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Introduction

This PhD thesis can be framed in the Local Geometry of Real Analytic Dynamical Systems. We

deal with two different (but related) problems concerning this topic. The first problem deals

with the discrete dynamical systems generated by the iteration of the germ of a two dimensional

real analytic diffeomorphism that fixes a point. The second problem deals with the dynamics

generated by the flow of a germ of three dimensional real analytic singular vector field. Roughly,

the two main results that we present in this text are the following ones:

Problem I. Sectorial decomposition of germs F ∈ Diff1(R2,0) of tangent to the identity

real analytic plane diffeomorphisms. Under the (necessary) hypothesis that F is of "non

center-focus type", we prove that there exists a partition of a neighborhood U of the fixed

point 0 ∈ R2 into a finite number of topological submanifolds, such that the orbits of F on

each submanifold have a uniform well-established asymptotic behavior. As a consequence,

we obtain that the set of periodic points of F in U coincides with the set of fixed points.

Under some non-degeneracy conditions (that hold in particular when 0 is an isolated fixed

point of F), U can be assumed to be a semi-analytic open set and that each stratum is a real

analytic submanifold.

Problem II. Description of the local cycle locus and Dulac’s problem for germs of real

analytic vector fields at (R3,0). Here we consider such germs ξ ∈ Xω(R3,0) with a Hopf

singularity at 0; i.e. whose linear part has two conjugated purely imaginary eigenvalues.

For these vector fields, we prove that the union of all the cycles (periodic trajectories) in a

sufficiently small neighborhood of 0 ∈ R3 is empty, or equal to a finite number of subana-

lytic surfaces, or a dense open set (in fact the complement of the singular locus Sing(ξ)). We

also give a characterization of the last situation in terms of the analytic linearization of the

foliation generated by ξ and in terms of complete integrability. As a consequence, we obtain

that there cannot exist infinitely many isolated cycles of ξ accumulating and collapsing to

0 (Dulac’s property).

The initial motivation of this PhD thesis was Problem II, that is, we were interested in gener-

alizing Dulac’s problem to a higher dimension, starting with the case of the Hopf singularities in

dimension three. We obtained first the stated results in II for isolated Hopf singularities, which

have already been published in [23]):

N. Corral, M. Martín-Vega, and F. Sanz Sánchez. Surfaces with Central Configuration and Dulac’s Prob-

lem for a Three Dimensional Isolated Hopf Singularity. Journal of Dynamics and Differential Equations,

1
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2024

One important argument in that reference concerned the study of some two dimensional analytic

diffeomorphisms, coming from the Poincaré map defined on cross sections of cycles obtained by a

process of reduction of singularities of a normal form of ξ. In particular, for such Poincaré maps,

we found that the set of periodic points coincides locally with the set of fixed points, a property

that permits to describe the cycle locus of ξ.

That study led us to pursue a more ambitious objective: to describe the asymptotic behavior of

all orbits of a planar analytic diffeomorphism, coming or not from a Poincaré map of an analytic

vector field. That is, we tackled the sectorial decomposition stated in Problem I.

We returned then to the study of vector fields with Hopf singularity. With the results of Prob-

lem I in hand, we obtained finally the description of the cycle-locus for all the cases, including

those vector fields with a non-isolated singularity (Problem II). As a final result, we gave a char-

acterization of three dimensional Hopf centers, namely, the case in which the cycle-locus is an open

dense set.

In the rest of the Introduction, we provide more details about Problems I and II, and how are

they are framed in the literature. In addition, we give precise statements of the results that we

have obtained and outline their proofs.

Problem I: Sectorial decomposition of diffeomorphisms

We have already anticipated that our interest to study this problem relied first on the study of

fixed and periodic points of the analytic diffeomorphisms given by Poincaré maps that we find in

Problem II. However, the decomposition of the dynamics of F ∈Diff1(R2,0) is a problem of great

independent interest.

The decomposition of real analytic two dimensional vector fields dates back to Poincaré [66]

and Bendixon [6] (see also a relatively modern proof by Andronov et al. [3]). It is valid for

those ξ ∈ Xω(R2,0) with an isolated singularity which are not of center-focus type. We say that

ξ is of center-focus type if there is no integral curve that accumulates at 0 ∈ R2 with a defined

tangent (also called a characteristic direction). For vector fields which are not of center-focus type,

Poincaré and Bendixon obtained that a neighborhood of the singularity can be decomposed into

finitely many curvilinear sectors invariant for ξ and where the dynamics of the vector field are

uniformly described. Namely, for each sector, all trajectories accumulate at 0 ∈ R2 in one direction

and escape in the other direction (parabolic sector), or all trajectories accumulate at 0 in both

directions (elliptic sectors), or all trajectories escape the sector in both directions (hyperbolic sector).

The sectorial decomposition is not only useful for understanding the dynamics of ξ ∈ Xω(R2,0)

2
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around 0 ∈ R2, but also for understanding the topological properties of the oriented foliation

generated by ξ at the singularity. For instance, the Poincaré index I(ξ,0) can be computed from

the sectorial decomposition by Bendixon formula

I(ξ,0) = 1 +
e − h

2
,

where e denotes the number of elliptic sectors and h denotes the number of hyperbolic ones. F.

Dumortier in [27] also gave a sectorial decomposition of C∞ vector fields fulfilling a Łojasiewicz

inequality (as well as the non center-focus condition) and proved that it is finitely determined

by some jet of the vector field. The Łojasiewicz inequality implies that the vector field has an

isolated singularity and that it has a jet truncation which is different from zero, so that we can

mirror in this case the proof for analytic vector fields.

The sectors are separated by characteristic curves, also invariant by ξ. Sectors, characteris-

tic curves separating them and the singularity 0 ∈ R2 form a stratification of a neighborhood

by invariant topological manifolds (in fact analytic or C∞ if ξ is so) with a parabolic, elliptic or

hyperbolic behavior. In higher dimensions, very recently Alonso and Sanz in [1, 2] have general-

ized the sectorial decomposition for three dimensional vector fields under hypotheses that avoid

center-focus behavior.

Our objective is to find the discrete counterpart of the decomposition of the dynamics of two

dimensional vector fields, that is, a decomposition of the dynamics of analytic two dimensional

diffeomorphisms. It is more difficult since the orbits of a diffeomorphism are discrete sets in R2,

instead of continuous curves. This means that, in principle, wild behavior occurs, even for real

analytic diffeomorphisms. As a kind of motivation, we want to recall one of the main results in

holomorphic dynamics: Leau-Fatou’s Flower Theorem, which provides the description of the dy-

namics of a holomorphic one dimensional tangent to the identity diffeomorphism F ∈Diff1(C,0).

This result was originally stated by L. Leau [52] and P. Fatou [31, 32, 33]. Assuming that F , Id,

if k is the multiplicity of the map F − Id, there exist k attracting directions v+
i and k repelling

directions v−i . In addition, for each direction v±i , there is a sectorial region V ±i (a "petal"), bisected

by v±i , invariant by F±1 where all the positive orbits of F±1 accumulate at 0. Moreover, the union

V +
1 ∪ · · · ∪V

+
k ∪V

−
1 ∪ · · · ∪V

−
k is a punctured neighborhood of 0 ∈ C. We can always interpret F as

a real analytic diffeomorphism at (R2,0). Hence, the intersections V +
i ∩V

−
i+1 and V −i ∩V

+
i+1 play

the role of elliptic sectors and the complements of these elliptic sectors in the petals play the role

of parabolic sectors so that we obtain a sectorial decomposition of this type of diffeomorphism F.

Concerning also Diff1(C,0), J. Écalle [30] and S. Voronin [74] obtained in fact a stronger result,

the moduli of analytic classification.

On the other hand, if we take a holomorphic diffeomorphism F ∈ Diff(C,0) which is not tan-
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gent to the identity, we can have wild behavior for the orbits. Notably, R. Perez-Marco reveals

in [64] certain chaotic behavior if F′(0) ∈ S1 and it is not a root of unity. In particular, under some

conditions he shows the existence of a "hedgehog" K , which is a compact, connected, full subset

of a neighborhood U of 0, invariant for F and such that 0 < K◦. This subset contains periodic

points of every period n ∈ Z, i.e. fixed points of Fn. It turns out that nothing that resembles a

sectorial decomposition can be found for this type of diffeomorphisms.

Even in the tangent to the identity case, a real analytic diffeomorphism may have infinitely

many periodic points of different periods accumulating to 0 ∈ R2 (see the example below).

Example. The time-1 flow of ξ = (x2 + y2)
(
−y ∂

∂x + x ∂
∂y

)
is a center-focus diffeomorphism. This

diffeomorphisms has expression

F(x,y) = (x+ (x2 + y2)(−y − 1
2xy

2 − 1
2x

3 + h.o.t), y + (x2 + y2)(x − 1
2x

2y − 1
2y

3 + h.o.t.)).

We impose on the diffeomorphisms treated in this memory to be tangent to the identity and of

non center-focus type. A real analytic diffeomorphism F ∈Diffω1 (R2,0) is non center-focus if there

is a formal invariant curve for F with defined tangent at 0. In the text, we see that this property is

given in terms of a reduction of singularities of its infinitesimal generator Log(F) = ξ ∈ X̂(R2,0),

as it is the case for real analytic vector fields.

The main work aiming for a two dimensional sectorial decomposition has been done by F. Du-

mortier, P. Rodrigues and R. Roussarie in [29], nearly 40 years ago, and for C∞ diffeomorphisms

under the non center-focus condition and some extra hypotheses. They required a Łojasiewicz in-

equality for the diffeomorphisms, which means that the Taylor expansion of F − Id has non-zero

dominant terms (it is not flat) and it implies 0 ∈ R2 is an isolated fixed point of F.

For our purposes, we need to study diffeomorphisms that may have curves of fixed points,

then, not necessarily fulfilling the Łojasiewicz inequality. In the case of vector fields with a

non-isolated singularity, a sectorial decomposition is obtained directly from a sectorial decom-

position of the saturated foliation with isolated singularity. However, there is not an analogy of

the saturation of a vector field for diffeomorphisms and curves of fixed points are unavoidable

in our study. Introducing curves of fixed points leads to several new scenarios with respect to

Dumortier-Rodrigues-Roussarie’s work and entails new challenges (we humbly think that our

main contribution to Problem I lies in addressing, and somehow solving, some of these difficul-

ties):

• The condition of being C∞ is too weak to have a reasonable behavior around the curves

of fixed points. We assume analyticity of the diffeomorphism in order to overcome the

possible uncontrolled behavior coming from the existence of flat functions.

• Arguments in Dumortier et al. [29] for establishing a sectorial decomposition of F used
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some technical results that they prove, concerning the possibility of replacing F in some

cone around a characteristic invariant curve, by a conjugate diffeomorphism which is em-

bedded in a flow of a C∞ vector field. Such results seem to be quite difficult to generalize

in order to cover cones of curves of fixed points of F, even with the assumption of analyt-

icity. Without detracting from the conviction that pursuing this type of generalization has

a high interest in the theory of dynamical systems, we adopt here more elementary argu-

ments. Taking advantage of the total order of the field of real numbers, we analyze from

the expression of F in convenient coordinates zones where F can exhibit certain monotonic

behavior of the orbits. Although these arguments cannot be generalized to holomorphic

dynamics, several ideas behind our proof could be useful for real analytic diffeomorphisms

in higher dimension.

• Once the origin 0 ∈ R2 is not an isolated fixed point, other fixed points may be accumulation

points of nearby orbits. Thus, the three types of sectors, parabolic, elliptic and hyperbolic,

are not sufficient to describe the sectorial decomposition theorem. On the other hand, it is

conceivable that each point in a curve of fixed points is the center of a sectorial decomposi-

tion, and that these decompositions are not uniform while approaching 0, thus obstructing

the description of a finite stratification of the local dynamics. We prove in this memory that

such a wild behavior never happens.

We state now our main result concerning Problem I in more precise terms. Before stating it,

we define some usual concepts. In general, if F : W → W ′ is a diffeomorphism between some

open sets of Rn and A ⊂ W , we define the positive orbit Orb+
F,A(p) issued from p in A to be the

subset of A that contains exactly p and every Fn(p) ∈ A with n ∈ N such that Fl(p) ∈ A for l ∈ N
with l < n. We define the negative orbit Orb−F,A(p) issued from p in A to be Orb+

F−1,A(p). Thus,

if some iterate Fn(p) does not lie in A, we say that the orbit Orb+
F,A(p) escapes A. We define

also ωF,A(p) =
⋂
n∈Z≥0

Orb+
F,A(Fn(p)), pointing out that it is empty if Orb+

F,A(p) escapes A, and we

define similarly αF,A(p) =
⋂
n∈Z≤0

Orb−F,A(F−n(p)). When the diffeomorphism F or the subset A is

clear from the context, we will drop the subindices F or A in the orbits and the α-and ω-limit

sets. Let q0 ∈ A. We say that A is an attracting (or repelling) parabolic set of F at q0 if for any

p ∈ A, one has ωA(p) = {q0} and Orb−F,A(p) escapes A (or αF,A(p) = {q0} and Orb+
F,A(p) escapes A).

We say that A is an elliptic set of F at q0 if, for any p ∈ A, one has ωA(p) = {q0} and αA(p) = {q0}.
Finally, we say that A is hyperbolic if for any p ∈ A, the sets Orb−F,A(p) and Orb+

F,A(p) are finite.

The following is the main result of the first part of the thesis.

Theorem A. Let F ∈ Diffω1 (R2,0) be a germ of a real analytic diffeomorphism with F(0) = 0, F , Id,

tangent to the identity and of non center-focus type. Then, for any open neighborhood W of 0 where a

representative of F and F−1 is defined, there exist a neighborhood U ⊂W of 0, and a finite partition S
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of

U =
⋃
A∈S

A,

into invariant C0 submanifolds of R2 such that, for any A ∈ S , we have

0. dimA = 0 if and only if A = {0}.

1. If dimA = 1 then, 0 ∈ A\A and either A is a connected component of Fix(F)\{0} or A∩Fix(F) = ∅
and A is an attracting or repelling set (curve) at 0.

2. If dimA = 2, then 0 ∈ A \A, A∩Fix(F) = ∅ and A is of one of the following six types.

• A is an attracting or repelling parabolic set at 0.

• A is an elliptic set at 0.

• A is a hyperbolic set.

• A is dicritical-parabolic (or D-parabolic): there exists ΓA ∈ S with dimΓA = 1 and ΓA ⊂
Fix(F) such that for each p ∈ A, either there is qp ∈ ΓA with αA(p) = {qp} and Orb+

A(p)

escapes A, or there is qp ∈ ΓA with ωA(p) = {qp} and Orb−A(p) escapes A.

• A is dicritical-elliptic (or D-elliptic): there exists ΓA ∈ S with dimΓA = 1 and ΓA ⊂ Fix(F)

such that for each p ∈ A, either there is qp ∈ ΓA with α(p) = {qp} and ωA(p) = {0}, or there is

qp ∈ ΓA with ωA(p) = {qp} and αA(p) = {0}.

• A is dicritical-dicritical (or D-D): there exist ΓA,Γ ′A ∈ S with dimΓA = dimΓ ′A = 1, ΓA , Γ ′A
and ΓAΓ

′
A ⊂ Fix(F) such that for each p ∈ A, there is qp ∈ ΓA with αA(p) = {qp} and there is

q′p ∈ Γ ′A with ωA(p) = {q′p}.

The pair (U,S) fulfilling the properties of the previous theorem will be called a sectorial de-

composition. The two dimensional sets in S will be called the sectors of (U,S), and they are of

parabolic, elliptic, hyperbolic, D-parabolic, D-elliptic or D-D type, accordingly to the properties pre-

sented in the second item of the Theorem. See Figure 1 for a schematic picture of the sectors and

see Figure 2 for an example of a sectorial decomposition. It is worth highlighting the following

remarks, discussed in more detail in the text.

• The curves ΓA in the "new" types of sectors (D-parabolic, D-elliptic, D-D) have a dicritical

behavior in both sides: each q ∈ ΓA sufficiently close to 0 ∈ R2 is not only a limit point of a

positive or negative orbit of F contained in A, but q is also a limit point of a positive or neg-

ative orbit of another sector A′ , A of type D-parabolic, D-elliptic, D-D. These components

ΓA ∈ S will be called bidicritical curves.

• Further to the point above, if ΓA is a bidicritical curve on the boundary of the sector A,

the map φ : A→ ΓA, p 7→ qp (defining qp as in the statement of Theorem A) is continuous
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Figure 1: Types of sectors

Figure 2: A example of a sectorial decomposition.

and its fibers {φ−1(q)}q∈ΓA are parabolic curves of F attached to the different points of ΓA

(all attracting or repelling). The germ of φ−1(q) is uniquely defined and coincides with the

germ at q of the set of points p in the side of ΓA that intersects A and whose orbit Orb+
A(p)

or Orb−A(p) accumulates at q.

• If A is a D-D sector, one has two such maps φ : A → ΓA and φ′ : A → Γ ′A, one for each

bidicritical curve which is in the boundary of A. It is natural to ask whether the fibers of

φ and φ′ coincide. We do not know the answer. Of course, one can construct examples for

which the fibers of φ and φ′ coincide: coming from the flow of an analytic vector field with

arbitrary curves of singularities which are generically transverse to the saturated foliation

(isolated singularity) that it generates. But we do not know if there are examples where the

fibers do not coincide. Or wilder behavior, as depicted in Figure 3 where the fibers φ−1(q),
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which by definition accumulate into singletons of ΓA, may accumulate into a whole interval

in the other bidicritical Γ ′A with non-empty interior. Such phenomenon, if it exists, would

be proper to diffeomorphisms (with non-isolated fixed points) and would be an obstruction

for embedding such diffeomorphisms into flows (even up to topological conjugation).

Figure 3: A fiber of φ and a fiber of φ′ . The fiber φ−1(q) accumulates in a compact subset L of Γ ′A, and the
fiber φ−1(q′) accumulates in a compact subset L′ of ΓA.

• With regard to Theorem A, if there are no D-D sectors, then the statement can be improved

in the sense that a sectorial decomposition (U,S) can be taken so that U is an open neigh-

borhood and S is an analytic stratification of U (the boundary of A ∈ S is a union of lower

dimensional elements of S and the strata are analytic submanifolds of R2). Finally, if there

are no bidicritical curves, then U can be chosen to be a semi-analytic subset of R2.

A basic consequence of the previous theorem is the following.

Corollary A. Let F ∈ Diff1(R2,0) be non center-focus. Then, there is a neighborhood U of 0 where a

representative is taken, such that the only periodic points of F in U are fixed points. Hence, Per(F) =

Fix(F) as germs.

Outline of the proof of Theorem A As we mentioned before, our proof is independent of the

proof of the sectorial decomposition for C∞ vector fields by Dumortier, Rodrigues and Roussarie

in [29]. However, we follow some common steps, specially at the beginning of the proof. In

particular, we make use of results in the literature about reduction of singularities of vector fields.

To start, it is well known that any germ of a tangent to the identity diffeomorphism F ∈Diff1(R2,0)

has an infinitesimal generator, that is, a two dimensional formal vector field ξ ∈ X̂(R2,0). See for

instance [13, 58] for the proof of the existence and uniqueness of such vector field. The formal
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infinitesimal generator ξ of F has a singularity of order two or greater than two at 0. Its formal

singular locus Sing(ξ) coincides with the germ of fixed points Fix(F) of F and thus, this vector

field is not necessarily saturated or reduced.

A classical result by Seidenberg [70] states that a two dimensional vector field with an isolated

singularity admits a reduction of singularities: after a finite number of blowing-ups, the pull-

back of the vector field only has simple singularities (in particular with at least one non-zero

eigenvalue, see below). This result does not demand convergence of the vector field and it is

equally applicable to a formal vector field with an isolated singularity. For vector fields with non-

isolated singularity, we have not found a complete result on the reduction of singularities with the

properties that we need. We propose a version of such a result on the reduction of singularities,

specially adapted to the real formal setting in Chapter 1 (Section 1.4.3). Then, we apply this

result to the infinitesimal generator ξ obtaining a sequence of blowing-ups π : (M,E)→ (R2,0)

such that E = π−1(0) and π|M\E : M \ E → R2 \ {0} is an analytic isomorphism. We highlight that

M is an analytic manifold with boundary and corners and E is its boundary. We use a result in

[12] that ensures that F can be lifted to a diffeomorphism F̃ in (M,E) that fixes each point of E.

From this point, the object of work will be a diffeomorphism F̃ : (M,E)→ (M,E) with F̃|E = IdE .

We look for a decomposition of F̃ in some neighborhood Ũ of E in (M,E) that will be projected to

R2 in order to provide the desired sectorial decomposition (U,S).

Let ξ̃ ′ be the strict transform of ξ by π (locally defined by dividing the total transform ξ̃

by an equation of the divisor E of maximal multiplicity). This strict transform permits to write

E = E1∪· · ·∪En, where each Ei is either dicritical (transverse to the strict transform ξ̃ ′ of ξ by π) or

non-dicritical (tangent to ξ̃ ′) for ξ̃ ′. Of special interest is the set Sing(ξ̃ ′), composed of the corners

between two non-dicritical components of E and the non-corner singularities of ξ̃ ′. In any case,

being simple singular points, there are exactly two formal mutually transverse separatrices of ξ̃ ′

at each q ∈ Sing(ξ̃ ′). By construction of π, the components of E through q ∈ Sing(ξ̃ ′) and also the

germ of the strict transform (Fix(F))′ of Fix(F) at q (either empty or a simple non-singular analytic

curve through q transverse to E) must coincide with the separatrices of ξ̃ ′ at q. Extending E to

E∪(Fix(F))′, we have a new normal crossing divisor where the points of Sing(ξ̃ ′)∩(Fix(F))′ play the

role of new corner points. We extend this normal crossing divisor E∪(Fix(F))′ at some non-corner

points q ∈ Sing(ξ̃ ′). Concretely, at the points q ∈ Sing(ξ̃ ′) \ (Fix(F))′ where ξ ′ is not a saddle-node

with the weak separatrix transverse to E and with a complete "node behavior" outside E (details

below). At any q among such points, we will construct a parabolic curve γq of F̃ that is asymptotic

to the formal separatrix at q of E. We find these curves by using results in [5, 57, 56] concerning

existence of (holomorphic) parabolic curves associated to formal invariant curves. We call Ẽ the

extension of E by these parabolic curves and the strict transform of the fixed points. The set Ẽ

is a normal crossing divisor. The curves in Ẽ \E will be part of the one dimensional strata of the
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sectorial decomposition.

We prove in Section 2.3 some results on the local dynamics of F̃. The results in this part of the

thesis are technical, but the type of arguments that we use are very natural, based mainly on the

use of monotonic functions. We start defining the set S containing Sing(ξ̃ ′) and the corner points

between a dicritical and a non-dicritical component of E. Given any compact connected subset

of E \S, we find a neighborhood of it where a monotonic function (on the orbits lying on this set)

can be defined. We call these neighborhoods monotonic domains and we distinguish the dicritical

and non-dicritical case. We also define the quadrants at each q ∈ S, which are basically connected

components of the germ of M \ Ẽ at q. At each quadrant, we will find monotonic functions on

the orbits of the diffeomorphism and three types of behaviors: saddle, node or dicritical. We also

call these sets monotonic domains, because of the existence of monotonic functions on them. We

conclude that E has a neighborhood defined by the union of monotonic domains and the curves

of fixed points and parabolic curves in Ẽ.

To construct the sectors in Section 2.4, we will proceed in two ways. We define the paths of

quadrants as connected subsets of E that have two extreme points in S, and such that the interme-

diate points in S are of a specific saddle type. The idea of the construction of the sectors consists

in gluing the monotonic domains covering the path, and then, choosing a smaller open region,

we ensure that orbits have a specific behavior inside the sector, so that the projection of this open

set is of one of the types in Theorem A. We call path sectors to the sectors constructed from paths

of quadrants. On the other hand, the union of these sectors is not necessarily a neighborhood of

E. We complete this union with some parabolic sectors, obtaining finally a neighborhood Ũ of E

whose projection U = π(Ũ ) is the required neighborhood of 0 ∈ R2 in Theorem A.

In the last sections of Chapter 2, we make a refinement of the sectorial decomposition. We

start the section by showing refinements on all the sectors. On the path sectors that are not

adjacent to bidicritical curves, we consider what we call a "fundamental domain", which is a set

that generates the sector by the saturation of it by F̃ (the union of all the images by F and F−1) and

that contains a single element of each orbit in the sector. Taking a fundamental domain which

is itself semi-analytic will serve us to prove that the sector has semi-analytic boundary outside 0.

On the other hand, for a sector adjacent to a bidicritical curve (D-parabolic, D-elliptic or D-D),

we are able to define parabolic curves of F̃ at each point of the bidicritical curve and use it as

the boundary of the sector. In the non-path sectors, we also make a refinement of the choice of

the boundary. Using the refinements on the construction of the sectors, we prove the two main

results of the section. In the absence of D-D sectors we can take U to be an open set in R2. In the

absence of bidicritical curves, we can take U to be semi-analytic. We also make some comments

on the reasons that lead us to think these restrictions are optimal.
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Problem II: The structure of the cycle-locus of vector fields with Hopf singularity

As we mentioned before, our main motivation in this thesis was Dulac’s problem in dimension

three. Before stating the problem, recall that a cycle of a vector field is a periodic trajectory,

thus homeomorphic to S1, and an isolated cycle is a cycle having a neighborhood where there

are not other cycles. In R2 an isolated cycle is more frequently called a limit cycle because it

is the accumulation set of some non-closed trajectories. In higher dimension, it is more proper

to keep the name isolated cycles. One of the main tools in the study of cycles of vector fields

are the Poincaré first return maps, which map points in a cross-section of a cycle to the first

intersection of the trajectory again with the cross-section. Every cycle that intersects the cross-

section, generates a periodic point of the Poincaré map. Therefore, studying the cycles near a

given cycle is equivalent to studying the periodic points of its Poincaré map. The definition of

this type of maps is generalized also to polycycles (closed union of trajectories and singularities

of a vector field).

Dulac’s problem claims that an analytic vector field cannot possess an infinite number of

isolated cycles in a sufficiently small neighborhood of the singularity. The problem was origi-

nally stated in dimension two by H. Dulac [26] in 1923. It can be seen as a local version of (the

second part of) the famous Hilbert’s sixteenth problem, posed at [40] in 1902. Dulac himself

provided a proof of it, but it turned out to have a mistake, discovered by Y. Ilyashenko in 1982,

published in [44]. So far, there are two different and independent solutions to this problem, one

by Y. Ilyashenko [43] and the other by J. Écalle [30]. Both are very intricate and not very well

understood by the mathematical community. Recently, there are attempts revising Ilyashenko’s

proof by Yeung [77], who found a gap in Ilyashenko’s proof, or approaching the problem with

different tools, for instance o-minimal geometry [71, 45, 25, 35]. We highlight that the less de-

generated case in dimension 2 is very easy to prove, and in fact it has been known since the work

of Lyapunov [53]: it is the case where the vector field has a couple of conjugated non-zero purely

imaginary eigenvalues (Hopf singularity). In this case, after a blowing-up of the origin we find

a cycle (with no singularities), so that the analyticity of the first return map, being a diffeomor-

phism in one variable, gives the result.

Dulac’s problem in higher dimension has not been very much treated so far, to our knowledge.

Since the theorem in dimension two is already very intricate, it seems too optimistic to solve the

problem in dimension three with full generality. It is very natural to attempt to generalize the

easier case in dimension two to dimension three. Accordingly, from now on, we work with the

family of vector fields with a Hopf singularity:

H3 := {ξ ∈ Xω(R3,0) : Spec(Dξ(0)) = {±bi, c}, where b,c ∈ R and b , 0}.
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We remark that for any ξ ∈ H3, there is a unique curve Ω̂ which is non-singular and tangent

to the eigendirection of the eigenvalue c. It is called the formal rotational axis. When ξ ∈ H3

has a non-zero real eigenvalue c , 0, we say that ξ has a semi-hyperbolic Hopf singularity. In this

case, the Reduction to the Center Manifold Theorem applies and has important consequences:

it implies that cycles sufficiently close to 0, if they exist, are contained in any center manifold,

which is a surface. For some bibliography on center manifolds, see for instance [20, 47]. Then,

the dimension of the problem is reduced to two, but the main difficulty is that the center mani-

folds may not be analytic, and then the restriction to the center manifold is not exactly the two

dimensional Dulac’s problem. Nevertheless, for Hopf-singularities, there are many authors that

faced this problem and solved it successfully. We highlight the result of Aulbach [4] for a vector

field with n−2 real non-zero eigenvalues and 2 imaginary ones. The conclusion is that either the

center manifold is composed entirely of non-isolated cycles (and then, it is analytic) or it contains

finitely many cycles. Other proofs that make use of the existence of a first integral can be found

in [46, 48, 49, 68, 69, 76].

In the case where the eigenvalue c is zero, we say that ξ has a Hopf-zero singularity. We found

fewer attempts to show Dulac’s problem in this case. However, some authors have investigated

the dynamics in generic families of Hopf-zero singularities. To mention the ones more related

with this text:

• Dumortier and Bonckaert proved in [8] the existence of C∞ realizations of the formal rota-

tional axis Ω̂.

• Dumortier in [28] considered Hopf-zero vector fields in the C∞ class fulfilling two Ło-

jasiewicz inequalities. One of them implies that the singularity is isolated. The other

(stated for the infinitesimal generator of a Poincaré map of the central cycle obtained af-

ter blowing-up a realization of the rotational axis) implies that there are no local cycles.

With these hypotheses, he obtains a complete description of the asymptotic behavior of the

trajectories in a neighborhood of the origin.

• I. García has studied in [37] generic families of Hopf-zero vector fields, and he found that

the number of isolated cycles generated in that family and making a finite number ν of turns

is uniformly bounded in terms of ν. However, he does not give an answer on finiteness of

limit cycles of individual fields making any number of turns.

We state now our main results. First, we introduce the following notation. Let ξ ∈ Xω(Rn,0) be

a germ of a real analytic vector field, and let U be an open neighborhood of 0 where ξ is defined.

We denote by CU (ξ) the union of all the cycles of ξ |U entirely contained in U . This set depends

strongly on the neighborhood U and it is not ensured that it behaves as representatives of a germ

of a set that we can associate to ξ. When the germs CU (ξ)0, CU ′ (ξ)0 of CU (ξ) and CU ′ (ξ) at 0 ∈ Rn
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coincide for every pair of sufficiently small neighborhoods U,U ′ of 0, we say that ξ has a local

cycle-locus equal to C(ξ) := CU (ξ)0.

Theorem B. Let ξ ∈ H3. Then there is a neighborhood U of 0 ∈ R3, where a representative of ξ is

defined, for which exactly one of the following possibilities holds:

(i) CU (ξ) = ∅.

(ii) There is a finite non-empty family S = {S1, ...,Sr} of connected mutually disjoint smooth analytic

two dimensional submanifolds of U \ {0}, invariant for ξ and subanalytic as sets satisfying Sj =

Sj ∪ {0} for any j, and there is a neighborhood basis V of the origin in U such that every V ∈ V
satisfies

CV (ξ) = (S1 ∪ S2 ∪ · · · ∪ Sr )∩V . (1)

(iii) The singular locus Sing(ξ |U ) of ξ inU is a smooth analytic curve inU and there is a neighborhood

basis V of the origin in U such that every V ∈ V satisfies

CV (ξ) = V \ (V ∩ Sing(ξ |U )). (2)

Consequently, the local cycle locus C(ξ) of ξ exists and it is equal to the empty germ, to the germ of

S1 ∪ · · · ∪ Sr or to the complement of the germ of Sing(ξ) in cases (i), (ii) or (iii), respectively.

As an immediate consequence, Dulac’s problem has a positive answer for three dimensional

Hopf singularities.

Corollary B (Dulac). If ξ ∈ H3, then there is a neighborhood of 0 ∈ R3 where there are no isolated

cycles of ξ.

The surfaces in item (ii) are called the central limit surfaces. Each of them is filled with a

one-parameter family of cycles or ξ. In the semi-hyperbolic singularity case, there is at most one

limit central surface (either (i) or (ii) with r = 1), and if there is one, then it is a center manifold,

non-singular and analytic at 0.

In the last result, we provide a characterization of the third situation of Theorem B in terms

of linearizability and integrability of the vector field.

Theorem C. Let ξ ∈ H3 be a Hopf-zero singularity, the following statements are equivalent.

(1) ξ is formally orbitally linearizable (i.e. formally equivalent to G(x,y,z)
(
−y ∂

∂x + x ∂
∂y

)
, where G is

a unit in R[[x,y,z]]).

(2) ξ is analytically orbitally linearizable.

13
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(3) There is a neighborhood U of 0 such that CU =U \ Sing(ξ).

(4) ξ is analytically completely integrable (i.e. there exist two analytic first integrals f ,g at 0 which

are independent, i.e. df ∧ dg . 0).

We want to remark that some of the implications in Theorem C are not completely original:

• On the one hand, once we obtain that (1) implies that a formal normal form (discussed

along this text) of ξ is proportional to the linear part −y ∂
∂x +x ∂

∂y , the implication (1)⇒ (2) is

a particular case of Brjuno’s results on analytic normalization of analytic vector fields [10]

(see also [59]).

• The implication (1)⇒ (4) can also be seen as a consequence of a result by Zhang [78] (see

also [54]).

• The implication (3) ⇒ (4) deserves a separate comment. It can be interpreted as a three

dimensional version of the classical Poincaré-Lyapunov Center Theorem [66, 53], asserting

that an analytic center at (R2,0) has an analytic first integral. It is already stated by I.

García [36], but tacitly assuming an a priori stronger hypothesis than (3); namely, that

all cycles in U \ Sing(ξ) perform a single turn around the curve Sing(ξ) before closing.

In our proof, we surpass this difficulty, since we do not assume this extra condition: the

scheme is more precisely the sequence of implications (3)⇒ (1)⇒ (2)⇒ (4), the first being

a consequence of (a part of) the proof of Theorem B. As a consequence of (2), we affirm the

condition on the number of turns of all cycles near 0.

On the whole, we believe that our main contribution with Theorem C, apart from gathering

several separate results about Hopf-zero singularities in a single statement, is the completion of

the proof of the generalization of Poincaré-Lyapunov result commented above.

Outline of the proof of Theorem B We recall first that a proof of Theorem B for ξ ∈ H3 with

an isolated singularity (and hence only (i) or (ii) can occur) has already been established in [23].

In this thesis, with the use of Theorem A, we have generalized Theorem B for any ξ ∈ H3 and we

have also shortened the proof in [23] for the isolated singularity case. All in all, several steps on

that proof remain the same. Let us summarize the main ideas. Fix any Hopf vector field ξ ∈ H3.

We distinguish several cases.

1. The semi-hyperbolic case. This case is developed in Section 3.2. In this case, there is a one-

dimensional invariant stable or unstable manifold W (tangent to the eigendirection of c ,

0) and a two dimensional invariant center manifold W c (tangent to the eigendirections of

±bi). The manifold W is unique and analytic, but W c can only be chosen of class Ck . One

14
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of the essential properties of the center manifolds is that they contain the cycles existing in

a neighborhood of the singularity. In other words, CU (ξ) ⊂ W c for U sufficiently small. We

perform a blowing-up π : (M,E)→ (R3,W ) centered at W and we find that the fiber π−1(0)

is a cycle of the strict transform of ξ. We end using the Poincaré map on a cross-section ∆ of

this cycle (see for instance[61] for a definition of the Poincaré map): this map is analytic and

its set of periodic points is contained in the curve ∆∩W c. We conclude that either there is

a single curve of fixed points, or that there are not periodic points except for ∆∩π−1(0). We

obtain Theorem B with a single limit central surface equal to W c (item (ii) with r = 1) in the

first case, and item (i) in the second case.

2. ξ is a Hopf-zero vector field with an isolated singularity Sing(ξ) = {0}. This case is developed

in Sections 3.3-3.5. We use the theory of normal forms in this case (see [10, 59, 72]). We fix a

(formal) normal form ξ̂ for ξ; it is a formal vector field formally conjugated to ξ and written

as

ξ̂ = A(x2 + y2, z)
(
−y ∂
∂x

+ x
∂
∂y

)
+B(x2 + y2, z)

(
x
∂
∂x

+ y
∂
∂y

)
+C(x2 + y2, z)

∂
∂z
,

where A,B,C ∈ R[[u,v]]. We consider also a collection of analytic vector fields {ξℓ}ℓ∈N∗ , all

analytically conjugated to ξ, so that the Taylor expansion of ξℓ approximates the normal form

ξ̂ up to some order that grows with ℓ. From the rotational symmetry of the formal normal

form ξ̂, we guess that its cycles (if the surface were convergent) turn once around the z−axis

and cut the transverse section {y = 0,x > 0} at the singular points of the auxiliary vector

field η̂ defined as η̂ = B(x2, z)x ∂
∂x +C(x2, z) ∂∂z . Its singular set being at most a curve, we "get"

Theorem B (i) or (ii) for the formal vector field. It is quite natural to investigate to what extent

this formal description is reflected on an analytic approximation ξℓ for some ℓ sufficiently

large (notice that it is enough to prove Theorem B for ξℓ, being analytically conjugated to ξ).

We proceed as follows. First, since η̂|z−axis , 0 (by the isolated singularity hypothesis), there

is a cone of finite order around the z−axis where there are no "cycles" of ξ̂. We show that

the same happens for ξℓ, that is, there is a cone around the z−axis free of cycles when ℓ is

sufficiently large. In terms of blowing-ups, there is a sequence of blowing-ups π : (M,E)→
(R3,0) along the first k infinitely near points of the z−axis Z1, and a neighborhood Vk+1 of

π−1(Z \ {0})∩E (the k+1-th infinitely near point) inM such that π∗ξℓ has no cycles in Vk+1 \E.

In fact, for our problem, we use real oriented blowing-ups along infinitely near points of both

half-axes. Now, again ξ̂ serves as a guiding vector field that points where to look for the cycles:

the map π determines a finite family of compact curves in E, what we call characteristic cycles.

1The infinitely near points of Z are the intersection points of the strict transform of Z and the exceptional divisor of
the blowing-up centered at 0 ∈ R3 (the first infinitely near point), or the blowing-up centered at the previous infinitely
near point (in the rest of the cases)
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They are given by a family of actual cycles of the restriction of the strict transform ξ̂ ′ of ξ̂

to E (a true analytic vector field). These cycles are obtained also as the curves generated by

rotation of the set of singularities of the strict transform η̂′ of η̂ along the one dimensional

divisor π−1({y = 0,x > 0})∩E.

If ℓ is sufficiently large, the characteristic cycles are also cycles of the strict transform ξ ′ℓ of ξℓ
by π. Moreover, using flow-boxes along some compact subsets of different components of E,

we show that cycles of ξ ′ℓ, outside but sufficiently near to E, are localized on neighborhoods

of the characteristic cycles. If γ is such a characteristic cycle, the nearby cycles of ξ ′ℓ are

given by the periodic points of the Poincaré first return map Pℓ,γ : ∆γ → ∆γ of ξ ′ℓ defined in

a local cross-section ∆γ at some point of γ . The diffeomorphism Pℓ,γ is not of type center-

focus since E ∩∆γ is an invariant curve. Once we show Pℓ,γ is not the identity, Corollary A

of Theorem A permits to conclude Theorem B (i) or (ii), where the family of limit central

surfaces corresponds to the family of connected components of Fix(Pℓ,γ ) \ E for the different

characteristic cycles γ .2

3. Suppose that ξ is a Hopf-zero vector field with a non-isolated singularity. Then, in a suffi-

ciently small neighborhood of 0 ∈ R3, the singular set Sing(ξ) is a non-singular analytic curve

tangent to the eigenvalue c = 0 and coincides with the rotational axis. We distinguish two

cases in terms of a normal form ξ̂: either ξ̂ is not proportional to the linear part Lξ̂(0) (that

is, the auxiliary two dimensional vector field η̂ is not identically 0) or it is proportional, that

is, η̂ ≡ 0. It can be shown that this distinction does not depend on the chosen normal form

ξ̂. They are called respectively the formally non-degenerated case and the formally degenerated

case.

The first case is developed in Section 3.6. As in the isolated singularity case, only possibil-

ities (i) or (ii) of Theorem B may occur. But the proof of the isolated singularity case does

not necessarily apply in this case. Concretely, since ξ̂ vanishes along the rotational axis, the

arguments above for obtaining a cone around the axis free of cycles do not work. Instead of

making point blowing-ups, we perform the blowing-up π : (M,E)→ (R2,Sing(ξ)) centered at

the analytic curve Sing(ξ). It turns out that π−1(0) is a cycle of the transform ξ̃ = π∗(ξ). The

Poincaré map of ξ̃ in a transverse section of a point in this cycle satisfies the conditions of

Theorem A and we finish by Corollary A as above.

Finally, the formally degenerated case is developed in Section 3.7. We are in the situation (1)

of Theorem C. By virtue of this result, this is equivalent to (3), which proves Theorem B (iii).

2In our article [23], we continue the sequence of blowing-ups centered at the different characteristic cyles (following
a reduction of singularities of η̂), obtaining more simple local situations around each characteristic cycle. Then, we
prove Corollary A without having Theorem A for the corresponding Poincaré maps obtained after this reduction of
singularities.
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In this chapter, we give a common context to the two problems treated in this thesis. We start

studying germs of real analytic singular vector fields. We present a very powerful tool in the topo-

logical study of vector fields: blowing-ups. We give general definitions of the blowing-ups and

then study more deeply the two-dimensional case. We state results on reduction of singularities

of two-dimensional real vector fields in dimension 2 by the iteration of blowing-ups. We present

some known results, adapting their statements so that we have a common language in this thesis,

and we give only some of the proofs. Then, we introduce a graph obtained from the reduction of

singularities, which does not have to be mistaken for the classical dual graph. We end the chap-

ter by studying germs of tangent to the identity diffeomorphisms, their relation with germs of vector

fields and the adaptation of the results presented in the previous section to diffeomorphisms.
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Chapter 1. Blowing-ups and reduction of singularities

1.1 Germs of real analytic vector fields with a singularity at 0

As we anticipated, in this section we work with germs of analytic vector fields and formal vector

fields at a point of an analytic manifold. Without loss of generality, we can consider this point

to be the origin of Rn. That is, we study elements in Xω(Rn,0) and in X̂(Rn,0). We will denote

Xω(Rn,0) simply by X(Rn,0). We start studying the analytic vector fields. Fixing coordinates

x = (x1, . . . ,xn), a germ of a vector field ξ ∈ X(Rn,0) is written as

ξ = a1(x)
∂
∂x1

+ · · ·+ an(x)
∂
∂xn

, ai(x) =
∑
α∈Nn

ai,αxα ∈ R{x}, (1.1)

where each ai is a germ of analytic function in On,0 expressed as a convergent series. Another way

to express a vector field is the following

ẋ = ξ(x),

by the differential equation that it defines. We define the vector field

Lξ =
∑
|α|=1

a1,αxα
∂
∂x1

+ · · ·+
∑
|α|=1

an,αxα
∂
∂xn

. (1.2)

Notice that the linear part Dξ(0) = DLξ(0) is an n × n matrix A. We can also write ẋ = Ax + F(x),

where F is of order equal to or greater than 2. We denote the order or multiplicity of ξ at 0

as mini=1,...,n{ν(ai)}, where ν(ai) is the order or multiplicity of ai at 0, i.e. ν(ai) = minj∈N{j : j =

|α|, ai,α , 0}.

Now, a formal vector field ξ ∈ X̂(Rn,0) is a derivation in Ôn,0 ≃ R[[x]]. Taking coordinates

x = (x1, . . . ,xn) centered at 0 we can write ξ as

ξ = a1(x)
∂
∂x1

+ · · ·+ an(x)
∂
∂xn

, ai(x) =
∑
α∈Nn

ai,αxα ∈ R[[x]], (1.3)

where each ai is a formal series. As in the analytic case, we can define Lξ by (1.2) and its linear

part Dξ(0). Notice that X(Rn,0) ⊂ X̂(Rn,0), therefore, many of the definitions that we give in the

rest of the section apply to both analytic and formal vector fields.

Concerning the eigenvalues of the linear part Dξ(0) of ξ, there are two types of singularities:

elementary and nilpotent ones.

Definition 1.1. Let ξ ∈ X̂(Rn,0) be a vector field with a singularity at 0 ∈ Rn. We say that 0 is an

elementary singularity if its linear part Dξ(0) has, at least, one non-zero eigenvalue. Otherwise, we

say that 0 is a nilpotent singularity.
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1.1. Germs of real analytic vector fields with a singularity at 0

In the study of real vector fields, as we will see, the real part of the eigenvalues of the linear

part reveals useful information. We distinguish the following types of singularities concerning

the number of eigenvalues whose real part is different from zero.

Definition 1.2. Let ξ ∈ X̂(Rn,0) be a vector field with a singularity at 0 ∈ Rn and λ1, · · · ,λn ∈ C the

eigenvalues of Dξ(0). We say that 0 is a hyperbolic singularity if Re(λi) , 0 for 1 ≤ i ≤ n. We say

that 0 is a semi-hyperbolic singularity if there is at least one λi with Re(λi) , 0. We say that 0 is a

completely non-hyperbolic singularity if Re(λi) = 0 for 1 ≤ i ≤ n.

From this point to the end of the section, we introduce some useful concepts for two-dimensional

real analytic and formal vector fields. Fix a two-dimensional vector field ξ ∈ X̂(R2,0) and coordi-

nates (x,y) centered at (0,0), then

ξ = a(x,y)
∂
∂x

+ b(x,y)
∂
∂y
.

We suppose first that a(0,0) = b(0,0) = 0 and that a(x,y) and b(x,y) have no common (non-unit)

factors. Such singularities are called algebraically isolated or, simply, isolated.

Definition 1.3. Let ξ be a vector field with a singularity at 0 ∈ R2 and λ,µ the eigenvalues of Dξ(0).

We say that ξ has a (real) simple singularity at 0 if λ,µ ∈ R, one of the eigenvalues, for example µ, is

different from 0 and the ratio λ
µ <Q>0.

Remark 1.4. We want to remark that the concept of simple singularity exists for complex two-

dimensional vector fields and the definition is the same allowing that λ,µ ∈ C. For instance the

linear vector field η = −y ∂
∂x + x ∂

∂y ∈ X(R2,0) ⊂ X(C2,0) has eigenvalues i,−i. The point 0 is not

a real simple singularity. However, if we consider η as a complex vector field, it is a simple

singularity. Along this text, as we will work with real vector fields, we will reserve the name

simple singularity for the real ones.

We will highlight the importance of simple singularities in the following sections. In partic-

ular, as we will see, they are stable under blowing-ups and thus they will be considered final

situations in the process of reduction of singularities, which will be discussed later. Another re-

markable feature is that at simple singularities there always exist two unique formal invariant

curves for ξ. Before stating the result, we give the definition of a separatrix and refer the reader

to Appendix A.2.1 to recall the definition of formal curves.

Definition 1.5. An analytic, Ck or formal curve Γ at (R2,0) is a separatrix of ξ if it is invariant for ξ

and it has a defined tangent at 0.

Theorem 1.6 (Existence of separatrices at simple singularities [9]). Let ξ ∈ X̂(R2,0) be a formal

vector field with a simple singularity at 0 having eigenvalues λ,µ, suppose, for instance, that µ , 0.
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Chapter 1. Blowing-ups and reduction of singularities

Then there exist two unique formal separatrices Γλ and Γµ, the first tangent to the eigendirection of λ

and the second to the one of µ. In addition, if ξ ∈ Xω(R2,0), the curve Γµ is an analytic separatrix.

In the light of the previous theorem, we say that the eigendirection vλ ∈ P1
R associated to an

eigenvalue λ of ξ is a strong direction when λ , 0 and a weak direction when λ = 0.

The above theorem can be refined in the analytic case. In particular, a simple singularity of

an analytic vector field has Ck or analytic separatrices associated to a formal one. That is, either

a formal separatrix Γ of the previous theorem is convergent, or there is a Ck separatrix γ whose

Taylor development is given by that of Γ .

The separatrices we have presented are real curves, and they have two real half-branches (see

Appendix A.2.1). Sometimes, we will make an abuse of notation and name a real half-branch of a

separatrix, directly a separatrix. Each half-branch is a different trajectory of the vector field, and

in the literature, the trajectories accumulating to 0 in a concrete direction are called characteristic

trajectories.

When a(0,0) = b(0,0) = 0 and the coefficients a(x,y) and b(x,y) have common factors, the

singularity is said to be algebraically non-isolated. Suppose that f1(x,y), . . . , fr(x,y) are the irre-

ducible common factors such that fi , fj for i , j. We define the singular locus of ξ to be the

ideal Sing(ξ) = (f1 · · ·fr ). In the analytic case, this ideal provides a germ of analytic set and we

will name this set as well the singular locus of ξ. Recall, however, that in real analytic geometry

there is no one-to-one correspondence between prime ideals and real analytic sets. If any of these

common factors provides a (formal) curve Γ , we have that Γ is invariant for ξ (the vector field

restricted to the curve is 0), and hence we say that the curve is a degenerate separatrix.

1.2 Blowing-ups

In this section, we will present two types of blowings-ups: the classical blowing-ups and the real

or oriented blowing-ups. We will work only with the second type of blowing-ups, but we present

the first type for the sake of completeness and in order to understand better the second. The

ambient space where we will work is Kn with K = C or K = R, but the generalization to open

subsets of Kn and to open sets of any analytic manifold M works well using the restriction in the

first case and local charts in the second. We end this introduction indicating that we will present

blowing-ups as transformations of the ambient space, and then see how manifolds, varieties and

vector fields transform. In the rest of our work, we will mainly use the blowing-ups centered

at points in R2 and R3. However, only in this section, we will define the concepts with more

generality.
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1.2. Blowing-ups

1.2.1 The classical blowing-up

Consider K = C or R. We define the blowing-up of Kn centered at 0 as the projection π : M → Rn

with

• M is the blown-up manifold and it is given by

M = {(x1, . . . ,xn, [y1, . . . , yn]) ∈Kn ×Pn−1
K : xiyj = xjyi , i , j} ⊂Kn ×Pn−1

K .

• π((x1, . . . ,xn, [y1, . . . , yn])) = (x1, . . . ,xn).

We define the exceptional divisor E of π by E = π−1(0) = {0} ×Pn−1
K . Notice that for a point p , 0 of

Kn, the set π−1(p) is a single point. In the contrary, E = π−1(0) = {0}×Pn−1
K contains infinite points.

In particular, the map π|M\E :M \E→Kn \ {0} is an isomorphism.

Figure 1.1: Classical blowing-up centered at 0 ∈ R2

We want to hightlight thatM, which is defined as an algebraic variety, is indeed an n−dimensional

analytic manifold. We provide an altas and prove that the changes of coordinates are analytic.

Let Uj ⊂M be the open set defined by M∩ (Kn× (Pn−1
K ∩{yj , 0})). We define the homeomorphism

ϕj :Uj →Kn for j = 1, . . . ,n as follows

ϕj((x1, . . . ,xn, [y1, . . . , yn])) = (
y1

yj
, · · · ,

yj−1

yj
,xj ,

yj+1

yj
, · · · ,

yn
yj

).

We remark that if p ∈ E, then p = (0,v) with v ∈ Pn−1
K ∩ {yj , 0} and ϕj(p) ∈ {zj = 0}. Hence, the

divisor is mapped to the hyperplane given by {zj = 0}. The expression of π in this chart is given

by π ◦ϕ−1
j : Kn→ π(Uj ) as follows

π ◦ϕ−1
j (z1, . . . , zn) = (zjz1, . . . , zjzj−1, zj , zjzj+1, . . . , zjzn)

For the sake of simplicity, we will identify Uj and Kn, and many times we will simply write that
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Chapter 1. Blowing-ups and reduction of singularities

the expression of the blowing-up π in the chart Uj is given by π(z1, . . . , zn) := π|Uj (z1, . . . , zn) =

π ◦ϕ−1
j (z1, . . . , zn) = (zjz1, . . . , zjzj−1, zj , zjzj+1, . . . , zjzn).

To end this section, we prove that the change of chart is an analytic morphism. Let ϕi : Ui →
Kn and ϕj : Uj → Kn be two charts with i , j and, for instance, i < j. Notice that Ui ∩ Uj =

M∩ (Kn× (Pn−1
K ∩{yj , 0, yi , 0})). Notice that Ui∩Uj is mapped by ϕj to ϕi(Ui∩Uj ) = Kn \{zi = 0}

and that Ui ∩Uj is mapped by ϕi to ϕj(Ui ∩Uj ) = Kn \ {zj = 0}. Let z1, . . . , zn be the coordinates of

the image of ϕj . Then, the morphism ϕi ◦ϕ−1
j : ϕj(Uj ∩Ui)→ ϕi(Uj ∩Ui) is given by

ϕi ◦ϕ−1
j (z1, . . . , zn) = (z1, . . . , zi−1, zjzi , zi+1, . . . , zj−1,

1
zj
, zj+1, . . . , zn).

1.2.2 The real blowing-up

In this subsection, we will explain another type of blowing-ups, which will suit nicely our work.

Some of the main references to study this type of blowing-up are [42, 24], the latter providing

a more general construction of weighted blowing-ups. Another reference is [27] in the two-

dimensional case, in which the author develops real blowing-ups from different perspectives.

The main difference with the blowing-ups in the previous section is that the blown-up manifold

has boundary (and maybe corners) but it is orientable. We explain the blowing-up centered at a

point and then extend the construction to blowing-ups of smooth analytic submanifolds.

Suppose that Rn is equipped with the Euclidean norm || − ||. We define the real or oriented

blowing-up of Rn with center at 0 as the projection π :M→ Rn with

• M is the blown-up manifold of π and it is defined as the closure of {(p,q) ∈ Rn × Sn−1 : p ,

0, p||p|| = q} in Rn ×Sn−1. That is,

M =
{

(p,q) ∈ Rn ×Sn−1 : p , 0,
p

||p||
= q

}
∪

(
{0} ×Sn−1

)
.

• π(x1, . . . ,xn, y1, . . . , yn) = (x1, . . . ,xn), where y2
1 + · · ·+ y2

n = 1.

We define the exceptional divisor E of π as E = π−1(0) = {0} × Sn−1 and we will often denote π :

(M,E)→ (Rn,0). Notice that for a point p , 0 in Rn, the set π−1(p) is a single point. On the other

hand, E = π−1(0) contains infinitely many points. In particular, π|M\E : M \ E → Rn \ {0} is an

isomorphism.

The real blown up manifold M of π centered at 0 is not anymore an analytic manifold in the

classical sense: it is an analytic manifold with boundary. In particular,M ≃ R≥0×Sn−1. We provide

the bijection ψ : M → R≥0 × Sn−1. First, take a point in M. If p = (0, . . . ,0, y1, . . . , yn) ∈M, its image

by ψ is ψ(p) = (0, y1, . . . , yn). If p = (x1, . . . ,xn, y1, . . . , yn) ∈ M, its image is (||(x1, . . . ,xn)||, y1, . . . , yn)

(notice that (y1, . . . , yn) = (x1,...,xn)
||(x1,...,xn)|| ). On the other hand, if q = (0, y1, . . . , yn), we have ψ−1(q) =
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1.2. Blowing-ups

Figure 1.2: Real blowing-up centered at 0 ∈ R2.

(0, . . . ,0, y1, . . . , yn). If q = (r,y1, . . . , yn), we have ψ−1(q) = (ry1, . . . , ryn, y1, . . . , yn) We will consider M

to be M = R≥0 × Sn−1, by the previous identification.

We take the usual coordinates r in R≥0 and (x1, . . . ,xn) in Sn−1, with x2
1 + x2

2 + · · · + x2
n = 1. We

can see how π is expressed in the given coordinates of R≥0 ×Sn−1,

π(r,x1, . . . ,xn) = (rx1, . . . , rxn).

Now, as we announced, we prove thatM is an analytic manifold with boundary, by defining an

atlas that contains 2n charts through which we can identify open setsUϵ
j ofM (1 ≤ j ≤ n, ϵ = +,−)

with open sets of R≥0 ×Rn−1 (with the usual subspace topology). Let Uϵ
j ⊂ M be the open set

defined by R≥0 × (Sn−1 ∩ {xj > 0}) if ϵ = + and R≥0 × (Sn−1 ∩ {xj < 0}) if ϵ = −. In other words, the

open set U+
j covers the positive direction of xj and U−j the negative one. We define ϕϵj : Uϵ

j →
Rj−1 ×R≥0 ×Rn−j as

ϕϵj (r,x1, . . . ,xn) =,
(
x1

xj
, . . . ,

xj−1

xj
,ϵrxj ,

xj+1

xj
, . . . ,

xn
xj

)
The blowing-up π ◦ (ϕϵj )−1 : Rj−1 ×R≥0 ×Rn−j → π(Uϵ

j ) is given by

π|Uj (z1, . . . , zn) := π ◦ (ϕϵj )−1(z1, . . . , zn) = (zjz1, . . . , zjzj−1,ϵzj , zjzj+1, . . . , zjzn)

Notice that this expression is similar to the one obtained for the classical blowing-ups, but remark

the presence of the sign ϵ and that neither the domain of definition of the map nor the image are

the same. Thus, we can omit showing the change of chart expression, because it is similar to the

change of chart in the classical blowing-up.

