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A B S T R A C T

Deep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2) 
recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) pa
tients. However, lack of interpretability and validation across patients from a wide range of ages (children, 
adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the 
U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep, 
deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO2 signals. 
An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted 
class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency 
characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO2 
signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA 
individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with 
accuracies between 81.5 % and 84.5 % and Cohen’s kappa values from 0.726 to 0.779. It also demonstrated 
greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability 
in PR and SpO2 amplitude, as well as changes in their spectral content across specific frequency bands 
(0.004–0.020 Hz, 0.020–0.100 Hz, and 0.180–0.400 Hz), for sleep stage classification. These findings indicate 
that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in 
clinical settings.

1. Introduction

Identification of sleep stages is crucial for the assessment and diag
nosis of sleep-related disorders (Sateia, 2014). According to the guide
lines established by the American Academy of Sleep Medicine (AASM), 
each 30-s non-overlapping epoch of sleep recordings must be classified 
as: wake (W), three levels of non-rapid eye movement (non-REM) sleep 
(N1, N2, and N3), or REM sleep (Berry et al., 2018). Sleep technologists 
conduct this scoring manually by analyzing electroencephalography 
(EEG), electrooculography (EOG), and submental electromyography 
signals, along with cardiorespiratory data collected during overnight 

polysomnography (PSG) (Berry et al., 2018). Despite being the gold 
standard, PSG is complex, expensive, highly intrusive, time-consuming, 
and of limited availability, which delays the diagnosis of sleep disorders 
(Chang et al., 2023). In addition, manual sleep staging is a tedious and 
time-intensive procedure, taking on average 1.5–2 h per PSG study, and 
is subject to considerable inter-scorer variability, thereby potentially 
compromising diagnostic accuracy (Fiorillo et al., 2019). Therefore, the 
adoption of automated sleep staging, utilizing a minimal number of 
channels, is recommended to improve consistency, streamline the pro
cess, and lower associated costs.

Recent progress in artificial intelligence (AI) methodologies have led 
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to the proposal of multiple alternatives for sleep staging relying on the 
automated processing of a reduced subset of PSG signals (Faust et al., 
2019). Among these methods, pulse oximetry has been extensively 
researched as a surrogate for PSG in sleep scoring and the diagnosis of 
sleep disorders (Baumert et al., 2022; del Campo et al., 2018; Imtiaz, 
2021), as it can monitor individuals at their home using low-cost 
wearable devices. These devices consist of a non-invasive watch or 
finger probe equipped with an optical sensor that measures the photo
plethysmography (PPG) signal, which is utilized to calculate pulse rate 
(PR) and blood oxygen saturation (SpO2) (Chan et al., 2013). Overnight 
SpO2 and PR raw data are stored by the pulse oximeters, facilitating 
offline analysis for the assessment of sleep quality and any other relevant 
abnormalities. The time and frequency characteristics of PPG and 
derived PR and SpO2 signals exhibit changes across different sleep 
stages, prompting recent investigations into the application of AI 
methods for the automatic scoring of sleep stages using only pulse ox
imetry signals (Baumert et al., 2022; Imtiaz, 2021).

A considerable proportion of these works have focused on patient 
cohorts with obstructive sleep apnea (OSA) (Huttunen et al., 2021, 
2022; Korkalainen et al., 2020; Kotzen et al., 2023; Radha et al., 2021; 
Sridhar et al., 2020; Vaquerizo-Villar et al., 2024; Wulterkens et al., 
2021), a prevalent condition impacting approximately 1 billion in
dividuals worldwide and affecting the entire lifespan (Benjafield et al., 
2020; Chang et al., 2023). The diagnosis of OSA depends on the 
apnea-hypopnea index (AHI) that measures the number of apneas and 
hypopneas per hour of sleep (Berry et al., 2018; Chang et al., 2023), 
thereby emphasizing the importance of accurately scoring sleep stages 
in order to calculate the total sleep time (TST) and the clustering of any 
particular abnormality within a given sleep stage. Several investigations 
have targeted sleep scoring in adult (Huttunen et al., 2021, 2022; Kor
kalainen et al., 2020; Radha et al., 2021; Sridhar et al., 2020) or pedi
atric OSA (Haimov et al., 2025a; Vaquerizo-Villar et al., 2024) cohorts 
using pulse oximetry signals, but only Kotzen et al. (2023), Nam et al. 
(2024) and Wulterkens et al. (2021) approached sleep staging in pa
tients across various age groups. However, the number of child
ren/adolescents (n = 73 (3.1 %) out of 2380 (Kotzen et al., 2023), n = 80 
(3.2 %) out of 2488 (Nam et al., 2024), and n = 54 (6.5 %) out of 835 
(Wulterkens et al., 2021)), was limited. Including a larger proportion of 
pediatric individuals is essential because pediatric OSA subjects have 
specific considerations in terms of etiology, diagnosis, and treatment 
compared to adults (Chang et al., 2023), alongside substantial devel
opmental differences in sleep architecture (e.g., higher proportion of 
deep sleep) and cardiorespiratory activity (e.g., less recurrent an pro
found desaturations and bradycardias) (Berry et al., 2018; Goh et al., 
2000; Guilleminault et al., 1984). Given that OSA affects the entire 
lifespan, there is an inherent interest in developing automatic sleep 
scoring models that encompasses all individuals irrespective of their 
age.

In the last few years, automatic sleep scoring is living substantial 
progresses, largely attributed to advancements in deep-learning (DL) 
approaches, which have demonstrated efficacy in automatically 
learning stage-related features from raw data (Faust et al., 2019). Initial 
DL-based approaches performed sleep staging mainly using convolu
tional neural networks (CNNs) and recurrent neural networks (RNNs), 
which were fed with sequences of 30-s epochs from PPG, PR and/or 
SpO2 recordings (Huttunen et al., 2021; Korkalainen et al., 2020). More 
recent studies have shifted towards utilizing entire overnight recordings 
for sleep staging, thereby enabling the consideration of the whole-night 
dynamics of pulse oximetry during sleep to score sleep stages in each 
input sample (Casal et al., 2021, 2022; Huttunen et al., 2022; Kotzen 
et al., 2023; Sridhar et al., 2020; Vaquerizo-Villar et al., 2024). These 
studies focused on encoder-decoder networks comprising convolutional 
layers, inspired on the U-Net framework (Ronneberger et al., 2015), 
initially designed for image segmentation, yet adaptable for point-wise 
prediction (i.e., per-sample identification) of sleep stages (Fiorillo 
et al., 2023a; Huttunen et al., 2022; Perslev et al., 2021; Sridhar et al., 

2020; Vaquerizo-Villar et al., 2024). Perslev et al. (2021) and Fiorillo 
et al. (2023a) also showed the generalizability of U-Net architectures for 
sleep scoring across various age groups and sleep disorders from 
whole-night EEG recordings.

Despite the success of DL algorithms in sleep staging, their “black 
box” nature hinders acceptance in healthcare (Adadi and Berrada, 2018; 
Yang et al., 2022), where understanding the rationale behind pre
dictions is crucial. This challenge extends beyond sleep staging; for 
instance, in health recommendation systems, the lack of transparency 
can impede trust and adoption, even when the system offers accurate 
predictions (Chinnasamy et al., 2023a). In this context, explainable 
artificial intelligence (XAI) methodologies have recently emerged to 
introduce transparent and understandable recommendations to health
care professionals and patients based on complex AI-based models 
(including DL) (Adadi and Berrada, 2018; Yang et al., 2022). In the field 
of sleep staging, several recent works have proposed XAI methodologies 
to visually discern those EEG patterns considered by DL models (Dutt 
et al., 2022; Kuo et al., 2021; Phan et al., 2022; Vaquerizo-Villar et al., 
2023) for sleep staging. Nonetheless, only Nam et al. (2024) and 
Vaquerizo-Villar et al. (2024) have used XAI approaches to interpret DL 
models aimed at sleep staging from pulse oximetry signals. In this 
respect, a recent study by Nam et al. (2024) analyzed the local attention 
module to provide interpretability to the DL model predictions. Simi
larly, a recent conference paper developed by our own group signals 
(Vaquerizo-Villar et al., 2024) has provided some qualitative insights on 
the sleep scoring process through the application of semantic segmen
tation via gradient-weighted class activation mapping (Seg-Grad-CAM), 
a common XAI algorithm for semantic segmentation tasks (e.g., sleep 
staging) in CNN-based models (Vinogradova et al., 2020). However, 
these works offered only a visual XAI-derived interpretation of some 
selected examples from a DL model targeting sleep staging in OSA co
horts (Nam et al., 2024; Vaquerizo-Villar et al., 2024), without 
providing quantitative evidence of the pulse oximetry characteristics 
linked with each sleep stage. A quantitative analysis interpretation could 
not only align the model’s behavior with the current knowledge of pulse 
oximetry features related to each sleep stage, while also uncovering 
novel patterns related to these stages.

Based on the aforementioned factors, we hypothesized that the 
application of a U-Net DL model, along with the Seg-Grad-CAM XAI 
algorithm, will yield models that are not only highly accurate and 
generalizable but also interpretable, making them clinically applicable 
for automated sleep stage staging in individuals of all age groups. 
Consequently, the main objectives of this study were twofold: (i) to 
develop and evaluate an interpretable and generalizable DL model 
capable of accurately classifying W, light sleep (N1 and N2), deep sleep 
(N3), and REM sleep stages within the OSA context in subjects of all ages 
from pulse oximetry data; (ii) to quantitatively identify key time and 
frequency-domain features from PR and SpO2 signals that contribute to 
sleep staging.

