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A B S T R A C T

Population growth and industrialization have resulted into a substantial increase in wastewater production, 
thereby establishing water purification as a primary concern on a global scale. In this context, microalgae- 
bacteria based wastewater treatment has emerged as a solution for wastewater treatment and nutrient recov
ery at a low-energy demand. Nevertheless, operation of this type of wastewater treatment plants is more complex 
and requires of advanced control systems, capable of maintaining its key variables within appropriate ranges in 
spite of the periodic variations in environmental variables and wastewater composition. Very often, the imple
mentation of state feedback control laws and model-based control techniques in these processes necessitates full 
information of the states and other variables of the system in real-time. However, in practical scenarios, only a 
subset of the variables of microalgae-bacteria processes can be measured online due to the need for more reliable 
measuring devices or the high costs of online sensors. In addition, these biological processes are subjected to 
frequent variations, so that the parameters of the models representing them requires continuous adaptation. This 
paper presents the application of a moving horizon estimation technique to a wastewater treatment process with 
microalgae and bacteria. The objective of this study is to estimate those variables or parameters that cannot be 
measured reliably online. This process was nonlinear and subject to uncertainties in the states and parameters. 
The estimation was coded using MATLAB® software, and simulation results demonstrated the effectiveness of 
estimation in this biological process, characterized by the availability of multi-rate measurements.

1. Introduction

The utilization of microalgae as a wastewater treatment technology 
has emerged as a promising and sustainable solution, with the potential 
to address the high energy costs and loss of resources associated with 
mechanical aeration in conventional wastewater treatment methods [1]. 
Domestic and industrial wastewaters, which are characterized by high 
carbon, nitrogen, and phosphorus concentrations, require treatment 
prior to discharge into natural water bodies to prevent oxygen depletion, 
toxicity issues, and eutrophication. The capacity of microalgae to 
concurrently remove carbon, nitrogen, and phosphorus via mixotrophic 
assimilation confers a substantial advantage over conventional waste
water treatment technologies, such as aerobic activated sludge or 
anaerobic digestion, which are limited in their ability to recover nutri
ents. The potential for further utilization of the harvested microalgae 

biomass to produce biofertilizers, biofuels, and other bioproducts ren
ders this technology an attractive alternative for cost-effective waste
water treatment and nutrient management [2,3].

Despite the long-standing research in this field, these systems have 
only recently undergone improvements to meet industry demands and 
effluent quality regulations. In the context of large-scale microalgae- 
bacteria systems, novel techniques from biotechnology and control en
gineering must be applied to ensure the robustness, durability, and 
optimized operation of these processes. Mathematical models, control 
strategies, state estimation techniques, and process optimization tech
niques are important tools to operate properly these complex systems 
but need to be re-examined and adapted to the context of multiple 
perturbations and evolving environmental conditions that affect these 
processes.

Mathematical models are at the core of numerous contemporary 
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methodologies aimed at enhancing the comprehension of biological 
processes and facilitating their operation. In the context of plant oper
ation, advanced control strategies have emerged as promising in
struments to enhance the performance of microalgae production 
systems, particularly within the context of large-scale cultivation plants 
[4]. The implementation of state feedback control laws and model-based 
control techniques, such as Model Predictive Control (MPC), necessi
tates complete online information of the system. However, in practical 
scenarios, only a subset of the states or key variables of microalgae- 
bacteria processes can be measured due to the necessity for more reli
able measuring devices or the high cost of on-line sensors [5].

The basic hardware instrumentation in microalgae-bacteria-based 
wastewater treatment plants typically provides online measurements 
of temperature, pH, dissolved oxygen, and flow rate. However, this is 
not the case for other component concentrations (biomass, substrates, 
and metabolites), which are crucial for understanding the system state. 
Despite of the significant progress in the field, many current hardware 
sensors for concentration measurement still exhibit significant draw
backs, including expensive probes, discrete-time measurements, and 
offline solutions, among others. Consequently, state estimators (often 
termed software sensors) emerge as a promising alternative to determine 
the non-measurable states and concurrently reduce the utilization of 
costly sensors.

State estimators employ a dynamic model of the process, knowledge 
about the process inputs, and the availability of hardware sensors to 
measure certain variables to estimate those difficult to measure. In 
addition, as these biological processes are subjected to frequent varia
tions in environmental parameters and wastewater characteristics, the 
parameters of the models representing them require continuous adap
tation. State estimators are also able to include these parameters among 
the variables being estimated.

The diversity of state estimation techniques arising from intrinsic 
differences in chemical process systems underscores the importance of 
selecting the proper technique for design and implementation in specific 
applications. The seminal contributions of Luenberger [6–9] and Kal
man [10,11] in the 1960s laid the foundation for the development of 
state observers and Kalman Filter (KF)-based estimators. However, over 
the years, research in the design of state estimators has become 
increasingly popular yet challenging due to the requirements of high 
accuracy, low cost, and good prediction performances.

In the context of bioprocesses, the estimator design problem is 
particularly challenging. In addition to the scarcity of online measure
ments, additional challenges are presented by considerable nonlinear 
dynamics governing the cultivation process and the consequent 
modeling complexity. The KF-based estimators are the most widely 
applied [4,12,13]. The current state of the art of KF-based estimators in 
microalgae processes includes various reports of estimators applied 
together with control and optimization techniques due to the necessity 
of the entire state vector for system monitoring and control [4,13,14]. 
These estimators present satisfactory results, provided that linear 
approximation remains valid, the signal has low noise, and constraints 
are negligible.

Another approach for nonlinear systems that has gained popularity 
over the past two decades among researchers and industrial practi
tioners of MPC is the Moving Horizon Estimation (MHE) approach 
[15–17]. This approach formulates the state estimation problem as an 
optimization problem over a moving time window, akin to the MPC 
formulation. The strategy of MHE has been demonstrated to exhibit 
numerous advantages over other nonlinear state estimation techniques. 
It has the capacity to incorporate a priori process knowledge by 
including constraints on the estimated states and disturbances. 
Furthermore, its performance is frequently superior because nonlinear 
model equations can be used directly without the necessity of lineari
zation. A salient benefit of this approach is its capacity to generate both 
filtered and smoothed estimates of states within the same window. 
Furthermore, MHE has the capacity to estimate states, parameters, and 

model-plant mismatch concurrently. The capacity to assess model-plant 
discrepancy is essential for compensating for errors or simplifications in 
the model. MHE has been demonstrated to be applicable in bioprocesses 
[18–20], including the state estimation in conventional wastewater 
treatment plants [21–23]. In the context of microalgae-based processes, 
the application of MHE is restricted to a limited number of research 
works [24], and, to the best of the authors’ knowledge, there are not 
publications addressing domestic wastewater treatment plants based on 
microalgae-bacteria consortia. Despite its potential, MHE has not been 
extensively explored in this area.