It is also possible to define blowing-ups with higher dimensional smooth centers. Let N ⊂ Rn

be an analytic manifold of codimension m. We can take locally analytic coordinates (z1, . . . , zn) so
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Chapter 1. Blowing-ups and reduction of singularities

that N = {zn−m+1 = 0, · · · , zn = 0}. Therefore, we only give the idea of the blowing-ups with centers

at (n−m)−planes, since deriving the coordinate expression is as in the blowing-up centered at a

single point. The blowing-up of Rn centered at {zn−m = 0, · · · , zn = 0} is the projection π :M→ Rn

where the blown-up manifold M is Rn−m×R≥0×Sm−1. The exceptional divisor is E = π−1(N ). The

expression of the blowing up π : Rn−m ×R≥0 × Sm−1→ Rn in coordinates (y1, . . . , yn−m, r,x1, · · · ,xm)

with (x1, . . . ,xm) ∈ Sm−1 is given by π(y1, . . . , yn−m, r,x1, . . . ,xm) = (y1, . . . , yn−m, rx1, . . . , rxm). The

blown-up manifold can be provided with an atlas that contains 2m charts given at open sets

Uϵ
j with n−m+ 1 ≤ j ≤ n and ϵ = +,−, in the positive and negative directions of xj , as before.

The last generalization we want to introduce, in order to be able to iterate the process of

blowing-up, are the blowing-ups on (R≥0)k ×Rn−k . We will only put the example of the blowing-

up of the origin, but it can also be generalized to any other smooth center. The blowing-up of

(R≥0)k×Rn−k with center at 0 is the projection π :M→ (R≥0)k×Rn−k of the analytic manifold with

boundary and corners M = R≥0 × (Sn−1 ∩ ((R≥0)k ×Rn−k)) given by π(r,x1, . . . ,xn) = (rx1, . . . , rxn).

Notice that it is simply the restriction of the blowing-up morphism of Rn with center at 0. In this

case, since there are not negative directions for k variables, we can cover the blowing-up manifold

with k + 2(n− k) charts.

1.2.3 Sequences of blowing-ups

The process of blowing-up can be iterated. We will inductively define sequences of blowing-ups

of length i ∈ N. We start by blowing up Rn with center at N0, obtaining a blown-up manifold

M1 with exceptional divisor E1 = π−1
1 (N0) and blowing-up morphism π1 : (M1,E1) → (Rn,N0).

We say that π1 is a sequence of blowing-ups of length 1. Then, we choose a new smooth center in

N1 ⊂ E1 and repeat the process of blowing-up, obtaining a new manifold M2 and exceptional

divisor Ẽ2 = π−1
2 (N1). That is, π2 : (M2, Ẽ2) → (M1,N1). We define the exceptional divisor of the

sequence π1 ◦π2 as E2 = π−1
2 (E1) = (π1 ◦π2)−1(N0) = (E1 \N1)∪ Ẽ2.

Let π1 ◦ · · · ◦ πi−1 : (Mi−1,Ei−1) → (Rn,N0) be a sequence of blowing-ups of length i − 1. A

sequence π1 ◦ · · · ◦πi : (Mi ,Ei)→ (Rn,N0) of blowing-ups of length i is defined as the composition of

a sequence of blowing-ups π1 ◦ · · ·πi−1 : (Mi−1,Ei−1)→ (Rn,N0) of length i − 1 and a blowing-up

πi : (Mi , Ẽi) → (Mi−1,Ni−1) with smooth center Ni−1 inside the divisor Ei−1 of the sequence of

blowing-ups π1 ◦ · · ·πi−1. The exceptional divisor of the sequence is Ei = π−1
i (Ei−1) = (π1 ◦ · · · ◦

πi)−1(N0) = (Ei−1 \Ni−1)∪ Ẽi .
Notice that the blown-up manifolds Mi at each step of a sequence of blowing-ups are ana-

lytic manifolds with boundary and corners. Its boundary Ei is a subanalytic manifold of codi-

mension 1. The names of the usual charts after a single blowing-up are fixed and well defined:

U+
1 ,U

−
1 , . . . ,U

+
n ,U

−
n . We also know well how to cover Mi+1 with charts once we have fixed coor-

dinates on Ni , since we can take the previous charts and add the usual charts of the blowing-up
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1.2. Blowing-ups

πi+1. However, giving a good name to the usual charts from the second blowing-up can be more

tricky, because we need to fix coordinates centered at Ni and this highly depends on Ni . In gen-

eral, we will just assume that the atlas of Mi+1 is given by {UI }I∈I , where I is a set of indices and

each of the charts UI are the ones obtained after blowing-up. When we need to give names to the

charts that cover Mi , we will explain how we take them in the context. We show an example of a

sequence of blowing-ups and a systematic way to choose the names of the charts.

Example 1.7. Suppose that we start blowing up 0 ∈ R2. The blown-up manifold M1 is covered

by 4 charts U+
1 ,U

−
1 ,U

+
2 ,U

−
2 . Then, π2 : (M2, Ẽ2) → (M1,p1+) is the blowing-up centered at the

iterated tangent p1+ of the positive x−axis, i.e. the intersection of the positive half branch of

the x−axis with the exceptional divisor. The blown-up manifold is then covered by the previous

charts π−1
2 (U−1 ),π−1

2 (U+
2 ),π−1

2 (U−2 ), where π2 is an isomorphism, and we identify them simply with

U−1 ,U
+
2 ,U

−
2 . It is also covered by the new charts U++

11 , U++
12 , U+−

12 . Then, we define π3 : (M3, Ẽ3)→
(M2,p2−). The blown-up manifoldM3 is covered by the previous chartsU−1 ,U

+
2 ,U

++
11 ,U++

12 ,U+−
12 and

new charts U−−22 ,U
−−
21 ,U

−+
21 . Finally, we perform a blowing-up π4 : (M4, Ẽ4)→ (M3,p2−1+) centered

at p2−1+. Proceeding as in the previous steps, we have the sequence of blowing-ups π = π1 ◦π2 ◦
π3◦π4 : (M4,E4)→ (R2,0) and the covering ofM4 isU−1 ,U

+
2 ,U

++
11 ,U

++
12 ,U

+−
12 ,U

−−
22 ,U

−−
21 ,U

−++
211 ,U

−+−
212 .

1.2.4 Other coordinates to express blowing-ups

In the previous section, we gave a general definition of blowing-ups. Now, we will show other

choices of coordinates in two particular examples, as we will find them useful in this text.

Polar coordinates for the blowing-up at the origin of R2. Let π : (M,E)→ (R2,0) be blowing-

up centered at the origin of R2. As we have seen, the blown-up manifold M is identified with

R≥0 × S1, where E = π−1(0) = {0} × S1. Hence, we will take polar coordinates as usually (r,θ) at

R2, except that we do not identify the points having r = 0. That is, r ∈ R≥0 and θ ∈ S1. The

advantage of taking polar coordinates is that the blown-up manifold is covered by a single chart.

The disadvantage is that the blowing-ups are not given by polynomial functions, they require the

use of sines and cosines. The expression of π in this chart is π(r,θ) = (r cosθ,r sinθ).

Polar coordinates can also be used in higher dimensional ambient spaces. Consider a blowing-

up of Rn with center at a (n−2)−plane. With polar coordinates it is possible to cover the blown-up

manifold by a single chart. A particularly useful example is the blowing-up centered at the z-axis

of R3 with coordinates (x,y,z). The blown-up manifold is given by R≥0 × S1 ×R with coordinates

(ρ,θ,z′) and the expression of the blowing-up is π(ρ,θ,z) = (ρcosθ,ρ sinθ,z′). The exceptional

divisor of this blowing-up is E = π−1({x = 0, y = 0}) = {0} ×S1 ×R.
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Chapter 1. Blowing-ups and reduction of singularities

Cylindrical coordinates at the blowing-up at the origin of R3. Now, we show a choice of co-

ordinates for the real blowing-up of R3 centered at the origin. This time we will not cover the

full blown-up manifold by a single chart, we will use three instead. Recall that M is identified

with R≥0 × S2 and take coordinates (r,x1,x2,x3) with (x1,x2,x3) ∈ S2 and take coordinates (x,y,z)

at 0 ∈ R3.

The first chart of M is one of the usual ones: U∞ = M ∩ {x3 > 0}, but tagged with a dif-

ferent subindex. It is identified by ϕ∞ with the half-space R2 × R≥0 provided with coordi-

nates (x(∞), y(∞), z(∞)). The homeomorphism ϕ∞ is given by ϕ∞(r,x1,x2,x3) = (x1
x3
, x1
x3
, rx3). We

denote π|U∞ = π ◦ ϕ−1
∞ , which is given by π|U∞(x(∞), y(∞), z(∞)) = (z(∞)x(∞), z(∞)y(∞), z(∞)). The

second chart U−∞ = M ∩ {x3 < 0} is defined in a similar manner. The third chart is given by

U0 = M ∩ ({x1 , 0} ∪ {x2 , 0}). It is identified with R≥0 × S1 ×R with coordinates (ρ,θ,z′). The

homeomorphism ϕ0 is given by ϕ0(r,x1,x2,x3) = (r,arctan
(
x2
x1

)
, x3√

x2
1+x2

2

). We denote π|U0
= π◦ϕ−1

0 ,

which is given by π|U0
(ρ,θ,z′) = (ρcosθ,ρ sinθ,ρz′). See Figure 1.3 for an illustration of the cov-

ering of M.

Figure 1.3: Blowing-up π : (M,E)→ (R3,0) and covering of M.

1.3 The total and strict transform of varieties and vector fields under

blowing-ups

1.3.1 The transform of an analytic variety under a blowing-up

Let X ⊂ Rn be an analytic variety given by equations f1 = 0, . . . , fs = 0 at 0. Suppose that π :

(M,E)→ (Rn,N ) is a blowing-up of Rn with center at N and that N ⊂ X is smooth. We define the

following.
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1.3. Total transforms

Definition 1.8. Let X ⊂ Rn be an analytic variety given by equations f1 = 0, . . . , fs = 0 at 0. Consider

a blowing-up π : (M,E)→ (Rn,N ) of Rn centered at a smooth subvariety N ⊂ X at 0.

• The total transform of X by π is X̃ = π−1(X). Its defining ideal at each p ∈ π−1(0) is generated

by π∗f1 = f1 ◦π, . . . ,π∗fs = fs ◦π at each p ∈ π−1(0).

• The strict transform X̃ ′ of X by π is π−1(X \N ). In a point p in π−1(0), the strict transform X̃ ′

is given by the ideal generated by 1
gi
π∗fi for i = 1, . . . , s, with h1 · · ·hr = 0 a reduced equation of E

at p, and gi = h
ki,1
1 · · ·h

ki,r
r where ki,j = max{k ∈ N : hkj divides π∗fi} for j = 1 · · · r.

Note that X̃ = E ∪ X̃ ′. If X has positive dimension and N , X, there is always some chart of

the blown-up manifold where the strict transform is non-empty. This follows since π outside the

exceptional divisor E is an isomorphism.

It is also possible to extend this definition to formal varieties, given by formal ideals at 0.

Definition 1.9. Let X ⊂ Rn be a formal variety given by by equations f1 = 0, . . . , fs = 0 at 0. Consider

a blowing-up π : (M,E)→ (Rn,N ) of Rn with center at N ⊂ X.

• The total transform of X by π is the collection of ideals generated by π∗f1 = f1◦π, . . . ,π∗fs = fs ◦π
at each p ∈ π−1(0).

• The strict transform X̃ ′ of X by π is the collection of ideals generated by 1
gi
π∗fi for i = 1, . . . , s

at the points π−1(0), with h1 · · ·hr = 0 a reduced equation of E at p, and gi = h
ki,1
1 · · ·h

ki,r
r where

ki,j = max{k ∈ N : hkj divides π∗fi} for j = 1 · · · r.

Now, we provide two related definitions dealing with the tangents of curves. The first one

concerns parameterized curves and the second one concerns analytic and formal curves (see Ap-

pendix A.2.1). We take from [51] the following definitions. Recall that the ω−limit of a parame-

terized curve γ : I ⊂ R→ Rn is defined by ω(γ) =
⋂
t0∈I γ(I ∩ {t ≥ t0}).

Definition 1.10. Let γ be a parameterized curve with ω(γ) = {0} and let π : (M1,E1) → (Rn,0) be

the blowing-up centered at 0 and set p0 = 0. We say that γ has a (first) tangent at 0 if there exists a

unique point p1 ∈ E1 such that strict transform γ ′1 = γ̃ ′ of γ by π1 fulfills ω(γ ′1) = {p1}. The point p1

is named the tangent of γ . We define recursively the n−iterated tangents. We say that the curve γ has

the property of iterated tangents if the process can be continued indefinitely and the family of points

IT(γ) = {pi}i∈N obtained in the process is the sequence of iterated tangents.

The half-branches of analytic curves always have the property of iterated tangents in the above

sense. In this sense, we can generalize the above definition to formal curves.

Definition 1.11. Let Γ be an irreducible analytic or formal curve at 0 and recall that each irreducible

formal curve has two half-branches Γ + and Γ −. Let π : (M1,E1)→ (Rn,0) be the blowing-up centered

at 0. We define the tangent of Γ ϵ at 0 as the only point p1 ∈ E1 where the ideal (Γ ϵ1 )′ = (̃Γ ϵ)′ , Op1
is not
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Chapter 1. Blowing-ups and reduction of singularities

the total ideal. This process can be continued indefinitely and the sequence of iterated tangents of Γ ϵ

is the family of points IT ϵ(Γ ) = {pi}i∈N obtained in the process.

The previous definition applies for each irreducible component of an analytic or formal curve

at 0. Suppose that Γ = Γ1 ∪ · · · ∪ Γr is an analytic or formal curve such that each Γi is irreducible

and Γi , Γj for i , j. We will denote IT(Γi) = IT+(Γi)∪ IT−(Γi) and IT(Γ ) =
⋃r
i=1 IT(Γi)

1.3.2 The transform of a vector field by a blowing-up

Let ξ ∈ X̂(Rn,0) be a formal vector field and π : (M,E)→ (Rn,N ) be a blowing-up centered at an

analytic manifold N . The following result is well known, see for instance [17]. It proves that is is

possible to define a vector field at π−1(0) ⊂ E compatible with ξ.

Proposition 1.12. Let p ∈ π−1(0) be a point in E. If N is invariant for ξ, then there exists a formal

vector field ξ̃p in p such that

ξ̃p(f ◦π) = (ξ(f )) ◦π. (1.4)

for any f ∈ Ô0

The vector field obtained in the previous proposition is called the local transform of ξ at p by

the blowing-up π.

Definition 1.13. We define the total transform ξ̃ = π∗ξ of ξ by π as the collection of local transforms

ξ̃p under π, that is, ξ̃ := {ξ̃p}p∈π−1(0).

Remark 1.14. When the center of the blowing-up is not invariant for the vector field, it is still pos-

sible to obtain a vector field on the blowing-up manifold defined as in Proposition 1.12, however

this vector field lies in the meromorphic class. Even though this vector field is meromoprhic, it is

equivalent to a formal/analytic one up to multiplication by the equation of the divisor.

It often happens that the local transform at p ∈ π−1(0) can be divided by some equation of

E. We remark that given an analytic vector field η, the trajectories of η and f η are the same at

any point outside f = 0, however the parameterization is different. Let gp = g1,p · · ·gr,p be a local

reduced equation of the divisor E at p such that atM \E the sign of each gi,p is positive. We define

the real strict transform ξ̃ ′p of ξ at p by π as ξ̃ ′p = 1
g
k1
1,p···g

kr
r,p

ξ̃p, where ki is the maximum k such that

gki,p divides ξ̃p. As this definition depends on the choice of the equation gp of the divisor, we will

consider the real strict transform modulo its product with any positive unit.

Definition 1.15. We define the (real) strict transform ξ̃ ′ of ξ by π as the collection of local (real)

strict transforms ξ̃ ′p under π, that is, ξ̃ ′ := {ξ̃ ′p}p∈π−1(0).
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It is possible, and it will be more convenient, to work with vector fields on each of the usual

charts of the blowing-up, transversely formal to E ∩ π−1(0), which coincide with ξ̃p at each p ∈
π−1(0) in the corresponding chart. We will show the expression of these vector fields showing

only a single blowing-up and a single chart, but it works in the same manner iterating the process

of blowing-up.

Take coordinates (x1, . . . ,xn) at 0 such that the analytic manifold N is a codimension m plane

given by xn−m+1 = 0, . . . ,xn = 0. The vector field has expression

ξ =
n∑
i=1

ai(x)
∂
∂xi

,

with ai ∈ R[[x1, . . . ,xn]]. Given the chart Uϵ
j of M, we define a formal vector field π|∗U ϵ

j
(ξ) = ξ(jϵ)

along the divisor E ∩Uϵ
j ∩π

−1(0), as the only vector field such that

ξ(jϵ)(f ◦π|U ϵ
j
) = ξ(f ) ◦π|U ϵ

j
.

For the sake of simplicity, we give the expression of π∗ξ only for the chart U+
n with coordinates

x′ = (x′1, . . . ,x
′
n), but the expression is similar on any other chart.

ξ(n+) =
n−m∑
j=1

(aj ◦π|U ϵ
n
)
∂

∂x′j
+

n−1∑
j=n−m+1

1
x′n

((aj ◦π|U ϵ
n
)− x′j(an ◦π|U ϵ

n
))
∂

∂x′j
+ (an ◦π|U ϵ

n
)
∂

∂x′n
(1.5)

where aj ◦ π|U ϵ
n
(x′1, . . . ,x

′
n) = aj(x′1, . . . ,x

′
n−m,x

′
nx
′
n−m+1, . . . ,x

′
nx
′
n−1,x

′
n). The vector field ξ(n+) can be

rewritten as

ξ(n+) =
n∑
i=1

a
(n+)
i (x′)

∂

∂x′i

with coefficients, reordering variables, a(n+)
i ∈ R[xn−m+1, . . . ,xn−1][[x1, · · · ,xn−m,xn]]. We will prove

this last fact with more detail in Lemma 1.50.

Since a(n+)
i are polynomial in the variables xn−m+1, . . . ,xn−1, which can be considered as coor-

dinates of U+
n ∩π−1(0), the vector field ξ(n+) is well defined at each point of U+

n ∩π−1(0). It can

also be seen that the vector fields ξ(jϵ) coincide at the intersection of two charts.

It is also possible that ξ(jϵ) can be divided by some equation of the divisor. Consider Uϵ
j and

let (g = (x′j )
kj = 0) be an equation of the divisor with kj maximum such that (x′j )

kj divides ξ(jϵ). We

define the strict transform of ξ at Uϵ
j to be the vector field (ξ(jϵ))′ = 1

g ξ
(jϵ). Notice that we have

made a choice for the equation of E associated to the chart and that the coordinate function xj is

positive in Uϵ
j \E.

Remark 1.16. The germ of the strict transform (ξ(jϵ))′ at a point p ∈ E on the chart Uϵ
j coincides
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with the germ of ξ̃ ′p, taking into account that the strict transform at p is determined up to a

multiplication by a positive unit.

The construction of the total and strict transform in the chart Uϵ
j can be generalized to other

usual charts after further blowing-ups. Given a sequence of blowing-ups π = π1 ◦ . . . ◦ πm, re-

call that there is an atlas of usual charts {UI }I∈I . We can inductively define the total and strict

transform of ξ inside each chart UI from the total transform of ξ at πm(UI ) ⊂Mm−1. We will give

details for the concrete blowing-ups that we will use in this work.

1.3.3 Normal crossing divisors

We introduced before the exceptional divisor of a blowing-up as the counter image of the center

of the blowing-up. We introduce now the concept of normal crossing divisor.

Definition 1.17 ([18]). A normal crossing divisor E is a finite union of hyperplanes that fulfill the

following property. At any point of p ∈ E there exists analytic coordinates (x1, . . . ,xn) such that the

equation of E at p is
⋃m
i=1{xi = 0} for some m ≤ n. We say that the set of coordinates (x1, . . . ,xn)

fulfilling this property is adapted to E. The components of E are called the irreducible components

of the divisor. We also define ep(E) ∈ N as the number of irreducible components of E that contain p.

A formal normal crossing divisor IE at p is an ideal in Ôp given in formal coordinates (x1, . . . ,xn) by

the ideal generated by
∏m
i=1 xi . An irreducible component of E is the ideal given by a single xi with

i = 1, . . . ,m.

Notation 1.18. Given a formal normal crossing divisor IE at p, we will often denote it by E, as it

were a geometric object. This abuse of notation relies on the fact that we will often consider that

E is the germ of an analytic normal crossing divisor in the sense of the first definition. In that

case IE = I(E) and E = V (IE)1. It will be clear in the context.

Consider a normal crossing divisor E at 0 ∈ R2. We say that a formal curve Γ has normal

crossings with E at 0 if E ∪ Γ is a formal normal crossing divisor at 0.

1.3.4 Saturated and non saturated vector fields

We start by defining the concept of a saturated vector field.

Definition 1.19. Let ξ ∈ X̂(Rn,0) be a formal vector field. We say that ξ is saturated or reduced if

there is no other formal vector field η such that ξ = f η with f a non-unit element in Ô0. Otherwise,

we say that ξ is non-saturated. We say that η is a saturation of ξ if η is saturated and there is some

non-unit f such that ξ = f η. We denote S(ξ) = η.
1For an analytic set in Rn, we denote I(X) as the vanishing ideal of On,0 of the subset X. For an ideal I in On,0, we

denote V (I) the zero locus of the ideal.
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1.4. Reduction of singularities in dimension 2

Remark 1.20. The definition given for the saturation of a vector field is not uniquely determined.

With this, we mean that it highly depends on the non-unit f that divides ξ. Suppose that we

choose f so that ξ = f η and η is saturated. We can take any unit u in O0 and define f̄ = uf . Now,

the vector field η̄ = u−1η is another saturation of ξ, since f̄ η̄ = uf u−1η = f η = ξ.

Now, we introduce some local vector fields.

Definition 1.21. Let ξ ∈ X̂(Rn,0) be a formal vector field, S(ξ) a saturation of ξ with ξ = hS(ξ), and

E a normal crossing divisor. Let IE be the formal ideal defining the divisor E. We define ξ ′ := 1
g ξ where

g ∈ IE is a product g = gk1
1 · · ·g

ks
s of the irreducible components gi of E with maximal multiplicity ki so

that gkii divides ξ.

Remark 1.22. Notice that S(ξ) is equal to S(ξ ′) up to multiplication by a unit. As in Remark 1.20,

the definition of ξ ′ and S(ξ) is not canonically given. When adapted coordinates are given, that

is, a system of coordinates x = (x1, . . . ,xn) in which the normal crossing divisor E is a union of

coordinate hyperplanes, say x1 = 0, . . . ,xs = 0, we will take g = xk1
1 · · ·x

ks
s .

Notice that the definition of ξ ′ coincides with the definition of the strict transform of a vector

field at a point of E when the normal crossing divisor E has been obtained as an exceptional

divisor of a sequence of blowing-ups.

1.4 Reduction of singularities in dimension 2

In this section, we will work with vector fields in R2. We summarize the results concerning reduc-

tion of singularities in dimension 2 for reduced or saturated vector fields and non-saturated vec-

tor fields. We will basically present the results in the references [18, 27] without proof, adapted

to real formal vector fields.

Consider a vector field ξ ∈ X̂(R2,0) and a sequence of blowing-ups π : (M,E)→ (R2,0). Let

ξ̃ = {ξ̃p}p∈E and ξ̃ ′ = {ξ̃ ′p}p∈E be the total transform and strict transform defined in section 1.3.2.

We make the abuse of notation ξ̃, ξ̃ ′ ∈ X̂(M,E) to indicate that it makes sense to consider them on

all the points of the divisor. The objective of reduction of singularities is to obtain more simple

singularities and normal crossings of the vector field with the exceptional divisor. Then, studying

the total and strict transforms on (M,E) we are able to describe better the original vector field at

(R2,0).

We define first the dicritical and non-dicritical components of the divisor for the vector field

ξ.

Definition 1.23. Let ξ ∈ X̂(R2,0) be a formal vector field, π : (M,E) → (R2,0) be a sequence of

blowing-ups and E = E1∪· · ·∪Es the exceptional divisor where each Ei is an irreducible component for

i = 1, . . . , s. We say that Ei is non-dicritical for ξ if Ei is invariant for every ξ̃p. Otherwise, we say that

Ei is dicritical for ξ.
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Chapter 1. Blowing-ups and reduction of singularities

We define the singular locus �Sing(ξ̃,E) of ξ relatively to E as the set of points p ∈ E such that

either p ∈ Sing(ξ̃ ′p) or p < Sing(ξ̃ ′p) and the (formal) integral curve Γ of ξ̃ ′p at p does not have

normal crossings with E at p.

Notation 1.24. We can also denote �Sing(ξ̃,E) by �Sing(ξ,E) or by �Sing(ξ̃ ′ ,E).

Notice that the above set contains all the singularities of ξ̃ ′ in the divisor E, as well as all the

points in which the formal integral curve of ξ̃ ′p is tangent to E but different from E. One of the

objectives of the reduction of singularities of a formal vector field is to remove points of �Sing(ξ,E)

that are not the admissible final situations: adapted simple singularities.

Definition 1.25. Let ξ ∈ X̂(R2,0) be a formal vector field and E a normal crossing divisor at 0. We say

that 0 ∈ E is an adapted simple singularity of ξ relatively to E if

Type I - The origin 0 is a simple singularity of ξ= S(ξ) and the irreducible components of E that con-

tain 0 are invariant for ξ. In particular, the irreducible components of E at 0 are separatrices

of ξ.

Type II - The origin 0 belongs to a curve of singularities Γ that has normal crossings with E and one of

the following holds.

a) The origin 0 is a simple singularity of S(ξ) and the curves Γ and E are invariant for

S(ξ).

b) The origin 0 is a regular point of S(ξ) and the divisor E is invariant for S(ξ).

Figure 1.4: Adapted simple singularities.

We show possible types of adapted simple singularities of ξ relatively to a normal crossing

divisor E in Figure 1.4. In the case of adapted simple singularities relatively to E of type I , the

origin is a corner when e0(E) = 2 or non-corner when e0(E) = 1. In the case of simple singularities

relatively to E of type II it is only possible that e0(E) = 1. The second type of adapted simple

singularities only appear when we work with non-saturated vector fields.
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1.4. Reduction of singularities in dimension 2

Notation 1.26. When it is clear from the context which is the normal crossing divisor E, we will

simply use the name adapted simple singularity. For example, in the process of reduction of sin-

gularities, the normal crossing divisor E will be assumed to be the exceptional divisor.

Definition 1.27. Consider a formal vector field ξ ∈ X̂(R2,0), E a normal crossing divisor at 0 and S(ξ)

the saturation of ξ. Suppose that 0 is an adapted simple singularity of ξ relatively to E.

• When the origin 0 is a singularity of type II b), the curve of singularities Γ is transverse to E at 0

and Γ is called a bidicritical curve.

• When 0 is of type I or II a) and λ,µ are the eigenvalues of the linear part of S(ξ), we say that 0

is an adapted simple singularity of saddle type if µλ < 0, an adapted simple singularity of

node type if µλ > 0 and an adapted simple singularity of saddle-node type if µλ = 0. For

shortening the notation, we can simply name them: adapted simple saddle, adapted simple

node or adapted simple saddle-node.

In the case of the bidicritical curve, we find that the curve of singularities is transverse to

the saturation S(ξ). In the case of the node singularities, we have that the restriction of S(ξ)

to any formal (half) separatrix Γ induces a one dimensional vector field that is either formally

attracting or repelling to 0. In the case of the saddle singularities, the restriction into two of

the half separatrices (associated to the same eigenvalue) is attracting and the other two repelling

(associated to the other eigenvalue). In the case of the saddle-node singularities, it is possible that

ξ resembles a node, a saddle, or a node in one half space and a saddle in the other. Consequently,

in the saddle-node singularity case, three of the separatrices are formally attracting and one is

formally repelling or viceversa.

Example 1.28. We show an example of each type of adapted simple singularity in Definition 1.27.

In all the examples, we suppose that E = {x = 0}.
• At the singularity at 0 of the vector field ξ = y ∂

∂y , the curve {y = 0} is a bidicritical curve of

singularities. This curve is transverse to E and S(ξ) = ∂
∂y is regular and transverse to it.

• The singularity at 0 of the vector field ξ = x ∂
∂x +
√

2y ∂
∂y is an adapted simple node. The

restriction of ξ = S(ξ) to {x = 0, y ≥ 0} ⊂ E is given by
√

2y ∂
∂y , which is a repelling vector

field. The same occurs in the rest of the separatrices.

• The singularity at 0 of the vector field ξ = −x ∂
∂x +
√

2y ∂
∂y is an adapted simple saddle. The

restriction of ξ = S(ξ) to {x = 0, y ≥ 0} ⊂ E is given by
√

2y ∂
∂y (repelling), and the restriction

of ξ to {y = 0,x > 0} is given by −x ∂
∂x (attracting).

• The singularity at 0 of the vector field ξ = x2 ∂
∂x +
√

2y ∂
∂y is a saddle-node. The restriction of

ξ = S(ξ) to {x = 0} = E is given by
√

2y ∂
∂y (repelling), the restriction of ξ to {y = 0,x > 0} is

given by x2 ∂
∂x (repelling) and the restriction of ξ to {y = 0,x < 0} is given by x2 ∂

∂x (attracting).
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Chapter 1. Blowing-ups and reduction of singularities

1.4.1 Stability of simple singularities adapted to a normal crossing divisor

Adapted simple singularities will be our final situations in after the reduction of singularities. It

is well known that the blowing-up centered at a classical simple singularity, namely an adapted

simple singularity of type I, provides simple singularities at each iterated tangent of the half

separatrices of the vector field of the original singularity. This result is very classical and requires

a simple computation. In this subsection, we prove the corresponding result for adapted simple

singularities.

Lemma 1.29. Let ξ ∈ X̂(R2,0) be a formal vector field, E a normal crossing divisor and suppose that

0 is a simple singularity adapted to E. Let σ : (M,E,F) → (R2,E0,0) be a blowing-up centered at 0

where the exceptional divisor is F = σ−1(0), the divisor E′0 is the strict transform of E0, the divisor E =

σ−1(E0) = E′0 ∪ F and ξ̃ = σ ∗(ξ) ∈ X̂(M,F). Let ξ̃ ′ the strict transform ξ̃ ′ of ξ, then p ∈�Sing(ξ̃ ′ ,E)∩ F
is an adapted simple singularity of ξ̃ ′.

Proof. In this section, we suppose that E0 is a normal crossing divisor that has a single irreducible

component at 0 and 0 ∈�Sing(ξ,E0). The case in which E0 has two irreducible components is left

aside, because it is similar. We will only make some comments at the end of the proof. We work

in formal coordinates in this proof.

• Suppose first that ξ = S(ξ) has a type I simple singularity adapted to the divisor E0 at 0. Take

coordinates (x,y) so that E0 is given by x = 0. Notice that E0 must coincide with one of the

separatrices of ξ by definition of adapted simple singularity. Then, the other formal separatrix

Γ is transverse to E0 and given by an equation y −h(x). Making a formal change of coordinates

x̃ = x and ỹ = y − h(x), we have that the equation of the other separatrix is exactly ỹ = 0, and,

up to renaming again the coordinates (x,y) = (x, ỹ) the two separatrices are x = 0 and y = 0 and

the vector field is written as

ξ = x(λ+
∑
i+j>0

aijx
iyj )

∂
∂x

+ y(µ+
∑
i+j>0

bijx
iyj )

∂
∂y
.

Now, after a blowing-up σ : (M,E)→ (R2,E0) of 0, we can study the total and strict transforms

of this vector field. We find that F = π−1(0) is a new component of the divisor and E = E′0 ∪ F.

Using the usual charts, we find that ξ̃ = σ ∗ξ is written in the chart U+
1 as

ξ(1+) = x(λ+
∑
ij

aijx
i+jyj )

∂
∂x

+ y(µ−λ+
∑
ij

(bij − aij )xi+jyj )
∂
∂y
,

where we have renamed the coordinates (x,y) = (x(1+), y(1+)) to simplify the notation. The strict

transform in this chart coincides with the total transform, since the equation of the divisor
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1.4. Reduction of singularities in dimension 2

Figure 1.5: Effect of the blowing-up of the origin on the separatrices and curves of singularities of ξ.

cannot be factorized. This vector field has an isolated simple singularity at the origin of this

chart. The two invariant curves at this simple singularity are F and the strict transform Γ̃ ′ of

Γ . The rest of the points of F ∩U+
1 are regular.

At the chart U+
2 , the expression of ξ̃ is

ξ(2+) = x(λ−µ+
∑
ij

(aij − bij )xiyj+i)
∂
∂x

+ y(µ+
∑
ij

bijx
iyj+i)

∂
∂y
,

where we have renamed the coordinates (x,y) = (x(2+), y(2+)) to simplify the notation. The

origin is an adapted simple singularity of type I and the divisors E′0 and F are the separatrices

of ξ̃ and have normal crossings at the origin of U+
2 . The rest of the points of F ∩ U+

2 are

regular. Finally, the study of the vector field ξ̃ at the chart U−1 is parallel to the one on U+
1 and

the study at U−2 is parallel to the one of U+
2 . To clarify more the effect of the blowing-up on

the half-separatrices, see the left diagram in Figure 1.5.

• Suppose that 0 is a simple singularity of type II a). There is a smooth curve of singularities Γ

transverse to the divisor, 0 is a simple singularity of S(ξ), the divisor E0, given by x = 0, is a

separatrix of S(ξ) and the curve Γ is the other separatrix of S(ξ) at 0. Making formal changes

of coordinates as before, we have that

ξ = yk
x(λ+

∑
i+j>0

aijx
iyj )

∂
∂x

+ y(µ+
∑
i+j>0

bijx
iyj )

∂
∂y

 .
Now we make the blowing-up σ centered at the origin . Using the usual charts, we find in the
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Chapter 1. Blowing-ups and reduction of singularities

chart U+
1 that

ξ(1+) = ykxk+1(λ+
∑
ij

aijx
i+jyj )

∂
∂x

+ yk+1xk(µ−λ+
∑
ij

(bij − aij )xi+jyj )
∂
∂y
,

where we have renamed the coordinates (x,y) = (x(1+), y(1+)) to simplify the notation. The

exceptional divisor at this chart is F = {x = 0}. Dividing by xk , it can be noticed that the strict

transform (ξ(1+))′ has an adapted simple singularity of type II a) at the origin of U+
1 . The

exceptional divisor F is invariant for (ξ(1+))′, and hence F is non-dicritical.

In the chart U+
2 , we find that

ξ(2+) = ykx(λ−µ+
∑
ij

(aij − bij )xiyj+i)
∂
∂x

+ yk+1(µ+
∑
ij

bijx
iyj+i)

∂
∂y
,

where we have renamed the coordinates (x,y) = (x(2+), y(2+)) to simplify the notation. The

equation of F is y = 0 and the equation of E0 is x = 0, at this chart. Hence, the origin of U+
2

is a corner point. Dividing ξ(2+) by yk , we obtain the strict transform (ξ(2+))′ that has a type I

simple singularity adapted to E at the origin. Studying the remaining two charts, we conclude

that after this blowing-up there is a new non-dicritical component of the divisor, two type II

a) adapted simple singularities and two type I adapted simple singularities. To clarify more

the effect of the blowing-up on the curve of singularities, see the right diagram in Figure 1.5.

• Suppose that 0 is a simple singularity of type II b). There is a smooth curve of singularities Γ

transverse to the divisor, 0 is regular for S(ξ) and the divisor E0 is invariant for ξ. In particular,

we can write ξ = f S(ξ). Using Theorem A.14, there is a change of coordinates such that S(ξ) is
∂
∂y . Since the divisor E0 is invariant for S(ξ) at 0 by definition, E0 is given by x = 0. The curve

of singularities is transverse to E0, and hence, up to a formal change of coordinates, we can

suppose that the curve of singularities Γ has equation y = 0 and that the vector field is written

ξ = yk
∂
∂y
.

Now we make the blowing-up σ centered at the origin. Using the usual charts, we find in the

chart U+
1 that

ξ(1+) = xk−1yk
∂
∂y
,

where we have renamed the coordinates (x,y) = (x(1+), y(1+)) to simplify the notation. The

exceptional divisor at this chart is F = {x = 0}, which is invariant for (ξ(1+))′ = yk ∂∂y , and hence

F is non-dicritical. The origin of this chart is hence an adapted simple singularity of type II
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1.4. Reduction of singularities in dimension 2

b).

In the chart U+
2 , we find that

ξ(2+) = −yk−1x
∂
∂x

+ yk
∂
∂y
.

The strict transform (ξ(2+))′ = −x ∂
∂x + y ∂

∂y has a simple singularity at the origin of this chart.

The origin is an adapted simple singularity of type I and the divisors E′0 and F are the separa-

trices of ξ̃ ′ and have normal crossings at the origin ofU+
2 . The situation in the chartsU−1 ,U

−
2 is

parallel. Hence, �Sing(ξ̃ ′ ,E) contains 4 points, and all of them are simple singularities adapted

to E, two of type I and two of type II b). To clarify more the effect of the blowing-up on the

curve of singularities, see the right diagram in Figure 1.5.

In case that E0 has two irreducible components at 0, there is only one case to study, the singular-

ities of type I. We proceed in the same manner considering that the two irreducible components

of E0 are the two separatrices of ξ at 0.

We finally point out that we have worked in R2, but this procedure applies to R≥0 ×R and

(R≥0)2.

1.4.2 Reduction of singularities of saturated vector fields

In this section, we will only state the result of reduction of singularities for saturated vector fields.

Saturated vector fields have an isolated singularity. Reduction of singularities of holomorphic

saturated vector fields dates back to [70]. We adapt the statement of the Theorem as it appears

in [18] to the real formal case.

Theorem 1.30. Let ξ ∈ X̂(R2,0) be a formal vector field with isolated singularity at 0 and E0 a normal

crossing divisor at 0. Then, there is a sequence of blowing-ups π : (M,E) → (R2,E0) such that each

point p ∈ �Sing(ξ̃,E)∩π−1(0) is a simple singularity of ξ ′ adapted to E of type I. In particular two

different dicritical components of E do not intersect.

We highlight some references of the reduction of singularities in the real case and say some

words about the main differences with the complex case. F. Dumortier treats the real C∞ case

in [27] and J.-J. Risler the real analytic case in [67]. We remark that the proof in the real case

follows from the reduction of singularities in the complexification of the real plane, following the

singularities in the real trace. We remark also the following fact. Any complex simple singularity

in the real plane with complex ratio of eigenvalues is considered a final situation in C. A blowing-

up centered at such point provides two other complex simple singularities which do not belong

to the real trace. That is, it is possible that in the real case we need to do one extra blowing-up to

finish the process of reduction of singularities.
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Chapter 1. Blowing-ups and reduction of singularities

We want to recall another important result due to C. Camacho and P. Sad [16] that concerns

existence of analytic separatrices for analytic vector fields. The idea of the proof consists in

using the above result of reduction of singularities for holomorphic vector fields, and showing

that there is necessarily a simple singularity at the exceptional divisor whose strong direction

is transverse to the divisor. Hence, there exists an analytic curve transverse to the exceptional

divisor on the blowing-up manifold which is projected to an analytic curve at 0 ∈ C2.

Theorem 1.31 (Camacho-Sad). Let ξ ∈ X(C2,0) be a holomorphic vector field with isolated singularity

at 0. Then, it has an analytic separatrix at 0.

Unfortunately, the above result is not always true in the real analytic case. The complexifi-

cation of a real analytic vector field will always have analytic separatrix, but it may not intersect

the real plane. There are authors that have studied the existence of real analytic separatrices. See

for instance [15, 67].

We end this section by showing some situations in the real case. In some cases, there are

not separatrices of any type at 0, in other occasions, these curves are only of class Ck for some

k ∈ N ∪ {∞}. Let ξ ∈ X(R2,0) be a real analytic vector field with isolated singularity and let

π : (M,E)→ (R2,0) be a reduction of singularities.

1. Suppose that E has a dicritical component. Then ξ̃ necessarily has a family of invariant

curves transverse to E and, thus ξ has a family of invariant curves with defined tangent.

2. Suppose that ξ̃ ′ has at least one non-corner simple singularity p ∈ �Sing(ξ̃,E) at E. When

a strong direction of ξ ′p is transverse to the divisor, there is an analytic invariant curve Γ

at p by Briot-Bouquet’s Theorem 1.6, which is projected to (R2,0). When there is only a

strong direction tangent to the divisor and a weak direction transverse to it, there is not an

analytic curve at this point, but there is a formal one Γ̂ . In addition, by the center manifold

theorem, this formal curve Γ̂ has a Ck realization Γ , i.e. a Ck curve whose Taylor development

coincides with the one of Γ̂ that is as well invariant for the vector field ξ.

3. Suppose that all the singularities of ξ̃ ′ at E are saddles (or saddle-nodes that behave as

saddles in the sense showed after Definition 1.27) placed at corner points of E. Suppose

also that there are not dicritical components on E. Hence, every p ∈�Sing(ξ̃,E) is a corner

saddle singularity of ξ ′p. Then, there are not invariant curves transverse to the divisor,

because at the rest of the points q ∈�Sing(ξ̃,E), the vector field ξ ′q is regular and tangent to

E.

The vector fields ξ ∈ X(R2,0) that have a reduction of singularities π : (M,E)→ (R2,0) such that

every p ∈�Sing(ξ̃ ′ ,E) is a corner saddle singularity of ξ ′p and such that E does not contain dicritical

components are named center-focus vector fields (situation 3 above). The definition extends to

formal vector fields since it depends only on the type of singularities after blowing-up. Being
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1.4. Reduction of singularities in dimension 2

center-focus is equivalent to not having any Ck or even formal invariant curve with a defined

tangent at 0.

1.4.3 Reduction of singularities of non-saturated vector fields

In this section, we make a reduction of singularities of vector fields that are non-saturated. This

reduction is, roughly speaking, a combination of a reduction of singularities of a saturated vector

field and a reduction of singularities of formal curves, with some extra normal crossings condi-

tions. Notice that the notion of simple singularity adapted to a divisor concerns not only simple

singularities in the classical sense, but also normal crossings of the strict transform of the curve

of singularities Sing(ξ) with the divisor. We start by recalling the classical result of reduction of

singularities of formal curves, adapted to the real case.

Theorem 1.32 ([22]). Let Γ be a formal curve at 0 ∈ R2. Then there exists a sequence of blowing-ups

π : (M,E)→ (R2,0) centered at points such that the strict transform Γ̃ ′ is non-singular on M and has

normal crossings with E. Moreover, there is a minimal sequence with the previous property which is

composed only by blowing-ups centered at iterated tangents of the half-branches of Γ .

Now we state the general theorem of reduction of singularities for non-saturated vector fields.

We show an extended version of the proof that we gave in [23], in order to understand better the

final situations after the reduction of singularities. We also remark that this result is a joint reduc-

tion of singularities of the saturation of a non-saturated vector field and its curve of singularities,

requiring additional normal crossings conditions.

Theorem 1.33. Let ξ ∈ X̂(R2,0) be a formal vector field and E0 an analytic normal crossing divisor at

0 with 0 ∈�Sing(ξ,E0). Then there is a sequence of blowing-ups π : (M,E)→ (R2,E0) with F = π−1(0)

and E = E′0 ∪F = π−1(E0) fulfilling the following conditions:

a) For any point q ∈ F, let ξ ′q be the strict transform of ξ by π at q, that is, ξ ′q = 1
ukvl

ξq where uvϵ = 0

is a local reduced equation of E at p, with ϵ = 0,1. Then q ∈�Sing(ξ ′ ,E) if and only if q ∈ Sing(ξ ′q).

b) If q ∈ F is a singular point of ξ ′q, then q is an adapted simple singularity of ξ ′q relatively to E.

In particular, two dicritical components of E do not intersect.

In order to shorten the proof, we will prove first a local result that will be useful for the proof

of this theorem.

Lemma 1.34. Let ξ ∈ X̂(R2,0) be a formal non-saturated vector field such that Γ = Sing(ξ) is the formal

curve of singularities. Consider a formal normal crossing divisor E0 at 0 such that 0 ∈�Sing(ξ,E0), and

one of the following situations holds:

(i) S(ξ) is regular at 0 and E0 = E1
0 is a single irreducible invariant curve for S(ξ).
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Chapter 1. Blowing-ups and reduction of singularities

(ii) S(ξ) is regular, E0 has two irreducible components E1
0 and E2

0 such that E1
0 is invariant for S(ξ)

and E2
0 1 Γ .

(iii) The origin is an adapted simple singularity of S(ξ) relatively to E0 and E0 is composed by the two

formal separatrices E1
0 and E2

0 of S(ξ) at 0.

Consider π : (M,F)→ (R2,0) the minimal reduction of singularities of the formal curve Γ ∪ E0 with

F = π−1(0) and E = π−1(E0) = E′0 ∪F. For every t ∈ F we have one of the following situations:

a) If t ∈ IT(Γ ), then t ∈ Sing(ξ̃ ′t) and either S(ξ̃ ′t) is regular, or S(ξ̃ ′t) has a simple singularity at t

such that Ft and Γ ′t are the two separatrices.

b) If (i) or (iii) hold and t is a corner point of E, it is an adapted simple singularity of type I of ξ̃ ′

relatively to E. If (ii) holds and t is a corner between (E2
0)′ and F, the vector field S(ξ̃t) is regular.

If t is any other corner point of E, it is an adapted simple singularity of type I of ξ̃ ′ relatively to

E.

c) The point t is a regular point for ξ̃ ′.

Proof. Since E0 is a normal crossing divisor, the blowing-ups in the sequence π are centered at

the iterated tangents of Γ , and Γ = Sing(ξ), all the blowing-ups are admissible for the vector field

ξ. It is enough to study the final situations after this sequence for the situations (i), (ii) and (iii)

and verify the statements in the thesis of the Lemma.

We start studying the iterated tangents of Γ , recalling that Γ ′ is a smooth curve at any of these

points. Consider p ∈ IT (Γ ). There are two possibilities:

• The point p < E′0. In the three cases, we have that S(ξ̃p) is regular and F is the only invariant

curve at p.

• The point p ∈ E′0, that is, necessarily (E0)′p = Γ ′p.

– In the cases (i) and (ii), we have (E0)′p = (E1
0)′p = Γ ′p. Since S(ξ) is regular and E1

0 is

invariant for it, we have that the saturation S(ξ̃ ′p) of the transform ξ̃p has a simple

singularity whose separatrices coincide with (E0)′p and Fp.

– In the case (iii), from Lemma 1.29, we have that p is a simple singularity of S(ξ̃ ′p) and

Fp and (E0)′p = Γ ′p are the two separatrices.

In both cases, we get a).

Now we study the corner points (E′0∩F) which are either regular or adapted simple singular-

ities of ξ̃ ′ of type I relatively to E. Consider a point p ∈ (E′0 ∩F) \ Γ ′.

• Suppose (E′0)p is invariant for S(ξ̃ ′p). Notice that (E0)′p = (E1
0)′p is the strict transform of E1

0

in the cases (i) and (ii), and either (E0)′p = (E1
0)′p or (E0)′p = (E2

0)′p in the case (iii). In the three

cases, p is an adapted simple singularity of ξ̃ ′p = S(ξ̃ ′p).
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• Suppose that (E′0)p is not invariant for S(ξ̃ ′p). Notice that this situation occurs when (E0)′p =

(E2
0)′p in the case (ii). As the original vector field S(ξ) is regular, the point p is a regular point

of ξ̃ ′p = S(ξ̃ ′p) and F is an invariant curve of ξ̃ ′p.

As before, in both cases we get b). The rest of the points are regular and we finish the proof.

Proof of Theorem 1.33 . If the vector field ξ is saturated, the result follows from Theorem 1.30.

Then, we suppose that ξ is non-saturated. We denote by Γ = Sing(ξ) the singular locus of ξ

which is a finite union of m real formal irreducible curves Γ (1), . . . ,Γ (m). We will denote the two

half-branches of each Γ (j) as Γ (j,ϵ) for ϵ = +,−. The vector field can be rewritten as ξ = f η, where

η = S(ξ) is the saturation of ξ and f = 0 is an equation of Γ .

1. The vector field η is a saturated one, and it admits a reduction of singularitiesπ1 : (M1,E1,F1)→
(R2,E0,0) as in Theorem 1.30, where E1 = π−1(E0) and F1 = π−1(0). In order to avoid confusion

when we make more blowing-ups, we change slightly the notations in section 1.3.2. We will

denote the total transforms η1 and ξ1 and the strict transforms η′1 and ξ ′1, corresponding to the

transforms of η and ξ, respectively. Another simplification of the notation is the following: at

each point p ∈ F1, we will denote η′p and ξ ′p instead of η′1,p and ξ1,p, respectively, when it is

clear that p ∈ F1.

After the reduction of singularities π1, the vector field ηp only has an adapted simple singu-

larity of type I or it is regular at p ∈ F1. Furthermore, the dicritical components of E1 for η′1
are isolated from others. Thus, at the points p ∈ E1 where ξ ′p is equivalent to η′p up to the mul-

tiplication by a unit, we directly have that ξ ′p is regular or has an adapted simple singularity

of type I.

Let Γ ′1 and Γ1 denote the strict and total transforms of the curve Γ (again, changing the notations

with respect to section 1.3.1). We also simplify the notation Γ ′p for Γ ′1,p when it is clear that

p ∈ E1. The strict transform Γ ′1 of Γ by π1 is non-trivial only in a finite number of points

p1, . . . ,ps, the iterated tangents of Γ at E1. Notice that we can write ξ ′pi = fpiη
′
pi for i = 1, . . . , s

since the germ fpi of Γpi is not a unit in Ôp at these points. In particular, the strict transform

ξ ′pi has a singularity at each pi , that is, pi ∈ Sing(ξ ′pi ) and then pi ∈�Sing(ξ1,E1).

In this step we conclude the result for all points of E1 except p1, · · · ,ps. We have that q ∈�Sing(ξ1,E1) if and only if q is an adapted simple singularity of type I in Definition 1.25 for any

q ∈ E \ {p1, . . . ,ps}. Then, a) follows at the points in E \ {p1, . . . ,ps} and b) follows at Sing(ξ1) \
{p1, . . . ,ps}.

2. Now, we study the points p1, . . . ,ps. Take some p ∈ {p1, . . . ,ps} and consider the strict transform

Γ ′pi of Γ . Recall also from the previous point that p is a simple singularity of S(ξp) = ηp adapted

to E1 or it is a regular point for this vector field. We consider three cases:
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• The point p ∈ E1 is in a non-dicritical component D1 ⊂ E1 and p is a regular point for

S(ξp) = ηp. We consider the normal crossing divisor D =D1 at p.

• The point p ∈ E1 is in a dicritical component D2 ⊂ E1. We consider the invariant curve D1

for S(ξp) = ηp and define the normal crossing divisor D =D1∪D2 at p. Notice that we do

not exclude the case that D1 ⊂ E1.

• The point p ∈ E1 is an adapted simple singularity of S(ξp) = ηp relatively to E1. The

component D1 ⊂ E1 is a non-dicritical component of the divisor. We define D2 as the

separatrix of S(ξp) = ηp transverse to D1. When p is a corner, notice that D2 ⊂ E1 is

another non-dicritical component of E1. We consider the normal crossing divisor D =

D1 ∪D2 at p.

The three previous cases are in the hypothesis of Lemma 1.34 with respect to the normal

crossing divisor D. We apply this Lemma to every p ∈ {p1, . . . ,ps}, obtaining a new sequence of

blowing-ups π2 : (M2,E2)→ (M1,E1) where E2 = π−1(E1). See Figure 1.6 for an illustration of

intermediate blowing-ups in the construction of π2.

Figure 1.6: Illustration of intermediate steps in the sequence π2 : (M2,E2)→ (M1,E1).

The final situations of each of the points are the ones given in the thesis of the Lemma. We

end by analyzing the final situations a), b) and c) with respect to the normal crossing divisor

E2. Let t be any point obtained above some p ∈ {p1, . . . ,ps}.

• Suppose t is in situation a), that is, it is an iterated tangent of Γ . If the point t is regular

for the saturation S(ξ ′t) of the strict transform ξ ′t by π2, we have that ξ ′t has an adapted

simple singularity of type II b) at t relatively to the divisor E2. If the point t is a simple

singularity of S(ξ ′t), we have that Γ ′t is necessarily one of the separatrices and t is an

adapted simple singularity of ξ ′t of type II a) relatively to E2.
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• Suppose that t is in situation b), that is, it is a corner point of the extended divisor E2∪D ′,
whereD ′ is the strict transform of the normal crossing divisorD defined at p. If one of the

components D1 or D2 is not contained in E1, then E2∪D ′ strictly contains E2. Recall also

that as these points are not iterated tangents of Γ , the strict transform ξ ′t is saturated, that

is, ξ ′t = S(ξ ′t). Suppose first that (E2)t = (E2)t ∪ (D ′)t, we have that t is an adapted simple

singularity of ξ ′t of type I, placed at a corner of E2. Suppose now that (E2)t ⊂ (E2)t ∪ (D ′)t,

we also have that t is an adapted simple singularity of ξ̂ ′ of type I, but in this case t is a

non-corner point of E2 and D ′ is the separatrix of ξ ′t transverse to E2.

• The rest of the points t are regular for ξ ′t .

After the two steps, we conclude a) in the Theorem and that all the singularities are indeed

adapted simple singularities (b) of the Theorem), as we wanted to prove.

1.4.4 Adapted coordinates after reduction of singularities

Let ξ̃ ∈ X̂(M,E) be the total transform of the formal vector field ξ. After a reduction of singular-

ities of ξ, all the points of the divisor are associated either to regular points of ξ̃ ′ or to adapted

simple singularities of ξ̃ ′. In this section, possibly performing more blowing-ups, we provide

expressions of ξ̃. The content of this section will be specially useful in Chapter 2. We follow [29]

where the authors provide expressions of formal vector field after blowing-ups of a saturated

vector field and we add the expressions in the presence of curves of singularities.

Before introducing these expressions, we remind the reader that after a reduction of singular-

ities, at any adapted simple singularity there are exactly two formal transverse invariant curves,

among which we necessarily find the components of the divisor. Suppose that p is an adapted

simple singularity with e(p) = 1, that (x,y) are coordinates such that y = 0 is an equation of the

divisor E and that the other formal invariant curve has equation x = h(y). We can make a formal

change of coordinates so that it becomes a coordinate hyperplane. However, in this section we

will not be interested in making formal changes of coordinates, even if we work with formal vec-

tor fields, because when they are related to analytic objects, we want to preserve their analytic

features. We use the adapted coordinates that are constructed working in the natural charts of

the blowing-ups we explained in section 1.2.

• Non-dicritical regular point. At a non-dicritical regular point p ∈ Ej ⊂ E, we can choose

adapted coordinates (x,y) so that E = {y = 0}. Recalling that Ej is a non-dicritical component,

Ej is invariant for the strict transform ξ̃ ′, i.e. ξ̃ ′((y)) ⊂ (y). Recall also that p is not singular for

ξ̃ ′, then we can write

ξ̃ = yn
(
a(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
, (1.6)
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with n ≥ 1, a,b ∈ R[x][[y]] and a(x,y) =
∑∞
j=0 aj(x)yj having a0(0) , 0, since the point p is not a

singularity for ξ̃ ′.

• Dicritical regular point. At a dicritical regular point p ∈ Ej ⊂ E, we can again choose adapted

coordinates (x,y) so that E = {y = 0}. Recalling that Ej is a dicritical component, Ej is not

invariant for the strict transform ξ̃ ′. Recalling also that p is not a singular point for ξ̃ ′, we can

write

ξ̃ = yn(a(x,y)
∂
∂x

+ b(x,y)
∂
∂y

), (1.7)

with n ≥ 1, a,b ∈ R[x][[y]] and b(x,y) =
∑∞
j=0 bj(x)yj having b0(0) , 0, since ξ̃ ′ is transverse to Ej

at p.

• Corner point between a dicritical curve and non-dicritical component of the divisor. This

situation applies to two cases: a normal crossing between a curve of singularities and the divisor

(a singularity of type II-b) in Definition 1.25), when the first is of bidicritical type, and the

normal crossing of a dicritical and a non-dicritical component of the divisor.

First, let p ∈ E be the intersection point of E1 and E2, a dicritical and a non-dicritical compo-

nents of E at p. Take adapted coordinates (x,y) at p so that E1 = {x = 0} and E2 = {y = 0}. Recall

that p is a regular point for the strict transform, then, we can write

ξ̃ = xnym
(
a(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
, (1.8)

with n,m ≥ 1, a,b ∈ R[x][[y]]∩R[y][[x]] and writing a(x,y) =
∑∞
j=0 aj(x)yj as a series in R[x][[y]],

we have a0(0) , 0.

Now, suppose that p is the intersection point of E1 a non-dicritical component of the divisor

and a formal invariant curve of bidicritical type. Then, we can take adapted coordinates (x,y) so

that E1 = {y = 0} and the formal curve of singularities is given by an ideal generated by x−h(y).

In the analytic case, we can take the change of coordinates defined in the introduction of this

section so that the vector field in adapted coordinates is reduced to equation (1.8). Otherwise,

the vector field can be written

ξ̃ = (x − h(y))nym(a(x,y)
∂
∂x

+ yb(x,y)
∂
∂y

), (1.9)

with n,m ≥ 1, a,b ∈ R[x][[y]] and writing a(x,y) =
∑∞
j=0 aj(x)yj as a series in R[x][[y]], we have

a0(0) , 0.

