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Deep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2)
recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) pa-
tients. However, lack of interpretability and validation across patients from a wide range of ages (children,
adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the
U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep,
deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO; signals.
An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted
class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency
characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO,
signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA
individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with
accuracies between 81.5 % and 84.5 % and Cohen’s kappa values from 0.726 to 0.779. It also demonstrated
greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability
in PR and SpO; amplitude, as well as changes in their spectral content across specific frequency bands
(0.004-0.020 Hz, 0.020-0.100 Hz, and 0.180-0.400 Hz), for sleep stage classification. These findings indicate
that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in
clinical settings.

1. Introduction polysomnography (PSG) (Berry et al., 2018). Despite being the gold

standard, PSG is complex, expensive, highly intrusive, time-consuming,

Identification of sleep stages is crucial for the assessment and diag-
nosis of sleep-related disorders (Sateia, 2014). According to the guide-
lines established by the American Academy of Sleep Medicine (AASM),
each 30-s non-overlapping epoch of sleep recordings must be classified
as: wake (W), three levels of non-rapid eye movement (non-REM) sleep
(N1, N2, and N3), or REM sleep (Berry et al., 2018). Sleep technologists
conduct this scoring manually by analyzing electroencephalography
(EEG), electrooculography (EOG), and submental electromyography
signals, along with cardiorespiratory data collected during overnight

and of limited availability, which delays the diagnosis of sleep disorders
(Chang et al., 2023). In addition, manual sleep staging is a tedious and
time-intensive procedure, taking on average 1.5-2 h per PSG study, and
is subject to considerable inter-scorer variability, thereby potentially
compromising diagnostic accuracy (Fiorillo et al., 2019). Therefore, the
adoption of automated sleep staging, utilizing a minimal number of
channels, is recommended to improve consistency, streamline the pro-
cess, and lower associated costs.

Recent progress in artificial intelligence (AI) methodologies have led
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to the proposal of multiple alternatives for sleep staging relying on the
automated processing of a reduced subset of PSG signals (Faust et al.,
2019). Among these methods, pulse oximetry has been extensively
researched as a surrogate for PSG in sleep scoring and the diagnosis of
sleep disorders (Baumert et al., 2022; del Campo et al., 2018; Imtiaz,
2021), as it can monitor individuals at their home using low-cost
wearable devices. These devices consist of a non-invasive watch or
finger probe equipped with an optical sensor that measures the photo-
plethysmography (PPG) signal, which is utilized to calculate pulse rate
(PR) and blood oxygen saturation (SpO2) (Chan et al., 2013). Overnight
SpO; and PR raw data are stored by the pulse oximeters, facilitating
offline analysis for the assessment of sleep quality and any other relevant
abnormalities. The time and frequency characteristics of PPG and
derived PR and SpO, signals exhibit changes across different sleep
stages, prompting recent investigations into the application of Al
methods for the automatic scoring of sleep stages using only pulse ox-
imetry signals (Baumert et al., 2022; Imtiaz, 2021).

A considerable proportion of these works have focused on patient
cohorts with obstructive sleep apnea (OSA) (Huttunen et al., 2021,
2022; Korkalainen et al., 2020; Kotzen et al., 2023; Radha et al., 2021;
Sridhar et al., 2020; Vaquerizo-Villar et al., 2024; Wulterkens et al.,
2021), a prevalent condition impacting approximately 1 billion in-
dividuals worldwide and affecting the entire lifespan (Benjafield et al.,
2020; Chang et al., 2023). The diagnosis of OSA depends on the
apnea-hypopnea index (AHI) that measures the number of apneas and
hypopneas per hour of sleep (Berry et al., 2018; Chang et al., 2023),
thereby emphasizing the importance of accurately scoring sleep stages
in order to calculate the total sleep time (TST) and the clustering of any
particular abnormality within a given sleep stage. Several investigations
have targeted sleep scoring in adult (Huttunen et al., 2021, 2022; Kor-
kalainen et al., 2020; Radha et al., 2021; Sridhar et al., 2020) or pedi-
atric OSA (Haimov et al., 2025a; Vaquerizo-Villar et al., 2024) cohorts
using pulse oximetry signals, but only Kotzen et al. (2023), Nam et al.
(2024) and Wulterkens et al. (2021) approached sleep staging in pa-
tients across various age groups. However, the number of child-
ren/adolescents (n = 73 (3.1 %) out of 2380 (Kotzen et al., 2023), n = 80
(3.2 %) out of 2488 (Nam et al., 2024), and n = 54 (6.5 %) out of 835
(Wulterkens et al., 2021)), was limited. Including a larger proportion of
pediatric individuals is essential because pediatric OSA subjects have
specific considerations in terms of etiology, diagnosis, and treatment
compared to adults (Chang et al., 2023), alongside substantial devel-
opmental differences in sleep architecture (e.g., higher proportion of
deep sleep) and cardiorespiratory activity (e.g., less recurrent an pro-
found desaturations and bradycardias) (Berry et al., 2018; Goh et al.,
2000; Guilleminault et al., 1984). Given that OSA affects the entire
lifespan, there is an inherent interest in developing automatic sleep
scoring models that encompasses all individuals irrespective of their
age.

In the last few years, automatic sleep scoring is living substantial
progresses, largely attributed to advancements in deep-learning (DL)
approaches, which have demonstrated efficacy in automatically
learning stage-related features from raw data (Faust et al., 2019). Initial
DL-based approaches performed sleep staging mainly using convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs),
which were fed with sequences of 30-s epochs from PPG, PR and/or
SpO; recordings (Huttunen et al., 2021; Korkalainen et al., 2020). More
recent studies have shifted towards utilizing entire overnight recordings
for sleep staging, thereby enabling the consideration of the whole-night
dynamics of pulse oximetry during sleep to score sleep stages in each
input sample (Casal et al., 2021, 2022; Huttunen et al., 2022; Kotzen
et al., 2023; Sridhar et al., 2020; Vaquerizo-Villar et al., 2024). These
studies focused on encoder-decoder networks comprising convolutional
layers, inspired on the U-Net framework (Ronneberger et al., 2015),
initially designed for image segmentation, yet adaptable for point-wise
prediction (i.e., per-sample identification) of sleep stages (Fiorillo
et al., 2023a; Huttunen et al., 2022; Perslev et al., 2021; Sridhar et al.,
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2020; Vaquerizo-Villar et al., 2024). Perslev et al. (2021) and Fiorillo
et al. (2023a) also showed the generalizability of U-Net architectures for
sleep scoring across various age groups and sleep disorders from
whole-night EEG recordings.

Despite the success of DL algorithms in sleep staging, their “black
box” nature hinders acceptance in healthcare (Adadi and Berrada, 2018;
Yang et al., 2022), where understanding the rationale behind pre-
dictions is crucial. This challenge extends beyond sleep staging; for
instance, in health recommendation systems, the lack of transparency
can impede trust and adoption, even when the system offers accurate
predictions (Chinnasamy et al., 2023a). In this context, explainable
artificial intelligence (XAI) methodologies have recently emerged to
introduce transparent and understandable recommendations to health-
care professionals and patients based on complex Al-based models
(including DL) (Adadi and Berrada, 2018; Yang et al., 2022). In the field
of sleep staging, several recent works have proposed XAI methodologies
to visually discern those EEG patterns considered by DL models (Dutt
et al., 2022; Kuo et al., 2021; Phan et al., 2022; Vaquerizo-Villar et al.,
2023) for sleep staging. Nonetheless, only Nam et al. (2024) and
Vaquerizo-Villar et al. (2024) have used XAI approaches to interpret DL
models aimed at sleep staging from pulse oximetry signals. In this
respect, a recent study by Nam et al. (2024) analyzed the local attention
module to provide interpretability to the DL model predictions. Simi-
larly, a recent conference paper developed by our own group signals
(Vaquerizo-Villar et al., 2024) has provided some qualitative insights on
the sleep scoring process through the application of semantic segmen-
tation via gradient-weighted class activation mapping (Seg-Grad-CAM),
a common XAI algorithm for semantic segmentation tasks (e.g., sleep
staging) in CNN-based models (Vinogradova et al., 2020). However,
these works offered only a visual XAl-derived interpretation of some
selected examples from a DL model targeting sleep staging in OSA co-
horts (Nam et al, 2024; Vaquerizo-Villar et al., 2024), without
providing quantitative evidence of the pulse oximetry characteristics
linked with each sleep stage. A quantitative analysis interpretation could
not only align the model’s behavior with the current knowledge of pulse
oximetry features related to each sleep stage, while also uncovering
novel patterns related to these stages.

