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A B S T R A C T

For glymes of general formula CH3O(CH2CH2O)uCH3, with u = 1, 2, 3, 4, the densities of the (2-propanol +
glyme) systems at temperatures ranging from (293.15 to 303.15) K and at pressure 0.1 MPa were determined 
using a DSA 5000 densimeter (from Anton Paar). The corresponding excess molar volumes were calculated from 
these density measurements. In addition, excess molar enthalpies at 298.15 K and 0.1 MPa were measured using 
a Tian-Calvet micro-calorimeter. The results show that alkanol–ether interactions are strong but do not 
contribute significantly to the excess molar enthalpy, as the values are large and positive, and comparable to 
those of (glyme + n-heptane) systems. The excess molar volumes are small or even negative (in the case of the 
mixture with u = 4), indicating that they are mainly governed by structural effects. Mixtures with 1-propanol or 
2-propanol behave similarly, although interactions between unlike molecules become slightly stronger when 1- 
propanol is involved. On the other hand, effects related to alcohol self-association play a decisive role in the 
thermodynamic properties when glymes are replaced by di-n-propyl ether. This is supported by the application of 
the Flory model, which shows that orientational effects are weak in the studied glyme-containing mixtures but 
become significantly stronger when di-n-propyl ether is considered.

1. Introduction

The study of (alkanol + ether) mixtures has attracted significant 
interest due to their wide range of applications. These systems are 
commonly used as gasoline additives, increasing the octane rating and 
reducing emissions [1,2]. Solutions comprising an alkanol as a refrig
erant and a polyether as an absorbent have been proposed as effective 
working fluids in absorption heat pumps [3]. (Alkanol + ether) systems 
are also relevant in other industrial processes, particularly because 
alkanols serve as fundamental components in the synthesis of oxaal
kanes and are therefore often present as impurities in such processes. 
Moreover, mixtures of short-chain alkanols with linear polyethers are 
useful as simplified models for the complex (water + polyethylene 
glycols) systems, which are extensively used in biochemical and 
biomedical applications [4]. These solutions, especially those involving 
cyclic ethers, are also gaining attention in biotechnology [5,6].

From a theoretical perspective, the investigation of (alkanol + ether) 
mixtures is crucial due to the complex interactional and structural ef
fects involved. In this context, when studying such systems, one must 

consider the self-association of alkanols and the dipolar interactions 
between ether molecules, both of which are disrupted upon mixing, as 
well as the formation of new alkanol-ether interactions during the 
mixing process. The presence of multiple oxygen atoms within the same 
ether molecule introduces an additional problem due to the so-called 
proximity effects, which arise from dipolar interactions between these 
atoms [7–9]. Consequently, the analysis of this class of solutions serves 
as a rigorous test for any theoretical model [9]. Furthermore, it also 
provides a useful preliminary step toward studying mixtures containing 
hydroxyethers, where intramolecular effects between the –OH and –O– 
groups within the same molecule become significant [10].

Our research group has extensive experience in the investigation of 
systems containing –OH and/or –O– groups, either within the same 
molecule or in different ones. In particular, we have focused on (1- 
alkanol + linear monoether [8,11], or + polyether [12–14] or + cyclic 
ether [7,11]) mixtures or to systems involving hydroxyethers [10]. As a 
continuation of these works, and as a contribution to the Thermody
namics of Organic Mixtures (TOM) project [15–17], we now report 
density measurements, ρ, of the (2-propanol + linear polyether) 
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mixtures at temperatures T = (293.15 to 303.15) K and pressure p = 0.1 
MPa. The linear polyethers considered follow the general formula CH3O 
(CH2CH2O)uCH3, with u = 1, 2, 3, 4, referred to as mono, di, tri, and 
tetra-glyme, respectively. The results were used to calculate the corre
sponding excess molar volumes, VE

m. In addition, calorimetric mea
surements of the excess molar enthalpy, HE

m, were performed at T =
298.15 K and p = 0.1 MPa for the same systems. This set of data is 
essential to achieve the objective of this work: to provide insight into the 
interactional and structural changes occurring in these mixtures, and to 
analyze the effect on the mixture properties of replacing a primary 
alkanol with a secondary one, namely, 1-propanol with 2-propanol, 
while maintaining the same number of carbon atoms.

2. Materials and methods

2.1. Materials

The liquids used in this study are listed in Table 1, along with their 
source and purity.

Table 2 shows the measured properties of the pure compounds at a 
pressure of p = 0.1 MPa: density, ρ, at temperatures T = (293.15 to 
303.15) K, and the isobaric thermal expansion coefficient, αp, at T =
298.15 K. The values αp have been obtained using the following 
equation: 

αp = −
1
ρ

(
∂ρ
∂T

)

p
(1) 

where ρ is the density at T = 298.15 K, and (∂ρ/∂T)p is calculated as the 
slope of the linear regression of ρ as a function of T in the range T =
(293.15 to 303.15) K. The comparison between the measured and 
literature values is satisfactory. For subsequent calculations, the litera
ture values of the isothermal compressibilities, κT, of the pure com
pounds at T = 298.15 K are also included in Table 2.

2.2. Apparatus and procedure

Density data were determined using a vibrating-tube densimeter 
(DSA 5000, Anton Paar). The temperature of the apparatus is controlled 
by Peltier modules and a Pt-100 resistance thermometer, achieving a 
stability of 0.001 K. Further details on the technique are described 
elsewhere [38,39].

The calibration of the DSA 5000 was performed by fitting the density 
values, ρ, of reference liquids, obtained from the literature, to the well- 
established characteristic equation of vibrating-tube densimeters: 

ρ = A + B Q2 (2) 

where Q denotes the ratio between the resonance period of the 
measuring tube and that of the reference tube, and parameters A and B 

are determined at each temperature at which the mixtures are to be 
measured, using the following series of pure liquids: n-heptane, isooc
tane, cyclohexane, toluene, and Milli-Q water. Viscosity corrections 
have been neglected, since the viscosities of the liquids used are low. The 
estimated contribution to the uncertainty of density from the calibration 
parameters A and B is <0.00010 g cm-3. However, the overall mea
surement uncertainty of the densimeter is higher and is evaluated as 
detailed in Section 2.4.

The possible contamination and stability of the pure liquids used in 
this work were monitored periodically by measuring their densities, 
which remained within a maximum deviation of 2⋅10–5 g cm–3 from the 
initial values. The liquid mixtures were prepared by weighing, using an 
analytical balance (MSU125P, Sartorius), and applying the corre
sponding correction for buoyancy effects. This procedure resulted in a 
standard uncertainty of 5⋅10–5 g. The calculated concentration is 
expressed as the mole fraction of 2-propanol, x1, throughout the 
remainder of the text, unless otherwise indicated.

Calorimetric data were obtained by means of a standard Tian-Calvet 
microcalorimeter with a temperature stability of 0.01 K. The calori
metric block consists of two wells equipped with thermopiles connected 
in a differential configuration. One well contains the liquid sample 
under study (L), while the other holds the reference sample (R).