• Adapted simple singularity of type I a). An adapted simple singularity p ∈ E of type I is a

point that lies in a non-dicritical component E1 ⊂ E of the divisor. We distinguish two cases
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1.4. Reduction of singularities in dimension 2

based on whether p lies in the intersection of two components E1 and E2 of the divisor (ep = 2)

or not (ep = 1). We have that ξ̃ ′ at p has only two formal invariant curves. Since the divisor

is invariant in both cases, we obtain that the two components of the divisor are the formal

invariant curves in the first case, and that the only component of the divisor at p is one of the

formal invariant curves. Then, in the first case, we can take adapted coordinates (x,y) at p so

that E1 = {y = 0} and E2 = {x = 0}. Suppose that the eigenvalues of ξ̃ ′ at p are λ,µ, then, we can

write

ξ̃ = xnym
(
xa(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
,

with n,m ≥ 1, a,b ∈ R[x][[y]]∩R[y][[x]] and writing a(x,y) =
∑∞
j=0 aj(x)yj and b(x,y) =

∑∞
j=0 bj(x)yj

as a series in R[x][[y]], we have a0(0) = λ and b0(0) = µ. Furthermore, suppose that λ = 0.

Then, performing a finite number of blowing-ups following the direction of x, we can ensure

that there exists some r ∈ N such that we can write

ξ̃ = xnym
(
xra(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
, (1.10)

with a(0,0) , 0. This number is r = ν(S(ξ̃)p|{y=0}). The intermediate points generated on this

blowing-ups are regular ones and corner saddle points such that DS(ξ̃)q(q) has eigenvalues

µ,−µ , 0 (observe the proof of Lemma 1.29). We enlarge the sequence of blowing-ups so that

this situation is got.

In the non-corner case, we can take adapted coordinates (x,y) at p so that E1 = {y = 0}. Suppose

that the eigenvalues of ξ̃ ′ at p are λ,µ, then, we can write

ξ̃ = ym(a(x,y)
∂
∂x

+ yb(x,y)
∂
∂y

), (1.11)

with m ≥ 1, a,b ∈ R[x][[y]] and writing a(x,y) =
∑∞
j=0 aj(x)yj and b(x,y) =

∑∞
j=0 bj(x)yj as a

series in R[x][[y]], we have a0(x) = λx + · · · and b0(0) = µ. Notice that in this case, a(x,y) is

not necessarily divided by x. We remark again that there is a formal invariant curve Γ with

equation x − h(y) = 0 that is transverse to the divisor. The restriction ξ ′ |Γ is a one dimensional

vector field different from the 0 vector field, in particular, it has a non-vanishing r−jet. Suppose

that µ = 0. Proceeding similarly to the previous item, we can ensure that performing r blowing-

ups following the iterated tangents of Γ , we can write

ξ̃ = ym(a(x,y)
∂
∂x

+ yrb(x,y)
∂
∂y

). (1.12)

• Normal crossing of a smooth curve of singularities and the divisor at a simple singularity of
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Chapter 1. Blowing-ups and reduction of singularities

ξ̃. Notice that this point is an adapted simple singularity of type II−a: p is a simple singularity

for ξ̃ ′, the smooth curve of singularities Γ coincides with one of the two formal invariant curves

of ξ̃ ′ at p, and the component of the divisor E1 at p is the other formal invariant curve. Then,

choosing adapted coordinates (x,y) at p so that E1 = {y = 0}, the curve Γ has equations x − h(y)

with ν(h) ≥ 1. We can write,

ξ̃ = (x − h(y))nym(a(x,y)
∂
∂x

+ yb(x,y)
∂
∂y

), (1.13)

with n,m ≥ 1, a,b ∈ R[x][[y]] and writing a(x,y) =
∑∞
j=0 aj(x)yj and b(x,y) =

∑∞
j=0 bj(x)yj as a

series in R[x][[y]], we have a0(x) = λx + · · · and b0(0) = µ. As in the previous case, recall that

there is a formal invariant curve Γ transverse to E. We have that the vector fields S(ξ)|Γ and

S(ξ)|E are non-zero and each of them has a non-vanishing k−jet. Supposing that µ = 0 and that

r is the order of S(ξ)|Γ , we can proceed as before, and perform r extra blowing-ups, so that we

can write

ξ̃ = (x − h(y))nym(a(x,y)
∂
∂x

+ yrb(x,y)
∂
∂y

), (1.14)

for some r ≥ 1.

1.4.5 The graph associated to the reduction of singularities in dimension 2

In this section, we present a combinatorial object constructed from the reduction of singularities

of a formal vector field. It will be useful especially in Chapter 2. Vector fields in this section will

be assumed to be different from 0. Let ξ ∈ X̂(R2,0) be a formal (non-saturated) vector field and

π : (M,E)→ (R2,0) an oriented reduction of singularities.

Remark 1.35. Notice thatπ is by hypothesis an oriented reduction of singularities, then the divisor

is homeomorphic to S1 and the number of components is finite. The number of adapted simple

singularities is as well finite. At the non-corner adapted simple singularities there is a unique

formal invariant curve. Finally, notice that the dicritical components of E are isolated as dicritical

components, that is, two of them do not intersect.

There is a simple graph G = G(ξ,π) associated to ξ and π that fulfills some properties. First,

let us present the set of vertices V = V (G) and edges E = E(G) of the graph. We divide the vertices

in two groups: V = Vdiv ∪Vndiv .

1. Every adapted simple singularity of ξ̃ ′ and every corner provide a vertex to the set of ver-

tices Vdiv of the graph, that is, for a point p (adapted simple singularity or, non-exclusively,

corner point), there is vp ∈ Vdiv .

2. For each formal invariant curve Γ of ξ̃ ′ transverse to the divisor at some adapted simple
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singularity, we add a vertex vΓ to Vndiv , in such a way that vΓ , vΓ ′ if Γ , Γ ′ and such that

the set of vertices vΓ is disjoint to the set of vertices defined in point 1 above.

The edges E = Ediv ∪Endiv are given by:

3. Let pv be the point from which v ∈ Vdiv has been obtained. Each connected component γ of

E \
⋃
v∈Vdiv {pv} provides a different edge eγ that belongs to the set of edges Ediv .

4. For each formal invariant curve Γ of ξ̃ ′ transverse to the divisor, there is also an edge eΓ in

Endiv .

5. Adjacency is defined as follows. If e ∈ Ediv , then e joins the two vertices v,v′ ∈ Vdiv that

satisfy γe \ γe = {pv ,pv′ }, where γe is the connected component of E \
⋃
v∈Vdiv {pv} associated

to e and pv ,pv′ are the points associated to v,v′, respectively. We denote e = {v,v′}. On the

other hand, if Γ is a formal curve at a non corner adapted simple singularity p, the edge eΓ
associated to Γ joins vp ∈ Vdiv and vΓ ∈ Vndiv . We denote eΓ = {vp,vΓ }.

See Figure 1.7 for an example of the construction of the graph. In the figure and to shorten the

notation, we denote D component for a dicritical component of the divisor and N-D component

for a non-dicritical one. The edges in Ediv and vertices Vdiv form a subgraph Gdiv . In particular,

Figure 1.7: Manifold (M,E) and adapted simple singularities of π∗(ξ) (left). Graph G(ξ,π) (right).

without considering orientation, the graph Gdiv is a cycle (see remark 1.35). Now, we provide a

partial orientation on the graph.

• Suppose e = {v,v′} ∈ Ediv . If e represents a connected component of E \ V contained in a

dicritial component of E, then e is not oriented. Otherwise, we endow e with the orientation

from v to v′ or viceversa, depending on the orientation of restriction ξ ′ between pv and pv′ .
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• Suppose e = {v,v′} ∈ Endiv is associated to Γ where v ∈ Vdiv and v′ ∈ Vndiv . There is a well

defined orientation if Γ is not a curve of singularities, given by the restriction of ξ to Γ .

Otherwise, if Γ ⊂ Sing(ξ), we have two possibilities. If S(ξ) is regular at pv with v ∈ Vdiv ,

there is not orientation on e. Recall that in this case Γ is a bidicritical curve and it behaves

as a dicritical component. If S(ξ) has a simple singularity at v, we will provide later other

type of orientation.

Definition 1.36. The partially oriented graph G = G(ξ,π) = (V ,E) constructed above is the graph of

ξ associated to the reduction of singularities π.

We will define finer combinatorial objects associated to ξ and to the graph G(ξ,π). They are the

quadrants of the graph. The graph together with the collection of quadrants will provide the

combinatorial information we will need in further sections.

Definition 1.37. Let G = G(ξ,π) be the graph of ξ associated to π. A quadrant of G is a triplet

Q = (v,e, e′) such that

• e,e′ are adjacent to v.

• If v is a vertex of degree 3 whose adjacent edges are e1, e2 ∈ Ediv and e3 ∈ Endiv , then, the triplet

(v,e1, e2) is not a quadrant.

We denote Q the collection of quadrants of G.

It will be convenient to work with quadrants because orientation of the non-divisor edges is

well defined on them. We explain the orientation of the quadrants now. Let Q = (v,e, e′) be a

quadrant. We define an orientation of e and e′ inside the quadrant as follows.

• If e or e′ are oriented in G, we take the same orientation inside Q.

• If e is not oriented in G and it does not correspond to a bidicritical curve or to a dicritical

component of the divisor, we keep e without orientation.

• Suppose e = eΓ ∈ Endiv is not oriented in G and it corresponds to a non-bidicritical curve

Γ ⊂ Sing(ξ̃). Notice that e′ must be oriented since it must correspond to a non-dicritical

component γ of E. We define an orientation in the quadrant as follows. Since E and Γ have

normal crossings, take formal coordinates (x1,x2) such that Q corresponds to (R≥0)2, the

curve γ ⊂ E (associated to e′) corresponds to x1 = 0, x2 ≥ 0 and Γ = {x2 = 0, x1 ≥ 0}. Then,

take a saturation η = x−s1 x
−r
2 ξ̃pv of ξpv . The orientation of e inside the quadrant is given by

the orientation of η|Γ (attracting or repelling to v).

We present some few remarks on the orientation of the quadrants. First, the orientation of the

edges in Ediv is determined by the orientation of the graph G. Secondly, notice that at least one

of the edges is always oriented, since on the one hand two dicritical components do not intersect
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(see Remark 1.35) and on the other hand there are not singular points in a dicritical component.

Finally, we want to remark that the same edge e can belong to two different quadrants Q,Q′.

When it is a divisor edge, the orientation is the same in both of them. When e is not a divisor

edge, this property does not longer hold. If e = eΓ with Γ a curve of singularities transverse to the

divisor, the equation of Γ can have different sign at each side of Γ , and this implies that it may not

be possible to endow e with a meaningful orientation in G.

We can already define the types of quadrants appearing in the graph, concerning their orien-

tations.

Definition 1.38. Let Q = (v,e, e′) be an oriented quadrant of G.

• We say that Q is a dicritical quadrant if one edge is oriented inside Q and the other is not.

Furthermore, we say that Q is an attracting dicritical quadrant if the oriented edge is oriented

towards v and a repelling dicritical quadrant otherwise.

• We say that Q is a node quadrant if both edges are oriented inside Q, either towards v or out-

wards v. In the first case, we say that it is an attracting node quadrant and in the second that it

is a repelling node quadrant.

• We say that Q is a saddle quadrant if both edges are oriented inside Q, one towards v and the

other one outwards v.

We show an example of the orientation of the graph and its quadrants in Figure 1.8.

Figure 1.8: Orientation of the graph G(ξ,π) given by the strict transform ξ̃ ′ (left). Some example of quad-
rants of the graph where S denotes a saddle quadrant, N a node quadrant and D a dicritical
quadrant (right).

We end the section by defining paths of quadrants.

Definition 1.39. We say that a chain (Q1, . . . ,Qs) with s ≥ 2 is a path of quadrants if, for every

1 ≤ i ≤ s−1, puttingQi = (vi , ei , e′i), andQi+1 = (vi+1, ei+1, e
′
i+1), we have {ei , e′i}∩{ei+1, e

′
i+1} = {e} ⊂ Ediv
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and e is oriented from vi to vi+1. A path of quadrants (Q1, . . . ,Qs) is maximal if there is not other path

of quadrants (Qj1 , . . . ,Qjr ) that contains (Q1, . . . ,Qs) as a subchain.

Let (Q1, . . . ,Qs) be a path of quadrants, then the quadrants Q2, . . . ,Qs−1 are necessarily saddle

quadrants. Notice that a path of quadrants defines a path of edges of the subgraph Gdiv between

the vertex v1 and vs of length s − 1 in the classical sense. When Q1 or Qs are saddle quadrants

(v,e, e′) with e,e′ ∈ Ediv , the path of quadrants can be extended.

1.5 Tangent to the identity diffeomorphisms

In this section, we will present the relation concerning tangent to the identity analytic diffeo-

morphisms and formal vector fields. Reduction of singularities of an associated vector field will

help to study the dynamics of the former diffeomorphisms. We will also show how to lift tangent

to the identity diffeomorphisms by the blowing-ups in the process of reduction of singularities.

This section is based on [12], and it will be used in Chapter 2.

1.5.1 Infinitesimal generator of tangent to the identity diffeomorphisms

Let Diff1(Rn,0) denote the group of germs of analytic diffeomorphisms tangent to the identity.

Recall that tangent to the identity diffeomorphisms fulfill that DF(0) = Id. Recall also that the

order ord(F) of a diffeomorphism F is the minimum k such that jk(F − Id) , 0. In this section, we

associate a vector field to each element of Diff1(Rn,0). We denote by X̂2(Rn,0) ⊂ X̂(Rn,0) the sub-

module of formal vector fields at 0 ∈ Rn of order greater or equal to 2 and D̂iff1(Rn,0) the germs

of formal diffeomorphisms tangent to the identity. We establish a bijection between X̂2(Rn,0)

and D̂iff1(Rn,0) via the exponential map. We recall that the exponential operator exp(tξ) :

R[[x1, . . . ,xn]]→ R[[x1, . . . ,xn, t]] of ξ is defined by

exp(tξ)(f ) =
∞∑
i=1

ti

i!
ξ(i)(f ). (1.15)

where ξ(0)(f ) = f and ξ(i)(f ) = ξ(ξ(i−1)(f )) for i ≥ 1. Notice that as ν(ξ) ≥ 2, then ν(ξ(f )) ≥ ν(ξ) +

ν(f )−1 ≥ 1 +ν(f ), and hence ν(ξ(i)(f )) ≥ i +ν(f ). This implies that Im(exp tξ) ⊂ R[t][[x1, · · · ,xn]],

and substitution of any t ∈ R is well-defined. Hence, we will define the exponential map between

formal vector fields of order 2 and tangent to the identity diffeomorphisms.

Definition 1.40. The Exponential map Exp : X̂2(Rn,0)→ D̂iff1(Rn,0) is defined, by

Exp(ξ) : (x1, · · · ,xn) 7→ (exp(ξ)(x1), . . . ,exp(ξ)(xn)).

This map is bijective. The fact that Exp(ξ) is indeed tangent to the identity is deduced form the
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fact that ν(ξ(i)(xj )) ≥ i+1 for every 1 ≤ j ≤ n and i ≥ 0. Now, we prove that this map admits a global

inverse, which implies that it is bijective. Let F ∈ D̂iff1(Rn,0) be a tangent to the identity diffeo-

morphism given by F = (F1, . . . ,Fn) and Fi(x1, . . . ,xn) = xi +
∑∞
j=2 fi,j(x1, . . . ,xn) for i = 1, . . . ,n where

fi,j(x1, . . . ,xn) is an homogeneous polynomial of degree j. We write xi ◦F = xi +
∑∞
j=2 fi,j(x1, . . . ,xn).

We will see that there is a formal vector field ξ =
∑∞
j=2

∑
i=1,...,n ai,j(x1, . . . ,xn) ∂

∂xi
, where ai,j(x1, . . . ,xn)

is an homogeneous polynomial of degree j, such that F = Exp(ξ). It suffices to solve the triangular

system given by

fi,j = ai,j +Hj


j−1∑
r=2

(jj−1(ξ))(r)(xi)

 ,
where Hj(g) denotes the homogeneous term of order j of g and jk(ξ) is the k−jet of ξ, as it can be

seen in [12]. We denote by Log : D̂iff1(Rn,0)→ X̂2(Rn,0) to the inverse of Exp.

Definition 1.41 (Infinitesimal generator). Given a formal diffeomorphism F ∈ D̂iff1(Rn,0), we say

that ξ = Log(F) is the infinitesimal generator of F.

Notice that this bijection exists on the formal level due to formal convergence of Exp and

Log. It is possible that the infinitesimal generator of an analytic diffeomorphism is only a formal

vector field (there are results that prove that they belong to some Gevrey class that depends on

the order of the diffeomorphism, see [13]). The other direction behaves better, in the sense that

the exponential map of an analytic vector field is its time one flow, and hence, it is a germ of

analytic diffeomorphism.

1.5.2 Reduction of singularities applied to tangent to the identity two-dimensional

diffeomorphisms

In this section, we will restrict ourselves to the two-dimensional case, that is, F ∈ Diff1(R2,0)

because we want to apply the reduction of singularities result. Let Fix(F) be defined by the ideal

generated by x ◦ F − x and y ◦ F − y and let Sing(ξ) be the ideal generated by ξ(x) and ξ(y). The

following result is also very classical, we found it in [12].

Proposition 1.42. Given a formal diffeomorphism F and its infinitesimal generator ξ, we have Fix(F) =

Sing(ξ).

As a consequence of the previous result, we have the following one, which means that even if

the infinitesimal generator is only formal, at least its set of singularities is analytic.

Corollary 1.43. Let F be an analytic diffeomorphism tangent to the identity and ξ its infinitesimal

generator. Then Fix(F) is analytic and so is Sing(ξ).
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Before in this chapter, we proved in Theorem 1.33 that formal non-saturated vector fields

admit reduction of singularities. Applying that result, we obtain a sequence of blowing-ups

π = π1 ◦ · · · ◦πs such that each blowing-up πi : (Mi ,Ei)→ (Mi−1,Ei−1) is centered at a single point

in the divisor Ei−1 of the chain π1 ◦ · · · ◦πi−1 of length i −1, and such that there is a finite number

of simple singularities of the strict transform ξ̃ ′ of ξ under π in Es. The diffeomorphism can be

lifted to (M,E) = (Ms,Es), using repeatedly the following proposition from [12].

Proposition 1.44. Let F ∈ Diff1(R2,0) be a germ of diffeomorphism tangent to the identity and ξ its

infinitesimal generator. Let π1 : (M,E)→ (R2,0) be the blowing-up centered at 0. Then,

1. There exists a unique germ F̃ of diffeomorphism along E so that π ◦ F̃ = F ◦π.

2. The infinitesimal generator of F̃ at E is the total transform ξ̃ at E.

3. For each p ∈ E, we have ordp(F̃) = νp(ξ̃) and if p ∈ Sing(ξ̃,E), then ordp(F̃) ≥ ord0(F)

The total transform ξ̃ in this proposition must be understood as the collection of germs of

local transforms at each point of the divisor E. It is instructive presenting the proof from [12] in

order to see the expression of the lifted diffeomorphism by the blowing-ups.

Proof. We prove this result using concrete charts. We start with the first statement. Suppose

π1 : (M,E1)→ (R2,0) is the real blowing-up centered at 0 and let (x,y) be coordinates centered at

0. Suppose that F is given in these coordinates by

F(x,y) = (x+ a(x,y), y + b(x,y)),

where a,b are series that written as a sum of homogeneous polynomials are given by a(x,y) =∑∞
j=k aj(x,y) and b(x,y) =

∑∞
j=k bj(x,y) and k ≥ 2 is the order of F.

We define the diffeomorphism F̃ in each of the charts in the positive and negative directions

of x and y as follows. Let U+
1 be the chart in the positive direction of x, where the blowing-up is

given by π(x′ , y′) = (x′ ,x′y′) and let U+
2 , U

−
1 , U

−
2 be the other charts defined as in section 1.2. We

show the lifting only in U+
1 and the rest is done similarly. Notice that F̃ must fulfill π ◦ F̃ = F ◦π,

that is

(x′ ◦ F̃, (x′ ◦ F̃)(y′ ◦ F̃)) = (x ◦F(x′ ,x′y′), y ◦F(x′ ,x′y′).

Then, we find concrete expressions of F̃(x′ , y′) = (x′ + ã(x′ , y′), y′ + b(x′ , y′)) as follows.

x′ + ã(x′ , y′) = x′ + a(x′ ,x′y′),

y′ + b̃(x′ , y′) = (y′ +
1
x′
b(x′ ,x′y′)) · (1 +

1
x′
a(x′ ,x′y′))−1.

Notice that F̃ fixes all the points of the divisor, which in this chart is given by x′ = 0.

52



1.5. Tangent to the identity diffeomorphisms

Now, we prove the second, that is, the infinitesimal generator of F̃ at any p ∈ E is the formal

vector field ξ̃p. We again work only at U+
1 , since the procedure is the same in the four charts. By

making a linear change of coordinates, we can assume that p = (0,0). Then,

F̃(x′ , y′) =
(
expξ(x),

expξ(y)
expξ(x)

)
◦π =

exp ξ̃p(x′),
exp ξ̃p(x′y′)

exp ξ̃p(x′)

 =

exp ξ̃p(x′),
exp ξ̃p(x′)exp ξ̃p(y′)

exp ξ̃p(x′)


=(exp ξ̃p(x),exp ξ̃p(y)),

and thus ξ̃p is the infinitesimal generator of F̃p.

The first part of the third item, ordp(F̃) = νp(ξ̃), is a consequence of the previous work. For

the second part consider that p ∈ Sing(ξ̃ ′ ,E) is in the chart U+
1 and, under a linear change of

coordinates, suppose p = (0,0), as before. Suppose that ξ = c(x,y) ∂∂x + d(x,y) ∂∂y , with ν0(ξ) = k

then

ξ̃ = c(x′ ,x′y′)
∂
∂x′

+
1
x′

(d(x′ ,x′y′)− y′c(x′ ,x′y′)) ∂
∂y′

We have in general that (x′)k divides both c(x′ ,x′y′) and d(x′ ,x′y′), therefore (x′)k−1 divides ξ̃.

Then, if p is a singularity of ξ̃ ′, we have that νp(ξ̃ ′) ≥ 1 since some power of x′ or y′ divide ξ̃ ′. As

a result, ordp(F̃) = νp(ξ̃) = k − 1 + νp(ξ̃ ′) ≥ k − 1 + 1 = k = ord0(F).

A key consequence of the previous result is that, at any p ∈ Sing(ξ̃ ′ ,E), the infinitesimal gen-

erator ξ̃ has order equal to or greater than 2 and the diffeomorphism is tangent to the identity.

The blowing-ups can be iterated by choosing points in �Sing(ξ̃ ′ ,E) as centers. The obtainment of a

infinitesimal generator after a sequence of blowing-ups and the corresponding lifted diffeomor-

phism is hence well-defined.

1.5.3 Strict and regular fixed points. Center-focus diffeomorphisms

As we have seen, after a reduction of singularities all the points in the divisor are fixed. We will

distinguish two types of fixed points: regular and strict.

Definition 1.45. Let ξ̃ be the total transform of the infinitesimal generator of F and let F̃ be the lifting

of F by π. We say that p ∈ E is a strict fixed point of F if it is an adapted simple singularity of ξ̃p or a

corner between a dicritical and a non dicritical component of E. We denote S(F,π) the set of strict fixed

points. Otherwise, we say that p is a regular point.

We want to remark that the set of strict fixed points is exactly provided by Vdiv ⊂ V (G(ξ,π)).

Among the strict fixed points we can make further distinctions.

Definition 1.46. Let ξ̃ ∈ X̂(M,E), E = E1∪ · · ·∪Es and p ∈ S(F,π) a strict fixed point. If p ∈ Ei ∩Ei+1

for some 1 ≤ i ≤ s, we say that p is a corner strict fixed point. Otherwise we say that p is a non-corner
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strict fixed point.

Among the regular points, we also make a further distinction.

Definition 1.47. Let ξ̃ be the total transform of the infinitesimal generator ξ of F, E = E1 ∪ · · · ∪ Es
and p < S(F,π). Suppose p ∈ Ei for some 1 ≤ i ≤ s. If Ei is dicritical for ξ̃, we say that p is a dicritical

regular fixed point. Otherwise we say that p is a non-dicritical regular fixed point.

Definition of non center-focus diffeomorphisms

We give the definition of a center-focus diffeomorphism in terms of its reduction of singularities.

Definition 1.48. Let F ∈Diff1(R2,0) be a germ of analytic diffeomorphism, ξ its infinitesimal genera-

tor and π : (M,E)→ (R2,0) a reduction of singularities of ξ. We say that F is center-focus if

• E does not have dicritical components for ξ.

• All the singularities of ξ̃ = π∗(ξ) are corners of E of saddle type.

We say that F is non center-focus if it is not center-focus.

Notice that this definition is parallel to the definition of center-focus vector fields (presented

at the end of Section 1.4.2). We will see also that a non center-focus diffeomorphism has at least

one invariant curve transverse to the divisor.

1.6 Technical results

1.6.1 Jet equalities

In this section, we will provide technical results in order to understand better the total transforms

of vector fields in the usual sets of coordinates. Even if it is quite standard to work with jets of

vector fields, we did not find explicitly these results in the literature.

Proposition 1.49. Let π = π1◦· · ·◦πs be a sequence of admissible blowing-ups for ξ ∈ X̂(Rn,0) centered

at points. Then, the coefficients of the vector fields ξ̃(I) and (ξ̃(I))′ are transversely formal to π−1(0)

(formal in the variables transverse to π−1(0) and polynomial in the rest) for any of the usual charts

(UI , (x
(I)
1 , . . . ,x

(I)
n )).

Before proving it, we show the following lemma.

Lemma 1.50. Letπ : Rn→ Rn be a quadratic morphism given byπ(x′1, · · · ,x′n) = (x′1, . . . ,x
′
n−m,x

′
jx
′
n−m+1,

. . .x′j , . . . ,x
′
jx
′
n). It induces an R−algebra homomorphism π∗ : R[[x1, . . . ,xn]]→ R[[x′1, . . . ,x

′
n]] defined by

π∗(a) = a ◦π such that

Im(π∗) ⊂ R[x′n−m+1, . . .x
′
j−1,x

′
j+1, . . .x

′
n][[x′1, . . . ,x

′
n−m,x

′
j ]].
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Even more, we have

π∗(R[xn−m+1, . . . ,xn−1][[x1, . . . ,xn−m,xn]]) ⊂

R[x′n−m+1, . . .x
′
j−1,x

′
j+1, . . .x

′
n][[x′1, . . . ,x

′
n−m,x

′
j ]]∩R[x′n−m+1, . . .x

′
n−1][[x′1, . . . ,x

′
n−m,x

′
n]]

Proof. It suffices to take an element a ∈ R[[x1, . . . ,xn]] and study its image π∗(a) = a ◦π. Given

a(x1, . . . ,xn) =
∑
α∈Nn≥0

aαxα ,

we obtain

π∗(a) =
∑
α∈Nn≥0

aα(x′1)α1 · · · (x′n−m)αm(x′n−m+1)αn−m+1 · · · (x′j−1)αj−1(x′j+1)αj+1(x′n)αn(x′j )
αn−m+1+···+αn .

We can reorder the terms in the above expression so that

π∗(a) =
∑

β∈Nn−m+1
≥0

bβ(x′n−m+1, . . . ,x
′
j−1,x

′
j+1,x

′
n)(x′1)β1 · · · (x′n−m)βn−m(x′j )

βn−m+1

where bβ is a polynomial defined by

bβ =
∑

αn−m+1+···+αn=βn−m+1
α1=β1,...,αn−m=βn−m

aα(x′n−m+1)αn−m+1 · · · (x′j−1)αj−1(x′j+1)αj−1 · · · (x′n)αn ,

which has degree equal or lower than βn−m+1, and hence π∗(a) ∈ R[x′n−m+1, . . .x
′
j−1,x

′
j+1, . . .x

′
n]

[[x′1, . . . ,x
′
n−m,x

′
j ]], as we wanted to prove.

Now, we prove the second part. Suppose that j , n. In that case, we can proceed as in the first

part, finding π∗(R[xn−m+1, . . . ,xn−1][[x1, . . . ,xn−m,xn]]) ⊂ R[x′n−m+1, . . .x
′
n−1][[x′1, . . . ,x

′
n−m,x

′
n]]. Let a ∈

R[xn−m+1, . . . ,xn−1][[x1, . . . ,xn−m,xn]] and consider, for shortening the notation, y = (xn−m+1, . . . ,xn−1)

and z = (x1, . . . ,xn−m,xn). The series a is written as

a(x1, . . . ,xn) =
∑

α∈Nn−m+1
≥0

aα(y)zα .

Applying π∗, we obtain

π∗(a) =
∑
α∈Nn≥0

aα(x′n−m+1x
′
j , . . . ,x

′
j , . . . ,x

′
n−1)(x′1)α1 · · · (x′n−m)αn−m(x′n)αn(x′j )

αn .
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Reordering the terms, we can check that

π∗(a) =
∑

β∈Nn−m+1
≥0

bβ(x′n−m+1, . . . ,x
′
j−1,x

′
j+1,x

′
n)(x′1)β1 · · · (x′n−m)βn−m(x′j )

βn−m+1

where bβ is a polynomial defined as follows. Writing the polynomials aα in homogeneous terms

aα =
∑
kα
aα,k(xn−m+1, . . . ,xn−1) we have π∗(aα) =

∑
kα
aα,kα (x′n−m+1, . . . ,x

′
j−1,1,x

′
j+1, . . . ,x

′
n−1)(x′j )

kα .

Then,

bβ =
∑

kα+αn=βj
α1=β1,...,αn−m=βn−m

aα,k(x
′
n−m+1, . . . ,x

′
j−1,1,x

′
j+1, . . . ,x

′
n−1)(x′n)αn .

With a similar reordering, we can write as well

π∗(a) =
∑

γ∈Nn−m+1
≥0

cγ (x′n−m+1, . . . ,x
′
j−1,x

′
j+1,x

′
n)(x′1)γ1 · · · (x′n−m)γn−m(x′n)γn

where cγ = aα(x′n−m+1x
′
j , . . . ,x

′
j , . . . ,x

′
jx
′
n−1)xγnj . In conclusion, π∗(a) ∈ R[x′n−m+1, . . .x

′
j−1,x

′
j+1, . . .x

′
n]

[[x′1, . . . ,x
′
n−m,x

′
j ]]∩R[x′n−m+1, . . .x

′
j−1,x

′
j+1, . . .x

′
n][[x′1, . . . ,x

′
n−m,x

′
n]], as we wanted to prove.

Suppose that π1 is a blowing-up centered at N , and take coordinates (x1, . . . ,xn) so that N

is given by the ideal (xn−m+1, · · · ,xn). Suppose that we study the chart of the blowing-up with

coordinates (x′1, . . . ,x
′
n) such that E is given by x′n = 0 (the procedure is similar in other charts).

The expression of the vector field before the blowing-up is ξ =
∑n
i=1 ai(x1, . . . ,xn) ∂

∂xi
with ai ∈

R[[x1, . . . ,xn]]. We recall the expression of the vector field after the blowing-up (1.5) in the chart

U+
n ,

ξ(n) =
∑

i∈{1,··· ,m},i=n
ai(x

′
1, . . . ,x

′
n−m,x

′
nx
′
n−m+1, . . . ,x

′
nx
′
n−1,x

′
n)
∂

∂x′i
+

∑
i∈{n−m+1,...,n−1},i,j

1
x′n

(ai(x
′
1, . . . ,x

′
n−m,x

′
nx
′
n−m+1, . . . ,x

′
nx
′
n−1,x

′
n)

− x′ian(x′1, . . . ,x
′
n−m,x

′
nx
′
n−m+1, . . . ,x

′
nx
′
n−1,x

′
n))

∂

∂x′i

=
n∑
i=1

ãi(x
′
1, . . . ,x

′
n)
∂

∂x′i
,

(1.16)

with ãi ∈ R[x′n−m+1, . . .x
′
n−1][[x′1, . . . ,x

′
n−m,x

′
n]] by Lemma 1.50.

Notice that indeed the blowing-ups in Proposition 1.49 are centered at a single point. We can

consider the expression ξ(n) for the codimension of the center of the being m = n.

Proof of Proposition 1.49. The proof for sequences of length 1 follows from the computation in (1.16).
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Suppose by induction that p ∈ Ei−1 is the center of the blowing-up πi with adapted coordinates

(x1, · · · ,xn) such that the divisor is given by equation xr · · ·xn = 0 for 1 ≤ r ≤ n. Suppose also

that the total transform of ξ after the first i − 1 blowing-ups at p in the chart (U, (x1, · · · ,xn))

with coefficients in
⋂n
k=rR[x1, . . .xk−1,xk+1, . . .xn][[xk]]. Let (Uj , (x′1, · · · ,x′n)) be some chart of the

blowing-up. By (1.16) and Lemma 1.50, we have that the coefficients of π∗(ξ) in Uj belong to⋂
k=r,...,n, k=jR[x1, . . .xk−1,xk+1, . . .xn][[xk]].

We also prove a result that shows the jet dependence of a blown up vector field in terms of its

jet before the blowing-up.

Proposition 1.51. Let ξ ∈ X̂(Rn,0) be a formal vector field and π : (M,E)→ (Rn,N ) be a blowing-up

centered at N ⊂ Rn. Suppose N is given by xn−m = 0, . . . ,xn = 0. Consider one of the usual charts

Cj = (Uj , (x′1, . . . ,x
′
n)) and recall that the exceptional divisor of π in the chart Cj is given by x′j = 0.

Then, the following jet equalities hold:

j
x′j
k (ξ(j)) = j

xj
k (π|∗Cj (j

xn−m,...,xn
k+1 (ξ))).

j
x′i
k (ξ(j)) = j

x′i
k (π|∗Cj (j

xi
k (ξ))). for i , j

In the proof of Proposition 1.51 we use the following two lemmas.

Lemma 1.52. Letπ : Rn→ Rn be a quadratic morphism given byπ(x′1, · · · ,x′n) = (x′1, . . . ,x
′
n−m,x

′
jx
′
n−m+1,

. . .x′j , . . . ,x
′
jx
′
n). It induces an R−algebra homomorphism π∗ : R[[x1, . . . ,xn]]→ R[[x′1, . . . ,x

′
n]] defined by

π∗(a) = a ◦π such that j
x′j
k (π∗(a)) = π∗(jxn−m+1,...,xn

k (a)), a ∈ R[[x1, . . . ,xn]]

Proof. For the proof of this proposition, we write a in homogeneous components in R[[x1, . . . ,xn−m]]

[[xn−m+1, . . . ,xn]], that is,

a =
∞∑
i=0

ai(x1, . . . ,xn) =
∞∑
i=0

∑
i=in−m+1+···+in

ain−m+1,··· ,in(x1, . . . ,xn−m)xin−m+1
n−m+1 · · ·x

in
n ,

where each ai ∈ R[[x1, . . . ,xn−m]][xn−m+1, . . . ,xn]i and each ain−m+1,··· ,in(x1, . . . ,xn−m) ∈ R[[x1, . . . ,xn−m]].

Renaming (x1, . . . ,xn) = (x′1, . . . ,x
′
n), we find the following expression,

π∗(a) =
∞∑
i=0

∑
i=in−m+1+···+in

ain−m+1,··· ,in(x1, . . . ,xn−m)xin−m+1
n−m+1 · · ·x

ij−1

j−1x
in−m+1+···+in
j x

ij+1

j+1 · · ·x
in
n ,

which implies the searched jet equality. In particular, the coefficient of xin−m+1
n−m+1 · · ·x

ij−1

j−1x
ij
j x

ij+1

j+1 · · ·x
in
n

is a polynomial in R[[x1, . . . ,xn−m]][xn−m+1, . . . ,xj−1,xj+1, . . . ,xn] of degree equal or lower than ij .
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Remark 1.53. When π is the expression of a point blowing-up in the chart Uj , we have the follow-

ing.

j
x′j
k (π∗(a)) = π∗(jk(a))

Lemma 1.54. Letπ : Rn→ Rn be a quadratic morphism given byπ(x′1, · · · ,x′n) = (x′1, . . . ,x
′
n−m,x

′
jx
′
n−m+1,

. . .x′j , . . . ,x
′
jx
′
n). It induces an R−algebra homomorphism π∗ : R[[x1, . . . ,xn]]→ R[[x′1, . . . ,x

′
n]] defined by

π∗(a) = a ◦π such that j
x′i
k (π∗(a)) = π∗(jxik (a)), for any i , j.

Proof. We write a as an element of R[[x1, . . . ,xn]][[xi]],

a =
∞∑
i=0

ai(x1, . . . ,xn)xii .

First suppose that i ≥ n−m+1. Renaming (x1, . . . ,xn) = (x′1, . . . ,x
′
n), we find the following expression

π∗(a) =
∞∑
i=0

ai(x1, . . . ,xn−m,xn−m+1xj , . . . ,xnxj )x
i
ix
i
j .

The jet equality then follows from this expression.

Now, suppose that i ≤ n−m, then

π∗(a) =
∞∑
i=0

ai(x1, . . . ,xn−m,xn−m+1xj , . . . ,xnxj )x
i
i ,

and the searched jet equality also follows from this expression.

Proof of Proposition 1.51. It is enough to consider the expression of the coefficients ãi of the vector

field (1.16) after a blowing-up and the previous Lemma 1.52. Notice that studying a (k + 1)−jet

in x1, . . . ,xn−m,xn is necessary since some coefficients ãi are obtained from the coefficients ai of ξ

after dividing by x′n. Observing (1.16), this means that the terms of degree r of ξ(i) in x′n depend

on terms of degree r and r + 1 in x′n−m+1, . . . ,x
′
n, and hence the first jet equality follows.

For the second jet equality, it is enough to consider the expression of the vector field ξ(j) and

use Lemma 1.54.
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This chapter is devoted to the first problem of the thesis: the sectorial decomposition of germs

of real analytic tangent to the identity plane diffeomorphisms. The aim of this chapter is to prove

Theorem 2.6 (Theorem A in the Introduction). We start the chapter by giving the main defini-

tions and statements of the results. Then, we fix a germ F : (R2,0)→ (R2,0) of diffeomorphism

and consider its infinitesimal generator ξ (cf. Definition 1.41). We apply Theorem 1.33 to the

infinitesimal generator, obtaining a sequence of blowing-ups, and we study the lifting of the dif-

feomorphism by this sequence of blowing-ups. Then, we construct the sectors, concluding the

existence of the sectorial decomposition. We finally refine this construction in order to obtain a

sectorial decomposition having better topological and geometrical properties.
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

2.1 Formulation of the main results

In this section, we provide the main definitions and we state the main results.

2.1.1 Orbits and saturation

In this section, we introduce some technical definitions of sets that we need throughout this

chapter, and we will also indicate some inclusions among these sets. In the whole section, denote

by the same letter F : W → W ′ a representative of F, so that W is an open neighborhood of 0,

F|W injective and F(W ) = W ′ (so W ′ is also an open neighborhood of 0). If n ∈ N, denote by

Fn the composition of F with itself n times defined on a maximal subdomain of W , denote also

F−n = (F−1)|n| when −n ∈ Z≤0, and F0 = Id.

Definition 2.1. Let V ⊂W be any set and let p ∈ V .

• The positive orbit of p in V is

Orb+
V (p) = {q ∈ V : ∃ℓq ∈ Z≥0 such that Fn(p) ∈ V for n ∈ {0,1, . . . , ℓq} and Fℓq (p) = q}.

If there exists m ∈ N such that Fj(p) ∈ V for j < m but Fm(p) < V , we say that the positive orbit

of p in V escapes V .

• The negative orbit of p in V is

Orb−V (p) = {q ∈ V : ∃− ℓq ∈ Z≤0 such that Fn(p) ∈ V for n ∈ {0,−1, . . . ,−ℓq} and F−ℓq(p) = q}.

If there exists m ∈ N such that F−j(p) ∈ V for j < m but F−m(p) < V , we say that the negative

orbit of p in V escapes V .

• The orbit of p in V is

OrbV (p) = Orb+
V (p)∪Orb−V (p).

• The ω-limit of the point p with respect to V is

ωV (p) =
⋂
n≥0

Orb+
V (Fn(p)),

where the closure is taken inside W .

• The α-limit set of the point p with respect to V is

αV (p) =
⋂
n≤0

Orb−V (Fn(p)),
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2.1. Formulation of the main results

where the closure is taken inside W .

• A point p ∈ V is V−periodic if OrbV (p) is finite and ωV (p) = αV (p) = OrbV (p).

Definition 2.2. Let A,B be subsets of W with A ⊂ B ⊂W .

• The positive saturation of A in B is

Sat+
B(A) =

⋃
p∈A

Orb+
B(p).

• The negative saturation of A in B is

Sat−B(A) =
⋃
p∈A

Orb−B(p).

• The saturation of A in B is

SatB(A) =
⋃
p∈A

OrbB(p).

We say that A is saturated in B if SatB(A) = A.

Definition 2.3. Let A,B be subsets of W with A ⊂ B ⊂W . We say that A is a fundamental domain

in B if OrbB(p)∩A = {p} for every p ∈ A.

We obtain directly from the definitions:

• Suppose that B′ ⊂ B and A ⊂ B′ ⊂ B. We have

SatB′ (A) ⊂ SatB(A).

• Suppose A′ ⊂ A ⊂ B. Then

SatB(A′) ⊂ SatB(A).

• If A′ ,A ⊂ B satisfy that for every p ∈ A′ there is some ℓp ∈ Z such that Fℓp (p) ∈ A, then

A′ ⊂ SatB(A).

• If A′ ⊂ SatB(A), we have SatB(A′) ⊂ SatB(A) and equality holds if and only if for every p ∈ A
we have OrbB(p)∩A′ , ∅.

We end presenting three types of behaviors of subsets.

Definition 2.4. Let A be a subset of W .

• A is positively invariant if F(A) ⊂ A. In other words, the positive iterates of every p remain

forever in A.
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

• A is negatively invariant if F−1(A) ⊂ A . In other words, the negative iterates of every p remain

forever in A.

• A is an attracting parabolic set at qA ∈ Ā if A is positively invariant and for every p ∈ A,

αA(p) = {qA} and ωA(p) = ∅. A is a repelling parabolic set at qA ∈ Ā if A is negatively invariant

and for every p ∈ A, ωA(p) = {qA} and αA(p) = ∅. The point qA is named the attractor or repeller

of the parabolic set.

• A is an elliptic set at qA ∈ Ā if for every p ∈ A, αA(p) = {qA} and ωA(p) = {qA}. The point qA is

the attractor and repellor of the elliptic set.

• A is a hyperbolic set, if for every p ∈ A, OrbA(p) is finite and p is not A−periodic, in particular,

ωA(p) = ∅ and αA(p) = ∅.

Now we define parabolic curves of diffeomorphisms.

Definition 2.5. An attracting analytic parabolic curve γ of F at 0 is an injective analytic embedding

γ : (0,ϵ)→ R2 such that

• γ can be continuously extended to γ(0) = 0.

• γ((0,ϵ)) is a parabolic set for F whose attractor is 0.

A repelling analytic parabolic curve γ of F at 0 is an attracting analytic parabolic curve γ of F−1 at

0.

We have defined the analytic parabolic curve as a parameterized curve, but we will sometimes

denote by parabolic curve its image. Notice that an analytic parabolic curve at 0 is a parabolic set

at 0 with the additional property that it is an analytic submanifold.

We say that an analytic parabolic curve γ is asymptotic to a formal curve Γ at 0 if there is an

irreducible formal parameterization β ∈ R[[s]]2 of Γ such that the asymptotic expansion of γ at 0

coincides with β, this means, for every k ∈ N, there exists constants ck ,ϵk such that

||γ(s)− jk(β)(s)|| ≤ cksk+1, s ≤ ϵk ,

where jk(β) denotes the k-jet truncation of each component of β, which is a polynomial, and

hence can be evaluated at s.

2.1.2 Main results

In this section, we will state the main results. We choose a first representative F : W → W ′ in

which (Fix(F)\{0})∩∂R2W has the same number of points as the number of connected components

of (Fix(F)\{0}) in W , where Fix(F) = {p ∈W : F(p) = p} (without further mention of the domain W
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2.1. Formulation of the main results

unless there is the risk of confusion). These connected components of the curve of fixed points

will be called the half-branches of the curve of fixed points (compare with section A.2.1 in the

appendix). Among the curves of fixed points, we will distinguish two types. Recall that, by

Proposition 1.42, the germs of Fix(F) and Sing(ξ) at 0 coincide. We say that a half-branch Γ of

Fix(F) is bidicritical when its germ at 0 is not invariant for S(ξ), where S(ξ) is any saturation of ξ.

Let us state the main result in this chapter.

Theorem 2.6. Let F ∈ Diff1(R2,0) be a germ of real analytic diffeomorphism with F(0) = 0, F , Id,

tangent to the identity and of non center-focus type. For any open neighborhood W of 0 where a

representative of F and F−1 are defined, there exists a neighborhood U ⊂W of 0, and a finite partition

S of

U =
⋃
A∈S

A,

into C0 submanifolds of R2, such that, for any A ∈ S , we have that A is saturated in U and

0. dimA = 0 if and only if A = {0}.

1. If dimA = 1 then, 0 ∈ A\A and either A is a connected component of Fix(F)\{0} or A∩Fix(F) = ∅.
In the second case, A is an attracting or repelling parabolic set (curve) at 0.

2. If dimA = 2, then 0 ∈ A \A, A∩Fix(F) = ∅ and A is of one of the following six types.

• A is an attracting or repelling parabolic set at 0.

• A is an elliptic set at 0.

• A is a hyperbolic set.

• A is dicritical-parabolic (or D-parabolic): there exists ΓA ∈ S with dimΓA = 1 and ΓA ⊂
Fix(F) such that either, for each p ∈ A, there is qp ∈ ΓA ∩A with αA(p) = {qp} and Orb+

A(p)

escapes A, or, for each p ∈ A, there is qp ∈ ΓA with ωA(p) = {qp} and Orb−A(p) escapes A.

• A is dicritical-elliptic (or D-elliptic): there exists ΓA ∈ S with dimΓA = 1 and ΓA ⊂ Fix(F)

such that either, for each p ∈ A, there is qp ∈ ΓA∩A with α(p) = {qp} and ωA(p) = {0}, or, for

each p ∈ A, there is qp ∈ ΓA ∩A with ωA(p) = {qp} and αA(p) = {0}.

• A is dicritical-dicritical (or D-D): there exists ΓA,Γ ′A ∈ S with dimΓA = dimΓ ′A = 1, ΓA , Γ ′A
and ΓA,Γ

′
A ⊂ Fix(F) such that for each p ∈ A, there is qp ∈ ΓA∩A with αA(p) = {qp} and there

is q′p ∈ Γ ′A ∩A with ωA(p) = {q′p}.

The pair (U,S) fulfilling the properties of the previous theorem will be called a sectorial de-

composition. Elements in the partition will be called strata, although it is not necessarily a strati-

fication in the usual sense. The two-dimensional sets in S will be called the sectors of (U,S), and
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

they are of parabolic, elliptic, hyperbolic, D-parabolic, D-elliptic or D-D type, correspondingly to

the properties presented in the second item of the Theorem, which we call the weak topological

properties of the sector, according to the terminology in [29]. Notice that each stratum, except the

hyperbolic sectors, is either positively or negatively invariant.

See Figure 2.1 and Table 2.1 for a schematic explanation of the sectors, and Figure 2.2 for an

example of a sectorial decomposition. In the example, Fix(F) = {0} ∪ Γ1 ∪ Γ2 ∪ Γ5 ∪ Γ6, and all the

half-branches of Fix(F) are bidicritical curves.

Sector A α−limit of p ∈ A ω−limit of p ∈ A Bidicritical curves (in the boundary)
Parabolic {0} ∅ None
Parabolic ∅ {0} None
Elliptic {0} {0} None

Hyperbolic ∅ ∅ None
D-parabolic qp ∈ ΓA ∅ ΓA

D-parabolic ∅ qp ∈ ΓA ΓA

D-elliptic {0} qp ∈ ΓA ΓA

D-elliptic qp ∈ ΓA {0} ΓA

D-D qp ∈ ΓA qp ∈ Γ ′A ΓA,Γ
′
A

Table 2.1: Summary of the type of sectors depending on the asymptotic dynamics.

Figure 2.1: Types of sectors

As a direct consequence of Theorem 2.6, we find the following.

Corollary 2.7. Given a non center-focus diffeomorphism F ∈Diff1(R2,0), there is a neighborhood U of

0, such that the only periodic points of F in U are fixed points, that is, Per(F) = Fix(F) as germs.
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2.2. Realization of the graph G(ξ,π) for F

Figure 2.2: A sectorial decomposition.

The set U where the sectorial decomposition is defined is not necessarily open. In fact, in our

construction, the set U \U◦ is a union of segments non containing 0 of the bidicritical curves.

We are interested in studying when the sectorial decompositions (U,S) can be taken so that U

is open. We also study when the set U can be chosen in the semi-analytic class. We prove the

following results.

Proposition 2.8. Let F ∈Diff1(R2,0), F , Id be non center-focus and (U,S) a sectorial decomposition.

If there are no D −D sectors in S , then, there is a sectorial decomposition (U ′ ,S ′) in which U ′ is an

open set and S ′ is a stratification.

Proposition 2.9. Let F ∈ Diff1(R2,0), F , Id be non center-focus. If there are no bidicritical curves,

then there is a sectorial decomposition (U,S) in which U is a semi-analyitic subset of R2 and S is a

stratification.

2.2 Realization of the graph G(ξ,π) for F

Fix an element F ∈ Diff1(R2,0) and take the infinitesimal generator ξ = Log(F) of F. Let π :

(M,E)→ (R2,0) be a reduction of singularities of ξ as in Section 1.4.3. In this section, we will de-

fine a geometric object: the realization SuppF(G(ξ,π)) of the graph G(ξ,π) of ξ for the reduction

of singularities π (cf. Section 1.4.5) and the diffeomorphism F, or for short, simply Supp(G(ξ,π)).

This object will be useful to construct a sectorial decomposition (U,S) of F and will provide some

of the one dimensional strata of S .
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

2.2.1 Dynamical types of the strict fixed points

Consider the vertices in Vdiv , each of them is associated to a strict fixed point, by definition. We

classify the strict fixed points S(F,π) of F on (M,E) by using the graph G(ξ,π) of its infinitesimal

generator. The types of fixed points are summarized in Figure 2.3.

• When pv is a corner point, it can be of one of the following types.

* d when it is a corner between a dicritical and a non-dicritical component of the divisor.

* s when it is a corner between two non-dicritical components of the divisor and the

only quadrant at v is a saddle quadrant.

* n when it is a corner between two non-dicritical components of the divisor and the

only quadrant at v is a node quadrant.

• When pv is a non-corner point and it corresponds to a simple singularity of type I, that is,

simple and isolated, it can be of one of the following types.

* s-s when the two quadrants at v are saddle quadrants.

* n-s when there is a node and a saddle quadrant at v.

* n-n when the two quadrants at v are node quadrants.

• When pv is a non-corner point and it corresponds to a simple singularity of type II, that is,

it is a normal crossing between a curve of fixed points and the divisor, it can be of one of

the following types.

* f-s-s when the two quadrants at v are saddle quadrants.

* f-n-s when there is a node and a saddle quadrant at v.

* f-n-n when the two quadrants at v are node quadrants.

* f-d-d when the two quadrants at v are dicritical quadrants.
We make a further distinction. Recall that the underlying singularity of a strict fixed point p

of types s-s, n-s or n-n is a non-corner adapted simple singularity of type I. Let λ and µ be the

eigenvalues of the strict transform of the infinitesimal generator of F at p, tangent, respectively

to the eigendirection transverse to E and to the direction of E. Recall that the adapted simple sin-

gularity p can be a node, a saddle or a saddle-node, depending on the product λµ being smaller,

bigger or equal to 0. Recall also that when p is an adapted simple saddle singularity of the in-

finitesimal generator ξ, it is of type s-s as a strict fixed point of F. When p is an adapted simple

node, we have that it is of type n-n as a strict fixed point. However, when it is an adapted simple

saddle-node, it can be of type s-s, n-s or n-n as a strict fixed point. For technical reasons, we say

that a strict fixed point of type n-n is of subtype n-n-1, when |λ| > 0, and that it is of subtype

n-n-2 when λ = 0.

We summarize in the following diagram (Figure 2.4) the types of fixed points in terms of: its

position (corner or non-corner), underlying singularity (regular point, type of adapted simple

singularity) and quadrant or quadrants of G(ξ,π) at the vertex vp.
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Figure 2.3: Types of strict fixed points.

Strict fixed points

Non corner

Type II b) d-d

Type II a)

f-s-s

f-n-n

f-n-s

Type I

s-s

n-n

n-n-2

n-n-1

n-s

Corner

Type I

s

n

Reg d

Figure 2.4: Diagram summarizing the strict fixed points in terms of the type of the underlying singularity
or regular point.
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2.2.2 Existence of parabolic curves and parabolic domains

Before explaining the realization of the graph, we recall a result that exists in the literature and

which ensures the existence of parabolic curves at some type of strict fixed points. We also recall

a result on existence of attracting domains that are finitely tangent to a formal invariant curve.

The results given in this section apply only to strict fixed points of type s-s, n-s, n-n-1 and n-n-2.

The first result concerns existence of parabolic curves. We adapt the statement of the theorem

in [56, Theorem 5.1] to our setting.

Theorem 2.10 (Existence of parabolic curves [5, 57, 56]). Let p ∈ S(F,π) be a non-corner strict fixed

point of type s-s, n-s or n-n-1. Let Γ be the formal invariant curve of F that is transverse to the divisor.

Then, there exists a unique analytic parabolic curve γ of F at p asymptotic to Γ .

We emphasize that the curve γ obtained in the theorem may not be analytically extended to 0,

recall Definition 2.5 of analytic parabolic curves. This result and similar ones have been proved

by several authors. To mention some, Baldomá et al. in [5] proved the existence of parabolic

curves for real analytic diffeomorphisms at fixed points in the cases in the hypotheses of the The-

orem. On the other hand, Lopez et al. [57, 56] proved the existence of parabolic curves asymptotic

to formal invariant curve for holomorphic diffeomorphisms. The hypothesis that they require is

that the eigendirection of the invariant curve Γ belongs to the "saddle domain". In our setting

in the real case, this assumption is satisfied if p is of type s-s, n-s or n-n-1. Let us remark that

Dumortier et al. in [29] proved it in the context of C∞ diffeomorphisms obtaining C∞ parabolic

curves.

As Theorem 2.10 does not provide existence of parabolic curves in all the cases, we will look

for two dimensional parabolic sets at these points, as they are obtained in the work [56, Theorem

6.1]. Before stating the theorem, let us introduce a new concept, the reduced form of F with

respect to a formal invariant curve. It is explained in [56, Section 4].

Definition 2.11. Consider that the order of contact of the diffeomorphism and the identity is n, and

the order of contact of the restriction F|Γ and the identity is n + s. We say that F is in reduced form

with respect to Γ if there exist some coordinates (x,y), called reduced, for which Γ is tangent to {x = 0}
and such that we can write

F(x,y) = (x+ ynA(y)x+O(xyn+s+1) + ykb(y), y − yn+s+1 +O(y2n+2s+1)), (2.1)

where y = 0 is a line of fixed points, k ≥ 2n+ 2s+ 1 and A(y) is a polynomial of degree at most s. Notice

that {y = 0} ⊂ Fix(F).

In [56], it is shown that if F ∈ Diff1(C2,0) and Γ is an invariant curve such that F|Γ , Id, then

after a finite number of blowing-ups centered at the iterated tangents of Γ and after changes of
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coordinates, the transformed diffeomorphism can be expressed in reduced form with respect to

the strict transform of Γ . In our case, starting with a n-n-2 strict fixed point associated to an

adapted simple singularity of type I, the real blowing-up provides two corner strict fixed points

of type s and a non-corner strict fixed point of type n-n-2 (cf. Section 1.4.1). Recall also that the

formal invariant curve Γ intersects the new component of the divisor at this last point. Then, we

will suppose that π also encloses the sequence of blowing-ups centered at the strict fixed points

of type n-n-2, so that at the n-n-2 points of S(F,π), reduced coordinates can be taken.

Theorem 2.12 (Existence of parabolic domains [56]). Let p ∈ S(F,π) be a non-corner strict fixed

point at the divisor E whose underlying singularity is isolated, simple and of type n-n-2. Let Γ be the

formal invariant curve of F that is transverse to the divisor. Suppose also that F is in reduced form

with respect to Γ with reduced coordinates (x,y) such that E is given by y = 0 and Γ has a formal

parameterization given by (γ(t), t) with j2n+2s+2γ(s) = 0. Then, there exists a parabolic set Ω of F at p

of the form

Ω = {(x,y) : y ≤ δ, |x| < y}, (2.2)

where δ > 0. In addition, if for instance Ω is attracting parabolic, for every point p ∈ Ω, the positive

orbit Orb+(p) is asymptotic to Γ .