The inherent nonlinear characteristics of microalgae-based waste
water treatment processes, coupled with the operational constraints 
associated with these processes, underscore the viability of MHE as a 
solution to the state estimation problem in this context. This assertion is 
further supported by previous experience in applying MHE to other 
biological and conventional wastewater treatment processes. The aim of 
this study is to propose an MHE strategy for state and parameter esti
mation in an industrial microalgae-based wastewater treatment plant. 
The online state estimation would pave the way for the future imple
mentation of control and optimization strategies in the plant based on 
the actual values of the states. This objective is particularly challenging 
in such processes, where some states are measured offline and depend on 
analytical procedures that are highly time and resource consuming.

2. Materials and methods

2.1. Moving horizon estimation

MHE is a powerful tool for state estimation in dynamic systems, 
transforming the problem into an optimization problem. This approach 
searches for the states and parameters that minimize the discrepancy 
between measured and model-predicted outputs over a sliding window 
of past data. Additionally, MHE effectively incorporates unmeasured 
disturbances and other inaccuracies within this finite sequence of past 
measurements, and consider the admissible ranges of the different var
iables involved.

Unlike filter-based approaches for nonlinear systems such as the 
Extended Kalman Filter (EKF), MHE offers greater flexibility in handling 
constraints and system nonlinearities. The ability to incorporate addi
tional constraints on estimated variables allows for enforcing physical 
limitations, integrating valuable information about the system’s char
acteristics (such as ensuring concentrations remain positive or molar 
fractions stay within the [0,1] range). These constraints not only 
improve the physical realism of the estimates but also enhance the ef
ficiency of the optimization solver by reducing the search space. As a 
result, estimation errors decrease, as more information is utilized in the 
optimization process.

It is important to acknowledge that nonlinear optimization with 
constraints increases computational complexity. However, with recent 
advancements in computing power and improved nonlinear solvers, 
MHE has become more practical, allowing solutions to be obtained 
within a reasonable timeframe. In highly nonlinear systems, such as 
biological processes, MHE typically outperforms EKF, which relies on 
the assumption that the system behaves linearly during updates, a 
condition that may not always hold.

Another key advantage of MHE is its versatility in scenarios where 
plant measurements are available at different frequencies (e.g. mea
surements from plant transmitters and from the lab). Traditional state 
estimation methods often assume that all relevant states can be observed 
from high-frequency measurements, but this is not always the case. 
Some states may only be inferred from less frequent measurements, 
making multi-rate measurements essential. By incorporating slower 
measurements into the estimation process, MHE improves both the 
quality of state estimates and the overall observability of the system, 
addressing potential information gaps.

The MHE dynamic optimization problem can be defined as problem 
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(1)–(7) below and Fig. 1. The problem is solved at regular time intervals 
or sampling times k. At current time k, the estimation considers a past 
horizon t ∈

[
tk− ne , tk

]
, where ne represents the number of past sampling 

time included in the estimation. Within this horizon, the inputs uk− i to 
the process over the intervals [tk− i, tk− i+1], and the process measurements 
collected at tk− i, denoted as yP,k− i, are known for i = 1,…,ne. The past 
horizon of the MHE is illustrated in Fig. 1.

The decision variables in this problem include the state values at the 
beginning of the sliding window of past data 

(
xk− ne

)
, and the past un

measured system disturbances, unknown parameters, or system noise 
accounting for modeling errors (and unknown dynamics) (wk− i). The 
objective (1) is to minimize discrepancies between the model-predicted 

outputs 
(
yk
)

and the measured values 
(

yP,k

)
, while also considering the 

deviation between the newly estimated past initial state xk− ne and the 
state estimated from the previous MHE execution at time t − ne 

(
x̂k− ne

)
, 

as well as maintaining consistency or minimizing the past disturbances 
(or parameters θk− i) and wk− i. Then, the trajectory of the state variables 
up to time k 

[
xk− ne ,…, xk

]
is estimated using the process model. The 

name moving horizon estimation is derived from this problem formula
tion: at each sampling time tk, a new measurement yP,k enters the ho
rizon, while the oldest measurement yP,k− ne − 1 is discarded from the 
estimation window.

The weighting matrices Qy,Qx and Qw regulate the influence of each 
term on the cost function. The optimization problem is subjected to the 
dynamic system model (2) and (3), as well as the operational and 
physical constraints defined in (4). The problem also incorporates 
inequality constraints (5) to restrict disturbances to the permissible 
range. The incorporation of additional constraints in the values of the 
states (6) and parameters (7) could enhance the estimation performance. 

min
xk− newk− iθk− ii=1,…,ne

∑ne − 1

i=0

⃦
⃦yk− i − yP,k− i

⃦
⃦2

Qy
+‖xk− ne − x̂k− ne‖

2
Qx

+
∑ne

i=1
‖wk− i‖

2
Qw

(1) 

s.t.f(ẋ,x,u,w, θ) = 0,∀t ∈ [tk− ne , tk], x(tk− ne ) = xk− ne (2) 

h(x,u, y,w, θ) = 0,∀t ∈ [tk− ne , tk] (3) 

g(u, y) ≤ 0,∀t ∈ [tk− ne , tk] (4) 

wL ≤ wk− i ≤ wU, i = 1…ne (5) 

xL ≤ xk− i ≤ xU, i = 1…ne (6) 

θL ≤ θk− i ≤ θU, i = 1…ne (7) 

This is a dynamic optimization problem that can be solved either 
with a sequential approach involving a dynamic simulator and a non- 
linear optimizer or directly with a non-linear solver after full dis
cretization. The structure of the MHE algorithm is summarized in Fig. 2.

State estimation employing the MHE technique is also beneficial in 
scenarios where plant measurements are not available at the same fre
quency. This situation is illustrated in Fig. 3, where the measurements of 
outputs y1 and y2 (represented with circles), are available with a sam
pling period greater than the sampling period of the measurements of 
the output y3. The prevailing state estimation methodologies typically 
utilize solely the rapid measurements (y3P,k in Fig. 3), operating under 
the assumption that all states of interest are observable from them. 
However, this assumption does not always hold true, and there exist 
instances where states cannot be observed from the rapid measurements 
alone. Consequently, the utilization of measurements obtained at vary
ing rates has the potential to enhance the observability properties of the 
system. Therefore, it is recommended to use methodologies capable of 
managing multi-rate measurements, with the objective of leveraging the 
slower measurements to enhance the quality of state estimates or their 
observability.