Fig. 1 presents a general scheme of the proposed approach. The 
present study presents the following major contributions: 

• A new DL model based on the U-Net architecture, POxi-SleepNet, is 
developed for sleep scoring in OSA patients using whole-night PR 
and SpO2 signals.

• A comprehensive evaluation of the generalizability of POxi-SleepNet 
across six independent databases encompassing all age subgroups 
(children, adolescents, adults, and elderly).

• An XAI methodology relying on Seg-Grad-CAM to identify the key 
regions of overnight PR and SpO2 signals from each patient that 
POxi-SleepNet models consider to predict W, light sleep, deep sleep, 
and REM sleep stages.

• A quantitative time- and frequency-domain analysis of the key re
gions highlighted by Seg-Grad-CAM to discern the PR and SpO2 
features associated with each sleep stage.
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2. Methods

2.1. Subjects and signals

A total of 17303 PSG studies with valid pulse oximetry (PR and SpO2) 
signals from 13222 participants of six different semi-public datasets 
composed the population under study: (i) the Cleveland Children’s Sleep 
and Health Study (CCSHS), containing 515 recordings of adolescents 
aged 16–19.9 years (Rosen et al., 2003); (ii) the Cleveland Family Study 
(CFS), totaling 730 recordings of patients aged 7–89 years (Redline 
et al., 1995); (iii) the Childhood Adenotonsillectomy Trial (CHAT), 
which includes 1633 valid pulse oximetry recordings from pediatric 
subjects aged 5–9.9 years (Marcus et al., 2013); (iv) the Multi-Ethnic 
Study of Atherosclerosis (MESA), totaling 2056 recordings of patients 
aged over 54 years (Chen et al., 2015); (v) the Osteoporotic Fractures in 
Men Study (MrOS), containing 3925 recordings of patients aged over 67 
years (Blackwell et al., 2011); and (vi) the Sleep Heart Health Study 
(SHHS), containing 8444 recordings of patients aged over 40 years 
(Quan et al., 1997). All these databases are publicly available upon 
request on the National Sleep Research Resource (NSRR) repository 
(https://sleepdata.org/datasets). The main information regarding 
rationale, design, primary outcomes, and sleep recordings of these da
tabases can be consulted in sections 1.1-1.6 of the supplementary ma
terial, while the full details are available on the specific database 
websites at NSRR (CCSHS: https://sleepdata.org/datasets/ccshs; CFS: 
https://sleepdata.org/datasets/cfs; CHAT: https://sleepdata.org/data 
sets/chat; MESA: https://sleepdata.org/datasets/mesa; MROS: https: 
//sleepdata.org/datasets/mros; SHHS: https://sleepdata.org/dataset 
s/shhs).

All sleep studies (i.e., PSGs) were performed to confirm or discard 
OSA according to AASM guidelines (Iber et al., 2007), being the full 
details of PSG recordings available on the specific database websites at 
NSRR. Specifically, each sleep study from the six databases (CCSHS, 
CFS, CHAT, MESA, MrOS, and SHHS) provides PSG-derived PR and SpO2 
data, as well as annotations for sleep stages and apnea/hypopnea events 

(see sections 1.1-1.6 of the supplementary material). Each dataset was 
randomly split, on a per-subject basis, into three sets: (i) training (up to 
50 % of subjects), used to train the POxi-SleepNet models; (ii) validation 
(approximately 25 % of the amount of training subjects), used for 
adjusting regularization and monitoring model convergence; and (iii) 
test (at least 50 % of subjects), used for performance evaluation and 
interpretation. Table 1 shows the clinical and polysomnographic data of 
the six databases analyzed, with further information provided in sec
tions 1.1-1.6 of the supplementary material.

2.2. Signal preprocessing

PR and SpO2 recordings, initially recorded at sampling frequencies 
(fs) from 1 to 512 Hz, were first resampled to a uniform fs of 1 Hz 
(Vaquerizo-Villar et al., 2024). Subject-specific standardization was 
then applied to normalize the baseline levels of PR and SpO2 signals 
across different subjects (Casal et al., 2021). In accordance with the 
input size of the POxi-SleepNet models and the total recording time of 
the sleep studies (see Table 1), all PR and SpO2 standardized recordings 
were finally padded or truncated to a common length of 12 h (L = 43200 
samples) (Kotzen et al., 2023; Vaquerizo-Villar et al., 2024). 
Zero-padding or truncation was only performed at the onset of each 
pulse oximetry recording, with a duration of 12 h selected to ensure that 
only the initial wake periods were either added or removed. Each sample 
was then assigned to one of the sleep stages—wake, light sleep, deep 
sleep, or REM sleep—based on the annotations for the corresponding 
30-s epochs.

2.3. DL architecture: POxi-SleepNet

POxi-SleepNet leverages the U-Net architecture, originally designed 
for image segmentation (Ronneberger et al., 2015), but which has 
shown its usefulness for sleep staging (Huttunen et al., 2022; Perslev 
et al., 2021; Sridhar et al., 2020). Fig. 2 illustrates the specific config
uration of the POxi-SleepNet architecture used in this study for sleep 

Fig. 1. Flowchart of the proposed methodology.

Table 1 
Clinical and polysomnographic data of the six databases under study.

CCSHS CFS CHAT MESA MrOS SHHS

Subjects (n) 515 730 1633 2056 3925 8444
Age (years) 18 [17–18] 44 [23–55] 7 [6–8] 68 [62–76] 77 [73–82] 65 [56–73]
Males (n) 260 (50.5) 329 (45.1) 776 (47.5) 954 (46.4) 3925 (100) 3986 (47.2)
AHI (e/h) 0.8 [0.3–1.8] 5.2 [1.7–15.9] 2.5 [1.1–5.9] 18.4 [9.5–33.3] 17.0 [9.0–30.0] 13.3 [6.7–24.0]
TRT (h) 11.2 [10.8–11.7] 9.9 [9.3–10.4] 9.8 [9.1–10.8] 10.0 [9.5–12.0] 11.2 [10.0–12.4] 8.8 [8.5–9.1]
Wake (%) 29.3 [23.5–35.4] 35.8 [27.9–44.3] 22.8 [15.8–29.4] 41.7 [33.1–50.8] 46.6 [38.6–55.4] 30.4 [22.3–39.3]
Light (%) 39.4 [34.3–44.2] 38.8 [31.1–45.7] 38.7 [33.0–44.5] 41.3 [34.6–48.2] 37.1 [30.7–43.6] 43.1 [35.3–50.7]
Deep (%) 15.3 [12.0–19.2] 11.8 [6.3–17.8] 23.1 [19.5–27.8] 4.5 [1.1–9.1] 4.2 [1.3–8.3] 11.0 [5.1–16.9]
REM (%) 14.5 [11.8–17.5] 11.5 [8.0–15.1] 14.1 [11.6–16.8] 10.4 [7.0–13.8] 9.9 [7.0–13.0] 13.8 [10.1–17.4]
Training (n) 200 (38.8 %) 271 (37.1 %) 575 (35.2 %) 768 (37.4 %) 1409 (35.9 %) 2368 (28.0 %)
Validation (n) 57 (11.1 %) 94 (12.8 %) 200 (12.2 %) 260 (12.6 %) 467 (11.9 %) 778 (9.2 %)
Test (n) 258 (50.1 %) 365 (50.0 %) 858 (52.5 %) 1028 (50.0 %) 2049 (52.2 %) 5298 (62.7 %)

Data are presented as median [interquartile range], n, or n (%).
AHI: apnea-hypopnea index; CCSHS: Cleveland Children’s Sleep and Health Study; CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; e/h: 
events per hour, h: hour; MESA: Multi-Ethnic Study of Atherosclerosis, MrOS: Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart 
Health Study; TRT: total recording time.
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Fig. 2. Overview of the proposed POxi-SleepNet architecture for sleep staging.

Fig. 3. Proposed approach for assessing the performance and generalization ability of the POxi-SleepNet architecture. (A) Division of the six databases (CCSHS, CFS, 
CHAT, MESA, MrOS, and SHHS) into training, validation, and test sets; (B) Standard hold-out strategy; (C) Leave-one-cohort-out (LOCO) without a fine-tuning 
strategy; (D) LOCO with fine-tuning (LOCO-FT) strategy. train: training; valid: validation.
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staging, which is based on previous works (Huttunen et al., 2022; Per
slev et al., 2021). In this study, three POxi-SleepNet architectures were 
developed with different input signal configurations: (i) POx
i-SleepNetPR-SpO2 (PR and SpO2 data); (ii) POxi-SleepNetPR (only PR 
data); (iii) POxi-SleepNetSpO2 (only SpO2 data). Thus, the input section 
of POxi-SleepNet consists of NsxL samples (12-h of data), being Ns = 1 
(POxi-SleepNetPR and POxi-SleepNetSpO2) or Ns = 2 
(POxi-SleepNetPR-SpO2).

