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ARTICLE INFO ABSTRACT

Keywords: Population growth and industrialization have resulted into a substantial increase in wastewater production,
microalgae thereby establishing water purification as a primary concern on a global scale. In this context, microalgae-
m}?"‘"]f horizon estimation bacteria based wastewater treatment has emerged as a solution for wastewater treatment and nutrient recov-
photobioreactor

ery at a low-energy demand. Nevertheless, operation of this type of wastewater treatment plants is more complex
and requires of advanced control systems, capable of maintaining its key variables within appropriate ranges in
spite of the periodic variations in environmental variables and wastewater composition. Very often, the imple-
mentation of state feedback control laws and model-based control techniques in these processes necessitates full
information of the states and other variables of the system in real-time. However, in practical scenarios, only a
subset of the variables of microalgae-bacteria processes can be measured online due to the need for more reliable
measuring devices or the high costs of online sensors. In addition, these biological processes are subjected to
frequent variations, so that the parameters of the models representing them requires continuous adaptation. This
paper presents the application of a moving horizon estimation technique to a wastewater treatment process with
microalgae and bacteria. The objective of this study is to estimate those variables or parameters that cannot be
measured reliably online. This process was nonlinear and subject to uncertainties in the states and parameters.
The estimation was coded using MATLAB® software, and simulation results demonstrated the effectiveness of
estimation in this biological process, characterized by the availability of multi-rate measurements.

software sensors
state estimation
wastewater treatment

1. Introduction biomass to produce biofertilizers, biofuels, and other bioproducts ren-

ders this technology an attractive alternative for cost-effective waste-

The utilization of microalgae as a wastewater treatment technology
has emerged as a promising and sustainable solution, with the potential
to address the high energy costs and loss of resources associated with
mechanical aeration in conventional wastewater treatment methods [1].
Domestic and industrial wastewaters, which are characterized by high
carbon, nitrogen, and phosphorus concentrations, require treatment
prior to discharge into natural water bodies to prevent oxygen depletion,
toxicity issues, and eutrophication. The capacity of microalgae to
concurrently remove carbon, nitrogen, and phosphorus via mixotrophic
assimilation confers a substantial advantage over conventional waste-
water treatment technologies, such as aerobic activated sludge or
anaerobic digestion, which are limited in their ability to recover nutri-
ents. The potential for further utilization of the harvested microalgae

water treatment and nutrient management [2,3].

Despite the long-standing research in this field, these systems have
only recently undergone improvements to meet industry demands and
effluent quality regulations. In the context of large-scale microalgae-
bacteria systems, novel techniques from biotechnology and control en-
gineering must be applied to ensure the robustness, durability, and
optimized operation of these processes. Mathematical models, control
strategies, state estimation techniques, and process optimization tech-
niques are important tools to operate properly these complex systems
but need to be re-examined and adapted to the context of multiple
perturbations and evolving environmental conditions that affect these
processes.

Mathematical models are at the core of numerous contemporary
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methodologies aimed at enhancing the comprehension of biological
processes and facilitating their operation. In the context of plant oper-
ation, advanced control strategies have emerged as promising in-
struments to enhance the performance of microalgae production
systems, particularly within the context of large-scale cultivation plants
[4]. The implementation of state feedback control laws and model-based
control techniques, such as Model Predictive Control (MPC), necessi-
tates complete online information of the system. However, in practical
scenarios, only a subset of the states or key variables of microalgae-
bacteria processes can be measured due to the necessity for more reli-
able measuring devices or the high cost of on-line sensors [5].

The basic hardware instrumentation in microalgae-bacteria-based
wastewater treatment plants typically provides online measurements
of temperature, pH, dissolved oxygen, and flow rate. However, this is
not the case for other component concentrations (biomass, substrates,
and metabolites), which are crucial for understanding the system state.
Despite of the significant progress in the field, many current hardware
sensors for concentration measurement still exhibit significant draw-
backs, including expensive probes, discrete-time measurements, and
offline solutions, among others. Consequently, state estimators (often
termed software sensors) emerge as a promising alternative to determine
the non-measurable states and concurrently reduce the utilization of
costly sensors.

State estimators employ a dynamic model of the process, knowledge
about the process inputs, and the availability of hardware sensors to
measure certain variables to estimate those difficult to measure. In
addition, as these biological processes are subjected to frequent varia-
tions in environmental parameters and wastewater characteristics, the
parameters of the models representing them require continuous adap-
tation. State estimators are also able to include these parameters among
the variables being estimated.

The diversity of state estimation techniques arising from intrinsic
differences in chemical process systems underscores the importance of
selecting the proper technique for design and implementation in specific
applications. The seminal contributions of Luenberger [6-9] and Kal-
man [10,11] in the 1960s laid the foundation for the development of
state observers and Kalman Filter (KF)-based estimators. However, over
the years, research in the design of state estimators has become
increasingly popular yet challenging due to the requirements of high
accuracy, low cost, and good prediction performances.

In the context of bioprocesses, the estimator design problem is
particularly challenging. In addition to the scarcity of online measure-
ments, additional challenges are presented by considerable nonlinear
dynamics governing the cultivation process and the consequent
modeling complexity. The KF-based estimators are the most widely
applied [4,12,13]. The current state of the art of KF-based estimators in
microalgae processes includes various reports of estimators applied
together with control and optimization techniques due to the necessity
of the entire state vector for system monitoring and control [4,13,14].
These estimators present satisfactory results, provided that linear
approximation remains valid, the signal has low noise, and constraints
are negligible.

Another approach for nonlinear systems that has gained popularity
over the past two decades among researchers and industrial practi-
tioners of MPC is the Moving Horizon Estimation (MHE) approach
[15-17]. This approach formulates the state estimation problem as an
optimization problem over a moving time window, akin to the MPC
formulation. The strategy of MHE has been demonstrated to exhibit
numerous advantages over other nonlinear state estimation techniques.
It has the capacity to incorporate a priori process knowledge by
including constraints on the estimated states and disturbances.
Furthermore, its performance is frequently superior because nonlinear
model equations can be used directly without the necessity of lineari-
zation. A salient benefit of this approach is its capacity to generate both
filtered and smoothed estimates of states within the same window.
Furthermore, MHE has the capacity to estimate states, parameters, and
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model-plant mismatch concurrently. The capacity to assess model-plant
discrepancy is essential for compensating for errors or simplifications in
the model. MHE has been demonstrated to be applicable in bioprocesses
[18-20], including the state estimation in conventional wastewater
treatment plants [21-23]. In the context of microalgae-based processes,
the application of MHE is restricted to a limited number of research
works [24], and, to the best of the authors’ knowledge, there are not
publications addressing domestic wastewater treatment plants based on
microalgae-bacteria consortia. Despite its potential, MHE has not been
extensively explored in this area.