2.2. Plant description

This study considers a hypothetical wastewater treatment plant 
(WWTP) for a population of approximately 5000 inhabitants, treating an 
average flow rate of 875 m3/d. The system consists of two parallel High- 
Rate Algal Ponds (HRAPs), each with an area of 10,208 m2, designed in 
the typical form of raceways with two channels and two reversals (452 
m long and 22.6 m wide). The HRAPs have a depth of 0.3 m and operate 
at a Hydraulic Retention Time (HRT) of 7 days. Two settlers, each with a 
total working volume of 293.75 m3, are connected to the output of each 
HRAP. The algal-bacterial biomass settled is recirculated to the HRAP to 
enhance nutrient assimilation and biomass settling ability. It is hy
pothesized that the algal-bacterial WWTP is preceded by a pre-treatment 
stage with primary sedimentation to remove the solid fraction of the 
wastewater. The schematic representation of the plant is depicted in 
Fig. 4, and the average composition of the inlet domestic wastewater is 
listed in Table 1. The values for wastewater composition were obtained 
from the typical domestic wastewater concentrations reported in 
[25,26].

The algal bacterial broth is composed of a consortium of microalgae 
and bacteria. The microalgae consortia consist of different strains uti
lized for wastewater treatment. The bacterial groups encompass het
erotrophic bacteria and autotrophic bacteria (ammonium-oxidizing 
bacteria and nitrite-oxidizing bacteria). It is hypothesized that HRAPs 
are inoculated with 2.5 gVSS/L of microalgae consortia and 2.5 gVSS/L 
of activated sludge. The particulate components’ relative proportions in 
the sludge are assumed based on those proposed in the Activated Sludge 
Model 2 (ASM2) [26]. The concentration of particulate components in Fig. 1. Past values for the MHE estimation.
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the inoculum is summarized in Table 2.
Fig. 5 illustrates the daily variations in inflow and inlet wastewater 

concentrations for all components, as well as temperature and solar 
radiation. The inlet wastewater flow rate (Fig. 5 A) exhibits a trend 
consistent with the domestic wastewater flow data presented in [25]. 
The inlet concentration for each wastewater component is represented 
by the trend described in Fig. 5 B, in which the average wastewater 
concentration for each component is described in Table 1. The tem
perature and Photosynthetic Photon Flux Density (PPFD) values were 
evaluated in the context of summer conditions, as illustrated in Fig. 5 C 
and Fig. 5 D, respectively.

This study considers the availability of online pH, temperature, and 
dissolved oxygen measurements, with a sample period of 1.2 h. It is 
further assumed that daily measurements of dissolved Total Organic 
Carbon (TOC), dissolved ammonium (N − NH+

4 ), dissolved phosphate 
(P − PO3−

4 ), and biomass concentration in the effluent are available for 
quality water monitoring. Additionally, the daily availability of mea
surements of biomass concentration in the HRAP and in the wastage 
flow rate is also assumed. The biomass concentration is quantified in 
terms of the Total Suspended Solids (TSS) concentration. It is hypothe
sized that the measurements of dissolved components are drawn from 

Fig. 2. Structure of the MHE estimation.

Fig. 3. Scenario considering a plant with multi-rate measurements.

Fig. 4. Schematic of the hypothetical WWTP.
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the HRAP, and that the concentration of dissolved components in the 
effluent is equal to that of the HRAP. The specific measurements and 
their respective sampling frequencies are summarized in Table 3.

2.3. Plant model

In this study, a detailed plant model was employed to simulate the 
dynamics occurring in the HRAP system with biomass recirculation. This 
sophisticated model was employed “in lieu” of the actual plant, and the 
measured variables are indeed the outputs of the detailed model.

2.3.1. HRAP model
The present study used the model BIO_ALGAE 2 [27] (with minor 

modifications as referenced in [28]) to represent the biochemical re
actions and processes occurring within the HRAP. The model has pre
viously undergone validation in HRAPs and other photobioreactor 
configurations under a range of operational conditions [27–30]. The 
model BIO_ALGAE 2 employs the standard nomenclature of the Inter
national Water Association models and considers 19 components –six 
particulate and 13 dissolved– involved as variables in the physical, 
chemical and biokinetic processes. These components are described, 
along with their primary roles in the processes and their interactions 
with other components, in [29]. The model BIO_ALGAE 2 encompasses 
processes related to microalgae and bacteria activity, light attenuation, 
photorespiration, temperature and pH dependence, and the transfer of 
gases from the algal-bacterial broth to the atmosphere. Details of the 

process rates of the model, factors equations, and parameters used to 
represent the processes occurring in the HRAP are provided in Supple
mentary Material S1. The model’s stoichiometric and kinetic parameters 
have been demonstrated to be valid for a broad spectrum of microalgae 
and bacteria employed in wastewater treatment applications 
[27,29–31]. To simulate the processes occurring in the HRAP, 22 state 
variables were utilized, including 19 state variables corresponding to 
model components and 3 state variables corresponding to the photo
synthesis model.

In the BIO_ALGAE model, the compositions of the particulate com
ponents are expressed in terms of Chemical Oxygen Demand (COD). 
Therefore, it is necessary to perform the transformation from mgCOD/L 
to mgTSS/L to make a comparison with the measured data considered in 
the model. The COD/TSS ratios (Eqs. (8)–(9)) to perform this conversion 
were: 

1 gVSS = 1.42 gCOD (8) 

1 gTSS = 0.85 gVSS (9) 

Eqs. (10)–(11) related state model variables and measured variables. 

TSS
[
mgSSTL− 1] = XALG +XH +XAOB +XNOB +XI +XS (10) 

TOC = iC,SSSs + iC,SISI (11) 

where the names of the states Xi are defined in Table 2; iC,SS and iC,SI are 
the fraction of carbon in the readily biodegradable soluble organic 
matter (Ss) and in the inert soluble organic mater (SI), respectively, 
which corresponded to: 

iC,SS = 0.318 gC gCOD− 1 

iC,SI = 0.327gC gCOD− 1 

2.3.2. Settler model
The settler was described using the mass-balance expressions of the 

Takács model [32]. The Takács model is a multi-layer dynamic model 
typically used for the clarification and thickening processes. In this 
work, a 10-layer settler was considered (this implies that 10 states were 
used to settler modeling). A comprehensive description of the settler 
model used in this work can be found in Supplementary Material S2.