The Theorem 2.12 on the existence of the set Ω is a direct consequence of [56, Theorem

6.1] for holomorphic diffeomorphisms, and its proof can be found therein. The proof adapts

almost word by word to the real analytic diffeomorphism as stated. We do not enter into details

but we want to make a comment on the last sentence of Theorem 2.12, based on the proofs

presented in the article [56]. In short, the property that the orbits are asymptotic to the curve Γ

means by definition that for every p ∈ Ω and for every N , there is some kp,N such that Fk(p) ∈
{|x − jn+s+N−1(γ(y))| < yN } for k ≥ kp,N . That is, the orbits reach cones of arbitrarily large order of

contact with the invariant curve. Alternatively, Orb+(p) has iterated tangents1 and the sequence

of iterated tangents coincides with that of Γ .

We make a second refinement on the reduction of singularities that is valid after performing

one additional blowing-up σ centered at a n-n-2 point. This blowing-up, as we mentioned before,

generates two strict fixed points of type s and one new strict fixed point of type n-n-2. Moreover,

after performing this blowing-up, we have that σ−1(Ω) is an open parabolic set at the new strict

fixed point of type n-n-2, that forms, adding the divisor, a neighborhood of the n-n-2 point. The

expression of the transform of F is obtained as in Proposition 1.44, and it has the same form

as (2.1). Summarizing, we will make the following assumption on the reduction of singularities

π.
1We say that an orbit has a tangent if its α orω limit is a single point in the exceptional divisor and iterated tangents

are defined recursively by blowing up the subsequent tangents of the orbit. Compare with Definition 1.10 of iterated
tangents of parameterized curves.
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Assertion ∗. Let p ∈ S(F,π) be of type n-n-2. Then, there is a positively invariant neighborhood Up of

p such that for every q ∈Up \E, ω(q) = {p}.

2.2.3 Support of the graph G(ξ,π) for F in M and realization of quadrants

In this section, we need to recall the construction of graph G = G(ξ,π) = (V (G),E(G)) and the

quadrants Q(G), together with the orientations (cf. section 1.4.5). We will also consider the

reduction of singularities is refined so that we have Assertion ∗. We need also to recall that F̃ is

defined on a neighborhood π−1(W ) of E = π−1(0). In short, we will provide a geometric support

to this graph that will be a C∞ normal crossing divisor, so that the dynamics of F will be reflected

by the orientations given by G. More precisely:

• For any v ∈ Vdiv , we define Supp(v) = pv , where pv is the strict fixed point associated to v. Then,

Supp(Vdiv) is the union of the strict fixed points of F.

• The edges in Ediv are associated to the components of E \ Supp(Vdiv), by definition (recall the

definition of Ediv in section 1.4.5). In particular, if e = {v,v′}, we define Supp(e) as the connected

component γe of E \ Supp(Vdiv) with extremities pv and pv′ . Then, Supp(Ediv) is the union of

these connected components.

• Each edge in Endiv is associated either to curve of singularities of π∗(ξ) or to a formal invariant

curve Γ of π∗(ξ), transverse to E. Fix some e ∈ Endiv that is adjacent to v ∈ Vdiv associated to a

strict fixed point pv . Recall that when the strict fixed point is of type f-n-n, f-n-s, f-s-s or f-d-d,

the edge e is associated to a curve of fixed points. In this case, we directly consider the curve

Γ (which indeed is analytic) and we define Supp(e) = Γ , where this curve must be understood

as a representative defined in some open set Ue ⊂ π−1(W ). On the other hand, when Γ is not of

fixed points, the strict fixed point pv can be of type n-n-2, n-n-1, n-s or s-s. In the first case, we

will not define a geometric support to e, that is, we will consider Supp(e) = ∅. In the remaining

cases, we use Theorem 2.10 in order to find a parabolic curve γ ⊂ π−1(W ) of F transverse to the

divisor at pv . We define Supp(e) = γ . Finally, Supp(Endiv) is by definition the union of Fix(F)\E
and parabolic curves transverse to E.

• We do not define a geometric support to the vertices v ∈ Vndiv .

Definition 2.13. The support Supp(G(ξ,π)) of the graph G(ξ,π) for F is the union Supp(Vdiv)∪
Supp(Ediv)∪ Supp(Endiv) in a neighborhood of E ⊂M.

In order to lighten the notation, name Ẽ = Supp(G(ξ,π)). Notice that Ẽ is a C∞ normal crossing

divisor that extends the analytic one E ∪ Fix(F). We show an example of the construction of the

support of the graph G(ξ,π) for the diffeomorphism F in Figure 2.5

70



2.2. Realization of the graph G(ξ,π) for F

Figure 2.5: Graph G(ξ,π) of the infinitesimal generator ξ of F and its realization for F.

Now, we define the realization of the quadrants of the graph as (half) neighborhoods of strict

fixed points. This is an intermediate step in order to define suitable sets of coordinates in the

following section.

Let p ∈ E be a strict fixed point of F such that {p} = Supp(v) and such that p is not of type n-

n-2. Recall that either there is a single quadrant Q1 = (v,e1, e2) of G(ξ,π) that contains v, or there

are two quadrants Q1 = (v,e1, e2),Q2 = (v,e1, e3) of G(ξ,π) that contain v. Take γi = Supp(ei).

Consider now the germ Wp of π−1(W ) at p and the germ Ẽp of Ẽ at p. Then, Wp \ Ẽp has at most

two connected components. That is, Wp \ Ẽp =U1,p orWp \ Ẽp =U1,p∪U2,p. We consider U1,p to be

the connected component that fulfills U1,p = U1,p ∪ {p} ∪ γ1,p ∪ γ2,p and U2,p to be the connected

component that fulfillsU2,p =U2,p∪{p}∪γ1,p∪γ3,p. A realization ofQi , i = 1,2, is a couple(Qi ,Ui),

where Ui is a representative of Ui,p such that U i ∩Supp(e1) and U ∩Supp(eji ) are connected with

j1 = 2 and j2 = 3. By an abuse of notation, we also call quadrants the realizations of the quadrants.

Now, let p ∈ E be a strict fixed point of F such that {p} = Supp(v) and such that p is of type

n-n-2. Notice that there are necessarily two quadrants of the graph, say Q1 = (v,e1, e2) and Q2 =

(v,e1, e3), which contain v. However, as we have already pointed out, there is not a realization of

the edge e1. For this reason, a single quadrant cannot be realized in the above sense. We define a

joint realization of Q1 and Q2 a triple (Q1,Q2,U ), where U is a convex representative of the germ

Wp such that U ∩ Supp(e2) and U ∩ Supp(e3) are connected.

2.2.4 Monotonic (coordinate) domains

In this section, we provide convenient expressions of F̃ at regular and at strict fixed points of Ẽ.

This section is based on [29], allowing also curve of fixed points. At the strict fixed points, we
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work in a realization of a single quadrant, or in a joint realization of the two quadrants adjacent

to a point n-n-2. We also provide changes of coordinates valid on a small enough realization of

the quadrant(s).

Before studying each case, as a reminder from Section 1.5.1, we recall that, if p ∈ E, then

the germ of F̃ at p is given by F̃p = Exp(ξ̃p) where ξ̃p is the total transform of ξ by π at p. We

will simply denote F̃ at p again as F, because throughout the text we will always indicate in

which point we work, and we will also denote ξ̃p by ξ. The expression of each Fi in F(x,y) =

(F1(x,y),F2(x,y)) in terms of the expression of ξ = c(x,y) ∂∂x + d(x,y) ∂∂y is given by the exponential

map as follows.

F1(x,y) =exp(ξ̃p)(x) = x+ c(x,y) +
1
2

(
c(x,y)

∂c(x,y)
∂x

+ d(x,y)
∂c(x,y)
∂y

)
+ · · ·

F2(x,y) =exp(ξ̃p)(y) = y + d(x,y) +
1
2

(
c(x,y)

∂d(x,y)
∂x

+ d(x,y)
∂d(x,y)
∂y

)
+ · · ·

(2.3)

We also recall that (x,y) are analytic coordinates at p. Even if the vector field is only formal and

its coefficients lie in R[[x,y]] (or sometimes in some other subalgebra), the diffeomorphism is

analytic, and the components lie in R{x,y}.

Now, we present the monotonic domains, namely, chart domains in which it is possible to

define monotonic functions on the orbits of the diffeomorphism.

• Non-dicritical regular point. Let p ∈ E \S(F ,π) and assume that p is a non-dicritical compo-

nent of E. As in (1.6), there are analytic coordinates (x,y) centered at p with E = {y = 0} such

that

ξ = yn
(
a(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
,

with n ∈ N∗, a,b ∈ R[[x,y]] and a(0,0) , 0.

Then, the expression of F at p is

F(x,y) = (x+ ynA(x,y), y + yn+kB(x,y)), (2.4)

where A,B ∈ R{x,y}, n,k ∈ N∗, y ≥ 0 and A(0,0) , 0. By considering a small enough domain U ,

we can suppose that A(x,y) < 0 or that A(x,y) > 0. In this case, we say that (U, (x,y)) is a regular

monotonic domain.

We have that this expression is valid in a greater domain. Recall, as we are assuming that we

use the usual charts of the blowing-up (cf. Section 1.2), that the vector field ξ̃p is (Tqp)∗ξ̃q,

where ξ̃q := ξ(I) is defined at the origin of the chart UI and Tqp is the affine translation of q to

the point p.
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Remark 2.14. In terms of exponential maps, since Tqp is an affine map (a diffeomorphism), we

have formally exp((Tqp)∗ξq)(f ) = exp(ξq)(f ◦ Tqp) ◦ (Tqp)−1.

We deduce the following from this remark.

Claim. We can consider a local expression of F, as the one in (2.4) that is valid on a neighbor-

hood of a connected compact subset of E \S(F ,π) inside a non-dicritical component of E and

in the domain of a single usual chart UI .

• Dicritical regular point. Let p ∈ E \S(F ,π) and assume that p is a dicritical component of E.

We use (2.3) and the expression (1.7) given in analytic coordinates (x,y) at p where E = {y = 0}
by

ξ = yn(a(x,y)
∂
∂x

+ b(x,y)
∂
∂y

),

with n ∈ N∗, a,b ∈ R[[x,y]] and b(0,0) , 0. Then,

F(x,y) = (x+ ynA(x,y), y + ynB(x,y)), (2.5)

with A,B ∈ R{x,y}, n,k ∈ N∗, y ≥ 0 and B(0,0) , 0.

As before, there is a small enough domain U such that B(x,y) > 0 or that B(x,y) < 0 at every

point in U , we say that (U, (x,y)) is a regular monotonic domain. This expression can also

be extended to a greater domain, a neighborhood of a connected compact smooth subset of

E \S(F,p) and the Claim applies.

• Strict fixed points of type d and f-d-d: Let p ∈ S(F,π) be an adapted simple singularity of type

II b) (strict fixed point of type f-d-d) with E1 a non-dicritical component and E2 a bidicritical

curve, or an intersection point of a non-dicritical component E1 and a dicritical component

E2 of the divisor (strict fixed point of type d). The infinitesimal generator has expression as

in (1.8) or (1.9) in analytic coordinates (x,y) such that E1 = {y = 0} and E2 = {x − h(y) = 0}

ξ = (x − h(y))myn
(
a(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
with a,b ∈ R[x][[y]], n,m ∈ N∗ and a(0,0) , 0. As in (1.8), when E2 is a dicritical component of

the divisor, we consider h ≡ 0 and the germ of the space M at p is identified with {x ≥ 0, y ≥ 0}.
When it is a bidicritical curve, h is a convergent series since Fix(F) is analytic, and the germ of

the space is identified with {y ≥ 0}. The expression of the diffeomorphism is

F(x,y) = (x+ (x − h(y))nymA(x,y), y + (x − h(y))nym+1B(x,y)),

with A,B ∈ R{x,y}, n,m ∈ N∗, y ≥ 0 and A(0,0) , 0. In a small enough domain U , we can
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suppose that A(x,y) < 0 or A(x,y) > 0 for all points of U . Up to performing an analytic change

of coordinates z = x − h(y), w = y, we can always suppose that the diffeomorphism has the

following expression

F(x,y) = (x+ xnymA(x,y), y + xnym+1B(x,y)), (2.6)

with A,B ∈ R{x,y}, n,m ∈ N∗, y ≥ 0 and A(0,0) , 0, and again that A(x,y) < 0 or A(x,y) > 0 on a

small enough domain U .

In the rest of the chapter we will work in some realization of the quadrants at p (one in the

dicritical component case, or two in the bidicritical curve case). We will take as realizations

of the quadrants at p the domains U1 = U ∩ {x ≥ 0} and U2 = U ∩ {x ≤ 0} (this last case only if

there is a bidicritical curve). We call the charts (Ui , (x,y)) dicirtical domains, since for any point

p ∈ Ui either x(F(p)) ≥ x(p) or x(F(p)) ≤ x(p) (monotony) and the boundary curve {x = 0} is

dicritical. For simplicity, we will always suppose that we work in the positive quadrant of R2,

that is, in {x ≥ 0, y ≥ 0}, this assumption can be made by performing the change of coordinates

z = −x, w = y.

• Strict fixed point of types f-s-s, f-n-s, f-n-n, n and s. Let p ∈ S(F,π) be a strict fixed point

placed at an adapted simple singularity of type II a) (f-s-s, f-n-s and f-n-n) or at a corner

adapted simple singularity (n and s). Recall the expressions of the infinitesimal generators in

adapted coordinates (x,y) in (1.10) and (1.14) such that E1 = {y = 0} is a component of E and

E2 is another component of the divisor (p of type n,s) or a curve of fixed points (f-s-s, f-n-s and

f-n-n). That is,

ξ = (x − h(y))myn
(
a(x,y)

∂
∂x

+ b(x,y)
∂
∂y

)
(2.7)

with a,b ∈ R[x][[y]], h ∈ R{y}, n,m ∈ N∗ and the germ ofM at p is identified with y ≥ 0 when p is

of type f-s-s, f-n-s, f-n-n, or with x ≥ 0, y ≥ 0 (having h ≡ 0) when it is a corner. In addition, since

the singularity is simple adapted to E, we assume that the vector field S(ξ) = a(x,y) ∂∂x+b(x,y) ∂∂y
is saturated and has a simple singularity (in the classical sense) such that y = 0 is one of the

separatrices and that the other is given by the analytic equation x − h(y) = 0. Performing the

analytic change of coordinates z = x − h(y), w = y as in the previous item, we obtain, rewriting

again (x,y) = (z,w), that the vector field is now

ξ = xmyn
(
xsã(x,y)

∂
∂x

+ yr b̃(x,y)
∂
∂y

)
(2.8)

with a,b ∈ R[x][[y]], n,m,r, s ∈ N∗, 1 ∈ {s, r}, ã(0,0) , 0, b̃(0,0) , 0. Notice that the fact that

ã(0,0) , 0, b̃(0,0) , 0 follows from the properties of the refined reduction of singularities π,

highlighted in section 1.4.4. After the change of coordinates, notice that the two separatrices
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of the simple singularity of S(ξ) = xsã(x,y) ∂∂x + yr b̃(x,y) are the two coordinate axis. One of

the numbers r, s must necessarily be equal to 1, since at least one of the eigenvalues of S(ξ) is

different from 0. In these coordinates, the diffeomorphism F has expression

F(x,y) = (x+ xn+symA(x,y), y + xnym+rB(x,y)), (2.9)

with A,B ∈ R{x,y}, n,m,r, s ∈ N∗, 1 ∈ {s, r} and A(0,0) , 0, B(0,0) , 0. The domain is y ≥ 0

or y ≥ 0,x ≥ 0 when p is of type f-s-s, f-n-s, f-n-n, or of type n, s, respectively. Choosing a

small enough domain U , we have A(x,y) , 0,B(x,y) , 0 at every point in U . As in the previous

case, we will work separately on the realizations of the quadrants containing p. When p is

of type f-s-s, f-n-s, f-n-n, there are two quadrants and when it is of type s,n there is only

one. The realization of the quadrants are U1 = U ∩ {x ≥ 0} and U2 = U ∩ {x ≤ 0} (only for

the f-s-s, f-n-s and f-n-n cases). For simplicity and after applying the change of coordinates

z = −x, w = y, we will always suppose that we work on the positive quadrant of R2. If A and B

have the same sign on the domain Ui , we say that (Ui , (x,y)) is a node monotonic domain since

both coordinate functions x,y are monotonically increasing or decreasing on the orbits outside

the fixed points. Otherwise, if A,B have opposite sign in Ui , we say that (Ui , (x,y)) is a saddle

monotonic domain, since in this case, one of the functions x,y is monotonically increasing and

the other is monotonically decreasing.

• Strict fixed point of type s-s, n-n-1 and n-s. Let p ∈ S(F,π)be a strict fixed point placed at a

non-corner adapted simple singularity of type I. We suppose that the infinitesimal generator

has expression in analytic coordinates (x,y) for which E = {y = 0}

ξ = yn
(
a(x,y)

∂
∂x

+ yb(x,y)
∂
∂y

)
with a,b ∈ R[x][[y]], n,m ∈ N∗, and the germ ofM at p is identified with y ≥ 0. In addition, since

the singularity is simple adapted to E, the vector field S(ξ) = a(x,y) ∂∂x + b(x,y) ∂∂y is saturated

and has a simple singularity (in the classical sense) such that y = 0 is one of the separatrices and

that the other formal separatrix Γ is given by the formal equation x − ĥ(y) = 0. The expression

of the diffeomorphism is then

F(x,y) = (x+ ynA(x,y), y + yn+rB(x,y)),

withA,B ∈ R{x,y}, n,r ∈ N∗. Recall also that from Theorem 2.10, there exists a germ of parabolic

curve of F transverse to y = 0 and asymptotic to the formal invariant curve Γ . The graph of this

curve fulfills a C∞ equation x−h(y) = 0, so that the Taylor expansion at y = 0 is ĥ(y). Performing
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the C∞ change of coordinates z = x − h(y), w = y, and renaming (x,y) = (z,w), we get from the

above equation

F(x,y) = (x+ ynxsA(x,y), y + yn+rB(x,y)), (2.10)

with n,s, r ∈ N∗, 1 ∈ {s, r} and A,B ∈ C∞p with A(0,0) , 0, B(0,0) , 0. We remark that y is analytic

in any case, although x is C∞. Notice that both curves x = 0 and y = 0 are invariant curves, and

that s, r are taken to be maximal so that we have A(0,0) , 0, B(0,0) , 0 (they exist since both

components of F − Id are not flat in (x,y) components). The fact that 1 ∈ {r, s} follows since the

saturation of the infinitesimal generator has at least one non-zero eigenvalue. We take a small

enough neighborhood U such that A(x,y) , 0,B(x,y) , 0 for any (x,y) ∈U .

Then, we consider realizations of the two quadrants at p by taking U1 = U ∩ {x ≤ 0} and U2 =

U ∩ {x ≥ 0}. In a realization of a node quadrant Qi , the functions A and B have the same sign

on Ui , and we say that (Ui , (x,y)) is a node monotonic domain. In the realization of a saddle

quadrant Qi , the functions A and B have different sign, and we say that (Ui , (x,y)) is a saddle

monotonic domain. Notice that both coordinate functions x,y are monotonic on the orbits on

the domain.

• Strict fixed point of type n-n-2. Let p ∈ S(ξ,π) be a strict fixed point placed at a non-corner

adapted simple singularity of type I . We will treat this case in a different manner, since we

do not have a parabolic curve (although we use results from Section 2.2.2). We recall that the

diffeomorphism is expressed as (2.1) and recall the assumption ∗, which follows after Theo-

rem 2.12. That is, there is a positively invariant neighborhood of p in which the orbits con-

verge to p. We will call a chart (U, (x,y)) in which (2.1) and the assumption (*) applies a node

monotonic domain. For the sake of completeness of the section, we write again this expression.

F(x+ ynA(y)x+O(xyn+s+1) + y2n+2s+1b(y), y + ϵyn+s+1 +O(y2n+2s+1)),

where A ∈ R[y]≤s is a polynomial of degree lower than s and ϵ = +,−. Notice that the coordinate

y is monotonically increasing (ϵ = +) or decreasing (ϵ = −) in the orbits and convergence to p is

ensured by (*).

2.3 Local dynamics after reduction of singularities

In this section, we study the blown-up diffeomorphism F̃ of F after the reduction of singularities

π : (M,E)→ (R2,0) of its infinitesimal generator ξ. Suppose that we are given any representative

F : R→ R′, then, we will study F̃ in a neighborhood WE ⊂ π−1(R) of E as in Definition 2.13. We

will study F̃ locally at small compact subsets of the divisor E: strict fixed points and smooth

connected compact subsets of E \ S(F ,π), called regular arcs. Throughout this section, we will
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work in (M,E) and we will simplify the notation simply using F,ξ instead of F̃, ξ̃.

2.3.1 Dynamics over regular non-dicritical arcs

We define a regular non-dicritical arc as follows.

Definition 2.15. Let S(F,π) be the set of strict fixed points of F after the sequence of blowing-ups

π. A regular non-dicritial arc Γ (for F) is a connected compact subset of E \S(F,π) contained in a

non-dicritical component of the divisor.

Let Γ be a regular non-dicritical arc contained in a non-dicritical component of E. There

is a chart of (M,E) where ξ̃ ′ |Γ is a polynomial vector field that does not have singularities, cf.

section 2.2.4. The constant sign ξ̃ ′ |Γ induces an orientation in Γ , from one of the endpoints to

the other one. We will consider the total ordering on Γ on the points p ∈ Γ induced by this

orientation. Choose a monotonic domain (U, (x,y)) centered at some point of Γ with E = {y = 0}.
From section2.2.4, we may assume that U contains a neighborhood VΓ of Γ in which there are

constants CA, cA,CB > 0 such that, for (x,y) ∈ VΓ ,

F(x,y) = (x+ ynA(x,y), y + yn+kB(x,y)), 0 < cA ≤ A(x,y) ≤ CA and −CB ≤ B(x,y) ≤ CB, (2.11)

with n,k ≥ 1. The integer n coincides with that of equation

ξ = yn(a(x,y)
∂
∂x

+ b(x,y)
∂
∂y

)

of the infinitesimal generator. On the other hand, the integer k can be chosen differently after a

change of coordinates that is valid in a neighborhood of the dicritical arc, as the following result

shows.

Lemma 2.16. Let Γ be a regular non-dicritical arc and let (U, (x,y)) be a monotonic domain at some

p ∈ Γ with Γ ⊂ U so that F has the expression (2.11) with k = 1. Then, there exist another monotonic

domain (U ′(z,w)) with (z,w) centered at the same p ∈ Γ such that the expression of F (renaming (x,y) =

(z,w) in (2.11)) has k ≥ 2.

Proof. First suppose that Γ = (w1,w2) × {0} in coordinates (x,y). Notice that the infinitesimal

generator of F can be written as ξ = yn(a(x,y) ∂∂x + yb(x,y) ∂∂y ), where a,b ∈ R[x][[y]] and thus

the coefficients a(x,y) = a0(x) + a1(x)y + · · · with a0(x) > 0 at any point of Γ and b(x,y) = b1(x) +

b2(x)y+· · · . Let f be an analytic function that fulfills the ordinary differential equation a0(x)f ′(x)−
b1(x)f (x) = 0, which has solution defined in (w1,w2) since a0 , 0 at any point. Now, we define

the change of coordinates x = z, y = wf (z), obtaining that the infinitesimal generator in these
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coordinates is

ξ̃ = wn(f (z))na(z,wf (z))
∂
∂z

+wn+1(f (z))n(b1(z)wf (z)− a0(z)wf ′(z) + · · · ) ∂
∂w

Recalling the definition of f , we get a0(z)f ′(z) − b1(z)f (z) = 0, and hence after the change of

coordinates there is not a term of degree k + 1 in w in the coefficient ∂
∂w and neither will be at the

second component of F̃.

We name a neighborhood (VΓ , (x,y)) of Γ in which F is as (2.11) a monotonic domain along Γ .

We prove the following result.

Proposition 2.17. Let F be a diffeomorphism, Γ a non-dicritical regular arc and VΓ a monotonic do-

main along Γ . Denote by p1 < p2 the endpoints of Γ . For every neighborhood U2 ⊂ VΓ of p2 there is

some neighborhood ṼΓ of Γ such that for every p ∈ ṼΓ we have Orb+
VΓ

(p)∩U2 , ∅.

Proof. We assume that k > 1 thanks to Lemma 2.16. Put p1 = (w1,0) and p2 = (w2,0). Assume also

that VΓ contains an open box V (ε,δ) = (w1 − ε,w2 + ε) × [0,δ), for some ε > 0,1 > δ > 0 are small

enough. We choose the constants δ,ε such that they satisfy several hypotheses, namely:

(1-δ) The open set U2 contains a box (w2 − ε,w2 + ε)× [0,δ).

(2-δ) δ fulfills

δ <

(
2ε
CA

) 1
n

.

We require an additional condition, that we explain now. First, we bound the growth of the

monomials yn on the orbits inside a box V (ε,δ) as follows: if p = (x0, y0) ∈ VΓ and F(p) = (x1, y1),

from
1
yn1
− 1
yn0

=
1
yn0

 1

(1 + yn+k−1
0 B(x0, y0))n

− 1

 ,
we have

1
yn1
− 1
yn0

=
1
yn0

 1

(1 + yn+1
0 B̃(x0, y0))n

− 1

 =
1
yn0

yn+1
0 (nB̃+O(yn+1

0 ))

1 + yn+1
0 (nB̃+O(yn+1

0 ))
= y0nB̃+O(yn+1

0 )), B̃ = yk−2
0 B.

Then, there is a constant K0 ≥ 0 such that if both p = (x0, y0), F(p) = (x1, y1) ∈ V (ε,δ), then∣∣∣∣∣∣ 1
yn1
− 1
yn0

∣∣∣∣∣∣ ≤ K0y0 ≤ K0δ = Kδ, (2.12)

where Kδ := K0δ. Now we give the third condition of δ in terms of the previous equation.
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(3-δ) δ fulfills

1 ≤ exp
(
Kδ
cA

(w2 −w1)
)
< 2.

We take another constant δ̃ satisfying the following hypotheses.

(1-δ̃) δ̃ fulfills

δ̃n <

2− exp
(
Kδ
cA

(w2 −w1)
)

Kδ
.

(2-δ̃) δ̃ fulfills

δ̃n ≤
δn

(
2− exp

(
Kδ
cA

(w2 −w1)
))

1 + δnKδ
.

Finally we define the following function on y.

L(y) =
exp

(
Kδ
cA

(w2 −w1)
)
− 1

Kδyn
+ 1 (2.13)

We prove the following claim.

Claim. For every p = (x0, y0) ∈ V (ε, δ̃) there is some ℓp ∈ N such that

• ℓp ≤ L(y0)

• (xi , yi) = Fi(p) ∈ V (ε,δ) for every 0 ≤ i ≤ ℓp

• w2 − ε < xℓp < w2 + ε and yℓp < δ, that is, (xℓp , yℓp ) ∈U2.

Setting ṼΓ = V (ε, δ̃) and reminding that V (ε,δ) ⊂ VΓ , we have the thesis of this result, that is,

for any point p ∈ ṼΓ there is an iterate ℓ = ℓp with Fℓp(p) ∈U2 and Fi(p) ∈ VΓ for every 0 ≤ i ≤ ℓp.

Proof of the claim. From the bound in (2.12) and using the triangular inequality, we find the

following bound for the coordinate y on the orbits on V (ε,δ) of points p = (x0, y0) with y0 > 0:

yn0
1 + ℓKδy

n
0
≤ ynℓ ≤

yn0
1− ℓKδyn0

, (2.14)

valid as long as (xi , yi) ∈ V (ε,δ) for every 0 ≤ i ≤ ℓ and 1− ℓKδyn0 > 0. On the other hand, we find

a lower bound for the coordinate x on the orbits on V (ε,δ) with y0 > 0.

xℓ ≥ x0 + cA
ℓ−1∑
j=0

ynj ≥ x0 + cA
ℓ−1∑
j=0

yn0
1 + jKδy

n
0
≥ x0 +

cA
Kδ

log(1 + ℓKδy
n
0 ), (2.15)
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valid as long as (xi , yi) ∈ V (ε,δ) for every 0 ≤ i ≤ j. We have used the lower bound of A(x,y) in VΓ
in the first inequality, the lower inequality (2.14) in the second, and the classical integral criteria

for finding a lower bound of sums with decreasing terms in the third.

We fix a point (x0, y0) ∈ V (ε, δ̃) \ {y = 0}. Taking any ℓ ≥ L(y0)− 1, if the points (x0, y0), (x1, y1),

. . . , (xℓ−1, yℓ−1), (xℓ, yℓ) ∈ V (ε,δ), we have xℓ ≥ w2−ε. To see this it is enough to notice that the lower

bound of xℓ in (2.15) increases with ℓ. Then, consider ℓ ≥ L(y0)− 1 and plug L(y0)− 1 in the right

member of (2.15). This substitution leads to

xℓ ≥ x0 +
cA
Kδ

log

1 +


exp

(
Kδ
cA

(w2 −w1)
)
− 1

Kδy
n
0

Kδy
n
0

 = x0 +w2 −w1 ≥ w2 − ε,

where the last inequality follows from x0 ≥ w1 − ε. On the other hand, we also have that yℓ ≤ δ,

again under the condition that it is possible to define the ℓ iterate. To see this, it is enough to use

that y0 ≤ δ̃ and proceed as follows.

• Notice first that the upper bound in (2.14) stands since 1 − ℓKδyn0 ≥ 1 − L(y0)Kδy
n
0 > 0, which

can be seen by plugging the value of L(y0) in the former expression and using the bound of δ̃

given in the hypothesis (1-δ̃). More precisely:

1− ℓKδyn0 ≥1−

exp
(
Kδ
cA

(w2 −w1)
)
− 1

Kδy
n
0

+ 1

Kδyn0 = 2− exp
(
Kδ
cA

(w2 −w1)
)
−Kδyn0 ≥

≥2− exp
(
Kδ
cA

(w2 −w1)
)
−Kδδ̃n > 2− exp

(
Kδ
cA

(w2 −w1)
)
−Kδ

2− exp
(
Kδ
cA

(w2 −w1)
)

Kδ

 = 0.

• Now, we use (2.14), which is valid from the previous item. We have ynℓ ≤
yn0

1−ℓKδyn0
≤ yn0

1−L(y0)Kδy
n
0
≤

δn, which can be seen again by plugging the value of L(y0) and using now the bound of δ̃ given

in the hypothesis (2-δ̃). We have

ynℓ ≤
yn0

1−
(

exp
(
Kδ
cA

(w2−w1)
)
−1

Kδy
n
0

+ 1
)
Kδy

n
0

=
yn0

2− exp
(
Kδ
cA

(w2 −w1)
)
−Kδyn0

≤

≤ δ̃n

2− exp
(
Kδ
cA

(w2 −w1)
)
−Kδδ̃n

≤
δn

(
2−exp

(
Kδ
cA

(w2−w1)
))

1+δnKδ

2− exp
(
Kδ
cA

(w2 −w1)
)
−
(
δn

(
2−exp

(
Kδ
cA

(w2−w1)
))

1+δnKδ

)
Kδ

= δn

Since p = (x0, y0) ∈ V (ε, δ̃)\{y = 0}, either x0 > w2−ε or x0 ≤ w2−ε. In the first case, we already have

that p ∈U2, and the claim is proved in this case. Now, we end the proof in the latter. From the fact
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2.3. Local dynamics after reduction of singularities

that yj ≤ δ for j ≤ L(y0) and that xi ≥ w2 − ε for any i ≥ L(y0), there exists some 1 ≤ ℓp < L(y0) such

that xℓ ≤ w2 − ε and yℓ ≤ δ for ℓ < ℓp and xℓp > w2 − ε, that is, a first iteration in which xℓ > w2 − ε.

On the other hand, from the hypothesis (2-δ) and the fact that xℓp−1 ≤ w2 − ε, we have also that

xℓp ≤ xℓp−1 +CAy
n
ℓp−1 ≤ xℓp−1 +CAδn < xℓp−1 + 2ε ≤ w2 − ε+ 2ε = w2 + ε. ■

As a consequence of the above result and using the definition of the saturation of a set, notice

that ṼΓ ⊂ SatVΓ
(U2)∪ Γ .

Corollary 2.18. Let F be a diffeomorphism, Γ a non-dicritical regular arc and VΓ a monotonic domain.

Then for any p ∈ Γ and any neighborhood U of p, the set SatVΓ
(U )∪ Γ is a neighborhood of Γ .

Proof. Let p1 and p2 be the extreme points of Γ . We define two regular arcs: Γ1 from p1 to p and Γ2

from p to p2. We apply Proposition 2.17 to Γ1, the neighborhood U of p and the diffeomorphism

F, obtaining a neighborhood ṼΓ1
of Γ1 for which ṼΓ1

\ Γ1 ⊂ SatVΓ
(U ). On the other hand, we ap-

ply Proposition 2.17 to Γ2 and F−1, obtaining a neighborhood ṼΓ2
of Γ2 for which ṼΓ1

\Γ2 ⊂ SatVΓ
(U ).

Hence ṼΓ1
∪ ṼΓ2

⊂ SatVΓ
(U )∪ Γ is a neighborhood of Γ .

2.3.2 Dynamics over regular dicritical arcs

We start defining the regular dicritical arcs.

Definition 2.19. A regular dicritial arc Γ (for F) is a connected compact subset of E\S(F,π) contained

in a dicritical component of the divisor for ξ.

Let Ei ⊂ E be the dicritical component of E containing a regular dicritical arc Γ . Recall that

there is a neighborhood VΓ in which F has expression (2.5) in coordinates (x,y) centered at some

point of the dicritical arc. We prove the following result.

Proposition 2.20. Let F be a diffeomorphism, Γ a regular dicritical arc and VΓ a monotonic domain

for F. There is some neighborhood ṼΓ of Γ such that

(a) For any p ∈ ṼΓ \E we have that OrbVΓ
(p) is an infinite set.

(b) For any p ∈ ṼΓ \E the set ω(p) is a single point of E.

Proof. We start recalling the expression of F in VΓ

F(x,y) = (x+ ynA(x,y), y + ynB(x,y)),

with A,B ∈ R{x,y}, n,k ≥ 1, y ≥ 0 and B(0,0) , 0. Consider the extreme points of Γ with coor-

dinates p1 = (w1,0) and p2 = (w2,0) with w1 ≤ w2. Assume also that VΓ contains a box V (ε,δ) =
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(w1 − ε,w2 + ε)× [0,δ) for small enough 1 > δ > 0, ε > 0. Assume as in the previous paragraph that

if p0 = (x0, y0),F(p), . . . ,Fj(p) ∈ V (ε,δ), we denote Fj(p) = (xj , yj ).

We start finding a lower bound for 1
yτ1
− 1
yτ0

, for some τ satisfying n − 1
2 > τ ≥ n − 1, τ > 0 and

inside V (ε,δ) with δ sufficiently small. Using the bound B(x0, y0) ≤ −cB inside VΓ in (2.5), we find

that

1
yτ1
− 1
yτ0

=
1
yτ0

(
1

(1 + yn−1
0 B(x0, y0))τ

− 1
)
≥ 1
yτ0

(
1

(1− yn−1
0 cB)τ

− 1
)
≥ cBτyn−1−τ

0 +O(y2n−2−τ
0 ) ≥ C̃yn−1−τ

0 ,

(2.16)

for some C̃ > 0 (considering again that δ is small enough). Notice that n− 1− τ ≤ 0.

Now, we fix τ,µ and K satisfying:

• n− 1
2 > τ ≥ n− 1, τ > 0.

• µ = n
n− 1

2
.

• K > cA
C̃

From those constants, we define δ̃ fulfilling the following condition

δ̃µτ−n+1 <
ε

2K
.

We prove the following claim.

Claim. For every p = (x0, y0) ∈ V ( ε2 , δ̃) we have

a) Fℓ(p) ∈ V (ε,δ) for every ℓ ∈ N.

b) There is some q ∈ {y = 0} ∩V (ε,δ) such that q =ω(p).

As a consequence of this claim, we can choose ṼΓ = V ( ε2 , δ̃) which fulfills the thesis of this

Proposition.

Proof of the Claim. We start proving a). We bound |xℓ − x0| inside VΓ . We consider that xℓ − x0 =∑ℓ−1
j=0 y

n
j A(xj , yj ) and also that yn ≤ yτµ since τµ < n− 1

2

(
n
n− 1

2

)
= n.

|xℓ − x0| ≤
ℓ−1∑
j=0

CAy
n
j ≤

ℓ−1∑
j=0

CA(yτj )µ ≤ CA
ℓ−1∑
j=0

y
τµ
0

(1 + jC̃yn−1
0 )µ

≤ CA
∫ ℓ

0

y
τµ
0

(1 + sC̃yn−1
0 )µ

ds

≤CA
∫ ∞

0

y
τµ
0

(1 + sC̃yn−1
0 )µ

ds = CA(y
µτ−n+1
0

1

C̃(µ− 1)
+ y

µτ
0 ) ≤ Kyµτ−n+1

0 ,

for K defined as above and where we have used the bounds for A given in (2.5) on the first

inequality, the above consideration on the second, the inequality (2.16) on the third, the integral
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criteria of series with decreasing terms on the fourth inequality. The fifth inequality stands since

the function is strictly positive and the last inequality stands for δ small enough. Consider also

that µτ −n+ 1 > 0.

Taking any point, the existence of its first iterate in VΓ is granted since y is decreasing on the

orbits and |x1 − x0| ≤ Kδ̃µτ−n+1 < ε
2 . The existence of further iterates is also granted by induction,

since given the existence of (x1, y1), . . . , (xℓ−1, yℓ−1), we have 0 < yℓ < y0 and x0 − ε
2 ≤ xℓ ≤ x0 + ε

2 .

We prove now b). Notice that the positive orbit of any p ∈ V ( ε2 , δ̃) is confined in V (ε, δ̃) and

hence has accumulation points in V (ε, δ̃). In particular, the accumulation points of Orb+
V (ε,δ)(p)

must lie in the set of fixed points, namely {y = 0}. To see that it is a unique point, we prove

that given p0 = (x0, y0), the sequence {xℓ}ℓ∈N converges to some x∞, by proving that it is a Cauchy

sequence. To prove this, it is enough to use that the sequence {yℓ}ℓ∈N converges to zero and that

|xn − xn−1| ≤ Ky
µτ−n+1
n . Then, ω(p) = (x∞,0). ■

2.3.3 Dynamics on saddle quadrants

In this section, we deduce the dynamics on realizations of saddle quadrants in saddle monotonic

domains. The main result resembles Proposition 2.17, in the sense that, given a point in the

divisor and a neighborhood of it, we can find a whole open set that has the property in the

statement of 2.17. Before stating the result, let (Q,W ) be a realization of Q and (x,y) be adapted

coordinates at the saddle point p∗ defined on W . Suppose that the curve Γ ′ is oriented towards

the vertex and Γ oriented outwards. We denote this by Γ ′ ≤ Γ . Then, the diffeomorphism can be

written as in (2.10) or (2.9). Both cases can be summarized as

F(x,y) = (x+ xn+symA(x,y), y + xnym+rB(x,y)), x ≥ 0, y ≥ 0, (2.17)

with m ≥ 1, n ≥ 0, s, r ≥ 1, 1 ∈ {s, r} and A(x,y),B(x,y) ∈ C∞(W ) or A(x,y),B(x,y) ∈ R{x,y}. In

addition, Γ = {y = 0}, Γ ′ = {x = 0} and there exist bounds 0 < cA ≤ A(x,y) ≤ CA, −CB ≤ B(x,y) ≤
−cB < 0 inside W .

Proposition 2.21. Let (Q,W ) be a realization of a saddle quadrant on a saddle monotonic domain W .

Then, for every p2 ∈ Γ and every neighborhood U2 of p2 there is another saddle monotonic domain W̃

of p∗, such that, for every p ∈ W̃ \ (Γ ∪ Γ ′) we have Orb+
W̃

(p)∩U2 , ∅. In addition, Orb+
W̃

(p) is a finite

set and there is a non-empty subset W −esc ⊂W in which Orb−W (q) = {q} for q ∈W −esc, with the property

that W \W −esc is a neighborhood of E ∩W .

The set W −esc is called the negative escaping region of F in W and it contains the points whose

inverse image cannot be defined in W . Similar, we call positive escaping region W +
esc of F in W as

the negative escaping region of F−1.
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Proof. For the proof, we can assume that F is written as (2.17) with p2 = (w2,0) and that U2

contains a box neighborhood (w2−ε,w2+ε)×[0,δ) of p2 for some ε,δ > 0. The coordinate functions

y and x are monotonic in the orbits inside W \ (Γ ∪{p∗}∪ Γ ′), being y decreasing and x increasing.

That is, denoting (xj , yj ) = F((xj−1, yj−1)) for some (x0, y0) ∈W \(Γ ∪{p∗}∪Γ ′) such that Fi(x0, y0) ∈W
for every i such that 0 ≤ i ≤ j, we have that xj > xj−1 and yj < yj−1. We look for a neighborhood

W̃ = [0,w2 + ε)× [0, δ̃)∪ (w2 − ε,w2 + ε)× [0,δ) of p∗ = (0,0), for some δ̃ with δ > δ̃ > 0.

First, we find a bound for the amount x1−x0 for any point (x0, y0) ∈W ∩{x ≤ w2−ε}, using the

upper bound of the function A.

x1 − x0 ≤ xn+s
0 ym0 CA ≤ (w2 − ε)n+sym0 CA. (2.18)

Imposing y0 ≤ δ̃, with δ̃m ≤ 2ε
CA(w2−ε)n+s , we find that x1 − x0 ≤ 2ε. Together with the fact that

the coordinate y is decreasing on the orbits on W , this proves that for any point (x0, y0) ∈ ([0,w2 +

ε) × [0, δ̃))∩ {x ≤ w2 − ε} such that (x1, y1) < ([0,w2 + ε) × [0, δ̃))∩ {x ≤ w2 − ε}, we necessarily have

(x1, y1) ∈ W̃ = [0,w2 +ε)×[0, δ̃). In other words, any orbit starting at W̃ cannot "jump horizontally"

the set U2.

Now, we check that indeed every point p in W̃ \(Γ ∪{p∗}∪Γ ′) fulfills that there is some ℓp ∈ Z≥0

such that Fℓp(p) ∈ U2. Suppose that x(p) ≤ w2 − ε, since otherwise the point p belongs already

to U2. Suppose by contradiction that there is not such an iterate. Then, since y is decreasing

and the upper bound x1 − x0 ≤ 2ε we found above, the positive orbit Orb+
W (p) of p must have

accumulation points in the closure W̃ ∩ {x ≤ w2 − ε}. By the increasing x condition, we find that

no point in Γ ′ ∪ {p∗} can be an accumulation point for Orb+
W (p), since 0 < x0 < xj for every j > 0.

On the other hand, we find that no point q in Γ can be an accumulation point since either Γ is

part of a non dicritical component of the divisor, a curve of fixed points or it is part of a parabolic

curve. In the first two cases there is some regular non-dicritical arc inside Γ that contains q and

this regular arc fulfills Proposition 2.17, which implies that q is not an accumulation point. In

the second case, q is not a fixed point, and hence it can neither be an accumulation point. The

rest of the points can neither be accumulation points since they are not fixed. Hence, we find

a contradiction and conclude that the orbit Orb+
W̃∩{x≤w2−ε}

(p) is finite. Then, let (xℓ−1, yℓ−1) be

the last iterate of p = (x0, y0) in the region W̃ ∩ {x ≤ w2 − ε}. Its image in W̃ lies in the region

W̃ ∩{x > w2−ε,y < yℓ−1} because of the bound in (2.18) and the fact that y decreases on the orbits

in W̃ . Finally, since this region belongs to (w2 − ε,w2 + ε)× [0,δ) ⊂ U2, we conclude that p has an

iterate in U2, as we wanted to prove.

With the same arguments, we can also prove that Orb+
W (p) is finite, since W is relatively

compact in M and there cannot be accumulation points of Orb+
W̃

(p) in the closure of W . This

implies that for every point p ∈W , there exists −mp ∈ Z≤0 such that F−mp(p) ∈W −esc defined in the
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statement, which implies that W −esc is non-empty. Finally, to see that W \W −esc is a neighborhood

of E ∩W , it is enough to consider that E ∩W ⊂ Fix(F). By continuity, there is a neighborhood of

E ∩W whose image is contained in the open set W .

Notice that the above result implies that W̃ ⊂ SatW (U2), and hence SatW (U2) is a neighbor-

hood of p∗.

Corollary 2.22. For any p1 ∈ W ∩ E and any neighborhood U1 ⊂ W of p1, the set SatW (U1)∪ (Γ ∪
{p∗} ∪ Γ ′) is a neighborhood of W ∩E in W .

Proof. It is enough to apply Proposition 2.21 to the point p1 and U1 either for F if p1 ∈ Γ or

F−1 if p1 ∈ Γ ′. Hence, we obtain a neighborhood W̃1 of p∗ that is contained in SatW (U1) and

that it is a neighborhood of W̃1 ∩ E. To see that the saturation SatW (U1) is a neighborhood of

the rest of the points of E, we take any point q ∈ E ∩ W̃1 ⊂ SatW (U1) ∪ (Γ ∪ {p∗} ∪ Γ ′) and any

neighborhood Uq ⊂ W̃1. Suppose that Γ ⊂ E and that q ∈ Γ ⊂ E. Then for any other point, q′ ∈ E,

we define the regular non-dicritical arc Γq,q′ and apply Corollary 2.18. We find SatW (Uq)∪ Γ ⊂
SatW (U1)∪ (Γ ∪ {p∗} ∪ Γ ′) is a neighborhood of q′. We do the same process when Γ ′ ⊂ E, choosing

q ∈ Γ ′ so that SatW (U1)∪ (Γ ∪ {p∗} ∪ Γ ′) is also a neighborhood of any other point in Γ ′.

2.3.4 Dynamics over paths of divisor saddle quadrants

Now, we prove another result on transition. Let (Q2, . . . ,Qs−1) be a path of quadrants (cf. Defini-

tion 1.39) with Q2 = (v2, e1, e2) and Qi = (vi , ei−1, ei) for i = 2, . . . , s. Let p2, . . . ,ps−1 be strict fixed

points corresponding to the vertices v2, . . . , vs−1. We say that Q = (Q2, . . . ,Qs−1) is a path of divisor

saddle quadrants if the following are fulfilled

• Each Qi is a saddle quadrant.

• The edges ei ∈ Ediv for every i = 1, . . . s − 1.

We denote γe = Supp(e) as in Section 2.2.3. In particular for the path of divisor saddle quad-

rants, we have γei ⊂ E for each i = 1, . . . , s − 1. Notice that the path of divisor saddle quadrants

can always be extended to other path of quadrants. This is because the edges e1 and es−1 are

divisor edges adjacent to some other vertex in Vdiv say v0 for e1 and vs for es−1. We take the path

(Q1,Q2, . . . ,Qs−1,Qs) with Q1 = (v1, e0, e1) and Qs = (v1, es−1, es), where e0, es < {e1, . . . , es−1}.

Proposition 2.23. Let (Q2, . . . ,Qs−1) be a path of divisor saddle quadrants, EQ = γe1
∪{p2}∪. . .∪{ps−1}∪

γes−1
⊂ E the corresponding components of the divisor associated to this path. For any neighborhood V

of EQ, there is other neighborhood UQ of EQ with the following properties. Take any point ts−1 ∈ γes−1
,

and other point t1 ∈ γe1
and any neighborhood U ′s−1 of ts−1, we have
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1. (Transition) There is a neighborhoodU1 of t1 such that for every p ∈U1\E there is some qp ∈U ′s−1

such that qp = Fℓp (p) and Fi(p) ∈UQ for 0 ≤ i ≤ ℓp.

2. For any neighborhood U1 of t1, the set SatVQ
(U1)∪EQ is a neighborhood of EQ.

Proof.

UQ =

 s⋃
i=1

Wi

∪
s−1⋃
i=1

Vγi

∩V
where

• W1, . . . ,Ws are mutually disjoint and defined by

– (Q2,W2), . . . , (Qs−1,Ws−1) are realizations of saddle quadrants on mutually disjoint con-

vex saddle monotonic domains W2, . . . ,Ws−1 with the property that they are contained

in V . We also impose that they are mutually disjoint

– When p1, or respectively ps, are not of type n-n-2, we will as well take a realization

(Q1, W̃1) of the quadrant Q1 (resp. a realization (Qs, W̃s) of Qs) in the corresponding

saddle, node or dicritical monotonic domain. We will also suppose that each Wi is

convex. In case the strict fixed points p1 (resp. ps) is of type n-n, we take a joint

realization (Q1,Q,W̃1) of Q1 and the other quadrant Q having the vertex v1 (resp. a

joint realization (Qs,Q,W̃s) of Qs and the other quadrant Q having vs), but in order to

unify the notation on the collection of cases, we will simply denote these by (Q1, W̃1)

(resp. (Qs, W̃s)). Then, we intersect them with the domain of work, that is, Wi = W̃i ∩V
for i = 1, s.

• Let Γi = γei∩Wi and Γ ′i = γei∩Wi+1 for each i = 1, . . . , s−1. We select points q1 ∈ Γ1, q′1 ∈ Γ
′
1, . . .,

q′s−1 ∈ Γs−1. As we can take q1 as close to p1 as desired, we will take q1 so that q1 lies between

p1 and t1. Symmetrically, we take q′s−1 so that q′s−1 lies between ps and ts−1. Notice that

every couple of points qi ,q′i lie on the same component γei of the divisor, for i = 1, . . . , s − 1,

but qi ∈Wi and q′i ∈Wi+1. We define the non-dicritical arcs γi ⊂ γei limited by qi ≤ q′i , and

consider mutually disjoint monotonic domains Vγi ⊂ V , defined as in section 2.3.1.

The construction of UQ is sketched in Figure 2.6 for an example in which the path of divisor

saddles is given by (Q2,Q3) and an extension is given by (Q1,Q2,Q3,Q4), where Q1 is a saddle

quadrant, Qs is a node quadrant and ps is a n-n-2 point.

We prove the first part of this result by recursively applying Propositions 2.17 and 2.21. First,

take the dicritical arc βs−1 between q′s−1 and t′s−1 and a monotonic domain Vβs−1
⊂ Vγs−1

. We apply

Proposition 2.17 to this arc, obtaining Ṽβs−1
. We choose Us−1 ⊂ Ws−1 ∩ Ṽβs−1

. Now, we apply the

following steps.
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2.3. Local dynamics after reduction of singularities

Figure 2.6: An example of the construction of the set UQ for a path of quadrants Q

Step i.b Consider the saddle monotonic domain Wi and take from the previous step Ui ⊂
Wi ∩ Ṽγi a neighborhood of qi , or Us−1 obtained as before it this is the first step. We apply

Corollary 2.22 to these elements, obtaining W̃i = SatWi
(Ui) with the property that every

point in W̃i has an iterate in Ui and W̃i is a neighborhood of Γ ′i−1 ∪ {p∗} ∪ Γi ⊂ E. We take a

neighborhood U ′i−1 ⊂ Vγi−1
∩ W̃i of the point q′i−1.

Step i.a Consider the non-dicritical arc γi and the neighborhood U ′i ⊂ W̃i+1 ∩Vγi of q′i de-

fined on the previous step. We apply Proposition 2.17 to these elements, obtaining Ṽγi
fulfilling the property that every point in Ṽγi has an iterate in U ′i . In particular, Ṽγi ⊂
SatVγi (U

′
i )∪Vγi . We take a neighborhood Ui ⊂ Ṽγi ∩Wi of qi .

We apply steps (s-1).b, (s-2).a, (s-2).b . . ., 2.b. We obtain a neighborhood U ′1 of q′1. Defining the

regular non-dicritical arc β1 between t1 and q′1 and a monotonic domain Vβ1
⊂ Vγ1

, we apply

Proposition 2.17 to U ′1 ∩Vβ1
, obtaining Ṽβ1

⊂ Vβ1
with the property that Vβ1

⊂ SatVβ1
(U ′1). Then,

we claim that any neighborhood U1 ⊂ Ṽβ1
of t1 fulfills the first statement. Let p ∈ U1 \ E. Since

U1 ⊂ Ṽβ1
and Ṽβ1

is obtained from Proposition 2.17, there is ℓ1,a such that Fℓ1,a(p) ∈ U ′1 and the

intermediate iterates remain in Vβ1
⊂ Vγ1

⊂UQ. Then, by Proposition 2.21, there is some ℓ2,b such
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that Fℓ2,b(Fℓ1,a(p)) ∈ U2 and the intermediate iterates lie in W2 ⊂ UQ. Following this reasoning,

we find that ℓp ∈ N such that Fℓp(p) ∈ U ′s−1 and the intermediate iterates lie in UQ. It is given by

ℓp = ℓ1,a + ℓ2,b + ℓ2,a + · · ·+ ℓs−1,a. Applying Proposition 2.17, we have that the orbit of Fℓp (p) either

abandons Vγs−1
or reaches Ws.

We end proving that SatUQ
(U1)∪ (EQ) is a neighborhood of EQ for any neighborhood U1 of t1

(notice that the points p1,ps are excluded from EQ). It is enough to apply Corollaries 2.18 and 2.22

at each step. First, take any point q′′1 in γe1
and define the dicritical arc γ ′′1 between t1 and q′′1 .

Corollary 2.18 implies that SatUQ
(U1)∪γe1

is a neighborhood of q′′1 . Now take the neighborhood

SatUQ
(U1) ∩ U ′1, its saturation SatUQ

(SatUQ
(U1) ∩ U ′1) ⊂ SatUQ

(U1) when adjoining Γ ′1 ∪ Γ2, it is

a neighborhood of p2 and the segments Γ ′1 and Γ2 by Corollary 2.22, hence so is SatUQ
(U1). We

apply Corollaries 2.18 and 2.22 to each SatUQ
(U1)∩Ui and SatUQ

(U1)∩U ′i , concluding finally that

SatUQ
(U1) is a neighborhood of γe1

∪· · ·∪γes−2
∪Γs−1∪γs−1. We end by proving that SatUQ

(U1)∪γes−1

is a neighborhood of γes−1
. It is enough to use, as before, Corollary 2.18 in the non-dicritical arc

defined between ts−1 and any other point q′′s−1 to prove that SatUQ
(U1)∪γes−1

is a neighborhood of

q′′s−1 and conclude that SatUQ
(U1) is a neighborhood of EQ.

2.3.5 Dynamics on node quadrants

In this section, we will introduce results on the dynamics on node monotonic domains. The node

monotonic domains can be realization of a single quadrant or a joint realization of two node

quadrants adjacent to the same vertex, depending on the type of point that p is. We will also prove

that in general we cannot obtain a full neighborhood of p∗ by saturating arbitrary neighborhoods

of arbitrary points of the divisor, as we did before for saddles. We will distinguish two cases:

strict fixed points of type f-n-n, f-n-s, n-s, n-n-1 and n, which have a node quadrant and for

which realizations of the node quadrants can be defined (as quadrants in the geometric sense),

and strict fixed points of type n-n-2, which have two node quadrants but only joint realizations

exist (as half spaces in the geometric sense).

Quadrants

Suppose that p∗ is a strict fixed point Let (Q,W ) be a realization of Q with (W, (x,y)) a node

monotonic domain at p∗. Let Γ ′ = {x = 0, y > 0},Γ = {y = 0,x > 0}. Then, the diffeomorphism

is expressed as in (2.9) or as in (2.10) in a node monotonic domain, in which both coordinate

functions are decreasing on the orbits inside W \ (Γ ∪{p∗}∪ Γ ′). Both expressions are summarized

in

F(x,y) = (x+ xn+symA(x,y), y + xnym+rB(x,y)), (2.19)
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2.3. Local dynamics after reduction of singularities

with A,B ∈ R{x,y} or A,B ∈ C∞(W ), m,r, s ≥ 1,n ≥ 0, 1 ∈ {s, r} and A(0,0) < 0, B(0,0) < 0. Notice

also that Supp(G(ξ,π))∩W = Γ ∪ {p∗} ∪ Γ ′.

Proposition 2.24. Suppose for instance that Γ ⊂ E. For every p ∈ Γ and any neighborhood U of p, the

set SatW (U )∪ (Γ \ {p∗}) is a neighborhood of (Γ \ {p∗}).

Proof. Recall that the expression of F is given by (2.19), that Γ = {y = 0} and Γ ′ = {x = 0} and that

we can assume there exist bounds −CA ≤ A(x,y) ≤ −cA < 0, −CB ≤ B(x,y) ≤ −cB < 0 inside W .

Take any p ∈ Γ , and any neighborhood U of p. To see that SatW (U )∪ (Γ ) is a neighborhood

of any q ∈ Γ , we directly apply Corollary 2.18 for the regular non-dicritical arc B between p,q.

Noticing that W ∩ {x > µ} with µ < x(p),x(q) is a monotonic domain for B, we apply the result

for either F or F−1, depending on q ≤ p or p ≥ p and the neighborhood U of p, obtaining Ṽ ⊂
SatW (U )∪ (Γ \ {p∗}), which is a neighborhood of q.

Using only arguments of monotony, we prove that any box type neighborhood of a point

inside one component Γ or Γ ′ cannot fill in a full neighborhood of the corner p∗.

Proposition 2.25. With the same notations as above, let p = (w,0) ∈ Γ = {y = 0} and letU = (w−ε,w+

ε)× [0,δ) for some 0 < ε < w and some δ > 0. Then, SatW (U )∪ Γ ∪ {p∗} ∪ Γ ′ is not a full neighborhood

of p∗.

