decreasing sequence of neighborhoods {V;};cy of p. such that V; C [0,a;) X
[0,b), V; c V;_; for all i € N and ;e Vi = {p.}, by the assumption, there exists a point ¢; at each
V; and a first iterate —n; € Z( such that g; = F7"i(t;) € Wy N {y > b}. The sequence of points
{9i}ien must have an accumulation point g in the compact set W c W;. We find the
contradiction as follows. To clarify more the ideas of the proof and the various sets that appear

therein, see Figure 2.8.

* Suppose that g € I". Then, take a small enough regular arc I;; with g € I and a small enough
neighborhood Vr, of I such that VE NV; =0 for all i > i,. Applying Proposition 2.20,
there exists a second neighborhood Vi C Vi with the property that the positive iterates of
any p € qu, lie inside qu,_ We find a contradiction with the fact that t; = F"i(g;) € V; and
Vin qu/ = 0.
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Wi n{y > b}

. Vi
o1 i

£

Dx
Ficure 2.8: Sketch of the ideas of the proof of the fourth item.

« Suppose g € I. Since g € W;, its orbit lies in W, and there is some g’ € I'” such that g’ =
w(g). As in the previous item, consider a small enough neighborhood V, (of a dicritical
arc that contains q’) such that V,, N V; = 0 for all i > iy for some large enough i5. Applying
Proposition 2.20, there exists a second neighborhood Vq/ C V, with the property that the
positive iterates of any p € qu lie inside V. Now, take some finite m such that g € F7"0(V),
which exists from the fact that w(q) = q’. Since q is an accumulation point of the points g;,
there exists a subsequence {g; }xeny C F‘mO(Vq’). We claim that there exists a point g; such
that n; > mg and i > ip. This is because since the sequence of points {t;};cy accumulates
into p,, the number of iterations 1; of F~! needed in order to surpass {y > b} is not bounded.

Then, we conclude that F"i(p;) € V; and F"i(p;) € Vq, C V. This is a contradiction since
Vq/ N ‘/l = (Z)

Then, there is a neighborhood V of p, contained in the set Sat%(ﬁ). On the other hand, by
Corollary 2.18, we have that Sat{j\,(ff) is neighborhood of any non-dicritical arc in I', and hence,
of any point in T [

O

Proposition 2.29. Let (Q, W) be a realization of a dicritical quadrant such that W is a dicritical
monotonic domain, T is a non-dicritical component and I is a diciritcal component of the divisor or a
bidicritical curve. Then, at every q € I there is a parabolic curve y, transverse to I'" and its germ is
unique in the following sense: there exists a neighborhood basis U such that for any U € U, the curve

vq N U is characterized as
YeNU ={p e U\I":Orby(p) is infinite and w(p) = q}. (2.27)
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Proof. For the proof of this result, we distinguish two cases in terms of the integer n in the ex-

pression of the diffeomorphism.
F(x,y) = (x+x"y"A(x,v),v +x”ym+lB(x,y)), x>0,y>0,

We make the affine change of coordinates z = x, w =y —a and a > 0, so that we study the diffeo-

morphism at the point p = (0,a) € I"".
Fzzw) = (z+2"(w—a)"A(z,w—a),w+ 2" (w—a)" ' B(z,w—a)), z>0, w>-a,

With A(z,w —a) <0 and A, B have the same bounds as in the original coordinates.

* When n = 1, the diffeomorphism is not tangent to the identity at the point p, it is parabolic
with eigenvalues 1+ (—a)”, 1. Then, the stable manifold theorem can be applied, finding an
analytic curve that directly fulfills the statement of this result. See for instance the result
in [56].

* When n > 1, the diffeomorphism is tangent to the identity. Then, we make a new blowing-
up 0 : (M’,E’) —» (M, E) centered at p. Blowing up a dicritical point generates two dicritical
corners p1, and p,,, and a single saddle point q” at the new component of the divisor. Using
Theorem 2.10, we find that there exists indeed a parabolic curve y, at p’ transverse to
E. The germ of y, is unique in the sense of the statement and it can be blown down to

V4 = 0(yq)- The required curve is y,. 0

The curves that have been obtained in the previous result are only local, in the sense that they

are defined in neighborhoods of each point that can be arbitrarily small.

2.4 Construction of sectors

In this section, we will construct sectors as required in Theorem 2.6. We distinguish two situa-
tions; one of them coming from the maximal paths of quadrants of G(, ) and the other from
dicritical components and node quadrants. Let Supp(G(¢&, ) be a realization of G(&, ) for F in
an open set W as described in Section 2.2 (we adopt the notations therein). We will fix this open

set throughout all the section.

2.4.1 Sectors arising from maximal paths

The first type of sectors that we construct are based on a maximal path of quadrants. For this rea-
son, we will name them path sectors. Let Q = (Qy,..., Q) be a maximal path with Q; = (v;,e;_1,¢€;)

for i = 2,...,s. Let py,...,p, be strict fixed points corresponding to the vertices vy,...,v;. We
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have that the subchain Q" = (Qy,...,Q,_1) is a path of divisor saddle quadrants, in particu-
lar, the points p,,...,ps_; are strict fixed points of type s. Meanwhile, the points p; and p;
can be of any other type. We define y,,...,7,_, induced by the divisor path (ey,...,e,_1), as
we did in Section 2.3.4 for the path of saddle quadrants (Q,,...,Q,_1), that is, as the union
Eq =y, U{p2}Up,U...Up,  U{p;_2} Uy, _, contained in Supp(G(¢&,nr)) for F.

Proposition 2.30. With the notations above, let V be a neighborhood of {p1} U Eq U {ps}. Then, there
exists an open neighborhood Vg of Eq with VQ C V and satisfying the following properties:
« If py is not of type n-n-2, there is a connected representative Iy of Supp(eo) contained in Vo C V. If
ps is not of type n-n-2, there is a connected representative I; of Supp(e,) contained in Vo C V. Both
Iy and I are part of the boundary dVq in V when they exist.
* There is a neighborhood \7Q C Vg of Eq, saturated in Vg, and in which exactly one of the following
situations holds for every p € VQ \E.
a(p) = p1 and w(p) = 0.
a(p) =0and w(p) = ps.
a(p) = py and w(p) = ps.
a(p)=0and w(p) =0.
[y is a dicritical curve and there exists q, € Iy such that a(p) = q, and w(p) = 0.
[ is a dicritical curve and there exists q, € Is such that a(p) = 0 and w(p) = q,.
[y is a dicritical curve and there exists q, € Iy such that a(p) = q, and w(p) = p;.
I; is a dicritical curve and there exists ql’, € I§ such that a(p) = p; and w(p) = q;,.

O X N ORI =

Iy and T are dicritical curves and there exists q, € Iy and q;, € I§ such that a(p) = g, and

w(p) =4qp.
In addition, the type only depends on the type of quadrants of Q1 and Q.

In the statement of the Proposition, we obtain two neighborhoods Vg and VQ of Eq. The first
fulfills a specific property concerning its boundary. This will serve us to have more control in
later proofs. The second fulfills two important properties; it is saturated in the first and that the
positive and negative iterates are well controlled. This set VQ fulfills the conditions of the sectors
in Theorem 2.6. We remark that, depending on the case, they can also be neighborhoods of p;
and p; (in the subspace topology in Vg). On the other hand, we remark that VQ and Vg of the
above result highly depend on the neighborhood V of Eq. In addition, there is not uniqueness on

the choice of these sets.

Notation 2.31. Suppose that we obtain the neighborhood VQ of Eq from a maximal path of quad-
rants Q = (Qy,...,Q;) inside some open set U. We stress that VQ has been obtained inside V by
denoting \7Q = VQ(V).

In the following table, we show the type of domains obtained in the previous result depending
on Q; and Q..
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’ Ql ‘ Qs ‘ F
Node Saddle 1
Saddle Node 2
Node Node 3
Saddle Saddle 4
5
6
7
8
9

| E-

Dicritical Saddle
Saddle Dicritical

Dicritical Node
Node Dicritical

Dicritical | Dicritical

G\IOOU‘IO\%U)MN’TJ
—

TasLE 2.2: Type of invariant sets (in terms of 1-9 of Proposition 2.30) for F and F~! depending on the first
and last quadrant of Q.

Proof of Proposition 2.30. Consider a saddle, node or dicritical monotonic domain W; C V at p;

with i =1 or s depending on the type of quadrant of Q;.

* When the strict fixed point p; is of type n-n-2, Wj is a joint realization of the quadrant Q,
and the other quadrant Q with vertex v;. In any other case, W is a realization of a single
quadrant. We call I} := Supp(e;) N W; and [} := Supp(ey) (I defined when p; is not of type
n-n-2).

* When the strict fixed point p; is of type n-n-2, W; is a joint realization of the quadrant Qq
and the other quadrant Q’ with vertex v,. In any other case, W; is a realization of a single
quadrant. We call I;_; := Supp(e;_1) N W, and I} := Supp(e;) N W; (I; defined when p; is not
of type n-n-2).

We need a technical requirement. We take a neighborhood V' C V of Eq (excluding the endpoints
P1,ps) such that

e LNV’ =0and I[NV’ =0, when I or T} exists.
e If Q is a saddle quadrant, V' N Wy .. =0 and F(W

1,esc )NV’ = 0 (recall that W,
region where the negative orbit escapes W), and if Q; is a saddle quadrant, V' N W;’resc =0

Lesc is the

and F~ (W, )NV’ =0 (recall that W, is the region where the positive orbit escapes Wj).
Notice that it is possible to obtain such a neighborhood V' of Eq = y,, U {p2}U... U{ps_1}U e

fulfilling these conditions. The first is obvious since Iy, I; does not intersect y, U {p,} U... U
{Ps-1} U y.,_,- The second is a consequence of Proposition 2.21: Wy \ W . is a neighborhood of
) (since Wy \F~1( W ese)

is not a neighborhood of E N Wy). We proceed in the same way to ensure the second statement in

ENW,. Choosing V’ even smaller we also have the condition of F~! (W1 s
W;. We apply Proposition 2.23 to Q’ and V’, so that we obtain a neighborhood Ug C V’ of Eq
with the properties of that proposition. Let us recall that for any points t; € y,,, f,_1 € y,_, and
neighborhood U,_, of t;_j, there is a neighborhood U, of t; such that for every p € U; \ E there is
some ¢, € Orbzr]Q,(p) NU,_; (notice we have changed slightly the notation of the neighborhood U,
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with respect to Proposition 2.23). Define the set Vg C V
VQ = Wl U UQ/ U WS.

We distinguish the following cases.
I. When Q; is a saddle quadrant, we choose t,_; € I | and a neighborhood U, ;, C Uy N W;
and U/, N(T; U{ps}) = 0.
II. When Q is a node quadrant, let t,_, €T, and U, , C Uy N W; with U_, N (T U {p,}) = 0.
I1I. When Q; is a dicritical quadrant, we apply Proposition 2.28 to F~!, obtaining another dicrit-
ical monotonic domain W, c W, (with the properties of W, in the statement of that result).
We choose t;_; €I/ | N W, and U, ,c W.N Ug'

Wi
W, Wa

1,esc

Ficure 2.9: Construction of a path sector.

Notice that the positive iterates of any point p in U,_, can have different behaviors:

(+) By the technical requirement on the choice of V’ and since U, ; C W;, we have that the first
iterate F"(p) to abandon Ug lies in W;. Hence it is enough to study the positive iterate in Wi;.
In the case I, Orb{’,Q(p) escapes W; from Proposition 2.21. Notice that Orb{’,Q(p) eventually
reaches W',;. and abandons W; and also Vg since Wy, NV’ = 0. In the case II, the orbit

remains in W; and converge to p, from either Proposition 2.24 or 2.27 (depending on whether
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ps is of type n-n-2 or not). In the case III, Orb(,Q (p) remains in W, and converge to some point

in T, which depends on p by Proposition 2.28 (notice that U]_, C W,).
Now, we choose a point t; € Wj.
I. When Q; is a saddle quadrant we choose any point in t; € I3.
II. When Q) is a node quadrant, we take any t; € I3.

III. When Q; is a dicritical quadrant, we apply Proposition 2.28 to F, obtaining W, (with the
properties of W, in the statement of that result). We choose t; e [1 N W.

As we have said, by Proposition 2.23, we obtain a neighborhood l~]1 of t; so that USLI captures
the positive orbits of the points p € U;. In the dicritical case, we will take U; = U; N W;. In the
rest of the cases, we simply choose U; = U;. The negative iterates of any point p € U; behave in a

different manner depending on the type of quadrant that Q is:

(-) By the technical requirement on the choice of V' and since U; C W;, we have that the first
iterate F"(p) to abandon Ug lies in W;. Hence it is enough to study the negative iterates in
W;. In the case ], Orb{,Q (p) escapes W from Proposition 2.21. Notice that Orb{,Q (p) eventu-

NV’ =0. In the case II,

ally reaches Wy ., and then abandons W; and also Vg since Wy

esc
Orb‘_/Q(p) remains in W; and converge to p; from either Proposition 2.24 or 2.27 (depending
on whether p; is of type n-n-2 or not). In the case III, it remains in W; and converge to some

point in I}, which depends on p by Proposition 2.28 (notice that U; C Wy).

Then, we have control in the negative orbits of any point in U;. By construction, we also have
that the positive iterates of any point p € U; \ E lie on V' C Vq up to some £, with Fo(p) e Ul
The iterates F"(p) with n > £, have already been described in (+), since Fgﬂ(p) eU/ .
Then, we define the set
Vi = Saty, (U;) U (Eq).

By the construction above, we check that VQ fulfills one of the nine situations stated in the Propo-
sition. It remains to prove that VQ is a neighborhood of Eq. It follows from Corollary 2.22, Propo-
sition 2.24, Proposition 2.27 or the fourth item of Proposition 2.28 in the points in Eq N W; and
Eqg N W;; as well as from Proposition 2.23 in the rest of the points.

O

Remark 2.32. We want to emphasize something to be proved later in this text; we can choose
VQ such that the boundary 8VQ is a C° curve, as in section 2.5.1, by defining a fundamental
domain in Vg with certain properties and taking its saturation, instead of taking the saturation

of a neighborhood U; of a point ¢; in the component y, , as in the proof of this result.
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The following Proposition proves that the sets VQ \ Supp(G(m, &)) can be projected by the
sequence of blowing-ups 7 to Aq = n(VQ \ Supp(G(m,&))) and that they fulfill the asymptotic
properties of the sectors. The proof is straightforward considering that the sequence of blowing-
ups 7 is a diffeomorphisms outside of E and that E is mapped to 0. However, we remark that
there is something of global nature yet to be proved. Namely, that the Aq is self-saturated in a
full open neighborhood of 0, roughly, F(Ag) C Aq. We will come later to this.

Proposition 2.33. Let VQ be a saturated domain obtained from Q = (Qq,..., Q,) as in Proposition 2.30.
Then, Aq = n(VQ \ Supp(G(m,&))) is a sector with the properties of a two dimensional stratum in
Theorem 2.6.

Proof. As we anticipated, the behavior of the orbits inside VQ and hence inside Aq is well de-
scribed by the previous result. We only need to consider that E is mapped to 0 and that the
parabolic curves and curves of fixed points out of the divisor are mapped to parabolic curves
and curves of fixed points at 0. For instance, notice that it makes a difference having a dicritical
quadrant with both edges in the divisor or a dicritical quadrant with one edge out of the divisor.
This is because in the first case, the points will accumulate into a single point 0 € R, Meanwhile

in the second case, the projection of the curve is a curve at 0 instead of a single point. O

As before, we summarize the type of sectors that we can obtain in Table 2.3. At this stage,
to determine the type of sector, we do not pay attention to whether we work with F or F~!. To
understand it better, let Ij; be the support of the edge ey of Q; and I the support of the edge e, of
Q;. We denote Div to indicate that this curve belongs to E and NDiv when it is not. We denote )

to indicate that there does not exist a realization of ¢, for F.

y Pairs Q; — Q; \ Pairs I, - I, | Sector |
Node - Saddle Div, NDiv or 0 - NDiv Parabolic
Node - Node Div, NDiv or 0 - Div, NDiv or 0 Elliptic
Saddle - Saddle NDiv - NDiv Hyperbolic
Dicritical - Saddle NDiv - NDiv D-parabolic
Dicritical - Saddle Div - NDiv Parabolic
Dicritical - Node NDiv - Div, NDiv or 0 D-elliptic
Dicritical - Node Div - Div, NDiv or 0 Elliptic
Dicritical - Dicritical NDiv - NDiv D-D
Dicritical - Dicritical Div - NDiv D-Elliptic
Dicritical - Dicritical Div - Div Elliptic

TaBLE 2.3: Type of invariant sectors arising from saturated sets of paths.

By Proposition 2.30, we can construct the saturated domains Vg in a common open neighbor-
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hood W of E in M. Let us put

Voarn(We) := ] Vo(We)USupp(G(€,m)).

Q max

We highlight that each VQ is saturated in V. We see now that V), is a neighborhood of all
the points in E except a finite number of strict fixed points of type n, n-n, n-s, f-n-n and f-n-s, as

well as the dicritical components of E for &.

Lemma 2.34. The set V(W) is a neighborhood of every regular point in the non-dicritical compo-
nents of E for &, as well as the ones in S(F, 1) of type d, s-s, f-s-s or f-d-d.

Proof. Suppose that p € S(F,n) of type d, s-s, f-s-s or f-d-d. In any of these cases, there is a
curve ¥ C Supp(G(&, ) corresponding to a segment of parabolic curve, curve of fixed points or
a component of the divisor. Let Q, and Q_, be the two paths of quadrants with p as extreme
point. By the first part of Proposition 2.30 applied on each path, the union Vo Uy U Vg is
a neighborhood of p since a small enough representative of the germ of the curve y at p must
belong to the boundary of V_from Proposition 2.30 for € = +,—.

Then, take saddle or dicritical monotonic domains W,, W_ C Wg, correspondingly, realiza-
tions of the quadrants at p so that W, c Vo, W_ C Vg . Applying Corollary 2.22 (saddle) or
the fourth item of Proposition 2.28 (dicritical) and the property that VQ€ is saturated in Vg_ for
€ = +,—, we get that Vo Uy U Vg is a neighborhood of p . More precisely, take any neighbor-
hood U, € W, N \7Q of any q. € W, for € = +,—. The saturation of U,(that lies in W, C Vg ) is
a neighborhood of p in the subspace topology in W, in both the saddle and dicritical cases (cf.
Corollary 2.22 and Proposition 2.28). Since U, C VQe’ Ue C W, C Vq_and VQg is saturated in Vg,
we have that VQE is a neighborhood of p € Vg _for € = +,-.

The open set V,4; being a neighborhood of the rest of the regular non-dicritical points is a

consequence of the construction of each Vg in Proposition 2.30. O

2.4.2 Parabolic sectors at nodes and dicritical components of the divisor

Notice that to obtain a sectorial decomposition of F we need to obtain a partition of a neighbor-
hood of 0 € R?. Notice that the projection 7(Vpatn \ E) once we remove Supp(G(¢,n)) is parti-
tioned into sectors, the subsets Ag obtained in Proposition 2.33. However 7t(V,4, \ E)U{0} is not
a neighborhood of 0. In this section we construct new sectors to fill in a neighborhood of 0 with

the properties of Theorem 2.6.

Proposition 2.35. Let V,q;,(WE) be defined as above. Then, there exist a finite number of subsets
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{Vi}é‘:1 and a finite number of connected curves {7/]‘};:1 such that

Viath YSupp(Enain) U VI U---U Ve Uy ULy,

is a neighborhood of E and each V; fulfills one of the following

* There is q; € S(F, 1) of type n, n-n, n-s, f-n-n or f-n-s such that for every p € V;, either a(p) = q;
and w(p) =0 or a(p) =0 and w(p) = q;.

* There is a regular dicritical arc B such that for every p € V;, there is some q, € B such that either

a(p) = qp and w(p) =0 or a(p) = 0 and w(p) = q,.

In addition, the new curves y; are contained in the common boundary of some V; and some connected

component of V.

Proof. We will work in different points and dicritical arcs of the divisor.

* Suppose that p is a strict fixed point of type n, n-n, n-s, f-n-n or f-n-s.

— Suppose that p is of type n or n-n-2. Suppose without loss of generality that it is attracting.
There are two path quadrants, say Q,Q’ sharing the endpoint at p, and there are not
components of the germ of Supp(G(&, m)) at p outside the divisor. Consider the open sets
Vas \7Q, Vars VQ, associated to the path quadrants Q, Q. We take the corresponding node
monotonic domain W at p as the one given in section 2.3.5, and small enough so that
W C Vg N Vg. Then the openset V. =W\ (E UV_QUV_Q) is positively invariant (by F) and
it is a parabolic set. Let us prove this. Recall that the whole node monotonic domain W
is positively invariant and that W \ E is a parabolic set at p. It is enough to see that V is
positively invariant. Take z€ W\ (EU \7_Q U \7_@) and let z” = F(z). We have z’ ¢ E, and
since WN VQ and WnN VQ/ are saturated, so are W OV_Q and W OV_Q/. Hence 2’ ¢ VQ U VQ/.
Theset V=W\(E UV_QUV_Q/) is one of the V; required in the statement of the result. By
means of Remark 2.32, we also have that each curve y = V; N V_Q \ E is a parabolic curve
for F. This curve is not necessarily analytic, but it is of class C°. It divides W into two

regions.

— Suppose that p is of type f-n-n, f-n-s, n-s or n-n-1. There are two path quadrants, say Q,Q’
sharing the endpoint at p, and there is one component I' of the germ of Supp(G(&, )) at
p outside the divisor. This is a curve of fixed points or an analytic parabolic curve. Let
Q be one of the node quadrants at p and suppose without loss of generality that it is
of attracting type and belongs to Q. Let W be a small enough node monotonic domain
corresponding to Q, so that it is limited by E and a segment of the curve I'. We define the

openset V =W\ (EU VQ). Proceeding as in the previous item, it is positively invariant
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and of parabolic type. Its boundary y = VOV_Q\ E, again by Remark 2.32 is a C° parabolic
curve, one of the collection {y; };:1 of the statement.

Summarizing, in this item, we have found as many sets V; on the statement of the result
as node quadrants there are at p, that is, one or two. We also obtain the corresponding

parabolic curves in the boundaries of V with V.