The input is initially processed by an encoder composed of four 
layers, aimed at extracting low-level features related to sleep stages from 
PR and SpO2 signals. Each layer comprises a convolutional block (conv 
block), followed by max-pooling and dropout layers. Within each conv 
block, there are three sequential sub-blocks, each performing a 2D 
convolution with Nf filters and a kernel size of NsxK, as well as applying 
a rectified linear unit (ReLU) activation function and batch normaliza
tion. According to the standard U-Net design, Nf is initially set as 64 and 
is subsequently doubled at each layer of increased depth. The dropout 
rate (d) was empirically determined in the range 0.0–0.5 as the one that 
maximized model performance in the validation set. Conversely, the 
kernel size (Nsx3) was increased to Nsx11 (You et al., 2021), and the 
max-pooling factor (1x2) was also modified, increasing it to 1x5 in the 
first two layers and to 1x4 in the last two layers of the encoder, with the 
aim of enhancing the extraction of long-term features related to sleep 
stages while reducing computational load.

After the encoder stage, the extracted feature maps undergo further 
processing at the bottleneck of the network through a single conv block 
prior to the decoder. The decoder, which also consists of four layers, is 
designed to generate high-resolution feature maps and includes a 
dropout layer, a 2D transposed convolution (Conv2DTranspose), and a 
convolutional block in each layer. To ensure retention of low-level 
features, the output of the Conv2DTranspose of each decoder layer is 
concatenated with the output of the corresponding conv block of the 
encoder. Finally, the last layer of the network is a 2D convolution 
operation employing 4 filters and a kernel size of Nsx1 and a softmax 
activation, which generates point-wise predictions as output (4xL sam
ples), representing the probability that each sample is associated with 
W, light, deep, and REM sleep stages.

2.4. POxi-SleepNet experimental setup: training and evaluation strategies

To see the performance and generalization ability of the proposed 
approach across databases encompassing different age subgroups, POxi- 
SleepNet models were trained and assessed using three different stra
tegies: (i) a standard hold-out strategy (SHO); (ii) a leave-one-cohort-out 
(LOCO) without a fine-tuning approach; and (iii) a LOCO with fine- 
tuning (LOCO-FT) approach. These strategies are presented in Fig. 3
and are described next: 

• SHO is intended to measure overall sleep staging performance of the 
POxi-SleepNet models. Each database is first partitioned into 
training/validation/test subsets (Fig. 3A), with comprehensive de
tails of the partitioning schema presented in sections 1.1-1.6 of the 
supplementary material. All the training and validation subsets are 
then merged to compose the overall training and validation set, 
respectively (Fig. 3B). Subsequently, a single POxi-SleepNet model is 
trained and optimized using the overall training and validation sets, 
respectively. Finally, this model is assessed using each of the test 
subsets separately (Fig. 3B).

• LOCO is intended to measure the generalization ability of the POxi- 
SleepNetPR-SpO2 model for prospective clinical applications. Accord
ingly, the training and validation subsets of all but one database are 
merged to compose the overall training and validation set, respec
tively (Fig. 3C). Subsequently, a POxi-SleepNetPR-SpO2 model is 
trained and optimized using the overall training and validation sets, 
respectively, and the test subset of the omitted database is used for 
assessing model performance (Fig. 3C). This process is repeated six 

times, one per database, so each database is considered once as the 
omitted and testing database (Fig. 3C), thus measuring the general
ization ability for each database.

• LOCO-FT is intended to assess the generalization ability of the POxi- 
SleepNetPR-SpO2 model to new population samples. As in LOCO 
approach, POxi-SleepNetPR-SpO2 model is trained and optimized 
using the training and validation subsets of all but one database 
(Fig. 3D). Subsequently, POxi-SleepNetPR-SpO2 model is fine-tuned 
using the training and validation subjects from the withheld data
base and evaluated only on its corresponding test subset (Fig. 3D). 
This process is also repeated six times, with each database being 
considered once as the omitted and testing database (Fig. 3D).

For each of these strategies (SHO, LOCO, and LOCO-FT), the POxi- 
SleepNet architectures were trained using TensorFlow 2.9.0 library on 
an NVIDIA 3080Ti GPU. The training procedure included the following 
configuration: the categorical cross-entropy as the loss function to 
minimize, the Adam method with an initial learning rate of 10− 4 to 
optimize weights and biases of the POxi-SleepNet architectures, batch 
sizes of 8 (POxi-SleepNetPR and POxi-SleepNetSpO2) and 4 (POxi-Sleep
NetPR-SpO2) with random data shuffling, a learning rate reduction by a 
factor of 2 after 15 epochs without improvement in the validation loss, 
and early stopping after 45 epochs of no improvement, being the model 
with the lowest validation loss chosen as the best model.

2.5. Explainable artificial intelligence: Seg-Grad-CAM

Seg-Grad-CAM is an extended version of the widely used Grad-CAM 
method that produces heatmaps showing the most important areas of 
the input data in CNN-based DL models for semantic segmentation ap
plications (Vinogradova et al., 2020). Considering automatic scoring of 
sleep stages in sleep recordings as a semantic segmentation problem, 
Seg-Grad-CAM has been applied as an XAI method able to scrutinize and 
comprehend the decision-making processes of the POxi-SleepNet models 
in detecting each sleep stage. Given the feature maps of a chosen con
volutional layer Ak (k = 1, …, Z), an output class c, and a region of in
terest ROIc, Seg-Grad-CAM first calculates the average of the gradients of 
the model output yi

c (i ϵ ROIc) with respect to all the feature maps Ak: 

αc
k =

1
Z
∑

u,v

∂
∑

i∈ROIc
yc

i

∂Ak
u,v

(1) 

The class-discriminative localization map (heatmap) is then 
computed as a gradient-weighted combination of the feature maps, 
followed by a ReLU: 

Lc =ReLU

(
∑

k

αc
k ⋅ Ak

)

(2) 

This results in a heatmap of the exact dimensions as Ak, which is 
normalized and resized (NsxL samples) to enable joint visualization with 
the input PR and SpO2 signals (Vinogradova et al., 2020). Seg-Grad-CAM 
heatmaps were calculated in the last convolutional layer of each conv 
block in the bottleneck and decoder layers, as it enhances the identifi
cation of both low-level and high-level stage-related features 
(Vaquerizo-Villar et al., 2023). The final heatmap was then obtained by 
averaging all normalized and resized heatmaps, as it has been done in 
previous studies (Jiménez-García et al., 2024; Vaquerizo-Villar et al., 
2023).

In this work, c denotes one of the four sleep stages (W/Light/Deep/ 
REM) and ROIc is the region of points scored as c by the POxi-SleepNet 
models, which allows to identify the most relevant areas of the PR (POxi- 
SleepNetPR model) and SpO2 (and POxi-SleepNetSpO2 model) data 
contributing to predict each sleep stage, as well as to analyze the 
complementarity between PR and SpO2 signals (POxi-SleepNetPR-SpO2 
model) for sleep staging.
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2.6. Quantitative analysis of the most important time and frequency 
stage-related PR and SpO2 patterns

To provide a quantitative and consistent interpretation of the pulse 
oximetry features that drive the model to score each sleep stage, we 
conducted a thorough time and frequency analysis of the predominant 
regions within PR and SpO2 signals highlighted by Seg-Grad-CAM 
heatmaps for each test patient. Since the heatmap values range from 
0 (denoting minimal relevance in the prediction) to 1 (indicating high 
relevance in the prediction), we first selected, for each subject, the most 
important regions for predicting W/Light/Deep/REM stages as those 
where the heatmap amplitude exceeded 0.5, an empirically determined 
threshold. A comprehensive analysis of these regions was then per
formed to discern time and frequency PR and SpO2 characteristics 
associated with each sleep stage: 

• Time analysis. For each test patient, mean, standard deviation (SD), 
and root mean square of successive differences (RMSSD) were 
computed in the most important regions of standardized PR and 
SpO2 signals derived from Seg-Grad-CAM heatmaps to predict W/ 
Light/Deep/REM stages. These three common time-domain metrics 
measure temporal changes of R-R intervals and provide important 
insights into overall variability and short-term cardiac fluctuations 
(Shaffer and Ginsberg, 2017). They have been previously used to 
evaluate differences in heart rate variability (HRV) among sleep 
stages (Martín-Montero et al., 2023), and adapted here for PR and 
SpO2.

• Frequency analysis. Previous studies have shown that spectral ac
tivity of cardiorespiratory signals differ among sleep stages 
(Martín-Montero et al., 2023; Penzel et al., 2003). For each test 
subject, we have first computed the continuous wavelet transform 
(CWT) of overnight PR and SpO2 recordings, which offers optimal 
time-frequency resolution for the whole overnight recordings (Rioul 
and Vetterli, 1991). Specifically, CWT was calculated using the 
complex Morlet wavelet (Wachowiak et al., 2016) and frequencies in 
the range 0.001–0.400 Hz. The power spectral density (PSD) for each 
sleep stage was then derived as the average of the CWT in the cor
responding relevant region derived from Seg-Grad-CAM heatmaps.

2.7. Statistical analysis

The POxi-SleepNet models provide probabilities for predicting each 
sleep stage (W/Light/Deep/REM) for each sample within the 12-h input 
data. These probabilities were translated into predictions of sleep stages 
by choosing the class with the highest probability. Given that manual 
sleep staging occurs every 30 s, the output label for each 30-s epoch was 
determined as the most prevalent predicted sleep stage within the 
epoch. Zero-padded areas were excluded prior to calculating perfor
mance metrics. The overall performance of the POxi-SleepNet archi
tectures for automated sleep stage classification was evaluated using 
confusion matrices (4-class), which were utilized to obtain the 4-class 
accuracy (Acc), Cohen’s kappa (kappa), macro-F1 score (MF1), and 
per-class F1-score (F1). In addition, the Wilcoxon signed-rank test was 
applied to evaluate two-by-two statistical differences in time parameters 
(mean, SD, and RMSSD) and in each frequency bin from the PSDs, 
derived from quantitative analysis among sleep stages (W/Light/Deep/ 
REM). A p-value<0.01 was considered significant after Bonferroni 
correction (six comparisons).