The inherent nonlinear characteristics of microalgae-based waste-
water treatment processes, coupled with the operational constraints
associated with these processes, underscore the viability of MHE as a
solution to the state estimation problem in this context. This assertion is
further supported by previous experience in applying MHE to other
biological and conventional wastewater treatment processes. The aim of
this study is to propose an MHE strategy for state and parameter esti-
mation in an industrial microalgae-based wastewater treatment plant.
The online state estimation would pave the way for the future imple-
mentation of control and optimization strategies in the plant based on
the actual values of the states. This objective is particularly challenging
in such processes, where some states are measured offline and depend on
analytical procedures that are highly time and resource consuming.

2. Materials and methods
2.1. Moving horizon estimation

MHE is a powerful tool for state estimation in dynamic systems,
transforming the problem into an optimization problem. This approach
searches for the states and parameters that minimize the discrepancy
between measured and model-predicted outputs over a sliding window
of past data. Additionally, MHE effectively incorporates unmeasured
disturbances and other inaccuracies within this finite sequence of past
measurements, and consider the admissible ranges of the different var-
iables involved.

Unlike filter-based approaches for nonlinear systems such as the
Extended Kalman Filter (EKF), MHE offers greater flexibility in handling
constraints and system nonlinearities. The ability to incorporate addi-
tional constraints on estimated variables allows for enforcing physical
limitations, integrating valuable information about the system’s char-
acteristics (such as ensuring concentrations remain positive or molar
fractions stay within the [0,1] range). These constraints not only
improve the physical realism of the estimates but also enhance the ef-
ficiency of the optimization solver by reducing the search space. As a
result, estimation errors decrease, as more information is utilized in the
optimization process.

It is important to acknowledge that nonlinear optimization with
constraints increases computational complexity. However, with recent
advancements in computing power and improved nonlinear solvers,
MHE has become more practical, allowing solutions to be obtained
within a reasonable timeframe. In highly nonlinear systems, such as
biological processes, MHE typically outperforms EKF, which relies on
the assumption that the system behaves linearly during updates, a
condition that may not always hold.

Another key advantage of MHE is its versatility in scenarios where
plant measurements are available at different frequencies (e.g. mea-
surements from plant transmitters and from the lab). Traditional state
estimation methods often assume that all relevant states can be observed
from high-frequency measurements, but this is not always the case.
Some states may only be inferred from less frequent measurements,
making multi-rate measurements essential. By incorporating slower
measurements into the estimation process, MHE improves both the
quality of state estimates and the overall observability of the system,
addressing potential information gaps.

The MHE dynamic optimization problem can be defined as problem
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(1)-(7) below and Fig. 1. The problem is solved at regular time intervals
or sampling times k. At current time k, the estimation considers a past
horizon t € [tx_p,, t], where n, represents the number of past sampling
time included in the estimation. Within this horizon, the inputs u_; to
the process over the intervals [t;_;, t_i:1], and the process measurements
collected at t;_;, denoted as yp ;, are known for i = 1,...,n.. The past
horizon of the MHE is illustrated in Fig. 1.

The decision variables in this problem include the state values at the
beginning of the sliding window of past data (xi_n, ), and the past un-
measured system disturbances, unknown parameters, or system noise
accounting for modeling errors (and unknown dynamics) (wy_;). The
objective (1) is to minimize discrepancies between the model-predicted

outputs (y,) and the measured values (yp_k>, while also considering the

deviation between the newly estimated past initial state xx_,, and the
state estimated from the previous MHE execution at time t — n, (?ck,ne),
as well as maintaining consistency or minimizing the past disturbances
(or parameters 6_;) and wi_;. Then, the trajectory of the state variables
up to time k [Xe_p,,...,Xk] is estimated using the process model. The
name moving horizon estimation is derived from this problem formula-
tion: at each sampling time t;, a new measurement y; enters the ho-
rizon, while the oldest measurement ypy_, ; is discarded from the
estimation window.

The weighting matrices Q,, Q, and Q,, regulate the influence of each
term on the cost function. The optimization problem is subjected to the
dynamic system model (2) and (3), as well as the operational and
physical constraints defined in (4). The problem also incorporates
inequality constraints (5) to restrict disturbances to the permissible
range. The incorporation of additional constraints in the values of the
states (6) and parameters (7) could enhance the estimation performance.

v

v

v

k-2 k-1 k

Fig. 1. Past values for the MHE estimation.
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This is a dynamic optimization problem that can be solved either
with a sequential approach involving a dynamic simulator and a non-
linear optimizer or directly with a non-linear solver after full dis-
cretization. The structure of the MHE algorithm is summarized in Fig. 2.

State estimation employing the MHE technique is also beneficial in
scenarios where plant measurements are not available at the same fre-
quency. This situation is illustrated in Fig. 3, where the measurements of
outputs y; and y, (represented with circles), are available with a sam-
pling period greater than the sampling period of the measurements of
the output y3. The prevailing state estimation methodologies typically
utilize solely the rapid measurements (y3p in Fig. 3), operating under
the assumption that all states of interest are observable from them.
However, this assumption does not always hold true, and there exist
instances where states cannot be observed from the rapid measurements
alone. Consequently, the utilization of measurements obtained at vary-
ing rates has the potential to enhance the observability properties of the
system. Therefore, it is recommended to use methodologies capable of
managing multi-rate measurements, with the objective of leveraging the
slower measurements to enhance the quality of state estimates or their
observability.