* Suppose that E; is a dicritical component. There are two dicritical quadrants that contain the
edge e associated to E;. There are also two paths of quadrants Q_ and Q, meeting this edge,
with endpoints p_ and p,, the two dicritical corners of E;. Let VQE C Vg, be the domains ob-
tained in Proposition 2.30 for the path Q., with € = +,—. By construction and using 2.28, we
have that the corresponding sets VQE is a neighborhood of p.. We choose two points q_ and g,
such that the regular dicritical arc I;, , contains E; N dVg and E;N 8\7Q+. We apply Proposi-
tion 2.20 on a sufficiently small monotonic domainVr{H# obtaining qui%. Now, the searched
set is qu_q+ \(EU V_Q+ U V_Q_) By arguments similar to the ones in the previous item, we have
that this set is positively invariant and has the property of one of the V; in the statement of the
result. Again by Remark 2.32, we also obtain the corresponding C” curves in the family {7’]'};:1

in the boundaries of V with V.
O

We illustrate the output of Proposition 2.35 in Figure 2.10. In this figure, we put an example
of three sectors generated over the paths of quadrants Qq,Q;,Q3. Then we define a parabolic
sector V; at the dicritical component E; and the C° curves y; and ¥, on the common boundary
of the new sector V; and VQI and \7Q2, respectively. We construct the parabolic sectors on the
ends of Q,,Qj3, obtaining V5, V3 and the C° parabolic curves y3,y,4 defined, respectively, in the

common boundary of VQz and V5, and in the common boundary of Vg ,and V3.

Va, N I' CSupp(G(§, )
Va,

Ficure 2.10: Example on the construction of parabolic sectors. The sector V) is constructed over a dicritical
component of the divisor. The sectors V,, V3 are constructed over a node.

We name V,,ppqin = Vi U--- U V;. Just noticing that (E) =0 € R? and recalling the definition of

the sets V; in the above proposition, we have that 7t(V;) is a parabolic sector.

Proposition 2.36. Let V; be one of the saturated domains obtained in the previous result. Then A; =

1t(V;) fulfills the weak topological properties of a parabolic sector in the sense of Theorem 2.6.
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2.4.3 Existence of a sectorial decomposition

In this section, we put together the results in the previous sections in order to prove the existence

of a sectorial decomposition.

Proposition 2.37. Let F € Diff{ (R?,0), F = Id and not of center-focus type. There is a representative
in an open neighborhood W of 0 and a second neighborhood W of 0 and a partition S of W in the

conditions of Theorem 2.6.

Proof. We have already made most of the work in the previous sections. First, we take a reduction
of singularities 7 : (M,E) — (R?,0) of the infinitesimal generator of F. We consider its graph
G(&,m) and define its maximal paths. Take a realization Supp(G(&,n)) for F defined on some
neighborhood Wi ¢ w1 (W) of E. Applying Proposition 2.30 to each maximal path Q, we obtain
VQ saturated in open sets V. Then, we define V,;;,(WE) as the union of the sets VQ for each
maximal path Q.

Then, we apply Proposition 2.35 and we obtain a finite number of new sets V; fori =1,...,k
whose union is V;,op.,- Then, by this result, the union V of Viopathr Vpatn, Supp(G(&, 1)) and the
one dimensional curves yy,...,y, contained in (Vyopath N Vpasn) \ E is @ neighborhood of E in WE.

We conclude that W = (V) is the claimed neighborhood that admits the partition of The-
orem 2.6. We have already proved in Proposition 2.33 and 2.36 that, respectively, the sets
Aqg = n(VQ) for a maximal path Q and the sets A; = 7t(V;) are sectors in the sense of the theorem.
Since the curves {y; };:1 accumulate only at E, their projections {71()/]')};:1 are parabolic curves at
0 € R%. We also know that the curves of fixed points and parabolic curves on Supp(&,,_g;,) are one

dimensional strata. Then, adding the point 0, we have found the partition of W we claimed. [J

Remark 2.38. The partitioned set W obtained in the previous Proposition may not be open even
if each two-dimensional stratum is. Later in this text, we will talk more about this topic. We
anticipate that we can make a refinement on the choice of the strata so that, locally, the boundary
dW and W do not intersect except on some points of the curves of fixed points of F. And in the

absence of D-D sectors, we can achieve an open W.

2.5 Refinements of the sectorial decomposition

In this section, we investigate two problems related to the topology and geometry of the secto-
rial decomposition: in which conditions we can find a sectorial decomposition (U,S) such that
U is open and in which conditions we can find a sectorial decomposition (U, S) such that U is
semi-analytic. The first section is more technical and we provide some results to be used in the
following sections. We present some refinements on the construction of the sectorial decomposi-

tion so that each sector individually fulfills specific geometric properties. In the second section,
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we will see that in the absence of D-D sectors, the set U can be chosen to be open, as Proposi-
tion 2.8 claims. We also explain the reasons why we think that the existence of D-D sectors may
be an obstruction for U being open. In the last section, we prove also that in the absence of bidi-
critical curves, U can be chosen indeed semi-analytic, as Proposition 2.9 claims, putting together

the results seen in the first subsection.

2.5.1 Sector-wise refinements

In this section, we choose first a concrete sectorial decomposition, defined inside a neighborhood
W of 0 € R? that fulfills some monotonic properties. Then, we present refinements on the indi-
vidual sectors of the diffeomorphism defined on a neighborhood of 0 € R? that fulfills specific
properties. We also show that it is possible to choose the boundary QVQ to be a curve in the C°
class, as we anticipated in Remark 2.32.

We present first some additional hypotheses to be imposed in the saddle and node domains.

H-S Let (Q, W) be a realization of a saddle quadrant at p € S(F, ) on a saddle domain W
with coordinates (x,p). Recall that x is monotonically increasing and that y is monoton-
ically decreasing on the orbits. Recall also that when p is of type s, f-s-s or f-n-s, the
coordinate functions are analytic. On the other hand, when p is of type s-s or n-s, the
coordinate x may only be C* while p is analytic. We suppose that W is of box type in
these coordinates, bounded by {y = C;} and {x = C,}.

H-N-I Let (Q, W) be a realization of a node quadrant at p € S(F, ) on a node domain W with
coordinates (x,v). Recall that both x,y are monotonically increasing or decreasing on the
orbits. Recall also that when p is of type n, f-n-n or f-n-s, the coordinate functions are
analytic. On the other hand, when p is of type n-n-1 or n-s, the coordinate x may only be
C™ while yp is analytic. We suppose that W is of box type in these coordinates, bounded
by {y = C1} and {x = C,}.

H-N-II Let (Q,Q’, W) be a joint realization of two quadrants at p € S(F, r) of type n-n-2 on a
node domain W with coordinates (x,y). Recall that p is an analytic function and mono-
tonically increasing or decreasing on the orbits and that the orbits of points out of E

converge to p. We suppose that W is bounded by {y = C;}.

We fix an open neighborhood W, of the divisor E C M given as

WE:[ U W;uwp‘]u U Vi,

peS(F,m) e€qiy

where
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 If p is of type f-n-n, f-n-s, f-s-s, s-s, n-s or n-n-1, the set Wp‘ is a realization in the quad-
rant Q~ on the left as a saddle or node domain, correspondingly. The set W, is defined
in the same manner. We choose the saddle and node domains fulfilling H-S and H-N-I,

respectively. Notice that W, N W, is a curve of fixed points or a parabolic curve.

* If pis of type f-d-d, the sets W, and W, are realizations of the dicritical quadrants Q™ and

Q7 on dicritical domains.

* If p is n-n-2, we have that W, is a joint realization of both node quadrants at p in a node

domain of type half-space fulfilling H-N-II, and Wp_ =0.

* If pisa corner of type s, n, d, there is a single quadrant at p. Let W, be a realization of it in
a saddle, node or dicritical domain, correspondingly, and W, = 0. In the saddle and node

cases, we suppose H-S or H-N-I, respectively.

* For each divisor edge e, let y, be its realization and p,p’ its adjacent points. We take a
regular arc (dicritical or non-dicritical) I}, joining two points g,q” € y, such that g € (W7)° N
yeand g’ € (Wpe,,)o N y., where € and €’ correspond to the quadrants intersecting y,. Then,

Vr, is a monotonic domain.

* We can always take W; N Wpe,, =0 when p = p’ for any €,€’ € {+,—}. In addition, we can take
VNVp, =0whene=e'.

Then, applying Proposition 2.30 and Proposition 2.35, we obtain a decomposition (Wg,S) of a
neighborhood Wy c Wg. We have the decomposition of the neighborhood W given by

EU[ U Supp(e)]U[Qw]U U % QVl

e€iiv Qmax
where Supp(e) is a parabolic curve of fixed points of the realization of G(&, ) for F in Wg, the sets

V)

J

VQ are the path sectors, the V; are parabolic sectors at nodes and dicritical components and the
curves y; are the parabolic curves in the boundaries between a parabolic sector and a path sector.
Using the sectorial decomposition we have just presented, we will introduce some refinements,
so that the configuration of sectors will be the same. However, it is possible that the path sectors
are strictly contained in the original ones, and that the parabolic sectors and the curves lying on

their boundaries of can change.

Refinements of the path sectors

Let \7Q be one of the path sectors associated to the maximal path Q = (Qy,...,Qy). In this section,

we propose a refinement of the path sectors. We will do it in two different ways, depending on
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the quadrants Q; and Q, of the maximal path Q.
* Neither Q; nor Q are dicritical quadrants.

* Either Q or Qq is a dicritical quadrant.

Neither Q; nor Q; are dicritical quadrants. Consider any regular point p in some non-dicritical
path [, and the monotonic domain Vp N VQ with coordinates (x,y) such that x is monotonically

increasing on the orbtis of the points Vg \ E. Then, we take
* Yo={x=0,>0}.
* F(»o)

* Fix pg € yp and take any smooth semi-analytic curve that joins pg and F(py) fulfilling

= BNyo=ppand fNF(yo) =F(py).
— The curve p is the image fl[o,1] where B is a parameterized curve §: (-¢,1 +¢€) — Up
with DFpﬁ(/?’(O)) =pf’(1).

Consider the open region U’ bounded by the above three curves. We finally define U = U"U(yyN
U\ {pp,p}. We claim that it is a fundamental domain in VQ. Consider the equivalence relation
in VQ \E given by p ~ g if and only if p € Orbf;Q(q). Saying that U is a fundamental domain in VQ

is the same as saying that the map c: VQ — \7Q/ ~ restricted to U is injective.
Lemma 2.39. The set U defined above is a fundamental domain in VQ.

Proof. We need to prove that F"(p) ¢ U for every p € U and every n € Z\ {0}. First, by the fact that
Vo Vr, has two connected components, the transition in Proposition 2.21 and the fact that Vo is
saturated, we have that the orbits transit from one connected component of VQ \ Vr, to the other.
Then, if one orbit abandons V, it does not return to it. Hence we can suppose that we work in
the single monotonic domain Vr..

Suppose by contradiction that this is not true, that is, there exists some p € U and some
n € Z \ {0} such that g = F*(p) € U. We directly dismiss the possibility that p € y,, since x is
monotonically increasing on the orbits. Suppose without loss of generality that n > 0 and x(g) >
x(p) > 0. Let y, be the curve {x = x(p)}. It is possible that a finite number of closed connected
subsets of Fi(yp) may escape Vr, and that Fi(yp) N Vr, has a finite number of connected open
components. Each connected component has one point in the closure necessarily on the boundary
with WS, where t is adjacent to y, = Supp(e). As g € U°, we have that the connected component of
F"(y,) that contains q intersects F()y) in at least one point, say q’, since the boundary of W in V.

is in the exterior of U. The contradiction that we find is that, on the one hand, x(F~1(g’)) > x(p) > 0
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since g’ € F”‘l(yp). On the other hand, x(F~!(q’)) = 0 since q’ € F(yy). See Figure 2.11 for an

illustration of this proof. O

Vr,

Py .I”":

Ficure 2.11: Illustration of the proof of Lemma 2.39

We want to remark that the image c(U) of the fundamental domain by the quotient map is
topologically a cylinder, since the curve y, C U is identified with F(y,) € U. By the Whitney
inmersion theorem, c(U) can be embedded as a submanifold in some R” with n > 3. Hence it will
make sense to consider the tangent bundle of ¢(U), curves, foliations and any other geometrical

object. We prove the following property.

Lemma 2.40. Bg = SatVQ(U) is a neighborhood of y, U{p,}U...U{ps_1}UY,_, (excluding the endpoints
p1,ps), where y, U{ps}U...U{ps_1} Uy, _, are the inner components of the divisor for the path Q.
Moreover, B fulfills the properties in Proposition 2.30.

Proof. It is enough to prove that Sati;Q(U) is a neighborhood of its basepoint py = U N E, since
proving this and applying Proposition 2.23 we have that the saturation of a neighborhood of any
point in ¥, U{p,}U...U{ps_1} Uy, _, is a neighborhood of y, U{p,}U...U{p;_1} U7, _,. Then, we
will only work in a small monotonic domain U, .

Consider the family of curves y¢c = {x = C}. Notice that the endpoints of these curves are
fixed points placed in the divisor. Notice also that these curves can be parameterized by its p

coordinate, having y > 0. There are two possibilities, either F~!(y¢)Nyy =0 or

(+) F'(yc)nyo=0

Choosing any y¢ with ycNU # 0, which lies in {x > 0} and considering F~!(ycNU) lying in {x < 0}
and the connectedness of the curve F~!(y,), the intersection F~1(y¢) Ny is not empty. Then, we
have the existence of curves y¢ with such property. Observe that provided one y¢, any other y
with 0 < C’ < C also fulfills F~!(y¢/) = 0.

Take any curve yc with the property that F~1(y¢) Ny # 0 and select the point g¢ such that
F~'(gc) € 7o with minimum coordinate y. We claim that for any point q € ¥ with v(q) < v(qc)
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there is —n, € Z<( such that F"(q) € U. To prove this, recall that there are not strict fixed points
in Vr, and recall that x is monotonic out of E. Then, there exists —m, = max{-m € Z: x(F""(q)) <
0}. We prove that —n, = —m,+1. Among the points in yc with coordinate y < y(g), choose the point
q’ such that F7™(q’) € yo and such that y(q’) is maximal. Existence of such a point is ensured by
connectedness of the curve F~!(y¢). Now, we indicate the segment of ¢ that lies between g and
q’ by ycly,q- By the definition of g” having maximum y with the property that F7"1(q’) € 3, we
have F~™(ycl, o) C {x < 0} and that F"s*! (ycl, ») C {x > 0}.

On the one hand, we have that F1(y¢) N F~1(8) = 0 for m, > 2 and F™i(yc)N FYpB)=0
for m; = 1. However, the point t € F~Y(yc) N F~1(B) with least coordinate y fulfills y(t) > v(qc),
by the definition of g¢ and the continuity of F. Since y(q’) < y(q) < y(q¢c) < y(t) for m; = 1 and
EF™™a(yc)NE~Y(B) = 0 in the rest of the cases, we conclude that F~"4*! (vclgq)NB = 0. On the other
hand, by the maximality condition of g’, there are not points between the extreme points F~"4(q)
and F~™i(q’) intersecting y,. Then, the segment F~"4*! (vclgq)\ {F™*1(q")} lies inside U and, in

mq+1(

particular, the point F~ q) € U. See Figure 2.12 for the illustration of these arguments.

Ficure 2.12: Illustration of the proof of Lemma 2.40.

Therefore, we have that the collection of points B, = {q = (C,(q)) € U, : 0 <y(g9) <v(qc),C <
C,,} U U is contained in Satvre(U) C Sat%(U), where C,, is any C,, > 0 fulfilling the property (*).
Proceeding similarly, we find another open set B_ having the points with x < 0 with an iterate
in F7}(U) (and consequently in U), we find therefore, that there is an open neighborhood of p,

contained in Satvq(U), as we claimed.

The fact that B fulfills one of the properties in Proposition 2.30 follows from the construction

of Bg inside VQ and the fact that it is saturated. O

Notice that the set Bg = Satvq(U) is saturated in \7Q which is also saturated in Wg. We con-
clude that Bg is saturated in Wg.
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We define the following curve

a IQ e VQ
t > a(t)=F"B(t—n)) with n = [t]

where Iq is the maximum open set in which the curve can be defined. We will set I = Iq N R<g
and I = Ig NRyy. We claim that I5 = Ry when the quadrant Q; is of node type. It follows
since given any point p in Vg, we have that Orby, (p) is infinite and accumulates in a strict fixed
point (in the node case). When the quadrant Q; is of saddle type, for every p in Vg, we have
that Orb{,Q(p) is finite. That is, for each p € B there is some —n, such that F™"(p) € VQ and
F™ (p)e \7Q. By the compactness of §, the 1, are bounded and I is the union of an interval of
the form (a,0] and a finite number of open intervals (a;, b;) with a; < b; < a. We study the shape of
I in the same manner. We define the curve y to be union of the segments of a and the segments
of 9V without Supp(G(&, ).

See Figure 2.13 for an illustration of the construction of EQ in two examples: a hyperbolic

sector and a parabolic sector.

Ficure 2.13: Hyperbolic and parabolic sectors obtained from a path of quadrants Q as the saturation of a
fundamental domain U. The curve «a is semi-analytic in a neighborhood of E except of the
points in Fix(F) in both cases. In the second picture, it is also a parabolic curve at p;.

Lemma 2.41. The curve y C dBg is semi-analytic in Wg \ E.

Proof. The semi-analyticity of the segments « follows since f is semi-analytic and smooth. We

remark that « is the union of f and F"(p) for arbitrary . In addition this union is locally finite
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in W \ E, accumulation of segments F"(f), if it exists, occurs in strict fixed points or dicritical
curves, but we are excluding the dicritical curves in this section. Then, given any point g of W \E,
we have that « is locally F"(f), and semi-analyticity follows.

Other segments that can be part of y are segments of the boundary of W; and W, when they
are saddle domains. By hypothesis H-S, semi-analyticity follows.

Finally, y is the finite union of the segments presented above, then it is semi-analytic in Wg \
E. O

Either Q; or Q; is a dicritical quadrant

We start by showing that the local parabolic curves that we found in the dicritical components

(Proposition 2.29) can be globalized on the sector.

Lemma 2.42. Let Q be such that Qy is a dicritical quadrant. Then, for every q € Iy sufficiently close to

p1, there exists a connected analytic parabolic curve y at q saturated in VQ.

Proof. Taking the intersection W; N V_Q, take an open neighborhood N, of p; in the subspace
topology, and take any point g € N, NTj. Notice that such set N, exists as a consequence of
the fourth statement of Proposition 2.28. As a consequence of Proposition 2.29, there is a local
analytic parabolic curve y, at q defined in Uy, asymptotic to a formal invariant curve (cf. Def-
inition 2.5). Since U, C N, and N, is open and contained in W, mV_Q, and the fact that VQ is
saturated, we have that the parabolic curve can be extended to y in VQ, by taking Saty, (y,). U

Now, we claim that such a curve y in VQ encloses a neighborhood of y, U{p,}U...U{p;_1}Uy,_,
that has the properties of a sector. Recall that y is invariant and saturated, then, it is a simple
curve y that admits a parameterization y : [ — \7Q such that I is open and F(y(t)) = y(t+1) (when
the image of y(t) is defined in VQ) and such that a(y) = q in the dicritical curve [}. Indeed, as in
the previous section, it is enough to study the saturation in VQ of the compact set y([rg, 7o+ 1])

for some ry € I such that the segment is contained in VQ.

Lemma 2.43. The parabolic curve y encloses a neighborhood Bg of ye, U{p2}U... U{ps_1}U Y.,
Moreover, Bg fulfills one of the properties in Proposition 2.30.

By Proposition 2.33, the set Bq is projected to R? into a sector. See Figure 2.14 for an illustra-

tion on the construction of Bg.

Proof. We construct first the region Bg, and then we prove that it fulfills one of the properties
of Proposition 2.30. It is enough to distinguish the three possible cases: Q is a saddle, a node
or a dicritical quadrant. In the three cases we study the saturation of the compact segment of y

given by 7 ([, 7o + 1]) for some r( as above. In the saddle case, recall that the saddle domain W;
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)

b1

Lo

Ps

b1

F1Gure 2.14: Construction of Bo when Q has a dicritical quadrant. In the upper case, when the other
extreme is also dicritical. In the second case, when the other extreme is saddle. In the third
case, when it is a node (in particular, when p; is of type n-n-2 and the edge e; does not have a
realization).

is in the conditions of H-S. We have that the curve y intersects the semi-analytic component of
the boundary {y = C;} a finite number of times. Then, we conclude the region Bg enclosed by a
finite union of segments of y and a finite union of segments of {y = C;} C W,. In the node case,
we have that w(y) = p;. Then, Bg is the region enclosed by this connected curve. In the dicritical
case, suppose that y([rg,rg + 1]) C W,. By the continuity of the w—limit in the dicritical domains
shown in the fifth stament of Proposition 2.28, we have that w(y) is a compact connected set that
does not contain p,. Then, we have y encloses the region By and it has semi-analytic boundary
in Wg \ Fix(F).

Now, we prove that Bq is indeed a sector by showing that it is saturated in V. To see this,
take any point p € Bg \ Fix(F). We have that a(p) is a single point p”in I ﬂV_Q. Take the saturated
parabolic curve y’ of p’. We claim that y” does not intersect with y. This is because otherwise

we find a contradiction. That is, the intersection point p” would have a(p”) = {¢q} since p” € y
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and a(p”) = {p’}. Then the curve y’, which contains Orb‘7Q (p), lies in Bg. From the property that
Orbvq(p) C Bq, we have that B is saturated. O

Refinements of the parabolic sectors

In the previous section we have obtained a new collection of path sectors, we call its union B4

We apply Proposition 2.35 in Wi for the set By, obtaining a neighborhood of E given by
W = EU By, USUpp(E,gin) UB1 U UBL U U...U Y,

Lemma 2.44. There exists parabolic sectors B; C B; and parabolic curves Vj C yj such that B; has

semi-analytic boundary on Wi \ E and such that
EUBpathUSUPP(gndiv)UBl U---UBrUypy U...Uy,

is a neighborhood of E.

Proof. It is enough to reduce the sector in any of the possible cases: B; is constructed on a node
domain W; at a point p; fulfilling H-N-I, H-N-II, or on a monotonic domain V. at the regular
dicritical arc I;. In any of the cases, taking the corresponding coordinates (x,y), we have that y
is an analytic function monotonically increasing or decreasing on the orbits. In the case f-n-n
There is always a path sector Bg ending on p; or on I;. With this, we mean that Bq N {p;} = 0 or
BoNT; # 0. We define B; = B; N {y < C} for some small enough C > 0 so that one of the following
is fulfilled.

* If p; is of type n or n-n-2, there are two paths Q and Q’ fulfilling the above. We take {y = C}
joining two points in the boundary of Bg in W; and Bg in B,;.