3. Results

3.1. POxi-SleepNet performance: SHO strategy

A SHO strategy was used to assess overall sleep staging performance 
of the POxi-SleepNet models. Fig. 4 shows the confusion matrices of the 
POxi-SleepNet model trained with a using PR and SpO2 data (POxi- 
SleepNetPR-SpO2) in the six test subsets (CCSHS, CFS, CHAT, MESA, 
MrOS, and SHHS), whereas Table 2 shows the performance metrics of 
POxi-SleepNetPR-SpO2 model in the six test sets, compared with those 
from POxi-SleepNet models trained using single-channel PR (POxi- 
SleepNetPR) and single-channel SpO2 data (POxi-SleepNetSpO2). 
Notably, POxi-SleepNetPR-SpO2 model showed a high performance in the 
six databases, with 4-class Acc values in the range 81.5 %–84.5 %, kappa 
values in the range 0.726–0.779, and MF1 values in the range 74.0 %– 
83.1 %. As expected, this model outperformed POxi-SleepNetPR (78.6 
%–83.6 % Acc, 0.679–0.766 kappa, and 68.1 %–82.1 % MF1) and POxi- 
SleepNetSpO2 (72.1 %–80.3 % Acc, 0.609–0.681 kappa, and 66.7 %– 

Fig. 4. Confusion matrix of the POxi-SleepNetPR-SpO2 model in in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS). This matrix compares the sleep 
stages manually scored from PSG with the corresponding automatic assignation using the POxi-SleepNetPR-SpO2 model.
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72.9 % MF1) models in the six test databases.
In section 2 of the supplementary material, we show the high per

formance of the POxi-SleepNetPR-SpO2 model for estimating the TST in 
the six test subsets (intra-class correlation coefficient values: 
0.703–0.950; 95 % confidence intervals: 85.4 minutes–227.0 minutes). 
For a thorough analysis, section 3 of the supplementary material pro
vides a comparison of the performance metrics of different POxi- 
SleepNetPR-SpO2 models in the validation set according to their network 
structure, number of filters, and filter size (Table S1). Similarly, section 
4 of the supplementary material provides the performance of the POxi- 
SleepNetPR-SpO2 model for 5-class (W, N1, N2, Deep, and REM sleep) 
sleep staging, showing a low performance for N1 detection (Table S2 and 
Fig. S2) that is in line with previous studies.

In section 5 of the supplementary material, we show and discuss the 
sleep staging performance of the POxi-SleepNet models in the whole test 
cohort (Table S3) and across the six test subsets by input signal, age, sex, 

population, and OSA severity subgroups (Tables S4–S9). Interestingly, 
the POxi-SleepNetPR and POxi-SleepNetPR-SpO2 models showed signifi
cantly lower performance with increasing age and OSA severity, while 
the POxi-SleepNetSpO2 models performed significantly better. 
Conversely, sex-related differences in POxi-SleepNet models were 
observed in elderly patients (Table S10), with significantly higher Acc in 
elderly males and significantly higher MF1 in elderly females.

In section 6 of the supplementary material, we show and discuss the 
sleep staging performance of the POxi-SleepNet models by comorbidity 
and drug intake subgroups (Tables S11–S21). POxi-SleepNet models 
showed a significantly lower performance in patients with atrial fibril
lation, congestive heart failure, diabetes, and hypertension comorbid
ities, as well as in patients taking diuretics, betablockers, 
benzodiazepines, antidepressants, and antidiabetics drugs.

Table 2 
Diagnostic performance of POxi-SleepNetPR-SpO2, POxi-SleepNetPR, and POxi-SleepNetSpO2 models in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS) 
to automatically classify sleep stages.

DB Model Overall Metrics Per-class F1-score (%)

Acc (%) kappa MF1 (%) W Light Deep REM

CCSHS POxi-SleepNetPR-SpO2 84.5 0.779 83.1 93.1 82.0 74.3 83.2
POxi-SleepNetPR 83.6 0.766 82.1 92.3 81.1 74.9 80.3
POxi-SleepNetSpO2 74.5 0.636 72.3 86.0 72.4 65.1 65.7

CFS POxi-SleepNetPR-SpO2 82.2 0.737 79.4 90.6 79.2 66.0 81.6
POxi-SleepNetPR 79.9 0.702 77.0 88.2 77.1 65.7 77.0
POxi-SleepNetSpO2 76.5 0.653 72.9 86.7 73.4 61.6 70.0

CHAT POxi-SleepNetPR-SpO2 82.4 0.754 82.7 89.2 79.6 80.8 81.3
POxi-SleepNetPR 81.7 0.745 81.9 88.1 78.9 81.0 79.7
POxi-SleepNetSpO2 72.1 0.609 71.7 80.7 70.0 71.7 64.3

MESA POxi-SleepNetPR-SpO2 83.7 0.743 74.7 90.9 82.1 45.4 80.4
POxi-SleepNetPR 80.7 0.694 71.1 88.3 79.5 42.8 73.9
POxi-SleepNetSpO2 77.0 0.638 66.7 85.5 76.0 35.8 69.4

MrOS POxi-SleepNetPR-SpO2 84.0 0.742 74.0 91.1 80.8 44.2 80.0
POxi-SleepNetPR 80.4 0.679 68.1 88.4 77.6 37.0 69.6
POxi-SleepNetSpO2 80.3 0.681 68.8 88.0 77.3 35.9 73.9

SHHS POxi-SleepNetPR-SpO2 81.5 0.726 77.8 89.7 80.3 58.0 83.4
POxi-SleepNetPR 78.6 0.679 74.1 86.8 78.2 53.4 77.7
POxi-SleepNetSpO2 75.9 0.640 71.1 84.8 75.4 49.2 74.8

Acc: accuracy, CCSHS: Cleveland Children’s Sleep and Health Study, CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; kappa: Cohen’s kappa 
index; MESA: Multi-Ethnic Study of Atherosclerosis; MF1: macro F1-score, MrOS: Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart 
Health Study; W: wakefulness.

Table 3 
Diagnostic performance of POxi-SleepNetPR-SpO2 models trained using SHO, LOCO, and LOCO-FT in the six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS) 
to automatically classify sleep stages.

DB Model Overall Metrics Per-class F1-score (%)

Acc (%) kappa MF1 (%) W Light Deep REM

CCSHS SHO 84.5 0.779 83.1 93.1 82.0 74.3 83.2
LOCO 83.6 0.768 82.4 92.7 80.8 74.9 81.1
LOCO-FT 84.9 0.785 83.8 93.2 82.3 76.6 82.9

CFS SHO 82.2 0.737 79.4 90.6 79.2 66.0 81.6
LOCO 82.2 0.737 79.8 90.2 79.3 68.8 80.7
LOCO-FT 82.8 0.746 80.4 90.8 79.8 69.3 81.6

CHAT SHO 82.4 0.754 82.7 89.2 79.6 80.8 81.3
LOCO 76.3 0.668 76.4 84.9 74.0 71.3 75.5
LOCO-FT 82.8 0.760 83.2 90.1 79.8 81.1 81.6

MESA SHO 83.7 0.743 74.7 90.9 82.1 45.4 80.4
LOCO 81.1 0.707 74.0 89.2 79.1 48.0 79.5
LOCO-FT 84.1 0.746 73.1 90.8 83.0 37.5 80.9

MrOS SHO 84.0 0.742 74.0 91.1 80.8 44.2 80.0
LOCO 82.9 0.722 72.6 90.0 79.9 42.5 78.1
LOCO-FT 84.2 0.742 73.8 91.1 81.1 42.8 80.1

SHHS SHO 81.5 0.726 77.8 89.7 80.3 58.0 83.4
LOCO 80.0 0.699 74.3 88.8 79.3 47.4 81.5
LOCO-FT 80.6 0.712 76.7 88.9 79.7 56.2 82.0

Acc: accuracy, CCSHS: Cleveland Children’s Sleep and Health Study, CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy Trial; kappa: Cohen’s kappa 
index; LOCO: Leave-one-cohort-out without fine-tuning; LOCO-FT: LOCO with fine-tuning; MESA: Multi-Ethnic Study of Atherosclerosis; MF1: macro F1-score, MrOS: 
Osteoporotic Fractures in Men Study; REM: rapid eye movement; SHHS: Sleep Heart Health Study; SHO: Standard Hold out; W: wakefulness.

F. Vaquerizo-Villar et al.                                                                                                                                                                                                                      Engineering Applications of Artiϧcial Intelligence 162 (2025) 112562 

7 



3.2. POxi-SleepNet generalization ability

The performance of POxi-SleepNetPR-SpO2 was assessed using SHO, 
LOCO, and LOCO-FT strategies to evaluate its generalization ability 
across databases with different age subgroups. Table 3 presents a com
parison of the performance of POxi-SleepNetPR-SpO2 models across the 
six test subsets (CCSHS, CFS, CHAT, MESA, MrOS, and SHHS) when 
trained using three SHO, LOCO, and LOCO-FT strategies. Interestingly, 
the POxi-SleepNetPR-SpO2 models showed a high generalization ability, 

with only minor differences in performance metrics (less than 3 % in 
Acc, 0.04 in kappa, and 4 % in MF1) across SHO, LOCO, and LOCO-FT 
approaches, except for the CHAT database.