Based on the aforementioned factors, we hypothesized that the
application of a U-Net DL model, along with the Seg-Grad-CAM XAl
algorithm, will yield models that are not only highly accurate and
generalizable but also interpretable, making them clinically applicable
for automated sleep stage staging in individuals of all age groups.
Consequently, the main objectives of this study were twofold: (i) to
develop and evaluate an interpretable and generalizable DL model
capable of accurately classifying W, light sleep (N1 and N2), deep sleep
(N3), and REM sleep stages within the OSA context in subjects of all ages
from pulse oximetry data; (ii) to quantitatively identify key time and
frequency-domain features from PR and SpO3 signals that contribute to
sleep staging.

Fig. 1 presents a general scheme of the proposed approach. The
present study presents the following major contributions:

e A new DL model based on the U-Net architecture, POxi-SleepNet, is
developed for sleep scoring in OSA patients using whole-night PR
and SpO3 signals.

e A comprehensive evaluation of the generalizability of POxi-SleepNet
across six independent databases encompassing all age subgroups
(children, adolescents, adults, and elderly).

e An XAI methodology relying on Seg-Grad-CAM to identify the key
regions of overnight PR and SpO; signals from each patient that
POxi-SleepNet models consider to predict W, light sleep, deep sleep,
and REM sleep stages.

e A quantitative time- and frequency-domain analysis of the key re-
gions highlighted by Seg-Grad-CAM to discern the PR and SpO;
features associated with each sleep stage.
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Fig. 1. Flowchart of the proposed methodology.

2. Methods
2.1. Subjects and signals

A total of 17303 PSG studies with valid pulse oximetry (PR and SpO5)
signals from 13222 participants of six different semi-public datasets
composed the population under study: (i) the Cleveland Children’s Sleep
and Health Study (CCSHS), containing 515 recordings of adolescents
aged 16-19.9 years (Rosen et al., 2003); (ii) the Cleveland Family Study
(CFS), totaling 730 recordings of patients aged 7-89 years (Redline
et al., 1995); (iii) the Childhood Adenotonsillectomy Trial (CHAT),
which includes 1633 valid pulse oximetry recordings from pediatric
subjects aged 5-9.9 years (Marcus et al., 2013); (iv) the Multi-Ethnic
Study of Atherosclerosis (MESA), totaling 2056 recordings of patients
aged over 54 years (Chen et al., 2015); (v) the Osteoporotic Fractures in
Men Study (MrOS), containing 3925 recordings of patients aged over 67
years (Blackwell et al., 2011); and (vi) the Sleep Heart Health Study
(SHHS), containing 8444 recordings of patients aged over 40 years
(Quan et al., 1997). All these databases are publicly available upon
request on the National Sleep Research Resource (NSRR) repository
(https://sleepdata.org/datasets). The main information regarding
rationale, design, primary outcomes, and sleep recordings of these da-
tabases can be consulted in sections 1.1-1.6 of the supplementary ma-
terial, while the full details are available on the specific database
websites at NSRR (CCSHS: https://sleepdata.org/datasets/ccshs; CFS:
https://sleepdata.org/datasets/cfs; CHAT: https://sleepdata.org/data
sets/chat; MESA: https://sleepdata.org/datasets/mesa; MROS: https:
//sleepdata.org/datasets/mros; SHHS: https://sleepdata.org/dataset
s/shhs).

All sleep studies (i.e., PSGs) were performed to confirm or discard
OSA according to AASM guidelines (Iber et al., 2007), being the full
details of PSG recordings available on the specific database websites at
NSRR. Specifically, each sleep study from the six databases (CCSHS,
CFS, CHAT, MESA, MrOS, and SHHS) provides PSG-derived PR and SpO,
data, as well as annotations for sleep stages and apnea/hypopnea events

(see sections 1.1-1.6 of the supplementary material). Each dataset was
randomly split, on a per-subject basis, into three sets: (i) training (up to
50 % of subjects), used to train the POxi-SleepNet models; (ii) validation
(approximately 25 % of the amount of training subjects), used for
adjusting regularization and monitoring model convergence; and (iii)
test (at least 50 % of subjects), used for performance evaluation and
interpretation. Table 1 shows the clinical and polysomnographic data of
the six databases analyzed, with further information provided in sec-
tions 1.1-1.6 of the supplementary material.

2.2. Signal preprocessing

PR and SpOs recordings, initially recorded at sampling frequencies
(fs) from 1 to 512 Hz, were first resampled to a uniform fs of 1 Hz
(Vaquerizo-Villar et al., 2024). Subject-specific standardization was
then applied to normalize the baseline levels of PR and SpO» signals
across different subjects (Casal et al., 2021). In accordance with the
input size of the POxi-SleepNet models and the total recording time of
the sleep studies (see Table 1), all PR and SpO; standardized recordings
were finally padded or truncated to a common length of 12 h (L = 43200
samples) (Kotzen et al., 2023; Vaquerizo-Villar et al., 2024).
Zero-padding or truncation was only performed at the onset of each
pulse oximetry recording, with a duration of 12 h selected to ensure that
only the initial wake periods were either added or removed. Each sample
was then assigned to one of the sleep stages—wake, light sleep, deep
sleep, or REM sleep—based on the annotations for the corresponding
30-s epochs.

2.3. DL architecture: POxi-SleepNet

POxi-SleepNet leverages the U-Net architecture, originally designed
for image segmentation (Ronneberger et al., 2015), but which has
shown its usefulness for sleep staging (Huttunen et al., 2022; Perslev
et al., 2021; Sridhar et al., 2020). Fig. 2 illustrates the specific config-
uration of the POxi-SleepNet architecture used in this study for sleep

Table 1
Clinical and polysomnographic data of the six databases under study.
CCSHS CFS CHAT MESA MrOS SHHS

Subjects (1) 515 730 1633 2056 3925 8444
Age (years) 18 [17-18] 44 [23-55] 7 [6-8] 68 [62-76] 77 [73-82] 65 [56-73]
Males (n) 260 (50.5) 329 (45.1) 776 (47.5) 954 (46.4) 3925 (100) 3986 (47.2)
AHI (e/h) 0.8 [0.3-1.8] 5.2 [1.7-15.9] 2.5[1.1-5.9] 18.4 [9.5-33.3] 17.0 [9.0-30.0] 13.3 [6.7-24.0]
TRT (h) 11.2 [10.8-11.7] 9.9 [9.3-10.4] 9.8 [9.1-10.8] 10.0 [9.5-12.0] 11.2 [10.0-12.4] 8.8 [8.5-9.1]
Wake (%) 29.3 [23.5-35.4] 35.8 [27.9-44.3] 22.8 [15.8-29.4] 41.7 [33.1-50.8] 46.6 [38.6-55.4] 30.4 [22.3-39.3]
Light (%) 39.4 [34.3-44.2] 38.8 [31.1-45.7] 38.7 [33.0-44.5] 41.3 [34.6-48.2] 37.1 [30.7-43.6] 43.1 [35.3-50.7]
Deep (%) 15.3 [12.0-19.2] 11.8 [6.3-17.8] 23.1 [19.5-27.8] 4.5[1.1-9.1] 4.2 [1.3-8.3] 11.0 [5.1-16.9]
REM (%) 14.5 [11.8-17.5] 11.5 [8.0-15.1] 14.1 [11.6-16.8] 10.4 [7.0-13.8] 9.9 [7.0-13.0] 13.8 [10.1-17.4]

Training (n)
Validation (n)
Test (n)

200 (38.8 %)
57 (11.1 %)
258 (50.1 %)

271 (37.1 %)
94 (12.8 %)
365 (50.0 %)

575 (35.2 %)
200 (12.2 %)
858 (52.5 %)

768 (37.4 %)
260 (12.6 %)
1028 (50.0 %)

1409 (35.9 %)
467 (11.9 %)
2049 (52.2 %)

2368 (28.0 %)
778 (9.2 %)
5298 (62.7 %)

Data are presented as median [interquartile range], n, or n (%).
AHLI: apnea-hypopnea index; CCSHS: Cleveland Children’s Sleep and Health Study; CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; e/h:
events per hour, h: hour; MESA: Multi-Ethnic Study of Atherosclerosis, MrOS: Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart

Health Study; TRT: total recording time.
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staging, which is based on previous works (Huttunen et al., 2022; Per-
slev et al., 2021). In this study, three POxi-SleepNet architectures were
developed with different input signal configurations: (i) POx-
i-SleepNetpr-spo2 (PR and SpO2 data); (ii) POxi-SleepNetpgr (only PR
data); (iii) POxi-SleepNetg,o2 (only SpO; data). Thus, the input section
of POxi-SleepNet consists of N;xL samples (12-h of data), being N; = 1
(POxi-SleepNetpg ~ and  POxi-SleepNetspo2) or N, = 2
(POXi-SleepNetpR_spoz).