Proof. Take any point p′ = (0,w′) ∈ Γ ′ with w′ > δ and a box neighborhood U ′ = [0, ε′) × (w −
δ′ ,w + δ′) with 0 < δ′ < w′ − δ and ε′ < w − ε. Using Proposition 2.24, we get that SatW (U ′) is a

neighborhood of Γ ′. Suppose by contradiction that SatW (U )∪ Γ ∪{p∗}∪ Γ ′ is a neighborhood of p∗.

Hence, there is a point q ∈ SatW (U ′)∩SatW (U ). Then, there is some ℓ > 0 such that F−ℓ(q) ∈U and

there is some ℓ′ > 0 such that F−ℓ
′
(q) ∈ U ′. Hence, x(F−ℓ(q)) > w − ε > ε′ and y(F−ℓ(q)) < δ < w − δ′

and x(F−ℓ
′
(q)) < ε′ < w−ε and y(F−ℓ

′
(q)) > w′−δ′ > δ. Supposing that ℓ′ > ℓ, we find a contradiction

with the fact that x is decreasing on the orbits of F. Supposing that ℓ > ℓ′, we find a contradiction

with the fact that y is decreasing in the orbits of F.

In the following remark, we give some comments on the form that the saturations of box

neighborhoods can take.

Remark 2.26 (On estimations on the saturation of box neighborhoods). Here, we just want to

remark in which regions the saturation of box neighborhoods of points of the divisor lie. That

is, sets of the form U = (w − ε,w + ε) × [0,δ) as in the previous result. We can assume that F is

written as in (2.9) or as in (2.10) with Γ = {y = 0}, Γ ′ = {x = 0} and that −CA ≤ A(x,y) ≤ −cA < 0,

−CB ≤ B(x,y) ≤ −cB < 0 inside W . We suppose first that r = 1 and s ≥ 1. Let p = (x0, y0) ∈W and

denote (xj , yj ) the coordinates of Fj(p). We estimate the growth of yj /x
k
j for some k ∈ N∪ (1/N∗).
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

Using the bounds for the functions A and B, we find the following

y1

xk1
−
y0

xk0
≤
y0

xk0

(
1−CBxn0y

m
0

(1− cAxn+s−1
0 ym0 )k

− 1
)
≤
y0

xk0
xn0y

m
0 (−CB + kcAx

s−1 +O(xn0y
m
0 )).

Since s ≥ 1, we can choose k ∈ N ∪ (1/N) for which y/xk is decreasing along the orbits. Take

κ = supp∈U

{
y(p)
x(p)k

}
and any k ∈ N∪ (1/N∗) so that the function y/xk is decreasing on the orbits. We

find that for every p ∈ U we have OrbW (p) ⊂ {(x,y) ∈W \ Γ ′ : y/xk ≤ κ}. This gives another proof

of Proposition 2.25, that is , SatW (U ) ∪ Γ ∪ {p∗} ∪ Γ ′ cannot be a full neighborhood of p∗, since

every neighborhood of p∗ has non-empty intersection with the set {(x,y) ∈W \ Γ ′ : y/xk ≥ κ}. For

a more careful analysis, we distinguish two cases. When s > 1, the function y/xk is decreasing on

the orbits for any choice of k. In short words, this means that the coordinate y of the orbits in

the saturation of U decreases exponentially with x (the neighborhood where monotonicity holds

depends on k). On the other hand, when s = 1, we can just assume that there is a choice of

k ∈ N∪ (1/N∗) such that y/xk is decreasing on the orbits.

When r > 1 and s = 1, we find a new estimation

x1

yk1
− x0

yk0
≤ x0

yk0
xn0y

m
0 (−CA + cBky

r−1
0 +O(xn0y

m
0 )),

which implies that for every k ∈ N∪(1/N) the function x/yk is decreasing in the orbits if y0 is small

enough depending on k. Using this estimation, we find that the saturation of U may approach

exponentially the curve Γ ′.

Half-spaces

Now, the diffeomorphism on a realization (Q1,Q2,W ) of two adjacent node quadrants at p ∈ E in

a node monotonic domain W is expressed as in (2.1). We summarize that expression.

F(x,y) = (x+ ynxA(x,y) + y2n+2s−1b(y), y + yn+s−1B(x,y)), (2.20)

with A,B ∈ R{x,y}, n,s ≥ 1 and B(x,y) < 0. Let Γ = E ∩ {x > 0} ∩W and Γ ′ = E ∩ {x < 0} ∩W . Notice

that now, the curves Γ and Γ ′ are not transverse. Recall also, that there is a formal invariant curve

γ transverse to E at p∗, in which the diffeomorphism is formally attracting.

Proposition 2.27. Let (Q1,Q2,W ) be a realization of two adjacent node quadrants at p∗ on a node

monotonic domain W . Then, for every p ∈ Γ (respectively p′ ∈ Γ ′) and neighborhood U of p (U ′ of p′)

the set SatW (U )∪ Γ is a neighborhood of Γ (SatW (U ′)∪ Γ ′ is a neighborhood of Γ ′).

Proof. The proof of this result follows from the application of Corollary 2.18. We apply this result

90



2.3. Local dynamics after reduction of singularities

to every non-dicritical arc defined between each q ∈ Γ (or q ∈ Γ ′, correspondingly) with q , p and

p.

2.3.6 Dynamics on dicritical quadrants

In this section, we will introduce the results concerning the dynamics on realizations of dicritical

quadrants. We will prove that there are dicritical monotonic domains which are positively or

negatively invariant for F. We will prove that the orbits inside such dicritical monotonic domains

accumulate either for positive or negative iterates into the dicritical curve, and that no orbit

accumulates into the corner point. We will also prove existence of parabolic curves on every

point of the dicritical curve. We will assume that Q is an attracting dicritical quadrant, but the

results can be applied also for F−1 in the case of repelling dicritical quadrants.

Let (Q,W ) be a realization of Q and (x,y) the coordinates at p∗ defined on the dicritical mono-

tonic domain W . Suppose that Γ is a non-dicritical component of the divisor given by {y = 0} and

that Γ ′ is a dicritical curve given by {x = 0}, which can be a component of the divisor or not. The

diffeomorphism is thus given by (2.6).

Proposition 2.28. Let (Q,W ) be a realization of a dicritical quadrant such that W is a dicritical

monotonic domain, Γ is a non-dicritical component of the divisor and Γ ′ is an (attracting) diciritcal

component of the divisor or a bidicritical curve. There exists two other dicritical monotonic domains

W̃1 ⊂ W̃2 ⊂W such that

1. For every p ∈ W̃1 \ (Γ ∪ {p∗} ∪ Γ ′), the orbit Orb+
W̃2

(p) is infinite.

2. For every p ∈ W̃1 \ (Γ ∪ {p∗} ∪ Γ ′), there exists a single q =ω(p) with q ∈ Γ ′.

3. For every p ∈W \ (Γ ∪ {p∗} ∪ Γ ′), the orbit Orb−W (p) is finite.

4. For every point p ∈ Γ and every open neighborhood U of p, SatW (U )∪ (Γ ∪ {p∗} ∪ Γ ′) is a neigh-

borhood of Γ ∪ {p∗}.

5. The function φ : W̃1 \ (Γ ∪ {p∗} ∪ Γ ′)→ Γ ′ defined by φ(p) = ω(p) is continuous.

Proof. We recall the expression of the diffeomorphism given in (2.6) on a dicritical monotonic

domain

F(x,y) = (x+ xnymA(x,y), y + xnym+1B(x,y)), x ≥ 0, y ≥ 0,

with A(0,0) < 0, Γ = {y = 0} and Γ ′ = {x = 0}. Notice that the coordinate x decreases on the orbits

of the points in W \ (Γ ∪ {p∗} ∪ Γ ′), in particular there exist bounds −CA ≤ A(x,y) ≤ −cA < 0, −CB ≤
B(x,y) ≤ CB. We will show that the orbits of the diffeomorhism fulfill some bounds, which will
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be used along the proof. We will suppose first that W is sufficiently small so that the following

bound stands for every point p = (x0, y0) out of Γ ∪ {p∗} ∪ Γ ′.

1
xτ1y

m
1
− 1
xτ0y

m
0
≥ 1
xτ0y

m
0

(
1

(1− xn−1ymA(x0, y0))τ (1 + xnym(x0, y0))m
− 1

)
≥ τcAxn−1−τ

0 +O(xn−τ0 ) (2.21)

That is, up to taking a dicritical monotonic domain at p∗ smaller than W , we can suppose that

1
xτ1y

m
1
− 1
xτ0y

m
0
≥ C̃, (2.22)

for some C̃ > 0. If the iterates (xi , yi) = Fi(x0, y0) exist and belong to W up to some j ≥ 0, we have

xτj y
m
j ≤

xτ0y
m
0

1 + jC̃xτ0y
m
0

, (2.23)

which follows from the bound in (2.22). We want to bound |yℓ − y0| for some ℓ such that (xi , yi) =

Fi(x0, y0) exist and are contained inW for i with 0 ≤ i ≤ ℓ. Following the same idea as in the proof

of Proposition 2.20, we can bound xnym+1 ≤ (xτym)µ for any 1 < µ = min{ n
n− 1

2
, m+1
m }.

|yℓ − y0| ≤CB
ℓ−1∑
j=0

xnj y
m+1
j ≤ CB

ℓ−1∑
j=0

(xτj y
m
j )µ ≤ CB

ℓ−1∑
j=0

(xτ0y
m
0 )µ

(1 + jC̃xτ0y
m
0 )µ
≤ CB

∫ ℓ

j=0

(xτ0y
m
0 )µ

(1 + tC̃xτ0y
m
0 )µ

dt ≤

≤CB
∫ ∞
j=0

(xτ0y
m
0 )µ

(1 + tC̃xτ0y
m
0 )µ

dt ≤ CB

xτµ0 ym0 µ+
x
τ(µ−1)
0 y

m(µ−1)
0

C̃(µ− 1)

 ≤ C0x
τ(µ−1)
0 y

m(µ−1)
0 ,

(2.24)

for some C0. We have used first the bound of the function B, secondly the aforementioned bound

of the monomials xnj y
m
j , later (2.23) and then the integral criteria for series with decreasing terms.

Integrating on a larger domain, we have found a uniform bound, that is, a bound which does not

depend on ℓ. Finally, up to reducing more the domain W , the last bound is valid.

We have the following claim, which we prove in the end of the proof of Proposition 2.28.

Claim (1). For every point p = (0,w) ∈ Γ ′, let D̃w = (3w
4 ,

5w
4 )× [0, ε) and Dw = (w2 ,

3w
2 )× [0, ε). Then,

there is some ε = ε(w) such that for each q ∈ D̃w \ Γ ′ the orbit Orb+
Dw

(p) is infinite and there is

some pq ∈ Γ ′ ∩Dw such that ω(q) = pq. In addition, ε can be taken ε = wk for some k ∈ N with

k > 1−m(µ−1)
τ(µ−1) .

• Proof of the first statement. We prove that there are two dicritical monotonic domains such

that W̃1 ⊂ W̃2 such that for every p ∈ W̃1 \ (Γ ∪ {p∗} ∪ Γ ′), the orbit Orb+
W̃2

(p) is infinite. It is

enough to select a box D̃w obtained by using Claim (1), and define W̃1 = [0, ε) × [0, 5
4w) and

W̃2 = [0, ε)× [0, 3
2w). On the one hand, given any point p = (x0, y0) in W̃1, its positive orbits lies
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in {x ≤ x0} and x0 < ε, which means that if the orbit is finite, there is an iterate with yℓ ≥ 3
2w.

However, the bound in (2.24) implies that yℓ − y0 ≤ 1
4w.

• Proof of the second statement. We need to prove that no orbit accumulates at p∗ = (0,0). Using

the previous claim, we find that D̃ =
⋃
w>0 D̃w is a region that fulfills the following: the orbit

of any point q ∈ Dw converges to Γ ′ \ {p∗}. Considering also that ε of D̃w can be chosen to be

ε(w) = wk for some k ∈ N, we notice that the boundary curve of this region is γ = {x = C3y
k} for

some C3.

Now, we will make k new blowing-ups in order to separate the curves Γ ′ and γ = {x = C3y
k},

which intersect at p∗. We start blowing up p∗. We obtain a new non-dicritical component E1

of the divisor free of inner strict fixed points and two points: a saddle point p1 at the inter-

section of E1 and the strict transform of Γ , and a dicritical corner p1∗ at the intersection of E1

and the strict transform of Γ ′. In the usual chart of the blowing-up in the direction of y, we

take coordinates (x′ , y′) and we find that the strict transform of γ has equation x′ = C2(y′)k−1.

We recursively blow up the point pi∗ obtaining a new component of the divisor Ei+1 and two

points: a saddle point pi+1 at the intersection of Ei and Ei+1 and a dicritical corner pi+1∗ at the

intersection of Ei+1 and the strict transform of Γ ′. After k blowing-ups, we find that the strict

transform of γ has equation x(k) = C3 (in the usual coordinates (x(k), y(k)) at pk∗ after blowing-

up). We make an example with k = 2 on Figure 2.7

Figure 2.7: Example of sets D and D̃ with boundary γ .

If any orbit accumulated into p∗, it should accumulate into E1 ∪ · · · ∪Ek after performing these

blowing-ups. However, we find that every point at Ei is regular for every i such that 1 ≤ i ≤ k,

except its corners, and the points p1, . . . ,pk are saddle points. We have already proved in the

previous sections that any of these points cannot be an accumulation point of an orbit. The only

point left to study is pk∗. Nevertheless, we have that pk∗ is in the interior of the strict transform

of D̃, where all the points accumulate to Γ ′ \ {p∗}. We conclude then the second statement.
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

• Proof of the third statement,. We suppose that the negative orbit of some p ∈ W̃1 \ (Γ ∪{p∗}∪ Γ ′)
is not finite. This implies that there exists an accumulation point of Orb−

W̃2
(p) in W̃2. Since

x(p) > 0 and x is increasing for F−1, the points in Γ ′ ∪ {p∗} cannot be accumulation points of

Orb−
W̃2

(p). On the other hand the points on Γ are regular fixed points, and each of them belongs

to a non-dicritical arc. Hence, they are neither accumulation points. Finally, the rest of the

points of W̃2 are regular, and they can neither be accumulation points.

• Proof the fourth statement. We see first the following claim, which is a weaker version of the

statement. Before stating the claim, and for technical reasons, notice that the inverse F−1 of F

has the expression

F−1(x,y) = (x+ xnymÃ(x,y), y + xnym+1B̃(x,y)), x ≥ 0, y ≥ 0,

with A(0,0) > 0, and in F(W )∩W it has bounds 0 < c̃A ≤ Ã(x,y) ≤ C̃A and −C̃B ≤ B(x,y) ≤ C̃B. For

technical reasons as well, we will suppose that we work on some dicritical monotonic domain

W1 ⊂ W̃1 that is relatively compact in W̃1.

Claim (2). For any Ũ = (a1, a2) × [0,b) ⊂ F(W1) where 0 < a1 < a2 are chosen freely and b > 0

fulfills a2 − a1 ≥ C̃Aan1bm, we have SatW (Ũ ) is a neighborhood of p∗.

It is enough to prove this claim since given any neighborhood U of p ∈ Γ , and given any other

point r ∈ Γ ∩ F(W1), there is a box neighborhood as Ũ of the statement contained in SatW̃ (U ).

This is achieved by selecting a2 > x(r) and a1 < x(r) and then defining the non-dicritical arc

between (a1,0) and p. There is a small enough b that fulfills simultaneously the hypothesis

of the claim and that Ũ is contained in the neighborhood of the non-dicritical arc obtained in

Proposition 2.17.

• Proof of the last statement. Let p ∈ W1, from the second statement, we have that {q} = ω(p).

Then φ(p) = q. Take any neighborhood Iq of q ∈ Γ ′ and take any Uq of q such that (Uq ∩ Γ ′) ⊂ Iq.
Necessarily the set Uq is a neighborhood of a small dicritical arc γq that contains q. By Proposi-

tion 2.20, we have that this neighborhood contains one with the properties of Proposition 2.20,

that is, all the points in the small Vq converge to a single point in Uq ∩ Γ ′. On the other hand,

by the definition of the ω−limit ω(p), there exists some nVq such that FnVq (p) ∈ Vq. We have that

F−nVq (Vq) is an open neighborhood of p. Choosing any neighborhood Bp of pwith Bp ⊂ F
−nVq (Vq)

we have that ω(p′) = {q′} for some q′ ∈ Uq ∩ Γ ′ ⊂ Iq, that is p′ ∈ φ−1(Iq). Then, we conclude then

that φ is continuous.

Proof of Claim (1). In a given box Dw of the statement, we have

|yℓ − y0| ≤ C0ε
τ(µ−1)

(3
2
w
)m(µ−1)

, (2.25)
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2.3. Local dynamics after reduction of singularities

since x0 < ε and y0 <
3
2w. We point out that this bound is also valid on the box [0, ε)×[0, 3

2w). Now,

we choose ε so that we ensure that any iterate of a point p = (x0, y0) ∈ D̃w lies in Dw. It is enough

to impose C0ε
τ(µ−1)

(
3
2w

)m(µ−1)
≤ 1

4w, and take

ε ≤ C1w
1−m(µ−1)
τ(µ−1) . (2.26)

Then, we take k so that ε(w) = wk with k > 1−m(µ−1)
τ(µ−1) , since wk ≤ C1w

1−m(µ−1)
τ(µ−1) . We conclude that for

any (x0, y0) ∈ D̃w, its iterate (x1, y1) = F(x0, y0) exists in Dw since the coordinate x is decreasing and

x0 − 1
4w ≤ y1 ≤ x0 + 1

4w. By induction, we prove that any iterate Fℓ(x0, y0) exists again since x is

decreasing and since |yℓ − y0| ≤ 1
4w.

It remains to prove that ω(p) is a single point in Dw∩Γ ′ for every p = (x0, y0) ∈ D̃w. We already

know that the sequence {(xℓ, yℓ)}ℓ∈N exists. The only fixed points in Dw ∩ Γ ′ belong to {x = 0},
hence the limit of the sequence of coordinates x, that is, {xℓ}ℓ∈N is 0. On the other hand, from

the bound (2.24), we have that |yℓ+1−yℓ | ≤ C0x
τ(µ−1)
ℓ

(
3
2w

)m(µ−1)
and the convergence to 0 of xℓ, we

get that {yℓ}ℓ is a Cauchy sequence, and hence it has a limit y∞. Then, ω(p) = qp = (0, y∞), as we

wanted to prove. ■

Proof of Claim (2). We proceed by contradiction. Suppose that the statement is not true. Then, for

every neighborhood of p∗, there exists a point t with Orb−(t)∩ Ũ = ∅. Because of the third item an

iterate escaping the region [0, a1)× [0,b) exists. In particular, the first negative iterate, say F−nt (t),

to abandon the region [0, a1)× [0,b) ⊂ F(W1) must do it with coordinate y greater than b. This is

because by hypothesis this point is not intersecting Ũ and because of the bound a2−a1 ≥ CAan1bm.

More precisely, because we have x(F−nt+1)(t) − x(F−nt (t)) ≤ CAan1bm ≤ a2 − a1. Then, we have that

the point t fulfills that there exists some F−nt (t) ∈W1 ∩ {y ≥ b}, the iterate cannot scape the band

{a1 ≤ x ≤ a2}.
Now, consider a decreasing sequence of neighborhoods {Vi}i∈N of p∗ such that Vi ⊂ [0, a2) ×

[0,b), Vi ⊂ Vi−1 for all i ∈ N and
⋂
i∈NVi = {p∗}, by the assumption, there exists a point ti at each

Vi and a first iterate −ni ∈ Z≤0 such that qi = F−ni (ti) ∈ W1 ∩ {y ≥ b}. The sequence of points

{qi}i∈N must have an accumulation point q in the compact set W1 ∩ {y ≥ b} ⊂ W̃1. We find the

contradiction as follows. To clarify more the ideas of the proof and the various sets that appear

therein, see Figure 2.8.

• Suppose that q ∈ Γ ′. Then, take a small enough regular arc Γq with q ∈ Γ ′q and a small enough

neighborhood VΓ ′q of Γ ′q such that VΓ ′q ∩ Vi = ∅ for all i ≥ i0. Applying Proposition 2.20,

there exists a second neighborhood ṼΓ ′q ⊂ VΓ ′q with the property that the positive iterates of

any p ∈ ṼΓ ′q lie inside VΓ ′q . We find a contradiction with the fact that ti = Fni (qi) ∈ Vi and

Vi ∩VΓ ′q , ∅.
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

Figure 2.8: Sketch of the ideas of the proof of the fourth item.

• Suppose q ∈ Γ ′. Since q ∈ W̃1, its orbit lies in W̃2 and there is some q′ ∈ Γ ′ such that q′ =

ω(q). As in the previous item, consider a small enough neighborhood Vq′ (of a dicritical

arc that contains q′) such that Vq′ ∩Vi = ∅ for all i ≥ i0 for some large enough i0. Applying

Proposition 2.20, there exists a second neighborhood Ṽq′ ⊂ Vq′ with the property that the

positive iterates of any p ∈ Ṽq′ lie inside Vq′ . Now, take some finitem0 such that q ∈ F−m0(V ′q),

which exists from the fact that ω(q) = q′. Since q is an accumulation point of the points qi ,

there exists a subsequence {qik }k∈N ⊂ F
−m0(V ′q). We claim that there exists a point qik such

that nik ≥ m0 and ik ≥ i0. This is because since the sequence of points {ti}i∈N accumulates

into p∗, the number of iterations ni of F−1 needed in order to surpass {y ≥ b} is not bounded.

Then, we conclude that Fni (pi) ∈ Vi and Fni (pi) ∈ Ṽq′ ⊂ Vq′ . This is a contradiction since

Vq′ ∩Vi = ∅.

Then, there is a neighborhood V of p∗ contained in the set Sat+
W (Ũ ). On the other hand, by

Corollary 2.18, we have that Sat+
W (Ũ ) is neighborhood of any non-dicritical arc in Γ , and hence,

of any point in Γ . ■

Proposition 2.29. Let (Q,W ) be a realization of a dicritical quadrant such that W is a dicritical

monotonic domain, Γ is a non-dicritical component and Γ ′ is a diciritcal component of the divisor or a

bidicritical curve. Then, at every q ∈ Γ ′ there is a parabolic curve γq transverse to Γ ′ and its germ is

unique in the following sense: there exists a neighborhood basis U such that for any U ∈ Uq, the curve

γq ∩U is characterized as

γq ∩U = {p ∈U \ Γ ′ : Orb+
U (p) is infinite and ω(p) = q}. (2.27)
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Proof. For the proof of this result, we distinguish two cases in terms of the integer n in the ex-

pression of the diffeomorphism.

F(x,y) = (x+ xnymA(x,y), y + xnym+1B(x,y)), x ≥ 0, y ≥ 0,

We make the affine change of coordinates z = x, w = y − a and a > 0, so that we study the diffeo-

morphism at the point p = (0, a) ∈ Γ ′.

F(z,w) = (z+ zn(w − a)mA(z,w − a),w+ zn(w − a)m+1B(z,w − a)), z ≥ 0, w ≥ −a,

With A(z,w − a) < 0 and A,B have the same bounds as in the original coordinates.

• When n = 1, the diffeomorphism is not tangent to the identity at the point p, it is parabolic

with eigenvalues 1 + (−a)m,1. Then, the stable manifold theorem can be applied, finding an

analytic curve that directly fulfills the statement of this result. See for instance the result

in [56].

• When n > 1, the diffeomorphism is tangent to the identity. Then, we make a new blowing-

up σ : (M ′ ,E′)→ (M,E) centered at p. Blowing up a dicritical point generates two dicritical

corners p1∗ and p2∗, and a single saddle point q′ at the new component of the divisor. Using

Theorem 2.10, we find that there exists indeed a parabolic curve γq′ at p′ transverse to

E. The germ of γq′ is unique in the sense of the statement and it can be blown down to

γq = σ (γq′ ). The required curve is γp.

The curves that have been obtained in the previous result are only local, in the sense that they

are defined in neighborhoods of each point that can be arbitrarily small.

2.4 Construction of sectors

In this section, we will construct sectors as required in Theorem 2.6. We distinguish two situa-

tions; one of them coming from the maximal paths of quadrants of G(ξ,π) and the other from

dicritical components and node quadrants. Let Supp(G(ξ,π)) be a realization of G(ξ,π) for F in

an open set W as described in Section 2.2 (we adopt the notations therein). We will fix this open

set throughout all the section.

2.4.1 Sectors arising from maximal paths

The first type of sectors that we construct are based on a maximal path of quadrants. For this rea-

son, we will name them path sectors. Let Q = (Q1, . . . ,Qs) be a maximal path with Qi = (vi , ei−1, ei)

for i = 2, . . . , s. Let p1, . . . ,ps be strict fixed points corresponding to the vertices v1, . . . , vs. We
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Chapter 2. Sectorial decomposition of germs of diffeomorphisms

have that the subchain Q′ = (Q2, . . . ,Qs−1) is a path of divisor saddle quadrants, in particu-

lar, the points p2, . . . ,ps−1 are strict fixed points of type s. Meanwhile, the points p1 and ps

can be of any other type. We define γe1
, . . . ,γes−1

induced by the divisor path (e1, . . . , es−1), as

we did in Section 2.3.4 for the path of saddle quadrants (Q2, . . . ,Qs−1), that is, as the union

EQ := γe1
∪ {p2} ∪γe2

∪ . . .∪γes−2
∪ {ps−2} ∪γes−1

contained in Supp(G(ξ,π)) for F.

Proposition 2.30. With the notations above, let V be a neighborhood of {p1} ∪EQ ∪ {ps}. Then, there

exists an open neighborhood VQ of EQ with VQ ⊂ V and satisfying the following properties:

• If p1 is not of type n-n-2, there is a connected representative Γ0 of Supp(e0) contained in VQ ⊂ V . If

ps is not of type n-n-2, there is a connected representative Γs of Supp(es) contained in VQ ⊂ V . Both

Γ0 and Γs are part of the boundary ∂VQ in V when they exist.

• There is a neighborhood ṼQ ⊂ VQ of EQ, saturated in VQ, and in which exactly one of the following

situations holds for every p ∈ ṼQ \E.

1. α(p) = p1 and ω(p) = ∅.
2. α(p) = ∅ and ω(p) = ps.

3. α(p) = p1 and ω(p) = ps.

4. α(p) = ∅ and ω(p) = ∅.
5. Γ0 is a dicritical curve and there exists qp ∈ Γ0 such that α(p) = qp and ω(p) = ∅.
6. Γs is a dicritical curve and there exists qp ∈ Γs such that α(p) = ∅ and ω(p) = qp.
7. Γ0 is a dicritical curve and there exists qp ∈ Γ0 such that α(p) = qp and ω(p) = ps.
8. Γs is a dicritical curve and there exists q′p ∈ Γs such that α(p) = p1 and ω(p) = q′p.
9. Γ0 and Γs are dicritical curves and there exists qp ∈ Γ0 and q′p ∈ Γs such that α(p) = qp and

ω(p) = q′p.

In addition, the type only depends on the type of quadrants of Q1 and Qs.

In the statement of the Proposition, we obtain two neighborhoods VQ and ṼQ of EQ. The first

fulfills a specific property concerning its boundary. This will serve us to have more control in

later proofs. The second fulfills two important properties; it is saturated in the first and that the

positive and negative iterates are well controlled. This set ṼQ fulfills the conditions of the sectors

in Theorem 2.6. We remark that, depending on the case, they can also be neighborhoods of p1

and ps (in the subspace topology in VQ). On the other hand, we remark that ṼQ and VQ of the

above result highly depend on the neighborhood V of EQ. In addition, there is not uniqueness on

the choice of these sets.

Notation 2.31. Suppose that we obtain the neighborhood ṼQ of EQ from a maximal path of quad-

rants Q = (Q1, . . . ,Qs) inside some open set U . We stress that ṼQ has been obtained inside V by

denoting ṼQ = ṼQ(V ).

In the following table, we show the type of domains obtained in the previous result depending

on Q1 and Qs.
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Q1 Qs F F−1

Node Saddle 1 2
Saddle Node 2 1
Node Node 3 3

Saddle Saddle 4 4
Dicritical Saddle 5 6

Saddle Dicritical 6 5
Dicritical Node 7 8

Node Dicritical 8 7
Dicritical Dicritical 9 9

Table 2.2: Type of invariant sets (in terms of 1-9 of Proposition 2.30) for F and F−1 depending on the first
and last quadrant of Q.

Proof of Proposition 2.30. Consider a saddle, node or dicritical monotonic domain Wi ⊂ V at pi
with i = 1 or s depending on the type of quadrant of Qi .

• When the strict fixed point p1 is of type n-n-2, W1 is a joint realization of the quadrant Q1

and the other quadrant Q with vertex v1. In any other case, W1 is a realization of a single

quadrant. We call Γ1 := Supp(e1)∩W1 and Γ0 := Supp(e0) (Γ0 defined when p1 is not of type

n-n-2).

• When the strict fixed point ps is of type n-n-2, Ws is a joint realization of the quadrant Qs
and the other quadrant Q′ with vertex vs. In any other case, Ws is a realization of a single

quadrant. We call Γs−1 := Supp(es−1)∩Ws, and Γs := Supp(es)∩Ws (Γs defined when ps is not

of type n-n-2).
We need a technical requirement. We take a neighborhood V ′ ⊂ V of EQ (excluding the endpoints

p1,ps) such that

• Γ0 ∩V ′ = ∅ and Γs ∩V ′ = ∅, when Γ0 or Γs exists.

• If Q1 is a saddle quadrant, V ′ ∩W −1,esc = ∅ and F(W −1,esc) ∩ V ′ = ∅ (recall that W −1,esc is the

region where the negative orbit escapes W1), and if Qs is a saddle quadrant, V ′ ∩W +
s,esc = ∅

and F−1(W +
s,esc)∩V ′ = ∅ (recall that W +

s,esc is the region where the positive orbit escapes W1).
Notice that it is possible to obtain such a neighborhood V ′ of EQ = γe1

∪ {p2} ∪ . . .∪ {ps−1} ∪ γes−1

fulfilling these conditions. The first is obvious since Γ0,Γs does not intersect γe1
∪ {p2} ∪ . . . ∪

{ps−1} ∪ γes−1
. The second is a consequence of Proposition 2.21: W1 \W −1,esc is a neighborhood of

E∩W1. Choosing V ′ even smaller we also have the condition of F−1(W −1,esc) (since W1\F−1(W −1,esc)

is not a neighborhood of E ∩W1). We proceed in the same way to ensure the second statement in

Ws. We apply Proposition 2.23 to Q′ and V ′, so that we obtain a neighborhood UQ′ ⊂ V ′ of EQ

with the properties of that proposition. Let us recall that for any points t1 ∈ γe1
, ts−1 ∈ γes−1

and

neighborhood U ′s−1 of ts−1, there is a neighborhood Ũ1 of t1 such that for every p ∈ Ũ1 \E there is

some qp ∈Orb+
UQ′

(p)∩U ′s−1 (notice we have changed slightly the notation of the neighborhood Ũ1
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with respect to Proposition 2.23). Define the set VQ ⊂ V

VQ =W1 ∪UQ′ ∪Ws.

We distinguish the following cases.

I. When Qs is a saddle quadrant, we choose t′s−1 ∈ Γ
′
s−1 and a neighborhood U ′s−1 ⊂ UQ′ ∩Ws

and U ′s−1 ∩ (Γs ∪ {ps}) = ∅.

II. When Qs is a node quadrant, let t′s−1 ∈ Γ
′
s−1 and U ′s−1 ⊂UQ′ ∩Ws with U ′s−1 ∩ (Γ ∪ {p∗}) = ∅.

III. WhenQs is a dicritical quadrant, we apply Proposition 2.28 to F−1, obtaining another dicrit-

ical monotonic domain W̃s ⊂Ws (with the properties of W̃1 in the statement of that result).

We choose t′s−1 ∈ Γ
′
s−1 ∩ W̃s and U ′s−1 ⊂ W̃s ∩UQ′ .

Figure 2.9: Construction of a path sector.

Notice that the positive iterates of any point p in U ′s−1 can have different behaviors:

(+) By the technical requirement on the choice of V ′ and since U ′s−1 ⊂Ws, we have that the first

iterate Fn(p) to abandon UQ′ lies in Ws. Hence it is enough to study the positive iterate in Ws.

In the case I, Orb+
VQ

(p) escapes Ws from Proposition 2.21. Notice that Orb+
VQ

(p) eventually

reaches W +
s,esc and abandons Ws and also VQ since W +

s,esc ∩ V ′ = ∅. In the case II, the orbit

remains inWs and converge to ps from either Proposition 2.24 or 2.27 (depending on whether
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ps is of type n-n-2 or not). In the case III, Orb+
VQ

(p) remains inWs and converge to some point

in Γs, which depends on p by Proposition 2.28 (notice that U ′s−1 ⊂ W̃s).

Now, we choose a point t1 ∈W1.

I. When Q1 is a saddle quadrant we choose any point in t1 ∈ Γ1.

II. When Q1 is a node quadrant, we take any t1 ∈ Γ1.

III. When Q1 is a dicritical quadrant, we apply Proposition 2.28 to F, obtaining W̃1 (with the

properties of W̃1 in the statement of that result). We choose t1 ∈ Γ1 ∩ W̃1.

As we have said, by Proposition 2.23, we obtain a neighborhood Ũ1 of t1 so that U ′s−1 captures

the positive orbits of the points p ∈ Ũ1. In the dicritical case, we will take U1 = Ũ1 ∩ W̃1. In the

rest of the cases, we simply choose U1 = Ũ1. The negative iterates of any point p ∈U1 behave in a

different manner depending on the type of quadrant that Q1 is:

(-) By the technical requirement on the choice of V ′ and since U1 ⊂ W1, we have that the first

iterate F−n(p) to abandon UQ′ lies in W1. Hence it is enough to study the negative iterates in

W1. In the case I, Orb−VQ
(p) escapes W1 from Proposition 2.21. Notice that Orb−VQ

(p) eventu-

ally reaches W −1,esc, and then abandons W1 and also VQ since W −1,esc ∩ V ′ = ∅. In the case II,

Orb−VQ
(p) remains in W1 and converge to p1 from either Proposition 2.24 or 2.27 (depending

on whether p1 is of type n-n-2 or not). In the case III, it remains in W1 and converge to some

point in Γ1, which depends on p by Proposition 2.28 (notice that U1 ⊂ W̃1).

Then, we have control in the negative orbits of any point in U1. By construction, we also have

that the positive iterates of any point p ∈ Ũ1 \E lie on V ′ ⊂ VQ up to some ℓp with Fℓp(p) ∈ U ′s−1.

The iterates Fn(p) with n ≥ ℓp have already been described in (+), since Fℓp (p) ∈U ′s−1.

Then, we define the set

ṼQ = SatVQ
(U1)∪ (EQ).

By the construction above, we check that ṼQ fulfills one of the nine situations stated in the Propo-

sition. It remains to prove that ṼQ is a neighborhood of EQ. It follows from Corollary 2.22, Propo-

sition 2.24, Proposition 2.27 or the fourth item of Proposition 2.28 in the points in EQ ∩W1 and

EQ ∩Ws; as well as from Proposition 2.23 in the rest of the points.

Remark 2.32. We want to emphasize something to be proved later in this text; we can choose

ṼQ such that the boundary ∂ṼQ is a C0 curve, as in section 2.5.1, by defining a fundamental

domain in VQ with certain properties and taking its saturation, instead of taking the saturation

of a neighborhood U1 of a point t1 in the component γe1
, as in the proof of this result.
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The following Proposition proves that the sets ṼQ \ Supp(G(π,ξ)) can be projected by the

sequence of blowing-ups π to AQ = π(ṼQ \ Supp(G(π,ξ))) and that they fulfill the asymptotic

properties of the sectors. The proof is straightforward considering that the sequence of blowing-

ups π is a diffeomorphisms outside of E and that E is mapped to 0. However, we remark that

there is something of global nature yet to be proved. Namely, that the AQ is self-saturated in a

full open neighborhood of 0, roughly, F(AQ) ⊂ AQ. We will come later to this.

Proposition 2.33. Let ṼQ be a saturated domain obtained fromQ = (Q1, . . . ,Qn) as in Proposition 2.30.

Then, AQ = π(ṼQ \ Supp(G(π,ξ))) is a sector with the properties of a two dimensional stratum in

Theorem 2.6.

Proof. As we anticipated, the behavior of the orbits inside ṼQ and hence inside AQ is well de-

scribed by the previous result. We only need to consider that E is mapped to 0 and that the

parabolic curves and curves of fixed points out of the divisor are mapped to parabolic curves

and curves of fixed points at 0. For instance, notice that it makes a difference having a dicritical

quadrant with both edges in the divisor or a dicritical quadrant with one edge out of the divisor.

This is because in the first case, the points will accumulate into a single point 0 ∈ R2. Meanwhile

in the second case, the projection of the curve is a curve at 0 instead of a single point.

As before, we summarize the type of sectors that we can obtain in Table 2.3. At this stage,

to determine the type of sector, we do not pay attention to whether we work with F or F−1. To

understand it better, let Γ0 be the support of the edge e0 of Q1 and Γs the support of the edge es of

Qs. We denote Div to indicate that this curve belongs to E and NDiv when it is not. We denote ∅
to indicate that there does not exist a realization of e0 for F.

Pairs Q1 −Qs Pairs Γ0 − Γs Sector
Node - Saddle Div, NDiv or ∅ - NDiv Parabolic
Node - Node Div, NDiv or ∅ - Div, NDiv or ∅ Elliptic

Saddle - Saddle NDiv - NDiv Hyperbolic
Dicritical - Saddle NDiv - NDiv D-parabolic
Dicritical - Saddle Div - NDiv Parabolic
Dicritical - Node NDiv - Div, NDiv or ∅ D-elliptic
Dicritical - Node Div - Div, NDiv or ∅ Elliptic

Dicritical - Dicritical NDiv - NDiv D-D
Dicritical - Dicritical Div - NDiv D-Elliptic
Dicritical - Dicritical Div - Div Elliptic

Table 2.3: Type of invariant sectors arising from saturated sets of paths.

By Proposition 2.30, we can construct the saturated domains VQ in a common open neighbor-
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hood WE of E in M. Let us put

Vpath(WE) :=
⋃

Q max

ṼQ(WE)∪ Supp(G(ξ,π)).

We highlight that each ṼQ is saturated in Vpath. We see now that Vpath is a neighborhood of all

the points in E except a finite number of strict fixed points of type n, n-n, n-s, f-n-n and f-n-s, as

well as the dicritical components of E for ξ.

Lemma 2.34. The set Vpath(WE) is a neighborhood of every regular point in the non-dicritical compo-

nents of E for ξ, as well as the ones in S(F,π) of type d, s-s, f-s-s or f-d-d.

Proof. Suppose that p ∈ S(F,π) of type d, s-s, f-s-s or f-d-d. In any of these cases, there is a

curve γ ⊂ Supp(G(ξ,π)) corresponding to a segment of parabolic curve, curve of fixed points or

a component of the divisor. Let Q+ and Q−, be the two paths of quadrants with p as extreme

point. By the first part of Proposition 2.30 applied on each path, the union VQ+
∪ γ ∪ VQ− is

a neighborhood of p since a small enough representative of the germ of the curve γ at p must

belong to the boundary of VQϵ
from Proposition 2.30 for ϵ = +,−.

Then, take saddle or dicritical monotonic domains W+,W− ⊂ WE , correspondingly, realiza-

tions of the quadrants at p so that W+ ⊂ VQ+
, W− ⊂ VQ− . Applying Corollary 2.22 (saddle) or

the fourth item of Proposition 2.28 (dicritical) and the property that ṼQϵ
is saturated in VQϵ

for

ϵ = +,−, we get that VQ+
∪ γ ∪ VQ− is a neighborhood of p . More precisely, take any neighbor-

hood Uϵ ⊂ Wϵ ∩ ṼQ of any qϵ ∈ Wϵ, for ϵ = +,−. The saturation of Uϵ(that lies in Wϵ ⊂ VQϵ
) is

a neighborhood of p in the subspace topology in Wϵ in both the saddle and dicritical cases (cf.

Corollary 2.22 and Proposition 2.28). Since Uϵ ⊂ ṼQϵ
, Uϵ ⊂Wϵ ⊂ VQϵ

and ṼQϵ
is saturated in VQϵ

,

we have that ṼQϵ
is a neighborhood of p ∈ VQϵ

for ϵ = +,−.

The open set Vpath being a neighborhood of the rest of the regular non-dicritical points is a

consequence of the construction of each VQ in Proposition 2.30.

2.4.2 Parabolic sectors at nodes and dicritical components of the divisor

Notice that to obtain a sectorial decomposition of F we need to obtain a partition of a neighbor-

hood of 0 ∈ R2. Notice that the projection π(Vpath \ E) once we remove Supp(G(ξ,π)) is parti-

tioned into sectors, the subsets AQ obtained in Proposition 2.33. However π(Vpath \E)∪{0} is not

a neighborhood of 0. In this section we construct new sectors to fill in a neighborhood of 0 with

the properties of Theorem 2.6.

Proposition 2.35. Let Vpath(WE) be defined as above. Then, there exist a finite number of subsets
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{Vi}ki=1 and a finite number of connected curves {γj}sj=1 such that

Vpath ∪ Supp(Endiv)∪V1 ∪ · · · ∪Vk ∪γ1 ∪ . . . ,γr

is a neighborhood of E and each Vi fulfills one of the following

• There is qi ∈ S(F,π) of type n, n-n, n-s, f-n-n or f-n-s such that for every p ∈ Vi , either α(p) = qi
and ω(p) = ∅ or α(p) = ∅ and ω(p) = qi .

• There is a regular dicritical arc B such that for every p ∈ Vi , there is some qp ∈ B such that either

α(p) = qp and ω(p) = ∅ or α(p) = ∅ and ω(p) = qp.

In addition, the new curves γj are contained in the common boundary of some Vij and some connected

component of Vpath.

Proof. We will work in different points and dicritical arcs of the divisor.

• Suppose that p is a strict fixed point of type n, n-n, n-s, f-n-n or f-n-s.

– Suppose that p is of type n or n-n-2. Suppose without loss of generality that it is attracting.

There are two path quadrants, say Q,Q′ sharing the endpoint at p, and there are not

components of the germ of Supp(G(ξ,π)) at p outside the divisor. Consider the open sets

VQ, ṼQ,VQ′ , ṼQ′ associated to the path quadrants Q, Q′. We take the corresponding node

monotonic domain W at p as the one given in section 2.3.5, and small enough so that

W ⊂ VQ∩VQ′ . Then the open set V =W \ (E∪ ṼQ∪ ṼQ′ ) is positively invariant (by F) and

it is a parabolic set. Let us prove this. Recall that the whole node monotonic domain W

is positively invariant and that W \ E is a parabolic set at p. It is enough to see that V is

positively invariant. Take z ∈ W \ (E ∪ ṼQ ∪ ṼQ′ ) and let z′ = F(z). We have z′ < E, and

since W ∩ ṼQ and W ∩ ṼQ′ are saturated, so are W ∩ ṼQ and W ∩ ṼQ′ . Hence z′ < ṼQ∪ ṼQ′ .

The set V =W \ (E∪ ṼQ∪ ṼQ′ ) is one of the Vi required in the statement of the result. By

means of Remark 2.32, we also have that each curve γ = Vi ∩ ṼQ \ E is a parabolic curve

for F. This curve is not necessarily analytic, but it is of class C0. It divides W into two

regions.

– Suppose that p is of type f-n-n, f-n-s, n-s or n-n-1. There are two path quadrants, say Q,Q′

sharing the endpoint at p, and there is one component Γ of the germ of Supp(G(ξ,π)) at

p outside the divisor. This is a curve of fixed points or an analytic parabolic curve. Let

Q be one of the node quadrants at p and suppose without loss of generality that it is

of attracting type and belongs to Q. Let W be a small enough node monotonic domain

corresponding to Q, so that it is limited by E and a segment of the curve Γ . We define the

open set V = W \ (E ∪ ṼQ). Proceeding as in the previous item, it is positively invariant
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and of parabolic type. Its boundary γ = V ∩ṼQ\E, again by Remark 2.32 is a C0 parabolic

curve, one of the collection {γj}sj=1 of the statement.

Summarizing, in this item, we have found as many sets Vi on the statement of the result

as node quadrants there are at p, that is, one or two. We also obtain the corresponding

parabolic curves in the boundaries of V with Vpath.

• Suppose that Ei is a dicritical component. There are two dicritical quadrants that contain the

edge e associated to Ei . There are also two paths of quadrants Q− and Q+ meeting this edge,

with endpoints p− and p+, the two dicritical corners of Ei . Let ṼQϵ
⊂ VQϵ

be the domains ob-

tained in Proposition 2.30 for the path Qϵ, with ϵ = +,−. By construction and using 2.28, we

have that the corresponding sets ṼQϵ
is a neighborhood of pϵ. We choose two points q− and q+

such that the regular dicritical arc Γq−,q+
contains Ei ∩ ∂ṼQ− and Ei ∩ ∂ṼQ+

. We apply Proposi-

tion 2.20 on a sufficiently small monotonic domainVΓq−q+
, obtaining ṼΓq−q+

. Now, the searched

set is ṼΓq−q+
\ (E ∪ ṼQ+

∪ ṼQ−). By arguments similar to the ones in the previous item, we have

that this set is positively invariant and has the property of one of the Vi in the statement of the

result. Again by Remark 2.32, we also obtain the corresponding C0 curves in the family {γj}sj=1

in the boundaries of V with Vpath.

We illustrate the output of Proposition 2.35 in Figure 2.10. In this figure, we put an example

of three sectors generated over the paths of quadrants Q1,Q2,Q3. Then we define a parabolic

sector V1 at the dicritical component Ei and the C0 curves γ1 and γ2 on the common boundary

of the new sector V1 and ṼQ1
and ṼQ2

, respectively. We construct the parabolic sectors on the

ends of Q2,Q3, obtaining V2,V3 and the C0 parabolic curves γ3,γ4 defined, respectively, in the

common boundary of ṼQ2
and V2, and in the common boundary of ṼQ3

and V3.

Figure 2.10: Example on the construction of parabolic sectors. The sector V1 is constructed over a dicritical
component of the divisor. The sectors V2,V3 are constructed over a node.

We name Vnopath = V1∪· · ·∪Vs. Just noticing that π(E) = 0 ∈ R2 and recalling the definition of

the sets Vi in the above proposition, we have that π(Vi) is a parabolic sector.

Proposition 2.36. Let Vi be one of the saturated domains obtained in the previous result. Then Ai =

π(Vi) fulfills the weak topological properties of a parabolic sector in the sense of Theorem 2.6.
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2.4.3 Existence of a sectorial decomposition

In this section, we put together the results in the previous sections in order to prove the existence

of a sectorial decomposition.

Proposition 2.37. Let F ∈ Diffω1 (R2,0), F , Id and not of center-focus type. There is a representative

in an open neighborhood W of 0 and a second neighborhood W̃ of 0 and a partition S of W̃ in the

conditions of Theorem 2.6.

Proof. We have already made most of the work in the previous sections. First, we take a reduction

of singularities π : (M,E) → (R2,0) of the infinitesimal generator of F. We consider its graph

G(ξ,π) and define its maximal paths. Take a realization Supp(G(ξ,π)) for F defined on some

neighborhood WE ⊂ π−1(W ) of E. Applying Proposition 2.30 to each maximal path Q, we obtain

ṼQ saturated in open sets VQ. Then, we define Vpath(WE) as the union of the sets ṼQ for each

maximal path Q.

Then, we apply Proposition 2.35 and we obtain a finite number of new sets Vi for i = 1, . . . , k

whose union is Vnopath. Then, by this result, the union Ṽ of Vnopath, Vpath, Supp(G(ξ,π)) and the

one dimensional curves γ1, . . . ,γr contained in (Vnopath ∩Vpath) \E is a neighborhood of E in WE .

We conclude that W̃ = π(Ṽ ) is the claimed neighborhood that admits the partition of The-

orem 2.6. We have already proved in Proposition 2.33 and 2.36 that, respectively, the sets

AQ = π(ṼQ) for a maximal path Q and the sets Ai = π(Vi) are sectors in the sense of the theorem.

Since the curves {γj}rj=1 accumulate only at E, their projections {π(γj )}rj=1 are parabolic curves at

0 ∈ R2. We also know that the curves of fixed points and parabolic curves on Supp(En−div) are one

dimensional strata. Then, adding the point 0, we have found the partition of W̃ we claimed.

Remark 2.38. The partitioned set W̃ obtained in the previous Proposition may not be open even

if each two-dimensional stratum is. Later in this text, we will talk more about this topic. We

anticipate that we can make a refinement on the choice of the strata so that, locally, the boundary

∂W̃ and W̃ do not intersect except on some points of the curves of fixed points of F. And in the

absence of D-D sectors, we can achieve an open W̃ .

2.5 Refinements of the sectorial decomposition

In this section, we investigate two problems related to the topology and geometry of the secto-

rial decomposition: in which conditions we can find a sectorial decomposition (U,S) such that

U is open and in which conditions we can find a sectorial decomposition (U,S) such that U is

semi-analytic. The first section is more technical and we provide some results to be used in the

following sections. We present some refinements on the construction of the sectorial decomposi-

tion so that each sector individually fulfills specific geometric properties. In the second section,
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we will see that in the absence of D-D sectors, the set U can be chosen to be open, as Proposi-

tion 2.8 claims. We also explain the reasons why we think that the existence of D-D sectors may

be an obstruction for U being open. In the last section, we prove also that in the absence of bidi-

critical curves, U can be chosen indeed semi-analytic, as Proposition 2.9 claims, putting together

the results seen in the first subsection.

2.5.1 Sector-wise refinements

In this section, we choose first a concrete sectorial decomposition, defined inside a neighborhood

W̃ of 0 ∈ R2 that fulfills some monotonic properties. Then, we present refinements on the indi-

vidual sectors of the diffeomorphism defined on a neighborhood of 0 ∈ R2 that fulfills specific

properties. We also show that it is possible to choose the boundary ∂ṼQ to be a curve in the C0

class, as we anticipated in Remark 2.32.

We present first some additional hypotheses to be imposed in the saddle and node domains.

H-S Let (Q,W ) be a realization of a saddle quadrant at p ∈ S(F,π) on a saddle domain W

with coordinates (x,y). Recall that x is monotonically increasing and that y is monoton-

ically decreasing on the orbits. Recall also that when p is of type s, f-s-s or f-n-s, the

coordinate functions are analytic. On the other hand, when p is of type s-s or n-s, the

coordinate x may only be C∞ while y is analytic. We suppose that W is of box type in

these coordinates, bounded by {y = C1} and {x = C2}.

H-N-I Let (Q,W ) be a realization of a node quadrant at p ∈ S(F,π) on a node domain W with

coordinates (x,y). Recall that both x,y are monotonically increasing or decreasing on the

orbits. Recall also that when p is of type n, f-n-n or f-n-s, the coordinate functions are

analytic. On the other hand, when p is of type n-n-1 or n-s, the coordinate x may only be

C∞ while y is analytic. We suppose that W is of box type in these coordinates, bounded

by {y = C1} and {x = C2}.

H-N-II Let (Q,Q′ ,W ) be a joint realization of two quadrants at p ∈ S(F,π) of type n-n-2 on a

node domain W with coordinates (x,y). Recall that y is an analytic function and mono-

tonically increasing or decreasing on the orbits and that the orbits of points out of E

converge to p. We suppose that W is bounded by {y = C1}.

We fix an open neighborhood W̃E of the divisor E ⊂M given as

W̃E =

 ⋃
p∈S(F,π)

W +
p ∪W −p

∪ ⋃
e∈Ediv

VΓe

where
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• If p is of type f-n-n, f-n-s, f-s-s, s-s, n-s or n-n-1, the set W −p is a realization in the quad-

rant Q− on the left as a saddle or node domain, correspondingly. The set W +
p is defined

in the same manner. We choose the saddle and node domains fulfilling H-S and H-N-I,

respectively. Notice that W −p ∩W +
p is a curve of fixed points or a parabolic curve.

• If p is of type f-d-d, the sets W −p and W +
p are realizations of the dicritical quadrants Q− and

Q+ on dicritical domains.

• If p is n-n-2, we have that W +
p is a joint realization of both node quadrants at p in a node

domain of type half-space fulfilling H-N-II, and W −p = ∅.

• If p is a corner of type s, n, d, there is a single quadrant at p. Let W +
p be a realization of it in

a saddle, node or dicritical domain, correspondingly, and W −p = ∅. In the saddle and node

cases, we suppose H-S or H-N-I, respectively.

• For each divisor edge e, let γe be its realization and p,p′ its adjacent points. We take a

regular arc (dicritical or non-dicritical) Γe joining two points q,q′ ∈ γe such that q ∈ (W ϵ
p )◦ ∩

γe and q′ ∈ (W ϵ′
p′ )
◦ ∩ γe, where ϵ and ϵ′ correspond to the quadrants intersecting γe. Then,

VΓe is a monotonic domain.

• We can always take W ϵ
p ∩W ϵ′

p′ = ∅ when p , p′ for any ϵ,ϵ′ ∈ {+,−}. In addition, we can take

VΓe ∩VΓe′ = ∅ when e , e′.

Then, applying Proposition 2.30 and Proposition 2.35, we obtain a decomposition (WE ,S) of a

neighborhood WE ⊂ W̃E . We have the decomposition of the neighborhood WE given by

E ∪

 ⋃
e∈Endiv

Supp(e)

∪
 r⋃
i=1

γi

∪
 ⋃

Qmax

ṼQ

∪
 k⋃
i=1

Vi

 ,
where Supp(e) is a parabolic curve of fixed points of the realization of G(ξ,π) for F inWE , the sets

ṼQ are the path sectors, the Vi are parabolic sectors at nodes and dicritical components and the

curves γi are the parabolic curves in the boundaries between a parabolic sector and a path sector.

Using the sectorial decomposition we have just presented, we will introduce some refinements,

so that the configuration of sectors will be the same. However, it is possible that the path sectors

are strictly contained in the original ones, and that the parabolic sectors and the curves lying on

their boundaries of can change.

Refinements of the path sectors

Let ṼQ be one of the path sectors associated to the maximal path Q = (Q1, . . . ,Qs). In this section,

we propose a refinement of the path sectors. We will do it in two different ways, depending on
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the quadrants Q1 and Qs of the maximal path Q.

• Neither Q1 nor Qs are dicritical quadrants.

• Either Q1 or Qs is a dicritical quadrant.

NeitherQ1 norQs are dicritical quadrants. Consider any regular point p in some non-dicritical

path Γe and the monotonic domain VΓe ∩ ṼQ with coordinates (x,y) such that x is monotonically

increasing on the orbtis of the points VQ \E. Then, we take

• γ0 = {x = 0, y > 0}.

• F(γ0)

• Fix pβ ∈ γ0 and take any smooth semi-analytic curve that joins pβ and F(pβ) fulfilling

– β ∩γ0 = pβ and β ∩F(γ0) = F(pβ).

– The curve β is the image β̃|[0,1] where β̃ is a parameterized curve β̃ : (−ϵ,1 + ϵ)→ Up

with DFpβ (β̃′(0)) = β̃′(1).

Consider the open region U ′ bounded by the above three curves. We finally define U =U ′∪ (γ0∩
U ′) \ {pβ ,p}. We claim that it is a fundamental domain in ṼQ. Consider the equivalence relation

in ṼQ \E given by p ∼ q if and only if p ∈OrbṼQ
(q). Saying that U is a fundamental domain in ṼQ

is the same as saying that the map c : ṼQ→ ṼQ/ ∼ restricted to U is injective.

Lemma 2.39. The set U defined above is a fundamental domain in ṼQ.

Proof. We need to prove that Fn(p) <U for every p ∈U and every n ∈ Z\ {0}. First, by the fact that

ṼQ \VΓe has two connected components, the transition in Proposition 2.21 and the fact that ṼQ is

saturated, we have that the orbits transit from one connected component of ṼQ \VΓe to the other.

Then, if one orbit abandons VΓe , it does not return to it. Hence we can suppose that we work in

the single monotonic domain VΓe .

Suppose by contradiction that this is not true, that is, there exists some p ∈ U and some

n ∈ Z \ {0} such that q = Fn(p) ∈ U . We directly dismiss the possibility that p ∈ γ0, since x is

monotonically increasing on the orbits. Suppose without loss of generality that n > 0 and x(q) ≥
x(p) > 0. Let γp be the curve {x = x(p)}. It is possible that a finite number of closed connected

subsets of Fi(γp) may escape VΓe , and that Fi(γp) ∩ VΓe has a finite number of connected open

components. Each connected component has one point in the closure necessarily on the boundary

withW ϵ
t , where t is adjacent to γe = Supp(e). As q ∈U◦, we have that the connected component of

Fn(γp) that contains q intersects F(γ0) in at least one point, say q′, since the boundary ofW ϵ
t in VΓe

is in the exterior ofU . The contradiction that we find is that, on the one hand, x(F−1(q′)) > x(p) > 0
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since q′ ∈ Fn−1(γp). On the other hand, x(F−1(q′)) = 0 since q′ ∈ F(γ0). See Figure 2.11 for an

illustration of this proof.