2.4. Reduced model for state estimation

To create a more realistic framework for the application of the MHE 
technique, the detailed model previously referenced was utilized to 
simulate the “real plant,” while a reduced model was employed for 
estimation with MHE. Given that this research was conducted within a 
simulation framework, the utilization of a reduced model in the esti
mation process enables the consideration of potential model un
certainties that invariably arise in practical applications. Furthermore, 
employing a lower-complexity model for estimation facilitates the 
reduction of estimation time, a critical factor in addressing nonlinear 
optimization problems.

The estimation developed in the present research is intended for 
further use in monitoring and controlling the quality of effluent water in 
a WWTP with microalgae and bacteria using the MPC strategy. The 
utilization of the state estimator in the context of effluent water quality 
monitoring can serve as a valuable instrument for enhancing the oper
ational efficiency of the plant. By offering pertinent real-time informa
tion regarding the process’s status, the state estimator can reduce the 
necessity for conducting analytical measurements, thereby facilitating 
more efficient management of the process. Similarly, the implementa
tion of all real-time control and optimization strategies demands the 
knowledge of the actual state of the process.

The implementation of a control strategy within the WWTP should 

Table 1 
Average inlet wastewater composition.

Component Description Concentration Units

SNH4 Ammonium nitrogen 45 mgN-NH4 

L− 1

SNH3 Ammonia nitrogen 0.15 mgN-NH3 

L− 1

SNO3 Nitrate nitrogen 0 mgN-NO3 

L− 1

SNO2 Nitrite nitrogen 0 mgN-NO2 

L− 1

SCO2 Dissolved carbon dioxide 9.15 mgC-CO2 

L− 1

SHCO3 Bicarbonate 290 mgC-HCO3 

L− 1

SCO3 Carbonate 0.85 mgC-CO3 

L− 1

SPO4 Phosphate phosphorus 8 mgP-PO4 

L− 1

SO2 Dissolved oxygen 0 mgO2 L− 1

SH Hydrogen ions 0.000010 mgH L− 1

SOH Hydroxide ions 0.017008 mgH-OH 
L− 1

SS Readily biodegradable soluble 
organic matter

100 mgCOD L− 1

SI Inert soluble organic matter 40 mgCOD L− 1

Table 2 
Inoculum composition.

Component Description Value Units

XALG Microalgae biomass 3550 mgCOD 
L− 1

XH Heterotrophic bacteria 592.85 mgCOD 
L− 1

XAOB Ammonium oxidizing bacteria 3.55 mgCOD 
L− 1

XNOB Nitrite oxidizing bacteria 1.775 mgCOD 
L− 1

XS Slowly biodegradable particulate organic 
matter

2463.7 mgCOD 
L− 1

XI Inert particulate organic matter 493.45 mgCOD 
L− 1
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ensure compliance with the prevailing legislation (Directive 1/271/CEE 
for EU states). This directive establishes minimum requirements for the 
collection, treatment, and discharge of urban wastewater and waste
water from specific industrial sectors within the European Union. Ac
cording to the directive, the evaluation of the quality of the treated 
wastewater discharged from urban WWTPs is to be based on the con
centration of COD, TSS, total nitrogen, and total phosphorus in the 
effluent water. Therefore, components not directly associated with these 
variables are not necessarily subject to estimation by the MHE. Subse
quently, the reduced model encompasses the estimation of the following 
variables: 

• Biomass concentration (in the effluent flow, within the HRAP, and in 
the wastage flow). It is imperative to precisely monitor the TSS 
concentration in the effluent, as this is a critical factor in ensuring the 
desired quality of the water. Concurrently, the attainment of optimal 
biomass values within the HRAP is imperative to ensure sufficient 
wastewater treatment. The TSS concentration in the wastage flow is 
also estimated because in a system with recirculation, this value af
fects the TSS concentration in the HRAP. The biomass concentration 
is contingent upon the particulate components of the model, as 
delineated in Eq. (10). Of the biomass components, the concentration 
of nitrifying bacteria (XAOB and XNOB) was not incorporated into the 
reduced model. This was due to the fact that nitrifying bacteria, 
despite their acknowledged role in wastewater treatment, exhibited 
considerably lower concentrations compared to the other particulate 
components present in the HRAP.

• The ammonium concentration. Due to the main role of the ammo
nium over the microalgae growth and its influence in the total ni
trogen concentration that should be guaranteed in the effluent 
wastewater. In the context of this particular study, the concentra
tions of nitrites and nitrates are significantly lower in comparison 
with other nitrogen species, such as ammonium. Consequently, the 
concentration of these variables was not considered in the reduced 
model. The legislation establishing limits for components concen
trations stipulated values for total nitrogen, rather than for nitrites 
and nitrates.

• The phosphate concentration. Due to their influence over microalgae 
and bacteria growth. Additionally, the monitoring of phosphate 
concentrations is crucial for the overall assessment of total phos
phorus in effluent wastewater.

• The dissolved oxygen concentration is a critical factor in achieving a 
comprehensive understanding of the primary processes within the 
HRAP. The availability of reliable online SO2 measurements, as well 
as the relation of the dissolved oxygen with the main process vari
ables, allows for the design and implementation of state estimators 
based on dissolved oxygen measures.

Fig. 5. Daily variation profiles of the inlet wastewater flow rate (A), inlet concentration (B), temperature (C), and photosynthetic photon flux density (D).

Table 3 
Measured variables in the plant.

Measured 
variable 
[units]

Description Type of 
measurement

Sampling 
frequency 
[samples/day]

SO2 [mgO2/ 
L]

Dissolved oxygen Online 20

pH pH in the HRAP Online 20
T [◦C] Temperature in the HRAP Online 20
TOC [mgC/ 

L]
Total organic carbon Analytics 1

SNH4 [mgN- 
NH4/L]

Dissolved ammonium Analytics 1

SPO4 [mgP- 
PO4/L]

Dissolved phosphate Analytics 1

TSSHRAP 

[mgTSS/L]
Total suspended solids 
concentration in the 
HRAP

Analytics 1

TSSeffluent 

[mgTSS/L]
Total suspended solids 
concentration in the 
effluent flow

Analytics 1

TSSwastage 

[mgTSS/L]
Total suspended solids 
concentration in the 
wastage flow

Analytics 1
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• The TOC concentration, defined by Eq. (11) is directly related with 
the COD. Evaluating the COD is imperative to ensure efficient 
wastewater treatment.

The components of the inorganic carbon (SCO2, SHCO3, and SCO3) are 
not estimated by the reduced model because the focus of this study is on 
estimating those components regulated by the legislation that should be 
analyzed prior to the discharge. Consequently, the concentration of 
inorganic carbon is not regarded as a limiting factor in the discharge of 
effluent water.