2.2. Plant description

This study considers a hypothetical wastewater treatment plant
(WWTP) for a population of approximately 5000 inhabitants, treating an
average flow rate of 875 m3/d. The system consists of two parallel High-
Rate Algal Ponds (HRAPs), each with an area of 10,208 mz, designed in
the typical form of raceways with two channels and two reversals (452
m long and 22.6 m wide). The HRAPs have a depth of 0.3 m and operate
at a Hydraulic Retention Time (HRT) of 7 days. Two settlers, each with a
total working volume of 293.75 m?, are connected to the output of each
HRAP. The algal-bacterial biomass settled is recirculated to the HRAP to
enhance nutrient assimilation and biomass settling ability. It is hy-
pothesized that the algal-bacterial WWTP is preceded by a pre-treatment
stage with primary sedimentation to remove the solid fraction of the
wastewater. The schematic representation of the plant is depicted in
Fig. 4, and the average composition of the inlet domestic wastewater is
listed in Table 1. The values for wastewater composition were obtained
from the typical domestic wastewater concentrations reported in
[25,26].

The algal bacterial broth is composed of a consortium of microalgae
and bacteria. The microalgae consortia consist of different strains uti-
lized for wastewater treatment. The bacterial groups encompass het-
erotrophic bacteria and autotrophic bacteria (ammonium-oxidizing
bacteria and nitrite-oxidizing bacteria). It is hypothesized that HRAPs
are inoculated with 2.5 gVSS/L of microalgae consortia and 2.5 gVSS/L
of activated sludge. The particulate components’ relative proportions in
the sludge are assumed based on those proposed in the Activated Sludge
Model 2 (ASM2) [26]. The concentration of particulate components in



L. Bausa-Ortiz et al.

Process
noises

|

Inputs
S
Uy

Process

Algal Research 91 (2025) 104338

Measurement
noises

le

Plant outputs

v

Sensors

Measurements
Ypk

Fig. 2. Structure of the MHE estimation.

»

ylpk
<
| Y2p i

»

: Y3p k

tL

k

Fig. 3. Scenario considering a plant with multi-rate measurements.
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the inoculum is summarized in Table 2.

Fig. 5 illustrates the daily variations in inflow and inlet wastewater
concentrations for all components, as well as temperature and solar
radiation. The inlet wastewater flow rate (Fig. 5 A) exhibits a trend
consistent with the domestic wastewater flow data presented in [25].
The inlet concentration for each wastewater component is represented
by the trend described in Fig. 5 B, in which the average wastewater
concentration for each component is described in Table 1. The tem-
perature and Photosynthetic Photon Flux Density (PPFD) values were
evaluated in the context of summer conditions, as illustrated in Fig. 5 C
and Fig. 5 D, respectively.

This study considers the availability of online pH, temperature, and
dissolved oxygen measurements, with a sample period of 1.2 h. It is
further assumed that daily measurements of dissolved Total Organic
Carbon (TOC), dissolved ammonium (N — NHj), dissolved phosphate
P- POE’;*), and biomass concentration in the effluent are available for
quality water monitoring. Additionally, the daily availability of mea-
surements of biomass concentration in the HRAP and in the wastage
flow rate is also assumed. The biomass concentration is quantified in
terms of the Total Suspended Solids (TSS) concentration. It is hypothe-
sized that the measurements of dissolved components are drawn from

Qofﬂuent

Qwastage
>

o]

Qeffluent

Qwastage
>

>

Fig. 4. Schematic of the hypothetical WWTP.
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Table 1
Average inlet wastewater composition.

Component  Description Concentration  Units
SNH4 Ammonium nitrogen 45 mgN-NH,4
-1
SNH3 Ammonia nitrogen 0.15 mgN-NH3
L—l
Sno3 Nitrate nitrogen 0 mgN-NO3
L1
Snoz Nitrite nitrogen 0 mgN-NO,
L1
Scoz Dissolved carbon dioxide 9.15 mgC-CO,
L1
SHco3 Bicarbonate 290 mgC-HCO3
-1
Scos Carbonate 0.85 mgC-CO3
L—l
Spo4 Phosphate phosphorus 8 mgP-POy4
-1
So2 Dissolved oxygen 0 mgO, L1
Su Hydrogen ions 0.000010 mgH L™}
Son Hydroxide ions 0.017008 mgH-OH
L1
Ss Readily biodegradable soluble 100 mgCoD L~}
organic matter
St Inert soluble organic matter 40 mgCOoD L}
Table 2
Inoculum composition.
Component  Description Value Units
XALG Microalgae biomass 3550 mgCOD
L—l
Xu Heterotrophic bacteria 592.85 mgCOD
L1
Xao0B Ammonium oxidizing bacteria 3.55 mgCOD
-1
XnoB Nitrite oxidizing bacteria 1.775 mgCOD
L1
Xs Slowly biodegradable particulate organic =~ 2463.7 mgCOD
matter Lt
X1 Inert particulate organic matter 493.45 mgCOD
L—l

the HRAP, and that the concentration of dissolved components in the
effluent is equal to that of the HRAP. The specific measurements and
their respective sampling frequencies are summarized in Table 3.

2.3. Plant model

In this study, a detailed plant model was employed to simulate the
dynamics occurring in the HRAP system with biomass recirculation. This
sophisticated model was employed “in lieu” of the actual plant, and the
measured variables are indeed the outputs of the detailed model.

2.3.1. HRAP model

The present study used the model BIO_ALGAE 2 [27] (with minor
modifications as referenced in [28]) to represent the biochemical re-
actions and processes occurring within the HRAP. The model has pre-
viously undergone validation in HRAPs and other photobioreactor
configurations under a range of operational conditions [27-30]. The
model BIO_ALGAE 2 employs the standard nomenclature of the Inter-
national Water Association models and considers 19 components —six
particulate and 13 dissolved- involved as variables in the physical,
chemical and biokinetic processes. These components are described,
along with their primary roles in the processes and their interactions
with other components, in [29]. The model BIO_ALGAE 2 encompasses
processes related to microalgae and bacteria activity, light attenuation,
photorespiration, temperature and pH dependence, and the transfer of
gases from the algal-bacterial broth to the atmosphere. Details of the
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process rates of the model, factors equations, and parameters used to
represent the processes occurring in the HRAP are provided in Supple-
mentary Material S1. The model’s stoichiometric and kinetic parameters
have been demonstrated to be valid for a broad spectrum of microalgae
and bacteria employed in wastewater treatment applications
[27,29-31]. To simulate the processes occurring in the HRAP, 22 state
variables were utilized, including 19 state variables corresponding to
model components and 3 state variables corresponding to the photo-
synthesis model.