Figure 2.11: Illustration of the proof of Lemma 2.39

We want to remark that the image c(U ) of the fundamental domain by the quotient map is

topologically a cylinder, since the curve γ0 ⊂ U is identified with F(γ0) ⊂ U . By the Whitney

inmersion theorem, c(U ) can be embedded as a submanifold in some Rn with n ≥ 3. Hence it will

make sense to consider the tangent bundle of c(U ), curves, foliations and any other geometrical

object. We prove the following property.

Lemma 2.40. BQ = SatṼQ
(U ) is a neighborhood of γe1

∪{p2}∪. . .∪{ps−1}∪γes−1
(excluding the endpoints

p1,ps), where γe1
∪ {p2} ∪ . . . ∪ {ps−1} ∪ γes−1

are the inner components of the divisor for the path Q.

Moreover, BQ fulfills the properties in Proposition 2.30.

Proof. It is enough to prove that SatṼQ
(U ) is a neighborhood of its basepoint p0 = U ∩ E, since

proving this and applying Proposition 2.23 we have that the saturation of a neighborhood of any

point in γe1
∪ {p2} ∪ . . .∪ {ps−1} ∪γes−1

is a neighborhood of γe1
∪ {p2} ∪ . . .∪ {ps−1} ∪γes−1

. Then, we

will only work in a small monotonic domain Up0
.

Consider the family of curves γC = {x = C}. Notice that the endpoints of these curves are

fixed points placed in the divisor. Notice also that these curves can be parameterized by its y

coordinate, having y ≥ 0. There are two possibilities, either F−1(γC)∩γ0 = ∅ or

(∗) F−1(γC)∩γ0 , ∅

Choosing any γC with γC∩U , ∅, which lies in {x > 0} and considering F−1(γC∩U ) lying in {x ≤ 0}
and the connectedness of the curve F−1(γ0), the intersection F−1(γC)∩γ0 is not empty. Then, we

have the existence of curves γC with such property. Observe that provided one γC , any other γC′

with 0 ≤ C′ ≤ C also fulfills F−1(γC′ ) , ∅.
Take any curve γC with the property that F−1(γC)∩ γ0 , ∅ and select the point qC such that

F−1(qC) ∈ γ0 with minimum coordinate y. We claim that for any point q ∈ γC with y(q) ≤ y(qC)
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there is −nq ∈ Z≤0 such that F−nq (q) ∈U . To prove this, recall that there are not strict fixed points

in VΓe and recall that x is monotonic out of E. Then, there exists −mq = max{−m ∈ Z : x(F−m(q)) <

0}.We prove that −nq = −mq+1. Among the points in γC with coordinate y ≤ y(q), choose the point

q′ such that F−mq (q′) ∈ γ0 and such that y(q′) is maximal. Existence of such a point is ensured by

connectedness of the curve F−1(γC). Now, we indicate the segment of γC that lies between q and

q′ by γC |q,q′ . By the definition of q′ having maximum y with the property that F−mq (q′) ∈ γ0, we

have F−mq (γC |q,q′ ) ⊂ {x ≤ 0} and that F−mq+1(γC |q,q′ ) ⊂ {x ≥ 0}.

On the one hand, we have that F−mq (γC) ∩ F−1(β) = ∅ for mq ≥ 2 and F−mq(γC) ∩ F−1(β) , ∅
for mq = 1. However, the point t ∈ F−1(γC)∩ F−1(β) with least coordinate y fulfills y(t) > y(qC),

by the definition of qC and the continuity of F. Since y(q′) < y(q) < y(qC) < y(t) for mq = 1 and

F−mq (γC)∩F−1(β) = ∅ in the rest of the cases, we conclude that F−mq+1(γC |q,q′ )∩β = ∅. On the other

hand, by the maximality condition of q′, there are not points between the extreme points F−mq(q)

and F−mq (q′) intersecting γ0. Then, the segment F−mq+1(γC |q,q′ ) \ {F−mq+1(q′)} lies inside U and, in

particular, the point F−mq+1(q) ∈U . See Figure 2.12 for the illustration of these arguments.

Figure 2.12: Illustration of the proof of Lemma 2.40.

Therefore, we have that the collection of points B+ = {q = (C,y(q)) ∈ Up : 0 < y(q) < y(qC),C ≤
Cm} ∪U is contained in SatVΓe

(U ) ⊂ SatṼQ
(U ), where Cm is any Cm > 0 fulfilling the property (*).

Proceeding similarly, we find another open set B− having the points with x ≤ 0 with an iterate

in F−1(U ) (and consequently in U ), we find therefore, that there is an open neighborhood of p0

contained in SatṼQ
(U ), as we claimed.

The fact that BQ fulfills one of the properties in Proposition 2.30 follows from the construction

of BQ inside ṼQ and the fact that it is saturated.

Notice that the set BQ = SatṼQ
(U ) is saturated in ṼQ which is also saturated in WE . We con-

clude that BQ is saturated in WE .
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We define the following curve

α : IQ → VQ

t 7→ α(t) = Fn(β̃(t −n)) with n = ⌊t⌋

where IQ is the maximum open set in which the curve can be defined. We will set I−Q = IQ ∩R≤0

and I+
Q = IQ ∩ R≥0. We claim that I−Q = R≤0 when the quadrant Q1 is of node type. It follows

since given any point p in VQ, we have that OrbVQ
(p) is infinite and accumulates in a strict fixed

point (in the node case). When the quadrant Q1 is of saddle type, for every p in VQ, we have

that Orb−VQ
(p) is finite. That is, for each p ∈ β there is some −np such that F−np(p) ∈ ṼQ and

F−np−1(p) < ṼQ. By the compactness of β, the np are bounded and I−Q is the union of an interval of

the form (a,0] and a finite number of open intervals (ai ,bi) with ai < bi < a. We study the shape of

I+
Q in the same manner. We define the curve γ to be union of the segments of α and the segments

of ∂ṼQ without Supp(G(ξ,π)).

See Figure 2.13 for an illustration of the construction of B̃Q in two examples: a hyperbolic

sector and a parabolic sector.

Figure 2.13: Hyperbolic and parabolic sectors obtained from a path of quadrants Q as the saturation of a
fundamental domain U . The curve α is semi-analytic in a neighborhood of E except of the
points in Fix(F) in both cases. In the second picture, it is also a parabolic curve at ps.

Lemma 2.41. The curve γ ⊂ ∂BQ is semi-analytic in WE \E.

Proof. The semi-analyticity of the segments α follows since β is semi-analytic and smooth. We

remark that α is the union of β and Fn(β) for arbitrary β. In addition this union is locally finite
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2.5. Refinements of the sectorial decomposition

in WE \ E, accumulation of segments Fn(β), if it exists, occurs in strict fixed points or dicritical

curves, but we are excluding the dicritical curves in this section. Then, given any point q ofWE\E,

we have that α is locally Fn(β), and semi-analyticity follows.

Other segments that can be part of γ are segments of the boundary of W1 and Ws, when they

are saddle domains. By hypothesis H-S, semi-analyticity follows.

Finally, γ is the finite union of the segments presented above, then it is semi-analytic in WE \
E.

Either Q1 or Qs is a dicritical quadrant

We start by showing that the local parabolic curves that we found in the dicritical components

(Proposition 2.29) can be globalized on the sector.

Lemma 2.42. Let Q be such that Q1 is a dicritical quadrant. Then, for every q ∈ Γ0 sufficiently close to

p1, there exists a connected analytic parabolic curve γ at q saturated in ṼQ.

Proof. Taking the intersection W1 ∩ ṼQ, take an open neighborhood Np1
of p1 in the subspace

topology, and take any point q ∈ Np1
∩ Γ0. Notice that such set Np1

exists as a consequence of

the fourth statement of Proposition 2.28. As a consequence of Proposition 2.29, there is a local

analytic parabolic curve γq at q defined in Uq, asymptotic to a formal invariant curve (cf. Def-

inition 2.5). Since Uq ⊂ Np1
and Np1

is open and contained in W1 ∩ ṼQ, and the fact that ṼQ is

saturated, we have that the parabolic curve can be extended to γ in ṼQ, by taking SatVQ
(γq).

Now, we claim that such a curve γ in ṼQ encloses a neighborhood of γe1
∪{p2}∪. . .∪{ps−1}∪γes−1

that has the properties of a sector. Recall that γ is invariant and saturated, then, it is a simple

curve γ that admits a parameterization γ̃ : I → ṼQ such that I is open and F(γ̃(t)) = γ̃(t+1) (when

the image of γ̃(t) is defined in ṼQ) and such that α(γ̃) = q in the dicritical curve Γ0. Indeed, as in

the previous section, it is enough to study the saturation in ṼQ of the compact set γ([r0, r0 + 1])

for some r0 ∈ I such that the segment is contained in ṼQ.

Lemma 2.43. The parabolic curve γ encloses a neighborhood BQ of γe1
∪ {p2} ∪ . . . ∪ {ps−1} ∪ γes−1

.

Moreover, BQ fulfills one of the properties in Proposition 2.30.

By Proposition 2.33, the set BQ is projected to R2 into a sector. See Figure 2.14 for an illustra-

tion on the construction of BQ.

Proof. We construct first the region BQ, and then we prove that it fulfills one of the properties

of Proposition 2.30. It is enough to distinguish the three possible cases: Qs is a saddle, a node

or a dicritical quadrant. In the three cases we study the saturation of the compact segment of γ

given by γ̃([r0, r0 + 1]) for some r0 as above. In the saddle case, recall that the saddle domain Ws
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Figure 2.14: Construction of BQ when Q has a dicritical quadrant. In the upper case, when the other
extreme is also dicritical. In the second case, when the other extreme is saddle. In the third
case, when it is a node (in particular, when ps is of type n-n-2 and the edge es does not have a
realization).

is in the conditions of H-S. We have that the curve γ intersects the semi-analytic component of

the boundary {y = C1} a finite number of times. Then, we conclude the region BQ enclosed by a

finite union of segments of γ and a finite union of segments of {y = C1} ⊂Ws. In the node case,

we have that ω(γ̃) = ps. Then, BQ is the region enclosed by this connected curve. In the dicritical

case, suppose that γ̃([r0, r0 + 1]) ⊂Ws. By the continuity of the ω−limit in the dicritical domains

shown in the fifth stament of Proposition 2.28, we have that ω(γ̃) is a compact connected set that

does not contain ps. Then, we have γ encloses the region BQ and it has semi-analytic boundary

in WE \Fix(F).

Now, we prove that BQ is indeed a sector by showing that it is saturated in VQ. To see this,

take any point p ∈ BQ \Fix(F). We have that α(p) is a single point p′ in Γ0∩ ṼQ. Take the saturated

parabolic curve γ ′ of p′. We claim that γ ′ does not intersect with γ . This is because otherwise

we find a contradiction. That is, the intersection point p′′ would have α(p′′) = {q} since p′′ ∈ γ
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2.5. Refinements of the sectorial decomposition

and α(p′′) = {p′}. Then the curve γ ′, which contains OrbṼQ
(p), lies in BQ. From the property that

OrbṼQ
(p) ⊂ BQ, we have that BQ is saturated.

Refinements of the parabolic sectors

In the previous section we have obtained a new collection of path sectors, we call its union Bpath.

We apply Proposition 2.35 in WE for the set Bpath, obtaining a neighborhood of E given by

W̃ = E ∪Bpath ∪ Supp(Endiv)∪ B̃1 ∪ · · · ∪ B̃k ∪ γ̃1 ∪ . . .∪ γ̃r

Lemma 2.44. There exists parabolic sectors Bi ⊂ B̃i and parabolic curves γj ⊂ γ̃j such that Bi has

semi-analytic boundary on WE \E and such that

E ∪Bpath ∪ Supp(Endiv)∪B1 ∪ · · · ∪Bk ∪γ1 ∪ . . .∪γr

is a neighborhood of E.

Proof. It is enough to reduce the sector in any of the possible cases: B̃i is constructed on a node

domain Wi at a point pi fulfilling H-N-I, H-N-II, or on a monotonic domain VΓi at the regular

dicritical arc Γi . In any of the cases, taking the corresponding coordinates (x,y), we have that y

is an analytic function monotonically increasing or decreasing on the orbits. In the case f-n-n

There is always a path sector BQ ending on pi or on Γi . With this, we mean that BQ ∩ {pi} , ∅ or

BQ ∩ Γi , ∅. We define Bi = B̃i ∩ {y < C} for some small enough C > 0 so that one of the following

is fulfilled.

• If pi is of type n or n-n-2, there are two paths Q and Q′ fulfilling the above. We take {y = C}
joining two points in the boundary of BQ in Wi and BQ′ in B̃i .

• If pi is of type f-n-n, f-n-s, n-n-1 or n-s. There is a single path Q fulfilling the above. We

take {y = C} joining a point in the boundary of BQ in B̃i and the curve of fixed points (f-n-n

or f-n-s) or parabolic curve (n-n-1 or n-s), given by {x = 0}.

• If Γi is a regular dicritical arc, there are two paths Q and Q′ fulfilling the above. We take

{y = C} joining two points in the boundary of BQ in VΓi and BQ′ in B̃i .

We have then, that the boundary of Bi is semi-analytic in WE \ E. The curves γi ⊂ γ̃i are also

refined so that its extreme is given by the corresponding interesection of the adjacent ∂Bj and

∂BQ.

115



Chapter 2. Sectorial decomposition of germs of diffeomorphisms

2.5.2 On the openness of the sectorial decomposition

In the absence of D-D sectors, we can construct a sectorial decomposition (U,S) taking U open

and ensuring that S is a stratification. We give the final refinements on the construction of (U,S)

in this section, concluding Proposition 2.8. Finally, we present the possible obstructions in order

to obtain these properties when D-D sectors exists.

Let e ∈ Endiv be an edge out of the divisor and Supp(e) its support in some neighborhood of

E in M. It is clear that in the points of type s-s, n-s, n-n-1, f-s-s, f-n-s and f-n-n, we can take the

two realization of quadrants W−,W+ such that W−∩Supp(e) =W+∩Supp(e). Then, we choose the

curve Γ = W+ ∩ Supp(e) to be a one dimensional stratum of S . See Figure 2.15 for an illustration

of this case.

Figure 2.15: Choice of W−, W+ and one dimensional stratum Γ .

In this setting, it is possible to construct sectors whose union is open in W− ∪ Γ ∪W+. In

particular, in a saddle quadrant, we can construct a sector ending at Wϵ and bounded by Γ , an

invariant curve and non-invariant segments of the boundary of Wϵ, as shown in the previous

section. In a node quadrant, we can find a path sector BQ and a parabolic sector B intersecting

Wϵ. The parabolic sector can be constructed so that its boundary contains Γ , an invariant curve

in the boundary of BQ and another non-invariant curve such that one of its endpoints is the

endpoint of Γ , as we did in the previous section. We conclude then that in these types of points

(s-s, n-s, n-n-1, f-s-s, f-n-s and f-n-n), the union of the sectors intersecting W− ∪ Γ ∪W+ is open

therein.

However, when Supp(e) is a bidicritical curve, we know that the two sectors adjacent to this

curve will be of type D-parabolic, D-elliptic or D-D. We can take the realizations W−,W+ of the

two dicritical quadrants such that W− ∩ Supp(e) = W+ ∩ Supp(e), and choose Γ = W+ ∩ Supp(e)

to be the one dimensional strata. In addition, at the time of constructing the sector on each of

the paths ending at this curve, we can choose the curves γ−,γ+ in Lemma 2.42 such that both γ−
and γ+ have the same basepoint q ∈ Γ . See Figure 2.16 for an illustration of this. Avoiding the

presence of D-D sectors, we can also ensure that S is a stratification because, on the one hand,
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we can choose one dimensional strata Γ = W− ∩ Supp(e) = W+ ∩ Supp(e). On the other hand, the

rest of one dimensional strata are parabolic curves lying between path sectors and parabolic ones,

and the curves γ in between are chosen fulfilling the boundary condition γ = ∂Vi ∩∂BQ.

Figure 2.16: Choice of the boundary curves of two sectors ending on a bidicritical curve.

Now, we illustrate a possible chaotic behavior in the presence of D-D sectors. In a D-D sector,

we have two dicritical curves Γ ,Γ ′. The parabolic curve γ at any basepoint q ∈ Γ accumulates

in a compact set Lγ ⊂ Γ ′, as we have already proved in Proposition 2.28. If Lγ were a single

point (Lγ = {q′}), we would have that γ is also a parabolic curve in the basepoint q′, because of

the characterization given in Proposition 2.29. Moreover, in the other sector adjacent to Γ ′ we

would choose again a parabolic curve with basepoint q′. The problem is that we cannot ensure

that Lγ is a single point. The points in Lγ must belong to π−1(U ), since they are α or ω−limits of

points in the sector. However, none of the points in Lγ can belong to the interior of U (since any

neighborhood of any point in Lγ intersects the curve γ that necessarily belongs to the boundary of

BQ). This fact is independent of the choice of the parabolic curve in the following sector adjacent

to Γ ′. See Figure 2.17 for an illustration.

Figure 2.17: The problem of D-D sectors.

To see that S is not necessarily a stratification it is enough to consider the following example,

where all the sectors are of type D-D. We illustrate this case in the Figure 2.18. We see that it is

possible that A2 = Γ1 ∪A2 ∪ Γ̃2, where Γ̃2 is strictly contained in Γ2.
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Figure 2.18: An example in which U = {0} ∪ Γ1 ∪ Γ2 ∪A1 ∪A2 is not open and S is not a stratification.

2.5.3 On the semi-analyticity of the sectorial decomposition

In this section, we use the results in Section 2.5.1 to prove that the set U is semi-analytic, under

the hypothesis that there are not bidicritical curves, as Proposition 2.9 claims.

It is enough to consider an initial sectorial decomposition (WE ,S) (before projection to R2) as

in Section 2.5.1, and then make the refinements proposed in Lemma 2.40 and 2.44. We obtain

a new sectorial decomposition (Ũ ,S) (before projection). On each of the sectors, we have semi-

analytic (in WE \ E) curves γ provided by the Lemmas. On the one hand, we have that ∂Ũ is

strictly contained in the closure of the union of the curves γ . On the other hand, ∂Ũ ∩ E = ∅,
since Ũ is by construction a neighborhood of E. Then, recalling that the semi-analyticity of the

boundary curves γ could only drop in E, we conclude that ∂Ũ is a semi-analytic curve and thus,

the set Ũ is semi-analytic. Since the sequence π is an analytic isomorphism out of E, we conclude

that U is semi-analytic.

We just make some comments on why the semi-analytic property is not achieved in the pres-

ence of bidicritical curves of fixed points. At any point q in a bidicritical curve Γ , we can define

an analytic parabolic curve asymptotic to a formal one. However, the definition of this curve is

not necessarily analytically extended to the basepoint q in Γ , sometimes this extension is only C∞.

For this reason, we think that U cannot be chosen in the semi-analytic class, as in the absence of

bidicritical curves. However, we think that semi-analyticity ofU \Fix(F) on R2\Fix(F) be obtained

in the presence of bidicritical curves.
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This chapter is devoted to the second problem of the thesis, the study of the cycle locus of

germs of analytic vector fields at (R3,0) having a Hopf singularity. The main objective is to give an

answer to Dulac’s problem for these vector fields. This problem states that there are no infinitely

many isolated cycles accumulating and collapsing to a singular point. We resolve it by proving

Theorem 3.1 (Theorem B in the Introduction). Here, we collect the result of the published article

[23], in which we worked with isolated Hopf singularities, and extend that result to the non-

isolated Hopf singularities. The proof in the isolated singularity case is simplified with respect

to that in [23], by using Theorem 2.6 of Chapter 2. The proof in the non-isolated singularity

case again uses that Theorem and also the other main result proved in this chapter, Theorem 3.3

(Theorem C in the Introduction).
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3.1 Hopf singularities

Let us introduce the notation and necessary definitions in order to state the main result. We

denote by Xω(R3,0), or simply by X(R3,0), the space of germs of analytic vector fields at the

origin of R3 which are singular at 0. We say that an element ξ has a Hopf singularity if the linear

part Dξ(0) has eigenvalues ±bi, c, with b ∈ R,0 and c ∈ R. If, moreover, the real eigenvalue c is

equal to 0, we say that ξ has Hopf-zero singularity. Otherwise, we say that ξ has a semi-hyperbolic

Hopf singularity. Denote by

H3 := {ξ ∈ Xω(R3,0) : Spec(Dξ(0)) = {±bi, c}, where b,c ∈ R and b , 0}.

the family of germs with a Hopf singularity.

Fix any ξ ∈ X(R3,0). Consider an open neighborhood U of 0 where (a representative of)

ξ is defined. We denote by CU = CU (ξ) the union of all cycles of ξ |U (that is, cycles entirely

contained inU ). It is called the cycle-locus of ξ inU . Notice that this cycle-locus depends strongly

on the neighborhood U and that it does not behave as a germ of a set that we can associate to

the germ ξ (i.e., if U ′ ⊂ U we can only assert that CU ′ ⊂ CU , but not CU ′ = U ′ ∩ CU ). When

the germs CU (ξ)0, CU ′ (ξ)0 of CU (ξ) and CU ′ (ξ) coincide at 0 for every pair of sufficiently small

neighborhoods U,U ′ of 0, we define the local cycle-locus in U

C(ξ) = CU (ξ)0 for a small enough U .

It is not difficult to prove (see [8]) that a Hopf singularity ξ ∈ H3 has a unique formal invari-

ant curve Ω̂ = Ω̂ξ at 0. Such an invariant curve is non-singular and tangent to the eigenspace

corresponding to the eigenvalue c. It is called the (formal) rotational axis of ξ. When c , 0 (the

semi-hyperbolic case), the rotational axis is convergent and provides an analytic invariant curve,

since in this case Ω̂ coincides with the stable or unstable manifold of ξ (see for instance [21] for a

proof of the analyticity of these invariant manifolds in general). On the contrary, when c = 0 (the

completely non-hyperbolic case or Hopf-zero singularity), the rotational axis Ω̂ may be convergent or

not, although there is always an invariant C∞-curve whose Taylor expansion at 0 coincides with

Ω̂. This is a result by Bonckaert and Dumortier in [8] in the case where ξ has an isolated singu-

larity, and trivially true otherwise since, in this case, Ω̂ coincides with the singular locus Sing(ξ),

which is an analytic curve.

3.1.1 Statement of the main results

In this section we state the main results. We start with a result that provides the description of

the cycle locus for Hopf singularities. It is Theorem B in the Introduction.
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3.1. Hopf singularities

Figure 3.1: Limit central surfaces.

Theorem 3.1 (Structure of the local cycle locus). Let ξ ∈ H3. Then there is a neighborhood U of

0 ∈ R3 where a representative of ξ is defined for which exactly one of the following possibilities holds:

(i) CU (ξ) = ∅.

(ii) There is a finite non-empty family S = {S1, ...,Sr} of connected smooth analytic two-dimensional

submanifolds ofU \{0}, mutually disjoint, invariant for ξ, subanalytic sets satisfying Sj = Sj∪{0}
for any j, and there is a neighborhood basis V of the origin in U such that every V ∈ V satisfies

CV (ξ) = (S1 ∪ S2 ∪ · · · ∪ Sr )∩V . (3.1)

(iii) The singular locus Sing(ξ |U ) of ξ inU is a smooth analytic curve inU and there is a neighborhood

basis V of the origin in U such that every V ∈ V satisfies

CV (ξ) = V \ (V ∩ Sing(ξ |U )). (3.2)

Consequently, the local cycle locus C(ξ) of ξ exists and it is equal to the empty germ, to the germ of

S1 ∪ · · · ∪ Sr or the complement of the germ of Sing(ξ) in cases (i), (ii) or (iii), respectively.

The surfaces in item (ii) will be called the limit central surfaces of ξ (see Figure 3.1 for an

example). Notice that possibility (i) of the theorem can be included on the second fixing r = 0

when there are no limit central surfaces.

The main consequence of Theorem 3.1 is the one concerning Dulac’s problem, solving it for

this type of vector fields. It is Corollary B in the Introduction.
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Corollary 3.2 (Dulac’s Property). If ξ ∈ H3, there is a neighborhood of 0 ∈ R3 which is free of isolated

cycles of ξ.

Some comments about Theorem 3.1 are in order. In the particular semi-hyperbolic case (c ,

0), we obtain that only possibilities (i) or (ii) with r = 1 of the theorem can occur. Moreover, in

the last case, the unique limit central surface is a smooth analytic center manifold of ξ at 0. This

situation has been treated by many authors, namely [4, 46, 49], but we will present a proof in

Section 3.2 using the theory of center manifolds.

In the Hopf-zero case, any situation of the theorem can occur. The possibility (iii) means

that all non-trivial trajectories are periodic. In the literature, this situation is known by saying

that ξ is a three-dimensional center. It can be noticed that when ξ is a three-dimensional center,

its singularity is not isolated, as a consequence of a Brunella’s result [14]: if ξ has an isolated

singularity at 0 ∈ R3, then there is a non-trivial trajectory γ of ξ such thatω(γ) = {0} or α(γ) = {0}.
We also provide a characterization of the three-dimensional centers of Hopf type, as follows.

This Theorem corresponds to Theorem C in the Introduction.

Theorem 3.3. Let ξ ∈ H3, the following statements are equivalent.

(1) ξ is formally degenerate (its normal form has the form G(x2 + y2, z)(−y ∂
∂x + x ∂

∂y ) where G ∈
R[[u,v]] is a unit).

(2) ξ is analytically orbitally linearizable (i.e. it is orbitally equivalent to its linear part up to multi-

plication by an analytic unit)

(3) There is a neighborhood U of 0 such that CU =U \ Sing(ξ).

(4) ξ is analytically completely integrable (i.e. there are two analytic first integrals f ,g at 0 satisfying

df ∧ dg , 0).

We highlight that some of the equivalences and implications provided in this Theorem have

also been obtained by other authors, as we presented in the Introduction. We will also show that

(1) is equivalent to a weaker statement: ξ is formally orbitally linearizable. In section 3.1.3, we

will associate a two dimensional formal vector field to each normal form. With that tool in hand,

we define the formally degenerated Hopf-zero vector fields as those that have a zero vector field

associated to them.

We finish the section by showing that any cycle makes a single turn around a rotational axis,

which is a direct consequence of Theorem 3.1 in the situations (i) and (ii), and the fact that ξ is

analytically orbitally linearizable provided in Theorem 3.3 in the situation (iii).

Corollary 3.4. Let ξ ∈ H3 and suppose that its local cycle locus is non-empty. Let Ω∞ be a C∞

realization of the formal rotational axis. Then, the neighborhood basis V in Theorem 3.1, (ii) or (iii)
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can be chosen so that V \Ω∞ is homotopically equivalent1 to S1 and any cycle γ ⊂ CV (ξ) is a generator

of π1(V \Ω∞).

We show now an example of a vector field that defines two limit central surfaces and then an

example of a three dimensional center.

Example 3.5. Consider the following vector field in H3.

ξ = (−y − xz2 + x(x2 + y2))
∂
∂x

+ (x − yz2 + y(x2 + y2))
∂
∂y

+ (z3 + z(x2 + y2))
∂
∂z
.

It has isolated singularity. The two half-cones S1 = {(x,y,z) : x2 + y2 − z2 = 0, z > 0} and S2 =

{(x,y,z) : x2 + y2 − z2 = 0, z < 0} are invariant. The restriction of ξ to any of the surfaces Si is

ξ |Si= −y
∂
∂x + x ∂

∂y , which proves that ξ defines a central configuration in Si , for i = 1,2.

In this example, one can see that there are no cycles outside S1 ∪ S2 in a neighborhood of 0.

Thus, we obtain that ξ is of type (ii) of Theorem 3.1 with two limit central surfaces (r = 2), given

by S1 and S2.

Example 3.6. Consider the following vector field in H3.

ξ = −y ∂
∂x

+ x
∂
∂y
.

The z−axis is a smooth curve of singularities of ξ. The rest of the trajectories are cycles, given

by the intersection of the level surfaces of its two first integrals: the coordinate function z and

x2 + y2. Then, the vector field ξ is a three dimensional center (type (iii) in Theorem 3.1)

3.1.2 Normal form theorems applied to Hopf-zero singularity

Let ξ ∈ H3 be a Hopf-zero singularity. Using the normal forms theorems stated in section ??

(Theorems A.26 and A.29) for ξ, we have the following: There exists a formal automorphism at

0, expressed in terms of the chosen coordinates as

ϕ̂(x,y,z) = (x+ ϕ̂1(x,y,z), y + ϕ̂2(x,y,z), z+ ϕ̂3(x,y,z)) ∈ R[[x,y,z]]3,

with j1(ϕ̂j ) = 0 for j = 1,2,3, such that the formal vector field ξ̂ = ϕ̂∗(ξ) is written in the form

ξ̂ = A(x2 + y2, z)
(
−y ∂
∂x

+ x
∂
∂y

)
+B(x2 + y2, z)

(
x
∂
∂x

+ y
∂
∂y

)
+C(x2 + y2, z)

∂
∂z
, (3.3)

1We recall that being homotopically equivalent implies that the two topological spaces have the same homotopy
group. For a definition of this equivalence, see [38].
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Chapter 3. Dulac’s problem for vector fields with a Hopf singularity

where A,B,C ∈ R[[u,v]] and A(0,0) = 1. Note that A(u,v),C(u,v) belong to the ideal (u,v). Neither

the automorphism ϕ̂ need to be convergent, nor the components of ξ̂ need to belong to R{x,y,z}.
Any formal vector field ξ̂ as in (3.3) obtained as above is called a formal normal form of ξ. We

remark that ξ̂ is not uniquely determined by ξ.

Remark 3.7. The z−axis is sent to the rotational axis Ω̂ of ξ by ϕ̂, that is, Ω̂ = ϕ̂(0,0, z). On the

other hand, since ϕ̂ must preserve the (formal) singular locus, the hypothesis that ξ has isolated

singularity implies that C(0,v) , 0 for v , 0, in particular, we have C(0,v) belongs to the ideal

(v2). Meanwhile, when ξ has a curve of singularities, any formal normal form ξ̂ satisfies that

Sing(ξ̂) is the z−axis.

Once we fix a formal normal form ξ̂ of ξ given by ξ̂ = ϕ̂∗ξ, we can consider normal forms of

ξ up to some jet in the following way. For any ℓ ∈ N≥2, let ϕℓ be the polynomial tangent to the

identity diffeomorphism of (R3,0) given by

ϕℓ(x,y,z) = (jℓ+1ϕ̂)(x,y,z) = (jℓ+1(x ◦ ϕ̂), jℓ+1(y ◦ ϕ̂), jℓ+1(z ◦ ϕ̂)).

The vector field ξℓ = (ϕℓ)∗(ξ) has the same ℓ−jet as the formal one ξ̂ in coordinates (x,y,z). That

is, jℓ(ξℓ) = jℓ(ξ̂). Notice that the vector field ξℓ is analytically conjugated to ξ and formally

conjugated to ξ̂ for any ℓ. More precisely, we have the following formal equation:

ξ̂ = ψ∗ℓξℓ, where ψℓ := ϕ−1
ℓ ◦ ϕ̂. (3.4)

Assertion †. It is sufficient to prove Theorem 3.1 for ξℓ for some ℓ ≥ 2 when ξ has a Hopf-zero singu-

larity.

3.1.3 Two dimensional vector field associated to a normal form. Degenerated and

Non-Degenerated Hopf-zero singularities.

Now, fix a normal form ξ̂ of ξ, written as (3.3). First, consider that the coefficient A of −y ∂
∂x +x ∂

∂y

is a unit, then we obtain an equivalent vector field ζ.

ζ = −y ∂
∂x

+ x
∂
∂y

+
B(x2 + y2, z)
A((x2 + y2, z))

(
x
∂
∂x

+ y
∂
∂y

)
+
C(x2 + y2, z)
A(x2 + y2, z)

∂
∂z
, (3.5)

given by the product with 1
A . We write this vector field in cylindrical coordinates (θ,z,ρ), where

x = ρcosθ and y = ρ sinθ. We obtain ζ(θ) = 1, so that, using θ as the time parameter, ζ is
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3.2. The semi-hyperbolic case

described by the following autonomous system of ODEs

ζ :

 dz
dθ = A(ρ2, z)−1B(ρ2, z) = ρnAz(z,ρ)
dρ
dθ = A(ρ2, z)−1C(ρ2, z) = ρnAρ(z,ρ).

(3.6)

where Az,Aρ ∈ R[[z,ρ]]. We define the associated two dimensional vector field as the two dimen-

sional vector field obtained from the previous system

η̂ =
B(ρ2, z)
A(ρ2, z)

∂
∂ρ

+
C(ρ2, z)
A(ρ2, z)

∂
∂z
.

The vector field η̂ encloses the dynamical properties of ξ̂, and will be of use in the following

sections. We remark that this vector field may not be a saturated vector field.

Degenerated and Non-degenerated Hopf singularities

We will make this distinction in terms of η̂. It is possible that η̂ is exactly equal to 0. We will see

that the fact of η̂ being 0 is independent of the choice of formal normal form ξ̂. In this case, we

say that ξ has a degenerated Hopf singularity. Notice that an isolated Hopf singularity can never be

degenerated, since, as we discussed before, the coefficient C must contain a non-zero term that

only depends on z.

When η̂ , 0, we say that ξ has a non-degenerated Hopf singularity. As in the previous case, η̂

depends on the choice of normal form, but the fact of being different from zero will not depend

on this choice.

We will prove Theorem 3.1 distinguishing the following four cases:

1. Semi-hyperbolic case,

2. Isolated Hopf-zero singularity case. It is always a non-degenerated Hopf singularity,

3. Non-degenerated non-isolated Hopf-zero singularity case,

4. Degenerated Hopf-zero singularity case. The singularity in this case is always non-isolated.

3.2 The semi-hyperbolic case

We prove the result first for semi-hyperbolic vector fields of Hopf type. Assume that the eigen-

values of Dξ(0) are i, −i and c with c , 0. Then, applying the Center Manifold Theorem (Theo-

rem A.22 in the Appendix) there is some neighborhood Vk where

• There exists a unique non-singular invariant one dimensional analytic manifoldW =W s or W u ,

tangent to the eigenspace of c. This is the stable (when c < 0) or unstable (when c > 0) man-

ifold.
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Chapter 3. Dulac’s problem for vector fields with a Hopf singularity

• There exists a non-singular invariant two dimensional Ck manifold W c, tangent to the

eigenspaces of i and −i. It contains every cycle of ξ in Vk . Moreover, for any sufficiently

small neighborhood U of 0, we have CU ⊂W c.

We work in some neighborhood U ⊂ Vk of 0 in which the above manifolds are well defined and

the stated properties for them hold. Let π : (M,E) → (R3,W ) be the blowing-up centered at

the stable manifold. The divisor π−1(W ) is topologically a cylinder and the fiber γ0 = π−1(0)

is a cycle of the total transform ξ1 = π∗ξ contained in E. Notice also that the strict transform

(W̃ c)′ = π−1(W c \ {0}) is a surface of class Ck−1, invariant for ξ1 and transverse to E at γ0.

Now, consider the point p0 ∈ γ0 given by the intersection of π−1({y = 0}) and γ0, and two

nested discs ∆′ ⊂ ∆ ⊂ π−1({y = 0}) in which ξ1 is transverse to both ∆′ and ∆ and where the

Poincaré map P : ∆′ → ∆ is defined. Notice that any cycle of ξ1 transverse to ∆′ provides a

periodic point γ ∩ ∆′ of P . By the fact that CU ⊂ W c, we have that any cycle γ is contained in

π−1(W c), which is a surface. Then, by arguments based on Jordan Curve Theorem (see [62]), we

find that any cycle γ ⊂ W c intersects ∆′ in a single point, which is necessarily a fixed point of

P . In particular, in some open neighborhood of γ0, the family of cycles of ξ1 is in bijection with

the set of fixed points of P . In addition, the set of fixed points must be contained in the curve

H = (W̃ c)′ ∩∆′ .
With these tools we prove Theorem 3.1 in the semi-hyperbolic case. First, suppose that (i)

does not hold, that is, CV , 0 for any open neighborhood V of 0. Then, there are infinitely many

cycles of ξ that accumulate and collapse to 0. By the above reasoning, there are infinitely many

fixed points accumulating to the point p0 along the curve H . Since the map P is analytic and so

is the set Fix(P ), the set Fix(P ) must be curve of positive dimension. Since Fix(P ) ⊂ H and H is

a curve of class Ck−1, we conclude that the sets Fix(P ) and H coincide (as germs at p0). Suppose

that Ṽ is a neighborhood of 0 that fulfills

• Ṽ ∩∆ = ∆′.

• Ũ ∩ (W̃ c)′ is the saturation of a segment of H by the flow of ξ1.

• V = π(Ṽ ) ⊂ Vk .

Figure 3.2: Arguments of the proof of Theorem 3.1 in the semi-hyperbolic case.
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of singularities

We get that V is a neighborhood of 0 and that CV = (W c∩V )\ {0}. Notice also that (W̃ c)′ ∩ Ṽ is an

analytic set since H is an analytic curve. Being π proper and analytic, we conclude that W c ∩V
is subanalytic, which proves Theorem 3.1 in this case. An illustration of the arguments in this

proof can be found in Figure 3.2.

Remark 3.8. The proof above shows that, in the semi-hyperbolic case, there is at most one limit

central surface S1. Moreover, if S1 exists, then S1 = W c is a center manifold which is unique and

analytic (using Tamm’s Theorem [73], becauseW c is of class Ck for every k and subanalytic in this

case).

3.3 The isolated Hopf-zero singularity case: Admissible blowing-ups

and reduction of singularities

In this section, we will apply a sequence of blowing-ups in order to simplify its dynamics. We

will explain first the process for the normal form, and then adapt it to its jet approximations,

choosing a sufficiently large jet approximation ξℓ. In the first subsection, we will explain the

admissible blowing-ups and introduce the notation. Later, we will give the result on reduction

of singularities. We will finish by applying this result to the jet approximations. To compare

this section with [23], we will restrict here the admissible blowing-ups to one of the two types

presented therein, in particular, here we only make blowing-ups centered at points, instead of

curves. In addition, the reduction of singularities result we need is weaker, and we will state it

with the generality needed for this proof. This is one of the simplifications with respect to [23]

we anticipated in the introduction of this chapter.

3.3.1 Admissible blowing-ups

The first blowing-up

The first blowing-up to be done is the real blowing-up σ0 : (M0,E0) −→ (R3,0) with center at the

origin. The blown-up space M0 is a manifold having the divisor E0 = σ−1
0 (0) as its boundary.

This divisor is homeomorphic to a sphere and represents the space of all the half-lines through

0. The morphism σ0 defines an analytic isomorphism from M0 \ E0 to R3 \ {0}. We consider M0

as in Section 1.2.4 changing slightly the notation. The manifold M0 is covered by three charts

(C0, (θ,z(0),ρ(0))), (C∞, (x(∞), y(∞), z(∞))) and (C−∞, (x(−∞), y(−∞), z(−∞))) where C0 ≃ S1 ×R×R≥0 and

C±∞ ≃ R2 ×R≥0. In these charts, the expression of σ0 is given by:

In C0 :


x = ρ(0) cosθ

y = ρ(0) sinθ

z = ρ(0)z(0)

(cosθ,sinθ) ∈ S1, z(0) ∈ R,ρ(0) ≥ 0 (3.7)
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Chapter 3. Dulac’s problem for vector fields with a Hopf singularity

In C∞ :


x = x(∞)z(∞)

y = y(∞)z(∞)

z = z(∞)

x(∞), y(∞) ∈ R, z(∞) ≥ 0 (3.8)

In C−∞ :


x = x(−∞)z(−∞)

y = y(−∞)z(−∞)

z = −z(−∞)

x(−∞), y(−∞) ∈ R, z(−∞) ≥ 0. (3.9)

See Figure 3.2 to understand better this blowing-up. The origins of the charts C∞ and C−∞ will

be denoted by γ∞ and γ−∞, respectively. They are the points of the divisor E0 corresponding to

the half-lines contained in the z−axis and they are the only points of E0 not covered by C0. More

explicitly, σ0(C0) = R3 \ {x = y = 0}.
We define the (total) transform of ξ̂ by σ0 in the chart C0 as the pull-back

ξ̂(0) := (σ0|C0
)∗ξ̂.

Using simplified notation (z,ρ) := (ρ(0), z(0)) and equations (3.3) and (3.7), the vector field ξ̂(0) is

given by

ξ̂(0) = A(0)(z,ρ)
∂
∂θ

+C(0)(z,ρ)
∂
∂z

+B(0)(z,ρ)
∂
∂ρ
, (3.10)

where A(0)(z,ρ) = A(ρ2,ρz), C(0)(z,ρ) = 1
ρC(ρ2,ρz) − zB(ρ2,ρz) and B(0)(z,ρ) = ρA(ρ2,ρz). Notice

that A(0),B(0),C(0) ∈ R[z][[ρ]], A(0)(0,0) = 1 and that (B(0),C(0)) , (0,0) by the hypothesis that ξ̂ is

non-degenerated. Notice also that ρ divides B(0),C(0).

As in section 3.1.3, we can define a two dimensional vector field that describes the three

dimensional one in this chart. Consider the system of ODEs

η̂0 :

 dz
dθ = A(0)(z,ρ)−1B(z,ρ) = ρn

(0)
A

(0)
z (z,ρ)

dρ
dθ = A(0)(z,ρ)−1C(0)(z,ρ) = ρn

(0)
A

(0)
ρ (z,ρ),

(3.11)

and define the associated two-dimensional vector field η̂0 and η̂′0 = 1
ρn

(0) η̂0. Consider the blowing-

up of 0 in R×R≥0 and the vector field η̂.

Remark 3.9. Notice that, up to multiplication by a unit, the vector field η̂0 coincides with the total

transform η̂(2+) of η̂ in the usual chart U+
2 in the direction of ρ.

Consider the curve curve F0 := E0 ∩ {θ = 0}, and the set �Sing(η̂0,F0), which is given by the

singularities of η̂′0 and also points where η̂′0 is tangent to F0 (in the dicritical case). Suppose that

�Sing(η̂0,F0) = {(ω(0)
i ,0) : i = 1, . . . ,m0}, with ω(0)

i < ω
(0)
j if i < j.
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Definition 3.10. The characteristic cycles of ξ̂ in M0 are the connected components of the set S1 ×�Sing(η′0|F0) ⊂ C0, that is, the circles in the divisor E0 given by γi := {z(0) = ω
(0)
i ,ρ(0) = 0} for i =

1,2, . . . ,m0.

We define also the transforms ξ̂(∞) := (σ0|C∞)∗ξ̂ and ξ̂(−∞) := (σ0|C−∞)∗ξ̂ of ξ̂ in the charts

C∞,C−∞, respectively. The expressions for ξ̂(∞), using simplified notation (x,y,z) := (x(∞), y(∞), z(∞))

is the following:

ξ̂(∞) =B(∞)(x2 + y2, z)
(
x
∂
∂x

+ y
∂
∂y

)
+A(∞)(x2 + y2, z)

(
−y ∂
∂x

+ x
∂
∂y

)
+C(∞)(x2 + y2, z)

∂
∂z
,

(3.12)

where B(∞),A(∞),C(∞) ∈ R[x2 + y2][[z]] are given by:

B(∞)(x2 + y2, z) = B((x2 + y2)z2, z)− 1
z
C((x2 + y2)z2, z),

A(∞)(x2 + y2, z) = A((x2 + y2)z2, z) and C(∞)(x2 + y2, z) = C((x2 + y2)z2, z).

In a similar way, we obtain expressions for ξ̂(−∞). Notice that the origin of these charts are singu-

larities of ξ̂(∞).

Definition 3.11. The origins γ∞,γ−∞ of the charts C∞ and C−∞ (cf. equations (3.8) and (3.9)) are

called the characteristic singularities of ξ̂ in M0. We use the term characteristic elements to refer

either to the characteristic cycles or to characteristic singularities.

Further blowing-ups

In the rest of this section, we define sequences of blowing-ups attached to ξ̂ starting from the data

defined above for the first blowing-up σ0. More precisely, consider the tupleM0 := (M0,σ0,A0,D0),

where:

• A0 is the atlas of M0 composed by the charts C−∞,C0,C∞,

• D0 is the family of characteristic elements of ξ̂ in M0, that is, D0 := {γ−∞,γ1, . . . ,γm0
,γ∞}.

By definition, we say thatM0 a sequence of admissible blowing-ups of length l = 0 for ξ̂. In further

steps, we will only admit blowing-ups centered at one of the two characteristic points: the iter-

ated tangents of the semi-branches of the formal rotational axis. Recall that this axis is simply

the z−axis. This means that we will blow up the origins γ∞ and γ−∞ of the charts C∞ and C−∞ on

the previous section.
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For instance, suppose that we start with the blowing-up σ∞ : (M1,E1)→ (M0,E0) centered at

the point γ∞. It is expressed in two charts: C∞,0 and C∞,∞ defined in the same way as C0 and C∞
in Equations 3.7 and (3.8). See Figure 3.3 for an illustration of these blowing-ups.

Figure 3.3: Admissible blowing-ups.

In the chart (C∞,0, (x(∞,0), y(∞,0), z(∞,0))), we can study the characteristic cycles of ξ̂(∞,0) =

(σ∞|C∞,0)∗ξ̂(∞) whose expression is similar to (3.10). We define the associated two-dimensional

vector field η̂∞,0 as in (3.11) and study its singularities to determine the characteristic cycles in

this chart. The origin of C∞,∞ is again a singularity of ξ̂(∞,∞) = (σ∞|C∞,∞)∗ξ̂(∞)- The expression of

ξ̂(∞,∞) is similar to that of (3.12).

We denote by A1 the atlas of M1 given by (A0 \ {C∞})∪ {C∞,0,C∞,∞}. We denote by D1 the set

of characteristic cycles and characteristic points defined on each chart C ∈ A1.

The rest of the admissible blowing-upsMi = (Mi ,πi ,Ai ,Di) are defined similarly, by the com-

position of blowing-ups πi = σ0 ◦σ1 ◦ · · · ◦σi−1 centered at the iterated tangents of the z−axis, and

with Ai = {CJ }J∈J where each CJ has coordinates either of the form (x(J), y(J), z(J)) or (θ(J), z(J),ρ(J)),

and Di = {γI }I∈Ii where each γI is a characteristic cycle or a characteristic point.

3.3.2 Reduction of singularities

We saw in Section 1.4.3 the reduction of singularities of formal non-saturated vector fields. The

vector field η̂ suits in this class of vector fields. In order to find a suitable reduction of singulari-

ties of ξ̂, we will make admissible blowing-ups centered at the iterated tangents of the rotational

axis (the z−axis). The main difference with respect to our article [23] is that we do not pursue a

reduction of singularities of the associated two dimensional vector fields η̂J for J ∈ J , instead, we

will only resolve the points in the iterated tangents of the rotational axis of ξ̂.

Just as a comment to prepare the following result and its proof, and according to the construc-

tion of sequences of admissible blowing-ups in the previous section, anyA = {CJ }J∈J is composed

of the two charts CIM−∞ and CIM∞ where IM−∞, I
M
∞ are, respectively, (−∞, . . . ,−∞) and (∞, . . . ,∞), and a
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finite number of charts:

{CJ }J∈J0
, where J̃0 = {0, (∞,0), . . . , (∞, . . . ,∞,0), (−∞,0), . . . , (−∞, . . . ,−∞,0)},

the second group of charts having coordinates of the form (θ,z,ρ) ∈ R× (R≥0)2, except for C0 with

z taking values in R.

Proposition 3.12 (Adapted reduction of singularities). There exists an admissible sequence of blowing-

upsM = (M,π,A,D) for ξ̂ withA = {CJ }J∈J ,D = {γI }I∈I and total divisor E = π−1(0) such that the fol-

lowing holds. For J ∈ {IM∞ , IM−∞}, the transformed vector field ξ̂(J) = (π|CJ )
∗ξ̂ satisfies ξ̂(J)(z(J)) = (z(J))t ·G

where t ≥ 1 and G is a unit in R[[x(J), y(J), z(J)]].

Proof. From Remark 3.7 there exists a term cjz
j in the coefficient ξ̂(z) with cj , 0. Assume, with-

out loss of generality, that j is the minimal exponent with this condition. Notice that j > 0. Write

ξ̂(z) ∈ R[[x,y,z]] as

ξ̂(z) = Z(x2 + y2, z) = zt0G(x,y,z) = zt0
∞∑

k=ν(G)

Gk(x,y,z),

where Gk is an homogeneous polynomial of degree k for each k, t0 ≥ 0 is defined as the maximum

integer such that zt0 divides ξ̂(z). Then Gj−t0(x,y,z) contains the monomial cjzj−t0 (notice that

j ≥ t0 and the equality holds if and only if ν(G) = 0). Consider the first blowing-up σ0 and study

ξ̂(∞)(z(∞)), where ξ(∞) = (σ0|C∞)∗ξ̂. Omitting super-indices for the coordinates (x(∞), y(∞), z(∞)), we

have:

ξ̂(∞)(z) = zt0
∞∑

k=ν(G)

Gk(x,y,1)zk = zt1
∞∑

k=ν(G)

Gk(x,y,1)zk−ν(G),

where t1 = t0 + ν(G) ≥ t0. Rewrite the series G(1) :=
∑∞
k=ν(G)Gk(x,y,1)zk−ν(G) in homogeneous

components:

ξ̂(∞)(z) = zt1G(1)(x,y,z) = zt1
∞∑

k=ν(G(1))

G
(1)
k (x,y,z).

If j = t1, we see that G(1)
0 = cj and thus, G(1) is a unit, which gives statement (1) of the proposition

for t = t1. Otherwise, if t1 < j, we see that G(1)
j−t0(x,y,z) contains the term cjz

j−t1 . Notice that in this

case we have t1 ≥ t0 since, otherwise, if t1 = t0 then ν(G) = 0 and j = t0 = t1. Thus, j−t0 > j−t1 ≥ 0.

By recurrence over j − t0, there exists an admissible sequence of blowing-ups M̃ = (M̃, π̃,Ã,D̃)

with π̃ a composition of s blowing-ups at the corresponding characteristic singularities γ
I
Mi
∞

such

that, defining t0, t1, . . . , ts as above, we have j = ts. We conclude the statement for π̃∗ξ̂ at the char-

acteristic singularity γ
IM̃∞

with t = ts. Analogously, up to blowing-up repeatedly the characteristic

singularity γM̃−∞, we may assume that the statement holds at γ
IM̃−∞

.
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3.3.3 Jet approximations under blowing-ups

In this section, we study the effect of sequences of admissible blowing-ups to the jet approxi-

mations ξℓ of the formal normal form ξ̂, for convenient values of ℓ. We follow the techniques

introduced in Section 1.6.1. The main difficulty in comparison to the results in section 1.6.1 is

that we are using also cylindrical coordinates, and thus, the coefficients of the vector field in

those coordinates lie in a ring that we did not treat in section 1.6.1. First, we establish the jet

dependence of the transform of ξ̂ on such blowing-ups in the different charts.

Proposition 3.13. Let ξ̂ be a formal normal form of ξ ∈ H3. Consider an admissible sequence of

blowing-upsM = (M,π,A,D) for ξ̂ of length l > 0, with A = {CJ }J∈J . For every J ∈ J and for every

k ≥ 1, if u is a coordinate of the chart CJ such that {u = 0} ⊂ E = π−1(0), then we have

juk (ξ̂(J)) = juk ((π|CJ )
∗jk+l+1(ξ̂)). (3.13)

Proof. The proof uses Proposition 1.51, which we summarize now. Let η be a vector field with co-

efficients in A[[x1, . . . ,xn]] and let π be a quadratic morphism of the form π(x1, . . . ,xn) =

(x1xi , . . . ,xi−1xi ,xi ,xi+1xi , . . . ,xnxi). Then,

jxik (π∗η) = jxik (π∗jk+1(η))

j
xj
k (π∗η) = j

xj
k (π∗j

xj
k (η)) = j

xj
k (π∗j

xj
k+1(η)), j , i.

(3.14)

We proceed by induction on the length l of M. If l = 0, that is, π = σ0 is the blowing-up of

the origin 0 ∈ R3 described in section 3.3.1. We have (with simplified notation in the respective

equalities ρ := ρ(0) in the first, z := z(∞) in the second and z = z(−∞) in the third)

j
ρ
k ((σ0|C0

)∗ξ̂) = j
ρ
k ((σ0|C0

)∗jk+1(ξ̂)),

jzk((σ0|C∞)∗ξ̂) = jzk((σ0|C∞)∗jk+1(ξ̂)),

jzk((σ0|C−∞)∗ξ̂) = jzk((σ0|C−∞)∗jk+1(ξ̂)).

(3.15)

The first item is developed as in the proof of 1.51. The other two follow from direct application

of that result. Suppose l > 0 and that π = π̃ ◦ σγI , where σγI is the blowing-up centered at some

characteristic singularity γI of a sequence of admissible blowing-ups M̃ = (M̃, π̃,Ã,D̃) of length

l−1. It is enough to study the transform ξ̂(J) in the charts CJ when σ−1
γI (γI )∩CJ , ∅, since the map

σγI is an isomorphism out of σ−1
γI (γI ). According to the construction ofM from M̃ and using the

same notations as in section 3.3.1, we have several cases:

1. γI is a characteristic singularity (for instance I = IM̃∞ ) and J = IM∞ = (∞, s. . .,∞). In this case z(J),

is the only coordinate of the chart CJ in the conditions of the statement. Notice that s ≤ l + 1.
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of singularities

Applying s times the first formula in (3.14), we get, for u = z(J), that

juk (ξ̂(J)) = juk ((π|CJ )
∗jk+s(ξ̂)) = juk ((π|CJ )

∗jk+s(jk+l+1(ξ̂))) = juk ((π|CJ )
∗jk+l+1(ξ̂)).

2. γI is a characteristic singularity (for instance I = IM̃∞ ) and J is not IM∞ = (∞, s. . .,∞). Notice that

γI is the origin of a chart (CJI , (x
(JI ), y(JI ), z(JI ))) of Ã where z(JI ) = 0 is the equation of the divisor

Ẽ ∩ CJI and σγI |CJ : CJ → CJI has the same expression as (3.7) for σ0, considering coordinates

(θ,z(J),ρ(J)) for CJ and with the obvious change of notation. Notice that in CJ the two coordi-

nates u = ρ(J) and u = z(J) are in the conditions of the statement. By the induction hypothesis,

renaming z = z(JI ) for simplicity, we have, for any k ≥ 1, that jzk(ξ̂(JI )) = jzk((π̃|CJI )
∗jk+l(ξ̂)). By the

fact that jk(χ) = jk(j
z
k(χ)) for any vector field χ, we also have jk(ξ̂(JI )) = jk((π̃|CJI )

∗jk+l(ξ̂)). The

result follows for u = ρ(J) from this similarly to the case of the first blowing-up σ0. For u = z(J),

it is a consequence of the second equation of (3.14).

Now, let us discuss the validity of Proposition 3.13 for the jets approximated normal forms

ξℓ.

Consider the first blowing-up σ0 at 0 ∈ R3, a singular point of ξℓ for any ℓ. Being ξℓ analytic,

the total transform σ ∗0ξℓ exists and is analytic in a neighborhood of the divisor E0 = σ−1
0 (0). More-

over, in terms of coordinates of the charts C−∞, C0, C∞ (c.f. section 3.3.1), we can prove (see for

instance the computations in [4, sec. 3]):

a) For (C∞, (x(∞), y(∞), z(∞))) (and analogously for C−∞) the coefficients of ξ(∞)
ℓ := (σ0|C∞)∗ξℓ be-

long to R[x(∞), y(∞)][[z(∞)]]∩R{x(∞), y(∞), z(∞)}. In fact, they belong to the algebra R[x(∞), y(∞)]{z(∞)}
of convergent series with polynomial coefficients (c.f. Chapter 1).

b) For (C0, (θ,z,ρ)), the coefficients of ξ(0)
ℓ := (σ0|C0

)∗ξℓ belong to R[cosθ,sinθ,z][[ρ]]∩R[cosθ,sinθ]{z,ρ}.
In fact, they belong to R[cosθ,sinθ,z]{ρ}.

Finally, taking into account that ℓ ≥ 1 (i.e. ξℓ has the same linear part as ξ or ξ̂), we may observe

that ξ(J)
ℓ |E0∩CJ= ξ̂(J)|E0∩CJ for any J ∈ {−∞,0,∞}. In particular, the characteristic elements of ξ̂ in

E0 are invariant for σ ∗0ξℓ, which admits then a transform which is analytic if we blow up again

one of those characteristic elements. Using recursively the same kind of arguments, and with a

similar proof, we obtain the following version of Proposition 3.13 for the jets approximations of

the normal form.

Proposition 3.14. Let M = (M,π,A,D) be an admissible sequence of blowing-ups of length l with

A = {CJ }J∈J . Then, for ℓ ≥ l + 1 and J ∈ J the transform ξ
(J)
ℓ := (π|CJ )

∗ξℓ is analytic. Moreover, if
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k ∈ N, u is a coordinate of CJ such that {u = 0} ⊂ E = π−1(0) and ℓ ≥ k + l + 1, then, we have

juk (ξ(J)
ℓ ) = juk (ξ̂(J)).

Remark 3.15. As a part of the proof, we verify that the restriction of ξ(J)
ℓ and ξ̂(J) to the divisor

coincide. Hence, the characteristic elements γI ∈ D are invariant for the total transform π∗ξℓ.