The input is initially processed by an encoder composed of four
layers, aimed at extracting low-level features related to sleep stages from
PR and SpO, signals. Each layer comprises a convolutional block (conv
block), followed by max-pooling and dropout layers. Within each conv
block, there are three sequential sub-blocks, each performing a 2D
convolution with Nf filters and a kernel size of NsxK, as well as applying
a rectified linear unit (ReLU) activation function and batch normaliza-
tion. According to the standard U-Net design, Nf is initially set as 64 and
is subsequently doubled at each layer of increased depth. The dropout
rate (d) was empirically determined in the range 0.0-0.5 as the one that
maximized model performance in the validation set. Conversely, the
kernel size (N;x3) was increased to Nyx11 (You et al., 2021), and the
max-pooling factor (1x2) was also modified, increasing it to 1x5 in the
first two layers and to 1x4 in the last two layers of the encoder, with the
aim of enhancing the extraction of long-term features related to sleep
stages while reducing computational load.

After the encoder stage, the extracted feature maps undergo further
processing at the bottleneck of the network through a single conv block
prior to the decoder. The decoder, which also consists of four layers, is
designed to generate high-resolution feature maps and includes a
dropout layer, a 2D transposed convolution (Conv2DTranspose), and a
convolutional block in each layer. To ensure retention of low-level
features, the output of the Conv2DTranspose of each decoder layer is
concatenated with the output of the corresponding conv block of the
encoder. Finally, the last layer of the network is a 2D convolution
operation employing 4 filters and a kernel size of Ngx1 and a softmax
activation, which generates point-wise predictions as output (4xL sam-
ples), representing the probability that each sample is associated with
W, light, deep, and REM sleep stages.

2.4. POxi-SleepNet experimental setup: training and evaluation strategies

To see the performance and generalization ability of the proposed
approach across databases encompassing different age subgroups, POxi-
SleepNet models were trained and assessed using three different stra-
tegies: (i) a standard hold-out strategy (SHO); (ii) a leave-one-cohort-out
(LOCO) without a fine-tuning approach; and (iii) a LOCO with fine-
tuning (LOCO-FT) approach. These strategies are presented in Fig. 3
and are described next:

e SHO is intended to measure overall sleep staging performance of the
POxi-SleepNet models. Each database is first partitioned into
training/validation/test subsets (Fig. 3A), with comprehensive de-
tails of the partitioning schema presented in sections 1.1-1.6 of the
supplementary material. All the training and validation subsets are
then merged to compose the overall training and validation set,
respectively (Fig. 3B). Subsequently, a single POxi-SleepNet model is
trained and optimized using the overall training and validation sets,
respectively. Finally, this model is assessed using each of the test
subsets separately (Fig. 3B).

LOCO is intended to measure the generalization ability of the POxi-
SleepNetpg.spo2 model for prospective clinical applications. Accord-
ingly, the training and validation subsets of all but one database are
merged to compose the overall training and validation set, respec-
tively (Fig. 3C). Subsequently, a POxi-SleepNetpr.sp02 model is
trained and optimized using the overall training and validation sets,
respectively, and the test subset of the omitted database is used for
assessing model performance (Fig. 3C). This process is repeated six
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times, one per database, so each database is considered once as the
omitted and testing database (Fig. 3C), thus measuring the general-
ization ability for each database.

e LOCO-FT is intended to assess the generalization ability of the POxi-
SleepNetpg.spo2 model to new population samples. As in LOCO
approach, POxi-SleepNetpr.spo2 model is trained and optimized
using the training and validation subsets of all but one database
(Fig. 3D). Subsequently, POxi-SleepNetpr.spo2 model is fine-tuned
using the training and validation subjects from the withheld data-
base and evaluated only on its corresponding test subset (Fig. 3D).
This process is also repeated six times, with each database being
considered once as the omitted and testing database (Fig. 3D).

For each of these strategies (SHO, LOCO, and LOCO-FT), the POxi-
SleepNet architectures were trained using TensorFlow 2.9.0 library on
an NVIDIA 3080Ti GPU. The training procedure included the following
configuration: the categorical cross-entropy as the loss function to
minimize, the Adam method with an initial learning rate of 10™* to
optimize weights and biases of the POxi-SleepNet architectures, batch
sizes of 8 (POxi-SleepNetpr and POxi-SleepNets,02) and 4 (POxi-Sleep-
Netpr.spo2) with random data shuffling, a learning rate reduction by a
factor of 2 after 15 epochs without improvement in the validation loss,
and early stopping after 45 epochs of no improvement, being the model
with the lowest validation loss chosen as the best model.

2.5. Explainable artificial intelligence: Seg-Grad-CAM

Seg-Grad-CAM is an extended version of the widely used Grad-CAM
method that produces heatmaps showing the most important areas of
the input data in CNN-based DL models for semantic segmentation ap-
plications (Vinogradova et al., 2020). Considering automatic scoring of
sleep stages in sleep recordings as a semantic segmentation problem,
Seg-Grad-CAM has been applied as an XAI method able to scrutinize and
comprehend the decision-making processes of the POxi-SleepNet models
in detecting each sleep stage. Given the feature maps of a chosen con-
volutional layer Ak (k =1, ..., Z), an output class ¢, and a region of in-
terest ROI%, Seg-Grad-CAM first calculates the average of the gradients of
the model output y§ (i ¢ ROI°) with respect to all the feature maps Ak

1.0
c_ = i€ROI° 1
=727 oAk, M

The class-discriminative localization map (heatmap) is then
computed as a gradient-weighted combination of the feature maps,
followed by a ReLU:

L _ReLU<Za; ~Ak> 2
k

This results in a heatmap of the exact dimensions as A¥, which is
normalized and resized (N xL samples) to enable joint visualization with
the input PR and SpO; signals (Vinogradova et al., 2020). Seg-Grad-CAM
heatmaps were calculated in the last convolutional layer of each conv
block in the bottleneck and decoder layers, as it enhances the identifi-
cation of both low-level and high-level stage-related features
(Vaquerizo-Villar et al., 2023). The final heatmap was then obtained by
averaging all normalized and resized heatmaps, as it has been done in
previous studies (Jiménez-Garcia et al., 2024; Vaquerizo-Villar et al.,
2023).

In this work, ¢ denotes one of the four sleep stages (W/Light/Deep/
REM) and ROI is the region of points scored as ¢ by the POxi-SleepNet
models, which allows to identify the most relevant areas of the PR (POxi-
SleepNetpr model) and SpO» (and POxi-SleepNetsp,o2 model) data
contributing to predict each sleep stage, as well as to analyze the
complementarity between PR and SpO, signals (POxi-SleepNetpg.spo2
model) for sleep staging.
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2.6. Quantitative analysis of the most important time and frequency
stage-related PR and SpO; patterns

To provide a quantitative and consistent interpretation of the pulse
oximetry features that drive the model to score each sleep stage, we
conducted a thorough time and frequency analysis of the predominant
regions within PR and SpO signals highlighted by Seg-Grad-CAM
heatmaps for each test patient. Since the heatmap values range from
0 (denoting minimal relevance in the prediction) to 1 (indicating high
relevance in the prediction), we first selected, for each subject, the most
important regions for predicting W/Light/Deep/REM stages as those
where the heatmap amplitude exceeded 0.5, an empirically determined
threshold. A comprehensive analysis of these regions was then per-
formed to discern time and frequency PR and SpOs characteristics
associated with each sleep stage:

e Time analysis. For each test patient, mean, standard deviation (SD),
and root mean square of successive differences (RMSSD) were
computed in the most important regions of standardized PR and
SpO- signals derived from Seg-Grad-CAM heatmaps to predict W/
Light/Deep/REM stages. These three common time-domain metrics
measure temporal changes of R-R intervals and provide important
insights into overall variability and short-term cardiac fluctuations
(Shaffer and Ginsberg, 2017). They have been previously used to
evaluate differences in heart rate variability (HRV) among sleep
stages (Martin-Montero et al., 2023), and adapted here for PR and
SpOa,.

Frequency analysis. Previous studies have shown that spectral ac-
tivity of cardiorespiratory signals differ among sleep stages
(Martin-Montero et al., 2023; Penzel et al., 2003). For each test
subject, we have first computed the continuous wavelet transform
(CWT) of overnight PR and SpO- recordings, which offers optimal
time-frequency resolution for the whole overnight recordings (Rioul
and Vetterli, 1991). Specifically, CWT was calculated using the
complex Morlet wavelet (Wachowiak et al., 2016) and frequencies in
the range 0.001-0.400 Hz. The power spectral density (PSD) for each
sleep stage was then derived as the average of the CWT in the cor-
responding relevant region derived from Seg-Grad-CAM heatmaps.
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2.7. Statistical analysis

The POxi-SleepNet models provide probabilities for predicting each
sleep stage (W/Light/Deep/REM) for each sample within the 12-h input
data. These probabilities were translated into predictions of sleep stages
by choosing the class with the highest probability. Given that manual
sleep staging occurs every 30 s, the output label for each 30-s epoch was
determined as the most prevalent predicted sleep stage within the
epoch. Zero-padded areas were excluded prior to calculating perfor-
mance metrics. The overall performance of the POxi-SleepNet archi-
tectures for automated sleep stage classification was evaluated using
confusion matrices (4-class), which were utilized to obtain the 4-class
accuracy (Acc), Cohen’s kappa (kappa), macro-F1 score (MF1), and
per-class Fl-score (F1). In addition, the Wilcoxon signed-rank test was
applied to evaluate two-by-two statistical differences in time parameters
(mean, SD, and RMSSD) and in each frequency bin from the PSDs,
derived from quantitative analysis among sleep stages (W/Light/Deep/
REM). A p-value<0.01 was considered significant after Bonferroni
correction (six comparisons).