The instrument was calibrated electrically by supplying a constant 
power to the sample well until the calorimeter reached a steady state, 
while measuring the differential electromotive force (emf) at the 
microcalorimeter output. The calibration constant, C, was determined 
using the following equation: 

C =

δQL
dt − δQR

dt
εdiff

=
P

εdiff
(3) 

where δQL
dt − δQR

dt represents the difference between the heat flow from the 
sample and reference wells, P is the power generated in the sample well 
(calculated as the product of the voltage and current applied to it), and 
εdiff is the differential emf.

The calibration setup consists of: (i) Two metallic calibration cells, 
each containing a wound manganin wire resistor. A power supply 
(6644A, Agilent) controls both the power supplied to the calibration cell 
located in the sample well and the duration of the power supply. (ii) A 
thermal power monitoring module, comprising a multimeter (PM2534, 
Philips) for measuring the voltage across the resistor, and a multimeter 
(34410A, Agilent) for measuring the current through the resistor. (iii) A 
multimeter (2000, Keithley) for monitoring the output voltage gener
ated by the thermopiles; this device is, in fact, the only one required to 
determine HE

m once the calorimeter has been calibrated.
The calibration procedure is carried out at different supply currents 

ranging from 5 mA to 35 mA, maintaining each current level stable for 
approximately 4 h. The estimated relative standard uncertainty in the 
calibration constant C is 0.1 %. However, the overall measurement 
uncertainty increases by an order of magnitude due to factors such as 
calorimeter signal integration. The total uncertainty in HE

m is determined 
as described in Section 2.4.

The measurement of the HE
m of the two liquids was conducted as 

follows. Custom-made stainless steel mixing cells, with a total volume of 
approximately 9 cm3, were used. Prior to mixing, one liquid was placed 
in the cell, and the other one in a syringe, both housed within the 
calorimetric block, until thermal equilibrium was reached. The εdiff was 
then recorded for 10 min (baseline) and averaged. Subsequently, the 
liquid in the syringe was slowly and continuously injected into the cell, 
producing a signal peak due to mixing. After thermal equilibrium was re- 
established, the baseline was recorded for 10 min and averaged to check 
that this baseline has not significantly changed and that it is stable 
enough to ensure that no other thermal effects are influencing the signal. 
The total heat released by the mixture was determined by multiplying 
the calibration constant C by the integral of εdiff over the time interval 
during which the mixture absorbed or released heat. The reference level 

Table 1 
Description of the compounds used in this work.

Chemical name CAS 
Number

Source a Initial 
purity

Purification 
method

2-propanol 67–63–0 Sigma- 
Aldrich

0.9995 none

2,5-dioxahexane 
(monoglyme)

110–71–4 Sigma- 
Aldrich

0.999 none

2,5,8-trioxanonane 
(diglyme)

111–96–6 Fluka 0.998 none

2,5,8,11-tetraoxadodecane 
(triglyme)

112–49–2 Sigma- 
Aldrich

0.999 none

2,5,8,11,14- 
pentaoxapentadecane 
(tetraglyme)

143–24–8 Sigma- 
Aldrich

0.999 none

a Gas chromatography area fraction. Certified by the supplier.
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Table 2 
Density, ρ, isobaric thermal expansion coefficient, αp, and isothermal compressibility, κT , of the pure liquids used in this work at temperature T and pressure p = 0.1 
MPa. Root-mean-square deviation, σ(F), of the literature values from the experimental values at temperature T = 298.15 K (see Eq. (6)).

Compound a Property F This work Literature

T = 293.15 K T = 298.15 K T = 303.15 K T = 298.15 K a σ(F)

2-propanol ρ/(g cm–3) 0.78505 0.78085 0.77660 0.7809 [18] 
0.7809 [19] 
b 0.78087 [20] 
0.7809 [21] 
0.78087 [22]

0.000045

​ αp/(10–3 K–1) ​ 1.082 ​ 1.09 [18] 
1.084 [19] 
b 1.085 [20] 
1.075 [21] 
b 1.086 [22]

0.0060

​ κT/(TPa)–1 ​ ​ ​ 1110 [21] ​
monoglyme ρ/(g cm–3) 0.86717 0.86170 0.85621 0.86183 [23] 

0.86114 [24] 
0.86114 [25] 
0.86110 [26] 
0.8616 [27] 
0.86208 [28]

0.00048

​ αp/(10–3 K–1) ​ 1.272 ​ 1.269 [23] 
b 1.277 [24] 

b 1.274 [25] 

b 1.29 [26]

0.011

​ κT/(TPa)–1 ​ ​ ​ 1114.5 [27] ​
diglyme ρ/(g cm–3) 0.94370 0.93874 0.93376 0.93872 [23] 

0.93935 [24] 
0.93883 [25] 
0.93859 [26] 
0.9384 [29] 
0.93882 [30]

0.00032

​ αp/(10–3 K–1) ​ 1.059 ​ 1.063 [23] 
1.064 [24] 
1.057 [25] 
1.055 [26]

0.0045

​ κT/(TPa)–1 ​ ​ ​ 821.6 [27] ​
triglyme ρ/(g cm–3) 0.98485 0.98010 0.97535 0.98079 [23] 

0.98058 [24] 
0.98049 [31] 
0.9805 [32] 
0.98064 [33] 
0.98000 [34]

0.00051

​ αp/(10–3 K–1) ​ 0.969 ​ 0.969 [23] 
0.969 [24] 
b 0.969 [31] 

b 0.964 [32] 

b 0.969 [33]

0.0025

​ κT/(TPa)–1 ​ ​ ​ 707.1 [27] ​
tetraglyme ρ/(g cm–3) 1.01090 1.00626 1.00164 1.00569 [23] 

1.00668 [24] 
1.00716 [35] 
1.00568 [36] 
1.0066 [34]

0.00066

​ αp/(10–3 K–1) ​ 0.920 ​ 0.925 [23] 
0.928 [24] 
b 0.915 [35] 

b 0.929 [36]

0.0081

​ κT/(TPa)–1 ​ ​ ​ 644.0 [37] ​

a Expanded uncertainties (U1), with a coverage factor of 2, evaluated under repeatability conditions of measurement: U1(T) = 0.02 K, U1(p) = 10 kPa, and U1(ρ) =
0.00010 g cm–3, U1

(
αp
)
= 0.020⋅10–3 K–1 . Expanded uncertainties (U2), with a coverage factor of 2, evaluated under reproducibility conditions of measurement: for F 

= ρ,αp, U2(F) = 2σ(F). Total expanded uncertainty (U): U(F) =
[
U1(F)2

+ U2(F)2]1/2.
b Calculated from data reported in the reference.
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for the integration in the εdiff vs. time representation was taken as a 
straight line connecting the initial and final baselines. Further details on 
the technique are provided in previous works [38,39].

2.3. Excess functions

The values Fid of the thermodynamic properties of an ideal mixture, 
under the same temperature and pressure conditions as the real mixture, 
are calculated using the Benson and Kiyohara formulas [40–42]: 

Fid = x1F1 + x2F2

(
F=Vm,Hm,

(
∂VE

m

/
∂T
)

p,x

)
(4) 

Fid = ϕ1F1 + ϕ2F2
(
F=αp, κT

)
(5) 

where Fi is the value of the property F for pure component i, xi represents 
the mole fraction of component i, and ϕi = xiVm,i/Vid

m is the volume 
fraction of component i. The excess properties FE are defined as: 

FE = F − Fid (6) 

In the case of F = Hm, the excess molar enthalpy HE
m is equal to the 

molar heat of mixing at constant pressure, measured directly by 
calorimetry.