In order to simplify the reduced model (and consequently improve 
the estimation time of the MHE), the concentration of SH and SOH was 
not calculated. In the reduced model, the pH of the culture medium is 
regarded as a known measured input.

Furthermore, the objective of minimizing the estimation time was 
pursued by calculating the factors of the photosynthesis model directly 
using the relations described in Table S3.2 of the Supplementary Ma
terial S3, as opposed to the system of differential equations utilized in 
the model of the plant (Table S1.2 of the Supplementary Material S1).

Summarizing, the reduced model of the HRAP included 10 state 
variables, as it was not necessary to estimate all components of the 
system for operation. A comprehensive summary of the state variables 
considered in both the real plant and MHE model is provided in Table 4.

The HRAP plant model encompasses 25 processes, including those 
related to the activity of autotrophic bacteria and the anoxic activity of 
heterotrophic bacteria. Conversely, the reduced model encompasses 10 
processes, which are delineated in Table S3.1 of the Supplementary 
Material S3. A synopsis of the processes encompassed in the plant and 
the reduced model is summarized in Table 5. An analysis of Table 4 and 
Table 5 reveals the substantial structural disparities between the plant 
and the reduced model for the HRAP, as evidenced by the number of 

states and equations involved. Additionally, disparities in the values of 
some parameters were considered in plant and model (Table 6). The 
values of the parameters in the plant were selected based on the values 
previously reported in the literature for microalgae-bacteria raceway 
reactors [29,31]. The settler model used for estimation, similarly with 
the one used for plant simulation, encompasses also 10 state variables.

The simulated differences between the plant and the reduced model 
starting from the initial inoculation time of the plant are illustrated in 
Fig. 6-Fig. 10 for a period of 60 days operating under the conditions 
illustrated in Fig. 5. The initial values of the states set in the plant and 
model simulation are described in the Supplementary Material S4. The 
differences in the concentration of particulate components in the HRAP 
are shown in Fig. 6. The biomass concentration into the raceway re
actors, in the effluent flow, and in the wastage flow for the plant and the 
reduced model are illustrated in Fig. 7. The effect of daily variations over 

Table 4 
State variables considered in the plant and in the reduced model.

State variables

Considered in the 
plant [units]

Estimated by the reduced model 
(Yes/No)/Additional comment

HRAP model XALG [mgCOD/L] Yes
XH [mgCOD/L] Yes
XAOB [mgCOD/L] No
XNOB [mgCOD/L] No
XS [mgCOD/L] Yes
XI [mgCOD/L] Yes
SNH4 [mgN-NH4/L] Yes
SNH3 [mgN-NH3/L] Yes
SNO3 [mgN-NO3/L] No
SNO2 [mgN-NO2/L] No
SPO4 [mgP-PO4/L] Yes
SO2 [mgO2/L] Yes
SCO2 [mgC-CO2/L] No
SHCO3 [mgC-HCO3/ 
L]

No

SCO3 [mgC-CO3/L] No
SH [mgH/L] No/ pH was considered as a measured 

input in the reduced modelSOH [mgH-OH/L]
SS [mgCOD/L] Yes
SI [mgCOD/L] Yes

Photosynthesis 
model

X1 No/Calculated directly, instead as 
state variablesX2

X3

Settler model TSSeffluent Yes
TSS2 Yes
TSS3 Yes
TSS4 Yes
TSS5 Yes
TSS6 Yes
TSS7 Yes
TSS8 Yes
TSS9 Yes
TSSwastage Yes

Table 5 
Processes considered in the plant and the model.

Process Plant Model

Microalgae processes Growth on SNH4 Considered Considered
Growth on SNO3 Considered Not 

Considered
Endogenous respiration Considered Considered
Decay Considered Considered

Heterotrophic bacteria 
processes

Aerobic growth on SNH4 Considered Considered
Aerobic growth on SNO3 Considered Not 

Considered
Anoxic growth on SNO2 

(denitrification on SNO2)
Considered Not 

Considered
Anoxic growth on SNO3 

(denitrification on SNO3)
Considered Not 

Considered
Aerobic endogenous 
respiration

Considered Considered

Anoxic endogenous 
respiration

Considered Not 
Considered

Decay Considered Considered
Autotrophic bacteria 

processes
Growth of XAOB Considered Not 

Considered
Growth of XNOB Considered Not 

Considered
Endogenous respiration 
of XAOB

Considered Not 
Considered

Endogenous respiration 
of XNOB

Considered Not 
Considered

Decay of XAOB Considered Not 
Considered

Decay of XNOB Considered Not 
Considered

Hydrolysis Hydrolysis Considered Considered
Chemical equilibrium Chemical equilibrium 

CO2 ↔ HCO−
3

Considered Not 
Considered

Chemical equilibrium 
HCO−

3 ↔ CO2−
3

Considered Not 
Considered

Chemical equilibrium 
NH+

4 ↔ NH3

Considered Considered

Chemical equilibrium 
H+ ↔ OH−

Considered Not 
Considered

Transfer of gases SO2 transfer to the 
atmosphere

Considered Considered

SCO2 transfer to the 
atmosphere

Considered Not 
Considered

SNH3 transfer to the 
atmosphere

Considered Considered

Table 6 
Values of parameters in plant and model.

Parameter 
[units]

Description Plant Model

μALG [d− 1] Maximum specific growth rate of microalgae 2.5 3.5
μH [d− 1] Maximum specific growth rate of 

heterotrophic bacteria
5.8 5.5

Kla, O2 [d− 1] Mass transfer coefficient for oxygen 10 9

I. Bausa-Ortiz et al.                                                                                                                                                                                                                            Algal Research 91 (2025) 104338 

7 



the biomass due to operational and environmental variables is visible in 
both the plant and model trend. The concentration of the dissolved 
components in the HRAP is illustrated in Fig. 8, where the ammonium 

and phosphate assimilation by microalgae (Fig. 8A and B, respectively) 
was highly affected by day/night cycles, as well as the TOC assimilation 
by heterotrophic bacteria (Fig. 8C). Concomitantly, substantial 

Fig. 6. Plant and reduced model differences in the biomass composition in the HRAP: microalgae biomass (A), heterotrophic bacteria (B), slowly biodegradable 
particulate organic matter (C), and inert particulate organic matter (D).