 If p; is of type f-n-n, f-n-s, n-n-1 or n-s. There is a single path Q fulfilling the above. We
take {y = C} joining a point in the boundary of Bqg in B; and the curve of fixed points (f-n-n

or f-n-s) or parabolic curve (n-n-1 or n-s), given by {x = 0}.

 If I} is a regular dicritical arc, there are two paths Q and Q’ fulfilling the above. We take
{v = C} joining two points in the boundary of Bq in Vi and Bg in B;.

We have then, that the boundary of B; is semi-analytic in Wg \ E. The curves y; C y; are also
refined so that its extreme is given by the corresponding interesection of the adjacent dB; and
JBq. O
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2.5.2 On the openness of the sectorial decomposition

In the absence of D-D sectors, we can construct a sectorial decomposition (U, S) taking U open
and ensuring that S is a stratification. We give the final refinements on the construction of (U,S)
in this section, concluding Proposition 2.8. Finally, we present the possible obstructions in order
to obtain these properties when D-D sectors exists.

Let e € £,4;, be an edge out of the divisor and Supp(e) its support in some neighborhood of
E in M. It is clear that in the points of type s-s, n-s, n-n-1, f-s-s, f-n-s and f-n-n, we can take the
two realization of quadrants W_, W, such that W_NSupp(e) = W, NSupp(e). Then, we choose the
curve I' = W, NSupp(e) to be a one dimensional stratum of S. See Figure 2.15 for an illustration

of this case.

Supp(e)

Figure 2.15: Choice of W_, W, and one dimensional stratum T.

In this setting, it is possible to construct sectors whose union is open in W_.UT'U W,. In
particular, in a saddle quadrant, we can construct a sector ending at W, and bounded by I', an
invariant curve and non-invariant segments of the boundary of W, as shown in the previous
section. In a node quadrant, we can find a path sector Bg and a parabolic sector B intersecting
We. The parabolic sector can be constructed so that its boundary contains I', an invariant curve
in the boundary of By and another non-invariant curve such that one of its endpoints is the
endpoint of I', as we did in the previous section. We conclude then that in these types of points
(s-s, n-s, n-n-1, f-s-s, f-n-s and f-n-n), the union of the sectors intersecting W_UT U W, is open
therein.

However, when Supp(e) is a bidicritical curve, we know that the two sectors adjacent to this
curve will be of type D-parabolic, D-elliptic or D-D. We can take the realizations W_, W, of the
two dicritical quadrants such that W_ N Supp(e) = W, N Supp(e), and choose I' = W, N Supp(e)
to be the one dimensional strata. In addition, at the time of constructing the sector on each of
the paths ending at this curve, we can choose the curves y_,y, in Lemma 2.42 such that both y_
and y, have the same basepoint g € I'. See Figure 2.16 for an illustration of this. Avoiding the

presence of D-D sectors, we can also ensure that S is a stratification because, on the one hand,
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we can choose one dimensional strata I' = W_ N Supp(e) = W, N Supp(e). On the other hand, the
rest of one dimensional strata are parabolic curves lying between path sectors and parabolic ones,

and the curves y in between are chosen fulfilling the boundary condition y = dV; N dBg.

Supp(e)

Ficure 2.16: Choice of the boundary curves of two sectors ending on a bidicritical curve.

Now, we illustrate a possible chaotic behavior in the presence of D-D sectors. In a D-D sector,
we have two dicritical curves I',I’. The parabolic curve y at any basepoint g € I' accumulates
in a compact set L, C I, as we have already proved in Proposition 2.28. If L, were a single
point (L, = {q’}), we would have that y is also a parabolic curve in the basepoint g4’, because of
the characterization given in Proposition 2.29. Moreover, in the other sector adjacent to I’ we
would choose again a parabolic curve with basepoint g’. The problem is that we cannot ensure
that L,, is a single point. The points in L, must belong to 7~1(U), since they are a or w-limits of
points in the sector. However, none of the points in L, can belong to the interior of U (since any
neighborhood of any point in L,, intersects the curve y that necessarily belongs to the boundary of
Bgq). This fact is independent of the choice of the parabolic curve in the following sector adjacent

to I'". See Figure 2.17 for an illustration.

r r’

Figure 2.17: The problem of D-D sectors.

To see that S is not necessarily a stratification it is enough to consider the following example,
where all the sectors are of type D-D. We illustrate this case in the Figure 2.18. We see that it is
possible that A, =T} UA, UT,, where T, is strictly contained in T;.

117



CHAPTER 2. SECTORIAL DECOMPOSITION OF GERMS OF DIFFEOMORPHISMS

Iy
Y2 71

=N

I'y I,
Fix(F) = {0} UT; U,
S = {{0},T'1,T2, A1, As}

Ficure 2.18: An example in which U = {0} UL} UT; UA; UA; is not open and S is not a stratification.

2.5.3 On the semi-analyticity of the sectorial decomposition

In this section, we use the results in Section 2.5.1 to prove that the set U is semi-analytic, under
the hypothesis that there are not bidicritical curves, as Proposition 2.9 claims.

It is enough to consider an initial sectorial decomposition (W, S) (before projection to R?) as
in Section 2.5.1, and then make the refinements proposed in Lemma 2.40 and 2.44. We obtain
a new sectorial decomposition (U,S) (before projection). On each of the sectors, we have semi-
analytic (in Wg \ E) curves y provided by the Lemmas. On the one hand, we have that U is
strictly contained in the closure of the union of the curves . On the other hand, JUNE = 0,
since U is by construction a neighborhood of E. Then, recalling that the semi-analyticity of the
boundary curves y could only drop in E, we conclude that dU is a semi-analytic curve and thus,
the set U is semi-analytic. Since the sequence 7 is an analytic isomorphism out of E, we conclude
that U is semi-analytic.

We just make some comments on why the semi-analytic property is not achieved in the pres-
ence of bidicritical curves of fixed points. At any point g in a bidicritical curve I', we can define
an analytic parabolic curve asymptotic to a formal one. However, the definition of this curve is
not necessarily analytically extended to the basepoint g in I', sometimes this extension is only C*.
For this reason, we think that U cannot be chosen in the semi-analytic class, as in the absence of
bidicritical curves. However, we think that semi-analyticity of U\Fix(F) on R?\Fix(F) be obtained

in the presence of bidicritical curves.
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This chapter is devoted to the second problem of the thesis, the study of the cycle locus of

germs of analytic vector fields at (R3,0) having a Hopf singularity. The main objective is to give an

answer to Dulac’s problem for these vector fields. This problem states that there are no infinitely

many isolated cycles accumulating and collapsing to a singular point. We resolve it by proving

Theorem 3.1 (Theorem B in the Introduction). Here, we collect the result of the published article

[23], in which we worked with isolated Hopf singularities, and extend that result to the non-

isolated Hopf singularities. The proof in the isolated singularity case is simplified with respect

to that in [23], by using Theorem 2.6 of Chapter 2. The proof in the non-isolated singularity

case again uses that Theorem and also the other main result proved in this chapter, Theorem 3.3

(Theorem C in the Introduction).
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3.1 Hopf singularities

Let us introduce the notation and necessary definitions in order to state the main result. We
denote by X“(R3,0), or simply by ¥(R3,0), the space of germs of analytic vector fields at the
origin of R® which are singular at 0. We say that an element & has a Hopf singularity if the linear
part DE(0) has eigenvalues +bi,c, with b € R, and ¢ € R. If, moreover, the real eigenvalue c is
equal to 0, we say that & has Hopf-zero singularity. Otherwise, we say that £ has a semi-hyperbolic
Hopf singularity. Denote by

H3 = {& € XY(R>,0) : Spec(D&(0)) = {+bi,c}, where b,c e Rand b = 0}.

the family of germs with a Hopf singularity.

Fix any & € X(R3,0). Consider an open neighborhood U of 0 where (a representative of)
& is defined. We denote by Cy = Cy(&) the union of all cycles of &|y (that is, cycles entirely
contained in U). It is called the cycle-locus of & in U. Notice that this cycle-locus depends strongly
on the neighborhood U and that it does not behave as a germ of a set that we can associate to
the germ & (i.e., if U’ € U we can only assert that C;;» C Cy, but not Cyy = U’ NCy). When
the germs Cyy(&)g, Cy (&) of Cy(&) and Cyy/ (&) coincide at O for every pair of sufficiently small
neighborhoods U, U’ of 0, we define the local cycle-locus in U

C(&)=Cy(&)p for a small enough U.

It is not difficult to prove (see [8]) that a Hopf singularity & € H> has a unique formal invari-
ant curve Q = (’55 at 0. Such an invariant curve is non-singular and tangent to the eigenspace
corresponding to the eigenvalue c. It is called the (formal) rotational axis of £. When ¢ = 0 (the
semi-hyperbolic case), the rotational axis is convergent and provides an analytic invariant curve,
since in this case Q coincides with the stable or unstable manifold of & (see for instance [21] for a
proof of the analyticity of these invariant manifolds in general). On the contrary, when c = 0 (the
completely non-hyperbolic case or Hopf-zero singularity), the rotational axis Q may be convergent or
not, although there is always an invariant C*-curve whose Taylor expansion at 0 coincides with
Q. This is a result by Bonckaert and Dumortier in [8] in the case where & has an isolated singu-
larity, and trivially true otherwise since, in this case, Q coincides with the singular locus Sing(¢&),

which is an analytic curve.

3.1.1 Statement of the main results

In this section we state the main results. We start with a result that provides the description of

the cycle locus for Hopf singularities. It is Theorem B in the Introduction.
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Ficure 3.1: Limit central surfaces.

Theorem 3.1 (Structure of the local cycle locus). Let & € H3. Then there is a neighborhood U of
0 € R3 where a representative of & is defined for which exactly one of the following possibilities holds:

(i) Cy(&)=0.

(ii) There is a finite non-empty family S = {Sy,...,S,} of connected smooth analytic two-dimensional
submanifolds of U\{0}, mutually disjoint, invariant for &, subanalytic sets satisfyingS_j = 5;U{0}
for any j, and there is a neighborhood basis V of the origin in U such that every V €V satisfies

Cv(é):(leJSzU"'USr)mV. (31)

(ii1) The singular locus Sing(&|yy) of & in U is a smooth analytic curve in U and there is a neighborhood

basis V of the origin in U such that every V €V satisfies

Cy (&) =V \(V NSing(&ly)). (3.2)

Consequently, the local cycle locus C(&) of & exists and it is equal to the empty germ, to the germ of
S1U---US, or the complement of the germ of Sing(&) in cases (i), (ii) or (iii), respectively.

The surfaces in item (ii) will be called the limit central surfaces of & (see Figure 3.1 for an
example). Notice that possibility (i) of the theorem can be included on the second fixing r = 0
when there are no limit central surfaces.

The main consequence of Theorem 3.1 is the one concerning Dulac’s problem, solving it for

this type of vector fields. It is Corollary B in the Introduction.
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Corollary 3.2 (Dulac’s Property). If & € H3, there is a neighborhood of 0 € R® which is free of isolated
cycles of .

Some comments about Theorem 3.1 are in order. In the particular semi-hyperbolic case (c #
0), we obtain that only possibilities (i) or (ii) with » = 1 of the theorem can occur. Moreover, in
the last case, the unique limit central surface is a smooth analytic center manifold of £ at 0. This
situation has been treated by many authors, namely [4, 46, 49], but we will present a proof in
Section 3.2 using the theory of center manifolds.

In the Hopf-zero case, any situation of the theorem can occur. The possibility (iii) means
that all non-trivial trajectories are periodic. In the literature, this situation is known by saying
that & is a three-dimensional center. It can be noticed that when & is a three-dimensional center,
its singularity is not isolated, as a consequence of a Brunella’s result [14]: if £ has an isolated
singularity at 0 € R3, then there is a non-trivial trajectory y of & such that w(y) = {0} or a(y) = {0}.

We also provide a characterization of the three-dimensional centers of Hopf type, as follows.

This Theorem corresponds to Theorem C in the Introduction.
Theorem 3.3. Let & € H3, the following statements are equivalent.

(1) & is formally degenerate (its normal form has the form G(x? + yz,z)(—y% + xa%) where G €
R[[u,v]] is a unit).

(2) & is analytically orbitally linearizable (i.e. it is orbitally equivalent to its linear part up to multi-

plication by an analytic unit)
(3) There is a neighborhood U of 0 such that Cyy = U \ Sing(&).

(4) €& isanalytically completely integrable (i.e. there are two analytic first integrals f, g at 0 satisfying
df ndg=+0).

We highlight that some of the equivalences and implications provided in this Theorem have
also been obtained by other authors, as we presented in the Introduction. We will also show that
(1) is equivalent to a weaker statement: & is formally orbitally linearizable. In section 3.1.3, we
will associate a two dimensional formal vector field to each normal form. With that tool in hand,
we define the formally degenerated Hopf-zero vector fields as those that have a zero vector field
associated to them.

We finish the section by showing that any cycle makes a single turn around a rotational axis,
which is a direct consequence of Theorem 3.1 in the situations (i) and (ii), and the fact that & is

analytically orbitally linearizable provided in Theorem 3.3 in the situation (iii).

Corollary 3.4. Let & € H> and suppose that its local cycle locus is non-empty. Let Q. be a C®

realization of the formal rotational axis. Then, the neighborhood basis V in Theorem 3.1, (ii) or (iii)
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can be chosen so that V \ Q, is homotopically equivalent! to St and any cycle y C Cy(&) is a generator
Ofnl (V \ Qoo)

We show now an example of a vector field that defines two limit central surfaces and then an
example of a three dimensional center.

Example 3.5. Consider the following vector field in H°.

+z(x? + yz))%.

2 3

+x(x2 +3}2))i +(x —y22 + y(x2 +y2))i +(z

¢=(y-xz Ix dy

It has isolated singularity. The two half-cones S; = {(x,,2) : x> +y?> ~2> = 0,z >0} and S, =
{(x,9,2) : x> + y? — 22 = 0,z < 0} are invariant. The restriction of & to any of the surfaces S; is
&| 5= —ya% + x%, which proves that £ defines a central configuration in S;, for i =1, 2.

In this example, one can see that there are no cycles outside S; U S; in a neighborhood of 0.
Thus, we obtain that £ is of type (ii) of Theorem 3.1 with two limit central surfaces (r = 2), given
by S; and S,.

Example 3.6. Consider the following vector field in H°.

E—_ i_ﬁ. i
TV oy

The z—axis is a smooth curve of singularities of £&. The rest of the trajectories are cycles, given
by the intersection of the level surfaces of its two first integrals: the coordinate function z and

x% +p2. Then, the vector field & is a three dimensional center (type (iii) in Theorem 3.1)

3.1.2 Normal form theorems applied to Hopf-zero singularity

Let & € H3 be a Hopf-zero singularity. Using the normal forms theorems stated in section ??
(Theorems A.26 and A.29) for &, we have the following: There exists a formal automorphism at

0, expressed in terms of the chosen coordinates as

P(x,9,2) = (x+ P1(x,9,2), 1+ P2(x,9,2), 2+ P3(x,9,2)) € R[[x,9, 2] %,

with ji(¢;) = 0 for j =1, 2,3, such that the formal vector field &= ¢*(&) is written in the form

. 0 0 J 0 d
E=A(x? +y2,z)(—y£ + xa—y) +B(x*+v%,2) (xg + ya—y) +C(x* +72, z)z, (3.3)

IWe recall that being homotopically equivalent implies that the two topological spaces have the same homotopy
group. For a definition of this equivalence, see [38].
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where A, B, C € R[[u,v]] and A(0,0) = 1. Note that A(u,v), C(u,v) belong to the ideal (u,v). Neither
the automorphism ¢ need to be convergent, nor the components of & need to belong to R{x,v,z).
Any formal vector field & asin (3.3) obtained as above is called a formal normal form of £. We

remark that £ is not uniquely determined by &.

Remark 3.7. The z—axis is sent to the rotational axis Q of & by ¢, that is, Q= ¢(0,0,z). On the
other hand, since ¢ must preserve the (formal) singular locus, the hypothesis that £ has isolated
singularity implies that C(0,v) # 0 for v # 0, in particular, we have C(0,v) belongs to the ideal
(v?). Meanwhile, when & has a curve of singularities, any formal normal form £ satisfies that

A

Sing(&) is the z—axis.

Once we fix a formal normal form & of & given by &= ¢*&, we can consider normal forms of
& up to some jet in the following way. For any ¢ € N, let ¢, be the polynomial tangent to the
identity diffeomorphism of (R3,0) given by

(% 9,2) = (jer1 )%, 9,2) = (jerr (x 0 @), jes1 (¥ © @), jer1 (20 D).

The vector field & = (¢;)*(&) has the same {—jet as the formal one £ in coordinates (x,v,z). That

is, je(&¢) = je(&). Notice that the vector field &, is analytically conjugated to & and formally

conjugated to & for any £. More precisely, we have the following formal equation:
&= &, where g := (pg1 o . (3.4)

Assertion t. It is sufficient to prove Theorem 3.1 for &, for some € > 2 when & has a Hopf-zero singu-
larity.

3.1.3 Two dimensional vector field associated to a normal form. Degenerated and

Non-Degenerated Hopf-zero singularities.

Now, fix a normal form é of &, written as (3.3). First, consider that the coefficient A of —y% + xa%
is a unit, then we obtain an equivalent vector field C.
0 d  B(x*+v%,2) 0 0 C(x*+y%,2) 0
=Yt X—F —— |ty — |+ —L 3.5
¢ y8x+x8y+A((x2+y2,z)) x8x+y8y +A(x2+y2,z) Jz (3-5)

given by the product with %. We write this vector field in cylindrical coordinates (6,z, p), where

x = pcos6 and y = psin@. We obtain C(0) = 1, so that, using 0 as the time parameter, C is
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described by the following autonomous system of ODEs

&= = A(p22)'BlpRz) =p"Alzp)
Ciy ap 2 -1 n2 n (3.6)
70 = Alp2)7 C(p%z) =p"Ay(zp)

where A, A, € R[[z,p]]. We define the associated two dimensional vector field as the two dimen-

sional vector field obtained from the previous system

B9 9 Clpha) 9
= A(p%z)dp  A(p?,z) dz’
The vector field 7} encloses the dynamical properties of &, and will be of use in the following

sections. We remark that this vector field may not be a saturated vector field.

Degenerated and Non-degenerated Hopf singularities

We will make this distinction in terms of 7. It is possible that 7] is exactly equal to 0. We will see
that the fact of # being 0 is independent of the choice of formal normal form &. In this case, we
say that & has a degenerated Hopf singularity. Notice that an isolated Hopf singularity can never be
degenerated, since, as we discussed before, the coefficient C must contain a non-zero term that
only depends on z.

When 7} # 0, we say that & has a non-degenerated Hopf singularity. As in the previous case, 7
depends on the choice of normal form, but the fact of being different from zero will not depend
on this choice.

We will prove Theorem 3.1 distinguishing the following four cases:

1. Semi-hyperbolic case,

2. Isolated Hopf-zero singularity case. It is always a non-degenerated Hopf singularity,

3. Non-degenerated non-isolated Hopf-zero singularity case,

4. Degenerated Hopf-zero singularity case. The singularity in this case is always non-isolated.

3.2 The semi-hyperbolic case

We prove the result first for semi-hyperbolic vector fields of Hopf type. Assume that the eigen-
values of DE(0) are i, —i and ¢ with ¢ # 0. Then, applying the Center Manifold Theorem (Theo-
rem A.22 in the Appendix) there is some neighborhood Vi where

* There exists a unique non-singular invariant one dimensional analytic manifold W = W* or W¥,

tangent to the eigenspace of c. This is the stable (when ¢ < 0) or unstable (when ¢ > 0) man-
ifold.
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* There exists a non-singular invariant two dimensional Ck manifold W¢, tangent to the
eigenspaces of i and —i. It contains every cycle of £ in Vi. Moreover, for any sufficiently
small neighborhood U of 0, we have C;; ¢ W¢.

We work in some neighborhood U C Vj of 0 in which the above manifolds are well defined and
the stated properties for them hold. Let 7 : (M,E) — (R3, W) be the blowing-up centered at
the stable manifold. The divisor w~!(W) is topologically a cylinder and the fiber y, = 7~1(0)
is a cycle of the total transform &; = 7 contained in E. Notice also that the strict transform
(Wey = m is a surface of class Ck~!, invariant for & and transverse to E at Yo-

Now, consider the point py € ¥, given by the intersection of m and yy, and two
nested discs A’ C A C m in which &; is transverse to both A’ and A and where the
Poincaré map P : A’ — A is defined. Notice that any cycle of &, transverse to A’ provides a
periodic point y N A" of P. By the fact that C; ¢ W€, we have that any cycle y is contained in
71 (W¢), which is a surface. Then, by arguments based on Jordan Curve Theorem (see [62]), we
find that any cycle y C W€ intersects A’ in a single point, which is necessarily a fixed point of
P. In particular, in some open neighborhood of y, the family of cycles of &; is in bijection with
the set of fixed points of P. In addition, the set of fixed points must be contained in the curve
H= (W' nA.

With these tools we prove Theorem 3.1 in the semi-hyperbolic case. First, suppose that (i)
does not hold, that is, Cyy # 0 for any open neighborhood V of 0. Then, there are infinitely many
cycles of £ that accumulate and collapse to 0. By the above reasoning, there are infinitely many
fixed points accumulating to the point py along the curve H. Since the map P is analytic and so
is the set Fix(P), the set Fix(P) must be curve of positive dimension. Since Fix(P) C H and H is
a curve of class C5~!, we conclude that the sets Fix(P) and H coincide (as germs at p,). Suppose
that V is a neighborhood of 0 that fulfills

- VNnA=A.
« U N (W¢Y is the saturation of a segment of H by the flow of &;.
e V=n(V)c V.

we
E
D N
[VC A EI7C
™
e T 2(0) A
7 LA
N A
-

FiGure 3.2: Arguments of the proof of Theorem 3.1 in the semi-hyperbolic case.
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We get that V is a neighborhood of 0 and that C,; = (W€ N V) \ {0}. Notice also that (W¢)’NV is an
analytic set since H is an analytic curve. Being 7 proper and analytic, we conclude that W*NV
is subanalytic, which proves Theorem 3.1 in this case. An illustration of the arguments in this

proof can be found in Figure 3.2.

Remark 3.8. The proof above shows that, in the semi-hyperbolic case, there is at most one limit
central surface S;. Moreover, if S; exists, then S; = W€ is a center manifold which is unique and
analytic (using Tamm’s Theorem [73], because W° is of class C for every k and subanalytic in this

case).