3. Results
3.1. POxi-SleepNet performance: SHO strategy

A SHO strategy was used to assess overall sleep staging performance
of the POxi-SleepNet models. Fig. 4 shows the confusion matrices of the
POxi-SleepNet model trained with a using PR and SpO; data (POxi-
SleepNetpr spo2) in the six test subsets (CCSHS, CFS, CHAT, MESA,
MrOS, and SHHS), whereas Table 2 shows the performance metrics of
POxi-SleepNetpg.spo2 model in the six test sets, compared with those
from POxi-SleepNet models trained using single-channel PR (POxi-
SleepNetpr) and single-channel SpO; data (POxi-SleepNetsy02).
Notably, POxi-SleepNetpr_sp02 model showed a high performance in the
six databases, with 4-class Acc values in the range 81.5 %-84.5 %, kappa
values in the range 0.726-0.779, and MF1 values in the range 74.0 %—
83.1 %. As expected, this model outperformed POxi-SleepNetpg (78.6
%-83.6 % Acc, 0.679-0.766 kappa, and 68.1 %-82.1 % MF1) and POxi-
SleepNetspo2 (72.1 %-80.3 % Acc, 0.609-0.681 kappa, and 66.7 %-—
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Fig. 4. Confusion matrix of the POxi-SleepNetpr.spo2 model in in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS). This matrix compares the sleep
stages manually scored from PSG with the corresponding automatic assignation using the POxi-SleepNetpg_sp02 model.
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Table 2
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Diagnostic performance of POxi-SleepNetpg_gpo2, POxi-SleepNetpg, and POxi-SleepNetspo2 models in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS)

to automatically classify sleep stages.

DB Model Overall Metrics Per-class F1-score (%)
Acc (%) kappa MF1 (%) w Light Deep REM
CCSHS POxi-SleepNetpg.spo2 84.5 0.779 83.1 93.1 82.0 74.3 83.2
POxi-SleepNetpg 83.6 0.766 82.1 92.3 81.1 74.9 80.3
POXi-SleepNetspoz 74.5 0.636 72.3 86.0 72.4 65.1 65.7
CFS POxi-SleepNetpg.spo2 82.2 0.737 79.4 90.6 79.2 66.0 81.6
POxi-SleepNetpg 79.9 0.702 77.0 88.2 77.1 65.7 77.0
POxi-SleepNetg;02 76.5 0.653 72.9 86.7 73.4 61.6 70.0
CHAT POXi-SleepNetpR_sp02 82.4 0.754 82.7 89.2 79.6 80.8 81.3
POxi-SleepNetpg 81.7 0.745 81.9 88.1 78.9 81.0 79.7
POxi-SleepNetg;02 72.1 0.609 71.7 80.7 70.0 71.7 64.3
MESA POXi-SleepNetpR_spog 83.7 0.743 74.7 90.9 82.1 45.4 80.4
POxi-SleepNetpg 80.7 0.694 71.1 88.3 79.5 42.8 73.9
POxi-SleepNetg,02 77.0 0.638 66.7 85.5 76.0 35.8 69.4
MrOS POxi-SleepNetpg.spo2 84.0 0.742 74.0 91.1 80.8 44.2 80.0
POxi-SleepNetpr 80.4 0.679 68.1 88.4 77.6 37.0 69.6
POxi-SleepNetg,02 80.3 0.681 68.8 88.0 77.3 35.9 73.9
SHHS POxi-SleepNetpg.spo2 81.5 0.726 77.8 89.7 80.3 58.0 83.4
POxi-SleepNetpr 78.6 0.679 74.1 86.8 78.2 53.4 77.7
POxi-SleepNetg,02 75.9 0.640 71.1 84.8 75.4 49.2 74.8

Acc: accuracy, CCSHS: Cleveland Children’s Sleep and Health Study, CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; kappa: Cohen’s kappa
index; MESA: Multi-Ethnic Study of Atherosclerosis; MF1: macro F1-score, MrOS: Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart

Health Study; W: wakefulness.

72.9 % MF1) models in the six test databases.

In section 2 of the supplementary material, we show the high per-
formance of the POxi-SleepNetpg_sp02 model for estimating the TST in
the six test subsets (intra-class correlation coefficient values:
0.703-0.950; 95 % confidence intervals: 85.4 minutes—227.0 minutes).
For a thorough analysis, section 3 of the supplementary material pro-
vides a comparison of the performance metrics of different POxi-
SleepNetpg.spo2 models in the validation set according to their network
structure, number of filters, and filter size (Table S1). Similarly, section
4 of the supplementary material provides the performance of the POxi-
SleepNetpr_spo2 model for 5-class (W, N1, N2, Deep, and REM sleep)
sleep staging, showing a low performance for N1 detection (Table S2 and
Fig. S2) that is in line with previous studies.

In section 5 of the supplementary material, we show and discuss the
sleep staging performance of the POxi-SleepNet models in the whole test
cohort (Table S3) and across the six test subsets by input signal, age, sex,

Table 3

population, and OSA severity subgroups (Tables S4-S9). Interestingly,
the POxi-SleepNetpr and POxi-SleepNetpg.sp02 models showed signifi-
cantly lower performance with increasing age and OSA severity, while
the POxi-SleepNetspo2 models performed significantly —better.
Conversely, sex-related differences in POxi-SleepNet models were
observed in elderly patients (Table S10), with significantly higher Acc in
elderly males and significantly higher MF1 in elderly females.

In section 6 of the supplementary material, we show and discuss the
sleep staging performance of the POxi-SleepNet models by comorbidity
and drug intake subgroups (Tables S11-S21). POxi-SleepNet models
showed a significantly lower performance in patients with atrial fibril-
lation, congestive heart failure, diabetes, and hypertension comorbid-
ities, as well as in patients taking diuretics, betablockers,
benzodiazepines, antidepressants, and antidiabetics drugs.

Diagnostic performance of POxi-SleepNetpg_sp02 models trained using SHO, LOCO, and LOCO-FT in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS)

to automatically classify sleep stages.

DB Model Overall Metrics Per-class F1-score (%)
Acc (%) kappa MF1 (%) w Light Deep REM
CCSHS SHO 84.5 0.779 83.1 93.1 82.0 74.3 83.2
LOCO 83.6 0.768 82.4 92.7 80.8 74.9 81.1
LOCO-FT 84.9 0.785 83.8 93.2 82.3 76.6 82.9
CFS SHO 82.2 0.737 79.4 90.6 79.2 66.0 81.6
LOCO 82.2 0.737 79.8 90.2 79.3 68.8 80.7
LOCO-FT 82.8 0.746 80.4 90.8 79.8 69.3 81.6
CHAT SHO 82.4 0.754 82.7 89.2 79.6 80.8 81.3
LOCO 76.3 0.668 76.4 84.9 74.0 71.3 75.5
LOCO-FT 82.8 0.760 83.2 90.1 79.8 81.1 81.6
MESA SHO 83.7 0.743 74.7 90.9 82.1 45.4 80.4
LOCO 81.1 0.707 74.0 89.2 79.1 48.0 79.5
LOCO-FT 84.1 0.746 73.1 90.8 83.0 37.5 80.9
MrOS SHO 84.0 0.742 74.0 91.1 80.8 44.2 80.0
LOCO 82.9 0.722 72.6 90.0 79.9 42.5 78.1
LOCO-FT 84.2 0.742 73.8 91.1 81.1 42.8 80.1
SHHS SHO 81.5 0.726 77.8 89.7 80.3 58.0 83.4
LOCO 80.0 0.699 74.3 88.8 79.3 47.4 81.5
LOCO-FT 80.6 0.712 76.7 88.9 79.7 56.2 82.0

Acc: accuracy, CCSHS: Cleveland Children’s Sleep and Health Study, CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; kappa: Cohen’s kappa
index; LOCO: Leave-one-cohort-out without fine-tuning; LOCO-FT: LOCO with fine-tuning; MESA: Multi-Ethnic Study of Atherosclerosis; MF1: macro F1-score, MrOS:
Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart Health Study; SHO: Standard Hold out; W: wakefulness.
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3.2. POxi-SleepNet generalization ability

The performance of POxi-SleepNetpgr.spo2 Was assessed using SHO,
LOCO, and LOCO-FT strategies to evaluate its generalization ability
across databases with different age subgroups. Table 3 presents a com-
parison of the performance of POxi-SleepNetpr.sp02 models across the
six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS) when
trained using three SHO, LOCO, and LOCO-FT strategies. Interestingly,
the POxi-SleepNetpg_spo2 models showed a high generalization ability,
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with only minor differences in performance metrics (less than 3 % in
Acc, 0.04 in kappa, and 4 % in MF1) across SHO, LOCO, and LOCO-FT
approaches, except for the CHAT database.