In the BIO_ALGAE model, the compositions of the particulate com-
ponents are expressed in terms of Chemical Oxygen Demand (COD).
Therefore, it is necessary to perform the transformation from mgCOD/L
to mgTSS/L to make a comparison with the measured data considered in
the model. The COD/TSS ratios (Egs. (8)-(9)) to perform this conversion
were:

1gVSS = 1.42 gCOD (8)

1 gTSS = 0.85 gVSS ©)
Egs. (10)-(11) related state model variables and measured variables.

TSS [mgSSTL '] = Xa1c -+ Xur + Xaos + Xnos + X1 +Xs (10
TOC = i¢ssSs +icsiSt an

where the names of the states X; are defined in Table 2; i¢ ss and i¢ g are
the fraction of carbon in the readily biodegradable soluble organic
matter (S;) and in the inert soluble organic mater (S;), respectively,
which corresponded to:

icss = 0.318 gC gCOD™!
icsr = 0.327gC gCOD™*

2.3.2. Settler model

The settler was described using the mass-balance expressions of the
Takdcs model [32]. The Takacs model is a multi-layer dynamic model
typically used for the clarification and thickening processes. In this
work, a 10-layer settler was considered (this implies that 10 states were
used to settler modeling). A comprehensive description of the settler
model used in this work can be found in Supplementary Material S2.

2.4. Reduced model for state estimation

To create a more realistic framework for the application of the MHE
technique, the detailed model previously referenced was utilized to
simulate the “real plant,” while a reduced model was employed for
estimation with MHE. Given that this research was conducted within a
simulation framework, the utilization of a reduced model in the esti-
mation process enables the consideration of potential model un-
certainties that invariably arise in practical applications. Furthermore,
employing a lower-complexity model for estimation facilitates the
reduction of estimation time, a critical factor in addressing nonlinear
optimization problems.

The estimation developed in the present research is intended for
further use in monitoring and controlling the quality of effluent water in
a WWTP with microalgae and bacteria using the MPC strategy. The
utilization of the state estimator in the context of effluent water quality
monitoring can serve as a valuable instrument for enhancing the oper-
ational efficiency of the plant. By offering pertinent real-time informa-
tion regarding the process’s status, the state estimator can reduce the
necessity for conducting analytical measurements, thereby facilitating
more efficient management of the process. Similarly, the implementa-
tion of all real-time control and optimization strategies demands the
knowledge of the actual state of the process.

The implementation of a control strategy within the WWTP should
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Fig. 5. Daily variation profiles of the inlet wastewater flow rate (A), inlet concentration (B), temperature (C), and photosynthetic photon flux density (D).

Table 3
Measured variables in the plant.
Measured Description Type of Sampling
variable measurement frequency
[units] [samples/day]
Soz [mgO0y/ Dissolved oxygen Online 20
L]
pH pH in the HRAP Online 20
T [°C] Temperature in the HRAP Online 20
TOC [mgC/ Total organic carbon Analytics 1
L]
Snu4 [mgN- Dissolved ammonium Analytics 1
NH4/L]
Spo4 [mgP- Dissolved phosphate Analytics 1
PO,/L]
TSSurAP Total suspended solids Analytics 1
[mgTSS/L] concentration in the
HRAP
TSSeffluent Total suspended solids Analytics 1

[mgTSS/L] concentration in the
effluent flow
TSSwastage Total suspended solids Analytics 1
[mgTSS/L] concentration in the
wastage flow

ensure compliance with the prevailing legislation (Directive 1/271/CEE
for EU states). This directive establishes minimum requirements for the
collection, treatment, and discharge of urban wastewater and waste-
water from specific industrial sectors within the European Union. Ac-
cording to the directive, the evaluation of the quality of the treated
wastewater discharged from urban WWTPs is to be based on the con-
centration of COD, TSS, total nitrogen, and total phosphorus in the
effluent water. Therefore, components not directly associated with these
variables are not necessarily subject to estimation by the MHE. Subse-
quently, the reduced model encompasses the estimation of the following
variables:

Biomass concentration (in the effluent flow, within the HRAP, and in
the wastage flow). It is imperative to precisely monitor the TSS
concentration in the effluent, as this is a critical factor in ensuring the
desired quality of the water. Concurrently, the attainment of optimal
biomass values within the HRAP is imperative to ensure sufficient
wastewater treatment. The TSS concentration in the wastage flow is
also estimated because in a system with recirculation, this value af-
fects the TSS concentration in the HRAP. The biomass concentration
is contingent upon the particulate components of the model, as
delineated in Eq. (10). Of the biomass components, the concentration
of nitrifying bacteria (Xaop and Xnop) was not incorporated into the
reduced model. This was due to the fact that nitrifying bacteria,
despite their acknowledged role in wastewater treatment, exhibited
considerably lower concentrations compared to the other particulate
components present in the HRAP.

The ammonium concentration. Due to the main role of the ammo-
nium over the microalgae growth and its influence in the total ni-
trogen concentration that should be guaranteed in the effluent
wastewater. In the context of this particular study, the concentra-
tions of nitrites and nitrates are significantly lower in comparison
with other nitrogen species, such as ammonium. Consequently, the
concentration of these variables was not considered in the reduced
model. The legislation establishing limits for components concen-
trations stipulated values for total nitrogen, rather than for nitrites
and nitrates.

The phosphate concentration. Due to their influence over microalgae
and bacteria growth. Additionally, the monitoring of phosphate
concentrations is crucial for the overall assessment of total phos-
phorus in effluent wastewater.

The dissolved oxygen concentration is a critical factor in achieving a
comprehensive understanding of the primary processes within the
HRAP. The availability of reliable online Sp; measurements, as well
as the relation of the dissolved oxygen with the main process vari-
ables, allows for the design and implementation of state estimators
based on dissolved oxygen measures.
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e The TOC concentration, defined by Eq. (11) is directly related with
the COD. Evaluating the COD is imperative to ensure efficient
wastewater treatment.