Interactional effects upon mixing are better evaluated by means of 
the isochoric excess molar internal energy, UE

m,V [43]: 

UE
m,V = HE

m − T
αp

κT
VE

m (7) 

In Eq. (7), the term T
(
αp /κT

)
VE

m is referred to as the equation-of-state 
term (EoS term), and it is related to the volume variation upon mixing. 
Due to the lack of κT values for the mixtures studied in this work, UE

m,V 

has been estimated by assuming ideal behavior for this quantity, using 
literature κT values (see Table 2) and Eq. (5).

2.4. Experimental uncertainty

Details regarding the uncertainty of some of the measurements have 
already been published in a previous work [44], but they are fully 
specified below.

Uncertainty under repeatability conditions. This term refers to the 
uncertainty obtained from the sample standard deviation of measure
ments performed while maintaining the same procedure, operator, 
measuring system, operating conditions, location, and source liquids 
over short time intervals and includes the contribution from calibration 
constants. It is denoted (with a coverage factor of 2) as U1 [45]. The 
highest values found in this study are: U1(T) = 0.02 K, U1(p) = 10 kPa, 
U1(x1) = 0.00010, U1(ρ) = 0.00010 g cm–3, U1

(
αp
)
= 0.020⋅10–3 K–1, 

U1
(
HE

m
)
= 0.010⋅|HE

m|.
Uncertainty under reproducibility conditions. This is based on the 

expression of the root-mean-square deviation, σ(F), of Nlit literature (lit) 
data points from our experimental (exp) values: 

σ(F) =
[

1
Nlit − 1

∑

Flit

(
Flit − Fexp

)2

]1/2
(
F= ρ, αp

)
(8) 

The summation is performed over each literature data point Flit at T 
= 298.15 K. For pure liquids, the expanded (with a coverage factor of 2) 
uncertainty evaluated under reproducibility conditions, U2, is estimated 
as U2(F) = 2 σ(F). For mixtures, U2(F) is taken as the maximum value 
between those corresponding of the pure liquids involved (Table 2).

Total expanded (with a coverage factor of 2) uncertainty, U. 
Ideally, this should include other factors, such as the purity of the 
compounds used. However, these are very difficult to quantify. There
fore, for the mole fraction of the mixtures, the total expanded uncer
tainty has been roughly estimated as U(x1) = 0.0010. For F = ρ, αp, the 
total expanded uncertainty can be calculated as: 

U(F) =
[
U1(F)2

+ U2(F)2]1/2 ( F= ρ, αp
)

(9) 

Specifically, for the mixtures of 2-propanol with monoglyme, 
diglyme, triglyme, and tetraglyme, the uncertainty in density, U(ρ), is 
0.00097 g cm⁻³, 0.00065 g cm⁻³, 0.0010 g cm⁻³, and 0.0013 g cm⁻³, 
respectively.

The uncertainties of the excess functions are considerably less sen
sitive to the purity of the compounds and are typically estimated by 
comparison with reference values from test systems. The following ex
pressions are used: U

(
VE

m
)
= 0.010 |VE

m|max + 0.005 cm3 mol− 1, Ur
(
HE

m
)

= 0.015, and U
[(

∂VE
m/∂T

)

p,x

]
= 0.010 |

(
∂VE

m/∂T
)

p,x|max + 0.0002 cm3 

mol− 1 K–1.

3. Results

The experimental ρ and VE
m values for (2-propanol + linear poly

ether) liquid mixtures at p = 0.1 MPa and T = (293.15 to 303.15) K are 
included in Table 3 as functions of x1. The values of 

(
∂VE

m/∂T
)

p,x at p =
0.1 MPa and T = 298.15 K are also included in Table 3, calculated as the 
slope of linear regressions of VE

m as a function of T in the range T =
(293.15 to 303.15) K. The experimental values of HE

m at p = 0.1 MPa and 
T = 298.15 K are collected in Table 4.

Some excess properties, FE = VE
m, HE

m,
(
∂VE

m/∂T
)

p,x, are fitted to 
Redlich-Kister polynomials [46]: 

FE = x1(1 − x1)
∑k− 1

i=0
Ai(2x1 − 1)i

(
FE =VE

m,H
E
m,
(
∂VE

m
/

∂T
)

p,x

)
(10) 

using unweighted linear least-squares regressions, selecting an appro
priate number, k, of Ai coefficients based on F-tests for the inclusion of 
additional terms [47]. The results are presented in Table 5. The 
root-mean-square deviation of the fit to Eq. (10), s, is defined as: 

s =

[
1

N − Np

∑N

j=1

(
Fcal,j − Fexp,j

)2

]1/2 (
F=VE

m,H
E
m,
(
∂VE

m
/

∂T
)

p,x

)
(11) 

where Np denotes the number of Ai parameters in Eq. (10), and j indexes 
the number N of experimental data points Fexp,j and the corresponding 
calculated values Fcal,j. The value of s for each fit is included in Table 5.

The excess properties VE
m, HE

m, and 
(
∂VE

m/∂T
)

p,x of the studied mix
tures at p = 0.1 MPa and T = 298.15 K are depicted as functions of x1 in 
Figs. 1, 2, and 3, respectively, together with the corresponding Redlich- 
Kister regressions.

The interested reader may find in the Supplementary Material the 
excess partial molar volumes and enthalpies of both components of the 
(2-propanol + glyme) liquid mixtures studied (Tables S1 and S2, 
Figs. S1-S4), as well as the corresponding partial molar volumes 
(Table S1), at T = 298.15 K.

The VE
m, values obtained in this work have been compared with those 

reported in previous studies at atmospheric pressure [48–51], as illus
trated in Fig. S5. Fig. S5a displays the VE

m values for the (2-propanol +
monoglyme) mixture at temperatures of 293.15 K and 303.15 K. Our 
data are consistent, within the experimental uncertainty, with those 
reported by [48] at both temperatures. In contrast, a significant 
discrepancy is observed when compared with the results of [51], 
particularly considering that their reported VE

m values exhibit an inverse 
temperature dependence—decreasing with increasing temper
ature—which contradicts both our findings and those of [48].

Fig. S5b presents the VE
m values for the (2-propanol + tetraglyme) 

mixture at T = 298.15 K. As shown, the density data reported by [49,50] 
lack the required precision to accurately determine the excess molar 
volumes, as they yield inconsistent values that fluctuate between posi
tive and negative, and fail to exhibit the expected smooth compositional 
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dependence.

4. Flory model

The essential hypotheses of the theory [52–54] are described else
where [55]. The basic assumption of the model is that of random mixing. 
The explicit expression of the Flory equation of state, valid for both pure 
liquids and liquid mixtures, is: 

p̂ V̂
T̂

=
V̂

1/3

V̂
1/3

− 1
−

1
V̂ T̂

(12) 

where V̂ = Vm/V∗
m, p̂ = p/p∗, and T̂ = T/T∗ stand for the reduced vol

ume, pressure and temperature, respectively (where Vm is the molar 
volume of the mixture). For pure liquids, the reduction parameters, V∗

m,i, 
p∗i , and T∗

i , can be obtained from values of density, αp,i (isobaric 
expansion coefficient), and κT,i (isothermal compressibility) (see 

Table 3 
Density, ρ, excess molar volume, VE

m, and temperature derivative of the excess molar volume, 
(
∂VE

m/∂T
)

p,x of (2-propanol (1) + linear polyether (2)) liquid mixtures as 
function of the mole fraction of 2-propanol, x1, at temperature T and pressure p = 0.1 MPaa.