3.3 The isolated Hopf-zero singularity case: Admissible blowing-ups
and reduction of singularities

In this section, we will apply a sequence of blowing-ups in order to simplify its dynamics. We
will explain first the process for the normal form, and then adapt it to its jet approximations,
choosing a sufficiently large jet approximation &,. In the first subsection, we will explain the
admissible blowing-ups and introduce the notation. Later, we will give the result on reduction
of singularities. We will finish by applying this result to the jet approximations. To compare
this section with [23], we will restrict here the admissible blowing-ups to one of the two types
presented therein, in particular, here we only make blowing-ups centered at points, instead of
curves. In addition, the reduction of singularities result we need is weaker, and we will state it
with the generality needed for this proof. This is one of the simplifications with respect to [23]

we anticipated in the introduction of this chapter.

3.3.1 Admissible blowing-ups

The first blowing-up

The first blowing-up to be done is the real blowing-up oy : (M, Eg) — (R3,0) with center at the
origin. The blown-up space M is a manifold having the divisor Ey = 0,'(0) as its boundary.
This divisor is homeomorphic to a sphere and represents the space of all the half-lines through
0. The morphism o, defines an analytic isomorphism from Mg \ E, to R>\ {0}. We consider M,
as in Section 1.2.4 changing slightly the notation. The manifold M, is covered by three charts
(CO,(G,Z(O),p(O))), (Coor (x(),9(®) 2())) and (C_,, (x(7), (=), z(=))) where Cy ~ S' x R x Rs( and

Cieo = R? xRyg. In these charts, the expression of oy is given by:

x = p(o) cos B
InCy: y = p(o) sin@ (cosB,sinB) € stz e R,p(o) >0 (3.7)
- p(O)Z(O)
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x = x(®)z)

InCo: qy = p®ze  x®) & eR =) >0 (3.8)
z = g
x = x(-oz(-)

InC_o: {y = plrzl-) x(_m),y(_m)eR,z(_“’)ZO. (3.9)
z = g

See Figure 3.2 to understand better this blowing-up. The origins of the charts C,, and C_, will
be denoted by y,, and y_,, respectively. They are the points of the divisor E; corresponding to
the half-lines contained in the z—axis and they are the only points of E; not covered by C,. More
explicitly, 09(Co) =R?\ {x =y = 0}.

We define the (total) transform of & by o, in the chart Cy as the pull-back

A A

£ = (oplc, ).

Using simplified notation (z,p) := (p(o), z(9) and equations (3.3) and (3.7), the vector field £ g

given by
J d
(0) Z +BO =
+C (Z’p)82+B (Z’p)[;’p' (3.10)

, d
0) = 400 ~

where A(O)(z,p) = A(p? pz), C(O)(z,p) = %C(pz, pz) — zB(p?, pz) and B)(z,p) = pA(p?,pz). Notice
that A, BO), C ¢ R[z][[p]], A®)(0,0) = 1 and that (B(?),C(9)) = (0,0) by the hypothesis that & is
non-degenerated. Notice also that p divides BO) (0,

As in section 3.1.3, we can define a two dimensional vector field that describes the three

dimensional one in this chart. Consider the system of ODEs

- 0
o { £ = A% Bep)  =p"A(zp) B.11)
R ~ 0 (0 .
& = A0 CO(zp) =p""AY(z,p),
and define the associated two-dimensional vector field 7}y and 7, = —g;7jo. Consider the blowing-

n(0)
p
up of 0in R xR, and the vector field 7.

Remark 3.9. Notice that, up to multiplication by a unit, the vector field 7, coincides with the total
transform 7(>*) of 7 in the usual chart U; in the direction of p.

Consider the curve curve Fj := Ey N {0 = 0}, and the set Sing(#y, Fy), which is given by the

singularities of 7} and also points where 7 is tangent to Fy (in the dicritical case). Suppose that

(0)

Sing(iio, Fo) = {(w},0) i = 1,...,mp},  with @ <) if i <.
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Definition 3.10. The characteristic cycles of £ in M are the connected components of the set S' x
Sing(njlFo) € Cy, that is, the circles in the divisor E given by y; := (200 = wi-o),p(o) =0} for i =

1,2,...,7110.

We define also the transforms &(®) := (O’0|Cm)*é and £ .= (00|C,w)*é of & in the charts
Ceoor C_oo, respectively. The expressions for é(“), using simplified notation (x, vy, z) := (x(“),y(‘x’), z(‘x’))

is the following:

. d d d d
(c0) _p00)(,2 , -2 oo 7 (©) (2222 N0 @ .7
g B'™(x +y,z)(xax+yay)+A (x +y,z)( y8x+x9y)

(3.12)
+C®)(x? + yz,z)g,
where B(®), A(®) C(®) ¢ R[x? + p?][[z]] are given by:

B®)(x? +v?,z) = B((x> + v?)2%,2) - %C((xz +1%)2%,2),

AR (x2 4 yz,z) =A((x* + y2)22,z) and C®)(x? + yz, z) = C((x* + yz)zz,z).

In a similar way, we obtain expressions for £(~>°). Notice that the origin of these charts are singu-

larities of &().

Definition 3.11. The origins ¥, Y- 0f the charts C, and C_, (cf. equations (3.8) and (3.9)) are
called the characteristic singularities of & in M. We use the term characteristic elements to refer

either to the characteristic cycles or to characteristic singularities.

Further blowing-ups

In the rest of this section, we define sequences of blowing-ups attached to & starting from the data
defined above for the first blowing-up oy. More precisely, consider the tuple M := (M, 09,.Ag, Dy),

where:
* A is the atlas of My composed by the charts C_,, Cy, Cq,
* Dy is the family of characteristic elements of & in My, that is, Dy := Voo V13 Vingr Voo

By definition, we say that M, a sequence of admissible blowing-ups of length | = 0 for &. In further
steps, we will only admit blowing-ups centered at one of the two characteristic points: the iter-
ated tangents of the semi-branches of the formal rotational axis. Recall that this axis is simply
the z—axis. This means that we will blow up the origins y,, and y_, of the charts C,, and C_,, on

the previous section.
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For instance, suppose that we start with the blowing-up o, : (M1,E;) — (Mg, E¢) centered at
the point y,,. It is expressed in two charts: C,, o and C,, , defined in the same way as Cy and C,,

in Equations 3.7 and (3.8). See Figure 3.3 for an illustration of these blowing-ups.

Yoo
Z(OO)T
z Oy,
0-0 Z(0>
— S0 A
X
’ N e

Figure 3.3: Admissible blowing-ups.

In the chart (Cy, o, (x<°°'0),y(°°’0),z(°°’0))), we can study the characteristic cycles of E(x0) =
(Goo|cm,0)*$(°°) whose expression is similar to (3.10). We define the associated two-dimensional
vector field 7., ¢ as in (3.11) and study its singularities to determine the characteristic cycles in
this chart. The origin of C, , is again a singularity of glooe) = (aoo|cmm)*é(°°)— The expression of
£(0%) i5 similar to that of (3.12).

We denote by A; the atlas of M; given by (Ag \ {Cs}) U{Cro,0, Coo,c0}- We denote by Dy the set
of characteristic cycles and characteristic points defined on each chart C € A;.

The rest of the admissible blowing-ups M; = (M;, 1t;, A;, D;) are defined similarly, by the com-
position of blowing-ups 7; = 0po 0y 0---00;_; centered at the iterated tangents of the z—axis, and
with A; = {C}}je7 where each C; has coordinates either of the form (x(}),y(]),z(])) or (9(”,2(]),()(7)),

and D; = {yr}1er, where each y; is a characteristic cycle or a characteristic point.

3.3.2 Reduction of singularities

We saw in Section 1.4.3 the reduction of singularities of formal non-saturated vector fields. The
vector field 7 suits in this class of vector fields. In order to find a suitable reduction of singulari-
ties of &, we will make admissible blowing-ups centered at the iterated tangents of the rotational
axis (the z—axis). The main difference with respect to our article [23] is that we do not pursue a
reduction of singularities of the associated two dimensional vector fields 7j; for ] € J, instead, we

will only resolve the points in the iterated tangents of the rotational axis of &.
Just as a comment to prepare the following result and its proof, and according to the construc-
tion of sequences of admissible blowing-ups in the previous section, any A = {C}};c 7 is composed
MM

of the two charts C;v and Cpu where 175, IL] are, respectively, (—oo,...,—00) and (co,...,0), and a

130



3.3. THE 1SOLATED HOPF-ZERO SINGULARITY CASE: ADMISSIBLE BLOWING-UPS AND REDUCTION
OF SINGULARITIES

finite number of charts:
{Cr}jeq,, where Jg = {0,(0,0),...,(c0,...,00,0),(~00,0),..., (=00,...,~c0,0)},

the second group of charts having coordinates of the form (0,z,p) € Rx(Rs()?, except for Cy with

z taking values in R.

Proposition 3.12 (Adapted reduction of singularities). There exists an admissible sequence of blowing-
ups M = (M, m, A, D) for Ewith A= {Ciljeqr D ={y1}1er and total divisor E = 71 (0) such that the fol-
lowing holds. For J € {IM, M), the transformed vector field V) = (nIC])*é satisfies EV)(zU)) = (zU))t.G
where t > 1 and G is a unit in R[[xU),p), z0)]].

Proof. From Remark 3.7 there exists a term cjzj in the coefficient &(z) with ¢j # 0. Assume, with-

out loss of generality, that j is the minimal exponent with this condition. Notice that j > 0. Write

£(2) €R[[x,p,2]] as

(f(z) = Z(x2 + yz,z) =2zG(x, V,2) = zto Z Gr(x,v,2),
k=v(G)

where Gy is an homogeneous polynomial of degree k for each k, ¢, > 0 is defined as the maximum
integer such that z' divides &(z). Then Gj_t,(x,9,2) contains the monomial cjzj‘to (notice that
j > to and the equality holds if and only if v(G) = 0). Consider the first blowing-up oy and study
£()(2(*)), where &(*) = (0‘0|coo)*<f. Omitting super-indices for the coordinates (x(®),p(®), z()) we

have:

where t; =ty + v(G) > t;. Rewrite the series G!) := h V(G) Gk(x,y, )zk=v(G) in homogeneous
components:

E)(z) = 2" GW(x,p,2) = Z G1 (x,9,2)
k=v(GM)

If j = t;, we see that G(l) = ¢j and thus, G\ is a unit, which gives statement (1) of the proposition
for t = t;. Otherwise, if t; < j, we see that G (x v, z) contains the term c]-zj’tl. Notice that in this
case we have t; > t, since, otherwise, if t; = to then v(G)=0and j =ty =t;. Thus, j—ty >j—t; > 0.
By recurrence over j — t(, there exists an admissible sequence of blowing-ups M = (M, 7, A,D)
with 7T a composition of s blowing-ups at the corresponding characteristic singularities VM such
that, defining t(,t,...,t; as above, we have j = t,. We conclude the statement for 77*¢ at the char-
acteristic singularity Vi with t = t;. Analogously, up to blowing-up repeatedly the characteristic

singularity yfilo, we may assume that the statement holds at y . O

131



CHAPTER 3. DULAC’S PROBLEM FOR VECTOR FIELDS WITH A HOPF SINGULARITY

3.3.3 Jet approximations under blowing-ups

In this section, we study the effect of sequences of admissible blowing-ups to the jet approxi-
mations &, of the formal normal form &, for convenient values of £. We follow the techniques
introduced in Section 1.6.1. The main difficulty in comparison to the results in section 1.6.1 is
that we are using also cylindrical coordinates, and thus, the coefficients of the vector field in
those coordinates lie in a ring that we did not treat in section 1.6.1. First, we establish the jet

dependence of the transform of & on such blowing-ups in the different charts.

Proposition 3.13. Let & be a formal normal form of & € H3. Consider an admissible sequence of
blowing-ups M = (M, 7, A, D) for & of length | > 0, with A = {Ciljeg. For every ] € J and for every
k > 1, if u is a coordinate of the chart Cy such that {u = 0} C E = w1(0), then we have

EEY) = (e, e (). (3.13)

Proof. The proof uses Proposition 1.51, which we summarize now. Let # be a vector field with co-
efficients in A[[xy,...,x,]] and let @ be a quadratic morphism of the form m(xy,...,x,) =

(xlxl-,...,xi_lxi,xi,xi+1x,-,...,xnxi). Then,

Je () = i (7 i ()

X X X X X . . (314)
B ) =505 () = 7. (g (), =

We proceed by induction on the length | of M. If | = 0, that is, @ = 0 is the blowing-up of
the origin 0 € R® described in section 3.3.1. We have (with simplified notation in the respective

equalities p := p(?) in the first, z := z(*) in the second and z = z(=*) in the third)

i ((o0le,)*E) = i (ool ) k1 ()
jE(oole ) E) = jE(oole.) a1 () (3.15)

ji(oole_)"€) = jE((oole_ ) ks (€)).
The first item is developed as in the proof of 1.51. The other two follow from direct application

of that result. Suppose I > 0 and that = = wo 0, , where o, is the blowing-up centered at some

rr’ V

characteristic singularity y; of a sequence of admissible blowing-ups M = (M,T, A,D) of length
[-1. It is enough to study the transform &U/) in the charts C; when ay‘ll (y1)NCj =0, since the map
0y, is an isomorphism out of 07711(7/1). According to the construction of M from M and using the

same notations as in section 3.3.1, we have several cases:

1. y; is a characteristic singularity (for instance I = IX) and J = I/ = (co,.5.,00). In this case zV/),

is the only coordinate of the chart C; in the conditions of the statement. Notice that s <1+ 1.
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Applying s times the first formula in (3.14), we get, for u = zD, that
JHED) = j;'f((nlc,)*jk+s(cf)) = ]’i’((ﬂlc,)*jk+s(]'k+z+1(cf))) = ]';'f((ﬂlc,)*]'kuﬂ(f))-

2. yj is a characteristic singularity (for instance I = 10/},7) and ] is not IM = (co,.5.,00). Notice that
y1 is the origin of a chart (Cj,, (x(m,y(m,z(]'))) of A where zU1) = 0 is the equation of the divisor
En Cj, and Uy1|c,3 C; — Cj, has the same expression as (3.7) for 0y, considering coordinates
6, ZU ),p(] )) for C; and with the obvious change of notation. Notice that in C; the two coordi-
nates u = p(” and u = zU) are in the conditions of the statement. By the induction hypothesis,
renaming z = zU1) for simplicity, we have, for any k > 1, that j]f(é(m) = j,f((ﬁICh ) jks1(€)). By the
fact that ji(x) = jk(ji(x)) for any vector field x, we also have je(EUD) = jk((ﬁlch ) jk+1(£)). The
result follows for u = p!) from this similarly to the case of the first blowing-up oy. For u = zU),

it is a consequence of the second equation of (3.14).

O]

Now, let us discuss the validity of Proposition 3.13 for the jets approximated normal forms
&e-

Consider the first blowing-up oy at 0 € R3, a singular point of &, for any ¢. Being &, analytic,
the total transform o;&, exists and is analytic in a neighborhood of the divisor E; = 00_1 (0). More-
over, in terms of coordinates of the charts C_,, Cy, C, (c.f. section 3.3.1), we can prove (see for
instance the computations in [4, sec. 3]):

a) For (C, (x(*),9(®) z())) (and analogously for C_,) the coefficients of (Eé(,oo) := (09lc, ) &e be-

long to R[x(®), p{®)][[2{®)]]NR{x(*), (=), 2(>)}, In fact, they belong to the algebra R[x(*), ()]{z()}

of convergent series with polynomial coefficients (c.f. Chapter 1).

b) For (Cy,(0,z,p)), the coefficients of 520) := (09lc,) e belong to R[cos 0,sin 0, z][[p]|NR[cos 8, sin O]{z, p}.
In fact, they belong to R[cos 8,sin 6, z]{p}.

Finally, taking into account that £ > 1 (i.e. £, has the same linear part as & or &), we may observe
that c’;'é])lEomclz (f(])lEomc] for any J € {—00,0,00}. In particular, the characteristic elements of & in
Ey are invariant for oj&,, which admits then a transform which is analytic if we blow up again
one of those characteristic elements. Using recursively the same kind of arguments, and with a
similar proof, we obtain the following version of Proposition 3.13 for the jets approximations of

the normal form.

Proposition 3.14. Let M = (M, n, A, D) be an admissible sequence of blowing-ups of length | with
A ={Cjljey. Then, for £ >1+1 and ] € J the transform cfé]) = (nlcl)*ég is analytic. Moreover, if
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k €N, u is a coordinate of Cj such that {u = 0} C E = w1(0) and € > k + 1 + 1, then, we have
i) = i€,

Remark 3.15. As a part of the proof, we verify that the restriction of 52]) and £V to the divisor
coincide. Hence, the characteristic elements y; € D are invariant for the total transform 7*&,.
They are called characteristic singularities or characteristic cycles, accordingly, of Ey). Moreover,
we observe that the coefficients of 52]) are convergent series in the coordinates of the chart Cj;
i.e. they satisfy the corresponding property a), respectively b), above when J € {I*, I} (resp.
J ¢ {I*,IM}). In the last case, we can also interchange the roles of the coordinates z and pif Cyis
a corner chart.

Recall from section 3.3.1 the definition of the associated two dimensional vector fields #j; to
ED for J € T\ {IM, 1M} and the corresponding reduced vector fields iy = (p”(ll)z”(zl))‘lﬁf, where

(0,z,p) are the coordinates in C;. Write the transform Eéj) as

P)
+AV0,2,0)— +cV(6,2,0)z (3.16)

d
0 = B0(0,2,p) a

Ip

The associated (to (Eé])) system of ODEs 145 is defined as:

iz _ D A -1
{ & = Cr0,20)(A,(0,2,p) (3.17)

Recall also that if J € {IM, 1™} and we use simplified notation (x,7,z) := (x),pV),z0)), we have
defined n') as the maximum 7 € N such that £U)(z) is divisible by z". As well, if ] € 7\ {IX, 1M},
7 ()

ny'}

we have defined n'/) := max{n;’, . With those notations, we have the following Corollary of

Proposition 3.14.

Corollary 3.16. Let M = (M, 7, A, D) be an admissible sequence of blowing-ups of length 1 > 0 with
A ={Cjljes. Define £y :=max{nV):J € 7} +1+1. Fix k € Ny,.

1. Let J € J\{I*L, 1M and put (z,p) :== (z(]),p(])). For every € > Cy( + k, the monomial (p)”(ll)(z)”(zn
divides the system 1, ;. Moreover, putting 112’] = (p”(ll)z”g))—lw'], if u is a coordinate with {u =

0} C ENCy, then
ik (e y) = i (i))-
2. Let J € {I*, IMY and put (x,v,2) := (xU),9U),20)). For every € > €y, + k, the series 52])(2) is

divisible by 2", and

i (2_”(’)52])(2)) = j? (z‘””’é(])(z))-
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Proof. Both statements are direct consequence of the jet equality stated in Proposition 3.14. Since
k+Cp = n+1+1 for i = 1,2 and for very J € J\{I, I} and k+€, > n'/)+1+1 when J € {I, 1),

—00” —00?
)

we have that the monomials of type (p(]))”l (z(]))”(zj) divide the system #,; when ] € J \ {IM My,

—00’

or (z(}))”m divides Ey)(z(])) when J e {IM M), O

3.4 The isolated singularity case: Dynamics after the reduction of sin-

gularities

In this section, we study the dynamics of the vector fields &, for ¢ large enough after the reduction

of singularities.

3.4.1 Characteristic cycles as limit sets

The objective of this section is to prove that the characteristic elements of &, after a sequence of
admissible blowing-ups M are the only possible limit sets of the family of local cycles.

Along this section, we fix a sequence of admissible blowing-ups M = (M, 1, A, D) for &, with
A = {Cjljes and D = {y1}jez. Denote by E = 7=1(0) the total divisor of . We define also the

support of D as SuppD = U ¥1- Recall the definition of €, in Corollary 3.16.
Iel

Proposition 3.17. Let £ > () + 1 and W be a neighborhood of SuppD = U v1. There is some neigh-

IeT
borhood U = U(W) of 0 € R3 such that == (Cyy(&,)) S W.

To prove this result, we need to introduce new notation and a technical lemma. Consider the

E:=E\[[ v m}]u{m}u{m}}

I:y;€D corner

set

It has a finite family of connected components denoted by £u¢ = {Lo,Ly,.., L, }. Each L; € £y
is open in E and contained in a chart Cj, for i = 0,1,...,ky. Therefore, we will call them simply
open components (of E). In addition, in case L; is contained in two different charts, we choose Cy,
such that L; C {pV#) = 0}, which is always possible by the construction of sequences of admissible
blowing-ups. Then, each open component L; = S! x (A7, A7) x {0} in the coordinates of Cj, where
A7 € RU{-oo} and A7 € RU {oo}. An element L; € £, is said to be dicritical (respectively, non-
dicritical) if the component of E that contains L; is dicritical (respectively, non-dicritical).

Fix L = L; € £ and the corresponding chart C; with J = J;. Consider the formal vector field

f]; associated to gV = (nlC])*(f as in equation (3.11). For the purpose of this section, we write,
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removing super-indices in (z, p):

N DI ) PSRN ) PR
= p" (Az (z,0) 5+ Ap (z,p)ap). (3.18)

)
We consider the vector field ;" := p™" #j; which has a finite number of adapted singularities along
{p = 0}. The singularities determine the characteristic cycles contained in L;. The z—coordinates

of the characteristic cycles in L are denoted by ..., wyLnL and the associated characteristic cycles

by ylL,...,y,ﬁL.
Define the collection of sets V(L,¢,9) := {V,, Vy,..., V}, 1, V,, } depending on two parameters
£,0>0 by:

Vo = §'xQole)x(0,8], Qole) = [, wf —¢l,
Vi = St x Q;(e)x(0,6], Qj(e):[wf+£,a)][f+1—e], j=1...,m -1, (3.19)

VmL = s XQm (¢)x(0,0], QmL(g):[wfnL‘}'e’lﬁ]’

where p, = A* ¥ ¢ when [A*| < oo, p_ = w] — 1 when A~ = —c0, and p; = w,y, + + when A* = co.

Define the surfaces d,,;,V; and d,,,,V; as follows:
¢ JpinVo =S x{pu_} x x(0,0] and d,,;, V; = Slx{w +e}x(0,0]forj=1,2,.

* OmaxVj =St x{wh, -} x(0,8] for j=0,1,...,mp =1 and 9,y Vi, = S' x {1} x (0, 6].

]+1

Lemma 3.18. Assume € > €y + 1 and denote by 52]) = (7'(|C] )*E¢. There exists €y > 0 such that for every
small € with €y > € > 0, there exists 6 = 6(¢) > 0 such that the collection V(L, ¢,6) ={V; } | satisfies:

1. In case L is non-dicritical, the function z is monotonic along the trajectories of §€ in each V;
for any j. Otherwise, if L is dicritical, the function p is monotonic along the trajectories of

éy) = (ntlc,)*Ee in each V), for any j.