The components of the inorganic carbon (Scog2, Sucos, and Scos) are
not estimated by the reduced model because the focus of this study is on
estimating those components regulated by the legislation that should be
analyzed prior to the discharge. Consequently, the concentration of
inorganic carbon is not regarded as a limiting factor in the discharge of
effluent water.

In order to simplify the reduced model (and consequently improve
the estimation time of the MHE), the concentration of Sy and Soy was
not calculated. In the reduced model, the pH of the culture medium is
regarded as a known measured input.

Furthermore, the objective of minimizing the estimation time was
pursued by calculating the factors of the photosynthesis model directly
using the relations described in Table S3.2 of the Supplementary Ma-
terial S3, as opposed to the system of differential equations utilized in
the model of the plant (Table S1.2 of the Supplementary Material S1).

Summarizing, the reduced model of the HRAP included 10 state
variables, as it was not necessary to estimate all components of the
system for operation. A comprehensive summary of the state variables
considered in both the real plant and MHE model is provided in Table 4.

The HRAP plant model encompasses 25 processes, including those
related to the activity of autotrophic bacteria and the anoxic activity of
heterotrophic bacteria. Conversely, the reduced model encompasses 10
processes, which are delineated in Table S3.1 of the Supplementary
Material S3. A synopsis of the processes encompassed in the plant and
the reduced model is summarized in Table 5. An analysis of Table 4 and
Table 5 reveals the substantial structural disparities between the plant
and the reduced model for the HRAP, as evidenced by the number of

Table 4
State variables considered in the plant and in the reduced model.

State variables

Considered in the
plant [units]

Estimated by the reduced model
(Yes/No)/Additional comment

HRAP model XaLc [mgCOD/L] Yes
Xy [mgCOD/L] Yes
Xaop [mgCOD/L] No
Xnos [mgCOD/L] No
Xs [mgCOD/L] Yes
X; [mgCOD/L] Yes
Snua [MgN-NH,4/L] Yes
Snus [mgN-NHjz/L] Yes
Sno3 [mgN-NO3/L] No
Sno2 [mgN-NO/L] No
Spos4 [mgP-PO,4/L] Yes
Soz2 [mg0,y/L] Yes
Scoz [mgC-CO4/L] No
Shcos [mgC-HCO3/ No
L]
Scos [mgC-CO3/L] No
Sy [mgH/L] No/ pH was considered as a measured
Son [mgH-OH/L] input in the reduced model
Ss [mgCOD/L] Yes
Sy [mgCOD/L] Yes
Photosynthesis X No/Calculated directly, instead as
model Xs state variables
X3
Settler model TSSeffluent Yes
TSS,, Yes
TSS3 Yes
TSS4 Yes
TSSs Yes
TSSe Yes
TSS, Yes
TSSg Yes
TSSq Yes

TSSwastage Yes

Algal Research 91 (2025) 104338

Table 5
Processes considered in the plant and the model.
Process Plant Model
Microalgae processes Growth on Syps Considered  Considered
Growth on Syo3 Considered  Not
Considered
Endogenous respiration Considered  Considered
Decay Considered  Considered
Heterotrophic bacteria Aerobic growth on Syus Considered Considered
processes Aerobic growth on Syos Considered  Not
Considered
Anoxic growth on Syo2 Considered Not
(denitrification on Syo2) Considered
Anoxic growth on Syos Considered  Not
(denitrification on Syo3) Considered
Aerobic endogenous Considered  Considered
respiration
Anoxic endogenous Considered  Not
respiration Considered
Decay Considered  Considered
Autotrophic bacteria Growth of Xaop Considered  Not
processes Considered
Growth of Xnop Considered  Not
Considered
Endogenous respiration Considered  Not
of Xaop Considered
Endogenous respiration Considered  Not
of Xnos Considered
Decay of Xaop Considered Not
Considered
Decay of Xnos Considered  Not
Considered
Hydrolysis Hydrolysis Considered  Considered
Chemical equilibrium Chemical equilibrium Considered  Not
CO, < HCO;5 Considered
Chemical equilibrium Considered  Not
HCO3 < CO%™ Considered
Chemical equilibrium Considered  Considered
NH; < NH;
Chemical equilibrium Considered  Not
H" < OH™ Considered
Transfer of gases So2 transfer to the Considered  Considered
atmosphere
Sco transfer to the Considered Not
atmosphere Considered
Snus transfer to the Considered Considered
atmosphere

states and equations involved. Additionally, disparities in the values of
some parameters were considered in plant and model (Table 6). The
values of the parameters in the plant were selected based on the values
previously reported in the literature for microalgae-bacteria raceway
reactors [29,31]. The settler model used for estimation, similarly with
the one used for plant simulation, encompasses also 10 state variables.

The simulated differences between the plant and the reduced model
starting from the initial inoculation time of the plant are illustrated in
Fig. 6-Fig. 10 for a period of 60 days operating under the conditions
illustrated in Fig. 5. The initial values of the states set in the plant and
model simulation are described in the Supplementary Material S4. The
differences in the concentration of particulate components in the HRAP
are shown in Fig. 6. The biomass concentration into the raceway re-
actors, in the effluent flow, and in the wastage flow for the plant and the
reduced model are illustrated in Fig. 7. The effect of daily variations over

Table 6

Values of parameters in plant and model.
Parameter Description Plant  Model
[units]
parg [d711 Maximum specific growth rate of microalgae 2.5 3.5
pg [d71 Maximum specific growth rate of 5.8 5.5

heterotrophic bacteria

Kiq, 02 [d™1 Mass transfer coefficient for oxygen 10 9
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Fig. 6. Plant and reduced model differences in the biomass composition in the HRAP: microalgae biomass (A), heterotrophic bacteria (B), slowly biodegradable

particulate organic matter (C), and inert particulate organic matter (D).
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Fig. 7. Plant and reduced model differences in biomass concentration: TSS concentration in the HRAP (A), TSS concentration in the effluent flow (B), and TSS

concentration in the wastage flow (C).

the biomass due to operational and environmental variables is visible in
both the plant and model trend. The concentration of the dissolved
components in the HRAP is illustrated in Fig. 8, where the ammonium

and phosphate assimilation by microalgae (Fig. 8A and B, respectively)
was highly affected by day/night cycles, as well as the TOC assimilation

by heterotrophic bacteria (Fig. 8C).