3.3. Seg-Grad-CAM heatmaps interpretation of the POxi-SleepNet models

Fig. 5 shows Seg-Grad-CAM heatmaps obtained for samples of a
representative subject predicted as W and Light sleep stages by the POxi-
SleepNetpg (Fig. 5A-B) and POxi-SleepNets,o2 (Fig. 5C-D) models. Each

A). POxi-SleepNetpr: heatmap for W stage M 1.00
7\ 10 2 0.75
€
280 08 g 050
g 06 § 025
g70 = r . " . . 0.00
% £~4 _____ > 22000 22500 23000 23500 24000 24500 25000
=60 0.2 0.4 107
500 SOIOOI | I 10000 ”l llSDOO 20000 000 0:0 E e
time (seconds) ;cJJ 0.04 1073
Interpretation: High mean and variance in PR § oo i
amplitude, with higher activity in <0.010 Hz band TR R T
time (seconds)
B). POxi-SleepNetpx: heatmap for light sleep stage ®
- . 7/ ™\ " £ 0.8
2380 | o8 g 0.6
£ 06 3 ‘
© 70 , T T T T T
; 0.4 14000 14500 15000 15500 16000 16500 17000
260 - ;_2'"' —10-1
[T | E - o.1s SR R
5000 10000 500 20000 25000 =
time (second: % - 1073
Interpretation: Lower mean in PR amplitude H
than in W, with higher predominance of frequency 00033 s 10

activity in 0.010-0.100 Hz and

C). POxi-SleepNets,q,: heatmap for W stage
N

10000 15000
time (seconds)

Interpretation: High SpO, amplitude, with high

frequency content in <0.010 Hz band

D). POxi-SleepNetso,: heatmap for light sleep stage 100
~\

time (seconds)

Interpretation: Lower SpO, amplitude than in W
with oxygen desaturations, with higher frequency
bands.

content in 0.010-0.050 Hz and

bands.

time (seconds)

L 10-3

Frequency (Hz)

-5

r 1.00
10 r0.75
L%
® L
0.8 0.50
90
0.6 F0.25
5 T T —
0.4 19500 20000 20500 21000
0.2 T 10°1
N
T
>
g .
5]
S
o
o
fing e |
. s -
0.0033 + T -107°

19500 20000 20500 21000 21500 22000 22500 23000 23500
time (seconds)

Fig. 5. Seg-Grad-CAM heatmaps obtained for samples of a representative subject (subject identifier: shhs1-205290) predicted as: (A) Wake by the POxi-SleepNetpr
model, (B) Light sleep by the POxi-SleepNetpr model, (C) Wake by the POxi-SleepNetspo2 model, (D) Light sleep by the POxi-SleepNets,o2 model. Blue lines delineate
the regions of interest containing samples predicted as the corresponding sleep stage.
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heatmap presents a detailed zoom of a relevant area of the recording on
the right, along with the scalogram derived from the CWT, which more
effectively highlights the time-frequency patterns of the PR and SpO,
recordings that the POxi-SleepNet models are focusing on to make the
prediction. Darker areas in the heatmaps indicate greater relevance in
the final decision taken by the POxi-SleepNet model. It is important to
note that these heatmaps emphasize regions with different time and
frequency PR and SpO, features to predict W and light sleep stages.
Mustrative examples of Seg-Grad-CAM heatmaps obtained for samples
classified as each sleep stage (W/Light/Deep/REM) by the POxi- POxi-
SleepNetpr and POxi-SleepNetsp02 models, together with a more
comprehensive visual interpretation of the time and frequency PR and
SpO, features associated with each sleep stage, can be seen in section 5
of the supplementary material (see Figs. S3-S6).

In section 7 of the supplementary material, we also analyze the
complementarity of PR and SpO; signals from some Seg-Grad-CAM
heatmaps of the PulseOxi-SleepNetpg.spo2 model. This analysis shows
that the POxi-SleepNetpr.sp02 model focuses both on PR and SpO; sig-
nals for sleep staging. Specifically, PR signal has a stronger influence (i.
e., higher heatmap amplitude) than SpO for sleep staging, with a main
focus on areas of the PR signal near the regions predicted as each sleep
stage (see Figs. S7-S8). Conversely, the heatmap pattern of the SpO,
signal has a more dispersed distribution, with notable amplitudes spread
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across broader time regions in the sleep recording (see Figs. S7-S8).

3.4. Quantitative identification of time and frequency pulse oximetry
patterns highlighted by Seg-Grad-CAM

To provide a quantitative interpretation of these findings, we sub-
sequently performed a time and frequency analysis of the most impor-
tant stage-related regions in PR and SpO; signals highlighted by Seg-
Grad-CAM analysis of POxi-SleepNetpr and POxi-SleepNetg,o2 models,
respectively. The most important stage-related regions were selected as
those where the heatmap amplitude exceeded 0.5.

Figs. 6A and 7A show the averaged PSDs in the 0-0.400 Hz range
computed from the CWT of the most important regions of PR and SpO,
signals, respectively, to predict each sleep stage in test subjects. Fig. S9
displays the p-values for each frequency of the PSDs of PR (Fig. S9A) and
SpO; (Fig. S9B) signals. Importantly, statistically significant differences
(p-value <0.01) are found in every frequency bin for at least five of the
six sleep stage comparisons for the PR signal and in at least four of the six
comparisons for the SpOj signal. Looking at Figs. 6A and 7A, three
distinct frequency bands can be identified in PR and SpO- signals based
on the predominance of their spectral content in each sleep stage: (i)
0.004-0.020 Hz (BWpr; and BWsp02.1); (i) 0.020-0.100 Hz for PR and
0.020-0.050 Hz for SpO2 (BWpr2 and BWspo2.2); and (iii) 0.180-0.400
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Fig. 7. Quantitative analysis for the most important regions of SpO, signal highlighted by Seg-Grad-CAM to predict Wake, Light sleep, Deep sleep, and REM sleep
stages in test subjects. A) Averaged PSDs in the 0-0.400 Hz range. B) Boxplot distribution of the temporal features (mean, SD, and RMSSD). BWs02.1: 0.004-0.020
Hz; BWsgp02.2: 0.020-0.050 Hz; BWsp02.3: 0.180-0.400 Hz. Time-frequency parameters (PSD, as well as mean, SD, and RMSSD) were calculated from the standardized
SpO, signal. *Statistically significant differences (p < 0.01, Bonferroni correction) between W and Light sleep; {Statistically significant differences (p < 0.01,
Bonferroni correction) between W and Deep sleep; #Statistically significant differences (p < 0.01, Bonferroni correction) between W and REM sleep; §Statistically
significant differences (p < 0.01, Bonferroni correction) between Light and Deep sleep; JStatistically significant differences (p < 0.01, Bonferroni correction) between
Light and REM sleep; *Statistically significant differences (p < 0.01, Bonferroni correction) between Deep and REM sleep.

Hz (BWpRg and BWspoz_g).

Figs. 6B and 7B display the boxplot distribution of the temporal
features (mean, SD, and RMSSD), computed from the most important
stage-related regions of PR and SpO; signals. Interestingly, boxplot
distributions reflect statistically significant differences (p-value <0.01)
in mean, SD, and RMSSD among sleep stages. In section 8 of the sup-
plementary material, we provide the averaged PSDs and boxplot dis-
tribution of the time-domain features obtained for each test database, as
well as by age, gender, and OSA severity subgroups (see Figs. S10-543),
together with a more comprehensive interpretation of the quantitative
identification of time and frequency PR and SpO; features related to
each sleep stage.

4. Discussion

In this study, we generated accurate and highly generalizable DL
models based on U-Net (POxi-SleepNet) for sleep staging in OSA patients
across all age subgroups (children, adolescents, adults, and elderly pa-
tients) while exclusively relying on pulse oximetry signals. We also
offered a detailed interpretation of the stage-related pulse oximetry
patterns identified by the POxi-SleepNet models through an XAI meth-
odology based on Seg-Grad-CAM. This approach enabled us to delineate
key regions within overnight PR and SpO; signals from each patient
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contributing to the prediction of each sleep stage, and to quantitatively
identify the time and frequency characteristics of the pulse oximetry
signals associated with W, light sleep, deep sleep, and REM sleep stages.
This study is, to our knowledge, the first to combine DL and XAI tech-
niques for the automated scoring of sleep stages in OSA patients across
all age subgroups from pulse oximetry signals.