2. If Lisdicritical and p”(ll)Jr1 does not divide 52])(2), then éy)(z) has constant sign along the surfaces
Omin V and 0,4 Vj, for any j.

3. Suppose that L is dicritical and p”(lmrl divides éy)(z). Denote V(L, 5,0) ={Vy, V/,..., V;, }. Then,
each element V’ € V(L, 5,0) fulfills (1) and, moreover, any trajectory of 10", containing a point

in V; remains mszde V] either for any positive time t > 0 or for any negative time t < 0.

Proof. Taking into account Corollary 3.16 and since ¢ > €, the vector field éé(;]) is described by a

non-autonomous two dimensional system of ODEs (see equation 3.17)

(3.20)

" e
{ g_g pl’ll AZ(])(GIZIP);
d 0 ¢,
% pnl Ap(])(G,Z,p)
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where Aﬁ'(l)(Q,Z,O) = A(u])(z,O) for u = p,z. (As for the formal system of ODEs (3.18), we include

0,
the factor z’2 in Aﬁ’(”.)

We choose ¢ satisfying the following conditions:

* In any case, we require ¢, < %miniij{lwl]f - w].L|},

» If L is dicritical and Aﬁ'(l)(G, z,0) 0, being {t1,...,t,} its set of zeroes, we require also

1 . .
£0<5m1n{|w]L—tk| :1<j<mp, 1<k<s, a)JIf:ttk}.

In the non-dicritical case, the function Aﬁ’(])((), z,0) = Ag)(z,O) is not identically zero and only

depends on z. Being its zeroes wf,...,a),LnL by definition, it has constant sign when z belongs to
the interval of Q;(¢) for j € {0,...,my} for any 0 < &€ < ¢. By continuity and periodicity in 6,
Aﬁ’(”(Q,Z,p) has constant sign for (6, z,p) in a set of the form S! xQ;(€)x(0,0;] for some o; = 9;(¢).

Take 6 fulfilling § < min {8} and By}, = £)(6) has positive sign in §' x Q;(¢) x (0,] for every

1_0,...,le.

j =0,...,mp. This is possible since Bg)e((?, 0,0) = 1. Then, we define V] = S! x Qj(e) x (0,0].

(])(

Taking into account that 52])(2) = p”(lnAﬁ’ 0,z,p)- Bg ) (0,z,p), we obtain the property (1) for the

non-dicritical case.

In the dicritical case we proceed in the same way. Notice that Aﬁ"“(@, z,0) = A(p])(z,O) only
depends on z and its set of zeros is by definition a)f,...,a)f;”. We get that 52])(‘0) has constant sign
in each V; and statement (1) holds.

Let us show (2), assuming that p”(II)+1 does not divide éy)(z). By the choice of ¢;, we have
that Aﬁ"”(e, z,0) = A(Z]) does not vanish at any of the extreme values of ()(¢). Since éy)(z) =
p”(lj)Ag)(G,z,p) . B;{;(G,Z,p), we obtain (2), up to taking a smaller o.

Finally, we show (3). Assume that L is dicritical and that A(Z})(G,z, 0) = 0. Then, the associated
to éé]) system (3.20) can be written as

(3.21)

0, ~,
{ dz = pmHlA, Do,z, P)
d (Al
do — o' A5V(0,2,p)
where Ag'(])(G, z,0) does not depend on 6 (by Corollary 3.16), vanishes exactly for z € {a)f, o) wﬁq},
and fo"”(e, z,0) € R[cos 0,sin O, z]. Proceeding as in the beginning of the proof, we take a constant
0 > 0 such that the collection V(L, %, 0)= {VO', Vl’, . V,;L} tulfills (1), so that p is monotonic in every

V].’. Being Vj relatively compact, there are constants 4, K > 0 such that for any Vj’ €V(L,5,0), we
have

. ¢, ~,
inf (145 () 20, supll AL ()} <K. (3.22)
pev; peV/
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Fix V].’ and suppose, for instance, that Ag’(])lng< 0. Then, if 0 : R — M is a trajectory of 52])
parameterized as a solution o(0) = (0,z(0),p(0)) of system (3.21), as long as it remains in V]-' \L,
the function p(0) is strictly decreasing. Hence, o can be parameterized by p instead of 6 and we

obtain from (3.21) and (3.22)
dz

dp
Now, consider the collection V(L,¢,6) = {Vy, Vi,..., Vyy, } whose elements fulfill V; C Vj’ for j =

K
< Cp, where C = ot

0,1,...,my. If the trajectory o starts at a point pg = (6, 2¢,p0) € V; C V].’ with pg > 0, it satisfies, for
0> 90:
C C
[2(0) = 20l < S1p(0) - pol® < 0§ <

as long as Im(o/(g, 0]) C Vj’. We obtain similar bounds for |z(0) — zo| when Af;’(])|v/> 0. Imposing
o< \/Z, we can conclude that |zp—2z(0)| < § and guarantee, for any j and for any py € V; € V(L,¢,0),
()

|

that the trajectory o starting at py satisfies Im(0]jg,,c0)) C Vj’ (or Im(0](—e,0,]) C Vj’ in case Af;’ V>

0). O

From the proof above, we may observe that V(L,¢,0’) also fulfills (1-3) of the lemma for any
o' <o.

Notation 3.19. Given an open component L € £, as above, in the notations of section 3.3.1 for j €
{0,...,mp}, let I € T be the index of the corresponding characteristic cycle y;, = {z = wj,p = 0}. Let
Iy, Iy, +1 be also the indices of either the corner characteristic cycles or characteristic singularities
in the component L. We say that the box V; € V(L,¢,6) with j = 1,...,m; —1 is adjacent to y1, and
to y,,, and we denote QIJ.Vj = dpin V; and 81].“ Vi = dmax V-

Proof of Proposition 3.17. Let W be a neighborhood of SuppD. For every I € T we consider an
open neighborhood W; ¢ W of y; such that WyNn W =0if I = I’. Consider the collection £, and
apply Lemma 3.18 to each L; € £, taking ¢ and 6 small enough so that each family V(L;, ¢, 0) also

satisfies:
e For any V € V(L;,¢,6), we impose V N W; =0 if and only if y; is adjacent to V.

* Forany V € V(L;, ¢, 6), the boundaries d,,;,,V and d,,,,V are contained in the corresponding

neighborhoods W; and W, where y; and y are adjacent to V.

¢ The set

Jwol) U v

IeT LeEy VeV(Le,0)

is a neighborhood of the divisor E = 7771(0) in M.
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Now, we define a closed neighborhood W; ¢ W; of y; for each I € T in such a way that (see
Figure 3.4):

(i) The set

U =int UWIU U U 1%

IeT Le&y VeV(Le,d)

is a neighborhood of the divisor E in M.

ii) Forany I € Z, L € £y and V € V(L,¢,8), W; NV is empty, in case V is not adjacent to y;,
y M Pty J Y
or, otherwise, it is of the form W; NV = S! x {¢;} x (0, ], where 0 < p < 6 and ¢y satisfies
V =S x{c;} x(0,9].

Now, the set U := rt(U) is an open neighborhood of 0 satisfying the requirements of the propo-

sition. More precisely, we claim that 7! (Cy;) C U W;.
IeT

FiGuRrE 3.4: Construction of U.

To prove this, suppose that there is a cycle Z of & contained in U and such that Z := 7"!(2)
intersects some V € V(L,¢,0) for some L. Consider a parametrization o0 : R — Uof Z as a
trajectory of 1€, such that 0(0) € V. By the property (1) of Lemma 3.18, one of the coordinates z
or p is monotonic along ¢ inside V, so it cannot be completely contained in V. As a consequence,

o leaves V so that for some t; > 0 we have o(ty) € Fr(V)N W, where I € T and 1 is adjacent to

139



CHAPTER 3. DULAC’S PROBLEM FOR VECTOR FIELDS WITH A HOPF SINGULARITY

V. By construction (cf. item (ii) above), o(t() belongs to the boundary d; V. We have two cases to

consider (notations as in Lemma 3.18).

. Aﬁ’(])(G,z, 0) = 0. By statement (2) of Lemma 3.18, the vector field t*&; is transverse to d;V
so that, for instance, we have o((tg—c, ty)) Cint(V) and o((fg, tg +¢)) C ext(V) for some ¢ > 0.
Since o is periodic, we must have that o crosses Fr(V) at a first time t; > t; necessarily
along one of the boundaries d,,;,,V, d,,,,V where 1t*&, points towards int(V). If we denote
{01 V,0p V) = {01in V) 0max V), Wwe must have o(t;) € dpV and o((tg, 1)) C ext(V), but this
contradicts the fact that, by construction, U\ V = U, UU, where Uj, U, are non-empty open
sets such that U; N U, = @ and the closure of each U; cuts V only along one of the sets
{dpV,0; V).

. Aﬁ’(])(G,z, 0) = 0. Using statement (3) of Lemma 3.18, we know that either o((ty, o)) or
0((=00,19)) is contained in the corresponding element V"’ of the collection V(L, §,6) and poo
is monotonic along that interval. This is also a contradiction with ¢ being periodic.

Consequently, we have proved that Z C U W, (in fact, included in a single W, by connectedness).

IeZ
Therefore, we have that:

NCulE e[ Jwiel Jwiew,

IeZ IeZ

as we wanted to prove.

3.4.2 Analysis of Infinitely Near Points of the Rotational Axis

We see first that we can find a neighborhood of the two characteristic singular points that does

not contain cycles of a jet approximation & of &.

Proposition 3.20. Given € > {y+1, there exist neighborhoods W, of yjm and W_g, of ypm in M such
that neither Wy, \ E nor W_, \ E contains cycles of *&,.

Proof. According to the construction in section 3.3.1, the point y;u is the origin of the chart
(Cr(x xU), 90, 20))) with J = IM and EN Cy = {zU) = 0}. By means of Proposition 3.14, we have that
62})(2( ) = () n/ -F(x(]),y(]), zU))in a neighborhood of y;u where 52]) = (7‘(|C])*<Eg, n') e Ns; and
F(xU ,y N, 20y e R{x),p\), 2U)} satisfies F(0,0,0) # 0. Take a neighborhood W, of I in M where
F has a constant sign, posmve or negative. We have that the trajectories of "¢, in W, \ E can be
parameterized by zU/), which contradicts the existence of cycles of 7w*&; in Wy, \ E. The proof for

7/{1 is analogous.
O
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3.4.3 Analysis of Characteristic Cycles

This section is new with respect to [23]. The main difference is that we do not require that the
characteristic cycles correspond to adapted simple singularities. We are able to solve the problem
for any characteristic cycle. The main tool is the definition of the Poincaré maps. Applying
Theorem 2.6, we have that there are not periodic points, other than fixed points, for such Poincaré
maps, in a sufficiently small neighborhood of the origin. In addition, if there are fixed points,
they are contained in a finite number of curves of fixed points. Each of these curves implies the
existence of a surface with center configuration. These arguments will serve us to conclude that
there are not isolated cycles in a sufficiently small neighborhood of a characteristic cycle of &, for
{ large enough.

In order to apply Theorem 2.6, we need to ensure that the Poincaré maps at the characteristic

cycles are tangent to the identity but different from it.

Definition of Poincaré maps

Throughout this subsection, we suppose that y; is a characteristic cycle of & in M contained in a
chart C; for which {pY) = 0} (or {zV)pV) = 0}) is the equation of ENCjand y; = {p(]) =0,zU) = w;} for
some w; € R. Consider the transform &) = (7Z|C])*cf in the translated coordinates (z := z/)+wy, p:=
pU)). Tts associated two-dimensional vector field is

()0,

)
(o) dp

A

=

[a NN

D(z) o
() 9z’

O | O,

More precisely, we write 7j; = p“j; where a > 1 (or 7}y = p“zbﬁ]’ where a,b > 0 and a+b > 2) and 7;

is a formal vector field in coordinates (z, p) with a singularity at the origin.

Remark 3.21. Because we are in the non-degenerate case, we have that the vector field #; is not
identically zero. This implies that this formal vector field has a non-vanishing jet ji, (7];) # 0 with
k; >a+b+1 > 2, since on the one hand (wy, 0) is a singularity of 17]’ and on the other hand a > 1 or
a+b>2. Wewill take £ > 1+ 1 +kj.

By Remark 3.15, y; is a trajectory of the vector field éy) = (nlcl)*ég for € > max{€y+1,1+1+k;}.
This vector field is described by the system of ODEs 7;,;. We can define the Poincaré map P =
Prr: A — {6 = 0} as the first-return map of 62]) relatively to y;, where A is a sufficiently small
neighborhood of (z,p) = (0,0) in {6 = 0} in which P is analytic.

Notice that the Poincaré map does not depend on the parameterization of the trajectories of
the vector field, and hence, we can define it using any equivalent vector field. In particular, we

are going to consider the vector field (’;:é]) equivalent to éy) obtained by the multiplication by the
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inverse of 52])(9). That is, we put

I
_ 0 _ E Z) 0 5€ (P) 0
/ _%+x, where yx = —+ —

(3.23)

Notice that the components of x are the right members of the system of ODEs 1, ; introduced
in section 3.3.3. They belong to the R—algebra R[cos6,sin0]{z,p} (by Remark 3.15). Thus, we
consider 5‘/’ as an analytic vector field on the domain (6,z,p) € R x (-9,6)? for some 6 > 0 and

2m—periodic in the variable 6. Notice, moreover, from Corollary 3.16, that p divides x and hence

|_i
¢ E= 30°

#)) _
Denote by @; := Cfo the flow map of éy). It is defined and analytic for (t,(0,z,p)) € (=€, 27 +
€)% ((—&,2m + €) x V) where V is a neighborhood of 0 € R?. Using that E}”(e) =1, we obtain

Dy(0,2,p) = (8 +1,¥7(60,2,p), ¥ (0,2,p)), (3.24)
that is, the angle 0 is the natural time for éy). By definition, the Poincaré map is given by

P(z,p) = (¥5,(0,2,p), ¥}, (0,2,0)). (3.25)

We are going to express the flow via the exponential map. To be precise, given any G € R[cos 8, sin 0]

[[z, p]], we define:

i

exp t£€ it—'

=0

~.

where, for any vector field ¢, ¢(9(G) = G and ¢)(G) = ¢(C"~1(G)), if i > 1. Taking into ac-
count the above properties of the components of 52,”, it is immediate to check that exp(téé]))(G) €
R[cosO,sinO][[t,z,p]]. In the following result, we get some useful properties of this exponential
map and its relation with the flow map. Notice first that, if G € R[cos8,sin0][[z,p]], then the
composition G o @;, due to the analyticity of @;, has a formal Taylor expansion at t = 0, denoted
by Ty(G o D;), a formal power series in variables (t,z, p), with analytic functions of 6 € (—¢,21 +¢)

as coefficients.

Proposition 3.22. Let G € R[cos 0,sin0][[z, p]]. We have:
1. To(Go®,) = exp(tE))(G) € R[cos 0,sin 0][[1,2,p]]

_ S
2. For any ty € [0,21t], the expression exp(toéy))(G) = Z,—O(Eé}))“)(G) has a sense as a series in

R[cos O,sinO][[z, p]] and we have

Go®, = exp(tsé))(G) (3.26)
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Proof. We prove (1) with the same arguments as the case in [58, pag. 15] for holomorphic vector

fields: expand G o @, as a Taylor series in f at t = 0, so that we get

® 4 9i(God,)

| i
b i! ot

To(Go®,) =

t=0

9" (Go®d,)
ot

and check that, for any i > 1, = EMD(G) o ;.

Let us prove item (2). First, we show that there exists a > 0 such that (2) is true for any
to € [0, a]. For that, consider the particular case where G is either the coordinate z or p (with the
notations of (3.29), zo @; =¥ and p o CDto = \I’p) By analyticity of these functions and by item
(1). We get that exp(éy))( ), exp(ég ) ) € R[cos0,sinO]{t,z,p}. More precisely, they belong to
R[cos 6,sin O]{t}[[z, p]] for some f > 0 (all coefficients in R[cos 0,sin 0]{t} have a common radius
of convergence). We conclude that Wy =zo®; = exp(toff;]))(z) and \Ifti =pod; = exp(to(fy))(p)
for any ¢ty € [0,a] with 0 <a < 8.

Let G € R[cos8,sin0][[z, p]] be any formal series and write

G= ZGW(Q)Z”‘p”, with G,,,(0) € R[cos 6,sin 6].
u,v

Consider the series
G= chw + 1)z p"
u,v

which belongs to R[cos 0,sin 0]{t}s[[z, p]] since each G,,(0) is a trigonometric polynomial. Tak-
ing into account the expression of the flow ®;, we have that G o @, is the result of substitut-
ing in the series G the variables z,p by W7, WP, respectively. Since the series W7, W/ belong to
R[cos 0,sinO]{t}s[[z, p]] and have positive order with respect the variables z,p, substitution has
perfect sense and provides an element in R[cos 0,sin 6]{t}[[z p]]. Since, by item (1), To(G o D;)
coincides with exp(tgy))(G) as a series in R[cos 0,sin O][[t,z, p]], we conclude item (2) and (3.26)
for ty € [0, a]. Notice that we can choose @ > 0 which does not depend on G. Let us show that we
can extend the property(3.26) to any f( € [0, 2a] (and hence similar extensions will prove (2)). Let
to € [a, 2a] and write ty = so+a, where s € [0, a]. We have Go®; = (Go®; )o®,. Applying (3.26)

for the values sy and «, and for G and Go qDSO, respectively, we get

i

. - . J
Gody, =) =(&)(Gow,) = Z%(éé”)m[z], o)

i i

k
- Z[ > j? )>""<G>] =y @l )06 = expltafl )G,

i+j=k k
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which was to be proved. O

We can now prove an important feature of the Poincaré map.

Lemma 3.23. There exists {; such that for any € > {;, the Poincaré map P = P, is tangent to the
identity but P # 1d as a germ of diffeomorphisms at (0,0) € A.

Proof. This result is a consequence of the fact that the vector field #; has a non-vanishing jet (c.f.
Remark 3.21). Suppose that p = 0 is the equation of a component of the divisor and write 7j; in
homogeneous components in p. We have

d d J Jd
A a.b — 2 b k k
n=p"z F(z,p)—az +G(z,p)—ap) p'z kzl (Fk(Z)P 5 +Gr(z)p )

and consider the minimum v such that F, # 0 or G, # 0. We take {; = v+a+1+ 1, where [ is the
length of the sequence of blowing-ups M that is being considered.

By Corollary 3.14, choosing ¢ > max{{},{,,}, we have that the system 77,; has the same (v +
a)-jet in p as 7j;, namely ]'5+a(17g’]) = j5+a(ﬁ]). Recall also that the coefficients of x in Cé]) = % +x
are given by the system 71, ;, and hence its (v + a)—jet in p is known.

Suppose first that F,, # 0. Then, we find that

exp(tCy)(p) =p+ tQ) +1Qy + -
=p+ t(pa+vszV(z) + O(pv+a+l)) + t2(pZ(a+v)—lzb(a + V)Fg + O(pZ(a+v))) + O(t3p3(a+v)_1).

Notice that the terms summarized in O(p”““)

can depend also on cos6,sin 6 and z. We have to
take care about the case v = 0 and a = 1. Since (0, 0) is a singularity of 7, ;, we have that Fy(0) =0,
in particular, z divides F,. Then, the sum tF, + tzFE +---, which gives the lower order jet in p, is
different from 0, for any value of ¢ # 0 for which the flow is defined. In any other case, we have
that independently of the value of v, the order in p increases on each Q;. And again, since F, z 0,
we have that \I’zpn #p.

A similar reasoning applies if G, # 0, obtaining that W= z. We conclude that either \I/zpﬂ #p

or W +z,and hence P = Id. O

Existence of limit central surfaces

In the previous subsection, we showed that the Poincaré maps defined at the characteristic cycles
y1 € D are tangent to the identity diffeomorphisms and different from the identity. Hence, The-
orem 2.6 can be applied to these Poincaré maps. We will use this result to prove the following

one.
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Proposition 3.24. Let y; € D be a characteristic cycle of &g and € > €} in Lemma 3.23. Then, there
exists a neighborhood Wy of y; such that exactly one of the following holds.

* There is a finite number of analytic surfaces Sy 1,...,S1 s, that have center configuration. There

are not other cycles of &y in Wy.
* There are no cycles of & in W.

Proof. For the proof of this result, take the Poincaré map P, defined on a cross section A of ;.
We define W; as A x S!, which is a neighborhood of y;. By Lemma 3.23, it is tangent to the
identity. In addition, since the intersection of the plane A with E is invariant for P;;, we have
that it is not center-focus. We are on the hypotheses of Theorem 2.6 and we can apply this result
and its consequence, Corollary 2.7. We find that the only periodic points of P, that can appear
are analytic curves I} ,..., Ty, of fixed points. Hence, the only cycles of & in W; that intersect
this cross section do it in the curves of fixed points. Saturating these curves with the flow of &,
we find that S;;...,S;, are analytic surfaces with center configuration and no other cycles are

contained in Wj. O

3.5 The isolated singularity case: End of the proof

In this section, we will collect all the results presented in sections 3.3 and 3.4 and prove Theo-

rem 3.1 in the isolated singularity case.
Proposition 3.25. There is a vector field &, with € sufficiently large that fulfills Theorem 3.1.

Proof. First, we will choose the &, with ¢ sufficiently large. Consider the reduction of singularities
M = (M, 7, A,D) of &, with A = {Ci}jeg and D = {y1}1ez given in Proposition 3.12. Take £ >
max{ly, {1 : I € T\{I};;,I,;°}}, where ¢ are defined as in Lemma 3.23. Applying Proposition 3.20,
we obtain neighborhoods W, and W_, of y;s and yy;~ respectively, which are free of cycles of &,.
Secondly, we apply Proposition 3.24 to each y; obtaining neighborhoods W; of y; that are either
free of cycles or in which the cycles of &, are organized in surfaces with center configuration. If

necessary, we reduce these neighborhoods so that they are not overlapping. Taking the union

W=W_,UW__U U Wy,
[eT\I, I

we obtain a neighborhood W of Supp(D). We are then in the conditions of Proposition 3.17.
Applying this result, we obtain a neighborhood U(W) of 0 € R3 such that 7=!(Cy) ¢ W. From
Proposition 3.20, we have that there are not cycles in W, nor in W_,. From Proposition 3.24, we
have that either there are not cycles in Wy for I € 7\ {I{, I,°}, or they belong to analytic surfaces
in Wj.