3.3. Seg-Grad-CAM heatmaps interpretation of the POxi-SleepNet models

Fig. 5 shows Seg-Grad-CAM heatmaps obtained for samples of a 
representative subject predicted as W and Light sleep stages by the POxi- 
SleepNetPR (Fig. 5A–B) and POxi-SleepNetSpO2 (Fig. 5C–D) models. Each 

Fig. 5. Seg-Grad-CAM heatmaps obtained for samples of a representative subject (subject identifier: shhs1-205290) predicted as: (A) Wake by the POxi-SleepNetPR 
model, (B) Light sleep by the POxi-SleepNetPR model, (C) Wake by the POxi-SleepNetSpO2 model, (D) Light sleep by the POxi-SleepNetSpO2 model. Blue lines delineate 
the regions of interest containing samples predicted as the corresponding sleep stage.
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heatmap presents a detailed zoom of a relevant area of the recording on 
the right, along with the scalogram derived from the CWT, which more 
effectively highlights the time-frequency patterns of the PR and SpO2 
recordings that the POxi-SleepNet models are focusing on to make the 
prediction. Darker areas in the heatmaps indicate greater relevance in 
the final decision taken by the POxi-SleepNet model. It is important to 
note that these heatmaps emphasize regions with different time and 
frequency PR and SpO2 features to predict W and light sleep stages. 
Illustrative examples of Seg-Grad-CAM heatmaps obtained for samples 
classified as each sleep stage (W/Light/Deep/REM) by the POxi- POxi- 
SleepNetPR and POxi-SleepNetSpO2 models, together with a more 
comprehensive visual interpretation of the time and frequency PR and 
SpO2 features associated with each sleep stage, can be seen in section 5 
of the supplementary material (see Figs. S3–S6).

In section 7 of the supplementary material, we also analyze the 
complementarity of PR and SpO2 signals from some Seg-Grad-CAM 
heatmaps of the PulseOxi-SleepNetPR-SpO2 model. This analysis shows 
that the POxi-SleepNetPR-SpO2 model focuses both on PR and SpO2 sig
nals for sleep staging. Specifically, PR signal has a stronger influence (i. 
e., higher heatmap amplitude) than SpO2 for sleep staging, with a main 
focus on areas of the PR signal near the regions predicted as each sleep 
stage (see Figs. S7–S8). Conversely, the heatmap pattern of the SpO2 
signal has a more dispersed distribution, with notable amplitudes spread 

across broader time regions in the sleep recording (see Figs. S7–S8).

3.4. Quantitative identification of time and frequency pulse oximetry 
patterns highlighted by Seg-Grad-CAM

To provide a quantitative interpretation of these findings, we sub
sequently performed a time and frequency analysis of the most impor
tant stage-related regions in PR and SpO2 signals highlighted by Seg- 
Grad-CAM analysis of POxi-SleepNetPR and POxi-SleepNetSpO2 models, 
respectively. The most important stage-related regions were selected as 
those where the heatmap amplitude exceeded 0.5.

Figs. 6A and 7A show the averaged PSDs in the 0–0.400 Hz range 
computed from the CWT of the most important regions of PR and SpO2 
signals, respectively, to predict each sleep stage in test subjects. Fig. S9
displays the p-values for each frequency of the PSDs of PR (Fig. S9A) and 
SpO2 (Fig. S9B) signals. Importantly, statistically significant differences 
(p-value <0.01) are found in every frequency bin for at least five of the 
six sleep stage comparisons for the PR signal and in at least four of the six 
comparisons for the SpO2 signal. Looking at Figs. 6A and 7A, three 
distinct frequency bands can be identified in PR and SpO2 signals based 
on the predominance of their spectral content in each sleep stage: (i) 
0.004–0.020 Hz (BWPR1 and BWSpO2-1); (ii) 0.020–0.100 Hz for PR and 
0.020–0.050 Hz for SpO2 (BWPR2 and BWSpO2-2); and (iii) 0.180–0.400 

Fig. 6. Quantitative analysis for the most important regions of PR signal highlighted by Seg-Grad-CAM to predict Wake, Light sleep, Deep sleep, and REM sleep 
stages in test subjects. A) Averaged PSDs in the 0–0.400 Hz range. B) Boxplot distribution of the temporal features (mean, SD, and RMSSD). BWPR-1: 0.004–0.020 Hz; 
BWPR-2: 0.020–0.100 Hz; BWPR-3: 0.180–0.400 Hz. Time-frequency parameters (PSD, as well as mean, SD, and RMSSD) were calculated from the standardized PR 
signal. *Statistically significant differences (p < 0.01, Bonferroni correction) between W and Light sleep; †Statistically significant differences (p < 0.01, Bonferroni 
correction) between W and Deep sleep; ǂStatistically significant differences (p < 0.01, Bonferroni correction) between W and REM sleep; §Statistically significant 
differences (p < 0.01, Bonferroni correction) between Light and Deep sleep; ¶Statistically significant differences (p < 0.01, Bonferroni correction) between Light and 
REM sleep; ‡Statistically significant differences (p < 0.01, Bonferroni correction) between Deep and REM sleep.
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Hz (BWPR3 and BWSpO2-3).
Figs. 6B and 7B display the boxplot distribution of the temporal 

features (mean, SD, and RMSSD), computed from the most important 
stage-related regions of PR and SpO2 signals. Interestingly, boxplot 
distributions reflect statistically significant differences (p-value <0.01) 
in mean, SD, and RMSSD among sleep stages. In section 8 of the sup
plementary material, we provide the averaged PSDs and boxplot dis
tribution of the time-domain features obtained for each test database, as 
well as by age, gender, and OSA severity subgroups (see Figs. S10–S43), 
together with a more comprehensive interpretation of the quantitative 
identification of time and frequency PR and SpO2 features related to 
each sleep stage.

4. Discussion

In this study, we generated accurate and highly generalizable DL 
models based on U-Net (POxi-SleepNet) for sleep staging in OSA patients 
across all age subgroups (children, adolescents, adults, and elderly pa
tients) while exclusively relying on pulse oximetry signals. We also 
offered a detailed interpretation of the stage-related pulse oximetry 
patterns identified by the POxi-SleepNet models through an XAI meth
odology based on Seg-Grad-CAM. This approach enabled us to delineate 
key regions within overnight PR and SpO2 signals from each patient 

contributing to the prediction of each sleep stage, and to quantitatively 
identify the time and frequency characteristics of the pulse oximetry 
signals associated with W, light sleep, deep sleep, and REM sleep stages. 
This study is, to our knowledge, the first to combine DL and XAI tech
niques for the automated scoring of sleep stages in OSA patients across 
all age subgroups from pulse oximetry signals.

4.1. Sleep staging overall performance

POxi-SleepNet models achieved high performances to automatically 
score sleep stages in the six databases. Particularly, the POxi-SleepNet 
model using PR and SpO2 data (POxi-SleepNetPR-SpO2) showed the 
highest performance, with 81.5 %–84.5 % Acc, 0.726–0.779 kappa, and 
74.0 %–83.1 % MF1 in the CCSHS, CFS, CHAT, MESA, MrOS, and SHHS 
databases. Of note, the highest F1-scores were reached for wake stage, 
with the deep sleep stage showing the lowest scores. This finding aligns 
with the state-of-the-art studies showing a considerable overlap between 
light sleep and deep sleep stages (Kotzen et al., 2023), probably due to 
the similarity of cardiovascular and respiratory patterns during 
non-REM sleep (Qin et al., 2021).

Manual sleep scoring is a highly subjective task. According to Lee 
et al. (2022), inter-rater agreement for 5-class sleep scoring is reported 
as a kappa of 0.76 (95 % confidence interval, 0.71–0.81). Thus, the 