4.1. Sleep staging overall performance

POxi-SleepNet models achieved high performances to automatically
score sleep stages in the six databases. Particularly, the POxi-SleepNet
model using PR and SpO. data (POxi-SleepNetpr.sp02) showed the
highest performance, with 81.5 %-84.5 % Acc, 0.726-0.779 kappa, and
74.0 %-83.1 % MF1 in the CCSHS, CFS, CHAT, MESA, MrOS, and SHHS
databases. Of note, the highest F1-scores were reached for wake stage,
with the deep sleep stage showing the lowest scores. This finding aligns
with the state-of-the-art studies showing a considerable overlap between
light sleep and deep sleep stages (Kotzen et al., 2023), probably due to
the similarity of cardiovascular and respiratory patterns during
non-REM sleep (Qin et al., 2021).

Manual sleep scoring is a highly subjective task. According to Lee
et al. (2022), inter-rater agreement for 5-class sleep scoring is reported
as a kappa of 0.76 (95 % confidence interval, 0.71-0.81). Thus, the
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performance of POxi-SleepNetpr spo2 for 4-class (0.726-0.779 kappa,
Table 2) and 5-class sleep staging (0.675-0.762 kappa, Table S2) is not
far from PSG-based sleep scoring, while pulse oximetry-based scoring
has the advantage that it can be easily integrated with non-invasive
wearable devices to monitor sleep stages in individuals at their home.
Al-derived hypnodensity graphs, which depict the probability distribu-
tion across all sleep stages for each 30-s epoch throughout the night
(Stephansen et al., 2018), have proven valuable for quantifying both
sleep stage ambiguity and stability (Anderer et al., 2023a). They have
proven effective not only in PSG but also in home sleep apnea testing
(HSAT), where sleep staging relies primarily on cardiorespiratory sig-
nals, suggesting that ambiguities between sleep stages are reflected in
both the central and autonomic nervous system activity (Anderer et al.,
2023b). The usefulness of hypnodensity graphs is further reinforced
when applied to multi-scored datasets, where inter-scorer variability can
be explicitly modeled (Anderer et al., 2023b; Fiorillo et al., 2023b).
Specifically, Fiorillo et al. (2023b) demonstrated that integrating mul-
tiple expert annotations during DL model training through label
smoothing and soft-consensus distributions allows models to better
adapt to the consensus of the group of scorers. This approach not only
improves the performance of DL models for sleep staging but also en-
hances the similarity between the model-generated hypnodensity
graphs and those derived from scorer consensus. Hence, the perfor-
mance and clinical applicability of our proposed POxi-SleepNetpr.sp02
model could be enhanced by using hypnodensity graphs and
multi-scored databases.

POxi-SleepNetpr.spo2  outperformed POxi-SleepNetpg and POxi-
SleepNets,02 models in the six test databases, which suggests that SpO,
and PR have complementary information in sleep stage detection, as it
has been suggested in previous studies (Casal et al., 2021, 2022;
Vaquerizo-Villar et al., 2024). This complementarity becomes more
apparent as age and OSA severity increases (see Table S3), which can be
explained by impact of apneic events and sleep fragmentation induced
by OSA and aging, respectively, on PR (induced sympathetic excitation)
and SpO3 (recurrent oxygen desaturations) signals (Choi et al., 2016;
Edwards et al., 2010; Martin-Montero et al., 2023). In this context,
Korkalainen et al. (2021) reported that the current guidelines for sleep
staging may not be appropriate to analyze sleep recordings of patients
with OSA and sleep fragmentation. A comprehensive discussion of sleep
staging performance by input signal, age, sex, and OSA severity subsets
is shown in section 5 of the Supplementary Material.

4.2. Sleep staging performance generalizability across all age subgroups

As aforementioned, the POxi-SleepNetpg.spo2 models showed a high
generalization ability. It is important to note that fine-tuning the models
to a specific cohort (i.e., LOCO-FT approach) leads to a minimal
improvement in model performance, with less than 1 % in Acc and 0.02
in kappa when compared to the SHO approach. Interestingly, LOCO-FT
approach resulted in a lower performance than SHO in the SHHS data-
base, suggesting that cohort-specific sleep staging patterns are well
captured by training the DL models with an extensive range of sleep
databases. This aligns with Fiorillo et al. (2023b), who demonstrated
that incorporating consensus information from multi-scored sleep da-
tabases improves sleep staging performance by reducing inter-rater
variability, and with Fiorillo et al. (2023a), who reported that training
on heterogeneous data from multiple centers consistently leads to better
model performance than using a single cohort. Specifically, Fiorillo et al.
(2023a) evaluated the generalization capability of U-Sleep, a U-Net-like
DL network fed with one EEG and one EOG channel from 28528 PSG
studies from 13 different databases encompassing all age subgroups and
a wide range of sleep disorders. Their proposed DL network was able to
deal with variability in EEG and EOG channel derivations, age, and sleep
disorders. This supports the generalizability of DL models by high-
lighting their stability despite heterogeneity in clinical data.

The generalizability of our proposal is also supported by the minimal
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reduction in model’s performance when using the LOCO approach, with
less than 3 % Acc and 0.04 kappa in all but CHAT database. In the CHAT
database, these differences in performance can be due to the pediatric
patients it is composed of (5-10 years), who present substantial devel-
opmental differences in cardiorespiratory and neurophysiological ac-
tivity, as well as in sleep architecture when compared to adults (Berry
et al., 2018; Goh et al., 2000). Furthermore, the well-known cardiac
cyclical variation in adults with OSA (Guilleminault et al., 1984) pre-
sents a high variability degree in the pediatric population determined by
the type and extent of apneic events (Martin-Montero et al., 2023).
However, these differences seem to disappear during adolescence, given
the slight reduction in performance in CCSHS (16-19 years) using the
LOCO approach. Our findings align with Fiorillo et al. (2023a) , who also
observed a decrease in sleep staging in pediatric subjects when testing a
DL model trained only with adults. This highlights the need to develop
sleep-scoring models including more patients from different age sub-
groups to maximize its universal implementation.

4.3. Seg-Grad-CAM interpretations of the automatic sleep staging models

Some recent works have proposed XAI methodologies to visually
discern those EEG (Dutt et al., 2022; Kuo et al., 2021; Phan et al., 2022;
Vaquerizo-Villar et al., 2023) and pulse oximetry (Vaquerizo-Villar
et al., 2024) patterns considered by DL models to score sleep stages in
adult (Dutt et al., 2022; Kuo et al., 2021; Phan et al., 2022) and pediatric
subjects (Vaquerizo-Villar et al., 2023, 2024). In this study, we introduce
a novel implementation of an XAI method based on Seg-Grad-CAM to
discern the decision-making process of a DL model and to interpret
stage-related pulse oximetry patterns in OSA patients across all age
subgroups. Analyzing the XAI results, it becomes apparent that the
Seg-Grad-CAM-based approach can detect key regions with distinct time
and frequency characteristics within overnight PR and SpO, signals
from each patient used by the POxi-SleepNet models to predict wake-
fulness, light sleep, deep sleep, and REM sleep stages (Figures S2-S5).
The proposed explainability approach also allows us to see the
complementarity of PR and SpO, data for sleep staging (Figures S6-57),
suggesting that sleep staging is performed by first looking at
time-frequency PR patterns close to the sample being predicted and then
looking at long-term dynamics of SpO» (e.g., changes in baseline SpO,
amplitude and presence and depth of oxygen desaturations) when there
exist doubts in the prediction. In light of the reported findings, this
automatic and interpretable sleep scoring tool could contribute to: (i)
the visualization and interpretation of the sleep staging process by sleep
technicians, meeting the recommendations of the EU for Al-based sys-
tems (Hamon et al., 2020); (ii) health recommendation systems inte-
grated into remote servers or portable devices (Chinnasamy et al.,
2023b), providing the automatic sleep stage predictions and
Seg-Grad-CAM heatmaps per subject in a few seconds.

4.4. Identification of time and frequency pulse oximetry features for sleep
scoring

In contrast to previous studies that show qualitative insights based
on some hand-picked examples (Dutt et al., 2022; Kuo et al., 2021; Phan
et al., 2022; Vaquerizo-Villar et al., 2023), we provide, for the first time,
a quantitative interpretation of the physiological features that drive the
POxi-SleepNetpr and POxi-SleepNets,02 models to score each sleep
stage. Table 4 summarizes the main time and frequency characteristics
of PR and SpO; recordings related to each sleep stage. In the frequency
domain, we found three distinct frequency bands within 0.004-0.020 Hz
(BWpRl and BWspog_l), 0.020-0.100 Hz (BWpRg and BWspog_g), and
0.180-0.400 Hz (BWpr3 and BWsp02.3). Regarding BWpg.; and BWspo2.1
bands, we found that: (i) W stage is characterized by a high activity
below 0.010 Hz, which is coherent with the macro-sleep disruption band
reported by Martin-Montero et al. (2023, 2021) (0.001-0.005 Hz); (ii)
REM sleep has the highest activity in the 0.010-0.020 Hz frequency
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Table 4
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Time and frequency characteristics of PR and SpO, signals related to each sleep stage.