ρ/(g cm–3) VE
m/(cm3 mol–1)

(
∂VE

m/∂T
)

p,x / (cm3 mol–1 K–1)

T = 293.15 K T = 298.15 K T = 303.15 K T = 293.15 K T = 298.15 K T = 303.15 K T = 298.15 K

2-propanol (1) + monoglyme (2)
0.05178 0.86380 0.85836 0.85291 0.0231 0.0260 0.0276 0.00045
0.10439 0.86021 0.85481 0.84938 0.0548 0.0598 0.0658 0.00110
0.15427 0.85678 0.85141 0.84602 0.0771 0.0850 0.0925 0.00154
0.20588 0.85310 0.84777 0.84241 0.1039 0.1138 0.1246 0.00207
0.30275 0.84608 0.84084 0.83556 0.1344 0.1466 0.1605 0.00261
0.40779 0.83815 0.83301 0.82784 0.1531 0.1678 0.1828 0.00297
0.49539 0.83121 0.82617 0.82109 0.1626 0.1780 0.1945 0.00319
0.60142 0.82245 0.81755 0.81261 0.1586 0.1732 0.1884 0.00298
0.70143 0.81382 0.80907 0.80426 0.1357 0.1482 0.1630 0.00273
0.79875 0.80491 0.80031 0.79567 0.1090 0.1196 0.1302 0.00212
0.85010 0.80008 0.79558 0.79104 0.0837 0.0915 0.0989 0.00152
0.89810 0.79539 0.79098 0.78652 0.0619 0.0676 0.0737 0.00118
0.95061 0.79012 0.78582 0.78148 0.0336 0.0360 0.0377 0.00041
2-propanol (1) + diglyme (2)
0.05109 0.93918 0.93422 0.92926 0.0075 0.0107 0.0108 0.00033
0.10475 0.93418 0.92922 0.92426 0.0170 0.0237 0.0272 0.00102
0.15607 0.92913 0.92419 0.91925 0.0289 0.0360 0.0399 0.00110
0.19889 0.92466 0.91973 0.91479 0.0466 0.0552 0.0621 0.00155
0.29787 0.91373 0.90883 0.90391 0.0630 0.0744 0.0852 0.00222
0.39453 0.90186 0.89700 0.89211 0.0819 0.0951 0.1087 0.00268
0.49704 0.88786 0.88305 0.87822 0.0915 0.1063 0.1199 0.00284
0.59926 0.87218 0.86744 0.86267 0.0893 0.1040 0.1185 0.00292
0.70252 0.85426 0.84960 0.84492 0.0712 0.0858 0.0986 0.00274
0.79283 0.83628 0.83173 0.82714 0.0655 0.0769 0.0884 0.00229
0.84771 0.82438 0.81991 0.81539 0.0379 0.0465 0.0560 0.00181
0.89995 0.81188 0.80750 0.80306 0.0329 0.0382 0.0451 0.00122
0.94705 0.79980 0.79550 0.79114 0.0175 0.0204 0.0247 0.00072
2-propanol (1) + triglyme (2)
0.10260 0.97560 0.97085 0.96610 0.0057 0.0094 0.0127 0.00070
0.16302 0.96960 0.96485 0.96010 0.0069 0.0129 0.0181 0.00112
0.21067 0.96451 0.95977 0.95502 0.0116 0.0177 0.0246 0.00130
0.30289 0.95374 0.94901 0.94427 0.0138 0.0221 0.0306 0.00168
0.40500 0.94011 0.93540 0.93068 0.0105 0.0202 0.0297 0.00192
0.49568 0.92607 0.92138 0.91668 0.0145 0.0259 0.0364 0.00219
0.59697 0.90781 0.90315 0.89849 0.0097 0.0225 0.0327 0.00230
0.68977 0.88795 0.88335 0.87874 0.0074 0.0186 0.0279 0.00205
0.79723 0.86004 0.85553 0.85100 0.0037 0.0128 0.0204 0.00167
0.84925 0.84410 0.83965 0.83517 0.0009 0.0081 0.0146 0.00137
0.89995 0.82664 0.82226 0.81785 –0.0010 0.0041 0.0081 0.00091
2-propanol (1) + tetraglyme (2)
0.05776 1.00625 1.00162 0.99699 − 0.0146 − 0.0157 − 0.0129 0.00017
0.10331 1.00227 0.99763 0.99300 − 0.0164 − 0.0144 − 0.0109 0.00055
0.16636 0.99631 0.99168 0.98705 − 0.0162 − 0.0148 − 0.0104 0.00058
0.19980 0.99294 0.98830 0.98368 − 0.0199 − 0.0157 − 0.0128 0.00071
0.29568 0.98226 0.97763 0.97300 − 0.0291 − 0.0245 − 0.0181 0.00110
0.40048 0.96853 0.96390 0.95928 − 0.0412 − 0.0337 − 0.0271 0.00141
0.49985 0.95293 0.94832 0.94371 − 0.0513 − 0.0439 − 0.0366 0.00147
0.59618 0.93466 0.93008 0.92549 − 0.0628 − 0.0561 − 0.0489 0.00139
0.69890 0.91048 0.90594 0.90139 − 0.0688 − 0.0623 − 0.0565 0.00123
0.79196 0.88272 0.87824 0.87374 − 0.0658 − 0.0606 − 0.0558 0.00100
0.84810 0.86227 0.85784 0.85339 − 0.0573 − 0.0530 − 0.0499 0.00074
0.90240 0.83902 0.83466 0.83027 − 0.0474 − 0.0453 − 0.0438 0.00036
0.94957 0.81522 0.81093 0.80660 − 0.0287 − 0.0277 − 0.0271 0.00016

a Total expanded uncertainties (U), with a coverage factor of 2: U(T) = 0.02 K, U(p) = 10 kPa, U(x1) = 0.0010; U(ρ) is estimated as U1(ρ) = 0.00010 g cm–3 plus the 
maximum U2(ρ) = 2σ(ρ) value between those of the pure liquids involved (see Table 2), that is, U(ρ) =

[
U1(ρ)2 + U2(ρ)2

]1/2; U
(
VE

m
)
= 0.010 |VE

m|max + 0.005 cm3 

mol− 1; U
((

∂VE
m/∂T

)

p,x

)
= 0.010 |

(
∂VE

m/∂T
)

p,x|max + 0.0002 cm3 mol− 1 K–1.
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Table 2). Expressions for the reduction parameters of mixtures can be 
found elsewhere [55]. The reduction parameters used in this work are 
listed in Table 6. The values of HE

m are obtained from: 

HE
m =

x1V∗
m,1θ2X12

V̂
+ x1V∗

m,1p∗
1

(
1
V̂1

−
1
V̂

)

+ x2V∗
m,2p∗

2

(
1
V̂2

−
1
V̂

)

(13) 

where all symbols have their usual meaning [55]. The reduced volume 
of the mixture, V̂, is obtained from the equation of state, and the excess 
molar volume can be calculated as follows: 

VE
m =

(
x1V∗

m,1 + x1V∗
m,2

)
(V̂ − φ1 V̂1 − φ2 V̂2) (14) 

4.1. Results from Flory’s model

Table 6 lists the values of the interaction parameter X12, determined 

from experimental HE
m data at equimolar composition and T = 298.15 K, 

using the method described in reference [57]. Deviations between 
experimental and theoretical HE

m results (see Table 6 and Fig. 4 for a 
graphical comparison) are evaluated using the relative standard de
viations of HE

m, defined as: 

σr
(
HE

m
)
=

[
1
N
∑

(
HE

m,exp − HE
m,calc

HE
m,exp

)2]1/2

(15) 

where N is the number of experimental data points. Finally, experi
mental VE

m results at x1 = 0.5 and T = 298.15 K are also compared with 
the corresponding Flory calculations, as shown in Table 6.