Fig. 7. Plant and reduced model differences in biomass concentration: TSS concentration in the HRAP (A), TSS concentration in the effluent flow (B), and TSS 
concentration in the wastage flow (C).
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variations in the dissolved oxygen concentration within the HRAP, 
attributable to diurnal fluctuations in irradiation, are evident in both the 
plant and in the reduced model (Fig. 9). States of the photosynthesis 
model are represented in Fig. 10 for the plant and the reduced model. 
The analysis of Fig. 6-Fig. 10 reveals that the reduced model effectively 
replicates the trend of the primary variables involved in wastewater 
treatment. This finding validated its use as a prediction model in the 
MHE approach. Conversely, the discrepancies in the behavior of the 
reduced model in comparison to the plant depicted in Fig. 6 to Fig. 10
can be attributed to two primary factors: structural mismatches (sum
marized in Table 4 and Table 5) and parameter mismatches (detailed in 
Table 6).

2.5. Software and hardware

The MHE was coded using MATLAB® software [33], version 24.1, 
R2024a and the MPCTools [34]. MPCTools is a control and estimation 
tool for linear and nonlinear dynamic models, and it provides an ori
ented interface to CasADi for Octave and MATLAB®. The estimation 
problem was addressed by employing the Ipopt (Interior Point Opti
mizer) solver, which is an open-source software package for large-scale 
nonlinear optimization. The model used for estimation was discretized 
using the Runge-Kutta method. The MHE simulations were carried out 
with the following computer hardware specifications: an 13th Gen 
Intel® Core™ i9-13900K processor (3.0GHz), 128 GB RAM memory, 
and a 500 GB hard-disk drive.

Fig. 8. Plant and reduced model differences in the dissolved ammonium concentration (A), the dissolved phosphate concentration (B), and the dissolved total 
organic carbon concentration (C) in the HRAP.

Fig. 9. Plant and reduced model differences in the dissolved oxygen concentration in the HRAP.
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3. Results and discussion

3.1. State estimation using MHE in microalgae-bacteria wastewater 
treatment plant

MHE was designed to furnish the values of the unmeasured states for 
prospective implementations of model predictive control algorithms and 
optimization strategies to enhance system performance. These unmea
sured states offer critical information about the system, which is 
essential for the effective implementation of feedback control strategies. 
The application of MHE to microalgae-based wastewater treatment 
systems poses specific challenges, primarily due to i) the scarcity of 
online measurements, ii) the lack of perfect knowledge of the model 
structure, iii) uncertainties in the values of parameters and states, iv) the 
unavailability of direct methods to determine the fractions of particulate 
components in the biomass, v) the reliability of analytical measurements 
is highly dependent on human expertise, vi) the elapsed time from the 
moment the sample is taken to the moment the analytical procedure is 
completed.

In the hypothetical microalgae-based WWTP studied in this work, 

multi-rate measurements are presented with the sampling frequency 
shown in Table 3. Online measurements of the high-rate dynamic vari
ables (pH, temperature, and dissolved oxygen) could be available with a 
higher sampling time. However, the sampling time of 1.2 h was used 
considering the slow dynamics of these variables in a large treatment 
plant and to avoid excessive computational time in the optimization. 
The estimator takes into account the availability of irradiance, pH, 
temperature, and flow measurements. The schematic of the MHE 
applied to the case study is depicted in Fig. 11.

The structure of the state, output, and input vectors employed in the 
MHE formulation are described by Eqs. (12)–(14): 

x =
[
XALG XH XS XI SS SI SNH4 SNH3 SPO4 SO2 TSSeffluent 

TSS2 TSS3 TSS4 TSS5 TSS6 TSS7 TSS8 TSS9 TSSwastage
]T

(12) 

yP =
[
TSSHRAP TOCHRAP SNH4 SPO4 SO2 TSSeffluent TSSwastage

]T

(13) 

Fig. 10. Plant and reduced model differences in photosynthesis model.

Fig. 11. Schematic of MHE for the microalgae-based WWTP.
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u =
[

I pH T Qww Qri Qwastage
]T (14) 

The naming of the state variables to estimate (Eq. (12)) is detailed in 
Table 1 and Table 2 and Table S4.2 in Supplementary Material S4. The 
measurement vector, as developed by Eq. (13), encompasses the vari
ables enumerated in Table 3. In the MHE formulation, the vector of 
known inputs, defined by Eq. (14), includes the values of irradiance (I), 
pH (pH), and temperature (T) of the culture media, as well as the values 
of inlet wastewater flow (Qww), recirculation flow (Qri), and wastage 
flow 

(
Qwastage

)
.

The MHE is intended to estimate the state vector values at each 
sampling time (x), as well as the values of the unknown disturbances (w)

and measurement noises (v) that minimize the cost function defined in 
Eq. (1). In order to obtain useful information for system operation and 
control, the values of the input wastewater concentration ci (Eq. (15)) 
and the values of relevant process parameters (vector θ, Eq. (16)) are 
also decision variables in the optimization problem. Estimated param
eters are instrumental in characterizing the microbial dynamics in the 
process. In this sense, the maximum specific growth rates of microalgae 
(μALG) and heterotrophic bacteria were estimated (μH), as well as the 
decay rate of microalgae (kdeath,ALG) and heterotrophic bacteria (kdeath,H). 
Concurrently, the estimation of the mass transfer coefficient of the dis
solved oxygen was conducted (Kla,O2). In previous research works that 
employed the same model, a sensitivity analysis was conducted [28], 
thereby identifying these parameters as the most relevant parameters to 
adjust. Concurrently, these parameters were identified as the most 
influential parameters in other pertinent publications in the field 
[27,29]. 

ci = [ SSww SIww SNH4ww SNH3ww SPO4ww ]
T (15) 

θ = [ μALG kdeath,ALG μH kdeath,H Kla,O2 ]
T (16) 

Given the availability of multi-rate measurements, the execution 
time of the MHE is determined by the fastest measurements (dissolved 
oxygen measurements). It is assumed that analytical measurements are 
available daily at 0 a.m., implying that a full vector of output mea
surements is only available on a daily basis. Conversely, at each sam
pling time (1.2 h), a new dissolved oxygen measurement is available. An 
overview of the availability of measurements is given in Table 3. To 
address the challenge posed by multi-rate measurements in the context 
of MHE, two decisions were made:

• The consideration of a past horizon, encompassing at least a full 
vector of output measurements (the estimation past horizon should be a 
minimum of 1 day).

• The cost function incorporates only the available measurements at 
each sampling time.