Signal  Sleep Features for sleep scoring
stage Time domain Frequency domain
PR w 1 SD compared to non-REM sleep 1 activity in BWpg.; than non-REM sleep, with the highest power in 0.004-0.010
1 RMSSD than in sleep stages (light, deep, and REM sleep) Hz
| BWpg_» and BWpg 3 activity than non-REM sleep
Light | Mean than in deep and REM sleep 1 activity in BWpg.2 and BWpg_3 and | activity in BWpg.; compared to W and REM
sleep | SD than in W and REM sleep stages
| RMSSD than in W 1 activity in 0.020-0.050 Hz compared to deep sleep as OSA severity increases
Deepsleep 1 Mean than in light sleep 1 activity in BWpg.2 and BWpg_3 and | activity in BWpg.; compared to W and REM
| SD than in W and REM sleep. sleep.
| RMSSD than in W 1 BWpg 3 activity compared to light sleep
REM sleep 1 Mean than in light sleep 1 activity in BWpg. and | BWpg 5 and BWpg_3 activity compared to non-REM sleep.
1 SD compared to non-REM sleep. Highest activity in 0.010-0.020 Hz, particularly with increasing OSA severity
| RMSSD than in W | BWpg.3 activity than in W except in children
SpO, w | Mean value than in light and REM sleep stages (probably due to 1 activity in BWg,02.1 than non-REM sleep, with the highest power in 0.004-0.010
artifacts). Hz
1 SD compared to non-REM sleep. | BWgp02-2 and BWg,02.3 activity than non-REM sleep
Light 1 Mean than in deep sleep 1 BWsp02.3 and | BWgp02.1 activity compared to W and REM stages
sleep | SD than in W except in severe OSA. 1 activity in BWspo2.2 compared to W
| RMSSD than in REM sleep 1 activity in 0.020-0.050 Hz compared to deep and REM sleep as OSA severity
increases
Deep sleep | Mean than in light and REM sleep 1 BWsp023 and | BWsp02.1 activity compared to W and REM sleep
| SD than in light and REM sleep | BWgp02-2 and T BWgp02-3 activity compared to light sleep with increasing OSA
severity
REM sleep 1 Mean than in deep sleep. 1 activity in BWspo2.1 than non-REM sleep

1 SD compared to non-REM sleep
1 RMSSD than in light sleep

Highest activity in 0.010-0.020 Hz, particularly with increasing OSA severity

1: Significant increase in activity (e.g., BWspo2.3 frequency band) or metric value (e.g., mean/SD/RMSSD) compared to the referenced sleep stage(s); J: Significant
decrease in activity (e.g., BWspo2.1) or metric value (e.g., mean/SD/RMSSD) compared to the referenced sleep stage(s); OSA: obstructive sleep apnea; PR: pulse rate;
REM: rapid eye movement; RMSSD: root mean square of successive differences; SD: standard deviation; SpO,: blood oxygen saturation; W: wake.

range, particularly with increasing OSA severity (Figures S21-524 and
Figures S38-S41), which is related to apneic events of long duration that
impose more severe health outcomes to OSA patients (Anderer et al.,
2023b; Bonsignore et al., 2024; Varga and Mokhlesi, 2019). Regarding
BWpg.2 and BWs,02.2, its higher spectral content during light sleep and
deep sleep is associated with the intrinsic depression of sympathetic
nervous system during these sleep stages that makes it easier to differ-
entiate OSA sympathetic excitation during these sleep stages
(Martin-Montero et al., 2023). This agrees with the spectral power in-
crease in this band during non-REM sleep (mainly light sleep) with
increasing OSA severity (Figures 521-524 and Figures S38-541), and is
also consistent with previous studies that have found spectral bands
within these ranges related to OSA and its severity in both pediatric and
adult subjects (Alvarez et al., 2013; Gutiérrez-Tobal et al., 2015; Mar-
tin-Montero et al., 2021; Vaquerizo-Villar et al., 2018). Finally, BWpg3
and BWs,02.3 are characterized by a higher content during non-REM
sleep (light and deep sleep), which is coherent with the
respiratory-modulated bands found in previous studies (Martin-Montero
et al., 2021, 2023) and reflect the characteristic parasympathetic acti-
vation during these stages (Qin et al., 2021).

In the time domain, mean and variability (SD and/or RMSSD) in PR
and SpO, amplitude also show differences among sleep stages
(Figs. 6-7). First, we found that mean PR amplitude is significantly
lower on light sleep when compared to deep and REM sleep, while SpO,
baseline amplitude is lower in deep sleep than in light and REM sleep
across all subgroups. To our knowledge, these pulse oximetry patterns
had not been previously reported as important for sleep staging.
Regarding variability, SD in PR and SpOy is significantly higher during
W compared to non-REM sleep and RMSSD in PR is significantly higher
during W compared to sleep across all subgroups (Figures S8-541).
Similarly, REM is characterized by a higher variability in PR and SpO,
than during non-REM sleep for all subgroups (Figures S8-S41). In the
presence of high sympathetic activity and low parasympathetic activity,
SD in PR is increased (Shaffer and Ginsberg, 2017). Thus, the altered
sympathetic activity and reduced parasympathetic activity during W
and REM seems to be behind PR higher variability compared to
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non-REM, where this trend is reverted.

Taken together, our results show that the model is focusing on not
only well-known stage-related patterns but also on OSA-specific alter-
ations and novel PR and SpO; patterns that have not been previously
reported as important for sleep staging. This paves the way for devel-
oping new guidelines for annotating sleep stages in widely used at-home
polygraphy studies that do not record EEG.

4.5. Comparison with previous studies

There are various recent investigations applying DL techniques to
pulse oximetry signals for automatic sleep staging (Faust et al., 2019),
with some of them using OSA patient datasets (Casal et al., 2021, 2022;
Haimov et al., 2025a; Huttunen et al., 2021, 2022; Korkalainen et al.,
2020; Kotzen et al., 2023; Nam et al., 2024; Radha et al., 2021; Sridhar
et al., 2020; Vaquerizo-Villar et al., 2024; Wulterkens et al., 2021). Some
studies have just approached the differentiation between wake and sleep
stages (W/S) (Casal et al., 2021, 2022), whereas the majority of them
have targeted 3-class (W/non-REM sleep/REM sleep) or 4-class (W/light
sleep/deep sleep/REM sleep) sleep staging (Haimov et al., 2025a; Hut-
tunen et al., 2021, 2022; Korkalainen et al., 2020; Kotzen et al., 2023;
Nam et al., 2024; Radha et al., 2021; Sridhar et al., 2020). Table 5
outlines a comparison between our proposed methodology and earlier
research works centered on automatic 4-class sleep staging in OSA co-
horts across diverse age groups using only pulse oximetry recordings
(PPG, PR, and/or SpO,) (Huttunen et al., 2021, 2022; Korkalainen et al.,
2020; Kotzen et al., 2023; Nam et al., 2024; Radha et al., 2021; Sridhar
et al., 2020; Vaquerizo-Villar et al., 2024). Interestingly, the current
study achieved a similar performance than the reported by Nam et al.
(2024) and Kotzen et al. (2023), but with a slightly higher generalization
ability, suggesting that PR and SpO, recordings provide the same in-
formation as PPG for sleep staging while presenting less heterogeneity
among different recording devices. In contrast to PPG-based approaches,
our proposal is easier to be implemented and tested in portable moni-
toring equipment that store only PR and SpO, data. Furthermore, our
proposal demonstrated higher performance and generalization ability
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Table 5
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Diagnostic performance of state-of-the-art approaches in automatic sleep staging in OSA cohorts across various age subgroups from pulse oximetry signals.