5. Discussion

Unless otherwise indicated, the values of the thermophysical prop

Table 4 
Excess molar enthalpy, HE

m, of (2-propanol (1) + linear polyether (2)) liquid mixtures as function of the mole fraction of 2-propanol, x1, at temperature T = 298.15 K 
and pressure p = 0.1 MPa a.

HE
m/(J mol–1) x1 HE

m/(J mol–1) x1 HE
m/(J mol–1) x1 HE

m/(J mol–1)
2-propanol (1) + monoglyme (2) 2-propanol (1) + diglyme (2) 2-propanol (1) + triglyme (2) 2-propanol (1) + tetraglyme (2)

0.05116 266 0.05862 310 0.04112 194 0.04079 219
0.10266 504 0.09944 523 0.10454 580 0.10101 573
0.14753 681 0.14873 750 0.15061 811 0.14880 839
0.20743 890 0.19941 962 0.19644 1020 0.20190 1123
0.31511 1145 0.29935 1314 0.29930 1413 0.30358 1517
0.39259 1257 0.39978 1503 0.40307 1697 0.40874 1834
0.50397 1324 0.50348 1626 0.50693 1858 0.49262 1996
0.60170 1279 0.59184 1615 0.59909 1863 0.59730 2044
0.71260 1106 0.69626 1483 0.69581 1744 0.70215 1938
0.79651 895 0.80243 1179 0.80344 1407 0.80673 1605
0.85240 697 0.85192 958 0.85000 1195 0.84681 1411
0.89572 523 0.89319 758 0.89311 916 0.90341 1022
0.93882 328 0.97297 220 0.95217 477 0.95277 574

a Total expanded uncertainties (U) and relative expanded uncertainties (Ur) with a coverage factor of 2: U(T) = 0.02 K, U(p) = 10 kPa, U(x1) = 0.0010, Ur
(
HE

m
)
=

0.015.

Table 5 
Parameters Ai of Eq. (10) and root-mean-square deviation of the fit, s, Eq. (11), for the excess molar volume, VE

m, the temperature derivative of the excess molar volume, 
(
∂VE

m/∂T
)

p,x, and the excess molar enthalpy, HE
m, of (2-propanol (1) + linear polyether (2)) liquid mixtures used in this work at temperature T and pressure p = 0.1 MPa.

Property T/K A0 A1 A2 A3 s

2-propanol (1) + monoglyme (2)
VE

m/(cm3 mol–1) 293.15 0.644 0.05 ​ ​ 0.003
​ 298.15 0.705 0.05 ​ ​ 0.003
​ 303.15 0.769 0.05 ​ ​ 0.003
(
∂VE

m/∂T
)

p,x/(cm3 mol–1 K–1) 298.15 0.0125 ​ ​ ​ 0.00010

HE
m/(J mol− 1) 298.15 5292 97 410 ​ 3

2-propanol (1) + diglyme (2)
VE

m/(cm3 mol–1) 293.15 0.36 0.08 − 0.15 ​ 0.004
​ 298.15 0.42 0.09 − 0.14 ​ 0.004
​ 303.15 0.48 0.10 − 0.16 ​ 0.004
(
∂VE

m/∂T
)

p,x/(cm3 mol–1 K− 1) 298.15 0.0117 0.0032 ​ ​ 0.00008

HE
m/(J mol− 1) 298.15 6496 1165 604 ​ 13

2-propanol (1) + triglyme (2)
VE

m/(cm3 mol–1) 293.15 0.045 − 0.037 ​ ​ 0.0019
​ 298.15 0.092 − 0.022 ​ ​ 0.0019
​ 303.15 0.134 − 0.016 ​ ​ 0.0020
(
∂VE

m/∂T
)

p,x/(cm3 mol–1 K–1) 298.15 0.0089 0.0021 ​ ​ 0.00007

HE
m/(J mol–1) 298.15 7383 1691 825 992 14

2-propanol (1) + tetraglyme (2)
VE

m/(cm3 mol–1) 293.15 − 0.204 − 0.23 − 0.20 ​ 0.003
​ 298.15 − 0.174 − 0.22 − 0.22 ​ 0.003
​ 303.15 − 0.145 − 0.22 − 0.22 ​ 0.003
(
∂VE

m/∂T
)

p,x/(cm3 mol–1 K–1) 298.15 0.0055 ​ ​ ​ 0.00011

HE
m/(J mol–1) 298.15 7982 2233 1590 1715 11
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erties are considered at T = 298.15 K, p = 0.1 MPa, and x1 = 0.5 (see 
Tables 7 and 8, and Figs. 5 and 6) hereinafter. The number of carbon 
atoms in the n-alkane is denoted by n, and the number of oxygen atoms 
in the glyme is denoted by u.

5.1. (Alkanol + n-alkane) mixtures

Firstly, we focus on systems containing 1-alkanols. For mixtures with 
a fixed n-alkane (e.g., n-heptane), increasing the size of the 1-alkanol 
leads to an interesting behavior in both HE

m and VE
m. The (methanol +

n-heptane) mixture exhibits a miscibility gap between 0.17 and 0.89 
mole fraction of methanol at T = 298.15 K [70], due to the difficulty of 
the n-alkane in breaking the strong self-association of this alcohol. This 

miscibility gap disappears at 298.15 K in n-heptane systems involving 
other 1-alkanols, as the –OH group becomes more sterically hindered, 
leading to reduced self-association of the alkanol [63]. The HE

m values 
are positive (arising from the disruption of interactions between alkanol 
molecules) and increase from ethanol to 1-propanol [71], but then 
gradually decrease [72]. This behavior is typically explained consid
ering that, due to the lower self-association of longer 1-alkanols, the 
disruption of their intermolecular network upon mixing contributes less 
positively to HE

m.
On the other hand, the sign of VE

m depends on the size difference 
between the components of the mixture: VE

m is positive for the shorter 1- 
alkanols and becomes negative starting from 1-hexanol. These negative 
values of VE

m have been explained in terms of a purely structural effect 
known as interstitial accommodation [73,74].