3.1.1. MHE tuning
In order to formulate MHE, it is necessary to provide the values of the 

weight matrices of the cost function, as defined by Eq. (1). It is imper
ative to note that Qx, Qw, and Qy are positive definite matrices, with 
weighting and normalization factors. The weight Qx serves to penalize 
the error in the estimation at the beginning of the horizon, thereby 
indicating the reliability of the estimation. Given the imprecise nature of 
the initial guesses for the states, the diagonal elements of Qx are set to a 
value of 0.5. Table S5.1 and Table S5.2 of the Supplementary material S5 
present the values of the diagonal elements of Qw and Qy, respectively. 
The tuning values of Qw and Qy were selected based on the standard 
deviation of the variables in order to normalize the different terms of the 
cost function. In the WWTP, considerable scale differences in the 
measured output variables, as well as in the estimated states, necessi
tated the normalization of these values. This procedure was imple
mented with the objective of ensuring that each output was accorded 
equal importance, as well as to guarantee the same importance in the 
modeling error for each estimated state. The weight values were selected 

to allocate greater importance to the discrepancies between the model 
and the measurements, indicating that the reliability of the measure
ments surpasses that of the model. The constraints on the variables 
involved in the optimization problem are summarized in Table S5.3 
through Table S5.6 of the Supplementary Material S5.

3.2. MHE simulation results

The results of the MHE execution are presented considering the 
system operation under a periodic regime. The parameters utilized in the 
MHE simulation are enumerated in Table 7. The estimation horizon of 
two days is regarded as sufficient in terms of data availability to support 
the calculation of an accurate estimation. In the context of the MHE 
application, it is imperative to align the sampling period with the dy
namics of the variables to be estimated. The application under consid
eration in this research involves the estimation of variables related to 
water quality. The variables in question exhibit slow dynamics, thereby 
rendering lower sampling times unnecessary. Despite the fact that 
commercial sensors for dissolved oxygen measurement provide data 
with considerably lower sampling times than those employed in the 
present research, the sampling time used in this paper was selected 
considering that large estimation times are generally needed for 
nonlinear estimation with constraints. Moreover, in order to consider 
the possible applications of the MPC control strategy in this process, it is 
essential that the sampling time be adequately long to encompass both 
the estimation time and the time required for executing the nonlinear 
constrained MPC controller.

Simulations were executed under the environmental conditions 
illustrated in Fig. 5. Additionally, to simulate possible measurement 
errors in sensors and analytical procedures, a measurement noise was 
introduced. This noise was generated using a MATLAB® function which 
returns a random scalar drawn from the standard normal distribution. 
For each output, the media of the noise value introduced corresponds to 
5 % of the average output value. The simulation results for the MHE 
application during 3 days (corresponding with 60 samples) are pre
sented in Fig. 12 to Fig. 16, using initial information of past data cor
responding to two previous days. In each sample, the MHE estimation 
was provided with an average value of 17.97 s (the higher estimation 
time being 37.49 s), which means that MHE can be used as the first step 
of advanced control or process dynamic optimization.

The estimated values (blue line) for the dissolved oxygen concen
tration in the HRAP are illustrated in Fig. 12. The red line in the graph 
represents the actual values of the dissolved oxygen concentration, 
which include the noise in the measurements. As this study was con
ducted within a simulation framework, real-time plant values are 
available for continuous representation, with the purpose of illustrating 
the estimator fit. In real-world scenarios, the measured values are only 
available at discrete time intervals, which are represented by crosses in 
the data. Error bars (purple bars) are included to illustrate the limits of 
uncertainty that were assumed in the measurements. The results 
demonstrate the accuracy of the prediction provided by the MHE, as well 
as estimator robustness, even considering noisy measurements.

The estimated values for the biomass concentration in the HRAP, the 
biomass concentration in the effluent, and the biomass concentration in 
the wastage stream are illustrated in Fig. 13. As demonstrated in Fig. 13, 
the MHE effectively estimates the biomass concentration values for the 
entire simulation time by leveraging historical output values and dis
solved oxygen measurements at each sampling time. The error bars 
represent the uncertainties in the measured values of the biomass. In 

Table 7 
MHE simulation parameters.

Parameter Description Value

ne Estimation horizon 2 d (40 samples)
Delta Sampling time 0.05 d
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such cases, where analytical procedures are employed to ascertain 
biomass values, low biomass values are deemed to be more susceptible 
to measurement uncertainties. The online estimation of biomass con
centration is imperative for ensuring the optimal operation of photo
bioreactors taking early actions in response to the values of the 
estimated variables, without waiting for the lab analysis to arrive. 
Optimal biomass values in the HRAP are necessary to ensure the 
adequate wastewater depuration, and high biomass concentrations 
within the reactor affect the penetration of solar radiation into the 
culture, which in turn affects the growth of microalgae. In addition, the 

online monitoring of TSS concentration in the effluent is of a paramount 
importance in order to guarantee the desired water quality. Conversely, 
in scenarios where the primary objective is the harvesting of biomass for 
the production of diverse bioproducts, it is essential to optimize biomass 
yield to ensure maximum economic profitability.

The MHE has the capacity to predict the values of the various com
ponents of biomass (Fig. 14). Conventionally, the assessment of these 
values does not employ direct or standardized methodologies. Indeed, a 
salient benefit of the application of state estimators in such processes is 
that they enable the estimation of the concentrations of different 

Fig. 12. Measured and estimated values of the dissolved oxygen in the HRAP.

Fig. 13. Measured and estimated values of the biomass concentration in the HRAP (A), in the effluent (B), and in the wastage stream (C).
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Fig. 14. Estimated values of the biomass components: microalgae biomass concentration (A), heterotrophic bacteria concentration (B), slowly biodegradable par
ticulate organic matter (C), and inert particulate organic matter (D).

Fig. 15. Measured and estimated values of the TOC in the effluent (A). Estimated values of the readily biodegradable soluble organic matter (B) and inert soluble 
organic matter (C).
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biomass components without the necessity of employing complex 
analytical methods.

The measured and estimated values of the TOC in the effluent are 
presented in Fig. 15 A. The online monitoring of the TOC concentration 
is imperative for the evaluation of effluent water quality. Fig. 15 B and 
Fig. 15 C illustrate the estimated values of readily biodegradable soluble 
organic matter and inert soluble organic matter, respectively, as TOC. 
The quality of effluent water is also contingent upon the concentrations 
of dissolved ammonium and dissolved phosphate. The measured and 
estimated values of dissolved ammonium and dissolved phosphate 
concentration are illustrated in Fig. 16 A and Fig. 16 B, respectively. As 
demonstrated in Fig. 16 A, the estimate of the ammonium concentration 
in the effluent exhibits a slight overestimation relative to the actual 
value. This phenomenon can be attributed to the observation that the 
proliferation of microalgae and heterotrophic bacteria (the two pre
dominant microorganisms groups in the HRAP) is exclusively associated 
with the utilization of ammonium. This association disregards the 
microalgae growth on SNO3, as well as the heterotrophic bacteria aerobic 
growth on nitrate and the heterotrophic bacteria anoxic growth on ni
trite and nitrate (as summarized in Table 5). This finding suggests that 
the reduced model attributes the observed growth exclusively to nitro
gen species in the form of SNH4, which may lead to an overestimation of 
this component in the HRAP. In a similar fashion, the phosphate esti
mation (Fig. 16 B) exhibits a slight increase compared to the actual value 
of SPO4 concentration. This discrepancy can be attributed to the reduced 
model incorporating a smaller number of nutrients utilized by micro
algae and bacteria for its growth, resulting in an overestimation of these 
components within the reduced model. Nevertheless, these discrep
ancies between the actual and estimated values are acceptable given the 
variation range of these components, as well as the potential inaccura
cies in the analytical procedures employed to obtain the actual values of 
these variables. The validity of this assertion is supported by the results 
presented in Fig. 15 and Fig. 16. These figures demonstrate that the 
estimated values fall within the uncertainty limits that have been 
established in the measurement of these variables.