Concomitantly, substantial
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variations in the dissolved oxygen concentration within the HRAP,
attributable to diurnal fluctuations in irradiation, are evident in both the
plant and in the reduced model (Fig. 9). States of the photosynthesis
model are represented in Fig. 10 for the plant and the reduced model.
The analysis of Fig. 6-Fig. 10 reveals that the reduced model effectively
replicates the trend of the primary variables involved in wastewater
treatment. This finding validated its use as a prediction model in the
MHE approach. Conversely, the discrepancies in the behavior of the
reduced model in comparison to the plant depicted in Fig. 6 to Fig. 10
can be attributed to two primary factors: structural mismatches (sum-
marized in Table 4 and Table 5) and parameter mismatches (detailed in
Table 6).

2.5. Software and hardware

The MHE was coded using MATLAB® software [33], version 24.1,
R2024a and the MPCTools [34]. MPCTools is a control and estimation
tool for linear and nonlinear dynamic models, and it provides an ori-
ented interface to CasADi for Octave and MATLAB®. The estimation
problem was addressed by employing the Ipopt (Interior Point Opti-
mizer) solver, which is an open-source software package for large-scale
nonlinear optimization. The model used for estimation was discretized
using the Runge-Kutta method. The MHE simulations were carried out
with the following computer hardware specifications: an 13th Gen
Intel® Core™ i9-13900K processor (3.0GHz), 128 GB RAM memory,
and a 500 GB hard-disk drive.
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Fig. 9. Plant and reduced model differences in the dissolved oxygen concentration in the HRAP.
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3. Results and discussion

3.1. State estimation using MHE in microalgae-bacteria wastewater
treatment plant

MHE was designed to furnish the values of the unmeasured states for
prospective implementations of model predictive control algorithms and
optimization strategies to enhance system performance. These unmea-
sured states offer critical information about the system, which is
essential for the effective implementation of feedback control strategies.
The application of MHE to microalgae-based wastewater treatment
systems poses specific challenges, primarily due to i) the scarcity of
online measurements, ii) the lack of perfect knowledge of the model
structure, iii) uncertainties in the values of parameters and states, iv) the
unavailability of direct methods to determine the fractions of particulate
components in the biomass, v) the reliability of analytical measurements
is highly dependent on human expertise, vi) the elapsed time from the
moment the sample is taken to the moment the analytical procedure is
completed.

In the hypothetical microalgae-based WWTP studied in this work,

multi-rate measurements are presented with the sampling frequency
shown in Table 3. Online measurements of the high-rate dynamic vari-
ables (pH, temperature, and dissolved oxygen) could be available with a
higher sampling time. However, the sampling time of 1.2 h was used
considering the slow dynamics of these variables in a large treatment
plant and to avoid excessive computational time in the optimization.
The estimator takes into account the availability of irradiance, pH,
temperature, and flow measurements. The schematic of the MHE
applied to the case study is depicted in Fig. 11.

The structure of the state, output, and input vectors employed in the
MHE formulation are described by Egs. (12)-(14):

X = [XALG XH XS XI SS SI SNH4 SNH3 SPO4 SOZ Tsseﬂluent

TSS, TSS; TSS, TSSs TSS¢ TSS; TSSs TSSo  TSSwastage }T

12)

Vp = [TSSHRAP TOCurapr  Snua Spos  So2  TSSeffiuen:  TSSwastage ]T

13
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Fig. 11. Schematic of MHE for the microalgae-based WWTP.
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u:[I PH T Qw Qi Quastage }T a+

The naming of the state variables to estimate (Eq. (12)) is detailed in
Table 1 and Table 2 and Table S4.2 in Supplementary Material S4. The
measurement vector, as developed by Eq. (13), encompasses the vari-
ables enumerated in Table 3. In the MHE formulation, the vector of
known inputs, defined by Eq. (14), includes the values of irradiance (I),
pH (pH), and temperature (T) of the culture media, as well as the values
of inlet wastewater flow (Q,), recirculation flow (Q.), and wastage
flow (Quastage)-

The MHE is intended to estimate the state vector values at each
sampling time (x), as well as the values of the unknown disturbances (w)
and measurement noises (v) that minimize the cost function defined in
Eq. (1). In order to obtain useful information for system operation and
control, the values of the input wastewater concentration ¢; (Eq. (15))
and the values of relevant process parameters (vector 0, Eq. (16)) are
also decision variables in the optimization problem. Estimated param-
eters are instrumental in characterizing the microbial dynamics in the
process. In this sense, the maximum specific growth rates of microalgae
(parg) and heterotrophic bacteria were estimated (), as well as the
decay rate of microalgae (kgeqm a16) and heterotrophic bacteria (kgeqeh 11)-
Concurrently, the estimation of the mass transfer coefficient of the dis-
solved oxygen was conducted (Kjq 02). In previous research works that
employed the same model, a sensitivity analysis was conducted [28],
thereby identifying these parameters as the most relevant parameters to
adjust. Concurrently, these parameters were identified as the most
influential parameters in other pertinent publications in the field
[27,29].

S,

¢i=[Ss,, Sin Snutn SNz Spotm ] (15)

My kdeuth,H Kla.OZ ]T (16)

Given the availability of multi-rate measurements, the execution
time of the MHE is determined by the fastest measurements (dissolved
oxygen measurements). It is assumed that analytical measurements are
available daily at O a.m., implying that a full vector of output mea-
surements is only available on a daily basis. Conversely, at each sam-
pling time (1.2 h), a new dissolved oxygen measurement is available. An
overview of the availability of measurements is given in Table 3. To
address the challenge posed by multi-rate measurements in the context
of MHE, two decisions were made:

e The consideration of a past horizon, encompassing at least a full
vector of output measurements (the estimation past horizon should be a
minimum of 1 day).

e The cost function incorporates only the available measurements at
each sampling time.