145



CHAPTER 3. DULAC’S PROBLEM FOR VECTOR FIELDS WITH A HOPF SINGULARITY

To finish the proof, we project the surfaces Sy for each I € T\ {I{,I,° and 1 <k <s; under 7t

to R3. They provide a collection of subanalytic limit central surfaces S,...,S, at 0 € R. O

Notice that any vector field &, is analytically conjugated to the original vector field & by con-
struction and that any other &, is as well analytically conjugated to &,. Hence, proving the

theorem for one &, implies proving it for any other conjugated vector field.

3.6 The non-isolated singularity case for formally non-degenerated vec-
tor fields

Now we will prove Theorem 3.1 for non-degenerated non-isolated Hopf singularities. The proof
will follow the lines of the semi-hyperbolic case, in the sense that we will be able to blow up an
analytic curve and to define a Poincaré map from a cycle that arises after this blowing-up.

We have mentioned before that at the time of the publication of [23], we did not have a good
description of the Poincaré maps, nor a strategy to prove non-accumulation of cycles at a degen-
erated rotational axis, the curve of singularities. Thanks to the contribution of Theorem 2.6, we

overcome those difficulties and we are able to give a rather simple proof of the result in this case.

3.6.1 Blowing-up of the rotational axis and choice of a jet approximation

First, we make the assumption that the curve of singularities at 0 is the z—axis, for convenience.
Fix a formal normal form & of & and consider its associated two dimensional vector field 1] as in

section 3.1.2. We recall the expression of £ in equation (3.3)
. d d d d d
:A 2 2, -1 = - B 2 2, = = 2 21 .
E=A(x"+y z)( yax+xay)+ (x“+v%,2) xax+yay +C(x"+p z)az

where A is a unit in R[[#,v]] and C is divided by a power of x? + y? because of the non-isolated

singularity hypothesis. The expression of 7 is

d d
4—B 2} A 2, -1 Y C 2’ A 2, —1_.
1= Be%2)Alp%2) e o+ Cp%2)Alp%2) o
Since we are in the non-degenerated case, we know that the vector field 7 is a non-zero formal
vector field of order equal or greater than 1 and it has a non-vanishing jet. Because of the isolated
singularity condition, we also have that p divides 7.
Now, we blow up the z-axis, and present the transform vector field in the global chart C,

where we take polar coordinates (6, z, p).

AO0(z,0)2 1 B0z, ) 2

A 0 0 J
(0) _ 2 2 2
&V =A(p”,2)=5 + B(p”,2)=— + C(p~,2) %0 70

20 9p Jz
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with A9, B(0), C(%) € R[[z, p]]. The associated two dimensional vector field 7j, coincides with 1§ and
has a non-vanishing k—jet. Notice also that 00_1(0) is a cycle of £0 in E = ao_l(Q), where the

restriction of £(°) is equivalent to %

Now, take any &, with £ > k. We can apply the previous blowing-up o( to &, obtaining a

vector field

0) ) J . J ) 7
& =A¢(pcosB,psinb,z) 50 +B(pcosO,psin6,z) 7p + C(pcosH,psinb,z) P
d

_ 40 ) 9 () a
=A, (6,z,p)8685 (6,z,p)apC€ (Q’Z’p)az’

with AE,O), B(go), Céo) € R[cos 0,sin O]{z, p}. We recall also that, since the singularity is non-isolated,

p divides both C,; and B,. Using that A(€0) is a unit in R[cos 0,sin 0]{z, p}, we can define a system

of ODEs 1717, as we did similarly in the isolated singularity case:

(3.27)

0 A0

7 A(0,2,0)1C(6,2,p),
0 140

A(e (©0.2,p) 1B(g \6,2,p).

By hypothesis, the {—jet in p,z of 520) is the same as that of £(©). We will fix £ > k where k is
a non-vanishing jet of £(¥). By this jet equality, we find that &, has a cycle y at 051 (0) as well.
Following the ideas of section 3.4.3, we define a Poincaré map at an analytic cross section of this

cycle.

Recall that for the definition of the Poincaré map, the parameterization of the trajectories is
not important. Then, to define it, we will work with the vector field Céo) which is equivalent to
5{(?0) by multiplying by the unit A;O)(Q,z, p). The expression of this vector field C{(;O) in coordinates
(0,z,p) is given by

(0 _ 9
Cg = % + X

where the coefficients of x coincide with the right members of the system #, in (3.27). Since they
are analytic, suppose that they are convergent on a domain R x (-§,8)? for some 6 > 0. Fix the
plane {6 = 0}. Following the same reasoning as in section 3.4.3, we will define the Poincaré map
in a neighborhood A of (0,0) in {6 = 0}. First, we find that the coordinate 6 acts like the time
variable, since

D,(6,2,p) = (6 +1,W(6,2,0), ¥ (0,2)). (3.28)

By definition, the Poincaré map P = P, is given by
P(z,p) = (W5,(0,2,p), ¥}, (0,2, p)). (3.29)
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A more precise expression of the Poincaré map is found using the expression of the flow given
by the exponential map and using Proposition 3.22 that ensures that the formal expression of
the flow makes sense for t = 27t. It remains to prove that the Poincaré map is different from the

identity.

Lemma 3.26. There exists €y such that the Poincaré map P = Py for £ > €4 at y is tangent to the
identity but P # 1d as a germ of diffeomorphism at (0,0) € A.

Proof. This result is a consequence of the fact that 7§ has a non-vanishing jet. We write this vector
field in homogeneous components in p, z
d d K 9 ¥ 0
j — F y P G , — | = F = G =Y B
i =p|Flzp)5-+Glz P>ap) p;( 200" 52 + Gela)e 5
and consider the minimum v such that F), # 0 or G,, # 0. We take £ > v + 1. Since 7} and 7, share
the same {—jet in p, z, as we pointed out in the beginning of the section, we have j, .1 (1¢) = j,+1(7).

Suppose that F, # 0, then

exp(tC))(p) =p +1Qy +1Qy +---
=p + HpF,(z,p) + O(l(p,2)|"*?) + 2 (pF, (2, p)* + Ol(p, 2)|" ) + O(£2, |(p, 2)|"*).

Notice that the terms in O(|(p, z)|"*k) can also depend on cosO and sin@ and are divided by p.
Since v > 1, we observe that the lower order term tpF), is different from 0, for any value of ¢ = 0.
Thus, we find that \Ifzpn # p, which implies that P = Id.

Following the same reasoning, we find that W # z when G,, # 0, which also implies that
P=1d. ]

We finish the proof of Theorem 3.1 for non-degenerated vector fields with non-isolated sin-

gularity.

3.6.2 End of the proof

We prove the Theorem for some &;, which is analytically conjugated to £. Recall that by Asser-

tion *, this suffices to prove Theorem 3.1.
Proposition 3.27. There is some { > 1 such that &, satisfies Theorem 3.1.

Proof. We choose ¢ as in Lemma 3.26, obtaining a Poincaré map P defined in A C {6 = 0} that is
different from the identity. On the other hand, this Poincaré map has an invariant curve given
by ANE, so it is not center-focus. We can apply Theorem 2.6 to P in (0, 0), obtaining a sectorial

decomposition of P in A C A. In particular, all the periodic points of P in A lie on curves I,...,T,
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of fixed points. Saturating these curves in A by the flow of &;, we obtain analytic surfaces Sy, ..., S,
contained in A x S! that have center configuration. Then, we find that ¢/(S;),...,0(S,) are the only
limit central surfaces at 0 € R3. By choosing a neighborhood of 0 in o(AxS') conveniently, we find

that the first item (when r = 0) or the second item (when r > 1) of the theorem are satisfied. = [J

Recall that the vector field &, is analytically conjugated to £ by the diffeomorphism ¢, (cf. sec-
tion 3.1.2). Then, there is some neighborhood U of 0 in which & also fulfills one of the situations
(i) or (ii) of Theorem 3.1.

3.7 The non-isolated singularity case for formally degenerated vector
fields

In this case, we prove Theorem 3.1 by means of proving Theorem 3.3.

3.7.1 Characterization of three dimensional centers

One of the equivalent statements of Theorem 3.3 concerns complete integrability. We say that a
three dimensional vector field is completely integrable if there exists two analytic first integrals
f and g such that df Adg = 0 in a dense neighborhood of 0.

Theorem 3.3. Let & € H3, the following statements are equivalent.
(1) & is formally degenerated.
(2) & is analytically orbitally linearizable (i.e. it is orbitally equivalent to its linear part)
(3) There is a neighborhood U of 0 such that Cy = U \ Sing(<).
(4) & is analytically completely integrable.
Remark 3.28. In addition, (1) in the statement can be replaced by an a priori weaker statement:
(1’) The vector field & is formally orbitally linearizable.
)

Iy
where U is a unit in R[[x, v, z]]. Then following the normal form algorithm, we get that U(x, y, z)(—y%+

In fact, assume that & is formally conjugated to a vector field of the form U(x,y,z)(—y% +X

xa%) has a degenerated normal form, and so does &, that is, (1) = (1). The converse follows by

definition.

Proof. The proof of this result is organized as follows. We start by proving the implications
(1) = (2) = (3) = (1). The equivalence with the latter is proved by showing (2) = (4) and
(4) = (1).

149



CHAPTER 3. DULAC’S PROBLEM FOR VECTOR FIELDS WITH A HOPF SINGULARITY

(1) = (2). Suppose that & is formally degenerated, i.e. there is a formal normal form & such that

E=¢p'& :(1+A(x2+y2,z))( A )

Yot xa—y

The idea of this proof is to use Brjuno’s result on existence of an analytic normal form [10] that
we state in Theorem A.28. We follow the statement of the result in the text of Martinet [59]
that states that under certain hypotheses, a vector field has an analytic normal form. To check
the hypotheses of this result, we will work in the complex case, since the result is stated for
holomorphic vector fields. We will end the proof by obtaining a real analytic normal form that
is analytically equivalent to a linear vector field, applying another result of Brjuno in [11].

The complex Jordan normal form of & the linear part is obtained by applying the linear au-

tomorphism (x,v,z) = (\/%(x +1y), \/%(x —iy),z) = (4,v,2). Its inverse is given by ! (u,v,2) =

(\%(u +v), \%(—iu +1iv),z). We obtain then that

yb*é =(1 +A(uv,z))(iu% —iv%),

The vector of eigenvalues is denoted by A = (i,—1,0). In order to see if Theorem A.28 (also of [59,
Theorem 5]) is fulfilled, we need to verify the following two hypotheses.

Z loiliuk

k

— (Arithmetic condition) The series

is convergent, where wy = min{lag|: |Q| < 2k+1,aQ =0}, Q=1(q1,92,93) with g1 +q,+q3 > -1
in{qy € Z>_1,92 € Z>0,43Z>0} U\q1 € L0,q2 € Z>-1,93L>0} U{q1 € Z>0,q> € ZL>0,932>-1} and
ag=(A,Q).

- (Geometric condition) The formal vector field i * £ is tangent to the foliations given by

u"tvz" = ¢, where c is a constant and R = (rq, 1y, 13) such that (A,R) = 0.

We also remark that the values ag that appear in the arithmetic condition are the eigenval-
ues of [iu% -~ ivc%,—] : ¥,(R3,0) - ¥,(R?,0), which is used to construct the normal form. The
eigenvectors associated to the eigenvalue (A, Q) = i(q; — q») are uqlv‘hz%u%, 92 > -1,95,93 =
0,u‘71v°722‘?3v9%, q1 > -1,91,93 > O,Mqlv‘hz%za%, g3 > —1,491,q92 > 0. For the proof of the arith-
metic condition, we show that wy > 1 for every k > 0, since ag = (A, Q) =i(q; —q2) has |ag| = 0 if

ag =0 or |ag| > 1 otherwise. Hence, the term of the series decrease as 27 and it is convergent.

Now, we prove the geometric condition. The vectors R that we consider fulfill r; = r,. To see that
the vector is tangent to the foliations given by u" vz = c it is enough to see that ¢, &(u" v 23 —
c)=0.
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We conclude that the arithmetic and geometric conditions are fulfilled and by Theorem A.28

there exists a holomophic normalization ¢} and a holomorphic normal form &j,.

Existence of a real analytic normal form ¢ = (1 + A(x? + yz,z))(—y% + xa%) obtained by an an-

alytic automorphism tangent to the identity ¢ is guaranteed by Theorem 3 in [11], see also
Theorem A.29. The vector field & is analytically conjugated to &, which is orbitally equivalent

to —y% + xa%. Hence, the vector field & is as well orbitally equivalent to —y% + xa%.

(2) = (3). It is straightforward since by hypothesis £ is orbitally equivalent to its linear part.
The trajectories of this vector field are either cycles around the z-axis or singularities in this
curve. Taking an appropriate U, that is, choosing U whose boundary is entirely composed by a

union of cycles, item (3) follows.

(3) = (1). To prove this item, we will suppose by contradiction that (1) does not hold, i.e. that
& is formally non-degenerate. We have already proved Theorem 3.1 for every non-degenerated
vector fields: in Section 3.2 for semi-hyperbolic Hopf vector fields, sections 3.3-3.5 for isolated
singularity Hopf vector fields and in section 3.6 for non degenerated Hopf vector fields with
non-isolated singularity. In all of these cases, only situations (i) and (ii) of Theorem 3.1 are
permitted. This contradicts (3), and we conclude that existence of a continuum of cycles implies

that & is formally degenerated.

(2) = (4). This implication is also direct, since the linear vector field —ya%+xa% has two indepen-
J
%
and & are analytically orbitally equivalent by the analytic diffeomorphism ¢. Then ¢*(x? +y?)

dent first integrals, namely x? + y? and z. By (2), consider that the linear vector field —y% +x

and ¢7(z) are two analytic first integrals of &.

(4) = (1). Suppose that & has two analytic first integrals. To simplify the proof, we will work
with the complex formal normal form gb*é , as we did in the proof of (1) = (2). The two analytic

first integrals provide two formal first integrals f,g of the vector field 1,& = ¢*&.

A

. d . d d d d
P& =(1 +A(uv,z))(zu% —1v%)+B(uv,z)(u% +v%)+ C(uv,z)g.

Observing the that the series A, B,C belong to R[[uv,z]], we prove first the following claim:
f,g € Rl[uv,z]] € R[[u,v,z]]. To do this, we will write both f,g and A, B,C in homogeneous

components as elements of R[[u,v,z]].

f=ka;g= 8k

kZVf k>v
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A= ZAk, B= ZBk, C= ch,

k>1 k>1 k>2

where fk:gk:Ak:Bk: Cy € R[M,V, Z]k.

Since f is a first integral of &, we have that h := ,&(f) = 0. We have that necessarily h =
Zkzvf hy = 0, that is, each hj = 0. Suppose that vy = n > 1, we prove that f, € R[uv,z]. First we

. . - R
write f, = Zkl+k2+k3:nfklk2k3uklvkzzk3. Imposing h,, = (zum - zv%)(f,,) =0, we get

= ) ikt —kufivRzR =0,

ki+ky+ks=n

Then, we have that the only possible non-zero fi ik, fulfill k; = k. This implies that f, €
R[uv,z]. Now suppose by induction that f, € R[uv,z] for all k <[, we show that f;,; € R[uv,z].

As before, we have that
hl = hl,l + hl,2 = 0,

. dJd . 0
hiy = (Wﬁ - 1V%)(ﬁ+1):
!
. d . d J Jd J
hy= ;Ak (114% - 17}%)(fl+1—k) + By (“5 + V%)(flﬂ—k) + Crs1 &(fl—k)

Using that (iu% - iva%) (ukvkezks) = i(ky—ky)ukivkeZks, (u% + va%)(uklvk?zk3) = (ky+ky)ukivkazhs

and Z(uk vk2zks) = ksukivk2zk-1 and the induction hypothesis, we have that h;, € Rluv,z].
dz )

Then, h; ; must also belong to R[uv, z], which implies that f;,; € R[uv,z] as we wanted to prove.

Proceeding in the same manner for g, we also have that g € R[[uv,z]].

Since the formal first integrals of 1,& belong to R[[uv,z]], we have that the two formal first
integrals of & belong to R[[x2+?,z]], that is, they are f(x?>+y?,z) and g(x?+v?,z). Then, consider

the associated two dimensional vector field 7j of é, defined in equation (3.1.3) section 3.1.3,

B(p®2) 9 Clp*2) 0.
A(p?,z)dp  A(p?z) 0z’

We have that 7 has two formal first integrals f(z,p) = f(p? z) and ¢(z,p) = g(p? 2). These two
first integrals are elements of R[[z,p]], and they fulfill df A d§ # 0, since the original formal
series fulfill d f Adg = 0. We conclude by pointing out that any two dimensional vector field that
has two independent first integrals is neccessarily 0. Then 7§ = 0 and ¢ is formally degenerated,

as we wanted to prove.
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3.7.2 End of the proof in the formally degenerated case

We remark that Theorem 3.3 proves something stronger than Theorem 3.1 for formally degen-
erated vector fields. Theorem 3.1 corresponds only to the implication (1) = (3). With this last
step we have finished studying all possible Hopf vector fields (semi-hyperbolic, formally non-

degenerated and formally degenerated), and we conclude the proof of Theorem 3.1.

3.8 Consequences of Theorem 3.1

In this last section of the chapter, we provide Corollary 3.4 and Corollary 3.2. We give the proof

of both of them, which are direct consequences of Theorem 3.1.

Corollary 3.4. Let & € H> and suppose that its local cycle locus is non-empty. Let Q. be a C®
realization of the formal rotational axis. Then, the neighborhood basis V in Theorem 3.1, (ii) or (iii)

can be chosen so that V \ Q, is homotopically equivalent to S' and any cycle y C Cy/(&) is a generator
Ochl (V \ Qoo)

Proof of Corollary 3.4. We are assuming that either (ii) or (iii) of Theorem 3.1 are fulfilled. In
(ii) we have that Cy = S; U---U S, and after [8] that there is a non-singular realization Q, of
the rotational axis Q. Since we are working with simply connected neighborhoods of 0, the
fundamental group of V \ O, is Z. We want to prove that any cycle of £ in U generates this
fundamental group. With this objective, we prove that any cycle y is a deformation retract of
V' \ Q. Notice that any cycle is contained in one of the surfaces. First, considering that V' \ Q,
is homeomorphic to a filled boounded cylinder and any of the surfaces S; is homeomorphic to a
disk without a point, it is well known that S; is a deformation retract of V' \ co. Secondly, any cycle
y in S;, which gives a single turn after Jordan’s curve theorem, is as well a deformation retract of
S;. Notice that this relation is associative, and then, y is a deformation retract of V' \ Q.

In (iii) the rotational axis Q, = Q and it is analytic and V '\ Q, is filled with cycles. By (3) of
Theorem 3.3, we have that & is orbitally linearizable. This implies that any cycle y of & makes a

single turn around (), and hence, it generates the fundamental group of V' \ Q). O]

The last result in this chapter concerns Dulac’s problem on non-existence of accumulation of
isolated cycles, which is an open problem in dimension 3. We give a positive answer for Hopf
vector fields. It is a straightforward consequence of Theorem 3.1, since none of the possible

structures of the cycle locus allows an infinite number of isolated cycles.

Corollary 3.2. If & € H3, there are no infinitely many isolated cycles of & collapsing to 0 € R3,
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CONCLUSIONS

In this PhD thesis we have studied two different problems.

I. Sectorial decomposition of germs of real analytic plane diffeomorphisms tangent to the

identity.

II. Structure of the cycle-locus and Dulac’s problem for germs of three dimensional vector

fields with a Hopf singularity.

We present the conclusions dealing with each of them in the following paragraphs, as well as

lines of future work.

Sectorial decomposition of germs of real analytic plane diffeomorphisms tangent to the iden-
tity. Concerning the first problem,we provide a sectorial decomposition (U, S) of a diffeomor-
phism F under the condition that F is not of type center-focus (Theorem 2.6 or Theorem A in
the Introduction). The sectorial decomposition is a partition S of a neighborhood U of 0 € R?
in submanifolds so that on each submanifold A € S the asymptotics of the diffeomorphism F are
uniformly described.

The non center-focus condition is our unique hypothesis, and it is also imposed on the secto-
rial decomposition of germs of real analytic plane vector fields. Comparing our result for diffeo-
morphisms with the analogous for vector fields, we find some differences.

* On the one hand, the dynamical types of the sectors of diffeomorphisms are essentially the
same as for vector fields (allowing curves of singularities). For every point p in a single
stratum A € S, we find that the orbit of p accumulates positively at the point 0 € R?, or at
some point g = q(p) in (a half-branch of) the curve of fixed points in the closure of A, or the
orbits escape the sector. The negative orbits are also uniformly described on the sectors.
We find six types of sectors concerning their dynamical types in terms of the asymptotic
behavior of F or F~L.

* On the other hand, we do not find "good" topological properties on the neighborhood U,
in contrast with vector fields. The initial objective was to obtain a sectorial decomposition
(U,S) not only with the dynamical properties in Theorem 2.6 but also fulfilling that U is
open and S is a stratification. For vector fields, we have that the boundary of U is given by
the union of pieces of trajectories and curves transverse to the vector field, then the set U
can always be chosen open and § is a stratification. In contrast, for diffeomorphisms we find

an intrinsic difficulty since the orbits are discrete sets. Invariant curves can be constructed,
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but they will not always have the same geometrical properties as the trajectories of the

vector fields.

As we have seen in Chapter 2, only under some conditions we can ensure that U is open and
S is a stratification. For instance, in a D-D sector, we have an invariant curve in its boundary,
which may accumulate in a compact set of the curve of fixed points. If this compact set is
not a single point, we have that U is not open since for any of the points of accumulation
of the curve of the boundary, there is not a neighborhood of it completely contained in U.
Indeed, to ensure that the invariant curve of the boundary accumulates in a single point (in
both positive and negative directions once fixing a parameterization of the curve), we need
that two uniquely given parabolic curves coincide (see Figure 3). We think that the generic

case is that these curves do not coincide.

* In the case of vector fields, we can choose the open set U semi-analytic. However, for diffeo-
morphisms this is not always the case. For instance, in the presence of bidicritical curves,
we can choose a parabolic curve that might not be analytically extended to its extreme.
Choosing any other curve for the boundary, we find that it accumulates in a compact subset

of the bidicritical curve, hence it is far from being a semi-analytic set.
From the second item, we think that our objective of choosing U open and § a stratification was

very demanding for diffeomorphisms.

Future work:

* Following the lines in the work of Dumortier, Rodrigues and Roussarie in [29], we would
like to treat the problem of the configuration of sectors being a weak topological invariant.
They succeeded to prove this for C* diffeomorphism fulfilling a Lojasiewicz inequality.
However, because of this condition, D-parabolic, D-elliptic and D-D sectors do not arise
and this simplifies the problem. We think that the presence of D-D sectors might be an

obstruction to achieve a similar result.