Fixing 1-propanol as the 1-alkanol, the values of HE
m for (1-propanol 

+ n-alkane) mixtures increase slightly with the size of the n-alkane: 

HE
m/
(

J mol− 1
)
= 533 (n-hexane [75]) < 614 (n-heptane [76]) < 685 

(n-octane [77]), which can be attributed to the greater ability of longer 
alkanes to break interactions between 1-alkanol molecules. However, 
these small variations in HE

m suggest that the self-associative structures 
of the alkanols are only slightly perturbed by the alkanes. Accordingly, 
the HE

m(x1) curves are skewed toward low mole fractions of the 1-alka
nol. The same trend is observed in the corresponding 

VE
m/
(

cm3 mol− 1
)

values: 0.180 (n-hexane [78]) < 0.295 (n-heptane 

[73]).
Let us now examine the effect of replacing 1-propanol with 2-propa

nol. As a starting point, it is important to note that the enthalpy of self- 
association of 2-propanol can be assumed to be equal to that of 1-alka
nols. This approximation has been widely used in the application of 
association theories [63,79–82]. Nevertheless, the self-association of 
2-propanol is lower than that of 1-propanol, since its –OH group is more 

sterically hindered [63]. For mixtures with n-heptane, HE
m/
(

J mol− 1
)
=

614 (1-propanol [76]) < 797 (2-propanol) [83]. This suggests that, in 
the case of 2-propanol mixtures, the breaking of dipolar interactions 
between alcohol molecules also contributes significantly to HE

m. A 

similar behavior is observed in the corresponding VE
m/
(

cm3 mol− 1
)

-0.1
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m
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−1
)
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Fig. 1. Excess molar volume, VE
m, of (2-propanol (1) + linear polyether (2)) 

liquid mixtures as a function of the 2-propanol mole fraction, x1, at temperature 
T = 298.15 K and pressure p = 0.1 MPa. Symbols, experimental values: (⬜) 
monoglyme, (⋄) diglyme, (△) triglyme, (☓) tetraglyme. Solid lines are calcu
lated with Eq. (10) using the coefficients from Table 5.

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

/ 
(

lo
mJ

−1
)

x1

Fig. 2. Excess molar enthalpy, HE
m, of (2-propanol (1) + linear polyether (2)) 

liquid mixtures as a function of the 2-propanol mole fraction, x1, at temperature 
T = 298.15 K and pressure p = 0.1 MPa. Symbols, experimental values: (⬜) 
monoglyme, (⋄) diglyme, (△) triglyme, (☓) tetraglyme. Solid lines are calcu
lated with Eq. (10) using the coefficients from Table 5.
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Fig. 3. Temperature derivative of the excess molar volume, 
(
∂VE

m/∂T
)

p,x, of (2- 
propanol (1) + linear polyether (2)) liquid mixtures as a function of the 2-prop
anol mole fraction, x1, at temperature T = 298.15 K and pressure p = 0.1 MPa. 
Symbols, experimental values: (⬜) monoglyme, (⋄) diglyme, (△) triglyme, (☓) 
tetraglyme. Solid lines are calculated with Eq. (10) using the coefficients 
from Table 5.
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values for mixtures with n-hexane: 0.180 (1-propanol [78]) < 0.410 
(2-propanol [84]), which can be explained by the same interactional 
effect.

On the other hand, the high and positive values of the isobaric molar 

excess heat capacities, CE
p,m/

(
J mol− 1 K− 1

)
, for mixtures with n-hep

tane: ≈13.5 (1-propanol [85]) and 15.2 (2-propanol [86]), highlight 
that, in both solutions, the alcohol network is significantly disrupted as 
the temperature increases. However, the effect is more pronounced 

Table 6 
Results from the Flory model for (2-propanol (1) + ether (2)) mixtures at p = 0.1 MPa and T = 298.15 K: interaction parameter, X12, relative standard deviations for HE

m 

from Eq. (13), σr
(
HE

m
)
, and excess molar volumes at equimolar composition, VE

m. Flory parameters of pure compoundsa at T = 298.15 K are also included.

Vm,i/
(

cm3 mol− 1
)

V∗
m,i /

(
cm3 mol− 1

)
p∗i /

(
J cm− 3) Nb X12 /

(
J cm− 3) σr

(
HE

m
)

VE
m /
(

cm3 mol− 1
)

Exp. Flory

Monoglyme 104.58 80.39 575.9 13c 75.53 0.051 0.176c 1.257
Diglyme 142.93 113.47 609.8 13c 84.65 0.029 0.105c 1.140
Triglyme 181.84 146.59 626.1 13c 90.76 0.056 0.023c 1.024
Tetraglyme 220.89 179.43 645.5 13c 94.18 0.041 − 0.044c 0.914
Dipropylether 137.68 106 440.7 14d 50.63 0.273 − 0.027d 0.925

a Vm,i, molar volume; V∗
m,i and p∗i , reduction molar volume and pressure, respectively. For 2-propanol: Vm,i = 76.96 cm3 mol–1; V∗

m,i = 60.87 cm3 mol–1; p∗i = 464.5 J 
cm–3.

b Number of data points.
c This work.
d Reference [56].
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Fig. 4. Excess molar enthalpy, HE
m, of (2-propanol (1) + linear polyether (2) or 

+ di-n-propyl ether (2)) liquid mixtures as a function of the 2-propanol mole 
fraction, x1, at temperature T = 298.15 K and pressure p = 0.1 MPa. Symbols, 
experimental values: (⬜) monoglyme [this work], (⋄) diglyme [this work], (△) 
triglyme [this work], (☓) tetraglyme [this work], (○) di-n-propyl ether [56]. 
Solid lines are calculated with Flory model (Eq. (13)) using coefficients 
from Table 6.

Table 7 
Excess molar volume, VE

m, temperature derivative of excess molar volume, 
(
∂VE

m/∂T
)

p,x, of (1- and 2-propanol + glyme) liquid mixtures at equimolar 
composition, at temperature T = 298.15 K, and pressure p = 0.1 MPa.

2-propanol 1-propanol

Glyme VE
m/(cm3 

mol–1)

(
∂VE

m/∂T
)

p,x 

/10− 3(cm3 mol–1 

K–1)

VE
m/(cm3 

mol–1)

(
∂VE

m/∂T
)

p,x 

/10− 3(cm3 mol–1 

K–1)

monoglyme 0.176 3.13 − 0.071 
[58]

1.23 [59]

diglyme 0.105 2.93 − 0.068 
[58]

2.92 [59]

triglyme 0.023 2.23 − 0.120 
[60]

2.24 [59]

tetraglyme − 0.044 1.38 − 0.202 
[59]

1.08 [59]

Table 8 
Excess molar enthalpy, HE

m, isochoric excess molar internal energy, UE
m,V , and 

OH–O interaction enthalpy, ΔHOH− O, of (1- and 2-propanol + glyme) liquid 
mixtures at equimolar composition, at temperature T = 298.15 K and pressure p 
= 0.1 MPa.