Study Databases (Name/Age Sleep stage AHI (e/ N Signals Methodology (DL: key components/ 4-class Acc/kappa
range (subgroups)) b.alance w/ h) (Total/ Validation/XAI) SHO LOCO LOCO-
Light/Deep/ Test) FT
REM)
Sridhar et al. MESA/54-90 years 42/41/5/10% 18 2033/ HR® CNN: convolutions and dilated convolutions/ 80/ - -
(2020) (adults) [10-33]* 194 SHO, LOCO/- 0.69
SHHS/40-90 years 30/43/11/ 13 8299/ 77/ - -
(adults) 14% [7-24]1* 800 0.66
Physionet/20-84 years 29/50/10/ 19 (14)k 993/ - 72/ -
(adults)® 11° 993 0.55
Radha et al. Private/41-66 years 15/45/22/ J 101/ pPPGY¢ HRYV features and RNN/SHO, LOCO, LOCO- 70/ 72/ 76/
(2021) (adults) 18+ 101 FT/- 0.55 0.55 0.65
Korkalainen Private/44-66' years 33/42/13/ 16 894/89 PPG CNN and RNN/SHO, LOCO-FT/- 69/ - 69/
et al. (2020) adults 12% [7-33] 0.54 0.54%*
Huttunen et al. Private/44-66 ! years 33/42/13/ 16 877/88 PPG CNN and RNN/LOCO-FT/- - - 74/
(2021) adults © 12* [7-33] 0.64
Huttunen et al. Private/44-66 ! years 33/42/13/ 16 877/88 PPG, U-Net: convolutions and dilated convolutions/ 75/ - 75/
(2022) adults 12% [7-33] SpO, SHO, LOCO-FT/ 0.63* 0.63**
Kotzen et al. CFS/7-89 years (251 34/39/12/17 5[2-16]* 320/ PPG! SleepPPGNet: residual convolutions, dense - 76/ 82/
(2023) adults, 40 adolescents, 320 layers, and dilated convolutions/SHO, LOCO, 0.67 0.74
and 33 children) f&" LOCO-FT/-
MESA/54-90 years 37/43/5/11 18 2054/ 84/ - 84/
(adults)” [10-33]* 204 0.75 0.75%*
Nam et al. CFS/7-89 years (251 34/39/12/17 5[2-16]7 320/ PPG InsightSleepNet: local attention, - - 81/
(2024) adults, 40 adolescents, 320 InceptionTime, a time-distributed dense layer, 0.72
and 33 children) %8 a temporal convolutional network, and CNN
MESA/54-90 years 37/43/5/11 18 2054/ modules/SHO, LOCO-FT/Attention scores: 84/ - 84/
(adults) [10-33]* 204 visual analysis 0.74 0.74**
CAP/14-82 years (101 14/39/25/15 J 24/24 - - 81/
adults and 7 0.73
adolescents)
Vaquerizo CHAT/5-10 years 23/39/23/14 3 [1-6] 1633/ PR, U-Net: convolutions/SHO/Seg-Grad-CAM: 78/ - -
et al. (2024) (children) 858 SpO, visual analysis 0.70
This study CCSHS/16-20 years 29/39/15/15 1[0-2] 515/ PR, U-Net (POxi-SleepNet): convolutions/SHO, 85/ 84/ 85/
(adolescents) 258 SpO, LOCO, LOCO-FT/Seg-Grad-CAM: visual 0.78 0.77 0.79
CFS/7-89 years (587 36/39/12/12 5 [2-16] 730/ analysis and quantitative analysis 82/ 82/ 83/
adults, 96 365 0.74 0.74 0.75
adolescents, and 47
children)
CHAT/5-10 years 23/39/23/14 3 [1-6] 1633/ 82/ 76/ 83/
(children) 858 0.75 0.67 0.76
MESA/54-90 years 42/41/5/10 18 2056/ 84/ 81/ 84/
(adults) [10-33] 1028 0.74 0.71 0.75
MrOS/65-90 years 47/37/4/10 17 3915/ 84/ 83/ 84/
(adults) [9-30] 2049 0.74 0.72 0.74
SHHS/40-90 years 30/43/11/14 13 8444/ 82/ 80/ 81/
(adults) [7-24] 5298 0.73 0.70 0.71

Acc: accuracy; AHI: apnea-hypopnea index; CCSHS: Cleveland Children’s Sleep and Health Study; CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy
Trial; CNN: Convolutional neural network; e/h: events per hour of sleep; HRV: heart rate variability; kappa: Cohen’s kappa index; LOCO: Leave-one-cohort-out without
fine-tuning; LOCO-FT: LOCO with fine-tuning; MESA: Multi-Ethnic Study of Atherosclerosis; MrOS: Osteoporotic Fractures in Men Study; N: number of sleep studies;
PPG: photoplethysmography; PR: pulse rate; REM: rapid eye movement; RNN: recurrent neural network; Seg-Grad-CAM: semantic segmentation via gradient-weighted
class activation mapping; SHHS: Sleep Heart Health Study; SHO: standard hold out; SpO,: blood oxygen saturation; W: wake; XAI: explainable artificial intelligence.
* Computed from reported data; ** DL model was trained and assessed using different subjects of the same cohort; * Computed from as the values for CFS, MESA, and/
or SHHS in our study; ® Computed from reported data in https://physionet.org/content/challenge-2018,/1.0.0/. ¢ HR= Heart rate derived from electrocardiogram
(ECG) signal; ¢ 584 ECG recordings from the Siesta database (20-95 years) were used for pretraining in LOCO and LOCO-FT approaches; ¢ A private database with 2149
PPG recordings was used for pretraining the DL model; { CFS database contains 750 sleep studies, but authors only used 324 (251 adults/40 adolescents/33 children),
presumably those containing valid PPG signal; 8 Computed from available demographic data from those subjects from CFS containing PPG; " 5767 ECG recordings from
SHHS were used for pretraining the DL model; ! Computed from reported data in in https://physionet.org/content/capslpdb/1.0.0/; Not available; ¥ Value expressed

as mean (std). ! Value expressed as interquartile range.

than other studies, particularly Sridhar et al. (2020) in the MESA and
SHHS databases, and Vaquerizo-Villar et al. (2024) in the CHAT data-
base. This underscores the suitability of the proposed DL model,
POxi-SleepNet, which was designed and tested using PR and SpO; re-
cordings from 17303 sleep studies of six different datasets (including
611 adolescents and 1680 children). Additionally, we introduced a
novel XAI analysis methodology that provides qualitative and quanti-
tative identification of the PR and SpO; characteristics considered by the
POxi-SleepNet models for detecting each sleep stage using
Seg-Grad-CAM, thus improving its clinical relevance.
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4.6. Limitations and future work

It is important to mention several limitations of our research. First,
despite a large sample size (n = 17303), most of the patients were adults
(n = 15623 vs. n = 1680 children), with only one pediatric database
available. This circumstance may have caused a decline in performance
on the CHAT database when using the LOCO approach. This limitation is
also present in existing studies aimed at sleep staging across various age
groups (Fiorillo et al., 2023a; Perslev et al., 2021), which also relied
solely on CHAT for pediatric sleep scoring due to the lack of alternative
publicly available pediatric sleep datasets. Thus, the inclusion of in-
cremental pediatric datasets would be advantageous for enhancing the
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generalizability of our proposal, making it more applicable for simpli-
fying the sleep staging process across a wider range of patients. Simi-
larly, multi-scored sleep databases could help the performance of our
proposal, as shown in recent EEG-based sleep staging approaches
(Fiorillo et al., 2023b). Conversely, our approach has been restricted to
OSA cohorts. Thus, further research is also required to validate our
proposal for sleep staging in patient cohorts encompassing other sleep
disorders, such as insomnia (Tripathi et al., 2022), narcolepsy
(Stephansen et al., 2018), or REM sleep disorder (Levendowski et al.,
2023), for which sleep staging has already been explored in these prior
studies. This step is essential to ensure the applicability of our proposal
across a broad range of clinical populations with suspected sleep dis-
orders. Another limitation is that we did not measure the uncertainty in
the model’s decisions. In this respect, the quantification of model’s
uncertainty could help to identify most of the epochs wrongly classified
and subsequently enhance sleep scoring, as shown in recent EEG (Phan
et al., 2022) and PPG-based (Nam et al., 2024) sleep staging approaches.
Furthermore, while we have shown that Seg-Grad-CAM heatmaps can
help to provide a quantitative identification of time and frequency
patterns of the PR and SpOs recordings influencing stage predictions,
other XAI methods such as SHAP could be explored in future research.
SHAP has been shown to aid in developing accurate and interpretable
sleep staging models (Krauss et al., 2025; Wang et al., 2025), albeit with
increased computational demands. Finally, another potential future aim
could be to evaluate the proposed approach using ambulatory PR and
SpO; recordings, together with a full-scale software application that
shows sleep stage predictions within a hypodensity graph. Notably,
ambulatory EEG recordings have been successfully tested for automatic
sleep staging in OSA patients (Kalevo et al., 2022). Building on this, our
approach could potentially offer real-time sleep stage scoring and
Seg-Grad-CAM heatmap visualizations for each subject, delivered to the
clinicians within seconds, thereby enhancing its applicability in clinical
settings.

4.7. Conclusions

In summary, a novel U-Net-based model fed with PR and SpO- sig-
nals (POxi-SleepNetpr.sp02) showed remarkably high precision perfor-
mance and generalization ability in the scoring of sleep stages in 17303
sleep recordings from OSA patients across all age groups. Utilizing both
PR and SpO. signals proved to be complementary and increased the
model performance than using each signal separately. In addition, a XAI
analysis based on Seg-Grad-CAM enabled to recognize and quantify the
time and frequency patterns of the overnight PR and SpO, signals that
drive the DL model to predict W, light sleep, deep sleep, and REM sleep
stages. Specifically, changes in the mean and variability in PR and SpO,
amplitude, alongside changes in the spectral power of PR and SpO,
within 0.004-0.020 Hz, 0.020-0.100 Hz, and 0.180-0.400 Hz bands,
showed differences among sleep stages. Thus, we conclude that our
approach combining DL and XAI analysis to process pulse oximetry
signals may ease its integration in real healthcare environments for
automated sleep staging in all individuals being evaluated for suspected
OSA, irrespectively of their age.
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