* We would like to illustrate the phenomena of the boundary curve of D-D sectors (Sec-

tion 2.5.2) with an example.

* We think it is possible to define foliations that are invariant by the diffeomorphism. We
already know that a formal vector field generates diffeomorphisms tangent to the identity,
by defining the time-1 flow. Our question is if there is an analytic foliation that might be
preserved by the action of the diffeomorphism. This would imply that the diffeomorphism
is given by the flow at the time given by some function of the point. As this is too strong to
require, we are currently working in the construction of foliations on each sector, in order to
determine if they can be continuously extended to other sectors. Once again, we think that

the presence of D-D sectors may be an obstruction on the construction of such foliation.
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* Finally, we would like to extend this work to higher dimensional diffeomorphism. In the
case of three dimensional vector fields, we have the generalization of C. Alonso-Gonzalez
and F. Sanz Sanchez of the sectorial decomposition to dimension 3 in [1, 2], where they also
generalize the non center-focus condition. We think that the techniques used in the proofs
of Theorem 2.6 can be extended to germs of three dimensional diffeomorphisms imposing

similar hypotheses that generalize the non center-focus one.

Structure of the cycle-locus and Dulac’s problem for germs of three dimensional vector fields
with a Hopf singularity. Considering the second problem of the thesis, we give a complete
description of the cycle-locus of three dimensional vector fields with Hopf singularity (Theo-
rem 3.1, Theorem B in the Introduction) and answering Dulac’s problem for these vector fields
(Corollary 3.2, Corollary B in the Introduction). Related to the first result, we find that, in suffi-
ciently small neighborhoods of 0 € R3, the cycles of a vector field with Hopf singularity belong
to a finite number of limit central surfaces (pairwise disjoint surfaces with center configuration)
or every trajectory is a non-trivial cycle except a curve of singularities (three dimensional cen-
ter). The second result gives a satisfactory answer to Dulac’s problem for vector fields with Hopf
singularity, that is, there is not an infinite number of isolated cycles accumulating to 0 € R3. We
think this is a first step and a novel contribution to Dulac’s problem in higher dimension.

Other result that we obtained related to this topic is a characterization of the three dimen-
sional centers having a Hopf singularity. We collect some partial results in the literature and
prove Theorem 3.3 (Theorem C in the Introduction) with our own methods. We remark that
among the original results, we provide a generalization of Poincaré-Lyapunov Center Theorem:
being a three dimensional center with Hopf singularity implies complete integrability in dimen-
sion 3, as Poincaré and Lyapunov proved in dimension 2. The last result that we obtain, which
follows as a consequence of the previous ones, is that all the cycles in a small neighborhood of 0
make a single turn around a rotational axis (Corollary 3.4).

Our contributions help to understand better vector fields with a Hopf-zero singularity. In
particular, we see that some chaotic phenomena is avoided, such as the possibility of having
accumulation of cycles making arbitrary large number of turns around a rotational axis.

Future work:

* Notice that we have studied Dulac’s problem for germs of three dimensional vector fields
with at least two non-zero eigenvalues. The following natural step is to study the structure
of the cycle-locus for vector fields with only one non-zero eigenvalue. A study of these
vector fields in the case that the center manifold has nilpotent (but non-zero) linear part

can be found in [65], where the authors give conditions on the center manifold to study if
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it has a central configuration. Our objective will be to give a complete description of the

cycle-locus in all the cases.

Other natural objective is to generalize our result to higher dimensional vector fields that
have a singularity with eigenvalues ay,...,a,_3,bi,—bi, 0, with a;,b € R\ {0} for each i =
1,...,n— 3. This generalization is not straightforward since the center manifold of such
system is three dimensional but not necessarily analytic. Nevertheless, we think our result

can be generalized to that context.
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In this appendix, we will provide general definitions and basic results, since along the rest of the text

we have to make use of some classical results. The purpose of this appendix is to fix some notations and

state some classical theorems.

Al

Formal power series and formal maps

Let K be a field of characteristic 0, typically R or C, A be a K—algebra and x = (xy,...,x,,) variables.

Al1

Formal power series

In this section, we introduce the power series as K—albegras. The K—algebra of formal power series in x with

coefficients in A is denoted by A[[x]]. Elements f € A[[x]] are written as

f= Z fox%, where f, € A, & = (ay,...,a,) and x* := x‘fl ey

n
aeNg,

Given f, g € A[[x]], consider the operations of the K—algebra A[[x]] induced by the operations of A

frg= ) (fatgaix®

aeNf,
fg=) [ ) f/sgy]xa,
aeN  \ p+y=a
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The units of A[[x]] are those having fy € U(A). Now, we introduce a concept that will be used specially
in Chapter 3: the jets of power series. Consider the ideal m = (x1,...,x,). We define the k—jet of the power
k1 namely ji(f) = f +mF*!

series f as its image under the canonical projection ji : A[[x]] = A[[x]]/m . In

particular,
KO=EF= ) fax®+mt!
a:|al<k
where |a| := a1 +--- + a;. The order or multiplicity at 0 of f, denoted by v(f), is the first k > 0 (or +oo if it
does not exist) such that ji(f) = 0.

k+1

Remark A.1. Considering only the vector space nature of A[[x]] and A[[x]]/m**", notice that j; sends ele-

ments of an infinite dimensional K—vector space to a finite dimensional K—vector space. Notice that the

k+1

quotient A[[x]]/m"**" is identified, only as a vector space, with the polynomials A[x]<; of degree equal or

lower than k. We will tacitly make this abuse of notation, that is, we simply consider j; as a truncation and

() =1E(f) = Lajajzk faX®-

Two important features of the jets of formal power series are deduced from the commutation of the

two operations of the algebra and the jet projection. Let f, ¢ € A[[x]], then
* Jk(f +8) = k() +jk(g)-

* jk(f - 8) = jk(f) - jk(g). In fact, this property can be refined: if k > max{v(f),v(g)}, then ji(f -g) =
Jk—v(e)(f)* jk—v(f)(g), considering the elements ji_;(h) as elements in Al[x]]/mF+L,

o i (f Y =(ik(f))L, when f € A[[x]] is a multiplicative unit.

Notice that, when n > 1, the variables of x can be separated into two groups x = (y,z) where y = (y1,...,9;)

and z = (zy,...,2;) with n = r + t. There is a natural identification between A[[x]] and A[[y]][[z]]

Al S AN, f= ) fax@e ) [ ) fy,ﬂyy]zﬁ

(XGNQO ﬁENtzo VEero

In these terms, we define the k—jet of f with respect to the variables z as the k—jet of f as an element of B[[z]]
where B = A[[y]]. We denote the k—jet of f € A[[y]][[z]] with respect to z as ji(f). Finally, we make the

following remarks.

* Notice that ji(ji(f)) = jk(f). Writing ji(f) and ji(f) as power series in A[[x]], notice that an infinite
number of terms can appear in the development of ji(f), while only a finite number of terms do in

the development of ji(f). In particular, ji(f) € R[x]<x and ji(f) € Aly][z]<-

* We also remark that given a series f € A[y][[z]], we can obtain another via the automorphism y; :

Alyll[z]] — Alyl[[z]] that sends each y; > y; for 1 < j <rand j =i, y; > y; +a and z; > z for
1 <k <s. Then, x;(jE(f)) = je(xi(f))-

We also recall the notion of convergence of power series, whenever A can be provided with a norm.

This notion is important in this document, since we work with analytic functions. The algebra of convergent
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series with coefficients in A is the subalgebra of A[[x]] defined by

A=At
>0
where, by definition, a series f = ZaeNgo fax®A[[x]] belongs to A{x}s if there exists C > 0 such that ||f,|| <
Coll for any a. It is important to notice that there is an strict inclusion A{x} C A[[x]].
Example A.2. We present two examples that appear in this document.

* A = R[cos0,sin 0], the algebra of trigonometric polynomials, whose elements are considered in-
distinctively as a function on R or on St via the covering T : 8 — (cos6,sin0). It will be en-
dowed with the supremum norm |[|f|| := supg.g f(6). Notice that a given a convergent series F €
R[cos 0,sin O]{x}s, its partial sums converge absolutely and uniformly in the compact sets of the
neighborhood V = S! x (=6,8)" of S! x {0} (or the neighborhood V = R x (-5,8)" of R x {0}), thus

providing an analytic function that we denote again f.

¢ In the case of A = R[z] (respectively R[cos0,sin8,z]), where z = (zy,...,2,), there is no unique natural
norm on A. We will consider a norm for each compact set K of R” (resp. S! x R”) with non-empty

interior, defined by

IIf1lk := sup{lf (a)l}.
aeK

Denoting Ax = (A,|| - [[g) such a normed space, we have the corresponding algebra of convergent
series Ag{x}. We define the algebra of convergent series with coefficients in A as the intersection of
algebras Ak {x} where K runs all compact sets of such form. With an abuse of notation, we name this
algebra A{x} for convenience. Each element f € A{x} defines an analytic function on a neighborhood
of R” x {0} (resp. S' x R” x {0}) in R" x R" (resp. in S! x R" x R").

We associate convergent power series with coefficients in R in 7 variables to germs of analytic functions
in points of R". We extend this relation to formal power series and the formal completion of the germs of
analytic functions. Recall that a germ of analytic function at p € R" is an equivalence class of the equivalence
relation on the analytic functions that have p on their domain. Thatis,in f : U > K~ g: V — K if there
is Wc UNV with p € W such that flyy = glw. We will denote the germs of analytic functions as O, ,
or simply by Op, when the dimension is clear. Choosing a set of coordinates in a neighborhood of p, the
correspondence between the germ of analytic function and a convergent power series is given by the Taylor
series of the analytic function.

On the other hand, let mp, be the ideal of O, given by {f €0, : f(p) = 0}, and define the mp, —adic
topology generated by the basis of neighborhoods {f + m’ép}kE - We define the formal completion of the

germs of analytic functions as the limit
— . ;
O = lgnO"'O/mmop'

The ring 5n,0 is isomorphic to R[[x]]. See [60], for further details.

We also recall the derivations in the ring of formal power series since we work with analytic and
formal vector fields. A formal derivation d € Der(A[[x]]) on the ring of formal power series is a morphism
d: A[[x]] = A[[x]] satisfying, for any f,g € A[[x]] and a,b e A
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< 9(1)=0.
* (A-linearity) d(af + bg) = ad(f) + bd(g).

¢ (Leibniz rule) d(fg) = fd(g) + I(f)g.

Defining (fd)(g) = fd(g) and (d+9’)(f) = d(f)+’(f), the formal derivations have the structure of a finitely
generated A[[x]]-module. The standard basis of this module is given by {9%1’ e, %} An element of this

basis acts on a power series f =), f,x% as follows.

d a a1 _a;i-1_a; a
a_xi(f): Z ifoxy' X X

a:a;>0

A.1.2 Formal maps and diffeomorphisms

A formal map is a tuple of formal power series in A[[x]], thatis, F = (Fy,---,F,;,) € A[[x]]" such that j,(F;) = 0.
Fixing m, the formal maps form a vector space with the sum defined component wise, and a K—algebra
considering the product component wise as well. In the same way as in the previous section, define the
k—jet of F € A[[x]]" as jy(F) := (je(F1 )+ ju(Fn):

The group of formal maps (A[[x]]")° with the composition operation is the subset of elements of A[[x]]"
such that the determinant det(DF(0)) = det(aixj(Fi)(O)) # 0 for each F = (Fy,...,F,) € (A[[x]]")° and the
following operation. For F,G € (A[[x]]")°, the composition operation is defined by (F o G)(x) := F(G(x)) and
the unit of this group is Id = (xy,---,x,). An important subgroup of formal maps is the group of formal
maps tangent to the identity denoted by A[[x]]} C A[[x]]" and such that jo(F) =0 and j;(F) =Id = (x1,---,x,)
with the composition o in A[[x]]}.

As we did in the formal series case, convergence can be considered, studying the radius of conver-
gence of the series on each component. Then, we can associate the convergent power series to the germs
of analytic diffeomorphisms, denoted by Diff(R",0), via the Taylor series expansions. There is also a one to
one correspondence between the convergent maps tangent to the identity and the germs of analytic dif-
feomorphisms tangent to the identity, denoted by Diff; (R",0). Finally, this association can be extended
to the formal completion of the analytic diffeomorphisms, denoted by ﬁf(R”, 0) (or by ﬁfl (R",0) in the
tangent to the identity case).

A.2 Analytic geometry

In this section, we introduce some definitions concerning real analytic curves and we will also recall the
definition of semi-analytic and subanalytic sets.

A subset X C R" is an analytic set if at each p € R" there is an open set U, and a finite number of real
analytic functions fy,..., f; in O(U,), such that X NU, ={q € U, : f1(q) = 0,..., fs(q) = 0}. We can also define
the germs of analytic sets at any p € R". They are the equivalence classes of the relation X ~ Y if and only
if there is U with p € U such that (X N U) = (Y N U). Conversely, given an analytic function f € O(U), we
define the set generated by this function. Let f € O(U) be an analytic function. We define the zero set of f

as

V(f)={peU:f(p)=0}
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Given a germ of analytic function f, € O, , at p, it is possible to define a germ of analytic set, by taking a
representative f and the germ of set at p that V(f) defines. Under a translation, we can always suppose
that p = 0 € R". The other way around also defines a germ of analytic set; given a germ or analytic set Xy,
there is and ideal I(X) C O,, o with the property V(I)y = X.

We remark that the theory of germs of analytic sets has been widely studied in the last century [39, 50].
In the complex case, there is a correspondence between prime ideals and irreducible components (those
that cannot be decomposed into properly smaller analytic subsets) of an analytic subset. However, this

fact does not hold in the real analytic case. We show now an example that appears in this text.

Example A.3. We work in O, 5 and coordinates (x,y) at 0. Let I = (x? + yz) C O,,9. We have that V(I) = {0}
and that I(V(I)) = (x,), the maximal ideal. Notice that (x,) # v/(x% + v2) = (x* + p?).

Remark A.4. The concept of analytic set must not be mistaken for analytic manifold, even in the irreducible
case. Under some conditions, an analytic set has the structure of an analytic manifold. Suppose that X
is a germ of an analytic set given locally by fi,..., f;. In the presence of singularities, i.e. points in which
rank(Dfi,...,Df;) < n—s, the analytic sets do not have the structure of an analytic manifold. Analytic
manifolds can be immerse in R™ for some m € N so that they are locally the set of zeroes of a finite number

of smooth analytic functions.

A.2.1 Real analytic and formal curves

As we anticipated, we will only give more details for germs of analytic curves, that is, germs of one-
dimensional analytic subsets of R"”. Given a germ of analytic curve I', we denote I C O its corresponding
generating ideal. We consider also that a real analytic curve has a finite number of branches or irreducible
components, that is, I =T} U--- U} where each T} is an irreducible component. We take from [19, 51], the
following definitions.

An analytic parameterization of an irreducible branch is an element y € (tR{t}")\ {(0,...,0)} such that
f(y)=0forany f € Ir. Existence of analytic parameterizations of analytic curves is ensured by the classical
Puiseux theorem. A parameterization y is irreducible if there is not other parameterization y such that
y = y(s) for some k € N,;. In the rest of the section, the considered parameterizations are irreducible.
Given two different parameterizations y; and y,, we say that they define the same branch if there is 0 €
R{t} such that y; = y,00 and o(t) = at +--- € R{t} for some a € R\ {0}. In this way, there is a correspondence
between the branches of real analytic curves and the classes of parameterizations.

We can also define the half-branches of a curve as the connected components of I' \ {0}. Each branch T
produces two half branches I'*,I'~, and given a parameterization y of I, the half-branches can be parame-
terized by the restrictions ylr_,, ¥[r_, of ¥ to R, and R, respectively. Up to a change on the sign of the
parameterization, we can always suppose that a half branch has an oriented parameterization y, that is,
a parameterization such that y|g_, provides the half branch. In terms of oriented parameterizations, two
oriented parameterizations y; and y, define the same half-branch if there is ¢ € R{t} such that y; = y,00
and o(t) = at +--- € R{t} for some a > 0. Once again, there is a correspondence between half branches of
real analytic curves and oriented parameterizations.

The definition of real analytic branches of curves as equivalence classes of parameterizations can be

easily generalized to formal curves. A formal curve can be defined as a class on the equivalence relation
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of parameterizations in (fR[[¢]]")\ {(0,...,0)}. Each formal curve is associated to a prime ideal Ir C R[[x]].
However, as in the real analytic world, not every prime ideal produces a formal curve. See for instance the

following examples.

Example A.5. The curve (t, Y jcn- k!t¥) € tR[[¢]]? is a formal curve and its generating ideal is (y—Y ycn- k!xF) C

R[[x,v]]- Notice that it is not a real analytic curve.

Example A.6. The prime ideal (x* +y?) C R[[x,p]], whose unique generator is indeed convergent, does not

provide a formal curve, because it does not admit a parameterization.

We end by pointing out that in Section 1.3.1, we define an important object related to real analytic and

formal curves, the iterated tangents.

A.2.2 Definitions of semi-analytic and subanalytic sets

In this section, we simply introduce the definitions of semi-analytic and subanalytic sets, as we need them
at some points in this thesis. These types of sets are relatively modern and they have been first defined
in [34, 41, 55]. Other good reference is [7]. Before defining the semi-analytic sets, suppose that X is a real
analytic set and let p € R" so that X, is given by f; = 0,..., f, = 0. The equations f; = 0,..., f; = 0 can be

summarized in f12 +ot f2=0.

Definition A.7. A set S C R" is semi-analytic if for each p € R" there is a neighborhood U of p and analytic
functions f,gy,...,8s € O(U) such that

SNU={qeU:f(q)=0,81(q)>0,...,&(q) > 0}.

Example A.8.
S ={(x,y) eR?: y =sin2mx,—x*> —p*> > 1,1 > 0}

is a semi-analytic set. Notice also that it is relatively compact, since its closure is a compact set.

1

S"={(x,p) eR®:y = ex2,x > 0)

-1
is not a semi-analytic set, since the function ex?> cannot be analytically extended to 0.

The family of semi-analytic sets is closed under finite unions, finite intersections and complement, but

it is not closed under projections.

Definition A.9. A set S C R" is subanalytic if at each point p € R" there is a neighborhood U C R", some m € N
and a semi-analytic relatively compact set S C R" x R™ so that S N U = pr,(S), where pry : R" x R™ — R" is the

first factor projection.

The family of subanalytic sets is closed under finite unions and finite intersections, and even local pro-

jections and complements. Then subanalytic sets form an structure of sets with relatively good behavior.
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A.3 Vector fields on analytic manifolds

First, we recall some notions on differentiable or analytic manifolds. We denote by M, or more descrip-
tively by (M, A), a differentiable, real analytic or complex analytic manifold of dimension n, provided with
an atlas A = {(U;, ¢;)}ier which endows M with a differentiable structure, in the C",C*,C* or holomorphic
class.

From now on, we only work with real analytic manifolds, but the definitions also apply to other classes
of manifolds. We denote by O(U) the real analytic functions on some open set U C M, and by O, the
germs of analytic functions. Lastly, we denote by O(M, N) the analytic maps from M to N. Of special
interest are the diffeomorphisms of a manifold M with itself, denoted by Diff(M) and the germs of local
diffeomorphisms of M that fix a point p € M, denoted by Diff(M, p). On the other hand, the tangent space
T,M of an analytic manifold M at a point p € M is the vector space composed by the linear derivations of
the ring of functions at the point. The tangent bundle of M is the vector bundle o : TM = Upeyy T,M — M
given by o(v) = p for v € T,M. As a matter of fact, the tangent bundle can be provided a differential
structure, so that it is itself an analytic manifold. The topology provided to TM is the initial topology
associated to the trivializations of this bundle map o.

We also need the notion of real analytic manifold with boundary and corners. We start introducing
the real analytic functions in open subsets of (Rs()". A function f : U C (R5)" — R is analytic at a point
p € U if there is an analytic function f : V — R defined on an open set V ¢ R™ with U C V such that
flu = f. In the same manner, an analytic map F : U C (Rs)"™ — V C (Rs)" is analytic at p € U if each
component is analytic. With this consideration, the objects introduced in the previous paragraph, namely

analytic manifolds, functions, maps, and tangent spaces are generalized to this setting.

A.3.1 Some algebraic properties of vector fields

Vector fields are, roughly speaking, assignments of vectors of a vector space at each point. It is worth

pointing out that there is a different vector space at each point p € M, the tangent space T,M of M at p.

Definition A.10. A vector field in an analytic manifold in an open set U C M is an analytic section of the
tangent bundle 0 : TU — U, that is, a map & : U — TU such that ¢ o & = Idy. We denote the vector fields in U
as X(U).

Notice that at each U, the vector fields X(U) have the structure of a K—vector space induced by the
vector space structure at the tangent spaces at each point, since (k1 & +k2&2)(p) = k1 &1(p) + kaéa(p) € T,M
for any two ki, k; € K, vector fields &;,&, € ¥(U) and point p € U. Even more, it has an O(U)-module
structure by setting (f&)(p) = f(p)&(p) for any function f € O(U), vector field £ € X(U) and p € U. Recall
that the tangent space is the set of derivations of germs of functions, which means that the vector fields
define a derivation at each point. In addition, analytic vector fields are analytic as maps, that is, these
linear derivations change analytically. Hence it is natural to see vector fields as operators (derivations) as
follows. Let & € X(U) be a vector field in U. Then & : O(U) — O(U) is defined by &(f)(p) = E(p)(f).

We also remark that using coordinate charts x : U — R" it easily follows that the vector fields X are

locally finitely generated. Namely, the the set {a;il,---,%} is a local basis of X(U), acting on O(U) as

72 (f) = 35 (f ox) inx(U).
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We end by recalling that two vector fields &; € X(U), &, € (V) have the same germ at p if there is
W c UNV such that & |w = &lw. A germ of vector field &, is an equivalence class of X under the previous
equivalence relation. The set of germs of vector fields at a point is denoted by ¥, or X(M, p).

At any point of M, recall that there is always a local coordinate chart (U,x). Using this chart, we
can define as before an equivalence between the germs of analytic functions and the convergent power
series in R{x}. Secondly, there is an equivalence between the O,—module of analytic vector fields and the
R{x}-module of derivations of convergent power series. Along this text, it is also important to consider
formal completions of germs of vector fields, ﬁ(M,p), which are isomorphic to the derivations of 5p, see
[18].