Fig. 7. Quantitative analysis for the most important regions of SpO2 signal highlighted by Seg-Grad-CAM to predict Wake, Light sleep, Deep sleep, and REM sleep 
stages in test subjects. A) Averaged PSDs in the 0–0.400 Hz range. B) Boxplot distribution of the temporal features (mean, SD, and RMSSD). BWSpO2-1: 0.004–0.020 
Hz; BWSpO2-2: 0.020–0.050 Hz; BWSpO2-3: 0.180–0.400 Hz. Time-frequency parameters (PSD, as well as mean, SD, and RMSSD) were calculated from the standardized 
SpO2 signal. *Statistically significant differences (p < 0.01, Bonferroni correction) between W and Light sleep; †Statistically significant differences (p < 0.01, 
Bonferroni correction) between W and Deep sleep; ǂStatistically significant differences (p < 0.01, Bonferroni correction) between W and REM sleep; §Statistically 
significant differences (p < 0.01, Bonferroni correction) between Light and Deep sleep; ¶Statistically significant differences (p < 0.01, Bonferroni correction) between 
Light and REM sleep; ‡Statistically significant differences (p < 0.01, Bonferroni correction) between Deep and REM sleep.
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performance of POxi-SleepNetPR-SpO2 for 4-class (0.726–0.779 kappa, 
Table 2) and 5-class sleep staging (0.675–0.762 kappa, Table S2) is not 
far from PSG-based sleep scoring, while pulse oximetry-based scoring 
has the advantage that it can be easily integrated with non-invasive 
wearable devices to monitor sleep stages in individuals at their home. 
AI-derived hypnodensity graphs, which depict the probability distribu
tion across all sleep stages for each 30-s epoch throughout the night 
(Stephansen et al., 2018), have proven valuable for quantifying both 
sleep stage ambiguity and stability (Anderer et al., 2023a). They have 
proven effective not only in PSG but also in home sleep apnea testing 
(HSAT), where sleep staging relies primarily on cardiorespiratory sig
nals, suggesting that ambiguities between sleep stages are reflected in 
both the central and autonomic nervous system activity (Anderer et al., 
2023b). The usefulness of hypnodensity graphs is further reinforced 
when applied to multi-scored datasets, where inter-scorer variability can 
be explicitly modeled (Anderer et al., 2023b; Fiorillo et al., 2023b). 
Specifically, Fiorillo et al. (2023b) demonstrated that integrating mul
tiple expert annotations during DL model training through label 
smoothing and soft-consensus distributions allows models to better 
adapt to the consensus of the group of scorers. This approach not only 
improves the performance of DL models for sleep staging but also en
hances the similarity between the model-generated hypnodensity 
graphs and those derived from scorer consensus. Hence, the perfor
mance and clinical applicability of our proposed POxi-SleepNetPR-SpO2 
model could be enhanced by using hypnodensity graphs and 
multi-scored databases.

POxi-SleepNetPR-SpO2 outperformed POxi-SleepNetPR and POxi- 
SleepNetSpO2 models in the six test databases, which suggests that SpO2 
and PR have complementary information in sleep stage detection, as it 
has been suggested in previous studies (Casal et al., 2021, 2022; 
Vaquerizo-Villar et al., 2024). This complementarity becomes more 
apparent as age and OSA severity increases (see Table S3), which can be 
explained by impact of apneic events and sleep fragmentation induced 
by OSA and aging, respectively, on PR (induced sympathetic excitation) 
and SpO2 (recurrent oxygen desaturations) signals (Choi et al., 2016; 
Edwards et al., 2010; Martín-Montero et al., 2023). In this context, 
Korkalainen et al. (2021) reported that the current guidelines for sleep 
staging may not be appropriate to analyze sleep recordings of patients 
with OSA and sleep fragmentation. A comprehensive discussion of sleep 
staging performance by input signal, age, sex, and OSA severity subsets 
is shown in section 5 of the Supplementary Material.

4.2. Sleep staging performance generalizability across all age subgroups

As aforementioned, the POxi-SleepNetPR-SpO2 models showed a high 
generalization ability. It is important to note that fine-tuning the models 
to a specific cohort (i.e., LOCO-FT approach) leads to a minimal 
improvement in model performance, with less than 1 % in Acc and 0.02 
in kappa when compared to the SHO approach. Interestingly, LOCO-FT 
approach resulted in a lower performance than SHO in the SHHS data
base, suggesting that cohort-specific sleep staging patterns are well 
captured by training the DL models with an extensive range of sleep 
databases. This aligns with Fiorillo et al. (2023b), who demonstrated 
that incorporating consensus information from multi-scored sleep da
tabases improves sleep staging performance by reducing inter-rater 
variability, and with Fiorillo et al. (2023a), who reported that training 
on heterogeneous data from multiple centers consistently leads to better 
model performance than using a single cohort. Specifically, Fiorillo et al. 
(2023a) evaluated the generalization capability of U-Sleep, a U-Net-like 
DL network fed with one EEG and one EOG channel from 28528 PSG 
studies from 13 different databases encompassing all age subgroups and 
a wide range of sleep disorders. Their proposed DL network was able to 
deal with variability in EEG and EOG channel derivations, age, and sleep 
disorders. This supports the generalizability of DL models by high
lighting their stability despite heterogeneity in clinical data.

The generalizability of our proposal is also supported by the minimal 

reduction in model’s performance when using the LOCO approach, with 
less than 3 % Acc and 0.04 kappa in all but CHAT database. In the CHAT 
database, these differences in performance can be due to the pediatric 
patients it is composed of (5–10 years), who present substantial devel
opmental differences in cardiorespiratory and neurophysiological ac
tivity, as well as in sleep architecture when compared to adults (Berry 
et al., 2018; Goh et al., 2000). Furthermore, the well-known cardiac 
cyclical variation in adults with OSA (Guilleminault et al., 1984) pre
sents a high variability degree in the pediatric population determined by 
the type and extent of apneic events (Martín-Montero et al., 2023). 
However, these differences seem to disappear during adolescence, given 
the slight reduction in performance in CCSHS (16–19 years) using the 
LOCO approach. Our findings align with Fiorillo et al. (2023a) , who also 
observed a decrease in sleep staging in pediatric subjects when testing a 
DL model trained only with adults. This highlights the need to develop 
sleep-scoring models including more patients from different age sub
groups to maximize its universal implementation.

4.3. Seg-Grad-CAM interpretations of the automatic sleep staging models

Some recent works have proposed XAI methodologies to visually 
discern those EEG (Dutt et al., 2022; Kuo et al., 2021; Phan et al., 2022; 
Vaquerizo-Villar et al., 2023) and pulse oximetry (Vaquerizo-Villar 
et al., 2024) patterns considered by DL models to score sleep stages in 
adult (Dutt et al., 2022; Kuo et al., 2021; Phan et al., 2022) and pediatric 
subjects (Vaquerizo-Villar et al., 2023, 2024). In this study, we introduce 
a novel implementation of an XAI method based on Seg-Grad-CAM to 
discern the decision-making process of a DL model and to interpret 
stage-related pulse oximetry patterns in OSA patients across all age 
subgroups. Analyzing the XAI results, it becomes apparent that the 
Seg-Grad-CAM-based approach can detect key regions with distinct time 
and frequency characteristics within overnight PR and SpO2 signals 
from each patient used by the POxi-SleepNet models to predict wake
fulness, light sleep, deep sleep, and REM sleep stages (Figures S2-S5). 
The proposed explainability approach also allows us to see the 
complementarity of PR and SpO2 data for sleep staging (Figures S6-S7), 
suggesting that sleep staging is performed by first looking at 
time-frequency PR patterns close to the sample being predicted and then 
looking at long-term dynamics of SpO2 (e.g., changes in baseline SpO2 
amplitude and presence and depth of oxygen desaturations) when there 
exist doubts in the prediction. In light of the reported findings, this 
automatic and interpretable sleep scoring tool could contribute to: (i) 
the visualization and interpretation of the sleep staging process by sleep 
technicians, meeting the recommendations of the EU for AI-based sys
tems (Hamon et al., 2020); (ii) health recommendation systems inte
grated into remote servers or portable devices (Chinnasamy et al., 
2023b), providing the automatic sleep stage predictions and 
Seg-Grad-CAM heatmaps per subject in a few seconds.

4.4. Identification of time and frequency pulse oximetry features for sleep 
scoring

In contrast to previous studies that show qualitative insights based 
on some hand-picked examples (Dutt et al., 2022; Kuo et al., 2021; Phan 
et al., 2022; Vaquerizo-Villar et al., 2023), we provide, for the first time, 
a quantitative interpretation of the physiological features that drive the 
POxi-SleepNetPR and POxi-SleepNetSpO2 models to score each sleep 
stage. Table 4 summarizes the main time and frequency characteristics 
of PR and SpO2 recordings related to each sleep stage. In the frequency 
domain, we found three distinct frequency bands within 0.004–0.020 Hz 
(BWPR1 and BWSpO2-1), 0.020–0.100 Hz (BWPR2 and BWSpO2-2), and 
0.180–0.400 Hz (BWPR3 and BWSpO2-3). Regarding BWPR-1 and BWSpO2-1 
bands, we found that: (i) W stage is characterized by a high activity 
below 0.010 Hz, which is coherent with the macro-sleep disruption band 
reported by Martín-Montero et al. (2023, 2021) (0.001–0.005 Hz); (ii) 
REM sleep has the highest activity in the 0.010–0.020 Hz frequency 
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range, particularly with increasing OSA severity (Figures S21-S24 and 
Figures S38-S41), which is related to apneic events of long duration that 
impose more severe health outcomes to OSA patients (Anderer et al., 
2023b; Bonsignore et al., 2024; Varga and Mokhlesi, 2019). Regarding 
BWPR-2 and BWSpO2-2, its higher spectral content during light sleep and 
deep sleep is associated with the intrinsic depression of sympathetic 
nervous system during these sleep stages that makes it easier to differ
entiate OSA sympathetic excitation during these sleep stages 
(Martín-Montero et al., 2023). This agrees with the spectral power in
crease in this band during non-REM sleep (mainly light sleep) with 
increasing OSA severity (Figures S21-S24 and Figures S38-S41), and is 
also consistent with previous studies that have found spectral bands 
within these ranges related to OSA and its severity in both pediatric and 
adult subjects (Álvarez et al., 2013; Gutiérrez-Tobal et al., 2015; Mar
tín-Montero et al., 2021; Vaquerizo-Villar et al., 2018). Finally, BWPR3 
and BWSpO2-3 are characterized by a higher content during non-REM 
sleep (light and deep sleep), which is coherent with the 
respiratory-modulated bands found in previous studies (Martín-Montero 
et al., 2021, 2023) and reflect the characteristic parasympathetic acti
vation during these stages (Qin et al., 2021).