0= [HALG kdeathALG

3.1.1. MHE tuning

In order to formulate MHE, it is necessary to provide the values of the
weight matrices of the cost function, as defined by Eq. (1). It is imper-
ative to note that Q,, Q,, and Q, are positive definite matrices, with
weighting and normalization factors. The weight Q, serves to penalize
the error in the estimation at the beginning of the horizon, thereby
indicating the reliability of the estimation. Given the imprecise nature of
the initial guesses for the states, the diagonal elements of Q,, are set to a
value of 0.5. Table S5.1 and Table S5.2 of the Supplementary material S5
present the values of the diagonal elements of Q,, and Q,, respectively.
The tuning values of Q,, and Q, were selected based on the standard
deviation of the variables in order to normalize the different terms of the
cost function. In the WWTP, considerable scale differences in the
measured output variables, as well as in the estimated states, necessi-
tated the normalization of these values. This procedure was imple-
mented with the objective of ensuring that each output was accorded
equal importance, as well as to guarantee the same importance in the
modeling error for each estimated state. The weight values were selected

11
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to allocate greater importance to the discrepancies between the model
and the measurements, indicating that the reliability of the measure-
ments surpasses that of the model. The constraints on the variables
involved in the optimization problem are summarized in Table S5.3
through Table S5.6 of the Supplementary Material S5.

3.2. MHE simulation results

The results of the MHE execution are presented considering the
system operation under a periodic regime. The parameters utilized in the
MHE simulation are enumerated in Table 7. The estimation horizon of
two days is regarded as sufficient in terms of data availability to support
the calculation of an accurate estimation. In the context of the MHE
application, it is imperative to align the sampling period with the dy-
namics of the variables to be estimated. The application under consid-
eration in this research involves the estimation of variables related to
water quality. The variables in question exhibit slow dynamics, thereby
rendering lower sampling times unnecessary. Despite the fact that
commercial sensors for dissolved oxygen measurement provide data
with considerably lower sampling times than those employed in the
present research, the sampling time used in this paper was selected
considering that large estimation times are generally needed for
nonlinear estimation with constraints. Moreover, in order to consider
the possible applications of the MPC control strategy in this process, it is
essential that the sampling time be adequately long to encompass both
the estimation time and the time required for executing the nonlinear
constrained MPC controller.

Simulations were executed under the environmental conditions
illustrated in Fig. 5. Additionally, to simulate possible measurement
errors in sensors and analytical procedures, a measurement noise was
introduced. This noise was generated using a MATLAB® function which
returns a random scalar drawn from the standard normal distribution.
For each output, the media of the noise value introduced corresponds to
5 % of the average output value. The simulation results for the MHE
application during 3 days (corresponding with 60 samples) are pre-
sented in Fig. 12 to Fig. 16, using initial information of past data cor-
responding to two previous days. In each sample, the MHE estimation
was provided with an average value of 17.97 s (the higher estimation
time being 37.49 s), which means that MHE can be used as the first step
of advanced control or process dynamic optimization.

The estimated values (blue line) for the dissolved oxygen concen-
tration in the HRAP are illustrated in Fig. 12. The red line in the graph
represents the actual values of the dissolved oxygen concentration,
which include the noise in the measurements. As this study was con-
ducted within a simulation framework, real-time plant values are
available for continuous representation, with the purpose of illustrating
the estimator fit. In real-world scenarios, the measured values are only
available at discrete time intervals, which are represented by crosses in
the data. Error bars (purple bars) are included to illustrate the limits of
uncertainty that were assumed in the measurements. The results
demonstrate the accuracy of the prediction provided by the MHE, as well
as estimator robustness, even considering noisy measurements.

The estimated values for the biomass concentration in the HRAP, the
biomass concentration in the effluent, and the biomass concentration in
the wastage stream are illustrated in Fig. 13. As demonstrated in Fig. 13,
the MHE effectively estimates the biomass concentration values for the
entire simulation time by leveraging historical output values and dis-
solved oxygen measurements at each sampling time. The error bars
represent the uncertainties in the measured values of the biomass. In

Table 7

MHE simulation parameters.
Parameter Description Value
ne Estimation horizon 2 d (40 samples)
Delta Sampling time 0.05d
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Fig. 13. Measured and estimated values of the biomass concentration in the HRAP (A), in the effluent (B), and in the wastage stream (C).

such cases, where analytical procedures are employed to ascertain
biomass values, low biomass values are deemed to be more susceptible
to measurement uncertainties. The online estimation of biomass con-
centration is imperative for ensuring the optimal operation of photo-
bioreactors taking early actions in response to the values of the
estimated variables, without waiting for the lab analysis to arrive.
Optimal biomass values in the HRAP are necessary to ensure the
adequate wastewater depuration, and high biomass concentrations
within the reactor affect the penetration of solar radiation into the
culture, which in turn affects the growth of microalgae. In addition, the

online monitoring of TSS concentration in the effluent is of a paramount
importance in order to guarantee the desired water quality. Conversely,
in scenarios where the primary objective is the harvesting of biomass for
the production of diverse bioproducts, it is essential to optimize biomass
yield to ensure maximum economic profitability.

The MHE has the capacity to predict the values of the various com-
ponents of biomass (Fig. 14). Conventionally, the assessment of these
values does not employ direct or standardized methodologies. Indeed, a
salient benefit of the application of state estimators in such processes is
that they enable the estimation of the concentrations of different

12
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biomass components without the necessity of employing complex
analytical methods.

The measured and estimated values of the TOC in the effluent are
presented in Fig. 15 A. The online monitoring of the TOC concentration
is imperative for the evaluation of effluent water quality. Fig. 15 B and
Fig. 15 Cillustrate the estimated values of readily biodegradable soluble
organic matter and inert soluble organic matter, respectively, as TOC.
The quality of effluent water is also contingent upon the concentrations
of dissolved ammonium and dissolved phosphate. The measured and
estimated values of dissolved ammonium and dissolved phosphate
concentration are illustrated in Fig. 16 A and Fig. 16 B, respectively. As
demonstrated in Fig. 16 A, the estimate of the ammonium concentration
in the effluent exhibits a slight overestimation relative to the actual
value. This phenomenon can be attributed to the observation that the
proliferation of microalgae and heterotrophic bacteria (the two pre-
dominant microorganisms groups in the HRAP) is exclusively associated
with the utilization of ammonium. This association disregards the
microalgae growth on Syos3, as well as the heterotrophic bacteria aerobic
growth on nitrate and the heterotrophic bacteria anoxic growth on ni-
trite and nitrate (as summarized in Table 5). This finding suggests that
the reduced model attributes the observed growth exclusively to nitro-
gen species in the form of Syy4, which may lead to an overestimation of
this component in the HRAP. In a similar fashion, the phosphate esti-
mation (Fig. 16 B) exhibits a slight increase compared to the actual value
of Spo4 concentration. This discrepancy can be attributed to the reduced
model incorporating a smaller number of nutrients utilized by micro-
algae and bacteria for its growth, resulting in an overestimation of these
components within the reduced model. Nevertheless, these discrep-
ancies between the actual and estimated values are acceptable given the
variation range of these components, as well as the potential inaccura-
cies in the analytical procedures employed to obtain the actual values of
these variables. The validity of this assertion is supported by the results
presented in Fig. 15 and Fig. 16. These figures demonstrate that the
estimated values fall within the uncertainty limits that have been
established in the measurement of these variables.