The last algebraic property we want to recall is the Lie algebra structure of vector fields.We recall the
definition of the Lie bracket. Let &;&, € X(U) be two vector fields. We define the Lie bracket of &1,&, as the
vector field [&y,&,]: O(U) — O(U) such that [&, &](f) = £1(£2(f)) — €2(&1(f))-

A.3.2 Some geometric properties of vector fields

Associated to any analytic vector field there exists a family of integral curves.

Definition A.11. Let & an analytic vector field on M and p € M. An integral curve of £ at pon M is a
parameterized curve y : I — M where I C R is an open interval, 7/’( )= t)) for t € I and y(ty) = p. We say
that y is a cycle if there is some T € R,q such that y(t+ T) = y(t) for each te R

Existence and uniqueness of integral curves (up to reparameterizations and choice of maximal interval
of definition) is ensured by the general theory of ordinary differential equations, because they are solutions

of the following system of ODEs
Y;(t) =ai(y(t),i=1,..,n

where a;(y(t)) is simply the i—th component of the vector field, given by

0 J
e =atr)( 5] +eratn| ;]
y(t) n7y(t)

When coordinates are fixed, we can also use the notation x = £(x) to refer to the vector field &, via the
ordinary differential equation that it defines.

Using the existence and uniqueness of the integral curves, it is possible to define the flow of a vector
field as the map @ : D — M defined by P(t,p) = y,(t), where D C Rx M and y, denotes the integral curve
of & such that (0) = p (see [75] for a reference of the flows of vector fields). A local expression of the
flow at each point p can be obtained using the exponential map. Formally, choosing a set of coordinates x

centered at p, the exponential map is given by expt& : R[[xy,...,x,]] = R[[x1,...,%,, t]], which is defined by

exp té(f Fé (A1)
i=1

where £O(f) = f and E0(f) = E(EUV(f)) for i > 1. Now, we will "forget" that trajectories are parameter-

ized curves, in order to define the foliation that a vector field generated.
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Definition A.12. Let y be a (maximal) integral curve of the vector field &, the set |y| = Im(y) is a trajectory of
&. When |y| is a single point q € U, we say that q is a singular point or a singularity of &.

Notice that g is a singular point if and only if £(g) = 0.

Definition A.13 (Foliation of U defined by &). The partition of U into topological manifolds |y| C U of
dimensions 1 and 0 is the one dimensional analytic foliation F generated by &. The set of singularities
Sing(F) = Sing(&) is the union of the trajectories that are a single point. If Sing(F) = 0 we say that the foliation

is reqular, otherwise that it is singular.

In fact, given a one dimensional analytic foliation F, there is not a single vector field generating it.
This is because the parameterization of the trajectories is not taken into account. For instance, if F is
generated by &, it is also generated by A¢ for any A e R\ {0}.

Let p € M. We say that two foliations F of U ¢ M with p € U and F’ of U’ ¢ M and p € U’ have the
same germ at p if there is an open subset W c U N U’ where F|y = F’lyy. The class of equivalence of
F under this relation is the germ of foliation F, at p or the local foliation 7, at p. The local foliations are
generated by germs or vector fields.

We can define other equivalences between foliations. Two foliations F and F’ defined on U and U’,
respectively, are equivalent or homeomorphic, if there is a homeomorphism F : U — U’ such that for any
L € F we have some L’ € 7’ such that F(L) = L. In the same spirit, two germs of foliations 7, and 7, are
equivalent if there are representatives F at U and F’ at U’ such that F and F’ are equivalent.

We will be specially interested in the local properties of the foliations defined by vector fields, that is,
in local foliations. In particular, the points of special interest in our work are the points where the vector
field vanishes, the singularities, as we motivate now.

In the non singular points, the foliation is locally trivial, i.e. equivalent to one generated by a constant

vector field. This is a consequence of the following classical theorem.

Theorem A.14 (Rectification theorem). Let & be a vector field in M, F the foliation that & defines and p € M
a non-singular point. Then, there is an open neighborhood U of p and a homeomorphism F : U — U’ such that

F(F) is generated by (%1), where (xq,--+,x,) are coordinates in U’.

The problem of studying the topological properties of analytic foliations is (almost) totally solved in
dimension 2. We highlight the result on sectorial decomposition of non center-focus vector fields by [6, 66,
3]. There are several problems yet to be solved, that we will discuss later. For instance, the center-focus
problem which consists on determining if a vector field is topologically a radial foliation or a collection of

1-spheres is transcendent.

A.3.3 Conjugation and equivalence of vector fields

When it comes to study the topology of local foliations, it is often convenient to work with vector fields
that are some sort of equivalent to the original one, but which may have a simpler expression. In this
section, we will outline which kinds of equivalence preserve the local foliation of a vector field. We start
with the strongest type of equivalence, the analytic and C¥ conjugation, for k € N5, U {co}. We include the

analytic case by denoting the analytic functions by C.
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Definition A.15. Let M,N be two analytic manifolds, U ¢ M and V C N be two open sets and & € X(U) and
1 € X(V) be two analytic vector fields. We say that & and 1 are locally C* conjugated at a point p € M if
there exist two open sets U C U and V C V with p € U and an analytic diffeomorphism ¢ : U — V such that

Do(g9)(&(q)) =n(@(q)) for any q € U. It is the same as saying that @, (&) = 1.

We find, as a consequence, that the conjugation diffeomorphism preserves not only the local foliation,

but also the parameterization of trajectories around p.

Proposition A.16. Let M, N be two analytic manifolds, U C M and V C N be two open sets and & € ¥(U) and
1 € X(V) be two analytic vector fields. Let @ be the local flow of & at p € M. If & and 1) are locally C* conjugated
at p, then o(®%(t,q)) = D' (t, ¢(q)), where @ : U —V, the map O is the local flow at @(p) and q € V.

At the thesis of last proposition, we see that the differentiable properties of ¢ are not used. Thus, we
will extend the concept of conjugation to the homeomorphic or C° case by means of conjugation of flows.
Let k € NU {w, oo}.

Definition A.17. Let M,N be two analytic manifolds, U C M and V C N be two open sets and & € X(U) and
1 € X(V) be two analytic vector fields. Let @y be the local flow of & at p € M. We say that & and 1 are locally
Ck—flow conjugated (or simply locally C¥— conjugated) if there are U c U and V C V and a C*—differentiable
map @ : U — V, such that (D4 (t,q)) = D(t, @(q)), where ' is the local flow at (p) and g€ V.

Notice that these conjugations still respect the parameterization of the trajectories. We can still define

a weaker equivalence for which the parameterization of the trajectories is not necessarily preserved.

Definition A.18. Let M,N be two analytic manifolds, U ¢ M and V C N be two open sets and & € X(U) and
1 € X(V) be two analytic vector fields. Let ® be the local flow of & at p € M. We say that & and 1 are locally
Ck—equivalent or locally Ck— orbitally equivalent if there are U c U and V C V and a C*—differentiable map
@ : U — V, such that p(D(t,q)) = D'I(s, @(q)), where O is the local flow at ¢(p) and q € V and s € R.

Notice that the previous definition, implies exactly that the foliations generated by £ and # are equiv-
alent as foliations, since one leaf is sent to another.
Example A.19. An easy example of two vector fields that are C! —equivalent but not C! —conjugated are the
following, both defined in (—¢,¢) C R with € << 1 and given by # = xa% and = (1+ xz)xa% =(x+ x3)%.
The homeomorphism considered to see the equivalence can simply be the identity, but there is not a

diffeomorphism conjugating them.

A.3.4 Invariant manifold theorems

In this section, we will present the definition of (local) invariant manifolds, invariant analytic sets and

theorems of great importance on existence of invariant manifolds for vector fields.

Definition A.20. Let & € X(U) be a vector field in U C R" and S € U C R" be a subset. We say that S is an
invariant set for & if ©(t,p) € S for every p € S and t in D NR x {p}. Let & € ¥(R",0) a germ of vector field and
So a germ of subset at 0. We say that S is invariant for £ if there is a representative S of Sy that is invariant for

a representative of &.
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The invariant sets can sometimes have the structure of a submanifold, or be algebraic, analytic, semi-
analytic or subanalytic. Notice that the algebraic and analytic sets are defined, only locally in the second
case, as sets of zeros of algebraic and analytic functions. The invariance property in this case is translated
to the following. Let p € M C U C R" be a point at an algrebraic or analytic set M. Let U, be a neighborhood
of pin R” such that M N U, = V(I), where [ is an ideal (in O(U,)) generating M N U,,. Then, the invariance
condition is equivalent to the invariance of I under the derivation defined by ¢ at p, that is &,(I) C I.

This idea of invariant ideals leads to a useful generalization.

Definition A.21. Let & GY(M,p) be a germ of formal vector field at p. We say that an ideal I in @p is a formal
invariant set if £(I) C I.

Notice that germs of analytic vector fields are convergent elements in the set of germs of formal vector
fields. For this reason, it makes sense to speak about germs of formal invariant sets also for germs of
analytic vector fields.

Let & be a vector field with a singularity in 0 and let LE be defined as LE = j;(£). In coordinates, if

where each a;(x) =} cnn 41 oX%, then its linear part is

LE = Zalraxaa;f:l+---+ Zan’D,XO‘%

lal=1 lal=1 n

For a semi-hyperbolic vector field, we can always define linear subspaces E#, E° and E¢, associated to the
eigenvalues of D&(0) with positive real part, negative real part and vanishing real part, respectively. These
linear subspaces are invariant for the linear vector field LE. With the definition of these subspaces in hand,
we can provide some two classical results on real dynamical systems based on the existence of invariant

manifolds.

Theorem A.22 (Center manifold theorem (20, 47]). Let & € X(U) be an analytic vector field with hyperbolic
singularity at 0 and defined in a neighborhood U C R". Then, for each k € N (k < r) there is a neighborhood Vj,
of 0 and manifolds W}, WkC”, ch, Wk“, Wks of class Ck, named unstable, center-unstable, center, center-stable
and stable manifolds, respectively. The unstable manifold W' is tangent to E* of L& at 0, the center-unstable
manifold W " is tangent to E"®E® of L at 0, the center manifold Wy is tangent to E€ of LS at 0, the center-stable
manifold W, is tangent to ES®EC of LE at 0, and the stable manifold Wy is tangent to E° of LS at 0. In addition:

1. Let p € W?. Then, the integral curve at p converges to the point 0 as t tends to +oo and leave V in negative
time. In addition, there are constants C,B > 0 such that |©(v)|| < Ce B! for t > 0.

2. Let p € WH. Then, the integral curve at p converges to the point 0 as t tends to —co and leave V in positive
time. In addition, there are constants C,B > 0 such that |®,(v)|| < CeB! for t < 0.

3. The center-stable manifold contains every p € Vi such that the integral curve y,, is defined for all t > 0 and

remains in V.
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4. The center manifold contains every p € Vi such that the integral curve y, is defined for all t € R and

remains in V.

5. The center-unstable manifold contains every p € Vi such that the integral curve y,, is defined for all t € R

and remains in V.

Remark A.23. In the light of the previous theorem, we remark that in the center-unstable, center and
center-stable manifolds, there might be orbits that leave Vj for both positive and negative times. It is also
possible that one of these manifolds behaves as a stable or unstable manifold (depending on the case) in
terms of integral curves. The behavior of the vector field inside them depends on the higher order terms

of the vector field, which are less dominating than the linear ones.

The stable and unstable manifolds are commonly called strong manifolds, since they are (germ-wise)
unique, and analytic when ¢ is analytic. However, the center-unstable, center and center-stable manifolds
may not be unique and neither analytic nor co—differentiable. Because of these facts, the center-unstable,
center and center-stable manifolds are called the weak manifolds. There is a large list of works studying
the properties of the center manifolds. We summarize the properties of greatest interest for our work and
refer the reader to a collection of interesting papers on the topic.

* All center manifolds have the same Taylor expansion at 0. We will call this series the formal center

manifold W¢. The same can be said for the formal center-unstable manifold W and the formal

center-stable manifold W¢.

* As a consequence of the previous item, any two invariant manifolds differ from each other on the

order of e ¢/I%ll for some constant C > 0 at 0, and x, coordinates of the center manifold.

e Under certain conditions, the center manifold is unique and even analytic or differentiable. For

instance, a center manifold full of cycles is necessarily unique.

* There is a collection of examples of center manifolds that are not infinitely differentiable.

We end the section by stating a result on topological conjugation of a vector field with semi-hyperbolic
singularity and a simpler one. We also highlight the idea that the integral curves of a vector field lying
outside a center manifold topologically follow the behavior of a linear vector field transverse to the center
manifold while they also follow the flow inside the center manifold. The following theorem is a particular
case of the result of F. Takens and J. Palis [63].

Theorem A.24 (Reduction to the center manifold theorem). Let & € X(U) be an analytic vector field in a
neighborhood of 0 € R" with semi-hyperbolic singularity at 0, and let LE be its linear part. Then, there is a
topological conjugation between & and &|ye + LE|pugps.

A.4 Normal forms

We end this appendix by introducing normal forms and we state the main results in this topic. The ob-
tainment of normal forms and the invariant manifold theorems, presented in the previous section, are two
strong tools that combined simplify the description of the dynamics of vector fields, in many cases.

In short words, a normal form of a vector field is another vector field conjugated to the original one

(analytically, C¥, C* or only formally) that has a more simple expression. Many authors have studied
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this problem with different approaches. We start giving the definition of formal normal form in terms of
the Jordan decomposition of formal vector fields in C". Recall that formal vector fields are derivations
of Oy = O(C",0) and that Oy is provided with the jet truncation morphisms. Notice also that a k—jet of
vector field j (&) defines a derivation (endomorphism) in jk(50). It is hence possible to obtain its Jordan

decomposition

Jk(&) =Es i+ ENio

with [&g k, Enk]- In fact, because of the commutation of this decomposition with jet truncations, we can

take the limit of the Jordan decompositions and define the Jordan normal form as
&=¢&s+EN,

with ji(&s) = &k and ji(EN) = Enk-

Definition A.25. A formal vector field & = &g + & is a formal normal form if &g is a semi-simple linear
diagonal vector field, &y is a nilpotent vector field and [Es,&n] = 0. When & is analytic, we say that & is an

analtyic normal form.

In the literature, the formal normal form is also known as the Poincaré-Dulac normal form. The follow-
ing is a well known result, see for instance [10] and the references therein, we find that a formal normal
form always exists for every & € X(C",0). However, the formal normal form is generally far from being

unique, as we will comment thereafter.

Theorem A.26 (Formal Normal Form). Let & € ¥(C",0). Then, there is a formal diffeomorphism ¢ at 0 € C"

such that @*(&) is in normal form.

To prove this theorem, it is enough to linearize the semi-simple part of £ into S =) ; /\ixiaixi’ where
A; are the eigenvalues of . Notice that after a linear change of coordinates, we can assume that the linear
part of the initial vector field is in the Jordan normal form S. We give some definitions and then outline
the inductive steps on the construction of a formal normal form.

We define the Lie derivative operator Lg :Y((C”,O) — /X\((C”,O) given by Lg(1) = [S,7]. Writing conve-
niently 1 = Y7 a (X)aix, =Y, bi(x)xiaixi, allowing that b; is meromorphic (when x; does not divide a;),
we obtain a simple expression for Lg(17) as follows. Let b;j(x) =} ;.51 4,50k=1,2,...,n k=i b; ox<, we have that

Ls(n) is expressed as a sum of monomial vector fields, then

=) Y biolhOx%,

i=1 g;>-1,qx>0,k=1,2,...,n,k=0

where (—,—) is the inner product in C". The values ag = (A, Q) are the eigenvalues of Lg, and the vector
fields xx; Qix, are the corresponding eigenvectors. The linear subspace of vector fields # such that Lg(#) = 0
are the ones commuting with the semi-simple part and the vector fields that cannot be eliminated. The
monomial vector fields xQxi% for Q€ {(q1,.--,qn) 1 qi € Z>_1,q; € Zsoj # 1}, |Q] > 1 and i € {1,...,n} such
that (A, Q) = 0 are called the re’sonances of S.

By defining linear systems of equations, one can induce an analytic change of coordinates ¢, such that

the non-resonant terms of &, = (¢,).(&), are equal to zero up to its 2—jet. The analytic change of coordinates
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is defined as the exponential map of a polynomial vector field 7, that fulfills that j,(&) — Lg(r2) = S + x2,
where x, is an homogeneous vector field of degree 2 that contains only resonant terms. We highlight that
this expression provides the homogeneous components of degree 2 of (¢;).(£) and it also affects terms of
higher degree. In the presence of resonances, we remark that there is not uniqueness on the choice of 7,
and ), in the aforementioned expression. Hence there is not uniqueness on the construction of normal
forms.

We do not show more details on the construction, but there is an inductive method to construct the
formal normal form jet by jet (indeed, following Martinet’s text [59], we can double the jet at each steps).
At each step we obtain a vector field &;, i = 2k such that:

» &, is conjugated by some analytic diffeomorphism ¢; to the vector field &;/, obtained in the previous

step and it is also conjugated to the original &.

* ji(&;)is in normal form.

The formal normal form is the formal vector field obtained as the limit.

Remark A.27. Even if the original vector field & is analytic, it is possible that there is not a choice of normal
form that is analytic. In general, most likely, it will not be. And even if there is a choice of formal normal

form that is analytic, the normalization formal diffeomorphism does not need to be analytic.

Brjuno has a very complete study about the normalization of analytic vector fields, and in a wide
range of cases he gives conditions to determine if there is a choice of normal form that is analytic or if it
is generically divergent. However, in between the convergence and divergence conditions, there are still
many cases in which convergence is not known. We provide a result of him treating convergence that will
be useful in our work, as it appears in [59, Theorem 5]. The author also restate the conditions of Brjuno in

a more geometrical way. We present these conditions now.

Z 10};:)](

k

¢ (Arithmetic condition) The series

is convergent, where wy = min{lag|:|Q| < 2k+1,aQ =0}, Qe UL {(q1,--.qn) 1 qi € Ls_1,qj € Lxoj # i}
and agp = (A, Q).

¢ (Geometric condition) The formal normal form Eof &is tangent to the foliations given by xR =,

where c is a constant and R = (rq,...,r,) such that (A,R) = 0.

Note that the arithmetic condition depends only on the vector of eigenvalues and the geometric condition
depends on a particular normal form of £. We say that £ satisfies the geometric condition if one normal

form of & does.

Theorem A.28. Under the arithmetic and geometric conditions, and one of the following additional hypotheses,

there is an analytic normal form & of &.
* n<4

e 0€Conv({Ay,---,A,)) cC.

Now, we state the results concerning real analytic and C* vector fields, for k € NU{co}. It is important to

remark that the real formal normal form may not have diagonalized semi-simple part as before, but in any
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case, it is possible to use the linear vector field in real Jordan form, and we will assume this consideration
when we speak about real normal forms. We start by stating the existence of the real formal normal form
for real systems. The result is stated more generally for subfamilies of holomorphic vector fields, but its

main application is its use for real vector fields, see [11].

Theorem A.29. Let & € X(R",0) be a germ of real analytic vector field. Then, there is a real formal diffeomor-
phism @ such that ¢*(&) is in formal normal form.

The proof is based on the obtainment of normal forms for complex vector fields. This is because the
real Jordan form and the complex Jordan form are related by a linear change of coordinates. We need also
to use the fact that coefficients of the normalizing transformation can be chosen in such a way that the
normal form is mapped into a real one by the linear change of coordinates, that is, we work in the image
of the real vector fields under the diagonalizing linear map.

For CK vector fields with k € NU {co}, we state the result of Takens [72].

Theorem A.30. Let & € ¥°(R",0) be a C* vector field with k € NU {oo}. Then, there exists a C* diffeomorphism
such that @*(&) = E+ Ry, where & is a formal normal form of & and Ry fulfills j.(Ry) = 0.

Notice that the k—jets of C* vector fields are well defined, being j,(£) the limit of the /—jet decomposi-
tions with [ € N, that is a formal vector field. The vector field R, is a C* vector field with Taylor expansion

equal to 0 (plane).
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branch of a curve, 163
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completely non-hyperbolic
singularity, 19
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cylindrical coordinates, 26
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exponential map
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flow conjugated vector fields, 168
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Hopf singularity, 120
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periodic point of a diffeomorphism, 61
polar coordinates, 25
positively invariant, 61

regular dicritical arc, 81
regular monotonic domain, 72, 73
regular non-dicritical arc, 77
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monotonic domain, 75

181



INDEX

saturated
vector field, 30
saturation
of a set by a diffeomorphism, 61
of a vector field, 30
sectorial decomposition, 63
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strict transform
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g

0eR"

X =(X1,...,Xp)
R[x]

Rx]s

x:U —>R"
O(U),ce(U)
ckw)

The set of natural numbers includ-
ing 0.

The set of natural numbers with-
out 0.

The set of integer numbers

The set of rational numbers

The set of real numbers

The set of complex numbers

The set of non-negative real num-
bers

Imaginary unit

(0,...,0) e R"

Tuple of variables

R-algebra of polynomials in x.
R-algebra of polynomials of de-
gree s in x.

R-algebra of formal power series
in x.

R-algebra of convergent power se-
ries in x.
Differentiable or analytic n-

dimensional = manifold (with

boundary and corners) and atlas
A.

Coordinate chart of M.

Analytic functions in U ¢ M
k—differentiable functions in U C
M with k € NU {oo}

Germs of analytic functions at p €
M

Formal completion of germs of an-

alytic functions at p e M

T,M
TM = Upep TyM
;M
T*M = Upep TyM
X(U)
X(M,p), X¥(M, p)

XK (M, p)

X(M,p),
QU)
Q(M,p)
O :DCcRxU —
U

Diff(U, V),
Diff*(U, V)
Diff(M, p),
Diff“ (M, p)
Diffy (M, p),
Diff? (M, p)

Diffy (M, p)

Fix(F)
Per(F)
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Tangent space of M at p.
Tangent bundle of M.

Cotangent space of M at p.
Cotangent bundle of M.

Vector fields on U ¢ M

Germs of analytic vector fields at
peEM.

Germs of CK vector fields at p €
M.

Formal vector fields at p € M.
1-forms on U Cc M

Germs of 1-forms at p € M.
Flow of the vector field £ on U C
M.

Real analytic
fromUCMtoV CN.

Germs of real analytic diffeomor-

diffeomorphism

phisms fixing p.

Germs of real analytic diffeomor-
phisms tangent to the identity
at p (ie. DyF = 1Id for F €
Diff; (M, p)).

Formal diffeomorphisms tangent
to the identity at p (i.e. D,F =1d
for F e Diff| (M, p)).

Fixed points of F € Diff(M, p)
Periodic points of F € Diff(M, p)
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