In the time domain, mean and variability (SD and/or RMSSD) in PR 
and SpO2 amplitude also show differences among sleep stages 
(Figs. 6–7). First, we found that mean PR amplitude is significantly 
lower on light sleep when compared to deep and REM sleep, while SpO2 
baseline amplitude is lower in deep sleep than in light and REM sleep 
across all subgroups. To our knowledge, these pulse oximetry patterns 
had not been previously reported as important for sleep staging. 
Regarding variability, SD in PR and SpO2 is significantly higher during 
W compared to non-REM sleep and RMSSD in PR is significantly higher 
during W compared to sleep across all subgroups (Figures S8-S41). 
Similarly, REM is characterized by a higher variability in PR and SpO2 
than during non-REM sleep for all subgroups (Figures S8-S41). In the 
presence of high sympathetic activity and low parasympathetic activity, 
SD in PR is increased (Shaffer and Ginsberg, 2017). Thus, the altered 
sympathetic activity and reduced parasympathetic activity during W 
and REM seems to be behind PR higher variability compared to 

non-REM, where this trend is reverted.
Taken together, our results show that the model is focusing on not 

only well-known stage-related patterns but also on OSA-specific alter
ations and novel PR and SpO2 patterns that have not been previously 
reported as important for sleep staging. This paves the way for devel
oping new guidelines for annotating sleep stages in widely used at-home 
polygraphy studies that do not record EEG.

4.5. Comparison with previous studies

There are various recent investigations applying DL techniques to 
pulse oximetry signals for automatic sleep staging (Faust et al., 2019), 
with some of them using OSA patient datasets (Casal et al., 2021, 2022; 
Haimov et al., 2025a; Huttunen et al., 2021, 2022; Korkalainen et al., 
2020; Kotzen et al., 2023; Nam et al., 2024; Radha et al., 2021; Sridhar 
et al., 2020; Vaquerizo-Villar et al., 2024; Wulterkens et al., 2021). Some 
studies have just approached the differentiation between wake and sleep 
stages (W/S) (Casal et al., 2021, 2022), whereas the majority of them 
have targeted 3-class (W/non-REM sleep/REM sleep) or 4-class (W/light 
sleep/deep sleep/REM sleep) sleep staging (Haimov et al., 2025a; Hut
tunen et al., 2021, 2022; Korkalainen et al., 2020; Kotzen et al., 2023; 
Nam et al., 2024; Radha et al., 2021; Sridhar et al., 2020). Table 5
outlines a comparison between our proposed methodology and earlier 
research works centered on automatic 4-class sleep staging in OSA co
horts across diverse age groups using only pulse oximetry recordings 
(PPG, PR, and/or SpO2) (Huttunen et al., 2021, 2022; Korkalainen et al., 
2020; Kotzen et al., 2023; Nam et al., 2024; Radha et al., 2021; Sridhar 
et al., 2020; Vaquerizo-Villar et al., 2024). Interestingly, the current 
study achieved a similar performance than the reported by Nam et al. 
(2024) and Kotzen et al. (2023), but with a slightly higher generalization 
ability, suggesting that PR and SpO2 recordings provide the same in
formation as PPG for sleep staging while presenting less heterogeneity 
among different recording devices. In contrast to PPG-based approaches, 
our proposal is easier to be implemented and tested in portable moni
toring equipment that store only PR and SpO2 data. Furthermore, our 
proposal demonstrated higher performance and generalization ability 

Table 4 
Time and frequency characteristics of PR and SpO2 signals related to each sleep stage.

Signal Sleep 
stage

Features for sleep scoring

Time domain Frequency domain

PR W ↑ SD compared to non-REM sleep 
↑ RMSSD than in sleep stages (light, deep, and REM sleep)

↑ activity in BWPR-1 than non-REM sleep, with the highest power in 0.004–0.010 
Hz 
↓ BWPR-2 and BWPR-3 activity than non-REM sleep

Light 
sleep

↓ Mean than in deep and REM sleep 
↓ SD than in W and REM sleep 
↓ RMSSD than in W

↑ activity in BWPR-2 and BWPR-3 and ↓ activity in BWPR-1 compared to W and REM 
stages 
↑ activity in 0.020–0.050 Hz compared to deep sleep as OSA severity increases

Deep sleep ↑ Mean than in light sleep 
↓ SD than in W and REM sleep. 
↓ RMSSD than in W

↑ activity in BWPR-2 and BWPR-3 and ↓ activity in BWPR-1 compared to W and REM 
sleep. 
↑ BWPR-3 activity compared to light sleep

REM sleep ↑ Mean than in light sleep 
↑ SD compared to non-REM sleep. 
↓ RMSSD than in W

↑ activity in BWPR-1 and ↓ BWPR-2 and BWPR-3 activity compared to non-REM sleep. 
Highest activity in 0.010–0.020 Hz, particularly with increasing OSA severity 
↓ BWPR-3 activity than in W except in children

SpO2 W ↓ Mean value than in light and REM sleep stages (probably due to 
artifacts). 
↑ SD compared to non-REM sleep.

↑ activity in BWSpO2-1 than non-REM sleep, with the highest power in 0.004–0.010 
Hz 
↓ BWSpO2-2 and BWSpO2-3 activity than non-REM sleep

Light 
sleep

↑ Mean than in deep sleep 
↓ SD than in W except in severe OSA. 
↓ RMSSD than in REM sleep

↑ BWSpO2-3 and ↓ BWSpO2-1 activity compared to W and REM stages 
↑ activity in BWSpO2-2 compared to W 
↑ activity in 0.020–0.050 Hz compared to deep and REM sleep as OSA severity 
increases

Deep sleep ↓ Mean than in light and REM sleep 
↓ SD than in light and REM sleep

↑ BWSpO2-3 and ↓ BWSpO2-1 activity compared to W and REM sleep 
↓ BWSpO2-2 and ↑ BWSpO2-3 activity compared to light sleep with increasing OSA 
severity

REM sleep ↑ Mean than in deep sleep. 
↑ SD compared to non-REM sleep 
↑ RMSSD than in light sleep

↑ activity in BWSpO2-1 than non-REM sleep 
Highest activity in 0.010–0.020 Hz, particularly with increasing OSA severity

↑: Significant increase in activity (e.g., BWSpO2-3 frequency band) or metric value (e.g., mean/SD/RMSSD) compared to the referenced sleep stage(s); ↓: Significant 
decrease in activity (e.g., BWSpO2-1) or metric value (e.g., mean/SD/RMSSD) compared to the referenced sleep stage(s); OSA: obstructive sleep apnea; PR: pulse rate; 
REM: rapid eye movement; RMSSD: root mean square of successive differences; SD: standard deviation; SpO2: blood oxygen saturation; W: wake.
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than other studies, particularly Sridhar et al. (2020) in the MESA and 
SHHS databases, and Vaquerizo-Villar et al. (2024) in the CHAT data
base. This underscores the suitability of the proposed DL model, 
POxi-SleepNet, which was designed and tested using PR and SpO2 re
cordings from 17303 sleep studies of six different datasets (including 
611 adolescents and 1680 children). Additionally, we introduced a 
novel XAI analysis methodology that provides qualitative and quanti
tative identification of the PR and SpO2 characteristics considered by the 
POxi-SleepNet models for detecting each sleep stage using 
Seg-Grad-CAM, thus improving its clinical relevance.

4.6. Limitations and future work

It is important to mention several limitations of our research. First, 
despite a large sample size (n = 17303), most of the patients were adults 
(n = 15623 vs. n = 1680 children), with only one pediatric database 
available. This circumstance may have caused a decline in performance 
on the CHAT database when using the LOCO approach. This limitation is 
also present in existing studies aimed at sleep staging across various age 
groups (Fiorillo et al., 2023a; Perslev et al., 2021), which also relied 
solely on CHAT for pediatric sleep scoring due to the lack of alternative 
publicly available pediatric sleep datasets. Thus, the inclusion of in
cremental pediatric datasets would be advantageous for enhancing the 

Table 5 
Diagnostic performance of state-of-the-art approaches in automatic sleep staging in OSA cohorts across various age subgroups from pulse oximetry signals.