The MHE approach assessed in this study effectively estimated the 
concentrations of particulate and soluble components in the WWTP, 
even when a limited number of samples are available. These results 
suggest that further enhancement of the application of control and 

optimization strategies in wastewater treatment plants is possible.
Despite the existence of analytical measurements on a daily basis, the 

employment of a state estimator offers insights into the progression of 
wastewater components throughout the entirety of the experimental 
period, a situation that has been previously observed in simulation re
sults. State estimators serve as instrumental tools for the analysis of 
water quality over the course of a day. Leveraging this analysis, control 
actions can be implemented in a targeted and informed manner. As 
illustrated in Fig. 16 A, which depicts the time course of dissolved 
ammonium concentration, there is a demonstrable variation in the dy
namics of dissolved ammonium over the course of a day. Specifically, 
higher values of ammonium are observed during nocturnal hours, which 
can be attributed to the assimilation of dissolved ammonium by 
microalgae during daylight hours. Given that the samples were hy
pothesized to be drawn during the night, these values are representative 
of a particular moment in the process dynamics evolution, which un
derscores the importance of continuous state estimation.

Parameter estimation is paramount for characterizing the kinetics of 
the key processes and chemical reactions, as well as the operational 
conditions in the HRAP. The results of parameter estimation for the 
parameters described by Eq. (16) are provided in Fig. 17. As demon
strated in Fig. 17, the estimated parameters exhibited a high degree of 
proximity to the “real values” of the parameters assumed in the plant. As 
demonstrated in Fig. 12 - Fig. 16, the simulation results substantiate the 
validity of the selected parameter values for predicting the process’s 
state evolution. In order to ensure the effective implementation of 
model-based control strategies within the WWTP, it is imperative to 
establish precise parameter estimations.

In order to evaluate the robustness of the estimator under different 
operational conditions, variations in the incident light were considered 
during the third day of the estimation process. As illustrated in Fig. 18, 
the radiation profile under consideration consists of two days with 
identical radiation conditions to those previously illustrated in Fig. 5 D, 
and a third day characterized by substantial cloud cover. The estimation 
results for this condition are illustrated in Fig. 19 - Fig. 21. The dissolved 
oxygen concentration in the HRAP under fluctuating solar radiation is 
depicted in Fig. 19, where it is demonstrated that the available solar 
radiation during the third day of operation affects the maximum values 
of dissolved oxygen concentration in the photobioreactor, owing to a 

Fig. 16. Measured and estimated values of the dissolved ammonium concentration (A) and dissolved phosphate concentration (B).
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decline in microalgae activity. The effectiveness of the estimator in 
reproducing the trend in the dissolved oxygen concentration serves as a 
testament to its reliability in a variety of environmental conditions and 
in the presence of noisy measurements. This reliability is indicative of 
the robustness of the estimator.

Fig. 20 illustrates the measured and estimated values of biomass 
concentration under fluctuating solar radiation and also demonstrates 

the robust behavior of the estimator, effectively replicating the 
measured values of biomass concentration in the HRAP (Fig. 20 A), the 
effluent flow (Fig. 20 B), and the wastage flow (Fig. 20 C).

The performance of the estimator in predicting the concentration of 
dissolved components in the HRAP under fluctuating solar radiation is 
illustrated in Fig. 21. Predicted values of the dissolved total organic 
carbon concentration (Fig. 21 A), ammonium concentration (Fig. 21 B), 
and phosphate concentration (Fig. 21 C) demonstrate slight over
estimation, as previously evidenced in simulation results. Nevertheless, 
the discrepancies observed in these estimations fall within the permis
sible uncertainty range (as indicated by the error bars), even in the 
presence of significant environmental variations and unreliable 
measurements.

The simulation results demonstrate the efficacy of the MHE approach 
in online estimation of the most relevant variables of a wastewater 
treatment process, even in the presence of noisy measurements, model 
inaccuracies, varying environmental conditions, and multi-rate mea
surements. The MHE has the capacity to provide online estimation for 
measured variables and for variables that cannot be measured directly. 
The findings, in conjunction with the reduced estimation times 

Fig. 17. Real and estimated values of the parameters in the HRAP. The circles represent the initial guess for parameter values that were utilized in the optimiza
tion problem.

Fig. 18. Profile of the photosynthetic photon flux density considered over the 
course of three days of operation.

I. Bausa-Ortiz et al.                                                                                                                                                                                                                            Algal Research 91 (2025) 104338 

15 



observed, underscore the promise of state estimation leveraging the 
MHE technique in conjunction with control and optimization strategies 
within wastewater treatment facilities, particularly in the context of low 
dynamics that characterize wastewater treatment processes.

4. Conclusions

The present study proposes the utilization of MHE technique for a 

microalgae-based wastewater treatment process, with a focus on the 
estimation of multiple states and parameters concurrently to evaluate 
the effluent water quality. This work used an estimation model with 
multiple states and parameters, incorporating a substantial structural 
mismatch between the model used for estimation and the actual plant. 
Multi-rate measurements obtained from online measurements and 
analytical procedures were used to enhance the performance of the 
estimator. The simulation results confirmed the efficacy and robustness 

Fig. 19. Measured and estimated values of the dissolved oxygen in the HRAP under fluctuating solar radiation.

Fig. 20. Measured and estimated values of the biomass concentration in the HRAP (A), in the effluent (B), and in the wastage stream (C) under fluctuating 
solar radiation.
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of MHE in online estimation of the most pertinent variables in the 
microalgae-based wastewater treatment process and its potential for 
future application in the development of control and optimization 
strategies, which requires the knowledge of system states and 
parameters.
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