The MHE approach assessed in this study effectively estimated the
concentrations of particulate and soluble components in the WWTP,
even when a limited number of samples are available. These results
suggest that further enhancement of the application of control and
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optimization strategies in wastewater treatment plants is possible.

Despite the existence of analytical measurements on a daily basis, the
employment of a state estimator offers insights into the progression of
wastewater components throughout the entirety of the experimental
period, a situation that has been previously observed in simulation re-
sults. State estimators serve as instrumental tools for the analysis of
water quality over the course of a day. Leveraging this analysis, control
actions can be implemented in a targeted and informed manner. As
illustrated in Fig. 16 A, which depicts the time course of dissolved
ammonium concentration, there is a demonstrable variation in the dy-
namics of dissolved ammonium over the course of a day. Specifically,
higher values of ammonium are observed during nocturnal hours, which
can be attributed to the assimilation of dissolved ammonium by
microalgae during daylight hours. Given that the samples were hy-
pothesized to be drawn during the night, these values are representative
of a particular moment in the process dynamics evolution, which un-
derscores the importance of continuous state estimation.

Parameter estimation is paramount for characterizing the kinetics of
the key processes and chemical reactions, as well as the operational
conditions in the HRAP. The results of parameter estimation for the
parameters described by Eq. (16) are provided in Fig. 17. As demon-
strated in Fig. 17, the estimated parameters exhibited a high degree of
proximity to the “real values” of the parameters assumed in the plant. As
demonstrated in Fig. 12 - Fig. 16, the simulation results substantiate the
validity of the selected parameter values for predicting the process’s
state evolution. In order to ensure the effective implementation of
model-based control strategies within the WWTP, it is imperative to
establish precise parameter estimations.

In order to evaluate the robustness of the estimator under different
operational conditions, variations in the incident light were considered
during the third day of the estimation process. As illustrated in Fig. 18,
the radiation profile under consideration consists of two days with
identical radiation conditions to those previously illustrated in Fig. 5 D,
and a third day characterized by substantial cloud cover. The estimation
results for this condition are illustrated in Fig. 19 - Fig. 21. The dissolved
oxygen concentration in the HRAP under fluctuating solar radiation is
depicted in Fig. 19, where it is demonstrated that the available solar
radiation during the third day of operation affects the maximum values
of dissolved oxygen concentration in the photobioreactor, owing to a
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Fig. 16. Measured and estimated values of the dissolved ammonium concentration (A) and dissolved phosphate concentration (B).
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Fig. 18. Profile of the photosynthetic photon flux density considered over the
course of three days of operation.

decline in microalgae activity. The effectiveness of the estimator in
reproducing the trend in the dissolved oxygen concentration serves as a
testament to its reliability in a variety of environmental conditions and
in the presence of noisy measurements. This reliability is indicative of
the robustness of the estimator.

Fig. 20 illustrates the measured and estimated values of biomass
concentration under fluctuating solar radiation and also demonstrates

15

the robust behavior of the estimator, effectively replicating the
measured values of biomass concentration in the HRAP (Fig. 20 A), the
effluent flow (Fig. 20 B), and the wastage flow (Fig. 20 C).

The performance of the estimator in predicting the concentration of
dissolved components in the HRAP under fluctuating solar radiation is
illustrated in Fig. 21. Predicted values of the dissolved total organic
carbon concentration (Fig. 21 A), ammonium concentration (Fig. 21 B),
and phosphate concentration (Fig. 21 C) demonstrate slight over-
estimation, as previously evidenced in simulation results. Nevertheless,
the discrepancies observed in these estimations fall within the permis-
sible uncertainty range (as indicated by the error bars), even in the
presence of significant environmental variations and unreliable
measurements.

The simulation results demonstrate the efficacy of the MHE approach
in online estimation of the most relevant variables of a wastewater
treatment process, even in the presence of noisy measurements, model
inaccuracies, varying environmental conditions, and multi-rate mea-
surements. The MHE has the capacity to provide online estimation for
measured variables and for variables that cannot be measured directly.
The findings, in conjunction with the reduced estimation times
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Fig. 20. Measured and estimated values of the biomass concentration in the HRAP (A), in the effluent (B), and in the wastage stream (C) under fluctuating

solar radiation.

observed, underscore the promise of state estimation leveraging the
MHE technique in conjunction with control and optimization strategies
within wastewater treatment facilities, particularly in the context of low
dynamics that characterize wastewater treatment processes.

4. Conclusions

The present study proposes the utilization of MHE technique for a

16

microalgae-based wastewater treatment process, with a focus on the
estimation of multiple states and parameters concurrently to evaluate
the effluent water quality. This work used an estimation model with
multiple states and parameters, incorporating a substantial structural
mismatch between the model used for estimation and the actual plant.
Multi-rate measurements obtained from online measurements and
analytical procedures were used to enhance the performance of the
estimator. The simulation results confirmed the efficacy and robustness
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Fig. 21. Measured and estimated values of the dissolved TOC concentration (A), dissolved ammonium concentration (B), and dissolved phosphate concentration (C)

under fluctuating solar radiation.

of MHE in online estimation of the most pertinent variables in the
microalgae-based wastewater treatment process and its potential for
future application in the development of control and optimization
strategies, which requires the knowledge of system states and
parameters.
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