Study Databases (Name/Age 
range (subgroups))

Sleep stage 
balance (W/ 
Light/Deep/ 

REM)

AHI (e/ 
h)

N 
(Total/ 
Test)

Signals Methodology (DL: key components/ 
Validation/XAI)

4-class Acc/kappa

SHO LOCO LOCO- 
FT

Sridhar et al. 
(2020)

MESA/54–90 years 
(adults)

42/41/5/10a 18 
[10–33]a

2033/ 
194

HRc CNN: convolutions and dilated convolutions/ 
SHO, LOCO/-

80/ 
0.69

– –

SHHS/40–90 years 
(adults)

30/43/11/ 
14a

13 
[7–24]a

8299/ 
800

77/ 
0.66

– –

Physionet/20–84 years 
(adults)b

29/50/10/ 
11b

19 (14)k 993/ 
993

– 72/ 
0.55

–

Radha et al. 
(2021)

Private/41–66 years 
(adults)

15/45/22/ 
18*

-j 101/ 
101

PPGd HRV features and RNN/SHO, LOCO, LOCO- 
FT/-

70/ 
0.55

72/ 
0.55

76/ 
0.65

Korkalainen 
et al. (2020)

Private/44–66l years 
adults

33/42/13/ 
12*

16 
[7–33]

894/89 PPG CNN and RNN/SHO, LOCO-FT/- 69/ 
0.54

– 69/ 
0.54**

Huttunen et al. 
(2021)

Private/44–66 l years 
adults e

33/42/13/ 
12*

16 
[7–33]

877/88 PPG CNN and RNN/LOCO-FT/- – – 74/ 
0.64

Huttunen et al. 
(2022)

Private/44–66 l years 
adults

33/42/13/ 
12*

16 
[7–33]

877/88 PPG, 
SpO2

U-Net: convolutions and dilated convolutions/ 
SHO, LOCO-FT/

75/ 
0.63*

– 75/ 
0.63**

Kotzen et al. 
(2023)

CFS/7–89 years (251 
adults, 40 adolescents, 
and 33 children) f,g,h

34/39/12/17 5 [2–16]a 320/ 
320

PPGh SleepPPGNet: residual convolutions, dense 
layers, and dilated convolutions/SHO, LOCO, 

LOCO-FT/-

– 76/ 
0.67

82/ 
0.74

MESA/54–90 years 
(adults)h

37/43/5/11 18 
[10–33]a

2054/ 
204

84/ 
0.75

– 84/ 
0.75**

Nam et al. 
(2024)

CFS/7–89 years (251 
adults, 40 adolescents, 

and 33 children) f,g

34/39/12/17 5 [2–16]a 320/ 
320

PPG InsightSleepNet: local attention, 
InceptionTime, a time-distributed dense layer, 
a temporal convolutional network, and CNN 
modules/SHO, LOCO-FT/Attention scores: 

visual analysis

– – 81/ 
0.72

MESA/54–90 years 
(adults)

37/43/5/11 18 
[10–33]a

2054/ 
204

84/ 
0.74

– 84/ 
0.74**

CAP/14–82 years (101 
adults and 7 
adolescents)

14/39/25/15 -j 24/24 – – 81/ 
0.73

Vaquerizo 
et al. (2024)

CHAT/5–10 years 
(children)

23/39/23/14 3 [1–6] 1633/ 
858

PR, 
SpO2

U-Net: convolutions/SHO/Seg-Grad-CAM: 
visual analysis

78/ 
0.70

– –

This study CCSHS/16–20 years 
(adolescents)

29/39/15/15 1[0–2] 515/ 
258

PR, 
SpO2

U-Net (POxi-SleepNet): convolutions/SHO, 
LOCO, LOCO-FT/Seg-Grad-CAM: visual 

analysis and quantitative analysis

85/ 
0.78

84/ 
0.77

85/ 
0.79

CFS/7–89 years (587 
adults, 96 

adolescents, and 47 
children)

36/39/12/12 5 [2–16] 730/ 
365

82/ 
0.74

82/ 
0.74

83/ 
0.75

CHAT/5–10 years 
(children)

23/39/23/14 3 [1–6] 1633/ 
858

82/ 
0.75

76/ 
0.67

83/ 
0.76

MESA/54–90 years 
(adults)

42/41/5/10 18 
[10–33]

2056/ 
1028

84/ 
0.74

81/ 
0.71

84/ 
0.75

MrOS/65–90 years 
(adults)

47/37/4/10 17 
[9–30]

3915/ 
2049

84/ 
0.74

83/ 
0.72

84/ 
0.74

SHHS/40–90 years 
(adults)

30/43/11/14 13 
[7–24]

8444/ 
5298

82/ 
0.73

80/ 
0.70

81/ 
0.71

Acc: accuracy; AHI: apnea-hypopnea index; CCSHS: Cleveland Children’s Sleep and Health Study; CFS: Cleveland Family Study; CHAT: Childhood Adenotonsillectomy 
Trial; CNN: Convolutional neural network; e/h: events per hour of sleep; HRV: heart rate variability; kappa: Cohen’s kappa index; LOCO: Leave-one-cohort-out without 
fine-tuning; LOCO-FT: LOCO with fine-tuning; MESA: Multi-Ethnic Study of Atherosclerosis; MrOS: Osteoporotic Fractures in Men Study; N: number of sleep studies; 
PPG: photoplethysmography; PR: pulse rate; REM: rapid eye movement; RNN: recurrent neural network; Seg-Grad-CAM: semantic segmentation via gradient-weighted 
class activation mapping; SHHS: Sleep Heart Health Study; SHO: standard hold out; SpO2: blood oxygen saturation; W: wake; XAI: explainable artificial intelligence.
* Computed from reported data; ** DL model was trained and assessed using different subjects of the same cohort; a Computed from as the values for CFS, MESA, and/ 
or SHHS in our study; b Computed from reported data in https://physionet.org/content/challenge-2018/1.0.0/. c HR= Heart rate derived from electrocardiogram 
(ECG) signal; d 584 ECG recordings from the Siesta database (20–95 years) were used for pretraining in LOCO and LOCO-FT approaches; e A private database with 2149 
PPG recordings was used for pretraining the DL model; f CFS database contains 750 sleep studies, but authors only used 324 (251 adults/40 adolescents/33 children), 
presumably those containing valid PPG signal; g Computed from available demographic data from those subjects from CFS containing PPG; h 5767 ECG recordings from 
SHHS were used for pretraining the DL model; i Computed from reported data in in https://physionet.org/content/capslpdb/1.0.0/; j Not available; k Value expressed 
as mean (std). l Value expressed as interquartile range.
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generalizability of our proposal, making it more applicable for simpli
fying the sleep staging process across a wider range of patients. Simi
larly, multi-scored sleep databases could help the performance of our 
proposal, as shown in recent EEG-based sleep staging approaches 
(Fiorillo et al., 2023b). Conversely, our approach has been restricted to 
OSA cohorts. Thus, further research is also required to validate our 
proposal for sleep staging in patient cohorts encompassing other sleep 
disorders, such as insomnia (Tripathi et al., 2022), narcolepsy 
(Stephansen et al., 2018), or REM sleep disorder (Levendowski et al., 
2023), for which sleep staging has already been explored in these prior 
studies. This step is essential to ensure the applicability of our proposal 
across a broad range of clinical populations with suspected sleep dis
orders. Another limitation is that we did not measure the uncertainty in 
the model’s decisions. In this respect, the quantification of model’s 
uncertainty could help to identify most of the epochs wrongly classified 
and subsequently enhance sleep scoring, as shown in recent EEG (Phan 
et al., 2022) and PPG-based (Nam et al., 2024) sleep staging approaches. 
Furthermore, while we have shown that Seg-Grad-CAM heatmaps can 
help to provide a quantitative identification of time and frequency 
patterns of the PR and SpO2 recordings influencing stage predictions, 
other XAI methods such as SHAP could be explored in future research. 
SHAP has been shown to aid in developing accurate and interpretable 
sleep staging models (Krauss et al., 2025; Wang et al., 2025), albeit with 
increased computational demands. Finally, another potential future aim 
could be to evaluate the proposed approach using ambulatory PR and 
SpO2 recordings, together with a full-scale software application that 
shows sleep stage predictions within a hypodensity graph. Notably, 
ambulatory EEG recordings have been successfully tested for automatic 
sleep staging in OSA patients (Kalevo et al., 2022). Building on this, our 
approach could potentially offer real-time sleep stage scoring and 
Seg-Grad-CAM heatmap visualizations for each subject, delivered to the 
clinicians within seconds, thereby enhancing its applicability in clinical 
settings.

4.7. Conclusions

In summary, a novel U-Net-based model fed with PR and SpO2 sig
nals (POxi-SleepNetPR-SpO2) showed remarkably high precision perfor
mance and generalization ability in the scoring of sleep stages in 17303 
sleep recordings from OSA patients across all age groups. Utilizing both 
PR and SpO2 signals proved to be complementary and increased the 
model performance than using each signal separately. In addition, a XAI 
analysis based on Seg-Grad-CAM enabled to recognize and quantify the 
time and frequency patterns of the overnight PR and SpO2 signals that 
drive the DL model to predict W, light sleep, deep sleep, and REM sleep 
stages. Specifically, changes in the mean and variability in PR and SpO2 
amplitude, alongside changes in the spectral power of PR and SpO2 
within 0.004–0.020 Hz, 0.020–0.100 Hz, and 0.180–0.400 Hz bands, 
showed differences among sleep stages. Thus, we conclude that our 
approach combining DL and XAI analysis to process pulse oximetry 
signals may ease its integration in real healthcare environments for 
automated sleep staging in all individuals being evaluated for suspected 
OSA, irrespectively of their age.
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Villar, F., Álvarez, D., del Campo, F., Gozal, D., Hornero, R., 2024. An explainable 
deep-learning architecture for pediatric sleep apnea identification from overnight 
airflow and oximetry signals. Biomed. Signal Process Control 87. https://doi.org/ 
10.1016/j.bspc.2023.105490.

Kalevo, L., Miettinen, T., Leino, A., Westeren-Punnonen, S., Sahlman, J., Mervaala, E., 
Toyras, J., Leppanen, T., Myllymaa, S., Myllymaa, K., 2022. Self-applied electrode 
set provides a clinically feasible solution enabling EEG recording in home sleep 
apnea testing. IEEE Access 10, 60633–60642. https://doi.org/10.1109/ 
ACCESS.2022.3178189.

Korkalainen, H., Aakko, J., Duce, B., Kainulainen, S., Leino, A., Nikkonen, S., Afara, I.O., 
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