They are called characteristic singularities or characteristic cycles, accordingly, of ξ(J)
ℓ . Moreover,

we observe that the coefficients of ξ(J)
ℓ are convergent series in the coordinates of the chart CJ ;

i.e. they satisfy the corresponding property a), respectively b), above when J ∈ {IM−∞, IM∞ } (resp.

J < {IM−∞, IM∞ }). In the last case, we can also interchange the roles of the coordinates z and ρ if CJ is

a corner chart.

Recall from section 3.3.1 the definition of the associated two dimensional vector fields η̂J to

ξ̂(J) for J ∈ J \ {IM∞ , IM−∞} and the corresponding reduced vector fields η̂′J = (ρn
(J)
1 zn

(J)
2 )−1η̂J , where

(θ,z,ρ) are the coordinates in CJ . Write the transform ξ
(J)
ℓ as

ξ
(J)
ℓ = B(J)

ℓ (θ,z,ρ)
∂
∂ρ

+A(J)
ℓ (θ,z,ρ)

∂
∂θ

+C(J)
ℓ (θ,z,ρ)z (3.16)

The associated (to ξ(J)
ℓ ) system of ODEs ηℓ,J is defined as: dz

dθ = C
(J)
ℓ (θ,z,ρ) · (A(J)

ℓ (θ,z,ρ))−1

dρ
dθ = B

(J)
ℓ (θ,z,ρ) · (A(J)

ℓ (θ,z,ρ))−1
(3.17)

Recall also that if J ∈ {IM∞ , IM−∞} and we use simplified notation (x,y,z) := (x(J), y(J), z(J)), we have

defined n(J) as the maximum n ∈ N such that ξ̂(J)(z) is divisible by zn. As well, if J ∈ J \ {IM∞ , IM−∞},
we have defined n(J) := max{n(J)

1 ,n
(J)
2 }. With those notations, we have the following Corollary of

Proposition 3.14.

Corollary 3.16. LetM = (M,π,A,D) be an admissible sequence of blowing-ups of length l > 0 with

A = {CJ }J∈J . Define ℓM := max{n(J) : J ∈ J }+ l + 1. Fix k ∈ N≥0.

1. Let J ∈ J \ {IM−∞, IM∞ } and put (z,ρ) := (z(J),ρ(J)). For every ℓ ≥ ℓM + k, the monomial (ρ)n
(J)
1 (z)n

(J)
2

divides the system ηℓ,J . Moreover, putting η′ℓ,J := (ρn
(J)
1 zn

(J)
2 )−1ηℓ,J , if u is a coordinate with {u =

0} ⊂ E ∩CJ , then

juk (η′ℓ,J ) = juk (η̂′J ).

2. Let J ∈ {IM−∞, IM∞ } and put (x,y,z) := (x(J), y(J), z(J)). For every ℓ ≥ ℓM + k, the series ξ(J)
ℓ (z) is

divisible by zn
(J)

, and

jzk

(
z−n

(J)
ξ

(J)
ℓ (z)

)
= jzk

(
z−n

(J)
ξ̂(J)(z)

)
.
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Proof. Both statements are direct consequence of the jet equality stated in Proposition 3.14. Since

k+ℓM ≥ n
(J)
i +l+1 for i = 1,2 and for very J ∈ J \{IM−∞, IM∞ } and k+ℓM ≥ n(J)+l+1 when J ∈ {IM−∞, IM∞ },

we have that the monomials of type (ρ(J))n
(J)
1 (z(J))n

(J)
2 divide the system ηℓ,J when J ∈ J \ {IM−∞, IM∞ },

or (z(J))n
(J)

divides ξ(J)
ℓ (z(J)) when J ∈ {IM−∞, IM∞ }.

3.4 The isolated singularity case: Dynamics after the reduction of sin-

gularities

In this section, we study the dynamics of the vector fields ξℓ for ℓ large enough after the reduction

of singularities.

3.4.1 Characteristic cycles as limit sets

The objective of this section is to prove that the characteristic elements of ξℓ after a sequence of

admissible blowing-upsM are the only possible limit sets of the family of local cycles.

Along this section, we fix a sequence of admissible blowing-upsM = (M,π,A,D) for ξ̂, with

A = {CJ }J∈J and D = {γI }I∈I . Denote by E = π−1(0) the total divisor of π. We define also the

support of D as SuppD =
⋃
I∈I

γI . Recall the definition of ℓM in Corollary 3.16.

Proposition 3.17. Let ℓ ≥ ℓM + 1 and W be a neighborhood of SuppD =
⋃
I∈I

γI . There is some neigh-

borhood U =U (W ) of 0 ∈ R3 such that π−1(CU (ξℓ)) ⊆W .

To prove this result, we need to introduce new notation and a technical lemma. Consider the

set

Ė := E \


 ⋃
I :γI∈D corner

{γI }

∪ {γIM∞ } ∪ {γIM−∞}
 .

It has a finite family of connected components denoted by EM = {L0,L1, . . . ,LkM}. Each Li ∈ EM
is open in E and contained in a chart CJi for i = 0,1, . . . , kM. Therefore, we will call them simply

open components (of E). In addition, in case Li is contained in two different charts, we choose CJi
such that Li ⊆ {ρ(Ji ) = 0}, which is always possible by the construction of sequences of admissible

blowing-ups. Then, each open component Li = S1 × (λ−i ,λ
+
i )× {0} in the coordinates of CJi where

λ−i ∈ R∪ {−∞} and λ+
i ∈ R∪ {∞}. An element Li ∈ EM is said to be dicritical (respectively, non-

dicritical) if the component of E that contains Li is dicritical (respectively, non-dicritical).

Fix L = Li ∈ EM and the corresponding chart CJ with J = Ji . Consider the formal vector field

η̂J associated to ξ̂(J) = (π|CJ )
∗ξ̂ as in equation (3.11). For the purpose of this section, we write,
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removing super-indices in (z,ρ):

η̂J = ρn
(J)
1 (A(J)

z (z,ρ)
∂
∂z

+A(J)
ρ (z,ρ)

∂
∂ρ

). (3.18)

We consider the vector field η̂′′J := ρ−n
(J)
1 η̂J which has a finite number of adapted singularities along

{ρ = 0}. The singularities determine the characteristic cycles contained in Li . The z−coordinates

of the characteristic cycles in L are denoted by ωL1 , . . . ,ω
L
mL

and the associated characteristic cycles

by γL1 , . . . ,γ
L
mL

.

Define the collection of sets V (L,ε,δ) := {V0,V1, . . . ,VmL−1,VmL
} depending on two parameters

ε,δ > 0 by:

V0 = S1 ×Ω0(ε)× (0,δ], Ω0(ε) = [µ−,ω
L
1 − ε],

Vj = S1 ×Ωj(ε)× (0,δ], Ωj(ε) = [ωLj + ε,ωLj+1 − ε], j = 1, . . . ,mLi − 1,

VmL
= S1 ×ΩmL

(ε)× (0,δ], ΩmL
(ε) = [ωLmL

+ ε,µ+],

(3.19)

where µ± = λ± ∓ ε when |λ±| < ∞, µ− = ωL1 −
1
ε when λ− = −∞, and µ+ = ωmL

+ 1
ε when λ+ = ∞.

Define the surfaces ∂minVj and ∂maxVj as follows:

• ∂minV0 = S1 × {µ−} × (0,δ] and ∂minVj = S1 × {ωLj + ε} × (0,δ] for j = 1,2, . . . ,mL.

• ∂maxVj = S1 × {ωLj+1 − ε} × (0,δ] for j = 0,1, . . . ,mL − 1 and ∂maxVmL
= S1 × {µ+} × (0,δ].

Lemma 3.18. Assume ℓ ≥ ℓM+1 and denote by ξ(J)
ℓ = (π|CJ )

∗ξℓ. There exists ε0 > 0 such that for every

small ε with ε0 > ε > 0, there exists δ = δ(ε) > 0 such that the collection V (L,ε,δ) = {Vj}
mL
j=1 satisfies:

1. In case L is non-dicritical, the function z is monotonic along the trajectories of ξ(J)
ℓ in each Vj

for any j. Otherwise, if L is dicritical, the function ρ is monotonic along the trajectories of

ξ
(J)
ℓ = (π|CJ )

∗ξℓ in each Vj , for any j.

2. If L is dicritical and ρn
(J)
1 +1 does not divide ξ(J)

ℓ (z), then ξ(J)
ℓ (z) has constant sign along the surfaces

∂minVj and ∂maxVj , for any j.

3. Suppose that L is dicritical and ρn
(J)
1 +1 divides ξ(J)

ℓ (z). Denote V (L, ε2 ,δ) = {V ′0,V
′
1, . . . ,V

′
mL
}. Then,

each element V ′j ∈ V (L, ε2 ,δ) fulfills (1) and, moreover, any trajectory of π∗ξℓ containing a point

in Vj remains inside V ′j either for any positive time t ≥ 0 or for any negative time t ≤ 0.

Proof. Taking into account Corollary 3.16 and since ℓ ≥ ℓM, the vector field ξ(J)
ℓ is described by a

non-autonomous two dimensional system of ODEs (see equation 3.17) dz
dθ = ρn

(J)
1 A

ℓ,(J)
z (θ,z,ρ),

dρ
dθ = ρn

(J)
1 A

ℓ,(J)
ρ (θ,z,ρ)

(3.20)
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where Aℓ,(I)u (θ,z,0) = A
(J)
u (z,0) for u = ρ,z. (As for the formal system of ODEs (3.18), we include

the factor zn
(J)
2 in Aℓ,(I)u .)

We choose ε0 satisfying the following conditions:

• In any case, we require ε0 <
1
2 mini,j{|ωLi −ω

L
j |}.

• If L is dicritical and Aℓ,(I)z (θ,z,0) . 0, being {t1, . . . , ts} its set of zeroes, we require also

ε0 <
1
2

min{|ωLj − tk | : 1 ≤ j ≤mL, 1 ≤ k ≤ s, ωLj , tk}.

In the non-dicritical case, the function A
ℓ,(J)
z (θ,z,0) ≡ A(J)

z (z,0) is not identically zero and only

depends on z. Being its zeroes ωL1 , . . . ,ω
L
mL

by definition, it has constant sign when z belongs to

the interval of Ωj(ε) for j ∈ {0, . . . ,mL} for any 0 < ε < ε0. By continuity and periodicity in θ,

A
ℓ,(J)
z (θ,z,ρ) has constant sign for (θ,z,ρ) in a set of the form S1×Ωj(ε)× (0,δj ] for some δj = δj(ε).

Take δ fulfilling δ ≤ min
i=0,...,mLi

{δi} and B(J)
ℓ,θ = ξ(J)

ℓ (θ) has positive sign in S1 ×Ωj(ε)× (0,δ] for every

j = 0, . . . ,mL. This is possible since B(J)
ℓ,θ(θ,0,0) = 1. Then, we define Vj := S1 ×Ωj(ε) × (0,δ].

Taking into account that ξ(J)
ℓ (z) = ρn

(J)
1 A

ℓ,(J)
z (θ,z,ρ) ·B(J)

ℓ,θ(θ,z,ρ), we obtain the property (1) for the

non-dicritical case.

In the dicritical case we proceed in the same way. Notice that Aℓ,(J)ρ (θ,z,0) = Â
(J)
ρ (z,0) only

depends on z and its set of zeros is by definition ωL1 , . . . ,ω
L
mL

. We get that ξ(J)
ℓ (ρ) has constant sign

in each Vj and statement (1) holds.

Let us show (2), assuming that ρn
(J)
1 +1 does not divide ξ(J)

ℓ (z). By the choice of ε0, we have

that Aℓ,(J)z (θ,z,0) = Â
(J)
z does not vanish at any of the extreme values of Ωj(ε). Since ξ(J)

ℓ (z) =

ρn
(J)
1 A

(J)
z (θ,z,ρ) ·B(J)

ℓ,θ(θ,z,ρ), we obtain (2), up to taking a smaller δ.

Finally, we show (3). Assume that L is dicritical and that A(J)
z (θ,z,0) ≡ 0. Then, the associated

to ξ(J)
ℓ system (3.20) can be written as

 dz
dθ = ρn

(J)
1 +1Ã

ℓ,(J)
z (θ,z,ρ)

dρ
dθ = ρn

(J)
1 A

ℓ,(J)
ρ (θ,z,ρ)

, (3.21)

whereAℓ,(J)ρ (θ,z,0) does not depend on θ (by Corollary 3.16), vanishes exactly for z ∈ {ωL1 , . . . ,ωLmL
},

and Ãℓ,(J)z (θ,z,0) ∈ R[cosθ,sinθ,z]. Proceeding as in the beginning of the proof, we take a constant

δ > 0 such that the collection V (L, ε2 ,δ) = {V ′0,V
′
1, . . . ,V

′
mL
} fulfills (1), so that ρ is monotonic in every

V ′j . Being V j relatively compact, there are constants a,K > 0 such that for any V ′j ∈ V (L, ε2 ,δ), we

have

inf
p∈V ′j
{|Aℓ,(J)ρ (p)|} ≥ a, sup

p∈V ′j
{|Ãℓ,(J)z (p)|} ≤ K. (3.22)
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Fix V ′j and suppose, for instance, that Aℓ,(J)ρ |V ′j < 0. Then, if σ : R −→ M is a trajectory of ξ(J)
ℓ

parameterized as a solution σ (θ) = (θ,z(θ),ρ(θ)) of system (3.21), as long as it remains in V ′j \ L,

the function ρ(θ) is strictly decreasing. Hence, σ can be parameterized by ρ instead of θ and we

obtain from (3.21) and (3.22) ∣∣∣∣∣ dzdρ
∣∣∣∣∣ ≤ Cρ, where C =

K
a
.

Now, consider the collection V (L,ε,δ) = {V0,V1, . . . ,VmL
} whose elements fulfill Vj ⊂ V ′j for j =

0,1, . . . ,mL. If the trajectory σ starts at a point p0 = (θ0, z0,ρ0) ∈ Vj ⊂ V ′j with ρ0 > 0, it satisfies, for

θ > θ0:

|z(θ)− z0| ≤
C
2
|ρ(θ)− ρ0|2 ≤

C
2
ρ2

0 ≤
C
2
δ2

as long as Im(σ |[θ0,θ]) ⊂ V ′j . We obtain similar bounds for |z(θ) − z0| when Aℓ,(J)ρ |V ′j > 0. Imposing

δ <
√
ε
C , we can conclude that |z0−z(θ)| < ε

2 and guarantee, for any j and for any p0 ∈ Vj ∈ V (L,ε,δ),

that the trajectory σ starting at p0 satisfies Im(σ |[θ0,∞)) ⊂ V ′j (or Im(σ |(−∞,θ0]) ⊂ V ′j in case Aℓ,(J)ρ |V ′j >
0).

From the proof above, we may observe that V (L,ε,δ′) also fulfills (1-3) of the lemma for any

δ′ < δ.

Notation 3.19. Given an open component L ∈ EM as above, in the notations of section 3.3.1 for j ∈
{0, . . . ,mL}, let Ij ∈ I be the index of the corresponding characteristic cycle γIj = {z =ωj ,ρ = 0}. Let

I0, ImL+1 be also the indices of either the corner characteristic cycles or characteristic singularities

in the component L̄. We say that the box Vj ∈ V (L,ε,δ) with j = 1, . . . ,mL − 1 is adjacent to γIj and

to γIj+1
and we denote ∂IjVj = ∂minVj and ∂Ij+1

Vj = ∂maxVj .

Proof of Proposition 3.17. Let W be a neighborhood of SuppD. For every I ∈ I we consider an

open neighborhood WI ⊂W of γI such that WI ∩WI ′ = ∅ if I , I ′. Consider the collection EM, and

apply Lemma 3.18 to each Li ∈ EM, taking ε and δ small enough so that each family V (Li , ε,δ) also

satisfies:

• For any V ∈ V (Li , ε,δ), we impose V ∩WI , ∅ if and only if γI is adjacent to V .

• For any V ∈ V (Li , ε,δ), the boundaries ∂minV and ∂maxV are contained in the corresponding

neighborhoods WI and WI ′ , where γI and γI ′ are adjacent to V .

• The set ⋃
I∈I

WI ∪
⋃
L∈EM

⋃
V ∈V (L,ε,δ)

V

is a neighborhood of the divisor E = π−1(0) in M.
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Now, we define a closed neighborhood W̃I ⊂ WI of γI for each I ∈ I in such a way that (see

Figure 3.4):

(i) The set

Ũ = int

⋃
I∈I

W̃I ∪
⋃
L∈EM

⋃
V ∈V (L,ε,δ)

V


is a neighborhood of the divisor E in M.

(ii) For any I ∈ I , L ∈ EM and V ∈ V (L,ε,δ), W̃I ∩ V̄ is empty, in case V is not adjacent to γI ,

or, otherwise, it is of the form W̃I ∩ V = S1 × {cI } × (0,µ], where 0 < µ ≤ δ and cI satisfies

V = S1 × {cI } × (0,δ].

Now, the setU := π(Ũ ) is an open neighborhood of 0 satisfying the requirements of the propo-

sition. More precisely, we claim that π−1(CU ) ⊂
⋃
I∈I

W̃I .

Figure 3.4: Construction of Ũ .

To prove this, suppose that there is a cycle Z of ξℓ contained in U and such that Z̃ := π−1(Z)

intersects some V ∈ V (L,ε,δ) for some L. Consider a parametrization σ : R −→ Ũ of Z̃ as a

trajectory of π∗ξℓ such that σ (0) ∈ V . By the property (1) of Lemma 3.18, one of the coordinates z

or ρ is monotonic along σ inside V , so it cannot be completely contained in V . As a consequence,

σ leaves V so that for some t0 ≥ 0 we have σ (t0) ∈ Fr(V )∩ W̃I , where I ∈ I and γI is adjacent to
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V . By construction (cf. item (ii) above), σ (t0) belongs to the boundary ∂IV . We have two cases to

consider (notations as in Lemma 3.18).

• A
ℓ,(J)
z (θ,z,0) , 0. By statement (2) of Lemma 3.18, the vector field π∗ξℓ is transverse to ∂IV ,

so that, for instance, we have σ ((t0 − c, t0)) ⊂ int(V ) and σ ((t0, t0 + c)) ⊂ ext(V ) for some c > 0.

Since σ is periodic, we must have that σ crosses Fr(V ) at a first time t1 > t0 necessarily

along one of the boundaries ∂minV ,∂maxV where π∗ξℓ points towards int(V ). If we denote

{∂IV ,∂I ′V } = {∂minV ,∂maxV }, we must have σ (t1) ∈ ∂I ′V and σ ((t0, t1)) ⊂ ext(V ), but this

contradicts the fact that, by construction, Ũ \V = Ũ1∪Ũ2 whereU1, Ũ2 are non-empty open

sets such that Ũ1 ∩ Ũ2 = ∅ and the closure of each Ũi cuts V only along one of the sets

{∂I ′V ,∂IV }.

• A
ℓ,(J)
z (θ,z,0) ≡ 0. Using statement (3) of Lemma 3.18, we know that either σ ((t0,∞)) or

σ ((−∞, t0)) is contained in the corresponding element V ′ of the collection V (L, ε2 ,δ) and ρ◦σ
is monotonic along that interval. This is also a contradiction with σ being periodic.

Consequently, we have proved that Z̃ ⊂
⋃
I∈I

W̃I (in fact, included in a single W̃I by connectedness).

Therefore, we have that:

π−1(CU (ξℓ)) ⊂
⋃
I∈I

W̃I ⊆
⋃
I∈I

WI ⊆W,

as we wanted to prove.

3.4.2 Analysis of Infinitely Near Points of the Rotational Axis

We see first that we can find a neighborhood of the two characteristic singular points that does

not contain cycles of a jet approximation ξℓ of ξ̂.

Proposition 3.20. Given ℓ ≥ ℓM+1, there exist neighborhoodsW∞ of γIM−∞ andW−∞ of γIM∞ inM such

that neither W∞ \E nor W−∞ \E contains cycles of π∗ξℓ.

Proof. According to the construction in section 3.3.1, the point γIM∞ is the origin of the chart

(CJ , (x(J), y(J), z(J))) with J = IM∞ and E ∩CJ = {z(J) = 0}. By means of Proposition 3.14, we have that

ξ
(J)
ℓ (z(J)) = (z(J))n

(J) · F(x(J), y(J), z(J)) in a neighborhood of γIM∞ where ξ(J)
ℓ = (π|CJ )

∗ξℓ, n(J) ∈ N≥1 and

F(x(J), y(J), z(J)) ∈ R{x(J), y(J), z(J)} satisfies F(0,0,0) , 0. Take a neighborhood W∞ of IM∞ in M where

F has a constant sign, positive or negative. We have that the trajectories of π∗ξℓ in W∞ \E can be

parameterized by z(J), which contradicts the existence of cycles of π∗ξℓ in W∞ \E. The proof for

γMI−∞ is analogous.
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3.4.3 Analysis of Characteristic Cycles

This section is new with respect to [23]. The main difference is that we do not require that the

characteristic cycles correspond to adapted simple singularities. We are able to solve the problem

for any characteristic cycle. The main tool is the definition of the Poincaré maps. Applying

Theorem 2.6, we have that there are not periodic points, other than fixed points, for such Poincaré

maps, in a sufficiently small neighborhood of the origin. In addition, if there are fixed points,

they are contained in a finite number of curves of fixed points. Each of these curves implies the

existence of a surface with center configuration. These arguments will serve us to conclude that

there are not isolated cycles in a sufficiently small neighborhood of a characteristic cycle of ξℓ for

ℓ large enough.

In order to apply Theorem 2.6, we need to ensure that the Poincaré maps at the characteristic

cycles are tangent to the identity but different from it.

Definition of Poincaré maps

Throughout this subsection, we suppose that γI is a characteristic cycle of ξ̂ inM contained in a

chartCJ for which {ρ(J) = 0} (or {z(J)ρ(J) = 0}) is the equation of E∩CJ and γI = {ρ(J) = 0, z(J) = wI } for

someωI ∈ R. Consider the transform ξ̂(J) = (π|CJ )
∗ξ̂ in the translated coordinates (z := z(J)+wI ,ρ :=

ρ(J)). Its associated two-dimensional vector field is

η̂J :=
ξ̂(J)(ρ)

ξ̂(J)(θ)

∂
∂ρ

+
ξ̂(J)(z)

ξ̂(J)(θ)

∂
∂z
.

More precisely, we write η̂J = ρaη̂′J where a ≥ 1 (or η̂J = ρazbη̂′J where a,b ≥ 0 and a+ b ≥ 2) and η̂′J
is a formal vector field in coordinates (z,ρ) with a singularity at the origin.

Remark 3.21. Because we are in the non-degenerate case, we have that the vector field η̂J is not

identically zero. This implies that this formal vector field has a non-vanishing jet jkI (η̂
′
J ) , 0 with

kI ≥ a+b+ 1 ≥ 2, since on the one hand (ωI ,0) is a singularity of η̂′J and on the other hand a ≥ 1 or

a+ b ≥ 2. We will take ℓ ≥ l + 1 + kI .

By Remark 3.15, γI is a trajectory of the vector field ξ(J)
ℓ = (π|CJ )

∗ξℓ for ℓ ≥max{ℓM+1, l+1+kI }.
This vector field is described by the system of ODEs ηℓ,J . We can define the Poincaré map P =

Pℓ,I : ∆ → {θ = 0} as the first-return map of ξ(J)
ℓ relatively to γI , where ∆ is a sufficiently small

neighborhood of (z,ρ) = (0,0) in {θ = 0} in which P is analytic.

Notice that the Poincaré map does not depend on the parameterization of the trajectories of

the vector field, and hence, we can define it using any equivalent vector field. In particular, we

are going to consider the vector field ξ̃(J)
ℓ equivalent to ξ(J)

ℓ obtained by the multiplication by the
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Chapter 3. Dulac’s problem for vector fields with a Hopf singularity

inverse of ξ(J)
ℓ (θ). That is, we put

ξ̃
(J)
ℓ =

∂
∂θ

+χ, where χ =
ξ

(J)
ℓ (z)

ξ
(J)
ℓ (θ)

∂
∂z

+
ξ

(J)
ℓ (ρ)

ξ
(J)
ℓ (θ)

∂
∂ρ
. (3.23)

Notice that the components of χ are the right members of the system of ODEs ηℓ,J introduced

in section 3.3.3. They belong to the R−algebra R[cosθ,sinθ]{z,ρ} (by Remark 3.15). Thus, we

consider ξ̃(J)
ℓ as an analytic vector field on the domain (θ,z,ρ) ∈ R × (−δ,δ)2 for some δ > 0 and

2π−periodic in the variable θ. Notice, moreover, from Corollary 3.16, that ρ divides χ and hence

ξ̃
(J)
ℓ |E= ∂

∂θ .

Denote by Φt := Φ
ξ̃

(J)
ℓ
t the flow map of ξ̃(J)

ℓ . It is defined and analytic for (t, (θ,z,ρ)) ∈ (−ε,2π +

ε)× ((−ε,2π+ ε)×V ) where V is a neighborhood of 0 ∈ R2. Using that ξ̃(J)
ℓ (θ) = 1, we obtain

Φt(θ,z,ρ) = (θ + t,Ψ z
t (θ,z,ρ),Ψ

ρ
t (θ,z,ρ)), (3.24)

that is, the angle θ is the natural time for ξ̃(J)
ℓ . By definition, the Poincaré map is given by

P (z,ρ) = (Ψ z
2π(0, z,ρ),Ψ

ρ
2π(0, z,ρ)). (3.25)

We are going to express the flow via the exponential map. To be precise, given anyG ∈ R[cosθ,sinθ]

[[z,ρ]], we define:

exp(tξ̃(J)
ℓ )(G) :=

∞∑
i=0

ti

i!
(ξ̃(J)
ℓ )(i)(G),

where, for any vector field ζ, ζ(0)(G) = G and ζ(i)(G) = ζ(ζ(i−1)(G)), if i ≥ 1. Taking into ac-

count the above properties of the components of ξ̃(J)
ℓ , it is immediate to check that exp(tξ̃(J)

ℓ )(G) ∈
R[cosθ,sinθ][[t, z,ρ]]. In the following result, we get some useful properties of this exponential

map and its relation with the flow map. Notice first that, if G ∈ R[cosθ,sinθ][[z,ρ]], then the

composition G ◦Φt, due to the analyticity of Φt, has a formal Taylor expansion at t = 0, denoted

by T0(G ◦Φt), a formal power series in variables (t, z,ρ), with analytic functions of θ ∈ (−ε,2π+ ε)

as coefficients.

Proposition 3.22. Let G ∈ R[cosθ,sinθ][[z,ρ]]. We have:

1. T0(G ◦Φt) = exp(tξ̃(J)
ℓ )(G) ∈ R[cosθ,sinθ][[t, z,ρ]]

2. For any t0 ∈ [0,2π], the expression exp(t0ξ̃
(J)
ℓ )(G) =

∞∑
i=0

ti0
i!

(ξ̃(J)
ℓ )(i)(G) has a sense as a series in

R[cosθ,sinθ][[z,ρ]] and we have

G ◦Φt0 = exp(t0ξ̃
(J)
ℓ )(G) (3.26)
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3.4. The isolated singularity case: Dynamics after the reduction of singularities

Proof. We prove (1) with the same arguments as the case in [58, pag. 15] for holomorphic vector

fields: expand G ◦Φt as a Taylor series in t at t = 0, so that we get

T0(G ◦Φt) =
∞∑
i=0

ti

i!
∂i(G ◦Φt)

∂ti

∣∣∣∣∣∣
t=0

,

and check that, for any i ≥ 1, ∂
i (G◦Φt)
∂ti

= (ξ̃(J)
ℓ )(i)(G) ◦Φt.

Let us prove item (2). First, we show that there exists α > 0 such that (2) is true for any

t0 ∈ [0,α]. For that, consider the particular case where G is either the coordinate z or ρ (with the

notations of (3.29), z ◦Φt0 = Ψ z
t0

and ρ ◦Φt0 = Ψ
ρ
t0

). By analyticity of these functions and by item

(1). We get that exp(ξ̃(J)
ℓ )(z),exp(ξ̃(J)

ℓ )(ρ) ∈ R[cosθ,sinθ]{t, z,ρ}. More precisely, they belong to

R[cosθ,sinθ]{t}β[[z,ρ]] for some β > 0 (all coefficients in R[cosθ,sinθ]{t} have a common radius

of convergence). We conclude that Ψ z
t0

= z ◦Φt0 = exp(t0ξ̃
(J)
ℓ )(z) and Ψ

ρ
t0

= ρ ◦Φt0 = exp(t0ξ̃
(J)
ℓ )(ρ)

for any t0 ∈ [0,α] with 0 < α < β.

Let G ∈ R[cosθ,sinθ][[z,ρ]] be any formal series and write

G =
∑
u,v

Guv(θ)zuρv , with Guv(θ) ∈ R[cosθ,sinθ].

Consider the series

Ḡ =
∑
u,v

Guv(θ + t)zuρv

which belongs to R[cosθ,sinθ]{t}β[[z,ρ]] since each Guv(θ) is a trigonometric polynomial. Tak-

ing into account the expression of the flow Φt, we have that G ◦ Φt is the result of substitut-

ing in the series Ḡ the variables z,ρ by Ψ z
t ,Ψ

ρ
t , respectively. Since the series Ψ z

t ,Ψ
ρ
t belong to

R[cosθ,sinθ]{t}δ[[z,ρ]] and have positive order with respect the variables z,ρ, substitution has

perfect sense and provides an element in R[cosθ,sinθ]{t}β[[z,ρ]]. Since, by item (1), T0(G ◦Φt)
coincides with exp(tξ̃(J)

ℓ )(G) as a series in R[cosθ,sinθ][[t, z,p]], we conclude item (2) and (3.26)

for t0 ∈ [0,α]. Notice that we can choose α > 0 which does not depend on G. Let us show that we

can extend the property(3.26) to any t0 ∈ [0,2α] (and hence similar extensions will prove (2)). Let

t0 ∈ [α,2α] and write t0 = s0 +α, where s0 ∈ [0,α]. We have G◦Φt0 = (G◦Φs0)◦Φα. Applying (3.26)

for the values s0 and α, and for G and G ◦Φs0 , respectively, we get

G ◦Φt0 =
∑
i

αi

i!
(ξ̃(J)
ℓ )(i)(G ◦Φs0) =

∑
i

αi

i!
(ξ̃(J)
ℓ )(i)

∑
j

s
j
0
j!

(ξ̃(J)
ℓ )(j)(G)


=

∑
k

 ∑
i+j=k

αi

i!
s
j
0
j!

(ξ̃(J)
ℓ )(k)(G)

 =
∑
k

(α + s0)k

k!
(ξ̃(J)
ℓ )(k)(G) = exp(t0ξ̃

(J)
ℓ )(G),
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which was to be proved.

We can now prove an important feature of the Poincaré map.

Lemma 3.23. There exists ℓI such that for any ℓ ≥ ℓI , the Poincaré map P = Pℓ,I is tangent to the

identity but P , Id as a germ of diffeomorphisms at (0,0) ∈ ∆.

Proof. This result is a consequence of the fact that the vector field η̂J has a non-vanishing jet (c.f.

Remark 3.21). Suppose that ρ = 0 is the equation of a component of the divisor and write η̂′J in

homogeneous components in ρ. We have

η̂J = ρazb
(
F(z,ρ)

∂
∂z

+G(z,ρ)
∂
∂ρ

)
= ρazb

∑
k≥1

(
Fk(z)ρ

k ∂
∂z

+Gk(z)ρ
k ∂
∂ρ

)
,

and consider the minimum ν such that Fν , 0 or Gν , 0. We take ℓI = ν + a+ l + 1, where l is the

length of the sequence of blowing-upsM that is being considered.

By Corollary 3.14, choosing ℓ ≥ max{ℓI , ℓM}, we have that the system ηℓ,J has the same (ν +

a)−jet in ρ as η̂J , namely j
ρ
ν+a(ηℓ,J ) = j

ρ
ν+a(η̂J ). Recall also that the coefficients of χ in ζ(J)

ℓ = ∂
∂θ +χ

are given by the system ηℓ,J , and hence its (ν + a)−jet in ρ is known.

Suppose first that Fν , 0. Then, we find that

exp(tζ(J)
ℓ )(ρ) =ρ+ tQ1 + tQ2 + · · ·

=ρ+ t(ρa+νzbFν(z) +O(ρν+a+1)) + t2(ρ2(a+ν)−1zb(a+ ν)F2
ν +O(ρ2(a+ν))) +O(t3ρ3(a+ν)−1).

Notice that the terms summarized in O(ρν+a+1) can depend also on cosθ,sinθ and z. We have to

take care about the case ν = 0 and a = 1. Since (0,0) is a singularity of ηℓ,J , we have that Fν(0) = 0,

in particular, z divides Fν . Then, the sum tFν + t2F2
ν + · · · , which gives the lower order jet in ρ, is

different from 0, for any value of t , 0 for which the flow is defined. In any other case, we have

that independently of the value of ν, the order in ρ increases on each Qi . And again, since Fν . 0,

we have that Ψ
ρ

2π , ρ.

A similar reasoning applies if Gν , 0, obtaining that Ψ z
2π , z. We conclude that either Ψ

ρ
2π , ρ

or Ψ z
2π , z, and hence Pℓ,I , Id.

Existence of limit central surfaces

In the previous subsection, we showed that the Poincaré maps defined at the characteristic cycles

γI ∈ D are tangent to the identity diffeomorphisms and different from the identity. Hence, The-

orem 2.6 can be applied to these Poincaré maps. We will use this result to prove the following

one.
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Proposition 3.24. Let γI ∈ D be a characteristic cycle of ξℓ and ℓ ≥ ℓI in Lemma 3.23. Then, there

exists a neighborhood WI of γI such that exactly one of the following holds.

• There is a finite number of analytic surfaces SI,1, . . . ,SI,sI that have center configuration. There

are not other cycles of ξℓ in WI .

• There are no cycles of ξℓ in WI .

Proof. For the proof of this result, take the Poincaré map Pℓ,I defined on a cross section ∆ of γI .

We define WI as ∆ × S1, which is a neighborhood of γI . By Lemma 3.23, it is tangent to the

identity. In addition, since the intersection of the plane ∆ with E is invariant for Pℓ,I , we have

that it is not center-focus. We are on the hypotheses of Theorem 2.6 and we can apply this result

and its consequence, Corollary 2.7. We find that the only periodic points of Pℓ,I that can appear

are analytic curves ΓI,1, . . . ,ΓI,sI of fixed points. Hence, the only cycles of ξℓ in WI that intersect

this cross section do it in the curves of fixed points. Saturating these curves with the flow of ξℓ,

we find that SI,1 . . . ,SI,sI are analytic surfaces with center configuration and no other cycles are

contained in WI .

3.5 The isolated singularity case: End of the proof

In this section, we will collect all the results presented in sections 3.3 and 3.4 and prove Theo-

rem 3.1 in the isolated singularity case.

Proposition 3.25. There is a vector field ξℓ with ℓ sufficiently large that fulfills Theorem 3.1.

Proof. First, we will choose the ξℓ with ℓ sufficiently large. Consider the reduction of singularities

M = (M,π,A,D) of ξ̂, with A = {CJ }J∈J and D = {γI }I∈I given in Proposition 3.12. Take ℓ ≥
max{ℓM, ℓI : I ∈ I \ {I∞M, I

−∞
M }}, where ℓI are defined as in Lemma 3.23. Applying Proposition 3.20,

we obtain neighborhoodsW∞ andW−∞ of γI∞M and γI−∞M respectively, which are free of cycles of ξℓ.

Secondly, we apply Proposition 3.24 to each γI obtaining neighborhoods WI of γI that are either

free of cycles or in which the cycles of ξℓ are organized in surfaces with center configuration. If

necessary, we reduce these neighborhoods so that they are not overlapping. Taking the union

W =W∞ ∪W−∞ ∪
⋃

I∈I\{I∞M,I
−∞
M }
WI ,

we obtain a neighborhood W of Supp(D). We are then in the conditions of Proposition 3.17.

Applying this result, we obtain a neighborhood U (W ) of 0 ∈ R3 such that π−1(CU ) ⊂ W . From

Proposition 3.20, we have that there are not cycles in W∞ nor in W−∞. From Proposition 3.24, we

have that either there are not cycles in WI for I ∈ I \ {I∞M, I
−∞
M }, or they belong to analytic surfaces

in WI .
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To finish the proof, we project the surfaces SI,k for each I ∈ I \ {I∞M, I
−∞
M and 1 ≤ k ≤ sI under π

to R3. They provide a collection of subanalytic limit central surfaces S1, . . . ,Sr at 0 ∈ R3.

Notice that any vector field ξℓ is analytically conjugated to the original vector field ξ by con-

struction and that any other ξℓ′ is as well analytically conjugated to ξℓ. Hence, proving the

theorem for one ξℓ implies proving it for any other conjugated vector field.

3.6 The non-isolated singularity case for formally non-degenerated vec-

tor fields

Now we will prove Theorem 3.1 for non-degenerated non-isolated Hopf singularities. The proof

will follow the lines of the semi-hyperbolic case, in the sense that we will be able to blow up an

analytic curve and to define a Poincaré map from a cycle that arises after this blowing-up.

We have mentioned before that at the time of the publication of [23], we did not have a good

description of the Poincaré maps, nor a strategy to prove non-accumulation of cycles at a degen-

erated rotational axis, the curve of singularities. Thanks to the contribution of Theorem 2.6, we

overcome those difficulties and we are able to give a rather simple proof of the result in this case.

3.6.1 Blowing-up of the rotational axis and choice of a jet approximation

First, we make the assumption that the curve of singularities at 0 is the z−axis, for convenience.

Fix a formal normal form ξ̂ of ξ and consider its associated two dimensional vector field η̂ as in

section 3.1.2. We recall the expression of ξ̂ in equation (3.3)

ξ̂ = A(x2 + y2, z)
(
−y ∂
∂x

+ x
∂
∂y

)
+B(x2 + y2, z)

(
x
∂
∂x

+ y
∂
∂y

)
+C(x2 + y2, z)

∂
∂z
,

where A is a unit in R[[u,v]] and C is divided by a power of x2 + y2 because of the non-isolated

singularity hypothesis. The expression of η̂ is

η̂ = B(ρ2, z)A(ρ2, z)−1ρ
∂
∂ρ

+C(ρ2, z)A(ρ2, z)−1 ∂
∂z
.

Since we are in the non-degenerated case, we know that the vector field η̂ is a non-zero formal

vector field of order equal or greater than 1 and it has a non-vanishing jet. Because of the isolated

singularity condition, we also have that ρ divides η̂.

Now, we blow up the z-axis, and present the transform vector field in the global chart C0,

where we take polar coordinates (θ,z,ρ).

ξ̂(0) = A(ρ2, z)
∂
∂θ

+B(ρ2, z)
∂
∂ρ

+C(ρ2, z)
∂
∂z

= A(0)(z,ρ)
∂
∂θ

+B(0)(z,ρ)
∂
∂ρ

+C(0)(z,ρ)
∂
∂z
,
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with A(0),B(0),C(0) ∈ R[[z,ρ]]. The associated two dimensional vector field η̂0 coincides with η̂ and

has a non-vanishing k−jet. Notice also that σ−1
0 (0) is a cycle of ξ̂(0) in E = σ−1

0 (Ω), where the

restriction of ξ̂(0) is equivalent to ∂
∂θ

Now, take any ξℓ with ℓ ≥ k. We can apply the previous blowing-up σ0 to ξℓ, obtaining a

vector field

ξ
(0)
ℓ = Aℓ(ρcosθ,ρ sinθ,z)

∂
∂θ

+B(ρcosθ,ρ sinθ,z)
∂
∂ρ

+C(ρcosθ,ρ sinθ,z)
∂
∂z

= A(0)
ℓ (θ,z,ρ)

∂
∂θ
B

(0)
ℓ (θ,z,ρ)

∂
∂ρ
C

(0)
ℓ (θ,z,ρ)

∂
∂z
,

with A(0)
ℓ ,B

(0)
ℓ ,C

(0)
ℓ ∈ R[cosθ,sinθ]{z,ρ}. We recall also that, since the singularity is non-isolated,

ρ divides both Cℓ and Bℓ. Using that A(0)
ℓ is a unit in R[cosθ,sinθ]{z,ρ}, we can define a system

of ODEs ηℓ,0, as we did similarly in the isolated singularity case: dz
dθ = A

(0)
ℓ (θ,z,ρ)−1C

(0)
ℓ (θ,z,ρ),

dρ
dθ = A

(0)
ℓ (θ,z,ρ)−1B

(0)
ℓ (θ,z,ρ).

(3.27)

By hypothesis, the ℓ−jet in ρ,z of ξ(0)
ℓ is the same as that of ξ̂(0). We will fix ℓ ≥ k where k is

a non-vanishing jet of ξ̂(0). By this jet equality, we find that ξℓ has a cycle γ at σ−1
0 (0) as well.

Following the ideas of section 3.4.3, we define a Poincaré map at an analytic cross section of this

cycle.

Recall that for the definition of the Poincaré map, the parameterization of the trajectories is

not important. Then, to define it, we will work with the vector field ζ(0)
ℓ which is equivalent to

ξ
(0)
ℓ by multiplying by the unit A(0)

ℓ (θ,z,ρ). The expression of this vector field ζ(0)
ℓ in coordinates

(θ,z,ρ) is given by

ζ
(0)
ℓ =

∂
∂θ

+χ,

where the coefficients of χ coincide with the right members of the system ηℓ in (3.27). Since they

are analytic, suppose that they are convergent on a domain R × (−δ,δ)2 for some δ > 0. Fix the

plane {θ = 0}. Following the same reasoning as in section 3.4.3, we will define the Poincaré map

in a neighborhood ∆ of (0,0) in {θ = 0}. First, we find that the coordinate θ acts like the time

variable, since

Φt(θ,z,ρ) = (θ + t,Ψ z
t (θ,z,ρ),Ψ

ρ
t (θ,z,ρ)). (3.28)

By definition, the Poincaré map P = Pℓ is given by

P (z,ρ) = (Ψ z
2π(0, z,ρ),Ψ

ρ
2π(0, z,ρ)). (3.29)

147



Chapter 3. Dulac’s problem for vector fields with a Hopf singularity

A more precise expression of the Poincaré map is found using the expression of the flow given

by the exponential map and using Proposition 3.22 that ensures that the formal expression of

the flow makes sense for t = 2π. It remains to prove that the Poincaré map is different from the

identity.

Lemma 3.26. There exists ℓM such that the Poincaré map P = Pℓ for ℓ ≥ ℓM at γ is tangent to the

identity but P , Id as a germ of diffeomorphism at (0,0) ∈ ∆.

Proof. This result is a consequence of the fact that η̂ has a non-vanishing jet. We write this vector

field in homogeneous components in ρ,z

η̂ = ρ
(
F(z,ρ)

∂
∂z

+G(z,ρ)
∂
∂ρ

)
= ρ

∑
k≥1

(
Fk(z)ρ

k ∂
∂z

+Gk(z)ρ
k ∂
∂ρ

)
,

and consider the minimum ν such that Fν , 0 or Gν , 0. We take ℓ ≥ ν + 1. Since η̂ and ηℓ share

the same ℓ−jet in ρ,z, as we pointed out in the beginning of the section, we have jν+1(ηℓ) = jν+1(η̂).

Suppose that Fν , 0, then

exp(tζ(J)
ℓ )(ρ) =ρ+ tQ1 + tQ2 + · · ·

=ρ+ t(ρFν(z,ρ) +O(|(ρ,z)|ν+2) + t2(ρFν(z,ρ)2 +O(|(ρ,z)|ν+3)) +O(t3, |(ρ,z)|ν+2).

Notice that the terms in O(|(ρ,z)|ν+k) can also depend on cosθ and sinθ and are divided by ρ.

Since ν ≥ 1, we observe that the lower order term tρFν is different from 0, for any value of t , 0.

Thus, we find that Ψ
ρ

2π , ρ, which implies that P , Id.

Following the same reasoning, we find that Ψ z
2π , z when Gν , 0, which also implies that

P , Id.

We finish the proof of Theorem 3.1 for non-degenerated vector fields with non-isolated sin-

gularity.

3.6.2 End of the proof

We prove the Theorem for some ξℓ, which is analytically conjugated to ξ. Recall that by Asser-

tion †, this suffices to prove Theorem 3.1.

Proposition 3.27. There is some ℓ ≥ 1 such that ξℓ satisfies Theorem 3.1.

Proof. We choose ℓ as in Lemma 3.26, obtaining a Poincaré map P defined in ∆ ⊂ {θ = 0} that is

different from the identity. On the other hand, this Poincaré map has an invariant curve given

by ∆∩ E, so it is not center-focus. We can apply Theorem 2.6 to P in (0,0), obtaining a sectorial

decomposition of P in ∆̃ ⊂ ∆. In particular, all the periodic points of P in ∆̃ lie on curves Γ1, . . . ,Γr
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of fixed points. Saturating these curves in ∆̃ by the flow of ξℓ, we obtain analytic surfaces S1, . . . ,Sr

contained in ∆̃×S1 that have center configuration. Then, we find that σ (S1), . . . ,σ (Sr ) are the only

limit central surfaces at 0 ∈ R3. By choosing a neighborhood of 0 in σ (∆̃×S1) conveniently, we find

that the first item (when r = 0) or the second item (when r ≥ 1) of the theorem are satisfied.

Recall that the vector field ξℓ is analytically conjugated to ξ by the diffeomorphismϕℓ (cf. sec-

tion 3.1.2). Then, there is some neighborhood U of 0 in which ξ also fulfills one of the situations

(i) or (ii) of Theorem 3.1.

3.7 The non-isolated singularity case for formally degenerated vector

fields

In this case, we prove Theorem 3.1 by means of proving Theorem 3.3.

3.7.1 Characterization of three dimensional centers

One of the equivalent statements of Theorem 3.3 concerns complete integrability. We say that a

three dimensional vector field is completely integrable if there exists two analytic first integrals

f and g such that df ∧ dg , 0 in a dense neighborhood of 0.

Theorem 3.3. Let ξ ∈ H3, the following statements are equivalent.

(1) ξ is formally degenerated.

(2) ξ is analytically orbitally linearizable (i.e. it is orbitally equivalent to its linear part)

(3) There is a neighborhood U of 0 such that CU =U \ Sing(ξ).

(4) ξ is analytically completely integrable.

Remark 3.28. In addition, (1) in the statement can be replaced by an a priori weaker statement:

(1’) The vector field ξ is formally orbitally linearizable.

In fact, assume that ξ is formally conjugated to a vector field of the form U (x,y,z)(−y ∂
∂x + x ∂

∂y )

whereU is a unit in R[[x,y,z]]. Then following the normal form algorithm, we get thatU (x,y,z)(−y ∂
∂x+

x ∂
∂y ) has a degenerated normal form, and so does ξ, that is, (1′)⇒ (1). The converse follows by

definition.

Proof. The proof of this result is organized as follows. We start by proving the implications

(1) ⇒ (2) ⇒ (3) ⇒ (1). The equivalence with the latter is proved by showing (2) ⇒ (4) and

(4)⇒ (1).
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(1)⇒ (2). Suppose that ξ is formally degenerated, i.e. there is a formal normal form ξ̂ such that

ξ̂ = ϕ∗ξ = (1 +A(x2 + y2, z))
(
−y ∂
∂x

+ x
∂
∂y

)
.

The idea of this proof is to use Brjuno’s result on existence of an analytic normal form [10] that

we state in Theorem A.28. We follow the statement of the result in the text of Martinet [59]

that states that under certain hypotheses, a vector field has an analytic normal form. To check

the hypotheses of this result, we will work in the complex case, since the result is stated for

holomorphic vector fields. We will end the proof by obtaining a real analytic normal form that

is analytically equivalent to a linear vector field, applying another result of Brjuno in [11].

The complex Jordan normal form of ξ the linear part is obtained by applying the linear au-

tomorphism ψ(x,y,z) = ( 1√
2

(x + iy), 1√
2

(x − iy), z) = (u,v,z). Its inverse is given by ψ−1(u,v,z) =

( 1√
2

(u + v), 1√
2

(−iu + iv), z). We obtain then that

ψ∗ξ̂ = (1 +A(uv,z))
(
iu

∂
∂u
− iv ∂

∂v

)
.

The vector of eigenvalues is denoted by Λ = (i,−i,0). In order to see if Theorem A.28 (also of [59,

Theorem 5]) is fulfilled, we need to verify the following two hypotheses.

– (Arithmetic condition) The series ∑
k

logωk
2k

is convergent, where ωk = min{|αQ| : |Q| ≤ 2k+1,αQ , 0}, Q = (q1,q2,q3) with q1 +q2 +q3 ≥ −1

in {q1 ∈ Z≥−1,q2 ∈ Z≥0,q3Z≥0}∪ {q1 ∈ Z≥0,q2 ∈ Z≥−1,q3Z≥0}∪ {q1 ∈ Z≥0,q2 ∈ Z≥0,q3Z≥−1} and

αQ = ⟨Λ,Q⟩.

– (Geometric condition) The formal vector field ψ ∗ ξ̂ is tangent to the foliations given by

ur1vr2zr3 = c, where c is a constant and R = (r1, r2, r3) such that ⟨Λ,R⟩ = 0.

We also remark that the values αQ that appear in the arithmetic condition are the eigenval-

ues of [iu ∂
∂u − iv

∂
∂v ,−] : X̂2(R3,0)→ X̂2(R3,0), which is used to construct the normal form. The

eigenvectors associated to the eigenvalue ⟨Λ,Q⟩ = i(q1 − q2) are uq1vq2zq3u ∂
∂u , q2 ≥ −1,q2,q3 ≥

0,uq1vq2zq3v ∂
∂v , q1 ≥ −1,q1,q3 ≥ 0,uq1vq2zq3z ∂∂z , q3 ≥ −1,q1,q2 ≥ 0. For the proof of the arith-

metic condition, we show that ωk ≥ 1 for every k ≥ 0, since αQ = ⟨Λ,Q⟩ = i(q1−q2) has |αQ| = 0 if

αQ = 0 or |αQ| ≥ 1 otherwise. Hence, the term of the series decrease as 2−k and it is convergent.

Now, we prove the geometric condition. The vectors R that we consider fulfill r1 = r2. To see that

the vector is tangent to the foliations given by ur1vr1zr3 = c it is enough to see that ψ∗ξ(ur1vr1zr3 −
c) = 0.
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We conclude that the arithmetic and geometric conditions are fulfilled and by Theorem A.28

there exists a holomophic normalization ψh and a holomorphic normal form ξh.

Existence of a real analytic normal form ζ = (1 +A(x2 + y2, z))
(
−y ∂

∂x + x ∂
∂y

)
obtained by an an-

alytic automorphism tangent to the identity ψ̃ is guaranteed by Theorem 3 in [11], see also

Theorem A.29. The vector field ξ is analytically conjugated to ξ̃, which is orbitally equivalent

to −y ∂
∂x + x ∂

∂y . Hence, the vector field ξ is as well orbitally equivalent to −y ∂
∂x + x ∂

∂y .

(2) ⇒ (3). It is straightforward since by hypothesis ξ is orbitally equivalent to its linear part.

The trajectories of this vector field are either cycles around the z-axis or singularities in this

curve. Taking an appropriate U , that is, choosing U whose boundary is entirely composed by a

union of cycles, item (3) follows.

(3)⇒ (1). To prove this item, we will suppose by contradiction that (1) does not hold, i.e. that

ξ is formally non-degenerate. We have already proved Theorem 3.1 for every non-degenerated

vector fields: in Section 3.2 for semi-hyperbolic Hopf vector fields, sections 3.3-3.5 for isolated

singularity Hopf vector fields and in section 3.6 for non degenerated Hopf vector fields with

non-isolated singularity. In all of these cases, only situations (i) and (ii) of Theorem 3.1 are

permitted. This contradicts (3), and we conclude that existence of a continuum of cycles implies

that ξ is formally degenerated.

(2)⇒ (4). This implication is also direct, since the linear vector field −y ∂
∂x+x ∂

∂y has two indepen-

dent first integrals, namely x2 + y2 and z. By (2), consider that the linear vector field −y ∂
∂x + x ∂

∂y

and ξ are analytically orbitally equivalent by the analytic diffeomorphism φ. Then φ∗(x2 + y2)

and φ∗(z) are two analytic first integrals of ξ.

(4)⇒ (1). Suppose that ξ has two analytic first integrals. To simplify the proof, we will work

with the complex formal normal form ψ∗ξ̂, as we did in the proof of (1)⇒ (2). The two analytic

first integrals provide two formal first integrals f ,g of the vector field ψ∗ξ̂ = ϕ̃∗ξ.

ψ∗ξ̂ = (1 +A(uv,z))
(
iu

∂
∂u
− iv ∂

∂v

)
+B(uv,z)

(
u
∂
∂u

+ v
∂
∂v

)
+C(uv,z)

∂
∂z
.

Observing the that the series A,B,C belong to R[[uv,z]], we prove first the following claim:

f ,g ∈ R[[uv,z]] ⊂ R[[u,v,z]]. To do this, we will write both f ,g and A,B,C in homogeneous

components as elements of R[[u,v,z]].

f =
∑
k≥νf

fk , g =
∑
k≥νg

gk
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A =
∑
k≥1

Ak , B =
∑
k≥1

Bk , C =
∑
k≥2

Ck ,

where fk , gk ,Ak ,Bk ,Ck ∈ R[u,v,z]k .

Since f is a first integral of ψ∗ξ̂, we have that h := ψ∗ξ̂(f ) = 0. We have that necessarily h =∑
k≥νf hk = 0, that is, each hk = 0. Suppose that νf = n ≥ 1, we prove that fn ∈ R[uv,z]. First we

write fn =
∑
k1+k2+k3=n fk1k2k3

uk1vk2zk3 . Imposing hn =
(
iu ∂

∂u − iv
∂
∂v

)
(fν) = 0, we get

hn =
∑

k1+k2+k3=n

ifk1k2k3
(k1 − k2)uk1vk2zk3 = 0.

Then, we have that the only possible non-zero fk1k2k3
fulfill k1 = k2. This implies that fn ∈

R[uv,z]. Now suppose by induction that fk ∈ R[uv,z] for all k ≤ l, we show that fl+1 ∈ R[uv,z].

As before, we have that

hl = hl,1 + hl,2 = 0,

hl,1 =
(
iu

∂
∂u
− iv ∂

∂v

)
(fl+1),

hl,2 =
l∑

k=1

Ak

(
iu

∂
∂u
− iv ∂

∂v

)
(fl+1−k) +Bk

(
u
∂
∂u

+ v
∂
∂v

)
(fl+1−k) +Ck+1

∂
∂z

(fl−k)

Using that
(
iu ∂

∂u − iv
∂
∂v

)
(uk1vk2zk3) = i(k1−k2)uk1vk2zk3 ,

(
u ∂
∂u + v ∂

∂v

)
(uk1vk2zk3) = (k1+k2)uk1vk2zk3

and ∂
∂z (uk1vk2zk3) = k3u

k1vk2zk3−1 and the induction hypothesis, we have that hl,2 ∈ R[uv,z].

Then, hl,1 must also belong to R[uv,z], which implies that fl+1 ∈ R[uv,z] as we wanted to prove.

Proceeding in the same manner for g, we also have that g ∈ R[[uv,z]].

Since the formal first integrals of ψ∗ξ̂ belong to R[[uv,z]], we have that the two formal first

integrals of ξ̂ belong to R[[x2+y2, z]], that is, they are f (x2+y2, z) and g(x2+y2, z). Then, consider

the associated two dimensional vector field η̂ of ξ̂, defined in equation (3.1.3) section 3.1.3,

η̂ =
B(ρ2, z)
A(ρ2, z)

∂
∂ρ

+
C(ρ2, z)
A(ρ2, z)

∂
∂z
.

We have that η̂ has two formal first integrals f̃ (z,ρ) = f (ρ2, z) and g̃(z,ρ) = g(ρ2, z). These two

first integrals are elements of R[[z,ρ]], and they fulfill df̃ ∧ dg̃ , 0, since the original formal

series fulfill df ∧dg , 0. We conclude by pointing out that any two dimensional vector field that

has two independent first integrals is neccessarily 0. Then η̂ = 0 and ξ is formally degenerated,

as we wanted to prove.
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3.7.2 End of the proof in the formally degenerated case

We remark that Theorem 3.3 proves something stronger than Theorem 3.1 for formally degen-

erated vector fields. Theorem 3.1 corresponds only to the implication (1)⇒ (3). With this last

step we have finished studying all possible Hopf vector fields (semi-hyperbolic, formally non-

degenerated and formally degenerated), and we conclude the proof of Theorem 3.1.

3.8 Consequences of Theorem 3.1

In this last section of the chapter, we provide Corollary 3.4 and Corollary 3.2. We give the proof

of both of them, which are direct consequences of Theorem 3.1.

Corollary 3.4. Let ξ ∈ H3 and suppose that its local cycle locus is non-empty. Let Ω∞ be a C∞

realization of the formal rotational axis. Then, the neighborhood basis V in Theorem 3.1, (ii) or (iii)

can be chosen so that V \Ω∞ is homotopically equivalent to S1 and any cycle γ ⊂ CV (ξ) is a generator

of π1(V \Ω∞).