2-propanol 1-propanol

Glyme HE
m/ (J 

mol–1)
UE

m,V / 
(J 
mol–1)

ΔHOH− O/ 
(kJ mol–1)

HE
m/ (J 

mol–1)
UE

m,V / 
(J 
mol–1)

ΔHOH− O/ 
(kJ mol–1)

monoglyme 1323 1266 − 23.1 1040 
[61]

1063 − 23.9 [8]

diglyme 1624 1587 − 25.4 1214 
[62]

1249 − 26.6 [8]

triglyme 1846 1837 − 28.5 1401 
[63]

1450 − 30 [8]

tetraglyme 1996 2012 − 30.9 1514 
[64]

1600 − 34.2 [8]
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Fig. 5. Excess molar enthalpy, HE
m, of (glyme + alkane) or (alkanol + glyme) 

systems as a function of u, the number of oxygen atoms in the glyme, at 
equimolar composition, p = 0.1 MPa and T = 298.15 K: (⋄) 2-propanol [this 
work]; (⬜) 1-propanol [61–64]; (△) n-heptane [65].
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when 2-propanol is involved.

5.2. (Glyme + n-alkane) mixtures

Glymes are linear polyethers containing multiple –O– groups within 
the molecule. They are characterized by both inter and intramolecular 
dipolar interactions [87]. When glymes are mixed with n-alkanes, these 
dipolar interactions between glyme molecules are partially disrupted.

For a fixed glyme, HE
m of (glyme + alkane) mixtures are positive, 

considerably high and increase with the chain length of the n-alkane. For 

instance, the HE
m/
(

J mol− 1
)

values for (triglyme + n-alkane) are [88]: 

1704 (for n-heptane) < 1877 (for n-octane) < 2110 (for n-decane) <
2214 (for n-dodecane). This behavior is a consequence of the intense 
dipolar interactions between glyme molecules, which are more effec
tively disrupted by longer alkanes. Interestingly, the (tetraglyme +
n-dodecane) mixture exhibits a miscibility gap at 298.15 K in the con
centration range 0.20 < x1 < 0.74 [89]. The observed immiscibility 
reflects the inability of n-dodecane to sufficiently disrupt the intense 
dipolar interactions between molecules of tetraglyme. VE

m of (glyme +
n-alkane) systems for a fixed glyme behaves in a similar way. For 

example, in (triglyme + n-alkane) solutions, the VE
m/
(

cm3 mol− 1
)

values are: 0.748 (n-heptane [34]) < 0.970 (n-octane [34]) < 1.272 
(n-decane [34]) < 1.478 (n-dodecane [90]).

For a fixed n-alkane (n-heptane), HE
m/
(

J mol− 1
)

of (glyme + n- 

heptane) mixtures increases with the size of the glyme molecule: 1285 
(monoglyme [65]) < 1621 (diglyme [91]) < 1704 (triglyme [88]) <
1897 (tetraglyme [92]) (Fig. 5). This can be attributed to the disruption 
of stronger dipolar interactions by n-heptane in longer glymes, which 
arise from increasing proximity effects (intramolecular effects) between 
the oxygen atoms in the glymes [87]. This behavior is also reflected in 
the values of the partial molar excess enthalpy of glyme at infinite 
dilution, HE,∞

m,1 , in (glyme + n-heptane) mixtures (see Section 5.4. below). 
However, structural effects are also relevant in these mixtures, since VE

m 

/
(

cm3 mol− 1
)

varies in the opposite direction: 1.092 (monoglyme [67]) 

> 0.902 (diglyme [66]) > 0.749 (triglyme [34]) > 0.602 (tetraglyme 
[34]) (Fig. 6). This quantity may even become negative in solutions with 
components of very different size, such as (tetraglyme + n-pentane), for 

which VE
m = − 0.39 cm3 mol− 1 [93].

5.3. (Alkanol + glyme) mixtures

In (2-propanol + glyme) mixtures, HE
m values are large and positive 

(Table 8, Fig. 5). This can be attributed to a dominant contribution from 
the breakdown of interactions between molecules of the same chemical 
species. Notably, for systems with a given glyme, HE

m follows the 
sequence: (2-propanol + glyme) > (glyme + n-heptane) > (2-propanol +
n-heptane) (see Fig. 5). This clearly indicates that self-association and 
solvation effects are of minor importance in (2-propanol + glyme) 
mixtures, which are largely unstructured. For the (2-propanol + di-n- 

propyl ether, DPE) system, HE
m/
(

J mol− 1
)
= 958 [94], a value close to 

that of the (2-propanol + n-heptane) system (797 J mol− 1 [83]). This 
suggests that alcohol self-association effects remain relevant in the latter 
mixture.

For longer glymes, HE
m is higher, and the maxima of the corre

sponding HE
m(x1) curves are shifted toward higher concentrations of 2- 

propanol (Fig. 2). This can be interpreted as a consequence of the 
increased ability of longer polyether chains to break (2-propanol)-(2- 
propanol) interactions. The corresponding values of the isochoric excess 
molar internal energy, UE

m,V (Table 8), which increase more rapidly than 
the HE

m values with the glyme size, support this interpretation. It should 
be noted that the equation of state term is rather small for these systems, 
so the HE

m values are mainly determined by interactional effects. Note 
that, for the (2-propanol + DPE) system, the HE

m(x1) curve is skewed to 
lower mole fractions of the alkanol (Fig. 4), further suggesting that self- 
association effects are still significant in this mixture.

In contrast with these HE
m values, the VE

m values for (2-propanol +
glyme) solutions are either small and positive (monoglyme, diglyme and 
triglyme) or negative (tetraglyme) (see below). Systems exhibiting such 
values of VE

m, along with largely positive HE
m results, are characterized by 

strong structural effects that outweigh the positive interactional 
contribution to VE

m arising from the rupture of interactions between like 
molecules. The relative influence of structural effects on 

VE
m/
(

cm3 mol− 1
)

appears to increase with glyme size, as this excess 

function becomes progressively lower: 0.176 (monoglyme) > 0.105 
(diglyme) > 0.023 (triglyme) > − 0.044 (tetraglyme) (Table 7 and 
Fig. 6). Note that these variations are the same as those for (glyme + n- 
heptane) mixtures (see Section 5.2 above). The values of 

(
∂VE

m/∂T
)

p,x 

(Table 7) are positive, indicating that the interactional contribution to 
VE

m increases with temperature. However, 
(
∂VE

m/∂T
)

p,x decreases as 
glyme size increases (Table 7), which may be due to the growing rele
vance of structural effects under these conditions.

(1-Propanol + glyme) mixtures are characterized by analogous 
properties to those of (2-propanol + glyme) solutions. However, for a 
fixed glyme, replacing 2-propanol with 1-propanol leads to lower values 
of both HE

m and VE
m (Tables 7, 8, and Figs. 5, 6). This behavior can be 

explained, at least partially, by the combination of the following factors: 
(i) Glyme molecules break the hydrogen bonding network of 2-propanol 
more effectively than that of the 1-propanol. This phenomenon is also 
observed in (alkanol + n-heptane) mixtures (see Section 5.1 above). (ii) 
Alkanol-glyme interactions are likely stronger in the case of 1-propanol, 
as its –OH group is less sterically hindered, resulting in a more negative 
contribution to the excess functions. (iii) For the same reason, the 
number of unlike molecules interactions formed upon mixing is greater 
in these solutions. It is worth noting that in systems such as (1-propanol 
or 2-propanol + glyme) and (glyme + n-heptane), both excess functions, 
HE

m and VE
m, vary similarly with glyme size (Figs. 5 and 6). This high

lights the relevance of both physical interactions and structural effects in 
the mixtures of alkanols studied. The larger values of 

(
∂VE

m/∂T
)

p,x 

observed for (1-propanol + glyme) systems (Table 7) may be explained 
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Fig. 6. Excess molar volume, VE
m, of (glyme + alkane) or (alkanol + glyme) 

systems as a function of u, the number of oxygen atoms in the glyme, at 
equimolar composition, p = 0.1 MPa and T = 298.15 K: (△) 2-propanol [this 
work]; (⬜) 1-propanol [58–60]; (⋄) n-heptane [34,66,67]; (○) 1-nonanol [68]; 
(☓) 1-hexanol [69].
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by the fact that glymes more effectively disrupt the self-association of 2- 
propanol.