Proof of Corollary 3.4. We are assuming that either (ii) or (iii) of Theorem 3.1 are fulfilled. In

(ii) we have that CU = S1 ∪ · · · ∪ Sr and after [8] that there is a non-singular realization Ω∞ of

the rotational axis Ω̂. Since we are working with simply connected neighborhoods of 0, the

fundamental group of V \Ω∞ is Z. We want to prove that any cycle of ξ in U generates this

fundamental group. With this objective, we prove that any cycle γ is a deformation retract of

V \Ω∞. Notice that any cycle is contained in one of the surfaces. First, considering that V \Ω∞
is homeomorphic to a filled boounded cylinder and any of the surfaces Si is homeomorphic to a

disk without a point, it is well known that Si is a deformation retract of V \∞. Secondly, any cycle

γ in Si , which gives a single turn after Jordan’s curve theorem, is as well a deformation retract of

Si . Notice that this relation is associative, and then, γ is a deformation retract of V \Ω∞.

In (iii) the rotational axis Ω∞ = Ω̂ and it is analytic and V \Ω∞ is filled with cycles. By (3) of

Theorem 3.3, we have that ξ is orbitally linearizable. This implies that any cycle γ of ξ makes a

single turn around Ω∞, and hence, it generates the fundamental group of V \Ω∞.

The last result in this chapter concerns Dulac’s problem on non-existence of accumulation of

isolated cycles, which is an open problem in dimension 3. We give a positive answer for Hopf

vector fields. It is a straightforward consequence of Theorem 3.1, since none of the possible

structures of the cycle locus allows an infinite number of isolated cycles.

Corollary 3.2. If ξ ∈ H3, there are no infinitely many isolated cycles of ξ collapsing to 0 ∈ R3.
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Conclusions

In this PhD thesis we have studied two different problems.

I. Sectorial decomposition of germs of real analytic plane diffeomorphisms tangent to the

identity.

II. Structure of the cycle-locus and Dulac’s problem for germs of three dimensional vector

fields with a Hopf singularity.

We present the conclusions dealing with each of them in the following paragraphs, as well as

lines of future work.

Sectorial decomposition of germs of real analytic plane diffeomorphisms tangent to the iden-

tity. Concerning the first problem,we provide a sectorial decomposition (U,S) of a diffeomor-

phism F under the condition that F is not of type center-focus (Theorem 2.6 or Theorem A in

the Introduction). The sectorial decomposition is a partition S of a neighborhood U of 0 ∈ R2

in submanifolds so that on each submanifold A ∈ S the asymptotics of the diffeomorphism F are

uniformly described.

The non center-focus condition is our unique hypothesis, and it is also imposed on the secto-

rial decomposition of germs of real analytic plane vector fields. Comparing our result for diffeo-

morphisms with the analogous for vector fields, we find some differences.

• On the one hand, the dynamical types of the sectors of diffeomorphisms are essentially the

same as for vector fields (allowing curves of singularities). For every point p in a single

stratum A ∈ S , we find that the orbit of p accumulates positively at the point 0 ∈ R2, or at

some point q = q(p) in (a half-branch of) the curve of fixed points in the closure of A, or the

orbits escape the sector. The negative orbits are also uniformly described on the sectors.

We find six types of sectors concerning their dynamical types in terms of the asymptotic

behavior of F or F−1.

• On the other hand, we do not find "good" topological properties on the neighborhood U ,

in contrast with vector fields. The initial objective was to obtain a sectorial decomposition

(U,S) not only with the dynamical properties in Theorem 2.6 but also fulfilling that U is

open and S is a stratification. For vector fields, we have that the boundary of U is given by

the union of pieces of trajectories and curves transverse to the vector field, then the set U

can always be chosen open and S is a stratification. In contrast, for diffeomorphisms we find

an intrinsic difficulty since the orbits are discrete sets. Invariant curves can be constructed,
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but they will not always have the same geometrical properties as the trajectories of the

vector fields.

As we have seen in Chapter 2, only under some conditions we can ensure thatU is open and

S is a stratification. For instance, in a D-D sector, we have an invariant curve in its boundary,

which may accumulate in a compact set of the curve of fixed points. If this compact set is

not a single point, we have that U is not open since for any of the points of accumulation

of the curve of the boundary, there is not a neighborhood of it completely contained in U .

Indeed, to ensure that the invariant curve of the boundary accumulates in a single point (in

both positive and negative directions once fixing a parameterization of the curve), we need

that two uniquely given parabolic curves coincide (see Figure 3). We think that the generic

case is that these curves do not coincide.

• In the case of vector fields, we can choose the open setU semi-analytic. However, for diffeo-

morphisms this is not always the case. For instance, in the presence of bidicritical curves,

we can choose a parabolic curve that might not be analytically extended to its extreme.

Choosing any other curve for the boundary, we find that it accumulates in a compact subset

of the bidicritical curve, hence it is far from being a semi-analytic set.
From the second item, we think that our objective of choosing U open and S a stratification was

very demanding for diffeomorphisms.

Future work:

• Following the lines in the work of Dumortier, Rodrigues and Roussarie in [29], we would

like to treat the problem of the configuration of sectors being a weak topological invariant.

They succeeded to prove this for C∞ diffeomorphism fulfilling a Łojasiewicz inequality.

However, because of this condition, D-parabolic, D-elliptic and D-D sectors do not arise

and this simplifies the problem. We think that the presence of D-D sectors might be an

obstruction to achieve a similar result.

• We would like to illustrate the phenomena of the boundary curve of D-D sectors (Sec-

tion 2.5.2) with an example.

• We think it is possible to define foliations that are invariant by the diffeomorphism. We

already know that a formal vector field generates diffeomorphisms tangent to the identity,

by defining the time-1 flow. Our question is if there is an analytic foliation that might be

preserved by the action of the diffeomorphism. This would imply that the diffeomorphism

is given by the flow at the time given by some function of the point. As this is too strong to

require, we are currently working in the construction of foliations on each sector, in order to

determine if they can be continuously extended to other sectors. Once again, we think that

the presence of D-D sectors may be an obstruction on the construction of such foliation.
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• Finally, we would like to extend this work to higher dimensional diffeomorphism. In the

case of three dimensional vector fields, we have the generalization of C. Alonso-González

and F. Sanz Sánchez of the sectorial decomposition to dimension 3 in [1, 2], where they also

generalize the non center-focus condition. We think that the techniques used in the proofs

of Theorem 2.6 can be extended to germs of three dimensional diffeomorphisms imposing

similar hypotheses that generalize the non center-focus one.

Structure of the cycle-locus and Dulac’s problem for germs of three dimensional vector fields

with a Hopf singularity. Considering the second problem of the thesis, we give a complete

description of the cycle-locus of three dimensional vector fields with Hopf singularity (Theo-

rem 3.1, Theorem B in the Introduction) and answering Dulac’s problem for these vector fields

(Corollary 3.2, Corollary B in the Introduction). Related to the first result, we find that, in suffi-

ciently small neighborhoods of 0 ∈ R3, the cycles of a vector field with Hopf singularity belong

to a finite number of limit central surfaces (pairwise disjoint surfaces with center configuration)

or every trajectory is a non-trivial cycle except a curve of singularities (three dimensional cen-

ter). The second result gives a satisfactory answer to Dulac’s problem for vector fields with Hopf

singularity, that is, there is not an infinite number of isolated cycles accumulating to 0 ∈ R3. We

think this is a first step and a novel contribution to Dulac’s problem in higher dimension.

Other result that we obtained related to this topic is a characterization of the three dimen-

sional centers having a Hopf singularity. We collect some partial results in the literature and

prove Theorem 3.3 (Theorem C in the Introduction) with our own methods. We remark that

among the original results, we provide a generalization of Poincaré-Lyapunov Center Theorem:

being a three dimensional center with Hopf singularity implies complete integrability in dimen-

sion 3, as Poincaré and Lyapunov proved in dimension 2. The last result that we obtain, which

follows as a consequence of the previous ones, is that all the cycles in a small neighborhood of 0

make a single turn around a rotational axis (Corollary 3.4).

Our contributions help to understand better vector fields with a Hopf-zero singularity. In

particular, we see that some chaotic phenomena is avoided, such as the possibility of having

accumulation of cycles making arbitrary large number of turns around a rotational axis.

Future work:

• Notice that we have studied Dulac’s problem for germs of three dimensional vector fields

with at least two non-zero eigenvalues. The following natural step is to study the structure

of the cycle-locus for vector fields with only one non-zero eigenvalue. A study of these

vector fields in the case that the center manifold has nilpotent (but non-zero) linear part

can be found in [65], where the authors give conditions on the center manifold to study if
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it has a central configuration. Our objective will be to give a complete description of the

cycle-locus in all the cases.

• Other natural objective is to generalize our result to higher dimensional vector fields that

have a singularity with eigenvalues a1, . . . , an−3,bi,−bi,0, with ai ,b ∈ R \ {0} for each i =

1, . . . ,n − 3. This generalization is not straightforward since the center manifold of such

system is three dimensional but not necessarily analytic. Nevertheless, we think our result

can be generalized to that context.
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In this appendix, we will provide general definitions and basic results, since along the rest of the text

we have to make use of some classical results. The purpose of this appendix is to fix some notations and

state some classical theorems.

A.1 Formal power series and formal maps

Let K be a field of characteristic 0, typically R or C, A be a K−algebra and x = (x1, . . . ,xn) variables.

A.1.1 Formal power series

In this section, we introduce the power series as K−albegras. The K−algebra of formal power series in x with

coefficients in A is denoted by A[[x]]. Elements f ∈ A[[x]] are written as

f =
∑
α∈Nn≥0

fαxα ,where fα ∈ A, α = (α1, . . . ,αn) and xα := xα1
1 · · ·x

αn
n .

Given f ,g ∈ A[[x]], consider the operations of the K−algebra A[[x]] induced by the operations of A

f + g =
∑
α∈Nn≥0

(fα + gα)xα

f · g =
∑
α∈Nn≥0

 ∑
β+γ=α

fβgγ

xα ,
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The units of A[[x]] are those having f0 ∈ U (A). Now, we introduce a concept that will be used specially

in Chapter 3: the jets of power series. Consider the ideal m = (x1, . . . ,xn). We define the k−jet of the power

series f as its image under the canonical projection jk : A[[x]]→ A[[x]]/mk+1, namely jk(f ) = f + mk+1. In

particular,

jk(f ) = jx
k (f ) :=

∑
α:|α|≤k

fαxα +mk+1

where |α| := α1 + · · · +αn. The order or multiplicity at 0 of f , denoted by ν(f ), is the first k ≥ 0 (or +∞ if it

does not exist) such that jk(f ) , 0.

Remark A.1. Considering only the vector space nature of A[[x]] and A[[x]]/mk+1, notice that jk sends ele-

ments of an infinite dimensional K−vector space to a finite dimensional K−vector space. Notice that the

quotient A[[x]]/mk+1 is identified, only as a vector space, with the polynomials A[x]≤k of degree equal or

lower than k. We will tacitly make this abuse of notation, that is, we simply consider jk as a truncation and

jk(f ) = jx
k (f ) :=

∑
α:|α|≤k fαxα .

Two important features of the jets of formal power series are deduced from the commutation of the

two operations of the algebra and the jet projection. Let f ,g ∈ A[[x]], then

• jk(f + g) = jk(f ) + jk(g).

• jk(f · g) = jk(f ) · jk(g). In fact, this property can be refined: if k ≥ max{ν(f ),ν(g)}, then jk(f · g) =

jk−ν(g)(f ) · jk−ν(f )(g), considering the elements jk−l(h) as elements in A[[x]]/mk+1.

• jk(f −1) = (jk(f ))−1, when f ∈ A[[x]] is a multiplicative unit.

Notice that, when n > 1, the variables of x can be separated into two groups x = (y,z) where y = (y1, . . . , yr )

and z = (z1, . . . , zt) with n = r + t. There is a natural identification between A[[x]] and A[[y]][[z]]

A[[x]]
∼→ A[[y]][[z]], f =

∑
α∈Nn≥0

fαxα 7→
∑
β∈Nt≥0

 ∑
γ∈Nr≥0

fγ,βyγ

zβ

In these terms, we define the k−jet of f with respect to the variables z as the k−jet of f as an element of B[[z]]

where B = A[[y]]. We denote the k−jet of f ∈ A[[y]][[z]] with respect to z as jz
k (f ). Finally, we make the

following remarks.

• Notice that jx
k (jz

k (f )) = jk(f ). Writing jk(f ) and jz
k (f ) as power series in A[[x]], notice that an infinite

number of terms can appear in the development of jzk (f ), while only a finite number of terms do in

the development of jk(f ). In particular, jx
k (f ) ∈ R[x]≤k and jz

k (f ) ∈ A[y][z]≤k .

• We also remark that given a series f ∈ A[y][[z]], we can obtain another via the automorphism χi :

A[y][[z]] → A[y][[z]] that sends each yj 7→ yj for 1 ≤ j ≤ r and j , i, yi 7→ yi + a and zk 7→ zk for

1 ≤ k ≤ s. Then, χi(j
z
k (f )) = jz

k (χi(f )).

We also recall the notion of convergence of power series, whenever A can be provided with a norm.

This notion is important in this document, since we work with analytic functions. The algebra of convergent
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series with coefficients in A is the subalgebra of A[[x]] defined by

A{x} :=
⋃
δ>0

A{x}δ

where, by definition, a series f =
∑
α∈Nn≥0

fαxαA[[x]] belongs to A{x}δ if there exists C > 0 such that ||fα || <
Cδ|α| for any α. It is important to notice that there is an strict inclusion A{x} ⊂ A[[x]].

Example A.2. We present two examples that appear in this document.

• A = R[cosθ,sinθ], the algebra of trigonometric polynomials, whose elements are considered in-

distinctively as a function on R or on S1, via the covering τ : θ → (cosθ,sinθ). It will be en-

dowed with the supremum norm ||f || := supθ∈R f (θ). Notice that a given a convergent series F ∈
R[cosθ,sinθ]{x}δ, its partial sums converge absolutely and uniformly in the compact sets of the

neighborhood V = S1 × (−δ,δ)n of S1 × {0} (or the neighborhood V = R × (−δ,δ)n of R × {0}), thus

providing an analytic function that we denote again f .

• In the case of A = R[z] (respectively R[cosθ,sinθ,z]), where z = (z1, . . . , zr ), there is no unique natural

norm on A. We will consider a norm for each compact set K of Rr (resp. S1 ×Rr ) with non-empty

interior, defined by

||f ||K := sup
a∈K
{|f (a)|}.

Denoting AK = (A, || · ||K ) such a normed space, we have the corresponding algebra of convergent

series AK {x}. We define the algebra of convergent series with coefficients in A as the intersection of

algebras AK {x} where K runs all compact sets of such form. With an abuse of notation, we name this

algebra A{x} for convenience. Each element f ∈ A{x} defines an analytic function on a neighborhood

of Rr × {0} (resp. S1 ×Rr × {0}) in Rr ×Rn (resp. in S1 ×Rr ×Rn).

We associate convergent power series with coefficients in R in n variables to germs of analytic functions

in points of Rn. We extend this relation to formal power series and the formal completion of the germs of

analytic functions. Recall that a germ of analytic function at p ∈ Rn is an equivalence class of the equivalence

relation on the analytic functions that have p on their domain. That is, in f : U → K ∼ g : V → K if there

is W ⊂ U ∩ V with p ∈ W such that f |W = g |W . We will denote the germs of analytic functions as On,p
or simply by Op, when the dimension is clear. Choosing a set of coordinates in a neighborhood of p, the

correspondence between the germ of analytic function and a convergent power series is given by the Taylor

series of the analytic function.

On the other hand, let mOp be the ideal of Op given by {f ∈ Op : f (p) = 0}, and define the mOp−adic

topology generated by the basis of neighborhoods {f + mk
Op }k∈N . We define the formal completion of the

germs of analytic functions as the limit

Ôn,0 = lim
←
On,0/mk

mOp
.

The ring Ôn,0 is isomorphic to R[[x]]. See [60], for further details.

We also recall the derivations in the ring of formal power series since we work with analytic and

formal vector fields. A formal derivation ∂ ∈ Der(A[[x]]) on the ring of formal power series is a morphism

∂ : A[[x]]→ A[[x]] satisfying, for any f ,g ∈ A[[x]] and a,b ∈ A

161



Appendix A. Basic notions on analytic manifolds and vector fields

• ∂(1) = 0.

• (A−linearity) ∂(af + bg) = a∂(f ) + b∂(g).

• (Leibniz rule) ∂(f g) = f ∂(g) +∂(f )g.

Defining (f ∂)(g) = f ∂(g) and (∂+∂′)(f ) = ∂(f )+∂′(f ), the formal derivations have the structure of a finitely

generated A[[x]]−module. The standard basis of this module is given by
{
∂
∂x1
, · · · , ∂

∂xn

}
. An element of this

basis acts on a power series f =
∑
α fαxα as follows.

∂
∂xi

(f ) =
∑
α:αi>0

αifαx
α1
1 · · ·x

αi−1
i−1 x

αi−1
i xαi+1

i+1 · · ·x
αn
n

A.1.2 Formal maps and diffeomorphisms

A formal map is a tuple of formal power series inA[[x]], that is, F = (F1, · · · ,Fm) ∈ A[[x]]m such that j0(Fi) = 0.

Fixing m, the formal maps form a vector space with the sum defined component wise, and a K−algebra

considering the product component wise as well. In the same way as in the previous section, define the

k−jet of F ∈ A[[x]]m as jk(F) := (jk(F1), · · · , jk(Fm)).

The group of formal maps (A[[x]]n)◦ with the composition operation is the subset of elements of A[[x]]n

such that the determinant det(DF(0)) = det( ∂
∂xj

(Fi)(0)) , 0 for each F = (F1, . . . ,Fn) ∈ (A[[x]]n)◦ and the

following operation. For F,G ∈ (A[[x]]n)◦, the composition operation is defined by (F ◦G)(x) := F(G(x)) and

the unit of this group is Id = (x1, · · · ,xn). An important subgroup of formal maps is the group of formal

maps tangent to the identity denoted by A[[x]]n1 ⊂ A[[x]]n and such that j0(F) = 0 and j1(F) = Id = (x1, · · · ,xn)

with the composition ◦ in A[[x]]n1.

As we did in the formal series case, convergence can be considered, studying the radius of conver-

gence of the series on each component. Then, we can associate the convergent power series to the germs

of analytic diffeomorphisms, denoted by Diff(Rn,0), via the Taylor series expansions. There is also a one to

one correspondence between the convergent maps tangent to the identity and the germs of analytic dif-

feomorphisms tangent to the identity, denoted by Diff1(Rn,0). Finally, this association can be extended

to the formal completion of the analytic diffeomorphisms, denoted by D̂iff(Rn,0) (or by D̂iff1(Rn,0) in the

tangent to the identity case).

A.2 Analytic geometry
In this section, we introduce some definitions concerning real analytic curves and we will also recall the

definition of semi-analytic and subanalytic sets.

A subset X ⊂ Rn is an analytic set if at each p ∈ Rn there is an open set Up and a finite number of real

analytic functions f1, . . . , fs in O(Up), such that X ∩Up = {q ∈Up : f1(q) = 0, . . . , fs(q) = 0}. We can also define

the germs of analytic sets at any p ∈ Rn. They are the equivalence classes of the relation X ∼ Y if and only

if there is U with p ∈ U such that (X ∩U ) = (Y ∩U ). Conversely, given an analytic function f ∈ O(U ), we

define the set generated by this function. Let f ∈ O(U ) be an analytic function. We define the zero set of f

as

V (f ) := {p ∈U : f (p) = 0}.

162



A.2. Analytic geometry

Given a germ of analytic function fp ∈ On,p at p, it is possible to define a germ of analytic set, by taking a

representative f and the germ of set at p that V (f ) defines. Under a translation, we can always suppose

that p = 0 ∈ Rn. The other way around also defines a germ of analytic set; given a germ or analytic set X0,

there is and ideal I(X) ⊂ On,0 with the property V (I)0 = X0.

We remark that the theory of germs of analytic sets has been widely studied in the last century [39, 50].

In the complex case, there is a correspondence between prime ideals and irreducible components (those

that cannot be decomposed into properly smaller analytic subsets) of an analytic subset. However, this

fact does not hold in the real analytic case. We show now an example that appears in this text.

Example A.3. We work in O2,0 and coordinates (x,y) at 0. Let I = (x2 + y2) ⊂ O2,0. We have that V (I) = {0}
and that I(V (I)) = (x,y), the maximal ideal. Notice that (x,y) ,

√
(x2 + y2) = (x2 + y2).

Remark A.4. The concept of analytic set must not be mistaken for analytic manifold, even in the irreducible

case. Under some conditions, an analytic set has the structure of an analytic manifold. Suppose that X

is a germ of an analytic set given locally by f1, . . . , fs. In the presence of singularities, i.e. points in which

rank(Df1, . . . ,Dfs) < n − s, the analytic sets do not have the structure of an analytic manifold. Analytic

manifolds can be immerse in Rm for some m ∈ N so that they are locally the set of zeroes of a finite number

of smooth analytic functions.

A.2.1 Real analytic and formal curves

As we anticipated, we will only give more details for germs of analytic curves, that is, germs of one-

dimensional analytic subsets of Rn. Given a germ of analytic curve Γ , we denote IΓ ⊂ O its corresponding

generating ideal. We consider also that a real analytic curve has a finite number of branches or irreducible

components, that is, Γ = Γ1 ∪ · · · ∪ Γs where each Γi is an irreducible component. We take from [19, 51], the

following definitions.

An analytic parameterization of an irreducible branch is an element γ ∈ (tR{t}n) \ {(0, . . . ,0)} such that

f (γ) = 0 for any f ∈ IΓ . Existence of analytic parameterizations of analytic curves is ensured by the classical

Puiseux theorem. A parameterization γ is irreducible if there is not other parameterization γ̃ such that

γ = γ̃(sk) for some k ∈ N>1. In the rest of the section, the considered parameterizations are irreducible.

Given two different parameterizations γ1 and γ2, we say that they define the same branch if there is σ ∈
R{t} such that γ1 = γ2◦σ and σ (t) = at+ · · · ∈ R{t} for some a ∈ R\{0}. In this way, there is a correspondence

between the branches of real analytic curves and the classes of parameterizations.

We can also define the half-branches of a curve as the connected components of Γ \ {0}. Each branch Γ

produces two half branches Γ +,Γ −, and given a parameterization γ of Γ , the half-branches can be parame-

terized by the restrictions γ |R>0
,γ |R<0

of γ to R>0 and R<0, respectively. Up to a change on the sign of the

parameterization, we can always suppose that a half branch has an oriented parameterization γ , that is,

a parameterization such that γ |R>0
provides the half branch. In terms of oriented parameterizations, two

oriented parameterizations γ1 and γ2 define the same half-branch if there is σ ∈ R{t} such that γ1 = γ2 ◦ σ
and σ (t) = at + · · · ∈ R{t} for some a > 0. Once again, there is a correspondence between half branches of

real analytic curves and oriented parameterizations.

The definition of real analytic branches of curves as equivalence classes of parameterizations can be

easily generalized to formal curves. A formal curve can be defined as a class on the equivalence relation
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of parameterizations in (tR[[t]]n) \ {(0, . . . ,0)}. Each formal curve is associated to a prime ideal IΓ ⊂ R[[x]].

However, as in the real analytic world, not every prime ideal produces a formal curve. See for instance the

following examples.

Example A.5. The curve (t,
∑
k∈N ∗ k!tk) ∈ tR[[t]]2 is a formal curve and its generating ideal is (y−

∑
k∈N ∗ k!xk) ⊂

R[[x,y]]. Notice that it is not a real analytic curve.

Example A.6. The prime ideal (x2 + y2) ⊂ R[[x,y]], whose unique generator is indeed convergent, does not

provide a formal curve, because it does not admit a parameterization.

We end by pointing out that in Section 1.3.1, we define an important object related to real analytic and

formal curves, the iterated tangents.

A.2.2 Definitions of semi-analytic and subanalytic sets

In this section, we simply introduce the definitions of semi-analytic and subanalytic sets, as we need them

at some points in this thesis. These types of sets are relatively modern and they have been first defined

in [34, 41, 55]. Other good reference is [7]. Before defining the semi-analytic sets, suppose that X is a real

analytic set and let p ∈ Rn so that Xp is given by f1 = 0, . . . , fs = 0. The equations f1 = 0, . . . , fs = 0 can be

summarized in f 2
1 + · · ·+ f 2

s = 0.

Definition A.7. A set S ⊂ Rn is semi-analytic if for each p ∈ Rn there is a neighborhood U of p and analytic

functions f ,g1, . . . , gs ∈ O(U ) such that

S ∩U = {q ∈U : f (q) = 0, g1(q) > 0, . . . , gs(q) > 0}.

Example A.8.

S = {(x,y) ∈ R2 : y = sin2πx,−x2 − y2 > −1, y > 0}

is a semi-analytic set. Notice also that it is relatively compact, since its closure is a compact set.

S ′ = {(x,y) ∈ R2 : y = e
−1
x2 ,x > 0}

is not a semi-analytic set, since the function e
−1
x2 cannot be analytically extended to 0.

The family of semi-analytic sets is closed under finite unions, finite intersections and complement, but

it is not closed under projections.

Definition A.9. A set S ⊂ Rn is subanalytic if at each point p ∈ Rn there is a neighborhoodU ⊂ Rn, somem ∈ N
and a semi-analytic relatively compact set S̃ ⊂ Rn ×Rm so that S ∩U = pr1(S̃), where pr1 : Rn ×Rm→ Rn is the

first factor projection.

The family of subanalytic sets is closed under finite unions and finite intersections, and even local pro-

jections and complements. Then subanalytic sets form an structure of sets with relatively good behavior.
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A.3 Vector fields on analytic manifolds
First, we recall some notions on differentiable or analytic manifolds. We denote by M, or more descrip-

tively by (M,A), a differentiable, real analytic or complex analytic manifold of dimension n, provided with

an atlas A = {(Ui ,ϕi)}i∈I which endows M with a differentiable structure, in the Cr ,C∞,Cω or holomorphic

class.

From now on, we only work with real analytic manifolds, but the definitions also apply to other classes

of manifolds. We denote by O(U ) the real analytic functions on some open set U ⊂ M, and by Op the

germs of analytic functions. Lastly, we denote by O(M,N ) the analytic maps from M to N . Of special

interest are the diffeomorphisms of a manifold M with itself, denoted by Diff(M) and the germs of local

diffeomorphisms of M that fix a point p ∈M, denoted by Diff(M,p). On the other hand, the tangent space

TpM of an analytic manifold M at a point p ∈M is the vector space composed by the linear derivations of

the ring of functions at the point. The tangent bundle of M is the vector bundle σ : TM = ⊔p∈MTpM →M

given by σ (v) = p for v ∈ TpM. As a matter of fact, the tangent bundle can be provided a differential

structure, so that it is itself an analytic manifold. The topology provided to TM is the initial topology

associated to the trivializations of this bundle map σ .

We also need the notion of real analytic manifold with boundary and corners. We start introducing

the real analytic functions in open subsets of (R≥0)m. A function f : U ⊂ (R≥0)m→ R is analytic at a point

p ∈ U if there is an analytic function f̃ : V → R defined on an open set V ⊂ Rm with U ⊂ V such that

f̃ |U = f . In the same manner, an analytic map F : U ⊂ (R≥0)m → V ⊂ (R≥0)n is analytic at p ∈ U if each

component is analytic. With this consideration, the objects introduced in the previous paragraph, namely

analytic manifolds, functions, maps, and tangent spaces are generalized to this setting.

A.3.1 Some algebraic properties of vector fields

Vector fields are, roughly speaking, assignments of vectors of a vector space at each point. It is worth

pointing out that there is a different vector space at each point p ∈M, the tangent space TpM of M at p.

Definition A.10. A vector field in an analytic manifold in an open set U ⊂ M is an analytic section of the

tangent bundle σ : TU →U , that is, a map ξ :U → TU such that σ ◦ ξ = IdU . We denote the vector fields in U

as X(U ).

Notice that at each U , the vector fields X(U ) have the structure of a K−vector space induced by the

vector space structure at the tangent spaces at each point, since (k1ξ1 + k2ξ2)(p) = k1ξ1(p) + k2ξ2(p) ∈ TpM
for any two k1, k2 ∈ K, vector fields ξ1,ξ2 ∈ X(U ) and point p ∈ U . Even more, it has an O(U )−module

structure by setting (f ξ)(p) = f (p)ξ(p) for any function f ∈ O(U ), vector field ξ ∈ X(U ) and p ∈ U . Recall

that the tangent space is the set of derivations of germs of functions, which means that the vector fields

define a derivation at each point. In addition, analytic vector fields are analytic as maps, that is, these

linear derivations change analytically. Hence it is natural to see vector fields as operators (derivations) as

follows. Let ξ ∈ X(U ) be a vector field in U . Then ξ : O(U )→O(U ) is defined by ξ(f )(p) = ξ(p)(f ).

We also remark that using coordinate charts x : U → Rn it easily follows that the vector fields X are

locally finitely generated. Namely, the the set { ∂∂x1
, · · · , ∂

∂xn
} is a local basis of X(U ), acting on O(U ) as

∂
∂xi

(f ) = ∂
∂ti

(f ◦ x) in x(U ).
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We end by recalling that two vector fields ξ1 ∈ X(U ),ξ2 ∈ X(V ) have the same germ at p if there is

W ⊂ U ∩V such that ξ1|W = ξ2|W . A germ of vector field ξp is an equivalence class of X under the previous

equivalence relation. The set of germs of vector fields at a point is denoted by Xp or X(M,p).

At any point of M, recall that there is always a local coordinate chart (U,x). Using this chart, we

can define as before an equivalence between the germs of analytic functions and the convergent power

series in R{x}. Secondly, there is an equivalence between the Op−module of analytic vector fields and the

R{x}−module of derivations of convergent power series. Along this text, it is also important to consider

formal completions of germs of vector fields, X̂(M,p), which are isomorphic to the derivations of Ôp, see

[18].

The last algebraic property we want to recall is the Lie algebra structure of vector fields.We recall the

definition of the Lie bracket. Let ξ1ξ2 ∈ X(U ) be two vector fields. We define the Lie bracket of ξ1,ξ2 as the

vector field [ξ1,ξ2] : O(U )→O(U ) such that [ξ1,ξ2](f ) = ξ1(ξ2(f ))− ξ2(ξ1(f )).

A.3.2 Some geometric properties of vector fields

Associated to any analytic vector field there exists a family of integral curves.

Definition A.11. Let ξ an analytic vector field on M and p ∈ M. An integral curve of ξ at p on M is a

parameterized curve γ : I →M where I ⊂ R is an open interval, γ ′(t) = ξ(γ(t)) for t ∈ I and γ(t0) = p. We say

that γ is a cycle if there is some T ∈ R,0 such that γ(t + T ) = γ(t) for each t ∈ R.

Existence and uniqueness of integral curves (up to reparameterizations and choice of maximal interval

of definition) is ensured by the general theory of ordinary differential equations, because they are solutions

of the following system of ODEs

γ ′i (t) = ai(γ(t)), i = 1, . . . ,n,

where ai(γ(t)) is simply the i−th component of the vector field, given by

ξ(γ(t)) = a1(γ(t))
(
∂
∂x1

)
γ(t)

+ · · ·+ an(γ(t))
(
∂
∂xn

)
γ(t)

.

When coordinates are fixed, we can also use the notation ẋ = ξ(x) to refer to the vector field ξ, via the

ordinary differential equation that it defines.

Using the existence and uniqueness of the integral curves, it is possible to define the flow of a vector

field as the map Φ : D→M defined by Φ(t,p) = γp(t), where D ⊂ R×M and γp denotes the integral curve

of ξ such that γ(0) = p (see [75] for a reference of the flows of vector fields). A local expression of the

flow at each point p can be obtained using the exponential map. Formally, choosing a set of coordinates x

centered at p, the exponential map is given by exp tξ : R[[x1, . . . ,xn]]→ R[[x1, . . . ,xn, t]], which is defined by

exp tξ(f ) =
∞∑
i=1

ti

i!
ξ(i)(f ). (A.1)

where ξ(0)(f ) = f and ξ(i)(f ) = ξ(ξ(i−1)(f )) for i ≥ 1. Now, we will "forget" that trajectories are parameter-

ized curves, in order to define the foliation that a vector field generated.
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Definition A.12. Let γ be a (maximal) integral curve of the vector field ξ, the set |γ | = Im(γ) is a trajectory of

ξ. When |γ | is a single point q ∈U , we say that q is a singular point or a singularity of ξ.

Notice that q is a singular point if and only if ξ(q) = 0.

Definition A.13 (Foliation of U defined by ξ). The partition of U into topological manifolds |γ | ⊂ U of

dimensions 1 and 0 is the one dimensional analytic foliation F generated by ξ. The set of singularities

Sing(F ) = Sing(ξ) is the union of the trajectories that are a single point. If Sing(F ) = ∅ we say that the foliation

is regular, otherwise that it is singular.

In fact, given a one dimensional analytic foliation F , there is not a single vector field generating it.

This is because the parameterization of the trajectories is not taken into account. For instance, if F is

generated by ξ, it is also generated by λξ for any λ ∈ R \ {0}.
Let p ∈M. We say that two foliations F of U ⊂M with p ∈ U and F ′ of U ′ ⊂M and p ∈ U ′ have the

same germ at p if there is an open subset W ⊂ U ∩U ′ where F |W = F ′ |W . The class of equivalence of

F under this relation is the germ of foliation Fp at p or the local foliation Fp at p. The local foliations are

generated by germs or vector fields.

We can define other equivalences between foliations. Two foliations F and F ′ defined on U and U ′ ,

respectively, are equivalent or homeomorphic, if there is a homeomorphism F : U → U ′ such that for any

L ∈ F we have some L′ ∈ F ′ such that F(L) = L′ . In the same spirit, two germs of foliations Fp and F ′p are

equivalent if there are representatives F at U and F ′ at U ′ such that F and F ′ are equivalent.

We will be specially interested in the local properties of the foliations defined by vector fields, that is,

in local foliations. In particular, the points of special interest in our work are the points where the vector

field vanishes, the singularities, as we motivate now.

In the non singular points, the foliation is locally trivial, i.e. equivalent to one generated by a constant

vector field. This is a consequence of the following classical theorem.

Theorem A.14 (Rectification theorem). Let ξ be a vector field in M, F the foliation that ξ defines and p ∈M
a non-singular point. Then, there is an open neighborhood U of p and a homeomorphism F : U → U ′ such that

F(F ) is generated by ( ∂
∂x1

), where (x1, · · · ,xn) are coordinates in U ′ .

The problem of studying the topological properties of analytic foliations is (almost) totally solved in

dimension 2. We highlight the result on sectorial decomposition of non center-focus vector fields by [6, 66,

3]. There are several problems yet to be solved, that we will discuss later. For instance, the center-focus

problem which consists on determining if a vector field is topologically a radial foliation or a collection of

1-spheres is transcendent.

A.3.3 Conjugation and equivalence of vector fields

When it comes to study the topology of local foliations, it is often convenient to work with vector fields

that are some sort of equivalent to the original one, but which may have a simpler expression. In this

section, we will outline which kinds of equivalence preserve the local foliation of a vector field. We start

with the strongest type of equivalence, the analytic and Ck conjugation, for k ∈ N≥1 ∪ {∞}. We include the

analytic case by denoting the analytic functions by Cω.
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Definition A.15. Let M,N be two analytic manifolds, U ⊂M and V ⊂ N be two open sets and ξ ∈ X(U ) and

η ∈ X(V ) be two analytic vector fields. We say that ξ and η are locally Ck conjugated at a point p ∈ M if

there exist two open sets Ũ ⊆ U and Ṽ ⊆ V with p ∈ Ũ and an analytic diffeomorphism ϕ : Ũ → Ṽ such that

Dϕ(q)(ξ(q)) = η(ϕ(q)) for any q ∈ Ũ . It is the same as saying that ϕ∗(ξ) = η.

We find, as a consequence, that the conjugation diffeomorphism preserves not only the local foliation,

but also the parameterization of trajectories around p.

Proposition A.16. Let M,N be two analytic manifolds, U ⊂M and V ⊂ N be two open sets and ξ ∈ X(U ) and

η ∈ X(V ) be two analytic vector fields. Let Φξ be the local flow of ξ at p ∈M. If ξ and η are locally Ck conjugated

at p, then ϕ(Φξ (t,q)) = Φη(t,ϕ(q)), where ϕ : Ũ → Ṽ , the map Φη is the local flow at ϕ(p) and q ∈ Ṽ .

At the thesis of last proposition, we see that the differentiable properties of ϕ are not used. Thus, we

will extend the concept of conjugation to the homeomorphic or C0 case by means of conjugation of flows.

Let k ∈ N∪ {ω,∞}.

Definition A.17. Let M,N be two analytic manifolds, U ⊂M and V ⊂ N be two open sets and ξ ∈ X(U ) and

η ∈ X(V ) be two analytic vector fields. Let Φξ be the local flow of ξ at p ∈M. We say that ξ and η are locally

Ck−flow conjugated (or simply locally Ck− conjugated) if there are Ũ ⊂ U and Ṽ ⊂ V and a Ck−differentiable

map ϕ : Ũ → Ṽ , such that ϕ(Φξ (t,q)) = Φη(t,ϕ(q)), where Φη is the local flow at ϕ(p) and q ∈ Ṽ .

Notice that these conjugations still respect the parameterization of the trajectories. We can still define

a weaker equivalence for which the parameterization of the trajectories is not necessarily preserved.

Definition A.18. Let M,N be two analytic manifolds, U ⊂M and V ⊂ N be two open sets and ξ ∈ X(U ) and

η ∈ X(V ) be two analytic vector fields. Let Φξ be the local flow of ξ at p ∈M. We say that ξ and η are locally

Ck−equivalent or locally Ck− orbitally equivalent if there are Ũ ⊂ U and Ṽ ⊂ V and a Ck−differentiable map

ϕ : Ũ → Ṽ , such that ϕ(Φξ (t,q)) = Φη(s,ϕ(q)), where Φη is the local flow at ϕ(p) and q ∈ Ṽ and s ∈ R.

Notice that the previous definition, implies exactly that the foliations generated by ξ and η are equiv-

alent as foliations, since one leaf is sent to another.

Example A.19. An easy example of two vector fields that are C1−equivalent but not C1−conjugated are the

following, both defined in (−ε,ε) ⊂ R with ε << 1 and given by η = x ∂
∂x and η = (1 + x2)x ∂

∂x = (x + x3) ∂∂x .

The homeomorphism considered to see the equivalence can simply be the identity, but there is not a

diffeomorphism conjugating them.

A.3.4 Invariant manifold theorems

In this section, we will present the definition of (local) invariant manifolds, invariant analytic sets and

theorems of great importance on existence of invariant manifolds for vector fields.

Definition A.20. Let ξ ∈ X(U ) be a vector field in U ⊂ Rn and S ⊂ U ⊂ Rn be a subset. We say that S is an

invariant set for ξ if Φ(t,p) ∈ S for every p ∈ S and t in D ∩R× {p}. Let ξ ∈ X(Rn,0) a germ of vector field and

S0 a germ of subset at 0. We say that S0 is invariant for ξ if there is a representative S of S0 that is invariant for

a representative of ξ.
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The invariant sets can sometimes have the structure of a submanifold, or be algebraic, analytic, semi-

analytic or subanalytic. Notice that the algebraic and analytic sets are defined, only locally in the second

case, as sets of zeros of algebraic and analytic functions. The invariance property in this case is translated

to the following. Let p ∈M ⊂U ⊂ Rn be a point at an algrebraic or analytic setM. LetUp be a neighborhood

of p in Rn such that M ∩Up = V (I), where I is an ideal (in O(Up)) generating M ∩Up. Then, the invariance

condition is equivalent to the invariance of I under the derivation defined by ξ at p, that is ξp(I) ⊂ I .
This idea of invariant ideals leads to a useful generalization.

Definition A.21. Let ξ ∈ X̂(M,p) be a germ of formal vector field at p. We say that an ideal I in Ôp is a formal

invariant set if ξ(I) ⊂ I .

Notice that germs of analytic vector fields are convergent elements in the set of germs of formal vector

fields. For this reason, it makes sense to speak about germs of formal invariant sets also for germs of

analytic vector fields.

Let ξ be a vector field with a singularity in 0 and let Lξ be defined as Lξ = j1(ξ). In coordinates, if

ξ = a1(x)
∂
∂x1

+ · · ·+ an(x)
∂
∂xn

,

where each ai(x) =
∑
α∈Nn ai,αxα , then its linear part is

Lξ =
∑
|α|=1

a1,αxα
∂
∂x1

+ · · ·+
∑
|α|=1

an,αxα
∂
∂xn

.

For a semi-hyperbolic vector field, we can always define linear subspaces Eu , Es and Ec, associated to the

eigenvalues of Dξ(0) with positive real part, negative real part and vanishing real part, respectively. These

linear subspaces are invariant for the linear vector field Lξ. With the definition of these subspaces in hand,

we can provide some two classical results on real dynamical systems based on the existence of invariant

manifolds.

Theorem A.22 (Center manifold theorem [20, 47]). Let ξ ∈ X(U ) be an analytic vector field with hyperbolic

singularity at 0 and defined in a neighborhood U ⊂ Rn. Then, for each k ∈ N (k ≤ r) there is a neighborhood Vk
of 0 and manifolds W u

k ,W
cu
k ,W c

k ,W
cs
k ,W

s
k of class Ck , named unstable, center-unstable, center, center-stable

and stable manifolds, respectively. The unstable manifold W u
k is tangent to Eu of Lξ at 0, the center-unstable

manifoldW cu
k is tangent to Eu⊕Ec of Lξ at 0, the center manifoldW c

k is tangent to Ec of Lξ at 0, the center-stable

manifoldW cs
k is tangent to Es⊕Ec of Lξ at 0, and the stable manifoldW s

k is tangent to Es of Lξ at 0. In addition:

1. Let p ∈W s. Then, the integral curve at p converges to the point 0 as t tends to +∞ and leave V in negative

time. In addition, there are constants C,B > 0 such that ||Φt(v)|| ≤ Ce−Bt for t ≥ 0.

2. Let p ∈W u . Then, the integral curve at p converges to the point 0 as t tends to −∞ and leave V in positive

time. In addition, there are constants C,B > 0 such that ||Φt(v)|| ≤ CeBt for t ≤ 0.

3. The center-stable manifold contains every p ∈ Vk such that the integral curve γp is defined for all t ≥ 0 and

remains in Vk .
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4. The center manifold contains every p ∈ Vk such that the integral curve γp is defined for all t ∈ R and

remains in Vk .

5. The center-unstable manifold contains every p ∈ Vk such that the integral curve γp is defined for all t ∈ R
and remains in Vk .

Remark A.23. In the light of the previous theorem, we remark that in the center-unstable, center and

center-stable manifolds, there might be orbits that leave Vk for both positive and negative times. It is also

possible that one of these manifolds behaves as a stable or unstable manifold (depending on the case) in

terms of integral curves. The behavior of the vector field inside them depends on the higher order terms

of the vector field, which are less dominating than the linear ones.

The stable and unstable manifolds are commonly called strong manifolds, since they are (germ-wise)

unique, and analytic when ξ is analytic. However, the center-unstable, center and center-stable manifolds

may not be unique and neither analytic nor ∞−differentiable. Because of these facts, the center-unstable,

center and center-stable manifolds are called the weak manifolds. There is a large list of works studying

the properties of the center manifolds. We summarize the properties of greatest interest for our work and

refer the reader to a collection of interesting papers on the topic.

• All center manifolds have the same Taylor expansion at 0. We will call this series the formal center

manifold Ŵ c. The same can be said for the formal center-unstable manifold Ŵ cu and the formal

center-stable manifold Ŵ cs.

• As a consequence of the previous item, any two invariant manifolds differ from each other on the

order of e−C/ ||xc || for some constant C > 0 at 0, and xc coordinates of the center manifold.

• Under certain conditions, the center manifold is unique and even analytic or differentiable. For

instance, a center manifold full of cycles is necessarily unique.

• There is a collection of examples of center manifolds that are not infinitely differentiable.

We end the section by stating a result on topological conjugation of a vector field with semi-hyperbolic

singularity and a simpler one. We also highlight the idea that the integral curves of a vector field lying

outside a center manifold topologically follow the behavior of a linear vector field transverse to the center

manifold while they also follow the flow inside the center manifold. The following theorem is a particular

case of the result of F. Takens and J. Palis [63].

Theorem A.24 (Reduction to the center manifold theorem). Let ξ ∈ X(U ) be an analytic vector field in a

neighborhood of 0 ∈ Rn with semi-hyperbolic singularity at 0, and let Lξ be its linear part. Then, there is a

topological conjugation between ξ and ξ |W c +Lξ |Eu⊕Es .

A.4 Normal forms
We end this appendix by introducing normal forms and we state the main results in this topic. The ob-

tainment of normal forms and the invariant manifold theorems, presented in the previous section, are two

strong tools that combined simplify the description of the dynamics of vector fields, in many cases.

In short words, a normal form of a vector field is another vector field conjugated to the original one

(analytically, Ck , C∞ or only formally) that has a more simple expression. Many authors have studied
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this problem with different approaches. We start giving the definition of formal normal form in terms of

the Jordan decomposition of formal vector fields in Cn. Recall that formal vector fields are derivations

of Ô0 = Ô(Cn,0) and that Ô0 is provided with the jet truncation morphisms. Notice also that a k−jet of

vector field jk(ξ) defines a derivation (endomorphism) in jk(Ô0). It is hence possible to obtain its Jordan

decomposition

jk(ξ) = ξS,k + ξN,k ,

with [ξS,k ,ξN,k]. In fact, because of the commutation of this decomposition with jet truncations, we can

take the limit of the Jordan decompositions and define the Jordan normal form as

ξ = ξS + ξN ,

with jk(ξS ) = ξS,k and jk(ξN ) = ξN,k .

Definition A.25. A formal vector field ξ = ξS + ξN is a formal normal form if ξS is a semi-simple linear

diagonal vector field, ξN is a nilpotent vector field and [ξS ,ξN ] = 0. When ξ is analytic, we say that ξ is an

analtyic normal form.

In the literature, the formal normal form is also known as the Poincaré-Dulac normal form. The follow-

ing is a well known result, see for instance [10] and the references therein, we find that a formal normal

form always exists for every ξ ∈ X(Cn,0). However, the formal normal form is generally far from being

unique, as we will comment thereafter.

Theorem A.26 (Formal Normal Form). Let ξ ∈ X(Cn,0). Then, there is a formal diffeomorphism ϕ at 0 ∈ Cn

such that ϕ∗(ξ) is in normal form.

To prove this theorem, it is enough to linearize the semi-simple part of ξ into S =
∑n
i=1λixi

∂
∂xi

, where

λi are the eigenvalues of ξ. Notice that after a linear change of coordinates, we can assume that the linear

part of the initial vector field is in the Jordan normal form S. We give some definitions and then outline

the inductive steps on the construction of a formal normal form.

We define the Lie derivative operator LS : X̂(Cn,0)→ X̂(Cn,0) given by LS (η) = [S,η]. Writing conve-

niently η =
∑n
i=1 ai(x) ∂

∂xi
=

∑n
i=1 bi(x)xi

∂
∂xi

, allowing that bi is meromorphic (when xi does not divide ai),

we obtain a simple expression for LS (η) as follows. Let bi(x) =
∑
qi≥−1,qk≥0,k=1,2,...,n,k,i bi,QxQ, we have that

LS (η) is expressed as a sum of monomial vector fields, then

LS (η) =
n∑
i=1

∑
qi≥−1,qk≥0,k=1,2,...,n,k,0

bi,Q⟨Λ,Q⟩xQxi
∂
∂xi

,

where ⟨−,−⟩ is the inner product in Cn. The values αQ = ⟨Λ,Q⟩ are the eigenvalues of LS , and the vector

fields xQxi ∂
∂xi

are the corresponding eigenvectors. The linear subspace of vector fields η such that LS (η) = 0

are the ones commuting with the semi-simple part and the vector fields that cannot be eliminated. The

monomial vector fields xQxi ∂
∂xi

for Q ∈ {(q1, . . . , qn) : qi ∈ Z≥−1,qj ∈ Z≥0j , i}, |Q| > 1 and i ∈ {1, . . . ,n} such

that ⟨Λ,Q⟩ = 0 are called the resonances of S.

By defining linear systems of equations, one can induce an analytic change of coordinates ϕ2 such that

the non-resonant terms of ξ2 = (ϕ2)∗(ξ), are equal to zero up to its 2−jet. The analytic change of coordinates
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is defined as the exponential map of a polynomial vector field η2 that fulfills that j2(ξ) − LS (η2) = S +χ2,

where χ2 is an homogeneous vector field of degree 2 that contains only resonant terms. We highlight that

this expression provides the homogeneous components of degree 2 of (ϕ2)∗(ξ) and it also affects terms of

higher degree. In the presence of resonances, we remark that there is not uniqueness on the choice of η2

and χ2 in the aforementioned expression. Hence there is not uniqueness on the construction of normal

forms.

We do not show more details on the construction, but there is an inductive method to construct the

formal normal form jet by jet (indeed, following Martinet’s text [59], we can double the jet at each steps).

At each step we obtain a vector field ξi , i = 2k , such that:

• ξi is conjugated by some analytic diffeomorphism ϕi to the vector field ξi/2 obtained in the previous

step and it is also conjugated to the original ξ.

• ji(ξi) is in normal form.
The formal normal form is the formal vector field obtained as the limit.

Remark A.27. Even if the original vector field ξ is analytic, it is possible that there is not a choice of normal

form that is analytic. In general, most likely, it will not be. And even if there is a choice of formal normal

form that is analytic, the normalization formal diffeomorphism does not need to be analytic.

Brjuno has a very complete study about the normalization of analytic vector fields, and in a wide

range of cases he gives conditions to determine if there is a choice of normal form that is analytic or if it

is generically divergent. However, in between the convergence and divergence conditions, there are still

many cases in which convergence is not known. We provide a result of him treating convergence that will

be useful in our work, as it appears in [59, Theorem 5]. The author also restate the conditions of Brjuno in

a more geometrical way. We present these conditions now.

• (Arithmetic condition) The series ∑
k

logωk
2k

is convergent, where ωk = min{|αQ | : |Q| ≤ 2k+1,αQ , 0}, Q ∈
⋃n
i=1{(q1, . . . , qn) : qi ∈ Z≥−1,qj ∈ Z≥0j , i}

and αQ = ⟨Λ,Q⟩.

• (Geometric condition) The formal normal form ξ̂ of ξ is tangent to the foliations given by xR = c,

where c is a constant and R = (r1, . . . , rn) such that ⟨Λ,R⟩ = 0.

Note that the arithmetic condition depends only on the vector of eigenvalues and the geometric condition

depends on a particular normal form of ξ. We say that ξ satisfies the geometric condition if one normal

form of ξ does.

Theorem A.28. Under the arithmetic and geometric conditions, and one of the following additional hypotheses,

there is an analytic normal form ξ̃ of ξ.

• n ≤ 4.

• 0 ∈ Conv({λ1, · · · ,λn}) ⊂ C.

Now, we state the results concerning real analytic and Ck vector fields, for k ∈ N∪{∞}. It is important to

remark that the real formal normal form may not have diagonalized semi-simple part as before, but in any
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case, it is possible to use the linear vector field in real Jordan form, and we will assume this consideration

when we speak about real normal forms. We start by stating the existence of the real formal normal form

for real systems. The result is stated more generally for subfamilies of holomorphic vector fields, but its

main application is its use for real vector fields, see [11].

Theorem A.29. Let ξ ∈ X(Rn,0) be a germ of real analytic vector field. Then, there is a real formal diffeomor-

phism ϕ such that ϕ∗(ξ) is in formal normal form.

The proof is based on the obtainment of normal forms for complex vector fields. This is because the

real Jordan form and the complex Jordan form are related by a linear change of coordinates. We need also

to use the fact that coefficients of the normalizing transformation can be chosen in such a way that the

normal form is mapped into a real one by the linear change of coordinates, that is, we work in the image

of the real vector fields under the diagonalizing linear map.

For Ck vector fields with k ∈ N∪ {∞}, we state the result of Takens [72].

Theorem A.30. Let ξ ∈ X∞(Rn,0) be a Ck vector field with k ∈ N∪ {∞}. Then, there exists a Ck diffeomorphism

such that ϕ∗(ξ) = ξ̂ +Rk , where ξ̂ is a formal normal form of ξ and Rk fulfills jk(Rk) = 0.

Notice that the k−jets of C∞ vector fields are well defined, being j∞(ξ) the limit of the l−jet decomposi-

tions with l ∈ N, that is a formal vector field. The vector field R∞ is a C∞ vector field with Taylor expansion

equal to 0 (plane).
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α−limit (diffeomorphism), 60
ω−limit (diffeomorphism), 60

adapted simple
node, 33
saddle, 33
saddle-node, 33

bidicritical curve, 33, 63
blowing-up, 20
branch of a curve, 163

center-focus, 38
completely non-hyperbolic

singularity, 19
cycle, 166
cycle-locus, 120
cylindrical coordinates, 26

dicritical
component of an exceptional divisor, 31
monotonic domain, 74

diffeomorphism in reduced form, 68

elementary singularity, 18
elliptic set, 62
equivalent

foliations, 167
vector fields, 168

exceptional divisor, 21, 22
exponential map

of a vector field, 50
of vector fields to diffeomorphisms, 50

flow conjugated vector fields, 168
formal rotational axis, 120
fundamental domain, 61

germ
of a foliation, 167
of analytic function at p ∈ Rn, 161
of tangent to the identity analytic diffeo-

morphism, 162

half-branch of a real analytic curve, 163
have normal crossings, 30
Hopf singularity, 120
Hopf-zero singularity, 120
hyperbolic

set, 62
singularity, 19

integral curve, 166
irreducible components of a divisor, 30
iterated tangents, 27

local cycle-locus, 120

negatively invariant, 62
nilpotent singularity, 18
node

monotonic domain, 75
non-dicritical component of an exceptional di-

visor, 31
normal crossing divisor, 30
normal form, 171

orbit (diffeomorphism), 60
orbitally equivalent vector fields, 168
orientented blowing-up, 22

parabolic
curve, 62
curve asymptotic to a formal curve, 62
set, 62

parameterization of a branch of an irreducible
real analytic curve, 163

periodic point of a diffeomorphism, 61
polar coordinates, 25
positively invariant, 61

regular dicritical arc, 81
regular monotonic domain, 72, 73
regular non-dicritical arc, 77

saddle
monotonic domain, 75
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saturated
vector field, 30

saturation
of a set by a diffeomorphism, 61
of a vector field, 30

sectorial decomposition, 63
semi-analytic set, 164
semi-hyperbolic

Hopf singularity, 120
singularity, 19

separatrix, 19
sequence of blowing-ups, 24
simple singularity, 19

relatively to a divisor, 32
singular locus, 20
singular locus relatively to a normal crossing

divisor, 32
singular point, 167
strict transform

of a variety, 27
of a vector field, 28

structure of the local cycle locus, 121
subanalytic set, 164
support of the graph of a vector field for a dif-

feomorphism, 70

three-dimensional center, 122
total transform

of a variety, 27
of a vector field, 28

trajectory, 167
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Notation

N The set of natural numbers includ-

ing 0.

N∗ The set of natural numbers with-

out 0.

Z The set of integer numbers

Q The set of rational numbers

R The set of real numbers

C The set of complex numbers

R≥0 The set of non-negative real num-

bers

i Imaginary unit

0 ∈ Rn (0, . . . ,0) ∈ Rn

x = (x1, . . . ,xn) Tuple of variables

R[x] R−algebra of polynomials in x.

R[x]s R−algebra of polynomials of de-

gree s in x.

R[[x]] R−algebra of formal power series

in x.

R{x} R−algebra of convergent power se-

ries in x.

M, (M,A) Differentiable or analytic n-

dimensional manifold (with

boundary and corners) and atlas

A.

x :U → Rn Coordinate chart of M.

O(U ),Cω(U ) Analytic functions in U ⊂M
Ck(U ) k−differentiable functions in U ⊂

M with k ∈ N∪ {∞}
On,p, Op Germs of analytic functions at p ∈

M

Ôn,p, Ôp Formal completion of germs of an-

alytic functions at p ∈M

TpM Tangent space of M at p.

TM = ∪p∈MTpM Tangent bundle of M.

T ∗pM Cotangent space of M at p.

T ∗M = ∪p∈MTpM Cotangent bundle of M.

X(U ) Vector fields on U ⊂M
X(M,p),Xω(M,p) Germs of analytic vector fields at

p ∈M.

Xk(M,p) Germs of Ck vector fields at p ∈
M.

X̂(M,p), Formal vector fields at p ∈M.

Ω(U ) 1-forms on U ⊂M
Ω(M,p) Germs of 1−forms at p ∈M.

Φξ : D ⊂ R ×U →
U

Flow of the vector field ξ on U ⊂
M.

Diff(U,V ),

Diffω(U,V )

Real analytic diffeomorphism

from U ⊂M to V ⊂N .

Diff(M,p),

Diffω(M,p)

Germs of real analytic diffeomor-

phisms fixing p.

Diff1(M,p),

Diffω1 (M,p)

Germs of real analytic diffeomor-

phisms tangent to the identity

at p (i.e. DpF = Id for F ∈
Diff1(M,p)).

D̂iff1(M,p) Formal diffeomorphisms tangent

to the identity at p (i.e. DpF = Id

for F ∈Diff1(M,p)).

Fix(F) Fixed points of F ∈Diff(M,p)

Per(F) Periodic points of F ∈Diff(M,p)
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