5.4. Analysis of different contributions to excess molar enthalpy

Next, the enthalpy of interaction between 2-propanol and glymes, 
denoted as ΔHOH− O, is evaluated using the equation [8,95]: 

ΔHOH− O = HE,∞
m,1 (2 − propanol + glyme)

− HE,∞
m,1 (2 − propanol + n − heptane)

− HE,∞
m,1 (glyme + n − heptane)

(16) 

where HE,∞
m,1 represents the partial excess molar enthalpy of the first 

component of the mixture at infinite dilution. In the calculation of 
ΔHOH− O, several considerations have been taken into account: 

(i) The values of HE,∞
m,1 for (2-propanol + glyme) mixtures are ob

tained from our measurements of HE
m over the entire mole fraction 

range. The Redlich-Kister fit is used to calculate these values from the 
following expression: 

HE,∞
m,1 = lim

x1→0

[

HE
m + x2

(
∂HE

m
∂x1

)

T,p

]

=
∑k− 1

i=0
(− 1)iAi (17) 

where the parameters Ai are listed in Table 5. Accordingly, the values of 

HE,∞
m,1 /

(
kJ mol− 1

)
are: 5.6 (monoglyme); 5.9 (diglyme); 5.5 (triglyme); 

5.6 (tetraglyme). 

(ii) As is customary in the application of association theories, it is 
assumed that HE,∞

m,1 (2-propanol + n-heptane) is independent of the 

alcohol [63,79–82]. In this work, we have used HE,∞
m,1 (2-propanol +

n-heptane) = 23.2 kJ mol− 1, which is the same value reported for 
mixtures with 1-alkanols [96–98].

(iii) Finally, the values of HE,∞
m,1/

(
kJ mol− 1

)
for (glyme + n-heptane) 

mixtures are: 5.5 (monoglyme) [65]; 8.2 (diglyme) [91]; 10.8 (tri
glyme) [88]; 13.3 (tetraglyme) [92]. These values are consistent 
with the statement made above regarding the stronger dipolar in
teractions exhibited by longer glymes (see Section 5.2).

An inspection of the ΔHOH− O results, collected in Table 8, reveals 
several interesting findings: (i) Increasing the glyme size in mixtures 
with a fixed alkanol (1-propanol or 2-propanol) leads to more negative 
ΔHOH− O values, indicating stronger interactions between unlike mole
cules. This is in accordance with the stronger polar character of longer 
glymes, as reflected in the HE,∞

m,1 (glyme + n-heptane) values. (ii) 
Although the ΔHOH− O values are similar for both alkanols, 1-propanol 
consistently shows a higher contribution to interactions between un
like molecules, especially in mixtures with tetraglyme. This can be 
attributed, as previously discussed, to the fact that the –OH group in 2- 
propanol is more sterically hindered, reducing its ability to participate in 
interactions between unlike molecules. (iii) The large and negative 
ΔHOH− O values contrast with the large and positive HE

m results, indi
cating that the latter are predominantly determined by the breaking of 
interactions between like molecules.

We have also determined the ΔHOH− O values for the (1-propanol or 
2-propanol + DPE) systems. For this purpose, we used the following 

values of HE,∞
m,1/

(
kJ mol− 1

)
: 0.8 (DPE + n-heptane) [99]; 6.6 (1-propanol 

+ DPE); 7.5 (2-propanol + DPE) [56]. Thus, the resulting ΔHOH− O 

/
(

kJ mol− 1
)

values are: − 15.8 (1-propanol + DPE); − 14.9 (2-propanol 

+ DPE). These values are less negative than those obtained for the 
corresponding solutions with glymes, indicating that interactions be
tween unlike molecules are stronger in the latter mixtures. This is likely 
because the number of oxygen atoms is higher in polyethers and the –O– 
group is very sterically hindered in DPE. The lower values of 

HE
m/
(

J mol− 1
)

for the systems with DPE (740 (1-propanol); 958 

(2-propanol)) [56] suggest that this ether is not an effective breaker of 
alcohol self-association, which plays a crucial role in determining the 
thermodynamic properties of these solutions.

5.5. Results from the Flory model

Firstly, the low values of σr
(
HE

m
)

for mixtures with linear polyethers 
are noteworthy (Table 6). This indicates that the random mixing hy
pothesis is largely valid for these systems, which exhibit weak orienta
tional effects. In other words, physical interactions dominate. In 
contrast, the σr

(
HE

m
)

result obtained for the (2-propanol + DPE) system 
is significantly higher, clearly indicating the importance of orientational 
effects in this solution. Notably, the HE

m curve of this system is skewed 
toward low mole fractions of the alkanol (Fig. 4), a typical feature of 
solutions in which alcohol self-association plays a determining role.

It should also be noted that there is a significant difference between 
the values of the interactional parameter, X12, for systems containing 
polyethers compared to the corresponding value for the solution with 
DPE (Table 6). This highlights that interactions between like molecules 
are much more prominent in the former mixtures.

The excess molar volumes are poorly represented by the model, with 
theoretical results significantly exceeding the experimental values. This 
indicates that the model overestimates the interactional contribution to 
the excess volume. Nevertheless, the theory correctly describes the trend 
observed in mixtures with polyethers: the decrease in VE

m as the number 
of O atoms in the ether increases.

Finally, it should be emphasized that the model provides similar 
results for (1-propanol or 2-propanol + glyme) mixtures. Accordingly, 
the mean relative standard deviations calculated from the formula: 

σr
(
HE

m
)
=

1
Ns

∑
σr
(
HE

m
)

(18) 

are 0.040 (1-propanol) [8]; 0.044 (2-propanol) (with Ns = 4, the number 
of systems considered). Consequently, orientational effects are also 
weak in systems containing 1-propanol.

6. Conclusions

Densities at atmospheric pressure and temperatures T = (293.15 to 
303.15) K have been measured for the systems [2-propanol + (CH3O 
(CH2CH2O)uCH3] with u = 1, 2, 3, 4. Excess molar enthalpies at T =
298.15 K and the same pressure are also reported. The values of HE

m are 
large and positive, indicating that the disruption of interactions between 
molecules of the same species is the dominant contribution to this excess 
function. In contrast, the corresponding VE

m values are small or even 
negative (in the case of the solution with tetraglyme), suggesting that VE

m 
is primarily determined by structural effects. Analysis of the results 
using the Flory model reveals that orientational effects are weak in the 
studied systems and significantly stronger in the (2-propanol + di-n- 
propyl ether) mixture. Mixtures of 1-propanol or 2-propanol and glymes 
exhibit similar behavior, although interactions between unlike mole
cules are stronger in the solutions containing 1-propanol.
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